1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3 
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5 
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/pci.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/delay.h>
13 #include <linux/netdevice.h>
14 #include <linux/interrupt.h>
15 #include <linux/tcp.h>
16 #include <linux/ipv6.h>
17 #include <linux/slab.h>
18 #include <net/checksum.h>
19 #include <net/ip6_checksum.h>
20 #include <linux/ethtool.h>
21 #include <linux/if_vlan.h>
22 #include <linux/cpu.h>
23 #include <linux/smp.h>
24 #include <linux/pm_qos.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/aer.h>
27 #include <linux/prefetch.h>
28 
29 #include "e1000.h"
30 
31 char e1000e_driver_name[] = "e1000e";
32 
33 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
34 static int debug = -1;
35 module_param(debug, int, 0);
36 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
37 
38 static const struct e1000_info *e1000_info_tbl[] = {
39 	[board_82571]		= &e1000_82571_info,
40 	[board_82572]		= &e1000_82572_info,
41 	[board_82573]		= &e1000_82573_info,
42 	[board_82574]		= &e1000_82574_info,
43 	[board_82583]		= &e1000_82583_info,
44 	[board_80003es2lan]	= &e1000_es2_info,
45 	[board_ich8lan]		= &e1000_ich8_info,
46 	[board_ich9lan]		= &e1000_ich9_info,
47 	[board_ich10lan]	= &e1000_ich10_info,
48 	[board_pchlan]		= &e1000_pch_info,
49 	[board_pch2lan]		= &e1000_pch2_info,
50 	[board_pch_lpt]		= &e1000_pch_lpt_info,
51 	[board_pch_spt]		= &e1000_pch_spt_info,
52 	[board_pch_cnp]		= &e1000_pch_cnp_info,
53 };
54 
55 struct e1000_reg_info {
56 	u32 ofs;
57 	char *name;
58 };
59 
60 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
61 	/* General Registers */
62 	{E1000_CTRL, "CTRL"},
63 	{E1000_STATUS, "STATUS"},
64 	{E1000_CTRL_EXT, "CTRL_EXT"},
65 
66 	/* Interrupt Registers */
67 	{E1000_ICR, "ICR"},
68 
69 	/* Rx Registers */
70 	{E1000_RCTL, "RCTL"},
71 	{E1000_RDLEN(0), "RDLEN"},
72 	{E1000_RDH(0), "RDH"},
73 	{E1000_RDT(0), "RDT"},
74 	{E1000_RDTR, "RDTR"},
75 	{E1000_RXDCTL(0), "RXDCTL"},
76 	{E1000_ERT, "ERT"},
77 	{E1000_RDBAL(0), "RDBAL"},
78 	{E1000_RDBAH(0), "RDBAH"},
79 	{E1000_RDFH, "RDFH"},
80 	{E1000_RDFT, "RDFT"},
81 	{E1000_RDFHS, "RDFHS"},
82 	{E1000_RDFTS, "RDFTS"},
83 	{E1000_RDFPC, "RDFPC"},
84 
85 	/* Tx Registers */
86 	{E1000_TCTL, "TCTL"},
87 	{E1000_TDBAL(0), "TDBAL"},
88 	{E1000_TDBAH(0), "TDBAH"},
89 	{E1000_TDLEN(0), "TDLEN"},
90 	{E1000_TDH(0), "TDH"},
91 	{E1000_TDT(0), "TDT"},
92 	{E1000_TIDV, "TIDV"},
93 	{E1000_TXDCTL(0), "TXDCTL"},
94 	{E1000_TADV, "TADV"},
95 	{E1000_TARC(0), "TARC"},
96 	{E1000_TDFH, "TDFH"},
97 	{E1000_TDFT, "TDFT"},
98 	{E1000_TDFHS, "TDFHS"},
99 	{E1000_TDFTS, "TDFTS"},
100 	{E1000_TDFPC, "TDFPC"},
101 
102 	/* List Terminator */
103 	{0, NULL}
104 };
105 
106 struct e1000e_me_supported {
107 	u16 device_id;		/* supported device ID */
108 };
109 
110 static const struct e1000e_me_supported me_supported[] = {
111 	{E1000_DEV_ID_PCH_LPT_I217_LM},
112 	{E1000_DEV_ID_PCH_LPTLP_I218_LM},
113 	{E1000_DEV_ID_PCH_I218_LM2},
114 	{E1000_DEV_ID_PCH_I218_LM3},
115 	{E1000_DEV_ID_PCH_SPT_I219_LM},
116 	{E1000_DEV_ID_PCH_SPT_I219_LM2},
117 	{E1000_DEV_ID_PCH_LBG_I219_LM3},
118 	{E1000_DEV_ID_PCH_SPT_I219_LM4},
119 	{E1000_DEV_ID_PCH_SPT_I219_LM5},
120 	{E1000_DEV_ID_PCH_CNP_I219_LM6},
121 	{E1000_DEV_ID_PCH_CNP_I219_LM7},
122 	{E1000_DEV_ID_PCH_ICP_I219_LM8},
123 	{E1000_DEV_ID_PCH_ICP_I219_LM9},
124 	{E1000_DEV_ID_PCH_CMP_I219_LM10},
125 	{E1000_DEV_ID_PCH_CMP_I219_LM11},
126 	{E1000_DEV_ID_PCH_CMP_I219_LM12},
127 	{E1000_DEV_ID_PCH_TGP_I219_LM13},
128 	{E1000_DEV_ID_PCH_TGP_I219_LM14},
129 	{E1000_DEV_ID_PCH_TGP_I219_LM15},
130 	{0}
131 };
132 
133 static bool e1000e_check_me(u16 device_id)
134 {
135 	struct e1000e_me_supported *id;
136 
137 	for (id = (struct e1000e_me_supported *)me_supported;
138 	     id->device_id; id++)
139 		if (device_id == id->device_id)
140 			return true;
141 
142 	return false;
143 }
144 
145 /**
146  * __ew32_prepare - prepare to write to MAC CSR register on certain parts
147  * @hw: pointer to the HW structure
148  *
149  * When updating the MAC CSR registers, the Manageability Engine (ME) could
150  * be accessing the registers at the same time.  Normally, this is handled in
151  * h/w by an arbiter but on some parts there is a bug that acknowledges Host
152  * accesses later than it should which could result in the register to have
153  * an incorrect value.  Workaround this by checking the FWSM register which
154  * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set
155  * and try again a number of times.
156  **/
157 static void __ew32_prepare(struct e1000_hw *hw)
158 {
159 	s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT;
160 
161 	while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i)
162 		udelay(50);
163 }
164 
165 void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val)
166 {
167 	if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
168 		__ew32_prepare(hw);
169 
170 	writel(val, hw->hw_addr + reg);
171 }
172 
173 /**
174  * e1000_regdump - register printout routine
175  * @hw: pointer to the HW structure
176  * @reginfo: pointer to the register info table
177  **/
178 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
179 {
180 	int n = 0;
181 	char rname[16];
182 	u32 regs[8];
183 
184 	switch (reginfo->ofs) {
185 	case E1000_RXDCTL(0):
186 		for (n = 0; n < 2; n++)
187 			regs[n] = __er32(hw, E1000_RXDCTL(n));
188 		break;
189 	case E1000_TXDCTL(0):
190 		for (n = 0; n < 2; n++)
191 			regs[n] = __er32(hw, E1000_TXDCTL(n));
192 		break;
193 	case E1000_TARC(0):
194 		for (n = 0; n < 2; n++)
195 			regs[n] = __er32(hw, E1000_TARC(n));
196 		break;
197 	default:
198 		pr_info("%-15s %08x\n",
199 			reginfo->name, __er32(hw, reginfo->ofs));
200 		return;
201 	}
202 
203 	snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
204 	pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
205 }
206 
207 static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
208 				 struct e1000_buffer *bi)
209 {
210 	int i;
211 	struct e1000_ps_page *ps_page;
212 
213 	for (i = 0; i < adapter->rx_ps_pages; i++) {
214 		ps_page = &bi->ps_pages[i];
215 
216 		if (ps_page->page) {
217 			pr_info("packet dump for ps_page %d:\n", i);
218 			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
219 				       16, 1, page_address(ps_page->page),
220 				       PAGE_SIZE, true);
221 		}
222 	}
223 }
224 
225 /**
226  * e1000e_dump - Print registers, Tx-ring and Rx-ring
227  * @adapter: board private structure
228  **/
229 static void e1000e_dump(struct e1000_adapter *adapter)
230 {
231 	struct net_device *netdev = adapter->netdev;
232 	struct e1000_hw *hw = &adapter->hw;
233 	struct e1000_reg_info *reginfo;
234 	struct e1000_ring *tx_ring = adapter->tx_ring;
235 	struct e1000_tx_desc *tx_desc;
236 	struct my_u0 {
237 		__le64 a;
238 		__le64 b;
239 	} *u0;
240 	struct e1000_buffer *buffer_info;
241 	struct e1000_ring *rx_ring = adapter->rx_ring;
242 	union e1000_rx_desc_packet_split *rx_desc_ps;
243 	union e1000_rx_desc_extended *rx_desc;
244 	struct my_u1 {
245 		__le64 a;
246 		__le64 b;
247 		__le64 c;
248 		__le64 d;
249 	} *u1;
250 	u32 staterr;
251 	int i = 0;
252 
253 	if (!netif_msg_hw(adapter))
254 		return;
255 
256 	/* Print netdevice Info */
257 	if (netdev) {
258 		dev_info(&adapter->pdev->dev, "Net device Info\n");
259 		pr_info("Device Name     state            trans_start\n");
260 		pr_info("%-15s %016lX %016lX\n", netdev->name,
261 			netdev->state, dev_trans_start(netdev));
262 	}
263 
264 	/* Print Registers */
265 	dev_info(&adapter->pdev->dev, "Register Dump\n");
266 	pr_info(" Register Name   Value\n");
267 	for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
268 	     reginfo->name; reginfo++) {
269 		e1000_regdump(hw, reginfo);
270 	}
271 
272 	/* Print Tx Ring Summary */
273 	if (!netdev || !netif_running(netdev))
274 		return;
275 
276 	dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
277 	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
278 	buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
279 	pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
280 		0, tx_ring->next_to_use, tx_ring->next_to_clean,
281 		(unsigned long long)buffer_info->dma,
282 		buffer_info->length,
283 		buffer_info->next_to_watch,
284 		(unsigned long long)buffer_info->time_stamp);
285 
286 	/* Print Tx Ring */
287 	if (!netif_msg_tx_done(adapter))
288 		goto rx_ring_summary;
289 
290 	dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
291 
292 	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
293 	 *
294 	 * Legacy Transmit Descriptor
295 	 *   +--------------------------------------------------------------+
296 	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
297 	 *   +--------------------------------------------------------------+
298 	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
299 	 *   +--------------------------------------------------------------+
300 	 *   63       48 47        36 35    32 31     24 23    16 15        0
301 	 *
302 	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
303 	 *   63      48 47    40 39       32 31             16 15    8 7      0
304 	 *   +----------------------------------------------------------------+
305 	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
306 	 *   +----------------------------------------------------------------+
307 	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
308 	 *   +----------------------------------------------------------------+
309 	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
310 	 *
311 	 * Extended Data Descriptor (DTYP=0x1)
312 	 *   +----------------------------------------------------------------+
313 	 * 0 |                     Buffer Address [63:0]                      |
314 	 *   +----------------------------------------------------------------+
315 	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
316 	 *   +----------------------------------------------------------------+
317 	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
318 	 */
319 	pr_info("Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Legacy format\n");
320 	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Context format\n");
321 	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Data format\n");
322 	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
323 		const char *next_desc;
324 		tx_desc = E1000_TX_DESC(*tx_ring, i);
325 		buffer_info = &tx_ring->buffer_info[i];
326 		u0 = (struct my_u0 *)tx_desc;
327 		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
328 			next_desc = " NTC/U";
329 		else if (i == tx_ring->next_to_use)
330 			next_desc = " NTU";
331 		else if (i == tx_ring->next_to_clean)
332 			next_desc = " NTC";
333 		else
334 			next_desc = "";
335 		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p%s\n",
336 			(!(le64_to_cpu(u0->b) & BIT(29)) ? 'l' :
337 			 ((le64_to_cpu(u0->b) & BIT(20)) ? 'd' : 'c')),
338 			i,
339 			(unsigned long long)le64_to_cpu(u0->a),
340 			(unsigned long long)le64_to_cpu(u0->b),
341 			(unsigned long long)buffer_info->dma,
342 			buffer_info->length, buffer_info->next_to_watch,
343 			(unsigned long long)buffer_info->time_stamp,
344 			buffer_info->skb, next_desc);
345 
346 		if (netif_msg_pktdata(adapter) && buffer_info->skb)
347 			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
348 				       16, 1, buffer_info->skb->data,
349 				       buffer_info->skb->len, true);
350 	}
351 
352 	/* Print Rx Ring Summary */
353 rx_ring_summary:
354 	dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
355 	pr_info("Queue [NTU] [NTC]\n");
356 	pr_info(" %5d %5X %5X\n",
357 		0, rx_ring->next_to_use, rx_ring->next_to_clean);
358 
359 	/* Print Rx Ring */
360 	if (!netif_msg_rx_status(adapter))
361 		return;
362 
363 	dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
364 	switch (adapter->rx_ps_pages) {
365 	case 1:
366 	case 2:
367 	case 3:
368 		/* [Extended] Packet Split Receive Descriptor Format
369 		 *
370 		 *    +-----------------------------------------------------+
371 		 *  0 |                Buffer Address 0 [63:0]              |
372 		 *    +-----------------------------------------------------+
373 		 *  8 |                Buffer Address 1 [63:0]              |
374 		 *    +-----------------------------------------------------+
375 		 * 16 |                Buffer Address 2 [63:0]              |
376 		 *    +-----------------------------------------------------+
377 		 * 24 |                Buffer Address 3 [63:0]              |
378 		 *    +-----------------------------------------------------+
379 		 */
380 		pr_info("R  [desc]      [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] [bi->skb] <-- Ext Pkt Split format\n");
381 		/* [Extended] Receive Descriptor (Write-Back) Format
382 		 *
383 		 *   63       48 47    32 31     13 12    8 7    4 3        0
384 		 *   +------------------------------------------------------+
385 		 * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
386 		 *   | Checksum | Ident  |         | Queue |      |  Type   |
387 		 *   +------------------------------------------------------+
388 		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
389 		 *   +------------------------------------------------------+
390 		 *   63       48 47    32 31            20 19               0
391 		 */
392 		pr_info("RWB[desc]      [ck ipid mrqhsh] [vl   l0 ee  es] [ l3  l2  l1 hs] [reserved      ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
393 		for (i = 0; i < rx_ring->count; i++) {
394 			const char *next_desc;
395 			buffer_info = &rx_ring->buffer_info[i];
396 			rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
397 			u1 = (struct my_u1 *)rx_desc_ps;
398 			staterr =
399 			    le32_to_cpu(rx_desc_ps->wb.middle.status_error);
400 
401 			if (i == rx_ring->next_to_use)
402 				next_desc = " NTU";
403 			else if (i == rx_ring->next_to_clean)
404 				next_desc = " NTC";
405 			else
406 				next_desc = "";
407 
408 			if (staterr & E1000_RXD_STAT_DD) {
409 				/* Descriptor Done */
410 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX ---------------- %p%s\n",
411 					"RWB", i,
412 					(unsigned long long)le64_to_cpu(u1->a),
413 					(unsigned long long)le64_to_cpu(u1->b),
414 					(unsigned long long)le64_to_cpu(u1->c),
415 					(unsigned long long)le64_to_cpu(u1->d),
416 					buffer_info->skb, next_desc);
417 			} else {
418 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX %016llX %p%s\n",
419 					"R  ", i,
420 					(unsigned long long)le64_to_cpu(u1->a),
421 					(unsigned long long)le64_to_cpu(u1->b),
422 					(unsigned long long)le64_to_cpu(u1->c),
423 					(unsigned long long)le64_to_cpu(u1->d),
424 					(unsigned long long)buffer_info->dma,
425 					buffer_info->skb, next_desc);
426 
427 				if (netif_msg_pktdata(adapter))
428 					e1000e_dump_ps_pages(adapter,
429 							     buffer_info);
430 			}
431 		}
432 		break;
433 	default:
434 	case 0:
435 		/* Extended Receive Descriptor (Read) Format
436 		 *
437 		 *   +-----------------------------------------------------+
438 		 * 0 |                Buffer Address [63:0]                |
439 		 *   +-----------------------------------------------------+
440 		 * 8 |                      Reserved                       |
441 		 *   +-----------------------------------------------------+
442 		 */
443 		pr_info("R  [desc]      [buf addr 63:0 ] [reserved 63:0 ] [bi->dma       ] [bi->skb] <-- Ext (Read) format\n");
444 		/* Extended Receive Descriptor (Write-Back) Format
445 		 *
446 		 *   63       48 47    32 31    24 23            4 3        0
447 		 *   +------------------------------------------------------+
448 		 *   |     RSS Hash      |        |               |         |
449 		 * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
450 		 *   | Packet   | IP     |        |               |  Type   |
451 		 *   | Checksum | Ident  |        |               |         |
452 		 *   +------------------------------------------------------+
453 		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
454 		 *   +------------------------------------------------------+
455 		 *   63       48 47    32 31            20 19               0
456 		 */
457 		pr_info("RWB[desc]      [cs ipid    mrq] [vt   ln xe  xs] [bi->skb] <-- Ext (Write-Back) format\n");
458 
459 		for (i = 0; i < rx_ring->count; i++) {
460 			const char *next_desc;
461 
462 			buffer_info = &rx_ring->buffer_info[i];
463 			rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
464 			u1 = (struct my_u1 *)rx_desc;
465 			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
466 
467 			if (i == rx_ring->next_to_use)
468 				next_desc = " NTU";
469 			else if (i == rx_ring->next_to_clean)
470 				next_desc = " NTC";
471 			else
472 				next_desc = "";
473 
474 			if (staterr & E1000_RXD_STAT_DD) {
475 				/* Descriptor Done */
476 				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %p%s\n",
477 					"RWB", i,
478 					(unsigned long long)le64_to_cpu(u1->a),
479 					(unsigned long long)le64_to_cpu(u1->b),
480 					buffer_info->skb, next_desc);
481 			} else {
482 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %p%s\n",
483 					"R  ", i,
484 					(unsigned long long)le64_to_cpu(u1->a),
485 					(unsigned long long)le64_to_cpu(u1->b),
486 					(unsigned long long)buffer_info->dma,
487 					buffer_info->skb, next_desc);
488 
489 				if (netif_msg_pktdata(adapter) &&
490 				    buffer_info->skb)
491 					print_hex_dump(KERN_INFO, "",
492 						       DUMP_PREFIX_ADDRESS, 16,
493 						       1,
494 						       buffer_info->skb->data,
495 						       adapter->rx_buffer_len,
496 						       true);
497 			}
498 		}
499 	}
500 }
501 
502 /**
503  * e1000_desc_unused - calculate if we have unused descriptors
504  **/
505 static int e1000_desc_unused(struct e1000_ring *ring)
506 {
507 	if (ring->next_to_clean > ring->next_to_use)
508 		return ring->next_to_clean - ring->next_to_use - 1;
509 
510 	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
511 }
512 
513 /**
514  * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
515  * @adapter: board private structure
516  * @hwtstamps: time stamp structure to update
517  * @systim: unsigned 64bit system time value.
518  *
519  * Convert the system time value stored in the RX/TXSTMP registers into a
520  * hwtstamp which can be used by the upper level time stamping functions.
521  *
522  * The 'systim_lock' spinlock is used to protect the consistency of the
523  * system time value. This is needed because reading the 64 bit time
524  * value involves reading two 32 bit registers. The first read latches the
525  * value.
526  **/
527 static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter,
528 				      struct skb_shared_hwtstamps *hwtstamps,
529 				      u64 systim)
530 {
531 	u64 ns;
532 	unsigned long flags;
533 
534 	spin_lock_irqsave(&adapter->systim_lock, flags);
535 	ns = timecounter_cyc2time(&adapter->tc, systim);
536 	spin_unlock_irqrestore(&adapter->systim_lock, flags);
537 
538 	memset(hwtstamps, 0, sizeof(*hwtstamps));
539 	hwtstamps->hwtstamp = ns_to_ktime(ns);
540 }
541 
542 /**
543  * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
544  * @adapter: board private structure
545  * @status: descriptor extended error and status field
546  * @skb: particular skb to include time stamp
547  *
548  * If the time stamp is valid, convert it into the timecounter ns value
549  * and store that result into the shhwtstamps structure which is passed
550  * up the network stack.
551  **/
552 static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status,
553 			       struct sk_buff *skb)
554 {
555 	struct e1000_hw *hw = &adapter->hw;
556 	u64 rxstmp;
557 
558 	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) ||
559 	    !(status & E1000_RXDEXT_STATERR_TST) ||
560 	    !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
561 		return;
562 
563 	/* The Rx time stamp registers contain the time stamp.  No other
564 	 * received packet will be time stamped until the Rx time stamp
565 	 * registers are read.  Because only one packet can be time stamped
566 	 * at a time, the register values must belong to this packet and
567 	 * therefore none of the other additional attributes need to be
568 	 * compared.
569 	 */
570 	rxstmp = (u64)er32(RXSTMPL);
571 	rxstmp |= (u64)er32(RXSTMPH) << 32;
572 	e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp);
573 
574 	adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP;
575 }
576 
577 /**
578  * e1000_receive_skb - helper function to handle Rx indications
579  * @adapter: board private structure
580  * @staterr: descriptor extended error and status field as written by hardware
581  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
582  * @skb: pointer to sk_buff to be indicated to stack
583  **/
584 static void e1000_receive_skb(struct e1000_adapter *adapter,
585 			      struct net_device *netdev, struct sk_buff *skb,
586 			      u32 staterr, __le16 vlan)
587 {
588 	u16 tag = le16_to_cpu(vlan);
589 
590 	e1000e_rx_hwtstamp(adapter, staterr, skb);
591 
592 	skb->protocol = eth_type_trans(skb, netdev);
593 
594 	if (staterr & E1000_RXD_STAT_VP)
595 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag);
596 
597 	napi_gro_receive(&adapter->napi, skb);
598 }
599 
600 /**
601  * e1000_rx_checksum - Receive Checksum Offload
602  * @adapter: board private structure
603  * @status_err: receive descriptor status and error fields
604  * @csum: receive descriptor csum field
605  * @sk_buff: socket buffer with received data
606  **/
607 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
608 			      struct sk_buff *skb)
609 {
610 	u16 status = (u16)status_err;
611 	u8 errors = (u8)(status_err >> 24);
612 
613 	skb_checksum_none_assert(skb);
614 
615 	/* Rx checksum disabled */
616 	if (!(adapter->netdev->features & NETIF_F_RXCSUM))
617 		return;
618 
619 	/* Ignore Checksum bit is set */
620 	if (status & E1000_RXD_STAT_IXSM)
621 		return;
622 
623 	/* TCP/UDP checksum error bit or IP checksum error bit is set */
624 	if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
625 		/* let the stack verify checksum errors */
626 		adapter->hw_csum_err++;
627 		return;
628 	}
629 
630 	/* TCP/UDP Checksum has not been calculated */
631 	if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
632 		return;
633 
634 	/* It must be a TCP or UDP packet with a valid checksum */
635 	skb->ip_summed = CHECKSUM_UNNECESSARY;
636 	adapter->hw_csum_good++;
637 }
638 
639 static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
640 {
641 	struct e1000_adapter *adapter = rx_ring->adapter;
642 	struct e1000_hw *hw = &adapter->hw;
643 
644 	__ew32_prepare(hw);
645 	writel(i, rx_ring->tail);
646 
647 	if (unlikely(i != readl(rx_ring->tail))) {
648 		u32 rctl = er32(RCTL);
649 
650 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
651 		e_err("ME firmware caused invalid RDT - resetting\n");
652 		schedule_work(&adapter->reset_task);
653 	}
654 }
655 
656 static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
657 {
658 	struct e1000_adapter *adapter = tx_ring->adapter;
659 	struct e1000_hw *hw = &adapter->hw;
660 
661 	__ew32_prepare(hw);
662 	writel(i, tx_ring->tail);
663 
664 	if (unlikely(i != readl(tx_ring->tail))) {
665 		u32 tctl = er32(TCTL);
666 
667 		ew32(TCTL, tctl & ~E1000_TCTL_EN);
668 		e_err("ME firmware caused invalid TDT - resetting\n");
669 		schedule_work(&adapter->reset_task);
670 	}
671 }
672 
673 /**
674  * e1000_alloc_rx_buffers - Replace used receive buffers
675  * @rx_ring: Rx descriptor ring
676  **/
677 static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
678 				   int cleaned_count, gfp_t gfp)
679 {
680 	struct e1000_adapter *adapter = rx_ring->adapter;
681 	struct net_device *netdev = adapter->netdev;
682 	struct pci_dev *pdev = adapter->pdev;
683 	union e1000_rx_desc_extended *rx_desc;
684 	struct e1000_buffer *buffer_info;
685 	struct sk_buff *skb;
686 	unsigned int i;
687 	unsigned int bufsz = adapter->rx_buffer_len;
688 
689 	i = rx_ring->next_to_use;
690 	buffer_info = &rx_ring->buffer_info[i];
691 
692 	while (cleaned_count--) {
693 		skb = buffer_info->skb;
694 		if (skb) {
695 			skb_trim(skb, 0);
696 			goto map_skb;
697 		}
698 
699 		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
700 		if (!skb) {
701 			/* Better luck next round */
702 			adapter->alloc_rx_buff_failed++;
703 			break;
704 		}
705 
706 		buffer_info->skb = skb;
707 map_skb:
708 		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
709 						  adapter->rx_buffer_len,
710 						  DMA_FROM_DEVICE);
711 		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
712 			dev_err(&pdev->dev, "Rx DMA map failed\n");
713 			adapter->rx_dma_failed++;
714 			break;
715 		}
716 
717 		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
718 		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
719 
720 		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
721 			/* Force memory writes to complete before letting h/w
722 			 * know there are new descriptors to fetch.  (Only
723 			 * applicable for weak-ordered memory model archs,
724 			 * such as IA-64).
725 			 */
726 			wmb();
727 			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
728 				e1000e_update_rdt_wa(rx_ring, i);
729 			else
730 				writel(i, rx_ring->tail);
731 		}
732 		i++;
733 		if (i == rx_ring->count)
734 			i = 0;
735 		buffer_info = &rx_ring->buffer_info[i];
736 	}
737 
738 	rx_ring->next_to_use = i;
739 }
740 
741 /**
742  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
743  * @rx_ring: Rx descriptor ring
744  **/
745 static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
746 				      int cleaned_count, gfp_t gfp)
747 {
748 	struct e1000_adapter *adapter = rx_ring->adapter;
749 	struct net_device *netdev = adapter->netdev;
750 	struct pci_dev *pdev = adapter->pdev;
751 	union e1000_rx_desc_packet_split *rx_desc;
752 	struct e1000_buffer *buffer_info;
753 	struct e1000_ps_page *ps_page;
754 	struct sk_buff *skb;
755 	unsigned int i, j;
756 
757 	i = rx_ring->next_to_use;
758 	buffer_info = &rx_ring->buffer_info[i];
759 
760 	while (cleaned_count--) {
761 		rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
762 
763 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
764 			ps_page = &buffer_info->ps_pages[j];
765 			if (j >= adapter->rx_ps_pages) {
766 				/* all unused desc entries get hw null ptr */
767 				rx_desc->read.buffer_addr[j + 1] =
768 				    ~cpu_to_le64(0);
769 				continue;
770 			}
771 			if (!ps_page->page) {
772 				ps_page->page = alloc_page(gfp);
773 				if (!ps_page->page) {
774 					adapter->alloc_rx_buff_failed++;
775 					goto no_buffers;
776 				}
777 				ps_page->dma = dma_map_page(&pdev->dev,
778 							    ps_page->page,
779 							    0, PAGE_SIZE,
780 							    DMA_FROM_DEVICE);
781 				if (dma_mapping_error(&pdev->dev,
782 						      ps_page->dma)) {
783 					dev_err(&adapter->pdev->dev,
784 						"Rx DMA page map failed\n");
785 					adapter->rx_dma_failed++;
786 					goto no_buffers;
787 				}
788 			}
789 			/* Refresh the desc even if buffer_addrs
790 			 * didn't change because each write-back
791 			 * erases this info.
792 			 */
793 			rx_desc->read.buffer_addr[j + 1] =
794 			    cpu_to_le64(ps_page->dma);
795 		}
796 
797 		skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0,
798 						  gfp);
799 
800 		if (!skb) {
801 			adapter->alloc_rx_buff_failed++;
802 			break;
803 		}
804 
805 		buffer_info->skb = skb;
806 		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
807 						  adapter->rx_ps_bsize0,
808 						  DMA_FROM_DEVICE);
809 		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
810 			dev_err(&pdev->dev, "Rx DMA map failed\n");
811 			adapter->rx_dma_failed++;
812 			/* cleanup skb */
813 			dev_kfree_skb_any(skb);
814 			buffer_info->skb = NULL;
815 			break;
816 		}
817 
818 		rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
819 
820 		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
821 			/* Force memory writes to complete before letting h/w
822 			 * know there are new descriptors to fetch.  (Only
823 			 * applicable for weak-ordered memory model archs,
824 			 * such as IA-64).
825 			 */
826 			wmb();
827 			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
828 				e1000e_update_rdt_wa(rx_ring, i << 1);
829 			else
830 				writel(i << 1, rx_ring->tail);
831 		}
832 
833 		i++;
834 		if (i == rx_ring->count)
835 			i = 0;
836 		buffer_info = &rx_ring->buffer_info[i];
837 	}
838 
839 no_buffers:
840 	rx_ring->next_to_use = i;
841 }
842 
843 /**
844  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
845  * @rx_ring: Rx descriptor ring
846  * @cleaned_count: number of buffers to allocate this pass
847  **/
848 
849 static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
850 					 int cleaned_count, gfp_t gfp)
851 {
852 	struct e1000_adapter *adapter = rx_ring->adapter;
853 	struct net_device *netdev = adapter->netdev;
854 	struct pci_dev *pdev = adapter->pdev;
855 	union e1000_rx_desc_extended *rx_desc;
856 	struct e1000_buffer *buffer_info;
857 	struct sk_buff *skb;
858 	unsigned int i;
859 	unsigned int bufsz = 256 - 16;	/* for skb_reserve */
860 
861 	i = rx_ring->next_to_use;
862 	buffer_info = &rx_ring->buffer_info[i];
863 
864 	while (cleaned_count--) {
865 		skb = buffer_info->skb;
866 		if (skb) {
867 			skb_trim(skb, 0);
868 			goto check_page;
869 		}
870 
871 		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
872 		if (unlikely(!skb)) {
873 			/* Better luck next round */
874 			adapter->alloc_rx_buff_failed++;
875 			break;
876 		}
877 
878 		buffer_info->skb = skb;
879 check_page:
880 		/* allocate a new page if necessary */
881 		if (!buffer_info->page) {
882 			buffer_info->page = alloc_page(gfp);
883 			if (unlikely(!buffer_info->page)) {
884 				adapter->alloc_rx_buff_failed++;
885 				break;
886 			}
887 		}
888 
889 		if (!buffer_info->dma) {
890 			buffer_info->dma = dma_map_page(&pdev->dev,
891 							buffer_info->page, 0,
892 							PAGE_SIZE,
893 							DMA_FROM_DEVICE);
894 			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
895 				adapter->alloc_rx_buff_failed++;
896 				break;
897 			}
898 		}
899 
900 		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
901 		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
902 
903 		if (unlikely(++i == rx_ring->count))
904 			i = 0;
905 		buffer_info = &rx_ring->buffer_info[i];
906 	}
907 
908 	if (likely(rx_ring->next_to_use != i)) {
909 		rx_ring->next_to_use = i;
910 		if (unlikely(i-- == 0))
911 			i = (rx_ring->count - 1);
912 
913 		/* Force memory writes to complete before letting h/w
914 		 * know there are new descriptors to fetch.  (Only
915 		 * applicable for weak-ordered memory model archs,
916 		 * such as IA-64).
917 		 */
918 		wmb();
919 		if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
920 			e1000e_update_rdt_wa(rx_ring, i);
921 		else
922 			writel(i, rx_ring->tail);
923 	}
924 }
925 
926 static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
927 				 struct sk_buff *skb)
928 {
929 	if (netdev->features & NETIF_F_RXHASH)
930 		skb_set_hash(skb, le32_to_cpu(rss), PKT_HASH_TYPE_L3);
931 }
932 
933 /**
934  * e1000_clean_rx_irq - Send received data up the network stack
935  * @rx_ring: Rx descriptor ring
936  *
937  * the return value indicates whether actual cleaning was done, there
938  * is no guarantee that everything was cleaned
939  **/
940 static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
941 			       int work_to_do)
942 {
943 	struct e1000_adapter *adapter = rx_ring->adapter;
944 	struct net_device *netdev = adapter->netdev;
945 	struct pci_dev *pdev = adapter->pdev;
946 	struct e1000_hw *hw = &adapter->hw;
947 	union e1000_rx_desc_extended *rx_desc, *next_rxd;
948 	struct e1000_buffer *buffer_info, *next_buffer;
949 	u32 length, staterr;
950 	unsigned int i;
951 	int cleaned_count = 0;
952 	bool cleaned = false;
953 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
954 
955 	i = rx_ring->next_to_clean;
956 	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
957 	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
958 	buffer_info = &rx_ring->buffer_info[i];
959 
960 	while (staterr & E1000_RXD_STAT_DD) {
961 		struct sk_buff *skb;
962 
963 		if (*work_done >= work_to_do)
964 			break;
965 		(*work_done)++;
966 		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
967 
968 		skb = buffer_info->skb;
969 		buffer_info->skb = NULL;
970 
971 		prefetch(skb->data - NET_IP_ALIGN);
972 
973 		i++;
974 		if (i == rx_ring->count)
975 			i = 0;
976 		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
977 		prefetch(next_rxd);
978 
979 		next_buffer = &rx_ring->buffer_info[i];
980 
981 		cleaned = true;
982 		cleaned_count++;
983 		dma_unmap_single(&pdev->dev, buffer_info->dma,
984 				 adapter->rx_buffer_len, DMA_FROM_DEVICE);
985 		buffer_info->dma = 0;
986 
987 		length = le16_to_cpu(rx_desc->wb.upper.length);
988 
989 		/* !EOP means multiple descriptors were used to store a single
990 		 * packet, if that's the case we need to toss it.  In fact, we
991 		 * need to toss every packet with the EOP bit clear and the
992 		 * next frame that _does_ have the EOP bit set, as it is by
993 		 * definition only a frame fragment
994 		 */
995 		if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
996 			adapter->flags2 |= FLAG2_IS_DISCARDING;
997 
998 		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
999 			/* All receives must fit into a single buffer */
1000 			e_dbg("Receive packet consumed multiple buffers\n");
1001 			/* recycle */
1002 			buffer_info->skb = skb;
1003 			if (staterr & E1000_RXD_STAT_EOP)
1004 				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1005 			goto next_desc;
1006 		}
1007 
1008 		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1009 			     !(netdev->features & NETIF_F_RXALL))) {
1010 			/* recycle */
1011 			buffer_info->skb = skb;
1012 			goto next_desc;
1013 		}
1014 
1015 		/* adjust length to remove Ethernet CRC */
1016 		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1017 			/* If configured to store CRC, don't subtract FCS,
1018 			 * but keep the FCS bytes out of the total_rx_bytes
1019 			 * counter
1020 			 */
1021 			if (netdev->features & NETIF_F_RXFCS)
1022 				total_rx_bytes -= 4;
1023 			else
1024 				length -= 4;
1025 		}
1026 
1027 		total_rx_bytes += length;
1028 		total_rx_packets++;
1029 
1030 		/* code added for copybreak, this should improve
1031 		 * performance for small packets with large amounts
1032 		 * of reassembly being done in the stack
1033 		 */
1034 		if (length < copybreak) {
1035 			struct sk_buff *new_skb =
1036 				napi_alloc_skb(&adapter->napi, length);
1037 			if (new_skb) {
1038 				skb_copy_to_linear_data_offset(new_skb,
1039 							       -NET_IP_ALIGN,
1040 							       (skb->data -
1041 								NET_IP_ALIGN),
1042 							       (length +
1043 								NET_IP_ALIGN));
1044 				/* save the skb in buffer_info as good */
1045 				buffer_info->skb = skb;
1046 				skb = new_skb;
1047 			}
1048 			/* else just continue with the old one */
1049 		}
1050 		/* end copybreak code */
1051 		skb_put(skb, length);
1052 
1053 		/* Receive Checksum Offload */
1054 		e1000_rx_checksum(adapter, staterr, skb);
1055 
1056 		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1057 
1058 		e1000_receive_skb(adapter, netdev, skb, staterr,
1059 				  rx_desc->wb.upper.vlan);
1060 
1061 next_desc:
1062 		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1063 
1064 		/* return some buffers to hardware, one at a time is too slow */
1065 		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1066 			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1067 					      GFP_ATOMIC);
1068 			cleaned_count = 0;
1069 		}
1070 
1071 		/* use prefetched values */
1072 		rx_desc = next_rxd;
1073 		buffer_info = next_buffer;
1074 
1075 		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1076 	}
1077 	rx_ring->next_to_clean = i;
1078 
1079 	cleaned_count = e1000_desc_unused(rx_ring);
1080 	if (cleaned_count)
1081 		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1082 
1083 	adapter->total_rx_bytes += total_rx_bytes;
1084 	adapter->total_rx_packets += total_rx_packets;
1085 	return cleaned;
1086 }
1087 
1088 static void e1000_put_txbuf(struct e1000_ring *tx_ring,
1089 			    struct e1000_buffer *buffer_info,
1090 			    bool drop)
1091 {
1092 	struct e1000_adapter *adapter = tx_ring->adapter;
1093 
1094 	if (buffer_info->dma) {
1095 		if (buffer_info->mapped_as_page)
1096 			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1097 				       buffer_info->length, DMA_TO_DEVICE);
1098 		else
1099 			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1100 					 buffer_info->length, DMA_TO_DEVICE);
1101 		buffer_info->dma = 0;
1102 	}
1103 	if (buffer_info->skb) {
1104 		if (drop)
1105 			dev_kfree_skb_any(buffer_info->skb);
1106 		else
1107 			dev_consume_skb_any(buffer_info->skb);
1108 		buffer_info->skb = NULL;
1109 	}
1110 	buffer_info->time_stamp = 0;
1111 }
1112 
1113 static void e1000_print_hw_hang(struct work_struct *work)
1114 {
1115 	struct e1000_adapter *adapter = container_of(work,
1116 						     struct e1000_adapter,
1117 						     print_hang_task);
1118 	struct net_device *netdev = adapter->netdev;
1119 	struct e1000_ring *tx_ring = adapter->tx_ring;
1120 	unsigned int i = tx_ring->next_to_clean;
1121 	unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1122 	struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1123 	struct e1000_hw *hw = &adapter->hw;
1124 	u16 phy_status, phy_1000t_status, phy_ext_status;
1125 	u16 pci_status;
1126 
1127 	if (test_bit(__E1000_DOWN, &adapter->state))
1128 		return;
1129 
1130 	if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) {
1131 		/* May be block on write-back, flush and detect again
1132 		 * flush pending descriptor writebacks to memory
1133 		 */
1134 		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1135 		/* execute the writes immediately */
1136 		e1e_flush();
1137 		/* Due to rare timing issues, write to TIDV again to ensure
1138 		 * the write is successful
1139 		 */
1140 		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1141 		/* execute the writes immediately */
1142 		e1e_flush();
1143 		adapter->tx_hang_recheck = true;
1144 		return;
1145 	}
1146 	adapter->tx_hang_recheck = false;
1147 
1148 	if (er32(TDH(0)) == er32(TDT(0))) {
1149 		e_dbg("false hang detected, ignoring\n");
1150 		return;
1151 	}
1152 
1153 	/* Real hang detected */
1154 	netif_stop_queue(netdev);
1155 
1156 	e1e_rphy(hw, MII_BMSR, &phy_status);
1157 	e1e_rphy(hw, MII_STAT1000, &phy_1000t_status);
1158 	e1e_rphy(hw, MII_ESTATUS, &phy_ext_status);
1159 
1160 	pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1161 
1162 	/* detected Hardware unit hang */
1163 	e_err("Detected Hardware Unit Hang:\n"
1164 	      "  TDH                  <%x>\n"
1165 	      "  TDT                  <%x>\n"
1166 	      "  next_to_use          <%x>\n"
1167 	      "  next_to_clean        <%x>\n"
1168 	      "buffer_info[next_to_clean]:\n"
1169 	      "  time_stamp           <%lx>\n"
1170 	      "  next_to_watch        <%x>\n"
1171 	      "  jiffies              <%lx>\n"
1172 	      "  next_to_watch.status <%x>\n"
1173 	      "MAC Status             <%x>\n"
1174 	      "PHY Status             <%x>\n"
1175 	      "PHY 1000BASE-T Status  <%x>\n"
1176 	      "PHY Extended Status    <%x>\n"
1177 	      "PCI Status             <%x>\n",
1178 	      readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use,
1179 	      tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp,
1180 	      eop, jiffies, eop_desc->upper.fields.status, er32(STATUS),
1181 	      phy_status, phy_1000t_status, phy_ext_status, pci_status);
1182 
1183 	e1000e_dump(adapter);
1184 
1185 	/* Suggest workaround for known h/w issue */
1186 	if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1187 		e_err("Try turning off Tx pause (flow control) via ethtool\n");
1188 }
1189 
1190 /**
1191  * e1000e_tx_hwtstamp_work - check for Tx time stamp
1192  * @work: pointer to work struct
1193  *
1194  * This work function polls the TSYNCTXCTL valid bit to determine when a
1195  * timestamp has been taken for the current stored skb.  The timestamp must
1196  * be for this skb because only one such packet is allowed in the queue.
1197  */
1198 static void e1000e_tx_hwtstamp_work(struct work_struct *work)
1199 {
1200 	struct e1000_adapter *adapter = container_of(work, struct e1000_adapter,
1201 						     tx_hwtstamp_work);
1202 	struct e1000_hw *hw = &adapter->hw;
1203 
1204 	if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) {
1205 		struct sk_buff *skb = adapter->tx_hwtstamp_skb;
1206 		struct skb_shared_hwtstamps shhwtstamps;
1207 		u64 txstmp;
1208 
1209 		txstmp = er32(TXSTMPL);
1210 		txstmp |= (u64)er32(TXSTMPH) << 32;
1211 
1212 		e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp);
1213 
1214 		/* Clear the global tx_hwtstamp_skb pointer and force writes
1215 		 * prior to notifying the stack of a Tx timestamp.
1216 		 */
1217 		adapter->tx_hwtstamp_skb = NULL;
1218 		wmb(); /* force write prior to skb_tstamp_tx */
1219 
1220 		skb_tstamp_tx(skb, &shhwtstamps);
1221 		dev_consume_skb_any(skb);
1222 	} else if (time_after(jiffies, adapter->tx_hwtstamp_start
1223 			      + adapter->tx_timeout_factor * HZ)) {
1224 		dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1225 		adapter->tx_hwtstamp_skb = NULL;
1226 		adapter->tx_hwtstamp_timeouts++;
1227 		e_warn("clearing Tx timestamp hang\n");
1228 	} else {
1229 		/* reschedule to check later */
1230 		schedule_work(&adapter->tx_hwtstamp_work);
1231 	}
1232 }
1233 
1234 /**
1235  * e1000_clean_tx_irq - Reclaim resources after transmit completes
1236  * @tx_ring: Tx descriptor ring
1237  *
1238  * the return value indicates whether actual cleaning was done, there
1239  * is no guarantee that everything was cleaned
1240  **/
1241 static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1242 {
1243 	struct e1000_adapter *adapter = tx_ring->adapter;
1244 	struct net_device *netdev = adapter->netdev;
1245 	struct e1000_hw *hw = &adapter->hw;
1246 	struct e1000_tx_desc *tx_desc, *eop_desc;
1247 	struct e1000_buffer *buffer_info;
1248 	unsigned int i, eop;
1249 	unsigned int count = 0;
1250 	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1251 	unsigned int bytes_compl = 0, pkts_compl = 0;
1252 
1253 	i = tx_ring->next_to_clean;
1254 	eop = tx_ring->buffer_info[i].next_to_watch;
1255 	eop_desc = E1000_TX_DESC(*tx_ring, eop);
1256 
1257 	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1258 	       (count < tx_ring->count)) {
1259 		bool cleaned = false;
1260 
1261 		dma_rmb();		/* read buffer_info after eop_desc */
1262 		for (; !cleaned; count++) {
1263 			tx_desc = E1000_TX_DESC(*tx_ring, i);
1264 			buffer_info = &tx_ring->buffer_info[i];
1265 			cleaned = (i == eop);
1266 
1267 			if (cleaned) {
1268 				total_tx_packets += buffer_info->segs;
1269 				total_tx_bytes += buffer_info->bytecount;
1270 				if (buffer_info->skb) {
1271 					bytes_compl += buffer_info->skb->len;
1272 					pkts_compl++;
1273 				}
1274 			}
1275 
1276 			e1000_put_txbuf(tx_ring, buffer_info, false);
1277 			tx_desc->upper.data = 0;
1278 
1279 			i++;
1280 			if (i == tx_ring->count)
1281 				i = 0;
1282 		}
1283 
1284 		if (i == tx_ring->next_to_use)
1285 			break;
1286 		eop = tx_ring->buffer_info[i].next_to_watch;
1287 		eop_desc = E1000_TX_DESC(*tx_ring, eop);
1288 	}
1289 
1290 	tx_ring->next_to_clean = i;
1291 
1292 	netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1293 
1294 #define TX_WAKE_THRESHOLD 32
1295 	if (count && netif_carrier_ok(netdev) &&
1296 	    e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1297 		/* Make sure that anybody stopping the queue after this
1298 		 * sees the new next_to_clean.
1299 		 */
1300 		smp_mb();
1301 
1302 		if (netif_queue_stopped(netdev) &&
1303 		    !(test_bit(__E1000_DOWN, &adapter->state))) {
1304 			netif_wake_queue(netdev);
1305 			++adapter->restart_queue;
1306 		}
1307 	}
1308 
1309 	if (adapter->detect_tx_hung) {
1310 		/* Detect a transmit hang in hardware, this serializes the
1311 		 * check with the clearing of time_stamp and movement of i
1312 		 */
1313 		adapter->detect_tx_hung = false;
1314 		if (tx_ring->buffer_info[i].time_stamp &&
1315 		    time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1316 			       + (adapter->tx_timeout_factor * HZ)) &&
1317 		    !(er32(STATUS) & E1000_STATUS_TXOFF))
1318 			schedule_work(&adapter->print_hang_task);
1319 		else
1320 			adapter->tx_hang_recheck = false;
1321 	}
1322 	adapter->total_tx_bytes += total_tx_bytes;
1323 	adapter->total_tx_packets += total_tx_packets;
1324 	return count < tx_ring->count;
1325 }
1326 
1327 /**
1328  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1329  * @rx_ring: Rx descriptor ring
1330  *
1331  * the return value indicates whether actual cleaning was done, there
1332  * is no guarantee that everything was cleaned
1333  **/
1334 static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1335 				  int work_to_do)
1336 {
1337 	struct e1000_adapter *adapter = rx_ring->adapter;
1338 	struct e1000_hw *hw = &adapter->hw;
1339 	union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1340 	struct net_device *netdev = adapter->netdev;
1341 	struct pci_dev *pdev = adapter->pdev;
1342 	struct e1000_buffer *buffer_info, *next_buffer;
1343 	struct e1000_ps_page *ps_page;
1344 	struct sk_buff *skb;
1345 	unsigned int i, j;
1346 	u32 length, staterr;
1347 	int cleaned_count = 0;
1348 	bool cleaned = false;
1349 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1350 
1351 	i = rx_ring->next_to_clean;
1352 	rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1353 	staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1354 	buffer_info = &rx_ring->buffer_info[i];
1355 
1356 	while (staterr & E1000_RXD_STAT_DD) {
1357 		if (*work_done >= work_to_do)
1358 			break;
1359 		(*work_done)++;
1360 		skb = buffer_info->skb;
1361 		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
1362 
1363 		/* in the packet split case this is header only */
1364 		prefetch(skb->data - NET_IP_ALIGN);
1365 
1366 		i++;
1367 		if (i == rx_ring->count)
1368 			i = 0;
1369 		next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1370 		prefetch(next_rxd);
1371 
1372 		next_buffer = &rx_ring->buffer_info[i];
1373 
1374 		cleaned = true;
1375 		cleaned_count++;
1376 		dma_unmap_single(&pdev->dev, buffer_info->dma,
1377 				 adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1378 		buffer_info->dma = 0;
1379 
1380 		/* see !EOP comment in other Rx routine */
1381 		if (!(staterr & E1000_RXD_STAT_EOP))
1382 			adapter->flags2 |= FLAG2_IS_DISCARDING;
1383 
1384 		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1385 			e_dbg("Packet Split buffers didn't pick up the full packet\n");
1386 			dev_kfree_skb_irq(skb);
1387 			if (staterr & E1000_RXD_STAT_EOP)
1388 				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1389 			goto next_desc;
1390 		}
1391 
1392 		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1393 			     !(netdev->features & NETIF_F_RXALL))) {
1394 			dev_kfree_skb_irq(skb);
1395 			goto next_desc;
1396 		}
1397 
1398 		length = le16_to_cpu(rx_desc->wb.middle.length0);
1399 
1400 		if (!length) {
1401 			e_dbg("Last part of the packet spanning multiple descriptors\n");
1402 			dev_kfree_skb_irq(skb);
1403 			goto next_desc;
1404 		}
1405 
1406 		/* Good Receive */
1407 		skb_put(skb, length);
1408 
1409 		{
1410 			/* this looks ugly, but it seems compiler issues make
1411 			 * it more efficient than reusing j
1412 			 */
1413 			int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1414 
1415 			/* page alloc/put takes too long and effects small
1416 			 * packet throughput, so unsplit small packets and
1417 			 * save the alloc/put only valid in softirq (napi)
1418 			 * context to call kmap_*
1419 			 */
1420 			if (l1 && (l1 <= copybreak) &&
1421 			    ((length + l1) <= adapter->rx_ps_bsize0)) {
1422 				u8 *vaddr;
1423 
1424 				ps_page = &buffer_info->ps_pages[0];
1425 
1426 				/* there is no documentation about how to call
1427 				 * kmap_atomic, so we can't hold the mapping
1428 				 * very long
1429 				 */
1430 				dma_sync_single_for_cpu(&pdev->dev,
1431 							ps_page->dma,
1432 							PAGE_SIZE,
1433 							DMA_FROM_DEVICE);
1434 				vaddr = kmap_atomic(ps_page->page);
1435 				memcpy(skb_tail_pointer(skb), vaddr, l1);
1436 				kunmap_atomic(vaddr);
1437 				dma_sync_single_for_device(&pdev->dev,
1438 							   ps_page->dma,
1439 							   PAGE_SIZE,
1440 							   DMA_FROM_DEVICE);
1441 
1442 				/* remove the CRC */
1443 				if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1444 					if (!(netdev->features & NETIF_F_RXFCS))
1445 						l1 -= 4;
1446 				}
1447 
1448 				skb_put(skb, l1);
1449 				goto copydone;
1450 			}	/* if */
1451 		}
1452 
1453 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1454 			length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1455 			if (!length)
1456 				break;
1457 
1458 			ps_page = &buffer_info->ps_pages[j];
1459 			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1460 				       DMA_FROM_DEVICE);
1461 			ps_page->dma = 0;
1462 			skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1463 			ps_page->page = NULL;
1464 			skb->len += length;
1465 			skb->data_len += length;
1466 			skb->truesize += PAGE_SIZE;
1467 		}
1468 
1469 		/* strip the ethernet crc, problem is we're using pages now so
1470 		 * this whole operation can get a little cpu intensive
1471 		 */
1472 		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1473 			if (!(netdev->features & NETIF_F_RXFCS))
1474 				pskb_trim(skb, skb->len - 4);
1475 		}
1476 
1477 copydone:
1478 		total_rx_bytes += skb->len;
1479 		total_rx_packets++;
1480 
1481 		e1000_rx_checksum(adapter, staterr, skb);
1482 
1483 		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1484 
1485 		if (rx_desc->wb.upper.header_status &
1486 		    cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1487 			adapter->rx_hdr_split++;
1488 
1489 		e1000_receive_skb(adapter, netdev, skb, staterr,
1490 				  rx_desc->wb.middle.vlan);
1491 
1492 next_desc:
1493 		rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1494 		buffer_info->skb = NULL;
1495 
1496 		/* return some buffers to hardware, one at a time is too slow */
1497 		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1498 			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1499 					      GFP_ATOMIC);
1500 			cleaned_count = 0;
1501 		}
1502 
1503 		/* use prefetched values */
1504 		rx_desc = next_rxd;
1505 		buffer_info = next_buffer;
1506 
1507 		staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1508 	}
1509 	rx_ring->next_to_clean = i;
1510 
1511 	cleaned_count = e1000_desc_unused(rx_ring);
1512 	if (cleaned_count)
1513 		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1514 
1515 	adapter->total_rx_bytes += total_rx_bytes;
1516 	adapter->total_rx_packets += total_rx_packets;
1517 	return cleaned;
1518 }
1519 
1520 /**
1521  * e1000_consume_page - helper function
1522  **/
1523 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1524 			       u16 length)
1525 {
1526 	bi->page = NULL;
1527 	skb->len += length;
1528 	skb->data_len += length;
1529 	skb->truesize += PAGE_SIZE;
1530 }
1531 
1532 /**
1533  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1534  * @adapter: board private structure
1535  *
1536  * the return value indicates whether actual cleaning was done, there
1537  * is no guarantee that everything was cleaned
1538  **/
1539 static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1540 				     int work_to_do)
1541 {
1542 	struct e1000_adapter *adapter = rx_ring->adapter;
1543 	struct net_device *netdev = adapter->netdev;
1544 	struct pci_dev *pdev = adapter->pdev;
1545 	union e1000_rx_desc_extended *rx_desc, *next_rxd;
1546 	struct e1000_buffer *buffer_info, *next_buffer;
1547 	u32 length, staterr;
1548 	unsigned int i;
1549 	int cleaned_count = 0;
1550 	bool cleaned = false;
1551 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1552 	struct skb_shared_info *shinfo;
1553 
1554 	i = rx_ring->next_to_clean;
1555 	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1556 	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1557 	buffer_info = &rx_ring->buffer_info[i];
1558 
1559 	while (staterr & E1000_RXD_STAT_DD) {
1560 		struct sk_buff *skb;
1561 
1562 		if (*work_done >= work_to_do)
1563 			break;
1564 		(*work_done)++;
1565 		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
1566 
1567 		skb = buffer_info->skb;
1568 		buffer_info->skb = NULL;
1569 
1570 		++i;
1571 		if (i == rx_ring->count)
1572 			i = 0;
1573 		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1574 		prefetch(next_rxd);
1575 
1576 		next_buffer = &rx_ring->buffer_info[i];
1577 
1578 		cleaned = true;
1579 		cleaned_count++;
1580 		dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1581 			       DMA_FROM_DEVICE);
1582 		buffer_info->dma = 0;
1583 
1584 		length = le16_to_cpu(rx_desc->wb.upper.length);
1585 
1586 		/* errors is only valid for DD + EOP descriptors */
1587 		if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1588 			     ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1589 			      !(netdev->features & NETIF_F_RXALL)))) {
1590 			/* recycle both page and skb */
1591 			buffer_info->skb = skb;
1592 			/* an error means any chain goes out the window too */
1593 			if (rx_ring->rx_skb_top)
1594 				dev_kfree_skb_irq(rx_ring->rx_skb_top);
1595 			rx_ring->rx_skb_top = NULL;
1596 			goto next_desc;
1597 		}
1598 #define rxtop (rx_ring->rx_skb_top)
1599 		if (!(staterr & E1000_RXD_STAT_EOP)) {
1600 			/* this descriptor is only the beginning (or middle) */
1601 			if (!rxtop) {
1602 				/* this is the beginning of a chain */
1603 				rxtop = skb;
1604 				skb_fill_page_desc(rxtop, 0, buffer_info->page,
1605 						   0, length);
1606 			} else {
1607 				/* this is the middle of a chain */
1608 				shinfo = skb_shinfo(rxtop);
1609 				skb_fill_page_desc(rxtop, shinfo->nr_frags,
1610 						   buffer_info->page, 0,
1611 						   length);
1612 				/* re-use the skb, only consumed the page */
1613 				buffer_info->skb = skb;
1614 			}
1615 			e1000_consume_page(buffer_info, rxtop, length);
1616 			goto next_desc;
1617 		} else {
1618 			if (rxtop) {
1619 				/* end of the chain */
1620 				shinfo = skb_shinfo(rxtop);
1621 				skb_fill_page_desc(rxtop, shinfo->nr_frags,
1622 						   buffer_info->page, 0,
1623 						   length);
1624 				/* re-use the current skb, we only consumed the
1625 				 * page
1626 				 */
1627 				buffer_info->skb = skb;
1628 				skb = rxtop;
1629 				rxtop = NULL;
1630 				e1000_consume_page(buffer_info, skb, length);
1631 			} else {
1632 				/* no chain, got EOP, this buf is the packet
1633 				 * copybreak to save the put_page/alloc_page
1634 				 */
1635 				if (length <= copybreak &&
1636 				    skb_tailroom(skb) >= length) {
1637 					u8 *vaddr;
1638 					vaddr = kmap_atomic(buffer_info->page);
1639 					memcpy(skb_tail_pointer(skb), vaddr,
1640 					       length);
1641 					kunmap_atomic(vaddr);
1642 					/* re-use the page, so don't erase
1643 					 * buffer_info->page
1644 					 */
1645 					skb_put(skb, length);
1646 				} else {
1647 					skb_fill_page_desc(skb, 0,
1648 							   buffer_info->page, 0,
1649 							   length);
1650 					e1000_consume_page(buffer_info, skb,
1651 							   length);
1652 				}
1653 			}
1654 		}
1655 
1656 		/* Receive Checksum Offload */
1657 		e1000_rx_checksum(adapter, staterr, skb);
1658 
1659 		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1660 
1661 		/* probably a little skewed due to removing CRC */
1662 		total_rx_bytes += skb->len;
1663 		total_rx_packets++;
1664 
1665 		/* eth type trans needs skb->data to point to something */
1666 		if (!pskb_may_pull(skb, ETH_HLEN)) {
1667 			e_err("pskb_may_pull failed.\n");
1668 			dev_kfree_skb_irq(skb);
1669 			goto next_desc;
1670 		}
1671 
1672 		e1000_receive_skb(adapter, netdev, skb, staterr,
1673 				  rx_desc->wb.upper.vlan);
1674 
1675 next_desc:
1676 		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1677 
1678 		/* return some buffers to hardware, one at a time is too slow */
1679 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1680 			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1681 					      GFP_ATOMIC);
1682 			cleaned_count = 0;
1683 		}
1684 
1685 		/* use prefetched values */
1686 		rx_desc = next_rxd;
1687 		buffer_info = next_buffer;
1688 
1689 		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1690 	}
1691 	rx_ring->next_to_clean = i;
1692 
1693 	cleaned_count = e1000_desc_unused(rx_ring);
1694 	if (cleaned_count)
1695 		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1696 
1697 	adapter->total_rx_bytes += total_rx_bytes;
1698 	adapter->total_rx_packets += total_rx_packets;
1699 	return cleaned;
1700 }
1701 
1702 /**
1703  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1704  * @rx_ring: Rx descriptor ring
1705  **/
1706 static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1707 {
1708 	struct e1000_adapter *adapter = rx_ring->adapter;
1709 	struct e1000_buffer *buffer_info;
1710 	struct e1000_ps_page *ps_page;
1711 	struct pci_dev *pdev = adapter->pdev;
1712 	unsigned int i, j;
1713 
1714 	/* Free all the Rx ring sk_buffs */
1715 	for (i = 0; i < rx_ring->count; i++) {
1716 		buffer_info = &rx_ring->buffer_info[i];
1717 		if (buffer_info->dma) {
1718 			if (adapter->clean_rx == e1000_clean_rx_irq)
1719 				dma_unmap_single(&pdev->dev, buffer_info->dma,
1720 						 adapter->rx_buffer_len,
1721 						 DMA_FROM_DEVICE);
1722 			else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1723 				dma_unmap_page(&pdev->dev, buffer_info->dma,
1724 					       PAGE_SIZE, DMA_FROM_DEVICE);
1725 			else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1726 				dma_unmap_single(&pdev->dev, buffer_info->dma,
1727 						 adapter->rx_ps_bsize0,
1728 						 DMA_FROM_DEVICE);
1729 			buffer_info->dma = 0;
1730 		}
1731 
1732 		if (buffer_info->page) {
1733 			put_page(buffer_info->page);
1734 			buffer_info->page = NULL;
1735 		}
1736 
1737 		if (buffer_info->skb) {
1738 			dev_kfree_skb(buffer_info->skb);
1739 			buffer_info->skb = NULL;
1740 		}
1741 
1742 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1743 			ps_page = &buffer_info->ps_pages[j];
1744 			if (!ps_page->page)
1745 				break;
1746 			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1747 				       DMA_FROM_DEVICE);
1748 			ps_page->dma = 0;
1749 			put_page(ps_page->page);
1750 			ps_page->page = NULL;
1751 		}
1752 	}
1753 
1754 	/* there also may be some cached data from a chained receive */
1755 	if (rx_ring->rx_skb_top) {
1756 		dev_kfree_skb(rx_ring->rx_skb_top);
1757 		rx_ring->rx_skb_top = NULL;
1758 	}
1759 
1760 	/* Zero out the descriptor ring */
1761 	memset(rx_ring->desc, 0, rx_ring->size);
1762 
1763 	rx_ring->next_to_clean = 0;
1764 	rx_ring->next_to_use = 0;
1765 	adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1766 }
1767 
1768 static void e1000e_downshift_workaround(struct work_struct *work)
1769 {
1770 	struct e1000_adapter *adapter = container_of(work,
1771 						     struct e1000_adapter,
1772 						     downshift_task);
1773 
1774 	if (test_bit(__E1000_DOWN, &adapter->state))
1775 		return;
1776 
1777 	e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1778 }
1779 
1780 /**
1781  * e1000_intr_msi - Interrupt Handler
1782  * @irq: interrupt number
1783  * @data: pointer to a network interface device structure
1784  **/
1785 static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data)
1786 {
1787 	struct net_device *netdev = data;
1788 	struct e1000_adapter *adapter = netdev_priv(netdev);
1789 	struct e1000_hw *hw = &adapter->hw;
1790 	u32 icr = er32(ICR);
1791 
1792 	/* read ICR disables interrupts using IAM */
1793 	if (icr & E1000_ICR_LSC) {
1794 		hw->mac.get_link_status = true;
1795 		/* ICH8 workaround-- Call gig speed drop workaround on cable
1796 		 * disconnect (LSC) before accessing any PHY registers
1797 		 */
1798 		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1799 		    (!(er32(STATUS) & E1000_STATUS_LU)))
1800 			schedule_work(&adapter->downshift_task);
1801 
1802 		/* 80003ES2LAN workaround-- For packet buffer work-around on
1803 		 * link down event; disable receives here in the ISR and reset
1804 		 * adapter in watchdog
1805 		 */
1806 		if (netif_carrier_ok(netdev) &&
1807 		    adapter->flags & FLAG_RX_NEEDS_RESTART) {
1808 			/* disable receives */
1809 			u32 rctl = er32(RCTL);
1810 
1811 			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1812 			adapter->flags |= FLAG_RESTART_NOW;
1813 		}
1814 		/* guard against interrupt when we're going down */
1815 		if (!test_bit(__E1000_DOWN, &adapter->state))
1816 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1817 	}
1818 
1819 	/* Reset on uncorrectable ECC error */
1820 	if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1821 		u32 pbeccsts = er32(PBECCSTS);
1822 
1823 		adapter->corr_errors +=
1824 		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1825 		adapter->uncorr_errors +=
1826 		    (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1827 		    E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1828 
1829 		/* Do the reset outside of interrupt context */
1830 		schedule_work(&adapter->reset_task);
1831 
1832 		/* return immediately since reset is imminent */
1833 		return IRQ_HANDLED;
1834 	}
1835 
1836 	if (napi_schedule_prep(&adapter->napi)) {
1837 		adapter->total_tx_bytes = 0;
1838 		adapter->total_tx_packets = 0;
1839 		adapter->total_rx_bytes = 0;
1840 		adapter->total_rx_packets = 0;
1841 		__napi_schedule(&adapter->napi);
1842 	}
1843 
1844 	return IRQ_HANDLED;
1845 }
1846 
1847 /**
1848  * e1000_intr - Interrupt Handler
1849  * @irq: interrupt number
1850  * @data: pointer to a network interface device structure
1851  **/
1852 static irqreturn_t e1000_intr(int __always_unused irq, void *data)
1853 {
1854 	struct net_device *netdev = data;
1855 	struct e1000_adapter *adapter = netdev_priv(netdev);
1856 	struct e1000_hw *hw = &adapter->hw;
1857 	u32 rctl, icr = er32(ICR);
1858 
1859 	if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1860 		return IRQ_NONE;	/* Not our interrupt */
1861 
1862 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1863 	 * not set, then the adapter didn't send an interrupt
1864 	 */
1865 	if (!(icr & E1000_ICR_INT_ASSERTED))
1866 		return IRQ_NONE;
1867 
1868 	/* Interrupt Auto-Mask...upon reading ICR,
1869 	 * interrupts are masked.  No need for the
1870 	 * IMC write
1871 	 */
1872 
1873 	if (icr & E1000_ICR_LSC) {
1874 		hw->mac.get_link_status = true;
1875 		/* ICH8 workaround-- Call gig speed drop workaround on cable
1876 		 * disconnect (LSC) before accessing any PHY registers
1877 		 */
1878 		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1879 		    (!(er32(STATUS) & E1000_STATUS_LU)))
1880 			schedule_work(&adapter->downshift_task);
1881 
1882 		/* 80003ES2LAN workaround--
1883 		 * For packet buffer work-around on link down event;
1884 		 * disable receives here in the ISR and
1885 		 * reset adapter in watchdog
1886 		 */
1887 		if (netif_carrier_ok(netdev) &&
1888 		    (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1889 			/* disable receives */
1890 			rctl = er32(RCTL);
1891 			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1892 			adapter->flags |= FLAG_RESTART_NOW;
1893 		}
1894 		/* guard against interrupt when we're going down */
1895 		if (!test_bit(__E1000_DOWN, &adapter->state))
1896 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1897 	}
1898 
1899 	/* Reset on uncorrectable ECC error */
1900 	if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1901 		u32 pbeccsts = er32(PBECCSTS);
1902 
1903 		adapter->corr_errors +=
1904 		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1905 		adapter->uncorr_errors +=
1906 		    (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1907 		    E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1908 
1909 		/* Do the reset outside of interrupt context */
1910 		schedule_work(&adapter->reset_task);
1911 
1912 		/* return immediately since reset is imminent */
1913 		return IRQ_HANDLED;
1914 	}
1915 
1916 	if (napi_schedule_prep(&adapter->napi)) {
1917 		adapter->total_tx_bytes = 0;
1918 		adapter->total_tx_packets = 0;
1919 		adapter->total_rx_bytes = 0;
1920 		adapter->total_rx_packets = 0;
1921 		__napi_schedule(&adapter->napi);
1922 	}
1923 
1924 	return IRQ_HANDLED;
1925 }
1926 
1927 static irqreturn_t e1000_msix_other(int __always_unused irq, void *data)
1928 {
1929 	struct net_device *netdev = data;
1930 	struct e1000_adapter *adapter = netdev_priv(netdev);
1931 	struct e1000_hw *hw = &adapter->hw;
1932 	u32 icr = er32(ICR);
1933 
1934 	if (icr & adapter->eiac_mask)
1935 		ew32(ICS, (icr & adapter->eiac_mask));
1936 
1937 	if (icr & E1000_ICR_LSC) {
1938 		hw->mac.get_link_status = true;
1939 		/* guard against interrupt when we're going down */
1940 		if (!test_bit(__E1000_DOWN, &adapter->state))
1941 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1942 	}
1943 
1944 	if (!test_bit(__E1000_DOWN, &adapter->state))
1945 		ew32(IMS, E1000_IMS_OTHER | IMS_OTHER_MASK);
1946 
1947 	return IRQ_HANDLED;
1948 }
1949 
1950 static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data)
1951 {
1952 	struct net_device *netdev = data;
1953 	struct e1000_adapter *adapter = netdev_priv(netdev);
1954 	struct e1000_hw *hw = &adapter->hw;
1955 	struct e1000_ring *tx_ring = adapter->tx_ring;
1956 
1957 	adapter->total_tx_bytes = 0;
1958 	adapter->total_tx_packets = 0;
1959 
1960 	if (!e1000_clean_tx_irq(tx_ring))
1961 		/* Ring was not completely cleaned, so fire another interrupt */
1962 		ew32(ICS, tx_ring->ims_val);
1963 
1964 	if (!test_bit(__E1000_DOWN, &adapter->state))
1965 		ew32(IMS, adapter->tx_ring->ims_val);
1966 
1967 	return IRQ_HANDLED;
1968 }
1969 
1970 static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data)
1971 {
1972 	struct net_device *netdev = data;
1973 	struct e1000_adapter *adapter = netdev_priv(netdev);
1974 	struct e1000_ring *rx_ring = adapter->rx_ring;
1975 
1976 	/* Write the ITR value calculated at the end of the
1977 	 * previous interrupt.
1978 	 */
1979 	if (rx_ring->set_itr) {
1980 		u32 itr = rx_ring->itr_val ?
1981 			  1000000000 / (rx_ring->itr_val * 256) : 0;
1982 
1983 		writel(itr, rx_ring->itr_register);
1984 		rx_ring->set_itr = 0;
1985 	}
1986 
1987 	if (napi_schedule_prep(&adapter->napi)) {
1988 		adapter->total_rx_bytes = 0;
1989 		adapter->total_rx_packets = 0;
1990 		__napi_schedule(&adapter->napi);
1991 	}
1992 	return IRQ_HANDLED;
1993 }
1994 
1995 /**
1996  * e1000_configure_msix - Configure MSI-X hardware
1997  *
1998  * e1000_configure_msix sets up the hardware to properly
1999  * generate MSI-X interrupts.
2000  **/
2001 static void e1000_configure_msix(struct e1000_adapter *adapter)
2002 {
2003 	struct e1000_hw *hw = &adapter->hw;
2004 	struct e1000_ring *rx_ring = adapter->rx_ring;
2005 	struct e1000_ring *tx_ring = adapter->tx_ring;
2006 	int vector = 0;
2007 	u32 ctrl_ext, ivar = 0;
2008 
2009 	adapter->eiac_mask = 0;
2010 
2011 	/* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
2012 	if (hw->mac.type == e1000_82574) {
2013 		u32 rfctl = er32(RFCTL);
2014 
2015 		rfctl |= E1000_RFCTL_ACK_DIS;
2016 		ew32(RFCTL, rfctl);
2017 	}
2018 
2019 	/* Configure Rx vector */
2020 	rx_ring->ims_val = E1000_IMS_RXQ0;
2021 	adapter->eiac_mask |= rx_ring->ims_val;
2022 	if (rx_ring->itr_val)
2023 		writel(1000000000 / (rx_ring->itr_val * 256),
2024 		       rx_ring->itr_register);
2025 	else
2026 		writel(1, rx_ring->itr_register);
2027 	ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
2028 
2029 	/* Configure Tx vector */
2030 	tx_ring->ims_val = E1000_IMS_TXQ0;
2031 	vector++;
2032 	if (tx_ring->itr_val)
2033 		writel(1000000000 / (tx_ring->itr_val * 256),
2034 		       tx_ring->itr_register);
2035 	else
2036 		writel(1, tx_ring->itr_register);
2037 	adapter->eiac_mask |= tx_ring->ims_val;
2038 	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
2039 
2040 	/* set vector for Other Causes, e.g. link changes */
2041 	vector++;
2042 	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
2043 	if (rx_ring->itr_val)
2044 		writel(1000000000 / (rx_ring->itr_val * 256),
2045 		       hw->hw_addr + E1000_EITR_82574(vector));
2046 	else
2047 		writel(1, hw->hw_addr + E1000_EITR_82574(vector));
2048 
2049 	/* Cause Tx interrupts on every write back */
2050 	ivar |= BIT(31);
2051 
2052 	ew32(IVAR, ivar);
2053 
2054 	/* enable MSI-X PBA support */
2055 	ctrl_ext = er32(CTRL_EXT) & ~E1000_CTRL_EXT_IAME;
2056 	ctrl_ext |= E1000_CTRL_EXT_PBA_CLR | E1000_CTRL_EXT_EIAME;
2057 	ew32(CTRL_EXT, ctrl_ext);
2058 	e1e_flush();
2059 }
2060 
2061 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
2062 {
2063 	if (adapter->msix_entries) {
2064 		pci_disable_msix(adapter->pdev);
2065 		kfree(adapter->msix_entries);
2066 		adapter->msix_entries = NULL;
2067 	} else if (adapter->flags & FLAG_MSI_ENABLED) {
2068 		pci_disable_msi(adapter->pdev);
2069 		adapter->flags &= ~FLAG_MSI_ENABLED;
2070 	}
2071 }
2072 
2073 /**
2074  * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
2075  *
2076  * Attempt to configure interrupts using the best available
2077  * capabilities of the hardware and kernel.
2078  **/
2079 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
2080 {
2081 	int err;
2082 	int i;
2083 
2084 	switch (adapter->int_mode) {
2085 	case E1000E_INT_MODE_MSIX:
2086 		if (adapter->flags & FLAG_HAS_MSIX) {
2087 			adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
2088 			adapter->msix_entries = kcalloc(adapter->num_vectors,
2089 							sizeof(struct
2090 							       msix_entry),
2091 							GFP_KERNEL);
2092 			if (adapter->msix_entries) {
2093 				struct e1000_adapter *a = adapter;
2094 
2095 				for (i = 0; i < adapter->num_vectors; i++)
2096 					adapter->msix_entries[i].entry = i;
2097 
2098 				err = pci_enable_msix_range(a->pdev,
2099 							    a->msix_entries,
2100 							    a->num_vectors,
2101 							    a->num_vectors);
2102 				if (err > 0)
2103 					return;
2104 			}
2105 			/* MSI-X failed, so fall through and try MSI */
2106 			e_err("Failed to initialize MSI-X interrupts.  Falling back to MSI interrupts.\n");
2107 			e1000e_reset_interrupt_capability(adapter);
2108 		}
2109 		adapter->int_mode = E1000E_INT_MODE_MSI;
2110 		fallthrough;
2111 	case E1000E_INT_MODE_MSI:
2112 		if (!pci_enable_msi(adapter->pdev)) {
2113 			adapter->flags |= FLAG_MSI_ENABLED;
2114 		} else {
2115 			adapter->int_mode = E1000E_INT_MODE_LEGACY;
2116 			e_err("Failed to initialize MSI interrupts.  Falling back to legacy interrupts.\n");
2117 		}
2118 		fallthrough;
2119 	case E1000E_INT_MODE_LEGACY:
2120 		/* Don't do anything; this is the system default */
2121 		break;
2122 	}
2123 
2124 	/* store the number of vectors being used */
2125 	adapter->num_vectors = 1;
2126 }
2127 
2128 /**
2129  * e1000_request_msix - Initialize MSI-X interrupts
2130  *
2131  * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2132  * kernel.
2133  **/
2134 static int e1000_request_msix(struct e1000_adapter *adapter)
2135 {
2136 	struct net_device *netdev = adapter->netdev;
2137 	int err = 0, vector = 0;
2138 
2139 	if (strlen(netdev->name) < (IFNAMSIZ - 5))
2140 		snprintf(adapter->rx_ring->name,
2141 			 sizeof(adapter->rx_ring->name) - 1,
2142 			 "%.14s-rx-0", netdev->name);
2143 	else
2144 		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
2145 	err = request_irq(adapter->msix_entries[vector].vector,
2146 			  e1000_intr_msix_rx, 0, adapter->rx_ring->name,
2147 			  netdev);
2148 	if (err)
2149 		return err;
2150 	adapter->rx_ring->itr_register = adapter->hw.hw_addr +
2151 	    E1000_EITR_82574(vector);
2152 	adapter->rx_ring->itr_val = adapter->itr;
2153 	vector++;
2154 
2155 	if (strlen(netdev->name) < (IFNAMSIZ - 5))
2156 		snprintf(adapter->tx_ring->name,
2157 			 sizeof(adapter->tx_ring->name) - 1,
2158 			 "%.14s-tx-0", netdev->name);
2159 	else
2160 		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2161 	err = request_irq(adapter->msix_entries[vector].vector,
2162 			  e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2163 			  netdev);
2164 	if (err)
2165 		return err;
2166 	adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2167 	    E1000_EITR_82574(vector);
2168 	adapter->tx_ring->itr_val = adapter->itr;
2169 	vector++;
2170 
2171 	err = request_irq(adapter->msix_entries[vector].vector,
2172 			  e1000_msix_other, 0, netdev->name, netdev);
2173 	if (err)
2174 		return err;
2175 
2176 	e1000_configure_msix(adapter);
2177 
2178 	return 0;
2179 }
2180 
2181 /**
2182  * e1000_request_irq - initialize interrupts
2183  *
2184  * Attempts to configure interrupts using the best available
2185  * capabilities of the hardware and kernel.
2186  **/
2187 static int e1000_request_irq(struct e1000_adapter *adapter)
2188 {
2189 	struct net_device *netdev = adapter->netdev;
2190 	int err;
2191 
2192 	if (adapter->msix_entries) {
2193 		err = e1000_request_msix(adapter);
2194 		if (!err)
2195 			return err;
2196 		/* fall back to MSI */
2197 		e1000e_reset_interrupt_capability(adapter);
2198 		adapter->int_mode = E1000E_INT_MODE_MSI;
2199 		e1000e_set_interrupt_capability(adapter);
2200 	}
2201 	if (adapter->flags & FLAG_MSI_ENABLED) {
2202 		err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2203 				  netdev->name, netdev);
2204 		if (!err)
2205 			return err;
2206 
2207 		/* fall back to legacy interrupt */
2208 		e1000e_reset_interrupt_capability(adapter);
2209 		adapter->int_mode = E1000E_INT_MODE_LEGACY;
2210 	}
2211 
2212 	err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2213 			  netdev->name, netdev);
2214 	if (err)
2215 		e_err("Unable to allocate interrupt, Error: %d\n", err);
2216 
2217 	return err;
2218 }
2219 
2220 static void e1000_free_irq(struct e1000_adapter *adapter)
2221 {
2222 	struct net_device *netdev = adapter->netdev;
2223 
2224 	if (adapter->msix_entries) {
2225 		int vector = 0;
2226 
2227 		free_irq(adapter->msix_entries[vector].vector, netdev);
2228 		vector++;
2229 
2230 		free_irq(adapter->msix_entries[vector].vector, netdev);
2231 		vector++;
2232 
2233 		/* Other Causes interrupt vector */
2234 		free_irq(adapter->msix_entries[vector].vector, netdev);
2235 		return;
2236 	}
2237 
2238 	free_irq(adapter->pdev->irq, netdev);
2239 }
2240 
2241 /**
2242  * e1000_irq_disable - Mask off interrupt generation on the NIC
2243  **/
2244 static void e1000_irq_disable(struct e1000_adapter *adapter)
2245 {
2246 	struct e1000_hw *hw = &adapter->hw;
2247 
2248 	ew32(IMC, ~0);
2249 	if (adapter->msix_entries)
2250 		ew32(EIAC_82574, 0);
2251 	e1e_flush();
2252 
2253 	if (adapter->msix_entries) {
2254 		int i;
2255 
2256 		for (i = 0; i < adapter->num_vectors; i++)
2257 			synchronize_irq(adapter->msix_entries[i].vector);
2258 	} else {
2259 		synchronize_irq(adapter->pdev->irq);
2260 	}
2261 }
2262 
2263 /**
2264  * e1000_irq_enable - Enable default interrupt generation settings
2265  **/
2266 static void e1000_irq_enable(struct e1000_adapter *adapter)
2267 {
2268 	struct e1000_hw *hw = &adapter->hw;
2269 
2270 	if (adapter->msix_entries) {
2271 		ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2272 		ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER |
2273 		     IMS_OTHER_MASK);
2274 	} else if (hw->mac.type >= e1000_pch_lpt) {
2275 		ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER);
2276 	} else {
2277 		ew32(IMS, IMS_ENABLE_MASK);
2278 	}
2279 	e1e_flush();
2280 }
2281 
2282 /**
2283  * e1000e_get_hw_control - get control of the h/w from f/w
2284  * @adapter: address of board private structure
2285  *
2286  * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2287  * For ASF and Pass Through versions of f/w this means that
2288  * the driver is loaded. For AMT version (only with 82573)
2289  * of the f/w this means that the network i/f is open.
2290  **/
2291 void e1000e_get_hw_control(struct e1000_adapter *adapter)
2292 {
2293 	struct e1000_hw *hw = &adapter->hw;
2294 	u32 ctrl_ext;
2295 	u32 swsm;
2296 
2297 	/* Let firmware know the driver has taken over */
2298 	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2299 		swsm = er32(SWSM);
2300 		ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2301 	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2302 		ctrl_ext = er32(CTRL_EXT);
2303 		ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2304 	}
2305 }
2306 
2307 /**
2308  * e1000e_release_hw_control - release control of the h/w to f/w
2309  * @adapter: address of board private structure
2310  *
2311  * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2312  * For ASF and Pass Through versions of f/w this means that the
2313  * driver is no longer loaded. For AMT version (only with 82573) i
2314  * of the f/w this means that the network i/f is closed.
2315  *
2316  **/
2317 void e1000e_release_hw_control(struct e1000_adapter *adapter)
2318 {
2319 	struct e1000_hw *hw = &adapter->hw;
2320 	u32 ctrl_ext;
2321 	u32 swsm;
2322 
2323 	/* Let firmware taken over control of h/w */
2324 	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2325 		swsm = er32(SWSM);
2326 		ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2327 	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2328 		ctrl_ext = er32(CTRL_EXT);
2329 		ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2330 	}
2331 }
2332 
2333 /**
2334  * e1000_alloc_ring_dma - allocate memory for a ring structure
2335  **/
2336 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2337 				struct e1000_ring *ring)
2338 {
2339 	struct pci_dev *pdev = adapter->pdev;
2340 
2341 	ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2342 					GFP_KERNEL);
2343 	if (!ring->desc)
2344 		return -ENOMEM;
2345 
2346 	return 0;
2347 }
2348 
2349 /**
2350  * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2351  * @tx_ring: Tx descriptor ring
2352  *
2353  * Return 0 on success, negative on failure
2354  **/
2355 int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2356 {
2357 	struct e1000_adapter *adapter = tx_ring->adapter;
2358 	int err = -ENOMEM, size;
2359 
2360 	size = sizeof(struct e1000_buffer) * tx_ring->count;
2361 	tx_ring->buffer_info = vzalloc(size);
2362 	if (!tx_ring->buffer_info)
2363 		goto err;
2364 
2365 	/* round up to nearest 4K */
2366 	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2367 	tx_ring->size = ALIGN(tx_ring->size, 4096);
2368 
2369 	err = e1000_alloc_ring_dma(adapter, tx_ring);
2370 	if (err)
2371 		goto err;
2372 
2373 	tx_ring->next_to_use = 0;
2374 	tx_ring->next_to_clean = 0;
2375 
2376 	return 0;
2377 err:
2378 	vfree(tx_ring->buffer_info);
2379 	e_err("Unable to allocate memory for the transmit descriptor ring\n");
2380 	return err;
2381 }
2382 
2383 /**
2384  * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2385  * @rx_ring: Rx descriptor ring
2386  *
2387  * Returns 0 on success, negative on failure
2388  **/
2389 int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2390 {
2391 	struct e1000_adapter *adapter = rx_ring->adapter;
2392 	struct e1000_buffer *buffer_info;
2393 	int i, size, desc_len, err = -ENOMEM;
2394 
2395 	size = sizeof(struct e1000_buffer) * rx_ring->count;
2396 	rx_ring->buffer_info = vzalloc(size);
2397 	if (!rx_ring->buffer_info)
2398 		goto err;
2399 
2400 	for (i = 0; i < rx_ring->count; i++) {
2401 		buffer_info = &rx_ring->buffer_info[i];
2402 		buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2403 						sizeof(struct e1000_ps_page),
2404 						GFP_KERNEL);
2405 		if (!buffer_info->ps_pages)
2406 			goto err_pages;
2407 	}
2408 
2409 	desc_len = sizeof(union e1000_rx_desc_packet_split);
2410 
2411 	/* Round up to nearest 4K */
2412 	rx_ring->size = rx_ring->count * desc_len;
2413 	rx_ring->size = ALIGN(rx_ring->size, 4096);
2414 
2415 	err = e1000_alloc_ring_dma(adapter, rx_ring);
2416 	if (err)
2417 		goto err_pages;
2418 
2419 	rx_ring->next_to_clean = 0;
2420 	rx_ring->next_to_use = 0;
2421 	rx_ring->rx_skb_top = NULL;
2422 
2423 	return 0;
2424 
2425 err_pages:
2426 	for (i = 0; i < rx_ring->count; i++) {
2427 		buffer_info = &rx_ring->buffer_info[i];
2428 		kfree(buffer_info->ps_pages);
2429 	}
2430 err:
2431 	vfree(rx_ring->buffer_info);
2432 	e_err("Unable to allocate memory for the receive descriptor ring\n");
2433 	return err;
2434 }
2435 
2436 /**
2437  * e1000_clean_tx_ring - Free Tx Buffers
2438  * @tx_ring: Tx descriptor ring
2439  **/
2440 static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2441 {
2442 	struct e1000_adapter *adapter = tx_ring->adapter;
2443 	struct e1000_buffer *buffer_info;
2444 	unsigned long size;
2445 	unsigned int i;
2446 
2447 	for (i = 0; i < tx_ring->count; i++) {
2448 		buffer_info = &tx_ring->buffer_info[i];
2449 		e1000_put_txbuf(tx_ring, buffer_info, false);
2450 	}
2451 
2452 	netdev_reset_queue(adapter->netdev);
2453 	size = sizeof(struct e1000_buffer) * tx_ring->count;
2454 	memset(tx_ring->buffer_info, 0, size);
2455 
2456 	memset(tx_ring->desc, 0, tx_ring->size);
2457 
2458 	tx_ring->next_to_use = 0;
2459 	tx_ring->next_to_clean = 0;
2460 }
2461 
2462 /**
2463  * e1000e_free_tx_resources - Free Tx Resources per Queue
2464  * @tx_ring: Tx descriptor ring
2465  *
2466  * Free all transmit software resources
2467  **/
2468 void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2469 {
2470 	struct e1000_adapter *adapter = tx_ring->adapter;
2471 	struct pci_dev *pdev = adapter->pdev;
2472 
2473 	e1000_clean_tx_ring(tx_ring);
2474 
2475 	vfree(tx_ring->buffer_info);
2476 	tx_ring->buffer_info = NULL;
2477 
2478 	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2479 			  tx_ring->dma);
2480 	tx_ring->desc = NULL;
2481 }
2482 
2483 /**
2484  * e1000e_free_rx_resources - Free Rx Resources
2485  * @rx_ring: Rx descriptor ring
2486  *
2487  * Free all receive software resources
2488  **/
2489 void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2490 {
2491 	struct e1000_adapter *adapter = rx_ring->adapter;
2492 	struct pci_dev *pdev = adapter->pdev;
2493 	int i;
2494 
2495 	e1000_clean_rx_ring(rx_ring);
2496 
2497 	for (i = 0; i < rx_ring->count; i++)
2498 		kfree(rx_ring->buffer_info[i].ps_pages);
2499 
2500 	vfree(rx_ring->buffer_info);
2501 	rx_ring->buffer_info = NULL;
2502 
2503 	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2504 			  rx_ring->dma);
2505 	rx_ring->desc = NULL;
2506 }
2507 
2508 /**
2509  * e1000_update_itr - update the dynamic ITR value based on statistics
2510  * @adapter: pointer to adapter
2511  * @itr_setting: current adapter->itr
2512  * @packets: the number of packets during this measurement interval
2513  * @bytes: the number of bytes during this measurement interval
2514  *
2515  *      Stores a new ITR value based on packets and byte
2516  *      counts during the last interrupt.  The advantage of per interrupt
2517  *      computation is faster updates and more accurate ITR for the current
2518  *      traffic pattern.  Constants in this function were computed
2519  *      based on theoretical maximum wire speed and thresholds were set based
2520  *      on testing data as well as attempting to minimize response time
2521  *      while increasing bulk throughput.  This functionality is controlled
2522  *      by the InterruptThrottleRate module parameter.
2523  **/
2524 static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes)
2525 {
2526 	unsigned int retval = itr_setting;
2527 
2528 	if (packets == 0)
2529 		return itr_setting;
2530 
2531 	switch (itr_setting) {
2532 	case lowest_latency:
2533 		/* handle TSO and jumbo frames */
2534 		if (bytes / packets > 8000)
2535 			retval = bulk_latency;
2536 		else if ((packets < 5) && (bytes > 512))
2537 			retval = low_latency;
2538 		break;
2539 	case low_latency:	/* 50 usec aka 20000 ints/s */
2540 		if (bytes > 10000) {
2541 			/* this if handles the TSO accounting */
2542 			if (bytes / packets > 8000)
2543 				retval = bulk_latency;
2544 			else if ((packets < 10) || ((bytes / packets) > 1200))
2545 				retval = bulk_latency;
2546 			else if ((packets > 35))
2547 				retval = lowest_latency;
2548 		} else if (bytes / packets > 2000) {
2549 			retval = bulk_latency;
2550 		} else if (packets <= 2 && bytes < 512) {
2551 			retval = lowest_latency;
2552 		}
2553 		break;
2554 	case bulk_latency:	/* 250 usec aka 4000 ints/s */
2555 		if (bytes > 25000) {
2556 			if (packets > 35)
2557 				retval = low_latency;
2558 		} else if (bytes < 6000) {
2559 			retval = low_latency;
2560 		}
2561 		break;
2562 	}
2563 
2564 	return retval;
2565 }
2566 
2567 static void e1000_set_itr(struct e1000_adapter *adapter)
2568 {
2569 	u16 current_itr;
2570 	u32 new_itr = adapter->itr;
2571 
2572 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2573 	if (adapter->link_speed != SPEED_1000) {
2574 		current_itr = 0;
2575 		new_itr = 4000;
2576 		goto set_itr_now;
2577 	}
2578 
2579 	if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2580 		new_itr = 0;
2581 		goto set_itr_now;
2582 	}
2583 
2584 	adapter->tx_itr = e1000_update_itr(adapter->tx_itr,
2585 					   adapter->total_tx_packets,
2586 					   adapter->total_tx_bytes);
2587 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2588 	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2589 		adapter->tx_itr = low_latency;
2590 
2591 	adapter->rx_itr = e1000_update_itr(adapter->rx_itr,
2592 					   adapter->total_rx_packets,
2593 					   adapter->total_rx_bytes);
2594 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2595 	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2596 		adapter->rx_itr = low_latency;
2597 
2598 	current_itr = max(adapter->rx_itr, adapter->tx_itr);
2599 
2600 	/* counts and packets in update_itr are dependent on these numbers */
2601 	switch (current_itr) {
2602 	case lowest_latency:
2603 		new_itr = 70000;
2604 		break;
2605 	case low_latency:
2606 		new_itr = 20000;	/* aka hwitr = ~200 */
2607 		break;
2608 	case bulk_latency:
2609 		new_itr = 4000;
2610 		break;
2611 	default:
2612 		break;
2613 	}
2614 
2615 set_itr_now:
2616 	if (new_itr != adapter->itr) {
2617 		/* this attempts to bias the interrupt rate towards Bulk
2618 		 * by adding intermediate steps when interrupt rate is
2619 		 * increasing
2620 		 */
2621 		new_itr = new_itr > adapter->itr ?
2622 		    min(adapter->itr + (new_itr >> 2), new_itr) : new_itr;
2623 		adapter->itr = new_itr;
2624 		adapter->rx_ring->itr_val = new_itr;
2625 		if (adapter->msix_entries)
2626 			adapter->rx_ring->set_itr = 1;
2627 		else
2628 			e1000e_write_itr(adapter, new_itr);
2629 	}
2630 }
2631 
2632 /**
2633  * e1000e_write_itr - write the ITR value to the appropriate registers
2634  * @adapter: address of board private structure
2635  * @itr: new ITR value to program
2636  *
2637  * e1000e_write_itr determines if the adapter is in MSI-X mode
2638  * and, if so, writes the EITR registers with the ITR value.
2639  * Otherwise, it writes the ITR value into the ITR register.
2640  **/
2641 void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
2642 {
2643 	struct e1000_hw *hw = &adapter->hw;
2644 	u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
2645 
2646 	if (adapter->msix_entries) {
2647 		int vector;
2648 
2649 		for (vector = 0; vector < adapter->num_vectors; vector++)
2650 			writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
2651 	} else {
2652 		ew32(ITR, new_itr);
2653 	}
2654 }
2655 
2656 /**
2657  * e1000_alloc_queues - Allocate memory for all rings
2658  * @adapter: board private structure to initialize
2659  **/
2660 static int e1000_alloc_queues(struct e1000_adapter *adapter)
2661 {
2662 	int size = sizeof(struct e1000_ring);
2663 
2664 	adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2665 	if (!adapter->tx_ring)
2666 		goto err;
2667 	adapter->tx_ring->count = adapter->tx_ring_count;
2668 	adapter->tx_ring->adapter = adapter;
2669 
2670 	adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2671 	if (!adapter->rx_ring)
2672 		goto err;
2673 	adapter->rx_ring->count = adapter->rx_ring_count;
2674 	adapter->rx_ring->adapter = adapter;
2675 
2676 	return 0;
2677 err:
2678 	e_err("Unable to allocate memory for queues\n");
2679 	kfree(adapter->rx_ring);
2680 	kfree(adapter->tx_ring);
2681 	return -ENOMEM;
2682 }
2683 
2684 /**
2685  * e1000e_poll - NAPI Rx polling callback
2686  * @napi: struct associated with this polling callback
2687  * @budget: number of packets driver is allowed to process this poll
2688  **/
2689 static int e1000e_poll(struct napi_struct *napi, int budget)
2690 {
2691 	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2692 						     napi);
2693 	struct e1000_hw *hw = &adapter->hw;
2694 	struct net_device *poll_dev = adapter->netdev;
2695 	int tx_cleaned = 1, work_done = 0;
2696 
2697 	adapter = netdev_priv(poll_dev);
2698 
2699 	if (!adapter->msix_entries ||
2700 	    (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2701 		tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2702 
2703 	adapter->clean_rx(adapter->rx_ring, &work_done, budget);
2704 
2705 	if (!tx_cleaned || work_done == budget)
2706 		return budget;
2707 
2708 	/* Exit the polling mode, but don't re-enable interrupts if stack might
2709 	 * poll us due to busy-polling
2710 	 */
2711 	if (likely(napi_complete_done(napi, work_done))) {
2712 		if (adapter->itr_setting & 3)
2713 			e1000_set_itr(adapter);
2714 		if (!test_bit(__E1000_DOWN, &adapter->state)) {
2715 			if (adapter->msix_entries)
2716 				ew32(IMS, adapter->rx_ring->ims_val);
2717 			else
2718 				e1000_irq_enable(adapter);
2719 		}
2720 	}
2721 
2722 	return work_done;
2723 }
2724 
2725 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
2726 				 __always_unused __be16 proto, u16 vid)
2727 {
2728 	struct e1000_adapter *adapter = netdev_priv(netdev);
2729 	struct e1000_hw *hw = &adapter->hw;
2730 	u32 vfta, index;
2731 
2732 	/* don't update vlan cookie if already programmed */
2733 	if ((adapter->hw.mng_cookie.status &
2734 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2735 	    (vid == adapter->mng_vlan_id))
2736 		return 0;
2737 
2738 	/* add VID to filter table */
2739 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2740 		index = (vid >> 5) & 0x7F;
2741 		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2742 		vfta |= BIT((vid & 0x1F));
2743 		hw->mac.ops.write_vfta(hw, index, vfta);
2744 	}
2745 
2746 	set_bit(vid, adapter->active_vlans);
2747 
2748 	return 0;
2749 }
2750 
2751 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
2752 				  __always_unused __be16 proto, u16 vid)
2753 {
2754 	struct e1000_adapter *adapter = netdev_priv(netdev);
2755 	struct e1000_hw *hw = &adapter->hw;
2756 	u32 vfta, index;
2757 
2758 	if ((adapter->hw.mng_cookie.status &
2759 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2760 	    (vid == adapter->mng_vlan_id)) {
2761 		/* release control to f/w */
2762 		e1000e_release_hw_control(adapter);
2763 		return 0;
2764 	}
2765 
2766 	/* remove VID from filter table */
2767 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2768 		index = (vid >> 5) & 0x7F;
2769 		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2770 		vfta &= ~BIT((vid & 0x1F));
2771 		hw->mac.ops.write_vfta(hw, index, vfta);
2772 	}
2773 
2774 	clear_bit(vid, adapter->active_vlans);
2775 
2776 	return 0;
2777 }
2778 
2779 /**
2780  * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2781  * @adapter: board private structure to initialize
2782  **/
2783 static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2784 {
2785 	struct net_device *netdev = adapter->netdev;
2786 	struct e1000_hw *hw = &adapter->hw;
2787 	u32 rctl;
2788 
2789 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2790 		/* disable VLAN receive filtering */
2791 		rctl = er32(RCTL);
2792 		rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2793 		ew32(RCTL, rctl);
2794 
2795 		if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2796 			e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
2797 					       adapter->mng_vlan_id);
2798 			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2799 		}
2800 	}
2801 }
2802 
2803 /**
2804  * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2805  * @adapter: board private structure to initialize
2806  **/
2807 static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2808 {
2809 	struct e1000_hw *hw = &adapter->hw;
2810 	u32 rctl;
2811 
2812 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2813 		/* enable VLAN receive filtering */
2814 		rctl = er32(RCTL);
2815 		rctl |= E1000_RCTL_VFE;
2816 		rctl &= ~E1000_RCTL_CFIEN;
2817 		ew32(RCTL, rctl);
2818 	}
2819 }
2820 
2821 /**
2822  * e1000e_vlan_strip_disable - helper to disable HW VLAN stripping
2823  * @adapter: board private structure to initialize
2824  **/
2825 static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2826 {
2827 	struct e1000_hw *hw = &adapter->hw;
2828 	u32 ctrl;
2829 
2830 	/* disable VLAN tag insert/strip */
2831 	ctrl = er32(CTRL);
2832 	ctrl &= ~E1000_CTRL_VME;
2833 	ew32(CTRL, ctrl);
2834 }
2835 
2836 /**
2837  * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2838  * @adapter: board private structure to initialize
2839  **/
2840 static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2841 {
2842 	struct e1000_hw *hw = &adapter->hw;
2843 	u32 ctrl;
2844 
2845 	/* enable VLAN tag insert/strip */
2846 	ctrl = er32(CTRL);
2847 	ctrl |= E1000_CTRL_VME;
2848 	ew32(CTRL, ctrl);
2849 }
2850 
2851 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2852 {
2853 	struct net_device *netdev = adapter->netdev;
2854 	u16 vid = adapter->hw.mng_cookie.vlan_id;
2855 	u16 old_vid = adapter->mng_vlan_id;
2856 
2857 	if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2858 		e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
2859 		adapter->mng_vlan_id = vid;
2860 	}
2861 
2862 	if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2863 		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid);
2864 }
2865 
2866 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2867 {
2868 	u16 vid;
2869 
2870 	e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
2871 
2872 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2873 	    e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
2874 }
2875 
2876 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2877 {
2878 	struct e1000_hw *hw = &adapter->hw;
2879 	u32 manc, manc2h, mdef, i, j;
2880 
2881 	if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2882 		return;
2883 
2884 	manc = er32(MANC);
2885 
2886 	/* enable receiving management packets to the host. this will probably
2887 	 * generate destination unreachable messages from the host OS, but
2888 	 * the packets will be handled on SMBUS
2889 	 */
2890 	manc |= E1000_MANC_EN_MNG2HOST;
2891 	manc2h = er32(MANC2H);
2892 
2893 	switch (hw->mac.type) {
2894 	default:
2895 		manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2896 		break;
2897 	case e1000_82574:
2898 	case e1000_82583:
2899 		/* Check if IPMI pass-through decision filter already exists;
2900 		 * if so, enable it.
2901 		 */
2902 		for (i = 0, j = 0; i < 8; i++) {
2903 			mdef = er32(MDEF(i));
2904 
2905 			/* Ignore filters with anything other than IPMI ports */
2906 			if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2907 				continue;
2908 
2909 			/* Enable this decision filter in MANC2H */
2910 			if (mdef)
2911 				manc2h |= BIT(i);
2912 
2913 			j |= mdef;
2914 		}
2915 
2916 		if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2917 			break;
2918 
2919 		/* Create new decision filter in an empty filter */
2920 		for (i = 0, j = 0; i < 8; i++)
2921 			if (er32(MDEF(i)) == 0) {
2922 				ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2923 					       E1000_MDEF_PORT_664));
2924 				manc2h |= BIT(1);
2925 				j++;
2926 				break;
2927 			}
2928 
2929 		if (!j)
2930 			e_warn("Unable to create IPMI pass-through filter\n");
2931 		break;
2932 	}
2933 
2934 	ew32(MANC2H, manc2h);
2935 	ew32(MANC, manc);
2936 }
2937 
2938 /**
2939  * e1000_configure_tx - Configure Transmit Unit after Reset
2940  * @adapter: board private structure
2941  *
2942  * Configure the Tx unit of the MAC after a reset.
2943  **/
2944 static void e1000_configure_tx(struct e1000_adapter *adapter)
2945 {
2946 	struct e1000_hw *hw = &adapter->hw;
2947 	struct e1000_ring *tx_ring = adapter->tx_ring;
2948 	u64 tdba;
2949 	u32 tdlen, tctl, tarc;
2950 
2951 	/* Setup the HW Tx Head and Tail descriptor pointers */
2952 	tdba = tx_ring->dma;
2953 	tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2954 	ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2955 	ew32(TDBAH(0), (tdba >> 32));
2956 	ew32(TDLEN(0), tdlen);
2957 	ew32(TDH(0), 0);
2958 	ew32(TDT(0), 0);
2959 	tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2960 	tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2961 
2962 	writel(0, tx_ring->head);
2963 	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2964 		e1000e_update_tdt_wa(tx_ring, 0);
2965 	else
2966 		writel(0, tx_ring->tail);
2967 
2968 	/* Set the Tx Interrupt Delay register */
2969 	ew32(TIDV, adapter->tx_int_delay);
2970 	/* Tx irq moderation */
2971 	ew32(TADV, adapter->tx_abs_int_delay);
2972 
2973 	if (adapter->flags2 & FLAG2_DMA_BURST) {
2974 		u32 txdctl = er32(TXDCTL(0));
2975 
2976 		txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2977 			    E1000_TXDCTL_WTHRESH);
2978 		/* set up some performance related parameters to encourage the
2979 		 * hardware to use the bus more efficiently in bursts, depends
2980 		 * on the tx_int_delay to be enabled,
2981 		 * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2982 		 * hthresh = 1 ==> prefetch when one or more available
2983 		 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2984 		 * BEWARE: this seems to work but should be considered first if
2985 		 * there are Tx hangs or other Tx related bugs
2986 		 */
2987 		txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2988 		ew32(TXDCTL(0), txdctl);
2989 	}
2990 	/* erratum work around: set txdctl the same for both queues */
2991 	ew32(TXDCTL(1), er32(TXDCTL(0)));
2992 
2993 	/* Program the Transmit Control Register */
2994 	tctl = er32(TCTL);
2995 	tctl &= ~E1000_TCTL_CT;
2996 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2997 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2998 
2999 	if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
3000 		tarc = er32(TARC(0));
3001 		/* set the speed mode bit, we'll clear it if we're not at
3002 		 * gigabit link later
3003 		 */
3004 #define SPEED_MODE_BIT BIT(21)
3005 		tarc |= SPEED_MODE_BIT;
3006 		ew32(TARC(0), tarc);
3007 	}
3008 
3009 	/* errata: program both queues to unweighted RR */
3010 	if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
3011 		tarc = er32(TARC(0));
3012 		tarc |= 1;
3013 		ew32(TARC(0), tarc);
3014 		tarc = er32(TARC(1));
3015 		tarc |= 1;
3016 		ew32(TARC(1), tarc);
3017 	}
3018 
3019 	/* Setup Transmit Descriptor Settings for eop descriptor */
3020 	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
3021 
3022 	/* only set IDE if we are delaying interrupts using the timers */
3023 	if (adapter->tx_int_delay)
3024 		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
3025 
3026 	/* enable Report Status bit */
3027 	adapter->txd_cmd |= E1000_TXD_CMD_RS;
3028 
3029 	ew32(TCTL, tctl);
3030 
3031 	hw->mac.ops.config_collision_dist(hw);
3032 
3033 	/* SPT and KBL Si errata workaround to avoid data corruption */
3034 	if (hw->mac.type == e1000_pch_spt) {
3035 		u32 reg_val;
3036 
3037 		reg_val = er32(IOSFPC);
3038 		reg_val |= E1000_RCTL_RDMTS_HEX;
3039 		ew32(IOSFPC, reg_val);
3040 
3041 		reg_val = er32(TARC(0));
3042 		/* SPT and KBL Si errata workaround to avoid Tx hang.
3043 		 * Dropping the number of outstanding requests from
3044 		 * 3 to 2 in order to avoid a buffer overrun.
3045 		 */
3046 		reg_val &= ~E1000_TARC0_CB_MULTIQ_3_REQ;
3047 		reg_val |= E1000_TARC0_CB_MULTIQ_2_REQ;
3048 		ew32(TARC(0), reg_val);
3049 	}
3050 }
3051 
3052 /**
3053  * e1000_setup_rctl - configure the receive control registers
3054  * @adapter: Board private structure
3055  **/
3056 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
3057 			   (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
3058 static void e1000_setup_rctl(struct e1000_adapter *adapter)
3059 {
3060 	struct e1000_hw *hw = &adapter->hw;
3061 	u32 rctl, rfctl;
3062 	u32 pages = 0;
3063 
3064 	/* Workaround Si errata on PCHx - configure jumbo frame flow.
3065 	 * If jumbo frames not set, program related MAC/PHY registers
3066 	 * to h/w defaults
3067 	 */
3068 	if (hw->mac.type >= e1000_pch2lan) {
3069 		s32 ret_val;
3070 
3071 		if (adapter->netdev->mtu > ETH_DATA_LEN)
3072 			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
3073 		else
3074 			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
3075 
3076 		if (ret_val)
3077 			e_dbg("failed to enable|disable jumbo frame workaround mode\n");
3078 	}
3079 
3080 	/* Program MC offset vector base */
3081 	rctl = er32(RCTL);
3082 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3083 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3084 	    E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3085 	    (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3086 
3087 	/* Do not Store bad packets */
3088 	rctl &= ~E1000_RCTL_SBP;
3089 
3090 	/* Enable Long Packet receive */
3091 	if (adapter->netdev->mtu <= ETH_DATA_LEN)
3092 		rctl &= ~E1000_RCTL_LPE;
3093 	else
3094 		rctl |= E1000_RCTL_LPE;
3095 
3096 	/* Some systems expect that the CRC is included in SMBUS traffic. The
3097 	 * hardware strips the CRC before sending to both SMBUS (BMC) and to
3098 	 * host memory when this is enabled
3099 	 */
3100 	if (adapter->flags2 & FLAG2_CRC_STRIPPING)
3101 		rctl |= E1000_RCTL_SECRC;
3102 
3103 	/* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3104 	if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
3105 		u16 phy_data;
3106 
3107 		e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
3108 		phy_data &= 0xfff8;
3109 		phy_data |= BIT(2);
3110 		e1e_wphy(hw, PHY_REG(770, 26), phy_data);
3111 
3112 		e1e_rphy(hw, 22, &phy_data);
3113 		phy_data &= 0x0fff;
3114 		phy_data |= BIT(14);
3115 		e1e_wphy(hw, 0x10, 0x2823);
3116 		e1e_wphy(hw, 0x11, 0x0003);
3117 		e1e_wphy(hw, 22, phy_data);
3118 	}
3119 
3120 	/* Setup buffer sizes */
3121 	rctl &= ~E1000_RCTL_SZ_4096;
3122 	rctl |= E1000_RCTL_BSEX;
3123 	switch (adapter->rx_buffer_len) {
3124 	case 2048:
3125 	default:
3126 		rctl |= E1000_RCTL_SZ_2048;
3127 		rctl &= ~E1000_RCTL_BSEX;
3128 		break;
3129 	case 4096:
3130 		rctl |= E1000_RCTL_SZ_4096;
3131 		break;
3132 	case 8192:
3133 		rctl |= E1000_RCTL_SZ_8192;
3134 		break;
3135 	case 16384:
3136 		rctl |= E1000_RCTL_SZ_16384;
3137 		break;
3138 	}
3139 
3140 	/* Enable Extended Status in all Receive Descriptors */
3141 	rfctl = er32(RFCTL);
3142 	rfctl |= E1000_RFCTL_EXTEN;
3143 	ew32(RFCTL, rfctl);
3144 
3145 	/* 82571 and greater support packet-split where the protocol
3146 	 * header is placed in skb->data and the packet data is
3147 	 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3148 	 * In the case of a non-split, skb->data is linearly filled,
3149 	 * followed by the page buffers.  Therefore, skb->data is
3150 	 * sized to hold the largest protocol header.
3151 	 *
3152 	 * allocations using alloc_page take too long for regular MTU
3153 	 * so only enable packet split for jumbo frames
3154 	 *
3155 	 * Using pages when the page size is greater than 16k wastes
3156 	 * a lot of memory, since we allocate 3 pages at all times
3157 	 * per packet.
3158 	 */
3159 	pages = PAGE_USE_COUNT(adapter->netdev->mtu);
3160 	if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
3161 		adapter->rx_ps_pages = pages;
3162 	else
3163 		adapter->rx_ps_pages = 0;
3164 
3165 	if (adapter->rx_ps_pages) {
3166 		u32 psrctl = 0;
3167 
3168 		/* Enable Packet split descriptors */
3169 		rctl |= E1000_RCTL_DTYP_PS;
3170 
3171 		psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT;
3172 
3173 		switch (adapter->rx_ps_pages) {
3174 		case 3:
3175 			psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT;
3176 			fallthrough;
3177 		case 2:
3178 			psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT;
3179 			fallthrough;
3180 		case 1:
3181 			psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT;
3182 			break;
3183 		}
3184 
3185 		ew32(PSRCTL, psrctl);
3186 	}
3187 
3188 	/* This is useful for sniffing bad packets. */
3189 	if (adapter->netdev->features & NETIF_F_RXALL) {
3190 		/* UPE and MPE will be handled by normal PROMISC logic
3191 		 * in e1000e_set_rx_mode
3192 		 */
3193 		rctl |= (E1000_RCTL_SBP |	/* Receive bad packets */
3194 			 E1000_RCTL_BAM |	/* RX All Bcast Pkts */
3195 			 E1000_RCTL_PMCF);	/* RX All MAC Ctrl Pkts */
3196 
3197 		rctl &= ~(E1000_RCTL_VFE |	/* Disable VLAN filter */
3198 			  E1000_RCTL_DPF |	/* Allow filtered pause */
3199 			  E1000_RCTL_CFIEN);	/* Dis VLAN CFIEN Filter */
3200 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3201 		 * and that breaks VLANs.
3202 		 */
3203 	}
3204 
3205 	ew32(RCTL, rctl);
3206 	/* just started the receive unit, no need to restart */
3207 	adapter->flags &= ~FLAG_RESTART_NOW;
3208 }
3209 
3210 /**
3211  * e1000_configure_rx - Configure Receive Unit after Reset
3212  * @adapter: board private structure
3213  *
3214  * Configure the Rx unit of the MAC after a reset.
3215  **/
3216 static void e1000_configure_rx(struct e1000_adapter *adapter)
3217 {
3218 	struct e1000_hw *hw = &adapter->hw;
3219 	struct e1000_ring *rx_ring = adapter->rx_ring;
3220 	u64 rdba;
3221 	u32 rdlen, rctl, rxcsum, ctrl_ext;
3222 
3223 	if (adapter->rx_ps_pages) {
3224 		/* this is a 32 byte descriptor */
3225 		rdlen = rx_ring->count *
3226 		    sizeof(union e1000_rx_desc_packet_split);
3227 		adapter->clean_rx = e1000_clean_rx_irq_ps;
3228 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3229 	} else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3230 		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3231 		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3232 		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3233 	} else {
3234 		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3235 		adapter->clean_rx = e1000_clean_rx_irq;
3236 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3237 	}
3238 
3239 	/* disable receives while setting up the descriptors */
3240 	rctl = er32(RCTL);
3241 	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3242 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
3243 	e1e_flush();
3244 	usleep_range(10000, 11000);
3245 
3246 	if (adapter->flags2 & FLAG2_DMA_BURST) {
3247 		/* set the writeback threshold (only takes effect if the RDTR
3248 		 * is set). set GRAN=1 and write back up to 0x4 worth, and
3249 		 * enable prefetching of 0x20 Rx descriptors
3250 		 * granularity = 01
3251 		 * wthresh = 04,
3252 		 * hthresh = 04,
3253 		 * pthresh = 0x20
3254 		 */
3255 		ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3256 		ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3257 	}
3258 
3259 	/* set the Receive Delay Timer Register */
3260 	ew32(RDTR, adapter->rx_int_delay);
3261 
3262 	/* irq moderation */
3263 	ew32(RADV, adapter->rx_abs_int_delay);
3264 	if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3265 		e1000e_write_itr(adapter, adapter->itr);
3266 
3267 	ctrl_ext = er32(CTRL_EXT);
3268 	/* Auto-Mask interrupts upon ICR access */
3269 	ctrl_ext |= E1000_CTRL_EXT_IAME;
3270 	ew32(IAM, 0xffffffff);
3271 	ew32(CTRL_EXT, ctrl_ext);
3272 	e1e_flush();
3273 
3274 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
3275 	 * the Base and Length of the Rx Descriptor Ring
3276 	 */
3277 	rdba = rx_ring->dma;
3278 	ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3279 	ew32(RDBAH(0), (rdba >> 32));
3280 	ew32(RDLEN(0), rdlen);
3281 	ew32(RDH(0), 0);
3282 	ew32(RDT(0), 0);
3283 	rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3284 	rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3285 
3286 	writel(0, rx_ring->head);
3287 	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
3288 		e1000e_update_rdt_wa(rx_ring, 0);
3289 	else
3290 		writel(0, rx_ring->tail);
3291 
3292 	/* Enable Receive Checksum Offload for TCP and UDP */
3293 	rxcsum = er32(RXCSUM);
3294 	if (adapter->netdev->features & NETIF_F_RXCSUM)
3295 		rxcsum |= E1000_RXCSUM_TUOFL;
3296 	else
3297 		rxcsum &= ~E1000_RXCSUM_TUOFL;
3298 	ew32(RXCSUM, rxcsum);
3299 
3300 	/* With jumbo frames, excessive C-state transition latencies result
3301 	 * in dropped transactions.
3302 	 */
3303 	if (adapter->netdev->mtu > ETH_DATA_LEN) {
3304 		u32 lat =
3305 		    ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 -
3306 		     adapter->max_frame_size) * 8 / 1000;
3307 
3308 		if (adapter->flags & FLAG_IS_ICH) {
3309 			u32 rxdctl = er32(RXDCTL(0));
3310 
3311 			ew32(RXDCTL(0), rxdctl | 0x3 | BIT(8));
3312 		}
3313 
3314 		dev_info(&adapter->pdev->dev,
3315 			 "Some CPU C-states have been disabled in order to enable jumbo frames\n");
3316 		cpu_latency_qos_update_request(&adapter->pm_qos_req, lat);
3317 	} else {
3318 		cpu_latency_qos_update_request(&adapter->pm_qos_req,
3319 					       PM_QOS_DEFAULT_VALUE);
3320 	}
3321 
3322 	/* Enable Receives */
3323 	ew32(RCTL, rctl);
3324 }
3325 
3326 /**
3327  * e1000e_write_mc_addr_list - write multicast addresses to MTA
3328  * @netdev: network interface device structure
3329  *
3330  * Writes multicast address list to the MTA hash table.
3331  * Returns: -ENOMEM on failure
3332  *                0 on no addresses written
3333  *                X on writing X addresses to MTA
3334  */
3335 static int e1000e_write_mc_addr_list(struct net_device *netdev)
3336 {
3337 	struct e1000_adapter *adapter = netdev_priv(netdev);
3338 	struct e1000_hw *hw = &adapter->hw;
3339 	struct netdev_hw_addr *ha;
3340 	u8 *mta_list;
3341 	int i;
3342 
3343 	if (netdev_mc_empty(netdev)) {
3344 		/* nothing to program, so clear mc list */
3345 		hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3346 		return 0;
3347 	}
3348 
3349 	mta_list = kcalloc(netdev_mc_count(netdev), ETH_ALEN, GFP_ATOMIC);
3350 	if (!mta_list)
3351 		return -ENOMEM;
3352 
3353 	/* update_mc_addr_list expects a packed array of only addresses. */
3354 	i = 0;
3355 	netdev_for_each_mc_addr(ha, netdev)
3356 	    memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3357 
3358 	hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3359 	kfree(mta_list);
3360 
3361 	return netdev_mc_count(netdev);
3362 }
3363 
3364 /**
3365  * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3366  * @netdev: network interface device structure
3367  *
3368  * Writes unicast address list to the RAR table.
3369  * Returns: -ENOMEM on failure/insufficient address space
3370  *                0 on no addresses written
3371  *                X on writing X addresses to the RAR table
3372  **/
3373 static int e1000e_write_uc_addr_list(struct net_device *netdev)
3374 {
3375 	struct e1000_adapter *adapter = netdev_priv(netdev);
3376 	struct e1000_hw *hw = &adapter->hw;
3377 	unsigned int rar_entries;
3378 	int count = 0;
3379 
3380 	rar_entries = hw->mac.ops.rar_get_count(hw);
3381 
3382 	/* save a rar entry for our hardware address */
3383 	rar_entries--;
3384 
3385 	/* save a rar entry for the LAA workaround */
3386 	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3387 		rar_entries--;
3388 
3389 	/* return ENOMEM indicating insufficient memory for addresses */
3390 	if (netdev_uc_count(netdev) > rar_entries)
3391 		return -ENOMEM;
3392 
3393 	if (!netdev_uc_empty(netdev) && rar_entries) {
3394 		struct netdev_hw_addr *ha;
3395 
3396 		/* write the addresses in reverse order to avoid write
3397 		 * combining
3398 		 */
3399 		netdev_for_each_uc_addr(ha, netdev) {
3400 			int ret_val;
3401 
3402 			if (!rar_entries)
3403 				break;
3404 			ret_val = hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3405 			if (ret_val < 0)
3406 				return -ENOMEM;
3407 			count++;
3408 		}
3409 	}
3410 
3411 	/* zero out the remaining RAR entries not used above */
3412 	for (; rar_entries > 0; rar_entries--) {
3413 		ew32(RAH(rar_entries), 0);
3414 		ew32(RAL(rar_entries), 0);
3415 	}
3416 	e1e_flush();
3417 
3418 	return count;
3419 }
3420 
3421 /**
3422  * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3423  * @netdev: network interface device structure
3424  *
3425  * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3426  * address list or the network interface flags are updated.  This routine is
3427  * responsible for configuring the hardware for proper unicast, multicast,
3428  * promiscuous mode, and all-multi behavior.
3429  **/
3430 static void e1000e_set_rx_mode(struct net_device *netdev)
3431 {
3432 	struct e1000_adapter *adapter = netdev_priv(netdev);
3433 	struct e1000_hw *hw = &adapter->hw;
3434 	u32 rctl;
3435 
3436 	if (pm_runtime_suspended(netdev->dev.parent))
3437 		return;
3438 
3439 	/* Check for Promiscuous and All Multicast modes */
3440 	rctl = er32(RCTL);
3441 
3442 	/* clear the affected bits */
3443 	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3444 
3445 	if (netdev->flags & IFF_PROMISC) {
3446 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3447 		/* Do not hardware filter VLANs in promisc mode */
3448 		e1000e_vlan_filter_disable(adapter);
3449 	} else {
3450 		int count;
3451 
3452 		if (netdev->flags & IFF_ALLMULTI) {
3453 			rctl |= E1000_RCTL_MPE;
3454 		} else {
3455 			/* Write addresses to the MTA, if the attempt fails
3456 			 * then we should just turn on promiscuous mode so
3457 			 * that we can at least receive multicast traffic
3458 			 */
3459 			count = e1000e_write_mc_addr_list(netdev);
3460 			if (count < 0)
3461 				rctl |= E1000_RCTL_MPE;
3462 		}
3463 		e1000e_vlan_filter_enable(adapter);
3464 		/* Write addresses to available RAR registers, if there is not
3465 		 * sufficient space to store all the addresses then enable
3466 		 * unicast promiscuous mode
3467 		 */
3468 		count = e1000e_write_uc_addr_list(netdev);
3469 		if (count < 0)
3470 			rctl |= E1000_RCTL_UPE;
3471 	}
3472 
3473 	ew32(RCTL, rctl);
3474 
3475 	if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
3476 		e1000e_vlan_strip_enable(adapter);
3477 	else
3478 		e1000e_vlan_strip_disable(adapter);
3479 }
3480 
3481 static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3482 {
3483 	struct e1000_hw *hw = &adapter->hw;
3484 	u32 mrqc, rxcsum;
3485 	u32 rss_key[10];
3486 	int i;
3487 
3488 	netdev_rss_key_fill(rss_key, sizeof(rss_key));
3489 	for (i = 0; i < 10; i++)
3490 		ew32(RSSRK(i), rss_key[i]);
3491 
3492 	/* Direct all traffic to queue 0 */
3493 	for (i = 0; i < 32; i++)
3494 		ew32(RETA(i), 0);
3495 
3496 	/* Disable raw packet checksumming so that RSS hash is placed in
3497 	 * descriptor on writeback.
3498 	 */
3499 	rxcsum = er32(RXCSUM);
3500 	rxcsum |= E1000_RXCSUM_PCSD;
3501 
3502 	ew32(RXCSUM, rxcsum);
3503 
3504 	mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3505 		E1000_MRQC_RSS_FIELD_IPV4_TCP |
3506 		E1000_MRQC_RSS_FIELD_IPV6 |
3507 		E1000_MRQC_RSS_FIELD_IPV6_TCP |
3508 		E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3509 
3510 	ew32(MRQC, mrqc);
3511 }
3512 
3513 /**
3514  * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3515  * @adapter: board private structure
3516  * @timinca: pointer to returned time increment attributes
3517  *
3518  * Get attributes for incrementing the System Time Register SYSTIML/H at
3519  * the default base frequency, and set the cyclecounter shift value.
3520  **/
3521 s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca)
3522 {
3523 	struct e1000_hw *hw = &adapter->hw;
3524 	u32 incvalue, incperiod, shift;
3525 
3526 	/* Make sure clock is enabled on I217/I218/I219  before checking
3527 	 * the frequency
3528 	 */
3529 	if ((hw->mac.type >= e1000_pch_lpt) &&
3530 	    !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) &&
3531 	    !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) {
3532 		u32 fextnvm7 = er32(FEXTNVM7);
3533 
3534 		if (!(fextnvm7 & BIT(0))) {
3535 			ew32(FEXTNVM7, fextnvm7 | BIT(0));
3536 			e1e_flush();
3537 		}
3538 	}
3539 
3540 	switch (hw->mac.type) {
3541 	case e1000_pch2lan:
3542 		/* Stable 96MHz frequency */
3543 		incperiod = INCPERIOD_96MHZ;
3544 		incvalue = INCVALUE_96MHZ;
3545 		shift = INCVALUE_SHIFT_96MHZ;
3546 		adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3547 		break;
3548 	case e1000_pch_lpt:
3549 		if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3550 			/* Stable 96MHz frequency */
3551 			incperiod = INCPERIOD_96MHZ;
3552 			incvalue = INCVALUE_96MHZ;
3553 			shift = INCVALUE_SHIFT_96MHZ;
3554 			adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3555 		} else {
3556 			/* Stable 25MHz frequency */
3557 			incperiod = INCPERIOD_25MHZ;
3558 			incvalue = INCVALUE_25MHZ;
3559 			shift = INCVALUE_SHIFT_25MHZ;
3560 			adapter->cc.shift = shift;
3561 		}
3562 		break;
3563 	case e1000_pch_spt:
3564 		/* Stable 24MHz frequency */
3565 		incperiod = INCPERIOD_24MHZ;
3566 		incvalue = INCVALUE_24MHZ;
3567 		shift = INCVALUE_SHIFT_24MHZ;
3568 		adapter->cc.shift = shift;
3569 		break;
3570 	case e1000_pch_cnp:
3571 	case e1000_pch_tgp:
3572 	case e1000_pch_adp:
3573 		if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3574 			/* Stable 24MHz frequency */
3575 			incperiod = INCPERIOD_24MHZ;
3576 			incvalue = INCVALUE_24MHZ;
3577 			shift = INCVALUE_SHIFT_24MHZ;
3578 			adapter->cc.shift = shift;
3579 		} else {
3580 			/* Stable 38400KHz frequency */
3581 			incperiod = INCPERIOD_38400KHZ;
3582 			incvalue = INCVALUE_38400KHZ;
3583 			shift = INCVALUE_SHIFT_38400KHZ;
3584 			adapter->cc.shift = shift;
3585 		}
3586 		break;
3587 	case e1000_82574:
3588 	case e1000_82583:
3589 		/* Stable 25MHz frequency */
3590 		incperiod = INCPERIOD_25MHZ;
3591 		incvalue = INCVALUE_25MHZ;
3592 		shift = INCVALUE_SHIFT_25MHZ;
3593 		adapter->cc.shift = shift;
3594 		break;
3595 	default:
3596 		return -EINVAL;
3597 	}
3598 
3599 	*timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) |
3600 		    ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK));
3601 
3602 	return 0;
3603 }
3604 
3605 /**
3606  * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3607  * @adapter: board private structure
3608  *
3609  * Outgoing time stamping can be enabled and disabled. Play nice and
3610  * disable it when requested, although it shouldn't cause any overhead
3611  * when no packet needs it. At most one packet in the queue may be
3612  * marked for time stamping, otherwise it would be impossible to tell
3613  * for sure to which packet the hardware time stamp belongs.
3614  *
3615  * Incoming time stamping has to be configured via the hardware filters.
3616  * Not all combinations are supported, in particular event type has to be
3617  * specified. Matching the kind of event packet is not supported, with the
3618  * exception of "all V2 events regardless of level 2 or 4".
3619  **/
3620 static int e1000e_config_hwtstamp(struct e1000_adapter *adapter,
3621 				  struct hwtstamp_config *config)
3622 {
3623 	struct e1000_hw *hw = &adapter->hw;
3624 	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
3625 	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
3626 	u32 rxmtrl = 0;
3627 	u16 rxudp = 0;
3628 	bool is_l4 = false;
3629 	bool is_l2 = false;
3630 	u32 regval;
3631 
3632 	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3633 		return -EINVAL;
3634 
3635 	/* flags reserved for future extensions - must be zero */
3636 	if (config->flags)
3637 		return -EINVAL;
3638 
3639 	switch (config->tx_type) {
3640 	case HWTSTAMP_TX_OFF:
3641 		tsync_tx_ctl = 0;
3642 		break;
3643 	case HWTSTAMP_TX_ON:
3644 		break;
3645 	default:
3646 		return -ERANGE;
3647 	}
3648 
3649 	switch (config->rx_filter) {
3650 	case HWTSTAMP_FILTER_NONE:
3651 		tsync_rx_ctl = 0;
3652 		break;
3653 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3654 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3655 		rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE;
3656 		is_l4 = true;
3657 		break;
3658 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3659 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3660 		rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE;
3661 		is_l4 = true;
3662 		break;
3663 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3664 		/* Also time stamps V2 L2 Path Delay Request/Response */
3665 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3666 		rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3667 		is_l2 = true;
3668 		break;
3669 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3670 		/* Also time stamps V2 L2 Path Delay Request/Response. */
3671 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3672 		rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3673 		is_l2 = true;
3674 		break;
3675 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3676 		/* Hardware cannot filter just V2 L4 Sync messages */
3677 		fallthrough;
3678 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
3679 		/* Also time stamps V2 Path Delay Request/Response. */
3680 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3681 		rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3682 		is_l2 = true;
3683 		is_l4 = true;
3684 		break;
3685 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3686 		/* Hardware cannot filter just V2 L4 Delay Request messages */
3687 		fallthrough;
3688 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3689 		/* Also time stamps V2 Path Delay Request/Response. */
3690 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3691 		rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3692 		is_l2 = true;
3693 		is_l4 = true;
3694 		break;
3695 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3696 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3697 		/* Hardware cannot filter just V2 L4 or L2 Event messages */
3698 		fallthrough;
3699 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
3700 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
3701 		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
3702 		is_l2 = true;
3703 		is_l4 = true;
3704 		break;
3705 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3706 		/* For V1, the hardware can only filter Sync messages or
3707 		 * Delay Request messages but not both so fall-through to
3708 		 * time stamp all packets.
3709 		 */
3710 		fallthrough;
3711 	case HWTSTAMP_FILTER_NTP_ALL:
3712 	case HWTSTAMP_FILTER_ALL:
3713 		is_l2 = true;
3714 		is_l4 = true;
3715 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
3716 		config->rx_filter = HWTSTAMP_FILTER_ALL;
3717 		break;
3718 	default:
3719 		return -ERANGE;
3720 	}
3721 
3722 	adapter->hwtstamp_config = *config;
3723 
3724 	/* enable/disable Tx h/w time stamping */
3725 	regval = er32(TSYNCTXCTL);
3726 	regval &= ~E1000_TSYNCTXCTL_ENABLED;
3727 	regval |= tsync_tx_ctl;
3728 	ew32(TSYNCTXCTL, regval);
3729 	if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) !=
3730 	    (regval & E1000_TSYNCTXCTL_ENABLED)) {
3731 		e_err("Timesync Tx Control register not set as expected\n");
3732 		return -EAGAIN;
3733 	}
3734 
3735 	/* enable/disable Rx h/w time stamping */
3736 	regval = er32(TSYNCRXCTL);
3737 	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
3738 	regval |= tsync_rx_ctl;
3739 	ew32(TSYNCRXCTL, regval);
3740 	if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED |
3741 				 E1000_TSYNCRXCTL_TYPE_MASK)) !=
3742 	    (regval & (E1000_TSYNCRXCTL_ENABLED |
3743 		       E1000_TSYNCRXCTL_TYPE_MASK))) {
3744 		e_err("Timesync Rx Control register not set as expected\n");
3745 		return -EAGAIN;
3746 	}
3747 
3748 	/* L2: define ethertype filter for time stamped packets */
3749 	if (is_l2)
3750 		rxmtrl |= ETH_P_1588;
3751 
3752 	/* define which PTP packets get time stamped */
3753 	ew32(RXMTRL, rxmtrl);
3754 
3755 	/* Filter by destination port */
3756 	if (is_l4) {
3757 		rxudp = PTP_EV_PORT;
3758 		cpu_to_be16s(&rxudp);
3759 	}
3760 	ew32(RXUDP, rxudp);
3761 
3762 	e1e_flush();
3763 
3764 	/* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
3765 	er32(RXSTMPH);
3766 	er32(TXSTMPH);
3767 
3768 	return 0;
3769 }
3770 
3771 /**
3772  * e1000_configure - configure the hardware for Rx and Tx
3773  * @adapter: private board structure
3774  **/
3775 static void e1000_configure(struct e1000_adapter *adapter)
3776 {
3777 	struct e1000_ring *rx_ring = adapter->rx_ring;
3778 
3779 	e1000e_set_rx_mode(adapter->netdev);
3780 
3781 	e1000_restore_vlan(adapter);
3782 	e1000_init_manageability_pt(adapter);
3783 
3784 	e1000_configure_tx(adapter);
3785 
3786 	if (adapter->netdev->features & NETIF_F_RXHASH)
3787 		e1000e_setup_rss_hash(adapter);
3788 	e1000_setup_rctl(adapter);
3789 	e1000_configure_rx(adapter);
3790 	adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3791 }
3792 
3793 /**
3794  * e1000e_power_up_phy - restore link in case the phy was powered down
3795  * @adapter: address of board private structure
3796  *
3797  * The phy may be powered down to save power and turn off link when the
3798  * driver is unloaded and wake on lan is not enabled (among others)
3799  * *** this routine MUST be followed by a call to e1000e_reset ***
3800  **/
3801 void e1000e_power_up_phy(struct e1000_adapter *adapter)
3802 {
3803 	if (adapter->hw.phy.ops.power_up)
3804 		adapter->hw.phy.ops.power_up(&adapter->hw);
3805 
3806 	adapter->hw.mac.ops.setup_link(&adapter->hw);
3807 }
3808 
3809 /**
3810  * e1000_power_down_phy - Power down the PHY
3811  *
3812  * Power down the PHY so no link is implied when interface is down.
3813  * The PHY cannot be powered down if management or WoL is active.
3814  */
3815 static void e1000_power_down_phy(struct e1000_adapter *adapter)
3816 {
3817 	if (adapter->hw.phy.ops.power_down)
3818 		adapter->hw.phy.ops.power_down(&adapter->hw);
3819 }
3820 
3821 /**
3822  * e1000_flush_tx_ring - remove all descriptors from the tx_ring
3823  *
3824  * We want to clear all pending descriptors from the TX ring.
3825  * zeroing happens when the HW reads the regs. We  assign the ring itself as
3826  * the data of the next descriptor. We don't care about the data we are about
3827  * to reset the HW.
3828  */
3829 static void e1000_flush_tx_ring(struct e1000_adapter *adapter)
3830 {
3831 	struct e1000_hw *hw = &adapter->hw;
3832 	struct e1000_ring *tx_ring = adapter->tx_ring;
3833 	struct e1000_tx_desc *tx_desc = NULL;
3834 	u32 tdt, tctl, txd_lower = E1000_TXD_CMD_IFCS;
3835 	u16 size = 512;
3836 
3837 	tctl = er32(TCTL);
3838 	ew32(TCTL, tctl | E1000_TCTL_EN);
3839 	tdt = er32(TDT(0));
3840 	BUG_ON(tdt != tx_ring->next_to_use);
3841 	tx_desc =  E1000_TX_DESC(*tx_ring, tx_ring->next_to_use);
3842 	tx_desc->buffer_addr = cpu_to_le64(tx_ring->dma);
3843 
3844 	tx_desc->lower.data = cpu_to_le32(txd_lower | size);
3845 	tx_desc->upper.data = 0;
3846 	/* flush descriptors to memory before notifying the HW */
3847 	wmb();
3848 	tx_ring->next_to_use++;
3849 	if (tx_ring->next_to_use == tx_ring->count)
3850 		tx_ring->next_to_use = 0;
3851 	ew32(TDT(0), tx_ring->next_to_use);
3852 	usleep_range(200, 250);
3853 }
3854 
3855 /**
3856  * e1000_flush_rx_ring - remove all descriptors from the rx_ring
3857  *
3858  * Mark all descriptors in the RX ring as consumed and disable the rx ring
3859  */
3860 static void e1000_flush_rx_ring(struct e1000_adapter *adapter)
3861 {
3862 	u32 rctl, rxdctl;
3863 	struct e1000_hw *hw = &adapter->hw;
3864 
3865 	rctl = er32(RCTL);
3866 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
3867 	e1e_flush();
3868 	usleep_range(100, 150);
3869 
3870 	rxdctl = er32(RXDCTL(0));
3871 	/* zero the lower 14 bits (prefetch and host thresholds) */
3872 	rxdctl &= 0xffffc000;
3873 
3874 	/* update thresholds: prefetch threshold to 31, host threshold to 1
3875 	 * and make sure the granularity is "descriptors" and not "cache lines"
3876 	 */
3877 	rxdctl |= (0x1F | BIT(8) | E1000_RXDCTL_THRESH_UNIT_DESC);
3878 
3879 	ew32(RXDCTL(0), rxdctl);
3880 	/* momentarily enable the RX ring for the changes to take effect */
3881 	ew32(RCTL, rctl | E1000_RCTL_EN);
3882 	e1e_flush();
3883 	usleep_range(100, 150);
3884 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
3885 }
3886 
3887 /**
3888  * e1000_flush_desc_rings - remove all descriptors from the descriptor rings
3889  *
3890  * In i219, the descriptor rings must be emptied before resetting the HW
3891  * or before changing the device state to D3 during runtime (runtime PM).
3892  *
3893  * Failure to do this will cause the HW to enter a unit hang state which can
3894  * only be released by PCI reset on the device
3895  *
3896  */
3897 
3898 static void e1000_flush_desc_rings(struct e1000_adapter *adapter)
3899 {
3900 	u16 hang_state;
3901 	u32 fext_nvm11, tdlen;
3902 	struct e1000_hw *hw = &adapter->hw;
3903 
3904 	/* First, disable MULR fix in FEXTNVM11 */
3905 	fext_nvm11 = er32(FEXTNVM11);
3906 	fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
3907 	ew32(FEXTNVM11, fext_nvm11);
3908 	/* do nothing if we're not in faulty state, or if the queue is empty */
3909 	tdlen = er32(TDLEN(0));
3910 	pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3911 			     &hang_state);
3912 	if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen)
3913 		return;
3914 	e1000_flush_tx_ring(adapter);
3915 	/* recheck, maybe the fault is caused by the rx ring */
3916 	pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3917 			     &hang_state);
3918 	if (hang_state & FLUSH_DESC_REQUIRED)
3919 		e1000_flush_rx_ring(adapter);
3920 }
3921 
3922 /**
3923  * e1000e_systim_reset - reset the timesync registers after a hardware reset
3924  * @adapter: board private structure
3925  *
3926  * When the MAC is reset, all hardware bits for timesync will be reset to the
3927  * default values. This function will restore the settings last in place.
3928  * Since the clock SYSTIME registers are reset, we will simply restore the
3929  * cyclecounter to the kernel real clock time.
3930  **/
3931 static void e1000e_systim_reset(struct e1000_adapter *adapter)
3932 {
3933 	struct ptp_clock_info *info = &adapter->ptp_clock_info;
3934 	struct e1000_hw *hw = &adapter->hw;
3935 	unsigned long flags;
3936 	u32 timinca;
3937 	s32 ret_val;
3938 
3939 	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3940 		return;
3941 
3942 	if (info->adjfreq) {
3943 		/* restore the previous ptp frequency delta */
3944 		ret_val = info->adjfreq(info, adapter->ptp_delta);
3945 	} else {
3946 		/* set the default base frequency if no adjustment possible */
3947 		ret_val = e1000e_get_base_timinca(adapter, &timinca);
3948 		if (!ret_val)
3949 			ew32(TIMINCA, timinca);
3950 	}
3951 
3952 	if (ret_val) {
3953 		dev_warn(&adapter->pdev->dev,
3954 			 "Failed to restore TIMINCA clock rate delta: %d\n",
3955 			 ret_val);
3956 		return;
3957 	}
3958 
3959 	/* reset the systim ns time counter */
3960 	spin_lock_irqsave(&adapter->systim_lock, flags);
3961 	timecounter_init(&adapter->tc, &adapter->cc,
3962 			 ktime_to_ns(ktime_get_real()));
3963 	spin_unlock_irqrestore(&adapter->systim_lock, flags);
3964 
3965 	/* restore the previous hwtstamp configuration settings */
3966 	e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config);
3967 }
3968 
3969 /**
3970  * e1000e_reset - bring the hardware into a known good state
3971  *
3972  * This function boots the hardware and enables some settings that
3973  * require a configuration cycle of the hardware - those cannot be
3974  * set/changed during runtime. After reset the device needs to be
3975  * properly configured for Rx, Tx etc.
3976  */
3977 void e1000e_reset(struct e1000_adapter *adapter)
3978 {
3979 	struct e1000_mac_info *mac = &adapter->hw.mac;
3980 	struct e1000_fc_info *fc = &adapter->hw.fc;
3981 	struct e1000_hw *hw = &adapter->hw;
3982 	u32 tx_space, min_tx_space, min_rx_space;
3983 	u32 pba = adapter->pba;
3984 	u16 hwm;
3985 
3986 	/* reset Packet Buffer Allocation to default */
3987 	ew32(PBA, pba);
3988 
3989 	if (adapter->max_frame_size > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) {
3990 		/* To maintain wire speed transmits, the Tx FIFO should be
3991 		 * large enough to accommodate two full transmit packets,
3992 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
3993 		 * the Rx FIFO should be large enough to accommodate at least
3994 		 * one full receive packet and is similarly rounded up and
3995 		 * expressed in KB.
3996 		 */
3997 		pba = er32(PBA);
3998 		/* upper 16 bits has Tx packet buffer allocation size in KB */
3999 		tx_space = pba >> 16;
4000 		/* lower 16 bits has Rx packet buffer allocation size in KB */
4001 		pba &= 0xffff;
4002 		/* the Tx fifo also stores 16 bytes of information about the Tx
4003 		 * but don't include ethernet FCS because hardware appends it
4004 		 */
4005 		min_tx_space = (adapter->max_frame_size +
4006 				sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2;
4007 		min_tx_space = ALIGN(min_tx_space, 1024);
4008 		min_tx_space >>= 10;
4009 		/* software strips receive CRC, so leave room for it */
4010 		min_rx_space = adapter->max_frame_size;
4011 		min_rx_space = ALIGN(min_rx_space, 1024);
4012 		min_rx_space >>= 10;
4013 
4014 		/* If current Tx allocation is less than the min Tx FIFO size,
4015 		 * and the min Tx FIFO size is less than the current Rx FIFO
4016 		 * allocation, take space away from current Rx allocation
4017 		 */
4018 		if ((tx_space < min_tx_space) &&
4019 		    ((min_tx_space - tx_space) < pba)) {
4020 			pba -= min_tx_space - tx_space;
4021 
4022 			/* if short on Rx space, Rx wins and must trump Tx
4023 			 * adjustment
4024 			 */
4025 			if (pba < min_rx_space)
4026 				pba = min_rx_space;
4027 		}
4028 
4029 		ew32(PBA, pba);
4030 	}
4031 
4032 	/* flow control settings
4033 	 *
4034 	 * The high water mark must be low enough to fit one full frame
4035 	 * (or the size used for early receive) above it in the Rx FIFO.
4036 	 * Set it to the lower of:
4037 	 * - 90% of the Rx FIFO size, and
4038 	 * - the full Rx FIFO size minus one full frame
4039 	 */
4040 	if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
4041 		fc->pause_time = 0xFFFF;
4042 	else
4043 		fc->pause_time = E1000_FC_PAUSE_TIME;
4044 	fc->send_xon = true;
4045 	fc->current_mode = fc->requested_mode;
4046 
4047 	switch (hw->mac.type) {
4048 	case e1000_ich9lan:
4049 	case e1000_ich10lan:
4050 		if (adapter->netdev->mtu > ETH_DATA_LEN) {
4051 			pba = 14;
4052 			ew32(PBA, pba);
4053 			fc->high_water = 0x2800;
4054 			fc->low_water = fc->high_water - 8;
4055 			break;
4056 		}
4057 		fallthrough;
4058 	default:
4059 		hwm = min(((pba << 10) * 9 / 10),
4060 			  ((pba << 10) - adapter->max_frame_size));
4061 
4062 		fc->high_water = hwm & E1000_FCRTH_RTH;	/* 8-byte granularity */
4063 		fc->low_water = fc->high_water - 8;
4064 		break;
4065 	case e1000_pchlan:
4066 		/* Workaround PCH LOM adapter hangs with certain network
4067 		 * loads.  If hangs persist, try disabling Tx flow control.
4068 		 */
4069 		if (adapter->netdev->mtu > ETH_DATA_LEN) {
4070 			fc->high_water = 0x3500;
4071 			fc->low_water = 0x1500;
4072 		} else {
4073 			fc->high_water = 0x5000;
4074 			fc->low_water = 0x3000;
4075 		}
4076 		fc->refresh_time = 0x1000;
4077 		break;
4078 	case e1000_pch2lan:
4079 	case e1000_pch_lpt:
4080 	case e1000_pch_spt:
4081 	case e1000_pch_cnp:
4082 	case e1000_pch_tgp:
4083 	case e1000_pch_adp:
4084 		fc->refresh_time = 0xFFFF;
4085 		fc->pause_time = 0xFFFF;
4086 
4087 		if (adapter->netdev->mtu <= ETH_DATA_LEN) {
4088 			fc->high_water = 0x05C20;
4089 			fc->low_water = 0x05048;
4090 			break;
4091 		}
4092 
4093 		pba = 14;
4094 		ew32(PBA, pba);
4095 		fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH;
4096 		fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL;
4097 		break;
4098 	}
4099 
4100 	/* Alignment of Tx data is on an arbitrary byte boundary with the
4101 	 * maximum size per Tx descriptor limited only to the transmit
4102 	 * allocation of the packet buffer minus 96 bytes with an upper
4103 	 * limit of 24KB due to receive synchronization limitations.
4104 	 */
4105 	adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
4106 				       24 << 10);
4107 
4108 	/* Disable Adaptive Interrupt Moderation if 2 full packets cannot
4109 	 * fit in receive buffer.
4110 	 */
4111 	if (adapter->itr_setting & 0x3) {
4112 		if ((adapter->max_frame_size * 2) > (pba << 10)) {
4113 			if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
4114 				dev_info(&adapter->pdev->dev,
4115 					 "Interrupt Throttle Rate off\n");
4116 				adapter->flags2 |= FLAG2_DISABLE_AIM;
4117 				e1000e_write_itr(adapter, 0);
4118 			}
4119 		} else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
4120 			dev_info(&adapter->pdev->dev,
4121 				 "Interrupt Throttle Rate on\n");
4122 			adapter->flags2 &= ~FLAG2_DISABLE_AIM;
4123 			adapter->itr = 20000;
4124 			e1000e_write_itr(adapter, adapter->itr);
4125 		}
4126 	}
4127 
4128 	if (hw->mac.type >= e1000_pch_spt)
4129 		e1000_flush_desc_rings(adapter);
4130 	/* Allow time for pending master requests to run */
4131 	mac->ops.reset_hw(hw);
4132 
4133 	/* For parts with AMT enabled, let the firmware know
4134 	 * that the network interface is in control
4135 	 */
4136 	if (adapter->flags & FLAG_HAS_AMT)
4137 		e1000e_get_hw_control(adapter);
4138 
4139 	ew32(WUC, 0);
4140 
4141 	if (mac->ops.init_hw(hw))
4142 		e_err("Hardware Error\n");
4143 
4144 	e1000_update_mng_vlan(adapter);
4145 
4146 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
4147 	ew32(VET, ETH_P_8021Q);
4148 
4149 	e1000e_reset_adaptive(hw);
4150 
4151 	/* restore systim and hwtstamp settings */
4152 	e1000e_systim_reset(adapter);
4153 
4154 	/* Set EEE advertisement as appropriate */
4155 	if (adapter->flags2 & FLAG2_HAS_EEE) {
4156 		s32 ret_val;
4157 		u16 adv_addr;
4158 
4159 		switch (hw->phy.type) {
4160 		case e1000_phy_82579:
4161 			adv_addr = I82579_EEE_ADVERTISEMENT;
4162 			break;
4163 		case e1000_phy_i217:
4164 			adv_addr = I217_EEE_ADVERTISEMENT;
4165 			break;
4166 		default:
4167 			dev_err(&adapter->pdev->dev,
4168 				"Invalid PHY type setting EEE advertisement\n");
4169 			return;
4170 		}
4171 
4172 		ret_val = hw->phy.ops.acquire(hw);
4173 		if (ret_val) {
4174 			dev_err(&adapter->pdev->dev,
4175 				"EEE advertisement - unable to acquire PHY\n");
4176 			return;
4177 		}
4178 
4179 		e1000_write_emi_reg_locked(hw, adv_addr,
4180 					   hw->dev_spec.ich8lan.eee_disable ?
4181 					   0 : adapter->eee_advert);
4182 
4183 		hw->phy.ops.release(hw);
4184 	}
4185 
4186 	if (!netif_running(adapter->netdev) &&
4187 	    !test_bit(__E1000_TESTING, &adapter->state))
4188 		e1000_power_down_phy(adapter);
4189 
4190 	e1000_get_phy_info(hw);
4191 
4192 	if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
4193 	    !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
4194 		u16 phy_data = 0;
4195 		/* speed up time to link by disabling smart power down, ignore
4196 		 * the return value of this function because there is nothing
4197 		 * different we would do if it failed
4198 		 */
4199 		e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
4200 		phy_data &= ~IGP02E1000_PM_SPD;
4201 		e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
4202 	}
4203 	if (hw->mac.type >= e1000_pch_spt && adapter->int_mode == 0) {
4204 		u32 reg;
4205 
4206 		/* Fextnvm7 @ 0xe4[2] = 1 */
4207 		reg = er32(FEXTNVM7);
4208 		reg |= E1000_FEXTNVM7_SIDE_CLK_UNGATE;
4209 		ew32(FEXTNVM7, reg);
4210 		/* Fextnvm9 @ 0x5bb4[13:12] = 11 */
4211 		reg = er32(FEXTNVM9);
4212 		reg |= E1000_FEXTNVM9_IOSFSB_CLKGATE_DIS |
4213 		       E1000_FEXTNVM9_IOSFSB_CLKREQ_DIS;
4214 		ew32(FEXTNVM9, reg);
4215 	}
4216 
4217 }
4218 
4219 /**
4220  * e1000e_trigger_lsc - trigger an LSC interrupt
4221  * @adapter:
4222  *
4223  * Fire a link status change interrupt to start the watchdog.
4224  **/
4225 static void e1000e_trigger_lsc(struct e1000_adapter *adapter)
4226 {
4227 	struct e1000_hw *hw = &adapter->hw;
4228 
4229 	if (adapter->msix_entries)
4230 		ew32(ICS, E1000_ICS_LSC | E1000_ICS_OTHER);
4231 	else
4232 		ew32(ICS, E1000_ICS_LSC);
4233 }
4234 
4235 void e1000e_up(struct e1000_adapter *adapter)
4236 {
4237 	/* hardware has been reset, we need to reload some things */
4238 	e1000_configure(adapter);
4239 
4240 	clear_bit(__E1000_DOWN, &adapter->state);
4241 
4242 	if (adapter->msix_entries)
4243 		e1000_configure_msix(adapter);
4244 	e1000_irq_enable(adapter);
4245 
4246 	/* Tx queue started by watchdog timer when link is up */
4247 
4248 	e1000e_trigger_lsc(adapter);
4249 }
4250 
4251 static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
4252 {
4253 	struct e1000_hw *hw = &adapter->hw;
4254 
4255 	if (!(adapter->flags2 & FLAG2_DMA_BURST))
4256 		return;
4257 
4258 	/* flush pending descriptor writebacks to memory */
4259 	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4260 	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4261 
4262 	/* execute the writes immediately */
4263 	e1e_flush();
4264 
4265 	/* due to rare timing issues, write to TIDV/RDTR again to ensure the
4266 	 * write is successful
4267 	 */
4268 	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4269 	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4270 
4271 	/* execute the writes immediately */
4272 	e1e_flush();
4273 }
4274 
4275 static void e1000e_update_stats(struct e1000_adapter *adapter);
4276 
4277 /**
4278  * e1000e_down - quiesce the device and optionally reset the hardware
4279  * @adapter: board private structure
4280  * @reset: boolean flag to reset the hardware or not
4281  */
4282 void e1000e_down(struct e1000_adapter *adapter, bool reset)
4283 {
4284 	struct net_device *netdev = adapter->netdev;
4285 	struct e1000_hw *hw = &adapter->hw;
4286 	u32 tctl, rctl;
4287 
4288 	/* signal that we're down so the interrupt handler does not
4289 	 * reschedule our watchdog timer
4290 	 */
4291 	set_bit(__E1000_DOWN, &adapter->state);
4292 
4293 	netif_carrier_off(netdev);
4294 
4295 	/* disable receives in the hardware */
4296 	rctl = er32(RCTL);
4297 	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
4298 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
4299 	/* flush and sleep below */
4300 
4301 	netif_stop_queue(netdev);
4302 
4303 	/* disable transmits in the hardware */
4304 	tctl = er32(TCTL);
4305 	tctl &= ~E1000_TCTL_EN;
4306 	ew32(TCTL, tctl);
4307 
4308 	/* flush both disables and wait for them to finish */
4309 	e1e_flush();
4310 	usleep_range(10000, 11000);
4311 
4312 	e1000_irq_disable(adapter);
4313 
4314 	napi_synchronize(&adapter->napi);
4315 
4316 	del_timer_sync(&adapter->watchdog_timer);
4317 	del_timer_sync(&adapter->phy_info_timer);
4318 
4319 	spin_lock(&adapter->stats64_lock);
4320 	e1000e_update_stats(adapter);
4321 	spin_unlock(&adapter->stats64_lock);
4322 
4323 	e1000e_flush_descriptors(adapter);
4324 
4325 	adapter->link_speed = 0;
4326 	adapter->link_duplex = 0;
4327 
4328 	/* Disable Si errata workaround on PCHx for jumbo frame flow */
4329 	if ((hw->mac.type >= e1000_pch2lan) &&
4330 	    (adapter->netdev->mtu > ETH_DATA_LEN) &&
4331 	    e1000_lv_jumbo_workaround_ich8lan(hw, false))
4332 		e_dbg("failed to disable jumbo frame workaround mode\n");
4333 
4334 	if (!pci_channel_offline(adapter->pdev)) {
4335 		if (reset)
4336 			e1000e_reset(adapter);
4337 		else if (hw->mac.type >= e1000_pch_spt)
4338 			e1000_flush_desc_rings(adapter);
4339 	}
4340 	e1000_clean_tx_ring(adapter->tx_ring);
4341 	e1000_clean_rx_ring(adapter->rx_ring);
4342 }
4343 
4344 void e1000e_reinit_locked(struct e1000_adapter *adapter)
4345 {
4346 	might_sleep();
4347 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4348 		usleep_range(1000, 1100);
4349 	e1000e_down(adapter, true);
4350 	e1000e_up(adapter);
4351 	clear_bit(__E1000_RESETTING, &adapter->state);
4352 }
4353 
4354 /**
4355  * e1000e_sanitize_systim - sanitize raw cycle counter reads
4356  * @hw: pointer to the HW structure
4357  * @systim: PHC time value read, sanitized and returned
4358  * @sts: structure to hold system time before and after reading SYSTIML,
4359  * may be NULL
4360  *
4361  * Errata for 82574/82583 possible bad bits read from SYSTIMH/L:
4362  * check to see that the time is incrementing at a reasonable
4363  * rate and is a multiple of incvalue.
4364  **/
4365 static u64 e1000e_sanitize_systim(struct e1000_hw *hw, u64 systim,
4366 				  struct ptp_system_timestamp *sts)
4367 {
4368 	u64 time_delta, rem, temp;
4369 	u64 systim_next;
4370 	u32 incvalue;
4371 	int i;
4372 
4373 	incvalue = er32(TIMINCA) & E1000_TIMINCA_INCVALUE_MASK;
4374 	for (i = 0; i < E1000_MAX_82574_SYSTIM_REREADS; i++) {
4375 		/* latch SYSTIMH on read of SYSTIML */
4376 		ptp_read_system_prets(sts);
4377 		systim_next = (u64)er32(SYSTIML);
4378 		ptp_read_system_postts(sts);
4379 		systim_next |= (u64)er32(SYSTIMH) << 32;
4380 
4381 		time_delta = systim_next - systim;
4382 		temp = time_delta;
4383 		/* VMWare users have seen incvalue of zero, don't div / 0 */
4384 		rem = incvalue ? do_div(temp, incvalue) : (time_delta != 0);
4385 
4386 		systim = systim_next;
4387 
4388 		if ((time_delta < E1000_82574_SYSTIM_EPSILON) && (rem == 0))
4389 			break;
4390 	}
4391 
4392 	return systim;
4393 }
4394 
4395 /**
4396  * e1000e_read_systim - read SYSTIM register
4397  * @adapter: board private structure
4398  * @sts: structure which will contain system time before and after reading
4399  * SYSTIML, may be NULL
4400  **/
4401 u64 e1000e_read_systim(struct e1000_adapter *adapter,
4402 		       struct ptp_system_timestamp *sts)
4403 {
4404 	struct e1000_hw *hw = &adapter->hw;
4405 	u32 systimel, systimel_2, systimeh;
4406 	u64 systim;
4407 	/* SYSTIMH latching upon SYSTIML read does not work well.
4408 	 * This means that if SYSTIML overflows after we read it but before
4409 	 * we read SYSTIMH, the value of SYSTIMH has been incremented and we
4410 	 * will experience a huge non linear increment in the systime value
4411 	 * to fix that we test for overflow and if true, we re-read systime.
4412 	 */
4413 	ptp_read_system_prets(sts);
4414 	systimel = er32(SYSTIML);
4415 	ptp_read_system_postts(sts);
4416 	systimeh = er32(SYSTIMH);
4417 	/* Is systimel is so large that overflow is possible? */
4418 	if (systimel >= (u32)0xffffffff - E1000_TIMINCA_INCVALUE_MASK) {
4419 		ptp_read_system_prets(sts);
4420 		systimel_2 = er32(SYSTIML);
4421 		ptp_read_system_postts(sts);
4422 		if (systimel > systimel_2) {
4423 			/* There was an overflow, read again SYSTIMH, and use
4424 			 * systimel_2
4425 			 */
4426 			systimeh = er32(SYSTIMH);
4427 			systimel = systimel_2;
4428 		}
4429 	}
4430 	systim = (u64)systimel;
4431 	systim |= (u64)systimeh << 32;
4432 
4433 	if (adapter->flags2 & FLAG2_CHECK_SYSTIM_OVERFLOW)
4434 		systim = e1000e_sanitize_systim(hw, systim, sts);
4435 
4436 	return systim;
4437 }
4438 
4439 /**
4440  * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4441  * @cc: cyclecounter structure
4442  **/
4443 static u64 e1000e_cyclecounter_read(const struct cyclecounter *cc)
4444 {
4445 	struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter,
4446 						     cc);
4447 
4448 	return e1000e_read_systim(adapter, NULL);
4449 }
4450 
4451 /**
4452  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4453  * @adapter: board private structure to initialize
4454  *
4455  * e1000_sw_init initializes the Adapter private data structure.
4456  * Fields are initialized based on PCI device information and
4457  * OS network device settings (MTU size).
4458  **/
4459 static int e1000_sw_init(struct e1000_adapter *adapter)
4460 {
4461 	struct net_device *netdev = adapter->netdev;
4462 
4463 	adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
4464 	adapter->rx_ps_bsize0 = 128;
4465 	adapter->max_frame_size = netdev->mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
4466 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4467 	adapter->tx_ring_count = E1000_DEFAULT_TXD;
4468 	adapter->rx_ring_count = E1000_DEFAULT_RXD;
4469 
4470 	spin_lock_init(&adapter->stats64_lock);
4471 
4472 	e1000e_set_interrupt_capability(adapter);
4473 
4474 	if (e1000_alloc_queues(adapter))
4475 		return -ENOMEM;
4476 
4477 	/* Setup hardware time stamping cyclecounter */
4478 	if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
4479 		adapter->cc.read = e1000e_cyclecounter_read;
4480 		adapter->cc.mask = CYCLECOUNTER_MASK(64);
4481 		adapter->cc.mult = 1;
4482 		/* cc.shift set in e1000e_get_base_tininca() */
4483 
4484 		spin_lock_init(&adapter->systim_lock);
4485 		INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work);
4486 	}
4487 
4488 	/* Explicitly disable IRQ since the NIC can be in any state. */
4489 	e1000_irq_disable(adapter);
4490 
4491 	set_bit(__E1000_DOWN, &adapter->state);
4492 	return 0;
4493 }
4494 
4495 /**
4496  * e1000_intr_msi_test - Interrupt Handler
4497  * @irq: interrupt number
4498  * @data: pointer to a network interface device structure
4499  **/
4500 static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data)
4501 {
4502 	struct net_device *netdev = data;
4503 	struct e1000_adapter *adapter = netdev_priv(netdev);
4504 	struct e1000_hw *hw = &adapter->hw;
4505 	u32 icr = er32(ICR);
4506 
4507 	e_dbg("icr is %08X\n", icr);
4508 	if (icr & E1000_ICR_RXSEQ) {
4509 		adapter->flags &= ~FLAG_MSI_TEST_FAILED;
4510 		/* Force memory writes to complete before acknowledging the
4511 		 * interrupt is handled.
4512 		 */
4513 		wmb();
4514 	}
4515 
4516 	return IRQ_HANDLED;
4517 }
4518 
4519 /**
4520  * e1000_test_msi_interrupt - Returns 0 for successful test
4521  * @adapter: board private struct
4522  *
4523  * code flow taken from tg3.c
4524  **/
4525 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
4526 {
4527 	struct net_device *netdev = adapter->netdev;
4528 	struct e1000_hw *hw = &adapter->hw;
4529 	int err;
4530 
4531 	/* poll_enable hasn't been called yet, so don't need disable */
4532 	/* clear any pending events */
4533 	er32(ICR);
4534 
4535 	/* free the real vector and request a test handler */
4536 	e1000_free_irq(adapter);
4537 	e1000e_reset_interrupt_capability(adapter);
4538 
4539 	/* Assume that the test fails, if it succeeds then the test
4540 	 * MSI irq handler will unset this flag
4541 	 */
4542 	adapter->flags |= FLAG_MSI_TEST_FAILED;
4543 
4544 	err = pci_enable_msi(adapter->pdev);
4545 	if (err)
4546 		goto msi_test_failed;
4547 
4548 	err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
4549 			  netdev->name, netdev);
4550 	if (err) {
4551 		pci_disable_msi(adapter->pdev);
4552 		goto msi_test_failed;
4553 	}
4554 
4555 	/* Force memory writes to complete before enabling and firing an
4556 	 * interrupt.
4557 	 */
4558 	wmb();
4559 
4560 	e1000_irq_enable(adapter);
4561 
4562 	/* fire an unusual interrupt on the test handler */
4563 	ew32(ICS, E1000_ICS_RXSEQ);
4564 	e1e_flush();
4565 	msleep(100);
4566 
4567 	e1000_irq_disable(adapter);
4568 
4569 	rmb();			/* read flags after interrupt has been fired */
4570 
4571 	if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4572 		adapter->int_mode = E1000E_INT_MODE_LEGACY;
4573 		e_info("MSI interrupt test failed, using legacy interrupt.\n");
4574 	} else {
4575 		e_dbg("MSI interrupt test succeeded!\n");
4576 	}
4577 
4578 	free_irq(adapter->pdev->irq, netdev);
4579 	pci_disable_msi(adapter->pdev);
4580 
4581 msi_test_failed:
4582 	e1000e_set_interrupt_capability(adapter);
4583 	return e1000_request_irq(adapter);
4584 }
4585 
4586 /**
4587  * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4588  * @adapter: board private struct
4589  *
4590  * code flow taken from tg3.c, called with e1000 interrupts disabled.
4591  **/
4592 static int e1000_test_msi(struct e1000_adapter *adapter)
4593 {
4594 	int err;
4595 	u16 pci_cmd;
4596 
4597 	if (!(adapter->flags & FLAG_MSI_ENABLED))
4598 		return 0;
4599 
4600 	/* disable SERR in case the MSI write causes a master abort */
4601 	pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4602 	if (pci_cmd & PCI_COMMAND_SERR)
4603 		pci_write_config_word(adapter->pdev, PCI_COMMAND,
4604 				      pci_cmd & ~PCI_COMMAND_SERR);
4605 
4606 	err = e1000_test_msi_interrupt(adapter);
4607 
4608 	/* re-enable SERR */
4609 	if (pci_cmd & PCI_COMMAND_SERR) {
4610 		pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4611 		pci_cmd |= PCI_COMMAND_SERR;
4612 		pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
4613 	}
4614 
4615 	return err;
4616 }
4617 
4618 /**
4619  * e1000e_open - Called when a network interface is made active
4620  * @netdev: network interface device structure
4621  *
4622  * Returns 0 on success, negative value on failure
4623  *
4624  * The open entry point is called when a network interface is made
4625  * active by the system (IFF_UP).  At this point all resources needed
4626  * for transmit and receive operations are allocated, the interrupt
4627  * handler is registered with the OS, the watchdog timer is started,
4628  * and the stack is notified that the interface is ready.
4629  **/
4630 int e1000e_open(struct net_device *netdev)
4631 {
4632 	struct e1000_adapter *adapter = netdev_priv(netdev);
4633 	struct e1000_hw *hw = &adapter->hw;
4634 	struct pci_dev *pdev = adapter->pdev;
4635 	int err;
4636 
4637 	/* disallow open during test */
4638 	if (test_bit(__E1000_TESTING, &adapter->state))
4639 		return -EBUSY;
4640 
4641 	pm_runtime_get_sync(&pdev->dev);
4642 
4643 	netif_carrier_off(netdev);
4644 	netif_stop_queue(netdev);
4645 
4646 	/* allocate transmit descriptors */
4647 	err = e1000e_setup_tx_resources(adapter->tx_ring);
4648 	if (err)
4649 		goto err_setup_tx;
4650 
4651 	/* allocate receive descriptors */
4652 	err = e1000e_setup_rx_resources(adapter->rx_ring);
4653 	if (err)
4654 		goto err_setup_rx;
4655 
4656 	/* If AMT is enabled, let the firmware know that the network
4657 	 * interface is now open and reset the part to a known state.
4658 	 */
4659 	if (adapter->flags & FLAG_HAS_AMT) {
4660 		e1000e_get_hw_control(adapter);
4661 		e1000e_reset(adapter);
4662 	}
4663 
4664 	e1000e_power_up_phy(adapter);
4665 
4666 	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4667 	if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
4668 		e1000_update_mng_vlan(adapter);
4669 
4670 	/* DMA latency requirement to workaround jumbo issue */
4671 	cpu_latency_qos_add_request(&adapter->pm_qos_req, PM_QOS_DEFAULT_VALUE);
4672 
4673 	/* before we allocate an interrupt, we must be ready to handle it.
4674 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4675 	 * as soon as we call pci_request_irq, so we have to setup our
4676 	 * clean_rx handler before we do so.
4677 	 */
4678 	e1000_configure(adapter);
4679 
4680 	err = e1000_request_irq(adapter);
4681 	if (err)
4682 		goto err_req_irq;
4683 
4684 	/* Work around PCIe errata with MSI interrupts causing some chipsets to
4685 	 * ignore e1000e MSI messages, which means we need to test our MSI
4686 	 * interrupt now
4687 	 */
4688 	if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
4689 		err = e1000_test_msi(adapter);
4690 		if (err) {
4691 			e_err("Interrupt allocation failed\n");
4692 			goto err_req_irq;
4693 		}
4694 	}
4695 
4696 	/* From here on the code is the same as e1000e_up() */
4697 	clear_bit(__E1000_DOWN, &adapter->state);
4698 
4699 	napi_enable(&adapter->napi);
4700 
4701 	e1000_irq_enable(adapter);
4702 
4703 	adapter->tx_hang_recheck = false;
4704 
4705 	hw->mac.get_link_status = true;
4706 	pm_runtime_put(&pdev->dev);
4707 
4708 	e1000e_trigger_lsc(adapter);
4709 
4710 	return 0;
4711 
4712 err_req_irq:
4713 	cpu_latency_qos_remove_request(&adapter->pm_qos_req);
4714 	e1000e_release_hw_control(adapter);
4715 	e1000_power_down_phy(adapter);
4716 	e1000e_free_rx_resources(adapter->rx_ring);
4717 err_setup_rx:
4718 	e1000e_free_tx_resources(adapter->tx_ring);
4719 err_setup_tx:
4720 	e1000e_reset(adapter);
4721 	pm_runtime_put_sync(&pdev->dev);
4722 
4723 	return err;
4724 }
4725 
4726 /**
4727  * e1000e_close - Disables a network interface
4728  * @netdev: network interface device structure
4729  *
4730  * Returns 0, this is not allowed to fail
4731  *
4732  * The close entry point is called when an interface is de-activated
4733  * by the OS.  The hardware is still under the drivers control, but
4734  * needs to be disabled.  A global MAC reset is issued to stop the
4735  * hardware, and all transmit and receive resources are freed.
4736  **/
4737 int e1000e_close(struct net_device *netdev)
4738 {
4739 	struct e1000_adapter *adapter = netdev_priv(netdev);
4740 	struct pci_dev *pdev = adapter->pdev;
4741 	int count = E1000_CHECK_RESET_COUNT;
4742 
4743 	while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
4744 		usleep_range(10000, 11000);
4745 
4746 	WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4747 
4748 	pm_runtime_get_sync(&pdev->dev);
4749 
4750 	if (netif_device_present(netdev)) {
4751 		e1000e_down(adapter, true);
4752 		e1000_free_irq(adapter);
4753 
4754 		/* Link status message must follow this format */
4755 		netdev_info(netdev, "NIC Link is Down\n");
4756 	}
4757 
4758 	napi_disable(&adapter->napi);
4759 
4760 	e1000e_free_tx_resources(adapter->tx_ring);
4761 	e1000e_free_rx_resources(adapter->rx_ring);
4762 
4763 	/* kill manageability vlan ID if supported, but not if a vlan with
4764 	 * the same ID is registered on the host OS (let 8021q kill it)
4765 	 */
4766 	if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
4767 		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
4768 				       adapter->mng_vlan_id);
4769 
4770 	/* If AMT is enabled, let the firmware know that the network
4771 	 * interface is now closed
4772 	 */
4773 	if ((adapter->flags & FLAG_HAS_AMT) &&
4774 	    !test_bit(__E1000_TESTING, &adapter->state))
4775 		e1000e_release_hw_control(adapter);
4776 
4777 	cpu_latency_qos_remove_request(&adapter->pm_qos_req);
4778 
4779 	pm_runtime_put_sync(&pdev->dev);
4780 
4781 	return 0;
4782 }
4783 
4784 /**
4785  * e1000_set_mac - Change the Ethernet Address of the NIC
4786  * @netdev: network interface device structure
4787  * @p: pointer to an address structure
4788  *
4789  * Returns 0 on success, negative on failure
4790  **/
4791 static int e1000_set_mac(struct net_device *netdev, void *p)
4792 {
4793 	struct e1000_adapter *adapter = netdev_priv(netdev);
4794 	struct e1000_hw *hw = &adapter->hw;
4795 	struct sockaddr *addr = p;
4796 
4797 	if (!is_valid_ether_addr(addr->sa_data))
4798 		return -EADDRNOTAVAIL;
4799 
4800 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4801 	memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4802 
4803 	hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4804 
4805 	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4806 		/* activate the work around */
4807 		e1000e_set_laa_state_82571(&adapter->hw, 1);
4808 
4809 		/* Hold a copy of the LAA in RAR[14] This is done so that
4810 		 * between the time RAR[0] gets clobbered  and the time it
4811 		 * gets fixed (in e1000_watchdog), the actual LAA is in one
4812 		 * of the RARs and no incoming packets directed to this port
4813 		 * are dropped. Eventually the LAA will be in RAR[0] and
4814 		 * RAR[14]
4815 		 */
4816 		hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4817 				    adapter->hw.mac.rar_entry_count - 1);
4818 	}
4819 
4820 	return 0;
4821 }
4822 
4823 /**
4824  * e1000e_update_phy_task - work thread to update phy
4825  * @work: pointer to our work struct
4826  *
4827  * this worker thread exists because we must acquire a
4828  * semaphore to read the phy, which we could msleep while
4829  * waiting for it, and we can't msleep in a timer.
4830  **/
4831 static void e1000e_update_phy_task(struct work_struct *work)
4832 {
4833 	struct e1000_adapter *adapter = container_of(work,
4834 						     struct e1000_adapter,
4835 						     update_phy_task);
4836 	struct e1000_hw *hw = &adapter->hw;
4837 
4838 	if (test_bit(__E1000_DOWN, &adapter->state))
4839 		return;
4840 
4841 	e1000_get_phy_info(hw);
4842 
4843 	/* Enable EEE on 82579 after link up */
4844 	if (hw->phy.type >= e1000_phy_82579)
4845 		e1000_set_eee_pchlan(hw);
4846 }
4847 
4848 /**
4849  * e1000_update_phy_info - timre call-back to update PHY info
4850  * @data: pointer to adapter cast into an unsigned long
4851  *
4852  * Need to wait a few seconds after link up to get diagnostic information from
4853  * the phy
4854  **/
4855 static void e1000_update_phy_info(struct timer_list *t)
4856 {
4857 	struct e1000_adapter *adapter = from_timer(adapter, t, phy_info_timer);
4858 
4859 	if (test_bit(__E1000_DOWN, &adapter->state))
4860 		return;
4861 
4862 	schedule_work(&adapter->update_phy_task);
4863 }
4864 
4865 /**
4866  * e1000e_update_phy_stats - Update the PHY statistics counters
4867  * @adapter: board private structure
4868  *
4869  * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4870  **/
4871 static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4872 {
4873 	struct e1000_hw *hw = &adapter->hw;
4874 	s32 ret_val;
4875 	u16 phy_data;
4876 
4877 	ret_val = hw->phy.ops.acquire(hw);
4878 	if (ret_val)
4879 		return;
4880 
4881 	/* A page set is expensive so check if already on desired page.
4882 	 * If not, set to the page with the PHY status registers.
4883 	 */
4884 	hw->phy.addr = 1;
4885 	ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4886 					   &phy_data);
4887 	if (ret_val)
4888 		goto release;
4889 	if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4890 		ret_val = hw->phy.ops.set_page(hw,
4891 					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
4892 		if (ret_val)
4893 			goto release;
4894 	}
4895 
4896 	/* Single Collision Count */
4897 	hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4898 	ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4899 	if (!ret_val)
4900 		adapter->stats.scc += phy_data;
4901 
4902 	/* Excessive Collision Count */
4903 	hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4904 	ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4905 	if (!ret_val)
4906 		adapter->stats.ecol += phy_data;
4907 
4908 	/* Multiple Collision Count */
4909 	hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4910 	ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4911 	if (!ret_val)
4912 		adapter->stats.mcc += phy_data;
4913 
4914 	/* Late Collision Count */
4915 	hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4916 	ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4917 	if (!ret_val)
4918 		adapter->stats.latecol += phy_data;
4919 
4920 	/* Collision Count - also used for adaptive IFS */
4921 	hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4922 	ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4923 	if (!ret_val)
4924 		hw->mac.collision_delta = phy_data;
4925 
4926 	/* Defer Count */
4927 	hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4928 	ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4929 	if (!ret_val)
4930 		adapter->stats.dc += phy_data;
4931 
4932 	/* Transmit with no CRS */
4933 	hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4934 	ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4935 	if (!ret_val)
4936 		adapter->stats.tncrs += phy_data;
4937 
4938 release:
4939 	hw->phy.ops.release(hw);
4940 }
4941 
4942 /**
4943  * e1000e_update_stats - Update the board statistics counters
4944  * @adapter: board private structure
4945  **/
4946 static void e1000e_update_stats(struct e1000_adapter *adapter)
4947 {
4948 	struct net_device *netdev = adapter->netdev;
4949 	struct e1000_hw *hw = &adapter->hw;
4950 	struct pci_dev *pdev = adapter->pdev;
4951 
4952 	/* Prevent stats update while adapter is being reset, or if the pci
4953 	 * connection is down.
4954 	 */
4955 	if (adapter->link_speed == 0)
4956 		return;
4957 	if (pci_channel_offline(pdev))
4958 		return;
4959 
4960 	adapter->stats.crcerrs += er32(CRCERRS);
4961 	adapter->stats.gprc += er32(GPRC);
4962 	adapter->stats.gorc += er32(GORCL);
4963 	er32(GORCH);		/* Clear gorc */
4964 	adapter->stats.bprc += er32(BPRC);
4965 	adapter->stats.mprc += er32(MPRC);
4966 	adapter->stats.roc += er32(ROC);
4967 
4968 	adapter->stats.mpc += er32(MPC);
4969 
4970 	/* Half-duplex statistics */
4971 	if (adapter->link_duplex == HALF_DUPLEX) {
4972 		if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4973 			e1000e_update_phy_stats(adapter);
4974 		} else {
4975 			adapter->stats.scc += er32(SCC);
4976 			adapter->stats.ecol += er32(ECOL);
4977 			adapter->stats.mcc += er32(MCC);
4978 			adapter->stats.latecol += er32(LATECOL);
4979 			adapter->stats.dc += er32(DC);
4980 
4981 			hw->mac.collision_delta = er32(COLC);
4982 
4983 			if ((hw->mac.type != e1000_82574) &&
4984 			    (hw->mac.type != e1000_82583))
4985 				adapter->stats.tncrs += er32(TNCRS);
4986 		}
4987 		adapter->stats.colc += hw->mac.collision_delta;
4988 	}
4989 
4990 	adapter->stats.xonrxc += er32(XONRXC);
4991 	adapter->stats.xontxc += er32(XONTXC);
4992 	adapter->stats.xoffrxc += er32(XOFFRXC);
4993 	adapter->stats.xofftxc += er32(XOFFTXC);
4994 	adapter->stats.gptc += er32(GPTC);
4995 	adapter->stats.gotc += er32(GOTCL);
4996 	er32(GOTCH);		/* Clear gotc */
4997 	adapter->stats.rnbc += er32(RNBC);
4998 	adapter->stats.ruc += er32(RUC);
4999 
5000 	adapter->stats.mptc += er32(MPTC);
5001 	adapter->stats.bptc += er32(BPTC);
5002 
5003 	/* used for adaptive IFS */
5004 
5005 	hw->mac.tx_packet_delta = er32(TPT);
5006 	adapter->stats.tpt += hw->mac.tx_packet_delta;
5007 
5008 	adapter->stats.algnerrc += er32(ALGNERRC);
5009 	adapter->stats.rxerrc += er32(RXERRC);
5010 	adapter->stats.cexterr += er32(CEXTERR);
5011 	adapter->stats.tsctc += er32(TSCTC);
5012 	adapter->stats.tsctfc += er32(TSCTFC);
5013 
5014 	/* Fill out the OS statistics structure */
5015 	netdev->stats.multicast = adapter->stats.mprc;
5016 	netdev->stats.collisions = adapter->stats.colc;
5017 
5018 	/* Rx Errors */
5019 
5020 	/* RLEC on some newer hardware can be incorrect so build
5021 	 * our own version based on RUC and ROC
5022 	 */
5023 	netdev->stats.rx_errors = adapter->stats.rxerrc +
5024 	    adapter->stats.crcerrs + adapter->stats.algnerrc +
5025 	    adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5026 	netdev->stats.rx_length_errors = adapter->stats.ruc +
5027 	    adapter->stats.roc;
5028 	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
5029 	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
5030 	netdev->stats.rx_missed_errors = adapter->stats.mpc;
5031 
5032 	/* Tx Errors */
5033 	netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol;
5034 	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
5035 	netdev->stats.tx_window_errors = adapter->stats.latecol;
5036 	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
5037 
5038 	/* Tx Dropped needs to be maintained elsewhere */
5039 
5040 	/* Management Stats */
5041 	adapter->stats.mgptc += er32(MGTPTC);
5042 	adapter->stats.mgprc += er32(MGTPRC);
5043 	adapter->stats.mgpdc += er32(MGTPDC);
5044 
5045 	/* Correctable ECC Errors */
5046 	if (hw->mac.type >= e1000_pch_lpt) {
5047 		u32 pbeccsts = er32(PBECCSTS);
5048 
5049 		adapter->corr_errors +=
5050 		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
5051 		adapter->uncorr_errors +=
5052 		    (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
5053 		    E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
5054 	}
5055 }
5056 
5057 /**
5058  * e1000_phy_read_status - Update the PHY register status snapshot
5059  * @adapter: board private structure
5060  **/
5061 static void e1000_phy_read_status(struct e1000_adapter *adapter)
5062 {
5063 	struct e1000_hw *hw = &adapter->hw;
5064 	struct e1000_phy_regs *phy = &adapter->phy_regs;
5065 
5066 	if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) &&
5067 	    (er32(STATUS) & E1000_STATUS_LU) &&
5068 	    (adapter->hw.phy.media_type == e1000_media_type_copper)) {
5069 		int ret_val;
5070 
5071 		ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr);
5072 		ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr);
5073 		ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise);
5074 		ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa);
5075 		ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion);
5076 		ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000);
5077 		ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000);
5078 		ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus);
5079 		if (ret_val)
5080 			e_warn("Error reading PHY register\n");
5081 	} else {
5082 		/* Do not read PHY registers if link is not up
5083 		 * Set values to typical power-on defaults
5084 		 */
5085 		phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
5086 		phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
5087 			     BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
5088 			     BMSR_ERCAP);
5089 		phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
5090 				  ADVERTISE_ALL | ADVERTISE_CSMA);
5091 		phy->lpa = 0;
5092 		phy->expansion = EXPANSION_ENABLENPAGE;
5093 		phy->ctrl1000 = ADVERTISE_1000FULL;
5094 		phy->stat1000 = 0;
5095 		phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
5096 	}
5097 }
5098 
5099 static void e1000_print_link_info(struct e1000_adapter *adapter)
5100 {
5101 	struct e1000_hw *hw = &adapter->hw;
5102 	u32 ctrl = er32(CTRL);
5103 
5104 	/* Link status message must follow this format for user tools */
5105 	netdev_info(adapter->netdev,
5106 		    "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5107 		    adapter->link_speed,
5108 		    adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
5109 		    (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
5110 		    (ctrl & E1000_CTRL_RFCE) ? "Rx" :
5111 		    (ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
5112 }
5113 
5114 static bool e1000e_has_link(struct e1000_adapter *adapter)
5115 {
5116 	struct e1000_hw *hw = &adapter->hw;
5117 	bool link_active = false;
5118 	s32 ret_val = 0;
5119 
5120 	/* get_link_status is set on LSC (link status) interrupt or
5121 	 * Rx sequence error interrupt.  get_link_status will stay
5122 	 * true until the check_for_link establishes link
5123 	 * for copper adapters ONLY
5124 	 */
5125 	switch (hw->phy.media_type) {
5126 	case e1000_media_type_copper:
5127 		if (hw->mac.get_link_status) {
5128 			ret_val = hw->mac.ops.check_for_link(hw);
5129 			link_active = !hw->mac.get_link_status;
5130 		} else {
5131 			link_active = true;
5132 		}
5133 		break;
5134 	case e1000_media_type_fiber:
5135 		ret_val = hw->mac.ops.check_for_link(hw);
5136 		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
5137 		break;
5138 	case e1000_media_type_internal_serdes:
5139 		ret_val = hw->mac.ops.check_for_link(hw);
5140 		link_active = hw->mac.serdes_has_link;
5141 		break;
5142 	default:
5143 	case e1000_media_type_unknown:
5144 		break;
5145 	}
5146 
5147 	if ((ret_val == -E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
5148 	    (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
5149 		/* See e1000_kmrn_lock_loss_workaround_ich8lan() */
5150 		e_info("Gigabit has been disabled, downgrading speed\n");
5151 	}
5152 
5153 	return link_active;
5154 }
5155 
5156 static void e1000e_enable_receives(struct e1000_adapter *adapter)
5157 {
5158 	/* make sure the receive unit is started */
5159 	if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
5160 	    (adapter->flags & FLAG_RESTART_NOW)) {
5161 		struct e1000_hw *hw = &adapter->hw;
5162 		u32 rctl = er32(RCTL);
5163 
5164 		ew32(RCTL, rctl | E1000_RCTL_EN);
5165 		adapter->flags &= ~FLAG_RESTART_NOW;
5166 	}
5167 }
5168 
5169 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
5170 {
5171 	struct e1000_hw *hw = &adapter->hw;
5172 
5173 	/* With 82574 controllers, PHY needs to be checked periodically
5174 	 * for hung state and reset, if two calls return true
5175 	 */
5176 	if (e1000_check_phy_82574(hw))
5177 		adapter->phy_hang_count++;
5178 	else
5179 		adapter->phy_hang_count = 0;
5180 
5181 	if (adapter->phy_hang_count > 1) {
5182 		adapter->phy_hang_count = 0;
5183 		e_dbg("PHY appears hung - resetting\n");
5184 		schedule_work(&adapter->reset_task);
5185 	}
5186 }
5187 
5188 /**
5189  * e1000_watchdog - Timer Call-back
5190  * @data: pointer to adapter cast into an unsigned long
5191  **/
5192 static void e1000_watchdog(struct timer_list *t)
5193 {
5194 	struct e1000_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5195 
5196 	/* Do the rest outside of interrupt context */
5197 	schedule_work(&adapter->watchdog_task);
5198 
5199 	/* TODO: make this use queue_delayed_work() */
5200 }
5201 
5202 static void e1000_watchdog_task(struct work_struct *work)
5203 {
5204 	struct e1000_adapter *adapter = container_of(work,
5205 						     struct e1000_adapter,
5206 						     watchdog_task);
5207 	struct net_device *netdev = adapter->netdev;
5208 	struct e1000_mac_info *mac = &adapter->hw.mac;
5209 	struct e1000_phy_info *phy = &adapter->hw.phy;
5210 	struct e1000_ring *tx_ring = adapter->tx_ring;
5211 	u32 dmoff_exit_timeout = 100, tries = 0;
5212 	struct e1000_hw *hw = &adapter->hw;
5213 	u32 link, tctl, pcim_state;
5214 
5215 	if (test_bit(__E1000_DOWN, &adapter->state))
5216 		return;
5217 
5218 	link = e1000e_has_link(adapter);
5219 	if ((netif_carrier_ok(netdev)) && link) {
5220 		/* Cancel scheduled suspend requests. */
5221 		pm_runtime_resume(netdev->dev.parent);
5222 
5223 		e1000e_enable_receives(adapter);
5224 		goto link_up;
5225 	}
5226 
5227 	if ((e1000e_enable_tx_pkt_filtering(hw)) &&
5228 	    (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
5229 		e1000_update_mng_vlan(adapter);
5230 
5231 	if (link) {
5232 		if (!netif_carrier_ok(netdev)) {
5233 			bool txb2b = true;
5234 
5235 			/* Cancel scheduled suspend requests. */
5236 			pm_runtime_resume(netdev->dev.parent);
5237 
5238 			/* Checking if MAC is in DMoff state*/
5239 			pcim_state = er32(STATUS);
5240 			while (pcim_state & E1000_STATUS_PCIM_STATE) {
5241 				if (tries++ == dmoff_exit_timeout) {
5242 					e_dbg("Error in exiting dmoff\n");
5243 					break;
5244 				}
5245 				usleep_range(10000, 20000);
5246 				pcim_state = er32(STATUS);
5247 
5248 				/* Checking if MAC exited DMoff state */
5249 				if (!(pcim_state & E1000_STATUS_PCIM_STATE))
5250 					e1000_phy_hw_reset(&adapter->hw);
5251 			}
5252 
5253 			/* update snapshot of PHY registers on LSC */
5254 			e1000_phy_read_status(adapter);
5255 			mac->ops.get_link_up_info(&adapter->hw,
5256 						  &adapter->link_speed,
5257 						  &adapter->link_duplex);
5258 			e1000_print_link_info(adapter);
5259 
5260 			/* check if SmartSpeed worked */
5261 			e1000e_check_downshift(hw);
5262 			if (phy->speed_downgraded)
5263 				netdev_warn(netdev,
5264 					    "Link Speed was downgraded by SmartSpeed\n");
5265 
5266 			/* On supported PHYs, check for duplex mismatch only
5267 			 * if link has autonegotiated at 10/100 half
5268 			 */
5269 			if ((hw->phy.type == e1000_phy_igp_3 ||
5270 			     hw->phy.type == e1000_phy_bm) &&
5271 			    hw->mac.autoneg &&
5272 			    (adapter->link_speed == SPEED_10 ||
5273 			     adapter->link_speed == SPEED_100) &&
5274 			    (adapter->link_duplex == HALF_DUPLEX)) {
5275 				u16 autoneg_exp;
5276 
5277 				e1e_rphy(hw, MII_EXPANSION, &autoneg_exp);
5278 
5279 				if (!(autoneg_exp & EXPANSION_NWAY))
5280 					e_info("Autonegotiated half duplex but link partner cannot autoneg.  Try forcing full duplex if link gets many collisions.\n");
5281 			}
5282 
5283 			/* adjust timeout factor according to speed/duplex */
5284 			adapter->tx_timeout_factor = 1;
5285 			switch (adapter->link_speed) {
5286 			case SPEED_10:
5287 				txb2b = false;
5288 				adapter->tx_timeout_factor = 16;
5289 				break;
5290 			case SPEED_100:
5291 				txb2b = false;
5292 				adapter->tx_timeout_factor = 10;
5293 				break;
5294 			}
5295 
5296 			/* workaround: re-program speed mode bit after
5297 			 * link-up event
5298 			 */
5299 			if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
5300 			    !txb2b) {
5301 				u32 tarc0;
5302 
5303 				tarc0 = er32(TARC(0));
5304 				tarc0 &= ~SPEED_MODE_BIT;
5305 				ew32(TARC(0), tarc0);
5306 			}
5307 
5308 			/* disable TSO for pcie and 10/100 speeds, to avoid
5309 			 * some hardware issues
5310 			 */
5311 			if (!(adapter->flags & FLAG_TSO_FORCE)) {
5312 				switch (adapter->link_speed) {
5313 				case SPEED_10:
5314 				case SPEED_100:
5315 					e_info("10/100 speed: disabling TSO\n");
5316 					netdev->features &= ~NETIF_F_TSO;
5317 					netdev->features &= ~NETIF_F_TSO6;
5318 					break;
5319 				case SPEED_1000:
5320 					netdev->features |= NETIF_F_TSO;
5321 					netdev->features |= NETIF_F_TSO6;
5322 					break;
5323 				default:
5324 					/* oops */
5325 					break;
5326 				}
5327 				if (hw->mac.type == e1000_pch_spt) {
5328 					netdev->features &= ~NETIF_F_TSO;
5329 					netdev->features &= ~NETIF_F_TSO6;
5330 				}
5331 			}
5332 
5333 			/* enable transmits in the hardware, need to do this
5334 			 * after setting TARC(0)
5335 			 */
5336 			tctl = er32(TCTL);
5337 			tctl |= E1000_TCTL_EN;
5338 			ew32(TCTL, tctl);
5339 
5340 			/* Perform any post-link-up configuration before
5341 			 * reporting link up.
5342 			 */
5343 			if (phy->ops.cfg_on_link_up)
5344 				phy->ops.cfg_on_link_up(hw);
5345 
5346 			netif_wake_queue(netdev);
5347 			netif_carrier_on(netdev);
5348 
5349 			if (!test_bit(__E1000_DOWN, &adapter->state))
5350 				mod_timer(&adapter->phy_info_timer,
5351 					  round_jiffies(jiffies + 2 * HZ));
5352 		}
5353 	} else {
5354 		if (netif_carrier_ok(netdev)) {
5355 			adapter->link_speed = 0;
5356 			adapter->link_duplex = 0;
5357 			/* Link status message must follow this format */
5358 			netdev_info(netdev, "NIC Link is Down\n");
5359 			netif_carrier_off(netdev);
5360 			netif_stop_queue(netdev);
5361 			if (!test_bit(__E1000_DOWN, &adapter->state))
5362 				mod_timer(&adapter->phy_info_timer,
5363 					  round_jiffies(jiffies + 2 * HZ));
5364 
5365 			/* 8000ES2LAN requires a Rx packet buffer work-around
5366 			 * on link down event; reset the controller to flush
5367 			 * the Rx packet buffer.
5368 			 */
5369 			if (adapter->flags & FLAG_RX_NEEDS_RESTART)
5370 				adapter->flags |= FLAG_RESTART_NOW;
5371 			else
5372 				pm_schedule_suspend(netdev->dev.parent,
5373 						    LINK_TIMEOUT);
5374 		}
5375 	}
5376 
5377 link_up:
5378 	spin_lock(&adapter->stats64_lock);
5379 	e1000e_update_stats(adapter);
5380 
5381 	mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
5382 	adapter->tpt_old = adapter->stats.tpt;
5383 	mac->collision_delta = adapter->stats.colc - adapter->colc_old;
5384 	adapter->colc_old = adapter->stats.colc;
5385 
5386 	adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
5387 	adapter->gorc_old = adapter->stats.gorc;
5388 	adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
5389 	adapter->gotc_old = adapter->stats.gotc;
5390 	spin_unlock(&adapter->stats64_lock);
5391 
5392 	/* If the link is lost the controller stops DMA, but
5393 	 * if there is queued Tx work it cannot be done.  So
5394 	 * reset the controller to flush the Tx packet buffers.
5395 	 */
5396 	if (!netif_carrier_ok(netdev) &&
5397 	    (e1000_desc_unused(tx_ring) + 1 < tx_ring->count))
5398 		adapter->flags |= FLAG_RESTART_NOW;
5399 
5400 	/* If reset is necessary, do it outside of interrupt context. */
5401 	if (adapter->flags & FLAG_RESTART_NOW) {
5402 		schedule_work(&adapter->reset_task);
5403 		/* return immediately since reset is imminent */
5404 		return;
5405 	}
5406 
5407 	e1000e_update_adaptive(&adapter->hw);
5408 
5409 	/* Simple mode for Interrupt Throttle Rate (ITR) */
5410 	if (adapter->itr_setting == 4) {
5411 		/* Symmetric Tx/Rx gets a reduced ITR=2000;
5412 		 * Total asymmetrical Tx or Rx gets ITR=8000;
5413 		 * everyone else is between 2000-8000.
5414 		 */
5415 		u32 goc = (adapter->gotc + adapter->gorc) / 10000;
5416 		u32 dif = (adapter->gotc > adapter->gorc ?
5417 			   adapter->gotc - adapter->gorc :
5418 			   adapter->gorc - adapter->gotc) / 10000;
5419 		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
5420 
5421 		e1000e_write_itr(adapter, itr);
5422 	}
5423 
5424 	/* Cause software interrupt to ensure Rx ring is cleaned */
5425 	if (adapter->msix_entries)
5426 		ew32(ICS, adapter->rx_ring->ims_val);
5427 	else
5428 		ew32(ICS, E1000_ICS_RXDMT0);
5429 
5430 	/* flush pending descriptors to memory before detecting Tx hang */
5431 	e1000e_flush_descriptors(adapter);
5432 
5433 	/* Force detection of hung controller every watchdog period */
5434 	adapter->detect_tx_hung = true;
5435 
5436 	/* With 82571 controllers, LAA may be overwritten due to controller
5437 	 * reset from the other port. Set the appropriate LAA in RAR[0]
5438 	 */
5439 	if (e1000e_get_laa_state_82571(hw))
5440 		hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
5441 
5442 	if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
5443 		e1000e_check_82574_phy_workaround(adapter);
5444 
5445 	/* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5446 	if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) {
5447 		if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) &&
5448 		    (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) {
5449 			er32(RXSTMPH);
5450 			adapter->rx_hwtstamp_cleared++;
5451 		} else {
5452 			adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP;
5453 		}
5454 	}
5455 
5456 	/* Reset the timer */
5457 	if (!test_bit(__E1000_DOWN, &adapter->state))
5458 		mod_timer(&adapter->watchdog_timer,
5459 			  round_jiffies(jiffies + 2 * HZ));
5460 }
5461 
5462 #define E1000_TX_FLAGS_CSUM		0x00000001
5463 #define E1000_TX_FLAGS_VLAN		0x00000002
5464 #define E1000_TX_FLAGS_TSO		0x00000004
5465 #define E1000_TX_FLAGS_IPV4		0x00000008
5466 #define E1000_TX_FLAGS_NO_FCS		0x00000010
5467 #define E1000_TX_FLAGS_HWTSTAMP		0x00000020
5468 #define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
5469 #define E1000_TX_FLAGS_VLAN_SHIFT	16
5470 
5471 static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb,
5472 		     __be16 protocol)
5473 {
5474 	struct e1000_context_desc *context_desc;
5475 	struct e1000_buffer *buffer_info;
5476 	unsigned int i;
5477 	u32 cmd_length = 0;
5478 	u16 ipcse = 0, mss;
5479 	u8 ipcss, ipcso, tucss, tucso, hdr_len;
5480 	int err;
5481 
5482 	if (!skb_is_gso(skb))
5483 		return 0;
5484 
5485 	err = skb_cow_head(skb, 0);
5486 	if (err < 0)
5487 		return err;
5488 
5489 	hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5490 	mss = skb_shinfo(skb)->gso_size;
5491 	if (protocol == htons(ETH_P_IP)) {
5492 		struct iphdr *iph = ip_hdr(skb);
5493 		iph->tot_len = 0;
5494 		iph->check = 0;
5495 		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
5496 							 0, IPPROTO_TCP, 0);
5497 		cmd_length = E1000_TXD_CMD_IP;
5498 		ipcse = skb_transport_offset(skb) - 1;
5499 	} else if (skb_is_gso_v6(skb)) {
5500 		tcp_v6_gso_csum_prep(skb);
5501 		ipcse = 0;
5502 	}
5503 	ipcss = skb_network_offset(skb);
5504 	ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
5505 	tucss = skb_transport_offset(skb);
5506 	tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
5507 
5508 	cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
5509 		       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
5510 
5511 	i = tx_ring->next_to_use;
5512 	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5513 	buffer_info = &tx_ring->buffer_info[i];
5514 
5515 	context_desc->lower_setup.ip_fields.ipcss = ipcss;
5516 	context_desc->lower_setup.ip_fields.ipcso = ipcso;
5517 	context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
5518 	context_desc->upper_setup.tcp_fields.tucss = tucss;
5519 	context_desc->upper_setup.tcp_fields.tucso = tucso;
5520 	context_desc->upper_setup.tcp_fields.tucse = 0;
5521 	context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
5522 	context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
5523 	context_desc->cmd_and_length = cpu_to_le32(cmd_length);
5524 
5525 	buffer_info->time_stamp = jiffies;
5526 	buffer_info->next_to_watch = i;
5527 
5528 	i++;
5529 	if (i == tx_ring->count)
5530 		i = 0;
5531 	tx_ring->next_to_use = i;
5532 
5533 	return 1;
5534 }
5535 
5536 static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb,
5537 			  __be16 protocol)
5538 {
5539 	struct e1000_adapter *adapter = tx_ring->adapter;
5540 	struct e1000_context_desc *context_desc;
5541 	struct e1000_buffer *buffer_info;
5542 	unsigned int i;
5543 	u8 css;
5544 	u32 cmd_len = E1000_TXD_CMD_DEXT;
5545 
5546 	if (skb->ip_summed != CHECKSUM_PARTIAL)
5547 		return false;
5548 
5549 	switch (protocol) {
5550 	case cpu_to_be16(ETH_P_IP):
5551 		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
5552 			cmd_len |= E1000_TXD_CMD_TCP;
5553 		break;
5554 	case cpu_to_be16(ETH_P_IPV6):
5555 		/* XXX not handling all IPV6 headers */
5556 		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
5557 			cmd_len |= E1000_TXD_CMD_TCP;
5558 		break;
5559 	default:
5560 		if (unlikely(net_ratelimit()))
5561 			e_warn("checksum_partial proto=%x!\n",
5562 			       be16_to_cpu(protocol));
5563 		break;
5564 	}
5565 
5566 	css = skb_checksum_start_offset(skb);
5567 
5568 	i = tx_ring->next_to_use;
5569 	buffer_info = &tx_ring->buffer_info[i];
5570 	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5571 
5572 	context_desc->lower_setup.ip_config = 0;
5573 	context_desc->upper_setup.tcp_fields.tucss = css;
5574 	context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset;
5575 	context_desc->upper_setup.tcp_fields.tucse = 0;
5576 	context_desc->tcp_seg_setup.data = 0;
5577 	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
5578 
5579 	buffer_info->time_stamp = jiffies;
5580 	buffer_info->next_to_watch = i;
5581 
5582 	i++;
5583 	if (i == tx_ring->count)
5584 		i = 0;
5585 	tx_ring->next_to_use = i;
5586 
5587 	return true;
5588 }
5589 
5590 static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
5591 			unsigned int first, unsigned int max_per_txd,
5592 			unsigned int nr_frags)
5593 {
5594 	struct e1000_adapter *adapter = tx_ring->adapter;
5595 	struct pci_dev *pdev = adapter->pdev;
5596 	struct e1000_buffer *buffer_info;
5597 	unsigned int len = skb_headlen(skb);
5598 	unsigned int offset = 0, size, count = 0, i;
5599 	unsigned int f, bytecount, segs;
5600 
5601 	i = tx_ring->next_to_use;
5602 
5603 	while (len) {
5604 		buffer_info = &tx_ring->buffer_info[i];
5605 		size = min(len, max_per_txd);
5606 
5607 		buffer_info->length = size;
5608 		buffer_info->time_stamp = jiffies;
5609 		buffer_info->next_to_watch = i;
5610 		buffer_info->dma = dma_map_single(&pdev->dev,
5611 						  skb->data + offset,
5612 						  size, DMA_TO_DEVICE);
5613 		buffer_info->mapped_as_page = false;
5614 		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5615 			goto dma_error;
5616 
5617 		len -= size;
5618 		offset += size;
5619 		count++;
5620 
5621 		if (len) {
5622 			i++;
5623 			if (i == tx_ring->count)
5624 				i = 0;
5625 		}
5626 	}
5627 
5628 	for (f = 0; f < nr_frags; f++) {
5629 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
5630 
5631 		len = skb_frag_size(frag);
5632 		offset = 0;
5633 
5634 		while (len) {
5635 			i++;
5636 			if (i == tx_ring->count)
5637 				i = 0;
5638 
5639 			buffer_info = &tx_ring->buffer_info[i];
5640 			size = min(len, max_per_txd);
5641 
5642 			buffer_info->length = size;
5643 			buffer_info->time_stamp = jiffies;
5644 			buffer_info->next_to_watch = i;
5645 			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
5646 							    offset, size,
5647 							    DMA_TO_DEVICE);
5648 			buffer_info->mapped_as_page = true;
5649 			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5650 				goto dma_error;
5651 
5652 			len -= size;
5653 			offset += size;
5654 			count++;
5655 		}
5656 	}
5657 
5658 	segs = skb_shinfo(skb)->gso_segs ? : 1;
5659 	/* multiply data chunks by size of headers */
5660 	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
5661 
5662 	tx_ring->buffer_info[i].skb = skb;
5663 	tx_ring->buffer_info[i].segs = segs;
5664 	tx_ring->buffer_info[i].bytecount = bytecount;
5665 	tx_ring->buffer_info[first].next_to_watch = i;
5666 
5667 	return count;
5668 
5669 dma_error:
5670 	dev_err(&pdev->dev, "Tx DMA map failed\n");
5671 	buffer_info->dma = 0;
5672 	if (count)
5673 		count--;
5674 
5675 	while (count--) {
5676 		if (i == 0)
5677 			i += tx_ring->count;
5678 		i--;
5679 		buffer_info = &tx_ring->buffer_info[i];
5680 		e1000_put_txbuf(tx_ring, buffer_info, true);
5681 	}
5682 
5683 	return 0;
5684 }
5685 
5686 static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
5687 {
5688 	struct e1000_adapter *adapter = tx_ring->adapter;
5689 	struct e1000_tx_desc *tx_desc = NULL;
5690 	struct e1000_buffer *buffer_info;
5691 	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
5692 	unsigned int i;
5693 
5694 	if (tx_flags & E1000_TX_FLAGS_TSO) {
5695 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
5696 		    E1000_TXD_CMD_TSE;
5697 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5698 
5699 		if (tx_flags & E1000_TX_FLAGS_IPV4)
5700 			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
5701 	}
5702 
5703 	if (tx_flags & E1000_TX_FLAGS_CSUM) {
5704 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5705 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5706 	}
5707 
5708 	if (tx_flags & E1000_TX_FLAGS_VLAN) {
5709 		txd_lower |= E1000_TXD_CMD_VLE;
5710 		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
5711 	}
5712 
5713 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5714 		txd_lower &= ~(E1000_TXD_CMD_IFCS);
5715 
5716 	if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) {
5717 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5718 		txd_upper |= E1000_TXD_EXTCMD_TSTAMP;
5719 	}
5720 
5721 	i = tx_ring->next_to_use;
5722 
5723 	do {
5724 		buffer_info = &tx_ring->buffer_info[i];
5725 		tx_desc = E1000_TX_DESC(*tx_ring, i);
5726 		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
5727 		tx_desc->lower.data = cpu_to_le32(txd_lower |
5728 						  buffer_info->length);
5729 		tx_desc->upper.data = cpu_to_le32(txd_upper);
5730 
5731 		i++;
5732 		if (i == tx_ring->count)
5733 			i = 0;
5734 	} while (--count > 0);
5735 
5736 	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
5737 
5738 	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5739 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5740 		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
5741 
5742 	/* Force memory writes to complete before letting h/w
5743 	 * know there are new descriptors to fetch.  (Only
5744 	 * applicable for weak-ordered memory model archs,
5745 	 * such as IA-64).
5746 	 */
5747 	wmb();
5748 
5749 	tx_ring->next_to_use = i;
5750 }
5751 
5752 #define MINIMUM_DHCP_PACKET_SIZE 282
5753 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
5754 				    struct sk_buff *skb)
5755 {
5756 	struct e1000_hw *hw = &adapter->hw;
5757 	u16 length, offset;
5758 
5759 	if (skb_vlan_tag_present(skb) &&
5760 	    !((skb_vlan_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
5761 	      (adapter->hw.mng_cookie.status &
5762 	       E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
5763 		return 0;
5764 
5765 	if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
5766 		return 0;
5767 
5768 	if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP))
5769 		return 0;
5770 
5771 	{
5772 		const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14);
5773 		struct udphdr *udp;
5774 
5775 		if (ip->protocol != IPPROTO_UDP)
5776 			return 0;
5777 
5778 		udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
5779 		if (ntohs(udp->dest) != 67)
5780 			return 0;
5781 
5782 		offset = (u8 *)udp + 8 - skb->data;
5783 		length = skb->len - offset;
5784 		return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
5785 	}
5786 
5787 	return 0;
5788 }
5789 
5790 static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5791 {
5792 	struct e1000_adapter *adapter = tx_ring->adapter;
5793 
5794 	netif_stop_queue(adapter->netdev);
5795 	/* Herbert's original patch had:
5796 	 *  smp_mb__after_netif_stop_queue();
5797 	 * but since that doesn't exist yet, just open code it.
5798 	 */
5799 	smp_mb();
5800 
5801 	/* We need to check again in a case another CPU has just
5802 	 * made room available.
5803 	 */
5804 	if (e1000_desc_unused(tx_ring) < size)
5805 		return -EBUSY;
5806 
5807 	/* A reprieve! */
5808 	netif_start_queue(adapter->netdev);
5809 	++adapter->restart_queue;
5810 	return 0;
5811 }
5812 
5813 static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5814 {
5815 	BUG_ON(size > tx_ring->count);
5816 
5817 	if (e1000_desc_unused(tx_ring) >= size)
5818 		return 0;
5819 	return __e1000_maybe_stop_tx(tx_ring, size);
5820 }
5821 
5822 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5823 				    struct net_device *netdev)
5824 {
5825 	struct e1000_adapter *adapter = netdev_priv(netdev);
5826 	struct e1000_ring *tx_ring = adapter->tx_ring;
5827 	unsigned int first;
5828 	unsigned int tx_flags = 0;
5829 	unsigned int len = skb_headlen(skb);
5830 	unsigned int nr_frags;
5831 	unsigned int mss;
5832 	int count = 0;
5833 	int tso;
5834 	unsigned int f;
5835 	__be16 protocol = vlan_get_protocol(skb);
5836 
5837 	if (test_bit(__E1000_DOWN, &adapter->state)) {
5838 		dev_kfree_skb_any(skb);
5839 		return NETDEV_TX_OK;
5840 	}
5841 
5842 	if (skb->len <= 0) {
5843 		dev_kfree_skb_any(skb);
5844 		return NETDEV_TX_OK;
5845 	}
5846 
5847 	/* The minimum packet size with TCTL.PSP set is 17 bytes so
5848 	 * pad skb in order to meet this minimum size requirement
5849 	 */
5850 	if (skb_put_padto(skb, 17))
5851 		return NETDEV_TX_OK;
5852 
5853 	mss = skb_shinfo(skb)->gso_size;
5854 	if (mss) {
5855 		u8 hdr_len;
5856 
5857 		/* TSO Workaround for 82571/2/3 Controllers -- if skb->data
5858 		 * points to just header, pull a few bytes of payload from
5859 		 * frags into skb->data
5860 		 */
5861 		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5862 		/* we do this workaround for ES2LAN, but it is un-necessary,
5863 		 * avoiding it could save a lot of cycles
5864 		 */
5865 		if (skb->data_len && (hdr_len == len)) {
5866 			unsigned int pull_size;
5867 
5868 			pull_size = min_t(unsigned int, 4, skb->data_len);
5869 			if (!__pskb_pull_tail(skb, pull_size)) {
5870 				e_err("__pskb_pull_tail failed.\n");
5871 				dev_kfree_skb_any(skb);
5872 				return NETDEV_TX_OK;
5873 			}
5874 			len = skb_headlen(skb);
5875 		}
5876 	}
5877 
5878 	/* reserve a descriptor for the offload context */
5879 	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5880 		count++;
5881 	count++;
5882 
5883 	count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
5884 
5885 	nr_frags = skb_shinfo(skb)->nr_frags;
5886 	for (f = 0; f < nr_frags; f++)
5887 		count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5888 				      adapter->tx_fifo_limit);
5889 
5890 	if (adapter->hw.mac.tx_pkt_filtering)
5891 		e1000_transfer_dhcp_info(adapter, skb);
5892 
5893 	/* need: count + 2 desc gap to keep tail from touching
5894 	 * head, otherwise try next time
5895 	 */
5896 	if (e1000_maybe_stop_tx(tx_ring, count + 2))
5897 		return NETDEV_TX_BUSY;
5898 
5899 	if (skb_vlan_tag_present(skb)) {
5900 		tx_flags |= E1000_TX_FLAGS_VLAN;
5901 		tx_flags |= (skb_vlan_tag_get(skb) <<
5902 			     E1000_TX_FLAGS_VLAN_SHIFT);
5903 	}
5904 
5905 	first = tx_ring->next_to_use;
5906 
5907 	tso = e1000_tso(tx_ring, skb, protocol);
5908 	if (tso < 0) {
5909 		dev_kfree_skb_any(skb);
5910 		return NETDEV_TX_OK;
5911 	}
5912 
5913 	if (tso)
5914 		tx_flags |= E1000_TX_FLAGS_TSO;
5915 	else if (e1000_tx_csum(tx_ring, skb, protocol))
5916 		tx_flags |= E1000_TX_FLAGS_CSUM;
5917 
5918 	/* Old method was to assume IPv4 packet by default if TSO was enabled.
5919 	 * 82571 hardware supports TSO capabilities for IPv6 as well...
5920 	 * no longer assume, we must.
5921 	 */
5922 	if (protocol == htons(ETH_P_IP))
5923 		tx_flags |= E1000_TX_FLAGS_IPV4;
5924 
5925 	if (unlikely(skb->no_fcs))
5926 		tx_flags |= E1000_TX_FLAGS_NO_FCS;
5927 
5928 	/* if count is 0 then mapping error has occurred */
5929 	count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5930 			     nr_frags);
5931 	if (count) {
5932 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
5933 		    (adapter->flags & FLAG_HAS_HW_TIMESTAMP)) {
5934 			if (!adapter->tx_hwtstamp_skb) {
5935 				skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5936 				tx_flags |= E1000_TX_FLAGS_HWTSTAMP;
5937 				adapter->tx_hwtstamp_skb = skb_get(skb);
5938 				adapter->tx_hwtstamp_start = jiffies;
5939 				schedule_work(&adapter->tx_hwtstamp_work);
5940 			} else {
5941 				adapter->tx_hwtstamp_skipped++;
5942 			}
5943 		}
5944 
5945 		skb_tx_timestamp(skb);
5946 
5947 		netdev_sent_queue(netdev, skb->len);
5948 		e1000_tx_queue(tx_ring, tx_flags, count);
5949 		/* Make sure there is space in the ring for the next send. */
5950 		e1000_maybe_stop_tx(tx_ring,
5951 				    (MAX_SKB_FRAGS *
5952 				     DIV_ROUND_UP(PAGE_SIZE,
5953 						  adapter->tx_fifo_limit) + 2));
5954 
5955 		if (!netdev_xmit_more() ||
5956 		    netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
5957 			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
5958 				e1000e_update_tdt_wa(tx_ring,
5959 						     tx_ring->next_to_use);
5960 			else
5961 				writel(tx_ring->next_to_use, tx_ring->tail);
5962 		}
5963 	} else {
5964 		dev_kfree_skb_any(skb);
5965 		tx_ring->buffer_info[first].time_stamp = 0;
5966 		tx_ring->next_to_use = first;
5967 	}
5968 
5969 	return NETDEV_TX_OK;
5970 }
5971 
5972 /**
5973  * e1000_tx_timeout - Respond to a Tx Hang
5974  * @netdev: network interface device structure
5975  **/
5976 static void e1000_tx_timeout(struct net_device *netdev, unsigned int txqueue)
5977 {
5978 	struct e1000_adapter *adapter = netdev_priv(netdev);
5979 
5980 	/* Do the reset outside of interrupt context */
5981 	adapter->tx_timeout_count++;
5982 	schedule_work(&adapter->reset_task);
5983 }
5984 
5985 static void e1000_reset_task(struct work_struct *work)
5986 {
5987 	struct e1000_adapter *adapter;
5988 	adapter = container_of(work, struct e1000_adapter, reset_task);
5989 
5990 	/* don't run the task if already down */
5991 	if (test_bit(__E1000_DOWN, &adapter->state))
5992 		return;
5993 
5994 	if (!(adapter->flags & FLAG_RESTART_NOW)) {
5995 		e1000e_dump(adapter);
5996 		e_err("Reset adapter unexpectedly\n");
5997 	}
5998 	e1000e_reinit_locked(adapter);
5999 }
6000 
6001 /**
6002  * e1000_get_stats64 - Get System Network Statistics
6003  * @netdev: network interface device structure
6004  * @stats: rtnl_link_stats64 pointer
6005  *
6006  * Returns the address of the device statistics structure.
6007  **/
6008 void e1000e_get_stats64(struct net_device *netdev,
6009 			struct rtnl_link_stats64 *stats)
6010 {
6011 	struct e1000_adapter *adapter = netdev_priv(netdev);
6012 
6013 	spin_lock(&adapter->stats64_lock);
6014 	e1000e_update_stats(adapter);
6015 	/* Fill out the OS statistics structure */
6016 	stats->rx_bytes = adapter->stats.gorc;
6017 	stats->rx_packets = adapter->stats.gprc;
6018 	stats->tx_bytes = adapter->stats.gotc;
6019 	stats->tx_packets = adapter->stats.gptc;
6020 	stats->multicast = adapter->stats.mprc;
6021 	stats->collisions = adapter->stats.colc;
6022 
6023 	/* Rx Errors */
6024 
6025 	/* RLEC on some newer hardware can be incorrect so build
6026 	 * our own version based on RUC and ROC
6027 	 */
6028 	stats->rx_errors = adapter->stats.rxerrc +
6029 	    adapter->stats.crcerrs + adapter->stats.algnerrc +
6030 	    adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
6031 	stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc;
6032 	stats->rx_crc_errors = adapter->stats.crcerrs;
6033 	stats->rx_frame_errors = adapter->stats.algnerrc;
6034 	stats->rx_missed_errors = adapter->stats.mpc;
6035 
6036 	/* Tx Errors */
6037 	stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol;
6038 	stats->tx_aborted_errors = adapter->stats.ecol;
6039 	stats->tx_window_errors = adapter->stats.latecol;
6040 	stats->tx_carrier_errors = adapter->stats.tncrs;
6041 
6042 	/* Tx Dropped needs to be maintained elsewhere */
6043 
6044 	spin_unlock(&adapter->stats64_lock);
6045 }
6046 
6047 /**
6048  * e1000_change_mtu - Change the Maximum Transfer Unit
6049  * @netdev: network interface device structure
6050  * @new_mtu: new value for maximum frame size
6051  *
6052  * Returns 0 on success, negative on failure
6053  **/
6054 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
6055 {
6056 	struct e1000_adapter *adapter = netdev_priv(netdev);
6057 	int max_frame = new_mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
6058 
6059 	/* Jumbo frame support */
6060 	if ((new_mtu > ETH_DATA_LEN) &&
6061 	    !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
6062 		e_err("Jumbo Frames not supported.\n");
6063 		return -EINVAL;
6064 	}
6065 
6066 	/* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
6067 	if ((adapter->hw.mac.type >= e1000_pch2lan) &&
6068 	    !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
6069 	    (new_mtu > ETH_DATA_LEN)) {
6070 		e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
6071 		return -EINVAL;
6072 	}
6073 
6074 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
6075 		usleep_range(1000, 1100);
6076 	/* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
6077 	adapter->max_frame_size = max_frame;
6078 	netdev_dbg(netdev, "changing MTU from %d to %d\n",
6079 		   netdev->mtu, new_mtu);
6080 	netdev->mtu = new_mtu;
6081 
6082 	pm_runtime_get_sync(netdev->dev.parent);
6083 
6084 	if (netif_running(netdev))
6085 		e1000e_down(adapter, true);
6086 
6087 	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
6088 	 * means we reserve 2 more, this pushes us to allocate from the next
6089 	 * larger slab size.
6090 	 * i.e. RXBUFFER_2048 --> size-4096 slab
6091 	 * However with the new *_jumbo_rx* routines, jumbo receives will use
6092 	 * fragmented skbs
6093 	 */
6094 
6095 	if (max_frame <= 2048)
6096 		adapter->rx_buffer_len = 2048;
6097 	else
6098 		adapter->rx_buffer_len = 4096;
6099 
6100 	/* adjust allocation if LPE protects us, and we aren't using SBP */
6101 	if (max_frame <= (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN))
6102 		adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
6103 
6104 	if (netif_running(netdev))
6105 		e1000e_up(adapter);
6106 	else
6107 		e1000e_reset(adapter);
6108 
6109 	pm_runtime_put_sync(netdev->dev.parent);
6110 
6111 	clear_bit(__E1000_RESETTING, &adapter->state);
6112 
6113 	return 0;
6114 }
6115 
6116 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
6117 			   int cmd)
6118 {
6119 	struct e1000_adapter *adapter = netdev_priv(netdev);
6120 	struct mii_ioctl_data *data = if_mii(ifr);
6121 
6122 	if (adapter->hw.phy.media_type != e1000_media_type_copper)
6123 		return -EOPNOTSUPP;
6124 
6125 	switch (cmd) {
6126 	case SIOCGMIIPHY:
6127 		data->phy_id = adapter->hw.phy.addr;
6128 		break;
6129 	case SIOCGMIIREG:
6130 		e1000_phy_read_status(adapter);
6131 
6132 		switch (data->reg_num & 0x1F) {
6133 		case MII_BMCR:
6134 			data->val_out = adapter->phy_regs.bmcr;
6135 			break;
6136 		case MII_BMSR:
6137 			data->val_out = adapter->phy_regs.bmsr;
6138 			break;
6139 		case MII_PHYSID1:
6140 			data->val_out = (adapter->hw.phy.id >> 16);
6141 			break;
6142 		case MII_PHYSID2:
6143 			data->val_out = (adapter->hw.phy.id & 0xFFFF);
6144 			break;
6145 		case MII_ADVERTISE:
6146 			data->val_out = adapter->phy_regs.advertise;
6147 			break;
6148 		case MII_LPA:
6149 			data->val_out = adapter->phy_regs.lpa;
6150 			break;
6151 		case MII_EXPANSION:
6152 			data->val_out = adapter->phy_regs.expansion;
6153 			break;
6154 		case MII_CTRL1000:
6155 			data->val_out = adapter->phy_regs.ctrl1000;
6156 			break;
6157 		case MII_STAT1000:
6158 			data->val_out = adapter->phy_regs.stat1000;
6159 			break;
6160 		case MII_ESTATUS:
6161 			data->val_out = adapter->phy_regs.estatus;
6162 			break;
6163 		default:
6164 			return -EIO;
6165 		}
6166 		break;
6167 	case SIOCSMIIREG:
6168 	default:
6169 		return -EOPNOTSUPP;
6170 	}
6171 	return 0;
6172 }
6173 
6174 /**
6175  * e1000e_hwtstamp_ioctl - control hardware time stamping
6176  * @netdev: network interface device structure
6177  * @ifreq: interface request
6178  *
6179  * Outgoing time stamping can be enabled and disabled. Play nice and
6180  * disable it when requested, although it shouldn't cause any overhead
6181  * when no packet needs it. At most one packet in the queue may be
6182  * marked for time stamping, otherwise it would be impossible to tell
6183  * for sure to which packet the hardware time stamp belongs.
6184  *
6185  * Incoming time stamping has to be configured via the hardware filters.
6186  * Not all combinations are supported, in particular event type has to be
6187  * specified. Matching the kind of event packet is not supported, with the
6188  * exception of "all V2 events regardless of level 2 or 4".
6189  **/
6190 static int e1000e_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
6191 {
6192 	struct e1000_adapter *adapter = netdev_priv(netdev);
6193 	struct hwtstamp_config config;
6194 	int ret_val;
6195 
6196 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
6197 		return -EFAULT;
6198 
6199 	ret_val = e1000e_config_hwtstamp(adapter, &config);
6200 	if (ret_val)
6201 		return ret_val;
6202 
6203 	switch (config.rx_filter) {
6204 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6205 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6206 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
6207 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6208 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6209 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6210 		/* With V2 type filters which specify a Sync or Delay Request,
6211 		 * Path Delay Request/Response messages are also time stamped
6212 		 * by hardware so notify the caller the requested packets plus
6213 		 * some others are time stamped.
6214 		 */
6215 		config.rx_filter = HWTSTAMP_FILTER_SOME;
6216 		break;
6217 	default:
6218 		break;
6219 	}
6220 
6221 	return copy_to_user(ifr->ifr_data, &config,
6222 			    sizeof(config)) ? -EFAULT : 0;
6223 }
6224 
6225 static int e1000e_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
6226 {
6227 	struct e1000_adapter *adapter = netdev_priv(netdev);
6228 
6229 	return copy_to_user(ifr->ifr_data, &adapter->hwtstamp_config,
6230 			    sizeof(adapter->hwtstamp_config)) ? -EFAULT : 0;
6231 }
6232 
6233 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6234 {
6235 	switch (cmd) {
6236 	case SIOCGMIIPHY:
6237 	case SIOCGMIIREG:
6238 	case SIOCSMIIREG:
6239 		return e1000_mii_ioctl(netdev, ifr, cmd);
6240 	case SIOCSHWTSTAMP:
6241 		return e1000e_hwtstamp_set(netdev, ifr);
6242 	case SIOCGHWTSTAMP:
6243 		return e1000e_hwtstamp_get(netdev, ifr);
6244 	default:
6245 		return -EOPNOTSUPP;
6246 	}
6247 }
6248 
6249 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
6250 {
6251 	struct e1000_hw *hw = &adapter->hw;
6252 	u32 i, mac_reg, wuc;
6253 	u16 phy_reg, wuc_enable;
6254 	int retval;
6255 
6256 	/* copy MAC RARs to PHY RARs */
6257 	e1000_copy_rx_addrs_to_phy_ich8lan(hw);
6258 
6259 	retval = hw->phy.ops.acquire(hw);
6260 	if (retval) {
6261 		e_err("Could not acquire PHY\n");
6262 		return retval;
6263 	}
6264 
6265 	/* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
6266 	retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6267 	if (retval)
6268 		goto release;
6269 
6270 	/* copy MAC MTA to PHY MTA - only needed for pchlan */
6271 	for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
6272 		mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
6273 		hw->phy.ops.write_reg_page(hw, BM_MTA(i),
6274 					   (u16)(mac_reg & 0xFFFF));
6275 		hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
6276 					   (u16)((mac_reg >> 16) & 0xFFFF));
6277 	}
6278 
6279 	/* configure PHY Rx Control register */
6280 	hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
6281 	mac_reg = er32(RCTL);
6282 	if (mac_reg & E1000_RCTL_UPE)
6283 		phy_reg |= BM_RCTL_UPE;
6284 	if (mac_reg & E1000_RCTL_MPE)
6285 		phy_reg |= BM_RCTL_MPE;
6286 	phy_reg &= ~(BM_RCTL_MO_MASK);
6287 	if (mac_reg & E1000_RCTL_MO_3)
6288 		phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
6289 			    << BM_RCTL_MO_SHIFT);
6290 	if (mac_reg & E1000_RCTL_BAM)
6291 		phy_reg |= BM_RCTL_BAM;
6292 	if (mac_reg & E1000_RCTL_PMCF)
6293 		phy_reg |= BM_RCTL_PMCF;
6294 	mac_reg = er32(CTRL);
6295 	if (mac_reg & E1000_CTRL_RFCE)
6296 		phy_reg |= BM_RCTL_RFCE;
6297 	hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
6298 
6299 	wuc = E1000_WUC_PME_EN;
6300 	if (wufc & (E1000_WUFC_MAG | E1000_WUFC_LNKC))
6301 		wuc |= E1000_WUC_APME;
6302 
6303 	/* enable PHY wakeup in MAC register */
6304 	ew32(WUFC, wufc);
6305 	ew32(WUC, (E1000_WUC_PHY_WAKE | E1000_WUC_APMPME |
6306 		   E1000_WUC_PME_STATUS | wuc));
6307 
6308 	/* configure and enable PHY wakeup in PHY registers */
6309 	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
6310 	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, wuc);
6311 
6312 	/* activate PHY wakeup */
6313 	wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
6314 	retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6315 	if (retval)
6316 		e_err("Could not set PHY Host Wakeup bit\n");
6317 release:
6318 	hw->phy.ops.release(hw);
6319 
6320 	return retval;
6321 }
6322 
6323 static void e1000e_flush_lpic(struct pci_dev *pdev)
6324 {
6325 	struct net_device *netdev = pci_get_drvdata(pdev);
6326 	struct e1000_adapter *adapter = netdev_priv(netdev);
6327 	struct e1000_hw *hw = &adapter->hw;
6328 	u32 ret_val;
6329 
6330 	pm_runtime_get_sync(netdev->dev.parent);
6331 
6332 	ret_val = hw->phy.ops.acquire(hw);
6333 	if (ret_val)
6334 		goto fl_out;
6335 
6336 	pr_info("EEE TX LPI TIMER: %08X\n",
6337 		er32(LPIC) >> E1000_LPIC_LPIET_SHIFT);
6338 
6339 	hw->phy.ops.release(hw);
6340 
6341 fl_out:
6342 	pm_runtime_put_sync(netdev->dev.parent);
6343 }
6344 
6345 /* S0ix implementation */
6346 static void e1000e_s0ix_entry_flow(struct e1000_adapter *adapter)
6347 {
6348 	struct e1000_hw *hw = &adapter->hw;
6349 	u32 mac_data;
6350 	u16 phy_data;
6351 
6352 	/* Disable the periodic inband message,
6353 	 * don't request PCIe clock in K1 page770_17[10:9] = 10b
6354 	 */
6355 	e1e_rphy(hw, HV_PM_CTRL, &phy_data);
6356 	phy_data &= ~HV_PM_CTRL_K1_CLK_REQ;
6357 	phy_data |= BIT(10);
6358 	e1e_wphy(hw, HV_PM_CTRL, phy_data);
6359 
6360 	/* Make sure we don't exit K1 every time a new packet arrives
6361 	 * 772_29[5] = 1 CS_Mode_Stay_In_K1
6362 	 */
6363 	e1e_rphy(hw, I217_CGFREG, &phy_data);
6364 	phy_data |= BIT(5);
6365 	e1e_wphy(hw, I217_CGFREG, phy_data);
6366 
6367 	/* Change the MAC/PHY interface to SMBus
6368 	 * Force the SMBus in PHY page769_23[0] = 1
6369 	 * Force the SMBus in MAC CTRL_EXT[11] = 1
6370 	 */
6371 	e1e_rphy(hw, CV_SMB_CTRL, &phy_data);
6372 	phy_data |= CV_SMB_CTRL_FORCE_SMBUS;
6373 	e1e_wphy(hw, CV_SMB_CTRL, phy_data);
6374 	mac_data = er32(CTRL_EXT);
6375 	mac_data |= E1000_CTRL_EXT_FORCE_SMBUS;
6376 	ew32(CTRL_EXT, mac_data);
6377 
6378 	/* DFT control: PHY bit: page769_20[0] = 1
6379 	 * Gate PPW via EXTCNF_CTRL - set 0x0F00[7] = 1
6380 	 */
6381 	e1e_rphy(hw, I82579_DFT_CTRL, &phy_data);
6382 	phy_data |= BIT(0);
6383 	e1e_wphy(hw, I82579_DFT_CTRL, phy_data);
6384 
6385 	mac_data = er32(EXTCNF_CTRL);
6386 	mac_data |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
6387 	ew32(EXTCNF_CTRL, mac_data);
6388 
6389 	/* Check MAC Tx/Rx packet buffer pointers.
6390 	 * Reset MAC Tx/Rx packet buffer pointers to suppress any
6391 	 * pending traffic indication that would prevent power gating.
6392 	 */
6393 	mac_data = er32(TDFH);
6394 	if (mac_data)
6395 		ew32(TDFH, 0);
6396 	mac_data = er32(TDFT);
6397 	if (mac_data)
6398 		ew32(TDFT, 0);
6399 	mac_data = er32(TDFHS);
6400 	if (mac_data)
6401 		ew32(TDFHS, 0);
6402 	mac_data = er32(TDFTS);
6403 	if (mac_data)
6404 		ew32(TDFTS, 0);
6405 	mac_data = er32(TDFPC);
6406 	if (mac_data)
6407 		ew32(TDFPC, 0);
6408 	mac_data = er32(RDFH);
6409 	if (mac_data)
6410 		ew32(RDFH, 0);
6411 	mac_data = er32(RDFT);
6412 	if (mac_data)
6413 		ew32(RDFT, 0);
6414 	mac_data = er32(RDFHS);
6415 	if (mac_data)
6416 		ew32(RDFHS, 0);
6417 	mac_data = er32(RDFTS);
6418 	if (mac_data)
6419 		ew32(RDFTS, 0);
6420 	mac_data = er32(RDFPC);
6421 	if (mac_data)
6422 		ew32(RDFPC, 0);
6423 
6424 	/* Enable the Dynamic Power Gating in the MAC */
6425 	mac_data = er32(FEXTNVM7);
6426 	mac_data |= BIT(22);
6427 	ew32(FEXTNVM7, mac_data);
6428 
6429 	/* Disable the time synchronization clock */
6430 	mac_data = er32(FEXTNVM7);
6431 	mac_data |= BIT(31);
6432 	mac_data &= ~BIT(0);
6433 	ew32(FEXTNVM7, mac_data);
6434 
6435 	/* Dynamic Power Gating Enable */
6436 	mac_data = er32(CTRL_EXT);
6437 	mac_data |= BIT(3);
6438 	ew32(CTRL_EXT, mac_data);
6439 
6440 	/* Disable disconnected cable conditioning for Power Gating */
6441 	mac_data = er32(DPGFR);
6442 	mac_data |= BIT(2);
6443 	ew32(DPGFR, mac_data);
6444 
6445 	/* Don't wake from dynamic Power Gating with clock request */
6446 	mac_data = er32(FEXTNVM12);
6447 	mac_data |= BIT(12);
6448 	ew32(FEXTNVM12, mac_data);
6449 
6450 	/* Ungate PGCB clock */
6451 	mac_data = er32(FEXTNVM9);
6452 	mac_data |= BIT(28);
6453 	ew32(FEXTNVM9, mac_data);
6454 
6455 	/* Enable K1 off to enable mPHY Power Gating */
6456 	mac_data = er32(FEXTNVM6);
6457 	mac_data |= BIT(31);
6458 	ew32(FEXTNVM12, mac_data);
6459 
6460 	/* Enable mPHY power gating for any link and speed */
6461 	mac_data = er32(FEXTNVM8);
6462 	mac_data |= BIT(9);
6463 	ew32(FEXTNVM8, mac_data);
6464 
6465 	/* Enable the Dynamic Clock Gating in the DMA and MAC */
6466 	mac_data = er32(CTRL_EXT);
6467 	mac_data |= E1000_CTRL_EXT_DMA_DYN_CLK_EN;
6468 	ew32(CTRL_EXT, mac_data);
6469 
6470 	/* No MAC DPG gating SLP_S0 in modern standby
6471 	 * Switch the logic of the lanphypc to use PMC counter
6472 	 */
6473 	mac_data = er32(FEXTNVM5);
6474 	mac_data |= BIT(7);
6475 	ew32(FEXTNVM5, mac_data);
6476 }
6477 
6478 static void e1000e_s0ix_exit_flow(struct e1000_adapter *adapter)
6479 {
6480 	struct e1000_hw *hw = &adapter->hw;
6481 	u32 mac_data;
6482 	u16 phy_data;
6483 
6484 	/* Disable the Dynamic Power Gating in the MAC */
6485 	mac_data = er32(FEXTNVM7);
6486 	mac_data &= 0xFFBFFFFF;
6487 	ew32(FEXTNVM7, mac_data);
6488 
6489 	/* Enable the time synchronization clock */
6490 	mac_data = er32(FEXTNVM7);
6491 	mac_data |= BIT(0);
6492 	ew32(FEXTNVM7, mac_data);
6493 
6494 	/* Disable mPHY power gating for any link and speed */
6495 	mac_data = er32(FEXTNVM8);
6496 	mac_data &= ~BIT(9);
6497 	ew32(FEXTNVM8, mac_data);
6498 
6499 	/* Disable K1 off */
6500 	mac_data = er32(FEXTNVM6);
6501 	mac_data &= ~BIT(31);
6502 	ew32(FEXTNVM12, mac_data);
6503 
6504 	/* Disable Ungate PGCB clock */
6505 	mac_data = er32(FEXTNVM9);
6506 	mac_data &= ~BIT(28);
6507 	ew32(FEXTNVM9, mac_data);
6508 
6509 	/* Cancel not waking from dynamic
6510 	 * Power Gating with clock request
6511 	 */
6512 	mac_data = er32(FEXTNVM12);
6513 	mac_data &= ~BIT(12);
6514 	ew32(FEXTNVM12, mac_data);
6515 
6516 	/* Cancel disable disconnected cable conditioning
6517 	 * for Power Gating
6518 	 */
6519 	mac_data = er32(DPGFR);
6520 	mac_data &= ~BIT(2);
6521 	ew32(DPGFR, mac_data);
6522 
6523 	/* Disable Dynamic Power Gating */
6524 	mac_data = er32(CTRL_EXT);
6525 	mac_data &= 0xFFFFFFF7;
6526 	ew32(CTRL_EXT, mac_data);
6527 
6528 	/* Disable the Dynamic Clock Gating in the DMA and MAC */
6529 	mac_data = er32(CTRL_EXT);
6530 	mac_data &= 0xFFF7FFFF;
6531 	ew32(CTRL_EXT, mac_data);
6532 
6533 	/* Revert the lanphypc logic to use the internal Gbe counter
6534 	 * and not the PMC counter
6535 	 */
6536 	mac_data = er32(FEXTNVM5);
6537 	mac_data &= 0xFFFFFF7F;
6538 	ew32(FEXTNVM5, mac_data);
6539 
6540 	/* Enable the periodic inband message,
6541 	 * Request PCIe clock in K1 page770_17[10:9] =01b
6542 	 */
6543 	e1e_rphy(hw, HV_PM_CTRL, &phy_data);
6544 	phy_data &= 0xFBFF;
6545 	phy_data |= HV_PM_CTRL_K1_CLK_REQ;
6546 	e1e_wphy(hw, HV_PM_CTRL, phy_data);
6547 
6548 	/* Return back configuration
6549 	 * 772_29[5] = 0 CS_Mode_Stay_In_K1
6550 	 */
6551 	e1e_rphy(hw, I217_CGFREG, &phy_data);
6552 	phy_data &= 0xFFDF;
6553 	e1e_wphy(hw, I217_CGFREG, phy_data);
6554 
6555 	/* Change the MAC/PHY interface to Kumeran
6556 	 * Unforce the SMBus in PHY page769_23[0] = 0
6557 	 * Unforce the SMBus in MAC CTRL_EXT[11] = 0
6558 	 */
6559 	e1e_rphy(hw, CV_SMB_CTRL, &phy_data);
6560 	phy_data &= ~CV_SMB_CTRL_FORCE_SMBUS;
6561 	e1e_wphy(hw, CV_SMB_CTRL, phy_data);
6562 	mac_data = er32(CTRL_EXT);
6563 	mac_data &= ~E1000_CTRL_EXT_FORCE_SMBUS;
6564 	ew32(CTRL_EXT, mac_data);
6565 }
6566 
6567 static int e1000e_pm_freeze(struct device *dev)
6568 {
6569 	struct net_device *netdev = dev_get_drvdata(dev);
6570 	struct e1000_adapter *adapter = netdev_priv(netdev);
6571 	bool present;
6572 
6573 	rtnl_lock();
6574 
6575 	present = netif_device_present(netdev);
6576 	netif_device_detach(netdev);
6577 
6578 	if (present && netif_running(netdev)) {
6579 		int count = E1000_CHECK_RESET_COUNT;
6580 
6581 		while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6582 			usleep_range(10000, 11000);
6583 
6584 		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6585 
6586 		/* Quiesce the device without resetting the hardware */
6587 		e1000e_down(adapter, false);
6588 		e1000_free_irq(adapter);
6589 	}
6590 	rtnl_unlock();
6591 
6592 	e1000e_reset_interrupt_capability(adapter);
6593 
6594 	/* Allow time for pending master requests to run */
6595 	e1000e_disable_pcie_master(&adapter->hw);
6596 
6597 	return 0;
6598 }
6599 
6600 static int __e1000_shutdown(struct pci_dev *pdev, bool runtime)
6601 {
6602 	struct net_device *netdev = pci_get_drvdata(pdev);
6603 	struct e1000_adapter *adapter = netdev_priv(netdev);
6604 	struct e1000_hw *hw = &adapter->hw;
6605 	u32 ctrl, ctrl_ext, rctl, status, wufc;
6606 	int retval = 0;
6607 
6608 	/* Runtime suspend should only enable wakeup for link changes */
6609 	if (runtime)
6610 		wufc = E1000_WUFC_LNKC;
6611 	else if (device_may_wakeup(&pdev->dev))
6612 		wufc = adapter->wol;
6613 	else
6614 		wufc = 0;
6615 
6616 	status = er32(STATUS);
6617 	if (status & E1000_STATUS_LU)
6618 		wufc &= ~E1000_WUFC_LNKC;
6619 
6620 	if (wufc) {
6621 		e1000_setup_rctl(adapter);
6622 		e1000e_set_rx_mode(netdev);
6623 
6624 		/* turn on all-multi mode if wake on multicast is enabled */
6625 		if (wufc & E1000_WUFC_MC) {
6626 			rctl = er32(RCTL);
6627 			rctl |= E1000_RCTL_MPE;
6628 			ew32(RCTL, rctl);
6629 		}
6630 
6631 		ctrl = er32(CTRL);
6632 		ctrl |= E1000_CTRL_ADVD3WUC;
6633 		if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
6634 			ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
6635 		ew32(CTRL, ctrl);
6636 
6637 		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
6638 		    adapter->hw.phy.media_type ==
6639 		    e1000_media_type_internal_serdes) {
6640 			/* keep the laser running in D3 */
6641 			ctrl_ext = er32(CTRL_EXT);
6642 			ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
6643 			ew32(CTRL_EXT, ctrl_ext);
6644 		}
6645 
6646 		if (!runtime)
6647 			e1000e_power_up_phy(adapter);
6648 
6649 		if (adapter->flags & FLAG_IS_ICH)
6650 			e1000_suspend_workarounds_ich8lan(&adapter->hw);
6651 
6652 		if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6653 			/* enable wakeup by the PHY */
6654 			retval = e1000_init_phy_wakeup(adapter, wufc);
6655 			if (retval)
6656 				return retval;
6657 		} else {
6658 			/* enable wakeup by the MAC */
6659 			ew32(WUFC, wufc);
6660 			ew32(WUC, E1000_WUC_PME_EN);
6661 		}
6662 	} else {
6663 		ew32(WUC, 0);
6664 		ew32(WUFC, 0);
6665 
6666 		e1000_power_down_phy(adapter);
6667 	}
6668 
6669 	if (adapter->hw.phy.type == e1000_phy_igp_3) {
6670 		e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
6671 	} else if (hw->mac.type >= e1000_pch_lpt) {
6672 		if (wufc && !(wufc & (E1000_WUFC_EX | E1000_WUFC_MC | E1000_WUFC_BC)))
6673 			/* ULP does not support wake from unicast, multicast
6674 			 * or broadcast.
6675 			 */
6676 			retval = e1000_enable_ulp_lpt_lp(hw, !runtime);
6677 
6678 		if (retval)
6679 			return retval;
6680 	}
6681 
6682 	/* Ensure that the appropriate bits are set in LPI_CTRL
6683 	 * for EEE in Sx
6684 	 */
6685 	if ((hw->phy.type >= e1000_phy_i217) &&
6686 	    adapter->eee_advert && hw->dev_spec.ich8lan.eee_lp_ability) {
6687 		u16 lpi_ctrl = 0;
6688 
6689 		retval = hw->phy.ops.acquire(hw);
6690 		if (!retval) {
6691 			retval = e1e_rphy_locked(hw, I82579_LPI_CTRL,
6692 						 &lpi_ctrl);
6693 			if (!retval) {
6694 				if (adapter->eee_advert &
6695 				    hw->dev_spec.ich8lan.eee_lp_ability &
6696 				    I82579_EEE_100_SUPPORTED)
6697 					lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
6698 				if (adapter->eee_advert &
6699 				    hw->dev_spec.ich8lan.eee_lp_ability &
6700 				    I82579_EEE_1000_SUPPORTED)
6701 					lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
6702 
6703 				retval = e1e_wphy_locked(hw, I82579_LPI_CTRL,
6704 							 lpi_ctrl);
6705 			}
6706 		}
6707 		hw->phy.ops.release(hw);
6708 	}
6709 
6710 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
6711 	 * would have already happened in close and is redundant.
6712 	 */
6713 	e1000e_release_hw_control(adapter);
6714 
6715 	pci_clear_master(pdev);
6716 
6717 	/* The pci-e switch on some quad port adapters will report a
6718 	 * correctable error when the MAC transitions from D0 to D3.  To
6719 	 * prevent this we need to mask off the correctable errors on the
6720 	 * downstream port of the pci-e switch.
6721 	 *
6722 	 * We don't have the associated upstream bridge while assigning
6723 	 * the PCI device into guest. For example, the KVM on power is
6724 	 * one of the cases.
6725 	 */
6726 	if (adapter->flags & FLAG_IS_QUAD_PORT) {
6727 		struct pci_dev *us_dev = pdev->bus->self;
6728 		u16 devctl;
6729 
6730 		if (!us_dev)
6731 			return 0;
6732 
6733 		pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl);
6734 		pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL,
6735 					   (devctl & ~PCI_EXP_DEVCTL_CERE));
6736 
6737 		pci_save_state(pdev);
6738 		pci_prepare_to_sleep(pdev);
6739 
6740 		pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl);
6741 	}
6742 
6743 	return 0;
6744 }
6745 
6746 /**
6747  * __e1000e_disable_aspm - Disable ASPM states
6748  * @pdev: pointer to PCI device struct
6749  * @state: bit-mask of ASPM states to disable
6750  * @locked: indication if this context holds pci_bus_sem locked.
6751  *
6752  * Some devices *must* have certain ASPM states disabled per hardware errata.
6753  **/
6754 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state, int locked)
6755 {
6756 	struct pci_dev *parent = pdev->bus->self;
6757 	u16 aspm_dis_mask = 0;
6758 	u16 pdev_aspmc, parent_aspmc;
6759 
6760 	switch (state) {
6761 	case PCIE_LINK_STATE_L0S:
6762 	case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1:
6763 		aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S;
6764 		fallthrough; /* can't have L1 without L0s */
6765 	case PCIE_LINK_STATE_L1:
6766 		aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1;
6767 		break;
6768 	default:
6769 		return;
6770 	}
6771 
6772 	pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6773 	pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6774 
6775 	if (parent) {
6776 		pcie_capability_read_word(parent, PCI_EXP_LNKCTL,
6777 					  &parent_aspmc);
6778 		parent_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6779 	}
6780 
6781 	/* Nothing to do if the ASPM states to be disabled already are */
6782 	if (!(pdev_aspmc & aspm_dis_mask) &&
6783 	    (!parent || !(parent_aspmc & aspm_dis_mask)))
6784 		return;
6785 
6786 	dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
6787 		 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ?
6788 		 "L0s" : "",
6789 		 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ?
6790 		 "L1" : "");
6791 
6792 #ifdef CONFIG_PCIEASPM
6793 	if (locked)
6794 		pci_disable_link_state_locked(pdev, state);
6795 	else
6796 		pci_disable_link_state(pdev, state);
6797 
6798 	/* Double-check ASPM control.  If not disabled by the above, the
6799 	 * BIOS is preventing that from happening (or CONFIG_PCIEASPM is
6800 	 * not enabled); override by writing PCI config space directly.
6801 	 */
6802 	pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6803 	pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6804 
6805 	if (!(aspm_dis_mask & pdev_aspmc))
6806 		return;
6807 #endif
6808 
6809 	/* Both device and parent should have the same ASPM setting.
6810 	 * Disable ASPM in downstream component first and then upstream.
6811 	 */
6812 	pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask);
6813 
6814 	if (parent)
6815 		pcie_capability_clear_word(parent, PCI_EXP_LNKCTL,
6816 					   aspm_dis_mask);
6817 }
6818 
6819 /**
6820  * e1000e_disable_aspm - Disable ASPM states.
6821  * @pdev: pointer to PCI device struct
6822  * @state: bit-mask of ASPM states to disable
6823  *
6824  * This function acquires the pci_bus_sem!
6825  * Some devices *must* have certain ASPM states disabled per hardware errata.
6826  **/
6827 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6828 {
6829 	__e1000e_disable_aspm(pdev, state, 0);
6830 }
6831 
6832 /**
6833  * e1000e_disable_aspm_locked   Disable ASPM states.
6834  * @pdev: pointer to PCI device struct
6835  * @state: bit-mask of ASPM states to disable
6836  *
6837  * This function must be called with pci_bus_sem acquired!
6838  * Some devices *must* have certain ASPM states disabled per hardware errata.
6839  **/
6840 static void e1000e_disable_aspm_locked(struct pci_dev *pdev, u16 state)
6841 {
6842 	__e1000e_disable_aspm(pdev, state, 1);
6843 }
6844 
6845 static int e1000e_pm_thaw(struct device *dev)
6846 {
6847 	struct net_device *netdev = dev_get_drvdata(dev);
6848 	struct e1000_adapter *adapter = netdev_priv(netdev);
6849 	int rc = 0;
6850 
6851 	e1000e_set_interrupt_capability(adapter);
6852 
6853 	rtnl_lock();
6854 	if (netif_running(netdev)) {
6855 		rc = e1000_request_irq(adapter);
6856 		if (rc)
6857 			goto err_irq;
6858 
6859 		e1000e_up(adapter);
6860 	}
6861 
6862 	netif_device_attach(netdev);
6863 err_irq:
6864 	rtnl_unlock();
6865 
6866 	return rc;
6867 }
6868 
6869 static int __e1000_resume(struct pci_dev *pdev)
6870 {
6871 	struct net_device *netdev = pci_get_drvdata(pdev);
6872 	struct e1000_adapter *adapter = netdev_priv(netdev);
6873 	struct e1000_hw *hw = &adapter->hw;
6874 	u16 aspm_disable_flag = 0;
6875 
6876 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6877 		aspm_disable_flag = PCIE_LINK_STATE_L0S;
6878 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6879 		aspm_disable_flag |= PCIE_LINK_STATE_L1;
6880 	if (aspm_disable_flag)
6881 		e1000e_disable_aspm(pdev, aspm_disable_flag);
6882 
6883 	pci_set_master(pdev);
6884 
6885 	if (hw->mac.type >= e1000_pch2lan)
6886 		e1000_resume_workarounds_pchlan(&adapter->hw);
6887 
6888 	e1000e_power_up_phy(adapter);
6889 
6890 	/* report the system wakeup cause from S3/S4 */
6891 	if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6892 		u16 phy_data;
6893 
6894 		e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
6895 		if (phy_data) {
6896 			e_info("PHY Wakeup cause - %s\n",
6897 			       phy_data & E1000_WUS_EX ? "Unicast Packet" :
6898 			       phy_data & E1000_WUS_MC ? "Multicast Packet" :
6899 			       phy_data & E1000_WUS_BC ? "Broadcast Packet" :
6900 			       phy_data & E1000_WUS_MAG ? "Magic Packet" :
6901 			       phy_data & E1000_WUS_LNKC ?
6902 			       "Link Status Change" : "other");
6903 		}
6904 		e1e_wphy(&adapter->hw, BM_WUS, ~0);
6905 	} else {
6906 		u32 wus = er32(WUS);
6907 
6908 		if (wus) {
6909 			e_info("MAC Wakeup cause - %s\n",
6910 			       wus & E1000_WUS_EX ? "Unicast Packet" :
6911 			       wus & E1000_WUS_MC ? "Multicast Packet" :
6912 			       wus & E1000_WUS_BC ? "Broadcast Packet" :
6913 			       wus & E1000_WUS_MAG ? "Magic Packet" :
6914 			       wus & E1000_WUS_LNKC ? "Link Status Change" :
6915 			       "other");
6916 		}
6917 		ew32(WUS, ~0);
6918 	}
6919 
6920 	e1000e_reset(adapter);
6921 
6922 	e1000_init_manageability_pt(adapter);
6923 
6924 	/* If the controller has AMT, do not set DRV_LOAD until the interface
6925 	 * is up.  For all other cases, let the f/w know that the h/w is now
6926 	 * under the control of the driver.
6927 	 */
6928 	if (!(adapter->flags & FLAG_HAS_AMT))
6929 		e1000e_get_hw_control(adapter);
6930 
6931 	return 0;
6932 }
6933 
6934 static __maybe_unused int e1000e_pm_suspend(struct device *dev)
6935 {
6936 	struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6937 	struct e1000_adapter *adapter = netdev_priv(netdev);
6938 	struct pci_dev *pdev = to_pci_dev(dev);
6939 	struct e1000_hw *hw = &adapter->hw;
6940 	int rc;
6941 
6942 	e1000e_flush_lpic(pdev);
6943 
6944 	e1000e_pm_freeze(dev);
6945 
6946 	rc = __e1000_shutdown(pdev, false);
6947 	if (rc)
6948 		e1000e_pm_thaw(dev);
6949 
6950 	/* Introduce S0ix implementation */
6951 	if (hw->mac.type >= e1000_pch_cnp &&
6952 	    !e1000e_check_me(hw->adapter->pdev->device))
6953 		e1000e_s0ix_entry_flow(adapter);
6954 
6955 	return rc;
6956 }
6957 
6958 static __maybe_unused int e1000e_pm_resume(struct device *dev)
6959 {
6960 	struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6961 	struct e1000_adapter *adapter = netdev_priv(netdev);
6962 	struct pci_dev *pdev = to_pci_dev(dev);
6963 	struct e1000_hw *hw = &adapter->hw;
6964 	int rc;
6965 
6966 	/* Introduce S0ix implementation */
6967 	if (hw->mac.type >= e1000_pch_cnp &&
6968 	    !e1000e_check_me(hw->adapter->pdev->device))
6969 		e1000e_s0ix_exit_flow(adapter);
6970 
6971 	rc = __e1000_resume(pdev);
6972 	if (rc)
6973 		return rc;
6974 
6975 	return e1000e_pm_thaw(dev);
6976 }
6977 
6978 static __maybe_unused int e1000e_pm_runtime_idle(struct device *dev)
6979 {
6980 	struct net_device *netdev = dev_get_drvdata(dev);
6981 	struct e1000_adapter *adapter = netdev_priv(netdev);
6982 	u16 eee_lp;
6983 
6984 	eee_lp = adapter->hw.dev_spec.ich8lan.eee_lp_ability;
6985 
6986 	if (!e1000e_has_link(adapter)) {
6987 		adapter->hw.dev_spec.ich8lan.eee_lp_ability = eee_lp;
6988 		pm_schedule_suspend(dev, 5 * MSEC_PER_SEC);
6989 	}
6990 
6991 	return -EBUSY;
6992 }
6993 
6994 static __maybe_unused int e1000e_pm_runtime_resume(struct device *dev)
6995 {
6996 	struct pci_dev *pdev = to_pci_dev(dev);
6997 	struct net_device *netdev = pci_get_drvdata(pdev);
6998 	struct e1000_adapter *adapter = netdev_priv(netdev);
6999 	int rc;
7000 
7001 	rc = __e1000_resume(pdev);
7002 	if (rc)
7003 		return rc;
7004 
7005 	if (netdev->flags & IFF_UP)
7006 		e1000e_up(adapter);
7007 
7008 	return rc;
7009 }
7010 
7011 static __maybe_unused int e1000e_pm_runtime_suspend(struct device *dev)
7012 {
7013 	struct pci_dev *pdev = to_pci_dev(dev);
7014 	struct net_device *netdev = pci_get_drvdata(pdev);
7015 	struct e1000_adapter *adapter = netdev_priv(netdev);
7016 
7017 	if (netdev->flags & IFF_UP) {
7018 		int count = E1000_CHECK_RESET_COUNT;
7019 
7020 		while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
7021 			usleep_range(10000, 11000);
7022 
7023 		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
7024 
7025 		/* Down the device without resetting the hardware */
7026 		e1000e_down(adapter, false);
7027 	}
7028 
7029 	if (__e1000_shutdown(pdev, true)) {
7030 		e1000e_pm_runtime_resume(dev);
7031 		return -EBUSY;
7032 	}
7033 
7034 	return 0;
7035 }
7036 
7037 static void e1000_shutdown(struct pci_dev *pdev)
7038 {
7039 	e1000e_flush_lpic(pdev);
7040 
7041 	e1000e_pm_freeze(&pdev->dev);
7042 
7043 	__e1000_shutdown(pdev, false);
7044 }
7045 
7046 #ifdef CONFIG_NET_POLL_CONTROLLER
7047 
7048 static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data)
7049 {
7050 	struct net_device *netdev = data;
7051 	struct e1000_adapter *adapter = netdev_priv(netdev);
7052 
7053 	if (adapter->msix_entries) {
7054 		int vector, msix_irq;
7055 
7056 		vector = 0;
7057 		msix_irq = adapter->msix_entries[vector].vector;
7058 		if (disable_hardirq(msix_irq))
7059 			e1000_intr_msix_rx(msix_irq, netdev);
7060 		enable_irq(msix_irq);
7061 
7062 		vector++;
7063 		msix_irq = adapter->msix_entries[vector].vector;
7064 		if (disable_hardirq(msix_irq))
7065 			e1000_intr_msix_tx(msix_irq, netdev);
7066 		enable_irq(msix_irq);
7067 
7068 		vector++;
7069 		msix_irq = adapter->msix_entries[vector].vector;
7070 		if (disable_hardirq(msix_irq))
7071 			e1000_msix_other(msix_irq, netdev);
7072 		enable_irq(msix_irq);
7073 	}
7074 
7075 	return IRQ_HANDLED;
7076 }
7077 
7078 /**
7079  * e1000_netpoll
7080  * @netdev: network interface device structure
7081  *
7082  * Polling 'interrupt' - used by things like netconsole to send skbs
7083  * without having to re-enable interrupts. It's not called while
7084  * the interrupt routine is executing.
7085  */
7086 static void e1000_netpoll(struct net_device *netdev)
7087 {
7088 	struct e1000_adapter *adapter = netdev_priv(netdev);
7089 
7090 	switch (adapter->int_mode) {
7091 	case E1000E_INT_MODE_MSIX:
7092 		e1000_intr_msix(adapter->pdev->irq, netdev);
7093 		break;
7094 	case E1000E_INT_MODE_MSI:
7095 		if (disable_hardirq(adapter->pdev->irq))
7096 			e1000_intr_msi(adapter->pdev->irq, netdev);
7097 		enable_irq(adapter->pdev->irq);
7098 		break;
7099 	default:		/* E1000E_INT_MODE_LEGACY */
7100 		if (disable_hardirq(adapter->pdev->irq))
7101 			e1000_intr(adapter->pdev->irq, netdev);
7102 		enable_irq(adapter->pdev->irq);
7103 		break;
7104 	}
7105 }
7106 #endif
7107 
7108 /**
7109  * e1000_io_error_detected - called when PCI error is detected
7110  * @pdev: Pointer to PCI device
7111  * @state: The current pci connection state
7112  *
7113  * This function is called after a PCI bus error affecting
7114  * this device has been detected.
7115  */
7116 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
7117 						pci_channel_state_t state)
7118 {
7119 	e1000e_pm_freeze(&pdev->dev);
7120 
7121 	if (state == pci_channel_io_perm_failure)
7122 		return PCI_ERS_RESULT_DISCONNECT;
7123 
7124 	pci_disable_device(pdev);
7125 
7126 	/* Request a slot slot reset. */
7127 	return PCI_ERS_RESULT_NEED_RESET;
7128 }
7129 
7130 /**
7131  * e1000_io_slot_reset - called after the pci bus has been reset.
7132  * @pdev: Pointer to PCI device
7133  *
7134  * Restart the card from scratch, as if from a cold-boot. Implementation
7135  * resembles the first-half of the e1000e_pm_resume routine.
7136  */
7137 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
7138 {
7139 	struct net_device *netdev = pci_get_drvdata(pdev);
7140 	struct e1000_adapter *adapter = netdev_priv(netdev);
7141 	struct e1000_hw *hw = &adapter->hw;
7142 	u16 aspm_disable_flag = 0;
7143 	int err;
7144 	pci_ers_result_t result;
7145 
7146 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
7147 		aspm_disable_flag = PCIE_LINK_STATE_L0S;
7148 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
7149 		aspm_disable_flag |= PCIE_LINK_STATE_L1;
7150 	if (aspm_disable_flag)
7151 		e1000e_disable_aspm_locked(pdev, aspm_disable_flag);
7152 
7153 	err = pci_enable_device_mem(pdev);
7154 	if (err) {
7155 		dev_err(&pdev->dev,
7156 			"Cannot re-enable PCI device after reset.\n");
7157 		result = PCI_ERS_RESULT_DISCONNECT;
7158 	} else {
7159 		pdev->state_saved = true;
7160 		pci_restore_state(pdev);
7161 		pci_set_master(pdev);
7162 
7163 		pci_enable_wake(pdev, PCI_D3hot, 0);
7164 		pci_enable_wake(pdev, PCI_D3cold, 0);
7165 
7166 		e1000e_reset(adapter);
7167 		ew32(WUS, ~0);
7168 		result = PCI_ERS_RESULT_RECOVERED;
7169 	}
7170 
7171 	return result;
7172 }
7173 
7174 /**
7175  * e1000_io_resume - called when traffic can start flowing again.
7176  * @pdev: Pointer to PCI device
7177  *
7178  * This callback is called when the error recovery driver tells us that
7179  * its OK to resume normal operation. Implementation resembles the
7180  * second-half of the e1000e_pm_resume routine.
7181  */
7182 static void e1000_io_resume(struct pci_dev *pdev)
7183 {
7184 	struct net_device *netdev = pci_get_drvdata(pdev);
7185 	struct e1000_adapter *adapter = netdev_priv(netdev);
7186 
7187 	e1000_init_manageability_pt(adapter);
7188 
7189 	e1000e_pm_thaw(&pdev->dev);
7190 
7191 	/* If the controller has AMT, do not set DRV_LOAD until the interface
7192 	 * is up.  For all other cases, let the f/w know that the h/w is now
7193 	 * under the control of the driver.
7194 	 */
7195 	if (!(adapter->flags & FLAG_HAS_AMT))
7196 		e1000e_get_hw_control(adapter);
7197 }
7198 
7199 static void e1000_print_device_info(struct e1000_adapter *adapter)
7200 {
7201 	struct e1000_hw *hw = &adapter->hw;
7202 	struct net_device *netdev = adapter->netdev;
7203 	u32 ret_val;
7204 	u8 pba_str[E1000_PBANUM_LENGTH];
7205 
7206 	/* print bus type/speed/width info */
7207 	e_info("(PCI Express:2.5GT/s:%s) %pM\n",
7208 	       /* bus width */
7209 	       ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
7210 		"Width x1"),
7211 	       /* MAC address */
7212 	       netdev->dev_addr);
7213 	e_info("Intel(R) PRO/%s Network Connection\n",
7214 	       (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
7215 	ret_val = e1000_read_pba_string_generic(hw, pba_str,
7216 						E1000_PBANUM_LENGTH);
7217 	if (ret_val)
7218 		strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
7219 	e_info("MAC: %d, PHY: %d, PBA No: %s\n",
7220 	       hw->mac.type, hw->phy.type, pba_str);
7221 }
7222 
7223 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
7224 {
7225 	struct e1000_hw *hw = &adapter->hw;
7226 	int ret_val;
7227 	u16 buf = 0;
7228 
7229 	if (hw->mac.type != e1000_82573)
7230 		return;
7231 
7232 	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
7233 	le16_to_cpus(&buf);
7234 	if (!ret_val && (!(buf & BIT(0)))) {
7235 		/* Deep Smart Power Down (DSPD) */
7236 		dev_warn(&adapter->pdev->dev,
7237 			 "Warning: detected DSPD enabled in EEPROM\n");
7238 	}
7239 }
7240 
7241 static netdev_features_t e1000_fix_features(struct net_device *netdev,
7242 					    netdev_features_t features)
7243 {
7244 	struct e1000_adapter *adapter = netdev_priv(netdev);
7245 	struct e1000_hw *hw = &adapter->hw;
7246 
7247 	/* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
7248 	if ((hw->mac.type >= e1000_pch2lan) && (netdev->mtu > ETH_DATA_LEN))
7249 		features &= ~NETIF_F_RXFCS;
7250 
7251 	/* Since there is no support for separate Rx/Tx vlan accel
7252 	 * enable/disable make sure Tx flag is always in same state as Rx.
7253 	 */
7254 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
7255 		features |= NETIF_F_HW_VLAN_CTAG_TX;
7256 	else
7257 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
7258 
7259 	return features;
7260 }
7261 
7262 static int e1000_set_features(struct net_device *netdev,
7263 			      netdev_features_t features)
7264 {
7265 	struct e1000_adapter *adapter = netdev_priv(netdev);
7266 	netdev_features_t changed = features ^ netdev->features;
7267 
7268 	if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
7269 		adapter->flags |= FLAG_TSO_FORCE;
7270 
7271 	if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
7272 			 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
7273 			 NETIF_F_RXALL)))
7274 		return 0;
7275 
7276 	if (changed & NETIF_F_RXFCS) {
7277 		if (features & NETIF_F_RXFCS) {
7278 			adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
7279 		} else {
7280 			/* We need to take it back to defaults, which might mean
7281 			 * stripping is still disabled at the adapter level.
7282 			 */
7283 			if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
7284 				adapter->flags2 |= FLAG2_CRC_STRIPPING;
7285 			else
7286 				adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
7287 		}
7288 	}
7289 
7290 	netdev->features = features;
7291 
7292 	if (netif_running(netdev))
7293 		e1000e_reinit_locked(adapter);
7294 	else
7295 		e1000e_reset(adapter);
7296 
7297 	return 1;
7298 }
7299 
7300 static const struct net_device_ops e1000e_netdev_ops = {
7301 	.ndo_open		= e1000e_open,
7302 	.ndo_stop		= e1000e_close,
7303 	.ndo_start_xmit		= e1000_xmit_frame,
7304 	.ndo_get_stats64	= e1000e_get_stats64,
7305 	.ndo_set_rx_mode	= e1000e_set_rx_mode,
7306 	.ndo_set_mac_address	= e1000_set_mac,
7307 	.ndo_change_mtu		= e1000_change_mtu,
7308 	.ndo_do_ioctl		= e1000_ioctl,
7309 	.ndo_tx_timeout		= e1000_tx_timeout,
7310 	.ndo_validate_addr	= eth_validate_addr,
7311 
7312 	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
7313 	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
7314 #ifdef CONFIG_NET_POLL_CONTROLLER
7315 	.ndo_poll_controller	= e1000_netpoll,
7316 #endif
7317 	.ndo_set_features = e1000_set_features,
7318 	.ndo_fix_features = e1000_fix_features,
7319 	.ndo_features_check	= passthru_features_check,
7320 };
7321 
7322 /**
7323  * e1000_probe - Device Initialization Routine
7324  * @pdev: PCI device information struct
7325  * @ent: entry in e1000_pci_tbl
7326  *
7327  * Returns 0 on success, negative on failure
7328  *
7329  * e1000_probe initializes an adapter identified by a pci_dev structure.
7330  * The OS initialization, configuring of the adapter private structure,
7331  * and a hardware reset occur.
7332  **/
7333 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
7334 {
7335 	struct net_device *netdev;
7336 	struct e1000_adapter *adapter;
7337 	struct e1000_hw *hw;
7338 	const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
7339 	resource_size_t mmio_start, mmio_len;
7340 	resource_size_t flash_start, flash_len;
7341 	static int cards_found;
7342 	u16 aspm_disable_flag = 0;
7343 	int bars, i, err, pci_using_dac;
7344 	u16 eeprom_data = 0;
7345 	u16 eeprom_apme_mask = E1000_EEPROM_APME;
7346 	s32 ret_val = 0;
7347 
7348 	if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
7349 		aspm_disable_flag = PCIE_LINK_STATE_L0S;
7350 	if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
7351 		aspm_disable_flag |= PCIE_LINK_STATE_L1;
7352 	if (aspm_disable_flag)
7353 		e1000e_disable_aspm(pdev, aspm_disable_flag);
7354 
7355 	err = pci_enable_device_mem(pdev);
7356 	if (err)
7357 		return err;
7358 
7359 	pci_using_dac = 0;
7360 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
7361 	if (!err) {
7362 		pci_using_dac = 1;
7363 	} else {
7364 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
7365 		if (err) {
7366 			dev_err(&pdev->dev,
7367 				"No usable DMA configuration, aborting\n");
7368 			goto err_dma;
7369 		}
7370 	}
7371 
7372 	bars = pci_select_bars(pdev, IORESOURCE_MEM);
7373 	err = pci_request_selected_regions_exclusive(pdev, bars,
7374 						     e1000e_driver_name);
7375 	if (err)
7376 		goto err_pci_reg;
7377 
7378 	/* AER (Advanced Error Reporting) hooks */
7379 	pci_enable_pcie_error_reporting(pdev);
7380 
7381 	pci_set_master(pdev);
7382 	/* PCI config space info */
7383 	err = pci_save_state(pdev);
7384 	if (err)
7385 		goto err_alloc_etherdev;
7386 
7387 	err = -ENOMEM;
7388 	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
7389 	if (!netdev)
7390 		goto err_alloc_etherdev;
7391 
7392 	SET_NETDEV_DEV(netdev, &pdev->dev);
7393 
7394 	netdev->irq = pdev->irq;
7395 
7396 	pci_set_drvdata(pdev, netdev);
7397 	adapter = netdev_priv(netdev);
7398 	hw = &adapter->hw;
7399 	adapter->netdev = netdev;
7400 	adapter->pdev = pdev;
7401 	adapter->ei = ei;
7402 	adapter->pba = ei->pba;
7403 	adapter->flags = ei->flags;
7404 	adapter->flags2 = ei->flags2;
7405 	adapter->hw.adapter = adapter;
7406 	adapter->hw.mac.type = ei->mac;
7407 	adapter->max_hw_frame_size = ei->max_hw_frame_size;
7408 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
7409 
7410 	mmio_start = pci_resource_start(pdev, 0);
7411 	mmio_len = pci_resource_len(pdev, 0);
7412 
7413 	err = -EIO;
7414 	adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
7415 	if (!adapter->hw.hw_addr)
7416 		goto err_ioremap;
7417 
7418 	if ((adapter->flags & FLAG_HAS_FLASH) &&
7419 	    (pci_resource_flags(pdev, 1) & IORESOURCE_MEM) &&
7420 	    (hw->mac.type < e1000_pch_spt)) {
7421 		flash_start = pci_resource_start(pdev, 1);
7422 		flash_len = pci_resource_len(pdev, 1);
7423 		adapter->hw.flash_address = ioremap(flash_start, flash_len);
7424 		if (!adapter->hw.flash_address)
7425 			goto err_flashmap;
7426 	}
7427 
7428 	/* Set default EEE advertisement */
7429 	if (adapter->flags2 & FLAG2_HAS_EEE)
7430 		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
7431 
7432 	/* construct the net_device struct */
7433 	netdev->netdev_ops = &e1000e_netdev_ops;
7434 	e1000e_set_ethtool_ops(netdev);
7435 	netdev->watchdog_timeo = 5 * HZ;
7436 	netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64);
7437 	strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
7438 
7439 	netdev->mem_start = mmio_start;
7440 	netdev->mem_end = mmio_start + mmio_len;
7441 
7442 	adapter->bd_number = cards_found++;
7443 
7444 	e1000e_check_options(adapter);
7445 
7446 	/* setup adapter struct */
7447 	err = e1000_sw_init(adapter);
7448 	if (err)
7449 		goto err_sw_init;
7450 
7451 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
7452 	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
7453 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
7454 
7455 	err = ei->get_variants(adapter);
7456 	if (err)
7457 		goto err_hw_init;
7458 
7459 	if ((adapter->flags & FLAG_IS_ICH) &&
7460 	    (adapter->flags & FLAG_READ_ONLY_NVM) &&
7461 	    (hw->mac.type < e1000_pch_spt))
7462 		e1000e_write_protect_nvm_ich8lan(&adapter->hw);
7463 
7464 	hw->mac.ops.get_bus_info(&adapter->hw);
7465 
7466 	adapter->hw.phy.autoneg_wait_to_complete = 0;
7467 
7468 	/* Copper options */
7469 	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
7470 		adapter->hw.phy.mdix = AUTO_ALL_MODES;
7471 		adapter->hw.phy.disable_polarity_correction = 0;
7472 		adapter->hw.phy.ms_type = e1000_ms_hw_default;
7473 	}
7474 
7475 	if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
7476 		dev_info(&pdev->dev,
7477 			 "PHY reset is blocked due to SOL/IDER session.\n");
7478 
7479 	/* Set initial default active device features */
7480 	netdev->features = (NETIF_F_SG |
7481 			    NETIF_F_HW_VLAN_CTAG_RX |
7482 			    NETIF_F_HW_VLAN_CTAG_TX |
7483 			    NETIF_F_TSO |
7484 			    NETIF_F_TSO6 |
7485 			    NETIF_F_RXHASH |
7486 			    NETIF_F_RXCSUM |
7487 			    NETIF_F_HW_CSUM);
7488 
7489 	/* Set user-changeable features (subset of all device features) */
7490 	netdev->hw_features = netdev->features;
7491 	netdev->hw_features |= NETIF_F_RXFCS;
7492 	netdev->priv_flags |= IFF_SUPP_NOFCS;
7493 	netdev->hw_features |= NETIF_F_RXALL;
7494 
7495 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
7496 		netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7497 
7498 	netdev->vlan_features |= (NETIF_F_SG |
7499 				  NETIF_F_TSO |
7500 				  NETIF_F_TSO6 |
7501 				  NETIF_F_HW_CSUM);
7502 
7503 	netdev->priv_flags |= IFF_UNICAST_FLT;
7504 
7505 	if (pci_using_dac) {
7506 		netdev->features |= NETIF_F_HIGHDMA;
7507 		netdev->vlan_features |= NETIF_F_HIGHDMA;
7508 	}
7509 
7510 	/* MTU range: 68 - max_hw_frame_size */
7511 	netdev->min_mtu = ETH_MIN_MTU;
7512 	netdev->max_mtu = adapter->max_hw_frame_size -
7513 			  (VLAN_ETH_HLEN + ETH_FCS_LEN);
7514 
7515 	if (e1000e_enable_mng_pass_thru(&adapter->hw))
7516 		adapter->flags |= FLAG_MNG_PT_ENABLED;
7517 
7518 	/* before reading the NVM, reset the controller to
7519 	 * put the device in a known good starting state
7520 	 */
7521 	adapter->hw.mac.ops.reset_hw(&adapter->hw);
7522 
7523 	/* systems with ASPM and others may see the checksum fail on the first
7524 	 * attempt. Let's give it a few tries
7525 	 */
7526 	for (i = 0;; i++) {
7527 		if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
7528 			break;
7529 		if (i == 2) {
7530 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
7531 			err = -EIO;
7532 			goto err_eeprom;
7533 		}
7534 	}
7535 
7536 	e1000_eeprom_checks(adapter);
7537 
7538 	/* copy the MAC address */
7539 	if (e1000e_read_mac_addr(&adapter->hw))
7540 		dev_err(&pdev->dev,
7541 			"NVM Read Error while reading MAC address\n");
7542 
7543 	memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
7544 
7545 	if (!is_valid_ether_addr(netdev->dev_addr)) {
7546 		dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
7547 			netdev->dev_addr);
7548 		err = -EIO;
7549 		goto err_eeprom;
7550 	}
7551 
7552 	timer_setup(&adapter->watchdog_timer, e1000_watchdog, 0);
7553 	timer_setup(&adapter->phy_info_timer, e1000_update_phy_info, 0);
7554 
7555 	INIT_WORK(&adapter->reset_task, e1000_reset_task);
7556 	INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
7557 	INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
7558 	INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
7559 	INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
7560 
7561 	/* Initialize link parameters. User can change them with ethtool */
7562 	adapter->hw.mac.autoneg = 1;
7563 	adapter->fc_autoneg = true;
7564 	adapter->hw.fc.requested_mode = e1000_fc_default;
7565 	adapter->hw.fc.current_mode = e1000_fc_default;
7566 	adapter->hw.phy.autoneg_advertised = 0x2f;
7567 
7568 	/* Initial Wake on LAN setting - If APM wake is enabled in
7569 	 * the EEPROM, enable the ACPI Magic Packet filter
7570 	 */
7571 	if (adapter->flags & FLAG_APME_IN_WUC) {
7572 		/* APME bit in EEPROM is mapped to WUC.APME */
7573 		eeprom_data = er32(WUC);
7574 		eeprom_apme_mask = E1000_WUC_APME;
7575 		if ((hw->mac.type > e1000_ich10lan) &&
7576 		    (eeprom_data & E1000_WUC_PHY_WAKE))
7577 			adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
7578 	} else if (adapter->flags & FLAG_APME_IN_CTRL3) {
7579 		if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
7580 		    (adapter->hw.bus.func == 1))
7581 			ret_val = e1000_read_nvm(&adapter->hw,
7582 					      NVM_INIT_CONTROL3_PORT_B,
7583 					      1, &eeprom_data);
7584 		else
7585 			ret_val = e1000_read_nvm(&adapter->hw,
7586 					      NVM_INIT_CONTROL3_PORT_A,
7587 					      1, &eeprom_data);
7588 	}
7589 
7590 	/* fetch WoL from EEPROM */
7591 	if (ret_val)
7592 		e_dbg("NVM read error getting WoL initial values: %d\n", ret_val);
7593 	else if (eeprom_data & eeprom_apme_mask)
7594 		adapter->eeprom_wol |= E1000_WUFC_MAG;
7595 
7596 	/* now that we have the eeprom settings, apply the special cases
7597 	 * where the eeprom may be wrong or the board simply won't support
7598 	 * wake on lan on a particular port
7599 	 */
7600 	if (!(adapter->flags & FLAG_HAS_WOL))
7601 		adapter->eeprom_wol = 0;
7602 
7603 	/* initialize the wol settings based on the eeprom settings */
7604 	adapter->wol = adapter->eeprom_wol;
7605 
7606 	/* make sure adapter isn't asleep if manageability is enabled */
7607 	if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) ||
7608 	    (hw->mac.ops.check_mng_mode(hw)))
7609 		device_wakeup_enable(&pdev->dev);
7610 
7611 	/* save off EEPROM version number */
7612 	ret_val = e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
7613 
7614 	if (ret_val) {
7615 		e_dbg("NVM read error getting EEPROM version: %d\n", ret_val);
7616 		adapter->eeprom_vers = 0;
7617 	}
7618 
7619 	/* init PTP hardware clock */
7620 	e1000e_ptp_init(adapter);
7621 
7622 	/* reset the hardware with the new settings */
7623 	e1000e_reset(adapter);
7624 
7625 	/* If the controller has AMT, do not set DRV_LOAD until the interface
7626 	 * is up.  For all other cases, let the f/w know that the h/w is now
7627 	 * under the control of the driver.
7628 	 */
7629 	if (!(adapter->flags & FLAG_HAS_AMT))
7630 		e1000e_get_hw_control(adapter);
7631 
7632 	strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
7633 	err = register_netdev(netdev);
7634 	if (err)
7635 		goto err_register;
7636 
7637 	/* carrier off reporting is important to ethtool even BEFORE open */
7638 	netif_carrier_off(netdev);
7639 
7640 	e1000_print_device_info(adapter);
7641 
7642 	dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
7643 
7644 	if (pci_dev_run_wake(pdev) && hw->mac.type < e1000_pch_cnp)
7645 		pm_runtime_put_noidle(&pdev->dev);
7646 
7647 	return 0;
7648 
7649 err_register:
7650 	if (!(adapter->flags & FLAG_HAS_AMT))
7651 		e1000e_release_hw_control(adapter);
7652 err_eeprom:
7653 	if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
7654 		e1000_phy_hw_reset(&adapter->hw);
7655 err_hw_init:
7656 	kfree(adapter->tx_ring);
7657 	kfree(adapter->rx_ring);
7658 err_sw_init:
7659 	if ((adapter->hw.flash_address) && (hw->mac.type < e1000_pch_spt))
7660 		iounmap(adapter->hw.flash_address);
7661 	e1000e_reset_interrupt_capability(adapter);
7662 err_flashmap:
7663 	iounmap(adapter->hw.hw_addr);
7664 err_ioremap:
7665 	free_netdev(netdev);
7666 err_alloc_etherdev:
7667 	pci_release_mem_regions(pdev);
7668 err_pci_reg:
7669 err_dma:
7670 	pci_disable_device(pdev);
7671 	return err;
7672 }
7673 
7674 /**
7675  * e1000_remove - Device Removal Routine
7676  * @pdev: PCI device information struct
7677  *
7678  * e1000_remove is called by the PCI subsystem to alert the driver
7679  * that it should release a PCI device.  The could be caused by a
7680  * Hot-Plug event, or because the driver is going to be removed from
7681  * memory.
7682  **/
7683 static void e1000_remove(struct pci_dev *pdev)
7684 {
7685 	struct net_device *netdev = pci_get_drvdata(pdev);
7686 	struct e1000_adapter *adapter = netdev_priv(netdev);
7687 
7688 	e1000e_ptp_remove(adapter);
7689 
7690 	/* The timers may be rescheduled, so explicitly disable them
7691 	 * from being rescheduled.
7692 	 */
7693 	set_bit(__E1000_DOWN, &adapter->state);
7694 	del_timer_sync(&adapter->watchdog_timer);
7695 	del_timer_sync(&adapter->phy_info_timer);
7696 
7697 	cancel_work_sync(&adapter->reset_task);
7698 	cancel_work_sync(&adapter->watchdog_task);
7699 	cancel_work_sync(&adapter->downshift_task);
7700 	cancel_work_sync(&adapter->update_phy_task);
7701 	cancel_work_sync(&adapter->print_hang_task);
7702 
7703 	if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
7704 		cancel_work_sync(&adapter->tx_hwtstamp_work);
7705 		if (adapter->tx_hwtstamp_skb) {
7706 			dev_consume_skb_any(adapter->tx_hwtstamp_skb);
7707 			adapter->tx_hwtstamp_skb = NULL;
7708 		}
7709 	}
7710 
7711 	unregister_netdev(netdev);
7712 
7713 	if (pci_dev_run_wake(pdev))
7714 		pm_runtime_get_noresume(&pdev->dev);
7715 
7716 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7717 	 * would have already happened in close and is redundant.
7718 	 */
7719 	e1000e_release_hw_control(adapter);
7720 
7721 	e1000e_reset_interrupt_capability(adapter);
7722 	kfree(adapter->tx_ring);
7723 	kfree(adapter->rx_ring);
7724 
7725 	iounmap(adapter->hw.hw_addr);
7726 	if ((adapter->hw.flash_address) &&
7727 	    (adapter->hw.mac.type < e1000_pch_spt))
7728 		iounmap(adapter->hw.flash_address);
7729 	pci_release_mem_regions(pdev);
7730 
7731 	free_netdev(netdev);
7732 
7733 	/* AER disable */
7734 	pci_disable_pcie_error_reporting(pdev);
7735 
7736 	pci_disable_device(pdev);
7737 }
7738 
7739 /* PCI Error Recovery (ERS) */
7740 static const struct pci_error_handlers e1000_err_handler = {
7741 	.error_detected = e1000_io_error_detected,
7742 	.slot_reset = e1000_io_slot_reset,
7743 	.resume = e1000_io_resume,
7744 };
7745 
7746 static const struct pci_device_id e1000_pci_tbl[] = {
7747 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
7748 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
7749 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
7750 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP),
7751 	  board_82571 },
7752 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
7753 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
7754 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
7755 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
7756 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
7757 
7758 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
7759 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
7760 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
7761 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
7762 
7763 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
7764 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
7765 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
7766 
7767 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
7768 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
7769 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
7770 
7771 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
7772 	  board_80003es2lan },
7773 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
7774 	  board_80003es2lan },
7775 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
7776 	  board_80003es2lan },
7777 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
7778 	  board_80003es2lan },
7779 
7780 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
7781 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
7782 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
7783 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
7784 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
7785 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
7786 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
7787 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
7788 
7789 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
7790 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
7791 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
7792 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
7793 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
7794 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
7795 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
7796 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
7797 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
7798 
7799 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
7800 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
7801 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
7802 
7803 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
7804 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
7805 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
7806 
7807 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
7808 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
7809 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
7810 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
7811 
7812 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
7813 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
7814 
7815 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
7816 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
7817 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt },
7818 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt },
7819 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt },
7820 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt },
7821 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt },
7822 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt },
7823 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM), board_pch_spt },
7824 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V), board_pch_spt },
7825 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM2), board_pch_spt },
7826 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V2), board_pch_spt },
7827 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LBG_I219_LM3), board_pch_spt },
7828 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM4), board_pch_spt },
7829 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V4), board_pch_spt },
7830 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM5), board_pch_spt },
7831 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V5), board_pch_spt },
7832 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM6), board_pch_cnp },
7833 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V6), board_pch_cnp },
7834 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM7), board_pch_cnp },
7835 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V7), board_pch_cnp },
7836 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM8), board_pch_cnp },
7837 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V8), board_pch_cnp },
7838 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM9), board_pch_cnp },
7839 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V9), board_pch_cnp },
7840 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM10), board_pch_cnp },
7841 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V10), board_pch_cnp },
7842 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM11), board_pch_cnp },
7843 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V11), board_pch_cnp },
7844 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM12), board_pch_spt },
7845 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V12), board_pch_spt },
7846 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM13), board_pch_cnp },
7847 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V13), board_pch_cnp },
7848 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM14), board_pch_cnp },
7849 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V14), board_pch_cnp },
7850 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM15), board_pch_cnp },
7851 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V15), board_pch_cnp },
7852 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_LM16), board_pch_cnp },
7853 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_V16), board_pch_cnp },
7854 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_LM17), board_pch_cnp },
7855 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_V17), board_pch_cnp },
7856 
7857 	{ 0, 0, 0, 0, 0, 0, 0 }	/* terminate list */
7858 };
7859 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
7860 
7861 static const struct dev_pm_ops e1000_pm_ops = {
7862 #ifdef CONFIG_PM_SLEEP
7863 	.suspend	= e1000e_pm_suspend,
7864 	.resume		= e1000e_pm_resume,
7865 	.freeze		= e1000e_pm_freeze,
7866 	.thaw		= e1000e_pm_thaw,
7867 	.poweroff	= e1000e_pm_suspend,
7868 	.restore	= e1000e_pm_resume,
7869 #endif
7870 	SET_RUNTIME_PM_OPS(e1000e_pm_runtime_suspend, e1000e_pm_runtime_resume,
7871 			   e1000e_pm_runtime_idle)
7872 };
7873 
7874 /* PCI Device API Driver */
7875 static struct pci_driver e1000_driver = {
7876 	.name     = e1000e_driver_name,
7877 	.id_table = e1000_pci_tbl,
7878 	.probe    = e1000_probe,
7879 	.remove   = e1000_remove,
7880 	.driver   = {
7881 		.pm = &e1000_pm_ops,
7882 	},
7883 	.shutdown = e1000_shutdown,
7884 	.err_handler = &e1000_err_handler
7885 };
7886 
7887 /**
7888  * e1000_init_module - Driver Registration Routine
7889  *
7890  * e1000_init_module is the first routine called when the driver is
7891  * loaded. All it does is register with the PCI subsystem.
7892  **/
7893 static int __init e1000_init_module(void)
7894 {
7895 	pr_info("Intel(R) PRO/1000 Network Driver\n");
7896 	pr_info("Copyright(c) 1999 - 2015 Intel Corporation.\n");
7897 
7898 	return pci_register_driver(&e1000_driver);
7899 }
7900 module_init(e1000_init_module);
7901 
7902 /**
7903  * e1000_exit_module - Driver Exit Cleanup Routine
7904  *
7905  * e1000_exit_module is called just before the driver is removed
7906  * from memory.
7907  **/
7908 static void __exit e1000_exit_module(void)
7909 {
7910 	pci_unregister_driver(&e1000_driver);
7911 }
7912 module_exit(e1000_exit_module);
7913 
7914 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
7915 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7916 MODULE_LICENSE("GPL v2");
7917 
7918 /* netdev.c */
7919