1 /*******************************************************************************
2 
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2012 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 
27 *******************************************************************************/
28 
29 #include "e1000.h"
30 
31 static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
32 static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
33 static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active);
34 static s32 e1000_wait_autoneg(struct e1000_hw *hw);
35 static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg);
36 static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
37 					  u16 *data, bool read, bool page_set);
38 static u32 e1000_get_phy_addr_for_hv_page(u32 page);
39 static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
40                                           u16 *data, bool read);
41 
42 /* Cable length tables */
43 static const u16 e1000_m88_cable_length_table[] = {
44 	0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
45 #define M88E1000_CABLE_LENGTH_TABLE_SIZE \
46 		ARRAY_SIZE(e1000_m88_cable_length_table)
47 
48 static const u16 e1000_igp_2_cable_length_table[] = {
49 	0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
50 	6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
51 	26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
52 	44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
53 	66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
54 	87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
55 	100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
56 	124};
57 #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
58 		ARRAY_SIZE(e1000_igp_2_cable_length_table)
59 
60 #define BM_PHY_REG_PAGE(offset) \
61 	((u16)(((offset) >> PHY_PAGE_SHIFT) & 0xFFFF))
62 #define BM_PHY_REG_NUM(offset) \
63 	((u16)(((offset) & MAX_PHY_REG_ADDRESS) |\
64 	 (((offset) >> (PHY_UPPER_SHIFT - PHY_PAGE_SHIFT)) &\
65 		~MAX_PHY_REG_ADDRESS)))
66 
67 #define HV_INTC_FC_PAGE_START             768
68 #define I82578_ADDR_REG                   29
69 #define I82577_ADDR_REG                   16
70 #define I82577_CFG_REG                    22
71 #define I82577_CFG_ASSERT_CRS_ON_TX       (1 << 15)
72 #define I82577_CFG_ENABLE_DOWNSHIFT       (3 << 10) /* auto downshift 100/10 */
73 #define I82577_CTRL_REG                   23
74 
75 /* 82577 specific PHY registers */
76 #define I82577_PHY_CTRL_2            18
77 #define I82577_PHY_STATUS_2          26
78 #define I82577_PHY_DIAG_STATUS       31
79 
80 /* I82577 PHY Status 2 */
81 #define I82577_PHY_STATUS2_REV_POLARITY   0x0400
82 #define I82577_PHY_STATUS2_MDIX           0x0800
83 #define I82577_PHY_STATUS2_SPEED_MASK     0x0300
84 #define I82577_PHY_STATUS2_SPEED_1000MBPS 0x0200
85 
86 /* I82577 PHY Control 2 */
87 #define I82577_PHY_CTRL2_AUTO_MDIX        0x0400
88 #define I82577_PHY_CTRL2_FORCE_MDI_MDIX   0x0200
89 
90 /* I82577 PHY Diagnostics Status */
91 #define I82577_DSTATUS_CABLE_LENGTH       0x03FC
92 #define I82577_DSTATUS_CABLE_LENGTH_SHIFT 2
93 
94 /* BM PHY Copper Specific Control 1 */
95 #define BM_CS_CTRL1                       16
96 
97 #define HV_MUX_DATA_CTRL               PHY_REG(776, 16)
98 #define HV_MUX_DATA_CTRL_GEN_TO_MAC    0x0400
99 #define HV_MUX_DATA_CTRL_FORCE_SPEED   0x0004
100 
101 /**
102  *  e1000e_check_reset_block_generic - Check if PHY reset is blocked
103  *  @hw: pointer to the HW structure
104  *
105  *  Read the PHY management control register and check whether a PHY reset
106  *  is blocked.  If a reset is not blocked return 0, otherwise
107  *  return E1000_BLK_PHY_RESET (12).
108  **/
109 s32 e1000e_check_reset_block_generic(struct e1000_hw *hw)
110 {
111 	u32 manc;
112 
113 	manc = er32(MANC);
114 
115 	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ?
116 	       E1000_BLK_PHY_RESET : 0;
117 }
118 
119 /**
120  *  e1000e_get_phy_id - Retrieve the PHY ID and revision
121  *  @hw: pointer to the HW structure
122  *
123  *  Reads the PHY registers and stores the PHY ID and possibly the PHY
124  *  revision in the hardware structure.
125  **/
126 s32 e1000e_get_phy_id(struct e1000_hw *hw)
127 {
128 	struct e1000_phy_info *phy = &hw->phy;
129 	s32 ret_val = 0;
130 	u16 phy_id;
131 	u16 retry_count = 0;
132 
133 	if (!phy->ops.read_reg)
134 		return 0;
135 
136 	while (retry_count < 2) {
137 		ret_val = e1e_rphy(hw, PHY_ID1, &phy_id);
138 		if (ret_val)
139 			return ret_val;
140 
141 		phy->id = (u32)(phy_id << 16);
142 		udelay(20);
143 		ret_val = e1e_rphy(hw, PHY_ID2, &phy_id);
144 		if (ret_val)
145 			return ret_val;
146 
147 		phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
148 		phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
149 
150 		if (phy->id != 0 && phy->id != PHY_REVISION_MASK)
151 			return 0;
152 
153 		retry_count++;
154 	}
155 
156 	return 0;
157 }
158 
159 /**
160  *  e1000e_phy_reset_dsp - Reset PHY DSP
161  *  @hw: pointer to the HW structure
162  *
163  *  Reset the digital signal processor.
164  **/
165 s32 e1000e_phy_reset_dsp(struct e1000_hw *hw)
166 {
167 	s32 ret_val;
168 
169 	ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
170 	if (ret_val)
171 		return ret_val;
172 
173 	return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0);
174 }
175 
176 /**
177  *  e1000e_read_phy_reg_mdic - Read MDI control register
178  *  @hw: pointer to the HW structure
179  *  @offset: register offset to be read
180  *  @data: pointer to the read data
181  *
182  *  Reads the MDI control register in the PHY at offset and stores the
183  *  information read to data.
184  **/
185 s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
186 {
187 	struct e1000_phy_info *phy = &hw->phy;
188 	u32 i, mdic = 0;
189 
190 	if (offset > MAX_PHY_REG_ADDRESS) {
191 		e_dbg("PHY Address %d is out of range\n", offset);
192 		return -E1000_ERR_PARAM;
193 	}
194 
195 	/*
196 	 * Set up Op-code, Phy Address, and register offset in the MDI
197 	 * Control register.  The MAC will take care of interfacing with the
198 	 * PHY to retrieve the desired data.
199 	 */
200 	mdic = ((offset << E1000_MDIC_REG_SHIFT) |
201 		(phy->addr << E1000_MDIC_PHY_SHIFT) |
202 		(E1000_MDIC_OP_READ));
203 
204 	ew32(MDIC, mdic);
205 
206 	/*
207 	 * Poll the ready bit to see if the MDI read completed
208 	 * Increasing the time out as testing showed failures with
209 	 * the lower time out
210 	 */
211 	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
212 		udelay(50);
213 		mdic = er32(MDIC);
214 		if (mdic & E1000_MDIC_READY)
215 			break;
216 	}
217 	if (!(mdic & E1000_MDIC_READY)) {
218 		e_dbg("MDI Read did not complete\n");
219 		return -E1000_ERR_PHY;
220 	}
221 	if (mdic & E1000_MDIC_ERROR) {
222 		e_dbg("MDI Error\n");
223 		return -E1000_ERR_PHY;
224 	}
225 	*data = (u16) mdic;
226 
227 	/*
228 	 * Allow some time after each MDIC transaction to avoid
229 	 * reading duplicate data in the next MDIC transaction.
230 	 */
231 	if (hw->mac.type == e1000_pch2lan)
232 		udelay(100);
233 
234 	return 0;
235 }
236 
237 /**
238  *  e1000e_write_phy_reg_mdic - Write MDI control register
239  *  @hw: pointer to the HW structure
240  *  @offset: register offset to write to
241  *  @data: data to write to register at offset
242  *
243  *  Writes data to MDI control register in the PHY at offset.
244  **/
245 s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
246 {
247 	struct e1000_phy_info *phy = &hw->phy;
248 	u32 i, mdic = 0;
249 
250 	if (offset > MAX_PHY_REG_ADDRESS) {
251 		e_dbg("PHY Address %d is out of range\n", offset);
252 		return -E1000_ERR_PARAM;
253 	}
254 
255 	/*
256 	 * Set up Op-code, Phy Address, and register offset in the MDI
257 	 * Control register.  The MAC will take care of interfacing with the
258 	 * PHY to retrieve the desired data.
259 	 */
260 	mdic = (((u32)data) |
261 		(offset << E1000_MDIC_REG_SHIFT) |
262 		(phy->addr << E1000_MDIC_PHY_SHIFT) |
263 		(E1000_MDIC_OP_WRITE));
264 
265 	ew32(MDIC, mdic);
266 
267 	/*
268 	 * Poll the ready bit to see if the MDI read completed
269 	 * Increasing the time out as testing showed failures with
270 	 * the lower time out
271 	 */
272 	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
273 		udelay(50);
274 		mdic = er32(MDIC);
275 		if (mdic & E1000_MDIC_READY)
276 			break;
277 	}
278 	if (!(mdic & E1000_MDIC_READY)) {
279 		e_dbg("MDI Write did not complete\n");
280 		return -E1000_ERR_PHY;
281 	}
282 	if (mdic & E1000_MDIC_ERROR) {
283 		e_dbg("MDI Error\n");
284 		return -E1000_ERR_PHY;
285 	}
286 
287 	/*
288 	 * Allow some time after each MDIC transaction to avoid
289 	 * reading duplicate data in the next MDIC transaction.
290 	 */
291 	if (hw->mac.type == e1000_pch2lan)
292 		udelay(100);
293 
294 	return 0;
295 }
296 
297 /**
298  *  e1000e_read_phy_reg_m88 - Read m88 PHY register
299  *  @hw: pointer to the HW structure
300  *  @offset: register offset to be read
301  *  @data: pointer to the read data
302  *
303  *  Acquires semaphore, if necessary, then reads the PHY register at offset
304  *  and storing the retrieved information in data.  Release any acquired
305  *  semaphores before exiting.
306  **/
307 s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
308 {
309 	s32 ret_val;
310 
311 	ret_val = hw->phy.ops.acquire(hw);
312 	if (ret_val)
313 		return ret_val;
314 
315 	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
316 					   data);
317 
318 	hw->phy.ops.release(hw);
319 
320 	return ret_val;
321 }
322 
323 /**
324  *  e1000e_write_phy_reg_m88 - Write m88 PHY register
325  *  @hw: pointer to the HW structure
326  *  @offset: register offset to write to
327  *  @data: data to write at register offset
328  *
329  *  Acquires semaphore, if necessary, then writes the data to PHY register
330  *  at the offset.  Release any acquired semaphores before exiting.
331  **/
332 s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
333 {
334 	s32 ret_val;
335 
336 	ret_val = hw->phy.ops.acquire(hw);
337 	if (ret_val)
338 		return ret_val;
339 
340 	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
341 					    data);
342 
343 	hw->phy.ops.release(hw);
344 
345 	return ret_val;
346 }
347 
348 /**
349  *  e1000_set_page_igp - Set page as on IGP-like PHY(s)
350  *  @hw: pointer to the HW structure
351  *  @page: page to set (shifted left when necessary)
352  *
353  *  Sets PHY page required for PHY register access.  Assumes semaphore is
354  *  already acquired.  Note, this function sets phy.addr to 1 so the caller
355  *  must set it appropriately (if necessary) after this function returns.
356  **/
357 s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page)
358 {
359 	e_dbg("Setting page 0x%x\n", page);
360 
361 	hw->phy.addr = 1;
362 
363 	return e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, page);
364 }
365 
366 /**
367  *  __e1000e_read_phy_reg_igp - Read igp PHY register
368  *  @hw: pointer to the HW structure
369  *  @offset: register offset to be read
370  *  @data: pointer to the read data
371  *  @locked: semaphore has already been acquired or not
372  *
373  *  Acquires semaphore, if necessary, then reads the PHY register at offset
374  *  and stores the retrieved information in data.  Release any acquired
375  *  semaphores before exiting.
376  **/
377 static s32 __e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data,
378                                     bool locked)
379 {
380 	s32 ret_val = 0;
381 
382 	if (!locked) {
383 		if (!hw->phy.ops.acquire)
384 			return 0;
385 
386 		ret_val = hw->phy.ops.acquire(hw);
387 		if (ret_val)
388 			return ret_val;
389 	}
390 
391 	if (offset > MAX_PHY_MULTI_PAGE_REG)
392 		ret_val = e1000e_write_phy_reg_mdic(hw,
393 						    IGP01E1000_PHY_PAGE_SELECT,
394 						    (u16)offset);
395 	if (!ret_val)
396 		ret_val = e1000e_read_phy_reg_mdic(hw,
397 						   MAX_PHY_REG_ADDRESS & offset,
398 						   data);
399 	if (!locked)
400 		hw->phy.ops.release(hw);
401 
402 	return ret_val;
403 }
404 
405 /**
406  *  e1000e_read_phy_reg_igp - Read igp PHY register
407  *  @hw: pointer to the HW structure
408  *  @offset: register offset to be read
409  *  @data: pointer to the read data
410  *
411  *  Acquires semaphore then reads the PHY register at offset and stores the
412  *  retrieved information in data.
413  *  Release the acquired semaphore before exiting.
414  **/
415 s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
416 {
417 	return __e1000e_read_phy_reg_igp(hw, offset, data, false);
418 }
419 
420 /**
421  *  e1000e_read_phy_reg_igp_locked - Read igp PHY register
422  *  @hw: pointer to the HW structure
423  *  @offset: register offset to be read
424  *  @data: pointer to the read data
425  *
426  *  Reads the PHY register at offset and stores the retrieved information
427  *  in data.  Assumes semaphore already acquired.
428  **/
429 s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data)
430 {
431 	return __e1000e_read_phy_reg_igp(hw, offset, data, true);
432 }
433 
434 /**
435  *  e1000e_write_phy_reg_igp - Write igp PHY register
436  *  @hw: pointer to the HW structure
437  *  @offset: register offset to write to
438  *  @data: data to write at register offset
439  *  @locked: semaphore has already been acquired or not
440  *
441  *  Acquires semaphore, if necessary, then writes the data to PHY register
442  *  at the offset.  Release any acquired semaphores before exiting.
443  **/
444 static s32 __e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data,
445                                      bool locked)
446 {
447 	s32 ret_val = 0;
448 
449 	if (!locked) {
450 		if (!hw->phy.ops.acquire)
451 			return 0;
452 
453 		ret_val = hw->phy.ops.acquire(hw);
454 		if (ret_val)
455 			return ret_val;
456 	}
457 
458 	if (offset > MAX_PHY_MULTI_PAGE_REG)
459 		ret_val = e1000e_write_phy_reg_mdic(hw,
460 						    IGP01E1000_PHY_PAGE_SELECT,
461 						    (u16)offset);
462 	if (!ret_val)
463 		ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS &
464 							offset,
465 						    data);
466 	if (!locked)
467 		hw->phy.ops.release(hw);
468 
469 	return ret_val;
470 }
471 
472 /**
473  *  e1000e_write_phy_reg_igp - Write igp PHY register
474  *  @hw: pointer to the HW structure
475  *  @offset: register offset to write to
476  *  @data: data to write at register offset
477  *
478  *  Acquires semaphore then writes the data to PHY register
479  *  at the offset.  Release any acquired semaphores before exiting.
480  **/
481 s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
482 {
483 	return __e1000e_write_phy_reg_igp(hw, offset, data, false);
484 }
485 
486 /**
487  *  e1000e_write_phy_reg_igp_locked - Write igp PHY register
488  *  @hw: pointer to the HW structure
489  *  @offset: register offset to write to
490  *  @data: data to write at register offset
491  *
492  *  Writes the data to PHY register at the offset.
493  *  Assumes semaphore already acquired.
494  **/
495 s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data)
496 {
497 	return __e1000e_write_phy_reg_igp(hw, offset, data, true);
498 }
499 
500 /**
501  *  __e1000_read_kmrn_reg - Read kumeran register
502  *  @hw: pointer to the HW structure
503  *  @offset: register offset to be read
504  *  @data: pointer to the read data
505  *  @locked: semaphore has already been acquired or not
506  *
507  *  Acquires semaphore, if necessary.  Then reads the PHY register at offset
508  *  using the kumeran interface.  The information retrieved is stored in data.
509  *  Release any acquired semaphores before exiting.
510  **/
511 static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data,
512                                  bool locked)
513 {
514 	u32 kmrnctrlsta;
515 
516 	if (!locked) {
517 		s32 ret_val = 0;
518 
519 		if (!hw->phy.ops.acquire)
520 			return 0;
521 
522 		ret_val = hw->phy.ops.acquire(hw);
523 		if (ret_val)
524 			return ret_val;
525 	}
526 
527 	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
528 		       E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
529 	ew32(KMRNCTRLSTA, kmrnctrlsta);
530 	e1e_flush();
531 
532 	udelay(2);
533 
534 	kmrnctrlsta = er32(KMRNCTRLSTA);
535 	*data = (u16)kmrnctrlsta;
536 
537 	if (!locked)
538 		hw->phy.ops.release(hw);
539 
540 	return 0;
541 }
542 
543 /**
544  *  e1000e_read_kmrn_reg -  Read kumeran register
545  *  @hw: pointer to the HW structure
546  *  @offset: register offset to be read
547  *  @data: pointer to the read data
548  *
549  *  Acquires semaphore then reads the PHY register at offset using the
550  *  kumeran interface.  The information retrieved is stored in data.
551  *  Release the acquired semaphore before exiting.
552  **/
553 s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
554 {
555 	return __e1000_read_kmrn_reg(hw, offset, data, false);
556 }
557 
558 /**
559  *  e1000e_read_kmrn_reg_locked -  Read kumeran register
560  *  @hw: pointer to the HW structure
561  *  @offset: register offset to be read
562  *  @data: pointer to the read data
563  *
564  *  Reads the PHY register at offset using the kumeran interface.  The
565  *  information retrieved is stored in data.
566  *  Assumes semaphore already acquired.
567  **/
568 s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data)
569 {
570 	return __e1000_read_kmrn_reg(hw, offset, data, true);
571 }
572 
573 /**
574  *  __e1000_write_kmrn_reg - Write kumeran register
575  *  @hw: pointer to the HW structure
576  *  @offset: register offset to write to
577  *  @data: data to write at register offset
578  *  @locked: semaphore has already been acquired or not
579  *
580  *  Acquires semaphore, if necessary.  Then write the data to PHY register
581  *  at the offset using the kumeran interface.  Release any acquired semaphores
582  *  before exiting.
583  **/
584 static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data,
585                                   bool locked)
586 {
587 	u32 kmrnctrlsta;
588 
589 	if (!locked) {
590 		s32 ret_val = 0;
591 
592 		if (!hw->phy.ops.acquire)
593 			return 0;
594 
595 		ret_val = hw->phy.ops.acquire(hw);
596 		if (ret_val)
597 			return ret_val;
598 	}
599 
600 	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
601 		       E1000_KMRNCTRLSTA_OFFSET) | data;
602 	ew32(KMRNCTRLSTA, kmrnctrlsta);
603 	e1e_flush();
604 
605 	udelay(2);
606 
607 	if (!locked)
608 		hw->phy.ops.release(hw);
609 
610 	return 0;
611 }
612 
613 /**
614  *  e1000e_write_kmrn_reg -  Write kumeran register
615  *  @hw: pointer to the HW structure
616  *  @offset: register offset to write to
617  *  @data: data to write at register offset
618  *
619  *  Acquires semaphore then writes the data to the PHY register at the offset
620  *  using the kumeran interface.  Release the acquired semaphore before exiting.
621  **/
622 s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
623 {
624 	return __e1000_write_kmrn_reg(hw, offset, data, false);
625 }
626 
627 /**
628  *  e1000e_write_kmrn_reg_locked -  Write kumeran register
629  *  @hw: pointer to the HW structure
630  *  @offset: register offset to write to
631  *  @data: data to write at register offset
632  *
633  *  Write the data to PHY register at the offset using the kumeran interface.
634  *  Assumes semaphore already acquired.
635  **/
636 s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data)
637 {
638 	return __e1000_write_kmrn_reg(hw, offset, data, true);
639 }
640 
641 /**
642  *  e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
643  *  @hw: pointer to the HW structure
644  *
645  *  Sets up Carrier-sense on Transmit and downshift values.
646  **/
647 s32 e1000_copper_link_setup_82577(struct e1000_hw *hw)
648 {
649 	s32 ret_val;
650 	u16 phy_data;
651 
652 	/* Enable CRS on Tx. This must be set for half-duplex operation. */
653 	ret_val = e1e_rphy(hw, I82577_CFG_REG, &phy_data);
654 	if (ret_val)
655 		return ret_val;
656 
657 	phy_data |= I82577_CFG_ASSERT_CRS_ON_TX;
658 
659 	/* Enable downshift */
660 	phy_data |= I82577_CFG_ENABLE_DOWNSHIFT;
661 
662 	return e1e_wphy(hw, I82577_CFG_REG, phy_data);
663 }
664 
665 /**
666  *  e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link
667  *  @hw: pointer to the HW structure
668  *
669  *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
670  *  and downshift values are set also.
671  **/
672 s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw)
673 {
674 	struct e1000_phy_info *phy = &hw->phy;
675 	s32 ret_val;
676 	u16 phy_data;
677 
678 	/* Enable CRS on Tx. This must be set for half-duplex operation. */
679 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
680 	if (ret_val)
681 		return ret_val;
682 
683 	/* For BM PHY this bit is downshift enable */
684 	if (phy->type != e1000_phy_bm)
685 		phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
686 
687 	/*
688 	 * Options:
689 	 *   MDI/MDI-X = 0 (default)
690 	 *   0 - Auto for all speeds
691 	 *   1 - MDI mode
692 	 *   2 - MDI-X mode
693 	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
694 	 */
695 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
696 
697 	switch (phy->mdix) {
698 	case 1:
699 		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
700 		break;
701 	case 2:
702 		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
703 		break;
704 	case 3:
705 		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
706 		break;
707 	case 0:
708 	default:
709 		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
710 		break;
711 	}
712 
713 	/*
714 	 * Options:
715 	 *   disable_polarity_correction = 0 (default)
716 	 *       Automatic Correction for Reversed Cable Polarity
717 	 *   0 - Disabled
718 	 *   1 - Enabled
719 	 */
720 	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
721 	if (phy->disable_polarity_correction == 1)
722 		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
723 
724 	/* Enable downshift on BM (disabled by default) */
725 	if (phy->type == e1000_phy_bm)
726 		phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT;
727 
728 	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
729 	if (ret_val)
730 		return ret_val;
731 
732 	if ((phy->type == e1000_phy_m88) &&
733 	    (phy->revision < E1000_REVISION_4) &&
734 	    (phy->id != BME1000_E_PHY_ID_R2)) {
735 		/*
736 		 * Force TX_CLK in the Extended PHY Specific Control Register
737 		 * to 25MHz clock.
738 		 */
739 		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
740 		if (ret_val)
741 			return ret_val;
742 
743 		phy_data |= M88E1000_EPSCR_TX_CLK_25;
744 
745 		if ((phy->revision == 2) &&
746 		    (phy->id == M88E1111_I_PHY_ID)) {
747 			/* 82573L PHY - set the downshift counter to 5x. */
748 			phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
749 			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
750 		} else {
751 			/* Configure Master and Slave downshift values */
752 			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
753 				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
754 			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
755 				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
756 		}
757 		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
758 		if (ret_val)
759 			return ret_val;
760 	}
761 
762 	if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) {
763 		/* Set PHY page 0, register 29 to 0x0003 */
764 		ret_val = e1e_wphy(hw, 29, 0x0003);
765 		if (ret_val)
766 			return ret_val;
767 
768 		/* Set PHY page 0, register 30 to 0x0000 */
769 		ret_val = e1e_wphy(hw, 30, 0x0000);
770 		if (ret_val)
771 			return ret_val;
772 	}
773 
774 	/* Commit the changes. */
775 	ret_val = e1000e_commit_phy(hw);
776 	if (ret_val) {
777 		e_dbg("Error committing the PHY changes\n");
778 		return ret_val;
779 	}
780 
781 	if (phy->type == e1000_phy_82578) {
782 		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
783 		if (ret_val)
784 			return ret_val;
785 
786 		/* 82578 PHY - set the downshift count to 1x. */
787 		phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE;
788 		phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK;
789 		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
790 		if (ret_val)
791 			return ret_val;
792 	}
793 
794 	return 0;
795 }
796 
797 /**
798  *  e1000e_copper_link_setup_igp - Setup igp PHY's for copper link
799  *  @hw: pointer to the HW structure
800  *
801  *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
802  *  igp PHY's.
803  **/
804 s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw)
805 {
806 	struct e1000_phy_info *phy = &hw->phy;
807 	s32 ret_val;
808 	u16 data;
809 
810 	ret_val = e1000_phy_hw_reset(hw);
811 	if (ret_val) {
812 		e_dbg("Error resetting the PHY.\n");
813 		return ret_val;
814 	}
815 
816 	/*
817 	 * Wait 100ms for MAC to configure PHY from NVM settings, to avoid
818 	 * timeout issues when LFS is enabled.
819 	 */
820 	msleep(100);
821 
822 	/* disable lplu d0 during driver init */
823 	ret_val = e1000_set_d0_lplu_state(hw, false);
824 	if (ret_val) {
825 		e_dbg("Error Disabling LPLU D0\n");
826 		return ret_val;
827 	}
828 	/* Configure mdi-mdix settings */
829 	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data);
830 	if (ret_val)
831 		return ret_val;
832 
833 	data &= ~IGP01E1000_PSCR_AUTO_MDIX;
834 
835 	switch (phy->mdix) {
836 	case 1:
837 		data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
838 		break;
839 	case 2:
840 		data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
841 		break;
842 	case 0:
843 	default:
844 		data |= IGP01E1000_PSCR_AUTO_MDIX;
845 		break;
846 	}
847 	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data);
848 	if (ret_val)
849 		return ret_val;
850 
851 	/* set auto-master slave resolution settings */
852 	if (hw->mac.autoneg) {
853 		/*
854 		 * when autonegotiation advertisement is only 1000Mbps then we
855 		 * should disable SmartSpeed and enable Auto MasterSlave
856 		 * resolution as hardware default.
857 		 */
858 		if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
859 			/* Disable SmartSpeed */
860 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
861 					   &data);
862 			if (ret_val)
863 				return ret_val;
864 
865 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
866 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
867 					   data);
868 			if (ret_val)
869 				return ret_val;
870 
871 			/* Set auto Master/Slave resolution process */
872 			ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data);
873 			if (ret_val)
874 				return ret_val;
875 
876 			data &= ~CR_1000T_MS_ENABLE;
877 			ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data);
878 			if (ret_val)
879 				return ret_val;
880 		}
881 
882 		ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &data);
883 		if (ret_val)
884 			return ret_val;
885 
886 		/* load defaults for future use */
887 		phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
888 			((data & CR_1000T_MS_VALUE) ?
889 			e1000_ms_force_master :
890 			e1000_ms_force_slave) :
891 			e1000_ms_auto;
892 
893 		switch (phy->ms_type) {
894 		case e1000_ms_force_master:
895 			data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
896 			break;
897 		case e1000_ms_force_slave:
898 			data |= CR_1000T_MS_ENABLE;
899 			data &= ~(CR_1000T_MS_VALUE);
900 			break;
901 		case e1000_ms_auto:
902 			data &= ~CR_1000T_MS_ENABLE;
903 		default:
904 			break;
905 		}
906 		ret_val = e1e_wphy(hw, PHY_1000T_CTRL, data);
907 	}
908 
909 	return ret_val;
910 }
911 
912 /**
913  *  e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
914  *  @hw: pointer to the HW structure
915  *
916  *  Reads the MII auto-neg advertisement register and/or the 1000T control
917  *  register and if the PHY is already setup for auto-negotiation, then
918  *  return successful.  Otherwise, setup advertisement and flow control to
919  *  the appropriate values for the wanted auto-negotiation.
920  **/
921 static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
922 {
923 	struct e1000_phy_info *phy = &hw->phy;
924 	s32 ret_val;
925 	u16 mii_autoneg_adv_reg;
926 	u16 mii_1000t_ctrl_reg = 0;
927 
928 	phy->autoneg_advertised &= phy->autoneg_mask;
929 
930 	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
931 	ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
932 	if (ret_val)
933 		return ret_val;
934 
935 	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
936 		/* Read the MII 1000Base-T Control Register (Address 9). */
937 		ret_val = e1e_rphy(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
938 		if (ret_val)
939 			return ret_val;
940 	}
941 
942 	/*
943 	 * Need to parse both autoneg_advertised and fc and set up
944 	 * the appropriate PHY registers.  First we will parse for
945 	 * autoneg_advertised software override.  Since we can advertise
946 	 * a plethora of combinations, we need to check each bit
947 	 * individually.
948 	 */
949 
950 	/*
951 	 * First we clear all the 10/100 mb speed bits in the Auto-Neg
952 	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
953 	 * the  1000Base-T Control Register (Address 9).
954 	 */
955 	mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
956 				 NWAY_AR_100TX_HD_CAPS |
957 				 NWAY_AR_10T_FD_CAPS   |
958 				 NWAY_AR_10T_HD_CAPS);
959 	mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
960 
961 	e_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
962 
963 	/* Do we want to advertise 10 Mb Half Duplex? */
964 	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
965 		e_dbg("Advertise 10mb Half duplex\n");
966 		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
967 	}
968 
969 	/* Do we want to advertise 10 Mb Full Duplex? */
970 	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
971 		e_dbg("Advertise 10mb Full duplex\n");
972 		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
973 	}
974 
975 	/* Do we want to advertise 100 Mb Half Duplex? */
976 	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
977 		e_dbg("Advertise 100mb Half duplex\n");
978 		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
979 	}
980 
981 	/* Do we want to advertise 100 Mb Full Duplex? */
982 	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
983 		e_dbg("Advertise 100mb Full duplex\n");
984 		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
985 	}
986 
987 	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
988 	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
989 		e_dbg("Advertise 1000mb Half duplex request denied!\n");
990 
991 	/* Do we want to advertise 1000 Mb Full Duplex? */
992 	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
993 		e_dbg("Advertise 1000mb Full duplex\n");
994 		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
995 	}
996 
997 	/*
998 	 * Check for a software override of the flow control settings, and
999 	 * setup the PHY advertisement registers accordingly.  If
1000 	 * auto-negotiation is enabled, then software will have to set the
1001 	 * "PAUSE" bits to the correct value in the Auto-Negotiation
1002 	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
1003 	 * negotiation.
1004 	 *
1005 	 * The possible values of the "fc" parameter are:
1006 	 *      0:  Flow control is completely disabled
1007 	 *      1:  Rx flow control is enabled (we can receive pause frames
1008 	 *          but not send pause frames).
1009 	 *      2:  Tx flow control is enabled (we can send pause frames
1010 	 *          but we do not support receiving pause frames).
1011 	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
1012 	 *  other:  No software override.  The flow control configuration
1013 	 *          in the EEPROM is used.
1014 	 */
1015 	switch (hw->fc.current_mode) {
1016 	case e1000_fc_none:
1017 		/*
1018 		 * Flow control (Rx & Tx) is completely disabled by a
1019 		 * software over-ride.
1020 		 */
1021 		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1022 		break;
1023 	case e1000_fc_rx_pause:
1024 		/*
1025 		 * Rx Flow control is enabled, and Tx Flow control is
1026 		 * disabled, by a software over-ride.
1027 		 *
1028 		 * Since there really isn't a way to advertise that we are
1029 		 * capable of Rx Pause ONLY, we will advertise that we
1030 		 * support both symmetric and asymmetric Rx PAUSE.  Later
1031 		 * (in e1000e_config_fc_after_link_up) we will disable the
1032 		 * hw's ability to send PAUSE frames.
1033 		 */
1034 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1035 		break;
1036 	case e1000_fc_tx_pause:
1037 		/*
1038 		 * Tx Flow control is enabled, and Rx Flow control is
1039 		 * disabled, by a software over-ride.
1040 		 */
1041 		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1042 		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1043 		break;
1044 	case e1000_fc_full:
1045 		/*
1046 		 * Flow control (both Rx and Tx) is enabled by a software
1047 		 * over-ride.
1048 		 */
1049 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1050 		break;
1051 	default:
1052 		e_dbg("Flow control param set incorrectly\n");
1053 		return -E1000_ERR_CONFIG;
1054 	}
1055 
1056 	ret_val = e1e_wphy(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1057 	if (ret_val)
1058 		return ret_val;
1059 
1060 	e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1061 
1062 	if (phy->autoneg_mask & ADVERTISE_1000_FULL)
1063 		ret_val = e1e_wphy(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg);
1064 
1065 	return ret_val;
1066 }
1067 
1068 /**
1069  *  e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
1070  *  @hw: pointer to the HW structure
1071  *
1072  *  Performs initial bounds checking on autoneg advertisement parameter, then
1073  *  configure to advertise the full capability.  Setup the PHY to autoneg
1074  *  and restart the negotiation process between the link partner.  If
1075  *  autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
1076  **/
1077 static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
1078 {
1079 	struct e1000_phy_info *phy = &hw->phy;
1080 	s32 ret_val;
1081 	u16 phy_ctrl;
1082 
1083 	/*
1084 	 * Perform some bounds checking on the autoneg advertisement
1085 	 * parameter.
1086 	 */
1087 	phy->autoneg_advertised &= phy->autoneg_mask;
1088 
1089 	/*
1090 	 * If autoneg_advertised is zero, we assume it was not defaulted
1091 	 * by the calling code so we set to advertise full capability.
1092 	 */
1093 	if (phy->autoneg_advertised == 0)
1094 		phy->autoneg_advertised = phy->autoneg_mask;
1095 
1096 	e_dbg("Reconfiguring auto-neg advertisement params\n");
1097 	ret_val = e1000_phy_setup_autoneg(hw);
1098 	if (ret_val) {
1099 		e_dbg("Error Setting up Auto-Negotiation\n");
1100 		return ret_val;
1101 	}
1102 	e_dbg("Restarting Auto-Neg\n");
1103 
1104 	/*
1105 	 * Restart auto-negotiation by setting the Auto Neg Enable bit and
1106 	 * the Auto Neg Restart bit in the PHY control register.
1107 	 */
1108 	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
1109 	if (ret_val)
1110 		return ret_val;
1111 
1112 	phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
1113 	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
1114 	if (ret_val)
1115 		return ret_val;
1116 
1117 	/*
1118 	 * Does the user want to wait for Auto-Neg to complete here, or
1119 	 * check at a later time (for example, callback routine).
1120 	 */
1121 	if (phy->autoneg_wait_to_complete) {
1122 		ret_val = e1000_wait_autoneg(hw);
1123 		if (ret_val) {
1124 			e_dbg("Error while waiting for autoneg to complete\n");
1125 			return ret_val;
1126 		}
1127 	}
1128 
1129 	hw->mac.get_link_status = true;
1130 
1131 	return ret_val;
1132 }
1133 
1134 /**
1135  *  e1000e_setup_copper_link - Configure copper link settings
1136  *  @hw: pointer to the HW structure
1137  *
1138  *  Calls the appropriate function to configure the link for auto-neg or forced
1139  *  speed and duplex.  Then we check for link, once link is established calls
1140  *  to configure collision distance and flow control are called.  If link is
1141  *  not established, we return -E1000_ERR_PHY (-2).
1142  **/
1143 s32 e1000e_setup_copper_link(struct e1000_hw *hw)
1144 {
1145 	s32 ret_val;
1146 	bool link;
1147 
1148 	if (hw->mac.autoneg) {
1149 		/*
1150 		 * Setup autoneg and flow control advertisement and perform
1151 		 * autonegotiation.
1152 		 */
1153 		ret_val = e1000_copper_link_autoneg(hw);
1154 		if (ret_val)
1155 			return ret_val;
1156 	} else {
1157 		/*
1158 		 * PHY will be set to 10H, 10F, 100H or 100F
1159 		 * depending on user settings.
1160 		 */
1161 		e_dbg("Forcing Speed and Duplex\n");
1162 		ret_val = e1000_phy_force_speed_duplex(hw);
1163 		if (ret_val) {
1164 			e_dbg("Error Forcing Speed and Duplex\n");
1165 			return ret_val;
1166 		}
1167 	}
1168 
1169 	/*
1170 	 * Check link status. Wait up to 100 microseconds for link to become
1171 	 * valid.
1172 	 */
1173 	ret_val = e1000e_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10,
1174 					      &link);
1175 	if (ret_val)
1176 		return ret_val;
1177 
1178 	if (link) {
1179 		e_dbg("Valid link established!!!\n");
1180 		hw->mac.ops.config_collision_dist(hw);
1181 		ret_val = e1000e_config_fc_after_link_up(hw);
1182 	} else {
1183 		e_dbg("Unable to establish link!!!\n");
1184 	}
1185 
1186 	return ret_val;
1187 }
1188 
1189 /**
1190  *  e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1191  *  @hw: pointer to the HW structure
1192  *
1193  *  Calls the PHY setup function to force speed and duplex.  Clears the
1194  *  auto-crossover to force MDI manually.  Waits for link and returns
1195  *  successful if link up is successful, else -E1000_ERR_PHY (-2).
1196  **/
1197 s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1198 {
1199 	struct e1000_phy_info *phy = &hw->phy;
1200 	s32 ret_val;
1201 	u16 phy_data;
1202 	bool link;
1203 
1204 	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
1205 	if (ret_val)
1206 		return ret_val;
1207 
1208 	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1209 
1210 	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
1211 	if (ret_val)
1212 		return ret_val;
1213 
1214 	/*
1215 	 * Clear Auto-Crossover to force MDI manually.  IGP requires MDI
1216 	 * forced whenever speed and duplex are forced.
1217 	 */
1218 	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1219 	if (ret_val)
1220 		return ret_val;
1221 
1222 	phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1223 	phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1224 
1225 	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1226 	if (ret_val)
1227 		return ret_val;
1228 
1229 	e_dbg("IGP PSCR: %X\n", phy_data);
1230 
1231 	udelay(1);
1232 
1233 	if (phy->autoneg_wait_to_complete) {
1234 		e_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1235 
1236 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1237 						      100000, &link);
1238 		if (ret_val)
1239 			return ret_val;
1240 
1241 		if (!link)
1242 			e_dbg("Link taking longer than expected.\n");
1243 
1244 		/* Try once more */
1245 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1246 						      100000, &link);
1247 	}
1248 
1249 	return ret_val;
1250 }
1251 
1252 /**
1253  *  e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1254  *  @hw: pointer to the HW structure
1255  *
1256  *  Calls the PHY setup function to force speed and duplex.  Clears the
1257  *  auto-crossover to force MDI manually.  Resets the PHY to commit the
1258  *  changes.  If time expires while waiting for link up, we reset the DSP.
1259  *  After reset, TX_CLK and CRS on Tx must be set.  Return successful upon
1260  *  successful completion, else return corresponding error code.
1261  **/
1262 s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1263 {
1264 	struct e1000_phy_info *phy = &hw->phy;
1265 	s32 ret_val;
1266 	u16 phy_data;
1267 	bool link;
1268 
1269 	/*
1270 	 * Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
1271 	 * forced whenever speed and duplex are forced.
1272 	 */
1273 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1274 	if (ret_val)
1275 		return ret_val;
1276 
1277 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1278 	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1279 	if (ret_val)
1280 		return ret_val;
1281 
1282 	e_dbg("M88E1000 PSCR: %X\n", phy_data);
1283 
1284 	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
1285 	if (ret_val)
1286 		return ret_val;
1287 
1288 	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1289 
1290 	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
1291 	if (ret_val)
1292 		return ret_val;
1293 
1294 	/* Reset the phy to commit changes. */
1295 	ret_val = e1000e_commit_phy(hw);
1296 	if (ret_val)
1297 		return ret_val;
1298 
1299 	if (phy->autoneg_wait_to_complete) {
1300 		e_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1301 
1302 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1303 						     100000, &link);
1304 		if (ret_val)
1305 			return ret_val;
1306 
1307 		if (!link) {
1308 			if (hw->phy.type != e1000_phy_m88) {
1309 				e_dbg("Link taking longer than expected.\n");
1310 			} else {
1311 				/*
1312 				 * We didn't get link.
1313 				 * Reset the DSP and cross our fingers.
1314 				 */
1315 				ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT,
1316 						   0x001d);
1317 				if (ret_val)
1318 					return ret_val;
1319 				ret_val = e1000e_phy_reset_dsp(hw);
1320 				if (ret_val)
1321 					return ret_val;
1322 			}
1323 		}
1324 
1325 		/* Try once more */
1326 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1327 						     100000, &link);
1328 		if (ret_val)
1329 			return ret_val;
1330 	}
1331 
1332 	if (hw->phy.type != e1000_phy_m88)
1333 		return 0;
1334 
1335 	ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1336 	if (ret_val)
1337 		return ret_val;
1338 
1339 	/*
1340 	 * Resetting the phy means we need to re-force TX_CLK in the
1341 	 * Extended PHY Specific Control Register to 25MHz clock from
1342 	 * the reset value of 2.5MHz.
1343 	 */
1344 	phy_data |= M88E1000_EPSCR_TX_CLK_25;
1345 	ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1346 	if (ret_val)
1347 		return ret_val;
1348 
1349 	/*
1350 	 * In addition, we must re-enable CRS on Tx for both half and full
1351 	 * duplex.
1352 	 */
1353 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1354 	if (ret_val)
1355 		return ret_val;
1356 
1357 	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1358 	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1359 
1360 	return ret_val;
1361 }
1362 
1363 /**
1364  *  e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex
1365  *  @hw: pointer to the HW structure
1366  *
1367  *  Forces the speed and duplex settings of the PHY.
1368  *  This is a function pointer entry point only called by
1369  *  PHY setup routines.
1370  **/
1371 s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw)
1372 {
1373 	struct e1000_phy_info *phy = &hw->phy;
1374 	s32 ret_val;
1375 	u16 data;
1376 	bool link;
1377 
1378 	ret_val = e1e_rphy(hw, PHY_CONTROL, &data);
1379 	if (ret_val)
1380 		return ret_val;
1381 
1382 	e1000e_phy_force_speed_duplex_setup(hw, &data);
1383 
1384 	ret_val = e1e_wphy(hw, PHY_CONTROL, data);
1385 	if (ret_val)
1386 		return ret_val;
1387 
1388 	/* Disable MDI-X support for 10/100 */
1389 	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
1390 	if (ret_val)
1391 		return ret_val;
1392 
1393 	data &= ~IFE_PMC_AUTO_MDIX;
1394 	data &= ~IFE_PMC_FORCE_MDIX;
1395 
1396 	ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
1397 	if (ret_val)
1398 		return ret_val;
1399 
1400 	e_dbg("IFE PMC: %X\n", data);
1401 
1402 	udelay(1);
1403 
1404 	if (phy->autoneg_wait_to_complete) {
1405 		e_dbg("Waiting for forced speed/duplex link on IFE phy.\n");
1406 
1407 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1408 						      100000, &link);
1409 		if (ret_val)
1410 			return ret_val;
1411 
1412 		if (!link)
1413 			e_dbg("Link taking longer than expected.\n");
1414 
1415 		/* Try once more */
1416 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1417 						      100000, &link);
1418 		if (ret_val)
1419 			return ret_val;
1420 	}
1421 
1422 	return 0;
1423 }
1424 
1425 /**
1426  *  e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1427  *  @hw: pointer to the HW structure
1428  *  @phy_ctrl: pointer to current value of PHY_CONTROL
1429  *
1430  *  Forces speed and duplex on the PHY by doing the following: disable flow
1431  *  control, force speed/duplex on the MAC, disable auto speed detection,
1432  *  disable auto-negotiation, configure duplex, configure speed, configure
1433  *  the collision distance, write configuration to CTRL register.  The
1434  *  caller must write to the PHY_CONTROL register for these settings to
1435  *  take affect.
1436  **/
1437 void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
1438 {
1439 	struct e1000_mac_info *mac = &hw->mac;
1440 	u32 ctrl;
1441 
1442 	/* Turn off flow control when forcing speed/duplex */
1443 	hw->fc.current_mode = e1000_fc_none;
1444 
1445 	/* Force speed/duplex on the mac */
1446 	ctrl = er32(CTRL);
1447 	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1448 	ctrl &= ~E1000_CTRL_SPD_SEL;
1449 
1450 	/* Disable Auto Speed Detection */
1451 	ctrl &= ~E1000_CTRL_ASDE;
1452 
1453 	/* Disable autoneg on the phy */
1454 	*phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
1455 
1456 	/* Forcing Full or Half Duplex? */
1457 	if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1458 		ctrl &= ~E1000_CTRL_FD;
1459 		*phy_ctrl &= ~MII_CR_FULL_DUPLEX;
1460 		e_dbg("Half Duplex\n");
1461 	} else {
1462 		ctrl |= E1000_CTRL_FD;
1463 		*phy_ctrl |= MII_CR_FULL_DUPLEX;
1464 		e_dbg("Full Duplex\n");
1465 	}
1466 
1467 	/* Forcing 10mb or 100mb? */
1468 	if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1469 		ctrl |= E1000_CTRL_SPD_100;
1470 		*phy_ctrl |= MII_CR_SPEED_100;
1471 		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1472 		e_dbg("Forcing 100mb\n");
1473 	} else {
1474 		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1475 		*phy_ctrl |= MII_CR_SPEED_10;
1476 		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1477 		e_dbg("Forcing 10mb\n");
1478 	}
1479 
1480 	hw->mac.ops.config_collision_dist(hw);
1481 
1482 	ew32(CTRL, ctrl);
1483 }
1484 
1485 /**
1486  *  e1000e_set_d3_lplu_state - Sets low power link up state for D3
1487  *  @hw: pointer to the HW structure
1488  *  @active: boolean used to enable/disable lplu
1489  *
1490  *  Success returns 0, Failure returns 1
1491  *
1492  *  The low power link up (lplu) state is set to the power management level D3
1493  *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1494  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1495  *  is used during Dx states where the power conservation is most important.
1496  *  During driver activity, SmartSpeed should be enabled so performance is
1497  *  maintained.
1498  **/
1499 s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1500 {
1501 	struct e1000_phy_info *phy = &hw->phy;
1502 	s32 ret_val;
1503 	u16 data;
1504 
1505 	ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1506 	if (ret_val)
1507 		return ret_val;
1508 
1509 	if (!active) {
1510 		data &= ~IGP02E1000_PM_D3_LPLU;
1511 		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1512 		if (ret_val)
1513 			return ret_val;
1514 		/*
1515 		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1516 		 * during Dx states where the power conservation is most
1517 		 * important.  During driver activity we should enable
1518 		 * SmartSpeed, so performance is maintained.
1519 		 */
1520 		if (phy->smart_speed == e1000_smart_speed_on) {
1521 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1522 					   &data);
1523 			if (ret_val)
1524 				return ret_val;
1525 
1526 			data |= IGP01E1000_PSCFR_SMART_SPEED;
1527 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1528 					   data);
1529 			if (ret_val)
1530 				return ret_val;
1531 		} else if (phy->smart_speed == e1000_smart_speed_off) {
1532 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1533 					   &data);
1534 			if (ret_val)
1535 				return ret_val;
1536 
1537 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1538 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1539 					   data);
1540 			if (ret_val)
1541 				return ret_val;
1542 		}
1543 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1544 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1545 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1546 		data |= IGP02E1000_PM_D3_LPLU;
1547 		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1548 		if (ret_val)
1549 			return ret_val;
1550 
1551 		/* When LPLU is enabled, we should disable SmartSpeed */
1552 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1553 		if (ret_val)
1554 			return ret_val;
1555 
1556 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1557 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1558 	}
1559 
1560 	return ret_val;
1561 }
1562 
1563 /**
1564  *  e1000e_check_downshift - Checks whether a downshift in speed occurred
1565  *  @hw: pointer to the HW structure
1566  *
1567  *  Success returns 0, Failure returns 1
1568  *
1569  *  A downshift is detected by querying the PHY link health.
1570  **/
1571 s32 e1000e_check_downshift(struct e1000_hw *hw)
1572 {
1573 	struct e1000_phy_info *phy = &hw->phy;
1574 	s32 ret_val;
1575 	u16 phy_data, offset, mask;
1576 
1577 	switch (phy->type) {
1578 	case e1000_phy_m88:
1579 	case e1000_phy_gg82563:
1580 	case e1000_phy_bm:
1581 	case e1000_phy_82578:
1582 		offset	= M88E1000_PHY_SPEC_STATUS;
1583 		mask	= M88E1000_PSSR_DOWNSHIFT;
1584 		break;
1585 	case e1000_phy_igp_2:
1586 	case e1000_phy_igp_3:
1587 		offset	= IGP01E1000_PHY_LINK_HEALTH;
1588 		mask	= IGP01E1000_PLHR_SS_DOWNGRADE;
1589 		break;
1590 	default:
1591 		/* speed downshift not supported */
1592 		phy->speed_downgraded = false;
1593 		return 0;
1594 	}
1595 
1596 	ret_val = e1e_rphy(hw, offset, &phy_data);
1597 
1598 	if (!ret_val)
1599 		phy->speed_downgraded = (phy_data & mask);
1600 
1601 	return ret_val;
1602 }
1603 
1604 /**
1605  *  e1000_check_polarity_m88 - Checks the polarity.
1606  *  @hw: pointer to the HW structure
1607  *
1608  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1609  *
1610  *  Polarity is determined based on the PHY specific status register.
1611  **/
1612 s32 e1000_check_polarity_m88(struct e1000_hw *hw)
1613 {
1614 	struct e1000_phy_info *phy = &hw->phy;
1615 	s32 ret_val;
1616 	u16 data;
1617 
1618 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data);
1619 
1620 	if (!ret_val)
1621 		phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
1622 				      ? e1000_rev_polarity_reversed
1623 				      : e1000_rev_polarity_normal;
1624 
1625 	return ret_val;
1626 }
1627 
1628 /**
1629  *  e1000_check_polarity_igp - Checks the polarity.
1630  *  @hw: pointer to the HW structure
1631  *
1632  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1633  *
1634  *  Polarity is determined based on the PHY port status register, and the
1635  *  current speed (since there is no polarity at 100Mbps).
1636  **/
1637 s32 e1000_check_polarity_igp(struct e1000_hw *hw)
1638 {
1639 	struct e1000_phy_info *phy = &hw->phy;
1640 	s32 ret_val;
1641 	u16 data, offset, mask;
1642 
1643 	/*
1644 	 * Polarity is determined based on the speed of
1645 	 * our connection.
1646 	 */
1647 	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1648 	if (ret_val)
1649 		return ret_val;
1650 
1651 	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1652 	    IGP01E1000_PSSR_SPEED_1000MBPS) {
1653 		offset	= IGP01E1000_PHY_PCS_INIT_REG;
1654 		mask	= IGP01E1000_PHY_POLARITY_MASK;
1655 	} else {
1656 		/*
1657 		 * This really only applies to 10Mbps since
1658 		 * there is no polarity for 100Mbps (always 0).
1659 		 */
1660 		offset	= IGP01E1000_PHY_PORT_STATUS;
1661 		mask	= IGP01E1000_PSSR_POLARITY_REVERSED;
1662 	}
1663 
1664 	ret_val = e1e_rphy(hw, offset, &data);
1665 
1666 	if (!ret_val)
1667 		phy->cable_polarity = (data & mask)
1668 				      ? e1000_rev_polarity_reversed
1669 				      : e1000_rev_polarity_normal;
1670 
1671 	return ret_val;
1672 }
1673 
1674 /**
1675  *  e1000_check_polarity_ife - Check cable polarity for IFE PHY
1676  *  @hw: pointer to the HW structure
1677  *
1678  *  Polarity is determined on the polarity reversal feature being enabled.
1679  **/
1680 s32 e1000_check_polarity_ife(struct e1000_hw *hw)
1681 {
1682 	struct e1000_phy_info *phy = &hw->phy;
1683 	s32 ret_val;
1684 	u16 phy_data, offset, mask;
1685 
1686 	/*
1687 	 * Polarity is determined based on the reversal feature being enabled.
1688 	 */
1689 	if (phy->polarity_correction) {
1690 		offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
1691 		mask = IFE_PESC_POLARITY_REVERSED;
1692 	} else {
1693 		offset = IFE_PHY_SPECIAL_CONTROL;
1694 		mask = IFE_PSC_FORCE_POLARITY;
1695 	}
1696 
1697 	ret_val = e1e_rphy(hw, offset, &phy_data);
1698 
1699 	if (!ret_val)
1700 		phy->cable_polarity = (phy_data & mask)
1701 		                       ? e1000_rev_polarity_reversed
1702 		                       : e1000_rev_polarity_normal;
1703 
1704 	return ret_val;
1705 }
1706 
1707 /**
1708  *  e1000_wait_autoneg - Wait for auto-neg completion
1709  *  @hw: pointer to the HW structure
1710  *
1711  *  Waits for auto-negotiation to complete or for the auto-negotiation time
1712  *  limit to expire, which ever happens first.
1713  **/
1714 static s32 e1000_wait_autoneg(struct e1000_hw *hw)
1715 {
1716 	s32 ret_val = 0;
1717 	u16 i, phy_status;
1718 
1719 	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1720 	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1721 		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1722 		if (ret_val)
1723 			break;
1724 		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1725 		if (ret_val)
1726 			break;
1727 		if (phy_status & MII_SR_AUTONEG_COMPLETE)
1728 			break;
1729 		msleep(100);
1730 	}
1731 
1732 	/*
1733 	 * PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1734 	 * has completed.
1735 	 */
1736 	return ret_val;
1737 }
1738 
1739 /**
1740  *  e1000e_phy_has_link_generic - Polls PHY for link
1741  *  @hw: pointer to the HW structure
1742  *  @iterations: number of times to poll for link
1743  *  @usec_interval: delay between polling attempts
1744  *  @success: pointer to whether polling was successful or not
1745  *
1746  *  Polls the PHY status register for link, 'iterations' number of times.
1747  **/
1748 s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
1749 			       u32 usec_interval, bool *success)
1750 {
1751 	s32 ret_val = 0;
1752 	u16 i, phy_status;
1753 
1754 	for (i = 0; i < iterations; i++) {
1755 		/*
1756 		 * Some PHYs require the PHY_STATUS register to be read
1757 		 * twice due to the link bit being sticky.  No harm doing
1758 		 * it across the board.
1759 		 */
1760 		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1761 		if (ret_val)
1762 			/*
1763 			 * If the first read fails, another entity may have
1764 			 * ownership of the resources, wait and try again to
1765 			 * see if they have relinquished the resources yet.
1766 			 */
1767 			udelay(usec_interval);
1768 		ret_val = e1e_rphy(hw, PHY_STATUS, &phy_status);
1769 		if (ret_val)
1770 			break;
1771 		if (phy_status & MII_SR_LINK_STATUS)
1772 			break;
1773 		if (usec_interval >= 1000)
1774 			mdelay(usec_interval/1000);
1775 		else
1776 			udelay(usec_interval);
1777 	}
1778 
1779 	*success = (i < iterations);
1780 
1781 	return ret_val;
1782 }
1783 
1784 /**
1785  *  e1000e_get_cable_length_m88 - Determine cable length for m88 PHY
1786  *  @hw: pointer to the HW structure
1787  *
1788  *  Reads the PHY specific status register to retrieve the cable length
1789  *  information.  The cable length is determined by averaging the minimum and
1790  *  maximum values to get the "average" cable length.  The m88 PHY has four
1791  *  possible cable length values, which are:
1792  *	Register Value		Cable Length
1793  *	0			< 50 meters
1794  *	1			50 - 80 meters
1795  *	2			80 - 110 meters
1796  *	3			110 - 140 meters
1797  *	4			> 140 meters
1798  **/
1799 s32 e1000e_get_cable_length_m88(struct e1000_hw *hw)
1800 {
1801 	struct e1000_phy_info *phy = &hw->phy;
1802 	s32 ret_val;
1803 	u16 phy_data, index;
1804 
1805 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1806 	if (ret_val)
1807 		return ret_val;
1808 
1809 	index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1810 	        M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1811 
1812 	if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1)
1813 		return -E1000_ERR_PHY;
1814 
1815 	phy->min_cable_length = e1000_m88_cable_length_table[index];
1816 	phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1817 
1818 	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1819 
1820 	return 0;
1821 }
1822 
1823 /**
1824  *  e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1825  *  @hw: pointer to the HW structure
1826  *
1827  *  The automatic gain control (agc) normalizes the amplitude of the
1828  *  received signal, adjusting for the attenuation produced by the
1829  *  cable.  By reading the AGC registers, which represent the
1830  *  combination of coarse and fine gain value, the value can be put
1831  *  into a lookup table to obtain the approximate cable length
1832  *  for each channel.
1833  **/
1834 s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw)
1835 {
1836 	struct e1000_phy_info *phy = &hw->phy;
1837 	s32 ret_val;
1838 	u16 phy_data, i, agc_value = 0;
1839 	u16 cur_agc_index, max_agc_index = 0;
1840 	u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
1841 	static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
1842 	       IGP02E1000_PHY_AGC_A,
1843 	       IGP02E1000_PHY_AGC_B,
1844 	       IGP02E1000_PHY_AGC_C,
1845 	       IGP02E1000_PHY_AGC_D
1846 	};
1847 
1848 	/* Read the AGC registers for all channels */
1849 	for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1850 		ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data);
1851 		if (ret_val)
1852 			return ret_val;
1853 
1854 		/*
1855 		 * Getting bits 15:9, which represent the combination of
1856 		 * coarse and fine gain values.  The result is a number
1857 		 * that can be put into the lookup table to obtain the
1858 		 * approximate cable length.
1859 		 */
1860 		cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1861 				IGP02E1000_AGC_LENGTH_MASK;
1862 
1863 		/* Array index bound check. */
1864 		if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
1865 		    (cur_agc_index == 0))
1866 			return -E1000_ERR_PHY;
1867 
1868 		/* Remove min & max AGC values from calculation. */
1869 		if (e1000_igp_2_cable_length_table[min_agc_index] >
1870 		    e1000_igp_2_cable_length_table[cur_agc_index])
1871 			min_agc_index = cur_agc_index;
1872 		if (e1000_igp_2_cable_length_table[max_agc_index] <
1873 		    e1000_igp_2_cable_length_table[cur_agc_index])
1874 			max_agc_index = cur_agc_index;
1875 
1876 		agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1877 	}
1878 
1879 	agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1880 		      e1000_igp_2_cable_length_table[max_agc_index]);
1881 	agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1882 
1883 	/* Calculate cable length with the error range of +/- 10 meters. */
1884 	phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1885 				 (agc_value - IGP02E1000_AGC_RANGE) : 0;
1886 	phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1887 
1888 	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1889 
1890 	return 0;
1891 }
1892 
1893 /**
1894  *  e1000e_get_phy_info_m88 - Retrieve PHY information
1895  *  @hw: pointer to the HW structure
1896  *
1897  *  Valid for only copper links.  Read the PHY status register (sticky read)
1898  *  to verify that link is up.  Read the PHY special control register to
1899  *  determine the polarity and 10base-T extended distance.  Read the PHY
1900  *  special status register to determine MDI/MDIx and current speed.  If
1901  *  speed is 1000, then determine cable length, local and remote receiver.
1902  **/
1903 s32 e1000e_get_phy_info_m88(struct e1000_hw *hw)
1904 {
1905 	struct e1000_phy_info *phy = &hw->phy;
1906 	s32  ret_val;
1907 	u16 phy_data;
1908 	bool link;
1909 
1910 	if (phy->media_type != e1000_media_type_copper) {
1911 		e_dbg("Phy info is only valid for copper media\n");
1912 		return -E1000_ERR_CONFIG;
1913 	}
1914 
1915 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1916 	if (ret_val)
1917 		return ret_val;
1918 
1919 	if (!link) {
1920 		e_dbg("Phy info is only valid if link is up\n");
1921 		return -E1000_ERR_CONFIG;
1922 	}
1923 
1924 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1925 	if (ret_val)
1926 		return ret_val;
1927 
1928 	phy->polarity_correction = (phy_data &
1929 				    M88E1000_PSCR_POLARITY_REVERSAL);
1930 
1931 	ret_val = e1000_check_polarity_m88(hw);
1932 	if (ret_val)
1933 		return ret_val;
1934 
1935 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1936 	if (ret_val)
1937 		return ret_val;
1938 
1939 	phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX);
1940 
1941 	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
1942 		ret_val = e1000_get_cable_length(hw);
1943 		if (ret_val)
1944 			return ret_val;
1945 
1946 		ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &phy_data);
1947 		if (ret_val)
1948 			return ret_val;
1949 
1950 		phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
1951 				? e1000_1000t_rx_status_ok
1952 				: e1000_1000t_rx_status_not_ok;
1953 
1954 		phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
1955 				 ? e1000_1000t_rx_status_ok
1956 				 : e1000_1000t_rx_status_not_ok;
1957 	} else {
1958 		/* Set values to "undefined" */
1959 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1960 		phy->local_rx = e1000_1000t_rx_status_undefined;
1961 		phy->remote_rx = e1000_1000t_rx_status_undefined;
1962 	}
1963 
1964 	return ret_val;
1965 }
1966 
1967 /**
1968  *  e1000e_get_phy_info_igp - Retrieve igp PHY information
1969  *  @hw: pointer to the HW structure
1970  *
1971  *  Read PHY status to determine if link is up.  If link is up, then
1972  *  set/determine 10base-T extended distance and polarity correction.  Read
1973  *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
1974  *  determine on the cable length, local and remote receiver.
1975  **/
1976 s32 e1000e_get_phy_info_igp(struct e1000_hw *hw)
1977 {
1978 	struct e1000_phy_info *phy = &hw->phy;
1979 	s32 ret_val;
1980 	u16 data;
1981 	bool link;
1982 
1983 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1984 	if (ret_val)
1985 		return ret_val;
1986 
1987 	if (!link) {
1988 		e_dbg("Phy info is only valid if link is up\n");
1989 		return -E1000_ERR_CONFIG;
1990 	}
1991 
1992 	phy->polarity_correction = true;
1993 
1994 	ret_val = e1000_check_polarity_igp(hw);
1995 	if (ret_val)
1996 		return ret_val;
1997 
1998 	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1999 	if (ret_val)
2000 		return ret_val;
2001 
2002 	phy->is_mdix = (data & IGP01E1000_PSSR_MDIX);
2003 
2004 	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
2005 	    IGP01E1000_PSSR_SPEED_1000MBPS) {
2006 		ret_val = e1000_get_cable_length(hw);
2007 		if (ret_val)
2008 			return ret_val;
2009 
2010 		ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &data);
2011 		if (ret_val)
2012 			return ret_val;
2013 
2014 		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
2015 				? e1000_1000t_rx_status_ok
2016 				: e1000_1000t_rx_status_not_ok;
2017 
2018 		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
2019 				 ? e1000_1000t_rx_status_ok
2020 				 : e1000_1000t_rx_status_not_ok;
2021 	} else {
2022 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2023 		phy->local_rx = e1000_1000t_rx_status_undefined;
2024 		phy->remote_rx = e1000_1000t_rx_status_undefined;
2025 	}
2026 
2027 	return ret_val;
2028 }
2029 
2030 /**
2031  *  e1000_get_phy_info_ife - Retrieves various IFE PHY states
2032  *  @hw: pointer to the HW structure
2033  *
2034  *  Populates "phy" structure with various feature states.
2035  **/
2036 s32 e1000_get_phy_info_ife(struct e1000_hw *hw)
2037 {
2038 	struct e1000_phy_info *phy = &hw->phy;
2039 	s32 ret_val;
2040 	u16 data;
2041 	bool link;
2042 
2043 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2044 	if (ret_val)
2045 		return ret_val;
2046 
2047 	if (!link) {
2048 		e_dbg("Phy info is only valid if link is up\n");
2049 		return -E1000_ERR_CONFIG;
2050 	}
2051 
2052 	ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
2053 	if (ret_val)
2054 		return ret_val;
2055 	phy->polarity_correction = (data & IFE_PSC_AUTO_POLARITY_DISABLE)
2056 	                           ? false : true;
2057 
2058 	if (phy->polarity_correction) {
2059 		ret_val = e1000_check_polarity_ife(hw);
2060 		if (ret_val)
2061 			return ret_val;
2062 	} else {
2063 		/* Polarity is forced */
2064 		phy->cable_polarity = (data & IFE_PSC_FORCE_POLARITY)
2065 		                      ? e1000_rev_polarity_reversed
2066 		                      : e1000_rev_polarity_normal;
2067 	}
2068 
2069 	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
2070 	if (ret_val)
2071 		return ret_val;
2072 
2073 	phy->is_mdix = (data & IFE_PMC_MDIX_STATUS) ? true : false;
2074 
2075 	/* The following parameters are undefined for 10/100 operation. */
2076 	phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2077 	phy->local_rx = e1000_1000t_rx_status_undefined;
2078 	phy->remote_rx = e1000_1000t_rx_status_undefined;
2079 
2080 	return 0;
2081 }
2082 
2083 /**
2084  *  e1000e_phy_sw_reset - PHY software reset
2085  *  @hw: pointer to the HW structure
2086  *
2087  *  Does a software reset of the PHY by reading the PHY control register and
2088  *  setting/write the control register reset bit to the PHY.
2089  **/
2090 s32 e1000e_phy_sw_reset(struct e1000_hw *hw)
2091 {
2092 	s32 ret_val;
2093 	u16 phy_ctrl;
2094 
2095 	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_ctrl);
2096 	if (ret_val)
2097 		return ret_val;
2098 
2099 	phy_ctrl |= MII_CR_RESET;
2100 	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_ctrl);
2101 	if (ret_val)
2102 		return ret_val;
2103 
2104 	udelay(1);
2105 
2106 	return ret_val;
2107 }
2108 
2109 /**
2110  *  e1000e_phy_hw_reset_generic - PHY hardware reset
2111  *  @hw: pointer to the HW structure
2112  *
2113  *  Verify the reset block is not blocking us from resetting.  Acquire
2114  *  semaphore (if necessary) and read/set/write the device control reset
2115  *  bit in the PHY.  Wait the appropriate delay time for the device to
2116  *  reset and release the semaphore (if necessary).
2117  **/
2118 s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw)
2119 {
2120 	struct e1000_phy_info *phy = &hw->phy;
2121 	s32 ret_val;
2122 	u32 ctrl;
2123 
2124 	ret_val = phy->ops.check_reset_block(hw);
2125 	if (ret_val)
2126 		return 0;
2127 
2128 	ret_val = phy->ops.acquire(hw);
2129 	if (ret_val)
2130 		return ret_val;
2131 
2132 	ctrl = er32(CTRL);
2133 	ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
2134 	e1e_flush();
2135 
2136 	udelay(phy->reset_delay_us);
2137 
2138 	ew32(CTRL, ctrl);
2139 	e1e_flush();
2140 
2141 	udelay(150);
2142 
2143 	phy->ops.release(hw);
2144 
2145 	return e1000_get_phy_cfg_done(hw);
2146 }
2147 
2148 /**
2149  *  e1000e_get_cfg_done - Generic configuration done
2150  *  @hw: pointer to the HW structure
2151  *
2152  *  Generic function to wait 10 milli-seconds for configuration to complete
2153  *  and return success.
2154  **/
2155 s32 e1000e_get_cfg_done(struct e1000_hw *hw)
2156 {
2157 	mdelay(10);
2158 
2159 	return 0;
2160 }
2161 
2162 /**
2163  *  e1000e_phy_init_script_igp3 - Inits the IGP3 PHY
2164  *  @hw: pointer to the HW structure
2165  *
2166  *  Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2167  **/
2168 s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw)
2169 {
2170 	e_dbg("Running IGP 3 PHY init script\n");
2171 
2172 	/* PHY init IGP 3 */
2173 	/* Enable rise/fall, 10-mode work in class-A */
2174 	e1e_wphy(hw, 0x2F5B, 0x9018);
2175 	/* Remove all caps from Replica path filter */
2176 	e1e_wphy(hw, 0x2F52, 0x0000);
2177 	/* Bias trimming for ADC, AFE and Driver (Default) */
2178 	e1e_wphy(hw, 0x2FB1, 0x8B24);
2179 	/* Increase Hybrid poly bias */
2180 	e1e_wphy(hw, 0x2FB2, 0xF8F0);
2181 	/* Add 4% to Tx amplitude in Gig mode */
2182 	e1e_wphy(hw, 0x2010, 0x10B0);
2183 	/* Disable trimming (TTT) */
2184 	e1e_wphy(hw, 0x2011, 0x0000);
2185 	/* Poly DC correction to 94.6% + 2% for all channels */
2186 	e1e_wphy(hw, 0x20DD, 0x249A);
2187 	/* ABS DC correction to 95.9% */
2188 	e1e_wphy(hw, 0x20DE, 0x00D3);
2189 	/* BG temp curve trim */
2190 	e1e_wphy(hw, 0x28B4, 0x04CE);
2191 	/* Increasing ADC OPAMP stage 1 currents to max */
2192 	e1e_wphy(hw, 0x2F70, 0x29E4);
2193 	/* Force 1000 ( required for enabling PHY regs configuration) */
2194 	e1e_wphy(hw, 0x0000, 0x0140);
2195 	/* Set upd_freq to 6 */
2196 	e1e_wphy(hw, 0x1F30, 0x1606);
2197 	/* Disable NPDFE */
2198 	e1e_wphy(hw, 0x1F31, 0xB814);
2199 	/* Disable adaptive fixed FFE (Default) */
2200 	e1e_wphy(hw, 0x1F35, 0x002A);
2201 	/* Enable FFE hysteresis */
2202 	e1e_wphy(hw, 0x1F3E, 0x0067);
2203 	/* Fixed FFE for short cable lengths */
2204 	e1e_wphy(hw, 0x1F54, 0x0065);
2205 	/* Fixed FFE for medium cable lengths */
2206 	e1e_wphy(hw, 0x1F55, 0x002A);
2207 	/* Fixed FFE for long cable lengths */
2208 	e1e_wphy(hw, 0x1F56, 0x002A);
2209 	/* Enable Adaptive Clip Threshold */
2210 	e1e_wphy(hw, 0x1F72, 0x3FB0);
2211 	/* AHT reset limit to 1 */
2212 	e1e_wphy(hw, 0x1F76, 0xC0FF);
2213 	/* Set AHT master delay to 127 msec */
2214 	e1e_wphy(hw, 0x1F77, 0x1DEC);
2215 	/* Set scan bits for AHT */
2216 	e1e_wphy(hw, 0x1F78, 0xF9EF);
2217 	/* Set AHT Preset bits */
2218 	e1e_wphy(hw, 0x1F79, 0x0210);
2219 	/* Change integ_factor of channel A to 3 */
2220 	e1e_wphy(hw, 0x1895, 0x0003);
2221 	/* Change prop_factor of channels BCD to 8 */
2222 	e1e_wphy(hw, 0x1796, 0x0008);
2223 	/* Change cg_icount + enable integbp for channels BCD */
2224 	e1e_wphy(hw, 0x1798, 0xD008);
2225 	/*
2226 	 * Change cg_icount + enable integbp + change prop_factor_master
2227 	 * to 8 for channel A
2228 	 */
2229 	e1e_wphy(hw, 0x1898, 0xD918);
2230 	/* Disable AHT in Slave mode on channel A */
2231 	e1e_wphy(hw, 0x187A, 0x0800);
2232 	/*
2233 	 * Enable LPLU and disable AN to 1000 in non-D0a states,
2234 	 * Enable SPD+B2B
2235 	 */
2236 	e1e_wphy(hw, 0x0019, 0x008D);
2237 	/* Enable restart AN on an1000_dis change */
2238 	e1e_wphy(hw, 0x001B, 0x2080);
2239 	/* Enable wh_fifo read clock in 10/100 modes */
2240 	e1e_wphy(hw, 0x0014, 0x0045);
2241 	/* Restart AN, Speed selection is 1000 */
2242 	e1e_wphy(hw, 0x0000, 0x1340);
2243 
2244 	return 0;
2245 }
2246 
2247 /* Internal function pointers */
2248 
2249 /**
2250  *  e1000_get_phy_cfg_done - Generic PHY configuration done
2251  *  @hw: pointer to the HW structure
2252  *
2253  *  Return success if silicon family did not implement a family specific
2254  *  get_cfg_done function.
2255  **/
2256 static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
2257 {
2258 	if (hw->phy.ops.get_cfg_done)
2259 		return hw->phy.ops.get_cfg_done(hw);
2260 
2261 	return 0;
2262 }
2263 
2264 /**
2265  *  e1000_phy_force_speed_duplex - Generic force PHY speed/duplex
2266  *  @hw: pointer to the HW structure
2267  *
2268  *  When the silicon family has not implemented a forced speed/duplex
2269  *  function for the PHY, simply return 0.
2270  **/
2271 static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
2272 {
2273 	if (hw->phy.ops.force_speed_duplex)
2274 		return hw->phy.ops.force_speed_duplex(hw);
2275 
2276 	return 0;
2277 }
2278 
2279 /**
2280  *  e1000e_get_phy_type_from_id - Get PHY type from id
2281  *  @phy_id: phy_id read from the phy
2282  *
2283  *  Returns the phy type from the id.
2284  **/
2285 enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id)
2286 {
2287 	enum e1000_phy_type phy_type = e1000_phy_unknown;
2288 
2289 	switch (phy_id) {
2290 	case M88E1000_I_PHY_ID:
2291 	case M88E1000_E_PHY_ID:
2292 	case M88E1111_I_PHY_ID:
2293 	case M88E1011_I_PHY_ID:
2294 		phy_type = e1000_phy_m88;
2295 		break;
2296 	case IGP01E1000_I_PHY_ID: /* IGP 1 & 2 share this */
2297 		phy_type = e1000_phy_igp_2;
2298 		break;
2299 	case GG82563_E_PHY_ID:
2300 		phy_type = e1000_phy_gg82563;
2301 		break;
2302 	case IGP03E1000_E_PHY_ID:
2303 		phy_type = e1000_phy_igp_3;
2304 		break;
2305 	case IFE_E_PHY_ID:
2306 	case IFE_PLUS_E_PHY_ID:
2307 	case IFE_C_E_PHY_ID:
2308 		phy_type = e1000_phy_ife;
2309 		break;
2310 	case BME1000_E_PHY_ID:
2311 	case BME1000_E_PHY_ID_R2:
2312 		phy_type = e1000_phy_bm;
2313 		break;
2314 	case I82578_E_PHY_ID:
2315 		phy_type = e1000_phy_82578;
2316 		break;
2317 	case I82577_E_PHY_ID:
2318 		phy_type = e1000_phy_82577;
2319 		break;
2320 	case I82579_E_PHY_ID:
2321 		phy_type = e1000_phy_82579;
2322 		break;
2323 	default:
2324 		phy_type = e1000_phy_unknown;
2325 		break;
2326 	}
2327 	return phy_type;
2328 }
2329 
2330 /**
2331  *  e1000e_determine_phy_address - Determines PHY address.
2332  *  @hw: pointer to the HW structure
2333  *
2334  *  This uses a trial and error method to loop through possible PHY
2335  *  addresses. It tests each by reading the PHY ID registers and
2336  *  checking for a match.
2337  **/
2338 s32 e1000e_determine_phy_address(struct e1000_hw *hw)
2339 {
2340 	u32 phy_addr = 0;
2341 	u32 i;
2342 	enum e1000_phy_type phy_type = e1000_phy_unknown;
2343 
2344 	hw->phy.id = phy_type;
2345 
2346 	for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) {
2347 		hw->phy.addr = phy_addr;
2348 		i = 0;
2349 
2350 		do {
2351 			e1000e_get_phy_id(hw);
2352 			phy_type = e1000e_get_phy_type_from_id(hw->phy.id);
2353 
2354 			/*
2355 			 * If phy_type is valid, break - we found our
2356 			 * PHY address
2357 			 */
2358 			if (phy_type  != e1000_phy_unknown)
2359 				return 0;
2360 
2361 			usleep_range(1000, 2000);
2362 			i++;
2363 		} while (i < 10);
2364 	}
2365 
2366 	return -E1000_ERR_PHY_TYPE;
2367 }
2368 
2369 /**
2370  *  e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
2371  *  @page: page to access
2372  *
2373  *  Returns the phy address for the page requested.
2374  **/
2375 static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg)
2376 {
2377 	u32 phy_addr = 2;
2378 
2379 	if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31))
2380 		phy_addr = 1;
2381 
2382 	return phy_addr;
2383 }
2384 
2385 /**
2386  *  e1000e_write_phy_reg_bm - Write BM PHY register
2387  *  @hw: pointer to the HW structure
2388  *  @offset: register offset to write to
2389  *  @data: data to write at register offset
2390  *
2391  *  Acquires semaphore, if necessary, then writes the data to PHY register
2392  *  at the offset.  Release any acquired semaphores before exiting.
2393  **/
2394 s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
2395 {
2396 	s32 ret_val;
2397 	u32 page = offset >> IGP_PAGE_SHIFT;
2398 
2399 	ret_val = hw->phy.ops.acquire(hw);
2400 	if (ret_val)
2401 		return ret_val;
2402 
2403 	/* Page 800 works differently than the rest so it has its own func */
2404 	if (page == BM_WUC_PAGE) {
2405 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2406 							 false, false);
2407 		goto release;
2408 	}
2409 
2410 	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2411 
2412 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2413 		u32 page_shift, page_select;
2414 
2415 		/*
2416 		 * Page select is register 31 for phy address 1 and 22 for
2417 		 * phy address 2 and 3. Page select is shifted only for
2418 		 * phy address 1.
2419 		 */
2420 		if (hw->phy.addr == 1) {
2421 			page_shift = IGP_PAGE_SHIFT;
2422 			page_select = IGP01E1000_PHY_PAGE_SELECT;
2423 		} else {
2424 			page_shift = 0;
2425 			page_select = BM_PHY_PAGE_SELECT;
2426 		}
2427 
2428 		/* Page is shifted left, PHY expects (page x 32) */
2429 		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2430 		                                    (page << page_shift));
2431 		if (ret_val)
2432 			goto release;
2433 	}
2434 
2435 	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2436 	                                    data);
2437 
2438 release:
2439 	hw->phy.ops.release(hw);
2440 	return ret_val;
2441 }
2442 
2443 /**
2444  *  e1000e_read_phy_reg_bm - Read BM PHY register
2445  *  @hw: pointer to the HW structure
2446  *  @offset: register offset to be read
2447  *  @data: pointer to the read data
2448  *
2449  *  Acquires semaphore, if necessary, then reads the PHY register at offset
2450  *  and storing the retrieved information in data.  Release any acquired
2451  *  semaphores before exiting.
2452  **/
2453 s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
2454 {
2455 	s32 ret_val;
2456 	u32 page = offset >> IGP_PAGE_SHIFT;
2457 
2458 	ret_val = hw->phy.ops.acquire(hw);
2459 	if (ret_val)
2460 		return ret_val;
2461 
2462 	/* Page 800 works differently than the rest so it has its own func */
2463 	if (page == BM_WUC_PAGE) {
2464 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2465 							 true, false);
2466 		goto release;
2467 	}
2468 
2469 	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2470 
2471 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2472 		u32 page_shift, page_select;
2473 
2474 		/*
2475 		 * Page select is register 31 for phy address 1 and 22 for
2476 		 * phy address 2 and 3. Page select is shifted only for
2477 		 * phy address 1.
2478 		 */
2479 		if (hw->phy.addr == 1) {
2480 			page_shift = IGP_PAGE_SHIFT;
2481 			page_select = IGP01E1000_PHY_PAGE_SELECT;
2482 		} else {
2483 			page_shift = 0;
2484 			page_select = BM_PHY_PAGE_SELECT;
2485 		}
2486 
2487 		/* Page is shifted left, PHY expects (page x 32) */
2488 		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2489 		                                    (page << page_shift));
2490 		if (ret_val)
2491 			goto release;
2492 	}
2493 
2494 	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2495 	                                   data);
2496 release:
2497 	hw->phy.ops.release(hw);
2498 	return ret_val;
2499 }
2500 
2501 /**
2502  *  e1000e_read_phy_reg_bm2 - Read BM PHY register
2503  *  @hw: pointer to the HW structure
2504  *  @offset: register offset to be read
2505  *  @data: pointer to the read data
2506  *
2507  *  Acquires semaphore, if necessary, then reads the PHY register at offset
2508  *  and storing the retrieved information in data.  Release any acquired
2509  *  semaphores before exiting.
2510  **/
2511 s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data)
2512 {
2513 	s32 ret_val;
2514 	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2515 
2516 	ret_val = hw->phy.ops.acquire(hw);
2517 	if (ret_val)
2518 		return ret_val;
2519 
2520 	/* Page 800 works differently than the rest so it has its own func */
2521 	if (page == BM_WUC_PAGE) {
2522 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2523 							 true, false);
2524 		goto release;
2525 	}
2526 
2527 	hw->phy.addr = 1;
2528 
2529 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2530 
2531 		/* Page is shifted left, PHY expects (page x 32) */
2532 		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2533 						    page);
2534 
2535 		if (ret_val)
2536 			goto release;
2537 	}
2538 
2539 	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2540 					   data);
2541 release:
2542 	hw->phy.ops.release(hw);
2543 	return ret_val;
2544 }
2545 
2546 /**
2547  *  e1000e_write_phy_reg_bm2 - Write BM PHY register
2548  *  @hw: pointer to the HW structure
2549  *  @offset: register offset to write to
2550  *  @data: data to write at register offset
2551  *
2552  *  Acquires semaphore, if necessary, then writes the data to PHY register
2553  *  at the offset.  Release any acquired semaphores before exiting.
2554  **/
2555 s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data)
2556 {
2557 	s32 ret_val;
2558 	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2559 
2560 	ret_val = hw->phy.ops.acquire(hw);
2561 	if (ret_val)
2562 		return ret_val;
2563 
2564 	/* Page 800 works differently than the rest so it has its own func */
2565 	if (page == BM_WUC_PAGE) {
2566 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2567 							 false, false);
2568 		goto release;
2569 	}
2570 
2571 	hw->phy.addr = 1;
2572 
2573 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2574 		/* Page is shifted left, PHY expects (page x 32) */
2575 		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2576 						    page);
2577 
2578 		if (ret_val)
2579 			goto release;
2580 	}
2581 
2582 	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2583 					    data);
2584 
2585 release:
2586 	hw->phy.ops.release(hw);
2587 	return ret_val;
2588 }
2589 
2590 /**
2591  *  e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers
2592  *  @hw: pointer to the HW structure
2593  *  @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG
2594  *
2595  *  Assumes semaphore already acquired and phy_reg points to a valid memory
2596  *  address to store contents of the BM_WUC_ENABLE_REG register.
2597  **/
2598 s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
2599 {
2600 	s32 ret_val;
2601 	u16 temp;
2602 
2603 	/* All page select, port ctrl and wakeup registers use phy address 1 */
2604 	hw->phy.addr = 1;
2605 
2606 	/* Select Port Control Registers page */
2607 	ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
2608 	if (ret_val) {
2609 		e_dbg("Could not set Port Control page\n");
2610 		return ret_val;
2611 	}
2612 
2613 	ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
2614 	if (ret_val) {
2615 		e_dbg("Could not read PHY register %d.%d\n",
2616 		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2617 		return ret_val;
2618 	}
2619 
2620 	/*
2621 	 * Enable both PHY wakeup mode and Wakeup register page writes.
2622 	 * Prevent a power state change by disabling ME and Host PHY wakeup.
2623 	 */
2624 	temp = *phy_reg;
2625 	temp |= BM_WUC_ENABLE_BIT;
2626 	temp &= ~(BM_WUC_ME_WU_BIT | BM_WUC_HOST_WU_BIT);
2627 
2628 	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, temp);
2629 	if (ret_val) {
2630 		e_dbg("Could not write PHY register %d.%d\n",
2631 		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2632 		return ret_val;
2633 	}
2634 
2635 	/*
2636 	 * Select Host Wakeup Registers page - caller now able to write
2637 	 * registers on the Wakeup registers page
2638 	 */
2639 	return e1000_set_page_igp(hw, (BM_WUC_PAGE << IGP_PAGE_SHIFT));
2640 }
2641 
2642 /**
2643  *  e1000_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs
2644  *  @hw: pointer to the HW structure
2645  *  @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG
2646  *
2647  *  Restore BM_WUC_ENABLE_REG to its original value.
2648  *
2649  *  Assumes semaphore already acquired and *phy_reg is the contents of the
2650  *  BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by
2651  *  caller.
2652  **/
2653 s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
2654 {
2655 	s32 ret_val = 0;
2656 
2657 	/* Select Port Control Registers page */
2658 	ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
2659 	if (ret_val) {
2660 		e_dbg("Could not set Port Control page\n");
2661 		return ret_val;
2662 	}
2663 
2664 	/* Restore 769.17 to its original value */
2665 	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, *phy_reg);
2666 	if (ret_val)
2667 		e_dbg("Could not restore PHY register %d.%d\n",
2668 		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2669 
2670 	return ret_val;
2671 }
2672 
2673 /**
2674  *  e1000_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register
2675  *  @hw: pointer to the HW structure
2676  *  @offset: register offset to be read or written
2677  *  @data: pointer to the data to read or write
2678  *  @read: determines if operation is read or write
2679  *  @page_set: BM_WUC_PAGE already set and access enabled
2680  *
2681  *  Read the PHY register at offset and store the retrieved information in
2682  *  data, or write data to PHY register at offset.  Note the procedure to
2683  *  access the PHY wakeup registers is different than reading the other PHY
2684  *  registers. It works as such:
2685  *  1) Set 769.17.2 (page 769, register 17, bit 2) = 1
2686  *  2) Set page to 800 for host (801 if we were manageability)
2687  *  3) Write the address using the address opcode (0x11)
2688  *  4) Read or write the data using the data opcode (0x12)
2689  *  5) Restore 769.17.2 to its original value
2690  *
2691  *  Steps 1 and 2 are done by e1000_enable_phy_wakeup_reg_access_bm() and
2692  *  step 5 is done by e1000_disable_phy_wakeup_reg_access_bm().
2693  *
2694  *  Assumes semaphore is already acquired.  When page_set==true, assumes
2695  *  the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack
2696  *  is responsible for calls to e1000_[enable|disable]_phy_wakeup_reg_bm()).
2697  **/
2698 static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
2699 					  u16 *data, bool read, bool page_set)
2700 {
2701 	s32 ret_val;
2702 	u16 reg = BM_PHY_REG_NUM(offset);
2703 	u16 page = BM_PHY_REG_PAGE(offset);
2704 	u16 phy_reg = 0;
2705 
2706 	/* Gig must be disabled for MDIO accesses to Host Wakeup reg page */
2707 	if ((hw->mac.type == e1000_pchlan) &&
2708 	    (!(er32(PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE)))
2709 		e_dbg("Attempting to access page %d while gig enabled.\n",
2710 		      page);
2711 
2712 	if (!page_set) {
2713 		/* Enable access to PHY wakeup registers */
2714 		ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2715 		if (ret_val) {
2716 			e_dbg("Could not enable PHY wakeup reg access\n");
2717 			return ret_val;
2718 		}
2719 	}
2720 
2721 	e_dbg("Accessing PHY page %d reg 0x%x\n", page, reg);
2722 
2723 	/* Write the Wakeup register page offset value using opcode 0x11 */
2724 	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg);
2725 	if (ret_val) {
2726 		e_dbg("Could not write address opcode to page %d\n", page);
2727 		return ret_val;
2728 	}
2729 
2730 	if (read) {
2731 		/* Read the Wakeup register page value using opcode 0x12 */
2732 		ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2733 		                                   data);
2734 	} else {
2735 		/* Write the Wakeup register page value using opcode 0x12 */
2736 		ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2737 						    *data);
2738 	}
2739 
2740 	if (ret_val) {
2741 		e_dbg("Could not access PHY reg %d.%d\n", page, reg);
2742 		return ret_val;
2743 	}
2744 
2745 	if (!page_set)
2746 		ret_val = e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2747 
2748 	return ret_val;
2749 }
2750 
2751 /**
2752  * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
2753  * @hw: pointer to the HW structure
2754  *
2755  * In the case of a PHY power down to save power, or to turn off link during a
2756  * driver unload, or wake on lan is not enabled, restore the link to previous
2757  * settings.
2758  **/
2759 void e1000_power_up_phy_copper(struct e1000_hw *hw)
2760 {
2761 	u16 mii_reg = 0;
2762 
2763 	/* The PHY will retain its settings across a power down/up cycle */
2764 	e1e_rphy(hw, PHY_CONTROL, &mii_reg);
2765 	mii_reg &= ~MII_CR_POWER_DOWN;
2766 	e1e_wphy(hw, PHY_CONTROL, mii_reg);
2767 }
2768 
2769 /**
2770  * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
2771  * @hw: pointer to the HW structure
2772  *
2773  * In the case of a PHY power down to save power, or to turn off link during a
2774  * driver unload, or wake on lan is not enabled, restore the link to previous
2775  * settings.
2776  **/
2777 void e1000_power_down_phy_copper(struct e1000_hw *hw)
2778 {
2779 	u16 mii_reg = 0;
2780 
2781 	/* The PHY will retain its settings across a power down/up cycle */
2782 	e1e_rphy(hw, PHY_CONTROL, &mii_reg);
2783 	mii_reg |= MII_CR_POWER_DOWN;
2784 	e1e_wphy(hw, PHY_CONTROL, mii_reg);
2785 	usleep_range(1000, 2000);
2786 }
2787 
2788 /**
2789  *  e1000e_commit_phy - Soft PHY reset
2790  *  @hw: pointer to the HW structure
2791  *
2792  *  Performs a soft PHY reset on those that apply. This is a function pointer
2793  *  entry point called by drivers.
2794  **/
2795 s32 e1000e_commit_phy(struct e1000_hw *hw)
2796 {
2797 	if (hw->phy.ops.commit)
2798 		return hw->phy.ops.commit(hw);
2799 
2800 	return 0;
2801 }
2802 
2803 /**
2804  *  e1000_set_d0_lplu_state - Sets low power link up state for D0
2805  *  @hw: pointer to the HW structure
2806  *  @active: boolean used to enable/disable lplu
2807  *
2808  *  Success returns 0, Failure returns 1
2809  *
2810  *  The low power link up (lplu) state is set to the power management level D0
2811  *  and SmartSpeed is disabled when active is true, else clear lplu for D0
2812  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
2813  *  is used during Dx states where the power conservation is most important.
2814  *  During driver activity, SmartSpeed should be enabled so performance is
2815  *  maintained.  This is a function pointer entry point called by drivers.
2816  **/
2817 static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active)
2818 {
2819 	if (hw->phy.ops.set_d0_lplu_state)
2820 		return hw->phy.ops.set_d0_lplu_state(hw, active);
2821 
2822 	return 0;
2823 }
2824 
2825 /**
2826  *  __e1000_read_phy_reg_hv -  Read HV PHY register
2827  *  @hw: pointer to the HW structure
2828  *  @offset: register offset to be read
2829  *  @data: pointer to the read data
2830  *  @locked: semaphore has already been acquired or not
2831  *
2832  *  Acquires semaphore, if necessary, then reads the PHY register at offset
2833  *  and stores the retrieved information in data.  Release any acquired
2834  *  semaphore before exiting.
2835  **/
2836 static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data,
2837 				   bool locked, bool page_set)
2838 {
2839 	s32 ret_val;
2840 	u16 page = BM_PHY_REG_PAGE(offset);
2841 	u16 reg = BM_PHY_REG_NUM(offset);
2842 	u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2843 
2844 	if (!locked) {
2845 		ret_val = hw->phy.ops.acquire(hw);
2846 		if (ret_val)
2847 			return ret_val;
2848 	}
2849 
2850 	/* Page 800 works differently than the rest so it has its own func */
2851 	if (page == BM_WUC_PAGE) {
2852 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2853 							 true, page_set);
2854 		goto out;
2855 	}
2856 
2857 	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
2858 		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
2859 		                                         data, true);
2860 		goto out;
2861 	}
2862 
2863 	if (!page_set) {
2864 		if (page == HV_INTC_FC_PAGE_START)
2865 			page = 0;
2866 
2867 		if (reg > MAX_PHY_MULTI_PAGE_REG) {
2868 			/* Page is shifted left, PHY expects (page x 32) */
2869 			ret_val = e1000_set_page_igp(hw,
2870 						     (page << IGP_PAGE_SHIFT));
2871 
2872 			hw->phy.addr = phy_addr;
2873 
2874 			if (ret_val)
2875 				goto out;
2876 		}
2877 	}
2878 
2879 	e_dbg("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
2880 	      page << IGP_PAGE_SHIFT, reg);
2881 
2882 	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
2883 	                                  data);
2884 out:
2885 	if (!locked)
2886 		hw->phy.ops.release(hw);
2887 
2888 	return ret_val;
2889 }
2890 
2891 /**
2892  *  e1000_read_phy_reg_hv -  Read HV PHY register
2893  *  @hw: pointer to the HW structure
2894  *  @offset: register offset to be read
2895  *  @data: pointer to the read data
2896  *
2897  *  Acquires semaphore then reads the PHY register at offset and stores
2898  *  the retrieved information in data.  Release the acquired semaphore
2899  *  before exiting.
2900  **/
2901 s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2902 {
2903 	return __e1000_read_phy_reg_hv(hw, offset, data, false, false);
2904 }
2905 
2906 /**
2907  *  e1000_read_phy_reg_hv_locked -  Read HV PHY register
2908  *  @hw: pointer to the HW structure
2909  *  @offset: register offset to be read
2910  *  @data: pointer to the read data
2911  *
2912  *  Reads the PHY register at offset and stores the retrieved information
2913  *  in data.  Assumes semaphore already acquired.
2914  **/
2915 s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data)
2916 {
2917 	return __e1000_read_phy_reg_hv(hw, offset, data, true, false);
2918 }
2919 
2920 /**
2921  *  e1000_read_phy_reg_page_hv - Read HV PHY register
2922  *  @hw: pointer to the HW structure
2923  *  @offset: register offset to write to
2924  *  @data: data to write at register offset
2925  *
2926  *  Reads the PHY register at offset and stores the retrieved information
2927  *  in data.  Assumes semaphore already acquired and page already set.
2928  **/
2929 s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2930 {
2931 	return __e1000_read_phy_reg_hv(hw, offset, data, true, true);
2932 }
2933 
2934 /**
2935  *  __e1000_write_phy_reg_hv - Write HV PHY register
2936  *  @hw: pointer to the HW structure
2937  *  @offset: register offset to write to
2938  *  @data: data to write at register offset
2939  *  @locked: semaphore has already been acquired or not
2940  *
2941  *  Acquires semaphore, if necessary, then writes the data to PHY register
2942  *  at the offset.  Release any acquired semaphores before exiting.
2943  **/
2944 static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data,
2945 				    bool locked, bool page_set)
2946 {
2947 	s32 ret_val;
2948 	u16 page = BM_PHY_REG_PAGE(offset);
2949 	u16 reg = BM_PHY_REG_NUM(offset);
2950 	u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2951 
2952 	if (!locked) {
2953 		ret_val = hw->phy.ops.acquire(hw);
2954 		if (ret_val)
2955 			return ret_val;
2956 	}
2957 
2958 	/* Page 800 works differently than the rest so it has its own func */
2959 	if (page == BM_WUC_PAGE) {
2960 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2961 							 false, page_set);
2962 		goto out;
2963 	}
2964 
2965 	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
2966 		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
2967 		                                         &data, false);
2968 		goto out;
2969 	}
2970 
2971 	if (!page_set) {
2972 		if (page == HV_INTC_FC_PAGE_START)
2973 			page = 0;
2974 
2975 		/*
2976 		 * Workaround MDIO accesses being disabled after entering IEEE
2977 		 * Power Down (when bit 11 of the PHY Control register is set)
2978 		 */
2979 		if ((hw->phy.type == e1000_phy_82578) &&
2980 		    (hw->phy.revision >= 1) &&
2981 		    (hw->phy.addr == 2) &&
2982 		    ((MAX_PHY_REG_ADDRESS & reg) == 0) && (data & (1 << 11))) {
2983 			u16 data2 = 0x7EFF;
2984 			ret_val = e1000_access_phy_debug_regs_hv(hw,
2985 								 (1 << 6) | 0x3,
2986 								 &data2, false);
2987 			if (ret_val)
2988 				goto out;
2989 		}
2990 
2991 		if (reg > MAX_PHY_MULTI_PAGE_REG) {
2992 			/* Page is shifted left, PHY expects (page x 32) */
2993 			ret_val = e1000_set_page_igp(hw,
2994 						     (page << IGP_PAGE_SHIFT));
2995 
2996 			hw->phy.addr = phy_addr;
2997 
2998 			if (ret_val)
2999 				goto out;
3000 		}
3001 	}
3002 
3003 	e_dbg("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
3004 	      page << IGP_PAGE_SHIFT, reg);
3005 
3006 	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
3007 	                                  data);
3008 
3009 out:
3010 	if (!locked)
3011 		hw->phy.ops.release(hw);
3012 
3013 	return ret_val;
3014 }
3015 
3016 /**
3017  *  e1000_write_phy_reg_hv - Write HV PHY register
3018  *  @hw: pointer to the HW structure
3019  *  @offset: register offset to write to
3020  *  @data: data to write at register offset
3021  *
3022  *  Acquires semaphore then writes the data to PHY register at the offset.
3023  *  Release the acquired semaphores before exiting.
3024  **/
3025 s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data)
3026 {
3027 	return __e1000_write_phy_reg_hv(hw, offset, data, false, false);
3028 }
3029 
3030 /**
3031  *  e1000_write_phy_reg_hv_locked - Write HV PHY register
3032  *  @hw: pointer to the HW structure
3033  *  @offset: register offset to write to
3034  *  @data: data to write at register offset
3035  *
3036  *  Writes the data to PHY register at the offset.  Assumes semaphore
3037  *  already acquired.
3038  **/
3039 s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data)
3040 {
3041 	return __e1000_write_phy_reg_hv(hw, offset, data, true, false);
3042 }
3043 
3044 /**
3045  *  e1000_write_phy_reg_page_hv - Write HV PHY register
3046  *  @hw: pointer to the HW structure
3047  *  @offset: register offset to write to
3048  *  @data: data to write at register offset
3049  *
3050  *  Writes the data to PHY register at the offset.  Assumes semaphore
3051  *  already acquired and page already set.
3052  **/
3053 s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data)
3054 {
3055 	return __e1000_write_phy_reg_hv(hw, offset, data, true, true);
3056 }
3057 
3058 /**
3059  *  e1000_get_phy_addr_for_hv_page - Get PHY address based on page
3060  *  @page: page to be accessed
3061  **/
3062 static u32 e1000_get_phy_addr_for_hv_page(u32 page)
3063 {
3064 	u32 phy_addr = 2;
3065 
3066 	if (page >= HV_INTC_FC_PAGE_START)
3067 		phy_addr = 1;
3068 
3069 	return phy_addr;
3070 }
3071 
3072 /**
3073  *  e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers
3074  *  @hw: pointer to the HW structure
3075  *  @offset: register offset to be read or written
3076  *  @data: pointer to the data to be read or written
3077  *  @read: determines if operation is read or write
3078  *
3079  *  Reads the PHY register at offset and stores the retreived information
3080  *  in data.  Assumes semaphore already acquired.  Note that the procedure
3081  *  to access these regs uses the address port and data port to read/write.
3082  *  These accesses done with PHY address 2 and without using pages.
3083  **/
3084 static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
3085                                           u16 *data, bool read)
3086 {
3087 	s32 ret_val;
3088 	u32 addr_reg = 0;
3089 	u32 data_reg = 0;
3090 
3091 	/* This takes care of the difference with desktop vs mobile phy */
3092 	addr_reg = (hw->phy.type == e1000_phy_82578) ?
3093 	           I82578_ADDR_REG : I82577_ADDR_REG;
3094 	data_reg = addr_reg + 1;
3095 
3096 	/* All operations in this function are phy address 2 */
3097 	hw->phy.addr = 2;
3098 
3099 	/* masking with 0x3F to remove the page from offset */
3100 	ret_val = e1000e_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F);
3101 	if (ret_val) {
3102 		e_dbg("Could not write the Address Offset port register\n");
3103 		return ret_val;
3104 	}
3105 
3106 	/* Read or write the data value next */
3107 	if (read)
3108 		ret_val = e1000e_read_phy_reg_mdic(hw, data_reg, data);
3109 	else
3110 		ret_val = e1000e_write_phy_reg_mdic(hw, data_reg, *data);
3111 
3112 	if (ret_val)
3113 		e_dbg("Could not access the Data port register\n");
3114 
3115 	return ret_val;
3116 }
3117 
3118 /**
3119  *  e1000_link_stall_workaround_hv - Si workaround
3120  *  @hw: pointer to the HW structure
3121  *
3122  *  This function works around a Si bug where the link partner can get
3123  *  a link up indication before the PHY does.  If small packets are sent
3124  *  by the link partner they can be placed in the packet buffer without
3125  *  being properly accounted for by the PHY and will stall preventing
3126  *  further packets from being received.  The workaround is to clear the
3127  *  packet buffer after the PHY detects link up.
3128  **/
3129 s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw)
3130 {
3131 	s32 ret_val = 0;
3132 	u16 data;
3133 
3134 	if (hw->phy.type != e1000_phy_82578)
3135 		return 0;
3136 
3137 	/* Do not apply workaround if in PHY loopback bit 14 set */
3138 	e1e_rphy(hw, PHY_CONTROL, &data);
3139 	if (data & PHY_CONTROL_LB)
3140 		return 0;
3141 
3142 	/* check if link is up and at 1Gbps */
3143 	ret_val = e1e_rphy(hw, BM_CS_STATUS, &data);
3144 	if (ret_val)
3145 		return ret_val;
3146 
3147 	data &= BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
3148 		BM_CS_STATUS_SPEED_MASK;
3149 
3150 	if (data != (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
3151 		     BM_CS_STATUS_SPEED_1000))
3152 		return 0;
3153 
3154 	msleep(200);
3155 
3156 	/* flush the packets in the fifo buffer */
3157 	ret_val = e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC |
3158 			   HV_MUX_DATA_CTRL_FORCE_SPEED);
3159 	if (ret_val)
3160 		return ret_val;
3161 
3162 	return e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC);
3163 }
3164 
3165 /**
3166  *  e1000_check_polarity_82577 - Checks the polarity.
3167  *  @hw: pointer to the HW structure
3168  *
3169  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
3170  *
3171  *  Polarity is determined based on the PHY specific status register.
3172  **/
3173 s32 e1000_check_polarity_82577(struct e1000_hw *hw)
3174 {
3175 	struct e1000_phy_info *phy = &hw->phy;
3176 	s32 ret_val;
3177 	u16 data;
3178 
3179 	ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3180 
3181 	if (!ret_val)
3182 		phy->cable_polarity = (data & I82577_PHY_STATUS2_REV_POLARITY)
3183 		                      ? e1000_rev_polarity_reversed
3184 		                      : e1000_rev_polarity_normal;
3185 
3186 	return ret_val;
3187 }
3188 
3189 /**
3190  *  e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
3191  *  @hw: pointer to the HW structure
3192  *
3193  *  Calls the PHY setup function to force speed and duplex.
3194  **/
3195 s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw)
3196 {
3197 	struct e1000_phy_info *phy = &hw->phy;
3198 	s32 ret_val;
3199 	u16 phy_data;
3200 	bool link;
3201 
3202 	ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
3203 	if (ret_val)
3204 		return ret_val;
3205 
3206 	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
3207 
3208 	ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
3209 	if (ret_val)
3210 		return ret_val;
3211 
3212 	udelay(1);
3213 
3214 	if (phy->autoneg_wait_to_complete) {
3215 		e_dbg("Waiting for forced speed/duplex link on 82577 phy\n");
3216 
3217 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
3218 						      100000, &link);
3219 		if (ret_val)
3220 			return ret_val;
3221 
3222 		if (!link)
3223 			e_dbg("Link taking longer than expected.\n");
3224 
3225 		/* Try once more */
3226 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
3227 						      100000, &link);
3228 	}
3229 
3230 	return ret_val;
3231 }
3232 
3233 /**
3234  *  e1000_get_phy_info_82577 - Retrieve I82577 PHY information
3235  *  @hw: pointer to the HW structure
3236  *
3237  *  Read PHY status to determine if link is up.  If link is up, then
3238  *  set/determine 10base-T extended distance and polarity correction.  Read
3239  *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
3240  *  determine on the cable length, local and remote receiver.
3241  **/
3242 s32 e1000_get_phy_info_82577(struct e1000_hw *hw)
3243 {
3244 	struct e1000_phy_info *phy = &hw->phy;
3245 	s32 ret_val;
3246 	u16 data;
3247 	bool link;
3248 
3249 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3250 	if (ret_val)
3251 		return ret_val;
3252 
3253 	if (!link) {
3254 		e_dbg("Phy info is only valid if link is up\n");
3255 		return -E1000_ERR_CONFIG;
3256 	}
3257 
3258 	phy->polarity_correction = true;
3259 
3260 	ret_val = e1000_check_polarity_82577(hw);
3261 	if (ret_val)
3262 		return ret_val;
3263 
3264 	ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3265 	if (ret_val)
3266 		return ret_val;
3267 
3268 	phy->is_mdix = (data & I82577_PHY_STATUS2_MDIX) ? true : false;
3269 
3270 	if ((data & I82577_PHY_STATUS2_SPEED_MASK) ==
3271 	    I82577_PHY_STATUS2_SPEED_1000MBPS) {
3272 		ret_val = hw->phy.ops.get_cable_length(hw);
3273 		if (ret_val)
3274 			return ret_val;
3275 
3276 		ret_val = e1e_rphy(hw, PHY_1000T_STATUS, &data);
3277 		if (ret_val)
3278 			return ret_val;
3279 
3280 		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
3281 		                ? e1000_1000t_rx_status_ok
3282 		                : e1000_1000t_rx_status_not_ok;
3283 
3284 		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
3285 		                 ? e1000_1000t_rx_status_ok
3286 		                 : e1000_1000t_rx_status_not_ok;
3287 	} else {
3288 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
3289 		phy->local_rx = e1000_1000t_rx_status_undefined;
3290 		phy->remote_rx = e1000_1000t_rx_status_undefined;
3291 	}
3292 
3293 	return 0;
3294 }
3295 
3296 /**
3297  *  e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
3298  *  @hw: pointer to the HW structure
3299  *
3300  * Reads the diagnostic status register and verifies result is valid before
3301  * placing it in the phy_cable_length field.
3302  **/
3303 s32 e1000_get_cable_length_82577(struct e1000_hw *hw)
3304 {
3305 	struct e1000_phy_info *phy = &hw->phy;
3306 	s32 ret_val;
3307 	u16 phy_data, length;
3308 
3309 	ret_val = e1e_rphy(hw, I82577_PHY_DIAG_STATUS, &phy_data);
3310 	if (ret_val)
3311 		return ret_val;
3312 
3313 	length = (phy_data & I82577_DSTATUS_CABLE_LENGTH) >>
3314 	         I82577_DSTATUS_CABLE_LENGTH_SHIFT;
3315 
3316 	if (length == E1000_CABLE_LENGTH_UNDEFINED)
3317 		ret_val = -E1000_ERR_PHY;
3318 
3319 	phy->cable_length = length;
3320 
3321 	return 0;
3322 }
3323