1 /* Intel PRO/1000 Linux driver 2 * Copyright(c) 1999 - 2014 Intel Corporation. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms and conditions of the GNU General Public License, 6 * version 2, as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope it will be useful, but WITHOUT 9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 11 * more details. 12 * 13 * The full GNU General Public License is included in this distribution in 14 * the file called "COPYING". 15 * 16 * Contact Information: 17 * Linux NICS <linux.nics@intel.com> 18 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 19 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 20 */ 21 22 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 23 24 #include <linux/module.h> 25 #include <linux/types.h> 26 #include <linux/init.h> 27 #include <linux/pci.h> 28 #include <linux/vmalloc.h> 29 #include <linux/pagemap.h> 30 #include <linux/delay.h> 31 #include <linux/netdevice.h> 32 #include <linux/interrupt.h> 33 #include <linux/tcp.h> 34 #include <linux/ipv6.h> 35 #include <linux/slab.h> 36 #include <net/checksum.h> 37 #include <net/ip6_checksum.h> 38 #include <linux/ethtool.h> 39 #include <linux/if_vlan.h> 40 #include <linux/cpu.h> 41 #include <linux/smp.h> 42 #include <linux/pm_qos.h> 43 #include <linux/pm_runtime.h> 44 #include <linux/aer.h> 45 #include <linux/prefetch.h> 46 47 #include "e1000.h" 48 49 #define DRV_EXTRAVERSION "-k" 50 51 #define DRV_VERSION "2.3.2" DRV_EXTRAVERSION 52 char e1000e_driver_name[] = "e1000e"; 53 const char e1000e_driver_version[] = DRV_VERSION; 54 55 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK) 56 static int debug = -1; 57 module_param(debug, int, 0); 58 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 59 60 static const struct e1000_info *e1000_info_tbl[] = { 61 [board_82571] = &e1000_82571_info, 62 [board_82572] = &e1000_82572_info, 63 [board_82573] = &e1000_82573_info, 64 [board_82574] = &e1000_82574_info, 65 [board_82583] = &e1000_82583_info, 66 [board_80003es2lan] = &e1000_es2_info, 67 [board_ich8lan] = &e1000_ich8_info, 68 [board_ich9lan] = &e1000_ich9_info, 69 [board_ich10lan] = &e1000_ich10_info, 70 [board_pchlan] = &e1000_pch_info, 71 [board_pch2lan] = &e1000_pch2_info, 72 [board_pch_lpt] = &e1000_pch_lpt_info, 73 }; 74 75 struct e1000_reg_info { 76 u32 ofs; 77 char *name; 78 }; 79 80 static const struct e1000_reg_info e1000_reg_info_tbl[] = { 81 /* General Registers */ 82 {E1000_CTRL, "CTRL"}, 83 {E1000_STATUS, "STATUS"}, 84 {E1000_CTRL_EXT, "CTRL_EXT"}, 85 86 /* Interrupt Registers */ 87 {E1000_ICR, "ICR"}, 88 89 /* Rx Registers */ 90 {E1000_RCTL, "RCTL"}, 91 {E1000_RDLEN(0), "RDLEN"}, 92 {E1000_RDH(0), "RDH"}, 93 {E1000_RDT(0), "RDT"}, 94 {E1000_RDTR, "RDTR"}, 95 {E1000_RXDCTL(0), "RXDCTL"}, 96 {E1000_ERT, "ERT"}, 97 {E1000_RDBAL(0), "RDBAL"}, 98 {E1000_RDBAH(0), "RDBAH"}, 99 {E1000_RDFH, "RDFH"}, 100 {E1000_RDFT, "RDFT"}, 101 {E1000_RDFHS, "RDFHS"}, 102 {E1000_RDFTS, "RDFTS"}, 103 {E1000_RDFPC, "RDFPC"}, 104 105 /* Tx Registers */ 106 {E1000_TCTL, "TCTL"}, 107 {E1000_TDBAL(0), "TDBAL"}, 108 {E1000_TDBAH(0), "TDBAH"}, 109 {E1000_TDLEN(0), "TDLEN"}, 110 {E1000_TDH(0), "TDH"}, 111 {E1000_TDT(0), "TDT"}, 112 {E1000_TIDV, "TIDV"}, 113 {E1000_TXDCTL(0), "TXDCTL"}, 114 {E1000_TADV, "TADV"}, 115 {E1000_TARC(0), "TARC"}, 116 {E1000_TDFH, "TDFH"}, 117 {E1000_TDFT, "TDFT"}, 118 {E1000_TDFHS, "TDFHS"}, 119 {E1000_TDFTS, "TDFTS"}, 120 {E1000_TDFPC, "TDFPC"}, 121 122 /* List Terminator */ 123 {0, NULL} 124 }; 125 126 /** 127 * __ew32_prepare - prepare to write to MAC CSR register on certain parts 128 * @hw: pointer to the HW structure 129 * 130 * When updating the MAC CSR registers, the Manageability Engine (ME) could 131 * be accessing the registers at the same time. Normally, this is handled in 132 * h/w by an arbiter but on some parts there is a bug that acknowledges Host 133 * accesses later than it should which could result in the register to have 134 * an incorrect value. Workaround this by checking the FWSM register which 135 * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set 136 * and try again a number of times. 137 **/ 138 s32 __ew32_prepare(struct e1000_hw *hw) 139 { 140 s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT; 141 142 while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i) 143 udelay(50); 144 145 return i; 146 } 147 148 void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val) 149 { 150 if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA) 151 __ew32_prepare(hw); 152 153 writel(val, hw->hw_addr + reg); 154 } 155 156 /** 157 * e1000_regdump - register printout routine 158 * @hw: pointer to the HW structure 159 * @reginfo: pointer to the register info table 160 **/ 161 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo) 162 { 163 int n = 0; 164 char rname[16]; 165 u32 regs[8]; 166 167 switch (reginfo->ofs) { 168 case E1000_RXDCTL(0): 169 for (n = 0; n < 2; n++) 170 regs[n] = __er32(hw, E1000_RXDCTL(n)); 171 break; 172 case E1000_TXDCTL(0): 173 for (n = 0; n < 2; n++) 174 regs[n] = __er32(hw, E1000_TXDCTL(n)); 175 break; 176 case E1000_TARC(0): 177 for (n = 0; n < 2; n++) 178 regs[n] = __er32(hw, E1000_TARC(n)); 179 break; 180 default: 181 pr_info("%-15s %08x\n", 182 reginfo->name, __er32(hw, reginfo->ofs)); 183 return; 184 } 185 186 snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]"); 187 pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]); 188 } 189 190 static void e1000e_dump_ps_pages(struct e1000_adapter *adapter, 191 struct e1000_buffer *bi) 192 { 193 int i; 194 struct e1000_ps_page *ps_page; 195 196 for (i = 0; i < adapter->rx_ps_pages; i++) { 197 ps_page = &bi->ps_pages[i]; 198 199 if (ps_page->page) { 200 pr_info("packet dump for ps_page %d:\n", i); 201 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 202 16, 1, page_address(ps_page->page), 203 PAGE_SIZE, true); 204 } 205 } 206 } 207 208 /** 209 * e1000e_dump - Print registers, Tx-ring and Rx-ring 210 * @adapter: board private structure 211 **/ 212 static void e1000e_dump(struct e1000_adapter *adapter) 213 { 214 struct net_device *netdev = adapter->netdev; 215 struct e1000_hw *hw = &adapter->hw; 216 struct e1000_reg_info *reginfo; 217 struct e1000_ring *tx_ring = adapter->tx_ring; 218 struct e1000_tx_desc *tx_desc; 219 struct my_u0 { 220 __le64 a; 221 __le64 b; 222 } *u0; 223 struct e1000_buffer *buffer_info; 224 struct e1000_ring *rx_ring = adapter->rx_ring; 225 union e1000_rx_desc_packet_split *rx_desc_ps; 226 union e1000_rx_desc_extended *rx_desc; 227 struct my_u1 { 228 __le64 a; 229 __le64 b; 230 __le64 c; 231 __le64 d; 232 } *u1; 233 u32 staterr; 234 int i = 0; 235 236 if (!netif_msg_hw(adapter)) 237 return; 238 239 /* Print netdevice Info */ 240 if (netdev) { 241 dev_info(&adapter->pdev->dev, "Net device Info\n"); 242 pr_info("Device Name state trans_start last_rx\n"); 243 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name, 244 netdev->state, netdev->trans_start, netdev->last_rx); 245 } 246 247 /* Print Registers */ 248 dev_info(&adapter->pdev->dev, "Register Dump\n"); 249 pr_info(" Register Name Value\n"); 250 for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl; 251 reginfo->name; reginfo++) { 252 e1000_regdump(hw, reginfo); 253 } 254 255 /* Print Tx Ring Summary */ 256 if (!netdev || !netif_running(netdev)) 257 return; 258 259 dev_info(&adapter->pdev->dev, "Tx Ring Summary\n"); 260 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n"); 261 buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean]; 262 pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n", 263 0, tx_ring->next_to_use, tx_ring->next_to_clean, 264 (unsigned long long)buffer_info->dma, 265 buffer_info->length, 266 buffer_info->next_to_watch, 267 (unsigned long long)buffer_info->time_stamp); 268 269 /* Print Tx Ring */ 270 if (!netif_msg_tx_done(adapter)) 271 goto rx_ring_summary; 272 273 dev_info(&adapter->pdev->dev, "Tx Ring Dump\n"); 274 275 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended) 276 * 277 * Legacy Transmit Descriptor 278 * +--------------------------------------------------------------+ 279 * 0 | Buffer Address [63:0] (Reserved on Write Back) | 280 * +--------------------------------------------------------------+ 281 * 8 | Special | CSS | Status | CMD | CSO | Length | 282 * +--------------------------------------------------------------+ 283 * 63 48 47 36 35 32 31 24 23 16 15 0 284 * 285 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload 286 * 63 48 47 40 39 32 31 16 15 8 7 0 287 * +----------------------------------------------------------------+ 288 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS | 289 * +----------------------------------------------------------------+ 290 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN | 291 * +----------------------------------------------------------------+ 292 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0 293 * 294 * Extended Data Descriptor (DTYP=0x1) 295 * +----------------------------------------------------------------+ 296 * 0 | Buffer Address [63:0] | 297 * +----------------------------------------------------------------+ 298 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN | 299 * +----------------------------------------------------------------+ 300 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0 301 */ 302 pr_info("Tl[desc] [address 63:0 ] [SpeCssSCmCsLen] [bi->dma ] leng ntw timestamp bi->skb <-- Legacy format\n"); 303 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Context format\n"); 304 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Data format\n"); 305 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) { 306 const char *next_desc; 307 tx_desc = E1000_TX_DESC(*tx_ring, i); 308 buffer_info = &tx_ring->buffer_info[i]; 309 u0 = (struct my_u0 *)tx_desc; 310 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean) 311 next_desc = " NTC/U"; 312 else if (i == tx_ring->next_to_use) 313 next_desc = " NTU"; 314 else if (i == tx_ring->next_to_clean) 315 next_desc = " NTC"; 316 else 317 next_desc = ""; 318 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p%s\n", 319 (!(le64_to_cpu(u0->b) & (1 << 29)) ? 'l' : 320 ((le64_to_cpu(u0->b) & (1 << 20)) ? 'd' : 'c')), 321 i, 322 (unsigned long long)le64_to_cpu(u0->a), 323 (unsigned long long)le64_to_cpu(u0->b), 324 (unsigned long long)buffer_info->dma, 325 buffer_info->length, buffer_info->next_to_watch, 326 (unsigned long long)buffer_info->time_stamp, 327 buffer_info->skb, next_desc); 328 329 if (netif_msg_pktdata(adapter) && buffer_info->skb) 330 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 331 16, 1, buffer_info->skb->data, 332 buffer_info->skb->len, true); 333 } 334 335 /* Print Rx Ring Summary */ 336 rx_ring_summary: 337 dev_info(&adapter->pdev->dev, "Rx Ring Summary\n"); 338 pr_info("Queue [NTU] [NTC]\n"); 339 pr_info(" %5d %5X %5X\n", 340 0, rx_ring->next_to_use, rx_ring->next_to_clean); 341 342 /* Print Rx Ring */ 343 if (!netif_msg_rx_status(adapter)) 344 return; 345 346 dev_info(&adapter->pdev->dev, "Rx Ring Dump\n"); 347 switch (adapter->rx_ps_pages) { 348 case 1: 349 case 2: 350 case 3: 351 /* [Extended] Packet Split Receive Descriptor Format 352 * 353 * +-----------------------------------------------------+ 354 * 0 | Buffer Address 0 [63:0] | 355 * +-----------------------------------------------------+ 356 * 8 | Buffer Address 1 [63:0] | 357 * +-----------------------------------------------------+ 358 * 16 | Buffer Address 2 [63:0] | 359 * +-----------------------------------------------------+ 360 * 24 | Buffer Address 3 [63:0] | 361 * +-----------------------------------------------------+ 362 */ 363 pr_info("R [desc] [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma ] [bi->skb] <-- Ext Pkt Split format\n"); 364 /* [Extended] Receive Descriptor (Write-Back) Format 365 * 366 * 63 48 47 32 31 13 12 8 7 4 3 0 367 * +------------------------------------------------------+ 368 * 0 | Packet | IP | Rsvd | MRQ | Rsvd | MRQ RSS | 369 * | Checksum | Ident | | Queue | | Type | 370 * +------------------------------------------------------+ 371 * 8 | VLAN Tag | Length | Extended Error | Extended Status | 372 * +------------------------------------------------------+ 373 * 63 48 47 32 31 20 19 0 374 */ 375 pr_info("RWB[desc] [ck ipid mrqhsh] [vl l0 ee es] [ l3 l2 l1 hs] [reserved ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n"); 376 for (i = 0; i < rx_ring->count; i++) { 377 const char *next_desc; 378 buffer_info = &rx_ring->buffer_info[i]; 379 rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i); 380 u1 = (struct my_u1 *)rx_desc_ps; 381 staterr = 382 le32_to_cpu(rx_desc_ps->wb.middle.status_error); 383 384 if (i == rx_ring->next_to_use) 385 next_desc = " NTU"; 386 else if (i == rx_ring->next_to_clean) 387 next_desc = " NTC"; 388 else 389 next_desc = ""; 390 391 if (staterr & E1000_RXD_STAT_DD) { 392 /* Descriptor Done */ 393 pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX ---------------- %p%s\n", 394 "RWB", i, 395 (unsigned long long)le64_to_cpu(u1->a), 396 (unsigned long long)le64_to_cpu(u1->b), 397 (unsigned long long)le64_to_cpu(u1->c), 398 (unsigned long long)le64_to_cpu(u1->d), 399 buffer_info->skb, next_desc); 400 } else { 401 pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX %016llX %p%s\n", 402 "R ", i, 403 (unsigned long long)le64_to_cpu(u1->a), 404 (unsigned long long)le64_to_cpu(u1->b), 405 (unsigned long long)le64_to_cpu(u1->c), 406 (unsigned long long)le64_to_cpu(u1->d), 407 (unsigned long long)buffer_info->dma, 408 buffer_info->skb, next_desc); 409 410 if (netif_msg_pktdata(adapter)) 411 e1000e_dump_ps_pages(adapter, 412 buffer_info); 413 } 414 } 415 break; 416 default: 417 case 0: 418 /* Extended Receive Descriptor (Read) Format 419 * 420 * +-----------------------------------------------------+ 421 * 0 | Buffer Address [63:0] | 422 * +-----------------------------------------------------+ 423 * 8 | Reserved | 424 * +-----------------------------------------------------+ 425 */ 426 pr_info("R [desc] [buf addr 63:0 ] [reserved 63:0 ] [bi->dma ] [bi->skb] <-- Ext (Read) format\n"); 427 /* Extended Receive Descriptor (Write-Back) Format 428 * 429 * 63 48 47 32 31 24 23 4 3 0 430 * +------------------------------------------------------+ 431 * | RSS Hash | | | | 432 * 0 +-------------------+ Rsvd | Reserved | MRQ RSS | 433 * | Packet | IP | | | Type | 434 * | Checksum | Ident | | | | 435 * +------------------------------------------------------+ 436 * 8 | VLAN Tag | Length | Extended Error | Extended Status | 437 * +------------------------------------------------------+ 438 * 63 48 47 32 31 20 19 0 439 */ 440 pr_info("RWB[desc] [cs ipid mrq] [vt ln xe xs] [bi->skb] <-- Ext (Write-Back) format\n"); 441 442 for (i = 0; i < rx_ring->count; i++) { 443 const char *next_desc; 444 445 buffer_info = &rx_ring->buffer_info[i]; 446 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i); 447 u1 = (struct my_u1 *)rx_desc; 448 staterr = le32_to_cpu(rx_desc->wb.upper.status_error); 449 450 if (i == rx_ring->next_to_use) 451 next_desc = " NTU"; 452 else if (i == rx_ring->next_to_clean) 453 next_desc = " NTC"; 454 else 455 next_desc = ""; 456 457 if (staterr & E1000_RXD_STAT_DD) { 458 /* Descriptor Done */ 459 pr_info("%s[0x%03X] %016llX %016llX ---------------- %p%s\n", 460 "RWB", i, 461 (unsigned long long)le64_to_cpu(u1->a), 462 (unsigned long long)le64_to_cpu(u1->b), 463 buffer_info->skb, next_desc); 464 } else { 465 pr_info("%s[0x%03X] %016llX %016llX %016llX %p%s\n", 466 "R ", i, 467 (unsigned long long)le64_to_cpu(u1->a), 468 (unsigned long long)le64_to_cpu(u1->b), 469 (unsigned long long)buffer_info->dma, 470 buffer_info->skb, next_desc); 471 472 if (netif_msg_pktdata(adapter) && 473 buffer_info->skb) 474 print_hex_dump(KERN_INFO, "", 475 DUMP_PREFIX_ADDRESS, 16, 476 1, 477 buffer_info->skb->data, 478 adapter->rx_buffer_len, 479 true); 480 } 481 } 482 } 483 } 484 485 /** 486 * e1000_desc_unused - calculate if we have unused descriptors 487 **/ 488 static int e1000_desc_unused(struct e1000_ring *ring) 489 { 490 if (ring->next_to_clean > ring->next_to_use) 491 return ring->next_to_clean - ring->next_to_use - 1; 492 493 return ring->count + ring->next_to_clean - ring->next_to_use - 1; 494 } 495 496 /** 497 * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp 498 * @adapter: board private structure 499 * @hwtstamps: time stamp structure to update 500 * @systim: unsigned 64bit system time value. 501 * 502 * Convert the system time value stored in the RX/TXSTMP registers into a 503 * hwtstamp which can be used by the upper level time stamping functions. 504 * 505 * The 'systim_lock' spinlock is used to protect the consistency of the 506 * system time value. This is needed because reading the 64 bit time 507 * value involves reading two 32 bit registers. The first read latches the 508 * value. 509 **/ 510 static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter, 511 struct skb_shared_hwtstamps *hwtstamps, 512 u64 systim) 513 { 514 u64 ns; 515 unsigned long flags; 516 517 spin_lock_irqsave(&adapter->systim_lock, flags); 518 ns = timecounter_cyc2time(&adapter->tc, systim); 519 spin_unlock_irqrestore(&adapter->systim_lock, flags); 520 521 memset(hwtstamps, 0, sizeof(*hwtstamps)); 522 hwtstamps->hwtstamp = ns_to_ktime(ns); 523 } 524 525 /** 526 * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp 527 * @adapter: board private structure 528 * @status: descriptor extended error and status field 529 * @skb: particular skb to include time stamp 530 * 531 * If the time stamp is valid, convert it into the timecounter ns value 532 * and store that result into the shhwtstamps structure which is passed 533 * up the network stack. 534 **/ 535 static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status, 536 struct sk_buff *skb) 537 { 538 struct e1000_hw *hw = &adapter->hw; 539 u64 rxstmp; 540 541 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) || 542 !(status & E1000_RXDEXT_STATERR_TST) || 543 !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) 544 return; 545 546 /* The Rx time stamp registers contain the time stamp. No other 547 * received packet will be time stamped until the Rx time stamp 548 * registers are read. Because only one packet can be time stamped 549 * at a time, the register values must belong to this packet and 550 * therefore none of the other additional attributes need to be 551 * compared. 552 */ 553 rxstmp = (u64)er32(RXSTMPL); 554 rxstmp |= (u64)er32(RXSTMPH) << 32; 555 e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp); 556 557 adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP; 558 } 559 560 /** 561 * e1000_receive_skb - helper function to handle Rx indications 562 * @adapter: board private structure 563 * @staterr: descriptor extended error and status field as written by hardware 564 * @vlan: descriptor vlan field as written by hardware (no le/be conversion) 565 * @skb: pointer to sk_buff to be indicated to stack 566 **/ 567 static void e1000_receive_skb(struct e1000_adapter *adapter, 568 struct net_device *netdev, struct sk_buff *skb, 569 u32 staterr, __le16 vlan) 570 { 571 u16 tag = le16_to_cpu(vlan); 572 573 e1000e_rx_hwtstamp(adapter, staterr, skb); 574 575 skb->protocol = eth_type_trans(skb, netdev); 576 577 if (staterr & E1000_RXD_STAT_VP) 578 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag); 579 580 napi_gro_receive(&adapter->napi, skb); 581 } 582 583 /** 584 * e1000_rx_checksum - Receive Checksum Offload 585 * @adapter: board private structure 586 * @status_err: receive descriptor status and error fields 587 * @csum: receive descriptor csum field 588 * @sk_buff: socket buffer with received data 589 **/ 590 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err, 591 struct sk_buff *skb) 592 { 593 u16 status = (u16)status_err; 594 u8 errors = (u8)(status_err >> 24); 595 596 skb_checksum_none_assert(skb); 597 598 /* Rx checksum disabled */ 599 if (!(adapter->netdev->features & NETIF_F_RXCSUM)) 600 return; 601 602 /* Ignore Checksum bit is set */ 603 if (status & E1000_RXD_STAT_IXSM) 604 return; 605 606 /* TCP/UDP checksum error bit or IP checksum error bit is set */ 607 if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) { 608 /* let the stack verify checksum errors */ 609 adapter->hw_csum_err++; 610 return; 611 } 612 613 /* TCP/UDP Checksum has not been calculated */ 614 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))) 615 return; 616 617 /* It must be a TCP or UDP packet with a valid checksum */ 618 skb->ip_summed = CHECKSUM_UNNECESSARY; 619 adapter->hw_csum_good++; 620 } 621 622 static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i) 623 { 624 struct e1000_adapter *adapter = rx_ring->adapter; 625 struct e1000_hw *hw = &adapter->hw; 626 s32 ret_val = __ew32_prepare(hw); 627 628 writel(i, rx_ring->tail); 629 630 if (unlikely(!ret_val && (i != readl(rx_ring->tail)))) { 631 u32 rctl = er32(RCTL); 632 633 ew32(RCTL, rctl & ~E1000_RCTL_EN); 634 e_err("ME firmware caused invalid RDT - resetting\n"); 635 schedule_work(&adapter->reset_task); 636 } 637 } 638 639 static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i) 640 { 641 struct e1000_adapter *adapter = tx_ring->adapter; 642 struct e1000_hw *hw = &adapter->hw; 643 s32 ret_val = __ew32_prepare(hw); 644 645 writel(i, tx_ring->tail); 646 647 if (unlikely(!ret_val && (i != readl(tx_ring->tail)))) { 648 u32 tctl = er32(TCTL); 649 650 ew32(TCTL, tctl & ~E1000_TCTL_EN); 651 e_err("ME firmware caused invalid TDT - resetting\n"); 652 schedule_work(&adapter->reset_task); 653 } 654 } 655 656 /** 657 * e1000_alloc_rx_buffers - Replace used receive buffers 658 * @rx_ring: Rx descriptor ring 659 **/ 660 static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring, 661 int cleaned_count, gfp_t gfp) 662 { 663 struct e1000_adapter *adapter = rx_ring->adapter; 664 struct net_device *netdev = adapter->netdev; 665 struct pci_dev *pdev = adapter->pdev; 666 union e1000_rx_desc_extended *rx_desc; 667 struct e1000_buffer *buffer_info; 668 struct sk_buff *skb; 669 unsigned int i; 670 unsigned int bufsz = adapter->rx_buffer_len; 671 672 i = rx_ring->next_to_use; 673 buffer_info = &rx_ring->buffer_info[i]; 674 675 while (cleaned_count--) { 676 skb = buffer_info->skb; 677 if (skb) { 678 skb_trim(skb, 0); 679 goto map_skb; 680 } 681 682 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp); 683 if (!skb) { 684 /* Better luck next round */ 685 adapter->alloc_rx_buff_failed++; 686 break; 687 } 688 689 buffer_info->skb = skb; 690 map_skb: 691 buffer_info->dma = dma_map_single(&pdev->dev, skb->data, 692 adapter->rx_buffer_len, 693 DMA_FROM_DEVICE); 694 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { 695 dev_err(&pdev->dev, "Rx DMA map failed\n"); 696 adapter->rx_dma_failed++; 697 break; 698 } 699 700 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i); 701 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma); 702 703 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) { 704 /* Force memory writes to complete before letting h/w 705 * know there are new descriptors to fetch. (Only 706 * applicable for weak-ordered memory model archs, 707 * such as IA-64). 708 */ 709 wmb(); 710 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA) 711 e1000e_update_rdt_wa(rx_ring, i); 712 else 713 writel(i, rx_ring->tail); 714 } 715 i++; 716 if (i == rx_ring->count) 717 i = 0; 718 buffer_info = &rx_ring->buffer_info[i]; 719 } 720 721 rx_ring->next_to_use = i; 722 } 723 724 /** 725 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split 726 * @rx_ring: Rx descriptor ring 727 **/ 728 static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring, 729 int cleaned_count, gfp_t gfp) 730 { 731 struct e1000_adapter *adapter = rx_ring->adapter; 732 struct net_device *netdev = adapter->netdev; 733 struct pci_dev *pdev = adapter->pdev; 734 union e1000_rx_desc_packet_split *rx_desc; 735 struct e1000_buffer *buffer_info; 736 struct e1000_ps_page *ps_page; 737 struct sk_buff *skb; 738 unsigned int i, j; 739 740 i = rx_ring->next_to_use; 741 buffer_info = &rx_ring->buffer_info[i]; 742 743 while (cleaned_count--) { 744 rx_desc = E1000_RX_DESC_PS(*rx_ring, i); 745 746 for (j = 0; j < PS_PAGE_BUFFERS; j++) { 747 ps_page = &buffer_info->ps_pages[j]; 748 if (j >= adapter->rx_ps_pages) { 749 /* all unused desc entries get hw null ptr */ 750 rx_desc->read.buffer_addr[j + 1] = 751 ~cpu_to_le64(0); 752 continue; 753 } 754 if (!ps_page->page) { 755 ps_page->page = alloc_page(gfp); 756 if (!ps_page->page) { 757 adapter->alloc_rx_buff_failed++; 758 goto no_buffers; 759 } 760 ps_page->dma = dma_map_page(&pdev->dev, 761 ps_page->page, 762 0, PAGE_SIZE, 763 DMA_FROM_DEVICE); 764 if (dma_mapping_error(&pdev->dev, 765 ps_page->dma)) { 766 dev_err(&adapter->pdev->dev, 767 "Rx DMA page map failed\n"); 768 adapter->rx_dma_failed++; 769 goto no_buffers; 770 } 771 } 772 /* Refresh the desc even if buffer_addrs 773 * didn't change because each write-back 774 * erases this info. 775 */ 776 rx_desc->read.buffer_addr[j + 1] = 777 cpu_to_le64(ps_page->dma); 778 } 779 780 skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0, 781 gfp); 782 783 if (!skb) { 784 adapter->alloc_rx_buff_failed++; 785 break; 786 } 787 788 buffer_info->skb = skb; 789 buffer_info->dma = dma_map_single(&pdev->dev, skb->data, 790 adapter->rx_ps_bsize0, 791 DMA_FROM_DEVICE); 792 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { 793 dev_err(&pdev->dev, "Rx DMA map failed\n"); 794 adapter->rx_dma_failed++; 795 /* cleanup skb */ 796 dev_kfree_skb_any(skb); 797 buffer_info->skb = NULL; 798 break; 799 } 800 801 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma); 802 803 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) { 804 /* Force memory writes to complete before letting h/w 805 * know there are new descriptors to fetch. (Only 806 * applicable for weak-ordered memory model archs, 807 * such as IA-64). 808 */ 809 wmb(); 810 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA) 811 e1000e_update_rdt_wa(rx_ring, i << 1); 812 else 813 writel(i << 1, rx_ring->tail); 814 } 815 816 i++; 817 if (i == rx_ring->count) 818 i = 0; 819 buffer_info = &rx_ring->buffer_info[i]; 820 } 821 822 no_buffers: 823 rx_ring->next_to_use = i; 824 } 825 826 /** 827 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers 828 * @rx_ring: Rx descriptor ring 829 * @cleaned_count: number of buffers to allocate this pass 830 **/ 831 832 static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring, 833 int cleaned_count, gfp_t gfp) 834 { 835 struct e1000_adapter *adapter = rx_ring->adapter; 836 struct net_device *netdev = adapter->netdev; 837 struct pci_dev *pdev = adapter->pdev; 838 union e1000_rx_desc_extended *rx_desc; 839 struct e1000_buffer *buffer_info; 840 struct sk_buff *skb; 841 unsigned int i; 842 unsigned int bufsz = 256 - 16; /* for skb_reserve */ 843 844 i = rx_ring->next_to_use; 845 buffer_info = &rx_ring->buffer_info[i]; 846 847 while (cleaned_count--) { 848 skb = buffer_info->skb; 849 if (skb) { 850 skb_trim(skb, 0); 851 goto check_page; 852 } 853 854 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp); 855 if (unlikely(!skb)) { 856 /* Better luck next round */ 857 adapter->alloc_rx_buff_failed++; 858 break; 859 } 860 861 buffer_info->skb = skb; 862 check_page: 863 /* allocate a new page if necessary */ 864 if (!buffer_info->page) { 865 buffer_info->page = alloc_page(gfp); 866 if (unlikely(!buffer_info->page)) { 867 adapter->alloc_rx_buff_failed++; 868 break; 869 } 870 } 871 872 if (!buffer_info->dma) { 873 buffer_info->dma = dma_map_page(&pdev->dev, 874 buffer_info->page, 0, 875 PAGE_SIZE, 876 DMA_FROM_DEVICE); 877 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { 878 adapter->alloc_rx_buff_failed++; 879 break; 880 } 881 } 882 883 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i); 884 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma); 885 886 if (unlikely(++i == rx_ring->count)) 887 i = 0; 888 buffer_info = &rx_ring->buffer_info[i]; 889 } 890 891 if (likely(rx_ring->next_to_use != i)) { 892 rx_ring->next_to_use = i; 893 if (unlikely(i-- == 0)) 894 i = (rx_ring->count - 1); 895 896 /* Force memory writes to complete before letting h/w 897 * know there are new descriptors to fetch. (Only 898 * applicable for weak-ordered memory model archs, 899 * such as IA-64). 900 */ 901 wmb(); 902 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA) 903 e1000e_update_rdt_wa(rx_ring, i); 904 else 905 writel(i, rx_ring->tail); 906 } 907 } 908 909 static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss, 910 struct sk_buff *skb) 911 { 912 if (netdev->features & NETIF_F_RXHASH) 913 skb_set_hash(skb, le32_to_cpu(rss), PKT_HASH_TYPE_L3); 914 } 915 916 /** 917 * e1000_clean_rx_irq - Send received data up the network stack 918 * @rx_ring: Rx descriptor ring 919 * 920 * the return value indicates whether actual cleaning was done, there 921 * is no guarantee that everything was cleaned 922 **/ 923 static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done, 924 int work_to_do) 925 { 926 struct e1000_adapter *adapter = rx_ring->adapter; 927 struct net_device *netdev = adapter->netdev; 928 struct pci_dev *pdev = adapter->pdev; 929 struct e1000_hw *hw = &adapter->hw; 930 union e1000_rx_desc_extended *rx_desc, *next_rxd; 931 struct e1000_buffer *buffer_info, *next_buffer; 932 u32 length, staterr; 933 unsigned int i; 934 int cleaned_count = 0; 935 bool cleaned = false; 936 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 937 938 i = rx_ring->next_to_clean; 939 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i); 940 staterr = le32_to_cpu(rx_desc->wb.upper.status_error); 941 buffer_info = &rx_ring->buffer_info[i]; 942 943 while (staterr & E1000_RXD_STAT_DD) { 944 struct sk_buff *skb; 945 946 if (*work_done >= work_to_do) 947 break; 948 (*work_done)++; 949 rmb(); /* read descriptor and rx_buffer_info after status DD */ 950 951 skb = buffer_info->skb; 952 buffer_info->skb = NULL; 953 954 prefetch(skb->data - NET_IP_ALIGN); 955 956 i++; 957 if (i == rx_ring->count) 958 i = 0; 959 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i); 960 prefetch(next_rxd); 961 962 next_buffer = &rx_ring->buffer_info[i]; 963 964 cleaned = true; 965 cleaned_count++; 966 dma_unmap_single(&pdev->dev, buffer_info->dma, 967 adapter->rx_buffer_len, DMA_FROM_DEVICE); 968 buffer_info->dma = 0; 969 970 length = le16_to_cpu(rx_desc->wb.upper.length); 971 972 /* !EOP means multiple descriptors were used to store a single 973 * packet, if that's the case we need to toss it. In fact, we 974 * need to toss every packet with the EOP bit clear and the 975 * next frame that _does_ have the EOP bit set, as it is by 976 * definition only a frame fragment 977 */ 978 if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) 979 adapter->flags2 |= FLAG2_IS_DISCARDING; 980 981 if (adapter->flags2 & FLAG2_IS_DISCARDING) { 982 /* All receives must fit into a single buffer */ 983 e_dbg("Receive packet consumed multiple buffers\n"); 984 /* recycle */ 985 buffer_info->skb = skb; 986 if (staterr & E1000_RXD_STAT_EOP) 987 adapter->flags2 &= ~FLAG2_IS_DISCARDING; 988 goto next_desc; 989 } 990 991 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) && 992 !(netdev->features & NETIF_F_RXALL))) { 993 /* recycle */ 994 buffer_info->skb = skb; 995 goto next_desc; 996 } 997 998 /* adjust length to remove Ethernet CRC */ 999 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) { 1000 /* If configured to store CRC, don't subtract FCS, 1001 * but keep the FCS bytes out of the total_rx_bytes 1002 * counter 1003 */ 1004 if (netdev->features & NETIF_F_RXFCS) 1005 total_rx_bytes -= 4; 1006 else 1007 length -= 4; 1008 } 1009 1010 total_rx_bytes += length; 1011 total_rx_packets++; 1012 1013 /* code added for copybreak, this should improve 1014 * performance for small packets with large amounts 1015 * of reassembly being done in the stack 1016 */ 1017 if (length < copybreak) { 1018 struct sk_buff *new_skb = 1019 napi_alloc_skb(&adapter->napi, length); 1020 if (new_skb) { 1021 skb_copy_to_linear_data_offset(new_skb, 1022 -NET_IP_ALIGN, 1023 (skb->data - 1024 NET_IP_ALIGN), 1025 (length + 1026 NET_IP_ALIGN)); 1027 /* save the skb in buffer_info as good */ 1028 buffer_info->skb = skb; 1029 skb = new_skb; 1030 } 1031 /* else just continue with the old one */ 1032 } 1033 /* end copybreak code */ 1034 skb_put(skb, length); 1035 1036 /* Receive Checksum Offload */ 1037 e1000_rx_checksum(adapter, staterr, skb); 1038 1039 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb); 1040 1041 e1000_receive_skb(adapter, netdev, skb, staterr, 1042 rx_desc->wb.upper.vlan); 1043 1044 next_desc: 1045 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF); 1046 1047 /* return some buffers to hardware, one at a time is too slow */ 1048 if (cleaned_count >= E1000_RX_BUFFER_WRITE) { 1049 adapter->alloc_rx_buf(rx_ring, cleaned_count, 1050 GFP_ATOMIC); 1051 cleaned_count = 0; 1052 } 1053 1054 /* use prefetched values */ 1055 rx_desc = next_rxd; 1056 buffer_info = next_buffer; 1057 1058 staterr = le32_to_cpu(rx_desc->wb.upper.status_error); 1059 } 1060 rx_ring->next_to_clean = i; 1061 1062 cleaned_count = e1000_desc_unused(rx_ring); 1063 if (cleaned_count) 1064 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC); 1065 1066 adapter->total_rx_bytes += total_rx_bytes; 1067 adapter->total_rx_packets += total_rx_packets; 1068 return cleaned; 1069 } 1070 1071 static void e1000_put_txbuf(struct e1000_ring *tx_ring, 1072 struct e1000_buffer *buffer_info) 1073 { 1074 struct e1000_adapter *adapter = tx_ring->adapter; 1075 1076 if (buffer_info->dma) { 1077 if (buffer_info->mapped_as_page) 1078 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma, 1079 buffer_info->length, DMA_TO_DEVICE); 1080 else 1081 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma, 1082 buffer_info->length, DMA_TO_DEVICE); 1083 buffer_info->dma = 0; 1084 } 1085 if (buffer_info->skb) { 1086 dev_kfree_skb_any(buffer_info->skb); 1087 buffer_info->skb = NULL; 1088 } 1089 buffer_info->time_stamp = 0; 1090 } 1091 1092 static void e1000_print_hw_hang(struct work_struct *work) 1093 { 1094 struct e1000_adapter *adapter = container_of(work, 1095 struct e1000_adapter, 1096 print_hang_task); 1097 struct net_device *netdev = adapter->netdev; 1098 struct e1000_ring *tx_ring = adapter->tx_ring; 1099 unsigned int i = tx_ring->next_to_clean; 1100 unsigned int eop = tx_ring->buffer_info[i].next_to_watch; 1101 struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop); 1102 struct e1000_hw *hw = &adapter->hw; 1103 u16 phy_status, phy_1000t_status, phy_ext_status; 1104 u16 pci_status; 1105 1106 if (test_bit(__E1000_DOWN, &adapter->state)) 1107 return; 1108 1109 if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) { 1110 /* May be block on write-back, flush and detect again 1111 * flush pending descriptor writebacks to memory 1112 */ 1113 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD); 1114 /* execute the writes immediately */ 1115 e1e_flush(); 1116 /* Due to rare timing issues, write to TIDV again to ensure 1117 * the write is successful 1118 */ 1119 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD); 1120 /* execute the writes immediately */ 1121 e1e_flush(); 1122 adapter->tx_hang_recheck = true; 1123 return; 1124 } 1125 adapter->tx_hang_recheck = false; 1126 1127 if (er32(TDH(0)) == er32(TDT(0))) { 1128 e_dbg("false hang detected, ignoring\n"); 1129 return; 1130 } 1131 1132 /* Real hang detected */ 1133 netif_stop_queue(netdev); 1134 1135 e1e_rphy(hw, MII_BMSR, &phy_status); 1136 e1e_rphy(hw, MII_STAT1000, &phy_1000t_status); 1137 e1e_rphy(hw, MII_ESTATUS, &phy_ext_status); 1138 1139 pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status); 1140 1141 /* detected Hardware unit hang */ 1142 e_err("Detected Hardware Unit Hang:\n" 1143 " TDH <%x>\n" 1144 " TDT <%x>\n" 1145 " next_to_use <%x>\n" 1146 " next_to_clean <%x>\n" 1147 "buffer_info[next_to_clean]:\n" 1148 " time_stamp <%lx>\n" 1149 " next_to_watch <%x>\n" 1150 " jiffies <%lx>\n" 1151 " next_to_watch.status <%x>\n" 1152 "MAC Status <%x>\n" 1153 "PHY Status <%x>\n" 1154 "PHY 1000BASE-T Status <%x>\n" 1155 "PHY Extended Status <%x>\n" 1156 "PCI Status <%x>\n", 1157 readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use, 1158 tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp, 1159 eop, jiffies, eop_desc->upper.fields.status, er32(STATUS), 1160 phy_status, phy_1000t_status, phy_ext_status, pci_status); 1161 1162 e1000e_dump(adapter); 1163 1164 /* Suggest workaround for known h/w issue */ 1165 if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE)) 1166 e_err("Try turning off Tx pause (flow control) via ethtool\n"); 1167 } 1168 1169 /** 1170 * e1000e_tx_hwtstamp_work - check for Tx time stamp 1171 * @work: pointer to work struct 1172 * 1173 * This work function polls the TSYNCTXCTL valid bit to determine when a 1174 * timestamp has been taken for the current stored skb. The timestamp must 1175 * be for this skb because only one such packet is allowed in the queue. 1176 */ 1177 static void e1000e_tx_hwtstamp_work(struct work_struct *work) 1178 { 1179 struct e1000_adapter *adapter = container_of(work, struct e1000_adapter, 1180 tx_hwtstamp_work); 1181 struct e1000_hw *hw = &adapter->hw; 1182 1183 if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) { 1184 struct skb_shared_hwtstamps shhwtstamps; 1185 u64 txstmp; 1186 1187 txstmp = er32(TXSTMPL); 1188 txstmp |= (u64)er32(TXSTMPH) << 32; 1189 1190 e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp); 1191 1192 skb_tstamp_tx(adapter->tx_hwtstamp_skb, &shhwtstamps); 1193 dev_kfree_skb_any(adapter->tx_hwtstamp_skb); 1194 adapter->tx_hwtstamp_skb = NULL; 1195 } else if (time_after(jiffies, adapter->tx_hwtstamp_start 1196 + adapter->tx_timeout_factor * HZ)) { 1197 dev_kfree_skb_any(adapter->tx_hwtstamp_skb); 1198 adapter->tx_hwtstamp_skb = NULL; 1199 adapter->tx_hwtstamp_timeouts++; 1200 e_warn("clearing Tx timestamp hang\n"); 1201 } else { 1202 /* reschedule to check later */ 1203 schedule_work(&adapter->tx_hwtstamp_work); 1204 } 1205 } 1206 1207 /** 1208 * e1000_clean_tx_irq - Reclaim resources after transmit completes 1209 * @tx_ring: Tx descriptor ring 1210 * 1211 * the return value indicates whether actual cleaning was done, there 1212 * is no guarantee that everything was cleaned 1213 **/ 1214 static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring) 1215 { 1216 struct e1000_adapter *adapter = tx_ring->adapter; 1217 struct net_device *netdev = adapter->netdev; 1218 struct e1000_hw *hw = &adapter->hw; 1219 struct e1000_tx_desc *tx_desc, *eop_desc; 1220 struct e1000_buffer *buffer_info; 1221 unsigned int i, eop; 1222 unsigned int count = 0; 1223 unsigned int total_tx_bytes = 0, total_tx_packets = 0; 1224 unsigned int bytes_compl = 0, pkts_compl = 0; 1225 1226 i = tx_ring->next_to_clean; 1227 eop = tx_ring->buffer_info[i].next_to_watch; 1228 eop_desc = E1000_TX_DESC(*tx_ring, eop); 1229 1230 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) && 1231 (count < tx_ring->count)) { 1232 bool cleaned = false; 1233 1234 rmb(); /* read buffer_info after eop_desc */ 1235 for (; !cleaned; count++) { 1236 tx_desc = E1000_TX_DESC(*tx_ring, i); 1237 buffer_info = &tx_ring->buffer_info[i]; 1238 cleaned = (i == eop); 1239 1240 if (cleaned) { 1241 total_tx_packets += buffer_info->segs; 1242 total_tx_bytes += buffer_info->bytecount; 1243 if (buffer_info->skb) { 1244 bytes_compl += buffer_info->skb->len; 1245 pkts_compl++; 1246 } 1247 } 1248 1249 e1000_put_txbuf(tx_ring, buffer_info); 1250 tx_desc->upper.data = 0; 1251 1252 i++; 1253 if (i == tx_ring->count) 1254 i = 0; 1255 } 1256 1257 if (i == tx_ring->next_to_use) 1258 break; 1259 eop = tx_ring->buffer_info[i].next_to_watch; 1260 eop_desc = E1000_TX_DESC(*tx_ring, eop); 1261 } 1262 1263 tx_ring->next_to_clean = i; 1264 1265 netdev_completed_queue(netdev, pkts_compl, bytes_compl); 1266 1267 #define TX_WAKE_THRESHOLD 32 1268 if (count && netif_carrier_ok(netdev) && 1269 e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) { 1270 /* Make sure that anybody stopping the queue after this 1271 * sees the new next_to_clean. 1272 */ 1273 smp_mb(); 1274 1275 if (netif_queue_stopped(netdev) && 1276 !(test_bit(__E1000_DOWN, &adapter->state))) { 1277 netif_wake_queue(netdev); 1278 ++adapter->restart_queue; 1279 } 1280 } 1281 1282 if (adapter->detect_tx_hung) { 1283 /* Detect a transmit hang in hardware, this serializes the 1284 * check with the clearing of time_stamp and movement of i 1285 */ 1286 adapter->detect_tx_hung = false; 1287 if (tx_ring->buffer_info[i].time_stamp && 1288 time_after(jiffies, tx_ring->buffer_info[i].time_stamp 1289 + (adapter->tx_timeout_factor * HZ)) && 1290 !(er32(STATUS) & E1000_STATUS_TXOFF)) 1291 schedule_work(&adapter->print_hang_task); 1292 else 1293 adapter->tx_hang_recheck = false; 1294 } 1295 adapter->total_tx_bytes += total_tx_bytes; 1296 adapter->total_tx_packets += total_tx_packets; 1297 return count < tx_ring->count; 1298 } 1299 1300 /** 1301 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split 1302 * @rx_ring: Rx descriptor ring 1303 * 1304 * the return value indicates whether actual cleaning was done, there 1305 * is no guarantee that everything was cleaned 1306 **/ 1307 static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done, 1308 int work_to_do) 1309 { 1310 struct e1000_adapter *adapter = rx_ring->adapter; 1311 struct e1000_hw *hw = &adapter->hw; 1312 union e1000_rx_desc_packet_split *rx_desc, *next_rxd; 1313 struct net_device *netdev = adapter->netdev; 1314 struct pci_dev *pdev = adapter->pdev; 1315 struct e1000_buffer *buffer_info, *next_buffer; 1316 struct e1000_ps_page *ps_page; 1317 struct sk_buff *skb; 1318 unsigned int i, j; 1319 u32 length, staterr; 1320 int cleaned_count = 0; 1321 bool cleaned = false; 1322 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 1323 1324 i = rx_ring->next_to_clean; 1325 rx_desc = E1000_RX_DESC_PS(*rx_ring, i); 1326 staterr = le32_to_cpu(rx_desc->wb.middle.status_error); 1327 buffer_info = &rx_ring->buffer_info[i]; 1328 1329 while (staterr & E1000_RXD_STAT_DD) { 1330 if (*work_done >= work_to_do) 1331 break; 1332 (*work_done)++; 1333 skb = buffer_info->skb; 1334 rmb(); /* read descriptor and rx_buffer_info after status DD */ 1335 1336 /* in the packet split case this is header only */ 1337 prefetch(skb->data - NET_IP_ALIGN); 1338 1339 i++; 1340 if (i == rx_ring->count) 1341 i = 0; 1342 next_rxd = E1000_RX_DESC_PS(*rx_ring, i); 1343 prefetch(next_rxd); 1344 1345 next_buffer = &rx_ring->buffer_info[i]; 1346 1347 cleaned = true; 1348 cleaned_count++; 1349 dma_unmap_single(&pdev->dev, buffer_info->dma, 1350 adapter->rx_ps_bsize0, DMA_FROM_DEVICE); 1351 buffer_info->dma = 0; 1352 1353 /* see !EOP comment in other Rx routine */ 1354 if (!(staterr & E1000_RXD_STAT_EOP)) 1355 adapter->flags2 |= FLAG2_IS_DISCARDING; 1356 1357 if (adapter->flags2 & FLAG2_IS_DISCARDING) { 1358 e_dbg("Packet Split buffers didn't pick up the full packet\n"); 1359 dev_kfree_skb_irq(skb); 1360 if (staterr & E1000_RXD_STAT_EOP) 1361 adapter->flags2 &= ~FLAG2_IS_DISCARDING; 1362 goto next_desc; 1363 } 1364 1365 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) && 1366 !(netdev->features & NETIF_F_RXALL))) { 1367 dev_kfree_skb_irq(skb); 1368 goto next_desc; 1369 } 1370 1371 length = le16_to_cpu(rx_desc->wb.middle.length0); 1372 1373 if (!length) { 1374 e_dbg("Last part of the packet spanning multiple descriptors\n"); 1375 dev_kfree_skb_irq(skb); 1376 goto next_desc; 1377 } 1378 1379 /* Good Receive */ 1380 skb_put(skb, length); 1381 1382 { 1383 /* this looks ugly, but it seems compiler issues make 1384 * it more efficient than reusing j 1385 */ 1386 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]); 1387 1388 /* page alloc/put takes too long and effects small 1389 * packet throughput, so unsplit small packets and 1390 * save the alloc/put only valid in softirq (napi) 1391 * context to call kmap_* 1392 */ 1393 if (l1 && (l1 <= copybreak) && 1394 ((length + l1) <= adapter->rx_ps_bsize0)) { 1395 u8 *vaddr; 1396 1397 ps_page = &buffer_info->ps_pages[0]; 1398 1399 /* there is no documentation about how to call 1400 * kmap_atomic, so we can't hold the mapping 1401 * very long 1402 */ 1403 dma_sync_single_for_cpu(&pdev->dev, 1404 ps_page->dma, 1405 PAGE_SIZE, 1406 DMA_FROM_DEVICE); 1407 vaddr = kmap_atomic(ps_page->page); 1408 memcpy(skb_tail_pointer(skb), vaddr, l1); 1409 kunmap_atomic(vaddr); 1410 dma_sync_single_for_device(&pdev->dev, 1411 ps_page->dma, 1412 PAGE_SIZE, 1413 DMA_FROM_DEVICE); 1414 1415 /* remove the CRC */ 1416 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) { 1417 if (!(netdev->features & NETIF_F_RXFCS)) 1418 l1 -= 4; 1419 } 1420 1421 skb_put(skb, l1); 1422 goto copydone; 1423 } /* if */ 1424 } 1425 1426 for (j = 0; j < PS_PAGE_BUFFERS; j++) { 1427 length = le16_to_cpu(rx_desc->wb.upper.length[j]); 1428 if (!length) 1429 break; 1430 1431 ps_page = &buffer_info->ps_pages[j]; 1432 dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE, 1433 DMA_FROM_DEVICE); 1434 ps_page->dma = 0; 1435 skb_fill_page_desc(skb, j, ps_page->page, 0, length); 1436 ps_page->page = NULL; 1437 skb->len += length; 1438 skb->data_len += length; 1439 skb->truesize += PAGE_SIZE; 1440 } 1441 1442 /* strip the ethernet crc, problem is we're using pages now so 1443 * this whole operation can get a little cpu intensive 1444 */ 1445 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) { 1446 if (!(netdev->features & NETIF_F_RXFCS)) 1447 pskb_trim(skb, skb->len - 4); 1448 } 1449 1450 copydone: 1451 total_rx_bytes += skb->len; 1452 total_rx_packets++; 1453 1454 e1000_rx_checksum(adapter, staterr, skb); 1455 1456 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb); 1457 1458 if (rx_desc->wb.upper.header_status & 1459 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)) 1460 adapter->rx_hdr_split++; 1461 1462 e1000_receive_skb(adapter, netdev, skb, staterr, 1463 rx_desc->wb.middle.vlan); 1464 1465 next_desc: 1466 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF); 1467 buffer_info->skb = NULL; 1468 1469 /* return some buffers to hardware, one at a time is too slow */ 1470 if (cleaned_count >= E1000_RX_BUFFER_WRITE) { 1471 adapter->alloc_rx_buf(rx_ring, cleaned_count, 1472 GFP_ATOMIC); 1473 cleaned_count = 0; 1474 } 1475 1476 /* use prefetched values */ 1477 rx_desc = next_rxd; 1478 buffer_info = next_buffer; 1479 1480 staterr = le32_to_cpu(rx_desc->wb.middle.status_error); 1481 } 1482 rx_ring->next_to_clean = i; 1483 1484 cleaned_count = e1000_desc_unused(rx_ring); 1485 if (cleaned_count) 1486 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC); 1487 1488 adapter->total_rx_bytes += total_rx_bytes; 1489 adapter->total_rx_packets += total_rx_packets; 1490 return cleaned; 1491 } 1492 1493 /** 1494 * e1000_consume_page - helper function 1495 **/ 1496 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb, 1497 u16 length) 1498 { 1499 bi->page = NULL; 1500 skb->len += length; 1501 skb->data_len += length; 1502 skb->truesize += PAGE_SIZE; 1503 } 1504 1505 /** 1506 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy 1507 * @adapter: board private structure 1508 * 1509 * the return value indicates whether actual cleaning was done, there 1510 * is no guarantee that everything was cleaned 1511 **/ 1512 static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done, 1513 int work_to_do) 1514 { 1515 struct e1000_adapter *adapter = rx_ring->adapter; 1516 struct net_device *netdev = adapter->netdev; 1517 struct pci_dev *pdev = adapter->pdev; 1518 union e1000_rx_desc_extended *rx_desc, *next_rxd; 1519 struct e1000_buffer *buffer_info, *next_buffer; 1520 u32 length, staterr; 1521 unsigned int i; 1522 int cleaned_count = 0; 1523 bool cleaned = false; 1524 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 1525 struct skb_shared_info *shinfo; 1526 1527 i = rx_ring->next_to_clean; 1528 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i); 1529 staterr = le32_to_cpu(rx_desc->wb.upper.status_error); 1530 buffer_info = &rx_ring->buffer_info[i]; 1531 1532 while (staterr & E1000_RXD_STAT_DD) { 1533 struct sk_buff *skb; 1534 1535 if (*work_done >= work_to_do) 1536 break; 1537 (*work_done)++; 1538 rmb(); /* read descriptor and rx_buffer_info after status DD */ 1539 1540 skb = buffer_info->skb; 1541 buffer_info->skb = NULL; 1542 1543 ++i; 1544 if (i == rx_ring->count) 1545 i = 0; 1546 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i); 1547 prefetch(next_rxd); 1548 1549 next_buffer = &rx_ring->buffer_info[i]; 1550 1551 cleaned = true; 1552 cleaned_count++; 1553 dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE, 1554 DMA_FROM_DEVICE); 1555 buffer_info->dma = 0; 1556 1557 length = le16_to_cpu(rx_desc->wb.upper.length); 1558 1559 /* errors is only valid for DD + EOP descriptors */ 1560 if (unlikely((staterr & E1000_RXD_STAT_EOP) && 1561 ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) && 1562 !(netdev->features & NETIF_F_RXALL)))) { 1563 /* recycle both page and skb */ 1564 buffer_info->skb = skb; 1565 /* an error means any chain goes out the window too */ 1566 if (rx_ring->rx_skb_top) 1567 dev_kfree_skb_irq(rx_ring->rx_skb_top); 1568 rx_ring->rx_skb_top = NULL; 1569 goto next_desc; 1570 } 1571 #define rxtop (rx_ring->rx_skb_top) 1572 if (!(staterr & E1000_RXD_STAT_EOP)) { 1573 /* this descriptor is only the beginning (or middle) */ 1574 if (!rxtop) { 1575 /* this is the beginning of a chain */ 1576 rxtop = skb; 1577 skb_fill_page_desc(rxtop, 0, buffer_info->page, 1578 0, length); 1579 } else { 1580 /* this is the middle of a chain */ 1581 shinfo = skb_shinfo(rxtop); 1582 skb_fill_page_desc(rxtop, shinfo->nr_frags, 1583 buffer_info->page, 0, 1584 length); 1585 /* re-use the skb, only consumed the page */ 1586 buffer_info->skb = skb; 1587 } 1588 e1000_consume_page(buffer_info, rxtop, length); 1589 goto next_desc; 1590 } else { 1591 if (rxtop) { 1592 /* end of the chain */ 1593 shinfo = skb_shinfo(rxtop); 1594 skb_fill_page_desc(rxtop, shinfo->nr_frags, 1595 buffer_info->page, 0, 1596 length); 1597 /* re-use the current skb, we only consumed the 1598 * page 1599 */ 1600 buffer_info->skb = skb; 1601 skb = rxtop; 1602 rxtop = NULL; 1603 e1000_consume_page(buffer_info, skb, length); 1604 } else { 1605 /* no chain, got EOP, this buf is the packet 1606 * copybreak to save the put_page/alloc_page 1607 */ 1608 if (length <= copybreak && 1609 skb_tailroom(skb) >= length) { 1610 u8 *vaddr; 1611 vaddr = kmap_atomic(buffer_info->page); 1612 memcpy(skb_tail_pointer(skb), vaddr, 1613 length); 1614 kunmap_atomic(vaddr); 1615 /* re-use the page, so don't erase 1616 * buffer_info->page 1617 */ 1618 skb_put(skb, length); 1619 } else { 1620 skb_fill_page_desc(skb, 0, 1621 buffer_info->page, 0, 1622 length); 1623 e1000_consume_page(buffer_info, skb, 1624 length); 1625 } 1626 } 1627 } 1628 1629 /* Receive Checksum Offload */ 1630 e1000_rx_checksum(adapter, staterr, skb); 1631 1632 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb); 1633 1634 /* probably a little skewed due to removing CRC */ 1635 total_rx_bytes += skb->len; 1636 total_rx_packets++; 1637 1638 /* eth type trans needs skb->data to point to something */ 1639 if (!pskb_may_pull(skb, ETH_HLEN)) { 1640 e_err("pskb_may_pull failed.\n"); 1641 dev_kfree_skb_irq(skb); 1642 goto next_desc; 1643 } 1644 1645 e1000_receive_skb(adapter, netdev, skb, staterr, 1646 rx_desc->wb.upper.vlan); 1647 1648 next_desc: 1649 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF); 1650 1651 /* return some buffers to hardware, one at a time is too slow */ 1652 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) { 1653 adapter->alloc_rx_buf(rx_ring, cleaned_count, 1654 GFP_ATOMIC); 1655 cleaned_count = 0; 1656 } 1657 1658 /* use prefetched values */ 1659 rx_desc = next_rxd; 1660 buffer_info = next_buffer; 1661 1662 staterr = le32_to_cpu(rx_desc->wb.upper.status_error); 1663 } 1664 rx_ring->next_to_clean = i; 1665 1666 cleaned_count = e1000_desc_unused(rx_ring); 1667 if (cleaned_count) 1668 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC); 1669 1670 adapter->total_rx_bytes += total_rx_bytes; 1671 adapter->total_rx_packets += total_rx_packets; 1672 return cleaned; 1673 } 1674 1675 /** 1676 * e1000_clean_rx_ring - Free Rx Buffers per Queue 1677 * @rx_ring: Rx descriptor ring 1678 **/ 1679 static void e1000_clean_rx_ring(struct e1000_ring *rx_ring) 1680 { 1681 struct e1000_adapter *adapter = rx_ring->adapter; 1682 struct e1000_buffer *buffer_info; 1683 struct e1000_ps_page *ps_page; 1684 struct pci_dev *pdev = adapter->pdev; 1685 unsigned int i, j; 1686 1687 /* Free all the Rx ring sk_buffs */ 1688 for (i = 0; i < rx_ring->count; i++) { 1689 buffer_info = &rx_ring->buffer_info[i]; 1690 if (buffer_info->dma) { 1691 if (adapter->clean_rx == e1000_clean_rx_irq) 1692 dma_unmap_single(&pdev->dev, buffer_info->dma, 1693 adapter->rx_buffer_len, 1694 DMA_FROM_DEVICE); 1695 else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) 1696 dma_unmap_page(&pdev->dev, buffer_info->dma, 1697 PAGE_SIZE, DMA_FROM_DEVICE); 1698 else if (adapter->clean_rx == e1000_clean_rx_irq_ps) 1699 dma_unmap_single(&pdev->dev, buffer_info->dma, 1700 adapter->rx_ps_bsize0, 1701 DMA_FROM_DEVICE); 1702 buffer_info->dma = 0; 1703 } 1704 1705 if (buffer_info->page) { 1706 put_page(buffer_info->page); 1707 buffer_info->page = NULL; 1708 } 1709 1710 if (buffer_info->skb) { 1711 dev_kfree_skb(buffer_info->skb); 1712 buffer_info->skb = NULL; 1713 } 1714 1715 for (j = 0; j < PS_PAGE_BUFFERS; j++) { 1716 ps_page = &buffer_info->ps_pages[j]; 1717 if (!ps_page->page) 1718 break; 1719 dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE, 1720 DMA_FROM_DEVICE); 1721 ps_page->dma = 0; 1722 put_page(ps_page->page); 1723 ps_page->page = NULL; 1724 } 1725 } 1726 1727 /* there also may be some cached data from a chained receive */ 1728 if (rx_ring->rx_skb_top) { 1729 dev_kfree_skb(rx_ring->rx_skb_top); 1730 rx_ring->rx_skb_top = NULL; 1731 } 1732 1733 /* Zero out the descriptor ring */ 1734 memset(rx_ring->desc, 0, rx_ring->size); 1735 1736 rx_ring->next_to_clean = 0; 1737 rx_ring->next_to_use = 0; 1738 adapter->flags2 &= ~FLAG2_IS_DISCARDING; 1739 1740 writel(0, rx_ring->head); 1741 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA) 1742 e1000e_update_rdt_wa(rx_ring, 0); 1743 else 1744 writel(0, rx_ring->tail); 1745 } 1746 1747 static void e1000e_downshift_workaround(struct work_struct *work) 1748 { 1749 struct e1000_adapter *adapter = container_of(work, 1750 struct e1000_adapter, 1751 downshift_task); 1752 1753 if (test_bit(__E1000_DOWN, &adapter->state)) 1754 return; 1755 1756 e1000e_gig_downshift_workaround_ich8lan(&adapter->hw); 1757 } 1758 1759 /** 1760 * e1000_intr_msi - Interrupt Handler 1761 * @irq: interrupt number 1762 * @data: pointer to a network interface device structure 1763 **/ 1764 static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data) 1765 { 1766 struct net_device *netdev = data; 1767 struct e1000_adapter *adapter = netdev_priv(netdev); 1768 struct e1000_hw *hw = &adapter->hw; 1769 u32 icr = er32(ICR); 1770 1771 /* read ICR disables interrupts using IAM */ 1772 if (icr & E1000_ICR_LSC) { 1773 hw->mac.get_link_status = true; 1774 /* ICH8 workaround-- Call gig speed drop workaround on cable 1775 * disconnect (LSC) before accessing any PHY registers 1776 */ 1777 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) && 1778 (!(er32(STATUS) & E1000_STATUS_LU))) 1779 schedule_work(&adapter->downshift_task); 1780 1781 /* 80003ES2LAN workaround-- For packet buffer work-around on 1782 * link down event; disable receives here in the ISR and reset 1783 * adapter in watchdog 1784 */ 1785 if (netif_carrier_ok(netdev) && 1786 adapter->flags & FLAG_RX_NEEDS_RESTART) { 1787 /* disable receives */ 1788 u32 rctl = er32(RCTL); 1789 1790 ew32(RCTL, rctl & ~E1000_RCTL_EN); 1791 adapter->flags |= FLAG_RESTART_NOW; 1792 } 1793 /* guard against interrupt when we're going down */ 1794 if (!test_bit(__E1000_DOWN, &adapter->state)) 1795 mod_timer(&adapter->watchdog_timer, jiffies + 1); 1796 } 1797 1798 /* Reset on uncorrectable ECC error */ 1799 if ((icr & E1000_ICR_ECCER) && (hw->mac.type == e1000_pch_lpt)) { 1800 u32 pbeccsts = er32(PBECCSTS); 1801 1802 adapter->corr_errors += 1803 pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK; 1804 adapter->uncorr_errors += 1805 (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >> 1806 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT; 1807 1808 /* Do the reset outside of interrupt context */ 1809 schedule_work(&adapter->reset_task); 1810 1811 /* return immediately since reset is imminent */ 1812 return IRQ_HANDLED; 1813 } 1814 1815 if (napi_schedule_prep(&adapter->napi)) { 1816 adapter->total_tx_bytes = 0; 1817 adapter->total_tx_packets = 0; 1818 adapter->total_rx_bytes = 0; 1819 adapter->total_rx_packets = 0; 1820 __napi_schedule(&adapter->napi); 1821 } 1822 1823 return IRQ_HANDLED; 1824 } 1825 1826 /** 1827 * e1000_intr - Interrupt Handler 1828 * @irq: interrupt number 1829 * @data: pointer to a network interface device structure 1830 **/ 1831 static irqreturn_t e1000_intr(int __always_unused irq, void *data) 1832 { 1833 struct net_device *netdev = data; 1834 struct e1000_adapter *adapter = netdev_priv(netdev); 1835 struct e1000_hw *hw = &adapter->hw; 1836 u32 rctl, icr = er32(ICR); 1837 1838 if (!icr || test_bit(__E1000_DOWN, &adapter->state)) 1839 return IRQ_NONE; /* Not our interrupt */ 1840 1841 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is 1842 * not set, then the adapter didn't send an interrupt 1843 */ 1844 if (!(icr & E1000_ICR_INT_ASSERTED)) 1845 return IRQ_NONE; 1846 1847 /* Interrupt Auto-Mask...upon reading ICR, 1848 * interrupts are masked. No need for the 1849 * IMC write 1850 */ 1851 1852 if (icr & E1000_ICR_LSC) { 1853 hw->mac.get_link_status = true; 1854 /* ICH8 workaround-- Call gig speed drop workaround on cable 1855 * disconnect (LSC) before accessing any PHY registers 1856 */ 1857 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) && 1858 (!(er32(STATUS) & E1000_STATUS_LU))) 1859 schedule_work(&adapter->downshift_task); 1860 1861 /* 80003ES2LAN workaround-- 1862 * For packet buffer work-around on link down event; 1863 * disable receives here in the ISR and 1864 * reset adapter in watchdog 1865 */ 1866 if (netif_carrier_ok(netdev) && 1867 (adapter->flags & FLAG_RX_NEEDS_RESTART)) { 1868 /* disable receives */ 1869 rctl = er32(RCTL); 1870 ew32(RCTL, rctl & ~E1000_RCTL_EN); 1871 adapter->flags |= FLAG_RESTART_NOW; 1872 } 1873 /* guard against interrupt when we're going down */ 1874 if (!test_bit(__E1000_DOWN, &adapter->state)) 1875 mod_timer(&adapter->watchdog_timer, jiffies + 1); 1876 } 1877 1878 /* Reset on uncorrectable ECC error */ 1879 if ((icr & E1000_ICR_ECCER) && (hw->mac.type == e1000_pch_lpt)) { 1880 u32 pbeccsts = er32(PBECCSTS); 1881 1882 adapter->corr_errors += 1883 pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK; 1884 adapter->uncorr_errors += 1885 (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >> 1886 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT; 1887 1888 /* Do the reset outside of interrupt context */ 1889 schedule_work(&adapter->reset_task); 1890 1891 /* return immediately since reset is imminent */ 1892 return IRQ_HANDLED; 1893 } 1894 1895 if (napi_schedule_prep(&adapter->napi)) { 1896 adapter->total_tx_bytes = 0; 1897 adapter->total_tx_packets = 0; 1898 adapter->total_rx_bytes = 0; 1899 adapter->total_rx_packets = 0; 1900 __napi_schedule(&adapter->napi); 1901 } 1902 1903 return IRQ_HANDLED; 1904 } 1905 1906 static irqreturn_t e1000_msix_other(int __always_unused irq, void *data) 1907 { 1908 struct net_device *netdev = data; 1909 struct e1000_adapter *adapter = netdev_priv(netdev); 1910 struct e1000_hw *hw = &adapter->hw; 1911 u32 icr = er32(ICR); 1912 1913 if (!(icr & E1000_ICR_INT_ASSERTED)) { 1914 if (!test_bit(__E1000_DOWN, &adapter->state)) 1915 ew32(IMS, E1000_IMS_OTHER); 1916 return IRQ_NONE; 1917 } 1918 1919 if (icr & adapter->eiac_mask) 1920 ew32(ICS, (icr & adapter->eiac_mask)); 1921 1922 if (icr & E1000_ICR_OTHER) { 1923 if (!(icr & E1000_ICR_LSC)) 1924 goto no_link_interrupt; 1925 hw->mac.get_link_status = true; 1926 /* guard against interrupt when we're going down */ 1927 if (!test_bit(__E1000_DOWN, &adapter->state)) 1928 mod_timer(&adapter->watchdog_timer, jiffies + 1); 1929 } 1930 1931 no_link_interrupt: 1932 if (!test_bit(__E1000_DOWN, &adapter->state)) 1933 ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER); 1934 1935 return IRQ_HANDLED; 1936 } 1937 1938 static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data) 1939 { 1940 struct net_device *netdev = data; 1941 struct e1000_adapter *adapter = netdev_priv(netdev); 1942 struct e1000_hw *hw = &adapter->hw; 1943 struct e1000_ring *tx_ring = adapter->tx_ring; 1944 1945 adapter->total_tx_bytes = 0; 1946 adapter->total_tx_packets = 0; 1947 1948 if (!e1000_clean_tx_irq(tx_ring)) 1949 /* Ring was not completely cleaned, so fire another interrupt */ 1950 ew32(ICS, tx_ring->ims_val); 1951 1952 return IRQ_HANDLED; 1953 } 1954 1955 static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data) 1956 { 1957 struct net_device *netdev = data; 1958 struct e1000_adapter *adapter = netdev_priv(netdev); 1959 struct e1000_ring *rx_ring = adapter->rx_ring; 1960 1961 /* Write the ITR value calculated at the end of the 1962 * previous interrupt. 1963 */ 1964 if (rx_ring->set_itr) { 1965 writel(1000000000 / (rx_ring->itr_val * 256), 1966 rx_ring->itr_register); 1967 rx_ring->set_itr = 0; 1968 } 1969 1970 if (napi_schedule_prep(&adapter->napi)) { 1971 adapter->total_rx_bytes = 0; 1972 adapter->total_rx_packets = 0; 1973 __napi_schedule(&adapter->napi); 1974 } 1975 return IRQ_HANDLED; 1976 } 1977 1978 /** 1979 * e1000_configure_msix - Configure MSI-X hardware 1980 * 1981 * e1000_configure_msix sets up the hardware to properly 1982 * generate MSI-X interrupts. 1983 **/ 1984 static void e1000_configure_msix(struct e1000_adapter *adapter) 1985 { 1986 struct e1000_hw *hw = &adapter->hw; 1987 struct e1000_ring *rx_ring = adapter->rx_ring; 1988 struct e1000_ring *tx_ring = adapter->tx_ring; 1989 int vector = 0; 1990 u32 ctrl_ext, ivar = 0; 1991 1992 adapter->eiac_mask = 0; 1993 1994 /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */ 1995 if (hw->mac.type == e1000_82574) { 1996 u32 rfctl = er32(RFCTL); 1997 1998 rfctl |= E1000_RFCTL_ACK_DIS; 1999 ew32(RFCTL, rfctl); 2000 } 2001 2002 /* Configure Rx vector */ 2003 rx_ring->ims_val = E1000_IMS_RXQ0; 2004 adapter->eiac_mask |= rx_ring->ims_val; 2005 if (rx_ring->itr_val) 2006 writel(1000000000 / (rx_ring->itr_val * 256), 2007 rx_ring->itr_register); 2008 else 2009 writel(1, rx_ring->itr_register); 2010 ivar = E1000_IVAR_INT_ALLOC_VALID | vector; 2011 2012 /* Configure Tx vector */ 2013 tx_ring->ims_val = E1000_IMS_TXQ0; 2014 vector++; 2015 if (tx_ring->itr_val) 2016 writel(1000000000 / (tx_ring->itr_val * 256), 2017 tx_ring->itr_register); 2018 else 2019 writel(1, tx_ring->itr_register); 2020 adapter->eiac_mask |= tx_ring->ims_val; 2021 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8); 2022 2023 /* set vector for Other Causes, e.g. link changes */ 2024 vector++; 2025 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16); 2026 if (rx_ring->itr_val) 2027 writel(1000000000 / (rx_ring->itr_val * 256), 2028 hw->hw_addr + E1000_EITR_82574(vector)); 2029 else 2030 writel(1, hw->hw_addr + E1000_EITR_82574(vector)); 2031 2032 /* Cause Tx interrupts on every write back */ 2033 ivar |= (1 << 31); 2034 2035 ew32(IVAR, ivar); 2036 2037 /* enable MSI-X PBA support */ 2038 ctrl_ext = er32(CTRL_EXT); 2039 ctrl_ext |= E1000_CTRL_EXT_PBA_CLR; 2040 2041 /* Auto-Mask Other interrupts upon ICR read */ 2042 ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER); 2043 ctrl_ext |= E1000_CTRL_EXT_EIAME; 2044 ew32(CTRL_EXT, ctrl_ext); 2045 e1e_flush(); 2046 } 2047 2048 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter) 2049 { 2050 if (adapter->msix_entries) { 2051 pci_disable_msix(adapter->pdev); 2052 kfree(adapter->msix_entries); 2053 adapter->msix_entries = NULL; 2054 } else if (adapter->flags & FLAG_MSI_ENABLED) { 2055 pci_disable_msi(adapter->pdev); 2056 adapter->flags &= ~FLAG_MSI_ENABLED; 2057 } 2058 } 2059 2060 /** 2061 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported 2062 * 2063 * Attempt to configure interrupts using the best available 2064 * capabilities of the hardware and kernel. 2065 **/ 2066 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter) 2067 { 2068 int err; 2069 int i; 2070 2071 switch (adapter->int_mode) { 2072 case E1000E_INT_MODE_MSIX: 2073 if (adapter->flags & FLAG_HAS_MSIX) { 2074 adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */ 2075 adapter->msix_entries = kcalloc(adapter->num_vectors, 2076 sizeof(struct 2077 msix_entry), 2078 GFP_KERNEL); 2079 if (adapter->msix_entries) { 2080 struct e1000_adapter *a = adapter; 2081 2082 for (i = 0; i < adapter->num_vectors; i++) 2083 adapter->msix_entries[i].entry = i; 2084 2085 err = pci_enable_msix_range(a->pdev, 2086 a->msix_entries, 2087 a->num_vectors, 2088 a->num_vectors); 2089 if (err > 0) 2090 return; 2091 } 2092 /* MSI-X failed, so fall through and try MSI */ 2093 e_err("Failed to initialize MSI-X interrupts. Falling back to MSI interrupts.\n"); 2094 e1000e_reset_interrupt_capability(adapter); 2095 } 2096 adapter->int_mode = E1000E_INT_MODE_MSI; 2097 /* Fall through */ 2098 case E1000E_INT_MODE_MSI: 2099 if (!pci_enable_msi(adapter->pdev)) { 2100 adapter->flags |= FLAG_MSI_ENABLED; 2101 } else { 2102 adapter->int_mode = E1000E_INT_MODE_LEGACY; 2103 e_err("Failed to initialize MSI interrupts. Falling back to legacy interrupts.\n"); 2104 } 2105 /* Fall through */ 2106 case E1000E_INT_MODE_LEGACY: 2107 /* Don't do anything; this is the system default */ 2108 break; 2109 } 2110 2111 /* store the number of vectors being used */ 2112 adapter->num_vectors = 1; 2113 } 2114 2115 /** 2116 * e1000_request_msix - Initialize MSI-X interrupts 2117 * 2118 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the 2119 * kernel. 2120 **/ 2121 static int e1000_request_msix(struct e1000_adapter *adapter) 2122 { 2123 struct net_device *netdev = adapter->netdev; 2124 int err = 0, vector = 0; 2125 2126 if (strlen(netdev->name) < (IFNAMSIZ - 5)) 2127 snprintf(adapter->rx_ring->name, 2128 sizeof(adapter->rx_ring->name) - 1, 2129 "%s-rx-0", netdev->name); 2130 else 2131 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ); 2132 err = request_irq(adapter->msix_entries[vector].vector, 2133 e1000_intr_msix_rx, 0, adapter->rx_ring->name, 2134 netdev); 2135 if (err) 2136 return err; 2137 adapter->rx_ring->itr_register = adapter->hw.hw_addr + 2138 E1000_EITR_82574(vector); 2139 adapter->rx_ring->itr_val = adapter->itr; 2140 vector++; 2141 2142 if (strlen(netdev->name) < (IFNAMSIZ - 5)) 2143 snprintf(adapter->tx_ring->name, 2144 sizeof(adapter->tx_ring->name) - 1, 2145 "%s-tx-0", netdev->name); 2146 else 2147 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ); 2148 err = request_irq(adapter->msix_entries[vector].vector, 2149 e1000_intr_msix_tx, 0, adapter->tx_ring->name, 2150 netdev); 2151 if (err) 2152 return err; 2153 adapter->tx_ring->itr_register = adapter->hw.hw_addr + 2154 E1000_EITR_82574(vector); 2155 adapter->tx_ring->itr_val = adapter->itr; 2156 vector++; 2157 2158 err = request_irq(adapter->msix_entries[vector].vector, 2159 e1000_msix_other, 0, netdev->name, netdev); 2160 if (err) 2161 return err; 2162 2163 e1000_configure_msix(adapter); 2164 2165 return 0; 2166 } 2167 2168 /** 2169 * e1000_request_irq - initialize interrupts 2170 * 2171 * Attempts to configure interrupts using the best available 2172 * capabilities of the hardware and kernel. 2173 **/ 2174 static int e1000_request_irq(struct e1000_adapter *adapter) 2175 { 2176 struct net_device *netdev = adapter->netdev; 2177 int err; 2178 2179 if (adapter->msix_entries) { 2180 err = e1000_request_msix(adapter); 2181 if (!err) 2182 return err; 2183 /* fall back to MSI */ 2184 e1000e_reset_interrupt_capability(adapter); 2185 adapter->int_mode = E1000E_INT_MODE_MSI; 2186 e1000e_set_interrupt_capability(adapter); 2187 } 2188 if (adapter->flags & FLAG_MSI_ENABLED) { 2189 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0, 2190 netdev->name, netdev); 2191 if (!err) 2192 return err; 2193 2194 /* fall back to legacy interrupt */ 2195 e1000e_reset_interrupt_capability(adapter); 2196 adapter->int_mode = E1000E_INT_MODE_LEGACY; 2197 } 2198 2199 err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED, 2200 netdev->name, netdev); 2201 if (err) 2202 e_err("Unable to allocate interrupt, Error: %d\n", err); 2203 2204 return err; 2205 } 2206 2207 static void e1000_free_irq(struct e1000_adapter *adapter) 2208 { 2209 struct net_device *netdev = adapter->netdev; 2210 2211 if (adapter->msix_entries) { 2212 int vector = 0; 2213 2214 free_irq(adapter->msix_entries[vector].vector, netdev); 2215 vector++; 2216 2217 free_irq(adapter->msix_entries[vector].vector, netdev); 2218 vector++; 2219 2220 /* Other Causes interrupt vector */ 2221 free_irq(adapter->msix_entries[vector].vector, netdev); 2222 return; 2223 } 2224 2225 free_irq(adapter->pdev->irq, netdev); 2226 } 2227 2228 /** 2229 * e1000_irq_disable - Mask off interrupt generation on the NIC 2230 **/ 2231 static void e1000_irq_disable(struct e1000_adapter *adapter) 2232 { 2233 struct e1000_hw *hw = &adapter->hw; 2234 2235 ew32(IMC, ~0); 2236 if (adapter->msix_entries) 2237 ew32(EIAC_82574, 0); 2238 e1e_flush(); 2239 2240 if (adapter->msix_entries) { 2241 int i; 2242 2243 for (i = 0; i < adapter->num_vectors; i++) 2244 synchronize_irq(adapter->msix_entries[i].vector); 2245 } else { 2246 synchronize_irq(adapter->pdev->irq); 2247 } 2248 } 2249 2250 /** 2251 * e1000_irq_enable - Enable default interrupt generation settings 2252 **/ 2253 static void e1000_irq_enable(struct e1000_adapter *adapter) 2254 { 2255 struct e1000_hw *hw = &adapter->hw; 2256 2257 if (adapter->msix_entries) { 2258 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574); 2259 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC); 2260 } else if (hw->mac.type == e1000_pch_lpt) { 2261 ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER); 2262 } else { 2263 ew32(IMS, IMS_ENABLE_MASK); 2264 } 2265 e1e_flush(); 2266 } 2267 2268 /** 2269 * e1000e_get_hw_control - get control of the h/w from f/w 2270 * @adapter: address of board private structure 2271 * 2272 * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit. 2273 * For ASF and Pass Through versions of f/w this means that 2274 * the driver is loaded. For AMT version (only with 82573) 2275 * of the f/w this means that the network i/f is open. 2276 **/ 2277 void e1000e_get_hw_control(struct e1000_adapter *adapter) 2278 { 2279 struct e1000_hw *hw = &adapter->hw; 2280 u32 ctrl_ext; 2281 u32 swsm; 2282 2283 /* Let firmware know the driver has taken over */ 2284 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) { 2285 swsm = er32(SWSM); 2286 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD); 2287 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) { 2288 ctrl_ext = er32(CTRL_EXT); 2289 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); 2290 } 2291 } 2292 2293 /** 2294 * e1000e_release_hw_control - release control of the h/w to f/w 2295 * @adapter: address of board private structure 2296 * 2297 * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit. 2298 * For ASF and Pass Through versions of f/w this means that the 2299 * driver is no longer loaded. For AMT version (only with 82573) i 2300 * of the f/w this means that the network i/f is closed. 2301 * 2302 **/ 2303 void e1000e_release_hw_control(struct e1000_adapter *adapter) 2304 { 2305 struct e1000_hw *hw = &adapter->hw; 2306 u32 ctrl_ext; 2307 u32 swsm; 2308 2309 /* Let firmware taken over control of h/w */ 2310 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) { 2311 swsm = er32(SWSM); 2312 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD); 2313 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) { 2314 ctrl_ext = er32(CTRL_EXT); 2315 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); 2316 } 2317 } 2318 2319 /** 2320 * e1000_alloc_ring_dma - allocate memory for a ring structure 2321 **/ 2322 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter, 2323 struct e1000_ring *ring) 2324 { 2325 struct pci_dev *pdev = adapter->pdev; 2326 2327 ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma, 2328 GFP_KERNEL); 2329 if (!ring->desc) 2330 return -ENOMEM; 2331 2332 return 0; 2333 } 2334 2335 /** 2336 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors) 2337 * @tx_ring: Tx descriptor ring 2338 * 2339 * Return 0 on success, negative on failure 2340 **/ 2341 int e1000e_setup_tx_resources(struct e1000_ring *tx_ring) 2342 { 2343 struct e1000_adapter *adapter = tx_ring->adapter; 2344 int err = -ENOMEM, size; 2345 2346 size = sizeof(struct e1000_buffer) * tx_ring->count; 2347 tx_ring->buffer_info = vzalloc(size); 2348 if (!tx_ring->buffer_info) 2349 goto err; 2350 2351 /* round up to nearest 4K */ 2352 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc); 2353 tx_ring->size = ALIGN(tx_ring->size, 4096); 2354 2355 err = e1000_alloc_ring_dma(adapter, tx_ring); 2356 if (err) 2357 goto err; 2358 2359 tx_ring->next_to_use = 0; 2360 tx_ring->next_to_clean = 0; 2361 2362 return 0; 2363 err: 2364 vfree(tx_ring->buffer_info); 2365 e_err("Unable to allocate memory for the transmit descriptor ring\n"); 2366 return err; 2367 } 2368 2369 /** 2370 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors) 2371 * @rx_ring: Rx descriptor ring 2372 * 2373 * Returns 0 on success, negative on failure 2374 **/ 2375 int e1000e_setup_rx_resources(struct e1000_ring *rx_ring) 2376 { 2377 struct e1000_adapter *adapter = rx_ring->adapter; 2378 struct e1000_buffer *buffer_info; 2379 int i, size, desc_len, err = -ENOMEM; 2380 2381 size = sizeof(struct e1000_buffer) * rx_ring->count; 2382 rx_ring->buffer_info = vzalloc(size); 2383 if (!rx_ring->buffer_info) 2384 goto err; 2385 2386 for (i = 0; i < rx_ring->count; i++) { 2387 buffer_info = &rx_ring->buffer_info[i]; 2388 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS, 2389 sizeof(struct e1000_ps_page), 2390 GFP_KERNEL); 2391 if (!buffer_info->ps_pages) 2392 goto err_pages; 2393 } 2394 2395 desc_len = sizeof(union e1000_rx_desc_packet_split); 2396 2397 /* Round up to nearest 4K */ 2398 rx_ring->size = rx_ring->count * desc_len; 2399 rx_ring->size = ALIGN(rx_ring->size, 4096); 2400 2401 err = e1000_alloc_ring_dma(adapter, rx_ring); 2402 if (err) 2403 goto err_pages; 2404 2405 rx_ring->next_to_clean = 0; 2406 rx_ring->next_to_use = 0; 2407 rx_ring->rx_skb_top = NULL; 2408 2409 return 0; 2410 2411 err_pages: 2412 for (i = 0; i < rx_ring->count; i++) { 2413 buffer_info = &rx_ring->buffer_info[i]; 2414 kfree(buffer_info->ps_pages); 2415 } 2416 err: 2417 vfree(rx_ring->buffer_info); 2418 e_err("Unable to allocate memory for the receive descriptor ring\n"); 2419 return err; 2420 } 2421 2422 /** 2423 * e1000_clean_tx_ring - Free Tx Buffers 2424 * @tx_ring: Tx descriptor ring 2425 **/ 2426 static void e1000_clean_tx_ring(struct e1000_ring *tx_ring) 2427 { 2428 struct e1000_adapter *adapter = tx_ring->adapter; 2429 struct e1000_buffer *buffer_info; 2430 unsigned long size; 2431 unsigned int i; 2432 2433 for (i = 0; i < tx_ring->count; i++) { 2434 buffer_info = &tx_ring->buffer_info[i]; 2435 e1000_put_txbuf(tx_ring, buffer_info); 2436 } 2437 2438 netdev_reset_queue(adapter->netdev); 2439 size = sizeof(struct e1000_buffer) * tx_ring->count; 2440 memset(tx_ring->buffer_info, 0, size); 2441 2442 memset(tx_ring->desc, 0, tx_ring->size); 2443 2444 tx_ring->next_to_use = 0; 2445 tx_ring->next_to_clean = 0; 2446 2447 writel(0, tx_ring->head); 2448 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA) 2449 e1000e_update_tdt_wa(tx_ring, 0); 2450 else 2451 writel(0, tx_ring->tail); 2452 } 2453 2454 /** 2455 * e1000e_free_tx_resources - Free Tx Resources per Queue 2456 * @tx_ring: Tx descriptor ring 2457 * 2458 * Free all transmit software resources 2459 **/ 2460 void e1000e_free_tx_resources(struct e1000_ring *tx_ring) 2461 { 2462 struct e1000_adapter *adapter = tx_ring->adapter; 2463 struct pci_dev *pdev = adapter->pdev; 2464 2465 e1000_clean_tx_ring(tx_ring); 2466 2467 vfree(tx_ring->buffer_info); 2468 tx_ring->buffer_info = NULL; 2469 2470 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, 2471 tx_ring->dma); 2472 tx_ring->desc = NULL; 2473 } 2474 2475 /** 2476 * e1000e_free_rx_resources - Free Rx Resources 2477 * @rx_ring: Rx descriptor ring 2478 * 2479 * Free all receive software resources 2480 **/ 2481 void e1000e_free_rx_resources(struct e1000_ring *rx_ring) 2482 { 2483 struct e1000_adapter *adapter = rx_ring->adapter; 2484 struct pci_dev *pdev = adapter->pdev; 2485 int i; 2486 2487 e1000_clean_rx_ring(rx_ring); 2488 2489 for (i = 0; i < rx_ring->count; i++) 2490 kfree(rx_ring->buffer_info[i].ps_pages); 2491 2492 vfree(rx_ring->buffer_info); 2493 rx_ring->buffer_info = NULL; 2494 2495 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, 2496 rx_ring->dma); 2497 rx_ring->desc = NULL; 2498 } 2499 2500 /** 2501 * e1000_update_itr - update the dynamic ITR value based on statistics 2502 * @adapter: pointer to adapter 2503 * @itr_setting: current adapter->itr 2504 * @packets: the number of packets during this measurement interval 2505 * @bytes: the number of bytes during this measurement interval 2506 * 2507 * Stores a new ITR value based on packets and byte 2508 * counts during the last interrupt. The advantage of per interrupt 2509 * computation is faster updates and more accurate ITR for the current 2510 * traffic pattern. Constants in this function were computed 2511 * based on theoretical maximum wire speed and thresholds were set based 2512 * on testing data as well as attempting to minimize response time 2513 * while increasing bulk throughput. This functionality is controlled 2514 * by the InterruptThrottleRate module parameter. 2515 **/ 2516 static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes) 2517 { 2518 unsigned int retval = itr_setting; 2519 2520 if (packets == 0) 2521 return itr_setting; 2522 2523 switch (itr_setting) { 2524 case lowest_latency: 2525 /* handle TSO and jumbo frames */ 2526 if (bytes / packets > 8000) 2527 retval = bulk_latency; 2528 else if ((packets < 5) && (bytes > 512)) 2529 retval = low_latency; 2530 break; 2531 case low_latency: /* 50 usec aka 20000 ints/s */ 2532 if (bytes > 10000) { 2533 /* this if handles the TSO accounting */ 2534 if (bytes / packets > 8000) 2535 retval = bulk_latency; 2536 else if ((packets < 10) || ((bytes / packets) > 1200)) 2537 retval = bulk_latency; 2538 else if ((packets > 35)) 2539 retval = lowest_latency; 2540 } else if (bytes / packets > 2000) { 2541 retval = bulk_latency; 2542 } else if (packets <= 2 && bytes < 512) { 2543 retval = lowest_latency; 2544 } 2545 break; 2546 case bulk_latency: /* 250 usec aka 4000 ints/s */ 2547 if (bytes > 25000) { 2548 if (packets > 35) 2549 retval = low_latency; 2550 } else if (bytes < 6000) { 2551 retval = low_latency; 2552 } 2553 break; 2554 } 2555 2556 return retval; 2557 } 2558 2559 static void e1000_set_itr(struct e1000_adapter *adapter) 2560 { 2561 u16 current_itr; 2562 u32 new_itr = adapter->itr; 2563 2564 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ 2565 if (adapter->link_speed != SPEED_1000) { 2566 current_itr = 0; 2567 new_itr = 4000; 2568 goto set_itr_now; 2569 } 2570 2571 if (adapter->flags2 & FLAG2_DISABLE_AIM) { 2572 new_itr = 0; 2573 goto set_itr_now; 2574 } 2575 2576 adapter->tx_itr = e1000_update_itr(adapter->tx_itr, 2577 adapter->total_tx_packets, 2578 adapter->total_tx_bytes); 2579 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 2580 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency) 2581 adapter->tx_itr = low_latency; 2582 2583 adapter->rx_itr = e1000_update_itr(adapter->rx_itr, 2584 adapter->total_rx_packets, 2585 adapter->total_rx_bytes); 2586 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 2587 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency) 2588 adapter->rx_itr = low_latency; 2589 2590 current_itr = max(adapter->rx_itr, adapter->tx_itr); 2591 2592 /* counts and packets in update_itr are dependent on these numbers */ 2593 switch (current_itr) { 2594 case lowest_latency: 2595 new_itr = 70000; 2596 break; 2597 case low_latency: 2598 new_itr = 20000; /* aka hwitr = ~200 */ 2599 break; 2600 case bulk_latency: 2601 new_itr = 4000; 2602 break; 2603 default: 2604 break; 2605 } 2606 2607 set_itr_now: 2608 if (new_itr != adapter->itr) { 2609 /* this attempts to bias the interrupt rate towards Bulk 2610 * by adding intermediate steps when interrupt rate is 2611 * increasing 2612 */ 2613 new_itr = new_itr > adapter->itr ? 2614 min(adapter->itr + (new_itr >> 2), new_itr) : new_itr; 2615 adapter->itr = new_itr; 2616 adapter->rx_ring->itr_val = new_itr; 2617 if (adapter->msix_entries) 2618 adapter->rx_ring->set_itr = 1; 2619 else 2620 e1000e_write_itr(adapter, new_itr); 2621 } 2622 } 2623 2624 /** 2625 * e1000e_write_itr - write the ITR value to the appropriate registers 2626 * @adapter: address of board private structure 2627 * @itr: new ITR value to program 2628 * 2629 * e1000e_write_itr determines if the adapter is in MSI-X mode 2630 * and, if so, writes the EITR registers with the ITR value. 2631 * Otherwise, it writes the ITR value into the ITR register. 2632 **/ 2633 void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr) 2634 { 2635 struct e1000_hw *hw = &adapter->hw; 2636 u32 new_itr = itr ? 1000000000 / (itr * 256) : 0; 2637 2638 if (adapter->msix_entries) { 2639 int vector; 2640 2641 for (vector = 0; vector < adapter->num_vectors; vector++) 2642 writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector)); 2643 } else { 2644 ew32(ITR, new_itr); 2645 } 2646 } 2647 2648 /** 2649 * e1000_alloc_queues - Allocate memory for all rings 2650 * @adapter: board private structure to initialize 2651 **/ 2652 static int e1000_alloc_queues(struct e1000_adapter *adapter) 2653 { 2654 int size = sizeof(struct e1000_ring); 2655 2656 adapter->tx_ring = kzalloc(size, GFP_KERNEL); 2657 if (!adapter->tx_ring) 2658 goto err; 2659 adapter->tx_ring->count = adapter->tx_ring_count; 2660 adapter->tx_ring->adapter = adapter; 2661 2662 adapter->rx_ring = kzalloc(size, GFP_KERNEL); 2663 if (!adapter->rx_ring) 2664 goto err; 2665 adapter->rx_ring->count = adapter->rx_ring_count; 2666 adapter->rx_ring->adapter = adapter; 2667 2668 return 0; 2669 err: 2670 e_err("Unable to allocate memory for queues\n"); 2671 kfree(adapter->rx_ring); 2672 kfree(adapter->tx_ring); 2673 return -ENOMEM; 2674 } 2675 2676 /** 2677 * e1000e_poll - NAPI Rx polling callback 2678 * @napi: struct associated with this polling callback 2679 * @weight: number of packets driver is allowed to process this poll 2680 **/ 2681 static int e1000e_poll(struct napi_struct *napi, int weight) 2682 { 2683 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, 2684 napi); 2685 struct e1000_hw *hw = &adapter->hw; 2686 struct net_device *poll_dev = adapter->netdev; 2687 int tx_cleaned = 1, work_done = 0; 2688 2689 adapter = netdev_priv(poll_dev); 2690 2691 if (!adapter->msix_entries || 2692 (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val)) 2693 tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring); 2694 2695 adapter->clean_rx(adapter->rx_ring, &work_done, weight); 2696 2697 if (!tx_cleaned) 2698 work_done = weight; 2699 2700 /* If weight not fully consumed, exit the polling mode */ 2701 if (work_done < weight) { 2702 if (adapter->itr_setting & 3) 2703 e1000_set_itr(adapter); 2704 napi_complete(napi); 2705 if (!test_bit(__E1000_DOWN, &adapter->state)) { 2706 if (adapter->msix_entries) 2707 ew32(IMS, adapter->rx_ring->ims_val); 2708 else 2709 e1000_irq_enable(adapter); 2710 } 2711 } 2712 2713 return work_done; 2714 } 2715 2716 static int e1000_vlan_rx_add_vid(struct net_device *netdev, 2717 __always_unused __be16 proto, u16 vid) 2718 { 2719 struct e1000_adapter *adapter = netdev_priv(netdev); 2720 struct e1000_hw *hw = &adapter->hw; 2721 u32 vfta, index; 2722 2723 /* don't update vlan cookie if already programmed */ 2724 if ((adapter->hw.mng_cookie.status & 2725 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) && 2726 (vid == adapter->mng_vlan_id)) 2727 return 0; 2728 2729 /* add VID to filter table */ 2730 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { 2731 index = (vid >> 5) & 0x7F; 2732 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index); 2733 vfta |= (1 << (vid & 0x1F)); 2734 hw->mac.ops.write_vfta(hw, index, vfta); 2735 } 2736 2737 set_bit(vid, adapter->active_vlans); 2738 2739 return 0; 2740 } 2741 2742 static int e1000_vlan_rx_kill_vid(struct net_device *netdev, 2743 __always_unused __be16 proto, u16 vid) 2744 { 2745 struct e1000_adapter *adapter = netdev_priv(netdev); 2746 struct e1000_hw *hw = &adapter->hw; 2747 u32 vfta, index; 2748 2749 if ((adapter->hw.mng_cookie.status & 2750 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) && 2751 (vid == adapter->mng_vlan_id)) { 2752 /* release control to f/w */ 2753 e1000e_release_hw_control(adapter); 2754 return 0; 2755 } 2756 2757 /* remove VID from filter table */ 2758 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { 2759 index = (vid >> 5) & 0x7F; 2760 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index); 2761 vfta &= ~(1 << (vid & 0x1F)); 2762 hw->mac.ops.write_vfta(hw, index, vfta); 2763 } 2764 2765 clear_bit(vid, adapter->active_vlans); 2766 2767 return 0; 2768 } 2769 2770 /** 2771 * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering 2772 * @adapter: board private structure to initialize 2773 **/ 2774 static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter) 2775 { 2776 struct net_device *netdev = adapter->netdev; 2777 struct e1000_hw *hw = &adapter->hw; 2778 u32 rctl; 2779 2780 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { 2781 /* disable VLAN receive filtering */ 2782 rctl = er32(RCTL); 2783 rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN); 2784 ew32(RCTL, rctl); 2785 2786 if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) { 2787 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), 2788 adapter->mng_vlan_id); 2789 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; 2790 } 2791 } 2792 } 2793 2794 /** 2795 * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering 2796 * @adapter: board private structure to initialize 2797 **/ 2798 static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter) 2799 { 2800 struct e1000_hw *hw = &adapter->hw; 2801 u32 rctl; 2802 2803 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { 2804 /* enable VLAN receive filtering */ 2805 rctl = er32(RCTL); 2806 rctl |= E1000_RCTL_VFE; 2807 rctl &= ~E1000_RCTL_CFIEN; 2808 ew32(RCTL, rctl); 2809 } 2810 } 2811 2812 /** 2813 * e1000e_vlan_strip_enable - helper to disable HW VLAN stripping 2814 * @adapter: board private structure to initialize 2815 **/ 2816 static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter) 2817 { 2818 struct e1000_hw *hw = &adapter->hw; 2819 u32 ctrl; 2820 2821 /* disable VLAN tag insert/strip */ 2822 ctrl = er32(CTRL); 2823 ctrl &= ~E1000_CTRL_VME; 2824 ew32(CTRL, ctrl); 2825 } 2826 2827 /** 2828 * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping 2829 * @adapter: board private structure to initialize 2830 **/ 2831 static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter) 2832 { 2833 struct e1000_hw *hw = &adapter->hw; 2834 u32 ctrl; 2835 2836 /* enable VLAN tag insert/strip */ 2837 ctrl = er32(CTRL); 2838 ctrl |= E1000_CTRL_VME; 2839 ew32(CTRL, ctrl); 2840 } 2841 2842 static void e1000_update_mng_vlan(struct e1000_adapter *adapter) 2843 { 2844 struct net_device *netdev = adapter->netdev; 2845 u16 vid = adapter->hw.mng_cookie.vlan_id; 2846 u16 old_vid = adapter->mng_vlan_id; 2847 2848 if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) { 2849 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid); 2850 adapter->mng_vlan_id = vid; 2851 } 2852 2853 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid)) 2854 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid); 2855 } 2856 2857 static void e1000_restore_vlan(struct e1000_adapter *adapter) 2858 { 2859 u16 vid; 2860 2861 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0); 2862 2863 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) 2864 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid); 2865 } 2866 2867 static void e1000_init_manageability_pt(struct e1000_adapter *adapter) 2868 { 2869 struct e1000_hw *hw = &adapter->hw; 2870 u32 manc, manc2h, mdef, i, j; 2871 2872 if (!(adapter->flags & FLAG_MNG_PT_ENABLED)) 2873 return; 2874 2875 manc = er32(MANC); 2876 2877 /* enable receiving management packets to the host. this will probably 2878 * generate destination unreachable messages from the host OS, but 2879 * the packets will be handled on SMBUS 2880 */ 2881 manc |= E1000_MANC_EN_MNG2HOST; 2882 manc2h = er32(MANC2H); 2883 2884 switch (hw->mac.type) { 2885 default: 2886 manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664); 2887 break; 2888 case e1000_82574: 2889 case e1000_82583: 2890 /* Check if IPMI pass-through decision filter already exists; 2891 * if so, enable it. 2892 */ 2893 for (i = 0, j = 0; i < 8; i++) { 2894 mdef = er32(MDEF(i)); 2895 2896 /* Ignore filters with anything other than IPMI ports */ 2897 if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664)) 2898 continue; 2899 2900 /* Enable this decision filter in MANC2H */ 2901 if (mdef) 2902 manc2h |= (1 << i); 2903 2904 j |= mdef; 2905 } 2906 2907 if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664)) 2908 break; 2909 2910 /* Create new decision filter in an empty filter */ 2911 for (i = 0, j = 0; i < 8; i++) 2912 if (er32(MDEF(i)) == 0) { 2913 ew32(MDEF(i), (E1000_MDEF_PORT_623 | 2914 E1000_MDEF_PORT_664)); 2915 manc2h |= (1 << 1); 2916 j++; 2917 break; 2918 } 2919 2920 if (!j) 2921 e_warn("Unable to create IPMI pass-through filter\n"); 2922 break; 2923 } 2924 2925 ew32(MANC2H, manc2h); 2926 ew32(MANC, manc); 2927 } 2928 2929 /** 2930 * e1000_configure_tx - Configure Transmit Unit after Reset 2931 * @adapter: board private structure 2932 * 2933 * Configure the Tx unit of the MAC after a reset. 2934 **/ 2935 static void e1000_configure_tx(struct e1000_adapter *adapter) 2936 { 2937 struct e1000_hw *hw = &adapter->hw; 2938 struct e1000_ring *tx_ring = adapter->tx_ring; 2939 u64 tdba; 2940 u32 tdlen, tctl, tarc; 2941 2942 /* Setup the HW Tx Head and Tail descriptor pointers */ 2943 tdba = tx_ring->dma; 2944 tdlen = tx_ring->count * sizeof(struct e1000_tx_desc); 2945 ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32))); 2946 ew32(TDBAH(0), (tdba >> 32)); 2947 ew32(TDLEN(0), tdlen); 2948 ew32(TDH(0), 0); 2949 ew32(TDT(0), 0); 2950 tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0); 2951 tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0); 2952 2953 /* Set the Tx Interrupt Delay register */ 2954 ew32(TIDV, adapter->tx_int_delay); 2955 /* Tx irq moderation */ 2956 ew32(TADV, adapter->tx_abs_int_delay); 2957 2958 if (adapter->flags2 & FLAG2_DMA_BURST) { 2959 u32 txdctl = er32(TXDCTL(0)); 2960 2961 txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH | 2962 E1000_TXDCTL_WTHRESH); 2963 /* set up some performance related parameters to encourage the 2964 * hardware to use the bus more efficiently in bursts, depends 2965 * on the tx_int_delay to be enabled, 2966 * wthresh = 1 ==> burst write is disabled to avoid Tx stalls 2967 * hthresh = 1 ==> prefetch when one or more available 2968 * pthresh = 0x1f ==> prefetch if internal cache 31 or less 2969 * BEWARE: this seems to work but should be considered first if 2970 * there are Tx hangs or other Tx related bugs 2971 */ 2972 txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE; 2973 ew32(TXDCTL(0), txdctl); 2974 } 2975 /* erratum work around: set txdctl the same for both queues */ 2976 ew32(TXDCTL(1), er32(TXDCTL(0))); 2977 2978 /* Program the Transmit Control Register */ 2979 tctl = er32(TCTL); 2980 tctl &= ~E1000_TCTL_CT; 2981 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | 2982 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); 2983 2984 if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) { 2985 tarc = er32(TARC(0)); 2986 /* set the speed mode bit, we'll clear it if we're not at 2987 * gigabit link later 2988 */ 2989 #define SPEED_MODE_BIT (1 << 21) 2990 tarc |= SPEED_MODE_BIT; 2991 ew32(TARC(0), tarc); 2992 } 2993 2994 /* errata: program both queues to unweighted RR */ 2995 if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) { 2996 tarc = er32(TARC(0)); 2997 tarc |= 1; 2998 ew32(TARC(0), tarc); 2999 tarc = er32(TARC(1)); 3000 tarc |= 1; 3001 ew32(TARC(1), tarc); 3002 } 3003 3004 /* Setup Transmit Descriptor Settings for eop descriptor */ 3005 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS; 3006 3007 /* only set IDE if we are delaying interrupts using the timers */ 3008 if (adapter->tx_int_delay) 3009 adapter->txd_cmd |= E1000_TXD_CMD_IDE; 3010 3011 /* enable Report Status bit */ 3012 adapter->txd_cmd |= E1000_TXD_CMD_RS; 3013 3014 ew32(TCTL, tctl); 3015 3016 hw->mac.ops.config_collision_dist(hw); 3017 } 3018 3019 /** 3020 * e1000_setup_rctl - configure the receive control registers 3021 * @adapter: Board private structure 3022 **/ 3023 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \ 3024 (((S) & (PAGE_SIZE - 1)) ? 1 : 0)) 3025 static void e1000_setup_rctl(struct e1000_adapter *adapter) 3026 { 3027 struct e1000_hw *hw = &adapter->hw; 3028 u32 rctl, rfctl; 3029 u32 pages = 0; 3030 3031 /* Workaround Si errata on PCHx - configure jumbo frame flow. 3032 * If jumbo frames not set, program related MAC/PHY registers 3033 * to h/w defaults 3034 */ 3035 if (hw->mac.type >= e1000_pch2lan) { 3036 s32 ret_val; 3037 3038 if (adapter->netdev->mtu > ETH_DATA_LEN) 3039 ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true); 3040 else 3041 ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false); 3042 3043 if (ret_val) 3044 e_dbg("failed to enable|disable jumbo frame workaround mode\n"); 3045 } 3046 3047 /* Program MC offset vector base */ 3048 rctl = er32(RCTL); 3049 rctl &= ~(3 << E1000_RCTL_MO_SHIFT); 3050 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | 3051 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | 3052 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT); 3053 3054 /* Do not Store bad packets */ 3055 rctl &= ~E1000_RCTL_SBP; 3056 3057 /* Enable Long Packet receive */ 3058 if (adapter->netdev->mtu <= ETH_DATA_LEN) 3059 rctl &= ~E1000_RCTL_LPE; 3060 else 3061 rctl |= E1000_RCTL_LPE; 3062 3063 /* Some systems expect that the CRC is included in SMBUS traffic. The 3064 * hardware strips the CRC before sending to both SMBUS (BMC) and to 3065 * host memory when this is enabled 3066 */ 3067 if (adapter->flags2 & FLAG2_CRC_STRIPPING) 3068 rctl |= E1000_RCTL_SECRC; 3069 3070 /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */ 3071 if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) { 3072 u16 phy_data; 3073 3074 e1e_rphy(hw, PHY_REG(770, 26), &phy_data); 3075 phy_data &= 0xfff8; 3076 phy_data |= (1 << 2); 3077 e1e_wphy(hw, PHY_REG(770, 26), phy_data); 3078 3079 e1e_rphy(hw, 22, &phy_data); 3080 phy_data &= 0x0fff; 3081 phy_data |= (1 << 14); 3082 e1e_wphy(hw, 0x10, 0x2823); 3083 e1e_wphy(hw, 0x11, 0x0003); 3084 e1e_wphy(hw, 22, phy_data); 3085 } 3086 3087 /* Setup buffer sizes */ 3088 rctl &= ~E1000_RCTL_SZ_4096; 3089 rctl |= E1000_RCTL_BSEX; 3090 switch (adapter->rx_buffer_len) { 3091 case 2048: 3092 default: 3093 rctl |= E1000_RCTL_SZ_2048; 3094 rctl &= ~E1000_RCTL_BSEX; 3095 break; 3096 case 4096: 3097 rctl |= E1000_RCTL_SZ_4096; 3098 break; 3099 case 8192: 3100 rctl |= E1000_RCTL_SZ_8192; 3101 break; 3102 case 16384: 3103 rctl |= E1000_RCTL_SZ_16384; 3104 break; 3105 } 3106 3107 /* Enable Extended Status in all Receive Descriptors */ 3108 rfctl = er32(RFCTL); 3109 rfctl |= E1000_RFCTL_EXTEN; 3110 ew32(RFCTL, rfctl); 3111 3112 /* 82571 and greater support packet-split where the protocol 3113 * header is placed in skb->data and the packet data is 3114 * placed in pages hanging off of skb_shinfo(skb)->nr_frags. 3115 * In the case of a non-split, skb->data is linearly filled, 3116 * followed by the page buffers. Therefore, skb->data is 3117 * sized to hold the largest protocol header. 3118 * 3119 * allocations using alloc_page take too long for regular MTU 3120 * so only enable packet split for jumbo frames 3121 * 3122 * Using pages when the page size is greater than 16k wastes 3123 * a lot of memory, since we allocate 3 pages at all times 3124 * per packet. 3125 */ 3126 pages = PAGE_USE_COUNT(adapter->netdev->mtu); 3127 if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE)) 3128 adapter->rx_ps_pages = pages; 3129 else 3130 adapter->rx_ps_pages = 0; 3131 3132 if (adapter->rx_ps_pages) { 3133 u32 psrctl = 0; 3134 3135 /* Enable Packet split descriptors */ 3136 rctl |= E1000_RCTL_DTYP_PS; 3137 3138 psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT; 3139 3140 switch (adapter->rx_ps_pages) { 3141 case 3: 3142 psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT; 3143 /* fall-through */ 3144 case 2: 3145 psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT; 3146 /* fall-through */ 3147 case 1: 3148 psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT; 3149 break; 3150 } 3151 3152 ew32(PSRCTL, psrctl); 3153 } 3154 3155 /* This is useful for sniffing bad packets. */ 3156 if (adapter->netdev->features & NETIF_F_RXALL) { 3157 /* UPE and MPE will be handled by normal PROMISC logic 3158 * in e1000e_set_rx_mode 3159 */ 3160 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */ 3161 E1000_RCTL_BAM | /* RX All Bcast Pkts */ 3162 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */ 3163 3164 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */ 3165 E1000_RCTL_DPF | /* Allow filtered pause */ 3166 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */ 3167 /* Do not mess with E1000_CTRL_VME, it affects transmit as well, 3168 * and that breaks VLANs. 3169 */ 3170 } 3171 3172 ew32(RCTL, rctl); 3173 /* just started the receive unit, no need to restart */ 3174 adapter->flags &= ~FLAG_RESTART_NOW; 3175 } 3176 3177 /** 3178 * e1000_configure_rx - Configure Receive Unit after Reset 3179 * @adapter: board private structure 3180 * 3181 * Configure the Rx unit of the MAC after a reset. 3182 **/ 3183 static void e1000_configure_rx(struct e1000_adapter *adapter) 3184 { 3185 struct e1000_hw *hw = &adapter->hw; 3186 struct e1000_ring *rx_ring = adapter->rx_ring; 3187 u64 rdba; 3188 u32 rdlen, rctl, rxcsum, ctrl_ext; 3189 3190 if (adapter->rx_ps_pages) { 3191 /* this is a 32 byte descriptor */ 3192 rdlen = rx_ring->count * 3193 sizeof(union e1000_rx_desc_packet_split); 3194 adapter->clean_rx = e1000_clean_rx_irq_ps; 3195 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps; 3196 } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) { 3197 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended); 3198 adapter->clean_rx = e1000_clean_jumbo_rx_irq; 3199 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers; 3200 } else { 3201 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended); 3202 adapter->clean_rx = e1000_clean_rx_irq; 3203 adapter->alloc_rx_buf = e1000_alloc_rx_buffers; 3204 } 3205 3206 /* disable receives while setting up the descriptors */ 3207 rctl = er32(RCTL); 3208 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX)) 3209 ew32(RCTL, rctl & ~E1000_RCTL_EN); 3210 e1e_flush(); 3211 usleep_range(10000, 20000); 3212 3213 if (adapter->flags2 & FLAG2_DMA_BURST) { 3214 /* set the writeback threshold (only takes effect if the RDTR 3215 * is set). set GRAN=1 and write back up to 0x4 worth, and 3216 * enable prefetching of 0x20 Rx descriptors 3217 * granularity = 01 3218 * wthresh = 04, 3219 * hthresh = 04, 3220 * pthresh = 0x20 3221 */ 3222 ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE); 3223 ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE); 3224 3225 /* override the delay timers for enabling bursting, only if 3226 * the value was not set by the user via module options 3227 */ 3228 if (adapter->rx_int_delay == DEFAULT_RDTR) 3229 adapter->rx_int_delay = BURST_RDTR; 3230 if (adapter->rx_abs_int_delay == DEFAULT_RADV) 3231 adapter->rx_abs_int_delay = BURST_RADV; 3232 } 3233 3234 /* set the Receive Delay Timer Register */ 3235 ew32(RDTR, adapter->rx_int_delay); 3236 3237 /* irq moderation */ 3238 ew32(RADV, adapter->rx_abs_int_delay); 3239 if ((adapter->itr_setting != 0) && (adapter->itr != 0)) 3240 e1000e_write_itr(adapter, adapter->itr); 3241 3242 ctrl_ext = er32(CTRL_EXT); 3243 /* Auto-Mask interrupts upon ICR access */ 3244 ctrl_ext |= E1000_CTRL_EXT_IAME; 3245 ew32(IAM, 0xffffffff); 3246 ew32(CTRL_EXT, ctrl_ext); 3247 e1e_flush(); 3248 3249 /* Setup the HW Rx Head and Tail Descriptor Pointers and 3250 * the Base and Length of the Rx Descriptor Ring 3251 */ 3252 rdba = rx_ring->dma; 3253 ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32))); 3254 ew32(RDBAH(0), (rdba >> 32)); 3255 ew32(RDLEN(0), rdlen); 3256 ew32(RDH(0), 0); 3257 ew32(RDT(0), 0); 3258 rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0); 3259 rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0); 3260 3261 /* Enable Receive Checksum Offload for TCP and UDP */ 3262 rxcsum = er32(RXCSUM); 3263 if (adapter->netdev->features & NETIF_F_RXCSUM) 3264 rxcsum |= E1000_RXCSUM_TUOFL; 3265 else 3266 rxcsum &= ~E1000_RXCSUM_TUOFL; 3267 ew32(RXCSUM, rxcsum); 3268 3269 /* With jumbo frames, excessive C-state transition latencies result 3270 * in dropped transactions. 3271 */ 3272 if (adapter->netdev->mtu > ETH_DATA_LEN) { 3273 u32 lat = 3274 ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 - 3275 adapter->max_frame_size) * 8 / 1000; 3276 3277 if (adapter->flags & FLAG_IS_ICH) { 3278 u32 rxdctl = er32(RXDCTL(0)); 3279 3280 ew32(RXDCTL(0), rxdctl | 0x3); 3281 } 3282 3283 pm_qos_update_request(&adapter->netdev->pm_qos_req, lat); 3284 } else { 3285 pm_qos_update_request(&adapter->netdev->pm_qos_req, 3286 PM_QOS_DEFAULT_VALUE); 3287 } 3288 3289 /* Enable Receives */ 3290 ew32(RCTL, rctl); 3291 } 3292 3293 /** 3294 * e1000e_write_mc_addr_list - write multicast addresses to MTA 3295 * @netdev: network interface device structure 3296 * 3297 * Writes multicast address list to the MTA hash table. 3298 * Returns: -ENOMEM on failure 3299 * 0 on no addresses written 3300 * X on writing X addresses to MTA 3301 */ 3302 static int e1000e_write_mc_addr_list(struct net_device *netdev) 3303 { 3304 struct e1000_adapter *adapter = netdev_priv(netdev); 3305 struct e1000_hw *hw = &adapter->hw; 3306 struct netdev_hw_addr *ha; 3307 u8 *mta_list; 3308 int i; 3309 3310 if (netdev_mc_empty(netdev)) { 3311 /* nothing to program, so clear mc list */ 3312 hw->mac.ops.update_mc_addr_list(hw, NULL, 0); 3313 return 0; 3314 } 3315 3316 mta_list = kzalloc(netdev_mc_count(netdev) * ETH_ALEN, GFP_ATOMIC); 3317 if (!mta_list) 3318 return -ENOMEM; 3319 3320 /* update_mc_addr_list expects a packed array of only addresses. */ 3321 i = 0; 3322 netdev_for_each_mc_addr(ha, netdev) 3323 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN); 3324 3325 hw->mac.ops.update_mc_addr_list(hw, mta_list, i); 3326 kfree(mta_list); 3327 3328 return netdev_mc_count(netdev); 3329 } 3330 3331 /** 3332 * e1000e_write_uc_addr_list - write unicast addresses to RAR table 3333 * @netdev: network interface device structure 3334 * 3335 * Writes unicast address list to the RAR table. 3336 * Returns: -ENOMEM on failure/insufficient address space 3337 * 0 on no addresses written 3338 * X on writing X addresses to the RAR table 3339 **/ 3340 static int e1000e_write_uc_addr_list(struct net_device *netdev) 3341 { 3342 struct e1000_adapter *adapter = netdev_priv(netdev); 3343 struct e1000_hw *hw = &adapter->hw; 3344 unsigned int rar_entries; 3345 int count = 0; 3346 3347 rar_entries = hw->mac.ops.rar_get_count(hw); 3348 3349 /* save a rar entry for our hardware address */ 3350 rar_entries--; 3351 3352 /* save a rar entry for the LAA workaround */ 3353 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) 3354 rar_entries--; 3355 3356 /* return ENOMEM indicating insufficient memory for addresses */ 3357 if (netdev_uc_count(netdev) > rar_entries) 3358 return -ENOMEM; 3359 3360 if (!netdev_uc_empty(netdev) && rar_entries) { 3361 struct netdev_hw_addr *ha; 3362 3363 /* write the addresses in reverse order to avoid write 3364 * combining 3365 */ 3366 netdev_for_each_uc_addr(ha, netdev) { 3367 int rval; 3368 3369 if (!rar_entries) 3370 break; 3371 rval = hw->mac.ops.rar_set(hw, ha->addr, rar_entries--); 3372 if (rval < 0) 3373 return -ENOMEM; 3374 count++; 3375 } 3376 } 3377 3378 /* zero out the remaining RAR entries not used above */ 3379 for (; rar_entries > 0; rar_entries--) { 3380 ew32(RAH(rar_entries), 0); 3381 ew32(RAL(rar_entries), 0); 3382 } 3383 e1e_flush(); 3384 3385 return count; 3386 } 3387 3388 /** 3389 * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set 3390 * @netdev: network interface device structure 3391 * 3392 * The ndo_set_rx_mode entry point is called whenever the unicast or multicast 3393 * address list or the network interface flags are updated. This routine is 3394 * responsible for configuring the hardware for proper unicast, multicast, 3395 * promiscuous mode, and all-multi behavior. 3396 **/ 3397 static void e1000e_set_rx_mode(struct net_device *netdev) 3398 { 3399 struct e1000_adapter *adapter = netdev_priv(netdev); 3400 struct e1000_hw *hw = &adapter->hw; 3401 u32 rctl; 3402 3403 if (pm_runtime_suspended(netdev->dev.parent)) 3404 return; 3405 3406 /* Check for Promiscuous and All Multicast modes */ 3407 rctl = er32(RCTL); 3408 3409 /* clear the affected bits */ 3410 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE); 3411 3412 if (netdev->flags & IFF_PROMISC) { 3413 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); 3414 /* Do not hardware filter VLANs in promisc mode */ 3415 e1000e_vlan_filter_disable(adapter); 3416 } else { 3417 int count; 3418 3419 if (netdev->flags & IFF_ALLMULTI) { 3420 rctl |= E1000_RCTL_MPE; 3421 } else { 3422 /* Write addresses to the MTA, if the attempt fails 3423 * then we should just turn on promiscuous mode so 3424 * that we can at least receive multicast traffic 3425 */ 3426 count = e1000e_write_mc_addr_list(netdev); 3427 if (count < 0) 3428 rctl |= E1000_RCTL_MPE; 3429 } 3430 e1000e_vlan_filter_enable(adapter); 3431 /* Write addresses to available RAR registers, if there is not 3432 * sufficient space to store all the addresses then enable 3433 * unicast promiscuous mode 3434 */ 3435 count = e1000e_write_uc_addr_list(netdev); 3436 if (count < 0) 3437 rctl |= E1000_RCTL_UPE; 3438 } 3439 3440 ew32(RCTL, rctl); 3441 3442 if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX) 3443 e1000e_vlan_strip_enable(adapter); 3444 else 3445 e1000e_vlan_strip_disable(adapter); 3446 } 3447 3448 static void e1000e_setup_rss_hash(struct e1000_adapter *adapter) 3449 { 3450 struct e1000_hw *hw = &adapter->hw; 3451 u32 mrqc, rxcsum; 3452 u32 rss_key[10]; 3453 int i; 3454 3455 netdev_rss_key_fill(rss_key, sizeof(rss_key)); 3456 for (i = 0; i < 10; i++) 3457 ew32(RSSRK(i), rss_key[i]); 3458 3459 /* Direct all traffic to queue 0 */ 3460 for (i = 0; i < 32; i++) 3461 ew32(RETA(i), 0); 3462 3463 /* Disable raw packet checksumming so that RSS hash is placed in 3464 * descriptor on writeback. 3465 */ 3466 rxcsum = er32(RXCSUM); 3467 rxcsum |= E1000_RXCSUM_PCSD; 3468 3469 ew32(RXCSUM, rxcsum); 3470 3471 mrqc = (E1000_MRQC_RSS_FIELD_IPV4 | 3472 E1000_MRQC_RSS_FIELD_IPV4_TCP | 3473 E1000_MRQC_RSS_FIELD_IPV6 | 3474 E1000_MRQC_RSS_FIELD_IPV6_TCP | 3475 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX); 3476 3477 ew32(MRQC, mrqc); 3478 } 3479 3480 /** 3481 * e1000e_get_base_timinca - get default SYSTIM time increment attributes 3482 * @adapter: board private structure 3483 * @timinca: pointer to returned time increment attributes 3484 * 3485 * Get attributes for incrementing the System Time Register SYSTIML/H at 3486 * the default base frequency, and set the cyclecounter shift value. 3487 **/ 3488 s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca) 3489 { 3490 struct e1000_hw *hw = &adapter->hw; 3491 u32 incvalue, incperiod, shift; 3492 3493 /* Make sure clock is enabled on I217 before checking the frequency */ 3494 if ((hw->mac.type == e1000_pch_lpt) && 3495 !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) && 3496 !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) { 3497 u32 fextnvm7 = er32(FEXTNVM7); 3498 3499 if (!(fextnvm7 & (1 << 0))) { 3500 ew32(FEXTNVM7, fextnvm7 | (1 << 0)); 3501 e1e_flush(); 3502 } 3503 } 3504 3505 switch (hw->mac.type) { 3506 case e1000_pch2lan: 3507 case e1000_pch_lpt: 3508 /* On I217, the clock frequency is 25MHz or 96MHz as 3509 * indicated by the System Clock Frequency Indication 3510 */ 3511 if ((hw->mac.type != e1000_pch_lpt) || 3512 (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI)) { 3513 /* Stable 96MHz frequency */ 3514 incperiod = INCPERIOD_96MHz; 3515 incvalue = INCVALUE_96MHz; 3516 shift = INCVALUE_SHIFT_96MHz; 3517 adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHz; 3518 break; 3519 } 3520 /* fall-through */ 3521 case e1000_82574: 3522 case e1000_82583: 3523 /* Stable 25MHz frequency */ 3524 incperiod = INCPERIOD_25MHz; 3525 incvalue = INCVALUE_25MHz; 3526 shift = INCVALUE_SHIFT_25MHz; 3527 adapter->cc.shift = shift; 3528 break; 3529 default: 3530 return -EINVAL; 3531 } 3532 3533 *timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) | 3534 ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK)); 3535 3536 return 0; 3537 } 3538 3539 /** 3540 * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable 3541 * @adapter: board private structure 3542 * 3543 * Outgoing time stamping can be enabled and disabled. Play nice and 3544 * disable it when requested, although it shouldn't cause any overhead 3545 * when no packet needs it. At most one packet in the queue may be 3546 * marked for time stamping, otherwise it would be impossible to tell 3547 * for sure to which packet the hardware time stamp belongs. 3548 * 3549 * Incoming time stamping has to be configured via the hardware filters. 3550 * Not all combinations are supported, in particular event type has to be 3551 * specified. Matching the kind of event packet is not supported, with the 3552 * exception of "all V2 events regardless of level 2 or 4". 3553 **/ 3554 static int e1000e_config_hwtstamp(struct e1000_adapter *adapter, 3555 struct hwtstamp_config *config) 3556 { 3557 struct e1000_hw *hw = &adapter->hw; 3558 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED; 3559 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED; 3560 u32 rxmtrl = 0; 3561 u16 rxudp = 0; 3562 bool is_l4 = false; 3563 bool is_l2 = false; 3564 u32 regval; 3565 s32 ret_val; 3566 3567 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP)) 3568 return -EINVAL; 3569 3570 /* flags reserved for future extensions - must be zero */ 3571 if (config->flags) 3572 return -EINVAL; 3573 3574 switch (config->tx_type) { 3575 case HWTSTAMP_TX_OFF: 3576 tsync_tx_ctl = 0; 3577 break; 3578 case HWTSTAMP_TX_ON: 3579 break; 3580 default: 3581 return -ERANGE; 3582 } 3583 3584 switch (config->rx_filter) { 3585 case HWTSTAMP_FILTER_NONE: 3586 tsync_rx_ctl = 0; 3587 break; 3588 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 3589 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1; 3590 rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE; 3591 is_l4 = true; 3592 break; 3593 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 3594 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1; 3595 rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE; 3596 is_l4 = true; 3597 break; 3598 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 3599 /* Also time stamps V2 L2 Path Delay Request/Response */ 3600 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2; 3601 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE; 3602 is_l2 = true; 3603 break; 3604 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 3605 /* Also time stamps V2 L2 Path Delay Request/Response. */ 3606 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2; 3607 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE; 3608 is_l2 = true; 3609 break; 3610 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 3611 /* Hardware cannot filter just V2 L4 Sync messages; 3612 * fall-through to V2 (both L2 and L4) Sync. 3613 */ 3614 case HWTSTAMP_FILTER_PTP_V2_SYNC: 3615 /* Also time stamps V2 Path Delay Request/Response. */ 3616 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2; 3617 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE; 3618 is_l2 = true; 3619 is_l4 = true; 3620 break; 3621 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 3622 /* Hardware cannot filter just V2 L4 Delay Request messages; 3623 * fall-through to V2 (both L2 and L4) Delay Request. 3624 */ 3625 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 3626 /* Also time stamps V2 Path Delay Request/Response. */ 3627 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2; 3628 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE; 3629 is_l2 = true; 3630 is_l4 = true; 3631 break; 3632 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 3633 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 3634 /* Hardware cannot filter just V2 L4 or L2 Event messages; 3635 * fall-through to all V2 (both L2 and L4) Events. 3636 */ 3637 case HWTSTAMP_FILTER_PTP_V2_EVENT: 3638 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2; 3639 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; 3640 is_l2 = true; 3641 is_l4 = true; 3642 break; 3643 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 3644 /* For V1, the hardware can only filter Sync messages or 3645 * Delay Request messages but not both so fall-through to 3646 * time stamp all packets. 3647 */ 3648 case HWTSTAMP_FILTER_ALL: 3649 is_l2 = true; 3650 is_l4 = true; 3651 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL; 3652 config->rx_filter = HWTSTAMP_FILTER_ALL; 3653 break; 3654 default: 3655 return -ERANGE; 3656 } 3657 3658 adapter->hwtstamp_config = *config; 3659 3660 /* enable/disable Tx h/w time stamping */ 3661 regval = er32(TSYNCTXCTL); 3662 regval &= ~E1000_TSYNCTXCTL_ENABLED; 3663 regval |= tsync_tx_ctl; 3664 ew32(TSYNCTXCTL, regval); 3665 if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) != 3666 (regval & E1000_TSYNCTXCTL_ENABLED)) { 3667 e_err("Timesync Tx Control register not set as expected\n"); 3668 return -EAGAIN; 3669 } 3670 3671 /* enable/disable Rx h/w time stamping */ 3672 regval = er32(TSYNCRXCTL); 3673 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK); 3674 regval |= tsync_rx_ctl; 3675 ew32(TSYNCRXCTL, regval); 3676 if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED | 3677 E1000_TSYNCRXCTL_TYPE_MASK)) != 3678 (regval & (E1000_TSYNCRXCTL_ENABLED | 3679 E1000_TSYNCRXCTL_TYPE_MASK))) { 3680 e_err("Timesync Rx Control register not set as expected\n"); 3681 return -EAGAIN; 3682 } 3683 3684 /* L2: define ethertype filter for time stamped packets */ 3685 if (is_l2) 3686 rxmtrl |= ETH_P_1588; 3687 3688 /* define which PTP packets get time stamped */ 3689 ew32(RXMTRL, rxmtrl); 3690 3691 /* Filter by destination port */ 3692 if (is_l4) { 3693 rxudp = PTP_EV_PORT; 3694 cpu_to_be16s(&rxudp); 3695 } 3696 ew32(RXUDP, rxudp); 3697 3698 e1e_flush(); 3699 3700 /* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */ 3701 er32(RXSTMPH); 3702 er32(TXSTMPH); 3703 3704 /* Get and set the System Time Register SYSTIM base frequency */ 3705 ret_val = e1000e_get_base_timinca(adapter, ®val); 3706 if (ret_val) 3707 return ret_val; 3708 ew32(TIMINCA, regval); 3709 3710 /* reset the ns time counter */ 3711 timecounter_init(&adapter->tc, &adapter->cc, 3712 ktime_to_ns(ktime_get_real())); 3713 3714 return 0; 3715 } 3716 3717 /** 3718 * e1000_configure - configure the hardware for Rx and Tx 3719 * @adapter: private board structure 3720 **/ 3721 static void e1000_configure(struct e1000_adapter *adapter) 3722 { 3723 struct e1000_ring *rx_ring = adapter->rx_ring; 3724 3725 e1000e_set_rx_mode(adapter->netdev); 3726 3727 e1000_restore_vlan(adapter); 3728 e1000_init_manageability_pt(adapter); 3729 3730 e1000_configure_tx(adapter); 3731 3732 if (adapter->netdev->features & NETIF_F_RXHASH) 3733 e1000e_setup_rss_hash(adapter); 3734 e1000_setup_rctl(adapter); 3735 e1000_configure_rx(adapter); 3736 adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL); 3737 } 3738 3739 /** 3740 * e1000e_power_up_phy - restore link in case the phy was powered down 3741 * @adapter: address of board private structure 3742 * 3743 * The phy may be powered down to save power and turn off link when the 3744 * driver is unloaded and wake on lan is not enabled (among others) 3745 * *** this routine MUST be followed by a call to e1000e_reset *** 3746 **/ 3747 void e1000e_power_up_phy(struct e1000_adapter *adapter) 3748 { 3749 if (adapter->hw.phy.ops.power_up) 3750 adapter->hw.phy.ops.power_up(&adapter->hw); 3751 3752 adapter->hw.mac.ops.setup_link(&adapter->hw); 3753 } 3754 3755 /** 3756 * e1000_power_down_phy - Power down the PHY 3757 * 3758 * Power down the PHY so no link is implied when interface is down. 3759 * The PHY cannot be powered down if management or WoL is active. 3760 */ 3761 static void e1000_power_down_phy(struct e1000_adapter *adapter) 3762 { 3763 if (adapter->hw.phy.ops.power_down) 3764 adapter->hw.phy.ops.power_down(&adapter->hw); 3765 } 3766 3767 /** 3768 * e1000e_reset - bring the hardware into a known good state 3769 * 3770 * This function boots the hardware and enables some settings that 3771 * require a configuration cycle of the hardware - those cannot be 3772 * set/changed during runtime. After reset the device needs to be 3773 * properly configured for Rx, Tx etc. 3774 */ 3775 void e1000e_reset(struct e1000_adapter *adapter) 3776 { 3777 struct e1000_mac_info *mac = &adapter->hw.mac; 3778 struct e1000_fc_info *fc = &adapter->hw.fc; 3779 struct e1000_hw *hw = &adapter->hw; 3780 u32 tx_space, min_tx_space, min_rx_space; 3781 u32 pba = adapter->pba; 3782 u16 hwm; 3783 3784 /* reset Packet Buffer Allocation to default */ 3785 ew32(PBA, pba); 3786 3787 if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) { 3788 /* To maintain wire speed transmits, the Tx FIFO should be 3789 * large enough to accommodate two full transmit packets, 3790 * rounded up to the next 1KB and expressed in KB. Likewise, 3791 * the Rx FIFO should be large enough to accommodate at least 3792 * one full receive packet and is similarly rounded up and 3793 * expressed in KB. 3794 */ 3795 pba = er32(PBA); 3796 /* upper 16 bits has Tx packet buffer allocation size in KB */ 3797 tx_space = pba >> 16; 3798 /* lower 16 bits has Rx packet buffer allocation size in KB */ 3799 pba &= 0xffff; 3800 /* the Tx fifo also stores 16 bytes of information about the Tx 3801 * but don't include ethernet FCS because hardware appends it 3802 */ 3803 min_tx_space = (adapter->max_frame_size + 3804 sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2; 3805 min_tx_space = ALIGN(min_tx_space, 1024); 3806 min_tx_space >>= 10; 3807 /* software strips receive CRC, so leave room for it */ 3808 min_rx_space = adapter->max_frame_size; 3809 min_rx_space = ALIGN(min_rx_space, 1024); 3810 min_rx_space >>= 10; 3811 3812 /* If current Tx allocation is less than the min Tx FIFO size, 3813 * and the min Tx FIFO size is less than the current Rx FIFO 3814 * allocation, take space away from current Rx allocation 3815 */ 3816 if ((tx_space < min_tx_space) && 3817 ((min_tx_space - tx_space) < pba)) { 3818 pba -= min_tx_space - tx_space; 3819 3820 /* if short on Rx space, Rx wins and must trump Tx 3821 * adjustment 3822 */ 3823 if (pba < min_rx_space) 3824 pba = min_rx_space; 3825 } 3826 3827 ew32(PBA, pba); 3828 } 3829 3830 /* flow control settings 3831 * 3832 * The high water mark must be low enough to fit one full frame 3833 * (or the size used for early receive) above it in the Rx FIFO. 3834 * Set it to the lower of: 3835 * - 90% of the Rx FIFO size, and 3836 * - the full Rx FIFO size minus one full frame 3837 */ 3838 if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME) 3839 fc->pause_time = 0xFFFF; 3840 else 3841 fc->pause_time = E1000_FC_PAUSE_TIME; 3842 fc->send_xon = true; 3843 fc->current_mode = fc->requested_mode; 3844 3845 switch (hw->mac.type) { 3846 case e1000_ich9lan: 3847 case e1000_ich10lan: 3848 if (adapter->netdev->mtu > ETH_DATA_LEN) { 3849 pba = 14; 3850 ew32(PBA, pba); 3851 fc->high_water = 0x2800; 3852 fc->low_water = fc->high_water - 8; 3853 break; 3854 } 3855 /* fall-through */ 3856 default: 3857 hwm = min(((pba << 10) * 9 / 10), 3858 ((pba << 10) - adapter->max_frame_size)); 3859 3860 fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */ 3861 fc->low_water = fc->high_water - 8; 3862 break; 3863 case e1000_pchlan: 3864 /* Workaround PCH LOM adapter hangs with certain network 3865 * loads. If hangs persist, try disabling Tx flow control. 3866 */ 3867 if (adapter->netdev->mtu > ETH_DATA_LEN) { 3868 fc->high_water = 0x3500; 3869 fc->low_water = 0x1500; 3870 } else { 3871 fc->high_water = 0x5000; 3872 fc->low_water = 0x3000; 3873 } 3874 fc->refresh_time = 0x1000; 3875 break; 3876 case e1000_pch2lan: 3877 case e1000_pch_lpt: 3878 fc->refresh_time = 0x0400; 3879 3880 if (adapter->netdev->mtu <= ETH_DATA_LEN) { 3881 fc->high_water = 0x05C20; 3882 fc->low_water = 0x05048; 3883 fc->pause_time = 0x0650; 3884 break; 3885 } 3886 3887 pba = 14; 3888 ew32(PBA, pba); 3889 fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH; 3890 fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL; 3891 break; 3892 } 3893 3894 /* Alignment of Tx data is on an arbitrary byte boundary with the 3895 * maximum size per Tx descriptor limited only to the transmit 3896 * allocation of the packet buffer minus 96 bytes with an upper 3897 * limit of 24KB due to receive synchronization limitations. 3898 */ 3899 adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96, 3900 24 << 10); 3901 3902 /* Disable Adaptive Interrupt Moderation if 2 full packets cannot 3903 * fit in receive buffer. 3904 */ 3905 if (adapter->itr_setting & 0x3) { 3906 if ((adapter->max_frame_size * 2) > (pba << 10)) { 3907 if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) { 3908 dev_info(&adapter->pdev->dev, 3909 "Interrupt Throttle Rate off\n"); 3910 adapter->flags2 |= FLAG2_DISABLE_AIM; 3911 e1000e_write_itr(adapter, 0); 3912 } 3913 } else if (adapter->flags2 & FLAG2_DISABLE_AIM) { 3914 dev_info(&adapter->pdev->dev, 3915 "Interrupt Throttle Rate on\n"); 3916 adapter->flags2 &= ~FLAG2_DISABLE_AIM; 3917 adapter->itr = 20000; 3918 e1000e_write_itr(adapter, adapter->itr); 3919 } 3920 } 3921 3922 /* Allow time for pending master requests to run */ 3923 mac->ops.reset_hw(hw); 3924 3925 /* For parts with AMT enabled, let the firmware know 3926 * that the network interface is in control 3927 */ 3928 if (adapter->flags & FLAG_HAS_AMT) 3929 e1000e_get_hw_control(adapter); 3930 3931 ew32(WUC, 0); 3932 3933 if (mac->ops.init_hw(hw)) 3934 e_err("Hardware Error\n"); 3935 3936 e1000_update_mng_vlan(adapter); 3937 3938 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ 3939 ew32(VET, ETH_P_8021Q); 3940 3941 e1000e_reset_adaptive(hw); 3942 3943 /* initialize systim and reset the ns time counter */ 3944 e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config); 3945 3946 /* Set EEE advertisement as appropriate */ 3947 if (adapter->flags2 & FLAG2_HAS_EEE) { 3948 s32 ret_val; 3949 u16 adv_addr; 3950 3951 switch (hw->phy.type) { 3952 case e1000_phy_82579: 3953 adv_addr = I82579_EEE_ADVERTISEMENT; 3954 break; 3955 case e1000_phy_i217: 3956 adv_addr = I217_EEE_ADVERTISEMENT; 3957 break; 3958 default: 3959 dev_err(&adapter->pdev->dev, 3960 "Invalid PHY type setting EEE advertisement\n"); 3961 return; 3962 } 3963 3964 ret_val = hw->phy.ops.acquire(hw); 3965 if (ret_val) { 3966 dev_err(&adapter->pdev->dev, 3967 "EEE advertisement - unable to acquire PHY\n"); 3968 return; 3969 } 3970 3971 e1000_write_emi_reg_locked(hw, adv_addr, 3972 hw->dev_spec.ich8lan.eee_disable ? 3973 0 : adapter->eee_advert); 3974 3975 hw->phy.ops.release(hw); 3976 } 3977 3978 if (!netif_running(adapter->netdev) && 3979 !test_bit(__E1000_TESTING, &adapter->state)) 3980 e1000_power_down_phy(adapter); 3981 3982 e1000_get_phy_info(hw); 3983 3984 if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) && 3985 !(adapter->flags & FLAG_SMART_POWER_DOWN)) { 3986 u16 phy_data = 0; 3987 /* speed up time to link by disabling smart power down, ignore 3988 * the return value of this function because there is nothing 3989 * different we would do if it failed 3990 */ 3991 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); 3992 phy_data &= ~IGP02E1000_PM_SPD; 3993 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); 3994 } 3995 } 3996 3997 int e1000e_up(struct e1000_adapter *adapter) 3998 { 3999 struct e1000_hw *hw = &adapter->hw; 4000 4001 /* hardware has been reset, we need to reload some things */ 4002 e1000_configure(adapter); 4003 4004 clear_bit(__E1000_DOWN, &adapter->state); 4005 4006 if (adapter->msix_entries) 4007 e1000_configure_msix(adapter); 4008 e1000_irq_enable(adapter); 4009 4010 netif_start_queue(adapter->netdev); 4011 4012 /* fire a link change interrupt to start the watchdog */ 4013 if (adapter->msix_entries) 4014 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER); 4015 else 4016 ew32(ICS, E1000_ICS_LSC); 4017 4018 return 0; 4019 } 4020 4021 static void e1000e_flush_descriptors(struct e1000_adapter *adapter) 4022 { 4023 struct e1000_hw *hw = &adapter->hw; 4024 4025 if (!(adapter->flags2 & FLAG2_DMA_BURST)) 4026 return; 4027 4028 /* flush pending descriptor writebacks to memory */ 4029 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD); 4030 ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD); 4031 4032 /* execute the writes immediately */ 4033 e1e_flush(); 4034 4035 /* due to rare timing issues, write to TIDV/RDTR again to ensure the 4036 * write is successful 4037 */ 4038 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD); 4039 ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD); 4040 4041 /* execute the writes immediately */ 4042 e1e_flush(); 4043 } 4044 4045 static void e1000e_update_stats(struct e1000_adapter *adapter); 4046 4047 /** 4048 * e1000e_down - quiesce the device and optionally reset the hardware 4049 * @adapter: board private structure 4050 * @reset: boolean flag to reset the hardware or not 4051 */ 4052 void e1000e_down(struct e1000_adapter *adapter, bool reset) 4053 { 4054 struct net_device *netdev = adapter->netdev; 4055 struct e1000_hw *hw = &adapter->hw; 4056 u32 tctl, rctl; 4057 4058 /* signal that we're down so the interrupt handler does not 4059 * reschedule our watchdog timer 4060 */ 4061 set_bit(__E1000_DOWN, &adapter->state); 4062 4063 /* disable receives in the hardware */ 4064 rctl = er32(RCTL); 4065 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX)) 4066 ew32(RCTL, rctl & ~E1000_RCTL_EN); 4067 /* flush and sleep below */ 4068 4069 netif_stop_queue(netdev); 4070 4071 /* disable transmits in the hardware */ 4072 tctl = er32(TCTL); 4073 tctl &= ~E1000_TCTL_EN; 4074 ew32(TCTL, tctl); 4075 4076 /* flush both disables and wait for them to finish */ 4077 e1e_flush(); 4078 usleep_range(10000, 20000); 4079 4080 e1000_irq_disable(adapter); 4081 4082 napi_synchronize(&adapter->napi); 4083 4084 del_timer_sync(&adapter->watchdog_timer); 4085 del_timer_sync(&adapter->phy_info_timer); 4086 4087 netif_carrier_off(netdev); 4088 4089 spin_lock(&adapter->stats64_lock); 4090 e1000e_update_stats(adapter); 4091 spin_unlock(&adapter->stats64_lock); 4092 4093 e1000e_flush_descriptors(adapter); 4094 e1000_clean_tx_ring(adapter->tx_ring); 4095 e1000_clean_rx_ring(adapter->rx_ring); 4096 4097 adapter->link_speed = 0; 4098 adapter->link_duplex = 0; 4099 4100 /* Disable Si errata workaround on PCHx for jumbo frame flow */ 4101 if ((hw->mac.type >= e1000_pch2lan) && 4102 (adapter->netdev->mtu > ETH_DATA_LEN) && 4103 e1000_lv_jumbo_workaround_ich8lan(hw, false)) 4104 e_dbg("failed to disable jumbo frame workaround mode\n"); 4105 4106 if (reset && !pci_channel_offline(adapter->pdev)) 4107 e1000e_reset(adapter); 4108 } 4109 4110 void e1000e_reinit_locked(struct e1000_adapter *adapter) 4111 { 4112 might_sleep(); 4113 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 4114 usleep_range(1000, 2000); 4115 e1000e_down(adapter, true); 4116 e1000e_up(adapter); 4117 clear_bit(__E1000_RESETTING, &adapter->state); 4118 } 4119 4120 /** 4121 * e1000e_cyclecounter_read - read raw cycle counter (used by time counter) 4122 * @cc: cyclecounter structure 4123 **/ 4124 static cycle_t e1000e_cyclecounter_read(const struct cyclecounter *cc) 4125 { 4126 struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter, 4127 cc); 4128 struct e1000_hw *hw = &adapter->hw; 4129 cycle_t systim, systim_next; 4130 4131 /* latch SYSTIMH on read of SYSTIML */ 4132 systim = (cycle_t)er32(SYSTIML); 4133 systim |= (cycle_t)er32(SYSTIMH) << 32; 4134 4135 if ((hw->mac.type == e1000_82574) || (hw->mac.type == e1000_82583)) { 4136 u64 incvalue, time_delta, rem, temp; 4137 int i; 4138 4139 /* errata for 82574/82583 possible bad bits read from SYSTIMH/L 4140 * check to see that the time is incrementing at a reasonable 4141 * rate and is a multiple of incvalue 4142 */ 4143 incvalue = er32(TIMINCA) & E1000_TIMINCA_INCVALUE_MASK; 4144 for (i = 0; i < E1000_MAX_82574_SYSTIM_REREADS; i++) { 4145 /* latch SYSTIMH on read of SYSTIML */ 4146 systim_next = (cycle_t)er32(SYSTIML); 4147 systim_next |= (cycle_t)er32(SYSTIMH) << 32; 4148 4149 time_delta = systim_next - systim; 4150 temp = time_delta; 4151 rem = do_div(temp, incvalue); 4152 4153 systim = systim_next; 4154 4155 if ((time_delta < E1000_82574_SYSTIM_EPSILON) && 4156 (rem == 0)) 4157 break; 4158 } 4159 } 4160 return systim; 4161 } 4162 4163 /** 4164 * e1000_sw_init - Initialize general software structures (struct e1000_adapter) 4165 * @adapter: board private structure to initialize 4166 * 4167 * e1000_sw_init initializes the Adapter private data structure. 4168 * Fields are initialized based on PCI device information and 4169 * OS network device settings (MTU size). 4170 **/ 4171 static int e1000_sw_init(struct e1000_adapter *adapter) 4172 { 4173 struct net_device *netdev = adapter->netdev; 4174 4175 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN; 4176 adapter->rx_ps_bsize0 = 128; 4177 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN; 4178 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN; 4179 adapter->tx_ring_count = E1000_DEFAULT_TXD; 4180 adapter->rx_ring_count = E1000_DEFAULT_RXD; 4181 4182 spin_lock_init(&adapter->stats64_lock); 4183 4184 e1000e_set_interrupt_capability(adapter); 4185 4186 if (e1000_alloc_queues(adapter)) 4187 return -ENOMEM; 4188 4189 /* Setup hardware time stamping cyclecounter */ 4190 if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) { 4191 adapter->cc.read = e1000e_cyclecounter_read; 4192 adapter->cc.mask = CLOCKSOURCE_MASK(64); 4193 adapter->cc.mult = 1; 4194 /* cc.shift set in e1000e_get_base_tininca() */ 4195 4196 spin_lock_init(&adapter->systim_lock); 4197 INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work); 4198 } 4199 4200 /* Explicitly disable IRQ since the NIC can be in any state. */ 4201 e1000_irq_disable(adapter); 4202 4203 set_bit(__E1000_DOWN, &adapter->state); 4204 return 0; 4205 } 4206 4207 /** 4208 * e1000_intr_msi_test - Interrupt Handler 4209 * @irq: interrupt number 4210 * @data: pointer to a network interface device structure 4211 **/ 4212 static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data) 4213 { 4214 struct net_device *netdev = data; 4215 struct e1000_adapter *adapter = netdev_priv(netdev); 4216 struct e1000_hw *hw = &adapter->hw; 4217 u32 icr = er32(ICR); 4218 4219 e_dbg("icr is %08X\n", icr); 4220 if (icr & E1000_ICR_RXSEQ) { 4221 adapter->flags &= ~FLAG_MSI_TEST_FAILED; 4222 /* Force memory writes to complete before acknowledging the 4223 * interrupt is handled. 4224 */ 4225 wmb(); 4226 } 4227 4228 return IRQ_HANDLED; 4229 } 4230 4231 /** 4232 * e1000_test_msi_interrupt - Returns 0 for successful test 4233 * @adapter: board private struct 4234 * 4235 * code flow taken from tg3.c 4236 **/ 4237 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter) 4238 { 4239 struct net_device *netdev = adapter->netdev; 4240 struct e1000_hw *hw = &adapter->hw; 4241 int err; 4242 4243 /* poll_enable hasn't been called yet, so don't need disable */ 4244 /* clear any pending events */ 4245 er32(ICR); 4246 4247 /* free the real vector and request a test handler */ 4248 e1000_free_irq(adapter); 4249 e1000e_reset_interrupt_capability(adapter); 4250 4251 /* Assume that the test fails, if it succeeds then the test 4252 * MSI irq handler will unset this flag 4253 */ 4254 adapter->flags |= FLAG_MSI_TEST_FAILED; 4255 4256 err = pci_enable_msi(adapter->pdev); 4257 if (err) 4258 goto msi_test_failed; 4259 4260 err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0, 4261 netdev->name, netdev); 4262 if (err) { 4263 pci_disable_msi(adapter->pdev); 4264 goto msi_test_failed; 4265 } 4266 4267 /* Force memory writes to complete before enabling and firing an 4268 * interrupt. 4269 */ 4270 wmb(); 4271 4272 e1000_irq_enable(adapter); 4273 4274 /* fire an unusual interrupt on the test handler */ 4275 ew32(ICS, E1000_ICS_RXSEQ); 4276 e1e_flush(); 4277 msleep(100); 4278 4279 e1000_irq_disable(adapter); 4280 4281 rmb(); /* read flags after interrupt has been fired */ 4282 4283 if (adapter->flags & FLAG_MSI_TEST_FAILED) { 4284 adapter->int_mode = E1000E_INT_MODE_LEGACY; 4285 e_info("MSI interrupt test failed, using legacy interrupt.\n"); 4286 } else { 4287 e_dbg("MSI interrupt test succeeded!\n"); 4288 } 4289 4290 free_irq(adapter->pdev->irq, netdev); 4291 pci_disable_msi(adapter->pdev); 4292 4293 msi_test_failed: 4294 e1000e_set_interrupt_capability(adapter); 4295 return e1000_request_irq(adapter); 4296 } 4297 4298 /** 4299 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored 4300 * @adapter: board private struct 4301 * 4302 * code flow taken from tg3.c, called with e1000 interrupts disabled. 4303 **/ 4304 static int e1000_test_msi(struct e1000_adapter *adapter) 4305 { 4306 int err; 4307 u16 pci_cmd; 4308 4309 if (!(adapter->flags & FLAG_MSI_ENABLED)) 4310 return 0; 4311 4312 /* disable SERR in case the MSI write causes a master abort */ 4313 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd); 4314 if (pci_cmd & PCI_COMMAND_SERR) 4315 pci_write_config_word(adapter->pdev, PCI_COMMAND, 4316 pci_cmd & ~PCI_COMMAND_SERR); 4317 4318 err = e1000_test_msi_interrupt(adapter); 4319 4320 /* re-enable SERR */ 4321 if (pci_cmd & PCI_COMMAND_SERR) { 4322 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd); 4323 pci_cmd |= PCI_COMMAND_SERR; 4324 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd); 4325 } 4326 4327 return err; 4328 } 4329 4330 /** 4331 * e1000_open - Called when a network interface is made active 4332 * @netdev: network interface device structure 4333 * 4334 * Returns 0 on success, negative value on failure 4335 * 4336 * The open entry point is called when a network interface is made 4337 * active by the system (IFF_UP). At this point all resources needed 4338 * for transmit and receive operations are allocated, the interrupt 4339 * handler is registered with the OS, the watchdog timer is started, 4340 * and the stack is notified that the interface is ready. 4341 **/ 4342 static int e1000_open(struct net_device *netdev) 4343 { 4344 struct e1000_adapter *adapter = netdev_priv(netdev); 4345 struct e1000_hw *hw = &adapter->hw; 4346 struct pci_dev *pdev = adapter->pdev; 4347 int err; 4348 4349 /* disallow open during test */ 4350 if (test_bit(__E1000_TESTING, &adapter->state)) 4351 return -EBUSY; 4352 4353 pm_runtime_get_sync(&pdev->dev); 4354 4355 netif_carrier_off(netdev); 4356 4357 /* allocate transmit descriptors */ 4358 err = e1000e_setup_tx_resources(adapter->tx_ring); 4359 if (err) 4360 goto err_setup_tx; 4361 4362 /* allocate receive descriptors */ 4363 err = e1000e_setup_rx_resources(adapter->rx_ring); 4364 if (err) 4365 goto err_setup_rx; 4366 4367 /* If AMT is enabled, let the firmware know that the network 4368 * interface is now open and reset the part to a known state. 4369 */ 4370 if (adapter->flags & FLAG_HAS_AMT) { 4371 e1000e_get_hw_control(adapter); 4372 e1000e_reset(adapter); 4373 } 4374 4375 e1000e_power_up_phy(adapter); 4376 4377 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; 4378 if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)) 4379 e1000_update_mng_vlan(adapter); 4380 4381 /* DMA latency requirement to workaround jumbo issue */ 4382 pm_qos_add_request(&adapter->netdev->pm_qos_req, PM_QOS_CPU_DMA_LATENCY, 4383 PM_QOS_DEFAULT_VALUE); 4384 4385 /* before we allocate an interrupt, we must be ready to handle it. 4386 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt 4387 * as soon as we call pci_request_irq, so we have to setup our 4388 * clean_rx handler before we do so. 4389 */ 4390 e1000_configure(adapter); 4391 4392 err = e1000_request_irq(adapter); 4393 if (err) 4394 goto err_req_irq; 4395 4396 /* Work around PCIe errata with MSI interrupts causing some chipsets to 4397 * ignore e1000e MSI messages, which means we need to test our MSI 4398 * interrupt now 4399 */ 4400 if (adapter->int_mode != E1000E_INT_MODE_LEGACY) { 4401 err = e1000_test_msi(adapter); 4402 if (err) { 4403 e_err("Interrupt allocation failed\n"); 4404 goto err_req_irq; 4405 } 4406 } 4407 4408 /* From here on the code is the same as e1000e_up() */ 4409 clear_bit(__E1000_DOWN, &adapter->state); 4410 4411 napi_enable(&adapter->napi); 4412 4413 e1000_irq_enable(adapter); 4414 4415 adapter->tx_hang_recheck = false; 4416 netif_start_queue(netdev); 4417 4418 hw->mac.get_link_status = true; 4419 pm_runtime_put(&pdev->dev); 4420 4421 /* fire a link status change interrupt to start the watchdog */ 4422 if (adapter->msix_entries) 4423 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER); 4424 else 4425 ew32(ICS, E1000_ICS_LSC); 4426 4427 return 0; 4428 4429 err_req_irq: 4430 e1000e_release_hw_control(adapter); 4431 e1000_power_down_phy(adapter); 4432 e1000e_free_rx_resources(adapter->rx_ring); 4433 err_setup_rx: 4434 e1000e_free_tx_resources(adapter->tx_ring); 4435 err_setup_tx: 4436 e1000e_reset(adapter); 4437 pm_runtime_put_sync(&pdev->dev); 4438 4439 return err; 4440 } 4441 4442 /** 4443 * e1000_close - Disables a network interface 4444 * @netdev: network interface device structure 4445 * 4446 * Returns 0, this is not allowed to fail 4447 * 4448 * The close entry point is called when an interface is de-activated 4449 * by the OS. The hardware is still under the drivers control, but 4450 * needs to be disabled. A global MAC reset is issued to stop the 4451 * hardware, and all transmit and receive resources are freed. 4452 **/ 4453 static int e1000_close(struct net_device *netdev) 4454 { 4455 struct e1000_adapter *adapter = netdev_priv(netdev); 4456 struct pci_dev *pdev = adapter->pdev; 4457 int count = E1000_CHECK_RESET_COUNT; 4458 4459 while (test_bit(__E1000_RESETTING, &adapter->state) && count--) 4460 usleep_range(10000, 20000); 4461 4462 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state)); 4463 4464 pm_runtime_get_sync(&pdev->dev); 4465 4466 if (!test_bit(__E1000_DOWN, &adapter->state)) { 4467 e1000e_down(adapter, true); 4468 e1000_free_irq(adapter); 4469 4470 /* Link status message must follow this format */ 4471 pr_info("%s NIC Link is Down\n", adapter->netdev->name); 4472 } 4473 4474 napi_disable(&adapter->napi); 4475 4476 e1000e_free_tx_resources(adapter->tx_ring); 4477 e1000e_free_rx_resources(adapter->rx_ring); 4478 4479 /* kill manageability vlan ID if supported, but not if a vlan with 4480 * the same ID is registered on the host OS (let 8021q kill it) 4481 */ 4482 if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) 4483 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), 4484 adapter->mng_vlan_id); 4485 4486 /* If AMT is enabled, let the firmware know that the network 4487 * interface is now closed 4488 */ 4489 if ((adapter->flags & FLAG_HAS_AMT) && 4490 !test_bit(__E1000_TESTING, &adapter->state)) 4491 e1000e_release_hw_control(adapter); 4492 4493 pm_qos_remove_request(&adapter->netdev->pm_qos_req); 4494 4495 pm_runtime_put_sync(&pdev->dev); 4496 4497 return 0; 4498 } 4499 4500 /** 4501 * e1000_set_mac - Change the Ethernet Address of the NIC 4502 * @netdev: network interface device structure 4503 * @p: pointer to an address structure 4504 * 4505 * Returns 0 on success, negative on failure 4506 **/ 4507 static int e1000_set_mac(struct net_device *netdev, void *p) 4508 { 4509 struct e1000_adapter *adapter = netdev_priv(netdev); 4510 struct e1000_hw *hw = &adapter->hw; 4511 struct sockaddr *addr = p; 4512 4513 if (!is_valid_ether_addr(addr->sa_data)) 4514 return -EADDRNOTAVAIL; 4515 4516 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); 4517 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len); 4518 4519 hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0); 4520 4521 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) { 4522 /* activate the work around */ 4523 e1000e_set_laa_state_82571(&adapter->hw, 1); 4524 4525 /* Hold a copy of the LAA in RAR[14] This is done so that 4526 * between the time RAR[0] gets clobbered and the time it 4527 * gets fixed (in e1000_watchdog), the actual LAA is in one 4528 * of the RARs and no incoming packets directed to this port 4529 * are dropped. Eventually the LAA will be in RAR[0] and 4530 * RAR[14] 4531 */ 4532 hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 4533 adapter->hw.mac.rar_entry_count - 1); 4534 } 4535 4536 return 0; 4537 } 4538 4539 /** 4540 * e1000e_update_phy_task - work thread to update phy 4541 * @work: pointer to our work struct 4542 * 4543 * this worker thread exists because we must acquire a 4544 * semaphore to read the phy, which we could msleep while 4545 * waiting for it, and we can't msleep in a timer. 4546 **/ 4547 static void e1000e_update_phy_task(struct work_struct *work) 4548 { 4549 struct e1000_adapter *adapter = container_of(work, 4550 struct e1000_adapter, 4551 update_phy_task); 4552 struct e1000_hw *hw = &adapter->hw; 4553 4554 if (test_bit(__E1000_DOWN, &adapter->state)) 4555 return; 4556 4557 e1000_get_phy_info(hw); 4558 4559 /* Enable EEE on 82579 after link up */ 4560 if (hw->phy.type >= e1000_phy_82579) 4561 e1000_set_eee_pchlan(hw); 4562 } 4563 4564 /** 4565 * e1000_update_phy_info - timre call-back to update PHY info 4566 * @data: pointer to adapter cast into an unsigned long 4567 * 4568 * Need to wait a few seconds after link up to get diagnostic information from 4569 * the phy 4570 **/ 4571 static void e1000_update_phy_info(unsigned long data) 4572 { 4573 struct e1000_adapter *adapter = (struct e1000_adapter *)data; 4574 4575 if (test_bit(__E1000_DOWN, &adapter->state)) 4576 return; 4577 4578 schedule_work(&adapter->update_phy_task); 4579 } 4580 4581 /** 4582 * e1000e_update_phy_stats - Update the PHY statistics counters 4583 * @adapter: board private structure 4584 * 4585 * Read/clear the upper 16-bit PHY registers and read/accumulate lower 4586 **/ 4587 static void e1000e_update_phy_stats(struct e1000_adapter *adapter) 4588 { 4589 struct e1000_hw *hw = &adapter->hw; 4590 s32 ret_val; 4591 u16 phy_data; 4592 4593 ret_val = hw->phy.ops.acquire(hw); 4594 if (ret_val) 4595 return; 4596 4597 /* A page set is expensive so check if already on desired page. 4598 * If not, set to the page with the PHY status registers. 4599 */ 4600 hw->phy.addr = 1; 4601 ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 4602 &phy_data); 4603 if (ret_val) 4604 goto release; 4605 if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) { 4606 ret_val = hw->phy.ops.set_page(hw, 4607 HV_STATS_PAGE << IGP_PAGE_SHIFT); 4608 if (ret_val) 4609 goto release; 4610 } 4611 4612 /* Single Collision Count */ 4613 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data); 4614 ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data); 4615 if (!ret_val) 4616 adapter->stats.scc += phy_data; 4617 4618 /* Excessive Collision Count */ 4619 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data); 4620 ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data); 4621 if (!ret_val) 4622 adapter->stats.ecol += phy_data; 4623 4624 /* Multiple Collision Count */ 4625 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data); 4626 ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data); 4627 if (!ret_val) 4628 adapter->stats.mcc += phy_data; 4629 4630 /* Late Collision Count */ 4631 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data); 4632 ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data); 4633 if (!ret_val) 4634 adapter->stats.latecol += phy_data; 4635 4636 /* Collision Count - also used for adaptive IFS */ 4637 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data); 4638 ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data); 4639 if (!ret_val) 4640 hw->mac.collision_delta = phy_data; 4641 4642 /* Defer Count */ 4643 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data); 4644 ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data); 4645 if (!ret_val) 4646 adapter->stats.dc += phy_data; 4647 4648 /* Transmit with no CRS */ 4649 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data); 4650 ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data); 4651 if (!ret_val) 4652 adapter->stats.tncrs += phy_data; 4653 4654 release: 4655 hw->phy.ops.release(hw); 4656 } 4657 4658 /** 4659 * e1000e_update_stats - Update the board statistics counters 4660 * @adapter: board private structure 4661 **/ 4662 static void e1000e_update_stats(struct e1000_adapter *adapter) 4663 { 4664 struct net_device *netdev = adapter->netdev; 4665 struct e1000_hw *hw = &adapter->hw; 4666 struct pci_dev *pdev = adapter->pdev; 4667 4668 /* Prevent stats update while adapter is being reset, or if the pci 4669 * connection is down. 4670 */ 4671 if (adapter->link_speed == 0) 4672 return; 4673 if (pci_channel_offline(pdev)) 4674 return; 4675 4676 adapter->stats.crcerrs += er32(CRCERRS); 4677 adapter->stats.gprc += er32(GPRC); 4678 adapter->stats.gorc += er32(GORCL); 4679 er32(GORCH); /* Clear gorc */ 4680 adapter->stats.bprc += er32(BPRC); 4681 adapter->stats.mprc += er32(MPRC); 4682 adapter->stats.roc += er32(ROC); 4683 4684 adapter->stats.mpc += er32(MPC); 4685 4686 /* Half-duplex statistics */ 4687 if (adapter->link_duplex == HALF_DUPLEX) { 4688 if (adapter->flags2 & FLAG2_HAS_PHY_STATS) { 4689 e1000e_update_phy_stats(adapter); 4690 } else { 4691 adapter->stats.scc += er32(SCC); 4692 adapter->stats.ecol += er32(ECOL); 4693 adapter->stats.mcc += er32(MCC); 4694 adapter->stats.latecol += er32(LATECOL); 4695 adapter->stats.dc += er32(DC); 4696 4697 hw->mac.collision_delta = er32(COLC); 4698 4699 if ((hw->mac.type != e1000_82574) && 4700 (hw->mac.type != e1000_82583)) 4701 adapter->stats.tncrs += er32(TNCRS); 4702 } 4703 adapter->stats.colc += hw->mac.collision_delta; 4704 } 4705 4706 adapter->stats.xonrxc += er32(XONRXC); 4707 adapter->stats.xontxc += er32(XONTXC); 4708 adapter->stats.xoffrxc += er32(XOFFRXC); 4709 adapter->stats.xofftxc += er32(XOFFTXC); 4710 adapter->stats.gptc += er32(GPTC); 4711 adapter->stats.gotc += er32(GOTCL); 4712 er32(GOTCH); /* Clear gotc */ 4713 adapter->stats.rnbc += er32(RNBC); 4714 adapter->stats.ruc += er32(RUC); 4715 4716 adapter->stats.mptc += er32(MPTC); 4717 adapter->stats.bptc += er32(BPTC); 4718 4719 /* used for adaptive IFS */ 4720 4721 hw->mac.tx_packet_delta = er32(TPT); 4722 adapter->stats.tpt += hw->mac.tx_packet_delta; 4723 4724 adapter->stats.algnerrc += er32(ALGNERRC); 4725 adapter->stats.rxerrc += er32(RXERRC); 4726 adapter->stats.cexterr += er32(CEXTERR); 4727 adapter->stats.tsctc += er32(TSCTC); 4728 adapter->stats.tsctfc += er32(TSCTFC); 4729 4730 /* Fill out the OS statistics structure */ 4731 netdev->stats.multicast = adapter->stats.mprc; 4732 netdev->stats.collisions = adapter->stats.colc; 4733 4734 /* Rx Errors */ 4735 4736 /* RLEC on some newer hardware can be incorrect so build 4737 * our own version based on RUC and ROC 4738 */ 4739 netdev->stats.rx_errors = adapter->stats.rxerrc + 4740 adapter->stats.crcerrs + adapter->stats.algnerrc + 4741 adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr; 4742 netdev->stats.rx_length_errors = adapter->stats.ruc + 4743 adapter->stats.roc; 4744 netdev->stats.rx_crc_errors = adapter->stats.crcerrs; 4745 netdev->stats.rx_frame_errors = adapter->stats.algnerrc; 4746 netdev->stats.rx_missed_errors = adapter->stats.mpc; 4747 4748 /* Tx Errors */ 4749 netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol; 4750 netdev->stats.tx_aborted_errors = adapter->stats.ecol; 4751 netdev->stats.tx_window_errors = adapter->stats.latecol; 4752 netdev->stats.tx_carrier_errors = adapter->stats.tncrs; 4753 4754 /* Tx Dropped needs to be maintained elsewhere */ 4755 4756 /* Management Stats */ 4757 adapter->stats.mgptc += er32(MGTPTC); 4758 adapter->stats.mgprc += er32(MGTPRC); 4759 adapter->stats.mgpdc += er32(MGTPDC); 4760 4761 /* Correctable ECC Errors */ 4762 if (hw->mac.type == e1000_pch_lpt) { 4763 u32 pbeccsts = er32(PBECCSTS); 4764 4765 adapter->corr_errors += 4766 pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK; 4767 adapter->uncorr_errors += 4768 (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >> 4769 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT; 4770 } 4771 } 4772 4773 /** 4774 * e1000_phy_read_status - Update the PHY register status snapshot 4775 * @adapter: board private structure 4776 **/ 4777 static void e1000_phy_read_status(struct e1000_adapter *adapter) 4778 { 4779 struct e1000_hw *hw = &adapter->hw; 4780 struct e1000_phy_regs *phy = &adapter->phy_regs; 4781 4782 if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) && 4783 (er32(STATUS) & E1000_STATUS_LU) && 4784 (adapter->hw.phy.media_type == e1000_media_type_copper)) { 4785 int ret_val; 4786 4787 ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr); 4788 ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr); 4789 ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise); 4790 ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa); 4791 ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion); 4792 ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000); 4793 ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000); 4794 ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus); 4795 if (ret_val) 4796 e_warn("Error reading PHY register\n"); 4797 } else { 4798 /* Do not read PHY registers if link is not up 4799 * Set values to typical power-on defaults 4800 */ 4801 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX); 4802 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL | 4803 BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE | 4804 BMSR_ERCAP); 4805 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP | 4806 ADVERTISE_ALL | ADVERTISE_CSMA); 4807 phy->lpa = 0; 4808 phy->expansion = EXPANSION_ENABLENPAGE; 4809 phy->ctrl1000 = ADVERTISE_1000FULL; 4810 phy->stat1000 = 0; 4811 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF); 4812 } 4813 } 4814 4815 static void e1000_print_link_info(struct e1000_adapter *adapter) 4816 { 4817 struct e1000_hw *hw = &adapter->hw; 4818 u32 ctrl = er32(CTRL); 4819 4820 /* Link status message must follow this format for user tools */ 4821 pr_info("%s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n", 4822 adapter->netdev->name, adapter->link_speed, 4823 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half", 4824 (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" : 4825 (ctrl & E1000_CTRL_RFCE) ? "Rx" : 4826 (ctrl & E1000_CTRL_TFCE) ? "Tx" : "None"); 4827 } 4828 4829 static bool e1000e_has_link(struct e1000_adapter *adapter) 4830 { 4831 struct e1000_hw *hw = &adapter->hw; 4832 bool link_active = false; 4833 s32 ret_val = 0; 4834 4835 /* get_link_status is set on LSC (link status) interrupt or 4836 * Rx sequence error interrupt. get_link_status will stay 4837 * false until the check_for_link establishes link 4838 * for copper adapters ONLY 4839 */ 4840 switch (hw->phy.media_type) { 4841 case e1000_media_type_copper: 4842 if (hw->mac.get_link_status) { 4843 ret_val = hw->mac.ops.check_for_link(hw); 4844 link_active = !hw->mac.get_link_status; 4845 } else { 4846 link_active = true; 4847 } 4848 break; 4849 case e1000_media_type_fiber: 4850 ret_val = hw->mac.ops.check_for_link(hw); 4851 link_active = !!(er32(STATUS) & E1000_STATUS_LU); 4852 break; 4853 case e1000_media_type_internal_serdes: 4854 ret_val = hw->mac.ops.check_for_link(hw); 4855 link_active = adapter->hw.mac.serdes_has_link; 4856 break; 4857 default: 4858 case e1000_media_type_unknown: 4859 break; 4860 } 4861 4862 if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) && 4863 (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) { 4864 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */ 4865 e_info("Gigabit has been disabled, downgrading speed\n"); 4866 } 4867 4868 return link_active; 4869 } 4870 4871 static void e1000e_enable_receives(struct e1000_adapter *adapter) 4872 { 4873 /* make sure the receive unit is started */ 4874 if ((adapter->flags & FLAG_RX_NEEDS_RESTART) && 4875 (adapter->flags & FLAG_RESTART_NOW)) { 4876 struct e1000_hw *hw = &adapter->hw; 4877 u32 rctl = er32(RCTL); 4878 4879 ew32(RCTL, rctl | E1000_RCTL_EN); 4880 adapter->flags &= ~FLAG_RESTART_NOW; 4881 } 4882 } 4883 4884 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter) 4885 { 4886 struct e1000_hw *hw = &adapter->hw; 4887 4888 /* With 82574 controllers, PHY needs to be checked periodically 4889 * for hung state and reset, if two calls return true 4890 */ 4891 if (e1000_check_phy_82574(hw)) 4892 adapter->phy_hang_count++; 4893 else 4894 adapter->phy_hang_count = 0; 4895 4896 if (adapter->phy_hang_count > 1) { 4897 adapter->phy_hang_count = 0; 4898 e_dbg("PHY appears hung - resetting\n"); 4899 schedule_work(&adapter->reset_task); 4900 } 4901 } 4902 4903 /** 4904 * e1000_watchdog - Timer Call-back 4905 * @data: pointer to adapter cast into an unsigned long 4906 **/ 4907 static void e1000_watchdog(unsigned long data) 4908 { 4909 struct e1000_adapter *adapter = (struct e1000_adapter *)data; 4910 4911 /* Do the rest outside of interrupt context */ 4912 schedule_work(&adapter->watchdog_task); 4913 4914 /* TODO: make this use queue_delayed_work() */ 4915 } 4916 4917 static void e1000_watchdog_task(struct work_struct *work) 4918 { 4919 struct e1000_adapter *adapter = container_of(work, 4920 struct e1000_adapter, 4921 watchdog_task); 4922 struct net_device *netdev = adapter->netdev; 4923 struct e1000_mac_info *mac = &adapter->hw.mac; 4924 struct e1000_phy_info *phy = &adapter->hw.phy; 4925 struct e1000_ring *tx_ring = adapter->tx_ring; 4926 struct e1000_hw *hw = &adapter->hw; 4927 u32 link, tctl; 4928 4929 if (test_bit(__E1000_DOWN, &adapter->state)) 4930 return; 4931 4932 link = e1000e_has_link(adapter); 4933 if ((netif_carrier_ok(netdev)) && link) { 4934 /* Cancel scheduled suspend requests. */ 4935 pm_runtime_resume(netdev->dev.parent); 4936 4937 e1000e_enable_receives(adapter); 4938 goto link_up; 4939 } 4940 4941 if ((e1000e_enable_tx_pkt_filtering(hw)) && 4942 (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)) 4943 e1000_update_mng_vlan(adapter); 4944 4945 if (link) { 4946 if (!netif_carrier_ok(netdev)) { 4947 bool txb2b = true; 4948 4949 /* Cancel scheduled suspend requests. */ 4950 pm_runtime_resume(netdev->dev.parent); 4951 4952 /* update snapshot of PHY registers on LSC */ 4953 e1000_phy_read_status(adapter); 4954 mac->ops.get_link_up_info(&adapter->hw, 4955 &adapter->link_speed, 4956 &adapter->link_duplex); 4957 e1000_print_link_info(adapter); 4958 4959 /* check if SmartSpeed worked */ 4960 e1000e_check_downshift(hw); 4961 if (phy->speed_downgraded) 4962 netdev_warn(netdev, 4963 "Link Speed was downgraded by SmartSpeed\n"); 4964 4965 /* On supported PHYs, check for duplex mismatch only 4966 * if link has autonegotiated at 10/100 half 4967 */ 4968 if ((hw->phy.type == e1000_phy_igp_3 || 4969 hw->phy.type == e1000_phy_bm) && 4970 hw->mac.autoneg && 4971 (adapter->link_speed == SPEED_10 || 4972 adapter->link_speed == SPEED_100) && 4973 (adapter->link_duplex == HALF_DUPLEX)) { 4974 u16 autoneg_exp; 4975 4976 e1e_rphy(hw, MII_EXPANSION, &autoneg_exp); 4977 4978 if (!(autoneg_exp & EXPANSION_NWAY)) 4979 e_info("Autonegotiated half duplex but link partner cannot autoneg. Try forcing full duplex if link gets many collisions.\n"); 4980 } 4981 4982 /* adjust timeout factor according to speed/duplex */ 4983 adapter->tx_timeout_factor = 1; 4984 switch (adapter->link_speed) { 4985 case SPEED_10: 4986 txb2b = false; 4987 adapter->tx_timeout_factor = 16; 4988 break; 4989 case SPEED_100: 4990 txb2b = false; 4991 adapter->tx_timeout_factor = 10; 4992 break; 4993 } 4994 4995 /* workaround: re-program speed mode bit after 4996 * link-up event 4997 */ 4998 if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) && 4999 !txb2b) { 5000 u32 tarc0; 5001 5002 tarc0 = er32(TARC(0)); 5003 tarc0 &= ~SPEED_MODE_BIT; 5004 ew32(TARC(0), tarc0); 5005 } 5006 5007 /* disable TSO for pcie and 10/100 speeds, to avoid 5008 * some hardware issues 5009 */ 5010 if (!(adapter->flags & FLAG_TSO_FORCE)) { 5011 switch (adapter->link_speed) { 5012 case SPEED_10: 5013 case SPEED_100: 5014 e_info("10/100 speed: disabling TSO\n"); 5015 netdev->features &= ~NETIF_F_TSO; 5016 netdev->features &= ~NETIF_F_TSO6; 5017 break; 5018 case SPEED_1000: 5019 netdev->features |= NETIF_F_TSO; 5020 netdev->features |= NETIF_F_TSO6; 5021 break; 5022 default: 5023 /* oops */ 5024 break; 5025 } 5026 } 5027 5028 /* enable transmits in the hardware, need to do this 5029 * after setting TARC(0) 5030 */ 5031 tctl = er32(TCTL); 5032 tctl |= E1000_TCTL_EN; 5033 ew32(TCTL, tctl); 5034 5035 /* Perform any post-link-up configuration before 5036 * reporting link up. 5037 */ 5038 if (phy->ops.cfg_on_link_up) 5039 phy->ops.cfg_on_link_up(hw); 5040 5041 netif_carrier_on(netdev); 5042 5043 if (!test_bit(__E1000_DOWN, &adapter->state)) 5044 mod_timer(&adapter->phy_info_timer, 5045 round_jiffies(jiffies + 2 * HZ)); 5046 } 5047 } else { 5048 if (netif_carrier_ok(netdev)) { 5049 adapter->link_speed = 0; 5050 adapter->link_duplex = 0; 5051 /* Link status message must follow this format */ 5052 pr_info("%s NIC Link is Down\n", adapter->netdev->name); 5053 netif_carrier_off(netdev); 5054 if (!test_bit(__E1000_DOWN, &adapter->state)) 5055 mod_timer(&adapter->phy_info_timer, 5056 round_jiffies(jiffies + 2 * HZ)); 5057 5058 /* 8000ES2LAN requires a Rx packet buffer work-around 5059 * on link down event; reset the controller to flush 5060 * the Rx packet buffer. 5061 */ 5062 if (adapter->flags & FLAG_RX_NEEDS_RESTART) 5063 adapter->flags |= FLAG_RESTART_NOW; 5064 else 5065 pm_schedule_suspend(netdev->dev.parent, 5066 LINK_TIMEOUT); 5067 } 5068 } 5069 5070 link_up: 5071 spin_lock(&adapter->stats64_lock); 5072 e1000e_update_stats(adapter); 5073 5074 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old; 5075 adapter->tpt_old = adapter->stats.tpt; 5076 mac->collision_delta = adapter->stats.colc - adapter->colc_old; 5077 adapter->colc_old = adapter->stats.colc; 5078 5079 adapter->gorc = adapter->stats.gorc - adapter->gorc_old; 5080 adapter->gorc_old = adapter->stats.gorc; 5081 adapter->gotc = adapter->stats.gotc - adapter->gotc_old; 5082 adapter->gotc_old = adapter->stats.gotc; 5083 spin_unlock(&adapter->stats64_lock); 5084 5085 /* If the link is lost the controller stops DMA, but 5086 * if there is queued Tx work it cannot be done. So 5087 * reset the controller to flush the Tx packet buffers. 5088 */ 5089 if (!netif_carrier_ok(netdev) && 5090 (e1000_desc_unused(tx_ring) + 1 < tx_ring->count)) 5091 adapter->flags |= FLAG_RESTART_NOW; 5092 5093 /* If reset is necessary, do it outside of interrupt context. */ 5094 if (adapter->flags & FLAG_RESTART_NOW) { 5095 schedule_work(&adapter->reset_task); 5096 /* return immediately since reset is imminent */ 5097 return; 5098 } 5099 5100 e1000e_update_adaptive(&adapter->hw); 5101 5102 /* Simple mode for Interrupt Throttle Rate (ITR) */ 5103 if (adapter->itr_setting == 4) { 5104 /* Symmetric Tx/Rx gets a reduced ITR=2000; 5105 * Total asymmetrical Tx or Rx gets ITR=8000; 5106 * everyone else is between 2000-8000. 5107 */ 5108 u32 goc = (adapter->gotc + adapter->gorc) / 10000; 5109 u32 dif = (adapter->gotc > adapter->gorc ? 5110 adapter->gotc - adapter->gorc : 5111 adapter->gorc - adapter->gotc) / 10000; 5112 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000; 5113 5114 e1000e_write_itr(adapter, itr); 5115 } 5116 5117 /* Cause software interrupt to ensure Rx ring is cleaned */ 5118 if (adapter->msix_entries) 5119 ew32(ICS, adapter->rx_ring->ims_val); 5120 else 5121 ew32(ICS, E1000_ICS_RXDMT0); 5122 5123 /* flush pending descriptors to memory before detecting Tx hang */ 5124 e1000e_flush_descriptors(adapter); 5125 5126 /* Force detection of hung controller every watchdog period */ 5127 adapter->detect_tx_hung = true; 5128 5129 /* With 82571 controllers, LAA may be overwritten due to controller 5130 * reset from the other port. Set the appropriate LAA in RAR[0] 5131 */ 5132 if (e1000e_get_laa_state_82571(hw)) 5133 hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0); 5134 5135 if (adapter->flags2 & FLAG2_CHECK_PHY_HANG) 5136 e1000e_check_82574_phy_workaround(adapter); 5137 5138 /* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */ 5139 if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) { 5140 if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) && 5141 (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) { 5142 er32(RXSTMPH); 5143 adapter->rx_hwtstamp_cleared++; 5144 } else { 5145 adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP; 5146 } 5147 } 5148 5149 /* Reset the timer */ 5150 if (!test_bit(__E1000_DOWN, &adapter->state)) 5151 mod_timer(&adapter->watchdog_timer, 5152 round_jiffies(jiffies + 2 * HZ)); 5153 } 5154 5155 #define E1000_TX_FLAGS_CSUM 0x00000001 5156 #define E1000_TX_FLAGS_VLAN 0x00000002 5157 #define E1000_TX_FLAGS_TSO 0x00000004 5158 #define E1000_TX_FLAGS_IPV4 0x00000008 5159 #define E1000_TX_FLAGS_NO_FCS 0x00000010 5160 #define E1000_TX_FLAGS_HWTSTAMP 0x00000020 5161 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000 5162 #define E1000_TX_FLAGS_VLAN_SHIFT 16 5163 5164 static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb, 5165 __be16 protocol) 5166 { 5167 struct e1000_context_desc *context_desc; 5168 struct e1000_buffer *buffer_info; 5169 unsigned int i; 5170 u32 cmd_length = 0; 5171 u16 ipcse = 0, mss; 5172 u8 ipcss, ipcso, tucss, tucso, hdr_len; 5173 int err; 5174 5175 if (!skb_is_gso(skb)) 5176 return 0; 5177 5178 err = skb_cow_head(skb, 0); 5179 if (err < 0) 5180 return err; 5181 5182 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 5183 mss = skb_shinfo(skb)->gso_size; 5184 if (protocol == htons(ETH_P_IP)) { 5185 struct iphdr *iph = ip_hdr(skb); 5186 iph->tot_len = 0; 5187 iph->check = 0; 5188 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr, 5189 0, IPPROTO_TCP, 0); 5190 cmd_length = E1000_TXD_CMD_IP; 5191 ipcse = skb_transport_offset(skb) - 1; 5192 } else if (skb_is_gso_v6(skb)) { 5193 ipv6_hdr(skb)->payload_len = 0; 5194 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 5195 &ipv6_hdr(skb)->daddr, 5196 0, IPPROTO_TCP, 0); 5197 ipcse = 0; 5198 } 5199 ipcss = skb_network_offset(skb); 5200 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data; 5201 tucss = skb_transport_offset(skb); 5202 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data; 5203 5204 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE | 5205 E1000_TXD_CMD_TCP | (skb->len - (hdr_len))); 5206 5207 i = tx_ring->next_to_use; 5208 context_desc = E1000_CONTEXT_DESC(*tx_ring, i); 5209 buffer_info = &tx_ring->buffer_info[i]; 5210 5211 context_desc->lower_setup.ip_fields.ipcss = ipcss; 5212 context_desc->lower_setup.ip_fields.ipcso = ipcso; 5213 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse); 5214 context_desc->upper_setup.tcp_fields.tucss = tucss; 5215 context_desc->upper_setup.tcp_fields.tucso = tucso; 5216 context_desc->upper_setup.tcp_fields.tucse = 0; 5217 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss); 5218 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len; 5219 context_desc->cmd_and_length = cpu_to_le32(cmd_length); 5220 5221 buffer_info->time_stamp = jiffies; 5222 buffer_info->next_to_watch = i; 5223 5224 i++; 5225 if (i == tx_ring->count) 5226 i = 0; 5227 tx_ring->next_to_use = i; 5228 5229 return 1; 5230 } 5231 5232 static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb, 5233 __be16 protocol) 5234 { 5235 struct e1000_adapter *adapter = tx_ring->adapter; 5236 struct e1000_context_desc *context_desc; 5237 struct e1000_buffer *buffer_info; 5238 unsigned int i; 5239 u8 css; 5240 u32 cmd_len = E1000_TXD_CMD_DEXT; 5241 5242 if (skb->ip_summed != CHECKSUM_PARTIAL) 5243 return false; 5244 5245 switch (protocol) { 5246 case cpu_to_be16(ETH_P_IP): 5247 if (ip_hdr(skb)->protocol == IPPROTO_TCP) 5248 cmd_len |= E1000_TXD_CMD_TCP; 5249 break; 5250 case cpu_to_be16(ETH_P_IPV6): 5251 /* XXX not handling all IPV6 headers */ 5252 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) 5253 cmd_len |= E1000_TXD_CMD_TCP; 5254 break; 5255 default: 5256 if (unlikely(net_ratelimit())) 5257 e_warn("checksum_partial proto=%x!\n", 5258 be16_to_cpu(protocol)); 5259 break; 5260 } 5261 5262 css = skb_checksum_start_offset(skb); 5263 5264 i = tx_ring->next_to_use; 5265 buffer_info = &tx_ring->buffer_info[i]; 5266 context_desc = E1000_CONTEXT_DESC(*tx_ring, i); 5267 5268 context_desc->lower_setup.ip_config = 0; 5269 context_desc->upper_setup.tcp_fields.tucss = css; 5270 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset; 5271 context_desc->upper_setup.tcp_fields.tucse = 0; 5272 context_desc->tcp_seg_setup.data = 0; 5273 context_desc->cmd_and_length = cpu_to_le32(cmd_len); 5274 5275 buffer_info->time_stamp = jiffies; 5276 buffer_info->next_to_watch = i; 5277 5278 i++; 5279 if (i == tx_ring->count) 5280 i = 0; 5281 tx_ring->next_to_use = i; 5282 5283 return true; 5284 } 5285 5286 static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb, 5287 unsigned int first, unsigned int max_per_txd, 5288 unsigned int nr_frags) 5289 { 5290 struct e1000_adapter *adapter = tx_ring->adapter; 5291 struct pci_dev *pdev = adapter->pdev; 5292 struct e1000_buffer *buffer_info; 5293 unsigned int len = skb_headlen(skb); 5294 unsigned int offset = 0, size, count = 0, i; 5295 unsigned int f, bytecount, segs; 5296 5297 i = tx_ring->next_to_use; 5298 5299 while (len) { 5300 buffer_info = &tx_ring->buffer_info[i]; 5301 size = min(len, max_per_txd); 5302 5303 buffer_info->length = size; 5304 buffer_info->time_stamp = jiffies; 5305 buffer_info->next_to_watch = i; 5306 buffer_info->dma = dma_map_single(&pdev->dev, 5307 skb->data + offset, 5308 size, DMA_TO_DEVICE); 5309 buffer_info->mapped_as_page = false; 5310 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) 5311 goto dma_error; 5312 5313 len -= size; 5314 offset += size; 5315 count++; 5316 5317 if (len) { 5318 i++; 5319 if (i == tx_ring->count) 5320 i = 0; 5321 } 5322 } 5323 5324 for (f = 0; f < nr_frags; f++) { 5325 const struct skb_frag_struct *frag; 5326 5327 frag = &skb_shinfo(skb)->frags[f]; 5328 len = skb_frag_size(frag); 5329 offset = 0; 5330 5331 while (len) { 5332 i++; 5333 if (i == tx_ring->count) 5334 i = 0; 5335 5336 buffer_info = &tx_ring->buffer_info[i]; 5337 size = min(len, max_per_txd); 5338 5339 buffer_info->length = size; 5340 buffer_info->time_stamp = jiffies; 5341 buffer_info->next_to_watch = i; 5342 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 5343 offset, size, 5344 DMA_TO_DEVICE); 5345 buffer_info->mapped_as_page = true; 5346 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) 5347 goto dma_error; 5348 5349 len -= size; 5350 offset += size; 5351 count++; 5352 } 5353 } 5354 5355 segs = skb_shinfo(skb)->gso_segs ? : 1; 5356 /* multiply data chunks by size of headers */ 5357 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len; 5358 5359 tx_ring->buffer_info[i].skb = skb; 5360 tx_ring->buffer_info[i].segs = segs; 5361 tx_ring->buffer_info[i].bytecount = bytecount; 5362 tx_ring->buffer_info[first].next_to_watch = i; 5363 5364 return count; 5365 5366 dma_error: 5367 dev_err(&pdev->dev, "Tx DMA map failed\n"); 5368 buffer_info->dma = 0; 5369 if (count) 5370 count--; 5371 5372 while (count--) { 5373 if (i == 0) 5374 i += tx_ring->count; 5375 i--; 5376 buffer_info = &tx_ring->buffer_info[i]; 5377 e1000_put_txbuf(tx_ring, buffer_info); 5378 } 5379 5380 return 0; 5381 } 5382 5383 static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count) 5384 { 5385 struct e1000_adapter *adapter = tx_ring->adapter; 5386 struct e1000_tx_desc *tx_desc = NULL; 5387 struct e1000_buffer *buffer_info; 5388 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS; 5389 unsigned int i; 5390 5391 if (tx_flags & E1000_TX_FLAGS_TSO) { 5392 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D | 5393 E1000_TXD_CMD_TSE; 5394 txd_upper |= E1000_TXD_POPTS_TXSM << 8; 5395 5396 if (tx_flags & E1000_TX_FLAGS_IPV4) 5397 txd_upper |= E1000_TXD_POPTS_IXSM << 8; 5398 } 5399 5400 if (tx_flags & E1000_TX_FLAGS_CSUM) { 5401 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D; 5402 txd_upper |= E1000_TXD_POPTS_TXSM << 8; 5403 } 5404 5405 if (tx_flags & E1000_TX_FLAGS_VLAN) { 5406 txd_lower |= E1000_TXD_CMD_VLE; 5407 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK); 5408 } 5409 5410 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS)) 5411 txd_lower &= ~(E1000_TXD_CMD_IFCS); 5412 5413 if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) { 5414 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D; 5415 txd_upper |= E1000_TXD_EXTCMD_TSTAMP; 5416 } 5417 5418 i = tx_ring->next_to_use; 5419 5420 do { 5421 buffer_info = &tx_ring->buffer_info[i]; 5422 tx_desc = E1000_TX_DESC(*tx_ring, i); 5423 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); 5424 tx_desc->lower.data = cpu_to_le32(txd_lower | 5425 buffer_info->length); 5426 tx_desc->upper.data = cpu_to_le32(txd_upper); 5427 5428 i++; 5429 if (i == tx_ring->count) 5430 i = 0; 5431 } while (--count > 0); 5432 5433 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd); 5434 5435 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */ 5436 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS)) 5437 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS)); 5438 5439 /* Force memory writes to complete before letting h/w 5440 * know there are new descriptors to fetch. (Only 5441 * applicable for weak-ordered memory model archs, 5442 * such as IA-64). 5443 */ 5444 wmb(); 5445 5446 tx_ring->next_to_use = i; 5447 5448 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA) 5449 e1000e_update_tdt_wa(tx_ring, i); 5450 else 5451 writel(i, tx_ring->tail); 5452 5453 /* we need this if more than one processor can write to our tail 5454 * at a time, it synchronizes IO on IA64/Altix systems 5455 */ 5456 mmiowb(); 5457 } 5458 5459 #define MINIMUM_DHCP_PACKET_SIZE 282 5460 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter, 5461 struct sk_buff *skb) 5462 { 5463 struct e1000_hw *hw = &adapter->hw; 5464 u16 length, offset; 5465 5466 if (vlan_tx_tag_present(skb) && 5467 !((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) && 5468 (adapter->hw.mng_cookie.status & 5469 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))) 5470 return 0; 5471 5472 if (skb->len <= MINIMUM_DHCP_PACKET_SIZE) 5473 return 0; 5474 5475 if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP)) 5476 return 0; 5477 5478 { 5479 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14); 5480 struct udphdr *udp; 5481 5482 if (ip->protocol != IPPROTO_UDP) 5483 return 0; 5484 5485 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2)); 5486 if (ntohs(udp->dest) != 67) 5487 return 0; 5488 5489 offset = (u8 *)udp + 8 - skb->data; 5490 length = skb->len - offset; 5491 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length); 5492 } 5493 5494 return 0; 5495 } 5496 5497 static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size) 5498 { 5499 struct e1000_adapter *adapter = tx_ring->adapter; 5500 5501 netif_stop_queue(adapter->netdev); 5502 /* Herbert's original patch had: 5503 * smp_mb__after_netif_stop_queue(); 5504 * but since that doesn't exist yet, just open code it. 5505 */ 5506 smp_mb(); 5507 5508 /* We need to check again in a case another CPU has just 5509 * made room available. 5510 */ 5511 if (e1000_desc_unused(tx_ring) < size) 5512 return -EBUSY; 5513 5514 /* A reprieve! */ 5515 netif_start_queue(adapter->netdev); 5516 ++adapter->restart_queue; 5517 return 0; 5518 } 5519 5520 static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size) 5521 { 5522 BUG_ON(size > tx_ring->count); 5523 5524 if (e1000_desc_unused(tx_ring) >= size) 5525 return 0; 5526 return __e1000_maybe_stop_tx(tx_ring, size); 5527 } 5528 5529 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb, 5530 struct net_device *netdev) 5531 { 5532 struct e1000_adapter *adapter = netdev_priv(netdev); 5533 struct e1000_ring *tx_ring = adapter->tx_ring; 5534 unsigned int first; 5535 unsigned int tx_flags = 0; 5536 unsigned int len = skb_headlen(skb); 5537 unsigned int nr_frags; 5538 unsigned int mss; 5539 int count = 0; 5540 int tso; 5541 unsigned int f; 5542 __be16 protocol = vlan_get_protocol(skb); 5543 5544 if (test_bit(__E1000_DOWN, &adapter->state)) { 5545 dev_kfree_skb_any(skb); 5546 return NETDEV_TX_OK; 5547 } 5548 5549 if (skb->len <= 0) { 5550 dev_kfree_skb_any(skb); 5551 return NETDEV_TX_OK; 5552 } 5553 5554 /* The minimum packet size with TCTL.PSP set is 17 bytes so 5555 * pad skb in order to meet this minimum size requirement 5556 */ 5557 if (skb_put_padto(skb, 17)) 5558 return NETDEV_TX_OK; 5559 5560 mss = skb_shinfo(skb)->gso_size; 5561 if (mss) { 5562 u8 hdr_len; 5563 5564 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data 5565 * points to just header, pull a few bytes of payload from 5566 * frags into skb->data 5567 */ 5568 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 5569 /* we do this workaround for ES2LAN, but it is un-necessary, 5570 * avoiding it could save a lot of cycles 5571 */ 5572 if (skb->data_len && (hdr_len == len)) { 5573 unsigned int pull_size; 5574 5575 pull_size = min_t(unsigned int, 4, skb->data_len); 5576 if (!__pskb_pull_tail(skb, pull_size)) { 5577 e_err("__pskb_pull_tail failed.\n"); 5578 dev_kfree_skb_any(skb); 5579 return NETDEV_TX_OK; 5580 } 5581 len = skb_headlen(skb); 5582 } 5583 } 5584 5585 /* reserve a descriptor for the offload context */ 5586 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL)) 5587 count++; 5588 count++; 5589 5590 count += DIV_ROUND_UP(len, adapter->tx_fifo_limit); 5591 5592 nr_frags = skb_shinfo(skb)->nr_frags; 5593 for (f = 0; f < nr_frags; f++) 5594 count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]), 5595 adapter->tx_fifo_limit); 5596 5597 if (adapter->hw.mac.tx_pkt_filtering) 5598 e1000_transfer_dhcp_info(adapter, skb); 5599 5600 /* need: count + 2 desc gap to keep tail from touching 5601 * head, otherwise try next time 5602 */ 5603 if (e1000_maybe_stop_tx(tx_ring, count + 2)) 5604 return NETDEV_TX_BUSY; 5605 5606 if (vlan_tx_tag_present(skb)) { 5607 tx_flags |= E1000_TX_FLAGS_VLAN; 5608 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT); 5609 } 5610 5611 first = tx_ring->next_to_use; 5612 5613 tso = e1000_tso(tx_ring, skb, protocol); 5614 if (tso < 0) { 5615 dev_kfree_skb_any(skb); 5616 return NETDEV_TX_OK; 5617 } 5618 5619 if (tso) 5620 tx_flags |= E1000_TX_FLAGS_TSO; 5621 else if (e1000_tx_csum(tx_ring, skb, protocol)) 5622 tx_flags |= E1000_TX_FLAGS_CSUM; 5623 5624 /* Old method was to assume IPv4 packet by default if TSO was enabled. 5625 * 82571 hardware supports TSO capabilities for IPv6 as well... 5626 * no longer assume, we must. 5627 */ 5628 if (protocol == htons(ETH_P_IP)) 5629 tx_flags |= E1000_TX_FLAGS_IPV4; 5630 5631 if (unlikely(skb->no_fcs)) 5632 tx_flags |= E1000_TX_FLAGS_NO_FCS; 5633 5634 /* if count is 0 then mapping error has occurred */ 5635 count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit, 5636 nr_frags); 5637 if (count) { 5638 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 5639 !adapter->tx_hwtstamp_skb)) { 5640 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 5641 tx_flags |= E1000_TX_FLAGS_HWTSTAMP; 5642 adapter->tx_hwtstamp_skb = skb_get(skb); 5643 adapter->tx_hwtstamp_start = jiffies; 5644 schedule_work(&adapter->tx_hwtstamp_work); 5645 } else { 5646 skb_tx_timestamp(skb); 5647 } 5648 5649 netdev_sent_queue(netdev, skb->len); 5650 e1000_tx_queue(tx_ring, tx_flags, count); 5651 /* Make sure there is space in the ring for the next send. */ 5652 e1000_maybe_stop_tx(tx_ring, 5653 (MAX_SKB_FRAGS * 5654 DIV_ROUND_UP(PAGE_SIZE, 5655 adapter->tx_fifo_limit) + 2)); 5656 } else { 5657 dev_kfree_skb_any(skb); 5658 tx_ring->buffer_info[first].time_stamp = 0; 5659 tx_ring->next_to_use = first; 5660 } 5661 5662 return NETDEV_TX_OK; 5663 } 5664 5665 /** 5666 * e1000_tx_timeout - Respond to a Tx Hang 5667 * @netdev: network interface device structure 5668 **/ 5669 static void e1000_tx_timeout(struct net_device *netdev) 5670 { 5671 struct e1000_adapter *adapter = netdev_priv(netdev); 5672 5673 /* Do the reset outside of interrupt context */ 5674 adapter->tx_timeout_count++; 5675 schedule_work(&adapter->reset_task); 5676 } 5677 5678 static void e1000_reset_task(struct work_struct *work) 5679 { 5680 struct e1000_adapter *adapter; 5681 adapter = container_of(work, struct e1000_adapter, reset_task); 5682 5683 /* don't run the task if already down */ 5684 if (test_bit(__E1000_DOWN, &adapter->state)) 5685 return; 5686 5687 if (!(adapter->flags & FLAG_RESTART_NOW)) { 5688 e1000e_dump(adapter); 5689 e_err("Reset adapter unexpectedly\n"); 5690 } 5691 e1000e_reinit_locked(adapter); 5692 } 5693 5694 /** 5695 * e1000_get_stats64 - Get System Network Statistics 5696 * @netdev: network interface device structure 5697 * @stats: rtnl_link_stats64 pointer 5698 * 5699 * Returns the address of the device statistics structure. 5700 **/ 5701 struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev, 5702 struct rtnl_link_stats64 *stats) 5703 { 5704 struct e1000_adapter *adapter = netdev_priv(netdev); 5705 5706 memset(stats, 0, sizeof(struct rtnl_link_stats64)); 5707 spin_lock(&adapter->stats64_lock); 5708 e1000e_update_stats(adapter); 5709 /* Fill out the OS statistics structure */ 5710 stats->rx_bytes = adapter->stats.gorc; 5711 stats->rx_packets = adapter->stats.gprc; 5712 stats->tx_bytes = adapter->stats.gotc; 5713 stats->tx_packets = adapter->stats.gptc; 5714 stats->multicast = adapter->stats.mprc; 5715 stats->collisions = adapter->stats.colc; 5716 5717 /* Rx Errors */ 5718 5719 /* RLEC on some newer hardware can be incorrect so build 5720 * our own version based on RUC and ROC 5721 */ 5722 stats->rx_errors = adapter->stats.rxerrc + 5723 adapter->stats.crcerrs + adapter->stats.algnerrc + 5724 adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr; 5725 stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc; 5726 stats->rx_crc_errors = adapter->stats.crcerrs; 5727 stats->rx_frame_errors = adapter->stats.algnerrc; 5728 stats->rx_missed_errors = adapter->stats.mpc; 5729 5730 /* Tx Errors */ 5731 stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol; 5732 stats->tx_aborted_errors = adapter->stats.ecol; 5733 stats->tx_window_errors = adapter->stats.latecol; 5734 stats->tx_carrier_errors = adapter->stats.tncrs; 5735 5736 /* Tx Dropped needs to be maintained elsewhere */ 5737 5738 spin_unlock(&adapter->stats64_lock); 5739 return stats; 5740 } 5741 5742 /** 5743 * e1000_change_mtu - Change the Maximum Transfer Unit 5744 * @netdev: network interface device structure 5745 * @new_mtu: new value for maximum frame size 5746 * 5747 * Returns 0 on success, negative on failure 5748 **/ 5749 static int e1000_change_mtu(struct net_device *netdev, int new_mtu) 5750 { 5751 struct e1000_adapter *adapter = netdev_priv(netdev); 5752 int max_frame = new_mtu + VLAN_HLEN + ETH_HLEN + ETH_FCS_LEN; 5753 5754 /* Jumbo frame support */ 5755 if ((max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) && 5756 !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) { 5757 e_err("Jumbo Frames not supported.\n"); 5758 return -EINVAL; 5759 } 5760 5761 /* Supported frame sizes */ 5762 if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) || 5763 (max_frame > adapter->max_hw_frame_size)) { 5764 e_err("Unsupported MTU setting\n"); 5765 return -EINVAL; 5766 } 5767 5768 /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */ 5769 if ((adapter->hw.mac.type >= e1000_pch2lan) && 5770 !(adapter->flags2 & FLAG2_CRC_STRIPPING) && 5771 (new_mtu > ETH_DATA_LEN)) { 5772 e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n"); 5773 return -EINVAL; 5774 } 5775 5776 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 5777 usleep_range(1000, 2000); 5778 /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */ 5779 adapter->max_frame_size = max_frame; 5780 e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu); 5781 netdev->mtu = new_mtu; 5782 5783 pm_runtime_get_sync(netdev->dev.parent); 5784 5785 if (netif_running(netdev)) 5786 e1000e_down(adapter, true); 5787 5788 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN 5789 * means we reserve 2 more, this pushes us to allocate from the next 5790 * larger slab size. 5791 * i.e. RXBUFFER_2048 --> size-4096 slab 5792 * However with the new *_jumbo_rx* routines, jumbo receives will use 5793 * fragmented skbs 5794 */ 5795 5796 if (max_frame <= 2048) 5797 adapter->rx_buffer_len = 2048; 5798 else 5799 adapter->rx_buffer_len = 4096; 5800 5801 /* adjust allocation if LPE protects us, and we aren't using SBP */ 5802 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) || 5803 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN)) 5804 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN 5805 + ETH_FCS_LEN; 5806 5807 if (netif_running(netdev)) 5808 e1000e_up(adapter); 5809 else 5810 e1000e_reset(adapter); 5811 5812 pm_runtime_put_sync(netdev->dev.parent); 5813 5814 clear_bit(__E1000_RESETTING, &adapter->state); 5815 5816 return 0; 5817 } 5818 5819 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, 5820 int cmd) 5821 { 5822 struct e1000_adapter *adapter = netdev_priv(netdev); 5823 struct mii_ioctl_data *data = if_mii(ifr); 5824 5825 if (adapter->hw.phy.media_type != e1000_media_type_copper) 5826 return -EOPNOTSUPP; 5827 5828 switch (cmd) { 5829 case SIOCGMIIPHY: 5830 data->phy_id = adapter->hw.phy.addr; 5831 break; 5832 case SIOCGMIIREG: 5833 e1000_phy_read_status(adapter); 5834 5835 switch (data->reg_num & 0x1F) { 5836 case MII_BMCR: 5837 data->val_out = adapter->phy_regs.bmcr; 5838 break; 5839 case MII_BMSR: 5840 data->val_out = adapter->phy_regs.bmsr; 5841 break; 5842 case MII_PHYSID1: 5843 data->val_out = (adapter->hw.phy.id >> 16); 5844 break; 5845 case MII_PHYSID2: 5846 data->val_out = (adapter->hw.phy.id & 0xFFFF); 5847 break; 5848 case MII_ADVERTISE: 5849 data->val_out = adapter->phy_regs.advertise; 5850 break; 5851 case MII_LPA: 5852 data->val_out = adapter->phy_regs.lpa; 5853 break; 5854 case MII_EXPANSION: 5855 data->val_out = adapter->phy_regs.expansion; 5856 break; 5857 case MII_CTRL1000: 5858 data->val_out = adapter->phy_regs.ctrl1000; 5859 break; 5860 case MII_STAT1000: 5861 data->val_out = adapter->phy_regs.stat1000; 5862 break; 5863 case MII_ESTATUS: 5864 data->val_out = adapter->phy_regs.estatus; 5865 break; 5866 default: 5867 return -EIO; 5868 } 5869 break; 5870 case SIOCSMIIREG: 5871 default: 5872 return -EOPNOTSUPP; 5873 } 5874 return 0; 5875 } 5876 5877 /** 5878 * e1000e_hwtstamp_ioctl - control hardware time stamping 5879 * @netdev: network interface device structure 5880 * @ifreq: interface request 5881 * 5882 * Outgoing time stamping can be enabled and disabled. Play nice and 5883 * disable it when requested, although it shouldn't cause any overhead 5884 * when no packet needs it. At most one packet in the queue may be 5885 * marked for time stamping, otherwise it would be impossible to tell 5886 * for sure to which packet the hardware time stamp belongs. 5887 * 5888 * Incoming time stamping has to be configured via the hardware filters. 5889 * Not all combinations are supported, in particular event type has to be 5890 * specified. Matching the kind of event packet is not supported, with the 5891 * exception of "all V2 events regardless of level 2 or 4". 5892 **/ 5893 static int e1000e_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr) 5894 { 5895 struct e1000_adapter *adapter = netdev_priv(netdev); 5896 struct hwtstamp_config config; 5897 int ret_val; 5898 5899 if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) 5900 return -EFAULT; 5901 5902 ret_val = e1000e_config_hwtstamp(adapter, &config); 5903 if (ret_val) 5904 return ret_val; 5905 5906 switch (config.rx_filter) { 5907 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 5908 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 5909 case HWTSTAMP_FILTER_PTP_V2_SYNC: 5910 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 5911 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 5912 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 5913 /* With V2 type filters which specify a Sync or Delay Request, 5914 * Path Delay Request/Response messages are also time stamped 5915 * by hardware so notify the caller the requested packets plus 5916 * some others are time stamped. 5917 */ 5918 config.rx_filter = HWTSTAMP_FILTER_SOME; 5919 break; 5920 default: 5921 break; 5922 } 5923 5924 return copy_to_user(ifr->ifr_data, &config, 5925 sizeof(config)) ? -EFAULT : 0; 5926 } 5927 5928 static int e1000e_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr) 5929 { 5930 struct e1000_adapter *adapter = netdev_priv(netdev); 5931 5932 return copy_to_user(ifr->ifr_data, &adapter->hwtstamp_config, 5933 sizeof(adapter->hwtstamp_config)) ? -EFAULT : 0; 5934 } 5935 5936 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 5937 { 5938 switch (cmd) { 5939 case SIOCGMIIPHY: 5940 case SIOCGMIIREG: 5941 case SIOCSMIIREG: 5942 return e1000_mii_ioctl(netdev, ifr, cmd); 5943 case SIOCSHWTSTAMP: 5944 return e1000e_hwtstamp_set(netdev, ifr); 5945 case SIOCGHWTSTAMP: 5946 return e1000e_hwtstamp_get(netdev, ifr); 5947 default: 5948 return -EOPNOTSUPP; 5949 } 5950 } 5951 5952 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc) 5953 { 5954 struct e1000_hw *hw = &adapter->hw; 5955 u32 i, mac_reg, wuc; 5956 u16 phy_reg, wuc_enable; 5957 int retval; 5958 5959 /* copy MAC RARs to PHY RARs */ 5960 e1000_copy_rx_addrs_to_phy_ich8lan(hw); 5961 5962 retval = hw->phy.ops.acquire(hw); 5963 if (retval) { 5964 e_err("Could not acquire PHY\n"); 5965 return retval; 5966 } 5967 5968 /* Enable access to wakeup registers on and set page to BM_WUC_PAGE */ 5969 retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable); 5970 if (retval) 5971 goto release; 5972 5973 /* copy MAC MTA to PHY MTA - only needed for pchlan */ 5974 for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) { 5975 mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i); 5976 hw->phy.ops.write_reg_page(hw, BM_MTA(i), 5977 (u16)(mac_reg & 0xFFFF)); 5978 hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1, 5979 (u16)((mac_reg >> 16) & 0xFFFF)); 5980 } 5981 5982 /* configure PHY Rx Control register */ 5983 hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg); 5984 mac_reg = er32(RCTL); 5985 if (mac_reg & E1000_RCTL_UPE) 5986 phy_reg |= BM_RCTL_UPE; 5987 if (mac_reg & E1000_RCTL_MPE) 5988 phy_reg |= BM_RCTL_MPE; 5989 phy_reg &= ~(BM_RCTL_MO_MASK); 5990 if (mac_reg & E1000_RCTL_MO_3) 5991 phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT) 5992 << BM_RCTL_MO_SHIFT); 5993 if (mac_reg & E1000_RCTL_BAM) 5994 phy_reg |= BM_RCTL_BAM; 5995 if (mac_reg & E1000_RCTL_PMCF) 5996 phy_reg |= BM_RCTL_PMCF; 5997 mac_reg = er32(CTRL); 5998 if (mac_reg & E1000_CTRL_RFCE) 5999 phy_reg |= BM_RCTL_RFCE; 6000 hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg); 6001 6002 wuc = E1000_WUC_PME_EN; 6003 if (wufc & (E1000_WUFC_MAG | E1000_WUFC_LNKC)) 6004 wuc |= E1000_WUC_APME; 6005 6006 /* enable PHY wakeup in MAC register */ 6007 ew32(WUFC, wufc); 6008 ew32(WUC, (E1000_WUC_PHY_WAKE | E1000_WUC_APMPME | 6009 E1000_WUC_PME_STATUS | wuc)); 6010 6011 /* configure and enable PHY wakeup in PHY registers */ 6012 hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc); 6013 hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, wuc); 6014 6015 /* activate PHY wakeup */ 6016 wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT; 6017 retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable); 6018 if (retval) 6019 e_err("Could not set PHY Host Wakeup bit\n"); 6020 release: 6021 hw->phy.ops.release(hw); 6022 6023 return retval; 6024 } 6025 6026 static void e1000e_flush_lpic(struct pci_dev *pdev) 6027 { 6028 struct net_device *netdev = pci_get_drvdata(pdev); 6029 struct e1000_adapter *adapter = netdev_priv(netdev); 6030 struct e1000_hw *hw = &adapter->hw; 6031 u32 ret_val; 6032 6033 pm_runtime_get_sync(netdev->dev.parent); 6034 6035 ret_val = hw->phy.ops.acquire(hw); 6036 if (ret_val) 6037 goto fl_out; 6038 6039 pr_info("EEE TX LPI TIMER: %08X\n", 6040 er32(LPIC) >> E1000_LPIC_LPIET_SHIFT); 6041 6042 hw->phy.ops.release(hw); 6043 6044 fl_out: 6045 pm_runtime_put_sync(netdev->dev.parent); 6046 } 6047 6048 static int e1000e_pm_freeze(struct device *dev) 6049 { 6050 struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev)); 6051 struct e1000_adapter *adapter = netdev_priv(netdev); 6052 6053 netif_device_detach(netdev); 6054 6055 if (netif_running(netdev)) { 6056 int count = E1000_CHECK_RESET_COUNT; 6057 6058 while (test_bit(__E1000_RESETTING, &adapter->state) && count--) 6059 usleep_range(10000, 20000); 6060 6061 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state)); 6062 6063 /* Quiesce the device without resetting the hardware */ 6064 e1000e_down(adapter, false); 6065 e1000_free_irq(adapter); 6066 } 6067 e1000e_reset_interrupt_capability(adapter); 6068 6069 /* Allow time for pending master requests to run */ 6070 e1000e_disable_pcie_master(&adapter->hw); 6071 6072 return 0; 6073 } 6074 6075 static int __e1000_shutdown(struct pci_dev *pdev, bool runtime) 6076 { 6077 struct net_device *netdev = pci_get_drvdata(pdev); 6078 struct e1000_adapter *adapter = netdev_priv(netdev); 6079 struct e1000_hw *hw = &adapter->hw; 6080 u32 ctrl, ctrl_ext, rctl, status; 6081 /* Runtime suspend should only enable wakeup for link changes */ 6082 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol; 6083 int retval = 0; 6084 6085 status = er32(STATUS); 6086 if (status & E1000_STATUS_LU) 6087 wufc &= ~E1000_WUFC_LNKC; 6088 6089 if (wufc) { 6090 e1000_setup_rctl(adapter); 6091 e1000e_set_rx_mode(netdev); 6092 6093 /* turn on all-multi mode if wake on multicast is enabled */ 6094 if (wufc & E1000_WUFC_MC) { 6095 rctl = er32(RCTL); 6096 rctl |= E1000_RCTL_MPE; 6097 ew32(RCTL, rctl); 6098 } 6099 6100 ctrl = er32(CTRL); 6101 ctrl |= E1000_CTRL_ADVD3WUC; 6102 if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP)) 6103 ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT; 6104 ew32(CTRL, ctrl); 6105 6106 if (adapter->hw.phy.media_type == e1000_media_type_fiber || 6107 adapter->hw.phy.media_type == 6108 e1000_media_type_internal_serdes) { 6109 /* keep the laser running in D3 */ 6110 ctrl_ext = er32(CTRL_EXT); 6111 ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA; 6112 ew32(CTRL_EXT, ctrl_ext); 6113 } 6114 6115 if (!runtime) 6116 e1000e_power_up_phy(adapter); 6117 6118 if (adapter->flags & FLAG_IS_ICH) 6119 e1000_suspend_workarounds_ich8lan(&adapter->hw); 6120 6121 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) { 6122 /* enable wakeup by the PHY */ 6123 retval = e1000_init_phy_wakeup(adapter, wufc); 6124 if (retval) 6125 return retval; 6126 } else { 6127 /* enable wakeup by the MAC */ 6128 ew32(WUFC, wufc); 6129 ew32(WUC, E1000_WUC_PME_EN); 6130 } 6131 } else { 6132 ew32(WUC, 0); 6133 ew32(WUFC, 0); 6134 6135 e1000_power_down_phy(adapter); 6136 } 6137 6138 if (adapter->hw.phy.type == e1000_phy_igp_3) { 6139 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw); 6140 } else if (hw->mac.type == e1000_pch_lpt) { 6141 if (!(wufc & (E1000_WUFC_EX | E1000_WUFC_MC | E1000_WUFC_BC))) 6142 /* ULP does not support wake from unicast, multicast 6143 * or broadcast. 6144 */ 6145 retval = e1000_enable_ulp_lpt_lp(hw, !runtime); 6146 6147 if (retval) 6148 return retval; 6149 } 6150 6151 6152 /* Release control of h/w to f/w. If f/w is AMT enabled, this 6153 * would have already happened in close and is redundant. 6154 */ 6155 e1000e_release_hw_control(adapter); 6156 6157 pci_clear_master(pdev); 6158 6159 /* The pci-e switch on some quad port adapters will report a 6160 * correctable error when the MAC transitions from D0 to D3. To 6161 * prevent this we need to mask off the correctable errors on the 6162 * downstream port of the pci-e switch. 6163 * 6164 * We don't have the associated upstream bridge while assigning 6165 * the PCI device into guest. For example, the KVM on power is 6166 * one of the cases. 6167 */ 6168 if (adapter->flags & FLAG_IS_QUAD_PORT) { 6169 struct pci_dev *us_dev = pdev->bus->self; 6170 u16 devctl; 6171 6172 if (!us_dev) 6173 return 0; 6174 6175 pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl); 6176 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, 6177 (devctl & ~PCI_EXP_DEVCTL_CERE)); 6178 6179 pci_save_state(pdev); 6180 pci_prepare_to_sleep(pdev); 6181 6182 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl); 6183 } 6184 6185 return 0; 6186 } 6187 6188 /** 6189 * e1000e_disable_aspm - Disable ASPM states 6190 * @pdev: pointer to PCI device struct 6191 * @state: bit-mask of ASPM states to disable 6192 * 6193 * Some devices *must* have certain ASPM states disabled per hardware errata. 6194 **/ 6195 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state) 6196 { 6197 struct pci_dev *parent = pdev->bus->self; 6198 u16 aspm_dis_mask = 0; 6199 u16 pdev_aspmc, parent_aspmc; 6200 6201 switch (state) { 6202 case PCIE_LINK_STATE_L0S: 6203 case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1: 6204 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S; 6205 /* fall-through - can't have L1 without L0s */ 6206 case PCIE_LINK_STATE_L1: 6207 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1; 6208 break; 6209 default: 6210 return; 6211 } 6212 6213 pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc); 6214 pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC; 6215 6216 if (parent) { 6217 pcie_capability_read_word(parent, PCI_EXP_LNKCTL, 6218 &parent_aspmc); 6219 parent_aspmc &= PCI_EXP_LNKCTL_ASPMC; 6220 } 6221 6222 /* Nothing to do if the ASPM states to be disabled already are */ 6223 if (!(pdev_aspmc & aspm_dis_mask) && 6224 (!parent || !(parent_aspmc & aspm_dis_mask))) 6225 return; 6226 6227 dev_info(&pdev->dev, "Disabling ASPM %s %s\n", 6228 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ? 6229 "L0s" : "", 6230 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ? 6231 "L1" : ""); 6232 6233 #ifdef CONFIG_PCIEASPM 6234 pci_disable_link_state_locked(pdev, state); 6235 6236 /* Double-check ASPM control. If not disabled by the above, the 6237 * BIOS is preventing that from happening (or CONFIG_PCIEASPM is 6238 * not enabled); override by writing PCI config space directly. 6239 */ 6240 pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc); 6241 pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC; 6242 6243 if (!(aspm_dis_mask & pdev_aspmc)) 6244 return; 6245 #endif 6246 6247 /* Both device and parent should have the same ASPM setting. 6248 * Disable ASPM in downstream component first and then upstream. 6249 */ 6250 pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask); 6251 6252 if (parent) 6253 pcie_capability_clear_word(parent, PCI_EXP_LNKCTL, 6254 aspm_dis_mask); 6255 } 6256 6257 #ifdef CONFIG_PM 6258 static int __e1000_resume(struct pci_dev *pdev) 6259 { 6260 struct net_device *netdev = pci_get_drvdata(pdev); 6261 struct e1000_adapter *adapter = netdev_priv(netdev); 6262 struct e1000_hw *hw = &adapter->hw; 6263 u16 aspm_disable_flag = 0; 6264 6265 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S) 6266 aspm_disable_flag = PCIE_LINK_STATE_L0S; 6267 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1) 6268 aspm_disable_flag |= PCIE_LINK_STATE_L1; 6269 if (aspm_disable_flag) 6270 e1000e_disable_aspm(pdev, aspm_disable_flag); 6271 6272 pci_set_master(pdev); 6273 6274 if (hw->mac.type >= e1000_pch2lan) 6275 e1000_resume_workarounds_pchlan(&adapter->hw); 6276 6277 e1000e_power_up_phy(adapter); 6278 6279 /* report the system wakeup cause from S3/S4 */ 6280 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) { 6281 u16 phy_data; 6282 6283 e1e_rphy(&adapter->hw, BM_WUS, &phy_data); 6284 if (phy_data) { 6285 e_info("PHY Wakeup cause - %s\n", 6286 phy_data & E1000_WUS_EX ? "Unicast Packet" : 6287 phy_data & E1000_WUS_MC ? "Multicast Packet" : 6288 phy_data & E1000_WUS_BC ? "Broadcast Packet" : 6289 phy_data & E1000_WUS_MAG ? "Magic Packet" : 6290 phy_data & E1000_WUS_LNKC ? 6291 "Link Status Change" : "other"); 6292 } 6293 e1e_wphy(&adapter->hw, BM_WUS, ~0); 6294 } else { 6295 u32 wus = er32(WUS); 6296 6297 if (wus) { 6298 e_info("MAC Wakeup cause - %s\n", 6299 wus & E1000_WUS_EX ? "Unicast Packet" : 6300 wus & E1000_WUS_MC ? "Multicast Packet" : 6301 wus & E1000_WUS_BC ? "Broadcast Packet" : 6302 wus & E1000_WUS_MAG ? "Magic Packet" : 6303 wus & E1000_WUS_LNKC ? "Link Status Change" : 6304 "other"); 6305 } 6306 ew32(WUS, ~0); 6307 } 6308 6309 e1000e_reset(adapter); 6310 6311 e1000_init_manageability_pt(adapter); 6312 6313 /* If the controller has AMT, do not set DRV_LOAD until the interface 6314 * is up. For all other cases, let the f/w know that the h/w is now 6315 * under the control of the driver. 6316 */ 6317 if (!(adapter->flags & FLAG_HAS_AMT)) 6318 e1000e_get_hw_control(adapter); 6319 6320 return 0; 6321 } 6322 6323 #ifdef CONFIG_PM_SLEEP 6324 static int e1000e_pm_thaw(struct device *dev) 6325 { 6326 struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev)); 6327 struct e1000_adapter *adapter = netdev_priv(netdev); 6328 6329 e1000e_set_interrupt_capability(adapter); 6330 if (netif_running(netdev)) { 6331 u32 err = e1000_request_irq(adapter); 6332 6333 if (err) 6334 return err; 6335 6336 e1000e_up(adapter); 6337 } 6338 6339 netif_device_attach(netdev); 6340 6341 return 0; 6342 } 6343 6344 static int e1000e_pm_suspend(struct device *dev) 6345 { 6346 struct pci_dev *pdev = to_pci_dev(dev); 6347 6348 e1000e_flush_lpic(pdev); 6349 6350 e1000e_pm_freeze(dev); 6351 6352 return __e1000_shutdown(pdev, false); 6353 } 6354 6355 static int e1000e_pm_resume(struct device *dev) 6356 { 6357 struct pci_dev *pdev = to_pci_dev(dev); 6358 int rc; 6359 6360 rc = __e1000_resume(pdev); 6361 if (rc) 6362 return rc; 6363 6364 return e1000e_pm_thaw(dev); 6365 } 6366 #endif /* CONFIG_PM_SLEEP */ 6367 6368 static int e1000e_pm_runtime_idle(struct device *dev) 6369 { 6370 struct pci_dev *pdev = to_pci_dev(dev); 6371 struct net_device *netdev = pci_get_drvdata(pdev); 6372 struct e1000_adapter *adapter = netdev_priv(netdev); 6373 u16 eee_lp; 6374 6375 eee_lp = adapter->hw.dev_spec.ich8lan.eee_lp_ability; 6376 6377 if (!e1000e_has_link(adapter)) { 6378 adapter->hw.dev_spec.ich8lan.eee_lp_ability = eee_lp; 6379 pm_schedule_suspend(dev, 5 * MSEC_PER_SEC); 6380 } 6381 6382 return -EBUSY; 6383 } 6384 6385 static int e1000e_pm_runtime_resume(struct device *dev) 6386 { 6387 struct pci_dev *pdev = to_pci_dev(dev); 6388 struct net_device *netdev = pci_get_drvdata(pdev); 6389 struct e1000_adapter *adapter = netdev_priv(netdev); 6390 int rc; 6391 6392 rc = __e1000_resume(pdev); 6393 if (rc) 6394 return rc; 6395 6396 if (netdev->flags & IFF_UP) 6397 rc = e1000e_up(adapter); 6398 6399 return rc; 6400 } 6401 6402 static int e1000e_pm_runtime_suspend(struct device *dev) 6403 { 6404 struct pci_dev *pdev = to_pci_dev(dev); 6405 struct net_device *netdev = pci_get_drvdata(pdev); 6406 struct e1000_adapter *adapter = netdev_priv(netdev); 6407 6408 if (netdev->flags & IFF_UP) { 6409 int count = E1000_CHECK_RESET_COUNT; 6410 6411 while (test_bit(__E1000_RESETTING, &adapter->state) && count--) 6412 usleep_range(10000, 20000); 6413 6414 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state)); 6415 6416 /* Down the device without resetting the hardware */ 6417 e1000e_down(adapter, false); 6418 } 6419 6420 if (__e1000_shutdown(pdev, true)) { 6421 e1000e_pm_runtime_resume(dev); 6422 return -EBUSY; 6423 } 6424 6425 return 0; 6426 } 6427 #endif /* CONFIG_PM */ 6428 6429 static void e1000_shutdown(struct pci_dev *pdev) 6430 { 6431 e1000e_flush_lpic(pdev); 6432 6433 e1000e_pm_freeze(&pdev->dev); 6434 6435 __e1000_shutdown(pdev, false); 6436 } 6437 6438 #ifdef CONFIG_NET_POLL_CONTROLLER 6439 6440 static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data) 6441 { 6442 struct net_device *netdev = data; 6443 struct e1000_adapter *adapter = netdev_priv(netdev); 6444 6445 if (adapter->msix_entries) { 6446 int vector, msix_irq; 6447 6448 vector = 0; 6449 msix_irq = adapter->msix_entries[vector].vector; 6450 disable_irq(msix_irq); 6451 e1000_intr_msix_rx(msix_irq, netdev); 6452 enable_irq(msix_irq); 6453 6454 vector++; 6455 msix_irq = adapter->msix_entries[vector].vector; 6456 disable_irq(msix_irq); 6457 e1000_intr_msix_tx(msix_irq, netdev); 6458 enable_irq(msix_irq); 6459 6460 vector++; 6461 msix_irq = adapter->msix_entries[vector].vector; 6462 disable_irq(msix_irq); 6463 e1000_msix_other(msix_irq, netdev); 6464 enable_irq(msix_irq); 6465 } 6466 6467 return IRQ_HANDLED; 6468 } 6469 6470 /** 6471 * e1000_netpoll 6472 * @netdev: network interface device structure 6473 * 6474 * Polling 'interrupt' - used by things like netconsole to send skbs 6475 * without having to re-enable interrupts. It's not called while 6476 * the interrupt routine is executing. 6477 */ 6478 static void e1000_netpoll(struct net_device *netdev) 6479 { 6480 struct e1000_adapter *adapter = netdev_priv(netdev); 6481 6482 switch (adapter->int_mode) { 6483 case E1000E_INT_MODE_MSIX: 6484 e1000_intr_msix(adapter->pdev->irq, netdev); 6485 break; 6486 case E1000E_INT_MODE_MSI: 6487 disable_irq(adapter->pdev->irq); 6488 e1000_intr_msi(adapter->pdev->irq, netdev); 6489 enable_irq(adapter->pdev->irq); 6490 break; 6491 default: /* E1000E_INT_MODE_LEGACY */ 6492 disable_irq(adapter->pdev->irq); 6493 e1000_intr(adapter->pdev->irq, netdev); 6494 enable_irq(adapter->pdev->irq); 6495 break; 6496 } 6497 } 6498 #endif 6499 6500 /** 6501 * e1000_io_error_detected - called when PCI error is detected 6502 * @pdev: Pointer to PCI device 6503 * @state: The current pci connection state 6504 * 6505 * This function is called after a PCI bus error affecting 6506 * this device has been detected. 6507 */ 6508 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, 6509 pci_channel_state_t state) 6510 { 6511 struct net_device *netdev = pci_get_drvdata(pdev); 6512 struct e1000_adapter *adapter = netdev_priv(netdev); 6513 6514 netif_device_detach(netdev); 6515 6516 if (state == pci_channel_io_perm_failure) 6517 return PCI_ERS_RESULT_DISCONNECT; 6518 6519 if (netif_running(netdev)) 6520 e1000e_down(adapter, true); 6521 pci_disable_device(pdev); 6522 6523 /* Request a slot slot reset. */ 6524 return PCI_ERS_RESULT_NEED_RESET; 6525 } 6526 6527 /** 6528 * e1000_io_slot_reset - called after the pci bus has been reset. 6529 * @pdev: Pointer to PCI device 6530 * 6531 * Restart the card from scratch, as if from a cold-boot. Implementation 6532 * resembles the first-half of the e1000e_pm_resume routine. 6533 */ 6534 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev) 6535 { 6536 struct net_device *netdev = pci_get_drvdata(pdev); 6537 struct e1000_adapter *adapter = netdev_priv(netdev); 6538 struct e1000_hw *hw = &adapter->hw; 6539 u16 aspm_disable_flag = 0; 6540 int err; 6541 pci_ers_result_t result; 6542 6543 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S) 6544 aspm_disable_flag = PCIE_LINK_STATE_L0S; 6545 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1) 6546 aspm_disable_flag |= PCIE_LINK_STATE_L1; 6547 if (aspm_disable_flag) 6548 e1000e_disable_aspm(pdev, aspm_disable_flag); 6549 6550 err = pci_enable_device_mem(pdev); 6551 if (err) { 6552 dev_err(&pdev->dev, 6553 "Cannot re-enable PCI device after reset.\n"); 6554 result = PCI_ERS_RESULT_DISCONNECT; 6555 } else { 6556 pdev->state_saved = true; 6557 pci_restore_state(pdev); 6558 pci_set_master(pdev); 6559 6560 pci_enable_wake(pdev, PCI_D3hot, 0); 6561 pci_enable_wake(pdev, PCI_D3cold, 0); 6562 6563 e1000e_reset(adapter); 6564 ew32(WUS, ~0); 6565 result = PCI_ERS_RESULT_RECOVERED; 6566 } 6567 6568 pci_cleanup_aer_uncorrect_error_status(pdev); 6569 6570 return result; 6571 } 6572 6573 /** 6574 * e1000_io_resume - called when traffic can start flowing again. 6575 * @pdev: Pointer to PCI device 6576 * 6577 * This callback is called when the error recovery driver tells us that 6578 * its OK to resume normal operation. Implementation resembles the 6579 * second-half of the e1000e_pm_resume routine. 6580 */ 6581 static void e1000_io_resume(struct pci_dev *pdev) 6582 { 6583 struct net_device *netdev = pci_get_drvdata(pdev); 6584 struct e1000_adapter *adapter = netdev_priv(netdev); 6585 6586 e1000_init_manageability_pt(adapter); 6587 6588 if (netif_running(netdev)) { 6589 if (e1000e_up(adapter)) { 6590 dev_err(&pdev->dev, 6591 "can't bring device back up after reset\n"); 6592 return; 6593 } 6594 } 6595 6596 netif_device_attach(netdev); 6597 6598 /* If the controller has AMT, do not set DRV_LOAD until the interface 6599 * is up. For all other cases, let the f/w know that the h/w is now 6600 * under the control of the driver. 6601 */ 6602 if (!(adapter->flags & FLAG_HAS_AMT)) 6603 e1000e_get_hw_control(adapter); 6604 } 6605 6606 static void e1000_print_device_info(struct e1000_adapter *adapter) 6607 { 6608 struct e1000_hw *hw = &adapter->hw; 6609 struct net_device *netdev = adapter->netdev; 6610 u32 ret_val; 6611 u8 pba_str[E1000_PBANUM_LENGTH]; 6612 6613 /* print bus type/speed/width info */ 6614 e_info("(PCI Express:2.5GT/s:%s) %pM\n", 6615 /* bus width */ 6616 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" : 6617 "Width x1"), 6618 /* MAC address */ 6619 netdev->dev_addr); 6620 e_info("Intel(R) PRO/%s Network Connection\n", 6621 (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000"); 6622 ret_val = e1000_read_pba_string_generic(hw, pba_str, 6623 E1000_PBANUM_LENGTH); 6624 if (ret_val) 6625 strlcpy((char *)pba_str, "Unknown", sizeof(pba_str)); 6626 e_info("MAC: %d, PHY: %d, PBA No: %s\n", 6627 hw->mac.type, hw->phy.type, pba_str); 6628 } 6629 6630 static void e1000_eeprom_checks(struct e1000_adapter *adapter) 6631 { 6632 struct e1000_hw *hw = &adapter->hw; 6633 int ret_val; 6634 u16 buf = 0; 6635 6636 if (hw->mac.type != e1000_82573) 6637 return; 6638 6639 ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf); 6640 le16_to_cpus(&buf); 6641 if (!ret_val && (!(buf & (1 << 0)))) { 6642 /* Deep Smart Power Down (DSPD) */ 6643 dev_warn(&adapter->pdev->dev, 6644 "Warning: detected DSPD enabled in EEPROM\n"); 6645 } 6646 } 6647 6648 static int e1000_set_features(struct net_device *netdev, 6649 netdev_features_t features) 6650 { 6651 struct e1000_adapter *adapter = netdev_priv(netdev); 6652 netdev_features_t changed = features ^ netdev->features; 6653 6654 if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) 6655 adapter->flags |= FLAG_TSO_FORCE; 6656 6657 if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX | 6658 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS | 6659 NETIF_F_RXALL))) 6660 return 0; 6661 6662 if (changed & NETIF_F_RXFCS) { 6663 if (features & NETIF_F_RXFCS) { 6664 adapter->flags2 &= ~FLAG2_CRC_STRIPPING; 6665 } else { 6666 /* We need to take it back to defaults, which might mean 6667 * stripping is still disabled at the adapter level. 6668 */ 6669 if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING) 6670 adapter->flags2 |= FLAG2_CRC_STRIPPING; 6671 else 6672 adapter->flags2 &= ~FLAG2_CRC_STRIPPING; 6673 } 6674 } 6675 6676 netdev->features = features; 6677 6678 if (netif_running(netdev)) 6679 e1000e_reinit_locked(adapter); 6680 else 6681 e1000e_reset(adapter); 6682 6683 return 0; 6684 } 6685 6686 static const struct net_device_ops e1000e_netdev_ops = { 6687 .ndo_open = e1000_open, 6688 .ndo_stop = e1000_close, 6689 .ndo_start_xmit = e1000_xmit_frame, 6690 .ndo_get_stats64 = e1000e_get_stats64, 6691 .ndo_set_rx_mode = e1000e_set_rx_mode, 6692 .ndo_set_mac_address = e1000_set_mac, 6693 .ndo_change_mtu = e1000_change_mtu, 6694 .ndo_do_ioctl = e1000_ioctl, 6695 .ndo_tx_timeout = e1000_tx_timeout, 6696 .ndo_validate_addr = eth_validate_addr, 6697 6698 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid, 6699 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid, 6700 #ifdef CONFIG_NET_POLL_CONTROLLER 6701 .ndo_poll_controller = e1000_netpoll, 6702 #endif 6703 .ndo_set_features = e1000_set_features, 6704 }; 6705 6706 /** 6707 * e1000_probe - Device Initialization Routine 6708 * @pdev: PCI device information struct 6709 * @ent: entry in e1000_pci_tbl 6710 * 6711 * Returns 0 on success, negative on failure 6712 * 6713 * e1000_probe initializes an adapter identified by a pci_dev structure. 6714 * The OS initialization, configuring of the adapter private structure, 6715 * and a hardware reset occur. 6716 **/ 6717 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 6718 { 6719 struct net_device *netdev; 6720 struct e1000_adapter *adapter; 6721 struct e1000_hw *hw; 6722 const struct e1000_info *ei = e1000_info_tbl[ent->driver_data]; 6723 resource_size_t mmio_start, mmio_len; 6724 resource_size_t flash_start, flash_len; 6725 static int cards_found; 6726 u16 aspm_disable_flag = 0; 6727 int bars, i, err, pci_using_dac; 6728 u16 eeprom_data = 0; 6729 u16 eeprom_apme_mask = E1000_EEPROM_APME; 6730 s32 rval = 0; 6731 6732 if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S) 6733 aspm_disable_flag = PCIE_LINK_STATE_L0S; 6734 if (ei->flags2 & FLAG2_DISABLE_ASPM_L1) 6735 aspm_disable_flag |= PCIE_LINK_STATE_L1; 6736 if (aspm_disable_flag) 6737 e1000e_disable_aspm(pdev, aspm_disable_flag); 6738 6739 err = pci_enable_device_mem(pdev); 6740 if (err) 6741 return err; 6742 6743 pci_using_dac = 0; 6744 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 6745 if (!err) { 6746 pci_using_dac = 1; 6747 } else { 6748 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 6749 if (err) { 6750 dev_err(&pdev->dev, 6751 "No usable DMA configuration, aborting\n"); 6752 goto err_dma; 6753 } 6754 } 6755 6756 bars = pci_select_bars(pdev, IORESOURCE_MEM); 6757 err = pci_request_selected_regions_exclusive(pdev, bars, 6758 e1000e_driver_name); 6759 if (err) 6760 goto err_pci_reg; 6761 6762 /* AER (Advanced Error Reporting) hooks */ 6763 pci_enable_pcie_error_reporting(pdev); 6764 6765 pci_set_master(pdev); 6766 /* PCI config space info */ 6767 err = pci_save_state(pdev); 6768 if (err) 6769 goto err_alloc_etherdev; 6770 6771 err = -ENOMEM; 6772 netdev = alloc_etherdev(sizeof(struct e1000_adapter)); 6773 if (!netdev) 6774 goto err_alloc_etherdev; 6775 6776 SET_NETDEV_DEV(netdev, &pdev->dev); 6777 6778 netdev->irq = pdev->irq; 6779 6780 pci_set_drvdata(pdev, netdev); 6781 adapter = netdev_priv(netdev); 6782 hw = &adapter->hw; 6783 adapter->netdev = netdev; 6784 adapter->pdev = pdev; 6785 adapter->ei = ei; 6786 adapter->pba = ei->pba; 6787 adapter->flags = ei->flags; 6788 adapter->flags2 = ei->flags2; 6789 adapter->hw.adapter = adapter; 6790 adapter->hw.mac.type = ei->mac; 6791 adapter->max_hw_frame_size = ei->max_hw_frame_size; 6792 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 6793 6794 mmio_start = pci_resource_start(pdev, 0); 6795 mmio_len = pci_resource_len(pdev, 0); 6796 6797 err = -EIO; 6798 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len); 6799 if (!adapter->hw.hw_addr) 6800 goto err_ioremap; 6801 6802 if ((adapter->flags & FLAG_HAS_FLASH) && 6803 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) { 6804 flash_start = pci_resource_start(pdev, 1); 6805 flash_len = pci_resource_len(pdev, 1); 6806 adapter->hw.flash_address = ioremap(flash_start, flash_len); 6807 if (!adapter->hw.flash_address) 6808 goto err_flashmap; 6809 } 6810 6811 /* Set default EEE advertisement */ 6812 if (adapter->flags2 & FLAG2_HAS_EEE) 6813 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T; 6814 6815 /* construct the net_device struct */ 6816 netdev->netdev_ops = &e1000e_netdev_ops; 6817 e1000e_set_ethtool_ops(netdev); 6818 netdev->watchdog_timeo = 5 * HZ; 6819 netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64); 6820 strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name)); 6821 6822 netdev->mem_start = mmio_start; 6823 netdev->mem_end = mmio_start + mmio_len; 6824 6825 adapter->bd_number = cards_found++; 6826 6827 e1000e_check_options(adapter); 6828 6829 /* setup adapter struct */ 6830 err = e1000_sw_init(adapter); 6831 if (err) 6832 goto err_sw_init; 6833 6834 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops)); 6835 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops)); 6836 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops)); 6837 6838 err = ei->get_variants(adapter); 6839 if (err) 6840 goto err_hw_init; 6841 6842 if ((adapter->flags & FLAG_IS_ICH) && 6843 (adapter->flags & FLAG_READ_ONLY_NVM)) 6844 e1000e_write_protect_nvm_ich8lan(&adapter->hw); 6845 6846 hw->mac.ops.get_bus_info(&adapter->hw); 6847 6848 adapter->hw.phy.autoneg_wait_to_complete = 0; 6849 6850 /* Copper options */ 6851 if (adapter->hw.phy.media_type == e1000_media_type_copper) { 6852 adapter->hw.phy.mdix = AUTO_ALL_MODES; 6853 adapter->hw.phy.disable_polarity_correction = 0; 6854 adapter->hw.phy.ms_type = e1000_ms_hw_default; 6855 } 6856 6857 if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw)) 6858 dev_info(&pdev->dev, 6859 "PHY reset is blocked due to SOL/IDER session.\n"); 6860 6861 /* Set initial default active device features */ 6862 netdev->features = (NETIF_F_SG | 6863 NETIF_F_HW_VLAN_CTAG_RX | 6864 NETIF_F_HW_VLAN_CTAG_TX | 6865 NETIF_F_TSO | 6866 NETIF_F_TSO6 | 6867 NETIF_F_RXHASH | 6868 NETIF_F_RXCSUM | 6869 NETIF_F_HW_CSUM); 6870 6871 /* Set user-changeable features (subset of all device features) */ 6872 netdev->hw_features = netdev->features; 6873 netdev->hw_features |= NETIF_F_RXFCS; 6874 netdev->priv_flags |= IFF_SUPP_NOFCS; 6875 netdev->hw_features |= NETIF_F_RXALL; 6876 6877 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) 6878 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 6879 6880 netdev->vlan_features |= (NETIF_F_SG | 6881 NETIF_F_TSO | 6882 NETIF_F_TSO6 | 6883 NETIF_F_HW_CSUM); 6884 6885 netdev->priv_flags |= IFF_UNICAST_FLT; 6886 6887 if (pci_using_dac) { 6888 netdev->features |= NETIF_F_HIGHDMA; 6889 netdev->vlan_features |= NETIF_F_HIGHDMA; 6890 } 6891 6892 if (e1000e_enable_mng_pass_thru(&adapter->hw)) 6893 adapter->flags |= FLAG_MNG_PT_ENABLED; 6894 6895 /* before reading the NVM, reset the controller to 6896 * put the device in a known good starting state 6897 */ 6898 adapter->hw.mac.ops.reset_hw(&adapter->hw); 6899 6900 /* systems with ASPM and others may see the checksum fail on the first 6901 * attempt. Let's give it a few tries 6902 */ 6903 for (i = 0;; i++) { 6904 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0) 6905 break; 6906 if (i == 2) { 6907 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n"); 6908 err = -EIO; 6909 goto err_eeprom; 6910 } 6911 } 6912 6913 e1000_eeprom_checks(adapter); 6914 6915 /* copy the MAC address */ 6916 if (e1000e_read_mac_addr(&adapter->hw)) 6917 dev_err(&pdev->dev, 6918 "NVM Read Error while reading MAC address\n"); 6919 6920 memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len); 6921 6922 if (!is_valid_ether_addr(netdev->dev_addr)) { 6923 dev_err(&pdev->dev, "Invalid MAC Address: %pM\n", 6924 netdev->dev_addr); 6925 err = -EIO; 6926 goto err_eeprom; 6927 } 6928 6929 init_timer(&adapter->watchdog_timer); 6930 adapter->watchdog_timer.function = e1000_watchdog; 6931 adapter->watchdog_timer.data = (unsigned long)adapter; 6932 6933 init_timer(&adapter->phy_info_timer); 6934 adapter->phy_info_timer.function = e1000_update_phy_info; 6935 adapter->phy_info_timer.data = (unsigned long)adapter; 6936 6937 INIT_WORK(&adapter->reset_task, e1000_reset_task); 6938 INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task); 6939 INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround); 6940 INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task); 6941 INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang); 6942 6943 /* Initialize link parameters. User can change them with ethtool */ 6944 adapter->hw.mac.autoneg = 1; 6945 adapter->fc_autoneg = true; 6946 adapter->hw.fc.requested_mode = e1000_fc_default; 6947 adapter->hw.fc.current_mode = e1000_fc_default; 6948 adapter->hw.phy.autoneg_advertised = 0x2f; 6949 6950 /* Initial Wake on LAN setting - If APM wake is enabled in 6951 * the EEPROM, enable the ACPI Magic Packet filter 6952 */ 6953 if (adapter->flags & FLAG_APME_IN_WUC) { 6954 /* APME bit in EEPROM is mapped to WUC.APME */ 6955 eeprom_data = er32(WUC); 6956 eeprom_apme_mask = E1000_WUC_APME; 6957 if ((hw->mac.type > e1000_ich10lan) && 6958 (eeprom_data & E1000_WUC_PHY_WAKE)) 6959 adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP; 6960 } else if (adapter->flags & FLAG_APME_IN_CTRL3) { 6961 if (adapter->flags & FLAG_APME_CHECK_PORT_B && 6962 (adapter->hw.bus.func == 1)) 6963 rval = e1000_read_nvm(&adapter->hw, 6964 NVM_INIT_CONTROL3_PORT_B, 6965 1, &eeprom_data); 6966 else 6967 rval = e1000_read_nvm(&adapter->hw, 6968 NVM_INIT_CONTROL3_PORT_A, 6969 1, &eeprom_data); 6970 } 6971 6972 /* fetch WoL from EEPROM */ 6973 if (rval) 6974 e_dbg("NVM read error getting WoL initial values: %d\n", rval); 6975 else if (eeprom_data & eeprom_apme_mask) 6976 adapter->eeprom_wol |= E1000_WUFC_MAG; 6977 6978 /* now that we have the eeprom settings, apply the special cases 6979 * where the eeprom may be wrong or the board simply won't support 6980 * wake on lan on a particular port 6981 */ 6982 if (!(adapter->flags & FLAG_HAS_WOL)) 6983 adapter->eeprom_wol = 0; 6984 6985 /* initialize the wol settings based on the eeprom settings */ 6986 adapter->wol = adapter->eeprom_wol; 6987 6988 /* make sure adapter isn't asleep if manageability is enabled */ 6989 if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) || 6990 (hw->mac.ops.check_mng_mode(hw))) 6991 device_wakeup_enable(&pdev->dev); 6992 6993 /* save off EEPROM version number */ 6994 rval = e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers); 6995 6996 if (rval) { 6997 e_dbg("NVM read error getting EEPROM version: %d\n", rval); 6998 adapter->eeprom_vers = 0; 6999 } 7000 7001 /* reset the hardware with the new settings */ 7002 e1000e_reset(adapter); 7003 7004 /* If the controller has AMT, do not set DRV_LOAD until the interface 7005 * is up. For all other cases, let the f/w know that the h/w is now 7006 * under the control of the driver. 7007 */ 7008 if (!(adapter->flags & FLAG_HAS_AMT)) 7009 e1000e_get_hw_control(adapter); 7010 7011 strlcpy(netdev->name, "eth%d", sizeof(netdev->name)); 7012 err = register_netdev(netdev); 7013 if (err) 7014 goto err_register; 7015 7016 /* carrier off reporting is important to ethtool even BEFORE open */ 7017 netif_carrier_off(netdev); 7018 7019 /* init PTP hardware clock */ 7020 e1000e_ptp_init(adapter); 7021 7022 e1000_print_device_info(adapter); 7023 7024 if (pci_dev_run_wake(pdev)) 7025 pm_runtime_put_noidle(&pdev->dev); 7026 7027 return 0; 7028 7029 err_register: 7030 if (!(adapter->flags & FLAG_HAS_AMT)) 7031 e1000e_release_hw_control(adapter); 7032 err_eeprom: 7033 if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw)) 7034 e1000_phy_hw_reset(&adapter->hw); 7035 err_hw_init: 7036 kfree(adapter->tx_ring); 7037 kfree(adapter->rx_ring); 7038 err_sw_init: 7039 if (adapter->hw.flash_address) 7040 iounmap(adapter->hw.flash_address); 7041 e1000e_reset_interrupt_capability(adapter); 7042 err_flashmap: 7043 iounmap(adapter->hw.hw_addr); 7044 err_ioremap: 7045 free_netdev(netdev); 7046 err_alloc_etherdev: 7047 pci_release_selected_regions(pdev, 7048 pci_select_bars(pdev, IORESOURCE_MEM)); 7049 err_pci_reg: 7050 err_dma: 7051 pci_disable_device(pdev); 7052 return err; 7053 } 7054 7055 /** 7056 * e1000_remove - Device Removal Routine 7057 * @pdev: PCI device information struct 7058 * 7059 * e1000_remove is called by the PCI subsystem to alert the driver 7060 * that it should release a PCI device. The could be caused by a 7061 * Hot-Plug event, or because the driver is going to be removed from 7062 * memory. 7063 **/ 7064 static void e1000_remove(struct pci_dev *pdev) 7065 { 7066 struct net_device *netdev = pci_get_drvdata(pdev); 7067 struct e1000_adapter *adapter = netdev_priv(netdev); 7068 bool down = test_bit(__E1000_DOWN, &adapter->state); 7069 7070 e1000e_ptp_remove(adapter); 7071 7072 /* The timers may be rescheduled, so explicitly disable them 7073 * from being rescheduled. 7074 */ 7075 if (!down) 7076 set_bit(__E1000_DOWN, &adapter->state); 7077 del_timer_sync(&adapter->watchdog_timer); 7078 del_timer_sync(&adapter->phy_info_timer); 7079 7080 cancel_work_sync(&adapter->reset_task); 7081 cancel_work_sync(&adapter->watchdog_task); 7082 cancel_work_sync(&adapter->downshift_task); 7083 cancel_work_sync(&adapter->update_phy_task); 7084 cancel_work_sync(&adapter->print_hang_task); 7085 7086 if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) { 7087 cancel_work_sync(&adapter->tx_hwtstamp_work); 7088 if (adapter->tx_hwtstamp_skb) { 7089 dev_kfree_skb_any(adapter->tx_hwtstamp_skb); 7090 adapter->tx_hwtstamp_skb = NULL; 7091 } 7092 } 7093 7094 /* Don't lie to e1000_close() down the road. */ 7095 if (!down) 7096 clear_bit(__E1000_DOWN, &adapter->state); 7097 unregister_netdev(netdev); 7098 7099 if (pci_dev_run_wake(pdev)) 7100 pm_runtime_get_noresume(&pdev->dev); 7101 7102 /* Release control of h/w to f/w. If f/w is AMT enabled, this 7103 * would have already happened in close and is redundant. 7104 */ 7105 e1000e_release_hw_control(adapter); 7106 7107 e1000e_reset_interrupt_capability(adapter); 7108 kfree(adapter->tx_ring); 7109 kfree(adapter->rx_ring); 7110 7111 iounmap(adapter->hw.hw_addr); 7112 if (adapter->hw.flash_address) 7113 iounmap(adapter->hw.flash_address); 7114 pci_release_selected_regions(pdev, 7115 pci_select_bars(pdev, IORESOURCE_MEM)); 7116 7117 free_netdev(netdev); 7118 7119 /* AER disable */ 7120 pci_disable_pcie_error_reporting(pdev); 7121 7122 pci_disable_device(pdev); 7123 } 7124 7125 /* PCI Error Recovery (ERS) */ 7126 static const struct pci_error_handlers e1000_err_handler = { 7127 .error_detected = e1000_io_error_detected, 7128 .slot_reset = e1000_io_slot_reset, 7129 .resume = e1000_io_resume, 7130 }; 7131 7132 static const struct pci_device_id e1000_pci_tbl[] = { 7133 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 }, 7134 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 }, 7135 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 }, 7136 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), 7137 board_82571 }, 7138 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 }, 7139 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 }, 7140 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 }, 7141 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 }, 7142 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 }, 7143 7144 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 }, 7145 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 }, 7146 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 }, 7147 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 }, 7148 7149 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 }, 7150 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 }, 7151 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 }, 7152 7153 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 }, 7154 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 }, 7155 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 }, 7156 7157 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT), 7158 board_80003es2lan }, 7159 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT), 7160 board_80003es2lan }, 7161 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT), 7162 board_80003es2lan }, 7163 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT), 7164 board_80003es2lan }, 7165 7166 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan }, 7167 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan }, 7168 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan }, 7169 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan }, 7170 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan }, 7171 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan }, 7172 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan }, 7173 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan }, 7174 7175 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan }, 7176 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan }, 7177 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan }, 7178 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan }, 7179 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan }, 7180 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan }, 7181 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan }, 7182 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan }, 7183 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan }, 7184 7185 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan }, 7186 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan }, 7187 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan }, 7188 7189 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan }, 7190 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan }, 7191 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan }, 7192 7193 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan }, 7194 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan }, 7195 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan }, 7196 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan }, 7197 7198 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan }, 7199 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan }, 7200 7201 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt }, 7202 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt }, 7203 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt }, 7204 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt }, 7205 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt }, 7206 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt }, 7207 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt }, 7208 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt }, 7209 7210 { 0, 0, 0, 0, 0, 0, 0 } /* terminate list */ 7211 }; 7212 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl); 7213 7214 static const struct dev_pm_ops e1000_pm_ops = { 7215 #ifdef CONFIG_PM_SLEEP 7216 .suspend = e1000e_pm_suspend, 7217 .resume = e1000e_pm_resume, 7218 .freeze = e1000e_pm_freeze, 7219 .thaw = e1000e_pm_thaw, 7220 .poweroff = e1000e_pm_suspend, 7221 .restore = e1000e_pm_resume, 7222 #endif 7223 SET_RUNTIME_PM_OPS(e1000e_pm_runtime_suspend, e1000e_pm_runtime_resume, 7224 e1000e_pm_runtime_idle) 7225 }; 7226 7227 /* PCI Device API Driver */ 7228 static struct pci_driver e1000_driver = { 7229 .name = e1000e_driver_name, 7230 .id_table = e1000_pci_tbl, 7231 .probe = e1000_probe, 7232 .remove = e1000_remove, 7233 .driver = { 7234 .pm = &e1000_pm_ops, 7235 }, 7236 .shutdown = e1000_shutdown, 7237 .err_handler = &e1000_err_handler 7238 }; 7239 7240 /** 7241 * e1000_init_module - Driver Registration Routine 7242 * 7243 * e1000_init_module is the first routine called when the driver is 7244 * loaded. All it does is register with the PCI subsystem. 7245 **/ 7246 static int __init e1000_init_module(void) 7247 { 7248 int ret; 7249 7250 pr_info("Intel(R) PRO/1000 Network Driver - %s\n", 7251 e1000e_driver_version); 7252 pr_info("Copyright(c) 1999 - 2014 Intel Corporation.\n"); 7253 ret = pci_register_driver(&e1000_driver); 7254 7255 return ret; 7256 } 7257 module_init(e1000_init_module); 7258 7259 /** 7260 * e1000_exit_module - Driver Exit Cleanup Routine 7261 * 7262 * e1000_exit_module is called just before the driver is removed 7263 * from memory. 7264 **/ 7265 static void __exit e1000_exit_module(void) 7266 { 7267 pci_unregister_driver(&e1000_driver); 7268 } 7269 module_exit(e1000_exit_module); 7270 7271 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 7272 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver"); 7273 MODULE_LICENSE("GPL"); 7274 MODULE_VERSION(DRV_VERSION); 7275 7276 /* netdev.c */ 7277