1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 1999 - 2018 Intel Corporation. */ 3 4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 5 6 #include <linux/module.h> 7 #include <linux/types.h> 8 #include <linux/init.h> 9 #include <linux/pci.h> 10 #include <linux/vmalloc.h> 11 #include <linux/pagemap.h> 12 #include <linux/delay.h> 13 #include <linux/netdevice.h> 14 #include <linux/interrupt.h> 15 #include <linux/tcp.h> 16 #include <linux/ipv6.h> 17 #include <linux/slab.h> 18 #include <net/checksum.h> 19 #include <net/ip6_checksum.h> 20 #include <linux/ethtool.h> 21 #include <linux/if_vlan.h> 22 #include <linux/cpu.h> 23 #include <linux/smp.h> 24 #include <linux/pm_qos.h> 25 #include <linux/pm_runtime.h> 26 #include <linux/aer.h> 27 #include <linux/prefetch.h> 28 29 #include "e1000.h" 30 31 #define DRV_EXTRAVERSION "-k" 32 33 #define DRV_VERSION "3.2.6" DRV_EXTRAVERSION 34 char e1000e_driver_name[] = "e1000e"; 35 const char e1000e_driver_version[] = DRV_VERSION; 36 37 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK) 38 static int debug = -1; 39 module_param(debug, int, 0); 40 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 41 42 static const struct e1000_info *e1000_info_tbl[] = { 43 [board_82571] = &e1000_82571_info, 44 [board_82572] = &e1000_82572_info, 45 [board_82573] = &e1000_82573_info, 46 [board_82574] = &e1000_82574_info, 47 [board_82583] = &e1000_82583_info, 48 [board_80003es2lan] = &e1000_es2_info, 49 [board_ich8lan] = &e1000_ich8_info, 50 [board_ich9lan] = &e1000_ich9_info, 51 [board_ich10lan] = &e1000_ich10_info, 52 [board_pchlan] = &e1000_pch_info, 53 [board_pch2lan] = &e1000_pch2_info, 54 [board_pch_lpt] = &e1000_pch_lpt_info, 55 [board_pch_spt] = &e1000_pch_spt_info, 56 [board_pch_cnp] = &e1000_pch_cnp_info, 57 }; 58 59 struct e1000_reg_info { 60 u32 ofs; 61 char *name; 62 }; 63 64 static const struct e1000_reg_info e1000_reg_info_tbl[] = { 65 /* General Registers */ 66 {E1000_CTRL, "CTRL"}, 67 {E1000_STATUS, "STATUS"}, 68 {E1000_CTRL_EXT, "CTRL_EXT"}, 69 70 /* Interrupt Registers */ 71 {E1000_ICR, "ICR"}, 72 73 /* Rx Registers */ 74 {E1000_RCTL, "RCTL"}, 75 {E1000_RDLEN(0), "RDLEN"}, 76 {E1000_RDH(0), "RDH"}, 77 {E1000_RDT(0), "RDT"}, 78 {E1000_RDTR, "RDTR"}, 79 {E1000_RXDCTL(0), "RXDCTL"}, 80 {E1000_ERT, "ERT"}, 81 {E1000_RDBAL(0), "RDBAL"}, 82 {E1000_RDBAH(0), "RDBAH"}, 83 {E1000_RDFH, "RDFH"}, 84 {E1000_RDFT, "RDFT"}, 85 {E1000_RDFHS, "RDFHS"}, 86 {E1000_RDFTS, "RDFTS"}, 87 {E1000_RDFPC, "RDFPC"}, 88 89 /* Tx Registers */ 90 {E1000_TCTL, "TCTL"}, 91 {E1000_TDBAL(0), "TDBAL"}, 92 {E1000_TDBAH(0), "TDBAH"}, 93 {E1000_TDLEN(0), "TDLEN"}, 94 {E1000_TDH(0), "TDH"}, 95 {E1000_TDT(0), "TDT"}, 96 {E1000_TIDV, "TIDV"}, 97 {E1000_TXDCTL(0), "TXDCTL"}, 98 {E1000_TADV, "TADV"}, 99 {E1000_TARC(0), "TARC"}, 100 {E1000_TDFH, "TDFH"}, 101 {E1000_TDFT, "TDFT"}, 102 {E1000_TDFHS, "TDFHS"}, 103 {E1000_TDFTS, "TDFTS"}, 104 {E1000_TDFPC, "TDFPC"}, 105 106 /* List Terminator */ 107 {0, NULL} 108 }; 109 110 /** 111 * __ew32_prepare - prepare to write to MAC CSR register on certain parts 112 * @hw: pointer to the HW structure 113 * 114 * When updating the MAC CSR registers, the Manageability Engine (ME) could 115 * be accessing the registers at the same time. Normally, this is handled in 116 * h/w by an arbiter but on some parts there is a bug that acknowledges Host 117 * accesses later than it should which could result in the register to have 118 * an incorrect value. Workaround this by checking the FWSM register which 119 * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set 120 * and try again a number of times. 121 **/ 122 s32 __ew32_prepare(struct e1000_hw *hw) 123 { 124 s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT; 125 126 while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i) 127 udelay(50); 128 129 return i; 130 } 131 132 void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val) 133 { 134 if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA) 135 __ew32_prepare(hw); 136 137 writel(val, hw->hw_addr + reg); 138 } 139 140 /** 141 * e1000_regdump - register printout routine 142 * @hw: pointer to the HW structure 143 * @reginfo: pointer to the register info table 144 **/ 145 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo) 146 { 147 int n = 0; 148 char rname[16]; 149 u32 regs[8]; 150 151 switch (reginfo->ofs) { 152 case E1000_RXDCTL(0): 153 for (n = 0; n < 2; n++) 154 regs[n] = __er32(hw, E1000_RXDCTL(n)); 155 break; 156 case E1000_TXDCTL(0): 157 for (n = 0; n < 2; n++) 158 regs[n] = __er32(hw, E1000_TXDCTL(n)); 159 break; 160 case E1000_TARC(0): 161 for (n = 0; n < 2; n++) 162 regs[n] = __er32(hw, E1000_TARC(n)); 163 break; 164 default: 165 pr_info("%-15s %08x\n", 166 reginfo->name, __er32(hw, reginfo->ofs)); 167 return; 168 } 169 170 snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]"); 171 pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]); 172 } 173 174 static void e1000e_dump_ps_pages(struct e1000_adapter *adapter, 175 struct e1000_buffer *bi) 176 { 177 int i; 178 struct e1000_ps_page *ps_page; 179 180 for (i = 0; i < adapter->rx_ps_pages; i++) { 181 ps_page = &bi->ps_pages[i]; 182 183 if (ps_page->page) { 184 pr_info("packet dump for ps_page %d:\n", i); 185 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 186 16, 1, page_address(ps_page->page), 187 PAGE_SIZE, true); 188 } 189 } 190 } 191 192 /** 193 * e1000e_dump - Print registers, Tx-ring and Rx-ring 194 * @adapter: board private structure 195 **/ 196 static void e1000e_dump(struct e1000_adapter *adapter) 197 { 198 struct net_device *netdev = adapter->netdev; 199 struct e1000_hw *hw = &adapter->hw; 200 struct e1000_reg_info *reginfo; 201 struct e1000_ring *tx_ring = adapter->tx_ring; 202 struct e1000_tx_desc *tx_desc; 203 struct my_u0 { 204 __le64 a; 205 __le64 b; 206 } *u0; 207 struct e1000_buffer *buffer_info; 208 struct e1000_ring *rx_ring = adapter->rx_ring; 209 union e1000_rx_desc_packet_split *rx_desc_ps; 210 union e1000_rx_desc_extended *rx_desc; 211 struct my_u1 { 212 __le64 a; 213 __le64 b; 214 __le64 c; 215 __le64 d; 216 } *u1; 217 u32 staterr; 218 int i = 0; 219 220 if (!netif_msg_hw(adapter)) 221 return; 222 223 /* Print netdevice Info */ 224 if (netdev) { 225 dev_info(&adapter->pdev->dev, "Net device Info\n"); 226 pr_info("Device Name state trans_start\n"); 227 pr_info("%-15s %016lX %016lX\n", netdev->name, 228 netdev->state, dev_trans_start(netdev)); 229 } 230 231 /* Print Registers */ 232 dev_info(&adapter->pdev->dev, "Register Dump\n"); 233 pr_info(" Register Name Value\n"); 234 for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl; 235 reginfo->name; reginfo++) { 236 e1000_regdump(hw, reginfo); 237 } 238 239 /* Print Tx Ring Summary */ 240 if (!netdev || !netif_running(netdev)) 241 return; 242 243 dev_info(&adapter->pdev->dev, "Tx Ring Summary\n"); 244 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n"); 245 buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean]; 246 pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n", 247 0, tx_ring->next_to_use, tx_ring->next_to_clean, 248 (unsigned long long)buffer_info->dma, 249 buffer_info->length, 250 buffer_info->next_to_watch, 251 (unsigned long long)buffer_info->time_stamp); 252 253 /* Print Tx Ring */ 254 if (!netif_msg_tx_done(adapter)) 255 goto rx_ring_summary; 256 257 dev_info(&adapter->pdev->dev, "Tx Ring Dump\n"); 258 259 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended) 260 * 261 * Legacy Transmit Descriptor 262 * +--------------------------------------------------------------+ 263 * 0 | Buffer Address [63:0] (Reserved on Write Back) | 264 * +--------------------------------------------------------------+ 265 * 8 | Special | CSS | Status | CMD | CSO | Length | 266 * +--------------------------------------------------------------+ 267 * 63 48 47 36 35 32 31 24 23 16 15 0 268 * 269 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload 270 * 63 48 47 40 39 32 31 16 15 8 7 0 271 * +----------------------------------------------------------------+ 272 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS | 273 * +----------------------------------------------------------------+ 274 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN | 275 * +----------------------------------------------------------------+ 276 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0 277 * 278 * Extended Data Descriptor (DTYP=0x1) 279 * +----------------------------------------------------------------+ 280 * 0 | Buffer Address [63:0] | 281 * +----------------------------------------------------------------+ 282 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN | 283 * +----------------------------------------------------------------+ 284 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0 285 */ 286 pr_info("Tl[desc] [address 63:0 ] [SpeCssSCmCsLen] [bi->dma ] leng ntw timestamp bi->skb <-- Legacy format\n"); 287 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Context format\n"); 288 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Data format\n"); 289 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) { 290 const char *next_desc; 291 tx_desc = E1000_TX_DESC(*tx_ring, i); 292 buffer_info = &tx_ring->buffer_info[i]; 293 u0 = (struct my_u0 *)tx_desc; 294 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean) 295 next_desc = " NTC/U"; 296 else if (i == tx_ring->next_to_use) 297 next_desc = " NTU"; 298 else if (i == tx_ring->next_to_clean) 299 next_desc = " NTC"; 300 else 301 next_desc = ""; 302 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p%s\n", 303 (!(le64_to_cpu(u0->b) & BIT(29)) ? 'l' : 304 ((le64_to_cpu(u0->b) & BIT(20)) ? 'd' : 'c')), 305 i, 306 (unsigned long long)le64_to_cpu(u0->a), 307 (unsigned long long)le64_to_cpu(u0->b), 308 (unsigned long long)buffer_info->dma, 309 buffer_info->length, buffer_info->next_to_watch, 310 (unsigned long long)buffer_info->time_stamp, 311 buffer_info->skb, next_desc); 312 313 if (netif_msg_pktdata(adapter) && buffer_info->skb) 314 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 315 16, 1, buffer_info->skb->data, 316 buffer_info->skb->len, true); 317 } 318 319 /* Print Rx Ring Summary */ 320 rx_ring_summary: 321 dev_info(&adapter->pdev->dev, "Rx Ring Summary\n"); 322 pr_info("Queue [NTU] [NTC]\n"); 323 pr_info(" %5d %5X %5X\n", 324 0, rx_ring->next_to_use, rx_ring->next_to_clean); 325 326 /* Print Rx Ring */ 327 if (!netif_msg_rx_status(adapter)) 328 return; 329 330 dev_info(&adapter->pdev->dev, "Rx Ring Dump\n"); 331 switch (adapter->rx_ps_pages) { 332 case 1: 333 case 2: 334 case 3: 335 /* [Extended] Packet Split Receive Descriptor Format 336 * 337 * +-----------------------------------------------------+ 338 * 0 | Buffer Address 0 [63:0] | 339 * +-----------------------------------------------------+ 340 * 8 | Buffer Address 1 [63:0] | 341 * +-----------------------------------------------------+ 342 * 16 | Buffer Address 2 [63:0] | 343 * +-----------------------------------------------------+ 344 * 24 | Buffer Address 3 [63:0] | 345 * +-----------------------------------------------------+ 346 */ 347 pr_info("R [desc] [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma ] [bi->skb] <-- Ext Pkt Split format\n"); 348 /* [Extended] Receive Descriptor (Write-Back) Format 349 * 350 * 63 48 47 32 31 13 12 8 7 4 3 0 351 * +------------------------------------------------------+ 352 * 0 | Packet | IP | Rsvd | MRQ | Rsvd | MRQ RSS | 353 * | Checksum | Ident | | Queue | | Type | 354 * +------------------------------------------------------+ 355 * 8 | VLAN Tag | Length | Extended Error | Extended Status | 356 * +------------------------------------------------------+ 357 * 63 48 47 32 31 20 19 0 358 */ 359 pr_info("RWB[desc] [ck ipid mrqhsh] [vl l0 ee es] [ l3 l2 l1 hs] [reserved ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n"); 360 for (i = 0; i < rx_ring->count; i++) { 361 const char *next_desc; 362 buffer_info = &rx_ring->buffer_info[i]; 363 rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i); 364 u1 = (struct my_u1 *)rx_desc_ps; 365 staterr = 366 le32_to_cpu(rx_desc_ps->wb.middle.status_error); 367 368 if (i == rx_ring->next_to_use) 369 next_desc = " NTU"; 370 else if (i == rx_ring->next_to_clean) 371 next_desc = " NTC"; 372 else 373 next_desc = ""; 374 375 if (staterr & E1000_RXD_STAT_DD) { 376 /* Descriptor Done */ 377 pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX ---------------- %p%s\n", 378 "RWB", i, 379 (unsigned long long)le64_to_cpu(u1->a), 380 (unsigned long long)le64_to_cpu(u1->b), 381 (unsigned long long)le64_to_cpu(u1->c), 382 (unsigned long long)le64_to_cpu(u1->d), 383 buffer_info->skb, next_desc); 384 } else { 385 pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX %016llX %p%s\n", 386 "R ", i, 387 (unsigned long long)le64_to_cpu(u1->a), 388 (unsigned long long)le64_to_cpu(u1->b), 389 (unsigned long long)le64_to_cpu(u1->c), 390 (unsigned long long)le64_to_cpu(u1->d), 391 (unsigned long long)buffer_info->dma, 392 buffer_info->skb, next_desc); 393 394 if (netif_msg_pktdata(adapter)) 395 e1000e_dump_ps_pages(adapter, 396 buffer_info); 397 } 398 } 399 break; 400 default: 401 case 0: 402 /* Extended Receive Descriptor (Read) Format 403 * 404 * +-----------------------------------------------------+ 405 * 0 | Buffer Address [63:0] | 406 * +-----------------------------------------------------+ 407 * 8 | Reserved | 408 * +-----------------------------------------------------+ 409 */ 410 pr_info("R [desc] [buf addr 63:0 ] [reserved 63:0 ] [bi->dma ] [bi->skb] <-- Ext (Read) format\n"); 411 /* Extended Receive Descriptor (Write-Back) Format 412 * 413 * 63 48 47 32 31 24 23 4 3 0 414 * +------------------------------------------------------+ 415 * | RSS Hash | | | | 416 * 0 +-------------------+ Rsvd | Reserved | MRQ RSS | 417 * | Packet | IP | | | Type | 418 * | Checksum | Ident | | | | 419 * +------------------------------------------------------+ 420 * 8 | VLAN Tag | Length | Extended Error | Extended Status | 421 * +------------------------------------------------------+ 422 * 63 48 47 32 31 20 19 0 423 */ 424 pr_info("RWB[desc] [cs ipid mrq] [vt ln xe xs] [bi->skb] <-- Ext (Write-Back) format\n"); 425 426 for (i = 0; i < rx_ring->count; i++) { 427 const char *next_desc; 428 429 buffer_info = &rx_ring->buffer_info[i]; 430 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i); 431 u1 = (struct my_u1 *)rx_desc; 432 staterr = le32_to_cpu(rx_desc->wb.upper.status_error); 433 434 if (i == rx_ring->next_to_use) 435 next_desc = " NTU"; 436 else if (i == rx_ring->next_to_clean) 437 next_desc = " NTC"; 438 else 439 next_desc = ""; 440 441 if (staterr & E1000_RXD_STAT_DD) { 442 /* Descriptor Done */ 443 pr_info("%s[0x%03X] %016llX %016llX ---------------- %p%s\n", 444 "RWB", i, 445 (unsigned long long)le64_to_cpu(u1->a), 446 (unsigned long long)le64_to_cpu(u1->b), 447 buffer_info->skb, next_desc); 448 } else { 449 pr_info("%s[0x%03X] %016llX %016llX %016llX %p%s\n", 450 "R ", i, 451 (unsigned long long)le64_to_cpu(u1->a), 452 (unsigned long long)le64_to_cpu(u1->b), 453 (unsigned long long)buffer_info->dma, 454 buffer_info->skb, next_desc); 455 456 if (netif_msg_pktdata(adapter) && 457 buffer_info->skb) 458 print_hex_dump(KERN_INFO, "", 459 DUMP_PREFIX_ADDRESS, 16, 460 1, 461 buffer_info->skb->data, 462 adapter->rx_buffer_len, 463 true); 464 } 465 } 466 } 467 } 468 469 /** 470 * e1000_desc_unused - calculate if we have unused descriptors 471 **/ 472 static int e1000_desc_unused(struct e1000_ring *ring) 473 { 474 if (ring->next_to_clean > ring->next_to_use) 475 return ring->next_to_clean - ring->next_to_use - 1; 476 477 return ring->count + ring->next_to_clean - ring->next_to_use - 1; 478 } 479 480 /** 481 * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp 482 * @adapter: board private structure 483 * @hwtstamps: time stamp structure to update 484 * @systim: unsigned 64bit system time value. 485 * 486 * Convert the system time value stored in the RX/TXSTMP registers into a 487 * hwtstamp which can be used by the upper level time stamping functions. 488 * 489 * The 'systim_lock' spinlock is used to protect the consistency of the 490 * system time value. This is needed because reading the 64 bit time 491 * value involves reading two 32 bit registers. The first read latches the 492 * value. 493 **/ 494 static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter, 495 struct skb_shared_hwtstamps *hwtstamps, 496 u64 systim) 497 { 498 u64 ns; 499 unsigned long flags; 500 501 spin_lock_irqsave(&adapter->systim_lock, flags); 502 ns = timecounter_cyc2time(&adapter->tc, systim); 503 spin_unlock_irqrestore(&adapter->systim_lock, flags); 504 505 memset(hwtstamps, 0, sizeof(*hwtstamps)); 506 hwtstamps->hwtstamp = ns_to_ktime(ns); 507 } 508 509 /** 510 * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp 511 * @adapter: board private structure 512 * @status: descriptor extended error and status field 513 * @skb: particular skb to include time stamp 514 * 515 * If the time stamp is valid, convert it into the timecounter ns value 516 * and store that result into the shhwtstamps structure which is passed 517 * up the network stack. 518 **/ 519 static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status, 520 struct sk_buff *skb) 521 { 522 struct e1000_hw *hw = &adapter->hw; 523 u64 rxstmp; 524 525 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) || 526 !(status & E1000_RXDEXT_STATERR_TST) || 527 !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) 528 return; 529 530 /* The Rx time stamp registers contain the time stamp. No other 531 * received packet will be time stamped until the Rx time stamp 532 * registers are read. Because only one packet can be time stamped 533 * at a time, the register values must belong to this packet and 534 * therefore none of the other additional attributes need to be 535 * compared. 536 */ 537 rxstmp = (u64)er32(RXSTMPL); 538 rxstmp |= (u64)er32(RXSTMPH) << 32; 539 e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp); 540 541 adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP; 542 } 543 544 /** 545 * e1000_receive_skb - helper function to handle Rx indications 546 * @adapter: board private structure 547 * @staterr: descriptor extended error and status field as written by hardware 548 * @vlan: descriptor vlan field as written by hardware (no le/be conversion) 549 * @skb: pointer to sk_buff to be indicated to stack 550 **/ 551 static void e1000_receive_skb(struct e1000_adapter *adapter, 552 struct net_device *netdev, struct sk_buff *skb, 553 u32 staterr, __le16 vlan) 554 { 555 u16 tag = le16_to_cpu(vlan); 556 557 e1000e_rx_hwtstamp(adapter, staterr, skb); 558 559 skb->protocol = eth_type_trans(skb, netdev); 560 561 if (staterr & E1000_RXD_STAT_VP) 562 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag); 563 564 napi_gro_receive(&adapter->napi, skb); 565 } 566 567 /** 568 * e1000_rx_checksum - Receive Checksum Offload 569 * @adapter: board private structure 570 * @status_err: receive descriptor status and error fields 571 * @csum: receive descriptor csum field 572 * @sk_buff: socket buffer with received data 573 **/ 574 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err, 575 struct sk_buff *skb) 576 { 577 u16 status = (u16)status_err; 578 u8 errors = (u8)(status_err >> 24); 579 580 skb_checksum_none_assert(skb); 581 582 /* Rx checksum disabled */ 583 if (!(adapter->netdev->features & NETIF_F_RXCSUM)) 584 return; 585 586 /* Ignore Checksum bit is set */ 587 if (status & E1000_RXD_STAT_IXSM) 588 return; 589 590 /* TCP/UDP checksum error bit or IP checksum error bit is set */ 591 if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) { 592 /* let the stack verify checksum errors */ 593 adapter->hw_csum_err++; 594 return; 595 } 596 597 /* TCP/UDP Checksum has not been calculated */ 598 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))) 599 return; 600 601 /* It must be a TCP or UDP packet with a valid checksum */ 602 skb->ip_summed = CHECKSUM_UNNECESSARY; 603 adapter->hw_csum_good++; 604 } 605 606 static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i) 607 { 608 struct e1000_adapter *adapter = rx_ring->adapter; 609 struct e1000_hw *hw = &adapter->hw; 610 s32 ret_val = __ew32_prepare(hw); 611 612 writel(i, rx_ring->tail); 613 614 if (unlikely(!ret_val && (i != readl(rx_ring->tail)))) { 615 u32 rctl = er32(RCTL); 616 617 ew32(RCTL, rctl & ~E1000_RCTL_EN); 618 e_err("ME firmware caused invalid RDT - resetting\n"); 619 schedule_work(&adapter->reset_task); 620 } 621 } 622 623 static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i) 624 { 625 struct e1000_adapter *adapter = tx_ring->adapter; 626 struct e1000_hw *hw = &adapter->hw; 627 s32 ret_val = __ew32_prepare(hw); 628 629 writel(i, tx_ring->tail); 630 631 if (unlikely(!ret_val && (i != readl(tx_ring->tail)))) { 632 u32 tctl = er32(TCTL); 633 634 ew32(TCTL, tctl & ~E1000_TCTL_EN); 635 e_err("ME firmware caused invalid TDT - resetting\n"); 636 schedule_work(&adapter->reset_task); 637 } 638 } 639 640 /** 641 * e1000_alloc_rx_buffers - Replace used receive buffers 642 * @rx_ring: Rx descriptor ring 643 **/ 644 static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring, 645 int cleaned_count, gfp_t gfp) 646 { 647 struct e1000_adapter *adapter = rx_ring->adapter; 648 struct net_device *netdev = adapter->netdev; 649 struct pci_dev *pdev = adapter->pdev; 650 union e1000_rx_desc_extended *rx_desc; 651 struct e1000_buffer *buffer_info; 652 struct sk_buff *skb; 653 unsigned int i; 654 unsigned int bufsz = adapter->rx_buffer_len; 655 656 i = rx_ring->next_to_use; 657 buffer_info = &rx_ring->buffer_info[i]; 658 659 while (cleaned_count--) { 660 skb = buffer_info->skb; 661 if (skb) { 662 skb_trim(skb, 0); 663 goto map_skb; 664 } 665 666 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp); 667 if (!skb) { 668 /* Better luck next round */ 669 adapter->alloc_rx_buff_failed++; 670 break; 671 } 672 673 buffer_info->skb = skb; 674 map_skb: 675 buffer_info->dma = dma_map_single(&pdev->dev, skb->data, 676 adapter->rx_buffer_len, 677 DMA_FROM_DEVICE); 678 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { 679 dev_err(&pdev->dev, "Rx DMA map failed\n"); 680 adapter->rx_dma_failed++; 681 break; 682 } 683 684 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i); 685 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma); 686 687 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) { 688 /* Force memory writes to complete before letting h/w 689 * know there are new descriptors to fetch. (Only 690 * applicable for weak-ordered memory model archs, 691 * such as IA-64). 692 */ 693 wmb(); 694 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA) 695 e1000e_update_rdt_wa(rx_ring, i); 696 else 697 writel(i, rx_ring->tail); 698 } 699 i++; 700 if (i == rx_ring->count) 701 i = 0; 702 buffer_info = &rx_ring->buffer_info[i]; 703 } 704 705 rx_ring->next_to_use = i; 706 } 707 708 /** 709 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split 710 * @rx_ring: Rx descriptor ring 711 **/ 712 static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring, 713 int cleaned_count, gfp_t gfp) 714 { 715 struct e1000_adapter *adapter = rx_ring->adapter; 716 struct net_device *netdev = adapter->netdev; 717 struct pci_dev *pdev = adapter->pdev; 718 union e1000_rx_desc_packet_split *rx_desc; 719 struct e1000_buffer *buffer_info; 720 struct e1000_ps_page *ps_page; 721 struct sk_buff *skb; 722 unsigned int i, j; 723 724 i = rx_ring->next_to_use; 725 buffer_info = &rx_ring->buffer_info[i]; 726 727 while (cleaned_count--) { 728 rx_desc = E1000_RX_DESC_PS(*rx_ring, i); 729 730 for (j = 0; j < PS_PAGE_BUFFERS; j++) { 731 ps_page = &buffer_info->ps_pages[j]; 732 if (j >= adapter->rx_ps_pages) { 733 /* all unused desc entries get hw null ptr */ 734 rx_desc->read.buffer_addr[j + 1] = 735 ~cpu_to_le64(0); 736 continue; 737 } 738 if (!ps_page->page) { 739 ps_page->page = alloc_page(gfp); 740 if (!ps_page->page) { 741 adapter->alloc_rx_buff_failed++; 742 goto no_buffers; 743 } 744 ps_page->dma = dma_map_page(&pdev->dev, 745 ps_page->page, 746 0, PAGE_SIZE, 747 DMA_FROM_DEVICE); 748 if (dma_mapping_error(&pdev->dev, 749 ps_page->dma)) { 750 dev_err(&adapter->pdev->dev, 751 "Rx DMA page map failed\n"); 752 adapter->rx_dma_failed++; 753 goto no_buffers; 754 } 755 } 756 /* Refresh the desc even if buffer_addrs 757 * didn't change because each write-back 758 * erases this info. 759 */ 760 rx_desc->read.buffer_addr[j + 1] = 761 cpu_to_le64(ps_page->dma); 762 } 763 764 skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0, 765 gfp); 766 767 if (!skb) { 768 adapter->alloc_rx_buff_failed++; 769 break; 770 } 771 772 buffer_info->skb = skb; 773 buffer_info->dma = dma_map_single(&pdev->dev, skb->data, 774 adapter->rx_ps_bsize0, 775 DMA_FROM_DEVICE); 776 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { 777 dev_err(&pdev->dev, "Rx DMA map failed\n"); 778 adapter->rx_dma_failed++; 779 /* cleanup skb */ 780 dev_kfree_skb_any(skb); 781 buffer_info->skb = NULL; 782 break; 783 } 784 785 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma); 786 787 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) { 788 /* Force memory writes to complete before letting h/w 789 * know there are new descriptors to fetch. (Only 790 * applicable for weak-ordered memory model archs, 791 * such as IA-64). 792 */ 793 wmb(); 794 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA) 795 e1000e_update_rdt_wa(rx_ring, i << 1); 796 else 797 writel(i << 1, rx_ring->tail); 798 } 799 800 i++; 801 if (i == rx_ring->count) 802 i = 0; 803 buffer_info = &rx_ring->buffer_info[i]; 804 } 805 806 no_buffers: 807 rx_ring->next_to_use = i; 808 } 809 810 /** 811 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers 812 * @rx_ring: Rx descriptor ring 813 * @cleaned_count: number of buffers to allocate this pass 814 **/ 815 816 static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring, 817 int cleaned_count, gfp_t gfp) 818 { 819 struct e1000_adapter *adapter = rx_ring->adapter; 820 struct net_device *netdev = adapter->netdev; 821 struct pci_dev *pdev = adapter->pdev; 822 union e1000_rx_desc_extended *rx_desc; 823 struct e1000_buffer *buffer_info; 824 struct sk_buff *skb; 825 unsigned int i; 826 unsigned int bufsz = 256 - 16; /* for skb_reserve */ 827 828 i = rx_ring->next_to_use; 829 buffer_info = &rx_ring->buffer_info[i]; 830 831 while (cleaned_count--) { 832 skb = buffer_info->skb; 833 if (skb) { 834 skb_trim(skb, 0); 835 goto check_page; 836 } 837 838 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp); 839 if (unlikely(!skb)) { 840 /* Better luck next round */ 841 adapter->alloc_rx_buff_failed++; 842 break; 843 } 844 845 buffer_info->skb = skb; 846 check_page: 847 /* allocate a new page if necessary */ 848 if (!buffer_info->page) { 849 buffer_info->page = alloc_page(gfp); 850 if (unlikely(!buffer_info->page)) { 851 adapter->alloc_rx_buff_failed++; 852 break; 853 } 854 } 855 856 if (!buffer_info->dma) { 857 buffer_info->dma = dma_map_page(&pdev->dev, 858 buffer_info->page, 0, 859 PAGE_SIZE, 860 DMA_FROM_DEVICE); 861 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { 862 adapter->alloc_rx_buff_failed++; 863 break; 864 } 865 } 866 867 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i); 868 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma); 869 870 if (unlikely(++i == rx_ring->count)) 871 i = 0; 872 buffer_info = &rx_ring->buffer_info[i]; 873 } 874 875 if (likely(rx_ring->next_to_use != i)) { 876 rx_ring->next_to_use = i; 877 if (unlikely(i-- == 0)) 878 i = (rx_ring->count - 1); 879 880 /* Force memory writes to complete before letting h/w 881 * know there are new descriptors to fetch. (Only 882 * applicable for weak-ordered memory model archs, 883 * such as IA-64). 884 */ 885 wmb(); 886 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA) 887 e1000e_update_rdt_wa(rx_ring, i); 888 else 889 writel(i, rx_ring->tail); 890 } 891 } 892 893 static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss, 894 struct sk_buff *skb) 895 { 896 if (netdev->features & NETIF_F_RXHASH) 897 skb_set_hash(skb, le32_to_cpu(rss), PKT_HASH_TYPE_L3); 898 } 899 900 /** 901 * e1000_clean_rx_irq - Send received data up the network stack 902 * @rx_ring: Rx descriptor ring 903 * 904 * the return value indicates whether actual cleaning was done, there 905 * is no guarantee that everything was cleaned 906 **/ 907 static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done, 908 int work_to_do) 909 { 910 struct e1000_adapter *adapter = rx_ring->adapter; 911 struct net_device *netdev = adapter->netdev; 912 struct pci_dev *pdev = adapter->pdev; 913 struct e1000_hw *hw = &adapter->hw; 914 union e1000_rx_desc_extended *rx_desc, *next_rxd; 915 struct e1000_buffer *buffer_info, *next_buffer; 916 u32 length, staterr; 917 unsigned int i; 918 int cleaned_count = 0; 919 bool cleaned = false; 920 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 921 922 i = rx_ring->next_to_clean; 923 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i); 924 staterr = le32_to_cpu(rx_desc->wb.upper.status_error); 925 buffer_info = &rx_ring->buffer_info[i]; 926 927 while (staterr & E1000_RXD_STAT_DD) { 928 struct sk_buff *skb; 929 930 if (*work_done >= work_to_do) 931 break; 932 (*work_done)++; 933 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */ 934 935 skb = buffer_info->skb; 936 buffer_info->skb = NULL; 937 938 prefetch(skb->data - NET_IP_ALIGN); 939 940 i++; 941 if (i == rx_ring->count) 942 i = 0; 943 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i); 944 prefetch(next_rxd); 945 946 next_buffer = &rx_ring->buffer_info[i]; 947 948 cleaned = true; 949 cleaned_count++; 950 dma_unmap_single(&pdev->dev, buffer_info->dma, 951 adapter->rx_buffer_len, DMA_FROM_DEVICE); 952 buffer_info->dma = 0; 953 954 length = le16_to_cpu(rx_desc->wb.upper.length); 955 956 /* !EOP means multiple descriptors were used to store a single 957 * packet, if that's the case we need to toss it. In fact, we 958 * need to toss every packet with the EOP bit clear and the 959 * next frame that _does_ have the EOP bit set, as it is by 960 * definition only a frame fragment 961 */ 962 if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) 963 adapter->flags2 |= FLAG2_IS_DISCARDING; 964 965 if (adapter->flags2 & FLAG2_IS_DISCARDING) { 966 /* All receives must fit into a single buffer */ 967 e_dbg("Receive packet consumed multiple buffers\n"); 968 /* recycle */ 969 buffer_info->skb = skb; 970 if (staterr & E1000_RXD_STAT_EOP) 971 adapter->flags2 &= ~FLAG2_IS_DISCARDING; 972 goto next_desc; 973 } 974 975 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) && 976 !(netdev->features & NETIF_F_RXALL))) { 977 /* recycle */ 978 buffer_info->skb = skb; 979 goto next_desc; 980 } 981 982 /* adjust length to remove Ethernet CRC */ 983 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) { 984 /* If configured to store CRC, don't subtract FCS, 985 * but keep the FCS bytes out of the total_rx_bytes 986 * counter 987 */ 988 if (netdev->features & NETIF_F_RXFCS) 989 total_rx_bytes -= 4; 990 else 991 length -= 4; 992 } 993 994 total_rx_bytes += length; 995 total_rx_packets++; 996 997 /* code added for copybreak, this should improve 998 * performance for small packets with large amounts 999 * of reassembly being done in the stack 1000 */ 1001 if (length < copybreak) { 1002 struct sk_buff *new_skb = 1003 napi_alloc_skb(&adapter->napi, length); 1004 if (new_skb) { 1005 skb_copy_to_linear_data_offset(new_skb, 1006 -NET_IP_ALIGN, 1007 (skb->data - 1008 NET_IP_ALIGN), 1009 (length + 1010 NET_IP_ALIGN)); 1011 /* save the skb in buffer_info as good */ 1012 buffer_info->skb = skb; 1013 skb = new_skb; 1014 } 1015 /* else just continue with the old one */ 1016 } 1017 /* end copybreak code */ 1018 skb_put(skb, length); 1019 1020 /* Receive Checksum Offload */ 1021 e1000_rx_checksum(adapter, staterr, skb); 1022 1023 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb); 1024 1025 e1000_receive_skb(adapter, netdev, skb, staterr, 1026 rx_desc->wb.upper.vlan); 1027 1028 next_desc: 1029 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF); 1030 1031 /* return some buffers to hardware, one at a time is too slow */ 1032 if (cleaned_count >= E1000_RX_BUFFER_WRITE) { 1033 adapter->alloc_rx_buf(rx_ring, cleaned_count, 1034 GFP_ATOMIC); 1035 cleaned_count = 0; 1036 } 1037 1038 /* use prefetched values */ 1039 rx_desc = next_rxd; 1040 buffer_info = next_buffer; 1041 1042 staterr = le32_to_cpu(rx_desc->wb.upper.status_error); 1043 } 1044 rx_ring->next_to_clean = i; 1045 1046 cleaned_count = e1000_desc_unused(rx_ring); 1047 if (cleaned_count) 1048 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC); 1049 1050 adapter->total_rx_bytes += total_rx_bytes; 1051 adapter->total_rx_packets += total_rx_packets; 1052 return cleaned; 1053 } 1054 1055 static void e1000_put_txbuf(struct e1000_ring *tx_ring, 1056 struct e1000_buffer *buffer_info, 1057 bool drop) 1058 { 1059 struct e1000_adapter *adapter = tx_ring->adapter; 1060 1061 if (buffer_info->dma) { 1062 if (buffer_info->mapped_as_page) 1063 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma, 1064 buffer_info->length, DMA_TO_DEVICE); 1065 else 1066 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma, 1067 buffer_info->length, DMA_TO_DEVICE); 1068 buffer_info->dma = 0; 1069 } 1070 if (buffer_info->skb) { 1071 if (drop) 1072 dev_kfree_skb_any(buffer_info->skb); 1073 else 1074 dev_consume_skb_any(buffer_info->skb); 1075 buffer_info->skb = NULL; 1076 } 1077 buffer_info->time_stamp = 0; 1078 } 1079 1080 static void e1000_print_hw_hang(struct work_struct *work) 1081 { 1082 struct e1000_adapter *adapter = container_of(work, 1083 struct e1000_adapter, 1084 print_hang_task); 1085 struct net_device *netdev = adapter->netdev; 1086 struct e1000_ring *tx_ring = adapter->tx_ring; 1087 unsigned int i = tx_ring->next_to_clean; 1088 unsigned int eop = tx_ring->buffer_info[i].next_to_watch; 1089 struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop); 1090 struct e1000_hw *hw = &adapter->hw; 1091 u16 phy_status, phy_1000t_status, phy_ext_status; 1092 u16 pci_status; 1093 1094 if (test_bit(__E1000_DOWN, &adapter->state)) 1095 return; 1096 1097 if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) { 1098 /* May be block on write-back, flush and detect again 1099 * flush pending descriptor writebacks to memory 1100 */ 1101 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD); 1102 /* execute the writes immediately */ 1103 e1e_flush(); 1104 /* Due to rare timing issues, write to TIDV again to ensure 1105 * the write is successful 1106 */ 1107 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD); 1108 /* execute the writes immediately */ 1109 e1e_flush(); 1110 adapter->tx_hang_recheck = true; 1111 return; 1112 } 1113 adapter->tx_hang_recheck = false; 1114 1115 if (er32(TDH(0)) == er32(TDT(0))) { 1116 e_dbg("false hang detected, ignoring\n"); 1117 return; 1118 } 1119 1120 /* Real hang detected */ 1121 netif_stop_queue(netdev); 1122 1123 e1e_rphy(hw, MII_BMSR, &phy_status); 1124 e1e_rphy(hw, MII_STAT1000, &phy_1000t_status); 1125 e1e_rphy(hw, MII_ESTATUS, &phy_ext_status); 1126 1127 pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status); 1128 1129 /* detected Hardware unit hang */ 1130 e_err("Detected Hardware Unit Hang:\n" 1131 " TDH <%x>\n" 1132 " TDT <%x>\n" 1133 " next_to_use <%x>\n" 1134 " next_to_clean <%x>\n" 1135 "buffer_info[next_to_clean]:\n" 1136 " time_stamp <%lx>\n" 1137 " next_to_watch <%x>\n" 1138 " jiffies <%lx>\n" 1139 " next_to_watch.status <%x>\n" 1140 "MAC Status <%x>\n" 1141 "PHY Status <%x>\n" 1142 "PHY 1000BASE-T Status <%x>\n" 1143 "PHY Extended Status <%x>\n" 1144 "PCI Status <%x>\n", 1145 readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use, 1146 tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp, 1147 eop, jiffies, eop_desc->upper.fields.status, er32(STATUS), 1148 phy_status, phy_1000t_status, phy_ext_status, pci_status); 1149 1150 e1000e_dump(adapter); 1151 1152 /* Suggest workaround for known h/w issue */ 1153 if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE)) 1154 e_err("Try turning off Tx pause (flow control) via ethtool\n"); 1155 } 1156 1157 /** 1158 * e1000e_tx_hwtstamp_work - check for Tx time stamp 1159 * @work: pointer to work struct 1160 * 1161 * This work function polls the TSYNCTXCTL valid bit to determine when a 1162 * timestamp has been taken for the current stored skb. The timestamp must 1163 * be for this skb because only one such packet is allowed in the queue. 1164 */ 1165 static void e1000e_tx_hwtstamp_work(struct work_struct *work) 1166 { 1167 struct e1000_adapter *adapter = container_of(work, struct e1000_adapter, 1168 tx_hwtstamp_work); 1169 struct e1000_hw *hw = &adapter->hw; 1170 1171 if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) { 1172 struct sk_buff *skb = adapter->tx_hwtstamp_skb; 1173 struct skb_shared_hwtstamps shhwtstamps; 1174 u64 txstmp; 1175 1176 txstmp = er32(TXSTMPL); 1177 txstmp |= (u64)er32(TXSTMPH) << 32; 1178 1179 e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp); 1180 1181 /* Clear the global tx_hwtstamp_skb pointer and force writes 1182 * prior to notifying the stack of a Tx timestamp. 1183 */ 1184 adapter->tx_hwtstamp_skb = NULL; 1185 wmb(); /* force write prior to skb_tstamp_tx */ 1186 1187 skb_tstamp_tx(skb, &shhwtstamps); 1188 dev_consume_skb_any(skb); 1189 } else if (time_after(jiffies, adapter->tx_hwtstamp_start 1190 + adapter->tx_timeout_factor * HZ)) { 1191 dev_kfree_skb_any(adapter->tx_hwtstamp_skb); 1192 adapter->tx_hwtstamp_skb = NULL; 1193 adapter->tx_hwtstamp_timeouts++; 1194 e_warn("clearing Tx timestamp hang\n"); 1195 } else { 1196 /* reschedule to check later */ 1197 schedule_work(&adapter->tx_hwtstamp_work); 1198 } 1199 } 1200 1201 /** 1202 * e1000_clean_tx_irq - Reclaim resources after transmit completes 1203 * @tx_ring: Tx descriptor ring 1204 * 1205 * the return value indicates whether actual cleaning was done, there 1206 * is no guarantee that everything was cleaned 1207 **/ 1208 static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring) 1209 { 1210 struct e1000_adapter *adapter = tx_ring->adapter; 1211 struct net_device *netdev = adapter->netdev; 1212 struct e1000_hw *hw = &adapter->hw; 1213 struct e1000_tx_desc *tx_desc, *eop_desc; 1214 struct e1000_buffer *buffer_info; 1215 unsigned int i, eop; 1216 unsigned int count = 0; 1217 unsigned int total_tx_bytes = 0, total_tx_packets = 0; 1218 unsigned int bytes_compl = 0, pkts_compl = 0; 1219 1220 i = tx_ring->next_to_clean; 1221 eop = tx_ring->buffer_info[i].next_to_watch; 1222 eop_desc = E1000_TX_DESC(*tx_ring, eop); 1223 1224 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) && 1225 (count < tx_ring->count)) { 1226 bool cleaned = false; 1227 1228 dma_rmb(); /* read buffer_info after eop_desc */ 1229 for (; !cleaned; count++) { 1230 tx_desc = E1000_TX_DESC(*tx_ring, i); 1231 buffer_info = &tx_ring->buffer_info[i]; 1232 cleaned = (i == eop); 1233 1234 if (cleaned) { 1235 total_tx_packets += buffer_info->segs; 1236 total_tx_bytes += buffer_info->bytecount; 1237 if (buffer_info->skb) { 1238 bytes_compl += buffer_info->skb->len; 1239 pkts_compl++; 1240 } 1241 } 1242 1243 e1000_put_txbuf(tx_ring, buffer_info, false); 1244 tx_desc->upper.data = 0; 1245 1246 i++; 1247 if (i == tx_ring->count) 1248 i = 0; 1249 } 1250 1251 if (i == tx_ring->next_to_use) 1252 break; 1253 eop = tx_ring->buffer_info[i].next_to_watch; 1254 eop_desc = E1000_TX_DESC(*tx_ring, eop); 1255 } 1256 1257 tx_ring->next_to_clean = i; 1258 1259 netdev_completed_queue(netdev, pkts_compl, bytes_compl); 1260 1261 #define TX_WAKE_THRESHOLD 32 1262 if (count && netif_carrier_ok(netdev) && 1263 e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) { 1264 /* Make sure that anybody stopping the queue after this 1265 * sees the new next_to_clean. 1266 */ 1267 smp_mb(); 1268 1269 if (netif_queue_stopped(netdev) && 1270 !(test_bit(__E1000_DOWN, &adapter->state))) { 1271 netif_wake_queue(netdev); 1272 ++adapter->restart_queue; 1273 } 1274 } 1275 1276 if (adapter->detect_tx_hung) { 1277 /* Detect a transmit hang in hardware, this serializes the 1278 * check with the clearing of time_stamp and movement of i 1279 */ 1280 adapter->detect_tx_hung = false; 1281 if (tx_ring->buffer_info[i].time_stamp && 1282 time_after(jiffies, tx_ring->buffer_info[i].time_stamp 1283 + (adapter->tx_timeout_factor * HZ)) && 1284 !(er32(STATUS) & E1000_STATUS_TXOFF)) 1285 schedule_work(&adapter->print_hang_task); 1286 else 1287 adapter->tx_hang_recheck = false; 1288 } 1289 adapter->total_tx_bytes += total_tx_bytes; 1290 adapter->total_tx_packets += total_tx_packets; 1291 return count < tx_ring->count; 1292 } 1293 1294 /** 1295 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split 1296 * @rx_ring: Rx descriptor ring 1297 * 1298 * the return value indicates whether actual cleaning was done, there 1299 * is no guarantee that everything was cleaned 1300 **/ 1301 static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done, 1302 int work_to_do) 1303 { 1304 struct e1000_adapter *adapter = rx_ring->adapter; 1305 struct e1000_hw *hw = &adapter->hw; 1306 union e1000_rx_desc_packet_split *rx_desc, *next_rxd; 1307 struct net_device *netdev = adapter->netdev; 1308 struct pci_dev *pdev = adapter->pdev; 1309 struct e1000_buffer *buffer_info, *next_buffer; 1310 struct e1000_ps_page *ps_page; 1311 struct sk_buff *skb; 1312 unsigned int i, j; 1313 u32 length, staterr; 1314 int cleaned_count = 0; 1315 bool cleaned = false; 1316 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 1317 1318 i = rx_ring->next_to_clean; 1319 rx_desc = E1000_RX_DESC_PS(*rx_ring, i); 1320 staterr = le32_to_cpu(rx_desc->wb.middle.status_error); 1321 buffer_info = &rx_ring->buffer_info[i]; 1322 1323 while (staterr & E1000_RXD_STAT_DD) { 1324 if (*work_done >= work_to_do) 1325 break; 1326 (*work_done)++; 1327 skb = buffer_info->skb; 1328 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */ 1329 1330 /* in the packet split case this is header only */ 1331 prefetch(skb->data - NET_IP_ALIGN); 1332 1333 i++; 1334 if (i == rx_ring->count) 1335 i = 0; 1336 next_rxd = E1000_RX_DESC_PS(*rx_ring, i); 1337 prefetch(next_rxd); 1338 1339 next_buffer = &rx_ring->buffer_info[i]; 1340 1341 cleaned = true; 1342 cleaned_count++; 1343 dma_unmap_single(&pdev->dev, buffer_info->dma, 1344 adapter->rx_ps_bsize0, DMA_FROM_DEVICE); 1345 buffer_info->dma = 0; 1346 1347 /* see !EOP comment in other Rx routine */ 1348 if (!(staterr & E1000_RXD_STAT_EOP)) 1349 adapter->flags2 |= FLAG2_IS_DISCARDING; 1350 1351 if (adapter->flags2 & FLAG2_IS_DISCARDING) { 1352 e_dbg("Packet Split buffers didn't pick up the full packet\n"); 1353 dev_kfree_skb_irq(skb); 1354 if (staterr & E1000_RXD_STAT_EOP) 1355 adapter->flags2 &= ~FLAG2_IS_DISCARDING; 1356 goto next_desc; 1357 } 1358 1359 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) && 1360 !(netdev->features & NETIF_F_RXALL))) { 1361 dev_kfree_skb_irq(skb); 1362 goto next_desc; 1363 } 1364 1365 length = le16_to_cpu(rx_desc->wb.middle.length0); 1366 1367 if (!length) { 1368 e_dbg("Last part of the packet spanning multiple descriptors\n"); 1369 dev_kfree_skb_irq(skb); 1370 goto next_desc; 1371 } 1372 1373 /* Good Receive */ 1374 skb_put(skb, length); 1375 1376 { 1377 /* this looks ugly, but it seems compiler issues make 1378 * it more efficient than reusing j 1379 */ 1380 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]); 1381 1382 /* page alloc/put takes too long and effects small 1383 * packet throughput, so unsplit small packets and 1384 * save the alloc/put only valid in softirq (napi) 1385 * context to call kmap_* 1386 */ 1387 if (l1 && (l1 <= copybreak) && 1388 ((length + l1) <= adapter->rx_ps_bsize0)) { 1389 u8 *vaddr; 1390 1391 ps_page = &buffer_info->ps_pages[0]; 1392 1393 /* there is no documentation about how to call 1394 * kmap_atomic, so we can't hold the mapping 1395 * very long 1396 */ 1397 dma_sync_single_for_cpu(&pdev->dev, 1398 ps_page->dma, 1399 PAGE_SIZE, 1400 DMA_FROM_DEVICE); 1401 vaddr = kmap_atomic(ps_page->page); 1402 memcpy(skb_tail_pointer(skb), vaddr, l1); 1403 kunmap_atomic(vaddr); 1404 dma_sync_single_for_device(&pdev->dev, 1405 ps_page->dma, 1406 PAGE_SIZE, 1407 DMA_FROM_DEVICE); 1408 1409 /* remove the CRC */ 1410 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) { 1411 if (!(netdev->features & NETIF_F_RXFCS)) 1412 l1 -= 4; 1413 } 1414 1415 skb_put(skb, l1); 1416 goto copydone; 1417 } /* if */ 1418 } 1419 1420 for (j = 0; j < PS_PAGE_BUFFERS; j++) { 1421 length = le16_to_cpu(rx_desc->wb.upper.length[j]); 1422 if (!length) 1423 break; 1424 1425 ps_page = &buffer_info->ps_pages[j]; 1426 dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE, 1427 DMA_FROM_DEVICE); 1428 ps_page->dma = 0; 1429 skb_fill_page_desc(skb, j, ps_page->page, 0, length); 1430 ps_page->page = NULL; 1431 skb->len += length; 1432 skb->data_len += length; 1433 skb->truesize += PAGE_SIZE; 1434 } 1435 1436 /* strip the ethernet crc, problem is we're using pages now so 1437 * this whole operation can get a little cpu intensive 1438 */ 1439 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) { 1440 if (!(netdev->features & NETIF_F_RXFCS)) 1441 pskb_trim(skb, skb->len - 4); 1442 } 1443 1444 copydone: 1445 total_rx_bytes += skb->len; 1446 total_rx_packets++; 1447 1448 e1000_rx_checksum(adapter, staterr, skb); 1449 1450 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb); 1451 1452 if (rx_desc->wb.upper.header_status & 1453 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)) 1454 adapter->rx_hdr_split++; 1455 1456 e1000_receive_skb(adapter, netdev, skb, staterr, 1457 rx_desc->wb.middle.vlan); 1458 1459 next_desc: 1460 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF); 1461 buffer_info->skb = NULL; 1462 1463 /* return some buffers to hardware, one at a time is too slow */ 1464 if (cleaned_count >= E1000_RX_BUFFER_WRITE) { 1465 adapter->alloc_rx_buf(rx_ring, cleaned_count, 1466 GFP_ATOMIC); 1467 cleaned_count = 0; 1468 } 1469 1470 /* use prefetched values */ 1471 rx_desc = next_rxd; 1472 buffer_info = next_buffer; 1473 1474 staterr = le32_to_cpu(rx_desc->wb.middle.status_error); 1475 } 1476 rx_ring->next_to_clean = i; 1477 1478 cleaned_count = e1000_desc_unused(rx_ring); 1479 if (cleaned_count) 1480 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC); 1481 1482 adapter->total_rx_bytes += total_rx_bytes; 1483 adapter->total_rx_packets += total_rx_packets; 1484 return cleaned; 1485 } 1486 1487 /** 1488 * e1000_consume_page - helper function 1489 **/ 1490 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb, 1491 u16 length) 1492 { 1493 bi->page = NULL; 1494 skb->len += length; 1495 skb->data_len += length; 1496 skb->truesize += PAGE_SIZE; 1497 } 1498 1499 /** 1500 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy 1501 * @adapter: board private structure 1502 * 1503 * the return value indicates whether actual cleaning was done, there 1504 * is no guarantee that everything was cleaned 1505 **/ 1506 static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done, 1507 int work_to_do) 1508 { 1509 struct e1000_adapter *adapter = rx_ring->adapter; 1510 struct net_device *netdev = adapter->netdev; 1511 struct pci_dev *pdev = adapter->pdev; 1512 union e1000_rx_desc_extended *rx_desc, *next_rxd; 1513 struct e1000_buffer *buffer_info, *next_buffer; 1514 u32 length, staterr; 1515 unsigned int i; 1516 int cleaned_count = 0; 1517 bool cleaned = false; 1518 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 1519 struct skb_shared_info *shinfo; 1520 1521 i = rx_ring->next_to_clean; 1522 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i); 1523 staterr = le32_to_cpu(rx_desc->wb.upper.status_error); 1524 buffer_info = &rx_ring->buffer_info[i]; 1525 1526 while (staterr & E1000_RXD_STAT_DD) { 1527 struct sk_buff *skb; 1528 1529 if (*work_done >= work_to_do) 1530 break; 1531 (*work_done)++; 1532 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */ 1533 1534 skb = buffer_info->skb; 1535 buffer_info->skb = NULL; 1536 1537 ++i; 1538 if (i == rx_ring->count) 1539 i = 0; 1540 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i); 1541 prefetch(next_rxd); 1542 1543 next_buffer = &rx_ring->buffer_info[i]; 1544 1545 cleaned = true; 1546 cleaned_count++; 1547 dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE, 1548 DMA_FROM_DEVICE); 1549 buffer_info->dma = 0; 1550 1551 length = le16_to_cpu(rx_desc->wb.upper.length); 1552 1553 /* errors is only valid for DD + EOP descriptors */ 1554 if (unlikely((staterr & E1000_RXD_STAT_EOP) && 1555 ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) && 1556 !(netdev->features & NETIF_F_RXALL)))) { 1557 /* recycle both page and skb */ 1558 buffer_info->skb = skb; 1559 /* an error means any chain goes out the window too */ 1560 if (rx_ring->rx_skb_top) 1561 dev_kfree_skb_irq(rx_ring->rx_skb_top); 1562 rx_ring->rx_skb_top = NULL; 1563 goto next_desc; 1564 } 1565 #define rxtop (rx_ring->rx_skb_top) 1566 if (!(staterr & E1000_RXD_STAT_EOP)) { 1567 /* this descriptor is only the beginning (or middle) */ 1568 if (!rxtop) { 1569 /* this is the beginning of a chain */ 1570 rxtop = skb; 1571 skb_fill_page_desc(rxtop, 0, buffer_info->page, 1572 0, length); 1573 } else { 1574 /* this is the middle of a chain */ 1575 shinfo = skb_shinfo(rxtop); 1576 skb_fill_page_desc(rxtop, shinfo->nr_frags, 1577 buffer_info->page, 0, 1578 length); 1579 /* re-use the skb, only consumed the page */ 1580 buffer_info->skb = skb; 1581 } 1582 e1000_consume_page(buffer_info, rxtop, length); 1583 goto next_desc; 1584 } else { 1585 if (rxtop) { 1586 /* end of the chain */ 1587 shinfo = skb_shinfo(rxtop); 1588 skb_fill_page_desc(rxtop, shinfo->nr_frags, 1589 buffer_info->page, 0, 1590 length); 1591 /* re-use the current skb, we only consumed the 1592 * page 1593 */ 1594 buffer_info->skb = skb; 1595 skb = rxtop; 1596 rxtop = NULL; 1597 e1000_consume_page(buffer_info, skb, length); 1598 } else { 1599 /* no chain, got EOP, this buf is the packet 1600 * copybreak to save the put_page/alloc_page 1601 */ 1602 if (length <= copybreak && 1603 skb_tailroom(skb) >= length) { 1604 u8 *vaddr; 1605 vaddr = kmap_atomic(buffer_info->page); 1606 memcpy(skb_tail_pointer(skb), vaddr, 1607 length); 1608 kunmap_atomic(vaddr); 1609 /* re-use the page, so don't erase 1610 * buffer_info->page 1611 */ 1612 skb_put(skb, length); 1613 } else { 1614 skb_fill_page_desc(skb, 0, 1615 buffer_info->page, 0, 1616 length); 1617 e1000_consume_page(buffer_info, skb, 1618 length); 1619 } 1620 } 1621 } 1622 1623 /* Receive Checksum Offload */ 1624 e1000_rx_checksum(adapter, staterr, skb); 1625 1626 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb); 1627 1628 /* probably a little skewed due to removing CRC */ 1629 total_rx_bytes += skb->len; 1630 total_rx_packets++; 1631 1632 /* eth type trans needs skb->data to point to something */ 1633 if (!pskb_may_pull(skb, ETH_HLEN)) { 1634 e_err("pskb_may_pull failed.\n"); 1635 dev_kfree_skb_irq(skb); 1636 goto next_desc; 1637 } 1638 1639 e1000_receive_skb(adapter, netdev, skb, staterr, 1640 rx_desc->wb.upper.vlan); 1641 1642 next_desc: 1643 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF); 1644 1645 /* return some buffers to hardware, one at a time is too slow */ 1646 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) { 1647 adapter->alloc_rx_buf(rx_ring, cleaned_count, 1648 GFP_ATOMIC); 1649 cleaned_count = 0; 1650 } 1651 1652 /* use prefetched values */ 1653 rx_desc = next_rxd; 1654 buffer_info = next_buffer; 1655 1656 staterr = le32_to_cpu(rx_desc->wb.upper.status_error); 1657 } 1658 rx_ring->next_to_clean = i; 1659 1660 cleaned_count = e1000_desc_unused(rx_ring); 1661 if (cleaned_count) 1662 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC); 1663 1664 adapter->total_rx_bytes += total_rx_bytes; 1665 adapter->total_rx_packets += total_rx_packets; 1666 return cleaned; 1667 } 1668 1669 /** 1670 * e1000_clean_rx_ring - Free Rx Buffers per Queue 1671 * @rx_ring: Rx descriptor ring 1672 **/ 1673 static void e1000_clean_rx_ring(struct e1000_ring *rx_ring) 1674 { 1675 struct e1000_adapter *adapter = rx_ring->adapter; 1676 struct e1000_buffer *buffer_info; 1677 struct e1000_ps_page *ps_page; 1678 struct pci_dev *pdev = adapter->pdev; 1679 unsigned int i, j; 1680 1681 /* Free all the Rx ring sk_buffs */ 1682 for (i = 0; i < rx_ring->count; i++) { 1683 buffer_info = &rx_ring->buffer_info[i]; 1684 if (buffer_info->dma) { 1685 if (adapter->clean_rx == e1000_clean_rx_irq) 1686 dma_unmap_single(&pdev->dev, buffer_info->dma, 1687 adapter->rx_buffer_len, 1688 DMA_FROM_DEVICE); 1689 else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) 1690 dma_unmap_page(&pdev->dev, buffer_info->dma, 1691 PAGE_SIZE, DMA_FROM_DEVICE); 1692 else if (adapter->clean_rx == e1000_clean_rx_irq_ps) 1693 dma_unmap_single(&pdev->dev, buffer_info->dma, 1694 adapter->rx_ps_bsize0, 1695 DMA_FROM_DEVICE); 1696 buffer_info->dma = 0; 1697 } 1698 1699 if (buffer_info->page) { 1700 put_page(buffer_info->page); 1701 buffer_info->page = NULL; 1702 } 1703 1704 if (buffer_info->skb) { 1705 dev_kfree_skb(buffer_info->skb); 1706 buffer_info->skb = NULL; 1707 } 1708 1709 for (j = 0; j < PS_PAGE_BUFFERS; j++) { 1710 ps_page = &buffer_info->ps_pages[j]; 1711 if (!ps_page->page) 1712 break; 1713 dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE, 1714 DMA_FROM_DEVICE); 1715 ps_page->dma = 0; 1716 put_page(ps_page->page); 1717 ps_page->page = NULL; 1718 } 1719 } 1720 1721 /* there also may be some cached data from a chained receive */ 1722 if (rx_ring->rx_skb_top) { 1723 dev_kfree_skb(rx_ring->rx_skb_top); 1724 rx_ring->rx_skb_top = NULL; 1725 } 1726 1727 /* Zero out the descriptor ring */ 1728 memset(rx_ring->desc, 0, rx_ring->size); 1729 1730 rx_ring->next_to_clean = 0; 1731 rx_ring->next_to_use = 0; 1732 adapter->flags2 &= ~FLAG2_IS_DISCARDING; 1733 } 1734 1735 static void e1000e_downshift_workaround(struct work_struct *work) 1736 { 1737 struct e1000_adapter *adapter = container_of(work, 1738 struct e1000_adapter, 1739 downshift_task); 1740 1741 if (test_bit(__E1000_DOWN, &adapter->state)) 1742 return; 1743 1744 e1000e_gig_downshift_workaround_ich8lan(&adapter->hw); 1745 } 1746 1747 /** 1748 * e1000_intr_msi - Interrupt Handler 1749 * @irq: interrupt number 1750 * @data: pointer to a network interface device structure 1751 **/ 1752 static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data) 1753 { 1754 struct net_device *netdev = data; 1755 struct e1000_adapter *adapter = netdev_priv(netdev); 1756 struct e1000_hw *hw = &adapter->hw; 1757 u32 icr = er32(ICR); 1758 1759 /* read ICR disables interrupts using IAM */ 1760 if (icr & E1000_ICR_LSC) { 1761 hw->mac.get_link_status = true; 1762 /* ICH8 workaround-- Call gig speed drop workaround on cable 1763 * disconnect (LSC) before accessing any PHY registers 1764 */ 1765 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) && 1766 (!(er32(STATUS) & E1000_STATUS_LU))) 1767 schedule_work(&adapter->downshift_task); 1768 1769 /* 80003ES2LAN workaround-- For packet buffer work-around on 1770 * link down event; disable receives here in the ISR and reset 1771 * adapter in watchdog 1772 */ 1773 if (netif_carrier_ok(netdev) && 1774 adapter->flags & FLAG_RX_NEEDS_RESTART) { 1775 /* disable receives */ 1776 u32 rctl = er32(RCTL); 1777 1778 ew32(RCTL, rctl & ~E1000_RCTL_EN); 1779 adapter->flags |= FLAG_RESTART_NOW; 1780 } 1781 /* guard against interrupt when we're going down */ 1782 if (!test_bit(__E1000_DOWN, &adapter->state)) 1783 mod_timer(&adapter->watchdog_timer, jiffies + 1); 1784 } 1785 1786 /* Reset on uncorrectable ECC error */ 1787 if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) { 1788 u32 pbeccsts = er32(PBECCSTS); 1789 1790 adapter->corr_errors += 1791 pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK; 1792 adapter->uncorr_errors += 1793 (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >> 1794 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT; 1795 1796 /* Do the reset outside of interrupt context */ 1797 schedule_work(&adapter->reset_task); 1798 1799 /* return immediately since reset is imminent */ 1800 return IRQ_HANDLED; 1801 } 1802 1803 if (napi_schedule_prep(&adapter->napi)) { 1804 adapter->total_tx_bytes = 0; 1805 adapter->total_tx_packets = 0; 1806 adapter->total_rx_bytes = 0; 1807 adapter->total_rx_packets = 0; 1808 __napi_schedule(&adapter->napi); 1809 } 1810 1811 return IRQ_HANDLED; 1812 } 1813 1814 /** 1815 * e1000_intr - Interrupt Handler 1816 * @irq: interrupt number 1817 * @data: pointer to a network interface device structure 1818 **/ 1819 static irqreturn_t e1000_intr(int __always_unused irq, void *data) 1820 { 1821 struct net_device *netdev = data; 1822 struct e1000_adapter *adapter = netdev_priv(netdev); 1823 struct e1000_hw *hw = &adapter->hw; 1824 u32 rctl, icr = er32(ICR); 1825 1826 if (!icr || test_bit(__E1000_DOWN, &adapter->state)) 1827 return IRQ_NONE; /* Not our interrupt */ 1828 1829 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is 1830 * not set, then the adapter didn't send an interrupt 1831 */ 1832 if (!(icr & E1000_ICR_INT_ASSERTED)) 1833 return IRQ_NONE; 1834 1835 /* Interrupt Auto-Mask...upon reading ICR, 1836 * interrupts are masked. No need for the 1837 * IMC write 1838 */ 1839 1840 if (icr & E1000_ICR_LSC) { 1841 hw->mac.get_link_status = true; 1842 /* ICH8 workaround-- Call gig speed drop workaround on cable 1843 * disconnect (LSC) before accessing any PHY registers 1844 */ 1845 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) && 1846 (!(er32(STATUS) & E1000_STATUS_LU))) 1847 schedule_work(&adapter->downshift_task); 1848 1849 /* 80003ES2LAN workaround-- 1850 * For packet buffer work-around on link down event; 1851 * disable receives here in the ISR and 1852 * reset adapter in watchdog 1853 */ 1854 if (netif_carrier_ok(netdev) && 1855 (adapter->flags & FLAG_RX_NEEDS_RESTART)) { 1856 /* disable receives */ 1857 rctl = er32(RCTL); 1858 ew32(RCTL, rctl & ~E1000_RCTL_EN); 1859 adapter->flags |= FLAG_RESTART_NOW; 1860 } 1861 /* guard against interrupt when we're going down */ 1862 if (!test_bit(__E1000_DOWN, &adapter->state)) 1863 mod_timer(&adapter->watchdog_timer, jiffies + 1); 1864 } 1865 1866 /* Reset on uncorrectable ECC error */ 1867 if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) { 1868 u32 pbeccsts = er32(PBECCSTS); 1869 1870 adapter->corr_errors += 1871 pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK; 1872 adapter->uncorr_errors += 1873 (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >> 1874 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT; 1875 1876 /* Do the reset outside of interrupt context */ 1877 schedule_work(&adapter->reset_task); 1878 1879 /* return immediately since reset is imminent */ 1880 return IRQ_HANDLED; 1881 } 1882 1883 if (napi_schedule_prep(&adapter->napi)) { 1884 adapter->total_tx_bytes = 0; 1885 adapter->total_tx_packets = 0; 1886 adapter->total_rx_bytes = 0; 1887 adapter->total_rx_packets = 0; 1888 __napi_schedule(&adapter->napi); 1889 } 1890 1891 return IRQ_HANDLED; 1892 } 1893 1894 static irqreturn_t e1000_msix_other(int __always_unused irq, void *data) 1895 { 1896 struct net_device *netdev = data; 1897 struct e1000_adapter *adapter = netdev_priv(netdev); 1898 struct e1000_hw *hw = &adapter->hw; 1899 u32 icr = er32(ICR); 1900 1901 if (icr & adapter->eiac_mask) 1902 ew32(ICS, (icr & adapter->eiac_mask)); 1903 1904 if (icr & E1000_ICR_LSC) { 1905 hw->mac.get_link_status = true; 1906 /* guard against interrupt when we're going down */ 1907 if (!test_bit(__E1000_DOWN, &adapter->state)) 1908 mod_timer(&adapter->watchdog_timer, jiffies + 1); 1909 } 1910 1911 if (!test_bit(__E1000_DOWN, &adapter->state)) 1912 ew32(IMS, E1000_IMS_OTHER | IMS_OTHER_MASK); 1913 1914 return IRQ_HANDLED; 1915 } 1916 1917 static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data) 1918 { 1919 struct net_device *netdev = data; 1920 struct e1000_adapter *adapter = netdev_priv(netdev); 1921 struct e1000_hw *hw = &adapter->hw; 1922 struct e1000_ring *tx_ring = adapter->tx_ring; 1923 1924 adapter->total_tx_bytes = 0; 1925 adapter->total_tx_packets = 0; 1926 1927 if (!e1000_clean_tx_irq(tx_ring)) 1928 /* Ring was not completely cleaned, so fire another interrupt */ 1929 ew32(ICS, tx_ring->ims_val); 1930 1931 if (!test_bit(__E1000_DOWN, &adapter->state)) 1932 ew32(IMS, adapter->tx_ring->ims_val); 1933 1934 return IRQ_HANDLED; 1935 } 1936 1937 static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data) 1938 { 1939 struct net_device *netdev = data; 1940 struct e1000_adapter *adapter = netdev_priv(netdev); 1941 struct e1000_ring *rx_ring = adapter->rx_ring; 1942 1943 /* Write the ITR value calculated at the end of the 1944 * previous interrupt. 1945 */ 1946 if (rx_ring->set_itr) { 1947 u32 itr = rx_ring->itr_val ? 1948 1000000000 / (rx_ring->itr_val * 256) : 0; 1949 1950 writel(itr, rx_ring->itr_register); 1951 rx_ring->set_itr = 0; 1952 } 1953 1954 if (napi_schedule_prep(&adapter->napi)) { 1955 adapter->total_rx_bytes = 0; 1956 adapter->total_rx_packets = 0; 1957 __napi_schedule(&adapter->napi); 1958 } 1959 return IRQ_HANDLED; 1960 } 1961 1962 /** 1963 * e1000_configure_msix - Configure MSI-X hardware 1964 * 1965 * e1000_configure_msix sets up the hardware to properly 1966 * generate MSI-X interrupts. 1967 **/ 1968 static void e1000_configure_msix(struct e1000_adapter *adapter) 1969 { 1970 struct e1000_hw *hw = &adapter->hw; 1971 struct e1000_ring *rx_ring = adapter->rx_ring; 1972 struct e1000_ring *tx_ring = adapter->tx_ring; 1973 int vector = 0; 1974 u32 ctrl_ext, ivar = 0; 1975 1976 adapter->eiac_mask = 0; 1977 1978 /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */ 1979 if (hw->mac.type == e1000_82574) { 1980 u32 rfctl = er32(RFCTL); 1981 1982 rfctl |= E1000_RFCTL_ACK_DIS; 1983 ew32(RFCTL, rfctl); 1984 } 1985 1986 /* Configure Rx vector */ 1987 rx_ring->ims_val = E1000_IMS_RXQ0; 1988 adapter->eiac_mask |= rx_ring->ims_val; 1989 if (rx_ring->itr_val) 1990 writel(1000000000 / (rx_ring->itr_val * 256), 1991 rx_ring->itr_register); 1992 else 1993 writel(1, rx_ring->itr_register); 1994 ivar = E1000_IVAR_INT_ALLOC_VALID | vector; 1995 1996 /* Configure Tx vector */ 1997 tx_ring->ims_val = E1000_IMS_TXQ0; 1998 vector++; 1999 if (tx_ring->itr_val) 2000 writel(1000000000 / (tx_ring->itr_val * 256), 2001 tx_ring->itr_register); 2002 else 2003 writel(1, tx_ring->itr_register); 2004 adapter->eiac_mask |= tx_ring->ims_val; 2005 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8); 2006 2007 /* set vector for Other Causes, e.g. link changes */ 2008 vector++; 2009 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16); 2010 if (rx_ring->itr_val) 2011 writel(1000000000 / (rx_ring->itr_val * 256), 2012 hw->hw_addr + E1000_EITR_82574(vector)); 2013 else 2014 writel(1, hw->hw_addr + E1000_EITR_82574(vector)); 2015 2016 /* Cause Tx interrupts on every write back */ 2017 ivar |= BIT(31); 2018 2019 ew32(IVAR, ivar); 2020 2021 /* enable MSI-X PBA support */ 2022 ctrl_ext = er32(CTRL_EXT) & ~E1000_CTRL_EXT_IAME; 2023 ctrl_ext |= E1000_CTRL_EXT_PBA_CLR | E1000_CTRL_EXT_EIAME; 2024 ew32(CTRL_EXT, ctrl_ext); 2025 e1e_flush(); 2026 } 2027 2028 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter) 2029 { 2030 if (adapter->msix_entries) { 2031 pci_disable_msix(adapter->pdev); 2032 kfree(adapter->msix_entries); 2033 adapter->msix_entries = NULL; 2034 } else if (adapter->flags & FLAG_MSI_ENABLED) { 2035 pci_disable_msi(adapter->pdev); 2036 adapter->flags &= ~FLAG_MSI_ENABLED; 2037 } 2038 } 2039 2040 /** 2041 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported 2042 * 2043 * Attempt to configure interrupts using the best available 2044 * capabilities of the hardware and kernel. 2045 **/ 2046 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter) 2047 { 2048 int err; 2049 int i; 2050 2051 switch (adapter->int_mode) { 2052 case E1000E_INT_MODE_MSIX: 2053 if (adapter->flags & FLAG_HAS_MSIX) { 2054 adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */ 2055 adapter->msix_entries = kcalloc(adapter->num_vectors, 2056 sizeof(struct 2057 msix_entry), 2058 GFP_KERNEL); 2059 if (adapter->msix_entries) { 2060 struct e1000_adapter *a = adapter; 2061 2062 for (i = 0; i < adapter->num_vectors; i++) 2063 adapter->msix_entries[i].entry = i; 2064 2065 err = pci_enable_msix_range(a->pdev, 2066 a->msix_entries, 2067 a->num_vectors, 2068 a->num_vectors); 2069 if (err > 0) 2070 return; 2071 } 2072 /* MSI-X failed, so fall through and try MSI */ 2073 e_err("Failed to initialize MSI-X interrupts. Falling back to MSI interrupts.\n"); 2074 e1000e_reset_interrupt_capability(adapter); 2075 } 2076 adapter->int_mode = E1000E_INT_MODE_MSI; 2077 /* Fall through */ 2078 case E1000E_INT_MODE_MSI: 2079 if (!pci_enable_msi(adapter->pdev)) { 2080 adapter->flags |= FLAG_MSI_ENABLED; 2081 } else { 2082 adapter->int_mode = E1000E_INT_MODE_LEGACY; 2083 e_err("Failed to initialize MSI interrupts. Falling back to legacy interrupts.\n"); 2084 } 2085 /* Fall through */ 2086 case E1000E_INT_MODE_LEGACY: 2087 /* Don't do anything; this is the system default */ 2088 break; 2089 } 2090 2091 /* store the number of vectors being used */ 2092 adapter->num_vectors = 1; 2093 } 2094 2095 /** 2096 * e1000_request_msix - Initialize MSI-X interrupts 2097 * 2098 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the 2099 * kernel. 2100 **/ 2101 static int e1000_request_msix(struct e1000_adapter *adapter) 2102 { 2103 struct net_device *netdev = adapter->netdev; 2104 int err = 0, vector = 0; 2105 2106 if (strlen(netdev->name) < (IFNAMSIZ - 5)) 2107 snprintf(adapter->rx_ring->name, 2108 sizeof(adapter->rx_ring->name) - 1, 2109 "%s-rx-0", netdev->name); 2110 else 2111 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ); 2112 err = request_irq(adapter->msix_entries[vector].vector, 2113 e1000_intr_msix_rx, 0, adapter->rx_ring->name, 2114 netdev); 2115 if (err) 2116 return err; 2117 adapter->rx_ring->itr_register = adapter->hw.hw_addr + 2118 E1000_EITR_82574(vector); 2119 adapter->rx_ring->itr_val = adapter->itr; 2120 vector++; 2121 2122 if (strlen(netdev->name) < (IFNAMSIZ - 5)) 2123 snprintf(adapter->tx_ring->name, 2124 sizeof(adapter->tx_ring->name) - 1, 2125 "%s-tx-0", netdev->name); 2126 else 2127 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ); 2128 err = request_irq(adapter->msix_entries[vector].vector, 2129 e1000_intr_msix_tx, 0, adapter->tx_ring->name, 2130 netdev); 2131 if (err) 2132 return err; 2133 adapter->tx_ring->itr_register = adapter->hw.hw_addr + 2134 E1000_EITR_82574(vector); 2135 adapter->tx_ring->itr_val = adapter->itr; 2136 vector++; 2137 2138 err = request_irq(adapter->msix_entries[vector].vector, 2139 e1000_msix_other, 0, netdev->name, netdev); 2140 if (err) 2141 return err; 2142 2143 e1000_configure_msix(adapter); 2144 2145 return 0; 2146 } 2147 2148 /** 2149 * e1000_request_irq - initialize interrupts 2150 * 2151 * Attempts to configure interrupts using the best available 2152 * capabilities of the hardware and kernel. 2153 **/ 2154 static int e1000_request_irq(struct e1000_adapter *adapter) 2155 { 2156 struct net_device *netdev = adapter->netdev; 2157 int err; 2158 2159 if (adapter->msix_entries) { 2160 err = e1000_request_msix(adapter); 2161 if (!err) 2162 return err; 2163 /* fall back to MSI */ 2164 e1000e_reset_interrupt_capability(adapter); 2165 adapter->int_mode = E1000E_INT_MODE_MSI; 2166 e1000e_set_interrupt_capability(adapter); 2167 } 2168 if (adapter->flags & FLAG_MSI_ENABLED) { 2169 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0, 2170 netdev->name, netdev); 2171 if (!err) 2172 return err; 2173 2174 /* fall back to legacy interrupt */ 2175 e1000e_reset_interrupt_capability(adapter); 2176 adapter->int_mode = E1000E_INT_MODE_LEGACY; 2177 } 2178 2179 err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED, 2180 netdev->name, netdev); 2181 if (err) 2182 e_err("Unable to allocate interrupt, Error: %d\n", err); 2183 2184 return err; 2185 } 2186 2187 static void e1000_free_irq(struct e1000_adapter *adapter) 2188 { 2189 struct net_device *netdev = adapter->netdev; 2190 2191 if (adapter->msix_entries) { 2192 int vector = 0; 2193 2194 free_irq(adapter->msix_entries[vector].vector, netdev); 2195 vector++; 2196 2197 free_irq(adapter->msix_entries[vector].vector, netdev); 2198 vector++; 2199 2200 /* Other Causes interrupt vector */ 2201 free_irq(adapter->msix_entries[vector].vector, netdev); 2202 return; 2203 } 2204 2205 free_irq(adapter->pdev->irq, netdev); 2206 } 2207 2208 /** 2209 * e1000_irq_disable - Mask off interrupt generation on the NIC 2210 **/ 2211 static void e1000_irq_disable(struct e1000_adapter *adapter) 2212 { 2213 struct e1000_hw *hw = &adapter->hw; 2214 2215 ew32(IMC, ~0); 2216 if (adapter->msix_entries) 2217 ew32(EIAC_82574, 0); 2218 e1e_flush(); 2219 2220 if (adapter->msix_entries) { 2221 int i; 2222 2223 for (i = 0; i < adapter->num_vectors; i++) 2224 synchronize_irq(adapter->msix_entries[i].vector); 2225 } else { 2226 synchronize_irq(adapter->pdev->irq); 2227 } 2228 } 2229 2230 /** 2231 * e1000_irq_enable - Enable default interrupt generation settings 2232 **/ 2233 static void e1000_irq_enable(struct e1000_adapter *adapter) 2234 { 2235 struct e1000_hw *hw = &adapter->hw; 2236 2237 if (adapter->msix_entries) { 2238 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574); 2239 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | 2240 IMS_OTHER_MASK); 2241 } else if (hw->mac.type >= e1000_pch_lpt) { 2242 ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER); 2243 } else { 2244 ew32(IMS, IMS_ENABLE_MASK); 2245 } 2246 e1e_flush(); 2247 } 2248 2249 /** 2250 * e1000e_get_hw_control - get control of the h/w from f/w 2251 * @adapter: address of board private structure 2252 * 2253 * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit. 2254 * For ASF and Pass Through versions of f/w this means that 2255 * the driver is loaded. For AMT version (only with 82573) 2256 * of the f/w this means that the network i/f is open. 2257 **/ 2258 void e1000e_get_hw_control(struct e1000_adapter *adapter) 2259 { 2260 struct e1000_hw *hw = &adapter->hw; 2261 u32 ctrl_ext; 2262 u32 swsm; 2263 2264 /* Let firmware know the driver has taken over */ 2265 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) { 2266 swsm = er32(SWSM); 2267 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD); 2268 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) { 2269 ctrl_ext = er32(CTRL_EXT); 2270 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); 2271 } 2272 } 2273 2274 /** 2275 * e1000e_release_hw_control - release control of the h/w to f/w 2276 * @adapter: address of board private structure 2277 * 2278 * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit. 2279 * For ASF and Pass Through versions of f/w this means that the 2280 * driver is no longer loaded. For AMT version (only with 82573) i 2281 * of the f/w this means that the network i/f is closed. 2282 * 2283 **/ 2284 void e1000e_release_hw_control(struct e1000_adapter *adapter) 2285 { 2286 struct e1000_hw *hw = &adapter->hw; 2287 u32 ctrl_ext; 2288 u32 swsm; 2289 2290 /* Let firmware taken over control of h/w */ 2291 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) { 2292 swsm = er32(SWSM); 2293 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD); 2294 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) { 2295 ctrl_ext = er32(CTRL_EXT); 2296 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); 2297 } 2298 } 2299 2300 /** 2301 * e1000_alloc_ring_dma - allocate memory for a ring structure 2302 **/ 2303 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter, 2304 struct e1000_ring *ring) 2305 { 2306 struct pci_dev *pdev = adapter->pdev; 2307 2308 ring->desc = dma_zalloc_coherent(&pdev->dev, ring->size, &ring->dma, 2309 GFP_KERNEL); 2310 if (!ring->desc) 2311 return -ENOMEM; 2312 2313 return 0; 2314 } 2315 2316 /** 2317 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors) 2318 * @tx_ring: Tx descriptor ring 2319 * 2320 * Return 0 on success, negative on failure 2321 **/ 2322 int e1000e_setup_tx_resources(struct e1000_ring *tx_ring) 2323 { 2324 struct e1000_adapter *adapter = tx_ring->adapter; 2325 int err = -ENOMEM, size; 2326 2327 size = sizeof(struct e1000_buffer) * tx_ring->count; 2328 tx_ring->buffer_info = vzalloc(size); 2329 if (!tx_ring->buffer_info) 2330 goto err; 2331 2332 /* round up to nearest 4K */ 2333 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc); 2334 tx_ring->size = ALIGN(tx_ring->size, 4096); 2335 2336 err = e1000_alloc_ring_dma(adapter, tx_ring); 2337 if (err) 2338 goto err; 2339 2340 tx_ring->next_to_use = 0; 2341 tx_ring->next_to_clean = 0; 2342 2343 return 0; 2344 err: 2345 vfree(tx_ring->buffer_info); 2346 e_err("Unable to allocate memory for the transmit descriptor ring\n"); 2347 return err; 2348 } 2349 2350 /** 2351 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors) 2352 * @rx_ring: Rx descriptor ring 2353 * 2354 * Returns 0 on success, negative on failure 2355 **/ 2356 int e1000e_setup_rx_resources(struct e1000_ring *rx_ring) 2357 { 2358 struct e1000_adapter *adapter = rx_ring->adapter; 2359 struct e1000_buffer *buffer_info; 2360 int i, size, desc_len, err = -ENOMEM; 2361 2362 size = sizeof(struct e1000_buffer) * rx_ring->count; 2363 rx_ring->buffer_info = vzalloc(size); 2364 if (!rx_ring->buffer_info) 2365 goto err; 2366 2367 for (i = 0; i < rx_ring->count; i++) { 2368 buffer_info = &rx_ring->buffer_info[i]; 2369 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS, 2370 sizeof(struct e1000_ps_page), 2371 GFP_KERNEL); 2372 if (!buffer_info->ps_pages) 2373 goto err_pages; 2374 } 2375 2376 desc_len = sizeof(union e1000_rx_desc_packet_split); 2377 2378 /* Round up to nearest 4K */ 2379 rx_ring->size = rx_ring->count * desc_len; 2380 rx_ring->size = ALIGN(rx_ring->size, 4096); 2381 2382 err = e1000_alloc_ring_dma(adapter, rx_ring); 2383 if (err) 2384 goto err_pages; 2385 2386 rx_ring->next_to_clean = 0; 2387 rx_ring->next_to_use = 0; 2388 rx_ring->rx_skb_top = NULL; 2389 2390 return 0; 2391 2392 err_pages: 2393 for (i = 0; i < rx_ring->count; i++) { 2394 buffer_info = &rx_ring->buffer_info[i]; 2395 kfree(buffer_info->ps_pages); 2396 } 2397 err: 2398 vfree(rx_ring->buffer_info); 2399 e_err("Unable to allocate memory for the receive descriptor ring\n"); 2400 return err; 2401 } 2402 2403 /** 2404 * e1000_clean_tx_ring - Free Tx Buffers 2405 * @tx_ring: Tx descriptor ring 2406 **/ 2407 static void e1000_clean_tx_ring(struct e1000_ring *tx_ring) 2408 { 2409 struct e1000_adapter *adapter = tx_ring->adapter; 2410 struct e1000_buffer *buffer_info; 2411 unsigned long size; 2412 unsigned int i; 2413 2414 for (i = 0; i < tx_ring->count; i++) { 2415 buffer_info = &tx_ring->buffer_info[i]; 2416 e1000_put_txbuf(tx_ring, buffer_info, false); 2417 } 2418 2419 netdev_reset_queue(adapter->netdev); 2420 size = sizeof(struct e1000_buffer) * tx_ring->count; 2421 memset(tx_ring->buffer_info, 0, size); 2422 2423 memset(tx_ring->desc, 0, tx_ring->size); 2424 2425 tx_ring->next_to_use = 0; 2426 tx_ring->next_to_clean = 0; 2427 } 2428 2429 /** 2430 * e1000e_free_tx_resources - Free Tx Resources per Queue 2431 * @tx_ring: Tx descriptor ring 2432 * 2433 * Free all transmit software resources 2434 **/ 2435 void e1000e_free_tx_resources(struct e1000_ring *tx_ring) 2436 { 2437 struct e1000_adapter *adapter = tx_ring->adapter; 2438 struct pci_dev *pdev = adapter->pdev; 2439 2440 e1000_clean_tx_ring(tx_ring); 2441 2442 vfree(tx_ring->buffer_info); 2443 tx_ring->buffer_info = NULL; 2444 2445 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, 2446 tx_ring->dma); 2447 tx_ring->desc = NULL; 2448 } 2449 2450 /** 2451 * e1000e_free_rx_resources - Free Rx Resources 2452 * @rx_ring: Rx descriptor ring 2453 * 2454 * Free all receive software resources 2455 **/ 2456 void e1000e_free_rx_resources(struct e1000_ring *rx_ring) 2457 { 2458 struct e1000_adapter *adapter = rx_ring->adapter; 2459 struct pci_dev *pdev = adapter->pdev; 2460 int i; 2461 2462 e1000_clean_rx_ring(rx_ring); 2463 2464 for (i = 0; i < rx_ring->count; i++) 2465 kfree(rx_ring->buffer_info[i].ps_pages); 2466 2467 vfree(rx_ring->buffer_info); 2468 rx_ring->buffer_info = NULL; 2469 2470 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, 2471 rx_ring->dma); 2472 rx_ring->desc = NULL; 2473 } 2474 2475 /** 2476 * e1000_update_itr - update the dynamic ITR value based on statistics 2477 * @adapter: pointer to adapter 2478 * @itr_setting: current adapter->itr 2479 * @packets: the number of packets during this measurement interval 2480 * @bytes: the number of bytes during this measurement interval 2481 * 2482 * Stores a new ITR value based on packets and byte 2483 * counts during the last interrupt. The advantage of per interrupt 2484 * computation is faster updates and more accurate ITR for the current 2485 * traffic pattern. Constants in this function were computed 2486 * based on theoretical maximum wire speed and thresholds were set based 2487 * on testing data as well as attempting to minimize response time 2488 * while increasing bulk throughput. This functionality is controlled 2489 * by the InterruptThrottleRate module parameter. 2490 **/ 2491 static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes) 2492 { 2493 unsigned int retval = itr_setting; 2494 2495 if (packets == 0) 2496 return itr_setting; 2497 2498 switch (itr_setting) { 2499 case lowest_latency: 2500 /* handle TSO and jumbo frames */ 2501 if (bytes / packets > 8000) 2502 retval = bulk_latency; 2503 else if ((packets < 5) && (bytes > 512)) 2504 retval = low_latency; 2505 break; 2506 case low_latency: /* 50 usec aka 20000 ints/s */ 2507 if (bytes > 10000) { 2508 /* this if handles the TSO accounting */ 2509 if (bytes / packets > 8000) 2510 retval = bulk_latency; 2511 else if ((packets < 10) || ((bytes / packets) > 1200)) 2512 retval = bulk_latency; 2513 else if ((packets > 35)) 2514 retval = lowest_latency; 2515 } else if (bytes / packets > 2000) { 2516 retval = bulk_latency; 2517 } else if (packets <= 2 && bytes < 512) { 2518 retval = lowest_latency; 2519 } 2520 break; 2521 case bulk_latency: /* 250 usec aka 4000 ints/s */ 2522 if (bytes > 25000) { 2523 if (packets > 35) 2524 retval = low_latency; 2525 } else if (bytes < 6000) { 2526 retval = low_latency; 2527 } 2528 break; 2529 } 2530 2531 return retval; 2532 } 2533 2534 static void e1000_set_itr(struct e1000_adapter *adapter) 2535 { 2536 u16 current_itr; 2537 u32 new_itr = adapter->itr; 2538 2539 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ 2540 if (adapter->link_speed != SPEED_1000) { 2541 current_itr = 0; 2542 new_itr = 4000; 2543 goto set_itr_now; 2544 } 2545 2546 if (adapter->flags2 & FLAG2_DISABLE_AIM) { 2547 new_itr = 0; 2548 goto set_itr_now; 2549 } 2550 2551 adapter->tx_itr = e1000_update_itr(adapter->tx_itr, 2552 adapter->total_tx_packets, 2553 adapter->total_tx_bytes); 2554 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 2555 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency) 2556 adapter->tx_itr = low_latency; 2557 2558 adapter->rx_itr = e1000_update_itr(adapter->rx_itr, 2559 adapter->total_rx_packets, 2560 adapter->total_rx_bytes); 2561 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 2562 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency) 2563 adapter->rx_itr = low_latency; 2564 2565 current_itr = max(adapter->rx_itr, adapter->tx_itr); 2566 2567 /* counts and packets in update_itr are dependent on these numbers */ 2568 switch (current_itr) { 2569 case lowest_latency: 2570 new_itr = 70000; 2571 break; 2572 case low_latency: 2573 new_itr = 20000; /* aka hwitr = ~200 */ 2574 break; 2575 case bulk_latency: 2576 new_itr = 4000; 2577 break; 2578 default: 2579 break; 2580 } 2581 2582 set_itr_now: 2583 if (new_itr != adapter->itr) { 2584 /* this attempts to bias the interrupt rate towards Bulk 2585 * by adding intermediate steps when interrupt rate is 2586 * increasing 2587 */ 2588 new_itr = new_itr > adapter->itr ? 2589 min(adapter->itr + (new_itr >> 2), new_itr) : new_itr; 2590 adapter->itr = new_itr; 2591 adapter->rx_ring->itr_val = new_itr; 2592 if (adapter->msix_entries) 2593 adapter->rx_ring->set_itr = 1; 2594 else 2595 e1000e_write_itr(adapter, new_itr); 2596 } 2597 } 2598 2599 /** 2600 * e1000e_write_itr - write the ITR value to the appropriate registers 2601 * @adapter: address of board private structure 2602 * @itr: new ITR value to program 2603 * 2604 * e1000e_write_itr determines if the adapter is in MSI-X mode 2605 * and, if so, writes the EITR registers with the ITR value. 2606 * Otherwise, it writes the ITR value into the ITR register. 2607 **/ 2608 void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr) 2609 { 2610 struct e1000_hw *hw = &adapter->hw; 2611 u32 new_itr = itr ? 1000000000 / (itr * 256) : 0; 2612 2613 if (adapter->msix_entries) { 2614 int vector; 2615 2616 for (vector = 0; vector < adapter->num_vectors; vector++) 2617 writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector)); 2618 } else { 2619 ew32(ITR, new_itr); 2620 } 2621 } 2622 2623 /** 2624 * e1000_alloc_queues - Allocate memory for all rings 2625 * @adapter: board private structure to initialize 2626 **/ 2627 static int e1000_alloc_queues(struct e1000_adapter *adapter) 2628 { 2629 int size = sizeof(struct e1000_ring); 2630 2631 adapter->tx_ring = kzalloc(size, GFP_KERNEL); 2632 if (!adapter->tx_ring) 2633 goto err; 2634 adapter->tx_ring->count = adapter->tx_ring_count; 2635 adapter->tx_ring->adapter = adapter; 2636 2637 adapter->rx_ring = kzalloc(size, GFP_KERNEL); 2638 if (!adapter->rx_ring) 2639 goto err; 2640 adapter->rx_ring->count = adapter->rx_ring_count; 2641 adapter->rx_ring->adapter = adapter; 2642 2643 return 0; 2644 err: 2645 e_err("Unable to allocate memory for queues\n"); 2646 kfree(adapter->rx_ring); 2647 kfree(adapter->tx_ring); 2648 return -ENOMEM; 2649 } 2650 2651 /** 2652 * e1000e_poll - NAPI Rx polling callback 2653 * @napi: struct associated with this polling callback 2654 * @budget: number of packets driver is allowed to process this poll 2655 **/ 2656 static int e1000e_poll(struct napi_struct *napi, int budget) 2657 { 2658 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, 2659 napi); 2660 struct e1000_hw *hw = &adapter->hw; 2661 struct net_device *poll_dev = adapter->netdev; 2662 int tx_cleaned = 1, work_done = 0; 2663 2664 adapter = netdev_priv(poll_dev); 2665 2666 if (!adapter->msix_entries || 2667 (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val)) 2668 tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring); 2669 2670 adapter->clean_rx(adapter->rx_ring, &work_done, budget); 2671 2672 if (!tx_cleaned || work_done == budget) 2673 return budget; 2674 2675 /* Exit the polling mode, but don't re-enable interrupts if stack might 2676 * poll us due to busy-polling 2677 */ 2678 if (likely(napi_complete_done(napi, work_done))) { 2679 if (adapter->itr_setting & 3) 2680 e1000_set_itr(adapter); 2681 if (!test_bit(__E1000_DOWN, &adapter->state)) { 2682 if (adapter->msix_entries) 2683 ew32(IMS, adapter->rx_ring->ims_val); 2684 else 2685 e1000_irq_enable(adapter); 2686 } 2687 } 2688 2689 return work_done; 2690 } 2691 2692 static int e1000_vlan_rx_add_vid(struct net_device *netdev, 2693 __always_unused __be16 proto, u16 vid) 2694 { 2695 struct e1000_adapter *adapter = netdev_priv(netdev); 2696 struct e1000_hw *hw = &adapter->hw; 2697 u32 vfta, index; 2698 2699 /* don't update vlan cookie if already programmed */ 2700 if ((adapter->hw.mng_cookie.status & 2701 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) && 2702 (vid == adapter->mng_vlan_id)) 2703 return 0; 2704 2705 /* add VID to filter table */ 2706 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { 2707 index = (vid >> 5) & 0x7F; 2708 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index); 2709 vfta |= BIT((vid & 0x1F)); 2710 hw->mac.ops.write_vfta(hw, index, vfta); 2711 } 2712 2713 set_bit(vid, adapter->active_vlans); 2714 2715 return 0; 2716 } 2717 2718 static int e1000_vlan_rx_kill_vid(struct net_device *netdev, 2719 __always_unused __be16 proto, u16 vid) 2720 { 2721 struct e1000_adapter *adapter = netdev_priv(netdev); 2722 struct e1000_hw *hw = &adapter->hw; 2723 u32 vfta, index; 2724 2725 if ((adapter->hw.mng_cookie.status & 2726 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) && 2727 (vid == adapter->mng_vlan_id)) { 2728 /* release control to f/w */ 2729 e1000e_release_hw_control(adapter); 2730 return 0; 2731 } 2732 2733 /* remove VID from filter table */ 2734 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { 2735 index = (vid >> 5) & 0x7F; 2736 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index); 2737 vfta &= ~BIT((vid & 0x1F)); 2738 hw->mac.ops.write_vfta(hw, index, vfta); 2739 } 2740 2741 clear_bit(vid, adapter->active_vlans); 2742 2743 return 0; 2744 } 2745 2746 /** 2747 * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering 2748 * @adapter: board private structure to initialize 2749 **/ 2750 static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter) 2751 { 2752 struct net_device *netdev = adapter->netdev; 2753 struct e1000_hw *hw = &adapter->hw; 2754 u32 rctl; 2755 2756 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { 2757 /* disable VLAN receive filtering */ 2758 rctl = er32(RCTL); 2759 rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN); 2760 ew32(RCTL, rctl); 2761 2762 if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) { 2763 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), 2764 adapter->mng_vlan_id); 2765 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; 2766 } 2767 } 2768 } 2769 2770 /** 2771 * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering 2772 * @adapter: board private structure to initialize 2773 **/ 2774 static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter) 2775 { 2776 struct e1000_hw *hw = &adapter->hw; 2777 u32 rctl; 2778 2779 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { 2780 /* enable VLAN receive filtering */ 2781 rctl = er32(RCTL); 2782 rctl |= E1000_RCTL_VFE; 2783 rctl &= ~E1000_RCTL_CFIEN; 2784 ew32(RCTL, rctl); 2785 } 2786 } 2787 2788 /** 2789 * e1000e_vlan_strip_disable - helper to disable HW VLAN stripping 2790 * @adapter: board private structure to initialize 2791 **/ 2792 static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter) 2793 { 2794 struct e1000_hw *hw = &adapter->hw; 2795 u32 ctrl; 2796 2797 /* disable VLAN tag insert/strip */ 2798 ctrl = er32(CTRL); 2799 ctrl &= ~E1000_CTRL_VME; 2800 ew32(CTRL, ctrl); 2801 } 2802 2803 /** 2804 * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping 2805 * @adapter: board private structure to initialize 2806 **/ 2807 static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter) 2808 { 2809 struct e1000_hw *hw = &adapter->hw; 2810 u32 ctrl; 2811 2812 /* enable VLAN tag insert/strip */ 2813 ctrl = er32(CTRL); 2814 ctrl |= E1000_CTRL_VME; 2815 ew32(CTRL, ctrl); 2816 } 2817 2818 static void e1000_update_mng_vlan(struct e1000_adapter *adapter) 2819 { 2820 struct net_device *netdev = adapter->netdev; 2821 u16 vid = adapter->hw.mng_cookie.vlan_id; 2822 u16 old_vid = adapter->mng_vlan_id; 2823 2824 if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) { 2825 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid); 2826 adapter->mng_vlan_id = vid; 2827 } 2828 2829 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid)) 2830 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid); 2831 } 2832 2833 static void e1000_restore_vlan(struct e1000_adapter *adapter) 2834 { 2835 u16 vid; 2836 2837 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0); 2838 2839 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) 2840 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid); 2841 } 2842 2843 static void e1000_init_manageability_pt(struct e1000_adapter *adapter) 2844 { 2845 struct e1000_hw *hw = &adapter->hw; 2846 u32 manc, manc2h, mdef, i, j; 2847 2848 if (!(adapter->flags & FLAG_MNG_PT_ENABLED)) 2849 return; 2850 2851 manc = er32(MANC); 2852 2853 /* enable receiving management packets to the host. this will probably 2854 * generate destination unreachable messages from the host OS, but 2855 * the packets will be handled on SMBUS 2856 */ 2857 manc |= E1000_MANC_EN_MNG2HOST; 2858 manc2h = er32(MANC2H); 2859 2860 switch (hw->mac.type) { 2861 default: 2862 manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664); 2863 break; 2864 case e1000_82574: 2865 case e1000_82583: 2866 /* Check if IPMI pass-through decision filter already exists; 2867 * if so, enable it. 2868 */ 2869 for (i = 0, j = 0; i < 8; i++) { 2870 mdef = er32(MDEF(i)); 2871 2872 /* Ignore filters with anything other than IPMI ports */ 2873 if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664)) 2874 continue; 2875 2876 /* Enable this decision filter in MANC2H */ 2877 if (mdef) 2878 manc2h |= BIT(i); 2879 2880 j |= mdef; 2881 } 2882 2883 if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664)) 2884 break; 2885 2886 /* Create new decision filter in an empty filter */ 2887 for (i = 0, j = 0; i < 8; i++) 2888 if (er32(MDEF(i)) == 0) { 2889 ew32(MDEF(i), (E1000_MDEF_PORT_623 | 2890 E1000_MDEF_PORT_664)); 2891 manc2h |= BIT(1); 2892 j++; 2893 break; 2894 } 2895 2896 if (!j) 2897 e_warn("Unable to create IPMI pass-through filter\n"); 2898 break; 2899 } 2900 2901 ew32(MANC2H, manc2h); 2902 ew32(MANC, manc); 2903 } 2904 2905 /** 2906 * e1000_configure_tx - Configure Transmit Unit after Reset 2907 * @adapter: board private structure 2908 * 2909 * Configure the Tx unit of the MAC after a reset. 2910 **/ 2911 static void e1000_configure_tx(struct e1000_adapter *adapter) 2912 { 2913 struct e1000_hw *hw = &adapter->hw; 2914 struct e1000_ring *tx_ring = adapter->tx_ring; 2915 u64 tdba; 2916 u32 tdlen, tctl, tarc; 2917 2918 /* Setup the HW Tx Head and Tail descriptor pointers */ 2919 tdba = tx_ring->dma; 2920 tdlen = tx_ring->count * sizeof(struct e1000_tx_desc); 2921 ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32))); 2922 ew32(TDBAH(0), (tdba >> 32)); 2923 ew32(TDLEN(0), tdlen); 2924 ew32(TDH(0), 0); 2925 ew32(TDT(0), 0); 2926 tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0); 2927 tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0); 2928 2929 writel(0, tx_ring->head); 2930 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA) 2931 e1000e_update_tdt_wa(tx_ring, 0); 2932 else 2933 writel(0, tx_ring->tail); 2934 2935 /* Set the Tx Interrupt Delay register */ 2936 ew32(TIDV, adapter->tx_int_delay); 2937 /* Tx irq moderation */ 2938 ew32(TADV, adapter->tx_abs_int_delay); 2939 2940 if (adapter->flags2 & FLAG2_DMA_BURST) { 2941 u32 txdctl = er32(TXDCTL(0)); 2942 2943 txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH | 2944 E1000_TXDCTL_WTHRESH); 2945 /* set up some performance related parameters to encourage the 2946 * hardware to use the bus more efficiently in bursts, depends 2947 * on the tx_int_delay to be enabled, 2948 * wthresh = 1 ==> burst write is disabled to avoid Tx stalls 2949 * hthresh = 1 ==> prefetch when one or more available 2950 * pthresh = 0x1f ==> prefetch if internal cache 31 or less 2951 * BEWARE: this seems to work but should be considered first if 2952 * there are Tx hangs or other Tx related bugs 2953 */ 2954 txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE; 2955 ew32(TXDCTL(0), txdctl); 2956 } 2957 /* erratum work around: set txdctl the same for both queues */ 2958 ew32(TXDCTL(1), er32(TXDCTL(0))); 2959 2960 /* Program the Transmit Control Register */ 2961 tctl = er32(TCTL); 2962 tctl &= ~E1000_TCTL_CT; 2963 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | 2964 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); 2965 2966 if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) { 2967 tarc = er32(TARC(0)); 2968 /* set the speed mode bit, we'll clear it if we're not at 2969 * gigabit link later 2970 */ 2971 #define SPEED_MODE_BIT BIT(21) 2972 tarc |= SPEED_MODE_BIT; 2973 ew32(TARC(0), tarc); 2974 } 2975 2976 /* errata: program both queues to unweighted RR */ 2977 if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) { 2978 tarc = er32(TARC(0)); 2979 tarc |= 1; 2980 ew32(TARC(0), tarc); 2981 tarc = er32(TARC(1)); 2982 tarc |= 1; 2983 ew32(TARC(1), tarc); 2984 } 2985 2986 /* Setup Transmit Descriptor Settings for eop descriptor */ 2987 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS; 2988 2989 /* only set IDE if we are delaying interrupts using the timers */ 2990 if (adapter->tx_int_delay) 2991 adapter->txd_cmd |= E1000_TXD_CMD_IDE; 2992 2993 /* enable Report Status bit */ 2994 adapter->txd_cmd |= E1000_TXD_CMD_RS; 2995 2996 ew32(TCTL, tctl); 2997 2998 hw->mac.ops.config_collision_dist(hw); 2999 3000 /* SPT and KBL Si errata workaround to avoid data corruption */ 3001 if (hw->mac.type == e1000_pch_spt) { 3002 u32 reg_val; 3003 3004 reg_val = er32(IOSFPC); 3005 reg_val |= E1000_RCTL_RDMTS_HEX; 3006 ew32(IOSFPC, reg_val); 3007 3008 reg_val = er32(TARC(0)); 3009 /* SPT and KBL Si errata workaround to avoid Tx hang. 3010 * Dropping the number of outstanding requests from 3011 * 3 to 2 in order to avoid a buffer overrun. 3012 */ 3013 reg_val &= ~E1000_TARC0_CB_MULTIQ_3_REQ; 3014 reg_val |= E1000_TARC0_CB_MULTIQ_2_REQ; 3015 ew32(TARC(0), reg_val); 3016 } 3017 } 3018 3019 /** 3020 * e1000_setup_rctl - configure the receive control registers 3021 * @adapter: Board private structure 3022 **/ 3023 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \ 3024 (((S) & (PAGE_SIZE - 1)) ? 1 : 0)) 3025 static void e1000_setup_rctl(struct e1000_adapter *adapter) 3026 { 3027 struct e1000_hw *hw = &adapter->hw; 3028 u32 rctl, rfctl; 3029 u32 pages = 0; 3030 3031 /* Workaround Si errata on PCHx - configure jumbo frame flow. 3032 * If jumbo frames not set, program related MAC/PHY registers 3033 * to h/w defaults 3034 */ 3035 if (hw->mac.type >= e1000_pch2lan) { 3036 s32 ret_val; 3037 3038 if (adapter->netdev->mtu > ETH_DATA_LEN) 3039 ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true); 3040 else 3041 ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false); 3042 3043 if (ret_val) 3044 e_dbg("failed to enable|disable jumbo frame workaround mode\n"); 3045 } 3046 3047 /* Program MC offset vector base */ 3048 rctl = er32(RCTL); 3049 rctl &= ~(3 << E1000_RCTL_MO_SHIFT); 3050 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | 3051 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | 3052 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT); 3053 3054 /* Do not Store bad packets */ 3055 rctl &= ~E1000_RCTL_SBP; 3056 3057 /* Enable Long Packet receive */ 3058 if (adapter->netdev->mtu <= ETH_DATA_LEN) 3059 rctl &= ~E1000_RCTL_LPE; 3060 else 3061 rctl |= E1000_RCTL_LPE; 3062 3063 /* Some systems expect that the CRC is included in SMBUS traffic. The 3064 * hardware strips the CRC before sending to both SMBUS (BMC) and to 3065 * host memory when this is enabled 3066 */ 3067 if (adapter->flags2 & FLAG2_CRC_STRIPPING) 3068 rctl |= E1000_RCTL_SECRC; 3069 3070 /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */ 3071 if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) { 3072 u16 phy_data; 3073 3074 e1e_rphy(hw, PHY_REG(770, 26), &phy_data); 3075 phy_data &= 0xfff8; 3076 phy_data |= BIT(2); 3077 e1e_wphy(hw, PHY_REG(770, 26), phy_data); 3078 3079 e1e_rphy(hw, 22, &phy_data); 3080 phy_data &= 0x0fff; 3081 phy_data |= BIT(14); 3082 e1e_wphy(hw, 0x10, 0x2823); 3083 e1e_wphy(hw, 0x11, 0x0003); 3084 e1e_wphy(hw, 22, phy_data); 3085 } 3086 3087 /* Setup buffer sizes */ 3088 rctl &= ~E1000_RCTL_SZ_4096; 3089 rctl |= E1000_RCTL_BSEX; 3090 switch (adapter->rx_buffer_len) { 3091 case 2048: 3092 default: 3093 rctl |= E1000_RCTL_SZ_2048; 3094 rctl &= ~E1000_RCTL_BSEX; 3095 break; 3096 case 4096: 3097 rctl |= E1000_RCTL_SZ_4096; 3098 break; 3099 case 8192: 3100 rctl |= E1000_RCTL_SZ_8192; 3101 break; 3102 case 16384: 3103 rctl |= E1000_RCTL_SZ_16384; 3104 break; 3105 } 3106 3107 /* Enable Extended Status in all Receive Descriptors */ 3108 rfctl = er32(RFCTL); 3109 rfctl |= E1000_RFCTL_EXTEN; 3110 ew32(RFCTL, rfctl); 3111 3112 /* 82571 and greater support packet-split where the protocol 3113 * header is placed in skb->data and the packet data is 3114 * placed in pages hanging off of skb_shinfo(skb)->nr_frags. 3115 * In the case of a non-split, skb->data is linearly filled, 3116 * followed by the page buffers. Therefore, skb->data is 3117 * sized to hold the largest protocol header. 3118 * 3119 * allocations using alloc_page take too long for regular MTU 3120 * so only enable packet split for jumbo frames 3121 * 3122 * Using pages when the page size is greater than 16k wastes 3123 * a lot of memory, since we allocate 3 pages at all times 3124 * per packet. 3125 */ 3126 pages = PAGE_USE_COUNT(adapter->netdev->mtu); 3127 if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE)) 3128 adapter->rx_ps_pages = pages; 3129 else 3130 adapter->rx_ps_pages = 0; 3131 3132 if (adapter->rx_ps_pages) { 3133 u32 psrctl = 0; 3134 3135 /* Enable Packet split descriptors */ 3136 rctl |= E1000_RCTL_DTYP_PS; 3137 3138 psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT; 3139 3140 switch (adapter->rx_ps_pages) { 3141 case 3: 3142 psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT; 3143 /* fall-through */ 3144 case 2: 3145 psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT; 3146 /* fall-through */ 3147 case 1: 3148 psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT; 3149 break; 3150 } 3151 3152 ew32(PSRCTL, psrctl); 3153 } 3154 3155 /* This is useful for sniffing bad packets. */ 3156 if (adapter->netdev->features & NETIF_F_RXALL) { 3157 /* UPE and MPE will be handled by normal PROMISC logic 3158 * in e1000e_set_rx_mode 3159 */ 3160 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */ 3161 E1000_RCTL_BAM | /* RX All Bcast Pkts */ 3162 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */ 3163 3164 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */ 3165 E1000_RCTL_DPF | /* Allow filtered pause */ 3166 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */ 3167 /* Do not mess with E1000_CTRL_VME, it affects transmit as well, 3168 * and that breaks VLANs. 3169 */ 3170 } 3171 3172 ew32(RCTL, rctl); 3173 /* just started the receive unit, no need to restart */ 3174 adapter->flags &= ~FLAG_RESTART_NOW; 3175 } 3176 3177 /** 3178 * e1000_configure_rx - Configure Receive Unit after Reset 3179 * @adapter: board private structure 3180 * 3181 * Configure the Rx unit of the MAC after a reset. 3182 **/ 3183 static void e1000_configure_rx(struct e1000_adapter *adapter) 3184 { 3185 struct e1000_hw *hw = &adapter->hw; 3186 struct e1000_ring *rx_ring = adapter->rx_ring; 3187 u64 rdba; 3188 u32 rdlen, rctl, rxcsum, ctrl_ext; 3189 3190 if (adapter->rx_ps_pages) { 3191 /* this is a 32 byte descriptor */ 3192 rdlen = rx_ring->count * 3193 sizeof(union e1000_rx_desc_packet_split); 3194 adapter->clean_rx = e1000_clean_rx_irq_ps; 3195 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps; 3196 } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) { 3197 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended); 3198 adapter->clean_rx = e1000_clean_jumbo_rx_irq; 3199 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers; 3200 } else { 3201 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended); 3202 adapter->clean_rx = e1000_clean_rx_irq; 3203 adapter->alloc_rx_buf = e1000_alloc_rx_buffers; 3204 } 3205 3206 /* disable receives while setting up the descriptors */ 3207 rctl = er32(RCTL); 3208 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX)) 3209 ew32(RCTL, rctl & ~E1000_RCTL_EN); 3210 e1e_flush(); 3211 usleep_range(10000, 20000); 3212 3213 if (adapter->flags2 & FLAG2_DMA_BURST) { 3214 /* set the writeback threshold (only takes effect if the RDTR 3215 * is set). set GRAN=1 and write back up to 0x4 worth, and 3216 * enable prefetching of 0x20 Rx descriptors 3217 * granularity = 01 3218 * wthresh = 04, 3219 * hthresh = 04, 3220 * pthresh = 0x20 3221 */ 3222 ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE); 3223 ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE); 3224 } 3225 3226 /* set the Receive Delay Timer Register */ 3227 ew32(RDTR, adapter->rx_int_delay); 3228 3229 /* irq moderation */ 3230 ew32(RADV, adapter->rx_abs_int_delay); 3231 if ((adapter->itr_setting != 0) && (adapter->itr != 0)) 3232 e1000e_write_itr(adapter, adapter->itr); 3233 3234 ctrl_ext = er32(CTRL_EXT); 3235 /* Auto-Mask interrupts upon ICR access */ 3236 ctrl_ext |= E1000_CTRL_EXT_IAME; 3237 ew32(IAM, 0xffffffff); 3238 ew32(CTRL_EXT, ctrl_ext); 3239 e1e_flush(); 3240 3241 /* Setup the HW Rx Head and Tail Descriptor Pointers and 3242 * the Base and Length of the Rx Descriptor Ring 3243 */ 3244 rdba = rx_ring->dma; 3245 ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32))); 3246 ew32(RDBAH(0), (rdba >> 32)); 3247 ew32(RDLEN(0), rdlen); 3248 ew32(RDH(0), 0); 3249 ew32(RDT(0), 0); 3250 rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0); 3251 rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0); 3252 3253 writel(0, rx_ring->head); 3254 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA) 3255 e1000e_update_rdt_wa(rx_ring, 0); 3256 else 3257 writel(0, rx_ring->tail); 3258 3259 /* Enable Receive Checksum Offload for TCP and UDP */ 3260 rxcsum = er32(RXCSUM); 3261 if (adapter->netdev->features & NETIF_F_RXCSUM) 3262 rxcsum |= E1000_RXCSUM_TUOFL; 3263 else 3264 rxcsum &= ~E1000_RXCSUM_TUOFL; 3265 ew32(RXCSUM, rxcsum); 3266 3267 /* With jumbo frames, excessive C-state transition latencies result 3268 * in dropped transactions. 3269 */ 3270 if (adapter->netdev->mtu > ETH_DATA_LEN) { 3271 u32 lat = 3272 ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 - 3273 adapter->max_frame_size) * 8 / 1000; 3274 3275 if (adapter->flags & FLAG_IS_ICH) { 3276 u32 rxdctl = er32(RXDCTL(0)); 3277 3278 ew32(RXDCTL(0), rxdctl | 0x3 | BIT(8)); 3279 } 3280 3281 dev_info(&adapter->pdev->dev, 3282 "Some CPU C-states have been disabled in order to enable jumbo frames\n"); 3283 pm_qos_update_request(&adapter->pm_qos_req, lat); 3284 } else { 3285 pm_qos_update_request(&adapter->pm_qos_req, 3286 PM_QOS_DEFAULT_VALUE); 3287 } 3288 3289 /* Enable Receives */ 3290 ew32(RCTL, rctl); 3291 } 3292 3293 /** 3294 * e1000e_write_mc_addr_list - write multicast addresses to MTA 3295 * @netdev: network interface device structure 3296 * 3297 * Writes multicast address list to the MTA hash table. 3298 * Returns: -ENOMEM on failure 3299 * 0 on no addresses written 3300 * X on writing X addresses to MTA 3301 */ 3302 static int e1000e_write_mc_addr_list(struct net_device *netdev) 3303 { 3304 struct e1000_adapter *adapter = netdev_priv(netdev); 3305 struct e1000_hw *hw = &adapter->hw; 3306 struct netdev_hw_addr *ha; 3307 u8 *mta_list; 3308 int i; 3309 3310 if (netdev_mc_empty(netdev)) { 3311 /* nothing to program, so clear mc list */ 3312 hw->mac.ops.update_mc_addr_list(hw, NULL, 0); 3313 return 0; 3314 } 3315 3316 mta_list = kcalloc(netdev_mc_count(netdev), ETH_ALEN, GFP_ATOMIC); 3317 if (!mta_list) 3318 return -ENOMEM; 3319 3320 /* update_mc_addr_list expects a packed array of only addresses. */ 3321 i = 0; 3322 netdev_for_each_mc_addr(ha, netdev) 3323 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN); 3324 3325 hw->mac.ops.update_mc_addr_list(hw, mta_list, i); 3326 kfree(mta_list); 3327 3328 return netdev_mc_count(netdev); 3329 } 3330 3331 /** 3332 * e1000e_write_uc_addr_list - write unicast addresses to RAR table 3333 * @netdev: network interface device structure 3334 * 3335 * Writes unicast address list to the RAR table. 3336 * Returns: -ENOMEM on failure/insufficient address space 3337 * 0 on no addresses written 3338 * X on writing X addresses to the RAR table 3339 **/ 3340 static int e1000e_write_uc_addr_list(struct net_device *netdev) 3341 { 3342 struct e1000_adapter *adapter = netdev_priv(netdev); 3343 struct e1000_hw *hw = &adapter->hw; 3344 unsigned int rar_entries; 3345 int count = 0; 3346 3347 rar_entries = hw->mac.ops.rar_get_count(hw); 3348 3349 /* save a rar entry for our hardware address */ 3350 rar_entries--; 3351 3352 /* save a rar entry for the LAA workaround */ 3353 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) 3354 rar_entries--; 3355 3356 /* return ENOMEM indicating insufficient memory for addresses */ 3357 if (netdev_uc_count(netdev) > rar_entries) 3358 return -ENOMEM; 3359 3360 if (!netdev_uc_empty(netdev) && rar_entries) { 3361 struct netdev_hw_addr *ha; 3362 3363 /* write the addresses in reverse order to avoid write 3364 * combining 3365 */ 3366 netdev_for_each_uc_addr(ha, netdev) { 3367 int ret_val; 3368 3369 if (!rar_entries) 3370 break; 3371 ret_val = hw->mac.ops.rar_set(hw, ha->addr, rar_entries--); 3372 if (ret_val < 0) 3373 return -ENOMEM; 3374 count++; 3375 } 3376 } 3377 3378 /* zero out the remaining RAR entries not used above */ 3379 for (; rar_entries > 0; rar_entries--) { 3380 ew32(RAH(rar_entries), 0); 3381 ew32(RAL(rar_entries), 0); 3382 } 3383 e1e_flush(); 3384 3385 return count; 3386 } 3387 3388 /** 3389 * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set 3390 * @netdev: network interface device structure 3391 * 3392 * The ndo_set_rx_mode entry point is called whenever the unicast or multicast 3393 * address list or the network interface flags are updated. This routine is 3394 * responsible for configuring the hardware for proper unicast, multicast, 3395 * promiscuous mode, and all-multi behavior. 3396 **/ 3397 static void e1000e_set_rx_mode(struct net_device *netdev) 3398 { 3399 struct e1000_adapter *adapter = netdev_priv(netdev); 3400 struct e1000_hw *hw = &adapter->hw; 3401 u32 rctl; 3402 3403 if (pm_runtime_suspended(netdev->dev.parent)) 3404 return; 3405 3406 /* Check for Promiscuous and All Multicast modes */ 3407 rctl = er32(RCTL); 3408 3409 /* clear the affected bits */ 3410 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE); 3411 3412 if (netdev->flags & IFF_PROMISC) { 3413 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); 3414 /* Do not hardware filter VLANs in promisc mode */ 3415 e1000e_vlan_filter_disable(adapter); 3416 } else { 3417 int count; 3418 3419 if (netdev->flags & IFF_ALLMULTI) { 3420 rctl |= E1000_RCTL_MPE; 3421 } else { 3422 /* Write addresses to the MTA, if the attempt fails 3423 * then we should just turn on promiscuous mode so 3424 * that we can at least receive multicast traffic 3425 */ 3426 count = e1000e_write_mc_addr_list(netdev); 3427 if (count < 0) 3428 rctl |= E1000_RCTL_MPE; 3429 } 3430 e1000e_vlan_filter_enable(adapter); 3431 /* Write addresses to available RAR registers, if there is not 3432 * sufficient space to store all the addresses then enable 3433 * unicast promiscuous mode 3434 */ 3435 count = e1000e_write_uc_addr_list(netdev); 3436 if (count < 0) 3437 rctl |= E1000_RCTL_UPE; 3438 } 3439 3440 ew32(RCTL, rctl); 3441 3442 if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX) 3443 e1000e_vlan_strip_enable(adapter); 3444 else 3445 e1000e_vlan_strip_disable(adapter); 3446 } 3447 3448 static void e1000e_setup_rss_hash(struct e1000_adapter *adapter) 3449 { 3450 struct e1000_hw *hw = &adapter->hw; 3451 u32 mrqc, rxcsum; 3452 u32 rss_key[10]; 3453 int i; 3454 3455 netdev_rss_key_fill(rss_key, sizeof(rss_key)); 3456 for (i = 0; i < 10; i++) 3457 ew32(RSSRK(i), rss_key[i]); 3458 3459 /* Direct all traffic to queue 0 */ 3460 for (i = 0; i < 32; i++) 3461 ew32(RETA(i), 0); 3462 3463 /* Disable raw packet checksumming so that RSS hash is placed in 3464 * descriptor on writeback. 3465 */ 3466 rxcsum = er32(RXCSUM); 3467 rxcsum |= E1000_RXCSUM_PCSD; 3468 3469 ew32(RXCSUM, rxcsum); 3470 3471 mrqc = (E1000_MRQC_RSS_FIELD_IPV4 | 3472 E1000_MRQC_RSS_FIELD_IPV4_TCP | 3473 E1000_MRQC_RSS_FIELD_IPV6 | 3474 E1000_MRQC_RSS_FIELD_IPV6_TCP | 3475 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX); 3476 3477 ew32(MRQC, mrqc); 3478 } 3479 3480 /** 3481 * e1000e_get_base_timinca - get default SYSTIM time increment attributes 3482 * @adapter: board private structure 3483 * @timinca: pointer to returned time increment attributes 3484 * 3485 * Get attributes for incrementing the System Time Register SYSTIML/H at 3486 * the default base frequency, and set the cyclecounter shift value. 3487 **/ 3488 s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca) 3489 { 3490 struct e1000_hw *hw = &adapter->hw; 3491 u32 incvalue, incperiod, shift; 3492 3493 /* Make sure clock is enabled on I217/I218/I219 before checking 3494 * the frequency 3495 */ 3496 if ((hw->mac.type >= e1000_pch_lpt) && 3497 !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) && 3498 !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) { 3499 u32 fextnvm7 = er32(FEXTNVM7); 3500 3501 if (!(fextnvm7 & BIT(0))) { 3502 ew32(FEXTNVM7, fextnvm7 | BIT(0)); 3503 e1e_flush(); 3504 } 3505 } 3506 3507 switch (hw->mac.type) { 3508 case e1000_pch2lan: 3509 /* Stable 96MHz frequency */ 3510 incperiod = INCPERIOD_96MHZ; 3511 incvalue = INCVALUE_96MHZ; 3512 shift = INCVALUE_SHIFT_96MHZ; 3513 adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ; 3514 break; 3515 case e1000_pch_lpt: 3516 if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) { 3517 /* Stable 96MHz frequency */ 3518 incperiod = INCPERIOD_96MHZ; 3519 incvalue = INCVALUE_96MHZ; 3520 shift = INCVALUE_SHIFT_96MHZ; 3521 adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ; 3522 } else { 3523 /* Stable 25MHz frequency */ 3524 incperiod = INCPERIOD_25MHZ; 3525 incvalue = INCVALUE_25MHZ; 3526 shift = INCVALUE_SHIFT_25MHZ; 3527 adapter->cc.shift = shift; 3528 } 3529 break; 3530 case e1000_pch_spt: 3531 /* Stable 24MHz frequency */ 3532 incperiod = INCPERIOD_24MHZ; 3533 incvalue = INCVALUE_24MHZ; 3534 shift = INCVALUE_SHIFT_24MHZ; 3535 adapter->cc.shift = shift; 3536 break; 3537 case e1000_pch_cnp: 3538 if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) { 3539 /* Stable 24MHz frequency */ 3540 incperiod = INCPERIOD_24MHZ; 3541 incvalue = INCVALUE_24MHZ; 3542 shift = INCVALUE_SHIFT_24MHZ; 3543 adapter->cc.shift = shift; 3544 } else { 3545 /* Stable 38400KHz frequency */ 3546 incperiod = INCPERIOD_38400KHZ; 3547 incvalue = INCVALUE_38400KHZ; 3548 shift = INCVALUE_SHIFT_38400KHZ; 3549 adapter->cc.shift = shift; 3550 } 3551 break; 3552 case e1000_82574: 3553 case e1000_82583: 3554 /* Stable 25MHz frequency */ 3555 incperiod = INCPERIOD_25MHZ; 3556 incvalue = INCVALUE_25MHZ; 3557 shift = INCVALUE_SHIFT_25MHZ; 3558 adapter->cc.shift = shift; 3559 break; 3560 default: 3561 return -EINVAL; 3562 } 3563 3564 *timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) | 3565 ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK)); 3566 3567 return 0; 3568 } 3569 3570 /** 3571 * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable 3572 * @adapter: board private structure 3573 * 3574 * Outgoing time stamping can be enabled and disabled. Play nice and 3575 * disable it when requested, although it shouldn't cause any overhead 3576 * when no packet needs it. At most one packet in the queue may be 3577 * marked for time stamping, otherwise it would be impossible to tell 3578 * for sure to which packet the hardware time stamp belongs. 3579 * 3580 * Incoming time stamping has to be configured via the hardware filters. 3581 * Not all combinations are supported, in particular event type has to be 3582 * specified. Matching the kind of event packet is not supported, with the 3583 * exception of "all V2 events regardless of level 2 or 4". 3584 **/ 3585 static int e1000e_config_hwtstamp(struct e1000_adapter *adapter, 3586 struct hwtstamp_config *config) 3587 { 3588 struct e1000_hw *hw = &adapter->hw; 3589 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED; 3590 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED; 3591 u32 rxmtrl = 0; 3592 u16 rxudp = 0; 3593 bool is_l4 = false; 3594 bool is_l2 = false; 3595 u32 regval; 3596 3597 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP)) 3598 return -EINVAL; 3599 3600 /* flags reserved for future extensions - must be zero */ 3601 if (config->flags) 3602 return -EINVAL; 3603 3604 switch (config->tx_type) { 3605 case HWTSTAMP_TX_OFF: 3606 tsync_tx_ctl = 0; 3607 break; 3608 case HWTSTAMP_TX_ON: 3609 break; 3610 default: 3611 return -ERANGE; 3612 } 3613 3614 switch (config->rx_filter) { 3615 case HWTSTAMP_FILTER_NONE: 3616 tsync_rx_ctl = 0; 3617 break; 3618 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 3619 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1; 3620 rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE; 3621 is_l4 = true; 3622 break; 3623 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 3624 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1; 3625 rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE; 3626 is_l4 = true; 3627 break; 3628 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 3629 /* Also time stamps V2 L2 Path Delay Request/Response */ 3630 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2; 3631 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE; 3632 is_l2 = true; 3633 break; 3634 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 3635 /* Also time stamps V2 L2 Path Delay Request/Response. */ 3636 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2; 3637 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE; 3638 is_l2 = true; 3639 break; 3640 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 3641 /* Hardware cannot filter just V2 L4 Sync messages; 3642 * fall-through to V2 (both L2 and L4) Sync. 3643 */ 3644 case HWTSTAMP_FILTER_PTP_V2_SYNC: 3645 /* Also time stamps V2 Path Delay Request/Response. */ 3646 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2; 3647 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE; 3648 is_l2 = true; 3649 is_l4 = true; 3650 break; 3651 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 3652 /* Hardware cannot filter just V2 L4 Delay Request messages; 3653 * fall-through to V2 (both L2 and L4) Delay Request. 3654 */ 3655 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 3656 /* Also time stamps V2 Path Delay Request/Response. */ 3657 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2; 3658 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE; 3659 is_l2 = true; 3660 is_l4 = true; 3661 break; 3662 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 3663 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 3664 /* Hardware cannot filter just V2 L4 or L2 Event messages; 3665 * fall-through to all V2 (both L2 and L4) Events. 3666 */ 3667 case HWTSTAMP_FILTER_PTP_V2_EVENT: 3668 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2; 3669 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; 3670 is_l2 = true; 3671 is_l4 = true; 3672 break; 3673 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 3674 /* For V1, the hardware can only filter Sync messages or 3675 * Delay Request messages but not both so fall-through to 3676 * time stamp all packets. 3677 */ 3678 case HWTSTAMP_FILTER_NTP_ALL: 3679 case HWTSTAMP_FILTER_ALL: 3680 is_l2 = true; 3681 is_l4 = true; 3682 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL; 3683 config->rx_filter = HWTSTAMP_FILTER_ALL; 3684 break; 3685 default: 3686 return -ERANGE; 3687 } 3688 3689 adapter->hwtstamp_config = *config; 3690 3691 /* enable/disable Tx h/w time stamping */ 3692 regval = er32(TSYNCTXCTL); 3693 regval &= ~E1000_TSYNCTXCTL_ENABLED; 3694 regval |= tsync_tx_ctl; 3695 ew32(TSYNCTXCTL, regval); 3696 if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) != 3697 (regval & E1000_TSYNCTXCTL_ENABLED)) { 3698 e_err("Timesync Tx Control register not set as expected\n"); 3699 return -EAGAIN; 3700 } 3701 3702 /* enable/disable Rx h/w time stamping */ 3703 regval = er32(TSYNCRXCTL); 3704 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK); 3705 regval |= tsync_rx_ctl; 3706 ew32(TSYNCRXCTL, regval); 3707 if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED | 3708 E1000_TSYNCRXCTL_TYPE_MASK)) != 3709 (regval & (E1000_TSYNCRXCTL_ENABLED | 3710 E1000_TSYNCRXCTL_TYPE_MASK))) { 3711 e_err("Timesync Rx Control register not set as expected\n"); 3712 return -EAGAIN; 3713 } 3714 3715 /* L2: define ethertype filter for time stamped packets */ 3716 if (is_l2) 3717 rxmtrl |= ETH_P_1588; 3718 3719 /* define which PTP packets get time stamped */ 3720 ew32(RXMTRL, rxmtrl); 3721 3722 /* Filter by destination port */ 3723 if (is_l4) { 3724 rxudp = PTP_EV_PORT; 3725 cpu_to_be16s(&rxudp); 3726 } 3727 ew32(RXUDP, rxudp); 3728 3729 e1e_flush(); 3730 3731 /* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */ 3732 er32(RXSTMPH); 3733 er32(TXSTMPH); 3734 3735 return 0; 3736 } 3737 3738 /** 3739 * e1000_configure - configure the hardware for Rx and Tx 3740 * @adapter: private board structure 3741 **/ 3742 static void e1000_configure(struct e1000_adapter *adapter) 3743 { 3744 struct e1000_ring *rx_ring = adapter->rx_ring; 3745 3746 e1000e_set_rx_mode(adapter->netdev); 3747 3748 e1000_restore_vlan(adapter); 3749 e1000_init_manageability_pt(adapter); 3750 3751 e1000_configure_tx(adapter); 3752 3753 if (adapter->netdev->features & NETIF_F_RXHASH) 3754 e1000e_setup_rss_hash(adapter); 3755 e1000_setup_rctl(adapter); 3756 e1000_configure_rx(adapter); 3757 adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL); 3758 } 3759 3760 /** 3761 * e1000e_power_up_phy - restore link in case the phy was powered down 3762 * @adapter: address of board private structure 3763 * 3764 * The phy may be powered down to save power and turn off link when the 3765 * driver is unloaded and wake on lan is not enabled (among others) 3766 * *** this routine MUST be followed by a call to e1000e_reset *** 3767 **/ 3768 void e1000e_power_up_phy(struct e1000_adapter *adapter) 3769 { 3770 if (adapter->hw.phy.ops.power_up) 3771 adapter->hw.phy.ops.power_up(&adapter->hw); 3772 3773 adapter->hw.mac.ops.setup_link(&adapter->hw); 3774 } 3775 3776 /** 3777 * e1000_power_down_phy - Power down the PHY 3778 * 3779 * Power down the PHY so no link is implied when interface is down. 3780 * The PHY cannot be powered down if management or WoL is active. 3781 */ 3782 static void e1000_power_down_phy(struct e1000_adapter *adapter) 3783 { 3784 if (adapter->hw.phy.ops.power_down) 3785 adapter->hw.phy.ops.power_down(&adapter->hw); 3786 } 3787 3788 /** 3789 * e1000_flush_tx_ring - remove all descriptors from the tx_ring 3790 * 3791 * We want to clear all pending descriptors from the TX ring. 3792 * zeroing happens when the HW reads the regs. We assign the ring itself as 3793 * the data of the next descriptor. We don't care about the data we are about 3794 * to reset the HW. 3795 */ 3796 static void e1000_flush_tx_ring(struct e1000_adapter *adapter) 3797 { 3798 struct e1000_hw *hw = &adapter->hw; 3799 struct e1000_ring *tx_ring = adapter->tx_ring; 3800 struct e1000_tx_desc *tx_desc = NULL; 3801 u32 tdt, tctl, txd_lower = E1000_TXD_CMD_IFCS; 3802 u16 size = 512; 3803 3804 tctl = er32(TCTL); 3805 ew32(TCTL, tctl | E1000_TCTL_EN); 3806 tdt = er32(TDT(0)); 3807 BUG_ON(tdt != tx_ring->next_to_use); 3808 tx_desc = E1000_TX_DESC(*tx_ring, tx_ring->next_to_use); 3809 tx_desc->buffer_addr = tx_ring->dma; 3810 3811 tx_desc->lower.data = cpu_to_le32(txd_lower | size); 3812 tx_desc->upper.data = 0; 3813 /* flush descriptors to memory before notifying the HW */ 3814 wmb(); 3815 tx_ring->next_to_use++; 3816 if (tx_ring->next_to_use == tx_ring->count) 3817 tx_ring->next_to_use = 0; 3818 ew32(TDT(0), tx_ring->next_to_use); 3819 mmiowb(); 3820 usleep_range(200, 250); 3821 } 3822 3823 /** 3824 * e1000_flush_rx_ring - remove all descriptors from the rx_ring 3825 * 3826 * Mark all descriptors in the RX ring as consumed and disable the rx ring 3827 */ 3828 static void e1000_flush_rx_ring(struct e1000_adapter *adapter) 3829 { 3830 u32 rctl, rxdctl; 3831 struct e1000_hw *hw = &adapter->hw; 3832 3833 rctl = er32(RCTL); 3834 ew32(RCTL, rctl & ~E1000_RCTL_EN); 3835 e1e_flush(); 3836 usleep_range(100, 150); 3837 3838 rxdctl = er32(RXDCTL(0)); 3839 /* zero the lower 14 bits (prefetch and host thresholds) */ 3840 rxdctl &= 0xffffc000; 3841 3842 /* update thresholds: prefetch threshold to 31, host threshold to 1 3843 * and make sure the granularity is "descriptors" and not "cache lines" 3844 */ 3845 rxdctl |= (0x1F | BIT(8) | E1000_RXDCTL_THRESH_UNIT_DESC); 3846 3847 ew32(RXDCTL(0), rxdctl); 3848 /* momentarily enable the RX ring for the changes to take effect */ 3849 ew32(RCTL, rctl | E1000_RCTL_EN); 3850 e1e_flush(); 3851 usleep_range(100, 150); 3852 ew32(RCTL, rctl & ~E1000_RCTL_EN); 3853 } 3854 3855 /** 3856 * e1000_flush_desc_rings - remove all descriptors from the descriptor rings 3857 * 3858 * In i219, the descriptor rings must be emptied before resetting the HW 3859 * or before changing the device state to D3 during runtime (runtime PM). 3860 * 3861 * Failure to do this will cause the HW to enter a unit hang state which can 3862 * only be released by PCI reset on the device 3863 * 3864 */ 3865 3866 static void e1000_flush_desc_rings(struct e1000_adapter *adapter) 3867 { 3868 u16 hang_state; 3869 u32 fext_nvm11, tdlen; 3870 struct e1000_hw *hw = &adapter->hw; 3871 3872 /* First, disable MULR fix in FEXTNVM11 */ 3873 fext_nvm11 = er32(FEXTNVM11); 3874 fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX; 3875 ew32(FEXTNVM11, fext_nvm11); 3876 /* do nothing if we're not in faulty state, or if the queue is empty */ 3877 tdlen = er32(TDLEN(0)); 3878 pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS, 3879 &hang_state); 3880 if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen) 3881 return; 3882 e1000_flush_tx_ring(adapter); 3883 /* recheck, maybe the fault is caused by the rx ring */ 3884 pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS, 3885 &hang_state); 3886 if (hang_state & FLUSH_DESC_REQUIRED) 3887 e1000_flush_rx_ring(adapter); 3888 } 3889 3890 /** 3891 * e1000e_systim_reset - reset the timesync registers after a hardware reset 3892 * @adapter: board private structure 3893 * 3894 * When the MAC is reset, all hardware bits for timesync will be reset to the 3895 * default values. This function will restore the settings last in place. 3896 * Since the clock SYSTIME registers are reset, we will simply restore the 3897 * cyclecounter to the kernel real clock time. 3898 **/ 3899 static void e1000e_systim_reset(struct e1000_adapter *adapter) 3900 { 3901 struct ptp_clock_info *info = &adapter->ptp_clock_info; 3902 struct e1000_hw *hw = &adapter->hw; 3903 unsigned long flags; 3904 u32 timinca; 3905 s32 ret_val; 3906 3907 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP)) 3908 return; 3909 3910 if (info->adjfreq) { 3911 /* restore the previous ptp frequency delta */ 3912 ret_val = info->adjfreq(info, adapter->ptp_delta); 3913 } else { 3914 /* set the default base frequency if no adjustment possible */ 3915 ret_val = e1000e_get_base_timinca(adapter, &timinca); 3916 if (!ret_val) 3917 ew32(TIMINCA, timinca); 3918 } 3919 3920 if (ret_val) { 3921 dev_warn(&adapter->pdev->dev, 3922 "Failed to restore TIMINCA clock rate delta: %d\n", 3923 ret_val); 3924 return; 3925 } 3926 3927 /* reset the systim ns time counter */ 3928 spin_lock_irqsave(&adapter->systim_lock, flags); 3929 timecounter_init(&adapter->tc, &adapter->cc, 3930 ktime_to_ns(ktime_get_real())); 3931 spin_unlock_irqrestore(&adapter->systim_lock, flags); 3932 3933 /* restore the previous hwtstamp configuration settings */ 3934 e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config); 3935 } 3936 3937 /** 3938 * e1000e_reset - bring the hardware into a known good state 3939 * 3940 * This function boots the hardware and enables some settings that 3941 * require a configuration cycle of the hardware - those cannot be 3942 * set/changed during runtime. After reset the device needs to be 3943 * properly configured for Rx, Tx etc. 3944 */ 3945 void e1000e_reset(struct e1000_adapter *adapter) 3946 { 3947 struct e1000_mac_info *mac = &adapter->hw.mac; 3948 struct e1000_fc_info *fc = &adapter->hw.fc; 3949 struct e1000_hw *hw = &adapter->hw; 3950 u32 tx_space, min_tx_space, min_rx_space; 3951 u32 pba = adapter->pba; 3952 u16 hwm; 3953 3954 /* reset Packet Buffer Allocation to default */ 3955 ew32(PBA, pba); 3956 3957 if (adapter->max_frame_size > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) { 3958 /* To maintain wire speed transmits, the Tx FIFO should be 3959 * large enough to accommodate two full transmit packets, 3960 * rounded up to the next 1KB and expressed in KB. Likewise, 3961 * the Rx FIFO should be large enough to accommodate at least 3962 * one full receive packet and is similarly rounded up and 3963 * expressed in KB. 3964 */ 3965 pba = er32(PBA); 3966 /* upper 16 bits has Tx packet buffer allocation size in KB */ 3967 tx_space = pba >> 16; 3968 /* lower 16 bits has Rx packet buffer allocation size in KB */ 3969 pba &= 0xffff; 3970 /* the Tx fifo also stores 16 bytes of information about the Tx 3971 * but don't include ethernet FCS because hardware appends it 3972 */ 3973 min_tx_space = (adapter->max_frame_size + 3974 sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2; 3975 min_tx_space = ALIGN(min_tx_space, 1024); 3976 min_tx_space >>= 10; 3977 /* software strips receive CRC, so leave room for it */ 3978 min_rx_space = adapter->max_frame_size; 3979 min_rx_space = ALIGN(min_rx_space, 1024); 3980 min_rx_space >>= 10; 3981 3982 /* If current Tx allocation is less than the min Tx FIFO size, 3983 * and the min Tx FIFO size is less than the current Rx FIFO 3984 * allocation, take space away from current Rx allocation 3985 */ 3986 if ((tx_space < min_tx_space) && 3987 ((min_tx_space - tx_space) < pba)) { 3988 pba -= min_tx_space - tx_space; 3989 3990 /* if short on Rx space, Rx wins and must trump Tx 3991 * adjustment 3992 */ 3993 if (pba < min_rx_space) 3994 pba = min_rx_space; 3995 } 3996 3997 ew32(PBA, pba); 3998 } 3999 4000 /* flow control settings 4001 * 4002 * The high water mark must be low enough to fit one full frame 4003 * (or the size used for early receive) above it in the Rx FIFO. 4004 * Set it to the lower of: 4005 * - 90% of the Rx FIFO size, and 4006 * - the full Rx FIFO size minus one full frame 4007 */ 4008 if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME) 4009 fc->pause_time = 0xFFFF; 4010 else 4011 fc->pause_time = E1000_FC_PAUSE_TIME; 4012 fc->send_xon = true; 4013 fc->current_mode = fc->requested_mode; 4014 4015 switch (hw->mac.type) { 4016 case e1000_ich9lan: 4017 case e1000_ich10lan: 4018 if (adapter->netdev->mtu > ETH_DATA_LEN) { 4019 pba = 14; 4020 ew32(PBA, pba); 4021 fc->high_water = 0x2800; 4022 fc->low_water = fc->high_water - 8; 4023 break; 4024 } 4025 /* fall-through */ 4026 default: 4027 hwm = min(((pba << 10) * 9 / 10), 4028 ((pba << 10) - adapter->max_frame_size)); 4029 4030 fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */ 4031 fc->low_water = fc->high_water - 8; 4032 break; 4033 case e1000_pchlan: 4034 /* Workaround PCH LOM adapter hangs with certain network 4035 * loads. If hangs persist, try disabling Tx flow control. 4036 */ 4037 if (adapter->netdev->mtu > ETH_DATA_LEN) { 4038 fc->high_water = 0x3500; 4039 fc->low_water = 0x1500; 4040 } else { 4041 fc->high_water = 0x5000; 4042 fc->low_water = 0x3000; 4043 } 4044 fc->refresh_time = 0x1000; 4045 break; 4046 case e1000_pch2lan: 4047 case e1000_pch_lpt: 4048 case e1000_pch_spt: 4049 case e1000_pch_cnp: 4050 fc->refresh_time = 0x0400; 4051 4052 if (adapter->netdev->mtu <= ETH_DATA_LEN) { 4053 fc->high_water = 0x05C20; 4054 fc->low_water = 0x05048; 4055 fc->pause_time = 0x0650; 4056 break; 4057 } 4058 4059 pba = 14; 4060 ew32(PBA, pba); 4061 fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH; 4062 fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL; 4063 break; 4064 } 4065 4066 /* Alignment of Tx data is on an arbitrary byte boundary with the 4067 * maximum size per Tx descriptor limited only to the transmit 4068 * allocation of the packet buffer minus 96 bytes with an upper 4069 * limit of 24KB due to receive synchronization limitations. 4070 */ 4071 adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96, 4072 24 << 10); 4073 4074 /* Disable Adaptive Interrupt Moderation if 2 full packets cannot 4075 * fit in receive buffer. 4076 */ 4077 if (adapter->itr_setting & 0x3) { 4078 if ((adapter->max_frame_size * 2) > (pba << 10)) { 4079 if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) { 4080 dev_info(&adapter->pdev->dev, 4081 "Interrupt Throttle Rate off\n"); 4082 adapter->flags2 |= FLAG2_DISABLE_AIM; 4083 e1000e_write_itr(adapter, 0); 4084 } 4085 } else if (adapter->flags2 & FLAG2_DISABLE_AIM) { 4086 dev_info(&adapter->pdev->dev, 4087 "Interrupt Throttle Rate on\n"); 4088 adapter->flags2 &= ~FLAG2_DISABLE_AIM; 4089 adapter->itr = 20000; 4090 e1000e_write_itr(adapter, adapter->itr); 4091 } 4092 } 4093 4094 if (hw->mac.type >= e1000_pch_spt) 4095 e1000_flush_desc_rings(adapter); 4096 /* Allow time for pending master requests to run */ 4097 mac->ops.reset_hw(hw); 4098 4099 /* For parts with AMT enabled, let the firmware know 4100 * that the network interface is in control 4101 */ 4102 if (adapter->flags & FLAG_HAS_AMT) 4103 e1000e_get_hw_control(adapter); 4104 4105 ew32(WUC, 0); 4106 4107 if (mac->ops.init_hw(hw)) 4108 e_err("Hardware Error\n"); 4109 4110 e1000_update_mng_vlan(adapter); 4111 4112 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ 4113 ew32(VET, ETH_P_8021Q); 4114 4115 e1000e_reset_adaptive(hw); 4116 4117 /* restore systim and hwtstamp settings */ 4118 e1000e_systim_reset(adapter); 4119 4120 /* Set EEE advertisement as appropriate */ 4121 if (adapter->flags2 & FLAG2_HAS_EEE) { 4122 s32 ret_val; 4123 u16 adv_addr; 4124 4125 switch (hw->phy.type) { 4126 case e1000_phy_82579: 4127 adv_addr = I82579_EEE_ADVERTISEMENT; 4128 break; 4129 case e1000_phy_i217: 4130 adv_addr = I217_EEE_ADVERTISEMENT; 4131 break; 4132 default: 4133 dev_err(&adapter->pdev->dev, 4134 "Invalid PHY type setting EEE advertisement\n"); 4135 return; 4136 } 4137 4138 ret_val = hw->phy.ops.acquire(hw); 4139 if (ret_val) { 4140 dev_err(&adapter->pdev->dev, 4141 "EEE advertisement - unable to acquire PHY\n"); 4142 return; 4143 } 4144 4145 e1000_write_emi_reg_locked(hw, adv_addr, 4146 hw->dev_spec.ich8lan.eee_disable ? 4147 0 : adapter->eee_advert); 4148 4149 hw->phy.ops.release(hw); 4150 } 4151 4152 if (!netif_running(adapter->netdev) && 4153 !test_bit(__E1000_TESTING, &adapter->state)) 4154 e1000_power_down_phy(adapter); 4155 4156 e1000_get_phy_info(hw); 4157 4158 if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) && 4159 !(adapter->flags & FLAG_SMART_POWER_DOWN)) { 4160 u16 phy_data = 0; 4161 /* speed up time to link by disabling smart power down, ignore 4162 * the return value of this function because there is nothing 4163 * different we would do if it failed 4164 */ 4165 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); 4166 phy_data &= ~IGP02E1000_PM_SPD; 4167 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); 4168 } 4169 if (hw->mac.type >= e1000_pch_spt && adapter->int_mode == 0) { 4170 u32 reg; 4171 4172 /* Fextnvm7 @ 0xe4[2] = 1 */ 4173 reg = er32(FEXTNVM7); 4174 reg |= E1000_FEXTNVM7_SIDE_CLK_UNGATE; 4175 ew32(FEXTNVM7, reg); 4176 /* Fextnvm9 @ 0x5bb4[13:12] = 11 */ 4177 reg = er32(FEXTNVM9); 4178 reg |= E1000_FEXTNVM9_IOSFSB_CLKGATE_DIS | 4179 E1000_FEXTNVM9_IOSFSB_CLKREQ_DIS; 4180 ew32(FEXTNVM9, reg); 4181 } 4182 4183 } 4184 4185 /** 4186 * e1000e_trigger_lsc - trigger an LSC interrupt 4187 * @adapter: 4188 * 4189 * Fire a link status change interrupt to start the watchdog. 4190 **/ 4191 static void e1000e_trigger_lsc(struct e1000_adapter *adapter) 4192 { 4193 struct e1000_hw *hw = &adapter->hw; 4194 4195 if (adapter->msix_entries) 4196 ew32(ICS, E1000_ICS_LSC | E1000_ICS_OTHER); 4197 else 4198 ew32(ICS, E1000_ICS_LSC); 4199 } 4200 4201 void e1000e_up(struct e1000_adapter *adapter) 4202 { 4203 /* hardware has been reset, we need to reload some things */ 4204 e1000_configure(adapter); 4205 4206 clear_bit(__E1000_DOWN, &adapter->state); 4207 4208 if (adapter->msix_entries) 4209 e1000_configure_msix(adapter); 4210 e1000_irq_enable(adapter); 4211 4212 netif_start_queue(adapter->netdev); 4213 4214 e1000e_trigger_lsc(adapter); 4215 } 4216 4217 static void e1000e_flush_descriptors(struct e1000_adapter *adapter) 4218 { 4219 struct e1000_hw *hw = &adapter->hw; 4220 4221 if (!(adapter->flags2 & FLAG2_DMA_BURST)) 4222 return; 4223 4224 /* flush pending descriptor writebacks to memory */ 4225 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD); 4226 ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD); 4227 4228 /* execute the writes immediately */ 4229 e1e_flush(); 4230 4231 /* due to rare timing issues, write to TIDV/RDTR again to ensure the 4232 * write is successful 4233 */ 4234 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD); 4235 ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD); 4236 4237 /* execute the writes immediately */ 4238 e1e_flush(); 4239 } 4240 4241 static void e1000e_update_stats(struct e1000_adapter *adapter); 4242 4243 /** 4244 * e1000e_down - quiesce the device and optionally reset the hardware 4245 * @adapter: board private structure 4246 * @reset: boolean flag to reset the hardware or not 4247 */ 4248 void e1000e_down(struct e1000_adapter *adapter, bool reset) 4249 { 4250 struct net_device *netdev = adapter->netdev; 4251 struct e1000_hw *hw = &adapter->hw; 4252 u32 tctl, rctl; 4253 4254 /* signal that we're down so the interrupt handler does not 4255 * reschedule our watchdog timer 4256 */ 4257 set_bit(__E1000_DOWN, &adapter->state); 4258 4259 netif_carrier_off(netdev); 4260 4261 /* disable receives in the hardware */ 4262 rctl = er32(RCTL); 4263 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX)) 4264 ew32(RCTL, rctl & ~E1000_RCTL_EN); 4265 /* flush and sleep below */ 4266 4267 netif_stop_queue(netdev); 4268 4269 /* disable transmits in the hardware */ 4270 tctl = er32(TCTL); 4271 tctl &= ~E1000_TCTL_EN; 4272 ew32(TCTL, tctl); 4273 4274 /* flush both disables and wait for them to finish */ 4275 e1e_flush(); 4276 usleep_range(10000, 20000); 4277 4278 e1000_irq_disable(adapter); 4279 4280 napi_synchronize(&adapter->napi); 4281 4282 del_timer_sync(&adapter->watchdog_timer); 4283 del_timer_sync(&adapter->phy_info_timer); 4284 4285 spin_lock(&adapter->stats64_lock); 4286 e1000e_update_stats(adapter); 4287 spin_unlock(&adapter->stats64_lock); 4288 4289 e1000e_flush_descriptors(adapter); 4290 4291 adapter->link_speed = 0; 4292 adapter->link_duplex = 0; 4293 4294 /* Disable Si errata workaround on PCHx for jumbo frame flow */ 4295 if ((hw->mac.type >= e1000_pch2lan) && 4296 (adapter->netdev->mtu > ETH_DATA_LEN) && 4297 e1000_lv_jumbo_workaround_ich8lan(hw, false)) 4298 e_dbg("failed to disable jumbo frame workaround mode\n"); 4299 4300 if (!pci_channel_offline(adapter->pdev)) { 4301 if (reset) 4302 e1000e_reset(adapter); 4303 else if (hw->mac.type >= e1000_pch_spt) 4304 e1000_flush_desc_rings(adapter); 4305 } 4306 e1000_clean_tx_ring(adapter->tx_ring); 4307 e1000_clean_rx_ring(adapter->rx_ring); 4308 } 4309 4310 void e1000e_reinit_locked(struct e1000_adapter *adapter) 4311 { 4312 might_sleep(); 4313 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 4314 usleep_range(1000, 2000); 4315 e1000e_down(adapter, true); 4316 e1000e_up(adapter); 4317 clear_bit(__E1000_RESETTING, &adapter->state); 4318 } 4319 4320 /** 4321 * e1000e_sanitize_systim - sanitize raw cycle counter reads 4322 * @hw: pointer to the HW structure 4323 * @systim: PHC time value read, sanitized and returned 4324 * @sts: structure to hold system time before and after reading SYSTIML, 4325 * may be NULL 4326 * 4327 * Errata for 82574/82583 possible bad bits read from SYSTIMH/L: 4328 * check to see that the time is incrementing at a reasonable 4329 * rate and is a multiple of incvalue. 4330 **/ 4331 static u64 e1000e_sanitize_systim(struct e1000_hw *hw, u64 systim, 4332 struct ptp_system_timestamp *sts) 4333 { 4334 u64 time_delta, rem, temp; 4335 u64 systim_next; 4336 u32 incvalue; 4337 int i; 4338 4339 incvalue = er32(TIMINCA) & E1000_TIMINCA_INCVALUE_MASK; 4340 for (i = 0; i < E1000_MAX_82574_SYSTIM_REREADS; i++) { 4341 /* latch SYSTIMH on read of SYSTIML */ 4342 ptp_read_system_prets(sts); 4343 systim_next = (u64)er32(SYSTIML); 4344 ptp_read_system_postts(sts); 4345 systim_next |= (u64)er32(SYSTIMH) << 32; 4346 4347 time_delta = systim_next - systim; 4348 temp = time_delta; 4349 /* VMWare users have seen incvalue of zero, don't div / 0 */ 4350 rem = incvalue ? do_div(temp, incvalue) : (time_delta != 0); 4351 4352 systim = systim_next; 4353 4354 if ((time_delta < E1000_82574_SYSTIM_EPSILON) && (rem == 0)) 4355 break; 4356 } 4357 4358 return systim; 4359 } 4360 4361 /** 4362 * e1000e_read_systim - read SYSTIM register 4363 * @adapter: board private structure 4364 * @sts: structure which will contain system time before and after reading 4365 * SYSTIML, may be NULL 4366 **/ 4367 u64 e1000e_read_systim(struct e1000_adapter *adapter, 4368 struct ptp_system_timestamp *sts) 4369 { 4370 struct e1000_hw *hw = &adapter->hw; 4371 u32 systimel, systimel_2, systimeh; 4372 u64 systim; 4373 /* SYSTIMH latching upon SYSTIML read does not work well. 4374 * This means that if SYSTIML overflows after we read it but before 4375 * we read SYSTIMH, the value of SYSTIMH has been incremented and we 4376 * will experience a huge non linear increment in the systime value 4377 * to fix that we test for overflow and if true, we re-read systime. 4378 */ 4379 ptp_read_system_prets(sts); 4380 systimel = er32(SYSTIML); 4381 ptp_read_system_postts(sts); 4382 systimeh = er32(SYSTIMH); 4383 /* Is systimel is so large that overflow is possible? */ 4384 if (systimel >= (u32)0xffffffff - E1000_TIMINCA_INCVALUE_MASK) { 4385 ptp_read_system_prets(sts); 4386 systimel_2 = er32(SYSTIML); 4387 ptp_read_system_postts(sts); 4388 if (systimel > systimel_2) { 4389 /* There was an overflow, read again SYSTIMH, and use 4390 * systimel_2 4391 */ 4392 systimeh = er32(SYSTIMH); 4393 systimel = systimel_2; 4394 } 4395 } 4396 systim = (u64)systimel; 4397 systim |= (u64)systimeh << 32; 4398 4399 if (adapter->flags2 & FLAG2_CHECK_SYSTIM_OVERFLOW) 4400 systim = e1000e_sanitize_systim(hw, systim, sts); 4401 4402 return systim; 4403 } 4404 4405 /** 4406 * e1000e_cyclecounter_read - read raw cycle counter (used by time counter) 4407 * @cc: cyclecounter structure 4408 **/ 4409 static u64 e1000e_cyclecounter_read(const struct cyclecounter *cc) 4410 { 4411 struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter, 4412 cc); 4413 4414 return e1000e_read_systim(adapter, NULL); 4415 } 4416 4417 /** 4418 * e1000_sw_init - Initialize general software structures (struct e1000_adapter) 4419 * @adapter: board private structure to initialize 4420 * 4421 * e1000_sw_init initializes the Adapter private data structure. 4422 * Fields are initialized based on PCI device information and 4423 * OS network device settings (MTU size). 4424 **/ 4425 static int e1000_sw_init(struct e1000_adapter *adapter) 4426 { 4427 struct net_device *netdev = adapter->netdev; 4428 4429 adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN; 4430 adapter->rx_ps_bsize0 = 128; 4431 adapter->max_frame_size = netdev->mtu + VLAN_ETH_HLEN + ETH_FCS_LEN; 4432 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN; 4433 adapter->tx_ring_count = E1000_DEFAULT_TXD; 4434 adapter->rx_ring_count = E1000_DEFAULT_RXD; 4435 4436 spin_lock_init(&adapter->stats64_lock); 4437 4438 e1000e_set_interrupt_capability(adapter); 4439 4440 if (e1000_alloc_queues(adapter)) 4441 return -ENOMEM; 4442 4443 /* Setup hardware time stamping cyclecounter */ 4444 if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) { 4445 adapter->cc.read = e1000e_cyclecounter_read; 4446 adapter->cc.mask = CYCLECOUNTER_MASK(64); 4447 adapter->cc.mult = 1; 4448 /* cc.shift set in e1000e_get_base_tininca() */ 4449 4450 spin_lock_init(&adapter->systim_lock); 4451 INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work); 4452 } 4453 4454 /* Explicitly disable IRQ since the NIC can be in any state. */ 4455 e1000_irq_disable(adapter); 4456 4457 set_bit(__E1000_DOWN, &adapter->state); 4458 return 0; 4459 } 4460 4461 /** 4462 * e1000_intr_msi_test - Interrupt Handler 4463 * @irq: interrupt number 4464 * @data: pointer to a network interface device structure 4465 **/ 4466 static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data) 4467 { 4468 struct net_device *netdev = data; 4469 struct e1000_adapter *adapter = netdev_priv(netdev); 4470 struct e1000_hw *hw = &adapter->hw; 4471 u32 icr = er32(ICR); 4472 4473 e_dbg("icr is %08X\n", icr); 4474 if (icr & E1000_ICR_RXSEQ) { 4475 adapter->flags &= ~FLAG_MSI_TEST_FAILED; 4476 /* Force memory writes to complete before acknowledging the 4477 * interrupt is handled. 4478 */ 4479 wmb(); 4480 } 4481 4482 return IRQ_HANDLED; 4483 } 4484 4485 /** 4486 * e1000_test_msi_interrupt - Returns 0 for successful test 4487 * @adapter: board private struct 4488 * 4489 * code flow taken from tg3.c 4490 **/ 4491 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter) 4492 { 4493 struct net_device *netdev = adapter->netdev; 4494 struct e1000_hw *hw = &adapter->hw; 4495 int err; 4496 4497 /* poll_enable hasn't been called yet, so don't need disable */ 4498 /* clear any pending events */ 4499 er32(ICR); 4500 4501 /* free the real vector and request a test handler */ 4502 e1000_free_irq(adapter); 4503 e1000e_reset_interrupt_capability(adapter); 4504 4505 /* Assume that the test fails, if it succeeds then the test 4506 * MSI irq handler will unset this flag 4507 */ 4508 adapter->flags |= FLAG_MSI_TEST_FAILED; 4509 4510 err = pci_enable_msi(adapter->pdev); 4511 if (err) 4512 goto msi_test_failed; 4513 4514 err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0, 4515 netdev->name, netdev); 4516 if (err) { 4517 pci_disable_msi(adapter->pdev); 4518 goto msi_test_failed; 4519 } 4520 4521 /* Force memory writes to complete before enabling and firing an 4522 * interrupt. 4523 */ 4524 wmb(); 4525 4526 e1000_irq_enable(adapter); 4527 4528 /* fire an unusual interrupt on the test handler */ 4529 ew32(ICS, E1000_ICS_RXSEQ); 4530 e1e_flush(); 4531 msleep(100); 4532 4533 e1000_irq_disable(adapter); 4534 4535 rmb(); /* read flags after interrupt has been fired */ 4536 4537 if (adapter->flags & FLAG_MSI_TEST_FAILED) { 4538 adapter->int_mode = E1000E_INT_MODE_LEGACY; 4539 e_info("MSI interrupt test failed, using legacy interrupt.\n"); 4540 } else { 4541 e_dbg("MSI interrupt test succeeded!\n"); 4542 } 4543 4544 free_irq(adapter->pdev->irq, netdev); 4545 pci_disable_msi(adapter->pdev); 4546 4547 msi_test_failed: 4548 e1000e_set_interrupt_capability(adapter); 4549 return e1000_request_irq(adapter); 4550 } 4551 4552 /** 4553 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored 4554 * @adapter: board private struct 4555 * 4556 * code flow taken from tg3.c, called with e1000 interrupts disabled. 4557 **/ 4558 static int e1000_test_msi(struct e1000_adapter *adapter) 4559 { 4560 int err; 4561 u16 pci_cmd; 4562 4563 if (!(adapter->flags & FLAG_MSI_ENABLED)) 4564 return 0; 4565 4566 /* disable SERR in case the MSI write causes a master abort */ 4567 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd); 4568 if (pci_cmd & PCI_COMMAND_SERR) 4569 pci_write_config_word(adapter->pdev, PCI_COMMAND, 4570 pci_cmd & ~PCI_COMMAND_SERR); 4571 4572 err = e1000_test_msi_interrupt(adapter); 4573 4574 /* re-enable SERR */ 4575 if (pci_cmd & PCI_COMMAND_SERR) { 4576 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd); 4577 pci_cmd |= PCI_COMMAND_SERR; 4578 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd); 4579 } 4580 4581 return err; 4582 } 4583 4584 /** 4585 * e1000e_open - Called when a network interface is made active 4586 * @netdev: network interface device structure 4587 * 4588 * Returns 0 on success, negative value on failure 4589 * 4590 * The open entry point is called when a network interface is made 4591 * active by the system (IFF_UP). At this point all resources needed 4592 * for transmit and receive operations are allocated, the interrupt 4593 * handler is registered with the OS, the watchdog timer is started, 4594 * and the stack is notified that the interface is ready. 4595 **/ 4596 int e1000e_open(struct net_device *netdev) 4597 { 4598 struct e1000_adapter *adapter = netdev_priv(netdev); 4599 struct e1000_hw *hw = &adapter->hw; 4600 struct pci_dev *pdev = adapter->pdev; 4601 int err; 4602 4603 /* disallow open during test */ 4604 if (test_bit(__E1000_TESTING, &adapter->state)) 4605 return -EBUSY; 4606 4607 pm_runtime_get_sync(&pdev->dev); 4608 4609 netif_carrier_off(netdev); 4610 4611 /* allocate transmit descriptors */ 4612 err = e1000e_setup_tx_resources(adapter->tx_ring); 4613 if (err) 4614 goto err_setup_tx; 4615 4616 /* allocate receive descriptors */ 4617 err = e1000e_setup_rx_resources(adapter->rx_ring); 4618 if (err) 4619 goto err_setup_rx; 4620 4621 /* If AMT is enabled, let the firmware know that the network 4622 * interface is now open and reset the part to a known state. 4623 */ 4624 if (adapter->flags & FLAG_HAS_AMT) { 4625 e1000e_get_hw_control(adapter); 4626 e1000e_reset(adapter); 4627 } 4628 4629 e1000e_power_up_phy(adapter); 4630 4631 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; 4632 if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)) 4633 e1000_update_mng_vlan(adapter); 4634 4635 /* DMA latency requirement to workaround jumbo issue */ 4636 pm_qos_add_request(&adapter->pm_qos_req, PM_QOS_CPU_DMA_LATENCY, 4637 PM_QOS_DEFAULT_VALUE); 4638 4639 /* before we allocate an interrupt, we must be ready to handle it. 4640 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt 4641 * as soon as we call pci_request_irq, so we have to setup our 4642 * clean_rx handler before we do so. 4643 */ 4644 e1000_configure(adapter); 4645 4646 err = e1000_request_irq(adapter); 4647 if (err) 4648 goto err_req_irq; 4649 4650 /* Work around PCIe errata with MSI interrupts causing some chipsets to 4651 * ignore e1000e MSI messages, which means we need to test our MSI 4652 * interrupt now 4653 */ 4654 if (adapter->int_mode != E1000E_INT_MODE_LEGACY) { 4655 err = e1000_test_msi(adapter); 4656 if (err) { 4657 e_err("Interrupt allocation failed\n"); 4658 goto err_req_irq; 4659 } 4660 } 4661 4662 /* From here on the code is the same as e1000e_up() */ 4663 clear_bit(__E1000_DOWN, &adapter->state); 4664 4665 napi_enable(&adapter->napi); 4666 4667 e1000_irq_enable(adapter); 4668 4669 adapter->tx_hang_recheck = false; 4670 netif_start_queue(netdev); 4671 4672 hw->mac.get_link_status = true; 4673 pm_runtime_put(&pdev->dev); 4674 4675 e1000e_trigger_lsc(adapter); 4676 4677 return 0; 4678 4679 err_req_irq: 4680 pm_qos_remove_request(&adapter->pm_qos_req); 4681 e1000e_release_hw_control(adapter); 4682 e1000_power_down_phy(adapter); 4683 e1000e_free_rx_resources(adapter->rx_ring); 4684 err_setup_rx: 4685 e1000e_free_tx_resources(adapter->tx_ring); 4686 err_setup_tx: 4687 e1000e_reset(adapter); 4688 pm_runtime_put_sync(&pdev->dev); 4689 4690 return err; 4691 } 4692 4693 /** 4694 * e1000e_close - Disables a network interface 4695 * @netdev: network interface device structure 4696 * 4697 * Returns 0, this is not allowed to fail 4698 * 4699 * The close entry point is called when an interface is de-activated 4700 * by the OS. The hardware is still under the drivers control, but 4701 * needs to be disabled. A global MAC reset is issued to stop the 4702 * hardware, and all transmit and receive resources are freed. 4703 **/ 4704 int e1000e_close(struct net_device *netdev) 4705 { 4706 struct e1000_adapter *adapter = netdev_priv(netdev); 4707 struct pci_dev *pdev = adapter->pdev; 4708 int count = E1000_CHECK_RESET_COUNT; 4709 4710 while (test_bit(__E1000_RESETTING, &adapter->state) && count--) 4711 usleep_range(10000, 20000); 4712 4713 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state)); 4714 4715 pm_runtime_get_sync(&pdev->dev); 4716 4717 if (!test_bit(__E1000_DOWN, &adapter->state)) { 4718 e1000e_down(adapter, true); 4719 e1000_free_irq(adapter); 4720 4721 /* Link status message must follow this format */ 4722 pr_info("%s NIC Link is Down\n", adapter->netdev->name); 4723 } 4724 4725 napi_disable(&adapter->napi); 4726 4727 e1000e_free_tx_resources(adapter->tx_ring); 4728 e1000e_free_rx_resources(adapter->rx_ring); 4729 4730 /* kill manageability vlan ID if supported, but not if a vlan with 4731 * the same ID is registered on the host OS (let 8021q kill it) 4732 */ 4733 if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) 4734 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), 4735 adapter->mng_vlan_id); 4736 4737 /* If AMT is enabled, let the firmware know that the network 4738 * interface is now closed 4739 */ 4740 if ((adapter->flags & FLAG_HAS_AMT) && 4741 !test_bit(__E1000_TESTING, &adapter->state)) 4742 e1000e_release_hw_control(adapter); 4743 4744 pm_qos_remove_request(&adapter->pm_qos_req); 4745 4746 pm_runtime_put_sync(&pdev->dev); 4747 4748 return 0; 4749 } 4750 4751 /** 4752 * e1000_set_mac - Change the Ethernet Address of the NIC 4753 * @netdev: network interface device structure 4754 * @p: pointer to an address structure 4755 * 4756 * Returns 0 on success, negative on failure 4757 **/ 4758 static int e1000_set_mac(struct net_device *netdev, void *p) 4759 { 4760 struct e1000_adapter *adapter = netdev_priv(netdev); 4761 struct e1000_hw *hw = &adapter->hw; 4762 struct sockaddr *addr = p; 4763 4764 if (!is_valid_ether_addr(addr->sa_data)) 4765 return -EADDRNOTAVAIL; 4766 4767 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); 4768 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len); 4769 4770 hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0); 4771 4772 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) { 4773 /* activate the work around */ 4774 e1000e_set_laa_state_82571(&adapter->hw, 1); 4775 4776 /* Hold a copy of the LAA in RAR[14] This is done so that 4777 * between the time RAR[0] gets clobbered and the time it 4778 * gets fixed (in e1000_watchdog), the actual LAA is in one 4779 * of the RARs and no incoming packets directed to this port 4780 * are dropped. Eventually the LAA will be in RAR[0] and 4781 * RAR[14] 4782 */ 4783 hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 4784 adapter->hw.mac.rar_entry_count - 1); 4785 } 4786 4787 return 0; 4788 } 4789 4790 /** 4791 * e1000e_update_phy_task - work thread to update phy 4792 * @work: pointer to our work struct 4793 * 4794 * this worker thread exists because we must acquire a 4795 * semaphore to read the phy, which we could msleep while 4796 * waiting for it, and we can't msleep in a timer. 4797 **/ 4798 static void e1000e_update_phy_task(struct work_struct *work) 4799 { 4800 struct e1000_adapter *adapter = container_of(work, 4801 struct e1000_adapter, 4802 update_phy_task); 4803 struct e1000_hw *hw = &adapter->hw; 4804 4805 if (test_bit(__E1000_DOWN, &adapter->state)) 4806 return; 4807 4808 e1000_get_phy_info(hw); 4809 4810 /* Enable EEE on 82579 after link up */ 4811 if (hw->phy.type >= e1000_phy_82579) 4812 e1000_set_eee_pchlan(hw); 4813 } 4814 4815 /** 4816 * e1000_update_phy_info - timre call-back to update PHY info 4817 * @data: pointer to adapter cast into an unsigned long 4818 * 4819 * Need to wait a few seconds after link up to get diagnostic information from 4820 * the phy 4821 **/ 4822 static void e1000_update_phy_info(struct timer_list *t) 4823 { 4824 struct e1000_adapter *adapter = from_timer(adapter, t, phy_info_timer); 4825 4826 if (test_bit(__E1000_DOWN, &adapter->state)) 4827 return; 4828 4829 schedule_work(&adapter->update_phy_task); 4830 } 4831 4832 /** 4833 * e1000e_update_phy_stats - Update the PHY statistics counters 4834 * @adapter: board private structure 4835 * 4836 * Read/clear the upper 16-bit PHY registers and read/accumulate lower 4837 **/ 4838 static void e1000e_update_phy_stats(struct e1000_adapter *adapter) 4839 { 4840 struct e1000_hw *hw = &adapter->hw; 4841 s32 ret_val; 4842 u16 phy_data; 4843 4844 ret_val = hw->phy.ops.acquire(hw); 4845 if (ret_val) 4846 return; 4847 4848 /* A page set is expensive so check if already on desired page. 4849 * If not, set to the page with the PHY status registers. 4850 */ 4851 hw->phy.addr = 1; 4852 ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 4853 &phy_data); 4854 if (ret_val) 4855 goto release; 4856 if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) { 4857 ret_val = hw->phy.ops.set_page(hw, 4858 HV_STATS_PAGE << IGP_PAGE_SHIFT); 4859 if (ret_val) 4860 goto release; 4861 } 4862 4863 /* Single Collision Count */ 4864 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data); 4865 ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data); 4866 if (!ret_val) 4867 adapter->stats.scc += phy_data; 4868 4869 /* Excessive Collision Count */ 4870 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data); 4871 ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data); 4872 if (!ret_val) 4873 adapter->stats.ecol += phy_data; 4874 4875 /* Multiple Collision Count */ 4876 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data); 4877 ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data); 4878 if (!ret_val) 4879 adapter->stats.mcc += phy_data; 4880 4881 /* Late Collision Count */ 4882 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data); 4883 ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data); 4884 if (!ret_val) 4885 adapter->stats.latecol += phy_data; 4886 4887 /* Collision Count - also used for adaptive IFS */ 4888 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data); 4889 ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data); 4890 if (!ret_val) 4891 hw->mac.collision_delta = phy_data; 4892 4893 /* Defer Count */ 4894 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data); 4895 ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data); 4896 if (!ret_val) 4897 adapter->stats.dc += phy_data; 4898 4899 /* Transmit with no CRS */ 4900 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data); 4901 ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data); 4902 if (!ret_val) 4903 adapter->stats.tncrs += phy_data; 4904 4905 release: 4906 hw->phy.ops.release(hw); 4907 } 4908 4909 /** 4910 * e1000e_update_stats - Update the board statistics counters 4911 * @adapter: board private structure 4912 **/ 4913 static void e1000e_update_stats(struct e1000_adapter *adapter) 4914 { 4915 struct net_device *netdev = adapter->netdev; 4916 struct e1000_hw *hw = &adapter->hw; 4917 struct pci_dev *pdev = adapter->pdev; 4918 4919 /* Prevent stats update while adapter is being reset, or if the pci 4920 * connection is down. 4921 */ 4922 if (adapter->link_speed == 0) 4923 return; 4924 if (pci_channel_offline(pdev)) 4925 return; 4926 4927 adapter->stats.crcerrs += er32(CRCERRS); 4928 adapter->stats.gprc += er32(GPRC); 4929 adapter->stats.gorc += er32(GORCL); 4930 er32(GORCH); /* Clear gorc */ 4931 adapter->stats.bprc += er32(BPRC); 4932 adapter->stats.mprc += er32(MPRC); 4933 adapter->stats.roc += er32(ROC); 4934 4935 adapter->stats.mpc += er32(MPC); 4936 4937 /* Half-duplex statistics */ 4938 if (adapter->link_duplex == HALF_DUPLEX) { 4939 if (adapter->flags2 & FLAG2_HAS_PHY_STATS) { 4940 e1000e_update_phy_stats(adapter); 4941 } else { 4942 adapter->stats.scc += er32(SCC); 4943 adapter->stats.ecol += er32(ECOL); 4944 adapter->stats.mcc += er32(MCC); 4945 adapter->stats.latecol += er32(LATECOL); 4946 adapter->stats.dc += er32(DC); 4947 4948 hw->mac.collision_delta = er32(COLC); 4949 4950 if ((hw->mac.type != e1000_82574) && 4951 (hw->mac.type != e1000_82583)) 4952 adapter->stats.tncrs += er32(TNCRS); 4953 } 4954 adapter->stats.colc += hw->mac.collision_delta; 4955 } 4956 4957 adapter->stats.xonrxc += er32(XONRXC); 4958 adapter->stats.xontxc += er32(XONTXC); 4959 adapter->stats.xoffrxc += er32(XOFFRXC); 4960 adapter->stats.xofftxc += er32(XOFFTXC); 4961 adapter->stats.gptc += er32(GPTC); 4962 adapter->stats.gotc += er32(GOTCL); 4963 er32(GOTCH); /* Clear gotc */ 4964 adapter->stats.rnbc += er32(RNBC); 4965 adapter->stats.ruc += er32(RUC); 4966 4967 adapter->stats.mptc += er32(MPTC); 4968 adapter->stats.bptc += er32(BPTC); 4969 4970 /* used for adaptive IFS */ 4971 4972 hw->mac.tx_packet_delta = er32(TPT); 4973 adapter->stats.tpt += hw->mac.tx_packet_delta; 4974 4975 adapter->stats.algnerrc += er32(ALGNERRC); 4976 adapter->stats.rxerrc += er32(RXERRC); 4977 adapter->stats.cexterr += er32(CEXTERR); 4978 adapter->stats.tsctc += er32(TSCTC); 4979 adapter->stats.tsctfc += er32(TSCTFC); 4980 4981 /* Fill out the OS statistics structure */ 4982 netdev->stats.multicast = adapter->stats.mprc; 4983 netdev->stats.collisions = adapter->stats.colc; 4984 4985 /* Rx Errors */ 4986 4987 /* RLEC on some newer hardware can be incorrect so build 4988 * our own version based on RUC and ROC 4989 */ 4990 netdev->stats.rx_errors = adapter->stats.rxerrc + 4991 adapter->stats.crcerrs + adapter->stats.algnerrc + 4992 adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr; 4993 netdev->stats.rx_length_errors = adapter->stats.ruc + 4994 adapter->stats.roc; 4995 netdev->stats.rx_crc_errors = adapter->stats.crcerrs; 4996 netdev->stats.rx_frame_errors = adapter->stats.algnerrc; 4997 netdev->stats.rx_missed_errors = adapter->stats.mpc; 4998 4999 /* Tx Errors */ 5000 netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol; 5001 netdev->stats.tx_aborted_errors = adapter->stats.ecol; 5002 netdev->stats.tx_window_errors = adapter->stats.latecol; 5003 netdev->stats.tx_carrier_errors = adapter->stats.tncrs; 5004 5005 /* Tx Dropped needs to be maintained elsewhere */ 5006 5007 /* Management Stats */ 5008 adapter->stats.mgptc += er32(MGTPTC); 5009 adapter->stats.mgprc += er32(MGTPRC); 5010 adapter->stats.mgpdc += er32(MGTPDC); 5011 5012 /* Correctable ECC Errors */ 5013 if (hw->mac.type >= e1000_pch_lpt) { 5014 u32 pbeccsts = er32(PBECCSTS); 5015 5016 adapter->corr_errors += 5017 pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK; 5018 adapter->uncorr_errors += 5019 (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >> 5020 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT; 5021 } 5022 } 5023 5024 /** 5025 * e1000_phy_read_status - Update the PHY register status snapshot 5026 * @adapter: board private structure 5027 **/ 5028 static void e1000_phy_read_status(struct e1000_adapter *adapter) 5029 { 5030 struct e1000_hw *hw = &adapter->hw; 5031 struct e1000_phy_regs *phy = &adapter->phy_regs; 5032 5033 if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) && 5034 (er32(STATUS) & E1000_STATUS_LU) && 5035 (adapter->hw.phy.media_type == e1000_media_type_copper)) { 5036 int ret_val; 5037 5038 ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr); 5039 ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr); 5040 ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise); 5041 ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa); 5042 ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion); 5043 ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000); 5044 ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000); 5045 ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus); 5046 if (ret_val) 5047 e_warn("Error reading PHY register\n"); 5048 } else { 5049 /* Do not read PHY registers if link is not up 5050 * Set values to typical power-on defaults 5051 */ 5052 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX); 5053 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL | 5054 BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE | 5055 BMSR_ERCAP); 5056 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP | 5057 ADVERTISE_ALL | ADVERTISE_CSMA); 5058 phy->lpa = 0; 5059 phy->expansion = EXPANSION_ENABLENPAGE; 5060 phy->ctrl1000 = ADVERTISE_1000FULL; 5061 phy->stat1000 = 0; 5062 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF); 5063 } 5064 } 5065 5066 static void e1000_print_link_info(struct e1000_adapter *adapter) 5067 { 5068 struct e1000_hw *hw = &adapter->hw; 5069 u32 ctrl = er32(CTRL); 5070 5071 /* Link status message must follow this format for user tools */ 5072 pr_info("%s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n", 5073 adapter->netdev->name, adapter->link_speed, 5074 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half", 5075 (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" : 5076 (ctrl & E1000_CTRL_RFCE) ? "Rx" : 5077 (ctrl & E1000_CTRL_TFCE) ? "Tx" : "None"); 5078 } 5079 5080 static bool e1000e_has_link(struct e1000_adapter *adapter) 5081 { 5082 struct e1000_hw *hw = &adapter->hw; 5083 bool link_active = false; 5084 s32 ret_val = 0; 5085 5086 /* get_link_status is set on LSC (link status) interrupt or 5087 * Rx sequence error interrupt. get_link_status will stay 5088 * true until the check_for_link establishes link 5089 * for copper adapters ONLY 5090 */ 5091 switch (hw->phy.media_type) { 5092 case e1000_media_type_copper: 5093 if (hw->mac.get_link_status) { 5094 ret_val = hw->mac.ops.check_for_link(hw); 5095 link_active = !hw->mac.get_link_status; 5096 } else { 5097 link_active = true; 5098 } 5099 break; 5100 case e1000_media_type_fiber: 5101 ret_val = hw->mac.ops.check_for_link(hw); 5102 link_active = !!(er32(STATUS) & E1000_STATUS_LU); 5103 break; 5104 case e1000_media_type_internal_serdes: 5105 ret_val = hw->mac.ops.check_for_link(hw); 5106 link_active = hw->mac.serdes_has_link; 5107 break; 5108 default: 5109 case e1000_media_type_unknown: 5110 break; 5111 } 5112 5113 if ((ret_val == -E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) && 5114 (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) { 5115 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */ 5116 e_info("Gigabit has been disabled, downgrading speed\n"); 5117 } 5118 5119 return link_active; 5120 } 5121 5122 static void e1000e_enable_receives(struct e1000_adapter *adapter) 5123 { 5124 /* make sure the receive unit is started */ 5125 if ((adapter->flags & FLAG_RX_NEEDS_RESTART) && 5126 (adapter->flags & FLAG_RESTART_NOW)) { 5127 struct e1000_hw *hw = &adapter->hw; 5128 u32 rctl = er32(RCTL); 5129 5130 ew32(RCTL, rctl | E1000_RCTL_EN); 5131 adapter->flags &= ~FLAG_RESTART_NOW; 5132 } 5133 } 5134 5135 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter) 5136 { 5137 struct e1000_hw *hw = &adapter->hw; 5138 5139 /* With 82574 controllers, PHY needs to be checked periodically 5140 * for hung state and reset, if two calls return true 5141 */ 5142 if (e1000_check_phy_82574(hw)) 5143 adapter->phy_hang_count++; 5144 else 5145 adapter->phy_hang_count = 0; 5146 5147 if (adapter->phy_hang_count > 1) { 5148 adapter->phy_hang_count = 0; 5149 e_dbg("PHY appears hung - resetting\n"); 5150 schedule_work(&adapter->reset_task); 5151 } 5152 } 5153 5154 /** 5155 * e1000_watchdog - Timer Call-back 5156 * @data: pointer to adapter cast into an unsigned long 5157 **/ 5158 static void e1000_watchdog(struct timer_list *t) 5159 { 5160 struct e1000_adapter *adapter = from_timer(adapter, t, watchdog_timer); 5161 5162 /* Do the rest outside of interrupt context */ 5163 schedule_work(&adapter->watchdog_task); 5164 5165 /* TODO: make this use queue_delayed_work() */ 5166 } 5167 5168 static void e1000_watchdog_task(struct work_struct *work) 5169 { 5170 struct e1000_adapter *adapter = container_of(work, 5171 struct e1000_adapter, 5172 watchdog_task); 5173 struct net_device *netdev = adapter->netdev; 5174 struct e1000_mac_info *mac = &adapter->hw.mac; 5175 struct e1000_phy_info *phy = &adapter->hw.phy; 5176 struct e1000_ring *tx_ring = adapter->tx_ring; 5177 struct e1000_hw *hw = &adapter->hw; 5178 u32 link, tctl; 5179 5180 if (test_bit(__E1000_DOWN, &adapter->state)) 5181 return; 5182 5183 link = e1000e_has_link(adapter); 5184 if ((netif_carrier_ok(netdev)) && link) { 5185 /* Cancel scheduled suspend requests. */ 5186 pm_runtime_resume(netdev->dev.parent); 5187 5188 e1000e_enable_receives(adapter); 5189 goto link_up; 5190 } 5191 5192 if ((e1000e_enable_tx_pkt_filtering(hw)) && 5193 (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)) 5194 e1000_update_mng_vlan(adapter); 5195 5196 if (link) { 5197 if (!netif_carrier_ok(netdev)) { 5198 bool txb2b = true; 5199 5200 /* Cancel scheduled suspend requests. */ 5201 pm_runtime_resume(netdev->dev.parent); 5202 5203 /* update snapshot of PHY registers on LSC */ 5204 e1000_phy_read_status(adapter); 5205 mac->ops.get_link_up_info(&adapter->hw, 5206 &adapter->link_speed, 5207 &adapter->link_duplex); 5208 e1000_print_link_info(adapter); 5209 5210 /* check if SmartSpeed worked */ 5211 e1000e_check_downshift(hw); 5212 if (phy->speed_downgraded) 5213 netdev_warn(netdev, 5214 "Link Speed was downgraded by SmartSpeed\n"); 5215 5216 /* On supported PHYs, check for duplex mismatch only 5217 * if link has autonegotiated at 10/100 half 5218 */ 5219 if ((hw->phy.type == e1000_phy_igp_3 || 5220 hw->phy.type == e1000_phy_bm) && 5221 hw->mac.autoneg && 5222 (adapter->link_speed == SPEED_10 || 5223 adapter->link_speed == SPEED_100) && 5224 (adapter->link_duplex == HALF_DUPLEX)) { 5225 u16 autoneg_exp; 5226 5227 e1e_rphy(hw, MII_EXPANSION, &autoneg_exp); 5228 5229 if (!(autoneg_exp & EXPANSION_NWAY)) 5230 e_info("Autonegotiated half duplex but link partner cannot autoneg. Try forcing full duplex if link gets many collisions.\n"); 5231 } 5232 5233 /* adjust timeout factor according to speed/duplex */ 5234 adapter->tx_timeout_factor = 1; 5235 switch (adapter->link_speed) { 5236 case SPEED_10: 5237 txb2b = false; 5238 adapter->tx_timeout_factor = 16; 5239 break; 5240 case SPEED_100: 5241 txb2b = false; 5242 adapter->tx_timeout_factor = 10; 5243 break; 5244 } 5245 5246 /* workaround: re-program speed mode bit after 5247 * link-up event 5248 */ 5249 if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) && 5250 !txb2b) { 5251 u32 tarc0; 5252 5253 tarc0 = er32(TARC(0)); 5254 tarc0 &= ~SPEED_MODE_BIT; 5255 ew32(TARC(0), tarc0); 5256 } 5257 5258 /* disable TSO for pcie and 10/100 speeds, to avoid 5259 * some hardware issues 5260 */ 5261 if (!(adapter->flags & FLAG_TSO_FORCE)) { 5262 switch (adapter->link_speed) { 5263 case SPEED_10: 5264 case SPEED_100: 5265 e_info("10/100 speed: disabling TSO\n"); 5266 netdev->features &= ~NETIF_F_TSO; 5267 netdev->features &= ~NETIF_F_TSO6; 5268 break; 5269 case SPEED_1000: 5270 netdev->features |= NETIF_F_TSO; 5271 netdev->features |= NETIF_F_TSO6; 5272 break; 5273 default: 5274 /* oops */ 5275 break; 5276 } 5277 } 5278 5279 /* enable transmits in the hardware, need to do this 5280 * after setting TARC(0) 5281 */ 5282 tctl = er32(TCTL); 5283 tctl |= E1000_TCTL_EN; 5284 ew32(TCTL, tctl); 5285 5286 /* Perform any post-link-up configuration before 5287 * reporting link up. 5288 */ 5289 if (phy->ops.cfg_on_link_up) 5290 phy->ops.cfg_on_link_up(hw); 5291 5292 netif_carrier_on(netdev); 5293 5294 if (!test_bit(__E1000_DOWN, &adapter->state)) 5295 mod_timer(&adapter->phy_info_timer, 5296 round_jiffies(jiffies + 2 * HZ)); 5297 } 5298 } else { 5299 if (netif_carrier_ok(netdev)) { 5300 adapter->link_speed = 0; 5301 adapter->link_duplex = 0; 5302 /* Link status message must follow this format */ 5303 pr_info("%s NIC Link is Down\n", adapter->netdev->name); 5304 netif_carrier_off(netdev); 5305 if (!test_bit(__E1000_DOWN, &adapter->state)) 5306 mod_timer(&adapter->phy_info_timer, 5307 round_jiffies(jiffies + 2 * HZ)); 5308 5309 /* 8000ES2LAN requires a Rx packet buffer work-around 5310 * on link down event; reset the controller to flush 5311 * the Rx packet buffer. 5312 */ 5313 if (adapter->flags & FLAG_RX_NEEDS_RESTART) 5314 adapter->flags |= FLAG_RESTART_NOW; 5315 else 5316 pm_schedule_suspend(netdev->dev.parent, 5317 LINK_TIMEOUT); 5318 } 5319 } 5320 5321 link_up: 5322 spin_lock(&adapter->stats64_lock); 5323 e1000e_update_stats(adapter); 5324 5325 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old; 5326 adapter->tpt_old = adapter->stats.tpt; 5327 mac->collision_delta = adapter->stats.colc - adapter->colc_old; 5328 adapter->colc_old = adapter->stats.colc; 5329 5330 adapter->gorc = adapter->stats.gorc - adapter->gorc_old; 5331 adapter->gorc_old = adapter->stats.gorc; 5332 adapter->gotc = adapter->stats.gotc - adapter->gotc_old; 5333 adapter->gotc_old = adapter->stats.gotc; 5334 spin_unlock(&adapter->stats64_lock); 5335 5336 /* If the link is lost the controller stops DMA, but 5337 * if there is queued Tx work it cannot be done. So 5338 * reset the controller to flush the Tx packet buffers. 5339 */ 5340 if (!netif_carrier_ok(netdev) && 5341 (e1000_desc_unused(tx_ring) + 1 < tx_ring->count)) 5342 adapter->flags |= FLAG_RESTART_NOW; 5343 5344 /* If reset is necessary, do it outside of interrupt context. */ 5345 if (adapter->flags & FLAG_RESTART_NOW) { 5346 schedule_work(&adapter->reset_task); 5347 /* return immediately since reset is imminent */ 5348 return; 5349 } 5350 5351 e1000e_update_adaptive(&adapter->hw); 5352 5353 /* Simple mode for Interrupt Throttle Rate (ITR) */ 5354 if (adapter->itr_setting == 4) { 5355 /* Symmetric Tx/Rx gets a reduced ITR=2000; 5356 * Total asymmetrical Tx or Rx gets ITR=8000; 5357 * everyone else is between 2000-8000. 5358 */ 5359 u32 goc = (adapter->gotc + adapter->gorc) / 10000; 5360 u32 dif = (adapter->gotc > adapter->gorc ? 5361 adapter->gotc - adapter->gorc : 5362 adapter->gorc - adapter->gotc) / 10000; 5363 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000; 5364 5365 e1000e_write_itr(adapter, itr); 5366 } 5367 5368 /* Cause software interrupt to ensure Rx ring is cleaned */ 5369 if (adapter->msix_entries) 5370 ew32(ICS, adapter->rx_ring->ims_val); 5371 else 5372 ew32(ICS, E1000_ICS_RXDMT0); 5373 5374 /* flush pending descriptors to memory before detecting Tx hang */ 5375 e1000e_flush_descriptors(adapter); 5376 5377 /* Force detection of hung controller every watchdog period */ 5378 adapter->detect_tx_hung = true; 5379 5380 /* With 82571 controllers, LAA may be overwritten due to controller 5381 * reset from the other port. Set the appropriate LAA in RAR[0] 5382 */ 5383 if (e1000e_get_laa_state_82571(hw)) 5384 hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0); 5385 5386 if (adapter->flags2 & FLAG2_CHECK_PHY_HANG) 5387 e1000e_check_82574_phy_workaround(adapter); 5388 5389 /* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */ 5390 if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) { 5391 if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) && 5392 (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) { 5393 er32(RXSTMPH); 5394 adapter->rx_hwtstamp_cleared++; 5395 } else { 5396 adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP; 5397 } 5398 } 5399 5400 /* Reset the timer */ 5401 if (!test_bit(__E1000_DOWN, &adapter->state)) 5402 mod_timer(&adapter->watchdog_timer, 5403 round_jiffies(jiffies + 2 * HZ)); 5404 } 5405 5406 #define E1000_TX_FLAGS_CSUM 0x00000001 5407 #define E1000_TX_FLAGS_VLAN 0x00000002 5408 #define E1000_TX_FLAGS_TSO 0x00000004 5409 #define E1000_TX_FLAGS_IPV4 0x00000008 5410 #define E1000_TX_FLAGS_NO_FCS 0x00000010 5411 #define E1000_TX_FLAGS_HWTSTAMP 0x00000020 5412 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000 5413 #define E1000_TX_FLAGS_VLAN_SHIFT 16 5414 5415 static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb, 5416 __be16 protocol) 5417 { 5418 struct e1000_context_desc *context_desc; 5419 struct e1000_buffer *buffer_info; 5420 unsigned int i; 5421 u32 cmd_length = 0; 5422 u16 ipcse = 0, mss; 5423 u8 ipcss, ipcso, tucss, tucso, hdr_len; 5424 int err; 5425 5426 if (!skb_is_gso(skb)) 5427 return 0; 5428 5429 err = skb_cow_head(skb, 0); 5430 if (err < 0) 5431 return err; 5432 5433 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 5434 mss = skb_shinfo(skb)->gso_size; 5435 if (protocol == htons(ETH_P_IP)) { 5436 struct iphdr *iph = ip_hdr(skb); 5437 iph->tot_len = 0; 5438 iph->check = 0; 5439 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr, 5440 0, IPPROTO_TCP, 0); 5441 cmd_length = E1000_TXD_CMD_IP; 5442 ipcse = skb_transport_offset(skb) - 1; 5443 } else if (skb_is_gso_v6(skb)) { 5444 ipv6_hdr(skb)->payload_len = 0; 5445 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 5446 &ipv6_hdr(skb)->daddr, 5447 0, IPPROTO_TCP, 0); 5448 ipcse = 0; 5449 } 5450 ipcss = skb_network_offset(skb); 5451 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data; 5452 tucss = skb_transport_offset(skb); 5453 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data; 5454 5455 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE | 5456 E1000_TXD_CMD_TCP | (skb->len - (hdr_len))); 5457 5458 i = tx_ring->next_to_use; 5459 context_desc = E1000_CONTEXT_DESC(*tx_ring, i); 5460 buffer_info = &tx_ring->buffer_info[i]; 5461 5462 context_desc->lower_setup.ip_fields.ipcss = ipcss; 5463 context_desc->lower_setup.ip_fields.ipcso = ipcso; 5464 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse); 5465 context_desc->upper_setup.tcp_fields.tucss = tucss; 5466 context_desc->upper_setup.tcp_fields.tucso = tucso; 5467 context_desc->upper_setup.tcp_fields.tucse = 0; 5468 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss); 5469 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len; 5470 context_desc->cmd_and_length = cpu_to_le32(cmd_length); 5471 5472 buffer_info->time_stamp = jiffies; 5473 buffer_info->next_to_watch = i; 5474 5475 i++; 5476 if (i == tx_ring->count) 5477 i = 0; 5478 tx_ring->next_to_use = i; 5479 5480 return 1; 5481 } 5482 5483 static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb, 5484 __be16 protocol) 5485 { 5486 struct e1000_adapter *adapter = tx_ring->adapter; 5487 struct e1000_context_desc *context_desc; 5488 struct e1000_buffer *buffer_info; 5489 unsigned int i; 5490 u8 css; 5491 u32 cmd_len = E1000_TXD_CMD_DEXT; 5492 5493 if (skb->ip_summed != CHECKSUM_PARTIAL) 5494 return false; 5495 5496 switch (protocol) { 5497 case cpu_to_be16(ETH_P_IP): 5498 if (ip_hdr(skb)->protocol == IPPROTO_TCP) 5499 cmd_len |= E1000_TXD_CMD_TCP; 5500 break; 5501 case cpu_to_be16(ETH_P_IPV6): 5502 /* XXX not handling all IPV6 headers */ 5503 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) 5504 cmd_len |= E1000_TXD_CMD_TCP; 5505 break; 5506 default: 5507 if (unlikely(net_ratelimit())) 5508 e_warn("checksum_partial proto=%x!\n", 5509 be16_to_cpu(protocol)); 5510 break; 5511 } 5512 5513 css = skb_checksum_start_offset(skb); 5514 5515 i = tx_ring->next_to_use; 5516 buffer_info = &tx_ring->buffer_info[i]; 5517 context_desc = E1000_CONTEXT_DESC(*tx_ring, i); 5518 5519 context_desc->lower_setup.ip_config = 0; 5520 context_desc->upper_setup.tcp_fields.tucss = css; 5521 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset; 5522 context_desc->upper_setup.tcp_fields.tucse = 0; 5523 context_desc->tcp_seg_setup.data = 0; 5524 context_desc->cmd_and_length = cpu_to_le32(cmd_len); 5525 5526 buffer_info->time_stamp = jiffies; 5527 buffer_info->next_to_watch = i; 5528 5529 i++; 5530 if (i == tx_ring->count) 5531 i = 0; 5532 tx_ring->next_to_use = i; 5533 5534 return true; 5535 } 5536 5537 static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb, 5538 unsigned int first, unsigned int max_per_txd, 5539 unsigned int nr_frags) 5540 { 5541 struct e1000_adapter *adapter = tx_ring->adapter; 5542 struct pci_dev *pdev = adapter->pdev; 5543 struct e1000_buffer *buffer_info; 5544 unsigned int len = skb_headlen(skb); 5545 unsigned int offset = 0, size, count = 0, i; 5546 unsigned int f, bytecount, segs; 5547 5548 i = tx_ring->next_to_use; 5549 5550 while (len) { 5551 buffer_info = &tx_ring->buffer_info[i]; 5552 size = min(len, max_per_txd); 5553 5554 buffer_info->length = size; 5555 buffer_info->time_stamp = jiffies; 5556 buffer_info->next_to_watch = i; 5557 buffer_info->dma = dma_map_single(&pdev->dev, 5558 skb->data + offset, 5559 size, DMA_TO_DEVICE); 5560 buffer_info->mapped_as_page = false; 5561 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) 5562 goto dma_error; 5563 5564 len -= size; 5565 offset += size; 5566 count++; 5567 5568 if (len) { 5569 i++; 5570 if (i == tx_ring->count) 5571 i = 0; 5572 } 5573 } 5574 5575 for (f = 0; f < nr_frags; f++) { 5576 const struct skb_frag_struct *frag; 5577 5578 frag = &skb_shinfo(skb)->frags[f]; 5579 len = skb_frag_size(frag); 5580 offset = 0; 5581 5582 while (len) { 5583 i++; 5584 if (i == tx_ring->count) 5585 i = 0; 5586 5587 buffer_info = &tx_ring->buffer_info[i]; 5588 size = min(len, max_per_txd); 5589 5590 buffer_info->length = size; 5591 buffer_info->time_stamp = jiffies; 5592 buffer_info->next_to_watch = i; 5593 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 5594 offset, size, 5595 DMA_TO_DEVICE); 5596 buffer_info->mapped_as_page = true; 5597 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) 5598 goto dma_error; 5599 5600 len -= size; 5601 offset += size; 5602 count++; 5603 } 5604 } 5605 5606 segs = skb_shinfo(skb)->gso_segs ? : 1; 5607 /* multiply data chunks by size of headers */ 5608 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len; 5609 5610 tx_ring->buffer_info[i].skb = skb; 5611 tx_ring->buffer_info[i].segs = segs; 5612 tx_ring->buffer_info[i].bytecount = bytecount; 5613 tx_ring->buffer_info[first].next_to_watch = i; 5614 5615 return count; 5616 5617 dma_error: 5618 dev_err(&pdev->dev, "Tx DMA map failed\n"); 5619 buffer_info->dma = 0; 5620 if (count) 5621 count--; 5622 5623 while (count--) { 5624 if (i == 0) 5625 i += tx_ring->count; 5626 i--; 5627 buffer_info = &tx_ring->buffer_info[i]; 5628 e1000_put_txbuf(tx_ring, buffer_info, true); 5629 } 5630 5631 return 0; 5632 } 5633 5634 static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count) 5635 { 5636 struct e1000_adapter *adapter = tx_ring->adapter; 5637 struct e1000_tx_desc *tx_desc = NULL; 5638 struct e1000_buffer *buffer_info; 5639 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS; 5640 unsigned int i; 5641 5642 if (tx_flags & E1000_TX_FLAGS_TSO) { 5643 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D | 5644 E1000_TXD_CMD_TSE; 5645 txd_upper |= E1000_TXD_POPTS_TXSM << 8; 5646 5647 if (tx_flags & E1000_TX_FLAGS_IPV4) 5648 txd_upper |= E1000_TXD_POPTS_IXSM << 8; 5649 } 5650 5651 if (tx_flags & E1000_TX_FLAGS_CSUM) { 5652 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D; 5653 txd_upper |= E1000_TXD_POPTS_TXSM << 8; 5654 } 5655 5656 if (tx_flags & E1000_TX_FLAGS_VLAN) { 5657 txd_lower |= E1000_TXD_CMD_VLE; 5658 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK); 5659 } 5660 5661 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS)) 5662 txd_lower &= ~(E1000_TXD_CMD_IFCS); 5663 5664 if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) { 5665 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D; 5666 txd_upper |= E1000_TXD_EXTCMD_TSTAMP; 5667 } 5668 5669 i = tx_ring->next_to_use; 5670 5671 do { 5672 buffer_info = &tx_ring->buffer_info[i]; 5673 tx_desc = E1000_TX_DESC(*tx_ring, i); 5674 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); 5675 tx_desc->lower.data = cpu_to_le32(txd_lower | 5676 buffer_info->length); 5677 tx_desc->upper.data = cpu_to_le32(txd_upper); 5678 5679 i++; 5680 if (i == tx_ring->count) 5681 i = 0; 5682 } while (--count > 0); 5683 5684 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd); 5685 5686 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */ 5687 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS)) 5688 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS)); 5689 5690 /* Force memory writes to complete before letting h/w 5691 * know there are new descriptors to fetch. (Only 5692 * applicable for weak-ordered memory model archs, 5693 * such as IA-64). 5694 */ 5695 wmb(); 5696 5697 tx_ring->next_to_use = i; 5698 } 5699 5700 #define MINIMUM_DHCP_PACKET_SIZE 282 5701 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter, 5702 struct sk_buff *skb) 5703 { 5704 struct e1000_hw *hw = &adapter->hw; 5705 u16 length, offset; 5706 5707 if (skb_vlan_tag_present(skb) && 5708 !((skb_vlan_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) && 5709 (adapter->hw.mng_cookie.status & 5710 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))) 5711 return 0; 5712 5713 if (skb->len <= MINIMUM_DHCP_PACKET_SIZE) 5714 return 0; 5715 5716 if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP)) 5717 return 0; 5718 5719 { 5720 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14); 5721 struct udphdr *udp; 5722 5723 if (ip->protocol != IPPROTO_UDP) 5724 return 0; 5725 5726 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2)); 5727 if (ntohs(udp->dest) != 67) 5728 return 0; 5729 5730 offset = (u8 *)udp + 8 - skb->data; 5731 length = skb->len - offset; 5732 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length); 5733 } 5734 5735 return 0; 5736 } 5737 5738 static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size) 5739 { 5740 struct e1000_adapter *adapter = tx_ring->adapter; 5741 5742 netif_stop_queue(adapter->netdev); 5743 /* Herbert's original patch had: 5744 * smp_mb__after_netif_stop_queue(); 5745 * but since that doesn't exist yet, just open code it. 5746 */ 5747 smp_mb(); 5748 5749 /* We need to check again in a case another CPU has just 5750 * made room available. 5751 */ 5752 if (e1000_desc_unused(tx_ring) < size) 5753 return -EBUSY; 5754 5755 /* A reprieve! */ 5756 netif_start_queue(adapter->netdev); 5757 ++adapter->restart_queue; 5758 return 0; 5759 } 5760 5761 static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size) 5762 { 5763 BUG_ON(size > tx_ring->count); 5764 5765 if (e1000_desc_unused(tx_ring) >= size) 5766 return 0; 5767 return __e1000_maybe_stop_tx(tx_ring, size); 5768 } 5769 5770 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb, 5771 struct net_device *netdev) 5772 { 5773 struct e1000_adapter *adapter = netdev_priv(netdev); 5774 struct e1000_ring *tx_ring = adapter->tx_ring; 5775 unsigned int first; 5776 unsigned int tx_flags = 0; 5777 unsigned int len = skb_headlen(skb); 5778 unsigned int nr_frags; 5779 unsigned int mss; 5780 int count = 0; 5781 int tso; 5782 unsigned int f; 5783 __be16 protocol = vlan_get_protocol(skb); 5784 5785 if (test_bit(__E1000_DOWN, &adapter->state)) { 5786 dev_kfree_skb_any(skb); 5787 return NETDEV_TX_OK; 5788 } 5789 5790 if (skb->len <= 0) { 5791 dev_kfree_skb_any(skb); 5792 return NETDEV_TX_OK; 5793 } 5794 5795 /* The minimum packet size with TCTL.PSP set is 17 bytes so 5796 * pad skb in order to meet this minimum size requirement 5797 */ 5798 if (skb_put_padto(skb, 17)) 5799 return NETDEV_TX_OK; 5800 5801 mss = skb_shinfo(skb)->gso_size; 5802 if (mss) { 5803 u8 hdr_len; 5804 5805 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data 5806 * points to just header, pull a few bytes of payload from 5807 * frags into skb->data 5808 */ 5809 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 5810 /* we do this workaround for ES2LAN, but it is un-necessary, 5811 * avoiding it could save a lot of cycles 5812 */ 5813 if (skb->data_len && (hdr_len == len)) { 5814 unsigned int pull_size; 5815 5816 pull_size = min_t(unsigned int, 4, skb->data_len); 5817 if (!__pskb_pull_tail(skb, pull_size)) { 5818 e_err("__pskb_pull_tail failed.\n"); 5819 dev_kfree_skb_any(skb); 5820 return NETDEV_TX_OK; 5821 } 5822 len = skb_headlen(skb); 5823 } 5824 } 5825 5826 /* reserve a descriptor for the offload context */ 5827 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL)) 5828 count++; 5829 count++; 5830 5831 count += DIV_ROUND_UP(len, adapter->tx_fifo_limit); 5832 5833 nr_frags = skb_shinfo(skb)->nr_frags; 5834 for (f = 0; f < nr_frags; f++) 5835 count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]), 5836 adapter->tx_fifo_limit); 5837 5838 if (adapter->hw.mac.tx_pkt_filtering) 5839 e1000_transfer_dhcp_info(adapter, skb); 5840 5841 /* need: count + 2 desc gap to keep tail from touching 5842 * head, otherwise try next time 5843 */ 5844 if (e1000_maybe_stop_tx(tx_ring, count + 2)) 5845 return NETDEV_TX_BUSY; 5846 5847 if (skb_vlan_tag_present(skb)) { 5848 tx_flags |= E1000_TX_FLAGS_VLAN; 5849 tx_flags |= (skb_vlan_tag_get(skb) << 5850 E1000_TX_FLAGS_VLAN_SHIFT); 5851 } 5852 5853 first = tx_ring->next_to_use; 5854 5855 tso = e1000_tso(tx_ring, skb, protocol); 5856 if (tso < 0) { 5857 dev_kfree_skb_any(skb); 5858 return NETDEV_TX_OK; 5859 } 5860 5861 if (tso) 5862 tx_flags |= E1000_TX_FLAGS_TSO; 5863 else if (e1000_tx_csum(tx_ring, skb, protocol)) 5864 tx_flags |= E1000_TX_FLAGS_CSUM; 5865 5866 /* Old method was to assume IPv4 packet by default if TSO was enabled. 5867 * 82571 hardware supports TSO capabilities for IPv6 as well... 5868 * no longer assume, we must. 5869 */ 5870 if (protocol == htons(ETH_P_IP)) 5871 tx_flags |= E1000_TX_FLAGS_IPV4; 5872 5873 if (unlikely(skb->no_fcs)) 5874 tx_flags |= E1000_TX_FLAGS_NO_FCS; 5875 5876 /* if count is 0 then mapping error has occurred */ 5877 count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit, 5878 nr_frags); 5879 if (count) { 5880 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 5881 (adapter->flags & FLAG_HAS_HW_TIMESTAMP)) { 5882 if (!adapter->tx_hwtstamp_skb) { 5883 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 5884 tx_flags |= E1000_TX_FLAGS_HWTSTAMP; 5885 adapter->tx_hwtstamp_skb = skb_get(skb); 5886 adapter->tx_hwtstamp_start = jiffies; 5887 schedule_work(&adapter->tx_hwtstamp_work); 5888 } else { 5889 adapter->tx_hwtstamp_skipped++; 5890 } 5891 } 5892 5893 skb_tx_timestamp(skb); 5894 5895 netdev_sent_queue(netdev, skb->len); 5896 e1000_tx_queue(tx_ring, tx_flags, count); 5897 /* Make sure there is space in the ring for the next send. */ 5898 e1000_maybe_stop_tx(tx_ring, 5899 (MAX_SKB_FRAGS * 5900 DIV_ROUND_UP(PAGE_SIZE, 5901 adapter->tx_fifo_limit) + 2)); 5902 5903 if (!skb->xmit_more || 5904 netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) { 5905 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA) 5906 e1000e_update_tdt_wa(tx_ring, 5907 tx_ring->next_to_use); 5908 else 5909 writel(tx_ring->next_to_use, tx_ring->tail); 5910 5911 /* we need this if more than one processor can write 5912 * to our tail at a time, it synchronizes IO on 5913 *IA64/Altix systems 5914 */ 5915 mmiowb(); 5916 } 5917 } else { 5918 dev_kfree_skb_any(skb); 5919 tx_ring->buffer_info[first].time_stamp = 0; 5920 tx_ring->next_to_use = first; 5921 } 5922 5923 return NETDEV_TX_OK; 5924 } 5925 5926 /** 5927 * e1000_tx_timeout - Respond to a Tx Hang 5928 * @netdev: network interface device structure 5929 **/ 5930 static void e1000_tx_timeout(struct net_device *netdev) 5931 { 5932 struct e1000_adapter *adapter = netdev_priv(netdev); 5933 5934 /* Do the reset outside of interrupt context */ 5935 adapter->tx_timeout_count++; 5936 schedule_work(&adapter->reset_task); 5937 } 5938 5939 static void e1000_reset_task(struct work_struct *work) 5940 { 5941 struct e1000_adapter *adapter; 5942 adapter = container_of(work, struct e1000_adapter, reset_task); 5943 5944 /* don't run the task if already down */ 5945 if (test_bit(__E1000_DOWN, &adapter->state)) 5946 return; 5947 5948 if (!(adapter->flags & FLAG_RESTART_NOW)) { 5949 e1000e_dump(adapter); 5950 e_err("Reset adapter unexpectedly\n"); 5951 } 5952 e1000e_reinit_locked(adapter); 5953 } 5954 5955 /** 5956 * e1000_get_stats64 - Get System Network Statistics 5957 * @netdev: network interface device structure 5958 * @stats: rtnl_link_stats64 pointer 5959 * 5960 * Returns the address of the device statistics structure. 5961 **/ 5962 void e1000e_get_stats64(struct net_device *netdev, 5963 struct rtnl_link_stats64 *stats) 5964 { 5965 struct e1000_adapter *adapter = netdev_priv(netdev); 5966 5967 spin_lock(&adapter->stats64_lock); 5968 e1000e_update_stats(adapter); 5969 /* Fill out the OS statistics structure */ 5970 stats->rx_bytes = adapter->stats.gorc; 5971 stats->rx_packets = adapter->stats.gprc; 5972 stats->tx_bytes = adapter->stats.gotc; 5973 stats->tx_packets = adapter->stats.gptc; 5974 stats->multicast = adapter->stats.mprc; 5975 stats->collisions = adapter->stats.colc; 5976 5977 /* Rx Errors */ 5978 5979 /* RLEC on some newer hardware can be incorrect so build 5980 * our own version based on RUC and ROC 5981 */ 5982 stats->rx_errors = adapter->stats.rxerrc + 5983 adapter->stats.crcerrs + adapter->stats.algnerrc + 5984 adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr; 5985 stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc; 5986 stats->rx_crc_errors = adapter->stats.crcerrs; 5987 stats->rx_frame_errors = adapter->stats.algnerrc; 5988 stats->rx_missed_errors = adapter->stats.mpc; 5989 5990 /* Tx Errors */ 5991 stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol; 5992 stats->tx_aborted_errors = adapter->stats.ecol; 5993 stats->tx_window_errors = adapter->stats.latecol; 5994 stats->tx_carrier_errors = adapter->stats.tncrs; 5995 5996 /* Tx Dropped needs to be maintained elsewhere */ 5997 5998 spin_unlock(&adapter->stats64_lock); 5999 } 6000 6001 /** 6002 * e1000_change_mtu - Change the Maximum Transfer Unit 6003 * @netdev: network interface device structure 6004 * @new_mtu: new value for maximum frame size 6005 * 6006 * Returns 0 on success, negative on failure 6007 **/ 6008 static int e1000_change_mtu(struct net_device *netdev, int new_mtu) 6009 { 6010 struct e1000_adapter *adapter = netdev_priv(netdev); 6011 int max_frame = new_mtu + VLAN_ETH_HLEN + ETH_FCS_LEN; 6012 6013 /* Jumbo frame support */ 6014 if ((new_mtu > ETH_DATA_LEN) && 6015 !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) { 6016 e_err("Jumbo Frames not supported.\n"); 6017 return -EINVAL; 6018 } 6019 6020 /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */ 6021 if ((adapter->hw.mac.type >= e1000_pch2lan) && 6022 !(adapter->flags2 & FLAG2_CRC_STRIPPING) && 6023 (new_mtu > ETH_DATA_LEN)) { 6024 e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n"); 6025 return -EINVAL; 6026 } 6027 6028 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 6029 usleep_range(1000, 2000); 6030 /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */ 6031 adapter->max_frame_size = max_frame; 6032 e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu); 6033 netdev->mtu = new_mtu; 6034 6035 pm_runtime_get_sync(netdev->dev.parent); 6036 6037 if (netif_running(netdev)) 6038 e1000e_down(adapter, true); 6039 6040 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN 6041 * means we reserve 2 more, this pushes us to allocate from the next 6042 * larger slab size. 6043 * i.e. RXBUFFER_2048 --> size-4096 slab 6044 * However with the new *_jumbo_rx* routines, jumbo receives will use 6045 * fragmented skbs 6046 */ 6047 6048 if (max_frame <= 2048) 6049 adapter->rx_buffer_len = 2048; 6050 else 6051 adapter->rx_buffer_len = 4096; 6052 6053 /* adjust allocation if LPE protects us, and we aren't using SBP */ 6054 if (max_frame <= (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) 6055 adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN; 6056 6057 if (netif_running(netdev)) 6058 e1000e_up(adapter); 6059 else 6060 e1000e_reset(adapter); 6061 6062 pm_runtime_put_sync(netdev->dev.parent); 6063 6064 clear_bit(__E1000_RESETTING, &adapter->state); 6065 6066 return 0; 6067 } 6068 6069 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, 6070 int cmd) 6071 { 6072 struct e1000_adapter *adapter = netdev_priv(netdev); 6073 struct mii_ioctl_data *data = if_mii(ifr); 6074 6075 if (adapter->hw.phy.media_type != e1000_media_type_copper) 6076 return -EOPNOTSUPP; 6077 6078 switch (cmd) { 6079 case SIOCGMIIPHY: 6080 data->phy_id = adapter->hw.phy.addr; 6081 break; 6082 case SIOCGMIIREG: 6083 e1000_phy_read_status(adapter); 6084 6085 switch (data->reg_num & 0x1F) { 6086 case MII_BMCR: 6087 data->val_out = adapter->phy_regs.bmcr; 6088 break; 6089 case MII_BMSR: 6090 data->val_out = adapter->phy_regs.bmsr; 6091 break; 6092 case MII_PHYSID1: 6093 data->val_out = (adapter->hw.phy.id >> 16); 6094 break; 6095 case MII_PHYSID2: 6096 data->val_out = (adapter->hw.phy.id & 0xFFFF); 6097 break; 6098 case MII_ADVERTISE: 6099 data->val_out = adapter->phy_regs.advertise; 6100 break; 6101 case MII_LPA: 6102 data->val_out = adapter->phy_regs.lpa; 6103 break; 6104 case MII_EXPANSION: 6105 data->val_out = adapter->phy_regs.expansion; 6106 break; 6107 case MII_CTRL1000: 6108 data->val_out = adapter->phy_regs.ctrl1000; 6109 break; 6110 case MII_STAT1000: 6111 data->val_out = adapter->phy_regs.stat1000; 6112 break; 6113 case MII_ESTATUS: 6114 data->val_out = adapter->phy_regs.estatus; 6115 break; 6116 default: 6117 return -EIO; 6118 } 6119 break; 6120 case SIOCSMIIREG: 6121 default: 6122 return -EOPNOTSUPP; 6123 } 6124 return 0; 6125 } 6126 6127 /** 6128 * e1000e_hwtstamp_ioctl - control hardware time stamping 6129 * @netdev: network interface device structure 6130 * @ifreq: interface request 6131 * 6132 * Outgoing time stamping can be enabled and disabled. Play nice and 6133 * disable it when requested, although it shouldn't cause any overhead 6134 * when no packet needs it. At most one packet in the queue may be 6135 * marked for time stamping, otherwise it would be impossible to tell 6136 * for sure to which packet the hardware time stamp belongs. 6137 * 6138 * Incoming time stamping has to be configured via the hardware filters. 6139 * Not all combinations are supported, in particular event type has to be 6140 * specified. Matching the kind of event packet is not supported, with the 6141 * exception of "all V2 events regardless of level 2 or 4". 6142 **/ 6143 static int e1000e_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr) 6144 { 6145 struct e1000_adapter *adapter = netdev_priv(netdev); 6146 struct hwtstamp_config config; 6147 int ret_val; 6148 6149 if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) 6150 return -EFAULT; 6151 6152 ret_val = e1000e_config_hwtstamp(adapter, &config); 6153 if (ret_val) 6154 return ret_val; 6155 6156 switch (config.rx_filter) { 6157 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 6158 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 6159 case HWTSTAMP_FILTER_PTP_V2_SYNC: 6160 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 6161 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 6162 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 6163 /* With V2 type filters which specify a Sync or Delay Request, 6164 * Path Delay Request/Response messages are also time stamped 6165 * by hardware so notify the caller the requested packets plus 6166 * some others are time stamped. 6167 */ 6168 config.rx_filter = HWTSTAMP_FILTER_SOME; 6169 break; 6170 default: 6171 break; 6172 } 6173 6174 return copy_to_user(ifr->ifr_data, &config, 6175 sizeof(config)) ? -EFAULT : 0; 6176 } 6177 6178 static int e1000e_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr) 6179 { 6180 struct e1000_adapter *adapter = netdev_priv(netdev); 6181 6182 return copy_to_user(ifr->ifr_data, &adapter->hwtstamp_config, 6183 sizeof(adapter->hwtstamp_config)) ? -EFAULT : 0; 6184 } 6185 6186 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 6187 { 6188 switch (cmd) { 6189 case SIOCGMIIPHY: 6190 case SIOCGMIIREG: 6191 case SIOCSMIIREG: 6192 return e1000_mii_ioctl(netdev, ifr, cmd); 6193 case SIOCSHWTSTAMP: 6194 return e1000e_hwtstamp_set(netdev, ifr); 6195 case SIOCGHWTSTAMP: 6196 return e1000e_hwtstamp_get(netdev, ifr); 6197 default: 6198 return -EOPNOTSUPP; 6199 } 6200 } 6201 6202 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc) 6203 { 6204 struct e1000_hw *hw = &adapter->hw; 6205 u32 i, mac_reg, wuc; 6206 u16 phy_reg, wuc_enable; 6207 int retval; 6208 6209 /* copy MAC RARs to PHY RARs */ 6210 e1000_copy_rx_addrs_to_phy_ich8lan(hw); 6211 6212 retval = hw->phy.ops.acquire(hw); 6213 if (retval) { 6214 e_err("Could not acquire PHY\n"); 6215 return retval; 6216 } 6217 6218 /* Enable access to wakeup registers on and set page to BM_WUC_PAGE */ 6219 retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable); 6220 if (retval) 6221 goto release; 6222 6223 /* copy MAC MTA to PHY MTA - only needed for pchlan */ 6224 for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) { 6225 mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i); 6226 hw->phy.ops.write_reg_page(hw, BM_MTA(i), 6227 (u16)(mac_reg & 0xFFFF)); 6228 hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1, 6229 (u16)((mac_reg >> 16) & 0xFFFF)); 6230 } 6231 6232 /* configure PHY Rx Control register */ 6233 hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg); 6234 mac_reg = er32(RCTL); 6235 if (mac_reg & E1000_RCTL_UPE) 6236 phy_reg |= BM_RCTL_UPE; 6237 if (mac_reg & E1000_RCTL_MPE) 6238 phy_reg |= BM_RCTL_MPE; 6239 phy_reg &= ~(BM_RCTL_MO_MASK); 6240 if (mac_reg & E1000_RCTL_MO_3) 6241 phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT) 6242 << BM_RCTL_MO_SHIFT); 6243 if (mac_reg & E1000_RCTL_BAM) 6244 phy_reg |= BM_RCTL_BAM; 6245 if (mac_reg & E1000_RCTL_PMCF) 6246 phy_reg |= BM_RCTL_PMCF; 6247 mac_reg = er32(CTRL); 6248 if (mac_reg & E1000_CTRL_RFCE) 6249 phy_reg |= BM_RCTL_RFCE; 6250 hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg); 6251 6252 wuc = E1000_WUC_PME_EN; 6253 if (wufc & (E1000_WUFC_MAG | E1000_WUFC_LNKC)) 6254 wuc |= E1000_WUC_APME; 6255 6256 /* enable PHY wakeup in MAC register */ 6257 ew32(WUFC, wufc); 6258 ew32(WUC, (E1000_WUC_PHY_WAKE | E1000_WUC_APMPME | 6259 E1000_WUC_PME_STATUS | wuc)); 6260 6261 /* configure and enable PHY wakeup in PHY registers */ 6262 hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc); 6263 hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, wuc); 6264 6265 /* activate PHY wakeup */ 6266 wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT; 6267 retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable); 6268 if (retval) 6269 e_err("Could not set PHY Host Wakeup bit\n"); 6270 release: 6271 hw->phy.ops.release(hw); 6272 6273 return retval; 6274 } 6275 6276 static void e1000e_flush_lpic(struct pci_dev *pdev) 6277 { 6278 struct net_device *netdev = pci_get_drvdata(pdev); 6279 struct e1000_adapter *adapter = netdev_priv(netdev); 6280 struct e1000_hw *hw = &adapter->hw; 6281 u32 ret_val; 6282 6283 pm_runtime_get_sync(netdev->dev.parent); 6284 6285 ret_val = hw->phy.ops.acquire(hw); 6286 if (ret_val) 6287 goto fl_out; 6288 6289 pr_info("EEE TX LPI TIMER: %08X\n", 6290 er32(LPIC) >> E1000_LPIC_LPIET_SHIFT); 6291 6292 hw->phy.ops.release(hw); 6293 6294 fl_out: 6295 pm_runtime_put_sync(netdev->dev.parent); 6296 } 6297 6298 static int e1000e_pm_freeze(struct device *dev) 6299 { 6300 struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev)); 6301 struct e1000_adapter *adapter = netdev_priv(netdev); 6302 6303 netif_device_detach(netdev); 6304 6305 if (netif_running(netdev)) { 6306 int count = E1000_CHECK_RESET_COUNT; 6307 6308 while (test_bit(__E1000_RESETTING, &adapter->state) && count--) 6309 usleep_range(10000, 20000); 6310 6311 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state)); 6312 6313 /* Quiesce the device without resetting the hardware */ 6314 e1000e_down(adapter, false); 6315 e1000_free_irq(adapter); 6316 } 6317 e1000e_reset_interrupt_capability(adapter); 6318 6319 /* Allow time for pending master requests to run */ 6320 e1000e_disable_pcie_master(&adapter->hw); 6321 6322 return 0; 6323 } 6324 6325 static int __e1000_shutdown(struct pci_dev *pdev, bool runtime) 6326 { 6327 struct net_device *netdev = pci_get_drvdata(pdev); 6328 struct e1000_adapter *adapter = netdev_priv(netdev); 6329 struct e1000_hw *hw = &adapter->hw; 6330 u32 ctrl, ctrl_ext, rctl, status; 6331 /* Runtime suspend should only enable wakeup for link changes */ 6332 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol; 6333 int retval = 0; 6334 6335 status = er32(STATUS); 6336 if (status & E1000_STATUS_LU) 6337 wufc &= ~E1000_WUFC_LNKC; 6338 6339 if (wufc) { 6340 e1000_setup_rctl(adapter); 6341 e1000e_set_rx_mode(netdev); 6342 6343 /* turn on all-multi mode if wake on multicast is enabled */ 6344 if (wufc & E1000_WUFC_MC) { 6345 rctl = er32(RCTL); 6346 rctl |= E1000_RCTL_MPE; 6347 ew32(RCTL, rctl); 6348 } 6349 6350 ctrl = er32(CTRL); 6351 ctrl |= E1000_CTRL_ADVD3WUC; 6352 if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP)) 6353 ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT; 6354 ew32(CTRL, ctrl); 6355 6356 if (adapter->hw.phy.media_type == e1000_media_type_fiber || 6357 adapter->hw.phy.media_type == 6358 e1000_media_type_internal_serdes) { 6359 /* keep the laser running in D3 */ 6360 ctrl_ext = er32(CTRL_EXT); 6361 ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA; 6362 ew32(CTRL_EXT, ctrl_ext); 6363 } 6364 6365 if (!runtime) 6366 e1000e_power_up_phy(adapter); 6367 6368 if (adapter->flags & FLAG_IS_ICH) 6369 e1000_suspend_workarounds_ich8lan(&adapter->hw); 6370 6371 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) { 6372 /* enable wakeup by the PHY */ 6373 retval = e1000_init_phy_wakeup(adapter, wufc); 6374 if (retval) 6375 return retval; 6376 } else { 6377 /* enable wakeup by the MAC */ 6378 ew32(WUFC, wufc); 6379 ew32(WUC, E1000_WUC_PME_EN); 6380 } 6381 } else { 6382 ew32(WUC, 0); 6383 ew32(WUFC, 0); 6384 6385 e1000_power_down_phy(adapter); 6386 } 6387 6388 if (adapter->hw.phy.type == e1000_phy_igp_3) { 6389 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw); 6390 } else if (hw->mac.type >= e1000_pch_lpt) { 6391 if (!(wufc & (E1000_WUFC_EX | E1000_WUFC_MC | E1000_WUFC_BC))) 6392 /* ULP does not support wake from unicast, multicast 6393 * or broadcast. 6394 */ 6395 retval = e1000_enable_ulp_lpt_lp(hw, !runtime); 6396 6397 if (retval) 6398 return retval; 6399 } 6400 6401 /* Ensure that the appropriate bits are set in LPI_CTRL 6402 * for EEE in Sx 6403 */ 6404 if ((hw->phy.type >= e1000_phy_i217) && 6405 adapter->eee_advert && hw->dev_spec.ich8lan.eee_lp_ability) { 6406 u16 lpi_ctrl = 0; 6407 6408 retval = hw->phy.ops.acquire(hw); 6409 if (!retval) { 6410 retval = e1e_rphy_locked(hw, I82579_LPI_CTRL, 6411 &lpi_ctrl); 6412 if (!retval) { 6413 if (adapter->eee_advert & 6414 hw->dev_spec.ich8lan.eee_lp_ability & 6415 I82579_EEE_100_SUPPORTED) 6416 lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE; 6417 if (adapter->eee_advert & 6418 hw->dev_spec.ich8lan.eee_lp_ability & 6419 I82579_EEE_1000_SUPPORTED) 6420 lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE; 6421 6422 retval = e1e_wphy_locked(hw, I82579_LPI_CTRL, 6423 lpi_ctrl); 6424 } 6425 } 6426 hw->phy.ops.release(hw); 6427 } 6428 6429 /* Release control of h/w to f/w. If f/w is AMT enabled, this 6430 * would have already happened in close and is redundant. 6431 */ 6432 e1000e_release_hw_control(adapter); 6433 6434 pci_clear_master(pdev); 6435 6436 /* The pci-e switch on some quad port adapters will report a 6437 * correctable error when the MAC transitions from D0 to D3. To 6438 * prevent this we need to mask off the correctable errors on the 6439 * downstream port of the pci-e switch. 6440 * 6441 * We don't have the associated upstream bridge while assigning 6442 * the PCI device into guest. For example, the KVM on power is 6443 * one of the cases. 6444 */ 6445 if (adapter->flags & FLAG_IS_QUAD_PORT) { 6446 struct pci_dev *us_dev = pdev->bus->self; 6447 u16 devctl; 6448 6449 if (!us_dev) 6450 return 0; 6451 6452 pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl); 6453 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, 6454 (devctl & ~PCI_EXP_DEVCTL_CERE)); 6455 6456 pci_save_state(pdev); 6457 pci_prepare_to_sleep(pdev); 6458 6459 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl); 6460 } 6461 6462 return 0; 6463 } 6464 6465 /** 6466 * __e1000e_disable_aspm - Disable ASPM states 6467 * @pdev: pointer to PCI device struct 6468 * @state: bit-mask of ASPM states to disable 6469 * @locked: indication if this context holds pci_bus_sem locked. 6470 * 6471 * Some devices *must* have certain ASPM states disabled per hardware errata. 6472 **/ 6473 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state, int locked) 6474 { 6475 struct pci_dev *parent = pdev->bus->self; 6476 u16 aspm_dis_mask = 0; 6477 u16 pdev_aspmc, parent_aspmc; 6478 6479 switch (state) { 6480 case PCIE_LINK_STATE_L0S: 6481 case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1: 6482 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S; 6483 /* fall-through - can't have L1 without L0s */ 6484 case PCIE_LINK_STATE_L1: 6485 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1; 6486 break; 6487 default: 6488 return; 6489 } 6490 6491 pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc); 6492 pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC; 6493 6494 if (parent) { 6495 pcie_capability_read_word(parent, PCI_EXP_LNKCTL, 6496 &parent_aspmc); 6497 parent_aspmc &= PCI_EXP_LNKCTL_ASPMC; 6498 } 6499 6500 /* Nothing to do if the ASPM states to be disabled already are */ 6501 if (!(pdev_aspmc & aspm_dis_mask) && 6502 (!parent || !(parent_aspmc & aspm_dis_mask))) 6503 return; 6504 6505 dev_info(&pdev->dev, "Disabling ASPM %s %s\n", 6506 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ? 6507 "L0s" : "", 6508 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ? 6509 "L1" : ""); 6510 6511 #ifdef CONFIG_PCIEASPM 6512 if (locked) 6513 pci_disable_link_state_locked(pdev, state); 6514 else 6515 pci_disable_link_state(pdev, state); 6516 6517 /* Double-check ASPM control. If not disabled by the above, the 6518 * BIOS is preventing that from happening (or CONFIG_PCIEASPM is 6519 * not enabled); override by writing PCI config space directly. 6520 */ 6521 pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc); 6522 pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC; 6523 6524 if (!(aspm_dis_mask & pdev_aspmc)) 6525 return; 6526 #endif 6527 6528 /* Both device and parent should have the same ASPM setting. 6529 * Disable ASPM in downstream component first and then upstream. 6530 */ 6531 pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask); 6532 6533 if (parent) 6534 pcie_capability_clear_word(parent, PCI_EXP_LNKCTL, 6535 aspm_dis_mask); 6536 } 6537 6538 /** 6539 * e1000e_disable_aspm - Disable ASPM states. 6540 * @pdev: pointer to PCI device struct 6541 * @state: bit-mask of ASPM states to disable 6542 * 6543 * This function acquires the pci_bus_sem! 6544 * Some devices *must* have certain ASPM states disabled per hardware errata. 6545 **/ 6546 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state) 6547 { 6548 __e1000e_disable_aspm(pdev, state, 0); 6549 } 6550 6551 /** 6552 * e1000e_disable_aspm_locked Disable ASPM states. 6553 * @pdev: pointer to PCI device struct 6554 * @state: bit-mask of ASPM states to disable 6555 * 6556 * This function must be called with pci_bus_sem acquired! 6557 * Some devices *must* have certain ASPM states disabled per hardware errata. 6558 **/ 6559 static void e1000e_disable_aspm_locked(struct pci_dev *pdev, u16 state) 6560 { 6561 __e1000e_disable_aspm(pdev, state, 1); 6562 } 6563 6564 #ifdef CONFIG_PM 6565 static int __e1000_resume(struct pci_dev *pdev) 6566 { 6567 struct net_device *netdev = pci_get_drvdata(pdev); 6568 struct e1000_adapter *adapter = netdev_priv(netdev); 6569 struct e1000_hw *hw = &adapter->hw; 6570 u16 aspm_disable_flag = 0; 6571 6572 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S) 6573 aspm_disable_flag = PCIE_LINK_STATE_L0S; 6574 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1) 6575 aspm_disable_flag |= PCIE_LINK_STATE_L1; 6576 if (aspm_disable_flag) 6577 e1000e_disable_aspm(pdev, aspm_disable_flag); 6578 6579 pci_set_master(pdev); 6580 6581 if (hw->mac.type >= e1000_pch2lan) 6582 e1000_resume_workarounds_pchlan(&adapter->hw); 6583 6584 e1000e_power_up_phy(adapter); 6585 6586 /* report the system wakeup cause from S3/S4 */ 6587 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) { 6588 u16 phy_data; 6589 6590 e1e_rphy(&adapter->hw, BM_WUS, &phy_data); 6591 if (phy_data) { 6592 e_info("PHY Wakeup cause - %s\n", 6593 phy_data & E1000_WUS_EX ? "Unicast Packet" : 6594 phy_data & E1000_WUS_MC ? "Multicast Packet" : 6595 phy_data & E1000_WUS_BC ? "Broadcast Packet" : 6596 phy_data & E1000_WUS_MAG ? "Magic Packet" : 6597 phy_data & E1000_WUS_LNKC ? 6598 "Link Status Change" : "other"); 6599 } 6600 e1e_wphy(&adapter->hw, BM_WUS, ~0); 6601 } else { 6602 u32 wus = er32(WUS); 6603 6604 if (wus) { 6605 e_info("MAC Wakeup cause - %s\n", 6606 wus & E1000_WUS_EX ? "Unicast Packet" : 6607 wus & E1000_WUS_MC ? "Multicast Packet" : 6608 wus & E1000_WUS_BC ? "Broadcast Packet" : 6609 wus & E1000_WUS_MAG ? "Magic Packet" : 6610 wus & E1000_WUS_LNKC ? "Link Status Change" : 6611 "other"); 6612 } 6613 ew32(WUS, ~0); 6614 } 6615 6616 e1000e_reset(adapter); 6617 6618 e1000_init_manageability_pt(adapter); 6619 6620 /* If the controller has AMT, do not set DRV_LOAD until the interface 6621 * is up. For all other cases, let the f/w know that the h/w is now 6622 * under the control of the driver. 6623 */ 6624 if (!(adapter->flags & FLAG_HAS_AMT)) 6625 e1000e_get_hw_control(adapter); 6626 6627 return 0; 6628 } 6629 6630 #ifdef CONFIG_PM_SLEEP 6631 static int e1000e_pm_thaw(struct device *dev) 6632 { 6633 struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev)); 6634 struct e1000_adapter *adapter = netdev_priv(netdev); 6635 6636 e1000e_set_interrupt_capability(adapter); 6637 if (netif_running(netdev)) { 6638 u32 err = e1000_request_irq(adapter); 6639 6640 if (err) 6641 return err; 6642 6643 e1000e_up(adapter); 6644 } 6645 6646 netif_device_attach(netdev); 6647 6648 return 0; 6649 } 6650 6651 static int e1000e_pm_suspend(struct device *dev) 6652 { 6653 struct pci_dev *pdev = to_pci_dev(dev); 6654 int rc; 6655 6656 e1000e_flush_lpic(pdev); 6657 6658 e1000e_pm_freeze(dev); 6659 6660 rc = __e1000_shutdown(pdev, false); 6661 if (rc) 6662 e1000e_pm_thaw(dev); 6663 6664 return rc; 6665 } 6666 6667 static int e1000e_pm_resume(struct device *dev) 6668 { 6669 struct pci_dev *pdev = to_pci_dev(dev); 6670 int rc; 6671 6672 rc = __e1000_resume(pdev); 6673 if (rc) 6674 return rc; 6675 6676 return e1000e_pm_thaw(dev); 6677 } 6678 #endif /* CONFIG_PM_SLEEP */ 6679 6680 static int e1000e_pm_runtime_idle(struct device *dev) 6681 { 6682 struct pci_dev *pdev = to_pci_dev(dev); 6683 struct net_device *netdev = pci_get_drvdata(pdev); 6684 struct e1000_adapter *adapter = netdev_priv(netdev); 6685 u16 eee_lp; 6686 6687 eee_lp = adapter->hw.dev_spec.ich8lan.eee_lp_ability; 6688 6689 if (!e1000e_has_link(adapter)) { 6690 adapter->hw.dev_spec.ich8lan.eee_lp_ability = eee_lp; 6691 pm_schedule_suspend(dev, 5 * MSEC_PER_SEC); 6692 } 6693 6694 return -EBUSY; 6695 } 6696 6697 static int e1000e_pm_runtime_resume(struct device *dev) 6698 { 6699 struct pci_dev *pdev = to_pci_dev(dev); 6700 struct net_device *netdev = pci_get_drvdata(pdev); 6701 struct e1000_adapter *adapter = netdev_priv(netdev); 6702 int rc; 6703 6704 rc = __e1000_resume(pdev); 6705 if (rc) 6706 return rc; 6707 6708 if (netdev->flags & IFF_UP) 6709 e1000e_up(adapter); 6710 6711 return rc; 6712 } 6713 6714 static int e1000e_pm_runtime_suspend(struct device *dev) 6715 { 6716 struct pci_dev *pdev = to_pci_dev(dev); 6717 struct net_device *netdev = pci_get_drvdata(pdev); 6718 struct e1000_adapter *adapter = netdev_priv(netdev); 6719 6720 if (netdev->flags & IFF_UP) { 6721 int count = E1000_CHECK_RESET_COUNT; 6722 6723 while (test_bit(__E1000_RESETTING, &adapter->state) && count--) 6724 usleep_range(10000, 20000); 6725 6726 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state)); 6727 6728 /* Down the device without resetting the hardware */ 6729 e1000e_down(adapter, false); 6730 } 6731 6732 if (__e1000_shutdown(pdev, true)) { 6733 e1000e_pm_runtime_resume(dev); 6734 return -EBUSY; 6735 } 6736 6737 return 0; 6738 } 6739 #endif /* CONFIG_PM */ 6740 6741 static void e1000_shutdown(struct pci_dev *pdev) 6742 { 6743 e1000e_flush_lpic(pdev); 6744 6745 e1000e_pm_freeze(&pdev->dev); 6746 6747 __e1000_shutdown(pdev, false); 6748 } 6749 6750 #ifdef CONFIG_NET_POLL_CONTROLLER 6751 6752 static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data) 6753 { 6754 struct net_device *netdev = data; 6755 struct e1000_adapter *adapter = netdev_priv(netdev); 6756 6757 if (adapter->msix_entries) { 6758 int vector, msix_irq; 6759 6760 vector = 0; 6761 msix_irq = adapter->msix_entries[vector].vector; 6762 if (disable_hardirq(msix_irq)) 6763 e1000_intr_msix_rx(msix_irq, netdev); 6764 enable_irq(msix_irq); 6765 6766 vector++; 6767 msix_irq = adapter->msix_entries[vector].vector; 6768 if (disable_hardirq(msix_irq)) 6769 e1000_intr_msix_tx(msix_irq, netdev); 6770 enable_irq(msix_irq); 6771 6772 vector++; 6773 msix_irq = adapter->msix_entries[vector].vector; 6774 if (disable_hardirq(msix_irq)) 6775 e1000_msix_other(msix_irq, netdev); 6776 enable_irq(msix_irq); 6777 } 6778 6779 return IRQ_HANDLED; 6780 } 6781 6782 /** 6783 * e1000_netpoll 6784 * @netdev: network interface device structure 6785 * 6786 * Polling 'interrupt' - used by things like netconsole to send skbs 6787 * without having to re-enable interrupts. It's not called while 6788 * the interrupt routine is executing. 6789 */ 6790 static void e1000_netpoll(struct net_device *netdev) 6791 { 6792 struct e1000_adapter *adapter = netdev_priv(netdev); 6793 6794 switch (adapter->int_mode) { 6795 case E1000E_INT_MODE_MSIX: 6796 e1000_intr_msix(adapter->pdev->irq, netdev); 6797 break; 6798 case E1000E_INT_MODE_MSI: 6799 if (disable_hardirq(adapter->pdev->irq)) 6800 e1000_intr_msi(adapter->pdev->irq, netdev); 6801 enable_irq(adapter->pdev->irq); 6802 break; 6803 default: /* E1000E_INT_MODE_LEGACY */ 6804 if (disable_hardirq(adapter->pdev->irq)) 6805 e1000_intr(adapter->pdev->irq, netdev); 6806 enable_irq(adapter->pdev->irq); 6807 break; 6808 } 6809 } 6810 #endif 6811 6812 /** 6813 * e1000_io_error_detected - called when PCI error is detected 6814 * @pdev: Pointer to PCI device 6815 * @state: The current pci connection state 6816 * 6817 * This function is called after a PCI bus error affecting 6818 * this device has been detected. 6819 */ 6820 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, 6821 pci_channel_state_t state) 6822 { 6823 struct net_device *netdev = pci_get_drvdata(pdev); 6824 struct e1000_adapter *adapter = netdev_priv(netdev); 6825 6826 netif_device_detach(netdev); 6827 6828 if (state == pci_channel_io_perm_failure) 6829 return PCI_ERS_RESULT_DISCONNECT; 6830 6831 if (netif_running(netdev)) 6832 e1000e_down(adapter, true); 6833 pci_disable_device(pdev); 6834 6835 /* Request a slot slot reset. */ 6836 return PCI_ERS_RESULT_NEED_RESET; 6837 } 6838 6839 /** 6840 * e1000_io_slot_reset - called after the pci bus has been reset. 6841 * @pdev: Pointer to PCI device 6842 * 6843 * Restart the card from scratch, as if from a cold-boot. Implementation 6844 * resembles the first-half of the e1000e_pm_resume routine. 6845 */ 6846 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev) 6847 { 6848 struct net_device *netdev = pci_get_drvdata(pdev); 6849 struct e1000_adapter *adapter = netdev_priv(netdev); 6850 struct e1000_hw *hw = &adapter->hw; 6851 u16 aspm_disable_flag = 0; 6852 int err; 6853 pci_ers_result_t result; 6854 6855 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S) 6856 aspm_disable_flag = PCIE_LINK_STATE_L0S; 6857 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1) 6858 aspm_disable_flag |= PCIE_LINK_STATE_L1; 6859 if (aspm_disable_flag) 6860 e1000e_disable_aspm_locked(pdev, aspm_disable_flag); 6861 6862 err = pci_enable_device_mem(pdev); 6863 if (err) { 6864 dev_err(&pdev->dev, 6865 "Cannot re-enable PCI device after reset.\n"); 6866 result = PCI_ERS_RESULT_DISCONNECT; 6867 } else { 6868 pdev->state_saved = true; 6869 pci_restore_state(pdev); 6870 pci_set_master(pdev); 6871 6872 pci_enable_wake(pdev, PCI_D3hot, 0); 6873 pci_enable_wake(pdev, PCI_D3cold, 0); 6874 6875 e1000e_reset(adapter); 6876 ew32(WUS, ~0); 6877 result = PCI_ERS_RESULT_RECOVERED; 6878 } 6879 6880 return result; 6881 } 6882 6883 /** 6884 * e1000_io_resume - called when traffic can start flowing again. 6885 * @pdev: Pointer to PCI device 6886 * 6887 * This callback is called when the error recovery driver tells us that 6888 * its OK to resume normal operation. Implementation resembles the 6889 * second-half of the e1000e_pm_resume routine. 6890 */ 6891 static void e1000_io_resume(struct pci_dev *pdev) 6892 { 6893 struct net_device *netdev = pci_get_drvdata(pdev); 6894 struct e1000_adapter *adapter = netdev_priv(netdev); 6895 6896 e1000_init_manageability_pt(adapter); 6897 6898 if (netif_running(netdev)) 6899 e1000e_up(adapter); 6900 6901 netif_device_attach(netdev); 6902 6903 /* If the controller has AMT, do not set DRV_LOAD until the interface 6904 * is up. For all other cases, let the f/w know that the h/w is now 6905 * under the control of the driver. 6906 */ 6907 if (!(adapter->flags & FLAG_HAS_AMT)) 6908 e1000e_get_hw_control(adapter); 6909 } 6910 6911 static void e1000_print_device_info(struct e1000_adapter *adapter) 6912 { 6913 struct e1000_hw *hw = &adapter->hw; 6914 struct net_device *netdev = adapter->netdev; 6915 u32 ret_val; 6916 u8 pba_str[E1000_PBANUM_LENGTH]; 6917 6918 /* print bus type/speed/width info */ 6919 e_info("(PCI Express:2.5GT/s:%s) %pM\n", 6920 /* bus width */ 6921 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" : 6922 "Width x1"), 6923 /* MAC address */ 6924 netdev->dev_addr); 6925 e_info("Intel(R) PRO/%s Network Connection\n", 6926 (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000"); 6927 ret_val = e1000_read_pba_string_generic(hw, pba_str, 6928 E1000_PBANUM_LENGTH); 6929 if (ret_val) 6930 strlcpy((char *)pba_str, "Unknown", sizeof(pba_str)); 6931 e_info("MAC: %d, PHY: %d, PBA No: %s\n", 6932 hw->mac.type, hw->phy.type, pba_str); 6933 } 6934 6935 static void e1000_eeprom_checks(struct e1000_adapter *adapter) 6936 { 6937 struct e1000_hw *hw = &adapter->hw; 6938 int ret_val; 6939 u16 buf = 0; 6940 6941 if (hw->mac.type != e1000_82573) 6942 return; 6943 6944 ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf); 6945 le16_to_cpus(&buf); 6946 if (!ret_val && (!(buf & BIT(0)))) { 6947 /* Deep Smart Power Down (DSPD) */ 6948 dev_warn(&adapter->pdev->dev, 6949 "Warning: detected DSPD enabled in EEPROM\n"); 6950 } 6951 } 6952 6953 static netdev_features_t e1000_fix_features(struct net_device *netdev, 6954 netdev_features_t features) 6955 { 6956 struct e1000_adapter *adapter = netdev_priv(netdev); 6957 struct e1000_hw *hw = &adapter->hw; 6958 6959 /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */ 6960 if ((hw->mac.type >= e1000_pch2lan) && (netdev->mtu > ETH_DATA_LEN)) 6961 features &= ~NETIF_F_RXFCS; 6962 6963 /* Since there is no support for separate Rx/Tx vlan accel 6964 * enable/disable make sure Tx flag is always in same state as Rx. 6965 */ 6966 if (features & NETIF_F_HW_VLAN_CTAG_RX) 6967 features |= NETIF_F_HW_VLAN_CTAG_TX; 6968 else 6969 features &= ~NETIF_F_HW_VLAN_CTAG_TX; 6970 6971 return features; 6972 } 6973 6974 static int e1000_set_features(struct net_device *netdev, 6975 netdev_features_t features) 6976 { 6977 struct e1000_adapter *adapter = netdev_priv(netdev); 6978 netdev_features_t changed = features ^ netdev->features; 6979 6980 if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) 6981 adapter->flags |= FLAG_TSO_FORCE; 6982 6983 if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX | 6984 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS | 6985 NETIF_F_RXALL))) 6986 return 0; 6987 6988 if (changed & NETIF_F_RXFCS) { 6989 if (features & NETIF_F_RXFCS) { 6990 adapter->flags2 &= ~FLAG2_CRC_STRIPPING; 6991 } else { 6992 /* We need to take it back to defaults, which might mean 6993 * stripping is still disabled at the adapter level. 6994 */ 6995 if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING) 6996 adapter->flags2 |= FLAG2_CRC_STRIPPING; 6997 else 6998 adapter->flags2 &= ~FLAG2_CRC_STRIPPING; 6999 } 7000 } 7001 7002 netdev->features = features; 7003 7004 if (netif_running(netdev)) 7005 e1000e_reinit_locked(adapter); 7006 else 7007 e1000e_reset(adapter); 7008 7009 return 0; 7010 } 7011 7012 static const struct net_device_ops e1000e_netdev_ops = { 7013 .ndo_open = e1000e_open, 7014 .ndo_stop = e1000e_close, 7015 .ndo_start_xmit = e1000_xmit_frame, 7016 .ndo_get_stats64 = e1000e_get_stats64, 7017 .ndo_set_rx_mode = e1000e_set_rx_mode, 7018 .ndo_set_mac_address = e1000_set_mac, 7019 .ndo_change_mtu = e1000_change_mtu, 7020 .ndo_do_ioctl = e1000_ioctl, 7021 .ndo_tx_timeout = e1000_tx_timeout, 7022 .ndo_validate_addr = eth_validate_addr, 7023 7024 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid, 7025 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid, 7026 #ifdef CONFIG_NET_POLL_CONTROLLER 7027 .ndo_poll_controller = e1000_netpoll, 7028 #endif 7029 .ndo_set_features = e1000_set_features, 7030 .ndo_fix_features = e1000_fix_features, 7031 .ndo_features_check = passthru_features_check, 7032 }; 7033 7034 /** 7035 * e1000_probe - Device Initialization Routine 7036 * @pdev: PCI device information struct 7037 * @ent: entry in e1000_pci_tbl 7038 * 7039 * Returns 0 on success, negative on failure 7040 * 7041 * e1000_probe initializes an adapter identified by a pci_dev structure. 7042 * The OS initialization, configuring of the adapter private structure, 7043 * and a hardware reset occur. 7044 **/ 7045 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 7046 { 7047 struct net_device *netdev; 7048 struct e1000_adapter *adapter; 7049 struct e1000_hw *hw; 7050 const struct e1000_info *ei = e1000_info_tbl[ent->driver_data]; 7051 resource_size_t mmio_start, mmio_len; 7052 resource_size_t flash_start, flash_len; 7053 static int cards_found; 7054 u16 aspm_disable_flag = 0; 7055 int bars, i, err, pci_using_dac; 7056 u16 eeprom_data = 0; 7057 u16 eeprom_apme_mask = E1000_EEPROM_APME; 7058 s32 ret_val = 0; 7059 7060 if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S) 7061 aspm_disable_flag = PCIE_LINK_STATE_L0S; 7062 if (ei->flags2 & FLAG2_DISABLE_ASPM_L1) 7063 aspm_disable_flag |= PCIE_LINK_STATE_L1; 7064 if (aspm_disable_flag) 7065 e1000e_disable_aspm(pdev, aspm_disable_flag); 7066 7067 err = pci_enable_device_mem(pdev); 7068 if (err) 7069 return err; 7070 7071 pci_using_dac = 0; 7072 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 7073 if (!err) { 7074 pci_using_dac = 1; 7075 } else { 7076 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 7077 if (err) { 7078 dev_err(&pdev->dev, 7079 "No usable DMA configuration, aborting\n"); 7080 goto err_dma; 7081 } 7082 } 7083 7084 bars = pci_select_bars(pdev, IORESOURCE_MEM); 7085 err = pci_request_selected_regions_exclusive(pdev, bars, 7086 e1000e_driver_name); 7087 if (err) 7088 goto err_pci_reg; 7089 7090 /* AER (Advanced Error Reporting) hooks */ 7091 pci_enable_pcie_error_reporting(pdev); 7092 7093 pci_set_master(pdev); 7094 /* PCI config space info */ 7095 err = pci_save_state(pdev); 7096 if (err) 7097 goto err_alloc_etherdev; 7098 7099 err = -ENOMEM; 7100 netdev = alloc_etherdev(sizeof(struct e1000_adapter)); 7101 if (!netdev) 7102 goto err_alloc_etherdev; 7103 7104 SET_NETDEV_DEV(netdev, &pdev->dev); 7105 7106 netdev->irq = pdev->irq; 7107 7108 pci_set_drvdata(pdev, netdev); 7109 adapter = netdev_priv(netdev); 7110 hw = &adapter->hw; 7111 adapter->netdev = netdev; 7112 adapter->pdev = pdev; 7113 adapter->ei = ei; 7114 adapter->pba = ei->pba; 7115 adapter->flags = ei->flags; 7116 adapter->flags2 = ei->flags2; 7117 adapter->hw.adapter = adapter; 7118 adapter->hw.mac.type = ei->mac; 7119 adapter->max_hw_frame_size = ei->max_hw_frame_size; 7120 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 7121 7122 mmio_start = pci_resource_start(pdev, 0); 7123 mmio_len = pci_resource_len(pdev, 0); 7124 7125 err = -EIO; 7126 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len); 7127 if (!adapter->hw.hw_addr) 7128 goto err_ioremap; 7129 7130 if ((adapter->flags & FLAG_HAS_FLASH) && 7131 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM) && 7132 (hw->mac.type < e1000_pch_spt)) { 7133 flash_start = pci_resource_start(pdev, 1); 7134 flash_len = pci_resource_len(pdev, 1); 7135 adapter->hw.flash_address = ioremap(flash_start, flash_len); 7136 if (!adapter->hw.flash_address) 7137 goto err_flashmap; 7138 } 7139 7140 /* Set default EEE advertisement */ 7141 if (adapter->flags2 & FLAG2_HAS_EEE) 7142 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T; 7143 7144 /* construct the net_device struct */ 7145 netdev->netdev_ops = &e1000e_netdev_ops; 7146 e1000e_set_ethtool_ops(netdev); 7147 netdev->watchdog_timeo = 5 * HZ; 7148 netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64); 7149 strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name)); 7150 7151 netdev->mem_start = mmio_start; 7152 netdev->mem_end = mmio_start + mmio_len; 7153 7154 adapter->bd_number = cards_found++; 7155 7156 e1000e_check_options(adapter); 7157 7158 /* setup adapter struct */ 7159 err = e1000_sw_init(adapter); 7160 if (err) 7161 goto err_sw_init; 7162 7163 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops)); 7164 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops)); 7165 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops)); 7166 7167 err = ei->get_variants(adapter); 7168 if (err) 7169 goto err_hw_init; 7170 7171 if ((adapter->flags & FLAG_IS_ICH) && 7172 (adapter->flags & FLAG_READ_ONLY_NVM) && 7173 (hw->mac.type < e1000_pch_spt)) 7174 e1000e_write_protect_nvm_ich8lan(&adapter->hw); 7175 7176 hw->mac.ops.get_bus_info(&adapter->hw); 7177 7178 adapter->hw.phy.autoneg_wait_to_complete = 0; 7179 7180 /* Copper options */ 7181 if (adapter->hw.phy.media_type == e1000_media_type_copper) { 7182 adapter->hw.phy.mdix = AUTO_ALL_MODES; 7183 adapter->hw.phy.disable_polarity_correction = 0; 7184 adapter->hw.phy.ms_type = e1000_ms_hw_default; 7185 } 7186 7187 if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw)) 7188 dev_info(&pdev->dev, 7189 "PHY reset is blocked due to SOL/IDER session.\n"); 7190 7191 /* Set initial default active device features */ 7192 netdev->features = (NETIF_F_SG | 7193 NETIF_F_HW_VLAN_CTAG_RX | 7194 NETIF_F_HW_VLAN_CTAG_TX | 7195 NETIF_F_TSO | 7196 NETIF_F_TSO6 | 7197 NETIF_F_RXHASH | 7198 NETIF_F_RXCSUM | 7199 NETIF_F_HW_CSUM); 7200 7201 /* Set user-changeable features (subset of all device features) */ 7202 netdev->hw_features = netdev->features; 7203 netdev->hw_features |= NETIF_F_RXFCS; 7204 netdev->priv_flags |= IFF_SUPP_NOFCS; 7205 netdev->hw_features |= NETIF_F_RXALL; 7206 7207 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) 7208 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 7209 7210 netdev->vlan_features |= (NETIF_F_SG | 7211 NETIF_F_TSO | 7212 NETIF_F_TSO6 | 7213 NETIF_F_HW_CSUM); 7214 7215 netdev->priv_flags |= IFF_UNICAST_FLT; 7216 7217 if (pci_using_dac) { 7218 netdev->features |= NETIF_F_HIGHDMA; 7219 netdev->vlan_features |= NETIF_F_HIGHDMA; 7220 } 7221 7222 /* MTU range: 68 - max_hw_frame_size */ 7223 netdev->min_mtu = ETH_MIN_MTU; 7224 netdev->max_mtu = adapter->max_hw_frame_size - 7225 (VLAN_ETH_HLEN + ETH_FCS_LEN); 7226 7227 if (e1000e_enable_mng_pass_thru(&adapter->hw)) 7228 adapter->flags |= FLAG_MNG_PT_ENABLED; 7229 7230 /* before reading the NVM, reset the controller to 7231 * put the device in a known good starting state 7232 */ 7233 adapter->hw.mac.ops.reset_hw(&adapter->hw); 7234 7235 /* systems with ASPM and others may see the checksum fail on the first 7236 * attempt. Let's give it a few tries 7237 */ 7238 for (i = 0;; i++) { 7239 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0) 7240 break; 7241 if (i == 2) { 7242 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n"); 7243 err = -EIO; 7244 goto err_eeprom; 7245 } 7246 } 7247 7248 e1000_eeprom_checks(adapter); 7249 7250 /* copy the MAC address */ 7251 if (e1000e_read_mac_addr(&adapter->hw)) 7252 dev_err(&pdev->dev, 7253 "NVM Read Error while reading MAC address\n"); 7254 7255 memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len); 7256 7257 if (!is_valid_ether_addr(netdev->dev_addr)) { 7258 dev_err(&pdev->dev, "Invalid MAC Address: %pM\n", 7259 netdev->dev_addr); 7260 err = -EIO; 7261 goto err_eeprom; 7262 } 7263 7264 timer_setup(&adapter->watchdog_timer, e1000_watchdog, 0); 7265 timer_setup(&adapter->phy_info_timer, e1000_update_phy_info, 0); 7266 7267 INIT_WORK(&adapter->reset_task, e1000_reset_task); 7268 INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task); 7269 INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround); 7270 INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task); 7271 INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang); 7272 7273 /* Initialize link parameters. User can change them with ethtool */ 7274 adapter->hw.mac.autoneg = 1; 7275 adapter->fc_autoneg = true; 7276 adapter->hw.fc.requested_mode = e1000_fc_default; 7277 adapter->hw.fc.current_mode = e1000_fc_default; 7278 adapter->hw.phy.autoneg_advertised = 0x2f; 7279 7280 /* Initial Wake on LAN setting - If APM wake is enabled in 7281 * the EEPROM, enable the ACPI Magic Packet filter 7282 */ 7283 if (adapter->flags & FLAG_APME_IN_WUC) { 7284 /* APME bit in EEPROM is mapped to WUC.APME */ 7285 eeprom_data = er32(WUC); 7286 eeprom_apme_mask = E1000_WUC_APME; 7287 if ((hw->mac.type > e1000_ich10lan) && 7288 (eeprom_data & E1000_WUC_PHY_WAKE)) 7289 adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP; 7290 } else if (adapter->flags & FLAG_APME_IN_CTRL3) { 7291 if (adapter->flags & FLAG_APME_CHECK_PORT_B && 7292 (adapter->hw.bus.func == 1)) 7293 ret_val = e1000_read_nvm(&adapter->hw, 7294 NVM_INIT_CONTROL3_PORT_B, 7295 1, &eeprom_data); 7296 else 7297 ret_val = e1000_read_nvm(&adapter->hw, 7298 NVM_INIT_CONTROL3_PORT_A, 7299 1, &eeprom_data); 7300 } 7301 7302 /* fetch WoL from EEPROM */ 7303 if (ret_val) 7304 e_dbg("NVM read error getting WoL initial values: %d\n", ret_val); 7305 else if (eeprom_data & eeprom_apme_mask) 7306 adapter->eeprom_wol |= E1000_WUFC_MAG; 7307 7308 /* now that we have the eeprom settings, apply the special cases 7309 * where the eeprom may be wrong or the board simply won't support 7310 * wake on lan on a particular port 7311 */ 7312 if (!(adapter->flags & FLAG_HAS_WOL)) 7313 adapter->eeprom_wol = 0; 7314 7315 /* initialize the wol settings based on the eeprom settings */ 7316 adapter->wol = adapter->eeprom_wol; 7317 7318 /* make sure adapter isn't asleep if manageability is enabled */ 7319 if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) || 7320 (hw->mac.ops.check_mng_mode(hw))) 7321 device_wakeup_enable(&pdev->dev); 7322 7323 /* save off EEPROM version number */ 7324 ret_val = e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers); 7325 7326 if (ret_val) { 7327 e_dbg("NVM read error getting EEPROM version: %d\n", ret_val); 7328 adapter->eeprom_vers = 0; 7329 } 7330 7331 /* init PTP hardware clock */ 7332 e1000e_ptp_init(adapter); 7333 7334 /* reset the hardware with the new settings */ 7335 e1000e_reset(adapter); 7336 7337 /* If the controller has AMT, do not set DRV_LOAD until the interface 7338 * is up. For all other cases, let the f/w know that the h/w is now 7339 * under the control of the driver. 7340 */ 7341 if (!(adapter->flags & FLAG_HAS_AMT)) 7342 e1000e_get_hw_control(adapter); 7343 7344 strlcpy(netdev->name, "eth%d", sizeof(netdev->name)); 7345 err = register_netdev(netdev); 7346 if (err) 7347 goto err_register; 7348 7349 /* carrier off reporting is important to ethtool even BEFORE open */ 7350 netif_carrier_off(netdev); 7351 7352 e1000_print_device_info(adapter); 7353 7354 if (pci_dev_run_wake(pdev)) 7355 pm_runtime_put_noidle(&pdev->dev); 7356 7357 return 0; 7358 7359 err_register: 7360 if (!(adapter->flags & FLAG_HAS_AMT)) 7361 e1000e_release_hw_control(adapter); 7362 err_eeprom: 7363 if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw)) 7364 e1000_phy_hw_reset(&adapter->hw); 7365 err_hw_init: 7366 kfree(adapter->tx_ring); 7367 kfree(adapter->rx_ring); 7368 err_sw_init: 7369 if ((adapter->hw.flash_address) && (hw->mac.type < e1000_pch_spt)) 7370 iounmap(adapter->hw.flash_address); 7371 e1000e_reset_interrupt_capability(adapter); 7372 err_flashmap: 7373 iounmap(adapter->hw.hw_addr); 7374 err_ioremap: 7375 free_netdev(netdev); 7376 err_alloc_etherdev: 7377 pci_release_mem_regions(pdev); 7378 err_pci_reg: 7379 err_dma: 7380 pci_disable_device(pdev); 7381 return err; 7382 } 7383 7384 /** 7385 * e1000_remove - Device Removal Routine 7386 * @pdev: PCI device information struct 7387 * 7388 * e1000_remove is called by the PCI subsystem to alert the driver 7389 * that it should release a PCI device. The could be caused by a 7390 * Hot-Plug event, or because the driver is going to be removed from 7391 * memory. 7392 **/ 7393 static void e1000_remove(struct pci_dev *pdev) 7394 { 7395 struct net_device *netdev = pci_get_drvdata(pdev); 7396 struct e1000_adapter *adapter = netdev_priv(netdev); 7397 bool down = test_bit(__E1000_DOWN, &adapter->state); 7398 7399 e1000e_ptp_remove(adapter); 7400 7401 /* The timers may be rescheduled, so explicitly disable them 7402 * from being rescheduled. 7403 */ 7404 if (!down) 7405 set_bit(__E1000_DOWN, &adapter->state); 7406 del_timer_sync(&adapter->watchdog_timer); 7407 del_timer_sync(&adapter->phy_info_timer); 7408 7409 cancel_work_sync(&adapter->reset_task); 7410 cancel_work_sync(&adapter->watchdog_task); 7411 cancel_work_sync(&adapter->downshift_task); 7412 cancel_work_sync(&adapter->update_phy_task); 7413 cancel_work_sync(&adapter->print_hang_task); 7414 7415 if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) { 7416 cancel_work_sync(&adapter->tx_hwtstamp_work); 7417 if (adapter->tx_hwtstamp_skb) { 7418 dev_consume_skb_any(adapter->tx_hwtstamp_skb); 7419 adapter->tx_hwtstamp_skb = NULL; 7420 } 7421 } 7422 7423 /* Don't lie to e1000_close() down the road. */ 7424 if (!down) 7425 clear_bit(__E1000_DOWN, &adapter->state); 7426 unregister_netdev(netdev); 7427 7428 if (pci_dev_run_wake(pdev)) 7429 pm_runtime_get_noresume(&pdev->dev); 7430 7431 /* Release control of h/w to f/w. If f/w is AMT enabled, this 7432 * would have already happened in close and is redundant. 7433 */ 7434 e1000e_release_hw_control(adapter); 7435 7436 e1000e_reset_interrupt_capability(adapter); 7437 kfree(adapter->tx_ring); 7438 kfree(adapter->rx_ring); 7439 7440 iounmap(adapter->hw.hw_addr); 7441 if ((adapter->hw.flash_address) && 7442 (adapter->hw.mac.type < e1000_pch_spt)) 7443 iounmap(adapter->hw.flash_address); 7444 pci_release_mem_regions(pdev); 7445 7446 free_netdev(netdev); 7447 7448 /* AER disable */ 7449 pci_disable_pcie_error_reporting(pdev); 7450 7451 pci_disable_device(pdev); 7452 } 7453 7454 /* PCI Error Recovery (ERS) */ 7455 static const struct pci_error_handlers e1000_err_handler = { 7456 .error_detected = e1000_io_error_detected, 7457 .slot_reset = e1000_io_slot_reset, 7458 .resume = e1000_io_resume, 7459 }; 7460 7461 static const struct pci_device_id e1000_pci_tbl[] = { 7462 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 }, 7463 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 }, 7464 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 }, 7465 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), 7466 board_82571 }, 7467 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 }, 7468 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 }, 7469 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 }, 7470 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 }, 7471 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 }, 7472 7473 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 }, 7474 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 }, 7475 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 }, 7476 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 }, 7477 7478 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 }, 7479 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 }, 7480 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 }, 7481 7482 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 }, 7483 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 }, 7484 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 }, 7485 7486 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT), 7487 board_80003es2lan }, 7488 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT), 7489 board_80003es2lan }, 7490 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT), 7491 board_80003es2lan }, 7492 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT), 7493 board_80003es2lan }, 7494 7495 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan }, 7496 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan }, 7497 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan }, 7498 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan }, 7499 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan }, 7500 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan }, 7501 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan }, 7502 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan }, 7503 7504 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan }, 7505 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan }, 7506 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan }, 7507 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan }, 7508 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan }, 7509 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan }, 7510 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan }, 7511 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan }, 7512 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan }, 7513 7514 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan }, 7515 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan }, 7516 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan }, 7517 7518 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan }, 7519 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan }, 7520 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan }, 7521 7522 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan }, 7523 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan }, 7524 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan }, 7525 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan }, 7526 7527 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan }, 7528 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan }, 7529 7530 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt }, 7531 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt }, 7532 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt }, 7533 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt }, 7534 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt }, 7535 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt }, 7536 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt }, 7537 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt }, 7538 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM), board_pch_spt }, 7539 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V), board_pch_spt }, 7540 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM2), board_pch_spt }, 7541 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V2), board_pch_spt }, 7542 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LBG_I219_LM3), board_pch_spt }, 7543 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM4), board_pch_spt }, 7544 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V4), board_pch_spt }, 7545 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM5), board_pch_spt }, 7546 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V5), board_pch_spt }, 7547 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM6), board_pch_cnp }, 7548 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V6), board_pch_cnp }, 7549 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM7), board_pch_cnp }, 7550 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V7), board_pch_cnp }, 7551 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM8), board_pch_cnp }, 7552 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V8), board_pch_cnp }, 7553 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM9), board_pch_cnp }, 7554 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V9), board_pch_cnp }, 7555 7556 { 0, 0, 0, 0, 0, 0, 0 } /* terminate list */ 7557 }; 7558 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl); 7559 7560 static const struct dev_pm_ops e1000_pm_ops = { 7561 #ifdef CONFIG_PM_SLEEP 7562 .suspend = e1000e_pm_suspend, 7563 .resume = e1000e_pm_resume, 7564 .freeze = e1000e_pm_freeze, 7565 .thaw = e1000e_pm_thaw, 7566 .poweroff = e1000e_pm_suspend, 7567 .restore = e1000e_pm_resume, 7568 #endif 7569 SET_RUNTIME_PM_OPS(e1000e_pm_runtime_suspend, e1000e_pm_runtime_resume, 7570 e1000e_pm_runtime_idle) 7571 }; 7572 7573 /* PCI Device API Driver */ 7574 static struct pci_driver e1000_driver = { 7575 .name = e1000e_driver_name, 7576 .id_table = e1000_pci_tbl, 7577 .probe = e1000_probe, 7578 .remove = e1000_remove, 7579 .driver = { 7580 .pm = &e1000_pm_ops, 7581 }, 7582 .shutdown = e1000_shutdown, 7583 .err_handler = &e1000_err_handler 7584 }; 7585 7586 /** 7587 * e1000_init_module - Driver Registration Routine 7588 * 7589 * e1000_init_module is the first routine called when the driver is 7590 * loaded. All it does is register with the PCI subsystem. 7591 **/ 7592 static int __init e1000_init_module(void) 7593 { 7594 pr_info("Intel(R) PRO/1000 Network Driver - %s\n", 7595 e1000e_driver_version); 7596 pr_info("Copyright(c) 1999 - 2015 Intel Corporation.\n"); 7597 7598 return pci_register_driver(&e1000_driver); 7599 } 7600 module_init(e1000_init_module); 7601 7602 /** 7603 * e1000_exit_module - Driver Exit Cleanup Routine 7604 * 7605 * e1000_exit_module is called just before the driver is removed 7606 * from memory. 7607 **/ 7608 static void __exit e1000_exit_module(void) 7609 { 7610 pci_unregister_driver(&e1000_driver); 7611 } 7612 module_exit(e1000_exit_module); 7613 7614 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 7615 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver"); 7616 MODULE_LICENSE("GPL v2"); 7617 MODULE_VERSION(DRV_VERSION); 7618 7619 /* netdev.c */ 7620