1 /* Intel PRO/1000 Linux driver
2  * Copyright(c) 1999 - 2014 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * The full GNU General Public License is included in this distribution in
14  * the file called "COPYING".
15  *
16  * Contact Information:
17  * Linux NICS <linux.nics@intel.com>
18  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
20  */
21 
22 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
23 
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/init.h>
27 #include <linux/pci.h>
28 #include <linux/vmalloc.h>
29 #include <linux/pagemap.h>
30 #include <linux/delay.h>
31 #include <linux/netdevice.h>
32 #include <linux/interrupt.h>
33 #include <linux/tcp.h>
34 #include <linux/ipv6.h>
35 #include <linux/slab.h>
36 #include <net/checksum.h>
37 #include <net/ip6_checksum.h>
38 #include <linux/ethtool.h>
39 #include <linux/if_vlan.h>
40 #include <linux/cpu.h>
41 #include <linux/smp.h>
42 #include <linux/pm_qos.h>
43 #include <linux/pm_runtime.h>
44 #include <linux/aer.h>
45 #include <linux/prefetch.h>
46 
47 #include "e1000.h"
48 
49 #define DRV_EXTRAVERSION "-k"
50 
51 #define DRV_VERSION "2.3.2" DRV_EXTRAVERSION
52 char e1000e_driver_name[] = "e1000e";
53 const char e1000e_driver_version[] = DRV_VERSION;
54 
55 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
56 static int debug = -1;
57 module_param(debug, int, 0);
58 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
59 
60 static const struct e1000_info *e1000_info_tbl[] = {
61 	[board_82571]		= &e1000_82571_info,
62 	[board_82572]		= &e1000_82572_info,
63 	[board_82573]		= &e1000_82573_info,
64 	[board_82574]		= &e1000_82574_info,
65 	[board_82583]		= &e1000_82583_info,
66 	[board_80003es2lan]	= &e1000_es2_info,
67 	[board_ich8lan]		= &e1000_ich8_info,
68 	[board_ich9lan]		= &e1000_ich9_info,
69 	[board_ich10lan]	= &e1000_ich10_info,
70 	[board_pchlan]		= &e1000_pch_info,
71 	[board_pch2lan]		= &e1000_pch2_info,
72 	[board_pch_lpt]		= &e1000_pch_lpt_info,
73 };
74 
75 struct e1000_reg_info {
76 	u32 ofs;
77 	char *name;
78 };
79 
80 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
81 	/* General Registers */
82 	{E1000_CTRL, "CTRL"},
83 	{E1000_STATUS, "STATUS"},
84 	{E1000_CTRL_EXT, "CTRL_EXT"},
85 
86 	/* Interrupt Registers */
87 	{E1000_ICR, "ICR"},
88 
89 	/* Rx Registers */
90 	{E1000_RCTL, "RCTL"},
91 	{E1000_RDLEN(0), "RDLEN"},
92 	{E1000_RDH(0), "RDH"},
93 	{E1000_RDT(0), "RDT"},
94 	{E1000_RDTR, "RDTR"},
95 	{E1000_RXDCTL(0), "RXDCTL"},
96 	{E1000_ERT, "ERT"},
97 	{E1000_RDBAL(0), "RDBAL"},
98 	{E1000_RDBAH(0), "RDBAH"},
99 	{E1000_RDFH, "RDFH"},
100 	{E1000_RDFT, "RDFT"},
101 	{E1000_RDFHS, "RDFHS"},
102 	{E1000_RDFTS, "RDFTS"},
103 	{E1000_RDFPC, "RDFPC"},
104 
105 	/* Tx Registers */
106 	{E1000_TCTL, "TCTL"},
107 	{E1000_TDBAL(0), "TDBAL"},
108 	{E1000_TDBAH(0), "TDBAH"},
109 	{E1000_TDLEN(0), "TDLEN"},
110 	{E1000_TDH(0), "TDH"},
111 	{E1000_TDT(0), "TDT"},
112 	{E1000_TIDV, "TIDV"},
113 	{E1000_TXDCTL(0), "TXDCTL"},
114 	{E1000_TADV, "TADV"},
115 	{E1000_TARC(0), "TARC"},
116 	{E1000_TDFH, "TDFH"},
117 	{E1000_TDFT, "TDFT"},
118 	{E1000_TDFHS, "TDFHS"},
119 	{E1000_TDFTS, "TDFTS"},
120 	{E1000_TDFPC, "TDFPC"},
121 
122 	/* List Terminator */
123 	{0, NULL}
124 };
125 
126 /**
127  * __ew32_prepare - prepare to write to MAC CSR register on certain parts
128  * @hw: pointer to the HW structure
129  *
130  * When updating the MAC CSR registers, the Manageability Engine (ME) could
131  * be accessing the registers at the same time.  Normally, this is handled in
132  * h/w by an arbiter but on some parts there is a bug that acknowledges Host
133  * accesses later than it should which could result in the register to have
134  * an incorrect value.  Workaround this by checking the FWSM register which
135  * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set
136  * and try again a number of times.
137  **/
138 s32 __ew32_prepare(struct e1000_hw *hw)
139 {
140 	s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT;
141 
142 	while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i)
143 		udelay(50);
144 
145 	return i;
146 }
147 
148 void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val)
149 {
150 	if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
151 		__ew32_prepare(hw);
152 
153 	writel(val, hw->hw_addr + reg);
154 }
155 
156 /**
157  * e1000_regdump - register printout routine
158  * @hw: pointer to the HW structure
159  * @reginfo: pointer to the register info table
160  **/
161 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
162 {
163 	int n = 0;
164 	char rname[16];
165 	u32 regs[8];
166 
167 	switch (reginfo->ofs) {
168 	case E1000_RXDCTL(0):
169 		for (n = 0; n < 2; n++)
170 			regs[n] = __er32(hw, E1000_RXDCTL(n));
171 		break;
172 	case E1000_TXDCTL(0):
173 		for (n = 0; n < 2; n++)
174 			regs[n] = __er32(hw, E1000_TXDCTL(n));
175 		break;
176 	case E1000_TARC(0):
177 		for (n = 0; n < 2; n++)
178 			regs[n] = __er32(hw, E1000_TARC(n));
179 		break;
180 	default:
181 		pr_info("%-15s %08x\n",
182 			reginfo->name, __er32(hw, reginfo->ofs));
183 		return;
184 	}
185 
186 	snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
187 	pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
188 }
189 
190 static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
191 				 struct e1000_buffer *bi)
192 {
193 	int i;
194 	struct e1000_ps_page *ps_page;
195 
196 	for (i = 0; i < adapter->rx_ps_pages; i++) {
197 		ps_page = &bi->ps_pages[i];
198 
199 		if (ps_page->page) {
200 			pr_info("packet dump for ps_page %d:\n", i);
201 			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
202 				       16, 1, page_address(ps_page->page),
203 				       PAGE_SIZE, true);
204 		}
205 	}
206 }
207 
208 /**
209  * e1000e_dump - Print registers, Tx-ring and Rx-ring
210  * @adapter: board private structure
211  **/
212 static void e1000e_dump(struct e1000_adapter *adapter)
213 {
214 	struct net_device *netdev = adapter->netdev;
215 	struct e1000_hw *hw = &adapter->hw;
216 	struct e1000_reg_info *reginfo;
217 	struct e1000_ring *tx_ring = adapter->tx_ring;
218 	struct e1000_tx_desc *tx_desc;
219 	struct my_u0 {
220 		__le64 a;
221 		__le64 b;
222 	} *u0;
223 	struct e1000_buffer *buffer_info;
224 	struct e1000_ring *rx_ring = adapter->rx_ring;
225 	union e1000_rx_desc_packet_split *rx_desc_ps;
226 	union e1000_rx_desc_extended *rx_desc;
227 	struct my_u1 {
228 		__le64 a;
229 		__le64 b;
230 		__le64 c;
231 		__le64 d;
232 	} *u1;
233 	u32 staterr;
234 	int i = 0;
235 
236 	if (!netif_msg_hw(adapter))
237 		return;
238 
239 	/* Print netdevice Info */
240 	if (netdev) {
241 		dev_info(&adapter->pdev->dev, "Net device Info\n");
242 		pr_info("Device Name     state            trans_start      last_rx\n");
243 		pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
244 			netdev->state, netdev->trans_start, netdev->last_rx);
245 	}
246 
247 	/* Print Registers */
248 	dev_info(&adapter->pdev->dev, "Register Dump\n");
249 	pr_info(" Register Name   Value\n");
250 	for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
251 	     reginfo->name; reginfo++) {
252 		e1000_regdump(hw, reginfo);
253 	}
254 
255 	/* Print Tx Ring Summary */
256 	if (!netdev || !netif_running(netdev))
257 		return;
258 
259 	dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
260 	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
261 	buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
262 	pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
263 		0, tx_ring->next_to_use, tx_ring->next_to_clean,
264 		(unsigned long long)buffer_info->dma,
265 		buffer_info->length,
266 		buffer_info->next_to_watch,
267 		(unsigned long long)buffer_info->time_stamp);
268 
269 	/* Print Tx Ring */
270 	if (!netif_msg_tx_done(adapter))
271 		goto rx_ring_summary;
272 
273 	dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
274 
275 	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
276 	 *
277 	 * Legacy Transmit Descriptor
278 	 *   +--------------------------------------------------------------+
279 	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
280 	 *   +--------------------------------------------------------------+
281 	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
282 	 *   +--------------------------------------------------------------+
283 	 *   63       48 47        36 35    32 31     24 23    16 15        0
284 	 *
285 	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
286 	 *   63      48 47    40 39       32 31             16 15    8 7      0
287 	 *   +----------------------------------------------------------------+
288 	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
289 	 *   +----------------------------------------------------------------+
290 	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
291 	 *   +----------------------------------------------------------------+
292 	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
293 	 *
294 	 * Extended Data Descriptor (DTYP=0x1)
295 	 *   +----------------------------------------------------------------+
296 	 * 0 |                     Buffer Address [63:0]                      |
297 	 *   +----------------------------------------------------------------+
298 	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
299 	 *   +----------------------------------------------------------------+
300 	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
301 	 */
302 	pr_info("Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Legacy format\n");
303 	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Context format\n");
304 	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Data format\n");
305 	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
306 		const char *next_desc;
307 		tx_desc = E1000_TX_DESC(*tx_ring, i);
308 		buffer_info = &tx_ring->buffer_info[i];
309 		u0 = (struct my_u0 *)tx_desc;
310 		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
311 			next_desc = " NTC/U";
312 		else if (i == tx_ring->next_to_use)
313 			next_desc = " NTU";
314 		else if (i == tx_ring->next_to_clean)
315 			next_desc = " NTC";
316 		else
317 			next_desc = "";
318 		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p%s\n",
319 			(!(le64_to_cpu(u0->b) & (1 << 29)) ? 'l' :
320 			 ((le64_to_cpu(u0->b) & (1 << 20)) ? 'd' : 'c')),
321 			i,
322 			(unsigned long long)le64_to_cpu(u0->a),
323 			(unsigned long long)le64_to_cpu(u0->b),
324 			(unsigned long long)buffer_info->dma,
325 			buffer_info->length, buffer_info->next_to_watch,
326 			(unsigned long long)buffer_info->time_stamp,
327 			buffer_info->skb, next_desc);
328 
329 		if (netif_msg_pktdata(adapter) && buffer_info->skb)
330 			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
331 				       16, 1, buffer_info->skb->data,
332 				       buffer_info->skb->len, true);
333 	}
334 
335 	/* Print Rx Ring Summary */
336 rx_ring_summary:
337 	dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
338 	pr_info("Queue [NTU] [NTC]\n");
339 	pr_info(" %5d %5X %5X\n",
340 		0, rx_ring->next_to_use, rx_ring->next_to_clean);
341 
342 	/* Print Rx Ring */
343 	if (!netif_msg_rx_status(adapter))
344 		return;
345 
346 	dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
347 	switch (adapter->rx_ps_pages) {
348 	case 1:
349 	case 2:
350 	case 3:
351 		/* [Extended] Packet Split Receive Descriptor Format
352 		 *
353 		 *    +-----------------------------------------------------+
354 		 *  0 |                Buffer Address 0 [63:0]              |
355 		 *    +-----------------------------------------------------+
356 		 *  8 |                Buffer Address 1 [63:0]              |
357 		 *    +-----------------------------------------------------+
358 		 * 16 |                Buffer Address 2 [63:0]              |
359 		 *    +-----------------------------------------------------+
360 		 * 24 |                Buffer Address 3 [63:0]              |
361 		 *    +-----------------------------------------------------+
362 		 */
363 		pr_info("R  [desc]      [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] [bi->skb] <-- Ext Pkt Split format\n");
364 		/* [Extended] Receive Descriptor (Write-Back) Format
365 		 *
366 		 *   63       48 47    32 31     13 12    8 7    4 3        0
367 		 *   +------------------------------------------------------+
368 		 * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
369 		 *   | Checksum | Ident  |         | Queue |      |  Type   |
370 		 *   +------------------------------------------------------+
371 		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
372 		 *   +------------------------------------------------------+
373 		 *   63       48 47    32 31            20 19               0
374 		 */
375 		pr_info("RWB[desc]      [ck ipid mrqhsh] [vl   l0 ee  es] [ l3  l2  l1 hs] [reserved      ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
376 		for (i = 0; i < rx_ring->count; i++) {
377 			const char *next_desc;
378 			buffer_info = &rx_ring->buffer_info[i];
379 			rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
380 			u1 = (struct my_u1 *)rx_desc_ps;
381 			staterr =
382 			    le32_to_cpu(rx_desc_ps->wb.middle.status_error);
383 
384 			if (i == rx_ring->next_to_use)
385 				next_desc = " NTU";
386 			else if (i == rx_ring->next_to_clean)
387 				next_desc = " NTC";
388 			else
389 				next_desc = "";
390 
391 			if (staterr & E1000_RXD_STAT_DD) {
392 				/* Descriptor Done */
393 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX ---------------- %p%s\n",
394 					"RWB", i,
395 					(unsigned long long)le64_to_cpu(u1->a),
396 					(unsigned long long)le64_to_cpu(u1->b),
397 					(unsigned long long)le64_to_cpu(u1->c),
398 					(unsigned long long)le64_to_cpu(u1->d),
399 					buffer_info->skb, next_desc);
400 			} else {
401 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX %016llX %p%s\n",
402 					"R  ", i,
403 					(unsigned long long)le64_to_cpu(u1->a),
404 					(unsigned long long)le64_to_cpu(u1->b),
405 					(unsigned long long)le64_to_cpu(u1->c),
406 					(unsigned long long)le64_to_cpu(u1->d),
407 					(unsigned long long)buffer_info->dma,
408 					buffer_info->skb, next_desc);
409 
410 				if (netif_msg_pktdata(adapter))
411 					e1000e_dump_ps_pages(adapter,
412 							     buffer_info);
413 			}
414 		}
415 		break;
416 	default:
417 	case 0:
418 		/* Extended Receive Descriptor (Read) Format
419 		 *
420 		 *   +-----------------------------------------------------+
421 		 * 0 |                Buffer Address [63:0]                |
422 		 *   +-----------------------------------------------------+
423 		 * 8 |                      Reserved                       |
424 		 *   +-----------------------------------------------------+
425 		 */
426 		pr_info("R  [desc]      [buf addr 63:0 ] [reserved 63:0 ] [bi->dma       ] [bi->skb] <-- Ext (Read) format\n");
427 		/* Extended Receive Descriptor (Write-Back) Format
428 		 *
429 		 *   63       48 47    32 31    24 23            4 3        0
430 		 *   +------------------------------------------------------+
431 		 *   |     RSS Hash      |        |               |         |
432 		 * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
433 		 *   | Packet   | IP     |        |               |  Type   |
434 		 *   | Checksum | Ident  |        |               |         |
435 		 *   +------------------------------------------------------+
436 		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
437 		 *   +------------------------------------------------------+
438 		 *   63       48 47    32 31            20 19               0
439 		 */
440 		pr_info("RWB[desc]      [cs ipid    mrq] [vt   ln xe  xs] [bi->skb] <-- Ext (Write-Back) format\n");
441 
442 		for (i = 0; i < rx_ring->count; i++) {
443 			const char *next_desc;
444 
445 			buffer_info = &rx_ring->buffer_info[i];
446 			rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
447 			u1 = (struct my_u1 *)rx_desc;
448 			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
449 
450 			if (i == rx_ring->next_to_use)
451 				next_desc = " NTU";
452 			else if (i == rx_ring->next_to_clean)
453 				next_desc = " NTC";
454 			else
455 				next_desc = "";
456 
457 			if (staterr & E1000_RXD_STAT_DD) {
458 				/* Descriptor Done */
459 				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %p%s\n",
460 					"RWB", i,
461 					(unsigned long long)le64_to_cpu(u1->a),
462 					(unsigned long long)le64_to_cpu(u1->b),
463 					buffer_info->skb, next_desc);
464 			} else {
465 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %p%s\n",
466 					"R  ", i,
467 					(unsigned long long)le64_to_cpu(u1->a),
468 					(unsigned long long)le64_to_cpu(u1->b),
469 					(unsigned long long)buffer_info->dma,
470 					buffer_info->skb, next_desc);
471 
472 				if (netif_msg_pktdata(adapter) &&
473 				    buffer_info->skb)
474 					print_hex_dump(KERN_INFO, "",
475 						       DUMP_PREFIX_ADDRESS, 16,
476 						       1,
477 						       buffer_info->skb->data,
478 						       adapter->rx_buffer_len,
479 						       true);
480 			}
481 		}
482 	}
483 }
484 
485 /**
486  * e1000_desc_unused - calculate if we have unused descriptors
487  **/
488 static int e1000_desc_unused(struct e1000_ring *ring)
489 {
490 	if (ring->next_to_clean > ring->next_to_use)
491 		return ring->next_to_clean - ring->next_to_use - 1;
492 
493 	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
494 }
495 
496 /**
497  * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
498  * @adapter: board private structure
499  * @hwtstamps: time stamp structure to update
500  * @systim: unsigned 64bit system time value.
501  *
502  * Convert the system time value stored in the RX/TXSTMP registers into a
503  * hwtstamp which can be used by the upper level time stamping functions.
504  *
505  * The 'systim_lock' spinlock is used to protect the consistency of the
506  * system time value. This is needed because reading the 64 bit time
507  * value involves reading two 32 bit registers. The first read latches the
508  * value.
509  **/
510 static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter,
511 				      struct skb_shared_hwtstamps *hwtstamps,
512 				      u64 systim)
513 {
514 	u64 ns;
515 	unsigned long flags;
516 
517 	spin_lock_irqsave(&adapter->systim_lock, flags);
518 	ns = timecounter_cyc2time(&adapter->tc, systim);
519 	spin_unlock_irqrestore(&adapter->systim_lock, flags);
520 
521 	memset(hwtstamps, 0, sizeof(*hwtstamps));
522 	hwtstamps->hwtstamp = ns_to_ktime(ns);
523 }
524 
525 /**
526  * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
527  * @adapter: board private structure
528  * @status: descriptor extended error and status field
529  * @skb: particular skb to include time stamp
530  *
531  * If the time stamp is valid, convert it into the timecounter ns value
532  * and store that result into the shhwtstamps structure which is passed
533  * up the network stack.
534  **/
535 static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status,
536 			       struct sk_buff *skb)
537 {
538 	struct e1000_hw *hw = &adapter->hw;
539 	u64 rxstmp;
540 
541 	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) ||
542 	    !(status & E1000_RXDEXT_STATERR_TST) ||
543 	    !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
544 		return;
545 
546 	/* The Rx time stamp registers contain the time stamp.  No other
547 	 * received packet will be time stamped until the Rx time stamp
548 	 * registers are read.  Because only one packet can be time stamped
549 	 * at a time, the register values must belong to this packet and
550 	 * therefore none of the other additional attributes need to be
551 	 * compared.
552 	 */
553 	rxstmp = (u64)er32(RXSTMPL);
554 	rxstmp |= (u64)er32(RXSTMPH) << 32;
555 	e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp);
556 
557 	adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP;
558 }
559 
560 /**
561  * e1000_receive_skb - helper function to handle Rx indications
562  * @adapter: board private structure
563  * @staterr: descriptor extended error and status field as written by hardware
564  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
565  * @skb: pointer to sk_buff to be indicated to stack
566  **/
567 static void e1000_receive_skb(struct e1000_adapter *adapter,
568 			      struct net_device *netdev, struct sk_buff *skb,
569 			      u32 staterr, __le16 vlan)
570 {
571 	u16 tag = le16_to_cpu(vlan);
572 
573 	e1000e_rx_hwtstamp(adapter, staterr, skb);
574 
575 	skb->protocol = eth_type_trans(skb, netdev);
576 
577 	if (staterr & E1000_RXD_STAT_VP)
578 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag);
579 
580 	napi_gro_receive(&adapter->napi, skb);
581 }
582 
583 /**
584  * e1000_rx_checksum - Receive Checksum Offload
585  * @adapter: board private structure
586  * @status_err: receive descriptor status and error fields
587  * @csum: receive descriptor csum field
588  * @sk_buff: socket buffer with received data
589  **/
590 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
591 			      struct sk_buff *skb)
592 {
593 	u16 status = (u16)status_err;
594 	u8 errors = (u8)(status_err >> 24);
595 
596 	skb_checksum_none_assert(skb);
597 
598 	/* Rx checksum disabled */
599 	if (!(adapter->netdev->features & NETIF_F_RXCSUM))
600 		return;
601 
602 	/* Ignore Checksum bit is set */
603 	if (status & E1000_RXD_STAT_IXSM)
604 		return;
605 
606 	/* TCP/UDP checksum error bit or IP checksum error bit is set */
607 	if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
608 		/* let the stack verify checksum errors */
609 		adapter->hw_csum_err++;
610 		return;
611 	}
612 
613 	/* TCP/UDP Checksum has not been calculated */
614 	if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
615 		return;
616 
617 	/* It must be a TCP or UDP packet with a valid checksum */
618 	skb->ip_summed = CHECKSUM_UNNECESSARY;
619 	adapter->hw_csum_good++;
620 }
621 
622 static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
623 {
624 	struct e1000_adapter *adapter = rx_ring->adapter;
625 	struct e1000_hw *hw = &adapter->hw;
626 	s32 ret_val = __ew32_prepare(hw);
627 
628 	writel(i, rx_ring->tail);
629 
630 	if (unlikely(!ret_val && (i != readl(rx_ring->tail)))) {
631 		u32 rctl = er32(RCTL);
632 
633 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
634 		e_err("ME firmware caused invalid RDT - resetting\n");
635 		schedule_work(&adapter->reset_task);
636 	}
637 }
638 
639 static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
640 {
641 	struct e1000_adapter *adapter = tx_ring->adapter;
642 	struct e1000_hw *hw = &adapter->hw;
643 	s32 ret_val = __ew32_prepare(hw);
644 
645 	writel(i, tx_ring->tail);
646 
647 	if (unlikely(!ret_val && (i != readl(tx_ring->tail)))) {
648 		u32 tctl = er32(TCTL);
649 
650 		ew32(TCTL, tctl & ~E1000_TCTL_EN);
651 		e_err("ME firmware caused invalid TDT - resetting\n");
652 		schedule_work(&adapter->reset_task);
653 	}
654 }
655 
656 /**
657  * e1000_alloc_rx_buffers - Replace used receive buffers
658  * @rx_ring: Rx descriptor ring
659  **/
660 static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
661 				   int cleaned_count, gfp_t gfp)
662 {
663 	struct e1000_adapter *adapter = rx_ring->adapter;
664 	struct net_device *netdev = adapter->netdev;
665 	struct pci_dev *pdev = adapter->pdev;
666 	union e1000_rx_desc_extended *rx_desc;
667 	struct e1000_buffer *buffer_info;
668 	struct sk_buff *skb;
669 	unsigned int i;
670 	unsigned int bufsz = adapter->rx_buffer_len;
671 
672 	i = rx_ring->next_to_use;
673 	buffer_info = &rx_ring->buffer_info[i];
674 
675 	while (cleaned_count--) {
676 		skb = buffer_info->skb;
677 		if (skb) {
678 			skb_trim(skb, 0);
679 			goto map_skb;
680 		}
681 
682 		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
683 		if (!skb) {
684 			/* Better luck next round */
685 			adapter->alloc_rx_buff_failed++;
686 			break;
687 		}
688 
689 		buffer_info->skb = skb;
690 map_skb:
691 		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
692 						  adapter->rx_buffer_len,
693 						  DMA_FROM_DEVICE);
694 		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
695 			dev_err(&pdev->dev, "Rx DMA map failed\n");
696 			adapter->rx_dma_failed++;
697 			break;
698 		}
699 
700 		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
701 		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
702 
703 		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
704 			/* Force memory writes to complete before letting h/w
705 			 * know there are new descriptors to fetch.  (Only
706 			 * applicable for weak-ordered memory model archs,
707 			 * such as IA-64).
708 			 */
709 			wmb();
710 			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
711 				e1000e_update_rdt_wa(rx_ring, i);
712 			else
713 				writel(i, rx_ring->tail);
714 		}
715 		i++;
716 		if (i == rx_ring->count)
717 			i = 0;
718 		buffer_info = &rx_ring->buffer_info[i];
719 	}
720 
721 	rx_ring->next_to_use = i;
722 }
723 
724 /**
725  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
726  * @rx_ring: Rx descriptor ring
727  **/
728 static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
729 				      int cleaned_count, gfp_t gfp)
730 {
731 	struct e1000_adapter *adapter = rx_ring->adapter;
732 	struct net_device *netdev = adapter->netdev;
733 	struct pci_dev *pdev = adapter->pdev;
734 	union e1000_rx_desc_packet_split *rx_desc;
735 	struct e1000_buffer *buffer_info;
736 	struct e1000_ps_page *ps_page;
737 	struct sk_buff *skb;
738 	unsigned int i, j;
739 
740 	i = rx_ring->next_to_use;
741 	buffer_info = &rx_ring->buffer_info[i];
742 
743 	while (cleaned_count--) {
744 		rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
745 
746 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
747 			ps_page = &buffer_info->ps_pages[j];
748 			if (j >= adapter->rx_ps_pages) {
749 				/* all unused desc entries get hw null ptr */
750 				rx_desc->read.buffer_addr[j + 1] =
751 				    ~cpu_to_le64(0);
752 				continue;
753 			}
754 			if (!ps_page->page) {
755 				ps_page->page = alloc_page(gfp);
756 				if (!ps_page->page) {
757 					adapter->alloc_rx_buff_failed++;
758 					goto no_buffers;
759 				}
760 				ps_page->dma = dma_map_page(&pdev->dev,
761 							    ps_page->page,
762 							    0, PAGE_SIZE,
763 							    DMA_FROM_DEVICE);
764 				if (dma_mapping_error(&pdev->dev,
765 						      ps_page->dma)) {
766 					dev_err(&adapter->pdev->dev,
767 						"Rx DMA page map failed\n");
768 					adapter->rx_dma_failed++;
769 					goto no_buffers;
770 				}
771 			}
772 			/* Refresh the desc even if buffer_addrs
773 			 * didn't change because each write-back
774 			 * erases this info.
775 			 */
776 			rx_desc->read.buffer_addr[j + 1] =
777 			    cpu_to_le64(ps_page->dma);
778 		}
779 
780 		skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0,
781 						  gfp);
782 
783 		if (!skb) {
784 			adapter->alloc_rx_buff_failed++;
785 			break;
786 		}
787 
788 		buffer_info->skb = skb;
789 		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
790 						  adapter->rx_ps_bsize0,
791 						  DMA_FROM_DEVICE);
792 		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
793 			dev_err(&pdev->dev, "Rx DMA map failed\n");
794 			adapter->rx_dma_failed++;
795 			/* cleanup skb */
796 			dev_kfree_skb_any(skb);
797 			buffer_info->skb = NULL;
798 			break;
799 		}
800 
801 		rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
802 
803 		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
804 			/* Force memory writes to complete before letting h/w
805 			 * know there are new descriptors to fetch.  (Only
806 			 * applicable for weak-ordered memory model archs,
807 			 * such as IA-64).
808 			 */
809 			wmb();
810 			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
811 				e1000e_update_rdt_wa(rx_ring, i << 1);
812 			else
813 				writel(i << 1, rx_ring->tail);
814 		}
815 
816 		i++;
817 		if (i == rx_ring->count)
818 			i = 0;
819 		buffer_info = &rx_ring->buffer_info[i];
820 	}
821 
822 no_buffers:
823 	rx_ring->next_to_use = i;
824 }
825 
826 /**
827  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
828  * @rx_ring: Rx descriptor ring
829  * @cleaned_count: number of buffers to allocate this pass
830  **/
831 
832 static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
833 					 int cleaned_count, gfp_t gfp)
834 {
835 	struct e1000_adapter *adapter = rx_ring->adapter;
836 	struct net_device *netdev = adapter->netdev;
837 	struct pci_dev *pdev = adapter->pdev;
838 	union e1000_rx_desc_extended *rx_desc;
839 	struct e1000_buffer *buffer_info;
840 	struct sk_buff *skb;
841 	unsigned int i;
842 	unsigned int bufsz = 256 - 16;	/* for skb_reserve */
843 
844 	i = rx_ring->next_to_use;
845 	buffer_info = &rx_ring->buffer_info[i];
846 
847 	while (cleaned_count--) {
848 		skb = buffer_info->skb;
849 		if (skb) {
850 			skb_trim(skb, 0);
851 			goto check_page;
852 		}
853 
854 		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
855 		if (unlikely(!skb)) {
856 			/* Better luck next round */
857 			adapter->alloc_rx_buff_failed++;
858 			break;
859 		}
860 
861 		buffer_info->skb = skb;
862 check_page:
863 		/* allocate a new page if necessary */
864 		if (!buffer_info->page) {
865 			buffer_info->page = alloc_page(gfp);
866 			if (unlikely(!buffer_info->page)) {
867 				adapter->alloc_rx_buff_failed++;
868 				break;
869 			}
870 		}
871 
872 		if (!buffer_info->dma) {
873 			buffer_info->dma = dma_map_page(&pdev->dev,
874 							buffer_info->page, 0,
875 							PAGE_SIZE,
876 							DMA_FROM_DEVICE);
877 			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
878 				adapter->alloc_rx_buff_failed++;
879 				break;
880 			}
881 		}
882 
883 		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
884 		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
885 
886 		if (unlikely(++i == rx_ring->count))
887 			i = 0;
888 		buffer_info = &rx_ring->buffer_info[i];
889 	}
890 
891 	if (likely(rx_ring->next_to_use != i)) {
892 		rx_ring->next_to_use = i;
893 		if (unlikely(i-- == 0))
894 			i = (rx_ring->count - 1);
895 
896 		/* Force memory writes to complete before letting h/w
897 		 * know there are new descriptors to fetch.  (Only
898 		 * applicable for weak-ordered memory model archs,
899 		 * such as IA-64).
900 		 */
901 		wmb();
902 		if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
903 			e1000e_update_rdt_wa(rx_ring, i);
904 		else
905 			writel(i, rx_ring->tail);
906 	}
907 }
908 
909 static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
910 				 struct sk_buff *skb)
911 {
912 	if (netdev->features & NETIF_F_RXHASH)
913 		skb_set_hash(skb, le32_to_cpu(rss), PKT_HASH_TYPE_L3);
914 }
915 
916 /**
917  * e1000_clean_rx_irq - Send received data up the network stack
918  * @rx_ring: Rx descriptor ring
919  *
920  * the return value indicates whether actual cleaning was done, there
921  * is no guarantee that everything was cleaned
922  **/
923 static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
924 			       int work_to_do)
925 {
926 	struct e1000_adapter *adapter = rx_ring->adapter;
927 	struct net_device *netdev = adapter->netdev;
928 	struct pci_dev *pdev = adapter->pdev;
929 	struct e1000_hw *hw = &adapter->hw;
930 	union e1000_rx_desc_extended *rx_desc, *next_rxd;
931 	struct e1000_buffer *buffer_info, *next_buffer;
932 	u32 length, staterr;
933 	unsigned int i;
934 	int cleaned_count = 0;
935 	bool cleaned = false;
936 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
937 
938 	i = rx_ring->next_to_clean;
939 	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
940 	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
941 	buffer_info = &rx_ring->buffer_info[i];
942 
943 	while (staterr & E1000_RXD_STAT_DD) {
944 		struct sk_buff *skb;
945 
946 		if (*work_done >= work_to_do)
947 			break;
948 		(*work_done)++;
949 		rmb();	/* read descriptor and rx_buffer_info after status DD */
950 
951 		skb = buffer_info->skb;
952 		buffer_info->skb = NULL;
953 
954 		prefetch(skb->data - NET_IP_ALIGN);
955 
956 		i++;
957 		if (i == rx_ring->count)
958 			i = 0;
959 		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
960 		prefetch(next_rxd);
961 
962 		next_buffer = &rx_ring->buffer_info[i];
963 
964 		cleaned = true;
965 		cleaned_count++;
966 		dma_unmap_single(&pdev->dev, buffer_info->dma,
967 				 adapter->rx_buffer_len, DMA_FROM_DEVICE);
968 		buffer_info->dma = 0;
969 
970 		length = le16_to_cpu(rx_desc->wb.upper.length);
971 
972 		/* !EOP means multiple descriptors were used to store a single
973 		 * packet, if that's the case we need to toss it.  In fact, we
974 		 * need to toss every packet with the EOP bit clear and the
975 		 * next frame that _does_ have the EOP bit set, as it is by
976 		 * definition only a frame fragment
977 		 */
978 		if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
979 			adapter->flags2 |= FLAG2_IS_DISCARDING;
980 
981 		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
982 			/* All receives must fit into a single buffer */
983 			e_dbg("Receive packet consumed multiple buffers\n");
984 			/* recycle */
985 			buffer_info->skb = skb;
986 			if (staterr & E1000_RXD_STAT_EOP)
987 				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
988 			goto next_desc;
989 		}
990 
991 		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
992 			     !(netdev->features & NETIF_F_RXALL))) {
993 			/* recycle */
994 			buffer_info->skb = skb;
995 			goto next_desc;
996 		}
997 
998 		/* adjust length to remove Ethernet CRC */
999 		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1000 			/* If configured to store CRC, don't subtract FCS,
1001 			 * but keep the FCS bytes out of the total_rx_bytes
1002 			 * counter
1003 			 */
1004 			if (netdev->features & NETIF_F_RXFCS)
1005 				total_rx_bytes -= 4;
1006 			else
1007 				length -= 4;
1008 		}
1009 
1010 		total_rx_bytes += length;
1011 		total_rx_packets++;
1012 
1013 		/* code added for copybreak, this should improve
1014 		 * performance for small packets with large amounts
1015 		 * of reassembly being done in the stack
1016 		 */
1017 		if (length < copybreak) {
1018 			struct sk_buff *new_skb =
1019 				napi_alloc_skb(&adapter->napi, length);
1020 			if (new_skb) {
1021 				skb_copy_to_linear_data_offset(new_skb,
1022 							       -NET_IP_ALIGN,
1023 							       (skb->data -
1024 								NET_IP_ALIGN),
1025 							       (length +
1026 								NET_IP_ALIGN));
1027 				/* save the skb in buffer_info as good */
1028 				buffer_info->skb = skb;
1029 				skb = new_skb;
1030 			}
1031 			/* else just continue with the old one */
1032 		}
1033 		/* end copybreak code */
1034 		skb_put(skb, length);
1035 
1036 		/* Receive Checksum Offload */
1037 		e1000_rx_checksum(adapter, staterr, skb);
1038 
1039 		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1040 
1041 		e1000_receive_skb(adapter, netdev, skb, staterr,
1042 				  rx_desc->wb.upper.vlan);
1043 
1044 next_desc:
1045 		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1046 
1047 		/* return some buffers to hardware, one at a time is too slow */
1048 		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1049 			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1050 					      GFP_ATOMIC);
1051 			cleaned_count = 0;
1052 		}
1053 
1054 		/* use prefetched values */
1055 		rx_desc = next_rxd;
1056 		buffer_info = next_buffer;
1057 
1058 		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1059 	}
1060 	rx_ring->next_to_clean = i;
1061 
1062 	cleaned_count = e1000_desc_unused(rx_ring);
1063 	if (cleaned_count)
1064 		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1065 
1066 	adapter->total_rx_bytes += total_rx_bytes;
1067 	adapter->total_rx_packets += total_rx_packets;
1068 	return cleaned;
1069 }
1070 
1071 static void e1000_put_txbuf(struct e1000_ring *tx_ring,
1072 			    struct e1000_buffer *buffer_info)
1073 {
1074 	struct e1000_adapter *adapter = tx_ring->adapter;
1075 
1076 	if (buffer_info->dma) {
1077 		if (buffer_info->mapped_as_page)
1078 			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1079 				       buffer_info->length, DMA_TO_DEVICE);
1080 		else
1081 			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1082 					 buffer_info->length, DMA_TO_DEVICE);
1083 		buffer_info->dma = 0;
1084 	}
1085 	if (buffer_info->skb) {
1086 		dev_kfree_skb_any(buffer_info->skb);
1087 		buffer_info->skb = NULL;
1088 	}
1089 	buffer_info->time_stamp = 0;
1090 }
1091 
1092 static void e1000_print_hw_hang(struct work_struct *work)
1093 {
1094 	struct e1000_adapter *adapter = container_of(work,
1095 						     struct e1000_adapter,
1096 						     print_hang_task);
1097 	struct net_device *netdev = adapter->netdev;
1098 	struct e1000_ring *tx_ring = adapter->tx_ring;
1099 	unsigned int i = tx_ring->next_to_clean;
1100 	unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1101 	struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1102 	struct e1000_hw *hw = &adapter->hw;
1103 	u16 phy_status, phy_1000t_status, phy_ext_status;
1104 	u16 pci_status;
1105 
1106 	if (test_bit(__E1000_DOWN, &adapter->state))
1107 		return;
1108 
1109 	if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) {
1110 		/* May be block on write-back, flush and detect again
1111 		 * flush pending descriptor writebacks to memory
1112 		 */
1113 		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1114 		/* execute the writes immediately */
1115 		e1e_flush();
1116 		/* Due to rare timing issues, write to TIDV again to ensure
1117 		 * the write is successful
1118 		 */
1119 		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1120 		/* execute the writes immediately */
1121 		e1e_flush();
1122 		adapter->tx_hang_recheck = true;
1123 		return;
1124 	}
1125 	adapter->tx_hang_recheck = false;
1126 
1127 	if (er32(TDH(0)) == er32(TDT(0))) {
1128 		e_dbg("false hang detected, ignoring\n");
1129 		return;
1130 	}
1131 
1132 	/* Real hang detected */
1133 	netif_stop_queue(netdev);
1134 
1135 	e1e_rphy(hw, MII_BMSR, &phy_status);
1136 	e1e_rphy(hw, MII_STAT1000, &phy_1000t_status);
1137 	e1e_rphy(hw, MII_ESTATUS, &phy_ext_status);
1138 
1139 	pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1140 
1141 	/* detected Hardware unit hang */
1142 	e_err("Detected Hardware Unit Hang:\n"
1143 	      "  TDH                  <%x>\n"
1144 	      "  TDT                  <%x>\n"
1145 	      "  next_to_use          <%x>\n"
1146 	      "  next_to_clean        <%x>\n"
1147 	      "buffer_info[next_to_clean]:\n"
1148 	      "  time_stamp           <%lx>\n"
1149 	      "  next_to_watch        <%x>\n"
1150 	      "  jiffies              <%lx>\n"
1151 	      "  next_to_watch.status <%x>\n"
1152 	      "MAC Status             <%x>\n"
1153 	      "PHY Status             <%x>\n"
1154 	      "PHY 1000BASE-T Status  <%x>\n"
1155 	      "PHY Extended Status    <%x>\n"
1156 	      "PCI Status             <%x>\n",
1157 	      readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use,
1158 	      tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp,
1159 	      eop, jiffies, eop_desc->upper.fields.status, er32(STATUS),
1160 	      phy_status, phy_1000t_status, phy_ext_status, pci_status);
1161 
1162 	e1000e_dump(adapter);
1163 
1164 	/* Suggest workaround for known h/w issue */
1165 	if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1166 		e_err("Try turning off Tx pause (flow control) via ethtool\n");
1167 }
1168 
1169 /**
1170  * e1000e_tx_hwtstamp_work - check for Tx time stamp
1171  * @work: pointer to work struct
1172  *
1173  * This work function polls the TSYNCTXCTL valid bit to determine when a
1174  * timestamp has been taken for the current stored skb.  The timestamp must
1175  * be for this skb because only one such packet is allowed in the queue.
1176  */
1177 static void e1000e_tx_hwtstamp_work(struct work_struct *work)
1178 {
1179 	struct e1000_adapter *adapter = container_of(work, struct e1000_adapter,
1180 						     tx_hwtstamp_work);
1181 	struct e1000_hw *hw = &adapter->hw;
1182 
1183 	if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) {
1184 		struct skb_shared_hwtstamps shhwtstamps;
1185 		u64 txstmp;
1186 
1187 		txstmp = er32(TXSTMPL);
1188 		txstmp |= (u64)er32(TXSTMPH) << 32;
1189 
1190 		e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp);
1191 
1192 		skb_tstamp_tx(adapter->tx_hwtstamp_skb, &shhwtstamps);
1193 		dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1194 		adapter->tx_hwtstamp_skb = NULL;
1195 	} else if (time_after(jiffies, adapter->tx_hwtstamp_start
1196 			      + adapter->tx_timeout_factor * HZ)) {
1197 		dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1198 		adapter->tx_hwtstamp_skb = NULL;
1199 		adapter->tx_hwtstamp_timeouts++;
1200 		e_warn("clearing Tx timestamp hang\n");
1201 	} else {
1202 		/* reschedule to check later */
1203 		schedule_work(&adapter->tx_hwtstamp_work);
1204 	}
1205 }
1206 
1207 /**
1208  * e1000_clean_tx_irq - Reclaim resources after transmit completes
1209  * @tx_ring: Tx descriptor ring
1210  *
1211  * the return value indicates whether actual cleaning was done, there
1212  * is no guarantee that everything was cleaned
1213  **/
1214 static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1215 {
1216 	struct e1000_adapter *adapter = tx_ring->adapter;
1217 	struct net_device *netdev = adapter->netdev;
1218 	struct e1000_hw *hw = &adapter->hw;
1219 	struct e1000_tx_desc *tx_desc, *eop_desc;
1220 	struct e1000_buffer *buffer_info;
1221 	unsigned int i, eop;
1222 	unsigned int count = 0;
1223 	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1224 	unsigned int bytes_compl = 0, pkts_compl = 0;
1225 
1226 	i = tx_ring->next_to_clean;
1227 	eop = tx_ring->buffer_info[i].next_to_watch;
1228 	eop_desc = E1000_TX_DESC(*tx_ring, eop);
1229 
1230 	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1231 	       (count < tx_ring->count)) {
1232 		bool cleaned = false;
1233 
1234 		rmb();		/* read buffer_info after eop_desc */
1235 		for (; !cleaned; count++) {
1236 			tx_desc = E1000_TX_DESC(*tx_ring, i);
1237 			buffer_info = &tx_ring->buffer_info[i];
1238 			cleaned = (i == eop);
1239 
1240 			if (cleaned) {
1241 				total_tx_packets += buffer_info->segs;
1242 				total_tx_bytes += buffer_info->bytecount;
1243 				if (buffer_info->skb) {
1244 					bytes_compl += buffer_info->skb->len;
1245 					pkts_compl++;
1246 				}
1247 			}
1248 
1249 			e1000_put_txbuf(tx_ring, buffer_info);
1250 			tx_desc->upper.data = 0;
1251 
1252 			i++;
1253 			if (i == tx_ring->count)
1254 				i = 0;
1255 		}
1256 
1257 		if (i == tx_ring->next_to_use)
1258 			break;
1259 		eop = tx_ring->buffer_info[i].next_to_watch;
1260 		eop_desc = E1000_TX_DESC(*tx_ring, eop);
1261 	}
1262 
1263 	tx_ring->next_to_clean = i;
1264 
1265 	netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1266 
1267 #define TX_WAKE_THRESHOLD 32
1268 	if (count && netif_carrier_ok(netdev) &&
1269 	    e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1270 		/* Make sure that anybody stopping the queue after this
1271 		 * sees the new next_to_clean.
1272 		 */
1273 		smp_mb();
1274 
1275 		if (netif_queue_stopped(netdev) &&
1276 		    !(test_bit(__E1000_DOWN, &adapter->state))) {
1277 			netif_wake_queue(netdev);
1278 			++adapter->restart_queue;
1279 		}
1280 	}
1281 
1282 	if (adapter->detect_tx_hung) {
1283 		/* Detect a transmit hang in hardware, this serializes the
1284 		 * check with the clearing of time_stamp and movement of i
1285 		 */
1286 		adapter->detect_tx_hung = false;
1287 		if (tx_ring->buffer_info[i].time_stamp &&
1288 		    time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1289 			       + (adapter->tx_timeout_factor * HZ)) &&
1290 		    !(er32(STATUS) & E1000_STATUS_TXOFF))
1291 			schedule_work(&adapter->print_hang_task);
1292 		else
1293 			adapter->tx_hang_recheck = false;
1294 	}
1295 	adapter->total_tx_bytes += total_tx_bytes;
1296 	adapter->total_tx_packets += total_tx_packets;
1297 	return count < tx_ring->count;
1298 }
1299 
1300 /**
1301  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1302  * @rx_ring: Rx descriptor ring
1303  *
1304  * the return value indicates whether actual cleaning was done, there
1305  * is no guarantee that everything was cleaned
1306  **/
1307 static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1308 				  int work_to_do)
1309 {
1310 	struct e1000_adapter *adapter = rx_ring->adapter;
1311 	struct e1000_hw *hw = &adapter->hw;
1312 	union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1313 	struct net_device *netdev = adapter->netdev;
1314 	struct pci_dev *pdev = adapter->pdev;
1315 	struct e1000_buffer *buffer_info, *next_buffer;
1316 	struct e1000_ps_page *ps_page;
1317 	struct sk_buff *skb;
1318 	unsigned int i, j;
1319 	u32 length, staterr;
1320 	int cleaned_count = 0;
1321 	bool cleaned = false;
1322 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1323 
1324 	i = rx_ring->next_to_clean;
1325 	rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1326 	staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1327 	buffer_info = &rx_ring->buffer_info[i];
1328 
1329 	while (staterr & E1000_RXD_STAT_DD) {
1330 		if (*work_done >= work_to_do)
1331 			break;
1332 		(*work_done)++;
1333 		skb = buffer_info->skb;
1334 		rmb();	/* read descriptor and rx_buffer_info after status DD */
1335 
1336 		/* in the packet split case this is header only */
1337 		prefetch(skb->data - NET_IP_ALIGN);
1338 
1339 		i++;
1340 		if (i == rx_ring->count)
1341 			i = 0;
1342 		next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1343 		prefetch(next_rxd);
1344 
1345 		next_buffer = &rx_ring->buffer_info[i];
1346 
1347 		cleaned = true;
1348 		cleaned_count++;
1349 		dma_unmap_single(&pdev->dev, buffer_info->dma,
1350 				 adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1351 		buffer_info->dma = 0;
1352 
1353 		/* see !EOP comment in other Rx routine */
1354 		if (!(staterr & E1000_RXD_STAT_EOP))
1355 			adapter->flags2 |= FLAG2_IS_DISCARDING;
1356 
1357 		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1358 			e_dbg("Packet Split buffers didn't pick up the full packet\n");
1359 			dev_kfree_skb_irq(skb);
1360 			if (staterr & E1000_RXD_STAT_EOP)
1361 				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1362 			goto next_desc;
1363 		}
1364 
1365 		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1366 			     !(netdev->features & NETIF_F_RXALL))) {
1367 			dev_kfree_skb_irq(skb);
1368 			goto next_desc;
1369 		}
1370 
1371 		length = le16_to_cpu(rx_desc->wb.middle.length0);
1372 
1373 		if (!length) {
1374 			e_dbg("Last part of the packet spanning multiple descriptors\n");
1375 			dev_kfree_skb_irq(skb);
1376 			goto next_desc;
1377 		}
1378 
1379 		/* Good Receive */
1380 		skb_put(skb, length);
1381 
1382 		{
1383 			/* this looks ugly, but it seems compiler issues make
1384 			 * it more efficient than reusing j
1385 			 */
1386 			int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1387 
1388 			/* page alloc/put takes too long and effects small
1389 			 * packet throughput, so unsplit small packets and
1390 			 * save the alloc/put only valid in softirq (napi)
1391 			 * context to call kmap_*
1392 			 */
1393 			if (l1 && (l1 <= copybreak) &&
1394 			    ((length + l1) <= adapter->rx_ps_bsize0)) {
1395 				u8 *vaddr;
1396 
1397 				ps_page = &buffer_info->ps_pages[0];
1398 
1399 				/* there is no documentation about how to call
1400 				 * kmap_atomic, so we can't hold the mapping
1401 				 * very long
1402 				 */
1403 				dma_sync_single_for_cpu(&pdev->dev,
1404 							ps_page->dma,
1405 							PAGE_SIZE,
1406 							DMA_FROM_DEVICE);
1407 				vaddr = kmap_atomic(ps_page->page);
1408 				memcpy(skb_tail_pointer(skb), vaddr, l1);
1409 				kunmap_atomic(vaddr);
1410 				dma_sync_single_for_device(&pdev->dev,
1411 							   ps_page->dma,
1412 							   PAGE_SIZE,
1413 							   DMA_FROM_DEVICE);
1414 
1415 				/* remove the CRC */
1416 				if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1417 					if (!(netdev->features & NETIF_F_RXFCS))
1418 						l1 -= 4;
1419 				}
1420 
1421 				skb_put(skb, l1);
1422 				goto copydone;
1423 			}	/* if */
1424 		}
1425 
1426 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1427 			length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1428 			if (!length)
1429 				break;
1430 
1431 			ps_page = &buffer_info->ps_pages[j];
1432 			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1433 				       DMA_FROM_DEVICE);
1434 			ps_page->dma = 0;
1435 			skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1436 			ps_page->page = NULL;
1437 			skb->len += length;
1438 			skb->data_len += length;
1439 			skb->truesize += PAGE_SIZE;
1440 		}
1441 
1442 		/* strip the ethernet crc, problem is we're using pages now so
1443 		 * this whole operation can get a little cpu intensive
1444 		 */
1445 		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1446 			if (!(netdev->features & NETIF_F_RXFCS))
1447 				pskb_trim(skb, skb->len - 4);
1448 		}
1449 
1450 copydone:
1451 		total_rx_bytes += skb->len;
1452 		total_rx_packets++;
1453 
1454 		e1000_rx_checksum(adapter, staterr, skb);
1455 
1456 		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1457 
1458 		if (rx_desc->wb.upper.header_status &
1459 		    cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1460 			adapter->rx_hdr_split++;
1461 
1462 		e1000_receive_skb(adapter, netdev, skb, staterr,
1463 				  rx_desc->wb.middle.vlan);
1464 
1465 next_desc:
1466 		rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1467 		buffer_info->skb = NULL;
1468 
1469 		/* return some buffers to hardware, one at a time is too slow */
1470 		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1471 			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1472 					      GFP_ATOMIC);
1473 			cleaned_count = 0;
1474 		}
1475 
1476 		/* use prefetched values */
1477 		rx_desc = next_rxd;
1478 		buffer_info = next_buffer;
1479 
1480 		staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1481 	}
1482 	rx_ring->next_to_clean = i;
1483 
1484 	cleaned_count = e1000_desc_unused(rx_ring);
1485 	if (cleaned_count)
1486 		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1487 
1488 	adapter->total_rx_bytes += total_rx_bytes;
1489 	adapter->total_rx_packets += total_rx_packets;
1490 	return cleaned;
1491 }
1492 
1493 /**
1494  * e1000_consume_page - helper function
1495  **/
1496 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1497 			       u16 length)
1498 {
1499 	bi->page = NULL;
1500 	skb->len += length;
1501 	skb->data_len += length;
1502 	skb->truesize += PAGE_SIZE;
1503 }
1504 
1505 /**
1506  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1507  * @adapter: board private structure
1508  *
1509  * the return value indicates whether actual cleaning was done, there
1510  * is no guarantee that everything was cleaned
1511  **/
1512 static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1513 				     int work_to_do)
1514 {
1515 	struct e1000_adapter *adapter = rx_ring->adapter;
1516 	struct net_device *netdev = adapter->netdev;
1517 	struct pci_dev *pdev = adapter->pdev;
1518 	union e1000_rx_desc_extended *rx_desc, *next_rxd;
1519 	struct e1000_buffer *buffer_info, *next_buffer;
1520 	u32 length, staterr;
1521 	unsigned int i;
1522 	int cleaned_count = 0;
1523 	bool cleaned = false;
1524 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1525 	struct skb_shared_info *shinfo;
1526 
1527 	i = rx_ring->next_to_clean;
1528 	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1529 	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1530 	buffer_info = &rx_ring->buffer_info[i];
1531 
1532 	while (staterr & E1000_RXD_STAT_DD) {
1533 		struct sk_buff *skb;
1534 
1535 		if (*work_done >= work_to_do)
1536 			break;
1537 		(*work_done)++;
1538 		rmb();	/* read descriptor and rx_buffer_info after status DD */
1539 
1540 		skb = buffer_info->skb;
1541 		buffer_info->skb = NULL;
1542 
1543 		++i;
1544 		if (i == rx_ring->count)
1545 			i = 0;
1546 		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1547 		prefetch(next_rxd);
1548 
1549 		next_buffer = &rx_ring->buffer_info[i];
1550 
1551 		cleaned = true;
1552 		cleaned_count++;
1553 		dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1554 			       DMA_FROM_DEVICE);
1555 		buffer_info->dma = 0;
1556 
1557 		length = le16_to_cpu(rx_desc->wb.upper.length);
1558 
1559 		/* errors is only valid for DD + EOP descriptors */
1560 		if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1561 			     ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1562 			      !(netdev->features & NETIF_F_RXALL)))) {
1563 			/* recycle both page and skb */
1564 			buffer_info->skb = skb;
1565 			/* an error means any chain goes out the window too */
1566 			if (rx_ring->rx_skb_top)
1567 				dev_kfree_skb_irq(rx_ring->rx_skb_top);
1568 			rx_ring->rx_skb_top = NULL;
1569 			goto next_desc;
1570 		}
1571 #define rxtop (rx_ring->rx_skb_top)
1572 		if (!(staterr & E1000_RXD_STAT_EOP)) {
1573 			/* this descriptor is only the beginning (or middle) */
1574 			if (!rxtop) {
1575 				/* this is the beginning of a chain */
1576 				rxtop = skb;
1577 				skb_fill_page_desc(rxtop, 0, buffer_info->page,
1578 						   0, length);
1579 			} else {
1580 				/* this is the middle of a chain */
1581 				shinfo = skb_shinfo(rxtop);
1582 				skb_fill_page_desc(rxtop, shinfo->nr_frags,
1583 						   buffer_info->page, 0,
1584 						   length);
1585 				/* re-use the skb, only consumed the page */
1586 				buffer_info->skb = skb;
1587 			}
1588 			e1000_consume_page(buffer_info, rxtop, length);
1589 			goto next_desc;
1590 		} else {
1591 			if (rxtop) {
1592 				/* end of the chain */
1593 				shinfo = skb_shinfo(rxtop);
1594 				skb_fill_page_desc(rxtop, shinfo->nr_frags,
1595 						   buffer_info->page, 0,
1596 						   length);
1597 				/* re-use the current skb, we only consumed the
1598 				 * page
1599 				 */
1600 				buffer_info->skb = skb;
1601 				skb = rxtop;
1602 				rxtop = NULL;
1603 				e1000_consume_page(buffer_info, skb, length);
1604 			} else {
1605 				/* no chain, got EOP, this buf is the packet
1606 				 * copybreak to save the put_page/alloc_page
1607 				 */
1608 				if (length <= copybreak &&
1609 				    skb_tailroom(skb) >= length) {
1610 					u8 *vaddr;
1611 					vaddr = kmap_atomic(buffer_info->page);
1612 					memcpy(skb_tail_pointer(skb), vaddr,
1613 					       length);
1614 					kunmap_atomic(vaddr);
1615 					/* re-use the page, so don't erase
1616 					 * buffer_info->page
1617 					 */
1618 					skb_put(skb, length);
1619 				} else {
1620 					skb_fill_page_desc(skb, 0,
1621 							   buffer_info->page, 0,
1622 							   length);
1623 					e1000_consume_page(buffer_info, skb,
1624 							   length);
1625 				}
1626 			}
1627 		}
1628 
1629 		/* Receive Checksum Offload */
1630 		e1000_rx_checksum(adapter, staterr, skb);
1631 
1632 		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1633 
1634 		/* probably a little skewed due to removing CRC */
1635 		total_rx_bytes += skb->len;
1636 		total_rx_packets++;
1637 
1638 		/* eth type trans needs skb->data to point to something */
1639 		if (!pskb_may_pull(skb, ETH_HLEN)) {
1640 			e_err("pskb_may_pull failed.\n");
1641 			dev_kfree_skb_irq(skb);
1642 			goto next_desc;
1643 		}
1644 
1645 		e1000_receive_skb(adapter, netdev, skb, staterr,
1646 				  rx_desc->wb.upper.vlan);
1647 
1648 next_desc:
1649 		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1650 
1651 		/* return some buffers to hardware, one at a time is too slow */
1652 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1653 			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1654 					      GFP_ATOMIC);
1655 			cleaned_count = 0;
1656 		}
1657 
1658 		/* use prefetched values */
1659 		rx_desc = next_rxd;
1660 		buffer_info = next_buffer;
1661 
1662 		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1663 	}
1664 	rx_ring->next_to_clean = i;
1665 
1666 	cleaned_count = e1000_desc_unused(rx_ring);
1667 	if (cleaned_count)
1668 		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1669 
1670 	adapter->total_rx_bytes += total_rx_bytes;
1671 	adapter->total_rx_packets += total_rx_packets;
1672 	return cleaned;
1673 }
1674 
1675 /**
1676  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1677  * @rx_ring: Rx descriptor ring
1678  **/
1679 static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1680 {
1681 	struct e1000_adapter *adapter = rx_ring->adapter;
1682 	struct e1000_buffer *buffer_info;
1683 	struct e1000_ps_page *ps_page;
1684 	struct pci_dev *pdev = adapter->pdev;
1685 	unsigned int i, j;
1686 
1687 	/* Free all the Rx ring sk_buffs */
1688 	for (i = 0; i < rx_ring->count; i++) {
1689 		buffer_info = &rx_ring->buffer_info[i];
1690 		if (buffer_info->dma) {
1691 			if (adapter->clean_rx == e1000_clean_rx_irq)
1692 				dma_unmap_single(&pdev->dev, buffer_info->dma,
1693 						 adapter->rx_buffer_len,
1694 						 DMA_FROM_DEVICE);
1695 			else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1696 				dma_unmap_page(&pdev->dev, buffer_info->dma,
1697 					       PAGE_SIZE, DMA_FROM_DEVICE);
1698 			else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1699 				dma_unmap_single(&pdev->dev, buffer_info->dma,
1700 						 adapter->rx_ps_bsize0,
1701 						 DMA_FROM_DEVICE);
1702 			buffer_info->dma = 0;
1703 		}
1704 
1705 		if (buffer_info->page) {
1706 			put_page(buffer_info->page);
1707 			buffer_info->page = NULL;
1708 		}
1709 
1710 		if (buffer_info->skb) {
1711 			dev_kfree_skb(buffer_info->skb);
1712 			buffer_info->skb = NULL;
1713 		}
1714 
1715 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1716 			ps_page = &buffer_info->ps_pages[j];
1717 			if (!ps_page->page)
1718 				break;
1719 			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1720 				       DMA_FROM_DEVICE);
1721 			ps_page->dma = 0;
1722 			put_page(ps_page->page);
1723 			ps_page->page = NULL;
1724 		}
1725 	}
1726 
1727 	/* there also may be some cached data from a chained receive */
1728 	if (rx_ring->rx_skb_top) {
1729 		dev_kfree_skb(rx_ring->rx_skb_top);
1730 		rx_ring->rx_skb_top = NULL;
1731 	}
1732 
1733 	/* Zero out the descriptor ring */
1734 	memset(rx_ring->desc, 0, rx_ring->size);
1735 
1736 	rx_ring->next_to_clean = 0;
1737 	rx_ring->next_to_use = 0;
1738 	adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1739 
1740 	writel(0, rx_ring->head);
1741 	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
1742 		e1000e_update_rdt_wa(rx_ring, 0);
1743 	else
1744 		writel(0, rx_ring->tail);
1745 }
1746 
1747 static void e1000e_downshift_workaround(struct work_struct *work)
1748 {
1749 	struct e1000_adapter *adapter = container_of(work,
1750 						     struct e1000_adapter,
1751 						     downshift_task);
1752 
1753 	if (test_bit(__E1000_DOWN, &adapter->state))
1754 		return;
1755 
1756 	e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1757 }
1758 
1759 /**
1760  * e1000_intr_msi - Interrupt Handler
1761  * @irq: interrupt number
1762  * @data: pointer to a network interface device structure
1763  **/
1764 static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data)
1765 {
1766 	struct net_device *netdev = data;
1767 	struct e1000_adapter *adapter = netdev_priv(netdev);
1768 	struct e1000_hw *hw = &adapter->hw;
1769 	u32 icr = er32(ICR);
1770 
1771 	/* read ICR disables interrupts using IAM */
1772 	if (icr & E1000_ICR_LSC) {
1773 		hw->mac.get_link_status = true;
1774 		/* ICH8 workaround-- Call gig speed drop workaround on cable
1775 		 * disconnect (LSC) before accessing any PHY registers
1776 		 */
1777 		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1778 		    (!(er32(STATUS) & E1000_STATUS_LU)))
1779 			schedule_work(&adapter->downshift_task);
1780 
1781 		/* 80003ES2LAN workaround-- For packet buffer work-around on
1782 		 * link down event; disable receives here in the ISR and reset
1783 		 * adapter in watchdog
1784 		 */
1785 		if (netif_carrier_ok(netdev) &&
1786 		    adapter->flags & FLAG_RX_NEEDS_RESTART) {
1787 			/* disable receives */
1788 			u32 rctl = er32(RCTL);
1789 
1790 			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1791 			adapter->flags |= FLAG_RESTART_NOW;
1792 		}
1793 		/* guard against interrupt when we're going down */
1794 		if (!test_bit(__E1000_DOWN, &adapter->state))
1795 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1796 	}
1797 
1798 	/* Reset on uncorrectable ECC error */
1799 	if ((icr & E1000_ICR_ECCER) && (hw->mac.type == e1000_pch_lpt)) {
1800 		u32 pbeccsts = er32(PBECCSTS);
1801 
1802 		adapter->corr_errors +=
1803 		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1804 		adapter->uncorr_errors +=
1805 		    (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1806 		    E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1807 
1808 		/* Do the reset outside of interrupt context */
1809 		schedule_work(&adapter->reset_task);
1810 
1811 		/* return immediately since reset is imminent */
1812 		return IRQ_HANDLED;
1813 	}
1814 
1815 	if (napi_schedule_prep(&adapter->napi)) {
1816 		adapter->total_tx_bytes = 0;
1817 		adapter->total_tx_packets = 0;
1818 		adapter->total_rx_bytes = 0;
1819 		adapter->total_rx_packets = 0;
1820 		__napi_schedule(&adapter->napi);
1821 	}
1822 
1823 	return IRQ_HANDLED;
1824 }
1825 
1826 /**
1827  * e1000_intr - Interrupt Handler
1828  * @irq: interrupt number
1829  * @data: pointer to a network interface device structure
1830  **/
1831 static irqreturn_t e1000_intr(int __always_unused irq, void *data)
1832 {
1833 	struct net_device *netdev = data;
1834 	struct e1000_adapter *adapter = netdev_priv(netdev);
1835 	struct e1000_hw *hw = &adapter->hw;
1836 	u32 rctl, icr = er32(ICR);
1837 
1838 	if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1839 		return IRQ_NONE;	/* Not our interrupt */
1840 
1841 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1842 	 * not set, then the adapter didn't send an interrupt
1843 	 */
1844 	if (!(icr & E1000_ICR_INT_ASSERTED))
1845 		return IRQ_NONE;
1846 
1847 	/* Interrupt Auto-Mask...upon reading ICR,
1848 	 * interrupts are masked.  No need for the
1849 	 * IMC write
1850 	 */
1851 
1852 	if (icr & E1000_ICR_LSC) {
1853 		hw->mac.get_link_status = true;
1854 		/* ICH8 workaround-- Call gig speed drop workaround on cable
1855 		 * disconnect (LSC) before accessing any PHY registers
1856 		 */
1857 		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1858 		    (!(er32(STATUS) & E1000_STATUS_LU)))
1859 			schedule_work(&adapter->downshift_task);
1860 
1861 		/* 80003ES2LAN workaround--
1862 		 * For packet buffer work-around on link down event;
1863 		 * disable receives here in the ISR and
1864 		 * reset adapter in watchdog
1865 		 */
1866 		if (netif_carrier_ok(netdev) &&
1867 		    (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1868 			/* disable receives */
1869 			rctl = er32(RCTL);
1870 			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1871 			adapter->flags |= FLAG_RESTART_NOW;
1872 		}
1873 		/* guard against interrupt when we're going down */
1874 		if (!test_bit(__E1000_DOWN, &adapter->state))
1875 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1876 	}
1877 
1878 	/* Reset on uncorrectable ECC error */
1879 	if ((icr & E1000_ICR_ECCER) && (hw->mac.type == e1000_pch_lpt)) {
1880 		u32 pbeccsts = er32(PBECCSTS);
1881 
1882 		adapter->corr_errors +=
1883 		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1884 		adapter->uncorr_errors +=
1885 		    (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1886 		    E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1887 
1888 		/* Do the reset outside of interrupt context */
1889 		schedule_work(&adapter->reset_task);
1890 
1891 		/* return immediately since reset is imminent */
1892 		return IRQ_HANDLED;
1893 	}
1894 
1895 	if (napi_schedule_prep(&adapter->napi)) {
1896 		adapter->total_tx_bytes = 0;
1897 		adapter->total_tx_packets = 0;
1898 		adapter->total_rx_bytes = 0;
1899 		adapter->total_rx_packets = 0;
1900 		__napi_schedule(&adapter->napi);
1901 	}
1902 
1903 	return IRQ_HANDLED;
1904 }
1905 
1906 static irqreturn_t e1000_msix_other(int __always_unused irq, void *data)
1907 {
1908 	struct net_device *netdev = data;
1909 	struct e1000_adapter *adapter = netdev_priv(netdev);
1910 	struct e1000_hw *hw = &adapter->hw;
1911 	u32 icr = er32(ICR);
1912 
1913 	if (!(icr & E1000_ICR_INT_ASSERTED)) {
1914 		if (!test_bit(__E1000_DOWN, &adapter->state))
1915 			ew32(IMS, E1000_IMS_OTHER);
1916 		return IRQ_NONE;
1917 	}
1918 
1919 	if (icr & adapter->eiac_mask)
1920 		ew32(ICS, (icr & adapter->eiac_mask));
1921 
1922 	if (icr & E1000_ICR_OTHER) {
1923 		if (!(icr & E1000_ICR_LSC))
1924 			goto no_link_interrupt;
1925 		hw->mac.get_link_status = true;
1926 		/* guard against interrupt when we're going down */
1927 		if (!test_bit(__E1000_DOWN, &adapter->state))
1928 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1929 	}
1930 
1931 no_link_interrupt:
1932 	if (!test_bit(__E1000_DOWN, &adapter->state))
1933 		ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1934 
1935 	return IRQ_HANDLED;
1936 }
1937 
1938 static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data)
1939 {
1940 	struct net_device *netdev = data;
1941 	struct e1000_adapter *adapter = netdev_priv(netdev);
1942 	struct e1000_hw *hw = &adapter->hw;
1943 	struct e1000_ring *tx_ring = adapter->tx_ring;
1944 
1945 	adapter->total_tx_bytes = 0;
1946 	adapter->total_tx_packets = 0;
1947 
1948 	if (!e1000_clean_tx_irq(tx_ring))
1949 		/* Ring was not completely cleaned, so fire another interrupt */
1950 		ew32(ICS, tx_ring->ims_val);
1951 
1952 	return IRQ_HANDLED;
1953 }
1954 
1955 static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data)
1956 {
1957 	struct net_device *netdev = data;
1958 	struct e1000_adapter *adapter = netdev_priv(netdev);
1959 	struct e1000_ring *rx_ring = adapter->rx_ring;
1960 
1961 	/* Write the ITR value calculated at the end of the
1962 	 * previous interrupt.
1963 	 */
1964 	if (rx_ring->set_itr) {
1965 		writel(1000000000 / (rx_ring->itr_val * 256),
1966 		       rx_ring->itr_register);
1967 		rx_ring->set_itr = 0;
1968 	}
1969 
1970 	if (napi_schedule_prep(&adapter->napi)) {
1971 		adapter->total_rx_bytes = 0;
1972 		adapter->total_rx_packets = 0;
1973 		__napi_schedule(&adapter->napi);
1974 	}
1975 	return IRQ_HANDLED;
1976 }
1977 
1978 /**
1979  * e1000_configure_msix - Configure MSI-X hardware
1980  *
1981  * e1000_configure_msix sets up the hardware to properly
1982  * generate MSI-X interrupts.
1983  **/
1984 static void e1000_configure_msix(struct e1000_adapter *adapter)
1985 {
1986 	struct e1000_hw *hw = &adapter->hw;
1987 	struct e1000_ring *rx_ring = adapter->rx_ring;
1988 	struct e1000_ring *tx_ring = adapter->tx_ring;
1989 	int vector = 0;
1990 	u32 ctrl_ext, ivar = 0;
1991 
1992 	adapter->eiac_mask = 0;
1993 
1994 	/* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1995 	if (hw->mac.type == e1000_82574) {
1996 		u32 rfctl = er32(RFCTL);
1997 
1998 		rfctl |= E1000_RFCTL_ACK_DIS;
1999 		ew32(RFCTL, rfctl);
2000 	}
2001 
2002 	/* Configure Rx vector */
2003 	rx_ring->ims_val = E1000_IMS_RXQ0;
2004 	adapter->eiac_mask |= rx_ring->ims_val;
2005 	if (rx_ring->itr_val)
2006 		writel(1000000000 / (rx_ring->itr_val * 256),
2007 		       rx_ring->itr_register);
2008 	else
2009 		writel(1, rx_ring->itr_register);
2010 	ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
2011 
2012 	/* Configure Tx vector */
2013 	tx_ring->ims_val = E1000_IMS_TXQ0;
2014 	vector++;
2015 	if (tx_ring->itr_val)
2016 		writel(1000000000 / (tx_ring->itr_val * 256),
2017 		       tx_ring->itr_register);
2018 	else
2019 		writel(1, tx_ring->itr_register);
2020 	adapter->eiac_mask |= tx_ring->ims_val;
2021 	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
2022 
2023 	/* set vector for Other Causes, e.g. link changes */
2024 	vector++;
2025 	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
2026 	if (rx_ring->itr_val)
2027 		writel(1000000000 / (rx_ring->itr_val * 256),
2028 		       hw->hw_addr + E1000_EITR_82574(vector));
2029 	else
2030 		writel(1, hw->hw_addr + E1000_EITR_82574(vector));
2031 
2032 	/* Cause Tx interrupts on every write back */
2033 	ivar |= (1 << 31);
2034 
2035 	ew32(IVAR, ivar);
2036 
2037 	/* enable MSI-X PBA support */
2038 	ctrl_ext = er32(CTRL_EXT);
2039 	ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
2040 
2041 	/* Auto-Mask Other interrupts upon ICR read */
2042 	ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
2043 	ctrl_ext |= E1000_CTRL_EXT_EIAME;
2044 	ew32(CTRL_EXT, ctrl_ext);
2045 	e1e_flush();
2046 }
2047 
2048 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
2049 {
2050 	if (adapter->msix_entries) {
2051 		pci_disable_msix(adapter->pdev);
2052 		kfree(adapter->msix_entries);
2053 		adapter->msix_entries = NULL;
2054 	} else if (adapter->flags & FLAG_MSI_ENABLED) {
2055 		pci_disable_msi(adapter->pdev);
2056 		adapter->flags &= ~FLAG_MSI_ENABLED;
2057 	}
2058 }
2059 
2060 /**
2061  * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
2062  *
2063  * Attempt to configure interrupts using the best available
2064  * capabilities of the hardware and kernel.
2065  **/
2066 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
2067 {
2068 	int err;
2069 	int i;
2070 
2071 	switch (adapter->int_mode) {
2072 	case E1000E_INT_MODE_MSIX:
2073 		if (adapter->flags & FLAG_HAS_MSIX) {
2074 			adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
2075 			adapter->msix_entries = kcalloc(adapter->num_vectors,
2076 							sizeof(struct
2077 							       msix_entry),
2078 							GFP_KERNEL);
2079 			if (adapter->msix_entries) {
2080 				struct e1000_adapter *a = adapter;
2081 
2082 				for (i = 0; i < adapter->num_vectors; i++)
2083 					adapter->msix_entries[i].entry = i;
2084 
2085 				err = pci_enable_msix_range(a->pdev,
2086 							    a->msix_entries,
2087 							    a->num_vectors,
2088 							    a->num_vectors);
2089 				if (err > 0)
2090 					return;
2091 			}
2092 			/* MSI-X failed, so fall through and try MSI */
2093 			e_err("Failed to initialize MSI-X interrupts.  Falling back to MSI interrupts.\n");
2094 			e1000e_reset_interrupt_capability(adapter);
2095 		}
2096 		adapter->int_mode = E1000E_INT_MODE_MSI;
2097 		/* Fall through */
2098 	case E1000E_INT_MODE_MSI:
2099 		if (!pci_enable_msi(adapter->pdev)) {
2100 			adapter->flags |= FLAG_MSI_ENABLED;
2101 		} else {
2102 			adapter->int_mode = E1000E_INT_MODE_LEGACY;
2103 			e_err("Failed to initialize MSI interrupts.  Falling back to legacy interrupts.\n");
2104 		}
2105 		/* Fall through */
2106 	case E1000E_INT_MODE_LEGACY:
2107 		/* Don't do anything; this is the system default */
2108 		break;
2109 	}
2110 
2111 	/* store the number of vectors being used */
2112 	adapter->num_vectors = 1;
2113 }
2114 
2115 /**
2116  * e1000_request_msix - Initialize MSI-X interrupts
2117  *
2118  * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2119  * kernel.
2120  **/
2121 static int e1000_request_msix(struct e1000_adapter *adapter)
2122 {
2123 	struct net_device *netdev = adapter->netdev;
2124 	int err = 0, vector = 0;
2125 
2126 	if (strlen(netdev->name) < (IFNAMSIZ - 5))
2127 		snprintf(adapter->rx_ring->name,
2128 			 sizeof(adapter->rx_ring->name) - 1,
2129 			 "%s-rx-0", netdev->name);
2130 	else
2131 		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
2132 	err = request_irq(adapter->msix_entries[vector].vector,
2133 			  e1000_intr_msix_rx, 0, adapter->rx_ring->name,
2134 			  netdev);
2135 	if (err)
2136 		return err;
2137 	adapter->rx_ring->itr_register = adapter->hw.hw_addr +
2138 	    E1000_EITR_82574(vector);
2139 	adapter->rx_ring->itr_val = adapter->itr;
2140 	vector++;
2141 
2142 	if (strlen(netdev->name) < (IFNAMSIZ - 5))
2143 		snprintf(adapter->tx_ring->name,
2144 			 sizeof(adapter->tx_ring->name) - 1,
2145 			 "%s-tx-0", netdev->name);
2146 	else
2147 		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2148 	err = request_irq(adapter->msix_entries[vector].vector,
2149 			  e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2150 			  netdev);
2151 	if (err)
2152 		return err;
2153 	adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2154 	    E1000_EITR_82574(vector);
2155 	adapter->tx_ring->itr_val = adapter->itr;
2156 	vector++;
2157 
2158 	err = request_irq(adapter->msix_entries[vector].vector,
2159 			  e1000_msix_other, 0, netdev->name, netdev);
2160 	if (err)
2161 		return err;
2162 
2163 	e1000_configure_msix(adapter);
2164 
2165 	return 0;
2166 }
2167 
2168 /**
2169  * e1000_request_irq - initialize interrupts
2170  *
2171  * Attempts to configure interrupts using the best available
2172  * capabilities of the hardware and kernel.
2173  **/
2174 static int e1000_request_irq(struct e1000_adapter *adapter)
2175 {
2176 	struct net_device *netdev = adapter->netdev;
2177 	int err;
2178 
2179 	if (adapter->msix_entries) {
2180 		err = e1000_request_msix(adapter);
2181 		if (!err)
2182 			return err;
2183 		/* fall back to MSI */
2184 		e1000e_reset_interrupt_capability(adapter);
2185 		adapter->int_mode = E1000E_INT_MODE_MSI;
2186 		e1000e_set_interrupt_capability(adapter);
2187 	}
2188 	if (adapter->flags & FLAG_MSI_ENABLED) {
2189 		err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2190 				  netdev->name, netdev);
2191 		if (!err)
2192 			return err;
2193 
2194 		/* fall back to legacy interrupt */
2195 		e1000e_reset_interrupt_capability(adapter);
2196 		adapter->int_mode = E1000E_INT_MODE_LEGACY;
2197 	}
2198 
2199 	err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2200 			  netdev->name, netdev);
2201 	if (err)
2202 		e_err("Unable to allocate interrupt, Error: %d\n", err);
2203 
2204 	return err;
2205 }
2206 
2207 static void e1000_free_irq(struct e1000_adapter *adapter)
2208 {
2209 	struct net_device *netdev = adapter->netdev;
2210 
2211 	if (adapter->msix_entries) {
2212 		int vector = 0;
2213 
2214 		free_irq(adapter->msix_entries[vector].vector, netdev);
2215 		vector++;
2216 
2217 		free_irq(adapter->msix_entries[vector].vector, netdev);
2218 		vector++;
2219 
2220 		/* Other Causes interrupt vector */
2221 		free_irq(adapter->msix_entries[vector].vector, netdev);
2222 		return;
2223 	}
2224 
2225 	free_irq(adapter->pdev->irq, netdev);
2226 }
2227 
2228 /**
2229  * e1000_irq_disable - Mask off interrupt generation on the NIC
2230  **/
2231 static void e1000_irq_disable(struct e1000_adapter *adapter)
2232 {
2233 	struct e1000_hw *hw = &adapter->hw;
2234 
2235 	ew32(IMC, ~0);
2236 	if (adapter->msix_entries)
2237 		ew32(EIAC_82574, 0);
2238 	e1e_flush();
2239 
2240 	if (adapter->msix_entries) {
2241 		int i;
2242 
2243 		for (i = 0; i < adapter->num_vectors; i++)
2244 			synchronize_irq(adapter->msix_entries[i].vector);
2245 	} else {
2246 		synchronize_irq(adapter->pdev->irq);
2247 	}
2248 }
2249 
2250 /**
2251  * e1000_irq_enable - Enable default interrupt generation settings
2252  **/
2253 static void e1000_irq_enable(struct e1000_adapter *adapter)
2254 {
2255 	struct e1000_hw *hw = &adapter->hw;
2256 
2257 	if (adapter->msix_entries) {
2258 		ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2259 		ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
2260 	} else if (hw->mac.type == e1000_pch_lpt) {
2261 		ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER);
2262 	} else {
2263 		ew32(IMS, IMS_ENABLE_MASK);
2264 	}
2265 	e1e_flush();
2266 }
2267 
2268 /**
2269  * e1000e_get_hw_control - get control of the h/w from f/w
2270  * @adapter: address of board private structure
2271  *
2272  * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2273  * For ASF and Pass Through versions of f/w this means that
2274  * the driver is loaded. For AMT version (only with 82573)
2275  * of the f/w this means that the network i/f is open.
2276  **/
2277 void e1000e_get_hw_control(struct e1000_adapter *adapter)
2278 {
2279 	struct e1000_hw *hw = &adapter->hw;
2280 	u32 ctrl_ext;
2281 	u32 swsm;
2282 
2283 	/* Let firmware know the driver has taken over */
2284 	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2285 		swsm = er32(SWSM);
2286 		ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2287 	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2288 		ctrl_ext = er32(CTRL_EXT);
2289 		ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2290 	}
2291 }
2292 
2293 /**
2294  * e1000e_release_hw_control - release control of the h/w to f/w
2295  * @adapter: address of board private structure
2296  *
2297  * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2298  * For ASF and Pass Through versions of f/w this means that the
2299  * driver is no longer loaded. For AMT version (only with 82573) i
2300  * of the f/w this means that the network i/f is closed.
2301  *
2302  **/
2303 void e1000e_release_hw_control(struct e1000_adapter *adapter)
2304 {
2305 	struct e1000_hw *hw = &adapter->hw;
2306 	u32 ctrl_ext;
2307 	u32 swsm;
2308 
2309 	/* Let firmware taken over control of h/w */
2310 	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2311 		swsm = er32(SWSM);
2312 		ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2313 	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2314 		ctrl_ext = er32(CTRL_EXT);
2315 		ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2316 	}
2317 }
2318 
2319 /**
2320  * e1000_alloc_ring_dma - allocate memory for a ring structure
2321  **/
2322 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2323 				struct e1000_ring *ring)
2324 {
2325 	struct pci_dev *pdev = adapter->pdev;
2326 
2327 	ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2328 					GFP_KERNEL);
2329 	if (!ring->desc)
2330 		return -ENOMEM;
2331 
2332 	return 0;
2333 }
2334 
2335 /**
2336  * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2337  * @tx_ring: Tx descriptor ring
2338  *
2339  * Return 0 on success, negative on failure
2340  **/
2341 int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2342 {
2343 	struct e1000_adapter *adapter = tx_ring->adapter;
2344 	int err = -ENOMEM, size;
2345 
2346 	size = sizeof(struct e1000_buffer) * tx_ring->count;
2347 	tx_ring->buffer_info = vzalloc(size);
2348 	if (!tx_ring->buffer_info)
2349 		goto err;
2350 
2351 	/* round up to nearest 4K */
2352 	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2353 	tx_ring->size = ALIGN(tx_ring->size, 4096);
2354 
2355 	err = e1000_alloc_ring_dma(adapter, tx_ring);
2356 	if (err)
2357 		goto err;
2358 
2359 	tx_ring->next_to_use = 0;
2360 	tx_ring->next_to_clean = 0;
2361 
2362 	return 0;
2363 err:
2364 	vfree(tx_ring->buffer_info);
2365 	e_err("Unable to allocate memory for the transmit descriptor ring\n");
2366 	return err;
2367 }
2368 
2369 /**
2370  * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2371  * @rx_ring: Rx descriptor ring
2372  *
2373  * Returns 0 on success, negative on failure
2374  **/
2375 int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2376 {
2377 	struct e1000_adapter *adapter = rx_ring->adapter;
2378 	struct e1000_buffer *buffer_info;
2379 	int i, size, desc_len, err = -ENOMEM;
2380 
2381 	size = sizeof(struct e1000_buffer) * rx_ring->count;
2382 	rx_ring->buffer_info = vzalloc(size);
2383 	if (!rx_ring->buffer_info)
2384 		goto err;
2385 
2386 	for (i = 0; i < rx_ring->count; i++) {
2387 		buffer_info = &rx_ring->buffer_info[i];
2388 		buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2389 						sizeof(struct e1000_ps_page),
2390 						GFP_KERNEL);
2391 		if (!buffer_info->ps_pages)
2392 			goto err_pages;
2393 	}
2394 
2395 	desc_len = sizeof(union e1000_rx_desc_packet_split);
2396 
2397 	/* Round up to nearest 4K */
2398 	rx_ring->size = rx_ring->count * desc_len;
2399 	rx_ring->size = ALIGN(rx_ring->size, 4096);
2400 
2401 	err = e1000_alloc_ring_dma(adapter, rx_ring);
2402 	if (err)
2403 		goto err_pages;
2404 
2405 	rx_ring->next_to_clean = 0;
2406 	rx_ring->next_to_use = 0;
2407 	rx_ring->rx_skb_top = NULL;
2408 
2409 	return 0;
2410 
2411 err_pages:
2412 	for (i = 0; i < rx_ring->count; i++) {
2413 		buffer_info = &rx_ring->buffer_info[i];
2414 		kfree(buffer_info->ps_pages);
2415 	}
2416 err:
2417 	vfree(rx_ring->buffer_info);
2418 	e_err("Unable to allocate memory for the receive descriptor ring\n");
2419 	return err;
2420 }
2421 
2422 /**
2423  * e1000_clean_tx_ring - Free Tx Buffers
2424  * @tx_ring: Tx descriptor ring
2425  **/
2426 static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2427 {
2428 	struct e1000_adapter *adapter = tx_ring->adapter;
2429 	struct e1000_buffer *buffer_info;
2430 	unsigned long size;
2431 	unsigned int i;
2432 
2433 	for (i = 0; i < tx_ring->count; i++) {
2434 		buffer_info = &tx_ring->buffer_info[i];
2435 		e1000_put_txbuf(tx_ring, buffer_info);
2436 	}
2437 
2438 	netdev_reset_queue(adapter->netdev);
2439 	size = sizeof(struct e1000_buffer) * tx_ring->count;
2440 	memset(tx_ring->buffer_info, 0, size);
2441 
2442 	memset(tx_ring->desc, 0, tx_ring->size);
2443 
2444 	tx_ring->next_to_use = 0;
2445 	tx_ring->next_to_clean = 0;
2446 
2447 	writel(0, tx_ring->head);
2448 	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2449 		e1000e_update_tdt_wa(tx_ring, 0);
2450 	else
2451 		writel(0, tx_ring->tail);
2452 }
2453 
2454 /**
2455  * e1000e_free_tx_resources - Free Tx Resources per Queue
2456  * @tx_ring: Tx descriptor ring
2457  *
2458  * Free all transmit software resources
2459  **/
2460 void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2461 {
2462 	struct e1000_adapter *adapter = tx_ring->adapter;
2463 	struct pci_dev *pdev = adapter->pdev;
2464 
2465 	e1000_clean_tx_ring(tx_ring);
2466 
2467 	vfree(tx_ring->buffer_info);
2468 	tx_ring->buffer_info = NULL;
2469 
2470 	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2471 			  tx_ring->dma);
2472 	tx_ring->desc = NULL;
2473 }
2474 
2475 /**
2476  * e1000e_free_rx_resources - Free Rx Resources
2477  * @rx_ring: Rx descriptor ring
2478  *
2479  * Free all receive software resources
2480  **/
2481 void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2482 {
2483 	struct e1000_adapter *adapter = rx_ring->adapter;
2484 	struct pci_dev *pdev = adapter->pdev;
2485 	int i;
2486 
2487 	e1000_clean_rx_ring(rx_ring);
2488 
2489 	for (i = 0; i < rx_ring->count; i++)
2490 		kfree(rx_ring->buffer_info[i].ps_pages);
2491 
2492 	vfree(rx_ring->buffer_info);
2493 	rx_ring->buffer_info = NULL;
2494 
2495 	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2496 			  rx_ring->dma);
2497 	rx_ring->desc = NULL;
2498 }
2499 
2500 /**
2501  * e1000_update_itr - update the dynamic ITR value based on statistics
2502  * @adapter: pointer to adapter
2503  * @itr_setting: current adapter->itr
2504  * @packets: the number of packets during this measurement interval
2505  * @bytes: the number of bytes during this measurement interval
2506  *
2507  *      Stores a new ITR value based on packets and byte
2508  *      counts during the last interrupt.  The advantage of per interrupt
2509  *      computation is faster updates and more accurate ITR for the current
2510  *      traffic pattern.  Constants in this function were computed
2511  *      based on theoretical maximum wire speed and thresholds were set based
2512  *      on testing data as well as attempting to minimize response time
2513  *      while increasing bulk throughput.  This functionality is controlled
2514  *      by the InterruptThrottleRate module parameter.
2515  **/
2516 static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes)
2517 {
2518 	unsigned int retval = itr_setting;
2519 
2520 	if (packets == 0)
2521 		return itr_setting;
2522 
2523 	switch (itr_setting) {
2524 	case lowest_latency:
2525 		/* handle TSO and jumbo frames */
2526 		if (bytes / packets > 8000)
2527 			retval = bulk_latency;
2528 		else if ((packets < 5) && (bytes > 512))
2529 			retval = low_latency;
2530 		break;
2531 	case low_latency:	/* 50 usec aka 20000 ints/s */
2532 		if (bytes > 10000) {
2533 			/* this if handles the TSO accounting */
2534 			if (bytes / packets > 8000)
2535 				retval = bulk_latency;
2536 			else if ((packets < 10) || ((bytes / packets) > 1200))
2537 				retval = bulk_latency;
2538 			else if ((packets > 35))
2539 				retval = lowest_latency;
2540 		} else if (bytes / packets > 2000) {
2541 			retval = bulk_latency;
2542 		} else if (packets <= 2 && bytes < 512) {
2543 			retval = lowest_latency;
2544 		}
2545 		break;
2546 	case bulk_latency:	/* 250 usec aka 4000 ints/s */
2547 		if (bytes > 25000) {
2548 			if (packets > 35)
2549 				retval = low_latency;
2550 		} else if (bytes < 6000) {
2551 			retval = low_latency;
2552 		}
2553 		break;
2554 	}
2555 
2556 	return retval;
2557 }
2558 
2559 static void e1000_set_itr(struct e1000_adapter *adapter)
2560 {
2561 	u16 current_itr;
2562 	u32 new_itr = adapter->itr;
2563 
2564 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2565 	if (adapter->link_speed != SPEED_1000) {
2566 		current_itr = 0;
2567 		new_itr = 4000;
2568 		goto set_itr_now;
2569 	}
2570 
2571 	if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2572 		new_itr = 0;
2573 		goto set_itr_now;
2574 	}
2575 
2576 	adapter->tx_itr = e1000_update_itr(adapter->tx_itr,
2577 					   adapter->total_tx_packets,
2578 					   adapter->total_tx_bytes);
2579 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2580 	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2581 		adapter->tx_itr = low_latency;
2582 
2583 	adapter->rx_itr = e1000_update_itr(adapter->rx_itr,
2584 					   adapter->total_rx_packets,
2585 					   adapter->total_rx_bytes);
2586 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2587 	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2588 		adapter->rx_itr = low_latency;
2589 
2590 	current_itr = max(adapter->rx_itr, adapter->tx_itr);
2591 
2592 	/* counts and packets in update_itr are dependent on these numbers */
2593 	switch (current_itr) {
2594 	case lowest_latency:
2595 		new_itr = 70000;
2596 		break;
2597 	case low_latency:
2598 		new_itr = 20000;	/* aka hwitr = ~200 */
2599 		break;
2600 	case bulk_latency:
2601 		new_itr = 4000;
2602 		break;
2603 	default:
2604 		break;
2605 	}
2606 
2607 set_itr_now:
2608 	if (new_itr != adapter->itr) {
2609 		/* this attempts to bias the interrupt rate towards Bulk
2610 		 * by adding intermediate steps when interrupt rate is
2611 		 * increasing
2612 		 */
2613 		new_itr = new_itr > adapter->itr ?
2614 		    min(adapter->itr + (new_itr >> 2), new_itr) : new_itr;
2615 		adapter->itr = new_itr;
2616 		adapter->rx_ring->itr_val = new_itr;
2617 		if (adapter->msix_entries)
2618 			adapter->rx_ring->set_itr = 1;
2619 		else
2620 			e1000e_write_itr(adapter, new_itr);
2621 	}
2622 }
2623 
2624 /**
2625  * e1000e_write_itr - write the ITR value to the appropriate registers
2626  * @adapter: address of board private structure
2627  * @itr: new ITR value to program
2628  *
2629  * e1000e_write_itr determines if the adapter is in MSI-X mode
2630  * and, if so, writes the EITR registers with the ITR value.
2631  * Otherwise, it writes the ITR value into the ITR register.
2632  **/
2633 void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
2634 {
2635 	struct e1000_hw *hw = &adapter->hw;
2636 	u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
2637 
2638 	if (adapter->msix_entries) {
2639 		int vector;
2640 
2641 		for (vector = 0; vector < adapter->num_vectors; vector++)
2642 			writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
2643 	} else {
2644 		ew32(ITR, new_itr);
2645 	}
2646 }
2647 
2648 /**
2649  * e1000_alloc_queues - Allocate memory for all rings
2650  * @adapter: board private structure to initialize
2651  **/
2652 static int e1000_alloc_queues(struct e1000_adapter *adapter)
2653 {
2654 	int size = sizeof(struct e1000_ring);
2655 
2656 	adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2657 	if (!adapter->tx_ring)
2658 		goto err;
2659 	adapter->tx_ring->count = adapter->tx_ring_count;
2660 	adapter->tx_ring->adapter = adapter;
2661 
2662 	adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2663 	if (!adapter->rx_ring)
2664 		goto err;
2665 	adapter->rx_ring->count = adapter->rx_ring_count;
2666 	adapter->rx_ring->adapter = adapter;
2667 
2668 	return 0;
2669 err:
2670 	e_err("Unable to allocate memory for queues\n");
2671 	kfree(adapter->rx_ring);
2672 	kfree(adapter->tx_ring);
2673 	return -ENOMEM;
2674 }
2675 
2676 /**
2677  * e1000e_poll - NAPI Rx polling callback
2678  * @napi: struct associated with this polling callback
2679  * @weight: number of packets driver is allowed to process this poll
2680  **/
2681 static int e1000e_poll(struct napi_struct *napi, int weight)
2682 {
2683 	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2684 						     napi);
2685 	struct e1000_hw *hw = &adapter->hw;
2686 	struct net_device *poll_dev = adapter->netdev;
2687 	int tx_cleaned = 1, work_done = 0;
2688 
2689 	adapter = netdev_priv(poll_dev);
2690 
2691 	if (!adapter->msix_entries ||
2692 	    (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2693 		tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2694 
2695 	adapter->clean_rx(adapter->rx_ring, &work_done, weight);
2696 
2697 	if (!tx_cleaned)
2698 		work_done = weight;
2699 
2700 	/* If weight not fully consumed, exit the polling mode */
2701 	if (work_done < weight) {
2702 		if (adapter->itr_setting & 3)
2703 			e1000_set_itr(adapter);
2704 		napi_complete(napi);
2705 		if (!test_bit(__E1000_DOWN, &adapter->state)) {
2706 			if (adapter->msix_entries)
2707 				ew32(IMS, adapter->rx_ring->ims_val);
2708 			else
2709 				e1000_irq_enable(adapter);
2710 		}
2711 	}
2712 
2713 	return work_done;
2714 }
2715 
2716 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
2717 				 __always_unused __be16 proto, u16 vid)
2718 {
2719 	struct e1000_adapter *adapter = netdev_priv(netdev);
2720 	struct e1000_hw *hw = &adapter->hw;
2721 	u32 vfta, index;
2722 
2723 	/* don't update vlan cookie if already programmed */
2724 	if ((adapter->hw.mng_cookie.status &
2725 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2726 	    (vid == adapter->mng_vlan_id))
2727 		return 0;
2728 
2729 	/* add VID to filter table */
2730 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2731 		index = (vid >> 5) & 0x7F;
2732 		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2733 		vfta |= (1 << (vid & 0x1F));
2734 		hw->mac.ops.write_vfta(hw, index, vfta);
2735 	}
2736 
2737 	set_bit(vid, adapter->active_vlans);
2738 
2739 	return 0;
2740 }
2741 
2742 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
2743 				  __always_unused __be16 proto, u16 vid)
2744 {
2745 	struct e1000_adapter *adapter = netdev_priv(netdev);
2746 	struct e1000_hw *hw = &adapter->hw;
2747 	u32 vfta, index;
2748 
2749 	if ((adapter->hw.mng_cookie.status &
2750 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2751 	    (vid == adapter->mng_vlan_id)) {
2752 		/* release control to f/w */
2753 		e1000e_release_hw_control(adapter);
2754 		return 0;
2755 	}
2756 
2757 	/* remove VID from filter table */
2758 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2759 		index = (vid >> 5) & 0x7F;
2760 		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2761 		vfta &= ~(1 << (vid & 0x1F));
2762 		hw->mac.ops.write_vfta(hw, index, vfta);
2763 	}
2764 
2765 	clear_bit(vid, adapter->active_vlans);
2766 
2767 	return 0;
2768 }
2769 
2770 /**
2771  * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2772  * @adapter: board private structure to initialize
2773  **/
2774 static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2775 {
2776 	struct net_device *netdev = adapter->netdev;
2777 	struct e1000_hw *hw = &adapter->hw;
2778 	u32 rctl;
2779 
2780 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2781 		/* disable VLAN receive filtering */
2782 		rctl = er32(RCTL);
2783 		rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2784 		ew32(RCTL, rctl);
2785 
2786 		if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2787 			e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
2788 					       adapter->mng_vlan_id);
2789 			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2790 		}
2791 	}
2792 }
2793 
2794 /**
2795  * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2796  * @adapter: board private structure to initialize
2797  **/
2798 static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2799 {
2800 	struct e1000_hw *hw = &adapter->hw;
2801 	u32 rctl;
2802 
2803 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2804 		/* enable VLAN receive filtering */
2805 		rctl = er32(RCTL);
2806 		rctl |= E1000_RCTL_VFE;
2807 		rctl &= ~E1000_RCTL_CFIEN;
2808 		ew32(RCTL, rctl);
2809 	}
2810 }
2811 
2812 /**
2813  * e1000e_vlan_strip_enable - helper to disable HW VLAN stripping
2814  * @adapter: board private structure to initialize
2815  **/
2816 static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2817 {
2818 	struct e1000_hw *hw = &adapter->hw;
2819 	u32 ctrl;
2820 
2821 	/* disable VLAN tag insert/strip */
2822 	ctrl = er32(CTRL);
2823 	ctrl &= ~E1000_CTRL_VME;
2824 	ew32(CTRL, ctrl);
2825 }
2826 
2827 /**
2828  * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2829  * @adapter: board private structure to initialize
2830  **/
2831 static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2832 {
2833 	struct e1000_hw *hw = &adapter->hw;
2834 	u32 ctrl;
2835 
2836 	/* enable VLAN tag insert/strip */
2837 	ctrl = er32(CTRL);
2838 	ctrl |= E1000_CTRL_VME;
2839 	ew32(CTRL, ctrl);
2840 }
2841 
2842 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2843 {
2844 	struct net_device *netdev = adapter->netdev;
2845 	u16 vid = adapter->hw.mng_cookie.vlan_id;
2846 	u16 old_vid = adapter->mng_vlan_id;
2847 
2848 	if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2849 		e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
2850 		adapter->mng_vlan_id = vid;
2851 	}
2852 
2853 	if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2854 		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid);
2855 }
2856 
2857 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2858 {
2859 	u16 vid;
2860 
2861 	e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
2862 
2863 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2864 	    e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
2865 }
2866 
2867 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2868 {
2869 	struct e1000_hw *hw = &adapter->hw;
2870 	u32 manc, manc2h, mdef, i, j;
2871 
2872 	if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2873 		return;
2874 
2875 	manc = er32(MANC);
2876 
2877 	/* enable receiving management packets to the host. this will probably
2878 	 * generate destination unreachable messages from the host OS, but
2879 	 * the packets will be handled on SMBUS
2880 	 */
2881 	manc |= E1000_MANC_EN_MNG2HOST;
2882 	manc2h = er32(MANC2H);
2883 
2884 	switch (hw->mac.type) {
2885 	default:
2886 		manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2887 		break;
2888 	case e1000_82574:
2889 	case e1000_82583:
2890 		/* Check if IPMI pass-through decision filter already exists;
2891 		 * if so, enable it.
2892 		 */
2893 		for (i = 0, j = 0; i < 8; i++) {
2894 			mdef = er32(MDEF(i));
2895 
2896 			/* Ignore filters with anything other than IPMI ports */
2897 			if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2898 				continue;
2899 
2900 			/* Enable this decision filter in MANC2H */
2901 			if (mdef)
2902 				manc2h |= (1 << i);
2903 
2904 			j |= mdef;
2905 		}
2906 
2907 		if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2908 			break;
2909 
2910 		/* Create new decision filter in an empty filter */
2911 		for (i = 0, j = 0; i < 8; i++)
2912 			if (er32(MDEF(i)) == 0) {
2913 				ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2914 					       E1000_MDEF_PORT_664));
2915 				manc2h |= (1 << 1);
2916 				j++;
2917 				break;
2918 			}
2919 
2920 		if (!j)
2921 			e_warn("Unable to create IPMI pass-through filter\n");
2922 		break;
2923 	}
2924 
2925 	ew32(MANC2H, manc2h);
2926 	ew32(MANC, manc);
2927 }
2928 
2929 /**
2930  * e1000_configure_tx - Configure Transmit Unit after Reset
2931  * @adapter: board private structure
2932  *
2933  * Configure the Tx unit of the MAC after a reset.
2934  **/
2935 static void e1000_configure_tx(struct e1000_adapter *adapter)
2936 {
2937 	struct e1000_hw *hw = &adapter->hw;
2938 	struct e1000_ring *tx_ring = adapter->tx_ring;
2939 	u64 tdba;
2940 	u32 tdlen, tctl, tarc;
2941 
2942 	/* Setup the HW Tx Head and Tail descriptor pointers */
2943 	tdba = tx_ring->dma;
2944 	tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2945 	ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2946 	ew32(TDBAH(0), (tdba >> 32));
2947 	ew32(TDLEN(0), tdlen);
2948 	ew32(TDH(0), 0);
2949 	ew32(TDT(0), 0);
2950 	tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2951 	tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2952 
2953 	/* Set the Tx Interrupt Delay register */
2954 	ew32(TIDV, adapter->tx_int_delay);
2955 	/* Tx irq moderation */
2956 	ew32(TADV, adapter->tx_abs_int_delay);
2957 
2958 	if (adapter->flags2 & FLAG2_DMA_BURST) {
2959 		u32 txdctl = er32(TXDCTL(0));
2960 
2961 		txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2962 			    E1000_TXDCTL_WTHRESH);
2963 		/* set up some performance related parameters to encourage the
2964 		 * hardware to use the bus more efficiently in bursts, depends
2965 		 * on the tx_int_delay to be enabled,
2966 		 * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2967 		 * hthresh = 1 ==> prefetch when one or more available
2968 		 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2969 		 * BEWARE: this seems to work but should be considered first if
2970 		 * there are Tx hangs or other Tx related bugs
2971 		 */
2972 		txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2973 		ew32(TXDCTL(0), txdctl);
2974 	}
2975 	/* erratum work around: set txdctl the same for both queues */
2976 	ew32(TXDCTL(1), er32(TXDCTL(0)));
2977 
2978 	/* Program the Transmit Control Register */
2979 	tctl = er32(TCTL);
2980 	tctl &= ~E1000_TCTL_CT;
2981 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2982 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2983 
2984 	if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2985 		tarc = er32(TARC(0));
2986 		/* set the speed mode bit, we'll clear it if we're not at
2987 		 * gigabit link later
2988 		 */
2989 #define SPEED_MODE_BIT (1 << 21)
2990 		tarc |= SPEED_MODE_BIT;
2991 		ew32(TARC(0), tarc);
2992 	}
2993 
2994 	/* errata: program both queues to unweighted RR */
2995 	if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2996 		tarc = er32(TARC(0));
2997 		tarc |= 1;
2998 		ew32(TARC(0), tarc);
2999 		tarc = er32(TARC(1));
3000 		tarc |= 1;
3001 		ew32(TARC(1), tarc);
3002 	}
3003 
3004 	/* Setup Transmit Descriptor Settings for eop descriptor */
3005 	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
3006 
3007 	/* only set IDE if we are delaying interrupts using the timers */
3008 	if (adapter->tx_int_delay)
3009 		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
3010 
3011 	/* enable Report Status bit */
3012 	adapter->txd_cmd |= E1000_TXD_CMD_RS;
3013 
3014 	ew32(TCTL, tctl);
3015 
3016 	hw->mac.ops.config_collision_dist(hw);
3017 }
3018 
3019 /**
3020  * e1000_setup_rctl - configure the receive control registers
3021  * @adapter: Board private structure
3022  **/
3023 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
3024 			   (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
3025 static void e1000_setup_rctl(struct e1000_adapter *adapter)
3026 {
3027 	struct e1000_hw *hw = &adapter->hw;
3028 	u32 rctl, rfctl;
3029 	u32 pages = 0;
3030 
3031 	/* Workaround Si errata on PCHx - configure jumbo frame flow.
3032 	 * If jumbo frames not set, program related MAC/PHY registers
3033 	 * to h/w defaults
3034 	 */
3035 	if (hw->mac.type >= e1000_pch2lan) {
3036 		s32 ret_val;
3037 
3038 		if (adapter->netdev->mtu > ETH_DATA_LEN)
3039 			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
3040 		else
3041 			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
3042 
3043 		if (ret_val)
3044 			e_dbg("failed to enable|disable jumbo frame workaround mode\n");
3045 	}
3046 
3047 	/* Program MC offset vector base */
3048 	rctl = er32(RCTL);
3049 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3050 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3051 	    E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3052 	    (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3053 
3054 	/* Do not Store bad packets */
3055 	rctl &= ~E1000_RCTL_SBP;
3056 
3057 	/* Enable Long Packet receive */
3058 	if (adapter->netdev->mtu <= ETH_DATA_LEN)
3059 		rctl &= ~E1000_RCTL_LPE;
3060 	else
3061 		rctl |= E1000_RCTL_LPE;
3062 
3063 	/* Some systems expect that the CRC is included in SMBUS traffic. The
3064 	 * hardware strips the CRC before sending to both SMBUS (BMC) and to
3065 	 * host memory when this is enabled
3066 	 */
3067 	if (adapter->flags2 & FLAG2_CRC_STRIPPING)
3068 		rctl |= E1000_RCTL_SECRC;
3069 
3070 	/* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3071 	if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
3072 		u16 phy_data;
3073 
3074 		e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
3075 		phy_data &= 0xfff8;
3076 		phy_data |= (1 << 2);
3077 		e1e_wphy(hw, PHY_REG(770, 26), phy_data);
3078 
3079 		e1e_rphy(hw, 22, &phy_data);
3080 		phy_data &= 0x0fff;
3081 		phy_data |= (1 << 14);
3082 		e1e_wphy(hw, 0x10, 0x2823);
3083 		e1e_wphy(hw, 0x11, 0x0003);
3084 		e1e_wphy(hw, 22, phy_data);
3085 	}
3086 
3087 	/* Setup buffer sizes */
3088 	rctl &= ~E1000_RCTL_SZ_4096;
3089 	rctl |= E1000_RCTL_BSEX;
3090 	switch (adapter->rx_buffer_len) {
3091 	case 2048:
3092 	default:
3093 		rctl |= E1000_RCTL_SZ_2048;
3094 		rctl &= ~E1000_RCTL_BSEX;
3095 		break;
3096 	case 4096:
3097 		rctl |= E1000_RCTL_SZ_4096;
3098 		break;
3099 	case 8192:
3100 		rctl |= E1000_RCTL_SZ_8192;
3101 		break;
3102 	case 16384:
3103 		rctl |= E1000_RCTL_SZ_16384;
3104 		break;
3105 	}
3106 
3107 	/* Enable Extended Status in all Receive Descriptors */
3108 	rfctl = er32(RFCTL);
3109 	rfctl |= E1000_RFCTL_EXTEN;
3110 	ew32(RFCTL, rfctl);
3111 
3112 	/* 82571 and greater support packet-split where the protocol
3113 	 * header is placed in skb->data and the packet data is
3114 	 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3115 	 * In the case of a non-split, skb->data is linearly filled,
3116 	 * followed by the page buffers.  Therefore, skb->data is
3117 	 * sized to hold the largest protocol header.
3118 	 *
3119 	 * allocations using alloc_page take too long for regular MTU
3120 	 * so only enable packet split for jumbo frames
3121 	 *
3122 	 * Using pages when the page size is greater than 16k wastes
3123 	 * a lot of memory, since we allocate 3 pages at all times
3124 	 * per packet.
3125 	 */
3126 	pages = PAGE_USE_COUNT(adapter->netdev->mtu);
3127 	if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
3128 		adapter->rx_ps_pages = pages;
3129 	else
3130 		adapter->rx_ps_pages = 0;
3131 
3132 	if (adapter->rx_ps_pages) {
3133 		u32 psrctl = 0;
3134 
3135 		/* Enable Packet split descriptors */
3136 		rctl |= E1000_RCTL_DTYP_PS;
3137 
3138 		psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT;
3139 
3140 		switch (adapter->rx_ps_pages) {
3141 		case 3:
3142 			psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT;
3143 			/* fall-through */
3144 		case 2:
3145 			psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT;
3146 			/* fall-through */
3147 		case 1:
3148 			psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT;
3149 			break;
3150 		}
3151 
3152 		ew32(PSRCTL, psrctl);
3153 	}
3154 
3155 	/* This is useful for sniffing bad packets. */
3156 	if (adapter->netdev->features & NETIF_F_RXALL) {
3157 		/* UPE and MPE will be handled by normal PROMISC logic
3158 		 * in e1000e_set_rx_mode
3159 		 */
3160 		rctl |= (E1000_RCTL_SBP |	/* Receive bad packets */
3161 			 E1000_RCTL_BAM |	/* RX All Bcast Pkts */
3162 			 E1000_RCTL_PMCF);	/* RX All MAC Ctrl Pkts */
3163 
3164 		rctl &= ~(E1000_RCTL_VFE |	/* Disable VLAN filter */
3165 			  E1000_RCTL_DPF |	/* Allow filtered pause */
3166 			  E1000_RCTL_CFIEN);	/* Dis VLAN CFIEN Filter */
3167 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3168 		 * and that breaks VLANs.
3169 		 */
3170 	}
3171 
3172 	ew32(RCTL, rctl);
3173 	/* just started the receive unit, no need to restart */
3174 	adapter->flags &= ~FLAG_RESTART_NOW;
3175 }
3176 
3177 /**
3178  * e1000_configure_rx - Configure Receive Unit after Reset
3179  * @adapter: board private structure
3180  *
3181  * Configure the Rx unit of the MAC after a reset.
3182  **/
3183 static void e1000_configure_rx(struct e1000_adapter *adapter)
3184 {
3185 	struct e1000_hw *hw = &adapter->hw;
3186 	struct e1000_ring *rx_ring = adapter->rx_ring;
3187 	u64 rdba;
3188 	u32 rdlen, rctl, rxcsum, ctrl_ext;
3189 
3190 	if (adapter->rx_ps_pages) {
3191 		/* this is a 32 byte descriptor */
3192 		rdlen = rx_ring->count *
3193 		    sizeof(union e1000_rx_desc_packet_split);
3194 		adapter->clean_rx = e1000_clean_rx_irq_ps;
3195 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3196 	} else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3197 		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3198 		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3199 		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3200 	} else {
3201 		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3202 		adapter->clean_rx = e1000_clean_rx_irq;
3203 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3204 	}
3205 
3206 	/* disable receives while setting up the descriptors */
3207 	rctl = er32(RCTL);
3208 	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3209 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
3210 	e1e_flush();
3211 	usleep_range(10000, 20000);
3212 
3213 	if (adapter->flags2 & FLAG2_DMA_BURST) {
3214 		/* set the writeback threshold (only takes effect if the RDTR
3215 		 * is set). set GRAN=1 and write back up to 0x4 worth, and
3216 		 * enable prefetching of 0x20 Rx descriptors
3217 		 * granularity = 01
3218 		 * wthresh = 04,
3219 		 * hthresh = 04,
3220 		 * pthresh = 0x20
3221 		 */
3222 		ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3223 		ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3224 
3225 		/* override the delay timers for enabling bursting, only if
3226 		 * the value was not set by the user via module options
3227 		 */
3228 		if (adapter->rx_int_delay == DEFAULT_RDTR)
3229 			adapter->rx_int_delay = BURST_RDTR;
3230 		if (adapter->rx_abs_int_delay == DEFAULT_RADV)
3231 			adapter->rx_abs_int_delay = BURST_RADV;
3232 	}
3233 
3234 	/* set the Receive Delay Timer Register */
3235 	ew32(RDTR, adapter->rx_int_delay);
3236 
3237 	/* irq moderation */
3238 	ew32(RADV, adapter->rx_abs_int_delay);
3239 	if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3240 		e1000e_write_itr(adapter, adapter->itr);
3241 
3242 	ctrl_ext = er32(CTRL_EXT);
3243 	/* Auto-Mask interrupts upon ICR access */
3244 	ctrl_ext |= E1000_CTRL_EXT_IAME;
3245 	ew32(IAM, 0xffffffff);
3246 	ew32(CTRL_EXT, ctrl_ext);
3247 	e1e_flush();
3248 
3249 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
3250 	 * the Base and Length of the Rx Descriptor Ring
3251 	 */
3252 	rdba = rx_ring->dma;
3253 	ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3254 	ew32(RDBAH(0), (rdba >> 32));
3255 	ew32(RDLEN(0), rdlen);
3256 	ew32(RDH(0), 0);
3257 	ew32(RDT(0), 0);
3258 	rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3259 	rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3260 
3261 	/* Enable Receive Checksum Offload for TCP and UDP */
3262 	rxcsum = er32(RXCSUM);
3263 	if (adapter->netdev->features & NETIF_F_RXCSUM)
3264 		rxcsum |= E1000_RXCSUM_TUOFL;
3265 	else
3266 		rxcsum &= ~E1000_RXCSUM_TUOFL;
3267 	ew32(RXCSUM, rxcsum);
3268 
3269 	/* With jumbo frames, excessive C-state transition latencies result
3270 	 * in dropped transactions.
3271 	 */
3272 	if (adapter->netdev->mtu > ETH_DATA_LEN) {
3273 		u32 lat =
3274 		    ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 -
3275 		     adapter->max_frame_size) * 8 / 1000;
3276 
3277 		if (adapter->flags & FLAG_IS_ICH) {
3278 			u32 rxdctl = er32(RXDCTL(0));
3279 
3280 			ew32(RXDCTL(0), rxdctl | 0x3);
3281 		}
3282 
3283 		pm_qos_update_request(&adapter->netdev->pm_qos_req, lat);
3284 	} else {
3285 		pm_qos_update_request(&adapter->netdev->pm_qos_req,
3286 				      PM_QOS_DEFAULT_VALUE);
3287 	}
3288 
3289 	/* Enable Receives */
3290 	ew32(RCTL, rctl);
3291 }
3292 
3293 /**
3294  * e1000e_write_mc_addr_list - write multicast addresses to MTA
3295  * @netdev: network interface device structure
3296  *
3297  * Writes multicast address list to the MTA hash table.
3298  * Returns: -ENOMEM on failure
3299  *                0 on no addresses written
3300  *                X on writing X addresses to MTA
3301  */
3302 static int e1000e_write_mc_addr_list(struct net_device *netdev)
3303 {
3304 	struct e1000_adapter *adapter = netdev_priv(netdev);
3305 	struct e1000_hw *hw = &adapter->hw;
3306 	struct netdev_hw_addr *ha;
3307 	u8 *mta_list;
3308 	int i;
3309 
3310 	if (netdev_mc_empty(netdev)) {
3311 		/* nothing to program, so clear mc list */
3312 		hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3313 		return 0;
3314 	}
3315 
3316 	mta_list = kzalloc(netdev_mc_count(netdev) * ETH_ALEN, GFP_ATOMIC);
3317 	if (!mta_list)
3318 		return -ENOMEM;
3319 
3320 	/* update_mc_addr_list expects a packed array of only addresses. */
3321 	i = 0;
3322 	netdev_for_each_mc_addr(ha, netdev)
3323 	    memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3324 
3325 	hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3326 	kfree(mta_list);
3327 
3328 	return netdev_mc_count(netdev);
3329 }
3330 
3331 /**
3332  * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3333  * @netdev: network interface device structure
3334  *
3335  * Writes unicast address list to the RAR table.
3336  * Returns: -ENOMEM on failure/insufficient address space
3337  *                0 on no addresses written
3338  *                X on writing X addresses to the RAR table
3339  **/
3340 static int e1000e_write_uc_addr_list(struct net_device *netdev)
3341 {
3342 	struct e1000_adapter *adapter = netdev_priv(netdev);
3343 	struct e1000_hw *hw = &adapter->hw;
3344 	unsigned int rar_entries;
3345 	int count = 0;
3346 
3347 	rar_entries = hw->mac.ops.rar_get_count(hw);
3348 
3349 	/* save a rar entry for our hardware address */
3350 	rar_entries--;
3351 
3352 	/* save a rar entry for the LAA workaround */
3353 	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3354 		rar_entries--;
3355 
3356 	/* return ENOMEM indicating insufficient memory for addresses */
3357 	if (netdev_uc_count(netdev) > rar_entries)
3358 		return -ENOMEM;
3359 
3360 	if (!netdev_uc_empty(netdev) && rar_entries) {
3361 		struct netdev_hw_addr *ha;
3362 
3363 		/* write the addresses in reverse order to avoid write
3364 		 * combining
3365 		 */
3366 		netdev_for_each_uc_addr(ha, netdev) {
3367 			int rval;
3368 
3369 			if (!rar_entries)
3370 				break;
3371 			rval = hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3372 			if (rval < 0)
3373 				return -ENOMEM;
3374 			count++;
3375 		}
3376 	}
3377 
3378 	/* zero out the remaining RAR entries not used above */
3379 	for (; rar_entries > 0; rar_entries--) {
3380 		ew32(RAH(rar_entries), 0);
3381 		ew32(RAL(rar_entries), 0);
3382 	}
3383 	e1e_flush();
3384 
3385 	return count;
3386 }
3387 
3388 /**
3389  * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3390  * @netdev: network interface device structure
3391  *
3392  * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3393  * address list or the network interface flags are updated.  This routine is
3394  * responsible for configuring the hardware for proper unicast, multicast,
3395  * promiscuous mode, and all-multi behavior.
3396  **/
3397 static void e1000e_set_rx_mode(struct net_device *netdev)
3398 {
3399 	struct e1000_adapter *adapter = netdev_priv(netdev);
3400 	struct e1000_hw *hw = &adapter->hw;
3401 	u32 rctl;
3402 
3403 	if (pm_runtime_suspended(netdev->dev.parent))
3404 		return;
3405 
3406 	/* Check for Promiscuous and All Multicast modes */
3407 	rctl = er32(RCTL);
3408 
3409 	/* clear the affected bits */
3410 	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3411 
3412 	if (netdev->flags & IFF_PROMISC) {
3413 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3414 		/* Do not hardware filter VLANs in promisc mode */
3415 		e1000e_vlan_filter_disable(adapter);
3416 	} else {
3417 		int count;
3418 
3419 		if (netdev->flags & IFF_ALLMULTI) {
3420 			rctl |= E1000_RCTL_MPE;
3421 		} else {
3422 			/* Write addresses to the MTA, if the attempt fails
3423 			 * then we should just turn on promiscuous mode so
3424 			 * that we can at least receive multicast traffic
3425 			 */
3426 			count = e1000e_write_mc_addr_list(netdev);
3427 			if (count < 0)
3428 				rctl |= E1000_RCTL_MPE;
3429 		}
3430 		e1000e_vlan_filter_enable(adapter);
3431 		/* Write addresses to available RAR registers, if there is not
3432 		 * sufficient space to store all the addresses then enable
3433 		 * unicast promiscuous mode
3434 		 */
3435 		count = e1000e_write_uc_addr_list(netdev);
3436 		if (count < 0)
3437 			rctl |= E1000_RCTL_UPE;
3438 	}
3439 
3440 	ew32(RCTL, rctl);
3441 
3442 	if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
3443 		e1000e_vlan_strip_enable(adapter);
3444 	else
3445 		e1000e_vlan_strip_disable(adapter);
3446 }
3447 
3448 static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3449 {
3450 	struct e1000_hw *hw = &adapter->hw;
3451 	u32 mrqc, rxcsum;
3452 	u32 rss_key[10];
3453 	int i;
3454 
3455 	netdev_rss_key_fill(rss_key, sizeof(rss_key));
3456 	for (i = 0; i < 10; i++)
3457 		ew32(RSSRK(i), rss_key[i]);
3458 
3459 	/* Direct all traffic to queue 0 */
3460 	for (i = 0; i < 32; i++)
3461 		ew32(RETA(i), 0);
3462 
3463 	/* Disable raw packet checksumming so that RSS hash is placed in
3464 	 * descriptor on writeback.
3465 	 */
3466 	rxcsum = er32(RXCSUM);
3467 	rxcsum |= E1000_RXCSUM_PCSD;
3468 
3469 	ew32(RXCSUM, rxcsum);
3470 
3471 	mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3472 		E1000_MRQC_RSS_FIELD_IPV4_TCP |
3473 		E1000_MRQC_RSS_FIELD_IPV6 |
3474 		E1000_MRQC_RSS_FIELD_IPV6_TCP |
3475 		E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3476 
3477 	ew32(MRQC, mrqc);
3478 }
3479 
3480 /**
3481  * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3482  * @adapter: board private structure
3483  * @timinca: pointer to returned time increment attributes
3484  *
3485  * Get attributes for incrementing the System Time Register SYSTIML/H at
3486  * the default base frequency, and set the cyclecounter shift value.
3487  **/
3488 s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca)
3489 {
3490 	struct e1000_hw *hw = &adapter->hw;
3491 	u32 incvalue, incperiod, shift;
3492 
3493 	/* Make sure clock is enabled on I217 before checking the frequency */
3494 	if ((hw->mac.type == e1000_pch_lpt) &&
3495 	    !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) &&
3496 	    !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) {
3497 		u32 fextnvm7 = er32(FEXTNVM7);
3498 
3499 		if (!(fextnvm7 & (1 << 0))) {
3500 			ew32(FEXTNVM7, fextnvm7 | (1 << 0));
3501 			e1e_flush();
3502 		}
3503 	}
3504 
3505 	switch (hw->mac.type) {
3506 	case e1000_pch2lan:
3507 	case e1000_pch_lpt:
3508 		/* On I217, the clock frequency is 25MHz or 96MHz as
3509 		 * indicated by the System Clock Frequency Indication
3510 		 */
3511 		if ((hw->mac.type != e1000_pch_lpt) ||
3512 		    (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI)) {
3513 			/* Stable 96MHz frequency */
3514 			incperiod = INCPERIOD_96MHz;
3515 			incvalue = INCVALUE_96MHz;
3516 			shift = INCVALUE_SHIFT_96MHz;
3517 			adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHz;
3518 			break;
3519 		}
3520 		/* fall-through */
3521 	case e1000_82574:
3522 	case e1000_82583:
3523 		/* Stable 25MHz frequency */
3524 		incperiod = INCPERIOD_25MHz;
3525 		incvalue = INCVALUE_25MHz;
3526 		shift = INCVALUE_SHIFT_25MHz;
3527 		adapter->cc.shift = shift;
3528 		break;
3529 	default:
3530 		return -EINVAL;
3531 	}
3532 
3533 	*timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) |
3534 		    ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK));
3535 
3536 	return 0;
3537 }
3538 
3539 /**
3540  * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3541  * @adapter: board private structure
3542  *
3543  * Outgoing time stamping can be enabled and disabled. Play nice and
3544  * disable it when requested, although it shouldn't cause any overhead
3545  * when no packet needs it. At most one packet in the queue may be
3546  * marked for time stamping, otherwise it would be impossible to tell
3547  * for sure to which packet the hardware time stamp belongs.
3548  *
3549  * Incoming time stamping has to be configured via the hardware filters.
3550  * Not all combinations are supported, in particular event type has to be
3551  * specified. Matching the kind of event packet is not supported, with the
3552  * exception of "all V2 events regardless of level 2 or 4".
3553  **/
3554 static int e1000e_config_hwtstamp(struct e1000_adapter *adapter,
3555 				  struct hwtstamp_config *config)
3556 {
3557 	struct e1000_hw *hw = &adapter->hw;
3558 	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
3559 	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
3560 	u32 rxmtrl = 0;
3561 	u16 rxudp = 0;
3562 	bool is_l4 = false;
3563 	bool is_l2 = false;
3564 	u32 regval;
3565 	s32 ret_val;
3566 
3567 	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3568 		return -EINVAL;
3569 
3570 	/* flags reserved for future extensions - must be zero */
3571 	if (config->flags)
3572 		return -EINVAL;
3573 
3574 	switch (config->tx_type) {
3575 	case HWTSTAMP_TX_OFF:
3576 		tsync_tx_ctl = 0;
3577 		break;
3578 	case HWTSTAMP_TX_ON:
3579 		break;
3580 	default:
3581 		return -ERANGE;
3582 	}
3583 
3584 	switch (config->rx_filter) {
3585 	case HWTSTAMP_FILTER_NONE:
3586 		tsync_rx_ctl = 0;
3587 		break;
3588 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3589 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3590 		rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE;
3591 		is_l4 = true;
3592 		break;
3593 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3594 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3595 		rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE;
3596 		is_l4 = true;
3597 		break;
3598 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3599 		/* Also time stamps V2 L2 Path Delay Request/Response */
3600 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3601 		rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3602 		is_l2 = true;
3603 		break;
3604 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3605 		/* Also time stamps V2 L2 Path Delay Request/Response. */
3606 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3607 		rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3608 		is_l2 = true;
3609 		break;
3610 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3611 		/* Hardware cannot filter just V2 L4 Sync messages;
3612 		 * fall-through to V2 (both L2 and L4) Sync.
3613 		 */
3614 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
3615 		/* Also time stamps V2 Path Delay Request/Response. */
3616 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3617 		rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3618 		is_l2 = true;
3619 		is_l4 = true;
3620 		break;
3621 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3622 		/* Hardware cannot filter just V2 L4 Delay Request messages;
3623 		 * fall-through to V2 (both L2 and L4) Delay Request.
3624 		 */
3625 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3626 		/* Also time stamps V2 Path Delay Request/Response. */
3627 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3628 		rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3629 		is_l2 = true;
3630 		is_l4 = true;
3631 		break;
3632 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3633 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3634 		/* Hardware cannot filter just V2 L4 or L2 Event messages;
3635 		 * fall-through to all V2 (both L2 and L4) Events.
3636 		 */
3637 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
3638 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
3639 		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
3640 		is_l2 = true;
3641 		is_l4 = true;
3642 		break;
3643 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3644 		/* For V1, the hardware can only filter Sync messages or
3645 		 * Delay Request messages but not both so fall-through to
3646 		 * time stamp all packets.
3647 		 */
3648 	case HWTSTAMP_FILTER_ALL:
3649 		is_l2 = true;
3650 		is_l4 = true;
3651 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
3652 		config->rx_filter = HWTSTAMP_FILTER_ALL;
3653 		break;
3654 	default:
3655 		return -ERANGE;
3656 	}
3657 
3658 	adapter->hwtstamp_config = *config;
3659 
3660 	/* enable/disable Tx h/w time stamping */
3661 	regval = er32(TSYNCTXCTL);
3662 	regval &= ~E1000_TSYNCTXCTL_ENABLED;
3663 	regval |= tsync_tx_ctl;
3664 	ew32(TSYNCTXCTL, regval);
3665 	if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) !=
3666 	    (regval & E1000_TSYNCTXCTL_ENABLED)) {
3667 		e_err("Timesync Tx Control register not set as expected\n");
3668 		return -EAGAIN;
3669 	}
3670 
3671 	/* enable/disable Rx h/w time stamping */
3672 	regval = er32(TSYNCRXCTL);
3673 	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
3674 	regval |= tsync_rx_ctl;
3675 	ew32(TSYNCRXCTL, regval);
3676 	if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED |
3677 				 E1000_TSYNCRXCTL_TYPE_MASK)) !=
3678 	    (regval & (E1000_TSYNCRXCTL_ENABLED |
3679 		       E1000_TSYNCRXCTL_TYPE_MASK))) {
3680 		e_err("Timesync Rx Control register not set as expected\n");
3681 		return -EAGAIN;
3682 	}
3683 
3684 	/* L2: define ethertype filter for time stamped packets */
3685 	if (is_l2)
3686 		rxmtrl |= ETH_P_1588;
3687 
3688 	/* define which PTP packets get time stamped */
3689 	ew32(RXMTRL, rxmtrl);
3690 
3691 	/* Filter by destination port */
3692 	if (is_l4) {
3693 		rxudp = PTP_EV_PORT;
3694 		cpu_to_be16s(&rxudp);
3695 	}
3696 	ew32(RXUDP, rxudp);
3697 
3698 	e1e_flush();
3699 
3700 	/* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
3701 	er32(RXSTMPH);
3702 	er32(TXSTMPH);
3703 
3704 	/* Get and set the System Time Register SYSTIM base frequency */
3705 	ret_val = e1000e_get_base_timinca(adapter, &regval);
3706 	if (ret_val)
3707 		return ret_val;
3708 	ew32(TIMINCA, regval);
3709 
3710 	/* reset the ns time counter */
3711 	timecounter_init(&adapter->tc, &adapter->cc,
3712 			 ktime_to_ns(ktime_get_real()));
3713 
3714 	return 0;
3715 }
3716 
3717 /**
3718  * e1000_configure - configure the hardware for Rx and Tx
3719  * @adapter: private board structure
3720  **/
3721 static void e1000_configure(struct e1000_adapter *adapter)
3722 {
3723 	struct e1000_ring *rx_ring = adapter->rx_ring;
3724 
3725 	e1000e_set_rx_mode(adapter->netdev);
3726 
3727 	e1000_restore_vlan(adapter);
3728 	e1000_init_manageability_pt(adapter);
3729 
3730 	e1000_configure_tx(adapter);
3731 
3732 	if (adapter->netdev->features & NETIF_F_RXHASH)
3733 		e1000e_setup_rss_hash(adapter);
3734 	e1000_setup_rctl(adapter);
3735 	e1000_configure_rx(adapter);
3736 	adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3737 }
3738 
3739 /**
3740  * e1000e_power_up_phy - restore link in case the phy was powered down
3741  * @adapter: address of board private structure
3742  *
3743  * The phy may be powered down to save power and turn off link when the
3744  * driver is unloaded and wake on lan is not enabled (among others)
3745  * *** this routine MUST be followed by a call to e1000e_reset ***
3746  **/
3747 void e1000e_power_up_phy(struct e1000_adapter *adapter)
3748 {
3749 	if (adapter->hw.phy.ops.power_up)
3750 		adapter->hw.phy.ops.power_up(&adapter->hw);
3751 
3752 	adapter->hw.mac.ops.setup_link(&adapter->hw);
3753 }
3754 
3755 /**
3756  * e1000_power_down_phy - Power down the PHY
3757  *
3758  * Power down the PHY so no link is implied when interface is down.
3759  * The PHY cannot be powered down if management or WoL is active.
3760  */
3761 static void e1000_power_down_phy(struct e1000_adapter *adapter)
3762 {
3763 	if (adapter->hw.phy.ops.power_down)
3764 		adapter->hw.phy.ops.power_down(&adapter->hw);
3765 }
3766 
3767 /**
3768  * e1000e_reset - bring the hardware into a known good state
3769  *
3770  * This function boots the hardware and enables some settings that
3771  * require a configuration cycle of the hardware - those cannot be
3772  * set/changed during runtime. After reset the device needs to be
3773  * properly configured for Rx, Tx etc.
3774  */
3775 void e1000e_reset(struct e1000_adapter *adapter)
3776 {
3777 	struct e1000_mac_info *mac = &adapter->hw.mac;
3778 	struct e1000_fc_info *fc = &adapter->hw.fc;
3779 	struct e1000_hw *hw = &adapter->hw;
3780 	u32 tx_space, min_tx_space, min_rx_space;
3781 	u32 pba = adapter->pba;
3782 	u16 hwm;
3783 
3784 	/* reset Packet Buffer Allocation to default */
3785 	ew32(PBA, pba);
3786 
3787 	if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
3788 		/* To maintain wire speed transmits, the Tx FIFO should be
3789 		 * large enough to accommodate two full transmit packets,
3790 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
3791 		 * the Rx FIFO should be large enough to accommodate at least
3792 		 * one full receive packet and is similarly rounded up and
3793 		 * expressed in KB.
3794 		 */
3795 		pba = er32(PBA);
3796 		/* upper 16 bits has Tx packet buffer allocation size in KB */
3797 		tx_space = pba >> 16;
3798 		/* lower 16 bits has Rx packet buffer allocation size in KB */
3799 		pba &= 0xffff;
3800 		/* the Tx fifo also stores 16 bytes of information about the Tx
3801 		 * but don't include ethernet FCS because hardware appends it
3802 		 */
3803 		min_tx_space = (adapter->max_frame_size +
3804 				sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2;
3805 		min_tx_space = ALIGN(min_tx_space, 1024);
3806 		min_tx_space >>= 10;
3807 		/* software strips receive CRC, so leave room for it */
3808 		min_rx_space = adapter->max_frame_size;
3809 		min_rx_space = ALIGN(min_rx_space, 1024);
3810 		min_rx_space >>= 10;
3811 
3812 		/* If current Tx allocation is less than the min Tx FIFO size,
3813 		 * and the min Tx FIFO size is less than the current Rx FIFO
3814 		 * allocation, take space away from current Rx allocation
3815 		 */
3816 		if ((tx_space < min_tx_space) &&
3817 		    ((min_tx_space - tx_space) < pba)) {
3818 			pba -= min_tx_space - tx_space;
3819 
3820 			/* if short on Rx space, Rx wins and must trump Tx
3821 			 * adjustment
3822 			 */
3823 			if (pba < min_rx_space)
3824 				pba = min_rx_space;
3825 		}
3826 
3827 		ew32(PBA, pba);
3828 	}
3829 
3830 	/* flow control settings
3831 	 *
3832 	 * The high water mark must be low enough to fit one full frame
3833 	 * (or the size used for early receive) above it in the Rx FIFO.
3834 	 * Set it to the lower of:
3835 	 * - 90% of the Rx FIFO size, and
3836 	 * - the full Rx FIFO size minus one full frame
3837 	 */
3838 	if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
3839 		fc->pause_time = 0xFFFF;
3840 	else
3841 		fc->pause_time = E1000_FC_PAUSE_TIME;
3842 	fc->send_xon = true;
3843 	fc->current_mode = fc->requested_mode;
3844 
3845 	switch (hw->mac.type) {
3846 	case e1000_ich9lan:
3847 	case e1000_ich10lan:
3848 		if (adapter->netdev->mtu > ETH_DATA_LEN) {
3849 			pba = 14;
3850 			ew32(PBA, pba);
3851 			fc->high_water = 0x2800;
3852 			fc->low_water = fc->high_water - 8;
3853 			break;
3854 		}
3855 		/* fall-through */
3856 	default:
3857 		hwm = min(((pba << 10) * 9 / 10),
3858 			  ((pba << 10) - adapter->max_frame_size));
3859 
3860 		fc->high_water = hwm & E1000_FCRTH_RTH;	/* 8-byte granularity */
3861 		fc->low_water = fc->high_water - 8;
3862 		break;
3863 	case e1000_pchlan:
3864 		/* Workaround PCH LOM adapter hangs with certain network
3865 		 * loads.  If hangs persist, try disabling Tx flow control.
3866 		 */
3867 		if (adapter->netdev->mtu > ETH_DATA_LEN) {
3868 			fc->high_water = 0x3500;
3869 			fc->low_water = 0x1500;
3870 		} else {
3871 			fc->high_water = 0x5000;
3872 			fc->low_water = 0x3000;
3873 		}
3874 		fc->refresh_time = 0x1000;
3875 		break;
3876 	case e1000_pch2lan:
3877 	case e1000_pch_lpt:
3878 		fc->refresh_time = 0x0400;
3879 
3880 		if (adapter->netdev->mtu <= ETH_DATA_LEN) {
3881 			fc->high_water = 0x05C20;
3882 			fc->low_water = 0x05048;
3883 			fc->pause_time = 0x0650;
3884 			break;
3885 		}
3886 
3887 		pba = 14;
3888 		ew32(PBA, pba);
3889 		fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH;
3890 		fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL;
3891 		break;
3892 	}
3893 
3894 	/* Alignment of Tx data is on an arbitrary byte boundary with the
3895 	 * maximum size per Tx descriptor limited only to the transmit
3896 	 * allocation of the packet buffer minus 96 bytes with an upper
3897 	 * limit of 24KB due to receive synchronization limitations.
3898 	 */
3899 	adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
3900 				       24 << 10);
3901 
3902 	/* Disable Adaptive Interrupt Moderation if 2 full packets cannot
3903 	 * fit in receive buffer.
3904 	 */
3905 	if (adapter->itr_setting & 0x3) {
3906 		if ((adapter->max_frame_size * 2) > (pba << 10)) {
3907 			if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
3908 				dev_info(&adapter->pdev->dev,
3909 					 "Interrupt Throttle Rate off\n");
3910 				adapter->flags2 |= FLAG2_DISABLE_AIM;
3911 				e1000e_write_itr(adapter, 0);
3912 			}
3913 		} else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
3914 			dev_info(&adapter->pdev->dev,
3915 				 "Interrupt Throttle Rate on\n");
3916 			adapter->flags2 &= ~FLAG2_DISABLE_AIM;
3917 			adapter->itr = 20000;
3918 			e1000e_write_itr(adapter, adapter->itr);
3919 		}
3920 	}
3921 
3922 	/* Allow time for pending master requests to run */
3923 	mac->ops.reset_hw(hw);
3924 
3925 	/* For parts with AMT enabled, let the firmware know
3926 	 * that the network interface is in control
3927 	 */
3928 	if (adapter->flags & FLAG_HAS_AMT)
3929 		e1000e_get_hw_control(adapter);
3930 
3931 	ew32(WUC, 0);
3932 
3933 	if (mac->ops.init_hw(hw))
3934 		e_err("Hardware Error\n");
3935 
3936 	e1000_update_mng_vlan(adapter);
3937 
3938 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
3939 	ew32(VET, ETH_P_8021Q);
3940 
3941 	e1000e_reset_adaptive(hw);
3942 
3943 	/* initialize systim and reset the ns time counter */
3944 	e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config);
3945 
3946 	/* Set EEE advertisement as appropriate */
3947 	if (adapter->flags2 & FLAG2_HAS_EEE) {
3948 		s32 ret_val;
3949 		u16 adv_addr;
3950 
3951 		switch (hw->phy.type) {
3952 		case e1000_phy_82579:
3953 			adv_addr = I82579_EEE_ADVERTISEMENT;
3954 			break;
3955 		case e1000_phy_i217:
3956 			adv_addr = I217_EEE_ADVERTISEMENT;
3957 			break;
3958 		default:
3959 			dev_err(&adapter->pdev->dev,
3960 				"Invalid PHY type setting EEE advertisement\n");
3961 			return;
3962 		}
3963 
3964 		ret_val = hw->phy.ops.acquire(hw);
3965 		if (ret_val) {
3966 			dev_err(&adapter->pdev->dev,
3967 				"EEE advertisement - unable to acquire PHY\n");
3968 			return;
3969 		}
3970 
3971 		e1000_write_emi_reg_locked(hw, adv_addr,
3972 					   hw->dev_spec.ich8lan.eee_disable ?
3973 					   0 : adapter->eee_advert);
3974 
3975 		hw->phy.ops.release(hw);
3976 	}
3977 
3978 	if (!netif_running(adapter->netdev) &&
3979 	    !test_bit(__E1000_TESTING, &adapter->state))
3980 		e1000_power_down_phy(adapter);
3981 
3982 	e1000_get_phy_info(hw);
3983 
3984 	if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
3985 	    !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
3986 		u16 phy_data = 0;
3987 		/* speed up time to link by disabling smart power down, ignore
3988 		 * the return value of this function because there is nothing
3989 		 * different we would do if it failed
3990 		 */
3991 		e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
3992 		phy_data &= ~IGP02E1000_PM_SPD;
3993 		e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
3994 	}
3995 }
3996 
3997 int e1000e_up(struct e1000_adapter *adapter)
3998 {
3999 	struct e1000_hw *hw = &adapter->hw;
4000 
4001 	/* hardware has been reset, we need to reload some things */
4002 	e1000_configure(adapter);
4003 
4004 	clear_bit(__E1000_DOWN, &adapter->state);
4005 
4006 	if (adapter->msix_entries)
4007 		e1000_configure_msix(adapter);
4008 	e1000_irq_enable(adapter);
4009 
4010 	netif_start_queue(adapter->netdev);
4011 
4012 	/* fire a link change interrupt to start the watchdog */
4013 	if (adapter->msix_entries)
4014 		ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
4015 	else
4016 		ew32(ICS, E1000_ICS_LSC);
4017 
4018 	return 0;
4019 }
4020 
4021 static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
4022 {
4023 	struct e1000_hw *hw = &adapter->hw;
4024 
4025 	if (!(adapter->flags2 & FLAG2_DMA_BURST))
4026 		return;
4027 
4028 	/* flush pending descriptor writebacks to memory */
4029 	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4030 	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4031 
4032 	/* execute the writes immediately */
4033 	e1e_flush();
4034 
4035 	/* due to rare timing issues, write to TIDV/RDTR again to ensure the
4036 	 * write is successful
4037 	 */
4038 	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4039 	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4040 
4041 	/* execute the writes immediately */
4042 	e1e_flush();
4043 }
4044 
4045 static void e1000e_update_stats(struct e1000_adapter *adapter);
4046 
4047 /**
4048  * e1000e_down - quiesce the device and optionally reset the hardware
4049  * @adapter: board private structure
4050  * @reset: boolean flag to reset the hardware or not
4051  */
4052 void e1000e_down(struct e1000_adapter *adapter, bool reset)
4053 {
4054 	struct net_device *netdev = adapter->netdev;
4055 	struct e1000_hw *hw = &adapter->hw;
4056 	u32 tctl, rctl;
4057 
4058 	/* signal that we're down so the interrupt handler does not
4059 	 * reschedule our watchdog timer
4060 	 */
4061 	set_bit(__E1000_DOWN, &adapter->state);
4062 
4063 	/* disable receives in the hardware */
4064 	rctl = er32(RCTL);
4065 	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
4066 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
4067 	/* flush and sleep below */
4068 
4069 	netif_stop_queue(netdev);
4070 
4071 	/* disable transmits in the hardware */
4072 	tctl = er32(TCTL);
4073 	tctl &= ~E1000_TCTL_EN;
4074 	ew32(TCTL, tctl);
4075 
4076 	/* flush both disables and wait for them to finish */
4077 	e1e_flush();
4078 	usleep_range(10000, 20000);
4079 
4080 	e1000_irq_disable(adapter);
4081 
4082 	napi_synchronize(&adapter->napi);
4083 
4084 	del_timer_sync(&adapter->watchdog_timer);
4085 	del_timer_sync(&adapter->phy_info_timer);
4086 
4087 	netif_carrier_off(netdev);
4088 
4089 	spin_lock(&adapter->stats64_lock);
4090 	e1000e_update_stats(adapter);
4091 	spin_unlock(&adapter->stats64_lock);
4092 
4093 	e1000e_flush_descriptors(adapter);
4094 	e1000_clean_tx_ring(adapter->tx_ring);
4095 	e1000_clean_rx_ring(adapter->rx_ring);
4096 
4097 	adapter->link_speed = 0;
4098 	adapter->link_duplex = 0;
4099 
4100 	/* Disable Si errata workaround on PCHx for jumbo frame flow */
4101 	if ((hw->mac.type >= e1000_pch2lan) &&
4102 	    (adapter->netdev->mtu > ETH_DATA_LEN) &&
4103 	    e1000_lv_jumbo_workaround_ich8lan(hw, false))
4104 		e_dbg("failed to disable jumbo frame workaround mode\n");
4105 
4106 	if (reset && !pci_channel_offline(adapter->pdev))
4107 		e1000e_reset(adapter);
4108 }
4109 
4110 void e1000e_reinit_locked(struct e1000_adapter *adapter)
4111 {
4112 	might_sleep();
4113 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4114 		usleep_range(1000, 2000);
4115 	e1000e_down(adapter, true);
4116 	e1000e_up(adapter);
4117 	clear_bit(__E1000_RESETTING, &adapter->state);
4118 }
4119 
4120 /**
4121  * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4122  * @cc: cyclecounter structure
4123  **/
4124 static cycle_t e1000e_cyclecounter_read(const struct cyclecounter *cc)
4125 {
4126 	struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter,
4127 						     cc);
4128 	struct e1000_hw *hw = &adapter->hw;
4129 	cycle_t systim, systim_next;
4130 
4131 	/* latch SYSTIMH on read of SYSTIML */
4132 	systim = (cycle_t)er32(SYSTIML);
4133 	systim |= (cycle_t)er32(SYSTIMH) << 32;
4134 
4135 	if ((hw->mac.type == e1000_82574) || (hw->mac.type == e1000_82583)) {
4136 		u64 incvalue, time_delta, rem, temp;
4137 		int i;
4138 
4139 		/* errata for 82574/82583 possible bad bits read from SYSTIMH/L
4140 		 * check to see that the time is incrementing at a reasonable
4141 		 * rate and is a multiple of incvalue
4142 		 */
4143 		incvalue = er32(TIMINCA) & E1000_TIMINCA_INCVALUE_MASK;
4144 		for (i = 0; i < E1000_MAX_82574_SYSTIM_REREADS; i++) {
4145 			/* latch SYSTIMH on read of SYSTIML */
4146 			systim_next = (cycle_t)er32(SYSTIML);
4147 			systim_next |= (cycle_t)er32(SYSTIMH) << 32;
4148 
4149 			time_delta = systim_next - systim;
4150 			temp = time_delta;
4151 			rem = do_div(temp, incvalue);
4152 
4153 			systim = systim_next;
4154 
4155 			if ((time_delta < E1000_82574_SYSTIM_EPSILON) &&
4156 			    (rem == 0))
4157 				break;
4158 		}
4159 	}
4160 	return systim;
4161 }
4162 
4163 /**
4164  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4165  * @adapter: board private structure to initialize
4166  *
4167  * e1000_sw_init initializes the Adapter private data structure.
4168  * Fields are initialized based on PCI device information and
4169  * OS network device settings (MTU size).
4170  **/
4171 static int e1000_sw_init(struct e1000_adapter *adapter)
4172 {
4173 	struct net_device *netdev = adapter->netdev;
4174 
4175 	adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
4176 	adapter->rx_ps_bsize0 = 128;
4177 	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
4178 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4179 	adapter->tx_ring_count = E1000_DEFAULT_TXD;
4180 	adapter->rx_ring_count = E1000_DEFAULT_RXD;
4181 
4182 	spin_lock_init(&adapter->stats64_lock);
4183 
4184 	e1000e_set_interrupt_capability(adapter);
4185 
4186 	if (e1000_alloc_queues(adapter))
4187 		return -ENOMEM;
4188 
4189 	/* Setup hardware time stamping cyclecounter */
4190 	if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
4191 		adapter->cc.read = e1000e_cyclecounter_read;
4192 		adapter->cc.mask = CYCLECOUNTER_MASK(64);
4193 		adapter->cc.mult = 1;
4194 		/* cc.shift set in e1000e_get_base_tininca() */
4195 
4196 		spin_lock_init(&adapter->systim_lock);
4197 		INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work);
4198 	}
4199 
4200 	/* Explicitly disable IRQ since the NIC can be in any state. */
4201 	e1000_irq_disable(adapter);
4202 
4203 	set_bit(__E1000_DOWN, &adapter->state);
4204 	return 0;
4205 }
4206 
4207 /**
4208  * e1000_intr_msi_test - Interrupt Handler
4209  * @irq: interrupt number
4210  * @data: pointer to a network interface device structure
4211  **/
4212 static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data)
4213 {
4214 	struct net_device *netdev = data;
4215 	struct e1000_adapter *adapter = netdev_priv(netdev);
4216 	struct e1000_hw *hw = &adapter->hw;
4217 	u32 icr = er32(ICR);
4218 
4219 	e_dbg("icr is %08X\n", icr);
4220 	if (icr & E1000_ICR_RXSEQ) {
4221 		adapter->flags &= ~FLAG_MSI_TEST_FAILED;
4222 		/* Force memory writes to complete before acknowledging the
4223 		 * interrupt is handled.
4224 		 */
4225 		wmb();
4226 	}
4227 
4228 	return IRQ_HANDLED;
4229 }
4230 
4231 /**
4232  * e1000_test_msi_interrupt - Returns 0 for successful test
4233  * @adapter: board private struct
4234  *
4235  * code flow taken from tg3.c
4236  **/
4237 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
4238 {
4239 	struct net_device *netdev = adapter->netdev;
4240 	struct e1000_hw *hw = &adapter->hw;
4241 	int err;
4242 
4243 	/* poll_enable hasn't been called yet, so don't need disable */
4244 	/* clear any pending events */
4245 	er32(ICR);
4246 
4247 	/* free the real vector and request a test handler */
4248 	e1000_free_irq(adapter);
4249 	e1000e_reset_interrupt_capability(adapter);
4250 
4251 	/* Assume that the test fails, if it succeeds then the test
4252 	 * MSI irq handler will unset this flag
4253 	 */
4254 	adapter->flags |= FLAG_MSI_TEST_FAILED;
4255 
4256 	err = pci_enable_msi(adapter->pdev);
4257 	if (err)
4258 		goto msi_test_failed;
4259 
4260 	err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
4261 			  netdev->name, netdev);
4262 	if (err) {
4263 		pci_disable_msi(adapter->pdev);
4264 		goto msi_test_failed;
4265 	}
4266 
4267 	/* Force memory writes to complete before enabling and firing an
4268 	 * interrupt.
4269 	 */
4270 	wmb();
4271 
4272 	e1000_irq_enable(adapter);
4273 
4274 	/* fire an unusual interrupt on the test handler */
4275 	ew32(ICS, E1000_ICS_RXSEQ);
4276 	e1e_flush();
4277 	msleep(100);
4278 
4279 	e1000_irq_disable(adapter);
4280 
4281 	rmb();			/* read flags after interrupt has been fired */
4282 
4283 	if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4284 		adapter->int_mode = E1000E_INT_MODE_LEGACY;
4285 		e_info("MSI interrupt test failed, using legacy interrupt.\n");
4286 	} else {
4287 		e_dbg("MSI interrupt test succeeded!\n");
4288 	}
4289 
4290 	free_irq(adapter->pdev->irq, netdev);
4291 	pci_disable_msi(adapter->pdev);
4292 
4293 msi_test_failed:
4294 	e1000e_set_interrupt_capability(adapter);
4295 	return e1000_request_irq(adapter);
4296 }
4297 
4298 /**
4299  * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4300  * @adapter: board private struct
4301  *
4302  * code flow taken from tg3.c, called with e1000 interrupts disabled.
4303  **/
4304 static int e1000_test_msi(struct e1000_adapter *adapter)
4305 {
4306 	int err;
4307 	u16 pci_cmd;
4308 
4309 	if (!(adapter->flags & FLAG_MSI_ENABLED))
4310 		return 0;
4311 
4312 	/* disable SERR in case the MSI write causes a master abort */
4313 	pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4314 	if (pci_cmd & PCI_COMMAND_SERR)
4315 		pci_write_config_word(adapter->pdev, PCI_COMMAND,
4316 				      pci_cmd & ~PCI_COMMAND_SERR);
4317 
4318 	err = e1000_test_msi_interrupt(adapter);
4319 
4320 	/* re-enable SERR */
4321 	if (pci_cmd & PCI_COMMAND_SERR) {
4322 		pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4323 		pci_cmd |= PCI_COMMAND_SERR;
4324 		pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
4325 	}
4326 
4327 	return err;
4328 }
4329 
4330 /**
4331  * e1000_open - Called when a network interface is made active
4332  * @netdev: network interface device structure
4333  *
4334  * Returns 0 on success, negative value on failure
4335  *
4336  * The open entry point is called when a network interface is made
4337  * active by the system (IFF_UP).  At this point all resources needed
4338  * for transmit and receive operations are allocated, the interrupt
4339  * handler is registered with the OS, the watchdog timer is started,
4340  * and the stack is notified that the interface is ready.
4341  **/
4342 static int e1000_open(struct net_device *netdev)
4343 {
4344 	struct e1000_adapter *adapter = netdev_priv(netdev);
4345 	struct e1000_hw *hw = &adapter->hw;
4346 	struct pci_dev *pdev = adapter->pdev;
4347 	int err;
4348 
4349 	/* disallow open during test */
4350 	if (test_bit(__E1000_TESTING, &adapter->state))
4351 		return -EBUSY;
4352 
4353 	pm_runtime_get_sync(&pdev->dev);
4354 
4355 	netif_carrier_off(netdev);
4356 
4357 	/* allocate transmit descriptors */
4358 	err = e1000e_setup_tx_resources(adapter->tx_ring);
4359 	if (err)
4360 		goto err_setup_tx;
4361 
4362 	/* allocate receive descriptors */
4363 	err = e1000e_setup_rx_resources(adapter->rx_ring);
4364 	if (err)
4365 		goto err_setup_rx;
4366 
4367 	/* If AMT is enabled, let the firmware know that the network
4368 	 * interface is now open and reset the part to a known state.
4369 	 */
4370 	if (adapter->flags & FLAG_HAS_AMT) {
4371 		e1000e_get_hw_control(adapter);
4372 		e1000e_reset(adapter);
4373 	}
4374 
4375 	e1000e_power_up_phy(adapter);
4376 
4377 	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4378 	if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
4379 		e1000_update_mng_vlan(adapter);
4380 
4381 	/* DMA latency requirement to workaround jumbo issue */
4382 	pm_qos_add_request(&adapter->netdev->pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
4383 			   PM_QOS_DEFAULT_VALUE);
4384 
4385 	/* before we allocate an interrupt, we must be ready to handle it.
4386 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4387 	 * as soon as we call pci_request_irq, so we have to setup our
4388 	 * clean_rx handler before we do so.
4389 	 */
4390 	e1000_configure(adapter);
4391 
4392 	err = e1000_request_irq(adapter);
4393 	if (err)
4394 		goto err_req_irq;
4395 
4396 	/* Work around PCIe errata with MSI interrupts causing some chipsets to
4397 	 * ignore e1000e MSI messages, which means we need to test our MSI
4398 	 * interrupt now
4399 	 */
4400 	if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
4401 		err = e1000_test_msi(adapter);
4402 		if (err) {
4403 			e_err("Interrupt allocation failed\n");
4404 			goto err_req_irq;
4405 		}
4406 	}
4407 
4408 	/* From here on the code is the same as e1000e_up() */
4409 	clear_bit(__E1000_DOWN, &adapter->state);
4410 
4411 	napi_enable(&adapter->napi);
4412 
4413 	e1000_irq_enable(adapter);
4414 
4415 	adapter->tx_hang_recheck = false;
4416 	netif_start_queue(netdev);
4417 
4418 	hw->mac.get_link_status = true;
4419 	pm_runtime_put(&pdev->dev);
4420 
4421 	/* fire a link status change interrupt to start the watchdog */
4422 	if (adapter->msix_entries)
4423 		ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
4424 	else
4425 		ew32(ICS, E1000_ICS_LSC);
4426 
4427 	return 0;
4428 
4429 err_req_irq:
4430 	e1000e_release_hw_control(adapter);
4431 	e1000_power_down_phy(adapter);
4432 	e1000e_free_rx_resources(adapter->rx_ring);
4433 err_setup_rx:
4434 	e1000e_free_tx_resources(adapter->tx_ring);
4435 err_setup_tx:
4436 	e1000e_reset(adapter);
4437 	pm_runtime_put_sync(&pdev->dev);
4438 
4439 	return err;
4440 }
4441 
4442 /**
4443  * e1000_close - Disables a network interface
4444  * @netdev: network interface device structure
4445  *
4446  * Returns 0, this is not allowed to fail
4447  *
4448  * The close entry point is called when an interface is de-activated
4449  * by the OS.  The hardware is still under the drivers control, but
4450  * needs to be disabled.  A global MAC reset is issued to stop the
4451  * hardware, and all transmit and receive resources are freed.
4452  **/
4453 static int e1000_close(struct net_device *netdev)
4454 {
4455 	struct e1000_adapter *adapter = netdev_priv(netdev);
4456 	struct pci_dev *pdev = adapter->pdev;
4457 	int count = E1000_CHECK_RESET_COUNT;
4458 
4459 	while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
4460 		usleep_range(10000, 20000);
4461 
4462 	WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4463 
4464 	pm_runtime_get_sync(&pdev->dev);
4465 
4466 	if (!test_bit(__E1000_DOWN, &adapter->state)) {
4467 		e1000e_down(adapter, true);
4468 		e1000_free_irq(adapter);
4469 
4470 		/* Link status message must follow this format */
4471 		pr_info("%s NIC Link is Down\n", adapter->netdev->name);
4472 	}
4473 
4474 	napi_disable(&adapter->napi);
4475 
4476 	e1000e_free_tx_resources(adapter->tx_ring);
4477 	e1000e_free_rx_resources(adapter->rx_ring);
4478 
4479 	/* kill manageability vlan ID if supported, but not if a vlan with
4480 	 * the same ID is registered on the host OS (let 8021q kill it)
4481 	 */
4482 	if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
4483 		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
4484 				       adapter->mng_vlan_id);
4485 
4486 	/* If AMT is enabled, let the firmware know that the network
4487 	 * interface is now closed
4488 	 */
4489 	if ((adapter->flags & FLAG_HAS_AMT) &&
4490 	    !test_bit(__E1000_TESTING, &adapter->state))
4491 		e1000e_release_hw_control(adapter);
4492 
4493 	pm_qos_remove_request(&adapter->netdev->pm_qos_req);
4494 
4495 	pm_runtime_put_sync(&pdev->dev);
4496 
4497 	return 0;
4498 }
4499 
4500 /**
4501  * e1000_set_mac - Change the Ethernet Address of the NIC
4502  * @netdev: network interface device structure
4503  * @p: pointer to an address structure
4504  *
4505  * Returns 0 on success, negative on failure
4506  **/
4507 static int e1000_set_mac(struct net_device *netdev, void *p)
4508 {
4509 	struct e1000_adapter *adapter = netdev_priv(netdev);
4510 	struct e1000_hw *hw = &adapter->hw;
4511 	struct sockaddr *addr = p;
4512 
4513 	if (!is_valid_ether_addr(addr->sa_data))
4514 		return -EADDRNOTAVAIL;
4515 
4516 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4517 	memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4518 
4519 	hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4520 
4521 	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4522 		/* activate the work around */
4523 		e1000e_set_laa_state_82571(&adapter->hw, 1);
4524 
4525 		/* Hold a copy of the LAA in RAR[14] This is done so that
4526 		 * between the time RAR[0] gets clobbered  and the time it
4527 		 * gets fixed (in e1000_watchdog), the actual LAA is in one
4528 		 * of the RARs and no incoming packets directed to this port
4529 		 * are dropped. Eventually the LAA will be in RAR[0] and
4530 		 * RAR[14]
4531 		 */
4532 		hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4533 				    adapter->hw.mac.rar_entry_count - 1);
4534 	}
4535 
4536 	return 0;
4537 }
4538 
4539 /**
4540  * e1000e_update_phy_task - work thread to update phy
4541  * @work: pointer to our work struct
4542  *
4543  * this worker thread exists because we must acquire a
4544  * semaphore to read the phy, which we could msleep while
4545  * waiting for it, and we can't msleep in a timer.
4546  **/
4547 static void e1000e_update_phy_task(struct work_struct *work)
4548 {
4549 	struct e1000_adapter *adapter = container_of(work,
4550 						     struct e1000_adapter,
4551 						     update_phy_task);
4552 	struct e1000_hw *hw = &adapter->hw;
4553 
4554 	if (test_bit(__E1000_DOWN, &adapter->state))
4555 		return;
4556 
4557 	e1000_get_phy_info(hw);
4558 
4559 	/* Enable EEE on 82579 after link up */
4560 	if (hw->phy.type >= e1000_phy_82579)
4561 		e1000_set_eee_pchlan(hw);
4562 }
4563 
4564 /**
4565  * e1000_update_phy_info - timre call-back to update PHY info
4566  * @data: pointer to adapter cast into an unsigned long
4567  *
4568  * Need to wait a few seconds after link up to get diagnostic information from
4569  * the phy
4570  **/
4571 static void e1000_update_phy_info(unsigned long data)
4572 {
4573 	struct e1000_adapter *adapter = (struct e1000_adapter *)data;
4574 
4575 	if (test_bit(__E1000_DOWN, &adapter->state))
4576 		return;
4577 
4578 	schedule_work(&adapter->update_phy_task);
4579 }
4580 
4581 /**
4582  * e1000e_update_phy_stats - Update the PHY statistics counters
4583  * @adapter: board private structure
4584  *
4585  * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4586  **/
4587 static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4588 {
4589 	struct e1000_hw *hw = &adapter->hw;
4590 	s32 ret_val;
4591 	u16 phy_data;
4592 
4593 	ret_val = hw->phy.ops.acquire(hw);
4594 	if (ret_val)
4595 		return;
4596 
4597 	/* A page set is expensive so check if already on desired page.
4598 	 * If not, set to the page with the PHY status registers.
4599 	 */
4600 	hw->phy.addr = 1;
4601 	ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4602 					   &phy_data);
4603 	if (ret_val)
4604 		goto release;
4605 	if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4606 		ret_val = hw->phy.ops.set_page(hw,
4607 					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
4608 		if (ret_val)
4609 			goto release;
4610 	}
4611 
4612 	/* Single Collision Count */
4613 	hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4614 	ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4615 	if (!ret_val)
4616 		adapter->stats.scc += phy_data;
4617 
4618 	/* Excessive Collision Count */
4619 	hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4620 	ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4621 	if (!ret_val)
4622 		adapter->stats.ecol += phy_data;
4623 
4624 	/* Multiple Collision Count */
4625 	hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4626 	ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4627 	if (!ret_val)
4628 		adapter->stats.mcc += phy_data;
4629 
4630 	/* Late Collision Count */
4631 	hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4632 	ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4633 	if (!ret_val)
4634 		adapter->stats.latecol += phy_data;
4635 
4636 	/* Collision Count - also used for adaptive IFS */
4637 	hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4638 	ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4639 	if (!ret_val)
4640 		hw->mac.collision_delta = phy_data;
4641 
4642 	/* Defer Count */
4643 	hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4644 	ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4645 	if (!ret_val)
4646 		adapter->stats.dc += phy_data;
4647 
4648 	/* Transmit with no CRS */
4649 	hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4650 	ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4651 	if (!ret_val)
4652 		adapter->stats.tncrs += phy_data;
4653 
4654 release:
4655 	hw->phy.ops.release(hw);
4656 }
4657 
4658 /**
4659  * e1000e_update_stats - Update the board statistics counters
4660  * @adapter: board private structure
4661  **/
4662 static void e1000e_update_stats(struct e1000_adapter *adapter)
4663 {
4664 	struct net_device *netdev = adapter->netdev;
4665 	struct e1000_hw *hw = &adapter->hw;
4666 	struct pci_dev *pdev = adapter->pdev;
4667 
4668 	/* Prevent stats update while adapter is being reset, or if the pci
4669 	 * connection is down.
4670 	 */
4671 	if (adapter->link_speed == 0)
4672 		return;
4673 	if (pci_channel_offline(pdev))
4674 		return;
4675 
4676 	adapter->stats.crcerrs += er32(CRCERRS);
4677 	adapter->stats.gprc += er32(GPRC);
4678 	adapter->stats.gorc += er32(GORCL);
4679 	er32(GORCH);		/* Clear gorc */
4680 	adapter->stats.bprc += er32(BPRC);
4681 	adapter->stats.mprc += er32(MPRC);
4682 	adapter->stats.roc += er32(ROC);
4683 
4684 	adapter->stats.mpc += er32(MPC);
4685 
4686 	/* Half-duplex statistics */
4687 	if (adapter->link_duplex == HALF_DUPLEX) {
4688 		if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4689 			e1000e_update_phy_stats(adapter);
4690 		} else {
4691 			adapter->stats.scc += er32(SCC);
4692 			adapter->stats.ecol += er32(ECOL);
4693 			adapter->stats.mcc += er32(MCC);
4694 			adapter->stats.latecol += er32(LATECOL);
4695 			adapter->stats.dc += er32(DC);
4696 
4697 			hw->mac.collision_delta = er32(COLC);
4698 
4699 			if ((hw->mac.type != e1000_82574) &&
4700 			    (hw->mac.type != e1000_82583))
4701 				adapter->stats.tncrs += er32(TNCRS);
4702 		}
4703 		adapter->stats.colc += hw->mac.collision_delta;
4704 	}
4705 
4706 	adapter->stats.xonrxc += er32(XONRXC);
4707 	adapter->stats.xontxc += er32(XONTXC);
4708 	adapter->stats.xoffrxc += er32(XOFFRXC);
4709 	adapter->stats.xofftxc += er32(XOFFTXC);
4710 	adapter->stats.gptc += er32(GPTC);
4711 	adapter->stats.gotc += er32(GOTCL);
4712 	er32(GOTCH);		/* Clear gotc */
4713 	adapter->stats.rnbc += er32(RNBC);
4714 	adapter->stats.ruc += er32(RUC);
4715 
4716 	adapter->stats.mptc += er32(MPTC);
4717 	adapter->stats.bptc += er32(BPTC);
4718 
4719 	/* used for adaptive IFS */
4720 
4721 	hw->mac.tx_packet_delta = er32(TPT);
4722 	adapter->stats.tpt += hw->mac.tx_packet_delta;
4723 
4724 	adapter->stats.algnerrc += er32(ALGNERRC);
4725 	adapter->stats.rxerrc += er32(RXERRC);
4726 	adapter->stats.cexterr += er32(CEXTERR);
4727 	adapter->stats.tsctc += er32(TSCTC);
4728 	adapter->stats.tsctfc += er32(TSCTFC);
4729 
4730 	/* Fill out the OS statistics structure */
4731 	netdev->stats.multicast = adapter->stats.mprc;
4732 	netdev->stats.collisions = adapter->stats.colc;
4733 
4734 	/* Rx Errors */
4735 
4736 	/* RLEC on some newer hardware can be incorrect so build
4737 	 * our own version based on RUC and ROC
4738 	 */
4739 	netdev->stats.rx_errors = adapter->stats.rxerrc +
4740 	    adapter->stats.crcerrs + adapter->stats.algnerrc +
4741 	    adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
4742 	netdev->stats.rx_length_errors = adapter->stats.ruc +
4743 	    adapter->stats.roc;
4744 	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
4745 	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
4746 	netdev->stats.rx_missed_errors = adapter->stats.mpc;
4747 
4748 	/* Tx Errors */
4749 	netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol;
4750 	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
4751 	netdev->stats.tx_window_errors = adapter->stats.latecol;
4752 	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
4753 
4754 	/* Tx Dropped needs to be maintained elsewhere */
4755 
4756 	/* Management Stats */
4757 	adapter->stats.mgptc += er32(MGTPTC);
4758 	adapter->stats.mgprc += er32(MGTPRC);
4759 	adapter->stats.mgpdc += er32(MGTPDC);
4760 
4761 	/* Correctable ECC Errors */
4762 	if (hw->mac.type == e1000_pch_lpt) {
4763 		u32 pbeccsts = er32(PBECCSTS);
4764 
4765 		adapter->corr_errors +=
4766 		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
4767 		adapter->uncorr_errors +=
4768 		    (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
4769 		    E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
4770 	}
4771 }
4772 
4773 /**
4774  * e1000_phy_read_status - Update the PHY register status snapshot
4775  * @adapter: board private structure
4776  **/
4777 static void e1000_phy_read_status(struct e1000_adapter *adapter)
4778 {
4779 	struct e1000_hw *hw = &adapter->hw;
4780 	struct e1000_phy_regs *phy = &adapter->phy_regs;
4781 
4782 	if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) &&
4783 	    (er32(STATUS) & E1000_STATUS_LU) &&
4784 	    (adapter->hw.phy.media_type == e1000_media_type_copper)) {
4785 		int ret_val;
4786 
4787 		ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr);
4788 		ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr);
4789 		ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise);
4790 		ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa);
4791 		ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion);
4792 		ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000);
4793 		ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000);
4794 		ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus);
4795 		if (ret_val)
4796 			e_warn("Error reading PHY register\n");
4797 	} else {
4798 		/* Do not read PHY registers if link is not up
4799 		 * Set values to typical power-on defaults
4800 		 */
4801 		phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
4802 		phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
4803 			     BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
4804 			     BMSR_ERCAP);
4805 		phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
4806 				  ADVERTISE_ALL | ADVERTISE_CSMA);
4807 		phy->lpa = 0;
4808 		phy->expansion = EXPANSION_ENABLENPAGE;
4809 		phy->ctrl1000 = ADVERTISE_1000FULL;
4810 		phy->stat1000 = 0;
4811 		phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
4812 	}
4813 }
4814 
4815 static void e1000_print_link_info(struct e1000_adapter *adapter)
4816 {
4817 	struct e1000_hw *hw = &adapter->hw;
4818 	u32 ctrl = er32(CTRL);
4819 
4820 	/* Link status message must follow this format for user tools */
4821 	pr_info("%s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4822 		adapter->netdev->name, adapter->link_speed,
4823 		adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
4824 		(ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
4825 		(ctrl & E1000_CTRL_RFCE) ? "Rx" :
4826 		(ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
4827 }
4828 
4829 static bool e1000e_has_link(struct e1000_adapter *adapter)
4830 {
4831 	struct e1000_hw *hw = &adapter->hw;
4832 	bool link_active = false;
4833 	s32 ret_val = 0;
4834 
4835 	/* get_link_status is set on LSC (link status) interrupt or
4836 	 * Rx sequence error interrupt.  get_link_status will stay
4837 	 * false until the check_for_link establishes link
4838 	 * for copper adapters ONLY
4839 	 */
4840 	switch (hw->phy.media_type) {
4841 	case e1000_media_type_copper:
4842 		if (hw->mac.get_link_status) {
4843 			ret_val = hw->mac.ops.check_for_link(hw);
4844 			link_active = !hw->mac.get_link_status;
4845 		} else {
4846 			link_active = true;
4847 		}
4848 		break;
4849 	case e1000_media_type_fiber:
4850 		ret_val = hw->mac.ops.check_for_link(hw);
4851 		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
4852 		break;
4853 	case e1000_media_type_internal_serdes:
4854 		ret_val = hw->mac.ops.check_for_link(hw);
4855 		link_active = adapter->hw.mac.serdes_has_link;
4856 		break;
4857 	default:
4858 	case e1000_media_type_unknown:
4859 		break;
4860 	}
4861 
4862 	if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
4863 	    (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
4864 		/* See e1000_kmrn_lock_loss_workaround_ich8lan() */
4865 		e_info("Gigabit has been disabled, downgrading speed\n");
4866 	}
4867 
4868 	return link_active;
4869 }
4870 
4871 static void e1000e_enable_receives(struct e1000_adapter *adapter)
4872 {
4873 	/* make sure the receive unit is started */
4874 	if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
4875 	    (adapter->flags & FLAG_RESTART_NOW)) {
4876 		struct e1000_hw *hw = &adapter->hw;
4877 		u32 rctl = er32(RCTL);
4878 
4879 		ew32(RCTL, rctl | E1000_RCTL_EN);
4880 		adapter->flags &= ~FLAG_RESTART_NOW;
4881 	}
4882 }
4883 
4884 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
4885 {
4886 	struct e1000_hw *hw = &adapter->hw;
4887 
4888 	/* With 82574 controllers, PHY needs to be checked periodically
4889 	 * for hung state and reset, if two calls return true
4890 	 */
4891 	if (e1000_check_phy_82574(hw))
4892 		adapter->phy_hang_count++;
4893 	else
4894 		adapter->phy_hang_count = 0;
4895 
4896 	if (adapter->phy_hang_count > 1) {
4897 		adapter->phy_hang_count = 0;
4898 		e_dbg("PHY appears hung - resetting\n");
4899 		schedule_work(&adapter->reset_task);
4900 	}
4901 }
4902 
4903 /**
4904  * e1000_watchdog - Timer Call-back
4905  * @data: pointer to adapter cast into an unsigned long
4906  **/
4907 static void e1000_watchdog(unsigned long data)
4908 {
4909 	struct e1000_adapter *adapter = (struct e1000_adapter *)data;
4910 
4911 	/* Do the rest outside of interrupt context */
4912 	schedule_work(&adapter->watchdog_task);
4913 
4914 	/* TODO: make this use queue_delayed_work() */
4915 }
4916 
4917 static void e1000_watchdog_task(struct work_struct *work)
4918 {
4919 	struct e1000_adapter *adapter = container_of(work,
4920 						     struct e1000_adapter,
4921 						     watchdog_task);
4922 	struct net_device *netdev = adapter->netdev;
4923 	struct e1000_mac_info *mac = &adapter->hw.mac;
4924 	struct e1000_phy_info *phy = &adapter->hw.phy;
4925 	struct e1000_ring *tx_ring = adapter->tx_ring;
4926 	struct e1000_hw *hw = &adapter->hw;
4927 	u32 link, tctl;
4928 
4929 	if (test_bit(__E1000_DOWN, &adapter->state))
4930 		return;
4931 
4932 	link = e1000e_has_link(adapter);
4933 	if ((netif_carrier_ok(netdev)) && link) {
4934 		/* Cancel scheduled suspend requests. */
4935 		pm_runtime_resume(netdev->dev.parent);
4936 
4937 		e1000e_enable_receives(adapter);
4938 		goto link_up;
4939 	}
4940 
4941 	if ((e1000e_enable_tx_pkt_filtering(hw)) &&
4942 	    (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
4943 		e1000_update_mng_vlan(adapter);
4944 
4945 	if (link) {
4946 		if (!netif_carrier_ok(netdev)) {
4947 			bool txb2b = true;
4948 
4949 			/* Cancel scheduled suspend requests. */
4950 			pm_runtime_resume(netdev->dev.parent);
4951 
4952 			/* update snapshot of PHY registers on LSC */
4953 			e1000_phy_read_status(adapter);
4954 			mac->ops.get_link_up_info(&adapter->hw,
4955 						  &adapter->link_speed,
4956 						  &adapter->link_duplex);
4957 			e1000_print_link_info(adapter);
4958 
4959 			/* check if SmartSpeed worked */
4960 			e1000e_check_downshift(hw);
4961 			if (phy->speed_downgraded)
4962 				netdev_warn(netdev,
4963 					    "Link Speed was downgraded by SmartSpeed\n");
4964 
4965 			/* On supported PHYs, check for duplex mismatch only
4966 			 * if link has autonegotiated at 10/100 half
4967 			 */
4968 			if ((hw->phy.type == e1000_phy_igp_3 ||
4969 			     hw->phy.type == e1000_phy_bm) &&
4970 			    hw->mac.autoneg &&
4971 			    (adapter->link_speed == SPEED_10 ||
4972 			     adapter->link_speed == SPEED_100) &&
4973 			    (adapter->link_duplex == HALF_DUPLEX)) {
4974 				u16 autoneg_exp;
4975 
4976 				e1e_rphy(hw, MII_EXPANSION, &autoneg_exp);
4977 
4978 				if (!(autoneg_exp & EXPANSION_NWAY))
4979 					e_info("Autonegotiated half duplex but link partner cannot autoneg.  Try forcing full duplex if link gets many collisions.\n");
4980 			}
4981 
4982 			/* adjust timeout factor according to speed/duplex */
4983 			adapter->tx_timeout_factor = 1;
4984 			switch (adapter->link_speed) {
4985 			case SPEED_10:
4986 				txb2b = false;
4987 				adapter->tx_timeout_factor = 16;
4988 				break;
4989 			case SPEED_100:
4990 				txb2b = false;
4991 				adapter->tx_timeout_factor = 10;
4992 				break;
4993 			}
4994 
4995 			/* workaround: re-program speed mode bit after
4996 			 * link-up event
4997 			 */
4998 			if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
4999 			    !txb2b) {
5000 				u32 tarc0;
5001 
5002 				tarc0 = er32(TARC(0));
5003 				tarc0 &= ~SPEED_MODE_BIT;
5004 				ew32(TARC(0), tarc0);
5005 			}
5006 
5007 			/* disable TSO for pcie and 10/100 speeds, to avoid
5008 			 * some hardware issues
5009 			 */
5010 			if (!(adapter->flags & FLAG_TSO_FORCE)) {
5011 				switch (adapter->link_speed) {
5012 				case SPEED_10:
5013 				case SPEED_100:
5014 					e_info("10/100 speed: disabling TSO\n");
5015 					netdev->features &= ~NETIF_F_TSO;
5016 					netdev->features &= ~NETIF_F_TSO6;
5017 					break;
5018 				case SPEED_1000:
5019 					netdev->features |= NETIF_F_TSO;
5020 					netdev->features |= NETIF_F_TSO6;
5021 					break;
5022 				default:
5023 					/* oops */
5024 					break;
5025 				}
5026 			}
5027 
5028 			/* enable transmits in the hardware, need to do this
5029 			 * after setting TARC(0)
5030 			 */
5031 			tctl = er32(TCTL);
5032 			tctl |= E1000_TCTL_EN;
5033 			ew32(TCTL, tctl);
5034 
5035 			/* Perform any post-link-up configuration before
5036 			 * reporting link up.
5037 			 */
5038 			if (phy->ops.cfg_on_link_up)
5039 				phy->ops.cfg_on_link_up(hw);
5040 
5041 			netif_carrier_on(netdev);
5042 
5043 			if (!test_bit(__E1000_DOWN, &adapter->state))
5044 				mod_timer(&adapter->phy_info_timer,
5045 					  round_jiffies(jiffies + 2 * HZ));
5046 		}
5047 	} else {
5048 		if (netif_carrier_ok(netdev)) {
5049 			adapter->link_speed = 0;
5050 			adapter->link_duplex = 0;
5051 			/* Link status message must follow this format */
5052 			pr_info("%s NIC Link is Down\n", adapter->netdev->name);
5053 			netif_carrier_off(netdev);
5054 			if (!test_bit(__E1000_DOWN, &adapter->state))
5055 				mod_timer(&adapter->phy_info_timer,
5056 					  round_jiffies(jiffies + 2 * HZ));
5057 
5058 			/* 8000ES2LAN requires a Rx packet buffer work-around
5059 			 * on link down event; reset the controller to flush
5060 			 * the Rx packet buffer.
5061 			 */
5062 			if (adapter->flags & FLAG_RX_NEEDS_RESTART)
5063 				adapter->flags |= FLAG_RESTART_NOW;
5064 			else
5065 				pm_schedule_suspend(netdev->dev.parent,
5066 						    LINK_TIMEOUT);
5067 		}
5068 	}
5069 
5070 link_up:
5071 	spin_lock(&adapter->stats64_lock);
5072 	e1000e_update_stats(adapter);
5073 
5074 	mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
5075 	adapter->tpt_old = adapter->stats.tpt;
5076 	mac->collision_delta = adapter->stats.colc - adapter->colc_old;
5077 	adapter->colc_old = adapter->stats.colc;
5078 
5079 	adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
5080 	adapter->gorc_old = adapter->stats.gorc;
5081 	adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
5082 	adapter->gotc_old = adapter->stats.gotc;
5083 	spin_unlock(&adapter->stats64_lock);
5084 
5085 	/* If the link is lost the controller stops DMA, but
5086 	 * if there is queued Tx work it cannot be done.  So
5087 	 * reset the controller to flush the Tx packet buffers.
5088 	 */
5089 	if (!netif_carrier_ok(netdev) &&
5090 	    (e1000_desc_unused(tx_ring) + 1 < tx_ring->count))
5091 		adapter->flags |= FLAG_RESTART_NOW;
5092 
5093 	/* If reset is necessary, do it outside of interrupt context. */
5094 	if (adapter->flags & FLAG_RESTART_NOW) {
5095 		schedule_work(&adapter->reset_task);
5096 		/* return immediately since reset is imminent */
5097 		return;
5098 	}
5099 
5100 	e1000e_update_adaptive(&adapter->hw);
5101 
5102 	/* Simple mode for Interrupt Throttle Rate (ITR) */
5103 	if (adapter->itr_setting == 4) {
5104 		/* Symmetric Tx/Rx gets a reduced ITR=2000;
5105 		 * Total asymmetrical Tx or Rx gets ITR=8000;
5106 		 * everyone else is between 2000-8000.
5107 		 */
5108 		u32 goc = (adapter->gotc + adapter->gorc) / 10000;
5109 		u32 dif = (adapter->gotc > adapter->gorc ?
5110 			   adapter->gotc - adapter->gorc :
5111 			   adapter->gorc - adapter->gotc) / 10000;
5112 		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
5113 
5114 		e1000e_write_itr(adapter, itr);
5115 	}
5116 
5117 	/* Cause software interrupt to ensure Rx ring is cleaned */
5118 	if (adapter->msix_entries)
5119 		ew32(ICS, adapter->rx_ring->ims_val);
5120 	else
5121 		ew32(ICS, E1000_ICS_RXDMT0);
5122 
5123 	/* flush pending descriptors to memory before detecting Tx hang */
5124 	e1000e_flush_descriptors(adapter);
5125 
5126 	/* Force detection of hung controller every watchdog period */
5127 	adapter->detect_tx_hung = true;
5128 
5129 	/* With 82571 controllers, LAA may be overwritten due to controller
5130 	 * reset from the other port. Set the appropriate LAA in RAR[0]
5131 	 */
5132 	if (e1000e_get_laa_state_82571(hw))
5133 		hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
5134 
5135 	if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
5136 		e1000e_check_82574_phy_workaround(adapter);
5137 
5138 	/* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5139 	if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) {
5140 		if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) &&
5141 		    (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) {
5142 			er32(RXSTMPH);
5143 			adapter->rx_hwtstamp_cleared++;
5144 		} else {
5145 			adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP;
5146 		}
5147 	}
5148 
5149 	/* Reset the timer */
5150 	if (!test_bit(__E1000_DOWN, &adapter->state))
5151 		mod_timer(&adapter->watchdog_timer,
5152 			  round_jiffies(jiffies + 2 * HZ));
5153 }
5154 
5155 #define E1000_TX_FLAGS_CSUM		0x00000001
5156 #define E1000_TX_FLAGS_VLAN		0x00000002
5157 #define E1000_TX_FLAGS_TSO		0x00000004
5158 #define E1000_TX_FLAGS_IPV4		0x00000008
5159 #define E1000_TX_FLAGS_NO_FCS		0x00000010
5160 #define E1000_TX_FLAGS_HWTSTAMP		0x00000020
5161 #define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
5162 #define E1000_TX_FLAGS_VLAN_SHIFT	16
5163 
5164 static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb,
5165 		     __be16 protocol)
5166 {
5167 	struct e1000_context_desc *context_desc;
5168 	struct e1000_buffer *buffer_info;
5169 	unsigned int i;
5170 	u32 cmd_length = 0;
5171 	u16 ipcse = 0, mss;
5172 	u8 ipcss, ipcso, tucss, tucso, hdr_len;
5173 	int err;
5174 
5175 	if (!skb_is_gso(skb))
5176 		return 0;
5177 
5178 	err = skb_cow_head(skb, 0);
5179 	if (err < 0)
5180 		return err;
5181 
5182 	hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5183 	mss = skb_shinfo(skb)->gso_size;
5184 	if (protocol == htons(ETH_P_IP)) {
5185 		struct iphdr *iph = ip_hdr(skb);
5186 		iph->tot_len = 0;
5187 		iph->check = 0;
5188 		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
5189 							 0, IPPROTO_TCP, 0);
5190 		cmd_length = E1000_TXD_CMD_IP;
5191 		ipcse = skb_transport_offset(skb) - 1;
5192 	} else if (skb_is_gso_v6(skb)) {
5193 		ipv6_hdr(skb)->payload_len = 0;
5194 		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5195 						       &ipv6_hdr(skb)->daddr,
5196 						       0, IPPROTO_TCP, 0);
5197 		ipcse = 0;
5198 	}
5199 	ipcss = skb_network_offset(skb);
5200 	ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
5201 	tucss = skb_transport_offset(skb);
5202 	tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
5203 
5204 	cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
5205 		       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
5206 
5207 	i = tx_ring->next_to_use;
5208 	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5209 	buffer_info = &tx_ring->buffer_info[i];
5210 
5211 	context_desc->lower_setup.ip_fields.ipcss = ipcss;
5212 	context_desc->lower_setup.ip_fields.ipcso = ipcso;
5213 	context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
5214 	context_desc->upper_setup.tcp_fields.tucss = tucss;
5215 	context_desc->upper_setup.tcp_fields.tucso = tucso;
5216 	context_desc->upper_setup.tcp_fields.tucse = 0;
5217 	context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
5218 	context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
5219 	context_desc->cmd_and_length = cpu_to_le32(cmd_length);
5220 
5221 	buffer_info->time_stamp = jiffies;
5222 	buffer_info->next_to_watch = i;
5223 
5224 	i++;
5225 	if (i == tx_ring->count)
5226 		i = 0;
5227 	tx_ring->next_to_use = i;
5228 
5229 	return 1;
5230 }
5231 
5232 static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb,
5233 			  __be16 protocol)
5234 {
5235 	struct e1000_adapter *adapter = tx_ring->adapter;
5236 	struct e1000_context_desc *context_desc;
5237 	struct e1000_buffer *buffer_info;
5238 	unsigned int i;
5239 	u8 css;
5240 	u32 cmd_len = E1000_TXD_CMD_DEXT;
5241 
5242 	if (skb->ip_summed != CHECKSUM_PARTIAL)
5243 		return false;
5244 
5245 	switch (protocol) {
5246 	case cpu_to_be16(ETH_P_IP):
5247 		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
5248 			cmd_len |= E1000_TXD_CMD_TCP;
5249 		break;
5250 	case cpu_to_be16(ETH_P_IPV6):
5251 		/* XXX not handling all IPV6 headers */
5252 		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
5253 			cmd_len |= E1000_TXD_CMD_TCP;
5254 		break;
5255 	default:
5256 		if (unlikely(net_ratelimit()))
5257 			e_warn("checksum_partial proto=%x!\n",
5258 			       be16_to_cpu(protocol));
5259 		break;
5260 	}
5261 
5262 	css = skb_checksum_start_offset(skb);
5263 
5264 	i = tx_ring->next_to_use;
5265 	buffer_info = &tx_ring->buffer_info[i];
5266 	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5267 
5268 	context_desc->lower_setup.ip_config = 0;
5269 	context_desc->upper_setup.tcp_fields.tucss = css;
5270 	context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset;
5271 	context_desc->upper_setup.tcp_fields.tucse = 0;
5272 	context_desc->tcp_seg_setup.data = 0;
5273 	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
5274 
5275 	buffer_info->time_stamp = jiffies;
5276 	buffer_info->next_to_watch = i;
5277 
5278 	i++;
5279 	if (i == tx_ring->count)
5280 		i = 0;
5281 	tx_ring->next_to_use = i;
5282 
5283 	return true;
5284 }
5285 
5286 static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
5287 			unsigned int first, unsigned int max_per_txd,
5288 			unsigned int nr_frags)
5289 {
5290 	struct e1000_adapter *adapter = tx_ring->adapter;
5291 	struct pci_dev *pdev = adapter->pdev;
5292 	struct e1000_buffer *buffer_info;
5293 	unsigned int len = skb_headlen(skb);
5294 	unsigned int offset = 0, size, count = 0, i;
5295 	unsigned int f, bytecount, segs;
5296 
5297 	i = tx_ring->next_to_use;
5298 
5299 	while (len) {
5300 		buffer_info = &tx_ring->buffer_info[i];
5301 		size = min(len, max_per_txd);
5302 
5303 		buffer_info->length = size;
5304 		buffer_info->time_stamp = jiffies;
5305 		buffer_info->next_to_watch = i;
5306 		buffer_info->dma = dma_map_single(&pdev->dev,
5307 						  skb->data + offset,
5308 						  size, DMA_TO_DEVICE);
5309 		buffer_info->mapped_as_page = false;
5310 		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5311 			goto dma_error;
5312 
5313 		len -= size;
5314 		offset += size;
5315 		count++;
5316 
5317 		if (len) {
5318 			i++;
5319 			if (i == tx_ring->count)
5320 				i = 0;
5321 		}
5322 	}
5323 
5324 	for (f = 0; f < nr_frags; f++) {
5325 		const struct skb_frag_struct *frag;
5326 
5327 		frag = &skb_shinfo(skb)->frags[f];
5328 		len = skb_frag_size(frag);
5329 		offset = 0;
5330 
5331 		while (len) {
5332 			i++;
5333 			if (i == tx_ring->count)
5334 				i = 0;
5335 
5336 			buffer_info = &tx_ring->buffer_info[i];
5337 			size = min(len, max_per_txd);
5338 
5339 			buffer_info->length = size;
5340 			buffer_info->time_stamp = jiffies;
5341 			buffer_info->next_to_watch = i;
5342 			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
5343 							    offset, size,
5344 							    DMA_TO_DEVICE);
5345 			buffer_info->mapped_as_page = true;
5346 			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5347 				goto dma_error;
5348 
5349 			len -= size;
5350 			offset += size;
5351 			count++;
5352 		}
5353 	}
5354 
5355 	segs = skb_shinfo(skb)->gso_segs ? : 1;
5356 	/* multiply data chunks by size of headers */
5357 	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
5358 
5359 	tx_ring->buffer_info[i].skb = skb;
5360 	tx_ring->buffer_info[i].segs = segs;
5361 	tx_ring->buffer_info[i].bytecount = bytecount;
5362 	tx_ring->buffer_info[first].next_to_watch = i;
5363 
5364 	return count;
5365 
5366 dma_error:
5367 	dev_err(&pdev->dev, "Tx DMA map failed\n");
5368 	buffer_info->dma = 0;
5369 	if (count)
5370 		count--;
5371 
5372 	while (count--) {
5373 		if (i == 0)
5374 			i += tx_ring->count;
5375 		i--;
5376 		buffer_info = &tx_ring->buffer_info[i];
5377 		e1000_put_txbuf(tx_ring, buffer_info);
5378 	}
5379 
5380 	return 0;
5381 }
5382 
5383 static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
5384 {
5385 	struct e1000_adapter *adapter = tx_ring->adapter;
5386 	struct e1000_tx_desc *tx_desc = NULL;
5387 	struct e1000_buffer *buffer_info;
5388 	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
5389 	unsigned int i;
5390 
5391 	if (tx_flags & E1000_TX_FLAGS_TSO) {
5392 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
5393 		    E1000_TXD_CMD_TSE;
5394 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5395 
5396 		if (tx_flags & E1000_TX_FLAGS_IPV4)
5397 			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
5398 	}
5399 
5400 	if (tx_flags & E1000_TX_FLAGS_CSUM) {
5401 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5402 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5403 	}
5404 
5405 	if (tx_flags & E1000_TX_FLAGS_VLAN) {
5406 		txd_lower |= E1000_TXD_CMD_VLE;
5407 		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
5408 	}
5409 
5410 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5411 		txd_lower &= ~(E1000_TXD_CMD_IFCS);
5412 
5413 	if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) {
5414 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5415 		txd_upper |= E1000_TXD_EXTCMD_TSTAMP;
5416 	}
5417 
5418 	i = tx_ring->next_to_use;
5419 
5420 	do {
5421 		buffer_info = &tx_ring->buffer_info[i];
5422 		tx_desc = E1000_TX_DESC(*tx_ring, i);
5423 		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
5424 		tx_desc->lower.data = cpu_to_le32(txd_lower |
5425 						  buffer_info->length);
5426 		tx_desc->upper.data = cpu_to_le32(txd_upper);
5427 
5428 		i++;
5429 		if (i == tx_ring->count)
5430 			i = 0;
5431 	} while (--count > 0);
5432 
5433 	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
5434 
5435 	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5436 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5437 		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
5438 
5439 	/* Force memory writes to complete before letting h/w
5440 	 * know there are new descriptors to fetch.  (Only
5441 	 * applicable for weak-ordered memory model archs,
5442 	 * such as IA-64).
5443 	 */
5444 	wmb();
5445 
5446 	tx_ring->next_to_use = i;
5447 }
5448 
5449 #define MINIMUM_DHCP_PACKET_SIZE 282
5450 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
5451 				    struct sk_buff *skb)
5452 {
5453 	struct e1000_hw *hw = &adapter->hw;
5454 	u16 length, offset;
5455 
5456 	if (skb_vlan_tag_present(skb) &&
5457 	    !((skb_vlan_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
5458 	      (adapter->hw.mng_cookie.status &
5459 	       E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
5460 		return 0;
5461 
5462 	if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
5463 		return 0;
5464 
5465 	if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP))
5466 		return 0;
5467 
5468 	{
5469 		const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14);
5470 		struct udphdr *udp;
5471 
5472 		if (ip->protocol != IPPROTO_UDP)
5473 			return 0;
5474 
5475 		udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
5476 		if (ntohs(udp->dest) != 67)
5477 			return 0;
5478 
5479 		offset = (u8 *)udp + 8 - skb->data;
5480 		length = skb->len - offset;
5481 		return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
5482 	}
5483 
5484 	return 0;
5485 }
5486 
5487 static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5488 {
5489 	struct e1000_adapter *adapter = tx_ring->adapter;
5490 
5491 	netif_stop_queue(adapter->netdev);
5492 	/* Herbert's original patch had:
5493 	 *  smp_mb__after_netif_stop_queue();
5494 	 * but since that doesn't exist yet, just open code it.
5495 	 */
5496 	smp_mb();
5497 
5498 	/* We need to check again in a case another CPU has just
5499 	 * made room available.
5500 	 */
5501 	if (e1000_desc_unused(tx_ring) < size)
5502 		return -EBUSY;
5503 
5504 	/* A reprieve! */
5505 	netif_start_queue(adapter->netdev);
5506 	++adapter->restart_queue;
5507 	return 0;
5508 }
5509 
5510 static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5511 {
5512 	BUG_ON(size > tx_ring->count);
5513 
5514 	if (e1000_desc_unused(tx_ring) >= size)
5515 		return 0;
5516 	return __e1000_maybe_stop_tx(tx_ring, size);
5517 }
5518 
5519 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5520 				    struct net_device *netdev)
5521 {
5522 	struct e1000_adapter *adapter = netdev_priv(netdev);
5523 	struct e1000_ring *tx_ring = adapter->tx_ring;
5524 	unsigned int first;
5525 	unsigned int tx_flags = 0;
5526 	unsigned int len = skb_headlen(skb);
5527 	unsigned int nr_frags;
5528 	unsigned int mss;
5529 	int count = 0;
5530 	int tso;
5531 	unsigned int f;
5532 	__be16 protocol = vlan_get_protocol(skb);
5533 
5534 	if (test_bit(__E1000_DOWN, &adapter->state)) {
5535 		dev_kfree_skb_any(skb);
5536 		return NETDEV_TX_OK;
5537 	}
5538 
5539 	if (skb->len <= 0) {
5540 		dev_kfree_skb_any(skb);
5541 		return NETDEV_TX_OK;
5542 	}
5543 
5544 	/* The minimum packet size with TCTL.PSP set is 17 bytes so
5545 	 * pad skb in order to meet this minimum size requirement
5546 	 */
5547 	if (skb_put_padto(skb, 17))
5548 		return NETDEV_TX_OK;
5549 
5550 	mss = skb_shinfo(skb)->gso_size;
5551 	if (mss) {
5552 		u8 hdr_len;
5553 
5554 		/* TSO Workaround for 82571/2/3 Controllers -- if skb->data
5555 		 * points to just header, pull a few bytes of payload from
5556 		 * frags into skb->data
5557 		 */
5558 		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5559 		/* we do this workaround for ES2LAN, but it is un-necessary,
5560 		 * avoiding it could save a lot of cycles
5561 		 */
5562 		if (skb->data_len && (hdr_len == len)) {
5563 			unsigned int pull_size;
5564 
5565 			pull_size = min_t(unsigned int, 4, skb->data_len);
5566 			if (!__pskb_pull_tail(skb, pull_size)) {
5567 				e_err("__pskb_pull_tail failed.\n");
5568 				dev_kfree_skb_any(skb);
5569 				return NETDEV_TX_OK;
5570 			}
5571 			len = skb_headlen(skb);
5572 		}
5573 	}
5574 
5575 	/* reserve a descriptor for the offload context */
5576 	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5577 		count++;
5578 	count++;
5579 
5580 	count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
5581 
5582 	nr_frags = skb_shinfo(skb)->nr_frags;
5583 	for (f = 0; f < nr_frags; f++)
5584 		count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5585 				      adapter->tx_fifo_limit);
5586 
5587 	if (adapter->hw.mac.tx_pkt_filtering)
5588 		e1000_transfer_dhcp_info(adapter, skb);
5589 
5590 	/* need: count + 2 desc gap to keep tail from touching
5591 	 * head, otherwise try next time
5592 	 */
5593 	if (e1000_maybe_stop_tx(tx_ring, count + 2))
5594 		return NETDEV_TX_BUSY;
5595 
5596 	if (skb_vlan_tag_present(skb)) {
5597 		tx_flags |= E1000_TX_FLAGS_VLAN;
5598 		tx_flags |= (skb_vlan_tag_get(skb) <<
5599 			     E1000_TX_FLAGS_VLAN_SHIFT);
5600 	}
5601 
5602 	first = tx_ring->next_to_use;
5603 
5604 	tso = e1000_tso(tx_ring, skb, protocol);
5605 	if (tso < 0) {
5606 		dev_kfree_skb_any(skb);
5607 		return NETDEV_TX_OK;
5608 	}
5609 
5610 	if (tso)
5611 		tx_flags |= E1000_TX_FLAGS_TSO;
5612 	else if (e1000_tx_csum(tx_ring, skb, protocol))
5613 		tx_flags |= E1000_TX_FLAGS_CSUM;
5614 
5615 	/* Old method was to assume IPv4 packet by default if TSO was enabled.
5616 	 * 82571 hardware supports TSO capabilities for IPv6 as well...
5617 	 * no longer assume, we must.
5618 	 */
5619 	if (protocol == htons(ETH_P_IP))
5620 		tx_flags |= E1000_TX_FLAGS_IPV4;
5621 
5622 	if (unlikely(skb->no_fcs))
5623 		tx_flags |= E1000_TX_FLAGS_NO_FCS;
5624 
5625 	/* if count is 0 then mapping error has occurred */
5626 	count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5627 			     nr_frags);
5628 	if (count) {
5629 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
5630 		    (adapter->flags & FLAG_HAS_HW_TIMESTAMP) &&
5631 		    !adapter->tx_hwtstamp_skb) {
5632 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5633 			tx_flags |= E1000_TX_FLAGS_HWTSTAMP;
5634 			adapter->tx_hwtstamp_skb = skb_get(skb);
5635 			adapter->tx_hwtstamp_start = jiffies;
5636 			schedule_work(&adapter->tx_hwtstamp_work);
5637 		} else {
5638 			skb_tx_timestamp(skb);
5639 		}
5640 
5641 		netdev_sent_queue(netdev, skb->len);
5642 		e1000_tx_queue(tx_ring, tx_flags, count);
5643 		/* Make sure there is space in the ring for the next send. */
5644 		e1000_maybe_stop_tx(tx_ring,
5645 				    (MAX_SKB_FRAGS *
5646 				     DIV_ROUND_UP(PAGE_SIZE,
5647 						  adapter->tx_fifo_limit) + 2));
5648 
5649 		if (!skb->xmit_more ||
5650 		    netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
5651 			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
5652 				e1000e_update_tdt_wa(tx_ring,
5653 						     tx_ring->next_to_use);
5654 			else
5655 				writel(tx_ring->next_to_use, tx_ring->tail);
5656 
5657 			/* we need this if more than one processor can write
5658 			 * to our tail at a time, it synchronizes IO on
5659 			 *IA64/Altix systems
5660 			 */
5661 			mmiowb();
5662 		}
5663 	} else {
5664 		dev_kfree_skb_any(skb);
5665 		tx_ring->buffer_info[first].time_stamp = 0;
5666 		tx_ring->next_to_use = first;
5667 	}
5668 
5669 	return NETDEV_TX_OK;
5670 }
5671 
5672 /**
5673  * e1000_tx_timeout - Respond to a Tx Hang
5674  * @netdev: network interface device structure
5675  **/
5676 static void e1000_tx_timeout(struct net_device *netdev)
5677 {
5678 	struct e1000_adapter *adapter = netdev_priv(netdev);
5679 
5680 	/* Do the reset outside of interrupt context */
5681 	adapter->tx_timeout_count++;
5682 	schedule_work(&adapter->reset_task);
5683 }
5684 
5685 static void e1000_reset_task(struct work_struct *work)
5686 {
5687 	struct e1000_adapter *adapter;
5688 	adapter = container_of(work, struct e1000_adapter, reset_task);
5689 
5690 	/* don't run the task if already down */
5691 	if (test_bit(__E1000_DOWN, &adapter->state))
5692 		return;
5693 
5694 	if (!(adapter->flags & FLAG_RESTART_NOW)) {
5695 		e1000e_dump(adapter);
5696 		e_err("Reset adapter unexpectedly\n");
5697 	}
5698 	e1000e_reinit_locked(adapter);
5699 }
5700 
5701 /**
5702  * e1000_get_stats64 - Get System Network Statistics
5703  * @netdev: network interface device structure
5704  * @stats: rtnl_link_stats64 pointer
5705  *
5706  * Returns the address of the device statistics structure.
5707  **/
5708 struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev,
5709 					     struct rtnl_link_stats64 *stats)
5710 {
5711 	struct e1000_adapter *adapter = netdev_priv(netdev);
5712 
5713 	memset(stats, 0, sizeof(struct rtnl_link_stats64));
5714 	spin_lock(&adapter->stats64_lock);
5715 	e1000e_update_stats(adapter);
5716 	/* Fill out the OS statistics structure */
5717 	stats->rx_bytes = adapter->stats.gorc;
5718 	stats->rx_packets = adapter->stats.gprc;
5719 	stats->tx_bytes = adapter->stats.gotc;
5720 	stats->tx_packets = adapter->stats.gptc;
5721 	stats->multicast = adapter->stats.mprc;
5722 	stats->collisions = adapter->stats.colc;
5723 
5724 	/* Rx Errors */
5725 
5726 	/* RLEC on some newer hardware can be incorrect so build
5727 	 * our own version based on RUC and ROC
5728 	 */
5729 	stats->rx_errors = adapter->stats.rxerrc +
5730 	    adapter->stats.crcerrs + adapter->stats.algnerrc +
5731 	    adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5732 	stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc;
5733 	stats->rx_crc_errors = adapter->stats.crcerrs;
5734 	stats->rx_frame_errors = adapter->stats.algnerrc;
5735 	stats->rx_missed_errors = adapter->stats.mpc;
5736 
5737 	/* Tx Errors */
5738 	stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol;
5739 	stats->tx_aborted_errors = adapter->stats.ecol;
5740 	stats->tx_window_errors = adapter->stats.latecol;
5741 	stats->tx_carrier_errors = adapter->stats.tncrs;
5742 
5743 	/* Tx Dropped needs to be maintained elsewhere */
5744 
5745 	spin_unlock(&adapter->stats64_lock);
5746 	return stats;
5747 }
5748 
5749 /**
5750  * e1000_change_mtu - Change the Maximum Transfer Unit
5751  * @netdev: network interface device structure
5752  * @new_mtu: new value for maximum frame size
5753  *
5754  * Returns 0 on success, negative on failure
5755  **/
5756 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
5757 {
5758 	struct e1000_adapter *adapter = netdev_priv(netdev);
5759 	int max_frame = new_mtu + VLAN_HLEN + ETH_HLEN + ETH_FCS_LEN;
5760 
5761 	/* Jumbo frame support */
5762 	if ((max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) &&
5763 	    !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
5764 		e_err("Jumbo Frames not supported.\n");
5765 		return -EINVAL;
5766 	}
5767 
5768 	/* Supported frame sizes */
5769 	if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
5770 	    (max_frame > adapter->max_hw_frame_size)) {
5771 		e_err("Unsupported MTU setting\n");
5772 		return -EINVAL;
5773 	}
5774 
5775 	/* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
5776 	if ((adapter->hw.mac.type >= e1000_pch2lan) &&
5777 	    !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
5778 	    (new_mtu > ETH_DATA_LEN)) {
5779 		e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
5780 		return -EINVAL;
5781 	}
5782 
5783 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
5784 		usleep_range(1000, 2000);
5785 	/* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
5786 	adapter->max_frame_size = max_frame;
5787 	e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
5788 	netdev->mtu = new_mtu;
5789 
5790 	pm_runtime_get_sync(netdev->dev.parent);
5791 
5792 	if (netif_running(netdev))
5793 		e1000e_down(adapter, true);
5794 
5795 	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
5796 	 * means we reserve 2 more, this pushes us to allocate from the next
5797 	 * larger slab size.
5798 	 * i.e. RXBUFFER_2048 --> size-4096 slab
5799 	 * However with the new *_jumbo_rx* routines, jumbo receives will use
5800 	 * fragmented skbs
5801 	 */
5802 
5803 	if (max_frame <= 2048)
5804 		adapter->rx_buffer_len = 2048;
5805 	else
5806 		adapter->rx_buffer_len = 4096;
5807 
5808 	/* adjust allocation if LPE protects us, and we aren't using SBP */
5809 	if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
5810 	    (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
5811 		adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
5812 		    + ETH_FCS_LEN;
5813 
5814 	if (netif_running(netdev))
5815 		e1000e_up(adapter);
5816 	else
5817 		e1000e_reset(adapter);
5818 
5819 	pm_runtime_put_sync(netdev->dev.parent);
5820 
5821 	clear_bit(__E1000_RESETTING, &adapter->state);
5822 
5823 	return 0;
5824 }
5825 
5826 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
5827 			   int cmd)
5828 {
5829 	struct e1000_adapter *adapter = netdev_priv(netdev);
5830 	struct mii_ioctl_data *data = if_mii(ifr);
5831 
5832 	if (adapter->hw.phy.media_type != e1000_media_type_copper)
5833 		return -EOPNOTSUPP;
5834 
5835 	switch (cmd) {
5836 	case SIOCGMIIPHY:
5837 		data->phy_id = adapter->hw.phy.addr;
5838 		break;
5839 	case SIOCGMIIREG:
5840 		e1000_phy_read_status(adapter);
5841 
5842 		switch (data->reg_num & 0x1F) {
5843 		case MII_BMCR:
5844 			data->val_out = adapter->phy_regs.bmcr;
5845 			break;
5846 		case MII_BMSR:
5847 			data->val_out = adapter->phy_regs.bmsr;
5848 			break;
5849 		case MII_PHYSID1:
5850 			data->val_out = (adapter->hw.phy.id >> 16);
5851 			break;
5852 		case MII_PHYSID2:
5853 			data->val_out = (adapter->hw.phy.id & 0xFFFF);
5854 			break;
5855 		case MII_ADVERTISE:
5856 			data->val_out = adapter->phy_regs.advertise;
5857 			break;
5858 		case MII_LPA:
5859 			data->val_out = adapter->phy_regs.lpa;
5860 			break;
5861 		case MII_EXPANSION:
5862 			data->val_out = adapter->phy_regs.expansion;
5863 			break;
5864 		case MII_CTRL1000:
5865 			data->val_out = adapter->phy_regs.ctrl1000;
5866 			break;
5867 		case MII_STAT1000:
5868 			data->val_out = adapter->phy_regs.stat1000;
5869 			break;
5870 		case MII_ESTATUS:
5871 			data->val_out = adapter->phy_regs.estatus;
5872 			break;
5873 		default:
5874 			return -EIO;
5875 		}
5876 		break;
5877 	case SIOCSMIIREG:
5878 	default:
5879 		return -EOPNOTSUPP;
5880 	}
5881 	return 0;
5882 }
5883 
5884 /**
5885  * e1000e_hwtstamp_ioctl - control hardware time stamping
5886  * @netdev: network interface device structure
5887  * @ifreq: interface request
5888  *
5889  * Outgoing time stamping can be enabled and disabled. Play nice and
5890  * disable it when requested, although it shouldn't cause any overhead
5891  * when no packet needs it. At most one packet in the queue may be
5892  * marked for time stamping, otherwise it would be impossible to tell
5893  * for sure to which packet the hardware time stamp belongs.
5894  *
5895  * Incoming time stamping has to be configured via the hardware filters.
5896  * Not all combinations are supported, in particular event type has to be
5897  * specified. Matching the kind of event packet is not supported, with the
5898  * exception of "all V2 events regardless of level 2 or 4".
5899  **/
5900 static int e1000e_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
5901 {
5902 	struct e1000_adapter *adapter = netdev_priv(netdev);
5903 	struct hwtstamp_config config;
5904 	int ret_val;
5905 
5906 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
5907 		return -EFAULT;
5908 
5909 	ret_val = e1000e_config_hwtstamp(adapter, &config);
5910 	if (ret_val)
5911 		return ret_val;
5912 
5913 	switch (config.rx_filter) {
5914 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
5915 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
5916 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
5917 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
5918 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
5919 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
5920 		/* With V2 type filters which specify a Sync or Delay Request,
5921 		 * Path Delay Request/Response messages are also time stamped
5922 		 * by hardware so notify the caller the requested packets plus
5923 		 * some others are time stamped.
5924 		 */
5925 		config.rx_filter = HWTSTAMP_FILTER_SOME;
5926 		break;
5927 	default:
5928 		break;
5929 	}
5930 
5931 	return copy_to_user(ifr->ifr_data, &config,
5932 			    sizeof(config)) ? -EFAULT : 0;
5933 }
5934 
5935 static int e1000e_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
5936 {
5937 	struct e1000_adapter *adapter = netdev_priv(netdev);
5938 
5939 	return copy_to_user(ifr->ifr_data, &adapter->hwtstamp_config,
5940 			    sizeof(adapter->hwtstamp_config)) ? -EFAULT : 0;
5941 }
5942 
5943 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5944 {
5945 	switch (cmd) {
5946 	case SIOCGMIIPHY:
5947 	case SIOCGMIIREG:
5948 	case SIOCSMIIREG:
5949 		return e1000_mii_ioctl(netdev, ifr, cmd);
5950 	case SIOCSHWTSTAMP:
5951 		return e1000e_hwtstamp_set(netdev, ifr);
5952 	case SIOCGHWTSTAMP:
5953 		return e1000e_hwtstamp_get(netdev, ifr);
5954 	default:
5955 		return -EOPNOTSUPP;
5956 	}
5957 }
5958 
5959 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
5960 {
5961 	struct e1000_hw *hw = &adapter->hw;
5962 	u32 i, mac_reg, wuc;
5963 	u16 phy_reg, wuc_enable;
5964 	int retval;
5965 
5966 	/* copy MAC RARs to PHY RARs */
5967 	e1000_copy_rx_addrs_to_phy_ich8lan(hw);
5968 
5969 	retval = hw->phy.ops.acquire(hw);
5970 	if (retval) {
5971 		e_err("Could not acquire PHY\n");
5972 		return retval;
5973 	}
5974 
5975 	/* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
5976 	retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
5977 	if (retval)
5978 		goto release;
5979 
5980 	/* copy MAC MTA to PHY MTA - only needed for pchlan */
5981 	for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
5982 		mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
5983 		hw->phy.ops.write_reg_page(hw, BM_MTA(i),
5984 					   (u16)(mac_reg & 0xFFFF));
5985 		hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
5986 					   (u16)((mac_reg >> 16) & 0xFFFF));
5987 	}
5988 
5989 	/* configure PHY Rx Control register */
5990 	hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
5991 	mac_reg = er32(RCTL);
5992 	if (mac_reg & E1000_RCTL_UPE)
5993 		phy_reg |= BM_RCTL_UPE;
5994 	if (mac_reg & E1000_RCTL_MPE)
5995 		phy_reg |= BM_RCTL_MPE;
5996 	phy_reg &= ~(BM_RCTL_MO_MASK);
5997 	if (mac_reg & E1000_RCTL_MO_3)
5998 		phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
5999 			    << BM_RCTL_MO_SHIFT);
6000 	if (mac_reg & E1000_RCTL_BAM)
6001 		phy_reg |= BM_RCTL_BAM;
6002 	if (mac_reg & E1000_RCTL_PMCF)
6003 		phy_reg |= BM_RCTL_PMCF;
6004 	mac_reg = er32(CTRL);
6005 	if (mac_reg & E1000_CTRL_RFCE)
6006 		phy_reg |= BM_RCTL_RFCE;
6007 	hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
6008 
6009 	wuc = E1000_WUC_PME_EN;
6010 	if (wufc & (E1000_WUFC_MAG | E1000_WUFC_LNKC))
6011 		wuc |= E1000_WUC_APME;
6012 
6013 	/* enable PHY wakeup in MAC register */
6014 	ew32(WUFC, wufc);
6015 	ew32(WUC, (E1000_WUC_PHY_WAKE | E1000_WUC_APMPME |
6016 		   E1000_WUC_PME_STATUS | wuc));
6017 
6018 	/* configure and enable PHY wakeup in PHY registers */
6019 	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
6020 	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, wuc);
6021 
6022 	/* activate PHY wakeup */
6023 	wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
6024 	retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6025 	if (retval)
6026 		e_err("Could not set PHY Host Wakeup bit\n");
6027 release:
6028 	hw->phy.ops.release(hw);
6029 
6030 	return retval;
6031 }
6032 
6033 static void e1000e_flush_lpic(struct pci_dev *pdev)
6034 {
6035 	struct net_device *netdev = pci_get_drvdata(pdev);
6036 	struct e1000_adapter *adapter = netdev_priv(netdev);
6037 	struct e1000_hw *hw = &adapter->hw;
6038 	u32 ret_val;
6039 
6040 	pm_runtime_get_sync(netdev->dev.parent);
6041 
6042 	ret_val = hw->phy.ops.acquire(hw);
6043 	if (ret_val)
6044 		goto fl_out;
6045 
6046 	pr_info("EEE TX LPI TIMER: %08X\n",
6047 		er32(LPIC) >> E1000_LPIC_LPIET_SHIFT);
6048 
6049 	hw->phy.ops.release(hw);
6050 
6051 fl_out:
6052 	pm_runtime_put_sync(netdev->dev.parent);
6053 }
6054 
6055 static int e1000e_pm_freeze(struct device *dev)
6056 {
6057 	struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6058 	struct e1000_adapter *adapter = netdev_priv(netdev);
6059 
6060 	netif_device_detach(netdev);
6061 
6062 	if (netif_running(netdev)) {
6063 		int count = E1000_CHECK_RESET_COUNT;
6064 
6065 		while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6066 			usleep_range(10000, 20000);
6067 
6068 		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6069 
6070 		/* Quiesce the device without resetting the hardware */
6071 		e1000e_down(adapter, false);
6072 		e1000_free_irq(adapter);
6073 	}
6074 	e1000e_reset_interrupt_capability(adapter);
6075 
6076 	/* Allow time for pending master requests to run */
6077 	e1000e_disable_pcie_master(&adapter->hw);
6078 
6079 	return 0;
6080 }
6081 
6082 static int __e1000_shutdown(struct pci_dev *pdev, bool runtime)
6083 {
6084 	struct net_device *netdev = pci_get_drvdata(pdev);
6085 	struct e1000_adapter *adapter = netdev_priv(netdev);
6086 	struct e1000_hw *hw = &adapter->hw;
6087 	u32 ctrl, ctrl_ext, rctl, status;
6088 	/* Runtime suspend should only enable wakeup for link changes */
6089 	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
6090 	int retval = 0;
6091 
6092 	status = er32(STATUS);
6093 	if (status & E1000_STATUS_LU)
6094 		wufc &= ~E1000_WUFC_LNKC;
6095 
6096 	if (wufc) {
6097 		e1000_setup_rctl(adapter);
6098 		e1000e_set_rx_mode(netdev);
6099 
6100 		/* turn on all-multi mode if wake on multicast is enabled */
6101 		if (wufc & E1000_WUFC_MC) {
6102 			rctl = er32(RCTL);
6103 			rctl |= E1000_RCTL_MPE;
6104 			ew32(RCTL, rctl);
6105 		}
6106 
6107 		ctrl = er32(CTRL);
6108 		ctrl |= E1000_CTRL_ADVD3WUC;
6109 		if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
6110 			ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
6111 		ew32(CTRL, ctrl);
6112 
6113 		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
6114 		    adapter->hw.phy.media_type ==
6115 		    e1000_media_type_internal_serdes) {
6116 			/* keep the laser running in D3 */
6117 			ctrl_ext = er32(CTRL_EXT);
6118 			ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
6119 			ew32(CTRL_EXT, ctrl_ext);
6120 		}
6121 
6122 		if (!runtime)
6123 			e1000e_power_up_phy(adapter);
6124 
6125 		if (adapter->flags & FLAG_IS_ICH)
6126 			e1000_suspend_workarounds_ich8lan(&adapter->hw);
6127 
6128 		if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6129 			/* enable wakeup by the PHY */
6130 			retval = e1000_init_phy_wakeup(adapter, wufc);
6131 			if (retval)
6132 				return retval;
6133 		} else {
6134 			/* enable wakeup by the MAC */
6135 			ew32(WUFC, wufc);
6136 			ew32(WUC, E1000_WUC_PME_EN);
6137 		}
6138 	} else {
6139 		ew32(WUC, 0);
6140 		ew32(WUFC, 0);
6141 
6142 		e1000_power_down_phy(adapter);
6143 	}
6144 
6145 	if (adapter->hw.phy.type == e1000_phy_igp_3) {
6146 		e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
6147 	} else if (hw->mac.type == e1000_pch_lpt) {
6148 		if (!(wufc & (E1000_WUFC_EX | E1000_WUFC_MC | E1000_WUFC_BC)))
6149 			/* ULP does not support wake from unicast, multicast
6150 			 * or broadcast.
6151 			 */
6152 			retval = e1000_enable_ulp_lpt_lp(hw, !runtime);
6153 
6154 		if (retval)
6155 			return retval;
6156 	}
6157 
6158 
6159 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
6160 	 * would have already happened in close and is redundant.
6161 	 */
6162 	e1000e_release_hw_control(adapter);
6163 
6164 	pci_clear_master(pdev);
6165 
6166 	/* The pci-e switch on some quad port adapters will report a
6167 	 * correctable error when the MAC transitions from D0 to D3.  To
6168 	 * prevent this we need to mask off the correctable errors on the
6169 	 * downstream port of the pci-e switch.
6170 	 *
6171 	 * We don't have the associated upstream bridge while assigning
6172 	 * the PCI device into guest. For example, the KVM on power is
6173 	 * one of the cases.
6174 	 */
6175 	if (adapter->flags & FLAG_IS_QUAD_PORT) {
6176 		struct pci_dev *us_dev = pdev->bus->self;
6177 		u16 devctl;
6178 
6179 		if (!us_dev)
6180 			return 0;
6181 
6182 		pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl);
6183 		pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL,
6184 					   (devctl & ~PCI_EXP_DEVCTL_CERE));
6185 
6186 		pci_save_state(pdev);
6187 		pci_prepare_to_sleep(pdev);
6188 
6189 		pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl);
6190 	}
6191 
6192 	return 0;
6193 }
6194 
6195 /**
6196  * e1000e_disable_aspm - Disable ASPM states
6197  * @pdev: pointer to PCI device struct
6198  * @state: bit-mask of ASPM states to disable
6199  *
6200  * Some devices *must* have certain ASPM states disabled per hardware errata.
6201  **/
6202 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6203 {
6204 	struct pci_dev *parent = pdev->bus->self;
6205 	u16 aspm_dis_mask = 0;
6206 	u16 pdev_aspmc, parent_aspmc;
6207 
6208 	switch (state) {
6209 	case PCIE_LINK_STATE_L0S:
6210 	case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1:
6211 		aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S;
6212 		/* fall-through - can't have L1 without L0s */
6213 	case PCIE_LINK_STATE_L1:
6214 		aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1;
6215 		break;
6216 	default:
6217 		return;
6218 	}
6219 
6220 	pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6221 	pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6222 
6223 	if (parent) {
6224 		pcie_capability_read_word(parent, PCI_EXP_LNKCTL,
6225 					  &parent_aspmc);
6226 		parent_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6227 	}
6228 
6229 	/* Nothing to do if the ASPM states to be disabled already are */
6230 	if (!(pdev_aspmc & aspm_dis_mask) &&
6231 	    (!parent || !(parent_aspmc & aspm_dis_mask)))
6232 		return;
6233 
6234 	dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
6235 		 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ?
6236 		 "L0s" : "",
6237 		 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ?
6238 		 "L1" : "");
6239 
6240 #ifdef CONFIG_PCIEASPM
6241 	pci_disable_link_state_locked(pdev, state);
6242 
6243 	/* Double-check ASPM control.  If not disabled by the above, the
6244 	 * BIOS is preventing that from happening (or CONFIG_PCIEASPM is
6245 	 * not enabled); override by writing PCI config space directly.
6246 	 */
6247 	pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6248 	pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6249 
6250 	if (!(aspm_dis_mask & pdev_aspmc))
6251 		return;
6252 #endif
6253 
6254 	/* Both device and parent should have the same ASPM setting.
6255 	 * Disable ASPM in downstream component first and then upstream.
6256 	 */
6257 	pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask);
6258 
6259 	if (parent)
6260 		pcie_capability_clear_word(parent, PCI_EXP_LNKCTL,
6261 					   aspm_dis_mask);
6262 }
6263 
6264 #ifdef CONFIG_PM
6265 static int __e1000_resume(struct pci_dev *pdev)
6266 {
6267 	struct net_device *netdev = pci_get_drvdata(pdev);
6268 	struct e1000_adapter *adapter = netdev_priv(netdev);
6269 	struct e1000_hw *hw = &adapter->hw;
6270 	u16 aspm_disable_flag = 0;
6271 
6272 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6273 		aspm_disable_flag = PCIE_LINK_STATE_L0S;
6274 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6275 		aspm_disable_flag |= PCIE_LINK_STATE_L1;
6276 	if (aspm_disable_flag)
6277 		e1000e_disable_aspm(pdev, aspm_disable_flag);
6278 
6279 	pci_set_master(pdev);
6280 
6281 	if (hw->mac.type >= e1000_pch2lan)
6282 		e1000_resume_workarounds_pchlan(&adapter->hw);
6283 
6284 	e1000e_power_up_phy(adapter);
6285 
6286 	/* report the system wakeup cause from S3/S4 */
6287 	if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6288 		u16 phy_data;
6289 
6290 		e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
6291 		if (phy_data) {
6292 			e_info("PHY Wakeup cause - %s\n",
6293 			       phy_data & E1000_WUS_EX ? "Unicast Packet" :
6294 			       phy_data & E1000_WUS_MC ? "Multicast Packet" :
6295 			       phy_data & E1000_WUS_BC ? "Broadcast Packet" :
6296 			       phy_data & E1000_WUS_MAG ? "Magic Packet" :
6297 			       phy_data & E1000_WUS_LNKC ?
6298 			       "Link Status Change" : "other");
6299 		}
6300 		e1e_wphy(&adapter->hw, BM_WUS, ~0);
6301 	} else {
6302 		u32 wus = er32(WUS);
6303 
6304 		if (wus) {
6305 			e_info("MAC Wakeup cause - %s\n",
6306 			       wus & E1000_WUS_EX ? "Unicast Packet" :
6307 			       wus & E1000_WUS_MC ? "Multicast Packet" :
6308 			       wus & E1000_WUS_BC ? "Broadcast Packet" :
6309 			       wus & E1000_WUS_MAG ? "Magic Packet" :
6310 			       wus & E1000_WUS_LNKC ? "Link Status Change" :
6311 			       "other");
6312 		}
6313 		ew32(WUS, ~0);
6314 	}
6315 
6316 	e1000e_reset(adapter);
6317 
6318 	e1000_init_manageability_pt(adapter);
6319 
6320 	/* If the controller has AMT, do not set DRV_LOAD until the interface
6321 	 * is up.  For all other cases, let the f/w know that the h/w is now
6322 	 * under the control of the driver.
6323 	 */
6324 	if (!(adapter->flags & FLAG_HAS_AMT))
6325 		e1000e_get_hw_control(adapter);
6326 
6327 	return 0;
6328 }
6329 
6330 #ifdef CONFIG_PM_SLEEP
6331 static int e1000e_pm_thaw(struct device *dev)
6332 {
6333 	struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6334 	struct e1000_adapter *adapter = netdev_priv(netdev);
6335 
6336 	e1000e_set_interrupt_capability(adapter);
6337 	if (netif_running(netdev)) {
6338 		u32 err = e1000_request_irq(adapter);
6339 
6340 		if (err)
6341 			return err;
6342 
6343 		e1000e_up(adapter);
6344 	}
6345 
6346 	netif_device_attach(netdev);
6347 
6348 	return 0;
6349 }
6350 
6351 static int e1000e_pm_suspend(struct device *dev)
6352 {
6353 	struct pci_dev *pdev = to_pci_dev(dev);
6354 
6355 	e1000e_flush_lpic(pdev);
6356 
6357 	e1000e_pm_freeze(dev);
6358 
6359 	return __e1000_shutdown(pdev, false);
6360 }
6361 
6362 static int e1000e_pm_resume(struct device *dev)
6363 {
6364 	struct pci_dev *pdev = to_pci_dev(dev);
6365 	int rc;
6366 
6367 	rc = __e1000_resume(pdev);
6368 	if (rc)
6369 		return rc;
6370 
6371 	return e1000e_pm_thaw(dev);
6372 }
6373 #endif /* CONFIG_PM_SLEEP */
6374 
6375 static int e1000e_pm_runtime_idle(struct device *dev)
6376 {
6377 	struct pci_dev *pdev = to_pci_dev(dev);
6378 	struct net_device *netdev = pci_get_drvdata(pdev);
6379 	struct e1000_adapter *adapter = netdev_priv(netdev);
6380 	u16 eee_lp;
6381 
6382 	eee_lp = adapter->hw.dev_spec.ich8lan.eee_lp_ability;
6383 
6384 	if (!e1000e_has_link(adapter)) {
6385 		adapter->hw.dev_spec.ich8lan.eee_lp_ability = eee_lp;
6386 		pm_schedule_suspend(dev, 5 * MSEC_PER_SEC);
6387 	}
6388 
6389 	return -EBUSY;
6390 }
6391 
6392 static int e1000e_pm_runtime_resume(struct device *dev)
6393 {
6394 	struct pci_dev *pdev = to_pci_dev(dev);
6395 	struct net_device *netdev = pci_get_drvdata(pdev);
6396 	struct e1000_adapter *adapter = netdev_priv(netdev);
6397 	int rc;
6398 
6399 	rc = __e1000_resume(pdev);
6400 	if (rc)
6401 		return rc;
6402 
6403 	if (netdev->flags & IFF_UP)
6404 		rc = e1000e_up(adapter);
6405 
6406 	return rc;
6407 }
6408 
6409 static int e1000e_pm_runtime_suspend(struct device *dev)
6410 {
6411 	struct pci_dev *pdev = to_pci_dev(dev);
6412 	struct net_device *netdev = pci_get_drvdata(pdev);
6413 	struct e1000_adapter *adapter = netdev_priv(netdev);
6414 
6415 	if (netdev->flags & IFF_UP) {
6416 		int count = E1000_CHECK_RESET_COUNT;
6417 
6418 		while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6419 			usleep_range(10000, 20000);
6420 
6421 		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6422 
6423 		/* Down the device without resetting the hardware */
6424 		e1000e_down(adapter, false);
6425 	}
6426 
6427 	if (__e1000_shutdown(pdev, true)) {
6428 		e1000e_pm_runtime_resume(dev);
6429 		return -EBUSY;
6430 	}
6431 
6432 	return 0;
6433 }
6434 #endif /* CONFIG_PM */
6435 
6436 static void e1000_shutdown(struct pci_dev *pdev)
6437 {
6438 	e1000e_flush_lpic(pdev);
6439 
6440 	e1000e_pm_freeze(&pdev->dev);
6441 
6442 	__e1000_shutdown(pdev, false);
6443 }
6444 
6445 #ifdef CONFIG_NET_POLL_CONTROLLER
6446 
6447 static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data)
6448 {
6449 	struct net_device *netdev = data;
6450 	struct e1000_adapter *adapter = netdev_priv(netdev);
6451 
6452 	if (adapter->msix_entries) {
6453 		int vector, msix_irq;
6454 
6455 		vector = 0;
6456 		msix_irq = adapter->msix_entries[vector].vector;
6457 		disable_irq(msix_irq);
6458 		e1000_intr_msix_rx(msix_irq, netdev);
6459 		enable_irq(msix_irq);
6460 
6461 		vector++;
6462 		msix_irq = adapter->msix_entries[vector].vector;
6463 		disable_irq(msix_irq);
6464 		e1000_intr_msix_tx(msix_irq, netdev);
6465 		enable_irq(msix_irq);
6466 
6467 		vector++;
6468 		msix_irq = adapter->msix_entries[vector].vector;
6469 		disable_irq(msix_irq);
6470 		e1000_msix_other(msix_irq, netdev);
6471 		enable_irq(msix_irq);
6472 	}
6473 
6474 	return IRQ_HANDLED;
6475 }
6476 
6477 /**
6478  * e1000_netpoll
6479  * @netdev: network interface device structure
6480  *
6481  * Polling 'interrupt' - used by things like netconsole to send skbs
6482  * without having to re-enable interrupts. It's not called while
6483  * the interrupt routine is executing.
6484  */
6485 static void e1000_netpoll(struct net_device *netdev)
6486 {
6487 	struct e1000_adapter *adapter = netdev_priv(netdev);
6488 
6489 	switch (adapter->int_mode) {
6490 	case E1000E_INT_MODE_MSIX:
6491 		e1000_intr_msix(adapter->pdev->irq, netdev);
6492 		break;
6493 	case E1000E_INT_MODE_MSI:
6494 		disable_irq(adapter->pdev->irq);
6495 		e1000_intr_msi(adapter->pdev->irq, netdev);
6496 		enable_irq(adapter->pdev->irq);
6497 		break;
6498 	default:		/* E1000E_INT_MODE_LEGACY */
6499 		disable_irq(adapter->pdev->irq);
6500 		e1000_intr(adapter->pdev->irq, netdev);
6501 		enable_irq(adapter->pdev->irq);
6502 		break;
6503 	}
6504 }
6505 #endif
6506 
6507 /**
6508  * e1000_io_error_detected - called when PCI error is detected
6509  * @pdev: Pointer to PCI device
6510  * @state: The current pci connection state
6511  *
6512  * This function is called after a PCI bus error affecting
6513  * this device has been detected.
6514  */
6515 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
6516 						pci_channel_state_t state)
6517 {
6518 	struct net_device *netdev = pci_get_drvdata(pdev);
6519 	struct e1000_adapter *adapter = netdev_priv(netdev);
6520 
6521 	netif_device_detach(netdev);
6522 
6523 	if (state == pci_channel_io_perm_failure)
6524 		return PCI_ERS_RESULT_DISCONNECT;
6525 
6526 	if (netif_running(netdev))
6527 		e1000e_down(adapter, true);
6528 	pci_disable_device(pdev);
6529 
6530 	/* Request a slot slot reset. */
6531 	return PCI_ERS_RESULT_NEED_RESET;
6532 }
6533 
6534 /**
6535  * e1000_io_slot_reset - called after the pci bus has been reset.
6536  * @pdev: Pointer to PCI device
6537  *
6538  * Restart the card from scratch, as if from a cold-boot. Implementation
6539  * resembles the first-half of the e1000e_pm_resume routine.
6540  */
6541 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
6542 {
6543 	struct net_device *netdev = pci_get_drvdata(pdev);
6544 	struct e1000_adapter *adapter = netdev_priv(netdev);
6545 	struct e1000_hw *hw = &adapter->hw;
6546 	u16 aspm_disable_flag = 0;
6547 	int err;
6548 	pci_ers_result_t result;
6549 
6550 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6551 		aspm_disable_flag = PCIE_LINK_STATE_L0S;
6552 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6553 		aspm_disable_flag |= PCIE_LINK_STATE_L1;
6554 	if (aspm_disable_flag)
6555 		e1000e_disable_aspm(pdev, aspm_disable_flag);
6556 
6557 	err = pci_enable_device_mem(pdev);
6558 	if (err) {
6559 		dev_err(&pdev->dev,
6560 			"Cannot re-enable PCI device after reset.\n");
6561 		result = PCI_ERS_RESULT_DISCONNECT;
6562 	} else {
6563 		pdev->state_saved = true;
6564 		pci_restore_state(pdev);
6565 		pci_set_master(pdev);
6566 
6567 		pci_enable_wake(pdev, PCI_D3hot, 0);
6568 		pci_enable_wake(pdev, PCI_D3cold, 0);
6569 
6570 		e1000e_reset(adapter);
6571 		ew32(WUS, ~0);
6572 		result = PCI_ERS_RESULT_RECOVERED;
6573 	}
6574 
6575 	pci_cleanup_aer_uncorrect_error_status(pdev);
6576 
6577 	return result;
6578 }
6579 
6580 /**
6581  * e1000_io_resume - called when traffic can start flowing again.
6582  * @pdev: Pointer to PCI device
6583  *
6584  * This callback is called when the error recovery driver tells us that
6585  * its OK to resume normal operation. Implementation resembles the
6586  * second-half of the e1000e_pm_resume routine.
6587  */
6588 static void e1000_io_resume(struct pci_dev *pdev)
6589 {
6590 	struct net_device *netdev = pci_get_drvdata(pdev);
6591 	struct e1000_adapter *adapter = netdev_priv(netdev);
6592 
6593 	e1000_init_manageability_pt(adapter);
6594 
6595 	if (netif_running(netdev)) {
6596 		if (e1000e_up(adapter)) {
6597 			dev_err(&pdev->dev,
6598 				"can't bring device back up after reset\n");
6599 			return;
6600 		}
6601 	}
6602 
6603 	netif_device_attach(netdev);
6604 
6605 	/* If the controller has AMT, do not set DRV_LOAD until the interface
6606 	 * is up.  For all other cases, let the f/w know that the h/w is now
6607 	 * under the control of the driver.
6608 	 */
6609 	if (!(adapter->flags & FLAG_HAS_AMT))
6610 		e1000e_get_hw_control(adapter);
6611 }
6612 
6613 static void e1000_print_device_info(struct e1000_adapter *adapter)
6614 {
6615 	struct e1000_hw *hw = &adapter->hw;
6616 	struct net_device *netdev = adapter->netdev;
6617 	u32 ret_val;
6618 	u8 pba_str[E1000_PBANUM_LENGTH];
6619 
6620 	/* print bus type/speed/width info */
6621 	e_info("(PCI Express:2.5GT/s:%s) %pM\n",
6622 	       /* bus width */
6623 	       ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
6624 		"Width x1"),
6625 	       /* MAC address */
6626 	       netdev->dev_addr);
6627 	e_info("Intel(R) PRO/%s Network Connection\n",
6628 	       (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
6629 	ret_val = e1000_read_pba_string_generic(hw, pba_str,
6630 						E1000_PBANUM_LENGTH);
6631 	if (ret_val)
6632 		strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
6633 	e_info("MAC: %d, PHY: %d, PBA No: %s\n",
6634 	       hw->mac.type, hw->phy.type, pba_str);
6635 }
6636 
6637 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
6638 {
6639 	struct e1000_hw *hw = &adapter->hw;
6640 	int ret_val;
6641 	u16 buf = 0;
6642 
6643 	if (hw->mac.type != e1000_82573)
6644 		return;
6645 
6646 	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
6647 	le16_to_cpus(&buf);
6648 	if (!ret_val && (!(buf & (1 << 0)))) {
6649 		/* Deep Smart Power Down (DSPD) */
6650 		dev_warn(&adapter->pdev->dev,
6651 			 "Warning: detected DSPD enabled in EEPROM\n");
6652 	}
6653 }
6654 
6655 static int e1000_set_features(struct net_device *netdev,
6656 			      netdev_features_t features)
6657 {
6658 	struct e1000_adapter *adapter = netdev_priv(netdev);
6659 	netdev_features_t changed = features ^ netdev->features;
6660 
6661 	if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
6662 		adapter->flags |= FLAG_TSO_FORCE;
6663 
6664 	if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
6665 			 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
6666 			 NETIF_F_RXALL)))
6667 		return 0;
6668 
6669 	if (changed & NETIF_F_RXFCS) {
6670 		if (features & NETIF_F_RXFCS) {
6671 			adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6672 		} else {
6673 			/* We need to take it back to defaults, which might mean
6674 			 * stripping is still disabled at the adapter level.
6675 			 */
6676 			if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
6677 				adapter->flags2 |= FLAG2_CRC_STRIPPING;
6678 			else
6679 				adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6680 		}
6681 	}
6682 
6683 	netdev->features = features;
6684 
6685 	if (netif_running(netdev))
6686 		e1000e_reinit_locked(adapter);
6687 	else
6688 		e1000e_reset(adapter);
6689 
6690 	return 0;
6691 }
6692 
6693 static const struct net_device_ops e1000e_netdev_ops = {
6694 	.ndo_open		= e1000_open,
6695 	.ndo_stop		= e1000_close,
6696 	.ndo_start_xmit		= e1000_xmit_frame,
6697 	.ndo_get_stats64	= e1000e_get_stats64,
6698 	.ndo_set_rx_mode	= e1000e_set_rx_mode,
6699 	.ndo_set_mac_address	= e1000_set_mac,
6700 	.ndo_change_mtu		= e1000_change_mtu,
6701 	.ndo_do_ioctl		= e1000_ioctl,
6702 	.ndo_tx_timeout		= e1000_tx_timeout,
6703 	.ndo_validate_addr	= eth_validate_addr,
6704 
6705 	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
6706 	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
6707 #ifdef CONFIG_NET_POLL_CONTROLLER
6708 	.ndo_poll_controller	= e1000_netpoll,
6709 #endif
6710 	.ndo_set_features = e1000_set_features,
6711 };
6712 
6713 /**
6714  * e1000_probe - Device Initialization Routine
6715  * @pdev: PCI device information struct
6716  * @ent: entry in e1000_pci_tbl
6717  *
6718  * Returns 0 on success, negative on failure
6719  *
6720  * e1000_probe initializes an adapter identified by a pci_dev structure.
6721  * The OS initialization, configuring of the adapter private structure,
6722  * and a hardware reset occur.
6723  **/
6724 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
6725 {
6726 	struct net_device *netdev;
6727 	struct e1000_adapter *adapter;
6728 	struct e1000_hw *hw;
6729 	const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
6730 	resource_size_t mmio_start, mmio_len;
6731 	resource_size_t flash_start, flash_len;
6732 	static int cards_found;
6733 	u16 aspm_disable_flag = 0;
6734 	int bars, i, err, pci_using_dac;
6735 	u16 eeprom_data = 0;
6736 	u16 eeprom_apme_mask = E1000_EEPROM_APME;
6737 	s32 rval = 0;
6738 
6739 	if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
6740 		aspm_disable_flag = PCIE_LINK_STATE_L0S;
6741 	if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
6742 		aspm_disable_flag |= PCIE_LINK_STATE_L1;
6743 	if (aspm_disable_flag)
6744 		e1000e_disable_aspm(pdev, aspm_disable_flag);
6745 
6746 	err = pci_enable_device_mem(pdev);
6747 	if (err)
6748 		return err;
6749 
6750 	pci_using_dac = 0;
6751 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
6752 	if (!err) {
6753 		pci_using_dac = 1;
6754 	} else {
6755 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
6756 		if (err) {
6757 			dev_err(&pdev->dev,
6758 				"No usable DMA configuration, aborting\n");
6759 			goto err_dma;
6760 		}
6761 	}
6762 
6763 	bars = pci_select_bars(pdev, IORESOURCE_MEM);
6764 	err = pci_request_selected_regions_exclusive(pdev, bars,
6765 						     e1000e_driver_name);
6766 	if (err)
6767 		goto err_pci_reg;
6768 
6769 	/* AER (Advanced Error Reporting) hooks */
6770 	pci_enable_pcie_error_reporting(pdev);
6771 
6772 	pci_set_master(pdev);
6773 	/* PCI config space info */
6774 	err = pci_save_state(pdev);
6775 	if (err)
6776 		goto err_alloc_etherdev;
6777 
6778 	err = -ENOMEM;
6779 	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
6780 	if (!netdev)
6781 		goto err_alloc_etherdev;
6782 
6783 	SET_NETDEV_DEV(netdev, &pdev->dev);
6784 
6785 	netdev->irq = pdev->irq;
6786 
6787 	pci_set_drvdata(pdev, netdev);
6788 	adapter = netdev_priv(netdev);
6789 	hw = &adapter->hw;
6790 	adapter->netdev = netdev;
6791 	adapter->pdev = pdev;
6792 	adapter->ei = ei;
6793 	adapter->pba = ei->pba;
6794 	adapter->flags = ei->flags;
6795 	adapter->flags2 = ei->flags2;
6796 	adapter->hw.adapter = adapter;
6797 	adapter->hw.mac.type = ei->mac;
6798 	adapter->max_hw_frame_size = ei->max_hw_frame_size;
6799 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
6800 
6801 	mmio_start = pci_resource_start(pdev, 0);
6802 	mmio_len = pci_resource_len(pdev, 0);
6803 
6804 	err = -EIO;
6805 	adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
6806 	if (!adapter->hw.hw_addr)
6807 		goto err_ioremap;
6808 
6809 	if ((adapter->flags & FLAG_HAS_FLASH) &&
6810 	    (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
6811 		flash_start = pci_resource_start(pdev, 1);
6812 		flash_len = pci_resource_len(pdev, 1);
6813 		adapter->hw.flash_address = ioremap(flash_start, flash_len);
6814 		if (!adapter->hw.flash_address)
6815 			goto err_flashmap;
6816 	}
6817 
6818 	/* Set default EEE advertisement */
6819 	if (adapter->flags2 & FLAG2_HAS_EEE)
6820 		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
6821 
6822 	/* construct the net_device struct */
6823 	netdev->netdev_ops = &e1000e_netdev_ops;
6824 	e1000e_set_ethtool_ops(netdev);
6825 	netdev->watchdog_timeo = 5 * HZ;
6826 	netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64);
6827 	strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
6828 
6829 	netdev->mem_start = mmio_start;
6830 	netdev->mem_end = mmio_start + mmio_len;
6831 
6832 	adapter->bd_number = cards_found++;
6833 
6834 	e1000e_check_options(adapter);
6835 
6836 	/* setup adapter struct */
6837 	err = e1000_sw_init(adapter);
6838 	if (err)
6839 		goto err_sw_init;
6840 
6841 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
6842 	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
6843 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
6844 
6845 	err = ei->get_variants(adapter);
6846 	if (err)
6847 		goto err_hw_init;
6848 
6849 	if ((adapter->flags & FLAG_IS_ICH) &&
6850 	    (adapter->flags & FLAG_READ_ONLY_NVM))
6851 		e1000e_write_protect_nvm_ich8lan(&adapter->hw);
6852 
6853 	hw->mac.ops.get_bus_info(&adapter->hw);
6854 
6855 	adapter->hw.phy.autoneg_wait_to_complete = 0;
6856 
6857 	/* Copper options */
6858 	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
6859 		adapter->hw.phy.mdix = AUTO_ALL_MODES;
6860 		adapter->hw.phy.disable_polarity_correction = 0;
6861 		adapter->hw.phy.ms_type = e1000_ms_hw_default;
6862 	}
6863 
6864 	if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
6865 		dev_info(&pdev->dev,
6866 			 "PHY reset is blocked due to SOL/IDER session.\n");
6867 
6868 	/* Set initial default active device features */
6869 	netdev->features = (NETIF_F_SG |
6870 			    NETIF_F_HW_VLAN_CTAG_RX |
6871 			    NETIF_F_HW_VLAN_CTAG_TX |
6872 			    NETIF_F_TSO |
6873 			    NETIF_F_TSO6 |
6874 			    NETIF_F_RXHASH |
6875 			    NETIF_F_RXCSUM |
6876 			    NETIF_F_HW_CSUM);
6877 
6878 	/* Set user-changeable features (subset of all device features) */
6879 	netdev->hw_features = netdev->features;
6880 	netdev->hw_features |= NETIF_F_RXFCS;
6881 	netdev->priv_flags |= IFF_SUPP_NOFCS;
6882 	netdev->hw_features |= NETIF_F_RXALL;
6883 
6884 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
6885 		netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
6886 
6887 	netdev->vlan_features |= (NETIF_F_SG |
6888 				  NETIF_F_TSO |
6889 				  NETIF_F_TSO6 |
6890 				  NETIF_F_HW_CSUM);
6891 
6892 	netdev->priv_flags |= IFF_UNICAST_FLT;
6893 
6894 	if (pci_using_dac) {
6895 		netdev->features |= NETIF_F_HIGHDMA;
6896 		netdev->vlan_features |= NETIF_F_HIGHDMA;
6897 	}
6898 
6899 	if (e1000e_enable_mng_pass_thru(&adapter->hw))
6900 		adapter->flags |= FLAG_MNG_PT_ENABLED;
6901 
6902 	/* before reading the NVM, reset the controller to
6903 	 * put the device in a known good starting state
6904 	 */
6905 	adapter->hw.mac.ops.reset_hw(&adapter->hw);
6906 
6907 	/* systems with ASPM and others may see the checksum fail on the first
6908 	 * attempt. Let's give it a few tries
6909 	 */
6910 	for (i = 0;; i++) {
6911 		if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
6912 			break;
6913 		if (i == 2) {
6914 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
6915 			err = -EIO;
6916 			goto err_eeprom;
6917 		}
6918 	}
6919 
6920 	e1000_eeprom_checks(adapter);
6921 
6922 	/* copy the MAC address */
6923 	if (e1000e_read_mac_addr(&adapter->hw))
6924 		dev_err(&pdev->dev,
6925 			"NVM Read Error while reading MAC address\n");
6926 
6927 	memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
6928 
6929 	if (!is_valid_ether_addr(netdev->dev_addr)) {
6930 		dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
6931 			netdev->dev_addr);
6932 		err = -EIO;
6933 		goto err_eeprom;
6934 	}
6935 
6936 	init_timer(&adapter->watchdog_timer);
6937 	adapter->watchdog_timer.function = e1000_watchdog;
6938 	adapter->watchdog_timer.data = (unsigned long)adapter;
6939 
6940 	init_timer(&adapter->phy_info_timer);
6941 	adapter->phy_info_timer.function = e1000_update_phy_info;
6942 	adapter->phy_info_timer.data = (unsigned long)adapter;
6943 
6944 	INIT_WORK(&adapter->reset_task, e1000_reset_task);
6945 	INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
6946 	INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
6947 	INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
6948 	INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
6949 
6950 	/* Initialize link parameters. User can change them with ethtool */
6951 	adapter->hw.mac.autoneg = 1;
6952 	adapter->fc_autoneg = true;
6953 	adapter->hw.fc.requested_mode = e1000_fc_default;
6954 	adapter->hw.fc.current_mode = e1000_fc_default;
6955 	adapter->hw.phy.autoneg_advertised = 0x2f;
6956 
6957 	/* Initial Wake on LAN setting - If APM wake is enabled in
6958 	 * the EEPROM, enable the ACPI Magic Packet filter
6959 	 */
6960 	if (adapter->flags & FLAG_APME_IN_WUC) {
6961 		/* APME bit in EEPROM is mapped to WUC.APME */
6962 		eeprom_data = er32(WUC);
6963 		eeprom_apme_mask = E1000_WUC_APME;
6964 		if ((hw->mac.type > e1000_ich10lan) &&
6965 		    (eeprom_data & E1000_WUC_PHY_WAKE))
6966 			adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
6967 	} else if (adapter->flags & FLAG_APME_IN_CTRL3) {
6968 		if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
6969 		    (adapter->hw.bus.func == 1))
6970 			rval = e1000_read_nvm(&adapter->hw,
6971 					      NVM_INIT_CONTROL3_PORT_B,
6972 					      1, &eeprom_data);
6973 		else
6974 			rval = e1000_read_nvm(&adapter->hw,
6975 					      NVM_INIT_CONTROL3_PORT_A,
6976 					      1, &eeprom_data);
6977 	}
6978 
6979 	/* fetch WoL from EEPROM */
6980 	if (rval)
6981 		e_dbg("NVM read error getting WoL initial values: %d\n", rval);
6982 	else if (eeprom_data & eeprom_apme_mask)
6983 		adapter->eeprom_wol |= E1000_WUFC_MAG;
6984 
6985 	/* now that we have the eeprom settings, apply the special cases
6986 	 * where the eeprom may be wrong or the board simply won't support
6987 	 * wake on lan on a particular port
6988 	 */
6989 	if (!(adapter->flags & FLAG_HAS_WOL))
6990 		adapter->eeprom_wol = 0;
6991 
6992 	/* initialize the wol settings based on the eeprom settings */
6993 	adapter->wol = adapter->eeprom_wol;
6994 
6995 	/* make sure adapter isn't asleep if manageability is enabled */
6996 	if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) ||
6997 	    (hw->mac.ops.check_mng_mode(hw)))
6998 		device_wakeup_enable(&pdev->dev);
6999 
7000 	/* save off EEPROM version number */
7001 	rval = e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
7002 
7003 	if (rval) {
7004 		e_dbg("NVM read error getting EEPROM version: %d\n", rval);
7005 		adapter->eeprom_vers = 0;
7006 	}
7007 
7008 	/* reset the hardware with the new settings */
7009 	e1000e_reset(adapter);
7010 
7011 	/* If the controller has AMT, do not set DRV_LOAD until the interface
7012 	 * is up.  For all other cases, let the f/w know that the h/w is now
7013 	 * under the control of the driver.
7014 	 */
7015 	if (!(adapter->flags & FLAG_HAS_AMT))
7016 		e1000e_get_hw_control(adapter);
7017 
7018 	strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
7019 	err = register_netdev(netdev);
7020 	if (err)
7021 		goto err_register;
7022 
7023 	/* carrier off reporting is important to ethtool even BEFORE open */
7024 	netif_carrier_off(netdev);
7025 
7026 	/* init PTP hardware clock */
7027 	e1000e_ptp_init(adapter);
7028 
7029 	e1000_print_device_info(adapter);
7030 
7031 	if (pci_dev_run_wake(pdev))
7032 		pm_runtime_put_noidle(&pdev->dev);
7033 
7034 	return 0;
7035 
7036 err_register:
7037 	if (!(adapter->flags & FLAG_HAS_AMT))
7038 		e1000e_release_hw_control(adapter);
7039 err_eeprom:
7040 	if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
7041 		e1000_phy_hw_reset(&adapter->hw);
7042 err_hw_init:
7043 	kfree(adapter->tx_ring);
7044 	kfree(adapter->rx_ring);
7045 err_sw_init:
7046 	if (adapter->hw.flash_address)
7047 		iounmap(adapter->hw.flash_address);
7048 	e1000e_reset_interrupt_capability(adapter);
7049 err_flashmap:
7050 	iounmap(adapter->hw.hw_addr);
7051 err_ioremap:
7052 	free_netdev(netdev);
7053 err_alloc_etherdev:
7054 	pci_release_selected_regions(pdev,
7055 				     pci_select_bars(pdev, IORESOURCE_MEM));
7056 err_pci_reg:
7057 err_dma:
7058 	pci_disable_device(pdev);
7059 	return err;
7060 }
7061 
7062 /**
7063  * e1000_remove - Device Removal Routine
7064  * @pdev: PCI device information struct
7065  *
7066  * e1000_remove is called by the PCI subsystem to alert the driver
7067  * that it should release a PCI device.  The could be caused by a
7068  * Hot-Plug event, or because the driver is going to be removed from
7069  * memory.
7070  **/
7071 static void e1000_remove(struct pci_dev *pdev)
7072 {
7073 	struct net_device *netdev = pci_get_drvdata(pdev);
7074 	struct e1000_adapter *adapter = netdev_priv(netdev);
7075 	bool down = test_bit(__E1000_DOWN, &adapter->state);
7076 
7077 	e1000e_ptp_remove(adapter);
7078 
7079 	/* The timers may be rescheduled, so explicitly disable them
7080 	 * from being rescheduled.
7081 	 */
7082 	if (!down)
7083 		set_bit(__E1000_DOWN, &adapter->state);
7084 	del_timer_sync(&adapter->watchdog_timer);
7085 	del_timer_sync(&adapter->phy_info_timer);
7086 
7087 	cancel_work_sync(&adapter->reset_task);
7088 	cancel_work_sync(&adapter->watchdog_task);
7089 	cancel_work_sync(&adapter->downshift_task);
7090 	cancel_work_sync(&adapter->update_phy_task);
7091 	cancel_work_sync(&adapter->print_hang_task);
7092 
7093 	if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
7094 		cancel_work_sync(&adapter->tx_hwtstamp_work);
7095 		if (adapter->tx_hwtstamp_skb) {
7096 			dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
7097 			adapter->tx_hwtstamp_skb = NULL;
7098 		}
7099 	}
7100 
7101 	/* Don't lie to e1000_close() down the road. */
7102 	if (!down)
7103 		clear_bit(__E1000_DOWN, &adapter->state);
7104 	unregister_netdev(netdev);
7105 
7106 	if (pci_dev_run_wake(pdev))
7107 		pm_runtime_get_noresume(&pdev->dev);
7108 
7109 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7110 	 * would have already happened in close and is redundant.
7111 	 */
7112 	e1000e_release_hw_control(adapter);
7113 
7114 	e1000e_reset_interrupt_capability(adapter);
7115 	kfree(adapter->tx_ring);
7116 	kfree(adapter->rx_ring);
7117 
7118 	iounmap(adapter->hw.hw_addr);
7119 	if (adapter->hw.flash_address)
7120 		iounmap(adapter->hw.flash_address);
7121 	pci_release_selected_regions(pdev,
7122 				     pci_select_bars(pdev, IORESOURCE_MEM));
7123 
7124 	free_netdev(netdev);
7125 
7126 	/* AER disable */
7127 	pci_disable_pcie_error_reporting(pdev);
7128 
7129 	pci_disable_device(pdev);
7130 }
7131 
7132 /* PCI Error Recovery (ERS) */
7133 static const struct pci_error_handlers e1000_err_handler = {
7134 	.error_detected = e1000_io_error_detected,
7135 	.slot_reset = e1000_io_slot_reset,
7136 	.resume = e1000_io_resume,
7137 };
7138 
7139 static const struct pci_device_id e1000_pci_tbl[] = {
7140 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
7141 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
7142 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
7143 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP),
7144 	  board_82571 },
7145 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
7146 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
7147 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
7148 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
7149 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
7150 
7151 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
7152 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
7153 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
7154 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
7155 
7156 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
7157 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
7158 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
7159 
7160 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
7161 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
7162 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
7163 
7164 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
7165 	  board_80003es2lan },
7166 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
7167 	  board_80003es2lan },
7168 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
7169 	  board_80003es2lan },
7170 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
7171 	  board_80003es2lan },
7172 
7173 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
7174 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
7175 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
7176 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
7177 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
7178 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
7179 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
7180 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
7181 
7182 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
7183 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
7184 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
7185 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
7186 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
7187 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
7188 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
7189 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
7190 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
7191 
7192 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
7193 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
7194 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
7195 
7196 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
7197 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
7198 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
7199 
7200 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
7201 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
7202 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
7203 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
7204 
7205 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
7206 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
7207 
7208 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
7209 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
7210 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt },
7211 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt },
7212 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt },
7213 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt },
7214 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt },
7215 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt },
7216 
7217 	{ 0, 0, 0, 0, 0, 0, 0 }	/* terminate list */
7218 };
7219 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
7220 
7221 static const struct dev_pm_ops e1000_pm_ops = {
7222 #ifdef CONFIG_PM_SLEEP
7223 	.suspend	= e1000e_pm_suspend,
7224 	.resume		= e1000e_pm_resume,
7225 	.freeze		= e1000e_pm_freeze,
7226 	.thaw		= e1000e_pm_thaw,
7227 	.poweroff	= e1000e_pm_suspend,
7228 	.restore	= e1000e_pm_resume,
7229 #endif
7230 	SET_RUNTIME_PM_OPS(e1000e_pm_runtime_suspend, e1000e_pm_runtime_resume,
7231 			   e1000e_pm_runtime_idle)
7232 };
7233 
7234 /* PCI Device API Driver */
7235 static struct pci_driver e1000_driver = {
7236 	.name     = e1000e_driver_name,
7237 	.id_table = e1000_pci_tbl,
7238 	.probe    = e1000_probe,
7239 	.remove   = e1000_remove,
7240 	.driver   = {
7241 		.pm = &e1000_pm_ops,
7242 	},
7243 	.shutdown = e1000_shutdown,
7244 	.err_handler = &e1000_err_handler
7245 };
7246 
7247 /**
7248  * e1000_init_module - Driver Registration Routine
7249  *
7250  * e1000_init_module is the first routine called when the driver is
7251  * loaded. All it does is register with the PCI subsystem.
7252  **/
7253 static int __init e1000_init_module(void)
7254 {
7255 	int ret;
7256 
7257 	pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
7258 		e1000e_driver_version);
7259 	pr_info("Copyright(c) 1999 - 2014 Intel Corporation.\n");
7260 	ret = pci_register_driver(&e1000_driver);
7261 
7262 	return ret;
7263 }
7264 module_init(e1000_init_module);
7265 
7266 /**
7267  * e1000_exit_module - Driver Exit Cleanup Routine
7268  *
7269  * e1000_exit_module is called just before the driver is removed
7270  * from memory.
7271  **/
7272 static void __exit e1000_exit_module(void)
7273 {
7274 	pci_unregister_driver(&e1000_driver);
7275 }
7276 module_exit(e1000_exit_module);
7277 
7278 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
7279 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7280 MODULE_LICENSE("GPL");
7281 MODULE_VERSION(DRV_VERSION);
7282 
7283 /* netdev.c */
7284