1 /*******************************************************************************
2 
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2011 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 
27 *******************************************************************************/
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include <linux/module.h>
32 #include <linux/types.h>
33 #include <linux/init.h>
34 #include <linux/pci.h>
35 #include <linux/vmalloc.h>
36 #include <linux/pagemap.h>
37 #include <linux/delay.h>
38 #include <linux/netdevice.h>
39 #include <linux/interrupt.h>
40 #include <linux/tcp.h>
41 #include <linux/ipv6.h>
42 #include <linux/slab.h>
43 #include <net/checksum.h>
44 #include <net/ip6_checksum.h>
45 #include <linux/mii.h>
46 #include <linux/ethtool.h>
47 #include <linux/if_vlan.h>
48 #include <linux/cpu.h>
49 #include <linux/smp.h>
50 #include <linux/pm_qos.h>
51 #include <linux/pm_runtime.h>
52 #include <linux/aer.h>
53 #include <linux/prefetch.h>
54 
55 #include "e1000.h"
56 
57 #define DRV_EXTRAVERSION "-k"
58 
59 #define DRV_VERSION "1.5.1" DRV_EXTRAVERSION
60 char e1000e_driver_name[] = "e1000e";
61 const char e1000e_driver_version[] = DRV_VERSION;
62 
63 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state);
64 
65 static const struct e1000_info *e1000_info_tbl[] = {
66 	[board_82571]		= &e1000_82571_info,
67 	[board_82572]		= &e1000_82572_info,
68 	[board_82573]		= &e1000_82573_info,
69 	[board_82574]		= &e1000_82574_info,
70 	[board_82583]		= &e1000_82583_info,
71 	[board_80003es2lan]	= &e1000_es2_info,
72 	[board_ich8lan]		= &e1000_ich8_info,
73 	[board_ich9lan]		= &e1000_ich9_info,
74 	[board_ich10lan]	= &e1000_ich10_info,
75 	[board_pchlan]		= &e1000_pch_info,
76 	[board_pch2lan]		= &e1000_pch2_info,
77 };
78 
79 struct e1000_reg_info {
80 	u32 ofs;
81 	char *name;
82 };
83 
84 #define E1000_RDFH	0x02410	/* Rx Data FIFO Head - RW */
85 #define E1000_RDFT	0x02418	/* Rx Data FIFO Tail - RW */
86 #define E1000_RDFHS	0x02420	/* Rx Data FIFO Head Saved - RW */
87 #define E1000_RDFTS	0x02428	/* Rx Data FIFO Tail Saved - RW */
88 #define E1000_RDFPC	0x02430	/* Rx Data FIFO Packet Count - RW */
89 
90 #define E1000_TDFH	0x03410	/* Tx Data FIFO Head - RW */
91 #define E1000_TDFT	0x03418	/* Tx Data FIFO Tail - RW */
92 #define E1000_TDFHS	0x03420	/* Tx Data FIFO Head Saved - RW */
93 #define E1000_TDFTS	0x03428	/* Tx Data FIFO Tail Saved - RW */
94 #define E1000_TDFPC	0x03430	/* Tx Data FIFO Packet Count - RW */
95 
96 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
97 
98 	/* General Registers */
99 	{E1000_CTRL, "CTRL"},
100 	{E1000_STATUS, "STATUS"},
101 	{E1000_CTRL_EXT, "CTRL_EXT"},
102 
103 	/* Interrupt Registers */
104 	{E1000_ICR, "ICR"},
105 
106 	/* Rx Registers */
107 	{E1000_RCTL, "RCTL"},
108 	{E1000_RDLEN, "RDLEN"},
109 	{E1000_RDH, "RDH"},
110 	{E1000_RDT, "RDT"},
111 	{E1000_RDTR, "RDTR"},
112 	{E1000_RXDCTL(0), "RXDCTL"},
113 	{E1000_ERT, "ERT"},
114 	{E1000_RDBAL, "RDBAL"},
115 	{E1000_RDBAH, "RDBAH"},
116 	{E1000_RDFH, "RDFH"},
117 	{E1000_RDFT, "RDFT"},
118 	{E1000_RDFHS, "RDFHS"},
119 	{E1000_RDFTS, "RDFTS"},
120 	{E1000_RDFPC, "RDFPC"},
121 
122 	/* Tx Registers */
123 	{E1000_TCTL, "TCTL"},
124 	{E1000_TDBAL, "TDBAL"},
125 	{E1000_TDBAH, "TDBAH"},
126 	{E1000_TDLEN, "TDLEN"},
127 	{E1000_TDH, "TDH"},
128 	{E1000_TDT, "TDT"},
129 	{E1000_TIDV, "TIDV"},
130 	{E1000_TXDCTL(0), "TXDCTL"},
131 	{E1000_TADV, "TADV"},
132 	{E1000_TARC(0), "TARC"},
133 	{E1000_TDFH, "TDFH"},
134 	{E1000_TDFT, "TDFT"},
135 	{E1000_TDFHS, "TDFHS"},
136 	{E1000_TDFTS, "TDFTS"},
137 	{E1000_TDFPC, "TDFPC"},
138 
139 	/* List Terminator */
140 	{}
141 };
142 
143 /*
144  * e1000_regdump - register printout routine
145  */
146 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
147 {
148 	int n = 0;
149 	char rname[16];
150 	u32 regs[8];
151 
152 	switch (reginfo->ofs) {
153 	case E1000_RXDCTL(0):
154 		for (n = 0; n < 2; n++)
155 			regs[n] = __er32(hw, E1000_RXDCTL(n));
156 		break;
157 	case E1000_TXDCTL(0):
158 		for (n = 0; n < 2; n++)
159 			regs[n] = __er32(hw, E1000_TXDCTL(n));
160 		break;
161 	case E1000_TARC(0):
162 		for (n = 0; n < 2; n++)
163 			regs[n] = __er32(hw, E1000_TARC(n));
164 		break;
165 	default:
166 		pr_info("%-15s %08x\n",
167 			reginfo->name, __er32(hw, reginfo->ofs));
168 		return;
169 	}
170 
171 	snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
172 	pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
173 }
174 
175 /*
176  * e1000e_dump - Print registers, Tx-ring and Rx-ring
177  */
178 static void e1000e_dump(struct e1000_adapter *adapter)
179 {
180 	struct net_device *netdev = adapter->netdev;
181 	struct e1000_hw *hw = &adapter->hw;
182 	struct e1000_reg_info *reginfo;
183 	struct e1000_ring *tx_ring = adapter->tx_ring;
184 	struct e1000_tx_desc *tx_desc;
185 	struct my_u0 {
186 		u64 a;
187 		u64 b;
188 	} *u0;
189 	struct e1000_buffer *buffer_info;
190 	struct e1000_ring *rx_ring = adapter->rx_ring;
191 	union e1000_rx_desc_packet_split *rx_desc_ps;
192 	union e1000_rx_desc_extended *rx_desc;
193 	struct my_u1 {
194 		u64 a;
195 		u64 b;
196 		u64 c;
197 		u64 d;
198 	} *u1;
199 	u32 staterr;
200 	int i = 0;
201 
202 	if (!netif_msg_hw(adapter))
203 		return;
204 
205 	/* Print netdevice Info */
206 	if (netdev) {
207 		dev_info(&adapter->pdev->dev, "Net device Info\n");
208 		pr_info("Device Name     state            trans_start      last_rx\n");
209 		pr_info("%-15s %016lX %016lX %016lX\n",
210 			netdev->name, netdev->state, netdev->trans_start,
211 			netdev->last_rx);
212 	}
213 
214 	/* Print Registers */
215 	dev_info(&adapter->pdev->dev, "Register Dump\n");
216 	pr_info(" Register Name   Value\n");
217 	for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
218 	     reginfo->name; reginfo++) {
219 		e1000_regdump(hw, reginfo);
220 	}
221 
222 	/* Print Tx Ring Summary */
223 	if (!netdev || !netif_running(netdev))
224 		goto exit;
225 
226 	dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
227 	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
228 	buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
229 	pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
230 		0, tx_ring->next_to_use, tx_ring->next_to_clean,
231 		(unsigned long long)buffer_info->dma,
232 		buffer_info->length,
233 		buffer_info->next_to_watch,
234 		(unsigned long long)buffer_info->time_stamp);
235 
236 	/* Print Tx Ring */
237 	if (!netif_msg_tx_done(adapter))
238 		goto rx_ring_summary;
239 
240 	dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
241 
242 	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
243 	 *
244 	 * Legacy Transmit Descriptor
245 	 *   +--------------------------------------------------------------+
246 	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
247 	 *   +--------------------------------------------------------------+
248 	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
249 	 *   +--------------------------------------------------------------+
250 	 *   63       48 47        36 35    32 31     24 23    16 15        0
251 	 *
252 	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
253 	 *   63      48 47    40 39       32 31             16 15    8 7      0
254 	 *   +----------------------------------------------------------------+
255 	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
256 	 *   +----------------------------------------------------------------+
257 	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
258 	 *   +----------------------------------------------------------------+
259 	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
260 	 *
261 	 * Extended Data Descriptor (DTYP=0x1)
262 	 *   +----------------------------------------------------------------+
263 	 * 0 |                     Buffer Address [63:0]                      |
264 	 *   +----------------------------------------------------------------+
265 	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
266 	 *   +----------------------------------------------------------------+
267 	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
268 	 */
269 	pr_info("Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Legacy format\n");
270 	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Context format\n");
271 	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Data format\n");
272 	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
273 		const char *next_desc;
274 		tx_desc = E1000_TX_DESC(*tx_ring, i);
275 		buffer_info = &tx_ring->buffer_info[i];
276 		u0 = (struct my_u0 *)tx_desc;
277 		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
278 			next_desc = " NTC/U";
279 		else if (i == tx_ring->next_to_use)
280 			next_desc = " NTU";
281 		else if (i == tx_ring->next_to_clean)
282 			next_desc = " NTC";
283 		else
284 			next_desc = "";
285 		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p%s\n",
286 			(!(le64_to_cpu(u0->b) & (1 << 29)) ? 'l' :
287 			 ((le64_to_cpu(u0->b) & (1 << 20)) ? 'd' : 'c')),
288 			i,
289 			(unsigned long long)le64_to_cpu(u0->a),
290 			(unsigned long long)le64_to_cpu(u0->b),
291 			(unsigned long long)buffer_info->dma,
292 			buffer_info->length, buffer_info->next_to_watch,
293 			(unsigned long long)buffer_info->time_stamp,
294 			buffer_info->skb, next_desc);
295 
296 		if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
297 			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
298 				       16, 1, phys_to_virt(buffer_info->dma),
299 				       buffer_info->length, true);
300 	}
301 
302 	/* Print Rx Ring Summary */
303 rx_ring_summary:
304 	dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
305 	pr_info("Queue [NTU] [NTC]\n");
306 	pr_info(" %5d %5X %5X\n",
307 		0, rx_ring->next_to_use, rx_ring->next_to_clean);
308 
309 	/* Print Rx Ring */
310 	if (!netif_msg_rx_status(adapter))
311 		goto exit;
312 
313 	dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
314 	switch (adapter->rx_ps_pages) {
315 	case 1:
316 	case 2:
317 	case 3:
318 		/* [Extended] Packet Split Receive Descriptor Format
319 		 *
320 		 *    +-----------------------------------------------------+
321 		 *  0 |                Buffer Address 0 [63:0]              |
322 		 *    +-----------------------------------------------------+
323 		 *  8 |                Buffer Address 1 [63:0]              |
324 		 *    +-----------------------------------------------------+
325 		 * 16 |                Buffer Address 2 [63:0]              |
326 		 *    +-----------------------------------------------------+
327 		 * 24 |                Buffer Address 3 [63:0]              |
328 		 *    +-----------------------------------------------------+
329 		 */
330 		pr_info("R  [desc]      [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] [bi->skb] <-- Ext Pkt Split format\n");
331 		/* [Extended] Receive Descriptor (Write-Back) Format
332 		 *
333 		 *   63       48 47    32 31     13 12    8 7    4 3        0
334 		 *   +------------------------------------------------------+
335 		 * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
336 		 *   | Checksum | Ident  |         | Queue |      |  Type   |
337 		 *   +------------------------------------------------------+
338 		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
339 		 *   +------------------------------------------------------+
340 		 *   63       48 47    32 31            20 19               0
341 		 */
342 		pr_info("RWB[desc]      [ck ipid mrqhsh] [vl   l0 ee  es] [ l3  l2  l1 hs] [reserved      ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
343 		for (i = 0; i < rx_ring->count; i++) {
344 			const char *next_desc;
345 			buffer_info = &rx_ring->buffer_info[i];
346 			rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
347 			u1 = (struct my_u1 *)rx_desc_ps;
348 			staterr =
349 			    le32_to_cpu(rx_desc_ps->wb.middle.status_error);
350 
351 			if (i == rx_ring->next_to_use)
352 				next_desc = " NTU";
353 			else if (i == rx_ring->next_to_clean)
354 				next_desc = " NTC";
355 			else
356 				next_desc = "";
357 
358 			if (staterr & E1000_RXD_STAT_DD) {
359 				/* Descriptor Done */
360 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX ---------------- %p%s\n",
361 					"RWB", i,
362 					(unsigned long long)le64_to_cpu(u1->a),
363 					(unsigned long long)le64_to_cpu(u1->b),
364 					(unsigned long long)le64_to_cpu(u1->c),
365 					(unsigned long long)le64_to_cpu(u1->d),
366 					buffer_info->skb, next_desc);
367 			} else {
368 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX %016llX %p%s\n",
369 					"R  ", i,
370 					(unsigned long long)le64_to_cpu(u1->a),
371 					(unsigned long long)le64_to_cpu(u1->b),
372 					(unsigned long long)le64_to_cpu(u1->c),
373 					(unsigned long long)le64_to_cpu(u1->d),
374 					(unsigned long long)buffer_info->dma,
375 					buffer_info->skb, next_desc);
376 
377 				if (netif_msg_pktdata(adapter))
378 					print_hex_dump(KERN_INFO, "",
379 						DUMP_PREFIX_ADDRESS, 16, 1,
380 						phys_to_virt(buffer_info->dma),
381 						adapter->rx_ps_bsize0, true);
382 			}
383 		}
384 		break;
385 	default:
386 	case 0:
387 		/* Extended Receive Descriptor (Read) Format
388 		 *
389 		 *   +-----------------------------------------------------+
390 		 * 0 |                Buffer Address [63:0]                |
391 		 *   +-----------------------------------------------------+
392 		 * 8 |                      Reserved                       |
393 		 *   +-----------------------------------------------------+
394 		 */
395 		pr_info("R  [desc]      [buf addr 63:0 ] [reserved 63:0 ] [bi->dma       ] [bi->skb] <-- Ext (Read) format\n");
396 		/* Extended Receive Descriptor (Write-Back) Format
397 		 *
398 		 *   63       48 47    32 31    24 23            4 3        0
399 		 *   +------------------------------------------------------+
400 		 *   |     RSS Hash      |        |               |         |
401 		 * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
402 		 *   | Packet   | IP     |        |               |  Type   |
403 		 *   | Checksum | Ident  |        |               |         |
404 		 *   +------------------------------------------------------+
405 		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
406 		 *   +------------------------------------------------------+
407 		 *   63       48 47    32 31            20 19               0
408 		 */
409 		pr_info("RWB[desc]      [cs ipid    mrq] [vt   ln xe  xs] [bi->skb] <-- Ext (Write-Back) format\n");
410 
411 		for (i = 0; i < rx_ring->count; i++) {
412 			const char *next_desc;
413 
414 			buffer_info = &rx_ring->buffer_info[i];
415 			rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
416 			u1 = (struct my_u1 *)rx_desc;
417 			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
418 
419 			if (i == rx_ring->next_to_use)
420 				next_desc = " NTU";
421 			else if (i == rx_ring->next_to_clean)
422 				next_desc = " NTC";
423 			else
424 				next_desc = "";
425 
426 			if (staterr & E1000_RXD_STAT_DD) {
427 				/* Descriptor Done */
428 				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %p%s\n",
429 					"RWB", i,
430 					(unsigned long long)le64_to_cpu(u1->a),
431 					(unsigned long long)le64_to_cpu(u1->b),
432 					buffer_info->skb, next_desc);
433 			} else {
434 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %p%s\n",
435 					"R  ", i,
436 					(unsigned long long)le64_to_cpu(u1->a),
437 					(unsigned long long)le64_to_cpu(u1->b),
438 					(unsigned long long)buffer_info->dma,
439 					buffer_info->skb, next_desc);
440 
441 				if (netif_msg_pktdata(adapter))
442 					print_hex_dump(KERN_INFO, "",
443 						       DUMP_PREFIX_ADDRESS, 16,
444 						       1,
445 						       phys_to_virt
446 						       (buffer_info->dma),
447 						       adapter->rx_buffer_len,
448 						       true);
449 			}
450 		}
451 	}
452 
453 exit:
454 	return;
455 }
456 
457 /**
458  * e1000_desc_unused - calculate if we have unused descriptors
459  **/
460 static int e1000_desc_unused(struct e1000_ring *ring)
461 {
462 	if (ring->next_to_clean > ring->next_to_use)
463 		return ring->next_to_clean - ring->next_to_use - 1;
464 
465 	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
466 }
467 
468 /**
469  * e1000_receive_skb - helper function to handle Rx indications
470  * @adapter: board private structure
471  * @status: descriptor status field as written by hardware
472  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
473  * @skb: pointer to sk_buff to be indicated to stack
474  **/
475 static void e1000_receive_skb(struct e1000_adapter *adapter,
476 			      struct net_device *netdev, struct sk_buff *skb,
477 			      u8 status, __le16 vlan)
478 {
479 	u16 tag = le16_to_cpu(vlan);
480 	skb->protocol = eth_type_trans(skb, netdev);
481 
482 	if (status & E1000_RXD_STAT_VP)
483 		__vlan_hwaccel_put_tag(skb, tag);
484 
485 	napi_gro_receive(&adapter->napi, skb);
486 }
487 
488 /**
489  * e1000_rx_checksum - Receive Checksum Offload
490  * @adapter:     board private structure
491  * @status_err:  receive descriptor status and error fields
492  * @csum:	receive descriptor csum field
493  * @sk_buff:     socket buffer with received data
494  **/
495 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
496 			      u32 csum, struct sk_buff *skb)
497 {
498 	u16 status = (u16)status_err;
499 	u8 errors = (u8)(status_err >> 24);
500 
501 	skb_checksum_none_assert(skb);
502 
503 	/* Ignore Checksum bit is set */
504 	if (status & E1000_RXD_STAT_IXSM)
505 		return;
506 	/* TCP/UDP checksum error bit is set */
507 	if (errors & E1000_RXD_ERR_TCPE) {
508 		/* let the stack verify checksum errors */
509 		adapter->hw_csum_err++;
510 		return;
511 	}
512 
513 	/* TCP/UDP Checksum has not been calculated */
514 	if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
515 		return;
516 
517 	/* It must be a TCP or UDP packet with a valid checksum */
518 	if (status & E1000_RXD_STAT_TCPCS) {
519 		/* TCP checksum is good */
520 		skb->ip_summed = CHECKSUM_UNNECESSARY;
521 	} else {
522 		/*
523 		 * IP fragment with UDP payload
524 		 * Hardware complements the payload checksum, so we undo it
525 		 * and then put the value in host order for further stack use.
526 		 */
527 		__sum16 sum = (__force __sum16)htons(csum);
528 		skb->csum = csum_unfold(~sum);
529 		skb->ip_summed = CHECKSUM_COMPLETE;
530 	}
531 	adapter->hw_csum_good++;
532 }
533 
534 /**
535  * e1000e_update_tail_wa - helper function for e1000e_update_[rt]dt_wa()
536  * @hw: pointer to the HW structure
537  * @tail: address of tail descriptor register
538  * @i: value to write to tail descriptor register
539  *
540  * When updating the tail register, the ME could be accessing Host CSR
541  * registers at the same time.  Normally, this is handled in h/w by an
542  * arbiter but on some parts there is a bug that acknowledges Host accesses
543  * later than it should which could result in the descriptor register to
544  * have an incorrect value.  Workaround this by checking the FWSM register
545  * which has bit 24 set while ME is accessing Host CSR registers, wait
546  * if it is set and try again a number of times.
547  **/
548 static inline s32 e1000e_update_tail_wa(struct e1000_hw *hw, u8 __iomem * tail,
549 					unsigned int i)
550 {
551 	unsigned int j = 0;
552 
553 	while ((j++ < E1000_ICH_FWSM_PCIM2PCI_COUNT) &&
554 	       (er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI))
555 		udelay(50);
556 
557 	writel(i, tail);
558 
559 	if ((j == E1000_ICH_FWSM_PCIM2PCI_COUNT) && (i != readl(tail)))
560 		return E1000_ERR_SWFW_SYNC;
561 
562 	return 0;
563 }
564 
565 static void e1000e_update_rdt_wa(struct e1000_adapter *adapter, unsigned int i)
566 {
567 	u8 __iomem *tail = (adapter->hw.hw_addr + adapter->rx_ring->tail);
568 	struct e1000_hw *hw = &adapter->hw;
569 
570 	if (e1000e_update_tail_wa(hw, tail, i)) {
571 		u32 rctl = er32(RCTL);
572 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
573 		e_err("ME firmware caused invalid RDT - resetting\n");
574 		schedule_work(&adapter->reset_task);
575 	}
576 }
577 
578 static void e1000e_update_tdt_wa(struct e1000_adapter *adapter, unsigned int i)
579 {
580 	u8 __iomem *tail = (adapter->hw.hw_addr + adapter->tx_ring->tail);
581 	struct e1000_hw *hw = &adapter->hw;
582 
583 	if (e1000e_update_tail_wa(hw, tail, i)) {
584 		u32 tctl = er32(TCTL);
585 		ew32(TCTL, tctl & ~E1000_TCTL_EN);
586 		e_err("ME firmware caused invalid TDT - resetting\n");
587 		schedule_work(&adapter->reset_task);
588 	}
589 }
590 
591 /**
592  * e1000_alloc_rx_buffers - Replace used receive buffers
593  * @adapter: address of board private structure
594  **/
595 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
596 				   int cleaned_count, gfp_t gfp)
597 {
598 	struct net_device *netdev = adapter->netdev;
599 	struct pci_dev *pdev = adapter->pdev;
600 	struct e1000_ring *rx_ring = adapter->rx_ring;
601 	union e1000_rx_desc_extended *rx_desc;
602 	struct e1000_buffer *buffer_info;
603 	struct sk_buff *skb;
604 	unsigned int i;
605 	unsigned int bufsz = adapter->rx_buffer_len;
606 
607 	i = rx_ring->next_to_use;
608 	buffer_info = &rx_ring->buffer_info[i];
609 
610 	while (cleaned_count--) {
611 		skb = buffer_info->skb;
612 		if (skb) {
613 			skb_trim(skb, 0);
614 			goto map_skb;
615 		}
616 
617 		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
618 		if (!skb) {
619 			/* Better luck next round */
620 			adapter->alloc_rx_buff_failed++;
621 			break;
622 		}
623 
624 		buffer_info->skb = skb;
625 map_skb:
626 		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
627 						  adapter->rx_buffer_len,
628 						  DMA_FROM_DEVICE);
629 		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
630 			dev_err(&pdev->dev, "Rx DMA map failed\n");
631 			adapter->rx_dma_failed++;
632 			break;
633 		}
634 
635 		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
636 		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
637 
638 		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
639 			/*
640 			 * Force memory writes to complete before letting h/w
641 			 * know there are new descriptors to fetch.  (Only
642 			 * applicable for weak-ordered memory model archs,
643 			 * such as IA-64).
644 			 */
645 			wmb();
646 			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
647 				e1000e_update_rdt_wa(adapter, i);
648 			else
649 				writel(i, adapter->hw.hw_addr + rx_ring->tail);
650 		}
651 		i++;
652 		if (i == rx_ring->count)
653 			i = 0;
654 		buffer_info = &rx_ring->buffer_info[i];
655 	}
656 
657 	rx_ring->next_to_use = i;
658 }
659 
660 /**
661  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
662  * @adapter: address of board private structure
663  **/
664 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
665 				      int cleaned_count, gfp_t gfp)
666 {
667 	struct net_device *netdev = adapter->netdev;
668 	struct pci_dev *pdev = adapter->pdev;
669 	union e1000_rx_desc_packet_split *rx_desc;
670 	struct e1000_ring *rx_ring = adapter->rx_ring;
671 	struct e1000_buffer *buffer_info;
672 	struct e1000_ps_page *ps_page;
673 	struct sk_buff *skb;
674 	unsigned int i, j;
675 
676 	i = rx_ring->next_to_use;
677 	buffer_info = &rx_ring->buffer_info[i];
678 
679 	while (cleaned_count--) {
680 		rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
681 
682 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
683 			ps_page = &buffer_info->ps_pages[j];
684 			if (j >= adapter->rx_ps_pages) {
685 				/* all unused desc entries get hw null ptr */
686 				rx_desc->read.buffer_addr[j + 1] =
687 				    ~cpu_to_le64(0);
688 				continue;
689 			}
690 			if (!ps_page->page) {
691 				ps_page->page = alloc_page(gfp);
692 				if (!ps_page->page) {
693 					adapter->alloc_rx_buff_failed++;
694 					goto no_buffers;
695 				}
696 				ps_page->dma = dma_map_page(&pdev->dev,
697 							    ps_page->page,
698 							    0, PAGE_SIZE,
699 							    DMA_FROM_DEVICE);
700 				if (dma_mapping_error(&pdev->dev,
701 						      ps_page->dma)) {
702 					dev_err(&adapter->pdev->dev,
703 						"Rx DMA page map failed\n");
704 					adapter->rx_dma_failed++;
705 					goto no_buffers;
706 				}
707 			}
708 			/*
709 			 * Refresh the desc even if buffer_addrs
710 			 * didn't change because each write-back
711 			 * erases this info.
712 			 */
713 			rx_desc->read.buffer_addr[j + 1] =
714 			    cpu_to_le64(ps_page->dma);
715 		}
716 
717 		skb = __netdev_alloc_skb_ip_align(netdev,
718 						  adapter->rx_ps_bsize0,
719 						  gfp);
720 
721 		if (!skb) {
722 			adapter->alloc_rx_buff_failed++;
723 			break;
724 		}
725 
726 		buffer_info->skb = skb;
727 		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
728 						  adapter->rx_ps_bsize0,
729 						  DMA_FROM_DEVICE);
730 		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
731 			dev_err(&pdev->dev, "Rx DMA map failed\n");
732 			adapter->rx_dma_failed++;
733 			/* cleanup skb */
734 			dev_kfree_skb_any(skb);
735 			buffer_info->skb = NULL;
736 			break;
737 		}
738 
739 		rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
740 
741 		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
742 			/*
743 			 * Force memory writes to complete before letting h/w
744 			 * know there are new descriptors to fetch.  (Only
745 			 * applicable for weak-ordered memory model archs,
746 			 * such as IA-64).
747 			 */
748 			wmb();
749 			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
750 				e1000e_update_rdt_wa(adapter, i << 1);
751 			else
752 				writel(i << 1,
753 				       adapter->hw.hw_addr + rx_ring->tail);
754 		}
755 
756 		i++;
757 		if (i == rx_ring->count)
758 			i = 0;
759 		buffer_info = &rx_ring->buffer_info[i];
760 	}
761 
762 no_buffers:
763 	rx_ring->next_to_use = i;
764 }
765 
766 /**
767  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
768  * @adapter: address of board private structure
769  * @cleaned_count: number of buffers to allocate this pass
770  **/
771 
772 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
773 					 int cleaned_count, gfp_t gfp)
774 {
775 	struct net_device *netdev = adapter->netdev;
776 	struct pci_dev *pdev = adapter->pdev;
777 	union e1000_rx_desc_extended *rx_desc;
778 	struct e1000_ring *rx_ring = adapter->rx_ring;
779 	struct e1000_buffer *buffer_info;
780 	struct sk_buff *skb;
781 	unsigned int i;
782 	unsigned int bufsz = 256 - 16 /* for skb_reserve */;
783 
784 	i = rx_ring->next_to_use;
785 	buffer_info = &rx_ring->buffer_info[i];
786 
787 	while (cleaned_count--) {
788 		skb = buffer_info->skb;
789 		if (skb) {
790 			skb_trim(skb, 0);
791 			goto check_page;
792 		}
793 
794 		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
795 		if (unlikely(!skb)) {
796 			/* Better luck next round */
797 			adapter->alloc_rx_buff_failed++;
798 			break;
799 		}
800 
801 		buffer_info->skb = skb;
802 check_page:
803 		/* allocate a new page if necessary */
804 		if (!buffer_info->page) {
805 			buffer_info->page = alloc_page(gfp);
806 			if (unlikely(!buffer_info->page)) {
807 				adapter->alloc_rx_buff_failed++;
808 				break;
809 			}
810 		}
811 
812 		if (!buffer_info->dma)
813 			buffer_info->dma = dma_map_page(&pdev->dev,
814 			                                buffer_info->page, 0,
815 			                                PAGE_SIZE,
816 							DMA_FROM_DEVICE);
817 
818 		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
819 		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
820 
821 		if (unlikely(++i == rx_ring->count))
822 			i = 0;
823 		buffer_info = &rx_ring->buffer_info[i];
824 	}
825 
826 	if (likely(rx_ring->next_to_use != i)) {
827 		rx_ring->next_to_use = i;
828 		if (unlikely(i-- == 0))
829 			i = (rx_ring->count - 1);
830 
831 		/* Force memory writes to complete before letting h/w
832 		 * know there are new descriptors to fetch.  (Only
833 		 * applicable for weak-ordered memory model archs,
834 		 * such as IA-64). */
835 		wmb();
836 		if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
837 			e1000e_update_rdt_wa(adapter, i);
838 		else
839 			writel(i, adapter->hw.hw_addr + rx_ring->tail);
840 	}
841 }
842 
843 /**
844  * e1000_clean_rx_irq - Send received data up the network stack; legacy
845  * @adapter: board private structure
846  *
847  * the return value indicates whether actual cleaning was done, there
848  * is no guarantee that everything was cleaned
849  **/
850 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
851 			       int *work_done, int work_to_do)
852 {
853 	struct net_device *netdev = adapter->netdev;
854 	struct pci_dev *pdev = adapter->pdev;
855 	struct e1000_hw *hw = &adapter->hw;
856 	struct e1000_ring *rx_ring = adapter->rx_ring;
857 	union e1000_rx_desc_extended *rx_desc, *next_rxd;
858 	struct e1000_buffer *buffer_info, *next_buffer;
859 	u32 length, staterr;
860 	unsigned int i;
861 	int cleaned_count = 0;
862 	bool cleaned = false;
863 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
864 
865 	i = rx_ring->next_to_clean;
866 	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
867 	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
868 	buffer_info = &rx_ring->buffer_info[i];
869 
870 	while (staterr & E1000_RXD_STAT_DD) {
871 		struct sk_buff *skb;
872 
873 		if (*work_done >= work_to_do)
874 			break;
875 		(*work_done)++;
876 		rmb();	/* read descriptor and rx_buffer_info after status DD */
877 
878 		skb = buffer_info->skb;
879 		buffer_info->skb = NULL;
880 
881 		prefetch(skb->data - NET_IP_ALIGN);
882 
883 		i++;
884 		if (i == rx_ring->count)
885 			i = 0;
886 		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
887 		prefetch(next_rxd);
888 
889 		next_buffer = &rx_ring->buffer_info[i];
890 
891 		cleaned = true;
892 		cleaned_count++;
893 		dma_unmap_single(&pdev->dev,
894 				 buffer_info->dma,
895 				 adapter->rx_buffer_len,
896 				 DMA_FROM_DEVICE);
897 		buffer_info->dma = 0;
898 
899 		length = le16_to_cpu(rx_desc->wb.upper.length);
900 
901 		/*
902 		 * !EOP means multiple descriptors were used to store a single
903 		 * packet, if that's the case we need to toss it.  In fact, we
904 		 * need to toss every packet with the EOP bit clear and the
905 		 * next frame that _does_ have the EOP bit set, as it is by
906 		 * definition only a frame fragment
907 		 */
908 		if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
909 			adapter->flags2 |= FLAG2_IS_DISCARDING;
910 
911 		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
912 			/* All receives must fit into a single buffer */
913 			e_dbg("Receive packet consumed multiple buffers\n");
914 			/* recycle */
915 			buffer_info->skb = skb;
916 			if (staterr & E1000_RXD_STAT_EOP)
917 				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
918 			goto next_desc;
919 		}
920 
921 		if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
922 			/* recycle */
923 			buffer_info->skb = skb;
924 			goto next_desc;
925 		}
926 
927 		/* adjust length to remove Ethernet CRC */
928 		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
929 			length -= 4;
930 
931 		total_rx_bytes += length;
932 		total_rx_packets++;
933 
934 		/*
935 		 * code added for copybreak, this should improve
936 		 * performance for small packets with large amounts
937 		 * of reassembly being done in the stack
938 		 */
939 		if (length < copybreak) {
940 			struct sk_buff *new_skb =
941 			    netdev_alloc_skb_ip_align(netdev, length);
942 			if (new_skb) {
943 				skb_copy_to_linear_data_offset(new_skb,
944 							       -NET_IP_ALIGN,
945 							       (skb->data -
946 								NET_IP_ALIGN),
947 							       (length +
948 								NET_IP_ALIGN));
949 				/* save the skb in buffer_info as good */
950 				buffer_info->skb = skb;
951 				skb = new_skb;
952 			}
953 			/* else just continue with the old one */
954 		}
955 		/* end copybreak code */
956 		skb_put(skb, length);
957 
958 		/* Receive Checksum Offload */
959 		e1000_rx_checksum(adapter, staterr,
960 				  le16_to_cpu(rx_desc->wb.lower.hi_dword.
961 					      csum_ip.csum), skb);
962 
963 		e1000_receive_skb(adapter, netdev, skb, staterr,
964 				  rx_desc->wb.upper.vlan);
965 
966 next_desc:
967 		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
968 
969 		/* return some buffers to hardware, one at a time is too slow */
970 		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
971 			adapter->alloc_rx_buf(adapter, cleaned_count,
972 					      GFP_ATOMIC);
973 			cleaned_count = 0;
974 		}
975 
976 		/* use prefetched values */
977 		rx_desc = next_rxd;
978 		buffer_info = next_buffer;
979 
980 		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
981 	}
982 	rx_ring->next_to_clean = i;
983 
984 	cleaned_count = e1000_desc_unused(rx_ring);
985 	if (cleaned_count)
986 		adapter->alloc_rx_buf(adapter, cleaned_count, GFP_ATOMIC);
987 
988 	adapter->total_rx_bytes += total_rx_bytes;
989 	adapter->total_rx_packets += total_rx_packets;
990 	return cleaned;
991 }
992 
993 static void e1000_put_txbuf(struct e1000_adapter *adapter,
994 			     struct e1000_buffer *buffer_info)
995 {
996 	if (buffer_info->dma) {
997 		if (buffer_info->mapped_as_page)
998 			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
999 				       buffer_info->length, DMA_TO_DEVICE);
1000 		else
1001 			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1002 					 buffer_info->length, DMA_TO_DEVICE);
1003 		buffer_info->dma = 0;
1004 	}
1005 	if (buffer_info->skb) {
1006 		dev_kfree_skb_any(buffer_info->skb);
1007 		buffer_info->skb = NULL;
1008 	}
1009 	buffer_info->time_stamp = 0;
1010 }
1011 
1012 static void e1000_print_hw_hang(struct work_struct *work)
1013 {
1014 	struct e1000_adapter *adapter = container_of(work,
1015 	                                             struct e1000_adapter,
1016 	                                             print_hang_task);
1017 	struct net_device *netdev = adapter->netdev;
1018 	struct e1000_ring *tx_ring = adapter->tx_ring;
1019 	unsigned int i = tx_ring->next_to_clean;
1020 	unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1021 	struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1022 	struct e1000_hw *hw = &adapter->hw;
1023 	u16 phy_status, phy_1000t_status, phy_ext_status;
1024 	u16 pci_status;
1025 
1026 	if (test_bit(__E1000_DOWN, &adapter->state))
1027 		return;
1028 
1029 	if (!adapter->tx_hang_recheck &&
1030 	    (adapter->flags2 & FLAG2_DMA_BURST)) {
1031 		/* May be block on write-back, flush and detect again
1032 		 * flush pending descriptor writebacks to memory
1033 		 */
1034 		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1035 		/* execute the writes immediately */
1036 		e1e_flush();
1037 		adapter->tx_hang_recheck = true;
1038 		return;
1039 	}
1040 	/* Real hang detected */
1041 	adapter->tx_hang_recheck = false;
1042 	netif_stop_queue(netdev);
1043 
1044 	e1e_rphy(hw, PHY_STATUS, &phy_status);
1045 	e1e_rphy(hw, PHY_1000T_STATUS, &phy_1000t_status);
1046 	e1e_rphy(hw, PHY_EXT_STATUS, &phy_ext_status);
1047 
1048 	pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1049 
1050 	/* detected Hardware unit hang */
1051 	e_err("Detected Hardware Unit Hang:\n"
1052 	      "  TDH                  <%x>\n"
1053 	      "  TDT                  <%x>\n"
1054 	      "  next_to_use          <%x>\n"
1055 	      "  next_to_clean        <%x>\n"
1056 	      "buffer_info[next_to_clean]:\n"
1057 	      "  time_stamp           <%lx>\n"
1058 	      "  next_to_watch        <%x>\n"
1059 	      "  jiffies              <%lx>\n"
1060 	      "  next_to_watch.status <%x>\n"
1061 	      "MAC Status             <%x>\n"
1062 	      "PHY Status             <%x>\n"
1063 	      "PHY 1000BASE-T Status  <%x>\n"
1064 	      "PHY Extended Status    <%x>\n"
1065 	      "PCI Status             <%x>\n",
1066 	      readl(adapter->hw.hw_addr + tx_ring->head),
1067 	      readl(adapter->hw.hw_addr + tx_ring->tail),
1068 	      tx_ring->next_to_use,
1069 	      tx_ring->next_to_clean,
1070 	      tx_ring->buffer_info[eop].time_stamp,
1071 	      eop,
1072 	      jiffies,
1073 	      eop_desc->upper.fields.status,
1074 	      er32(STATUS),
1075 	      phy_status,
1076 	      phy_1000t_status,
1077 	      phy_ext_status,
1078 	      pci_status);
1079 }
1080 
1081 /**
1082  * e1000_clean_tx_irq - Reclaim resources after transmit completes
1083  * @adapter: board private structure
1084  *
1085  * the return value indicates whether actual cleaning was done, there
1086  * is no guarantee that everything was cleaned
1087  **/
1088 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter)
1089 {
1090 	struct net_device *netdev = adapter->netdev;
1091 	struct e1000_hw *hw = &adapter->hw;
1092 	struct e1000_ring *tx_ring = adapter->tx_ring;
1093 	struct e1000_tx_desc *tx_desc, *eop_desc;
1094 	struct e1000_buffer *buffer_info;
1095 	unsigned int i, eop;
1096 	unsigned int count = 0;
1097 	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1098 	unsigned int bytes_compl = 0, pkts_compl = 0;
1099 
1100 	i = tx_ring->next_to_clean;
1101 	eop = tx_ring->buffer_info[i].next_to_watch;
1102 	eop_desc = E1000_TX_DESC(*tx_ring, eop);
1103 
1104 	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1105 	       (count < tx_ring->count)) {
1106 		bool cleaned = false;
1107 		rmb(); /* read buffer_info after eop_desc */
1108 		for (; !cleaned; count++) {
1109 			tx_desc = E1000_TX_DESC(*tx_ring, i);
1110 			buffer_info = &tx_ring->buffer_info[i];
1111 			cleaned = (i == eop);
1112 
1113 			if (cleaned) {
1114 				total_tx_packets += buffer_info->segs;
1115 				total_tx_bytes += buffer_info->bytecount;
1116 				if (buffer_info->skb) {
1117 					bytes_compl += buffer_info->skb->len;
1118 					pkts_compl++;
1119 				}
1120 			}
1121 
1122 			e1000_put_txbuf(adapter, buffer_info);
1123 			tx_desc->upper.data = 0;
1124 
1125 			i++;
1126 			if (i == tx_ring->count)
1127 				i = 0;
1128 		}
1129 
1130 		if (i == tx_ring->next_to_use)
1131 			break;
1132 		eop = tx_ring->buffer_info[i].next_to_watch;
1133 		eop_desc = E1000_TX_DESC(*tx_ring, eop);
1134 	}
1135 
1136 	tx_ring->next_to_clean = i;
1137 
1138 	netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1139 
1140 #define TX_WAKE_THRESHOLD 32
1141 	if (count && netif_carrier_ok(netdev) &&
1142 	    e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1143 		/* Make sure that anybody stopping the queue after this
1144 		 * sees the new next_to_clean.
1145 		 */
1146 		smp_mb();
1147 
1148 		if (netif_queue_stopped(netdev) &&
1149 		    !(test_bit(__E1000_DOWN, &adapter->state))) {
1150 			netif_wake_queue(netdev);
1151 			++adapter->restart_queue;
1152 		}
1153 	}
1154 
1155 	if (adapter->detect_tx_hung) {
1156 		/*
1157 		 * Detect a transmit hang in hardware, this serializes the
1158 		 * check with the clearing of time_stamp and movement of i
1159 		 */
1160 		adapter->detect_tx_hung = false;
1161 		if (tx_ring->buffer_info[i].time_stamp &&
1162 		    time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1163 			       + (adapter->tx_timeout_factor * HZ)) &&
1164 		    !(er32(STATUS) & E1000_STATUS_TXOFF))
1165 			schedule_work(&adapter->print_hang_task);
1166 		else
1167 			adapter->tx_hang_recheck = false;
1168 	}
1169 	adapter->total_tx_bytes += total_tx_bytes;
1170 	adapter->total_tx_packets += total_tx_packets;
1171 	return count < tx_ring->count;
1172 }
1173 
1174 /**
1175  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1176  * @adapter: board private structure
1177  *
1178  * the return value indicates whether actual cleaning was done, there
1179  * is no guarantee that everything was cleaned
1180  **/
1181 static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
1182 				  int *work_done, int work_to_do)
1183 {
1184 	struct e1000_hw *hw = &adapter->hw;
1185 	union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1186 	struct net_device *netdev = adapter->netdev;
1187 	struct pci_dev *pdev = adapter->pdev;
1188 	struct e1000_ring *rx_ring = adapter->rx_ring;
1189 	struct e1000_buffer *buffer_info, *next_buffer;
1190 	struct e1000_ps_page *ps_page;
1191 	struct sk_buff *skb;
1192 	unsigned int i, j;
1193 	u32 length, staterr;
1194 	int cleaned_count = 0;
1195 	bool cleaned = false;
1196 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1197 
1198 	i = rx_ring->next_to_clean;
1199 	rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1200 	staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1201 	buffer_info = &rx_ring->buffer_info[i];
1202 
1203 	while (staterr & E1000_RXD_STAT_DD) {
1204 		if (*work_done >= work_to_do)
1205 			break;
1206 		(*work_done)++;
1207 		skb = buffer_info->skb;
1208 		rmb();	/* read descriptor and rx_buffer_info after status DD */
1209 
1210 		/* in the packet split case this is header only */
1211 		prefetch(skb->data - NET_IP_ALIGN);
1212 
1213 		i++;
1214 		if (i == rx_ring->count)
1215 			i = 0;
1216 		next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1217 		prefetch(next_rxd);
1218 
1219 		next_buffer = &rx_ring->buffer_info[i];
1220 
1221 		cleaned = true;
1222 		cleaned_count++;
1223 		dma_unmap_single(&pdev->dev, buffer_info->dma,
1224 				 adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1225 		buffer_info->dma = 0;
1226 
1227 		/* see !EOP comment in other Rx routine */
1228 		if (!(staterr & E1000_RXD_STAT_EOP))
1229 			adapter->flags2 |= FLAG2_IS_DISCARDING;
1230 
1231 		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1232 			e_dbg("Packet Split buffers didn't pick up the full packet\n");
1233 			dev_kfree_skb_irq(skb);
1234 			if (staterr & E1000_RXD_STAT_EOP)
1235 				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1236 			goto next_desc;
1237 		}
1238 
1239 		if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
1240 			dev_kfree_skb_irq(skb);
1241 			goto next_desc;
1242 		}
1243 
1244 		length = le16_to_cpu(rx_desc->wb.middle.length0);
1245 
1246 		if (!length) {
1247 			e_dbg("Last part of the packet spanning multiple descriptors\n");
1248 			dev_kfree_skb_irq(skb);
1249 			goto next_desc;
1250 		}
1251 
1252 		/* Good Receive */
1253 		skb_put(skb, length);
1254 
1255 		{
1256 		/*
1257 		 * this looks ugly, but it seems compiler issues make it
1258 		 * more efficient than reusing j
1259 		 */
1260 		int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1261 
1262 		/*
1263 		 * page alloc/put takes too long and effects small packet
1264 		 * throughput, so unsplit small packets and save the alloc/put
1265 		 * only valid in softirq (napi) context to call kmap_*
1266 		 */
1267 		if (l1 && (l1 <= copybreak) &&
1268 		    ((length + l1) <= adapter->rx_ps_bsize0)) {
1269 			u8 *vaddr;
1270 
1271 			ps_page = &buffer_info->ps_pages[0];
1272 
1273 			/*
1274 			 * there is no documentation about how to call
1275 			 * kmap_atomic, so we can't hold the mapping
1276 			 * very long
1277 			 */
1278 			dma_sync_single_for_cpu(&pdev->dev, ps_page->dma,
1279 						PAGE_SIZE, DMA_FROM_DEVICE);
1280 			vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ);
1281 			memcpy(skb_tail_pointer(skb), vaddr, l1);
1282 			kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
1283 			dma_sync_single_for_device(&pdev->dev, ps_page->dma,
1284 						   PAGE_SIZE, DMA_FROM_DEVICE);
1285 
1286 			/* remove the CRC */
1287 			if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
1288 				l1 -= 4;
1289 
1290 			skb_put(skb, l1);
1291 			goto copydone;
1292 		} /* if */
1293 		}
1294 
1295 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1296 			length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1297 			if (!length)
1298 				break;
1299 
1300 			ps_page = &buffer_info->ps_pages[j];
1301 			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1302 				       DMA_FROM_DEVICE);
1303 			ps_page->dma = 0;
1304 			skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1305 			ps_page->page = NULL;
1306 			skb->len += length;
1307 			skb->data_len += length;
1308 			skb->truesize += PAGE_SIZE;
1309 		}
1310 
1311 		/* strip the ethernet crc, problem is we're using pages now so
1312 		 * this whole operation can get a little cpu intensive
1313 		 */
1314 		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
1315 			pskb_trim(skb, skb->len - 4);
1316 
1317 copydone:
1318 		total_rx_bytes += skb->len;
1319 		total_rx_packets++;
1320 
1321 		e1000_rx_checksum(adapter, staterr, le16_to_cpu(
1322 			rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
1323 
1324 		if (rx_desc->wb.upper.header_status &
1325 			   cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1326 			adapter->rx_hdr_split++;
1327 
1328 		e1000_receive_skb(adapter, netdev, skb,
1329 				  staterr, rx_desc->wb.middle.vlan);
1330 
1331 next_desc:
1332 		rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1333 		buffer_info->skb = NULL;
1334 
1335 		/* return some buffers to hardware, one at a time is too slow */
1336 		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1337 			adapter->alloc_rx_buf(adapter, cleaned_count,
1338 					      GFP_ATOMIC);
1339 			cleaned_count = 0;
1340 		}
1341 
1342 		/* use prefetched values */
1343 		rx_desc = next_rxd;
1344 		buffer_info = next_buffer;
1345 
1346 		staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1347 	}
1348 	rx_ring->next_to_clean = i;
1349 
1350 	cleaned_count = e1000_desc_unused(rx_ring);
1351 	if (cleaned_count)
1352 		adapter->alloc_rx_buf(adapter, cleaned_count, GFP_ATOMIC);
1353 
1354 	adapter->total_rx_bytes += total_rx_bytes;
1355 	adapter->total_rx_packets += total_rx_packets;
1356 	return cleaned;
1357 }
1358 
1359 /**
1360  * e1000_consume_page - helper function
1361  **/
1362 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1363                                u16 length)
1364 {
1365 	bi->page = NULL;
1366 	skb->len += length;
1367 	skb->data_len += length;
1368 	skb->truesize += PAGE_SIZE;
1369 }
1370 
1371 /**
1372  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1373  * @adapter: board private structure
1374  *
1375  * the return value indicates whether actual cleaning was done, there
1376  * is no guarantee that everything was cleaned
1377  **/
1378 
1379 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
1380                                      int *work_done, int work_to_do)
1381 {
1382 	struct net_device *netdev = adapter->netdev;
1383 	struct pci_dev *pdev = adapter->pdev;
1384 	struct e1000_ring *rx_ring = adapter->rx_ring;
1385 	union e1000_rx_desc_extended *rx_desc, *next_rxd;
1386 	struct e1000_buffer *buffer_info, *next_buffer;
1387 	u32 length, staterr;
1388 	unsigned int i;
1389 	int cleaned_count = 0;
1390 	bool cleaned = false;
1391 	unsigned int total_rx_bytes=0, total_rx_packets=0;
1392 
1393 	i = rx_ring->next_to_clean;
1394 	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1395 	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1396 	buffer_info = &rx_ring->buffer_info[i];
1397 
1398 	while (staterr & E1000_RXD_STAT_DD) {
1399 		struct sk_buff *skb;
1400 
1401 		if (*work_done >= work_to_do)
1402 			break;
1403 		(*work_done)++;
1404 		rmb();	/* read descriptor and rx_buffer_info after status DD */
1405 
1406 		skb = buffer_info->skb;
1407 		buffer_info->skb = NULL;
1408 
1409 		++i;
1410 		if (i == rx_ring->count)
1411 			i = 0;
1412 		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1413 		prefetch(next_rxd);
1414 
1415 		next_buffer = &rx_ring->buffer_info[i];
1416 
1417 		cleaned = true;
1418 		cleaned_count++;
1419 		dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1420 			       DMA_FROM_DEVICE);
1421 		buffer_info->dma = 0;
1422 
1423 		length = le16_to_cpu(rx_desc->wb.upper.length);
1424 
1425 		/* errors is only valid for DD + EOP descriptors */
1426 		if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1427 			     (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK))) {
1428 			/* recycle both page and skb */
1429 			buffer_info->skb = skb;
1430 			/* an error means any chain goes out the window too */
1431 			if (rx_ring->rx_skb_top)
1432 				dev_kfree_skb_irq(rx_ring->rx_skb_top);
1433 			rx_ring->rx_skb_top = NULL;
1434 			goto next_desc;
1435 		}
1436 
1437 #define rxtop (rx_ring->rx_skb_top)
1438 		if (!(staterr & E1000_RXD_STAT_EOP)) {
1439 			/* this descriptor is only the beginning (or middle) */
1440 			if (!rxtop) {
1441 				/* this is the beginning of a chain */
1442 				rxtop = skb;
1443 				skb_fill_page_desc(rxtop, 0, buffer_info->page,
1444 				                   0, length);
1445 			} else {
1446 				/* this is the middle of a chain */
1447 				skb_fill_page_desc(rxtop,
1448 				    skb_shinfo(rxtop)->nr_frags,
1449 				    buffer_info->page, 0, length);
1450 				/* re-use the skb, only consumed the page */
1451 				buffer_info->skb = skb;
1452 			}
1453 			e1000_consume_page(buffer_info, rxtop, length);
1454 			goto next_desc;
1455 		} else {
1456 			if (rxtop) {
1457 				/* end of the chain */
1458 				skb_fill_page_desc(rxtop,
1459 				    skb_shinfo(rxtop)->nr_frags,
1460 				    buffer_info->page, 0, length);
1461 				/* re-use the current skb, we only consumed the
1462 				 * page */
1463 				buffer_info->skb = skb;
1464 				skb = rxtop;
1465 				rxtop = NULL;
1466 				e1000_consume_page(buffer_info, skb, length);
1467 			} else {
1468 				/* no chain, got EOP, this buf is the packet
1469 				 * copybreak to save the put_page/alloc_page */
1470 				if (length <= copybreak &&
1471 				    skb_tailroom(skb) >= length) {
1472 					u8 *vaddr;
1473 					vaddr = kmap_atomic(buffer_info->page,
1474 					                   KM_SKB_DATA_SOFTIRQ);
1475 					memcpy(skb_tail_pointer(skb), vaddr,
1476 					       length);
1477 					kunmap_atomic(vaddr,
1478 					              KM_SKB_DATA_SOFTIRQ);
1479 					/* re-use the page, so don't erase
1480 					 * buffer_info->page */
1481 					skb_put(skb, length);
1482 				} else {
1483 					skb_fill_page_desc(skb, 0,
1484 					                   buffer_info->page, 0,
1485 				                           length);
1486 					e1000_consume_page(buffer_info, skb,
1487 					                   length);
1488 				}
1489 			}
1490 		}
1491 
1492 		/* Receive Checksum Offload XXX recompute due to CRC strip? */
1493 		e1000_rx_checksum(adapter, staterr,
1494 				  le16_to_cpu(rx_desc->wb.lower.hi_dword.
1495 					      csum_ip.csum), skb);
1496 
1497 		/* probably a little skewed due to removing CRC */
1498 		total_rx_bytes += skb->len;
1499 		total_rx_packets++;
1500 
1501 		/* eth type trans needs skb->data to point to something */
1502 		if (!pskb_may_pull(skb, ETH_HLEN)) {
1503 			e_err("pskb_may_pull failed.\n");
1504 			dev_kfree_skb_irq(skb);
1505 			goto next_desc;
1506 		}
1507 
1508 		e1000_receive_skb(adapter, netdev, skb, staterr,
1509 				  rx_desc->wb.upper.vlan);
1510 
1511 next_desc:
1512 		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1513 
1514 		/* return some buffers to hardware, one at a time is too slow */
1515 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1516 			adapter->alloc_rx_buf(adapter, cleaned_count,
1517 					      GFP_ATOMIC);
1518 			cleaned_count = 0;
1519 		}
1520 
1521 		/* use prefetched values */
1522 		rx_desc = next_rxd;
1523 		buffer_info = next_buffer;
1524 
1525 		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1526 	}
1527 	rx_ring->next_to_clean = i;
1528 
1529 	cleaned_count = e1000_desc_unused(rx_ring);
1530 	if (cleaned_count)
1531 		adapter->alloc_rx_buf(adapter, cleaned_count, GFP_ATOMIC);
1532 
1533 	adapter->total_rx_bytes += total_rx_bytes;
1534 	adapter->total_rx_packets += total_rx_packets;
1535 	return cleaned;
1536 }
1537 
1538 /**
1539  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1540  * @adapter: board private structure
1541  **/
1542 static void e1000_clean_rx_ring(struct e1000_adapter *adapter)
1543 {
1544 	struct e1000_ring *rx_ring = adapter->rx_ring;
1545 	struct e1000_buffer *buffer_info;
1546 	struct e1000_ps_page *ps_page;
1547 	struct pci_dev *pdev = adapter->pdev;
1548 	unsigned int i, j;
1549 
1550 	/* Free all the Rx ring sk_buffs */
1551 	for (i = 0; i < rx_ring->count; i++) {
1552 		buffer_info = &rx_ring->buffer_info[i];
1553 		if (buffer_info->dma) {
1554 			if (adapter->clean_rx == e1000_clean_rx_irq)
1555 				dma_unmap_single(&pdev->dev, buffer_info->dma,
1556 						 adapter->rx_buffer_len,
1557 						 DMA_FROM_DEVICE);
1558 			else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1559 				dma_unmap_page(&pdev->dev, buffer_info->dma,
1560 				               PAGE_SIZE,
1561 					       DMA_FROM_DEVICE);
1562 			else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1563 				dma_unmap_single(&pdev->dev, buffer_info->dma,
1564 						 adapter->rx_ps_bsize0,
1565 						 DMA_FROM_DEVICE);
1566 			buffer_info->dma = 0;
1567 		}
1568 
1569 		if (buffer_info->page) {
1570 			put_page(buffer_info->page);
1571 			buffer_info->page = NULL;
1572 		}
1573 
1574 		if (buffer_info->skb) {
1575 			dev_kfree_skb(buffer_info->skb);
1576 			buffer_info->skb = NULL;
1577 		}
1578 
1579 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1580 			ps_page = &buffer_info->ps_pages[j];
1581 			if (!ps_page->page)
1582 				break;
1583 			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1584 				       DMA_FROM_DEVICE);
1585 			ps_page->dma = 0;
1586 			put_page(ps_page->page);
1587 			ps_page->page = NULL;
1588 		}
1589 	}
1590 
1591 	/* there also may be some cached data from a chained receive */
1592 	if (rx_ring->rx_skb_top) {
1593 		dev_kfree_skb(rx_ring->rx_skb_top);
1594 		rx_ring->rx_skb_top = NULL;
1595 	}
1596 
1597 	/* Zero out the descriptor ring */
1598 	memset(rx_ring->desc, 0, rx_ring->size);
1599 
1600 	rx_ring->next_to_clean = 0;
1601 	rx_ring->next_to_use = 0;
1602 	adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1603 
1604 	writel(0, adapter->hw.hw_addr + rx_ring->head);
1605 	writel(0, adapter->hw.hw_addr + rx_ring->tail);
1606 }
1607 
1608 static void e1000e_downshift_workaround(struct work_struct *work)
1609 {
1610 	struct e1000_adapter *adapter = container_of(work,
1611 					struct e1000_adapter, downshift_task);
1612 
1613 	if (test_bit(__E1000_DOWN, &adapter->state))
1614 		return;
1615 
1616 	e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1617 }
1618 
1619 /**
1620  * e1000_intr_msi - Interrupt Handler
1621  * @irq: interrupt number
1622  * @data: pointer to a network interface device structure
1623  **/
1624 static irqreturn_t e1000_intr_msi(int irq, void *data)
1625 {
1626 	struct net_device *netdev = data;
1627 	struct e1000_adapter *adapter = netdev_priv(netdev);
1628 	struct e1000_hw *hw = &adapter->hw;
1629 	u32 icr = er32(ICR);
1630 
1631 	/*
1632 	 * read ICR disables interrupts using IAM
1633 	 */
1634 
1635 	if (icr & E1000_ICR_LSC) {
1636 		hw->mac.get_link_status = 1;
1637 		/*
1638 		 * ICH8 workaround-- Call gig speed drop workaround on cable
1639 		 * disconnect (LSC) before accessing any PHY registers
1640 		 */
1641 		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1642 		    (!(er32(STATUS) & E1000_STATUS_LU)))
1643 			schedule_work(&adapter->downshift_task);
1644 
1645 		/*
1646 		 * 80003ES2LAN workaround-- For packet buffer work-around on
1647 		 * link down event; disable receives here in the ISR and reset
1648 		 * adapter in watchdog
1649 		 */
1650 		if (netif_carrier_ok(netdev) &&
1651 		    adapter->flags & FLAG_RX_NEEDS_RESTART) {
1652 			/* disable receives */
1653 			u32 rctl = er32(RCTL);
1654 			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1655 			adapter->flags |= FLAG_RX_RESTART_NOW;
1656 		}
1657 		/* guard against interrupt when we're going down */
1658 		if (!test_bit(__E1000_DOWN, &adapter->state))
1659 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1660 	}
1661 
1662 	if (napi_schedule_prep(&adapter->napi)) {
1663 		adapter->total_tx_bytes = 0;
1664 		adapter->total_tx_packets = 0;
1665 		adapter->total_rx_bytes = 0;
1666 		adapter->total_rx_packets = 0;
1667 		__napi_schedule(&adapter->napi);
1668 	}
1669 
1670 	return IRQ_HANDLED;
1671 }
1672 
1673 /**
1674  * e1000_intr - Interrupt Handler
1675  * @irq: interrupt number
1676  * @data: pointer to a network interface device structure
1677  **/
1678 static irqreturn_t e1000_intr(int irq, void *data)
1679 {
1680 	struct net_device *netdev = data;
1681 	struct e1000_adapter *adapter = netdev_priv(netdev);
1682 	struct e1000_hw *hw = &adapter->hw;
1683 	u32 rctl, icr = er32(ICR);
1684 
1685 	if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1686 		return IRQ_NONE;  /* Not our interrupt */
1687 
1688 	/*
1689 	 * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1690 	 * not set, then the adapter didn't send an interrupt
1691 	 */
1692 	if (!(icr & E1000_ICR_INT_ASSERTED))
1693 		return IRQ_NONE;
1694 
1695 	/*
1696 	 * Interrupt Auto-Mask...upon reading ICR,
1697 	 * interrupts are masked.  No need for the
1698 	 * IMC write
1699 	 */
1700 
1701 	if (icr & E1000_ICR_LSC) {
1702 		hw->mac.get_link_status = 1;
1703 		/*
1704 		 * ICH8 workaround-- Call gig speed drop workaround on cable
1705 		 * disconnect (LSC) before accessing any PHY registers
1706 		 */
1707 		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1708 		    (!(er32(STATUS) & E1000_STATUS_LU)))
1709 			schedule_work(&adapter->downshift_task);
1710 
1711 		/*
1712 		 * 80003ES2LAN workaround--
1713 		 * For packet buffer work-around on link down event;
1714 		 * disable receives here in the ISR and
1715 		 * reset adapter in watchdog
1716 		 */
1717 		if (netif_carrier_ok(netdev) &&
1718 		    (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1719 			/* disable receives */
1720 			rctl = er32(RCTL);
1721 			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1722 			adapter->flags |= FLAG_RX_RESTART_NOW;
1723 		}
1724 		/* guard against interrupt when we're going down */
1725 		if (!test_bit(__E1000_DOWN, &adapter->state))
1726 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1727 	}
1728 
1729 	if (napi_schedule_prep(&adapter->napi)) {
1730 		adapter->total_tx_bytes = 0;
1731 		adapter->total_tx_packets = 0;
1732 		adapter->total_rx_bytes = 0;
1733 		adapter->total_rx_packets = 0;
1734 		__napi_schedule(&adapter->napi);
1735 	}
1736 
1737 	return IRQ_HANDLED;
1738 }
1739 
1740 static irqreturn_t e1000_msix_other(int irq, void *data)
1741 {
1742 	struct net_device *netdev = data;
1743 	struct e1000_adapter *adapter = netdev_priv(netdev);
1744 	struct e1000_hw *hw = &adapter->hw;
1745 	u32 icr = er32(ICR);
1746 
1747 	if (!(icr & E1000_ICR_INT_ASSERTED)) {
1748 		if (!test_bit(__E1000_DOWN, &adapter->state))
1749 			ew32(IMS, E1000_IMS_OTHER);
1750 		return IRQ_NONE;
1751 	}
1752 
1753 	if (icr & adapter->eiac_mask)
1754 		ew32(ICS, (icr & adapter->eiac_mask));
1755 
1756 	if (icr & E1000_ICR_OTHER) {
1757 		if (!(icr & E1000_ICR_LSC))
1758 			goto no_link_interrupt;
1759 		hw->mac.get_link_status = 1;
1760 		/* guard against interrupt when we're going down */
1761 		if (!test_bit(__E1000_DOWN, &adapter->state))
1762 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1763 	}
1764 
1765 no_link_interrupt:
1766 	if (!test_bit(__E1000_DOWN, &adapter->state))
1767 		ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1768 
1769 	return IRQ_HANDLED;
1770 }
1771 
1772 
1773 static irqreturn_t e1000_intr_msix_tx(int irq, void *data)
1774 {
1775 	struct net_device *netdev = data;
1776 	struct e1000_adapter *adapter = netdev_priv(netdev);
1777 	struct e1000_hw *hw = &adapter->hw;
1778 	struct e1000_ring *tx_ring = adapter->tx_ring;
1779 
1780 
1781 	adapter->total_tx_bytes = 0;
1782 	adapter->total_tx_packets = 0;
1783 
1784 	if (!e1000_clean_tx_irq(adapter))
1785 		/* Ring was not completely cleaned, so fire another interrupt */
1786 		ew32(ICS, tx_ring->ims_val);
1787 
1788 	return IRQ_HANDLED;
1789 }
1790 
1791 static irqreturn_t e1000_intr_msix_rx(int irq, void *data)
1792 {
1793 	struct net_device *netdev = data;
1794 	struct e1000_adapter *adapter = netdev_priv(netdev);
1795 
1796 	/* Write the ITR value calculated at the end of the
1797 	 * previous interrupt.
1798 	 */
1799 	if (adapter->rx_ring->set_itr) {
1800 		writel(1000000000 / (adapter->rx_ring->itr_val * 256),
1801 		       adapter->hw.hw_addr + adapter->rx_ring->itr_register);
1802 		adapter->rx_ring->set_itr = 0;
1803 	}
1804 
1805 	if (napi_schedule_prep(&adapter->napi)) {
1806 		adapter->total_rx_bytes = 0;
1807 		adapter->total_rx_packets = 0;
1808 		__napi_schedule(&adapter->napi);
1809 	}
1810 	return IRQ_HANDLED;
1811 }
1812 
1813 /**
1814  * e1000_configure_msix - Configure MSI-X hardware
1815  *
1816  * e1000_configure_msix sets up the hardware to properly
1817  * generate MSI-X interrupts.
1818  **/
1819 static void e1000_configure_msix(struct e1000_adapter *adapter)
1820 {
1821 	struct e1000_hw *hw = &adapter->hw;
1822 	struct e1000_ring *rx_ring = adapter->rx_ring;
1823 	struct e1000_ring *tx_ring = adapter->tx_ring;
1824 	int vector = 0;
1825 	u32 ctrl_ext, ivar = 0;
1826 
1827 	adapter->eiac_mask = 0;
1828 
1829 	/* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1830 	if (hw->mac.type == e1000_82574) {
1831 		u32 rfctl = er32(RFCTL);
1832 		rfctl |= E1000_RFCTL_ACK_DIS;
1833 		ew32(RFCTL, rfctl);
1834 	}
1835 
1836 #define E1000_IVAR_INT_ALLOC_VALID	0x8
1837 	/* Configure Rx vector */
1838 	rx_ring->ims_val = E1000_IMS_RXQ0;
1839 	adapter->eiac_mask |= rx_ring->ims_val;
1840 	if (rx_ring->itr_val)
1841 		writel(1000000000 / (rx_ring->itr_val * 256),
1842 		       hw->hw_addr + rx_ring->itr_register);
1843 	else
1844 		writel(1, hw->hw_addr + rx_ring->itr_register);
1845 	ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1846 
1847 	/* Configure Tx vector */
1848 	tx_ring->ims_val = E1000_IMS_TXQ0;
1849 	vector++;
1850 	if (tx_ring->itr_val)
1851 		writel(1000000000 / (tx_ring->itr_val * 256),
1852 		       hw->hw_addr + tx_ring->itr_register);
1853 	else
1854 		writel(1, hw->hw_addr + tx_ring->itr_register);
1855 	adapter->eiac_mask |= tx_ring->ims_val;
1856 	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
1857 
1858 	/* set vector for Other Causes, e.g. link changes */
1859 	vector++;
1860 	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
1861 	if (rx_ring->itr_val)
1862 		writel(1000000000 / (rx_ring->itr_val * 256),
1863 		       hw->hw_addr + E1000_EITR_82574(vector));
1864 	else
1865 		writel(1, hw->hw_addr + E1000_EITR_82574(vector));
1866 
1867 	/* Cause Tx interrupts on every write back */
1868 	ivar |= (1 << 31);
1869 
1870 	ew32(IVAR, ivar);
1871 
1872 	/* enable MSI-X PBA support */
1873 	ctrl_ext = er32(CTRL_EXT);
1874 	ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
1875 
1876 	/* Auto-Mask Other interrupts upon ICR read */
1877 #define E1000_EIAC_MASK_82574   0x01F00000
1878 	ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
1879 	ctrl_ext |= E1000_CTRL_EXT_EIAME;
1880 	ew32(CTRL_EXT, ctrl_ext);
1881 	e1e_flush();
1882 }
1883 
1884 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
1885 {
1886 	if (adapter->msix_entries) {
1887 		pci_disable_msix(adapter->pdev);
1888 		kfree(adapter->msix_entries);
1889 		adapter->msix_entries = NULL;
1890 	} else if (adapter->flags & FLAG_MSI_ENABLED) {
1891 		pci_disable_msi(adapter->pdev);
1892 		adapter->flags &= ~FLAG_MSI_ENABLED;
1893 	}
1894 }
1895 
1896 /**
1897  * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
1898  *
1899  * Attempt to configure interrupts using the best available
1900  * capabilities of the hardware and kernel.
1901  **/
1902 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
1903 {
1904 	int err;
1905 	int i;
1906 
1907 	switch (adapter->int_mode) {
1908 	case E1000E_INT_MODE_MSIX:
1909 		if (adapter->flags & FLAG_HAS_MSIX) {
1910 			adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
1911 			adapter->msix_entries = kcalloc(adapter->num_vectors,
1912 						      sizeof(struct msix_entry),
1913 						      GFP_KERNEL);
1914 			if (adapter->msix_entries) {
1915 				for (i = 0; i < adapter->num_vectors; i++)
1916 					adapter->msix_entries[i].entry = i;
1917 
1918 				err = pci_enable_msix(adapter->pdev,
1919 						      adapter->msix_entries,
1920 						      adapter->num_vectors);
1921 				if (err == 0)
1922 					return;
1923 			}
1924 			/* MSI-X failed, so fall through and try MSI */
1925 			e_err("Failed to initialize MSI-X interrupts.  Falling back to MSI interrupts.\n");
1926 			e1000e_reset_interrupt_capability(adapter);
1927 		}
1928 		adapter->int_mode = E1000E_INT_MODE_MSI;
1929 		/* Fall through */
1930 	case E1000E_INT_MODE_MSI:
1931 		if (!pci_enable_msi(adapter->pdev)) {
1932 			adapter->flags |= FLAG_MSI_ENABLED;
1933 		} else {
1934 			adapter->int_mode = E1000E_INT_MODE_LEGACY;
1935 			e_err("Failed to initialize MSI interrupts.  Falling back to legacy interrupts.\n");
1936 		}
1937 		/* Fall through */
1938 	case E1000E_INT_MODE_LEGACY:
1939 		/* Don't do anything; this is the system default */
1940 		break;
1941 	}
1942 
1943 	/* store the number of vectors being used */
1944 	adapter->num_vectors = 1;
1945 }
1946 
1947 /**
1948  * e1000_request_msix - Initialize MSI-X interrupts
1949  *
1950  * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
1951  * kernel.
1952  **/
1953 static int e1000_request_msix(struct e1000_adapter *adapter)
1954 {
1955 	struct net_device *netdev = adapter->netdev;
1956 	int err = 0, vector = 0;
1957 
1958 	if (strlen(netdev->name) < (IFNAMSIZ - 5))
1959 		snprintf(adapter->rx_ring->name,
1960 			 sizeof(adapter->rx_ring->name) - 1,
1961 			 "%s-rx-0", netdev->name);
1962 	else
1963 		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1964 	err = request_irq(adapter->msix_entries[vector].vector,
1965 			  e1000_intr_msix_rx, 0, adapter->rx_ring->name,
1966 			  netdev);
1967 	if (err)
1968 		goto out;
1969 	adapter->rx_ring->itr_register = E1000_EITR_82574(vector);
1970 	adapter->rx_ring->itr_val = adapter->itr;
1971 	vector++;
1972 
1973 	if (strlen(netdev->name) < (IFNAMSIZ - 5))
1974 		snprintf(adapter->tx_ring->name,
1975 			 sizeof(adapter->tx_ring->name) - 1,
1976 			 "%s-tx-0", netdev->name);
1977 	else
1978 		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1979 	err = request_irq(adapter->msix_entries[vector].vector,
1980 			  e1000_intr_msix_tx, 0, adapter->tx_ring->name,
1981 			  netdev);
1982 	if (err)
1983 		goto out;
1984 	adapter->tx_ring->itr_register = E1000_EITR_82574(vector);
1985 	adapter->tx_ring->itr_val = adapter->itr;
1986 	vector++;
1987 
1988 	err = request_irq(adapter->msix_entries[vector].vector,
1989 			  e1000_msix_other, 0, netdev->name, netdev);
1990 	if (err)
1991 		goto out;
1992 
1993 	e1000_configure_msix(adapter);
1994 	return 0;
1995 out:
1996 	return err;
1997 }
1998 
1999 /**
2000  * e1000_request_irq - initialize interrupts
2001  *
2002  * Attempts to configure interrupts using the best available
2003  * capabilities of the hardware and kernel.
2004  **/
2005 static int e1000_request_irq(struct e1000_adapter *adapter)
2006 {
2007 	struct net_device *netdev = adapter->netdev;
2008 	int err;
2009 
2010 	if (adapter->msix_entries) {
2011 		err = e1000_request_msix(adapter);
2012 		if (!err)
2013 			return err;
2014 		/* fall back to MSI */
2015 		e1000e_reset_interrupt_capability(adapter);
2016 		adapter->int_mode = E1000E_INT_MODE_MSI;
2017 		e1000e_set_interrupt_capability(adapter);
2018 	}
2019 	if (adapter->flags & FLAG_MSI_ENABLED) {
2020 		err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2021 				  netdev->name, netdev);
2022 		if (!err)
2023 			return err;
2024 
2025 		/* fall back to legacy interrupt */
2026 		e1000e_reset_interrupt_capability(adapter);
2027 		adapter->int_mode = E1000E_INT_MODE_LEGACY;
2028 	}
2029 
2030 	err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2031 			  netdev->name, netdev);
2032 	if (err)
2033 		e_err("Unable to allocate interrupt, Error: %d\n", err);
2034 
2035 	return err;
2036 }
2037 
2038 static void e1000_free_irq(struct e1000_adapter *adapter)
2039 {
2040 	struct net_device *netdev = adapter->netdev;
2041 
2042 	if (adapter->msix_entries) {
2043 		int vector = 0;
2044 
2045 		free_irq(adapter->msix_entries[vector].vector, netdev);
2046 		vector++;
2047 
2048 		free_irq(adapter->msix_entries[vector].vector, netdev);
2049 		vector++;
2050 
2051 		/* Other Causes interrupt vector */
2052 		free_irq(adapter->msix_entries[vector].vector, netdev);
2053 		return;
2054 	}
2055 
2056 	free_irq(adapter->pdev->irq, netdev);
2057 }
2058 
2059 /**
2060  * e1000_irq_disable - Mask off interrupt generation on the NIC
2061  **/
2062 static void e1000_irq_disable(struct e1000_adapter *adapter)
2063 {
2064 	struct e1000_hw *hw = &adapter->hw;
2065 
2066 	ew32(IMC, ~0);
2067 	if (adapter->msix_entries)
2068 		ew32(EIAC_82574, 0);
2069 	e1e_flush();
2070 
2071 	if (adapter->msix_entries) {
2072 		int i;
2073 		for (i = 0; i < adapter->num_vectors; i++)
2074 			synchronize_irq(adapter->msix_entries[i].vector);
2075 	} else {
2076 		synchronize_irq(adapter->pdev->irq);
2077 	}
2078 }
2079 
2080 /**
2081  * e1000_irq_enable - Enable default interrupt generation settings
2082  **/
2083 static void e1000_irq_enable(struct e1000_adapter *adapter)
2084 {
2085 	struct e1000_hw *hw = &adapter->hw;
2086 
2087 	if (adapter->msix_entries) {
2088 		ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2089 		ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
2090 	} else {
2091 		ew32(IMS, IMS_ENABLE_MASK);
2092 	}
2093 	e1e_flush();
2094 }
2095 
2096 /**
2097  * e1000e_get_hw_control - get control of the h/w from f/w
2098  * @adapter: address of board private structure
2099  *
2100  * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2101  * For ASF and Pass Through versions of f/w this means that
2102  * the driver is loaded. For AMT version (only with 82573)
2103  * of the f/w this means that the network i/f is open.
2104  **/
2105 void e1000e_get_hw_control(struct e1000_adapter *adapter)
2106 {
2107 	struct e1000_hw *hw = &adapter->hw;
2108 	u32 ctrl_ext;
2109 	u32 swsm;
2110 
2111 	/* Let firmware know the driver has taken over */
2112 	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2113 		swsm = er32(SWSM);
2114 		ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2115 	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2116 		ctrl_ext = er32(CTRL_EXT);
2117 		ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2118 	}
2119 }
2120 
2121 /**
2122  * e1000e_release_hw_control - release control of the h/w to f/w
2123  * @adapter: address of board private structure
2124  *
2125  * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2126  * For ASF and Pass Through versions of f/w this means that the
2127  * driver is no longer loaded. For AMT version (only with 82573) i
2128  * of the f/w this means that the network i/f is closed.
2129  *
2130  **/
2131 void e1000e_release_hw_control(struct e1000_adapter *adapter)
2132 {
2133 	struct e1000_hw *hw = &adapter->hw;
2134 	u32 ctrl_ext;
2135 	u32 swsm;
2136 
2137 	/* Let firmware taken over control of h/w */
2138 	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2139 		swsm = er32(SWSM);
2140 		ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2141 	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2142 		ctrl_ext = er32(CTRL_EXT);
2143 		ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2144 	}
2145 }
2146 
2147 /**
2148  * @e1000_alloc_ring - allocate memory for a ring structure
2149  **/
2150 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2151 				struct e1000_ring *ring)
2152 {
2153 	struct pci_dev *pdev = adapter->pdev;
2154 
2155 	ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2156 					GFP_KERNEL);
2157 	if (!ring->desc)
2158 		return -ENOMEM;
2159 
2160 	return 0;
2161 }
2162 
2163 /**
2164  * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2165  * @adapter: board private structure
2166  *
2167  * Return 0 on success, negative on failure
2168  **/
2169 int e1000e_setup_tx_resources(struct e1000_adapter *adapter)
2170 {
2171 	struct e1000_ring *tx_ring = adapter->tx_ring;
2172 	int err = -ENOMEM, size;
2173 
2174 	size = sizeof(struct e1000_buffer) * tx_ring->count;
2175 	tx_ring->buffer_info = vzalloc(size);
2176 	if (!tx_ring->buffer_info)
2177 		goto err;
2178 
2179 	/* round up to nearest 4K */
2180 	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2181 	tx_ring->size = ALIGN(tx_ring->size, 4096);
2182 
2183 	err = e1000_alloc_ring_dma(adapter, tx_ring);
2184 	if (err)
2185 		goto err;
2186 
2187 	tx_ring->next_to_use = 0;
2188 	tx_ring->next_to_clean = 0;
2189 
2190 	return 0;
2191 err:
2192 	vfree(tx_ring->buffer_info);
2193 	e_err("Unable to allocate memory for the transmit descriptor ring\n");
2194 	return err;
2195 }
2196 
2197 /**
2198  * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2199  * @adapter: board private structure
2200  *
2201  * Returns 0 on success, negative on failure
2202  **/
2203 int e1000e_setup_rx_resources(struct e1000_adapter *adapter)
2204 {
2205 	struct e1000_ring *rx_ring = adapter->rx_ring;
2206 	struct e1000_buffer *buffer_info;
2207 	int i, size, desc_len, err = -ENOMEM;
2208 
2209 	size = sizeof(struct e1000_buffer) * rx_ring->count;
2210 	rx_ring->buffer_info = vzalloc(size);
2211 	if (!rx_ring->buffer_info)
2212 		goto err;
2213 
2214 	for (i = 0; i < rx_ring->count; i++) {
2215 		buffer_info = &rx_ring->buffer_info[i];
2216 		buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2217 						sizeof(struct e1000_ps_page),
2218 						GFP_KERNEL);
2219 		if (!buffer_info->ps_pages)
2220 			goto err_pages;
2221 	}
2222 
2223 	desc_len = sizeof(union e1000_rx_desc_packet_split);
2224 
2225 	/* Round up to nearest 4K */
2226 	rx_ring->size = rx_ring->count * desc_len;
2227 	rx_ring->size = ALIGN(rx_ring->size, 4096);
2228 
2229 	err = e1000_alloc_ring_dma(adapter, rx_ring);
2230 	if (err)
2231 		goto err_pages;
2232 
2233 	rx_ring->next_to_clean = 0;
2234 	rx_ring->next_to_use = 0;
2235 	rx_ring->rx_skb_top = NULL;
2236 
2237 	return 0;
2238 
2239 err_pages:
2240 	for (i = 0; i < rx_ring->count; i++) {
2241 		buffer_info = &rx_ring->buffer_info[i];
2242 		kfree(buffer_info->ps_pages);
2243 	}
2244 err:
2245 	vfree(rx_ring->buffer_info);
2246 	e_err("Unable to allocate memory for the receive descriptor ring\n");
2247 	return err;
2248 }
2249 
2250 /**
2251  * e1000_clean_tx_ring - Free Tx Buffers
2252  * @adapter: board private structure
2253  **/
2254 static void e1000_clean_tx_ring(struct e1000_adapter *adapter)
2255 {
2256 	struct e1000_ring *tx_ring = adapter->tx_ring;
2257 	struct e1000_buffer *buffer_info;
2258 	unsigned long size;
2259 	unsigned int i;
2260 
2261 	for (i = 0; i < tx_ring->count; i++) {
2262 		buffer_info = &tx_ring->buffer_info[i];
2263 		e1000_put_txbuf(adapter, buffer_info);
2264 	}
2265 
2266 	netdev_reset_queue(adapter->netdev);
2267 	size = sizeof(struct e1000_buffer) * tx_ring->count;
2268 	memset(tx_ring->buffer_info, 0, size);
2269 
2270 	memset(tx_ring->desc, 0, tx_ring->size);
2271 
2272 	tx_ring->next_to_use = 0;
2273 	tx_ring->next_to_clean = 0;
2274 
2275 	writel(0, adapter->hw.hw_addr + tx_ring->head);
2276 	writel(0, adapter->hw.hw_addr + tx_ring->tail);
2277 }
2278 
2279 /**
2280  * e1000e_free_tx_resources - Free Tx Resources per Queue
2281  * @adapter: board private structure
2282  *
2283  * Free all transmit software resources
2284  **/
2285 void e1000e_free_tx_resources(struct e1000_adapter *adapter)
2286 {
2287 	struct pci_dev *pdev = adapter->pdev;
2288 	struct e1000_ring *tx_ring = adapter->tx_ring;
2289 
2290 	e1000_clean_tx_ring(adapter);
2291 
2292 	vfree(tx_ring->buffer_info);
2293 	tx_ring->buffer_info = NULL;
2294 
2295 	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2296 			  tx_ring->dma);
2297 	tx_ring->desc = NULL;
2298 }
2299 
2300 /**
2301  * e1000e_free_rx_resources - Free Rx Resources
2302  * @adapter: board private structure
2303  *
2304  * Free all receive software resources
2305  **/
2306 
2307 void e1000e_free_rx_resources(struct e1000_adapter *adapter)
2308 {
2309 	struct pci_dev *pdev = adapter->pdev;
2310 	struct e1000_ring *rx_ring = adapter->rx_ring;
2311 	int i;
2312 
2313 	e1000_clean_rx_ring(adapter);
2314 
2315 	for (i = 0; i < rx_ring->count; i++)
2316 		kfree(rx_ring->buffer_info[i].ps_pages);
2317 
2318 	vfree(rx_ring->buffer_info);
2319 	rx_ring->buffer_info = NULL;
2320 
2321 	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2322 			  rx_ring->dma);
2323 	rx_ring->desc = NULL;
2324 }
2325 
2326 /**
2327  * e1000_update_itr - update the dynamic ITR value based on statistics
2328  * @adapter: pointer to adapter
2329  * @itr_setting: current adapter->itr
2330  * @packets: the number of packets during this measurement interval
2331  * @bytes: the number of bytes during this measurement interval
2332  *
2333  *      Stores a new ITR value based on packets and byte
2334  *      counts during the last interrupt.  The advantage of per interrupt
2335  *      computation is faster updates and more accurate ITR for the current
2336  *      traffic pattern.  Constants in this function were computed
2337  *      based on theoretical maximum wire speed and thresholds were set based
2338  *      on testing data as well as attempting to minimize response time
2339  *      while increasing bulk throughput.  This functionality is controlled
2340  *      by the InterruptThrottleRate module parameter.
2341  **/
2342 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2343 				     u16 itr_setting, int packets,
2344 				     int bytes)
2345 {
2346 	unsigned int retval = itr_setting;
2347 
2348 	if (packets == 0)
2349 		goto update_itr_done;
2350 
2351 	switch (itr_setting) {
2352 	case lowest_latency:
2353 		/* handle TSO and jumbo frames */
2354 		if (bytes/packets > 8000)
2355 			retval = bulk_latency;
2356 		else if ((packets < 5) && (bytes > 512))
2357 			retval = low_latency;
2358 		break;
2359 	case low_latency:  /* 50 usec aka 20000 ints/s */
2360 		if (bytes > 10000) {
2361 			/* this if handles the TSO accounting */
2362 			if (bytes/packets > 8000)
2363 				retval = bulk_latency;
2364 			else if ((packets < 10) || ((bytes/packets) > 1200))
2365 				retval = bulk_latency;
2366 			else if ((packets > 35))
2367 				retval = lowest_latency;
2368 		} else if (bytes/packets > 2000) {
2369 			retval = bulk_latency;
2370 		} else if (packets <= 2 && bytes < 512) {
2371 			retval = lowest_latency;
2372 		}
2373 		break;
2374 	case bulk_latency: /* 250 usec aka 4000 ints/s */
2375 		if (bytes > 25000) {
2376 			if (packets > 35)
2377 				retval = low_latency;
2378 		} else if (bytes < 6000) {
2379 			retval = low_latency;
2380 		}
2381 		break;
2382 	}
2383 
2384 update_itr_done:
2385 	return retval;
2386 }
2387 
2388 static void e1000_set_itr(struct e1000_adapter *adapter)
2389 {
2390 	struct e1000_hw *hw = &adapter->hw;
2391 	u16 current_itr;
2392 	u32 new_itr = adapter->itr;
2393 
2394 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2395 	if (adapter->link_speed != SPEED_1000) {
2396 		current_itr = 0;
2397 		new_itr = 4000;
2398 		goto set_itr_now;
2399 	}
2400 
2401 	if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2402 		new_itr = 0;
2403 		goto set_itr_now;
2404 	}
2405 
2406 	adapter->tx_itr = e1000_update_itr(adapter,
2407 				    adapter->tx_itr,
2408 				    adapter->total_tx_packets,
2409 				    adapter->total_tx_bytes);
2410 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2411 	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2412 		adapter->tx_itr = low_latency;
2413 
2414 	adapter->rx_itr = e1000_update_itr(adapter,
2415 				    adapter->rx_itr,
2416 				    adapter->total_rx_packets,
2417 				    adapter->total_rx_bytes);
2418 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2419 	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2420 		adapter->rx_itr = low_latency;
2421 
2422 	current_itr = max(adapter->rx_itr, adapter->tx_itr);
2423 
2424 	switch (current_itr) {
2425 	/* counts and packets in update_itr are dependent on these numbers */
2426 	case lowest_latency:
2427 		new_itr = 70000;
2428 		break;
2429 	case low_latency:
2430 		new_itr = 20000; /* aka hwitr = ~200 */
2431 		break;
2432 	case bulk_latency:
2433 		new_itr = 4000;
2434 		break;
2435 	default:
2436 		break;
2437 	}
2438 
2439 set_itr_now:
2440 	if (new_itr != adapter->itr) {
2441 		/*
2442 		 * this attempts to bias the interrupt rate towards Bulk
2443 		 * by adding intermediate steps when interrupt rate is
2444 		 * increasing
2445 		 */
2446 		new_itr = new_itr > adapter->itr ?
2447 			     min(adapter->itr + (new_itr >> 2), new_itr) :
2448 			     new_itr;
2449 		adapter->itr = new_itr;
2450 		adapter->rx_ring->itr_val = new_itr;
2451 		if (adapter->msix_entries)
2452 			adapter->rx_ring->set_itr = 1;
2453 		else
2454 			if (new_itr)
2455 				ew32(ITR, 1000000000 / (new_itr * 256));
2456 			else
2457 				ew32(ITR, 0);
2458 	}
2459 }
2460 
2461 /**
2462  * e1000_alloc_queues - Allocate memory for all rings
2463  * @adapter: board private structure to initialize
2464  **/
2465 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
2466 {
2467 	adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
2468 	if (!adapter->tx_ring)
2469 		goto err;
2470 
2471 	adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
2472 	if (!adapter->rx_ring)
2473 		goto err;
2474 
2475 	return 0;
2476 err:
2477 	e_err("Unable to allocate memory for queues\n");
2478 	kfree(adapter->rx_ring);
2479 	kfree(adapter->tx_ring);
2480 	return -ENOMEM;
2481 }
2482 
2483 /**
2484  * e1000_clean - NAPI Rx polling callback
2485  * @napi: struct associated with this polling callback
2486  * @budget: amount of packets driver is allowed to process this poll
2487  **/
2488 static int e1000_clean(struct napi_struct *napi, int budget)
2489 {
2490 	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
2491 	struct e1000_hw *hw = &adapter->hw;
2492 	struct net_device *poll_dev = adapter->netdev;
2493 	int tx_cleaned = 1, work_done = 0;
2494 
2495 	adapter = netdev_priv(poll_dev);
2496 
2497 	if (adapter->msix_entries &&
2498 	    !(adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2499 		goto clean_rx;
2500 
2501 	tx_cleaned = e1000_clean_tx_irq(adapter);
2502 
2503 clean_rx:
2504 	adapter->clean_rx(adapter, &work_done, budget);
2505 
2506 	if (!tx_cleaned)
2507 		work_done = budget;
2508 
2509 	/* If budget not fully consumed, exit the polling mode */
2510 	if (work_done < budget) {
2511 		if (adapter->itr_setting & 3)
2512 			e1000_set_itr(adapter);
2513 		napi_complete(napi);
2514 		if (!test_bit(__E1000_DOWN, &adapter->state)) {
2515 			if (adapter->msix_entries)
2516 				ew32(IMS, adapter->rx_ring->ims_val);
2517 			else
2518 				e1000_irq_enable(adapter);
2519 		}
2520 	}
2521 
2522 	return work_done;
2523 }
2524 
2525 static int e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
2526 {
2527 	struct e1000_adapter *adapter = netdev_priv(netdev);
2528 	struct e1000_hw *hw = &adapter->hw;
2529 	u32 vfta, index;
2530 
2531 	/* don't update vlan cookie if already programmed */
2532 	if ((adapter->hw.mng_cookie.status &
2533 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2534 	    (vid == adapter->mng_vlan_id))
2535 		return 0;
2536 
2537 	/* add VID to filter table */
2538 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2539 		index = (vid >> 5) & 0x7F;
2540 		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2541 		vfta |= (1 << (vid & 0x1F));
2542 		hw->mac.ops.write_vfta(hw, index, vfta);
2543 	}
2544 
2545 	set_bit(vid, adapter->active_vlans);
2546 
2547 	return 0;
2548 }
2549 
2550 static int e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
2551 {
2552 	struct e1000_adapter *adapter = netdev_priv(netdev);
2553 	struct e1000_hw *hw = &adapter->hw;
2554 	u32 vfta, index;
2555 
2556 	if ((adapter->hw.mng_cookie.status &
2557 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2558 	    (vid == adapter->mng_vlan_id)) {
2559 		/* release control to f/w */
2560 		e1000e_release_hw_control(adapter);
2561 		return 0;
2562 	}
2563 
2564 	/* remove VID from filter table */
2565 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2566 		index = (vid >> 5) & 0x7F;
2567 		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2568 		vfta &= ~(1 << (vid & 0x1F));
2569 		hw->mac.ops.write_vfta(hw, index, vfta);
2570 	}
2571 
2572 	clear_bit(vid, adapter->active_vlans);
2573 
2574 	return 0;
2575 }
2576 
2577 /**
2578  * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2579  * @adapter: board private structure to initialize
2580  **/
2581 static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2582 {
2583 	struct net_device *netdev = adapter->netdev;
2584 	struct e1000_hw *hw = &adapter->hw;
2585 	u32 rctl;
2586 
2587 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2588 		/* disable VLAN receive filtering */
2589 		rctl = er32(RCTL);
2590 		rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2591 		ew32(RCTL, rctl);
2592 
2593 		if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2594 			e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
2595 			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2596 		}
2597 	}
2598 }
2599 
2600 /**
2601  * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2602  * @adapter: board private structure to initialize
2603  **/
2604 static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2605 {
2606 	struct e1000_hw *hw = &adapter->hw;
2607 	u32 rctl;
2608 
2609 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2610 		/* enable VLAN receive filtering */
2611 		rctl = er32(RCTL);
2612 		rctl |= E1000_RCTL_VFE;
2613 		rctl &= ~E1000_RCTL_CFIEN;
2614 		ew32(RCTL, rctl);
2615 	}
2616 }
2617 
2618 /**
2619  * e1000e_vlan_strip_enable - helper to disable HW VLAN stripping
2620  * @adapter: board private structure to initialize
2621  **/
2622 static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2623 {
2624 	struct e1000_hw *hw = &adapter->hw;
2625 	u32 ctrl;
2626 
2627 	/* disable VLAN tag insert/strip */
2628 	ctrl = er32(CTRL);
2629 	ctrl &= ~E1000_CTRL_VME;
2630 	ew32(CTRL, ctrl);
2631 }
2632 
2633 /**
2634  * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2635  * @adapter: board private structure to initialize
2636  **/
2637 static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2638 {
2639 	struct e1000_hw *hw = &adapter->hw;
2640 	u32 ctrl;
2641 
2642 	/* enable VLAN tag insert/strip */
2643 	ctrl = er32(CTRL);
2644 	ctrl |= E1000_CTRL_VME;
2645 	ew32(CTRL, ctrl);
2646 }
2647 
2648 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2649 {
2650 	struct net_device *netdev = adapter->netdev;
2651 	u16 vid = adapter->hw.mng_cookie.vlan_id;
2652 	u16 old_vid = adapter->mng_vlan_id;
2653 
2654 	if (adapter->hw.mng_cookie.status &
2655 	    E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2656 		e1000_vlan_rx_add_vid(netdev, vid);
2657 		adapter->mng_vlan_id = vid;
2658 	}
2659 
2660 	if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2661 		e1000_vlan_rx_kill_vid(netdev, old_vid);
2662 }
2663 
2664 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2665 {
2666 	u16 vid;
2667 
2668 	e1000_vlan_rx_add_vid(adapter->netdev, 0);
2669 
2670 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2671 		e1000_vlan_rx_add_vid(adapter->netdev, vid);
2672 }
2673 
2674 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2675 {
2676 	struct e1000_hw *hw = &adapter->hw;
2677 	u32 manc, manc2h, mdef, i, j;
2678 
2679 	if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2680 		return;
2681 
2682 	manc = er32(MANC);
2683 
2684 	/*
2685 	 * enable receiving management packets to the host. this will probably
2686 	 * generate destination unreachable messages from the host OS, but
2687 	 * the packets will be handled on SMBUS
2688 	 */
2689 	manc |= E1000_MANC_EN_MNG2HOST;
2690 	manc2h = er32(MANC2H);
2691 
2692 	switch (hw->mac.type) {
2693 	default:
2694 		manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2695 		break;
2696 	case e1000_82574:
2697 	case e1000_82583:
2698 		/*
2699 		 * Check if IPMI pass-through decision filter already exists;
2700 		 * if so, enable it.
2701 		 */
2702 		for (i = 0, j = 0; i < 8; i++) {
2703 			mdef = er32(MDEF(i));
2704 
2705 			/* Ignore filters with anything other than IPMI ports */
2706 			if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2707 				continue;
2708 
2709 			/* Enable this decision filter in MANC2H */
2710 			if (mdef)
2711 				manc2h |= (1 << i);
2712 
2713 			j |= mdef;
2714 		}
2715 
2716 		if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2717 			break;
2718 
2719 		/* Create new decision filter in an empty filter */
2720 		for (i = 0, j = 0; i < 8; i++)
2721 			if (er32(MDEF(i)) == 0) {
2722 				ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2723 					       E1000_MDEF_PORT_664));
2724 				manc2h |= (1 << 1);
2725 				j++;
2726 				break;
2727 			}
2728 
2729 		if (!j)
2730 			e_warn("Unable to create IPMI pass-through filter\n");
2731 		break;
2732 	}
2733 
2734 	ew32(MANC2H, manc2h);
2735 	ew32(MANC, manc);
2736 }
2737 
2738 /**
2739  * e1000_configure_tx - Configure Transmit Unit after Reset
2740  * @adapter: board private structure
2741  *
2742  * Configure the Tx unit of the MAC after a reset.
2743  **/
2744 static void e1000_configure_tx(struct e1000_adapter *adapter)
2745 {
2746 	struct e1000_hw *hw = &adapter->hw;
2747 	struct e1000_ring *tx_ring = adapter->tx_ring;
2748 	u64 tdba;
2749 	u32 tdlen, tctl, tipg, tarc;
2750 	u32 ipgr1, ipgr2;
2751 
2752 	/* Setup the HW Tx Head and Tail descriptor pointers */
2753 	tdba = tx_ring->dma;
2754 	tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2755 	ew32(TDBAL, (tdba & DMA_BIT_MASK(32)));
2756 	ew32(TDBAH, (tdba >> 32));
2757 	ew32(TDLEN, tdlen);
2758 	ew32(TDH, 0);
2759 	ew32(TDT, 0);
2760 	tx_ring->head = E1000_TDH;
2761 	tx_ring->tail = E1000_TDT;
2762 
2763 	/* Set the default values for the Tx Inter Packet Gap timer */
2764 	tipg = DEFAULT_82543_TIPG_IPGT_COPPER;          /*  8  */
2765 	ipgr1 = DEFAULT_82543_TIPG_IPGR1;               /*  8  */
2766 	ipgr2 = DEFAULT_82543_TIPG_IPGR2;               /*  6  */
2767 
2768 	if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN)
2769 		ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /*  7  */
2770 
2771 	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
2772 	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
2773 	ew32(TIPG, tipg);
2774 
2775 	/* Set the Tx Interrupt Delay register */
2776 	ew32(TIDV, adapter->tx_int_delay);
2777 	/* Tx irq moderation */
2778 	ew32(TADV, adapter->tx_abs_int_delay);
2779 
2780 	if (adapter->flags2 & FLAG2_DMA_BURST) {
2781 		u32 txdctl = er32(TXDCTL(0));
2782 		txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2783 			    E1000_TXDCTL_WTHRESH);
2784 		/*
2785 		 * set up some performance related parameters to encourage the
2786 		 * hardware to use the bus more efficiently in bursts, depends
2787 		 * on the tx_int_delay to be enabled,
2788 		 * wthresh = 5 ==> burst write a cacheline (64 bytes) at a time
2789 		 * hthresh = 1 ==> prefetch when one or more available
2790 		 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2791 		 * BEWARE: this seems to work but should be considered first if
2792 		 * there are Tx hangs or other Tx related bugs
2793 		 */
2794 		txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2795 		ew32(TXDCTL(0), txdctl);
2796 		/* erratum work around: set txdctl the same for both queues */
2797 		ew32(TXDCTL(1), txdctl);
2798 	}
2799 
2800 	/* Program the Transmit Control Register */
2801 	tctl = er32(TCTL);
2802 	tctl &= ~E1000_TCTL_CT;
2803 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2804 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2805 
2806 	if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2807 		tarc = er32(TARC(0));
2808 		/*
2809 		 * set the speed mode bit, we'll clear it if we're not at
2810 		 * gigabit link later
2811 		 */
2812 #define SPEED_MODE_BIT (1 << 21)
2813 		tarc |= SPEED_MODE_BIT;
2814 		ew32(TARC(0), tarc);
2815 	}
2816 
2817 	/* errata: program both queues to unweighted RR */
2818 	if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2819 		tarc = er32(TARC(0));
2820 		tarc |= 1;
2821 		ew32(TARC(0), tarc);
2822 		tarc = er32(TARC(1));
2823 		tarc |= 1;
2824 		ew32(TARC(1), tarc);
2825 	}
2826 
2827 	/* Setup Transmit Descriptor Settings for eop descriptor */
2828 	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2829 
2830 	/* only set IDE if we are delaying interrupts using the timers */
2831 	if (adapter->tx_int_delay)
2832 		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2833 
2834 	/* enable Report Status bit */
2835 	adapter->txd_cmd |= E1000_TXD_CMD_RS;
2836 
2837 	ew32(TCTL, tctl);
2838 
2839 	e1000e_config_collision_dist(hw);
2840 }
2841 
2842 /**
2843  * e1000_setup_rctl - configure the receive control registers
2844  * @adapter: Board private structure
2845  **/
2846 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
2847 			   (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
2848 static void e1000_setup_rctl(struct e1000_adapter *adapter)
2849 {
2850 	struct e1000_hw *hw = &adapter->hw;
2851 	u32 rctl, rfctl;
2852 	u32 pages = 0;
2853 
2854 	/* Workaround Si errata on 82579 - configure jumbo frame flow */
2855 	if (hw->mac.type == e1000_pch2lan) {
2856 		s32 ret_val;
2857 
2858 		if (adapter->netdev->mtu > ETH_DATA_LEN)
2859 			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
2860 		else
2861 			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
2862 
2863 		if (ret_val)
2864 			e_dbg("failed to enable jumbo frame workaround mode\n");
2865 	}
2866 
2867 	/* Program MC offset vector base */
2868 	rctl = er32(RCTL);
2869 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2870 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
2871 		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
2872 		(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2873 
2874 	/* Do not Store bad packets */
2875 	rctl &= ~E1000_RCTL_SBP;
2876 
2877 	/* Enable Long Packet receive */
2878 	if (adapter->netdev->mtu <= ETH_DATA_LEN)
2879 		rctl &= ~E1000_RCTL_LPE;
2880 	else
2881 		rctl |= E1000_RCTL_LPE;
2882 
2883 	/* Some systems expect that the CRC is included in SMBUS traffic. The
2884 	 * hardware strips the CRC before sending to both SMBUS (BMC) and to
2885 	 * host memory when this is enabled
2886 	 */
2887 	if (adapter->flags2 & FLAG2_CRC_STRIPPING)
2888 		rctl |= E1000_RCTL_SECRC;
2889 
2890 	/* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
2891 	if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
2892 		u16 phy_data;
2893 
2894 		e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
2895 		phy_data &= 0xfff8;
2896 		phy_data |= (1 << 2);
2897 		e1e_wphy(hw, PHY_REG(770, 26), phy_data);
2898 
2899 		e1e_rphy(hw, 22, &phy_data);
2900 		phy_data &= 0x0fff;
2901 		phy_data |= (1 << 14);
2902 		e1e_wphy(hw, 0x10, 0x2823);
2903 		e1e_wphy(hw, 0x11, 0x0003);
2904 		e1e_wphy(hw, 22, phy_data);
2905 	}
2906 
2907 	/* Setup buffer sizes */
2908 	rctl &= ~E1000_RCTL_SZ_4096;
2909 	rctl |= E1000_RCTL_BSEX;
2910 	switch (adapter->rx_buffer_len) {
2911 	case 2048:
2912 	default:
2913 		rctl |= E1000_RCTL_SZ_2048;
2914 		rctl &= ~E1000_RCTL_BSEX;
2915 		break;
2916 	case 4096:
2917 		rctl |= E1000_RCTL_SZ_4096;
2918 		break;
2919 	case 8192:
2920 		rctl |= E1000_RCTL_SZ_8192;
2921 		break;
2922 	case 16384:
2923 		rctl |= E1000_RCTL_SZ_16384;
2924 		break;
2925 	}
2926 
2927 	/* Enable Extended Status in all Receive Descriptors */
2928 	rfctl = er32(RFCTL);
2929 	rfctl |= E1000_RFCTL_EXTEN;
2930 
2931 	/*
2932 	 * 82571 and greater support packet-split where the protocol
2933 	 * header is placed in skb->data and the packet data is
2934 	 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2935 	 * In the case of a non-split, skb->data is linearly filled,
2936 	 * followed by the page buffers.  Therefore, skb->data is
2937 	 * sized to hold the largest protocol header.
2938 	 *
2939 	 * allocations using alloc_page take too long for regular MTU
2940 	 * so only enable packet split for jumbo frames
2941 	 *
2942 	 * Using pages when the page size is greater than 16k wastes
2943 	 * a lot of memory, since we allocate 3 pages at all times
2944 	 * per packet.
2945 	 */
2946 	pages = PAGE_USE_COUNT(adapter->netdev->mtu);
2947 	if (!(adapter->flags & FLAG_HAS_ERT) && (pages <= 3) &&
2948 	    (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
2949 		adapter->rx_ps_pages = pages;
2950 	else
2951 		adapter->rx_ps_pages = 0;
2952 
2953 	if (adapter->rx_ps_pages) {
2954 		u32 psrctl = 0;
2955 
2956 		/*
2957 		 * disable packet split support for IPv6 extension headers,
2958 		 * because some malformed IPv6 headers can hang the Rx
2959 		 */
2960 		rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
2961 			  E1000_RFCTL_NEW_IPV6_EXT_DIS);
2962 
2963 		/* Enable Packet split descriptors */
2964 		rctl |= E1000_RCTL_DTYP_PS;
2965 
2966 		psrctl |= adapter->rx_ps_bsize0 >>
2967 			E1000_PSRCTL_BSIZE0_SHIFT;
2968 
2969 		switch (adapter->rx_ps_pages) {
2970 		case 3:
2971 			psrctl |= PAGE_SIZE <<
2972 				E1000_PSRCTL_BSIZE3_SHIFT;
2973 		case 2:
2974 			psrctl |= PAGE_SIZE <<
2975 				E1000_PSRCTL_BSIZE2_SHIFT;
2976 		case 1:
2977 			psrctl |= PAGE_SIZE >>
2978 				E1000_PSRCTL_BSIZE1_SHIFT;
2979 			break;
2980 		}
2981 
2982 		ew32(PSRCTL, psrctl);
2983 	}
2984 
2985 	ew32(RFCTL, rfctl);
2986 	ew32(RCTL, rctl);
2987 	/* just started the receive unit, no need to restart */
2988 	adapter->flags &= ~FLAG_RX_RESTART_NOW;
2989 }
2990 
2991 /**
2992  * e1000_configure_rx - Configure Receive Unit after Reset
2993  * @adapter: board private structure
2994  *
2995  * Configure the Rx unit of the MAC after a reset.
2996  **/
2997 static void e1000_configure_rx(struct e1000_adapter *adapter)
2998 {
2999 	struct e1000_hw *hw = &adapter->hw;
3000 	struct e1000_ring *rx_ring = adapter->rx_ring;
3001 	u64 rdba;
3002 	u32 rdlen, rctl, rxcsum, ctrl_ext;
3003 
3004 	if (adapter->rx_ps_pages) {
3005 		/* this is a 32 byte descriptor */
3006 		rdlen = rx_ring->count *
3007 		    sizeof(union e1000_rx_desc_packet_split);
3008 		adapter->clean_rx = e1000_clean_rx_irq_ps;
3009 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3010 	} else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3011 		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3012 		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3013 		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3014 	} else {
3015 		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3016 		adapter->clean_rx = e1000_clean_rx_irq;
3017 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3018 	}
3019 
3020 	/* disable receives while setting up the descriptors */
3021 	rctl = er32(RCTL);
3022 	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3023 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
3024 	e1e_flush();
3025 	usleep_range(10000, 20000);
3026 
3027 	if (adapter->flags2 & FLAG2_DMA_BURST) {
3028 		/*
3029 		 * set the writeback threshold (only takes effect if the RDTR
3030 		 * is set). set GRAN=1 and write back up to 0x4 worth, and
3031 		 * enable prefetching of 0x20 Rx descriptors
3032 		 * granularity = 01
3033 		 * wthresh = 04,
3034 		 * hthresh = 04,
3035 		 * pthresh = 0x20
3036 		 */
3037 		ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3038 		ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3039 
3040 		/*
3041 		 * override the delay timers for enabling bursting, only if
3042 		 * the value was not set by the user via module options
3043 		 */
3044 		if (adapter->rx_int_delay == DEFAULT_RDTR)
3045 			adapter->rx_int_delay = BURST_RDTR;
3046 		if (adapter->rx_abs_int_delay == DEFAULT_RADV)
3047 			adapter->rx_abs_int_delay = BURST_RADV;
3048 	}
3049 
3050 	/* set the Receive Delay Timer Register */
3051 	ew32(RDTR, adapter->rx_int_delay);
3052 
3053 	/* irq moderation */
3054 	ew32(RADV, adapter->rx_abs_int_delay);
3055 	if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3056 		ew32(ITR, 1000000000 / (adapter->itr * 256));
3057 
3058 	ctrl_ext = er32(CTRL_EXT);
3059 	/* Auto-Mask interrupts upon ICR access */
3060 	ctrl_ext |= E1000_CTRL_EXT_IAME;
3061 	ew32(IAM, 0xffffffff);
3062 	ew32(CTRL_EXT, ctrl_ext);
3063 	e1e_flush();
3064 
3065 	/*
3066 	 * Setup the HW Rx Head and Tail Descriptor Pointers and
3067 	 * the Base and Length of the Rx Descriptor Ring
3068 	 */
3069 	rdba = rx_ring->dma;
3070 	ew32(RDBAL, (rdba & DMA_BIT_MASK(32)));
3071 	ew32(RDBAH, (rdba >> 32));
3072 	ew32(RDLEN, rdlen);
3073 	ew32(RDH, 0);
3074 	ew32(RDT, 0);
3075 	rx_ring->head = E1000_RDH;
3076 	rx_ring->tail = E1000_RDT;
3077 
3078 	/* Enable Receive Checksum Offload for TCP and UDP */
3079 	rxcsum = er32(RXCSUM);
3080 	if (adapter->netdev->features & NETIF_F_RXCSUM) {
3081 		rxcsum |= E1000_RXCSUM_TUOFL;
3082 
3083 		/*
3084 		 * IPv4 payload checksum for UDP fragments must be
3085 		 * used in conjunction with packet-split.
3086 		 */
3087 		if (adapter->rx_ps_pages)
3088 			rxcsum |= E1000_RXCSUM_IPPCSE;
3089 	} else {
3090 		rxcsum &= ~E1000_RXCSUM_TUOFL;
3091 		/* no need to clear IPPCSE as it defaults to 0 */
3092 	}
3093 	ew32(RXCSUM, rxcsum);
3094 
3095 	/*
3096 	 * Enable early receives on supported devices, only takes effect when
3097 	 * packet size is equal or larger than the specified value (in 8 byte
3098 	 * units), e.g. using jumbo frames when setting to E1000_ERT_2048
3099 	 */
3100 	if ((adapter->flags & FLAG_HAS_ERT) ||
3101 	    (adapter->hw.mac.type == e1000_pch2lan)) {
3102 		if (adapter->netdev->mtu > ETH_DATA_LEN) {
3103 			u32 rxdctl = er32(RXDCTL(0));
3104 			ew32(RXDCTL(0), rxdctl | 0x3);
3105 			if (adapter->flags & FLAG_HAS_ERT)
3106 				ew32(ERT, E1000_ERT_2048 | (1 << 13));
3107 			/*
3108 			 * With jumbo frames and early-receive enabled,
3109 			 * excessive C-state transition latencies result in
3110 			 * dropped transactions.
3111 			 */
3112 			pm_qos_update_request(&adapter->netdev->pm_qos_req, 55);
3113 		} else {
3114 			pm_qos_update_request(&adapter->netdev->pm_qos_req,
3115 					      PM_QOS_DEFAULT_VALUE);
3116 		}
3117 	}
3118 
3119 	/* Enable Receives */
3120 	ew32(RCTL, rctl);
3121 }
3122 
3123 /**
3124  * e1000e_write_mc_addr_list - write multicast addresses to MTA
3125  * @netdev: network interface device structure
3126  *
3127  * Writes multicast address list to the MTA hash table.
3128  * Returns: -ENOMEM on failure
3129  *                0 on no addresses written
3130  *                X on writing X addresses to MTA
3131  */
3132 static int e1000e_write_mc_addr_list(struct net_device *netdev)
3133 {
3134 	struct e1000_adapter *adapter = netdev_priv(netdev);
3135 	struct e1000_hw *hw = &adapter->hw;
3136 	struct netdev_hw_addr *ha;
3137 	u8 *mta_list;
3138 	int i;
3139 
3140 	if (netdev_mc_empty(netdev)) {
3141 		/* nothing to program, so clear mc list */
3142 		hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3143 		return 0;
3144 	}
3145 
3146 	mta_list = kzalloc(netdev_mc_count(netdev) * ETH_ALEN, GFP_ATOMIC);
3147 	if (!mta_list)
3148 		return -ENOMEM;
3149 
3150 	/* update_mc_addr_list expects a packed array of only addresses. */
3151 	i = 0;
3152 	netdev_for_each_mc_addr(ha, netdev)
3153 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3154 
3155 	hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3156 	kfree(mta_list);
3157 
3158 	return netdev_mc_count(netdev);
3159 }
3160 
3161 /**
3162  * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3163  * @netdev: network interface device structure
3164  *
3165  * Writes unicast address list to the RAR table.
3166  * Returns: -ENOMEM on failure/insufficient address space
3167  *                0 on no addresses written
3168  *                X on writing X addresses to the RAR table
3169  **/
3170 static int e1000e_write_uc_addr_list(struct net_device *netdev)
3171 {
3172 	struct e1000_adapter *adapter = netdev_priv(netdev);
3173 	struct e1000_hw *hw = &adapter->hw;
3174 	unsigned int rar_entries = hw->mac.rar_entry_count;
3175 	int count = 0;
3176 
3177 	/* save a rar entry for our hardware address */
3178 	rar_entries--;
3179 
3180 	/* save a rar entry for the LAA workaround */
3181 	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3182 		rar_entries--;
3183 
3184 	/* return ENOMEM indicating insufficient memory for addresses */
3185 	if (netdev_uc_count(netdev) > rar_entries)
3186 		return -ENOMEM;
3187 
3188 	if (!netdev_uc_empty(netdev) && rar_entries) {
3189 		struct netdev_hw_addr *ha;
3190 
3191 		/*
3192 		 * write the addresses in reverse order to avoid write
3193 		 * combining
3194 		 */
3195 		netdev_for_each_uc_addr(ha, netdev) {
3196 			if (!rar_entries)
3197 				break;
3198 			e1000e_rar_set(hw, ha->addr, rar_entries--);
3199 			count++;
3200 		}
3201 	}
3202 
3203 	/* zero out the remaining RAR entries not used above */
3204 	for (; rar_entries > 0; rar_entries--) {
3205 		ew32(RAH(rar_entries), 0);
3206 		ew32(RAL(rar_entries), 0);
3207 	}
3208 	e1e_flush();
3209 
3210 	return count;
3211 }
3212 
3213 /**
3214  * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3215  * @netdev: network interface device structure
3216  *
3217  * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3218  * address list or the network interface flags are updated.  This routine is
3219  * responsible for configuring the hardware for proper unicast, multicast,
3220  * promiscuous mode, and all-multi behavior.
3221  **/
3222 static void e1000e_set_rx_mode(struct net_device *netdev)
3223 {
3224 	struct e1000_adapter *adapter = netdev_priv(netdev);
3225 	struct e1000_hw *hw = &adapter->hw;
3226 	u32 rctl;
3227 
3228 	/* Check for Promiscuous and All Multicast modes */
3229 	rctl = er32(RCTL);
3230 
3231 	/* clear the affected bits */
3232 	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3233 
3234 	if (netdev->flags & IFF_PROMISC) {
3235 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3236 		/* Do not hardware filter VLANs in promisc mode */
3237 		e1000e_vlan_filter_disable(adapter);
3238 	} else {
3239 		int count;
3240 		if (netdev->flags & IFF_ALLMULTI) {
3241 			rctl |= E1000_RCTL_MPE;
3242 		} else {
3243 			/*
3244 			 * Write addresses to the MTA, if the attempt fails
3245 			 * then we should just turn on promiscuous mode so
3246 			 * that we can at least receive multicast traffic
3247 			 */
3248 			count = e1000e_write_mc_addr_list(netdev);
3249 			if (count < 0)
3250 				rctl |= E1000_RCTL_MPE;
3251 		}
3252 		e1000e_vlan_filter_enable(adapter);
3253 		/*
3254 		 * Write addresses to available RAR registers, if there is not
3255 		 * sufficient space to store all the addresses then enable
3256 		 * unicast promiscuous mode
3257 		 */
3258 		count = e1000e_write_uc_addr_list(netdev);
3259 		if (count < 0)
3260 			rctl |= E1000_RCTL_UPE;
3261 	}
3262 
3263 	ew32(RCTL, rctl);
3264 
3265 	if (netdev->features & NETIF_F_HW_VLAN_RX)
3266 		e1000e_vlan_strip_enable(adapter);
3267 	else
3268 		e1000e_vlan_strip_disable(adapter);
3269 }
3270 
3271 /**
3272  * e1000_configure - configure the hardware for Rx and Tx
3273  * @adapter: private board structure
3274  **/
3275 static void e1000_configure(struct e1000_adapter *adapter)
3276 {
3277 	e1000e_set_rx_mode(adapter->netdev);
3278 
3279 	e1000_restore_vlan(adapter);
3280 	e1000_init_manageability_pt(adapter);
3281 
3282 	e1000_configure_tx(adapter);
3283 	e1000_setup_rctl(adapter);
3284 	e1000_configure_rx(adapter);
3285 	adapter->alloc_rx_buf(adapter, e1000_desc_unused(adapter->rx_ring),
3286 			      GFP_KERNEL);
3287 }
3288 
3289 /**
3290  * e1000e_power_up_phy - restore link in case the phy was powered down
3291  * @adapter: address of board private structure
3292  *
3293  * The phy may be powered down to save power and turn off link when the
3294  * driver is unloaded and wake on lan is not enabled (among others)
3295  * *** this routine MUST be followed by a call to e1000e_reset ***
3296  **/
3297 void e1000e_power_up_phy(struct e1000_adapter *adapter)
3298 {
3299 	if (adapter->hw.phy.ops.power_up)
3300 		adapter->hw.phy.ops.power_up(&adapter->hw);
3301 
3302 	adapter->hw.mac.ops.setup_link(&adapter->hw);
3303 }
3304 
3305 /**
3306  * e1000_power_down_phy - Power down the PHY
3307  *
3308  * Power down the PHY so no link is implied when interface is down.
3309  * The PHY cannot be powered down if management or WoL is active.
3310  */
3311 static void e1000_power_down_phy(struct e1000_adapter *adapter)
3312 {
3313 	/* WoL is enabled */
3314 	if (adapter->wol)
3315 		return;
3316 
3317 	if (adapter->hw.phy.ops.power_down)
3318 		adapter->hw.phy.ops.power_down(&adapter->hw);
3319 }
3320 
3321 /**
3322  * e1000e_reset - bring the hardware into a known good state
3323  *
3324  * This function boots the hardware and enables some settings that
3325  * require a configuration cycle of the hardware - those cannot be
3326  * set/changed during runtime. After reset the device needs to be
3327  * properly configured for Rx, Tx etc.
3328  */
3329 void e1000e_reset(struct e1000_adapter *adapter)
3330 {
3331 	struct e1000_mac_info *mac = &adapter->hw.mac;
3332 	struct e1000_fc_info *fc = &adapter->hw.fc;
3333 	struct e1000_hw *hw = &adapter->hw;
3334 	u32 tx_space, min_tx_space, min_rx_space;
3335 	u32 pba = adapter->pba;
3336 	u16 hwm;
3337 
3338 	/* reset Packet Buffer Allocation to default */
3339 	ew32(PBA, pba);
3340 
3341 	if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
3342 		/*
3343 		 * To maintain wire speed transmits, the Tx FIFO should be
3344 		 * large enough to accommodate two full transmit packets,
3345 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
3346 		 * the Rx FIFO should be large enough to accommodate at least
3347 		 * one full receive packet and is similarly rounded up and
3348 		 * expressed in KB.
3349 		 */
3350 		pba = er32(PBA);
3351 		/* upper 16 bits has Tx packet buffer allocation size in KB */
3352 		tx_space = pba >> 16;
3353 		/* lower 16 bits has Rx packet buffer allocation size in KB */
3354 		pba &= 0xffff;
3355 		/*
3356 		 * the Tx fifo also stores 16 bytes of information about the Tx
3357 		 * but don't include ethernet FCS because hardware appends it
3358 		 */
3359 		min_tx_space = (adapter->max_frame_size +
3360 				sizeof(struct e1000_tx_desc) -
3361 				ETH_FCS_LEN) * 2;
3362 		min_tx_space = ALIGN(min_tx_space, 1024);
3363 		min_tx_space >>= 10;
3364 		/* software strips receive CRC, so leave room for it */
3365 		min_rx_space = adapter->max_frame_size;
3366 		min_rx_space = ALIGN(min_rx_space, 1024);
3367 		min_rx_space >>= 10;
3368 
3369 		/*
3370 		 * If current Tx allocation is less than the min Tx FIFO size,
3371 		 * and the min Tx FIFO size is less than the current Rx FIFO
3372 		 * allocation, take space away from current Rx allocation
3373 		 */
3374 		if ((tx_space < min_tx_space) &&
3375 		    ((min_tx_space - tx_space) < pba)) {
3376 			pba -= min_tx_space - tx_space;
3377 
3378 			/*
3379 			 * if short on Rx space, Rx wins and must trump Tx
3380 			 * adjustment or use Early Receive if available
3381 			 */
3382 			if ((pba < min_rx_space) &&
3383 			    (!(adapter->flags & FLAG_HAS_ERT)))
3384 				/* ERT enabled in e1000_configure_rx */
3385 				pba = min_rx_space;
3386 		}
3387 
3388 		ew32(PBA, pba);
3389 	}
3390 
3391 	/*
3392 	 * flow control settings
3393 	 *
3394 	 * The high water mark must be low enough to fit one full frame
3395 	 * (or the size used for early receive) above it in the Rx FIFO.
3396 	 * Set it to the lower of:
3397 	 * - 90% of the Rx FIFO size, and
3398 	 * - the full Rx FIFO size minus the early receive size (for parts
3399 	 *   with ERT support assuming ERT set to E1000_ERT_2048), or
3400 	 * - the full Rx FIFO size minus one full frame
3401 	 */
3402 	if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
3403 		fc->pause_time = 0xFFFF;
3404 	else
3405 		fc->pause_time = E1000_FC_PAUSE_TIME;
3406 	fc->send_xon = 1;
3407 	fc->current_mode = fc->requested_mode;
3408 
3409 	switch (hw->mac.type) {
3410 	default:
3411 		if ((adapter->flags & FLAG_HAS_ERT) &&
3412 		    (adapter->netdev->mtu > ETH_DATA_LEN))
3413 			hwm = min(((pba << 10) * 9 / 10),
3414 				  ((pba << 10) - (E1000_ERT_2048 << 3)));
3415 		else
3416 			hwm = min(((pba << 10) * 9 / 10),
3417 				  ((pba << 10) - adapter->max_frame_size));
3418 
3419 		fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
3420 		fc->low_water = fc->high_water - 8;
3421 		break;
3422 	case e1000_pchlan:
3423 		/*
3424 		 * Workaround PCH LOM adapter hangs with certain network
3425 		 * loads.  If hangs persist, try disabling Tx flow control.
3426 		 */
3427 		if (adapter->netdev->mtu > ETH_DATA_LEN) {
3428 			fc->high_water = 0x3500;
3429 			fc->low_water  = 0x1500;
3430 		} else {
3431 			fc->high_water = 0x5000;
3432 			fc->low_water  = 0x3000;
3433 		}
3434 		fc->refresh_time = 0x1000;
3435 		break;
3436 	case e1000_pch2lan:
3437 		fc->high_water = 0x05C20;
3438 		fc->low_water = 0x05048;
3439 		fc->pause_time = 0x0650;
3440 		fc->refresh_time = 0x0400;
3441 		if (adapter->netdev->mtu > ETH_DATA_LEN) {
3442 			pba = 14;
3443 			ew32(PBA, pba);
3444 		}
3445 		break;
3446 	}
3447 
3448 	/*
3449 	 * Disable Adaptive Interrupt Moderation if 2 full packets cannot
3450 	 * fit in receive buffer and early-receive not supported.
3451 	 */
3452 	if (adapter->itr_setting & 0x3) {
3453 		if (((adapter->max_frame_size * 2) > (pba << 10)) &&
3454 		    !(adapter->flags & FLAG_HAS_ERT)) {
3455 			if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
3456 				dev_info(&adapter->pdev->dev,
3457 					"Interrupt Throttle Rate turned off\n");
3458 				adapter->flags2 |= FLAG2_DISABLE_AIM;
3459 				ew32(ITR, 0);
3460 			}
3461 		} else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
3462 			dev_info(&adapter->pdev->dev,
3463 				 "Interrupt Throttle Rate turned on\n");
3464 			adapter->flags2 &= ~FLAG2_DISABLE_AIM;
3465 			adapter->itr = 20000;
3466 			ew32(ITR, 1000000000 / (adapter->itr * 256));
3467 		}
3468 	}
3469 
3470 	/* Allow time for pending master requests to run */
3471 	mac->ops.reset_hw(hw);
3472 
3473 	/*
3474 	 * For parts with AMT enabled, let the firmware know
3475 	 * that the network interface is in control
3476 	 */
3477 	if (adapter->flags & FLAG_HAS_AMT)
3478 		e1000e_get_hw_control(adapter);
3479 
3480 	ew32(WUC, 0);
3481 
3482 	if (mac->ops.init_hw(hw))
3483 		e_err("Hardware Error\n");
3484 
3485 	e1000_update_mng_vlan(adapter);
3486 
3487 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
3488 	ew32(VET, ETH_P_8021Q);
3489 
3490 	e1000e_reset_adaptive(hw);
3491 
3492 	if (!netif_running(adapter->netdev) &&
3493 	    !test_bit(__E1000_TESTING, &adapter->state)) {
3494 		e1000_power_down_phy(adapter);
3495 		return;
3496 	}
3497 
3498 	e1000_get_phy_info(hw);
3499 
3500 	if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
3501 	    !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
3502 		u16 phy_data = 0;
3503 		/*
3504 		 * speed up time to link by disabling smart power down, ignore
3505 		 * the return value of this function because there is nothing
3506 		 * different we would do if it failed
3507 		 */
3508 		e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
3509 		phy_data &= ~IGP02E1000_PM_SPD;
3510 		e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
3511 	}
3512 }
3513 
3514 int e1000e_up(struct e1000_adapter *adapter)
3515 {
3516 	struct e1000_hw *hw = &adapter->hw;
3517 
3518 	/* hardware has been reset, we need to reload some things */
3519 	e1000_configure(adapter);
3520 
3521 	clear_bit(__E1000_DOWN, &adapter->state);
3522 
3523 	if (adapter->msix_entries)
3524 		e1000_configure_msix(adapter);
3525 	e1000_irq_enable(adapter);
3526 
3527 	netif_start_queue(adapter->netdev);
3528 
3529 	/* fire a link change interrupt to start the watchdog */
3530 	if (adapter->msix_entries)
3531 		ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
3532 	else
3533 		ew32(ICS, E1000_ICS_LSC);
3534 
3535 	return 0;
3536 }
3537 
3538 static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
3539 {
3540 	struct e1000_hw *hw = &adapter->hw;
3541 
3542 	if (!(adapter->flags2 & FLAG2_DMA_BURST))
3543 		return;
3544 
3545 	/* flush pending descriptor writebacks to memory */
3546 	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
3547 	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
3548 
3549 	/* execute the writes immediately */
3550 	e1e_flush();
3551 }
3552 
3553 static void e1000e_update_stats(struct e1000_adapter *adapter);
3554 
3555 void e1000e_down(struct e1000_adapter *adapter)
3556 {
3557 	struct net_device *netdev = adapter->netdev;
3558 	struct e1000_hw *hw = &adapter->hw;
3559 	u32 tctl, rctl;
3560 
3561 	/*
3562 	 * signal that we're down so the interrupt handler does not
3563 	 * reschedule our watchdog timer
3564 	 */
3565 	set_bit(__E1000_DOWN, &adapter->state);
3566 
3567 	/* disable receives in the hardware */
3568 	rctl = er32(RCTL);
3569 	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3570 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
3571 	/* flush and sleep below */
3572 
3573 	netif_stop_queue(netdev);
3574 
3575 	/* disable transmits in the hardware */
3576 	tctl = er32(TCTL);
3577 	tctl &= ~E1000_TCTL_EN;
3578 	ew32(TCTL, tctl);
3579 
3580 	/* flush both disables and wait for them to finish */
3581 	e1e_flush();
3582 	usleep_range(10000, 20000);
3583 
3584 	e1000_irq_disable(adapter);
3585 
3586 	del_timer_sync(&adapter->watchdog_timer);
3587 	del_timer_sync(&adapter->phy_info_timer);
3588 
3589 	netif_carrier_off(netdev);
3590 
3591 	spin_lock(&adapter->stats64_lock);
3592 	e1000e_update_stats(adapter);
3593 	spin_unlock(&adapter->stats64_lock);
3594 
3595 	e1000e_flush_descriptors(adapter);
3596 	e1000_clean_tx_ring(adapter);
3597 	e1000_clean_rx_ring(adapter);
3598 
3599 	adapter->link_speed = 0;
3600 	adapter->link_duplex = 0;
3601 
3602 	if (!pci_channel_offline(adapter->pdev))
3603 		e1000e_reset(adapter);
3604 
3605 	/*
3606 	 * TODO: for power management, we could drop the link and
3607 	 * pci_disable_device here.
3608 	 */
3609 }
3610 
3611 void e1000e_reinit_locked(struct e1000_adapter *adapter)
3612 {
3613 	might_sleep();
3614 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
3615 		usleep_range(1000, 2000);
3616 	e1000e_down(adapter);
3617 	e1000e_up(adapter);
3618 	clear_bit(__E1000_RESETTING, &adapter->state);
3619 }
3620 
3621 /**
3622  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
3623  * @adapter: board private structure to initialize
3624  *
3625  * e1000_sw_init initializes the Adapter private data structure.
3626  * Fields are initialized based on PCI device information and
3627  * OS network device settings (MTU size).
3628  **/
3629 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
3630 {
3631 	struct net_device *netdev = adapter->netdev;
3632 
3633 	adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
3634 	adapter->rx_ps_bsize0 = 128;
3635 	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
3636 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3637 
3638 	spin_lock_init(&adapter->stats64_lock);
3639 
3640 	e1000e_set_interrupt_capability(adapter);
3641 
3642 	if (e1000_alloc_queues(adapter))
3643 		return -ENOMEM;
3644 
3645 	/* Explicitly disable IRQ since the NIC can be in any state. */
3646 	e1000_irq_disable(adapter);
3647 
3648 	set_bit(__E1000_DOWN, &adapter->state);
3649 	return 0;
3650 }
3651 
3652 /**
3653  * e1000_intr_msi_test - Interrupt Handler
3654  * @irq: interrupt number
3655  * @data: pointer to a network interface device structure
3656  **/
3657 static irqreturn_t e1000_intr_msi_test(int irq, void *data)
3658 {
3659 	struct net_device *netdev = data;
3660 	struct e1000_adapter *adapter = netdev_priv(netdev);
3661 	struct e1000_hw *hw = &adapter->hw;
3662 	u32 icr = er32(ICR);
3663 
3664 	e_dbg("icr is %08X\n", icr);
3665 	if (icr & E1000_ICR_RXSEQ) {
3666 		adapter->flags &= ~FLAG_MSI_TEST_FAILED;
3667 		wmb();
3668 	}
3669 
3670 	return IRQ_HANDLED;
3671 }
3672 
3673 /**
3674  * e1000_test_msi_interrupt - Returns 0 for successful test
3675  * @adapter: board private struct
3676  *
3677  * code flow taken from tg3.c
3678  **/
3679 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
3680 {
3681 	struct net_device *netdev = adapter->netdev;
3682 	struct e1000_hw *hw = &adapter->hw;
3683 	int err;
3684 
3685 	/* poll_enable hasn't been called yet, so don't need disable */
3686 	/* clear any pending events */
3687 	er32(ICR);
3688 
3689 	/* free the real vector and request a test handler */
3690 	e1000_free_irq(adapter);
3691 	e1000e_reset_interrupt_capability(adapter);
3692 
3693 	/* Assume that the test fails, if it succeeds then the test
3694 	 * MSI irq handler will unset this flag */
3695 	adapter->flags |= FLAG_MSI_TEST_FAILED;
3696 
3697 	err = pci_enable_msi(adapter->pdev);
3698 	if (err)
3699 		goto msi_test_failed;
3700 
3701 	err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
3702 			  netdev->name, netdev);
3703 	if (err) {
3704 		pci_disable_msi(adapter->pdev);
3705 		goto msi_test_failed;
3706 	}
3707 
3708 	wmb();
3709 
3710 	e1000_irq_enable(adapter);
3711 
3712 	/* fire an unusual interrupt on the test handler */
3713 	ew32(ICS, E1000_ICS_RXSEQ);
3714 	e1e_flush();
3715 	msleep(50);
3716 
3717 	e1000_irq_disable(adapter);
3718 
3719 	rmb();
3720 
3721 	if (adapter->flags & FLAG_MSI_TEST_FAILED) {
3722 		adapter->int_mode = E1000E_INT_MODE_LEGACY;
3723 		e_info("MSI interrupt test failed, using legacy interrupt.\n");
3724 	} else
3725 		e_dbg("MSI interrupt test succeeded!\n");
3726 
3727 	free_irq(adapter->pdev->irq, netdev);
3728 	pci_disable_msi(adapter->pdev);
3729 
3730 msi_test_failed:
3731 	e1000e_set_interrupt_capability(adapter);
3732 	return e1000_request_irq(adapter);
3733 }
3734 
3735 /**
3736  * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
3737  * @adapter: board private struct
3738  *
3739  * code flow taken from tg3.c, called with e1000 interrupts disabled.
3740  **/
3741 static int e1000_test_msi(struct e1000_adapter *adapter)
3742 {
3743 	int err;
3744 	u16 pci_cmd;
3745 
3746 	if (!(adapter->flags & FLAG_MSI_ENABLED))
3747 		return 0;
3748 
3749 	/* disable SERR in case the MSI write causes a master abort */
3750 	pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3751 	if (pci_cmd & PCI_COMMAND_SERR)
3752 		pci_write_config_word(adapter->pdev, PCI_COMMAND,
3753 				      pci_cmd & ~PCI_COMMAND_SERR);
3754 
3755 	err = e1000_test_msi_interrupt(adapter);
3756 
3757 	/* re-enable SERR */
3758 	if (pci_cmd & PCI_COMMAND_SERR) {
3759 		pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3760 		pci_cmd |= PCI_COMMAND_SERR;
3761 		pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
3762 	}
3763 
3764 	return err;
3765 }
3766 
3767 /**
3768  * e1000_open - Called when a network interface is made active
3769  * @netdev: network interface device structure
3770  *
3771  * Returns 0 on success, negative value on failure
3772  *
3773  * The open entry point is called when a network interface is made
3774  * active by the system (IFF_UP).  At this point all resources needed
3775  * for transmit and receive operations are allocated, the interrupt
3776  * handler is registered with the OS, the watchdog timer is started,
3777  * and the stack is notified that the interface is ready.
3778  **/
3779 static int e1000_open(struct net_device *netdev)
3780 {
3781 	struct e1000_adapter *adapter = netdev_priv(netdev);
3782 	struct e1000_hw *hw = &adapter->hw;
3783 	struct pci_dev *pdev = adapter->pdev;
3784 	int err;
3785 
3786 	/* disallow open during test */
3787 	if (test_bit(__E1000_TESTING, &adapter->state))
3788 		return -EBUSY;
3789 
3790 	pm_runtime_get_sync(&pdev->dev);
3791 
3792 	netif_carrier_off(netdev);
3793 
3794 	/* allocate transmit descriptors */
3795 	err = e1000e_setup_tx_resources(adapter);
3796 	if (err)
3797 		goto err_setup_tx;
3798 
3799 	/* allocate receive descriptors */
3800 	err = e1000e_setup_rx_resources(adapter);
3801 	if (err)
3802 		goto err_setup_rx;
3803 
3804 	/*
3805 	 * If AMT is enabled, let the firmware know that the network
3806 	 * interface is now open and reset the part to a known state.
3807 	 */
3808 	if (adapter->flags & FLAG_HAS_AMT) {
3809 		e1000e_get_hw_control(adapter);
3810 		e1000e_reset(adapter);
3811 	}
3812 
3813 	e1000e_power_up_phy(adapter);
3814 
3815 	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
3816 	if ((adapter->hw.mng_cookie.status &
3817 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
3818 		e1000_update_mng_vlan(adapter);
3819 
3820 	/* DMA latency requirement to workaround early-receive/jumbo issue */
3821 	if ((adapter->flags & FLAG_HAS_ERT) ||
3822 	    (adapter->hw.mac.type == e1000_pch2lan))
3823 		pm_qos_add_request(&adapter->netdev->pm_qos_req,
3824 				   PM_QOS_CPU_DMA_LATENCY,
3825 				   PM_QOS_DEFAULT_VALUE);
3826 
3827 	/*
3828 	 * before we allocate an interrupt, we must be ready to handle it.
3829 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3830 	 * as soon as we call pci_request_irq, so we have to setup our
3831 	 * clean_rx handler before we do so.
3832 	 */
3833 	e1000_configure(adapter);
3834 
3835 	err = e1000_request_irq(adapter);
3836 	if (err)
3837 		goto err_req_irq;
3838 
3839 	/*
3840 	 * Work around PCIe errata with MSI interrupts causing some chipsets to
3841 	 * ignore e1000e MSI messages, which means we need to test our MSI
3842 	 * interrupt now
3843 	 */
3844 	if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
3845 		err = e1000_test_msi(adapter);
3846 		if (err) {
3847 			e_err("Interrupt allocation failed\n");
3848 			goto err_req_irq;
3849 		}
3850 	}
3851 
3852 	/* From here on the code is the same as e1000e_up() */
3853 	clear_bit(__E1000_DOWN, &adapter->state);
3854 
3855 	napi_enable(&adapter->napi);
3856 
3857 	e1000_irq_enable(adapter);
3858 
3859 	adapter->tx_hang_recheck = false;
3860 	netif_start_queue(netdev);
3861 
3862 	adapter->idle_check = true;
3863 	pm_runtime_put(&pdev->dev);
3864 
3865 	/* fire a link status change interrupt to start the watchdog */
3866 	if (adapter->msix_entries)
3867 		ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
3868 	else
3869 		ew32(ICS, E1000_ICS_LSC);
3870 
3871 	return 0;
3872 
3873 err_req_irq:
3874 	e1000e_release_hw_control(adapter);
3875 	e1000_power_down_phy(adapter);
3876 	e1000e_free_rx_resources(adapter);
3877 err_setup_rx:
3878 	e1000e_free_tx_resources(adapter);
3879 err_setup_tx:
3880 	e1000e_reset(adapter);
3881 	pm_runtime_put_sync(&pdev->dev);
3882 
3883 	return err;
3884 }
3885 
3886 /**
3887  * e1000_close - Disables a network interface
3888  * @netdev: network interface device structure
3889  *
3890  * Returns 0, this is not allowed to fail
3891  *
3892  * The close entry point is called when an interface is de-activated
3893  * by the OS.  The hardware is still under the drivers control, but
3894  * needs to be disabled.  A global MAC reset is issued to stop the
3895  * hardware, and all transmit and receive resources are freed.
3896  **/
3897 static int e1000_close(struct net_device *netdev)
3898 {
3899 	struct e1000_adapter *adapter = netdev_priv(netdev);
3900 	struct pci_dev *pdev = adapter->pdev;
3901 
3902 	WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
3903 
3904 	pm_runtime_get_sync(&pdev->dev);
3905 
3906 	napi_disable(&adapter->napi);
3907 
3908 	if (!test_bit(__E1000_DOWN, &adapter->state)) {
3909 		e1000e_down(adapter);
3910 		e1000_free_irq(adapter);
3911 	}
3912 	e1000_power_down_phy(adapter);
3913 
3914 	e1000e_free_tx_resources(adapter);
3915 	e1000e_free_rx_resources(adapter);
3916 
3917 	/*
3918 	 * kill manageability vlan ID if supported, but not if a vlan with
3919 	 * the same ID is registered on the host OS (let 8021q kill it)
3920 	 */
3921 	if (adapter->hw.mng_cookie.status &
3922 	    E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
3923 		e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
3924 
3925 	/*
3926 	 * If AMT is enabled, let the firmware know that the network
3927 	 * interface is now closed
3928 	 */
3929 	if ((adapter->flags & FLAG_HAS_AMT) &&
3930 	    !test_bit(__E1000_TESTING, &adapter->state))
3931 		e1000e_release_hw_control(adapter);
3932 
3933 	if ((adapter->flags & FLAG_HAS_ERT) ||
3934 	    (adapter->hw.mac.type == e1000_pch2lan))
3935 		pm_qos_remove_request(&adapter->netdev->pm_qos_req);
3936 
3937 	pm_runtime_put_sync(&pdev->dev);
3938 
3939 	return 0;
3940 }
3941 /**
3942  * e1000_set_mac - Change the Ethernet Address of the NIC
3943  * @netdev: network interface device structure
3944  * @p: pointer to an address structure
3945  *
3946  * Returns 0 on success, negative on failure
3947  **/
3948 static int e1000_set_mac(struct net_device *netdev, void *p)
3949 {
3950 	struct e1000_adapter *adapter = netdev_priv(netdev);
3951 	struct sockaddr *addr = p;
3952 
3953 	if (!is_valid_ether_addr(addr->sa_data))
3954 		return -EADDRNOTAVAIL;
3955 
3956 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3957 	memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
3958 
3959 	e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
3960 
3961 	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
3962 		/* activate the work around */
3963 		e1000e_set_laa_state_82571(&adapter->hw, 1);
3964 
3965 		/*
3966 		 * Hold a copy of the LAA in RAR[14] This is done so that
3967 		 * between the time RAR[0] gets clobbered  and the time it
3968 		 * gets fixed (in e1000_watchdog), the actual LAA is in one
3969 		 * of the RARs and no incoming packets directed to this port
3970 		 * are dropped. Eventually the LAA will be in RAR[0] and
3971 		 * RAR[14]
3972 		 */
3973 		e1000e_rar_set(&adapter->hw,
3974 			      adapter->hw.mac.addr,
3975 			      adapter->hw.mac.rar_entry_count - 1);
3976 	}
3977 
3978 	return 0;
3979 }
3980 
3981 /**
3982  * e1000e_update_phy_task - work thread to update phy
3983  * @work: pointer to our work struct
3984  *
3985  * this worker thread exists because we must acquire a
3986  * semaphore to read the phy, which we could msleep while
3987  * waiting for it, and we can't msleep in a timer.
3988  **/
3989 static void e1000e_update_phy_task(struct work_struct *work)
3990 {
3991 	struct e1000_adapter *adapter = container_of(work,
3992 					struct e1000_adapter, update_phy_task);
3993 
3994 	if (test_bit(__E1000_DOWN, &adapter->state))
3995 		return;
3996 
3997 	e1000_get_phy_info(&adapter->hw);
3998 }
3999 
4000 /*
4001  * Need to wait a few seconds after link up to get diagnostic information from
4002  * the phy
4003  */
4004 static void e1000_update_phy_info(unsigned long data)
4005 {
4006 	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
4007 
4008 	if (test_bit(__E1000_DOWN, &adapter->state))
4009 		return;
4010 
4011 	schedule_work(&adapter->update_phy_task);
4012 }
4013 
4014 /**
4015  * e1000e_update_phy_stats - Update the PHY statistics counters
4016  * @adapter: board private structure
4017  *
4018  * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4019  **/
4020 static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4021 {
4022 	struct e1000_hw *hw = &adapter->hw;
4023 	s32 ret_val;
4024 	u16 phy_data;
4025 
4026 	ret_val = hw->phy.ops.acquire(hw);
4027 	if (ret_val)
4028 		return;
4029 
4030 	/*
4031 	 * A page set is expensive so check if already on desired page.
4032 	 * If not, set to the page with the PHY status registers.
4033 	 */
4034 	hw->phy.addr = 1;
4035 	ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4036 					   &phy_data);
4037 	if (ret_val)
4038 		goto release;
4039 	if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4040 		ret_val = hw->phy.ops.set_page(hw,
4041 					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
4042 		if (ret_val)
4043 			goto release;
4044 	}
4045 
4046 	/* Single Collision Count */
4047 	hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4048 	ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4049 	if (!ret_val)
4050 		adapter->stats.scc += phy_data;
4051 
4052 	/* Excessive Collision Count */
4053 	hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4054 	ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4055 	if (!ret_val)
4056 		adapter->stats.ecol += phy_data;
4057 
4058 	/* Multiple Collision Count */
4059 	hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4060 	ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4061 	if (!ret_val)
4062 		adapter->stats.mcc += phy_data;
4063 
4064 	/* Late Collision Count */
4065 	hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4066 	ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4067 	if (!ret_val)
4068 		adapter->stats.latecol += phy_data;
4069 
4070 	/* Collision Count - also used for adaptive IFS */
4071 	hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4072 	ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4073 	if (!ret_val)
4074 		hw->mac.collision_delta = phy_data;
4075 
4076 	/* Defer Count */
4077 	hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4078 	ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4079 	if (!ret_val)
4080 		adapter->stats.dc += phy_data;
4081 
4082 	/* Transmit with no CRS */
4083 	hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4084 	ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4085 	if (!ret_val)
4086 		adapter->stats.tncrs += phy_data;
4087 
4088 release:
4089 	hw->phy.ops.release(hw);
4090 }
4091 
4092 /**
4093  * e1000e_update_stats - Update the board statistics counters
4094  * @adapter: board private structure
4095  **/
4096 static void e1000e_update_stats(struct e1000_adapter *adapter)
4097 {
4098 	struct net_device *netdev = adapter->netdev;
4099 	struct e1000_hw *hw = &adapter->hw;
4100 	struct pci_dev *pdev = adapter->pdev;
4101 
4102 	/*
4103 	 * Prevent stats update while adapter is being reset, or if the pci
4104 	 * connection is down.
4105 	 */
4106 	if (adapter->link_speed == 0)
4107 		return;
4108 	if (pci_channel_offline(pdev))
4109 		return;
4110 
4111 	adapter->stats.crcerrs += er32(CRCERRS);
4112 	adapter->stats.gprc += er32(GPRC);
4113 	adapter->stats.gorc += er32(GORCL);
4114 	er32(GORCH); /* Clear gorc */
4115 	adapter->stats.bprc += er32(BPRC);
4116 	adapter->stats.mprc += er32(MPRC);
4117 	adapter->stats.roc += er32(ROC);
4118 
4119 	adapter->stats.mpc += er32(MPC);
4120 
4121 	/* Half-duplex statistics */
4122 	if (adapter->link_duplex == HALF_DUPLEX) {
4123 		if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4124 			e1000e_update_phy_stats(adapter);
4125 		} else {
4126 			adapter->stats.scc += er32(SCC);
4127 			adapter->stats.ecol += er32(ECOL);
4128 			adapter->stats.mcc += er32(MCC);
4129 			adapter->stats.latecol += er32(LATECOL);
4130 			adapter->stats.dc += er32(DC);
4131 
4132 			hw->mac.collision_delta = er32(COLC);
4133 
4134 			if ((hw->mac.type != e1000_82574) &&
4135 			    (hw->mac.type != e1000_82583))
4136 				adapter->stats.tncrs += er32(TNCRS);
4137 		}
4138 		adapter->stats.colc += hw->mac.collision_delta;
4139 	}
4140 
4141 	adapter->stats.xonrxc += er32(XONRXC);
4142 	adapter->stats.xontxc += er32(XONTXC);
4143 	adapter->stats.xoffrxc += er32(XOFFRXC);
4144 	adapter->stats.xofftxc += er32(XOFFTXC);
4145 	adapter->stats.gptc += er32(GPTC);
4146 	adapter->stats.gotc += er32(GOTCL);
4147 	er32(GOTCH); /* Clear gotc */
4148 	adapter->stats.rnbc += er32(RNBC);
4149 	adapter->stats.ruc += er32(RUC);
4150 
4151 	adapter->stats.mptc += er32(MPTC);
4152 	adapter->stats.bptc += er32(BPTC);
4153 
4154 	/* used for adaptive IFS */
4155 
4156 	hw->mac.tx_packet_delta = er32(TPT);
4157 	adapter->stats.tpt += hw->mac.tx_packet_delta;
4158 
4159 	adapter->stats.algnerrc += er32(ALGNERRC);
4160 	adapter->stats.rxerrc += er32(RXERRC);
4161 	adapter->stats.cexterr += er32(CEXTERR);
4162 	adapter->stats.tsctc += er32(TSCTC);
4163 	adapter->stats.tsctfc += er32(TSCTFC);
4164 
4165 	/* Fill out the OS statistics structure */
4166 	netdev->stats.multicast = adapter->stats.mprc;
4167 	netdev->stats.collisions = adapter->stats.colc;
4168 
4169 	/* Rx Errors */
4170 
4171 	/*
4172 	 * RLEC on some newer hardware can be incorrect so build
4173 	 * our own version based on RUC and ROC
4174 	 */
4175 	netdev->stats.rx_errors = adapter->stats.rxerrc +
4176 		adapter->stats.crcerrs + adapter->stats.algnerrc +
4177 		adapter->stats.ruc + adapter->stats.roc +
4178 		adapter->stats.cexterr;
4179 	netdev->stats.rx_length_errors = adapter->stats.ruc +
4180 					      adapter->stats.roc;
4181 	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
4182 	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
4183 	netdev->stats.rx_missed_errors = adapter->stats.mpc;
4184 
4185 	/* Tx Errors */
4186 	netdev->stats.tx_errors = adapter->stats.ecol +
4187 				       adapter->stats.latecol;
4188 	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
4189 	netdev->stats.tx_window_errors = adapter->stats.latecol;
4190 	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
4191 
4192 	/* Tx Dropped needs to be maintained elsewhere */
4193 
4194 	/* Management Stats */
4195 	adapter->stats.mgptc += er32(MGTPTC);
4196 	adapter->stats.mgprc += er32(MGTPRC);
4197 	adapter->stats.mgpdc += er32(MGTPDC);
4198 }
4199 
4200 /**
4201  * e1000_phy_read_status - Update the PHY register status snapshot
4202  * @adapter: board private structure
4203  **/
4204 static void e1000_phy_read_status(struct e1000_adapter *adapter)
4205 {
4206 	struct e1000_hw *hw = &adapter->hw;
4207 	struct e1000_phy_regs *phy = &adapter->phy_regs;
4208 
4209 	if ((er32(STATUS) & E1000_STATUS_LU) &&
4210 	    (adapter->hw.phy.media_type == e1000_media_type_copper)) {
4211 		int ret_val;
4212 
4213 		ret_val  = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr);
4214 		ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr);
4215 		ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise);
4216 		ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa);
4217 		ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion);
4218 		ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000);
4219 		ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000);
4220 		ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus);
4221 		if (ret_val)
4222 			e_warn("Error reading PHY register\n");
4223 	} else {
4224 		/*
4225 		 * Do not read PHY registers if link is not up
4226 		 * Set values to typical power-on defaults
4227 		 */
4228 		phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
4229 		phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
4230 			     BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
4231 			     BMSR_ERCAP);
4232 		phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
4233 				  ADVERTISE_ALL | ADVERTISE_CSMA);
4234 		phy->lpa = 0;
4235 		phy->expansion = EXPANSION_ENABLENPAGE;
4236 		phy->ctrl1000 = ADVERTISE_1000FULL;
4237 		phy->stat1000 = 0;
4238 		phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
4239 	}
4240 }
4241 
4242 static void e1000_print_link_info(struct e1000_adapter *adapter)
4243 {
4244 	struct e1000_hw *hw = &adapter->hw;
4245 	u32 ctrl = er32(CTRL);
4246 
4247 	/* Link status message must follow this format for user tools */
4248 	printk(KERN_INFO "e1000e: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4249 		adapter->netdev->name,
4250 		adapter->link_speed,
4251 		adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
4252 		(ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
4253 		(ctrl & E1000_CTRL_RFCE) ? "Rx" :
4254 		(ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
4255 }
4256 
4257 static bool e1000e_has_link(struct e1000_adapter *adapter)
4258 {
4259 	struct e1000_hw *hw = &adapter->hw;
4260 	bool link_active = false;
4261 	s32 ret_val = 0;
4262 
4263 	/*
4264 	 * get_link_status is set on LSC (link status) interrupt or
4265 	 * Rx sequence error interrupt.  get_link_status will stay
4266 	 * false until the check_for_link establishes link
4267 	 * for copper adapters ONLY
4268 	 */
4269 	switch (hw->phy.media_type) {
4270 	case e1000_media_type_copper:
4271 		if (hw->mac.get_link_status) {
4272 			ret_val = hw->mac.ops.check_for_link(hw);
4273 			link_active = !hw->mac.get_link_status;
4274 		} else {
4275 			link_active = true;
4276 		}
4277 		break;
4278 	case e1000_media_type_fiber:
4279 		ret_val = hw->mac.ops.check_for_link(hw);
4280 		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
4281 		break;
4282 	case e1000_media_type_internal_serdes:
4283 		ret_val = hw->mac.ops.check_for_link(hw);
4284 		link_active = adapter->hw.mac.serdes_has_link;
4285 		break;
4286 	default:
4287 	case e1000_media_type_unknown:
4288 		break;
4289 	}
4290 
4291 	if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
4292 	    (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
4293 		/* See e1000_kmrn_lock_loss_workaround_ich8lan() */
4294 		e_info("Gigabit has been disabled, downgrading speed\n");
4295 	}
4296 
4297 	return link_active;
4298 }
4299 
4300 static void e1000e_enable_receives(struct e1000_adapter *adapter)
4301 {
4302 	/* make sure the receive unit is started */
4303 	if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
4304 	    (adapter->flags & FLAG_RX_RESTART_NOW)) {
4305 		struct e1000_hw *hw = &adapter->hw;
4306 		u32 rctl = er32(RCTL);
4307 		ew32(RCTL, rctl | E1000_RCTL_EN);
4308 		adapter->flags &= ~FLAG_RX_RESTART_NOW;
4309 	}
4310 }
4311 
4312 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
4313 {
4314 	struct e1000_hw *hw = &adapter->hw;
4315 
4316 	/*
4317 	 * With 82574 controllers, PHY needs to be checked periodically
4318 	 * for hung state and reset, if two calls return true
4319 	 */
4320 	if (e1000_check_phy_82574(hw))
4321 		adapter->phy_hang_count++;
4322 	else
4323 		adapter->phy_hang_count = 0;
4324 
4325 	if (adapter->phy_hang_count > 1) {
4326 		adapter->phy_hang_count = 0;
4327 		schedule_work(&adapter->reset_task);
4328 	}
4329 }
4330 
4331 /**
4332  * e1000_watchdog - Timer Call-back
4333  * @data: pointer to adapter cast into an unsigned long
4334  **/
4335 static void e1000_watchdog(unsigned long data)
4336 {
4337 	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
4338 
4339 	/* Do the rest outside of interrupt context */
4340 	schedule_work(&adapter->watchdog_task);
4341 
4342 	/* TODO: make this use queue_delayed_work() */
4343 }
4344 
4345 static void e1000_watchdog_task(struct work_struct *work)
4346 {
4347 	struct e1000_adapter *adapter = container_of(work,
4348 					struct e1000_adapter, watchdog_task);
4349 	struct net_device *netdev = adapter->netdev;
4350 	struct e1000_mac_info *mac = &adapter->hw.mac;
4351 	struct e1000_phy_info *phy = &adapter->hw.phy;
4352 	struct e1000_ring *tx_ring = adapter->tx_ring;
4353 	struct e1000_hw *hw = &adapter->hw;
4354 	u32 link, tctl;
4355 
4356 	if (test_bit(__E1000_DOWN, &adapter->state))
4357 		return;
4358 
4359 	link = e1000e_has_link(adapter);
4360 	if ((netif_carrier_ok(netdev)) && link) {
4361 		/* Cancel scheduled suspend requests. */
4362 		pm_runtime_resume(netdev->dev.parent);
4363 
4364 		e1000e_enable_receives(adapter);
4365 		goto link_up;
4366 	}
4367 
4368 	if ((e1000e_enable_tx_pkt_filtering(hw)) &&
4369 	    (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
4370 		e1000_update_mng_vlan(adapter);
4371 
4372 	if (link) {
4373 		if (!netif_carrier_ok(netdev)) {
4374 			bool txb2b = true;
4375 
4376 			/* Cancel scheduled suspend requests. */
4377 			pm_runtime_resume(netdev->dev.parent);
4378 
4379 			/* update snapshot of PHY registers on LSC */
4380 			e1000_phy_read_status(adapter);
4381 			mac->ops.get_link_up_info(&adapter->hw,
4382 						   &adapter->link_speed,
4383 						   &adapter->link_duplex);
4384 			e1000_print_link_info(adapter);
4385 			/*
4386 			 * On supported PHYs, check for duplex mismatch only
4387 			 * if link has autonegotiated at 10/100 half
4388 			 */
4389 			if ((hw->phy.type == e1000_phy_igp_3 ||
4390 			     hw->phy.type == e1000_phy_bm) &&
4391 			    (hw->mac.autoneg == true) &&
4392 			    (adapter->link_speed == SPEED_10 ||
4393 			     adapter->link_speed == SPEED_100) &&
4394 			    (adapter->link_duplex == HALF_DUPLEX)) {
4395 				u16 autoneg_exp;
4396 
4397 				e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp);
4398 
4399 				if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS))
4400 					e_info("Autonegotiated half duplex but link partner cannot autoneg.  Try forcing full duplex if link gets many collisions.\n");
4401 			}
4402 
4403 			/* adjust timeout factor according to speed/duplex */
4404 			adapter->tx_timeout_factor = 1;
4405 			switch (adapter->link_speed) {
4406 			case SPEED_10:
4407 				txb2b = false;
4408 				adapter->tx_timeout_factor = 16;
4409 				break;
4410 			case SPEED_100:
4411 				txb2b = false;
4412 				adapter->tx_timeout_factor = 10;
4413 				break;
4414 			}
4415 
4416 			/*
4417 			 * workaround: re-program speed mode bit after
4418 			 * link-up event
4419 			 */
4420 			if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
4421 			    !txb2b) {
4422 				u32 tarc0;
4423 				tarc0 = er32(TARC(0));
4424 				tarc0 &= ~SPEED_MODE_BIT;
4425 				ew32(TARC(0), tarc0);
4426 			}
4427 
4428 			/*
4429 			 * disable TSO for pcie and 10/100 speeds, to avoid
4430 			 * some hardware issues
4431 			 */
4432 			if (!(adapter->flags & FLAG_TSO_FORCE)) {
4433 				switch (adapter->link_speed) {
4434 				case SPEED_10:
4435 				case SPEED_100:
4436 					e_info("10/100 speed: disabling TSO\n");
4437 					netdev->features &= ~NETIF_F_TSO;
4438 					netdev->features &= ~NETIF_F_TSO6;
4439 					break;
4440 				case SPEED_1000:
4441 					netdev->features |= NETIF_F_TSO;
4442 					netdev->features |= NETIF_F_TSO6;
4443 					break;
4444 				default:
4445 					/* oops */
4446 					break;
4447 				}
4448 			}
4449 
4450 			/*
4451 			 * enable transmits in the hardware, need to do this
4452 			 * after setting TARC(0)
4453 			 */
4454 			tctl = er32(TCTL);
4455 			tctl |= E1000_TCTL_EN;
4456 			ew32(TCTL, tctl);
4457 
4458                         /*
4459 			 * Perform any post-link-up configuration before
4460 			 * reporting link up.
4461 			 */
4462 			if (phy->ops.cfg_on_link_up)
4463 				phy->ops.cfg_on_link_up(hw);
4464 
4465 			netif_carrier_on(netdev);
4466 
4467 			if (!test_bit(__E1000_DOWN, &adapter->state))
4468 				mod_timer(&adapter->phy_info_timer,
4469 					  round_jiffies(jiffies + 2 * HZ));
4470 		}
4471 	} else {
4472 		if (netif_carrier_ok(netdev)) {
4473 			adapter->link_speed = 0;
4474 			adapter->link_duplex = 0;
4475 			/* Link status message must follow this format */
4476 			printk(KERN_INFO "e1000e: %s NIC Link is Down\n",
4477 			       adapter->netdev->name);
4478 			netif_carrier_off(netdev);
4479 			if (!test_bit(__E1000_DOWN, &adapter->state))
4480 				mod_timer(&adapter->phy_info_timer,
4481 					  round_jiffies(jiffies + 2 * HZ));
4482 
4483 			if (adapter->flags & FLAG_RX_NEEDS_RESTART)
4484 				schedule_work(&adapter->reset_task);
4485 			else
4486 				pm_schedule_suspend(netdev->dev.parent,
4487 							LINK_TIMEOUT);
4488 		}
4489 	}
4490 
4491 link_up:
4492 	spin_lock(&adapter->stats64_lock);
4493 	e1000e_update_stats(adapter);
4494 
4495 	mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
4496 	adapter->tpt_old = adapter->stats.tpt;
4497 	mac->collision_delta = adapter->stats.colc - adapter->colc_old;
4498 	adapter->colc_old = adapter->stats.colc;
4499 
4500 	adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
4501 	adapter->gorc_old = adapter->stats.gorc;
4502 	adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
4503 	adapter->gotc_old = adapter->stats.gotc;
4504 	spin_unlock(&adapter->stats64_lock);
4505 
4506 	e1000e_update_adaptive(&adapter->hw);
4507 
4508 	if (!netif_carrier_ok(netdev) &&
4509 	    (e1000_desc_unused(tx_ring) + 1 < tx_ring->count)) {
4510 		/*
4511 		 * We've lost link, so the controller stops DMA,
4512 		 * but we've got queued Tx work that's never going
4513 		 * to get done, so reset controller to flush Tx.
4514 		 * (Do the reset outside of interrupt context).
4515 		 */
4516 		schedule_work(&adapter->reset_task);
4517 		/* return immediately since reset is imminent */
4518 		return;
4519 	}
4520 
4521 	/* Simple mode for Interrupt Throttle Rate (ITR) */
4522 	if (adapter->itr_setting == 4) {
4523 		/*
4524 		 * Symmetric Tx/Rx gets a reduced ITR=2000;
4525 		 * Total asymmetrical Tx or Rx gets ITR=8000;
4526 		 * everyone else is between 2000-8000.
4527 		 */
4528 		u32 goc = (adapter->gotc + adapter->gorc) / 10000;
4529 		u32 dif = (adapter->gotc > adapter->gorc ?
4530 			    adapter->gotc - adapter->gorc :
4531 			    adapter->gorc - adapter->gotc) / 10000;
4532 		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
4533 
4534 		ew32(ITR, 1000000000 / (itr * 256));
4535 	}
4536 
4537 	/* Cause software interrupt to ensure Rx ring is cleaned */
4538 	if (adapter->msix_entries)
4539 		ew32(ICS, adapter->rx_ring->ims_val);
4540 	else
4541 		ew32(ICS, E1000_ICS_RXDMT0);
4542 
4543 	/* flush pending descriptors to memory before detecting Tx hang */
4544 	e1000e_flush_descriptors(adapter);
4545 
4546 	/* Force detection of hung controller every watchdog period */
4547 	adapter->detect_tx_hung = true;
4548 
4549 	/*
4550 	 * With 82571 controllers, LAA may be overwritten due to controller
4551 	 * reset from the other port. Set the appropriate LAA in RAR[0]
4552 	 */
4553 	if (e1000e_get_laa_state_82571(hw))
4554 		e1000e_rar_set(hw, adapter->hw.mac.addr, 0);
4555 
4556 	if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
4557 		e1000e_check_82574_phy_workaround(adapter);
4558 
4559 	/* Reset the timer */
4560 	if (!test_bit(__E1000_DOWN, &adapter->state))
4561 		mod_timer(&adapter->watchdog_timer,
4562 			  round_jiffies(jiffies + 2 * HZ));
4563 }
4564 
4565 #define E1000_TX_FLAGS_CSUM		0x00000001
4566 #define E1000_TX_FLAGS_VLAN		0x00000002
4567 #define E1000_TX_FLAGS_TSO		0x00000004
4568 #define E1000_TX_FLAGS_IPV4		0x00000008
4569 #define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
4570 #define E1000_TX_FLAGS_VLAN_SHIFT	16
4571 
4572 static int e1000_tso(struct e1000_adapter *adapter,
4573 		     struct sk_buff *skb)
4574 {
4575 	struct e1000_ring *tx_ring = adapter->tx_ring;
4576 	struct e1000_context_desc *context_desc;
4577 	struct e1000_buffer *buffer_info;
4578 	unsigned int i;
4579 	u32 cmd_length = 0;
4580 	u16 ipcse = 0, tucse, mss;
4581 	u8 ipcss, ipcso, tucss, tucso, hdr_len;
4582 
4583 	if (!skb_is_gso(skb))
4584 		return 0;
4585 
4586 	if (skb_header_cloned(skb)) {
4587 		int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4588 
4589 		if (err)
4590 			return err;
4591 	}
4592 
4593 	hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
4594 	mss = skb_shinfo(skb)->gso_size;
4595 	if (skb->protocol == htons(ETH_P_IP)) {
4596 		struct iphdr *iph = ip_hdr(skb);
4597 		iph->tot_len = 0;
4598 		iph->check = 0;
4599 		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
4600 		                                         0, IPPROTO_TCP, 0);
4601 		cmd_length = E1000_TXD_CMD_IP;
4602 		ipcse = skb_transport_offset(skb) - 1;
4603 	} else if (skb_is_gso_v6(skb)) {
4604 		ipv6_hdr(skb)->payload_len = 0;
4605 		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4606 		                                       &ipv6_hdr(skb)->daddr,
4607 		                                       0, IPPROTO_TCP, 0);
4608 		ipcse = 0;
4609 	}
4610 	ipcss = skb_network_offset(skb);
4611 	ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
4612 	tucss = skb_transport_offset(skb);
4613 	tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
4614 	tucse = 0;
4615 
4616 	cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
4617 	               E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
4618 
4619 	i = tx_ring->next_to_use;
4620 	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
4621 	buffer_info = &tx_ring->buffer_info[i];
4622 
4623 	context_desc->lower_setup.ip_fields.ipcss  = ipcss;
4624 	context_desc->lower_setup.ip_fields.ipcso  = ipcso;
4625 	context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
4626 	context_desc->upper_setup.tcp_fields.tucss = tucss;
4627 	context_desc->upper_setup.tcp_fields.tucso = tucso;
4628 	context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
4629 	context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
4630 	context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
4631 	context_desc->cmd_and_length = cpu_to_le32(cmd_length);
4632 
4633 	buffer_info->time_stamp = jiffies;
4634 	buffer_info->next_to_watch = i;
4635 
4636 	i++;
4637 	if (i == tx_ring->count)
4638 		i = 0;
4639 	tx_ring->next_to_use = i;
4640 
4641 	return 1;
4642 }
4643 
4644 static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
4645 {
4646 	struct e1000_ring *tx_ring = adapter->tx_ring;
4647 	struct e1000_context_desc *context_desc;
4648 	struct e1000_buffer *buffer_info;
4649 	unsigned int i;
4650 	u8 css;
4651 	u32 cmd_len = E1000_TXD_CMD_DEXT;
4652 	__be16 protocol;
4653 
4654 	if (skb->ip_summed != CHECKSUM_PARTIAL)
4655 		return 0;
4656 
4657 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
4658 		protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
4659 	else
4660 		protocol = skb->protocol;
4661 
4662 	switch (protocol) {
4663 	case cpu_to_be16(ETH_P_IP):
4664 		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
4665 			cmd_len |= E1000_TXD_CMD_TCP;
4666 		break;
4667 	case cpu_to_be16(ETH_P_IPV6):
4668 		/* XXX not handling all IPV6 headers */
4669 		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
4670 			cmd_len |= E1000_TXD_CMD_TCP;
4671 		break;
4672 	default:
4673 		if (unlikely(net_ratelimit()))
4674 			e_warn("checksum_partial proto=%x!\n",
4675 			       be16_to_cpu(protocol));
4676 		break;
4677 	}
4678 
4679 	css = skb_checksum_start_offset(skb);
4680 
4681 	i = tx_ring->next_to_use;
4682 	buffer_info = &tx_ring->buffer_info[i];
4683 	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
4684 
4685 	context_desc->lower_setup.ip_config = 0;
4686 	context_desc->upper_setup.tcp_fields.tucss = css;
4687 	context_desc->upper_setup.tcp_fields.tucso =
4688 				css + skb->csum_offset;
4689 	context_desc->upper_setup.tcp_fields.tucse = 0;
4690 	context_desc->tcp_seg_setup.data = 0;
4691 	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
4692 
4693 	buffer_info->time_stamp = jiffies;
4694 	buffer_info->next_to_watch = i;
4695 
4696 	i++;
4697 	if (i == tx_ring->count)
4698 		i = 0;
4699 	tx_ring->next_to_use = i;
4700 
4701 	return 1;
4702 }
4703 
4704 #define E1000_MAX_PER_TXD	8192
4705 #define E1000_MAX_TXD_PWR	12
4706 
4707 static int e1000_tx_map(struct e1000_adapter *adapter,
4708 			struct sk_buff *skb, unsigned int first,
4709 			unsigned int max_per_txd, unsigned int nr_frags,
4710 			unsigned int mss)
4711 {
4712 	struct e1000_ring *tx_ring = adapter->tx_ring;
4713 	struct pci_dev *pdev = adapter->pdev;
4714 	struct e1000_buffer *buffer_info;
4715 	unsigned int len = skb_headlen(skb);
4716 	unsigned int offset = 0, size, count = 0, i;
4717 	unsigned int f, bytecount, segs;
4718 
4719 	i = tx_ring->next_to_use;
4720 
4721 	while (len) {
4722 		buffer_info = &tx_ring->buffer_info[i];
4723 		size = min(len, max_per_txd);
4724 
4725 		buffer_info->length = size;
4726 		buffer_info->time_stamp = jiffies;
4727 		buffer_info->next_to_watch = i;
4728 		buffer_info->dma = dma_map_single(&pdev->dev,
4729 						  skb->data + offset,
4730 						  size, DMA_TO_DEVICE);
4731 		buffer_info->mapped_as_page = false;
4732 		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4733 			goto dma_error;
4734 
4735 		len -= size;
4736 		offset += size;
4737 		count++;
4738 
4739 		if (len) {
4740 			i++;
4741 			if (i == tx_ring->count)
4742 				i = 0;
4743 		}
4744 	}
4745 
4746 	for (f = 0; f < nr_frags; f++) {
4747 		const struct skb_frag_struct *frag;
4748 
4749 		frag = &skb_shinfo(skb)->frags[f];
4750 		len = skb_frag_size(frag);
4751 		offset = 0;
4752 
4753 		while (len) {
4754 			i++;
4755 			if (i == tx_ring->count)
4756 				i = 0;
4757 
4758 			buffer_info = &tx_ring->buffer_info[i];
4759 			size = min(len, max_per_txd);
4760 
4761 			buffer_info->length = size;
4762 			buffer_info->time_stamp = jiffies;
4763 			buffer_info->next_to_watch = i;
4764 			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
4765 						offset, size, DMA_TO_DEVICE);
4766 			buffer_info->mapped_as_page = true;
4767 			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4768 				goto dma_error;
4769 
4770 			len -= size;
4771 			offset += size;
4772 			count++;
4773 		}
4774 	}
4775 
4776 	segs = skb_shinfo(skb)->gso_segs ? : 1;
4777 	/* multiply data chunks by size of headers */
4778 	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
4779 
4780 	tx_ring->buffer_info[i].skb = skb;
4781 	tx_ring->buffer_info[i].segs = segs;
4782 	tx_ring->buffer_info[i].bytecount = bytecount;
4783 	tx_ring->buffer_info[first].next_to_watch = i;
4784 
4785 	return count;
4786 
4787 dma_error:
4788 	dev_err(&pdev->dev, "Tx DMA map failed\n");
4789 	buffer_info->dma = 0;
4790 	if (count)
4791 		count--;
4792 
4793 	while (count--) {
4794 		if (i == 0)
4795 			i += tx_ring->count;
4796 		i--;
4797 		buffer_info = &tx_ring->buffer_info[i];
4798 		e1000_put_txbuf(adapter, buffer_info);
4799 	}
4800 
4801 	return 0;
4802 }
4803 
4804 static void e1000_tx_queue(struct e1000_adapter *adapter,
4805 			   int tx_flags, int count)
4806 {
4807 	struct e1000_ring *tx_ring = adapter->tx_ring;
4808 	struct e1000_tx_desc *tx_desc = NULL;
4809 	struct e1000_buffer *buffer_info;
4810 	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
4811 	unsigned int i;
4812 
4813 	if (tx_flags & E1000_TX_FLAGS_TSO) {
4814 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
4815 			     E1000_TXD_CMD_TSE;
4816 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
4817 
4818 		if (tx_flags & E1000_TX_FLAGS_IPV4)
4819 			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
4820 	}
4821 
4822 	if (tx_flags & E1000_TX_FLAGS_CSUM) {
4823 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
4824 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
4825 	}
4826 
4827 	if (tx_flags & E1000_TX_FLAGS_VLAN) {
4828 		txd_lower |= E1000_TXD_CMD_VLE;
4829 		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
4830 	}
4831 
4832 	i = tx_ring->next_to_use;
4833 
4834 	do {
4835 		buffer_info = &tx_ring->buffer_info[i];
4836 		tx_desc = E1000_TX_DESC(*tx_ring, i);
4837 		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4838 		tx_desc->lower.data =
4839 			cpu_to_le32(txd_lower | buffer_info->length);
4840 		tx_desc->upper.data = cpu_to_le32(txd_upper);
4841 
4842 		i++;
4843 		if (i == tx_ring->count)
4844 			i = 0;
4845 	} while (--count > 0);
4846 
4847 	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
4848 
4849 	/*
4850 	 * Force memory writes to complete before letting h/w
4851 	 * know there are new descriptors to fetch.  (Only
4852 	 * applicable for weak-ordered memory model archs,
4853 	 * such as IA-64).
4854 	 */
4855 	wmb();
4856 
4857 	tx_ring->next_to_use = i;
4858 
4859 	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
4860 		e1000e_update_tdt_wa(adapter, i);
4861 	else
4862 		writel(i, adapter->hw.hw_addr + tx_ring->tail);
4863 
4864 	/*
4865 	 * we need this if more than one processor can write to our tail
4866 	 * at a time, it synchronizes IO on IA64/Altix systems
4867 	 */
4868 	mmiowb();
4869 }
4870 
4871 #define MINIMUM_DHCP_PACKET_SIZE 282
4872 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
4873 				    struct sk_buff *skb)
4874 {
4875 	struct e1000_hw *hw =  &adapter->hw;
4876 	u16 length, offset;
4877 
4878 	if (vlan_tx_tag_present(skb)) {
4879 		if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
4880 		    (adapter->hw.mng_cookie.status &
4881 			E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
4882 			return 0;
4883 	}
4884 
4885 	if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
4886 		return 0;
4887 
4888 	if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
4889 		return 0;
4890 
4891 	{
4892 		const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
4893 		struct udphdr *udp;
4894 
4895 		if (ip->protocol != IPPROTO_UDP)
4896 			return 0;
4897 
4898 		udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
4899 		if (ntohs(udp->dest) != 67)
4900 			return 0;
4901 
4902 		offset = (u8 *)udp + 8 - skb->data;
4903 		length = skb->len - offset;
4904 		return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
4905 	}
4906 
4907 	return 0;
4908 }
4909 
4910 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
4911 {
4912 	struct e1000_adapter *adapter = netdev_priv(netdev);
4913 
4914 	netif_stop_queue(netdev);
4915 	/*
4916 	 * Herbert's original patch had:
4917 	 *  smp_mb__after_netif_stop_queue();
4918 	 * but since that doesn't exist yet, just open code it.
4919 	 */
4920 	smp_mb();
4921 
4922 	/*
4923 	 * We need to check again in a case another CPU has just
4924 	 * made room available.
4925 	 */
4926 	if (e1000_desc_unused(adapter->tx_ring) < size)
4927 		return -EBUSY;
4928 
4929 	/* A reprieve! */
4930 	netif_start_queue(netdev);
4931 	++adapter->restart_queue;
4932 	return 0;
4933 }
4934 
4935 static int e1000_maybe_stop_tx(struct net_device *netdev, int size)
4936 {
4937 	struct e1000_adapter *adapter = netdev_priv(netdev);
4938 
4939 	if (e1000_desc_unused(adapter->tx_ring) >= size)
4940 		return 0;
4941 	return __e1000_maybe_stop_tx(netdev, size);
4942 }
4943 
4944 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
4945 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
4946 				    struct net_device *netdev)
4947 {
4948 	struct e1000_adapter *adapter = netdev_priv(netdev);
4949 	struct e1000_ring *tx_ring = adapter->tx_ring;
4950 	unsigned int first;
4951 	unsigned int max_per_txd = E1000_MAX_PER_TXD;
4952 	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
4953 	unsigned int tx_flags = 0;
4954 	unsigned int len = skb_headlen(skb);
4955 	unsigned int nr_frags;
4956 	unsigned int mss;
4957 	int count = 0;
4958 	int tso;
4959 	unsigned int f;
4960 
4961 	if (test_bit(__E1000_DOWN, &adapter->state)) {
4962 		dev_kfree_skb_any(skb);
4963 		return NETDEV_TX_OK;
4964 	}
4965 
4966 	if (skb->len <= 0) {
4967 		dev_kfree_skb_any(skb);
4968 		return NETDEV_TX_OK;
4969 	}
4970 
4971 	mss = skb_shinfo(skb)->gso_size;
4972 	/*
4973 	 * The controller does a simple calculation to
4974 	 * make sure there is enough room in the FIFO before
4975 	 * initiating the DMA for each buffer.  The calc is:
4976 	 * 4 = ceil(buffer len/mss).  To make sure we don't
4977 	 * overrun the FIFO, adjust the max buffer len if mss
4978 	 * drops.
4979 	 */
4980 	if (mss) {
4981 		u8 hdr_len;
4982 		max_per_txd = min(mss << 2, max_per_txd);
4983 		max_txd_pwr = fls(max_per_txd) - 1;
4984 
4985 		/*
4986 		 * TSO Workaround for 82571/2/3 Controllers -- if skb->data
4987 		 * points to just header, pull a few bytes of payload from
4988 		 * frags into skb->data
4989 		 */
4990 		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
4991 		/*
4992 		 * we do this workaround for ES2LAN, but it is un-necessary,
4993 		 * avoiding it could save a lot of cycles
4994 		 */
4995 		if (skb->data_len && (hdr_len == len)) {
4996 			unsigned int pull_size;
4997 
4998 			pull_size = min((unsigned int)4, skb->data_len);
4999 			if (!__pskb_pull_tail(skb, pull_size)) {
5000 				e_err("__pskb_pull_tail failed.\n");
5001 				dev_kfree_skb_any(skb);
5002 				return NETDEV_TX_OK;
5003 			}
5004 			len = skb_headlen(skb);
5005 		}
5006 	}
5007 
5008 	/* reserve a descriptor for the offload context */
5009 	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5010 		count++;
5011 	count++;
5012 
5013 	count += TXD_USE_COUNT(len, max_txd_pwr);
5014 
5015 	nr_frags = skb_shinfo(skb)->nr_frags;
5016 	for (f = 0; f < nr_frags; f++)
5017 		count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5018 				       max_txd_pwr);
5019 
5020 	if (adapter->hw.mac.tx_pkt_filtering)
5021 		e1000_transfer_dhcp_info(adapter, skb);
5022 
5023 	/*
5024 	 * need: count + 2 desc gap to keep tail from touching
5025 	 * head, otherwise try next time
5026 	 */
5027 	if (e1000_maybe_stop_tx(netdev, count + 2))
5028 		return NETDEV_TX_BUSY;
5029 
5030 	if (vlan_tx_tag_present(skb)) {
5031 		tx_flags |= E1000_TX_FLAGS_VLAN;
5032 		tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
5033 	}
5034 
5035 	first = tx_ring->next_to_use;
5036 
5037 	tso = e1000_tso(adapter, skb);
5038 	if (tso < 0) {
5039 		dev_kfree_skb_any(skb);
5040 		return NETDEV_TX_OK;
5041 	}
5042 
5043 	if (tso)
5044 		tx_flags |= E1000_TX_FLAGS_TSO;
5045 	else if (e1000_tx_csum(adapter, skb))
5046 		tx_flags |= E1000_TX_FLAGS_CSUM;
5047 
5048 	/*
5049 	 * Old method was to assume IPv4 packet by default if TSO was enabled.
5050 	 * 82571 hardware supports TSO capabilities for IPv6 as well...
5051 	 * no longer assume, we must.
5052 	 */
5053 	if (skb->protocol == htons(ETH_P_IP))
5054 		tx_flags |= E1000_TX_FLAGS_IPV4;
5055 
5056 	/* if count is 0 then mapping error has occurred */
5057 	count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss);
5058 	if (count) {
5059 		netdev_sent_queue(netdev, skb->len);
5060 		e1000_tx_queue(adapter, tx_flags, count);
5061 		/* Make sure there is space in the ring for the next send. */
5062 		e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2);
5063 
5064 	} else {
5065 		dev_kfree_skb_any(skb);
5066 		tx_ring->buffer_info[first].time_stamp = 0;
5067 		tx_ring->next_to_use = first;
5068 	}
5069 
5070 	return NETDEV_TX_OK;
5071 }
5072 
5073 /**
5074  * e1000_tx_timeout - Respond to a Tx Hang
5075  * @netdev: network interface device structure
5076  **/
5077 static void e1000_tx_timeout(struct net_device *netdev)
5078 {
5079 	struct e1000_adapter *adapter = netdev_priv(netdev);
5080 
5081 	/* Do the reset outside of interrupt context */
5082 	adapter->tx_timeout_count++;
5083 	schedule_work(&adapter->reset_task);
5084 }
5085 
5086 static void e1000_reset_task(struct work_struct *work)
5087 {
5088 	struct e1000_adapter *adapter;
5089 	adapter = container_of(work, struct e1000_adapter, reset_task);
5090 
5091 	/* don't run the task if already down */
5092 	if (test_bit(__E1000_DOWN, &adapter->state))
5093 		return;
5094 
5095 	if (!((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
5096 	      (adapter->flags & FLAG_RX_RESTART_NOW))) {
5097 		e1000e_dump(adapter);
5098 		e_err("Reset adapter\n");
5099 	}
5100 	e1000e_reinit_locked(adapter);
5101 }
5102 
5103 /**
5104  * e1000_get_stats64 - Get System Network Statistics
5105  * @netdev: network interface device structure
5106  * @stats: rtnl_link_stats64 pointer
5107  *
5108  * Returns the address of the device statistics structure.
5109  **/
5110 struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev,
5111                                              struct rtnl_link_stats64 *stats)
5112 {
5113 	struct e1000_adapter *adapter = netdev_priv(netdev);
5114 
5115 	memset(stats, 0, sizeof(struct rtnl_link_stats64));
5116 	spin_lock(&adapter->stats64_lock);
5117 	e1000e_update_stats(adapter);
5118 	/* Fill out the OS statistics structure */
5119 	stats->rx_bytes = adapter->stats.gorc;
5120 	stats->rx_packets = adapter->stats.gprc;
5121 	stats->tx_bytes = adapter->stats.gotc;
5122 	stats->tx_packets = adapter->stats.gptc;
5123 	stats->multicast = adapter->stats.mprc;
5124 	stats->collisions = adapter->stats.colc;
5125 
5126 	/* Rx Errors */
5127 
5128 	/*
5129 	 * RLEC on some newer hardware can be incorrect so build
5130 	 * our own version based on RUC and ROC
5131 	 */
5132 	stats->rx_errors = adapter->stats.rxerrc +
5133 		adapter->stats.crcerrs + adapter->stats.algnerrc +
5134 		adapter->stats.ruc + adapter->stats.roc +
5135 		adapter->stats.cexterr;
5136 	stats->rx_length_errors = adapter->stats.ruc +
5137 					      adapter->stats.roc;
5138 	stats->rx_crc_errors = adapter->stats.crcerrs;
5139 	stats->rx_frame_errors = adapter->stats.algnerrc;
5140 	stats->rx_missed_errors = adapter->stats.mpc;
5141 
5142 	/* Tx Errors */
5143 	stats->tx_errors = adapter->stats.ecol +
5144 				       adapter->stats.latecol;
5145 	stats->tx_aborted_errors = adapter->stats.ecol;
5146 	stats->tx_window_errors = adapter->stats.latecol;
5147 	stats->tx_carrier_errors = adapter->stats.tncrs;
5148 
5149 	/* Tx Dropped needs to be maintained elsewhere */
5150 
5151 	spin_unlock(&adapter->stats64_lock);
5152 	return stats;
5153 }
5154 
5155 /**
5156  * e1000_change_mtu - Change the Maximum Transfer Unit
5157  * @netdev: network interface device structure
5158  * @new_mtu: new value for maximum frame size
5159  *
5160  * Returns 0 on success, negative on failure
5161  **/
5162 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
5163 {
5164 	struct e1000_adapter *adapter = netdev_priv(netdev);
5165 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
5166 
5167 	/* Jumbo frame support */
5168 	if ((max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) &&
5169 	    !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
5170 		e_err("Jumbo Frames not supported.\n");
5171 		return -EINVAL;
5172 	}
5173 
5174 	/* Supported frame sizes */
5175 	if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
5176 	    (max_frame > adapter->max_hw_frame_size)) {
5177 		e_err("Unsupported MTU setting\n");
5178 		return -EINVAL;
5179 	}
5180 
5181 	/* Jumbo frame workaround on 82579 requires CRC be stripped */
5182 	if ((adapter->hw.mac.type == e1000_pch2lan) &&
5183 	    !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
5184 	    (new_mtu > ETH_DATA_LEN)) {
5185 		e_err("Jumbo Frames not supported on 82579 when CRC stripping is disabled.\n");
5186 		return -EINVAL;
5187 	}
5188 
5189 	/* 82573 Errata 17 */
5190 	if (((adapter->hw.mac.type == e1000_82573) ||
5191 	     (adapter->hw.mac.type == e1000_82574)) &&
5192 	    (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN)) {
5193 		adapter->flags2 |= FLAG2_DISABLE_ASPM_L1;
5194 		e1000e_disable_aspm(adapter->pdev, PCIE_LINK_STATE_L1);
5195 	}
5196 
5197 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
5198 		usleep_range(1000, 2000);
5199 	/* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
5200 	adapter->max_frame_size = max_frame;
5201 	e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
5202 	netdev->mtu = new_mtu;
5203 	if (netif_running(netdev))
5204 		e1000e_down(adapter);
5205 
5206 	/*
5207 	 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
5208 	 * means we reserve 2 more, this pushes us to allocate from the next
5209 	 * larger slab size.
5210 	 * i.e. RXBUFFER_2048 --> size-4096 slab
5211 	 * However with the new *_jumbo_rx* routines, jumbo receives will use
5212 	 * fragmented skbs
5213 	 */
5214 
5215 	if (max_frame <= 2048)
5216 		adapter->rx_buffer_len = 2048;
5217 	else
5218 		adapter->rx_buffer_len = 4096;
5219 
5220 	/* adjust allocation if LPE protects us, and we aren't using SBP */
5221 	if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
5222 	     (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
5223 		adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
5224 					 + ETH_FCS_LEN;
5225 
5226 	if (netif_running(netdev))
5227 		e1000e_up(adapter);
5228 	else
5229 		e1000e_reset(adapter);
5230 
5231 	clear_bit(__E1000_RESETTING, &adapter->state);
5232 
5233 	return 0;
5234 }
5235 
5236 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
5237 			   int cmd)
5238 {
5239 	struct e1000_adapter *adapter = netdev_priv(netdev);
5240 	struct mii_ioctl_data *data = if_mii(ifr);
5241 
5242 	if (adapter->hw.phy.media_type != e1000_media_type_copper)
5243 		return -EOPNOTSUPP;
5244 
5245 	switch (cmd) {
5246 	case SIOCGMIIPHY:
5247 		data->phy_id = adapter->hw.phy.addr;
5248 		break;
5249 	case SIOCGMIIREG:
5250 		e1000_phy_read_status(adapter);
5251 
5252 		switch (data->reg_num & 0x1F) {
5253 		case MII_BMCR:
5254 			data->val_out = adapter->phy_regs.bmcr;
5255 			break;
5256 		case MII_BMSR:
5257 			data->val_out = adapter->phy_regs.bmsr;
5258 			break;
5259 		case MII_PHYSID1:
5260 			data->val_out = (adapter->hw.phy.id >> 16);
5261 			break;
5262 		case MII_PHYSID2:
5263 			data->val_out = (adapter->hw.phy.id & 0xFFFF);
5264 			break;
5265 		case MII_ADVERTISE:
5266 			data->val_out = adapter->phy_regs.advertise;
5267 			break;
5268 		case MII_LPA:
5269 			data->val_out = adapter->phy_regs.lpa;
5270 			break;
5271 		case MII_EXPANSION:
5272 			data->val_out = adapter->phy_regs.expansion;
5273 			break;
5274 		case MII_CTRL1000:
5275 			data->val_out = adapter->phy_regs.ctrl1000;
5276 			break;
5277 		case MII_STAT1000:
5278 			data->val_out = adapter->phy_regs.stat1000;
5279 			break;
5280 		case MII_ESTATUS:
5281 			data->val_out = adapter->phy_regs.estatus;
5282 			break;
5283 		default:
5284 			return -EIO;
5285 		}
5286 		break;
5287 	case SIOCSMIIREG:
5288 	default:
5289 		return -EOPNOTSUPP;
5290 	}
5291 	return 0;
5292 }
5293 
5294 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5295 {
5296 	switch (cmd) {
5297 	case SIOCGMIIPHY:
5298 	case SIOCGMIIREG:
5299 	case SIOCSMIIREG:
5300 		return e1000_mii_ioctl(netdev, ifr, cmd);
5301 	default:
5302 		return -EOPNOTSUPP;
5303 	}
5304 }
5305 
5306 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
5307 {
5308 	struct e1000_hw *hw = &adapter->hw;
5309 	u32 i, mac_reg;
5310 	u16 phy_reg, wuc_enable;
5311 	int retval = 0;
5312 
5313 	/* copy MAC RARs to PHY RARs */
5314 	e1000_copy_rx_addrs_to_phy_ich8lan(hw);
5315 
5316 	retval = hw->phy.ops.acquire(hw);
5317 	if (retval) {
5318 		e_err("Could not acquire PHY\n");
5319 		return retval;
5320 	}
5321 
5322 	/* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
5323 	retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
5324 	if (retval)
5325 		goto out;
5326 
5327 	/* copy MAC MTA to PHY MTA - only needed for pchlan */
5328 	for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
5329 		mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
5330 		hw->phy.ops.write_reg_page(hw, BM_MTA(i),
5331 					   (u16)(mac_reg & 0xFFFF));
5332 		hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
5333 					   (u16)((mac_reg >> 16) & 0xFFFF));
5334 	}
5335 
5336 	/* configure PHY Rx Control register */
5337 	hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
5338 	mac_reg = er32(RCTL);
5339 	if (mac_reg & E1000_RCTL_UPE)
5340 		phy_reg |= BM_RCTL_UPE;
5341 	if (mac_reg & E1000_RCTL_MPE)
5342 		phy_reg |= BM_RCTL_MPE;
5343 	phy_reg &= ~(BM_RCTL_MO_MASK);
5344 	if (mac_reg & E1000_RCTL_MO_3)
5345 		phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
5346 				<< BM_RCTL_MO_SHIFT);
5347 	if (mac_reg & E1000_RCTL_BAM)
5348 		phy_reg |= BM_RCTL_BAM;
5349 	if (mac_reg & E1000_RCTL_PMCF)
5350 		phy_reg |= BM_RCTL_PMCF;
5351 	mac_reg = er32(CTRL);
5352 	if (mac_reg & E1000_CTRL_RFCE)
5353 		phy_reg |= BM_RCTL_RFCE;
5354 	hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
5355 
5356 	/* enable PHY wakeup in MAC register */
5357 	ew32(WUFC, wufc);
5358 	ew32(WUC, E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN);
5359 
5360 	/* configure and enable PHY wakeup in PHY registers */
5361 	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
5362 	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);
5363 
5364 	/* activate PHY wakeup */
5365 	wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
5366 	retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
5367 	if (retval)
5368 		e_err("Could not set PHY Host Wakeup bit\n");
5369 out:
5370 	hw->phy.ops.release(hw);
5371 
5372 	return retval;
5373 }
5374 
5375 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake,
5376 			    bool runtime)
5377 {
5378 	struct net_device *netdev = pci_get_drvdata(pdev);
5379 	struct e1000_adapter *adapter = netdev_priv(netdev);
5380 	struct e1000_hw *hw = &adapter->hw;
5381 	u32 ctrl, ctrl_ext, rctl, status;
5382 	/* Runtime suspend should only enable wakeup for link changes */
5383 	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
5384 	int retval = 0;
5385 
5386 	netif_device_detach(netdev);
5387 
5388 	if (netif_running(netdev)) {
5389 		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
5390 		e1000e_down(adapter);
5391 		e1000_free_irq(adapter);
5392 	}
5393 	e1000e_reset_interrupt_capability(adapter);
5394 
5395 	retval = pci_save_state(pdev);
5396 	if (retval)
5397 		return retval;
5398 
5399 	status = er32(STATUS);
5400 	if (status & E1000_STATUS_LU)
5401 		wufc &= ~E1000_WUFC_LNKC;
5402 
5403 	if (wufc) {
5404 		e1000_setup_rctl(adapter);
5405 		e1000e_set_rx_mode(netdev);
5406 
5407 		/* turn on all-multi mode if wake on multicast is enabled */
5408 		if (wufc & E1000_WUFC_MC) {
5409 			rctl = er32(RCTL);
5410 			rctl |= E1000_RCTL_MPE;
5411 			ew32(RCTL, rctl);
5412 		}
5413 
5414 		ctrl = er32(CTRL);
5415 		/* advertise wake from D3Cold */
5416 		#define E1000_CTRL_ADVD3WUC 0x00100000
5417 		/* phy power management enable */
5418 		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5419 		ctrl |= E1000_CTRL_ADVD3WUC;
5420 		if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
5421 			ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
5422 		ew32(CTRL, ctrl);
5423 
5424 		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
5425 		    adapter->hw.phy.media_type ==
5426 		    e1000_media_type_internal_serdes) {
5427 			/* keep the laser running in D3 */
5428 			ctrl_ext = er32(CTRL_EXT);
5429 			ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
5430 			ew32(CTRL_EXT, ctrl_ext);
5431 		}
5432 
5433 		if (adapter->flags & FLAG_IS_ICH)
5434 			e1000_suspend_workarounds_ich8lan(&adapter->hw);
5435 
5436 		/* Allow time for pending master requests to run */
5437 		e1000e_disable_pcie_master(&adapter->hw);
5438 
5439 		if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
5440 			/* enable wakeup by the PHY */
5441 			retval = e1000_init_phy_wakeup(adapter, wufc);
5442 			if (retval)
5443 				return retval;
5444 		} else {
5445 			/* enable wakeup by the MAC */
5446 			ew32(WUFC, wufc);
5447 			ew32(WUC, E1000_WUC_PME_EN);
5448 		}
5449 	} else {
5450 		ew32(WUC, 0);
5451 		ew32(WUFC, 0);
5452 	}
5453 
5454 	*enable_wake = !!wufc;
5455 
5456 	/* make sure adapter isn't asleep if manageability is enabled */
5457 	if ((adapter->flags & FLAG_MNG_PT_ENABLED) ||
5458 	    (hw->mac.ops.check_mng_mode(hw)))
5459 		*enable_wake = true;
5460 
5461 	if (adapter->hw.phy.type == e1000_phy_igp_3)
5462 		e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
5463 
5464 	/*
5465 	 * Release control of h/w to f/w.  If f/w is AMT enabled, this
5466 	 * would have already happened in close and is redundant.
5467 	 */
5468 	e1000e_release_hw_control(adapter);
5469 
5470 	pci_disable_device(pdev);
5471 
5472 	return 0;
5473 }
5474 
5475 static void e1000_power_off(struct pci_dev *pdev, bool sleep, bool wake)
5476 {
5477 	if (sleep && wake) {
5478 		pci_prepare_to_sleep(pdev);
5479 		return;
5480 	}
5481 
5482 	pci_wake_from_d3(pdev, wake);
5483 	pci_set_power_state(pdev, PCI_D3hot);
5484 }
5485 
5486 static void e1000_complete_shutdown(struct pci_dev *pdev, bool sleep,
5487                                     bool wake)
5488 {
5489 	struct net_device *netdev = pci_get_drvdata(pdev);
5490 	struct e1000_adapter *adapter = netdev_priv(netdev);
5491 
5492 	/*
5493 	 * The pci-e switch on some quad port adapters will report a
5494 	 * correctable error when the MAC transitions from D0 to D3.  To
5495 	 * prevent this we need to mask off the correctable errors on the
5496 	 * downstream port of the pci-e switch.
5497 	 */
5498 	if (adapter->flags & FLAG_IS_QUAD_PORT) {
5499 		struct pci_dev *us_dev = pdev->bus->self;
5500 		int pos = pci_pcie_cap(us_dev);
5501 		u16 devctl;
5502 
5503 		pci_read_config_word(us_dev, pos + PCI_EXP_DEVCTL, &devctl);
5504 		pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL,
5505 		                      (devctl & ~PCI_EXP_DEVCTL_CERE));
5506 
5507 		e1000_power_off(pdev, sleep, wake);
5508 
5509 		pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, devctl);
5510 	} else {
5511 		e1000_power_off(pdev, sleep, wake);
5512 	}
5513 }
5514 
5515 #ifdef CONFIG_PCIEASPM
5516 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5517 {
5518 	pci_disable_link_state_locked(pdev, state);
5519 }
5520 #else
5521 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5522 {
5523 	int pos;
5524 	u16 reg16;
5525 
5526 	/*
5527 	 * Both device and parent should have the same ASPM setting.
5528 	 * Disable ASPM in downstream component first and then upstream.
5529 	 */
5530 	pos = pci_pcie_cap(pdev);
5531 	pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &reg16);
5532 	reg16 &= ~state;
5533 	pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, reg16);
5534 
5535 	if (!pdev->bus->self)
5536 		return;
5537 
5538 	pos = pci_pcie_cap(pdev->bus->self);
5539 	pci_read_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, &reg16);
5540 	reg16 &= ~state;
5541 	pci_write_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, reg16);
5542 }
5543 #endif
5544 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5545 {
5546 	dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
5547 		 (state & PCIE_LINK_STATE_L0S) ? "L0s" : "",
5548 		 (state & PCIE_LINK_STATE_L1) ? "L1" : "");
5549 
5550 	__e1000e_disable_aspm(pdev, state);
5551 }
5552 
5553 #ifdef CONFIG_PM
5554 static bool e1000e_pm_ready(struct e1000_adapter *adapter)
5555 {
5556 	return !!adapter->tx_ring->buffer_info;
5557 }
5558 
5559 static int __e1000_resume(struct pci_dev *pdev)
5560 {
5561 	struct net_device *netdev = pci_get_drvdata(pdev);
5562 	struct e1000_adapter *adapter = netdev_priv(netdev);
5563 	struct e1000_hw *hw = &adapter->hw;
5564 	u16 aspm_disable_flag = 0;
5565 	u32 err;
5566 
5567 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
5568 		aspm_disable_flag = PCIE_LINK_STATE_L0S;
5569 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
5570 		aspm_disable_flag |= PCIE_LINK_STATE_L1;
5571 	if (aspm_disable_flag)
5572 		e1000e_disable_aspm(pdev, aspm_disable_flag);
5573 
5574 	pci_set_power_state(pdev, PCI_D0);
5575 	pci_restore_state(pdev);
5576 	pci_save_state(pdev);
5577 
5578 	e1000e_set_interrupt_capability(adapter);
5579 	if (netif_running(netdev)) {
5580 		err = e1000_request_irq(adapter);
5581 		if (err)
5582 			return err;
5583 	}
5584 
5585 	if (hw->mac.type == e1000_pch2lan)
5586 		e1000_resume_workarounds_pchlan(&adapter->hw);
5587 
5588 	e1000e_power_up_phy(adapter);
5589 
5590 	/* report the system wakeup cause from S3/S4 */
5591 	if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
5592 		u16 phy_data;
5593 
5594 		e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
5595 		if (phy_data) {
5596 			e_info("PHY Wakeup cause - %s\n",
5597 				phy_data & E1000_WUS_EX ? "Unicast Packet" :
5598 				phy_data & E1000_WUS_MC ? "Multicast Packet" :
5599 				phy_data & E1000_WUS_BC ? "Broadcast Packet" :
5600 				phy_data & E1000_WUS_MAG ? "Magic Packet" :
5601 				phy_data & E1000_WUS_LNKC ?
5602 				"Link Status Change" : "other");
5603 		}
5604 		e1e_wphy(&adapter->hw, BM_WUS, ~0);
5605 	} else {
5606 		u32 wus = er32(WUS);
5607 		if (wus) {
5608 			e_info("MAC Wakeup cause - %s\n",
5609 				wus & E1000_WUS_EX ? "Unicast Packet" :
5610 				wus & E1000_WUS_MC ? "Multicast Packet" :
5611 				wus & E1000_WUS_BC ? "Broadcast Packet" :
5612 				wus & E1000_WUS_MAG ? "Magic Packet" :
5613 				wus & E1000_WUS_LNKC ? "Link Status Change" :
5614 				"other");
5615 		}
5616 		ew32(WUS, ~0);
5617 	}
5618 
5619 	e1000e_reset(adapter);
5620 
5621 	e1000_init_manageability_pt(adapter);
5622 
5623 	if (netif_running(netdev))
5624 		e1000e_up(adapter);
5625 
5626 	netif_device_attach(netdev);
5627 
5628 	/*
5629 	 * If the controller has AMT, do not set DRV_LOAD until the interface
5630 	 * is up.  For all other cases, let the f/w know that the h/w is now
5631 	 * under the control of the driver.
5632 	 */
5633 	if (!(adapter->flags & FLAG_HAS_AMT))
5634 		e1000e_get_hw_control(adapter);
5635 
5636 	return 0;
5637 }
5638 
5639 #ifdef CONFIG_PM_SLEEP
5640 static int e1000_suspend(struct device *dev)
5641 {
5642 	struct pci_dev *pdev = to_pci_dev(dev);
5643 	int retval;
5644 	bool wake;
5645 
5646 	retval = __e1000_shutdown(pdev, &wake, false);
5647 	if (!retval)
5648 		e1000_complete_shutdown(pdev, true, wake);
5649 
5650 	return retval;
5651 }
5652 
5653 static int e1000_resume(struct device *dev)
5654 {
5655 	struct pci_dev *pdev = to_pci_dev(dev);
5656 	struct net_device *netdev = pci_get_drvdata(pdev);
5657 	struct e1000_adapter *adapter = netdev_priv(netdev);
5658 
5659 	if (e1000e_pm_ready(adapter))
5660 		adapter->idle_check = true;
5661 
5662 	return __e1000_resume(pdev);
5663 }
5664 #endif /* CONFIG_PM_SLEEP */
5665 
5666 #ifdef CONFIG_PM_RUNTIME
5667 static int e1000_runtime_suspend(struct device *dev)
5668 {
5669 	struct pci_dev *pdev = to_pci_dev(dev);
5670 	struct net_device *netdev = pci_get_drvdata(pdev);
5671 	struct e1000_adapter *adapter = netdev_priv(netdev);
5672 
5673 	if (e1000e_pm_ready(adapter)) {
5674 		bool wake;
5675 
5676 		__e1000_shutdown(pdev, &wake, true);
5677 	}
5678 
5679 	return 0;
5680 }
5681 
5682 static int e1000_idle(struct device *dev)
5683 {
5684 	struct pci_dev *pdev = to_pci_dev(dev);
5685 	struct net_device *netdev = pci_get_drvdata(pdev);
5686 	struct e1000_adapter *adapter = netdev_priv(netdev);
5687 
5688 	if (!e1000e_pm_ready(adapter))
5689 		return 0;
5690 
5691 	if (adapter->idle_check) {
5692 		adapter->idle_check = false;
5693 		if (!e1000e_has_link(adapter))
5694 			pm_schedule_suspend(dev, MSEC_PER_SEC);
5695 	}
5696 
5697 	return -EBUSY;
5698 }
5699 
5700 static int e1000_runtime_resume(struct device *dev)
5701 {
5702 	struct pci_dev *pdev = to_pci_dev(dev);
5703 	struct net_device *netdev = pci_get_drvdata(pdev);
5704 	struct e1000_adapter *adapter = netdev_priv(netdev);
5705 
5706 	if (!e1000e_pm_ready(adapter))
5707 		return 0;
5708 
5709 	adapter->idle_check = !dev->power.runtime_auto;
5710 	return __e1000_resume(pdev);
5711 }
5712 #endif /* CONFIG_PM_RUNTIME */
5713 #endif /* CONFIG_PM */
5714 
5715 static void e1000_shutdown(struct pci_dev *pdev)
5716 {
5717 	bool wake = false;
5718 
5719 	__e1000_shutdown(pdev, &wake, false);
5720 
5721 	if (system_state == SYSTEM_POWER_OFF)
5722 		e1000_complete_shutdown(pdev, false, wake);
5723 }
5724 
5725 #ifdef CONFIG_NET_POLL_CONTROLLER
5726 
5727 static irqreturn_t e1000_intr_msix(int irq, void *data)
5728 {
5729 	struct net_device *netdev = data;
5730 	struct e1000_adapter *adapter = netdev_priv(netdev);
5731 
5732 	if (adapter->msix_entries) {
5733 		int vector, msix_irq;
5734 
5735 		vector = 0;
5736 		msix_irq = adapter->msix_entries[vector].vector;
5737 		disable_irq(msix_irq);
5738 		e1000_intr_msix_rx(msix_irq, netdev);
5739 		enable_irq(msix_irq);
5740 
5741 		vector++;
5742 		msix_irq = adapter->msix_entries[vector].vector;
5743 		disable_irq(msix_irq);
5744 		e1000_intr_msix_tx(msix_irq, netdev);
5745 		enable_irq(msix_irq);
5746 
5747 		vector++;
5748 		msix_irq = adapter->msix_entries[vector].vector;
5749 		disable_irq(msix_irq);
5750 		e1000_msix_other(msix_irq, netdev);
5751 		enable_irq(msix_irq);
5752 	}
5753 
5754 	return IRQ_HANDLED;
5755 }
5756 
5757 /*
5758  * Polling 'interrupt' - used by things like netconsole to send skbs
5759  * without having to re-enable interrupts. It's not called while
5760  * the interrupt routine is executing.
5761  */
5762 static void e1000_netpoll(struct net_device *netdev)
5763 {
5764 	struct e1000_adapter *adapter = netdev_priv(netdev);
5765 
5766 	switch (adapter->int_mode) {
5767 	case E1000E_INT_MODE_MSIX:
5768 		e1000_intr_msix(adapter->pdev->irq, netdev);
5769 		break;
5770 	case E1000E_INT_MODE_MSI:
5771 		disable_irq(adapter->pdev->irq);
5772 		e1000_intr_msi(adapter->pdev->irq, netdev);
5773 		enable_irq(adapter->pdev->irq);
5774 		break;
5775 	default: /* E1000E_INT_MODE_LEGACY */
5776 		disable_irq(adapter->pdev->irq);
5777 		e1000_intr(adapter->pdev->irq, netdev);
5778 		enable_irq(adapter->pdev->irq);
5779 		break;
5780 	}
5781 }
5782 #endif
5783 
5784 /**
5785  * e1000_io_error_detected - called when PCI error is detected
5786  * @pdev: Pointer to PCI device
5787  * @state: The current pci connection state
5788  *
5789  * This function is called after a PCI bus error affecting
5790  * this device has been detected.
5791  */
5792 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5793 						pci_channel_state_t state)
5794 {
5795 	struct net_device *netdev = pci_get_drvdata(pdev);
5796 	struct e1000_adapter *adapter = netdev_priv(netdev);
5797 
5798 	netif_device_detach(netdev);
5799 
5800 	if (state == pci_channel_io_perm_failure)
5801 		return PCI_ERS_RESULT_DISCONNECT;
5802 
5803 	if (netif_running(netdev))
5804 		e1000e_down(adapter);
5805 	pci_disable_device(pdev);
5806 
5807 	/* Request a slot slot reset. */
5808 	return PCI_ERS_RESULT_NEED_RESET;
5809 }
5810 
5811 /**
5812  * e1000_io_slot_reset - called after the pci bus has been reset.
5813  * @pdev: Pointer to PCI device
5814  *
5815  * Restart the card from scratch, as if from a cold-boot. Implementation
5816  * resembles the first-half of the e1000_resume routine.
5817  */
5818 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5819 {
5820 	struct net_device *netdev = pci_get_drvdata(pdev);
5821 	struct e1000_adapter *adapter = netdev_priv(netdev);
5822 	struct e1000_hw *hw = &adapter->hw;
5823 	u16 aspm_disable_flag = 0;
5824 	int err;
5825 	pci_ers_result_t result;
5826 
5827 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
5828 		aspm_disable_flag = PCIE_LINK_STATE_L0S;
5829 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
5830 		aspm_disable_flag |= PCIE_LINK_STATE_L1;
5831 	if (aspm_disable_flag)
5832 		e1000e_disable_aspm(pdev, aspm_disable_flag);
5833 
5834 	err = pci_enable_device_mem(pdev);
5835 	if (err) {
5836 		dev_err(&pdev->dev,
5837 			"Cannot re-enable PCI device after reset.\n");
5838 		result = PCI_ERS_RESULT_DISCONNECT;
5839 	} else {
5840 		pci_set_master(pdev);
5841 		pdev->state_saved = true;
5842 		pci_restore_state(pdev);
5843 
5844 		pci_enable_wake(pdev, PCI_D3hot, 0);
5845 		pci_enable_wake(pdev, PCI_D3cold, 0);
5846 
5847 		e1000e_reset(adapter);
5848 		ew32(WUS, ~0);
5849 		result = PCI_ERS_RESULT_RECOVERED;
5850 	}
5851 
5852 	pci_cleanup_aer_uncorrect_error_status(pdev);
5853 
5854 	return result;
5855 }
5856 
5857 /**
5858  * e1000_io_resume - called when traffic can start flowing again.
5859  * @pdev: Pointer to PCI device
5860  *
5861  * This callback is called when the error recovery driver tells us that
5862  * its OK to resume normal operation. Implementation resembles the
5863  * second-half of the e1000_resume routine.
5864  */
5865 static void e1000_io_resume(struct pci_dev *pdev)
5866 {
5867 	struct net_device *netdev = pci_get_drvdata(pdev);
5868 	struct e1000_adapter *adapter = netdev_priv(netdev);
5869 
5870 	e1000_init_manageability_pt(adapter);
5871 
5872 	if (netif_running(netdev)) {
5873 		if (e1000e_up(adapter)) {
5874 			dev_err(&pdev->dev,
5875 				"can't bring device back up after reset\n");
5876 			return;
5877 		}
5878 	}
5879 
5880 	netif_device_attach(netdev);
5881 
5882 	/*
5883 	 * If the controller has AMT, do not set DRV_LOAD until the interface
5884 	 * is up.  For all other cases, let the f/w know that the h/w is now
5885 	 * under the control of the driver.
5886 	 */
5887 	if (!(adapter->flags & FLAG_HAS_AMT))
5888 		e1000e_get_hw_control(adapter);
5889 
5890 }
5891 
5892 static void e1000_print_device_info(struct e1000_adapter *adapter)
5893 {
5894 	struct e1000_hw *hw = &adapter->hw;
5895 	struct net_device *netdev = adapter->netdev;
5896 	u32 ret_val;
5897 	u8 pba_str[E1000_PBANUM_LENGTH];
5898 
5899 	/* print bus type/speed/width info */
5900 	e_info("(PCI Express:2.5GT/s:%s) %pM\n",
5901 	       /* bus width */
5902 	       ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
5903 	        "Width x1"),
5904 	       /* MAC address */
5905 	       netdev->dev_addr);
5906 	e_info("Intel(R) PRO/%s Network Connection\n",
5907 	       (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
5908 	ret_val = e1000_read_pba_string_generic(hw, pba_str,
5909 						E1000_PBANUM_LENGTH);
5910 	if (ret_val)
5911 		strncpy((char *)pba_str, "Unknown", sizeof(pba_str) - 1);
5912 	e_info("MAC: %d, PHY: %d, PBA No: %s\n",
5913 	       hw->mac.type, hw->phy.type, pba_str);
5914 }
5915 
5916 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
5917 {
5918 	struct e1000_hw *hw = &adapter->hw;
5919 	int ret_val;
5920 	u16 buf = 0;
5921 
5922 	if (hw->mac.type != e1000_82573)
5923 		return;
5924 
5925 	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
5926 	if (!ret_val && (!(le16_to_cpu(buf) & (1 << 0)))) {
5927 		/* Deep Smart Power Down (DSPD) */
5928 		dev_warn(&adapter->pdev->dev,
5929 			 "Warning: detected DSPD enabled in EEPROM\n");
5930 	}
5931 }
5932 
5933 static int e1000_set_features(struct net_device *netdev,
5934 	netdev_features_t features)
5935 {
5936 	struct e1000_adapter *adapter = netdev_priv(netdev);
5937 	netdev_features_t changed = features ^ netdev->features;
5938 
5939 	if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
5940 		adapter->flags |= FLAG_TSO_FORCE;
5941 
5942 	if (!(changed & (NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX |
5943 			 NETIF_F_RXCSUM)))
5944 		return 0;
5945 
5946 	if (netif_running(netdev))
5947 		e1000e_reinit_locked(adapter);
5948 	else
5949 		e1000e_reset(adapter);
5950 
5951 	return 0;
5952 }
5953 
5954 static const struct net_device_ops e1000e_netdev_ops = {
5955 	.ndo_open		= e1000_open,
5956 	.ndo_stop		= e1000_close,
5957 	.ndo_start_xmit		= e1000_xmit_frame,
5958 	.ndo_get_stats64	= e1000e_get_stats64,
5959 	.ndo_set_rx_mode	= e1000e_set_rx_mode,
5960 	.ndo_set_mac_address	= e1000_set_mac,
5961 	.ndo_change_mtu		= e1000_change_mtu,
5962 	.ndo_do_ioctl		= e1000_ioctl,
5963 	.ndo_tx_timeout		= e1000_tx_timeout,
5964 	.ndo_validate_addr	= eth_validate_addr,
5965 
5966 	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
5967 	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
5968 #ifdef CONFIG_NET_POLL_CONTROLLER
5969 	.ndo_poll_controller	= e1000_netpoll,
5970 #endif
5971 	.ndo_set_features = e1000_set_features,
5972 };
5973 
5974 /**
5975  * e1000_probe - Device Initialization Routine
5976  * @pdev: PCI device information struct
5977  * @ent: entry in e1000_pci_tbl
5978  *
5979  * Returns 0 on success, negative on failure
5980  *
5981  * e1000_probe initializes an adapter identified by a pci_dev structure.
5982  * The OS initialization, configuring of the adapter private structure,
5983  * and a hardware reset occur.
5984  **/
5985 static int __devinit e1000_probe(struct pci_dev *pdev,
5986 				 const struct pci_device_id *ent)
5987 {
5988 	struct net_device *netdev;
5989 	struct e1000_adapter *adapter;
5990 	struct e1000_hw *hw;
5991 	const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
5992 	resource_size_t mmio_start, mmio_len;
5993 	resource_size_t flash_start, flash_len;
5994 
5995 	static int cards_found;
5996 	u16 aspm_disable_flag = 0;
5997 	int i, err, pci_using_dac;
5998 	u16 eeprom_data = 0;
5999 	u16 eeprom_apme_mask = E1000_EEPROM_APME;
6000 
6001 	if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
6002 		aspm_disable_flag = PCIE_LINK_STATE_L0S;
6003 	if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
6004 		aspm_disable_flag |= PCIE_LINK_STATE_L1;
6005 	if (aspm_disable_flag)
6006 		e1000e_disable_aspm(pdev, aspm_disable_flag);
6007 
6008 	err = pci_enable_device_mem(pdev);
6009 	if (err)
6010 		return err;
6011 
6012 	pci_using_dac = 0;
6013 	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
6014 	if (!err) {
6015 		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
6016 		if (!err)
6017 			pci_using_dac = 1;
6018 	} else {
6019 		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
6020 		if (err) {
6021 			err = dma_set_coherent_mask(&pdev->dev,
6022 						    DMA_BIT_MASK(32));
6023 			if (err) {
6024 				dev_err(&pdev->dev, "No usable DMA configuration, aborting\n");
6025 				goto err_dma;
6026 			}
6027 		}
6028 	}
6029 
6030 	err = pci_request_selected_regions_exclusive(pdev,
6031 	                                  pci_select_bars(pdev, IORESOURCE_MEM),
6032 	                                  e1000e_driver_name);
6033 	if (err)
6034 		goto err_pci_reg;
6035 
6036 	/* AER (Advanced Error Reporting) hooks */
6037 	pci_enable_pcie_error_reporting(pdev);
6038 
6039 	pci_set_master(pdev);
6040 	/* PCI config space info */
6041 	err = pci_save_state(pdev);
6042 	if (err)
6043 		goto err_alloc_etherdev;
6044 
6045 	err = -ENOMEM;
6046 	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
6047 	if (!netdev)
6048 		goto err_alloc_etherdev;
6049 
6050 	SET_NETDEV_DEV(netdev, &pdev->dev);
6051 
6052 	netdev->irq = pdev->irq;
6053 
6054 	pci_set_drvdata(pdev, netdev);
6055 	adapter = netdev_priv(netdev);
6056 	hw = &adapter->hw;
6057 	adapter->netdev = netdev;
6058 	adapter->pdev = pdev;
6059 	adapter->ei = ei;
6060 	adapter->pba = ei->pba;
6061 	adapter->flags = ei->flags;
6062 	adapter->flags2 = ei->flags2;
6063 	adapter->hw.adapter = adapter;
6064 	adapter->hw.mac.type = ei->mac;
6065 	adapter->max_hw_frame_size = ei->max_hw_frame_size;
6066 	adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
6067 
6068 	mmio_start = pci_resource_start(pdev, 0);
6069 	mmio_len = pci_resource_len(pdev, 0);
6070 
6071 	err = -EIO;
6072 	adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
6073 	if (!adapter->hw.hw_addr)
6074 		goto err_ioremap;
6075 
6076 	if ((adapter->flags & FLAG_HAS_FLASH) &&
6077 	    (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
6078 		flash_start = pci_resource_start(pdev, 1);
6079 		flash_len = pci_resource_len(pdev, 1);
6080 		adapter->hw.flash_address = ioremap(flash_start, flash_len);
6081 		if (!adapter->hw.flash_address)
6082 			goto err_flashmap;
6083 	}
6084 
6085 	/* construct the net_device struct */
6086 	netdev->netdev_ops		= &e1000e_netdev_ops;
6087 	e1000e_set_ethtool_ops(netdev);
6088 	netdev->watchdog_timeo		= 5 * HZ;
6089 	netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
6090 	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
6091 
6092 	netdev->mem_start = mmio_start;
6093 	netdev->mem_end = mmio_start + mmio_len;
6094 
6095 	adapter->bd_number = cards_found++;
6096 
6097 	e1000e_check_options(adapter);
6098 
6099 	/* setup adapter struct */
6100 	err = e1000_sw_init(adapter);
6101 	if (err)
6102 		goto err_sw_init;
6103 
6104 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
6105 	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
6106 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
6107 
6108 	err = ei->get_variants(adapter);
6109 	if (err)
6110 		goto err_hw_init;
6111 
6112 	if ((adapter->flags & FLAG_IS_ICH) &&
6113 	    (adapter->flags & FLAG_READ_ONLY_NVM))
6114 		e1000e_write_protect_nvm_ich8lan(&adapter->hw);
6115 
6116 	hw->mac.ops.get_bus_info(&adapter->hw);
6117 
6118 	adapter->hw.phy.autoneg_wait_to_complete = 0;
6119 
6120 	/* Copper options */
6121 	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
6122 		adapter->hw.phy.mdix = AUTO_ALL_MODES;
6123 		adapter->hw.phy.disable_polarity_correction = 0;
6124 		adapter->hw.phy.ms_type = e1000_ms_hw_default;
6125 	}
6126 
6127 	if (e1000_check_reset_block(&adapter->hw))
6128 		e_info("PHY reset is blocked due to SOL/IDER session.\n");
6129 
6130 	/* Set initial default active device features */
6131 	netdev->features = (NETIF_F_SG |
6132 			    NETIF_F_HW_VLAN_RX |
6133 			    NETIF_F_HW_VLAN_TX |
6134 			    NETIF_F_TSO |
6135 			    NETIF_F_TSO6 |
6136 			    NETIF_F_RXCSUM |
6137 			    NETIF_F_HW_CSUM);
6138 
6139 	/* Set user-changeable features (subset of all device features) */
6140 	netdev->hw_features = netdev->features;
6141 
6142 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
6143 		netdev->features |= NETIF_F_HW_VLAN_FILTER;
6144 
6145 	netdev->vlan_features |= (NETIF_F_SG |
6146 				  NETIF_F_TSO |
6147 				  NETIF_F_TSO6 |
6148 				  NETIF_F_HW_CSUM);
6149 
6150 	netdev->priv_flags |= IFF_UNICAST_FLT;
6151 
6152 	if (pci_using_dac) {
6153 		netdev->features |= NETIF_F_HIGHDMA;
6154 		netdev->vlan_features |= NETIF_F_HIGHDMA;
6155 	}
6156 
6157 	if (e1000e_enable_mng_pass_thru(&adapter->hw))
6158 		adapter->flags |= FLAG_MNG_PT_ENABLED;
6159 
6160 	/*
6161 	 * before reading the NVM, reset the controller to
6162 	 * put the device in a known good starting state
6163 	 */
6164 	adapter->hw.mac.ops.reset_hw(&adapter->hw);
6165 
6166 	/*
6167 	 * systems with ASPM and others may see the checksum fail on the first
6168 	 * attempt. Let's give it a few tries
6169 	 */
6170 	for (i = 0;; i++) {
6171 		if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
6172 			break;
6173 		if (i == 2) {
6174 			e_err("The NVM Checksum Is Not Valid\n");
6175 			err = -EIO;
6176 			goto err_eeprom;
6177 		}
6178 	}
6179 
6180 	e1000_eeprom_checks(adapter);
6181 
6182 	/* copy the MAC address */
6183 	if (e1000e_read_mac_addr(&adapter->hw))
6184 		e_err("NVM Read Error while reading MAC address\n");
6185 
6186 	memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
6187 	memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
6188 
6189 	if (!is_valid_ether_addr(netdev->perm_addr)) {
6190 		e_err("Invalid MAC Address: %pM\n", netdev->perm_addr);
6191 		err = -EIO;
6192 		goto err_eeprom;
6193 	}
6194 
6195 	init_timer(&adapter->watchdog_timer);
6196 	adapter->watchdog_timer.function = e1000_watchdog;
6197 	adapter->watchdog_timer.data = (unsigned long) adapter;
6198 
6199 	init_timer(&adapter->phy_info_timer);
6200 	adapter->phy_info_timer.function = e1000_update_phy_info;
6201 	adapter->phy_info_timer.data = (unsigned long) adapter;
6202 
6203 	INIT_WORK(&adapter->reset_task, e1000_reset_task);
6204 	INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
6205 	INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
6206 	INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
6207 	INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
6208 
6209 	/* Initialize link parameters. User can change them with ethtool */
6210 	adapter->hw.mac.autoneg = 1;
6211 	adapter->fc_autoneg = true;
6212 	adapter->hw.fc.requested_mode = e1000_fc_default;
6213 	adapter->hw.fc.current_mode = e1000_fc_default;
6214 	adapter->hw.phy.autoneg_advertised = 0x2f;
6215 
6216 	/* ring size defaults */
6217 	adapter->rx_ring->count = 256;
6218 	adapter->tx_ring->count = 256;
6219 
6220 	/*
6221 	 * Initial Wake on LAN setting - If APM wake is enabled in
6222 	 * the EEPROM, enable the ACPI Magic Packet filter
6223 	 */
6224 	if (adapter->flags & FLAG_APME_IN_WUC) {
6225 		/* APME bit in EEPROM is mapped to WUC.APME */
6226 		eeprom_data = er32(WUC);
6227 		eeprom_apme_mask = E1000_WUC_APME;
6228 		if ((hw->mac.type > e1000_ich10lan) &&
6229 		    (eeprom_data & E1000_WUC_PHY_WAKE))
6230 			adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
6231 	} else if (adapter->flags & FLAG_APME_IN_CTRL3) {
6232 		if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
6233 		    (adapter->hw.bus.func == 1))
6234 			e1000_read_nvm(&adapter->hw,
6235 				NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
6236 		else
6237 			e1000_read_nvm(&adapter->hw,
6238 				NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
6239 	}
6240 
6241 	/* fetch WoL from EEPROM */
6242 	if (eeprom_data & eeprom_apme_mask)
6243 		adapter->eeprom_wol |= E1000_WUFC_MAG;
6244 
6245 	/*
6246 	 * now that we have the eeprom settings, apply the special cases
6247 	 * where the eeprom may be wrong or the board simply won't support
6248 	 * wake on lan on a particular port
6249 	 */
6250 	if (!(adapter->flags & FLAG_HAS_WOL))
6251 		adapter->eeprom_wol = 0;
6252 
6253 	/* initialize the wol settings based on the eeprom settings */
6254 	adapter->wol = adapter->eeprom_wol;
6255 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
6256 
6257 	/* save off EEPROM version number */
6258 	e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
6259 
6260 	/* reset the hardware with the new settings */
6261 	e1000e_reset(adapter);
6262 
6263 	/*
6264 	 * If the controller has AMT, do not set DRV_LOAD until the interface
6265 	 * is up.  For all other cases, let the f/w know that the h/w is now
6266 	 * under the control of the driver.
6267 	 */
6268 	if (!(adapter->flags & FLAG_HAS_AMT))
6269 		e1000e_get_hw_control(adapter);
6270 
6271 	strncpy(netdev->name, "eth%d", sizeof(netdev->name) - 1);
6272 	err = register_netdev(netdev);
6273 	if (err)
6274 		goto err_register;
6275 
6276 	/* carrier off reporting is important to ethtool even BEFORE open */
6277 	netif_carrier_off(netdev);
6278 
6279 	e1000_print_device_info(adapter);
6280 
6281 	if (pci_dev_run_wake(pdev))
6282 		pm_runtime_put_noidle(&pdev->dev);
6283 
6284 	return 0;
6285 
6286 err_register:
6287 	if (!(adapter->flags & FLAG_HAS_AMT))
6288 		e1000e_release_hw_control(adapter);
6289 err_eeprom:
6290 	if (!e1000_check_reset_block(&adapter->hw))
6291 		e1000_phy_hw_reset(&adapter->hw);
6292 err_hw_init:
6293 	kfree(adapter->tx_ring);
6294 	kfree(adapter->rx_ring);
6295 err_sw_init:
6296 	if (adapter->hw.flash_address)
6297 		iounmap(adapter->hw.flash_address);
6298 	e1000e_reset_interrupt_capability(adapter);
6299 err_flashmap:
6300 	iounmap(adapter->hw.hw_addr);
6301 err_ioremap:
6302 	free_netdev(netdev);
6303 err_alloc_etherdev:
6304 	pci_release_selected_regions(pdev,
6305 	                             pci_select_bars(pdev, IORESOURCE_MEM));
6306 err_pci_reg:
6307 err_dma:
6308 	pci_disable_device(pdev);
6309 	return err;
6310 }
6311 
6312 /**
6313  * e1000_remove - Device Removal Routine
6314  * @pdev: PCI device information struct
6315  *
6316  * e1000_remove is called by the PCI subsystem to alert the driver
6317  * that it should release a PCI device.  The could be caused by a
6318  * Hot-Plug event, or because the driver is going to be removed from
6319  * memory.
6320  **/
6321 static void __devexit e1000_remove(struct pci_dev *pdev)
6322 {
6323 	struct net_device *netdev = pci_get_drvdata(pdev);
6324 	struct e1000_adapter *adapter = netdev_priv(netdev);
6325 	bool down = test_bit(__E1000_DOWN, &adapter->state);
6326 
6327 	/*
6328 	 * The timers may be rescheduled, so explicitly disable them
6329 	 * from being rescheduled.
6330 	 */
6331 	if (!down)
6332 		set_bit(__E1000_DOWN, &adapter->state);
6333 	del_timer_sync(&adapter->watchdog_timer);
6334 	del_timer_sync(&adapter->phy_info_timer);
6335 
6336 	cancel_work_sync(&adapter->reset_task);
6337 	cancel_work_sync(&adapter->watchdog_task);
6338 	cancel_work_sync(&adapter->downshift_task);
6339 	cancel_work_sync(&adapter->update_phy_task);
6340 	cancel_work_sync(&adapter->print_hang_task);
6341 
6342 	if (!(netdev->flags & IFF_UP))
6343 		e1000_power_down_phy(adapter);
6344 
6345 	/* Don't lie to e1000_close() down the road. */
6346 	if (!down)
6347 		clear_bit(__E1000_DOWN, &adapter->state);
6348 	unregister_netdev(netdev);
6349 
6350 	if (pci_dev_run_wake(pdev))
6351 		pm_runtime_get_noresume(&pdev->dev);
6352 
6353 	/*
6354 	 * Release control of h/w to f/w.  If f/w is AMT enabled, this
6355 	 * would have already happened in close and is redundant.
6356 	 */
6357 	e1000e_release_hw_control(adapter);
6358 
6359 	e1000e_reset_interrupt_capability(adapter);
6360 	kfree(adapter->tx_ring);
6361 	kfree(adapter->rx_ring);
6362 
6363 	iounmap(adapter->hw.hw_addr);
6364 	if (adapter->hw.flash_address)
6365 		iounmap(adapter->hw.flash_address);
6366 	pci_release_selected_regions(pdev,
6367 	                             pci_select_bars(pdev, IORESOURCE_MEM));
6368 
6369 	free_netdev(netdev);
6370 
6371 	/* AER disable */
6372 	pci_disable_pcie_error_reporting(pdev);
6373 
6374 	pci_disable_device(pdev);
6375 }
6376 
6377 /* PCI Error Recovery (ERS) */
6378 static struct pci_error_handlers e1000_err_handler = {
6379 	.error_detected = e1000_io_error_detected,
6380 	.slot_reset = e1000_io_slot_reset,
6381 	.resume = e1000_io_resume,
6382 };
6383 
6384 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
6385 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
6386 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
6387 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
6388 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
6389 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
6390 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
6391 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
6392 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
6393 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
6394 
6395 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
6396 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
6397 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
6398 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
6399 
6400 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
6401 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
6402 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
6403 
6404 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
6405 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
6406 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
6407 
6408 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
6409 	  board_80003es2lan },
6410 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
6411 	  board_80003es2lan },
6412 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
6413 	  board_80003es2lan },
6414 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
6415 	  board_80003es2lan },
6416 
6417 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
6418 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
6419 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
6420 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
6421 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
6422 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
6423 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
6424 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
6425 
6426 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
6427 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
6428 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
6429 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
6430 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
6431 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
6432 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
6433 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
6434 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
6435 
6436 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
6437 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
6438 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
6439 
6440 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
6441 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
6442 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
6443 
6444 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
6445 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
6446 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
6447 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
6448 
6449 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
6450 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
6451 
6452 	{ }	/* terminate list */
6453 };
6454 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
6455 
6456 #ifdef CONFIG_PM
6457 static const struct dev_pm_ops e1000_pm_ops = {
6458 	SET_SYSTEM_SLEEP_PM_OPS(e1000_suspend, e1000_resume)
6459 	SET_RUNTIME_PM_OPS(e1000_runtime_suspend,
6460 				e1000_runtime_resume, e1000_idle)
6461 };
6462 #endif
6463 
6464 /* PCI Device API Driver */
6465 static struct pci_driver e1000_driver = {
6466 	.name     = e1000e_driver_name,
6467 	.id_table = e1000_pci_tbl,
6468 	.probe    = e1000_probe,
6469 	.remove   = __devexit_p(e1000_remove),
6470 #ifdef CONFIG_PM
6471 	.driver.pm = &e1000_pm_ops,
6472 #endif
6473 	.shutdown = e1000_shutdown,
6474 	.err_handler = &e1000_err_handler
6475 };
6476 
6477 /**
6478  * e1000_init_module - Driver Registration Routine
6479  *
6480  * e1000_init_module is the first routine called when the driver is
6481  * loaded. All it does is register with the PCI subsystem.
6482  **/
6483 static int __init e1000_init_module(void)
6484 {
6485 	int ret;
6486 	pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
6487 		e1000e_driver_version);
6488 	pr_info("Copyright(c) 1999 - 2011 Intel Corporation.\n");
6489 	ret = pci_register_driver(&e1000_driver);
6490 
6491 	return ret;
6492 }
6493 module_init(e1000_init_module);
6494 
6495 /**
6496  * e1000_exit_module - Driver Exit Cleanup Routine
6497  *
6498  * e1000_exit_module is called just before the driver is removed
6499  * from memory.
6500  **/
6501 static void __exit e1000_exit_module(void)
6502 {
6503 	pci_unregister_driver(&e1000_driver);
6504 }
6505 module_exit(e1000_exit_module);
6506 
6507 
6508 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
6509 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
6510 MODULE_LICENSE("GPL");
6511 MODULE_VERSION(DRV_VERSION);
6512 
6513 /* e1000_main.c */
6514