xref: /openbmc/linux/drivers/net/ethernet/intel/e1000e/phy.c (revision 4ed91d48259d9ddd378424d008f2e6559f7e78f8)
1 /* Intel PRO/1000 Linux driver
2  * Copyright(c) 1999 - 2015 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * The full GNU General Public License is included in this distribution in
14  * the file called "COPYING".
15  *
16  * Contact Information:
17  * Linux NICS <linux.nics@intel.com>
18  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
20  */
21 
22 #include "e1000.h"
23 
24 static s32 e1000_wait_autoneg(struct e1000_hw *hw);
25 static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
26 					  u16 *data, bool read, bool page_set);
27 static u32 e1000_get_phy_addr_for_hv_page(u32 page);
28 static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
29 					  u16 *data, bool read);
30 
31 /* Cable length tables */
32 static const u16 e1000_m88_cable_length_table[] = {
33 	0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED
34 };
35 
36 #define M88E1000_CABLE_LENGTH_TABLE_SIZE \
37 		ARRAY_SIZE(e1000_m88_cable_length_table)
38 
39 static const u16 e1000_igp_2_cable_length_table[] = {
40 	0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3,
41 	6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22,
42 	26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40,
43 	44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61,
44 	66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82,
45 	87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95,
46 	100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121,
47 	124
48 };
49 
50 #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
51 		ARRAY_SIZE(e1000_igp_2_cable_length_table)
52 
53 /**
54  *  e1000e_check_reset_block_generic - Check if PHY reset is blocked
55  *  @hw: pointer to the HW structure
56  *
57  *  Read the PHY management control register and check whether a PHY reset
58  *  is blocked.  If a reset is not blocked return 0, otherwise
59  *  return E1000_BLK_PHY_RESET (12).
60  **/
61 s32 e1000e_check_reset_block_generic(struct e1000_hw *hw)
62 {
63 	u32 manc;
64 
65 	manc = er32(MANC);
66 
67 	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? E1000_BLK_PHY_RESET : 0;
68 }
69 
70 /**
71  *  e1000e_get_phy_id - Retrieve the PHY ID and revision
72  *  @hw: pointer to the HW structure
73  *
74  *  Reads the PHY registers and stores the PHY ID and possibly the PHY
75  *  revision in the hardware structure.
76  **/
77 s32 e1000e_get_phy_id(struct e1000_hw *hw)
78 {
79 	struct e1000_phy_info *phy = &hw->phy;
80 	s32 ret_val = 0;
81 	u16 phy_id;
82 	u16 retry_count = 0;
83 
84 	if (!phy->ops.read_reg)
85 		return 0;
86 
87 	while (retry_count < 2) {
88 		ret_val = e1e_rphy(hw, MII_PHYSID1, &phy_id);
89 		if (ret_val)
90 			return ret_val;
91 
92 		phy->id = (u32)(phy_id << 16);
93 		usleep_range(20, 40);
94 		ret_val = e1e_rphy(hw, MII_PHYSID2, &phy_id);
95 		if (ret_val)
96 			return ret_val;
97 
98 		phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
99 		phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
100 
101 		if (phy->id != 0 && phy->id != PHY_REVISION_MASK)
102 			return 0;
103 
104 		retry_count++;
105 	}
106 
107 	return 0;
108 }
109 
110 /**
111  *  e1000e_phy_reset_dsp - Reset PHY DSP
112  *  @hw: pointer to the HW structure
113  *
114  *  Reset the digital signal processor.
115  **/
116 s32 e1000e_phy_reset_dsp(struct e1000_hw *hw)
117 {
118 	s32 ret_val;
119 
120 	ret_val = e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
121 	if (ret_val)
122 		return ret_val;
123 
124 	return e1e_wphy(hw, M88E1000_PHY_GEN_CONTROL, 0);
125 }
126 
127 /**
128  *  e1000e_read_phy_reg_mdic - Read MDI control register
129  *  @hw: pointer to the HW structure
130  *  @offset: register offset to be read
131  *  @data: pointer to the read data
132  *
133  *  Reads the MDI control register in the PHY at offset and stores the
134  *  information read to data.
135  **/
136 s32 e1000e_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
137 {
138 	struct e1000_phy_info *phy = &hw->phy;
139 	u32 i, mdic = 0;
140 
141 	if (offset > MAX_PHY_REG_ADDRESS) {
142 		e_dbg("PHY Address %d is out of range\n", offset);
143 		return -E1000_ERR_PARAM;
144 	}
145 
146 	/* Set up Op-code, Phy Address, and register offset in the MDI
147 	 * Control register.  The MAC will take care of interfacing with the
148 	 * PHY to retrieve the desired data.
149 	 */
150 	mdic = ((offset << E1000_MDIC_REG_SHIFT) |
151 		(phy->addr << E1000_MDIC_PHY_SHIFT) |
152 		(E1000_MDIC_OP_READ));
153 
154 	ew32(MDIC, mdic);
155 
156 	/* Poll the ready bit to see if the MDI read completed
157 	 * Increasing the time out as testing showed failures with
158 	 * the lower time out
159 	 */
160 	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
161 		udelay(50);
162 		mdic = er32(MDIC);
163 		if (mdic & E1000_MDIC_READY)
164 			break;
165 	}
166 	if (!(mdic & E1000_MDIC_READY)) {
167 		e_dbg("MDI Read did not complete\n");
168 		return -E1000_ERR_PHY;
169 	}
170 	if (mdic & E1000_MDIC_ERROR) {
171 		e_dbg("MDI Error\n");
172 		return -E1000_ERR_PHY;
173 	}
174 	if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) {
175 		e_dbg("MDI Read offset error - requested %d, returned %d\n",
176 		      offset,
177 		      (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
178 		return -E1000_ERR_PHY;
179 	}
180 	*data = (u16)mdic;
181 
182 	/* Allow some time after each MDIC transaction to avoid
183 	 * reading duplicate data in the next MDIC transaction.
184 	 */
185 	if (hw->mac.type == e1000_pch2lan)
186 		udelay(100);
187 
188 	return 0;
189 }
190 
191 /**
192  *  e1000e_write_phy_reg_mdic - Write MDI control register
193  *  @hw: pointer to the HW structure
194  *  @offset: register offset to write to
195  *  @data: data to write to register at offset
196  *
197  *  Writes data to MDI control register in the PHY at offset.
198  **/
199 s32 e1000e_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
200 {
201 	struct e1000_phy_info *phy = &hw->phy;
202 	u32 i, mdic = 0;
203 
204 	if (offset > MAX_PHY_REG_ADDRESS) {
205 		e_dbg("PHY Address %d is out of range\n", offset);
206 		return -E1000_ERR_PARAM;
207 	}
208 
209 	/* Set up Op-code, Phy Address, and register offset in the MDI
210 	 * Control register.  The MAC will take care of interfacing with the
211 	 * PHY to retrieve the desired data.
212 	 */
213 	mdic = (((u32)data) |
214 		(offset << E1000_MDIC_REG_SHIFT) |
215 		(phy->addr << E1000_MDIC_PHY_SHIFT) |
216 		(E1000_MDIC_OP_WRITE));
217 
218 	ew32(MDIC, mdic);
219 
220 	/* Poll the ready bit to see if the MDI read completed
221 	 * Increasing the time out as testing showed failures with
222 	 * the lower time out
223 	 */
224 	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
225 		udelay(50);
226 		mdic = er32(MDIC);
227 		if (mdic & E1000_MDIC_READY)
228 			break;
229 	}
230 	if (!(mdic & E1000_MDIC_READY)) {
231 		e_dbg("MDI Write did not complete\n");
232 		return -E1000_ERR_PHY;
233 	}
234 	if (mdic & E1000_MDIC_ERROR) {
235 		e_dbg("MDI Error\n");
236 		return -E1000_ERR_PHY;
237 	}
238 	if (((mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT) != offset) {
239 		e_dbg("MDI Write offset error - requested %d, returned %d\n",
240 		      offset,
241 		      (mdic & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
242 		return -E1000_ERR_PHY;
243 	}
244 
245 	/* Allow some time after each MDIC transaction to avoid
246 	 * reading duplicate data in the next MDIC transaction.
247 	 */
248 	if (hw->mac.type == e1000_pch2lan)
249 		udelay(100);
250 
251 	return 0;
252 }
253 
254 /**
255  *  e1000e_read_phy_reg_m88 - Read m88 PHY register
256  *  @hw: pointer to the HW structure
257  *  @offset: register offset to be read
258  *  @data: pointer to the read data
259  *
260  *  Acquires semaphore, if necessary, then reads the PHY register at offset
261  *  and storing the retrieved information in data.  Release any acquired
262  *  semaphores before exiting.
263  **/
264 s32 e1000e_read_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 *data)
265 {
266 	s32 ret_val;
267 
268 	ret_val = hw->phy.ops.acquire(hw);
269 	if (ret_val)
270 		return ret_val;
271 
272 	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
273 					   data);
274 
275 	hw->phy.ops.release(hw);
276 
277 	return ret_val;
278 }
279 
280 /**
281  *  e1000e_write_phy_reg_m88 - Write m88 PHY register
282  *  @hw: pointer to the HW structure
283  *  @offset: register offset to write to
284  *  @data: data to write at register offset
285  *
286  *  Acquires semaphore, if necessary, then writes the data to PHY register
287  *  at the offset.  Release any acquired semaphores before exiting.
288  **/
289 s32 e1000e_write_phy_reg_m88(struct e1000_hw *hw, u32 offset, u16 data)
290 {
291 	s32 ret_val;
292 
293 	ret_val = hw->phy.ops.acquire(hw);
294 	if (ret_val)
295 		return ret_val;
296 
297 	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
298 					    data);
299 
300 	hw->phy.ops.release(hw);
301 
302 	return ret_val;
303 }
304 
305 /**
306  *  e1000_set_page_igp - Set page as on IGP-like PHY(s)
307  *  @hw: pointer to the HW structure
308  *  @page: page to set (shifted left when necessary)
309  *
310  *  Sets PHY page required for PHY register access.  Assumes semaphore is
311  *  already acquired.  Note, this function sets phy.addr to 1 so the caller
312  *  must set it appropriately (if necessary) after this function returns.
313  **/
314 s32 e1000_set_page_igp(struct e1000_hw *hw, u16 page)
315 {
316 	e_dbg("Setting page 0x%x\n", page);
317 
318 	hw->phy.addr = 1;
319 
320 	return e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, page);
321 }
322 
323 /**
324  *  __e1000e_read_phy_reg_igp - Read igp PHY register
325  *  @hw: pointer to the HW structure
326  *  @offset: register offset to be read
327  *  @data: pointer to the read data
328  *  @locked: semaphore has already been acquired or not
329  *
330  *  Acquires semaphore, if necessary, then reads the PHY register at offset
331  *  and stores the retrieved information in data.  Release any acquired
332  *  semaphores before exiting.
333  **/
334 static s32 __e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data,
335 				     bool locked)
336 {
337 	s32 ret_val = 0;
338 
339 	if (!locked) {
340 		if (!hw->phy.ops.acquire)
341 			return 0;
342 
343 		ret_val = hw->phy.ops.acquire(hw);
344 		if (ret_val)
345 			return ret_val;
346 	}
347 
348 	if (offset > MAX_PHY_MULTI_PAGE_REG)
349 		ret_val = e1000e_write_phy_reg_mdic(hw,
350 						    IGP01E1000_PHY_PAGE_SELECT,
351 						    (u16)offset);
352 	if (!ret_val)
353 		ret_val = e1000e_read_phy_reg_mdic(hw,
354 						   MAX_PHY_REG_ADDRESS & offset,
355 						   data);
356 	if (!locked)
357 		hw->phy.ops.release(hw);
358 
359 	return ret_val;
360 }
361 
362 /**
363  *  e1000e_read_phy_reg_igp - Read igp PHY register
364  *  @hw: pointer to the HW structure
365  *  @offset: register offset to be read
366  *  @data: pointer to the read data
367  *
368  *  Acquires semaphore then reads the PHY register at offset and stores the
369  *  retrieved information in data.
370  *  Release the acquired semaphore before exiting.
371  **/
372 s32 e1000e_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
373 {
374 	return __e1000e_read_phy_reg_igp(hw, offset, data, false);
375 }
376 
377 /**
378  *  e1000e_read_phy_reg_igp_locked - Read igp PHY register
379  *  @hw: pointer to the HW structure
380  *  @offset: register offset to be read
381  *  @data: pointer to the read data
382  *
383  *  Reads the PHY register at offset and stores the retrieved information
384  *  in data.  Assumes semaphore already acquired.
385  **/
386 s32 e1000e_read_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 *data)
387 {
388 	return __e1000e_read_phy_reg_igp(hw, offset, data, true);
389 }
390 
391 /**
392  *  e1000e_write_phy_reg_igp - Write igp PHY register
393  *  @hw: pointer to the HW structure
394  *  @offset: register offset to write to
395  *  @data: data to write at register offset
396  *  @locked: semaphore has already been acquired or not
397  *
398  *  Acquires semaphore, if necessary, then writes the data to PHY register
399  *  at the offset.  Release any acquired semaphores before exiting.
400  **/
401 static s32 __e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data,
402 				      bool locked)
403 {
404 	s32 ret_val = 0;
405 
406 	if (!locked) {
407 		if (!hw->phy.ops.acquire)
408 			return 0;
409 
410 		ret_val = hw->phy.ops.acquire(hw);
411 		if (ret_val)
412 			return ret_val;
413 	}
414 
415 	if (offset > MAX_PHY_MULTI_PAGE_REG)
416 		ret_val = e1000e_write_phy_reg_mdic(hw,
417 						    IGP01E1000_PHY_PAGE_SELECT,
418 						    (u16)offset);
419 	if (!ret_val)
420 		ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS &
421 						    offset, data);
422 	if (!locked)
423 		hw->phy.ops.release(hw);
424 
425 	return ret_val;
426 }
427 
428 /**
429  *  e1000e_write_phy_reg_igp - Write igp PHY register
430  *  @hw: pointer to the HW structure
431  *  @offset: register offset to write to
432  *  @data: data to write at register offset
433  *
434  *  Acquires semaphore then writes the data to PHY register
435  *  at the offset.  Release any acquired semaphores before exiting.
436  **/
437 s32 e1000e_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
438 {
439 	return __e1000e_write_phy_reg_igp(hw, offset, data, false);
440 }
441 
442 /**
443  *  e1000e_write_phy_reg_igp_locked - Write igp PHY register
444  *  @hw: pointer to the HW structure
445  *  @offset: register offset to write to
446  *  @data: data to write at register offset
447  *
448  *  Writes the data to PHY register at the offset.
449  *  Assumes semaphore already acquired.
450  **/
451 s32 e1000e_write_phy_reg_igp_locked(struct e1000_hw *hw, u32 offset, u16 data)
452 {
453 	return __e1000e_write_phy_reg_igp(hw, offset, data, true);
454 }
455 
456 /**
457  *  __e1000_read_kmrn_reg - Read kumeran register
458  *  @hw: pointer to the HW structure
459  *  @offset: register offset to be read
460  *  @data: pointer to the read data
461  *  @locked: semaphore has already been acquired or not
462  *
463  *  Acquires semaphore, if necessary.  Then reads the PHY register at offset
464  *  using the kumeran interface.  The information retrieved is stored in data.
465  *  Release any acquired semaphores before exiting.
466  **/
467 static s32 __e1000_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data,
468 				 bool locked)
469 {
470 	u32 kmrnctrlsta;
471 
472 	if (!locked) {
473 		s32 ret_val = 0;
474 
475 		if (!hw->phy.ops.acquire)
476 			return 0;
477 
478 		ret_val = hw->phy.ops.acquire(hw);
479 		if (ret_val)
480 			return ret_val;
481 	}
482 
483 	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
484 		       E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
485 	ew32(KMRNCTRLSTA, kmrnctrlsta);
486 	e1e_flush();
487 
488 	udelay(2);
489 
490 	kmrnctrlsta = er32(KMRNCTRLSTA);
491 	*data = (u16)kmrnctrlsta;
492 
493 	if (!locked)
494 		hw->phy.ops.release(hw);
495 
496 	return 0;
497 }
498 
499 /**
500  *  e1000e_read_kmrn_reg -  Read kumeran register
501  *  @hw: pointer to the HW structure
502  *  @offset: register offset to be read
503  *  @data: pointer to the read data
504  *
505  *  Acquires semaphore then reads the PHY register at offset using the
506  *  kumeran interface.  The information retrieved is stored in data.
507  *  Release the acquired semaphore before exiting.
508  **/
509 s32 e1000e_read_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 *data)
510 {
511 	return __e1000_read_kmrn_reg(hw, offset, data, false);
512 }
513 
514 /**
515  *  e1000e_read_kmrn_reg_locked -  Read kumeran register
516  *  @hw: pointer to the HW structure
517  *  @offset: register offset to be read
518  *  @data: pointer to the read data
519  *
520  *  Reads the PHY register at offset using the kumeran interface.  The
521  *  information retrieved is stored in data.
522  *  Assumes semaphore already acquired.
523  **/
524 s32 e1000e_read_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 *data)
525 {
526 	return __e1000_read_kmrn_reg(hw, offset, data, true);
527 }
528 
529 /**
530  *  __e1000_write_kmrn_reg - Write kumeran register
531  *  @hw: pointer to the HW structure
532  *  @offset: register offset to write to
533  *  @data: data to write at register offset
534  *  @locked: semaphore has already been acquired or not
535  *
536  *  Acquires semaphore, if necessary.  Then write the data to PHY register
537  *  at the offset using the kumeran interface.  Release any acquired semaphores
538  *  before exiting.
539  **/
540 static s32 __e1000_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data,
541 				  bool locked)
542 {
543 	u32 kmrnctrlsta;
544 
545 	if (!locked) {
546 		s32 ret_val = 0;
547 
548 		if (!hw->phy.ops.acquire)
549 			return 0;
550 
551 		ret_val = hw->phy.ops.acquire(hw);
552 		if (ret_val)
553 			return ret_val;
554 	}
555 
556 	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
557 		       E1000_KMRNCTRLSTA_OFFSET) | data;
558 	ew32(KMRNCTRLSTA, kmrnctrlsta);
559 	e1e_flush();
560 
561 	udelay(2);
562 
563 	if (!locked)
564 		hw->phy.ops.release(hw);
565 
566 	return 0;
567 }
568 
569 /**
570  *  e1000e_write_kmrn_reg -  Write kumeran register
571  *  @hw: pointer to the HW structure
572  *  @offset: register offset to write to
573  *  @data: data to write at register offset
574  *
575  *  Acquires semaphore then writes the data to the PHY register at the offset
576  *  using the kumeran interface.  Release the acquired semaphore before exiting.
577  **/
578 s32 e1000e_write_kmrn_reg(struct e1000_hw *hw, u32 offset, u16 data)
579 {
580 	return __e1000_write_kmrn_reg(hw, offset, data, false);
581 }
582 
583 /**
584  *  e1000e_write_kmrn_reg_locked -  Write kumeran register
585  *  @hw: pointer to the HW structure
586  *  @offset: register offset to write to
587  *  @data: data to write at register offset
588  *
589  *  Write the data to PHY register at the offset using the kumeran interface.
590  *  Assumes semaphore already acquired.
591  **/
592 s32 e1000e_write_kmrn_reg_locked(struct e1000_hw *hw, u32 offset, u16 data)
593 {
594 	return __e1000_write_kmrn_reg(hw, offset, data, true);
595 }
596 
597 /**
598  *  e1000_set_master_slave_mode - Setup PHY for Master/slave mode
599  *  @hw: pointer to the HW structure
600  *
601  *  Sets up Master/slave mode
602  **/
603 static s32 e1000_set_master_slave_mode(struct e1000_hw *hw)
604 {
605 	s32 ret_val;
606 	u16 phy_data;
607 
608 	/* Resolve Master/Slave mode */
609 	ret_val = e1e_rphy(hw, MII_CTRL1000, &phy_data);
610 	if (ret_val)
611 		return ret_val;
612 
613 	/* load defaults for future use */
614 	hw->phy.original_ms_type = (phy_data & CTL1000_ENABLE_MASTER) ?
615 	    ((phy_data & CTL1000_AS_MASTER) ?
616 	     e1000_ms_force_master : e1000_ms_force_slave) : e1000_ms_auto;
617 
618 	switch (hw->phy.ms_type) {
619 	case e1000_ms_force_master:
620 		phy_data |= (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER);
621 		break;
622 	case e1000_ms_force_slave:
623 		phy_data |= CTL1000_ENABLE_MASTER;
624 		phy_data &= ~(CTL1000_AS_MASTER);
625 		break;
626 	case e1000_ms_auto:
627 		phy_data &= ~CTL1000_ENABLE_MASTER;
628 		/* fall-through */
629 	default:
630 		break;
631 	}
632 
633 	return e1e_wphy(hw, MII_CTRL1000, phy_data);
634 }
635 
636 /**
637  *  e1000_copper_link_setup_82577 - Setup 82577 PHY for copper link
638  *  @hw: pointer to the HW structure
639  *
640  *  Sets up Carrier-sense on Transmit and downshift values.
641  **/
642 s32 e1000_copper_link_setup_82577(struct e1000_hw *hw)
643 {
644 	s32 ret_val;
645 	u16 phy_data;
646 
647 	/* Enable CRS on Tx. This must be set for half-duplex operation. */
648 	ret_val = e1e_rphy(hw, I82577_CFG_REG, &phy_data);
649 	if (ret_val)
650 		return ret_val;
651 
652 	phy_data |= I82577_CFG_ASSERT_CRS_ON_TX;
653 
654 	/* Enable downshift */
655 	phy_data |= I82577_CFG_ENABLE_DOWNSHIFT;
656 
657 	ret_val = e1e_wphy(hw, I82577_CFG_REG, phy_data);
658 	if (ret_val)
659 		return ret_val;
660 
661 	/* Set MDI/MDIX mode */
662 	ret_val = e1e_rphy(hw, I82577_PHY_CTRL_2, &phy_data);
663 	if (ret_val)
664 		return ret_val;
665 	phy_data &= ~I82577_PHY_CTRL2_MDIX_CFG_MASK;
666 	/* Options:
667 	 *   0 - Auto (default)
668 	 *   1 - MDI mode
669 	 *   2 - MDI-X mode
670 	 */
671 	switch (hw->phy.mdix) {
672 	case 1:
673 		break;
674 	case 2:
675 		phy_data |= I82577_PHY_CTRL2_MANUAL_MDIX;
676 		break;
677 	case 0:
678 	default:
679 		phy_data |= I82577_PHY_CTRL2_AUTO_MDI_MDIX;
680 		break;
681 	}
682 	ret_val = e1e_wphy(hw, I82577_PHY_CTRL_2, phy_data);
683 	if (ret_val)
684 		return ret_val;
685 
686 	return e1000_set_master_slave_mode(hw);
687 }
688 
689 /**
690  *  e1000e_copper_link_setup_m88 - Setup m88 PHY's for copper link
691  *  @hw: pointer to the HW structure
692  *
693  *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
694  *  and downshift values are set also.
695  **/
696 s32 e1000e_copper_link_setup_m88(struct e1000_hw *hw)
697 {
698 	struct e1000_phy_info *phy = &hw->phy;
699 	s32 ret_val;
700 	u16 phy_data;
701 
702 	/* Enable CRS on Tx. This must be set for half-duplex operation. */
703 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
704 	if (ret_val)
705 		return ret_val;
706 
707 	/* For BM PHY this bit is downshift enable */
708 	if (phy->type != e1000_phy_bm)
709 		phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
710 
711 	/* Options:
712 	 *   MDI/MDI-X = 0 (default)
713 	 *   0 - Auto for all speeds
714 	 *   1 - MDI mode
715 	 *   2 - MDI-X mode
716 	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
717 	 */
718 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
719 
720 	switch (phy->mdix) {
721 	case 1:
722 		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
723 		break;
724 	case 2:
725 		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
726 		break;
727 	case 3:
728 		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
729 		break;
730 	case 0:
731 	default:
732 		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
733 		break;
734 	}
735 
736 	/* Options:
737 	 *   disable_polarity_correction = 0 (default)
738 	 *       Automatic Correction for Reversed Cable Polarity
739 	 *   0 - Disabled
740 	 *   1 - Enabled
741 	 */
742 	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
743 	if (phy->disable_polarity_correction)
744 		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
745 
746 	/* Enable downshift on BM (disabled by default) */
747 	if (phy->type == e1000_phy_bm) {
748 		/* For 82574/82583, first disable then enable downshift */
749 		if (phy->id == BME1000_E_PHY_ID_R2) {
750 			phy_data &= ~BME1000_PSCR_ENABLE_DOWNSHIFT;
751 			ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL,
752 					   phy_data);
753 			if (ret_val)
754 				return ret_val;
755 			/* Commit the changes. */
756 			ret_val = phy->ops.commit(hw);
757 			if (ret_val) {
758 				e_dbg("Error committing the PHY changes\n");
759 				return ret_val;
760 			}
761 		}
762 
763 		phy_data |= BME1000_PSCR_ENABLE_DOWNSHIFT;
764 	}
765 
766 	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
767 	if (ret_val)
768 		return ret_val;
769 
770 	if ((phy->type == e1000_phy_m88) &&
771 	    (phy->revision < E1000_REVISION_4) &&
772 	    (phy->id != BME1000_E_PHY_ID_R2)) {
773 		/* Force TX_CLK in the Extended PHY Specific Control Register
774 		 * to 25MHz clock.
775 		 */
776 		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
777 		if (ret_val)
778 			return ret_val;
779 
780 		phy_data |= M88E1000_EPSCR_TX_CLK_25;
781 
782 		if ((phy->revision == 2) && (phy->id == M88E1111_I_PHY_ID)) {
783 			/* 82573L PHY - set the downshift counter to 5x. */
784 			phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
785 			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
786 		} else {
787 			/* Configure Master and Slave downshift values */
788 			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
789 				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
790 			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
791 				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
792 		}
793 		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
794 		if (ret_val)
795 			return ret_val;
796 	}
797 
798 	if ((phy->type == e1000_phy_bm) && (phy->id == BME1000_E_PHY_ID_R2)) {
799 		/* Set PHY page 0, register 29 to 0x0003 */
800 		ret_val = e1e_wphy(hw, 29, 0x0003);
801 		if (ret_val)
802 			return ret_val;
803 
804 		/* Set PHY page 0, register 30 to 0x0000 */
805 		ret_val = e1e_wphy(hw, 30, 0x0000);
806 		if (ret_val)
807 			return ret_val;
808 	}
809 
810 	/* Commit the changes. */
811 	if (phy->ops.commit) {
812 		ret_val = phy->ops.commit(hw);
813 		if (ret_val) {
814 			e_dbg("Error committing the PHY changes\n");
815 			return ret_val;
816 		}
817 	}
818 
819 	if (phy->type == e1000_phy_82578) {
820 		ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
821 		if (ret_val)
822 			return ret_val;
823 
824 		/* 82578 PHY - set the downshift count to 1x. */
825 		phy_data |= I82578_EPSCR_DOWNSHIFT_ENABLE;
826 		phy_data &= ~I82578_EPSCR_DOWNSHIFT_COUNTER_MASK;
827 		ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
828 		if (ret_val)
829 			return ret_val;
830 	}
831 
832 	return 0;
833 }
834 
835 /**
836  *  e1000e_copper_link_setup_igp - Setup igp PHY's for copper link
837  *  @hw: pointer to the HW structure
838  *
839  *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
840  *  igp PHY's.
841  **/
842 s32 e1000e_copper_link_setup_igp(struct e1000_hw *hw)
843 {
844 	struct e1000_phy_info *phy = &hw->phy;
845 	s32 ret_val;
846 	u16 data;
847 
848 	ret_val = e1000_phy_hw_reset(hw);
849 	if (ret_val) {
850 		e_dbg("Error resetting the PHY.\n");
851 		return ret_val;
852 	}
853 
854 	/* Wait 100ms for MAC to configure PHY from NVM settings, to avoid
855 	 * timeout issues when LFS is enabled.
856 	 */
857 	msleep(100);
858 
859 	/* disable lplu d0 during driver init */
860 	if (hw->phy.ops.set_d0_lplu_state) {
861 		ret_val = hw->phy.ops.set_d0_lplu_state(hw, false);
862 		if (ret_val) {
863 			e_dbg("Error Disabling LPLU D0\n");
864 			return ret_val;
865 		}
866 	}
867 	/* Configure mdi-mdix settings */
868 	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &data);
869 	if (ret_val)
870 		return ret_val;
871 
872 	data &= ~IGP01E1000_PSCR_AUTO_MDIX;
873 
874 	switch (phy->mdix) {
875 	case 1:
876 		data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
877 		break;
878 	case 2:
879 		data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
880 		break;
881 	case 0:
882 	default:
883 		data |= IGP01E1000_PSCR_AUTO_MDIX;
884 		break;
885 	}
886 	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, data);
887 	if (ret_val)
888 		return ret_val;
889 
890 	/* set auto-master slave resolution settings */
891 	if (hw->mac.autoneg) {
892 		/* when autonegotiation advertisement is only 1000Mbps then we
893 		 * should disable SmartSpeed and enable Auto MasterSlave
894 		 * resolution as hardware default.
895 		 */
896 		if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
897 			/* Disable SmartSpeed */
898 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
899 					   &data);
900 			if (ret_val)
901 				return ret_val;
902 
903 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
904 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
905 					   data);
906 			if (ret_val)
907 				return ret_val;
908 
909 			/* Set auto Master/Slave resolution process */
910 			ret_val = e1e_rphy(hw, MII_CTRL1000, &data);
911 			if (ret_val)
912 				return ret_val;
913 
914 			data &= ~CTL1000_ENABLE_MASTER;
915 			ret_val = e1e_wphy(hw, MII_CTRL1000, data);
916 			if (ret_val)
917 				return ret_val;
918 		}
919 
920 		ret_val = e1000_set_master_slave_mode(hw);
921 	}
922 
923 	return ret_val;
924 }
925 
926 /**
927  *  e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
928  *  @hw: pointer to the HW structure
929  *
930  *  Reads the MII auto-neg advertisement register and/or the 1000T control
931  *  register and if the PHY is already setup for auto-negotiation, then
932  *  return successful.  Otherwise, setup advertisement and flow control to
933  *  the appropriate values for the wanted auto-negotiation.
934  **/
935 static s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
936 {
937 	struct e1000_phy_info *phy = &hw->phy;
938 	s32 ret_val;
939 	u16 mii_autoneg_adv_reg;
940 	u16 mii_1000t_ctrl_reg = 0;
941 
942 	phy->autoneg_advertised &= phy->autoneg_mask;
943 
944 	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
945 	ret_val = e1e_rphy(hw, MII_ADVERTISE, &mii_autoneg_adv_reg);
946 	if (ret_val)
947 		return ret_val;
948 
949 	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
950 		/* Read the MII 1000Base-T Control Register (Address 9). */
951 		ret_val = e1e_rphy(hw, MII_CTRL1000, &mii_1000t_ctrl_reg);
952 		if (ret_val)
953 			return ret_val;
954 	}
955 
956 	/* Need to parse both autoneg_advertised and fc and set up
957 	 * the appropriate PHY registers.  First we will parse for
958 	 * autoneg_advertised software override.  Since we can advertise
959 	 * a plethora of combinations, we need to check each bit
960 	 * individually.
961 	 */
962 
963 	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
964 	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
965 	 * the  1000Base-T Control Register (Address 9).
966 	 */
967 	mii_autoneg_adv_reg &= ~(ADVERTISE_100FULL |
968 				 ADVERTISE_100HALF |
969 				 ADVERTISE_10FULL | ADVERTISE_10HALF);
970 	mii_1000t_ctrl_reg &= ~(ADVERTISE_1000HALF | ADVERTISE_1000FULL);
971 
972 	e_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
973 
974 	/* Do we want to advertise 10 Mb Half Duplex? */
975 	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
976 		e_dbg("Advertise 10mb Half duplex\n");
977 		mii_autoneg_adv_reg |= ADVERTISE_10HALF;
978 	}
979 
980 	/* Do we want to advertise 10 Mb Full Duplex? */
981 	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
982 		e_dbg("Advertise 10mb Full duplex\n");
983 		mii_autoneg_adv_reg |= ADVERTISE_10FULL;
984 	}
985 
986 	/* Do we want to advertise 100 Mb Half Duplex? */
987 	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
988 		e_dbg("Advertise 100mb Half duplex\n");
989 		mii_autoneg_adv_reg |= ADVERTISE_100HALF;
990 	}
991 
992 	/* Do we want to advertise 100 Mb Full Duplex? */
993 	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
994 		e_dbg("Advertise 100mb Full duplex\n");
995 		mii_autoneg_adv_reg |= ADVERTISE_100FULL;
996 	}
997 
998 	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
999 	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
1000 		e_dbg("Advertise 1000mb Half duplex request denied!\n");
1001 
1002 	/* Do we want to advertise 1000 Mb Full Duplex? */
1003 	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
1004 		e_dbg("Advertise 1000mb Full duplex\n");
1005 		mii_1000t_ctrl_reg |= ADVERTISE_1000FULL;
1006 	}
1007 
1008 	/* Check for a software override of the flow control settings, and
1009 	 * setup the PHY advertisement registers accordingly.  If
1010 	 * auto-negotiation is enabled, then software will have to set the
1011 	 * "PAUSE" bits to the correct value in the Auto-Negotiation
1012 	 * Advertisement Register (MII_ADVERTISE) and re-start auto-
1013 	 * negotiation.
1014 	 *
1015 	 * The possible values of the "fc" parameter are:
1016 	 *      0:  Flow control is completely disabled
1017 	 *      1:  Rx flow control is enabled (we can receive pause frames
1018 	 *          but not send pause frames).
1019 	 *      2:  Tx flow control is enabled (we can send pause frames
1020 	 *          but we do not support receiving pause frames).
1021 	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
1022 	 *  other:  No software override.  The flow control configuration
1023 	 *          in the EEPROM is used.
1024 	 */
1025 	switch (hw->fc.current_mode) {
1026 	case e1000_fc_none:
1027 		/* Flow control (Rx & Tx) is completely disabled by a
1028 		 * software over-ride.
1029 		 */
1030 		mii_autoneg_adv_reg &=
1031 		    ~(ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
1032 		break;
1033 	case e1000_fc_rx_pause:
1034 		/* Rx Flow control is enabled, and Tx Flow control is
1035 		 * disabled, by a software over-ride.
1036 		 *
1037 		 * Since there really isn't a way to advertise that we are
1038 		 * capable of Rx Pause ONLY, we will advertise that we
1039 		 * support both symmetric and asymmetric Rx PAUSE.  Later
1040 		 * (in e1000e_config_fc_after_link_up) we will disable the
1041 		 * hw's ability to send PAUSE frames.
1042 		 */
1043 		mii_autoneg_adv_reg |=
1044 		    (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
1045 		break;
1046 	case e1000_fc_tx_pause:
1047 		/* Tx Flow control is enabled, and Rx Flow control is
1048 		 * disabled, by a software over-ride.
1049 		 */
1050 		mii_autoneg_adv_reg |= ADVERTISE_PAUSE_ASYM;
1051 		mii_autoneg_adv_reg &= ~ADVERTISE_PAUSE_CAP;
1052 		break;
1053 	case e1000_fc_full:
1054 		/* Flow control (both Rx and Tx) is enabled by a software
1055 		 * over-ride.
1056 		 */
1057 		mii_autoneg_adv_reg |=
1058 		    (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
1059 		break;
1060 	default:
1061 		e_dbg("Flow control param set incorrectly\n");
1062 		return -E1000_ERR_CONFIG;
1063 	}
1064 
1065 	ret_val = e1e_wphy(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
1066 	if (ret_val)
1067 		return ret_val;
1068 
1069 	e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1070 
1071 	if (phy->autoneg_mask & ADVERTISE_1000_FULL)
1072 		ret_val = e1e_wphy(hw, MII_CTRL1000, mii_1000t_ctrl_reg);
1073 
1074 	return ret_val;
1075 }
1076 
1077 /**
1078  *  e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
1079  *  @hw: pointer to the HW structure
1080  *
1081  *  Performs initial bounds checking on autoneg advertisement parameter, then
1082  *  configure to advertise the full capability.  Setup the PHY to autoneg
1083  *  and restart the negotiation process between the link partner.  If
1084  *  autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
1085  **/
1086 static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
1087 {
1088 	struct e1000_phy_info *phy = &hw->phy;
1089 	s32 ret_val;
1090 	u16 phy_ctrl;
1091 
1092 	/* Perform some bounds checking on the autoneg advertisement
1093 	 * parameter.
1094 	 */
1095 	phy->autoneg_advertised &= phy->autoneg_mask;
1096 
1097 	/* If autoneg_advertised is zero, we assume it was not defaulted
1098 	 * by the calling code so we set to advertise full capability.
1099 	 */
1100 	if (!phy->autoneg_advertised)
1101 		phy->autoneg_advertised = phy->autoneg_mask;
1102 
1103 	e_dbg("Reconfiguring auto-neg advertisement params\n");
1104 	ret_val = e1000_phy_setup_autoneg(hw);
1105 	if (ret_val) {
1106 		e_dbg("Error Setting up Auto-Negotiation\n");
1107 		return ret_val;
1108 	}
1109 	e_dbg("Restarting Auto-Neg\n");
1110 
1111 	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
1112 	 * the Auto Neg Restart bit in the PHY control register.
1113 	 */
1114 	ret_val = e1e_rphy(hw, MII_BMCR, &phy_ctrl);
1115 	if (ret_val)
1116 		return ret_val;
1117 
1118 	phy_ctrl |= (BMCR_ANENABLE | BMCR_ANRESTART);
1119 	ret_val = e1e_wphy(hw, MII_BMCR, phy_ctrl);
1120 	if (ret_val)
1121 		return ret_val;
1122 
1123 	/* Does the user want to wait for Auto-Neg to complete here, or
1124 	 * check at a later time (for example, callback routine).
1125 	 */
1126 	if (phy->autoneg_wait_to_complete) {
1127 		ret_val = e1000_wait_autoneg(hw);
1128 		if (ret_val) {
1129 			e_dbg("Error while waiting for autoneg to complete\n");
1130 			return ret_val;
1131 		}
1132 	}
1133 
1134 	hw->mac.get_link_status = true;
1135 
1136 	return ret_val;
1137 }
1138 
1139 /**
1140  *  e1000e_setup_copper_link - Configure copper link settings
1141  *  @hw: pointer to the HW structure
1142  *
1143  *  Calls the appropriate function to configure the link for auto-neg or forced
1144  *  speed and duplex.  Then we check for link, once link is established calls
1145  *  to configure collision distance and flow control are called.  If link is
1146  *  not established, we return -E1000_ERR_PHY (-2).
1147  **/
1148 s32 e1000e_setup_copper_link(struct e1000_hw *hw)
1149 {
1150 	s32 ret_val;
1151 	bool link;
1152 
1153 	if (hw->mac.autoneg) {
1154 		/* Setup autoneg and flow control advertisement and perform
1155 		 * autonegotiation.
1156 		 */
1157 		ret_val = e1000_copper_link_autoneg(hw);
1158 		if (ret_val)
1159 			return ret_val;
1160 	} else {
1161 		/* PHY will be set to 10H, 10F, 100H or 100F
1162 		 * depending on user settings.
1163 		 */
1164 		e_dbg("Forcing Speed and Duplex\n");
1165 		ret_val = hw->phy.ops.force_speed_duplex(hw);
1166 		if (ret_val) {
1167 			e_dbg("Error Forcing Speed and Duplex\n");
1168 			return ret_val;
1169 		}
1170 	}
1171 
1172 	/* Check link status. Wait up to 100 microseconds for link to become
1173 	 * valid.
1174 	 */
1175 	ret_val = e1000e_phy_has_link_generic(hw, COPPER_LINK_UP_LIMIT, 10,
1176 					      &link);
1177 	if (ret_val)
1178 		return ret_val;
1179 
1180 	if (link) {
1181 		e_dbg("Valid link established!!!\n");
1182 		hw->mac.ops.config_collision_dist(hw);
1183 		ret_val = e1000e_config_fc_after_link_up(hw);
1184 	} else {
1185 		e_dbg("Unable to establish link!!!\n");
1186 	}
1187 
1188 	return ret_val;
1189 }
1190 
1191 /**
1192  *  e1000e_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1193  *  @hw: pointer to the HW structure
1194  *
1195  *  Calls the PHY setup function to force speed and duplex.  Clears the
1196  *  auto-crossover to force MDI manually.  Waits for link and returns
1197  *  successful if link up is successful, else -E1000_ERR_PHY (-2).
1198  **/
1199 s32 e1000e_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1200 {
1201 	struct e1000_phy_info *phy = &hw->phy;
1202 	s32 ret_val;
1203 	u16 phy_data;
1204 	bool link;
1205 
1206 	ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
1207 	if (ret_val)
1208 		return ret_val;
1209 
1210 	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1211 
1212 	ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
1213 	if (ret_val)
1214 		return ret_val;
1215 
1216 	/* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
1217 	 * forced whenever speed and duplex are forced.
1218 	 */
1219 	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1220 	if (ret_val)
1221 		return ret_val;
1222 
1223 	phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1224 	phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1225 
1226 	ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1227 	if (ret_val)
1228 		return ret_val;
1229 
1230 	e_dbg("IGP PSCR: %X\n", phy_data);
1231 
1232 	udelay(1);
1233 
1234 	if (phy->autoneg_wait_to_complete) {
1235 		e_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1236 
1237 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1238 						      100000, &link);
1239 		if (ret_val)
1240 			return ret_val;
1241 
1242 		if (!link)
1243 			e_dbg("Link taking longer than expected.\n");
1244 
1245 		/* Try once more */
1246 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1247 						      100000, &link);
1248 	}
1249 
1250 	return ret_val;
1251 }
1252 
1253 /**
1254  *  e1000e_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1255  *  @hw: pointer to the HW structure
1256  *
1257  *  Calls the PHY setup function to force speed and duplex.  Clears the
1258  *  auto-crossover to force MDI manually.  Resets the PHY to commit the
1259  *  changes.  If time expires while waiting for link up, we reset the DSP.
1260  *  After reset, TX_CLK and CRS on Tx must be set.  Return successful upon
1261  *  successful completion, else return corresponding error code.
1262  **/
1263 s32 e1000e_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1264 {
1265 	struct e1000_phy_info *phy = &hw->phy;
1266 	s32 ret_val;
1267 	u16 phy_data;
1268 	bool link;
1269 
1270 	/* Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
1271 	 * forced whenever speed and duplex are forced.
1272 	 */
1273 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1274 	if (ret_val)
1275 		return ret_val;
1276 
1277 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1278 	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1279 	if (ret_val)
1280 		return ret_val;
1281 
1282 	e_dbg("M88E1000 PSCR: %X\n", phy_data);
1283 
1284 	ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
1285 	if (ret_val)
1286 		return ret_val;
1287 
1288 	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
1289 
1290 	ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
1291 	if (ret_val)
1292 		return ret_val;
1293 
1294 	/* Reset the phy to commit changes. */
1295 	if (hw->phy.ops.commit) {
1296 		ret_val = hw->phy.ops.commit(hw);
1297 		if (ret_val)
1298 			return ret_val;
1299 	}
1300 
1301 	if (phy->autoneg_wait_to_complete) {
1302 		e_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1303 
1304 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1305 						      100000, &link);
1306 		if (ret_val)
1307 			return ret_val;
1308 
1309 		if (!link) {
1310 			if (hw->phy.type != e1000_phy_m88) {
1311 				e_dbg("Link taking longer than expected.\n");
1312 			} else {
1313 				/* We didn't get link.
1314 				 * Reset the DSP and cross our fingers.
1315 				 */
1316 				ret_val = e1e_wphy(hw, M88E1000_PHY_PAGE_SELECT,
1317 						   0x001d);
1318 				if (ret_val)
1319 					return ret_val;
1320 				ret_val = e1000e_phy_reset_dsp(hw);
1321 				if (ret_val)
1322 					return ret_val;
1323 			}
1324 		}
1325 
1326 		/* Try once more */
1327 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1328 						      100000, &link);
1329 		if (ret_val)
1330 			return ret_val;
1331 	}
1332 
1333 	if (hw->phy.type != e1000_phy_m88)
1334 		return 0;
1335 
1336 	ret_val = e1e_rphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1337 	if (ret_val)
1338 		return ret_val;
1339 
1340 	/* Resetting the phy means we need to re-force TX_CLK in the
1341 	 * Extended PHY Specific Control Register to 25MHz clock from
1342 	 * the reset value of 2.5MHz.
1343 	 */
1344 	phy_data |= M88E1000_EPSCR_TX_CLK_25;
1345 	ret_val = e1e_wphy(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1346 	if (ret_val)
1347 		return ret_val;
1348 
1349 	/* In addition, we must re-enable CRS on Tx for both half and full
1350 	 * duplex.
1351 	 */
1352 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1353 	if (ret_val)
1354 		return ret_val;
1355 
1356 	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1357 	ret_val = e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1358 
1359 	return ret_val;
1360 }
1361 
1362 /**
1363  *  e1000_phy_force_speed_duplex_ife - Force PHY speed & duplex
1364  *  @hw: pointer to the HW structure
1365  *
1366  *  Forces the speed and duplex settings of the PHY.
1367  *  This is a function pointer entry point only called by
1368  *  PHY setup routines.
1369  **/
1370 s32 e1000_phy_force_speed_duplex_ife(struct e1000_hw *hw)
1371 {
1372 	struct e1000_phy_info *phy = &hw->phy;
1373 	s32 ret_val;
1374 	u16 data;
1375 	bool link;
1376 
1377 	ret_val = e1e_rphy(hw, MII_BMCR, &data);
1378 	if (ret_val)
1379 		return ret_val;
1380 
1381 	e1000e_phy_force_speed_duplex_setup(hw, &data);
1382 
1383 	ret_val = e1e_wphy(hw, MII_BMCR, data);
1384 	if (ret_val)
1385 		return ret_val;
1386 
1387 	/* Disable MDI-X support for 10/100 */
1388 	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
1389 	if (ret_val)
1390 		return ret_val;
1391 
1392 	data &= ~IFE_PMC_AUTO_MDIX;
1393 	data &= ~IFE_PMC_FORCE_MDIX;
1394 
1395 	ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, data);
1396 	if (ret_val)
1397 		return ret_val;
1398 
1399 	e_dbg("IFE PMC: %X\n", data);
1400 
1401 	udelay(1);
1402 
1403 	if (phy->autoneg_wait_to_complete) {
1404 		e_dbg("Waiting for forced speed/duplex link on IFE phy.\n");
1405 
1406 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1407 						      100000, &link);
1408 		if (ret_val)
1409 			return ret_val;
1410 
1411 		if (!link)
1412 			e_dbg("Link taking longer than expected.\n");
1413 
1414 		/* Try once more */
1415 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
1416 						      100000, &link);
1417 		if (ret_val)
1418 			return ret_val;
1419 	}
1420 
1421 	return 0;
1422 }
1423 
1424 /**
1425  *  e1000e_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1426  *  @hw: pointer to the HW structure
1427  *  @phy_ctrl: pointer to current value of MII_BMCR
1428  *
1429  *  Forces speed and duplex on the PHY by doing the following: disable flow
1430  *  control, force speed/duplex on the MAC, disable auto speed detection,
1431  *  disable auto-negotiation, configure duplex, configure speed, configure
1432  *  the collision distance, write configuration to CTRL register.  The
1433  *  caller must write to the MII_BMCR register for these settings to
1434  *  take affect.
1435  **/
1436 void e1000e_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl)
1437 {
1438 	struct e1000_mac_info *mac = &hw->mac;
1439 	u32 ctrl;
1440 
1441 	/* Turn off flow control when forcing speed/duplex */
1442 	hw->fc.current_mode = e1000_fc_none;
1443 
1444 	/* Force speed/duplex on the mac */
1445 	ctrl = er32(CTRL);
1446 	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1447 	ctrl &= ~E1000_CTRL_SPD_SEL;
1448 
1449 	/* Disable Auto Speed Detection */
1450 	ctrl &= ~E1000_CTRL_ASDE;
1451 
1452 	/* Disable autoneg on the phy */
1453 	*phy_ctrl &= ~BMCR_ANENABLE;
1454 
1455 	/* Forcing Full or Half Duplex? */
1456 	if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1457 		ctrl &= ~E1000_CTRL_FD;
1458 		*phy_ctrl &= ~BMCR_FULLDPLX;
1459 		e_dbg("Half Duplex\n");
1460 	} else {
1461 		ctrl |= E1000_CTRL_FD;
1462 		*phy_ctrl |= BMCR_FULLDPLX;
1463 		e_dbg("Full Duplex\n");
1464 	}
1465 
1466 	/* Forcing 10mb or 100mb? */
1467 	if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1468 		ctrl |= E1000_CTRL_SPD_100;
1469 		*phy_ctrl |= BMCR_SPEED100;
1470 		*phy_ctrl &= ~BMCR_SPEED1000;
1471 		e_dbg("Forcing 100mb\n");
1472 	} else {
1473 		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1474 		*phy_ctrl &= ~(BMCR_SPEED1000 | BMCR_SPEED100);
1475 		e_dbg("Forcing 10mb\n");
1476 	}
1477 
1478 	hw->mac.ops.config_collision_dist(hw);
1479 
1480 	ew32(CTRL, ctrl);
1481 }
1482 
1483 /**
1484  *  e1000e_set_d3_lplu_state - Sets low power link up state for D3
1485  *  @hw: pointer to the HW structure
1486  *  @active: boolean used to enable/disable lplu
1487  *
1488  *  Success returns 0, Failure returns 1
1489  *
1490  *  The low power link up (lplu) state is set to the power management level D3
1491  *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1492  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1493  *  is used during Dx states where the power conservation is most important.
1494  *  During driver activity, SmartSpeed should be enabled so performance is
1495  *  maintained.
1496  **/
1497 s32 e1000e_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1498 {
1499 	struct e1000_phy_info *phy = &hw->phy;
1500 	s32 ret_val;
1501 	u16 data;
1502 
1503 	ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1504 	if (ret_val)
1505 		return ret_val;
1506 
1507 	if (!active) {
1508 		data &= ~IGP02E1000_PM_D3_LPLU;
1509 		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1510 		if (ret_val)
1511 			return ret_val;
1512 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1513 		 * during Dx states where the power conservation is most
1514 		 * important.  During driver activity we should enable
1515 		 * SmartSpeed, so performance is maintained.
1516 		 */
1517 		if (phy->smart_speed == e1000_smart_speed_on) {
1518 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1519 					   &data);
1520 			if (ret_val)
1521 				return ret_val;
1522 
1523 			data |= IGP01E1000_PSCFR_SMART_SPEED;
1524 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1525 					   data);
1526 			if (ret_val)
1527 				return ret_val;
1528 		} else if (phy->smart_speed == e1000_smart_speed_off) {
1529 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1530 					   &data);
1531 			if (ret_val)
1532 				return ret_val;
1533 
1534 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1535 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1536 					   data);
1537 			if (ret_val)
1538 				return ret_val;
1539 		}
1540 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1541 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1542 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1543 		data |= IGP02E1000_PM_D3_LPLU;
1544 		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
1545 		if (ret_val)
1546 			return ret_val;
1547 
1548 		/* When LPLU is enabled, we should disable SmartSpeed */
1549 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1550 		if (ret_val)
1551 			return ret_val;
1552 
1553 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1554 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1555 	}
1556 
1557 	return ret_val;
1558 }
1559 
1560 /**
1561  *  e1000e_check_downshift - Checks whether a downshift in speed occurred
1562  *  @hw: pointer to the HW structure
1563  *
1564  *  Success returns 0, Failure returns 1
1565  *
1566  *  A downshift is detected by querying the PHY link health.
1567  **/
1568 s32 e1000e_check_downshift(struct e1000_hw *hw)
1569 {
1570 	struct e1000_phy_info *phy = &hw->phy;
1571 	s32 ret_val;
1572 	u16 phy_data, offset, mask;
1573 
1574 	switch (phy->type) {
1575 	case e1000_phy_m88:
1576 	case e1000_phy_gg82563:
1577 	case e1000_phy_bm:
1578 	case e1000_phy_82578:
1579 		offset = M88E1000_PHY_SPEC_STATUS;
1580 		mask = M88E1000_PSSR_DOWNSHIFT;
1581 		break;
1582 	case e1000_phy_igp_2:
1583 	case e1000_phy_igp_3:
1584 		offset = IGP01E1000_PHY_LINK_HEALTH;
1585 		mask = IGP01E1000_PLHR_SS_DOWNGRADE;
1586 		break;
1587 	default:
1588 		/* speed downshift not supported */
1589 		phy->speed_downgraded = false;
1590 		return 0;
1591 	}
1592 
1593 	ret_val = e1e_rphy(hw, offset, &phy_data);
1594 
1595 	if (!ret_val)
1596 		phy->speed_downgraded = !!(phy_data & mask);
1597 
1598 	return ret_val;
1599 }
1600 
1601 /**
1602  *  e1000_check_polarity_m88 - Checks the polarity.
1603  *  @hw: pointer to the HW structure
1604  *
1605  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1606  *
1607  *  Polarity is determined based on the PHY specific status register.
1608  **/
1609 s32 e1000_check_polarity_m88(struct e1000_hw *hw)
1610 {
1611 	struct e1000_phy_info *phy = &hw->phy;
1612 	s32 ret_val;
1613 	u16 data;
1614 
1615 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &data);
1616 
1617 	if (!ret_val)
1618 		phy->cable_polarity = ((data & M88E1000_PSSR_REV_POLARITY)
1619 				       ? e1000_rev_polarity_reversed
1620 				       : e1000_rev_polarity_normal);
1621 
1622 	return ret_val;
1623 }
1624 
1625 /**
1626  *  e1000_check_polarity_igp - Checks the polarity.
1627  *  @hw: pointer to the HW structure
1628  *
1629  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1630  *
1631  *  Polarity is determined based on the PHY port status register, and the
1632  *  current speed (since there is no polarity at 100Mbps).
1633  **/
1634 s32 e1000_check_polarity_igp(struct e1000_hw *hw)
1635 {
1636 	struct e1000_phy_info *phy = &hw->phy;
1637 	s32 ret_val;
1638 	u16 data, offset, mask;
1639 
1640 	/* Polarity is determined based on the speed of
1641 	 * our connection.
1642 	 */
1643 	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1644 	if (ret_val)
1645 		return ret_val;
1646 
1647 	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1648 	    IGP01E1000_PSSR_SPEED_1000MBPS) {
1649 		offset = IGP01E1000_PHY_PCS_INIT_REG;
1650 		mask = IGP01E1000_PHY_POLARITY_MASK;
1651 	} else {
1652 		/* This really only applies to 10Mbps since
1653 		 * there is no polarity for 100Mbps (always 0).
1654 		 */
1655 		offset = IGP01E1000_PHY_PORT_STATUS;
1656 		mask = IGP01E1000_PSSR_POLARITY_REVERSED;
1657 	}
1658 
1659 	ret_val = e1e_rphy(hw, offset, &data);
1660 
1661 	if (!ret_val)
1662 		phy->cable_polarity = ((data & mask)
1663 				       ? e1000_rev_polarity_reversed
1664 				       : e1000_rev_polarity_normal);
1665 
1666 	return ret_val;
1667 }
1668 
1669 /**
1670  *  e1000_check_polarity_ife - Check cable polarity for IFE PHY
1671  *  @hw: pointer to the HW structure
1672  *
1673  *  Polarity is determined on the polarity reversal feature being enabled.
1674  **/
1675 s32 e1000_check_polarity_ife(struct e1000_hw *hw)
1676 {
1677 	struct e1000_phy_info *phy = &hw->phy;
1678 	s32 ret_val;
1679 	u16 phy_data, offset, mask;
1680 
1681 	/* Polarity is determined based on the reversal feature being enabled.
1682 	 */
1683 	if (phy->polarity_correction) {
1684 		offset = IFE_PHY_EXTENDED_STATUS_CONTROL;
1685 		mask = IFE_PESC_POLARITY_REVERSED;
1686 	} else {
1687 		offset = IFE_PHY_SPECIAL_CONTROL;
1688 		mask = IFE_PSC_FORCE_POLARITY;
1689 	}
1690 
1691 	ret_val = e1e_rphy(hw, offset, &phy_data);
1692 
1693 	if (!ret_val)
1694 		phy->cable_polarity = ((phy_data & mask)
1695 				       ? e1000_rev_polarity_reversed
1696 				       : e1000_rev_polarity_normal);
1697 
1698 	return ret_val;
1699 }
1700 
1701 /**
1702  *  e1000_wait_autoneg - Wait for auto-neg completion
1703  *  @hw: pointer to the HW structure
1704  *
1705  *  Waits for auto-negotiation to complete or for the auto-negotiation time
1706  *  limit to expire, which ever happens first.
1707  **/
1708 static s32 e1000_wait_autoneg(struct e1000_hw *hw)
1709 {
1710 	s32 ret_val = 0;
1711 	u16 i, phy_status;
1712 
1713 	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1714 	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1715 		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1716 		if (ret_val)
1717 			break;
1718 		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1719 		if (ret_val)
1720 			break;
1721 		if (phy_status & BMSR_ANEGCOMPLETE)
1722 			break;
1723 		msleep(100);
1724 	}
1725 
1726 	/* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1727 	 * has completed.
1728 	 */
1729 	return ret_val;
1730 }
1731 
1732 /**
1733  *  e1000e_phy_has_link_generic - Polls PHY for link
1734  *  @hw: pointer to the HW structure
1735  *  @iterations: number of times to poll for link
1736  *  @usec_interval: delay between polling attempts
1737  *  @success: pointer to whether polling was successful or not
1738  *
1739  *  Polls the PHY status register for link, 'iterations' number of times.
1740  **/
1741 s32 e1000e_phy_has_link_generic(struct e1000_hw *hw, u32 iterations,
1742 				u32 usec_interval, bool *success)
1743 {
1744 	s32 ret_val = 0;
1745 	u16 i, phy_status;
1746 
1747 	for (i = 0; i < iterations; i++) {
1748 		/* Some PHYs require the MII_BMSR register to be read
1749 		 * twice due to the link bit being sticky.  No harm doing
1750 		 * it across the board.
1751 		 */
1752 		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1753 		if (ret_val) {
1754 			/* If the first read fails, another entity may have
1755 			 * ownership of the resources, wait and try again to
1756 			 * see if they have relinquished the resources yet.
1757 			 */
1758 			if (usec_interval >= 1000)
1759 				msleep(usec_interval / 1000);
1760 			else
1761 				udelay(usec_interval);
1762 		}
1763 		ret_val = e1e_rphy(hw, MII_BMSR, &phy_status);
1764 		if (ret_val)
1765 			break;
1766 		if (phy_status & BMSR_LSTATUS)
1767 			break;
1768 		if (usec_interval >= 1000)
1769 			msleep(usec_interval / 1000);
1770 		else
1771 			udelay(usec_interval);
1772 	}
1773 
1774 	*success = (i < iterations);
1775 
1776 	return ret_val;
1777 }
1778 
1779 /**
1780  *  e1000e_get_cable_length_m88 - Determine cable length for m88 PHY
1781  *  @hw: pointer to the HW structure
1782  *
1783  *  Reads the PHY specific status register to retrieve the cable length
1784  *  information.  The cable length is determined by averaging the minimum and
1785  *  maximum values to get the "average" cable length.  The m88 PHY has four
1786  *  possible cable length values, which are:
1787  *	Register Value		Cable Length
1788  *	0			< 50 meters
1789  *	1			50 - 80 meters
1790  *	2			80 - 110 meters
1791  *	3			110 - 140 meters
1792  *	4			> 140 meters
1793  **/
1794 s32 e1000e_get_cable_length_m88(struct e1000_hw *hw)
1795 {
1796 	struct e1000_phy_info *phy = &hw->phy;
1797 	s32 ret_val;
1798 	u16 phy_data, index;
1799 
1800 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1801 	if (ret_val)
1802 		return ret_val;
1803 
1804 	index = ((phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1805 		 M88E1000_PSSR_CABLE_LENGTH_SHIFT);
1806 
1807 	if (index >= M88E1000_CABLE_LENGTH_TABLE_SIZE - 1)
1808 		return -E1000_ERR_PHY;
1809 
1810 	phy->min_cable_length = e1000_m88_cable_length_table[index];
1811 	phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1812 
1813 	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1814 
1815 	return 0;
1816 }
1817 
1818 /**
1819  *  e1000e_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1820  *  @hw: pointer to the HW structure
1821  *
1822  *  The automatic gain control (agc) normalizes the amplitude of the
1823  *  received signal, adjusting for the attenuation produced by the
1824  *  cable.  By reading the AGC registers, which represent the
1825  *  combination of coarse and fine gain value, the value can be put
1826  *  into a lookup table to obtain the approximate cable length
1827  *  for each channel.
1828  **/
1829 s32 e1000e_get_cable_length_igp_2(struct e1000_hw *hw)
1830 {
1831 	struct e1000_phy_info *phy = &hw->phy;
1832 	s32 ret_val;
1833 	u16 phy_data, i, agc_value = 0;
1834 	u16 cur_agc_index, max_agc_index = 0;
1835 	u16 min_agc_index = IGP02E1000_CABLE_LENGTH_TABLE_SIZE - 1;
1836 	static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
1837 		IGP02E1000_PHY_AGC_A,
1838 		IGP02E1000_PHY_AGC_B,
1839 		IGP02E1000_PHY_AGC_C,
1840 		IGP02E1000_PHY_AGC_D
1841 	};
1842 
1843 	/* Read the AGC registers for all channels */
1844 	for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1845 		ret_val = e1e_rphy(hw, agc_reg_array[i], &phy_data);
1846 		if (ret_val)
1847 			return ret_val;
1848 
1849 		/* Getting bits 15:9, which represent the combination of
1850 		 * coarse and fine gain values.  The result is a number
1851 		 * that can be put into the lookup table to obtain the
1852 		 * approximate cable length.
1853 		 */
1854 		cur_agc_index = ((phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1855 				 IGP02E1000_AGC_LENGTH_MASK);
1856 
1857 		/* Array index bound check. */
1858 		if ((cur_agc_index >= IGP02E1000_CABLE_LENGTH_TABLE_SIZE) ||
1859 		    (cur_agc_index == 0))
1860 			return -E1000_ERR_PHY;
1861 
1862 		/* Remove min & max AGC values from calculation. */
1863 		if (e1000_igp_2_cable_length_table[min_agc_index] >
1864 		    e1000_igp_2_cable_length_table[cur_agc_index])
1865 			min_agc_index = cur_agc_index;
1866 		if (e1000_igp_2_cable_length_table[max_agc_index] <
1867 		    e1000_igp_2_cable_length_table[cur_agc_index])
1868 			max_agc_index = cur_agc_index;
1869 
1870 		agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1871 	}
1872 
1873 	agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1874 		      e1000_igp_2_cable_length_table[max_agc_index]);
1875 	agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1876 
1877 	/* Calculate cable length with the error range of +/- 10 meters. */
1878 	phy->min_cable_length = (((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1879 				 (agc_value - IGP02E1000_AGC_RANGE) : 0);
1880 	phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1881 
1882 	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1883 
1884 	return 0;
1885 }
1886 
1887 /**
1888  *  e1000e_get_phy_info_m88 - Retrieve PHY information
1889  *  @hw: pointer to the HW structure
1890  *
1891  *  Valid for only copper links.  Read the PHY status register (sticky read)
1892  *  to verify that link is up.  Read the PHY special control register to
1893  *  determine the polarity and 10base-T extended distance.  Read the PHY
1894  *  special status register to determine MDI/MDIx and current speed.  If
1895  *  speed is 1000, then determine cable length, local and remote receiver.
1896  **/
1897 s32 e1000e_get_phy_info_m88(struct e1000_hw *hw)
1898 {
1899 	struct e1000_phy_info *phy = &hw->phy;
1900 	s32 ret_val;
1901 	u16 phy_data;
1902 	bool link;
1903 
1904 	if (phy->media_type != e1000_media_type_copper) {
1905 		e_dbg("Phy info is only valid for copper media\n");
1906 		return -E1000_ERR_CONFIG;
1907 	}
1908 
1909 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1910 	if (ret_val)
1911 		return ret_val;
1912 
1913 	if (!link) {
1914 		e_dbg("Phy info is only valid if link is up\n");
1915 		return -E1000_ERR_CONFIG;
1916 	}
1917 
1918 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1919 	if (ret_val)
1920 		return ret_val;
1921 
1922 	phy->polarity_correction = !!(phy_data &
1923 				      M88E1000_PSCR_POLARITY_REVERSAL);
1924 
1925 	ret_val = e1000_check_polarity_m88(hw);
1926 	if (ret_val)
1927 		return ret_val;
1928 
1929 	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1930 	if (ret_val)
1931 		return ret_val;
1932 
1933 	phy->is_mdix = !!(phy_data & M88E1000_PSSR_MDIX);
1934 
1935 	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
1936 		ret_val = hw->phy.ops.get_cable_length(hw);
1937 		if (ret_val)
1938 			return ret_val;
1939 
1940 		ret_val = e1e_rphy(hw, MII_STAT1000, &phy_data);
1941 		if (ret_val)
1942 			return ret_val;
1943 
1944 		phy->local_rx = (phy_data & LPA_1000LOCALRXOK)
1945 		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
1946 
1947 		phy->remote_rx = (phy_data & LPA_1000REMRXOK)
1948 		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
1949 	} else {
1950 		/* Set values to "undefined" */
1951 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1952 		phy->local_rx = e1000_1000t_rx_status_undefined;
1953 		phy->remote_rx = e1000_1000t_rx_status_undefined;
1954 	}
1955 
1956 	return ret_val;
1957 }
1958 
1959 /**
1960  *  e1000e_get_phy_info_igp - Retrieve igp PHY information
1961  *  @hw: pointer to the HW structure
1962  *
1963  *  Read PHY status to determine if link is up.  If link is up, then
1964  *  set/determine 10base-T extended distance and polarity correction.  Read
1965  *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
1966  *  determine on the cable length, local and remote receiver.
1967  **/
1968 s32 e1000e_get_phy_info_igp(struct e1000_hw *hw)
1969 {
1970 	struct e1000_phy_info *phy = &hw->phy;
1971 	s32 ret_val;
1972 	u16 data;
1973 	bool link;
1974 
1975 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1976 	if (ret_val)
1977 		return ret_val;
1978 
1979 	if (!link) {
1980 		e_dbg("Phy info is only valid if link is up\n");
1981 		return -E1000_ERR_CONFIG;
1982 	}
1983 
1984 	phy->polarity_correction = true;
1985 
1986 	ret_val = e1000_check_polarity_igp(hw);
1987 	if (ret_val)
1988 		return ret_val;
1989 
1990 	ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1991 	if (ret_val)
1992 		return ret_val;
1993 
1994 	phy->is_mdix = !!(data & IGP01E1000_PSSR_MDIX);
1995 
1996 	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1997 	    IGP01E1000_PSSR_SPEED_1000MBPS) {
1998 		ret_val = phy->ops.get_cable_length(hw);
1999 		if (ret_val)
2000 			return ret_val;
2001 
2002 		ret_val = e1e_rphy(hw, MII_STAT1000, &data);
2003 		if (ret_val)
2004 			return ret_val;
2005 
2006 		phy->local_rx = (data & LPA_1000LOCALRXOK)
2007 		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
2008 
2009 		phy->remote_rx = (data & LPA_1000REMRXOK)
2010 		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
2011 	} else {
2012 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2013 		phy->local_rx = e1000_1000t_rx_status_undefined;
2014 		phy->remote_rx = e1000_1000t_rx_status_undefined;
2015 	}
2016 
2017 	return ret_val;
2018 }
2019 
2020 /**
2021  *  e1000_get_phy_info_ife - Retrieves various IFE PHY states
2022  *  @hw: pointer to the HW structure
2023  *
2024  *  Populates "phy" structure with various feature states.
2025  **/
2026 s32 e1000_get_phy_info_ife(struct e1000_hw *hw)
2027 {
2028 	struct e1000_phy_info *phy = &hw->phy;
2029 	s32 ret_val;
2030 	u16 data;
2031 	bool link;
2032 
2033 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
2034 	if (ret_val)
2035 		return ret_val;
2036 
2037 	if (!link) {
2038 		e_dbg("Phy info is only valid if link is up\n");
2039 		return -E1000_ERR_CONFIG;
2040 	}
2041 
2042 	ret_val = e1e_rphy(hw, IFE_PHY_SPECIAL_CONTROL, &data);
2043 	if (ret_val)
2044 		return ret_val;
2045 	phy->polarity_correction = !(data & IFE_PSC_AUTO_POLARITY_DISABLE);
2046 
2047 	if (phy->polarity_correction) {
2048 		ret_val = e1000_check_polarity_ife(hw);
2049 		if (ret_val)
2050 			return ret_val;
2051 	} else {
2052 		/* Polarity is forced */
2053 		phy->cable_polarity = ((data & IFE_PSC_FORCE_POLARITY)
2054 				       ? e1000_rev_polarity_reversed
2055 				       : e1000_rev_polarity_normal);
2056 	}
2057 
2058 	ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &data);
2059 	if (ret_val)
2060 		return ret_val;
2061 
2062 	phy->is_mdix = !!(data & IFE_PMC_MDIX_STATUS);
2063 
2064 	/* The following parameters are undefined for 10/100 operation. */
2065 	phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2066 	phy->local_rx = e1000_1000t_rx_status_undefined;
2067 	phy->remote_rx = e1000_1000t_rx_status_undefined;
2068 
2069 	return 0;
2070 }
2071 
2072 /**
2073  *  e1000e_phy_sw_reset - PHY software reset
2074  *  @hw: pointer to the HW structure
2075  *
2076  *  Does a software reset of the PHY by reading the PHY control register and
2077  *  setting/write the control register reset bit to the PHY.
2078  **/
2079 s32 e1000e_phy_sw_reset(struct e1000_hw *hw)
2080 {
2081 	s32 ret_val;
2082 	u16 phy_ctrl;
2083 
2084 	ret_val = e1e_rphy(hw, MII_BMCR, &phy_ctrl);
2085 	if (ret_val)
2086 		return ret_val;
2087 
2088 	phy_ctrl |= BMCR_RESET;
2089 	ret_val = e1e_wphy(hw, MII_BMCR, phy_ctrl);
2090 	if (ret_val)
2091 		return ret_val;
2092 
2093 	udelay(1);
2094 
2095 	return ret_val;
2096 }
2097 
2098 /**
2099  *  e1000e_phy_hw_reset_generic - PHY hardware reset
2100  *  @hw: pointer to the HW structure
2101  *
2102  *  Verify the reset block is not blocking us from resetting.  Acquire
2103  *  semaphore (if necessary) and read/set/write the device control reset
2104  *  bit in the PHY.  Wait the appropriate delay time for the device to
2105  *  reset and release the semaphore (if necessary).
2106  **/
2107 s32 e1000e_phy_hw_reset_generic(struct e1000_hw *hw)
2108 {
2109 	struct e1000_phy_info *phy = &hw->phy;
2110 	s32 ret_val;
2111 	u32 ctrl;
2112 
2113 	if (phy->ops.check_reset_block) {
2114 		ret_val = phy->ops.check_reset_block(hw);
2115 		if (ret_val)
2116 			return 0;
2117 	}
2118 
2119 	ret_val = phy->ops.acquire(hw);
2120 	if (ret_val)
2121 		return ret_val;
2122 
2123 	ctrl = er32(CTRL);
2124 	ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
2125 	e1e_flush();
2126 
2127 	udelay(phy->reset_delay_us);
2128 
2129 	ew32(CTRL, ctrl);
2130 	e1e_flush();
2131 
2132 	usleep_range(150, 300);
2133 
2134 	phy->ops.release(hw);
2135 
2136 	return phy->ops.get_cfg_done(hw);
2137 }
2138 
2139 /**
2140  *  e1000e_get_cfg_done_generic - Generic configuration done
2141  *  @hw: pointer to the HW structure
2142  *
2143  *  Generic function to wait 10 milli-seconds for configuration to complete
2144  *  and return success.
2145  **/
2146 s32 e1000e_get_cfg_done_generic(struct e1000_hw __always_unused *hw)
2147 {
2148 	mdelay(10);
2149 
2150 	return 0;
2151 }
2152 
2153 /**
2154  *  e1000e_phy_init_script_igp3 - Inits the IGP3 PHY
2155  *  @hw: pointer to the HW structure
2156  *
2157  *  Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2158  **/
2159 s32 e1000e_phy_init_script_igp3(struct e1000_hw *hw)
2160 {
2161 	e_dbg("Running IGP 3 PHY init script\n");
2162 
2163 	/* PHY init IGP 3 */
2164 	/* Enable rise/fall, 10-mode work in class-A */
2165 	e1e_wphy(hw, 0x2F5B, 0x9018);
2166 	/* Remove all caps from Replica path filter */
2167 	e1e_wphy(hw, 0x2F52, 0x0000);
2168 	/* Bias trimming for ADC, AFE and Driver (Default) */
2169 	e1e_wphy(hw, 0x2FB1, 0x8B24);
2170 	/* Increase Hybrid poly bias */
2171 	e1e_wphy(hw, 0x2FB2, 0xF8F0);
2172 	/* Add 4% to Tx amplitude in Gig mode */
2173 	e1e_wphy(hw, 0x2010, 0x10B0);
2174 	/* Disable trimming (TTT) */
2175 	e1e_wphy(hw, 0x2011, 0x0000);
2176 	/* Poly DC correction to 94.6% + 2% for all channels */
2177 	e1e_wphy(hw, 0x20DD, 0x249A);
2178 	/* ABS DC correction to 95.9% */
2179 	e1e_wphy(hw, 0x20DE, 0x00D3);
2180 	/* BG temp curve trim */
2181 	e1e_wphy(hw, 0x28B4, 0x04CE);
2182 	/* Increasing ADC OPAMP stage 1 currents to max */
2183 	e1e_wphy(hw, 0x2F70, 0x29E4);
2184 	/* Force 1000 ( required for enabling PHY regs configuration) */
2185 	e1e_wphy(hw, 0x0000, 0x0140);
2186 	/* Set upd_freq to 6 */
2187 	e1e_wphy(hw, 0x1F30, 0x1606);
2188 	/* Disable NPDFE */
2189 	e1e_wphy(hw, 0x1F31, 0xB814);
2190 	/* Disable adaptive fixed FFE (Default) */
2191 	e1e_wphy(hw, 0x1F35, 0x002A);
2192 	/* Enable FFE hysteresis */
2193 	e1e_wphy(hw, 0x1F3E, 0x0067);
2194 	/* Fixed FFE for short cable lengths */
2195 	e1e_wphy(hw, 0x1F54, 0x0065);
2196 	/* Fixed FFE for medium cable lengths */
2197 	e1e_wphy(hw, 0x1F55, 0x002A);
2198 	/* Fixed FFE for long cable lengths */
2199 	e1e_wphy(hw, 0x1F56, 0x002A);
2200 	/* Enable Adaptive Clip Threshold */
2201 	e1e_wphy(hw, 0x1F72, 0x3FB0);
2202 	/* AHT reset limit to 1 */
2203 	e1e_wphy(hw, 0x1F76, 0xC0FF);
2204 	/* Set AHT master delay to 127 msec */
2205 	e1e_wphy(hw, 0x1F77, 0x1DEC);
2206 	/* Set scan bits for AHT */
2207 	e1e_wphy(hw, 0x1F78, 0xF9EF);
2208 	/* Set AHT Preset bits */
2209 	e1e_wphy(hw, 0x1F79, 0x0210);
2210 	/* Change integ_factor of channel A to 3 */
2211 	e1e_wphy(hw, 0x1895, 0x0003);
2212 	/* Change prop_factor of channels BCD to 8 */
2213 	e1e_wphy(hw, 0x1796, 0x0008);
2214 	/* Change cg_icount + enable integbp for channels BCD */
2215 	e1e_wphy(hw, 0x1798, 0xD008);
2216 	/* Change cg_icount + enable integbp + change prop_factor_master
2217 	 * to 8 for channel A
2218 	 */
2219 	e1e_wphy(hw, 0x1898, 0xD918);
2220 	/* Disable AHT in Slave mode on channel A */
2221 	e1e_wphy(hw, 0x187A, 0x0800);
2222 	/* Enable LPLU and disable AN to 1000 in non-D0a states,
2223 	 * Enable SPD+B2B
2224 	 */
2225 	e1e_wphy(hw, 0x0019, 0x008D);
2226 	/* Enable restart AN on an1000_dis change */
2227 	e1e_wphy(hw, 0x001B, 0x2080);
2228 	/* Enable wh_fifo read clock in 10/100 modes */
2229 	e1e_wphy(hw, 0x0014, 0x0045);
2230 	/* Restart AN, Speed selection is 1000 */
2231 	e1e_wphy(hw, 0x0000, 0x1340);
2232 
2233 	return 0;
2234 }
2235 
2236 /**
2237  *  e1000e_get_phy_type_from_id - Get PHY type from id
2238  *  @phy_id: phy_id read from the phy
2239  *
2240  *  Returns the phy type from the id.
2241  **/
2242 enum e1000_phy_type e1000e_get_phy_type_from_id(u32 phy_id)
2243 {
2244 	enum e1000_phy_type phy_type = e1000_phy_unknown;
2245 
2246 	switch (phy_id) {
2247 	case M88E1000_I_PHY_ID:
2248 	case M88E1000_E_PHY_ID:
2249 	case M88E1111_I_PHY_ID:
2250 	case M88E1011_I_PHY_ID:
2251 		phy_type = e1000_phy_m88;
2252 		break;
2253 	case IGP01E1000_I_PHY_ID:	/* IGP 1 & 2 share this */
2254 		phy_type = e1000_phy_igp_2;
2255 		break;
2256 	case GG82563_E_PHY_ID:
2257 		phy_type = e1000_phy_gg82563;
2258 		break;
2259 	case IGP03E1000_E_PHY_ID:
2260 		phy_type = e1000_phy_igp_3;
2261 		break;
2262 	case IFE_E_PHY_ID:
2263 	case IFE_PLUS_E_PHY_ID:
2264 	case IFE_C_E_PHY_ID:
2265 		phy_type = e1000_phy_ife;
2266 		break;
2267 	case BME1000_E_PHY_ID:
2268 	case BME1000_E_PHY_ID_R2:
2269 		phy_type = e1000_phy_bm;
2270 		break;
2271 	case I82578_E_PHY_ID:
2272 		phy_type = e1000_phy_82578;
2273 		break;
2274 	case I82577_E_PHY_ID:
2275 		phy_type = e1000_phy_82577;
2276 		break;
2277 	case I82579_E_PHY_ID:
2278 		phy_type = e1000_phy_82579;
2279 		break;
2280 	case I217_E_PHY_ID:
2281 		phy_type = e1000_phy_i217;
2282 		break;
2283 	default:
2284 		phy_type = e1000_phy_unknown;
2285 		break;
2286 	}
2287 	return phy_type;
2288 }
2289 
2290 /**
2291  *  e1000e_determine_phy_address - Determines PHY address.
2292  *  @hw: pointer to the HW structure
2293  *
2294  *  This uses a trial and error method to loop through possible PHY
2295  *  addresses. It tests each by reading the PHY ID registers and
2296  *  checking for a match.
2297  **/
2298 s32 e1000e_determine_phy_address(struct e1000_hw *hw)
2299 {
2300 	u32 phy_addr = 0;
2301 	u32 i;
2302 	enum e1000_phy_type phy_type = e1000_phy_unknown;
2303 
2304 	hw->phy.id = phy_type;
2305 
2306 	for (phy_addr = 0; phy_addr < E1000_MAX_PHY_ADDR; phy_addr++) {
2307 		hw->phy.addr = phy_addr;
2308 		i = 0;
2309 
2310 		do {
2311 			e1000e_get_phy_id(hw);
2312 			phy_type = e1000e_get_phy_type_from_id(hw->phy.id);
2313 
2314 			/* If phy_type is valid, break - we found our
2315 			 * PHY address
2316 			 */
2317 			if (phy_type != e1000_phy_unknown)
2318 				return 0;
2319 
2320 			usleep_range(1000, 2000);
2321 			i++;
2322 		} while (i < 10);
2323 	}
2324 
2325 	return -E1000_ERR_PHY_TYPE;
2326 }
2327 
2328 /**
2329  *  e1000_get_phy_addr_for_bm_page - Retrieve PHY page address
2330  *  @page: page to access
2331  *
2332  *  Returns the phy address for the page requested.
2333  **/
2334 static u32 e1000_get_phy_addr_for_bm_page(u32 page, u32 reg)
2335 {
2336 	u32 phy_addr = 2;
2337 
2338 	if ((page >= 768) || (page == 0 && reg == 25) || (reg == 31))
2339 		phy_addr = 1;
2340 
2341 	return phy_addr;
2342 }
2343 
2344 /**
2345  *  e1000e_write_phy_reg_bm - Write BM PHY register
2346  *  @hw: pointer to the HW structure
2347  *  @offset: register offset to write to
2348  *  @data: data to write at register offset
2349  *
2350  *  Acquires semaphore, if necessary, then writes the data to PHY register
2351  *  at the offset.  Release any acquired semaphores before exiting.
2352  **/
2353 s32 e1000e_write_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 data)
2354 {
2355 	s32 ret_val;
2356 	u32 page = offset >> IGP_PAGE_SHIFT;
2357 
2358 	ret_val = hw->phy.ops.acquire(hw);
2359 	if (ret_val)
2360 		return ret_val;
2361 
2362 	/* Page 800 works differently than the rest so it has its own func */
2363 	if (page == BM_WUC_PAGE) {
2364 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2365 							 false, false);
2366 		goto release;
2367 	}
2368 
2369 	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2370 
2371 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2372 		u32 page_shift, page_select;
2373 
2374 		/* Page select is register 31 for phy address 1 and 22 for
2375 		 * phy address 2 and 3. Page select is shifted only for
2376 		 * phy address 1.
2377 		 */
2378 		if (hw->phy.addr == 1) {
2379 			page_shift = IGP_PAGE_SHIFT;
2380 			page_select = IGP01E1000_PHY_PAGE_SELECT;
2381 		} else {
2382 			page_shift = 0;
2383 			page_select = BM_PHY_PAGE_SELECT;
2384 		}
2385 
2386 		/* Page is shifted left, PHY expects (page x 32) */
2387 		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2388 						    (page << page_shift));
2389 		if (ret_val)
2390 			goto release;
2391 	}
2392 
2393 	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2394 					    data);
2395 
2396 release:
2397 	hw->phy.ops.release(hw);
2398 	return ret_val;
2399 }
2400 
2401 /**
2402  *  e1000e_read_phy_reg_bm - Read BM PHY register
2403  *  @hw: pointer to the HW structure
2404  *  @offset: register offset to be read
2405  *  @data: pointer to the read data
2406  *
2407  *  Acquires semaphore, if necessary, then reads the PHY register at offset
2408  *  and storing the retrieved information in data.  Release any acquired
2409  *  semaphores before exiting.
2410  **/
2411 s32 e1000e_read_phy_reg_bm(struct e1000_hw *hw, u32 offset, u16 *data)
2412 {
2413 	s32 ret_val;
2414 	u32 page = offset >> IGP_PAGE_SHIFT;
2415 
2416 	ret_val = hw->phy.ops.acquire(hw);
2417 	if (ret_val)
2418 		return ret_val;
2419 
2420 	/* Page 800 works differently than the rest so it has its own func */
2421 	if (page == BM_WUC_PAGE) {
2422 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2423 							 true, false);
2424 		goto release;
2425 	}
2426 
2427 	hw->phy.addr = e1000_get_phy_addr_for_bm_page(page, offset);
2428 
2429 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2430 		u32 page_shift, page_select;
2431 
2432 		/* Page select is register 31 for phy address 1 and 22 for
2433 		 * phy address 2 and 3. Page select is shifted only for
2434 		 * phy address 1.
2435 		 */
2436 		if (hw->phy.addr == 1) {
2437 			page_shift = IGP_PAGE_SHIFT;
2438 			page_select = IGP01E1000_PHY_PAGE_SELECT;
2439 		} else {
2440 			page_shift = 0;
2441 			page_select = BM_PHY_PAGE_SELECT;
2442 		}
2443 
2444 		/* Page is shifted left, PHY expects (page x 32) */
2445 		ret_val = e1000e_write_phy_reg_mdic(hw, page_select,
2446 						    (page << page_shift));
2447 		if (ret_val)
2448 			goto release;
2449 	}
2450 
2451 	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2452 					   data);
2453 release:
2454 	hw->phy.ops.release(hw);
2455 	return ret_val;
2456 }
2457 
2458 /**
2459  *  e1000e_read_phy_reg_bm2 - Read BM PHY register
2460  *  @hw: pointer to the HW structure
2461  *  @offset: register offset to be read
2462  *  @data: pointer to the read data
2463  *
2464  *  Acquires semaphore, if necessary, then reads the PHY register at offset
2465  *  and storing the retrieved information in data.  Release any acquired
2466  *  semaphores before exiting.
2467  **/
2468 s32 e1000e_read_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 *data)
2469 {
2470 	s32 ret_val;
2471 	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2472 
2473 	ret_val = hw->phy.ops.acquire(hw);
2474 	if (ret_val)
2475 		return ret_val;
2476 
2477 	/* Page 800 works differently than the rest so it has its own func */
2478 	if (page == BM_WUC_PAGE) {
2479 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2480 							 true, false);
2481 		goto release;
2482 	}
2483 
2484 	hw->phy.addr = 1;
2485 
2486 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2487 		/* Page is shifted left, PHY expects (page x 32) */
2488 		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2489 						    page);
2490 
2491 		if (ret_val)
2492 			goto release;
2493 	}
2494 
2495 	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2496 					   data);
2497 release:
2498 	hw->phy.ops.release(hw);
2499 	return ret_val;
2500 }
2501 
2502 /**
2503  *  e1000e_write_phy_reg_bm2 - Write BM PHY register
2504  *  @hw: pointer to the HW structure
2505  *  @offset: register offset to write to
2506  *  @data: data to write at register offset
2507  *
2508  *  Acquires semaphore, if necessary, then writes the data to PHY register
2509  *  at the offset.  Release any acquired semaphores before exiting.
2510  **/
2511 s32 e1000e_write_phy_reg_bm2(struct e1000_hw *hw, u32 offset, u16 data)
2512 {
2513 	s32 ret_val;
2514 	u16 page = (u16)(offset >> IGP_PAGE_SHIFT);
2515 
2516 	ret_val = hw->phy.ops.acquire(hw);
2517 	if (ret_val)
2518 		return ret_val;
2519 
2520 	/* Page 800 works differently than the rest so it has its own func */
2521 	if (page == BM_WUC_PAGE) {
2522 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2523 							 false, false);
2524 		goto release;
2525 	}
2526 
2527 	hw->phy.addr = 1;
2528 
2529 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
2530 		/* Page is shifted left, PHY expects (page x 32) */
2531 		ret_val = e1000e_write_phy_reg_mdic(hw, BM_PHY_PAGE_SELECT,
2532 						    page);
2533 
2534 		if (ret_val)
2535 			goto release;
2536 	}
2537 
2538 	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
2539 					    data);
2540 
2541 release:
2542 	hw->phy.ops.release(hw);
2543 	return ret_val;
2544 }
2545 
2546 /**
2547  *  e1000_enable_phy_wakeup_reg_access_bm - enable access to BM wakeup registers
2548  *  @hw: pointer to the HW structure
2549  *  @phy_reg: pointer to store original contents of BM_WUC_ENABLE_REG
2550  *
2551  *  Assumes semaphore already acquired and phy_reg points to a valid memory
2552  *  address to store contents of the BM_WUC_ENABLE_REG register.
2553  **/
2554 s32 e1000_enable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
2555 {
2556 	s32 ret_val;
2557 	u16 temp;
2558 
2559 	/* All page select, port ctrl and wakeup registers use phy address 1 */
2560 	hw->phy.addr = 1;
2561 
2562 	/* Select Port Control Registers page */
2563 	ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
2564 	if (ret_val) {
2565 		e_dbg("Could not set Port Control page\n");
2566 		return ret_val;
2567 	}
2568 
2569 	ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, phy_reg);
2570 	if (ret_val) {
2571 		e_dbg("Could not read PHY register %d.%d\n",
2572 		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2573 		return ret_val;
2574 	}
2575 
2576 	/* Enable both PHY wakeup mode and Wakeup register page writes.
2577 	 * Prevent a power state change by disabling ME and Host PHY wakeup.
2578 	 */
2579 	temp = *phy_reg;
2580 	temp |= BM_WUC_ENABLE_BIT;
2581 	temp &= ~(BM_WUC_ME_WU_BIT | BM_WUC_HOST_WU_BIT);
2582 
2583 	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, temp);
2584 	if (ret_val) {
2585 		e_dbg("Could not write PHY register %d.%d\n",
2586 		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2587 		return ret_val;
2588 	}
2589 
2590 	/* Select Host Wakeup Registers page - caller now able to write
2591 	 * registers on the Wakeup registers page
2592 	 */
2593 	return e1000_set_page_igp(hw, (BM_WUC_PAGE << IGP_PAGE_SHIFT));
2594 }
2595 
2596 /**
2597  *  e1000_disable_phy_wakeup_reg_access_bm - disable access to BM wakeup regs
2598  *  @hw: pointer to the HW structure
2599  *  @phy_reg: pointer to original contents of BM_WUC_ENABLE_REG
2600  *
2601  *  Restore BM_WUC_ENABLE_REG to its original value.
2602  *
2603  *  Assumes semaphore already acquired and *phy_reg is the contents of the
2604  *  BM_WUC_ENABLE_REG before register(s) on BM_WUC_PAGE were accessed by
2605  *  caller.
2606  **/
2607 s32 e1000_disable_phy_wakeup_reg_access_bm(struct e1000_hw *hw, u16 *phy_reg)
2608 {
2609 	s32 ret_val;
2610 
2611 	/* Select Port Control Registers page */
2612 	ret_val = e1000_set_page_igp(hw, (BM_PORT_CTRL_PAGE << IGP_PAGE_SHIFT));
2613 	if (ret_val) {
2614 		e_dbg("Could not set Port Control page\n");
2615 		return ret_val;
2616 	}
2617 
2618 	/* Restore 769.17 to its original value */
2619 	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ENABLE_REG, *phy_reg);
2620 	if (ret_val)
2621 		e_dbg("Could not restore PHY register %d.%d\n",
2622 		      BM_PORT_CTRL_PAGE, BM_WUC_ENABLE_REG);
2623 
2624 	return ret_val;
2625 }
2626 
2627 /**
2628  *  e1000_access_phy_wakeup_reg_bm - Read/write BM PHY wakeup register
2629  *  @hw: pointer to the HW structure
2630  *  @offset: register offset to be read or written
2631  *  @data: pointer to the data to read or write
2632  *  @read: determines if operation is read or write
2633  *  @page_set: BM_WUC_PAGE already set and access enabled
2634  *
2635  *  Read the PHY register at offset and store the retrieved information in
2636  *  data, or write data to PHY register at offset.  Note the procedure to
2637  *  access the PHY wakeup registers is different than reading the other PHY
2638  *  registers. It works as such:
2639  *  1) Set 769.17.2 (page 769, register 17, bit 2) = 1
2640  *  2) Set page to 800 for host (801 if we were manageability)
2641  *  3) Write the address using the address opcode (0x11)
2642  *  4) Read or write the data using the data opcode (0x12)
2643  *  5) Restore 769.17.2 to its original value
2644  *
2645  *  Steps 1 and 2 are done by e1000_enable_phy_wakeup_reg_access_bm() and
2646  *  step 5 is done by e1000_disable_phy_wakeup_reg_access_bm().
2647  *
2648  *  Assumes semaphore is already acquired.  When page_set==true, assumes
2649  *  the PHY page is set to BM_WUC_PAGE (i.e. a function in the call stack
2650  *  is responsible for calls to e1000_[enable|disable]_phy_wakeup_reg_bm()).
2651  **/
2652 static s32 e1000_access_phy_wakeup_reg_bm(struct e1000_hw *hw, u32 offset,
2653 					  u16 *data, bool read, bool page_set)
2654 {
2655 	s32 ret_val;
2656 	u16 reg = BM_PHY_REG_NUM(offset);
2657 	u16 page = BM_PHY_REG_PAGE(offset);
2658 	u16 phy_reg = 0;
2659 
2660 	/* Gig must be disabled for MDIO accesses to Host Wakeup reg page */
2661 	if ((hw->mac.type == e1000_pchlan) &&
2662 	    (!(er32(PHY_CTRL) & E1000_PHY_CTRL_GBE_DISABLE)))
2663 		e_dbg("Attempting to access page %d while gig enabled.\n",
2664 		      page);
2665 
2666 	if (!page_set) {
2667 		/* Enable access to PHY wakeup registers */
2668 		ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2669 		if (ret_val) {
2670 			e_dbg("Could not enable PHY wakeup reg access\n");
2671 			return ret_val;
2672 		}
2673 	}
2674 
2675 	e_dbg("Accessing PHY page %d reg 0x%x\n", page, reg);
2676 
2677 	/* Write the Wakeup register page offset value using opcode 0x11 */
2678 	ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_ADDRESS_OPCODE, reg);
2679 	if (ret_val) {
2680 		e_dbg("Could not write address opcode to page %d\n", page);
2681 		return ret_val;
2682 	}
2683 
2684 	if (read) {
2685 		/* Read the Wakeup register page value using opcode 0x12 */
2686 		ret_val = e1000e_read_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2687 						   data);
2688 	} else {
2689 		/* Write the Wakeup register page value using opcode 0x12 */
2690 		ret_val = e1000e_write_phy_reg_mdic(hw, BM_WUC_DATA_OPCODE,
2691 						    *data);
2692 	}
2693 
2694 	if (ret_val) {
2695 		e_dbg("Could not access PHY reg %d.%d\n", page, reg);
2696 		return ret_val;
2697 	}
2698 
2699 	if (!page_set)
2700 		ret_val = e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2701 
2702 	return ret_val;
2703 }
2704 
2705 /**
2706  * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
2707  * @hw: pointer to the HW structure
2708  *
2709  * In the case of a PHY power down to save power, or to turn off link during a
2710  * driver unload, or wake on lan is not enabled, restore the link to previous
2711  * settings.
2712  **/
2713 void e1000_power_up_phy_copper(struct e1000_hw *hw)
2714 {
2715 	u16 mii_reg = 0;
2716 
2717 	/* The PHY will retain its settings across a power down/up cycle */
2718 	e1e_rphy(hw, MII_BMCR, &mii_reg);
2719 	mii_reg &= ~BMCR_PDOWN;
2720 	e1e_wphy(hw, MII_BMCR, mii_reg);
2721 }
2722 
2723 /**
2724  * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
2725  * @hw: pointer to the HW structure
2726  *
2727  * In the case of a PHY power down to save power, or to turn off link during a
2728  * driver unload, or wake on lan is not enabled, restore the link to previous
2729  * settings.
2730  **/
2731 void e1000_power_down_phy_copper(struct e1000_hw *hw)
2732 {
2733 	u16 mii_reg = 0;
2734 
2735 	/* The PHY will retain its settings across a power down/up cycle */
2736 	e1e_rphy(hw, MII_BMCR, &mii_reg);
2737 	mii_reg |= BMCR_PDOWN;
2738 	e1e_wphy(hw, MII_BMCR, mii_reg);
2739 	usleep_range(1000, 2000);
2740 }
2741 
2742 /**
2743  *  __e1000_read_phy_reg_hv -  Read HV PHY register
2744  *  @hw: pointer to the HW structure
2745  *  @offset: register offset to be read
2746  *  @data: pointer to the read data
2747  *  @locked: semaphore has already been acquired or not
2748  *
2749  *  Acquires semaphore, if necessary, then reads the PHY register at offset
2750  *  and stores the retrieved information in data.  Release any acquired
2751  *  semaphore before exiting.
2752  **/
2753 static s32 __e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data,
2754 				   bool locked, bool page_set)
2755 {
2756 	s32 ret_val;
2757 	u16 page = BM_PHY_REG_PAGE(offset);
2758 	u16 reg = BM_PHY_REG_NUM(offset);
2759 	u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2760 
2761 	if (!locked) {
2762 		ret_val = hw->phy.ops.acquire(hw);
2763 		if (ret_val)
2764 			return ret_val;
2765 	}
2766 
2767 	/* Page 800 works differently than the rest so it has its own func */
2768 	if (page == BM_WUC_PAGE) {
2769 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, data,
2770 							 true, page_set);
2771 		goto out;
2772 	}
2773 
2774 	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
2775 		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
2776 							 data, true);
2777 		goto out;
2778 	}
2779 
2780 	if (!page_set) {
2781 		if (page == HV_INTC_FC_PAGE_START)
2782 			page = 0;
2783 
2784 		if (reg > MAX_PHY_MULTI_PAGE_REG) {
2785 			/* Page is shifted left, PHY expects (page x 32) */
2786 			ret_val = e1000_set_page_igp(hw,
2787 						     (page << IGP_PAGE_SHIFT));
2788 
2789 			hw->phy.addr = phy_addr;
2790 
2791 			if (ret_val)
2792 				goto out;
2793 		}
2794 	}
2795 
2796 	e_dbg("reading PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
2797 	      page << IGP_PAGE_SHIFT, reg);
2798 
2799 	ret_val = e1000e_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg, data);
2800 out:
2801 	if (!locked)
2802 		hw->phy.ops.release(hw);
2803 
2804 	return ret_val;
2805 }
2806 
2807 /**
2808  *  e1000_read_phy_reg_hv -  Read HV PHY register
2809  *  @hw: pointer to the HW structure
2810  *  @offset: register offset to be read
2811  *  @data: pointer to the read data
2812  *
2813  *  Acquires semaphore then reads the PHY register at offset and stores
2814  *  the retrieved information in data.  Release the acquired semaphore
2815  *  before exiting.
2816  **/
2817 s32 e1000_read_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2818 {
2819 	return __e1000_read_phy_reg_hv(hw, offset, data, false, false);
2820 }
2821 
2822 /**
2823  *  e1000_read_phy_reg_hv_locked -  Read HV PHY register
2824  *  @hw: pointer to the HW structure
2825  *  @offset: register offset to be read
2826  *  @data: pointer to the read data
2827  *
2828  *  Reads the PHY register at offset and stores the retrieved information
2829  *  in data.  Assumes semaphore already acquired.
2830  **/
2831 s32 e1000_read_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 *data)
2832 {
2833 	return __e1000_read_phy_reg_hv(hw, offset, data, true, false);
2834 }
2835 
2836 /**
2837  *  e1000_read_phy_reg_page_hv - Read HV PHY register
2838  *  @hw: pointer to the HW structure
2839  *  @offset: register offset to write to
2840  *  @data: data to write at register offset
2841  *
2842  *  Reads the PHY register at offset and stores the retrieved information
2843  *  in data.  Assumes semaphore already acquired and page already set.
2844  **/
2845 s32 e1000_read_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 *data)
2846 {
2847 	return __e1000_read_phy_reg_hv(hw, offset, data, true, true);
2848 }
2849 
2850 /**
2851  *  __e1000_write_phy_reg_hv - Write HV PHY register
2852  *  @hw: pointer to the HW structure
2853  *  @offset: register offset to write to
2854  *  @data: data to write at register offset
2855  *  @locked: semaphore has already been acquired or not
2856  *
2857  *  Acquires semaphore, if necessary, then writes the data to PHY register
2858  *  at the offset.  Release any acquired semaphores before exiting.
2859  **/
2860 static s32 __e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data,
2861 				    bool locked, bool page_set)
2862 {
2863 	s32 ret_val;
2864 	u16 page = BM_PHY_REG_PAGE(offset);
2865 	u16 reg = BM_PHY_REG_NUM(offset);
2866 	u32 phy_addr = hw->phy.addr = e1000_get_phy_addr_for_hv_page(page);
2867 
2868 	if (!locked) {
2869 		ret_val = hw->phy.ops.acquire(hw);
2870 		if (ret_val)
2871 			return ret_val;
2872 	}
2873 
2874 	/* Page 800 works differently than the rest so it has its own func */
2875 	if (page == BM_WUC_PAGE) {
2876 		ret_val = e1000_access_phy_wakeup_reg_bm(hw, offset, &data,
2877 							 false, page_set);
2878 		goto out;
2879 	}
2880 
2881 	if (page > 0 && page < HV_INTC_FC_PAGE_START) {
2882 		ret_val = e1000_access_phy_debug_regs_hv(hw, offset,
2883 							 &data, false);
2884 		goto out;
2885 	}
2886 
2887 	if (!page_set) {
2888 		if (page == HV_INTC_FC_PAGE_START)
2889 			page = 0;
2890 
2891 		/* Workaround MDIO accesses being disabled after entering IEEE
2892 		 * Power Down (when bit 11 of the PHY Control register is set)
2893 		 */
2894 		if ((hw->phy.type == e1000_phy_82578) &&
2895 		    (hw->phy.revision >= 1) &&
2896 		    (hw->phy.addr == 2) &&
2897 		    !(MAX_PHY_REG_ADDRESS & reg) && (data & BIT(11))) {
2898 			u16 data2 = 0x7EFF;
2899 
2900 			ret_val = e1000_access_phy_debug_regs_hv(hw,
2901 								 BIT(6) | 0x3,
2902 								 &data2, false);
2903 			if (ret_val)
2904 				goto out;
2905 		}
2906 
2907 		if (reg > MAX_PHY_MULTI_PAGE_REG) {
2908 			/* Page is shifted left, PHY expects (page x 32) */
2909 			ret_val = e1000_set_page_igp(hw,
2910 						     (page << IGP_PAGE_SHIFT));
2911 
2912 			hw->phy.addr = phy_addr;
2913 
2914 			if (ret_val)
2915 				goto out;
2916 		}
2917 	}
2918 
2919 	e_dbg("writing PHY page %d (or 0x%x shifted) reg 0x%x\n", page,
2920 	      page << IGP_PAGE_SHIFT, reg);
2921 
2922 	ret_val = e1000e_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & reg,
2923 					    data);
2924 
2925 out:
2926 	if (!locked)
2927 		hw->phy.ops.release(hw);
2928 
2929 	return ret_val;
2930 }
2931 
2932 /**
2933  *  e1000_write_phy_reg_hv - Write HV PHY register
2934  *  @hw: pointer to the HW structure
2935  *  @offset: register offset to write to
2936  *  @data: data to write at register offset
2937  *
2938  *  Acquires semaphore then writes the data to PHY register at the offset.
2939  *  Release the acquired semaphores before exiting.
2940  **/
2941 s32 e1000_write_phy_reg_hv(struct e1000_hw *hw, u32 offset, u16 data)
2942 {
2943 	return __e1000_write_phy_reg_hv(hw, offset, data, false, false);
2944 }
2945 
2946 /**
2947  *  e1000_write_phy_reg_hv_locked - Write HV PHY register
2948  *  @hw: pointer to the HW structure
2949  *  @offset: register offset to write to
2950  *  @data: data to write at register offset
2951  *
2952  *  Writes the data to PHY register at the offset.  Assumes semaphore
2953  *  already acquired.
2954  **/
2955 s32 e1000_write_phy_reg_hv_locked(struct e1000_hw *hw, u32 offset, u16 data)
2956 {
2957 	return __e1000_write_phy_reg_hv(hw, offset, data, true, false);
2958 }
2959 
2960 /**
2961  *  e1000_write_phy_reg_page_hv - Write HV PHY register
2962  *  @hw: pointer to the HW structure
2963  *  @offset: register offset to write to
2964  *  @data: data to write at register offset
2965  *
2966  *  Writes the data to PHY register at the offset.  Assumes semaphore
2967  *  already acquired and page already set.
2968  **/
2969 s32 e1000_write_phy_reg_page_hv(struct e1000_hw *hw, u32 offset, u16 data)
2970 {
2971 	return __e1000_write_phy_reg_hv(hw, offset, data, true, true);
2972 }
2973 
2974 /**
2975  *  e1000_get_phy_addr_for_hv_page - Get PHY address based on page
2976  *  @page: page to be accessed
2977  **/
2978 static u32 e1000_get_phy_addr_for_hv_page(u32 page)
2979 {
2980 	u32 phy_addr = 2;
2981 
2982 	if (page >= HV_INTC_FC_PAGE_START)
2983 		phy_addr = 1;
2984 
2985 	return phy_addr;
2986 }
2987 
2988 /**
2989  *  e1000_access_phy_debug_regs_hv - Read HV PHY vendor specific high registers
2990  *  @hw: pointer to the HW structure
2991  *  @offset: register offset to be read or written
2992  *  @data: pointer to the data to be read or written
2993  *  @read: determines if operation is read or write
2994  *
2995  *  Reads the PHY register at offset and stores the retreived information
2996  *  in data.  Assumes semaphore already acquired.  Note that the procedure
2997  *  to access these regs uses the address port and data port to read/write.
2998  *  These accesses done with PHY address 2 and without using pages.
2999  **/
3000 static s32 e1000_access_phy_debug_regs_hv(struct e1000_hw *hw, u32 offset,
3001 					  u16 *data, bool read)
3002 {
3003 	s32 ret_val;
3004 	u32 addr_reg;
3005 	u32 data_reg;
3006 
3007 	/* This takes care of the difference with desktop vs mobile phy */
3008 	addr_reg = ((hw->phy.type == e1000_phy_82578) ?
3009 		    I82578_ADDR_REG : I82577_ADDR_REG);
3010 	data_reg = addr_reg + 1;
3011 
3012 	/* All operations in this function are phy address 2 */
3013 	hw->phy.addr = 2;
3014 
3015 	/* masking with 0x3F to remove the page from offset */
3016 	ret_val = e1000e_write_phy_reg_mdic(hw, addr_reg, (u16)offset & 0x3F);
3017 	if (ret_val) {
3018 		e_dbg("Could not write the Address Offset port register\n");
3019 		return ret_val;
3020 	}
3021 
3022 	/* Read or write the data value next */
3023 	if (read)
3024 		ret_val = e1000e_read_phy_reg_mdic(hw, data_reg, data);
3025 	else
3026 		ret_val = e1000e_write_phy_reg_mdic(hw, data_reg, *data);
3027 
3028 	if (ret_val)
3029 		e_dbg("Could not access the Data port register\n");
3030 
3031 	return ret_val;
3032 }
3033 
3034 /**
3035  *  e1000_link_stall_workaround_hv - Si workaround
3036  *  @hw: pointer to the HW structure
3037  *
3038  *  This function works around a Si bug where the link partner can get
3039  *  a link up indication before the PHY does.  If small packets are sent
3040  *  by the link partner they can be placed in the packet buffer without
3041  *  being properly accounted for by the PHY and will stall preventing
3042  *  further packets from being received.  The workaround is to clear the
3043  *  packet buffer after the PHY detects link up.
3044  **/
3045 s32 e1000_link_stall_workaround_hv(struct e1000_hw *hw)
3046 {
3047 	s32 ret_val = 0;
3048 	u16 data;
3049 
3050 	if (hw->phy.type != e1000_phy_82578)
3051 		return 0;
3052 
3053 	/* Do not apply workaround if in PHY loopback bit 14 set */
3054 	e1e_rphy(hw, MII_BMCR, &data);
3055 	if (data & BMCR_LOOPBACK)
3056 		return 0;
3057 
3058 	/* check if link is up and at 1Gbps */
3059 	ret_val = e1e_rphy(hw, BM_CS_STATUS, &data);
3060 	if (ret_val)
3061 		return ret_val;
3062 
3063 	data &= (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
3064 		 BM_CS_STATUS_SPEED_MASK);
3065 
3066 	if (data != (BM_CS_STATUS_LINK_UP | BM_CS_STATUS_RESOLVED |
3067 		     BM_CS_STATUS_SPEED_1000))
3068 		return 0;
3069 
3070 	msleep(200);
3071 
3072 	/* flush the packets in the fifo buffer */
3073 	ret_val = e1e_wphy(hw, HV_MUX_DATA_CTRL,
3074 			   (HV_MUX_DATA_CTRL_GEN_TO_MAC |
3075 			    HV_MUX_DATA_CTRL_FORCE_SPEED));
3076 	if (ret_val)
3077 		return ret_val;
3078 
3079 	return e1e_wphy(hw, HV_MUX_DATA_CTRL, HV_MUX_DATA_CTRL_GEN_TO_MAC);
3080 }
3081 
3082 /**
3083  *  e1000_check_polarity_82577 - Checks the polarity.
3084  *  @hw: pointer to the HW structure
3085  *
3086  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
3087  *
3088  *  Polarity is determined based on the PHY specific status register.
3089  **/
3090 s32 e1000_check_polarity_82577(struct e1000_hw *hw)
3091 {
3092 	struct e1000_phy_info *phy = &hw->phy;
3093 	s32 ret_val;
3094 	u16 data;
3095 
3096 	ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3097 
3098 	if (!ret_val)
3099 		phy->cable_polarity = ((data & I82577_PHY_STATUS2_REV_POLARITY)
3100 				       ? e1000_rev_polarity_reversed
3101 				       : e1000_rev_polarity_normal);
3102 
3103 	return ret_val;
3104 }
3105 
3106 /**
3107  *  e1000_phy_force_speed_duplex_82577 - Force speed/duplex for I82577 PHY
3108  *  @hw: pointer to the HW structure
3109  *
3110  *  Calls the PHY setup function to force speed and duplex.
3111  **/
3112 s32 e1000_phy_force_speed_duplex_82577(struct e1000_hw *hw)
3113 {
3114 	struct e1000_phy_info *phy = &hw->phy;
3115 	s32 ret_val;
3116 	u16 phy_data;
3117 	bool link;
3118 
3119 	ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
3120 	if (ret_val)
3121 		return ret_val;
3122 
3123 	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
3124 
3125 	ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
3126 	if (ret_val)
3127 		return ret_val;
3128 
3129 	udelay(1);
3130 
3131 	if (phy->autoneg_wait_to_complete) {
3132 		e_dbg("Waiting for forced speed/duplex link on 82577 phy\n");
3133 
3134 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
3135 						      100000, &link);
3136 		if (ret_val)
3137 			return ret_val;
3138 
3139 		if (!link)
3140 			e_dbg("Link taking longer than expected.\n");
3141 
3142 		/* Try once more */
3143 		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
3144 						      100000, &link);
3145 	}
3146 
3147 	return ret_val;
3148 }
3149 
3150 /**
3151  *  e1000_get_phy_info_82577 - Retrieve I82577 PHY information
3152  *  @hw: pointer to the HW structure
3153  *
3154  *  Read PHY status to determine if link is up.  If link is up, then
3155  *  set/determine 10base-T extended distance and polarity correction.  Read
3156  *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
3157  *  determine on the cable length, local and remote receiver.
3158  **/
3159 s32 e1000_get_phy_info_82577(struct e1000_hw *hw)
3160 {
3161 	struct e1000_phy_info *phy = &hw->phy;
3162 	s32 ret_val;
3163 	u16 data;
3164 	bool link;
3165 
3166 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3167 	if (ret_val)
3168 		return ret_val;
3169 
3170 	if (!link) {
3171 		e_dbg("Phy info is only valid if link is up\n");
3172 		return -E1000_ERR_CONFIG;
3173 	}
3174 
3175 	phy->polarity_correction = true;
3176 
3177 	ret_val = e1000_check_polarity_82577(hw);
3178 	if (ret_val)
3179 		return ret_val;
3180 
3181 	ret_val = e1e_rphy(hw, I82577_PHY_STATUS_2, &data);
3182 	if (ret_val)
3183 		return ret_val;
3184 
3185 	phy->is_mdix = !!(data & I82577_PHY_STATUS2_MDIX);
3186 
3187 	if ((data & I82577_PHY_STATUS2_SPEED_MASK) ==
3188 	    I82577_PHY_STATUS2_SPEED_1000MBPS) {
3189 		ret_val = hw->phy.ops.get_cable_length(hw);
3190 		if (ret_val)
3191 			return ret_val;
3192 
3193 		ret_val = e1e_rphy(hw, MII_STAT1000, &data);
3194 		if (ret_val)
3195 			return ret_val;
3196 
3197 		phy->local_rx = (data & LPA_1000LOCALRXOK)
3198 		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3199 
3200 		phy->remote_rx = (data & LPA_1000REMRXOK)
3201 		    ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3202 	} else {
3203 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
3204 		phy->local_rx = e1000_1000t_rx_status_undefined;
3205 		phy->remote_rx = e1000_1000t_rx_status_undefined;
3206 	}
3207 
3208 	return 0;
3209 }
3210 
3211 /**
3212  *  e1000_get_cable_length_82577 - Determine cable length for 82577 PHY
3213  *  @hw: pointer to the HW structure
3214  *
3215  * Reads the diagnostic status register and verifies result is valid before
3216  * placing it in the phy_cable_length field.
3217  **/
3218 s32 e1000_get_cable_length_82577(struct e1000_hw *hw)
3219 {
3220 	struct e1000_phy_info *phy = &hw->phy;
3221 	s32 ret_val;
3222 	u16 phy_data, length;
3223 
3224 	ret_val = e1e_rphy(hw, I82577_PHY_DIAG_STATUS, &phy_data);
3225 	if (ret_val)
3226 		return ret_val;
3227 
3228 	length = ((phy_data & I82577_DSTATUS_CABLE_LENGTH) >>
3229 		  I82577_DSTATUS_CABLE_LENGTH_SHIFT);
3230 
3231 	if (length == E1000_CABLE_LENGTH_UNDEFINED)
3232 		return -E1000_ERR_PHY;
3233 
3234 	phy->cable_length = length;
3235 
3236 	return 0;
3237 }
3238