xref: /openbmc/linux/drivers/net/ethernet/intel/e1000e/netdev.c (revision e3513f3f41aba3bf72a5faa32b378d42de842e84)
1 /* Intel PRO/1000 Linux driver
2  * Copyright(c) 1999 - 2015 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * The full GNU General Public License is included in this distribution in
14  * the file called "COPYING".
15  *
16  * Contact Information:
17  * Linux NICS <linux.nics@intel.com>
18  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
20  */
21 
22 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
23 
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/init.h>
27 #include <linux/pci.h>
28 #include <linux/vmalloc.h>
29 #include <linux/pagemap.h>
30 #include <linux/delay.h>
31 #include <linux/netdevice.h>
32 #include <linux/interrupt.h>
33 #include <linux/tcp.h>
34 #include <linux/ipv6.h>
35 #include <linux/slab.h>
36 #include <net/checksum.h>
37 #include <net/ip6_checksum.h>
38 #include <linux/ethtool.h>
39 #include <linux/if_vlan.h>
40 #include <linux/cpu.h>
41 #include <linux/smp.h>
42 #include <linux/pm_qos.h>
43 #include <linux/pm_runtime.h>
44 #include <linux/aer.h>
45 #include <linux/prefetch.h>
46 
47 #include "e1000.h"
48 
49 #define DRV_EXTRAVERSION "-k"
50 
51 #define DRV_VERSION "3.2.6" DRV_EXTRAVERSION
52 char e1000e_driver_name[] = "e1000e";
53 const char e1000e_driver_version[] = DRV_VERSION;
54 
55 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
56 static int debug = -1;
57 module_param(debug, int, 0);
58 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
59 
60 static const struct e1000_info *e1000_info_tbl[] = {
61 	[board_82571]		= &e1000_82571_info,
62 	[board_82572]		= &e1000_82572_info,
63 	[board_82573]		= &e1000_82573_info,
64 	[board_82574]		= &e1000_82574_info,
65 	[board_82583]		= &e1000_82583_info,
66 	[board_80003es2lan]	= &e1000_es2_info,
67 	[board_ich8lan]		= &e1000_ich8_info,
68 	[board_ich9lan]		= &e1000_ich9_info,
69 	[board_ich10lan]	= &e1000_ich10_info,
70 	[board_pchlan]		= &e1000_pch_info,
71 	[board_pch2lan]		= &e1000_pch2_info,
72 	[board_pch_lpt]		= &e1000_pch_lpt_info,
73 	[board_pch_spt]		= &e1000_pch_spt_info,
74 };
75 
76 struct e1000_reg_info {
77 	u32 ofs;
78 	char *name;
79 };
80 
81 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
82 	/* General Registers */
83 	{E1000_CTRL, "CTRL"},
84 	{E1000_STATUS, "STATUS"},
85 	{E1000_CTRL_EXT, "CTRL_EXT"},
86 
87 	/* Interrupt Registers */
88 	{E1000_ICR, "ICR"},
89 
90 	/* Rx Registers */
91 	{E1000_RCTL, "RCTL"},
92 	{E1000_RDLEN(0), "RDLEN"},
93 	{E1000_RDH(0), "RDH"},
94 	{E1000_RDT(0), "RDT"},
95 	{E1000_RDTR, "RDTR"},
96 	{E1000_RXDCTL(0), "RXDCTL"},
97 	{E1000_ERT, "ERT"},
98 	{E1000_RDBAL(0), "RDBAL"},
99 	{E1000_RDBAH(0), "RDBAH"},
100 	{E1000_RDFH, "RDFH"},
101 	{E1000_RDFT, "RDFT"},
102 	{E1000_RDFHS, "RDFHS"},
103 	{E1000_RDFTS, "RDFTS"},
104 	{E1000_RDFPC, "RDFPC"},
105 
106 	/* Tx Registers */
107 	{E1000_TCTL, "TCTL"},
108 	{E1000_TDBAL(0), "TDBAL"},
109 	{E1000_TDBAH(0), "TDBAH"},
110 	{E1000_TDLEN(0), "TDLEN"},
111 	{E1000_TDH(0), "TDH"},
112 	{E1000_TDT(0), "TDT"},
113 	{E1000_TIDV, "TIDV"},
114 	{E1000_TXDCTL(0), "TXDCTL"},
115 	{E1000_TADV, "TADV"},
116 	{E1000_TARC(0), "TARC"},
117 	{E1000_TDFH, "TDFH"},
118 	{E1000_TDFT, "TDFT"},
119 	{E1000_TDFHS, "TDFHS"},
120 	{E1000_TDFTS, "TDFTS"},
121 	{E1000_TDFPC, "TDFPC"},
122 
123 	/* List Terminator */
124 	{0, NULL}
125 };
126 
127 /**
128  * __ew32_prepare - prepare to write to MAC CSR register on certain parts
129  * @hw: pointer to the HW structure
130  *
131  * When updating the MAC CSR registers, the Manageability Engine (ME) could
132  * be accessing the registers at the same time.  Normally, this is handled in
133  * h/w by an arbiter but on some parts there is a bug that acknowledges Host
134  * accesses later than it should which could result in the register to have
135  * an incorrect value.  Workaround this by checking the FWSM register which
136  * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set
137  * and try again a number of times.
138  **/
139 s32 __ew32_prepare(struct e1000_hw *hw)
140 {
141 	s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT;
142 
143 	while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i)
144 		udelay(50);
145 
146 	return i;
147 }
148 
149 void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val)
150 {
151 	if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
152 		__ew32_prepare(hw);
153 
154 	writel(val, hw->hw_addr + reg);
155 }
156 
157 static bool e1000e_vlan_used(struct e1000_adapter *adapter)
158 {
159 	u16 vid;
160 
161 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
162 		return true;
163 
164 	return false;
165 }
166 
167 /**
168  * e1000_regdump - register printout routine
169  * @hw: pointer to the HW structure
170  * @reginfo: pointer to the register info table
171  **/
172 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
173 {
174 	int n = 0;
175 	char rname[16];
176 	u32 regs[8];
177 
178 	switch (reginfo->ofs) {
179 	case E1000_RXDCTL(0):
180 		for (n = 0; n < 2; n++)
181 			regs[n] = __er32(hw, E1000_RXDCTL(n));
182 		break;
183 	case E1000_TXDCTL(0):
184 		for (n = 0; n < 2; n++)
185 			regs[n] = __er32(hw, E1000_TXDCTL(n));
186 		break;
187 	case E1000_TARC(0):
188 		for (n = 0; n < 2; n++)
189 			regs[n] = __er32(hw, E1000_TARC(n));
190 		break;
191 	default:
192 		pr_info("%-15s %08x\n",
193 			reginfo->name, __er32(hw, reginfo->ofs));
194 		return;
195 	}
196 
197 	snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
198 	pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
199 }
200 
201 static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
202 				 struct e1000_buffer *bi)
203 {
204 	int i;
205 	struct e1000_ps_page *ps_page;
206 
207 	for (i = 0; i < adapter->rx_ps_pages; i++) {
208 		ps_page = &bi->ps_pages[i];
209 
210 		if (ps_page->page) {
211 			pr_info("packet dump for ps_page %d:\n", i);
212 			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
213 				       16, 1, page_address(ps_page->page),
214 				       PAGE_SIZE, true);
215 		}
216 	}
217 }
218 
219 /**
220  * e1000e_dump - Print registers, Tx-ring and Rx-ring
221  * @adapter: board private structure
222  **/
223 static void e1000e_dump(struct e1000_adapter *adapter)
224 {
225 	struct net_device *netdev = adapter->netdev;
226 	struct e1000_hw *hw = &adapter->hw;
227 	struct e1000_reg_info *reginfo;
228 	struct e1000_ring *tx_ring = adapter->tx_ring;
229 	struct e1000_tx_desc *tx_desc;
230 	struct my_u0 {
231 		__le64 a;
232 		__le64 b;
233 	} *u0;
234 	struct e1000_buffer *buffer_info;
235 	struct e1000_ring *rx_ring = adapter->rx_ring;
236 	union e1000_rx_desc_packet_split *rx_desc_ps;
237 	union e1000_rx_desc_extended *rx_desc;
238 	struct my_u1 {
239 		__le64 a;
240 		__le64 b;
241 		__le64 c;
242 		__le64 d;
243 	} *u1;
244 	u32 staterr;
245 	int i = 0;
246 
247 	if (!netif_msg_hw(adapter))
248 		return;
249 
250 	/* Print netdevice Info */
251 	if (netdev) {
252 		dev_info(&adapter->pdev->dev, "Net device Info\n");
253 		pr_info("Device Name     state            trans_start      last_rx\n");
254 		pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
255 			netdev->state, dev_trans_start(netdev), netdev->last_rx);
256 	}
257 
258 	/* Print Registers */
259 	dev_info(&adapter->pdev->dev, "Register Dump\n");
260 	pr_info(" Register Name   Value\n");
261 	for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
262 	     reginfo->name; reginfo++) {
263 		e1000_regdump(hw, reginfo);
264 	}
265 
266 	/* Print Tx Ring Summary */
267 	if (!netdev || !netif_running(netdev))
268 		return;
269 
270 	dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
271 	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
272 	buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
273 	pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
274 		0, tx_ring->next_to_use, tx_ring->next_to_clean,
275 		(unsigned long long)buffer_info->dma,
276 		buffer_info->length,
277 		buffer_info->next_to_watch,
278 		(unsigned long long)buffer_info->time_stamp);
279 
280 	/* Print Tx Ring */
281 	if (!netif_msg_tx_done(adapter))
282 		goto rx_ring_summary;
283 
284 	dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
285 
286 	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
287 	 *
288 	 * Legacy Transmit Descriptor
289 	 *   +--------------------------------------------------------------+
290 	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
291 	 *   +--------------------------------------------------------------+
292 	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
293 	 *   +--------------------------------------------------------------+
294 	 *   63       48 47        36 35    32 31     24 23    16 15        0
295 	 *
296 	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
297 	 *   63      48 47    40 39       32 31             16 15    8 7      0
298 	 *   +----------------------------------------------------------------+
299 	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
300 	 *   +----------------------------------------------------------------+
301 	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
302 	 *   +----------------------------------------------------------------+
303 	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
304 	 *
305 	 * Extended Data Descriptor (DTYP=0x1)
306 	 *   +----------------------------------------------------------------+
307 	 * 0 |                     Buffer Address [63:0]                      |
308 	 *   +----------------------------------------------------------------+
309 	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
310 	 *   +----------------------------------------------------------------+
311 	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
312 	 */
313 	pr_info("Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Legacy format\n");
314 	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Context format\n");
315 	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Data format\n");
316 	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
317 		const char *next_desc;
318 		tx_desc = E1000_TX_DESC(*tx_ring, i);
319 		buffer_info = &tx_ring->buffer_info[i];
320 		u0 = (struct my_u0 *)tx_desc;
321 		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
322 			next_desc = " NTC/U";
323 		else if (i == tx_ring->next_to_use)
324 			next_desc = " NTU";
325 		else if (i == tx_ring->next_to_clean)
326 			next_desc = " NTC";
327 		else
328 			next_desc = "";
329 		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p%s\n",
330 			(!(le64_to_cpu(u0->b) & BIT(29)) ? 'l' :
331 			 ((le64_to_cpu(u0->b) & BIT(20)) ? 'd' : 'c')),
332 			i,
333 			(unsigned long long)le64_to_cpu(u0->a),
334 			(unsigned long long)le64_to_cpu(u0->b),
335 			(unsigned long long)buffer_info->dma,
336 			buffer_info->length, buffer_info->next_to_watch,
337 			(unsigned long long)buffer_info->time_stamp,
338 			buffer_info->skb, next_desc);
339 
340 		if (netif_msg_pktdata(adapter) && buffer_info->skb)
341 			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
342 				       16, 1, buffer_info->skb->data,
343 				       buffer_info->skb->len, true);
344 	}
345 
346 	/* Print Rx Ring Summary */
347 rx_ring_summary:
348 	dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
349 	pr_info("Queue [NTU] [NTC]\n");
350 	pr_info(" %5d %5X %5X\n",
351 		0, rx_ring->next_to_use, rx_ring->next_to_clean);
352 
353 	/* Print Rx Ring */
354 	if (!netif_msg_rx_status(adapter))
355 		return;
356 
357 	dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
358 	switch (adapter->rx_ps_pages) {
359 	case 1:
360 	case 2:
361 	case 3:
362 		/* [Extended] Packet Split Receive Descriptor Format
363 		 *
364 		 *    +-----------------------------------------------------+
365 		 *  0 |                Buffer Address 0 [63:0]              |
366 		 *    +-----------------------------------------------------+
367 		 *  8 |                Buffer Address 1 [63:0]              |
368 		 *    +-----------------------------------------------------+
369 		 * 16 |                Buffer Address 2 [63:0]              |
370 		 *    +-----------------------------------------------------+
371 		 * 24 |                Buffer Address 3 [63:0]              |
372 		 *    +-----------------------------------------------------+
373 		 */
374 		pr_info("R  [desc]      [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] [bi->skb] <-- Ext Pkt Split format\n");
375 		/* [Extended] Receive Descriptor (Write-Back) Format
376 		 *
377 		 *   63       48 47    32 31     13 12    8 7    4 3        0
378 		 *   +------------------------------------------------------+
379 		 * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
380 		 *   | Checksum | Ident  |         | Queue |      |  Type   |
381 		 *   +------------------------------------------------------+
382 		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
383 		 *   +------------------------------------------------------+
384 		 *   63       48 47    32 31            20 19               0
385 		 */
386 		pr_info("RWB[desc]      [ck ipid mrqhsh] [vl   l0 ee  es] [ l3  l2  l1 hs] [reserved      ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
387 		for (i = 0; i < rx_ring->count; i++) {
388 			const char *next_desc;
389 			buffer_info = &rx_ring->buffer_info[i];
390 			rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
391 			u1 = (struct my_u1 *)rx_desc_ps;
392 			staterr =
393 			    le32_to_cpu(rx_desc_ps->wb.middle.status_error);
394 
395 			if (i == rx_ring->next_to_use)
396 				next_desc = " NTU";
397 			else if (i == rx_ring->next_to_clean)
398 				next_desc = " NTC";
399 			else
400 				next_desc = "";
401 
402 			if (staterr & E1000_RXD_STAT_DD) {
403 				/* Descriptor Done */
404 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX ---------------- %p%s\n",
405 					"RWB", i,
406 					(unsigned long long)le64_to_cpu(u1->a),
407 					(unsigned long long)le64_to_cpu(u1->b),
408 					(unsigned long long)le64_to_cpu(u1->c),
409 					(unsigned long long)le64_to_cpu(u1->d),
410 					buffer_info->skb, next_desc);
411 			} else {
412 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX %016llX %p%s\n",
413 					"R  ", i,
414 					(unsigned long long)le64_to_cpu(u1->a),
415 					(unsigned long long)le64_to_cpu(u1->b),
416 					(unsigned long long)le64_to_cpu(u1->c),
417 					(unsigned long long)le64_to_cpu(u1->d),
418 					(unsigned long long)buffer_info->dma,
419 					buffer_info->skb, next_desc);
420 
421 				if (netif_msg_pktdata(adapter))
422 					e1000e_dump_ps_pages(adapter,
423 							     buffer_info);
424 			}
425 		}
426 		break;
427 	default:
428 	case 0:
429 		/* Extended Receive Descriptor (Read) Format
430 		 *
431 		 *   +-----------------------------------------------------+
432 		 * 0 |                Buffer Address [63:0]                |
433 		 *   +-----------------------------------------------------+
434 		 * 8 |                      Reserved                       |
435 		 *   +-----------------------------------------------------+
436 		 */
437 		pr_info("R  [desc]      [buf addr 63:0 ] [reserved 63:0 ] [bi->dma       ] [bi->skb] <-- Ext (Read) format\n");
438 		/* Extended Receive Descriptor (Write-Back) Format
439 		 *
440 		 *   63       48 47    32 31    24 23            4 3        0
441 		 *   +------------------------------------------------------+
442 		 *   |     RSS Hash      |        |               |         |
443 		 * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
444 		 *   | Packet   | IP     |        |               |  Type   |
445 		 *   | Checksum | Ident  |        |               |         |
446 		 *   +------------------------------------------------------+
447 		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
448 		 *   +------------------------------------------------------+
449 		 *   63       48 47    32 31            20 19               0
450 		 */
451 		pr_info("RWB[desc]      [cs ipid    mrq] [vt   ln xe  xs] [bi->skb] <-- Ext (Write-Back) format\n");
452 
453 		for (i = 0; i < rx_ring->count; i++) {
454 			const char *next_desc;
455 
456 			buffer_info = &rx_ring->buffer_info[i];
457 			rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
458 			u1 = (struct my_u1 *)rx_desc;
459 			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
460 
461 			if (i == rx_ring->next_to_use)
462 				next_desc = " NTU";
463 			else if (i == rx_ring->next_to_clean)
464 				next_desc = " NTC";
465 			else
466 				next_desc = "";
467 
468 			if (staterr & E1000_RXD_STAT_DD) {
469 				/* Descriptor Done */
470 				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %p%s\n",
471 					"RWB", i,
472 					(unsigned long long)le64_to_cpu(u1->a),
473 					(unsigned long long)le64_to_cpu(u1->b),
474 					buffer_info->skb, next_desc);
475 			} else {
476 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %p%s\n",
477 					"R  ", i,
478 					(unsigned long long)le64_to_cpu(u1->a),
479 					(unsigned long long)le64_to_cpu(u1->b),
480 					(unsigned long long)buffer_info->dma,
481 					buffer_info->skb, next_desc);
482 
483 				if (netif_msg_pktdata(adapter) &&
484 				    buffer_info->skb)
485 					print_hex_dump(KERN_INFO, "",
486 						       DUMP_PREFIX_ADDRESS, 16,
487 						       1,
488 						       buffer_info->skb->data,
489 						       adapter->rx_buffer_len,
490 						       true);
491 			}
492 		}
493 	}
494 }
495 
496 /**
497  * e1000_desc_unused - calculate if we have unused descriptors
498  **/
499 static int e1000_desc_unused(struct e1000_ring *ring)
500 {
501 	if (ring->next_to_clean > ring->next_to_use)
502 		return ring->next_to_clean - ring->next_to_use - 1;
503 
504 	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
505 }
506 
507 /**
508  * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
509  * @adapter: board private structure
510  * @hwtstamps: time stamp structure to update
511  * @systim: unsigned 64bit system time value.
512  *
513  * Convert the system time value stored in the RX/TXSTMP registers into a
514  * hwtstamp which can be used by the upper level time stamping functions.
515  *
516  * The 'systim_lock' spinlock is used to protect the consistency of the
517  * system time value. This is needed because reading the 64 bit time
518  * value involves reading two 32 bit registers. The first read latches the
519  * value.
520  **/
521 static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter,
522 				      struct skb_shared_hwtstamps *hwtstamps,
523 				      u64 systim)
524 {
525 	u64 ns;
526 	unsigned long flags;
527 
528 	spin_lock_irqsave(&adapter->systim_lock, flags);
529 	ns = timecounter_cyc2time(&adapter->tc, systim);
530 	spin_unlock_irqrestore(&adapter->systim_lock, flags);
531 
532 	memset(hwtstamps, 0, sizeof(*hwtstamps));
533 	hwtstamps->hwtstamp = ns_to_ktime(ns);
534 }
535 
536 /**
537  * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
538  * @adapter: board private structure
539  * @status: descriptor extended error and status field
540  * @skb: particular skb to include time stamp
541  *
542  * If the time stamp is valid, convert it into the timecounter ns value
543  * and store that result into the shhwtstamps structure which is passed
544  * up the network stack.
545  **/
546 static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status,
547 			       struct sk_buff *skb)
548 {
549 	struct e1000_hw *hw = &adapter->hw;
550 	u64 rxstmp;
551 
552 	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) ||
553 	    !(status & E1000_RXDEXT_STATERR_TST) ||
554 	    !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
555 		return;
556 
557 	/* The Rx time stamp registers contain the time stamp.  No other
558 	 * received packet will be time stamped until the Rx time stamp
559 	 * registers are read.  Because only one packet can be time stamped
560 	 * at a time, the register values must belong to this packet and
561 	 * therefore none of the other additional attributes need to be
562 	 * compared.
563 	 */
564 	rxstmp = (u64)er32(RXSTMPL);
565 	rxstmp |= (u64)er32(RXSTMPH) << 32;
566 	e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp);
567 
568 	adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP;
569 }
570 
571 /**
572  * e1000_receive_skb - helper function to handle Rx indications
573  * @adapter: board private structure
574  * @staterr: descriptor extended error and status field as written by hardware
575  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
576  * @skb: pointer to sk_buff to be indicated to stack
577  **/
578 static void e1000_receive_skb(struct e1000_adapter *adapter,
579 			      struct net_device *netdev, struct sk_buff *skb,
580 			      u32 staterr, __le16 vlan)
581 {
582 	u16 tag = le16_to_cpu(vlan);
583 
584 	e1000e_rx_hwtstamp(adapter, staterr, skb);
585 
586 	skb->protocol = eth_type_trans(skb, netdev);
587 
588 	if (staterr & E1000_RXD_STAT_VP)
589 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag);
590 
591 	napi_gro_receive(&adapter->napi, skb);
592 }
593 
594 /**
595  * e1000_rx_checksum - Receive Checksum Offload
596  * @adapter: board private structure
597  * @status_err: receive descriptor status and error fields
598  * @csum: receive descriptor csum field
599  * @sk_buff: socket buffer with received data
600  **/
601 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
602 			      struct sk_buff *skb)
603 {
604 	u16 status = (u16)status_err;
605 	u8 errors = (u8)(status_err >> 24);
606 
607 	skb_checksum_none_assert(skb);
608 
609 	/* Rx checksum disabled */
610 	if (!(adapter->netdev->features & NETIF_F_RXCSUM))
611 		return;
612 
613 	/* Ignore Checksum bit is set */
614 	if (status & E1000_RXD_STAT_IXSM)
615 		return;
616 
617 	/* TCP/UDP checksum error bit or IP checksum error bit is set */
618 	if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
619 		/* let the stack verify checksum errors */
620 		adapter->hw_csum_err++;
621 		return;
622 	}
623 
624 	/* TCP/UDP Checksum has not been calculated */
625 	if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
626 		return;
627 
628 	/* It must be a TCP or UDP packet with a valid checksum */
629 	skb->ip_summed = CHECKSUM_UNNECESSARY;
630 	adapter->hw_csum_good++;
631 }
632 
633 static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
634 {
635 	struct e1000_adapter *adapter = rx_ring->adapter;
636 	struct e1000_hw *hw = &adapter->hw;
637 	s32 ret_val = __ew32_prepare(hw);
638 
639 	writel(i, rx_ring->tail);
640 
641 	if (unlikely(!ret_val && (i != readl(rx_ring->tail)))) {
642 		u32 rctl = er32(RCTL);
643 
644 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
645 		e_err("ME firmware caused invalid RDT - resetting\n");
646 		schedule_work(&adapter->reset_task);
647 	}
648 }
649 
650 static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
651 {
652 	struct e1000_adapter *adapter = tx_ring->adapter;
653 	struct e1000_hw *hw = &adapter->hw;
654 	s32 ret_val = __ew32_prepare(hw);
655 
656 	writel(i, tx_ring->tail);
657 
658 	if (unlikely(!ret_val && (i != readl(tx_ring->tail)))) {
659 		u32 tctl = er32(TCTL);
660 
661 		ew32(TCTL, tctl & ~E1000_TCTL_EN);
662 		e_err("ME firmware caused invalid TDT - resetting\n");
663 		schedule_work(&adapter->reset_task);
664 	}
665 }
666 
667 /**
668  * e1000_alloc_rx_buffers - Replace used receive buffers
669  * @rx_ring: Rx descriptor ring
670  **/
671 static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
672 				   int cleaned_count, gfp_t gfp)
673 {
674 	struct e1000_adapter *adapter = rx_ring->adapter;
675 	struct net_device *netdev = adapter->netdev;
676 	struct pci_dev *pdev = adapter->pdev;
677 	union e1000_rx_desc_extended *rx_desc;
678 	struct e1000_buffer *buffer_info;
679 	struct sk_buff *skb;
680 	unsigned int i;
681 	unsigned int bufsz = adapter->rx_buffer_len;
682 
683 	i = rx_ring->next_to_use;
684 	buffer_info = &rx_ring->buffer_info[i];
685 
686 	while (cleaned_count--) {
687 		skb = buffer_info->skb;
688 		if (skb) {
689 			skb_trim(skb, 0);
690 			goto map_skb;
691 		}
692 
693 		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
694 		if (!skb) {
695 			/* Better luck next round */
696 			adapter->alloc_rx_buff_failed++;
697 			break;
698 		}
699 
700 		buffer_info->skb = skb;
701 map_skb:
702 		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
703 						  adapter->rx_buffer_len,
704 						  DMA_FROM_DEVICE);
705 		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
706 			dev_err(&pdev->dev, "Rx DMA map failed\n");
707 			adapter->rx_dma_failed++;
708 			break;
709 		}
710 
711 		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
712 		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
713 
714 		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
715 			/* Force memory writes to complete before letting h/w
716 			 * know there are new descriptors to fetch.  (Only
717 			 * applicable for weak-ordered memory model archs,
718 			 * such as IA-64).
719 			 */
720 			wmb();
721 			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
722 				e1000e_update_rdt_wa(rx_ring, i);
723 			else
724 				writel(i, rx_ring->tail);
725 		}
726 		i++;
727 		if (i == rx_ring->count)
728 			i = 0;
729 		buffer_info = &rx_ring->buffer_info[i];
730 	}
731 
732 	rx_ring->next_to_use = i;
733 }
734 
735 /**
736  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
737  * @rx_ring: Rx descriptor ring
738  **/
739 static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
740 				      int cleaned_count, gfp_t gfp)
741 {
742 	struct e1000_adapter *adapter = rx_ring->adapter;
743 	struct net_device *netdev = adapter->netdev;
744 	struct pci_dev *pdev = adapter->pdev;
745 	union e1000_rx_desc_packet_split *rx_desc;
746 	struct e1000_buffer *buffer_info;
747 	struct e1000_ps_page *ps_page;
748 	struct sk_buff *skb;
749 	unsigned int i, j;
750 
751 	i = rx_ring->next_to_use;
752 	buffer_info = &rx_ring->buffer_info[i];
753 
754 	while (cleaned_count--) {
755 		rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
756 
757 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
758 			ps_page = &buffer_info->ps_pages[j];
759 			if (j >= adapter->rx_ps_pages) {
760 				/* all unused desc entries get hw null ptr */
761 				rx_desc->read.buffer_addr[j + 1] =
762 				    ~cpu_to_le64(0);
763 				continue;
764 			}
765 			if (!ps_page->page) {
766 				ps_page->page = alloc_page(gfp);
767 				if (!ps_page->page) {
768 					adapter->alloc_rx_buff_failed++;
769 					goto no_buffers;
770 				}
771 				ps_page->dma = dma_map_page(&pdev->dev,
772 							    ps_page->page,
773 							    0, PAGE_SIZE,
774 							    DMA_FROM_DEVICE);
775 				if (dma_mapping_error(&pdev->dev,
776 						      ps_page->dma)) {
777 					dev_err(&adapter->pdev->dev,
778 						"Rx DMA page map failed\n");
779 					adapter->rx_dma_failed++;
780 					goto no_buffers;
781 				}
782 			}
783 			/* Refresh the desc even if buffer_addrs
784 			 * didn't change because each write-back
785 			 * erases this info.
786 			 */
787 			rx_desc->read.buffer_addr[j + 1] =
788 			    cpu_to_le64(ps_page->dma);
789 		}
790 
791 		skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0,
792 						  gfp);
793 
794 		if (!skb) {
795 			adapter->alloc_rx_buff_failed++;
796 			break;
797 		}
798 
799 		buffer_info->skb = skb;
800 		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
801 						  adapter->rx_ps_bsize0,
802 						  DMA_FROM_DEVICE);
803 		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
804 			dev_err(&pdev->dev, "Rx DMA map failed\n");
805 			adapter->rx_dma_failed++;
806 			/* cleanup skb */
807 			dev_kfree_skb_any(skb);
808 			buffer_info->skb = NULL;
809 			break;
810 		}
811 
812 		rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
813 
814 		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
815 			/* Force memory writes to complete before letting h/w
816 			 * know there are new descriptors to fetch.  (Only
817 			 * applicable for weak-ordered memory model archs,
818 			 * such as IA-64).
819 			 */
820 			wmb();
821 			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
822 				e1000e_update_rdt_wa(rx_ring, i << 1);
823 			else
824 				writel(i << 1, rx_ring->tail);
825 		}
826 
827 		i++;
828 		if (i == rx_ring->count)
829 			i = 0;
830 		buffer_info = &rx_ring->buffer_info[i];
831 	}
832 
833 no_buffers:
834 	rx_ring->next_to_use = i;
835 }
836 
837 /**
838  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
839  * @rx_ring: Rx descriptor ring
840  * @cleaned_count: number of buffers to allocate this pass
841  **/
842 
843 static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
844 					 int cleaned_count, gfp_t gfp)
845 {
846 	struct e1000_adapter *adapter = rx_ring->adapter;
847 	struct net_device *netdev = adapter->netdev;
848 	struct pci_dev *pdev = adapter->pdev;
849 	union e1000_rx_desc_extended *rx_desc;
850 	struct e1000_buffer *buffer_info;
851 	struct sk_buff *skb;
852 	unsigned int i;
853 	unsigned int bufsz = 256 - 16;	/* for skb_reserve */
854 
855 	i = rx_ring->next_to_use;
856 	buffer_info = &rx_ring->buffer_info[i];
857 
858 	while (cleaned_count--) {
859 		skb = buffer_info->skb;
860 		if (skb) {
861 			skb_trim(skb, 0);
862 			goto check_page;
863 		}
864 
865 		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
866 		if (unlikely(!skb)) {
867 			/* Better luck next round */
868 			adapter->alloc_rx_buff_failed++;
869 			break;
870 		}
871 
872 		buffer_info->skb = skb;
873 check_page:
874 		/* allocate a new page if necessary */
875 		if (!buffer_info->page) {
876 			buffer_info->page = alloc_page(gfp);
877 			if (unlikely(!buffer_info->page)) {
878 				adapter->alloc_rx_buff_failed++;
879 				break;
880 			}
881 		}
882 
883 		if (!buffer_info->dma) {
884 			buffer_info->dma = dma_map_page(&pdev->dev,
885 							buffer_info->page, 0,
886 							PAGE_SIZE,
887 							DMA_FROM_DEVICE);
888 			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
889 				adapter->alloc_rx_buff_failed++;
890 				break;
891 			}
892 		}
893 
894 		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
895 		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
896 
897 		if (unlikely(++i == rx_ring->count))
898 			i = 0;
899 		buffer_info = &rx_ring->buffer_info[i];
900 	}
901 
902 	if (likely(rx_ring->next_to_use != i)) {
903 		rx_ring->next_to_use = i;
904 		if (unlikely(i-- == 0))
905 			i = (rx_ring->count - 1);
906 
907 		/* Force memory writes to complete before letting h/w
908 		 * know there are new descriptors to fetch.  (Only
909 		 * applicable for weak-ordered memory model archs,
910 		 * such as IA-64).
911 		 */
912 		wmb();
913 		if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
914 			e1000e_update_rdt_wa(rx_ring, i);
915 		else
916 			writel(i, rx_ring->tail);
917 	}
918 }
919 
920 static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
921 				 struct sk_buff *skb)
922 {
923 	if (netdev->features & NETIF_F_RXHASH)
924 		skb_set_hash(skb, le32_to_cpu(rss), PKT_HASH_TYPE_L3);
925 }
926 
927 /**
928  * e1000_clean_rx_irq - Send received data up the network stack
929  * @rx_ring: Rx descriptor ring
930  *
931  * the return value indicates whether actual cleaning was done, there
932  * is no guarantee that everything was cleaned
933  **/
934 static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
935 			       int work_to_do)
936 {
937 	struct e1000_adapter *adapter = rx_ring->adapter;
938 	struct net_device *netdev = adapter->netdev;
939 	struct pci_dev *pdev = adapter->pdev;
940 	struct e1000_hw *hw = &adapter->hw;
941 	union e1000_rx_desc_extended *rx_desc, *next_rxd;
942 	struct e1000_buffer *buffer_info, *next_buffer;
943 	u32 length, staterr;
944 	unsigned int i;
945 	int cleaned_count = 0;
946 	bool cleaned = false;
947 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
948 
949 	i = rx_ring->next_to_clean;
950 	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
951 	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
952 	buffer_info = &rx_ring->buffer_info[i];
953 
954 	while (staterr & E1000_RXD_STAT_DD) {
955 		struct sk_buff *skb;
956 
957 		if (*work_done >= work_to_do)
958 			break;
959 		(*work_done)++;
960 		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
961 
962 		skb = buffer_info->skb;
963 		buffer_info->skb = NULL;
964 
965 		prefetch(skb->data - NET_IP_ALIGN);
966 
967 		i++;
968 		if (i == rx_ring->count)
969 			i = 0;
970 		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
971 		prefetch(next_rxd);
972 
973 		next_buffer = &rx_ring->buffer_info[i];
974 
975 		cleaned = true;
976 		cleaned_count++;
977 		dma_unmap_single(&pdev->dev, buffer_info->dma,
978 				 adapter->rx_buffer_len, DMA_FROM_DEVICE);
979 		buffer_info->dma = 0;
980 
981 		length = le16_to_cpu(rx_desc->wb.upper.length);
982 
983 		/* !EOP means multiple descriptors were used to store a single
984 		 * packet, if that's the case we need to toss it.  In fact, we
985 		 * need to toss every packet with the EOP bit clear and the
986 		 * next frame that _does_ have the EOP bit set, as it is by
987 		 * definition only a frame fragment
988 		 */
989 		if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
990 			adapter->flags2 |= FLAG2_IS_DISCARDING;
991 
992 		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
993 			/* All receives must fit into a single buffer */
994 			e_dbg("Receive packet consumed multiple buffers\n");
995 			/* recycle */
996 			buffer_info->skb = skb;
997 			if (staterr & E1000_RXD_STAT_EOP)
998 				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
999 			goto next_desc;
1000 		}
1001 
1002 		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1003 			     !(netdev->features & NETIF_F_RXALL))) {
1004 			/* recycle */
1005 			buffer_info->skb = skb;
1006 			goto next_desc;
1007 		}
1008 
1009 		/* adjust length to remove Ethernet CRC */
1010 		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1011 			/* If configured to store CRC, don't subtract FCS,
1012 			 * but keep the FCS bytes out of the total_rx_bytes
1013 			 * counter
1014 			 */
1015 			if (netdev->features & NETIF_F_RXFCS)
1016 				total_rx_bytes -= 4;
1017 			else
1018 				length -= 4;
1019 		}
1020 
1021 		total_rx_bytes += length;
1022 		total_rx_packets++;
1023 
1024 		/* code added for copybreak, this should improve
1025 		 * performance for small packets with large amounts
1026 		 * of reassembly being done in the stack
1027 		 */
1028 		if (length < copybreak) {
1029 			struct sk_buff *new_skb =
1030 				napi_alloc_skb(&adapter->napi, length);
1031 			if (new_skb) {
1032 				skb_copy_to_linear_data_offset(new_skb,
1033 							       -NET_IP_ALIGN,
1034 							       (skb->data -
1035 								NET_IP_ALIGN),
1036 							       (length +
1037 								NET_IP_ALIGN));
1038 				/* save the skb in buffer_info as good */
1039 				buffer_info->skb = skb;
1040 				skb = new_skb;
1041 			}
1042 			/* else just continue with the old one */
1043 		}
1044 		/* end copybreak code */
1045 		skb_put(skb, length);
1046 
1047 		/* Receive Checksum Offload */
1048 		e1000_rx_checksum(adapter, staterr, skb);
1049 
1050 		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1051 
1052 		e1000_receive_skb(adapter, netdev, skb, staterr,
1053 				  rx_desc->wb.upper.vlan);
1054 
1055 next_desc:
1056 		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1057 
1058 		/* return some buffers to hardware, one at a time is too slow */
1059 		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1060 			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1061 					      GFP_ATOMIC);
1062 			cleaned_count = 0;
1063 		}
1064 
1065 		/* use prefetched values */
1066 		rx_desc = next_rxd;
1067 		buffer_info = next_buffer;
1068 
1069 		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1070 	}
1071 	rx_ring->next_to_clean = i;
1072 
1073 	cleaned_count = e1000_desc_unused(rx_ring);
1074 	if (cleaned_count)
1075 		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1076 
1077 	adapter->total_rx_bytes += total_rx_bytes;
1078 	adapter->total_rx_packets += total_rx_packets;
1079 	return cleaned;
1080 }
1081 
1082 static void e1000_put_txbuf(struct e1000_ring *tx_ring,
1083 			    struct e1000_buffer *buffer_info)
1084 {
1085 	struct e1000_adapter *adapter = tx_ring->adapter;
1086 
1087 	if (buffer_info->dma) {
1088 		if (buffer_info->mapped_as_page)
1089 			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1090 				       buffer_info->length, DMA_TO_DEVICE);
1091 		else
1092 			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1093 					 buffer_info->length, DMA_TO_DEVICE);
1094 		buffer_info->dma = 0;
1095 	}
1096 	if (buffer_info->skb) {
1097 		dev_kfree_skb_any(buffer_info->skb);
1098 		buffer_info->skb = NULL;
1099 	}
1100 	buffer_info->time_stamp = 0;
1101 }
1102 
1103 static void e1000_print_hw_hang(struct work_struct *work)
1104 {
1105 	struct e1000_adapter *adapter = container_of(work,
1106 						     struct e1000_adapter,
1107 						     print_hang_task);
1108 	struct net_device *netdev = adapter->netdev;
1109 	struct e1000_ring *tx_ring = adapter->tx_ring;
1110 	unsigned int i = tx_ring->next_to_clean;
1111 	unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1112 	struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1113 	struct e1000_hw *hw = &adapter->hw;
1114 	u16 phy_status, phy_1000t_status, phy_ext_status;
1115 	u16 pci_status;
1116 
1117 	if (test_bit(__E1000_DOWN, &adapter->state))
1118 		return;
1119 
1120 	if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) {
1121 		/* May be block on write-back, flush and detect again
1122 		 * flush pending descriptor writebacks to memory
1123 		 */
1124 		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1125 		/* execute the writes immediately */
1126 		e1e_flush();
1127 		/* Due to rare timing issues, write to TIDV again to ensure
1128 		 * the write is successful
1129 		 */
1130 		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1131 		/* execute the writes immediately */
1132 		e1e_flush();
1133 		adapter->tx_hang_recheck = true;
1134 		return;
1135 	}
1136 	adapter->tx_hang_recheck = false;
1137 
1138 	if (er32(TDH(0)) == er32(TDT(0))) {
1139 		e_dbg("false hang detected, ignoring\n");
1140 		return;
1141 	}
1142 
1143 	/* Real hang detected */
1144 	netif_stop_queue(netdev);
1145 
1146 	e1e_rphy(hw, MII_BMSR, &phy_status);
1147 	e1e_rphy(hw, MII_STAT1000, &phy_1000t_status);
1148 	e1e_rphy(hw, MII_ESTATUS, &phy_ext_status);
1149 
1150 	pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1151 
1152 	/* detected Hardware unit hang */
1153 	e_err("Detected Hardware Unit Hang:\n"
1154 	      "  TDH                  <%x>\n"
1155 	      "  TDT                  <%x>\n"
1156 	      "  next_to_use          <%x>\n"
1157 	      "  next_to_clean        <%x>\n"
1158 	      "buffer_info[next_to_clean]:\n"
1159 	      "  time_stamp           <%lx>\n"
1160 	      "  next_to_watch        <%x>\n"
1161 	      "  jiffies              <%lx>\n"
1162 	      "  next_to_watch.status <%x>\n"
1163 	      "MAC Status             <%x>\n"
1164 	      "PHY Status             <%x>\n"
1165 	      "PHY 1000BASE-T Status  <%x>\n"
1166 	      "PHY Extended Status    <%x>\n"
1167 	      "PCI Status             <%x>\n",
1168 	      readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use,
1169 	      tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp,
1170 	      eop, jiffies, eop_desc->upper.fields.status, er32(STATUS),
1171 	      phy_status, phy_1000t_status, phy_ext_status, pci_status);
1172 
1173 	e1000e_dump(adapter);
1174 
1175 	/* Suggest workaround for known h/w issue */
1176 	if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1177 		e_err("Try turning off Tx pause (flow control) via ethtool\n");
1178 }
1179 
1180 /**
1181  * e1000e_tx_hwtstamp_work - check for Tx time stamp
1182  * @work: pointer to work struct
1183  *
1184  * This work function polls the TSYNCTXCTL valid bit to determine when a
1185  * timestamp has been taken for the current stored skb.  The timestamp must
1186  * be for this skb because only one such packet is allowed in the queue.
1187  */
1188 static void e1000e_tx_hwtstamp_work(struct work_struct *work)
1189 {
1190 	struct e1000_adapter *adapter = container_of(work, struct e1000_adapter,
1191 						     tx_hwtstamp_work);
1192 	struct e1000_hw *hw = &adapter->hw;
1193 
1194 	if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) {
1195 		struct skb_shared_hwtstamps shhwtstamps;
1196 		u64 txstmp;
1197 
1198 		txstmp = er32(TXSTMPL);
1199 		txstmp |= (u64)er32(TXSTMPH) << 32;
1200 
1201 		e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp);
1202 
1203 		skb_tstamp_tx(adapter->tx_hwtstamp_skb, &shhwtstamps);
1204 		dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1205 		adapter->tx_hwtstamp_skb = NULL;
1206 	} else if (time_after(jiffies, adapter->tx_hwtstamp_start
1207 			      + adapter->tx_timeout_factor * HZ)) {
1208 		dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1209 		adapter->tx_hwtstamp_skb = NULL;
1210 		adapter->tx_hwtstamp_timeouts++;
1211 		e_warn("clearing Tx timestamp hang\n");
1212 	} else {
1213 		/* reschedule to check later */
1214 		schedule_work(&adapter->tx_hwtstamp_work);
1215 	}
1216 }
1217 
1218 /**
1219  * e1000_clean_tx_irq - Reclaim resources after transmit completes
1220  * @tx_ring: Tx descriptor ring
1221  *
1222  * the return value indicates whether actual cleaning was done, there
1223  * is no guarantee that everything was cleaned
1224  **/
1225 static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1226 {
1227 	struct e1000_adapter *adapter = tx_ring->adapter;
1228 	struct net_device *netdev = adapter->netdev;
1229 	struct e1000_hw *hw = &adapter->hw;
1230 	struct e1000_tx_desc *tx_desc, *eop_desc;
1231 	struct e1000_buffer *buffer_info;
1232 	unsigned int i, eop;
1233 	unsigned int count = 0;
1234 	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1235 	unsigned int bytes_compl = 0, pkts_compl = 0;
1236 
1237 	i = tx_ring->next_to_clean;
1238 	eop = tx_ring->buffer_info[i].next_to_watch;
1239 	eop_desc = E1000_TX_DESC(*tx_ring, eop);
1240 
1241 	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1242 	       (count < tx_ring->count)) {
1243 		bool cleaned = false;
1244 
1245 		dma_rmb();		/* read buffer_info after eop_desc */
1246 		for (; !cleaned; count++) {
1247 			tx_desc = E1000_TX_DESC(*tx_ring, i);
1248 			buffer_info = &tx_ring->buffer_info[i];
1249 			cleaned = (i == eop);
1250 
1251 			if (cleaned) {
1252 				total_tx_packets += buffer_info->segs;
1253 				total_tx_bytes += buffer_info->bytecount;
1254 				if (buffer_info->skb) {
1255 					bytes_compl += buffer_info->skb->len;
1256 					pkts_compl++;
1257 				}
1258 			}
1259 
1260 			e1000_put_txbuf(tx_ring, buffer_info);
1261 			tx_desc->upper.data = 0;
1262 
1263 			i++;
1264 			if (i == tx_ring->count)
1265 				i = 0;
1266 		}
1267 
1268 		if (i == tx_ring->next_to_use)
1269 			break;
1270 		eop = tx_ring->buffer_info[i].next_to_watch;
1271 		eop_desc = E1000_TX_DESC(*tx_ring, eop);
1272 	}
1273 
1274 	tx_ring->next_to_clean = i;
1275 
1276 	netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1277 
1278 #define TX_WAKE_THRESHOLD 32
1279 	if (count && netif_carrier_ok(netdev) &&
1280 	    e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1281 		/* Make sure that anybody stopping the queue after this
1282 		 * sees the new next_to_clean.
1283 		 */
1284 		smp_mb();
1285 
1286 		if (netif_queue_stopped(netdev) &&
1287 		    !(test_bit(__E1000_DOWN, &adapter->state))) {
1288 			netif_wake_queue(netdev);
1289 			++adapter->restart_queue;
1290 		}
1291 	}
1292 
1293 	if (adapter->detect_tx_hung) {
1294 		/* Detect a transmit hang in hardware, this serializes the
1295 		 * check with the clearing of time_stamp and movement of i
1296 		 */
1297 		adapter->detect_tx_hung = false;
1298 		if (tx_ring->buffer_info[i].time_stamp &&
1299 		    time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1300 			       + (adapter->tx_timeout_factor * HZ)) &&
1301 		    !(er32(STATUS) & E1000_STATUS_TXOFF))
1302 			schedule_work(&adapter->print_hang_task);
1303 		else
1304 			adapter->tx_hang_recheck = false;
1305 	}
1306 	adapter->total_tx_bytes += total_tx_bytes;
1307 	adapter->total_tx_packets += total_tx_packets;
1308 	return count < tx_ring->count;
1309 }
1310 
1311 /**
1312  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1313  * @rx_ring: Rx descriptor ring
1314  *
1315  * the return value indicates whether actual cleaning was done, there
1316  * is no guarantee that everything was cleaned
1317  **/
1318 static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1319 				  int work_to_do)
1320 {
1321 	struct e1000_adapter *adapter = rx_ring->adapter;
1322 	struct e1000_hw *hw = &adapter->hw;
1323 	union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1324 	struct net_device *netdev = adapter->netdev;
1325 	struct pci_dev *pdev = adapter->pdev;
1326 	struct e1000_buffer *buffer_info, *next_buffer;
1327 	struct e1000_ps_page *ps_page;
1328 	struct sk_buff *skb;
1329 	unsigned int i, j;
1330 	u32 length, staterr;
1331 	int cleaned_count = 0;
1332 	bool cleaned = false;
1333 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1334 
1335 	i = rx_ring->next_to_clean;
1336 	rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1337 	staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1338 	buffer_info = &rx_ring->buffer_info[i];
1339 
1340 	while (staterr & E1000_RXD_STAT_DD) {
1341 		if (*work_done >= work_to_do)
1342 			break;
1343 		(*work_done)++;
1344 		skb = buffer_info->skb;
1345 		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
1346 
1347 		/* in the packet split case this is header only */
1348 		prefetch(skb->data - NET_IP_ALIGN);
1349 
1350 		i++;
1351 		if (i == rx_ring->count)
1352 			i = 0;
1353 		next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1354 		prefetch(next_rxd);
1355 
1356 		next_buffer = &rx_ring->buffer_info[i];
1357 
1358 		cleaned = true;
1359 		cleaned_count++;
1360 		dma_unmap_single(&pdev->dev, buffer_info->dma,
1361 				 adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1362 		buffer_info->dma = 0;
1363 
1364 		/* see !EOP comment in other Rx routine */
1365 		if (!(staterr & E1000_RXD_STAT_EOP))
1366 			adapter->flags2 |= FLAG2_IS_DISCARDING;
1367 
1368 		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1369 			e_dbg("Packet Split buffers didn't pick up the full packet\n");
1370 			dev_kfree_skb_irq(skb);
1371 			if (staterr & E1000_RXD_STAT_EOP)
1372 				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1373 			goto next_desc;
1374 		}
1375 
1376 		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1377 			     !(netdev->features & NETIF_F_RXALL))) {
1378 			dev_kfree_skb_irq(skb);
1379 			goto next_desc;
1380 		}
1381 
1382 		length = le16_to_cpu(rx_desc->wb.middle.length0);
1383 
1384 		if (!length) {
1385 			e_dbg("Last part of the packet spanning multiple descriptors\n");
1386 			dev_kfree_skb_irq(skb);
1387 			goto next_desc;
1388 		}
1389 
1390 		/* Good Receive */
1391 		skb_put(skb, length);
1392 
1393 		{
1394 			/* this looks ugly, but it seems compiler issues make
1395 			 * it more efficient than reusing j
1396 			 */
1397 			int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1398 
1399 			/* page alloc/put takes too long and effects small
1400 			 * packet throughput, so unsplit small packets and
1401 			 * save the alloc/put only valid in softirq (napi)
1402 			 * context to call kmap_*
1403 			 */
1404 			if (l1 && (l1 <= copybreak) &&
1405 			    ((length + l1) <= adapter->rx_ps_bsize0)) {
1406 				u8 *vaddr;
1407 
1408 				ps_page = &buffer_info->ps_pages[0];
1409 
1410 				/* there is no documentation about how to call
1411 				 * kmap_atomic, so we can't hold the mapping
1412 				 * very long
1413 				 */
1414 				dma_sync_single_for_cpu(&pdev->dev,
1415 							ps_page->dma,
1416 							PAGE_SIZE,
1417 							DMA_FROM_DEVICE);
1418 				vaddr = kmap_atomic(ps_page->page);
1419 				memcpy(skb_tail_pointer(skb), vaddr, l1);
1420 				kunmap_atomic(vaddr);
1421 				dma_sync_single_for_device(&pdev->dev,
1422 							   ps_page->dma,
1423 							   PAGE_SIZE,
1424 							   DMA_FROM_DEVICE);
1425 
1426 				/* remove the CRC */
1427 				if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1428 					if (!(netdev->features & NETIF_F_RXFCS))
1429 						l1 -= 4;
1430 				}
1431 
1432 				skb_put(skb, l1);
1433 				goto copydone;
1434 			}	/* if */
1435 		}
1436 
1437 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1438 			length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1439 			if (!length)
1440 				break;
1441 
1442 			ps_page = &buffer_info->ps_pages[j];
1443 			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1444 				       DMA_FROM_DEVICE);
1445 			ps_page->dma = 0;
1446 			skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1447 			ps_page->page = NULL;
1448 			skb->len += length;
1449 			skb->data_len += length;
1450 			skb->truesize += PAGE_SIZE;
1451 		}
1452 
1453 		/* strip the ethernet crc, problem is we're using pages now so
1454 		 * this whole operation can get a little cpu intensive
1455 		 */
1456 		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1457 			if (!(netdev->features & NETIF_F_RXFCS))
1458 				pskb_trim(skb, skb->len - 4);
1459 		}
1460 
1461 copydone:
1462 		total_rx_bytes += skb->len;
1463 		total_rx_packets++;
1464 
1465 		e1000_rx_checksum(adapter, staterr, skb);
1466 
1467 		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1468 
1469 		if (rx_desc->wb.upper.header_status &
1470 		    cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1471 			adapter->rx_hdr_split++;
1472 
1473 		e1000_receive_skb(adapter, netdev, skb, staterr,
1474 				  rx_desc->wb.middle.vlan);
1475 
1476 next_desc:
1477 		rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1478 		buffer_info->skb = NULL;
1479 
1480 		/* return some buffers to hardware, one at a time is too slow */
1481 		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1482 			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1483 					      GFP_ATOMIC);
1484 			cleaned_count = 0;
1485 		}
1486 
1487 		/* use prefetched values */
1488 		rx_desc = next_rxd;
1489 		buffer_info = next_buffer;
1490 
1491 		staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1492 	}
1493 	rx_ring->next_to_clean = i;
1494 
1495 	cleaned_count = e1000_desc_unused(rx_ring);
1496 	if (cleaned_count)
1497 		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1498 
1499 	adapter->total_rx_bytes += total_rx_bytes;
1500 	adapter->total_rx_packets += total_rx_packets;
1501 	return cleaned;
1502 }
1503 
1504 /**
1505  * e1000_consume_page - helper function
1506  **/
1507 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1508 			       u16 length)
1509 {
1510 	bi->page = NULL;
1511 	skb->len += length;
1512 	skb->data_len += length;
1513 	skb->truesize += PAGE_SIZE;
1514 }
1515 
1516 /**
1517  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1518  * @adapter: board private structure
1519  *
1520  * the return value indicates whether actual cleaning was done, there
1521  * is no guarantee that everything was cleaned
1522  **/
1523 static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1524 				     int work_to_do)
1525 {
1526 	struct e1000_adapter *adapter = rx_ring->adapter;
1527 	struct net_device *netdev = adapter->netdev;
1528 	struct pci_dev *pdev = adapter->pdev;
1529 	union e1000_rx_desc_extended *rx_desc, *next_rxd;
1530 	struct e1000_buffer *buffer_info, *next_buffer;
1531 	u32 length, staterr;
1532 	unsigned int i;
1533 	int cleaned_count = 0;
1534 	bool cleaned = false;
1535 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1536 	struct skb_shared_info *shinfo;
1537 
1538 	i = rx_ring->next_to_clean;
1539 	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1540 	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1541 	buffer_info = &rx_ring->buffer_info[i];
1542 
1543 	while (staterr & E1000_RXD_STAT_DD) {
1544 		struct sk_buff *skb;
1545 
1546 		if (*work_done >= work_to_do)
1547 			break;
1548 		(*work_done)++;
1549 		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
1550 
1551 		skb = buffer_info->skb;
1552 		buffer_info->skb = NULL;
1553 
1554 		++i;
1555 		if (i == rx_ring->count)
1556 			i = 0;
1557 		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1558 		prefetch(next_rxd);
1559 
1560 		next_buffer = &rx_ring->buffer_info[i];
1561 
1562 		cleaned = true;
1563 		cleaned_count++;
1564 		dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1565 			       DMA_FROM_DEVICE);
1566 		buffer_info->dma = 0;
1567 
1568 		length = le16_to_cpu(rx_desc->wb.upper.length);
1569 
1570 		/* errors is only valid for DD + EOP descriptors */
1571 		if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1572 			     ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1573 			      !(netdev->features & NETIF_F_RXALL)))) {
1574 			/* recycle both page and skb */
1575 			buffer_info->skb = skb;
1576 			/* an error means any chain goes out the window too */
1577 			if (rx_ring->rx_skb_top)
1578 				dev_kfree_skb_irq(rx_ring->rx_skb_top);
1579 			rx_ring->rx_skb_top = NULL;
1580 			goto next_desc;
1581 		}
1582 #define rxtop (rx_ring->rx_skb_top)
1583 		if (!(staterr & E1000_RXD_STAT_EOP)) {
1584 			/* this descriptor is only the beginning (or middle) */
1585 			if (!rxtop) {
1586 				/* this is the beginning of a chain */
1587 				rxtop = skb;
1588 				skb_fill_page_desc(rxtop, 0, buffer_info->page,
1589 						   0, length);
1590 			} else {
1591 				/* this is the middle of a chain */
1592 				shinfo = skb_shinfo(rxtop);
1593 				skb_fill_page_desc(rxtop, shinfo->nr_frags,
1594 						   buffer_info->page, 0,
1595 						   length);
1596 				/* re-use the skb, only consumed the page */
1597 				buffer_info->skb = skb;
1598 			}
1599 			e1000_consume_page(buffer_info, rxtop, length);
1600 			goto next_desc;
1601 		} else {
1602 			if (rxtop) {
1603 				/* end of the chain */
1604 				shinfo = skb_shinfo(rxtop);
1605 				skb_fill_page_desc(rxtop, shinfo->nr_frags,
1606 						   buffer_info->page, 0,
1607 						   length);
1608 				/* re-use the current skb, we only consumed the
1609 				 * page
1610 				 */
1611 				buffer_info->skb = skb;
1612 				skb = rxtop;
1613 				rxtop = NULL;
1614 				e1000_consume_page(buffer_info, skb, length);
1615 			} else {
1616 				/* no chain, got EOP, this buf is the packet
1617 				 * copybreak to save the put_page/alloc_page
1618 				 */
1619 				if (length <= copybreak &&
1620 				    skb_tailroom(skb) >= length) {
1621 					u8 *vaddr;
1622 					vaddr = kmap_atomic(buffer_info->page);
1623 					memcpy(skb_tail_pointer(skb), vaddr,
1624 					       length);
1625 					kunmap_atomic(vaddr);
1626 					/* re-use the page, so don't erase
1627 					 * buffer_info->page
1628 					 */
1629 					skb_put(skb, length);
1630 				} else {
1631 					skb_fill_page_desc(skb, 0,
1632 							   buffer_info->page, 0,
1633 							   length);
1634 					e1000_consume_page(buffer_info, skb,
1635 							   length);
1636 				}
1637 			}
1638 		}
1639 
1640 		/* Receive Checksum Offload */
1641 		e1000_rx_checksum(adapter, staterr, skb);
1642 
1643 		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1644 
1645 		/* probably a little skewed due to removing CRC */
1646 		total_rx_bytes += skb->len;
1647 		total_rx_packets++;
1648 
1649 		/* eth type trans needs skb->data to point to something */
1650 		if (!pskb_may_pull(skb, ETH_HLEN)) {
1651 			e_err("pskb_may_pull failed.\n");
1652 			dev_kfree_skb_irq(skb);
1653 			goto next_desc;
1654 		}
1655 
1656 		e1000_receive_skb(adapter, netdev, skb, staterr,
1657 				  rx_desc->wb.upper.vlan);
1658 
1659 next_desc:
1660 		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1661 
1662 		/* return some buffers to hardware, one at a time is too slow */
1663 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1664 			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1665 					      GFP_ATOMIC);
1666 			cleaned_count = 0;
1667 		}
1668 
1669 		/* use prefetched values */
1670 		rx_desc = next_rxd;
1671 		buffer_info = next_buffer;
1672 
1673 		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1674 	}
1675 	rx_ring->next_to_clean = i;
1676 
1677 	cleaned_count = e1000_desc_unused(rx_ring);
1678 	if (cleaned_count)
1679 		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1680 
1681 	adapter->total_rx_bytes += total_rx_bytes;
1682 	adapter->total_rx_packets += total_rx_packets;
1683 	return cleaned;
1684 }
1685 
1686 /**
1687  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1688  * @rx_ring: Rx descriptor ring
1689  **/
1690 static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1691 {
1692 	struct e1000_adapter *adapter = rx_ring->adapter;
1693 	struct e1000_buffer *buffer_info;
1694 	struct e1000_ps_page *ps_page;
1695 	struct pci_dev *pdev = adapter->pdev;
1696 	unsigned int i, j;
1697 
1698 	/* Free all the Rx ring sk_buffs */
1699 	for (i = 0; i < rx_ring->count; i++) {
1700 		buffer_info = &rx_ring->buffer_info[i];
1701 		if (buffer_info->dma) {
1702 			if (adapter->clean_rx == e1000_clean_rx_irq)
1703 				dma_unmap_single(&pdev->dev, buffer_info->dma,
1704 						 adapter->rx_buffer_len,
1705 						 DMA_FROM_DEVICE);
1706 			else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1707 				dma_unmap_page(&pdev->dev, buffer_info->dma,
1708 					       PAGE_SIZE, DMA_FROM_DEVICE);
1709 			else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1710 				dma_unmap_single(&pdev->dev, buffer_info->dma,
1711 						 adapter->rx_ps_bsize0,
1712 						 DMA_FROM_DEVICE);
1713 			buffer_info->dma = 0;
1714 		}
1715 
1716 		if (buffer_info->page) {
1717 			put_page(buffer_info->page);
1718 			buffer_info->page = NULL;
1719 		}
1720 
1721 		if (buffer_info->skb) {
1722 			dev_kfree_skb(buffer_info->skb);
1723 			buffer_info->skb = NULL;
1724 		}
1725 
1726 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1727 			ps_page = &buffer_info->ps_pages[j];
1728 			if (!ps_page->page)
1729 				break;
1730 			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1731 				       DMA_FROM_DEVICE);
1732 			ps_page->dma = 0;
1733 			put_page(ps_page->page);
1734 			ps_page->page = NULL;
1735 		}
1736 	}
1737 
1738 	/* there also may be some cached data from a chained receive */
1739 	if (rx_ring->rx_skb_top) {
1740 		dev_kfree_skb(rx_ring->rx_skb_top);
1741 		rx_ring->rx_skb_top = NULL;
1742 	}
1743 
1744 	/* Zero out the descriptor ring */
1745 	memset(rx_ring->desc, 0, rx_ring->size);
1746 
1747 	rx_ring->next_to_clean = 0;
1748 	rx_ring->next_to_use = 0;
1749 	adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1750 }
1751 
1752 static void e1000e_downshift_workaround(struct work_struct *work)
1753 {
1754 	struct e1000_adapter *adapter = container_of(work,
1755 						     struct e1000_adapter,
1756 						     downshift_task);
1757 
1758 	if (test_bit(__E1000_DOWN, &adapter->state))
1759 		return;
1760 
1761 	e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1762 }
1763 
1764 /**
1765  * e1000_intr_msi - Interrupt Handler
1766  * @irq: interrupt number
1767  * @data: pointer to a network interface device structure
1768  **/
1769 static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data)
1770 {
1771 	struct net_device *netdev = data;
1772 	struct e1000_adapter *adapter = netdev_priv(netdev);
1773 	struct e1000_hw *hw = &adapter->hw;
1774 	u32 icr = er32(ICR);
1775 
1776 	/* read ICR disables interrupts using IAM */
1777 	if (icr & E1000_ICR_LSC) {
1778 		hw->mac.get_link_status = true;
1779 		/* ICH8 workaround-- Call gig speed drop workaround on cable
1780 		 * disconnect (LSC) before accessing any PHY registers
1781 		 */
1782 		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1783 		    (!(er32(STATUS) & E1000_STATUS_LU)))
1784 			schedule_work(&adapter->downshift_task);
1785 
1786 		/* 80003ES2LAN workaround-- For packet buffer work-around on
1787 		 * link down event; disable receives here in the ISR and reset
1788 		 * adapter in watchdog
1789 		 */
1790 		if (netif_carrier_ok(netdev) &&
1791 		    adapter->flags & FLAG_RX_NEEDS_RESTART) {
1792 			/* disable receives */
1793 			u32 rctl = er32(RCTL);
1794 
1795 			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1796 			adapter->flags |= FLAG_RESTART_NOW;
1797 		}
1798 		/* guard against interrupt when we're going down */
1799 		if (!test_bit(__E1000_DOWN, &adapter->state))
1800 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1801 	}
1802 
1803 	/* Reset on uncorrectable ECC error */
1804 	if ((icr & E1000_ICR_ECCER) && ((hw->mac.type == e1000_pch_lpt) ||
1805 					(hw->mac.type == e1000_pch_spt))) {
1806 		u32 pbeccsts = er32(PBECCSTS);
1807 
1808 		adapter->corr_errors +=
1809 		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1810 		adapter->uncorr_errors +=
1811 		    (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1812 		    E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1813 
1814 		/* Do the reset outside of interrupt context */
1815 		schedule_work(&adapter->reset_task);
1816 
1817 		/* return immediately since reset is imminent */
1818 		return IRQ_HANDLED;
1819 	}
1820 
1821 	if (napi_schedule_prep(&adapter->napi)) {
1822 		adapter->total_tx_bytes = 0;
1823 		adapter->total_tx_packets = 0;
1824 		adapter->total_rx_bytes = 0;
1825 		adapter->total_rx_packets = 0;
1826 		__napi_schedule(&adapter->napi);
1827 	}
1828 
1829 	return IRQ_HANDLED;
1830 }
1831 
1832 /**
1833  * e1000_intr - Interrupt Handler
1834  * @irq: interrupt number
1835  * @data: pointer to a network interface device structure
1836  **/
1837 static irqreturn_t e1000_intr(int __always_unused irq, void *data)
1838 {
1839 	struct net_device *netdev = data;
1840 	struct e1000_adapter *adapter = netdev_priv(netdev);
1841 	struct e1000_hw *hw = &adapter->hw;
1842 	u32 rctl, icr = er32(ICR);
1843 
1844 	if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1845 		return IRQ_NONE;	/* Not our interrupt */
1846 
1847 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1848 	 * not set, then the adapter didn't send an interrupt
1849 	 */
1850 	if (!(icr & E1000_ICR_INT_ASSERTED))
1851 		return IRQ_NONE;
1852 
1853 	/* Interrupt Auto-Mask...upon reading ICR,
1854 	 * interrupts are masked.  No need for the
1855 	 * IMC write
1856 	 */
1857 
1858 	if (icr & E1000_ICR_LSC) {
1859 		hw->mac.get_link_status = true;
1860 		/* ICH8 workaround-- Call gig speed drop workaround on cable
1861 		 * disconnect (LSC) before accessing any PHY registers
1862 		 */
1863 		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1864 		    (!(er32(STATUS) & E1000_STATUS_LU)))
1865 			schedule_work(&adapter->downshift_task);
1866 
1867 		/* 80003ES2LAN workaround--
1868 		 * For packet buffer work-around on link down event;
1869 		 * disable receives here in the ISR and
1870 		 * reset adapter in watchdog
1871 		 */
1872 		if (netif_carrier_ok(netdev) &&
1873 		    (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1874 			/* disable receives */
1875 			rctl = er32(RCTL);
1876 			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1877 			adapter->flags |= FLAG_RESTART_NOW;
1878 		}
1879 		/* guard against interrupt when we're going down */
1880 		if (!test_bit(__E1000_DOWN, &adapter->state))
1881 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1882 	}
1883 
1884 	/* Reset on uncorrectable ECC error */
1885 	if ((icr & E1000_ICR_ECCER) && ((hw->mac.type == e1000_pch_lpt) ||
1886 					(hw->mac.type == e1000_pch_spt))) {
1887 		u32 pbeccsts = er32(PBECCSTS);
1888 
1889 		adapter->corr_errors +=
1890 		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1891 		adapter->uncorr_errors +=
1892 		    (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1893 		    E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1894 
1895 		/* Do the reset outside of interrupt context */
1896 		schedule_work(&adapter->reset_task);
1897 
1898 		/* return immediately since reset is imminent */
1899 		return IRQ_HANDLED;
1900 	}
1901 
1902 	if (napi_schedule_prep(&adapter->napi)) {
1903 		adapter->total_tx_bytes = 0;
1904 		adapter->total_tx_packets = 0;
1905 		adapter->total_rx_bytes = 0;
1906 		adapter->total_rx_packets = 0;
1907 		__napi_schedule(&adapter->napi);
1908 	}
1909 
1910 	return IRQ_HANDLED;
1911 }
1912 
1913 static irqreturn_t e1000_msix_other(int __always_unused irq, void *data)
1914 {
1915 	struct net_device *netdev = data;
1916 	struct e1000_adapter *adapter = netdev_priv(netdev);
1917 	struct e1000_hw *hw = &adapter->hw;
1918 
1919 	hw->mac.get_link_status = true;
1920 
1921 	/* guard against interrupt when we're going down */
1922 	if (!test_bit(__E1000_DOWN, &adapter->state)) {
1923 		mod_timer(&adapter->watchdog_timer, jiffies + 1);
1924 		ew32(IMS, E1000_IMS_OTHER);
1925 	}
1926 
1927 	return IRQ_HANDLED;
1928 }
1929 
1930 static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data)
1931 {
1932 	struct net_device *netdev = data;
1933 	struct e1000_adapter *adapter = netdev_priv(netdev);
1934 	struct e1000_hw *hw = &adapter->hw;
1935 	struct e1000_ring *tx_ring = adapter->tx_ring;
1936 
1937 	adapter->total_tx_bytes = 0;
1938 	adapter->total_tx_packets = 0;
1939 
1940 	if (!e1000_clean_tx_irq(tx_ring))
1941 		/* Ring was not completely cleaned, so fire another interrupt */
1942 		ew32(ICS, tx_ring->ims_val);
1943 
1944 	if (!test_bit(__E1000_DOWN, &adapter->state))
1945 		ew32(IMS, adapter->tx_ring->ims_val);
1946 
1947 	return IRQ_HANDLED;
1948 }
1949 
1950 static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data)
1951 {
1952 	struct net_device *netdev = data;
1953 	struct e1000_adapter *adapter = netdev_priv(netdev);
1954 	struct e1000_ring *rx_ring = adapter->rx_ring;
1955 
1956 	/* Write the ITR value calculated at the end of the
1957 	 * previous interrupt.
1958 	 */
1959 	if (rx_ring->set_itr) {
1960 		u32 itr = rx_ring->itr_val ?
1961 			  1000000000 / (rx_ring->itr_val * 256) : 0;
1962 
1963 		writel(itr, rx_ring->itr_register);
1964 		rx_ring->set_itr = 0;
1965 	}
1966 
1967 	if (napi_schedule_prep(&adapter->napi)) {
1968 		adapter->total_rx_bytes = 0;
1969 		adapter->total_rx_packets = 0;
1970 		__napi_schedule(&adapter->napi);
1971 	}
1972 	return IRQ_HANDLED;
1973 }
1974 
1975 /**
1976  * e1000_configure_msix - Configure MSI-X hardware
1977  *
1978  * e1000_configure_msix sets up the hardware to properly
1979  * generate MSI-X interrupts.
1980  **/
1981 static void e1000_configure_msix(struct e1000_adapter *adapter)
1982 {
1983 	struct e1000_hw *hw = &adapter->hw;
1984 	struct e1000_ring *rx_ring = adapter->rx_ring;
1985 	struct e1000_ring *tx_ring = adapter->tx_ring;
1986 	int vector = 0;
1987 	u32 ctrl_ext, ivar = 0;
1988 
1989 	adapter->eiac_mask = 0;
1990 
1991 	/* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1992 	if (hw->mac.type == e1000_82574) {
1993 		u32 rfctl = er32(RFCTL);
1994 
1995 		rfctl |= E1000_RFCTL_ACK_DIS;
1996 		ew32(RFCTL, rfctl);
1997 	}
1998 
1999 	/* Configure Rx vector */
2000 	rx_ring->ims_val = E1000_IMS_RXQ0;
2001 	adapter->eiac_mask |= rx_ring->ims_val;
2002 	if (rx_ring->itr_val)
2003 		writel(1000000000 / (rx_ring->itr_val * 256),
2004 		       rx_ring->itr_register);
2005 	else
2006 		writel(1, rx_ring->itr_register);
2007 	ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
2008 
2009 	/* Configure Tx vector */
2010 	tx_ring->ims_val = E1000_IMS_TXQ0;
2011 	vector++;
2012 	if (tx_ring->itr_val)
2013 		writel(1000000000 / (tx_ring->itr_val * 256),
2014 		       tx_ring->itr_register);
2015 	else
2016 		writel(1, tx_ring->itr_register);
2017 	adapter->eiac_mask |= tx_ring->ims_val;
2018 	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
2019 
2020 	/* set vector for Other Causes, e.g. link changes */
2021 	vector++;
2022 	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
2023 	if (rx_ring->itr_val)
2024 		writel(1000000000 / (rx_ring->itr_val * 256),
2025 		       hw->hw_addr + E1000_EITR_82574(vector));
2026 	else
2027 		writel(1, hw->hw_addr + E1000_EITR_82574(vector));
2028 	adapter->eiac_mask |= E1000_IMS_OTHER;
2029 
2030 	/* Cause Tx interrupts on every write back */
2031 	ivar |= BIT(31);
2032 
2033 	ew32(IVAR, ivar);
2034 
2035 	/* enable MSI-X PBA support */
2036 	ctrl_ext = er32(CTRL_EXT) & ~E1000_CTRL_EXT_IAME;
2037 	ctrl_ext |= E1000_CTRL_EXT_PBA_CLR | E1000_CTRL_EXT_EIAME;
2038 	ew32(CTRL_EXT, ctrl_ext);
2039 	e1e_flush();
2040 }
2041 
2042 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
2043 {
2044 	if (adapter->msix_entries) {
2045 		pci_disable_msix(adapter->pdev);
2046 		kfree(adapter->msix_entries);
2047 		adapter->msix_entries = NULL;
2048 	} else if (adapter->flags & FLAG_MSI_ENABLED) {
2049 		pci_disable_msi(adapter->pdev);
2050 		adapter->flags &= ~FLAG_MSI_ENABLED;
2051 	}
2052 }
2053 
2054 /**
2055  * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
2056  *
2057  * Attempt to configure interrupts using the best available
2058  * capabilities of the hardware and kernel.
2059  **/
2060 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
2061 {
2062 	int err;
2063 	int i;
2064 
2065 	switch (adapter->int_mode) {
2066 	case E1000E_INT_MODE_MSIX:
2067 		if (adapter->flags & FLAG_HAS_MSIX) {
2068 			adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
2069 			adapter->msix_entries = kcalloc(adapter->num_vectors,
2070 							sizeof(struct
2071 							       msix_entry),
2072 							GFP_KERNEL);
2073 			if (adapter->msix_entries) {
2074 				struct e1000_adapter *a = adapter;
2075 
2076 				for (i = 0; i < adapter->num_vectors; i++)
2077 					adapter->msix_entries[i].entry = i;
2078 
2079 				err = pci_enable_msix_range(a->pdev,
2080 							    a->msix_entries,
2081 							    a->num_vectors,
2082 							    a->num_vectors);
2083 				if (err > 0)
2084 					return;
2085 			}
2086 			/* MSI-X failed, so fall through and try MSI */
2087 			e_err("Failed to initialize MSI-X interrupts.  Falling back to MSI interrupts.\n");
2088 			e1000e_reset_interrupt_capability(adapter);
2089 		}
2090 		adapter->int_mode = E1000E_INT_MODE_MSI;
2091 		/* Fall through */
2092 	case E1000E_INT_MODE_MSI:
2093 		if (!pci_enable_msi(adapter->pdev)) {
2094 			adapter->flags |= FLAG_MSI_ENABLED;
2095 		} else {
2096 			adapter->int_mode = E1000E_INT_MODE_LEGACY;
2097 			e_err("Failed to initialize MSI interrupts.  Falling back to legacy interrupts.\n");
2098 		}
2099 		/* Fall through */
2100 	case E1000E_INT_MODE_LEGACY:
2101 		/* Don't do anything; this is the system default */
2102 		break;
2103 	}
2104 
2105 	/* store the number of vectors being used */
2106 	adapter->num_vectors = 1;
2107 }
2108 
2109 /**
2110  * e1000_request_msix - Initialize MSI-X interrupts
2111  *
2112  * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2113  * kernel.
2114  **/
2115 static int e1000_request_msix(struct e1000_adapter *adapter)
2116 {
2117 	struct net_device *netdev = adapter->netdev;
2118 	int err = 0, vector = 0;
2119 
2120 	if (strlen(netdev->name) < (IFNAMSIZ - 5))
2121 		snprintf(adapter->rx_ring->name,
2122 			 sizeof(adapter->rx_ring->name) - 1,
2123 			 "%s-rx-0", netdev->name);
2124 	else
2125 		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
2126 	err = request_irq(adapter->msix_entries[vector].vector,
2127 			  e1000_intr_msix_rx, 0, adapter->rx_ring->name,
2128 			  netdev);
2129 	if (err)
2130 		return err;
2131 	adapter->rx_ring->itr_register = adapter->hw.hw_addr +
2132 	    E1000_EITR_82574(vector);
2133 	adapter->rx_ring->itr_val = adapter->itr;
2134 	vector++;
2135 
2136 	if (strlen(netdev->name) < (IFNAMSIZ - 5))
2137 		snprintf(adapter->tx_ring->name,
2138 			 sizeof(adapter->tx_ring->name) - 1,
2139 			 "%s-tx-0", netdev->name);
2140 	else
2141 		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2142 	err = request_irq(adapter->msix_entries[vector].vector,
2143 			  e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2144 			  netdev);
2145 	if (err)
2146 		return err;
2147 	adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2148 	    E1000_EITR_82574(vector);
2149 	adapter->tx_ring->itr_val = adapter->itr;
2150 	vector++;
2151 
2152 	err = request_irq(adapter->msix_entries[vector].vector,
2153 			  e1000_msix_other, 0, netdev->name, netdev);
2154 	if (err)
2155 		return err;
2156 
2157 	e1000_configure_msix(adapter);
2158 
2159 	return 0;
2160 }
2161 
2162 /**
2163  * e1000_request_irq - initialize interrupts
2164  *
2165  * Attempts to configure interrupts using the best available
2166  * capabilities of the hardware and kernel.
2167  **/
2168 static int e1000_request_irq(struct e1000_adapter *adapter)
2169 {
2170 	struct net_device *netdev = adapter->netdev;
2171 	int err;
2172 
2173 	if (adapter->msix_entries) {
2174 		err = e1000_request_msix(adapter);
2175 		if (!err)
2176 			return err;
2177 		/* fall back to MSI */
2178 		e1000e_reset_interrupt_capability(adapter);
2179 		adapter->int_mode = E1000E_INT_MODE_MSI;
2180 		e1000e_set_interrupt_capability(adapter);
2181 	}
2182 	if (adapter->flags & FLAG_MSI_ENABLED) {
2183 		err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2184 				  netdev->name, netdev);
2185 		if (!err)
2186 			return err;
2187 
2188 		/* fall back to legacy interrupt */
2189 		e1000e_reset_interrupt_capability(adapter);
2190 		adapter->int_mode = E1000E_INT_MODE_LEGACY;
2191 	}
2192 
2193 	err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2194 			  netdev->name, netdev);
2195 	if (err)
2196 		e_err("Unable to allocate interrupt, Error: %d\n", err);
2197 
2198 	return err;
2199 }
2200 
2201 static void e1000_free_irq(struct e1000_adapter *adapter)
2202 {
2203 	struct net_device *netdev = adapter->netdev;
2204 
2205 	if (adapter->msix_entries) {
2206 		int vector = 0;
2207 
2208 		free_irq(adapter->msix_entries[vector].vector, netdev);
2209 		vector++;
2210 
2211 		free_irq(adapter->msix_entries[vector].vector, netdev);
2212 		vector++;
2213 
2214 		/* Other Causes interrupt vector */
2215 		free_irq(adapter->msix_entries[vector].vector, netdev);
2216 		return;
2217 	}
2218 
2219 	free_irq(adapter->pdev->irq, netdev);
2220 }
2221 
2222 /**
2223  * e1000_irq_disable - Mask off interrupt generation on the NIC
2224  **/
2225 static void e1000_irq_disable(struct e1000_adapter *adapter)
2226 {
2227 	struct e1000_hw *hw = &adapter->hw;
2228 
2229 	ew32(IMC, ~0);
2230 	if (adapter->msix_entries)
2231 		ew32(EIAC_82574, 0);
2232 	e1e_flush();
2233 
2234 	if (adapter->msix_entries) {
2235 		int i;
2236 
2237 		for (i = 0; i < adapter->num_vectors; i++)
2238 			synchronize_irq(adapter->msix_entries[i].vector);
2239 	} else {
2240 		synchronize_irq(adapter->pdev->irq);
2241 	}
2242 }
2243 
2244 /**
2245  * e1000_irq_enable - Enable default interrupt generation settings
2246  **/
2247 static void e1000_irq_enable(struct e1000_adapter *adapter)
2248 {
2249 	struct e1000_hw *hw = &adapter->hw;
2250 
2251 	if (adapter->msix_entries) {
2252 		ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2253 		ew32(IMS, adapter->eiac_mask | E1000_IMS_LSC);
2254 	} else if ((hw->mac.type == e1000_pch_lpt) ||
2255 		   (hw->mac.type == e1000_pch_spt)) {
2256 		ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER);
2257 	} else {
2258 		ew32(IMS, IMS_ENABLE_MASK);
2259 	}
2260 	e1e_flush();
2261 }
2262 
2263 /**
2264  * e1000e_get_hw_control - get control of the h/w from f/w
2265  * @adapter: address of board private structure
2266  *
2267  * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2268  * For ASF and Pass Through versions of f/w this means that
2269  * the driver is loaded. For AMT version (only with 82573)
2270  * of the f/w this means that the network i/f is open.
2271  **/
2272 void e1000e_get_hw_control(struct e1000_adapter *adapter)
2273 {
2274 	struct e1000_hw *hw = &adapter->hw;
2275 	u32 ctrl_ext;
2276 	u32 swsm;
2277 
2278 	/* Let firmware know the driver has taken over */
2279 	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2280 		swsm = er32(SWSM);
2281 		ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2282 	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2283 		ctrl_ext = er32(CTRL_EXT);
2284 		ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2285 	}
2286 }
2287 
2288 /**
2289  * e1000e_release_hw_control - release control of the h/w to f/w
2290  * @adapter: address of board private structure
2291  *
2292  * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2293  * For ASF and Pass Through versions of f/w this means that the
2294  * driver is no longer loaded. For AMT version (only with 82573) i
2295  * of the f/w this means that the network i/f is closed.
2296  *
2297  **/
2298 void e1000e_release_hw_control(struct e1000_adapter *adapter)
2299 {
2300 	struct e1000_hw *hw = &adapter->hw;
2301 	u32 ctrl_ext;
2302 	u32 swsm;
2303 
2304 	/* Let firmware taken over control of h/w */
2305 	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2306 		swsm = er32(SWSM);
2307 		ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2308 	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2309 		ctrl_ext = er32(CTRL_EXT);
2310 		ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2311 	}
2312 }
2313 
2314 /**
2315  * e1000_alloc_ring_dma - allocate memory for a ring structure
2316  **/
2317 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2318 				struct e1000_ring *ring)
2319 {
2320 	struct pci_dev *pdev = adapter->pdev;
2321 
2322 	ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2323 					GFP_KERNEL);
2324 	if (!ring->desc)
2325 		return -ENOMEM;
2326 
2327 	return 0;
2328 }
2329 
2330 /**
2331  * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2332  * @tx_ring: Tx descriptor ring
2333  *
2334  * Return 0 on success, negative on failure
2335  **/
2336 int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2337 {
2338 	struct e1000_adapter *adapter = tx_ring->adapter;
2339 	int err = -ENOMEM, size;
2340 
2341 	size = sizeof(struct e1000_buffer) * tx_ring->count;
2342 	tx_ring->buffer_info = vzalloc(size);
2343 	if (!tx_ring->buffer_info)
2344 		goto err;
2345 
2346 	/* round up to nearest 4K */
2347 	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2348 	tx_ring->size = ALIGN(tx_ring->size, 4096);
2349 
2350 	err = e1000_alloc_ring_dma(adapter, tx_ring);
2351 	if (err)
2352 		goto err;
2353 
2354 	tx_ring->next_to_use = 0;
2355 	tx_ring->next_to_clean = 0;
2356 
2357 	return 0;
2358 err:
2359 	vfree(tx_ring->buffer_info);
2360 	e_err("Unable to allocate memory for the transmit descriptor ring\n");
2361 	return err;
2362 }
2363 
2364 /**
2365  * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2366  * @rx_ring: Rx descriptor ring
2367  *
2368  * Returns 0 on success, negative on failure
2369  **/
2370 int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2371 {
2372 	struct e1000_adapter *adapter = rx_ring->adapter;
2373 	struct e1000_buffer *buffer_info;
2374 	int i, size, desc_len, err = -ENOMEM;
2375 
2376 	size = sizeof(struct e1000_buffer) * rx_ring->count;
2377 	rx_ring->buffer_info = vzalloc(size);
2378 	if (!rx_ring->buffer_info)
2379 		goto err;
2380 
2381 	for (i = 0; i < rx_ring->count; i++) {
2382 		buffer_info = &rx_ring->buffer_info[i];
2383 		buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2384 						sizeof(struct e1000_ps_page),
2385 						GFP_KERNEL);
2386 		if (!buffer_info->ps_pages)
2387 			goto err_pages;
2388 	}
2389 
2390 	desc_len = sizeof(union e1000_rx_desc_packet_split);
2391 
2392 	/* Round up to nearest 4K */
2393 	rx_ring->size = rx_ring->count * desc_len;
2394 	rx_ring->size = ALIGN(rx_ring->size, 4096);
2395 
2396 	err = e1000_alloc_ring_dma(adapter, rx_ring);
2397 	if (err)
2398 		goto err_pages;
2399 
2400 	rx_ring->next_to_clean = 0;
2401 	rx_ring->next_to_use = 0;
2402 	rx_ring->rx_skb_top = NULL;
2403 
2404 	return 0;
2405 
2406 err_pages:
2407 	for (i = 0; i < rx_ring->count; i++) {
2408 		buffer_info = &rx_ring->buffer_info[i];
2409 		kfree(buffer_info->ps_pages);
2410 	}
2411 err:
2412 	vfree(rx_ring->buffer_info);
2413 	e_err("Unable to allocate memory for the receive descriptor ring\n");
2414 	return err;
2415 }
2416 
2417 /**
2418  * e1000_clean_tx_ring - Free Tx Buffers
2419  * @tx_ring: Tx descriptor ring
2420  **/
2421 static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2422 {
2423 	struct e1000_adapter *adapter = tx_ring->adapter;
2424 	struct e1000_buffer *buffer_info;
2425 	unsigned long size;
2426 	unsigned int i;
2427 
2428 	for (i = 0; i < tx_ring->count; i++) {
2429 		buffer_info = &tx_ring->buffer_info[i];
2430 		e1000_put_txbuf(tx_ring, buffer_info);
2431 	}
2432 
2433 	netdev_reset_queue(adapter->netdev);
2434 	size = sizeof(struct e1000_buffer) * tx_ring->count;
2435 	memset(tx_ring->buffer_info, 0, size);
2436 
2437 	memset(tx_ring->desc, 0, tx_ring->size);
2438 
2439 	tx_ring->next_to_use = 0;
2440 	tx_ring->next_to_clean = 0;
2441 }
2442 
2443 /**
2444  * e1000e_free_tx_resources - Free Tx Resources per Queue
2445  * @tx_ring: Tx descriptor ring
2446  *
2447  * Free all transmit software resources
2448  **/
2449 void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2450 {
2451 	struct e1000_adapter *adapter = tx_ring->adapter;
2452 	struct pci_dev *pdev = adapter->pdev;
2453 
2454 	e1000_clean_tx_ring(tx_ring);
2455 
2456 	vfree(tx_ring->buffer_info);
2457 	tx_ring->buffer_info = NULL;
2458 
2459 	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2460 			  tx_ring->dma);
2461 	tx_ring->desc = NULL;
2462 }
2463 
2464 /**
2465  * e1000e_free_rx_resources - Free Rx Resources
2466  * @rx_ring: Rx descriptor ring
2467  *
2468  * Free all receive software resources
2469  **/
2470 void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2471 {
2472 	struct e1000_adapter *adapter = rx_ring->adapter;
2473 	struct pci_dev *pdev = adapter->pdev;
2474 	int i;
2475 
2476 	e1000_clean_rx_ring(rx_ring);
2477 
2478 	for (i = 0; i < rx_ring->count; i++)
2479 		kfree(rx_ring->buffer_info[i].ps_pages);
2480 
2481 	vfree(rx_ring->buffer_info);
2482 	rx_ring->buffer_info = NULL;
2483 
2484 	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2485 			  rx_ring->dma);
2486 	rx_ring->desc = NULL;
2487 }
2488 
2489 /**
2490  * e1000_update_itr - update the dynamic ITR value based on statistics
2491  * @adapter: pointer to adapter
2492  * @itr_setting: current adapter->itr
2493  * @packets: the number of packets during this measurement interval
2494  * @bytes: the number of bytes during this measurement interval
2495  *
2496  *      Stores a new ITR value based on packets and byte
2497  *      counts during the last interrupt.  The advantage of per interrupt
2498  *      computation is faster updates and more accurate ITR for the current
2499  *      traffic pattern.  Constants in this function were computed
2500  *      based on theoretical maximum wire speed and thresholds were set based
2501  *      on testing data as well as attempting to minimize response time
2502  *      while increasing bulk throughput.  This functionality is controlled
2503  *      by the InterruptThrottleRate module parameter.
2504  **/
2505 static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes)
2506 {
2507 	unsigned int retval = itr_setting;
2508 
2509 	if (packets == 0)
2510 		return itr_setting;
2511 
2512 	switch (itr_setting) {
2513 	case lowest_latency:
2514 		/* handle TSO and jumbo frames */
2515 		if (bytes / packets > 8000)
2516 			retval = bulk_latency;
2517 		else if ((packets < 5) && (bytes > 512))
2518 			retval = low_latency;
2519 		break;
2520 	case low_latency:	/* 50 usec aka 20000 ints/s */
2521 		if (bytes > 10000) {
2522 			/* this if handles the TSO accounting */
2523 			if (bytes / packets > 8000)
2524 				retval = bulk_latency;
2525 			else if ((packets < 10) || ((bytes / packets) > 1200))
2526 				retval = bulk_latency;
2527 			else if ((packets > 35))
2528 				retval = lowest_latency;
2529 		} else if (bytes / packets > 2000) {
2530 			retval = bulk_latency;
2531 		} else if (packets <= 2 && bytes < 512) {
2532 			retval = lowest_latency;
2533 		}
2534 		break;
2535 	case bulk_latency:	/* 250 usec aka 4000 ints/s */
2536 		if (bytes > 25000) {
2537 			if (packets > 35)
2538 				retval = low_latency;
2539 		} else if (bytes < 6000) {
2540 			retval = low_latency;
2541 		}
2542 		break;
2543 	}
2544 
2545 	return retval;
2546 }
2547 
2548 static void e1000_set_itr(struct e1000_adapter *adapter)
2549 {
2550 	u16 current_itr;
2551 	u32 new_itr = adapter->itr;
2552 
2553 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2554 	if (adapter->link_speed != SPEED_1000) {
2555 		current_itr = 0;
2556 		new_itr = 4000;
2557 		goto set_itr_now;
2558 	}
2559 
2560 	if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2561 		new_itr = 0;
2562 		goto set_itr_now;
2563 	}
2564 
2565 	adapter->tx_itr = e1000_update_itr(adapter->tx_itr,
2566 					   adapter->total_tx_packets,
2567 					   adapter->total_tx_bytes);
2568 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2569 	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2570 		adapter->tx_itr = low_latency;
2571 
2572 	adapter->rx_itr = e1000_update_itr(adapter->rx_itr,
2573 					   adapter->total_rx_packets,
2574 					   adapter->total_rx_bytes);
2575 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2576 	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2577 		adapter->rx_itr = low_latency;
2578 
2579 	current_itr = max(adapter->rx_itr, adapter->tx_itr);
2580 
2581 	/* counts and packets in update_itr are dependent on these numbers */
2582 	switch (current_itr) {
2583 	case lowest_latency:
2584 		new_itr = 70000;
2585 		break;
2586 	case low_latency:
2587 		new_itr = 20000;	/* aka hwitr = ~200 */
2588 		break;
2589 	case bulk_latency:
2590 		new_itr = 4000;
2591 		break;
2592 	default:
2593 		break;
2594 	}
2595 
2596 set_itr_now:
2597 	if (new_itr != adapter->itr) {
2598 		/* this attempts to bias the interrupt rate towards Bulk
2599 		 * by adding intermediate steps when interrupt rate is
2600 		 * increasing
2601 		 */
2602 		new_itr = new_itr > adapter->itr ?
2603 		    min(adapter->itr + (new_itr >> 2), new_itr) : new_itr;
2604 		adapter->itr = new_itr;
2605 		adapter->rx_ring->itr_val = new_itr;
2606 		if (adapter->msix_entries)
2607 			adapter->rx_ring->set_itr = 1;
2608 		else
2609 			e1000e_write_itr(adapter, new_itr);
2610 	}
2611 }
2612 
2613 /**
2614  * e1000e_write_itr - write the ITR value to the appropriate registers
2615  * @adapter: address of board private structure
2616  * @itr: new ITR value to program
2617  *
2618  * e1000e_write_itr determines if the adapter is in MSI-X mode
2619  * and, if so, writes the EITR registers with the ITR value.
2620  * Otherwise, it writes the ITR value into the ITR register.
2621  **/
2622 void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
2623 {
2624 	struct e1000_hw *hw = &adapter->hw;
2625 	u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
2626 
2627 	if (adapter->msix_entries) {
2628 		int vector;
2629 
2630 		for (vector = 0; vector < adapter->num_vectors; vector++)
2631 			writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
2632 	} else {
2633 		ew32(ITR, new_itr);
2634 	}
2635 }
2636 
2637 /**
2638  * e1000_alloc_queues - Allocate memory for all rings
2639  * @adapter: board private structure to initialize
2640  **/
2641 static int e1000_alloc_queues(struct e1000_adapter *adapter)
2642 {
2643 	int size = sizeof(struct e1000_ring);
2644 
2645 	adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2646 	if (!adapter->tx_ring)
2647 		goto err;
2648 	adapter->tx_ring->count = adapter->tx_ring_count;
2649 	adapter->tx_ring->adapter = adapter;
2650 
2651 	adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2652 	if (!adapter->rx_ring)
2653 		goto err;
2654 	adapter->rx_ring->count = adapter->rx_ring_count;
2655 	adapter->rx_ring->adapter = adapter;
2656 
2657 	return 0;
2658 err:
2659 	e_err("Unable to allocate memory for queues\n");
2660 	kfree(adapter->rx_ring);
2661 	kfree(adapter->tx_ring);
2662 	return -ENOMEM;
2663 }
2664 
2665 /**
2666  * e1000e_poll - NAPI Rx polling callback
2667  * @napi: struct associated with this polling callback
2668  * @weight: number of packets driver is allowed to process this poll
2669  **/
2670 static int e1000e_poll(struct napi_struct *napi, int weight)
2671 {
2672 	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2673 						     napi);
2674 	struct e1000_hw *hw = &adapter->hw;
2675 	struct net_device *poll_dev = adapter->netdev;
2676 	int tx_cleaned = 1, work_done = 0;
2677 
2678 	adapter = netdev_priv(poll_dev);
2679 
2680 	if (!adapter->msix_entries ||
2681 	    (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2682 		tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2683 
2684 	adapter->clean_rx(adapter->rx_ring, &work_done, weight);
2685 
2686 	if (!tx_cleaned)
2687 		work_done = weight;
2688 
2689 	/* If weight not fully consumed, exit the polling mode */
2690 	if (work_done < weight) {
2691 		if (adapter->itr_setting & 3)
2692 			e1000_set_itr(adapter);
2693 		napi_complete_done(napi, work_done);
2694 		if (!test_bit(__E1000_DOWN, &adapter->state)) {
2695 			if (adapter->msix_entries)
2696 				ew32(IMS, adapter->rx_ring->ims_val);
2697 			else
2698 				e1000_irq_enable(adapter);
2699 		}
2700 	}
2701 
2702 	return work_done;
2703 }
2704 
2705 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
2706 				 __always_unused __be16 proto, u16 vid)
2707 {
2708 	struct e1000_adapter *adapter = netdev_priv(netdev);
2709 	struct e1000_hw *hw = &adapter->hw;
2710 	u32 vfta, index;
2711 
2712 	/* don't update vlan cookie if already programmed */
2713 	if ((adapter->hw.mng_cookie.status &
2714 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2715 	    (vid == adapter->mng_vlan_id))
2716 		return 0;
2717 
2718 	/* add VID to filter table */
2719 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2720 		index = (vid >> 5) & 0x7F;
2721 		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2722 		vfta |= BIT((vid & 0x1F));
2723 		hw->mac.ops.write_vfta(hw, index, vfta);
2724 	}
2725 
2726 	set_bit(vid, adapter->active_vlans);
2727 
2728 	return 0;
2729 }
2730 
2731 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
2732 				  __always_unused __be16 proto, u16 vid)
2733 {
2734 	struct e1000_adapter *adapter = netdev_priv(netdev);
2735 	struct e1000_hw *hw = &adapter->hw;
2736 	u32 vfta, index;
2737 
2738 	if ((adapter->hw.mng_cookie.status &
2739 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2740 	    (vid == adapter->mng_vlan_id)) {
2741 		/* release control to f/w */
2742 		e1000e_release_hw_control(adapter);
2743 		return 0;
2744 	}
2745 
2746 	/* remove VID from filter table */
2747 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2748 		index = (vid >> 5) & 0x7F;
2749 		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2750 		vfta &= ~BIT((vid & 0x1F));
2751 		hw->mac.ops.write_vfta(hw, index, vfta);
2752 	}
2753 
2754 	clear_bit(vid, adapter->active_vlans);
2755 
2756 	return 0;
2757 }
2758 
2759 /**
2760  * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2761  * @adapter: board private structure to initialize
2762  **/
2763 static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2764 {
2765 	struct net_device *netdev = adapter->netdev;
2766 	struct e1000_hw *hw = &adapter->hw;
2767 	u32 rctl;
2768 
2769 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2770 		/* disable VLAN receive filtering */
2771 		rctl = er32(RCTL);
2772 		rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2773 		ew32(RCTL, rctl);
2774 
2775 		if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2776 			e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
2777 					       adapter->mng_vlan_id);
2778 			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2779 		}
2780 	}
2781 }
2782 
2783 /**
2784  * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2785  * @adapter: board private structure to initialize
2786  **/
2787 static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2788 {
2789 	struct e1000_hw *hw = &adapter->hw;
2790 	u32 rctl;
2791 
2792 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2793 		/* enable VLAN receive filtering */
2794 		rctl = er32(RCTL);
2795 		rctl |= E1000_RCTL_VFE;
2796 		rctl &= ~E1000_RCTL_CFIEN;
2797 		ew32(RCTL, rctl);
2798 	}
2799 }
2800 
2801 /**
2802  * e1000e_vlan_strip_disable - helper to disable HW VLAN stripping
2803  * @adapter: board private structure to initialize
2804  **/
2805 static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2806 {
2807 	struct e1000_hw *hw = &adapter->hw;
2808 	u32 ctrl;
2809 
2810 	/* disable VLAN tag insert/strip */
2811 	ctrl = er32(CTRL);
2812 	ctrl &= ~E1000_CTRL_VME;
2813 	ew32(CTRL, ctrl);
2814 }
2815 
2816 /**
2817  * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2818  * @adapter: board private structure to initialize
2819  **/
2820 static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2821 {
2822 	struct e1000_hw *hw = &adapter->hw;
2823 	u32 ctrl;
2824 
2825 	/* enable VLAN tag insert/strip */
2826 	ctrl = er32(CTRL);
2827 	ctrl |= E1000_CTRL_VME;
2828 	ew32(CTRL, ctrl);
2829 }
2830 
2831 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2832 {
2833 	struct net_device *netdev = adapter->netdev;
2834 	u16 vid = adapter->hw.mng_cookie.vlan_id;
2835 	u16 old_vid = adapter->mng_vlan_id;
2836 
2837 	if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2838 		e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
2839 		adapter->mng_vlan_id = vid;
2840 	}
2841 
2842 	if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2843 		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid);
2844 }
2845 
2846 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2847 {
2848 	u16 vid;
2849 
2850 	e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
2851 
2852 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2853 	    e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
2854 }
2855 
2856 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2857 {
2858 	struct e1000_hw *hw = &adapter->hw;
2859 	u32 manc, manc2h, mdef, i, j;
2860 
2861 	if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2862 		return;
2863 
2864 	manc = er32(MANC);
2865 
2866 	/* enable receiving management packets to the host. this will probably
2867 	 * generate destination unreachable messages from the host OS, but
2868 	 * the packets will be handled on SMBUS
2869 	 */
2870 	manc |= E1000_MANC_EN_MNG2HOST;
2871 	manc2h = er32(MANC2H);
2872 
2873 	switch (hw->mac.type) {
2874 	default:
2875 		manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2876 		break;
2877 	case e1000_82574:
2878 	case e1000_82583:
2879 		/* Check if IPMI pass-through decision filter already exists;
2880 		 * if so, enable it.
2881 		 */
2882 		for (i = 0, j = 0; i < 8; i++) {
2883 			mdef = er32(MDEF(i));
2884 
2885 			/* Ignore filters with anything other than IPMI ports */
2886 			if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2887 				continue;
2888 
2889 			/* Enable this decision filter in MANC2H */
2890 			if (mdef)
2891 				manc2h |= BIT(i);
2892 
2893 			j |= mdef;
2894 		}
2895 
2896 		if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2897 			break;
2898 
2899 		/* Create new decision filter in an empty filter */
2900 		for (i = 0, j = 0; i < 8; i++)
2901 			if (er32(MDEF(i)) == 0) {
2902 				ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2903 					       E1000_MDEF_PORT_664));
2904 				manc2h |= BIT(1);
2905 				j++;
2906 				break;
2907 			}
2908 
2909 		if (!j)
2910 			e_warn("Unable to create IPMI pass-through filter\n");
2911 		break;
2912 	}
2913 
2914 	ew32(MANC2H, manc2h);
2915 	ew32(MANC, manc);
2916 }
2917 
2918 /**
2919  * e1000_configure_tx - Configure Transmit Unit after Reset
2920  * @adapter: board private structure
2921  *
2922  * Configure the Tx unit of the MAC after a reset.
2923  **/
2924 static void e1000_configure_tx(struct e1000_adapter *adapter)
2925 {
2926 	struct e1000_hw *hw = &adapter->hw;
2927 	struct e1000_ring *tx_ring = adapter->tx_ring;
2928 	u64 tdba;
2929 	u32 tdlen, tctl, tarc;
2930 
2931 	/* Setup the HW Tx Head and Tail descriptor pointers */
2932 	tdba = tx_ring->dma;
2933 	tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2934 	ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2935 	ew32(TDBAH(0), (tdba >> 32));
2936 	ew32(TDLEN(0), tdlen);
2937 	ew32(TDH(0), 0);
2938 	ew32(TDT(0), 0);
2939 	tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2940 	tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2941 
2942 	writel(0, tx_ring->head);
2943 	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2944 		e1000e_update_tdt_wa(tx_ring, 0);
2945 	else
2946 		writel(0, tx_ring->tail);
2947 
2948 	/* Set the Tx Interrupt Delay register */
2949 	ew32(TIDV, adapter->tx_int_delay);
2950 	/* Tx irq moderation */
2951 	ew32(TADV, adapter->tx_abs_int_delay);
2952 
2953 	if (adapter->flags2 & FLAG2_DMA_BURST) {
2954 		u32 txdctl = er32(TXDCTL(0));
2955 
2956 		txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2957 			    E1000_TXDCTL_WTHRESH);
2958 		/* set up some performance related parameters to encourage the
2959 		 * hardware to use the bus more efficiently in bursts, depends
2960 		 * on the tx_int_delay to be enabled,
2961 		 * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2962 		 * hthresh = 1 ==> prefetch when one or more available
2963 		 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2964 		 * BEWARE: this seems to work but should be considered first if
2965 		 * there are Tx hangs or other Tx related bugs
2966 		 */
2967 		txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2968 		ew32(TXDCTL(0), txdctl);
2969 	}
2970 	/* erratum work around: set txdctl the same for both queues */
2971 	ew32(TXDCTL(1), er32(TXDCTL(0)));
2972 
2973 	/* Program the Transmit Control Register */
2974 	tctl = er32(TCTL);
2975 	tctl &= ~E1000_TCTL_CT;
2976 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2977 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2978 
2979 	if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2980 		tarc = er32(TARC(0));
2981 		/* set the speed mode bit, we'll clear it if we're not at
2982 		 * gigabit link later
2983 		 */
2984 #define SPEED_MODE_BIT BIT(21)
2985 		tarc |= SPEED_MODE_BIT;
2986 		ew32(TARC(0), tarc);
2987 	}
2988 
2989 	/* errata: program both queues to unweighted RR */
2990 	if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2991 		tarc = er32(TARC(0));
2992 		tarc |= 1;
2993 		ew32(TARC(0), tarc);
2994 		tarc = er32(TARC(1));
2995 		tarc |= 1;
2996 		ew32(TARC(1), tarc);
2997 	}
2998 
2999 	/* Setup Transmit Descriptor Settings for eop descriptor */
3000 	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
3001 
3002 	/* only set IDE if we are delaying interrupts using the timers */
3003 	if (adapter->tx_int_delay)
3004 		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
3005 
3006 	/* enable Report Status bit */
3007 	adapter->txd_cmd |= E1000_TXD_CMD_RS;
3008 
3009 	ew32(TCTL, tctl);
3010 
3011 	hw->mac.ops.config_collision_dist(hw);
3012 
3013 	/* SPT Si errata workaround to avoid data corruption */
3014 	if (hw->mac.type == e1000_pch_spt) {
3015 		u32 reg_val;
3016 
3017 		reg_val = er32(IOSFPC);
3018 		reg_val |= E1000_RCTL_RDMTS_HEX;
3019 		ew32(IOSFPC, reg_val);
3020 
3021 		reg_val = er32(TARC(0));
3022 		reg_val |= E1000_TARC0_CB_MULTIQ_3_REQ;
3023 		ew32(TARC(0), reg_val);
3024 	}
3025 }
3026 
3027 /**
3028  * e1000_setup_rctl - configure the receive control registers
3029  * @adapter: Board private structure
3030  **/
3031 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
3032 			   (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
3033 static void e1000_setup_rctl(struct e1000_adapter *adapter)
3034 {
3035 	struct e1000_hw *hw = &adapter->hw;
3036 	u32 rctl, rfctl;
3037 	u32 pages = 0;
3038 
3039 	/* Workaround Si errata on PCHx - configure jumbo frame flow.
3040 	 * If jumbo frames not set, program related MAC/PHY registers
3041 	 * to h/w defaults
3042 	 */
3043 	if (hw->mac.type >= e1000_pch2lan) {
3044 		s32 ret_val;
3045 
3046 		if (adapter->netdev->mtu > ETH_DATA_LEN)
3047 			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
3048 		else
3049 			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
3050 
3051 		if (ret_val)
3052 			e_dbg("failed to enable|disable jumbo frame workaround mode\n");
3053 	}
3054 
3055 	/* Program MC offset vector base */
3056 	rctl = er32(RCTL);
3057 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3058 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3059 	    E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3060 	    (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3061 
3062 	/* Do not Store bad packets */
3063 	rctl &= ~E1000_RCTL_SBP;
3064 
3065 	/* Enable Long Packet receive */
3066 	if (adapter->netdev->mtu <= ETH_DATA_LEN)
3067 		rctl &= ~E1000_RCTL_LPE;
3068 	else
3069 		rctl |= E1000_RCTL_LPE;
3070 
3071 	/* Some systems expect that the CRC is included in SMBUS traffic. The
3072 	 * hardware strips the CRC before sending to both SMBUS (BMC) and to
3073 	 * host memory when this is enabled
3074 	 */
3075 	if (adapter->flags2 & FLAG2_CRC_STRIPPING)
3076 		rctl |= E1000_RCTL_SECRC;
3077 
3078 	/* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3079 	if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
3080 		u16 phy_data;
3081 
3082 		e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
3083 		phy_data &= 0xfff8;
3084 		phy_data |= BIT(2);
3085 		e1e_wphy(hw, PHY_REG(770, 26), phy_data);
3086 
3087 		e1e_rphy(hw, 22, &phy_data);
3088 		phy_data &= 0x0fff;
3089 		phy_data |= BIT(14);
3090 		e1e_wphy(hw, 0x10, 0x2823);
3091 		e1e_wphy(hw, 0x11, 0x0003);
3092 		e1e_wphy(hw, 22, phy_data);
3093 	}
3094 
3095 	/* Setup buffer sizes */
3096 	rctl &= ~E1000_RCTL_SZ_4096;
3097 	rctl |= E1000_RCTL_BSEX;
3098 	switch (adapter->rx_buffer_len) {
3099 	case 2048:
3100 	default:
3101 		rctl |= E1000_RCTL_SZ_2048;
3102 		rctl &= ~E1000_RCTL_BSEX;
3103 		break;
3104 	case 4096:
3105 		rctl |= E1000_RCTL_SZ_4096;
3106 		break;
3107 	case 8192:
3108 		rctl |= E1000_RCTL_SZ_8192;
3109 		break;
3110 	case 16384:
3111 		rctl |= E1000_RCTL_SZ_16384;
3112 		break;
3113 	}
3114 
3115 	/* Enable Extended Status in all Receive Descriptors */
3116 	rfctl = er32(RFCTL);
3117 	rfctl |= E1000_RFCTL_EXTEN;
3118 	ew32(RFCTL, rfctl);
3119 
3120 	/* 82571 and greater support packet-split where the protocol
3121 	 * header is placed in skb->data and the packet data is
3122 	 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3123 	 * In the case of a non-split, skb->data is linearly filled,
3124 	 * followed by the page buffers.  Therefore, skb->data is
3125 	 * sized to hold the largest protocol header.
3126 	 *
3127 	 * allocations using alloc_page take too long for regular MTU
3128 	 * so only enable packet split for jumbo frames
3129 	 *
3130 	 * Using pages when the page size is greater than 16k wastes
3131 	 * a lot of memory, since we allocate 3 pages at all times
3132 	 * per packet.
3133 	 */
3134 	pages = PAGE_USE_COUNT(adapter->netdev->mtu);
3135 	if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
3136 		adapter->rx_ps_pages = pages;
3137 	else
3138 		adapter->rx_ps_pages = 0;
3139 
3140 	if (adapter->rx_ps_pages) {
3141 		u32 psrctl = 0;
3142 
3143 		/* Enable Packet split descriptors */
3144 		rctl |= E1000_RCTL_DTYP_PS;
3145 
3146 		psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT;
3147 
3148 		switch (adapter->rx_ps_pages) {
3149 		case 3:
3150 			psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT;
3151 			/* fall-through */
3152 		case 2:
3153 			psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT;
3154 			/* fall-through */
3155 		case 1:
3156 			psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT;
3157 			break;
3158 		}
3159 
3160 		ew32(PSRCTL, psrctl);
3161 	}
3162 
3163 	/* This is useful for sniffing bad packets. */
3164 	if (adapter->netdev->features & NETIF_F_RXALL) {
3165 		/* UPE and MPE will be handled by normal PROMISC logic
3166 		 * in e1000e_set_rx_mode
3167 		 */
3168 		rctl |= (E1000_RCTL_SBP |	/* Receive bad packets */
3169 			 E1000_RCTL_BAM |	/* RX All Bcast Pkts */
3170 			 E1000_RCTL_PMCF);	/* RX All MAC Ctrl Pkts */
3171 
3172 		rctl &= ~(E1000_RCTL_VFE |	/* Disable VLAN filter */
3173 			  E1000_RCTL_DPF |	/* Allow filtered pause */
3174 			  E1000_RCTL_CFIEN);	/* Dis VLAN CFIEN Filter */
3175 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3176 		 * and that breaks VLANs.
3177 		 */
3178 	}
3179 
3180 	ew32(RCTL, rctl);
3181 	/* just started the receive unit, no need to restart */
3182 	adapter->flags &= ~FLAG_RESTART_NOW;
3183 }
3184 
3185 /**
3186  * e1000_configure_rx - Configure Receive Unit after Reset
3187  * @adapter: board private structure
3188  *
3189  * Configure the Rx unit of the MAC after a reset.
3190  **/
3191 static void e1000_configure_rx(struct e1000_adapter *adapter)
3192 {
3193 	struct e1000_hw *hw = &adapter->hw;
3194 	struct e1000_ring *rx_ring = adapter->rx_ring;
3195 	u64 rdba;
3196 	u32 rdlen, rctl, rxcsum, ctrl_ext;
3197 
3198 	if (adapter->rx_ps_pages) {
3199 		/* this is a 32 byte descriptor */
3200 		rdlen = rx_ring->count *
3201 		    sizeof(union e1000_rx_desc_packet_split);
3202 		adapter->clean_rx = e1000_clean_rx_irq_ps;
3203 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3204 	} else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3205 		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3206 		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3207 		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3208 	} else {
3209 		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3210 		adapter->clean_rx = e1000_clean_rx_irq;
3211 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3212 	}
3213 
3214 	/* disable receives while setting up the descriptors */
3215 	rctl = er32(RCTL);
3216 	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3217 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
3218 	e1e_flush();
3219 	usleep_range(10000, 20000);
3220 
3221 	if (adapter->flags2 & FLAG2_DMA_BURST) {
3222 		/* set the writeback threshold (only takes effect if the RDTR
3223 		 * is set). set GRAN=1 and write back up to 0x4 worth, and
3224 		 * enable prefetching of 0x20 Rx descriptors
3225 		 * granularity = 01
3226 		 * wthresh = 04,
3227 		 * hthresh = 04,
3228 		 * pthresh = 0x20
3229 		 */
3230 		ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3231 		ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3232 
3233 		/* override the delay timers for enabling bursting, only if
3234 		 * the value was not set by the user via module options
3235 		 */
3236 		if (adapter->rx_int_delay == DEFAULT_RDTR)
3237 			adapter->rx_int_delay = BURST_RDTR;
3238 		if (adapter->rx_abs_int_delay == DEFAULT_RADV)
3239 			adapter->rx_abs_int_delay = BURST_RADV;
3240 	}
3241 
3242 	/* set the Receive Delay Timer Register */
3243 	ew32(RDTR, adapter->rx_int_delay);
3244 
3245 	/* irq moderation */
3246 	ew32(RADV, adapter->rx_abs_int_delay);
3247 	if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3248 		e1000e_write_itr(adapter, adapter->itr);
3249 
3250 	ctrl_ext = er32(CTRL_EXT);
3251 	/* Auto-Mask interrupts upon ICR access */
3252 	ctrl_ext |= E1000_CTRL_EXT_IAME;
3253 	ew32(IAM, 0xffffffff);
3254 	ew32(CTRL_EXT, ctrl_ext);
3255 	e1e_flush();
3256 
3257 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
3258 	 * the Base and Length of the Rx Descriptor Ring
3259 	 */
3260 	rdba = rx_ring->dma;
3261 	ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3262 	ew32(RDBAH(0), (rdba >> 32));
3263 	ew32(RDLEN(0), rdlen);
3264 	ew32(RDH(0), 0);
3265 	ew32(RDT(0), 0);
3266 	rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3267 	rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3268 
3269 	writel(0, rx_ring->head);
3270 	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
3271 		e1000e_update_rdt_wa(rx_ring, 0);
3272 	else
3273 		writel(0, rx_ring->tail);
3274 
3275 	/* Enable Receive Checksum Offload for TCP and UDP */
3276 	rxcsum = er32(RXCSUM);
3277 	if (adapter->netdev->features & NETIF_F_RXCSUM)
3278 		rxcsum |= E1000_RXCSUM_TUOFL;
3279 	else
3280 		rxcsum &= ~E1000_RXCSUM_TUOFL;
3281 	ew32(RXCSUM, rxcsum);
3282 
3283 	/* With jumbo frames, excessive C-state transition latencies result
3284 	 * in dropped transactions.
3285 	 */
3286 	if (adapter->netdev->mtu > ETH_DATA_LEN) {
3287 		u32 lat =
3288 		    ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 -
3289 		     adapter->max_frame_size) * 8 / 1000;
3290 
3291 		if (adapter->flags & FLAG_IS_ICH) {
3292 			u32 rxdctl = er32(RXDCTL(0));
3293 
3294 			ew32(RXDCTL(0), rxdctl | 0x3);
3295 		}
3296 
3297 		pm_qos_update_request(&adapter->pm_qos_req, lat);
3298 	} else {
3299 		pm_qos_update_request(&adapter->pm_qos_req,
3300 				      PM_QOS_DEFAULT_VALUE);
3301 	}
3302 
3303 	/* Enable Receives */
3304 	ew32(RCTL, rctl);
3305 }
3306 
3307 /**
3308  * e1000e_write_mc_addr_list - write multicast addresses to MTA
3309  * @netdev: network interface device structure
3310  *
3311  * Writes multicast address list to the MTA hash table.
3312  * Returns: -ENOMEM on failure
3313  *                0 on no addresses written
3314  *                X on writing X addresses to MTA
3315  */
3316 static int e1000e_write_mc_addr_list(struct net_device *netdev)
3317 {
3318 	struct e1000_adapter *adapter = netdev_priv(netdev);
3319 	struct e1000_hw *hw = &adapter->hw;
3320 	struct netdev_hw_addr *ha;
3321 	u8 *mta_list;
3322 	int i;
3323 
3324 	if (netdev_mc_empty(netdev)) {
3325 		/* nothing to program, so clear mc list */
3326 		hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3327 		return 0;
3328 	}
3329 
3330 	mta_list = kzalloc(netdev_mc_count(netdev) * ETH_ALEN, GFP_ATOMIC);
3331 	if (!mta_list)
3332 		return -ENOMEM;
3333 
3334 	/* update_mc_addr_list expects a packed array of only addresses. */
3335 	i = 0;
3336 	netdev_for_each_mc_addr(ha, netdev)
3337 	    memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3338 
3339 	hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3340 	kfree(mta_list);
3341 
3342 	return netdev_mc_count(netdev);
3343 }
3344 
3345 /**
3346  * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3347  * @netdev: network interface device structure
3348  *
3349  * Writes unicast address list to the RAR table.
3350  * Returns: -ENOMEM on failure/insufficient address space
3351  *                0 on no addresses written
3352  *                X on writing X addresses to the RAR table
3353  **/
3354 static int e1000e_write_uc_addr_list(struct net_device *netdev)
3355 {
3356 	struct e1000_adapter *adapter = netdev_priv(netdev);
3357 	struct e1000_hw *hw = &adapter->hw;
3358 	unsigned int rar_entries;
3359 	int count = 0;
3360 
3361 	rar_entries = hw->mac.ops.rar_get_count(hw);
3362 
3363 	/* save a rar entry for our hardware address */
3364 	rar_entries--;
3365 
3366 	/* save a rar entry for the LAA workaround */
3367 	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3368 		rar_entries--;
3369 
3370 	/* return ENOMEM indicating insufficient memory for addresses */
3371 	if (netdev_uc_count(netdev) > rar_entries)
3372 		return -ENOMEM;
3373 
3374 	if (!netdev_uc_empty(netdev) && rar_entries) {
3375 		struct netdev_hw_addr *ha;
3376 
3377 		/* write the addresses in reverse order to avoid write
3378 		 * combining
3379 		 */
3380 		netdev_for_each_uc_addr(ha, netdev) {
3381 			int ret_val;
3382 
3383 			if (!rar_entries)
3384 				break;
3385 			ret_val = hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3386 			if (ret_val < 0)
3387 				return -ENOMEM;
3388 			count++;
3389 		}
3390 	}
3391 
3392 	/* zero out the remaining RAR entries not used above */
3393 	for (; rar_entries > 0; rar_entries--) {
3394 		ew32(RAH(rar_entries), 0);
3395 		ew32(RAL(rar_entries), 0);
3396 	}
3397 	e1e_flush();
3398 
3399 	return count;
3400 }
3401 
3402 /**
3403  * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3404  * @netdev: network interface device structure
3405  *
3406  * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3407  * address list or the network interface flags are updated.  This routine is
3408  * responsible for configuring the hardware for proper unicast, multicast,
3409  * promiscuous mode, and all-multi behavior.
3410  **/
3411 static void e1000e_set_rx_mode(struct net_device *netdev)
3412 {
3413 	struct e1000_adapter *adapter = netdev_priv(netdev);
3414 	struct e1000_hw *hw = &adapter->hw;
3415 	u32 rctl;
3416 
3417 	if (pm_runtime_suspended(netdev->dev.parent))
3418 		return;
3419 
3420 	/* Check for Promiscuous and All Multicast modes */
3421 	rctl = er32(RCTL);
3422 
3423 	/* clear the affected bits */
3424 	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3425 
3426 	if (netdev->flags & IFF_PROMISC) {
3427 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3428 		/* Do not hardware filter VLANs in promisc mode */
3429 		e1000e_vlan_filter_disable(adapter);
3430 	} else {
3431 		int count;
3432 
3433 		if (netdev->flags & IFF_ALLMULTI) {
3434 			rctl |= E1000_RCTL_MPE;
3435 		} else {
3436 			/* Write addresses to the MTA, if the attempt fails
3437 			 * then we should just turn on promiscuous mode so
3438 			 * that we can at least receive multicast traffic
3439 			 */
3440 			count = e1000e_write_mc_addr_list(netdev);
3441 			if (count < 0)
3442 				rctl |= E1000_RCTL_MPE;
3443 		}
3444 		e1000e_vlan_filter_enable(adapter);
3445 		/* Write addresses to available RAR registers, if there is not
3446 		 * sufficient space to store all the addresses then enable
3447 		 * unicast promiscuous mode
3448 		 */
3449 		count = e1000e_write_uc_addr_list(netdev);
3450 		if (count < 0)
3451 			rctl |= E1000_RCTL_UPE;
3452 	}
3453 
3454 	ew32(RCTL, rctl);
3455 
3456 	if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX ||
3457 	    e1000e_vlan_used(adapter))
3458 		e1000e_vlan_strip_enable(adapter);
3459 	else
3460 		e1000e_vlan_strip_disable(adapter);
3461 }
3462 
3463 static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3464 {
3465 	struct e1000_hw *hw = &adapter->hw;
3466 	u32 mrqc, rxcsum;
3467 	u32 rss_key[10];
3468 	int i;
3469 
3470 	netdev_rss_key_fill(rss_key, sizeof(rss_key));
3471 	for (i = 0; i < 10; i++)
3472 		ew32(RSSRK(i), rss_key[i]);
3473 
3474 	/* Direct all traffic to queue 0 */
3475 	for (i = 0; i < 32; i++)
3476 		ew32(RETA(i), 0);
3477 
3478 	/* Disable raw packet checksumming so that RSS hash is placed in
3479 	 * descriptor on writeback.
3480 	 */
3481 	rxcsum = er32(RXCSUM);
3482 	rxcsum |= E1000_RXCSUM_PCSD;
3483 
3484 	ew32(RXCSUM, rxcsum);
3485 
3486 	mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3487 		E1000_MRQC_RSS_FIELD_IPV4_TCP |
3488 		E1000_MRQC_RSS_FIELD_IPV6 |
3489 		E1000_MRQC_RSS_FIELD_IPV6_TCP |
3490 		E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3491 
3492 	ew32(MRQC, mrqc);
3493 }
3494 
3495 /**
3496  * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3497  * @adapter: board private structure
3498  * @timinca: pointer to returned time increment attributes
3499  *
3500  * Get attributes for incrementing the System Time Register SYSTIML/H at
3501  * the default base frequency, and set the cyclecounter shift value.
3502  **/
3503 s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca)
3504 {
3505 	struct e1000_hw *hw = &adapter->hw;
3506 	u32 incvalue, incperiod, shift;
3507 
3508 	/* Make sure clock is enabled on I217/I218/I219  before checking
3509 	 * the frequency
3510 	 */
3511 	if (((hw->mac.type == e1000_pch_lpt) ||
3512 	     (hw->mac.type == e1000_pch_spt)) &&
3513 	    !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) &&
3514 	    !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) {
3515 		u32 fextnvm7 = er32(FEXTNVM7);
3516 
3517 		if (!(fextnvm7 & BIT(0))) {
3518 			ew32(FEXTNVM7, fextnvm7 | BIT(0));
3519 			e1e_flush();
3520 		}
3521 	}
3522 
3523 	switch (hw->mac.type) {
3524 	case e1000_pch2lan:
3525 	case e1000_pch_lpt:
3526 		if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3527 			/* Stable 96MHz frequency */
3528 			incperiod = INCPERIOD_96MHz;
3529 			incvalue = INCVALUE_96MHz;
3530 			shift = INCVALUE_SHIFT_96MHz;
3531 			adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHz;
3532 		} else {
3533 			/* Stable 25MHz frequency */
3534 			incperiod = INCPERIOD_25MHz;
3535 			incvalue = INCVALUE_25MHz;
3536 			shift = INCVALUE_SHIFT_25MHz;
3537 			adapter->cc.shift = shift;
3538 		}
3539 		break;
3540 	case e1000_pch_spt:
3541 		if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3542 			/* Stable 24MHz frequency */
3543 			incperiod = INCPERIOD_24MHz;
3544 			incvalue = INCVALUE_24MHz;
3545 			shift = INCVALUE_SHIFT_24MHz;
3546 			adapter->cc.shift = shift;
3547 			break;
3548 		}
3549 		return -EINVAL;
3550 	case e1000_82574:
3551 	case e1000_82583:
3552 		/* Stable 25MHz frequency */
3553 		incperiod = INCPERIOD_25MHz;
3554 		incvalue = INCVALUE_25MHz;
3555 		shift = INCVALUE_SHIFT_25MHz;
3556 		adapter->cc.shift = shift;
3557 		break;
3558 	default:
3559 		return -EINVAL;
3560 	}
3561 
3562 	*timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) |
3563 		    ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK));
3564 
3565 	return 0;
3566 }
3567 
3568 /**
3569  * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3570  * @adapter: board private structure
3571  *
3572  * Outgoing time stamping can be enabled and disabled. Play nice and
3573  * disable it when requested, although it shouldn't cause any overhead
3574  * when no packet needs it. At most one packet in the queue may be
3575  * marked for time stamping, otherwise it would be impossible to tell
3576  * for sure to which packet the hardware time stamp belongs.
3577  *
3578  * Incoming time stamping has to be configured via the hardware filters.
3579  * Not all combinations are supported, in particular event type has to be
3580  * specified. Matching the kind of event packet is not supported, with the
3581  * exception of "all V2 events regardless of level 2 or 4".
3582  **/
3583 static int e1000e_config_hwtstamp(struct e1000_adapter *adapter,
3584 				  struct hwtstamp_config *config)
3585 {
3586 	struct e1000_hw *hw = &adapter->hw;
3587 	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
3588 	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
3589 	u32 rxmtrl = 0;
3590 	u16 rxudp = 0;
3591 	bool is_l4 = false;
3592 	bool is_l2 = false;
3593 	u32 regval;
3594 
3595 	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3596 		return -EINVAL;
3597 
3598 	/* flags reserved for future extensions - must be zero */
3599 	if (config->flags)
3600 		return -EINVAL;
3601 
3602 	switch (config->tx_type) {
3603 	case HWTSTAMP_TX_OFF:
3604 		tsync_tx_ctl = 0;
3605 		break;
3606 	case HWTSTAMP_TX_ON:
3607 		break;
3608 	default:
3609 		return -ERANGE;
3610 	}
3611 
3612 	switch (config->rx_filter) {
3613 	case HWTSTAMP_FILTER_NONE:
3614 		tsync_rx_ctl = 0;
3615 		break;
3616 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3617 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3618 		rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE;
3619 		is_l4 = true;
3620 		break;
3621 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3622 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3623 		rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE;
3624 		is_l4 = true;
3625 		break;
3626 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3627 		/* Also time stamps V2 L2 Path Delay Request/Response */
3628 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3629 		rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3630 		is_l2 = true;
3631 		break;
3632 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3633 		/* Also time stamps V2 L2 Path Delay Request/Response. */
3634 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3635 		rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3636 		is_l2 = true;
3637 		break;
3638 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3639 		/* Hardware cannot filter just V2 L4 Sync messages;
3640 		 * fall-through to V2 (both L2 and L4) Sync.
3641 		 */
3642 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
3643 		/* Also time stamps V2 Path Delay Request/Response. */
3644 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3645 		rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3646 		is_l2 = true;
3647 		is_l4 = true;
3648 		break;
3649 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3650 		/* Hardware cannot filter just V2 L4 Delay Request messages;
3651 		 * fall-through to V2 (both L2 and L4) Delay Request.
3652 		 */
3653 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3654 		/* Also time stamps V2 Path Delay Request/Response. */
3655 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3656 		rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3657 		is_l2 = true;
3658 		is_l4 = true;
3659 		break;
3660 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3661 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3662 		/* Hardware cannot filter just V2 L4 or L2 Event messages;
3663 		 * fall-through to all V2 (both L2 and L4) Events.
3664 		 */
3665 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
3666 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
3667 		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
3668 		is_l2 = true;
3669 		is_l4 = true;
3670 		break;
3671 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3672 		/* For V1, the hardware can only filter Sync messages or
3673 		 * Delay Request messages but not both so fall-through to
3674 		 * time stamp all packets.
3675 		 */
3676 	case HWTSTAMP_FILTER_ALL:
3677 		is_l2 = true;
3678 		is_l4 = true;
3679 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
3680 		config->rx_filter = HWTSTAMP_FILTER_ALL;
3681 		break;
3682 	default:
3683 		return -ERANGE;
3684 	}
3685 
3686 	adapter->hwtstamp_config = *config;
3687 
3688 	/* enable/disable Tx h/w time stamping */
3689 	regval = er32(TSYNCTXCTL);
3690 	regval &= ~E1000_TSYNCTXCTL_ENABLED;
3691 	regval |= tsync_tx_ctl;
3692 	ew32(TSYNCTXCTL, regval);
3693 	if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) !=
3694 	    (regval & E1000_TSYNCTXCTL_ENABLED)) {
3695 		e_err("Timesync Tx Control register not set as expected\n");
3696 		return -EAGAIN;
3697 	}
3698 
3699 	/* enable/disable Rx h/w time stamping */
3700 	regval = er32(TSYNCRXCTL);
3701 	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
3702 	regval |= tsync_rx_ctl;
3703 	ew32(TSYNCRXCTL, regval);
3704 	if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED |
3705 				 E1000_TSYNCRXCTL_TYPE_MASK)) !=
3706 	    (regval & (E1000_TSYNCRXCTL_ENABLED |
3707 		       E1000_TSYNCRXCTL_TYPE_MASK))) {
3708 		e_err("Timesync Rx Control register not set as expected\n");
3709 		return -EAGAIN;
3710 	}
3711 
3712 	/* L2: define ethertype filter for time stamped packets */
3713 	if (is_l2)
3714 		rxmtrl |= ETH_P_1588;
3715 
3716 	/* define which PTP packets get time stamped */
3717 	ew32(RXMTRL, rxmtrl);
3718 
3719 	/* Filter by destination port */
3720 	if (is_l4) {
3721 		rxudp = PTP_EV_PORT;
3722 		cpu_to_be16s(&rxudp);
3723 	}
3724 	ew32(RXUDP, rxudp);
3725 
3726 	e1e_flush();
3727 
3728 	/* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
3729 	er32(RXSTMPH);
3730 	er32(TXSTMPH);
3731 
3732 	return 0;
3733 }
3734 
3735 /**
3736  * e1000_configure - configure the hardware for Rx and Tx
3737  * @adapter: private board structure
3738  **/
3739 static void e1000_configure(struct e1000_adapter *adapter)
3740 {
3741 	struct e1000_ring *rx_ring = adapter->rx_ring;
3742 
3743 	e1000e_set_rx_mode(adapter->netdev);
3744 
3745 	e1000_restore_vlan(adapter);
3746 	e1000_init_manageability_pt(adapter);
3747 
3748 	e1000_configure_tx(adapter);
3749 
3750 	if (adapter->netdev->features & NETIF_F_RXHASH)
3751 		e1000e_setup_rss_hash(adapter);
3752 	e1000_setup_rctl(adapter);
3753 	e1000_configure_rx(adapter);
3754 	adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3755 }
3756 
3757 /**
3758  * e1000e_power_up_phy - restore link in case the phy was powered down
3759  * @adapter: address of board private structure
3760  *
3761  * The phy may be powered down to save power and turn off link when the
3762  * driver is unloaded and wake on lan is not enabled (among others)
3763  * *** this routine MUST be followed by a call to e1000e_reset ***
3764  **/
3765 void e1000e_power_up_phy(struct e1000_adapter *adapter)
3766 {
3767 	if (adapter->hw.phy.ops.power_up)
3768 		adapter->hw.phy.ops.power_up(&adapter->hw);
3769 
3770 	adapter->hw.mac.ops.setup_link(&adapter->hw);
3771 }
3772 
3773 /**
3774  * e1000_power_down_phy - Power down the PHY
3775  *
3776  * Power down the PHY so no link is implied when interface is down.
3777  * The PHY cannot be powered down if management or WoL is active.
3778  */
3779 static void e1000_power_down_phy(struct e1000_adapter *adapter)
3780 {
3781 	if (adapter->hw.phy.ops.power_down)
3782 		adapter->hw.phy.ops.power_down(&adapter->hw);
3783 }
3784 
3785 /**
3786  * e1000_flush_tx_ring - remove all descriptors from the tx_ring
3787  *
3788  * We want to clear all pending descriptors from the TX ring.
3789  * zeroing happens when the HW reads the regs. We  assign the ring itself as
3790  * the data of the next descriptor. We don't care about the data we are about
3791  * to reset the HW.
3792  */
3793 static void e1000_flush_tx_ring(struct e1000_adapter *adapter)
3794 {
3795 	struct e1000_hw *hw = &adapter->hw;
3796 	struct e1000_ring *tx_ring = adapter->tx_ring;
3797 	struct e1000_tx_desc *tx_desc = NULL;
3798 	u32 tdt, tctl, txd_lower = E1000_TXD_CMD_IFCS;
3799 	u16 size = 512;
3800 
3801 	tctl = er32(TCTL);
3802 	ew32(TCTL, tctl | E1000_TCTL_EN);
3803 	tdt = er32(TDT(0));
3804 	BUG_ON(tdt != tx_ring->next_to_use);
3805 	tx_desc =  E1000_TX_DESC(*tx_ring, tx_ring->next_to_use);
3806 	tx_desc->buffer_addr = tx_ring->dma;
3807 
3808 	tx_desc->lower.data = cpu_to_le32(txd_lower | size);
3809 	tx_desc->upper.data = 0;
3810 	/* flush descriptors to memory before notifying the HW */
3811 	wmb();
3812 	tx_ring->next_to_use++;
3813 	if (tx_ring->next_to_use == tx_ring->count)
3814 		tx_ring->next_to_use = 0;
3815 	ew32(TDT(0), tx_ring->next_to_use);
3816 	mmiowb();
3817 	usleep_range(200, 250);
3818 }
3819 
3820 /**
3821  * e1000_flush_rx_ring - remove all descriptors from the rx_ring
3822  *
3823  * Mark all descriptors in the RX ring as consumed and disable the rx ring
3824  */
3825 static void e1000_flush_rx_ring(struct e1000_adapter *adapter)
3826 {
3827 	u32 rctl, rxdctl;
3828 	struct e1000_hw *hw = &adapter->hw;
3829 
3830 	rctl = er32(RCTL);
3831 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
3832 	e1e_flush();
3833 	usleep_range(100, 150);
3834 
3835 	rxdctl = er32(RXDCTL(0));
3836 	/* zero the lower 14 bits (prefetch and host thresholds) */
3837 	rxdctl &= 0xffffc000;
3838 
3839 	/* update thresholds: prefetch threshold to 31, host threshold to 1
3840 	 * and make sure the granularity is "descriptors" and not "cache lines"
3841 	 */
3842 	rxdctl |= (0x1F | BIT(8) | E1000_RXDCTL_THRESH_UNIT_DESC);
3843 
3844 	ew32(RXDCTL(0), rxdctl);
3845 	/* momentarily enable the RX ring for the changes to take effect */
3846 	ew32(RCTL, rctl | E1000_RCTL_EN);
3847 	e1e_flush();
3848 	usleep_range(100, 150);
3849 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
3850 }
3851 
3852 /**
3853  * e1000_flush_desc_rings - remove all descriptors from the descriptor rings
3854  *
3855  * In i219, the descriptor rings must be emptied before resetting the HW
3856  * or before changing the device state to D3 during runtime (runtime PM).
3857  *
3858  * Failure to do this will cause the HW to enter a unit hang state which can
3859  * only be released by PCI reset on the device
3860  *
3861  */
3862 
3863 static void e1000_flush_desc_rings(struct e1000_adapter *adapter)
3864 {
3865 	u16 hang_state;
3866 	u32 fext_nvm11, tdlen;
3867 	struct e1000_hw *hw = &adapter->hw;
3868 
3869 	/* First, disable MULR fix in FEXTNVM11 */
3870 	fext_nvm11 = er32(FEXTNVM11);
3871 	fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
3872 	ew32(FEXTNVM11, fext_nvm11);
3873 	/* do nothing if we're not in faulty state, or if the queue is empty */
3874 	tdlen = er32(TDLEN(0));
3875 	pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3876 			     &hang_state);
3877 	if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen)
3878 		return;
3879 	e1000_flush_tx_ring(adapter);
3880 	/* recheck, maybe the fault is caused by the rx ring */
3881 	pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3882 			     &hang_state);
3883 	if (hang_state & FLUSH_DESC_REQUIRED)
3884 		e1000_flush_rx_ring(adapter);
3885 }
3886 
3887 /**
3888  * e1000e_systim_reset - reset the timesync registers after a hardware reset
3889  * @adapter: board private structure
3890  *
3891  * When the MAC is reset, all hardware bits for timesync will be reset to the
3892  * default values. This function will restore the settings last in place.
3893  * Since the clock SYSTIME registers are reset, we will simply restore the
3894  * cyclecounter to the kernel real clock time.
3895  **/
3896 static void e1000e_systim_reset(struct e1000_adapter *adapter)
3897 {
3898 	struct ptp_clock_info *info = &adapter->ptp_clock_info;
3899 	struct e1000_hw *hw = &adapter->hw;
3900 	unsigned long flags;
3901 	u32 timinca;
3902 	s32 ret_val;
3903 
3904 	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3905 		return;
3906 
3907 	if (info->adjfreq) {
3908 		/* restore the previous ptp frequency delta */
3909 		ret_val = info->adjfreq(info, adapter->ptp_delta);
3910 	} else {
3911 		/* set the default base frequency if no adjustment possible */
3912 		ret_val = e1000e_get_base_timinca(adapter, &timinca);
3913 		if (!ret_val)
3914 			ew32(TIMINCA, timinca);
3915 	}
3916 
3917 	if (ret_val) {
3918 		dev_warn(&adapter->pdev->dev,
3919 			 "Failed to restore TIMINCA clock rate delta: %d\n",
3920 			 ret_val);
3921 		return;
3922 	}
3923 
3924 	/* reset the systim ns time counter */
3925 	spin_lock_irqsave(&adapter->systim_lock, flags);
3926 	timecounter_init(&adapter->tc, &adapter->cc,
3927 			 ktime_to_ns(ktime_get_real()));
3928 	spin_unlock_irqrestore(&adapter->systim_lock, flags);
3929 
3930 	/* restore the previous hwtstamp configuration settings */
3931 	e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config);
3932 }
3933 
3934 /**
3935  * e1000e_reset - bring the hardware into a known good state
3936  *
3937  * This function boots the hardware and enables some settings that
3938  * require a configuration cycle of the hardware - those cannot be
3939  * set/changed during runtime. After reset the device needs to be
3940  * properly configured for Rx, Tx etc.
3941  */
3942 void e1000e_reset(struct e1000_adapter *adapter)
3943 {
3944 	struct e1000_mac_info *mac = &adapter->hw.mac;
3945 	struct e1000_fc_info *fc = &adapter->hw.fc;
3946 	struct e1000_hw *hw = &adapter->hw;
3947 	u32 tx_space, min_tx_space, min_rx_space;
3948 	u32 pba = adapter->pba;
3949 	u16 hwm;
3950 
3951 	/* reset Packet Buffer Allocation to default */
3952 	ew32(PBA, pba);
3953 
3954 	if (adapter->max_frame_size > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) {
3955 		/* To maintain wire speed transmits, the Tx FIFO should be
3956 		 * large enough to accommodate two full transmit packets,
3957 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
3958 		 * the Rx FIFO should be large enough to accommodate at least
3959 		 * one full receive packet and is similarly rounded up and
3960 		 * expressed in KB.
3961 		 */
3962 		pba = er32(PBA);
3963 		/* upper 16 bits has Tx packet buffer allocation size in KB */
3964 		tx_space = pba >> 16;
3965 		/* lower 16 bits has Rx packet buffer allocation size in KB */
3966 		pba &= 0xffff;
3967 		/* the Tx fifo also stores 16 bytes of information about the Tx
3968 		 * but don't include ethernet FCS because hardware appends it
3969 		 */
3970 		min_tx_space = (adapter->max_frame_size +
3971 				sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2;
3972 		min_tx_space = ALIGN(min_tx_space, 1024);
3973 		min_tx_space >>= 10;
3974 		/* software strips receive CRC, so leave room for it */
3975 		min_rx_space = adapter->max_frame_size;
3976 		min_rx_space = ALIGN(min_rx_space, 1024);
3977 		min_rx_space >>= 10;
3978 
3979 		/* If current Tx allocation is less than the min Tx FIFO size,
3980 		 * and the min Tx FIFO size is less than the current Rx FIFO
3981 		 * allocation, take space away from current Rx allocation
3982 		 */
3983 		if ((tx_space < min_tx_space) &&
3984 		    ((min_tx_space - tx_space) < pba)) {
3985 			pba -= min_tx_space - tx_space;
3986 
3987 			/* if short on Rx space, Rx wins and must trump Tx
3988 			 * adjustment
3989 			 */
3990 			if (pba < min_rx_space)
3991 				pba = min_rx_space;
3992 		}
3993 
3994 		ew32(PBA, pba);
3995 	}
3996 
3997 	/* flow control settings
3998 	 *
3999 	 * The high water mark must be low enough to fit one full frame
4000 	 * (or the size used for early receive) above it in the Rx FIFO.
4001 	 * Set it to the lower of:
4002 	 * - 90% of the Rx FIFO size, and
4003 	 * - the full Rx FIFO size minus one full frame
4004 	 */
4005 	if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
4006 		fc->pause_time = 0xFFFF;
4007 	else
4008 		fc->pause_time = E1000_FC_PAUSE_TIME;
4009 	fc->send_xon = true;
4010 	fc->current_mode = fc->requested_mode;
4011 
4012 	switch (hw->mac.type) {
4013 	case e1000_ich9lan:
4014 	case e1000_ich10lan:
4015 		if (adapter->netdev->mtu > ETH_DATA_LEN) {
4016 			pba = 14;
4017 			ew32(PBA, pba);
4018 			fc->high_water = 0x2800;
4019 			fc->low_water = fc->high_water - 8;
4020 			break;
4021 		}
4022 		/* fall-through */
4023 	default:
4024 		hwm = min(((pba << 10) * 9 / 10),
4025 			  ((pba << 10) - adapter->max_frame_size));
4026 
4027 		fc->high_water = hwm & E1000_FCRTH_RTH;	/* 8-byte granularity */
4028 		fc->low_water = fc->high_water - 8;
4029 		break;
4030 	case e1000_pchlan:
4031 		/* Workaround PCH LOM adapter hangs with certain network
4032 		 * loads.  If hangs persist, try disabling Tx flow control.
4033 		 */
4034 		if (adapter->netdev->mtu > ETH_DATA_LEN) {
4035 			fc->high_water = 0x3500;
4036 			fc->low_water = 0x1500;
4037 		} else {
4038 			fc->high_water = 0x5000;
4039 			fc->low_water = 0x3000;
4040 		}
4041 		fc->refresh_time = 0x1000;
4042 		break;
4043 	case e1000_pch2lan:
4044 	case e1000_pch_lpt:
4045 	case e1000_pch_spt:
4046 		fc->refresh_time = 0x0400;
4047 
4048 		if (adapter->netdev->mtu <= ETH_DATA_LEN) {
4049 			fc->high_water = 0x05C20;
4050 			fc->low_water = 0x05048;
4051 			fc->pause_time = 0x0650;
4052 			break;
4053 		}
4054 
4055 		pba = 14;
4056 		ew32(PBA, pba);
4057 		fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH;
4058 		fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL;
4059 		break;
4060 	}
4061 
4062 	/* Alignment of Tx data is on an arbitrary byte boundary with the
4063 	 * maximum size per Tx descriptor limited only to the transmit
4064 	 * allocation of the packet buffer minus 96 bytes with an upper
4065 	 * limit of 24KB due to receive synchronization limitations.
4066 	 */
4067 	adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
4068 				       24 << 10);
4069 
4070 	/* Disable Adaptive Interrupt Moderation if 2 full packets cannot
4071 	 * fit in receive buffer.
4072 	 */
4073 	if (adapter->itr_setting & 0x3) {
4074 		if ((adapter->max_frame_size * 2) > (pba << 10)) {
4075 			if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
4076 				dev_info(&adapter->pdev->dev,
4077 					 "Interrupt Throttle Rate off\n");
4078 				adapter->flags2 |= FLAG2_DISABLE_AIM;
4079 				e1000e_write_itr(adapter, 0);
4080 			}
4081 		} else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
4082 			dev_info(&adapter->pdev->dev,
4083 				 "Interrupt Throttle Rate on\n");
4084 			adapter->flags2 &= ~FLAG2_DISABLE_AIM;
4085 			adapter->itr = 20000;
4086 			e1000e_write_itr(adapter, adapter->itr);
4087 		}
4088 	}
4089 
4090 	if (hw->mac.type == e1000_pch_spt)
4091 		e1000_flush_desc_rings(adapter);
4092 	/* Allow time for pending master requests to run */
4093 	mac->ops.reset_hw(hw);
4094 
4095 	/* For parts with AMT enabled, let the firmware know
4096 	 * that the network interface is in control
4097 	 */
4098 	if (adapter->flags & FLAG_HAS_AMT)
4099 		e1000e_get_hw_control(adapter);
4100 
4101 	ew32(WUC, 0);
4102 
4103 	if (mac->ops.init_hw(hw))
4104 		e_err("Hardware Error\n");
4105 
4106 	e1000_update_mng_vlan(adapter);
4107 
4108 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
4109 	ew32(VET, ETH_P_8021Q);
4110 
4111 	e1000e_reset_adaptive(hw);
4112 
4113 	/* restore systim and hwtstamp settings */
4114 	e1000e_systim_reset(adapter);
4115 
4116 	/* Set EEE advertisement as appropriate */
4117 	if (adapter->flags2 & FLAG2_HAS_EEE) {
4118 		s32 ret_val;
4119 		u16 adv_addr;
4120 
4121 		switch (hw->phy.type) {
4122 		case e1000_phy_82579:
4123 			adv_addr = I82579_EEE_ADVERTISEMENT;
4124 			break;
4125 		case e1000_phy_i217:
4126 			adv_addr = I217_EEE_ADVERTISEMENT;
4127 			break;
4128 		default:
4129 			dev_err(&adapter->pdev->dev,
4130 				"Invalid PHY type setting EEE advertisement\n");
4131 			return;
4132 		}
4133 
4134 		ret_val = hw->phy.ops.acquire(hw);
4135 		if (ret_val) {
4136 			dev_err(&adapter->pdev->dev,
4137 				"EEE advertisement - unable to acquire PHY\n");
4138 			return;
4139 		}
4140 
4141 		e1000_write_emi_reg_locked(hw, adv_addr,
4142 					   hw->dev_spec.ich8lan.eee_disable ?
4143 					   0 : adapter->eee_advert);
4144 
4145 		hw->phy.ops.release(hw);
4146 	}
4147 
4148 	if (!netif_running(adapter->netdev) &&
4149 	    !test_bit(__E1000_TESTING, &adapter->state))
4150 		e1000_power_down_phy(adapter);
4151 
4152 	e1000_get_phy_info(hw);
4153 
4154 	if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
4155 	    !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
4156 		u16 phy_data = 0;
4157 		/* speed up time to link by disabling smart power down, ignore
4158 		 * the return value of this function because there is nothing
4159 		 * different we would do if it failed
4160 		 */
4161 		e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
4162 		phy_data &= ~IGP02E1000_PM_SPD;
4163 		e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
4164 	}
4165 	if (hw->mac.type == e1000_pch_spt && adapter->int_mode == 0) {
4166 		u32 reg;
4167 
4168 		/* Fextnvm7 @ 0xe4[2] = 1 */
4169 		reg = er32(FEXTNVM7);
4170 		reg |= E1000_FEXTNVM7_SIDE_CLK_UNGATE;
4171 		ew32(FEXTNVM7, reg);
4172 		/* Fextnvm9 @ 0x5bb4[13:12] = 11 */
4173 		reg = er32(FEXTNVM9);
4174 		reg |= E1000_FEXTNVM9_IOSFSB_CLKGATE_DIS |
4175 		       E1000_FEXTNVM9_IOSFSB_CLKREQ_DIS;
4176 		ew32(FEXTNVM9, reg);
4177 	}
4178 
4179 }
4180 
4181 /**
4182  * e1000e_trigger_lsc - trigger an LSC interrupt
4183  * @adapter:
4184  *
4185  * Fire a link status change interrupt to start the watchdog.
4186  **/
4187 static void e1000e_trigger_lsc(struct e1000_adapter *adapter)
4188 {
4189 	struct e1000_hw *hw = &adapter->hw;
4190 
4191 	if (adapter->msix_entries)
4192 		ew32(ICS, E1000_ICS_OTHER);
4193 	else
4194 		ew32(ICS, E1000_ICS_LSC);
4195 }
4196 
4197 void e1000e_up(struct e1000_adapter *adapter)
4198 {
4199 	/* hardware has been reset, we need to reload some things */
4200 	e1000_configure(adapter);
4201 
4202 	clear_bit(__E1000_DOWN, &adapter->state);
4203 
4204 	if (adapter->msix_entries)
4205 		e1000_configure_msix(adapter);
4206 	e1000_irq_enable(adapter);
4207 
4208 	netif_start_queue(adapter->netdev);
4209 
4210 	e1000e_trigger_lsc(adapter);
4211 }
4212 
4213 static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
4214 {
4215 	struct e1000_hw *hw = &adapter->hw;
4216 
4217 	if (!(adapter->flags2 & FLAG2_DMA_BURST))
4218 		return;
4219 
4220 	/* flush pending descriptor writebacks to memory */
4221 	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4222 	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4223 
4224 	/* execute the writes immediately */
4225 	e1e_flush();
4226 
4227 	/* due to rare timing issues, write to TIDV/RDTR again to ensure the
4228 	 * write is successful
4229 	 */
4230 	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4231 	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4232 
4233 	/* execute the writes immediately */
4234 	e1e_flush();
4235 }
4236 
4237 static void e1000e_update_stats(struct e1000_adapter *adapter);
4238 
4239 /**
4240  * e1000e_down - quiesce the device and optionally reset the hardware
4241  * @adapter: board private structure
4242  * @reset: boolean flag to reset the hardware or not
4243  */
4244 void e1000e_down(struct e1000_adapter *adapter, bool reset)
4245 {
4246 	struct net_device *netdev = adapter->netdev;
4247 	struct e1000_hw *hw = &adapter->hw;
4248 	u32 tctl, rctl;
4249 
4250 	/* signal that we're down so the interrupt handler does not
4251 	 * reschedule our watchdog timer
4252 	 */
4253 	set_bit(__E1000_DOWN, &adapter->state);
4254 
4255 	netif_carrier_off(netdev);
4256 
4257 	/* disable receives in the hardware */
4258 	rctl = er32(RCTL);
4259 	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
4260 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
4261 	/* flush and sleep below */
4262 
4263 	netif_stop_queue(netdev);
4264 
4265 	/* disable transmits in the hardware */
4266 	tctl = er32(TCTL);
4267 	tctl &= ~E1000_TCTL_EN;
4268 	ew32(TCTL, tctl);
4269 
4270 	/* flush both disables and wait for them to finish */
4271 	e1e_flush();
4272 	usleep_range(10000, 20000);
4273 
4274 	e1000_irq_disable(adapter);
4275 
4276 	napi_synchronize(&adapter->napi);
4277 
4278 	del_timer_sync(&adapter->watchdog_timer);
4279 	del_timer_sync(&adapter->phy_info_timer);
4280 
4281 	spin_lock(&adapter->stats64_lock);
4282 	e1000e_update_stats(adapter);
4283 	spin_unlock(&adapter->stats64_lock);
4284 
4285 	e1000e_flush_descriptors(adapter);
4286 
4287 	adapter->link_speed = 0;
4288 	adapter->link_duplex = 0;
4289 
4290 	/* Disable Si errata workaround on PCHx for jumbo frame flow */
4291 	if ((hw->mac.type >= e1000_pch2lan) &&
4292 	    (adapter->netdev->mtu > ETH_DATA_LEN) &&
4293 	    e1000_lv_jumbo_workaround_ich8lan(hw, false))
4294 		e_dbg("failed to disable jumbo frame workaround mode\n");
4295 
4296 	if (!pci_channel_offline(adapter->pdev)) {
4297 		if (reset)
4298 			e1000e_reset(adapter);
4299 		else if (hw->mac.type == e1000_pch_spt)
4300 			e1000_flush_desc_rings(adapter);
4301 	}
4302 	e1000_clean_tx_ring(adapter->tx_ring);
4303 	e1000_clean_rx_ring(adapter->rx_ring);
4304 }
4305 
4306 void e1000e_reinit_locked(struct e1000_adapter *adapter)
4307 {
4308 	might_sleep();
4309 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4310 		usleep_range(1000, 2000);
4311 	e1000e_down(adapter, true);
4312 	e1000e_up(adapter);
4313 	clear_bit(__E1000_RESETTING, &adapter->state);
4314 }
4315 
4316 /**
4317  * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4318  * @cc: cyclecounter structure
4319  **/
4320 static cycle_t e1000e_cyclecounter_read(const struct cyclecounter *cc)
4321 {
4322 	struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter,
4323 						     cc);
4324 	struct e1000_hw *hw = &adapter->hw;
4325 	u32 systimel, systimeh;
4326 	cycle_t systim, systim_next;
4327 	/* SYSTIMH latching upon SYSTIML read does not work well.
4328 	 * This means that if SYSTIML overflows after we read it but before
4329 	 * we read SYSTIMH, the value of SYSTIMH has been incremented and we
4330 	 * will experience a huge non linear increment in the systime value
4331 	 * to fix that we test for overflow and if true, we re-read systime.
4332 	 */
4333 	systimel = er32(SYSTIML);
4334 	systimeh = er32(SYSTIMH);
4335 	/* Is systimel is so large that overflow is possible? */
4336 	if (systimel >= (u32)0xffffffff - E1000_TIMINCA_INCVALUE_MASK) {
4337 		u32 systimel_2 = er32(SYSTIML);
4338 		if (systimel > systimel_2) {
4339 			/* There was an overflow, read again SYSTIMH, and use
4340 			 * systimel_2
4341 			 */
4342 			systimeh = er32(SYSTIMH);
4343 			systimel = systimel_2;
4344 		}
4345 	}
4346 	systim = (cycle_t)systimel;
4347 	systim |= (cycle_t)systimeh << 32;
4348 
4349 	if ((hw->mac.type == e1000_82574) || (hw->mac.type == e1000_82583)) {
4350 		u64 time_delta, rem, temp;
4351 		u32 incvalue;
4352 		int i;
4353 
4354 		/* errata for 82574/82583 possible bad bits read from SYSTIMH/L
4355 		 * check to see that the time is incrementing at a reasonable
4356 		 * rate and is a multiple of incvalue
4357 		 */
4358 		incvalue = er32(TIMINCA) & E1000_TIMINCA_INCVALUE_MASK;
4359 		for (i = 0; i < E1000_MAX_82574_SYSTIM_REREADS; i++) {
4360 			/* latch SYSTIMH on read of SYSTIML */
4361 			systim_next = (cycle_t)er32(SYSTIML);
4362 			systim_next |= (cycle_t)er32(SYSTIMH) << 32;
4363 
4364 			time_delta = systim_next - systim;
4365 			temp = time_delta;
4366 			rem = do_div(temp, incvalue);
4367 
4368 			systim = systim_next;
4369 
4370 			if ((time_delta < E1000_82574_SYSTIM_EPSILON) &&
4371 			    (rem == 0))
4372 				break;
4373 		}
4374 	}
4375 	return systim;
4376 }
4377 
4378 /**
4379  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4380  * @adapter: board private structure to initialize
4381  *
4382  * e1000_sw_init initializes the Adapter private data structure.
4383  * Fields are initialized based on PCI device information and
4384  * OS network device settings (MTU size).
4385  **/
4386 static int e1000_sw_init(struct e1000_adapter *adapter)
4387 {
4388 	struct net_device *netdev = adapter->netdev;
4389 
4390 	adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
4391 	adapter->rx_ps_bsize0 = 128;
4392 	adapter->max_frame_size = netdev->mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
4393 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4394 	adapter->tx_ring_count = E1000_DEFAULT_TXD;
4395 	adapter->rx_ring_count = E1000_DEFAULT_RXD;
4396 
4397 	spin_lock_init(&adapter->stats64_lock);
4398 
4399 	e1000e_set_interrupt_capability(adapter);
4400 
4401 	if (e1000_alloc_queues(adapter))
4402 		return -ENOMEM;
4403 
4404 	/* Setup hardware time stamping cyclecounter */
4405 	if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
4406 		adapter->cc.read = e1000e_cyclecounter_read;
4407 		adapter->cc.mask = CYCLECOUNTER_MASK(64);
4408 		adapter->cc.mult = 1;
4409 		/* cc.shift set in e1000e_get_base_tininca() */
4410 
4411 		spin_lock_init(&adapter->systim_lock);
4412 		INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work);
4413 	}
4414 
4415 	/* Explicitly disable IRQ since the NIC can be in any state. */
4416 	e1000_irq_disable(adapter);
4417 
4418 	set_bit(__E1000_DOWN, &adapter->state);
4419 	return 0;
4420 }
4421 
4422 /**
4423  * e1000_intr_msi_test - Interrupt Handler
4424  * @irq: interrupt number
4425  * @data: pointer to a network interface device structure
4426  **/
4427 static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data)
4428 {
4429 	struct net_device *netdev = data;
4430 	struct e1000_adapter *adapter = netdev_priv(netdev);
4431 	struct e1000_hw *hw = &adapter->hw;
4432 	u32 icr = er32(ICR);
4433 
4434 	e_dbg("icr is %08X\n", icr);
4435 	if (icr & E1000_ICR_RXSEQ) {
4436 		adapter->flags &= ~FLAG_MSI_TEST_FAILED;
4437 		/* Force memory writes to complete before acknowledging the
4438 		 * interrupt is handled.
4439 		 */
4440 		wmb();
4441 	}
4442 
4443 	return IRQ_HANDLED;
4444 }
4445 
4446 /**
4447  * e1000_test_msi_interrupt - Returns 0 for successful test
4448  * @adapter: board private struct
4449  *
4450  * code flow taken from tg3.c
4451  **/
4452 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
4453 {
4454 	struct net_device *netdev = adapter->netdev;
4455 	struct e1000_hw *hw = &adapter->hw;
4456 	int err;
4457 
4458 	/* poll_enable hasn't been called yet, so don't need disable */
4459 	/* clear any pending events */
4460 	er32(ICR);
4461 
4462 	/* free the real vector and request a test handler */
4463 	e1000_free_irq(adapter);
4464 	e1000e_reset_interrupt_capability(adapter);
4465 
4466 	/* Assume that the test fails, if it succeeds then the test
4467 	 * MSI irq handler will unset this flag
4468 	 */
4469 	adapter->flags |= FLAG_MSI_TEST_FAILED;
4470 
4471 	err = pci_enable_msi(adapter->pdev);
4472 	if (err)
4473 		goto msi_test_failed;
4474 
4475 	err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
4476 			  netdev->name, netdev);
4477 	if (err) {
4478 		pci_disable_msi(adapter->pdev);
4479 		goto msi_test_failed;
4480 	}
4481 
4482 	/* Force memory writes to complete before enabling and firing an
4483 	 * interrupt.
4484 	 */
4485 	wmb();
4486 
4487 	e1000_irq_enable(adapter);
4488 
4489 	/* fire an unusual interrupt on the test handler */
4490 	ew32(ICS, E1000_ICS_RXSEQ);
4491 	e1e_flush();
4492 	msleep(100);
4493 
4494 	e1000_irq_disable(adapter);
4495 
4496 	rmb();			/* read flags after interrupt has been fired */
4497 
4498 	if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4499 		adapter->int_mode = E1000E_INT_MODE_LEGACY;
4500 		e_info("MSI interrupt test failed, using legacy interrupt.\n");
4501 	} else {
4502 		e_dbg("MSI interrupt test succeeded!\n");
4503 	}
4504 
4505 	free_irq(adapter->pdev->irq, netdev);
4506 	pci_disable_msi(adapter->pdev);
4507 
4508 msi_test_failed:
4509 	e1000e_set_interrupt_capability(adapter);
4510 	return e1000_request_irq(adapter);
4511 }
4512 
4513 /**
4514  * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4515  * @adapter: board private struct
4516  *
4517  * code flow taken from tg3.c, called with e1000 interrupts disabled.
4518  **/
4519 static int e1000_test_msi(struct e1000_adapter *adapter)
4520 {
4521 	int err;
4522 	u16 pci_cmd;
4523 
4524 	if (!(adapter->flags & FLAG_MSI_ENABLED))
4525 		return 0;
4526 
4527 	/* disable SERR in case the MSI write causes a master abort */
4528 	pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4529 	if (pci_cmd & PCI_COMMAND_SERR)
4530 		pci_write_config_word(adapter->pdev, PCI_COMMAND,
4531 				      pci_cmd & ~PCI_COMMAND_SERR);
4532 
4533 	err = e1000_test_msi_interrupt(adapter);
4534 
4535 	/* re-enable SERR */
4536 	if (pci_cmd & PCI_COMMAND_SERR) {
4537 		pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4538 		pci_cmd |= PCI_COMMAND_SERR;
4539 		pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
4540 	}
4541 
4542 	return err;
4543 }
4544 
4545 /**
4546  * e1000e_open - Called when a network interface is made active
4547  * @netdev: network interface device structure
4548  *
4549  * Returns 0 on success, negative value on failure
4550  *
4551  * The open entry point is called when a network interface is made
4552  * active by the system (IFF_UP).  At this point all resources needed
4553  * for transmit and receive operations are allocated, the interrupt
4554  * handler is registered with the OS, the watchdog timer is started,
4555  * and the stack is notified that the interface is ready.
4556  **/
4557 int e1000e_open(struct net_device *netdev)
4558 {
4559 	struct e1000_adapter *adapter = netdev_priv(netdev);
4560 	struct e1000_hw *hw = &adapter->hw;
4561 	struct pci_dev *pdev = adapter->pdev;
4562 	int err;
4563 
4564 	/* disallow open during test */
4565 	if (test_bit(__E1000_TESTING, &adapter->state))
4566 		return -EBUSY;
4567 
4568 	pm_runtime_get_sync(&pdev->dev);
4569 
4570 	netif_carrier_off(netdev);
4571 
4572 	/* allocate transmit descriptors */
4573 	err = e1000e_setup_tx_resources(adapter->tx_ring);
4574 	if (err)
4575 		goto err_setup_tx;
4576 
4577 	/* allocate receive descriptors */
4578 	err = e1000e_setup_rx_resources(adapter->rx_ring);
4579 	if (err)
4580 		goto err_setup_rx;
4581 
4582 	/* If AMT is enabled, let the firmware know that the network
4583 	 * interface is now open and reset the part to a known state.
4584 	 */
4585 	if (adapter->flags & FLAG_HAS_AMT) {
4586 		e1000e_get_hw_control(adapter);
4587 		e1000e_reset(adapter);
4588 	}
4589 
4590 	e1000e_power_up_phy(adapter);
4591 
4592 	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4593 	if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
4594 		e1000_update_mng_vlan(adapter);
4595 
4596 	/* DMA latency requirement to workaround jumbo issue */
4597 	pm_qos_add_request(&adapter->pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
4598 			   PM_QOS_DEFAULT_VALUE);
4599 
4600 	/* before we allocate an interrupt, we must be ready to handle it.
4601 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4602 	 * as soon as we call pci_request_irq, so we have to setup our
4603 	 * clean_rx handler before we do so.
4604 	 */
4605 	e1000_configure(adapter);
4606 
4607 	err = e1000_request_irq(adapter);
4608 	if (err)
4609 		goto err_req_irq;
4610 
4611 	/* Work around PCIe errata with MSI interrupts causing some chipsets to
4612 	 * ignore e1000e MSI messages, which means we need to test our MSI
4613 	 * interrupt now
4614 	 */
4615 	if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
4616 		err = e1000_test_msi(adapter);
4617 		if (err) {
4618 			e_err("Interrupt allocation failed\n");
4619 			goto err_req_irq;
4620 		}
4621 	}
4622 
4623 	/* From here on the code is the same as e1000e_up() */
4624 	clear_bit(__E1000_DOWN, &adapter->state);
4625 
4626 	napi_enable(&adapter->napi);
4627 
4628 	e1000_irq_enable(adapter);
4629 
4630 	adapter->tx_hang_recheck = false;
4631 	netif_start_queue(netdev);
4632 
4633 	hw->mac.get_link_status = true;
4634 	pm_runtime_put(&pdev->dev);
4635 
4636 	e1000e_trigger_lsc(adapter);
4637 
4638 	return 0;
4639 
4640 err_req_irq:
4641 	pm_qos_remove_request(&adapter->pm_qos_req);
4642 	e1000e_release_hw_control(adapter);
4643 	e1000_power_down_phy(adapter);
4644 	e1000e_free_rx_resources(adapter->rx_ring);
4645 err_setup_rx:
4646 	e1000e_free_tx_resources(adapter->tx_ring);
4647 err_setup_tx:
4648 	e1000e_reset(adapter);
4649 	pm_runtime_put_sync(&pdev->dev);
4650 
4651 	return err;
4652 }
4653 
4654 /**
4655  * e1000e_close - Disables a network interface
4656  * @netdev: network interface device structure
4657  *
4658  * Returns 0, this is not allowed to fail
4659  *
4660  * The close entry point is called when an interface is de-activated
4661  * by the OS.  The hardware is still under the drivers control, but
4662  * needs to be disabled.  A global MAC reset is issued to stop the
4663  * hardware, and all transmit and receive resources are freed.
4664  **/
4665 int e1000e_close(struct net_device *netdev)
4666 {
4667 	struct e1000_adapter *adapter = netdev_priv(netdev);
4668 	struct pci_dev *pdev = adapter->pdev;
4669 	int count = E1000_CHECK_RESET_COUNT;
4670 
4671 	while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
4672 		usleep_range(10000, 20000);
4673 
4674 	WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4675 
4676 	pm_runtime_get_sync(&pdev->dev);
4677 
4678 	if (!test_bit(__E1000_DOWN, &adapter->state)) {
4679 		e1000e_down(adapter, true);
4680 		e1000_free_irq(adapter);
4681 
4682 		/* Link status message must follow this format */
4683 		pr_info("%s NIC Link is Down\n", adapter->netdev->name);
4684 	}
4685 
4686 	napi_disable(&adapter->napi);
4687 
4688 	e1000e_free_tx_resources(adapter->tx_ring);
4689 	e1000e_free_rx_resources(adapter->rx_ring);
4690 
4691 	/* kill manageability vlan ID if supported, but not if a vlan with
4692 	 * the same ID is registered on the host OS (let 8021q kill it)
4693 	 */
4694 	if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
4695 		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
4696 				       adapter->mng_vlan_id);
4697 
4698 	/* If AMT is enabled, let the firmware know that the network
4699 	 * interface is now closed
4700 	 */
4701 	if ((adapter->flags & FLAG_HAS_AMT) &&
4702 	    !test_bit(__E1000_TESTING, &adapter->state))
4703 		e1000e_release_hw_control(adapter);
4704 
4705 	pm_qos_remove_request(&adapter->pm_qos_req);
4706 
4707 	pm_runtime_put_sync(&pdev->dev);
4708 
4709 	return 0;
4710 }
4711 
4712 /**
4713  * e1000_set_mac - Change the Ethernet Address of the NIC
4714  * @netdev: network interface device structure
4715  * @p: pointer to an address structure
4716  *
4717  * Returns 0 on success, negative on failure
4718  **/
4719 static int e1000_set_mac(struct net_device *netdev, void *p)
4720 {
4721 	struct e1000_adapter *adapter = netdev_priv(netdev);
4722 	struct e1000_hw *hw = &adapter->hw;
4723 	struct sockaddr *addr = p;
4724 
4725 	if (!is_valid_ether_addr(addr->sa_data))
4726 		return -EADDRNOTAVAIL;
4727 
4728 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4729 	memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4730 
4731 	hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4732 
4733 	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4734 		/* activate the work around */
4735 		e1000e_set_laa_state_82571(&adapter->hw, 1);
4736 
4737 		/* Hold a copy of the LAA in RAR[14] This is done so that
4738 		 * between the time RAR[0] gets clobbered  and the time it
4739 		 * gets fixed (in e1000_watchdog), the actual LAA is in one
4740 		 * of the RARs and no incoming packets directed to this port
4741 		 * are dropped. Eventually the LAA will be in RAR[0] and
4742 		 * RAR[14]
4743 		 */
4744 		hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4745 				    adapter->hw.mac.rar_entry_count - 1);
4746 	}
4747 
4748 	return 0;
4749 }
4750 
4751 /**
4752  * e1000e_update_phy_task - work thread to update phy
4753  * @work: pointer to our work struct
4754  *
4755  * this worker thread exists because we must acquire a
4756  * semaphore to read the phy, which we could msleep while
4757  * waiting for it, and we can't msleep in a timer.
4758  **/
4759 static void e1000e_update_phy_task(struct work_struct *work)
4760 {
4761 	struct e1000_adapter *adapter = container_of(work,
4762 						     struct e1000_adapter,
4763 						     update_phy_task);
4764 	struct e1000_hw *hw = &adapter->hw;
4765 
4766 	if (test_bit(__E1000_DOWN, &adapter->state))
4767 		return;
4768 
4769 	e1000_get_phy_info(hw);
4770 
4771 	/* Enable EEE on 82579 after link up */
4772 	if (hw->phy.type >= e1000_phy_82579)
4773 		e1000_set_eee_pchlan(hw);
4774 }
4775 
4776 /**
4777  * e1000_update_phy_info - timre call-back to update PHY info
4778  * @data: pointer to adapter cast into an unsigned long
4779  *
4780  * Need to wait a few seconds after link up to get diagnostic information from
4781  * the phy
4782  **/
4783 static void e1000_update_phy_info(unsigned long data)
4784 {
4785 	struct e1000_adapter *adapter = (struct e1000_adapter *)data;
4786 
4787 	if (test_bit(__E1000_DOWN, &adapter->state))
4788 		return;
4789 
4790 	schedule_work(&adapter->update_phy_task);
4791 }
4792 
4793 /**
4794  * e1000e_update_phy_stats - Update the PHY statistics counters
4795  * @adapter: board private structure
4796  *
4797  * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4798  **/
4799 static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4800 {
4801 	struct e1000_hw *hw = &adapter->hw;
4802 	s32 ret_val;
4803 	u16 phy_data;
4804 
4805 	ret_val = hw->phy.ops.acquire(hw);
4806 	if (ret_val)
4807 		return;
4808 
4809 	/* A page set is expensive so check if already on desired page.
4810 	 * If not, set to the page with the PHY status registers.
4811 	 */
4812 	hw->phy.addr = 1;
4813 	ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4814 					   &phy_data);
4815 	if (ret_val)
4816 		goto release;
4817 	if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4818 		ret_val = hw->phy.ops.set_page(hw,
4819 					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
4820 		if (ret_val)
4821 			goto release;
4822 	}
4823 
4824 	/* Single Collision Count */
4825 	hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4826 	ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4827 	if (!ret_val)
4828 		adapter->stats.scc += phy_data;
4829 
4830 	/* Excessive Collision Count */
4831 	hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4832 	ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4833 	if (!ret_val)
4834 		adapter->stats.ecol += phy_data;
4835 
4836 	/* Multiple Collision Count */
4837 	hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4838 	ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4839 	if (!ret_val)
4840 		adapter->stats.mcc += phy_data;
4841 
4842 	/* Late Collision Count */
4843 	hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4844 	ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4845 	if (!ret_val)
4846 		adapter->stats.latecol += phy_data;
4847 
4848 	/* Collision Count - also used for adaptive IFS */
4849 	hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4850 	ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4851 	if (!ret_val)
4852 		hw->mac.collision_delta = phy_data;
4853 
4854 	/* Defer Count */
4855 	hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4856 	ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4857 	if (!ret_val)
4858 		adapter->stats.dc += phy_data;
4859 
4860 	/* Transmit with no CRS */
4861 	hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4862 	ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4863 	if (!ret_val)
4864 		adapter->stats.tncrs += phy_data;
4865 
4866 release:
4867 	hw->phy.ops.release(hw);
4868 }
4869 
4870 /**
4871  * e1000e_update_stats - Update the board statistics counters
4872  * @adapter: board private structure
4873  **/
4874 static void e1000e_update_stats(struct e1000_adapter *adapter)
4875 {
4876 	struct net_device *netdev = adapter->netdev;
4877 	struct e1000_hw *hw = &adapter->hw;
4878 	struct pci_dev *pdev = adapter->pdev;
4879 
4880 	/* Prevent stats update while adapter is being reset, or if the pci
4881 	 * connection is down.
4882 	 */
4883 	if (adapter->link_speed == 0)
4884 		return;
4885 	if (pci_channel_offline(pdev))
4886 		return;
4887 
4888 	adapter->stats.crcerrs += er32(CRCERRS);
4889 	adapter->stats.gprc += er32(GPRC);
4890 	adapter->stats.gorc += er32(GORCL);
4891 	er32(GORCH);		/* Clear gorc */
4892 	adapter->stats.bprc += er32(BPRC);
4893 	adapter->stats.mprc += er32(MPRC);
4894 	adapter->stats.roc += er32(ROC);
4895 
4896 	adapter->stats.mpc += er32(MPC);
4897 
4898 	/* Half-duplex statistics */
4899 	if (adapter->link_duplex == HALF_DUPLEX) {
4900 		if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4901 			e1000e_update_phy_stats(adapter);
4902 		} else {
4903 			adapter->stats.scc += er32(SCC);
4904 			adapter->stats.ecol += er32(ECOL);
4905 			adapter->stats.mcc += er32(MCC);
4906 			adapter->stats.latecol += er32(LATECOL);
4907 			adapter->stats.dc += er32(DC);
4908 
4909 			hw->mac.collision_delta = er32(COLC);
4910 
4911 			if ((hw->mac.type != e1000_82574) &&
4912 			    (hw->mac.type != e1000_82583))
4913 				adapter->stats.tncrs += er32(TNCRS);
4914 		}
4915 		adapter->stats.colc += hw->mac.collision_delta;
4916 	}
4917 
4918 	adapter->stats.xonrxc += er32(XONRXC);
4919 	adapter->stats.xontxc += er32(XONTXC);
4920 	adapter->stats.xoffrxc += er32(XOFFRXC);
4921 	adapter->stats.xofftxc += er32(XOFFTXC);
4922 	adapter->stats.gptc += er32(GPTC);
4923 	adapter->stats.gotc += er32(GOTCL);
4924 	er32(GOTCH);		/* Clear gotc */
4925 	adapter->stats.rnbc += er32(RNBC);
4926 	adapter->stats.ruc += er32(RUC);
4927 
4928 	adapter->stats.mptc += er32(MPTC);
4929 	adapter->stats.bptc += er32(BPTC);
4930 
4931 	/* used for adaptive IFS */
4932 
4933 	hw->mac.tx_packet_delta = er32(TPT);
4934 	adapter->stats.tpt += hw->mac.tx_packet_delta;
4935 
4936 	adapter->stats.algnerrc += er32(ALGNERRC);
4937 	adapter->stats.rxerrc += er32(RXERRC);
4938 	adapter->stats.cexterr += er32(CEXTERR);
4939 	adapter->stats.tsctc += er32(TSCTC);
4940 	adapter->stats.tsctfc += er32(TSCTFC);
4941 
4942 	/* Fill out the OS statistics structure */
4943 	netdev->stats.multicast = adapter->stats.mprc;
4944 	netdev->stats.collisions = adapter->stats.colc;
4945 
4946 	/* Rx Errors */
4947 
4948 	/* RLEC on some newer hardware can be incorrect so build
4949 	 * our own version based on RUC and ROC
4950 	 */
4951 	netdev->stats.rx_errors = adapter->stats.rxerrc +
4952 	    adapter->stats.crcerrs + adapter->stats.algnerrc +
4953 	    adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
4954 	netdev->stats.rx_length_errors = adapter->stats.ruc +
4955 	    adapter->stats.roc;
4956 	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
4957 	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
4958 	netdev->stats.rx_missed_errors = adapter->stats.mpc;
4959 
4960 	/* Tx Errors */
4961 	netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol;
4962 	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
4963 	netdev->stats.tx_window_errors = adapter->stats.latecol;
4964 	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
4965 
4966 	/* Tx Dropped needs to be maintained elsewhere */
4967 
4968 	/* Management Stats */
4969 	adapter->stats.mgptc += er32(MGTPTC);
4970 	adapter->stats.mgprc += er32(MGTPRC);
4971 	adapter->stats.mgpdc += er32(MGTPDC);
4972 
4973 	/* Correctable ECC Errors */
4974 	if ((hw->mac.type == e1000_pch_lpt) ||
4975 	    (hw->mac.type == e1000_pch_spt)) {
4976 		u32 pbeccsts = er32(PBECCSTS);
4977 
4978 		adapter->corr_errors +=
4979 		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
4980 		adapter->uncorr_errors +=
4981 		    (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
4982 		    E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
4983 	}
4984 }
4985 
4986 /**
4987  * e1000_phy_read_status - Update the PHY register status snapshot
4988  * @adapter: board private structure
4989  **/
4990 static void e1000_phy_read_status(struct e1000_adapter *adapter)
4991 {
4992 	struct e1000_hw *hw = &adapter->hw;
4993 	struct e1000_phy_regs *phy = &adapter->phy_regs;
4994 
4995 	if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) &&
4996 	    (er32(STATUS) & E1000_STATUS_LU) &&
4997 	    (adapter->hw.phy.media_type == e1000_media_type_copper)) {
4998 		int ret_val;
4999 
5000 		ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr);
5001 		ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr);
5002 		ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise);
5003 		ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa);
5004 		ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion);
5005 		ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000);
5006 		ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000);
5007 		ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus);
5008 		if (ret_val)
5009 			e_warn("Error reading PHY register\n");
5010 	} else {
5011 		/* Do not read PHY registers if link is not up
5012 		 * Set values to typical power-on defaults
5013 		 */
5014 		phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
5015 		phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
5016 			     BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
5017 			     BMSR_ERCAP);
5018 		phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
5019 				  ADVERTISE_ALL | ADVERTISE_CSMA);
5020 		phy->lpa = 0;
5021 		phy->expansion = EXPANSION_ENABLENPAGE;
5022 		phy->ctrl1000 = ADVERTISE_1000FULL;
5023 		phy->stat1000 = 0;
5024 		phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
5025 	}
5026 }
5027 
5028 static void e1000_print_link_info(struct e1000_adapter *adapter)
5029 {
5030 	struct e1000_hw *hw = &adapter->hw;
5031 	u32 ctrl = er32(CTRL);
5032 
5033 	/* Link status message must follow this format for user tools */
5034 	pr_info("%s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5035 		adapter->netdev->name, adapter->link_speed,
5036 		adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
5037 		(ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
5038 		(ctrl & E1000_CTRL_RFCE) ? "Rx" :
5039 		(ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
5040 }
5041 
5042 static bool e1000e_has_link(struct e1000_adapter *adapter)
5043 {
5044 	struct e1000_hw *hw = &adapter->hw;
5045 	bool link_active = false;
5046 	s32 ret_val = 0;
5047 
5048 	/* get_link_status is set on LSC (link status) interrupt or
5049 	 * Rx sequence error interrupt.  get_link_status will stay
5050 	 * false until the check_for_link establishes link
5051 	 * for copper adapters ONLY
5052 	 */
5053 	switch (hw->phy.media_type) {
5054 	case e1000_media_type_copper:
5055 		if (hw->mac.get_link_status) {
5056 			ret_val = hw->mac.ops.check_for_link(hw);
5057 			link_active = !hw->mac.get_link_status;
5058 		} else {
5059 			link_active = true;
5060 		}
5061 		break;
5062 	case e1000_media_type_fiber:
5063 		ret_val = hw->mac.ops.check_for_link(hw);
5064 		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
5065 		break;
5066 	case e1000_media_type_internal_serdes:
5067 		ret_val = hw->mac.ops.check_for_link(hw);
5068 		link_active = adapter->hw.mac.serdes_has_link;
5069 		break;
5070 	default:
5071 	case e1000_media_type_unknown:
5072 		break;
5073 	}
5074 
5075 	if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
5076 	    (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
5077 		/* See e1000_kmrn_lock_loss_workaround_ich8lan() */
5078 		e_info("Gigabit has been disabled, downgrading speed\n");
5079 	}
5080 
5081 	return link_active;
5082 }
5083 
5084 static void e1000e_enable_receives(struct e1000_adapter *adapter)
5085 {
5086 	/* make sure the receive unit is started */
5087 	if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
5088 	    (adapter->flags & FLAG_RESTART_NOW)) {
5089 		struct e1000_hw *hw = &adapter->hw;
5090 		u32 rctl = er32(RCTL);
5091 
5092 		ew32(RCTL, rctl | E1000_RCTL_EN);
5093 		adapter->flags &= ~FLAG_RESTART_NOW;
5094 	}
5095 }
5096 
5097 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
5098 {
5099 	struct e1000_hw *hw = &adapter->hw;
5100 
5101 	/* With 82574 controllers, PHY needs to be checked periodically
5102 	 * for hung state and reset, if two calls return true
5103 	 */
5104 	if (e1000_check_phy_82574(hw))
5105 		adapter->phy_hang_count++;
5106 	else
5107 		adapter->phy_hang_count = 0;
5108 
5109 	if (adapter->phy_hang_count > 1) {
5110 		adapter->phy_hang_count = 0;
5111 		e_dbg("PHY appears hung - resetting\n");
5112 		schedule_work(&adapter->reset_task);
5113 	}
5114 }
5115 
5116 /**
5117  * e1000_watchdog - Timer Call-back
5118  * @data: pointer to adapter cast into an unsigned long
5119  **/
5120 static void e1000_watchdog(unsigned long data)
5121 {
5122 	struct e1000_adapter *adapter = (struct e1000_adapter *)data;
5123 
5124 	/* Do the rest outside of interrupt context */
5125 	schedule_work(&adapter->watchdog_task);
5126 
5127 	/* TODO: make this use queue_delayed_work() */
5128 }
5129 
5130 static void e1000_watchdog_task(struct work_struct *work)
5131 {
5132 	struct e1000_adapter *adapter = container_of(work,
5133 						     struct e1000_adapter,
5134 						     watchdog_task);
5135 	struct net_device *netdev = adapter->netdev;
5136 	struct e1000_mac_info *mac = &adapter->hw.mac;
5137 	struct e1000_phy_info *phy = &adapter->hw.phy;
5138 	struct e1000_ring *tx_ring = adapter->tx_ring;
5139 	struct e1000_hw *hw = &adapter->hw;
5140 	u32 link, tctl;
5141 
5142 	if (test_bit(__E1000_DOWN, &adapter->state))
5143 		return;
5144 
5145 	link = e1000e_has_link(adapter);
5146 	if ((netif_carrier_ok(netdev)) && link) {
5147 		/* Cancel scheduled suspend requests. */
5148 		pm_runtime_resume(netdev->dev.parent);
5149 
5150 		e1000e_enable_receives(adapter);
5151 		goto link_up;
5152 	}
5153 
5154 	if ((e1000e_enable_tx_pkt_filtering(hw)) &&
5155 	    (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
5156 		e1000_update_mng_vlan(adapter);
5157 
5158 	if (link) {
5159 		if (!netif_carrier_ok(netdev)) {
5160 			bool txb2b = true;
5161 
5162 			/* Cancel scheduled suspend requests. */
5163 			pm_runtime_resume(netdev->dev.parent);
5164 
5165 			/* update snapshot of PHY registers on LSC */
5166 			e1000_phy_read_status(adapter);
5167 			mac->ops.get_link_up_info(&adapter->hw,
5168 						  &adapter->link_speed,
5169 						  &adapter->link_duplex);
5170 			e1000_print_link_info(adapter);
5171 
5172 			/* check if SmartSpeed worked */
5173 			e1000e_check_downshift(hw);
5174 			if (phy->speed_downgraded)
5175 				netdev_warn(netdev,
5176 					    "Link Speed was downgraded by SmartSpeed\n");
5177 
5178 			/* On supported PHYs, check for duplex mismatch only
5179 			 * if link has autonegotiated at 10/100 half
5180 			 */
5181 			if ((hw->phy.type == e1000_phy_igp_3 ||
5182 			     hw->phy.type == e1000_phy_bm) &&
5183 			    hw->mac.autoneg &&
5184 			    (adapter->link_speed == SPEED_10 ||
5185 			     adapter->link_speed == SPEED_100) &&
5186 			    (adapter->link_duplex == HALF_DUPLEX)) {
5187 				u16 autoneg_exp;
5188 
5189 				e1e_rphy(hw, MII_EXPANSION, &autoneg_exp);
5190 
5191 				if (!(autoneg_exp & EXPANSION_NWAY))
5192 					e_info("Autonegotiated half duplex but link partner cannot autoneg.  Try forcing full duplex if link gets many collisions.\n");
5193 			}
5194 
5195 			/* adjust timeout factor according to speed/duplex */
5196 			adapter->tx_timeout_factor = 1;
5197 			switch (adapter->link_speed) {
5198 			case SPEED_10:
5199 				txb2b = false;
5200 				adapter->tx_timeout_factor = 16;
5201 				break;
5202 			case SPEED_100:
5203 				txb2b = false;
5204 				adapter->tx_timeout_factor = 10;
5205 				break;
5206 			}
5207 
5208 			/* workaround: re-program speed mode bit after
5209 			 * link-up event
5210 			 */
5211 			if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
5212 			    !txb2b) {
5213 				u32 tarc0;
5214 
5215 				tarc0 = er32(TARC(0));
5216 				tarc0 &= ~SPEED_MODE_BIT;
5217 				ew32(TARC(0), tarc0);
5218 			}
5219 
5220 			/* disable TSO for pcie and 10/100 speeds, to avoid
5221 			 * some hardware issues
5222 			 */
5223 			if (!(adapter->flags & FLAG_TSO_FORCE)) {
5224 				switch (adapter->link_speed) {
5225 				case SPEED_10:
5226 				case SPEED_100:
5227 					e_info("10/100 speed: disabling TSO\n");
5228 					netdev->features &= ~NETIF_F_TSO;
5229 					netdev->features &= ~NETIF_F_TSO6;
5230 					break;
5231 				case SPEED_1000:
5232 					netdev->features |= NETIF_F_TSO;
5233 					netdev->features |= NETIF_F_TSO6;
5234 					break;
5235 				default:
5236 					/* oops */
5237 					break;
5238 				}
5239 			}
5240 
5241 			/* enable transmits in the hardware, need to do this
5242 			 * after setting TARC(0)
5243 			 */
5244 			tctl = er32(TCTL);
5245 			tctl |= E1000_TCTL_EN;
5246 			ew32(TCTL, tctl);
5247 
5248 			/* Perform any post-link-up configuration before
5249 			 * reporting link up.
5250 			 */
5251 			if (phy->ops.cfg_on_link_up)
5252 				phy->ops.cfg_on_link_up(hw);
5253 
5254 			netif_carrier_on(netdev);
5255 
5256 			if (!test_bit(__E1000_DOWN, &adapter->state))
5257 				mod_timer(&adapter->phy_info_timer,
5258 					  round_jiffies(jiffies + 2 * HZ));
5259 		}
5260 	} else {
5261 		if (netif_carrier_ok(netdev)) {
5262 			adapter->link_speed = 0;
5263 			adapter->link_duplex = 0;
5264 			/* Link status message must follow this format */
5265 			pr_info("%s NIC Link is Down\n", adapter->netdev->name);
5266 			netif_carrier_off(netdev);
5267 			if (!test_bit(__E1000_DOWN, &adapter->state))
5268 				mod_timer(&adapter->phy_info_timer,
5269 					  round_jiffies(jiffies + 2 * HZ));
5270 
5271 			/* 8000ES2LAN requires a Rx packet buffer work-around
5272 			 * on link down event; reset the controller to flush
5273 			 * the Rx packet buffer.
5274 			 */
5275 			if (adapter->flags & FLAG_RX_NEEDS_RESTART)
5276 				adapter->flags |= FLAG_RESTART_NOW;
5277 			else
5278 				pm_schedule_suspend(netdev->dev.parent,
5279 						    LINK_TIMEOUT);
5280 		}
5281 	}
5282 
5283 link_up:
5284 	spin_lock(&adapter->stats64_lock);
5285 	e1000e_update_stats(adapter);
5286 
5287 	mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
5288 	adapter->tpt_old = adapter->stats.tpt;
5289 	mac->collision_delta = adapter->stats.colc - adapter->colc_old;
5290 	adapter->colc_old = adapter->stats.colc;
5291 
5292 	adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
5293 	adapter->gorc_old = adapter->stats.gorc;
5294 	adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
5295 	adapter->gotc_old = adapter->stats.gotc;
5296 	spin_unlock(&adapter->stats64_lock);
5297 
5298 	/* If the link is lost the controller stops DMA, but
5299 	 * if there is queued Tx work it cannot be done.  So
5300 	 * reset the controller to flush the Tx packet buffers.
5301 	 */
5302 	if (!netif_carrier_ok(netdev) &&
5303 	    (e1000_desc_unused(tx_ring) + 1 < tx_ring->count))
5304 		adapter->flags |= FLAG_RESTART_NOW;
5305 
5306 	/* If reset is necessary, do it outside of interrupt context. */
5307 	if (adapter->flags & FLAG_RESTART_NOW) {
5308 		schedule_work(&adapter->reset_task);
5309 		/* return immediately since reset is imminent */
5310 		return;
5311 	}
5312 
5313 	e1000e_update_adaptive(&adapter->hw);
5314 
5315 	/* Simple mode for Interrupt Throttle Rate (ITR) */
5316 	if (adapter->itr_setting == 4) {
5317 		/* Symmetric Tx/Rx gets a reduced ITR=2000;
5318 		 * Total asymmetrical Tx or Rx gets ITR=8000;
5319 		 * everyone else is between 2000-8000.
5320 		 */
5321 		u32 goc = (adapter->gotc + adapter->gorc) / 10000;
5322 		u32 dif = (adapter->gotc > adapter->gorc ?
5323 			   adapter->gotc - adapter->gorc :
5324 			   adapter->gorc - adapter->gotc) / 10000;
5325 		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
5326 
5327 		e1000e_write_itr(adapter, itr);
5328 	}
5329 
5330 	/* Cause software interrupt to ensure Rx ring is cleaned */
5331 	if (adapter->msix_entries)
5332 		ew32(ICS, adapter->rx_ring->ims_val);
5333 	else
5334 		ew32(ICS, E1000_ICS_RXDMT0);
5335 
5336 	/* flush pending descriptors to memory before detecting Tx hang */
5337 	e1000e_flush_descriptors(adapter);
5338 
5339 	/* Force detection of hung controller every watchdog period */
5340 	adapter->detect_tx_hung = true;
5341 
5342 	/* With 82571 controllers, LAA may be overwritten due to controller
5343 	 * reset from the other port. Set the appropriate LAA in RAR[0]
5344 	 */
5345 	if (e1000e_get_laa_state_82571(hw))
5346 		hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
5347 
5348 	if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
5349 		e1000e_check_82574_phy_workaround(adapter);
5350 
5351 	/* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5352 	if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) {
5353 		if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) &&
5354 		    (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) {
5355 			er32(RXSTMPH);
5356 			adapter->rx_hwtstamp_cleared++;
5357 		} else {
5358 			adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP;
5359 		}
5360 	}
5361 
5362 	/* Reset the timer */
5363 	if (!test_bit(__E1000_DOWN, &adapter->state))
5364 		mod_timer(&adapter->watchdog_timer,
5365 			  round_jiffies(jiffies + 2 * HZ));
5366 }
5367 
5368 #define E1000_TX_FLAGS_CSUM		0x00000001
5369 #define E1000_TX_FLAGS_VLAN		0x00000002
5370 #define E1000_TX_FLAGS_TSO		0x00000004
5371 #define E1000_TX_FLAGS_IPV4		0x00000008
5372 #define E1000_TX_FLAGS_NO_FCS		0x00000010
5373 #define E1000_TX_FLAGS_HWTSTAMP		0x00000020
5374 #define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
5375 #define E1000_TX_FLAGS_VLAN_SHIFT	16
5376 
5377 static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb,
5378 		     __be16 protocol)
5379 {
5380 	struct e1000_context_desc *context_desc;
5381 	struct e1000_buffer *buffer_info;
5382 	unsigned int i;
5383 	u32 cmd_length = 0;
5384 	u16 ipcse = 0, mss;
5385 	u8 ipcss, ipcso, tucss, tucso, hdr_len;
5386 	int err;
5387 
5388 	if (!skb_is_gso(skb))
5389 		return 0;
5390 
5391 	err = skb_cow_head(skb, 0);
5392 	if (err < 0)
5393 		return err;
5394 
5395 	hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5396 	mss = skb_shinfo(skb)->gso_size;
5397 	if (protocol == htons(ETH_P_IP)) {
5398 		struct iphdr *iph = ip_hdr(skb);
5399 		iph->tot_len = 0;
5400 		iph->check = 0;
5401 		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
5402 							 0, IPPROTO_TCP, 0);
5403 		cmd_length = E1000_TXD_CMD_IP;
5404 		ipcse = skb_transport_offset(skb) - 1;
5405 	} else if (skb_is_gso_v6(skb)) {
5406 		ipv6_hdr(skb)->payload_len = 0;
5407 		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5408 						       &ipv6_hdr(skb)->daddr,
5409 						       0, IPPROTO_TCP, 0);
5410 		ipcse = 0;
5411 	}
5412 	ipcss = skb_network_offset(skb);
5413 	ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
5414 	tucss = skb_transport_offset(skb);
5415 	tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
5416 
5417 	cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
5418 		       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
5419 
5420 	i = tx_ring->next_to_use;
5421 	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5422 	buffer_info = &tx_ring->buffer_info[i];
5423 
5424 	context_desc->lower_setup.ip_fields.ipcss = ipcss;
5425 	context_desc->lower_setup.ip_fields.ipcso = ipcso;
5426 	context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
5427 	context_desc->upper_setup.tcp_fields.tucss = tucss;
5428 	context_desc->upper_setup.tcp_fields.tucso = tucso;
5429 	context_desc->upper_setup.tcp_fields.tucse = 0;
5430 	context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
5431 	context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
5432 	context_desc->cmd_and_length = cpu_to_le32(cmd_length);
5433 
5434 	buffer_info->time_stamp = jiffies;
5435 	buffer_info->next_to_watch = i;
5436 
5437 	i++;
5438 	if (i == tx_ring->count)
5439 		i = 0;
5440 	tx_ring->next_to_use = i;
5441 
5442 	return 1;
5443 }
5444 
5445 static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb,
5446 			  __be16 protocol)
5447 {
5448 	struct e1000_adapter *adapter = tx_ring->adapter;
5449 	struct e1000_context_desc *context_desc;
5450 	struct e1000_buffer *buffer_info;
5451 	unsigned int i;
5452 	u8 css;
5453 	u32 cmd_len = E1000_TXD_CMD_DEXT;
5454 
5455 	if (skb->ip_summed != CHECKSUM_PARTIAL)
5456 		return false;
5457 
5458 	switch (protocol) {
5459 	case cpu_to_be16(ETH_P_IP):
5460 		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
5461 			cmd_len |= E1000_TXD_CMD_TCP;
5462 		break;
5463 	case cpu_to_be16(ETH_P_IPV6):
5464 		/* XXX not handling all IPV6 headers */
5465 		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
5466 			cmd_len |= E1000_TXD_CMD_TCP;
5467 		break;
5468 	default:
5469 		if (unlikely(net_ratelimit()))
5470 			e_warn("checksum_partial proto=%x!\n",
5471 			       be16_to_cpu(protocol));
5472 		break;
5473 	}
5474 
5475 	css = skb_checksum_start_offset(skb);
5476 
5477 	i = tx_ring->next_to_use;
5478 	buffer_info = &tx_ring->buffer_info[i];
5479 	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5480 
5481 	context_desc->lower_setup.ip_config = 0;
5482 	context_desc->upper_setup.tcp_fields.tucss = css;
5483 	context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset;
5484 	context_desc->upper_setup.tcp_fields.tucse = 0;
5485 	context_desc->tcp_seg_setup.data = 0;
5486 	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
5487 
5488 	buffer_info->time_stamp = jiffies;
5489 	buffer_info->next_to_watch = i;
5490 
5491 	i++;
5492 	if (i == tx_ring->count)
5493 		i = 0;
5494 	tx_ring->next_to_use = i;
5495 
5496 	return true;
5497 }
5498 
5499 static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
5500 			unsigned int first, unsigned int max_per_txd,
5501 			unsigned int nr_frags)
5502 {
5503 	struct e1000_adapter *adapter = tx_ring->adapter;
5504 	struct pci_dev *pdev = adapter->pdev;
5505 	struct e1000_buffer *buffer_info;
5506 	unsigned int len = skb_headlen(skb);
5507 	unsigned int offset = 0, size, count = 0, i;
5508 	unsigned int f, bytecount, segs;
5509 
5510 	i = tx_ring->next_to_use;
5511 
5512 	while (len) {
5513 		buffer_info = &tx_ring->buffer_info[i];
5514 		size = min(len, max_per_txd);
5515 
5516 		buffer_info->length = size;
5517 		buffer_info->time_stamp = jiffies;
5518 		buffer_info->next_to_watch = i;
5519 		buffer_info->dma = dma_map_single(&pdev->dev,
5520 						  skb->data + offset,
5521 						  size, DMA_TO_DEVICE);
5522 		buffer_info->mapped_as_page = false;
5523 		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5524 			goto dma_error;
5525 
5526 		len -= size;
5527 		offset += size;
5528 		count++;
5529 
5530 		if (len) {
5531 			i++;
5532 			if (i == tx_ring->count)
5533 				i = 0;
5534 		}
5535 	}
5536 
5537 	for (f = 0; f < nr_frags; f++) {
5538 		const struct skb_frag_struct *frag;
5539 
5540 		frag = &skb_shinfo(skb)->frags[f];
5541 		len = skb_frag_size(frag);
5542 		offset = 0;
5543 
5544 		while (len) {
5545 			i++;
5546 			if (i == tx_ring->count)
5547 				i = 0;
5548 
5549 			buffer_info = &tx_ring->buffer_info[i];
5550 			size = min(len, max_per_txd);
5551 
5552 			buffer_info->length = size;
5553 			buffer_info->time_stamp = jiffies;
5554 			buffer_info->next_to_watch = i;
5555 			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
5556 							    offset, size,
5557 							    DMA_TO_DEVICE);
5558 			buffer_info->mapped_as_page = true;
5559 			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5560 				goto dma_error;
5561 
5562 			len -= size;
5563 			offset += size;
5564 			count++;
5565 		}
5566 	}
5567 
5568 	segs = skb_shinfo(skb)->gso_segs ? : 1;
5569 	/* multiply data chunks by size of headers */
5570 	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
5571 
5572 	tx_ring->buffer_info[i].skb = skb;
5573 	tx_ring->buffer_info[i].segs = segs;
5574 	tx_ring->buffer_info[i].bytecount = bytecount;
5575 	tx_ring->buffer_info[first].next_to_watch = i;
5576 
5577 	return count;
5578 
5579 dma_error:
5580 	dev_err(&pdev->dev, "Tx DMA map failed\n");
5581 	buffer_info->dma = 0;
5582 	if (count)
5583 		count--;
5584 
5585 	while (count--) {
5586 		if (i == 0)
5587 			i += tx_ring->count;
5588 		i--;
5589 		buffer_info = &tx_ring->buffer_info[i];
5590 		e1000_put_txbuf(tx_ring, buffer_info);
5591 	}
5592 
5593 	return 0;
5594 }
5595 
5596 static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
5597 {
5598 	struct e1000_adapter *adapter = tx_ring->adapter;
5599 	struct e1000_tx_desc *tx_desc = NULL;
5600 	struct e1000_buffer *buffer_info;
5601 	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
5602 	unsigned int i;
5603 
5604 	if (tx_flags & E1000_TX_FLAGS_TSO) {
5605 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
5606 		    E1000_TXD_CMD_TSE;
5607 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5608 
5609 		if (tx_flags & E1000_TX_FLAGS_IPV4)
5610 			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
5611 	}
5612 
5613 	if (tx_flags & E1000_TX_FLAGS_CSUM) {
5614 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5615 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5616 	}
5617 
5618 	if (tx_flags & E1000_TX_FLAGS_VLAN) {
5619 		txd_lower |= E1000_TXD_CMD_VLE;
5620 		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
5621 	}
5622 
5623 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5624 		txd_lower &= ~(E1000_TXD_CMD_IFCS);
5625 
5626 	if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) {
5627 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5628 		txd_upper |= E1000_TXD_EXTCMD_TSTAMP;
5629 	}
5630 
5631 	i = tx_ring->next_to_use;
5632 
5633 	do {
5634 		buffer_info = &tx_ring->buffer_info[i];
5635 		tx_desc = E1000_TX_DESC(*tx_ring, i);
5636 		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
5637 		tx_desc->lower.data = cpu_to_le32(txd_lower |
5638 						  buffer_info->length);
5639 		tx_desc->upper.data = cpu_to_le32(txd_upper);
5640 
5641 		i++;
5642 		if (i == tx_ring->count)
5643 			i = 0;
5644 	} while (--count > 0);
5645 
5646 	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
5647 
5648 	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5649 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5650 		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
5651 
5652 	/* Force memory writes to complete before letting h/w
5653 	 * know there are new descriptors to fetch.  (Only
5654 	 * applicable for weak-ordered memory model archs,
5655 	 * such as IA-64).
5656 	 */
5657 	wmb();
5658 
5659 	tx_ring->next_to_use = i;
5660 }
5661 
5662 #define MINIMUM_DHCP_PACKET_SIZE 282
5663 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
5664 				    struct sk_buff *skb)
5665 {
5666 	struct e1000_hw *hw = &adapter->hw;
5667 	u16 length, offset;
5668 
5669 	if (skb_vlan_tag_present(skb) &&
5670 	    !((skb_vlan_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
5671 	      (adapter->hw.mng_cookie.status &
5672 	       E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
5673 		return 0;
5674 
5675 	if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
5676 		return 0;
5677 
5678 	if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP))
5679 		return 0;
5680 
5681 	{
5682 		const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14);
5683 		struct udphdr *udp;
5684 
5685 		if (ip->protocol != IPPROTO_UDP)
5686 			return 0;
5687 
5688 		udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
5689 		if (ntohs(udp->dest) != 67)
5690 			return 0;
5691 
5692 		offset = (u8 *)udp + 8 - skb->data;
5693 		length = skb->len - offset;
5694 		return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
5695 	}
5696 
5697 	return 0;
5698 }
5699 
5700 static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5701 {
5702 	struct e1000_adapter *adapter = tx_ring->adapter;
5703 
5704 	netif_stop_queue(adapter->netdev);
5705 	/* Herbert's original patch had:
5706 	 *  smp_mb__after_netif_stop_queue();
5707 	 * but since that doesn't exist yet, just open code it.
5708 	 */
5709 	smp_mb();
5710 
5711 	/* We need to check again in a case another CPU has just
5712 	 * made room available.
5713 	 */
5714 	if (e1000_desc_unused(tx_ring) < size)
5715 		return -EBUSY;
5716 
5717 	/* A reprieve! */
5718 	netif_start_queue(adapter->netdev);
5719 	++adapter->restart_queue;
5720 	return 0;
5721 }
5722 
5723 static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5724 {
5725 	BUG_ON(size > tx_ring->count);
5726 
5727 	if (e1000_desc_unused(tx_ring) >= size)
5728 		return 0;
5729 	return __e1000_maybe_stop_tx(tx_ring, size);
5730 }
5731 
5732 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5733 				    struct net_device *netdev)
5734 {
5735 	struct e1000_adapter *adapter = netdev_priv(netdev);
5736 	struct e1000_ring *tx_ring = adapter->tx_ring;
5737 	unsigned int first;
5738 	unsigned int tx_flags = 0;
5739 	unsigned int len = skb_headlen(skb);
5740 	unsigned int nr_frags;
5741 	unsigned int mss;
5742 	int count = 0;
5743 	int tso;
5744 	unsigned int f;
5745 	__be16 protocol = vlan_get_protocol(skb);
5746 
5747 	if (test_bit(__E1000_DOWN, &adapter->state)) {
5748 		dev_kfree_skb_any(skb);
5749 		return NETDEV_TX_OK;
5750 	}
5751 
5752 	if (skb->len <= 0) {
5753 		dev_kfree_skb_any(skb);
5754 		return NETDEV_TX_OK;
5755 	}
5756 
5757 	/* The minimum packet size with TCTL.PSP set is 17 bytes so
5758 	 * pad skb in order to meet this minimum size requirement
5759 	 */
5760 	if (skb_put_padto(skb, 17))
5761 		return NETDEV_TX_OK;
5762 
5763 	mss = skb_shinfo(skb)->gso_size;
5764 	if (mss) {
5765 		u8 hdr_len;
5766 
5767 		/* TSO Workaround for 82571/2/3 Controllers -- if skb->data
5768 		 * points to just header, pull a few bytes of payload from
5769 		 * frags into skb->data
5770 		 */
5771 		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5772 		/* we do this workaround for ES2LAN, but it is un-necessary,
5773 		 * avoiding it could save a lot of cycles
5774 		 */
5775 		if (skb->data_len && (hdr_len == len)) {
5776 			unsigned int pull_size;
5777 
5778 			pull_size = min_t(unsigned int, 4, skb->data_len);
5779 			if (!__pskb_pull_tail(skb, pull_size)) {
5780 				e_err("__pskb_pull_tail failed.\n");
5781 				dev_kfree_skb_any(skb);
5782 				return NETDEV_TX_OK;
5783 			}
5784 			len = skb_headlen(skb);
5785 		}
5786 	}
5787 
5788 	/* reserve a descriptor for the offload context */
5789 	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5790 		count++;
5791 	count++;
5792 
5793 	count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
5794 
5795 	nr_frags = skb_shinfo(skb)->nr_frags;
5796 	for (f = 0; f < nr_frags; f++)
5797 		count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5798 				      adapter->tx_fifo_limit);
5799 
5800 	if (adapter->hw.mac.tx_pkt_filtering)
5801 		e1000_transfer_dhcp_info(adapter, skb);
5802 
5803 	/* need: count + 2 desc gap to keep tail from touching
5804 	 * head, otherwise try next time
5805 	 */
5806 	if (e1000_maybe_stop_tx(tx_ring, count + 2))
5807 		return NETDEV_TX_BUSY;
5808 
5809 	if (skb_vlan_tag_present(skb)) {
5810 		tx_flags |= E1000_TX_FLAGS_VLAN;
5811 		tx_flags |= (skb_vlan_tag_get(skb) <<
5812 			     E1000_TX_FLAGS_VLAN_SHIFT);
5813 	}
5814 
5815 	first = tx_ring->next_to_use;
5816 
5817 	tso = e1000_tso(tx_ring, skb, protocol);
5818 	if (tso < 0) {
5819 		dev_kfree_skb_any(skb);
5820 		return NETDEV_TX_OK;
5821 	}
5822 
5823 	if (tso)
5824 		tx_flags |= E1000_TX_FLAGS_TSO;
5825 	else if (e1000_tx_csum(tx_ring, skb, protocol))
5826 		tx_flags |= E1000_TX_FLAGS_CSUM;
5827 
5828 	/* Old method was to assume IPv4 packet by default if TSO was enabled.
5829 	 * 82571 hardware supports TSO capabilities for IPv6 as well...
5830 	 * no longer assume, we must.
5831 	 */
5832 	if (protocol == htons(ETH_P_IP))
5833 		tx_flags |= E1000_TX_FLAGS_IPV4;
5834 
5835 	if (unlikely(skb->no_fcs))
5836 		tx_flags |= E1000_TX_FLAGS_NO_FCS;
5837 
5838 	/* if count is 0 then mapping error has occurred */
5839 	count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5840 			     nr_frags);
5841 	if (count) {
5842 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
5843 		    (adapter->flags & FLAG_HAS_HW_TIMESTAMP) &&
5844 		    !adapter->tx_hwtstamp_skb) {
5845 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5846 			tx_flags |= E1000_TX_FLAGS_HWTSTAMP;
5847 			adapter->tx_hwtstamp_skb = skb_get(skb);
5848 			adapter->tx_hwtstamp_start = jiffies;
5849 			schedule_work(&adapter->tx_hwtstamp_work);
5850 		} else {
5851 			skb_tx_timestamp(skb);
5852 		}
5853 
5854 		netdev_sent_queue(netdev, skb->len);
5855 		e1000_tx_queue(tx_ring, tx_flags, count);
5856 		/* Make sure there is space in the ring for the next send. */
5857 		e1000_maybe_stop_tx(tx_ring,
5858 				    (MAX_SKB_FRAGS *
5859 				     DIV_ROUND_UP(PAGE_SIZE,
5860 						  adapter->tx_fifo_limit) + 2));
5861 
5862 		if (!skb->xmit_more ||
5863 		    netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
5864 			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
5865 				e1000e_update_tdt_wa(tx_ring,
5866 						     tx_ring->next_to_use);
5867 			else
5868 				writel(tx_ring->next_to_use, tx_ring->tail);
5869 
5870 			/* we need this if more than one processor can write
5871 			 * to our tail at a time, it synchronizes IO on
5872 			 *IA64/Altix systems
5873 			 */
5874 			mmiowb();
5875 		}
5876 	} else {
5877 		dev_kfree_skb_any(skb);
5878 		tx_ring->buffer_info[first].time_stamp = 0;
5879 		tx_ring->next_to_use = first;
5880 	}
5881 
5882 	return NETDEV_TX_OK;
5883 }
5884 
5885 /**
5886  * e1000_tx_timeout - Respond to a Tx Hang
5887  * @netdev: network interface device structure
5888  **/
5889 static void e1000_tx_timeout(struct net_device *netdev)
5890 {
5891 	struct e1000_adapter *adapter = netdev_priv(netdev);
5892 
5893 	/* Do the reset outside of interrupt context */
5894 	adapter->tx_timeout_count++;
5895 	schedule_work(&adapter->reset_task);
5896 }
5897 
5898 static void e1000_reset_task(struct work_struct *work)
5899 {
5900 	struct e1000_adapter *adapter;
5901 	adapter = container_of(work, struct e1000_adapter, reset_task);
5902 
5903 	/* don't run the task if already down */
5904 	if (test_bit(__E1000_DOWN, &adapter->state))
5905 		return;
5906 
5907 	if (!(adapter->flags & FLAG_RESTART_NOW)) {
5908 		e1000e_dump(adapter);
5909 		e_err("Reset adapter unexpectedly\n");
5910 	}
5911 	e1000e_reinit_locked(adapter);
5912 }
5913 
5914 /**
5915  * e1000_get_stats64 - Get System Network Statistics
5916  * @netdev: network interface device structure
5917  * @stats: rtnl_link_stats64 pointer
5918  *
5919  * Returns the address of the device statistics structure.
5920  **/
5921 struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev,
5922 					     struct rtnl_link_stats64 *stats)
5923 {
5924 	struct e1000_adapter *adapter = netdev_priv(netdev);
5925 
5926 	memset(stats, 0, sizeof(struct rtnl_link_stats64));
5927 	spin_lock(&adapter->stats64_lock);
5928 	e1000e_update_stats(adapter);
5929 	/* Fill out the OS statistics structure */
5930 	stats->rx_bytes = adapter->stats.gorc;
5931 	stats->rx_packets = adapter->stats.gprc;
5932 	stats->tx_bytes = adapter->stats.gotc;
5933 	stats->tx_packets = adapter->stats.gptc;
5934 	stats->multicast = adapter->stats.mprc;
5935 	stats->collisions = adapter->stats.colc;
5936 
5937 	/* Rx Errors */
5938 
5939 	/* RLEC on some newer hardware can be incorrect so build
5940 	 * our own version based on RUC and ROC
5941 	 */
5942 	stats->rx_errors = adapter->stats.rxerrc +
5943 	    adapter->stats.crcerrs + adapter->stats.algnerrc +
5944 	    adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5945 	stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc;
5946 	stats->rx_crc_errors = adapter->stats.crcerrs;
5947 	stats->rx_frame_errors = adapter->stats.algnerrc;
5948 	stats->rx_missed_errors = adapter->stats.mpc;
5949 
5950 	/* Tx Errors */
5951 	stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol;
5952 	stats->tx_aborted_errors = adapter->stats.ecol;
5953 	stats->tx_window_errors = adapter->stats.latecol;
5954 	stats->tx_carrier_errors = adapter->stats.tncrs;
5955 
5956 	/* Tx Dropped needs to be maintained elsewhere */
5957 
5958 	spin_unlock(&adapter->stats64_lock);
5959 	return stats;
5960 }
5961 
5962 /**
5963  * e1000_change_mtu - Change the Maximum Transfer Unit
5964  * @netdev: network interface device structure
5965  * @new_mtu: new value for maximum frame size
5966  *
5967  * Returns 0 on success, negative on failure
5968  **/
5969 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
5970 {
5971 	struct e1000_adapter *adapter = netdev_priv(netdev);
5972 	int max_frame = new_mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
5973 
5974 	/* Jumbo frame support */
5975 	if ((max_frame > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) &&
5976 	    !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
5977 		e_err("Jumbo Frames not supported.\n");
5978 		return -EINVAL;
5979 	}
5980 
5981 	/* Supported frame sizes */
5982 	if ((new_mtu < (VLAN_ETH_ZLEN + ETH_FCS_LEN)) ||
5983 	    (max_frame > adapter->max_hw_frame_size)) {
5984 		e_err("Unsupported MTU setting\n");
5985 		return -EINVAL;
5986 	}
5987 
5988 	/* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
5989 	if ((adapter->hw.mac.type >= e1000_pch2lan) &&
5990 	    !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
5991 	    (new_mtu > ETH_DATA_LEN)) {
5992 		e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
5993 		return -EINVAL;
5994 	}
5995 
5996 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
5997 		usleep_range(1000, 2000);
5998 	/* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
5999 	adapter->max_frame_size = max_frame;
6000 	e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
6001 	netdev->mtu = new_mtu;
6002 
6003 	pm_runtime_get_sync(netdev->dev.parent);
6004 
6005 	if (netif_running(netdev))
6006 		e1000e_down(adapter, true);
6007 
6008 	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
6009 	 * means we reserve 2 more, this pushes us to allocate from the next
6010 	 * larger slab size.
6011 	 * i.e. RXBUFFER_2048 --> size-4096 slab
6012 	 * However with the new *_jumbo_rx* routines, jumbo receives will use
6013 	 * fragmented skbs
6014 	 */
6015 
6016 	if (max_frame <= 2048)
6017 		adapter->rx_buffer_len = 2048;
6018 	else
6019 		adapter->rx_buffer_len = 4096;
6020 
6021 	/* adjust allocation if LPE protects us, and we aren't using SBP */
6022 	if (max_frame <= (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN))
6023 		adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
6024 
6025 	if (netif_running(netdev))
6026 		e1000e_up(adapter);
6027 	else
6028 		e1000e_reset(adapter);
6029 
6030 	pm_runtime_put_sync(netdev->dev.parent);
6031 
6032 	clear_bit(__E1000_RESETTING, &adapter->state);
6033 
6034 	return 0;
6035 }
6036 
6037 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
6038 			   int cmd)
6039 {
6040 	struct e1000_adapter *adapter = netdev_priv(netdev);
6041 	struct mii_ioctl_data *data = if_mii(ifr);
6042 
6043 	if (adapter->hw.phy.media_type != e1000_media_type_copper)
6044 		return -EOPNOTSUPP;
6045 
6046 	switch (cmd) {
6047 	case SIOCGMIIPHY:
6048 		data->phy_id = adapter->hw.phy.addr;
6049 		break;
6050 	case SIOCGMIIREG:
6051 		e1000_phy_read_status(adapter);
6052 
6053 		switch (data->reg_num & 0x1F) {
6054 		case MII_BMCR:
6055 			data->val_out = adapter->phy_regs.bmcr;
6056 			break;
6057 		case MII_BMSR:
6058 			data->val_out = adapter->phy_regs.bmsr;
6059 			break;
6060 		case MII_PHYSID1:
6061 			data->val_out = (adapter->hw.phy.id >> 16);
6062 			break;
6063 		case MII_PHYSID2:
6064 			data->val_out = (adapter->hw.phy.id & 0xFFFF);
6065 			break;
6066 		case MII_ADVERTISE:
6067 			data->val_out = adapter->phy_regs.advertise;
6068 			break;
6069 		case MII_LPA:
6070 			data->val_out = adapter->phy_regs.lpa;
6071 			break;
6072 		case MII_EXPANSION:
6073 			data->val_out = adapter->phy_regs.expansion;
6074 			break;
6075 		case MII_CTRL1000:
6076 			data->val_out = adapter->phy_regs.ctrl1000;
6077 			break;
6078 		case MII_STAT1000:
6079 			data->val_out = adapter->phy_regs.stat1000;
6080 			break;
6081 		case MII_ESTATUS:
6082 			data->val_out = adapter->phy_regs.estatus;
6083 			break;
6084 		default:
6085 			return -EIO;
6086 		}
6087 		break;
6088 	case SIOCSMIIREG:
6089 	default:
6090 		return -EOPNOTSUPP;
6091 	}
6092 	return 0;
6093 }
6094 
6095 /**
6096  * e1000e_hwtstamp_ioctl - control hardware time stamping
6097  * @netdev: network interface device structure
6098  * @ifreq: interface request
6099  *
6100  * Outgoing time stamping can be enabled and disabled. Play nice and
6101  * disable it when requested, although it shouldn't cause any overhead
6102  * when no packet needs it. At most one packet in the queue may be
6103  * marked for time stamping, otherwise it would be impossible to tell
6104  * for sure to which packet the hardware time stamp belongs.
6105  *
6106  * Incoming time stamping has to be configured via the hardware filters.
6107  * Not all combinations are supported, in particular event type has to be
6108  * specified. Matching the kind of event packet is not supported, with the
6109  * exception of "all V2 events regardless of level 2 or 4".
6110  **/
6111 static int e1000e_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
6112 {
6113 	struct e1000_adapter *adapter = netdev_priv(netdev);
6114 	struct hwtstamp_config config;
6115 	int ret_val;
6116 
6117 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
6118 		return -EFAULT;
6119 
6120 	ret_val = e1000e_config_hwtstamp(adapter, &config);
6121 	if (ret_val)
6122 		return ret_val;
6123 
6124 	switch (config.rx_filter) {
6125 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6126 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6127 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
6128 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6129 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6130 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6131 		/* With V2 type filters which specify a Sync or Delay Request,
6132 		 * Path Delay Request/Response messages are also time stamped
6133 		 * by hardware so notify the caller the requested packets plus
6134 		 * some others are time stamped.
6135 		 */
6136 		config.rx_filter = HWTSTAMP_FILTER_SOME;
6137 		break;
6138 	default:
6139 		break;
6140 	}
6141 
6142 	return copy_to_user(ifr->ifr_data, &config,
6143 			    sizeof(config)) ? -EFAULT : 0;
6144 }
6145 
6146 static int e1000e_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
6147 {
6148 	struct e1000_adapter *adapter = netdev_priv(netdev);
6149 
6150 	return copy_to_user(ifr->ifr_data, &adapter->hwtstamp_config,
6151 			    sizeof(adapter->hwtstamp_config)) ? -EFAULT : 0;
6152 }
6153 
6154 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6155 {
6156 	switch (cmd) {
6157 	case SIOCGMIIPHY:
6158 	case SIOCGMIIREG:
6159 	case SIOCSMIIREG:
6160 		return e1000_mii_ioctl(netdev, ifr, cmd);
6161 	case SIOCSHWTSTAMP:
6162 		return e1000e_hwtstamp_set(netdev, ifr);
6163 	case SIOCGHWTSTAMP:
6164 		return e1000e_hwtstamp_get(netdev, ifr);
6165 	default:
6166 		return -EOPNOTSUPP;
6167 	}
6168 }
6169 
6170 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
6171 {
6172 	struct e1000_hw *hw = &adapter->hw;
6173 	u32 i, mac_reg, wuc;
6174 	u16 phy_reg, wuc_enable;
6175 	int retval;
6176 
6177 	/* copy MAC RARs to PHY RARs */
6178 	e1000_copy_rx_addrs_to_phy_ich8lan(hw);
6179 
6180 	retval = hw->phy.ops.acquire(hw);
6181 	if (retval) {
6182 		e_err("Could not acquire PHY\n");
6183 		return retval;
6184 	}
6185 
6186 	/* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
6187 	retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6188 	if (retval)
6189 		goto release;
6190 
6191 	/* copy MAC MTA to PHY MTA - only needed for pchlan */
6192 	for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
6193 		mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
6194 		hw->phy.ops.write_reg_page(hw, BM_MTA(i),
6195 					   (u16)(mac_reg & 0xFFFF));
6196 		hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
6197 					   (u16)((mac_reg >> 16) & 0xFFFF));
6198 	}
6199 
6200 	/* configure PHY Rx Control register */
6201 	hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
6202 	mac_reg = er32(RCTL);
6203 	if (mac_reg & E1000_RCTL_UPE)
6204 		phy_reg |= BM_RCTL_UPE;
6205 	if (mac_reg & E1000_RCTL_MPE)
6206 		phy_reg |= BM_RCTL_MPE;
6207 	phy_reg &= ~(BM_RCTL_MO_MASK);
6208 	if (mac_reg & E1000_RCTL_MO_3)
6209 		phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
6210 			    << BM_RCTL_MO_SHIFT);
6211 	if (mac_reg & E1000_RCTL_BAM)
6212 		phy_reg |= BM_RCTL_BAM;
6213 	if (mac_reg & E1000_RCTL_PMCF)
6214 		phy_reg |= BM_RCTL_PMCF;
6215 	mac_reg = er32(CTRL);
6216 	if (mac_reg & E1000_CTRL_RFCE)
6217 		phy_reg |= BM_RCTL_RFCE;
6218 	hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
6219 
6220 	wuc = E1000_WUC_PME_EN;
6221 	if (wufc & (E1000_WUFC_MAG | E1000_WUFC_LNKC))
6222 		wuc |= E1000_WUC_APME;
6223 
6224 	/* enable PHY wakeup in MAC register */
6225 	ew32(WUFC, wufc);
6226 	ew32(WUC, (E1000_WUC_PHY_WAKE | E1000_WUC_APMPME |
6227 		   E1000_WUC_PME_STATUS | wuc));
6228 
6229 	/* configure and enable PHY wakeup in PHY registers */
6230 	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
6231 	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, wuc);
6232 
6233 	/* activate PHY wakeup */
6234 	wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
6235 	retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6236 	if (retval)
6237 		e_err("Could not set PHY Host Wakeup bit\n");
6238 release:
6239 	hw->phy.ops.release(hw);
6240 
6241 	return retval;
6242 }
6243 
6244 static void e1000e_flush_lpic(struct pci_dev *pdev)
6245 {
6246 	struct net_device *netdev = pci_get_drvdata(pdev);
6247 	struct e1000_adapter *adapter = netdev_priv(netdev);
6248 	struct e1000_hw *hw = &adapter->hw;
6249 	u32 ret_val;
6250 
6251 	pm_runtime_get_sync(netdev->dev.parent);
6252 
6253 	ret_val = hw->phy.ops.acquire(hw);
6254 	if (ret_val)
6255 		goto fl_out;
6256 
6257 	pr_info("EEE TX LPI TIMER: %08X\n",
6258 		er32(LPIC) >> E1000_LPIC_LPIET_SHIFT);
6259 
6260 	hw->phy.ops.release(hw);
6261 
6262 fl_out:
6263 	pm_runtime_put_sync(netdev->dev.parent);
6264 }
6265 
6266 static int e1000e_pm_freeze(struct device *dev)
6267 {
6268 	struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6269 	struct e1000_adapter *adapter = netdev_priv(netdev);
6270 
6271 	netif_device_detach(netdev);
6272 
6273 	if (netif_running(netdev)) {
6274 		int count = E1000_CHECK_RESET_COUNT;
6275 
6276 		while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6277 			usleep_range(10000, 20000);
6278 
6279 		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6280 
6281 		/* Quiesce the device without resetting the hardware */
6282 		e1000e_down(adapter, false);
6283 		e1000_free_irq(adapter);
6284 	}
6285 	e1000e_reset_interrupt_capability(adapter);
6286 
6287 	/* Allow time for pending master requests to run */
6288 	e1000e_disable_pcie_master(&adapter->hw);
6289 
6290 	return 0;
6291 }
6292 
6293 static int __e1000_shutdown(struct pci_dev *pdev, bool runtime)
6294 {
6295 	struct net_device *netdev = pci_get_drvdata(pdev);
6296 	struct e1000_adapter *adapter = netdev_priv(netdev);
6297 	struct e1000_hw *hw = &adapter->hw;
6298 	u32 ctrl, ctrl_ext, rctl, status;
6299 	/* Runtime suspend should only enable wakeup for link changes */
6300 	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
6301 	int retval = 0;
6302 
6303 	status = er32(STATUS);
6304 	if (status & E1000_STATUS_LU)
6305 		wufc &= ~E1000_WUFC_LNKC;
6306 
6307 	if (wufc) {
6308 		e1000_setup_rctl(adapter);
6309 		e1000e_set_rx_mode(netdev);
6310 
6311 		/* turn on all-multi mode if wake on multicast is enabled */
6312 		if (wufc & E1000_WUFC_MC) {
6313 			rctl = er32(RCTL);
6314 			rctl |= E1000_RCTL_MPE;
6315 			ew32(RCTL, rctl);
6316 		}
6317 
6318 		ctrl = er32(CTRL);
6319 		ctrl |= E1000_CTRL_ADVD3WUC;
6320 		if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
6321 			ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
6322 		ew32(CTRL, ctrl);
6323 
6324 		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
6325 		    adapter->hw.phy.media_type ==
6326 		    e1000_media_type_internal_serdes) {
6327 			/* keep the laser running in D3 */
6328 			ctrl_ext = er32(CTRL_EXT);
6329 			ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
6330 			ew32(CTRL_EXT, ctrl_ext);
6331 		}
6332 
6333 		if (!runtime)
6334 			e1000e_power_up_phy(adapter);
6335 
6336 		if (adapter->flags & FLAG_IS_ICH)
6337 			e1000_suspend_workarounds_ich8lan(&adapter->hw);
6338 
6339 		if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6340 			/* enable wakeup by the PHY */
6341 			retval = e1000_init_phy_wakeup(adapter, wufc);
6342 			if (retval)
6343 				return retval;
6344 		} else {
6345 			/* enable wakeup by the MAC */
6346 			ew32(WUFC, wufc);
6347 			ew32(WUC, E1000_WUC_PME_EN);
6348 		}
6349 	} else {
6350 		ew32(WUC, 0);
6351 		ew32(WUFC, 0);
6352 
6353 		e1000_power_down_phy(adapter);
6354 	}
6355 
6356 	if (adapter->hw.phy.type == e1000_phy_igp_3) {
6357 		e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
6358 	} else if ((hw->mac.type == e1000_pch_lpt) ||
6359 		   (hw->mac.type == e1000_pch_spt)) {
6360 		if (!(wufc & (E1000_WUFC_EX | E1000_WUFC_MC | E1000_WUFC_BC)))
6361 			/* ULP does not support wake from unicast, multicast
6362 			 * or broadcast.
6363 			 */
6364 			retval = e1000_enable_ulp_lpt_lp(hw, !runtime);
6365 
6366 		if (retval)
6367 			return retval;
6368 	}
6369 
6370 	/* Ensure that the appropriate bits are set in LPI_CTRL
6371 	 * for EEE in Sx
6372 	 */
6373 	if ((hw->phy.type >= e1000_phy_i217) &&
6374 	    adapter->eee_advert && hw->dev_spec.ich8lan.eee_lp_ability) {
6375 		u16 lpi_ctrl = 0;
6376 
6377 		retval = hw->phy.ops.acquire(hw);
6378 		if (!retval) {
6379 			retval = e1e_rphy_locked(hw, I82579_LPI_CTRL,
6380 						 &lpi_ctrl);
6381 			if (!retval) {
6382 				if (adapter->eee_advert &
6383 				    hw->dev_spec.ich8lan.eee_lp_ability &
6384 				    I82579_EEE_100_SUPPORTED)
6385 					lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
6386 				if (adapter->eee_advert &
6387 				    hw->dev_spec.ich8lan.eee_lp_ability &
6388 				    I82579_EEE_1000_SUPPORTED)
6389 					lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
6390 
6391 				retval = e1e_wphy_locked(hw, I82579_LPI_CTRL,
6392 							 lpi_ctrl);
6393 			}
6394 		}
6395 		hw->phy.ops.release(hw);
6396 	}
6397 
6398 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
6399 	 * would have already happened in close and is redundant.
6400 	 */
6401 	e1000e_release_hw_control(adapter);
6402 
6403 	pci_clear_master(pdev);
6404 
6405 	/* The pci-e switch on some quad port adapters will report a
6406 	 * correctable error when the MAC transitions from D0 to D3.  To
6407 	 * prevent this we need to mask off the correctable errors on the
6408 	 * downstream port of the pci-e switch.
6409 	 *
6410 	 * We don't have the associated upstream bridge while assigning
6411 	 * the PCI device into guest. For example, the KVM on power is
6412 	 * one of the cases.
6413 	 */
6414 	if (adapter->flags & FLAG_IS_QUAD_PORT) {
6415 		struct pci_dev *us_dev = pdev->bus->self;
6416 		u16 devctl;
6417 
6418 		if (!us_dev)
6419 			return 0;
6420 
6421 		pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl);
6422 		pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL,
6423 					   (devctl & ~PCI_EXP_DEVCTL_CERE));
6424 
6425 		pci_save_state(pdev);
6426 		pci_prepare_to_sleep(pdev);
6427 
6428 		pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl);
6429 	}
6430 
6431 	return 0;
6432 }
6433 
6434 /**
6435  * __e1000e_disable_aspm - Disable ASPM states
6436  * @pdev: pointer to PCI device struct
6437  * @state: bit-mask of ASPM states to disable
6438  * @locked: indication if this context holds pci_bus_sem locked.
6439  *
6440  * Some devices *must* have certain ASPM states disabled per hardware errata.
6441  **/
6442 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state, int locked)
6443 {
6444 	struct pci_dev *parent = pdev->bus->self;
6445 	u16 aspm_dis_mask = 0;
6446 	u16 pdev_aspmc, parent_aspmc;
6447 
6448 	switch (state) {
6449 	case PCIE_LINK_STATE_L0S:
6450 	case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1:
6451 		aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S;
6452 		/* fall-through - can't have L1 without L0s */
6453 	case PCIE_LINK_STATE_L1:
6454 		aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1;
6455 		break;
6456 	default:
6457 		return;
6458 	}
6459 
6460 	pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6461 	pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6462 
6463 	if (parent) {
6464 		pcie_capability_read_word(parent, PCI_EXP_LNKCTL,
6465 					  &parent_aspmc);
6466 		parent_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6467 	}
6468 
6469 	/* Nothing to do if the ASPM states to be disabled already are */
6470 	if (!(pdev_aspmc & aspm_dis_mask) &&
6471 	    (!parent || !(parent_aspmc & aspm_dis_mask)))
6472 		return;
6473 
6474 	dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
6475 		 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ?
6476 		 "L0s" : "",
6477 		 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ?
6478 		 "L1" : "");
6479 
6480 #ifdef CONFIG_PCIEASPM
6481 	if (locked)
6482 		pci_disable_link_state_locked(pdev, state);
6483 	else
6484 		pci_disable_link_state(pdev, state);
6485 
6486 	/* Double-check ASPM control.  If not disabled by the above, the
6487 	 * BIOS is preventing that from happening (or CONFIG_PCIEASPM is
6488 	 * not enabled); override by writing PCI config space directly.
6489 	 */
6490 	pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6491 	pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6492 
6493 	if (!(aspm_dis_mask & pdev_aspmc))
6494 		return;
6495 #endif
6496 
6497 	/* Both device and parent should have the same ASPM setting.
6498 	 * Disable ASPM in downstream component first and then upstream.
6499 	 */
6500 	pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask);
6501 
6502 	if (parent)
6503 		pcie_capability_clear_word(parent, PCI_EXP_LNKCTL,
6504 					   aspm_dis_mask);
6505 }
6506 
6507 /**
6508  * e1000e_disable_aspm - Disable ASPM states.
6509  * @pdev: pointer to PCI device struct
6510  * @state: bit-mask of ASPM states to disable
6511  *
6512  * This function acquires the pci_bus_sem!
6513  * Some devices *must* have certain ASPM states disabled per hardware errata.
6514  **/
6515 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6516 {
6517 	__e1000e_disable_aspm(pdev, state, 0);
6518 }
6519 
6520 /**
6521  * e1000e_disable_aspm_locked   Disable ASPM states.
6522  * @pdev: pointer to PCI device struct
6523  * @state: bit-mask of ASPM states to disable
6524  *
6525  * This function must be called with pci_bus_sem acquired!
6526  * Some devices *must* have certain ASPM states disabled per hardware errata.
6527  **/
6528 static void e1000e_disable_aspm_locked(struct pci_dev *pdev, u16 state)
6529 {
6530 	__e1000e_disable_aspm(pdev, state, 1);
6531 }
6532 
6533 #ifdef CONFIG_PM
6534 static int __e1000_resume(struct pci_dev *pdev)
6535 {
6536 	struct net_device *netdev = pci_get_drvdata(pdev);
6537 	struct e1000_adapter *adapter = netdev_priv(netdev);
6538 	struct e1000_hw *hw = &adapter->hw;
6539 	u16 aspm_disable_flag = 0;
6540 
6541 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6542 		aspm_disable_flag = PCIE_LINK_STATE_L0S;
6543 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6544 		aspm_disable_flag |= PCIE_LINK_STATE_L1;
6545 	if (aspm_disable_flag)
6546 		e1000e_disable_aspm(pdev, aspm_disable_flag);
6547 
6548 	pci_set_master(pdev);
6549 
6550 	if (hw->mac.type >= e1000_pch2lan)
6551 		e1000_resume_workarounds_pchlan(&adapter->hw);
6552 
6553 	e1000e_power_up_phy(adapter);
6554 
6555 	/* report the system wakeup cause from S3/S4 */
6556 	if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6557 		u16 phy_data;
6558 
6559 		e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
6560 		if (phy_data) {
6561 			e_info("PHY Wakeup cause - %s\n",
6562 			       phy_data & E1000_WUS_EX ? "Unicast Packet" :
6563 			       phy_data & E1000_WUS_MC ? "Multicast Packet" :
6564 			       phy_data & E1000_WUS_BC ? "Broadcast Packet" :
6565 			       phy_data & E1000_WUS_MAG ? "Magic Packet" :
6566 			       phy_data & E1000_WUS_LNKC ?
6567 			       "Link Status Change" : "other");
6568 		}
6569 		e1e_wphy(&adapter->hw, BM_WUS, ~0);
6570 	} else {
6571 		u32 wus = er32(WUS);
6572 
6573 		if (wus) {
6574 			e_info("MAC Wakeup cause - %s\n",
6575 			       wus & E1000_WUS_EX ? "Unicast Packet" :
6576 			       wus & E1000_WUS_MC ? "Multicast Packet" :
6577 			       wus & E1000_WUS_BC ? "Broadcast Packet" :
6578 			       wus & E1000_WUS_MAG ? "Magic Packet" :
6579 			       wus & E1000_WUS_LNKC ? "Link Status Change" :
6580 			       "other");
6581 		}
6582 		ew32(WUS, ~0);
6583 	}
6584 
6585 	e1000e_reset(adapter);
6586 
6587 	e1000_init_manageability_pt(adapter);
6588 
6589 	/* If the controller has AMT, do not set DRV_LOAD until the interface
6590 	 * is up.  For all other cases, let the f/w know that the h/w is now
6591 	 * under the control of the driver.
6592 	 */
6593 	if (!(adapter->flags & FLAG_HAS_AMT))
6594 		e1000e_get_hw_control(adapter);
6595 
6596 	return 0;
6597 }
6598 
6599 #ifdef CONFIG_PM_SLEEP
6600 static int e1000e_pm_thaw(struct device *dev)
6601 {
6602 	struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6603 	struct e1000_adapter *adapter = netdev_priv(netdev);
6604 
6605 	e1000e_set_interrupt_capability(adapter);
6606 	if (netif_running(netdev)) {
6607 		u32 err = e1000_request_irq(adapter);
6608 
6609 		if (err)
6610 			return err;
6611 
6612 		e1000e_up(adapter);
6613 	}
6614 
6615 	netif_device_attach(netdev);
6616 
6617 	return 0;
6618 }
6619 
6620 static int e1000e_pm_suspend(struct device *dev)
6621 {
6622 	struct pci_dev *pdev = to_pci_dev(dev);
6623 
6624 	e1000e_flush_lpic(pdev);
6625 
6626 	e1000e_pm_freeze(dev);
6627 
6628 	return __e1000_shutdown(pdev, false);
6629 }
6630 
6631 static int e1000e_pm_resume(struct device *dev)
6632 {
6633 	struct pci_dev *pdev = to_pci_dev(dev);
6634 	int rc;
6635 
6636 	rc = __e1000_resume(pdev);
6637 	if (rc)
6638 		return rc;
6639 
6640 	return e1000e_pm_thaw(dev);
6641 }
6642 #endif /* CONFIG_PM_SLEEP */
6643 
6644 static int e1000e_pm_runtime_idle(struct device *dev)
6645 {
6646 	struct pci_dev *pdev = to_pci_dev(dev);
6647 	struct net_device *netdev = pci_get_drvdata(pdev);
6648 	struct e1000_adapter *adapter = netdev_priv(netdev);
6649 	u16 eee_lp;
6650 
6651 	eee_lp = adapter->hw.dev_spec.ich8lan.eee_lp_ability;
6652 
6653 	if (!e1000e_has_link(adapter)) {
6654 		adapter->hw.dev_spec.ich8lan.eee_lp_ability = eee_lp;
6655 		pm_schedule_suspend(dev, 5 * MSEC_PER_SEC);
6656 	}
6657 
6658 	return -EBUSY;
6659 }
6660 
6661 static int e1000e_pm_runtime_resume(struct device *dev)
6662 {
6663 	struct pci_dev *pdev = to_pci_dev(dev);
6664 	struct net_device *netdev = pci_get_drvdata(pdev);
6665 	struct e1000_adapter *adapter = netdev_priv(netdev);
6666 	int rc;
6667 
6668 	rc = __e1000_resume(pdev);
6669 	if (rc)
6670 		return rc;
6671 
6672 	if (netdev->flags & IFF_UP)
6673 		e1000e_up(adapter);
6674 
6675 	return rc;
6676 }
6677 
6678 static int e1000e_pm_runtime_suspend(struct device *dev)
6679 {
6680 	struct pci_dev *pdev = to_pci_dev(dev);
6681 	struct net_device *netdev = pci_get_drvdata(pdev);
6682 	struct e1000_adapter *adapter = netdev_priv(netdev);
6683 
6684 	if (netdev->flags & IFF_UP) {
6685 		int count = E1000_CHECK_RESET_COUNT;
6686 
6687 		while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6688 			usleep_range(10000, 20000);
6689 
6690 		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6691 
6692 		/* Down the device without resetting the hardware */
6693 		e1000e_down(adapter, false);
6694 	}
6695 
6696 	if (__e1000_shutdown(pdev, true)) {
6697 		e1000e_pm_runtime_resume(dev);
6698 		return -EBUSY;
6699 	}
6700 
6701 	return 0;
6702 }
6703 #endif /* CONFIG_PM */
6704 
6705 static void e1000_shutdown(struct pci_dev *pdev)
6706 {
6707 	e1000e_flush_lpic(pdev);
6708 
6709 	e1000e_pm_freeze(&pdev->dev);
6710 
6711 	__e1000_shutdown(pdev, false);
6712 }
6713 
6714 #ifdef CONFIG_NET_POLL_CONTROLLER
6715 
6716 static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data)
6717 {
6718 	struct net_device *netdev = data;
6719 	struct e1000_adapter *adapter = netdev_priv(netdev);
6720 
6721 	if (adapter->msix_entries) {
6722 		int vector, msix_irq;
6723 
6724 		vector = 0;
6725 		msix_irq = adapter->msix_entries[vector].vector;
6726 		disable_irq(msix_irq);
6727 		e1000_intr_msix_rx(msix_irq, netdev);
6728 		enable_irq(msix_irq);
6729 
6730 		vector++;
6731 		msix_irq = adapter->msix_entries[vector].vector;
6732 		disable_irq(msix_irq);
6733 		e1000_intr_msix_tx(msix_irq, netdev);
6734 		enable_irq(msix_irq);
6735 
6736 		vector++;
6737 		msix_irq = adapter->msix_entries[vector].vector;
6738 		disable_irq(msix_irq);
6739 		e1000_msix_other(msix_irq, netdev);
6740 		enable_irq(msix_irq);
6741 	}
6742 
6743 	return IRQ_HANDLED;
6744 }
6745 
6746 /**
6747  * e1000_netpoll
6748  * @netdev: network interface device structure
6749  *
6750  * Polling 'interrupt' - used by things like netconsole to send skbs
6751  * without having to re-enable interrupts. It's not called while
6752  * the interrupt routine is executing.
6753  */
6754 static void e1000_netpoll(struct net_device *netdev)
6755 {
6756 	struct e1000_adapter *adapter = netdev_priv(netdev);
6757 
6758 	switch (adapter->int_mode) {
6759 	case E1000E_INT_MODE_MSIX:
6760 		e1000_intr_msix(adapter->pdev->irq, netdev);
6761 		break;
6762 	case E1000E_INT_MODE_MSI:
6763 		disable_irq(adapter->pdev->irq);
6764 		e1000_intr_msi(adapter->pdev->irq, netdev);
6765 		enable_irq(adapter->pdev->irq);
6766 		break;
6767 	default:		/* E1000E_INT_MODE_LEGACY */
6768 		disable_irq(adapter->pdev->irq);
6769 		e1000_intr(adapter->pdev->irq, netdev);
6770 		enable_irq(adapter->pdev->irq);
6771 		break;
6772 	}
6773 }
6774 #endif
6775 
6776 /**
6777  * e1000_io_error_detected - called when PCI error is detected
6778  * @pdev: Pointer to PCI device
6779  * @state: The current pci connection state
6780  *
6781  * This function is called after a PCI bus error affecting
6782  * this device has been detected.
6783  */
6784 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
6785 						pci_channel_state_t state)
6786 {
6787 	struct net_device *netdev = pci_get_drvdata(pdev);
6788 	struct e1000_adapter *adapter = netdev_priv(netdev);
6789 
6790 	netif_device_detach(netdev);
6791 
6792 	if (state == pci_channel_io_perm_failure)
6793 		return PCI_ERS_RESULT_DISCONNECT;
6794 
6795 	if (netif_running(netdev))
6796 		e1000e_down(adapter, true);
6797 	pci_disable_device(pdev);
6798 
6799 	/* Request a slot slot reset. */
6800 	return PCI_ERS_RESULT_NEED_RESET;
6801 }
6802 
6803 /**
6804  * e1000_io_slot_reset - called after the pci bus has been reset.
6805  * @pdev: Pointer to PCI device
6806  *
6807  * Restart the card from scratch, as if from a cold-boot. Implementation
6808  * resembles the first-half of the e1000e_pm_resume routine.
6809  */
6810 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
6811 {
6812 	struct net_device *netdev = pci_get_drvdata(pdev);
6813 	struct e1000_adapter *adapter = netdev_priv(netdev);
6814 	struct e1000_hw *hw = &adapter->hw;
6815 	u16 aspm_disable_flag = 0;
6816 	int err;
6817 	pci_ers_result_t result;
6818 
6819 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6820 		aspm_disable_flag = PCIE_LINK_STATE_L0S;
6821 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6822 		aspm_disable_flag |= PCIE_LINK_STATE_L1;
6823 	if (aspm_disable_flag)
6824 		e1000e_disable_aspm_locked(pdev, aspm_disable_flag);
6825 
6826 	err = pci_enable_device_mem(pdev);
6827 	if (err) {
6828 		dev_err(&pdev->dev,
6829 			"Cannot re-enable PCI device after reset.\n");
6830 		result = PCI_ERS_RESULT_DISCONNECT;
6831 	} else {
6832 		pdev->state_saved = true;
6833 		pci_restore_state(pdev);
6834 		pci_set_master(pdev);
6835 
6836 		pci_enable_wake(pdev, PCI_D3hot, 0);
6837 		pci_enable_wake(pdev, PCI_D3cold, 0);
6838 
6839 		e1000e_reset(adapter);
6840 		ew32(WUS, ~0);
6841 		result = PCI_ERS_RESULT_RECOVERED;
6842 	}
6843 
6844 	pci_cleanup_aer_uncorrect_error_status(pdev);
6845 
6846 	return result;
6847 }
6848 
6849 /**
6850  * e1000_io_resume - called when traffic can start flowing again.
6851  * @pdev: Pointer to PCI device
6852  *
6853  * This callback is called when the error recovery driver tells us that
6854  * its OK to resume normal operation. Implementation resembles the
6855  * second-half of the e1000e_pm_resume routine.
6856  */
6857 static void e1000_io_resume(struct pci_dev *pdev)
6858 {
6859 	struct net_device *netdev = pci_get_drvdata(pdev);
6860 	struct e1000_adapter *adapter = netdev_priv(netdev);
6861 
6862 	e1000_init_manageability_pt(adapter);
6863 
6864 	if (netif_running(netdev))
6865 		e1000e_up(adapter);
6866 
6867 	netif_device_attach(netdev);
6868 
6869 	/* If the controller has AMT, do not set DRV_LOAD until the interface
6870 	 * is up.  For all other cases, let the f/w know that the h/w is now
6871 	 * under the control of the driver.
6872 	 */
6873 	if (!(adapter->flags & FLAG_HAS_AMT))
6874 		e1000e_get_hw_control(adapter);
6875 }
6876 
6877 static void e1000_print_device_info(struct e1000_adapter *adapter)
6878 {
6879 	struct e1000_hw *hw = &adapter->hw;
6880 	struct net_device *netdev = adapter->netdev;
6881 	u32 ret_val;
6882 	u8 pba_str[E1000_PBANUM_LENGTH];
6883 
6884 	/* print bus type/speed/width info */
6885 	e_info("(PCI Express:2.5GT/s:%s) %pM\n",
6886 	       /* bus width */
6887 	       ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
6888 		"Width x1"),
6889 	       /* MAC address */
6890 	       netdev->dev_addr);
6891 	e_info("Intel(R) PRO/%s Network Connection\n",
6892 	       (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
6893 	ret_val = e1000_read_pba_string_generic(hw, pba_str,
6894 						E1000_PBANUM_LENGTH);
6895 	if (ret_val)
6896 		strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
6897 	e_info("MAC: %d, PHY: %d, PBA No: %s\n",
6898 	       hw->mac.type, hw->phy.type, pba_str);
6899 }
6900 
6901 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
6902 {
6903 	struct e1000_hw *hw = &adapter->hw;
6904 	int ret_val;
6905 	u16 buf = 0;
6906 
6907 	if (hw->mac.type != e1000_82573)
6908 		return;
6909 
6910 	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
6911 	le16_to_cpus(&buf);
6912 	if (!ret_val && (!(buf & BIT(0)))) {
6913 		/* Deep Smart Power Down (DSPD) */
6914 		dev_warn(&adapter->pdev->dev,
6915 			 "Warning: detected DSPD enabled in EEPROM\n");
6916 	}
6917 }
6918 
6919 static netdev_features_t e1000_fix_features(struct net_device *netdev,
6920 					    netdev_features_t features)
6921 {
6922 	struct e1000_adapter *adapter = netdev_priv(netdev);
6923 	struct e1000_hw *hw = &adapter->hw;
6924 
6925 	/* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
6926 	if ((hw->mac.type >= e1000_pch2lan) && (netdev->mtu > ETH_DATA_LEN))
6927 		features &= ~NETIF_F_RXFCS;
6928 
6929 	return features;
6930 }
6931 
6932 static int e1000_set_features(struct net_device *netdev,
6933 			      netdev_features_t features)
6934 {
6935 	struct e1000_adapter *adapter = netdev_priv(netdev);
6936 	netdev_features_t changed = features ^ netdev->features;
6937 
6938 	if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
6939 		adapter->flags |= FLAG_TSO_FORCE;
6940 
6941 	if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
6942 			 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
6943 			 NETIF_F_RXALL)))
6944 		return 0;
6945 
6946 	if (changed & NETIF_F_RXFCS) {
6947 		if (features & NETIF_F_RXFCS) {
6948 			adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6949 		} else {
6950 			/* We need to take it back to defaults, which might mean
6951 			 * stripping is still disabled at the adapter level.
6952 			 */
6953 			if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
6954 				adapter->flags2 |= FLAG2_CRC_STRIPPING;
6955 			else
6956 				adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6957 		}
6958 	}
6959 
6960 	netdev->features = features;
6961 
6962 	if (netif_running(netdev))
6963 		e1000e_reinit_locked(adapter);
6964 	else
6965 		e1000e_reset(adapter);
6966 
6967 	return 0;
6968 }
6969 
6970 static const struct net_device_ops e1000e_netdev_ops = {
6971 	.ndo_open		= e1000e_open,
6972 	.ndo_stop		= e1000e_close,
6973 	.ndo_start_xmit		= e1000_xmit_frame,
6974 	.ndo_get_stats64	= e1000e_get_stats64,
6975 	.ndo_set_rx_mode	= e1000e_set_rx_mode,
6976 	.ndo_set_mac_address	= e1000_set_mac,
6977 	.ndo_change_mtu		= e1000_change_mtu,
6978 	.ndo_do_ioctl		= e1000_ioctl,
6979 	.ndo_tx_timeout		= e1000_tx_timeout,
6980 	.ndo_validate_addr	= eth_validate_addr,
6981 
6982 	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
6983 	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
6984 #ifdef CONFIG_NET_POLL_CONTROLLER
6985 	.ndo_poll_controller	= e1000_netpoll,
6986 #endif
6987 	.ndo_set_features = e1000_set_features,
6988 	.ndo_fix_features = e1000_fix_features,
6989 	.ndo_features_check	= passthru_features_check,
6990 };
6991 
6992 /**
6993  * e1000_probe - Device Initialization Routine
6994  * @pdev: PCI device information struct
6995  * @ent: entry in e1000_pci_tbl
6996  *
6997  * Returns 0 on success, negative on failure
6998  *
6999  * e1000_probe initializes an adapter identified by a pci_dev structure.
7000  * The OS initialization, configuring of the adapter private structure,
7001  * and a hardware reset occur.
7002  **/
7003 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
7004 {
7005 	struct net_device *netdev;
7006 	struct e1000_adapter *adapter;
7007 	struct e1000_hw *hw;
7008 	const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
7009 	resource_size_t mmio_start, mmio_len;
7010 	resource_size_t flash_start, flash_len;
7011 	static int cards_found;
7012 	u16 aspm_disable_flag = 0;
7013 	int bars, i, err, pci_using_dac;
7014 	u16 eeprom_data = 0;
7015 	u16 eeprom_apme_mask = E1000_EEPROM_APME;
7016 	s32 ret_val = 0;
7017 
7018 	if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
7019 		aspm_disable_flag = PCIE_LINK_STATE_L0S;
7020 	if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
7021 		aspm_disable_flag |= PCIE_LINK_STATE_L1;
7022 	if (aspm_disable_flag)
7023 		e1000e_disable_aspm(pdev, aspm_disable_flag);
7024 
7025 	err = pci_enable_device_mem(pdev);
7026 	if (err)
7027 		return err;
7028 
7029 	pci_using_dac = 0;
7030 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
7031 	if (!err) {
7032 		pci_using_dac = 1;
7033 	} else {
7034 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
7035 		if (err) {
7036 			dev_err(&pdev->dev,
7037 				"No usable DMA configuration, aborting\n");
7038 			goto err_dma;
7039 		}
7040 	}
7041 
7042 	bars = pci_select_bars(pdev, IORESOURCE_MEM);
7043 	err = pci_request_selected_regions_exclusive(pdev, bars,
7044 						     e1000e_driver_name);
7045 	if (err)
7046 		goto err_pci_reg;
7047 
7048 	/* AER (Advanced Error Reporting) hooks */
7049 	pci_enable_pcie_error_reporting(pdev);
7050 
7051 	pci_set_master(pdev);
7052 	/* PCI config space info */
7053 	err = pci_save_state(pdev);
7054 	if (err)
7055 		goto err_alloc_etherdev;
7056 
7057 	err = -ENOMEM;
7058 	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
7059 	if (!netdev)
7060 		goto err_alloc_etherdev;
7061 
7062 	SET_NETDEV_DEV(netdev, &pdev->dev);
7063 
7064 	netdev->irq = pdev->irq;
7065 
7066 	pci_set_drvdata(pdev, netdev);
7067 	adapter = netdev_priv(netdev);
7068 	hw = &adapter->hw;
7069 	adapter->netdev = netdev;
7070 	adapter->pdev = pdev;
7071 	adapter->ei = ei;
7072 	adapter->pba = ei->pba;
7073 	adapter->flags = ei->flags;
7074 	adapter->flags2 = ei->flags2;
7075 	adapter->hw.adapter = adapter;
7076 	adapter->hw.mac.type = ei->mac;
7077 	adapter->max_hw_frame_size = ei->max_hw_frame_size;
7078 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
7079 
7080 	mmio_start = pci_resource_start(pdev, 0);
7081 	mmio_len = pci_resource_len(pdev, 0);
7082 
7083 	err = -EIO;
7084 	adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
7085 	if (!adapter->hw.hw_addr)
7086 		goto err_ioremap;
7087 
7088 	if ((adapter->flags & FLAG_HAS_FLASH) &&
7089 	    (pci_resource_flags(pdev, 1) & IORESOURCE_MEM) &&
7090 	    (hw->mac.type < e1000_pch_spt)) {
7091 		flash_start = pci_resource_start(pdev, 1);
7092 		flash_len = pci_resource_len(pdev, 1);
7093 		adapter->hw.flash_address = ioremap(flash_start, flash_len);
7094 		if (!adapter->hw.flash_address)
7095 			goto err_flashmap;
7096 	}
7097 
7098 	/* Set default EEE advertisement */
7099 	if (adapter->flags2 & FLAG2_HAS_EEE)
7100 		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
7101 
7102 	/* construct the net_device struct */
7103 	netdev->netdev_ops = &e1000e_netdev_ops;
7104 	e1000e_set_ethtool_ops(netdev);
7105 	netdev->watchdog_timeo = 5 * HZ;
7106 	netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64);
7107 	strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
7108 
7109 	netdev->mem_start = mmio_start;
7110 	netdev->mem_end = mmio_start + mmio_len;
7111 
7112 	adapter->bd_number = cards_found++;
7113 
7114 	e1000e_check_options(adapter);
7115 
7116 	/* setup adapter struct */
7117 	err = e1000_sw_init(adapter);
7118 	if (err)
7119 		goto err_sw_init;
7120 
7121 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
7122 	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
7123 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
7124 
7125 	err = ei->get_variants(adapter);
7126 	if (err)
7127 		goto err_hw_init;
7128 
7129 	if ((adapter->flags & FLAG_IS_ICH) &&
7130 	    (adapter->flags & FLAG_READ_ONLY_NVM) &&
7131 	    (hw->mac.type < e1000_pch_spt))
7132 		e1000e_write_protect_nvm_ich8lan(&adapter->hw);
7133 
7134 	hw->mac.ops.get_bus_info(&adapter->hw);
7135 
7136 	adapter->hw.phy.autoneg_wait_to_complete = 0;
7137 
7138 	/* Copper options */
7139 	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
7140 		adapter->hw.phy.mdix = AUTO_ALL_MODES;
7141 		adapter->hw.phy.disable_polarity_correction = 0;
7142 		adapter->hw.phy.ms_type = e1000_ms_hw_default;
7143 	}
7144 
7145 	if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
7146 		dev_info(&pdev->dev,
7147 			 "PHY reset is blocked due to SOL/IDER session.\n");
7148 
7149 	/* Set initial default active device features */
7150 	netdev->features = (NETIF_F_SG |
7151 			    NETIF_F_HW_VLAN_CTAG_RX |
7152 			    NETIF_F_HW_VLAN_CTAG_TX |
7153 			    NETIF_F_TSO |
7154 			    NETIF_F_TSO6 |
7155 			    NETIF_F_RXHASH |
7156 			    NETIF_F_RXCSUM |
7157 			    NETIF_F_HW_CSUM);
7158 
7159 	/* Set user-changeable features (subset of all device features) */
7160 	netdev->hw_features = netdev->features;
7161 	netdev->hw_features |= NETIF_F_RXFCS;
7162 	netdev->priv_flags |= IFF_SUPP_NOFCS;
7163 	netdev->hw_features |= NETIF_F_RXALL;
7164 
7165 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
7166 		netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7167 
7168 	netdev->vlan_features |= (NETIF_F_SG |
7169 				  NETIF_F_TSO |
7170 				  NETIF_F_TSO6 |
7171 				  NETIF_F_HW_CSUM);
7172 
7173 	netdev->priv_flags |= IFF_UNICAST_FLT;
7174 
7175 	if (pci_using_dac) {
7176 		netdev->features |= NETIF_F_HIGHDMA;
7177 		netdev->vlan_features |= NETIF_F_HIGHDMA;
7178 	}
7179 
7180 	if (e1000e_enable_mng_pass_thru(&adapter->hw))
7181 		adapter->flags |= FLAG_MNG_PT_ENABLED;
7182 
7183 	/* before reading the NVM, reset the controller to
7184 	 * put the device in a known good starting state
7185 	 */
7186 	adapter->hw.mac.ops.reset_hw(&adapter->hw);
7187 
7188 	/* systems with ASPM and others may see the checksum fail on the first
7189 	 * attempt. Let's give it a few tries
7190 	 */
7191 	for (i = 0;; i++) {
7192 		if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
7193 			break;
7194 		if (i == 2) {
7195 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
7196 			err = -EIO;
7197 			goto err_eeprom;
7198 		}
7199 	}
7200 
7201 	e1000_eeprom_checks(adapter);
7202 
7203 	/* copy the MAC address */
7204 	if (e1000e_read_mac_addr(&adapter->hw))
7205 		dev_err(&pdev->dev,
7206 			"NVM Read Error while reading MAC address\n");
7207 
7208 	memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
7209 
7210 	if (!is_valid_ether_addr(netdev->dev_addr)) {
7211 		dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
7212 			netdev->dev_addr);
7213 		err = -EIO;
7214 		goto err_eeprom;
7215 	}
7216 
7217 	init_timer(&adapter->watchdog_timer);
7218 	adapter->watchdog_timer.function = e1000_watchdog;
7219 	adapter->watchdog_timer.data = (unsigned long)adapter;
7220 
7221 	init_timer(&adapter->phy_info_timer);
7222 	adapter->phy_info_timer.function = e1000_update_phy_info;
7223 	adapter->phy_info_timer.data = (unsigned long)adapter;
7224 
7225 	INIT_WORK(&adapter->reset_task, e1000_reset_task);
7226 	INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
7227 	INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
7228 	INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
7229 	INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
7230 
7231 	/* Initialize link parameters. User can change them with ethtool */
7232 	adapter->hw.mac.autoneg = 1;
7233 	adapter->fc_autoneg = true;
7234 	adapter->hw.fc.requested_mode = e1000_fc_default;
7235 	adapter->hw.fc.current_mode = e1000_fc_default;
7236 	adapter->hw.phy.autoneg_advertised = 0x2f;
7237 
7238 	/* Initial Wake on LAN setting - If APM wake is enabled in
7239 	 * the EEPROM, enable the ACPI Magic Packet filter
7240 	 */
7241 	if (adapter->flags & FLAG_APME_IN_WUC) {
7242 		/* APME bit in EEPROM is mapped to WUC.APME */
7243 		eeprom_data = er32(WUC);
7244 		eeprom_apme_mask = E1000_WUC_APME;
7245 		if ((hw->mac.type > e1000_ich10lan) &&
7246 		    (eeprom_data & E1000_WUC_PHY_WAKE))
7247 			adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
7248 	} else if (adapter->flags & FLAG_APME_IN_CTRL3) {
7249 		if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
7250 		    (adapter->hw.bus.func == 1))
7251 			ret_val = e1000_read_nvm(&adapter->hw,
7252 					      NVM_INIT_CONTROL3_PORT_B,
7253 					      1, &eeprom_data);
7254 		else
7255 			ret_val = e1000_read_nvm(&adapter->hw,
7256 					      NVM_INIT_CONTROL3_PORT_A,
7257 					      1, &eeprom_data);
7258 	}
7259 
7260 	/* fetch WoL from EEPROM */
7261 	if (ret_val)
7262 		e_dbg("NVM read error getting WoL initial values: %d\n", ret_val);
7263 	else if (eeprom_data & eeprom_apme_mask)
7264 		adapter->eeprom_wol |= E1000_WUFC_MAG;
7265 
7266 	/* now that we have the eeprom settings, apply the special cases
7267 	 * where the eeprom may be wrong or the board simply won't support
7268 	 * wake on lan on a particular port
7269 	 */
7270 	if (!(adapter->flags & FLAG_HAS_WOL))
7271 		adapter->eeprom_wol = 0;
7272 
7273 	/* initialize the wol settings based on the eeprom settings */
7274 	adapter->wol = adapter->eeprom_wol;
7275 
7276 	/* make sure adapter isn't asleep if manageability is enabled */
7277 	if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) ||
7278 	    (hw->mac.ops.check_mng_mode(hw)))
7279 		device_wakeup_enable(&pdev->dev);
7280 
7281 	/* save off EEPROM version number */
7282 	ret_val = e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
7283 
7284 	if (ret_val) {
7285 		e_dbg("NVM read error getting EEPROM version: %d\n", ret_val);
7286 		adapter->eeprom_vers = 0;
7287 	}
7288 
7289 	/* init PTP hardware clock */
7290 	e1000e_ptp_init(adapter);
7291 
7292 	/* reset the hardware with the new settings */
7293 	e1000e_reset(adapter);
7294 
7295 	/* If the controller has AMT, do not set DRV_LOAD until the interface
7296 	 * is up.  For all other cases, let the f/w know that the h/w is now
7297 	 * under the control of the driver.
7298 	 */
7299 	if (!(adapter->flags & FLAG_HAS_AMT))
7300 		e1000e_get_hw_control(adapter);
7301 
7302 	strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
7303 	err = register_netdev(netdev);
7304 	if (err)
7305 		goto err_register;
7306 
7307 	/* carrier off reporting is important to ethtool even BEFORE open */
7308 	netif_carrier_off(netdev);
7309 
7310 	e1000_print_device_info(adapter);
7311 
7312 	if (pci_dev_run_wake(pdev))
7313 		pm_runtime_put_noidle(&pdev->dev);
7314 
7315 	return 0;
7316 
7317 err_register:
7318 	if (!(adapter->flags & FLAG_HAS_AMT))
7319 		e1000e_release_hw_control(adapter);
7320 err_eeprom:
7321 	if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
7322 		e1000_phy_hw_reset(&adapter->hw);
7323 err_hw_init:
7324 	kfree(adapter->tx_ring);
7325 	kfree(adapter->rx_ring);
7326 err_sw_init:
7327 	if ((adapter->hw.flash_address) && (hw->mac.type < e1000_pch_spt))
7328 		iounmap(adapter->hw.flash_address);
7329 	e1000e_reset_interrupt_capability(adapter);
7330 err_flashmap:
7331 	iounmap(adapter->hw.hw_addr);
7332 err_ioremap:
7333 	free_netdev(netdev);
7334 err_alloc_etherdev:
7335 	pci_release_selected_regions(pdev,
7336 				     pci_select_bars(pdev, IORESOURCE_MEM));
7337 err_pci_reg:
7338 err_dma:
7339 	pci_disable_device(pdev);
7340 	return err;
7341 }
7342 
7343 /**
7344  * e1000_remove - Device Removal Routine
7345  * @pdev: PCI device information struct
7346  *
7347  * e1000_remove is called by the PCI subsystem to alert the driver
7348  * that it should release a PCI device.  The could be caused by a
7349  * Hot-Plug event, or because the driver is going to be removed from
7350  * memory.
7351  **/
7352 static void e1000_remove(struct pci_dev *pdev)
7353 {
7354 	struct net_device *netdev = pci_get_drvdata(pdev);
7355 	struct e1000_adapter *adapter = netdev_priv(netdev);
7356 	bool down = test_bit(__E1000_DOWN, &adapter->state);
7357 
7358 	e1000e_ptp_remove(adapter);
7359 
7360 	/* The timers may be rescheduled, so explicitly disable them
7361 	 * from being rescheduled.
7362 	 */
7363 	if (!down)
7364 		set_bit(__E1000_DOWN, &adapter->state);
7365 	del_timer_sync(&adapter->watchdog_timer);
7366 	del_timer_sync(&adapter->phy_info_timer);
7367 
7368 	cancel_work_sync(&adapter->reset_task);
7369 	cancel_work_sync(&adapter->watchdog_task);
7370 	cancel_work_sync(&adapter->downshift_task);
7371 	cancel_work_sync(&adapter->update_phy_task);
7372 	cancel_work_sync(&adapter->print_hang_task);
7373 
7374 	if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
7375 		cancel_work_sync(&adapter->tx_hwtstamp_work);
7376 		if (adapter->tx_hwtstamp_skb) {
7377 			dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
7378 			adapter->tx_hwtstamp_skb = NULL;
7379 		}
7380 	}
7381 
7382 	/* Don't lie to e1000_close() down the road. */
7383 	if (!down)
7384 		clear_bit(__E1000_DOWN, &adapter->state);
7385 	unregister_netdev(netdev);
7386 
7387 	if (pci_dev_run_wake(pdev))
7388 		pm_runtime_get_noresume(&pdev->dev);
7389 
7390 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7391 	 * would have already happened in close and is redundant.
7392 	 */
7393 	e1000e_release_hw_control(adapter);
7394 
7395 	e1000e_reset_interrupt_capability(adapter);
7396 	kfree(adapter->tx_ring);
7397 	kfree(adapter->rx_ring);
7398 
7399 	iounmap(adapter->hw.hw_addr);
7400 	if ((adapter->hw.flash_address) &&
7401 	    (adapter->hw.mac.type < e1000_pch_spt))
7402 		iounmap(adapter->hw.flash_address);
7403 	pci_release_selected_regions(pdev,
7404 				     pci_select_bars(pdev, IORESOURCE_MEM));
7405 
7406 	free_netdev(netdev);
7407 
7408 	/* AER disable */
7409 	pci_disable_pcie_error_reporting(pdev);
7410 
7411 	pci_disable_device(pdev);
7412 }
7413 
7414 /* PCI Error Recovery (ERS) */
7415 static const struct pci_error_handlers e1000_err_handler = {
7416 	.error_detected = e1000_io_error_detected,
7417 	.slot_reset = e1000_io_slot_reset,
7418 	.resume = e1000_io_resume,
7419 };
7420 
7421 static const struct pci_device_id e1000_pci_tbl[] = {
7422 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
7423 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
7424 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
7425 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP),
7426 	  board_82571 },
7427 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
7428 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
7429 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
7430 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
7431 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
7432 
7433 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
7434 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
7435 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
7436 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
7437 
7438 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
7439 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
7440 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
7441 
7442 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
7443 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
7444 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
7445 
7446 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
7447 	  board_80003es2lan },
7448 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
7449 	  board_80003es2lan },
7450 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
7451 	  board_80003es2lan },
7452 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
7453 	  board_80003es2lan },
7454 
7455 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
7456 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
7457 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
7458 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
7459 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
7460 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
7461 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
7462 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
7463 
7464 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
7465 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
7466 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
7467 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
7468 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
7469 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
7470 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
7471 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
7472 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
7473 
7474 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
7475 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
7476 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
7477 
7478 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
7479 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
7480 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
7481 
7482 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
7483 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
7484 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
7485 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
7486 
7487 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
7488 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
7489 
7490 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
7491 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
7492 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt },
7493 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt },
7494 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt },
7495 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt },
7496 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt },
7497 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt },
7498 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM), board_pch_spt },
7499 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V), board_pch_spt },
7500 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM2), board_pch_spt },
7501 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V2), board_pch_spt },
7502 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LBG_I219_LM3), board_pch_spt },
7503 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM4), board_pch_spt },
7504 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V4), board_pch_spt },
7505 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM5), board_pch_spt },
7506 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V5), board_pch_spt },
7507 
7508 	{ 0, 0, 0, 0, 0, 0, 0 }	/* terminate list */
7509 };
7510 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
7511 
7512 static const struct dev_pm_ops e1000_pm_ops = {
7513 #ifdef CONFIG_PM_SLEEP
7514 	.suspend	= e1000e_pm_suspend,
7515 	.resume		= e1000e_pm_resume,
7516 	.freeze		= e1000e_pm_freeze,
7517 	.thaw		= e1000e_pm_thaw,
7518 	.poweroff	= e1000e_pm_suspend,
7519 	.restore	= e1000e_pm_resume,
7520 #endif
7521 	SET_RUNTIME_PM_OPS(e1000e_pm_runtime_suspend, e1000e_pm_runtime_resume,
7522 			   e1000e_pm_runtime_idle)
7523 };
7524 
7525 /* PCI Device API Driver */
7526 static struct pci_driver e1000_driver = {
7527 	.name     = e1000e_driver_name,
7528 	.id_table = e1000_pci_tbl,
7529 	.probe    = e1000_probe,
7530 	.remove   = e1000_remove,
7531 	.driver   = {
7532 		.pm = &e1000_pm_ops,
7533 	},
7534 	.shutdown = e1000_shutdown,
7535 	.err_handler = &e1000_err_handler
7536 };
7537 
7538 /**
7539  * e1000_init_module - Driver Registration Routine
7540  *
7541  * e1000_init_module is the first routine called when the driver is
7542  * loaded. All it does is register with the PCI subsystem.
7543  **/
7544 static int __init e1000_init_module(void)
7545 {
7546 	pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
7547 		e1000e_driver_version);
7548 	pr_info("Copyright(c) 1999 - 2015 Intel Corporation.\n");
7549 
7550 	return pci_register_driver(&e1000_driver);
7551 }
7552 module_init(e1000_init_module);
7553 
7554 /**
7555  * e1000_exit_module - Driver Exit Cleanup Routine
7556  *
7557  * e1000_exit_module is called just before the driver is removed
7558  * from memory.
7559  **/
7560 static void __exit e1000_exit_module(void)
7561 {
7562 	pci_unregister_driver(&e1000_driver);
7563 }
7564 module_exit(e1000_exit_module);
7565 
7566 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
7567 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7568 MODULE_LICENSE("GPL");
7569 MODULE_VERSION(DRV_VERSION);
7570 
7571 /* netdev.c */
7572