1 // SPDX-License-Identifier: GPL-2.0
2 /* Intel PRO/1000 Linux driver
3  * Copyright(c) 1999 - 2015 Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * The full GNU General Public License is included in this distribution in
15  * the file called "COPYING".
16  *
17  * Contact Information:
18  * Linux NICS <linux.nics@intel.com>
19  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
20  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
21  */
22 
23 #include "e1000.h"
24 
25 /**
26  *  e1000_raise_eec_clk - Raise EEPROM clock
27  *  @hw: pointer to the HW structure
28  *  @eecd: pointer to the EEPROM
29  *
30  *  Enable/Raise the EEPROM clock bit.
31  **/
32 static void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
33 {
34 	*eecd = *eecd | E1000_EECD_SK;
35 	ew32(EECD, *eecd);
36 	e1e_flush();
37 	udelay(hw->nvm.delay_usec);
38 }
39 
40 /**
41  *  e1000_lower_eec_clk - Lower EEPROM clock
42  *  @hw: pointer to the HW structure
43  *  @eecd: pointer to the EEPROM
44  *
45  *  Clear/Lower the EEPROM clock bit.
46  **/
47 static void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
48 {
49 	*eecd = *eecd & ~E1000_EECD_SK;
50 	ew32(EECD, *eecd);
51 	e1e_flush();
52 	udelay(hw->nvm.delay_usec);
53 }
54 
55 /**
56  *  e1000_shift_out_eec_bits - Shift data bits our to the EEPROM
57  *  @hw: pointer to the HW structure
58  *  @data: data to send to the EEPROM
59  *  @count: number of bits to shift out
60  *
61  *  We need to shift 'count' bits out to the EEPROM.  So, the value in the
62  *  "data" parameter will be shifted out to the EEPROM one bit at a time.
63  *  In order to do this, "data" must be broken down into bits.
64  **/
65 static void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
66 {
67 	struct e1000_nvm_info *nvm = &hw->nvm;
68 	u32 eecd = er32(EECD);
69 	u32 mask;
70 
71 	mask = BIT(count - 1);
72 	if (nvm->type == e1000_nvm_eeprom_spi)
73 		eecd |= E1000_EECD_DO;
74 
75 	do {
76 		eecd &= ~E1000_EECD_DI;
77 
78 		if (data & mask)
79 			eecd |= E1000_EECD_DI;
80 
81 		ew32(EECD, eecd);
82 		e1e_flush();
83 
84 		udelay(nvm->delay_usec);
85 
86 		e1000_raise_eec_clk(hw, &eecd);
87 		e1000_lower_eec_clk(hw, &eecd);
88 
89 		mask >>= 1;
90 	} while (mask);
91 
92 	eecd &= ~E1000_EECD_DI;
93 	ew32(EECD, eecd);
94 }
95 
96 /**
97  *  e1000_shift_in_eec_bits - Shift data bits in from the EEPROM
98  *  @hw: pointer to the HW structure
99  *  @count: number of bits to shift in
100  *
101  *  In order to read a register from the EEPROM, we need to shift 'count' bits
102  *  in from the EEPROM.  Bits are "shifted in" by raising the clock input to
103  *  the EEPROM (setting the SK bit), and then reading the value of the data out
104  *  "DO" bit.  During this "shifting in" process the data in "DI" bit should
105  *  always be clear.
106  **/
107 static u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
108 {
109 	u32 eecd;
110 	u32 i;
111 	u16 data;
112 
113 	eecd = er32(EECD);
114 	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
115 	data = 0;
116 
117 	for (i = 0; i < count; i++) {
118 		data <<= 1;
119 		e1000_raise_eec_clk(hw, &eecd);
120 
121 		eecd = er32(EECD);
122 
123 		eecd &= ~E1000_EECD_DI;
124 		if (eecd & E1000_EECD_DO)
125 			data |= 1;
126 
127 		e1000_lower_eec_clk(hw, &eecd);
128 	}
129 
130 	return data;
131 }
132 
133 /**
134  *  e1000e_poll_eerd_eewr_done - Poll for EEPROM read/write completion
135  *  @hw: pointer to the HW structure
136  *  @ee_reg: EEPROM flag for polling
137  *
138  *  Polls the EEPROM status bit for either read or write completion based
139  *  upon the value of 'ee_reg'.
140  **/
141 s32 e1000e_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
142 {
143 	u32 attempts = 100000;
144 	u32 i, reg = 0;
145 
146 	for (i = 0; i < attempts; i++) {
147 		if (ee_reg == E1000_NVM_POLL_READ)
148 			reg = er32(EERD);
149 		else
150 			reg = er32(EEWR);
151 
152 		if (reg & E1000_NVM_RW_REG_DONE)
153 			return 0;
154 
155 		udelay(5);
156 	}
157 
158 	return -E1000_ERR_NVM;
159 }
160 
161 /**
162  *  e1000e_acquire_nvm - Generic request for access to EEPROM
163  *  @hw: pointer to the HW structure
164  *
165  *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
166  *  Return successful if access grant bit set, else clear the request for
167  *  EEPROM access and return -E1000_ERR_NVM (-1).
168  **/
169 s32 e1000e_acquire_nvm(struct e1000_hw *hw)
170 {
171 	u32 eecd = er32(EECD);
172 	s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
173 
174 	ew32(EECD, eecd | E1000_EECD_REQ);
175 	eecd = er32(EECD);
176 
177 	while (timeout) {
178 		if (eecd & E1000_EECD_GNT)
179 			break;
180 		udelay(5);
181 		eecd = er32(EECD);
182 		timeout--;
183 	}
184 
185 	if (!timeout) {
186 		eecd &= ~E1000_EECD_REQ;
187 		ew32(EECD, eecd);
188 		e_dbg("Could not acquire NVM grant\n");
189 		return -E1000_ERR_NVM;
190 	}
191 
192 	return 0;
193 }
194 
195 /**
196  *  e1000_standby_nvm - Return EEPROM to standby state
197  *  @hw: pointer to the HW structure
198  *
199  *  Return the EEPROM to a standby state.
200  **/
201 static void e1000_standby_nvm(struct e1000_hw *hw)
202 {
203 	struct e1000_nvm_info *nvm = &hw->nvm;
204 	u32 eecd = er32(EECD);
205 
206 	if (nvm->type == e1000_nvm_eeprom_spi) {
207 		/* Toggle CS to flush commands */
208 		eecd |= E1000_EECD_CS;
209 		ew32(EECD, eecd);
210 		e1e_flush();
211 		udelay(nvm->delay_usec);
212 		eecd &= ~E1000_EECD_CS;
213 		ew32(EECD, eecd);
214 		e1e_flush();
215 		udelay(nvm->delay_usec);
216 	}
217 }
218 
219 /**
220  *  e1000_stop_nvm - Terminate EEPROM command
221  *  @hw: pointer to the HW structure
222  *
223  *  Terminates the current command by inverting the EEPROM's chip select pin.
224  **/
225 static void e1000_stop_nvm(struct e1000_hw *hw)
226 {
227 	u32 eecd;
228 
229 	eecd = er32(EECD);
230 	if (hw->nvm.type == e1000_nvm_eeprom_spi) {
231 		/* Pull CS high */
232 		eecd |= E1000_EECD_CS;
233 		e1000_lower_eec_clk(hw, &eecd);
234 	}
235 }
236 
237 /**
238  *  e1000e_release_nvm - Release exclusive access to EEPROM
239  *  @hw: pointer to the HW structure
240  *
241  *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
242  **/
243 void e1000e_release_nvm(struct e1000_hw *hw)
244 {
245 	u32 eecd;
246 
247 	e1000_stop_nvm(hw);
248 
249 	eecd = er32(EECD);
250 	eecd &= ~E1000_EECD_REQ;
251 	ew32(EECD, eecd);
252 }
253 
254 /**
255  *  e1000_ready_nvm_eeprom - Prepares EEPROM for read/write
256  *  @hw: pointer to the HW structure
257  *
258  *  Setups the EEPROM for reading and writing.
259  **/
260 static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw)
261 {
262 	struct e1000_nvm_info *nvm = &hw->nvm;
263 	u32 eecd = er32(EECD);
264 	u8 spi_stat_reg;
265 
266 	if (nvm->type == e1000_nvm_eeprom_spi) {
267 		u16 timeout = NVM_MAX_RETRY_SPI;
268 
269 		/* Clear SK and CS */
270 		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
271 		ew32(EECD, eecd);
272 		e1e_flush();
273 		udelay(1);
274 
275 		/* Read "Status Register" repeatedly until the LSB is cleared.
276 		 * The EEPROM will signal that the command has been completed
277 		 * by clearing bit 0 of the internal status register.  If it's
278 		 * not cleared within 'timeout', then error out.
279 		 */
280 		while (timeout) {
281 			e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
282 						 hw->nvm.opcode_bits);
283 			spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8);
284 			if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
285 				break;
286 
287 			udelay(5);
288 			e1000_standby_nvm(hw);
289 			timeout--;
290 		}
291 
292 		if (!timeout) {
293 			e_dbg("SPI NVM Status error\n");
294 			return -E1000_ERR_NVM;
295 		}
296 	}
297 
298 	return 0;
299 }
300 
301 /**
302  *  e1000e_read_nvm_eerd - Reads EEPROM using EERD register
303  *  @hw: pointer to the HW structure
304  *  @offset: offset of word in the EEPROM to read
305  *  @words: number of words to read
306  *  @data: word read from the EEPROM
307  *
308  *  Reads a 16 bit word from the EEPROM using the EERD register.
309  **/
310 s32 e1000e_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
311 {
312 	struct e1000_nvm_info *nvm = &hw->nvm;
313 	u32 i, eerd = 0;
314 	s32 ret_val = 0;
315 
316 	/* A check for invalid values:  offset too large, too many words,
317 	 * too many words for the offset, and not enough words.
318 	 */
319 	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
320 	    (words == 0)) {
321 		e_dbg("nvm parameter(s) out of bounds\n");
322 		return -E1000_ERR_NVM;
323 	}
324 
325 	for (i = 0; i < words; i++) {
326 		eerd = ((offset + i) << E1000_NVM_RW_ADDR_SHIFT) +
327 		    E1000_NVM_RW_REG_START;
328 
329 		ew32(EERD, eerd);
330 		ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
331 		if (ret_val) {
332 			e_dbg("NVM read error: %d\n", ret_val);
333 			break;
334 		}
335 
336 		data[i] = (er32(EERD) >> E1000_NVM_RW_REG_DATA);
337 	}
338 
339 	return ret_val;
340 }
341 
342 /**
343  *  e1000e_write_nvm_spi - Write to EEPROM using SPI
344  *  @hw: pointer to the HW structure
345  *  @offset: offset within the EEPROM to be written to
346  *  @words: number of words to write
347  *  @data: 16 bit word(s) to be written to the EEPROM
348  *
349  *  Writes data to EEPROM at offset using SPI interface.
350  *
351  *  If e1000e_update_nvm_checksum is not called after this function , the
352  *  EEPROM will most likely contain an invalid checksum.
353  **/
354 s32 e1000e_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
355 {
356 	struct e1000_nvm_info *nvm = &hw->nvm;
357 	s32 ret_val = -E1000_ERR_NVM;
358 	u16 widx = 0;
359 
360 	/* A check for invalid values:  offset too large, too many words,
361 	 * and not enough words.
362 	 */
363 	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
364 	    (words == 0)) {
365 		e_dbg("nvm parameter(s) out of bounds\n");
366 		return -E1000_ERR_NVM;
367 	}
368 
369 	while (widx < words) {
370 		u8 write_opcode = NVM_WRITE_OPCODE_SPI;
371 
372 		ret_val = nvm->ops.acquire(hw);
373 		if (ret_val)
374 			return ret_val;
375 
376 		ret_val = e1000_ready_nvm_eeprom(hw);
377 		if (ret_val) {
378 			nvm->ops.release(hw);
379 			return ret_val;
380 		}
381 
382 		e1000_standby_nvm(hw);
383 
384 		/* Send the WRITE ENABLE command (8 bit opcode) */
385 		e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
386 					 nvm->opcode_bits);
387 
388 		e1000_standby_nvm(hw);
389 
390 		/* Some SPI eeproms use the 8th address bit embedded in the
391 		 * opcode
392 		 */
393 		if ((nvm->address_bits == 8) && (offset >= 128))
394 			write_opcode |= NVM_A8_OPCODE_SPI;
395 
396 		/* Send the Write command (8-bit opcode + addr) */
397 		e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
398 		e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
399 					 nvm->address_bits);
400 
401 		/* Loop to allow for up to whole page write of eeprom */
402 		while (widx < words) {
403 			u16 word_out = data[widx];
404 
405 			word_out = (word_out >> 8) | (word_out << 8);
406 			e1000_shift_out_eec_bits(hw, word_out, 16);
407 			widx++;
408 
409 			if ((((offset + widx) * 2) % nvm->page_size) == 0) {
410 				e1000_standby_nvm(hw);
411 				break;
412 			}
413 		}
414 		usleep_range(10000, 20000);
415 		nvm->ops.release(hw);
416 	}
417 
418 	return ret_val;
419 }
420 
421 /**
422  *  e1000_read_pba_string_generic - Read device part number
423  *  @hw: pointer to the HW structure
424  *  @pba_num: pointer to device part number
425  *  @pba_num_size: size of part number buffer
426  *
427  *  Reads the product board assembly (PBA) number from the EEPROM and stores
428  *  the value in pba_num.
429  **/
430 s32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num,
431 				  u32 pba_num_size)
432 {
433 	s32 ret_val;
434 	u16 nvm_data;
435 	u16 pba_ptr;
436 	u16 offset;
437 	u16 length;
438 
439 	if (pba_num == NULL) {
440 		e_dbg("PBA string buffer was null\n");
441 		return -E1000_ERR_INVALID_ARGUMENT;
442 	}
443 
444 	ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
445 	if (ret_val) {
446 		e_dbg("NVM Read Error\n");
447 		return ret_val;
448 	}
449 
450 	ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr);
451 	if (ret_val) {
452 		e_dbg("NVM Read Error\n");
453 		return ret_val;
454 	}
455 
456 	/* if nvm_data is not ptr guard the PBA must be in legacy format which
457 	 * means pba_ptr is actually our second data word for the PBA number
458 	 * and we can decode it into an ascii string
459 	 */
460 	if (nvm_data != NVM_PBA_PTR_GUARD) {
461 		e_dbg("NVM PBA number is not stored as string\n");
462 
463 		/* make sure callers buffer is big enough to store the PBA */
464 		if (pba_num_size < E1000_PBANUM_LENGTH) {
465 			e_dbg("PBA string buffer too small\n");
466 			return E1000_ERR_NO_SPACE;
467 		}
468 
469 		/* extract hex string from data and pba_ptr */
470 		pba_num[0] = (nvm_data >> 12) & 0xF;
471 		pba_num[1] = (nvm_data >> 8) & 0xF;
472 		pba_num[2] = (nvm_data >> 4) & 0xF;
473 		pba_num[3] = nvm_data & 0xF;
474 		pba_num[4] = (pba_ptr >> 12) & 0xF;
475 		pba_num[5] = (pba_ptr >> 8) & 0xF;
476 		pba_num[6] = '-';
477 		pba_num[7] = 0;
478 		pba_num[8] = (pba_ptr >> 4) & 0xF;
479 		pba_num[9] = pba_ptr & 0xF;
480 
481 		/* put a null character on the end of our string */
482 		pba_num[10] = '\0';
483 
484 		/* switch all the data but the '-' to hex char */
485 		for (offset = 0; offset < 10; offset++) {
486 			if (pba_num[offset] < 0xA)
487 				pba_num[offset] += '0';
488 			else if (pba_num[offset] < 0x10)
489 				pba_num[offset] += 'A' - 0xA;
490 		}
491 
492 		return 0;
493 	}
494 
495 	ret_val = e1000_read_nvm(hw, pba_ptr, 1, &length);
496 	if (ret_val) {
497 		e_dbg("NVM Read Error\n");
498 		return ret_val;
499 	}
500 
501 	if (length == 0xFFFF || length == 0) {
502 		e_dbg("NVM PBA number section invalid length\n");
503 		return -E1000_ERR_NVM_PBA_SECTION;
504 	}
505 	/* check if pba_num buffer is big enough */
506 	if (pba_num_size < (((u32)length * 2) - 1)) {
507 		e_dbg("PBA string buffer too small\n");
508 		return -E1000_ERR_NO_SPACE;
509 	}
510 
511 	/* trim pba length from start of string */
512 	pba_ptr++;
513 	length--;
514 
515 	for (offset = 0; offset < length; offset++) {
516 		ret_val = e1000_read_nvm(hw, pba_ptr + offset, 1, &nvm_data);
517 		if (ret_val) {
518 			e_dbg("NVM Read Error\n");
519 			return ret_val;
520 		}
521 		pba_num[offset * 2] = (u8)(nvm_data >> 8);
522 		pba_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF);
523 	}
524 	pba_num[offset * 2] = '\0';
525 
526 	return 0;
527 }
528 
529 /**
530  *  e1000_read_mac_addr_generic - Read device MAC address
531  *  @hw: pointer to the HW structure
532  *
533  *  Reads the device MAC address from the EEPROM and stores the value.
534  *  Since devices with two ports use the same EEPROM, we increment the
535  *  last bit in the MAC address for the second port.
536  **/
537 s32 e1000_read_mac_addr_generic(struct e1000_hw *hw)
538 {
539 	u32 rar_high;
540 	u32 rar_low;
541 	u16 i;
542 
543 	rar_high = er32(RAH(0));
544 	rar_low = er32(RAL(0));
545 
546 	for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++)
547 		hw->mac.perm_addr[i] = (u8)(rar_low >> (i * 8));
548 
549 	for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++)
550 		hw->mac.perm_addr[i + 4] = (u8)(rar_high >> (i * 8));
551 
552 	for (i = 0; i < ETH_ALEN; i++)
553 		hw->mac.addr[i] = hw->mac.perm_addr[i];
554 
555 	return 0;
556 }
557 
558 /**
559  *  e1000e_validate_nvm_checksum_generic - Validate EEPROM checksum
560  *  @hw: pointer to the HW structure
561  *
562  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
563  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
564  **/
565 s32 e1000e_validate_nvm_checksum_generic(struct e1000_hw *hw)
566 {
567 	s32 ret_val;
568 	u16 checksum = 0;
569 	u16 i, nvm_data;
570 
571 	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
572 		ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
573 		if (ret_val) {
574 			e_dbg("NVM Read Error\n");
575 			return ret_val;
576 		}
577 		checksum += nvm_data;
578 	}
579 
580 	if (checksum != (u16)NVM_SUM) {
581 		e_dbg("NVM Checksum Invalid\n");
582 		return -E1000_ERR_NVM;
583 	}
584 
585 	return 0;
586 }
587 
588 /**
589  *  e1000e_update_nvm_checksum_generic - Update EEPROM checksum
590  *  @hw: pointer to the HW structure
591  *
592  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
593  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
594  *  value to the EEPROM.
595  **/
596 s32 e1000e_update_nvm_checksum_generic(struct e1000_hw *hw)
597 {
598 	s32 ret_val;
599 	u16 checksum = 0;
600 	u16 i, nvm_data;
601 
602 	for (i = 0; i < NVM_CHECKSUM_REG; i++) {
603 		ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
604 		if (ret_val) {
605 			e_dbg("NVM Read Error while updating checksum.\n");
606 			return ret_val;
607 		}
608 		checksum += nvm_data;
609 	}
610 	checksum = (u16)NVM_SUM - checksum;
611 	ret_val = e1000_write_nvm(hw, NVM_CHECKSUM_REG, 1, &checksum);
612 	if (ret_val)
613 		e_dbg("NVM Write Error while updating checksum.\n");
614 
615 	return ret_val;
616 }
617 
618 /**
619  *  e1000e_reload_nvm_generic - Reloads EEPROM
620  *  @hw: pointer to the HW structure
621  *
622  *  Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the
623  *  extended control register.
624  **/
625 void e1000e_reload_nvm_generic(struct e1000_hw *hw)
626 {
627 	u32 ctrl_ext;
628 
629 	usleep_range(10, 20);
630 	ctrl_ext = er32(CTRL_EXT);
631 	ctrl_ext |= E1000_CTRL_EXT_EE_RST;
632 	ew32(CTRL_EXT, ctrl_ext);
633 	e1e_flush();
634 }
635