1 /*******************************************************************************
2 
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2013 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 
27 *******************************************************************************/
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include <linux/module.h>
32 #include <linux/types.h>
33 #include <linux/init.h>
34 #include <linux/pci.h>
35 #include <linux/vmalloc.h>
36 #include <linux/pagemap.h>
37 #include <linux/delay.h>
38 #include <linux/netdevice.h>
39 #include <linux/interrupt.h>
40 #include <linux/tcp.h>
41 #include <linux/ipv6.h>
42 #include <linux/slab.h>
43 #include <net/checksum.h>
44 #include <net/ip6_checksum.h>
45 #include <linux/ethtool.h>
46 #include <linux/if_vlan.h>
47 #include <linux/cpu.h>
48 #include <linux/smp.h>
49 #include <linux/pm_qos.h>
50 #include <linux/pm_runtime.h>
51 #include <linux/aer.h>
52 #include <linux/prefetch.h>
53 
54 #include "e1000.h"
55 
56 #define DRV_EXTRAVERSION "-k"
57 
58 #define DRV_VERSION "2.3.2" DRV_EXTRAVERSION
59 char e1000e_driver_name[] = "e1000e";
60 const char e1000e_driver_version[] = DRV_VERSION;
61 
62 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
63 static int debug = -1;
64 module_param(debug, int, 0);
65 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
66 
67 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state);
68 
69 static const struct e1000_info *e1000_info_tbl[] = {
70 	[board_82571]		= &e1000_82571_info,
71 	[board_82572]		= &e1000_82572_info,
72 	[board_82573]		= &e1000_82573_info,
73 	[board_82574]		= &e1000_82574_info,
74 	[board_82583]		= &e1000_82583_info,
75 	[board_80003es2lan]	= &e1000_es2_info,
76 	[board_ich8lan]		= &e1000_ich8_info,
77 	[board_ich9lan]		= &e1000_ich9_info,
78 	[board_ich10lan]	= &e1000_ich10_info,
79 	[board_pchlan]		= &e1000_pch_info,
80 	[board_pch2lan]		= &e1000_pch2_info,
81 	[board_pch_lpt]		= &e1000_pch_lpt_info,
82 };
83 
84 struct e1000_reg_info {
85 	u32 ofs;
86 	char *name;
87 };
88 
89 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
90 	/* General Registers */
91 	{E1000_CTRL, "CTRL"},
92 	{E1000_STATUS, "STATUS"},
93 	{E1000_CTRL_EXT, "CTRL_EXT"},
94 
95 	/* Interrupt Registers */
96 	{E1000_ICR, "ICR"},
97 
98 	/* Rx Registers */
99 	{E1000_RCTL, "RCTL"},
100 	{E1000_RDLEN(0), "RDLEN"},
101 	{E1000_RDH(0), "RDH"},
102 	{E1000_RDT(0), "RDT"},
103 	{E1000_RDTR, "RDTR"},
104 	{E1000_RXDCTL(0), "RXDCTL"},
105 	{E1000_ERT, "ERT"},
106 	{E1000_RDBAL(0), "RDBAL"},
107 	{E1000_RDBAH(0), "RDBAH"},
108 	{E1000_RDFH, "RDFH"},
109 	{E1000_RDFT, "RDFT"},
110 	{E1000_RDFHS, "RDFHS"},
111 	{E1000_RDFTS, "RDFTS"},
112 	{E1000_RDFPC, "RDFPC"},
113 
114 	/* Tx Registers */
115 	{E1000_TCTL, "TCTL"},
116 	{E1000_TDBAL(0), "TDBAL"},
117 	{E1000_TDBAH(0), "TDBAH"},
118 	{E1000_TDLEN(0), "TDLEN"},
119 	{E1000_TDH(0), "TDH"},
120 	{E1000_TDT(0), "TDT"},
121 	{E1000_TIDV, "TIDV"},
122 	{E1000_TXDCTL(0), "TXDCTL"},
123 	{E1000_TADV, "TADV"},
124 	{E1000_TARC(0), "TARC"},
125 	{E1000_TDFH, "TDFH"},
126 	{E1000_TDFT, "TDFT"},
127 	{E1000_TDFHS, "TDFHS"},
128 	{E1000_TDFTS, "TDFTS"},
129 	{E1000_TDFPC, "TDFPC"},
130 
131 	/* List Terminator */
132 	{0, NULL}
133 };
134 
135 /**
136  * e1000_regdump - register printout routine
137  * @hw: pointer to the HW structure
138  * @reginfo: pointer to the register info table
139  **/
140 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
141 {
142 	int n = 0;
143 	char rname[16];
144 	u32 regs[8];
145 
146 	switch (reginfo->ofs) {
147 	case E1000_RXDCTL(0):
148 		for (n = 0; n < 2; n++)
149 			regs[n] = __er32(hw, E1000_RXDCTL(n));
150 		break;
151 	case E1000_TXDCTL(0):
152 		for (n = 0; n < 2; n++)
153 			regs[n] = __er32(hw, E1000_TXDCTL(n));
154 		break;
155 	case E1000_TARC(0):
156 		for (n = 0; n < 2; n++)
157 			regs[n] = __er32(hw, E1000_TARC(n));
158 		break;
159 	default:
160 		pr_info("%-15s %08x\n",
161 			reginfo->name, __er32(hw, reginfo->ofs));
162 		return;
163 	}
164 
165 	snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
166 	pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
167 }
168 
169 static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
170 				 struct e1000_buffer *bi)
171 {
172 	int i;
173 	struct e1000_ps_page *ps_page;
174 
175 	for (i = 0; i < adapter->rx_ps_pages; i++) {
176 		ps_page = &bi->ps_pages[i];
177 
178 		if (ps_page->page) {
179 			pr_info("packet dump for ps_page %d:\n", i);
180 			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
181 				       16, 1, page_address(ps_page->page),
182 				       PAGE_SIZE, true);
183 		}
184 	}
185 }
186 
187 /**
188  * e1000e_dump - Print registers, Tx-ring and Rx-ring
189  * @adapter: board private structure
190  **/
191 static void e1000e_dump(struct e1000_adapter *adapter)
192 {
193 	struct net_device *netdev = adapter->netdev;
194 	struct e1000_hw *hw = &adapter->hw;
195 	struct e1000_reg_info *reginfo;
196 	struct e1000_ring *tx_ring = adapter->tx_ring;
197 	struct e1000_tx_desc *tx_desc;
198 	struct my_u0 {
199 		__le64 a;
200 		__le64 b;
201 	} *u0;
202 	struct e1000_buffer *buffer_info;
203 	struct e1000_ring *rx_ring = adapter->rx_ring;
204 	union e1000_rx_desc_packet_split *rx_desc_ps;
205 	union e1000_rx_desc_extended *rx_desc;
206 	struct my_u1 {
207 		__le64 a;
208 		__le64 b;
209 		__le64 c;
210 		__le64 d;
211 	} *u1;
212 	u32 staterr;
213 	int i = 0;
214 
215 	if (!netif_msg_hw(adapter))
216 		return;
217 
218 	/* Print netdevice Info */
219 	if (netdev) {
220 		dev_info(&adapter->pdev->dev, "Net device Info\n");
221 		pr_info("Device Name     state            trans_start      last_rx\n");
222 		pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
223 			netdev->state, netdev->trans_start, netdev->last_rx);
224 	}
225 
226 	/* Print Registers */
227 	dev_info(&adapter->pdev->dev, "Register Dump\n");
228 	pr_info(" Register Name   Value\n");
229 	for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
230 	     reginfo->name; reginfo++) {
231 		e1000_regdump(hw, reginfo);
232 	}
233 
234 	/* Print Tx Ring Summary */
235 	if (!netdev || !netif_running(netdev))
236 		return;
237 
238 	dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
239 	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
240 	buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
241 	pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
242 		0, tx_ring->next_to_use, tx_ring->next_to_clean,
243 		(unsigned long long)buffer_info->dma,
244 		buffer_info->length,
245 		buffer_info->next_to_watch,
246 		(unsigned long long)buffer_info->time_stamp);
247 
248 	/* Print Tx Ring */
249 	if (!netif_msg_tx_done(adapter))
250 		goto rx_ring_summary;
251 
252 	dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
253 
254 	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
255 	 *
256 	 * Legacy Transmit Descriptor
257 	 *   +--------------------------------------------------------------+
258 	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
259 	 *   +--------------------------------------------------------------+
260 	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
261 	 *   +--------------------------------------------------------------+
262 	 *   63       48 47        36 35    32 31     24 23    16 15        0
263 	 *
264 	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
265 	 *   63      48 47    40 39       32 31             16 15    8 7      0
266 	 *   +----------------------------------------------------------------+
267 	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
268 	 *   +----------------------------------------------------------------+
269 	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
270 	 *   +----------------------------------------------------------------+
271 	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
272 	 *
273 	 * Extended Data Descriptor (DTYP=0x1)
274 	 *   +----------------------------------------------------------------+
275 	 * 0 |                     Buffer Address [63:0]                      |
276 	 *   +----------------------------------------------------------------+
277 	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
278 	 *   +----------------------------------------------------------------+
279 	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
280 	 */
281 	pr_info("Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Legacy format\n");
282 	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Context format\n");
283 	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Data format\n");
284 	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
285 		const char *next_desc;
286 		tx_desc = E1000_TX_DESC(*tx_ring, i);
287 		buffer_info = &tx_ring->buffer_info[i];
288 		u0 = (struct my_u0 *)tx_desc;
289 		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
290 			next_desc = " NTC/U";
291 		else if (i == tx_ring->next_to_use)
292 			next_desc = " NTU";
293 		else if (i == tx_ring->next_to_clean)
294 			next_desc = " NTC";
295 		else
296 			next_desc = "";
297 		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p%s\n",
298 			(!(le64_to_cpu(u0->b) & (1 << 29)) ? 'l' :
299 			 ((le64_to_cpu(u0->b) & (1 << 20)) ? 'd' : 'c')),
300 			i,
301 			(unsigned long long)le64_to_cpu(u0->a),
302 			(unsigned long long)le64_to_cpu(u0->b),
303 			(unsigned long long)buffer_info->dma,
304 			buffer_info->length, buffer_info->next_to_watch,
305 			(unsigned long long)buffer_info->time_stamp,
306 			buffer_info->skb, next_desc);
307 
308 		if (netif_msg_pktdata(adapter) && buffer_info->skb)
309 			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
310 				       16, 1, buffer_info->skb->data,
311 				       buffer_info->skb->len, true);
312 	}
313 
314 	/* Print Rx Ring Summary */
315 rx_ring_summary:
316 	dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
317 	pr_info("Queue [NTU] [NTC]\n");
318 	pr_info(" %5d %5X %5X\n",
319 		0, rx_ring->next_to_use, rx_ring->next_to_clean);
320 
321 	/* Print Rx Ring */
322 	if (!netif_msg_rx_status(adapter))
323 		return;
324 
325 	dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
326 	switch (adapter->rx_ps_pages) {
327 	case 1:
328 	case 2:
329 	case 3:
330 		/* [Extended] Packet Split Receive Descriptor Format
331 		 *
332 		 *    +-----------------------------------------------------+
333 		 *  0 |                Buffer Address 0 [63:0]              |
334 		 *    +-----------------------------------------------------+
335 		 *  8 |                Buffer Address 1 [63:0]              |
336 		 *    +-----------------------------------------------------+
337 		 * 16 |                Buffer Address 2 [63:0]              |
338 		 *    +-----------------------------------------------------+
339 		 * 24 |                Buffer Address 3 [63:0]              |
340 		 *    +-----------------------------------------------------+
341 		 */
342 		pr_info("R  [desc]      [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] [bi->skb] <-- Ext Pkt Split format\n");
343 		/* [Extended] Receive Descriptor (Write-Back) Format
344 		 *
345 		 *   63       48 47    32 31     13 12    8 7    4 3        0
346 		 *   +------------------------------------------------------+
347 		 * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
348 		 *   | Checksum | Ident  |         | Queue |      |  Type   |
349 		 *   +------------------------------------------------------+
350 		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
351 		 *   +------------------------------------------------------+
352 		 *   63       48 47    32 31            20 19               0
353 		 */
354 		pr_info("RWB[desc]      [ck ipid mrqhsh] [vl   l0 ee  es] [ l3  l2  l1 hs] [reserved      ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
355 		for (i = 0; i < rx_ring->count; i++) {
356 			const char *next_desc;
357 			buffer_info = &rx_ring->buffer_info[i];
358 			rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
359 			u1 = (struct my_u1 *)rx_desc_ps;
360 			staterr =
361 			    le32_to_cpu(rx_desc_ps->wb.middle.status_error);
362 
363 			if (i == rx_ring->next_to_use)
364 				next_desc = " NTU";
365 			else if (i == rx_ring->next_to_clean)
366 				next_desc = " NTC";
367 			else
368 				next_desc = "";
369 
370 			if (staterr & E1000_RXD_STAT_DD) {
371 				/* Descriptor Done */
372 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX ---------------- %p%s\n",
373 					"RWB", i,
374 					(unsigned long long)le64_to_cpu(u1->a),
375 					(unsigned long long)le64_to_cpu(u1->b),
376 					(unsigned long long)le64_to_cpu(u1->c),
377 					(unsigned long long)le64_to_cpu(u1->d),
378 					buffer_info->skb, next_desc);
379 			} else {
380 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX %016llX %p%s\n",
381 					"R  ", i,
382 					(unsigned long long)le64_to_cpu(u1->a),
383 					(unsigned long long)le64_to_cpu(u1->b),
384 					(unsigned long long)le64_to_cpu(u1->c),
385 					(unsigned long long)le64_to_cpu(u1->d),
386 					(unsigned long long)buffer_info->dma,
387 					buffer_info->skb, next_desc);
388 
389 				if (netif_msg_pktdata(adapter))
390 					e1000e_dump_ps_pages(adapter,
391 							     buffer_info);
392 			}
393 		}
394 		break;
395 	default:
396 	case 0:
397 		/* Extended Receive Descriptor (Read) Format
398 		 *
399 		 *   +-----------------------------------------------------+
400 		 * 0 |                Buffer Address [63:0]                |
401 		 *   +-----------------------------------------------------+
402 		 * 8 |                      Reserved                       |
403 		 *   +-----------------------------------------------------+
404 		 */
405 		pr_info("R  [desc]      [buf addr 63:0 ] [reserved 63:0 ] [bi->dma       ] [bi->skb] <-- Ext (Read) format\n");
406 		/* Extended Receive Descriptor (Write-Back) Format
407 		 *
408 		 *   63       48 47    32 31    24 23            4 3        0
409 		 *   +------------------------------------------------------+
410 		 *   |     RSS Hash      |        |               |         |
411 		 * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
412 		 *   | Packet   | IP     |        |               |  Type   |
413 		 *   | Checksum | Ident  |        |               |         |
414 		 *   +------------------------------------------------------+
415 		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
416 		 *   +------------------------------------------------------+
417 		 *   63       48 47    32 31            20 19               0
418 		 */
419 		pr_info("RWB[desc]      [cs ipid    mrq] [vt   ln xe  xs] [bi->skb] <-- Ext (Write-Back) format\n");
420 
421 		for (i = 0; i < rx_ring->count; i++) {
422 			const char *next_desc;
423 
424 			buffer_info = &rx_ring->buffer_info[i];
425 			rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
426 			u1 = (struct my_u1 *)rx_desc;
427 			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
428 
429 			if (i == rx_ring->next_to_use)
430 				next_desc = " NTU";
431 			else if (i == rx_ring->next_to_clean)
432 				next_desc = " NTC";
433 			else
434 				next_desc = "";
435 
436 			if (staterr & E1000_RXD_STAT_DD) {
437 				/* Descriptor Done */
438 				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %p%s\n",
439 					"RWB", i,
440 					(unsigned long long)le64_to_cpu(u1->a),
441 					(unsigned long long)le64_to_cpu(u1->b),
442 					buffer_info->skb, next_desc);
443 			} else {
444 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %p%s\n",
445 					"R  ", i,
446 					(unsigned long long)le64_to_cpu(u1->a),
447 					(unsigned long long)le64_to_cpu(u1->b),
448 					(unsigned long long)buffer_info->dma,
449 					buffer_info->skb, next_desc);
450 
451 				if (netif_msg_pktdata(adapter) &&
452 				    buffer_info->skb)
453 					print_hex_dump(KERN_INFO, "",
454 						       DUMP_PREFIX_ADDRESS, 16,
455 						       1,
456 						       buffer_info->skb->data,
457 						       adapter->rx_buffer_len,
458 						       true);
459 			}
460 		}
461 	}
462 }
463 
464 /**
465  * e1000_desc_unused - calculate if we have unused descriptors
466  **/
467 static int e1000_desc_unused(struct e1000_ring *ring)
468 {
469 	if (ring->next_to_clean > ring->next_to_use)
470 		return ring->next_to_clean - ring->next_to_use - 1;
471 
472 	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
473 }
474 
475 /**
476  * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
477  * @adapter: board private structure
478  * @hwtstamps: time stamp structure to update
479  * @systim: unsigned 64bit system time value.
480  *
481  * Convert the system time value stored in the RX/TXSTMP registers into a
482  * hwtstamp which can be used by the upper level time stamping functions.
483  *
484  * The 'systim_lock' spinlock is used to protect the consistency of the
485  * system time value. This is needed because reading the 64 bit time
486  * value involves reading two 32 bit registers. The first read latches the
487  * value.
488  **/
489 static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter,
490 				      struct skb_shared_hwtstamps *hwtstamps,
491 				      u64 systim)
492 {
493 	u64 ns;
494 	unsigned long flags;
495 
496 	spin_lock_irqsave(&adapter->systim_lock, flags);
497 	ns = timecounter_cyc2time(&adapter->tc, systim);
498 	spin_unlock_irqrestore(&adapter->systim_lock, flags);
499 
500 	memset(hwtstamps, 0, sizeof(*hwtstamps));
501 	hwtstamps->hwtstamp = ns_to_ktime(ns);
502 }
503 
504 /**
505  * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
506  * @adapter: board private structure
507  * @status: descriptor extended error and status field
508  * @skb: particular skb to include time stamp
509  *
510  * If the time stamp is valid, convert it into the timecounter ns value
511  * and store that result into the shhwtstamps structure which is passed
512  * up the network stack.
513  **/
514 static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status,
515 			       struct sk_buff *skb)
516 {
517 	struct e1000_hw *hw = &adapter->hw;
518 	u64 rxstmp;
519 
520 	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) ||
521 	    !(status & E1000_RXDEXT_STATERR_TST) ||
522 	    !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
523 		return;
524 
525 	/* The Rx time stamp registers contain the time stamp.  No other
526 	 * received packet will be time stamped until the Rx time stamp
527 	 * registers are read.  Because only one packet can be time stamped
528 	 * at a time, the register values must belong to this packet and
529 	 * therefore none of the other additional attributes need to be
530 	 * compared.
531 	 */
532 	rxstmp = (u64)er32(RXSTMPL);
533 	rxstmp |= (u64)er32(RXSTMPH) << 32;
534 	e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp);
535 
536 	adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP;
537 }
538 
539 /**
540  * e1000_receive_skb - helper function to handle Rx indications
541  * @adapter: board private structure
542  * @staterr: descriptor extended error and status field as written by hardware
543  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
544  * @skb: pointer to sk_buff to be indicated to stack
545  **/
546 static void e1000_receive_skb(struct e1000_adapter *adapter,
547 			      struct net_device *netdev, struct sk_buff *skb,
548 			      u32 staterr, __le16 vlan)
549 {
550 	u16 tag = le16_to_cpu(vlan);
551 
552 	e1000e_rx_hwtstamp(adapter, staterr, skb);
553 
554 	skb->protocol = eth_type_trans(skb, netdev);
555 
556 	if (staterr & E1000_RXD_STAT_VP)
557 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag);
558 
559 	napi_gro_receive(&adapter->napi, skb);
560 }
561 
562 /**
563  * e1000_rx_checksum - Receive Checksum Offload
564  * @adapter: board private structure
565  * @status_err: receive descriptor status and error fields
566  * @csum: receive descriptor csum field
567  * @sk_buff: socket buffer with received data
568  **/
569 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
570 			      struct sk_buff *skb)
571 {
572 	u16 status = (u16)status_err;
573 	u8 errors = (u8)(status_err >> 24);
574 
575 	skb_checksum_none_assert(skb);
576 
577 	/* Rx checksum disabled */
578 	if (!(adapter->netdev->features & NETIF_F_RXCSUM))
579 		return;
580 
581 	/* Ignore Checksum bit is set */
582 	if (status & E1000_RXD_STAT_IXSM)
583 		return;
584 
585 	/* TCP/UDP checksum error bit or IP checksum error bit is set */
586 	if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
587 		/* let the stack verify checksum errors */
588 		adapter->hw_csum_err++;
589 		return;
590 	}
591 
592 	/* TCP/UDP Checksum has not been calculated */
593 	if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
594 		return;
595 
596 	/* It must be a TCP or UDP packet with a valid checksum */
597 	skb->ip_summed = CHECKSUM_UNNECESSARY;
598 	adapter->hw_csum_good++;
599 }
600 
601 static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
602 {
603 	struct e1000_adapter *adapter = rx_ring->adapter;
604 	struct e1000_hw *hw = &adapter->hw;
605 	s32 ret_val = __ew32_prepare(hw);
606 
607 	writel(i, rx_ring->tail);
608 
609 	if (unlikely(!ret_val && (i != readl(rx_ring->tail)))) {
610 		u32 rctl = er32(RCTL);
611 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
612 		e_err("ME firmware caused invalid RDT - resetting\n");
613 		schedule_work(&adapter->reset_task);
614 	}
615 }
616 
617 static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
618 {
619 	struct e1000_adapter *adapter = tx_ring->adapter;
620 	struct e1000_hw *hw = &adapter->hw;
621 	s32 ret_val = __ew32_prepare(hw);
622 
623 	writel(i, tx_ring->tail);
624 
625 	if (unlikely(!ret_val && (i != readl(tx_ring->tail)))) {
626 		u32 tctl = er32(TCTL);
627 		ew32(TCTL, tctl & ~E1000_TCTL_EN);
628 		e_err("ME firmware caused invalid TDT - resetting\n");
629 		schedule_work(&adapter->reset_task);
630 	}
631 }
632 
633 /**
634  * e1000_alloc_rx_buffers - Replace used receive buffers
635  * @rx_ring: Rx descriptor ring
636  **/
637 static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
638 				   int cleaned_count, gfp_t gfp)
639 {
640 	struct e1000_adapter *adapter = rx_ring->adapter;
641 	struct net_device *netdev = adapter->netdev;
642 	struct pci_dev *pdev = adapter->pdev;
643 	union e1000_rx_desc_extended *rx_desc;
644 	struct e1000_buffer *buffer_info;
645 	struct sk_buff *skb;
646 	unsigned int i;
647 	unsigned int bufsz = adapter->rx_buffer_len;
648 
649 	i = rx_ring->next_to_use;
650 	buffer_info = &rx_ring->buffer_info[i];
651 
652 	while (cleaned_count--) {
653 		skb = buffer_info->skb;
654 		if (skb) {
655 			skb_trim(skb, 0);
656 			goto map_skb;
657 		}
658 
659 		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
660 		if (!skb) {
661 			/* Better luck next round */
662 			adapter->alloc_rx_buff_failed++;
663 			break;
664 		}
665 
666 		buffer_info->skb = skb;
667 map_skb:
668 		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
669 						  adapter->rx_buffer_len,
670 						  DMA_FROM_DEVICE);
671 		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
672 			dev_err(&pdev->dev, "Rx DMA map failed\n");
673 			adapter->rx_dma_failed++;
674 			break;
675 		}
676 
677 		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
678 		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
679 
680 		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
681 			/* Force memory writes to complete before letting h/w
682 			 * know there are new descriptors to fetch.  (Only
683 			 * applicable for weak-ordered memory model archs,
684 			 * such as IA-64).
685 			 */
686 			wmb();
687 			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
688 				e1000e_update_rdt_wa(rx_ring, i);
689 			else
690 				writel(i, rx_ring->tail);
691 		}
692 		i++;
693 		if (i == rx_ring->count)
694 			i = 0;
695 		buffer_info = &rx_ring->buffer_info[i];
696 	}
697 
698 	rx_ring->next_to_use = i;
699 }
700 
701 /**
702  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
703  * @rx_ring: Rx descriptor ring
704  **/
705 static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
706 				      int cleaned_count, gfp_t gfp)
707 {
708 	struct e1000_adapter *adapter = rx_ring->adapter;
709 	struct net_device *netdev = adapter->netdev;
710 	struct pci_dev *pdev = adapter->pdev;
711 	union e1000_rx_desc_packet_split *rx_desc;
712 	struct e1000_buffer *buffer_info;
713 	struct e1000_ps_page *ps_page;
714 	struct sk_buff *skb;
715 	unsigned int i, j;
716 
717 	i = rx_ring->next_to_use;
718 	buffer_info = &rx_ring->buffer_info[i];
719 
720 	while (cleaned_count--) {
721 		rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
722 
723 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
724 			ps_page = &buffer_info->ps_pages[j];
725 			if (j >= adapter->rx_ps_pages) {
726 				/* all unused desc entries get hw null ptr */
727 				rx_desc->read.buffer_addr[j + 1] =
728 				    ~cpu_to_le64(0);
729 				continue;
730 			}
731 			if (!ps_page->page) {
732 				ps_page->page = alloc_page(gfp);
733 				if (!ps_page->page) {
734 					adapter->alloc_rx_buff_failed++;
735 					goto no_buffers;
736 				}
737 				ps_page->dma = dma_map_page(&pdev->dev,
738 							    ps_page->page,
739 							    0, PAGE_SIZE,
740 							    DMA_FROM_DEVICE);
741 				if (dma_mapping_error(&pdev->dev,
742 						      ps_page->dma)) {
743 					dev_err(&adapter->pdev->dev,
744 						"Rx DMA page map failed\n");
745 					adapter->rx_dma_failed++;
746 					goto no_buffers;
747 				}
748 			}
749 			/* Refresh the desc even if buffer_addrs
750 			 * didn't change because each write-back
751 			 * erases this info.
752 			 */
753 			rx_desc->read.buffer_addr[j + 1] =
754 			    cpu_to_le64(ps_page->dma);
755 		}
756 
757 		skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0,
758 						  gfp);
759 
760 		if (!skb) {
761 			adapter->alloc_rx_buff_failed++;
762 			break;
763 		}
764 
765 		buffer_info->skb = skb;
766 		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
767 						  adapter->rx_ps_bsize0,
768 						  DMA_FROM_DEVICE);
769 		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
770 			dev_err(&pdev->dev, "Rx DMA map failed\n");
771 			adapter->rx_dma_failed++;
772 			/* cleanup skb */
773 			dev_kfree_skb_any(skb);
774 			buffer_info->skb = NULL;
775 			break;
776 		}
777 
778 		rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
779 
780 		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
781 			/* Force memory writes to complete before letting h/w
782 			 * know there are new descriptors to fetch.  (Only
783 			 * applicable for weak-ordered memory model archs,
784 			 * such as IA-64).
785 			 */
786 			wmb();
787 			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
788 				e1000e_update_rdt_wa(rx_ring, i << 1);
789 			else
790 				writel(i << 1, rx_ring->tail);
791 		}
792 
793 		i++;
794 		if (i == rx_ring->count)
795 			i = 0;
796 		buffer_info = &rx_ring->buffer_info[i];
797 	}
798 
799 no_buffers:
800 	rx_ring->next_to_use = i;
801 }
802 
803 /**
804  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
805  * @rx_ring: Rx descriptor ring
806  * @cleaned_count: number of buffers to allocate this pass
807  **/
808 
809 static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
810 					 int cleaned_count, gfp_t gfp)
811 {
812 	struct e1000_adapter *adapter = rx_ring->adapter;
813 	struct net_device *netdev = adapter->netdev;
814 	struct pci_dev *pdev = adapter->pdev;
815 	union e1000_rx_desc_extended *rx_desc;
816 	struct e1000_buffer *buffer_info;
817 	struct sk_buff *skb;
818 	unsigned int i;
819 	unsigned int bufsz = 256 - 16;	/* for skb_reserve */
820 
821 	i = rx_ring->next_to_use;
822 	buffer_info = &rx_ring->buffer_info[i];
823 
824 	while (cleaned_count--) {
825 		skb = buffer_info->skb;
826 		if (skb) {
827 			skb_trim(skb, 0);
828 			goto check_page;
829 		}
830 
831 		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
832 		if (unlikely(!skb)) {
833 			/* Better luck next round */
834 			adapter->alloc_rx_buff_failed++;
835 			break;
836 		}
837 
838 		buffer_info->skb = skb;
839 check_page:
840 		/* allocate a new page if necessary */
841 		if (!buffer_info->page) {
842 			buffer_info->page = alloc_page(gfp);
843 			if (unlikely(!buffer_info->page)) {
844 				adapter->alloc_rx_buff_failed++;
845 				break;
846 			}
847 		}
848 
849 		if (!buffer_info->dma) {
850 			buffer_info->dma = dma_map_page(&pdev->dev,
851 							buffer_info->page, 0,
852 							PAGE_SIZE,
853 							DMA_FROM_DEVICE);
854 			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
855 				adapter->alloc_rx_buff_failed++;
856 				break;
857 			}
858 		}
859 
860 		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
861 		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
862 
863 		if (unlikely(++i == rx_ring->count))
864 			i = 0;
865 		buffer_info = &rx_ring->buffer_info[i];
866 	}
867 
868 	if (likely(rx_ring->next_to_use != i)) {
869 		rx_ring->next_to_use = i;
870 		if (unlikely(i-- == 0))
871 			i = (rx_ring->count - 1);
872 
873 		/* Force memory writes to complete before letting h/w
874 		 * know there are new descriptors to fetch.  (Only
875 		 * applicable for weak-ordered memory model archs,
876 		 * such as IA-64).
877 		 */
878 		wmb();
879 		if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
880 			e1000e_update_rdt_wa(rx_ring, i);
881 		else
882 			writel(i, rx_ring->tail);
883 	}
884 }
885 
886 static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
887 				 struct sk_buff *skb)
888 {
889 	if (netdev->features & NETIF_F_RXHASH)
890 		skb->rxhash = le32_to_cpu(rss);
891 }
892 
893 /**
894  * e1000_clean_rx_irq - Send received data up the network stack
895  * @rx_ring: Rx descriptor ring
896  *
897  * the return value indicates whether actual cleaning was done, there
898  * is no guarantee that everything was cleaned
899  **/
900 static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
901 			       int work_to_do)
902 {
903 	struct e1000_adapter *adapter = rx_ring->adapter;
904 	struct net_device *netdev = adapter->netdev;
905 	struct pci_dev *pdev = adapter->pdev;
906 	struct e1000_hw *hw = &adapter->hw;
907 	union e1000_rx_desc_extended *rx_desc, *next_rxd;
908 	struct e1000_buffer *buffer_info, *next_buffer;
909 	u32 length, staterr;
910 	unsigned int i;
911 	int cleaned_count = 0;
912 	bool cleaned = false;
913 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
914 
915 	i = rx_ring->next_to_clean;
916 	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
917 	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
918 	buffer_info = &rx_ring->buffer_info[i];
919 
920 	while (staterr & E1000_RXD_STAT_DD) {
921 		struct sk_buff *skb;
922 
923 		if (*work_done >= work_to_do)
924 			break;
925 		(*work_done)++;
926 		rmb();	/* read descriptor and rx_buffer_info after status DD */
927 
928 		skb = buffer_info->skb;
929 		buffer_info->skb = NULL;
930 
931 		prefetch(skb->data - NET_IP_ALIGN);
932 
933 		i++;
934 		if (i == rx_ring->count)
935 			i = 0;
936 		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
937 		prefetch(next_rxd);
938 
939 		next_buffer = &rx_ring->buffer_info[i];
940 
941 		cleaned = true;
942 		cleaned_count++;
943 		dma_unmap_single(&pdev->dev, buffer_info->dma,
944 				 adapter->rx_buffer_len, DMA_FROM_DEVICE);
945 		buffer_info->dma = 0;
946 
947 		length = le16_to_cpu(rx_desc->wb.upper.length);
948 
949 		/* !EOP means multiple descriptors were used to store a single
950 		 * packet, if that's the case we need to toss it.  In fact, we
951 		 * need to toss every packet with the EOP bit clear and the
952 		 * next frame that _does_ have the EOP bit set, as it is by
953 		 * definition only a frame fragment
954 		 */
955 		if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
956 			adapter->flags2 |= FLAG2_IS_DISCARDING;
957 
958 		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
959 			/* All receives must fit into a single buffer */
960 			e_dbg("Receive packet consumed multiple buffers\n");
961 			/* recycle */
962 			buffer_info->skb = skb;
963 			if (staterr & E1000_RXD_STAT_EOP)
964 				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
965 			goto next_desc;
966 		}
967 
968 		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
969 			     !(netdev->features & NETIF_F_RXALL))) {
970 			/* recycle */
971 			buffer_info->skb = skb;
972 			goto next_desc;
973 		}
974 
975 		/* adjust length to remove Ethernet CRC */
976 		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
977 			/* If configured to store CRC, don't subtract FCS,
978 			 * but keep the FCS bytes out of the total_rx_bytes
979 			 * counter
980 			 */
981 			if (netdev->features & NETIF_F_RXFCS)
982 				total_rx_bytes -= 4;
983 			else
984 				length -= 4;
985 		}
986 
987 		total_rx_bytes += length;
988 		total_rx_packets++;
989 
990 		/* code added for copybreak, this should improve
991 		 * performance for small packets with large amounts
992 		 * of reassembly being done in the stack
993 		 */
994 		if (length < copybreak) {
995 			struct sk_buff *new_skb =
996 			    netdev_alloc_skb_ip_align(netdev, length);
997 			if (new_skb) {
998 				skb_copy_to_linear_data_offset(new_skb,
999 							       -NET_IP_ALIGN,
1000 							       (skb->data -
1001 								NET_IP_ALIGN),
1002 							       (length +
1003 								NET_IP_ALIGN));
1004 				/* save the skb in buffer_info as good */
1005 				buffer_info->skb = skb;
1006 				skb = new_skb;
1007 			}
1008 			/* else just continue with the old one */
1009 		}
1010 		/* end copybreak code */
1011 		skb_put(skb, length);
1012 
1013 		/* Receive Checksum Offload */
1014 		e1000_rx_checksum(adapter, staterr, skb);
1015 
1016 		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1017 
1018 		e1000_receive_skb(adapter, netdev, skb, staterr,
1019 				  rx_desc->wb.upper.vlan);
1020 
1021 next_desc:
1022 		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1023 
1024 		/* return some buffers to hardware, one at a time is too slow */
1025 		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1026 			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1027 					      GFP_ATOMIC);
1028 			cleaned_count = 0;
1029 		}
1030 
1031 		/* use prefetched values */
1032 		rx_desc = next_rxd;
1033 		buffer_info = next_buffer;
1034 
1035 		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1036 	}
1037 	rx_ring->next_to_clean = i;
1038 
1039 	cleaned_count = e1000_desc_unused(rx_ring);
1040 	if (cleaned_count)
1041 		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1042 
1043 	adapter->total_rx_bytes += total_rx_bytes;
1044 	adapter->total_rx_packets += total_rx_packets;
1045 	return cleaned;
1046 }
1047 
1048 static void e1000_put_txbuf(struct e1000_ring *tx_ring,
1049 			    struct e1000_buffer *buffer_info)
1050 {
1051 	struct e1000_adapter *adapter = tx_ring->adapter;
1052 
1053 	if (buffer_info->dma) {
1054 		if (buffer_info->mapped_as_page)
1055 			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1056 				       buffer_info->length, DMA_TO_DEVICE);
1057 		else
1058 			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1059 					 buffer_info->length, DMA_TO_DEVICE);
1060 		buffer_info->dma = 0;
1061 	}
1062 	if (buffer_info->skb) {
1063 		dev_kfree_skb_any(buffer_info->skb);
1064 		buffer_info->skb = NULL;
1065 	}
1066 	buffer_info->time_stamp = 0;
1067 }
1068 
1069 static void e1000_print_hw_hang(struct work_struct *work)
1070 {
1071 	struct e1000_adapter *adapter = container_of(work,
1072 						     struct e1000_adapter,
1073 						     print_hang_task);
1074 	struct net_device *netdev = adapter->netdev;
1075 	struct e1000_ring *tx_ring = adapter->tx_ring;
1076 	unsigned int i = tx_ring->next_to_clean;
1077 	unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1078 	struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1079 	struct e1000_hw *hw = &adapter->hw;
1080 	u16 phy_status, phy_1000t_status, phy_ext_status;
1081 	u16 pci_status;
1082 
1083 	if (test_bit(__E1000_DOWN, &adapter->state))
1084 		return;
1085 
1086 	if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) {
1087 		/* May be block on write-back, flush and detect again
1088 		 * flush pending descriptor writebacks to memory
1089 		 */
1090 		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1091 		/* execute the writes immediately */
1092 		e1e_flush();
1093 		/* Due to rare timing issues, write to TIDV again to ensure
1094 		 * the write is successful
1095 		 */
1096 		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1097 		/* execute the writes immediately */
1098 		e1e_flush();
1099 		adapter->tx_hang_recheck = true;
1100 		return;
1101 	}
1102 	/* Real hang detected */
1103 	adapter->tx_hang_recheck = false;
1104 	netif_stop_queue(netdev);
1105 
1106 	e1e_rphy(hw, MII_BMSR, &phy_status);
1107 	e1e_rphy(hw, MII_STAT1000, &phy_1000t_status);
1108 	e1e_rphy(hw, MII_ESTATUS, &phy_ext_status);
1109 
1110 	pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1111 
1112 	/* detected Hardware unit hang */
1113 	e_err("Detected Hardware Unit Hang:\n"
1114 	      "  TDH                  <%x>\n"
1115 	      "  TDT                  <%x>\n"
1116 	      "  next_to_use          <%x>\n"
1117 	      "  next_to_clean        <%x>\n"
1118 	      "buffer_info[next_to_clean]:\n"
1119 	      "  time_stamp           <%lx>\n"
1120 	      "  next_to_watch        <%x>\n"
1121 	      "  jiffies              <%lx>\n"
1122 	      "  next_to_watch.status <%x>\n"
1123 	      "MAC Status             <%x>\n"
1124 	      "PHY Status             <%x>\n"
1125 	      "PHY 1000BASE-T Status  <%x>\n"
1126 	      "PHY Extended Status    <%x>\n"
1127 	      "PCI Status             <%x>\n",
1128 	      readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use,
1129 	      tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp,
1130 	      eop, jiffies, eop_desc->upper.fields.status, er32(STATUS),
1131 	      phy_status, phy_1000t_status, phy_ext_status, pci_status);
1132 
1133 	/* Suggest workaround for known h/w issue */
1134 	if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1135 		e_err("Try turning off Tx pause (flow control) via ethtool\n");
1136 }
1137 
1138 /**
1139  * e1000e_tx_hwtstamp_work - check for Tx time stamp
1140  * @work: pointer to work struct
1141  *
1142  * This work function polls the TSYNCTXCTL valid bit to determine when a
1143  * timestamp has been taken for the current stored skb.  The timestamp must
1144  * be for this skb because only one such packet is allowed in the queue.
1145  */
1146 static void e1000e_tx_hwtstamp_work(struct work_struct *work)
1147 {
1148 	struct e1000_adapter *adapter = container_of(work, struct e1000_adapter,
1149 						     tx_hwtstamp_work);
1150 	struct e1000_hw *hw = &adapter->hw;
1151 
1152 	if (!adapter->tx_hwtstamp_skb)
1153 		return;
1154 
1155 	if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) {
1156 		struct skb_shared_hwtstamps shhwtstamps;
1157 		u64 txstmp;
1158 
1159 		txstmp = er32(TXSTMPL);
1160 		txstmp |= (u64)er32(TXSTMPH) << 32;
1161 
1162 		e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp);
1163 
1164 		skb_tstamp_tx(adapter->tx_hwtstamp_skb, &shhwtstamps);
1165 		dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1166 		adapter->tx_hwtstamp_skb = NULL;
1167 	} else {
1168 		/* reschedule to check later */
1169 		schedule_work(&adapter->tx_hwtstamp_work);
1170 	}
1171 }
1172 
1173 /**
1174  * e1000_clean_tx_irq - Reclaim resources after transmit completes
1175  * @tx_ring: Tx descriptor ring
1176  *
1177  * the return value indicates whether actual cleaning was done, there
1178  * is no guarantee that everything was cleaned
1179  **/
1180 static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1181 {
1182 	struct e1000_adapter *adapter = tx_ring->adapter;
1183 	struct net_device *netdev = adapter->netdev;
1184 	struct e1000_hw *hw = &adapter->hw;
1185 	struct e1000_tx_desc *tx_desc, *eop_desc;
1186 	struct e1000_buffer *buffer_info;
1187 	unsigned int i, eop;
1188 	unsigned int count = 0;
1189 	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1190 	unsigned int bytes_compl = 0, pkts_compl = 0;
1191 
1192 	i = tx_ring->next_to_clean;
1193 	eop = tx_ring->buffer_info[i].next_to_watch;
1194 	eop_desc = E1000_TX_DESC(*tx_ring, eop);
1195 
1196 	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1197 	       (count < tx_ring->count)) {
1198 		bool cleaned = false;
1199 		rmb(); /* read buffer_info after eop_desc */
1200 		for (; !cleaned; count++) {
1201 			tx_desc = E1000_TX_DESC(*tx_ring, i);
1202 			buffer_info = &tx_ring->buffer_info[i];
1203 			cleaned = (i == eop);
1204 
1205 			if (cleaned) {
1206 				total_tx_packets += buffer_info->segs;
1207 				total_tx_bytes += buffer_info->bytecount;
1208 				if (buffer_info->skb) {
1209 					bytes_compl += buffer_info->skb->len;
1210 					pkts_compl++;
1211 				}
1212 			}
1213 
1214 			e1000_put_txbuf(tx_ring, buffer_info);
1215 			tx_desc->upper.data = 0;
1216 
1217 			i++;
1218 			if (i == tx_ring->count)
1219 				i = 0;
1220 		}
1221 
1222 		if (i == tx_ring->next_to_use)
1223 			break;
1224 		eop = tx_ring->buffer_info[i].next_to_watch;
1225 		eop_desc = E1000_TX_DESC(*tx_ring, eop);
1226 	}
1227 
1228 	tx_ring->next_to_clean = i;
1229 
1230 	netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1231 
1232 #define TX_WAKE_THRESHOLD 32
1233 	if (count && netif_carrier_ok(netdev) &&
1234 	    e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1235 		/* Make sure that anybody stopping the queue after this
1236 		 * sees the new next_to_clean.
1237 		 */
1238 		smp_mb();
1239 
1240 		if (netif_queue_stopped(netdev) &&
1241 		    !(test_bit(__E1000_DOWN, &adapter->state))) {
1242 			netif_wake_queue(netdev);
1243 			++adapter->restart_queue;
1244 		}
1245 	}
1246 
1247 	if (adapter->detect_tx_hung) {
1248 		/* Detect a transmit hang in hardware, this serializes the
1249 		 * check with the clearing of time_stamp and movement of i
1250 		 */
1251 		adapter->detect_tx_hung = false;
1252 		if (tx_ring->buffer_info[i].time_stamp &&
1253 		    time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1254 			       + (adapter->tx_timeout_factor * HZ)) &&
1255 		    !(er32(STATUS) & E1000_STATUS_TXOFF))
1256 			schedule_work(&adapter->print_hang_task);
1257 		else
1258 			adapter->tx_hang_recheck = false;
1259 	}
1260 	adapter->total_tx_bytes += total_tx_bytes;
1261 	adapter->total_tx_packets += total_tx_packets;
1262 	return count < tx_ring->count;
1263 }
1264 
1265 /**
1266  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1267  * @rx_ring: Rx descriptor ring
1268  *
1269  * the return value indicates whether actual cleaning was done, there
1270  * is no guarantee that everything was cleaned
1271  **/
1272 static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1273 				  int work_to_do)
1274 {
1275 	struct e1000_adapter *adapter = rx_ring->adapter;
1276 	struct e1000_hw *hw = &adapter->hw;
1277 	union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1278 	struct net_device *netdev = adapter->netdev;
1279 	struct pci_dev *pdev = adapter->pdev;
1280 	struct e1000_buffer *buffer_info, *next_buffer;
1281 	struct e1000_ps_page *ps_page;
1282 	struct sk_buff *skb;
1283 	unsigned int i, j;
1284 	u32 length, staterr;
1285 	int cleaned_count = 0;
1286 	bool cleaned = false;
1287 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1288 
1289 	i = rx_ring->next_to_clean;
1290 	rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1291 	staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1292 	buffer_info = &rx_ring->buffer_info[i];
1293 
1294 	while (staterr & E1000_RXD_STAT_DD) {
1295 		if (*work_done >= work_to_do)
1296 			break;
1297 		(*work_done)++;
1298 		skb = buffer_info->skb;
1299 		rmb();	/* read descriptor and rx_buffer_info after status DD */
1300 
1301 		/* in the packet split case this is header only */
1302 		prefetch(skb->data - NET_IP_ALIGN);
1303 
1304 		i++;
1305 		if (i == rx_ring->count)
1306 			i = 0;
1307 		next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1308 		prefetch(next_rxd);
1309 
1310 		next_buffer = &rx_ring->buffer_info[i];
1311 
1312 		cleaned = true;
1313 		cleaned_count++;
1314 		dma_unmap_single(&pdev->dev, buffer_info->dma,
1315 				 adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1316 		buffer_info->dma = 0;
1317 
1318 		/* see !EOP comment in other Rx routine */
1319 		if (!(staterr & E1000_RXD_STAT_EOP))
1320 			adapter->flags2 |= FLAG2_IS_DISCARDING;
1321 
1322 		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1323 			e_dbg("Packet Split buffers didn't pick up the full packet\n");
1324 			dev_kfree_skb_irq(skb);
1325 			if (staterr & E1000_RXD_STAT_EOP)
1326 				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1327 			goto next_desc;
1328 		}
1329 
1330 		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1331 			     !(netdev->features & NETIF_F_RXALL))) {
1332 			dev_kfree_skb_irq(skb);
1333 			goto next_desc;
1334 		}
1335 
1336 		length = le16_to_cpu(rx_desc->wb.middle.length0);
1337 
1338 		if (!length) {
1339 			e_dbg("Last part of the packet spanning multiple descriptors\n");
1340 			dev_kfree_skb_irq(skb);
1341 			goto next_desc;
1342 		}
1343 
1344 		/* Good Receive */
1345 		skb_put(skb, length);
1346 
1347 		{
1348 			/* this looks ugly, but it seems compiler issues make
1349 			 * it more efficient than reusing j
1350 			 */
1351 			int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1352 
1353 			/* page alloc/put takes too long and effects small
1354 			 * packet throughput, so unsplit small packets and
1355 			 * save the alloc/put only valid in softirq (napi)
1356 			 * context to call kmap_*
1357 			 */
1358 			if (l1 && (l1 <= copybreak) &&
1359 			    ((length + l1) <= adapter->rx_ps_bsize0)) {
1360 				u8 *vaddr;
1361 
1362 				ps_page = &buffer_info->ps_pages[0];
1363 
1364 				/* there is no documentation about how to call
1365 				 * kmap_atomic, so we can't hold the mapping
1366 				 * very long
1367 				 */
1368 				dma_sync_single_for_cpu(&pdev->dev,
1369 							ps_page->dma,
1370 							PAGE_SIZE,
1371 							DMA_FROM_DEVICE);
1372 				vaddr = kmap_atomic(ps_page->page);
1373 				memcpy(skb_tail_pointer(skb), vaddr, l1);
1374 				kunmap_atomic(vaddr);
1375 				dma_sync_single_for_device(&pdev->dev,
1376 							   ps_page->dma,
1377 							   PAGE_SIZE,
1378 							   DMA_FROM_DEVICE);
1379 
1380 				/* remove the CRC */
1381 				if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1382 					if (!(netdev->features & NETIF_F_RXFCS))
1383 						l1 -= 4;
1384 				}
1385 
1386 				skb_put(skb, l1);
1387 				goto copydone;
1388 			} /* if */
1389 		}
1390 
1391 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1392 			length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1393 			if (!length)
1394 				break;
1395 
1396 			ps_page = &buffer_info->ps_pages[j];
1397 			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1398 				       DMA_FROM_DEVICE);
1399 			ps_page->dma = 0;
1400 			skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1401 			ps_page->page = NULL;
1402 			skb->len += length;
1403 			skb->data_len += length;
1404 			skb->truesize += PAGE_SIZE;
1405 		}
1406 
1407 		/* strip the ethernet crc, problem is we're using pages now so
1408 		 * this whole operation can get a little cpu intensive
1409 		 */
1410 		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1411 			if (!(netdev->features & NETIF_F_RXFCS))
1412 				pskb_trim(skb, skb->len - 4);
1413 		}
1414 
1415 copydone:
1416 		total_rx_bytes += skb->len;
1417 		total_rx_packets++;
1418 
1419 		e1000_rx_checksum(adapter, staterr, skb);
1420 
1421 		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1422 
1423 		if (rx_desc->wb.upper.header_status &
1424 		    cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1425 			adapter->rx_hdr_split++;
1426 
1427 		e1000_receive_skb(adapter, netdev, skb, staterr,
1428 				  rx_desc->wb.middle.vlan);
1429 
1430 next_desc:
1431 		rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1432 		buffer_info->skb = NULL;
1433 
1434 		/* return some buffers to hardware, one at a time is too slow */
1435 		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1436 			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1437 					      GFP_ATOMIC);
1438 			cleaned_count = 0;
1439 		}
1440 
1441 		/* use prefetched values */
1442 		rx_desc = next_rxd;
1443 		buffer_info = next_buffer;
1444 
1445 		staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1446 	}
1447 	rx_ring->next_to_clean = i;
1448 
1449 	cleaned_count = e1000_desc_unused(rx_ring);
1450 	if (cleaned_count)
1451 		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1452 
1453 	adapter->total_rx_bytes += total_rx_bytes;
1454 	adapter->total_rx_packets += total_rx_packets;
1455 	return cleaned;
1456 }
1457 
1458 /**
1459  * e1000_consume_page - helper function
1460  **/
1461 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1462 			       u16 length)
1463 {
1464 	bi->page = NULL;
1465 	skb->len += length;
1466 	skb->data_len += length;
1467 	skb->truesize += PAGE_SIZE;
1468 }
1469 
1470 /**
1471  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1472  * @adapter: board private structure
1473  *
1474  * the return value indicates whether actual cleaning was done, there
1475  * is no guarantee that everything was cleaned
1476  **/
1477 static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1478 				     int work_to_do)
1479 {
1480 	struct e1000_adapter *adapter = rx_ring->adapter;
1481 	struct net_device *netdev = adapter->netdev;
1482 	struct pci_dev *pdev = adapter->pdev;
1483 	union e1000_rx_desc_extended *rx_desc, *next_rxd;
1484 	struct e1000_buffer *buffer_info, *next_buffer;
1485 	u32 length, staterr;
1486 	unsigned int i;
1487 	int cleaned_count = 0;
1488 	bool cleaned = false;
1489 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1490 	struct skb_shared_info *shinfo;
1491 
1492 	i = rx_ring->next_to_clean;
1493 	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1494 	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1495 	buffer_info = &rx_ring->buffer_info[i];
1496 
1497 	while (staterr & E1000_RXD_STAT_DD) {
1498 		struct sk_buff *skb;
1499 
1500 		if (*work_done >= work_to_do)
1501 			break;
1502 		(*work_done)++;
1503 		rmb();	/* read descriptor and rx_buffer_info after status DD */
1504 
1505 		skb = buffer_info->skb;
1506 		buffer_info->skb = NULL;
1507 
1508 		++i;
1509 		if (i == rx_ring->count)
1510 			i = 0;
1511 		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1512 		prefetch(next_rxd);
1513 
1514 		next_buffer = &rx_ring->buffer_info[i];
1515 
1516 		cleaned = true;
1517 		cleaned_count++;
1518 		dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1519 			       DMA_FROM_DEVICE);
1520 		buffer_info->dma = 0;
1521 
1522 		length = le16_to_cpu(rx_desc->wb.upper.length);
1523 
1524 		/* errors is only valid for DD + EOP descriptors */
1525 		if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1526 			     ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1527 			      !(netdev->features & NETIF_F_RXALL)))) {
1528 			/* recycle both page and skb */
1529 			buffer_info->skb = skb;
1530 			/* an error means any chain goes out the window too */
1531 			if (rx_ring->rx_skb_top)
1532 				dev_kfree_skb_irq(rx_ring->rx_skb_top);
1533 			rx_ring->rx_skb_top = NULL;
1534 			goto next_desc;
1535 		}
1536 #define rxtop (rx_ring->rx_skb_top)
1537 		if (!(staterr & E1000_RXD_STAT_EOP)) {
1538 			/* this descriptor is only the beginning (or middle) */
1539 			if (!rxtop) {
1540 				/* this is the beginning of a chain */
1541 				rxtop = skb;
1542 				skb_fill_page_desc(rxtop, 0, buffer_info->page,
1543 						   0, length);
1544 			} else {
1545 				/* this is the middle of a chain */
1546 				shinfo = skb_shinfo(rxtop);
1547 				skb_fill_page_desc(rxtop, shinfo->nr_frags,
1548 						   buffer_info->page, 0,
1549 						   length);
1550 				/* re-use the skb, only consumed the page */
1551 				buffer_info->skb = skb;
1552 			}
1553 			e1000_consume_page(buffer_info, rxtop, length);
1554 			goto next_desc;
1555 		} else {
1556 			if (rxtop) {
1557 				/* end of the chain */
1558 				shinfo = skb_shinfo(rxtop);
1559 				skb_fill_page_desc(rxtop, shinfo->nr_frags,
1560 						   buffer_info->page, 0,
1561 						   length);
1562 				/* re-use the current skb, we only consumed the
1563 				 * page
1564 				 */
1565 				buffer_info->skb = skb;
1566 				skb = rxtop;
1567 				rxtop = NULL;
1568 				e1000_consume_page(buffer_info, skb, length);
1569 			} else {
1570 				/* no chain, got EOP, this buf is the packet
1571 				 * copybreak to save the put_page/alloc_page
1572 				 */
1573 				if (length <= copybreak &&
1574 				    skb_tailroom(skb) >= length) {
1575 					u8 *vaddr;
1576 					vaddr = kmap_atomic(buffer_info->page);
1577 					memcpy(skb_tail_pointer(skb), vaddr,
1578 					       length);
1579 					kunmap_atomic(vaddr);
1580 					/* re-use the page, so don't erase
1581 					 * buffer_info->page
1582 					 */
1583 					skb_put(skb, length);
1584 				} else {
1585 					skb_fill_page_desc(skb, 0,
1586 							   buffer_info->page, 0,
1587 							   length);
1588 					e1000_consume_page(buffer_info, skb,
1589 							   length);
1590 				}
1591 			}
1592 		}
1593 
1594 		/* Receive Checksum Offload */
1595 		e1000_rx_checksum(adapter, staterr, skb);
1596 
1597 		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1598 
1599 		/* probably a little skewed due to removing CRC */
1600 		total_rx_bytes += skb->len;
1601 		total_rx_packets++;
1602 
1603 		/* eth type trans needs skb->data to point to something */
1604 		if (!pskb_may_pull(skb, ETH_HLEN)) {
1605 			e_err("pskb_may_pull failed.\n");
1606 			dev_kfree_skb_irq(skb);
1607 			goto next_desc;
1608 		}
1609 
1610 		e1000_receive_skb(adapter, netdev, skb, staterr,
1611 				  rx_desc->wb.upper.vlan);
1612 
1613 next_desc:
1614 		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1615 
1616 		/* return some buffers to hardware, one at a time is too slow */
1617 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1618 			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1619 					      GFP_ATOMIC);
1620 			cleaned_count = 0;
1621 		}
1622 
1623 		/* use prefetched values */
1624 		rx_desc = next_rxd;
1625 		buffer_info = next_buffer;
1626 
1627 		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1628 	}
1629 	rx_ring->next_to_clean = i;
1630 
1631 	cleaned_count = e1000_desc_unused(rx_ring);
1632 	if (cleaned_count)
1633 		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1634 
1635 	adapter->total_rx_bytes += total_rx_bytes;
1636 	adapter->total_rx_packets += total_rx_packets;
1637 	return cleaned;
1638 }
1639 
1640 /**
1641  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1642  * @rx_ring: Rx descriptor ring
1643  **/
1644 static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1645 {
1646 	struct e1000_adapter *adapter = rx_ring->adapter;
1647 	struct e1000_buffer *buffer_info;
1648 	struct e1000_ps_page *ps_page;
1649 	struct pci_dev *pdev = adapter->pdev;
1650 	unsigned int i, j;
1651 
1652 	/* Free all the Rx ring sk_buffs */
1653 	for (i = 0; i < rx_ring->count; i++) {
1654 		buffer_info = &rx_ring->buffer_info[i];
1655 		if (buffer_info->dma) {
1656 			if (adapter->clean_rx == e1000_clean_rx_irq)
1657 				dma_unmap_single(&pdev->dev, buffer_info->dma,
1658 						 adapter->rx_buffer_len,
1659 						 DMA_FROM_DEVICE);
1660 			else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1661 				dma_unmap_page(&pdev->dev, buffer_info->dma,
1662 					       PAGE_SIZE, DMA_FROM_DEVICE);
1663 			else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1664 				dma_unmap_single(&pdev->dev, buffer_info->dma,
1665 						 adapter->rx_ps_bsize0,
1666 						 DMA_FROM_DEVICE);
1667 			buffer_info->dma = 0;
1668 		}
1669 
1670 		if (buffer_info->page) {
1671 			put_page(buffer_info->page);
1672 			buffer_info->page = NULL;
1673 		}
1674 
1675 		if (buffer_info->skb) {
1676 			dev_kfree_skb(buffer_info->skb);
1677 			buffer_info->skb = NULL;
1678 		}
1679 
1680 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1681 			ps_page = &buffer_info->ps_pages[j];
1682 			if (!ps_page->page)
1683 				break;
1684 			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1685 				       DMA_FROM_DEVICE);
1686 			ps_page->dma = 0;
1687 			put_page(ps_page->page);
1688 			ps_page->page = NULL;
1689 		}
1690 	}
1691 
1692 	/* there also may be some cached data from a chained receive */
1693 	if (rx_ring->rx_skb_top) {
1694 		dev_kfree_skb(rx_ring->rx_skb_top);
1695 		rx_ring->rx_skb_top = NULL;
1696 	}
1697 
1698 	/* Zero out the descriptor ring */
1699 	memset(rx_ring->desc, 0, rx_ring->size);
1700 
1701 	rx_ring->next_to_clean = 0;
1702 	rx_ring->next_to_use = 0;
1703 	adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1704 
1705 	writel(0, rx_ring->head);
1706 	if (rx_ring->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
1707 		e1000e_update_rdt_wa(rx_ring, 0);
1708 	else
1709 		writel(0, rx_ring->tail);
1710 }
1711 
1712 static void e1000e_downshift_workaround(struct work_struct *work)
1713 {
1714 	struct e1000_adapter *adapter = container_of(work,
1715 						     struct e1000_adapter,
1716 						     downshift_task);
1717 
1718 	if (test_bit(__E1000_DOWN, &adapter->state))
1719 		return;
1720 
1721 	e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1722 }
1723 
1724 /**
1725  * e1000_intr_msi - Interrupt Handler
1726  * @irq: interrupt number
1727  * @data: pointer to a network interface device structure
1728  **/
1729 static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data)
1730 {
1731 	struct net_device *netdev = data;
1732 	struct e1000_adapter *adapter = netdev_priv(netdev);
1733 	struct e1000_hw *hw = &adapter->hw;
1734 	u32 icr = er32(ICR);
1735 
1736 	/* read ICR disables interrupts using IAM */
1737 	if (icr & E1000_ICR_LSC) {
1738 		hw->mac.get_link_status = true;
1739 		/* ICH8 workaround-- Call gig speed drop workaround on cable
1740 		 * disconnect (LSC) before accessing any PHY registers
1741 		 */
1742 		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1743 		    (!(er32(STATUS) & E1000_STATUS_LU)))
1744 			schedule_work(&adapter->downshift_task);
1745 
1746 		/* 80003ES2LAN workaround-- For packet buffer work-around on
1747 		 * link down event; disable receives here in the ISR and reset
1748 		 * adapter in watchdog
1749 		 */
1750 		if (netif_carrier_ok(netdev) &&
1751 		    adapter->flags & FLAG_RX_NEEDS_RESTART) {
1752 			/* disable receives */
1753 			u32 rctl = er32(RCTL);
1754 			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1755 			adapter->flags |= FLAG_RESTART_NOW;
1756 		}
1757 		/* guard against interrupt when we're going down */
1758 		if (!test_bit(__E1000_DOWN, &adapter->state))
1759 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1760 	}
1761 
1762 	/* Reset on uncorrectable ECC error */
1763 	if ((icr & E1000_ICR_ECCER) && (hw->mac.type == e1000_pch_lpt)) {
1764 		u32 pbeccsts = er32(PBECCSTS);
1765 
1766 		adapter->corr_errors +=
1767 		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1768 		adapter->uncorr_errors +=
1769 		    (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1770 		    E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1771 
1772 		/* Do the reset outside of interrupt context */
1773 		schedule_work(&adapter->reset_task);
1774 
1775 		/* return immediately since reset is imminent */
1776 		return IRQ_HANDLED;
1777 	}
1778 
1779 	if (napi_schedule_prep(&adapter->napi)) {
1780 		adapter->total_tx_bytes = 0;
1781 		adapter->total_tx_packets = 0;
1782 		adapter->total_rx_bytes = 0;
1783 		adapter->total_rx_packets = 0;
1784 		__napi_schedule(&adapter->napi);
1785 	}
1786 
1787 	return IRQ_HANDLED;
1788 }
1789 
1790 /**
1791  * e1000_intr - Interrupt Handler
1792  * @irq: interrupt number
1793  * @data: pointer to a network interface device structure
1794  **/
1795 static irqreturn_t e1000_intr(int __always_unused irq, void *data)
1796 {
1797 	struct net_device *netdev = data;
1798 	struct e1000_adapter *adapter = netdev_priv(netdev);
1799 	struct e1000_hw *hw = &adapter->hw;
1800 	u32 rctl, icr = er32(ICR);
1801 
1802 	if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1803 		return IRQ_NONE;  /* Not our interrupt */
1804 
1805 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1806 	 * not set, then the adapter didn't send an interrupt
1807 	 */
1808 	if (!(icr & E1000_ICR_INT_ASSERTED))
1809 		return IRQ_NONE;
1810 
1811 	/* Interrupt Auto-Mask...upon reading ICR,
1812 	 * interrupts are masked.  No need for the
1813 	 * IMC write
1814 	 */
1815 
1816 	if (icr & E1000_ICR_LSC) {
1817 		hw->mac.get_link_status = true;
1818 		/* ICH8 workaround-- Call gig speed drop workaround on cable
1819 		 * disconnect (LSC) before accessing any PHY registers
1820 		 */
1821 		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1822 		    (!(er32(STATUS) & E1000_STATUS_LU)))
1823 			schedule_work(&adapter->downshift_task);
1824 
1825 		/* 80003ES2LAN workaround--
1826 		 * For packet buffer work-around on link down event;
1827 		 * disable receives here in the ISR and
1828 		 * reset adapter in watchdog
1829 		 */
1830 		if (netif_carrier_ok(netdev) &&
1831 		    (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1832 			/* disable receives */
1833 			rctl = er32(RCTL);
1834 			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1835 			adapter->flags |= FLAG_RESTART_NOW;
1836 		}
1837 		/* guard against interrupt when we're going down */
1838 		if (!test_bit(__E1000_DOWN, &adapter->state))
1839 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1840 	}
1841 
1842 	/* Reset on uncorrectable ECC error */
1843 	if ((icr & E1000_ICR_ECCER) && (hw->mac.type == e1000_pch_lpt)) {
1844 		u32 pbeccsts = er32(PBECCSTS);
1845 
1846 		adapter->corr_errors +=
1847 		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1848 		adapter->uncorr_errors +=
1849 		    (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1850 		    E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1851 
1852 		/* Do the reset outside of interrupt context */
1853 		schedule_work(&adapter->reset_task);
1854 
1855 		/* return immediately since reset is imminent */
1856 		return IRQ_HANDLED;
1857 	}
1858 
1859 	if (napi_schedule_prep(&adapter->napi)) {
1860 		adapter->total_tx_bytes = 0;
1861 		adapter->total_tx_packets = 0;
1862 		adapter->total_rx_bytes = 0;
1863 		adapter->total_rx_packets = 0;
1864 		__napi_schedule(&adapter->napi);
1865 	}
1866 
1867 	return IRQ_HANDLED;
1868 }
1869 
1870 static irqreturn_t e1000_msix_other(int __always_unused irq, void *data)
1871 {
1872 	struct net_device *netdev = data;
1873 	struct e1000_adapter *adapter = netdev_priv(netdev);
1874 	struct e1000_hw *hw = &adapter->hw;
1875 	u32 icr = er32(ICR);
1876 
1877 	if (!(icr & E1000_ICR_INT_ASSERTED)) {
1878 		if (!test_bit(__E1000_DOWN, &adapter->state))
1879 			ew32(IMS, E1000_IMS_OTHER);
1880 		return IRQ_NONE;
1881 	}
1882 
1883 	if (icr & adapter->eiac_mask)
1884 		ew32(ICS, (icr & adapter->eiac_mask));
1885 
1886 	if (icr & E1000_ICR_OTHER) {
1887 		if (!(icr & E1000_ICR_LSC))
1888 			goto no_link_interrupt;
1889 		hw->mac.get_link_status = true;
1890 		/* guard against interrupt when we're going down */
1891 		if (!test_bit(__E1000_DOWN, &adapter->state))
1892 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1893 	}
1894 
1895 no_link_interrupt:
1896 	if (!test_bit(__E1000_DOWN, &adapter->state))
1897 		ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1898 
1899 	return IRQ_HANDLED;
1900 }
1901 
1902 static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data)
1903 {
1904 	struct net_device *netdev = data;
1905 	struct e1000_adapter *adapter = netdev_priv(netdev);
1906 	struct e1000_hw *hw = &adapter->hw;
1907 	struct e1000_ring *tx_ring = adapter->tx_ring;
1908 
1909 	adapter->total_tx_bytes = 0;
1910 	adapter->total_tx_packets = 0;
1911 
1912 	if (!e1000_clean_tx_irq(tx_ring))
1913 		/* Ring was not completely cleaned, so fire another interrupt */
1914 		ew32(ICS, tx_ring->ims_val);
1915 
1916 	return IRQ_HANDLED;
1917 }
1918 
1919 static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data)
1920 {
1921 	struct net_device *netdev = data;
1922 	struct e1000_adapter *adapter = netdev_priv(netdev);
1923 	struct e1000_ring *rx_ring = adapter->rx_ring;
1924 
1925 	/* Write the ITR value calculated at the end of the
1926 	 * previous interrupt.
1927 	 */
1928 	if (rx_ring->set_itr) {
1929 		writel(1000000000 / (rx_ring->itr_val * 256),
1930 		       rx_ring->itr_register);
1931 		rx_ring->set_itr = 0;
1932 	}
1933 
1934 	if (napi_schedule_prep(&adapter->napi)) {
1935 		adapter->total_rx_bytes = 0;
1936 		adapter->total_rx_packets = 0;
1937 		__napi_schedule(&adapter->napi);
1938 	}
1939 	return IRQ_HANDLED;
1940 }
1941 
1942 /**
1943  * e1000_configure_msix - Configure MSI-X hardware
1944  *
1945  * e1000_configure_msix sets up the hardware to properly
1946  * generate MSI-X interrupts.
1947  **/
1948 static void e1000_configure_msix(struct e1000_adapter *adapter)
1949 {
1950 	struct e1000_hw *hw = &adapter->hw;
1951 	struct e1000_ring *rx_ring = adapter->rx_ring;
1952 	struct e1000_ring *tx_ring = adapter->tx_ring;
1953 	int vector = 0;
1954 	u32 ctrl_ext, ivar = 0;
1955 
1956 	adapter->eiac_mask = 0;
1957 
1958 	/* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1959 	if (hw->mac.type == e1000_82574) {
1960 		u32 rfctl = er32(RFCTL);
1961 		rfctl |= E1000_RFCTL_ACK_DIS;
1962 		ew32(RFCTL, rfctl);
1963 	}
1964 
1965 	/* Configure Rx vector */
1966 	rx_ring->ims_val = E1000_IMS_RXQ0;
1967 	adapter->eiac_mask |= rx_ring->ims_val;
1968 	if (rx_ring->itr_val)
1969 		writel(1000000000 / (rx_ring->itr_val * 256),
1970 		       rx_ring->itr_register);
1971 	else
1972 		writel(1, rx_ring->itr_register);
1973 	ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1974 
1975 	/* Configure Tx vector */
1976 	tx_ring->ims_val = E1000_IMS_TXQ0;
1977 	vector++;
1978 	if (tx_ring->itr_val)
1979 		writel(1000000000 / (tx_ring->itr_val * 256),
1980 		       tx_ring->itr_register);
1981 	else
1982 		writel(1, tx_ring->itr_register);
1983 	adapter->eiac_mask |= tx_ring->ims_val;
1984 	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
1985 
1986 	/* set vector for Other Causes, e.g. link changes */
1987 	vector++;
1988 	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
1989 	if (rx_ring->itr_val)
1990 		writel(1000000000 / (rx_ring->itr_val * 256),
1991 		       hw->hw_addr + E1000_EITR_82574(vector));
1992 	else
1993 		writel(1, hw->hw_addr + E1000_EITR_82574(vector));
1994 
1995 	/* Cause Tx interrupts on every write back */
1996 	ivar |= (1 << 31);
1997 
1998 	ew32(IVAR, ivar);
1999 
2000 	/* enable MSI-X PBA support */
2001 	ctrl_ext = er32(CTRL_EXT);
2002 	ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
2003 
2004 	/* Auto-Mask Other interrupts upon ICR read */
2005 	ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
2006 	ctrl_ext |= E1000_CTRL_EXT_EIAME;
2007 	ew32(CTRL_EXT, ctrl_ext);
2008 	e1e_flush();
2009 }
2010 
2011 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
2012 {
2013 	if (adapter->msix_entries) {
2014 		pci_disable_msix(adapter->pdev);
2015 		kfree(adapter->msix_entries);
2016 		adapter->msix_entries = NULL;
2017 	} else if (adapter->flags & FLAG_MSI_ENABLED) {
2018 		pci_disable_msi(adapter->pdev);
2019 		adapter->flags &= ~FLAG_MSI_ENABLED;
2020 	}
2021 }
2022 
2023 /**
2024  * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
2025  *
2026  * Attempt to configure interrupts using the best available
2027  * capabilities of the hardware and kernel.
2028  **/
2029 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
2030 {
2031 	int err;
2032 	int i;
2033 
2034 	switch (adapter->int_mode) {
2035 	case E1000E_INT_MODE_MSIX:
2036 		if (adapter->flags & FLAG_HAS_MSIX) {
2037 			adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
2038 			adapter->msix_entries = kcalloc(adapter->num_vectors,
2039 							sizeof(struct
2040 							       msix_entry),
2041 							GFP_KERNEL);
2042 			if (adapter->msix_entries) {
2043 				for (i = 0; i < adapter->num_vectors; i++)
2044 					adapter->msix_entries[i].entry = i;
2045 
2046 				err = pci_enable_msix(adapter->pdev,
2047 						      adapter->msix_entries,
2048 						      adapter->num_vectors);
2049 				if (err == 0)
2050 					return;
2051 			}
2052 			/* MSI-X failed, so fall through and try MSI */
2053 			e_err("Failed to initialize MSI-X interrupts.  Falling back to MSI interrupts.\n");
2054 			e1000e_reset_interrupt_capability(adapter);
2055 		}
2056 		adapter->int_mode = E1000E_INT_MODE_MSI;
2057 		/* Fall through */
2058 	case E1000E_INT_MODE_MSI:
2059 		if (!pci_enable_msi(adapter->pdev)) {
2060 			adapter->flags |= FLAG_MSI_ENABLED;
2061 		} else {
2062 			adapter->int_mode = E1000E_INT_MODE_LEGACY;
2063 			e_err("Failed to initialize MSI interrupts.  Falling back to legacy interrupts.\n");
2064 		}
2065 		/* Fall through */
2066 	case E1000E_INT_MODE_LEGACY:
2067 		/* Don't do anything; this is the system default */
2068 		break;
2069 	}
2070 
2071 	/* store the number of vectors being used */
2072 	adapter->num_vectors = 1;
2073 }
2074 
2075 /**
2076  * e1000_request_msix - Initialize MSI-X interrupts
2077  *
2078  * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2079  * kernel.
2080  **/
2081 static int e1000_request_msix(struct e1000_adapter *adapter)
2082 {
2083 	struct net_device *netdev = adapter->netdev;
2084 	int err = 0, vector = 0;
2085 
2086 	if (strlen(netdev->name) < (IFNAMSIZ - 5))
2087 		snprintf(adapter->rx_ring->name,
2088 			 sizeof(adapter->rx_ring->name) - 1,
2089 			 "%s-rx-0", netdev->name);
2090 	else
2091 		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
2092 	err = request_irq(adapter->msix_entries[vector].vector,
2093 			  e1000_intr_msix_rx, 0, adapter->rx_ring->name,
2094 			  netdev);
2095 	if (err)
2096 		return err;
2097 	adapter->rx_ring->itr_register = adapter->hw.hw_addr +
2098 	    E1000_EITR_82574(vector);
2099 	adapter->rx_ring->itr_val = adapter->itr;
2100 	vector++;
2101 
2102 	if (strlen(netdev->name) < (IFNAMSIZ - 5))
2103 		snprintf(adapter->tx_ring->name,
2104 			 sizeof(adapter->tx_ring->name) - 1,
2105 			 "%s-tx-0", netdev->name);
2106 	else
2107 		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2108 	err = request_irq(adapter->msix_entries[vector].vector,
2109 			  e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2110 			  netdev);
2111 	if (err)
2112 		return err;
2113 	adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2114 	    E1000_EITR_82574(vector);
2115 	adapter->tx_ring->itr_val = adapter->itr;
2116 	vector++;
2117 
2118 	err = request_irq(adapter->msix_entries[vector].vector,
2119 			  e1000_msix_other, 0, netdev->name, netdev);
2120 	if (err)
2121 		return err;
2122 
2123 	e1000_configure_msix(adapter);
2124 
2125 	return 0;
2126 }
2127 
2128 /**
2129  * e1000_request_irq - initialize interrupts
2130  *
2131  * Attempts to configure interrupts using the best available
2132  * capabilities of the hardware and kernel.
2133  **/
2134 static int e1000_request_irq(struct e1000_adapter *adapter)
2135 {
2136 	struct net_device *netdev = adapter->netdev;
2137 	int err;
2138 
2139 	if (adapter->msix_entries) {
2140 		err = e1000_request_msix(adapter);
2141 		if (!err)
2142 			return err;
2143 		/* fall back to MSI */
2144 		e1000e_reset_interrupt_capability(adapter);
2145 		adapter->int_mode = E1000E_INT_MODE_MSI;
2146 		e1000e_set_interrupt_capability(adapter);
2147 	}
2148 	if (adapter->flags & FLAG_MSI_ENABLED) {
2149 		err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2150 				  netdev->name, netdev);
2151 		if (!err)
2152 			return err;
2153 
2154 		/* fall back to legacy interrupt */
2155 		e1000e_reset_interrupt_capability(adapter);
2156 		adapter->int_mode = E1000E_INT_MODE_LEGACY;
2157 	}
2158 
2159 	err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2160 			  netdev->name, netdev);
2161 	if (err)
2162 		e_err("Unable to allocate interrupt, Error: %d\n", err);
2163 
2164 	return err;
2165 }
2166 
2167 static void e1000_free_irq(struct e1000_adapter *adapter)
2168 {
2169 	struct net_device *netdev = adapter->netdev;
2170 
2171 	if (adapter->msix_entries) {
2172 		int vector = 0;
2173 
2174 		free_irq(adapter->msix_entries[vector].vector, netdev);
2175 		vector++;
2176 
2177 		free_irq(adapter->msix_entries[vector].vector, netdev);
2178 		vector++;
2179 
2180 		/* Other Causes interrupt vector */
2181 		free_irq(adapter->msix_entries[vector].vector, netdev);
2182 		return;
2183 	}
2184 
2185 	free_irq(adapter->pdev->irq, netdev);
2186 }
2187 
2188 /**
2189  * e1000_irq_disable - Mask off interrupt generation on the NIC
2190  **/
2191 static void e1000_irq_disable(struct e1000_adapter *adapter)
2192 {
2193 	struct e1000_hw *hw = &adapter->hw;
2194 
2195 	ew32(IMC, ~0);
2196 	if (adapter->msix_entries)
2197 		ew32(EIAC_82574, 0);
2198 	e1e_flush();
2199 
2200 	if (adapter->msix_entries) {
2201 		int i;
2202 		for (i = 0; i < adapter->num_vectors; i++)
2203 			synchronize_irq(adapter->msix_entries[i].vector);
2204 	} else {
2205 		synchronize_irq(adapter->pdev->irq);
2206 	}
2207 }
2208 
2209 /**
2210  * e1000_irq_enable - Enable default interrupt generation settings
2211  **/
2212 static void e1000_irq_enable(struct e1000_adapter *adapter)
2213 {
2214 	struct e1000_hw *hw = &adapter->hw;
2215 
2216 	if (adapter->msix_entries) {
2217 		ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2218 		ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
2219 	} else if (hw->mac.type == e1000_pch_lpt) {
2220 		ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER);
2221 	} else {
2222 		ew32(IMS, IMS_ENABLE_MASK);
2223 	}
2224 	e1e_flush();
2225 }
2226 
2227 /**
2228  * e1000e_get_hw_control - get control of the h/w from f/w
2229  * @adapter: address of board private structure
2230  *
2231  * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2232  * For ASF and Pass Through versions of f/w this means that
2233  * the driver is loaded. For AMT version (only with 82573)
2234  * of the f/w this means that the network i/f is open.
2235  **/
2236 void e1000e_get_hw_control(struct e1000_adapter *adapter)
2237 {
2238 	struct e1000_hw *hw = &adapter->hw;
2239 	u32 ctrl_ext;
2240 	u32 swsm;
2241 
2242 	/* Let firmware know the driver has taken over */
2243 	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2244 		swsm = er32(SWSM);
2245 		ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2246 	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2247 		ctrl_ext = er32(CTRL_EXT);
2248 		ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2249 	}
2250 }
2251 
2252 /**
2253  * e1000e_release_hw_control - release control of the h/w to f/w
2254  * @adapter: address of board private structure
2255  *
2256  * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2257  * For ASF and Pass Through versions of f/w this means that the
2258  * driver is no longer loaded. For AMT version (only with 82573) i
2259  * of the f/w this means that the network i/f is closed.
2260  *
2261  **/
2262 void e1000e_release_hw_control(struct e1000_adapter *adapter)
2263 {
2264 	struct e1000_hw *hw = &adapter->hw;
2265 	u32 ctrl_ext;
2266 	u32 swsm;
2267 
2268 	/* Let firmware taken over control of h/w */
2269 	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2270 		swsm = er32(SWSM);
2271 		ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2272 	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2273 		ctrl_ext = er32(CTRL_EXT);
2274 		ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2275 	}
2276 }
2277 
2278 /**
2279  * e1000_alloc_ring_dma - allocate memory for a ring structure
2280  **/
2281 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2282 				struct e1000_ring *ring)
2283 {
2284 	struct pci_dev *pdev = adapter->pdev;
2285 
2286 	ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2287 					GFP_KERNEL);
2288 	if (!ring->desc)
2289 		return -ENOMEM;
2290 
2291 	return 0;
2292 }
2293 
2294 /**
2295  * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2296  * @tx_ring: Tx descriptor ring
2297  *
2298  * Return 0 on success, negative on failure
2299  **/
2300 int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2301 {
2302 	struct e1000_adapter *adapter = tx_ring->adapter;
2303 	int err = -ENOMEM, size;
2304 
2305 	size = sizeof(struct e1000_buffer) * tx_ring->count;
2306 	tx_ring->buffer_info = vzalloc(size);
2307 	if (!tx_ring->buffer_info)
2308 		goto err;
2309 
2310 	/* round up to nearest 4K */
2311 	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2312 	tx_ring->size = ALIGN(tx_ring->size, 4096);
2313 
2314 	err = e1000_alloc_ring_dma(adapter, tx_ring);
2315 	if (err)
2316 		goto err;
2317 
2318 	tx_ring->next_to_use = 0;
2319 	tx_ring->next_to_clean = 0;
2320 
2321 	return 0;
2322 err:
2323 	vfree(tx_ring->buffer_info);
2324 	e_err("Unable to allocate memory for the transmit descriptor ring\n");
2325 	return err;
2326 }
2327 
2328 /**
2329  * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2330  * @rx_ring: Rx descriptor ring
2331  *
2332  * Returns 0 on success, negative on failure
2333  **/
2334 int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2335 {
2336 	struct e1000_adapter *adapter = rx_ring->adapter;
2337 	struct e1000_buffer *buffer_info;
2338 	int i, size, desc_len, err = -ENOMEM;
2339 
2340 	size = sizeof(struct e1000_buffer) * rx_ring->count;
2341 	rx_ring->buffer_info = vzalloc(size);
2342 	if (!rx_ring->buffer_info)
2343 		goto err;
2344 
2345 	for (i = 0; i < rx_ring->count; i++) {
2346 		buffer_info = &rx_ring->buffer_info[i];
2347 		buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2348 						sizeof(struct e1000_ps_page),
2349 						GFP_KERNEL);
2350 		if (!buffer_info->ps_pages)
2351 			goto err_pages;
2352 	}
2353 
2354 	desc_len = sizeof(union e1000_rx_desc_packet_split);
2355 
2356 	/* Round up to nearest 4K */
2357 	rx_ring->size = rx_ring->count * desc_len;
2358 	rx_ring->size = ALIGN(rx_ring->size, 4096);
2359 
2360 	err = e1000_alloc_ring_dma(adapter, rx_ring);
2361 	if (err)
2362 		goto err_pages;
2363 
2364 	rx_ring->next_to_clean = 0;
2365 	rx_ring->next_to_use = 0;
2366 	rx_ring->rx_skb_top = NULL;
2367 
2368 	return 0;
2369 
2370 err_pages:
2371 	for (i = 0; i < rx_ring->count; i++) {
2372 		buffer_info = &rx_ring->buffer_info[i];
2373 		kfree(buffer_info->ps_pages);
2374 	}
2375 err:
2376 	vfree(rx_ring->buffer_info);
2377 	e_err("Unable to allocate memory for the receive descriptor ring\n");
2378 	return err;
2379 }
2380 
2381 /**
2382  * e1000_clean_tx_ring - Free Tx Buffers
2383  * @tx_ring: Tx descriptor ring
2384  **/
2385 static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2386 {
2387 	struct e1000_adapter *adapter = tx_ring->adapter;
2388 	struct e1000_buffer *buffer_info;
2389 	unsigned long size;
2390 	unsigned int i;
2391 
2392 	for (i = 0; i < tx_ring->count; i++) {
2393 		buffer_info = &tx_ring->buffer_info[i];
2394 		e1000_put_txbuf(tx_ring, buffer_info);
2395 	}
2396 
2397 	netdev_reset_queue(adapter->netdev);
2398 	size = sizeof(struct e1000_buffer) * tx_ring->count;
2399 	memset(tx_ring->buffer_info, 0, size);
2400 
2401 	memset(tx_ring->desc, 0, tx_ring->size);
2402 
2403 	tx_ring->next_to_use = 0;
2404 	tx_ring->next_to_clean = 0;
2405 
2406 	writel(0, tx_ring->head);
2407 	if (tx_ring->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2408 		e1000e_update_tdt_wa(tx_ring, 0);
2409 	else
2410 		writel(0, tx_ring->tail);
2411 }
2412 
2413 /**
2414  * e1000e_free_tx_resources - Free Tx Resources per Queue
2415  * @tx_ring: Tx descriptor ring
2416  *
2417  * Free all transmit software resources
2418  **/
2419 void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2420 {
2421 	struct e1000_adapter *adapter = tx_ring->adapter;
2422 	struct pci_dev *pdev = adapter->pdev;
2423 
2424 	e1000_clean_tx_ring(tx_ring);
2425 
2426 	vfree(tx_ring->buffer_info);
2427 	tx_ring->buffer_info = NULL;
2428 
2429 	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2430 			  tx_ring->dma);
2431 	tx_ring->desc = NULL;
2432 }
2433 
2434 /**
2435  * e1000e_free_rx_resources - Free Rx Resources
2436  * @rx_ring: Rx descriptor ring
2437  *
2438  * Free all receive software resources
2439  **/
2440 void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2441 {
2442 	struct e1000_adapter *adapter = rx_ring->adapter;
2443 	struct pci_dev *pdev = adapter->pdev;
2444 	int i;
2445 
2446 	e1000_clean_rx_ring(rx_ring);
2447 
2448 	for (i = 0; i < rx_ring->count; i++)
2449 		kfree(rx_ring->buffer_info[i].ps_pages);
2450 
2451 	vfree(rx_ring->buffer_info);
2452 	rx_ring->buffer_info = NULL;
2453 
2454 	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2455 			  rx_ring->dma);
2456 	rx_ring->desc = NULL;
2457 }
2458 
2459 /**
2460  * e1000_update_itr - update the dynamic ITR value based on statistics
2461  * @adapter: pointer to adapter
2462  * @itr_setting: current adapter->itr
2463  * @packets: the number of packets during this measurement interval
2464  * @bytes: the number of bytes during this measurement interval
2465  *
2466  *      Stores a new ITR value based on packets and byte
2467  *      counts during the last interrupt.  The advantage of per interrupt
2468  *      computation is faster updates and more accurate ITR for the current
2469  *      traffic pattern.  Constants in this function were computed
2470  *      based on theoretical maximum wire speed and thresholds were set based
2471  *      on testing data as well as attempting to minimize response time
2472  *      while increasing bulk throughput.  This functionality is controlled
2473  *      by the InterruptThrottleRate module parameter.
2474  **/
2475 static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes)
2476 {
2477 	unsigned int retval = itr_setting;
2478 
2479 	if (packets == 0)
2480 		return itr_setting;
2481 
2482 	switch (itr_setting) {
2483 	case lowest_latency:
2484 		/* handle TSO and jumbo frames */
2485 		if (bytes / packets > 8000)
2486 			retval = bulk_latency;
2487 		else if ((packets < 5) && (bytes > 512))
2488 			retval = low_latency;
2489 		break;
2490 	case low_latency:  /* 50 usec aka 20000 ints/s */
2491 		if (bytes > 10000) {
2492 			/* this if handles the TSO accounting */
2493 			if (bytes / packets > 8000)
2494 				retval = bulk_latency;
2495 			else if ((packets < 10) || ((bytes / packets) > 1200))
2496 				retval = bulk_latency;
2497 			else if ((packets > 35))
2498 				retval = lowest_latency;
2499 		} else if (bytes / packets > 2000) {
2500 			retval = bulk_latency;
2501 		} else if (packets <= 2 && bytes < 512) {
2502 			retval = lowest_latency;
2503 		}
2504 		break;
2505 	case bulk_latency: /* 250 usec aka 4000 ints/s */
2506 		if (bytes > 25000) {
2507 			if (packets > 35)
2508 				retval = low_latency;
2509 		} else if (bytes < 6000) {
2510 			retval = low_latency;
2511 		}
2512 		break;
2513 	}
2514 
2515 	return retval;
2516 }
2517 
2518 static void e1000_set_itr(struct e1000_adapter *adapter)
2519 {
2520 	u16 current_itr;
2521 	u32 new_itr = adapter->itr;
2522 
2523 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2524 	if (adapter->link_speed != SPEED_1000) {
2525 		current_itr = 0;
2526 		new_itr = 4000;
2527 		goto set_itr_now;
2528 	}
2529 
2530 	if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2531 		new_itr = 0;
2532 		goto set_itr_now;
2533 	}
2534 
2535 	adapter->tx_itr = e1000_update_itr(adapter->tx_itr,
2536 					   adapter->total_tx_packets,
2537 					   adapter->total_tx_bytes);
2538 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2539 	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2540 		adapter->tx_itr = low_latency;
2541 
2542 	adapter->rx_itr = e1000_update_itr(adapter->rx_itr,
2543 					   adapter->total_rx_packets,
2544 					   adapter->total_rx_bytes);
2545 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2546 	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2547 		adapter->rx_itr = low_latency;
2548 
2549 	current_itr = max(adapter->rx_itr, adapter->tx_itr);
2550 
2551 	/* counts and packets in update_itr are dependent on these numbers */
2552 	switch (current_itr) {
2553 	case lowest_latency:
2554 		new_itr = 70000;
2555 		break;
2556 	case low_latency:
2557 		new_itr = 20000; /* aka hwitr = ~200 */
2558 		break;
2559 	case bulk_latency:
2560 		new_itr = 4000;
2561 		break;
2562 	default:
2563 		break;
2564 	}
2565 
2566 set_itr_now:
2567 	if (new_itr != adapter->itr) {
2568 		/* this attempts to bias the interrupt rate towards Bulk
2569 		 * by adding intermediate steps when interrupt rate is
2570 		 * increasing
2571 		 */
2572 		new_itr = new_itr > adapter->itr ?
2573 		    min(adapter->itr + (new_itr >> 2), new_itr) : new_itr;
2574 		adapter->itr = new_itr;
2575 		adapter->rx_ring->itr_val = new_itr;
2576 		if (adapter->msix_entries)
2577 			adapter->rx_ring->set_itr = 1;
2578 		else
2579 			e1000e_write_itr(adapter, new_itr);
2580 	}
2581 }
2582 
2583 /**
2584  * e1000e_write_itr - write the ITR value to the appropriate registers
2585  * @adapter: address of board private structure
2586  * @itr: new ITR value to program
2587  *
2588  * e1000e_write_itr determines if the adapter is in MSI-X mode
2589  * and, if so, writes the EITR registers with the ITR value.
2590  * Otherwise, it writes the ITR value into the ITR register.
2591  **/
2592 void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
2593 {
2594 	struct e1000_hw *hw = &adapter->hw;
2595 	u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
2596 
2597 	if (adapter->msix_entries) {
2598 		int vector;
2599 
2600 		for (vector = 0; vector < adapter->num_vectors; vector++)
2601 			writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
2602 	} else {
2603 		ew32(ITR, new_itr);
2604 	}
2605 }
2606 
2607 /**
2608  * e1000_alloc_queues - Allocate memory for all rings
2609  * @adapter: board private structure to initialize
2610  **/
2611 static int e1000_alloc_queues(struct e1000_adapter *adapter)
2612 {
2613 	int size = sizeof(struct e1000_ring);
2614 
2615 	adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2616 	if (!adapter->tx_ring)
2617 		goto err;
2618 	adapter->tx_ring->count = adapter->tx_ring_count;
2619 	adapter->tx_ring->adapter = adapter;
2620 
2621 	adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2622 	if (!adapter->rx_ring)
2623 		goto err;
2624 	adapter->rx_ring->count = adapter->rx_ring_count;
2625 	adapter->rx_ring->adapter = adapter;
2626 
2627 	return 0;
2628 err:
2629 	e_err("Unable to allocate memory for queues\n");
2630 	kfree(adapter->rx_ring);
2631 	kfree(adapter->tx_ring);
2632 	return -ENOMEM;
2633 }
2634 
2635 /**
2636  * e1000e_poll - NAPI Rx polling callback
2637  * @napi: struct associated with this polling callback
2638  * @weight: number of packets driver is allowed to process this poll
2639  **/
2640 static int e1000e_poll(struct napi_struct *napi, int weight)
2641 {
2642 	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2643 						     napi);
2644 	struct e1000_hw *hw = &adapter->hw;
2645 	struct net_device *poll_dev = adapter->netdev;
2646 	int tx_cleaned = 1, work_done = 0;
2647 
2648 	adapter = netdev_priv(poll_dev);
2649 
2650 	if (!adapter->msix_entries ||
2651 	    (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2652 		tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2653 
2654 	adapter->clean_rx(adapter->rx_ring, &work_done, weight);
2655 
2656 	if (!tx_cleaned)
2657 		work_done = weight;
2658 
2659 	/* If weight not fully consumed, exit the polling mode */
2660 	if (work_done < weight) {
2661 		if (adapter->itr_setting & 3)
2662 			e1000_set_itr(adapter);
2663 		napi_complete(napi);
2664 		if (!test_bit(__E1000_DOWN, &adapter->state)) {
2665 			if (adapter->msix_entries)
2666 				ew32(IMS, adapter->rx_ring->ims_val);
2667 			else
2668 				e1000_irq_enable(adapter);
2669 		}
2670 	}
2671 
2672 	return work_done;
2673 }
2674 
2675 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
2676 				 __be16 proto, u16 vid)
2677 {
2678 	struct e1000_adapter *adapter = netdev_priv(netdev);
2679 	struct e1000_hw *hw = &adapter->hw;
2680 	u32 vfta, index;
2681 
2682 	/* don't update vlan cookie if already programmed */
2683 	if ((adapter->hw.mng_cookie.status &
2684 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2685 	    (vid == adapter->mng_vlan_id))
2686 		return 0;
2687 
2688 	/* add VID to filter table */
2689 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2690 		index = (vid >> 5) & 0x7F;
2691 		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2692 		vfta |= (1 << (vid & 0x1F));
2693 		hw->mac.ops.write_vfta(hw, index, vfta);
2694 	}
2695 
2696 	set_bit(vid, adapter->active_vlans);
2697 
2698 	return 0;
2699 }
2700 
2701 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
2702 				  __be16 proto, u16 vid)
2703 {
2704 	struct e1000_adapter *adapter = netdev_priv(netdev);
2705 	struct e1000_hw *hw = &adapter->hw;
2706 	u32 vfta, index;
2707 
2708 	if ((adapter->hw.mng_cookie.status &
2709 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2710 	    (vid == adapter->mng_vlan_id)) {
2711 		/* release control to f/w */
2712 		e1000e_release_hw_control(adapter);
2713 		return 0;
2714 	}
2715 
2716 	/* remove VID from filter table */
2717 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2718 		index = (vid >> 5) & 0x7F;
2719 		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2720 		vfta &= ~(1 << (vid & 0x1F));
2721 		hw->mac.ops.write_vfta(hw, index, vfta);
2722 	}
2723 
2724 	clear_bit(vid, adapter->active_vlans);
2725 
2726 	return 0;
2727 }
2728 
2729 /**
2730  * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2731  * @adapter: board private structure to initialize
2732  **/
2733 static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2734 {
2735 	struct net_device *netdev = adapter->netdev;
2736 	struct e1000_hw *hw = &adapter->hw;
2737 	u32 rctl;
2738 
2739 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2740 		/* disable VLAN receive filtering */
2741 		rctl = er32(RCTL);
2742 		rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2743 		ew32(RCTL, rctl);
2744 
2745 		if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2746 			e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
2747 					       adapter->mng_vlan_id);
2748 			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2749 		}
2750 	}
2751 }
2752 
2753 /**
2754  * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2755  * @adapter: board private structure to initialize
2756  **/
2757 static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2758 {
2759 	struct e1000_hw *hw = &adapter->hw;
2760 	u32 rctl;
2761 
2762 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2763 		/* enable VLAN receive filtering */
2764 		rctl = er32(RCTL);
2765 		rctl |= E1000_RCTL_VFE;
2766 		rctl &= ~E1000_RCTL_CFIEN;
2767 		ew32(RCTL, rctl);
2768 	}
2769 }
2770 
2771 /**
2772  * e1000e_vlan_strip_enable - helper to disable HW VLAN stripping
2773  * @adapter: board private structure to initialize
2774  **/
2775 static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2776 {
2777 	struct e1000_hw *hw = &adapter->hw;
2778 	u32 ctrl;
2779 
2780 	/* disable VLAN tag insert/strip */
2781 	ctrl = er32(CTRL);
2782 	ctrl &= ~E1000_CTRL_VME;
2783 	ew32(CTRL, ctrl);
2784 }
2785 
2786 /**
2787  * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2788  * @adapter: board private structure to initialize
2789  **/
2790 static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2791 {
2792 	struct e1000_hw *hw = &adapter->hw;
2793 	u32 ctrl;
2794 
2795 	/* enable VLAN tag insert/strip */
2796 	ctrl = er32(CTRL);
2797 	ctrl |= E1000_CTRL_VME;
2798 	ew32(CTRL, ctrl);
2799 }
2800 
2801 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2802 {
2803 	struct net_device *netdev = adapter->netdev;
2804 	u16 vid = adapter->hw.mng_cookie.vlan_id;
2805 	u16 old_vid = adapter->mng_vlan_id;
2806 
2807 	if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2808 		e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
2809 		adapter->mng_vlan_id = vid;
2810 	}
2811 
2812 	if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2813 		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid);
2814 }
2815 
2816 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2817 {
2818 	u16 vid;
2819 
2820 	e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
2821 
2822 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2823 	    e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
2824 }
2825 
2826 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2827 {
2828 	struct e1000_hw *hw = &adapter->hw;
2829 	u32 manc, manc2h, mdef, i, j;
2830 
2831 	if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2832 		return;
2833 
2834 	manc = er32(MANC);
2835 
2836 	/* enable receiving management packets to the host. this will probably
2837 	 * generate destination unreachable messages from the host OS, but
2838 	 * the packets will be handled on SMBUS
2839 	 */
2840 	manc |= E1000_MANC_EN_MNG2HOST;
2841 	manc2h = er32(MANC2H);
2842 
2843 	switch (hw->mac.type) {
2844 	default:
2845 		manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2846 		break;
2847 	case e1000_82574:
2848 	case e1000_82583:
2849 		/* Check if IPMI pass-through decision filter already exists;
2850 		 * if so, enable it.
2851 		 */
2852 		for (i = 0, j = 0; i < 8; i++) {
2853 			mdef = er32(MDEF(i));
2854 
2855 			/* Ignore filters with anything other than IPMI ports */
2856 			if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2857 				continue;
2858 
2859 			/* Enable this decision filter in MANC2H */
2860 			if (mdef)
2861 				manc2h |= (1 << i);
2862 
2863 			j |= mdef;
2864 		}
2865 
2866 		if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2867 			break;
2868 
2869 		/* Create new decision filter in an empty filter */
2870 		for (i = 0, j = 0; i < 8; i++)
2871 			if (er32(MDEF(i)) == 0) {
2872 				ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2873 					       E1000_MDEF_PORT_664));
2874 				manc2h |= (1 << 1);
2875 				j++;
2876 				break;
2877 			}
2878 
2879 		if (!j)
2880 			e_warn("Unable to create IPMI pass-through filter\n");
2881 		break;
2882 	}
2883 
2884 	ew32(MANC2H, manc2h);
2885 	ew32(MANC, manc);
2886 }
2887 
2888 /**
2889  * e1000_configure_tx - Configure Transmit Unit after Reset
2890  * @adapter: board private structure
2891  *
2892  * Configure the Tx unit of the MAC after a reset.
2893  **/
2894 static void e1000_configure_tx(struct e1000_adapter *adapter)
2895 {
2896 	struct e1000_hw *hw = &adapter->hw;
2897 	struct e1000_ring *tx_ring = adapter->tx_ring;
2898 	u64 tdba;
2899 	u32 tdlen, tarc;
2900 
2901 	/* Setup the HW Tx Head and Tail descriptor pointers */
2902 	tdba = tx_ring->dma;
2903 	tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2904 	ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2905 	ew32(TDBAH(0), (tdba >> 32));
2906 	ew32(TDLEN(0), tdlen);
2907 	ew32(TDH(0), 0);
2908 	ew32(TDT(0), 0);
2909 	tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2910 	tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2911 
2912 	/* Set the Tx Interrupt Delay register */
2913 	ew32(TIDV, adapter->tx_int_delay);
2914 	/* Tx irq moderation */
2915 	ew32(TADV, adapter->tx_abs_int_delay);
2916 
2917 	if (adapter->flags2 & FLAG2_DMA_BURST) {
2918 		u32 txdctl = er32(TXDCTL(0));
2919 		txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2920 			    E1000_TXDCTL_WTHRESH);
2921 		/* set up some performance related parameters to encourage the
2922 		 * hardware to use the bus more efficiently in bursts, depends
2923 		 * on the tx_int_delay to be enabled,
2924 		 * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2925 		 * hthresh = 1 ==> prefetch when one or more available
2926 		 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2927 		 * BEWARE: this seems to work but should be considered first if
2928 		 * there are Tx hangs or other Tx related bugs
2929 		 */
2930 		txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2931 		ew32(TXDCTL(0), txdctl);
2932 	}
2933 	/* erratum work around: set txdctl the same for both queues */
2934 	ew32(TXDCTL(1), er32(TXDCTL(0)));
2935 
2936 	if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2937 		tarc = er32(TARC(0));
2938 		/* set the speed mode bit, we'll clear it if we're not at
2939 		 * gigabit link later
2940 		 */
2941 #define SPEED_MODE_BIT (1 << 21)
2942 		tarc |= SPEED_MODE_BIT;
2943 		ew32(TARC(0), tarc);
2944 	}
2945 
2946 	/* errata: program both queues to unweighted RR */
2947 	if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2948 		tarc = er32(TARC(0));
2949 		tarc |= 1;
2950 		ew32(TARC(0), tarc);
2951 		tarc = er32(TARC(1));
2952 		tarc |= 1;
2953 		ew32(TARC(1), tarc);
2954 	}
2955 
2956 	/* Setup Transmit Descriptor Settings for eop descriptor */
2957 	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2958 
2959 	/* only set IDE if we are delaying interrupts using the timers */
2960 	if (adapter->tx_int_delay)
2961 		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2962 
2963 	/* enable Report Status bit */
2964 	adapter->txd_cmd |= E1000_TXD_CMD_RS;
2965 
2966 	hw->mac.ops.config_collision_dist(hw);
2967 }
2968 
2969 /**
2970  * e1000_setup_rctl - configure the receive control registers
2971  * @adapter: Board private structure
2972  **/
2973 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
2974 			   (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
2975 static void e1000_setup_rctl(struct e1000_adapter *adapter)
2976 {
2977 	struct e1000_hw *hw = &adapter->hw;
2978 	u32 rctl, rfctl;
2979 	u32 pages = 0;
2980 
2981 	/* Workaround Si errata on PCHx - configure jumbo frame flow */
2982 	if (hw->mac.type >= e1000_pch2lan) {
2983 		s32 ret_val;
2984 
2985 		if (adapter->netdev->mtu > ETH_DATA_LEN)
2986 			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
2987 		else
2988 			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
2989 
2990 		if (ret_val)
2991 			e_dbg("failed to enable jumbo frame workaround mode\n");
2992 	}
2993 
2994 	/* Program MC offset vector base */
2995 	rctl = er32(RCTL);
2996 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2997 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
2998 	    E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
2999 	    (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3000 
3001 	/* Do not Store bad packets */
3002 	rctl &= ~E1000_RCTL_SBP;
3003 
3004 	/* Enable Long Packet receive */
3005 	if (adapter->netdev->mtu <= ETH_DATA_LEN)
3006 		rctl &= ~E1000_RCTL_LPE;
3007 	else
3008 		rctl |= E1000_RCTL_LPE;
3009 
3010 	/* Some systems expect that the CRC is included in SMBUS traffic. The
3011 	 * hardware strips the CRC before sending to both SMBUS (BMC) and to
3012 	 * host memory when this is enabled
3013 	 */
3014 	if (adapter->flags2 & FLAG2_CRC_STRIPPING)
3015 		rctl |= E1000_RCTL_SECRC;
3016 
3017 	/* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3018 	if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
3019 		u16 phy_data;
3020 
3021 		e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
3022 		phy_data &= 0xfff8;
3023 		phy_data |= (1 << 2);
3024 		e1e_wphy(hw, PHY_REG(770, 26), phy_data);
3025 
3026 		e1e_rphy(hw, 22, &phy_data);
3027 		phy_data &= 0x0fff;
3028 		phy_data |= (1 << 14);
3029 		e1e_wphy(hw, 0x10, 0x2823);
3030 		e1e_wphy(hw, 0x11, 0x0003);
3031 		e1e_wphy(hw, 22, phy_data);
3032 	}
3033 
3034 	/* Setup buffer sizes */
3035 	rctl &= ~E1000_RCTL_SZ_4096;
3036 	rctl |= E1000_RCTL_BSEX;
3037 	switch (adapter->rx_buffer_len) {
3038 	case 2048:
3039 	default:
3040 		rctl |= E1000_RCTL_SZ_2048;
3041 		rctl &= ~E1000_RCTL_BSEX;
3042 		break;
3043 	case 4096:
3044 		rctl |= E1000_RCTL_SZ_4096;
3045 		break;
3046 	case 8192:
3047 		rctl |= E1000_RCTL_SZ_8192;
3048 		break;
3049 	case 16384:
3050 		rctl |= E1000_RCTL_SZ_16384;
3051 		break;
3052 	}
3053 
3054 	/* Enable Extended Status in all Receive Descriptors */
3055 	rfctl = er32(RFCTL);
3056 	rfctl |= E1000_RFCTL_EXTEN;
3057 	ew32(RFCTL, rfctl);
3058 
3059 	/* 82571 and greater support packet-split where the protocol
3060 	 * header is placed in skb->data and the packet data is
3061 	 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3062 	 * In the case of a non-split, skb->data is linearly filled,
3063 	 * followed by the page buffers.  Therefore, skb->data is
3064 	 * sized to hold the largest protocol header.
3065 	 *
3066 	 * allocations using alloc_page take too long for regular MTU
3067 	 * so only enable packet split for jumbo frames
3068 	 *
3069 	 * Using pages when the page size is greater than 16k wastes
3070 	 * a lot of memory, since we allocate 3 pages at all times
3071 	 * per packet.
3072 	 */
3073 	pages = PAGE_USE_COUNT(adapter->netdev->mtu);
3074 	if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
3075 		adapter->rx_ps_pages = pages;
3076 	else
3077 		adapter->rx_ps_pages = 0;
3078 
3079 	if (adapter->rx_ps_pages) {
3080 		u32 psrctl = 0;
3081 
3082 		/* Enable Packet split descriptors */
3083 		rctl |= E1000_RCTL_DTYP_PS;
3084 
3085 		psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT;
3086 
3087 		switch (adapter->rx_ps_pages) {
3088 		case 3:
3089 			psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT;
3090 			/* fall-through */
3091 		case 2:
3092 			psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT;
3093 			/* fall-through */
3094 		case 1:
3095 			psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT;
3096 			break;
3097 		}
3098 
3099 		ew32(PSRCTL, psrctl);
3100 	}
3101 
3102 	/* This is useful for sniffing bad packets. */
3103 	if (adapter->netdev->features & NETIF_F_RXALL) {
3104 		/* UPE and MPE will be handled by normal PROMISC logic
3105 		 * in e1000e_set_rx_mode
3106 		 */
3107 		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3108 			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3109 			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3110 
3111 		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3112 			  E1000_RCTL_DPF | /* Allow filtered pause */
3113 			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3114 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3115 		 * and that breaks VLANs.
3116 		 */
3117 	}
3118 
3119 	ew32(RCTL, rctl);
3120 	/* just started the receive unit, no need to restart */
3121 	adapter->flags &= ~FLAG_RESTART_NOW;
3122 }
3123 
3124 /**
3125  * e1000_configure_rx - Configure Receive Unit after Reset
3126  * @adapter: board private structure
3127  *
3128  * Configure the Rx unit of the MAC after a reset.
3129  **/
3130 static void e1000_configure_rx(struct e1000_adapter *adapter)
3131 {
3132 	struct e1000_hw *hw = &adapter->hw;
3133 	struct e1000_ring *rx_ring = adapter->rx_ring;
3134 	u64 rdba;
3135 	u32 rdlen, rctl, rxcsum, ctrl_ext;
3136 
3137 	if (adapter->rx_ps_pages) {
3138 		/* this is a 32 byte descriptor */
3139 		rdlen = rx_ring->count *
3140 		    sizeof(union e1000_rx_desc_packet_split);
3141 		adapter->clean_rx = e1000_clean_rx_irq_ps;
3142 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3143 	} else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3144 		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3145 		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3146 		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3147 	} else {
3148 		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3149 		adapter->clean_rx = e1000_clean_rx_irq;
3150 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3151 	}
3152 
3153 	/* disable receives while setting up the descriptors */
3154 	rctl = er32(RCTL);
3155 	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3156 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
3157 	e1e_flush();
3158 	usleep_range(10000, 20000);
3159 
3160 	if (adapter->flags2 & FLAG2_DMA_BURST) {
3161 		/* set the writeback threshold (only takes effect if the RDTR
3162 		 * is set). set GRAN=1 and write back up to 0x4 worth, and
3163 		 * enable prefetching of 0x20 Rx descriptors
3164 		 * granularity = 01
3165 		 * wthresh = 04,
3166 		 * hthresh = 04,
3167 		 * pthresh = 0x20
3168 		 */
3169 		ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3170 		ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3171 
3172 		/* override the delay timers for enabling bursting, only if
3173 		 * the value was not set by the user via module options
3174 		 */
3175 		if (adapter->rx_int_delay == DEFAULT_RDTR)
3176 			adapter->rx_int_delay = BURST_RDTR;
3177 		if (adapter->rx_abs_int_delay == DEFAULT_RADV)
3178 			adapter->rx_abs_int_delay = BURST_RADV;
3179 	}
3180 
3181 	/* set the Receive Delay Timer Register */
3182 	ew32(RDTR, adapter->rx_int_delay);
3183 
3184 	/* irq moderation */
3185 	ew32(RADV, adapter->rx_abs_int_delay);
3186 	if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3187 		e1000e_write_itr(adapter, adapter->itr);
3188 
3189 	ctrl_ext = er32(CTRL_EXT);
3190 	/* Auto-Mask interrupts upon ICR access */
3191 	ctrl_ext |= E1000_CTRL_EXT_IAME;
3192 	ew32(IAM, 0xffffffff);
3193 	ew32(CTRL_EXT, ctrl_ext);
3194 	e1e_flush();
3195 
3196 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
3197 	 * the Base and Length of the Rx Descriptor Ring
3198 	 */
3199 	rdba = rx_ring->dma;
3200 	ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3201 	ew32(RDBAH(0), (rdba >> 32));
3202 	ew32(RDLEN(0), rdlen);
3203 	ew32(RDH(0), 0);
3204 	ew32(RDT(0), 0);
3205 	rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3206 	rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3207 
3208 	/* Enable Receive Checksum Offload for TCP and UDP */
3209 	rxcsum = er32(RXCSUM);
3210 	if (adapter->netdev->features & NETIF_F_RXCSUM)
3211 		rxcsum |= E1000_RXCSUM_TUOFL;
3212 	else
3213 		rxcsum &= ~E1000_RXCSUM_TUOFL;
3214 	ew32(RXCSUM, rxcsum);
3215 
3216 	/* With jumbo frames, excessive C-state transition latencies result
3217 	 * in dropped transactions.
3218 	 */
3219 	if (adapter->netdev->mtu > ETH_DATA_LEN) {
3220 		u32 lat =
3221 		    ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 -
3222 		     adapter->max_frame_size) * 8 / 1000;
3223 
3224 		if (adapter->flags & FLAG_IS_ICH) {
3225 			u32 rxdctl = er32(RXDCTL(0));
3226 			ew32(RXDCTL(0), rxdctl | 0x3);
3227 		}
3228 
3229 		pm_qos_update_request(&adapter->netdev->pm_qos_req, lat);
3230 	} else {
3231 		pm_qos_update_request(&adapter->netdev->pm_qos_req,
3232 				      PM_QOS_DEFAULT_VALUE);
3233 	}
3234 
3235 	/* Enable Receives */
3236 	ew32(RCTL, rctl);
3237 }
3238 
3239 /**
3240  * e1000e_write_mc_addr_list - write multicast addresses to MTA
3241  * @netdev: network interface device structure
3242  *
3243  * Writes multicast address list to the MTA hash table.
3244  * Returns: -ENOMEM on failure
3245  *                0 on no addresses written
3246  *                X on writing X addresses to MTA
3247  */
3248 static int e1000e_write_mc_addr_list(struct net_device *netdev)
3249 {
3250 	struct e1000_adapter *adapter = netdev_priv(netdev);
3251 	struct e1000_hw *hw = &adapter->hw;
3252 	struct netdev_hw_addr *ha;
3253 	u8 *mta_list;
3254 	int i;
3255 
3256 	if (netdev_mc_empty(netdev)) {
3257 		/* nothing to program, so clear mc list */
3258 		hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3259 		return 0;
3260 	}
3261 
3262 	mta_list = kzalloc(netdev_mc_count(netdev) * ETH_ALEN, GFP_ATOMIC);
3263 	if (!mta_list)
3264 		return -ENOMEM;
3265 
3266 	/* update_mc_addr_list expects a packed array of only addresses. */
3267 	i = 0;
3268 	netdev_for_each_mc_addr(ha, netdev)
3269 	    memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3270 
3271 	hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3272 	kfree(mta_list);
3273 
3274 	return netdev_mc_count(netdev);
3275 }
3276 
3277 /**
3278  * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3279  * @netdev: network interface device structure
3280  *
3281  * Writes unicast address list to the RAR table.
3282  * Returns: -ENOMEM on failure/insufficient address space
3283  *                0 on no addresses written
3284  *                X on writing X addresses to the RAR table
3285  **/
3286 static int e1000e_write_uc_addr_list(struct net_device *netdev)
3287 {
3288 	struct e1000_adapter *adapter = netdev_priv(netdev);
3289 	struct e1000_hw *hw = &adapter->hw;
3290 	unsigned int rar_entries = hw->mac.rar_entry_count;
3291 	int count = 0;
3292 
3293 	/* save a rar entry for our hardware address */
3294 	rar_entries--;
3295 
3296 	/* save a rar entry for the LAA workaround */
3297 	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3298 		rar_entries--;
3299 
3300 	/* return ENOMEM indicating insufficient memory for addresses */
3301 	if (netdev_uc_count(netdev) > rar_entries)
3302 		return -ENOMEM;
3303 
3304 	if (!netdev_uc_empty(netdev) && rar_entries) {
3305 		struct netdev_hw_addr *ha;
3306 
3307 		/* write the addresses in reverse order to avoid write
3308 		 * combining
3309 		 */
3310 		netdev_for_each_uc_addr(ha, netdev) {
3311 			if (!rar_entries)
3312 				break;
3313 			hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3314 			count++;
3315 		}
3316 	}
3317 
3318 	/* zero out the remaining RAR entries not used above */
3319 	for (; rar_entries > 0; rar_entries--) {
3320 		ew32(RAH(rar_entries), 0);
3321 		ew32(RAL(rar_entries), 0);
3322 	}
3323 	e1e_flush();
3324 
3325 	return count;
3326 }
3327 
3328 /**
3329  * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3330  * @netdev: network interface device structure
3331  *
3332  * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3333  * address list or the network interface flags are updated.  This routine is
3334  * responsible for configuring the hardware for proper unicast, multicast,
3335  * promiscuous mode, and all-multi behavior.
3336  **/
3337 static void e1000e_set_rx_mode(struct net_device *netdev)
3338 {
3339 	struct e1000_adapter *adapter = netdev_priv(netdev);
3340 	struct e1000_hw *hw = &adapter->hw;
3341 	u32 rctl;
3342 
3343 	/* Check for Promiscuous and All Multicast modes */
3344 	rctl = er32(RCTL);
3345 
3346 	/* clear the affected bits */
3347 	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3348 
3349 	if (netdev->flags & IFF_PROMISC) {
3350 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3351 		/* Do not hardware filter VLANs in promisc mode */
3352 		e1000e_vlan_filter_disable(adapter);
3353 	} else {
3354 		int count;
3355 
3356 		if (netdev->flags & IFF_ALLMULTI) {
3357 			rctl |= E1000_RCTL_MPE;
3358 		} else {
3359 			/* Write addresses to the MTA, if the attempt fails
3360 			 * then we should just turn on promiscuous mode so
3361 			 * that we can at least receive multicast traffic
3362 			 */
3363 			count = e1000e_write_mc_addr_list(netdev);
3364 			if (count < 0)
3365 				rctl |= E1000_RCTL_MPE;
3366 		}
3367 		e1000e_vlan_filter_enable(adapter);
3368 		/* Write addresses to available RAR registers, if there is not
3369 		 * sufficient space to store all the addresses then enable
3370 		 * unicast promiscuous mode
3371 		 */
3372 		count = e1000e_write_uc_addr_list(netdev);
3373 		if (count < 0)
3374 			rctl |= E1000_RCTL_UPE;
3375 	}
3376 
3377 	ew32(RCTL, rctl);
3378 
3379 	if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
3380 		e1000e_vlan_strip_enable(adapter);
3381 	else
3382 		e1000e_vlan_strip_disable(adapter);
3383 }
3384 
3385 static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3386 {
3387 	struct e1000_hw *hw = &adapter->hw;
3388 	u32 mrqc, rxcsum;
3389 	int i;
3390 	static const u32 rsskey[10] = {
3391 		0xda565a6d, 0xc20e5b25, 0x3d256741, 0xb08fa343, 0xcb2bcad0,
3392 		0xb4307bae, 0xa32dcb77, 0x0cf23080, 0x3bb7426a, 0xfa01acbe
3393 	};
3394 
3395 	/* Fill out hash function seed */
3396 	for (i = 0; i < 10; i++)
3397 		ew32(RSSRK(i), rsskey[i]);
3398 
3399 	/* Direct all traffic to queue 0 */
3400 	for (i = 0; i < 32; i++)
3401 		ew32(RETA(i), 0);
3402 
3403 	/* Disable raw packet checksumming so that RSS hash is placed in
3404 	 * descriptor on writeback.
3405 	 */
3406 	rxcsum = er32(RXCSUM);
3407 	rxcsum |= E1000_RXCSUM_PCSD;
3408 
3409 	ew32(RXCSUM, rxcsum);
3410 
3411 	mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3412 		E1000_MRQC_RSS_FIELD_IPV4_TCP |
3413 		E1000_MRQC_RSS_FIELD_IPV6 |
3414 		E1000_MRQC_RSS_FIELD_IPV6_TCP |
3415 		E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3416 
3417 	ew32(MRQC, mrqc);
3418 }
3419 
3420 /**
3421  * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3422  * @adapter: board private structure
3423  * @timinca: pointer to returned time increment attributes
3424  *
3425  * Get attributes for incrementing the System Time Register SYSTIML/H at
3426  * the default base frequency, and set the cyclecounter shift value.
3427  **/
3428 s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca)
3429 {
3430 	struct e1000_hw *hw = &adapter->hw;
3431 	u32 incvalue, incperiod, shift;
3432 
3433 	/* Make sure clock is enabled on I217 before checking the frequency */
3434 	if ((hw->mac.type == e1000_pch_lpt) &&
3435 	    !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) &&
3436 	    !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) {
3437 		u32 fextnvm7 = er32(FEXTNVM7);
3438 
3439 		if (!(fextnvm7 & (1 << 0))) {
3440 			ew32(FEXTNVM7, fextnvm7 | (1 << 0));
3441 			e1e_flush();
3442 		}
3443 	}
3444 
3445 	switch (hw->mac.type) {
3446 	case e1000_pch2lan:
3447 	case e1000_pch_lpt:
3448 		/* On I217, the clock frequency is 25MHz or 96MHz as
3449 		 * indicated by the System Clock Frequency Indication
3450 		 */
3451 		if ((hw->mac.type != e1000_pch_lpt) ||
3452 		    (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI)) {
3453 			/* Stable 96MHz frequency */
3454 			incperiod = INCPERIOD_96MHz;
3455 			incvalue = INCVALUE_96MHz;
3456 			shift = INCVALUE_SHIFT_96MHz;
3457 			adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHz;
3458 			break;
3459 		}
3460 		/* fall-through */
3461 	case e1000_82574:
3462 	case e1000_82583:
3463 		/* Stable 25MHz frequency */
3464 		incperiod = INCPERIOD_25MHz;
3465 		incvalue = INCVALUE_25MHz;
3466 		shift = INCVALUE_SHIFT_25MHz;
3467 		adapter->cc.shift = shift;
3468 		break;
3469 	default:
3470 		return -EINVAL;
3471 	}
3472 
3473 	*timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) |
3474 		    ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK));
3475 
3476 	return 0;
3477 }
3478 
3479 /**
3480  * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3481  * @adapter: board private structure
3482  *
3483  * Outgoing time stamping can be enabled and disabled. Play nice and
3484  * disable it when requested, although it shouldn't cause any overhead
3485  * when no packet needs it. At most one packet in the queue may be
3486  * marked for time stamping, otherwise it would be impossible to tell
3487  * for sure to which packet the hardware time stamp belongs.
3488  *
3489  * Incoming time stamping has to be configured via the hardware filters.
3490  * Not all combinations are supported, in particular event type has to be
3491  * specified. Matching the kind of event packet is not supported, with the
3492  * exception of "all V2 events regardless of level 2 or 4".
3493  **/
3494 static int e1000e_config_hwtstamp(struct e1000_adapter *adapter)
3495 {
3496 	struct e1000_hw *hw = &adapter->hw;
3497 	struct hwtstamp_config *config = &adapter->hwtstamp_config;
3498 	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
3499 	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
3500 	u32 rxmtrl = 0;
3501 	u16 rxudp = 0;
3502 	bool is_l4 = false;
3503 	bool is_l2 = false;
3504 	u32 regval;
3505 	s32 ret_val;
3506 
3507 	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3508 		return -EINVAL;
3509 
3510 	/* flags reserved for future extensions - must be zero */
3511 	if (config->flags)
3512 		return -EINVAL;
3513 
3514 	switch (config->tx_type) {
3515 	case HWTSTAMP_TX_OFF:
3516 		tsync_tx_ctl = 0;
3517 		break;
3518 	case HWTSTAMP_TX_ON:
3519 		break;
3520 	default:
3521 		return -ERANGE;
3522 	}
3523 
3524 	switch (config->rx_filter) {
3525 	case HWTSTAMP_FILTER_NONE:
3526 		tsync_rx_ctl = 0;
3527 		break;
3528 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3529 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3530 		rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE;
3531 		is_l4 = true;
3532 		break;
3533 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3534 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3535 		rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE;
3536 		is_l4 = true;
3537 		break;
3538 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3539 		/* Also time stamps V2 L2 Path Delay Request/Response */
3540 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3541 		rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3542 		is_l2 = true;
3543 		break;
3544 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3545 		/* Also time stamps V2 L2 Path Delay Request/Response. */
3546 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3547 		rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3548 		is_l2 = true;
3549 		break;
3550 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3551 		/* Hardware cannot filter just V2 L4 Sync messages;
3552 		 * fall-through to V2 (both L2 and L4) Sync.
3553 		 */
3554 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
3555 		/* Also time stamps V2 Path Delay Request/Response. */
3556 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3557 		rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3558 		is_l2 = true;
3559 		is_l4 = true;
3560 		break;
3561 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3562 		/* Hardware cannot filter just V2 L4 Delay Request messages;
3563 		 * fall-through to V2 (both L2 and L4) Delay Request.
3564 		 */
3565 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3566 		/* Also time stamps V2 Path Delay Request/Response. */
3567 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3568 		rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3569 		is_l2 = true;
3570 		is_l4 = true;
3571 		break;
3572 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3573 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3574 		/* Hardware cannot filter just V2 L4 or L2 Event messages;
3575 		 * fall-through to all V2 (both L2 and L4) Events.
3576 		 */
3577 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
3578 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
3579 		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
3580 		is_l2 = true;
3581 		is_l4 = true;
3582 		break;
3583 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3584 		/* For V1, the hardware can only filter Sync messages or
3585 		 * Delay Request messages but not both so fall-through to
3586 		 * time stamp all packets.
3587 		 */
3588 	case HWTSTAMP_FILTER_ALL:
3589 		is_l2 = true;
3590 		is_l4 = true;
3591 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
3592 		config->rx_filter = HWTSTAMP_FILTER_ALL;
3593 		break;
3594 	default:
3595 		return -ERANGE;
3596 	}
3597 
3598 	/* enable/disable Tx h/w time stamping */
3599 	regval = er32(TSYNCTXCTL);
3600 	regval &= ~E1000_TSYNCTXCTL_ENABLED;
3601 	regval |= tsync_tx_ctl;
3602 	ew32(TSYNCTXCTL, regval);
3603 	if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) !=
3604 	    (regval & E1000_TSYNCTXCTL_ENABLED)) {
3605 		e_err("Timesync Tx Control register not set as expected\n");
3606 		return -EAGAIN;
3607 	}
3608 
3609 	/* enable/disable Rx h/w time stamping */
3610 	regval = er32(TSYNCRXCTL);
3611 	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
3612 	regval |= tsync_rx_ctl;
3613 	ew32(TSYNCRXCTL, regval);
3614 	if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED |
3615 				 E1000_TSYNCRXCTL_TYPE_MASK)) !=
3616 	    (regval & (E1000_TSYNCRXCTL_ENABLED |
3617 		       E1000_TSYNCRXCTL_TYPE_MASK))) {
3618 		e_err("Timesync Rx Control register not set as expected\n");
3619 		return -EAGAIN;
3620 	}
3621 
3622 	/* L2: define ethertype filter for time stamped packets */
3623 	if (is_l2)
3624 		rxmtrl |= ETH_P_1588;
3625 
3626 	/* define which PTP packets get time stamped */
3627 	ew32(RXMTRL, rxmtrl);
3628 
3629 	/* Filter by destination port */
3630 	if (is_l4) {
3631 		rxudp = PTP_EV_PORT;
3632 		cpu_to_be16s(&rxudp);
3633 	}
3634 	ew32(RXUDP, rxudp);
3635 
3636 	e1e_flush();
3637 
3638 	/* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
3639 	er32(RXSTMPH);
3640 	er32(TXSTMPH);
3641 
3642 	/* Get and set the System Time Register SYSTIM base frequency */
3643 	ret_val = e1000e_get_base_timinca(adapter, &regval);
3644 	if (ret_val)
3645 		return ret_val;
3646 	ew32(TIMINCA, regval);
3647 
3648 	/* reset the ns time counter */
3649 	timecounter_init(&adapter->tc, &adapter->cc,
3650 			 ktime_to_ns(ktime_get_real()));
3651 
3652 	return 0;
3653 }
3654 
3655 /**
3656  * e1000_configure - configure the hardware for Rx and Tx
3657  * @adapter: private board structure
3658  **/
3659 static void e1000_configure(struct e1000_adapter *adapter)
3660 {
3661 	struct e1000_ring *rx_ring = adapter->rx_ring;
3662 
3663 	e1000e_set_rx_mode(adapter->netdev);
3664 
3665 	e1000_restore_vlan(adapter);
3666 	e1000_init_manageability_pt(adapter);
3667 
3668 	e1000_configure_tx(adapter);
3669 
3670 	if (adapter->netdev->features & NETIF_F_RXHASH)
3671 		e1000e_setup_rss_hash(adapter);
3672 	e1000_setup_rctl(adapter);
3673 	e1000_configure_rx(adapter);
3674 	adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3675 }
3676 
3677 /**
3678  * e1000e_power_up_phy - restore link in case the phy was powered down
3679  * @adapter: address of board private structure
3680  *
3681  * The phy may be powered down to save power and turn off link when the
3682  * driver is unloaded and wake on lan is not enabled (among others)
3683  * *** this routine MUST be followed by a call to e1000e_reset ***
3684  **/
3685 void e1000e_power_up_phy(struct e1000_adapter *adapter)
3686 {
3687 	if (adapter->hw.phy.ops.power_up)
3688 		adapter->hw.phy.ops.power_up(&adapter->hw);
3689 
3690 	adapter->hw.mac.ops.setup_link(&adapter->hw);
3691 }
3692 
3693 /**
3694  * e1000_power_down_phy - Power down the PHY
3695  *
3696  * Power down the PHY so no link is implied when interface is down.
3697  * The PHY cannot be powered down if management or WoL is active.
3698  */
3699 static void e1000_power_down_phy(struct e1000_adapter *adapter)
3700 {
3701 	/* WoL is enabled */
3702 	if (adapter->wol)
3703 		return;
3704 
3705 	if (adapter->hw.phy.ops.power_down)
3706 		adapter->hw.phy.ops.power_down(&adapter->hw);
3707 }
3708 
3709 /**
3710  * e1000e_reset - bring the hardware into a known good state
3711  *
3712  * This function boots the hardware and enables some settings that
3713  * require a configuration cycle of the hardware - those cannot be
3714  * set/changed during runtime. After reset the device needs to be
3715  * properly configured for Rx, Tx etc.
3716  */
3717 void e1000e_reset(struct e1000_adapter *adapter)
3718 {
3719 	struct e1000_mac_info *mac = &adapter->hw.mac;
3720 	struct e1000_fc_info *fc = &adapter->hw.fc;
3721 	struct e1000_hw *hw = &adapter->hw;
3722 	u32 tx_space, min_tx_space, min_rx_space;
3723 	u32 pba = adapter->pba;
3724 	u16 hwm;
3725 
3726 	/* reset Packet Buffer Allocation to default */
3727 	ew32(PBA, pba);
3728 
3729 	if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
3730 		/* To maintain wire speed transmits, the Tx FIFO should be
3731 		 * large enough to accommodate two full transmit packets,
3732 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
3733 		 * the Rx FIFO should be large enough to accommodate at least
3734 		 * one full receive packet and is similarly rounded up and
3735 		 * expressed in KB.
3736 		 */
3737 		pba = er32(PBA);
3738 		/* upper 16 bits has Tx packet buffer allocation size in KB */
3739 		tx_space = pba >> 16;
3740 		/* lower 16 bits has Rx packet buffer allocation size in KB */
3741 		pba &= 0xffff;
3742 		/* the Tx fifo also stores 16 bytes of information about the Tx
3743 		 * but don't include ethernet FCS because hardware appends it
3744 		 */
3745 		min_tx_space = (adapter->max_frame_size +
3746 				sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2;
3747 		min_tx_space = ALIGN(min_tx_space, 1024);
3748 		min_tx_space >>= 10;
3749 		/* software strips receive CRC, so leave room for it */
3750 		min_rx_space = adapter->max_frame_size;
3751 		min_rx_space = ALIGN(min_rx_space, 1024);
3752 		min_rx_space >>= 10;
3753 
3754 		/* If current Tx allocation is less than the min Tx FIFO size,
3755 		 * and the min Tx FIFO size is less than the current Rx FIFO
3756 		 * allocation, take space away from current Rx allocation
3757 		 */
3758 		if ((tx_space < min_tx_space) &&
3759 		    ((min_tx_space - tx_space) < pba)) {
3760 			pba -= min_tx_space - tx_space;
3761 
3762 			/* if short on Rx space, Rx wins and must trump Tx
3763 			 * adjustment
3764 			 */
3765 			if (pba < min_rx_space)
3766 				pba = min_rx_space;
3767 		}
3768 
3769 		ew32(PBA, pba);
3770 	}
3771 
3772 	/* flow control settings
3773 	 *
3774 	 * The high water mark must be low enough to fit one full frame
3775 	 * (or the size used for early receive) above it in the Rx FIFO.
3776 	 * Set it to the lower of:
3777 	 * - 90% of the Rx FIFO size, and
3778 	 * - the full Rx FIFO size minus one full frame
3779 	 */
3780 	if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
3781 		fc->pause_time = 0xFFFF;
3782 	else
3783 		fc->pause_time = E1000_FC_PAUSE_TIME;
3784 	fc->send_xon = true;
3785 	fc->current_mode = fc->requested_mode;
3786 
3787 	switch (hw->mac.type) {
3788 	case e1000_ich9lan:
3789 	case e1000_ich10lan:
3790 		if (adapter->netdev->mtu > ETH_DATA_LEN) {
3791 			pba = 14;
3792 			ew32(PBA, pba);
3793 			fc->high_water = 0x2800;
3794 			fc->low_water = fc->high_water - 8;
3795 			break;
3796 		}
3797 		/* fall-through */
3798 	default:
3799 		hwm = min(((pba << 10) * 9 / 10),
3800 			  ((pba << 10) - adapter->max_frame_size));
3801 
3802 		fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
3803 		fc->low_water = fc->high_water - 8;
3804 		break;
3805 	case e1000_pchlan:
3806 		/* Workaround PCH LOM adapter hangs with certain network
3807 		 * loads.  If hangs persist, try disabling Tx flow control.
3808 		 */
3809 		if (adapter->netdev->mtu > ETH_DATA_LEN) {
3810 			fc->high_water = 0x3500;
3811 			fc->low_water  = 0x1500;
3812 		} else {
3813 			fc->high_water = 0x5000;
3814 			fc->low_water  = 0x3000;
3815 		}
3816 		fc->refresh_time = 0x1000;
3817 		break;
3818 	case e1000_pch2lan:
3819 	case e1000_pch_lpt:
3820 		fc->refresh_time = 0x0400;
3821 
3822 		if (adapter->netdev->mtu <= ETH_DATA_LEN) {
3823 			fc->high_water = 0x05C20;
3824 			fc->low_water = 0x05048;
3825 			fc->pause_time = 0x0650;
3826 			break;
3827 		}
3828 
3829 		fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH;
3830 		fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL;
3831 		break;
3832 	}
3833 
3834 	/* Alignment of Tx data is on an arbitrary byte boundary with the
3835 	 * maximum size per Tx descriptor limited only to the transmit
3836 	 * allocation of the packet buffer minus 96 bytes with an upper
3837 	 * limit of 24KB due to receive synchronization limitations.
3838 	 */
3839 	adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
3840 				       24 << 10);
3841 
3842 	/* Disable Adaptive Interrupt Moderation if 2 full packets cannot
3843 	 * fit in receive buffer.
3844 	 */
3845 	if (adapter->itr_setting & 0x3) {
3846 		if ((adapter->max_frame_size * 2) > (pba << 10)) {
3847 			if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
3848 				dev_info(&adapter->pdev->dev,
3849 					 "Interrupt Throttle Rate off\n");
3850 				adapter->flags2 |= FLAG2_DISABLE_AIM;
3851 				e1000e_write_itr(adapter, 0);
3852 			}
3853 		} else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
3854 			dev_info(&adapter->pdev->dev,
3855 				 "Interrupt Throttle Rate on\n");
3856 			adapter->flags2 &= ~FLAG2_DISABLE_AIM;
3857 			adapter->itr = 20000;
3858 			e1000e_write_itr(adapter, adapter->itr);
3859 		}
3860 	}
3861 
3862 	/* Allow time for pending master requests to run */
3863 	mac->ops.reset_hw(hw);
3864 
3865 	/* For parts with AMT enabled, let the firmware know
3866 	 * that the network interface is in control
3867 	 */
3868 	if (adapter->flags & FLAG_HAS_AMT)
3869 		e1000e_get_hw_control(adapter);
3870 
3871 	ew32(WUC, 0);
3872 
3873 	if (mac->ops.init_hw(hw))
3874 		e_err("Hardware Error\n");
3875 
3876 	e1000_update_mng_vlan(adapter);
3877 
3878 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
3879 	ew32(VET, ETH_P_8021Q);
3880 
3881 	e1000e_reset_adaptive(hw);
3882 
3883 	/* initialize systim and reset the ns time counter */
3884 	e1000e_config_hwtstamp(adapter);
3885 
3886 	/* Set EEE advertisement as appropriate */
3887 	if (adapter->flags2 & FLAG2_HAS_EEE) {
3888 		s32 ret_val;
3889 		u16 adv_addr;
3890 
3891 		switch (hw->phy.type) {
3892 		case e1000_phy_82579:
3893 			adv_addr = I82579_EEE_ADVERTISEMENT;
3894 			break;
3895 		case e1000_phy_i217:
3896 			adv_addr = I217_EEE_ADVERTISEMENT;
3897 			break;
3898 		default:
3899 			dev_err(&adapter->pdev->dev,
3900 				"Invalid PHY type setting EEE advertisement\n");
3901 			return;
3902 		}
3903 
3904 		ret_val = hw->phy.ops.acquire(hw);
3905 		if (ret_val) {
3906 			dev_err(&adapter->pdev->dev,
3907 				"EEE advertisement - unable to acquire PHY\n");
3908 			return;
3909 		}
3910 
3911 		e1000_write_emi_reg_locked(hw, adv_addr,
3912 					   hw->dev_spec.ich8lan.eee_disable ?
3913 					   0 : adapter->eee_advert);
3914 
3915 		hw->phy.ops.release(hw);
3916 	}
3917 
3918 	if (!netif_running(adapter->netdev) &&
3919 	    !test_bit(__E1000_TESTING, &adapter->state)) {
3920 		e1000_power_down_phy(adapter);
3921 		return;
3922 	}
3923 
3924 	e1000_get_phy_info(hw);
3925 
3926 	if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
3927 	    !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
3928 		u16 phy_data = 0;
3929 		/* speed up time to link by disabling smart power down, ignore
3930 		 * the return value of this function because there is nothing
3931 		 * different we would do if it failed
3932 		 */
3933 		e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
3934 		phy_data &= ~IGP02E1000_PM_SPD;
3935 		e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
3936 	}
3937 }
3938 
3939 int e1000e_up(struct e1000_adapter *adapter)
3940 {
3941 	struct e1000_hw *hw = &adapter->hw;
3942 
3943 	/* hardware has been reset, we need to reload some things */
3944 	e1000_configure(adapter);
3945 
3946 	clear_bit(__E1000_DOWN, &adapter->state);
3947 
3948 	if (adapter->msix_entries)
3949 		e1000_configure_msix(adapter);
3950 	e1000_irq_enable(adapter);
3951 
3952 	netif_start_queue(adapter->netdev);
3953 
3954 	/* fire a link change interrupt to start the watchdog */
3955 	if (adapter->msix_entries)
3956 		ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
3957 	else
3958 		ew32(ICS, E1000_ICS_LSC);
3959 
3960 	return 0;
3961 }
3962 
3963 static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
3964 {
3965 	struct e1000_hw *hw = &adapter->hw;
3966 
3967 	if (!(adapter->flags2 & FLAG2_DMA_BURST))
3968 		return;
3969 
3970 	/* flush pending descriptor writebacks to memory */
3971 	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
3972 	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
3973 
3974 	/* execute the writes immediately */
3975 	e1e_flush();
3976 
3977 	/* due to rare timing issues, write to TIDV/RDTR again to ensure the
3978 	 * write is successful
3979 	 */
3980 	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
3981 	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
3982 
3983 	/* execute the writes immediately */
3984 	e1e_flush();
3985 }
3986 
3987 static void e1000e_update_stats(struct e1000_adapter *adapter);
3988 
3989 void e1000e_down(struct e1000_adapter *adapter)
3990 {
3991 	struct net_device *netdev = adapter->netdev;
3992 	struct e1000_hw *hw = &adapter->hw;
3993 	u32 tctl, rctl;
3994 
3995 	/* signal that we're down so the interrupt handler does not
3996 	 * reschedule our watchdog timer
3997 	 */
3998 	set_bit(__E1000_DOWN, &adapter->state);
3999 
4000 	/* disable receives in the hardware */
4001 	rctl = er32(RCTL);
4002 	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
4003 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
4004 	/* flush and sleep below */
4005 
4006 	netif_stop_queue(netdev);
4007 
4008 	/* disable transmits in the hardware */
4009 	tctl = er32(TCTL);
4010 	tctl &= ~E1000_TCTL_EN;
4011 	ew32(TCTL, tctl);
4012 
4013 	/* flush both disables and wait for them to finish */
4014 	e1e_flush();
4015 	usleep_range(10000, 20000);
4016 
4017 	e1000_irq_disable(adapter);
4018 
4019 	napi_synchronize(&adapter->napi);
4020 
4021 	del_timer_sync(&adapter->watchdog_timer);
4022 	del_timer_sync(&adapter->phy_info_timer);
4023 
4024 	netif_carrier_off(netdev);
4025 
4026 	spin_lock(&adapter->stats64_lock);
4027 	e1000e_update_stats(adapter);
4028 	spin_unlock(&adapter->stats64_lock);
4029 
4030 	e1000e_flush_descriptors(adapter);
4031 	e1000_clean_tx_ring(adapter->tx_ring);
4032 	e1000_clean_rx_ring(adapter->rx_ring);
4033 
4034 	adapter->link_speed = 0;
4035 	adapter->link_duplex = 0;
4036 
4037 	if (!pci_channel_offline(adapter->pdev))
4038 		e1000e_reset(adapter);
4039 
4040 	/* TODO: for power management, we could drop the link and
4041 	 * pci_disable_device here.
4042 	 */
4043 }
4044 
4045 void e1000e_reinit_locked(struct e1000_adapter *adapter)
4046 {
4047 	might_sleep();
4048 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4049 		usleep_range(1000, 2000);
4050 	e1000e_down(adapter);
4051 	e1000e_up(adapter);
4052 	clear_bit(__E1000_RESETTING, &adapter->state);
4053 }
4054 
4055 /**
4056  * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4057  * @cc: cyclecounter structure
4058  **/
4059 static cycle_t e1000e_cyclecounter_read(const struct cyclecounter *cc)
4060 {
4061 	struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter,
4062 						     cc);
4063 	struct e1000_hw *hw = &adapter->hw;
4064 	cycle_t systim;
4065 
4066 	/* latch SYSTIMH on read of SYSTIML */
4067 	systim = (cycle_t)er32(SYSTIML);
4068 	systim |= (cycle_t)er32(SYSTIMH) << 32;
4069 
4070 	return systim;
4071 }
4072 
4073 /**
4074  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4075  * @adapter: board private structure to initialize
4076  *
4077  * e1000_sw_init initializes the Adapter private data structure.
4078  * Fields are initialized based on PCI device information and
4079  * OS network device settings (MTU size).
4080  **/
4081 static int e1000_sw_init(struct e1000_adapter *adapter)
4082 {
4083 	struct net_device *netdev = adapter->netdev;
4084 
4085 	adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
4086 	adapter->rx_ps_bsize0 = 128;
4087 	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
4088 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4089 	adapter->tx_ring_count = E1000_DEFAULT_TXD;
4090 	adapter->rx_ring_count = E1000_DEFAULT_RXD;
4091 
4092 	spin_lock_init(&adapter->stats64_lock);
4093 
4094 	e1000e_set_interrupt_capability(adapter);
4095 
4096 	if (e1000_alloc_queues(adapter))
4097 		return -ENOMEM;
4098 
4099 	/* Setup hardware time stamping cyclecounter */
4100 	if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
4101 		adapter->cc.read = e1000e_cyclecounter_read;
4102 		adapter->cc.mask = CLOCKSOURCE_MASK(64);
4103 		adapter->cc.mult = 1;
4104 		/* cc.shift set in e1000e_get_base_tininca() */
4105 
4106 		spin_lock_init(&adapter->systim_lock);
4107 		INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work);
4108 	}
4109 
4110 	/* Explicitly disable IRQ since the NIC can be in any state. */
4111 	e1000_irq_disable(adapter);
4112 
4113 	set_bit(__E1000_DOWN, &adapter->state);
4114 	return 0;
4115 }
4116 
4117 /**
4118  * e1000_intr_msi_test - Interrupt Handler
4119  * @irq: interrupt number
4120  * @data: pointer to a network interface device structure
4121  **/
4122 static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data)
4123 {
4124 	struct net_device *netdev = data;
4125 	struct e1000_adapter *adapter = netdev_priv(netdev);
4126 	struct e1000_hw *hw = &adapter->hw;
4127 	u32 icr = er32(ICR);
4128 
4129 	e_dbg("icr is %08X\n", icr);
4130 	if (icr & E1000_ICR_RXSEQ) {
4131 		adapter->flags &= ~FLAG_MSI_TEST_FAILED;
4132 		/* Force memory writes to complete before acknowledging the
4133 		 * interrupt is handled.
4134 		 */
4135 		wmb();
4136 	}
4137 
4138 	return IRQ_HANDLED;
4139 }
4140 
4141 /**
4142  * e1000_test_msi_interrupt - Returns 0 for successful test
4143  * @adapter: board private struct
4144  *
4145  * code flow taken from tg3.c
4146  **/
4147 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
4148 {
4149 	struct net_device *netdev = adapter->netdev;
4150 	struct e1000_hw *hw = &adapter->hw;
4151 	int err;
4152 
4153 	/* poll_enable hasn't been called yet, so don't need disable */
4154 	/* clear any pending events */
4155 	er32(ICR);
4156 
4157 	/* free the real vector and request a test handler */
4158 	e1000_free_irq(adapter);
4159 	e1000e_reset_interrupt_capability(adapter);
4160 
4161 	/* Assume that the test fails, if it succeeds then the test
4162 	 * MSI irq handler will unset this flag
4163 	 */
4164 	adapter->flags |= FLAG_MSI_TEST_FAILED;
4165 
4166 	err = pci_enable_msi(adapter->pdev);
4167 	if (err)
4168 		goto msi_test_failed;
4169 
4170 	err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
4171 			  netdev->name, netdev);
4172 	if (err) {
4173 		pci_disable_msi(adapter->pdev);
4174 		goto msi_test_failed;
4175 	}
4176 
4177 	/* Force memory writes to complete before enabling and firing an
4178 	 * interrupt.
4179 	 */
4180 	wmb();
4181 
4182 	e1000_irq_enable(adapter);
4183 
4184 	/* fire an unusual interrupt on the test handler */
4185 	ew32(ICS, E1000_ICS_RXSEQ);
4186 	e1e_flush();
4187 	msleep(100);
4188 
4189 	e1000_irq_disable(adapter);
4190 
4191 	rmb();			/* read flags after interrupt has been fired */
4192 
4193 	if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4194 		adapter->int_mode = E1000E_INT_MODE_LEGACY;
4195 		e_info("MSI interrupt test failed, using legacy interrupt.\n");
4196 	} else {
4197 		e_dbg("MSI interrupt test succeeded!\n");
4198 	}
4199 
4200 	free_irq(adapter->pdev->irq, netdev);
4201 	pci_disable_msi(adapter->pdev);
4202 
4203 msi_test_failed:
4204 	e1000e_set_interrupt_capability(adapter);
4205 	return e1000_request_irq(adapter);
4206 }
4207 
4208 /**
4209  * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4210  * @adapter: board private struct
4211  *
4212  * code flow taken from tg3.c, called with e1000 interrupts disabled.
4213  **/
4214 static int e1000_test_msi(struct e1000_adapter *adapter)
4215 {
4216 	int err;
4217 	u16 pci_cmd;
4218 
4219 	if (!(adapter->flags & FLAG_MSI_ENABLED))
4220 		return 0;
4221 
4222 	/* disable SERR in case the MSI write causes a master abort */
4223 	pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4224 	if (pci_cmd & PCI_COMMAND_SERR)
4225 		pci_write_config_word(adapter->pdev, PCI_COMMAND,
4226 				      pci_cmd & ~PCI_COMMAND_SERR);
4227 
4228 	err = e1000_test_msi_interrupt(adapter);
4229 
4230 	/* re-enable SERR */
4231 	if (pci_cmd & PCI_COMMAND_SERR) {
4232 		pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4233 		pci_cmd |= PCI_COMMAND_SERR;
4234 		pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
4235 	}
4236 
4237 	return err;
4238 }
4239 
4240 /**
4241  * e1000_open - Called when a network interface is made active
4242  * @netdev: network interface device structure
4243  *
4244  * Returns 0 on success, negative value on failure
4245  *
4246  * The open entry point is called when a network interface is made
4247  * active by the system (IFF_UP).  At this point all resources needed
4248  * for transmit and receive operations are allocated, the interrupt
4249  * handler is registered with the OS, the watchdog timer is started,
4250  * and the stack is notified that the interface is ready.
4251  **/
4252 static int e1000_open(struct net_device *netdev)
4253 {
4254 	struct e1000_adapter *adapter = netdev_priv(netdev);
4255 	struct e1000_hw *hw = &adapter->hw;
4256 	struct pci_dev *pdev = adapter->pdev;
4257 	int err;
4258 
4259 	/* disallow open during test */
4260 	if (test_bit(__E1000_TESTING, &adapter->state))
4261 		return -EBUSY;
4262 
4263 	pm_runtime_get_sync(&pdev->dev);
4264 
4265 	netif_carrier_off(netdev);
4266 
4267 	/* allocate transmit descriptors */
4268 	err = e1000e_setup_tx_resources(adapter->tx_ring);
4269 	if (err)
4270 		goto err_setup_tx;
4271 
4272 	/* allocate receive descriptors */
4273 	err = e1000e_setup_rx_resources(adapter->rx_ring);
4274 	if (err)
4275 		goto err_setup_rx;
4276 
4277 	/* If AMT is enabled, let the firmware know that the network
4278 	 * interface is now open and reset the part to a known state.
4279 	 */
4280 	if (adapter->flags & FLAG_HAS_AMT) {
4281 		e1000e_get_hw_control(adapter);
4282 		e1000e_reset(adapter);
4283 	}
4284 
4285 	e1000e_power_up_phy(adapter);
4286 
4287 	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4288 	if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
4289 		e1000_update_mng_vlan(adapter);
4290 
4291 	/* DMA latency requirement to workaround jumbo issue */
4292 	pm_qos_add_request(&adapter->netdev->pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
4293 			   PM_QOS_DEFAULT_VALUE);
4294 
4295 	/* before we allocate an interrupt, we must be ready to handle it.
4296 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4297 	 * as soon as we call pci_request_irq, so we have to setup our
4298 	 * clean_rx handler before we do so.
4299 	 */
4300 	e1000_configure(adapter);
4301 
4302 	err = e1000_request_irq(adapter);
4303 	if (err)
4304 		goto err_req_irq;
4305 
4306 	/* Work around PCIe errata with MSI interrupts causing some chipsets to
4307 	 * ignore e1000e MSI messages, which means we need to test our MSI
4308 	 * interrupt now
4309 	 */
4310 	if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
4311 		err = e1000_test_msi(adapter);
4312 		if (err) {
4313 			e_err("Interrupt allocation failed\n");
4314 			goto err_req_irq;
4315 		}
4316 	}
4317 
4318 	/* From here on the code is the same as e1000e_up() */
4319 	clear_bit(__E1000_DOWN, &adapter->state);
4320 
4321 	napi_enable(&adapter->napi);
4322 
4323 	e1000_irq_enable(adapter);
4324 
4325 	adapter->tx_hang_recheck = false;
4326 	netif_start_queue(netdev);
4327 
4328 	adapter->idle_check = true;
4329 	hw->mac.get_link_status = true;
4330 	pm_runtime_put(&pdev->dev);
4331 
4332 	/* fire a link status change interrupt to start the watchdog */
4333 	if (adapter->msix_entries)
4334 		ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
4335 	else
4336 		ew32(ICS, E1000_ICS_LSC);
4337 
4338 	return 0;
4339 
4340 err_req_irq:
4341 	e1000e_release_hw_control(adapter);
4342 	e1000_power_down_phy(adapter);
4343 	e1000e_free_rx_resources(adapter->rx_ring);
4344 err_setup_rx:
4345 	e1000e_free_tx_resources(adapter->tx_ring);
4346 err_setup_tx:
4347 	e1000e_reset(adapter);
4348 	pm_runtime_put_sync(&pdev->dev);
4349 
4350 	return err;
4351 }
4352 
4353 /**
4354  * e1000_close - Disables a network interface
4355  * @netdev: network interface device structure
4356  *
4357  * Returns 0, this is not allowed to fail
4358  *
4359  * The close entry point is called when an interface is de-activated
4360  * by the OS.  The hardware is still under the drivers control, but
4361  * needs to be disabled.  A global MAC reset is issued to stop the
4362  * hardware, and all transmit and receive resources are freed.
4363  **/
4364 static int e1000_close(struct net_device *netdev)
4365 {
4366 	struct e1000_adapter *adapter = netdev_priv(netdev);
4367 	struct pci_dev *pdev = adapter->pdev;
4368 	int count = E1000_CHECK_RESET_COUNT;
4369 
4370 	while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
4371 		usleep_range(10000, 20000);
4372 
4373 	WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4374 
4375 	pm_runtime_get_sync(&pdev->dev);
4376 
4377 	if (!test_bit(__E1000_DOWN, &adapter->state)) {
4378 		e1000e_down(adapter);
4379 		e1000_free_irq(adapter);
4380 	}
4381 
4382 	napi_disable(&adapter->napi);
4383 
4384 	e1000_power_down_phy(adapter);
4385 
4386 	e1000e_free_tx_resources(adapter->tx_ring);
4387 	e1000e_free_rx_resources(adapter->rx_ring);
4388 
4389 	/* kill manageability vlan ID if supported, but not if a vlan with
4390 	 * the same ID is registered on the host OS (let 8021q kill it)
4391 	 */
4392 	if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
4393 		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
4394 				       adapter->mng_vlan_id);
4395 
4396 	/* If AMT is enabled, let the firmware know that the network
4397 	 * interface is now closed
4398 	 */
4399 	if ((adapter->flags & FLAG_HAS_AMT) &&
4400 	    !test_bit(__E1000_TESTING, &adapter->state))
4401 		e1000e_release_hw_control(adapter);
4402 
4403 	pm_qos_remove_request(&adapter->netdev->pm_qos_req);
4404 
4405 	pm_runtime_put_sync(&pdev->dev);
4406 
4407 	return 0;
4408 }
4409 
4410 /**
4411  * e1000_set_mac - Change the Ethernet Address of the NIC
4412  * @netdev: network interface device structure
4413  * @p: pointer to an address structure
4414  *
4415  * Returns 0 on success, negative on failure
4416  **/
4417 static int e1000_set_mac(struct net_device *netdev, void *p)
4418 {
4419 	struct e1000_adapter *adapter = netdev_priv(netdev);
4420 	struct e1000_hw *hw = &adapter->hw;
4421 	struct sockaddr *addr = p;
4422 
4423 	if (!is_valid_ether_addr(addr->sa_data))
4424 		return -EADDRNOTAVAIL;
4425 
4426 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4427 	memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4428 
4429 	hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4430 
4431 	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4432 		/* activate the work around */
4433 		e1000e_set_laa_state_82571(&adapter->hw, 1);
4434 
4435 		/* Hold a copy of the LAA in RAR[14] This is done so that
4436 		 * between the time RAR[0] gets clobbered  and the time it
4437 		 * gets fixed (in e1000_watchdog), the actual LAA is in one
4438 		 * of the RARs and no incoming packets directed to this port
4439 		 * are dropped. Eventually the LAA will be in RAR[0] and
4440 		 * RAR[14]
4441 		 */
4442 		hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4443 				    adapter->hw.mac.rar_entry_count - 1);
4444 	}
4445 
4446 	return 0;
4447 }
4448 
4449 /**
4450  * e1000e_update_phy_task - work thread to update phy
4451  * @work: pointer to our work struct
4452  *
4453  * this worker thread exists because we must acquire a
4454  * semaphore to read the phy, which we could msleep while
4455  * waiting for it, and we can't msleep in a timer.
4456  **/
4457 static void e1000e_update_phy_task(struct work_struct *work)
4458 {
4459 	struct e1000_adapter *adapter = container_of(work,
4460 						     struct e1000_adapter,
4461 						     update_phy_task);
4462 
4463 	if (test_bit(__E1000_DOWN, &adapter->state))
4464 		return;
4465 
4466 	e1000_get_phy_info(&adapter->hw);
4467 }
4468 
4469 /**
4470  * e1000_update_phy_info - timre call-back to update PHY info
4471  * @data: pointer to adapter cast into an unsigned long
4472  *
4473  * Need to wait a few seconds after link up to get diagnostic information from
4474  * the phy
4475  **/
4476 static void e1000_update_phy_info(unsigned long data)
4477 {
4478 	struct e1000_adapter *adapter = (struct e1000_adapter *)data;
4479 
4480 	if (test_bit(__E1000_DOWN, &adapter->state))
4481 		return;
4482 
4483 	schedule_work(&adapter->update_phy_task);
4484 }
4485 
4486 /**
4487  * e1000e_update_phy_stats - Update the PHY statistics counters
4488  * @adapter: board private structure
4489  *
4490  * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4491  **/
4492 static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4493 {
4494 	struct e1000_hw *hw = &adapter->hw;
4495 	s32 ret_val;
4496 	u16 phy_data;
4497 
4498 	ret_val = hw->phy.ops.acquire(hw);
4499 	if (ret_val)
4500 		return;
4501 
4502 	/* A page set is expensive so check if already on desired page.
4503 	 * If not, set to the page with the PHY status registers.
4504 	 */
4505 	hw->phy.addr = 1;
4506 	ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4507 					   &phy_data);
4508 	if (ret_val)
4509 		goto release;
4510 	if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4511 		ret_val = hw->phy.ops.set_page(hw,
4512 					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
4513 		if (ret_val)
4514 			goto release;
4515 	}
4516 
4517 	/* Single Collision Count */
4518 	hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4519 	ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4520 	if (!ret_val)
4521 		adapter->stats.scc += phy_data;
4522 
4523 	/* Excessive Collision Count */
4524 	hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4525 	ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4526 	if (!ret_val)
4527 		adapter->stats.ecol += phy_data;
4528 
4529 	/* Multiple Collision Count */
4530 	hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4531 	ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4532 	if (!ret_val)
4533 		adapter->stats.mcc += phy_data;
4534 
4535 	/* Late Collision Count */
4536 	hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4537 	ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4538 	if (!ret_val)
4539 		adapter->stats.latecol += phy_data;
4540 
4541 	/* Collision Count - also used for adaptive IFS */
4542 	hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4543 	ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4544 	if (!ret_val)
4545 		hw->mac.collision_delta = phy_data;
4546 
4547 	/* Defer Count */
4548 	hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4549 	ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4550 	if (!ret_val)
4551 		adapter->stats.dc += phy_data;
4552 
4553 	/* Transmit with no CRS */
4554 	hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4555 	ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4556 	if (!ret_val)
4557 		adapter->stats.tncrs += phy_data;
4558 
4559 release:
4560 	hw->phy.ops.release(hw);
4561 }
4562 
4563 /**
4564  * e1000e_update_stats - Update the board statistics counters
4565  * @adapter: board private structure
4566  **/
4567 static void e1000e_update_stats(struct e1000_adapter *adapter)
4568 {
4569 	struct net_device *netdev = adapter->netdev;
4570 	struct e1000_hw *hw = &adapter->hw;
4571 	struct pci_dev *pdev = adapter->pdev;
4572 
4573 	/* Prevent stats update while adapter is being reset, or if the pci
4574 	 * connection is down.
4575 	 */
4576 	if (adapter->link_speed == 0)
4577 		return;
4578 	if (pci_channel_offline(pdev))
4579 		return;
4580 
4581 	adapter->stats.crcerrs += er32(CRCERRS);
4582 	adapter->stats.gprc += er32(GPRC);
4583 	adapter->stats.gorc += er32(GORCL);
4584 	er32(GORCH); /* Clear gorc */
4585 	adapter->stats.bprc += er32(BPRC);
4586 	adapter->stats.mprc += er32(MPRC);
4587 	adapter->stats.roc += er32(ROC);
4588 
4589 	adapter->stats.mpc += er32(MPC);
4590 
4591 	/* Half-duplex statistics */
4592 	if (adapter->link_duplex == HALF_DUPLEX) {
4593 		if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4594 			e1000e_update_phy_stats(adapter);
4595 		} else {
4596 			adapter->stats.scc += er32(SCC);
4597 			adapter->stats.ecol += er32(ECOL);
4598 			adapter->stats.mcc += er32(MCC);
4599 			adapter->stats.latecol += er32(LATECOL);
4600 			adapter->stats.dc += er32(DC);
4601 
4602 			hw->mac.collision_delta = er32(COLC);
4603 
4604 			if ((hw->mac.type != e1000_82574) &&
4605 			    (hw->mac.type != e1000_82583))
4606 				adapter->stats.tncrs += er32(TNCRS);
4607 		}
4608 		adapter->stats.colc += hw->mac.collision_delta;
4609 	}
4610 
4611 	adapter->stats.xonrxc += er32(XONRXC);
4612 	adapter->stats.xontxc += er32(XONTXC);
4613 	adapter->stats.xoffrxc += er32(XOFFRXC);
4614 	adapter->stats.xofftxc += er32(XOFFTXC);
4615 	adapter->stats.gptc += er32(GPTC);
4616 	adapter->stats.gotc += er32(GOTCL);
4617 	er32(GOTCH); /* Clear gotc */
4618 	adapter->stats.rnbc += er32(RNBC);
4619 	adapter->stats.ruc += er32(RUC);
4620 
4621 	adapter->stats.mptc += er32(MPTC);
4622 	adapter->stats.bptc += er32(BPTC);
4623 
4624 	/* used for adaptive IFS */
4625 
4626 	hw->mac.tx_packet_delta = er32(TPT);
4627 	adapter->stats.tpt += hw->mac.tx_packet_delta;
4628 
4629 	adapter->stats.algnerrc += er32(ALGNERRC);
4630 	adapter->stats.rxerrc += er32(RXERRC);
4631 	adapter->stats.cexterr += er32(CEXTERR);
4632 	adapter->stats.tsctc += er32(TSCTC);
4633 	adapter->stats.tsctfc += er32(TSCTFC);
4634 
4635 	/* Fill out the OS statistics structure */
4636 	netdev->stats.multicast = adapter->stats.mprc;
4637 	netdev->stats.collisions = adapter->stats.colc;
4638 
4639 	/* Rx Errors */
4640 
4641 	/* RLEC on some newer hardware can be incorrect so build
4642 	 * our own version based on RUC and ROC
4643 	 */
4644 	netdev->stats.rx_errors = adapter->stats.rxerrc +
4645 	    adapter->stats.crcerrs + adapter->stats.algnerrc +
4646 	    adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
4647 	netdev->stats.rx_length_errors = adapter->stats.ruc +
4648 	    adapter->stats.roc;
4649 	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
4650 	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
4651 	netdev->stats.rx_missed_errors = adapter->stats.mpc;
4652 
4653 	/* Tx Errors */
4654 	netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol;
4655 	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
4656 	netdev->stats.tx_window_errors = adapter->stats.latecol;
4657 	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
4658 
4659 	/* Tx Dropped needs to be maintained elsewhere */
4660 
4661 	/* Management Stats */
4662 	adapter->stats.mgptc += er32(MGTPTC);
4663 	adapter->stats.mgprc += er32(MGTPRC);
4664 	adapter->stats.mgpdc += er32(MGTPDC);
4665 
4666 	/* Correctable ECC Errors */
4667 	if (hw->mac.type == e1000_pch_lpt) {
4668 		u32 pbeccsts = er32(PBECCSTS);
4669 		adapter->corr_errors +=
4670 		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
4671 		adapter->uncorr_errors +=
4672 		    (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
4673 		    E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
4674 	}
4675 }
4676 
4677 /**
4678  * e1000_phy_read_status - Update the PHY register status snapshot
4679  * @adapter: board private structure
4680  **/
4681 static void e1000_phy_read_status(struct e1000_adapter *adapter)
4682 {
4683 	struct e1000_hw *hw = &adapter->hw;
4684 	struct e1000_phy_regs *phy = &adapter->phy_regs;
4685 
4686 	if ((er32(STATUS) & E1000_STATUS_LU) &&
4687 	    (adapter->hw.phy.media_type == e1000_media_type_copper)) {
4688 		int ret_val;
4689 
4690 		pm_runtime_get_sync(&adapter->pdev->dev);
4691 		ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr);
4692 		ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr);
4693 		ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise);
4694 		ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa);
4695 		ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion);
4696 		ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000);
4697 		ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000);
4698 		ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus);
4699 		if (ret_val)
4700 			e_warn("Error reading PHY register\n");
4701 		pm_runtime_put_sync(&adapter->pdev->dev);
4702 	} else {
4703 		/* Do not read PHY registers if link is not up
4704 		 * Set values to typical power-on defaults
4705 		 */
4706 		phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
4707 		phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
4708 			     BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
4709 			     BMSR_ERCAP);
4710 		phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
4711 				  ADVERTISE_ALL | ADVERTISE_CSMA);
4712 		phy->lpa = 0;
4713 		phy->expansion = EXPANSION_ENABLENPAGE;
4714 		phy->ctrl1000 = ADVERTISE_1000FULL;
4715 		phy->stat1000 = 0;
4716 		phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
4717 	}
4718 }
4719 
4720 static void e1000_print_link_info(struct e1000_adapter *adapter)
4721 {
4722 	struct e1000_hw *hw = &adapter->hw;
4723 	u32 ctrl = er32(CTRL);
4724 
4725 	/* Link status message must follow this format for user tools */
4726 	pr_info("%s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4727 		adapter->netdev->name, adapter->link_speed,
4728 		adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
4729 		(ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
4730 		(ctrl & E1000_CTRL_RFCE) ? "Rx" :
4731 		(ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
4732 }
4733 
4734 static bool e1000e_has_link(struct e1000_adapter *adapter)
4735 {
4736 	struct e1000_hw *hw = &adapter->hw;
4737 	bool link_active = false;
4738 	s32 ret_val = 0;
4739 
4740 	/* get_link_status is set on LSC (link status) interrupt or
4741 	 * Rx sequence error interrupt.  get_link_status will stay
4742 	 * false until the check_for_link establishes link
4743 	 * for copper adapters ONLY
4744 	 */
4745 	switch (hw->phy.media_type) {
4746 	case e1000_media_type_copper:
4747 		if (hw->mac.get_link_status) {
4748 			ret_val = hw->mac.ops.check_for_link(hw);
4749 			link_active = !hw->mac.get_link_status;
4750 		} else {
4751 			link_active = true;
4752 		}
4753 		break;
4754 	case e1000_media_type_fiber:
4755 		ret_val = hw->mac.ops.check_for_link(hw);
4756 		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
4757 		break;
4758 	case e1000_media_type_internal_serdes:
4759 		ret_val = hw->mac.ops.check_for_link(hw);
4760 		link_active = adapter->hw.mac.serdes_has_link;
4761 		break;
4762 	default:
4763 	case e1000_media_type_unknown:
4764 		break;
4765 	}
4766 
4767 	if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
4768 	    (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
4769 		/* See e1000_kmrn_lock_loss_workaround_ich8lan() */
4770 		e_info("Gigabit has been disabled, downgrading speed\n");
4771 	}
4772 
4773 	return link_active;
4774 }
4775 
4776 static void e1000e_enable_receives(struct e1000_adapter *adapter)
4777 {
4778 	/* make sure the receive unit is started */
4779 	if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
4780 	    (adapter->flags & FLAG_RESTART_NOW)) {
4781 		struct e1000_hw *hw = &adapter->hw;
4782 		u32 rctl = er32(RCTL);
4783 		ew32(RCTL, rctl | E1000_RCTL_EN);
4784 		adapter->flags &= ~FLAG_RESTART_NOW;
4785 	}
4786 }
4787 
4788 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
4789 {
4790 	struct e1000_hw *hw = &adapter->hw;
4791 
4792 	/* With 82574 controllers, PHY needs to be checked periodically
4793 	 * for hung state and reset, if two calls return true
4794 	 */
4795 	if (e1000_check_phy_82574(hw))
4796 		adapter->phy_hang_count++;
4797 	else
4798 		adapter->phy_hang_count = 0;
4799 
4800 	if (adapter->phy_hang_count > 1) {
4801 		adapter->phy_hang_count = 0;
4802 		schedule_work(&adapter->reset_task);
4803 	}
4804 }
4805 
4806 /**
4807  * e1000_watchdog - Timer Call-back
4808  * @data: pointer to adapter cast into an unsigned long
4809  **/
4810 static void e1000_watchdog(unsigned long data)
4811 {
4812 	struct e1000_adapter *adapter = (struct e1000_adapter *)data;
4813 
4814 	/* Do the rest outside of interrupt context */
4815 	schedule_work(&adapter->watchdog_task);
4816 
4817 	/* TODO: make this use queue_delayed_work() */
4818 }
4819 
4820 static void e1000_watchdog_task(struct work_struct *work)
4821 {
4822 	struct e1000_adapter *adapter = container_of(work,
4823 						     struct e1000_adapter,
4824 						     watchdog_task);
4825 	struct net_device *netdev = adapter->netdev;
4826 	struct e1000_mac_info *mac = &adapter->hw.mac;
4827 	struct e1000_phy_info *phy = &adapter->hw.phy;
4828 	struct e1000_ring *tx_ring = adapter->tx_ring;
4829 	struct e1000_hw *hw = &adapter->hw;
4830 	u32 link, tctl;
4831 
4832 	if (test_bit(__E1000_DOWN, &adapter->state))
4833 		return;
4834 
4835 	link = e1000e_has_link(adapter);
4836 	if ((netif_carrier_ok(netdev)) && link) {
4837 		/* Cancel scheduled suspend requests. */
4838 		pm_runtime_resume(netdev->dev.parent);
4839 
4840 		e1000e_enable_receives(adapter);
4841 		goto link_up;
4842 	}
4843 
4844 	if ((e1000e_enable_tx_pkt_filtering(hw)) &&
4845 	    (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
4846 		e1000_update_mng_vlan(adapter);
4847 
4848 	if (link) {
4849 		if (!netif_carrier_ok(netdev)) {
4850 			bool txb2b = true;
4851 
4852 			/* Cancel scheduled suspend requests. */
4853 			pm_runtime_resume(netdev->dev.parent);
4854 
4855 			/* update snapshot of PHY registers on LSC */
4856 			e1000_phy_read_status(adapter);
4857 			mac->ops.get_link_up_info(&adapter->hw,
4858 						  &adapter->link_speed,
4859 						  &adapter->link_duplex);
4860 			e1000_print_link_info(adapter);
4861 
4862 			/* check if SmartSpeed worked */
4863 			e1000e_check_downshift(hw);
4864 			if (phy->speed_downgraded)
4865 				netdev_warn(netdev,
4866 					    "Link Speed was downgraded by SmartSpeed\n");
4867 
4868 			/* On supported PHYs, check for duplex mismatch only
4869 			 * if link has autonegotiated at 10/100 half
4870 			 */
4871 			if ((hw->phy.type == e1000_phy_igp_3 ||
4872 			     hw->phy.type == e1000_phy_bm) &&
4873 			    (hw->mac.autoneg == true) &&
4874 			    (adapter->link_speed == SPEED_10 ||
4875 			     adapter->link_speed == SPEED_100) &&
4876 			    (adapter->link_duplex == HALF_DUPLEX)) {
4877 				u16 autoneg_exp;
4878 
4879 				e1e_rphy(hw, MII_EXPANSION, &autoneg_exp);
4880 
4881 				if (!(autoneg_exp & EXPANSION_NWAY))
4882 					e_info("Autonegotiated half duplex but link partner cannot autoneg.  Try forcing full duplex if link gets many collisions.\n");
4883 			}
4884 
4885 			/* adjust timeout factor according to speed/duplex */
4886 			adapter->tx_timeout_factor = 1;
4887 			switch (adapter->link_speed) {
4888 			case SPEED_10:
4889 				txb2b = false;
4890 				adapter->tx_timeout_factor = 16;
4891 				break;
4892 			case SPEED_100:
4893 				txb2b = false;
4894 				adapter->tx_timeout_factor = 10;
4895 				break;
4896 			}
4897 
4898 			/* workaround: re-program speed mode bit after
4899 			 * link-up event
4900 			 */
4901 			if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
4902 			    !txb2b) {
4903 				u32 tarc0;
4904 				tarc0 = er32(TARC(0));
4905 				tarc0 &= ~SPEED_MODE_BIT;
4906 				ew32(TARC(0), tarc0);
4907 			}
4908 
4909 			/* disable TSO for pcie and 10/100 speeds, to avoid
4910 			 * some hardware issues
4911 			 */
4912 			if (!(adapter->flags & FLAG_TSO_FORCE)) {
4913 				switch (adapter->link_speed) {
4914 				case SPEED_10:
4915 				case SPEED_100:
4916 					e_info("10/100 speed: disabling TSO\n");
4917 					netdev->features &= ~NETIF_F_TSO;
4918 					netdev->features &= ~NETIF_F_TSO6;
4919 					break;
4920 				case SPEED_1000:
4921 					netdev->features |= NETIF_F_TSO;
4922 					netdev->features |= NETIF_F_TSO6;
4923 					break;
4924 				default:
4925 					/* oops */
4926 					break;
4927 				}
4928 			}
4929 
4930 			/* enable transmits in the hardware, need to do this
4931 			 * after setting TARC(0)
4932 			 */
4933 			tctl = er32(TCTL);
4934 			tctl |= E1000_TCTL_EN;
4935 			ew32(TCTL, tctl);
4936 
4937 			/* Perform any post-link-up configuration before
4938 			 * reporting link up.
4939 			 */
4940 			if (phy->ops.cfg_on_link_up)
4941 				phy->ops.cfg_on_link_up(hw);
4942 
4943 			netif_carrier_on(netdev);
4944 
4945 			if (!test_bit(__E1000_DOWN, &adapter->state))
4946 				mod_timer(&adapter->phy_info_timer,
4947 					  round_jiffies(jiffies + 2 * HZ));
4948 		}
4949 	} else {
4950 		if (netif_carrier_ok(netdev)) {
4951 			adapter->link_speed = 0;
4952 			adapter->link_duplex = 0;
4953 			/* Link status message must follow this format */
4954 			pr_info("%s NIC Link is Down\n", adapter->netdev->name);
4955 			netif_carrier_off(netdev);
4956 			if (!test_bit(__E1000_DOWN, &adapter->state))
4957 				mod_timer(&adapter->phy_info_timer,
4958 					  round_jiffies(jiffies + 2 * HZ));
4959 
4960 			/* The link is lost so the controller stops DMA.
4961 			 * If there is queued Tx work that cannot be done
4962 			 * or if on an 8000ES2LAN which requires a Rx packet
4963 			 * buffer work-around on link down event, reset the
4964 			 * controller to flush the Tx/Rx packet buffers.
4965 			 * (Do the reset outside of interrupt context).
4966 			 */
4967 			if ((adapter->flags & FLAG_RX_NEEDS_RESTART) ||
4968 			    (e1000_desc_unused(tx_ring) + 1 < tx_ring->count))
4969 				adapter->flags |= FLAG_RESTART_NOW;
4970 			else
4971 				pm_schedule_suspend(netdev->dev.parent,
4972 						    LINK_TIMEOUT);
4973 		}
4974 	}
4975 
4976 link_up:
4977 	spin_lock(&adapter->stats64_lock);
4978 	e1000e_update_stats(adapter);
4979 
4980 	mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
4981 	adapter->tpt_old = adapter->stats.tpt;
4982 	mac->collision_delta = adapter->stats.colc - adapter->colc_old;
4983 	adapter->colc_old = adapter->stats.colc;
4984 
4985 	adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
4986 	adapter->gorc_old = adapter->stats.gorc;
4987 	adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
4988 	adapter->gotc_old = adapter->stats.gotc;
4989 	spin_unlock(&adapter->stats64_lock);
4990 
4991 	if (adapter->flags & FLAG_RESTART_NOW) {
4992 		schedule_work(&adapter->reset_task);
4993 		/* return immediately since reset is imminent */
4994 		return;
4995 	}
4996 
4997 	e1000e_update_adaptive(&adapter->hw);
4998 
4999 	/* Simple mode for Interrupt Throttle Rate (ITR) */
5000 	if (adapter->itr_setting == 4) {
5001 		/* Symmetric Tx/Rx gets a reduced ITR=2000;
5002 		 * Total asymmetrical Tx or Rx gets ITR=8000;
5003 		 * everyone else is between 2000-8000.
5004 		 */
5005 		u32 goc = (adapter->gotc + adapter->gorc) / 10000;
5006 		u32 dif = (adapter->gotc > adapter->gorc ?
5007 			   adapter->gotc - adapter->gorc :
5008 			   adapter->gorc - adapter->gotc) / 10000;
5009 		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
5010 
5011 		e1000e_write_itr(adapter, itr);
5012 	}
5013 
5014 	/* Cause software interrupt to ensure Rx ring is cleaned */
5015 	if (adapter->msix_entries)
5016 		ew32(ICS, adapter->rx_ring->ims_val);
5017 	else
5018 		ew32(ICS, E1000_ICS_RXDMT0);
5019 
5020 	/* flush pending descriptors to memory before detecting Tx hang */
5021 	e1000e_flush_descriptors(adapter);
5022 
5023 	/* Force detection of hung controller every watchdog period */
5024 	adapter->detect_tx_hung = true;
5025 
5026 	/* With 82571 controllers, LAA may be overwritten due to controller
5027 	 * reset from the other port. Set the appropriate LAA in RAR[0]
5028 	 */
5029 	if (e1000e_get_laa_state_82571(hw))
5030 		hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
5031 
5032 	if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
5033 		e1000e_check_82574_phy_workaround(adapter);
5034 
5035 	/* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5036 	if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) {
5037 		if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) &&
5038 		    (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) {
5039 			er32(RXSTMPH);
5040 			adapter->rx_hwtstamp_cleared++;
5041 		} else {
5042 			adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP;
5043 		}
5044 	}
5045 
5046 	/* Reset the timer */
5047 	if (!test_bit(__E1000_DOWN, &adapter->state))
5048 		mod_timer(&adapter->watchdog_timer,
5049 			  round_jiffies(jiffies + 2 * HZ));
5050 }
5051 
5052 #define E1000_TX_FLAGS_CSUM		0x00000001
5053 #define E1000_TX_FLAGS_VLAN		0x00000002
5054 #define E1000_TX_FLAGS_TSO		0x00000004
5055 #define E1000_TX_FLAGS_IPV4		0x00000008
5056 #define E1000_TX_FLAGS_NO_FCS		0x00000010
5057 #define E1000_TX_FLAGS_HWTSTAMP		0x00000020
5058 #define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
5059 #define E1000_TX_FLAGS_VLAN_SHIFT	16
5060 
5061 static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb)
5062 {
5063 	struct e1000_context_desc *context_desc;
5064 	struct e1000_buffer *buffer_info;
5065 	unsigned int i;
5066 	u32 cmd_length = 0;
5067 	u16 ipcse = 0, mss;
5068 	u8 ipcss, ipcso, tucss, tucso, hdr_len;
5069 
5070 	if (!skb_is_gso(skb))
5071 		return 0;
5072 
5073 	if (skb_header_cloned(skb)) {
5074 		int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5075 
5076 		if (err)
5077 			return err;
5078 	}
5079 
5080 	hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5081 	mss = skb_shinfo(skb)->gso_size;
5082 	if (skb->protocol == htons(ETH_P_IP)) {
5083 		struct iphdr *iph = ip_hdr(skb);
5084 		iph->tot_len = 0;
5085 		iph->check = 0;
5086 		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
5087 							 0, IPPROTO_TCP, 0);
5088 		cmd_length = E1000_TXD_CMD_IP;
5089 		ipcse = skb_transport_offset(skb) - 1;
5090 	} else if (skb_is_gso_v6(skb)) {
5091 		ipv6_hdr(skb)->payload_len = 0;
5092 		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5093 						       &ipv6_hdr(skb)->daddr,
5094 						       0, IPPROTO_TCP, 0);
5095 		ipcse = 0;
5096 	}
5097 	ipcss = skb_network_offset(skb);
5098 	ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
5099 	tucss = skb_transport_offset(skb);
5100 	tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
5101 
5102 	cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
5103 		       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
5104 
5105 	i = tx_ring->next_to_use;
5106 	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5107 	buffer_info = &tx_ring->buffer_info[i];
5108 
5109 	context_desc->lower_setup.ip_fields.ipcss  = ipcss;
5110 	context_desc->lower_setup.ip_fields.ipcso  = ipcso;
5111 	context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
5112 	context_desc->upper_setup.tcp_fields.tucss = tucss;
5113 	context_desc->upper_setup.tcp_fields.tucso = tucso;
5114 	context_desc->upper_setup.tcp_fields.tucse = 0;
5115 	context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
5116 	context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
5117 	context_desc->cmd_and_length = cpu_to_le32(cmd_length);
5118 
5119 	buffer_info->time_stamp = jiffies;
5120 	buffer_info->next_to_watch = i;
5121 
5122 	i++;
5123 	if (i == tx_ring->count)
5124 		i = 0;
5125 	tx_ring->next_to_use = i;
5126 
5127 	return 1;
5128 }
5129 
5130 static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb)
5131 {
5132 	struct e1000_adapter *adapter = tx_ring->adapter;
5133 	struct e1000_context_desc *context_desc;
5134 	struct e1000_buffer *buffer_info;
5135 	unsigned int i;
5136 	u8 css;
5137 	u32 cmd_len = E1000_TXD_CMD_DEXT;
5138 	__be16 protocol;
5139 
5140 	if (skb->ip_summed != CHECKSUM_PARTIAL)
5141 		return 0;
5142 
5143 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
5144 		protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
5145 	else
5146 		protocol = skb->protocol;
5147 
5148 	switch (protocol) {
5149 	case cpu_to_be16(ETH_P_IP):
5150 		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
5151 			cmd_len |= E1000_TXD_CMD_TCP;
5152 		break;
5153 	case cpu_to_be16(ETH_P_IPV6):
5154 		/* XXX not handling all IPV6 headers */
5155 		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
5156 			cmd_len |= E1000_TXD_CMD_TCP;
5157 		break;
5158 	default:
5159 		if (unlikely(net_ratelimit()))
5160 			e_warn("checksum_partial proto=%x!\n",
5161 			       be16_to_cpu(protocol));
5162 		break;
5163 	}
5164 
5165 	css = skb_checksum_start_offset(skb);
5166 
5167 	i = tx_ring->next_to_use;
5168 	buffer_info = &tx_ring->buffer_info[i];
5169 	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5170 
5171 	context_desc->lower_setup.ip_config = 0;
5172 	context_desc->upper_setup.tcp_fields.tucss = css;
5173 	context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset;
5174 	context_desc->upper_setup.tcp_fields.tucse = 0;
5175 	context_desc->tcp_seg_setup.data = 0;
5176 	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
5177 
5178 	buffer_info->time_stamp = jiffies;
5179 	buffer_info->next_to_watch = i;
5180 
5181 	i++;
5182 	if (i == tx_ring->count)
5183 		i = 0;
5184 	tx_ring->next_to_use = i;
5185 
5186 	return 1;
5187 }
5188 
5189 static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
5190 			unsigned int first, unsigned int max_per_txd,
5191 			unsigned int nr_frags)
5192 {
5193 	struct e1000_adapter *adapter = tx_ring->adapter;
5194 	struct pci_dev *pdev = adapter->pdev;
5195 	struct e1000_buffer *buffer_info;
5196 	unsigned int len = skb_headlen(skb);
5197 	unsigned int offset = 0, size, count = 0, i;
5198 	unsigned int f, bytecount, segs;
5199 
5200 	i = tx_ring->next_to_use;
5201 
5202 	while (len) {
5203 		buffer_info = &tx_ring->buffer_info[i];
5204 		size = min(len, max_per_txd);
5205 
5206 		buffer_info->length = size;
5207 		buffer_info->time_stamp = jiffies;
5208 		buffer_info->next_to_watch = i;
5209 		buffer_info->dma = dma_map_single(&pdev->dev,
5210 						  skb->data + offset,
5211 						  size, DMA_TO_DEVICE);
5212 		buffer_info->mapped_as_page = false;
5213 		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5214 			goto dma_error;
5215 
5216 		len -= size;
5217 		offset += size;
5218 		count++;
5219 
5220 		if (len) {
5221 			i++;
5222 			if (i == tx_ring->count)
5223 				i = 0;
5224 		}
5225 	}
5226 
5227 	for (f = 0; f < nr_frags; f++) {
5228 		const struct skb_frag_struct *frag;
5229 
5230 		frag = &skb_shinfo(skb)->frags[f];
5231 		len = skb_frag_size(frag);
5232 		offset = 0;
5233 
5234 		while (len) {
5235 			i++;
5236 			if (i == tx_ring->count)
5237 				i = 0;
5238 
5239 			buffer_info = &tx_ring->buffer_info[i];
5240 			size = min(len, max_per_txd);
5241 
5242 			buffer_info->length = size;
5243 			buffer_info->time_stamp = jiffies;
5244 			buffer_info->next_to_watch = i;
5245 			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
5246 							    offset, size,
5247 							    DMA_TO_DEVICE);
5248 			buffer_info->mapped_as_page = true;
5249 			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5250 				goto dma_error;
5251 
5252 			len -= size;
5253 			offset += size;
5254 			count++;
5255 		}
5256 	}
5257 
5258 	segs = skb_shinfo(skb)->gso_segs ? : 1;
5259 	/* multiply data chunks by size of headers */
5260 	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
5261 
5262 	tx_ring->buffer_info[i].skb = skb;
5263 	tx_ring->buffer_info[i].segs = segs;
5264 	tx_ring->buffer_info[i].bytecount = bytecount;
5265 	tx_ring->buffer_info[first].next_to_watch = i;
5266 
5267 	return count;
5268 
5269 dma_error:
5270 	dev_err(&pdev->dev, "Tx DMA map failed\n");
5271 	buffer_info->dma = 0;
5272 	if (count)
5273 		count--;
5274 
5275 	while (count--) {
5276 		if (i == 0)
5277 			i += tx_ring->count;
5278 		i--;
5279 		buffer_info = &tx_ring->buffer_info[i];
5280 		e1000_put_txbuf(tx_ring, buffer_info);
5281 	}
5282 
5283 	return 0;
5284 }
5285 
5286 static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
5287 {
5288 	struct e1000_adapter *adapter = tx_ring->adapter;
5289 	struct e1000_tx_desc *tx_desc = NULL;
5290 	struct e1000_buffer *buffer_info;
5291 	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
5292 	unsigned int i;
5293 
5294 	if (tx_flags & E1000_TX_FLAGS_TSO) {
5295 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
5296 		    E1000_TXD_CMD_TSE;
5297 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5298 
5299 		if (tx_flags & E1000_TX_FLAGS_IPV4)
5300 			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
5301 	}
5302 
5303 	if (tx_flags & E1000_TX_FLAGS_CSUM) {
5304 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5305 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5306 	}
5307 
5308 	if (tx_flags & E1000_TX_FLAGS_VLAN) {
5309 		txd_lower |= E1000_TXD_CMD_VLE;
5310 		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
5311 	}
5312 
5313 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5314 		txd_lower &= ~(E1000_TXD_CMD_IFCS);
5315 
5316 	if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) {
5317 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5318 		txd_upper |= E1000_TXD_EXTCMD_TSTAMP;
5319 	}
5320 
5321 	i = tx_ring->next_to_use;
5322 
5323 	do {
5324 		buffer_info = &tx_ring->buffer_info[i];
5325 		tx_desc = E1000_TX_DESC(*tx_ring, i);
5326 		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
5327 		tx_desc->lower.data = cpu_to_le32(txd_lower |
5328 						  buffer_info->length);
5329 		tx_desc->upper.data = cpu_to_le32(txd_upper);
5330 
5331 		i++;
5332 		if (i == tx_ring->count)
5333 			i = 0;
5334 	} while (--count > 0);
5335 
5336 	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
5337 
5338 	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5339 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5340 		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
5341 
5342 	/* Force memory writes to complete before letting h/w
5343 	 * know there are new descriptors to fetch.  (Only
5344 	 * applicable for weak-ordered memory model archs,
5345 	 * such as IA-64).
5346 	 */
5347 	wmb();
5348 
5349 	tx_ring->next_to_use = i;
5350 
5351 	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
5352 		e1000e_update_tdt_wa(tx_ring, i);
5353 	else
5354 		writel(i, tx_ring->tail);
5355 
5356 	/* we need this if more than one processor can write to our tail
5357 	 * at a time, it synchronizes IO on IA64/Altix systems
5358 	 */
5359 	mmiowb();
5360 }
5361 
5362 #define MINIMUM_DHCP_PACKET_SIZE 282
5363 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
5364 				    struct sk_buff *skb)
5365 {
5366 	struct e1000_hw *hw =  &adapter->hw;
5367 	u16 length, offset;
5368 
5369 	if (vlan_tx_tag_present(skb) &&
5370 	    !((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
5371 	      (adapter->hw.mng_cookie.status &
5372 	       E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
5373 		return 0;
5374 
5375 	if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
5376 		return 0;
5377 
5378 	if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP))
5379 		return 0;
5380 
5381 	{
5382 		const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14);
5383 		struct udphdr *udp;
5384 
5385 		if (ip->protocol != IPPROTO_UDP)
5386 			return 0;
5387 
5388 		udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
5389 		if (ntohs(udp->dest) != 67)
5390 			return 0;
5391 
5392 		offset = (u8 *)udp + 8 - skb->data;
5393 		length = skb->len - offset;
5394 		return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
5395 	}
5396 
5397 	return 0;
5398 }
5399 
5400 static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5401 {
5402 	struct e1000_adapter *adapter = tx_ring->adapter;
5403 
5404 	netif_stop_queue(adapter->netdev);
5405 	/* Herbert's original patch had:
5406 	 *  smp_mb__after_netif_stop_queue();
5407 	 * but since that doesn't exist yet, just open code it.
5408 	 */
5409 	smp_mb();
5410 
5411 	/* We need to check again in a case another CPU has just
5412 	 * made room available.
5413 	 */
5414 	if (e1000_desc_unused(tx_ring) < size)
5415 		return -EBUSY;
5416 
5417 	/* A reprieve! */
5418 	netif_start_queue(adapter->netdev);
5419 	++adapter->restart_queue;
5420 	return 0;
5421 }
5422 
5423 static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5424 {
5425 	BUG_ON(size > tx_ring->count);
5426 
5427 	if (e1000_desc_unused(tx_ring) >= size)
5428 		return 0;
5429 	return __e1000_maybe_stop_tx(tx_ring, size);
5430 }
5431 
5432 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5433 				    struct net_device *netdev)
5434 {
5435 	struct e1000_adapter *adapter = netdev_priv(netdev);
5436 	struct e1000_ring *tx_ring = adapter->tx_ring;
5437 	unsigned int first;
5438 	unsigned int tx_flags = 0;
5439 	unsigned int len = skb_headlen(skb);
5440 	unsigned int nr_frags;
5441 	unsigned int mss;
5442 	int count = 0;
5443 	int tso;
5444 	unsigned int f;
5445 
5446 	if (test_bit(__E1000_DOWN, &adapter->state)) {
5447 		dev_kfree_skb_any(skb);
5448 		return NETDEV_TX_OK;
5449 	}
5450 
5451 	if (skb->len <= 0) {
5452 		dev_kfree_skb_any(skb);
5453 		return NETDEV_TX_OK;
5454 	}
5455 
5456 	/* The minimum packet size with TCTL.PSP set is 17 bytes so
5457 	 * pad skb in order to meet this minimum size requirement
5458 	 */
5459 	if (unlikely(skb->len < 17)) {
5460 		if (skb_pad(skb, 17 - skb->len))
5461 			return NETDEV_TX_OK;
5462 		skb->len = 17;
5463 		skb_set_tail_pointer(skb, 17);
5464 	}
5465 
5466 	mss = skb_shinfo(skb)->gso_size;
5467 	if (mss) {
5468 		u8 hdr_len;
5469 
5470 		/* TSO Workaround for 82571/2/3 Controllers -- if skb->data
5471 		 * points to just header, pull a few bytes of payload from
5472 		 * frags into skb->data
5473 		 */
5474 		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5475 		/* we do this workaround for ES2LAN, but it is un-necessary,
5476 		 * avoiding it could save a lot of cycles
5477 		 */
5478 		if (skb->data_len && (hdr_len == len)) {
5479 			unsigned int pull_size;
5480 
5481 			pull_size = min_t(unsigned int, 4, skb->data_len);
5482 			if (!__pskb_pull_tail(skb, pull_size)) {
5483 				e_err("__pskb_pull_tail failed.\n");
5484 				dev_kfree_skb_any(skb);
5485 				return NETDEV_TX_OK;
5486 			}
5487 			len = skb_headlen(skb);
5488 		}
5489 	}
5490 
5491 	/* reserve a descriptor for the offload context */
5492 	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5493 		count++;
5494 	count++;
5495 
5496 	count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
5497 
5498 	nr_frags = skb_shinfo(skb)->nr_frags;
5499 	for (f = 0; f < nr_frags; f++)
5500 		count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5501 				      adapter->tx_fifo_limit);
5502 
5503 	if (adapter->hw.mac.tx_pkt_filtering)
5504 		e1000_transfer_dhcp_info(adapter, skb);
5505 
5506 	/* need: count + 2 desc gap to keep tail from touching
5507 	 * head, otherwise try next time
5508 	 */
5509 	if (e1000_maybe_stop_tx(tx_ring, count + 2))
5510 		return NETDEV_TX_BUSY;
5511 
5512 	if (vlan_tx_tag_present(skb)) {
5513 		tx_flags |= E1000_TX_FLAGS_VLAN;
5514 		tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
5515 	}
5516 
5517 	first = tx_ring->next_to_use;
5518 
5519 	tso = e1000_tso(tx_ring, skb);
5520 	if (tso < 0) {
5521 		dev_kfree_skb_any(skb);
5522 		return NETDEV_TX_OK;
5523 	}
5524 
5525 	if (tso)
5526 		tx_flags |= E1000_TX_FLAGS_TSO;
5527 	else if (e1000_tx_csum(tx_ring, skb))
5528 		tx_flags |= E1000_TX_FLAGS_CSUM;
5529 
5530 	/* Old method was to assume IPv4 packet by default if TSO was enabled.
5531 	 * 82571 hardware supports TSO capabilities for IPv6 as well...
5532 	 * no longer assume, we must.
5533 	 */
5534 	if (skb->protocol == htons(ETH_P_IP))
5535 		tx_flags |= E1000_TX_FLAGS_IPV4;
5536 
5537 	if (unlikely(skb->no_fcs))
5538 		tx_flags |= E1000_TX_FLAGS_NO_FCS;
5539 
5540 	/* if count is 0 then mapping error has occurred */
5541 	count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5542 			     nr_frags);
5543 	if (count) {
5544 		if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
5545 			     !adapter->tx_hwtstamp_skb)) {
5546 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5547 			tx_flags |= E1000_TX_FLAGS_HWTSTAMP;
5548 			adapter->tx_hwtstamp_skb = skb_get(skb);
5549 			schedule_work(&adapter->tx_hwtstamp_work);
5550 		} else {
5551 			skb_tx_timestamp(skb);
5552 		}
5553 
5554 		netdev_sent_queue(netdev, skb->len);
5555 		e1000_tx_queue(tx_ring, tx_flags, count);
5556 		/* Make sure there is space in the ring for the next send. */
5557 		e1000_maybe_stop_tx(tx_ring,
5558 				    (MAX_SKB_FRAGS *
5559 				     DIV_ROUND_UP(PAGE_SIZE,
5560 						  adapter->tx_fifo_limit) + 2));
5561 	} else {
5562 		dev_kfree_skb_any(skb);
5563 		tx_ring->buffer_info[first].time_stamp = 0;
5564 		tx_ring->next_to_use = first;
5565 	}
5566 
5567 	return NETDEV_TX_OK;
5568 }
5569 
5570 /**
5571  * e1000_tx_timeout - Respond to a Tx Hang
5572  * @netdev: network interface device structure
5573  **/
5574 static void e1000_tx_timeout(struct net_device *netdev)
5575 {
5576 	struct e1000_adapter *adapter = netdev_priv(netdev);
5577 
5578 	/* Do the reset outside of interrupt context */
5579 	adapter->tx_timeout_count++;
5580 	schedule_work(&adapter->reset_task);
5581 }
5582 
5583 static void e1000_reset_task(struct work_struct *work)
5584 {
5585 	struct e1000_adapter *adapter;
5586 	adapter = container_of(work, struct e1000_adapter, reset_task);
5587 
5588 	/* don't run the task if already down */
5589 	if (test_bit(__E1000_DOWN, &adapter->state))
5590 		return;
5591 
5592 	if (!(adapter->flags & FLAG_RESTART_NOW)) {
5593 		e1000e_dump(adapter);
5594 		e_err("Reset adapter unexpectedly\n");
5595 	}
5596 	e1000e_reinit_locked(adapter);
5597 }
5598 
5599 /**
5600  * e1000_get_stats64 - Get System Network Statistics
5601  * @netdev: network interface device structure
5602  * @stats: rtnl_link_stats64 pointer
5603  *
5604  * Returns the address of the device statistics structure.
5605  **/
5606 struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev,
5607 					     struct rtnl_link_stats64 *stats)
5608 {
5609 	struct e1000_adapter *adapter = netdev_priv(netdev);
5610 
5611 	memset(stats, 0, sizeof(struct rtnl_link_stats64));
5612 	spin_lock(&adapter->stats64_lock);
5613 	e1000e_update_stats(adapter);
5614 	/* Fill out the OS statistics structure */
5615 	stats->rx_bytes = adapter->stats.gorc;
5616 	stats->rx_packets = adapter->stats.gprc;
5617 	stats->tx_bytes = adapter->stats.gotc;
5618 	stats->tx_packets = adapter->stats.gptc;
5619 	stats->multicast = adapter->stats.mprc;
5620 	stats->collisions = adapter->stats.colc;
5621 
5622 	/* Rx Errors */
5623 
5624 	/* RLEC on some newer hardware can be incorrect so build
5625 	 * our own version based on RUC and ROC
5626 	 */
5627 	stats->rx_errors = adapter->stats.rxerrc +
5628 	    adapter->stats.crcerrs + adapter->stats.algnerrc +
5629 	    adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5630 	stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc;
5631 	stats->rx_crc_errors = adapter->stats.crcerrs;
5632 	stats->rx_frame_errors = adapter->stats.algnerrc;
5633 	stats->rx_missed_errors = adapter->stats.mpc;
5634 
5635 	/* Tx Errors */
5636 	stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol;
5637 	stats->tx_aborted_errors = adapter->stats.ecol;
5638 	stats->tx_window_errors = adapter->stats.latecol;
5639 	stats->tx_carrier_errors = adapter->stats.tncrs;
5640 
5641 	/* Tx Dropped needs to be maintained elsewhere */
5642 
5643 	spin_unlock(&adapter->stats64_lock);
5644 	return stats;
5645 }
5646 
5647 /**
5648  * e1000_change_mtu - Change the Maximum Transfer Unit
5649  * @netdev: network interface device structure
5650  * @new_mtu: new value for maximum frame size
5651  *
5652  * Returns 0 on success, negative on failure
5653  **/
5654 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
5655 {
5656 	struct e1000_adapter *adapter = netdev_priv(netdev);
5657 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
5658 
5659 	/* Jumbo frame support */
5660 	if ((max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) &&
5661 	    !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
5662 		e_err("Jumbo Frames not supported.\n");
5663 		return -EINVAL;
5664 	}
5665 
5666 	/* Supported frame sizes */
5667 	if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
5668 	    (max_frame > adapter->max_hw_frame_size)) {
5669 		e_err("Unsupported MTU setting\n");
5670 		return -EINVAL;
5671 	}
5672 
5673 	/* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
5674 	if ((adapter->hw.mac.type >= e1000_pch2lan) &&
5675 	    !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
5676 	    (new_mtu > ETH_DATA_LEN)) {
5677 		e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
5678 		return -EINVAL;
5679 	}
5680 
5681 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
5682 		usleep_range(1000, 2000);
5683 	/* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
5684 	adapter->max_frame_size = max_frame;
5685 	e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
5686 	netdev->mtu = new_mtu;
5687 	if (netif_running(netdev))
5688 		e1000e_down(adapter);
5689 
5690 	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
5691 	 * means we reserve 2 more, this pushes us to allocate from the next
5692 	 * larger slab size.
5693 	 * i.e. RXBUFFER_2048 --> size-4096 slab
5694 	 * However with the new *_jumbo_rx* routines, jumbo receives will use
5695 	 * fragmented skbs
5696 	 */
5697 
5698 	if (max_frame <= 2048)
5699 		adapter->rx_buffer_len = 2048;
5700 	else
5701 		adapter->rx_buffer_len = 4096;
5702 
5703 	/* adjust allocation if LPE protects us, and we aren't using SBP */
5704 	if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
5705 	    (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
5706 		adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
5707 		    + ETH_FCS_LEN;
5708 
5709 	if (netif_running(netdev))
5710 		e1000e_up(adapter);
5711 	else
5712 		e1000e_reset(adapter);
5713 
5714 	clear_bit(__E1000_RESETTING, &adapter->state);
5715 
5716 	return 0;
5717 }
5718 
5719 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
5720 			   int cmd)
5721 {
5722 	struct e1000_adapter *adapter = netdev_priv(netdev);
5723 	struct mii_ioctl_data *data = if_mii(ifr);
5724 
5725 	if (adapter->hw.phy.media_type != e1000_media_type_copper)
5726 		return -EOPNOTSUPP;
5727 
5728 	switch (cmd) {
5729 	case SIOCGMIIPHY:
5730 		data->phy_id = adapter->hw.phy.addr;
5731 		break;
5732 	case SIOCGMIIREG:
5733 		e1000_phy_read_status(adapter);
5734 
5735 		switch (data->reg_num & 0x1F) {
5736 		case MII_BMCR:
5737 			data->val_out = adapter->phy_regs.bmcr;
5738 			break;
5739 		case MII_BMSR:
5740 			data->val_out = adapter->phy_regs.bmsr;
5741 			break;
5742 		case MII_PHYSID1:
5743 			data->val_out = (adapter->hw.phy.id >> 16);
5744 			break;
5745 		case MII_PHYSID2:
5746 			data->val_out = (adapter->hw.phy.id & 0xFFFF);
5747 			break;
5748 		case MII_ADVERTISE:
5749 			data->val_out = adapter->phy_regs.advertise;
5750 			break;
5751 		case MII_LPA:
5752 			data->val_out = adapter->phy_regs.lpa;
5753 			break;
5754 		case MII_EXPANSION:
5755 			data->val_out = adapter->phy_regs.expansion;
5756 			break;
5757 		case MII_CTRL1000:
5758 			data->val_out = adapter->phy_regs.ctrl1000;
5759 			break;
5760 		case MII_STAT1000:
5761 			data->val_out = adapter->phy_regs.stat1000;
5762 			break;
5763 		case MII_ESTATUS:
5764 			data->val_out = adapter->phy_regs.estatus;
5765 			break;
5766 		default:
5767 			return -EIO;
5768 		}
5769 		break;
5770 	case SIOCSMIIREG:
5771 	default:
5772 		return -EOPNOTSUPP;
5773 	}
5774 	return 0;
5775 }
5776 
5777 /**
5778  * e1000e_hwtstamp_ioctl - control hardware time stamping
5779  * @netdev: network interface device structure
5780  * @ifreq: interface request
5781  *
5782  * Outgoing time stamping can be enabled and disabled. Play nice and
5783  * disable it when requested, although it shouldn't cause any overhead
5784  * when no packet needs it. At most one packet in the queue may be
5785  * marked for time stamping, otherwise it would be impossible to tell
5786  * for sure to which packet the hardware time stamp belongs.
5787  *
5788  * Incoming time stamping has to be configured via the hardware filters.
5789  * Not all combinations are supported, in particular event type has to be
5790  * specified. Matching the kind of event packet is not supported, with the
5791  * exception of "all V2 events regardless of level 2 or 4".
5792  **/
5793 static int e1000e_hwtstamp_ioctl(struct net_device *netdev, struct ifreq *ifr)
5794 {
5795 	struct e1000_adapter *adapter = netdev_priv(netdev);
5796 	struct hwtstamp_config config;
5797 	int ret_val;
5798 
5799 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
5800 		return -EFAULT;
5801 
5802 	adapter->hwtstamp_config = config;
5803 
5804 	ret_val = e1000e_config_hwtstamp(adapter);
5805 	if (ret_val)
5806 		return ret_val;
5807 
5808 	config = adapter->hwtstamp_config;
5809 
5810 	switch (config.rx_filter) {
5811 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
5812 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
5813 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
5814 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
5815 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
5816 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
5817 		/* With V2 type filters which specify a Sync or Delay Request,
5818 		 * Path Delay Request/Response messages are also time stamped
5819 		 * by hardware so notify the caller the requested packets plus
5820 		 * some others are time stamped.
5821 		 */
5822 		config.rx_filter = HWTSTAMP_FILTER_SOME;
5823 		break;
5824 	default:
5825 		break;
5826 	}
5827 
5828 	return copy_to_user(ifr->ifr_data, &config,
5829 			    sizeof(config)) ? -EFAULT : 0;
5830 }
5831 
5832 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5833 {
5834 	switch (cmd) {
5835 	case SIOCGMIIPHY:
5836 	case SIOCGMIIREG:
5837 	case SIOCSMIIREG:
5838 		return e1000_mii_ioctl(netdev, ifr, cmd);
5839 	case SIOCSHWTSTAMP:
5840 		return e1000e_hwtstamp_ioctl(netdev, ifr);
5841 	default:
5842 		return -EOPNOTSUPP;
5843 	}
5844 }
5845 
5846 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
5847 {
5848 	struct e1000_hw *hw = &adapter->hw;
5849 	u32 i, mac_reg;
5850 	u16 phy_reg, wuc_enable;
5851 	int retval;
5852 
5853 	/* copy MAC RARs to PHY RARs */
5854 	e1000_copy_rx_addrs_to_phy_ich8lan(hw);
5855 
5856 	retval = hw->phy.ops.acquire(hw);
5857 	if (retval) {
5858 		e_err("Could not acquire PHY\n");
5859 		return retval;
5860 	}
5861 
5862 	/* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
5863 	retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
5864 	if (retval)
5865 		goto release;
5866 
5867 	/* copy MAC MTA to PHY MTA - only needed for pchlan */
5868 	for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
5869 		mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
5870 		hw->phy.ops.write_reg_page(hw, BM_MTA(i),
5871 					   (u16)(mac_reg & 0xFFFF));
5872 		hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
5873 					   (u16)((mac_reg >> 16) & 0xFFFF));
5874 	}
5875 
5876 	/* configure PHY Rx Control register */
5877 	hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
5878 	mac_reg = er32(RCTL);
5879 	if (mac_reg & E1000_RCTL_UPE)
5880 		phy_reg |= BM_RCTL_UPE;
5881 	if (mac_reg & E1000_RCTL_MPE)
5882 		phy_reg |= BM_RCTL_MPE;
5883 	phy_reg &= ~(BM_RCTL_MO_MASK);
5884 	if (mac_reg & E1000_RCTL_MO_3)
5885 		phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
5886 			    << BM_RCTL_MO_SHIFT);
5887 	if (mac_reg & E1000_RCTL_BAM)
5888 		phy_reg |= BM_RCTL_BAM;
5889 	if (mac_reg & E1000_RCTL_PMCF)
5890 		phy_reg |= BM_RCTL_PMCF;
5891 	mac_reg = er32(CTRL);
5892 	if (mac_reg & E1000_CTRL_RFCE)
5893 		phy_reg |= BM_RCTL_RFCE;
5894 	hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
5895 
5896 	/* enable PHY wakeup in MAC register */
5897 	ew32(WUFC, wufc);
5898 	ew32(WUC, E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN);
5899 
5900 	/* configure and enable PHY wakeup in PHY registers */
5901 	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
5902 	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);
5903 
5904 	/* activate PHY wakeup */
5905 	wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
5906 	retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
5907 	if (retval)
5908 		e_err("Could not set PHY Host Wakeup bit\n");
5909 release:
5910 	hw->phy.ops.release(hw);
5911 
5912 	return retval;
5913 }
5914 
5915 static int __e1000_shutdown(struct pci_dev *pdev, bool runtime)
5916 {
5917 	struct net_device *netdev = pci_get_drvdata(pdev);
5918 	struct e1000_adapter *adapter = netdev_priv(netdev);
5919 	struct e1000_hw *hw = &adapter->hw;
5920 	u32 ctrl, ctrl_ext, rctl, status;
5921 	/* Runtime suspend should only enable wakeup for link changes */
5922 	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
5923 	int retval = 0;
5924 
5925 	netif_device_detach(netdev);
5926 
5927 	if (netif_running(netdev)) {
5928 		int count = E1000_CHECK_RESET_COUNT;
5929 
5930 		while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
5931 			usleep_range(10000, 20000);
5932 
5933 		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
5934 		e1000e_down(adapter);
5935 		e1000_free_irq(adapter);
5936 	}
5937 	e1000e_reset_interrupt_capability(adapter);
5938 
5939 	status = er32(STATUS);
5940 	if (status & E1000_STATUS_LU)
5941 		wufc &= ~E1000_WUFC_LNKC;
5942 
5943 	if (wufc) {
5944 		e1000_setup_rctl(adapter);
5945 		e1000e_set_rx_mode(netdev);
5946 
5947 		/* turn on all-multi mode if wake on multicast is enabled */
5948 		if (wufc & E1000_WUFC_MC) {
5949 			rctl = er32(RCTL);
5950 			rctl |= E1000_RCTL_MPE;
5951 			ew32(RCTL, rctl);
5952 		}
5953 
5954 		ctrl = er32(CTRL);
5955 		ctrl |= E1000_CTRL_ADVD3WUC;
5956 		if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
5957 			ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
5958 		ew32(CTRL, ctrl);
5959 
5960 		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
5961 		    adapter->hw.phy.media_type ==
5962 		    e1000_media_type_internal_serdes) {
5963 			/* keep the laser running in D3 */
5964 			ctrl_ext = er32(CTRL_EXT);
5965 			ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
5966 			ew32(CTRL_EXT, ctrl_ext);
5967 		}
5968 
5969 		if (adapter->flags & FLAG_IS_ICH)
5970 			e1000_suspend_workarounds_ich8lan(&adapter->hw);
5971 
5972 		/* Allow time for pending master requests to run */
5973 		e1000e_disable_pcie_master(&adapter->hw);
5974 
5975 		if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
5976 			/* enable wakeup by the PHY */
5977 			retval = e1000_init_phy_wakeup(adapter, wufc);
5978 			if (retval)
5979 				return retval;
5980 		} else {
5981 			/* enable wakeup by the MAC */
5982 			ew32(WUFC, wufc);
5983 			ew32(WUC, E1000_WUC_PME_EN);
5984 		}
5985 	} else {
5986 		ew32(WUC, 0);
5987 		ew32(WUFC, 0);
5988 	}
5989 
5990 	if (adapter->hw.phy.type == e1000_phy_igp_3)
5991 		e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
5992 
5993 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
5994 	 * would have already happened in close and is redundant.
5995 	 */
5996 	e1000e_release_hw_control(adapter);
5997 
5998 	/* The pci-e switch on some quad port adapters will report a
5999 	 * correctable error when the MAC transitions from D0 to D3.  To
6000 	 * prevent this we need to mask off the correctable errors on the
6001 	 * downstream port of the pci-e switch.
6002 	 */
6003 	if (adapter->flags & FLAG_IS_QUAD_PORT) {
6004 		struct pci_dev *us_dev = pdev->bus->self;
6005 		u16 devctl;
6006 
6007 		pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl);
6008 		pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL,
6009 					   (devctl & ~PCI_EXP_DEVCTL_CERE));
6010 
6011 		pci_save_state(pdev);
6012 		pci_prepare_to_sleep(pdev);
6013 
6014 		pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl);
6015 	}
6016 
6017 	return 0;
6018 }
6019 
6020 #ifdef CONFIG_PCIEASPM
6021 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6022 {
6023 	pci_disable_link_state_locked(pdev, state);
6024 }
6025 #else
6026 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6027 {
6028 	u16 aspm_ctl = 0;
6029 
6030 	if (state & PCIE_LINK_STATE_L0S)
6031 		aspm_ctl |= PCI_EXP_LNKCTL_ASPM_L0S;
6032 	if (state & PCIE_LINK_STATE_L1)
6033 		aspm_ctl |= PCI_EXP_LNKCTL_ASPM_L1;
6034 
6035 	/* Both device and parent should have the same ASPM setting.
6036 	 * Disable ASPM in downstream component first and then upstream.
6037 	 */
6038 	pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_ctl);
6039 
6040 	if (pdev->bus->self)
6041 		pcie_capability_clear_word(pdev->bus->self, PCI_EXP_LNKCTL,
6042 					   aspm_ctl);
6043 }
6044 #endif
6045 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6046 {
6047 	dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
6048 		 (state & PCIE_LINK_STATE_L0S) ? "L0s" : "",
6049 		 (state & PCIE_LINK_STATE_L1) ? "L1" : "");
6050 
6051 	__e1000e_disable_aspm(pdev, state);
6052 }
6053 
6054 #ifdef CONFIG_PM
6055 static bool e1000e_pm_ready(struct e1000_adapter *adapter)
6056 {
6057 	return !!adapter->tx_ring->buffer_info;
6058 }
6059 
6060 static int __e1000_resume(struct pci_dev *pdev)
6061 {
6062 	struct net_device *netdev = pci_get_drvdata(pdev);
6063 	struct e1000_adapter *adapter = netdev_priv(netdev);
6064 	struct e1000_hw *hw = &adapter->hw;
6065 	u16 aspm_disable_flag = 0;
6066 	u32 err;
6067 
6068 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6069 		aspm_disable_flag = PCIE_LINK_STATE_L0S;
6070 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6071 		aspm_disable_flag |= PCIE_LINK_STATE_L1;
6072 	if (aspm_disable_flag)
6073 		e1000e_disable_aspm(pdev, aspm_disable_flag);
6074 
6075 	pci_set_master(pdev);
6076 
6077 	e1000e_set_interrupt_capability(adapter);
6078 	if (netif_running(netdev)) {
6079 		err = e1000_request_irq(adapter);
6080 		if (err)
6081 			return err;
6082 	}
6083 
6084 	if (hw->mac.type >= e1000_pch2lan)
6085 		e1000_resume_workarounds_pchlan(&adapter->hw);
6086 
6087 	e1000e_power_up_phy(adapter);
6088 
6089 	/* report the system wakeup cause from S3/S4 */
6090 	if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6091 		u16 phy_data;
6092 
6093 		e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
6094 		if (phy_data) {
6095 			e_info("PHY Wakeup cause - %s\n",
6096 			       phy_data & E1000_WUS_EX ? "Unicast Packet" :
6097 			       phy_data & E1000_WUS_MC ? "Multicast Packet" :
6098 			       phy_data & E1000_WUS_BC ? "Broadcast Packet" :
6099 			       phy_data & E1000_WUS_MAG ? "Magic Packet" :
6100 			       phy_data & E1000_WUS_LNKC ?
6101 			       "Link Status Change" : "other");
6102 		}
6103 		e1e_wphy(&adapter->hw, BM_WUS, ~0);
6104 	} else {
6105 		u32 wus = er32(WUS);
6106 		if (wus) {
6107 			e_info("MAC Wakeup cause - %s\n",
6108 			       wus & E1000_WUS_EX ? "Unicast Packet" :
6109 			       wus & E1000_WUS_MC ? "Multicast Packet" :
6110 			       wus & E1000_WUS_BC ? "Broadcast Packet" :
6111 			       wus & E1000_WUS_MAG ? "Magic Packet" :
6112 			       wus & E1000_WUS_LNKC ? "Link Status Change" :
6113 			       "other");
6114 		}
6115 		ew32(WUS, ~0);
6116 	}
6117 
6118 	e1000e_reset(adapter);
6119 
6120 	e1000_init_manageability_pt(adapter);
6121 
6122 	if (netif_running(netdev))
6123 		e1000e_up(adapter);
6124 
6125 	netif_device_attach(netdev);
6126 
6127 	/* If the controller has AMT, do not set DRV_LOAD until the interface
6128 	 * is up.  For all other cases, let the f/w know that the h/w is now
6129 	 * under the control of the driver.
6130 	 */
6131 	if (!(adapter->flags & FLAG_HAS_AMT))
6132 		e1000e_get_hw_control(adapter);
6133 
6134 	return 0;
6135 }
6136 
6137 #ifdef CONFIG_PM_SLEEP
6138 static int e1000_suspend(struct device *dev)
6139 {
6140 	struct pci_dev *pdev = to_pci_dev(dev);
6141 
6142 	return __e1000_shutdown(pdev, false);
6143 }
6144 
6145 static int e1000_resume(struct device *dev)
6146 {
6147 	struct pci_dev *pdev = to_pci_dev(dev);
6148 	struct net_device *netdev = pci_get_drvdata(pdev);
6149 	struct e1000_adapter *adapter = netdev_priv(netdev);
6150 
6151 	if (e1000e_pm_ready(adapter))
6152 		adapter->idle_check = true;
6153 
6154 	return __e1000_resume(pdev);
6155 }
6156 #endif /* CONFIG_PM_SLEEP */
6157 
6158 #ifdef CONFIG_PM_RUNTIME
6159 static int e1000_runtime_suspend(struct device *dev)
6160 {
6161 	struct pci_dev *pdev = to_pci_dev(dev);
6162 	struct net_device *netdev = pci_get_drvdata(pdev);
6163 	struct e1000_adapter *adapter = netdev_priv(netdev);
6164 
6165 	if (!e1000e_pm_ready(adapter))
6166 		return 0;
6167 
6168 	return __e1000_shutdown(pdev, true);
6169 }
6170 
6171 static int e1000_idle(struct device *dev)
6172 {
6173 	struct pci_dev *pdev = to_pci_dev(dev);
6174 	struct net_device *netdev = pci_get_drvdata(pdev);
6175 	struct e1000_adapter *adapter = netdev_priv(netdev);
6176 
6177 	if (!e1000e_pm_ready(adapter))
6178 		return 0;
6179 
6180 	if (adapter->idle_check) {
6181 		adapter->idle_check = false;
6182 		if (!e1000e_has_link(adapter))
6183 			pm_schedule_suspend(dev, MSEC_PER_SEC);
6184 	}
6185 
6186 	return -EBUSY;
6187 }
6188 
6189 static int e1000_runtime_resume(struct device *dev)
6190 {
6191 	struct pci_dev *pdev = to_pci_dev(dev);
6192 	struct net_device *netdev = pci_get_drvdata(pdev);
6193 	struct e1000_adapter *adapter = netdev_priv(netdev);
6194 
6195 	if (!e1000e_pm_ready(adapter))
6196 		return 0;
6197 
6198 	adapter->idle_check = !dev->power.runtime_auto;
6199 	return __e1000_resume(pdev);
6200 }
6201 #endif /* CONFIG_PM_RUNTIME */
6202 #endif /* CONFIG_PM */
6203 
6204 static void e1000_shutdown(struct pci_dev *pdev)
6205 {
6206 	__e1000_shutdown(pdev, false);
6207 }
6208 
6209 #ifdef CONFIG_NET_POLL_CONTROLLER
6210 
6211 static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data)
6212 {
6213 	struct net_device *netdev = data;
6214 	struct e1000_adapter *adapter = netdev_priv(netdev);
6215 
6216 	if (adapter->msix_entries) {
6217 		int vector, msix_irq;
6218 
6219 		vector = 0;
6220 		msix_irq = adapter->msix_entries[vector].vector;
6221 		disable_irq(msix_irq);
6222 		e1000_intr_msix_rx(msix_irq, netdev);
6223 		enable_irq(msix_irq);
6224 
6225 		vector++;
6226 		msix_irq = adapter->msix_entries[vector].vector;
6227 		disable_irq(msix_irq);
6228 		e1000_intr_msix_tx(msix_irq, netdev);
6229 		enable_irq(msix_irq);
6230 
6231 		vector++;
6232 		msix_irq = adapter->msix_entries[vector].vector;
6233 		disable_irq(msix_irq);
6234 		e1000_msix_other(msix_irq, netdev);
6235 		enable_irq(msix_irq);
6236 	}
6237 
6238 	return IRQ_HANDLED;
6239 }
6240 
6241 /**
6242  * e1000_netpoll
6243  * @netdev: network interface device structure
6244  *
6245  * Polling 'interrupt' - used by things like netconsole to send skbs
6246  * without having to re-enable interrupts. It's not called while
6247  * the interrupt routine is executing.
6248  */
6249 static void e1000_netpoll(struct net_device *netdev)
6250 {
6251 	struct e1000_adapter *adapter = netdev_priv(netdev);
6252 
6253 	switch (adapter->int_mode) {
6254 	case E1000E_INT_MODE_MSIX:
6255 		e1000_intr_msix(adapter->pdev->irq, netdev);
6256 		break;
6257 	case E1000E_INT_MODE_MSI:
6258 		disable_irq(adapter->pdev->irq);
6259 		e1000_intr_msi(adapter->pdev->irq, netdev);
6260 		enable_irq(adapter->pdev->irq);
6261 		break;
6262 	default: /* E1000E_INT_MODE_LEGACY */
6263 		disable_irq(adapter->pdev->irq);
6264 		e1000_intr(adapter->pdev->irq, netdev);
6265 		enable_irq(adapter->pdev->irq);
6266 		break;
6267 	}
6268 }
6269 #endif
6270 
6271 /**
6272  * e1000_io_error_detected - called when PCI error is detected
6273  * @pdev: Pointer to PCI device
6274  * @state: The current pci connection state
6275  *
6276  * This function is called after a PCI bus error affecting
6277  * this device has been detected.
6278  */
6279 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
6280 						pci_channel_state_t state)
6281 {
6282 	struct net_device *netdev = pci_get_drvdata(pdev);
6283 	struct e1000_adapter *adapter = netdev_priv(netdev);
6284 
6285 	netif_device_detach(netdev);
6286 
6287 	if (state == pci_channel_io_perm_failure)
6288 		return PCI_ERS_RESULT_DISCONNECT;
6289 
6290 	if (netif_running(netdev))
6291 		e1000e_down(adapter);
6292 	pci_disable_device(pdev);
6293 
6294 	/* Request a slot slot reset. */
6295 	return PCI_ERS_RESULT_NEED_RESET;
6296 }
6297 
6298 /**
6299  * e1000_io_slot_reset - called after the pci bus has been reset.
6300  * @pdev: Pointer to PCI device
6301  *
6302  * Restart the card from scratch, as if from a cold-boot. Implementation
6303  * resembles the first-half of the e1000_resume routine.
6304  */
6305 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
6306 {
6307 	struct net_device *netdev = pci_get_drvdata(pdev);
6308 	struct e1000_adapter *adapter = netdev_priv(netdev);
6309 	struct e1000_hw *hw = &adapter->hw;
6310 	u16 aspm_disable_flag = 0;
6311 	int err;
6312 	pci_ers_result_t result;
6313 
6314 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6315 		aspm_disable_flag = PCIE_LINK_STATE_L0S;
6316 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6317 		aspm_disable_flag |= PCIE_LINK_STATE_L1;
6318 	if (aspm_disable_flag)
6319 		e1000e_disable_aspm(pdev, aspm_disable_flag);
6320 
6321 	err = pci_enable_device_mem(pdev);
6322 	if (err) {
6323 		dev_err(&pdev->dev,
6324 			"Cannot re-enable PCI device after reset.\n");
6325 		result = PCI_ERS_RESULT_DISCONNECT;
6326 	} else {
6327 		pdev->state_saved = true;
6328 		pci_restore_state(pdev);
6329 		pci_set_master(pdev);
6330 
6331 		pci_enable_wake(pdev, PCI_D3hot, 0);
6332 		pci_enable_wake(pdev, PCI_D3cold, 0);
6333 
6334 		e1000e_reset(adapter);
6335 		ew32(WUS, ~0);
6336 		result = PCI_ERS_RESULT_RECOVERED;
6337 	}
6338 
6339 	pci_cleanup_aer_uncorrect_error_status(pdev);
6340 
6341 	return result;
6342 }
6343 
6344 /**
6345  * e1000_io_resume - called when traffic can start flowing again.
6346  * @pdev: Pointer to PCI device
6347  *
6348  * This callback is called when the error recovery driver tells us that
6349  * its OK to resume normal operation. Implementation resembles the
6350  * second-half of the e1000_resume routine.
6351  */
6352 static void e1000_io_resume(struct pci_dev *pdev)
6353 {
6354 	struct net_device *netdev = pci_get_drvdata(pdev);
6355 	struct e1000_adapter *adapter = netdev_priv(netdev);
6356 
6357 	e1000_init_manageability_pt(adapter);
6358 
6359 	if (netif_running(netdev)) {
6360 		if (e1000e_up(adapter)) {
6361 			dev_err(&pdev->dev,
6362 				"can't bring device back up after reset\n");
6363 			return;
6364 		}
6365 	}
6366 
6367 	netif_device_attach(netdev);
6368 
6369 	/* If the controller has AMT, do not set DRV_LOAD until the interface
6370 	 * is up.  For all other cases, let the f/w know that the h/w is now
6371 	 * under the control of the driver.
6372 	 */
6373 	if (!(adapter->flags & FLAG_HAS_AMT))
6374 		e1000e_get_hw_control(adapter);
6375 }
6376 
6377 static void e1000_print_device_info(struct e1000_adapter *adapter)
6378 {
6379 	struct e1000_hw *hw = &adapter->hw;
6380 	struct net_device *netdev = adapter->netdev;
6381 	u32 ret_val;
6382 	u8 pba_str[E1000_PBANUM_LENGTH];
6383 
6384 	/* print bus type/speed/width info */
6385 	e_info("(PCI Express:2.5GT/s:%s) %pM\n",
6386 	       /* bus width */
6387 	       ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
6388 		"Width x1"),
6389 	       /* MAC address */
6390 	       netdev->dev_addr);
6391 	e_info("Intel(R) PRO/%s Network Connection\n",
6392 	       (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
6393 	ret_val = e1000_read_pba_string_generic(hw, pba_str,
6394 						E1000_PBANUM_LENGTH);
6395 	if (ret_val)
6396 		strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
6397 	e_info("MAC: %d, PHY: %d, PBA No: %s\n",
6398 	       hw->mac.type, hw->phy.type, pba_str);
6399 }
6400 
6401 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
6402 {
6403 	struct e1000_hw *hw = &adapter->hw;
6404 	int ret_val;
6405 	u16 buf = 0;
6406 
6407 	if (hw->mac.type != e1000_82573)
6408 		return;
6409 
6410 	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
6411 	le16_to_cpus(&buf);
6412 	if (!ret_val && (!(buf & (1 << 0)))) {
6413 		/* Deep Smart Power Down (DSPD) */
6414 		dev_warn(&adapter->pdev->dev,
6415 			 "Warning: detected DSPD enabled in EEPROM\n");
6416 	}
6417 }
6418 
6419 static int e1000_set_features(struct net_device *netdev,
6420 			      netdev_features_t features)
6421 {
6422 	struct e1000_adapter *adapter = netdev_priv(netdev);
6423 	netdev_features_t changed = features ^ netdev->features;
6424 
6425 	if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
6426 		adapter->flags |= FLAG_TSO_FORCE;
6427 
6428 	if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
6429 			 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
6430 			 NETIF_F_RXALL)))
6431 		return 0;
6432 
6433 	if (changed & NETIF_F_RXFCS) {
6434 		if (features & NETIF_F_RXFCS) {
6435 			adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6436 		} else {
6437 			/* We need to take it back to defaults, which might mean
6438 			 * stripping is still disabled at the adapter level.
6439 			 */
6440 			if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
6441 				adapter->flags2 |= FLAG2_CRC_STRIPPING;
6442 			else
6443 				adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6444 		}
6445 	}
6446 
6447 	netdev->features = features;
6448 
6449 	if (netif_running(netdev))
6450 		e1000e_reinit_locked(adapter);
6451 	else
6452 		e1000e_reset(adapter);
6453 
6454 	return 0;
6455 }
6456 
6457 static const struct net_device_ops e1000e_netdev_ops = {
6458 	.ndo_open		= e1000_open,
6459 	.ndo_stop		= e1000_close,
6460 	.ndo_start_xmit		= e1000_xmit_frame,
6461 	.ndo_get_stats64	= e1000e_get_stats64,
6462 	.ndo_set_rx_mode	= e1000e_set_rx_mode,
6463 	.ndo_set_mac_address	= e1000_set_mac,
6464 	.ndo_change_mtu		= e1000_change_mtu,
6465 	.ndo_do_ioctl		= e1000_ioctl,
6466 	.ndo_tx_timeout		= e1000_tx_timeout,
6467 	.ndo_validate_addr	= eth_validate_addr,
6468 
6469 	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
6470 	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
6471 #ifdef CONFIG_NET_POLL_CONTROLLER
6472 	.ndo_poll_controller	= e1000_netpoll,
6473 #endif
6474 	.ndo_set_features = e1000_set_features,
6475 };
6476 
6477 /**
6478  * e1000_probe - Device Initialization Routine
6479  * @pdev: PCI device information struct
6480  * @ent: entry in e1000_pci_tbl
6481  *
6482  * Returns 0 on success, negative on failure
6483  *
6484  * e1000_probe initializes an adapter identified by a pci_dev structure.
6485  * The OS initialization, configuring of the adapter private structure,
6486  * and a hardware reset occur.
6487  **/
6488 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
6489 {
6490 	struct net_device *netdev;
6491 	struct e1000_adapter *adapter;
6492 	struct e1000_hw *hw;
6493 	const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
6494 	resource_size_t mmio_start, mmio_len;
6495 	resource_size_t flash_start, flash_len;
6496 	static int cards_found;
6497 	u16 aspm_disable_flag = 0;
6498 	int bars, i, err, pci_using_dac;
6499 	u16 eeprom_data = 0;
6500 	u16 eeprom_apme_mask = E1000_EEPROM_APME;
6501 
6502 	if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
6503 		aspm_disable_flag = PCIE_LINK_STATE_L0S;
6504 	if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
6505 		aspm_disable_flag |= PCIE_LINK_STATE_L1;
6506 	if (aspm_disable_flag)
6507 		e1000e_disable_aspm(pdev, aspm_disable_flag);
6508 
6509 	err = pci_enable_device_mem(pdev);
6510 	if (err)
6511 		return err;
6512 
6513 	pci_using_dac = 0;
6514 	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
6515 	if (!err) {
6516 		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
6517 		if (!err)
6518 			pci_using_dac = 1;
6519 	} else {
6520 		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
6521 		if (err) {
6522 			err = dma_set_coherent_mask(&pdev->dev,
6523 						    DMA_BIT_MASK(32));
6524 			if (err) {
6525 				dev_err(&pdev->dev,
6526 					"No usable DMA configuration, aborting\n");
6527 				goto err_dma;
6528 			}
6529 		}
6530 	}
6531 
6532 	bars = pci_select_bars(pdev, IORESOURCE_MEM);
6533 	err = pci_request_selected_regions_exclusive(pdev, bars,
6534 						     e1000e_driver_name);
6535 	if (err)
6536 		goto err_pci_reg;
6537 
6538 	/* AER (Advanced Error Reporting) hooks */
6539 	pci_enable_pcie_error_reporting(pdev);
6540 
6541 	pci_set_master(pdev);
6542 	/* PCI config space info */
6543 	err = pci_save_state(pdev);
6544 	if (err)
6545 		goto err_alloc_etherdev;
6546 
6547 	err = -ENOMEM;
6548 	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
6549 	if (!netdev)
6550 		goto err_alloc_etherdev;
6551 
6552 	SET_NETDEV_DEV(netdev, &pdev->dev);
6553 
6554 	netdev->irq = pdev->irq;
6555 
6556 	pci_set_drvdata(pdev, netdev);
6557 	adapter = netdev_priv(netdev);
6558 	hw = &adapter->hw;
6559 	adapter->netdev = netdev;
6560 	adapter->pdev = pdev;
6561 	adapter->ei = ei;
6562 	adapter->pba = ei->pba;
6563 	adapter->flags = ei->flags;
6564 	adapter->flags2 = ei->flags2;
6565 	adapter->hw.adapter = adapter;
6566 	adapter->hw.mac.type = ei->mac;
6567 	adapter->max_hw_frame_size = ei->max_hw_frame_size;
6568 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
6569 
6570 	mmio_start = pci_resource_start(pdev, 0);
6571 	mmio_len = pci_resource_len(pdev, 0);
6572 
6573 	err = -EIO;
6574 	adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
6575 	if (!adapter->hw.hw_addr)
6576 		goto err_ioremap;
6577 
6578 	if ((adapter->flags & FLAG_HAS_FLASH) &&
6579 	    (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
6580 		flash_start = pci_resource_start(pdev, 1);
6581 		flash_len = pci_resource_len(pdev, 1);
6582 		adapter->hw.flash_address = ioremap(flash_start, flash_len);
6583 		if (!adapter->hw.flash_address)
6584 			goto err_flashmap;
6585 	}
6586 
6587 	/* Set default EEE advertisement */
6588 	if (adapter->flags2 & FLAG2_HAS_EEE)
6589 		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
6590 
6591 	/* construct the net_device struct */
6592 	netdev->netdev_ops		= &e1000e_netdev_ops;
6593 	e1000e_set_ethtool_ops(netdev);
6594 	netdev->watchdog_timeo		= 5 * HZ;
6595 	netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64);
6596 	strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
6597 
6598 	netdev->mem_start = mmio_start;
6599 	netdev->mem_end = mmio_start + mmio_len;
6600 
6601 	adapter->bd_number = cards_found++;
6602 
6603 	e1000e_check_options(adapter);
6604 
6605 	/* setup adapter struct */
6606 	err = e1000_sw_init(adapter);
6607 	if (err)
6608 		goto err_sw_init;
6609 
6610 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
6611 	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
6612 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
6613 
6614 	err = ei->get_variants(adapter);
6615 	if (err)
6616 		goto err_hw_init;
6617 
6618 	if ((adapter->flags & FLAG_IS_ICH) &&
6619 	    (adapter->flags & FLAG_READ_ONLY_NVM))
6620 		e1000e_write_protect_nvm_ich8lan(&adapter->hw);
6621 
6622 	hw->mac.ops.get_bus_info(&adapter->hw);
6623 
6624 	adapter->hw.phy.autoneg_wait_to_complete = 0;
6625 
6626 	/* Copper options */
6627 	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
6628 		adapter->hw.phy.mdix = AUTO_ALL_MODES;
6629 		adapter->hw.phy.disable_polarity_correction = 0;
6630 		adapter->hw.phy.ms_type = e1000_ms_hw_default;
6631 	}
6632 
6633 	if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
6634 		dev_info(&pdev->dev,
6635 			 "PHY reset is blocked due to SOL/IDER session.\n");
6636 
6637 	/* Set initial default active device features */
6638 	netdev->features = (NETIF_F_SG |
6639 			    NETIF_F_HW_VLAN_CTAG_RX |
6640 			    NETIF_F_HW_VLAN_CTAG_TX |
6641 			    NETIF_F_TSO |
6642 			    NETIF_F_TSO6 |
6643 			    NETIF_F_RXHASH |
6644 			    NETIF_F_RXCSUM |
6645 			    NETIF_F_HW_CSUM);
6646 
6647 	/* Set user-changeable features (subset of all device features) */
6648 	netdev->hw_features = netdev->features;
6649 	netdev->hw_features |= NETIF_F_RXFCS;
6650 	netdev->priv_flags |= IFF_SUPP_NOFCS;
6651 	netdev->hw_features |= NETIF_F_RXALL;
6652 
6653 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
6654 		netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
6655 
6656 	netdev->vlan_features |= (NETIF_F_SG |
6657 				  NETIF_F_TSO |
6658 				  NETIF_F_TSO6 |
6659 				  NETIF_F_HW_CSUM);
6660 
6661 	netdev->priv_flags |= IFF_UNICAST_FLT;
6662 
6663 	if (pci_using_dac) {
6664 		netdev->features |= NETIF_F_HIGHDMA;
6665 		netdev->vlan_features |= NETIF_F_HIGHDMA;
6666 	}
6667 
6668 	if (e1000e_enable_mng_pass_thru(&adapter->hw))
6669 		adapter->flags |= FLAG_MNG_PT_ENABLED;
6670 
6671 	/* before reading the NVM, reset the controller to
6672 	 * put the device in a known good starting state
6673 	 */
6674 	adapter->hw.mac.ops.reset_hw(&adapter->hw);
6675 
6676 	/* systems with ASPM and others may see the checksum fail on the first
6677 	 * attempt. Let's give it a few tries
6678 	 */
6679 	for (i = 0;; i++) {
6680 		if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
6681 			break;
6682 		if (i == 2) {
6683 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
6684 			err = -EIO;
6685 			goto err_eeprom;
6686 		}
6687 	}
6688 
6689 	e1000_eeprom_checks(adapter);
6690 
6691 	/* copy the MAC address */
6692 	if (e1000e_read_mac_addr(&adapter->hw))
6693 		dev_err(&pdev->dev,
6694 			"NVM Read Error while reading MAC address\n");
6695 
6696 	memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
6697 
6698 	if (!is_valid_ether_addr(netdev->dev_addr)) {
6699 		dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
6700 			netdev->dev_addr);
6701 		err = -EIO;
6702 		goto err_eeprom;
6703 	}
6704 
6705 	init_timer(&adapter->watchdog_timer);
6706 	adapter->watchdog_timer.function = e1000_watchdog;
6707 	adapter->watchdog_timer.data = (unsigned long)adapter;
6708 
6709 	init_timer(&adapter->phy_info_timer);
6710 	adapter->phy_info_timer.function = e1000_update_phy_info;
6711 	adapter->phy_info_timer.data = (unsigned long)adapter;
6712 
6713 	INIT_WORK(&adapter->reset_task, e1000_reset_task);
6714 	INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
6715 	INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
6716 	INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
6717 	INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
6718 
6719 	/* Initialize link parameters. User can change them with ethtool */
6720 	adapter->hw.mac.autoneg = 1;
6721 	adapter->fc_autoneg = true;
6722 	adapter->hw.fc.requested_mode = e1000_fc_default;
6723 	adapter->hw.fc.current_mode = e1000_fc_default;
6724 	adapter->hw.phy.autoneg_advertised = 0x2f;
6725 
6726 	/* ring size defaults */
6727 	adapter->rx_ring->count = E1000_DEFAULT_RXD;
6728 	adapter->tx_ring->count = E1000_DEFAULT_TXD;
6729 
6730 	/* Initial Wake on LAN setting - If APM wake is enabled in
6731 	 * the EEPROM, enable the ACPI Magic Packet filter
6732 	 */
6733 	if (adapter->flags & FLAG_APME_IN_WUC) {
6734 		/* APME bit in EEPROM is mapped to WUC.APME */
6735 		eeprom_data = er32(WUC);
6736 		eeprom_apme_mask = E1000_WUC_APME;
6737 		if ((hw->mac.type > e1000_ich10lan) &&
6738 		    (eeprom_data & E1000_WUC_PHY_WAKE))
6739 			adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
6740 	} else if (adapter->flags & FLAG_APME_IN_CTRL3) {
6741 		if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
6742 		    (adapter->hw.bus.func == 1))
6743 			e1000_read_nvm(&adapter->hw, NVM_INIT_CONTROL3_PORT_B,
6744 				       1, &eeprom_data);
6745 		else
6746 			e1000_read_nvm(&adapter->hw, NVM_INIT_CONTROL3_PORT_A,
6747 				       1, &eeprom_data);
6748 	}
6749 
6750 	/* fetch WoL from EEPROM */
6751 	if (eeprom_data & eeprom_apme_mask)
6752 		adapter->eeprom_wol |= E1000_WUFC_MAG;
6753 
6754 	/* now that we have the eeprom settings, apply the special cases
6755 	 * where the eeprom may be wrong or the board simply won't support
6756 	 * wake on lan on a particular port
6757 	 */
6758 	if (!(adapter->flags & FLAG_HAS_WOL))
6759 		adapter->eeprom_wol = 0;
6760 
6761 	/* initialize the wol settings based on the eeprom settings */
6762 	adapter->wol = adapter->eeprom_wol;
6763 
6764 	/* make sure adapter isn't asleep if manageability is enabled */
6765 	if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) ||
6766 	    (hw->mac.ops.check_mng_mode(hw)))
6767 		device_wakeup_enable(&pdev->dev);
6768 
6769 	/* save off EEPROM version number */
6770 	e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
6771 
6772 	/* reset the hardware with the new settings */
6773 	e1000e_reset(adapter);
6774 
6775 	/* If the controller has AMT, do not set DRV_LOAD until the interface
6776 	 * is up.  For all other cases, let the f/w know that the h/w is now
6777 	 * under the control of the driver.
6778 	 */
6779 	if (!(adapter->flags & FLAG_HAS_AMT))
6780 		e1000e_get_hw_control(adapter);
6781 
6782 	strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
6783 	err = register_netdev(netdev);
6784 	if (err)
6785 		goto err_register;
6786 
6787 	/* carrier off reporting is important to ethtool even BEFORE open */
6788 	netif_carrier_off(netdev);
6789 
6790 	/* init PTP hardware clock */
6791 	e1000e_ptp_init(adapter);
6792 
6793 	e1000_print_device_info(adapter);
6794 
6795 	if (pci_dev_run_wake(pdev))
6796 		pm_runtime_put_noidle(&pdev->dev);
6797 
6798 	return 0;
6799 
6800 err_register:
6801 	if (!(adapter->flags & FLAG_HAS_AMT))
6802 		e1000e_release_hw_control(adapter);
6803 err_eeprom:
6804 	if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
6805 		e1000_phy_hw_reset(&adapter->hw);
6806 err_hw_init:
6807 	kfree(adapter->tx_ring);
6808 	kfree(adapter->rx_ring);
6809 err_sw_init:
6810 	if (adapter->hw.flash_address)
6811 		iounmap(adapter->hw.flash_address);
6812 	e1000e_reset_interrupt_capability(adapter);
6813 err_flashmap:
6814 	iounmap(adapter->hw.hw_addr);
6815 err_ioremap:
6816 	free_netdev(netdev);
6817 err_alloc_etherdev:
6818 	pci_release_selected_regions(pdev,
6819 				     pci_select_bars(pdev, IORESOURCE_MEM));
6820 err_pci_reg:
6821 err_dma:
6822 	pci_disable_device(pdev);
6823 	return err;
6824 }
6825 
6826 /**
6827  * e1000_remove - Device Removal Routine
6828  * @pdev: PCI device information struct
6829  *
6830  * e1000_remove is called by the PCI subsystem to alert the driver
6831  * that it should release a PCI device.  The could be caused by a
6832  * Hot-Plug event, or because the driver is going to be removed from
6833  * memory.
6834  **/
6835 static void e1000_remove(struct pci_dev *pdev)
6836 {
6837 	struct net_device *netdev = pci_get_drvdata(pdev);
6838 	struct e1000_adapter *adapter = netdev_priv(netdev);
6839 	bool down = test_bit(__E1000_DOWN, &adapter->state);
6840 
6841 	e1000e_ptp_remove(adapter);
6842 
6843 	/* The timers may be rescheduled, so explicitly disable them
6844 	 * from being rescheduled.
6845 	 */
6846 	if (!down)
6847 		set_bit(__E1000_DOWN, &adapter->state);
6848 	del_timer_sync(&adapter->watchdog_timer);
6849 	del_timer_sync(&adapter->phy_info_timer);
6850 
6851 	cancel_work_sync(&adapter->reset_task);
6852 	cancel_work_sync(&adapter->watchdog_task);
6853 	cancel_work_sync(&adapter->downshift_task);
6854 	cancel_work_sync(&adapter->update_phy_task);
6855 	cancel_work_sync(&adapter->print_hang_task);
6856 
6857 	if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
6858 		cancel_work_sync(&adapter->tx_hwtstamp_work);
6859 		if (adapter->tx_hwtstamp_skb) {
6860 			dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
6861 			adapter->tx_hwtstamp_skb = NULL;
6862 		}
6863 	}
6864 
6865 	if (!(netdev->flags & IFF_UP))
6866 		e1000_power_down_phy(adapter);
6867 
6868 	/* Don't lie to e1000_close() down the road. */
6869 	if (!down)
6870 		clear_bit(__E1000_DOWN, &adapter->state);
6871 	unregister_netdev(netdev);
6872 
6873 	if (pci_dev_run_wake(pdev))
6874 		pm_runtime_get_noresume(&pdev->dev);
6875 
6876 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
6877 	 * would have already happened in close and is redundant.
6878 	 */
6879 	e1000e_release_hw_control(adapter);
6880 
6881 	e1000e_reset_interrupt_capability(adapter);
6882 	kfree(adapter->tx_ring);
6883 	kfree(adapter->rx_ring);
6884 
6885 	iounmap(adapter->hw.hw_addr);
6886 	if (adapter->hw.flash_address)
6887 		iounmap(adapter->hw.flash_address);
6888 	pci_release_selected_regions(pdev,
6889 				     pci_select_bars(pdev, IORESOURCE_MEM));
6890 
6891 	free_netdev(netdev);
6892 
6893 	/* AER disable */
6894 	pci_disable_pcie_error_reporting(pdev);
6895 
6896 	pci_disable_device(pdev);
6897 }
6898 
6899 /* PCI Error Recovery (ERS) */
6900 static const struct pci_error_handlers e1000_err_handler = {
6901 	.error_detected = e1000_io_error_detected,
6902 	.slot_reset = e1000_io_slot_reset,
6903 	.resume = e1000_io_resume,
6904 };
6905 
6906 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
6907 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
6908 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
6909 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
6910 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP),
6911 	  board_82571 },
6912 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
6913 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
6914 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
6915 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
6916 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
6917 
6918 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
6919 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
6920 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
6921 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
6922 
6923 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
6924 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
6925 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
6926 
6927 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
6928 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
6929 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
6930 
6931 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
6932 	  board_80003es2lan },
6933 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
6934 	  board_80003es2lan },
6935 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
6936 	  board_80003es2lan },
6937 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
6938 	  board_80003es2lan },
6939 
6940 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
6941 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
6942 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
6943 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
6944 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
6945 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
6946 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
6947 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
6948 
6949 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
6950 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
6951 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
6952 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
6953 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
6954 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
6955 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
6956 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
6957 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
6958 
6959 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
6960 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
6961 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
6962 
6963 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
6964 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
6965 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
6966 
6967 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
6968 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
6969 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
6970 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
6971 
6972 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
6973 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
6974 
6975 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
6976 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
6977 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt },
6978 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt },
6979 
6980 	{ 0, 0, 0, 0, 0, 0, 0 }	/* terminate list */
6981 };
6982 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
6983 
6984 #ifdef CONFIG_PM
6985 static const struct dev_pm_ops e1000_pm_ops = {
6986 	SET_SYSTEM_SLEEP_PM_OPS(e1000_suspend, e1000_resume)
6987 	SET_RUNTIME_PM_OPS(e1000_runtime_suspend, e1000_runtime_resume,
6988 			   e1000_idle)
6989 };
6990 #endif
6991 
6992 /* PCI Device API Driver */
6993 static struct pci_driver e1000_driver = {
6994 	.name     = e1000e_driver_name,
6995 	.id_table = e1000_pci_tbl,
6996 	.probe    = e1000_probe,
6997 	.remove   = e1000_remove,
6998 #ifdef CONFIG_PM
6999 	.driver   = {
7000 		.pm = &e1000_pm_ops,
7001 	},
7002 #endif
7003 	.shutdown = e1000_shutdown,
7004 	.err_handler = &e1000_err_handler
7005 };
7006 
7007 /**
7008  * e1000_init_module - Driver Registration Routine
7009  *
7010  * e1000_init_module is the first routine called when the driver is
7011  * loaded. All it does is register with the PCI subsystem.
7012  **/
7013 static int __init e1000_init_module(void)
7014 {
7015 	int ret;
7016 	pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
7017 		e1000e_driver_version);
7018 	pr_info("Copyright(c) 1999 - 2013 Intel Corporation.\n");
7019 	ret = pci_register_driver(&e1000_driver);
7020 
7021 	return ret;
7022 }
7023 module_init(e1000_init_module);
7024 
7025 /**
7026  * e1000_exit_module - Driver Exit Cleanup Routine
7027  *
7028  * e1000_exit_module is called just before the driver is removed
7029  * from memory.
7030  **/
7031 static void __exit e1000_exit_module(void)
7032 {
7033 	pci_unregister_driver(&e1000_driver);
7034 }
7035 module_exit(e1000_exit_module);
7036 
7037 
7038 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
7039 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7040 MODULE_LICENSE("GPL");
7041 MODULE_VERSION(DRV_VERSION);
7042 
7043 /* netdev.c */
7044