1 /* Intel PRO/1000 Linux driver
2  * Copyright(c) 1999 - 2015 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * The full GNU General Public License is included in this distribution in
14  * the file called "COPYING".
15  *
16  * Contact Information:
17  * Linux NICS <linux.nics@intel.com>
18  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
20  */
21 
22 #include "e1000.h"
23 
24 /**
25  *  e1000_raise_eec_clk - Raise EEPROM clock
26  *  @hw: pointer to the HW structure
27  *  @eecd: pointer to the EEPROM
28  *
29  *  Enable/Raise the EEPROM clock bit.
30  **/
31 static void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
32 {
33 	*eecd = *eecd | E1000_EECD_SK;
34 	ew32(EECD, *eecd);
35 	e1e_flush();
36 	udelay(hw->nvm.delay_usec);
37 }
38 
39 /**
40  *  e1000_lower_eec_clk - Lower EEPROM clock
41  *  @hw: pointer to the HW structure
42  *  @eecd: pointer to the EEPROM
43  *
44  *  Clear/Lower the EEPROM clock bit.
45  **/
46 static void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
47 {
48 	*eecd = *eecd & ~E1000_EECD_SK;
49 	ew32(EECD, *eecd);
50 	e1e_flush();
51 	udelay(hw->nvm.delay_usec);
52 }
53 
54 /**
55  *  e1000_shift_out_eec_bits - Shift data bits our to the EEPROM
56  *  @hw: pointer to the HW structure
57  *  @data: data to send to the EEPROM
58  *  @count: number of bits to shift out
59  *
60  *  We need to shift 'count' bits out to the EEPROM.  So, the value in the
61  *  "data" parameter will be shifted out to the EEPROM one bit at a time.
62  *  In order to do this, "data" must be broken down into bits.
63  **/
64 static void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
65 {
66 	struct e1000_nvm_info *nvm = &hw->nvm;
67 	u32 eecd = er32(EECD);
68 	u32 mask;
69 
70 	mask = BIT(count - 1);
71 	if (nvm->type == e1000_nvm_eeprom_spi)
72 		eecd |= E1000_EECD_DO;
73 
74 	do {
75 		eecd &= ~E1000_EECD_DI;
76 
77 		if (data & mask)
78 			eecd |= E1000_EECD_DI;
79 
80 		ew32(EECD, eecd);
81 		e1e_flush();
82 
83 		udelay(nvm->delay_usec);
84 
85 		e1000_raise_eec_clk(hw, &eecd);
86 		e1000_lower_eec_clk(hw, &eecd);
87 
88 		mask >>= 1;
89 	} while (mask);
90 
91 	eecd &= ~E1000_EECD_DI;
92 	ew32(EECD, eecd);
93 }
94 
95 /**
96  *  e1000_shift_in_eec_bits - Shift data bits in from the EEPROM
97  *  @hw: pointer to the HW structure
98  *  @count: number of bits to shift in
99  *
100  *  In order to read a register from the EEPROM, we need to shift 'count' bits
101  *  in from the EEPROM.  Bits are "shifted in" by raising the clock input to
102  *  the EEPROM (setting the SK bit), and then reading the value of the data out
103  *  "DO" bit.  During this "shifting in" process the data in "DI" bit should
104  *  always be clear.
105  **/
106 static u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
107 {
108 	u32 eecd;
109 	u32 i;
110 	u16 data;
111 
112 	eecd = er32(EECD);
113 	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
114 	data = 0;
115 
116 	for (i = 0; i < count; i++) {
117 		data <<= 1;
118 		e1000_raise_eec_clk(hw, &eecd);
119 
120 		eecd = er32(EECD);
121 
122 		eecd &= ~E1000_EECD_DI;
123 		if (eecd & E1000_EECD_DO)
124 			data |= 1;
125 
126 		e1000_lower_eec_clk(hw, &eecd);
127 	}
128 
129 	return data;
130 }
131 
132 /**
133  *  e1000e_poll_eerd_eewr_done - Poll for EEPROM read/write completion
134  *  @hw: pointer to the HW structure
135  *  @ee_reg: EEPROM flag for polling
136  *
137  *  Polls the EEPROM status bit for either read or write completion based
138  *  upon the value of 'ee_reg'.
139  **/
140 s32 e1000e_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
141 {
142 	u32 attempts = 100000;
143 	u32 i, reg = 0;
144 
145 	for (i = 0; i < attempts; i++) {
146 		if (ee_reg == E1000_NVM_POLL_READ)
147 			reg = er32(EERD);
148 		else
149 			reg = er32(EEWR);
150 
151 		if (reg & E1000_NVM_RW_REG_DONE)
152 			return 0;
153 
154 		udelay(5);
155 	}
156 
157 	return -E1000_ERR_NVM;
158 }
159 
160 /**
161  *  e1000e_acquire_nvm - Generic request for access to EEPROM
162  *  @hw: pointer to the HW structure
163  *
164  *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
165  *  Return successful if access grant bit set, else clear the request for
166  *  EEPROM access and return -E1000_ERR_NVM (-1).
167  **/
168 s32 e1000e_acquire_nvm(struct e1000_hw *hw)
169 {
170 	u32 eecd = er32(EECD);
171 	s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
172 
173 	ew32(EECD, eecd | E1000_EECD_REQ);
174 	eecd = er32(EECD);
175 
176 	while (timeout) {
177 		if (eecd & E1000_EECD_GNT)
178 			break;
179 		udelay(5);
180 		eecd = er32(EECD);
181 		timeout--;
182 	}
183 
184 	if (!timeout) {
185 		eecd &= ~E1000_EECD_REQ;
186 		ew32(EECD, eecd);
187 		e_dbg("Could not acquire NVM grant\n");
188 		return -E1000_ERR_NVM;
189 	}
190 
191 	return 0;
192 }
193 
194 /**
195  *  e1000_standby_nvm - Return EEPROM to standby state
196  *  @hw: pointer to the HW structure
197  *
198  *  Return the EEPROM to a standby state.
199  **/
200 static void e1000_standby_nvm(struct e1000_hw *hw)
201 {
202 	struct e1000_nvm_info *nvm = &hw->nvm;
203 	u32 eecd = er32(EECD);
204 
205 	if (nvm->type == e1000_nvm_eeprom_spi) {
206 		/* Toggle CS to flush commands */
207 		eecd |= E1000_EECD_CS;
208 		ew32(EECD, eecd);
209 		e1e_flush();
210 		udelay(nvm->delay_usec);
211 		eecd &= ~E1000_EECD_CS;
212 		ew32(EECD, eecd);
213 		e1e_flush();
214 		udelay(nvm->delay_usec);
215 	}
216 }
217 
218 /**
219  *  e1000_stop_nvm - Terminate EEPROM command
220  *  @hw: pointer to the HW structure
221  *
222  *  Terminates the current command by inverting the EEPROM's chip select pin.
223  **/
224 static void e1000_stop_nvm(struct e1000_hw *hw)
225 {
226 	u32 eecd;
227 
228 	eecd = er32(EECD);
229 	if (hw->nvm.type == e1000_nvm_eeprom_spi) {
230 		/* Pull CS high */
231 		eecd |= E1000_EECD_CS;
232 		e1000_lower_eec_clk(hw, &eecd);
233 	}
234 }
235 
236 /**
237  *  e1000e_release_nvm - Release exclusive access to EEPROM
238  *  @hw: pointer to the HW structure
239  *
240  *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
241  **/
242 void e1000e_release_nvm(struct e1000_hw *hw)
243 {
244 	u32 eecd;
245 
246 	e1000_stop_nvm(hw);
247 
248 	eecd = er32(EECD);
249 	eecd &= ~E1000_EECD_REQ;
250 	ew32(EECD, eecd);
251 }
252 
253 /**
254  *  e1000_ready_nvm_eeprom - Prepares EEPROM for read/write
255  *  @hw: pointer to the HW structure
256  *
257  *  Setups the EEPROM for reading and writing.
258  **/
259 static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw)
260 {
261 	struct e1000_nvm_info *nvm = &hw->nvm;
262 	u32 eecd = er32(EECD);
263 	u8 spi_stat_reg;
264 
265 	if (nvm->type == e1000_nvm_eeprom_spi) {
266 		u16 timeout = NVM_MAX_RETRY_SPI;
267 
268 		/* Clear SK and CS */
269 		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
270 		ew32(EECD, eecd);
271 		e1e_flush();
272 		udelay(1);
273 
274 		/* Read "Status Register" repeatedly until the LSB is cleared.
275 		 * The EEPROM will signal that the command has been completed
276 		 * by clearing bit 0 of the internal status register.  If it's
277 		 * not cleared within 'timeout', then error out.
278 		 */
279 		while (timeout) {
280 			e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
281 						 hw->nvm.opcode_bits);
282 			spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8);
283 			if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
284 				break;
285 
286 			udelay(5);
287 			e1000_standby_nvm(hw);
288 			timeout--;
289 		}
290 
291 		if (!timeout) {
292 			e_dbg("SPI NVM Status error\n");
293 			return -E1000_ERR_NVM;
294 		}
295 	}
296 
297 	return 0;
298 }
299 
300 /**
301  *  e1000e_read_nvm_eerd - Reads EEPROM using EERD register
302  *  @hw: pointer to the HW structure
303  *  @offset: offset of word in the EEPROM to read
304  *  @words: number of words to read
305  *  @data: word read from the EEPROM
306  *
307  *  Reads a 16 bit word from the EEPROM using the EERD register.
308  **/
309 s32 e1000e_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
310 {
311 	struct e1000_nvm_info *nvm = &hw->nvm;
312 	u32 i, eerd = 0;
313 	s32 ret_val = 0;
314 
315 	/* A check for invalid values:  offset too large, too many words,
316 	 * too many words for the offset, and not enough words.
317 	 */
318 	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
319 	    (words == 0)) {
320 		e_dbg("nvm parameter(s) out of bounds\n");
321 		return -E1000_ERR_NVM;
322 	}
323 
324 	for (i = 0; i < words; i++) {
325 		eerd = ((offset + i) << E1000_NVM_RW_ADDR_SHIFT) +
326 		    E1000_NVM_RW_REG_START;
327 
328 		ew32(EERD, eerd);
329 		ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
330 		if (ret_val) {
331 			e_dbg("NVM read error: %d\n", ret_val);
332 			break;
333 		}
334 
335 		data[i] = (er32(EERD) >> E1000_NVM_RW_REG_DATA);
336 	}
337 
338 	return ret_val;
339 }
340 
341 /**
342  *  e1000e_write_nvm_spi - Write to EEPROM using SPI
343  *  @hw: pointer to the HW structure
344  *  @offset: offset within the EEPROM to be written to
345  *  @words: number of words to write
346  *  @data: 16 bit word(s) to be written to the EEPROM
347  *
348  *  Writes data to EEPROM at offset using SPI interface.
349  *
350  *  If e1000e_update_nvm_checksum is not called after this function , the
351  *  EEPROM will most likely contain an invalid checksum.
352  **/
353 s32 e1000e_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
354 {
355 	struct e1000_nvm_info *nvm = &hw->nvm;
356 	s32 ret_val = -E1000_ERR_NVM;
357 	u16 widx = 0;
358 
359 	/* A check for invalid values:  offset too large, too many words,
360 	 * and not enough words.
361 	 */
362 	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
363 	    (words == 0)) {
364 		e_dbg("nvm parameter(s) out of bounds\n");
365 		return -E1000_ERR_NVM;
366 	}
367 
368 	while (widx < words) {
369 		u8 write_opcode = NVM_WRITE_OPCODE_SPI;
370 
371 		ret_val = nvm->ops.acquire(hw);
372 		if (ret_val)
373 			return ret_val;
374 
375 		ret_val = e1000_ready_nvm_eeprom(hw);
376 		if (ret_val) {
377 			nvm->ops.release(hw);
378 			return ret_val;
379 		}
380 
381 		e1000_standby_nvm(hw);
382 
383 		/* Send the WRITE ENABLE command (8 bit opcode) */
384 		e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
385 					 nvm->opcode_bits);
386 
387 		e1000_standby_nvm(hw);
388 
389 		/* Some SPI eeproms use the 8th address bit embedded in the
390 		 * opcode
391 		 */
392 		if ((nvm->address_bits == 8) && (offset >= 128))
393 			write_opcode |= NVM_A8_OPCODE_SPI;
394 
395 		/* Send the Write command (8-bit opcode + addr) */
396 		e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
397 		e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
398 					 nvm->address_bits);
399 
400 		/* Loop to allow for up to whole page write of eeprom */
401 		while (widx < words) {
402 			u16 word_out = data[widx];
403 
404 			word_out = (word_out >> 8) | (word_out << 8);
405 			e1000_shift_out_eec_bits(hw, word_out, 16);
406 			widx++;
407 
408 			if ((((offset + widx) * 2) % nvm->page_size) == 0) {
409 				e1000_standby_nvm(hw);
410 				break;
411 			}
412 		}
413 		usleep_range(10000, 20000);
414 		nvm->ops.release(hw);
415 	}
416 
417 	return ret_val;
418 }
419 
420 /**
421  *  e1000_read_pba_string_generic - Read device part number
422  *  @hw: pointer to the HW structure
423  *  @pba_num: pointer to device part number
424  *  @pba_num_size: size of part number buffer
425  *
426  *  Reads the product board assembly (PBA) number from the EEPROM and stores
427  *  the value in pba_num.
428  **/
429 s32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num,
430 				  u32 pba_num_size)
431 {
432 	s32 ret_val;
433 	u16 nvm_data;
434 	u16 pba_ptr;
435 	u16 offset;
436 	u16 length;
437 
438 	if (pba_num == NULL) {
439 		e_dbg("PBA string buffer was null\n");
440 		return -E1000_ERR_INVALID_ARGUMENT;
441 	}
442 
443 	ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
444 	if (ret_val) {
445 		e_dbg("NVM Read Error\n");
446 		return ret_val;
447 	}
448 
449 	ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr);
450 	if (ret_val) {
451 		e_dbg("NVM Read Error\n");
452 		return ret_val;
453 	}
454 
455 	/* if nvm_data is not ptr guard the PBA must be in legacy format which
456 	 * means pba_ptr is actually our second data word for the PBA number
457 	 * and we can decode it into an ascii string
458 	 */
459 	if (nvm_data != NVM_PBA_PTR_GUARD) {
460 		e_dbg("NVM PBA number is not stored as string\n");
461 
462 		/* make sure callers buffer is big enough to store the PBA */
463 		if (pba_num_size < E1000_PBANUM_LENGTH) {
464 			e_dbg("PBA string buffer too small\n");
465 			return E1000_ERR_NO_SPACE;
466 		}
467 
468 		/* extract hex string from data and pba_ptr */
469 		pba_num[0] = (nvm_data >> 12) & 0xF;
470 		pba_num[1] = (nvm_data >> 8) & 0xF;
471 		pba_num[2] = (nvm_data >> 4) & 0xF;
472 		pba_num[3] = nvm_data & 0xF;
473 		pba_num[4] = (pba_ptr >> 12) & 0xF;
474 		pba_num[5] = (pba_ptr >> 8) & 0xF;
475 		pba_num[6] = '-';
476 		pba_num[7] = 0;
477 		pba_num[8] = (pba_ptr >> 4) & 0xF;
478 		pba_num[9] = pba_ptr & 0xF;
479 
480 		/* put a null character on the end of our string */
481 		pba_num[10] = '\0';
482 
483 		/* switch all the data but the '-' to hex char */
484 		for (offset = 0; offset < 10; offset++) {
485 			if (pba_num[offset] < 0xA)
486 				pba_num[offset] += '0';
487 			else if (pba_num[offset] < 0x10)
488 				pba_num[offset] += 'A' - 0xA;
489 		}
490 
491 		return 0;
492 	}
493 
494 	ret_val = e1000_read_nvm(hw, pba_ptr, 1, &length);
495 	if (ret_val) {
496 		e_dbg("NVM Read Error\n");
497 		return ret_val;
498 	}
499 
500 	if (length == 0xFFFF || length == 0) {
501 		e_dbg("NVM PBA number section invalid length\n");
502 		return -E1000_ERR_NVM_PBA_SECTION;
503 	}
504 	/* check if pba_num buffer is big enough */
505 	if (pba_num_size < (((u32)length * 2) - 1)) {
506 		e_dbg("PBA string buffer too small\n");
507 		return -E1000_ERR_NO_SPACE;
508 	}
509 
510 	/* trim pba length from start of string */
511 	pba_ptr++;
512 	length--;
513 
514 	for (offset = 0; offset < length; offset++) {
515 		ret_val = e1000_read_nvm(hw, pba_ptr + offset, 1, &nvm_data);
516 		if (ret_val) {
517 			e_dbg("NVM Read Error\n");
518 			return ret_val;
519 		}
520 		pba_num[offset * 2] = (u8)(nvm_data >> 8);
521 		pba_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF);
522 	}
523 	pba_num[offset * 2] = '\0';
524 
525 	return 0;
526 }
527 
528 /**
529  *  e1000_read_mac_addr_generic - Read device MAC address
530  *  @hw: pointer to the HW structure
531  *
532  *  Reads the device MAC address from the EEPROM and stores the value.
533  *  Since devices with two ports use the same EEPROM, we increment the
534  *  last bit in the MAC address for the second port.
535  **/
536 s32 e1000_read_mac_addr_generic(struct e1000_hw *hw)
537 {
538 	u32 rar_high;
539 	u32 rar_low;
540 	u16 i;
541 
542 	rar_high = er32(RAH(0));
543 	rar_low = er32(RAL(0));
544 
545 	for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++)
546 		hw->mac.perm_addr[i] = (u8)(rar_low >> (i * 8));
547 
548 	for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++)
549 		hw->mac.perm_addr[i + 4] = (u8)(rar_high >> (i * 8));
550 
551 	for (i = 0; i < ETH_ALEN; i++)
552 		hw->mac.addr[i] = hw->mac.perm_addr[i];
553 
554 	return 0;
555 }
556 
557 /**
558  *  e1000e_validate_nvm_checksum_generic - Validate EEPROM checksum
559  *  @hw: pointer to the HW structure
560  *
561  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
562  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
563  **/
564 s32 e1000e_validate_nvm_checksum_generic(struct e1000_hw *hw)
565 {
566 	s32 ret_val;
567 	u16 checksum = 0;
568 	u16 i, nvm_data;
569 
570 	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
571 		ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
572 		if (ret_val) {
573 			e_dbg("NVM Read Error\n");
574 			return ret_val;
575 		}
576 		checksum += nvm_data;
577 	}
578 
579 	if (checksum != (u16)NVM_SUM) {
580 		e_dbg("NVM Checksum Invalid\n");
581 		return -E1000_ERR_NVM;
582 	}
583 
584 	return 0;
585 }
586 
587 /**
588  *  e1000e_update_nvm_checksum_generic - Update EEPROM checksum
589  *  @hw: pointer to the HW structure
590  *
591  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
592  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
593  *  value to the EEPROM.
594  **/
595 s32 e1000e_update_nvm_checksum_generic(struct e1000_hw *hw)
596 {
597 	s32 ret_val;
598 	u16 checksum = 0;
599 	u16 i, nvm_data;
600 
601 	for (i = 0; i < NVM_CHECKSUM_REG; i++) {
602 		ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
603 		if (ret_val) {
604 			e_dbg("NVM Read Error while updating checksum.\n");
605 			return ret_val;
606 		}
607 		checksum += nvm_data;
608 	}
609 	checksum = (u16)NVM_SUM - checksum;
610 	ret_val = e1000_write_nvm(hw, NVM_CHECKSUM_REG, 1, &checksum);
611 	if (ret_val)
612 		e_dbg("NVM Write Error while updating checksum.\n");
613 
614 	return ret_val;
615 }
616 
617 /**
618  *  e1000e_reload_nvm_generic - Reloads EEPROM
619  *  @hw: pointer to the HW structure
620  *
621  *  Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
622  *  extended control register.
623  **/
624 void e1000e_reload_nvm_generic(struct e1000_hw *hw)
625 {
626 	u32 ctrl_ext;
627 
628 	usleep_range(10, 20);
629 	ctrl_ext = er32(CTRL_EXT);
630 	ctrl_ext |= E1000_CTRL_EXT_EE_RST;
631 	ew32(CTRL_EXT, ctrl_ext);
632 	e1e_flush();
633 }
634