1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3 
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5 
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/pci.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/delay.h>
13 #include <linux/netdevice.h>
14 #include <linux/interrupt.h>
15 #include <linux/tcp.h>
16 #include <linux/ipv6.h>
17 #include <linux/slab.h>
18 #include <net/checksum.h>
19 #include <net/ip6_checksum.h>
20 #include <linux/ethtool.h>
21 #include <linux/if_vlan.h>
22 #include <linux/cpu.h>
23 #include <linux/smp.h>
24 #include <linux/pm_qos.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/aer.h>
27 #include <linux/prefetch.h>
28 #include <linux/suspend.h>
29 
30 #include "e1000.h"
31 
32 char e1000e_driver_name[] = "e1000e";
33 
34 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
35 static int debug = -1;
36 module_param(debug, int, 0);
37 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
38 
39 static const struct e1000_info *e1000_info_tbl[] = {
40 	[board_82571]		= &e1000_82571_info,
41 	[board_82572]		= &e1000_82572_info,
42 	[board_82573]		= &e1000_82573_info,
43 	[board_82574]		= &e1000_82574_info,
44 	[board_82583]		= &e1000_82583_info,
45 	[board_80003es2lan]	= &e1000_es2_info,
46 	[board_ich8lan]		= &e1000_ich8_info,
47 	[board_ich9lan]		= &e1000_ich9_info,
48 	[board_ich10lan]	= &e1000_ich10_info,
49 	[board_pchlan]		= &e1000_pch_info,
50 	[board_pch2lan]		= &e1000_pch2_info,
51 	[board_pch_lpt]		= &e1000_pch_lpt_info,
52 	[board_pch_spt]		= &e1000_pch_spt_info,
53 	[board_pch_cnp]		= &e1000_pch_cnp_info,
54 };
55 
56 struct e1000_reg_info {
57 	u32 ofs;
58 	char *name;
59 };
60 
61 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
62 	/* General Registers */
63 	{E1000_CTRL, "CTRL"},
64 	{E1000_STATUS, "STATUS"},
65 	{E1000_CTRL_EXT, "CTRL_EXT"},
66 
67 	/* Interrupt Registers */
68 	{E1000_ICR, "ICR"},
69 
70 	/* Rx Registers */
71 	{E1000_RCTL, "RCTL"},
72 	{E1000_RDLEN(0), "RDLEN"},
73 	{E1000_RDH(0), "RDH"},
74 	{E1000_RDT(0), "RDT"},
75 	{E1000_RDTR, "RDTR"},
76 	{E1000_RXDCTL(0), "RXDCTL"},
77 	{E1000_ERT, "ERT"},
78 	{E1000_RDBAL(0), "RDBAL"},
79 	{E1000_RDBAH(0), "RDBAH"},
80 	{E1000_RDFH, "RDFH"},
81 	{E1000_RDFT, "RDFT"},
82 	{E1000_RDFHS, "RDFHS"},
83 	{E1000_RDFTS, "RDFTS"},
84 	{E1000_RDFPC, "RDFPC"},
85 
86 	/* Tx Registers */
87 	{E1000_TCTL, "TCTL"},
88 	{E1000_TDBAL(0), "TDBAL"},
89 	{E1000_TDBAH(0), "TDBAH"},
90 	{E1000_TDLEN(0), "TDLEN"},
91 	{E1000_TDH(0), "TDH"},
92 	{E1000_TDT(0), "TDT"},
93 	{E1000_TIDV, "TIDV"},
94 	{E1000_TXDCTL(0), "TXDCTL"},
95 	{E1000_TADV, "TADV"},
96 	{E1000_TARC(0), "TARC"},
97 	{E1000_TDFH, "TDFH"},
98 	{E1000_TDFT, "TDFT"},
99 	{E1000_TDFHS, "TDFHS"},
100 	{E1000_TDFTS, "TDFTS"},
101 	{E1000_TDFPC, "TDFPC"},
102 
103 	/* List Terminator */
104 	{0, NULL}
105 };
106 
107 /**
108  * __ew32_prepare - prepare to write to MAC CSR register on certain parts
109  * @hw: pointer to the HW structure
110  *
111  * When updating the MAC CSR registers, the Manageability Engine (ME) could
112  * be accessing the registers at the same time.  Normally, this is handled in
113  * h/w by an arbiter but on some parts there is a bug that acknowledges Host
114  * accesses later than it should which could result in the register to have
115  * an incorrect value.  Workaround this by checking the FWSM register which
116  * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set
117  * and try again a number of times.
118  **/
119 static void __ew32_prepare(struct e1000_hw *hw)
120 {
121 	s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT;
122 
123 	while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i)
124 		udelay(50);
125 }
126 
127 void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val)
128 {
129 	if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
130 		__ew32_prepare(hw);
131 
132 	writel(val, hw->hw_addr + reg);
133 }
134 
135 /**
136  * e1000_regdump - register printout routine
137  * @hw: pointer to the HW structure
138  * @reginfo: pointer to the register info table
139  **/
140 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
141 {
142 	int n = 0;
143 	char rname[16];
144 	u32 regs[8];
145 
146 	switch (reginfo->ofs) {
147 	case E1000_RXDCTL(0):
148 		for (n = 0; n < 2; n++)
149 			regs[n] = __er32(hw, E1000_RXDCTL(n));
150 		break;
151 	case E1000_TXDCTL(0):
152 		for (n = 0; n < 2; n++)
153 			regs[n] = __er32(hw, E1000_TXDCTL(n));
154 		break;
155 	case E1000_TARC(0):
156 		for (n = 0; n < 2; n++)
157 			regs[n] = __er32(hw, E1000_TARC(n));
158 		break;
159 	default:
160 		pr_info("%-15s %08x\n",
161 			reginfo->name, __er32(hw, reginfo->ofs));
162 		return;
163 	}
164 
165 	snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
166 	pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
167 }
168 
169 static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
170 				 struct e1000_buffer *bi)
171 {
172 	int i;
173 	struct e1000_ps_page *ps_page;
174 
175 	for (i = 0; i < adapter->rx_ps_pages; i++) {
176 		ps_page = &bi->ps_pages[i];
177 
178 		if (ps_page->page) {
179 			pr_info("packet dump for ps_page %d:\n", i);
180 			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
181 				       16, 1, page_address(ps_page->page),
182 				       PAGE_SIZE, true);
183 		}
184 	}
185 }
186 
187 /**
188  * e1000e_dump - Print registers, Tx-ring and Rx-ring
189  * @adapter: board private structure
190  **/
191 static void e1000e_dump(struct e1000_adapter *adapter)
192 {
193 	struct net_device *netdev = adapter->netdev;
194 	struct e1000_hw *hw = &adapter->hw;
195 	struct e1000_reg_info *reginfo;
196 	struct e1000_ring *tx_ring = adapter->tx_ring;
197 	struct e1000_tx_desc *tx_desc;
198 	struct my_u0 {
199 		__le64 a;
200 		__le64 b;
201 	} *u0;
202 	struct e1000_buffer *buffer_info;
203 	struct e1000_ring *rx_ring = adapter->rx_ring;
204 	union e1000_rx_desc_packet_split *rx_desc_ps;
205 	union e1000_rx_desc_extended *rx_desc;
206 	struct my_u1 {
207 		__le64 a;
208 		__le64 b;
209 		__le64 c;
210 		__le64 d;
211 	} *u1;
212 	u32 staterr;
213 	int i = 0;
214 
215 	if (!netif_msg_hw(adapter))
216 		return;
217 
218 	/* Print netdevice Info */
219 	if (netdev) {
220 		dev_info(&adapter->pdev->dev, "Net device Info\n");
221 		pr_info("Device Name     state            trans_start\n");
222 		pr_info("%-15s %016lX %016lX\n", netdev->name,
223 			netdev->state, dev_trans_start(netdev));
224 	}
225 
226 	/* Print Registers */
227 	dev_info(&adapter->pdev->dev, "Register Dump\n");
228 	pr_info(" Register Name   Value\n");
229 	for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
230 	     reginfo->name; reginfo++) {
231 		e1000_regdump(hw, reginfo);
232 	}
233 
234 	/* Print Tx Ring Summary */
235 	if (!netdev || !netif_running(netdev))
236 		return;
237 
238 	dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
239 	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
240 	buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
241 	pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
242 		0, tx_ring->next_to_use, tx_ring->next_to_clean,
243 		(unsigned long long)buffer_info->dma,
244 		buffer_info->length,
245 		buffer_info->next_to_watch,
246 		(unsigned long long)buffer_info->time_stamp);
247 
248 	/* Print Tx Ring */
249 	if (!netif_msg_tx_done(adapter))
250 		goto rx_ring_summary;
251 
252 	dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
253 
254 	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
255 	 *
256 	 * Legacy Transmit Descriptor
257 	 *   +--------------------------------------------------------------+
258 	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
259 	 *   +--------------------------------------------------------------+
260 	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
261 	 *   +--------------------------------------------------------------+
262 	 *   63       48 47        36 35    32 31     24 23    16 15        0
263 	 *
264 	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
265 	 *   63      48 47    40 39       32 31             16 15    8 7      0
266 	 *   +----------------------------------------------------------------+
267 	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
268 	 *   +----------------------------------------------------------------+
269 	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
270 	 *   +----------------------------------------------------------------+
271 	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
272 	 *
273 	 * Extended Data Descriptor (DTYP=0x1)
274 	 *   +----------------------------------------------------------------+
275 	 * 0 |                     Buffer Address [63:0]                      |
276 	 *   +----------------------------------------------------------------+
277 	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
278 	 *   +----------------------------------------------------------------+
279 	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
280 	 */
281 	pr_info("Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Legacy format\n");
282 	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Context format\n");
283 	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Data format\n");
284 	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
285 		const char *next_desc;
286 		tx_desc = E1000_TX_DESC(*tx_ring, i);
287 		buffer_info = &tx_ring->buffer_info[i];
288 		u0 = (struct my_u0 *)tx_desc;
289 		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
290 			next_desc = " NTC/U";
291 		else if (i == tx_ring->next_to_use)
292 			next_desc = " NTU";
293 		else if (i == tx_ring->next_to_clean)
294 			next_desc = " NTC";
295 		else
296 			next_desc = "";
297 		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p%s\n",
298 			(!(le64_to_cpu(u0->b) & BIT(29)) ? 'l' :
299 			 ((le64_to_cpu(u0->b) & BIT(20)) ? 'd' : 'c')),
300 			i,
301 			(unsigned long long)le64_to_cpu(u0->a),
302 			(unsigned long long)le64_to_cpu(u0->b),
303 			(unsigned long long)buffer_info->dma,
304 			buffer_info->length, buffer_info->next_to_watch,
305 			(unsigned long long)buffer_info->time_stamp,
306 			buffer_info->skb, next_desc);
307 
308 		if (netif_msg_pktdata(adapter) && buffer_info->skb)
309 			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
310 				       16, 1, buffer_info->skb->data,
311 				       buffer_info->skb->len, true);
312 	}
313 
314 	/* Print Rx Ring Summary */
315 rx_ring_summary:
316 	dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
317 	pr_info("Queue [NTU] [NTC]\n");
318 	pr_info(" %5d %5X %5X\n",
319 		0, rx_ring->next_to_use, rx_ring->next_to_clean);
320 
321 	/* Print Rx Ring */
322 	if (!netif_msg_rx_status(adapter))
323 		return;
324 
325 	dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
326 	switch (adapter->rx_ps_pages) {
327 	case 1:
328 	case 2:
329 	case 3:
330 		/* [Extended] Packet Split Receive Descriptor Format
331 		 *
332 		 *    +-----------------------------------------------------+
333 		 *  0 |                Buffer Address 0 [63:0]              |
334 		 *    +-----------------------------------------------------+
335 		 *  8 |                Buffer Address 1 [63:0]              |
336 		 *    +-----------------------------------------------------+
337 		 * 16 |                Buffer Address 2 [63:0]              |
338 		 *    +-----------------------------------------------------+
339 		 * 24 |                Buffer Address 3 [63:0]              |
340 		 *    +-----------------------------------------------------+
341 		 */
342 		pr_info("R  [desc]      [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] [bi->skb] <-- Ext Pkt Split format\n");
343 		/* [Extended] Receive Descriptor (Write-Back) Format
344 		 *
345 		 *   63       48 47    32 31     13 12    8 7    4 3        0
346 		 *   +------------------------------------------------------+
347 		 * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
348 		 *   | Checksum | Ident  |         | Queue |      |  Type   |
349 		 *   +------------------------------------------------------+
350 		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
351 		 *   +------------------------------------------------------+
352 		 *   63       48 47    32 31            20 19               0
353 		 */
354 		pr_info("RWB[desc]      [ck ipid mrqhsh] [vl   l0 ee  es] [ l3  l2  l1 hs] [reserved      ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
355 		for (i = 0; i < rx_ring->count; i++) {
356 			const char *next_desc;
357 			buffer_info = &rx_ring->buffer_info[i];
358 			rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
359 			u1 = (struct my_u1 *)rx_desc_ps;
360 			staterr =
361 			    le32_to_cpu(rx_desc_ps->wb.middle.status_error);
362 
363 			if (i == rx_ring->next_to_use)
364 				next_desc = " NTU";
365 			else if (i == rx_ring->next_to_clean)
366 				next_desc = " NTC";
367 			else
368 				next_desc = "";
369 
370 			if (staterr & E1000_RXD_STAT_DD) {
371 				/* Descriptor Done */
372 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX ---------------- %p%s\n",
373 					"RWB", i,
374 					(unsigned long long)le64_to_cpu(u1->a),
375 					(unsigned long long)le64_to_cpu(u1->b),
376 					(unsigned long long)le64_to_cpu(u1->c),
377 					(unsigned long long)le64_to_cpu(u1->d),
378 					buffer_info->skb, next_desc);
379 			} else {
380 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX %016llX %p%s\n",
381 					"R  ", i,
382 					(unsigned long long)le64_to_cpu(u1->a),
383 					(unsigned long long)le64_to_cpu(u1->b),
384 					(unsigned long long)le64_to_cpu(u1->c),
385 					(unsigned long long)le64_to_cpu(u1->d),
386 					(unsigned long long)buffer_info->dma,
387 					buffer_info->skb, next_desc);
388 
389 				if (netif_msg_pktdata(adapter))
390 					e1000e_dump_ps_pages(adapter,
391 							     buffer_info);
392 			}
393 		}
394 		break;
395 	default:
396 	case 0:
397 		/* Extended Receive Descriptor (Read) Format
398 		 *
399 		 *   +-----------------------------------------------------+
400 		 * 0 |                Buffer Address [63:0]                |
401 		 *   +-----------------------------------------------------+
402 		 * 8 |                      Reserved                       |
403 		 *   +-----------------------------------------------------+
404 		 */
405 		pr_info("R  [desc]      [buf addr 63:0 ] [reserved 63:0 ] [bi->dma       ] [bi->skb] <-- Ext (Read) format\n");
406 		/* Extended Receive Descriptor (Write-Back) Format
407 		 *
408 		 *   63       48 47    32 31    24 23            4 3        0
409 		 *   +------------------------------------------------------+
410 		 *   |     RSS Hash      |        |               |         |
411 		 * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
412 		 *   | Packet   | IP     |        |               |  Type   |
413 		 *   | Checksum | Ident  |        |               |         |
414 		 *   +------------------------------------------------------+
415 		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
416 		 *   +------------------------------------------------------+
417 		 *   63       48 47    32 31            20 19               0
418 		 */
419 		pr_info("RWB[desc]      [cs ipid    mrq] [vt   ln xe  xs] [bi->skb] <-- Ext (Write-Back) format\n");
420 
421 		for (i = 0; i < rx_ring->count; i++) {
422 			const char *next_desc;
423 
424 			buffer_info = &rx_ring->buffer_info[i];
425 			rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
426 			u1 = (struct my_u1 *)rx_desc;
427 			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
428 
429 			if (i == rx_ring->next_to_use)
430 				next_desc = " NTU";
431 			else if (i == rx_ring->next_to_clean)
432 				next_desc = " NTC";
433 			else
434 				next_desc = "";
435 
436 			if (staterr & E1000_RXD_STAT_DD) {
437 				/* Descriptor Done */
438 				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %p%s\n",
439 					"RWB", i,
440 					(unsigned long long)le64_to_cpu(u1->a),
441 					(unsigned long long)le64_to_cpu(u1->b),
442 					buffer_info->skb, next_desc);
443 			} else {
444 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %p%s\n",
445 					"R  ", i,
446 					(unsigned long long)le64_to_cpu(u1->a),
447 					(unsigned long long)le64_to_cpu(u1->b),
448 					(unsigned long long)buffer_info->dma,
449 					buffer_info->skb, next_desc);
450 
451 				if (netif_msg_pktdata(adapter) &&
452 				    buffer_info->skb)
453 					print_hex_dump(KERN_INFO, "",
454 						       DUMP_PREFIX_ADDRESS, 16,
455 						       1,
456 						       buffer_info->skb->data,
457 						       adapter->rx_buffer_len,
458 						       true);
459 			}
460 		}
461 	}
462 }
463 
464 /**
465  * e1000_desc_unused - calculate if we have unused descriptors
466  * @ring: pointer to ring struct to perform calculation on
467  **/
468 static int e1000_desc_unused(struct e1000_ring *ring)
469 {
470 	if (ring->next_to_clean > ring->next_to_use)
471 		return ring->next_to_clean - ring->next_to_use - 1;
472 
473 	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
474 }
475 
476 /**
477  * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
478  * @adapter: board private structure
479  * @hwtstamps: time stamp structure to update
480  * @systim: unsigned 64bit system time value.
481  *
482  * Convert the system time value stored in the RX/TXSTMP registers into a
483  * hwtstamp which can be used by the upper level time stamping functions.
484  *
485  * The 'systim_lock' spinlock is used to protect the consistency of the
486  * system time value. This is needed because reading the 64 bit time
487  * value involves reading two 32 bit registers. The first read latches the
488  * value.
489  **/
490 static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter,
491 				      struct skb_shared_hwtstamps *hwtstamps,
492 				      u64 systim)
493 {
494 	u64 ns;
495 	unsigned long flags;
496 
497 	spin_lock_irqsave(&adapter->systim_lock, flags);
498 	ns = timecounter_cyc2time(&adapter->tc, systim);
499 	spin_unlock_irqrestore(&adapter->systim_lock, flags);
500 
501 	memset(hwtstamps, 0, sizeof(*hwtstamps));
502 	hwtstamps->hwtstamp = ns_to_ktime(ns);
503 }
504 
505 /**
506  * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
507  * @adapter: board private structure
508  * @status: descriptor extended error and status field
509  * @skb: particular skb to include time stamp
510  *
511  * If the time stamp is valid, convert it into the timecounter ns value
512  * and store that result into the shhwtstamps structure which is passed
513  * up the network stack.
514  **/
515 static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status,
516 			       struct sk_buff *skb)
517 {
518 	struct e1000_hw *hw = &adapter->hw;
519 	u64 rxstmp;
520 
521 	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) ||
522 	    !(status & E1000_RXDEXT_STATERR_TST) ||
523 	    !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
524 		return;
525 
526 	/* The Rx time stamp registers contain the time stamp.  No other
527 	 * received packet will be time stamped until the Rx time stamp
528 	 * registers are read.  Because only one packet can be time stamped
529 	 * at a time, the register values must belong to this packet and
530 	 * therefore none of the other additional attributes need to be
531 	 * compared.
532 	 */
533 	rxstmp = (u64)er32(RXSTMPL);
534 	rxstmp |= (u64)er32(RXSTMPH) << 32;
535 	e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp);
536 
537 	adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP;
538 }
539 
540 /**
541  * e1000_receive_skb - helper function to handle Rx indications
542  * @adapter: board private structure
543  * @netdev: pointer to netdev struct
544  * @staterr: descriptor extended error and status field as written by hardware
545  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
546  * @skb: pointer to sk_buff to be indicated to stack
547  **/
548 static void e1000_receive_skb(struct e1000_adapter *adapter,
549 			      struct net_device *netdev, struct sk_buff *skb,
550 			      u32 staterr, __le16 vlan)
551 {
552 	u16 tag = le16_to_cpu(vlan);
553 
554 	e1000e_rx_hwtstamp(adapter, staterr, skb);
555 
556 	skb->protocol = eth_type_trans(skb, netdev);
557 
558 	if (staterr & E1000_RXD_STAT_VP)
559 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag);
560 
561 	napi_gro_receive(&adapter->napi, skb);
562 }
563 
564 /**
565  * e1000_rx_checksum - Receive Checksum Offload
566  * @adapter: board private structure
567  * @status_err: receive descriptor status and error fields
568  * @skb: socket buffer with received data
569  **/
570 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
571 			      struct sk_buff *skb)
572 {
573 	u16 status = (u16)status_err;
574 	u8 errors = (u8)(status_err >> 24);
575 
576 	skb_checksum_none_assert(skb);
577 
578 	/* Rx checksum disabled */
579 	if (!(adapter->netdev->features & NETIF_F_RXCSUM))
580 		return;
581 
582 	/* Ignore Checksum bit is set */
583 	if (status & E1000_RXD_STAT_IXSM)
584 		return;
585 
586 	/* TCP/UDP checksum error bit or IP checksum error bit is set */
587 	if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
588 		/* let the stack verify checksum errors */
589 		adapter->hw_csum_err++;
590 		return;
591 	}
592 
593 	/* TCP/UDP Checksum has not been calculated */
594 	if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
595 		return;
596 
597 	/* It must be a TCP or UDP packet with a valid checksum */
598 	skb->ip_summed = CHECKSUM_UNNECESSARY;
599 	adapter->hw_csum_good++;
600 }
601 
602 static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
603 {
604 	struct e1000_adapter *adapter = rx_ring->adapter;
605 	struct e1000_hw *hw = &adapter->hw;
606 
607 	__ew32_prepare(hw);
608 	writel(i, rx_ring->tail);
609 
610 	if (unlikely(i != readl(rx_ring->tail))) {
611 		u32 rctl = er32(RCTL);
612 
613 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
614 		e_err("ME firmware caused invalid RDT - resetting\n");
615 		schedule_work(&adapter->reset_task);
616 	}
617 }
618 
619 static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
620 {
621 	struct e1000_adapter *adapter = tx_ring->adapter;
622 	struct e1000_hw *hw = &adapter->hw;
623 
624 	__ew32_prepare(hw);
625 	writel(i, tx_ring->tail);
626 
627 	if (unlikely(i != readl(tx_ring->tail))) {
628 		u32 tctl = er32(TCTL);
629 
630 		ew32(TCTL, tctl & ~E1000_TCTL_EN);
631 		e_err("ME firmware caused invalid TDT - resetting\n");
632 		schedule_work(&adapter->reset_task);
633 	}
634 }
635 
636 /**
637  * e1000_alloc_rx_buffers - Replace used receive buffers
638  * @rx_ring: Rx descriptor ring
639  * @cleaned_count: number to reallocate
640  * @gfp: flags for allocation
641  **/
642 static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
643 				   int cleaned_count, gfp_t gfp)
644 {
645 	struct e1000_adapter *adapter = rx_ring->adapter;
646 	struct net_device *netdev = adapter->netdev;
647 	struct pci_dev *pdev = adapter->pdev;
648 	union e1000_rx_desc_extended *rx_desc;
649 	struct e1000_buffer *buffer_info;
650 	struct sk_buff *skb;
651 	unsigned int i;
652 	unsigned int bufsz = adapter->rx_buffer_len;
653 
654 	i = rx_ring->next_to_use;
655 	buffer_info = &rx_ring->buffer_info[i];
656 
657 	while (cleaned_count--) {
658 		skb = buffer_info->skb;
659 		if (skb) {
660 			skb_trim(skb, 0);
661 			goto map_skb;
662 		}
663 
664 		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
665 		if (!skb) {
666 			/* Better luck next round */
667 			adapter->alloc_rx_buff_failed++;
668 			break;
669 		}
670 
671 		buffer_info->skb = skb;
672 map_skb:
673 		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
674 						  adapter->rx_buffer_len,
675 						  DMA_FROM_DEVICE);
676 		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
677 			dev_err(&pdev->dev, "Rx DMA map failed\n");
678 			adapter->rx_dma_failed++;
679 			break;
680 		}
681 
682 		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
683 		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
684 
685 		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
686 			/* Force memory writes to complete before letting h/w
687 			 * know there are new descriptors to fetch.  (Only
688 			 * applicable for weak-ordered memory model archs,
689 			 * such as IA-64).
690 			 */
691 			wmb();
692 			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
693 				e1000e_update_rdt_wa(rx_ring, i);
694 			else
695 				writel(i, rx_ring->tail);
696 		}
697 		i++;
698 		if (i == rx_ring->count)
699 			i = 0;
700 		buffer_info = &rx_ring->buffer_info[i];
701 	}
702 
703 	rx_ring->next_to_use = i;
704 }
705 
706 /**
707  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
708  * @rx_ring: Rx descriptor ring
709  * @cleaned_count: number to reallocate
710  * @gfp: flags for allocation
711  **/
712 static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
713 				      int cleaned_count, gfp_t gfp)
714 {
715 	struct e1000_adapter *adapter = rx_ring->adapter;
716 	struct net_device *netdev = adapter->netdev;
717 	struct pci_dev *pdev = adapter->pdev;
718 	union e1000_rx_desc_packet_split *rx_desc;
719 	struct e1000_buffer *buffer_info;
720 	struct e1000_ps_page *ps_page;
721 	struct sk_buff *skb;
722 	unsigned int i, j;
723 
724 	i = rx_ring->next_to_use;
725 	buffer_info = &rx_ring->buffer_info[i];
726 
727 	while (cleaned_count--) {
728 		rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
729 
730 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
731 			ps_page = &buffer_info->ps_pages[j];
732 			if (j >= adapter->rx_ps_pages) {
733 				/* all unused desc entries get hw null ptr */
734 				rx_desc->read.buffer_addr[j + 1] =
735 				    ~cpu_to_le64(0);
736 				continue;
737 			}
738 			if (!ps_page->page) {
739 				ps_page->page = alloc_page(gfp);
740 				if (!ps_page->page) {
741 					adapter->alloc_rx_buff_failed++;
742 					goto no_buffers;
743 				}
744 				ps_page->dma = dma_map_page(&pdev->dev,
745 							    ps_page->page,
746 							    0, PAGE_SIZE,
747 							    DMA_FROM_DEVICE);
748 				if (dma_mapping_error(&pdev->dev,
749 						      ps_page->dma)) {
750 					dev_err(&adapter->pdev->dev,
751 						"Rx DMA page map failed\n");
752 					adapter->rx_dma_failed++;
753 					goto no_buffers;
754 				}
755 			}
756 			/* Refresh the desc even if buffer_addrs
757 			 * didn't change because each write-back
758 			 * erases this info.
759 			 */
760 			rx_desc->read.buffer_addr[j + 1] =
761 			    cpu_to_le64(ps_page->dma);
762 		}
763 
764 		skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0,
765 						  gfp);
766 
767 		if (!skb) {
768 			adapter->alloc_rx_buff_failed++;
769 			break;
770 		}
771 
772 		buffer_info->skb = skb;
773 		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
774 						  adapter->rx_ps_bsize0,
775 						  DMA_FROM_DEVICE);
776 		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
777 			dev_err(&pdev->dev, "Rx DMA map failed\n");
778 			adapter->rx_dma_failed++;
779 			/* cleanup skb */
780 			dev_kfree_skb_any(skb);
781 			buffer_info->skb = NULL;
782 			break;
783 		}
784 
785 		rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
786 
787 		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
788 			/* Force memory writes to complete before letting h/w
789 			 * know there are new descriptors to fetch.  (Only
790 			 * applicable for weak-ordered memory model archs,
791 			 * such as IA-64).
792 			 */
793 			wmb();
794 			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
795 				e1000e_update_rdt_wa(rx_ring, i << 1);
796 			else
797 				writel(i << 1, rx_ring->tail);
798 		}
799 
800 		i++;
801 		if (i == rx_ring->count)
802 			i = 0;
803 		buffer_info = &rx_ring->buffer_info[i];
804 	}
805 
806 no_buffers:
807 	rx_ring->next_to_use = i;
808 }
809 
810 /**
811  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
812  * @rx_ring: Rx descriptor ring
813  * @cleaned_count: number of buffers to allocate this pass
814  * @gfp: flags for allocation
815  **/
816 
817 static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
818 					 int cleaned_count, gfp_t gfp)
819 {
820 	struct e1000_adapter *adapter = rx_ring->adapter;
821 	struct net_device *netdev = adapter->netdev;
822 	struct pci_dev *pdev = adapter->pdev;
823 	union e1000_rx_desc_extended *rx_desc;
824 	struct e1000_buffer *buffer_info;
825 	struct sk_buff *skb;
826 	unsigned int i;
827 	unsigned int bufsz = 256 - 16;	/* for skb_reserve */
828 
829 	i = rx_ring->next_to_use;
830 	buffer_info = &rx_ring->buffer_info[i];
831 
832 	while (cleaned_count--) {
833 		skb = buffer_info->skb;
834 		if (skb) {
835 			skb_trim(skb, 0);
836 			goto check_page;
837 		}
838 
839 		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
840 		if (unlikely(!skb)) {
841 			/* Better luck next round */
842 			adapter->alloc_rx_buff_failed++;
843 			break;
844 		}
845 
846 		buffer_info->skb = skb;
847 check_page:
848 		/* allocate a new page if necessary */
849 		if (!buffer_info->page) {
850 			buffer_info->page = alloc_page(gfp);
851 			if (unlikely(!buffer_info->page)) {
852 				adapter->alloc_rx_buff_failed++;
853 				break;
854 			}
855 		}
856 
857 		if (!buffer_info->dma) {
858 			buffer_info->dma = dma_map_page(&pdev->dev,
859 							buffer_info->page, 0,
860 							PAGE_SIZE,
861 							DMA_FROM_DEVICE);
862 			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
863 				adapter->alloc_rx_buff_failed++;
864 				break;
865 			}
866 		}
867 
868 		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
869 		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
870 
871 		if (unlikely(++i == rx_ring->count))
872 			i = 0;
873 		buffer_info = &rx_ring->buffer_info[i];
874 	}
875 
876 	if (likely(rx_ring->next_to_use != i)) {
877 		rx_ring->next_to_use = i;
878 		if (unlikely(i-- == 0))
879 			i = (rx_ring->count - 1);
880 
881 		/* Force memory writes to complete before letting h/w
882 		 * know there are new descriptors to fetch.  (Only
883 		 * applicable for weak-ordered memory model archs,
884 		 * such as IA-64).
885 		 */
886 		wmb();
887 		if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
888 			e1000e_update_rdt_wa(rx_ring, i);
889 		else
890 			writel(i, rx_ring->tail);
891 	}
892 }
893 
894 static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
895 				 struct sk_buff *skb)
896 {
897 	if (netdev->features & NETIF_F_RXHASH)
898 		skb_set_hash(skb, le32_to_cpu(rss), PKT_HASH_TYPE_L3);
899 }
900 
901 /**
902  * e1000_clean_rx_irq - Send received data up the network stack
903  * @rx_ring: Rx descriptor ring
904  * @work_done: output parameter for indicating completed work
905  * @work_to_do: how many packets we can clean
906  *
907  * the return value indicates whether actual cleaning was done, there
908  * is no guarantee that everything was cleaned
909  **/
910 static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
911 			       int work_to_do)
912 {
913 	struct e1000_adapter *adapter = rx_ring->adapter;
914 	struct net_device *netdev = adapter->netdev;
915 	struct pci_dev *pdev = adapter->pdev;
916 	struct e1000_hw *hw = &adapter->hw;
917 	union e1000_rx_desc_extended *rx_desc, *next_rxd;
918 	struct e1000_buffer *buffer_info, *next_buffer;
919 	u32 length, staterr;
920 	unsigned int i;
921 	int cleaned_count = 0;
922 	bool cleaned = false;
923 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
924 
925 	i = rx_ring->next_to_clean;
926 	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
927 	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
928 	buffer_info = &rx_ring->buffer_info[i];
929 
930 	while (staterr & E1000_RXD_STAT_DD) {
931 		struct sk_buff *skb;
932 
933 		if (*work_done >= work_to_do)
934 			break;
935 		(*work_done)++;
936 		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
937 
938 		skb = buffer_info->skb;
939 		buffer_info->skb = NULL;
940 
941 		prefetch(skb->data - NET_IP_ALIGN);
942 
943 		i++;
944 		if (i == rx_ring->count)
945 			i = 0;
946 		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
947 		prefetch(next_rxd);
948 
949 		next_buffer = &rx_ring->buffer_info[i];
950 
951 		cleaned = true;
952 		cleaned_count++;
953 		dma_unmap_single(&pdev->dev, buffer_info->dma,
954 				 adapter->rx_buffer_len, DMA_FROM_DEVICE);
955 		buffer_info->dma = 0;
956 
957 		length = le16_to_cpu(rx_desc->wb.upper.length);
958 
959 		/* !EOP means multiple descriptors were used to store a single
960 		 * packet, if that's the case we need to toss it.  In fact, we
961 		 * need to toss every packet with the EOP bit clear and the
962 		 * next frame that _does_ have the EOP bit set, as it is by
963 		 * definition only a frame fragment
964 		 */
965 		if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
966 			adapter->flags2 |= FLAG2_IS_DISCARDING;
967 
968 		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
969 			/* All receives must fit into a single buffer */
970 			e_dbg("Receive packet consumed multiple buffers\n");
971 			/* recycle */
972 			buffer_info->skb = skb;
973 			if (staterr & E1000_RXD_STAT_EOP)
974 				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
975 			goto next_desc;
976 		}
977 
978 		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
979 			     !(netdev->features & NETIF_F_RXALL))) {
980 			/* recycle */
981 			buffer_info->skb = skb;
982 			goto next_desc;
983 		}
984 
985 		/* adjust length to remove Ethernet CRC */
986 		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
987 			/* If configured to store CRC, don't subtract FCS,
988 			 * but keep the FCS bytes out of the total_rx_bytes
989 			 * counter
990 			 */
991 			if (netdev->features & NETIF_F_RXFCS)
992 				total_rx_bytes -= 4;
993 			else
994 				length -= 4;
995 		}
996 
997 		total_rx_bytes += length;
998 		total_rx_packets++;
999 
1000 		/* code added for copybreak, this should improve
1001 		 * performance for small packets with large amounts
1002 		 * of reassembly being done in the stack
1003 		 */
1004 		if (length < copybreak) {
1005 			struct sk_buff *new_skb =
1006 				napi_alloc_skb(&adapter->napi, length);
1007 			if (new_skb) {
1008 				skb_copy_to_linear_data_offset(new_skb,
1009 							       -NET_IP_ALIGN,
1010 							       (skb->data -
1011 								NET_IP_ALIGN),
1012 							       (length +
1013 								NET_IP_ALIGN));
1014 				/* save the skb in buffer_info as good */
1015 				buffer_info->skb = skb;
1016 				skb = new_skb;
1017 			}
1018 			/* else just continue with the old one */
1019 		}
1020 		/* end copybreak code */
1021 		skb_put(skb, length);
1022 
1023 		/* Receive Checksum Offload */
1024 		e1000_rx_checksum(adapter, staterr, skb);
1025 
1026 		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1027 
1028 		e1000_receive_skb(adapter, netdev, skb, staterr,
1029 				  rx_desc->wb.upper.vlan);
1030 
1031 next_desc:
1032 		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1033 
1034 		/* return some buffers to hardware, one at a time is too slow */
1035 		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1036 			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1037 					      GFP_ATOMIC);
1038 			cleaned_count = 0;
1039 		}
1040 
1041 		/* use prefetched values */
1042 		rx_desc = next_rxd;
1043 		buffer_info = next_buffer;
1044 
1045 		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1046 	}
1047 	rx_ring->next_to_clean = i;
1048 
1049 	cleaned_count = e1000_desc_unused(rx_ring);
1050 	if (cleaned_count)
1051 		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1052 
1053 	adapter->total_rx_bytes += total_rx_bytes;
1054 	adapter->total_rx_packets += total_rx_packets;
1055 	return cleaned;
1056 }
1057 
1058 static void e1000_put_txbuf(struct e1000_ring *tx_ring,
1059 			    struct e1000_buffer *buffer_info,
1060 			    bool drop)
1061 {
1062 	struct e1000_adapter *adapter = tx_ring->adapter;
1063 
1064 	if (buffer_info->dma) {
1065 		if (buffer_info->mapped_as_page)
1066 			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1067 				       buffer_info->length, DMA_TO_DEVICE);
1068 		else
1069 			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1070 					 buffer_info->length, DMA_TO_DEVICE);
1071 		buffer_info->dma = 0;
1072 	}
1073 	if (buffer_info->skb) {
1074 		if (drop)
1075 			dev_kfree_skb_any(buffer_info->skb);
1076 		else
1077 			dev_consume_skb_any(buffer_info->skb);
1078 		buffer_info->skb = NULL;
1079 	}
1080 	buffer_info->time_stamp = 0;
1081 }
1082 
1083 static void e1000_print_hw_hang(struct work_struct *work)
1084 {
1085 	struct e1000_adapter *adapter = container_of(work,
1086 						     struct e1000_adapter,
1087 						     print_hang_task);
1088 	struct net_device *netdev = adapter->netdev;
1089 	struct e1000_ring *tx_ring = adapter->tx_ring;
1090 	unsigned int i = tx_ring->next_to_clean;
1091 	unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1092 	struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1093 	struct e1000_hw *hw = &adapter->hw;
1094 	u16 phy_status, phy_1000t_status, phy_ext_status;
1095 	u16 pci_status;
1096 
1097 	if (test_bit(__E1000_DOWN, &adapter->state))
1098 		return;
1099 
1100 	if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) {
1101 		/* May be block on write-back, flush and detect again
1102 		 * flush pending descriptor writebacks to memory
1103 		 */
1104 		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1105 		/* execute the writes immediately */
1106 		e1e_flush();
1107 		/* Due to rare timing issues, write to TIDV again to ensure
1108 		 * the write is successful
1109 		 */
1110 		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1111 		/* execute the writes immediately */
1112 		e1e_flush();
1113 		adapter->tx_hang_recheck = true;
1114 		return;
1115 	}
1116 	adapter->tx_hang_recheck = false;
1117 
1118 	if (er32(TDH(0)) == er32(TDT(0))) {
1119 		e_dbg("false hang detected, ignoring\n");
1120 		return;
1121 	}
1122 
1123 	/* Real hang detected */
1124 	netif_stop_queue(netdev);
1125 
1126 	e1e_rphy(hw, MII_BMSR, &phy_status);
1127 	e1e_rphy(hw, MII_STAT1000, &phy_1000t_status);
1128 	e1e_rphy(hw, MII_ESTATUS, &phy_ext_status);
1129 
1130 	pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1131 
1132 	/* detected Hardware unit hang */
1133 	e_err("Detected Hardware Unit Hang:\n"
1134 	      "  TDH                  <%x>\n"
1135 	      "  TDT                  <%x>\n"
1136 	      "  next_to_use          <%x>\n"
1137 	      "  next_to_clean        <%x>\n"
1138 	      "buffer_info[next_to_clean]:\n"
1139 	      "  time_stamp           <%lx>\n"
1140 	      "  next_to_watch        <%x>\n"
1141 	      "  jiffies              <%lx>\n"
1142 	      "  next_to_watch.status <%x>\n"
1143 	      "MAC Status             <%x>\n"
1144 	      "PHY Status             <%x>\n"
1145 	      "PHY 1000BASE-T Status  <%x>\n"
1146 	      "PHY Extended Status    <%x>\n"
1147 	      "PCI Status             <%x>\n",
1148 	      readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use,
1149 	      tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp,
1150 	      eop, jiffies, eop_desc->upper.fields.status, er32(STATUS),
1151 	      phy_status, phy_1000t_status, phy_ext_status, pci_status);
1152 
1153 	e1000e_dump(adapter);
1154 
1155 	/* Suggest workaround for known h/w issue */
1156 	if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1157 		e_err("Try turning off Tx pause (flow control) via ethtool\n");
1158 }
1159 
1160 /**
1161  * e1000e_tx_hwtstamp_work - check for Tx time stamp
1162  * @work: pointer to work struct
1163  *
1164  * This work function polls the TSYNCTXCTL valid bit to determine when a
1165  * timestamp has been taken for the current stored skb.  The timestamp must
1166  * be for this skb because only one such packet is allowed in the queue.
1167  */
1168 static void e1000e_tx_hwtstamp_work(struct work_struct *work)
1169 {
1170 	struct e1000_adapter *adapter = container_of(work, struct e1000_adapter,
1171 						     tx_hwtstamp_work);
1172 	struct e1000_hw *hw = &adapter->hw;
1173 
1174 	if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) {
1175 		struct sk_buff *skb = adapter->tx_hwtstamp_skb;
1176 		struct skb_shared_hwtstamps shhwtstamps;
1177 		u64 txstmp;
1178 
1179 		txstmp = er32(TXSTMPL);
1180 		txstmp |= (u64)er32(TXSTMPH) << 32;
1181 
1182 		e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp);
1183 
1184 		/* Clear the global tx_hwtstamp_skb pointer and force writes
1185 		 * prior to notifying the stack of a Tx timestamp.
1186 		 */
1187 		adapter->tx_hwtstamp_skb = NULL;
1188 		wmb(); /* force write prior to skb_tstamp_tx */
1189 
1190 		skb_tstamp_tx(skb, &shhwtstamps);
1191 		dev_consume_skb_any(skb);
1192 	} else if (time_after(jiffies, adapter->tx_hwtstamp_start
1193 			      + adapter->tx_timeout_factor * HZ)) {
1194 		dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1195 		adapter->tx_hwtstamp_skb = NULL;
1196 		adapter->tx_hwtstamp_timeouts++;
1197 		e_warn("clearing Tx timestamp hang\n");
1198 	} else {
1199 		/* reschedule to check later */
1200 		schedule_work(&adapter->tx_hwtstamp_work);
1201 	}
1202 }
1203 
1204 /**
1205  * e1000_clean_tx_irq - Reclaim resources after transmit completes
1206  * @tx_ring: Tx descriptor ring
1207  *
1208  * the return value indicates whether actual cleaning was done, there
1209  * is no guarantee that everything was cleaned
1210  **/
1211 static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1212 {
1213 	struct e1000_adapter *adapter = tx_ring->adapter;
1214 	struct net_device *netdev = adapter->netdev;
1215 	struct e1000_hw *hw = &adapter->hw;
1216 	struct e1000_tx_desc *tx_desc, *eop_desc;
1217 	struct e1000_buffer *buffer_info;
1218 	unsigned int i, eop;
1219 	unsigned int count = 0;
1220 	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1221 	unsigned int bytes_compl = 0, pkts_compl = 0;
1222 
1223 	i = tx_ring->next_to_clean;
1224 	eop = tx_ring->buffer_info[i].next_to_watch;
1225 	eop_desc = E1000_TX_DESC(*tx_ring, eop);
1226 
1227 	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1228 	       (count < tx_ring->count)) {
1229 		bool cleaned = false;
1230 
1231 		dma_rmb();		/* read buffer_info after eop_desc */
1232 		for (; !cleaned; count++) {
1233 			tx_desc = E1000_TX_DESC(*tx_ring, i);
1234 			buffer_info = &tx_ring->buffer_info[i];
1235 			cleaned = (i == eop);
1236 
1237 			if (cleaned) {
1238 				total_tx_packets += buffer_info->segs;
1239 				total_tx_bytes += buffer_info->bytecount;
1240 				if (buffer_info->skb) {
1241 					bytes_compl += buffer_info->skb->len;
1242 					pkts_compl++;
1243 				}
1244 			}
1245 
1246 			e1000_put_txbuf(tx_ring, buffer_info, false);
1247 			tx_desc->upper.data = 0;
1248 
1249 			i++;
1250 			if (i == tx_ring->count)
1251 				i = 0;
1252 		}
1253 
1254 		if (i == tx_ring->next_to_use)
1255 			break;
1256 		eop = tx_ring->buffer_info[i].next_to_watch;
1257 		eop_desc = E1000_TX_DESC(*tx_ring, eop);
1258 	}
1259 
1260 	tx_ring->next_to_clean = i;
1261 
1262 	netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1263 
1264 #define TX_WAKE_THRESHOLD 32
1265 	if (count && netif_carrier_ok(netdev) &&
1266 	    e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1267 		/* Make sure that anybody stopping the queue after this
1268 		 * sees the new next_to_clean.
1269 		 */
1270 		smp_mb();
1271 
1272 		if (netif_queue_stopped(netdev) &&
1273 		    !(test_bit(__E1000_DOWN, &adapter->state))) {
1274 			netif_wake_queue(netdev);
1275 			++adapter->restart_queue;
1276 		}
1277 	}
1278 
1279 	if (adapter->detect_tx_hung) {
1280 		/* Detect a transmit hang in hardware, this serializes the
1281 		 * check with the clearing of time_stamp and movement of i
1282 		 */
1283 		adapter->detect_tx_hung = false;
1284 		if (tx_ring->buffer_info[i].time_stamp &&
1285 		    time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1286 			       + (adapter->tx_timeout_factor * HZ)) &&
1287 		    !(er32(STATUS) & E1000_STATUS_TXOFF))
1288 			schedule_work(&adapter->print_hang_task);
1289 		else
1290 			adapter->tx_hang_recheck = false;
1291 	}
1292 	adapter->total_tx_bytes += total_tx_bytes;
1293 	adapter->total_tx_packets += total_tx_packets;
1294 	return count < tx_ring->count;
1295 }
1296 
1297 /**
1298  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1299  * @rx_ring: Rx descriptor ring
1300  * @work_done: output parameter for indicating completed work
1301  * @work_to_do: how many packets we can clean
1302  *
1303  * the return value indicates whether actual cleaning was done, there
1304  * is no guarantee that everything was cleaned
1305  **/
1306 static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1307 				  int work_to_do)
1308 {
1309 	struct e1000_adapter *adapter = rx_ring->adapter;
1310 	struct e1000_hw *hw = &adapter->hw;
1311 	union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1312 	struct net_device *netdev = adapter->netdev;
1313 	struct pci_dev *pdev = adapter->pdev;
1314 	struct e1000_buffer *buffer_info, *next_buffer;
1315 	struct e1000_ps_page *ps_page;
1316 	struct sk_buff *skb;
1317 	unsigned int i, j;
1318 	u32 length, staterr;
1319 	int cleaned_count = 0;
1320 	bool cleaned = false;
1321 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1322 
1323 	i = rx_ring->next_to_clean;
1324 	rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1325 	staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1326 	buffer_info = &rx_ring->buffer_info[i];
1327 
1328 	while (staterr & E1000_RXD_STAT_DD) {
1329 		if (*work_done >= work_to_do)
1330 			break;
1331 		(*work_done)++;
1332 		skb = buffer_info->skb;
1333 		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
1334 
1335 		/* in the packet split case this is header only */
1336 		prefetch(skb->data - NET_IP_ALIGN);
1337 
1338 		i++;
1339 		if (i == rx_ring->count)
1340 			i = 0;
1341 		next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1342 		prefetch(next_rxd);
1343 
1344 		next_buffer = &rx_ring->buffer_info[i];
1345 
1346 		cleaned = true;
1347 		cleaned_count++;
1348 		dma_unmap_single(&pdev->dev, buffer_info->dma,
1349 				 adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1350 		buffer_info->dma = 0;
1351 
1352 		/* see !EOP comment in other Rx routine */
1353 		if (!(staterr & E1000_RXD_STAT_EOP))
1354 			adapter->flags2 |= FLAG2_IS_DISCARDING;
1355 
1356 		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1357 			e_dbg("Packet Split buffers didn't pick up the full packet\n");
1358 			dev_kfree_skb_irq(skb);
1359 			if (staterr & E1000_RXD_STAT_EOP)
1360 				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1361 			goto next_desc;
1362 		}
1363 
1364 		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1365 			     !(netdev->features & NETIF_F_RXALL))) {
1366 			dev_kfree_skb_irq(skb);
1367 			goto next_desc;
1368 		}
1369 
1370 		length = le16_to_cpu(rx_desc->wb.middle.length0);
1371 
1372 		if (!length) {
1373 			e_dbg("Last part of the packet spanning multiple descriptors\n");
1374 			dev_kfree_skb_irq(skb);
1375 			goto next_desc;
1376 		}
1377 
1378 		/* Good Receive */
1379 		skb_put(skb, length);
1380 
1381 		{
1382 			/* this looks ugly, but it seems compiler issues make
1383 			 * it more efficient than reusing j
1384 			 */
1385 			int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1386 
1387 			/* page alloc/put takes too long and effects small
1388 			 * packet throughput, so unsplit small packets and
1389 			 * save the alloc/put only valid in softirq (napi)
1390 			 * context to call kmap_*
1391 			 */
1392 			if (l1 && (l1 <= copybreak) &&
1393 			    ((length + l1) <= adapter->rx_ps_bsize0)) {
1394 				u8 *vaddr;
1395 
1396 				ps_page = &buffer_info->ps_pages[0];
1397 
1398 				/* there is no documentation about how to call
1399 				 * kmap_atomic, so we can't hold the mapping
1400 				 * very long
1401 				 */
1402 				dma_sync_single_for_cpu(&pdev->dev,
1403 							ps_page->dma,
1404 							PAGE_SIZE,
1405 							DMA_FROM_DEVICE);
1406 				vaddr = kmap_atomic(ps_page->page);
1407 				memcpy(skb_tail_pointer(skb), vaddr, l1);
1408 				kunmap_atomic(vaddr);
1409 				dma_sync_single_for_device(&pdev->dev,
1410 							   ps_page->dma,
1411 							   PAGE_SIZE,
1412 							   DMA_FROM_DEVICE);
1413 
1414 				/* remove the CRC */
1415 				if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1416 					if (!(netdev->features & NETIF_F_RXFCS))
1417 						l1 -= 4;
1418 				}
1419 
1420 				skb_put(skb, l1);
1421 				goto copydone;
1422 			}	/* if */
1423 		}
1424 
1425 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1426 			length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1427 			if (!length)
1428 				break;
1429 
1430 			ps_page = &buffer_info->ps_pages[j];
1431 			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1432 				       DMA_FROM_DEVICE);
1433 			ps_page->dma = 0;
1434 			skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1435 			ps_page->page = NULL;
1436 			skb->len += length;
1437 			skb->data_len += length;
1438 			skb->truesize += PAGE_SIZE;
1439 		}
1440 
1441 		/* strip the ethernet crc, problem is we're using pages now so
1442 		 * this whole operation can get a little cpu intensive
1443 		 */
1444 		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1445 			if (!(netdev->features & NETIF_F_RXFCS))
1446 				pskb_trim(skb, skb->len - 4);
1447 		}
1448 
1449 copydone:
1450 		total_rx_bytes += skb->len;
1451 		total_rx_packets++;
1452 
1453 		e1000_rx_checksum(adapter, staterr, skb);
1454 
1455 		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1456 
1457 		if (rx_desc->wb.upper.header_status &
1458 		    cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1459 			adapter->rx_hdr_split++;
1460 
1461 		e1000_receive_skb(adapter, netdev, skb, staterr,
1462 				  rx_desc->wb.middle.vlan);
1463 
1464 next_desc:
1465 		rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1466 		buffer_info->skb = NULL;
1467 
1468 		/* return some buffers to hardware, one at a time is too slow */
1469 		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1470 			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1471 					      GFP_ATOMIC);
1472 			cleaned_count = 0;
1473 		}
1474 
1475 		/* use prefetched values */
1476 		rx_desc = next_rxd;
1477 		buffer_info = next_buffer;
1478 
1479 		staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1480 	}
1481 	rx_ring->next_to_clean = i;
1482 
1483 	cleaned_count = e1000_desc_unused(rx_ring);
1484 	if (cleaned_count)
1485 		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1486 
1487 	adapter->total_rx_bytes += total_rx_bytes;
1488 	adapter->total_rx_packets += total_rx_packets;
1489 	return cleaned;
1490 }
1491 
1492 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1493 			       u16 length)
1494 {
1495 	bi->page = NULL;
1496 	skb->len += length;
1497 	skb->data_len += length;
1498 	skb->truesize += PAGE_SIZE;
1499 }
1500 
1501 /**
1502  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1503  * @rx_ring: Rx descriptor ring
1504  * @work_done: output parameter for indicating completed work
1505  * @work_to_do: how many packets we can clean
1506  *
1507  * the return value indicates whether actual cleaning was done, there
1508  * is no guarantee that everything was cleaned
1509  **/
1510 static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1511 				     int work_to_do)
1512 {
1513 	struct e1000_adapter *adapter = rx_ring->adapter;
1514 	struct net_device *netdev = adapter->netdev;
1515 	struct pci_dev *pdev = adapter->pdev;
1516 	union e1000_rx_desc_extended *rx_desc, *next_rxd;
1517 	struct e1000_buffer *buffer_info, *next_buffer;
1518 	u32 length, staterr;
1519 	unsigned int i;
1520 	int cleaned_count = 0;
1521 	bool cleaned = false;
1522 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1523 	struct skb_shared_info *shinfo;
1524 
1525 	i = rx_ring->next_to_clean;
1526 	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1527 	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1528 	buffer_info = &rx_ring->buffer_info[i];
1529 
1530 	while (staterr & E1000_RXD_STAT_DD) {
1531 		struct sk_buff *skb;
1532 
1533 		if (*work_done >= work_to_do)
1534 			break;
1535 		(*work_done)++;
1536 		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
1537 
1538 		skb = buffer_info->skb;
1539 		buffer_info->skb = NULL;
1540 
1541 		++i;
1542 		if (i == rx_ring->count)
1543 			i = 0;
1544 		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1545 		prefetch(next_rxd);
1546 
1547 		next_buffer = &rx_ring->buffer_info[i];
1548 
1549 		cleaned = true;
1550 		cleaned_count++;
1551 		dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1552 			       DMA_FROM_DEVICE);
1553 		buffer_info->dma = 0;
1554 
1555 		length = le16_to_cpu(rx_desc->wb.upper.length);
1556 
1557 		/* errors is only valid for DD + EOP descriptors */
1558 		if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1559 			     ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1560 			      !(netdev->features & NETIF_F_RXALL)))) {
1561 			/* recycle both page and skb */
1562 			buffer_info->skb = skb;
1563 			/* an error means any chain goes out the window too */
1564 			if (rx_ring->rx_skb_top)
1565 				dev_kfree_skb_irq(rx_ring->rx_skb_top);
1566 			rx_ring->rx_skb_top = NULL;
1567 			goto next_desc;
1568 		}
1569 #define rxtop (rx_ring->rx_skb_top)
1570 		if (!(staterr & E1000_RXD_STAT_EOP)) {
1571 			/* this descriptor is only the beginning (or middle) */
1572 			if (!rxtop) {
1573 				/* this is the beginning of a chain */
1574 				rxtop = skb;
1575 				skb_fill_page_desc(rxtop, 0, buffer_info->page,
1576 						   0, length);
1577 			} else {
1578 				/* this is the middle of a chain */
1579 				shinfo = skb_shinfo(rxtop);
1580 				skb_fill_page_desc(rxtop, shinfo->nr_frags,
1581 						   buffer_info->page, 0,
1582 						   length);
1583 				/* re-use the skb, only consumed the page */
1584 				buffer_info->skb = skb;
1585 			}
1586 			e1000_consume_page(buffer_info, rxtop, length);
1587 			goto next_desc;
1588 		} else {
1589 			if (rxtop) {
1590 				/* end of the chain */
1591 				shinfo = skb_shinfo(rxtop);
1592 				skb_fill_page_desc(rxtop, shinfo->nr_frags,
1593 						   buffer_info->page, 0,
1594 						   length);
1595 				/* re-use the current skb, we only consumed the
1596 				 * page
1597 				 */
1598 				buffer_info->skb = skb;
1599 				skb = rxtop;
1600 				rxtop = NULL;
1601 				e1000_consume_page(buffer_info, skb, length);
1602 			} else {
1603 				/* no chain, got EOP, this buf is the packet
1604 				 * copybreak to save the put_page/alloc_page
1605 				 */
1606 				if (length <= copybreak &&
1607 				    skb_tailroom(skb) >= length) {
1608 					u8 *vaddr;
1609 					vaddr = kmap_atomic(buffer_info->page);
1610 					memcpy(skb_tail_pointer(skb), vaddr,
1611 					       length);
1612 					kunmap_atomic(vaddr);
1613 					/* re-use the page, so don't erase
1614 					 * buffer_info->page
1615 					 */
1616 					skb_put(skb, length);
1617 				} else {
1618 					skb_fill_page_desc(skb, 0,
1619 							   buffer_info->page, 0,
1620 							   length);
1621 					e1000_consume_page(buffer_info, skb,
1622 							   length);
1623 				}
1624 			}
1625 		}
1626 
1627 		/* Receive Checksum Offload */
1628 		e1000_rx_checksum(adapter, staterr, skb);
1629 
1630 		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1631 
1632 		/* probably a little skewed due to removing CRC */
1633 		total_rx_bytes += skb->len;
1634 		total_rx_packets++;
1635 
1636 		/* eth type trans needs skb->data to point to something */
1637 		if (!pskb_may_pull(skb, ETH_HLEN)) {
1638 			e_err("pskb_may_pull failed.\n");
1639 			dev_kfree_skb_irq(skb);
1640 			goto next_desc;
1641 		}
1642 
1643 		e1000_receive_skb(adapter, netdev, skb, staterr,
1644 				  rx_desc->wb.upper.vlan);
1645 
1646 next_desc:
1647 		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1648 
1649 		/* return some buffers to hardware, one at a time is too slow */
1650 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1651 			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1652 					      GFP_ATOMIC);
1653 			cleaned_count = 0;
1654 		}
1655 
1656 		/* use prefetched values */
1657 		rx_desc = next_rxd;
1658 		buffer_info = next_buffer;
1659 
1660 		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1661 	}
1662 	rx_ring->next_to_clean = i;
1663 
1664 	cleaned_count = e1000_desc_unused(rx_ring);
1665 	if (cleaned_count)
1666 		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1667 
1668 	adapter->total_rx_bytes += total_rx_bytes;
1669 	adapter->total_rx_packets += total_rx_packets;
1670 	return cleaned;
1671 }
1672 
1673 /**
1674  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1675  * @rx_ring: Rx descriptor ring
1676  **/
1677 static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1678 {
1679 	struct e1000_adapter *adapter = rx_ring->adapter;
1680 	struct e1000_buffer *buffer_info;
1681 	struct e1000_ps_page *ps_page;
1682 	struct pci_dev *pdev = adapter->pdev;
1683 	unsigned int i, j;
1684 
1685 	/* Free all the Rx ring sk_buffs */
1686 	for (i = 0; i < rx_ring->count; i++) {
1687 		buffer_info = &rx_ring->buffer_info[i];
1688 		if (buffer_info->dma) {
1689 			if (adapter->clean_rx == e1000_clean_rx_irq)
1690 				dma_unmap_single(&pdev->dev, buffer_info->dma,
1691 						 adapter->rx_buffer_len,
1692 						 DMA_FROM_DEVICE);
1693 			else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1694 				dma_unmap_page(&pdev->dev, buffer_info->dma,
1695 					       PAGE_SIZE, DMA_FROM_DEVICE);
1696 			else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1697 				dma_unmap_single(&pdev->dev, buffer_info->dma,
1698 						 adapter->rx_ps_bsize0,
1699 						 DMA_FROM_DEVICE);
1700 			buffer_info->dma = 0;
1701 		}
1702 
1703 		if (buffer_info->page) {
1704 			put_page(buffer_info->page);
1705 			buffer_info->page = NULL;
1706 		}
1707 
1708 		if (buffer_info->skb) {
1709 			dev_kfree_skb(buffer_info->skb);
1710 			buffer_info->skb = NULL;
1711 		}
1712 
1713 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1714 			ps_page = &buffer_info->ps_pages[j];
1715 			if (!ps_page->page)
1716 				break;
1717 			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1718 				       DMA_FROM_DEVICE);
1719 			ps_page->dma = 0;
1720 			put_page(ps_page->page);
1721 			ps_page->page = NULL;
1722 		}
1723 	}
1724 
1725 	/* there also may be some cached data from a chained receive */
1726 	if (rx_ring->rx_skb_top) {
1727 		dev_kfree_skb(rx_ring->rx_skb_top);
1728 		rx_ring->rx_skb_top = NULL;
1729 	}
1730 
1731 	/* Zero out the descriptor ring */
1732 	memset(rx_ring->desc, 0, rx_ring->size);
1733 
1734 	rx_ring->next_to_clean = 0;
1735 	rx_ring->next_to_use = 0;
1736 	adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1737 }
1738 
1739 static void e1000e_downshift_workaround(struct work_struct *work)
1740 {
1741 	struct e1000_adapter *adapter = container_of(work,
1742 						     struct e1000_adapter,
1743 						     downshift_task);
1744 
1745 	if (test_bit(__E1000_DOWN, &adapter->state))
1746 		return;
1747 
1748 	e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1749 }
1750 
1751 /**
1752  * e1000_intr_msi - Interrupt Handler
1753  * @irq: interrupt number
1754  * @data: pointer to a network interface device structure
1755  **/
1756 static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data)
1757 {
1758 	struct net_device *netdev = data;
1759 	struct e1000_adapter *adapter = netdev_priv(netdev);
1760 	struct e1000_hw *hw = &adapter->hw;
1761 	u32 icr = er32(ICR);
1762 
1763 	/* read ICR disables interrupts using IAM */
1764 	if (icr & E1000_ICR_LSC) {
1765 		hw->mac.get_link_status = true;
1766 		/* ICH8 workaround-- Call gig speed drop workaround on cable
1767 		 * disconnect (LSC) before accessing any PHY registers
1768 		 */
1769 		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1770 		    (!(er32(STATUS) & E1000_STATUS_LU)))
1771 			schedule_work(&adapter->downshift_task);
1772 
1773 		/* 80003ES2LAN workaround-- For packet buffer work-around on
1774 		 * link down event; disable receives here in the ISR and reset
1775 		 * adapter in watchdog
1776 		 */
1777 		if (netif_carrier_ok(netdev) &&
1778 		    adapter->flags & FLAG_RX_NEEDS_RESTART) {
1779 			/* disable receives */
1780 			u32 rctl = er32(RCTL);
1781 
1782 			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1783 			adapter->flags |= FLAG_RESTART_NOW;
1784 		}
1785 		/* guard against interrupt when we're going down */
1786 		if (!test_bit(__E1000_DOWN, &adapter->state))
1787 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1788 	}
1789 
1790 	/* Reset on uncorrectable ECC error */
1791 	if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1792 		u32 pbeccsts = er32(PBECCSTS);
1793 
1794 		adapter->corr_errors +=
1795 		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1796 		adapter->uncorr_errors +=
1797 		    (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1798 		    E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1799 
1800 		/* Do the reset outside of interrupt context */
1801 		schedule_work(&adapter->reset_task);
1802 
1803 		/* return immediately since reset is imminent */
1804 		return IRQ_HANDLED;
1805 	}
1806 
1807 	if (napi_schedule_prep(&adapter->napi)) {
1808 		adapter->total_tx_bytes = 0;
1809 		adapter->total_tx_packets = 0;
1810 		adapter->total_rx_bytes = 0;
1811 		adapter->total_rx_packets = 0;
1812 		__napi_schedule(&adapter->napi);
1813 	}
1814 
1815 	return IRQ_HANDLED;
1816 }
1817 
1818 /**
1819  * e1000_intr - Interrupt Handler
1820  * @irq: interrupt number
1821  * @data: pointer to a network interface device structure
1822  **/
1823 static irqreturn_t e1000_intr(int __always_unused irq, void *data)
1824 {
1825 	struct net_device *netdev = data;
1826 	struct e1000_adapter *adapter = netdev_priv(netdev);
1827 	struct e1000_hw *hw = &adapter->hw;
1828 	u32 rctl, icr = er32(ICR);
1829 
1830 	if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1831 		return IRQ_NONE;	/* Not our interrupt */
1832 
1833 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1834 	 * not set, then the adapter didn't send an interrupt
1835 	 */
1836 	if (!(icr & E1000_ICR_INT_ASSERTED))
1837 		return IRQ_NONE;
1838 
1839 	/* Interrupt Auto-Mask...upon reading ICR,
1840 	 * interrupts are masked.  No need for the
1841 	 * IMC write
1842 	 */
1843 
1844 	if (icr & E1000_ICR_LSC) {
1845 		hw->mac.get_link_status = true;
1846 		/* ICH8 workaround-- Call gig speed drop workaround on cable
1847 		 * disconnect (LSC) before accessing any PHY registers
1848 		 */
1849 		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1850 		    (!(er32(STATUS) & E1000_STATUS_LU)))
1851 			schedule_work(&adapter->downshift_task);
1852 
1853 		/* 80003ES2LAN workaround--
1854 		 * For packet buffer work-around on link down event;
1855 		 * disable receives here in the ISR and
1856 		 * reset adapter in watchdog
1857 		 */
1858 		if (netif_carrier_ok(netdev) &&
1859 		    (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1860 			/* disable receives */
1861 			rctl = er32(RCTL);
1862 			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1863 			adapter->flags |= FLAG_RESTART_NOW;
1864 		}
1865 		/* guard against interrupt when we're going down */
1866 		if (!test_bit(__E1000_DOWN, &adapter->state))
1867 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1868 	}
1869 
1870 	/* Reset on uncorrectable ECC error */
1871 	if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1872 		u32 pbeccsts = er32(PBECCSTS);
1873 
1874 		adapter->corr_errors +=
1875 		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1876 		adapter->uncorr_errors +=
1877 		    (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1878 		    E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1879 
1880 		/* Do the reset outside of interrupt context */
1881 		schedule_work(&adapter->reset_task);
1882 
1883 		/* return immediately since reset is imminent */
1884 		return IRQ_HANDLED;
1885 	}
1886 
1887 	if (napi_schedule_prep(&adapter->napi)) {
1888 		adapter->total_tx_bytes = 0;
1889 		adapter->total_tx_packets = 0;
1890 		adapter->total_rx_bytes = 0;
1891 		adapter->total_rx_packets = 0;
1892 		__napi_schedule(&adapter->napi);
1893 	}
1894 
1895 	return IRQ_HANDLED;
1896 }
1897 
1898 static irqreturn_t e1000_msix_other(int __always_unused irq, void *data)
1899 {
1900 	struct net_device *netdev = data;
1901 	struct e1000_adapter *adapter = netdev_priv(netdev);
1902 	struct e1000_hw *hw = &adapter->hw;
1903 	u32 icr = er32(ICR);
1904 
1905 	if (icr & adapter->eiac_mask)
1906 		ew32(ICS, (icr & adapter->eiac_mask));
1907 
1908 	if (icr & E1000_ICR_LSC) {
1909 		hw->mac.get_link_status = true;
1910 		/* guard against interrupt when we're going down */
1911 		if (!test_bit(__E1000_DOWN, &adapter->state))
1912 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1913 	}
1914 
1915 	if (!test_bit(__E1000_DOWN, &adapter->state))
1916 		ew32(IMS, E1000_IMS_OTHER | IMS_OTHER_MASK);
1917 
1918 	return IRQ_HANDLED;
1919 }
1920 
1921 static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data)
1922 {
1923 	struct net_device *netdev = data;
1924 	struct e1000_adapter *adapter = netdev_priv(netdev);
1925 	struct e1000_hw *hw = &adapter->hw;
1926 	struct e1000_ring *tx_ring = adapter->tx_ring;
1927 
1928 	adapter->total_tx_bytes = 0;
1929 	adapter->total_tx_packets = 0;
1930 
1931 	if (!e1000_clean_tx_irq(tx_ring))
1932 		/* Ring was not completely cleaned, so fire another interrupt */
1933 		ew32(ICS, tx_ring->ims_val);
1934 
1935 	if (!test_bit(__E1000_DOWN, &adapter->state))
1936 		ew32(IMS, adapter->tx_ring->ims_val);
1937 
1938 	return IRQ_HANDLED;
1939 }
1940 
1941 static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data)
1942 {
1943 	struct net_device *netdev = data;
1944 	struct e1000_adapter *adapter = netdev_priv(netdev);
1945 	struct e1000_ring *rx_ring = adapter->rx_ring;
1946 
1947 	/* Write the ITR value calculated at the end of the
1948 	 * previous interrupt.
1949 	 */
1950 	if (rx_ring->set_itr) {
1951 		u32 itr = rx_ring->itr_val ?
1952 			  1000000000 / (rx_ring->itr_val * 256) : 0;
1953 
1954 		writel(itr, rx_ring->itr_register);
1955 		rx_ring->set_itr = 0;
1956 	}
1957 
1958 	if (napi_schedule_prep(&adapter->napi)) {
1959 		adapter->total_rx_bytes = 0;
1960 		adapter->total_rx_packets = 0;
1961 		__napi_schedule(&adapter->napi);
1962 	}
1963 	return IRQ_HANDLED;
1964 }
1965 
1966 /**
1967  * e1000_configure_msix - Configure MSI-X hardware
1968  * @adapter: board private structure
1969  *
1970  * e1000_configure_msix sets up the hardware to properly
1971  * generate MSI-X interrupts.
1972  **/
1973 static void e1000_configure_msix(struct e1000_adapter *adapter)
1974 {
1975 	struct e1000_hw *hw = &adapter->hw;
1976 	struct e1000_ring *rx_ring = adapter->rx_ring;
1977 	struct e1000_ring *tx_ring = adapter->tx_ring;
1978 	int vector = 0;
1979 	u32 ctrl_ext, ivar = 0;
1980 
1981 	adapter->eiac_mask = 0;
1982 
1983 	/* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1984 	if (hw->mac.type == e1000_82574) {
1985 		u32 rfctl = er32(RFCTL);
1986 
1987 		rfctl |= E1000_RFCTL_ACK_DIS;
1988 		ew32(RFCTL, rfctl);
1989 	}
1990 
1991 	/* Configure Rx vector */
1992 	rx_ring->ims_val = E1000_IMS_RXQ0;
1993 	adapter->eiac_mask |= rx_ring->ims_val;
1994 	if (rx_ring->itr_val)
1995 		writel(1000000000 / (rx_ring->itr_val * 256),
1996 		       rx_ring->itr_register);
1997 	else
1998 		writel(1, rx_ring->itr_register);
1999 	ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
2000 
2001 	/* Configure Tx vector */
2002 	tx_ring->ims_val = E1000_IMS_TXQ0;
2003 	vector++;
2004 	if (tx_ring->itr_val)
2005 		writel(1000000000 / (tx_ring->itr_val * 256),
2006 		       tx_ring->itr_register);
2007 	else
2008 		writel(1, tx_ring->itr_register);
2009 	adapter->eiac_mask |= tx_ring->ims_val;
2010 	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
2011 
2012 	/* set vector for Other Causes, e.g. link changes */
2013 	vector++;
2014 	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
2015 	if (rx_ring->itr_val)
2016 		writel(1000000000 / (rx_ring->itr_val * 256),
2017 		       hw->hw_addr + E1000_EITR_82574(vector));
2018 	else
2019 		writel(1, hw->hw_addr + E1000_EITR_82574(vector));
2020 
2021 	/* Cause Tx interrupts on every write back */
2022 	ivar |= BIT(31);
2023 
2024 	ew32(IVAR, ivar);
2025 
2026 	/* enable MSI-X PBA support */
2027 	ctrl_ext = er32(CTRL_EXT) & ~E1000_CTRL_EXT_IAME;
2028 	ctrl_ext |= E1000_CTRL_EXT_PBA_CLR | E1000_CTRL_EXT_EIAME;
2029 	ew32(CTRL_EXT, ctrl_ext);
2030 	e1e_flush();
2031 }
2032 
2033 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
2034 {
2035 	if (adapter->msix_entries) {
2036 		pci_disable_msix(adapter->pdev);
2037 		kfree(adapter->msix_entries);
2038 		adapter->msix_entries = NULL;
2039 	} else if (adapter->flags & FLAG_MSI_ENABLED) {
2040 		pci_disable_msi(adapter->pdev);
2041 		adapter->flags &= ~FLAG_MSI_ENABLED;
2042 	}
2043 }
2044 
2045 /**
2046  * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
2047  * @adapter: board private structure
2048  *
2049  * Attempt to configure interrupts using the best available
2050  * capabilities of the hardware and kernel.
2051  **/
2052 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
2053 {
2054 	int err;
2055 	int i;
2056 
2057 	switch (adapter->int_mode) {
2058 	case E1000E_INT_MODE_MSIX:
2059 		if (adapter->flags & FLAG_HAS_MSIX) {
2060 			adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
2061 			adapter->msix_entries = kcalloc(adapter->num_vectors,
2062 							sizeof(struct
2063 							       msix_entry),
2064 							GFP_KERNEL);
2065 			if (adapter->msix_entries) {
2066 				struct e1000_adapter *a = adapter;
2067 
2068 				for (i = 0; i < adapter->num_vectors; i++)
2069 					adapter->msix_entries[i].entry = i;
2070 
2071 				err = pci_enable_msix_range(a->pdev,
2072 							    a->msix_entries,
2073 							    a->num_vectors,
2074 							    a->num_vectors);
2075 				if (err > 0)
2076 					return;
2077 			}
2078 			/* MSI-X failed, so fall through and try MSI */
2079 			e_err("Failed to initialize MSI-X interrupts.  Falling back to MSI interrupts.\n");
2080 			e1000e_reset_interrupt_capability(adapter);
2081 		}
2082 		adapter->int_mode = E1000E_INT_MODE_MSI;
2083 		fallthrough;
2084 	case E1000E_INT_MODE_MSI:
2085 		if (!pci_enable_msi(adapter->pdev)) {
2086 			adapter->flags |= FLAG_MSI_ENABLED;
2087 		} else {
2088 			adapter->int_mode = E1000E_INT_MODE_LEGACY;
2089 			e_err("Failed to initialize MSI interrupts.  Falling back to legacy interrupts.\n");
2090 		}
2091 		fallthrough;
2092 	case E1000E_INT_MODE_LEGACY:
2093 		/* Don't do anything; this is the system default */
2094 		break;
2095 	}
2096 
2097 	/* store the number of vectors being used */
2098 	adapter->num_vectors = 1;
2099 }
2100 
2101 /**
2102  * e1000_request_msix - Initialize MSI-X interrupts
2103  * @adapter: board private structure
2104  *
2105  * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2106  * kernel.
2107  **/
2108 static int e1000_request_msix(struct e1000_adapter *adapter)
2109 {
2110 	struct net_device *netdev = adapter->netdev;
2111 	int err = 0, vector = 0;
2112 
2113 	if (strlen(netdev->name) < (IFNAMSIZ - 5))
2114 		snprintf(adapter->rx_ring->name,
2115 			 sizeof(adapter->rx_ring->name) - 1,
2116 			 "%.14s-rx-0", netdev->name);
2117 	else
2118 		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
2119 	err = request_irq(adapter->msix_entries[vector].vector,
2120 			  e1000_intr_msix_rx, 0, adapter->rx_ring->name,
2121 			  netdev);
2122 	if (err)
2123 		return err;
2124 	adapter->rx_ring->itr_register = adapter->hw.hw_addr +
2125 	    E1000_EITR_82574(vector);
2126 	adapter->rx_ring->itr_val = adapter->itr;
2127 	vector++;
2128 
2129 	if (strlen(netdev->name) < (IFNAMSIZ - 5))
2130 		snprintf(adapter->tx_ring->name,
2131 			 sizeof(adapter->tx_ring->name) - 1,
2132 			 "%.14s-tx-0", netdev->name);
2133 	else
2134 		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2135 	err = request_irq(adapter->msix_entries[vector].vector,
2136 			  e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2137 			  netdev);
2138 	if (err)
2139 		return err;
2140 	adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2141 	    E1000_EITR_82574(vector);
2142 	adapter->tx_ring->itr_val = adapter->itr;
2143 	vector++;
2144 
2145 	err = request_irq(adapter->msix_entries[vector].vector,
2146 			  e1000_msix_other, 0, netdev->name, netdev);
2147 	if (err)
2148 		return err;
2149 
2150 	e1000_configure_msix(adapter);
2151 
2152 	return 0;
2153 }
2154 
2155 /**
2156  * e1000_request_irq - initialize interrupts
2157  * @adapter: board private structure
2158  *
2159  * Attempts to configure interrupts using the best available
2160  * capabilities of the hardware and kernel.
2161  **/
2162 static int e1000_request_irq(struct e1000_adapter *adapter)
2163 {
2164 	struct net_device *netdev = adapter->netdev;
2165 	int err;
2166 
2167 	if (adapter->msix_entries) {
2168 		err = e1000_request_msix(adapter);
2169 		if (!err)
2170 			return err;
2171 		/* fall back to MSI */
2172 		e1000e_reset_interrupt_capability(adapter);
2173 		adapter->int_mode = E1000E_INT_MODE_MSI;
2174 		e1000e_set_interrupt_capability(adapter);
2175 	}
2176 	if (adapter->flags & FLAG_MSI_ENABLED) {
2177 		err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2178 				  netdev->name, netdev);
2179 		if (!err)
2180 			return err;
2181 
2182 		/* fall back to legacy interrupt */
2183 		e1000e_reset_interrupt_capability(adapter);
2184 		adapter->int_mode = E1000E_INT_MODE_LEGACY;
2185 	}
2186 
2187 	err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2188 			  netdev->name, netdev);
2189 	if (err)
2190 		e_err("Unable to allocate interrupt, Error: %d\n", err);
2191 
2192 	return err;
2193 }
2194 
2195 static void e1000_free_irq(struct e1000_adapter *adapter)
2196 {
2197 	struct net_device *netdev = adapter->netdev;
2198 
2199 	if (adapter->msix_entries) {
2200 		int vector = 0;
2201 
2202 		free_irq(adapter->msix_entries[vector].vector, netdev);
2203 		vector++;
2204 
2205 		free_irq(adapter->msix_entries[vector].vector, netdev);
2206 		vector++;
2207 
2208 		/* Other Causes interrupt vector */
2209 		free_irq(adapter->msix_entries[vector].vector, netdev);
2210 		return;
2211 	}
2212 
2213 	free_irq(adapter->pdev->irq, netdev);
2214 }
2215 
2216 /**
2217  * e1000_irq_disable - Mask off interrupt generation on the NIC
2218  * @adapter: board private structure
2219  **/
2220 static void e1000_irq_disable(struct e1000_adapter *adapter)
2221 {
2222 	struct e1000_hw *hw = &adapter->hw;
2223 
2224 	ew32(IMC, ~0);
2225 	if (adapter->msix_entries)
2226 		ew32(EIAC_82574, 0);
2227 	e1e_flush();
2228 
2229 	if (adapter->msix_entries) {
2230 		int i;
2231 
2232 		for (i = 0; i < adapter->num_vectors; i++)
2233 			synchronize_irq(adapter->msix_entries[i].vector);
2234 	} else {
2235 		synchronize_irq(adapter->pdev->irq);
2236 	}
2237 }
2238 
2239 /**
2240  * e1000_irq_enable - Enable default interrupt generation settings
2241  * @adapter: board private structure
2242  **/
2243 static void e1000_irq_enable(struct e1000_adapter *adapter)
2244 {
2245 	struct e1000_hw *hw = &adapter->hw;
2246 
2247 	if (adapter->msix_entries) {
2248 		ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2249 		ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER |
2250 		     IMS_OTHER_MASK);
2251 	} else if (hw->mac.type >= e1000_pch_lpt) {
2252 		ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER);
2253 	} else {
2254 		ew32(IMS, IMS_ENABLE_MASK);
2255 	}
2256 	e1e_flush();
2257 }
2258 
2259 /**
2260  * e1000e_get_hw_control - get control of the h/w from f/w
2261  * @adapter: address of board private structure
2262  *
2263  * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2264  * For ASF and Pass Through versions of f/w this means that
2265  * the driver is loaded. For AMT version (only with 82573)
2266  * of the f/w this means that the network i/f is open.
2267  **/
2268 void e1000e_get_hw_control(struct e1000_adapter *adapter)
2269 {
2270 	struct e1000_hw *hw = &adapter->hw;
2271 	u32 ctrl_ext;
2272 	u32 swsm;
2273 
2274 	/* Let firmware know the driver has taken over */
2275 	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2276 		swsm = er32(SWSM);
2277 		ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2278 	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2279 		ctrl_ext = er32(CTRL_EXT);
2280 		ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2281 	}
2282 }
2283 
2284 /**
2285  * e1000e_release_hw_control - release control of the h/w to f/w
2286  * @adapter: address of board private structure
2287  *
2288  * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2289  * For ASF and Pass Through versions of f/w this means that the
2290  * driver is no longer loaded. For AMT version (only with 82573) i
2291  * of the f/w this means that the network i/f is closed.
2292  *
2293  **/
2294 void e1000e_release_hw_control(struct e1000_adapter *adapter)
2295 {
2296 	struct e1000_hw *hw = &adapter->hw;
2297 	u32 ctrl_ext;
2298 	u32 swsm;
2299 
2300 	/* Let firmware taken over control of h/w */
2301 	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2302 		swsm = er32(SWSM);
2303 		ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2304 	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2305 		ctrl_ext = er32(CTRL_EXT);
2306 		ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2307 	}
2308 }
2309 
2310 /**
2311  * e1000_alloc_ring_dma - allocate memory for a ring structure
2312  * @adapter: board private structure
2313  * @ring: ring struct for which to allocate dma
2314  **/
2315 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2316 				struct e1000_ring *ring)
2317 {
2318 	struct pci_dev *pdev = adapter->pdev;
2319 
2320 	ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2321 					GFP_KERNEL);
2322 	if (!ring->desc)
2323 		return -ENOMEM;
2324 
2325 	return 0;
2326 }
2327 
2328 /**
2329  * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2330  * @tx_ring: Tx descriptor ring
2331  *
2332  * Return 0 on success, negative on failure
2333  **/
2334 int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2335 {
2336 	struct e1000_adapter *adapter = tx_ring->adapter;
2337 	int err = -ENOMEM, size;
2338 
2339 	size = sizeof(struct e1000_buffer) * tx_ring->count;
2340 	tx_ring->buffer_info = vzalloc(size);
2341 	if (!tx_ring->buffer_info)
2342 		goto err;
2343 
2344 	/* round up to nearest 4K */
2345 	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2346 	tx_ring->size = ALIGN(tx_ring->size, 4096);
2347 
2348 	err = e1000_alloc_ring_dma(adapter, tx_ring);
2349 	if (err)
2350 		goto err;
2351 
2352 	tx_ring->next_to_use = 0;
2353 	tx_ring->next_to_clean = 0;
2354 
2355 	return 0;
2356 err:
2357 	vfree(tx_ring->buffer_info);
2358 	e_err("Unable to allocate memory for the transmit descriptor ring\n");
2359 	return err;
2360 }
2361 
2362 /**
2363  * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2364  * @rx_ring: Rx descriptor ring
2365  *
2366  * Returns 0 on success, negative on failure
2367  **/
2368 int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2369 {
2370 	struct e1000_adapter *adapter = rx_ring->adapter;
2371 	struct e1000_buffer *buffer_info;
2372 	int i, size, desc_len, err = -ENOMEM;
2373 
2374 	size = sizeof(struct e1000_buffer) * rx_ring->count;
2375 	rx_ring->buffer_info = vzalloc(size);
2376 	if (!rx_ring->buffer_info)
2377 		goto err;
2378 
2379 	for (i = 0; i < rx_ring->count; i++) {
2380 		buffer_info = &rx_ring->buffer_info[i];
2381 		buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2382 						sizeof(struct e1000_ps_page),
2383 						GFP_KERNEL);
2384 		if (!buffer_info->ps_pages)
2385 			goto err_pages;
2386 	}
2387 
2388 	desc_len = sizeof(union e1000_rx_desc_packet_split);
2389 
2390 	/* Round up to nearest 4K */
2391 	rx_ring->size = rx_ring->count * desc_len;
2392 	rx_ring->size = ALIGN(rx_ring->size, 4096);
2393 
2394 	err = e1000_alloc_ring_dma(adapter, rx_ring);
2395 	if (err)
2396 		goto err_pages;
2397 
2398 	rx_ring->next_to_clean = 0;
2399 	rx_ring->next_to_use = 0;
2400 	rx_ring->rx_skb_top = NULL;
2401 
2402 	return 0;
2403 
2404 err_pages:
2405 	for (i = 0; i < rx_ring->count; i++) {
2406 		buffer_info = &rx_ring->buffer_info[i];
2407 		kfree(buffer_info->ps_pages);
2408 	}
2409 err:
2410 	vfree(rx_ring->buffer_info);
2411 	e_err("Unable to allocate memory for the receive descriptor ring\n");
2412 	return err;
2413 }
2414 
2415 /**
2416  * e1000_clean_tx_ring - Free Tx Buffers
2417  * @tx_ring: Tx descriptor ring
2418  **/
2419 static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2420 {
2421 	struct e1000_adapter *adapter = tx_ring->adapter;
2422 	struct e1000_buffer *buffer_info;
2423 	unsigned long size;
2424 	unsigned int i;
2425 
2426 	for (i = 0; i < tx_ring->count; i++) {
2427 		buffer_info = &tx_ring->buffer_info[i];
2428 		e1000_put_txbuf(tx_ring, buffer_info, false);
2429 	}
2430 
2431 	netdev_reset_queue(adapter->netdev);
2432 	size = sizeof(struct e1000_buffer) * tx_ring->count;
2433 	memset(tx_ring->buffer_info, 0, size);
2434 
2435 	memset(tx_ring->desc, 0, tx_ring->size);
2436 
2437 	tx_ring->next_to_use = 0;
2438 	tx_ring->next_to_clean = 0;
2439 }
2440 
2441 /**
2442  * e1000e_free_tx_resources - Free Tx Resources per Queue
2443  * @tx_ring: Tx descriptor ring
2444  *
2445  * Free all transmit software resources
2446  **/
2447 void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2448 {
2449 	struct e1000_adapter *adapter = tx_ring->adapter;
2450 	struct pci_dev *pdev = adapter->pdev;
2451 
2452 	e1000_clean_tx_ring(tx_ring);
2453 
2454 	vfree(tx_ring->buffer_info);
2455 	tx_ring->buffer_info = NULL;
2456 
2457 	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2458 			  tx_ring->dma);
2459 	tx_ring->desc = NULL;
2460 }
2461 
2462 /**
2463  * e1000e_free_rx_resources - Free Rx Resources
2464  * @rx_ring: Rx descriptor ring
2465  *
2466  * Free all receive software resources
2467  **/
2468 void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2469 {
2470 	struct e1000_adapter *adapter = rx_ring->adapter;
2471 	struct pci_dev *pdev = adapter->pdev;
2472 	int i;
2473 
2474 	e1000_clean_rx_ring(rx_ring);
2475 
2476 	for (i = 0; i < rx_ring->count; i++)
2477 		kfree(rx_ring->buffer_info[i].ps_pages);
2478 
2479 	vfree(rx_ring->buffer_info);
2480 	rx_ring->buffer_info = NULL;
2481 
2482 	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2483 			  rx_ring->dma);
2484 	rx_ring->desc = NULL;
2485 }
2486 
2487 /**
2488  * e1000_update_itr - update the dynamic ITR value based on statistics
2489  * @itr_setting: current adapter->itr
2490  * @packets: the number of packets during this measurement interval
2491  * @bytes: the number of bytes during this measurement interval
2492  *
2493  *      Stores a new ITR value based on packets and byte
2494  *      counts during the last interrupt.  The advantage of per interrupt
2495  *      computation is faster updates and more accurate ITR for the current
2496  *      traffic pattern.  Constants in this function were computed
2497  *      based on theoretical maximum wire speed and thresholds were set based
2498  *      on testing data as well as attempting to minimize response time
2499  *      while increasing bulk throughput.  This functionality is controlled
2500  *      by the InterruptThrottleRate module parameter.
2501  **/
2502 static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes)
2503 {
2504 	unsigned int retval = itr_setting;
2505 
2506 	if (packets == 0)
2507 		return itr_setting;
2508 
2509 	switch (itr_setting) {
2510 	case lowest_latency:
2511 		/* handle TSO and jumbo frames */
2512 		if (bytes / packets > 8000)
2513 			retval = bulk_latency;
2514 		else if ((packets < 5) && (bytes > 512))
2515 			retval = low_latency;
2516 		break;
2517 	case low_latency:	/* 50 usec aka 20000 ints/s */
2518 		if (bytes > 10000) {
2519 			/* this if handles the TSO accounting */
2520 			if (bytes / packets > 8000)
2521 				retval = bulk_latency;
2522 			else if ((packets < 10) || ((bytes / packets) > 1200))
2523 				retval = bulk_latency;
2524 			else if ((packets > 35))
2525 				retval = lowest_latency;
2526 		} else if (bytes / packets > 2000) {
2527 			retval = bulk_latency;
2528 		} else if (packets <= 2 && bytes < 512) {
2529 			retval = lowest_latency;
2530 		}
2531 		break;
2532 	case bulk_latency:	/* 250 usec aka 4000 ints/s */
2533 		if (bytes > 25000) {
2534 			if (packets > 35)
2535 				retval = low_latency;
2536 		} else if (bytes < 6000) {
2537 			retval = low_latency;
2538 		}
2539 		break;
2540 	}
2541 
2542 	return retval;
2543 }
2544 
2545 static void e1000_set_itr(struct e1000_adapter *adapter)
2546 {
2547 	u16 current_itr;
2548 	u32 new_itr = adapter->itr;
2549 
2550 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2551 	if (adapter->link_speed != SPEED_1000) {
2552 		current_itr = 0;
2553 		new_itr = 4000;
2554 		goto set_itr_now;
2555 	}
2556 
2557 	if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2558 		new_itr = 0;
2559 		goto set_itr_now;
2560 	}
2561 
2562 	adapter->tx_itr = e1000_update_itr(adapter->tx_itr,
2563 					   adapter->total_tx_packets,
2564 					   adapter->total_tx_bytes);
2565 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2566 	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2567 		adapter->tx_itr = low_latency;
2568 
2569 	adapter->rx_itr = e1000_update_itr(adapter->rx_itr,
2570 					   adapter->total_rx_packets,
2571 					   adapter->total_rx_bytes);
2572 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2573 	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2574 		adapter->rx_itr = low_latency;
2575 
2576 	current_itr = max(adapter->rx_itr, adapter->tx_itr);
2577 
2578 	/* counts and packets in update_itr are dependent on these numbers */
2579 	switch (current_itr) {
2580 	case lowest_latency:
2581 		new_itr = 70000;
2582 		break;
2583 	case low_latency:
2584 		new_itr = 20000;	/* aka hwitr = ~200 */
2585 		break;
2586 	case bulk_latency:
2587 		new_itr = 4000;
2588 		break;
2589 	default:
2590 		break;
2591 	}
2592 
2593 set_itr_now:
2594 	if (new_itr != adapter->itr) {
2595 		/* this attempts to bias the interrupt rate towards Bulk
2596 		 * by adding intermediate steps when interrupt rate is
2597 		 * increasing
2598 		 */
2599 		new_itr = new_itr > adapter->itr ?
2600 		    min(adapter->itr + (new_itr >> 2), new_itr) : new_itr;
2601 		adapter->itr = new_itr;
2602 		adapter->rx_ring->itr_val = new_itr;
2603 		if (adapter->msix_entries)
2604 			adapter->rx_ring->set_itr = 1;
2605 		else
2606 			e1000e_write_itr(adapter, new_itr);
2607 	}
2608 }
2609 
2610 /**
2611  * e1000e_write_itr - write the ITR value to the appropriate registers
2612  * @adapter: address of board private structure
2613  * @itr: new ITR value to program
2614  *
2615  * e1000e_write_itr determines if the adapter is in MSI-X mode
2616  * and, if so, writes the EITR registers with the ITR value.
2617  * Otherwise, it writes the ITR value into the ITR register.
2618  **/
2619 void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
2620 {
2621 	struct e1000_hw *hw = &adapter->hw;
2622 	u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
2623 
2624 	if (adapter->msix_entries) {
2625 		int vector;
2626 
2627 		for (vector = 0; vector < adapter->num_vectors; vector++)
2628 			writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
2629 	} else {
2630 		ew32(ITR, new_itr);
2631 	}
2632 }
2633 
2634 /**
2635  * e1000_alloc_queues - Allocate memory for all rings
2636  * @adapter: board private structure to initialize
2637  **/
2638 static int e1000_alloc_queues(struct e1000_adapter *adapter)
2639 {
2640 	int size = sizeof(struct e1000_ring);
2641 
2642 	adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2643 	if (!adapter->tx_ring)
2644 		goto err;
2645 	adapter->tx_ring->count = adapter->tx_ring_count;
2646 	adapter->tx_ring->adapter = adapter;
2647 
2648 	adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2649 	if (!adapter->rx_ring)
2650 		goto err;
2651 	adapter->rx_ring->count = adapter->rx_ring_count;
2652 	adapter->rx_ring->adapter = adapter;
2653 
2654 	return 0;
2655 err:
2656 	e_err("Unable to allocate memory for queues\n");
2657 	kfree(adapter->rx_ring);
2658 	kfree(adapter->tx_ring);
2659 	return -ENOMEM;
2660 }
2661 
2662 /**
2663  * e1000e_poll - NAPI Rx polling callback
2664  * @napi: struct associated with this polling callback
2665  * @budget: number of packets driver is allowed to process this poll
2666  **/
2667 static int e1000e_poll(struct napi_struct *napi, int budget)
2668 {
2669 	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2670 						     napi);
2671 	struct e1000_hw *hw = &adapter->hw;
2672 	struct net_device *poll_dev = adapter->netdev;
2673 	int tx_cleaned = 1, work_done = 0;
2674 
2675 	adapter = netdev_priv(poll_dev);
2676 
2677 	if (!adapter->msix_entries ||
2678 	    (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2679 		tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2680 
2681 	adapter->clean_rx(adapter->rx_ring, &work_done, budget);
2682 
2683 	if (!tx_cleaned || work_done == budget)
2684 		return budget;
2685 
2686 	/* Exit the polling mode, but don't re-enable interrupts if stack might
2687 	 * poll us due to busy-polling
2688 	 */
2689 	if (likely(napi_complete_done(napi, work_done))) {
2690 		if (adapter->itr_setting & 3)
2691 			e1000_set_itr(adapter);
2692 		if (!test_bit(__E1000_DOWN, &adapter->state)) {
2693 			if (adapter->msix_entries)
2694 				ew32(IMS, adapter->rx_ring->ims_val);
2695 			else
2696 				e1000_irq_enable(adapter);
2697 		}
2698 	}
2699 
2700 	return work_done;
2701 }
2702 
2703 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
2704 				 __always_unused __be16 proto, u16 vid)
2705 {
2706 	struct e1000_adapter *adapter = netdev_priv(netdev);
2707 	struct e1000_hw *hw = &adapter->hw;
2708 	u32 vfta, index;
2709 
2710 	/* don't update vlan cookie if already programmed */
2711 	if ((adapter->hw.mng_cookie.status &
2712 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2713 	    (vid == adapter->mng_vlan_id))
2714 		return 0;
2715 
2716 	/* add VID to filter table */
2717 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2718 		index = (vid >> 5) & 0x7F;
2719 		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2720 		vfta |= BIT((vid & 0x1F));
2721 		hw->mac.ops.write_vfta(hw, index, vfta);
2722 	}
2723 
2724 	set_bit(vid, adapter->active_vlans);
2725 
2726 	return 0;
2727 }
2728 
2729 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
2730 				  __always_unused __be16 proto, u16 vid)
2731 {
2732 	struct e1000_adapter *adapter = netdev_priv(netdev);
2733 	struct e1000_hw *hw = &adapter->hw;
2734 	u32 vfta, index;
2735 
2736 	if ((adapter->hw.mng_cookie.status &
2737 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2738 	    (vid == adapter->mng_vlan_id)) {
2739 		/* release control to f/w */
2740 		e1000e_release_hw_control(adapter);
2741 		return 0;
2742 	}
2743 
2744 	/* remove VID from filter table */
2745 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2746 		index = (vid >> 5) & 0x7F;
2747 		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2748 		vfta &= ~BIT((vid & 0x1F));
2749 		hw->mac.ops.write_vfta(hw, index, vfta);
2750 	}
2751 
2752 	clear_bit(vid, adapter->active_vlans);
2753 
2754 	return 0;
2755 }
2756 
2757 /**
2758  * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2759  * @adapter: board private structure to initialize
2760  **/
2761 static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2762 {
2763 	struct net_device *netdev = adapter->netdev;
2764 	struct e1000_hw *hw = &adapter->hw;
2765 	u32 rctl;
2766 
2767 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2768 		/* disable VLAN receive filtering */
2769 		rctl = er32(RCTL);
2770 		rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2771 		ew32(RCTL, rctl);
2772 
2773 		if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2774 			e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
2775 					       adapter->mng_vlan_id);
2776 			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2777 		}
2778 	}
2779 }
2780 
2781 /**
2782  * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2783  * @adapter: board private structure to initialize
2784  **/
2785 static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2786 {
2787 	struct e1000_hw *hw = &adapter->hw;
2788 	u32 rctl;
2789 
2790 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2791 		/* enable VLAN receive filtering */
2792 		rctl = er32(RCTL);
2793 		rctl |= E1000_RCTL_VFE;
2794 		rctl &= ~E1000_RCTL_CFIEN;
2795 		ew32(RCTL, rctl);
2796 	}
2797 }
2798 
2799 /**
2800  * e1000e_vlan_strip_disable - helper to disable HW VLAN stripping
2801  * @adapter: board private structure to initialize
2802  **/
2803 static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2804 {
2805 	struct e1000_hw *hw = &adapter->hw;
2806 	u32 ctrl;
2807 
2808 	/* disable VLAN tag insert/strip */
2809 	ctrl = er32(CTRL);
2810 	ctrl &= ~E1000_CTRL_VME;
2811 	ew32(CTRL, ctrl);
2812 }
2813 
2814 /**
2815  * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2816  * @adapter: board private structure to initialize
2817  **/
2818 static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2819 {
2820 	struct e1000_hw *hw = &adapter->hw;
2821 	u32 ctrl;
2822 
2823 	/* enable VLAN tag insert/strip */
2824 	ctrl = er32(CTRL);
2825 	ctrl |= E1000_CTRL_VME;
2826 	ew32(CTRL, ctrl);
2827 }
2828 
2829 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2830 {
2831 	struct net_device *netdev = adapter->netdev;
2832 	u16 vid = adapter->hw.mng_cookie.vlan_id;
2833 	u16 old_vid = adapter->mng_vlan_id;
2834 
2835 	if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2836 		e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
2837 		adapter->mng_vlan_id = vid;
2838 	}
2839 
2840 	if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2841 		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid);
2842 }
2843 
2844 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2845 {
2846 	u16 vid;
2847 
2848 	e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
2849 
2850 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2851 	    e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
2852 }
2853 
2854 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2855 {
2856 	struct e1000_hw *hw = &adapter->hw;
2857 	u32 manc, manc2h, mdef, i, j;
2858 
2859 	if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2860 		return;
2861 
2862 	manc = er32(MANC);
2863 
2864 	/* enable receiving management packets to the host. this will probably
2865 	 * generate destination unreachable messages from the host OS, but
2866 	 * the packets will be handled on SMBUS
2867 	 */
2868 	manc |= E1000_MANC_EN_MNG2HOST;
2869 	manc2h = er32(MANC2H);
2870 
2871 	switch (hw->mac.type) {
2872 	default:
2873 		manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2874 		break;
2875 	case e1000_82574:
2876 	case e1000_82583:
2877 		/* Check if IPMI pass-through decision filter already exists;
2878 		 * if so, enable it.
2879 		 */
2880 		for (i = 0, j = 0; i < 8; i++) {
2881 			mdef = er32(MDEF(i));
2882 
2883 			/* Ignore filters with anything other than IPMI ports */
2884 			if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2885 				continue;
2886 
2887 			/* Enable this decision filter in MANC2H */
2888 			if (mdef)
2889 				manc2h |= BIT(i);
2890 
2891 			j |= mdef;
2892 		}
2893 
2894 		if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2895 			break;
2896 
2897 		/* Create new decision filter in an empty filter */
2898 		for (i = 0, j = 0; i < 8; i++)
2899 			if (er32(MDEF(i)) == 0) {
2900 				ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2901 					       E1000_MDEF_PORT_664));
2902 				manc2h |= BIT(1);
2903 				j++;
2904 				break;
2905 			}
2906 
2907 		if (!j)
2908 			e_warn("Unable to create IPMI pass-through filter\n");
2909 		break;
2910 	}
2911 
2912 	ew32(MANC2H, manc2h);
2913 	ew32(MANC, manc);
2914 }
2915 
2916 /**
2917  * e1000_configure_tx - Configure Transmit Unit after Reset
2918  * @adapter: board private structure
2919  *
2920  * Configure the Tx unit of the MAC after a reset.
2921  **/
2922 static void e1000_configure_tx(struct e1000_adapter *adapter)
2923 {
2924 	struct e1000_hw *hw = &adapter->hw;
2925 	struct e1000_ring *tx_ring = adapter->tx_ring;
2926 	u64 tdba;
2927 	u32 tdlen, tctl, tarc;
2928 
2929 	/* Setup the HW Tx Head and Tail descriptor pointers */
2930 	tdba = tx_ring->dma;
2931 	tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2932 	ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2933 	ew32(TDBAH(0), (tdba >> 32));
2934 	ew32(TDLEN(0), tdlen);
2935 	ew32(TDH(0), 0);
2936 	ew32(TDT(0), 0);
2937 	tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2938 	tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2939 
2940 	writel(0, tx_ring->head);
2941 	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2942 		e1000e_update_tdt_wa(tx_ring, 0);
2943 	else
2944 		writel(0, tx_ring->tail);
2945 
2946 	/* Set the Tx Interrupt Delay register */
2947 	ew32(TIDV, adapter->tx_int_delay);
2948 	/* Tx irq moderation */
2949 	ew32(TADV, adapter->tx_abs_int_delay);
2950 
2951 	if (adapter->flags2 & FLAG2_DMA_BURST) {
2952 		u32 txdctl = er32(TXDCTL(0));
2953 
2954 		txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2955 			    E1000_TXDCTL_WTHRESH);
2956 		/* set up some performance related parameters to encourage the
2957 		 * hardware to use the bus more efficiently in bursts, depends
2958 		 * on the tx_int_delay to be enabled,
2959 		 * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2960 		 * hthresh = 1 ==> prefetch when one or more available
2961 		 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2962 		 * BEWARE: this seems to work but should be considered first if
2963 		 * there are Tx hangs or other Tx related bugs
2964 		 */
2965 		txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2966 		ew32(TXDCTL(0), txdctl);
2967 	}
2968 	/* erratum work around: set txdctl the same for both queues */
2969 	ew32(TXDCTL(1), er32(TXDCTL(0)));
2970 
2971 	/* Program the Transmit Control Register */
2972 	tctl = er32(TCTL);
2973 	tctl &= ~E1000_TCTL_CT;
2974 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2975 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2976 
2977 	if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2978 		tarc = er32(TARC(0));
2979 		/* set the speed mode bit, we'll clear it if we're not at
2980 		 * gigabit link later
2981 		 */
2982 #define SPEED_MODE_BIT BIT(21)
2983 		tarc |= SPEED_MODE_BIT;
2984 		ew32(TARC(0), tarc);
2985 	}
2986 
2987 	/* errata: program both queues to unweighted RR */
2988 	if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2989 		tarc = er32(TARC(0));
2990 		tarc |= 1;
2991 		ew32(TARC(0), tarc);
2992 		tarc = er32(TARC(1));
2993 		tarc |= 1;
2994 		ew32(TARC(1), tarc);
2995 	}
2996 
2997 	/* Setup Transmit Descriptor Settings for eop descriptor */
2998 	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2999 
3000 	/* only set IDE if we are delaying interrupts using the timers */
3001 	if (adapter->tx_int_delay)
3002 		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
3003 
3004 	/* enable Report Status bit */
3005 	adapter->txd_cmd |= E1000_TXD_CMD_RS;
3006 
3007 	ew32(TCTL, tctl);
3008 
3009 	hw->mac.ops.config_collision_dist(hw);
3010 
3011 	/* SPT and KBL Si errata workaround to avoid data corruption */
3012 	if (hw->mac.type == e1000_pch_spt) {
3013 		u32 reg_val;
3014 
3015 		reg_val = er32(IOSFPC);
3016 		reg_val |= E1000_RCTL_RDMTS_HEX;
3017 		ew32(IOSFPC, reg_val);
3018 
3019 		reg_val = er32(TARC(0));
3020 		/* SPT and KBL Si errata workaround to avoid Tx hang.
3021 		 * Dropping the number of outstanding requests from
3022 		 * 3 to 2 in order to avoid a buffer overrun.
3023 		 */
3024 		reg_val &= ~E1000_TARC0_CB_MULTIQ_3_REQ;
3025 		reg_val |= E1000_TARC0_CB_MULTIQ_2_REQ;
3026 		ew32(TARC(0), reg_val);
3027 	}
3028 }
3029 
3030 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
3031 			   (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
3032 
3033 /**
3034  * e1000_setup_rctl - configure the receive control registers
3035  * @adapter: Board private structure
3036  **/
3037 static void e1000_setup_rctl(struct e1000_adapter *adapter)
3038 {
3039 	struct e1000_hw *hw = &adapter->hw;
3040 	u32 rctl, rfctl;
3041 	u32 pages = 0;
3042 
3043 	/* Workaround Si errata on PCHx - configure jumbo frame flow.
3044 	 * If jumbo frames not set, program related MAC/PHY registers
3045 	 * to h/w defaults
3046 	 */
3047 	if (hw->mac.type >= e1000_pch2lan) {
3048 		s32 ret_val;
3049 
3050 		if (adapter->netdev->mtu > ETH_DATA_LEN)
3051 			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
3052 		else
3053 			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
3054 
3055 		if (ret_val)
3056 			e_dbg("failed to enable|disable jumbo frame workaround mode\n");
3057 	}
3058 
3059 	/* Program MC offset vector base */
3060 	rctl = er32(RCTL);
3061 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3062 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3063 	    E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3064 	    (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3065 
3066 	/* Do not Store bad packets */
3067 	rctl &= ~E1000_RCTL_SBP;
3068 
3069 	/* Enable Long Packet receive */
3070 	if (adapter->netdev->mtu <= ETH_DATA_LEN)
3071 		rctl &= ~E1000_RCTL_LPE;
3072 	else
3073 		rctl |= E1000_RCTL_LPE;
3074 
3075 	/* Some systems expect that the CRC is included in SMBUS traffic. The
3076 	 * hardware strips the CRC before sending to both SMBUS (BMC) and to
3077 	 * host memory when this is enabled
3078 	 */
3079 	if (adapter->flags2 & FLAG2_CRC_STRIPPING)
3080 		rctl |= E1000_RCTL_SECRC;
3081 
3082 	/* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3083 	if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
3084 		u16 phy_data;
3085 
3086 		e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
3087 		phy_data &= 0xfff8;
3088 		phy_data |= BIT(2);
3089 		e1e_wphy(hw, PHY_REG(770, 26), phy_data);
3090 
3091 		e1e_rphy(hw, 22, &phy_data);
3092 		phy_data &= 0x0fff;
3093 		phy_data |= BIT(14);
3094 		e1e_wphy(hw, 0x10, 0x2823);
3095 		e1e_wphy(hw, 0x11, 0x0003);
3096 		e1e_wphy(hw, 22, phy_data);
3097 	}
3098 
3099 	/* Setup buffer sizes */
3100 	rctl &= ~E1000_RCTL_SZ_4096;
3101 	rctl |= E1000_RCTL_BSEX;
3102 	switch (adapter->rx_buffer_len) {
3103 	case 2048:
3104 	default:
3105 		rctl |= E1000_RCTL_SZ_2048;
3106 		rctl &= ~E1000_RCTL_BSEX;
3107 		break;
3108 	case 4096:
3109 		rctl |= E1000_RCTL_SZ_4096;
3110 		break;
3111 	case 8192:
3112 		rctl |= E1000_RCTL_SZ_8192;
3113 		break;
3114 	case 16384:
3115 		rctl |= E1000_RCTL_SZ_16384;
3116 		break;
3117 	}
3118 
3119 	/* Enable Extended Status in all Receive Descriptors */
3120 	rfctl = er32(RFCTL);
3121 	rfctl |= E1000_RFCTL_EXTEN;
3122 	ew32(RFCTL, rfctl);
3123 
3124 	/* 82571 and greater support packet-split where the protocol
3125 	 * header is placed in skb->data and the packet data is
3126 	 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3127 	 * In the case of a non-split, skb->data is linearly filled,
3128 	 * followed by the page buffers.  Therefore, skb->data is
3129 	 * sized to hold the largest protocol header.
3130 	 *
3131 	 * allocations using alloc_page take too long for regular MTU
3132 	 * so only enable packet split for jumbo frames
3133 	 *
3134 	 * Using pages when the page size is greater than 16k wastes
3135 	 * a lot of memory, since we allocate 3 pages at all times
3136 	 * per packet.
3137 	 */
3138 	pages = PAGE_USE_COUNT(adapter->netdev->mtu);
3139 	if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
3140 		adapter->rx_ps_pages = pages;
3141 	else
3142 		adapter->rx_ps_pages = 0;
3143 
3144 	if (adapter->rx_ps_pages) {
3145 		u32 psrctl = 0;
3146 
3147 		/* Enable Packet split descriptors */
3148 		rctl |= E1000_RCTL_DTYP_PS;
3149 
3150 		psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT;
3151 
3152 		switch (adapter->rx_ps_pages) {
3153 		case 3:
3154 			psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT;
3155 			fallthrough;
3156 		case 2:
3157 			psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT;
3158 			fallthrough;
3159 		case 1:
3160 			psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT;
3161 			break;
3162 		}
3163 
3164 		ew32(PSRCTL, psrctl);
3165 	}
3166 
3167 	/* This is useful for sniffing bad packets. */
3168 	if (adapter->netdev->features & NETIF_F_RXALL) {
3169 		/* UPE and MPE will be handled by normal PROMISC logic
3170 		 * in e1000e_set_rx_mode
3171 		 */
3172 		rctl |= (E1000_RCTL_SBP |	/* Receive bad packets */
3173 			 E1000_RCTL_BAM |	/* RX All Bcast Pkts */
3174 			 E1000_RCTL_PMCF);	/* RX All MAC Ctrl Pkts */
3175 
3176 		rctl &= ~(E1000_RCTL_VFE |	/* Disable VLAN filter */
3177 			  E1000_RCTL_DPF |	/* Allow filtered pause */
3178 			  E1000_RCTL_CFIEN);	/* Dis VLAN CFIEN Filter */
3179 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3180 		 * and that breaks VLANs.
3181 		 */
3182 	}
3183 
3184 	ew32(RCTL, rctl);
3185 	/* just started the receive unit, no need to restart */
3186 	adapter->flags &= ~FLAG_RESTART_NOW;
3187 }
3188 
3189 /**
3190  * e1000_configure_rx - Configure Receive Unit after Reset
3191  * @adapter: board private structure
3192  *
3193  * Configure the Rx unit of the MAC after a reset.
3194  **/
3195 static void e1000_configure_rx(struct e1000_adapter *adapter)
3196 {
3197 	struct e1000_hw *hw = &adapter->hw;
3198 	struct e1000_ring *rx_ring = adapter->rx_ring;
3199 	u64 rdba;
3200 	u32 rdlen, rctl, rxcsum, ctrl_ext;
3201 
3202 	if (adapter->rx_ps_pages) {
3203 		/* this is a 32 byte descriptor */
3204 		rdlen = rx_ring->count *
3205 		    sizeof(union e1000_rx_desc_packet_split);
3206 		adapter->clean_rx = e1000_clean_rx_irq_ps;
3207 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3208 	} else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3209 		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3210 		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3211 		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3212 	} else {
3213 		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3214 		adapter->clean_rx = e1000_clean_rx_irq;
3215 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3216 	}
3217 
3218 	/* disable receives while setting up the descriptors */
3219 	rctl = er32(RCTL);
3220 	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3221 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
3222 	e1e_flush();
3223 	usleep_range(10000, 11000);
3224 
3225 	if (adapter->flags2 & FLAG2_DMA_BURST) {
3226 		/* set the writeback threshold (only takes effect if the RDTR
3227 		 * is set). set GRAN=1 and write back up to 0x4 worth, and
3228 		 * enable prefetching of 0x20 Rx descriptors
3229 		 * granularity = 01
3230 		 * wthresh = 04,
3231 		 * hthresh = 04,
3232 		 * pthresh = 0x20
3233 		 */
3234 		ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3235 		ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3236 	}
3237 
3238 	/* set the Receive Delay Timer Register */
3239 	ew32(RDTR, adapter->rx_int_delay);
3240 
3241 	/* irq moderation */
3242 	ew32(RADV, adapter->rx_abs_int_delay);
3243 	if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3244 		e1000e_write_itr(adapter, adapter->itr);
3245 
3246 	ctrl_ext = er32(CTRL_EXT);
3247 	/* Auto-Mask interrupts upon ICR access */
3248 	ctrl_ext |= E1000_CTRL_EXT_IAME;
3249 	ew32(IAM, 0xffffffff);
3250 	ew32(CTRL_EXT, ctrl_ext);
3251 	e1e_flush();
3252 
3253 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
3254 	 * the Base and Length of the Rx Descriptor Ring
3255 	 */
3256 	rdba = rx_ring->dma;
3257 	ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3258 	ew32(RDBAH(0), (rdba >> 32));
3259 	ew32(RDLEN(0), rdlen);
3260 	ew32(RDH(0), 0);
3261 	ew32(RDT(0), 0);
3262 	rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3263 	rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3264 
3265 	writel(0, rx_ring->head);
3266 	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
3267 		e1000e_update_rdt_wa(rx_ring, 0);
3268 	else
3269 		writel(0, rx_ring->tail);
3270 
3271 	/* Enable Receive Checksum Offload for TCP and UDP */
3272 	rxcsum = er32(RXCSUM);
3273 	if (adapter->netdev->features & NETIF_F_RXCSUM)
3274 		rxcsum |= E1000_RXCSUM_TUOFL;
3275 	else
3276 		rxcsum &= ~E1000_RXCSUM_TUOFL;
3277 	ew32(RXCSUM, rxcsum);
3278 
3279 	/* With jumbo frames, excessive C-state transition latencies result
3280 	 * in dropped transactions.
3281 	 */
3282 	if (adapter->netdev->mtu > ETH_DATA_LEN) {
3283 		u32 lat =
3284 		    ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 -
3285 		     adapter->max_frame_size) * 8 / 1000;
3286 
3287 		if (adapter->flags & FLAG_IS_ICH) {
3288 			u32 rxdctl = er32(RXDCTL(0));
3289 
3290 			ew32(RXDCTL(0), rxdctl | 0x3 | BIT(8));
3291 		}
3292 
3293 		dev_info(&adapter->pdev->dev,
3294 			 "Some CPU C-states have been disabled in order to enable jumbo frames\n");
3295 		cpu_latency_qos_update_request(&adapter->pm_qos_req, lat);
3296 	} else {
3297 		cpu_latency_qos_update_request(&adapter->pm_qos_req,
3298 					       PM_QOS_DEFAULT_VALUE);
3299 	}
3300 
3301 	/* Enable Receives */
3302 	ew32(RCTL, rctl);
3303 }
3304 
3305 /**
3306  * e1000e_write_mc_addr_list - write multicast addresses to MTA
3307  * @netdev: network interface device structure
3308  *
3309  * Writes multicast address list to the MTA hash table.
3310  * Returns: -ENOMEM on failure
3311  *                0 on no addresses written
3312  *                X on writing X addresses to MTA
3313  */
3314 static int e1000e_write_mc_addr_list(struct net_device *netdev)
3315 {
3316 	struct e1000_adapter *adapter = netdev_priv(netdev);
3317 	struct e1000_hw *hw = &adapter->hw;
3318 	struct netdev_hw_addr *ha;
3319 	u8 *mta_list;
3320 	int i;
3321 
3322 	if (netdev_mc_empty(netdev)) {
3323 		/* nothing to program, so clear mc list */
3324 		hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3325 		return 0;
3326 	}
3327 
3328 	mta_list = kcalloc(netdev_mc_count(netdev), ETH_ALEN, GFP_ATOMIC);
3329 	if (!mta_list)
3330 		return -ENOMEM;
3331 
3332 	/* update_mc_addr_list expects a packed array of only addresses. */
3333 	i = 0;
3334 	netdev_for_each_mc_addr(ha, netdev)
3335 	    memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3336 
3337 	hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3338 	kfree(mta_list);
3339 
3340 	return netdev_mc_count(netdev);
3341 }
3342 
3343 /**
3344  * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3345  * @netdev: network interface device structure
3346  *
3347  * Writes unicast address list to the RAR table.
3348  * Returns: -ENOMEM on failure/insufficient address space
3349  *                0 on no addresses written
3350  *                X on writing X addresses to the RAR table
3351  **/
3352 static int e1000e_write_uc_addr_list(struct net_device *netdev)
3353 {
3354 	struct e1000_adapter *adapter = netdev_priv(netdev);
3355 	struct e1000_hw *hw = &adapter->hw;
3356 	unsigned int rar_entries;
3357 	int count = 0;
3358 
3359 	rar_entries = hw->mac.ops.rar_get_count(hw);
3360 
3361 	/* save a rar entry for our hardware address */
3362 	rar_entries--;
3363 
3364 	/* save a rar entry for the LAA workaround */
3365 	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3366 		rar_entries--;
3367 
3368 	/* return ENOMEM indicating insufficient memory for addresses */
3369 	if (netdev_uc_count(netdev) > rar_entries)
3370 		return -ENOMEM;
3371 
3372 	if (!netdev_uc_empty(netdev) && rar_entries) {
3373 		struct netdev_hw_addr *ha;
3374 
3375 		/* write the addresses in reverse order to avoid write
3376 		 * combining
3377 		 */
3378 		netdev_for_each_uc_addr(ha, netdev) {
3379 			int ret_val;
3380 
3381 			if (!rar_entries)
3382 				break;
3383 			ret_val = hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3384 			if (ret_val < 0)
3385 				return -ENOMEM;
3386 			count++;
3387 		}
3388 	}
3389 
3390 	/* zero out the remaining RAR entries not used above */
3391 	for (; rar_entries > 0; rar_entries--) {
3392 		ew32(RAH(rar_entries), 0);
3393 		ew32(RAL(rar_entries), 0);
3394 	}
3395 	e1e_flush();
3396 
3397 	return count;
3398 }
3399 
3400 /**
3401  * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3402  * @netdev: network interface device structure
3403  *
3404  * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3405  * address list or the network interface flags are updated.  This routine is
3406  * responsible for configuring the hardware for proper unicast, multicast,
3407  * promiscuous mode, and all-multi behavior.
3408  **/
3409 static void e1000e_set_rx_mode(struct net_device *netdev)
3410 {
3411 	struct e1000_adapter *adapter = netdev_priv(netdev);
3412 	struct e1000_hw *hw = &adapter->hw;
3413 	u32 rctl;
3414 
3415 	if (pm_runtime_suspended(netdev->dev.parent))
3416 		return;
3417 
3418 	/* Check for Promiscuous and All Multicast modes */
3419 	rctl = er32(RCTL);
3420 
3421 	/* clear the affected bits */
3422 	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3423 
3424 	if (netdev->flags & IFF_PROMISC) {
3425 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3426 		/* Do not hardware filter VLANs in promisc mode */
3427 		e1000e_vlan_filter_disable(adapter);
3428 	} else {
3429 		int count;
3430 
3431 		if (netdev->flags & IFF_ALLMULTI) {
3432 			rctl |= E1000_RCTL_MPE;
3433 		} else {
3434 			/* Write addresses to the MTA, if the attempt fails
3435 			 * then we should just turn on promiscuous mode so
3436 			 * that we can at least receive multicast traffic
3437 			 */
3438 			count = e1000e_write_mc_addr_list(netdev);
3439 			if (count < 0)
3440 				rctl |= E1000_RCTL_MPE;
3441 		}
3442 		e1000e_vlan_filter_enable(adapter);
3443 		/* Write addresses to available RAR registers, if there is not
3444 		 * sufficient space to store all the addresses then enable
3445 		 * unicast promiscuous mode
3446 		 */
3447 		count = e1000e_write_uc_addr_list(netdev);
3448 		if (count < 0)
3449 			rctl |= E1000_RCTL_UPE;
3450 	}
3451 
3452 	ew32(RCTL, rctl);
3453 
3454 	if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
3455 		e1000e_vlan_strip_enable(adapter);
3456 	else
3457 		e1000e_vlan_strip_disable(adapter);
3458 }
3459 
3460 static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3461 {
3462 	struct e1000_hw *hw = &adapter->hw;
3463 	u32 mrqc, rxcsum;
3464 	u32 rss_key[10];
3465 	int i;
3466 
3467 	netdev_rss_key_fill(rss_key, sizeof(rss_key));
3468 	for (i = 0; i < 10; i++)
3469 		ew32(RSSRK(i), rss_key[i]);
3470 
3471 	/* Direct all traffic to queue 0 */
3472 	for (i = 0; i < 32; i++)
3473 		ew32(RETA(i), 0);
3474 
3475 	/* Disable raw packet checksumming so that RSS hash is placed in
3476 	 * descriptor on writeback.
3477 	 */
3478 	rxcsum = er32(RXCSUM);
3479 	rxcsum |= E1000_RXCSUM_PCSD;
3480 
3481 	ew32(RXCSUM, rxcsum);
3482 
3483 	mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3484 		E1000_MRQC_RSS_FIELD_IPV4_TCP |
3485 		E1000_MRQC_RSS_FIELD_IPV6 |
3486 		E1000_MRQC_RSS_FIELD_IPV6_TCP |
3487 		E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3488 
3489 	ew32(MRQC, mrqc);
3490 }
3491 
3492 /**
3493  * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3494  * @adapter: board private structure
3495  * @timinca: pointer to returned time increment attributes
3496  *
3497  * Get attributes for incrementing the System Time Register SYSTIML/H at
3498  * the default base frequency, and set the cyclecounter shift value.
3499  **/
3500 s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca)
3501 {
3502 	struct e1000_hw *hw = &adapter->hw;
3503 	u32 incvalue, incperiod, shift;
3504 
3505 	/* Make sure clock is enabled on I217/I218/I219  before checking
3506 	 * the frequency
3507 	 */
3508 	if ((hw->mac.type >= e1000_pch_lpt) &&
3509 	    !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) &&
3510 	    !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) {
3511 		u32 fextnvm7 = er32(FEXTNVM7);
3512 
3513 		if (!(fextnvm7 & BIT(0))) {
3514 			ew32(FEXTNVM7, fextnvm7 | BIT(0));
3515 			e1e_flush();
3516 		}
3517 	}
3518 
3519 	switch (hw->mac.type) {
3520 	case e1000_pch2lan:
3521 		/* Stable 96MHz frequency */
3522 		incperiod = INCPERIOD_96MHZ;
3523 		incvalue = INCVALUE_96MHZ;
3524 		shift = INCVALUE_SHIFT_96MHZ;
3525 		adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3526 		break;
3527 	case e1000_pch_lpt:
3528 		if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3529 			/* Stable 96MHz frequency */
3530 			incperiod = INCPERIOD_96MHZ;
3531 			incvalue = INCVALUE_96MHZ;
3532 			shift = INCVALUE_SHIFT_96MHZ;
3533 			adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3534 		} else {
3535 			/* Stable 25MHz frequency */
3536 			incperiod = INCPERIOD_25MHZ;
3537 			incvalue = INCVALUE_25MHZ;
3538 			shift = INCVALUE_SHIFT_25MHZ;
3539 			adapter->cc.shift = shift;
3540 		}
3541 		break;
3542 	case e1000_pch_spt:
3543 		/* Stable 24MHz frequency */
3544 		incperiod = INCPERIOD_24MHZ;
3545 		incvalue = INCVALUE_24MHZ;
3546 		shift = INCVALUE_SHIFT_24MHZ;
3547 		adapter->cc.shift = shift;
3548 		break;
3549 	case e1000_pch_cnp:
3550 	case e1000_pch_tgp:
3551 	case e1000_pch_adp:
3552 	case e1000_pch_mtp:
3553 		if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3554 			/* Stable 24MHz frequency */
3555 			incperiod = INCPERIOD_24MHZ;
3556 			incvalue = INCVALUE_24MHZ;
3557 			shift = INCVALUE_SHIFT_24MHZ;
3558 			adapter->cc.shift = shift;
3559 		} else {
3560 			/* Stable 38400KHz frequency */
3561 			incperiod = INCPERIOD_38400KHZ;
3562 			incvalue = INCVALUE_38400KHZ;
3563 			shift = INCVALUE_SHIFT_38400KHZ;
3564 			adapter->cc.shift = shift;
3565 		}
3566 		break;
3567 	case e1000_82574:
3568 	case e1000_82583:
3569 		/* Stable 25MHz frequency */
3570 		incperiod = INCPERIOD_25MHZ;
3571 		incvalue = INCVALUE_25MHZ;
3572 		shift = INCVALUE_SHIFT_25MHZ;
3573 		adapter->cc.shift = shift;
3574 		break;
3575 	default:
3576 		return -EINVAL;
3577 	}
3578 
3579 	*timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) |
3580 		    ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK));
3581 
3582 	return 0;
3583 }
3584 
3585 /**
3586  * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3587  * @adapter: board private structure
3588  * @config: timestamp configuration
3589  *
3590  * Outgoing time stamping can be enabled and disabled. Play nice and
3591  * disable it when requested, although it shouldn't cause any overhead
3592  * when no packet needs it. At most one packet in the queue may be
3593  * marked for time stamping, otherwise it would be impossible to tell
3594  * for sure to which packet the hardware time stamp belongs.
3595  *
3596  * Incoming time stamping has to be configured via the hardware filters.
3597  * Not all combinations are supported, in particular event type has to be
3598  * specified. Matching the kind of event packet is not supported, with the
3599  * exception of "all V2 events regardless of level 2 or 4".
3600  **/
3601 static int e1000e_config_hwtstamp(struct e1000_adapter *adapter,
3602 				  struct hwtstamp_config *config)
3603 {
3604 	struct e1000_hw *hw = &adapter->hw;
3605 	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
3606 	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
3607 	u32 rxmtrl = 0;
3608 	u16 rxudp = 0;
3609 	bool is_l4 = false;
3610 	bool is_l2 = false;
3611 	u32 regval;
3612 
3613 	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3614 		return -EINVAL;
3615 
3616 	/* flags reserved for future extensions - must be zero */
3617 	if (config->flags)
3618 		return -EINVAL;
3619 
3620 	switch (config->tx_type) {
3621 	case HWTSTAMP_TX_OFF:
3622 		tsync_tx_ctl = 0;
3623 		break;
3624 	case HWTSTAMP_TX_ON:
3625 		break;
3626 	default:
3627 		return -ERANGE;
3628 	}
3629 
3630 	switch (config->rx_filter) {
3631 	case HWTSTAMP_FILTER_NONE:
3632 		tsync_rx_ctl = 0;
3633 		break;
3634 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3635 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3636 		rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE;
3637 		is_l4 = true;
3638 		break;
3639 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3640 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3641 		rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE;
3642 		is_l4 = true;
3643 		break;
3644 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3645 		/* Also time stamps V2 L2 Path Delay Request/Response */
3646 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3647 		rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3648 		is_l2 = true;
3649 		break;
3650 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3651 		/* Also time stamps V2 L2 Path Delay Request/Response. */
3652 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3653 		rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3654 		is_l2 = true;
3655 		break;
3656 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3657 		/* Hardware cannot filter just V2 L4 Sync messages */
3658 		fallthrough;
3659 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
3660 		/* Also time stamps V2 Path Delay Request/Response. */
3661 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3662 		rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3663 		is_l2 = true;
3664 		is_l4 = true;
3665 		break;
3666 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3667 		/* Hardware cannot filter just V2 L4 Delay Request messages */
3668 		fallthrough;
3669 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3670 		/* Also time stamps V2 Path Delay Request/Response. */
3671 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3672 		rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3673 		is_l2 = true;
3674 		is_l4 = true;
3675 		break;
3676 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3677 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3678 		/* Hardware cannot filter just V2 L4 or L2 Event messages */
3679 		fallthrough;
3680 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
3681 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
3682 		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
3683 		is_l2 = true;
3684 		is_l4 = true;
3685 		break;
3686 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3687 		/* For V1, the hardware can only filter Sync messages or
3688 		 * Delay Request messages but not both so fall-through to
3689 		 * time stamp all packets.
3690 		 */
3691 		fallthrough;
3692 	case HWTSTAMP_FILTER_NTP_ALL:
3693 	case HWTSTAMP_FILTER_ALL:
3694 		is_l2 = true;
3695 		is_l4 = true;
3696 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
3697 		config->rx_filter = HWTSTAMP_FILTER_ALL;
3698 		break;
3699 	default:
3700 		return -ERANGE;
3701 	}
3702 
3703 	adapter->hwtstamp_config = *config;
3704 
3705 	/* enable/disable Tx h/w time stamping */
3706 	regval = er32(TSYNCTXCTL);
3707 	regval &= ~E1000_TSYNCTXCTL_ENABLED;
3708 	regval |= tsync_tx_ctl;
3709 	ew32(TSYNCTXCTL, regval);
3710 	if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) !=
3711 	    (regval & E1000_TSYNCTXCTL_ENABLED)) {
3712 		e_err("Timesync Tx Control register not set as expected\n");
3713 		return -EAGAIN;
3714 	}
3715 
3716 	/* enable/disable Rx h/w time stamping */
3717 	regval = er32(TSYNCRXCTL);
3718 	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
3719 	regval |= tsync_rx_ctl;
3720 	ew32(TSYNCRXCTL, regval);
3721 	if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED |
3722 				 E1000_TSYNCRXCTL_TYPE_MASK)) !=
3723 	    (regval & (E1000_TSYNCRXCTL_ENABLED |
3724 		       E1000_TSYNCRXCTL_TYPE_MASK))) {
3725 		e_err("Timesync Rx Control register not set as expected\n");
3726 		return -EAGAIN;
3727 	}
3728 
3729 	/* L2: define ethertype filter for time stamped packets */
3730 	if (is_l2)
3731 		rxmtrl |= ETH_P_1588;
3732 
3733 	/* define which PTP packets get time stamped */
3734 	ew32(RXMTRL, rxmtrl);
3735 
3736 	/* Filter by destination port */
3737 	if (is_l4) {
3738 		rxudp = PTP_EV_PORT;
3739 		cpu_to_be16s(&rxudp);
3740 	}
3741 	ew32(RXUDP, rxudp);
3742 
3743 	e1e_flush();
3744 
3745 	/* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
3746 	er32(RXSTMPH);
3747 	er32(TXSTMPH);
3748 
3749 	return 0;
3750 }
3751 
3752 /**
3753  * e1000_configure - configure the hardware for Rx and Tx
3754  * @adapter: private board structure
3755  **/
3756 static void e1000_configure(struct e1000_adapter *adapter)
3757 {
3758 	struct e1000_ring *rx_ring = adapter->rx_ring;
3759 
3760 	e1000e_set_rx_mode(adapter->netdev);
3761 
3762 	e1000_restore_vlan(adapter);
3763 	e1000_init_manageability_pt(adapter);
3764 
3765 	e1000_configure_tx(adapter);
3766 
3767 	if (adapter->netdev->features & NETIF_F_RXHASH)
3768 		e1000e_setup_rss_hash(adapter);
3769 	e1000_setup_rctl(adapter);
3770 	e1000_configure_rx(adapter);
3771 	adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3772 }
3773 
3774 /**
3775  * e1000e_power_up_phy - restore link in case the phy was powered down
3776  * @adapter: address of board private structure
3777  *
3778  * The phy may be powered down to save power and turn off link when the
3779  * driver is unloaded and wake on lan is not enabled (among others)
3780  * *** this routine MUST be followed by a call to e1000e_reset ***
3781  **/
3782 void e1000e_power_up_phy(struct e1000_adapter *adapter)
3783 {
3784 	if (adapter->hw.phy.ops.power_up)
3785 		adapter->hw.phy.ops.power_up(&adapter->hw);
3786 
3787 	adapter->hw.mac.ops.setup_link(&adapter->hw);
3788 }
3789 
3790 /**
3791  * e1000_power_down_phy - Power down the PHY
3792  * @adapter: board private structure
3793  *
3794  * Power down the PHY so no link is implied when interface is down.
3795  * The PHY cannot be powered down if management or WoL is active.
3796  */
3797 static void e1000_power_down_phy(struct e1000_adapter *adapter)
3798 {
3799 	if (adapter->hw.phy.ops.power_down)
3800 		adapter->hw.phy.ops.power_down(&adapter->hw);
3801 }
3802 
3803 /**
3804  * e1000_flush_tx_ring - remove all descriptors from the tx_ring
3805  * @adapter: board private structure
3806  *
3807  * We want to clear all pending descriptors from the TX ring.
3808  * zeroing happens when the HW reads the regs. We  assign the ring itself as
3809  * the data of the next descriptor. We don't care about the data we are about
3810  * to reset the HW.
3811  */
3812 static void e1000_flush_tx_ring(struct e1000_adapter *adapter)
3813 {
3814 	struct e1000_hw *hw = &adapter->hw;
3815 	struct e1000_ring *tx_ring = adapter->tx_ring;
3816 	struct e1000_tx_desc *tx_desc = NULL;
3817 	u32 tdt, tctl, txd_lower = E1000_TXD_CMD_IFCS;
3818 	u16 size = 512;
3819 
3820 	tctl = er32(TCTL);
3821 	ew32(TCTL, tctl | E1000_TCTL_EN);
3822 	tdt = er32(TDT(0));
3823 	BUG_ON(tdt != tx_ring->next_to_use);
3824 	tx_desc =  E1000_TX_DESC(*tx_ring, tx_ring->next_to_use);
3825 	tx_desc->buffer_addr = cpu_to_le64(tx_ring->dma);
3826 
3827 	tx_desc->lower.data = cpu_to_le32(txd_lower | size);
3828 	tx_desc->upper.data = 0;
3829 	/* flush descriptors to memory before notifying the HW */
3830 	wmb();
3831 	tx_ring->next_to_use++;
3832 	if (tx_ring->next_to_use == tx_ring->count)
3833 		tx_ring->next_to_use = 0;
3834 	ew32(TDT(0), tx_ring->next_to_use);
3835 	usleep_range(200, 250);
3836 }
3837 
3838 /**
3839  * e1000_flush_rx_ring - remove all descriptors from the rx_ring
3840  * @adapter: board private structure
3841  *
3842  * Mark all descriptors in the RX ring as consumed and disable the rx ring
3843  */
3844 static void e1000_flush_rx_ring(struct e1000_adapter *adapter)
3845 {
3846 	u32 rctl, rxdctl;
3847 	struct e1000_hw *hw = &adapter->hw;
3848 
3849 	rctl = er32(RCTL);
3850 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
3851 	e1e_flush();
3852 	usleep_range(100, 150);
3853 
3854 	rxdctl = er32(RXDCTL(0));
3855 	/* zero the lower 14 bits (prefetch and host thresholds) */
3856 	rxdctl &= 0xffffc000;
3857 
3858 	/* update thresholds: prefetch threshold to 31, host threshold to 1
3859 	 * and make sure the granularity is "descriptors" and not "cache lines"
3860 	 */
3861 	rxdctl |= (0x1F | BIT(8) | E1000_RXDCTL_THRESH_UNIT_DESC);
3862 
3863 	ew32(RXDCTL(0), rxdctl);
3864 	/* momentarily enable the RX ring for the changes to take effect */
3865 	ew32(RCTL, rctl | E1000_RCTL_EN);
3866 	e1e_flush();
3867 	usleep_range(100, 150);
3868 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
3869 }
3870 
3871 /**
3872  * e1000_flush_desc_rings - remove all descriptors from the descriptor rings
3873  * @adapter: board private structure
3874  *
3875  * In i219, the descriptor rings must be emptied before resetting the HW
3876  * or before changing the device state to D3 during runtime (runtime PM).
3877  *
3878  * Failure to do this will cause the HW to enter a unit hang state which can
3879  * only be released by PCI reset on the device
3880  *
3881  */
3882 
3883 static void e1000_flush_desc_rings(struct e1000_adapter *adapter)
3884 {
3885 	u16 hang_state;
3886 	u32 fext_nvm11, tdlen;
3887 	struct e1000_hw *hw = &adapter->hw;
3888 
3889 	/* First, disable MULR fix in FEXTNVM11 */
3890 	fext_nvm11 = er32(FEXTNVM11);
3891 	fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
3892 	ew32(FEXTNVM11, fext_nvm11);
3893 	/* do nothing if we're not in faulty state, or if the queue is empty */
3894 	tdlen = er32(TDLEN(0));
3895 	pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3896 			     &hang_state);
3897 	if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen)
3898 		return;
3899 	e1000_flush_tx_ring(adapter);
3900 	/* recheck, maybe the fault is caused by the rx ring */
3901 	pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3902 			     &hang_state);
3903 	if (hang_state & FLUSH_DESC_REQUIRED)
3904 		e1000_flush_rx_ring(adapter);
3905 }
3906 
3907 /**
3908  * e1000e_systim_reset - reset the timesync registers after a hardware reset
3909  * @adapter: board private structure
3910  *
3911  * When the MAC is reset, all hardware bits for timesync will be reset to the
3912  * default values. This function will restore the settings last in place.
3913  * Since the clock SYSTIME registers are reset, we will simply restore the
3914  * cyclecounter to the kernel real clock time.
3915  **/
3916 static void e1000e_systim_reset(struct e1000_adapter *adapter)
3917 {
3918 	struct ptp_clock_info *info = &adapter->ptp_clock_info;
3919 	struct e1000_hw *hw = &adapter->hw;
3920 	unsigned long flags;
3921 	u32 timinca;
3922 	s32 ret_val;
3923 
3924 	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3925 		return;
3926 
3927 	if (info->adjfreq) {
3928 		/* restore the previous ptp frequency delta */
3929 		ret_val = info->adjfreq(info, adapter->ptp_delta);
3930 	} else {
3931 		/* set the default base frequency if no adjustment possible */
3932 		ret_val = e1000e_get_base_timinca(adapter, &timinca);
3933 		if (!ret_val)
3934 			ew32(TIMINCA, timinca);
3935 	}
3936 
3937 	if (ret_val) {
3938 		dev_warn(&adapter->pdev->dev,
3939 			 "Failed to restore TIMINCA clock rate delta: %d\n",
3940 			 ret_val);
3941 		return;
3942 	}
3943 
3944 	/* reset the systim ns time counter */
3945 	spin_lock_irqsave(&adapter->systim_lock, flags);
3946 	timecounter_init(&adapter->tc, &adapter->cc,
3947 			 ktime_to_ns(ktime_get_real()));
3948 	spin_unlock_irqrestore(&adapter->systim_lock, flags);
3949 
3950 	/* restore the previous hwtstamp configuration settings */
3951 	e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config);
3952 }
3953 
3954 /**
3955  * e1000e_reset - bring the hardware into a known good state
3956  * @adapter: board private structure
3957  *
3958  * This function boots the hardware and enables some settings that
3959  * require a configuration cycle of the hardware - those cannot be
3960  * set/changed during runtime. After reset the device needs to be
3961  * properly configured for Rx, Tx etc.
3962  */
3963 void e1000e_reset(struct e1000_adapter *adapter)
3964 {
3965 	struct e1000_mac_info *mac = &adapter->hw.mac;
3966 	struct e1000_fc_info *fc = &adapter->hw.fc;
3967 	struct e1000_hw *hw = &adapter->hw;
3968 	u32 tx_space, min_tx_space, min_rx_space;
3969 	u32 pba = adapter->pba;
3970 	u16 hwm;
3971 
3972 	/* reset Packet Buffer Allocation to default */
3973 	ew32(PBA, pba);
3974 
3975 	if (adapter->max_frame_size > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) {
3976 		/* To maintain wire speed transmits, the Tx FIFO should be
3977 		 * large enough to accommodate two full transmit packets,
3978 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
3979 		 * the Rx FIFO should be large enough to accommodate at least
3980 		 * one full receive packet and is similarly rounded up and
3981 		 * expressed in KB.
3982 		 */
3983 		pba = er32(PBA);
3984 		/* upper 16 bits has Tx packet buffer allocation size in KB */
3985 		tx_space = pba >> 16;
3986 		/* lower 16 bits has Rx packet buffer allocation size in KB */
3987 		pba &= 0xffff;
3988 		/* the Tx fifo also stores 16 bytes of information about the Tx
3989 		 * but don't include ethernet FCS because hardware appends it
3990 		 */
3991 		min_tx_space = (adapter->max_frame_size +
3992 				sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2;
3993 		min_tx_space = ALIGN(min_tx_space, 1024);
3994 		min_tx_space >>= 10;
3995 		/* software strips receive CRC, so leave room for it */
3996 		min_rx_space = adapter->max_frame_size;
3997 		min_rx_space = ALIGN(min_rx_space, 1024);
3998 		min_rx_space >>= 10;
3999 
4000 		/* If current Tx allocation is less than the min Tx FIFO size,
4001 		 * and the min Tx FIFO size is less than the current Rx FIFO
4002 		 * allocation, take space away from current Rx allocation
4003 		 */
4004 		if ((tx_space < min_tx_space) &&
4005 		    ((min_tx_space - tx_space) < pba)) {
4006 			pba -= min_tx_space - tx_space;
4007 
4008 			/* if short on Rx space, Rx wins and must trump Tx
4009 			 * adjustment
4010 			 */
4011 			if (pba < min_rx_space)
4012 				pba = min_rx_space;
4013 		}
4014 
4015 		ew32(PBA, pba);
4016 	}
4017 
4018 	/* flow control settings
4019 	 *
4020 	 * The high water mark must be low enough to fit one full frame
4021 	 * (or the size used for early receive) above it in the Rx FIFO.
4022 	 * Set it to the lower of:
4023 	 * - 90% of the Rx FIFO size, and
4024 	 * - the full Rx FIFO size minus one full frame
4025 	 */
4026 	if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
4027 		fc->pause_time = 0xFFFF;
4028 	else
4029 		fc->pause_time = E1000_FC_PAUSE_TIME;
4030 	fc->send_xon = true;
4031 	fc->current_mode = fc->requested_mode;
4032 
4033 	switch (hw->mac.type) {
4034 	case e1000_ich9lan:
4035 	case e1000_ich10lan:
4036 		if (adapter->netdev->mtu > ETH_DATA_LEN) {
4037 			pba = 14;
4038 			ew32(PBA, pba);
4039 			fc->high_water = 0x2800;
4040 			fc->low_water = fc->high_water - 8;
4041 			break;
4042 		}
4043 		fallthrough;
4044 	default:
4045 		hwm = min(((pba << 10) * 9 / 10),
4046 			  ((pba << 10) - adapter->max_frame_size));
4047 
4048 		fc->high_water = hwm & E1000_FCRTH_RTH;	/* 8-byte granularity */
4049 		fc->low_water = fc->high_water - 8;
4050 		break;
4051 	case e1000_pchlan:
4052 		/* Workaround PCH LOM adapter hangs with certain network
4053 		 * loads.  If hangs persist, try disabling Tx flow control.
4054 		 */
4055 		if (adapter->netdev->mtu > ETH_DATA_LEN) {
4056 			fc->high_water = 0x3500;
4057 			fc->low_water = 0x1500;
4058 		} else {
4059 			fc->high_water = 0x5000;
4060 			fc->low_water = 0x3000;
4061 		}
4062 		fc->refresh_time = 0x1000;
4063 		break;
4064 	case e1000_pch2lan:
4065 	case e1000_pch_lpt:
4066 	case e1000_pch_spt:
4067 	case e1000_pch_cnp:
4068 	case e1000_pch_tgp:
4069 	case e1000_pch_adp:
4070 	case e1000_pch_mtp:
4071 		fc->refresh_time = 0xFFFF;
4072 		fc->pause_time = 0xFFFF;
4073 
4074 		if (adapter->netdev->mtu <= ETH_DATA_LEN) {
4075 			fc->high_water = 0x05C20;
4076 			fc->low_water = 0x05048;
4077 			break;
4078 		}
4079 
4080 		pba = 14;
4081 		ew32(PBA, pba);
4082 		fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH;
4083 		fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL;
4084 		break;
4085 	}
4086 
4087 	/* Alignment of Tx data is on an arbitrary byte boundary with the
4088 	 * maximum size per Tx descriptor limited only to the transmit
4089 	 * allocation of the packet buffer minus 96 bytes with an upper
4090 	 * limit of 24KB due to receive synchronization limitations.
4091 	 */
4092 	adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
4093 				       24 << 10);
4094 
4095 	/* Disable Adaptive Interrupt Moderation if 2 full packets cannot
4096 	 * fit in receive buffer.
4097 	 */
4098 	if (adapter->itr_setting & 0x3) {
4099 		if ((adapter->max_frame_size * 2) > (pba << 10)) {
4100 			if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
4101 				dev_info(&adapter->pdev->dev,
4102 					 "Interrupt Throttle Rate off\n");
4103 				adapter->flags2 |= FLAG2_DISABLE_AIM;
4104 				e1000e_write_itr(adapter, 0);
4105 			}
4106 		} else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
4107 			dev_info(&adapter->pdev->dev,
4108 				 "Interrupt Throttle Rate on\n");
4109 			adapter->flags2 &= ~FLAG2_DISABLE_AIM;
4110 			adapter->itr = 20000;
4111 			e1000e_write_itr(adapter, adapter->itr);
4112 		}
4113 	}
4114 
4115 	if (hw->mac.type >= e1000_pch_spt)
4116 		e1000_flush_desc_rings(adapter);
4117 	/* Allow time for pending master requests to run */
4118 	mac->ops.reset_hw(hw);
4119 
4120 	/* For parts with AMT enabled, let the firmware know
4121 	 * that the network interface is in control
4122 	 */
4123 	if (adapter->flags & FLAG_HAS_AMT)
4124 		e1000e_get_hw_control(adapter);
4125 
4126 	ew32(WUC, 0);
4127 
4128 	if (mac->ops.init_hw(hw))
4129 		e_err("Hardware Error\n");
4130 
4131 	e1000_update_mng_vlan(adapter);
4132 
4133 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
4134 	ew32(VET, ETH_P_8021Q);
4135 
4136 	e1000e_reset_adaptive(hw);
4137 
4138 	/* restore systim and hwtstamp settings */
4139 	e1000e_systim_reset(adapter);
4140 
4141 	/* Set EEE advertisement as appropriate */
4142 	if (adapter->flags2 & FLAG2_HAS_EEE) {
4143 		s32 ret_val;
4144 		u16 adv_addr;
4145 
4146 		switch (hw->phy.type) {
4147 		case e1000_phy_82579:
4148 			adv_addr = I82579_EEE_ADVERTISEMENT;
4149 			break;
4150 		case e1000_phy_i217:
4151 			adv_addr = I217_EEE_ADVERTISEMENT;
4152 			break;
4153 		default:
4154 			dev_err(&adapter->pdev->dev,
4155 				"Invalid PHY type setting EEE advertisement\n");
4156 			return;
4157 		}
4158 
4159 		ret_val = hw->phy.ops.acquire(hw);
4160 		if (ret_val) {
4161 			dev_err(&adapter->pdev->dev,
4162 				"EEE advertisement - unable to acquire PHY\n");
4163 			return;
4164 		}
4165 
4166 		e1000_write_emi_reg_locked(hw, adv_addr,
4167 					   hw->dev_spec.ich8lan.eee_disable ?
4168 					   0 : adapter->eee_advert);
4169 
4170 		hw->phy.ops.release(hw);
4171 	}
4172 
4173 	if (!netif_running(adapter->netdev) &&
4174 	    !test_bit(__E1000_TESTING, &adapter->state))
4175 		e1000_power_down_phy(adapter);
4176 
4177 	e1000_get_phy_info(hw);
4178 
4179 	if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
4180 	    !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
4181 		u16 phy_data = 0;
4182 		/* speed up time to link by disabling smart power down, ignore
4183 		 * the return value of this function because there is nothing
4184 		 * different we would do if it failed
4185 		 */
4186 		e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
4187 		phy_data &= ~IGP02E1000_PM_SPD;
4188 		e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
4189 	}
4190 	if (hw->mac.type >= e1000_pch_spt && adapter->int_mode == 0) {
4191 		u32 reg;
4192 
4193 		/* Fextnvm7 @ 0xe4[2] = 1 */
4194 		reg = er32(FEXTNVM7);
4195 		reg |= E1000_FEXTNVM7_SIDE_CLK_UNGATE;
4196 		ew32(FEXTNVM7, reg);
4197 		/* Fextnvm9 @ 0x5bb4[13:12] = 11 */
4198 		reg = er32(FEXTNVM9);
4199 		reg |= E1000_FEXTNVM9_IOSFSB_CLKGATE_DIS |
4200 		       E1000_FEXTNVM9_IOSFSB_CLKREQ_DIS;
4201 		ew32(FEXTNVM9, reg);
4202 	}
4203 
4204 }
4205 
4206 /**
4207  * e1000e_trigger_lsc - trigger an LSC interrupt
4208  * @adapter:
4209  *
4210  * Fire a link status change interrupt to start the watchdog.
4211  **/
4212 static void e1000e_trigger_lsc(struct e1000_adapter *adapter)
4213 {
4214 	struct e1000_hw *hw = &adapter->hw;
4215 
4216 	if (adapter->msix_entries)
4217 		ew32(ICS, E1000_ICS_LSC | E1000_ICS_OTHER);
4218 	else
4219 		ew32(ICS, E1000_ICS_LSC);
4220 }
4221 
4222 void e1000e_up(struct e1000_adapter *adapter)
4223 {
4224 	/* hardware has been reset, we need to reload some things */
4225 	e1000_configure(adapter);
4226 
4227 	clear_bit(__E1000_DOWN, &adapter->state);
4228 
4229 	if (adapter->msix_entries)
4230 		e1000_configure_msix(adapter);
4231 	e1000_irq_enable(adapter);
4232 
4233 	/* Tx queue started by watchdog timer when link is up */
4234 
4235 	e1000e_trigger_lsc(adapter);
4236 }
4237 
4238 static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
4239 {
4240 	struct e1000_hw *hw = &adapter->hw;
4241 
4242 	if (!(adapter->flags2 & FLAG2_DMA_BURST))
4243 		return;
4244 
4245 	/* flush pending descriptor writebacks to memory */
4246 	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4247 	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4248 
4249 	/* execute the writes immediately */
4250 	e1e_flush();
4251 
4252 	/* due to rare timing issues, write to TIDV/RDTR again to ensure the
4253 	 * write is successful
4254 	 */
4255 	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4256 	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4257 
4258 	/* execute the writes immediately */
4259 	e1e_flush();
4260 }
4261 
4262 static void e1000e_update_stats(struct e1000_adapter *adapter);
4263 
4264 /**
4265  * e1000e_down - quiesce the device and optionally reset the hardware
4266  * @adapter: board private structure
4267  * @reset: boolean flag to reset the hardware or not
4268  */
4269 void e1000e_down(struct e1000_adapter *adapter, bool reset)
4270 {
4271 	struct net_device *netdev = adapter->netdev;
4272 	struct e1000_hw *hw = &adapter->hw;
4273 	u32 tctl, rctl;
4274 
4275 	/* signal that we're down so the interrupt handler does not
4276 	 * reschedule our watchdog timer
4277 	 */
4278 	set_bit(__E1000_DOWN, &adapter->state);
4279 
4280 	netif_carrier_off(netdev);
4281 
4282 	/* disable receives in the hardware */
4283 	rctl = er32(RCTL);
4284 	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
4285 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
4286 	/* flush and sleep below */
4287 
4288 	netif_stop_queue(netdev);
4289 
4290 	/* disable transmits in the hardware */
4291 	tctl = er32(TCTL);
4292 	tctl &= ~E1000_TCTL_EN;
4293 	ew32(TCTL, tctl);
4294 
4295 	/* flush both disables and wait for them to finish */
4296 	e1e_flush();
4297 	usleep_range(10000, 11000);
4298 
4299 	e1000_irq_disable(adapter);
4300 
4301 	napi_synchronize(&adapter->napi);
4302 
4303 	del_timer_sync(&adapter->watchdog_timer);
4304 	del_timer_sync(&adapter->phy_info_timer);
4305 
4306 	spin_lock(&adapter->stats64_lock);
4307 	e1000e_update_stats(adapter);
4308 	spin_unlock(&adapter->stats64_lock);
4309 
4310 	e1000e_flush_descriptors(adapter);
4311 
4312 	adapter->link_speed = 0;
4313 	adapter->link_duplex = 0;
4314 
4315 	/* Disable Si errata workaround on PCHx for jumbo frame flow */
4316 	if ((hw->mac.type >= e1000_pch2lan) &&
4317 	    (adapter->netdev->mtu > ETH_DATA_LEN) &&
4318 	    e1000_lv_jumbo_workaround_ich8lan(hw, false))
4319 		e_dbg("failed to disable jumbo frame workaround mode\n");
4320 
4321 	if (!pci_channel_offline(adapter->pdev)) {
4322 		if (reset)
4323 			e1000e_reset(adapter);
4324 		else if (hw->mac.type >= e1000_pch_spt)
4325 			e1000_flush_desc_rings(adapter);
4326 	}
4327 	e1000_clean_tx_ring(adapter->tx_ring);
4328 	e1000_clean_rx_ring(adapter->rx_ring);
4329 }
4330 
4331 void e1000e_reinit_locked(struct e1000_adapter *adapter)
4332 {
4333 	might_sleep();
4334 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4335 		usleep_range(1000, 1100);
4336 	e1000e_down(adapter, true);
4337 	e1000e_up(adapter);
4338 	clear_bit(__E1000_RESETTING, &adapter->state);
4339 }
4340 
4341 /**
4342  * e1000e_sanitize_systim - sanitize raw cycle counter reads
4343  * @hw: pointer to the HW structure
4344  * @systim: PHC time value read, sanitized and returned
4345  * @sts: structure to hold system time before and after reading SYSTIML,
4346  * may be NULL
4347  *
4348  * Errata for 82574/82583 possible bad bits read from SYSTIMH/L:
4349  * check to see that the time is incrementing at a reasonable
4350  * rate and is a multiple of incvalue.
4351  **/
4352 static u64 e1000e_sanitize_systim(struct e1000_hw *hw, u64 systim,
4353 				  struct ptp_system_timestamp *sts)
4354 {
4355 	u64 time_delta, rem, temp;
4356 	u64 systim_next;
4357 	u32 incvalue;
4358 	int i;
4359 
4360 	incvalue = er32(TIMINCA) & E1000_TIMINCA_INCVALUE_MASK;
4361 	for (i = 0; i < E1000_MAX_82574_SYSTIM_REREADS; i++) {
4362 		/* latch SYSTIMH on read of SYSTIML */
4363 		ptp_read_system_prets(sts);
4364 		systim_next = (u64)er32(SYSTIML);
4365 		ptp_read_system_postts(sts);
4366 		systim_next |= (u64)er32(SYSTIMH) << 32;
4367 
4368 		time_delta = systim_next - systim;
4369 		temp = time_delta;
4370 		/* VMWare users have seen incvalue of zero, don't div / 0 */
4371 		rem = incvalue ? do_div(temp, incvalue) : (time_delta != 0);
4372 
4373 		systim = systim_next;
4374 
4375 		if ((time_delta < E1000_82574_SYSTIM_EPSILON) && (rem == 0))
4376 			break;
4377 	}
4378 
4379 	return systim;
4380 }
4381 
4382 /**
4383  * e1000e_read_systim - read SYSTIM register
4384  * @adapter: board private structure
4385  * @sts: structure which will contain system time before and after reading
4386  * SYSTIML, may be NULL
4387  **/
4388 u64 e1000e_read_systim(struct e1000_adapter *adapter,
4389 		       struct ptp_system_timestamp *sts)
4390 {
4391 	struct e1000_hw *hw = &adapter->hw;
4392 	u32 systimel, systimel_2, systimeh;
4393 	u64 systim;
4394 	/* SYSTIMH latching upon SYSTIML read does not work well.
4395 	 * This means that if SYSTIML overflows after we read it but before
4396 	 * we read SYSTIMH, the value of SYSTIMH has been incremented and we
4397 	 * will experience a huge non linear increment in the systime value
4398 	 * to fix that we test for overflow and if true, we re-read systime.
4399 	 */
4400 	ptp_read_system_prets(sts);
4401 	systimel = er32(SYSTIML);
4402 	ptp_read_system_postts(sts);
4403 	systimeh = er32(SYSTIMH);
4404 	/* Is systimel is so large that overflow is possible? */
4405 	if (systimel >= (u32)0xffffffff - E1000_TIMINCA_INCVALUE_MASK) {
4406 		ptp_read_system_prets(sts);
4407 		systimel_2 = er32(SYSTIML);
4408 		ptp_read_system_postts(sts);
4409 		if (systimel > systimel_2) {
4410 			/* There was an overflow, read again SYSTIMH, and use
4411 			 * systimel_2
4412 			 */
4413 			systimeh = er32(SYSTIMH);
4414 			systimel = systimel_2;
4415 		}
4416 	}
4417 	systim = (u64)systimel;
4418 	systim |= (u64)systimeh << 32;
4419 
4420 	if (adapter->flags2 & FLAG2_CHECK_SYSTIM_OVERFLOW)
4421 		systim = e1000e_sanitize_systim(hw, systim, sts);
4422 
4423 	return systim;
4424 }
4425 
4426 /**
4427  * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4428  * @cc: cyclecounter structure
4429  **/
4430 static u64 e1000e_cyclecounter_read(const struct cyclecounter *cc)
4431 {
4432 	struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter,
4433 						     cc);
4434 
4435 	return e1000e_read_systim(adapter, NULL);
4436 }
4437 
4438 /**
4439  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4440  * @adapter: board private structure to initialize
4441  *
4442  * e1000_sw_init initializes the Adapter private data structure.
4443  * Fields are initialized based on PCI device information and
4444  * OS network device settings (MTU size).
4445  **/
4446 static int e1000_sw_init(struct e1000_adapter *adapter)
4447 {
4448 	struct net_device *netdev = adapter->netdev;
4449 
4450 	adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
4451 	adapter->rx_ps_bsize0 = 128;
4452 	adapter->max_frame_size = netdev->mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
4453 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4454 	adapter->tx_ring_count = E1000_DEFAULT_TXD;
4455 	adapter->rx_ring_count = E1000_DEFAULT_RXD;
4456 
4457 	spin_lock_init(&adapter->stats64_lock);
4458 
4459 	e1000e_set_interrupt_capability(adapter);
4460 
4461 	if (e1000_alloc_queues(adapter))
4462 		return -ENOMEM;
4463 
4464 	/* Setup hardware time stamping cyclecounter */
4465 	if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
4466 		adapter->cc.read = e1000e_cyclecounter_read;
4467 		adapter->cc.mask = CYCLECOUNTER_MASK(64);
4468 		adapter->cc.mult = 1;
4469 		/* cc.shift set in e1000e_get_base_tininca() */
4470 
4471 		spin_lock_init(&adapter->systim_lock);
4472 		INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work);
4473 	}
4474 
4475 	/* Explicitly disable IRQ since the NIC can be in any state. */
4476 	e1000_irq_disable(adapter);
4477 
4478 	set_bit(__E1000_DOWN, &adapter->state);
4479 	return 0;
4480 }
4481 
4482 /**
4483  * e1000_intr_msi_test - Interrupt Handler
4484  * @irq: interrupt number
4485  * @data: pointer to a network interface device structure
4486  **/
4487 static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data)
4488 {
4489 	struct net_device *netdev = data;
4490 	struct e1000_adapter *adapter = netdev_priv(netdev);
4491 	struct e1000_hw *hw = &adapter->hw;
4492 	u32 icr = er32(ICR);
4493 
4494 	e_dbg("icr is %08X\n", icr);
4495 	if (icr & E1000_ICR_RXSEQ) {
4496 		adapter->flags &= ~FLAG_MSI_TEST_FAILED;
4497 		/* Force memory writes to complete before acknowledging the
4498 		 * interrupt is handled.
4499 		 */
4500 		wmb();
4501 	}
4502 
4503 	return IRQ_HANDLED;
4504 }
4505 
4506 /**
4507  * e1000_test_msi_interrupt - Returns 0 for successful test
4508  * @adapter: board private struct
4509  *
4510  * code flow taken from tg3.c
4511  **/
4512 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
4513 {
4514 	struct net_device *netdev = adapter->netdev;
4515 	struct e1000_hw *hw = &adapter->hw;
4516 	int err;
4517 
4518 	/* poll_enable hasn't been called yet, so don't need disable */
4519 	/* clear any pending events */
4520 	er32(ICR);
4521 
4522 	/* free the real vector and request a test handler */
4523 	e1000_free_irq(adapter);
4524 	e1000e_reset_interrupt_capability(adapter);
4525 
4526 	/* Assume that the test fails, if it succeeds then the test
4527 	 * MSI irq handler will unset this flag
4528 	 */
4529 	adapter->flags |= FLAG_MSI_TEST_FAILED;
4530 
4531 	err = pci_enable_msi(adapter->pdev);
4532 	if (err)
4533 		goto msi_test_failed;
4534 
4535 	err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
4536 			  netdev->name, netdev);
4537 	if (err) {
4538 		pci_disable_msi(adapter->pdev);
4539 		goto msi_test_failed;
4540 	}
4541 
4542 	/* Force memory writes to complete before enabling and firing an
4543 	 * interrupt.
4544 	 */
4545 	wmb();
4546 
4547 	e1000_irq_enable(adapter);
4548 
4549 	/* fire an unusual interrupt on the test handler */
4550 	ew32(ICS, E1000_ICS_RXSEQ);
4551 	e1e_flush();
4552 	msleep(100);
4553 
4554 	e1000_irq_disable(adapter);
4555 
4556 	rmb();			/* read flags after interrupt has been fired */
4557 
4558 	if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4559 		adapter->int_mode = E1000E_INT_MODE_LEGACY;
4560 		e_info("MSI interrupt test failed, using legacy interrupt.\n");
4561 	} else {
4562 		e_dbg("MSI interrupt test succeeded!\n");
4563 	}
4564 
4565 	free_irq(adapter->pdev->irq, netdev);
4566 	pci_disable_msi(adapter->pdev);
4567 
4568 msi_test_failed:
4569 	e1000e_set_interrupt_capability(adapter);
4570 	return e1000_request_irq(adapter);
4571 }
4572 
4573 /**
4574  * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4575  * @adapter: board private struct
4576  *
4577  * code flow taken from tg3.c, called with e1000 interrupts disabled.
4578  **/
4579 static int e1000_test_msi(struct e1000_adapter *adapter)
4580 {
4581 	int err;
4582 	u16 pci_cmd;
4583 
4584 	if (!(adapter->flags & FLAG_MSI_ENABLED))
4585 		return 0;
4586 
4587 	/* disable SERR in case the MSI write causes a master abort */
4588 	pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4589 	if (pci_cmd & PCI_COMMAND_SERR)
4590 		pci_write_config_word(adapter->pdev, PCI_COMMAND,
4591 				      pci_cmd & ~PCI_COMMAND_SERR);
4592 
4593 	err = e1000_test_msi_interrupt(adapter);
4594 
4595 	/* re-enable SERR */
4596 	if (pci_cmd & PCI_COMMAND_SERR) {
4597 		pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4598 		pci_cmd |= PCI_COMMAND_SERR;
4599 		pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
4600 	}
4601 
4602 	return err;
4603 }
4604 
4605 /**
4606  * e1000e_open - Called when a network interface is made active
4607  * @netdev: network interface device structure
4608  *
4609  * Returns 0 on success, negative value on failure
4610  *
4611  * The open entry point is called when a network interface is made
4612  * active by the system (IFF_UP).  At this point all resources needed
4613  * for transmit and receive operations are allocated, the interrupt
4614  * handler is registered with the OS, the watchdog timer is started,
4615  * and the stack is notified that the interface is ready.
4616  **/
4617 int e1000e_open(struct net_device *netdev)
4618 {
4619 	struct e1000_adapter *adapter = netdev_priv(netdev);
4620 	struct e1000_hw *hw = &adapter->hw;
4621 	struct pci_dev *pdev = adapter->pdev;
4622 	int err;
4623 
4624 	/* disallow open during test */
4625 	if (test_bit(__E1000_TESTING, &adapter->state))
4626 		return -EBUSY;
4627 
4628 	pm_runtime_get_sync(&pdev->dev);
4629 
4630 	netif_carrier_off(netdev);
4631 	netif_stop_queue(netdev);
4632 
4633 	/* allocate transmit descriptors */
4634 	err = e1000e_setup_tx_resources(adapter->tx_ring);
4635 	if (err)
4636 		goto err_setup_tx;
4637 
4638 	/* allocate receive descriptors */
4639 	err = e1000e_setup_rx_resources(adapter->rx_ring);
4640 	if (err)
4641 		goto err_setup_rx;
4642 
4643 	/* If AMT is enabled, let the firmware know that the network
4644 	 * interface is now open and reset the part to a known state.
4645 	 */
4646 	if (adapter->flags & FLAG_HAS_AMT) {
4647 		e1000e_get_hw_control(adapter);
4648 		e1000e_reset(adapter);
4649 	}
4650 
4651 	e1000e_power_up_phy(adapter);
4652 
4653 	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4654 	if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
4655 		e1000_update_mng_vlan(adapter);
4656 
4657 	/* DMA latency requirement to workaround jumbo issue */
4658 	cpu_latency_qos_add_request(&adapter->pm_qos_req, PM_QOS_DEFAULT_VALUE);
4659 
4660 	/* before we allocate an interrupt, we must be ready to handle it.
4661 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4662 	 * as soon as we call pci_request_irq, so we have to setup our
4663 	 * clean_rx handler before we do so.
4664 	 */
4665 	e1000_configure(adapter);
4666 
4667 	err = e1000_request_irq(adapter);
4668 	if (err)
4669 		goto err_req_irq;
4670 
4671 	/* Work around PCIe errata with MSI interrupts causing some chipsets to
4672 	 * ignore e1000e MSI messages, which means we need to test our MSI
4673 	 * interrupt now
4674 	 */
4675 	if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
4676 		err = e1000_test_msi(adapter);
4677 		if (err) {
4678 			e_err("Interrupt allocation failed\n");
4679 			goto err_req_irq;
4680 		}
4681 	}
4682 
4683 	/* From here on the code is the same as e1000e_up() */
4684 	clear_bit(__E1000_DOWN, &adapter->state);
4685 
4686 	napi_enable(&adapter->napi);
4687 
4688 	e1000_irq_enable(adapter);
4689 
4690 	adapter->tx_hang_recheck = false;
4691 
4692 	hw->mac.get_link_status = true;
4693 	pm_runtime_put(&pdev->dev);
4694 
4695 	e1000e_trigger_lsc(adapter);
4696 
4697 	return 0;
4698 
4699 err_req_irq:
4700 	cpu_latency_qos_remove_request(&adapter->pm_qos_req);
4701 	e1000e_release_hw_control(adapter);
4702 	e1000_power_down_phy(adapter);
4703 	e1000e_free_rx_resources(adapter->rx_ring);
4704 err_setup_rx:
4705 	e1000e_free_tx_resources(adapter->tx_ring);
4706 err_setup_tx:
4707 	e1000e_reset(adapter);
4708 	pm_runtime_put_sync(&pdev->dev);
4709 
4710 	return err;
4711 }
4712 
4713 /**
4714  * e1000e_close - Disables a network interface
4715  * @netdev: network interface device structure
4716  *
4717  * Returns 0, this is not allowed to fail
4718  *
4719  * The close entry point is called when an interface is de-activated
4720  * by the OS.  The hardware is still under the drivers control, but
4721  * needs to be disabled.  A global MAC reset is issued to stop the
4722  * hardware, and all transmit and receive resources are freed.
4723  **/
4724 int e1000e_close(struct net_device *netdev)
4725 {
4726 	struct e1000_adapter *adapter = netdev_priv(netdev);
4727 	struct pci_dev *pdev = adapter->pdev;
4728 	int count = E1000_CHECK_RESET_COUNT;
4729 
4730 	while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
4731 		usleep_range(10000, 11000);
4732 
4733 	WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4734 
4735 	pm_runtime_get_sync(&pdev->dev);
4736 
4737 	if (netif_device_present(netdev)) {
4738 		e1000e_down(adapter, true);
4739 		e1000_free_irq(adapter);
4740 
4741 		/* Link status message must follow this format */
4742 		netdev_info(netdev, "NIC Link is Down\n");
4743 	}
4744 
4745 	napi_disable(&adapter->napi);
4746 
4747 	e1000e_free_tx_resources(adapter->tx_ring);
4748 	e1000e_free_rx_resources(adapter->rx_ring);
4749 
4750 	/* kill manageability vlan ID if supported, but not if a vlan with
4751 	 * the same ID is registered on the host OS (let 8021q kill it)
4752 	 */
4753 	if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
4754 		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
4755 				       adapter->mng_vlan_id);
4756 
4757 	/* If AMT is enabled, let the firmware know that the network
4758 	 * interface is now closed
4759 	 */
4760 	if ((adapter->flags & FLAG_HAS_AMT) &&
4761 	    !test_bit(__E1000_TESTING, &adapter->state))
4762 		e1000e_release_hw_control(adapter);
4763 
4764 	cpu_latency_qos_remove_request(&adapter->pm_qos_req);
4765 
4766 	pm_runtime_put_sync(&pdev->dev);
4767 
4768 	return 0;
4769 }
4770 
4771 /**
4772  * e1000_set_mac - Change the Ethernet Address of the NIC
4773  * @netdev: network interface device structure
4774  * @p: pointer to an address structure
4775  *
4776  * Returns 0 on success, negative on failure
4777  **/
4778 static int e1000_set_mac(struct net_device *netdev, void *p)
4779 {
4780 	struct e1000_adapter *adapter = netdev_priv(netdev);
4781 	struct e1000_hw *hw = &adapter->hw;
4782 	struct sockaddr *addr = p;
4783 
4784 	if (!is_valid_ether_addr(addr->sa_data))
4785 		return -EADDRNOTAVAIL;
4786 
4787 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4788 	memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4789 
4790 	hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4791 
4792 	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4793 		/* activate the work around */
4794 		e1000e_set_laa_state_82571(&adapter->hw, 1);
4795 
4796 		/* Hold a copy of the LAA in RAR[14] This is done so that
4797 		 * between the time RAR[0] gets clobbered  and the time it
4798 		 * gets fixed (in e1000_watchdog), the actual LAA is in one
4799 		 * of the RARs and no incoming packets directed to this port
4800 		 * are dropped. Eventually the LAA will be in RAR[0] and
4801 		 * RAR[14]
4802 		 */
4803 		hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4804 				    adapter->hw.mac.rar_entry_count - 1);
4805 	}
4806 
4807 	return 0;
4808 }
4809 
4810 /**
4811  * e1000e_update_phy_task - work thread to update phy
4812  * @work: pointer to our work struct
4813  *
4814  * this worker thread exists because we must acquire a
4815  * semaphore to read the phy, which we could msleep while
4816  * waiting for it, and we can't msleep in a timer.
4817  **/
4818 static void e1000e_update_phy_task(struct work_struct *work)
4819 {
4820 	struct e1000_adapter *adapter = container_of(work,
4821 						     struct e1000_adapter,
4822 						     update_phy_task);
4823 	struct e1000_hw *hw = &adapter->hw;
4824 
4825 	if (test_bit(__E1000_DOWN, &adapter->state))
4826 		return;
4827 
4828 	e1000_get_phy_info(hw);
4829 
4830 	/* Enable EEE on 82579 after link up */
4831 	if (hw->phy.type >= e1000_phy_82579)
4832 		e1000_set_eee_pchlan(hw);
4833 }
4834 
4835 /**
4836  * e1000_update_phy_info - timre call-back to update PHY info
4837  * @t: pointer to timer_list containing private info adapter
4838  *
4839  * Need to wait a few seconds after link up to get diagnostic information from
4840  * the phy
4841  **/
4842 static void e1000_update_phy_info(struct timer_list *t)
4843 {
4844 	struct e1000_adapter *adapter = from_timer(adapter, t, phy_info_timer);
4845 
4846 	if (test_bit(__E1000_DOWN, &adapter->state))
4847 		return;
4848 
4849 	schedule_work(&adapter->update_phy_task);
4850 }
4851 
4852 /**
4853  * e1000e_update_phy_stats - Update the PHY statistics counters
4854  * @adapter: board private structure
4855  *
4856  * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4857  **/
4858 static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4859 {
4860 	struct e1000_hw *hw = &adapter->hw;
4861 	s32 ret_val;
4862 	u16 phy_data;
4863 
4864 	ret_val = hw->phy.ops.acquire(hw);
4865 	if (ret_val)
4866 		return;
4867 
4868 	/* A page set is expensive so check if already on desired page.
4869 	 * If not, set to the page with the PHY status registers.
4870 	 */
4871 	hw->phy.addr = 1;
4872 	ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4873 					   &phy_data);
4874 	if (ret_val)
4875 		goto release;
4876 	if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4877 		ret_val = hw->phy.ops.set_page(hw,
4878 					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
4879 		if (ret_val)
4880 			goto release;
4881 	}
4882 
4883 	/* Single Collision Count */
4884 	hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4885 	ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4886 	if (!ret_val)
4887 		adapter->stats.scc += phy_data;
4888 
4889 	/* Excessive Collision Count */
4890 	hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4891 	ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4892 	if (!ret_val)
4893 		adapter->stats.ecol += phy_data;
4894 
4895 	/* Multiple Collision Count */
4896 	hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4897 	ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4898 	if (!ret_val)
4899 		adapter->stats.mcc += phy_data;
4900 
4901 	/* Late Collision Count */
4902 	hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4903 	ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4904 	if (!ret_val)
4905 		adapter->stats.latecol += phy_data;
4906 
4907 	/* Collision Count - also used for adaptive IFS */
4908 	hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4909 	ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4910 	if (!ret_val)
4911 		hw->mac.collision_delta = phy_data;
4912 
4913 	/* Defer Count */
4914 	hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4915 	ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4916 	if (!ret_val)
4917 		adapter->stats.dc += phy_data;
4918 
4919 	/* Transmit with no CRS */
4920 	hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4921 	ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4922 	if (!ret_val)
4923 		adapter->stats.tncrs += phy_data;
4924 
4925 release:
4926 	hw->phy.ops.release(hw);
4927 }
4928 
4929 /**
4930  * e1000e_update_stats - Update the board statistics counters
4931  * @adapter: board private structure
4932  **/
4933 static void e1000e_update_stats(struct e1000_adapter *adapter)
4934 {
4935 	struct net_device *netdev = adapter->netdev;
4936 	struct e1000_hw *hw = &adapter->hw;
4937 	struct pci_dev *pdev = adapter->pdev;
4938 
4939 	/* Prevent stats update while adapter is being reset, or if the pci
4940 	 * connection is down.
4941 	 */
4942 	if (adapter->link_speed == 0)
4943 		return;
4944 	if (pci_channel_offline(pdev))
4945 		return;
4946 
4947 	adapter->stats.crcerrs += er32(CRCERRS);
4948 	adapter->stats.gprc += er32(GPRC);
4949 	adapter->stats.gorc += er32(GORCL);
4950 	er32(GORCH);		/* Clear gorc */
4951 	adapter->stats.bprc += er32(BPRC);
4952 	adapter->stats.mprc += er32(MPRC);
4953 	adapter->stats.roc += er32(ROC);
4954 
4955 	adapter->stats.mpc += er32(MPC);
4956 
4957 	/* Half-duplex statistics */
4958 	if (adapter->link_duplex == HALF_DUPLEX) {
4959 		if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4960 			e1000e_update_phy_stats(adapter);
4961 		} else {
4962 			adapter->stats.scc += er32(SCC);
4963 			adapter->stats.ecol += er32(ECOL);
4964 			adapter->stats.mcc += er32(MCC);
4965 			adapter->stats.latecol += er32(LATECOL);
4966 			adapter->stats.dc += er32(DC);
4967 
4968 			hw->mac.collision_delta = er32(COLC);
4969 
4970 			if ((hw->mac.type != e1000_82574) &&
4971 			    (hw->mac.type != e1000_82583))
4972 				adapter->stats.tncrs += er32(TNCRS);
4973 		}
4974 		adapter->stats.colc += hw->mac.collision_delta;
4975 	}
4976 
4977 	adapter->stats.xonrxc += er32(XONRXC);
4978 	adapter->stats.xontxc += er32(XONTXC);
4979 	adapter->stats.xoffrxc += er32(XOFFRXC);
4980 	adapter->stats.xofftxc += er32(XOFFTXC);
4981 	adapter->stats.gptc += er32(GPTC);
4982 	adapter->stats.gotc += er32(GOTCL);
4983 	er32(GOTCH);		/* Clear gotc */
4984 	adapter->stats.rnbc += er32(RNBC);
4985 	adapter->stats.ruc += er32(RUC);
4986 
4987 	adapter->stats.mptc += er32(MPTC);
4988 	adapter->stats.bptc += er32(BPTC);
4989 
4990 	/* used for adaptive IFS */
4991 
4992 	hw->mac.tx_packet_delta = er32(TPT);
4993 	adapter->stats.tpt += hw->mac.tx_packet_delta;
4994 
4995 	adapter->stats.algnerrc += er32(ALGNERRC);
4996 	adapter->stats.rxerrc += er32(RXERRC);
4997 	adapter->stats.cexterr += er32(CEXTERR);
4998 	adapter->stats.tsctc += er32(TSCTC);
4999 	adapter->stats.tsctfc += er32(TSCTFC);
5000 
5001 	/* Fill out the OS statistics structure */
5002 	netdev->stats.multicast = adapter->stats.mprc;
5003 	netdev->stats.collisions = adapter->stats.colc;
5004 
5005 	/* Rx Errors */
5006 
5007 	/* RLEC on some newer hardware can be incorrect so build
5008 	 * our own version based on RUC and ROC
5009 	 */
5010 	netdev->stats.rx_errors = adapter->stats.rxerrc +
5011 	    adapter->stats.crcerrs + adapter->stats.algnerrc +
5012 	    adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5013 	netdev->stats.rx_length_errors = adapter->stats.ruc +
5014 	    adapter->stats.roc;
5015 	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
5016 	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
5017 	netdev->stats.rx_missed_errors = adapter->stats.mpc;
5018 
5019 	/* Tx Errors */
5020 	netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol;
5021 	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
5022 	netdev->stats.tx_window_errors = adapter->stats.latecol;
5023 	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
5024 
5025 	/* Tx Dropped needs to be maintained elsewhere */
5026 
5027 	/* Management Stats */
5028 	adapter->stats.mgptc += er32(MGTPTC);
5029 	adapter->stats.mgprc += er32(MGTPRC);
5030 	adapter->stats.mgpdc += er32(MGTPDC);
5031 
5032 	/* Correctable ECC Errors */
5033 	if (hw->mac.type >= e1000_pch_lpt) {
5034 		u32 pbeccsts = er32(PBECCSTS);
5035 
5036 		adapter->corr_errors +=
5037 		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
5038 		adapter->uncorr_errors +=
5039 		    (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
5040 		    E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
5041 	}
5042 }
5043 
5044 /**
5045  * e1000_phy_read_status - Update the PHY register status snapshot
5046  * @adapter: board private structure
5047  **/
5048 static void e1000_phy_read_status(struct e1000_adapter *adapter)
5049 {
5050 	struct e1000_hw *hw = &adapter->hw;
5051 	struct e1000_phy_regs *phy = &adapter->phy_regs;
5052 
5053 	if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) &&
5054 	    (er32(STATUS) & E1000_STATUS_LU) &&
5055 	    (adapter->hw.phy.media_type == e1000_media_type_copper)) {
5056 		int ret_val;
5057 
5058 		ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr);
5059 		ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr);
5060 		ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise);
5061 		ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa);
5062 		ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion);
5063 		ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000);
5064 		ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000);
5065 		ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus);
5066 		if (ret_val)
5067 			e_warn("Error reading PHY register\n");
5068 	} else {
5069 		/* Do not read PHY registers if link is not up
5070 		 * Set values to typical power-on defaults
5071 		 */
5072 		phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
5073 		phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
5074 			     BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
5075 			     BMSR_ERCAP);
5076 		phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
5077 				  ADVERTISE_ALL | ADVERTISE_CSMA);
5078 		phy->lpa = 0;
5079 		phy->expansion = EXPANSION_ENABLENPAGE;
5080 		phy->ctrl1000 = ADVERTISE_1000FULL;
5081 		phy->stat1000 = 0;
5082 		phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
5083 	}
5084 }
5085 
5086 static void e1000_print_link_info(struct e1000_adapter *adapter)
5087 {
5088 	struct e1000_hw *hw = &adapter->hw;
5089 	u32 ctrl = er32(CTRL);
5090 
5091 	/* Link status message must follow this format for user tools */
5092 	netdev_info(adapter->netdev,
5093 		    "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5094 		    adapter->link_speed,
5095 		    adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
5096 		    (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
5097 		    (ctrl & E1000_CTRL_RFCE) ? "Rx" :
5098 		    (ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
5099 }
5100 
5101 static bool e1000e_has_link(struct e1000_adapter *adapter)
5102 {
5103 	struct e1000_hw *hw = &adapter->hw;
5104 	bool link_active = false;
5105 	s32 ret_val = 0;
5106 
5107 	/* get_link_status is set on LSC (link status) interrupt or
5108 	 * Rx sequence error interrupt.  get_link_status will stay
5109 	 * true until the check_for_link establishes link
5110 	 * for copper adapters ONLY
5111 	 */
5112 	switch (hw->phy.media_type) {
5113 	case e1000_media_type_copper:
5114 		if (hw->mac.get_link_status) {
5115 			ret_val = hw->mac.ops.check_for_link(hw);
5116 			link_active = !hw->mac.get_link_status;
5117 		} else {
5118 			link_active = true;
5119 		}
5120 		break;
5121 	case e1000_media_type_fiber:
5122 		ret_val = hw->mac.ops.check_for_link(hw);
5123 		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
5124 		break;
5125 	case e1000_media_type_internal_serdes:
5126 		ret_val = hw->mac.ops.check_for_link(hw);
5127 		link_active = hw->mac.serdes_has_link;
5128 		break;
5129 	default:
5130 	case e1000_media_type_unknown:
5131 		break;
5132 	}
5133 
5134 	if ((ret_val == -E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
5135 	    (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
5136 		/* See e1000_kmrn_lock_loss_workaround_ich8lan() */
5137 		e_info("Gigabit has been disabled, downgrading speed\n");
5138 	}
5139 
5140 	return link_active;
5141 }
5142 
5143 static void e1000e_enable_receives(struct e1000_adapter *adapter)
5144 {
5145 	/* make sure the receive unit is started */
5146 	if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
5147 	    (adapter->flags & FLAG_RESTART_NOW)) {
5148 		struct e1000_hw *hw = &adapter->hw;
5149 		u32 rctl = er32(RCTL);
5150 
5151 		ew32(RCTL, rctl | E1000_RCTL_EN);
5152 		adapter->flags &= ~FLAG_RESTART_NOW;
5153 	}
5154 }
5155 
5156 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
5157 {
5158 	struct e1000_hw *hw = &adapter->hw;
5159 
5160 	/* With 82574 controllers, PHY needs to be checked periodically
5161 	 * for hung state and reset, if two calls return true
5162 	 */
5163 	if (e1000_check_phy_82574(hw))
5164 		adapter->phy_hang_count++;
5165 	else
5166 		adapter->phy_hang_count = 0;
5167 
5168 	if (adapter->phy_hang_count > 1) {
5169 		adapter->phy_hang_count = 0;
5170 		e_dbg("PHY appears hung - resetting\n");
5171 		schedule_work(&adapter->reset_task);
5172 	}
5173 }
5174 
5175 /**
5176  * e1000_watchdog - Timer Call-back
5177  * @t: pointer to timer_list containing private info adapter
5178  **/
5179 static void e1000_watchdog(struct timer_list *t)
5180 {
5181 	struct e1000_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5182 
5183 	/* Do the rest outside of interrupt context */
5184 	schedule_work(&adapter->watchdog_task);
5185 
5186 	/* TODO: make this use queue_delayed_work() */
5187 }
5188 
5189 static void e1000_watchdog_task(struct work_struct *work)
5190 {
5191 	struct e1000_adapter *adapter = container_of(work,
5192 						     struct e1000_adapter,
5193 						     watchdog_task);
5194 	struct net_device *netdev = adapter->netdev;
5195 	struct e1000_mac_info *mac = &adapter->hw.mac;
5196 	struct e1000_phy_info *phy = &adapter->hw.phy;
5197 	struct e1000_ring *tx_ring = adapter->tx_ring;
5198 	u32 dmoff_exit_timeout = 100, tries = 0;
5199 	struct e1000_hw *hw = &adapter->hw;
5200 	u32 link, tctl, pcim_state;
5201 
5202 	if (test_bit(__E1000_DOWN, &adapter->state))
5203 		return;
5204 
5205 	link = e1000e_has_link(adapter);
5206 	if ((netif_carrier_ok(netdev)) && link) {
5207 		/* Cancel scheduled suspend requests. */
5208 		pm_runtime_resume(netdev->dev.parent);
5209 
5210 		e1000e_enable_receives(adapter);
5211 		goto link_up;
5212 	}
5213 
5214 	if ((e1000e_enable_tx_pkt_filtering(hw)) &&
5215 	    (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
5216 		e1000_update_mng_vlan(adapter);
5217 
5218 	if (link) {
5219 		if (!netif_carrier_ok(netdev)) {
5220 			bool txb2b = true;
5221 
5222 			/* Cancel scheduled suspend requests. */
5223 			pm_runtime_resume(netdev->dev.parent);
5224 
5225 			/* Checking if MAC is in DMoff state*/
5226 			if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
5227 				pcim_state = er32(STATUS);
5228 				while (pcim_state & E1000_STATUS_PCIM_STATE) {
5229 					if (tries++ == dmoff_exit_timeout) {
5230 						e_dbg("Error in exiting dmoff\n");
5231 						break;
5232 					}
5233 					usleep_range(10000, 20000);
5234 					pcim_state = er32(STATUS);
5235 
5236 					/* Checking if MAC exited DMoff state */
5237 					if (!(pcim_state & E1000_STATUS_PCIM_STATE))
5238 						e1000_phy_hw_reset(&adapter->hw);
5239 				}
5240 			}
5241 
5242 			/* update snapshot of PHY registers on LSC */
5243 			e1000_phy_read_status(adapter);
5244 			mac->ops.get_link_up_info(&adapter->hw,
5245 						  &adapter->link_speed,
5246 						  &adapter->link_duplex);
5247 			e1000_print_link_info(adapter);
5248 
5249 			/* check if SmartSpeed worked */
5250 			e1000e_check_downshift(hw);
5251 			if (phy->speed_downgraded)
5252 				netdev_warn(netdev,
5253 					    "Link Speed was downgraded by SmartSpeed\n");
5254 
5255 			/* On supported PHYs, check for duplex mismatch only
5256 			 * if link has autonegotiated at 10/100 half
5257 			 */
5258 			if ((hw->phy.type == e1000_phy_igp_3 ||
5259 			     hw->phy.type == e1000_phy_bm) &&
5260 			    hw->mac.autoneg &&
5261 			    (adapter->link_speed == SPEED_10 ||
5262 			     adapter->link_speed == SPEED_100) &&
5263 			    (adapter->link_duplex == HALF_DUPLEX)) {
5264 				u16 autoneg_exp;
5265 
5266 				e1e_rphy(hw, MII_EXPANSION, &autoneg_exp);
5267 
5268 				if (!(autoneg_exp & EXPANSION_NWAY))
5269 					e_info("Autonegotiated half duplex but link partner cannot autoneg.  Try forcing full duplex if link gets many collisions.\n");
5270 			}
5271 
5272 			/* adjust timeout factor according to speed/duplex */
5273 			adapter->tx_timeout_factor = 1;
5274 			switch (adapter->link_speed) {
5275 			case SPEED_10:
5276 				txb2b = false;
5277 				adapter->tx_timeout_factor = 16;
5278 				break;
5279 			case SPEED_100:
5280 				txb2b = false;
5281 				adapter->tx_timeout_factor = 10;
5282 				break;
5283 			}
5284 
5285 			/* workaround: re-program speed mode bit after
5286 			 * link-up event
5287 			 */
5288 			if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
5289 			    !txb2b) {
5290 				u32 tarc0;
5291 
5292 				tarc0 = er32(TARC(0));
5293 				tarc0 &= ~SPEED_MODE_BIT;
5294 				ew32(TARC(0), tarc0);
5295 			}
5296 
5297 			/* disable TSO for pcie and 10/100 speeds, to avoid
5298 			 * some hardware issues
5299 			 */
5300 			if (!(adapter->flags & FLAG_TSO_FORCE)) {
5301 				switch (adapter->link_speed) {
5302 				case SPEED_10:
5303 				case SPEED_100:
5304 					e_info("10/100 speed: disabling TSO\n");
5305 					netdev->features &= ~NETIF_F_TSO;
5306 					netdev->features &= ~NETIF_F_TSO6;
5307 					break;
5308 				case SPEED_1000:
5309 					netdev->features |= NETIF_F_TSO;
5310 					netdev->features |= NETIF_F_TSO6;
5311 					break;
5312 				default:
5313 					/* oops */
5314 					break;
5315 				}
5316 				if (hw->mac.type == e1000_pch_spt) {
5317 					netdev->features &= ~NETIF_F_TSO;
5318 					netdev->features &= ~NETIF_F_TSO6;
5319 				}
5320 			}
5321 
5322 			/* enable transmits in the hardware, need to do this
5323 			 * after setting TARC(0)
5324 			 */
5325 			tctl = er32(TCTL);
5326 			tctl |= E1000_TCTL_EN;
5327 			ew32(TCTL, tctl);
5328 
5329 			/* Perform any post-link-up configuration before
5330 			 * reporting link up.
5331 			 */
5332 			if (phy->ops.cfg_on_link_up)
5333 				phy->ops.cfg_on_link_up(hw);
5334 
5335 			netif_wake_queue(netdev);
5336 			netif_carrier_on(netdev);
5337 
5338 			if (!test_bit(__E1000_DOWN, &adapter->state))
5339 				mod_timer(&adapter->phy_info_timer,
5340 					  round_jiffies(jiffies + 2 * HZ));
5341 		}
5342 	} else {
5343 		if (netif_carrier_ok(netdev)) {
5344 			adapter->link_speed = 0;
5345 			adapter->link_duplex = 0;
5346 			/* Link status message must follow this format */
5347 			netdev_info(netdev, "NIC Link is Down\n");
5348 			netif_carrier_off(netdev);
5349 			netif_stop_queue(netdev);
5350 			if (!test_bit(__E1000_DOWN, &adapter->state))
5351 				mod_timer(&adapter->phy_info_timer,
5352 					  round_jiffies(jiffies + 2 * HZ));
5353 
5354 			/* 8000ES2LAN requires a Rx packet buffer work-around
5355 			 * on link down event; reset the controller to flush
5356 			 * the Rx packet buffer.
5357 			 */
5358 			if (adapter->flags & FLAG_RX_NEEDS_RESTART)
5359 				adapter->flags |= FLAG_RESTART_NOW;
5360 			else
5361 				pm_schedule_suspend(netdev->dev.parent,
5362 						    LINK_TIMEOUT);
5363 		}
5364 	}
5365 
5366 link_up:
5367 	spin_lock(&adapter->stats64_lock);
5368 	e1000e_update_stats(adapter);
5369 
5370 	mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
5371 	adapter->tpt_old = adapter->stats.tpt;
5372 	mac->collision_delta = adapter->stats.colc - adapter->colc_old;
5373 	adapter->colc_old = adapter->stats.colc;
5374 
5375 	adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
5376 	adapter->gorc_old = adapter->stats.gorc;
5377 	adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
5378 	adapter->gotc_old = adapter->stats.gotc;
5379 	spin_unlock(&adapter->stats64_lock);
5380 
5381 	/* If the link is lost the controller stops DMA, but
5382 	 * if there is queued Tx work it cannot be done.  So
5383 	 * reset the controller to flush the Tx packet buffers.
5384 	 */
5385 	if (!netif_carrier_ok(netdev) &&
5386 	    (e1000_desc_unused(tx_ring) + 1 < tx_ring->count))
5387 		adapter->flags |= FLAG_RESTART_NOW;
5388 
5389 	/* If reset is necessary, do it outside of interrupt context. */
5390 	if (adapter->flags & FLAG_RESTART_NOW) {
5391 		schedule_work(&adapter->reset_task);
5392 		/* return immediately since reset is imminent */
5393 		return;
5394 	}
5395 
5396 	e1000e_update_adaptive(&adapter->hw);
5397 
5398 	/* Simple mode for Interrupt Throttle Rate (ITR) */
5399 	if (adapter->itr_setting == 4) {
5400 		/* Symmetric Tx/Rx gets a reduced ITR=2000;
5401 		 * Total asymmetrical Tx or Rx gets ITR=8000;
5402 		 * everyone else is between 2000-8000.
5403 		 */
5404 		u32 goc = (adapter->gotc + adapter->gorc) / 10000;
5405 		u32 dif = (adapter->gotc > adapter->gorc ?
5406 			   adapter->gotc - adapter->gorc :
5407 			   adapter->gorc - adapter->gotc) / 10000;
5408 		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
5409 
5410 		e1000e_write_itr(adapter, itr);
5411 	}
5412 
5413 	/* Cause software interrupt to ensure Rx ring is cleaned */
5414 	if (adapter->msix_entries)
5415 		ew32(ICS, adapter->rx_ring->ims_val);
5416 	else
5417 		ew32(ICS, E1000_ICS_RXDMT0);
5418 
5419 	/* flush pending descriptors to memory before detecting Tx hang */
5420 	e1000e_flush_descriptors(adapter);
5421 
5422 	/* Force detection of hung controller every watchdog period */
5423 	adapter->detect_tx_hung = true;
5424 
5425 	/* With 82571 controllers, LAA may be overwritten due to controller
5426 	 * reset from the other port. Set the appropriate LAA in RAR[0]
5427 	 */
5428 	if (e1000e_get_laa_state_82571(hw))
5429 		hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
5430 
5431 	if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
5432 		e1000e_check_82574_phy_workaround(adapter);
5433 
5434 	/* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5435 	if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) {
5436 		if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) &&
5437 		    (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) {
5438 			er32(RXSTMPH);
5439 			adapter->rx_hwtstamp_cleared++;
5440 		} else {
5441 			adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP;
5442 		}
5443 	}
5444 
5445 	/* Reset the timer */
5446 	if (!test_bit(__E1000_DOWN, &adapter->state))
5447 		mod_timer(&adapter->watchdog_timer,
5448 			  round_jiffies(jiffies + 2 * HZ));
5449 }
5450 
5451 #define E1000_TX_FLAGS_CSUM		0x00000001
5452 #define E1000_TX_FLAGS_VLAN		0x00000002
5453 #define E1000_TX_FLAGS_TSO		0x00000004
5454 #define E1000_TX_FLAGS_IPV4		0x00000008
5455 #define E1000_TX_FLAGS_NO_FCS		0x00000010
5456 #define E1000_TX_FLAGS_HWTSTAMP		0x00000020
5457 #define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
5458 #define E1000_TX_FLAGS_VLAN_SHIFT	16
5459 
5460 static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb,
5461 		     __be16 protocol)
5462 {
5463 	struct e1000_context_desc *context_desc;
5464 	struct e1000_buffer *buffer_info;
5465 	unsigned int i;
5466 	u32 cmd_length = 0;
5467 	u16 ipcse = 0, mss;
5468 	u8 ipcss, ipcso, tucss, tucso, hdr_len;
5469 	int err;
5470 
5471 	if (!skb_is_gso(skb))
5472 		return 0;
5473 
5474 	err = skb_cow_head(skb, 0);
5475 	if (err < 0)
5476 		return err;
5477 
5478 	hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5479 	mss = skb_shinfo(skb)->gso_size;
5480 	if (protocol == htons(ETH_P_IP)) {
5481 		struct iphdr *iph = ip_hdr(skb);
5482 		iph->tot_len = 0;
5483 		iph->check = 0;
5484 		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
5485 							 0, IPPROTO_TCP, 0);
5486 		cmd_length = E1000_TXD_CMD_IP;
5487 		ipcse = skb_transport_offset(skb) - 1;
5488 	} else if (skb_is_gso_v6(skb)) {
5489 		tcp_v6_gso_csum_prep(skb);
5490 		ipcse = 0;
5491 	}
5492 	ipcss = skb_network_offset(skb);
5493 	ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
5494 	tucss = skb_transport_offset(skb);
5495 	tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
5496 
5497 	cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
5498 		       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
5499 
5500 	i = tx_ring->next_to_use;
5501 	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5502 	buffer_info = &tx_ring->buffer_info[i];
5503 
5504 	context_desc->lower_setup.ip_fields.ipcss = ipcss;
5505 	context_desc->lower_setup.ip_fields.ipcso = ipcso;
5506 	context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
5507 	context_desc->upper_setup.tcp_fields.tucss = tucss;
5508 	context_desc->upper_setup.tcp_fields.tucso = tucso;
5509 	context_desc->upper_setup.tcp_fields.tucse = 0;
5510 	context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
5511 	context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
5512 	context_desc->cmd_and_length = cpu_to_le32(cmd_length);
5513 
5514 	buffer_info->time_stamp = jiffies;
5515 	buffer_info->next_to_watch = i;
5516 
5517 	i++;
5518 	if (i == tx_ring->count)
5519 		i = 0;
5520 	tx_ring->next_to_use = i;
5521 
5522 	return 1;
5523 }
5524 
5525 static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb,
5526 			  __be16 protocol)
5527 {
5528 	struct e1000_adapter *adapter = tx_ring->adapter;
5529 	struct e1000_context_desc *context_desc;
5530 	struct e1000_buffer *buffer_info;
5531 	unsigned int i;
5532 	u8 css;
5533 	u32 cmd_len = E1000_TXD_CMD_DEXT;
5534 
5535 	if (skb->ip_summed != CHECKSUM_PARTIAL)
5536 		return false;
5537 
5538 	switch (protocol) {
5539 	case cpu_to_be16(ETH_P_IP):
5540 		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
5541 			cmd_len |= E1000_TXD_CMD_TCP;
5542 		break;
5543 	case cpu_to_be16(ETH_P_IPV6):
5544 		/* XXX not handling all IPV6 headers */
5545 		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
5546 			cmd_len |= E1000_TXD_CMD_TCP;
5547 		break;
5548 	default:
5549 		if (unlikely(net_ratelimit()))
5550 			e_warn("checksum_partial proto=%x!\n",
5551 			       be16_to_cpu(protocol));
5552 		break;
5553 	}
5554 
5555 	css = skb_checksum_start_offset(skb);
5556 
5557 	i = tx_ring->next_to_use;
5558 	buffer_info = &tx_ring->buffer_info[i];
5559 	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5560 
5561 	context_desc->lower_setup.ip_config = 0;
5562 	context_desc->upper_setup.tcp_fields.tucss = css;
5563 	context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset;
5564 	context_desc->upper_setup.tcp_fields.tucse = 0;
5565 	context_desc->tcp_seg_setup.data = 0;
5566 	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
5567 
5568 	buffer_info->time_stamp = jiffies;
5569 	buffer_info->next_to_watch = i;
5570 
5571 	i++;
5572 	if (i == tx_ring->count)
5573 		i = 0;
5574 	tx_ring->next_to_use = i;
5575 
5576 	return true;
5577 }
5578 
5579 static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
5580 			unsigned int first, unsigned int max_per_txd,
5581 			unsigned int nr_frags)
5582 {
5583 	struct e1000_adapter *adapter = tx_ring->adapter;
5584 	struct pci_dev *pdev = adapter->pdev;
5585 	struct e1000_buffer *buffer_info;
5586 	unsigned int len = skb_headlen(skb);
5587 	unsigned int offset = 0, size, count = 0, i;
5588 	unsigned int f, bytecount, segs;
5589 
5590 	i = tx_ring->next_to_use;
5591 
5592 	while (len) {
5593 		buffer_info = &tx_ring->buffer_info[i];
5594 		size = min(len, max_per_txd);
5595 
5596 		buffer_info->length = size;
5597 		buffer_info->time_stamp = jiffies;
5598 		buffer_info->next_to_watch = i;
5599 		buffer_info->dma = dma_map_single(&pdev->dev,
5600 						  skb->data + offset,
5601 						  size, DMA_TO_DEVICE);
5602 		buffer_info->mapped_as_page = false;
5603 		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5604 			goto dma_error;
5605 
5606 		len -= size;
5607 		offset += size;
5608 		count++;
5609 
5610 		if (len) {
5611 			i++;
5612 			if (i == tx_ring->count)
5613 				i = 0;
5614 		}
5615 	}
5616 
5617 	for (f = 0; f < nr_frags; f++) {
5618 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
5619 
5620 		len = skb_frag_size(frag);
5621 		offset = 0;
5622 
5623 		while (len) {
5624 			i++;
5625 			if (i == tx_ring->count)
5626 				i = 0;
5627 
5628 			buffer_info = &tx_ring->buffer_info[i];
5629 			size = min(len, max_per_txd);
5630 
5631 			buffer_info->length = size;
5632 			buffer_info->time_stamp = jiffies;
5633 			buffer_info->next_to_watch = i;
5634 			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
5635 							    offset, size,
5636 							    DMA_TO_DEVICE);
5637 			buffer_info->mapped_as_page = true;
5638 			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5639 				goto dma_error;
5640 
5641 			len -= size;
5642 			offset += size;
5643 			count++;
5644 		}
5645 	}
5646 
5647 	segs = skb_shinfo(skb)->gso_segs ? : 1;
5648 	/* multiply data chunks by size of headers */
5649 	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
5650 
5651 	tx_ring->buffer_info[i].skb = skb;
5652 	tx_ring->buffer_info[i].segs = segs;
5653 	tx_ring->buffer_info[i].bytecount = bytecount;
5654 	tx_ring->buffer_info[first].next_to_watch = i;
5655 
5656 	return count;
5657 
5658 dma_error:
5659 	dev_err(&pdev->dev, "Tx DMA map failed\n");
5660 	buffer_info->dma = 0;
5661 	if (count)
5662 		count--;
5663 
5664 	while (count--) {
5665 		if (i == 0)
5666 			i += tx_ring->count;
5667 		i--;
5668 		buffer_info = &tx_ring->buffer_info[i];
5669 		e1000_put_txbuf(tx_ring, buffer_info, true);
5670 	}
5671 
5672 	return 0;
5673 }
5674 
5675 static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
5676 {
5677 	struct e1000_adapter *adapter = tx_ring->adapter;
5678 	struct e1000_tx_desc *tx_desc = NULL;
5679 	struct e1000_buffer *buffer_info;
5680 	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
5681 	unsigned int i;
5682 
5683 	if (tx_flags & E1000_TX_FLAGS_TSO) {
5684 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
5685 		    E1000_TXD_CMD_TSE;
5686 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5687 
5688 		if (tx_flags & E1000_TX_FLAGS_IPV4)
5689 			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
5690 	}
5691 
5692 	if (tx_flags & E1000_TX_FLAGS_CSUM) {
5693 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5694 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5695 	}
5696 
5697 	if (tx_flags & E1000_TX_FLAGS_VLAN) {
5698 		txd_lower |= E1000_TXD_CMD_VLE;
5699 		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
5700 	}
5701 
5702 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5703 		txd_lower &= ~(E1000_TXD_CMD_IFCS);
5704 
5705 	if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) {
5706 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5707 		txd_upper |= E1000_TXD_EXTCMD_TSTAMP;
5708 	}
5709 
5710 	i = tx_ring->next_to_use;
5711 
5712 	do {
5713 		buffer_info = &tx_ring->buffer_info[i];
5714 		tx_desc = E1000_TX_DESC(*tx_ring, i);
5715 		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
5716 		tx_desc->lower.data = cpu_to_le32(txd_lower |
5717 						  buffer_info->length);
5718 		tx_desc->upper.data = cpu_to_le32(txd_upper);
5719 
5720 		i++;
5721 		if (i == tx_ring->count)
5722 			i = 0;
5723 	} while (--count > 0);
5724 
5725 	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
5726 
5727 	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5728 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5729 		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
5730 
5731 	/* Force memory writes to complete before letting h/w
5732 	 * know there are new descriptors to fetch.  (Only
5733 	 * applicable for weak-ordered memory model archs,
5734 	 * such as IA-64).
5735 	 */
5736 	wmb();
5737 
5738 	tx_ring->next_to_use = i;
5739 }
5740 
5741 #define MINIMUM_DHCP_PACKET_SIZE 282
5742 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
5743 				    struct sk_buff *skb)
5744 {
5745 	struct e1000_hw *hw = &adapter->hw;
5746 	u16 length, offset;
5747 
5748 	if (skb_vlan_tag_present(skb) &&
5749 	    !((skb_vlan_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
5750 	      (adapter->hw.mng_cookie.status &
5751 	       E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
5752 		return 0;
5753 
5754 	if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
5755 		return 0;
5756 
5757 	if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP))
5758 		return 0;
5759 
5760 	{
5761 		const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14);
5762 		struct udphdr *udp;
5763 
5764 		if (ip->protocol != IPPROTO_UDP)
5765 			return 0;
5766 
5767 		udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
5768 		if (ntohs(udp->dest) != 67)
5769 			return 0;
5770 
5771 		offset = (u8 *)udp + 8 - skb->data;
5772 		length = skb->len - offset;
5773 		return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
5774 	}
5775 
5776 	return 0;
5777 }
5778 
5779 static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5780 {
5781 	struct e1000_adapter *adapter = tx_ring->adapter;
5782 
5783 	netif_stop_queue(adapter->netdev);
5784 	/* Herbert's original patch had:
5785 	 *  smp_mb__after_netif_stop_queue();
5786 	 * but since that doesn't exist yet, just open code it.
5787 	 */
5788 	smp_mb();
5789 
5790 	/* We need to check again in a case another CPU has just
5791 	 * made room available.
5792 	 */
5793 	if (e1000_desc_unused(tx_ring) < size)
5794 		return -EBUSY;
5795 
5796 	/* A reprieve! */
5797 	netif_start_queue(adapter->netdev);
5798 	++adapter->restart_queue;
5799 	return 0;
5800 }
5801 
5802 static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5803 {
5804 	BUG_ON(size > tx_ring->count);
5805 
5806 	if (e1000_desc_unused(tx_ring) >= size)
5807 		return 0;
5808 	return __e1000_maybe_stop_tx(tx_ring, size);
5809 }
5810 
5811 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5812 				    struct net_device *netdev)
5813 {
5814 	struct e1000_adapter *adapter = netdev_priv(netdev);
5815 	struct e1000_ring *tx_ring = adapter->tx_ring;
5816 	unsigned int first;
5817 	unsigned int tx_flags = 0;
5818 	unsigned int len = skb_headlen(skb);
5819 	unsigned int nr_frags;
5820 	unsigned int mss;
5821 	int count = 0;
5822 	int tso;
5823 	unsigned int f;
5824 	__be16 protocol = vlan_get_protocol(skb);
5825 
5826 	if (test_bit(__E1000_DOWN, &adapter->state)) {
5827 		dev_kfree_skb_any(skb);
5828 		return NETDEV_TX_OK;
5829 	}
5830 
5831 	if (skb->len <= 0) {
5832 		dev_kfree_skb_any(skb);
5833 		return NETDEV_TX_OK;
5834 	}
5835 
5836 	/* The minimum packet size with TCTL.PSP set is 17 bytes so
5837 	 * pad skb in order to meet this minimum size requirement
5838 	 */
5839 	if (skb_put_padto(skb, 17))
5840 		return NETDEV_TX_OK;
5841 
5842 	mss = skb_shinfo(skb)->gso_size;
5843 	if (mss) {
5844 		u8 hdr_len;
5845 
5846 		/* TSO Workaround for 82571/2/3 Controllers -- if skb->data
5847 		 * points to just header, pull a few bytes of payload from
5848 		 * frags into skb->data
5849 		 */
5850 		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5851 		/* we do this workaround for ES2LAN, but it is un-necessary,
5852 		 * avoiding it could save a lot of cycles
5853 		 */
5854 		if (skb->data_len && (hdr_len == len)) {
5855 			unsigned int pull_size;
5856 
5857 			pull_size = min_t(unsigned int, 4, skb->data_len);
5858 			if (!__pskb_pull_tail(skb, pull_size)) {
5859 				e_err("__pskb_pull_tail failed.\n");
5860 				dev_kfree_skb_any(skb);
5861 				return NETDEV_TX_OK;
5862 			}
5863 			len = skb_headlen(skb);
5864 		}
5865 	}
5866 
5867 	/* reserve a descriptor for the offload context */
5868 	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5869 		count++;
5870 	count++;
5871 
5872 	count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
5873 
5874 	nr_frags = skb_shinfo(skb)->nr_frags;
5875 	for (f = 0; f < nr_frags; f++)
5876 		count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5877 				      adapter->tx_fifo_limit);
5878 
5879 	if (adapter->hw.mac.tx_pkt_filtering)
5880 		e1000_transfer_dhcp_info(adapter, skb);
5881 
5882 	/* need: count + 2 desc gap to keep tail from touching
5883 	 * head, otherwise try next time
5884 	 */
5885 	if (e1000_maybe_stop_tx(tx_ring, count + 2))
5886 		return NETDEV_TX_BUSY;
5887 
5888 	if (skb_vlan_tag_present(skb)) {
5889 		tx_flags |= E1000_TX_FLAGS_VLAN;
5890 		tx_flags |= (skb_vlan_tag_get(skb) <<
5891 			     E1000_TX_FLAGS_VLAN_SHIFT);
5892 	}
5893 
5894 	first = tx_ring->next_to_use;
5895 
5896 	tso = e1000_tso(tx_ring, skb, protocol);
5897 	if (tso < 0) {
5898 		dev_kfree_skb_any(skb);
5899 		return NETDEV_TX_OK;
5900 	}
5901 
5902 	if (tso)
5903 		tx_flags |= E1000_TX_FLAGS_TSO;
5904 	else if (e1000_tx_csum(tx_ring, skb, protocol))
5905 		tx_flags |= E1000_TX_FLAGS_CSUM;
5906 
5907 	/* Old method was to assume IPv4 packet by default if TSO was enabled.
5908 	 * 82571 hardware supports TSO capabilities for IPv6 as well...
5909 	 * no longer assume, we must.
5910 	 */
5911 	if (protocol == htons(ETH_P_IP))
5912 		tx_flags |= E1000_TX_FLAGS_IPV4;
5913 
5914 	if (unlikely(skb->no_fcs))
5915 		tx_flags |= E1000_TX_FLAGS_NO_FCS;
5916 
5917 	/* if count is 0 then mapping error has occurred */
5918 	count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5919 			     nr_frags);
5920 	if (count) {
5921 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
5922 		    (adapter->flags & FLAG_HAS_HW_TIMESTAMP)) {
5923 			if (!adapter->tx_hwtstamp_skb) {
5924 				skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5925 				tx_flags |= E1000_TX_FLAGS_HWTSTAMP;
5926 				adapter->tx_hwtstamp_skb = skb_get(skb);
5927 				adapter->tx_hwtstamp_start = jiffies;
5928 				schedule_work(&adapter->tx_hwtstamp_work);
5929 			} else {
5930 				adapter->tx_hwtstamp_skipped++;
5931 			}
5932 		}
5933 
5934 		skb_tx_timestamp(skb);
5935 
5936 		netdev_sent_queue(netdev, skb->len);
5937 		e1000_tx_queue(tx_ring, tx_flags, count);
5938 		/* Make sure there is space in the ring for the next send. */
5939 		e1000_maybe_stop_tx(tx_ring,
5940 				    (MAX_SKB_FRAGS *
5941 				     DIV_ROUND_UP(PAGE_SIZE,
5942 						  adapter->tx_fifo_limit) + 2));
5943 
5944 		if (!netdev_xmit_more() ||
5945 		    netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
5946 			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
5947 				e1000e_update_tdt_wa(tx_ring,
5948 						     tx_ring->next_to_use);
5949 			else
5950 				writel(tx_ring->next_to_use, tx_ring->tail);
5951 		}
5952 	} else {
5953 		dev_kfree_skb_any(skb);
5954 		tx_ring->buffer_info[first].time_stamp = 0;
5955 		tx_ring->next_to_use = first;
5956 	}
5957 
5958 	return NETDEV_TX_OK;
5959 }
5960 
5961 /**
5962  * e1000_tx_timeout - Respond to a Tx Hang
5963  * @netdev: network interface device structure
5964  * @txqueue: index of the hung queue (unused)
5965  **/
5966 static void e1000_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
5967 {
5968 	struct e1000_adapter *adapter = netdev_priv(netdev);
5969 
5970 	/* Do the reset outside of interrupt context */
5971 	adapter->tx_timeout_count++;
5972 	schedule_work(&adapter->reset_task);
5973 }
5974 
5975 static void e1000_reset_task(struct work_struct *work)
5976 {
5977 	struct e1000_adapter *adapter;
5978 	adapter = container_of(work, struct e1000_adapter, reset_task);
5979 
5980 	rtnl_lock();
5981 	/* don't run the task if already down */
5982 	if (test_bit(__E1000_DOWN, &adapter->state)) {
5983 		rtnl_unlock();
5984 		return;
5985 	}
5986 
5987 	if (!(adapter->flags & FLAG_RESTART_NOW)) {
5988 		e1000e_dump(adapter);
5989 		e_err("Reset adapter unexpectedly\n");
5990 	}
5991 	e1000e_reinit_locked(adapter);
5992 	rtnl_unlock();
5993 }
5994 
5995 /**
5996  * e1000e_get_stats64 - Get System Network Statistics
5997  * @netdev: network interface device structure
5998  * @stats: rtnl_link_stats64 pointer
5999  *
6000  * Returns the address of the device statistics structure.
6001  **/
6002 void e1000e_get_stats64(struct net_device *netdev,
6003 			struct rtnl_link_stats64 *stats)
6004 {
6005 	struct e1000_adapter *adapter = netdev_priv(netdev);
6006 
6007 	spin_lock(&adapter->stats64_lock);
6008 	e1000e_update_stats(adapter);
6009 	/* Fill out the OS statistics structure */
6010 	stats->rx_bytes = adapter->stats.gorc;
6011 	stats->rx_packets = adapter->stats.gprc;
6012 	stats->tx_bytes = adapter->stats.gotc;
6013 	stats->tx_packets = adapter->stats.gptc;
6014 	stats->multicast = adapter->stats.mprc;
6015 	stats->collisions = adapter->stats.colc;
6016 
6017 	/* Rx Errors */
6018 
6019 	/* RLEC on some newer hardware can be incorrect so build
6020 	 * our own version based on RUC and ROC
6021 	 */
6022 	stats->rx_errors = adapter->stats.rxerrc +
6023 	    adapter->stats.crcerrs + adapter->stats.algnerrc +
6024 	    adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
6025 	stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc;
6026 	stats->rx_crc_errors = adapter->stats.crcerrs;
6027 	stats->rx_frame_errors = adapter->stats.algnerrc;
6028 	stats->rx_missed_errors = adapter->stats.mpc;
6029 
6030 	/* Tx Errors */
6031 	stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol;
6032 	stats->tx_aborted_errors = adapter->stats.ecol;
6033 	stats->tx_window_errors = adapter->stats.latecol;
6034 	stats->tx_carrier_errors = adapter->stats.tncrs;
6035 
6036 	/* Tx Dropped needs to be maintained elsewhere */
6037 
6038 	spin_unlock(&adapter->stats64_lock);
6039 }
6040 
6041 /**
6042  * e1000_change_mtu - Change the Maximum Transfer Unit
6043  * @netdev: network interface device structure
6044  * @new_mtu: new value for maximum frame size
6045  *
6046  * Returns 0 on success, negative on failure
6047  **/
6048 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
6049 {
6050 	struct e1000_adapter *adapter = netdev_priv(netdev);
6051 	int max_frame = new_mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
6052 
6053 	/* Jumbo frame support */
6054 	if ((new_mtu > ETH_DATA_LEN) &&
6055 	    !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
6056 		e_err("Jumbo Frames not supported.\n");
6057 		return -EINVAL;
6058 	}
6059 
6060 	/* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
6061 	if ((adapter->hw.mac.type >= e1000_pch2lan) &&
6062 	    !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
6063 	    (new_mtu > ETH_DATA_LEN)) {
6064 		e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
6065 		return -EINVAL;
6066 	}
6067 
6068 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
6069 		usleep_range(1000, 1100);
6070 	/* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
6071 	adapter->max_frame_size = max_frame;
6072 	netdev_dbg(netdev, "changing MTU from %d to %d\n",
6073 		   netdev->mtu, new_mtu);
6074 	netdev->mtu = new_mtu;
6075 
6076 	pm_runtime_get_sync(netdev->dev.parent);
6077 
6078 	if (netif_running(netdev))
6079 		e1000e_down(adapter, true);
6080 
6081 	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
6082 	 * means we reserve 2 more, this pushes us to allocate from the next
6083 	 * larger slab size.
6084 	 * i.e. RXBUFFER_2048 --> size-4096 slab
6085 	 * However with the new *_jumbo_rx* routines, jumbo receives will use
6086 	 * fragmented skbs
6087 	 */
6088 
6089 	if (max_frame <= 2048)
6090 		adapter->rx_buffer_len = 2048;
6091 	else
6092 		adapter->rx_buffer_len = 4096;
6093 
6094 	/* adjust allocation if LPE protects us, and we aren't using SBP */
6095 	if (max_frame <= (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN))
6096 		adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
6097 
6098 	if (netif_running(netdev))
6099 		e1000e_up(adapter);
6100 	else
6101 		e1000e_reset(adapter);
6102 
6103 	pm_runtime_put_sync(netdev->dev.parent);
6104 
6105 	clear_bit(__E1000_RESETTING, &adapter->state);
6106 
6107 	return 0;
6108 }
6109 
6110 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
6111 			   int cmd)
6112 {
6113 	struct e1000_adapter *adapter = netdev_priv(netdev);
6114 	struct mii_ioctl_data *data = if_mii(ifr);
6115 
6116 	if (adapter->hw.phy.media_type != e1000_media_type_copper)
6117 		return -EOPNOTSUPP;
6118 
6119 	switch (cmd) {
6120 	case SIOCGMIIPHY:
6121 		data->phy_id = adapter->hw.phy.addr;
6122 		break;
6123 	case SIOCGMIIREG:
6124 		e1000_phy_read_status(adapter);
6125 
6126 		switch (data->reg_num & 0x1F) {
6127 		case MII_BMCR:
6128 			data->val_out = adapter->phy_regs.bmcr;
6129 			break;
6130 		case MII_BMSR:
6131 			data->val_out = adapter->phy_regs.bmsr;
6132 			break;
6133 		case MII_PHYSID1:
6134 			data->val_out = (adapter->hw.phy.id >> 16);
6135 			break;
6136 		case MII_PHYSID2:
6137 			data->val_out = (adapter->hw.phy.id & 0xFFFF);
6138 			break;
6139 		case MII_ADVERTISE:
6140 			data->val_out = adapter->phy_regs.advertise;
6141 			break;
6142 		case MII_LPA:
6143 			data->val_out = adapter->phy_regs.lpa;
6144 			break;
6145 		case MII_EXPANSION:
6146 			data->val_out = adapter->phy_regs.expansion;
6147 			break;
6148 		case MII_CTRL1000:
6149 			data->val_out = adapter->phy_regs.ctrl1000;
6150 			break;
6151 		case MII_STAT1000:
6152 			data->val_out = adapter->phy_regs.stat1000;
6153 			break;
6154 		case MII_ESTATUS:
6155 			data->val_out = adapter->phy_regs.estatus;
6156 			break;
6157 		default:
6158 			return -EIO;
6159 		}
6160 		break;
6161 	case SIOCSMIIREG:
6162 	default:
6163 		return -EOPNOTSUPP;
6164 	}
6165 	return 0;
6166 }
6167 
6168 /**
6169  * e1000e_hwtstamp_set - control hardware time stamping
6170  * @netdev: network interface device structure
6171  * @ifr: interface request
6172  *
6173  * Outgoing time stamping can be enabled and disabled. Play nice and
6174  * disable it when requested, although it shouldn't cause any overhead
6175  * when no packet needs it. At most one packet in the queue may be
6176  * marked for time stamping, otherwise it would be impossible to tell
6177  * for sure to which packet the hardware time stamp belongs.
6178  *
6179  * Incoming time stamping has to be configured via the hardware filters.
6180  * Not all combinations are supported, in particular event type has to be
6181  * specified. Matching the kind of event packet is not supported, with the
6182  * exception of "all V2 events regardless of level 2 or 4".
6183  **/
6184 static int e1000e_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
6185 {
6186 	struct e1000_adapter *adapter = netdev_priv(netdev);
6187 	struct hwtstamp_config config;
6188 	int ret_val;
6189 
6190 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
6191 		return -EFAULT;
6192 
6193 	ret_val = e1000e_config_hwtstamp(adapter, &config);
6194 	if (ret_val)
6195 		return ret_val;
6196 
6197 	switch (config.rx_filter) {
6198 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6199 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6200 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
6201 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6202 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6203 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6204 		/* With V2 type filters which specify a Sync or Delay Request,
6205 		 * Path Delay Request/Response messages are also time stamped
6206 		 * by hardware so notify the caller the requested packets plus
6207 		 * some others are time stamped.
6208 		 */
6209 		config.rx_filter = HWTSTAMP_FILTER_SOME;
6210 		break;
6211 	default:
6212 		break;
6213 	}
6214 
6215 	return copy_to_user(ifr->ifr_data, &config,
6216 			    sizeof(config)) ? -EFAULT : 0;
6217 }
6218 
6219 static int e1000e_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
6220 {
6221 	struct e1000_adapter *adapter = netdev_priv(netdev);
6222 
6223 	return copy_to_user(ifr->ifr_data, &adapter->hwtstamp_config,
6224 			    sizeof(adapter->hwtstamp_config)) ? -EFAULT : 0;
6225 }
6226 
6227 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6228 {
6229 	switch (cmd) {
6230 	case SIOCGMIIPHY:
6231 	case SIOCGMIIREG:
6232 	case SIOCSMIIREG:
6233 		return e1000_mii_ioctl(netdev, ifr, cmd);
6234 	case SIOCSHWTSTAMP:
6235 		return e1000e_hwtstamp_set(netdev, ifr);
6236 	case SIOCGHWTSTAMP:
6237 		return e1000e_hwtstamp_get(netdev, ifr);
6238 	default:
6239 		return -EOPNOTSUPP;
6240 	}
6241 }
6242 
6243 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
6244 {
6245 	struct e1000_hw *hw = &adapter->hw;
6246 	u32 i, mac_reg, wuc;
6247 	u16 phy_reg, wuc_enable;
6248 	int retval;
6249 
6250 	/* copy MAC RARs to PHY RARs */
6251 	e1000_copy_rx_addrs_to_phy_ich8lan(hw);
6252 
6253 	retval = hw->phy.ops.acquire(hw);
6254 	if (retval) {
6255 		e_err("Could not acquire PHY\n");
6256 		return retval;
6257 	}
6258 
6259 	/* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
6260 	retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6261 	if (retval)
6262 		goto release;
6263 
6264 	/* copy MAC MTA to PHY MTA - only needed for pchlan */
6265 	for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
6266 		mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
6267 		hw->phy.ops.write_reg_page(hw, BM_MTA(i),
6268 					   (u16)(mac_reg & 0xFFFF));
6269 		hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
6270 					   (u16)((mac_reg >> 16) & 0xFFFF));
6271 	}
6272 
6273 	/* configure PHY Rx Control register */
6274 	hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
6275 	mac_reg = er32(RCTL);
6276 	if (mac_reg & E1000_RCTL_UPE)
6277 		phy_reg |= BM_RCTL_UPE;
6278 	if (mac_reg & E1000_RCTL_MPE)
6279 		phy_reg |= BM_RCTL_MPE;
6280 	phy_reg &= ~(BM_RCTL_MO_MASK);
6281 	if (mac_reg & E1000_RCTL_MO_3)
6282 		phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
6283 			    << BM_RCTL_MO_SHIFT);
6284 	if (mac_reg & E1000_RCTL_BAM)
6285 		phy_reg |= BM_RCTL_BAM;
6286 	if (mac_reg & E1000_RCTL_PMCF)
6287 		phy_reg |= BM_RCTL_PMCF;
6288 	mac_reg = er32(CTRL);
6289 	if (mac_reg & E1000_CTRL_RFCE)
6290 		phy_reg |= BM_RCTL_RFCE;
6291 	hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
6292 
6293 	wuc = E1000_WUC_PME_EN;
6294 	if (wufc & (E1000_WUFC_MAG | E1000_WUFC_LNKC))
6295 		wuc |= E1000_WUC_APME;
6296 
6297 	/* enable PHY wakeup in MAC register */
6298 	ew32(WUFC, wufc);
6299 	ew32(WUC, (E1000_WUC_PHY_WAKE | E1000_WUC_APMPME |
6300 		   E1000_WUC_PME_STATUS | wuc));
6301 
6302 	/* configure and enable PHY wakeup in PHY registers */
6303 	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
6304 	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, wuc);
6305 
6306 	/* activate PHY wakeup */
6307 	wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
6308 	retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6309 	if (retval)
6310 		e_err("Could not set PHY Host Wakeup bit\n");
6311 release:
6312 	hw->phy.ops.release(hw);
6313 
6314 	return retval;
6315 }
6316 
6317 static void e1000e_flush_lpic(struct pci_dev *pdev)
6318 {
6319 	struct net_device *netdev = pci_get_drvdata(pdev);
6320 	struct e1000_adapter *adapter = netdev_priv(netdev);
6321 	struct e1000_hw *hw = &adapter->hw;
6322 	u32 ret_val;
6323 
6324 	pm_runtime_get_sync(netdev->dev.parent);
6325 
6326 	ret_val = hw->phy.ops.acquire(hw);
6327 	if (ret_val)
6328 		goto fl_out;
6329 
6330 	pr_info("EEE TX LPI TIMER: %08X\n",
6331 		er32(LPIC) >> E1000_LPIC_LPIET_SHIFT);
6332 
6333 	hw->phy.ops.release(hw);
6334 
6335 fl_out:
6336 	pm_runtime_put_sync(netdev->dev.parent);
6337 }
6338 
6339 /* S0ix implementation */
6340 static void e1000e_s0ix_entry_flow(struct e1000_adapter *adapter)
6341 {
6342 	struct e1000_hw *hw = &adapter->hw;
6343 	u32 mac_data;
6344 	u16 phy_data;
6345 
6346 	/* Disable the periodic inband message,
6347 	 * don't request PCIe clock in K1 page770_17[10:9] = 10b
6348 	 */
6349 	e1e_rphy(hw, HV_PM_CTRL, &phy_data);
6350 	phy_data &= ~HV_PM_CTRL_K1_CLK_REQ;
6351 	phy_data |= BIT(10);
6352 	e1e_wphy(hw, HV_PM_CTRL, phy_data);
6353 
6354 	/* Make sure we don't exit K1 every time a new packet arrives
6355 	 * 772_29[5] = 1 CS_Mode_Stay_In_K1
6356 	 */
6357 	e1e_rphy(hw, I217_CGFREG, &phy_data);
6358 	phy_data |= BIT(5);
6359 	e1e_wphy(hw, I217_CGFREG, phy_data);
6360 
6361 	/* Change the MAC/PHY interface to SMBus
6362 	 * Force the SMBus in PHY page769_23[0] = 1
6363 	 * Force the SMBus in MAC CTRL_EXT[11] = 1
6364 	 */
6365 	e1e_rphy(hw, CV_SMB_CTRL, &phy_data);
6366 	phy_data |= CV_SMB_CTRL_FORCE_SMBUS;
6367 	e1e_wphy(hw, CV_SMB_CTRL, phy_data);
6368 	mac_data = er32(CTRL_EXT);
6369 	mac_data |= E1000_CTRL_EXT_FORCE_SMBUS;
6370 	ew32(CTRL_EXT, mac_data);
6371 
6372 	/* DFT control: PHY bit: page769_20[0] = 1
6373 	 * Gate PPW via EXTCNF_CTRL - set 0x0F00[7] = 1
6374 	 */
6375 	e1e_rphy(hw, I82579_DFT_CTRL, &phy_data);
6376 	phy_data |= BIT(0);
6377 	e1e_wphy(hw, I82579_DFT_CTRL, phy_data);
6378 
6379 	mac_data = er32(EXTCNF_CTRL);
6380 	mac_data |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
6381 	ew32(EXTCNF_CTRL, mac_data);
6382 
6383 	/* Check MAC Tx/Rx packet buffer pointers.
6384 	 * Reset MAC Tx/Rx packet buffer pointers to suppress any
6385 	 * pending traffic indication that would prevent power gating.
6386 	 */
6387 	mac_data = er32(TDFH);
6388 	if (mac_data)
6389 		ew32(TDFH, 0);
6390 	mac_data = er32(TDFT);
6391 	if (mac_data)
6392 		ew32(TDFT, 0);
6393 	mac_data = er32(TDFHS);
6394 	if (mac_data)
6395 		ew32(TDFHS, 0);
6396 	mac_data = er32(TDFTS);
6397 	if (mac_data)
6398 		ew32(TDFTS, 0);
6399 	mac_data = er32(TDFPC);
6400 	if (mac_data)
6401 		ew32(TDFPC, 0);
6402 	mac_data = er32(RDFH);
6403 	if (mac_data)
6404 		ew32(RDFH, 0);
6405 	mac_data = er32(RDFT);
6406 	if (mac_data)
6407 		ew32(RDFT, 0);
6408 	mac_data = er32(RDFHS);
6409 	if (mac_data)
6410 		ew32(RDFHS, 0);
6411 	mac_data = er32(RDFTS);
6412 	if (mac_data)
6413 		ew32(RDFTS, 0);
6414 	mac_data = er32(RDFPC);
6415 	if (mac_data)
6416 		ew32(RDFPC, 0);
6417 
6418 	/* Enable the Dynamic Power Gating in the MAC */
6419 	mac_data = er32(FEXTNVM7);
6420 	mac_data |= BIT(22);
6421 	ew32(FEXTNVM7, mac_data);
6422 
6423 	/* Disable the time synchronization clock */
6424 	mac_data = er32(FEXTNVM7);
6425 	mac_data |= BIT(31);
6426 	mac_data &= ~BIT(0);
6427 	ew32(FEXTNVM7, mac_data);
6428 
6429 	/* Dynamic Power Gating Enable */
6430 	mac_data = er32(CTRL_EXT);
6431 	mac_data |= BIT(3);
6432 	ew32(CTRL_EXT, mac_data);
6433 
6434 	/* Disable disconnected cable conditioning for Power Gating */
6435 	mac_data = er32(DPGFR);
6436 	mac_data |= BIT(2);
6437 	ew32(DPGFR, mac_data);
6438 
6439 	/* Don't wake from dynamic Power Gating with clock request */
6440 	mac_data = er32(FEXTNVM12);
6441 	mac_data |= BIT(12);
6442 	ew32(FEXTNVM12, mac_data);
6443 
6444 	/* Ungate PGCB clock */
6445 	mac_data = er32(FEXTNVM9);
6446 	mac_data &= ~BIT(28);
6447 	ew32(FEXTNVM9, mac_data);
6448 
6449 	/* Enable K1 off to enable mPHY Power Gating */
6450 	mac_data = er32(FEXTNVM6);
6451 	mac_data |= BIT(31);
6452 	ew32(FEXTNVM6, mac_data);
6453 
6454 	/* Enable mPHY power gating for any link and speed */
6455 	mac_data = er32(FEXTNVM8);
6456 	mac_data |= BIT(9);
6457 	ew32(FEXTNVM8, mac_data);
6458 
6459 	/* Enable the Dynamic Clock Gating in the DMA and MAC */
6460 	mac_data = er32(CTRL_EXT);
6461 	mac_data |= E1000_CTRL_EXT_DMA_DYN_CLK_EN;
6462 	ew32(CTRL_EXT, mac_data);
6463 
6464 	/* No MAC DPG gating SLP_S0 in modern standby
6465 	 * Switch the logic of the lanphypc to use PMC counter
6466 	 */
6467 	mac_data = er32(FEXTNVM5);
6468 	mac_data |= BIT(7);
6469 	ew32(FEXTNVM5, mac_data);
6470 }
6471 
6472 static void e1000e_s0ix_exit_flow(struct e1000_adapter *adapter)
6473 {
6474 	struct e1000_hw *hw = &adapter->hw;
6475 	u32 mac_data;
6476 	u16 phy_data;
6477 
6478 	/* Disable the Dynamic Power Gating in the MAC */
6479 	mac_data = er32(FEXTNVM7);
6480 	mac_data &= 0xFFBFFFFF;
6481 	ew32(FEXTNVM7, mac_data);
6482 
6483 	/* Enable the time synchronization clock */
6484 	mac_data = er32(FEXTNVM7);
6485 	mac_data |= BIT(0);
6486 	ew32(FEXTNVM7, mac_data);
6487 
6488 	/* Disable mPHY power gating for any link and speed */
6489 	mac_data = er32(FEXTNVM8);
6490 	mac_data &= ~BIT(9);
6491 	ew32(FEXTNVM8, mac_data);
6492 
6493 	/* Disable K1 off */
6494 	mac_data = er32(FEXTNVM6);
6495 	mac_data &= ~BIT(31);
6496 	ew32(FEXTNVM6, mac_data);
6497 
6498 	/* Disable Ungate PGCB clock */
6499 	mac_data = er32(FEXTNVM9);
6500 	mac_data |= BIT(28);
6501 	ew32(FEXTNVM9, mac_data);
6502 
6503 	/* Cancel not waking from dynamic
6504 	 * Power Gating with clock request
6505 	 */
6506 	mac_data = er32(FEXTNVM12);
6507 	mac_data &= ~BIT(12);
6508 	ew32(FEXTNVM12, mac_data);
6509 
6510 	/* Cancel disable disconnected cable conditioning
6511 	 * for Power Gating
6512 	 */
6513 	mac_data = er32(DPGFR);
6514 	mac_data &= ~BIT(2);
6515 	ew32(DPGFR, mac_data);
6516 
6517 	/* Disable Dynamic Power Gating */
6518 	mac_data = er32(CTRL_EXT);
6519 	mac_data &= 0xFFFFFFF7;
6520 	ew32(CTRL_EXT, mac_data);
6521 
6522 	/* Disable the Dynamic Clock Gating in the DMA and MAC */
6523 	mac_data = er32(CTRL_EXT);
6524 	mac_data &= 0xFFF7FFFF;
6525 	ew32(CTRL_EXT, mac_data);
6526 
6527 	/* Revert the lanphypc logic to use the internal Gbe counter
6528 	 * and not the PMC counter
6529 	 */
6530 	mac_data = er32(FEXTNVM5);
6531 	mac_data &= 0xFFFFFF7F;
6532 	ew32(FEXTNVM5, mac_data);
6533 
6534 	/* Enable the periodic inband message,
6535 	 * Request PCIe clock in K1 page770_17[10:9] =01b
6536 	 */
6537 	e1e_rphy(hw, HV_PM_CTRL, &phy_data);
6538 	phy_data &= 0xFBFF;
6539 	phy_data |= HV_PM_CTRL_K1_CLK_REQ;
6540 	e1e_wphy(hw, HV_PM_CTRL, phy_data);
6541 
6542 	/* Return back configuration
6543 	 * 772_29[5] = 0 CS_Mode_Stay_In_K1
6544 	 */
6545 	e1e_rphy(hw, I217_CGFREG, &phy_data);
6546 	phy_data &= 0xFFDF;
6547 	e1e_wphy(hw, I217_CGFREG, phy_data);
6548 
6549 	/* Change the MAC/PHY interface to Kumeran
6550 	 * Unforce the SMBus in PHY page769_23[0] = 0
6551 	 * Unforce the SMBus in MAC CTRL_EXT[11] = 0
6552 	 */
6553 	e1e_rphy(hw, CV_SMB_CTRL, &phy_data);
6554 	phy_data &= ~CV_SMB_CTRL_FORCE_SMBUS;
6555 	e1e_wphy(hw, CV_SMB_CTRL, phy_data);
6556 	mac_data = er32(CTRL_EXT);
6557 	mac_data &= ~E1000_CTRL_EXT_FORCE_SMBUS;
6558 	ew32(CTRL_EXT, mac_data);
6559 }
6560 
6561 static int e1000e_pm_freeze(struct device *dev)
6562 {
6563 	struct net_device *netdev = dev_get_drvdata(dev);
6564 	struct e1000_adapter *adapter = netdev_priv(netdev);
6565 	bool present;
6566 
6567 	rtnl_lock();
6568 
6569 	present = netif_device_present(netdev);
6570 	netif_device_detach(netdev);
6571 
6572 	if (present && netif_running(netdev)) {
6573 		int count = E1000_CHECK_RESET_COUNT;
6574 
6575 		while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6576 			usleep_range(10000, 11000);
6577 
6578 		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6579 
6580 		/* Quiesce the device without resetting the hardware */
6581 		e1000e_down(adapter, false);
6582 		e1000_free_irq(adapter);
6583 	}
6584 	rtnl_unlock();
6585 
6586 	e1000e_reset_interrupt_capability(adapter);
6587 
6588 	/* Allow time for pending master requests to run */
6589 	e1000e_disable_pcie_master(&adapter->hw);
6590 
6591 	return 0;
6592 }
6593 
6594 static int __e1000_shutdown(struct pci_dev *pdev, bool runtime)
6595 {
6596 	struct net_device *netdev = pci_get_drvdata(pdev);
6597 	struct e1000_adapter *adapter = netdev_priv(netdev);
6598 	struct e1000_hw *hw = &adapter->hw;
6599 	u32 ctrl, ctrl_ext, rctl, status, wufc;
6600 	int retval = 0;
6601 
6602 	/* Runtime suspend should only enable wakeup for link changes */
6603 	if (runtime)
6604 		wufc = E1000_WUFC_LNKC;
6605 	else if (device_may_wakeup(&pdev->dev))
6606 		wufc = adapter->wol;
6607 	else
6608 		wufc = 0;
6609 
6610 	status = er32(STATUS);
6611 	if (status & E1000_STATUS_LU)
6612 		wufc &= ~E1000_WUFC_LNKC;
6613 
6614 	if (wufc) {
6615 		e1000_setup_rctl(adapter);
6616 		e1000e_set_rx_mode(netdev);
6617 
6618 		/* turn on all-multi mode if wake on multicast is enabled */
6619 		if (wufc & E1000_WUFC_MC) {
6620 			rctl = er32(RCTL);
6621 			rctl |= E1000_RCTL_MPE;
6622 			ew32(RCTL, rctl);
6623 		}
6624 
6625 		ctrl = er32(CTRL);
6626 		ctrl |= E1000_CTRL_ADVD3WUC;
6627 		if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
6628 			ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
6629 		ew32(CTRL, ctrl);
6630 
6631 		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
6632 		    adapter->hw.phy.media_type ==
6633 		    e1000_media_type_internal_serdes) {
6634 			/* keep the laser running in D3 */
6635 			ctrl_ext = er32(CTRL_EXT);
6636 			ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
6637 			ew32(CTRL_EXT, ctrl_ext);
6638 		}
6639 
6640 		if (!runtime)
6641 			e1000e_power_up_phy(adapter);
6642 
6643 		if (adapter->flags & FLAG_IS_ICH)
6644 			e1000_suspend_workarounds_ich8lan(&adapter->hw);
6645 
6646 		if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6647 			/* enable wakeup by the PHY */
6648 			retval = e1000_init_phy_wakeup(adapter, wufc);
6649 			if (retval)
6650 				return retval;
6651 		} else {
6652 			/* enable wakeup by the MAC */
6653 			ew32(WUFC, wufc);
6654 			ew32(WUC, E1000_WUC_PME_EN);
6655 		}
6656 	} else {
6657 		ew32(WUC, 0);
6658 		ew32(WUFC, 0);
6659 
6660 		e1000_power_down_phy(adapter);
6661 	}
6662 
6663 	if (adapter->hw.phy.type == e1000_phy_igp_3) {
6664 		e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
6665 	} else if (hw->mac.type >= e1000_pch_lpt) {
6666 		if (wufc && !(wufc & (E1000_WUFC_EX | E1000_WUFC_MC | E1000_WUFC_BC)))
6667 			/* ULP does not support wake from unicast, multicast
6668 			 * or broadcast.
6669 			 */
6670 			retval = e1000_enable_ulp_lpt_lp(hw, !runtime);
6671 
6672 		if (retval)
6673 			return retval;
6674 	}
6675 
6676 	/* Ensure that the appropriate bits are set in LPI_CTRL
6677 	 * for EEE in Sx
6678 	 */
6679 	if ((hw->phy.type >= e1000_phy_i217) &&
6680 	    adapter->eee_advert && hw->dev_spec.ich8lan.eee_lp_ability) {
6681 		u16 lpi_ctrl = 0;
6682 
6683 		retval = hw->phy.ops.acquire(hw);
6684 		if (!retval) {
6685 			retval = e1e_rphy_locked(hw, I82579_LPI_CTRL,
6686 						 &lpi_ctrl);
6687 			if (!retval) {
6688 				if (adapter->eee_advert &
6689 				    hw->dev_spec.ich8lan.eee_lp_ability &
6690 				    I82579_EEE_100_SUPPORTED)
6691 					lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
6692 				if (adapter->eee_advert &
6693 				    hw->dev_spec.ich8lan.eee_lp_ability &
6694 				    I82579_EEE_1000_SUPPORTED)
6695 					lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
6696 
6697 				retval = e1e_wphy_locked(hw, I82579_LPI_CTRL,
6698 							 lpi_ctrl);
6699 			}
6700 		}
6701 		hw->phy.ops.release(hw);
6702 	}
6703 
6704 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
6705 	 * would have already happened in close and is redundant.
6706 	 */
6707 	e1000e_release_hw_control(adapter);
6708 
6709 	pci_clear_master(pdev);
6710 
6711 	/* The pci-e switch on some quad port adapters will report a
6712 	 * correctable error when the MAC transitions from D0 to D3.  To
6713 	 * prevent this we need to mask off the correctable errors on the
6714 	 * downstream port of the pci-e switch.
6715 	 *
6716 	 * We don't have the associated upstream bridge while assigning
6717 	 * the PCI device into guest. For example, the KVM on power is
6718 	 * one of the cases.
6719 	 */
6720 	if (adapter->flags & FLAG_IS_QUAD_PORT) {
6721 		struct pci_dev *us_dev = pdev->bus->self;
6722 		u16 devctl;
6723 
6724 		if (!us_dev)
6725 			return 0;
6726 
6727 		pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl);
6728 		pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL,
6729 					   (devctl & ~PCI_EXP_DEVCTL_CERE));
6730 
6731 		pci_save_state(pdev);
6732 		pci_prepare_to_sleep(pdev);
6733 
6734 		pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl);
6735 	}
6736 
6737 	return 0;
6738 }
6739 
6740 /**
6741  * __e1000e_disable_aspm - Disable ASPM states
6742  * @pdev: pointer to PCI device struct
6743  * @state: bit-mask of ASPM states to disable
6744  * @locked: indication if this context holds pci_bus_sem locked.
6745  *
6746  * Some devices *must* have certain ASPM states disabled per hardware errata.
6747  **/
6748 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state, int locked)
6749 {
6750 	struct pci_dev *parent = pdev->bus->self;
6751 	u16 aspm_dis_mask = 0;
6752 	u16 pdev_aspmc, parent_aspmc;
6753 
6754 	switch (state) {
6755 	case PCIE_LINK_STATE_L0S:
6756 	case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1:
6757 		aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S;
6758 		fallthrough; /* can't have L1 without L0s */
6759 	case PCIE_LINK_STATE_L1:
6760 		aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1;
6761 		break;
6762 	default:
6763 		return;
6764 	}
6765 
6766 	pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6767 	pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6768 
6769 	if (parent) {
6770 		pcie_capability_read_word(parent, PCI_EXP_LNKCTL,
6771 					  &parent_aspmc);
6772 		parent_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6773 	}
6774 
6775 	/* Nothing to do if the ASPM states to be disabled already are */
6776 	if (!(pdev_aspmc & aspm_dis_mask) &&
6777 	    (!parent || !(parent_aspmc & aspm_dis_mask)))
6778 		return;
6779 
6780 	dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
6781 		 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ?
6782 		 "L0s" : "",
6783 		 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ?
6784 		 "L1" : "");
6785 
6786 #ifdef CONFIG_PCIEASPM
6787 	if (locked)
6788 		pci_disable_link_state_locked(pdev, state);
6789 	else
6790 		pci_disable_link_state(pdev, state);
6791 
6792 	/* Double-check ASPM control.  If not disabled by the above, the
6793 	 * BIOS is preventing that from happening (or CONFIG_PCIEASPM is
6794 	 * not enabled); override by writing PCI config space directly.
6795 	 */
6796 	pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6797 	pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6798 
6799 	if (!(aspm_dis_mask & pdev_aspmc))
6800 		return;
6801 #endif
6802 
6803 	/* Both device and parent should have the same ASPM setting.
6804 	 * Disable ASPM in downstream component first and then upstream.
6805 	 */
6806 	pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask);
6807 
6808 	if (parent)
6809 		pcie_capability_clear_word(parent, PCI_EXP_LNKCTL,
6810 					   aspm_dis_mask);
6811 }
6812 
6813 /**
6814  * e1000e_disable_aspm - Disable ASPM states.
6815  * @pdev: pointer to PCI device struct
6816  * @state: bit-mask of ASPM states to disable
6817  *
6818  * This function acquires the pci_bus_sem!
6819  * Some devices *must* have certain ASPM states disabled per hardware errata.
6820  **/
6821 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6822 {
6823 	__e1000e_disable_aspm(pdev, state, 0);
6824 }
6825 
6826 /**
6827  * e1000e_disable_aspm_locked - Disable ASPM states.
6828  * @pdev: pointer to PCI device struct
6829  * @state: bit-mask of ASPM states to disable
6830  *
6831  * This function must be called with pci_bus_sem acquired!
6832  * Some devices *must* have certain ASPM states disabled per hardware errata.
6833  **/
6834 static void e1000e_disable_aspm_locked(struct pci_dev *pdev, u16 state)
6835 {
6836 	__e1000e_disable_aspm(pdev, state, 1);
6837 }
6838 
6839 static int e1000e_pm_thaw(struct device *dev)
6840 {
6841 	struct net_device *netdev = dev_get_drvdata(dev);
6842 	struct e1000_adapter *adapter = netdev_priv(netdev);
6843 	int rc = 0;
6844 
6845 	e1000e_set_interrupt_capability(adapter);
6846 
6847 	rtnl_lock();
6848 	if (netif_running(netdev)) {
6849 		rc = e1000_request_irq(adapter);
6850 		if (rc)
6851 			goto err_irq;
6852 
6853 		e1000e_up(adapter);
6854 	}
6855 
6856 	netif_device_attach(netdev);
6857 err_irq:
6858 	rtnl_unlock();
6859 
6860 	return rc;
6861 }
6862 
6863 static int __e1000_resume(struct pci_dev *pdev)
6864 {
6865 	struct net_device *netdev = pci_get_drvdata(pdev);
6866 	struct e1000_adapter *adapter = netdev_priv(netdev);
6867 	struct e1000_hw *hw = &adapter->hw;
6868 	u16 aspm_disable_flag = 0;
6869 
6870 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6871 		aspm_disable_flag = PCIE_LINK_STATE_L0S;
6872 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6873 		aspm_disable_flag |= PCIE_LINK_STATE_L1;
6874 	if (aspm_disable_flag)
6875 		e1000e_disable_aspm(pdev, aspm_disable_flag);
6876 
6877 	pci_set_master(pdev);
6878 
6879 	if (hw->mac.type >= e1000_pch2lan)
6880 		e1000_resume_workarounds_pchlan(&adapter->hw);
6881 
6882 	e1000e_power_up_phy(adapter);
6883 
6884 	/* report the system wakeup cause from S3/S4 */
6885 	if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6886 		u16 phy_data;
6887 
6888 		e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
6889 		if (phy_data) {
6890 			e_info("PHY Wakeup cause - %s\n",
6891 			       phy_data & E1000_WUS_EX ? "Unicast Packet" :
6892 			       phy_data & E1000_WUS_MC ? "Multicast Packet" :
6893 			       phy_data & E1000_WUS_BC ? "Broadcast Packet" :
6894 			       phy_data & E1000_WUS_MAG ? "Magic Packet" :
6895 			       phy_data & E1000_WUS_LNKC ?
6896 			       "Link Status Change" : "other");
6897 		}
6898 		e1e_wphy(&adapter->hw, BM_WUS, ~0);
6899 	} else {
6900 		u32 wus = er32(WUS);
6901 
6902 		if (wus) {
6903 			e_info("MAC Wakeup cause - %s\n",
6904 			       wus & E1000_WUS_EX ? "Unicast Packet" :
6905 			       wus & E1000_WUS_MC ? "Multicast Packet" :
6906 			       wus & E1000_WUS_BC ? "Broadcast Packet" :
6907 			       wus & E1000_WUS_MAG ? "Magic Packet" :
6908 			       wus & E1000_WUS_LNKC ? "Link Status Change" :
6909 			       "other");
6910 		}
6911 		ew32(WUS, ~0);
6912 	}
6913 
6914 	e1000e_reset(adapter);
6915 
6916 	e1000_init_manageability_pt(adapter);
6917 
6918 	/* If the controller has AMT, do not set DRV_LOAD until the interface
6919 	 * is up.  For all other cases, let the f/w know that the h/w is now
6920 	 * under the control of the driver.
6921 	 */
6922 	if (!(adapter->flags & FLAG_HAS_AMT))
6923 		e1000e_get_hw_control(adapter);
6924 
6925 	return 0;
6926 }
6927 
6928 static __maybe_unused int e1000e_pm_prepare(struct device *dev)
6929 {
6930 	return pm_runtime_suspended(dev) &&
6931 		pm_suspend_via_firmware();
6932 }
6933 
6934 static __maybe_unused int e1000e_pm_suspend(struct device *dev)
6935 {
6936 	struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6937 	struct e1000_adapter *adapter = netdev_priv(netdev);
6938 	struct pci_dev *pdev = to_pci_dev(dev);
6939 	int rc;
6940 
6941 	e1000e_flush_lpic(pdev);
6942 
6943 	e1000e_pm_freeze(dev);
6944 
6945 	rc = __e1000_shutdown(pdev, false);
6946 	if (rc) {
6947 		e1000e_pm_thaw(dev);
6948 	} else {
6949 		/* Introduce S0ix implementation */
6950 		if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS)
6951 			e1000e_s0ix_entry_flow(adapter);
6952 	}
6953 
6954 	return rc;
6955 }
6956 
6957 static __maybe_unused int e1000e_pm_resume(struct device *dev)
6958 {
6959 	struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6960 	struct e1000_adapter *adapter = netdev_priv(netdev);
6961 	struct pci_dev *pdev = to_pci_dev(dev);
6962 	int rc;
6963 
6964 	/* Introduce S0ix implementation */
6965 	if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS)
6966 		e1000e_s0ix_exit_flow(adapter);
6967 
6968 	rc = __e1000_resume(pdev);
6969 	if (rc)
6970 		return rc;
6971 
6972 	return e1000e_pm_thaw(dev);
6973 }
6974 
6975 static __maybe_unused int e1000e_pm_runtime_idle(struct device *dev)
6976 {
6977 	struct net_device *netdev = dev_get_drvdata(dev);
6978 	struct e1000_adapter *adapter = netdev_priv(netdev);
6979 	u16 eee_lp;
6980 
6981 	eee_lp = adapter->hw.dev_spec.ich8lan.eee_lp_ability;
6982 
6983 	if (!e1000e_has_link(adapter)) {
6984 		adapter->hw.dev_spec.ich8lan.eee_lp_ability = eee_lp;
6985 		pm_schedule_suspend(dev, 5 * MSEC_PER_SEC);
6986 	}
6987 
6988 	return -EBUSY;
6989 }
6990 
6991 static __maybe_unused int e1000e_pm_runtime_resume(struct device *dev)
6992 {
6993 	struct pci_dev *pdev = to_pci_dev(dev);
6994 	struct net_device *netdev = pci_get_drvdata(pdev);
6995 	struct e1000_adapter *adapter = netdev_priv(netdev);
6996 	int rc;
6997 
6998 	rc = __e1000_resume(pdev);
6999 	if (rc)
7000 		return rc;
7001 
7002 	if (netdev->flags & IFF_UP)
7003 		e1000e_up(adapter);
7004 
7005 	return rc;
7006 }
7007 
7008 static __maybe_unused int e1000e_pm_runtime_suspend(struct device *dev)
7009 {
7010 	struct pci_dev *pdev = to_pci_dev(dev);
7011 	struct net_device *netdev = pci_get_drvdata(pdev);
7012 	struct e1000_adapter *adapter = netdev_priv(netdev);
7013 
7014 	if (netdev->flags & IFF_UP) {
7015 		int count = E1000_CHECK_RESET_COUNT;
7016 
7017 		while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
7018 			usleep_range(10000, 11000);
7019 
7020 		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
7021 
7022 		/* Down the device without resetting the hardware */
7023 		e1000e_down(adapter, false);
7024 	}
7025 
7026 	if (__e1000_shutdown(pdev, true)) {
7027 		e1000e_pm_runtime_resume(dev);
7028 		return -EBUSY;
7029 	}
7030 
7031 	return 0;
7032 }
7033 
7034 static void e1000_shutdown(struct pci_dev *pdev)
7035 {
7036 	e1000e_flush_lpic(pdev);
7037 
7038 	e1000e_pm_freeze(&pdev->dev);
7039 
7040 	__e1000_shutdown(pdev, false);
7041 }
7042 
7043 #ifdef CONFIG_NET_POLL_CONTROLLER
7044 
7045 static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data)
7046 {
7047 	struct net_device *netdev = data;
7048 	struct e1000_adapter *adapter = netdev_priv(netdev);
7049 
7050 	if (adapter->msix_entries) {
7051 		int vector, msix_irq;
7052 
7053 		vector = 0;
7054 		msix_irq = adapter->msix_entries[vector].vector;
7055 		if (disable_hardirq(msix_irq))
7056 			e1000_intr_msix_rx(msix_irq, netdev);
7057 		enable_irq(msix_irq);
7058 
7059 		vector++;
7060 		msix_irq = adapter->msix_entries[vector].vector;
7061 		if (disable_hardirq(msix_irq))
7062 			e1000_intr_msix_tx(msix_irq, netdev);
7063 		enable_irq(msix_irq);
7064 
7065 		vector++;
7066 		msix_irq = adapter->msix_entries[vector].vector;
7067 		if (disable_hardirq(msix_irq))
7068 			e1000_msix_other(msix_irq, netdev);
7069 		enable_irq(msix_irq);
7070 	}
7071 
7072 	return IRQ_HANDLED;
7073 }
7074 
7075 /**
7076  * e1000_netpoll
7077  * @netdev: network interface device structure
7078  *
7079  * Polling 'interrupt' - used by things like netconsole to send skbs
7080  * without having to re-enable interrupts. It's not called while
7081  * the interrupt routine is executing.
7082  */
7083 static void e1000_netpoll(struct net_device *netdev)
7084 {
7085 	struct e1000_adapter *adapter = netdev_priv(netdev);
7086 
7087 	switch (adapter->int_mode) {
7088 	case E1000E_INT_MODE_MSIX:
7089 		e1000_intr_msix(adapter->pdev->irq, netdev);
7090 		break;
7091 	case E1000E_INT_MODE_MSI:
7092 		if (disable_hardirq(adapter->pdev->irq))
7093 			e1000_intr_msi(adapter->pdev->irq, netdev);
7094 		enable_irq(adapter->pdev->irq);
7095 		break;
7096 	default:		/* E1000E_INT_MODE_LEGACY */
7097 		if (disable_hardirq(adapter->pdev->irq))
7098 			e1000_intr(adapter->pdev->irq, netdev);
7099 		enable_irq(adapter->pdev->irq);
7100 		break;
7101 	}
7102 }
7103 #endif
7104 
7105 /**
7106  * e1000_io_error_detected - called when PCI error is detected
7107  * @pdev: Pointer to PCI device
7108  * @state: The current pci connection state
7109  *
7110  * This function is called after a PCI bus error affecting
7111  * this device has been detected.
7112  */
7113 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
7114 						pci_channel_state_t state)
7115 {
7116 	e1000e_pm_freeze(&pdev->dev);
7117 
7118 	if (state == pci_channel_io_perm_failure)
7119 		return PCI_ERS_RESULT_DISCONNECT;
7120 
7121 	pci_disable_device(pdev);
7122 
7123 	/* Request a slot reset. */
7124 	return PCI_ERS_RESULT_NEED_RESET;
7125 }
7126 
7127 /**
7128  * e1000_io_slot_reset - called after the pci bus has been reset.
7129  * @pdev: Pointer to PCI device
7130  *
7131  * Restart the card from scratch, as if from a cold-boot. Implementation
7132  * resembles the first-half of the e1000e_pm_resume routine.
7133  */
7134 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
7135 {
7136 	struct net_device *netdev = pci_get_drvdata(pdev);
7137 	struct e1000_adapter *adapter = netdev_priv(netdev);
7138 	struct e1000_hw *hw = &adapter->hw;
7139 	u16 aspm_disable_flag = 0;
7140 	int err;
7141 	pci_ers_result_t result;
7142 
7143 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
7144 		aspm_disable_flag = PCIE_LINK_STATE_L0S;
7145 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
7146 		aspm_disable_flag |= PCIE_LINK_STATE_L1;
7147 	if (aspm_disable_flag)
7148 		e1000e_disable_aspm_locked(pdev, aspm_disable_flag);
7149 
7150 	err = pci_enable_device_mem(pdev);
7151 	if (err) {
7152 		dev_err(&pdev->dev,
7153 			"Cannot re-enable PCI device after reset.\n");
7154 		result = PCI_ERS_RESULT_DISCONNECT;
7155 	} else {
7156 		pdev->state_saved = true;
7157 		pci_restore_state(pdev);
7158 		pci_set_master(pdev);
7159 
7160 		pci_enable_wake(pdev, PCI_D3hot, 0);
7161 		pci_enable_wake(pdev, PCI_D3cold, 0);
7162 
7163 		e1000e_reset(adapter);
7164 		ew32(WUS, ~0);
7165 		result = PCI_ERS_RESULT_RECOVERED;
7166 	}
7167 
7168 	return result;
7169 }
7170 
7171 /**
7172  * e1000_io_resume - called when traffic can start flowing again.
7173  * @pdev: Pointer to PCI device
7174  *
7175  * This callback is called when the error recovery driver tells us that
7176  * its OK to resume normal operation. Implementation resembles the
7177  * second-half of the e1000e_pm_resume routine.
7178  */
7179 static void e1000_io_resume(struct pci_dev *pdev)
7180 {
7181 	struct net_device *netdev = pci_get_drvdata(pdev);
7182 	struct e1000_adapter *adapter = netdev_priv(netdev);
7183 
7184 	e1000_init_manageability_pt(adapter);
7185 
7186 	e1000e_pm_thaw(&pdev->dev);
7187 
7188 	/* If the controller has AMT, do not set DRV_LOAD until the interface
7189 	 * is up.  For all other cases, let the f/w know that the h/w is now
7190 	 * under the control of the driver.
7191 	 */
7192 	if (!(adapter->flags & FLAG_HAS_AMT))
7193 		e1000e_get_hw_control(adapter);
7194 }
7195 
7196 static void e1000_print_device_info(struct e1000_adapter *adapter)
7197 {
7198 	struct e1000_hw *hw = &adapter->hw;
7199 	struct net_device *netdev = adapter->netdev;
7200 	u32 ret_val;
7201 	u8 pba_str[E1000_PBANUM_LENGTH];
7202 
7203 	/* print bus type/speed/width info */
7204 	e_info("(PCI Express:2.5GT/s:%s) %pM\n",
7205 	       /* bus width */
7206 	       ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
7207 		"Width x1"),
7208 	       /* MAC address */
7209 	       netdev->dev_addr);
7210 	e_info("Intel(R) PRO/%s Network Connection\n",
7211 	       (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
7212 	ret_val = e1000_read_pba_string_generic(hw, pba_str,
7213 						E1000_PBANUM_LENGTH);
7214 	if (ret_val)
7215 		strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
7216 	e_info("MAC: %d, PHY: %d, PBA No: %s\n",
7217 	       hw->mac.type, hw->phy.type, pba_str);
7218 }
7219 
7220 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
7221 {
7222 	struct e1000_hw *hw = &adapter->hw;
7223 	int ret_val;
7224 	u16 buf = 0;
7225 
7226 	if (hw->mac.type != e1000_82573)
7227 		return;
7228 
7229 	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
7230 	le16_to_cpus(&buf);
7231 	if (!ret_val && (!(buf & BIT(0)))) {
7232 		/* Deep Smart Power Down (DSPD) */
7233 		dev_warn(&adapter->pdev->dev,
7234 			 "Warning: detected DSPD enabled in EEPROM\n");
7235 	}
7236 }
7237 
7238 static netdev_features_t e1000_fix_features(struct net_device *netdev,
7239 					    netdev_features_t features)
7240 {
7241 	struct e1000_adapter *adapter = netdev_priv(netdev);
7242 	struct e1000_hw *hw = &adapter->hw;
7243 
7244 	/* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
7245 	if ((hw->mac.type >= e1000_pch2lan) && (netdev->mtu > ETH_DATA_LEN))
7246 		features &= ~NETIF_F_RXFCS;
7247 
7248 	/* Since there is no support for separate Rx/Tx vlan accel
7249 	 * enable/disable make sure Tx flag is always in same state as Rx.
7250 	 */
7251 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
7252 		features |= NETIF_F_HW_VLAN_CTAG_TX;
7253 	else
7254 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
7255 
7256 	return features;
7257 }
7258 
7259 static int e1000_set_features(struct net_device *netdev,
7260 			      netdev_features_t features)
7261 {
7262 	struct e1000_adapter *adapter = netdev_priv(netdev);
7263 	netdev_features_t changed = features ^ netdev->features;
7264 
7265 	if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
7266 		adapter->flags |= FLAG_TSO_FORCE;
7267 
7268 	if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
7269 			 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
7270 			 NETIF_F_RXALL)))
7271 		return 0;
7272 
7273 	if (changed & NETIF_F_RXFCS) {
7274 		if (features & NETIF_F_RXFCS) {
7275 			adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
7276 		} else {
7277 			/* We need to take it back to defaults, which might mean
7278 			 * stripping is still disabled at the adapter level.
7279 			 */
7280 			if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
7281 				adapter->flags2 |= FLAG2_CRC_STRIPPING;
7282 			else
7283 				adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
7284 		}
7285 	}
7286 
7287 	netdev->features = features;
7288 
7289 	if (netif_running(netdev))
7290 		e1000e_reinit_locked(adapter);
7291 	else
7292 		e1000e_reset(adapter);
7293 
7294 	return 1;
7295 }
7296 
7297 static const struct net_device_ops e1000e_netdev_ops = {
7298 	.ndo_open		= e1000e_open,
7299 	.ndo_stop		= e1000e_close,
7300 	.ndo_start_xmit		= e1000_xmit_frame,
7301 	.ndo_get_stats64	= e1000e_get_stats64,
7302 	.ndo_set_rx_mode	= e1000e_set_rx_mode,
7303 	.ndo_set_mac_address	= e1000_set_mac,
7304 	.ndo_change_mtu		= e1000_change_mtu,
7305 	.ndo_do_ioctl		= e1000_ioctl,
7306 	.ndo_tx_timeout		= e1000_tx_timeout,
7307 	.ndo_validate_addr	= eth_validate_addr,
7308 
7309 	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
7310 	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
7311 #ifdef CONFIG_NET_POLL_CONTROLLER
7312 	.ndo_poll_controller	= e1000_netpoll,
7313 #endif
7314 	.ndo_set_features = e1000_set_features,
7315 	.ndo_fix_features = e1000_fix_features,
7316 	.ndo_features_check	= passthru_features_check,
7317 };
7318 
7319 /**
7320  * e1000_probe - Device Initialization Routine
7321  * @pdev: PCI device information struct
7322  * @ent: entry in e1000_pci_tbl
7323  *
7324  * Returns 0 on success, negative on failure
7325  *
7326  * e1000_probe initializes an adapter identified by a pci_dev structure.
7327  * The OS initialization, configuring of the adapter private structure,
7328  * and a hardware reset occur.
7329  **/
7330 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
7331 {
7332 	struct net_device *netdev;
7333 	struct e1000_adapter *adapter;
7334 	struct e1000_hw *hw;
7335 	const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
7336 	resource_size_t mmio_start, mmio_len;
7337 	resource_size_t flash_start, flash_len;
7338 	static int cards_found;
7339 	u16 aspm_disable_flag = 0;
7340 	int bars, i, err, pci_using_dac;
7341 	u16 eeprom_data = 0;
7342 	u16 eeprom_apme_mask = E1000_EEPROM_APME;
7343 	s32 ret_val = 0;
7344 
7345 	if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
7346 		aspm_disable_flag = PCIE_LINK_STATE_L0S;
7347 	if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
7348 		aspm_disable_flag |= PCIE_LINK_STATE_L1;
7349 	if (aspm_disable_flag)
7350 		e1000e_disable_aspm(pdev, aspm_disable_flag);
7351 
7352 	err = pci_enable_device_mem(pdev);
7353 	if (err)
7354 		return err;
7355 
7356 	pci_using_dac = 0;
7357 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
7358 	if (!err) {
7359 		pci_using_dac = 1;
7360 	} else {
7361 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
7362 		if (err) {
7363 			dev_err(&pdev->dev,
7364 				"No usable DMA configuration, aborting\n");
7365 			goto err_dma;
7366 		}
7367 	}
7368 
7369 	bars = pci_select_bars(pdev, IORESOURCE_MEM);
7370 	err = pci_request_selected_regions_exclusive(pdev, bars,
7371 						     e1000e_driver_name);
7372 	if (err)
7373 		goto err_pci_reg;
7374 
7375 	/* AER (Advanced Error Reporting) hooks */
7376 	pci_enable_pcie_error_reporting(pdev);
7377 
7378 	pci_set_master(pdev);
7379 	/* PCI config space info */
7380 	err = pci_save_state(pdev);
7381 	if (err)
7382 		goto err_alloc_etherdev;
7383 
7384 	err = -ENOMEM;
7385 	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
7386 	if (!netdev)
7387 		goto err_alloc_etherdev;
7388 
7389 	SET_NETDEV_DEV(netdev, &pdev->dev);
7390 
7391 	netdev->irq = pdev->irq;
7392 
7393 	pci_set_drvdata(pdev, netdev);
7394 	adapter = netdev_priv(netdev);
7395 	hw = &adapter->hw;
7396 	adapter->netdev = netdev;
7397 	adapter->pdev = pdev;
7398 	adapter->ei = ei;
7399 	adapter->pba = ei->pba;
7400 	adapter->flags = ei->flags;
7401 	adapter->flags2 = ei->flags2;
7402 	adapter->hw.adapter = adapter;
7403 	adapter->hw.mac.type = ei->mac;
7404 	adapter->max_hw_frame_size = ei->max_hw_frame_size;
7405 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
7406 
7407 	mmio_start = pci_resource_start(pdev, 0);
7408 	mmio_len = pci_resource_len(pdev, 0);
7409 
7410 	err = -EIO;
7411 	adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
7412 	if (!adapter->hw.hw_addr)
7413 		goto err_ioremap;
7414 
7415 	if ((adapter->flags & FLAG_HAS_FLASH) &&
7416 	    (pci_resource_flags(pdev, 1) & IORESOURCE_MEM) &&
7417 	    (hw->mac.type < e1000_pch_spt)) {
7418 		flash_start = pci_resource_start(pdev, 1);
7419 		flash_len = pci_resource_len(pdev, 1);
7420 		adapter->hw.flash_address = ioremap(flash_start, flash_len);
7421 		if (!adapter->hw.flash_address)
7422 			goto err_flashmap;
7423 	}
7424 
7425 	/* Set default EEE advertisement */
7426 	if (adapter->flags2 & FLAG2_HAS_EEE)
7427 		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
7428 
7429 	/* construct the net_device struct */
7430 	netdev->netdev_ops = &e1000e_netdev_ops;
7431 	e1000e_set_ethtool_ops(netdev);
7432 	netdev->watchdog_timeo = 5 * HZ;
7433 	netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64);
7434 	strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
7435 
7436 	netdev->mem_start = mmio_start;
7437 	netdev->mem_end = mmio_start + mmio_len;
7438 
7439 	adapter->bd_number = cards_found++;
7440 
7441 	e1000e_check_options(adapter);
7442 
7443 	/* setup adapter struct */
7444 	err = e1000_sw_init(adapter);
7445 	if (err)
7446 		goto err_sw_init;
7447 
7448 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
7449 	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
7450 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
7451 
7452 	err = ei->get_variants(adapter);
7453 	if (err)
7454 		goto err_hw_init;
7455 
7456 	if ((adapter->flags & FLAG_IS_ICH) &&
7457 	    (adapter->flags & FLAG_READ_ONLY_NVM) &&
7458 	    (hw->mac.type < e1000_pch_spt))
7459 		e1000e_write_protect_nvm_ich8lan(&adapter->hw);
7460 
7461 	hw->mac.ops.get_bus_info(&adapter->hw);
7462 
7463 	adapter->hw.phy.autoneg_wait_to_complete = 0;
7464 
7465 	/* Copper options */
7466 	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
7467 		adapter->hw.phy.mdix = AUTO_ALL_MODES;
7468 		adapter->hw.phy.disable_polarity_correction = 0;
7469 		adapter->hw.phy.ms_type = e1000_ms_hw_default;
7470 	}
7471 
7472 	if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
7473 		dev_info(&pdev->dev,
7474 			 "PHY reset is blocked due to SOL/IDER session.\n");
7475 
7476 	/* Set initial default active device features */
7477 	netdev->features = (NETIF_F_SG |
7478 			    NETIF_F_HW_VLAN_CTAG_RX |
7479 			    NETIF_F_HW_VLAN_CTAG_TX |
7480 			    NETIF_F_TSO |
7481 			    NETIF_F_TSO6 |
7482 			    NETIF_F_RXHASH |
7483 			    NETIF_F_RXCSUM |
7484 			    NETIF_F_HW_CSUM);
7485 
7486 	/* Set user-changeable features (subset of all device features) */
7487 	netdev->hw_features = netdev->features;
7488 	netdev->hw_features |= NETIF_F_RXFCS;
7489 	netdev->priv_flags |= IFF_SUPP_NOFCS;
7490 	netdev->hw_features |= NETIF_F_RXALL;
7491 
7492 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
7493 		netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7494 
7495 	netdev->vlan_features |= (NETIF_F_SG |
7496 				  NETIF_F_TSO |
7497 				  NETIF_F_TSO6 |
7498 				  NETIF_F_HW_CSUM);
7499 
7500 	netdev->priv_flags |= IFF_UNICAST_FLT;
7501 
7502 	if (pci_using_dac) {
7503 		netdev->features |= NETIF_F_HIGHDMA;
7504 		netdev->vlan_features |= NETIF_F_HIGHDMA;
7505 	}
7506 
7507 	/* MTU range: 68 - max_hw_frame_size */
7508 	netdev->min_mtu = ETH_MIN_MTU;
7509 	netdev->max_mtu = adapter->max_hw_frame_size -
7510 			  (VLAN_ETH_HLEN + ETH_FCS_LEN);
7511 
7512 	if (e1000e_enable_mng_pass_thru(&adapter->hw))
7513 		adapter->flags |= FLAG_MNG_PT_ENABLED;
7514 
7515 	/* before reading the NVM, reset the controller to
7516 	 * put the device in a known good starting state
7517 	 */
7518 	adapter->hw.mac.ops.reset_hw(&adapter->hw);
7519 
7520 	/* systems with ASPM and others may see the checksum fail on the first
7521 	 * attempt. Let's give it a few tries
7522 	 */
7523 	for (i = 0;; i++) {
7524 		if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
7525 			break;
7526 		if (i == 2) {
7527 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
7528 			err = -EIO;
7529 			goto err_eeprom;
7530 		}
7531 	}
7532 
7533 	e1000_eeprom_checks(adapter);
7534 
7535 	/* copy the MAC address */
7536 	if (e1000e_read_mac_addr(&adapter->hw))
7537 		dev_err(&pdev->dev,
7538 			"NVM Read Error while reading MAC address\n");
7539 
7540 	memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
7541 
7542 	if (!is_valid_ether_addr(netdev->dev_addr)) {
7543 		dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
7544 			netdev->dev_addr);
7545 		err = -EIO;
7546 		goto err_eeprom;
7547 	}
7548 
7549 	timer_setup(&adapter->watchdog_timer, e1000_watchdog, 0);
7550 	timer_setup(&adapter->phy_info_timer, e1000_update_phy_info, 0);
7551 
7552 	INIT_WORK(&adapter->reset_task, e1000_reset_task);
7553 	INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
7554 	INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
7555 	INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
7556 	INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
7557 
7558 	/* Initialize link parameters. User can change them with ethtool */
7559 	adapter->hw.mac.autoneg = 1;
7560 	adapter->fc_autoneg = true;
7561 	adapter->hw.fc.requested_mode = e1000_fc_default;
7562 	adapter->hw.fc.current_mode = e1000_fc_default;
7563 	adapter->hw.phy.autoneg_advertised = 0x2f;
7564 
7565 	/* Initial Wake on LAN setting - If APM wake is enabled in
7566 	 * the EEPROM, enable the ACPI Magic Packet filter
7567 	 */
7568 	if (adapter->flags & FLAG_APME_IN_WUC) {
7569 		/* APME bit in EEPROM is mapped to WUC.APME */
7570 		eeprom_data = er32(WUC);
7571 		eeprom_apme_mask = E1000_WUC_APME;
7572 		if ((hw->mac.type > e1000_ich10lan) &&
7573 		    (eeprom_data & E1000_WUC_PHY_WAKE))
7574 			adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
7575 	} else if (adapter->flags & FLAG_APME_IN_CTRL3) {
7576 		if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
7577 		    (adapter->hw.bus.func == 1))
7578 			ret_val = e1000_read_nvm(&adapter->hw,
7579 					      NVM_INIT_CONTROL3_PORT_B,
7580 					      1, &eeprom_data);
7581 		else
7582 			ret_val = e1000_read_nvm(&adapter->hw,
7583 					      NVM_INIT_CONTROL3_PORT_A,
7584 					      1, &eeprom_data);
7585 	}
7586 
7587 	/* fetch WoL from EEPROM */
7588 	if (ret_val)
7589 		e_dbg("NVM read error getting WoL initial values: %d\n", ret_val);
7590 	else if (eeprom_data & eeprom_apme_mask)
7591 		adapter->eeprom_wol |= E1000_WUFC_MAG;
7592 
7593 	/* now that we have the eeprom settings, apply the special cases
7594 	 * where the eeprom may be wrong or the board simply won't support
7595 	 * wake on lan on a particular port
7596 	 */
7597 	if (!(adapter->flags & FLAG_HAS_WOL))
7598 		adapter->eeprom_wol = 0;
7599 
7600 	/* initialize the wol settings based on the eeprom settings */
7601 	adapter->wol = adapter->eeprom_wol;
7602 
7603 	/* make sure adapter isn't asleep if manageability is enabled */
7604 	if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) ||
7605 	    (hw->mac.ops.check_mng_mode(hw)))
7606 		device_wakeup_enable(&pdev->dev);
7607 
7608 	/* save off EEPROM version number */
7609 	ret_val = e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
7610 
7611 	if (ret_val) {
7612 		e_dbg("NVM read error getting EEPROM version: %d\n", ret_val);
7613 		adapter->eeprom_vers = 0;
7614 	}
7615 
7616 	/* init PTP hardware clock */
7617 	e1000e_ptp_init(adapter);
7618 
7619 	/* reset the hardware with the new settings */
7620 	e1000e_reset(adapter);
7621 
7622 	/* If the controller has AMT, do not set DRV_LOAD until the interface
7623 	 * is up.  For all other cases, let the f/w know that the h/w is now
7624 	 * under the control of the driver.
7625 	 */
7626 	if (!(adapter->flags & FLAG_HAS_AMT))
7627 		e1000e_get_hw_control(adapter);
7628 
7629 	if (hw->mac.type >= e1000_pch_cnp)
7630 		adapter->flags2 |= FLAG2_ENABLE_S0IX_FLOWS;
7631 
7632 	strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
7633 	err = register_netdev(netdev);
7634 	if (err)
7635 		goto err_register;
7636 
7637 	/* carrier off reporting is important to ethtool even BEFORE open */
7638 	netif_carrier_off(netdev);
7639 
7640 	e1000_print_device_info(adapter);
7641 
7642 	dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_SMART_PREPARE);
7643 
7644 	if (pci_dev_run_wake(pdev) && hw->mac.type != e1000_pch_cnp)
7645 		pm_runtime_put_noidle(&pdev->dev);
7646 
7647 	return 0;
7648 
7649 err_register:
7650 	if (!(adapter->flags & FLAG_HAS_AMT))
7651 		e1000e_release_hw_control(adapter);
7652 err_eeprom:
7653 	if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
7654 		e1000_phy_hw_reset(&adapter->hw);
7655 err_hw_init:
7656 	kfree(adapter->tx_ring);
7657 	kfree(adapter->rx_ring);
7658 err_sw_init:
7659 	if ((adapter->hw.flash_address) && (hw->mac.type < e1000_pch_spt))
7660 		iounmap(adapter->hw.flash_address);
7661 	e1000e_reset_interrupt_capability(adapter);
7662 err_flashmap:
7663 	iounmap(adapter->hw.hw_addr);
7664 err_ioremap:
7665 	free_netdev(netdev);
7666 err_alloc_etherdev:
7667 	pci_release_mem_regions(pdev);
7668 err_pci_reg:
7669 err_dma:
7670 	pci_disable_device(pdev);
7671 	return err;
7672 }
7673 
7674 /**
7675  * e1000_remove - Device Removal Routine
7676  * @pdev: PCI device information struct
7677  *
7678  * e1000_remove is called by the PCI subsystem to alert the driver
7679  * that it should release a PCI device.  The could be caused by a
7680  * Hot-Plug event, or because the driver is going to be removed from
7681  * memory.
7682  **/
7683 static void e1000_remove(struct pci_dev *pdev)
7684 {
7685 	struct net_device *netdev = pci_get_drvdata(pdev);
7686 	struct e1000_adapter *adapter = netdev_priv(netdev);
7687 
7688 	e1000e_ptp_remove(adapter);
7689 
7690 	/* The timers may be rescheduled, so explicitly disable them
7691 	 * from being rescheduled.
7692 	 */
7693 	set_bit(__E1000_DOWN, &adapter->state);
7694 	del_timer_sync(&adapter->watchdog_timer);
7695 	del_timer_sync(&adapter->phy_info_timer);
7696 
7697 	cancel_work_sync(&adapter->reset_task);
7698 	cancel_work_sync(&adapter->watchdog_task);
7699 	cancel_work_sync(&adapter->downshift_task);
7700 	cancel_work_sync(&adapter->update_phy_task);
7701 	cancel_work_sync(&adapter->print_hang_task);
7702 
7703 	if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
7704 		cancel_work_sync(&adapter->tx_hwtstamp_work);
7705 		if (adapter->tx_hwtstamp_skb) {
7706 			dev_consume_skb_any(adapter->tx_hwtstamp_skb);
7707 			adapter->tx_hwtstamp_skb = NULL;
7708 		}
7709 	}
7710 
7711 	unregister_netdev(netdev);
7712 
7713 	if (pci_dev_run_wake(pdev))
7714 		pm_runtime_get_noresume(&pdev->dev);
7715 
7716 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7717 	 * would have already happened in close and is redundant.
7718 	 */
7719 	e1000e_release_hw_control(adapter);
7720 
7721 	e1000e_reset_interrupt_capability(adapter);
7722 	kfree(adapter->tx_ring);
7723 	kfree(adapter->rx_ring);
7724 
7725 	iounmap(adapter->hw.hw_addr);
7726 	if ((adapter->hw.flash_address) &&
7727 	    (adapter->hw.mac.type < e1000_pch_spt))
7728 		iounmap(adapter->hw.flash_address);
7729 	pci_release_mem_regions(pdev);
7730 
7731 	free_netdev(netdev);
7732 
7733 	/* AER disable */
7734 	pci_disable_pcie_error_reporting(pdev);
7735 
7736 	pci_disable_device(pdev);
7737 }
7738 
7739 /* PCI Error Recovery (ERS) */
7740 static const struct pci_error_handlers e1000_err_handler = {
7741 	.error_detected = e1000_io_error_detected,
7742 	.slot_reset = e1000_io_slot_reset,
7743 	.resume = e1000_io_resume,
7744 };
7745 
7746 static const struct pci_device_id e1000_pci_tbl[] = {
7747 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
7748 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
7749 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
7750 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP),
7751 	  board_82571 },
7752 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
7753 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
7754 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
7755 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
7756 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
7757 
7758 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
7759 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
7760 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
7761 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
7762 
7763 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
7764 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
7765 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
7766 
7767 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
7768 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
7769 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
7770 
7771 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
7772 	  board_80003es2lan },
7773 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
7774 	  board_80003es2lan },
7775 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
7776 	  board_80003es2lan },
7777 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
7778 	  board_80003es2lan },
7779 
7780 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
7781 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
7782 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
7783 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
7784 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
7785 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
7786 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
7787 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
7788 
7789 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
7790 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
7791 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
7792 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
7793 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
7794 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
7795 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
7796 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
7797 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
7798 
7799 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
7800 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
7801 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
7802 
7803 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
7804 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
7805 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
7806 
7807 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
7808 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
7809 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
7810 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
7811 
7812 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
7813 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
7814 
7815 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
7816 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
7817 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt },
7818 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt },
7819 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt },
7820 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt },
7821 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt },
7822 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt },
7823 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM), board_pch_spt },
7824 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V), board_pch_spt },
7825 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM2), board_pch_spt },
7826 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V2), board_pch_spt },
7827 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LBG_I219_LM3), board_pch_spt },
7828 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM4), board_pch_spt },
7829 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V4), board_pch_spt },
7830 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM5), board_pch_spt },
7831 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V5), board_pch_spt },
7832 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM6), board_pch_cnp },
7833 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V6), board_pch_cnp },
7834 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM7), board_pch_cnp },
7835 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V7), board_pch_cnp },
7836 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM8), board_pch_cnp },
7837 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V8), board_pch_cnp },
7838 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM9), board_pch_cnp },
7839 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V9), board_pch_cnp },
7840 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM10), board_pch_cnp },
7841 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V10), board_pch_cnp },
7842 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM11), board_pch_cnp },
7843 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V11), board_pch_cnp },
7844 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM12), board_pch_spt },
7845 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V12), board_pch_spt },
7846 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM13), board_pch_cnp },
7847 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V13), board_pch_cnp },
7848 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM14), board_pch_cnp },
7849 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V14), board_pch_cnp },
7850 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM15), board_pch_cnp },
7851 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V15), board_pch_cnp },
7852 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_LM16), board_pch_cnp },
7853 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_V16), board_pch_cnp },
7854 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_LM17), board_pch_cnp },
7855 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_V17), board_pch_cnp },
7856 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_LM18), board_pch_cnp },
7857 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_V18), board_pch_cnp },
7858 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_LM19), board_pch_cnp },
7859 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_V19), board_pch_cnp },
7860 
7861 	{ 0, 0, 0, 0, 0, 0, 0 }	/* terminate list */
7862 };
7863 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
7864 
7865 static const struct dev_pm_ops e1000_pm_ops = {
7866 #ifdef CONFIG_PM_SLEEP
7867 	.prepare	= e1000e_pm_prepare,
7868 	.suspend	= e1000e_pm_suspend,
7869 	.resume		= e1000e_pm_resume,
7870 	.freeze		= e1000e_pm_freeze,
7871 	.thaw		= e1000e_pm_thaw,
7872 	.poweroff	= e1000e_pm_suspend,
7873 	.restore	= e1000e_pm_resume,
7874 #endif
7875 	SET_RUNTIME_PM_OPS(e1000e_pm_runtime_suspend, e1000e_pm_runtime_resume,
7876 			   e1000e_pm_runtime_idle)
7877 };
7878 
7879 /* PCI Device API Driver */
7880 static struct pci_driver e1000_driver = {
7881 	.name     = e1000e_driver_name,
7882 	.id_table = e1000_pci_tbl,
7883 	.probe    = e1000_probe,
7884 	.remove   = e1000_remove,
7885 	.driver   = {
7886 		.pm = &e1000_pm_ops,
7887 	},
7888 	.shutdown = e1000_shutdown,
7889 	.err_handler = &e1000_err_handler
7890 };
7891 
7892 /**
7893  * e1000_init_module - Driver Registration Routine
7894  *
7895  * e1000_init_module is the first routine called when the driver is
7896  * loaded. All it does is register with the PCI subsystem.
7897  **/
7898 static int __init e1000_init_module(void)
7899 {
7900 	pr_info("Intel(R) PRO/1000 Network Driver\n");
7901 	pr_info("Copyright(c) 1999 - 2015 Intel Corporation.\n");
7902 
7903 	return pci_register_driver(&e1000_driver);
7904 }
7905 module_init(e1000_init_module);
7906 
7907 /**
7908  * e1000_exit_module - Driver Exit Cleanup Routine
7909  *
7910  * e1000_exit_module is called just before the driver is removed
7911  * from memory.
7912  **/
7913 static void __exit e1000_exit_module(void)
7914 {
7915 	pci_unregister_driver(&e1000_driver);
7916 }
7917 module_exit(e1000_exit_module);
7918 
7919 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
7920 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7921 MODULE_LICENSE("GPL v2");
7922 
7923 /* netdev.c */
7924