1 /*******************************************************************************
2 
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2013 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 
27 *******************************************************************************/
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include <linux/module.h>
32 #include <linux/types.h>
33 #include <linux/init.h>
34 #include <linux/pci.h>
35 #include <linux/vmalloc.h>
36 #include <linux/pagemap.h>
37 #include <linux/delay.h>
38 #include <linux/netdevice.h>
39 #include <linux/interrupt.h>
40 #include <linux/tcp.h>
41 #include <linux/ipv6.h>
42 #include <linux/slab.h>
43 #include <net/checksum.h>
44 #include <net/ip6_checksum.h>
45 #include <linux/ethtool.h>
46 #include <linux/if_vlan.h>
47 #include <linux/cpu.h>
48 #include <linux/smp.h>
49 #include <linux/pm_qos.h>
50 #include <linux/pm_runtime.h>
51 #include <linux/aer.h>
52 #include <linux/prefetch.h>
53 
54 #include "e1000.h"
55 
56 #define DRV_EXTRAVERSION "-k"
57 
58 #define DRV_VERSION "2.2.14" DRV_EXTRAVERSION
59 char e1000e_driver_name[] = "e1000e";
60 const char e1000e_driver_version[] = DRV_VERSION;
61 
62 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
63 static int debug = -1;
64 module_param(debug, int, 0);
65 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
66 
67 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state);
68 
69 static const struct e1000_info *e1000_info_tbl[] = {
70 	[board_82571]		= &e1000_82571_info,
71 	[board_82572]		= &e1000_82572_info,
72 	[board_82573]		= &e1000_82573_info,
73 	[board_82574]		= &e1000_82574_info,
74 	[board_82583]		= &e1000_82583_info,
75 	[board_80003es2lan]	= &e1000_es2_info,
76 	[board_ich8lan]		= &e1000_ich8_info,
77 	[board_ich9lan]		= &e1000_ich9_info,
78 	[board_ich10lan]	= &e1000_ich10_info,
79 	[board_pchlan]		= &e1000_pch_info,
80 	[board_pch2lan]		= &e1000_pch2_info,
81 	[board_pch_lpt]		= &e1000_pch_lpt_info,
82 };
83 
84 struct e1000_reg_info {
85 	u32 ofs;
86 	char *name;
87 };
88 
89 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
90 	/* General Registers */
91 	{E1000_CTRL, "CTRL"},
92 	{E1000_STATUS, "STATUS"},
93 	{E1000_CTRL_EXT, "CTRL_EXT"},
94 
95 	/* Interrupt Registers */
96 	{E1000_ICR, "ICR"},
97 
98 	/* Rx Registers */
99 	{E1000_RCTL, "RCTL"},
100 	{E1000_RDLEN(0), "RDLEN"},
101 	{E1000_RDH(0), "RDH"},
102 	{E1000_RDT(0), "RDT"},
103 	{E1000_RDTR, "RDTR"},
104 	{E1000_RXDCTL(0), "RXDCTL"},
105 	{E1000_ERT, "ERT"},
106 	{E1000_RDBAL(0), "RDBAL"},
107 	{E1000_RDBAH(0), "RDBAH"},
108 	{E1000_RDFH, "RDFH"},
109 	{E1000_RDFT, "RDFT"},
110 	{E1000_RDFHS, "RDFHS"},
111 	{E1000_RDFTS, "RDFTS"},
112 	{E1000_RDFPC, "RDFPC"},
113 
114 	/* Tx Registers */
115 	{E1000_TCTL, "TCTL"},
116 	{E1000_TDBAL(0), "TDBAL"},
117 	{E1000_TDBAH(0), "TDBAH"},
118 	{E1000_TDLEN(0), "TDLEN"},
119 	{E1000_TDH(0), "TDH"},
120 	{E1000_TDT(0), "TDT"},
121 	{E1000_TIDV, "TIDV"},
122 	{E1000_TXDCTL(0), "TXDCTL"},
123 	{E1000_TADV, "TADV"},
124 	{E1000_TARC(0), "TARC"},
125 	{E1000_TDFH, "TDFH"},
126 	{E1000_TDFT, "TDFT"},
127 	{E1000_TDFHS, "TDFHS"},
128 	{E1000_TDFTS, "TDFTS"},
129 	{E1000_TDFPC, "TDFPC"},
130 
131 	/* List Terminator */
132 	{0, NULL}
133 };
134 
135 /**
136  * e1000_regdump - register printout routine
137  * @hw: pointer to the HW structure
138  * @reginfo: pointer to the register info table
139  **/
140 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
141 {
142 	int n = 0;
143 	char rname[16];
144 	u32 regs[8];
145 
146 	switch (reginfo->ofs) {
147 	case E1000_RXDCTL(0):
148 		for (n = 0; n < 2; n++)
149 			regs[n] = __er32(hw, E1000_RXDCTL(n));
150 		break;
151 	case E1000_TXDCTL(0):
152 		for (n = 0; n < 2; n++)
153 			regs[n] = __er32(hw, E1000_TXDCTL(n));
154 		break;
155 	case E1000_TARC(0):
156 		for (n = 0; n < 2; n++)
157 			regs[n] = __er32(hw, E1000_TARC(n));
158 		break;
159 	default:
160 		pr_info("%-15s %08x\n",
161 			reginfo->name, __er32(hw, reginfo->ofs));
162 		return;
163 	}
164 
165 	snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
166 	pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
167 }
168 
169 static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
170 				 struct e1000_buffer *bi)
171 {
172 	int i;
173 	struct e1000_ps_page *ps_page;
174 
175 	for (i = 0; i < adapter->rx_ps_pages; i++) {
176 		ps_page = &bi->ps_pages[i];
177 
178 		if (ps_page->page) {
179 			pr_info("packet dump for ps_page %d:\n", i);
180 			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
181 				       16, 1, page_address(ps_page->page),
182 				       PAGE_SIZE, true);
183 		}
184 	}
185 }
186 
187 /**
188  * e1000e_dump - Print registers, Tx-ring and Rx-ring
189  * @adapter: board private structure
190  **/
191 static void e1000e_dump(struct e1000_adapter *adapter)
192 {
193 	struct net_device *netdev = adapter->netdev;
194 	struct e1000_hw *hw = &adapter->hw;
195 	struct e1000_reg_info *reginfo;
196 	struct e1000_ring *tx_ring = adapter->tx_ring;
197 	struct e1000_tx_desc *tx_desc;
198 	struct my_u0 {
199 		__le64 a;
200 		__le64 b;
201 	} *u0;
202 	struct e1000_buffer *buffer_info;
203 	struct e1000_ring *rx_ring = adapter->rx_ring;
204 	union e1000_rx_desc_packet_split *rx_desc_ps;
205 	union e1000_rx_desc_extended *rx_desc;
206 	struct my_u1 {
207 		__le64 a;
208 		__le64 b;
209 		__le64 c;
210 		__le64 d;
211 	} *u1;
212 	u32 staterr;
213 	int i = 0;
214 
215 	if (!netif_msg_hw(adapter))
216 		return;
217 
218 	/* Print netdevice Info */
219 	if (netdev) {
220 		dev_info(&adapter->pdev->dev, "Net device Info\n");
221 		pr_info("Device Name     state            trans_start      last_rx\n");
222 		pr_info("%-15s %016lX %016lX %016lX\n",
223 			netdev->name, netdev->state, netdev->trans_start,
224 			netdev->last_rx);
225 	}
226 
227 	/* Print Registers */
228 	dev_info(&adapter->pdev->dev, "Register Dump\n");
229 	pr_info(" Register Name   Value\n");
230 	for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
231 	     reginfo->name; reginfo++) {
232 		e1000_regdump(hw, reginfo);
233 	}
234 
235 	/* Print Tx Ring Summary */
236 	if (!netdev || !netif_running(netdev))
237 		return;
238 
239 	dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
240 	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
241 	buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
242 	pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
243 		0, tx_ring->next_to_use, tx_ring->next_to_clean,
244 		(unsigned long long)buffer_info->dma,
245 		buffer_info->length,
246 		buffer_info->next_to_watch,
247 		(unsigned long long)buffer_info->time_stamp);
248 
249 	/* Print Tx Ring */
250 	if (!netif_msg_tx_done(adapter))
251 		goto rx_ring_summary;
252 
253 	dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
254 
255 	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
256 	 *
257 	 * Legacy Transmit Descriptor
258 	 *   +--------------------------------------------------------------+
259 	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
260 	 *   +--------------------------------------------------------------+
261 	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
262 	 *   +--------------------------------------------------------------+
263 	 *   63       48 47        36 35    32 31     24 23    16 15        0
264 	 *
265 	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
266 	 *   63      48 47    40 39       32 31             16 15    8 7      0
267 	 *   +----------------------------------------------------------------+
268 	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
269 	 *   +----------------------------------------------------------------+
270 	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
271 	 *   +----------------------------------------------------------------+
272 	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
273 	 *
274 	 * Extended Data Descriptor (DTYP=0x1)
275 	 *   +----------------------------------------------------------------+
276 	 * 0 |                     Buffer Address [63:0]                      |
277 	 *   +----------------------------------------------------------------+
278 	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
279 	 *   +----------------------------------------------------------------+
280 	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
281 	 */
282 	pr_info("Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Legacy format\n");
283 	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Context format\n");
284 	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Data format\n");
285 	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
286 		const char *next_desc;
287 		tx_desc = E1000_TX_DESC(*tx_ring, i);
288 		buffer_info = &tx_ring->buffer_info[i];
289 		u0 = (struct my_u0 *)tx_desc;
290 		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
291 			next_desc = " NTC/U";
292 		else if (i == tx_ring->next_to_use)
293 			next_desc = " NTU";
294 		else if (i == tx_ring->next_to_clean)
295 			next_desc = " NTC";
296 		else
297 			next_desc = "";
298 		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p%s\n",
299 			(!(le64_to_cpu(u0->b) & (1 << 29)) ? 'l' :
300 			 ((le64_to_cpu(u0->b) & (1 << 20)) ? 'd' : 'c')),
301 			i,
302 			(unsigned long long)le64_to_cpu(u0->a),
303 			(unsigned long long)le64_to_cpu(u0->b),
304 			(unsigned long long)buffer_info->dma,
305 			buffer_info->length, buffer_info->next_to_watch,
306 			(unsigned long long)buffer_info->time_stamp,
307 			buffer_info->skb, next_desc);
308 
309 		if (netif_msg_pktdata(adapter) && buffer_info->skb)
310 			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
311 				       16, 1, buffer_info->skb->data,
312 				       buffer_info->skb->len, true);
313 	}
314 
315 	/* Print Rx Ring Summary */
316 rx_ring_summary:
317 	dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
318 	pr_info("Queue [NTU] [NTC]\n");
319 	pr_info(" %5d %5X %5X\n",
320 		0, rx_ring->next_to_use, rx_ring->next_to_clean);
321 
322 	/* Print Rx Ring */
323 	if (!netif_msg_rx_status(adapter))
324 		return;
325 
326 	dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
327 	switch (adapter->rx_ps_pages) {
328 	case 1:
329 	case 2:
330 	case 3:
331 		/* [Extended] Packet Split Receive Descriptor Format
332 		 *
333 		 *    +-----------------------------------------------------+
334 		 *  0 |                Buffer Address 0 [63:0]              |
335 		 *    +-----------------------------------------------------+
336 		 *  8 |                Buffer Address 1 [63:0]              |
337 		 *    +-----------------------------------------------------+
338 		 * 16 |                Buffer Address 2 [63:0]              |
339 		 *    +-----------------------------------------------------+
340 		 * 24 |                Buffer Address 3 [63:0]              |
341 		 *    +-----------------------------------------------------+
342 		 */
343 		pr_info("R  [desc]      [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] [bi->skb] <-- Ext Pkt Split format\n");
344 		/* [Extended] Receive Descriptor (Write-Back) Format
345 		 *
346 		 *   63       48 47    32 31     13 12    8 7    4 3        0
347 		 *   +------------------------------------------------------+
348 		 * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
349 		 *   | Checksum | Ident  |         | Queue |      |  Type   |
350 		 *   +------------------------------------------------------+
351 		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
352 		 *   +------------------------------------------------------+
353 		 *   63       48 47    32 31            20 19               0
354 		 */
355 		pr_info("RWB[desc]      [ck ipid mrqhsh] [vl   l0 ee  es] [ l3  l2  l1 hs] [reserved      ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
356 		for (i = 0; i < rx_ring->count; i++) {
357 			const char *next_desc;
358 			buffer_info = &rx_ring->buffer_info[i];
359 			rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
360 			u1 = (struct my_u1 *)rx_desc_ps;
361 			staterr =
362 			    le32_to_cpu(rx_desc_ps->wb.middle.status_error);
363 
364 			if (i == rx_ring->next_to_use)
365 				next_desc = " NTU";
366 			else if (i == rx_ring->next_to_clean)
367 				next_desc = " NTC";
368 			else
369 				next_desc = "";
370 
371 			if (staterr & E1000_RXD_STAT_DD) {
372 				/* Descriptor Done */
373 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX ---------------- %p%s\n",
374 					"RWB", i,
375 					(unsigned long long)le64_to_cpu(u1->a),
376 					(unsigned long long)le64_to_cpu(u1->b),
377 					(unsigned long long)le64_to_cpu(u1->c),
378 					(unsigned long long)le64_to_cpu(u1->d),
379 					buffer_info->skb, next_desc);
380 			} else {
381 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX %016llX %p%s\n",
382 					"R  ", i,
383 					(unsigned long long)le64_to_cpu(u1->a),
384 					(unsigned long long)le64_to_cpu(u1->b),
385 					(unsigned long long)le64_to_cpu(u1->c),
386 					(unsigned long long)le64_to_cpu(u1->d),
387 					(unsigned long long)buffer_info->dma,
388 					buffer_info->skb, next_desc);
389 
390 				if (netif_msg_pktdata(adapter))
391 					e1000e_dump_ps_pages(adapter,
392 							     buffer_info);
393 			}
394 		}
395 		break;
396 	default:
397 	case 0:
398 		/* Extended Receive Descriptor (Read) Format
399 		 *
400 		 *   +-----------------------------------------------------+
401 		 * 0 |                Buffer Address [63:0]                |
402 		 *   +-----------------------------------------------------+
403 		 * 8 |                      Reserved                       |
404 		 *   +-----------------------------------------------------+
405 		 */
406 		pr_info("R  [desc]      [buf addr 63:0 ] [reserved 63:0 ] [bi->dma       ] [bi->skb] <-- Ext (Read) format\n");
407 		/* Extended Receive Descriptor (Write-Back) Format
408 		 *
409 		 *   63       48 47    32 31    24 23            4 3        0
410 		 *   +------------------------------------------------------+
411 		 *   |     RSS Hash      |        |               |         |
412 		 * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
413 		 *   | Packet   | IP     |        |               |  Type   |
414 		 *   | Checksum | Ident  |        |               |         |
415 		 *   +------------------------------------------------------+
416 		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
417 		 *   +------------------------------------------------------+
418 		 *   63       48 47    32 31            20 19               0
419 		 */
420 		pr_info("RWB[desc]      [cs ipid    mrq] [vt   ln xe  xs] [bi->skb] <-- Ext (Write-Back) format\n");
421 
422 		for (i = 0; i < rx_ring->count; i++) {
423 			const char *next_desc;
424 
425 			buffer_info = &rx_ring->buffer_info[i];
426 			rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
427 			u1 = (struct my_u1 *)rx_desc;
428 			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
429 
430 			if (i == rx_ring->next_to_use)
431 				next_desc = " NTU";
432 			else if (i == rx_ring->next_to_clean)
433 				next_desc = " NTC";
434 			else
435 				next_desc = "";
436 
437 			if (staterr & E1000_RXD_STAT_DD) {
438 				/* Descriptor Done */
439 				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %p%s\n",
440 					"RWB", i,
441 					(unsigned long long)le64_to_cpu(u1->a),
442 					(unsigned long long)le64_to_cpu(u1->b),
443 					buffer_info->skb, next_desc);
444 			} else {
445 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %p%s\n",
446 					"R  ", i,
447 					(unsigned long long)le64_to_cpu(u1->a),
448 					(unsigned long long)le64_to_cpu(u1->b),
449 					(unsigned long long)buffer_info->dma,
450 					buffer_info->skb, next_desc);
451 
452 				if (netif_msg_pktdata(adapter) &&
453 				    buffer_info->skb)
454 					print_hex_dump(KERN_INFO, "",
455 						       DUMP_PREFIX_ADDRESS, 16,
456 						       1,
457 						       buffer_info->skb->data,
458 						       adapter->rx_buffer_len,
459 						       true);
460 			}
461 		}
462 	}
463 }
464 
465 /**
466  * e1000_desc_unused - calculate if we have unused descriptors
467  **/
468 static int e1000_desc_unused(struct e1000_ring *ring)
469 {
470 	if (ring->next_to_clean > ring->next_to_use)
471 		return ring->next_to_clean - ring->next_to_use - 1;
472 
473 	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
474 }
475 
476 /**
477  * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
478  * @adapter: board private structure
479  * @hwtstamps: time stamp structure to update
480  * @systim: unsigned 64bit system time value.
481  *
482  * Convert the system time value stored in the RX/TXSTMP registers into a
483  * hwtstamp which can be used by the upper level time stamping functions.
484  *
485  * The 'systim_lock' spinlock is used to protect the consistency of the
486  * system time value. This is needed because reading the 64 bit time
487  * value involves reading two 32 bit registers. The first read latches the
488  * value.
489  **/
490 static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter,
491 				      struct skb_shared_hwtstamps *hwtstamps,
492 				      u64 systim)
493 {
494 	u64 ns;
495 	unsigned long flags;
496 
497 	spin_lock_irqsave(&adapter->systim_lock, flags);
498 	ns = timecounter_cyc2time(&adapter->tc, systim);
499 	spin_unlock_irqrestore(&adapter->systim_lock, flags);
500 
501 	memset(hwtstamps, 0, sizeof(*hwtstamps));
502 	hwtstamps->hwtstamp = ns_to_ktime(ns);
503 }
504 
505 /**
506  * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
507  * @adapter: board private structure
508  * @status: descriptor extended error and status field
509  * @skb: particular skb to include time stamp
510  *
511  * If the time stamp is valid, convert it into the timecounter ns value
512  * and store that result into the shhwtstamps structure which is passed
513  * up the network stack.
514  **/
515 static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status,
516 			       struct sk_buff *skb)
517 {
518 	struct e1000_hw *hw = &adapter->hw;
519 	u64 rxstmp;
520 
521 	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) ||
522 	    !(status & E1000_RXDEXT_STATERR_TST) ||
523 	    !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
524 		return;
525 
526 	/* The Rx time stamp registers contain the time stamp.  No other
527 	 * received packet will be time stamped until the Rx time stamp
528 	 * registers are read.  Because only one packet can be time stamped
529 	 * at a time, the register values must belong to this packet and
530 	 * therefore none of the other additional attributes need to be
531 	 * compared.
532 	 */
533 	rxstmp = (u64)er32(RXSTMPL);
534 	rxstmp |= (u64)er32(RXSTMPH) << 32;
535 	e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp);
536 
537 	adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP;
538 }
539 
540 /**
541  * e1000_receive_skb - helper function to handle Rx indications
542  * @adapter: board private structure
543  * @staterr: descriptor extended error and status field as written by hardware
544  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
545  * @skb: pointer to sk_buff to be indicated to stack
546  **/
547 static void e1000_receive_skb(struct e1000_adapter *adapter,
548 			      struct net_device *netdev, struct sk_buff *skb,
549 			      u32 staterr, __le16 vlan)
550 {
551 	u16 tag = le16_to_cpu(vlan);
552 
553 	e1000e_rx_hwtstamp(adapter, staterr, skb);
554 
555 	skb->protocol = eth_type_trans(skb, netdev);
556 
557 	if (staterr & E1000_RXD_STAT_VP)
558 		__vlan_hwaccel_put_tag(skb, tag);
559 
560 	napi_gro_receive(&adapter->napi, skb);
561 }
562 
563 /**
564  * e1000_rx_checksum - Receive Checksum Offload
565  * @adapter: board private structure
566  * @status_err: receive descriptor status and error fields
567  * @csum: receive descriptor csum field
568  * @sk_buff: socket buffer with received data
569  **/
570 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
571 			      struct sk_buff *skb)
572 {
573 	u16 status = (u16)status_err;
574 	u8 errors = (u8)(status_err >> 24);
575 
576 	skb_checksum_none_assert(skb);
577 
578 	/* Rx checksum disabled */
579 	if (!(adapter->netdev->features & NETIF_F_RXCSUM))
580 		return;
581 
582 	/* Ignore Checksum bit is set */
583 	if (status & E1000_RXD_STAT_IXSM)
584 		return;
585 
586 	/* TCP/UDP checksum error bit or IP checksum error bit is set */
587 	if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
588 		/* let the stack verify checksum errors */
589 		adapter->hw_csum_err++;
590 		return;
591 	}
592 
593 	/* TCP/UDP Checksum has not been calculated */
594 	if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
595 		return;
596 
597 	/* It must be a TCP or UDP packet with a valid checksum */
598 	skb->ip_summed = CHECKSUM_UNNECESSARY;
599 	adapter->hw_csum_good++;
600 }
601 
602 static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
603 {
604 	struct e1000_adapter *adapter = rx_ring->adapter;
605 	struct e1000_hw *hw = &adapter->hw;
606 	s32 ret_val = __ew32_prepare(hw);
607 
608 	writel(i, rx_ring->tail);
609 
610 	if (unlikely(!ret_val && (i != readl(rx_ring->tail)))) {
611 		u32 rctl = er32(RCTL);
612 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
613 		e_err("ME firmware caused invalid RDT - resetting\n");
614 		schedule_work(&adapter->reset_task);
615 	}
616 }
617 
618 static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
619 {
620 	struct e1000_adapter *adapter = tx_ring->adapter;
621 	struct e1000_hw *hw = &adapter->hw;
622 	s32 ret_val = __ew32_prepare(hw);
623 
624 	writel(i, tx_ring->tail);
625 
626 	if (unlikely(!ret_val && (i != readl(tx_ring->tail)))) {
627 		u32 tctl = er32(TCTL);
628 		ew32(TCTL, tctl & ~E1000_TCTL_EN);
629 		e_err("ME firmware caused invalid TDT - resetting\n");
630 		schedule_work(&adapter->reset_task);
631 	}
632 }
633 
634 /**
635  * e1000_alloc_rx_buffers - Replace used receive buffers
636  * @rx_ring: Rx descriptor ring
637  **/
638 static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
639 				   int cleaned_count, gfp_t gfp)
640 {
641 	struct e1000_adapter *adapter = rx_ring->adapter;
642 	struct net_device *netdev = adapter->netdev;
643 	struct pci_dev *pdev = adapter->pdev;
644 	union e1000_rx_desc_extended *rx_desc;
645 	struct e1000_buffer *buffer_info;
646 	struct sk_buff *skb;
647 	unsigned int i;
648 	unsigned int bufsz = adapter->rx_buffer_len;
649 
650 	i = rx_ring->next_to_use;
651 	buffer_info = &rx_ring->buffer_info[i];
652 
653 	while (cleaned_count--) {
654 		skb = buffer_info->skb;
655 		if (skb) {
656 			skb_trim(skb, 0);
657 			goto map_skb;
658 		}
659 
660 		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
661 		if (!skb) {
662 			/* Better luck next round */
663 			adapter->alloc_rx_buff_failed++;
664 			break;
665 		}
666 
667 		buffer_info->skb = skb;
668 map_skb:
669 		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
670 						  adapter->rx_buffer_len,
671 						  DMA_FROM_DEVICE);
672 		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
673 			dev_err(&pdev->dev, "Rx DMA map failed\n");
674 			adapter->rx_dma_failed++;
675 			break;
676 		}
677 
678 		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
679 		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
680 
681 		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
682 			/* Force memory writes to complete before letting h/w
683 			 * know there are new descriptors to fetch.  (Only
684 			 * applicable for weak-ordered memory model archs,
685 			 * such as IA-64).
686 			 */
687 			wmb();
688 			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
689 				e1000e_update_rdt_wa(rx_ring, i);
690 			else
691 				writel(i, rx_ring->tail);
692 		}
693 		i++;
694 		if (i == rx_ring->count)
695 			i = 0;
696 		buffer_info = &rx_ring->buffer_info[i];
697 	}
698 
699 	rx_ring->next_to_use = i;
700 }
701 
702 /**
703  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
704  * @rx_ring: Rx descriptor ring
705  **/
706 static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
707 				      int cleaned_count, gfp_t gfp)
708 {
709 	struct e1000_adapter *adapter = rx_ring->adapter;
710 	struct net_device *netdev = adapter->netdev;
711 	struct pci_dev *pdev = adapter->pdev;
712 	union e1000_rx_desc_packet_split *rx_desc;
713 	struct e1000_buffer *buffer_info;
714 	struct e1000_ps_page *ps_page;
715 	struct sk_buff *skb;
716 	unsigned int i, j;
717 
718 	i = rx_ring->next_to_use;
719 	buffer_info = &rx_ring->buffer_info[i];
720 
721 	while (cleaned_count--) {
722 		rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
723 
724 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
725 			ps_page = &buffer_info->ps_pages[j];
726 			if (j >= adapter->rx_ps_pages) {
727 				/* all unused desc entries get hw null ptr */
728 				rx_desc->read.buffer_addr[j + 1] =
729 				    ~cpu_to_le64(0);
730 				continue;
731 			}
732 			if (!ps_page->page) {
733 				ps_page->page = alloc_page(gfp);
734 				if (!ps_page->page) {
735 					adapter->alloc_rx_buff_failed++;
736 					goto no_buffers;
737 				}
738 				ps_page->dma = dma_map_page(&pdev->dev,
739 							    ps_page->page,
740 							    0, PAGE_SIZE,
741 							    DMA_FROM_DEVICE);
742 				if (dma_mapping_error(&pdev->dev,
743 						      ps_page->dma)) {
744 					dev_err(&adapter->pdev->dev,
745 						"Rx DMA page map failed\n");
746 					adapter->rx_dma_failed++;
747 					goto no_buffers;
748 				}
749 			}
750 			/* Refresh the desc even if buffer_addrs
751 			 * didn't change because each write-back
752 			 * erases this info.
753 			 */
754 			rx_desc->read.buffer_addr[j + 1] =
755 			    cpu_to_le64(ps_page->dma);
756 		}
757 
758 		skb = __netdev_alloc_skb_ip_align(netdev,
759 						  adapter->rx_ps_bsize0,
760 						  gfp);
761 
762 		if (!skb) {
763 			adapter->alloc_rx_buff_failed++;
764 			break;
765 		}
766 
767 		buffer_info->skb = skb;
768 		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
769 						  adapter->rx_ps_bsize0,
770 						  DMA_FROM_DEVICE);
771 		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
772 			dev_err(&pdev->dev, "Rx DMA map failed\n");
773 			adapter->rx_dma_failed++;
774 			/* cleanup skb */
775 			dev_kfree_skb_any(skb);
776 			buffer_info->skb = NULL;
777 			break;
778 		}
779 
780 		rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
781 
782 		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
783 			/* Force memory writes to complete before letting h/w
784 			 * know there are new descriptors to fetch.  (Only
785 			 * applicable for weak-ordered memory model archs,
786 			 * such as IA-64).
787 			 */
788 			wmb();
789 			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
790 				e1000e_update_rdt_wa(rx_ring, i << 1);
791 			else
792 				writel(i << 1, rx_ring->tail);
793 		}
794 
795 		i++;
796 		if (i == rx_ring->count)
797 			i = 0;
798 		buffer_info = &rx_ring->buffer_info[i];
799 	}
800 
801 no_buffers:
802 	rx_ring->next_to_use = i;
803 }
804 
805 /**
806  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
807  * @rx_ring: Rx descriptor ring
808  * @cleaned_count: number of buffers to allocate this pass
809  **/
810 
811 static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
812 					 int cleaned_count, gfp_t gfp)
813 {
814 	struct e1000_adapter *adapter = rx_ring->adapter;
815 	struct net_device *netdev = adapter->netdev;
816 	struct pci_dev *pdev = adapter->pdev;
817 	union e1000_rx_desc_extended *rx_desc;
818 	struct e1000_buffer *buffer_info;
819 	struct sk_buff *skb;
820 	unsigned int i;
821 	unsigned int bufsz = 256 - 16;	/* for skb_reserve */
822 
823 	i = rx_ring->next_to_use;
824 	buffer_info = &rx_ring->buffer_info[i];
825 
826 	while (cleaned_count--) {
827 		skb = buffer_info->skb;
828 		if (skb) {
829 			skb_trim(skb, 0);
830 			goto check_page;
831 		}
832 
833 		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
834 		if (unlikely(!skb)) {
835 			/* Better luck next round */
836 			adapter->alloc_rx_buff_failed++;
837 			break;
838 		}
839 
840 		buffer_info->skb = skb;
841 check_page:
842 		/* allocate a new page if necessary */
843 		if (!buffer_info->page) {
844 			buffer_info->page = alloc_page(gfp);
845 			if (unlikely(!buffer_info->page)) {
846 				adapter->alloc_rx_buff_failed++;
847 				break;
848 			}
849 		}
850 
851 		if (!buffer_info->dma)
852 			buffer_info->dma = dma_map_page(&pdev->dev,
853 			                                buffer_info->page, 0,
854 			                                PAGE_SIZE,
855 							DMA_FROM_DEVICE);
856 
857 		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
858 		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
859 
860 		if (unlikely(++i == rx_ring->count))
861 			i = 0;
862 		buffer_info = &rx_ring->buffer_info[i];
863 	}
864 
865 	if (likely(rx_ring->next_to_use != i)) {
866 		rx_ring->next_to_use = i;
867 		if (unlikely(i-- == 0))
868 			i = (rx_ring->count - 1);
869 
870 		/* Force memory writes to complete before letting h/w
871 		 * know there are new descriptors to fetch.  (Only
872 		 * applicable for weak-ordered memory model archs,
873 		 * such as IA-64).
874 		 */
875 		wmb();
876 		if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
877 			e1000e_update_rdt_wa(rx_ring, i);
878 		else
879 			writel(i, rx_ring->tail);
880 	}
881 }
882 
883 static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
884 				 struct sk_buff *skb)
885 {
886 	if (netdev->features & NETIF_F_RXHASH)
887 		skb->rxhash = le32_to_cpu(rss);
888 }
889 
890 /**
891  * e1000_clean_rx_irq - Send received data up the network stack
892  * @rx_ring: Rx descriptor ring
893  *
894  * the return value indicates whether actual cleaning was done, there
895  * is no guarantee that everything was cleaned
896  **/
897 static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
898 			       int work_to_do)
899 {
900 	struct e1000_adapter *adapter = rx_ring->adapter;
901 	struct net_device *netdev = adapter->netdev;
902 	struct pci_dev *pdev = adapter->pdev;
903 	struct e1000_hw *hw = &adapter->hw;
904 	union e1000_rx_desc_extended *rx_desc, *next_rxd;
905 	struct e1000_buffer *buffer_info, *next_buffer;
906 	u32 length, staterr;
907 	unsigned int i;
908 	int cleaned_count = 0;
909 	bool cleaned = false;
910 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
911 
912 	i = rx_ring->next_to_clean;
913 	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
914 	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
915 	buffer_info = &rx_ring->buffer_info[i];
916 
917 	while (staterr & E1000_RXD_STAT_DD) {
918 		struct sk_buff *skb;
919 
920 		if (*work_done >= work_to_do)
921 			break;
922 		(*work_done)++;
923 		rmb();	/* read descriptor and rx_buffer_info after status DD */
924 
925 		skb = buffer_info->skb;
926 		buffer_info->skb = NULL;
927 
928 		prefetch(skb->data - NET_IP_ALIGN);
929 
930 		i++;
931 		if (i == rx_ring->count)
932 			i = 0;
933 		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
934 		prefetch(next_rxd);
935 
936 		next_buffer = &rx_ring->buffer_info[i];
937 
938 		cleaned = true;
939 		cleaned_count++;
940 		dma_unmap_single(&pdev->dev,
941 				 buffer_info->dma,
942 				 adapter->rx_buffer_len,
943 				 DMA_FROM_DEVICE);
944 		buffer_info->dma = 0;
945 
946 		length = le16_to_cpu(rx_desc->wb.upper.length);
947 
948 		/* !EOP means multiple descriptors were used to store a single
949 		 * packet, if that's the case we need to toss it.  In fact, we
950 		 * need to toss every packet with the EOP bit clear and the
951 		 * next frame that _does_ have the EOP bit set, as it is by
952 		 * definition only a frame fragment
953 		 */
954 		if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
955 			adapter->flags2 |= FLAG2_IS_DISCARDING;
956 
957 		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
958 			/* All receives must fit into a single buffer */
959 			e_dbg("Receive packet consumed multiple buffers\n");
960 			/* recycle */
961 			buffer_info->skb = skb;
962 			if (staterr & E1000_RXD_STAT_EOP)
963 				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
964 			goto next_desc;
965 		}
966 
967 		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
968 			     !(netdev->features & NETIF_F_RXALL))) {
969 			/* recycle */
970 			buffer_info->skb = skb;
971 			goto next_desc;
972 		}
973 
974 		/* adjust length to remove Ethernet CRC */
975 		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
976 			/* If configured to store CRC, don't subtract FCS,
977 			 * but keep the FCS bytes out of the total_rx_bytes
978 			 * counter
979 			 */
980 			if (netdev->features & NETIF_F_RXFCS)
981 				total_rx_bytes -= 4;
982 			else
983 				length -= 4;
984 		}
985 
986 		total_rx_bytes += length;
987 		total_rx_packets++;
988 
989 		/* code added for copybreak, this should improve
990 		 * performance for small packets with large amounts
991 		 * of reassembly being done in the stack
992 		 */
993 		if (length < copybreak) {
994 			struct sk_buff *new_skb =
995 			    netdev_alloc_skb_ip_align(netdev, length);
996 			if (new_skb) {
997 				skb_copy_to_linear_data_offset(new_skb,
998 							       -NET_IP_ALIGN,
999 							       (skb->data -
1000 								NET_IP_ALIGN),
1001 							       (length +
1002 								NET_IP_ALIGN));
1003 				/* save the skb in buffer_info as good */
1004 				buffer_info->skb = skb;
1005 				skb = new_skb;
1006 			}
1007 			/* else just continue with the old one */
1008 		}
1009 		/* end copybreak code */
1010 		skb_put(skb, length);
1011 
1012 		/* Receive Checksum Offload */
1013 		e1000_rx_checksum(adapter, staterr, skb);
1014 
1015 		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1016 
1017 		e1000_receive_skb(adapter, netdev, skb, staterr,
1018 				  rx_desc->wb.upper.vlan);
1019 
1020 next_desc:
1021 		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1022 
1023 		/* return some buffers to hardware, one at a time is too slow */
1024 		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1025 			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1026 					      GFP_ATOMIC);
1027 			cleaned_count = 0;
1028 		}
1029 
1030 		/* use prefetched values */
1031 		rx_desc = next_rxd;
1032 		buffer_info = next_buffer;
1033 
1034 		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1035 	}
1036 	rx_ring->next_to_clean = i;
1037 
1038 	cleaned_count = e1000_desc_unused(rx_ring);
1039 	if (cleaned_count)
1040 		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1041 
1042 	adapter->total_rx_bytes += total_rx_bytes;
1043 	adapter->total_rx_packets += total_rx_packets;
1044 	return cleaned;
1045 }
1046 
1047 static void e1000_put_txbuf(struct e1000_ring *tx_ring,
1048 			    struct e1000_buffer *buffer_info)
1049 {
1050 	struct e1000_adapter *adapter = tx_ring->adapter;
1051 
1052 	if (buffer_info->dma) {
1053 		if (buffer_info->mapped_as_page)
1054 			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1055 				       buffer_info->length, DMA_TO_DEVICE);
1056 		else
1057 			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1058 					 buffer_info->length, DMA_TO_DEVICE);
1059 		buffer_info->dma = 0;
1060 	}
1061 	if (buffer_info->skb) {
1062 		dev_kfree_skb_any(buffer_info->skb);
1063 		buffer_info->skb = NULL;
1064 	}
1065 	buffer_info->time_stamp = 0;
1066 }
1067 
1068 static void e1000_print_hw_hang(struct work_struct *work)
1069 {
1070 	struct e1000_adapter *adapter = container_of(work,
1071 	                                             struct e1000_adapter,
1072 	                                             print_hang_task);
1073 	struct net_device *netdev = adapter->netdev;
1074 	struct e1000_ring *tx_ring = adapter->tx_ring;
1075 	unsigned int i = tx_ring->next_to_clean;
1076 	unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1077 	struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1078 	struct e1000_hw *hw = &adapter->hw;
1079 	u16 phy_status, phy_1000t_status, phy_ext_status;
1080 	u16 pci_status;
1081 
1082 	if (test_bit(__E1000_DOWN, &adapter->state))
1083 		return;
1084 
1085 	if (!adapter->tx_hang_recheck &&
1086 	    (adapter->flags2 & FLAG2_DMA_BURST)) {
1087 		/* May be block on write-back, flush and detect again
1088 		 * flush pending descriptor writebacks to memory
1089 		 */
1090 		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1091 		/* execute the writes immediately */
1092 		e1e_flush();
1093 		/* Due to rare timing issues, write to TIDV again to ensure
1094 		 * the write is successful
1095 		 */
1096 		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1097 		/* execute the writes immediately */
1098 		e1e_flush();
1099 		adapter->tx_hang_recheck = true;
1100 		return;
1101 	}
1102 	/* Real hang detected */
1103 	adapter->tx_hang_recheck = false;
1104 	netif_stop_queue(netdev);
1105 
1106 	e1e_rphy(hw, MII_BMSR, &phy_status);
1107 	e1e_rphy(hw, MII_STAT1000, &phy_1000t_status);
1108 	e1e_rphy(hw, MII_ESTATUS, &phy_ext_status);
1109 
1110 	pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1111 
1112 	/* detected Hardware unit hang */
1113 	e_err("Detected Hardware Unit Hang:\n"
1114 	      "  TDH                  <%x>\n"
1115 	      "  TDT                  <%x>\n"
1116 	      "  next_to_use          <%x>\n"
1117 	      "  next_to_clean        <%x>\n"
1118 	      "buffer_info[next_to_clean]:\n"
1119 	      "  time_stamp           <%lx>\n"
1120 	      "  next_to_watch        <%x>\n"
1121 	      "  jiffies              <%lx>\n"
1122 	      "  next_to_watch.status <%x>\n"
1123 	      "MAC Status             <%x>\n"
1124 	      "PHY Status             <%x>\n"
1125 	      "PHY 1000BASE-T Status  <%x>\n"
1126 	      "PHY Extended Status    <%x>\n"
1127 	      "PCI Status             <%x>\n",
1128 	      readl(tx_ring->head),
1129 	      readl(tx_ring->tail),
1130 	      tx_ring->next_to_use,
1131 	      tx_ring->next_to_clean,
1132 	      tx_ring->buffer_info[eop].time_stamp,
1133 	      eop,
1134 	      jiffies,
1135 	      eop_desc->upper.fields.status,
1136 	      er32(STATUS),
1137 	      phy_status,
1138 	      phy_1000t_status,
1139 	      phy_ext_status,
1140 	      pci_status);
1141 
1142 	/* Suggest workaround for known h/w issue */
1143 	if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1144 		e_err("Try turning off Tx pause (flow control) via ethtool\n");
1145 }
1146 
1147 /**
1148  * e1000e_tx_hwtstamp_work - check for Tx time stamp
1149  * @work: pointer to work struct
1150  *
1151  * This work function polls the TSYNCTXCTL valid bit to determine when a
1152  * timestamp has been taken for the current stored skb.  The timestamp must
1153  * be for this skb because only one such packet is allowed in the queue.
1154  */
1155 static void e1000e_tx_hwtstamp_work(struct work_struct *work)
1156 {
1157 	struct e1000_adapter *adapter = container_of(work, struct e1000_adapter,
1158 						     tx_hwtstamp_work);
1159 	struct e1000_hw *hw = &adapter->hw;
1160 
1161 	if (!adapter->tx_hwtstamp_skb)
1162 		return;
1163 
1164 	if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) {
1165 		struct skb_shared_hwtstamps shhwtstamps;
1166 		u64 txstmp;
1167 
1168 		txstmp = er32(TXSTMPL);
1169 		txstmp |= (u64)er32(TXSTMPH) << 32;
1170 
1171 		e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp);
1172 
1173 		skb_tstamp_tx(adapter->tx_hwtstamp_skb, &shhwtstamps);
1174 		dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1175 		adapter->tx_hwtstamp_skb = NULL;
1176 	} else {
1177 		/* reschedule to check later */
1178 		schedule_work(&adapter->tx_hwtstamp_work);
1179 	}
1180 }
1181 
1182 /**
1183  * e1000_clean_tx_irq - Reclaim resources after transmit completes
1184  * @tx_ring: Tx descriptor ring
1185  *
1186  * the return value indicates whether actual cleaning was done, there
1187  * is no guarantee that everything was cleaned
1188  **/
1189 static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1190 {
1191 	struct e1000_adapter *adapter = tx_ring->adapter;
1192 	struct net_device *netdev = adapter->netdev;
1193 	struct e1000_hw *hw = &adapter->hw;
1194 	struct e1000_tx_desc *tx_desc, *eop_desc;
1195 	struct e1000_buffer *buffer_info;
1196 	unsigned int i, eop;
1197 	unsigned int count = 0;
1198 	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1199 	unsigned int bytes_compl = 0, pkts_compl = 0;
1200 
1201 	i = tx_ring->next_to_clean;
1202 	eop = tx_ring->buffer_info[i].next_to_watch;
1203 	eop_desc = E1000_TX_DESC(*tx_ring, eop);
1204 
1205 	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1206 	       (count < tx_ring->count)) {
1207 		bool cleaned = false;
1208 		rmb(); /* read buffer_info after eop_desc */
1209 		for (; !cleaned; count++) {
1210 			tx_desc = E1000_TX_DESC(*tx_ring, i);
1211 			buffer_info = &tx_ring->buffer_info[i];
1212 			cleaned = (i == eop);
1213 
1214 			if (cleaned) {
1215 				total_tx_packets += buffer_info->segs;
1216 				total_tx_bytes += buffer_info->bytecount;
1217 				if (buffer_info->skb) {
1218 					bytes_compl += buffer_info->skb->len;
1219 					pkts_compl++;
1220 				}
1221 			}
1222 
1223 			e1000_put_txbuf(tx_ring, buffer_info);
1224 			tx_desc->upper.data = 0;
1225 
1226 			i++;
1227 			if (i == tx_ring->count)
1228 				i = 0;
1229 		}
1230 
1231 		if (i == tx_ring->next_to_use)
1232 			break;
1233 		eop = tx_ring->buffer_info[i].next_to_watch;
1234 		eop_desc = E1000_TX_DESC(*tx_ring, eop);
1235 	}
1236 
1237 	tx_ring->next_to_clean = i;
1238 
1239 	netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1240 
1241 #define TX_WAKE_THRESHOLD 32
1242 	if (count && netif_carrier_ok(netdev) &&
1243 	    e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1244 		/* Make sure that anybody stopping the queue after this
1245 		 * sees the new next_to_clean.
1246 		 */
1247 		smp_mb();
1248 
1249 		if (netif_queue_stopped(netdev) &&
1250 		    !(test_bit(__E1000_DOWN, &adapter->state))) {
1251 			netif_wake_queue(netdev);
1252 			++adapter->restart_queue;
1253 		}
1254 	}
1255 
1256 	if (adapter->detect_tx_hung) {
1257 		/* Detect a transmit hang in hardware, this serializes the
1258 		 * check with the clearing of time_stamp and movement of i
1259 		 */
1260 		adapter->detect_tx_hung = false;
1261 		if (tx_ring->buffer_info[i].time_stamp &&
1262 		    time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1263 			       + (adapter->tx_timeout_factor * HZ)) &&
1264 		    !(er32(STATUS) & E1000_STATUS_TXOFF))
1265 			schedule_work(&adapter->print_hang_task);
1266 		else
1267 			adapter->tx_hang_recheck = false;
1268 	}
1269 	adapter->total_tx_bytes += total_tx_bytes;
1270 	adapter->total_tx_packets += total_tx_packets;
1271 	return count < tx_ring->count;
1272 }
1273 
1274 /**
1275  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1276  * @rx_ring: Rx descriptor ring
1277  *
1278  * the return value indicates whether actual cleaning was done, there
1279  * is no guarantee that everything was cleaned
1280  **/
1281 static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1282 				  int work_to_do)
1283 {
1284 	struct e1000_adapter *adapter = rx_ring->adapter;
1285 	struct e1000_hw *hw = &adapter->hw;
1286 	union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1287 	struct net_device *netdev = adapter->netdev;
1288 	struct pci_dev *pdev = adapter->pdev;
1289 	struct e1000_buffer *buffer_info, *next_buffer;
1290 	struct e1000_ps_page *ps_page;
1291 	struct sk_buff *skb;
1292 	unsigned int i, j;
1293 	u32 length, staterr;
1294 	int cleaned_count = 0;
1295 	bool cleaned = false;
1296 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1297 
1298 	i = rx_ring->next_to_clean;
1299 	rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1300 	staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1301 	buffer_info = &rx_ring->buffer_info[i];
1302 
1303 	while (staterr & E1000_RXD_STAT_DD) {
1304 		if (*work_done >= work_to_do)
1305 			break;
1306 		(*work_done)++;
1307 		skb = buffer_info->skb;
1308 		rmb();	/* read descriptor and rx_buffer_info after status DD */
1309 
1310 		/* in the packet split case this is header only */
1311 		prefetch(skb->data - NET_IP_ALIGN);
1312 
1313 		i++;
1314 		if (i == rx_ring->count)
1315 			i = 0;
1316 		next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1317 		prefetch(next_rxd);
1318 
1319 		next_buffer = &rx_ring->buffer_info[i];
1320 
1321 		cleaned = true;
1322 		cleaned_count++;
1323 		dma_unmap_single(&pdev->dev, buffer_info->dma,
1324 				 adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1325 		buffer_info->dma = 0;
1326 
1327 		/* see !EOP comment in other Rx routine */
1328 		if (!(staterr & E1000_RXD_STAT_EOP))
1329 			adapter->flags2 |= FLAG2_IS_DISCARDING;
1330 
1331 		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1332 			e_dbg("Packet Split buffers didn't pick up the full packet\n");
1333 			dev_kfree_skb_irq(skb);
1334 			if (staterr & E1000_RXD_STAT_EOP)
1335 				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1336 			goto next_desc;
1337 		}
1338 
1339 		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1340 			     !(netdev->features & NETIF_F_RXALL))) {
1341 			dev_kfree_skb_irq(skb);
1342 			goto next_desc;
1343 		}
1344 
1345 		length = le16_to_cpu(rx_desc->wb.middle.length0);
1346 
1347 		if (!length) {
1348 			e_dbg("Last part of the packet spanning multiple descriptors\n");
1349 			dev_kfree_skb_irq(skb);
1350 			goto next_desc;
1351 		}
1352 
1353 		/* Good Receive */
1354 		skb_put(skb, length);
1355 
1356 		{
1357 			/* this looks ugly, but it seems compiler issues make
1358 			 * it more efficient than reusing j
1359 			 */
1360 			int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1361 
1362 			/* page alloc/put takes too long and effects small
1363 			 * packet throughput, so unsplit small packets and
1364 			 * save the alloc/put only valid in softirq (napi)
1365 			 * context to call kmap_*
1366 			 */
1367 			if (l1 && (l1 <= copybreak) &&
1368 			    ((length + l1) <= adapter->rx_ps_bsize0)) {
1369 				u8 *vaddr;
1370 
1371 				ps_page = &buffer_info->ps_pages[0];
1372 
1373 				/* there is no documentation about how to call
1374 				 * kmap_atomic, so we can't hold the mapping
1375 				 * very long
1376 				 */
1377 				dma_sync_single_for_cpu(&pdev->dev,
1378 							ps_page->dma,
1379 							PAGE_SIZE,
1380 							DMA_FROM_DEVICE);
1381 				vaddr = kmap_atomic(ps_page->page);
1382 				memcpy(skb_tail_pointer(skb), vaddr, l1);
1383 				kunmap_atomic(vaddr);
1384 				dma_sync_single_for_device(&pdev->dev,
1385 							   ps_page->dma,
1386 							   PAGE_SIZE,
1387 							   DMA_FROM_DEVICE);
1388 
1389 				/* remove the CRC */
1390 				if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1391 					if (!(netdev->features & NETIF_F_RXFCS))
1392 						l1 -= 4;
1393 				}
1394 
1395 				skb_put(skb, l1);
1396 				goto copydone;
1397 			} /* if */
1398 		}
1399 
1400 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1401 			length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1402 			if (!length)
1403 				break;
1404 
1405 			ps_page = &buffer_info->ps_pages[j];
1406 			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1407 				       DMA_FROM_DEVICE);
1408 			ps_page->dma = 0;
1409 			skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1410 			ps_page->page = NULL;
1411 			skb->len += length;
1412 			skb->data_len += length;
1413 			skb->truesize += PAGE_SIZE;
1414 		}
1415 
1416 		/* strip the ethernet crc, problem is we're using pages now so
1417 		 * this whole operation can get a little cpu intensive
1418 		 */
1419 		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1420 			if (!(netdev->features & NETIF_F_RXFCS))
1421 				pskb_trim(skb, skb->len - 4);
1422 		}
1423 
1424 copydone:
1425 		total_rx_bytes += skb->len;
1426 		total_rx_packets++;
1427 
1428 		e1000_rx_checksum(adapter, staterr, skb);
1429 
1430 		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1431 
1432 		if (rx_desc->wb.upper.header_status &
1433 			   cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1434 			adapter->rx_hdr_split++;
1435 
1436 		e1000_receive_skb(adapter, netdev, skb, staterr,
1437 				  rx_desc->wb.middle.vlan);
1438 
1439 next_desc:
1440 		rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1441 		buffer_info->skb = NULL;
1442 
1443 		/* return some buffers to hardware, one at a time is too slow */
1444 		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1445 			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1446 					      GFP_ATOMIC);
1447 			cleaned_count = 0;
1448 		}
1449 
1450 		/* use prefetched values */
1451 		rx_desc = next_rxd;
1452 		buffer_info = next_buffer;
1453 
1454 		staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1455 	}
1456 	rx_ring->next_to_clean = i;
1457 
1458 	cleaned_count = e1000_desc_unused(rx_ring);
1459 	if (cleaned_count)
1460 		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1461 
1462 	adapter->total_rx_bytes += total_rx_bytes;
1463 	adapter->total_rx_packets += total_rx_packets;
1464 	return cleaned;
1465 }
1466 
1467 /**
1468  * e1000_consume_page - helper function
1469  **/
1470 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1471                                u16 length)
1472 {
1473 	bi->page = NULL;
1474 	skb->len += length;
1475 	skb->data_len += length;
1476 	skb->truesize += PAGE_SIZE;
1477 }
1478 
1479 /**
1480  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1481  * @adapter: board private structure
1482  *
1483  * the return value indicates whether actual cleaning was done, there
1484  * is no guarantee that everything was cleaned
1485  **/
1486 static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1487 				     int work_to_do)
1488 {
1489 	struct e1000_adapter *adapter = rx_ring->adapter;
1490 	struct net_device *netdev = adapter->netdev;
1491 	struct pci_dev *pdev = adapter->pdev;
1492 	union e1000_rx_desc_extended *rx_desc, *next_rxd;
1493 	struct e1000_buffer *buffer_info, *next_buffer;
1494 	u32 length, staterr;
1495 	unsigned int i;
1496 	int cleaned_count = 0;
1497 	bool cleaned = false;
1498 	unsigned int total_rx_bytes=0, total_rx_packets=0;
1499 
1500 	i = rx_ring->next_to_clean;
1501 	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1502 	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1503 	buffer_info = &rx_ring->buffer_info[i];
1504 
1505 	while (staterr & E1000_RXD_STAT_DD) {
1506 		struct sk_buff *skb;
1507 
1508 		if (*work_done >= work_to_do)
1509 			break;
1510 		(*work_done)++;
1511 		rmb();	/* read descriptor and rx_buffer_info after status DD */
1512 
1513 		skb = buffer_info->skb;
1514 		buffer_info->skb = NULL;
1515 
1516 		++i;
1517 		if (i == rx_ring->count)
1518 			i = 0;
1519 		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1520 		prefetch(next_rxd);
1521 
1522 		next_buffer = &rx_ring->buffer_info[i];
1523 
1524 		cleaned = true;
1525 		cleaned_count++;
1526 		dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1527 			       DMA_FROM_DEVICE);
1528 		buffer_info->dma = 0;
1529 
1530 		length = le16_to_cpu(rx_desc->wb.upper.length);
1531 
1532 		/* errors is only valid for DD + EOP descriptors */
1533 		if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1534 			     ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1535 			      !(netdev->features & NETIF_F_RXALL)))) {
1536 			/* recycle both page and skb */
1537 			buffer_info->skb = skb;
1538 			/* an error means any chain goes out the window too */
1539 			if (rx_ring->rx_skb_top)
1540 				dev_kfree_skb_irq(rx_ring->rx_skb_top);
1541 			rx_ring->rx_skb_top = NULL;
1542 			goto next_desc;
1543 		}
1544 
1545 #define rxtop (rx_ring->rx_skb_top)
1546 		if (!(staterr & E1000_RXD_STAT_EOP)) {
1547 			/* this descriptor is only the beginning (or middle) */
1548 			if (!rxtop) {
1549 				/* this is the beginning of a chain */
1550 				rxtop = skb;
1551 				skb_fill_page_desc(rxtop, 0, buffer_info->page,
1552 				                   0, length);
1553 			} else {
1554 				/* this is the middle of a chain */
1555 				skb_fill_page_desc(rxtop,
1556 				    skb_shinfo(rxtop)->nr_frags,
1557 				    buffer_info->page, 0, length);
1558 				/* re-use the skb, only consumed the page */
1559 				buffer_info->skb = skb;
1560 			}
1561 			e1000_consume_page(buffer_info, rxtop, length);
1562 			goto next_desc;
1563 		} else {
1564 			if (rxtop) {
1565 				/* end of the chain */
1566 				skb_fill_page_desc(rxtop,
1567 				    skb_shinfo(rxtop)->nr_frags,
1568 				    buffer_info->page, 0, length);
1569 				/* re-use the current skb, we only consumed the
1570 				 * page
1571 				 */
1572 				buffer_info->skb = skb;
1573 				skb = rxtop;
1574 				rxtop = NULL;
1575 				e1000_consume_page(buffer_info, skb, length);
1576 			} else {
1577 				/* no chain, got EOP, this buf is the packet
1578 				 * copybreak to save the put_page/alloc_page
1579 				 */
1580 				if (length <= copybreak &&
1581 				    skb_tailroom(skb) >= length) {
1582 					u8 *vaddr;
1583 					vaddr = kmap_atomic(buffer_info->page);
1584 					memcpy(skb_tail_pointer(skb), vaddr,
1585 					       length);
1586 					kunmap_atomic(vaddr);
1587 					/* re-use the page, so don't erase
1588 					 * buffer_info->page
1589 					 */
1590 					skb_put(skb, length);
1591 				} else {
1592 					skb_fill_page_desc(skb, 0,
1593 					                   buffer_info->page, 0,
1594 				                           length);
1595 					e1000_consume_page(buffer_info, skb,
1596 					                   length);
1597 				}
1598 			}
1599 		}
1600 
1601 		/* Receive Checksum Offload */
1602 		e1000_rx_checksum(adapter, staterr, skb);
1603 
1604 		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1605 
1606 		/* probably a little skewed due to removing CRC */
1607 		total_rx_bytes += skb->len;
1608 		total_rx_packets++;
1609 
1610 		/* eth type trans needs skb->data to point to something */
1611 		if (!pskb_may_pull(skb, ETH_HLEN)) {
1612 			e_err("pskb_may_pull failed.\n");
1613 			dev_kfree_skb_irq(skb);
1614 			goto next_desc;
1615 		}
1616 
1617 		e1000_receive_skb(adapter, netdev, skb, staterr,
1618 				  rx_desc->wb.upper.vlan);
1619 
1620 next_desc:
1621 		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1622 
1623 		/* return some buffers to hardware, one at a time is too slow */
1624 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1625 			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1626 					      GFP_ATOMIC);
1627 			cleaned_count = 0;
1628 		}
1629 
1630 		/* use prefetched values */
1631 		rx_desc = next_rxd;
1632 		buffer_info = next_buffer;
1633 
1634 		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1635 	}
1636 	rx_ring->next_to_clean = i;
1637 
1638 	cleaned_count = e1000_desc_unused(rx_ring);
1639 	if (cleaned_count)
1640 		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1641 
1642 	adapter->total_rx_bytes += total_rx_bytes;
1643 	adapter->total_rx_packets += total_rx_packets;
1644 	return cleaned;
1645 }
1646 
1647 /**
1648  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1649  * @rx_ring: Rx descriptor ring
1650  **/
1651 static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1652 {
1653 	struct e1000_adapter *adapter = rx_ring->adapter;
1654 	struct e1000_buffer *buffer_info;
1655 	struct e1000_ps_page *ps_page;
1656 	struct pci_dev *pdev = adapter->pdev;
1657 	unsigned int i, j;
1658 
1659 	/* Free all the Rx ring sk_buffs */
1660 	for (i = 0; i < rx_ring->count; i++) {
1661 		buffer_info = &rx_ring->buffer_info[i];
1662 		if (buffer_info->dma) {
1663 			if (adapter->clean_rx == e1000_clean_rx_irq)
1664 				dma_unmap_single(&pdev->dev, buffer_info->dma,
1665 						 adapter->rx_buffer_len,
1666 						 DMA_FROM_DEVICE);
1667 			else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1668 				dma_unmap_page(&pdev->dev, buffer_info->dma,
1669 				               PAGE_SIZE,
1670 					       DMA_FROM_DEVICE);
1671 			else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1672 				dma_unmap_single(&pdev->dev, buffer_info->dma,
1673 						 adapter->rx_ps_bsize0,
1674 						 DMA_FROM_DEVICE);
1675 			buffer_info->dma = 0;
1676 		}
1677 
1678 		if (buffer_info->page) {
1679 			put_page(buffer_info->page);
1680 			buffer_info->page = NULL;
1681 		}
1682 
1683 		if (buffer_info->skb) {
1684 			dev_kfree_skb(buffer_info->skb);
1685 			buffer_info->skb = NULL;
1686 		}
1687 
1688 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1689 			ps_page = &buffer_info->ps_pages[j];
1690 			if (!ps_page->page)
1691 				break;
1692 			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1693 				       DMA_FROM_DEVICE);
1694 			ps_page->dma = 0;
1695 			put_page(ps_page->page);
1696 			ps_page->page = NULL;
1697 		}
1698 	}
1699 
1700 	/* there also may be some cached data from a chained receive */
1701 	if (rx_ring->rx_skb_top) {
1702 		dev_kfree_skb(rx_ring->rx_skb_top);
1703 		rx_ring->rx_skb_top = NULL;
1704 	}
1705 
1706 	/* Zero out the descriptor ring */
1707 	memset(rx_ring->desc, 0, rx_ring->size);
1708 
1709 	rx_ring->next_to_clean = 0;
1710 	rx_ring->next_to_use = 0;
1711 	adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1712 
1713 	writel(0, rx_ring->head);
1714 	if (rx_ring->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
1715 		e1000e_update_rdt_wa(rx_ring, 0);
1716 	else
1717 		writel(0, rx_ring->tail);
1718 }
1719 
1720 static void e1000e_downshift_workaround(struct work_struct *work)
1721 {
1722 	struct e1000_adapter *adapter = container_of(work,
1723 					struct e1000_adapter, downshift_task);
1724 
1725 	if (test_bit(__E1000_DOWN, &adapter->state))
1726 		return;
1727 
1728 	e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1729 }
1730 
1731 /**
1732  * e1000_intr_msi - Interrupt Handler
1733  * @irq: interrupt number
1734  * @data: pointer to a network interface device structure
1735  **/
1736 static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data)
1737 {
1738 	struct net_device *netdev = data;
1739 	struct e1000_adapter *adapter = netdev_priv(netdev);
1740 	struct e1000_hw *hw = &adapter->hw;
1741 	u32 icr = er32(ICR);
1742 
1743 	/* read ICR disables interrupts using IAM */
1744 	if (icr & E1000_ICR_LSC) {
1745 		hw->mac.get_link_status = true;
1746 		/* ICH8 workaround-- Call gig speed drop workaround on cable
1747 		 * disconnect (LSC) before accessing any PHY registers
1748 		 */
1749 		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1750 		    (!(er32(STATUS) & E1000_STATUS_LU)))
1751 			schedule_work(&adapter->downshift_task);
1752 
1753 		/* 80003ES2LAN workaround-- For packet buffer work-around on
1754 		 * link down event; disable receives here in the ISR and reset
1755 		 * adapter in watchdog
1756 		 */
1757 		if (netif_carrier_ok(netdev) &&
1758 		    adapter->flags & FLAG_RX_NEEDS_RESTART) {
1759 			/* disable receives */
1760 			u32 rctl = er32(RCTL);
1761 			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1762 			adapter->flags |= FLAG_RESTART_NOW;
1763 		}
1764 		/* guard against interrupt when we're going down */
1765 		if (!test_bit(__E1000_DOWN, &adapter->state))
1766 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1767 	}
1768 
1769 	/* Reset on uncorrectable ECC error */
1770 	if ((icr & E1000_ICR_ECCER) && (hw->mac.type == e1000_pch_lpt)) {
1771 		u32 pbeccsts = er32(PBECCSTS);
1772 
1773 		adapter->corr_errors +=
1774 		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1775 		adapter->uncorr_errors +=
1776 		    (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1777 		    E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1778 
1779 		/* Do the reset outside of interrupt context */
1780 		schedule_work(&adapter->reset_task);
1781 
1782 		/* return immediately since reset is imminent */
1783 		return IRQ_HANDLED;
1784 	}
1785 
1786 	if (napi_schedule_prep(&adapter->napi)) {
1787 		adapter->total_tx_bytes = 0;
1788 		adapter->total_tx_packets = 0;
1789 		adapter->total_rx_bytes = 0;
1790 		adapter->total_rx_packets = 0;
1791 		__napi_schedule(&adapter->napi);
1792 	}
1793 
1794 	return IRQ_HANDLED;
1795 }
1796 
1797 /**
1798  * e1000_intr - Interrupt Handler
1799  * @irq: interrupt number
1800  * @data: pointer to a network interface device structure
1801  **/
1802 static irqreturn_t e1000_intr(int __always_unused irq, void *data)
1803 {
1804 	struct net_device *netdev = data;
1805 	struct e1000_adapter *adapter = netdev_priv(netdev);
1806 	struct e1000_hw *hw = &adapter->hw;
1807 	u32 rctl, icr = er32(ICR);
1808 
1809 	if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1810 		return IRQ_NONE;  /* Not our interrupt */
1811 
1812 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1813 	 * not set, then the adapter didn't send an interrupt
1814 	 */
1815 	if (!(icr & E1000_ICR_INT_ASSERTED))
1816 		return IRQ_NONE;
1817 
1818 	/* Interrupt Auto-Mask...upon reading ICR,
1819 	 * interrupts are masked.  No need for the
1820 	 * IMC write
1821 	 */
1822 
1823 	if (icr & E1000_ICR_LSC) {
1824 		hw->mac.get_link_status = true;
1825 		/* ICH8 workaround-- Call gig speed drop workaround on cable
1826 		 * disconnect (LSC) before accessing any PHY registers
1827 		 */
1828 		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1829 		    (!(er32(STATUS) & E1000_STATUS_LU)))
1830 			schedule_work(&adapter->downshift_task);
1831 
1832 		/* 80003ES2LAN workaround--
1833 		 * For packet buffer work-around on link down event;
1834 		 * disable receives here in the ISR and
1835 		 * reset adapter in watchdog
1836 		 */
1837 		if (netif_carrier_ok(netdev) &&
1838 		    (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1839 			/* disable receives */
1840 			rctl = er32(RCTL);
1841 			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1842 			adapter->flags |= FLAG_RESTART_NOW;
1843 		}
1844 		/* guard against interrupt when we're going down */
1845 		if (!test_bit(__E1000_DOWN, &adapter->state))
1846 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1847 	}
1848 
1849 	/* Reset on uncorrectable ECC error */
1850 	if ((icr & E1000_ICR_ECCER) && (hw->mac.type == e1000_pch_lpt)) {
1851 		u32 pbeccsts = er32(PBECCSTS);
1852 
1853 		adapter->corr_errors +=
1854 		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1855 		adapter->uncorr_errors +=
1856 		    (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1857 		    E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1858 
1859 		/* Do the reset outside of interrupt context */
1860 		schedule_work(&adapter->reset_task);
1861 
1862 		/* return immediately since reset is imminent */
1863 		return IRQ_HANDLED;
1864 	}
1865 
1866 	if (napi_schedule_prep(&adapter->napi)) {
1867 		adapter->total_tx_bytes = 0;
1868 		adapter->total_tx_packets = 0;
1869 		adapter->total_rx_bytes = 0;
1870 		adapter->total_rx_packets = 0;
1871 		__napi_schedule(&adapter->napi);
1872 	}
1873 
1874 	return IRQ_HANDLED;
1875 }
1876 
1877 static irqreturn_t e1000_msix_other(int __always_unused irq, void *data)
1878 {
1879 	struct net_device *netdev = data;
1880 	struct e1000_adapter *adapter = netdev_priv(netdev);
1881 	struct e1000_hw *hw = &adapter->hw;
1882 	u32 icr = er32(ICR);
1883 
1884 	if (!(icr & E1000_ICR_INT_ASSERTED)) {
1885 		if (!test_bit(__E1000_DOWN, &adapter->state))
1886 			ew32(IMS, E1000_IMS_OTHER);
1887 		return IRQ_NONE;
1888 	}
1889 
1890 	if (icr & adapter->eiac_mask)
1891 		ew32(ICS, (icr & adapter->eiac_mask));
1892 
1893 	if (icr & E1000_ICR_OTHER) {
1894 		if (!(icr & E1000_ICR_LSC))
1895 			goto no_link_interrupt;
1896 		hw->mac.get_link_status = true;
1897 		/* guard against interrupt when we're going down */
1898 		if (!test_bit(__E1000_DOWN, &adapter->state))
1899 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1900 	}
1901 
1902 no_link_interrupt:
1903 	if (!test_bit(__E1000_DOWN, &adapter->state))
1904 		ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1905 
1906 	return IRQ_HANDLED;
1907 }
1908 
1909 static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data)
1910 {
1911 	struct net_device *netdev = data;
1912 	struct e1000_adapter *adapter = netdev_priv(netdev);
1913 	struct e1000_hw *hw = &adapter->hw;
1914 	struct e1000_ring *tx_ring = adapter->tx_ring;
1915 
1916 
1917 	adapter->total_tx_bytes = 0;
1918 	adapter->total_tx_packets = 0;
1919 
1920 	if (!e1000_clean_tx_irq(tx_ring))
1921 		/* Ring was not completely cleaned, so fire another interrupt */
1922 		ew32(ICS, tx_ring->ims_val);
1923 
1924 	return IRQ_HANDLED;
1925 }
1926 
1927 static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data)
1928 {
1929 	struct net_device *netdev = data;
1930 	struct e1000_adapter *adapter = netdev_priv(netdev);
1931 	struct e1000_ring *rx_ring = adapter->rx_ring;
1932 
1933 	/* Write the ITR value calculated at the end of the
1934 	 * previous interrupt.
1935 	 */
1936 	if (rx_ring->set_itr) {
1937 		writel(1000000000 / (rx_ring->itr_val * 256),
1938 		       rx_ring->itr_register);
1939 		rx_ring->set_itr = 0;
1940 	}
1941 
1942 	if (napi_schedule_prep(&adapter->napi)) {
1943 		adapter->total_rx_bytes = 0;
1944 		adapter->total_rx_packets = 0;
1945 		__napi_schedule(&adapter->napi);
1946 	}
1947 	return IRQ_HANDLED;
1948 }
1949 
1950 /**
1951  * e1000_configure_msix - Configure MSI-X hardware
1952  *
1953  * e1000_configure_msix sets up the hardware to properly
1954  * generate MSI-X interrupts.
1955  **/
1956 static void e1000_configure_msix(struct e1000_adapter *adapter)
1957 {
1958 	struct e1000_hw *hw = &adapter->hw;
1959 	struct e1000_ring *rx_ring = adapter->rx_ring;
1960 	struct e1000_ring *tx_ring = adapter->tx_ring;
1961 	int vector = 0;
1962 	u32 ctrl_ext, ivar = 0;
1963 
1964 	adapter->eiac_mask = 0;
1965 
1966 	/* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1967 	if (hw->mac.type == e1000_82574) {
1968 		u32 rfctl = er32(RFCTL);
1969 		rfctl |= E1000_RFCTL_ACK_DIS;
1970 		ew32(RFCTL, rfctl);
1971 	}
1972 
1973 #define E1000_IVAR_INT_ALLOC_VALID	0x8
1974 	/* Configure Rx vector */
1975 	rx_ring->ims_val = E1000_IMS_RXQ0;
1976 	adapter->eiac_mask |= rx_ring->ims_val;
1977 	if (rx_ring->itr_val)
1978 		writel(1000000000 / (rx_ring->itr_val * 256),
1979 		       rx_ring->itr_register);
1980 	else
1981 		writel(1, rx_ring->itr_register);
1982 	ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1983 
1984 	/* Configure Tx vector */
1985 	tx_ring->ims_val = E1000_IMS_TXQ0;
1986 	vector++;
1987 	if (tx_ring->itr_val)
1988 		writel(1000000000 / (tx_ring->itr_val * 256),
1989 		       tx_ring->itr_register);
1990 	else
1991 		writel(1, tx_ring->itr_register);
1992 	adapter->eiac_mask |= tx_ring->ims_val;
1993 	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
1994 
1995 	/* set vector for Other Causes, e.g. link changes */
1996 	vector++;
1997 	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
1998 	if (rx_ring->itr_val)
1999 		writel(1000000000 / (rx_ring->itr_val * 256),
2000 		       hw->hw_addr + E1000_EITR_82574(vector));
2001 	else
2002 		writel(1, hw->hw_addr + E1000_EITR_82574(vector));
2003 
2004 	/* Cause Tx interrupts on every write back */
2005 	ivar |= (1 << 31);
2006 
2007 	ew32(IVAR, ivar);
2008 
2009 	/* enable MSI-X PBA support */
2010 	ctrl_ext = er32(CTRL_EXT);
2011 	ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
2012 
2013 	/* Auto-Mask Other interrupts upon ICR read */
2014 	ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
2015 	ctrl_ext |= E1000_CTRL_EXT_EIAME;
2016 	ew32(CTRL_EXT, ctrl_ext);
2017 	e1e_flush();
2018 }
2019 
2020 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
2021 {
2022 	if (adapter->msix_entries) {
2023 		pci_disable_msix(adapter->pdev);
2024 		kfree(adapter->msix_entries);
2025 		adapter->msix_entries = NULL;
2026 	} else if (adapter->flags & FLAG_MSI_ENABLED) {
2027 		pci_disable_msi(adapter->pdev);
2028 		adapter->flags &= ~FLAG_MSI_ENABLED;
2029 	}
2030 }
2031 
2032 /**
2033  * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
2034  *
2035  * Attempt to configure interrupts using the best available
2036  * capabilities of the hardware and kernel.
2037  **/
2038 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
2039 {
2040 	int err;
2041 	int i;
2042 
2043 	switch (adapter->int_mode) {
2044 	case E1000E_INT_MODE_MSIX:
2045 		if (adapter->flags & FLAG_HAS_MSIX) {
2046 			adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
2047 			adapter->msix_entries = kcalloc(adapter->num_vectors,
2048 						      sizeof(struct msix_entry),
2049 						      GFP_KERNEL);
2050 			if (adapter->msix_entries) {
2051 				for (i = 0; i < adapter->num_vectors; i++)
2052 					adapter->msix_entries[i].entry = i;
2053 
2054 				err = pci_enable_msix(adapter->pdev,
2055 						      adapter->msix_entries,
2056 						      adapter->num_vectors);
2057 				if (err == 0)
2058 					return;
2059 			}
2060 			/* MSI-X failed, so fall through and try MSI */
2061 			e_err("Failed to initialize MSI-X interrupts.  Falling back to MSI interrupts.\n");
2062 			e1000e_reset_interrupt_capability(adapter);
2063 		}
2064 		adapter->int_mode = E1000E_INT_MODE_MSI;
2065 		/* Fall through */
2066 	case E1000E_INT_MODE_MSI:
2067 		if (!pci_enable_msi(adapter->pdev)) {
2068 			adapter->flags |= FLAG_MSI_ENABLED;
2069 		} else {
2070 			adapter->int_mode = E1000E_INT_MODE_LEGACY;
2071 			e_err("Failed to initialize MSI interrupts.  Falling back to legacy interrupts.\n");
2072 		}
2073 		/* Fall through */
2074 	case E1000E_INT_MODE_LEGACY:
2075 		/* Don't do anything; this is the system default */
2076 		break;
2077 	}
2078 
2079 	/* store the number of vectors being used */
2080 	adapter->num_vectors = 1;
2081 }
2082 
2083 /**
2084  * e1000_request_msix - Initialize MSI-X interrupts
2085  *
2086  * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2087  * kernel.
2088  **/
2089 static int e1000_request_msix(struct e1000_adapter *adapter)
2090 {
2091 	struct net_device *netdev = adapter->netdev;
2092 	int err = 0, vector = 0;
2093 
2094 	if (strlen(netdev->name) < (IFNAMSIZ - 5))
2095 		snprintf(adapter->rx_ring->name,
2096 			 sizeof(adapter->rx_ring->name) - 1,
2097 			 "%s-rx-0", netdev->name);
2098 	else
2099 		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
2100 	err = request_irq(adapter->msix_entries[vector].vector,
2101 			  e1000_intr_msix_rx, 0, adapter->rx_ring->name,
2102 			  netdev);
2103 	if (err)
2104 		return err;
2105 	adapter->rx_ring->itr_register = adapter->hw.hw_addr +
2106 	    E1000_EITR_82574(vector);
2107 	adapter->rx_ring->itr_val = adapter->itr;
2108 	vector++;
2109 
2110 	if (strlen(netdev->name) < (IFNAMSIZ - 5))
2111 		snprintf(adapter->tx_ring->name,
2112 			 sizeof(adapter->tx_ring->name) - 1,
2113 			 "%s-tx-0", netdev->name);
2114 	else
2115 		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2116 	err = request_irq(adapter->msix_entries[vector].vector,
2117 			  e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2118 			  netdev);
2119 	if (err)
2120 		return err;
2121 	adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2122 	    E1000_EITR_82574(vector);
2123 	adapter->tx_ring->itr_val = adapter->itr;
2124 	vector++;
2125 
2126 	err = request_irq(adapter->msix_entries[vector].vector,
2127 			  e1000_msix_other, 0, netdev->name, netdev);
2128 	if (err)
2129 		return err;
2130 
2131 	e1000_configure_msix(adapter);
2132 
2133 	return 0;
2134 }
2135 
2136 /**
2137  * e1000_request_irq - initialize interrupts
2138  *
2139  * Attempts to configure interrupts using the best available
2140  * capabilities of the hardware and kernel.
2141  **/
2142 static int e1000_request_irq(struct e1000_adapter *adapter)
2143 {
2144 	struct net_device *netdev = adapter->netdev;
2145 	int err;
2146 
2147 	if (adapter->msix_entries) {
2148 		err = e1000_request_msix(adapter);
2149 		if (!err)
2150 			return err;
2151 		/* fall back to MSI */
2152 		e1000e_reset_interrupt_capability(adapter);
2153 		adapter->int_mode = E1000E_INT_MODE_MSI;
2154 		e1000e_set_interrupt_capability(adapter);
2155 	}
2156 	if (adapter->flags & FLAG_MSI_ENABLED) {
2157 		err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2158 				  netdev->name, netdev);
2159 		if (!err)
2160 			return err;
2161 
2162 		/* fall back to legacy interrupt */
2163 		e1000e_reset_interrupt_capability(adapter);
2164 		adapter->int_mode = E1000E_INT_MODE_LEGACY;
2165 	}
2166 
2167 	err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2168 			  netdev->name, netdev);
2169 	if (err)
2170 		e_err("Unable to allocate interrupt, Error: %d\n", err);
2171 
2172 	return err;
2173 }
2174 
2175 static void e1000_free_irq(struct e1000_adapter *adapter)
2176 {
2177 	struct net_device *netdev = adapter->netdev;
2178 
2179 	if (adapter->msix_entries) {
2180 		int vector = 0;
2181 
2182 		free_irq(adapter->msix_entries[vector].vector, netdev);
2183 		vector++;
2184 
2185 		free_irq(adapter->msix_entries[vector].vector, netdev);
2186 		vector++;
2187 
2188 		/* Other Causes interrupt vector */
2189 		free_irq(adapter->msix_entries[vector].vector, netdev);
2190 		return;
2191 	}
2192 
2193 	free_irq(adapter->pdev->irq, netdev);
2194 }
2195 
2196 /**
2197  * e1000_irq_disable - Mask off interrupt generation on the NIC
2198  **/
2199 static void e1000_irq_disable(struct e1000_adapter *adapter)
2200 {
2201 	struct e1000_hw *hw = &adapter->hw;
2202 
2203 	ew32(IMC, ~0);
2204 	if (adapter->msix_entries)
2205 		ew32(EIAC_82574, 0);
2206 	e1e_flush();
2207 
2208 	if (adapter->msix_entries) {
2209 		int i;
2210 		for (i = 0; i < adapter->num_vectors; i++)
2211 			synchronize_irq(adapter->msix_entries[i].vector);
2212 	} else {
2213 		synchronize_irq(adapter->pdev->irq);
2214 	}
2215 }
2216 
2217 /**
2218  * e1000_irq_enable - Enable default interrupt generation settings
2219  **/
2220 static void e1000_irq_enable(struct e1000_adapter *adapter)
2221 {
2222 	struct e1000_hw *hw = &adapter->hw;
2223 
2224 	if (adapter->msix_entries) {
2225 		ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2226 		ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
2227 	} else if (hw->mac.type == e1000_pch_lpt) {
2228 		ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER);
2229 	} else {
2230 		ew32(IMS, IMS_ENABLE_MASK);
2231 	}
2232 	e1e_flush();
2233 }
2234 
2235 /**
2236  * e1000e_get_hw_control - get control of the h/w from f/w
2237  * @adapter: address of board private structure
2238  *
2239  * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2240  * For ASF and Pass Through versions of f/w this means that
2241  * the driver is loaded. For AMT version (only with 82573)
2242  * of the f/w this means that the network i/f is open.
2243  **/
2244 void e1000e_get_hw_control(struct e1000_adapter *adapter)
2245 {
2246 	struct e1000_hw *hw = &adapter->hw;
2247 	u32 ctrl_ext;
2248 	u32 swsm;
2249 
2250 	/* Let firmware know the driver has taken over */
2251 	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2252 		swsm = er32(SWSM);
2253 		ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2254 	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2255 		ctrl_ext = er32(CTRL_EXT);
2256 		ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2257 	}
2258 }
2259 
2260 /**
2261  * e1000e_release_hw_control - release control of the h/w to f/w
2262  * @adapter: address of board private structure
2263  *
2264  * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2265  * For ASF and Pass Through versions of f/w this means that the
2266  * driver is no longer loaded. For AMT version (only with 82573) i
2267  * of the f/w this means that the network i/f is closed.
2268  *
2269  **/
2270 void e1000e_release_hw_control(struct e1000_adapter *adapter)
2271 {
2272 	struct e1000_hw *hw = &adapter->hw;
2273 	u32 ctrl_ext;
2274 	u32 swsm;
2275 
2276 	/* Let firmware taken over control of h/w */
2277 	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2278 		swsm = er32(SWSM);
2279 		ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2280 	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2281 		ctrl_ext = er32(CTRL_EXT);
2282 		ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2283 	}
2284 }
2285 
2286 /**
2287  * e1000_alloc_ring_dma - allocate memory for a ring structure
2288  **/
2289 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2290 				struct e1000_ring *ring)
2291 {
2292 	struct pci_dev *pdev = adapter->pdev;
2293 
2294 	ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2295 					GFP_KERNEL);
2296 	if (!ring->desc)
2297 		return -ENOMEM;
2298 
2299 	return 0;
2300 }
2301 
2302 /**
2303  * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2304  * @tx_ring: Tx descriptor ring
2305  *
2306  * Return 0 on success, negative on failure
2307  **/
2308 int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2309 {
2310 	struct e1000_adapter *adapter = tx_ring->adapter;
2311 	int err = -ENOMEM, size;
2312 
2313 	size = sizeof(struct e1000_buffer) * tx_ring->count;
2314 	tx_ring->buffer_info = vzalloc(size);
2315 	if (!tx_ring->buffer_info)
2316 		goto err;
2317 
2318 	/* round up to nearest 4K */
2319 	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2320 	tx_ring->size = ALIGN(tx_ring->size, 4096);
2321 
2322 	err = e1000_alloc_ring_dma(adapter, tx_ring);
2323 	if (err)
2324 		goto err;
2325 
2326 	tx_ring->next_to_use = 0;
2327 	tx_ring->next_to_clean = 0;
2328 
2329 	return 0;
2330 err:
2331 	vfree(tx_ring->buffer_info);
2332 	e_err("Unable to allocate memory for the transmit descriptor ring\n");
2333 	return err;
2334 }
2335 
2336 /**
2337  * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2338  * @rx_ring: Rx descriptor ring
2339  *
2340  * Returns 0 on success, negative on failure
2341  **/
2342 int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2343 {
2344 	struct e1000_adapter *adapter = rx_ring->adapter;
2345 	struct e1000_buffer *buffer_info;
2346 	int i, size, desc_len, err = -ENOMEM;
2347 
2348 	size = sizeof(struct e1000_buffer) * rx_ring->count;
2349 	rx_ring->buffer_info = vzalloc(size);
2350 	if (!rx_ring->buffer_info)
2351 		goto err;
2352 
2353 	for (i = 0; i < rx_ring->count; i++) {
2354 		buffer_info = &rx_ring->buffer_info[i];
2355 		buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2356 						sizeof(struct e1000_ps_page),
2357 						GFP_KERNEL);
2358 		if (!buffer_info->ps_pages)
2359 			goto err_pages;
2360 	}
2361 
2362 	desc_len = sizeof(union e1000_rx_desc_packet_split);
2363 
2364 	/* Round up to nearest 4K */
2365 	rx_ring->size = rx_ring->count * desc_len;
2366 	rx_ring->size = ALIGN(rx_ring->size, 4096);
2367 
2368 	err = e1000_alloc_ring_dma(adapter, rx_ring);
2369 	if (err)
2370 		goto err_pages;
2371 
2372 	rx_ring->next_to_clean = 0;
2373 	rx_ring->next_to_use = 0;
2374 	rx_ring->rx_skb_top = NULL;
2375 
2376 	return 0;
2377 
2378 err_pages:
2379 	for (i = 0; i < rx_ring->count; i++) {
2380 		buffer_info = &rx_ring->buffer_info[i];
2381 		kfree(buffer_info->ps_pages);
2382 	}
2383 err:
2384 	vfree(rx_ring->buffer_info);
2385 	e_err("Unable to allocate memory for the receive descriptor ring\n");
2386 	return err;
2387 }
2388 
2389 /**
2390  * e1000_clean_tx_ring - Free Tx Buffers
2391  * @tx_ring: Tx descriptor ring
2392  **/
2393 static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2394 {
2395 	struct e1000_adapter *adapter = tx_ring->adapter;
2396 	struct e1000_buffer *buffer_info;
2397 	unsigned long size;
2398 	unsigned int i;
2399 
2400 	for (i = 0; i < tx_ring->count; i++) {
2401 		buffer_info = &tx_ring->buffer_info[i];
2402 		e1000_put_txbuf(tx_ring, buffer_info);
2403 	}
2404 
2405 	netdev_reset_queue(adapter->netdev);
2406 	size = sizeof(struct e1000_buffer) * tx_ring->count;
2407 	memset(tx_ring->buffer_info, 0, size);
2408 
2409 	memset(tx_ring->desc, 0, tx_ring->size);
2410 
2411 	tx_ring->next_to_use = 0;
2412 	tx_ring->next_to_clean = 0;
2413 
2414 	writel(0, tx_ring->head);
2415 	if (tx_ring->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2416 		e1000e_update_tdt_wa(tx_ring, 0);
2417 	else
2418 		writel(0, tx_ring->tail);
2419 }
2420 
2421 /**
2422  * e1000e_free_tx_resources - Free Tx Resources per Queue
2423  * @tx_ring: Tx descriptor ring
2424  *
2425  * Free all transmit software resources
2426  **/
2427 void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2428 {
2429 	struct e1000_adapter *adapter = tx_ring->adapter;
2430 	struct pci_dev *pdev = adapter->pdev;
2431 
2432 	e1000_clean_tx_ring(tx_ring);
2433 
2434 	vfree(tx_ring->buffer_info);
2435 	tx_ring->buffer_info = NULL;
2436 
2437 	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2438 			  tx_ring->dma);
2439 	tx_ring->desc = NULL;
2440 }
2441 
2442 /**
2443  * e1000e_free_rx_resources - Free Rx Resources
2444  * @rx_ring: Rx descriptor ring
2445  *
2446  * Free all receive software resources
2447  **/
2448 void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2449 {
2450 	struct e1000_adapter *adapter = rx_ring->adapter;
2451 	struct pci_dev *pdev = adapter->pdev;
2452 	int i;
2453 
2454 	e1000_clean_rx_ring(rx_ring);
2455 
2456 	for (i = 0; i < rx_ring->count; i++)
2457 		kfree(rx_ring->buffer_info[i].ps_pages);
2458 
2459 	vfree(rx_ring->buffer_info);
2460 	rx_ring->buffer_info = NULL;
2461 
2462 	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2463 			  rx_ring->dma);
2464 	rx_ring->desc = NULL;
2465 }
2466 
2467 /**
2468  * e1000_update_itr - update the dynamic ITR value based on statistics
2469  * @adapter: pointer to adapter
2470  * @itr_setting: current adapter->itr
2471  * @packets: the number of packets during this measurement interval
2472  * @bytes: the number of bytes during this measurement interval
2473  *
2474  *      Stores a new ITR value based on packets and byte
2475  *      counts during the last interrupt.  The advantage of per interrupt
2476  *      computation is faster updates and more accurate ITR for the current
2477  *      traffic pattern.  Constants in this function were computed
2478  *      based on theoretical maximum wire speed and thresholds were set based
2479  *      on testing data as well as attempting to minimize response time
2480  *      while increasing bulk throughput.  This functionality is controlled
2481  *      by the InterruptThrottleRate module parameter.
2482  **/
2483 static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes)
2484 {
2485 	unsigned int retval = itr_setting;
2486 
2487 	if (packets == 0)
2488 		return itr_setting;
2489 
2490 	switch (itr_setting) {
2491 	case lowest_latency:
2492 		/* handle TSO and jumbo frames */
2493 		if (bytes/packets > 8000)
2494 			retval = bulk_latency;
2495 		else if ((packets < 5) && (bytes > 512))
2496 			retval = low_latency;
2497 		break;
2498 	case low_latency:  /* 50 usec aka 20000 ints/s */
2499 		if (bytes > 10000) {
2500 			/* this if handles the TSO accounting */
2501 			if (bytes/packets > 8000)
2502 				retval = bulk_latency;
2503 			else if ((packets < 10) || ((bytes/packets) > 1200))
2504 				retval = bulk_latency;
2505 			else if ((packets > 35))
2506 				retval = lowest_latency;
2507 		} else if (bytes/packets > 2000) {
2508 			retval = bulk_latency;
2509 		} else if (packets <= 2 && bytes < 512) {
2510 			retval = lowest_latency;
2511 		}
2512 		break;
2513 	case bulk_latency: /* 250 usec aka 4000 ints/s */
2514 		if (bytes > 25000) {
2515 			if (packets > 35)
2516 				retval = low_latency;
2517 		} else if (bytes < 6000) {
2518 			retval = low_latency;
2519 		}
2520 		break;
2521 	}
2522 
2523 	return retval;
2524 }
2525 
2526 static void e1000_set_itr(struct e1000_adapter *adapter)
2527 {
2528 	u16 current_itr;
2529 	u32 new_itr = adapter->itr;
2530 
2531 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2532 	if (adapter->link_speed != SPEED_1000) {
2533 		current_itr = 0;
2534 		new_itr = 4000;
2535 		goto set_itr_now;
2536 	}
2537 
2538 	if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2539 		new_itr = 0;
2540 		goto set_itr_now;
2541 	}
2542 
2543 	adapter->tx_itr = e1000_update_itr(adapter->tx_itr,
2544 					   adapter->total_tx_packets,
2545 					   adapter->total_tx_bytes);
2546 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2547 	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2548 		adapter->tx_itr = low_latency;
2549 
2550 	adapter->rx_itr = e1000_update_itr(adapter->rx_itr,
2551 					   adapter->total_rx_packets,
2552 					   adapter->total_rx_bytes);
2553 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2554 	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2555 		adapter->rx_itr = low_latency;
2556 
2557 	current_itr = max(adapter->rx_itr, adapter->tx_itr);
2558 
2559 	switch (current_itr) {
2560 	/* counts and packets in update_itr are dependent on these numbers */
2561 	case lowest_latency:
2562 		new_itr = 70000;
2563 		break;
2564 	case low_latency:
2565 		new_itr = 20000; /* aka hwitr = ~200 */
2566 		break;
2567 	case bulk_latency:
2568 		new_itr = 4000;
2569 		break;
2570 	default:
2571 		break;
2572 	}
2573 
2574 set_itr_now:
2575 	if (new_itr != adapter->itr) {
2576 		/* this attempts to bias the interrupt rate towards Bulk
2577 		 * by adding intermediate steps when interrupt rate is
2578 		 * increasing
2579 		 */
2580 		new_itr = new_itr > adapter->itr ?
2581 			     min(adapter->itr + (new_itr >> 2), new_itr) :
2582 			     new_itr;
2583 		adapter->itr = new_itr;
2584 		adapter->rx_ring->itr_val = new_itr;
2585 		if (adapter->msix_entries)
2586 			adapter->rx_ring->set_itr = 1;
2587 		else
2588 			e1000e_write_itr(adapter, new_itr);
2589 	}
2590 }
2591 
2592 /**
2593  * e1000e_write_itr - write the ITR value to the appropriate registers
2594  * @adapter: address of board private structure
2595  * @itr: new ITR value to program
2596  *
2597  * e1000e_write_itr determines if the adapter is in MSI-X mode
2598  * and, if so, writes the EITR registers with the ITR value.
2599  * Otherwise, it writes the ITR value into the ITR register.
2600  **/
2601 void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
2602 {
2603 	struct e1000_hw *hw = &adapter->hw;
2604 	u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
2605 
2606 	if (adapter->msix_entries) {
2607 		int vector;
2608 
2609 		for (vector = 0; vector < adapter->num_vectors; vector++)
2610 			writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
2611 	} else {
2612 		ew32(ITR, new_itr);
2613 	}
2614 }
2615 
2616 /**
2617  * e1000_alloc_queues - Allocate memory for all rings
2618  * @adapter: board private structure to initialize
2619  **/
2620 static int e1000_alloc_queues(struct e1000_adapter *adapter)
2621 {
2622 	int size = sizeof(struct e1000_ring);
2623 
2624 	adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2625 	if (!adapter->tx_ring)
2626 		goto err;
2627 	adapter->tx_ring->count = adapter->tx_ring_count;
2628 	adapter->tx_ring->adapter = adapter;
2629 
2630 	adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2631 	if (!adapter->rx_ring)
2632 		goto err;
2633 	adapter->rx_ring->count = adapter->rx_ring_count;
2634 	adapter->rx_ring->adapter = adapter;
2635 
2636 	return 0;
2637 err:
2638 	e_err("Unable to allocate memory for queues\n");
2639 	kfree(adapter->rx_ring);
2640 	kfree(adapter->tx_ring);
2641 	return -ENOMEM;
2642 }
2643 
2644 /**
2645  * e1000e_poll - NAPI Rx polling callback
2646  * @napi: struct associated with this polling callback
2647  * @weight: number of packets driver is allowed to process this poll
2648  **/
2649 static int e1000e_poll(struct napi_struct *napi, int weight)
2650 {
2651 	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2652 						     napi);
2653 	struct e1000_hw *hw = &adapter->hw;
2654 	struct net_device *poll_dev = adapter->netdev;
2655 	int tx_cleaned = 1, work_done = 0;
2656 
2657 	adapter = netdev_priv(poll_dev);
2658 
2659 	if (!adapter->msix_entries ||
2660 	    (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2661 		tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2662 
2663 	adapter->clean_rx(adapter->rx_ring, &work_done, weight);
2664 
2665 	if (!tx_cleaned)
2666 		work_done = weight;
2667 
2668 	/* If weight not fully consumed, exit the polling mode */
2669 	if (work_done < weight) {
2670 		if (adapter->itr_setting & 3)
2671 			e1000_set_itr(adapter);
2672 		napi_complete(napi);
2673 		if (!test_bit(__E1000_DOWN, &adapter->state)) {
2674 			if (adapter->msix_entries)
2675 				ew32(IMS, adapter->rx_ring->ims_val);
2676 			else
2677 				e1000_irq_enable(adapter);
2678 		}
2679 	}
2680 
2681 	return work_done;
2682 }
2683 
2684 static int e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
2685 {
2686 	struct e1000_adapter *adapter = netdev_priv(netdev);
2687 	struct e1000_hw *hw = &adapter->hw;
2688 	u32 vfta, index;
2689 
2690 	/* don't update vlan cookie if already programmed */
2691 	if ((adapter->hw.mng_cookie.status &
2692 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2693 	    (vid == adapter->mng_vlan_id))
2694 		return 0;
2695 
2696 	/* add VID to filter table */
2697 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2698 		index = (vid >> 5) & 0x7F;
2699 		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2700 		vfta |= (1 << (vid & 0x1F));
2701 		hw->mac.ops.write_vfta(hw, index, vfta);
2702 	}
2703 
2704 	set_bit(vid, adapter->active_vlans);
2705 
2706 	return 0;
2707 }
2708 
2709 static int e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
2710 {
2711 	struct e1000_adapter *adapter = netdev_priv(netdev);
2712 	struct e1000_hw *hw = &adapter->hw;
2713 	u32 vfta, index;
2714 
2715 	if ((adapter->hw.mng_cookie.status &
2716 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2717 	    (vid == adapter->mng_vlan_id)) {
2718 		/* release control to f/w */
2719 		e1000e_release_hw_control(adapter);
2720 		return 0;
2721 	}
2722 
2723 	/* remove VID from filter table */
2724 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2725 		index = (vid >> 5) & 0x7F;
2726 		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2727 		vfta &= ~(1 << (vid & 0x1F));
2728 		hw->mac.ops.write_vfta(hw, index, vfta);
2729 	}
2730 
2731 	clear_bit(vid, adapter->active_vlans);
2732 
2733 	return 0;
2734 }
2735 
2736 /**
2737  * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2738  * @adapter: board private structure to initialize
2739  **/
2740 static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2741 {
2742 	struct net_device *netdev = adapter->netdev;
2743 	struct e1000_hw *hw = &adapter->hw;
2744 	u32 rctl;
2745 
2746 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2747 		/* disable VLAN receive filtering */
2748 		rctl = er32(RCTL);
2749 		rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2750 		ew32(RCTL, rctl);
2751 
2752 		if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2753 			e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
2754 			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2755 		}
2756 	}
2757 }
2758 
2759 /**
2760  * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2761  * @adapter: board private structure to initialize
2762  **/
2763 static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2764 {
2765 	struct e1000_hw *hw = &adapter->hw;
2766 	u32 rctl;
2767 
2768 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2769 		/* enable VLAN receive filtering */
2770 		rctl = er32(RCTL);
2771 		rctl |= E1000_RCTL_VFE;
2772 		rctl &= ~E1000_RCTL_CFIEN;
2773 		ew32(RCTL, rctl);
2774 	}
2775 }
2776 
2777 /**
2778  * e1000e_vlan_strip_enable - helper to disable HW VLAN stripping
2779  * @adapter: board private structure to initialize
2780  **/
2781 static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2782 {
2783 	struct e1000_hw *hw = &adapter->hw;
2784 	u32 ctrl;
2785 
2786 	/* disable VLAN tag insert/strip */
2787 	ctrl = er32(CTRL);
2788 	ctrl &= ~E1000_CTRL_VME;
2789 	ew32(CTRL, ctrl);
2790 }
2791 
2792 /**
2793  * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2794  * @adapter: board private structure to initialize
2795  **/
2796 static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2797 {
2798 	struct e1000_hw *hw = &adapter->hw;
2799 	u32 ctrl;
2800 
2801 	/* enable VLAN tag insert/strip */
2802 	ctrl = er32(CTRL);
2803 	ctrl |= E1000_CTRL_VME;
2804 	ew32(CTRL, ctrl);
2805 }
2806 
2807 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2808 {
2809 	struct net_device *netdev = adapter->netdev;
2810 	u16 vid = adapter->hw.mng_cookie.vlan_id;
2811 	u16 old_vid = adapter->mng_vlan_id;
2812 
2813 	if (adapter->hw.mng_cookie.status &
2814 	    E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2815 		e1000_vlan_rx_add_vid(netdev, vid);
2816 		adapter->mng_vlan_id = vid;
2817 	}
2818 
2819 	if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2820 		e1000_vlan_rx_kill_vid(netdev, old_vid);
2821 }
2822 
2823 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2824 {
2825 	u16 vid;
2826 
2827 	e1000_vlan_rx_add_vid(adapter->netdev, 0);
2828 
2829 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2830 		e1000_vlan_rx_add_vid(adapter->netdev, vid);
2831 }
2832 
2833 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2834 {
2835 	struct e1000_hw *hw = &adapter->hw;
2836 	u32 manc, manc2h, mdef, i, j;
2837 
2838 	if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2839 		return;
2840 
2841 	manc = er32(MANC);
2842 
2843 	/* enable receiving management packets to the host. this will probably
2844 	 * generate destination unreachable messages from the host OS, but
2845 	 * the packets will be handled on SMBUS
2846 	 */
2847 	manc |= E1000_MANC_EN_MNG2HOST;
2848 	manc2h = er32(MANC2H);
2849 
2850 	switch (hw->mac.type) {
2851 	default:
2852 		manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2853 		break;
2854 	case e1000_82574:
2855 	case e1000_82583:
2856 		/* Check if IPMI pass-through decision filter already exists;
2857 		 * if so, enable it.
2858 		 */
2859 		for (i = 0, j = 0; i < 8; i++) {
2860 			mdef = er32(MDEF(i));
2861 
2862 			/* Ignore filters with anything other than IPMI ports */
2863 			if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2864 				continue;
2865 
2866 			/* Enable this decision filter in MANC2H */
2867 			if (mdef)
2868 				manc2h |= (1 << i);
2869 
2870 			j |= mdef;
2871 		}
2872 
2873 		if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2874 			break;
2875 
2876 		/* Create new decision filter in an empty filter */
2877 		for (i = 0, j = 0; i < 8; i++)
2878 			if (er32(MDEF(i)) == 0) {
2879 				ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2880 					       E1000_MDEF_PORT_664));
2881 				manc2h |= (1 << 1);
2882 				j++;
2883 				break;
2884 			}
2885 
2886 		if (!j)
2887 			e_warn("Unable to create IPMI pass-through filter\n");
2888 		break;
2889 	}
2890 
2891 	ew32(MANC2H, manc2h);
2892 	ew32(MANC, manc);
2893 }
2894 
2895 /**
2896  * e1000_configure_tx - Configure Transmit Unit after Reset
2897  * @adapter: board private structure
2898  *
2899  * Configure the Tx unit of the MAC after a reset.
2900  **/
2901 static void e1000_configure_tx(struct e1000_adapter *adapter)
2902 {
2903 	struct e1000_hw *hw = &adapter->hw;
2904 	struct e1000_ring *tx_ring = adapter->tx_ring;
2905 	u64 tdba;
2906 	u32 tdlen, tarc;
2907 
2908 	/* Setup the HW Tx Head and Tail descriptor pointers */
2909 	tdba = tx_ring->dma;
2910 	tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2911 	ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2912 	ew32(TDBAH(0), (tdba >> 32));
2913 	ew32(TDLEN(0), tdlen);
2914 	ew32(TDH(0), 0);
2915 	ew32(TDT(0), 0);
2916 	tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2917 	tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2918 
2919 	/* Set the Tx Interrupt Delay register */
2920 	ew32(TIDV, adapter->tx_int_delay);
2921 	/* Tx irq moderation */
2922 	ew32(TADV, adapter->tx_abs_int_delay);
2923 
2924 	if (adapter->flags2 & FLAG2_DMA_BURST) {
2925 		u32 txdctl = er32(TXDCTL(0));
2926 		txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2927 			    E1000_TXDCTL_WTHRESH);
2928 		/* set up some performance related parameters to encourage the
2929 		 * hardware to use the bus more efficiently in bursts, depends
2930 		 * on the tx_int_delay to be enabled,
2931 		 * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2932 		 * hthresh = 1 ==> prefetch when one or more available
2933 		 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2934 		 * BEWARE: this seems to work but should be considered first if
2935 		 * there are Tx hangs or other Tx related bugs
2936 		 */
2937 		txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2938 		ew32(TXDCTL(0), txdctl);
2939 	}
2940 	/* erratum work around: set txdctl the same for both queues */
2941 	ew32(TXDCTL(1), er32(TXDCTL(0)));
2942 
2943 	if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2944 		tarc = er32(TARC(0));
2945 		/* set the speed mode bit, we'll clear it if we're not at
2946 		 * gigabit link later
2947 		 */
2948 #define SPEED_MODE_BIT (1 << 21)
2949 		tarc |= SPEED_MODE_BIT;
2950 		ew32(TARC(0), tarc);
2951 	}
2952 
2953 	/* errata: program both queues to unweighted RR */
2954 	if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2955 		tarc = er32(TARC(0));
2956 		tarc |= 1;
2957 		ew32(TARC(0), tarc);
2958 		tarc = er32(TARC(1));
2959 		tarc |= 1;
2960 		ew32(TARC(1), tarc);
2961 	}
2962 
2963 	/* Setup Transmit Descriptor Settings for eop descriptor */
2964 	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2965 
2966 	/* only set IDE if we are delaying interrupts using the timers */
2967 	if (adapter->tx_int_delay)
2968 		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2969 
2970 	/* enable Report Status bit */
2971 	adapter->txd_cmd |= E1000_TXD_CMD_RS;
2972 
2973 	hw->mac.ops.config_collision_dist(hw);
2974 }
2975 
2976 /**
2977  * e1000_setup_rctl - configure the receive control registers
2978  * @adapter: Board private structure
2979  **/
2980 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
2981 			   (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
2982 static void e1000_setup_rctl(struct e1000_adapter *adapter)
2983 {
2984 	struct e1000_hw *hw = &adapter->hw;
2985 	u32 rctl, rfctl;
2986 	u32 pages = 0;
2987 
2988 	/* Workaround Si errata on PCHx - configure jumbo frame flow */
2989 	if (hw->mac.type >= e1000_pch2lan) {
2990 		s32 ret_val;
2991 
2992 		if (adapter->netdev->mtu > ETH_DATA_LEN)
2993 			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
2994 		else
2995 			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
2996 
2997 		if (ret_val)
2998 			e_dbg("failed to enable jumbo frame workaround mode\n");
2999 	}
3000 
3001 	/* Program MC offset vector base */
3002 	rctl = er32(RCTL);
3003 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3004 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3005 		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3006 		(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3007 
3008 	/* Do not Store bad packets */
3009 	rctl &= ~E1000_RCTL_SBP;
3010 
3011 	/* Enable Long Packet receive */
3012 	if (adapter->netdev->mtu <= ETH_DATA_LEN)
3013 		rctl &= ~E1000_RCTL_LPE;
3014 	else
3015 		rctl |= E1000_RCTL_LPE;
3016 
3017 	/* Some systems expect that the CRC is included in SMBUS traffic. The
3018 	 * hardware strips the CRC before sending to both SMBUS (BMC) and to
3019 	 * host memory when this is enabled
3020 	 */
3021 	if (adapter->flags2 & FLAG2_CRC_STRIPPING)
3022 		rctl |= E1000_RCTL_SECRC;
3023 
3024 	/* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3025 	if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
3026 		u16 phy_data;
3027 
3028 		e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
3029 		phy_data &= 0xfff8;
3030 		phy_data |= (1 << 2);
3031 		e1e_wphy(hw, PHY_REG(770, 26), phy_data);
3032 
3033 		e1e_rphy(hw, 22, &phy_data);
3034 		phy_data &= 0x0fff;
3035 		phy_data |= (1 << 14);
3036 		e1e_wphy(hw, 0x10, 0x2823);
3037 		e1e_wphy(hw, 0x11, 0x0003);
3038 		e1e_wphy(hw, 22, phy_data);
3039 	}
3040 
3041 	/* Setup buffer sizes */
3042 	rctl &= ~E1000_RCTL_SZ_4096;
3043 	rctl |= E1000_RCTL_BSEX;
3044 	switch (adapter->rx_buffer_len) {
3045 	case 2048:
3046 	default:
3047 		rctl |= E1000_RCTL_SZ_2048;
3048 		rctl &= ~E1000_RCTL_BSEX;
3049 		break;
3050 	case 4096:
3051 		rctl |= E1000_RCTL_SZ_4096;
3052 		break;
3053 	case 8192:
3054 		rctl |= E1000_RCTL_SZ_8192;
3055 		break;
3056 	case 16384:
3057 		rctl |= E1000_RCTL_SZ_16384;
3058 		break;
3059 	}
3060 
3061 	/* Enable Extended Status in all Receive Descriptors */
3062 	rfctl = er32(RFCTL);
3063 	rfctl |= E1000_RFCTL_EXTEN;
3064 	ew32(RFCTL, rfctl);
3065 
3066 	/* 82571 and greater support packet-split where the protocol
3067 	 * header is placed in skb->data and the packet data is
3068 	 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3069 	 * In the case of a non-split, skb->data is linearly filled,
3070 	 * followed by the page buffers.  Therefore, skb->data is
3071 	 * sized to hold the largest protocol header.
3072 	 *
3073 	 * allocations using alloc_page take too long for regular MTU
3074 	 * so only enable packet split for jumbo frames
3075 	 *
3076 	 * Using pages when the page size is greater than 16k wastes
3077 	 * a lot of memory, since we allocate 3 pages at all times
3078 	 * per packet.
3079 	 */
3080 	pages = PAGE_USE_COUNT(adapter->netdev->mtu);
3081 	if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
3082 		adapter->rx_ps_pages = pages;
3083 	else
3084 		adapter->rx_ps_pages = 0;
3085 
3086 	if (adapter->rx_ps_pages) {
3087 		u32 psrctl = 0;
3088 
3089 		/* Enable Packet split descriptors */
3090 		rctl |= E1000_RCTL_DTYP_PS;
3091 
3092 		psrctl |= adapter->rx_ps_bsize0 >>
3093 			E1000_PSRCTL_BSIZE0_SHIFT;
3094 
3095 		switch (adapter->rx_ps_pages) {
3096 		case 3:
3097 			psrctl |= PAGE_SIZE <<
3098 				E1000_PSRCTL_BSIZE3_SHIFT;
3099 		case 2:
3100 			psrctl |= PAGE_SIZE <<
3101 				E1000_PSRCTL_BSIZE2_SHIFT;
3102 		case 1:
3103 			psrctl |= PAGE_SIZE >>
3104 				E1000_PSRCTL_BSIZE1_SHIFT;
3105 			break;
3106 		}
3107 
3108 		ew32(PSRCTL, psrctl);
3109 	}
3110 
3111 	/* This is useful for sniffing bad packets. */
3112 	if (adapter->netdev->features & NETIF_F_RXALL) {
3113 		/* UPE and MPE will be handled by normal PROMISC logic
3114 		 * in e1000e_set_rx_mode
3115 		 */
3116 		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3117 			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3118 			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3119 
3120 		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3121 			  E1000_RCTL_DPF | /* Allow filtered pause */
3122 			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3123 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3124 		 * and that breaks VLANs.
3125 		 */
3126 	}
3127 
3128 	ew32(RCTL, rctl);
3129 	/* just started the receive unit, no need to restart */
3130 	adapter->flags &= ~FLAG_RESTART_NOW;
3131 }
3132 
3133 /**
3134  * e1000_configure_rx - Configure Receive Unit after Reset
3135  * @adapter: board private structure
3136  *
3137  * Configure the Rx unit of the MAC after a reset.
3138  **/
3139 static void e1000_configure_rx(struct e1000_adapter *adapter)
3140 {
3141 	struct e1000_hw *hw = &adapter->hw;
3142 	struct e1000_ring *rx_ring = adapter->rx_ring;
3143 	u64 rdba;
3144 	u32 rdlen, rctl, rxcsum, ctrl_ext;
3145 
3146 	if (adapter->rx_ps_pages) {
3147 		/* this is a 32 byte descriptor */
3148 		rdlen = rx_ring->count *
3149 		    sizeof(union e1000_rx_desc_packet_split);
3150 		adapter->clean_rx = e1000_clean_rx_irq_ps;
3151 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3152 	} else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3153 		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3154 		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3155 		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3156 	} else {
3157 		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3158 		adapter->clean_rx = e1000_clean_rx_irq;
3159 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3160 	}
3161 
3162 	/* disable receives while setting up the descriptors */
3163 	rctl = er32(RCTL);
3164 	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3165 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
3166 	e1e_flush();
3167 	usleep_range(10000, 20000);
3168 
3169 	if (adapter->flags2 & FLAG2_DMA_BURST) {
3170 		/* set the writeback threshold (only takes effect if the RDTR
3171 		 * is set). set GRAN=1 and write back up to 0x4 worth, and
3172 		 * enable prefetching of 0x20 Rx descriptors
3173 		 * granularity = 01
3174 		 * wthresh = 04,
3175 		 * hthresh = 04,
3176 		 * pthresh = 0x20
3177 		 */
3178 		ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3179 		ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3180 
3181 		/* override the delay timers for enabling bursting, only if
3182 		 * the value was not set by the user via module options
3183 		 */
3184 		if (adapter->rx_int_delay == DEFAULT_RDTR)
3185 			adapter->rx_int_delay = BURST_RDTR;
3186 		if (adapter->rx_abs_int_delay == DEFAULT_RADV)
3187 			adapter->rx_abs_int_delay = BURST_RADV;
3188 	}
3189 
3190 	/* set the Receive Delay Timer Register */
3191 	ew32(RDTR, adapter->rx_int_delay);
3192 
3193 	/* irq moderation */
3194 	ew32(RADV, adapter->rx_abs_int_delay);
3195 	if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3196 		e1000e_write_itr(adapter, adapter->itr);
3197 
3198 	ctrl_ext = er32(CTRL_EXT);
3199 	/* Auto-Mask interrupts upon ICR access */
3200 	ctrl_ext |= E1000_CTRL_EXT_IAME;
3201 	ew32(IAM, 0xffffffff);
3202 	ew32(CTRL_EXT, ctrl_ext);
3203 	e1e_flush();
3204 
3205 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
3206 	 * the Base and Length of the Rx Descriptor Ring
3207 	 */
3208 	rdba = rx_ring->dma;
3209 	ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3210 	ew32(RDBAH(0), (rdba >> 32));
3211 	ew32(RDLEN(0), rdlen);
3212 	ew32(RDH(0), 0);
3213 	ew32(RDT(0), 0);
3214 	rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3215 	rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3216 
3217 	/* Enable Receive Checksum Offload for TCP and UDP */
3218 	rxcsum = er32(RXCSUM);
3219 	if (adapter->netdev->features & NETIF_F_RXCSUM)
3220 		rxcsum |= E1000_RXCSUM_TUOFL;
3221 	else
3222 		rxcsum &= ~E1000_RXCSUM_TUOFL;
3223 	ew32(RXCSUM, rxcsum);
3224 
3225 	/* With jumbo frames, excessive C-state transition latencies result
3226 	 * in dropped transactions.
3227 	 */
3228 	if (adapter->netdev->mtu > ETH_DATA_LEN) {
3229 		u32 lat =
3230 		    ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 -
3231 		     adapter->max_frame_size) * 8 / 1000;
3232 
3233 		if (adapter->flags & FLAG_IS_ICH) {
3234 			u32 rxdctl = er32(RXDCTL(0));
3235 			ew32(RXDCTL(0), rxdctl | 0x3);
3236 		}
3237 
3238 		pm_qos_update_request(&adapter->netdev->pm_qos_req, lat);
3239 	} else {
3240 		pm_qos_update_request(&adapter->netdev->pm_qos_req,
3241 				      PM_QOS_DEFAULT_VALUE);
3242 	}
3243 
3244 	/* Enable Receives */
3245 	ew32(RCTL, rctl);
3246 }
3247 
3248 /**
3249  * e1000e_write_mc_addr_list - write multicast addresses to MTA
3250  * @netdev: network interface device structure
3251  *
3252  * Writes multicast address list to the MTA hash table.
3253  * Returns: -ENOMEM on failure
3254  *                0 on no addresses written
3255  *                X on writing X addresses to MTA
3256  */
3257 static int e1000e_write_mc_addr_list(struct net_device *netdev)
3258 {
3259 	struct e1000_adapter *adapter = netdev_priv(netdev);
3260 	struct e1000_hw *hw = &adapter->hw;
3261 	struct netdev_hw_addr *ha;
3262 	u8 *mta_list;
3263 	int i;
3264 
3265 	if (netdev_mc_empty(netdev)) {
3266 		/* nothing to program, so clear mc list */
3267 		hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3268 		return 0;
3269 	}
3270 
3271 	mta_list = kzalloc(netdev_mc_count(netdev) * ETH_ALEN, GFP_ATOMIC);
3272 	if (!mta_list)
3273 		return -ENOMEM;
3274 
3275 	/* update_mc_addr_list expects a packed array of only addresses. */
3276 	i = 0;
3277 	netdev_for_each_mc_addr(ha, netdev)
3278 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3279 
3280 	hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3281 	kfree(mta_list);
3282 
3283 	return netdev_mc_count(netdev);
3284 }
3285 
3286 /**
3287  * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3288  * @netdev: network interface device structure
3289  *
3290  * Writes unicast address list to the RAR table.
3291  * Returns: -ENOMEM on failure/insufficient address space
3292  *                0 on no addresses written
3293  *                X on writing X addresses to the RAR table
3294  **/
3295 static int e1000e_write_uc_addr_list(struct net_device *netdev)
3296 {
3297 	struct e1000_adapter *adapter = netdev_priv(netdev);
3298 	struct e1000_hw *hw = &adapter->hw;
3299 	unsigned int rar_entries = hw->mac.rar_entry_count;
3300 	int count = 0;
3301 
3302 	/* save a rar entry for our hardware address */
3303 	rar_entries--;
3304 
3305 	/* save a rar entry for the LAA workaround */
3306 	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3307 		rar_entries--;
3308 
3309 	/* return ENOMEM indicating insufficient memory for addresses */
3310 	if (netdev_uc_count(netdev) > rar_entries)
3311 		return -ENOMEM;
3312 
3313 	if (!netdev_uc_empty(netdev) && rar_entries) {
3314 		struct netdev_hw_addr *ha;
3315 
3316 		/* write the addresses in reverse order to avoid write
3317 		 * combining
3318 		 */
3319 		netdev_for_each_uc_addr(ha, netdev) {
3320 			if (!rar_entries)
3321 				break;
3322 			hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3323 			count++;
3324 		}
3325 	}
3326 
3327 	/* zero out the remaining RAR entries not used above */
3328 	for (; rar_entries > 0; rar_entries--) {
3329 		ew32(RAH(rar_entries), 0);
3330 		ew32(RAL(rar_entries), 0);
3331 	}
3332 	e1e_flush();
3333 
3334 	return count;
3335 }
3336 
3337 /**
3338  * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3339  * @netdev: network interface device structure
3340  *
3341  * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3342  * address list or the network interface flags are updated.  This routine is
3343  * responsible for configuring the hardware for proper unicast, multicast,
3344  * promiscuous mode, and all-multi behavior.
3345  **/
3346 static void e1000e_set_rx_mode(struct net_device *netdev)
3347 {
3348 	struct e1000_adapter *adapter = netdev_priv(netdev);
3349 	struct e1000_hw *hw = &adapter->hw;
3350 	u32 rctl;
3351 
3352 	/* Check for Promiscuous and All Multicast modes */
3353 	rctl = er32(RCTL);
3354 
3355 	/* clear the affected bits */
3356 	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3357 
3358 	if (netdev->flags & IFF_PROMISC) {
3359 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3360 		/* Do not hardware filter VLANs in promisc mode */
3361 		e1000e_vlan_filter_disable(adapter);
3362 	} else {
3363 		int count;
3364 
3365 		if (netdev->flags & IFF_ALLMULTI) {
3366 			rctl |= E1000_RCTL_MPE;
3367 		} else {
3368 			/* Write addresses to the MTA, if the attempt fails
3369 			 * then we should just turn on promiscuous mode so
3370 			 * that we can at least receive multicast traffic
3371 			 */
3372 			count = e1000e_write_mc_addr_list(netdev);
3373 			if (count < 0)
3374 				rctl |= E1000_RCTL_MPE;
3375 		}
3376 		e1000e_vlan_filter_enable(adapter);
3377 		/* Write addresses to available RAR registers, if there is not
3378 		 * sufficient space to store all the addresses then enable
3379 		 * unicast promiscuous mode
3380 		 */
3381 		count = e1000e_write_uc_addr_list(netdev);
3382 		if (count < 0)
3383 			rctl |= E1000_RCTL_UPE;
3384 	}
3385 
3386 	ew32(RCTL, rctl);
3387 
3388 	if (netdev->features & NETIF_F_HW_VLAN_RX)
3389 		e1000e_vlan_strip_enable(adapter);
3390 	else
3391 		e1000e_vlan_strip_disable(adapter);
3392 }
3393 
3394 static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3395 {
3396 	struct e1000_hw *hw = &adapter->hw;
3397 	u32 mrqc, rxcsum;
3398 	int i;
3399 	static const u32 rsskey[10] = {
3400 		0xda565a6d, 0xc20e5b25, 0x3d256741, 0xb08fa343, 0xcb2bcad0,
3401 		0xb4307bae, 0xa32dcb77, 0x0cf23080, 0x3bb7426a, 0xfa01acbe
3402 	};
3403 
3404 	/* Fill out hash function seed */
3405 	for (i = 0; i < 10; i++)
3406 		ew32(RSSRK(i), rsskey[i]);
3407 
3408 	/* Direct all traffic to queue 0 */
3409 	for (i = 0; i < 32; i++)
3410 		ew32(RETA(i), 0);
3411 
3412 	/* Disable raw packet checksumming so that RSS hash is placed in
3413 	 * descriptor on writeback.
3414 	 */
3415 	rxcsum = er32(RXCSUM);
3416 	rxcsum |= E1000_RXCSUM_PCSD;
3417 
3418 	ew32(RXCSUM, rxcsum);
3419 
3420 	mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3421 		E1000_MRQC_RSS_FIELD_IPV4_TCP |
3422 		E1000_MRQC_RSS_FIELD_IPV6 |
3423 		E1000_MRQC_RSS_FIELD_IPV6_TCP |
3424 		E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3425 
3426 	ew32(MRQC, mrqc);
3427 }
3428 
3429 /**
3430  * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3431  * @adapter: board private structure
3432  * @timinca: pointer to returned time increment attributes
3433  *
3434  * Get attributes for incrementing the System Time Register SYSTIML/H at
3435  * the default base frequency, and set the cyclecounter shift value.
3436  **/
3437 s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca)
3438 {
3439 	struct e1000_hw *hw = &adapter->hw;
3440 	u32 incvalue, incperiod, shift;
3441 
3442 	/* Make sure clock is enabled on I217 before checking the frequency */
3443 	if ((hw->mac.type == e1000_pch_lpt) &&
3444 	    !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) &&
3445 	    !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) {
3446 		u32 fextnvm7 = er32(FEXTNVM7);
3447 
3448 		if (!(fextnvm7 & (1 << 0))) {
3449 			ew32(FEXTNVM7, fextnvm7 | (1 << 0));
3450 			e1e_flush();
3451 		}
3452 	}
3453 
3454 	switch (hw->mac.type) {
3455 	case e1000_pch2lan:
3456 	case e1000_pch_lpt:
3457 		/* On I217, the clock frequency is 25MHz or 96MHz as
3458 		 * indicated by the System Clock Frequency Indication
3459 		 */
3460 		if ((hw->mac.type != e1000_pch_lpt) ||
3461 		    (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI)) {
3462 			/* Stable 96MHz frequency */
3463 			incperiod = INCPERIOD_96MHz;
3464 			incvalue = INCVALUE_96MHz;
3465 			shift = INCVALUE_SHIFT_96MHz;
3466 			adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHz;
3467 			break;
3468 		}
3469 		/* fall-through */
3470 	case e1000_82574:
3471 	case e1000_82583:
3472 		/* Stable 25MHz frequency */
3473 		incperiod = INCPERIOD_25MHz;
3474 		incvalue = INCVALUE_25MHz;
3475 		shift = INCVALUE_SHIFT_25MHz;
3476 		adapter->cc.shift = shift;
3477 		break;
3478 	default:
3479 		return -EINVAL;
3480 	}
3481 
3482 	*timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) |
3483 		    ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK));
3484 
3485 	return 0;
3486 }
3487 
3488 /**
3489  * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3490  * @adapter: board private structure
3491  *
3492  * Outgoing time stamping can be enabled and disabled. Play nice and
3493  * disable it when requested, although it shouldn't cause any overhead
3494  * when no packet needs it. At most one packet in the queue may be
3495  * marked for time stamping, otherwise it would be impossible to tell
3496  * for sure to which packet the hardware time stamp belongs.
3497  *
3498  * Incoming time stamping has to be configured via the hardware filters.
3499  * Not all combinations are supported, in particular event type has to be
3500  * specified. Matching the kind of event packet is not supported, with the
3501  * exception of "all V2 events regardless of level 2 or 4".
3502  **/
3503 static int e1000e_config_hwtstamp(struct e1000_adapter *adapter)
3504 {
3505 	struct e1000_hw *hw = &adapter->hw;
3506 	struct hwtstamp_config *config = &adapter->hwtstamp_config;
3507 	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
3508 	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
3509 	u32 rxmtrl = 0;
3510 	u16 rxudp = 0;
3511 	bool is_l4 = false;
3512 	bool is_l2 = false;
3513 	u32 regval;
3514 	s32 ret_val;
3515 
3516 	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3517 		return -EINVAL;
3518 
3519 	/* flags reserved for future extensions - must be zero */
3520 	if (config->flags)
3521 		return -EINVAL;
3522 
3523 	switch (config->tx_type) {
3524 	case HWTSTAMP_TX_OFF:
3525 		tsync_tx_ctl = 0;
3526 		break;
3527 	case HWTSTAMP_TX_ON:
3528 		break;
3529 	default:
3530 		return -ERANGE;
3531 	}
3532 
3533 	switch (config->rx_filter) {
3534 	case HWTSTAMP_FILTER_NONE:
3535 		tsync_rx_ctl = 0;
3536 		break;
3537 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3538 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3539 		rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE;
3540 		is_l4 = true;
3541 		break;
3542 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3543 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3544 		rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE;
3545 		is_l4 = true;
3546 		break;
3547 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3548 		/* Also time stamps V2 L2 Path Delay Request/Response */
3549 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3550 		rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3551 		is_l2 = true;
3552 		break;
3553 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3554 		/* Also time stamps V2 L2 Path Delay Request/Response. */
3555 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3556 		rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3557 		is_l2 = true;
3558 		break;
3559 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3560 		/* Hardware cannot filter just V2 L4 Sync messages;
3561 		 * fall-through to V2 (both L2 and L4) Sync.
3562 		 */
3563 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
3564 		/* Also time stamps V2 Path Delay Request/Response. */
3565 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3566 		rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3567 		is_l2 = true;
3568 		is_l4 = true;
3569 		break;
3570 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3571 		/* Hardware cannot filter just V2 L4 Delay Request messages;
3572 		 * fall-through to V2 (both L2 and L4) Delay Request.
3573 		 */
3574 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3575 		/* Also time stamps V2 Path Delay Request/Response. */
3576 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3577 		rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3578 		is_l2 = true;
3579 		is_l4 = true;
3580 		break;
3581 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3582 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3583 		/* Hardware cannot filter just V2 L4 or L2 Event messages;
3584 		 * fall-through to all V2 (both L2 and L4) Events.
3585 		 */
3586 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
3587 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
3588 		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
3589 		is_l2 = true;
3590 		is_l4 = true;
3591 		break;
3592 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3593 		/* For V1, the hardware can only filter Sync messages or
3594 		 * Delay Request messages but not both so fall-through to
3595 		 * time stamp all packets.
3596 		 */
3597 	case HWTSTAMP_FILTER_ALL:
3598 		is_l2 = true;
3599 		is_l4 = true;
3600 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
3601 		config->rx_filter = HWTSTAMP_FILTER_ALL;
3602 		break;
3603 	default:
3604 		return -ERANGE;
3605 	}
3606 
3607 	/* enable/disable Tx h/w time stamping */
3608 	regval = er32(TSYNCTXCTL);
3609 	regval &= ~E1000_TSYNCTXCTL_ENABLED;
3610 	regval |= tsync_tx_ctl;
3611 	ew32(TSYNCTXCTL, regval);
3612 	if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) !=
3613 	    (regval & E1000_TSYNCTXCTL_ENABLED)) {
3614 		e_err("Timesync Tx Control register not set as expected\n");
3615 		return -EAGAIN;
3616 	}
3617 
3618 	/* enable/disable Rx h/w time stamping */
3619 	regval = er32(TSYNCRXCTL);
3620 	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
3621 	regval |= tsync_rx_ctl;
3622 	ew32(TSYNCRXCTL, regval);
3623 	if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED |
3624 				 E1000_TSYNCRXCTL_TYPE_MASK)) !=
3625 	    (regval & (E1000_TSYNCRXCTL_ENABLED |
3626 		       E1000_TSYNCRXCTL_TYPE_MASK))) {
3627 		e_err("Timesync Rx Control register not set as expected\n");
3628 		return -EAGAIN;
3629 	}
3630 
3631 	/* L2: define ethertype filter for time stamped packets */
3632 	if (is_l2)
3633 		rxmtrl |= ETH_P_1588;
3634 
3635 	/* define which PTP packets get time stamped */
3636 	ew32(RXMTRL, rxmtrl);
3637 
3638 	/* Filter by destination port */
3639 	if (is_l4) {
3640 		rxudp = PTP_EV_PORT;
3641 		cpu_to_be16s(&rxudp);
3642 	}
3643 	ew32(RXUDP, rxudp);
3644 
3645 	e1e_flush();
3646 
3647 	/* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
3648 	er32(RXSTMPH);
3649 	er32(TXSTMPH);
3650 
3651 	/* Get and set the System Time Register SYSTIM base frequency */
3652 	ret_val = e1000e_get_base_timinca(adapter, &regval);
3653 	if (ret_val)
3654 		return ret_val;
3655 	ew32(TIMINCA, regval);
3656 
3657 	/* reset the ns time counter */
3658 	timecounter_init(&adapter->tc, &adapter->cc,
3659 			 ktime_to_ns(ktime_get_real()));
3660 
3661 	return 0;
3662 }
3663 
3664 /**
3665  * e1000_configure - configure the hardware for Rx and Tx
3666  * @adapter: private board structure
3667  **/
3668 static void e1000_configure(struct e1000_adapter *adapter)
3669 {
3670 	struct e1000_ring *rx_ring = adapter->rx_ring;
3671 
3672 	e1000e_set_rx_mode(adapter->netdev);
3673 
3674 	e1000_restore_vlan(adapter);
3675 	e1000_init_manageability_pt(adapter);
3676 
3677 	e1000_configure_tx(adapter);
3678 
3679 	if (adapter->netdev->features & NETIF_F_RXHASH)
3680 		e1000e_setup_rss_hash(adapter);
3681 	e1000_setup_rctl(adapter);
3682 	e1000_configure_rx(adapter);
3683 	adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3684 }
3685 
3686 /**
3687  * e1000e_power_up_phy - restore link in case the phy was powered down
3688  * @adapter: address of board private structure
3689  *
3690  * The phy may be powered down to save power and turn off link when the
3691  * driver is unloaded and wake on lan is not enabled (among others)
3692  * *** this routine MUST be followed by a call to e1000e_reset ***
3693  **/
3694 void e1000e_power_up_phy(struct e1000_adapter *adapter)
3695 {
3696 	if (adapter->hw.phy.ops.power_up)
3697 		adapter->hw.phy.ops.power_up(&adapter->hw);
3698 
3699 	adapter->hw.mac.ops.setup_link(&adapter->hw);
3700 }
3701 
3702 /**
3703  * e1000_power_down_phy - Power down the PHY
3704  *
3705  * Power down the PHY so no link is implied when interface is down.
3706  * The PHY cannot be powered down if management or WoL is active.
3707  */
3708 static void e1000_power_down_phy(struct e1000_adapter *adapter)
3709 {
3710 	/* WoL is enabled */
3711 	if (adapter->wol)
3712 		return;
3713 
3714 	if (adapter->hw.phy.ops.power_down)
3715 		adapter->hw.phy.ops.power_down(&adapter->hw);
3716 }
3717 
3718 /**
3719  * e1000e_reset - bring the hardware into a known good state
3720  *
3721  * This function boots the hardware and enables some settings that
3722  * require a configuration cycle of the hardware - those cannot be
3723  * set/changed during runtime. After reset the device needs to be
3724  * properly configured for Rx, Tx etc.
3725  */
3726 void e1000e_reset(struct e1000_adapter *adapter)
3727 {
3728 	struct e1000_mac_info *mac = &adapter->hw.mac;
3729 	struct e1000_fc_info *fc = &adapter->hw.fc;
3730 	struct e1000_hw *hw = &adapter->hw;
3731 	u32 tx_space, min_tx_space, min_rx_space;
3732 	u32 pba = adapter->pba;
3733 	u16 hwm;
3734 
3735 	/* reset Packet Buffer Allocation to default */
3736 	ew32(PBA, pba);
3737 
3738 	if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
3739 		/* To maintain wire speed transmits, the Tx FIFO should be
3740 		 * large enough to accommodate two full transmit packets,
3741 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
3742 		 * the Rx FIFO should be large enough to accommodate at least
3743 		 * one full receive packet and is similarly rounded up and
3744 		 * expressed in KB.
3745 		 */
3746 		pba = er32(PBA);
3747 		/* upper 16 bits has Tx packet buffer allocation size in KB */
3748 		tx_space = pba >> 16;
3749 		/* lower 16 bits has Rx packet buffer allocation size in KB */
3750 		pba &= 0xffff;
3751 		/* the Tx fifo also stores 16 bytes of information about the Tx
3752 		 * but don't include ethernet FCS because hardware appends it
3753 		 */
3754 		min_tx_space = (adapter->max_frame_size +
3755 				sizeof(struct e1000_tx_desc) -
3756 				ETH_FCS_LEN) * 2;
3757 		min_tx_space = ALIGN(min_tx_space, 1024);
3758 		min_tx_space >>= 10;
3759 		/* software strips receive CRC, so leave room for it */
3760 		min_rx_space = adapter->max_frame_size;
3761 		min_rx_space = ALIGN(min_rx_space, 1024);
3762 		min_rx_space >>= 10;
3763 
3764 		/* If current Tx allocation is less than the min Tx FIFO size,
3765 		 * and the min Tx FIFO size is less than the current Rx FIFO
3766 		 * allocation, take space away from current Rx allocation
3767 		 */
3768 		if ((tx_space < min_tx_space) &&
3769 		    ((min_tx_space - tx_space) < pba)) {
3770 			pba -= min_tx_space - tx_space;
3771 
3772 			/* if short on Rx space, Rx wins and must trump Tx
3773 			 * adjustment
3774 			 */
3775 			if (pba < min_rx_space)
3776 				pba = min_rx_space;
3777 		}
3778 
3779 		ew32(PBA, pba);
3780 	}
3781 
3782 	/* flow control settings
3783 	 *
3784 	 * The high water mark must be low enough to fit one full frame
3785 	 * (or the size used for early receive) above it in the Rx FIFO.
3786 	 * Set it to the lower of:
3787 	 * - 90% of the Rx FIFO size, and
3788 	 * - the full Rx FIFO size minus one full frame
3789 	 */
3790 	if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
3791 		fc->pause_time = 0xFFFF;
3792 	else
3793 		fc->pause_time = E1000_FC_PAUSE_TIME;
3794 	fc->send_xon = true;
3795 	fc->current_mode = fc->requested_mode;
3796 
3797 	switch (hw->mac.type) {
3798 	case e1000_ich9lan:
3799 	case e1000_ich10lan:
3800 		if (adapter->netdev->mtu > ETH_DATA_LEN) {
3801 			pba = 14;
3802 			ew32(PBA, pba);
3803 			fc->high_water = 0x2800;
3804 			fc->low_water = fc->high_water - 8;
3805 			break;
3806 		}
3807 		/* fall-through */
3808 	default:
3809 		hwm = min(((pba << 10) * 9 / 10),
3810 			  ((pba << 10) - adapter->max_frame_size));
3811 
3812 		fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
3813 		fc->low_water = fc->high_water - 8;
3814 		break;
3815 	case e1000_pchlan:
3816 		/* Workaround PCH LOM adapter hangs with certain network
3817 		 * loads.  If hangs persist, try disabling Tx flow control.
3818 		 */
3819 		if (adapter->netdev->mtu > ETH_DATA_LEN) {
3820 			fc->high_water = 0x3500;
3821 			fc->low_water  = 0x1500;
3822 		} else {
3823 			fc->high_water = 0x5000;
3824 			fc->low_water  = 0x3000;
3825 		}
3826 		fc->refresh_time = 0x1000;
3827 		break;
3828 	case e1000_pch2lan:
3829 	case e1000_pch_lpt:
3830 		fc->refresh_time = 0x0400;
3831 
3832 		if (adapter->netdev->mtu <= ETH_DATA_LEN) {
3833 			fc->high_water = 0x05C20;
3834 			fc->low_water = 0x05048;
3835 			fc->pause_time = 0x0650;
3836 			break;
3837 		}
3838 
3839 		fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH;
3840 		fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL;
3841 		break;
3842 	}
3843 
3844 	/* Alignment of Tx data is on an arbitrary byte boundary with the
3845 	 * maximum size per Tx descriptor limited only to the transmit
3846 	 * allocation of the packet buffer minus 96 bytes with an upper
3847 	 * limit of 24KB due to receive synchronization limitations.
3848 	 */
3849 	adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
3850 				       24 << 10);
3851 
3852 	/* Disable Adaptive Interrupt Moderation if 2 full packets cannot
3853 	 * fit in receive buffer.
3854 	 */
3855 	if (adapter->itr_setting & 0x3) {
3856 		if ((adapter->max_frame_size * 2) > (pba << 10)) {
3857 			if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
3858 				dev_info(&adapter->pdev->dev,
3859 					"Interrupt Throttle Rate turned off\n");
3860 				adapter->flags2 |= FLAG2_DISABLE_AIM;
3861 				e1000e_write_itr(adapter, 0);
3862 			}
3863 		} else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
3864 			dev_info(&adapter->pdev->dev,
3865 				 "Interrupt Throttle Rate turned on\n");
3866 			adapter->flags2 &= ~FLAG2_DISABLE_AIM;
3867 			adapter->itr = 20000;
3868 			e1000e_write_itr(adapter, adapter->itr);
3869 		}
3870 	}
3871 
3872 	/* Allow time for pending master requests to run */
3873 	mac->ops.reset_hw(hw);
3874 
3875 	/* For parts with AMT enabled, let the firmware know
3876 	 * that the network interface is in control
3877 	 */
3878 	if (adapter->flags & FLAG_HAS_AMT)
3879 		e1000e_get_hw_control(adapter);
3880 
3881 	ew32(WUC, 0);
3882 
3883 	if (mac->ops.init_hw(hw))
3884 		e_err("Hardware Error\n");
3885 
3886 	e1000_update_mng_vlan(adapter);
3887 
3888 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
3889 	ew32(VET, ETH_P_8021Q);
3890 
3891 	e1000e_reset_adaptive(hw);
3892 
3893 	/* initialize systim and reset the ns time counter */
3894 	e1000e_config_hwtstamp(adapter);
3895 
3896 	if (!netif_running(adapter->netdev) &&
3897 	    !test_bit(__E1000_TESTING, &adapter->state)) {
3898 		e1000_power_down_phy(adapter);
3899 		return;
3900 	}
3901 
3902 	e1000_get_phy_info(hw);
3903 
3904 	if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
3905 	    !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
3906 		u16 phy_data = 0;
3907 		/* speed up time to link by disabling smart power down, ignore
3908 		 * the return value of this function because there is nothing
3909 		 * different we would do if it failed
3910 		 */
3911 		e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
3912 		phy_data &= ~IGP02E1000_PM_SPD;
3913 		e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
3914 	}
3915 }
3916 
3917 int e1000e_up(struct e1000_adapter *adapter)
3918 {
3919 	struct e1000_hw *hw = &adapter->hw;
3920 
3921 	/* hardware has been reset, we need to reload some things */
3922 	e1000_configure(adapter);
3923 
3924 	clear_bit(__E1000_DOWN, &adapter->state);
3925 
3926 	if (adapter->msix_entries)
3927 		e1000_configure_msix(adapter);
3928 	e1000_irq_enable(adapter);
3929 
3930 	netif_start_queue(adapter->netdev);
3931 
3932 	/* fire a link change interrupt to start the watchdog */
3933 	if (adapter->msix_entries)
3934 		ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
3935 	else
3936 		ew32(ICS, E1000_ICS_LSC);
3937 
3938 	return 0;
3939 }
3940 
3941 static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
3942 {
3943 	struct e1000_hw *hw = &adapter->hw;
3944 
3945 	if (!(adapter->flags2 & FLAG2_DMA_BURST))
3946 		return;
3947 
3948 	/* flush pending descriptor writebacks to memory */
3949 	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
3950 	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
3951 
3952 	/* execute the writes immediately */
3953 	e1e_flush();
3954 
3955 	/* due to rare timing issues, write to TIDV/RDTR again to ensure the
3956 	 * write is successful
3957 	 */
3958 	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
3959 	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
3960 
3961 	/* execute the writes immediately */
3962 	e1e_flush();
3963 }
3964 
3965 static void e1000e_update_stats(struct e1000_adapter *adapter);
3966 
3967 void e1000e_down(struct e1000_adapter *adapter)
3968 {
3969 	struct net_device *netdev = adapter->netdev;
3970 	struct e1000_hw *hw = &adapter->hw;
3971 	u32 tctl, rctl;
3972 
3973 	/* signal that we're down so the interrupt handler does not
3974 	 * reschedule our watchdog timer
3975 	 */
3976 	set_bit(__E1000_DOWN, &adapter->state);
3977 
3978 	/* disable receives in the hardware */
3979 	rctl = er32(RCTL);
3980 	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3981 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
3982 	/* flush and sleep below */
3983 
3984 	netif_stop_queue(netdev);
3985 
3986 	/* disable transmits in the hardware */
3987 	tctl = er32(TCTL);
3988 	tctl &= ~E1000_TCTL_EN;
3989 	ew32(TCTL, tctl);
3990 
3991 	/* flush both disables and wait for them to finish */
3992 	e1e_flush();
3993 	usleep_range(10000, 20000);
3994 
3995 	e1000_irq_disable(adapter);
3996 
3997 	del_timer_sync(&adapter->watchdog_timer);
3998 	del_timer_sync(&adapter->phy_info_timer);
3999 
4000 	netif_carrier_off(netdev);
4001 
4002 	spin_lock(&adapter->stats64_lock);
4003 	e1000e_update_stats(adapter);
4004 	spin_unlock(&adapter->stats64_lock);
4005 
4006 	e1000e_flush_descriptors(adapter);
4007 	e1000_clean_tx_ring(adapter->tx_ring);
4008 	e1000_clean_rx_ring(adapter->rx_ring);
4009 
4010 	adapter->link_speed = 0;
4011 	adapter->link_duplex = 0;
4012 
4013 	if (!pci_channel_offline(adapter->pdev))
4014 		e1000e_reset(adapter);
4015 
4016 	/* TODO: for power management, we could drop the link and
4017 	 * pci_disable_device here.
4018 	 */
4019 }
4020 
4021 void e1000e_reinit_locked(struct e1000_adapter *adapter)
4022 {
4023 	might_sleep();
4024 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4025 		usleep_range(1000, 2000);
4026 	e1000e_down(adapter);
4027 	e1000e_up(adapter);
4028 	clear_bit(__E1000_RESETTING, &adapter->state);
4029 }
4030 
4031 /**
4032  * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4033  * @cc: cyclecounter structure
4034  **/
4035 static cycle_t e1000e_cyclecounter_read(const struct cyclecounter *cc)
4036 {
4037 	struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter,
4038 						     cc);
4039 	struct e1000_hw *hw = &adapter->hw;
4040 	cycle_t systim;
4041 
4042 	/* latch SYSTIMH on read of SYSTIML */
4043 	systim = (cycle_t)er32(SYSTIML);
4044 	systim |= (cycle_t)er32(SYSTIMH) << 32;
4045 
4046 	return systim;
4047 }
4048 
4049 /**
4050  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4051  * @adapter: board private structure to initialize
4052  *
4053  * e1000_sw_init initializes the Adapter private data structure.
4054  * Fields are initialized based on PCI device information and
4055  * OS network device settings (MTU size).
4056  **/
4057 static int e1000_sw_init(struct e1000_adapter *adapter)
4058 {
4059 	struct net_device *netdev = adapter->netdev;
4060 
4061 	adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
4062 	adapter->rx_ps_bsize0 = 128;
4063 	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
4064 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4065 	adapter->tx_ring_count = E1000_DEFAULT_TXD;
4066 	adapter->rx_ring_count = E1000_DEFAULT_RXD;
4067 
4068 	spin_lock_init(&adapter->stats64_lock);
4069 
4070 	e1000e_set_interrupt_capability(adapter);
4071 
4072 	if (e1000_alloc_queues(adapter))
4073 		return -ENOMEM;
4074 
4075 	/* Setup hardware time stamping cyclecounter */
4076 	if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
4077 		adapter->cc.read = e1000e_cyclecounter_read;
4078 		adapter->cc.mask = CLOCKSOURCE_MASK(64);
4079 		adapter->cc.mult = 1;
4080 		/* cc.shift set in e1000e_get_base_tininca() */
4081 
4082 		spin_lock_init(&adapter->systim_lock);
4083 		INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work);
4084 	}
4085 
4086 	/* Explicitly disable IRQ since the NIC can be in any state. */
4087 	e1000_irq_disable(adapter);
4088 
4089 	set_bit(__E1000_DOWN, &adapter->state);
4090 	return 0;
4091 }
4092 
4093 /**
4094  * e1000_intr_msi_test - Interrupt Handler
4095  * @irq: interrupt number
4096  * @data: pointer to a network interface device structure
4097  **/
4098 static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data)
4099 {
4100 	struct net_device *netdev = data;
4101 	struct e1000_adapter *adapter = netdev_priv(netdev);
4102 	struct e1000_hw *hw = &adapter->hw;
4103 	u32 icr = er32(ICR);
4104 
4105 	e_dbg("icr is %08X\n", icr);
4106 	if (icr & E1000_ICR_RXSEQ) {
4107 		adapter->flags &= ~FLAG_MSI_TEST_FAILED;
4108 		/* Force memory writes to complete before acknowledging the
4109 		 * interrupt is handled.
4110 		 */
4111 		wmb();
4112 	}
4113 
4114 	return IRQ_HANDLED;
4115 }
4116 
4117 /**
4118  * e1000_test_msi_interrupt - Returns 0 for successful test
4119  * @adapter: board private struct
4120  *
4121  * code flow taken from tg3.c
4122  **/
4123 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
4124 {
4125 	struct net_device *netdev = adapter->netdev;
4126 	struct e1000_hw *hw = &adapter->hw;
4127 	int err;
4128 
4129 	/* poll_enable hasn't been called yet, so don't need disable */
4130 	/* clear any pending events */
4131 	er32(ICR);
4132 
4133 	/* free the real vector and request a test handler */
4134 	e1000_free_irq(adapter);
4135 	e1000e_reset_interrupt_capability(adapter);
4136 
4137 	/* Assume that the test fails, if it succeeds then the test
4138 	 * MSI irq handler will unset this flag
4139 	 */
4140 	adapter->flags |= FLAG_MSI_TEST_FAILED;
4141 
4142 	err = pci_enable_msi(adapter->pdev);
4143 	if (err)
4144 		goto msi_test_failed;
4145 
4146 	err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
4147 			  netdev->name, netdev);
4148 	if (err) {
4149 		pci_disable_msi(adapter->pdev);
4150 		goto msi_test_failed;
4151 	}
4152 
4153 	/* Force memory writes to complete before enabling and firing an
4154 	 * interrupt.
4155 	 */
4156 	wmb();
4157 
4158 	e1000_irq_enable(adapter);
4159 
4160 	/* fire an unusual interrupt on the test handler */
4161 	ew32(ICS, E1000_ICS_RXSEQ);
4162 	e1e_flush();
4163 	msleep(100);
4164 
4165 	e1000_irq_disable(adapter);
4166 
4167 	rmb();			/* read flags after interrupt has been fired */
4168 
4169 	if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4170 		adapter->int_mode = E1000E_INT_MODE_LEGACY;
4171 		e_info("MSI interrupt test failed, using legacy interrupt.\n");
4172 	} else {
4173 		e_dbg("MSI interrupt test succeeded!\n");
4174 	}
4175 
4176 	free_irq(adapter->pdev->irq, netdev);
4177 	pci_disable_msi(adapter->pdev);
4178 
4179 msi_test_failed:
4180 	e1000e_set_interrupt_capability(adapter);
4181 	return e1000_request_irq(adapter);
4182 }
4183 
4184 /**
4185  * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4186  * @adapter: board private struct
4187  *
4188  * code flow taken from tg3.c, called with e1000 interrupts disabled.
4189  **/
4190 static int e1000_test_msi(struct e1000_adapter *adapter)
4191 {
4192 	int err;
4193 	u16 pci_cmd;
4194 
4195 	if (!(adapter->flags & FLAG_MSI_ENABLED))
4196 		return 0;
4197 
4198 	/* disable SERR in case the MSI write causes a master abort */
4199 	pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4200 	if (pci_cmd & PCI_COMMAND_SERR)
4201 		pci_write_config_word(adapter->pdev, PCI_COMMAND,
4202 				      pci_cmd & ~PCI_COMMAND_SERR);
4203 
4204 	err = e1000_test_msi_interrupt(adapter);
4205 
4206 	/* re-enable SERR */
4207 	if (pci_cmd & PCI_COMMAND_SERR) {
4208 		pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4209 		pci_cmd |= PCI_COMMAND_SERR;
4210 		pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
4211 	}
4212 
4213 	return err;
4214 }
4215 
4216 /**
4217  * e1000_open - Called when a network interface is made active
4218  * @netdev: network interface device structure
4219  *
4220  * Returns 0 on success, negative value on failure
4221  *
4222  * The open entry point is called when a network interface is made
4223  * active by the system (IFF_UP).  At this point all resources needed
4224  * for transmit and receive operations are allocated, the interrupt
4225  * handler is registered with the OS, the watchdog timer is started,
4226  * and the stack is notified that the interface is ready.
4227  **/
4228 static int e1000_open(struct net_device *netdev)
4229 {
4230 	struct e1000_adapter *adapter = netdev_priv(netdev);
4231 	struct e1000_hw *hw = &adapter->hw;
4232 	struct pci_dev *pdev = adapter->pdev;
4233 	int err;
4234 
4235 	/* disallow open during test */
4236 	if (test_bit(__E1000_TESTING, &adapter->state))
4237 		return -EBUSY;
4238 
4239 	pm_runtime_get_sync(&pdev->dev);
4240 
4241 	netif_carrier_off(netdev);
4242 
4243 	/* allocate transmit descriptors */
4244 	err = e1000e_setup_tx_resources(adapter->tx_ring);
4245 	if (err)
4246 		goto err_setup_tx;
4247 
4248 	/* allocate receive descriptors */
4249 	err = e1000e_setup_rx_resources(adapter->rx_ring);
4250 	if (err)
4251 		goto err_setup_rx;
4252 
4253 	/* If AMT is enabled, let the firmware know that the network
4254 	 * interface is now open and reset the part to a known state.
4255 	 */
4256 	if (adapter->flags & FLAG_HAS_AMT) {
4257 		e1000e_get_hw_control(adapter);
4258 		e1000e_reset(adapter);
4259 	}
4260 
4261 	e1000e_power_up_phy(adapter);
4262 
4263 	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4264 	if ((adapter->hw.mng_cookie.status &
4265 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
4266 		e1000_update_mng_vlan(adapter);
4267 
4268 	/* DMA latency requirement to workaround jumbo issue */
4269 	pm_qos_add_request(&adapter->netdev->pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
4270 			   PM_QOS_DEFAULT_VALUE);
4271 
4272 	/* before we allocate an interrupt, we must be ready to handle it.
4273 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4274 	 * as soon as we call pci_request_irq, so we have to setup our
4275 	 * clean_rx handler before we do so.
4276 	 */
4277 	e1000_configure(adapter);
4278 
4279 	err = e1000_request_irq(adapter);
4280 	if (err)
4281 		goto err_req_irq;
4282 
4283 	/* Work around PCIe errata with MSI interrupts causing some chipsets to
4284 	 * ignore e1000e MSI messages, which means we need to test our MSI
4285 	 * interrupt now
4286 	 */
4287 	if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
4288 		err = e1000_test_msi(adapter);
4289 		if (err) {
4290 			e_err("Interrupt allocation failed\n");
4291 			goto err_req_irq;
4292 		}
4293 	}
4294 
4295 	/* From here on the code is the same as e1000e_up() */
4296 	clear_bit(__E1000_DOWN, &adapter->state);
4297 
4298 	napi_enable(&adapter->napi);
4299 
4300 	e1000_irq_enable(adapter);
4301 
4302 	adapter->tx_hang_recheck = false;
4303 	netif_start_queue(netdev);
4304 
4305 	adapter->idle_check = true;
4306 	pm_runtime_put(&pdev->dev);
4307 
4308 	/* fire a link status change interrupt to start the watchdog */
4309 	if (adapter->msix_entries)
4310 		ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
4311 	else
4312 		ew32(ICS, E1000_ICS_LSC);
4313 
4314 	return 0;
4315 
4316 err_req_irq:
4317 	e1000e_release_hw_control(adapter);
4318 	e1000_power_down_phy(adapter);
4319 	e1000e_free_rx_resources(adapter->rx_ring);
4320 err_setup_rx:
4321 	e1000e_free_tx_resources(adapter->tx_ring);
4322 err_setup_tx:
4323 	e1000e_reset(adapter);
4324 	pm_runtime_put_sync(&pdev->dev);
4325 
4326 	return err;
4327 }
4328 
4329 /**
4330  * e1000_close - Disables a network interface
4331  * @netdev: network interface device structure
4332  *
4333  * Returns 0, this is not allowed to fail
4334  *
4335  * The close entry point is called when an interface is de-activated
4336  * by the OS.  The hardware is still under the drivers control, but
4337  * needs to be disabled.  A global MAC reset is issued to stop the
4338  * hardware, and all transmit and receive resources are freed.
4339  **/
4340 static int e1000_close(struct net_device *netdev)
4341 {
4342 	struct e1000_adapter *adapter = netdev_priv(netdev);
4343 	struct pci_dev *pdev = adapter->pdev;
4344 	int count = E1000_CHECK_RESET_COUNT;
4345 
4346 	while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
4347 		usleep_range(10000, 20000);
4348 
4349 	WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4350 
4351 	pm_runtime_get_sync(&pdev->dev);
4352 
4353 	napi_disable(&adapter->napi);
4354 
4355 	if (!test_bit(__E1000_DOWN, &adapter->state)) {
4356 		e1000e_down(adapter);
4357 		e1000_free_irq(adapter);
4358 	}
4359 	e1000_power_down_phy(adapter);
4360 
4361 	e1000e_free_tx_resources(adapter->tx_ring);
4362 	e1000e_free_rx_resources(adapter->rx_ring);
4363 
4364 	/* kill manageability vlan ID if supported, but not if a vlan with
4365 	 * the same ID is registered on the host OS (let 8021q kill it)
4366 	 */
4367 	if (adapter->hw.mng_cookie.status &
4368 	    E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
4369 		e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4370 
4371 	/* If AMT is enabled, let the firmware know that the network
4372 	 * interface is now closed
4373 	 */
4374 	if ((adapter->flags & FLAG_HAS_AMT) &&
4375 	    !test_bit(__E1000_TESTING, &adapter->state))
4376 		e1000e_release_hw_control(adapter);
4377 
4378 	pm_qos_remove_request(&adapter->netdev->pm_qos_req);
4379 
4380 	pm_runtime_put_sync(&pdev->dev);
4381 
4382 	return 0;
4383 }
4384 /**
4385  * e1000_set_mac - Change the Ethernet Address of the NIC
4386  * @netdev: network interface device structure
4387  * @p: pointer to an address structure
4388  *
4389  * Returns 0 on success, negative on failure
4390  **/
4391 static int e1000_set_mac(struct net_device *netdev, void *p)
4392 {
4393 	struct e1000_adapter *adapter = netdev_priv(netdev);
4394 	struct e1000_hw *hw = &adapter->hw;
4395 	struct sockaddr *addr = p;
4396 
4397 	if (!is_valid_ether_addr(addr->sa_data))
4398 		return -EADDRNOTAVAIL;
4399 
4400 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4401 	memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4402 
4403 	hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4404 
4405 	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4406 		/* activate the work around */
4407 		e1000e_set_laa_state_82571(&adapter->hw, 1);
4408 
4409 		/* Hold a copy of the LAA in RAR[14] This is done so that
4410 		 * between the time RAR[0] gets clobbered  and the time it
4411 		 * gets fixed (in e1000_watchdog), the actual LAA is in one
4412 		 * of the RARs and no incoming packets directed to this port
4413 		 * are dropped. Eventually the LAA will be in RAR[0] and
4414 		 * RAR[14]
4415 		 */
4416 		hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4417 				    adapter->hw.mac.rar_entry_count - 1);
4418 	}
4419 
4420 	return 0;
4421 }
4422 
4423 /**
4424  * e1000e_update_phy_task - work thread to update phy
4425  * @work: pointer to our work struct
4426  *
4427  * this worker thread exists because we must acquire a
4428  * semaphore to read the phy, which we could msleep while
4429  * waiting for it, and we can't msleep in a timer.
4430  **/
4431 static void e1000e_update_phy_task(struct work_struct *work)
4432 {
4433 	struct e1000_adapter *adapter = container_of(work,
4434 					struct e1000_adapter, update_phy_task);
4435 
4436 	if (test_bit(__E1000_DOWN, &adapter->state))
4437 		return;
4438 
4439 	e1000_get_phy_info(&adapter->hw);
4440 }
4441 
4442 /**
4443  * e1000_update_phy_info - timre call-back to update PHY info
4444  * @data: pointer to adapter cast into an unsigned long
4445  *
4446  * Need to wait a few seconds after link up to get diagnostic information from
4447  * the phy
4448  **/
4449 static void e1000_update_phy_info(unsigned long data)
4450 {
4451 	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
4452 
4453 	if (test_bit(__E1000_DOWN, &adapter->state))
4454 		return;
4455 
4456 	schedule_work(&adapter->update_phy_task);
4457 }
4458 
4459 /**
4460  * e1000e_update_phy_stats - Update the PHY statistics counters
4461  * @adapter: board private structure
4462  *
4463  * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4464  **/
4465 static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4466 {
4467 	struct e1000_hw *hw = &adapter->hw;
4468 	s32 ret_val;
4469 	u16 phy_data;
4470 
4471 	ret_val = hw->phy.ops.acquire(hw);
4472 	if (ret_val)
4473 		return;
4474 
4475 	/* A page set is expensive so check if already on desired page.
4476 	 * If not, set to the page with the PHY status registers.
4477 	 */
4478 	hw->phy.addr = 1;
4479 	ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4480 					   &phy_data);
4481 	if (ret_val)
4482 		goto release;
4483 	if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4484 		ret_val = hw->phy.ops.set_page(hw,
4485 					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
4486 		if (ret_val)
4487 			goto release;
4488 	}
4489 
4490 	/* Single Collision Count */
4491 	hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4492 	ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4493 	if (!ret_val)
4494 		adapter->stats.scc += phy_data;
4495 
4496 	/* Excessive Collision Count */
4497 	hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4498 	ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4499 	if (!ret_val)
4500 		adapter->stats.ecol += phy_data;
4501 
4502 	/* Multiple Collision Count */
4503 	hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4504 	ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4505 	if (!ret_val)
4506 		adapter->stats.mcc += phy_data;
4507 
4508 	/* Late Collision Count */
4509 	hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4510 	ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4511 	if (!ret_val)
4512 		adapter->stats.latecol += phy_data;
4513 
4514 	/* Collision Count - also used for adaptive IFS */
4515 	hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4516 	ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4517 	if (!ret_val)
4518 		hw->mac.collision_delta = phy_data;
4519 
4520 	/* Defer Count */
4521 	hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4522 	ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4523 	if (!ret_val)
4524 		adapter->stats.dc += phy_data;
4525 
4526 	/* Transmit with no CRS */
4527 	hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4528 	ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4529 	if (!ret_val)
4530 		adapter->stats.tncrs += phy_data;
4531 
4532 release:
4533 	hw->phy.ops.release(hw);
4534 }
4535 
4536 /**
4537  * e1000e_update_stats - Update the board statistics counters
4538  * @adapter: board private structure
4539  **/
4540 static void e1000e_update_stats(struct e1000_adapter *adapter)
4541 {
4542 	struct net_device *netdev = adapter->netdev;
4543 	struct e1000_hw *hw = &adapter->hw;
4544 	struct pci_dev *pdev = adapter->pdev;
4545 
4546 	/* Prevent stats update while adapter is being reset, or if the pci
4547 	 * connection is down.
4548 	 */
4549 	if (adapter->link_speed == 0)
4550 		return;
4551 	if (pci_channel_offline(pdev))
4552 		return;
4553 
4554 	adapter->stats.crcerrs += er32(CRCERRS);
4555 	adapter->stats.gprc += er32(GPRC);
4556 	adapter->stats.gorc += er32(GORCL);
4557 	er32(GORCH); /* Clear gorc */
4558 	adapter->stats.bprc += er32(BPRC);
4559 	adapter->stats.mprc += er32(MPRC);
4560 	adapter->stats.roc += er32(ROC);
4561 
4562 	adapter->stats.mpc += er32(MPC);
4563 
4564 	/* Half-duplex statistics */
4565 	if (adapter->link_duplex == HALF_DUPLEX) {
4566 		if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4567 			e1000e_update_phy_stats(adapter);
4568 		} else {
4569 			adapter->stats.scc += er32(SCC);
4570 			adapter->stats.ecol += er32(ECOL);
4571 			adapter->stats.mcc += er32(MCC);
4572 			adapter->stats.latecol += er32(LATECOL);
4573 			adapter->stats.dc += er32(DC);
4574 
4575 			hw->mac.collision_delta = er32(COLC);
4576 
4577 			if ((hw->mac.type != e1000_82574) &&
4578 			    (hw->mac.type != e1000_82583))
4579 				adapter->stats.tncrs += er32(TNCRS);
4580 		}
4581 		adapter->stats.colc += hw->mac.collision_delta;
4582 	}
4583 
4584 	adapter->stats.xonrxc += er32(XONRXC);
4585 	adapter->stats.xontxc += er32(XONTXC);
4586 	adapter->stats.xoffrxc += er32(XOFFRXC);
4587 	adapter->stats.xofftxc += er32(XOFFTXC);
4588 	adapter->stats.gptc += er32(GPTC);
4589 	adapter->stats.gotc += er32(GOTCL);
4590 	er32(GOTCH); /* Clear gotc */
4591 	adapter->stats.rnbc += er32(RNBC);
4592 	adapter->stats.ruc += er32(RUC);
4593 
4594 	adapter->stats.mptc += er32(MPTC);
4595 	adapter->stats.bptc += er32(BPTC);
4596 
4597 	/* used for adaptive IFS */
4598 
4599 	hw->mac.tx_packet_delta = er32(TPT);
4600 	adapter->stats.tpt += hw->mac.tx_packet_delta;
4601 
4602 	adapter->stats.algnerrc += er32(ALGNERRC);
4603 	adapter->stats.rxerrc += er32(RXERRC);
4604 	adapter->stats.cexterr += er32(CEXTERR);
4605 	adapter->stats.tsctc += er32(TSCTC);
4606 	adapter->stats.tsctfc += er32(TSCTFC);
4607 
4608 	/* Fill out the OS statistics structure */
4609 	netdev->stats.multicast = adapter->stats.mprc;
4610 	netdev->stats.collisions = adapter->stats.colc;
4611 
4612 	/* Rx Errors */
4613 
4614 	/* RLEC on some newer hardware can be incorrect so build
4615 	 * our own version based on RUC and ROC
4616 	 */
4617 	netdev->stats.rx_errors = adapter->stats.rxerrc +
4618 		adapter->stats.crcerrs + adapter->stats.algnerrc +
4619 		adapter->stats.ruc + adapter->stats.roc +
4620 		adapter->stats.cexterr;
4621 	netdev->stats.rx_length_errors = adapter->stats.ruc +
4622 					      adapter->stats.roc;
4623 	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
4624 	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
4625 	netdev->stats.rx_missed_errors = adapter->stats.mpc;
4626 
4627 	/* Tx Errors */
4628 	netdev->stats.tx_errors = adapter->stats.ecol +
4629 				       adapter->stats.latecol;
4630 	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
4631 	netdev->stats.tx_window_errors = adapter->stats.latecol;
4632 	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
4633 
4634 	/* Tx Dropped needs to be maintained elsewhere */
4635 
4636 	/* Management Stats */
4637 	adapter->stats.mgptc += er32(MGTPTC);
4638 	adapter->stats.mgprc += er32(MGTPRC);
4639 	adapter->stats.mgpdc += er32(MGTPDC);
4640 
4641 	/* Correctable ECC Errors */
4642 	if (hw->mac.type == e1000_pch_lpt) {
4643 		u32 pbeccsts = er32(PBECCSTS);
4644 		adapter->corr_errors +=
4645 		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
4646 		adapter->uncorr_errors +=
4647 		    (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
4648 		    E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
4649 	}
4650 }
4651 
4652 /**
4653  * e1000_phy_read_status - Update the PHY register status snapshot
4654  * @adapter: board private structure
4655  **/
4656 static void e1000_phy_read_status(struct e1000_adapter *adapter)
4657 {
4658 	struct e1000_hw *hw = &adapter->hw;
4659 	struct e1000_phy_regs *phy = &adapter->phy_regs;
4660 
4661 	if ((er32(STATUS) & E1000_STATUS_LU) &&
4662 	    (adapter->hw.phy.media_type == e1000_media_type_copper)) {
4663 		int ret_val;
4664 
4665 		ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr);
4666 		ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr);
4667 		ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise);
4668 		ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa);
4669 		ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion);
4670 		ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000);
4671 		ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000);
4672 		ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus);
4673 		if (ret_val)
4674 			e_warn("Error reading PHY register\n");
4675 	} else {
4676 		/* Do not read PHY registers if link is not up
4677 		 * Set values to typical power-on defaults
4678 		 */
4679 		phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
4680 		phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
4681 			     BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
4682 			     BMSR_ERCAP);
4683 		phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
4684 				  ADVERTISE_ALL | ADVERTISE_CSMA);
4685 		phy->lpa = 0;
4686 		phy->expansion = EXPANSION_ENABLENPAGE;
4687 		phy->ctrl1000 = ADVERTISE_1000FULL;
4688 		phy->stat1000 = 0;
4689 		phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
4690 	}
4691 }
4692 
4693 static void e1000_print_link_info(struct e1000_adapter *adapter)
4694 {
4695 	struct e1000_hw *hw = &adapter->hw;
4696 	u32 ctrl = er32(CTRL);
4697 
4698 	/* Link status message must follow this format for user tools */
4699 	pr_info("%s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4700 		adapter->netdev->name, adapter->link_speed,
4701 		adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
4702 		(ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
4703 		(ctrl & E1000_CTRL_RFCE) ? "Rx" :
4704 		(ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
4705 }
4706 
4707 static bool e1000e_has_link(struct e1000_adapter *adapter)
4708 {
4709 	struct e1000_hw *hw = &adapter->hw;
4710 	bool link_active = false;
4711 	s32 ret_val = 0;
4712 
4713 	/* get_link_status is set on LSC (link status) interrupt or
4714 	 * Rx sequence error interrupt.  get_link_status will stay
4715 	 * false until the check_for_link establishes link
4716 	 * for copper adapters ONLY
4717 	 */
4718 	switch (hw->phy.media_type) {
4719 	case e1000_media_type_copper:
4720 		if (hw->mac.get_link_status) {
4721 			ret_val = hw->mac.ops.check_for_link(hw);
4722 			link_active = !hw->mac.get_link_status;
4723 		} else {
4724 			link_active = true;
4725 		}
4726 		break;
4727 	case e1000_media_type_fiber:
4728 		ret_val = hw->mac.ops.check_for_link(hw);
4729 		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
4730 		break;
4731 	case e1000_media_type_internal_serdes:
4732 		ret_val = hw->mac.ops.check_for_link(hw);
4733 		link_active = adapter->hw.mac.serdes_has_link;
4734 		break;
4735 	default:
4736 	case e1000_media_type_unknown:
4737 		break;
4738 	}
4739 
4740 	if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
4741 	    (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
4742 		/* See e1000_kmrn_lock_loss_workaround_ich8lan() */
4743 		e_info("Gigabit has been disabled, downgrading speed\n");
4744 	}
4745 
4746 	return link_active;
4747 }
4748 
4749 static void e1000e_enable_receives(struct e1000_adapter *adapter)
4750 {
4751 	/* make sure the receive unit is started */
4752 	if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
4753 	    (adapter->flags & FLAG_RESTART_NOW)) {
4754 		struct e1000_hw *hw = &adapter->hw;
4755 		u32 rctl = er32(RCTL);
4756 		ew32(RCTL, rctl | E1000_RCTL_EN);
4757 		adapter->flags &= ~FLAG_RESTART_NOW;
4758 	}
4759 }
4760 
4761 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
4762 {
4763 	struct e1000_hw *hw = &adapter->hw;
4764 
4765 	/* With 82574 controllers, PHY needs to be checked periodically
4766 	 * for hung state and reset, if two calls return true
4767 	 */
4768 	if (e1000_check_phy_82574(hw))
4769 		adapter->phy_hang_count++;
4770 	else
4771 		adapter->phy_hang_count = 0;
4772 
4773 	if (adapter->phy_hang_count > 1) {
4774 		adapter->phy_hang_count = 0;
4775 		schedule_work(&adapter->reset_task);
4776 	}
4777 }
4778 
4779 /**
4780  * e1000_watchdog - Timer Call-back
4781  * @data: pointer to adapter cast into an unsigned long
4782  **/
4783 static void e1000_watchdog(unsigned long data)
4784 {
4785 	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
4786 
4787 	/* Do the rest outside of interrupt context */
4788 	schedule_work(&adapter->watchdog_task);
4789 
4790 	/* TODO: make this use queue_delayed_work() */
4791 }
4792 
4793 static void e1000_watchdog_task(struct work_struct *work)
4794 {
4795 	struct e1000_adapter *adapter = container_of(work,
4796 					struct e1000_adapter, watchdog_task);
4797 	struct net_device *netdev = adapter->netdev;
4798 	struct e1000_mac_info *mac = &adapter->hw.mac;
4799 	struct e1000_phy_info *phy = &adapter->hw.phy;
4800 	struct e1000_ring *tx_ring = adapter->tx_ring;
4801 	struct e1000_hw *hw = &adapter->hw;
4802 	u32 link, tctl;
4803 
4804 	if (test_bit(__E1000_DOWN, &adapter->state))
4805 		return;
4806 
4807 	link = e1000e_has_link(adapter);
4808 	if ((netif_carrier_ok(netdev)) && link) {
4809 		/* Cancel scheduled suspend requests. */
4810 		pm_runtime_resume(netdev->dev.parent);
4811 
4812 		e1000e_enable_receives(adapter);
4813 		goto link_up;
4814 	}
4815 
4816 	if ((e1000e_enable_tx_pkt_filtering(hw)) &&
4817 	    (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
4818 		e1000_update_mng_vlan(adapter);
4819 
4820 	if (link) {
4821 		if (!netif_carrier_ok(netdev)) {
4822 			bool txb2b = true;
4823 
4824 			/* Cancel scheduled suspend requests. */
4825 			pm_runtime_resume(netdev->dev.parent);
4826 
4827 			/* update snapshot of PHY registers on LSC */
4828 			e1000_phy_read_status(adapter);
4829 			mac->ops.get_link_up_info(&adapter->hw,
4830 						   &adapter->link_speed,
4831 						   &adapter->link_duplex);
4832 			e1000_print_link_info(adapter);
4833 
4834 			/* check if SmartSpeed worked */
4835 			e1000e_check_downshift(hw);
4836 			if (phy->speed_downgraded)
4837 				netdev_warn(netdev,
4838 					    "Link Speed was downgraded by SmartSpeed\n");
4839 
4840 			/* On supported PHYs, check for duplex mismatch only
4841 			 * if link has autonegotiated at 10/100 half
4842 			 */
4843 			if ((hw->phy.type == e1000_phy_igp_3 ||
4844 			     hw->phy.type == e1000_phy_bm) &&
4845 			    (hw->mac.autoneg == true) &&
4846 			    (adapter->link_speed == SPEED_10 ||
4847 			     adapter->link_speed == SPEED_100) &&
4848 			    (adapter->link_duplex == HALF_DUPLEX)) {
4849 				u16 autoneg_exp;
4850 
4851 				e1e_rphy(hw, MII_EXPANSION, &autoneg_exp);
4852 
4853 				if (!(autoneg_exp & EXPANSION_NWAY))
4854 					e_info("Autonegotiated half duplex but link partner cannot autoneg.  Try forcing full duplex if link gets many collisions.\n");
4855 			}
4856 
4857 			/* adjust timeout factor according to speed/duplex */
4858 			adapter->tx_timeout_factor = 1;
4859 			switch (adapter->link_speed) {
4860 			case SPEED_10:
4861 				txb2b = false;
4862 				adapter->tx_timeout_factor = 16;
4863 				break;
4864 			case SPEED_100:
4865 				txb2b = false;
4866 				adapter->tx_timeout_factor = 10;
4867 				break;
4868 			}
4869 
4870 			/* workaround: re-program speed mode bit after
4871 			 * link-up event
4872 			 */
4873 			if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
4874 			    !txb2b) {
4875 				u32 tarc0;
4876 				tarc0 = er32(TARC(0));
4877 				tarc0 &= ~SPEED_MODE_BIT;
4878 				ew32(TARC(0), tarc0);
4879 			}
4880 
4881 			/* disable TSO for pcie and 10/100 speeds, to avoid
4882 			 * some hardware issues
4883 			 */
4884 			if (!(adapter->flags & FLAG_TSO_FORCE)) {
4885 				switch (adapter->link_speed) {
4886 				case SPEED_10:
4887 				case SPEED_100:
4888 					e_info("10/100 speed: disabling TSO\n");
4889 					netdev->features &= ~NETIF_F_TSO;
4890 					netdev->features &= ~NETIF_F_TSO6;
4891 					break;
4892 				case SPEED_1000:
4893 					netdev->features |= NETIF_F_TSO;
4894 					netdev->features |= NETIF_F_TSO6;
4895 					break;
4896 				default:
4897 					/* oops */
4898 					break;
4899 				}
4900 			}
4901 
4902 			/* enable transmits in the hardware, need to do this
4903 			 * after setting TARC(0)
4904 			 */
4905 			tctl = er32(TCTL);
4906 			tctl |= E1000_TCTL_EN;
4907 			ew32(TCTL, tctl);
4908 
4909 			/* Perform any post-link-up configuration before
4910 			 * reporting link up.
4911 			 */
4912 			if (phy->ops.cfg_on_link_up)
4913 				phy->ops.cfg_on_link_up(hw);
4914 
4915 			netif_carrier_on(netdev);
4916 
4917 			if (!test_bit(__E1000_DOWN, &adapter->state))
4918 				mod_timer(&adapter->phy_info_timer,
4919 					  round_jiffies(jiffies + 2 * HZ));
4920 		}
4921 	} else {
4922 		if (netif_carrier_ok(netdev)) {
4923 			adapter->link_speed = 0;
4924 			adapter->link_duplex = 0;
4925 			/* Link status message must follow this format */
4926 			pr_info("%s NIC Link is Down\n", adapter->netdev->name);
4927 			netif_carrier_off(netdev);
4928 			if (!test_bit(__E1000_DOWN, &adapter->state))
4929 				mod_timer(&adapter->phy_info_timer,
4930 					  round_jiffies(jiffies + 2 * HZ));
4931 
4932 			/* The link is lost so the controller stops DMA.
4933 			 * If there is queued Tx work that cannot be done
4934 			 * or if on an 8000ES2LAN which requires a Rx packet
4935 			 * buffer work-around on link down event, reset the
4936 			 * controller to flush the Tx/Rx packet buffers.
4937 			 * (Do the reset outside of interrupt context).
4938 			 */
4939 			if ((adapter->flags & FLAG_RX_NEEDS_RESTART) ||
4940 			    (e1000_desc_unused(tx_ring) + 1 < tx_ring->count))
4941 				adapter->flags |= FLAG_RESTART_NOW;
4942 			else
4943 				pm_schedule_suspend(netdev->dev.parent,
4944 							LINK_TIMEOUT);
4945 		}
4946 	}
4947 
4948 link_up:
4949 	spin_lock(&adapter->stats64_lock);
4950 	e1000e_update_stats(adapter);
4951 
4952 	mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
4953 	adapter->tpt_old = adapter->stats.tpt;
4954 	mac->collision_delta = adapter->stats.colc - adapter->colc_old;
4955 	adapter->colc_old = adapter->stats.colc;
4956 
4957 	adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
4958 	adapter->gorc_old = adapter->stats.gorc;
4959 	adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
4960 	adapter->gotc_old = adapter->stats.gotc;
4961 	spin_unlock(&adapter->stats64_lock);
4962 
4963 	if (adapter->flags & FLAG_RESTART_NOW) {
4964 		schedule_work(&adapter->reset_task);
4965 		/* return immediately since reset is imminent */
4966 		return;
4967 	}
4968 
4969 	e1000e_update_adaptive(&adapter->hw);
4970 
4971 	/* Simple mode for Interrupt Throttle Rate (ITR) */
4972 	if (adapter->itr_setting == 4) {
4973 		/* Symmetric Tx/Rx gets a reduced ITR=2000;
4974 		 * Total asymmetrical Tx or Rx gets ITR=8000;
4975 		 * everyone else is between 2000-8000.
4976 		 */
4977 		u32 goc = (adapter->gotc + adapter->gorc) / 10000;
4978 		u32 dif = (adapter->gotc > adapter->gorc ?
4979 			    adapter->gotc - adapter->gorc :
4980 			    adapter->gorc - adapter->gotc) / 10000;
4981 		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
4982 
4983 		e1000e_write_itr(adapter, itr);
4984 	}
4985 
4986 	/* Cause software interrupt to ensure Rx ring is cleaned */
4987 	if (adapter->msix_entries)
4988 		ew32(ICS, adapter->rx_ring->ims_val);
4989 	else
4990 		ew32(ICS, E1000_ICS_RXDMT0);
4991 
4992 	/* flush pending descriptors to memory before detecting Tx hang */
4993 	e1000e_flush_descriptors(adapter);
4994 
4995 	/* Force detection of hung controller every watchdog period */
4996 	adapter->detect_tx_hung = true;
4997 
4998 	/* With 82571 controllers, LAA may be overwritten due to controller
4999 	 * reset from the other port. Set the appropriate LAA in RAR[0]
5000 	 */
5001 	if (e1000e_get_laa_state_82571(hw))
5002 		hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
5003 
5004 	if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
5005 		e1000e_check_82574_phy_workaround(adapter);
5006 
5007 	/* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5008 	if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) {
5009 		if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) &&
5010 		    (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) {
5011 			er32(RXSTMPH);
5012 			adapter->rx_hwtstamp_cleared++;
5013 		} else {
5014 			adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP;
5015 		}
5016 	}
5017 
5018 	/* Reset the timer */
5019 	if (!test_bit(__E1000_DOWN, &adapter->state))
5020 		mod_timer(&adapter->watchdog_timer,
5021 			  round_jiffies(jiffies + 2 * HZ));
5022 }
5023 
5024 #define E1000_TX_FLAGS_CSUM		0x00000001
5025 #define E1000_TX_FLAGS_VLAN		0x00000002
5026 #define E1000_TX_FLAGS_TSO		0x00000004
5027 #define E1000_TX_FLAGS_IPV4		0x00000008
5028 #define E1000_TX_FLAGS_NO_FCS		0x00000010
5029 #define E1000_TX_FLAGS_HWTSTAMP		0x00000020
5030 #define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
5031 #define E1000_TX_FLAGS_VLAN_SHIFT	16
5032 
5033 static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb)
5034 {
5035 	struct e1000_context_desc *context_desc;
5036 	struct e1000_buffer *buffer_info;
5037 	unsigned int i;
5038 	u32 cmd_length = 0;
5039 	u16 ipcse = 0, mss;
5040 	u8 ipcss, ipcso, tucss, tucso, hdr_len;
5041 
5042 	if (!skb_is_gso(skb))
5043 		return 0;
5044 
5045 	if (skb_header_cloned(skb)) {
5046 		int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5047 
5048 		if (err)
5049 			return err;
5050 	}
5051 
5052 	hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5053 	mss = skb_shinfo(skb)->gso_size;
5054 	if (skb->protocol == htons(ETH_P_IP)) {
5055 		struct iphdr *iph = ip_hdr(skb);
5056 		iph->tot_len = 0;
5057 		iph->check = 0;
5058 		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
5059 		                                         0, IPPROTO_TCP, 0);
5060 		cmd_length = E1000_TXD_CMD_IP;
5061 		ipcse = skb_transport_offset(skb) - 1;
5062 	} else if (skb_is_gso_v6(skb)) {
5063 		ipv6_hdr(skb)->payload_len = 0;
5064 		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5065 		                                       &ipv6_hdr(skb)->daddr,
5066 		                                       0, IPPROTO_TCP, 0);
5067 		ipcse = 0;
5068 	}
5069 	ipcss = skb_network_offset(skb);
5070 	ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
5071 	tucss = skb_transport_offset(skb);
5072 	tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
5073 
5074 	cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
5075 	               E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
5076 
5077 	i = tx_ring->next_to_use;
5078 	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5079 	buffer_info = &tx_ring->buffer_info[i];
5080 
5081 	context_desc->lower_setup.ip_fields.ipcss  = ipcss;
5082 	context_desc->lower_setup.ip_fields.ipcso  = ipcso;
5083 	context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
5084 	context_desc->upper_setup.tcp_fields.tucss = tucss;
5085 	context_desc->upper_setup.tcp_fields.tucso = tucso;
5086 	context_desc->upper_setup.tcp_fields.tucse = 0;
5087 	context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
5088 	context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
5089 	context_desc->cmd_and_length = cpu_to_le32(cmd_length);
5090 
5091 	buffer_info->time_stamp = jiffies;
5092 	buffer_info->next_to_watch = i;
5093 
5094 	i++;
5095 	if (i == tx_ring->count)
5096 		i = 0;
5097 	tx_ring->next_to_use = i;
5098 
5099 	return 1;
5100 }
5101 
5102 static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb)
5103 {
5104 	struct e1000_adapter *adapter = tx_ring->adapter;
5105 	struct e1000_context_desc *context_desc;
5106 	struct e1000_buffer *buffer_info;
5107 	unsigned int i;
5108 	u8 css;
5109 	u32 cmd_len = E1000_TXD_CMD_DEXT;
5110 	__be16 protocol;
5111 
5112 	if (skb->ip_summed != CHECKSUM_PARTIAL)
5113 		return 0;
5114 
5115 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
5116 		protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
5117 	else
5118 		protocol = skb->protocol;
5119 
5120 	switch (protocol) {
5121 	case cpu_to_be16(ETH_P_IP):
5122 		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
5123 			cmd_len |= E1000_TXD_CMD_TCP;
5124 		break;
5125 	case cpu_to_be16(ETH_P_IPV6):
5126 		/* XXX not handling all IPV6 headers */
5127 		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
5128 			cmd_len |= E1000_TXD_CMD_TCP;
5129 		break;
5130 	default:
5131 		if (unlikely(net_ratelimit()))
5132 			e_warn("checksum_partial proto=%x!\n",
5133 			       be16_to_cpu(protocol));
5134 		break;
5135 	}
5136 
5137 	css = skb_checksum_start_offset(skb);
5138 
5139 	i = tx_ring->next_to_use;
5140 	buffer_info = &tx_ring->buffer_info[i];
5141 	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5142 
5143 	context_desc->lower_setup.ip_config = 0;
5144 	context_desc->upper_setup.tcp_fields.tucss = css;
5145 	context_desc->upper_setup.tcp_fields.tucso =
5146 				css + skb->csum_offset;
5147 	context_desc->upper_setup.tcp_fields.tucse = 0;
5148 	context_desc->tcp_seg_setup.data = 0;
5149 	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
5150 
5151 	buffer_info->time_stamp = jiffies;
5152 	buffer_info->next_to_watch = i;
5153 
5154 	i++;
5155 	if (i == tx_ring->count)
5156 		i = 0;
5157 	tx_ring->next_to_use = i;
5158 
5159 	return 1;
5160 }
5161 
5162 static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
5163 			unsigned int first, unsigned int max_per_txd,
5164 			unsigned int nr_frags)
5165 {
5166 	struct e1000_adapter *adapter = tx_ring->adapter;
5167 	struct pci_dev *pdev = adapter->pdev;
5168 	struct e1000_buffer *buffer_info;
5169 	unsigned int len = skb_headlen(skb);
5170 	unsigned int offset = 0, size, count = 0, i;
5171 	unsigned int f, bytecount, segs;
5172 
5173 	i = tx_ring->next_to_use;
5174 
5175 	while (len) {
5176 		buffer_info = &tx_ring->buffer_info[i];
5177 		size = min(len, max_per_txd);
5178 
5179 		buffer_info->length = size;
5180 		buffer_info->time_stamp = jiffies;
5181 		buffer_info->next_to_watch = i;
5182 		buffer_info->dma = dma_map_single(&pdev->dev,
5183 						  skb->data + offset,
5184 						  size, DMA_TO_DEVICE);
5185 		buffer_info->mapped_as_page = false;
5186 		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5187 			goto dma_error;
5188 
5189 		len -= size;
5190 		offset += size;
5191 		count++;
5192 
5193 		if (len) {
5194 			i++;
5195 			if (i == tx_ring->count)
5196 				i = 0;
5197 		}
5198 	}
5199 
5200 	for (f = 0; f < nr_frags; f++) {
5201 		const struct skb_frag_struct *frag;
5202 
5203 		frag = &skb_shinfo(skb)->frags[f];
5204 		len = skb_frag_size(frag);
5205 		offset = 0;
5206 
5207 		while (len) {
5208 			i++;
5209 			if (i == tx_ring->count)
5210 				i = 0;
5211 
5212 			buffer_info = &tx_ring->buffer_info[i];
5213 			size = min(len, max_per_txd);
5214 
5215 			buffer_info->length = size;
5216 			buffer_info->time_stamp = jiffies;
5217 			buffer_info->next_to_watch = i;
5218 			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
5219 						offset, size, DMA_TO_DEVICE);
5220 			buffer_info->mapped_as_page = true;
5221 			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5222 				goto dma_error;
5223 
5224 			len -= size;
5225 			offset += size;
5226 			count++;
5227 		}
5228 	}
5229 
5230 	segs = skb_shinfo(skb)->gso_segs ? : 1;
5231 	/* multiply data chunks by size of headers */
5232 	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
5233 
5234 	tx_ring->buffer_info[i].skb = skb;
5235 	tx_ring->buffer_info[i].segs = segs;
5236 	tx_ring->buffer_info[i].bytecount = bytecount;
5237 	tx_ring->buffer_info[first].next_to_watch = i;
5238 
5239 	return count;
5240 
5241 dma_error:
5242 	dev_err(&pdev->dev, "Tx DMA map failed\n");
5243 	buffer_info->dma = 0;
5244 	if (count)
5245 		count--;
5246 
5247 	while (count--) {
5248 		if (i == 0)
5249 			i += tx_ring->count;
5250 		i--;
5251 		buffer_info = &tx_ring->buffer_info[i];
5252 		e1000_put_txbuf(tx_ring, buffer_info);
5253 	}
5254 
5255 	return 0;
5256 }
5257 
5258 static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
5259 {
5260 	struct e1000_adapter *adapter = tx_ring->adapter;
5261 	struct e1000_tx_desc *tx_desc = NULL;
5262 	struct e1000_buffer *buffer_info;
5263 	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
5264 	unsigned int i;
5265 
5266 	if (tx_flags & E1000_TX_FLAGS_TSO) {
5267 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
5268 			     E1000_TXD_CMD_TSE;
5269 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5270 
5271 		if (tx_flags & E1000_TX_FLAGS_IPV4)
5272 			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
5273 	}
5274 
5275 	if (tx_flags & E1000_TX_FLAGS_CSUM) {
5276 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5277 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5278 	}
5279 
5280 	if (tx_flags & E1000_TX_FLAGS_VLAN) {
5281 		txd_lower |= E1000_TXD_CMD_VLE;
5282 		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
5283 	}
5284 
5285 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5286 		txd_lower &= ~(E1000_TXD_CMD_IFCS);
5287 
5288 	if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) {
5289 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5290 		txd_upper |= E1000_TXD_EXTCMD_TSTAMP;
5291 	}
5292 
5293 	i = tx_ring->next_to_use;
5294 
5295 	do {
5296 		buffer_info = &tx_ring->buffer_info[i];
5297 		tx_desc = E1000_TX_DESC(*tx_ring, i);
5298 		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
5299 		tx_desc->lower.data =
5300 			cpu_to_le32(txd_lower | buffer_info->length);
5301 		tx_desc->upper.data = cpu_to_le32(txd_upper);
5302 
5303 		i++;
5304 		if (i == tx_ring->count)
5305 			i = 0;
5306 	} while (--count > 0);
5307 
5308 	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
5309 
5310 	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5311 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5312 		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
5313 
5314 	/* Force memory writes to complete before letting h/w
5315 	 * know there are new descriptors to fetch.  (Only
5316 	 * applicable for weak-ordered memory model archs,
5317 	 * such as IA-64).
5318 	 */
5319 	wmb();
5320 
5321 	tx_ring->next_to_use = i;
5322 
5323 	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
5324 		e1000e_update_tdt_wa(tx_ring, i);
5325 	else
5326 		writel(i, tx_ring->tail);
5327 
5328 	/* we need this if more than one processor can write to our tail
5329 	 * at a time, it synchronizes IO on IA64/Altix systems
5330 	 */
5331 	mmiowb();
5332 }
5333 
5334 #define MINIMUM_DHCP_PACKET_SIZE 282
5335 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
5336 				    struct sk_buff *skb)
5337 {
5338 	struct e1000_hw *hw =  &adapter->hw;
5339 	u16 length, offset;
5340 
5341 	if (vlan_tx_tag_present(skb) &&
5342 	    !((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
5343 	      (adapter->hw.mng_cookie.status &
5344 	       E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
5345 		return 0;
5346 
5347 	if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
5348 		return 0;
5349 
5350 	if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
5351 		return 0;
5352 
5353 	{
5354 		const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
5355 		struct udphdr *udp;
5356 
5357 		if (ip->protocol != IPPROTO_UDP)
5358 			return 0;
5359 
5360 		udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
5361 		if (ntohs(udp->dest) != 67)
5362 			return 0;
5363 
5364 		offset = (u8 *)udp + 8 - skb->data;
5365 		length = skb->len - offset;
5366 		return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
5367 	}
5368 
5369 	return 0;
5370 }
5371 
5372 static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5373 {
5374 	struct e1000_adapter *adapter = tx_ring->adapter;
5375 
5376 	netif_stop_queue(adapter->netdev);
5377 	/* Herbert's original patch had:
5378 	 *  smp_mb__after_netif_stop_queue();
5379 	 * but since that doesn't exist yet, just open code it.
5380 	 */
5381 	smp_mb();
5382 
5383 	/* We need to check again in a case another CPU has just
5384 	 * made room available.
5385 	 */
5386 	if (e1000_desc_unused(tx_ring) < size)
5387 		return -EBUSY;
5388 
5389 	/* A reprieve! */
5390 	netif_start_queue(adapter->netdev);
5391 	++adapter->restart_queue;
5392 	return 0;
5393 }
5394 
5395 static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5396 {
5397 	BUG_ON(size > tx_ring->count);
5398 
5399 	if (e1000_desc_unused(tx_ring) >= size)
5400 		return 0;
5401 	return __e1000_maybe_stop_tx(tx_ring, size);
5402 }
5403 
5404 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5405 				    struct net_device *netdev)
5406 {
5407 	struct e1000_adapter *adapter = netdev_priv(netdev);
5408 	struct e1000_ring *tx_ring = adapter->tx_ring;
5409 	unsigned int first;
5410 	unsigned int tx_flags = 0;
5411 	unsigned int len = skb_headlen(skb);
5412 	unsigned int nr_frags;
5413 	unsigned int mss;
5414 	int count = 0;
5415 	int tso;
5416 	unsigned int f;
5417 
5418 	if (test_bit(__E1000_DOWN, &adapter->state)) {
5419 		dev_kfree_skb_any(skb);
5420 		return NETDEV_TX_OK;
5421 	}
5422 
5423 	if (skb->len <= 0) {
5424 		dev_kfree_skb_any(skb);
5425 		return NETDEV_TX_OK;
5426 	}
5427 
5428 	/* The minimum packet size with TCTL.PSP set is 17 bytes so
5429 	 * pad skb in order to meet this minimum size requirement
5430 	 */
5431 	if (unlikely(skb->len < 17)) {
5432 		if (skb_pad(skb, 17 - skb->len))
5433 			return NETDEV_TX_OK;
5434 		skb->len = 17;
5435 		skb_set_tail_pointer(skb, 17);
5436 	}
5437 
5438 	mss = skb_shinfo(skb)->gso_size;
5439 	if (mss) {
5440 		u8 hdr_len;
5441 
5442 		/* TSO Workaround for 82571/2/3 Controllers -- if skb->data
5443 		 * points to just header, pull a few bytes of payload from
5444 		 * frags into skb->data
5445 		 */
5446 		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5447 		/* we do this workaround for ES2LAN, but it is un-necessary,
5448 		 * avoiding it could save a lot of cycles
5449 		 */
5450 		if (skb->data_len && (hdr_len == len)) {
5451 			unsigned int pull_size;
5452 
5453 			pull_size = min_t(unsigned int, 4, skb->data_len);
5454 			if (!__pskb_pull_tail(skb, pull_size)) {
5455 				e_err("__pskb_pull_tail failed.\n");
5456 				dev_kfree_skb_any(skb);
5457 				return NETDEV_TX_OK;
5458 			}
5459 			len = skb_headlen(skb);
5460 		}
5461 	}
5462 
5463 	/* reserve a descriptor for the offload context */
5464 	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5465 		count++;
5466 	count++;
5467 
5468 	count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
5469 
5470 	nr_frags = skb_shinfo(skb)->nr_frags;
5471 	for (f = 0; f < nr_frags; f++)
5472 		count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5473 				      adapter->tx_fifo_limit);
5474 
5475 	if (adapter->hw.mac.tx_pkt_filtering)
5476 		e1000_transfer_dhcp_info(adapter, skb);
5477 
5478 	/* need: count + 2 desc gap to keep tail from touching
5479 	 * head, otherwise try next time
5480 	 */
5481 	if (e1000_maybe_stop_tx(tx_ring, count + 2))
5482 		return NETDEV_TX_BUSY;
5483 
5484 	if (vlan_tx_tag_present(skb)) {
5485 		tx_flags |= E1000_TX_FLAGS_VLAN;
5486 		tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
5487 	}
5488 
5489 	first = tx_ring->next_to_use;
5490 
5491 	tso = e1000_tso(tx_ring, skb);
5492 	if (tso < 0) {
5493 		dev_kfree_skb_any(skb);
5494 		return NETDEV_TX_OK;
5495 	}
5496 
5497 	if (tso)
5498 		tx_flags |= E1000_TX_FLAGS_TSO;
5499 	else if (e1000_tx_csum(tx_ring, skb))
5500 		tx_flags |= E1000_TX_FLAGS_CSUM;
5501 
5502 	/* Old method was to assume IPv4 packet by default if TSO was enabled.
5503 	 * 82571 hardware supports TSO capabilities for IPv6 as well...
5504 	 * no longer assume, we must.
5505 	 */
5506 	if (skb->protocol == htons(ETH_P_IP))
5507 		tx_flags |= E1000_TX_FLAGS_IPV4;
5508 
5509 	if (unlikely(skb->no_fcs))
5510 		tx_flags |= E1000_TX_FLAGS_NO_FCS;
5511 
5512 	/* if count is 0 then mapping error has occurred */
5513 	count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5514 			     nr_frags);
5515 	if (count) {
5516 		if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
5517 			     !adapter->tx_hwtstamp_skb)) {
5518 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5519 			tx_flags |= E1000_TX_FLAGS_HWTSTAMP;
5520 			adapter->tx_hwtstamp_skb = skb_get(skb);
5521 			schedule_work(&adapter->tx_hwtstamp_work);
5522 		} else {
5523 			skb_tx_timestamp(skb);
5524 		}
5525 
5526 		netdev_sent_queue(netdev, skb->len);
5527 		e1000_tx_queue(tx_ring, tx_flags, count);
5528 		/* Make sure there is space in the ring for the next send. */
5529 		e1000_maybe_stop_tx(tx_ring,
5530 				    (MAX_SKB_FRAGS *
5531 				     DIV_ROUND_UP(PAGE_SIZE,
5532 						  adapter->tx_fifo_limit) + 2));
5533 	} else {
5534 		dev_kfree_skb_any(skb);
5535 		tx_ring->buffer_info[first].time_stamp = 0;
5536 		tx_ring->next_to_use = first;
5537 	}
5538 
5539 	return NETDEV_TX_OK;
5540 }
5541 
5542 /**
5543  * e1000_tx_timeout - Respond to a Tx Hang
5544  * @netdev: network interface device structure
5545  **/
5546 static void e1000_tx_timeout(struct net_device *netdev)
5547 {
5548 	struct e1000_adapter *adapter = netdev_priv(netdev);
5549 
5550 	/* Do the reset outside of interrupt context */
5551 	adapter->tx_timeout_count++;
5552 	schedule_work(&adapter->reset_task);
5553 }
5554 
5555 static void e1000_reset_task(struct work_struct *work)
5556 {
5557 	struct e1000_adapter *adapter;
5558 	adapter = container_of(work, struct e1000_adapter, reset_task);
5559 
5560 	/* don't run the task if already down */
5561 	if (test_bit(__E1000_DOWN, &adapter->state))
5562 		return;
5563 
5564 	if (!(adapter->flags & FLAG_RESTART_NOW)) {
5565 		e1000e_dump(adapter);
5566 		e_err("Reset adapter unexpectedly\n");
5567 	}
5568 	e1000e_reinit_locked(adapter);
5569 }
5570 
5571 /**
5572  * e1000_get_stats64 - Get System Network Statistics
5573  * @netdev: network interface device structure
5574  * @stats: rtnl_link_stats64 pointer
5575  *
5576  * Returns the address of the device statistics structure.
5577  **/
5578 struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev,
5579                                              struct rtnl_link_stats64 *stats)
5580 {
5581 	struct e1000_adapter *adapter = netdev_priv(netdev);
5582 
5583 	memset(stats, 0, sizeof(struct rtnl_link_stats64));
5584 	spin_lock(&adapter->stats64_lock);
5585 	e1000e_update_stats(adapter);
5586 	/* Fill out the OS statistics structure */
5587 	stats->rx_bytes = adapter->stats.gorc;
5588 	stats->rx_packets = adapter->stats.gprc;
5589 	stats->tx_bytes = adapter->stats.gotc;
5590 	stats->tx_packets = adapter->stats.gptc;
5591 	stats->multicast = adapter->stats.mprc;
5592 	stats->collisions = adapter->stats.colc;
5593 
5594 	/* Rx Errors */
5595 
5596 	/* RLEC on some newer hardware can be incorrect so build
5597 	 * our own version based on RUC and ROC
5598 	 */
5599 	stats->rx_errors = adapter->stats.rxerrc +
5600 		adapter->stats.crcerrs + adapter->stats.algnerrc +
5601 		adapter->stats.ruc + adapter->stats.roc +
5602 		adapter->stats.cexterr;
5603 	stats->rx_length_errors = adapter->stats.ruc +
5604 					      adapter->stats.roc;
5605 	stats->rx_crc_errors = adapter->stats.crcerrs;
5606 	stats->rx_frame_errors = adapter->stats.algnerrc;
5607 	stats->rx_missed_errors = adapter->stats.mpc;
5608 
5609 	/* Tx Errors */
5610 	stats->tx_errors = adapter->stats.ecol +
5611 				       adapter->stats.latecol;
5612 	stats->tx_aborted_errors = adapter->stats.ecol;
5613 	stats->tx_window_errors = adapter->stats.latecol;
5614 	stats->tx_carrier_errors = adapter->stats.tncrs;
5615 
5616 	/* Tx Dropped needs to be maintained elsewhere */
5617 
5618 	spin_unlock(&adapter->stats64_lock);
5619 	return stats;
5620 }
5621 
5622 /**
5623  * e1000_change_mtu - Change the Maximum Transfer Unit
5624  * @netdev: network interface device structure
5625  * @new_mtu: new value for maximum frame size
5626  *
5627  * Returns 0 on success, negative on failure
5628  **/
5629 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
5630 {
5631 	struct e1000_adapter *adapter = netdev_priv(netdev);
5632 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
5633 
5634 	/* Jumbo frame support */
5635 	if ((max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) &&
5636 	    !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
5637 		e_err("Jumbo Frames not supported.\n");
5638 		return -EINVAL;
5639 	}
5640 
5641 	/* Supported frame sizes */
5642 	if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
5643 	    (max_frame > adapter->max_hw_frame_size)) {
5644 		e_err("Unsupported MTU setting\n");
5645 		return -EINVAL;
5646 	}
5647 
5648 	/* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
5649 	if ((adapter->hw.mac.type >= e1000_pch2lan) &&
5650 	    !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
5651 	    (new_mtu > ETH_DATA_LEN)) {
5652 		e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
5653 		return -EINVAL;
5654 	}
5655 
5656 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
5657 		usleep_range(1000, 2000);
5658 	/* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
5659 	adapter->max_frame_size = max_frame;
5660 	e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
5661 	netdev->mtu = new_mtu;
5662 	if (netif_running(netdev))
5663 		e1000e_down(adapter);
5664 
5665 	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
5666 	 * means we reserve 2 more, this pushes us to allocate from the next
5667 	 * larger slab size.
5668 	 * i.e. RXBUFFER_2048 --> size-4096 slab
5669 	 * However with the new *_jumbo_rx* routines, jumbo receives will use
5670 	 * fragmented skbs
5671 	 */
5672 
5673 	if (max_frame <= 2048)
5674 		adapter->rx_buffer_len = 2048;
5675 	else
5676 		adapter->rx_buffer_len = 4096;
5677 
5678 	/* adjust allocation if LPE protects us, and we aren't using SBP */
5679 	if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
5680 	     (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
5681 		adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
5682 					 + ETH_FCS_LEN;
5683 
5684 	if (netif_running(netdev))
5685 		e1000e_up(adapter);
5686 	else
5687 		e1000e_reset(adapter);
5688 
5689 	clear_bit(__E1000_RESETTING, &adapter->state);
5690 
5691 	return 0;
5692 }
5693 
5694 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
5695 			   int cmd)
5696 {
5697 	struct e1000_adapter *adapter = netdev_priv(netdev);
5698 	struct mii_ioctl_data *data = if_mii(ifr);
5699 
5700 	if (adapter->hw.phy.media_type != e1000_media_type_copper)
5701 		return -EOPNOTSUPP;
5702 
5703 	switch (cmd) {
5704 	case SIOCGMIIPHY:
5705 		data->phy_id = adapter->hw.phy.addr;
5706 		break;
5707 	case SIOCGMIIREG:
5708 		e1000_phy_read_status(adapter);
5709 
5710 		switch (data->reg_num & 0x1F) {
5711 		case MII_BMCR:
5712 			data->val_out = adapter->phy_regs.bmcr;
5713 			break;
5714 		case MII_BMSR:
5715 			data->val_out = adapter->phy_regs.bmsr;
5716 			break;
5717 		case MII_PHYSID1:
5718 			data->val_out = (adapter->hw.phy.id >> 16);
5719 			break;
5720 		case MII_PHYSID2:
5721 			data->val_out = (adapter->hw.phy.id & 0xFFFF);
5722 			break;
5723 		case MII_ADVERTISE:
5724 			data->val_out = adapter->phy_regs.advertise;
5725 			break;
5726 		case MII_LPA:
5727 			data->val_out = adapter->phy_regs.lpa;
5728 			break;
5729 		case MII_EXPANSION:
5730 			data->val_out = adapter->phy_regs.expansion;
5731 			break;
5732 		case MII_CTRL1000:
5733 			data->val_out = adapter->phy_regs.ctrl1000;
5734 			break;
5735 		case MII_STAT1000:
5736 			data->val_out = adapter->phy_regs.stat1000;
5737 			break;
5738 		case MII_ESTATUS:
5739 			data->val_out = adapter->phy_regs.estatus;
5740 			break;
5741 		default:
5742 			return -EIO;
5743 		}
5744 		break;
5745 	case SIOCSMIIREG:
5746 	default:
5747 		return -EOPNOTSUPP;
5748 	}
5749 	return 0;
5750 }
5751 
5752 /**
5753  * e1000e_hwtstamp_ioctl - control hardware time stamping
5754  * @netdev: network interface device structure
5755  * @ifreq: interface request
5756  *
5757  * Outgoing time stamping can be enabled and disabled. Play nice and
5758  * disable it when requested, although it shouldn't cause any overhead
5759  * when no packet needs it. At most one packet in the queue may be
5760  * marked for time stamping, otherwise it would be impossible to tell
5761  * for sure to which packet the hardware time stamp belongs.
5762  *
5763  * Incoming time stamping has to be configured via the hardware filters.
5764  * Not all combinations are supported, in particular event type has to be
5765  * specified. Matching the kind of event packet is not supported, with the
5766  * exception of "all V2 events regardless of level 2 or 4".
5767  **/
5768 static int e1000e_hwtstamp_ioctl(struct net_device *netdev, struct ifreq *ifr)
5769 {
5770 	struct e1000_adapter *adapter = netdev_priv(netdev);
5771 	struct hwtstamp_config config;
5772 	int ret_val;
5773 
5774 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
5775 		return -EFAULT;
5776 
5777 	adapter->hwtstamp_config = config;
5778 
5779 	ret_val = e1000e_config_hwtstamp(adapter);
5780 	if (ret_val)
5781 		return ret_val;
5782 
5783 	config = adapter->hwtstamp_config;
5784 
5785 	switch (config.rx_filter) {
5786 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
5787 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
5788 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
5789 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
5790 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
5791 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
5792 		/* With V2 type filters which specify a Sync or Delay Request,
5793 		 * Path Delay Request/Response messages are also time stamped
5794 		 * by hardware so notify the caller the requested packets plus
5795 		 * some others are time stamped.
5796 		 */
5797 		config.rx_filter = HWTSTAMP_FILTER_SOME;
5798 		break;
5799 	default:
5800 		break;
5801 	}
5802 
5803 	return copy_to_user(ifr->ifr_data, &config,
5804 			    sizeof(config)) ? -EFAULT : 0;
5805 }
5806 
5807 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5808 {
5809 	switch (cmd) {
5810 	case SIOCGMIIPHY:
5811 	case SIOCGMIIREG:
5812 	case SIOCSMIIREG:
5813 		return e1000_mii_ioctl(netdev, ifr, cmd);
5814 	case SIOCSHWTSTAMP:
5815 		return e1000e_hwtstamp_ioctl(netdev, ifr);
5816 	default:
5817 		return -EOPNOTSUPP;
5818 	}
5819 }
5820 
5821 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
5822 {
5823 	struct e1000_hw *hw = &adapter->hw;
5824 	u32 i, mac_reg;
5825 	u16 phy_reg, wuc_enable;
5826 	int retval;
5827 
5828 	/* copy MAC RARs to PHY RARs */
5829 	e1000_copy_rx_addrs_to_phy_ich8lan(hw);
5830 
5831 	retval = hw->phy.ops.acquire(hw);
5832 	if (retval) {
5833 		e_err("Could not acquire PHY\n");
5834 		return retval;
5835 	}
5836 
5837 	/* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
5838 	retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
5839 	if (retval)
5840 		goto release;
5841 
5842 	/* copy MAC MTA to PHY MTA - only needed for pchlan */
5843 	for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
5844 		mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
5845 		hw->phy.ops.write_reg_page(hw, BM_MTA(i),
5846 					   (u16)(mac_reg & 0xFFFF));
5847 		hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
5848 					   (u16)((mac_reg >> 16) & 0xFFFF));
5849 	}
5850 
5851 	/* configure PHY Rx Control register */
5852 	hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
5853 	mac_reg = er32(RCTL);
5854 	if (mac_reg & E1000_RCTL_UPE)
5855 		phy_reg |= BM_RCTL_UPE;
5856 	if (mac_reg & E1000_RCTL_MPE)
5857 		phy_reg |= BM_RCTL_MPE;
5858 	phy_reg &= ~(BM_RCTL_MO_MASK);
5859 	if (mac_reg & E1000_RCTL_MO_3)
5860 		phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
5861 				<< BM_RCTL_MO_SHIFT);
5862 	if (mac_reg & E1000_RCTL_BAM)
5863 		phy_reg |= BM_RCTL_BAM;
5864 	if (mac_reg & E1000_RCTL_PMCF)
5865 		phy_reg |= BM_RCTL_PMCF;
5866 	mac_reg = er32(CTRL);
5867 	if (mac_reg & E1000_CTRL_RFCE)
5868 		phy_reg |= BM_RCTL_RFCE;
5869 	hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
5870 
5871 	/* enable PHY wakeup in MAC register */
5872 	ew32(WUFC, wufc);
5873 	ew32(WUC, E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN);
5874 
5875 	/* configure and enable PHY wakeup in PHY registers */
5876 	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
5877 	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);
5878 
5879 	/* activate PHY wakeup */
5880 	wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
5881 	retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
5882 	if (retval)
5883 		e_err("Could not set PHY Host Wakeup bit\n");
5884 release:
5885 	hw->phy.ops.release(hw);
5886 
5887 	return retval;
5888 }
5889 
5890 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake,
5891 			    bool runtime)
5892 {
5893 	struct net_device *netdev = pci_get_drvdata(pdev);
5894 	struct e1000_adapter *adapter = netdev_priv(netdev);
5895 	struct e1000_hw *hw = &adapter->hw;
5896 	u32 ctrl, ctrl_ext, rctl, status;
5897 	/* Runtime suspend should only enable wakeup for link changes */
5898 	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
5899 	int retval = 0;
5900 
5901 	netif_device_detach(netdev);
5902 
5903 	if (netif_running(netdev)) {
5904 		int count = E1000_CHECK_RESET_COUNT;
5905 
5906 		while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
5907 			usleep_range(10000, 20000);
5908 
5909 		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
5910 		e1000e_down(adapter);
5911 		e1000_free_irq(adapter);
5912 	}
5913 	e1000e_reset_interrupt_capability(adapter);
5914 
5915 	retval = pci_save_state(pdev);
5916 	if (retval)
5917 		return retval;
5918 
5919 	status = er32(STATUS);
5920 	if (status & E1000_STATUS_LU)
5921 		wufc &= ~E1000_WUFC_LNKC;
5922 
5923 	if (wufc) {
5924 		e1000_setup_rctl(adapter);
5925 		e1000e_set_rx_mode(netdev);
5926 
5927 		/* turn on all-multi mode if wake on multicast is enabled */
5928 		if (wufc & E1000_WUFC_MC) {
5929 			rctl = er32(RCTL);
5930 			rctl |= E1000_RCTL_MPE;
5931 			ew32(RCTL, rctl);
5932 		}
5933 
5934 		ctrl = er32(CTRL);
5935 		/* advertise wake from D3Cold */
5936 		#define E1000_CTRL_ADVD3WUC 0x00100000
5937 		/* phy power management enable */
5938 		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5939 		ctrl |= E1000_CTRL_ADVD3WUC;
5940 		if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
5941 			ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
5942 		ew32(CTRL, ctrl);
5943 
5944 		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
5945 		    adapter->hw.phy.media_type ==
5946 		    e1000_media_type_internal_serdes) {
5947 			/* keep the laser running in D3 */
5948 			ctrl_ext = er32(CTRL_EXT);
5949 			ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
5950 			ew32(CTRL_EXT, ctrl_ext);
5951 		}
5952 
5953 		if (adapter->flags & FLAG_IS_ICH)
5954 			e1000_suspend_workarounds_ich8lan(&adapter->hw);
5955 
5956 		/* Allow time for pending master requests to run */
5957 		e1000e_disable_pcie_master(&adapter->hw);
5958 
5959 		if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
5960 			/* enable wakeup by the PHY */
5961 			retval = e1000_init_phy_wakeup(adapter, wufc);
5962 			if (retval)
5963 				return retval;
5964 		} else {
5965 			/* enable wakeup by the MAC */
5966 			ew32(WUFC, wufc);
5967 			ew32(WUC, E1000_WUC_PME_EN);
5968 		}
5969 	} else {
5970 		ew32(WUC, 0);
5971 		ew32(WUFC, 0);
5972 	}
5973 
5974 	*enable_wake = !!wufc;
5975 
5976 	/* make sure adapter isn't asleep if manageability is enabled */
5977 	if ((adapter->flags & FLAG_MNG_PT_ENABLED) ||
5978 	    (hw->mac.ops.check_mng_mode(hw)))
5979 		*enable_wake = true;
5980 
5981 	if (adapter->hw.phy.type == e1000_phy_igp_3)
5982 		e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
5983 
5984 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
5985 	 * would have already happened in close and is redundant.
5986 	 */
5987 	e1000e_release_hw_control(adapter);
5988 
5989 	pci_disable_device(pdev);
5990 
5991 	return 0;
5992 }
5993 
5994 static void e1000_power_off(struct pci_dev *pdev, bool sleep, bool wake)
5995 {
5996 	if (sleep && wake) {
5997 		pci_prepare_to_sleep(pdev);
5998 		return;
5999 	}
6000 
6001 	pci_wake_from_d3(pdev, wake);
6002 	pci_set_power_state(pdev, PCI_D3hot);
6003 }
6004 
6005 static void e1000_complete_shutdown(struct pci_dev *pdev, bool sleep,
6006                                     bool wake)
6007 {
6008 	struct net_device *netdev = pci_get_drvdata(pdev);
6009 	struct e1000_adapter *adapter = netdev_priv(netdev);
6010 
6011 	/* The pci-e switch on some quad port adapters will report a
6012 	 * correctable error when the MAC transitions from D0 to D3.  To
6013 	 * prevent this we need to mask off the correctable errors on the
6014 	 * downstream port of the pci-e switch.
6015 	 */
6016 	if (adapter->flags & FLAG_IS_QUAD_PORT) {
6017 		struct pci_dev *us_dev = pdev->bus->self;
6018 		u16 devctl;
6019 
6020 		pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl);
6021 		pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL,
6022 					   (devctl & ~PCI_EXP_DEVCTL_CERE));
6023 
6024 		e1000_power_off(pdev, sleep, wake);
6025 
6026 		pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl);
6027 	} else {
6028 		e1000_power_off(pdev, sleep, wake);
6029 	}
6030 }
6031 
6032 #ifdef CONFIG_PCIEASPM
6033 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6034 {
6035 	pci_disable_link_state_locked(pdev, state);
6036 }
6037 #else
6038 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6039 {
6040 	u16 aspm_ctl = 0;
6041 
6042 	if (state & PCIE_LINK_STATE_L0S)
6043 		aspm_ctl |= PCI_EXP_LNKCTL_ASPM_L0S;
6044 	if (state & PCIE_LINK_STATE_L1)
6045 		aspm_ctl |= PCI_EXP_LNKCTL_ASPM_L1;
6046 
6047 	/* Both device and parent should have the same ASPM setting.
6048 	 * Disable ASPM in downstream component first and then upstream.
6049 	 */
6050 	pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_ctl);
6051 
6052 	if (pdev->bus->self)
6053 		pcie_capability_clear_word(pdev->bus->self, PCI_EXP_LNKCTL,
6054 					   aspm_ctl);
6055 }
6056 #endif
6057 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6058 {
6059 	dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
6060 		 (state & PCIE_LINK_STATE_L0S) ? "L0s" : "",
6061 		 (state & PCIE_LINK_STATE_L1) ? "L1" : "");
6062 
6063 	__e1000e_disable_aspm(pdev, state);
6064 }
6065 
6066 #ifdef CONFIG_PM
6067 static bool e1000e_pm_ready(struct e1000_adapter *adapter)
6068 {
6069 	return !!adapter->tx_ring->buffer_info;
6070 }
6071 
6072 static int __e1000_resume(struct pci_dev *pdev)
6073 {
6074 	struct net_device *netdev = pci_get_drvdata(pdev);
6075 	struct e1000_adapter *adapter = netdev_priv(netdev);
6076 	struct e1000_hw *hw = &adapter->hw;
6077 	u16 aspm_disable_flag = 0;
6078 	u32 err;
6079 
6080 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6081 		aspm_disable_flag = PCIE_LINK_STATE_L0S;
6082 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6083 		aspm_disable_flag |= PCIE_LINK_STATE_L1;
6084 	if (aspm_disable_flag)
6085 		e1000e_disable_aspm(pdev, aspm_disable_flag);
6086 
6087 	pci_set_power_state(pdev, PCI_D0);
6088 	pci_restore_state(pdev);
6089 	pci_save_state(pdev);
6090 
6091 	e1000e_set_interrupt_capability(adapter);
6092 	if (netif_running(netdev)) {
6093 		err = e1000_request_irq(adapter);
6094 		if (err)
6095 			return err;
6096 	}
6097 
6098 	if (hw->mac.type >= e1000_pch2lan)
6099 		e1000_resume_workarounds_pchlan(&adapter->hw);
6100 
6101 	e1000e_power_up_phy(adapter);
6102 
6103 	/* report the system wakeup cause from S3/S4 */
6104 	if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6105 		u16 phy_data;
6106 
6107 		e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
6108 		if (phy_data) {
6109 			e_info("PHY Wakeup cause - %s\n",
6110 				phy_data & E1000_WUS_EX ? "Unicast Packet" :
6111 				phy_data & E1000_WUS_MC ? "Multicast Packet" :
6112 				phy_data & E1000_WUS_BC ? "Broadcast Packet" :
6113 				phy_data & E1000_WUS_MAG ? "Magic Packet" :
6114 				phy_data & E1000_WUS_LNKC ?
6115 				"Link Status Change" : "other");
6116 		}
6117 		e1e_wphy(&adapter->hw, BM_WUS, ~0);
6118 	} else {
6119 		u32 wus = er32(WUS);
6120 		if (wus) {
6121 			e_info("MAC Wakeup cause - %s\n",
6122 				wus & E1000_WUS_EX ? "Unicast Packet" :
6123 				wus & E1000_WUS_MC ? "Multicast Packet" :
6124 				wus & E1000_WUS_BC ? "Broadcast Packet" :
6125 				wus & E1000_WUS_MAG ? "Magic Packet" :
6126 				wus & E1000_WUS_LNKC ? "Link Status Change" :
6127 				"other");
6128 		}
6129 		ew32(WUS, ~0);
6130 	}
6131 
6132 	e1000e_reset(adapter);
6133 
6134 	e1000_init_manageability_pt(adapter);
6135 
6136 	if (netif_running(netdev))
6137 		e1000e_up(adapter);
6138 
6139 	netif_device_attach(netdev);
6140 
6141 	/* If the controller has AMT, do not set DRV_LOAD until the interface
6142 	 * is up.  For all other cases, let the f/w know that the h/w is now
6143 	 * under the control of the driver.
6144 	 */
6145 	if (!(adapter->flags & FLAG_HAS_AMT))
6146 		e1000e_get_hw_control(adapter);
6147 
6148 	return 0;
6149 }
6150 
6151 #ifdef CONFIG_PM_SLEEP
6152 static int e1000_suspend(struct device *dev)
6153 {
6154 	struct pci_dev *pdev = to_pci_dev(dev);
6155 	int retval;
6156 	bool wake;
6157 
6158 	retval = __e1000_shutdown(pdev, &wake, false);
6159 	if (!retval)
6160 		e1000_complete_shutdown(pdev, true, wake);
6161 
6162 	return retval;
6163 }
6164 
6165 static int e1000_resume(struct device *dev)
6166 {
6167 	struct pci_dev *pdev = to_pci_dev(dev);
6168 	struct net_device *netdev = pci_get_drvdata(pdev);
6169 	struct e1000_adapter *adapter = netdev_priv(netdev);
6170 
6171 	if (e1000e_pm_ready(adapter))
6172 		adapter->idle_check = true;
6173 
6174 	return __e1000_resume(pdev);
6175 }
6176 #endif /* CONFIG_PM_SLEEP */
6177 
6178 #ifdef CONFIG_PM_RUNTIME
6179 static int e1000_runtime_suspend(struct device *dev)
6180 {
6181 	struct pci_dev *pdev = to_pci_dev(dev);
6182 	struct net_device *netdev = pci_get_drvdata(pdev);
6183 	struct e1000_adapter *adapter = netdev_priv(netdev);
6184 
6185 	if (e1000e_pm_ready(adapter)) {
6186 		bool wake;
6187 
6188 		__e1000_shutdown(pdev, &wake, true);
6189 	}
6190 
6191 	return 0;
6192 }
6193 
6194 static int e1000_idle(struct device *dev)
6195 {
6196 	struct pci_dev *pdev = to_pci_dev(dev);
6197 	struct net_device *netdev = pci_get_drvdata(pdev);
6198 	struct e1000_adapter *adapter = netdev_priv(netdev);
6199 
6200 	if (!e1000e_pm_ready(adapter))
6201 		return 0;
6202 
6203 	if (adapter->idle_check) {
6204 		adapter->idle_check = false;
6205 		if (!e1000e_has_link(adapter))
6206 			pm_schedule_suspend(dev, MSEC_PER_SEC);
6207 	}
6208 
6209 	return -EBUSY;
6210 }
6211 
6212 static int e1000_runtime_resume(struct device *dev)
6213 {
6214 	struct pci_dev *pdev = to_pci_dev(dev);
6215 	struct net_device *netdev = pci_get_drvdata(pdev);
6216 	struct e1000_adapter *adapter = netdev_priv(netdev);
6217 
6218 	if (!e1000e_pm_ready(adapter))
6219 		return 0;
6220 
6221 	adapter->idle_check = !dev->power.runtime_auto;
6222 	return __e1000_resume(pdev);
6223 }
6224 #endif /* CONFIG_PM_RUNTIME */
6225 #endif /* CONFIG_PM */
6226 
6227 static void e1000_shutdown(struct pci_dev *pdev)
6228 {
6229 	bool wake = false;
6230 
6231 	__e1000_shutdown(pdev, &wake, false);
6232 
6233 	if (system_state == SYSTEM_POWER_OFF)
6234 		e1000_complete_shutdown(pdev, false, wake);
6235 }
6236 
6237 #ifdef CONFIG_NET_POLL_CONTROLLER
6238 
6239 static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data)
6240 {
6241 	struct net_device *netdev = data;
6242 	struct e1000_adapter *adapter = netdev_priv(netdev);
6243 
6244 	if (adapter->msix_entries) {
6245 		int vector, msix_irq;
6246 
6247 		vector = 0;
6248 		msix_irq = adapter->msix_entries[vector].vector;
6249 		disable_irq(msix_irq);
6250 		e1000_intr_msix_rx(msix_irq, netdev);
6251 		enable_irq(msix_irq);
6252 
6253 		vector++;
6254 		msix_irq = adapter->msix_entries[vector].vector;
6255 		disable_irq(msix_irq);
6256 		e1000_intr_msix_tx(msix_irq, netdev);
6257 		enable_irq(msix_irq);
6258 
6259 		vector++;
6260 		msix_irq = adapter->msix_entries[vector].vector;
6261 		disable_irq(msix_irq);
6262 		e1000_msix_other(msix_irq, netdev);
6263 		enable_irq(msix_irq);
6264 	}
6265 
6266 	return IRQ_HANDLED;
6267 }
6268 
6269 /**
6270  * e1000_netpoll
6271  * @netdev: network interface device structure
6272  *
6273  * Polling 'interrupt' - used by things like netconsole to send skbs
6274  * without having to re-enable interrupts. It's not called while
6275  * the interrupt routine is executing.
6276  */
6277 static void e1000_netpoll(struct net_device *netdev)
6278 {
6279 	struct e1000_adapter *adapter = netdev_priv(netdev);
6280 
6281 	switch (adapter->int_mode) {
6282 	case E1000E_INT_MODE_MSIX:
6283 		e1000_intr_msix(adapter->pdev->irq, netdev);
6284 		break;
6285 	case E1000E_INT_MODE_MSI:
6286 		disable_irq(adapter->pdev->irq);
6287 		e1000_intr_msi(adapter->pdev->irq, netdev);
6288 		enable_irq(adapter->pdev->irq);
6289 		break;
6290 	default: /* E1000E_INT_MODE_LEGACY */
6291 		disable_irq(adapter->pdev->irq);
6292 		e1000_intr(adapter->pdev->irq, netdev);
6293 		enable_irq(adapter->pdev->irq);
6294 		break;
6295 	}
6296 }
6297 #endif
6298 
6299 /**
6300  * e1000_io_error_detected - called when PCI error is detected
6301  * @pdev: Pointer to PCI device
6302  * @state: The current pci connection state
6303  *
6304  * This function is called after a PCI bus error affecting
6305  * this device has been detected.
6306  */
6307 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
6308 						pci_channel_state_t state)
6309 {
6310 	struct net_device *netdev = pci_get_drvdata(pdev);
6311 	struct e1000_adapter *adapter = netdev_priv(netdev);
6312 
6313 	netif_device_detach(netdev);
6314 
6315 	if (state == pci_channel_io_perm_failure)
6316 		return PCI_ERS_RESULT_DISCONNECT;
6317 
6318 	if (netif_running(netdev))
6319 		e1000e_down(adapter);
6320 	pci_disable_device(pdev);
6321 
6322 	/* Request a slot slot reset. */
6323 	return PCI_ERS_RESULT_NEED_RESET;
6324 }
6325 
6326 /**
6327  * e1000_io_slot_reset - called after the pci bus has been reset.
6328  * @pdev: Pointer to PCI device
6329  *
6330  * Restart the card from scratch, as if from a cold-boot. Implementation
6331  * resembles the first-half of the e1000_resume routine.
6332  */
6333 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
6334 {
6335 	struct net_device *netdev = pci_get_drvdata(pdev);
6336 	struct e1000_adapter *adapter = netdev_priv(netdev);
6337 	struct e1000_hw *hw = &adapter->hw;
6338 	u16 aspm_disable_flag = 0;
6339 	int err;
6340 	pci_ers_result_t result;
6341 
6342 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6343 		aspm_disable_flag = PCIE_LINK_STATE_L0S;
6344 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6345 		aspm_disable_flag |= PCIE_LINK_STATE_L1;
6346 	if (aspm_disable_flag)
6347 		e1000e_disable_aspm(pdev, aspm_disable_flag);
6348 
6349 	err = pci_enable_device_mem(pdev);
6350 	if (err) {
6351 		dev_err(&pdev->dev,
6352 			"Cannot re-enable PCI device after reset.\n");
6353 		result = PCI_ERS_RESULT_DISCONNECT;
6354 	} else {
6355 		pci_set_master(pdev);
6356 		pdev->state_saved = true;
6357 		pci_restore_state(pdev);
6358 
6359 		pci_enable_wake(pdev, PCI_D3hot, 0);
6360 		pci_enable_wake(pdev, PCI_D3cold, 0);
6361 
6362 		e1000e_reset(adapter);
6363 		ew32(WUS, ~0);
6364 		result = PCI_ERS_RESULT_RECOVERED;
6365 	}
6366 
6367 	pci_cleanup_aer_uncorrect_error_status(pdev);
6368 
6369 	return result;
6370 }
6371 
6372 /**
6373  * e1000_io_resume - called when traffic can start flowing again.
6374  * @pdev: Pointer to PCI device
6375  *
6376  * This callback is called when the error recovery driver tells us that
6377  * its OK to resume normal operation. Implementation resembles the
6378  * second-half of the e1000_resume routine.
6379  */
6380 static void e1000_io_resume(struct pci_dev *pdev)
6381 {
6382 	struct net_device *netdev = pci_get_drvdata(pdev);
6383 	struct e1000_adapter *adapter = netdev_priv(netdev);
6384 
6385 	e1000_init_manageability_pt(adapter);
6386 
6387 	if (netif_running(netdev)) {
6388 		if (e1000e_up(adapter)) {
6389 			dev_err(&pdev->dev,
6390 				"can't bring device back up after reset\n");
6391 			return;
6392 		}
6393 	}
6394 
6395 	netif_device_attach(netdev);
6396 
6397 	/* If the controller has AMT, do not set DRV_LOAD until the interface
6398 	 * is up.  For all other cases, let the f/w know that the h/w is now
6399 	 * under the control of the driver.
6400 	 */
6401 	if (!(adapter->flags & FLAG_HAS_AMT))
6402 		e1000e_get_hw_control(adapter);
6403 }
6404 
6405 static void e1000_print_device_info(struct e1000_adapter *adapter)
6406 {
6407 	struct e1000_hw *hw = &adapter->hw;
6408 	struct net_device *netdev = adapter->netdev;
6409 	u32 ret_val;
6410 	u8 pba_str[E1000_PBANUM_LENGTH];
6411 
6412 	/* print bus type/speed/width info */
6413 	e_info("(PCI Express:2.5GT/s:%s) %pM\n",
6414 	       /* bus width */
6415 	       ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
6416 	        "Width x1"),
6417 	       /* MAC address */
6418 	       netdev->dev_addr);
6419 	e_info("Intel(R) PRO/%s Network Connection\n",
6420 	       (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
6421 	ret_val = e1000_read_pba_string_generic(hw, pba_str,
6422 						E1000_PBANUM_LENGTH);
6423 	if (ret_val)
6424 		strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
6425 	e_info("MAC: %d, PHY: %d, PBA No: %s\n",
6426 	       hw->mac.type, hw->phy.type, pba_str);
6427 }
6428 
6429 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
6430 {
6431 	struct e1000_hw *hw = &adapter->hw;
6432 	int ret_val;
6433 	u16 buf = 0;
6434 
6435 	if (hw->mac.type != e1000_82573)
6436 		return;
6437 
6438 	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
6439 	le16_to_cpus(&buf);
6440 	if (!ret_val && (!(buf & (1 << 0)))) {
6441 		/* Deep Smart Power Down (DSPD) */
6442 		dev_warn(&adapter->pdev->dev,
6443 			 "Warning: detected DSPD enabled in EEPROM\n");
6444 	}
6445 }
6446 
6447 static int e1000_set_features(struct net_device *netdev,
6448 			      netdev_features_t features)
6449 {
6450 	struct e1000_adapter *adapter = netdev_priv(netdev);
6451 	netdev_features_t changed = features ^ netdev->features;
6452 
6453 	if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
6454 		adapter->flags |= FLAG_TSO_FORCE;
6455 
6456 	if (!(changed & (NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX |
6457 			 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
6458 			 NETIF_F_RXALL)))
6459 		return 0;
6460 
6461 	if (changed & NETIF_F_RXFCS) {
6462 		if (features & NETIF_F_RXFCS) {
6463 			adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6464 		} else {
6465 			/* We need to take it back to defaults, which might mean
6466 			 * stripping is still disabled at the adapter level.
6467 			 */
6468 			if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
6469 				adapter->flags2 |= FLAG2_CRC_STRIPPING;
6470 			else
6471 				adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6472 		}
6473 	}
6474 
6475 	netdev->features = features;
6476 
6477 	if (netif_running(netdev))
6478 		e1000e_reinit_locked(adapter);
6479 	else
6480 		e1000e_reset(adapter);
6481 
6482 	return 0;
6483 }
6484 
6485 static const struct net_device_ops e1000e_netdev_ops = {
6486 	.ndo_open		= e1000_open,
6487 	.ndo_stop		= e1000_close,
6488 	.ndo_start_xmit		= e1000_xmit_frame,
6489 	.ndo_get_stats64	= e1000e_get_stats64,
6490 	.ndo_set_rx_mode	= e1000e_set_rx_mode,
6491 	.ndo_set_mac_address	= e1000_set_mac,
6492 	.ndo_change_mtu		= e1000_change_mtu,
6493 	.ndo_do_ioctl		= e1000_ioctl,
6494 	.ndo_tx_timeout		= e1000_tx_timeout,
6495 	.ndo_validate_addr	= eth_validate_addr,
6496 
6497 	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
6498 	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
6499 #ifdef CONFIG_NET_POLL_CONTROLLER
6500 	.ndo_poll_controller	= e1000_netpoll,
6501 #endif
6502 	.ndo_set_features = e1000_set_features,
6503 };
6504 
6505 /**
6506  * e1000_probe - Device Initialization Routine
6507  * @pdev: PCI device information struct
6508  * @ent: entry in e1000_pci_tbl
6509  *
6510  * Returns 0 on success, negative on failure
6511  *
6512  * e1000_probe initializes an adapter identified by a pci_dev structure.
6513  * The OS initialization, configuring of the adapter private structure,
6514  * and a hardware reset occur.
6515  **/
6516 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
6517 {
6518 	struct net_device *netdev;
6519 	struct e1000_adapter *adapter;
6520 	struct e1000_hw *hw;
6521 	const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
6522 	resource_size_t mmio_start, mmio_len;
6523 	resource_size_t flash_start, flash_len;
6524 	static int cards_found;
6525 	u16 aspm_disable_flag = 0;
6526 	int i, err, pci_using_dac;
6527 	u16 eeprom_data = 0;
6528 	u16 eeprom_apme_mask = E1000_EEPROM_APME;
6529 
6530 	if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
6531 		aspm_disable_flag = PCIE_LINK_STATE_L0S;
6532 	if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
6533 		aspm_disable_flag |= PCIE_LINK_STATE_L1;
6534 	if (aspm_disable_flag)
6535 		e1000e_disable_aspm(pdev, aspm_disable_flag);
6536 
6537 	err = pci_enable_device_mem(pdev);
6538 	if (err)
6539 		return err;
6540 
6541 	pci_using_dac = 0;
6542 	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
6543 	if (!err) {
6544 		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
6545 		if (!err)
6546 			pci_using_dac = 1;
6547 	} else {
6548 		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
6549 		if (err) {
6550 			err = dma_set_coherent_mask(&pdev->dev,
6551 						    DMA_BIT_MASK(32));
6552 			if (err) {
6553 				dev_err(&pdev->dev, "No usable DMA configuration, aborting\n");
6554 				goto err_dma;
6555 			}
6556 		}
6557 	}
6558 
6559 	err = pci_request_selected_regions_exclusive(pdev,
6560 					  pci_select_bars(pdev, IORESOURCE_MEM),
6561 					  e1000e_driver_name);
6562 	if (err)
6563 		goto err_pci_reg;
6564 
6565 	/* AER (Advanced Error Reporting) hooks */
6566 	pci_enable_pcie_error_reporting(pdev);
6567 
6568 	pci_set_master(pdev);
6569 	/* PCI config space info */
6570 	err = pci_save_state(pdev);
6571 	if (err)
6572 		goto err_alloc_etherdev;
6573 
6574 	err = -ENOMEM;
6575 	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
6576 	if (!netdev)
6577 		goto err_alloc_etherdev;
6578 
6579 	SET_NETDEV_DEV(netdev, &pdev->dev);
6580 
6581 	netdev->irq = pdev->irq;
6582 
6583 	pci_set_drvdata(pdev, netdev);
6584 	adapter = netdev_priv(netdev);
6585 	hw = &adapter->hw;
6586 	adapter->netdev = netdev;
6587 	adapter->pdev = pdev;
6588 	adapter->ei = ei;
6589 	adapter->pba = ei->pba;
6590 	adapter->flags = ei->flags;
6591 	adapter->flags2 = ei->flags2;
6592 	adapter->hw.adapter = adapter;
6593 	adapter->hw.mac.type = ei->mac;
6594 	adapter->max_hw_frame_size = ei->max_hw_frame_size;
6595 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
6596 
6597 	mmio_start = pci_resource_start(pdev, 0);
6598 	mmio_len = pci_resource_len(pdev, 0);
6599 
6600 	err = -EIO;
6601 	adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
6602 	if (!adapter->hw.hw_addr)
6603 		goto err_ioremap;
6604 
6605 	if ((adapter->flags & FLAG_HAS_FLASH) &&
6606 	    (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
6607 		flash_start = pci_resource_start(pdev, 1);
6608 		flash_len = pci_resource_len(pdev, 1);
6609 		adapter->hw.flash_address = ioremap(flash_start, flash_len);
6610 		if (!adapter->hw.flash_address)
6611 			goto err_flashmap;
6612 	}
6613 
6614 	/* construct the net_device struct */
6615 	netdev->netdev_ops		= &e1000e_netdev_ops;
6616 	e1000e_set_ethtool_ops(netdev);
6617 	netdev->watchdog_timeo		= 5 * HZ;
6618 	netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64);
6619 	strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
6620 
6621 	netdev->mem_start = mmio_start;
6622 	netdev->mem_end = mmio_start + mmio_len;
6623 
6624 	adapter->bd_number = cards_found++;
6625 
6626 	e1000e_check_options(adapter);
6627 
6628 	/* setup adapter struct */
6629 	err = e1000_sw_init(adapter);
6630 	if (err)
6631 		goto err_sw_init;
6632 
6633 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
6634 	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
6635 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
6636 
6637 	err = ei->get_variants(adapter);
6638 	if (err)
6639 		goto err_hw_init;
6640 
6641 	if ((adapter->flags & FLAG_IS_ICH) &&
6642 	    (adapter->flags & FLAG_READ_ONLY_NVM))
6643 		e1000e_write_protect_nvm_ich8lan(&adapter->hw);
6644 
6645 	hw->mac.ops.get_bus_info(&adapter->hw);
6646 
6647 	adapter->hw.phy.autoneg_wait_to_complete = 0;
6648 
6649 	/* Copper options */
6650 	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
6651 		adapter->hw.phy.mdix = AUTO_ALL_MODES;
6652 		adapter->hw.phy.disable_polarity_correction = 0;
6653 		adapter->hw.phy.ms_type = e1000_ms_hw_default;
6654 	}
6655 
6656 	if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
6657 		dev_info(&pdev->dev,
6658 			 "PHY reset is blocked due to SOL/IDER session.\n");
6659 
6660 	/* Set initial default active device features */
6661 	netdev->features = (NETIF_F_SG |
6662 			    NETIF_F_HW_VLAN_RX |
6663 			    NETIF_F_HW_VLAN_TX |
6664 			    NETIF_F_TSO |
6665 			    NETIF_F_TSO6 |
6666 			    NETIF_F_RXHASH |
6667 			    NETIF_F_RXCSUM |
6668 			    NETIF_F_HW_CSUM);
6669 
6670 	/* Set user-changeable features (subset of all device features) */
6671 	netdev->hw_features = netdev->features;
6672 	netdev->hw_features |= NETIF_F_RXFCS;
6673 	netdev->priv_flags |= IFF_SUPP_NOFCS;
6674 	netdev->hw_features |= NETIF_F_RXALL;
6675 
6676 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
6677 		netdev->features |= NETIF_F_HW_VLAN_FILTER;
6678 
6679 	netdev->vlan_features |= (NETIF_F_SG |
6680 				  NETIF_F_TSO |
6681 				  NETIF_F_TSO6 |
6682 				  NETIF_F_HW_CSUM);
6683 
6684 	netdev->priv_flags |= IFF_UNICAST_FLT;
6685 
6686 	if (pci_using_dac) {
6687 		netdev->features |= NETIF_F_HIGHDMA;
6688 		netdev->vlan_features |= NETIF_F_HIGHDMA;
6689 	}
6690 
6691 	if (e1000e_enable_mng_pass_thru(&adapter->hw))
6692 		adapter->flags |= FLAG_MNG_PT_ENABLED;
6693 
6694 	/* before reading the NVM, reset the controller to
6695 	 * put the device in a known good starting state
6696 	 */
6697 	adapter->hw.mac.ops.reset_hw(&adapter->hw);
6698 
6699 	/* systems with ASPM and others may see the checksum fail on the first
6700 	 * attempt. Let's give it a few tries
6701 	 */
6702 	for (i = 0;; i++) {
6703 		if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
6704 			break;
6705 		if (i == 2) {
6706 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
6707 			err = -EIO;
6708 			goto err_eeprom;
6709 		}
6710 	}
6711 
6712 	e1000_eeprom_checks(adapter);
6713 
6714 	/* copy the MAC address */
6715 	if (e1000e_read_mac_addr(&adapter->hw))
6716 		dev_err(&pdev->dev,
6717 			"NVM Read Error while reading MAC address\n");
6718 
6719 	memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
6720 
6721 	if (!is_valid_ether_addr(netdev->dev_addr)) {
6722 		dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
6723 			netdev->dev_addr);
6724 		err = -EIO;
6725 		goto err_eeprom;
6726 	}
6727 
6728 	init_timer(&adapter->watchdog_timer);
6729 	adapter->watchdog_timer.function = e1000_watchdog;
6730 	adapter->watchdog_timer.data = (unsigned long) adapter;
6731 
6732 	init_timer(&adapter->phy_info_timer);
6733 	adapter->phy_info_timer.function = e1000_update_phy_info;
6734 	adapter->phy_info_timer.data = (unsigned long) adapter;
6735 
6736 	INIT_WORK(&adapter->reset_task, e1000_reset_task);
6737 	INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
6738 	INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
6739 	INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
6740 	INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
6741 
6742 	/* Initialize link parameters. User can change them with ethtool */
6743 	adapter->hw.mac.autoneg = 1;
6744 	adapter->fc_autoneg = true;
6745 	adapter->hw.fc.requested_mode = e1000_fc_default;
6746 	adapter->hw.fc.current_mode = e1000_fc_default;
6747 	adapter->hw.phy.autoneg_advertised = 0x2f;
6748 
6749 	/* ring size defaults */
6750 	adapter->rx_ring->count = E1000_DEFAULT_RXD;
6751 	adapter->tx_ring->count = E1000_DEFAULT_TXD;
6752 
6753 	/* Initial Wake on LAN setting - If APM wake is enabled in
6754 	 * the EEPROM, enable the ACPI Magic Packet filter
6755 	 */
6756 	if (adapter->flags & FLAG_APME_IN_WUC) {
6757 		/* APME bit in EEPROM is mapped to WUC.APME */
6758 		eeprom_data = er32(WUC);
6759 		eeprom_apme_mask = E1000_WUC_APME;
6760 		if ((hw->mac.type > e1000_ich10lan) &&
6761 		    (eeprom_data & E1000_WUC_PHY_WAKE))
6762 			adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
6763 	} else if (adapter->flags & FLAG_APME_IN_CTRL3) {
6764 		if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
6765 		    (adapter->hw.bus.func == 1))
6766 			e1000_read_nvm(&adapter->hw, NVM_INIT_CONTROL3_PORT_B,
6767 				       1, &eeprom_data);
6768 		else
6769 			e1000_read_nvm(&adapter->hw, NVM_INIT_CONTROL3_PORT_A,
6770 				       1, &eeprom_data);
6771 	}
6772 
6773 	/* fetch WoL from EEPROM */
6774 	if (eeprom_data & eeprom_apme_mask)
6775 		adapter->eeprom_wol |= E1000_WUFC_MAG;
6776 
6777 	/* now that we have the eeprom settings, apply the special cases
6778 	 * where the eeprom may be wrong or the board simply won't support
6779 	 * wake on lan on a particular port
6780 	 */
6781 	if (!(adapter->flags & FLAG_HAS_WOL))
6782 		adapter->eeprom_wol = 0;
6783 
6784 	/* initialize the wol settings based on the eeprom settings */
6785 	adapter->wol = adapter->eeprom_wol;
6786 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
6787 
6788 	/* save off EEPROM version number */
6789 	e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
6790 
6791 	/* reset the hardware with the new settings */
6792 	e1000e_reset(adapter);
6793 
6794 	/* If the controller has AMT, do not set DRV_LOAD until the interface
6795 	 * is up.  For all other cases, let the f/w know that the h/w is now
6796 	 * under the control of the driver.
6797 	 */
6798 	if (!(adapter->flags & FLAG_HAS_AMT))
6799 		e1000e_get_hw_control(adapter);
6800 
6801 	strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
6802 	err = register_netdev(netdev);
6803 	if (err)
6804 		goto err_register;
6805 
6806 	/* carrier off reporting is important to ethtool even BEFORE open */
6807 	netif_carrier_off(netdev);
6808 
6809 	/* init PTP hardware clock */
6810 	e1000e_ptp_init(adapter);
6811 
6812 	e1000_print_device_info(adapter);
6813 
6814 	if (pci_dev_run_wake(pdev))
6815 		pm_runtime_put_noidle(&pdev->dev);
6816 
6817 	return 0;
6818 
6819 err_register:
6820 	if (!(adapter->flags & FLAG_HAS_AMT))
6821 		e1000e_release_hw_control(adapter);
6822 err_eeprom:
6823 	if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
6824 		e1000_phy_hw_reset(&adapter->hw);
6825 err_hw_init:
6826 	kfree(adapter->tx_ring);
6827 	kfree(adapter->rx_ring);
6828 err_sw_init:
6829 	if (adapter->hw.flash_address)
6830 		iounmap(adapter->hw.flash_address);
6831 	e1000e_reset_interrupt_capability(adapter);
6832 err_flashmap:
6833 	iounmap(adapter->hw.hw_addr);
6834 err_ioremap:
6835 	free_netdev(netdev);
6836 err_alloc_etherdev:
6837 	pci_release_selected_regions(pdev,
6838 	                             pci_select_bars(pdev, IORESOURCE_MEM));
6839 err_pci_reg:
6840 err_dma:
6841 	pci_disable_device(pdev);
6842 	return err;
6843 }
6844 
6845 /**
6846  * e1000_remove - Device Removal Routine
6847  * @pdev: PCI device information struct
6848  *
6849  * e1000_remove is called by the PCI subsystem to alert the driver
6850  * that it should release a PCI device.  The could be caused by a
6851  * Hot-Plug event, or because the driver is going to be removed from
6852  * memory.
6853  **/
6854 static void e1000_remove(struct pci_dev *pdev)
6855 {
6856 	struct net_device *netdev = pci_get_drvdata(pdev);
6857 	struct e1000_adapter *adapter = netdev_priv(netdev);
6858 	bool down = test_bit(__E1000_DOWN, &adapter->state);
6859 
6860 	e1000e_ptp_remove(adapter);
6861 
6862 	/* The timers may be rescheduled, so explicitly disable them
6863 	 * from being rescheduled.
6864 	 */
6865 	if (!down)
6866 		set_bit(__E1000_DOWN, &adapter->state);
6867 	del_timer_sync(&adapter->watchdog_timer);
6868 	del_timer_sync(&adapter->phy_info_timer);
6869 
6870 	cancel_work_sync(&adapter->reset_task);
6871 	cancel_work_sync(&adapter->watchdog_task);
6872 	cancel_work_sync(&adapter->downshift_task);
6873 	cancel_work_sync(&adapter->update_phy_task);
6874 	cancel_work_sync(&adapter->print_hang_task);
6875 
6876 	if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
6877 		cancel_work_sync(&adapter->tx_hwtstamp_work);
6878 		if (adapter->tx_hwtstamp_skb) {
6879 			dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
6880 			adapter->tx_hwtstamp_skb = NULL;
6881 		}
6882 	}
6883 
6884 	if (!(netdev->flags & IFF_UP))
6885 		e1000_power_down_phy(adapter);
6886 
6887 	/* Don't lie to e1000_close() down the road. */
6888 	if (!down)
6889 		clear_bit(__E1000_DOWN, &adapter->state);
6890 	unregister_netdev(netdev);
6891 
6892 	if (pci_dev_run_wake(pdev))
6893 		pm_runtime_get_noresume(&pdev->dev);
6894 
6895 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
6896 	 * would have already happened in close and is redundant.
6897 	 */
6898 	e1000e_release_hw_control(adapter);
6899 
6900 	e1000e_reset_interrupt_capability(adapter);
6901 	kfree(adapter->tx_ring);
6902 	kfree(adapter->rx_ring);
6903 
6904 	iounmap(adapter->hw.hw_addr);
6905 	if (adapter->hw.flash_address)
6906 		iounmap(adapter->hw.flash_address);
6907 	pci_release_selected_regions(pdev,
6908 	                             pci_select_bars(pdev, IORESOURCE_MEM));
6909 
6910 	free_netdev(netdev);
6911 
6912 	/* AER disable */
6913 	pci_disable_pcie_error_reporting(pdev);
6914 
6915 	pci_disable_device(pdev);
6916 }
6917 
6918 /* PCI Error Recovery (ERS) */
6919 static const struct pci_error_handlers e1000_err_handler = {
6920 	.error_detected = e1000_io_error_detected,
6921 	.slot_reset = e1000_io_slot_reset,
6922 	.resume = e1000_io_resume,
6923 };
6924 
6925 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
6926 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
6927 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
6928 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
6929 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
6930 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
6931 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
6932 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
6933 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
6934 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
6935 
6936 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
6937 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
6938 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
6939 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
6940 
6941 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
6942 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
6943 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
6944 
6945 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
6946 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
6947 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
6948 
6949 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
6950 	  board_80003es2lan },
6951 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
6952 	  board_80003es2lan },
6953 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
6954 	  board_80003es2lan },
6955 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
6956 	  board_80003es2lan },
6957 
6958 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
6959 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
6960 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
6961 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
6962 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
6963 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
6964 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
6965 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
6966 
6967 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
6968 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
6969 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
6970 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
6971 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
6972 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
6973 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
6974 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
6975 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
6976 
6977 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
6978 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
6979 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
6980 
6981 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
6982 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
6983 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
6984 
6985 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
6986 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
6987 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
6988 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
6989 
6990 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
6991 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
6992 
6993 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
6994 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
6995 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt },
6996 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt },
6997 
6998 	{ 0, 0, 0, 0, 0, 0, 0 }	/* terminate list */
6999 };
7000 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
7001 
7002 #ifdef CONFIG_PM
7003 static const struct dev_pm_ops e1000_pm_ops = {
7004 	SET_SYSTEM_SLEEP_PM_OPS(e1000_suspend, e1000_resume)
7005 	SET_RUNTIME_PM_OPS(e1000_runtime_suspend,
7006 				e1000_runtime_resume, e1000_idle)
7007 };
7008 #endif
7009 
7010 /* PCI Device API Driver */
7011 static struct pci_driver e1000_driver = {
7012 	.name     = e1000e_driver_name,
7013 	.id_table = e1000_pci_tbl,
7014 	.probe    = e1000_probe,
7015 	.remove   = e1000_remove,
7016 #ifdef CONFIG_PM
7017 	.driver   = {
7018 		.pm = &e1000_pm_ops,
7019 	},
7020 #endif
7021 	.shutdown = e1000_shutdown,
7022 	.err_handler = &e1000_err_handler
7023 };
7024 
7025 /**
7026  * e1000_init_module - Driver Registration Routine
7027  *
7028  * e1000_init_module is the first routine called when the driver is
7029  * loaded. All it does is register with the PCI subsystem.
7030  **/
7031 static int __init e1000_init_module(void)
7032 {
7033 	int ret;
7034 	pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
7035 		e1000e_driver_version);
7036 	pr_info("Copyright(c) 1999 - 2013 Intel Corporation.\n");
7037 	ret = pci_register_driver(&e1000_driver);
7038 
7039 	return ret;
7040 }
7041 module_init(e1000_init_module);
7042 
7043 /**
7044  * e1000_exit_module - Driver Exit Cleanup Routine
7045  *
7046  * e1000_exit_module is called just before the driver is removed
7047  * from memory.
7048  **/
7049 static void __exit e1000_exit_module(void)
7050 {
7051 	pci_unregister_driver(&e1000_driver);
7052 }
7053 module_exit(e1000_exit_module);
7054 
7055 
7056 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
7057 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7058 MODULE_LICENSE("GPL");
7059 MODULE_VERSION(DRV_VERSION);
7060 
7061 /* netdev.c */
7062