1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3 
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5 
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/pci.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/delay.h>
13 #include <linux/netdevice.h>
14 #include <linux/interrupt.h>
15 #include <linux/tcp.h>
16 #include <linux/ipv6.h>
17 #include <linux/slab.h>
18 #include <net/checksum.h>
19 #include <net/ip6_checksum.h>
20 #include <linux/ethtool.h>
21 #include <linux/if_vlan.h>
22 #include <linux/cpu.h>
23 #include <linux/smp.h>
24 #include <linux/pm_qos.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/prefetch.h>
27 #include <linux/suspend.h>
28 
29 #include "e1000.h"
30 #define CREATE_TRACE_POINTS
31 #include "e1000e_trace.h"
32 
33 char e1000e_driver_name[] = "e1000e";
34 
35 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
36 static int debug = -1;
37 module_param(debug, int, 0);
38 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
39 
40 static const struct e1000_info *e1000_info_tbl[] = {
41 	[board_82571]		= &e1000_82571_info,
42 	[board_82572]		= &e1000_82572_info,
43 	[board_82573]		= &e1000_82573_info,
44 	[board_82574]		= &e1000_82574_info,
45 	[board_82583]		= &e1000_82583_info,
46 	[board_80003es2lan]	= &e1000_es2_info,
47 	[board_ich8lan]		= &e1000_ich8_info,
48 	[board_ich9lan]		= &e1000_ich9_info,
49 	[board_ich10lan]	= &e1000_ich10_info,
50 	[board_pchlan]		= &e1000_pch_info,
51 	[board_pch2lan]		= &e1000_pch2_info,
52 	[board_pch_lpt]		= &e1000_pch_lpt_info,
53 	[board_pch_spt]		= &e1000_pch_spt_info,
54 	[board_pch_cnp]		= &e1000_pch_cnp_info,
55 	[board_pch_tgp]		= &e1000_pch_tgp_info,
56 	[board_pch_adp]		= &e1000_pch_adp_info,
57 	[board_pch_mtp]		= &e1000_pch_mtp_info,
58 };
59 
60 struct e1000_reg_info {
61 	u32 ofs;
62 	char *name;
63 };
64 
65 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
66 	/* General Registers */
67 	{E1000_CTRL, "CTRL"},
68 	{E1000_STATUS, "STATUS"},
69 	{E1000_CTRL_EXT, "CTRL_EXT"},
70 
71 	/* Interrupt Registers */
72 	{E1000_ICR, "ICR"},
73 
74 	/* Rx Registers */
75 	{E1000_RCTL, "RCTL"},
76 	{E1000_RDLEN(0), "RDLEN"},
77 	{E1000_RDH(0), "RDH"},
78 	{E1000_RDT(0), "RDT"},
79 	{E1000_RDTR, "RDTR"},
80 	{E1000_RXDCTL(0), "RXDCTL"},
81 	{E1000_ERT, "ERT"},
82 	{E1000_RDBAL(0), "RDBAL"},
83 	{E1000_RDBAH(0), "RDBAH"},
84 	{E1000_RDFH, "RDFH"},
85 	{E1000_RDFT, "RDFT"},
86 	{E1000_RDFHS, "RDFHS"},
87 	{E1000_RDFTS, "RDFTS"},
88 	{E1000_RDFPC, "RDFPC"},
89 
90 	/* Tx Registers */
91 	{E1000_TCTL, "TCTL"},
92 	{E1000_TDBAL(0), "TDBAL"},
93 	{E1000_TDBAH(0), "TDBAH"},
94 	{E1000_TDLEN(0), "TDLEN"},
95 	{E1000_TDH(0), "TDH"},
96 	{E1000_TDT(0), "TDT"},
97 	{E1000_TIDV, "TIDV"},
98 	{E1000_TXDCTL(0), "TXDCTL"},
99 	{E1000_TADV, "TADV"},
100 	{E1000_TARC(0), "TARC"},
101 	{E1000_TDFH, "TDFH"},
102 	{E1000_TDFT, "TDFT"},
103 	{E1000_TDFHS, "TDFHS"},
104 	{E1000_TDFTS, "TDFTS"},
105 	{E1000_TDFPC, "TDFPC"},
106 
107 	/* List Terminator */
108 	{0, NULL}
109 };
110 
111 /**
112  * __ew32_prepare - prepare to write to MAC CSR register on certain parts
113  * @hw: pointer to the HW structure
114  *
115  * When updating the MAC CSR registers, the Manageability Engine (ME) could
116  * be accessing the registers at the same time.  Normally, this is handled in
117  * h/w by an arbiter but on some parts there is a bug that acknowledges Host
118  * accesses later than it should which could result in the register to have
119  * an incorrect value.  Workaround this by checking the FWSM register which
120  * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set
121  * and try again a number of times.
122  **/
123 static void __ew32_prepare(struct e1000_hw *hw)
124 {
125 	s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT;
126 
127 	while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i)
128 		udelay(50);
129 }
130 
131 void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val)
132 {
133 	if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
134 		__ew32_prepare(hw);
135 
136 	writel(val, hw->hw_addr + reg);
137 }
138 
139 /**
140  * e1000_regdump - register printout routine
141  * @hw: pointer to the HW structure
142  * @reginfo: pointer to the register info table
143  **/
144 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
145 {
146 	int n = 0;
147 	char rname[16];
148 	u32 regs[8];
149 
150 	switch (reginfo->ofs) {
151 	case E1000_RXDCTL(0):
152 		for (n = 0; n < 2; n++)
153 			regs[n] = __er32(hw, E1000_RXDCTL(n));
154 		break;
155 	case E1000_TXDCTL(0):
156 		for (n = 0; n < 2; n++)
157 			regs[n] = __er32(hw, E1000_TXDCTL(n));
158 		break;
159 	case E1000_TARC(0):
160 		for (n = 0; n < 2; n++)
161 			regs[n] = __er32(hw, E1000_TARC(n));
162 		break;
163 	default:
164 		pr_info("%-15s %08x\n",
165 			reginfo->name, __er32(hw, reginfo->ofs));
166 		return;
167 	}
168 
169 	snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
170 	pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
171 }
172 
173 static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
174 				 struct e1000_buffer *bi)
175 {
176 	int i;
177 	struct e1000_ps_page *ps_page;
178 
179 	for (i = 0; i < adapter->rx_ps_pages; i++) {
180 		ps_page = &bi->ps_pages[i];
181 
182 		if (ps_page->page) {
183 			pr_info("packet dump for ps_page %d:\n", i);
184 			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
185 				       16, 1, page_address(ps_page->page),
186 				       PAGE_SIZE, true);
187 		}
188 	}
189 }
190 
191 /**
192  * e1000e_dump - Print registers, Tx-ring and Rx-ring
193  * @adapter: board private structure
194  **/
195 static void e1000e_dump(struct e1000_adapter *adapter)
196 {
197 	struct net_device *netdev = adapter->netdev;
198 	struct e1000_hw *hw = &adapter->hw;
199 	struct e1000_reg_info *reginfo;
200 	struct e1000_ring *tx_ring = adapter->tx_ring;
201 	struct e1000_tx_desc *tx_desc;
202 	struct my_u0 {
203 		__le64 a;
204 		__le64 b;
205 	} *u0;
206 	struct e1000_buffer *buffer_info;
207 	struct e1000_ring *rx_ring = adapter->rx_ring;
208 	union e1000_rx_desc_packet_split *rx_desc_ps;
209 	union e1000_rx_desc_extended *rx_desc;
210 	struct my_u1 {
211 		__le64 a;
212 		__le64 b;
213 		__le64 c;
214 		__le64 d;
215 	} *u1;
216 	u32 staterr;
217 	int i = 0;
218 
219 	if (!netif_msg_hw(adapter))
220 		return;
221 
222 	/* Print netdevice Info */
223 	if (netdev) {
224 		dev_info(&adapter->pdev->dev, "Net device Info\n");
225 		pr_info("Device Name     state            trans_start\n");
226 		pr_info("%-15s %016lX %016lX\n", netdev->name,
227 			netdev->state, dev_trans_start(netdev));
228 	}
229 
230 	/* Print Registers */
231 	dev_info(&adapter->pdev->dev, "Register Dump\n");
232 	pr_info(" Register Name   Value\n");
233 	for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
234 	     reginfo->name; reginfo++) {
235 		e1000_regdump(hw, reginfo);
236 	}
237 
238 	/* Print Tx Ring Summary */
239 	if (!netdev || !netif_running(netdev))
240 		return;
241 
242 	dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
243 	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
244 	buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
245 	pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
246 		0, tx_ring->next_to_use, tx_ring->next_to_clean,
247 		(unsigned long long)buffer_info->dma,
248 		buffer_info->length,
249 		buffer_info->next_to_watch,
250 		(unsigned long long)buffer_info->time_stamp);
251 
252 	/* Print Tx Ring */
253 	if (!netif_msg_tx_done(adapter))
254 		goto rx_ring_summary;
255 
256 	dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
257 
258 	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
259 	 *
260 	 * Legacy Transmit Descriptor
261 	 *   +--------------------------------------------------------------+
262 	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
263 	 *   +--------------------------------------------------------------+
264 	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
265 	 *   +--------------------------------------------------------------+
266 	 *   63       48 47        36 35    32 31     24 23    16 15        0
267 	 *
268 	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
269 	 *   63      48 47    40 39       32 31             16 15    8 7      0
270 	 *   +----------------------------------------------------------------+
271 	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
272 	 *   +----------------------------------------------------------------+
273 	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
274 	 *   +----------------------------------------------------------------+
275 	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
276 	 *
277 	 * Extended Data Descriptor (DTYP=0x1)
278 	 *   +----------------------------------------------------------------+
279 	 * 0 |                     Buffer Address [63:0]                      |
280 	 *   +----------------------------------------------------------------+
281 	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
282 	 *   +----------------------------------------------------------------+
283 	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
284 	 */
285 	pr_info("Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Legacy format\n");
286 	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Context format\n");
287 	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Data format\n");
288 	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
289 		const char *next_desc;
290 		tx_desc = E1000_TX_DESC(*tx_ring, i);
291 		buffer_info = &tx_ring->buffer_info[i];
292 		u0 = (struct my_u0 *)tx_desc;
293 		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
294 			next_desc = " NTC/U";
295 		else if (i == tx_ring->next_to_use)
296 			next_desc = " NTU";
297 		else if (i == tx_ring->next_to_clean)
298 			next_desc = " NTC";
299 		else
300 			next_desc = "";
301 		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p%s\n",
302 			(!(le64_to_cpu(u0->b) & BIT(29)) ? 'l' :
303 			 ((le64_to_cpu(u0->b) & BIT(20)) ? 'd' : 'c')),
304 			i,
305 			(unsigned long long)le64_to_cpu(u0->a),
306 			(unsigned long long)le64_to_cpu(u0->b),
307 			(unsigned long long)buffer_info->dma,
308 			buffer_info->length, buffer_info->next_to_watch,
309 			(unsigned long long)buffer_info->time_stamp,
310 			buffer_info->skb, next_desc);
311 
312 		if (netif_msg_pktdata(adapter) && buffer_info->skb)
313 			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
314 				       16, 1, buffer_info->skb->data,
315 				       buffer_info->skb->len, true);
316 	}
317 
318 	/* Print Rx Ring Summary */
319 rx_ring_summary:
320 	dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
321 	pr_info("Queue [NTU] [NTC]\n");
322 	pr_info(" %5d %5X %5X\n",
323 		0, rx_ring->next_to_use, rx_ring->next_to_clean);
324 
325 	/* Print Rx Ring */
326 	if (!netif_msg_rx_status(adapter))
327 		return;
328 
329 	dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
330 	switch (adapter->rx_ps_pages) {
331 	case 1:
332 	case 2:
333 	case 3:
334 		/* [Extended] Packet Split Receive Descriptor Format
335 		 *
336 		 *    +-----------------------------------------------------+
337 		 *  0 |                Buffer Address 0 [63:0]              |
338 		 *    +-----------------------------------------------------+
339 		 *  8 |                Buffer Address 1 [63:0]              |
340 		 *    +-----------------------------------------------------+
341 		 * 16 |                Buffer Address 2 [63:0]              |
342 		 *    +-----------------------------------------------------+
343 		 * 24 |                Buffer Address 3 [63:0]              |
344 		 *    +-----------------------------------------------------+
345 		 */
346 		pr_info("R  [desc]      [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] [bi->skb] <-- Ext Pkt Split format\n");
347 		/* [Extended] Receive Descriptor (Write-Back) Format
348 		 *
349 		 *   63       48 47    32 31     13 12    8 7    4 3        0
350 		 *   +------------------------------------------------------+
351 		 * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
352 		 *   | Checksum | Ident  |         | Queue |      |  Type   |
353 		 *   +------------------------------------------------------+
354 		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
355 		 *   +------------------------------------------------------+
356 		 *   63       48 47    32 31            20 19               0
357 		 */
358 		pr_info("RWB[desc]      [ck ipid mrqhsh] [vl   l0 ee  es] [ l3  l2  l1 hs] [reserved      ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
359 		for (i = 0; i < rx_ring->count; i++) {
360 			const char *next_desc;
361 			buffer_info = &rx_ring->buffer_info[i];
362 			rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
363 			u1 = (struct my_u1 *)rx_desc_ps;
364 			staterr =
365 			    le32_to_cpu(rx_desc_ps->wb.middle.status_error);
366 
367 			if (i == rx_ring->next_to_use)
368 				next_desc = " NTU";
369 			else if (i == rx_ring->next_to_clean)
370 				next_desc = " NTC";
371 			else
372 				next_desc = "";
373 
374 			if (staterr & E1000_RXD_STAT_DD) {
375 				/* Descriptor Done */
376 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX ---------------- %p%s\n",
377 					"RWB", i,
378 					(unsigned long long)le64_to_cpu(u1->a),
379 					(unsigned long long)le64_to_cpu(u1->b),
380 					(unsigned long long)le64_to_cpu(u1->c),
381 					(unsigned long long)le64_to_cpu(u1->d),
382 					buffer_info->skb, next_desc);
383 			} else {
384 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX %016llX %p%s\n",
385 					"R  ", i,
386 					(unsigned long long)le64_to_cpu(u1->a),
387 					(unsigned long long)le64_to_cpu(u1->b),
388 					(unsigned long long)le64_to_cpu(u1->c),
389 					(unsigned long long)le64_to_cpu(u1->d),
390 					(unsigned long long)buffer_info->dma,
391 					buffer_info->skb, next_desc);
392 
393 				if (netif_msg_pktdata(adapter))
394 					e1000e_dump_ps_pages(adapter,
395 							     buffer_info);
396 			}
397 		}
398 		break;
399 	default:
400 	case 0:
401 		/* Extended Receive Descriptor (Read) Format
402 		 *
403 		 *   +-----------------------------------------------------+
404 		 * 0 |                Buffer Address [63:0]                |
405 		 *   +-----------------------------------------------------+
406 		 * 8 |                      Reserved                       |
407 		 *   +-----------------------------------------------------+
408 		 */
409 		pr_info("R  [desc]      [buf addr 63:0 ] [reserved 63:0 ] [bi->dma       ] [bi->skb] <-- Ext (Read) format\n");
410 		/* Extended Receive Descriptor (Write-Back) Format
411 		 *
412 		 *   63       48 47    32 31    24 23            4 3        0
413 		 *   +------------------------------------------------------+
414 		 *   |     RSS Hash      |        |               |         |
415 		 * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
416 		 *   | Packet   | IP     |        |               |  Type   |
417 		 *   | Checksum | Ident  |        |               |         |
418 		 *   +------------------------------------------------------+
419 		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
420 		 *   +------------------------------------------------------+
421 		 *   63       48 47    32 31            20 19               0
422 		 */
423 		pr_info("RWB[desc]      [cs ipid    mrq] [vt   ln xe  xs] [bi->skb] <-- Ext (Write-Back) format\n");
424 
425 		for (i = 0; i < rx_ring->count; i++) {
426 			const char *next_desc;
427 
428 			buffer_info = &rx_ring->buffer_info[i];
429 			rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
430 			u1 = (struct my_u1 *)rx_desc;
431 			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
432 
433 			if (i == rx_ring->next_to_use)
434 				next_desc = " NTU";
435 			else if (i == rx_ring->next_to_clean)
436 				next_desc = " NTC";
437 			else
438 				next_desc = "";
439 
440 			if (staterr & E1000_RXD_STAT_DD) {
441 				/* Descriptor Done */
442 				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %p%s\n",
443 					"RWB", i,
444 					(unsigned long long)le64_to_cpu(u1->a),
445 					(unsigned long long)le64_to_cpu(u1->b),
446 					buffer_info->skb, next_desc);
447 			} else {
448 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %p%s\n",
449 					"R  ", i,
450 					(unsigned long long)le64_to_cpu(u1->a),
451 					(unsigned long long)le64_to_cpu(u1->b),
452 					(unsigned long long)buffer_info->dma,
453 					buffer_info->skb, next_desc);
454 
455 				if (netif_msg_pktdata(adapter) &&
456 				    buffer_info->skb)
457 					print_hex_dump(KERN_INFO, "",
458 						       DUMP_PREFIX_ADDRESS, 16,
459 						       1,
460 						       buffer_info->skb->data,
461 						       adapter->rx_buffer_len,
462 						       true);
463 			}
464 		}
465 	}
466 }
467 
468 /**
469  * e1000_desc_unused - calculate if we have unused descriptors
470  * @ring: pointer to ring struct to perform calculation on
471  **/
472 static int e1000_desc_unused(struct e1000_ring *ring)
473 {
474 	if (ring->next_to_clean > ring->next_to_use)
475 		return ring->next_to_clean - ring->next_to_use - 1;
476 
477 	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
478 }
479 
480 /**
481  * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
482  * @adapter: board private structure
483  * @hwtstamps: time stamp structure to update
484  * @systim: unsigned 64bit system time value.
485  *
486  * Convert the system time value stored in the RX/TXSTMP registers into a
487  * hwtstamp which can be used by the upper level time stamping functions.
488  *
489  * The 'systim_lock' spinlock is used to protect the consistency of the
490  * system time value. This is needed because reading the 64 bit time
491  * value involves reading two 32 bit registers. The first read latches the
492  * value.
493  **/
494 static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter,
495 				      struct skb_shared_hwtstamps *hwtstamps,
496 				      u64 systim)
497 {
498 	u64 ns;
499 	unsigned long flags;
500 
501 	spin_lock_irqsave(&adapter->systim_lock, flags);
502 	ns = timecounter_cyc2time(&adapter->tc, systim);
503 	spin_unlock_irqrestore(&adapter->systim_lock, flags);
504 
505 	memset(hwtstamps, 0, sizeof(*hwtstamps));
506 	hwtstamps->hwtstamp = ns_to_ktime(ns);
507 }
508 
509 /**
510  * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
511  * @adapter: board private structure
512  * @status: descriptor extended error and status field
513  * @skb: particular skb to include time stamp
514  *
515  * If the time stamp is valid, convert it into the timecounter ns value
516  * and store that result into the shhwtstamps structure which is passed
517  * up the network stack.
518  **/
519 static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status,
520 			       struct sk_buff *skb)
521 {
522 	struct e1000_hw *hw = &adapter->hw;
523 	u64 rxstmp;
524 
525 	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) ||
526 	    !(status & E1000_RXDEXT_STATERR_TST) ||
527 	    !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
528 		return;
529 
530 	/* The Rx time stamp registers contain the time stamp.  No other
531 	 * received packet will be time stamped until the Rx time stamp
532 	 * registers are read.  Because only one packet can be time stamped
533 	 * at a time, the register values must belong to this packet and
534 	 * therefore none of the other additional attributes need to be
535 	 * compared.
536 	 */
537 	rxstmp = (u64)er32(RXSTMPL);
538 	rxstmp |= (u64)er32(RXSTMPH) << 32;
539 	e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp);
540 
541 	adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP;
542 }
543 
544 /**
545  * e1000_receive_skb - helper function to handle Rx indications
546  * @adapter: board private structure
547  * @netdev: pointer to netdev struct
548  * @staterr: descriptor extended error and status field as written by hardware
549  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
550  * @skb: pointer to sk_buff to be indicated to stack
551  **/
552 static void e1000_receive_skb(struct e1000_adapter *adapter,
553 			      struct net_device *netdev, struct sk_buff *skb,
554 			      u32 staterr, __le16 vlan)
555 {
556 	u16 tag = le16_to_cpu(vlan);
557 
558 	e1000e_rx_hwtstamp(adapter, staterr, skb);
559 
560 	skb->protocol = eth_type_trans(skb, netdev);
561 
562 	if (staterr & E1000_RXD_STAT_VP)
563 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag);
564 
565 	napi_gro_receive(&adapter->napi, skb);
566 }
567 
568 /**
569  * e1000_rx_checksum - Receive Checksum Offload
570  * @adapter: board private structure
571  * @status_err: receive descriptor status and error fields
572  * @skb: socket buffer with received data
573  **/
574 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
575 			      struct sk_buff *skb)
576 {
577 	u16 status = (u16)status_err;
578 	u8 errors = (u8)(status_err >> 24);
579 
580 	skb_checksum_none_assert(skb);
581 
582 	/* Rx checksum disabled */
583 	if (!(adapter->netdev->features & NETIF_F_RXCSUM))
584 		return;
585 
586 	/* Ignore Checksum bit is set */
587 	if (status & E1000_RXD_STAT_IXSM)
588 		return;
589 
590 	/* TCP/UDP checksum error bit or IP checksum error bit is set */
591 	if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
592 		/* let the stack verify checksum errors */
593 		adapter->hw_csum_err++;
594 		return;
595 	}
596 
597 	/* TCP/UDP Checksum has not been calculated */
598 	if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
599 		return;
600 
601 	/* It must be a TCP or UDP packet with a valid checksum */
602 	skb->ip_summed = CHECKSUM_UNNECESSARY;
603 	adapter->hw_csum_good++;
604 }
605 
606 static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
607 {
608 	struct e1000_adapter *adapter = rx_ring->adapter;
609 	struct e1000_hw *hw = &adapter->hw;
610 
611 	__ew32_prepare(hw);
612 	writel(i, rx_ring->tail);
613 
614 	if (unlikely(i != readl(rx_ring->tail))) {
615 		u32 rctl = er32(RCTL);
616 
617 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
618 		e_err("ME firmware caused invalid RDT - resetting\n");
619 		schedule_work(&adapter->reset_task);
620 	}
621 }
622 
623 static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
624 {
625 	struct e1000_adapter *adapter = tx_ring->adapter;
626 	struct e1000_hw *hw = &adapter->hw;
627 
628 	__ew32_prepare(hw);
629 	writel(i, tx_ring->tail);
630 
631 	if (unlikely(i != readl(tx_ring->tail))) {
632 		u32 tctl = er32(TCTL);
633 
634 		ew32(TCTL, tctl & ~E1000_TCTL_EN);
635 		e_err("ME firmware caused invalid TDT - resetting\n");
636 		schedule_work(&adapter->reset_task);
637 	}
638 }
639 
640 /**
641  * e1000_alloc_rx_buffers - Replace used receive buffers
642  * @rx_ring: Rx descriptor ring
643  * @cleaned_count: number to reallocate
644  * @gfp: flags for allocation
645  **/
646 static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
647 				   int cleaned_count, gfp_t gfp)
648 {
649 	struct e1000_adapter *adapter = rx_ring->adapter;
650 	struct net_device *netdev = adapter->netdev;
651 	struct pci_dev *pdev = adapter->pdev;
652 	union e1000_rx_desc_extended *rx_desc;
653 	struct e1000_buffer *buffer_info;
654 	struct sk_buff *skb;
655 	unsigned int i;
656 	unsigned int bufsz = adapter->rx_buffer_len;
657 
658 	i = rx_ring->next_to_use;
659 	buffer_info = &rx_ring->buffer_info[i];
660 
661 	while (cleaned_count--) {
662 		skb = buffer_info->skb;
663 		if (skb) {
664 			skb_trim(skb, 0);
665 			goto map_skb;
666 		}
667 
668 		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
669 		if (!skb) {
670 			/* Better luck next round */
671 			adapter->alloc_rx_buff_failed++;
672 			break;
673 		}
674 
675 		buffer_info->skb = skb;
676 map_skb:
677 		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
678 						  adapter->rx_buffer_len,
679 						  DMA_FROM_DEVICE);
680 		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
681 			dev_err(&pdev->dev, "Rx DMA map failed\n");
682 			adapter->rx_dma_failed++;
683 			break;
684 		}
685 
686 		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
687 		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
688 
689 		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
690 			/* Force memory writes to complete before letting h/w
691 			 * know there are new descriptors to fetch.  (Only
692 			 * applicable for weak-ordered memory model archs,
693 			 * such as IA-64).
694 			 */
695 			wmb();
696 			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
697 				e1000e_update_rdt_wa(rx_ring, i);
698 			else
699 				writel(i, rx_ring->tail);
700 		}
701 		i++;
702 		if (i == rx_ring->count)
703 			i = 0;
704 		buffer_info = &rx_ring->buffer_info[i];
705 	}
706 
707 	rx_ring->next_to_use = i;
708 }
709 
710 /**
711  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
712  * @rx_ring: Rx descriptor ring
713  * @cleaned_count: number to reallocate
714  * @gfp: flags for allocation
715  **/
716 static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
717 				      int cleaned_count, gfp_t gfp)
718 {
719 	struct e1000_adapter *adapter = rx_ring->adapter;
720 	struct net_device *netdev = adapter->netdev;
721 	struct pci_dev *pdev = adapter->pdev;
722 	union e1000_rx_desc_packet_split *rx_desc;
723 	struct e1000_buffer *buffer_info;
724 	struct e1000_ps_page *ps_page;
725 	struct sk_buff *skb;
726 	unsigned int i, j;
727 
728 	i = rx_ring->next_to_use;
729 	buffer_info = &rx_ring->buffer_info[i];
730 
731 	while (cleaned_count--) {
732 		rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
733 
734 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
735 			ps_page = &buffer_info->ps_pages[j];
736 			if (j >= adapter->rx_ps_pages) {
737 				/* all unused desc entries get hw null ptr */
738 				rx_desc->read.buffer_addr[j + 1] =
739 				    ~cpu_to_le64(0);
740 				continue;
741 			}
742 			if (!ps_page->page) {
743 				ps_page->page = alloc_page(gfp);
744 				if (!ps_page->page) {
745 					adapter->alloc_rx_buff_failed++;
746 					goto no_buffers;
747 				}
748 				ps_page->dma = dma_map_page(&pdev->dev,
749 							    ps_page->page,
750 							    0, PAGE_SIZE,
751 							    DMA_FROM_DEVICE);
752 				if (dma_mapping_error(&pdev->dev,
753 						      ps_page->dma)) {
754 					dev_err(&adapter->pdev->dev,
755 						"Rx DMA page map failed\n");
756 					adapter->rx_dma_failed++;
757 					goto no_buffers;
758 				}
759 			}
760 			/* Refresh the desc even if buffer_addrs
761 			 * didn't change because each write-back
762 			 * erases this info.
763 			 */
764 			rx_desc->read.buffer_addr[j + 1] =
765 			    cpu_to_le64(ps_page->dma);
766 		}
767 
768 		skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0,
769 						  gfp);
770 
771 		if (!skb) {
772 			adapter->alloc_rx_buff_failed++;
773 			break;
774 		}
775 
776 		buffer_info->skb = skb;
777 		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
778 						  adapter->rx_ps_bsize0,
779 						  DMA_FROM_DEVICE);
780 		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
781 			dev_err(&pdev->dev, "Rx DMA map failed\n");
782 			adapter->rx_dma_failed++;
783 			/* cleanup skb */
784 			dev_kfree_skb_any(skb);
785 			buffer_info->skb = NULL;
786 			break;
787 		}
788 
789 		rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
790 
791 		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
792 			/* Force memory writes to complete before letting h/w
793 			 * know there are new descriptors to fetch.  (Only
794 			 * applicable for weak-ordered memory model archs,
795 			 * such as IA-64).
796 			 */
797 			wmb();
798 			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
799 				e1000e_update_rdt_wa(rx_ring, i << 1);
800 			else
801 				writel(i << 1, rx_ring->tail);
802 		}
803 
804 		i++;
805 		if (i == rx_ring->count)
806 			i = 0;
807 		buffer_info = &rx_ring->buffer_info[i];
808 	}
809 
810 no_buffers:
811 	rx_ring->next_to_use = i;
812 }
813 
814 /**
815  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
816  * @rx_ring: Rx descriptor ring
817  * @cleaned_count: number of buffers to allocate this pass
818  * @gfp: flags for allocation
819  **/
820 
821 static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
822 					 int cleaned_count, gfp_t gfp)
823 {
824 	struct e1000_adapter *adapter = rx_ring->adapter;
825 	struct net_device *netdev = adapter->netdev;
826 	struct pci_dev *pdev = adapter->pdev;
827 	union e1000_rx_desc_extended *rx_desc;
828 	struct e1000_buffer *buffer_info;
829 	struct sk_buff *skb;
830 	unsigned int i;
831 	unsigned int bufsz = 256 - 16;	/* for skb_reserve */
832 
833 	i = rx_ring->next_to_use;
834 	buffer_info = &rx_ring->buffer_info[i];
835 
836 	while (cleaned_count--) {
837 		skb = buffer_info->skb;
838 		if (skb) {
839 			skb_trim(skb, 0);
840 			goto check_page;
841 		}
842 
843 		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
844 		if (unlikely(!skb)) {
845 			/* Better luck next round */
846 			adapter->alloc_rx_buff_failed++;
847 			break;
848 		}
849 
850 		buffer_info->skb = skb;
851 check_page:
852 		/* allocate a new page if necessary */
853 		if (!buffer_info->page) {
854 			buffer_info->page = alloc_page(gfp);
855 			if (unlikely(!buffer_info->page)) {
856 				adapter->alloc_rx_buff_failed++;
857 				break;
858 			}
859 		}
860 
861 		if (!buffer_info->dma) {
862 			buffer_info->dma = dma_map_page(&pdev->dev,
863 							buffer_info->page, 0,
864 							PAGE_SIZE,
865 							DMA_FROM_DEVICE);
866 			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
867 				adapter->alloc_rx_buff_failed++;
868 				break;
869 			}
870 		}
871 
872 		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
873 		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
874 
875 		if (unlikely(++i == rx_ring->count))
876 			i = 0;
877 		buffer_info = &rx_ring->buffer_info[i];
878 	}
879 
880 	if (likely(rx_ring->next_to_use != i)) {
881 		rx_ring->next_to_use = i;
882 		if (unlikely(i-- == 0))
883 			i = (rx_ring->count - 1);
884 
885 		/* Force memory writes to complete before letting h/w
886 		 * know there are new descriptors to fetch.  (Only
887 		 * applicable for weak-ordered memory model archs,
888 		 * such as IA-64).
889 		 */
890 		wmb();
891 		if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
892 			e1000e_update_rdt_wa(rx_ring, i);
893 		else
894 			writel(i, rx_ring->tail);
895 	}
896 }
897 
898 static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
899 				 struct sk_buff *skb)
900 {
901 	if (netdev->features & NETIF_F_RXHASH)
902 		skb_set_hash(skb, le32_to_cpu(rss), PKT_HASH_TYPE_L3);
903 }
904 
905 /**
906  * e1000_clean_rx_irq - Send received data up the network stack
907  * @rx_ring: Rx descriptor ring
908  * @work_done: output parameter for indicating completed work
909  * @work_to_do: how many packets we can clean
910  *
911  * the return value indicates whether actual cleaning was done, there
912  * is no guarantee that everything was cleaned
913  **/
914 static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
915 			       int work_to_do)
916 {
917 	struct e1000_adapter *adapter = rx_ring->adapter;
918 	struct net_device *netdev = adapter->netdev;
919 	struct pci_dev *pdev = adapter->pdev;
920 	struct e1000_hw *hw = &adapter->hw;
921 	union e1000_rx_desc_extended *rx_desc, *next_rxd;
922 	struct e1000_buffer *buffer_info, *next_buffer;
923 	u32 length, staterr;
924 	unsigned int i;
925 	int cleaned_count = 0;
926 	bool cleaned = false;
927 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
928 
929 	i = rx_ring->next_to_clean;
930 	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
931 	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
932 	buffer_info = &rx_ring->buffer_info[i];
933 
934 	while (staterr & E1000_RXD_STAT_DD) {
935 		struct sk_buff *skb;
936 
937 		if (*work_done >= work_to_do)
938 			break;
939 		(*work_done)++;
940 		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
941 
942 		skb = buffer_info->skb;
943 		buffer_info->skb = NULL;
944 
945 		prefetch(skb->data - NET_IP_ALIGN);
946 
947 		i++;
948 		if (i == rx_ring->count)
949 			i = 0;
950 		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
951 		prefetch(next_rxd);
952 
953 		next_buffer = &rx_ring->buffer_info[i];
954 
955 		cleaned = true;
956 		cleaned_count++;
957 		dma_unmap_single(&pdev->dev, buffer_info->dma,
958 				 adapter->rx_buffer_len, DMA_FROM_DEVICE);
959 		buffer_info->dma = 0;
960 
961 		length = le16_to_cpu(rx_desc->wb.upper.length);
962 
963 		/* !EOP means multiple descriptors were used to store a single
964 		 * packet, if that's the case we need to toss it.  In fact, we
965 		 * need to toss every packet with the EOP bit clear and the
966 		 * next frame that _does_ have the EOP bit set, as it is by
967 		 * definition only a frame fragment
968 		 */
969 		if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
970 			adapter->flags2 |= FLAG2_IS_DISCARDING;
971 
972 		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
973 			/* All receives must fit into a single buffer */
974 			e_dbg("Receive packet consumed multiple buffers\n");
975 			/* recycle */
976 			buffer_info->skb = skb;
977 			if (staterr & E1000_RXD_STAT_EOP)
978 				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
979 			goto next_desc;
980 		}
981 
982 		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
983 			     !(netdev->features & NETIF_F_RXALL))) {
984 			/* recycle */
985 			buffer_info->skb = skb;
986 			goto next_desc;
987 		}
988 
989 		/* adjust length to remove Ethernet CRC */
990 		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
991 			/* If configured to store CRC, don't subtract FCS,
992 			 * but keep the FCS bytes out of the total_rx_bytes
993 			 * counter
994 			 */
995 			if (netdev->features & NETIF_F_RXFCS)
996 				total_rx_bytes -= 4;
997 			else
998 				length -= 4;
999 		}
1000 
1001 		total_rx_bytes += length;
1002 		total_rx_packets++;
1003 
1004 		/* code added for copybreak, this should improve
1005 		 * performance for small packets with large amounts
1006 		 * of reassembly being done in the stack
1007 		 */
1008 		if (length < copybreak) {
1009 			struct sk_buff *new_skb =
1010 				napi_alloc_skb(&adapter->napi, length);
1011 			if (new_skb) {
1012 				skb_copy_to_linear_data_offset(new_skb,
1013 							       -NET_IP_ALIGN,
1014 							       (skb->data -
1015 								NET_IP_ALIGN),
1016 							       (length +
1017 								NET_IP_ALIGN));
1018 				/* save the skb in buffer_info as good */
1019 				buffer_info->skb = skb;
1020 				skb = new_skb;
1021 			}
1022 			/* else just continue with the old one */
1023 		}
1024 		/* end copybreak code */
1025 		skb_put(skb, length);
1026 
1027 		/* Receive Checksum Offload */
1028 		e1000_rx_checksum(adapter, staterr, skb);
1029 
1030 		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1031 
1032 		e1000_receive_skb(adapter, netdev, skb, staterr,
1033 				  rx_desc->wb.upper.vlan);
1034 
1035 next_desc:
1036 		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1037 
1038 		/* return some buffers to hardware, one at a time is too slow */
1039 		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1040 			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1041 					      GFP_ATOMIC);
1042 			cleaned_count = 0;
1043 		}
1044 
1045 		/* use prefetched values */
1046 		rx_desc = next_rxd;
1047 		buffer_info = next_buffer;
1048 
1049 		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1050 	}
1051 	rx_ring->next_to_clean = i;
1052 
1053 	cleaned_count = e1000_desc_unused(rx_ring);
1054 	if (cleaned_count)
1055 		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1056 
1057 	adapter->total_rx_bytes += total_rx_bytes;
1058 	adapter->total_rx_packets += total_rx_packets;
1059 	return cleaned;
1060 }
1061 
1062 static void e1000_put_txbuf(struct e1000_ring *tx_ring,
1063 			    struct e1000_buffer *buffer_info,
1064 			    bool drop)
1065 {
1066 	struct e1000_adapter *adapter = tx_ring->adapter;
1067 
1068 	if (buffer_info->dma) {
1069 		if (buffer_info->mapped_as_page)
1070 			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1071 				       buffer_info->length, DMA_TO_DEVICE);
1072 		else
1073 			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1074 					 buffer_info->length, DMA_TO_DEVICE);
1075 		buffer_info->dma = 0;
1076 	}
1077 	if (buffer_info->skb) {
1078 		if (drop)
1079 			dev_kfree_skb_any(buffer_info->skb);
1080 		else
1081 			dev_consume_skb_any(buffer_info->skb);
1082 		buffer_info->skb = NULL;
1083 	}
1084 	buffer_info->time_stamp = 0;
1085 }
1086 
1087 static void e1000_print_hw_hang(struct work_struct *work)
1088 {
1089 	struct e1000_adapter *adapter = container_of(work,
1090 						     struct e1000_adapter,
1091 						     print_hang_task);
1092 	struct net_device *netdev = adapter->netdev;
1093 	struct e1000_ring *tx_ring = adapter->tx_ring;
1094 	unsigned int i = tx_ring->next_to_clean;
1095 	unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1096 	struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1097 	struct e1000_hw *hw = &adapter->hw;
1098 	u16 phy_status, phy_1000t_status, phy_ext_status;
1099 	u16 pci_status;
1100 
1101 	if (test_bit(__E1000_DOWN, &adapter->state))
1102 		return;
1103 
1104 	if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) {
1105 		/* May be block on write-back, flush and detect again
1106 		 * flush pending descriptor writebacks to memory
1107 		 */
1108 		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1109 		/* execute the writes immediately */
1110 		e1e_flush();
1111 		/* Due to rare timing issues, write to TIDV again to ensure
1112 		 * the write is successful
1113 		 */
1114 		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1115 		/* execute the writes immediately */
1116 		e1e_flush();
1117 		adapter->tx_hang_recheck = true;
1118 		return;
1119 	}
1120 	adapter->tx_hang_recheck = false;
1121 
1122 	if (er32(TDH(0)) == er32(TDT(0))) {
1123 		e_dbg("false hang detected, ignoring\n");
1124 		return;
1125 	}
1126 
1127 	/* Real hang detected */
1128 	netif_stop_queue(netdev);
1129 
1130 	e1e_rphy(hw, MII_BMSR, &phy_status);
1131 	e1e_rphy(hw, MII_STAT1000, &phy_1000t_status);
1132 	e1e_rphy(hw, MII_ESTATUS, &phy_ext_status);
1133 
1134 	pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1135 
1136 	/* detected Hardware unit hang */
1137 	e_err("Detected Hardware Unit Hang:\n"
1138 	      "  TDH                  <%x>\n"
1139 	      "  TDT                  <%x>\n"
1140 	      "  next_to_use          <%x>\n"
1141 	      "  next_to_clean        <%x>\n"
1142 	      "buffer_info[next_to_clean]:\n"
1143 	      "  time_stamp           <%lx>\n"
1144 	      "  next_to_watch        <%x>\n"
1145 	      "  jiffies              <%lx>\n"
1146 	      "  next_to_watch.status <%x>\n"
1147 	      "MAC Status             <%x>\n"
1148 	      "PHY Status             <%x>\n"
1149 	      "PHY 1000BASE-T Status  <%x>\n"
1150 	      "PHY Extended Status    <%x>\n"
1151 	      "PCI Status             <%x>\n",
1152 	      readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use,
1153 	      tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp,
1154 	      eop, jiffies, eop_desc->upper.fields.status, er32(STATUS),
1155 	      phy_status, phy_1000t_status, phy_ext_status, pci_status);
1156 
1157 	e1000e_dump(adapter);
1158 
1159 	/* Suggest workaround for known h/w issue */
1160 	if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1161 		e_err("Try turning off Tx pause (flow control) via ethtool\n");
1162 }
1163 
1164 /**
1165  * e1000e_tx_hwtstamp_work - check for Tx time stamp
1166  * @work: pointer to work struct
1167  *
1168  * This work function polls the TSYNCTXCTL valid bit to determine when a
1169  * timestamp has been taken for the current stored skb.  The timestamp must
1170  * be for this skb because only one such packet is allowed in the queue.
1171  */
1172 static void e1000e_tx_hwtstamp_work(struct work_struct *work)
1173 {
1174 	struct e1000_adapter *adapter = container_of(work, struct e1000_adapter,
1175 						     tx_hwtstamp_work);
1176 	struct e1000_hw *hw = &adapter->hw;
1177 
1178 	if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) {
1179 		struct sk_buff *skb = adapter->tx_hwtstamp_skb;
1180 		struct skb_shared_hwtstamps shhwtstamps;
1181 		u64 txstmp;
1182 
1183 		txstmp = er32(TXSTMPL);
1184 		txstmp |= (u64)er32(TXSTMPH) << 32;
1185 
1186 		e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp);
1187 
1188 		/* Clear the global tx_hwtstamp_skb pointer and force writes
1189 		 * prior to notifying the stack of a Tx timestamp.
1190 		 */
1191 		adapter->tx_hwtstamp_skb = NULL;
1192 		wmb(); /* force write prior to skb_tstamp_tx */
1193 
1194 		skb_tstamp_tx(skb, &shhwtstamps);
1195 		dev_consume_skb_any(skb);
1196 	} else if (time_after(jiffies, adapter->tx_hwtstamp_start
1197 			      + adapter->tx_timeout_factor * HZ)) {
1198 		dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1199 		adapter->tx_hwtstamp_skb = NULL;
1200 		adapter->tx_hwtstamp_timeouts++;
1201 		e_warn("clearing Tx timestamp hang\n");
1202 	} else {
1203 		/* reschedule to check later */
1204 		schedule_work(&adapter->tx_hwtstamp_work);
1205 	}
1206 }
1207 
1208 /**
1209  * e1000_clean_tx_irq - Reclaim resources after transmit completes
1210  * @tx_ring: Tx descriptor ring
1211  *
1212  * the return value indicates whether actual cleaning was done, there
1213  * is no guarantee that everything was cleaned
1214  **/
1215 static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1216 {
1217 	struct e1000_adapter *adapter = tx_ring->adapter;
1218 	struct net_device *netdev = adapter->netdev;
1219 	struct e1000_hw *hw = &adapter->hw;
1220 	struct e1000_tx_desc *tx_desc, *eop_desc;
1221 	struct e1000_buffer *buffer_info;
1222 	unsigned int i, eop;
1223 	unsigned int count = 0;
1224 	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1225 	unsigned int bytes_compl = 0, pkts_compl = 0;
1226 
1227 	i = tx_ring->next_to_clean;
1228 	eop = tx_ring->buffer_info[i].next_to_watch;
1229 	eop_desc = E1000_TX_DESC(*tx_ring, eop);
1230 
1231 	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1232 	       (count < tx_ring->count)) {
1233 		bool cleaned = false;
1234 
1235 		dma_rmb();		/* read buffer_info after eop_desc */
1236 		for (; !cleaned; count++) {
1237 			tx_desc = E1000_TX_DESC(*tx_ring, i);
1238 			buffer_info = &tx_ring->buffer_info[i];
1239 			cleaned = (i == eop);
1240 
1241 			if (cleaned) {
1242 				total_tx_packets += buffer_info->segs;
1243 				total_tx_bytes += buffer_info->bytecount;
1244 				if (buffer_info->skb) {
1245 					bytes_compl += buffer_info->skb->len;
1246 					pkts_compl++;
1247 				}
1248 			}
1249 
1250 			e1000_put_txbuf(tx_ring, buffer_info, false);
1251 			tx_desc->upper.data = 0;
1252 
1253 			i++;
1254 			if (i == tx_ring->count)
1255 				i = 0;
1256 		}
1257 
1258 		if (i == tx_ring->next_to_use)
1259 			break;
1260 		eop = tx_ring->buffer_info[i].next_to_watch;
1261 		eop_desc = E1000_TX_DESC(*tx_ring, eop);
1262 	}
1263 
1264 	tx_ring->next_to_clean = i;
1265 
1266 	netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1267 
1268 #define TX_WAKE_THRESHOLD 32
1269 	if (count && netif_carrier_ok(netdev) &&
1270 	    e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1271 		/* Make sure that anybody stopping the queue after this
1272 		 * sees the new next_to_clean.
1273 		 */
1274 		smp_mb();
1275 
1276 		if (netif_queue_stopped(netdev) &&
1277 		    !(test_bit(__E1000_DOWN, &adapter->state))) {
1278 			netif_wake_queue(netdev);
1279 			++adapter->restart_queue;
1280 		}
1281 	}
1282 
1283 	if (adapter->detect_tx_hung) {
1284 		/* Detect a transmit hang in hardware, this serializes the
1285 		 * check with the clearing of time_stamp and movement of i
1286 		 */
1287 		adapter->detect_tx_hung = false;
1288 		if (tx_ring->buffer_info[i].time_stamp &&
1289 		    time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1290 			       + (adapter->tx_timeout_factor * HZ)) &&
1291 		    !(er32(STATUS) & E1000_STATUS_TXOFF))
1292 			schedule_work(&adapter->print_hang_task);
1293 		else
1294 			adapter->tx_hang_recheck = false;
1295 	}
1296 	adapter->total_tx_bytes += total_tx_bytes;
1297 	adapter->total_tx_packets += total_tx_packets;
1298 	return count < tx_ring->count;
1299 }
1300 
1301 /**
1302  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1303  * @rx_ring: Rx descriptor ring
1304  * @work_done: output parameter for indicating completed work
1305  * @work_to_do: how many packets we can clean
1306  *
1307  * the return value indicates whether actual cleaning was done, there
1308  * is no guarantee that everything was cleaned
1309  **/
1310 static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1311 				  int work_to_do)
1312 {
1313 	struct e1000_adapter *adapter = rx_ring->adapter;
1314 	struct e1000_hw *hw = &adapter->hw;
1315 	union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1316 	struct net_device *netdev = adapter->netdev;
1317 	struct pci_dev *pdev = adapter->pdev;
1318 	struct e1000_buffer *buffer_info, *next_buffer;
1319 	struct e1000_ps_page *ps_page;
1320 	struct sk_buff *skb;
1321 	unsigned int i, j;
1322 	u32 length, staterr;
1323 	int cleaned_count = 0;
1324 	bool cleaned = false;
1325 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1326 
1327 	i = rx_ring->next_to_clean;
1328 	rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1329 	staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1330 	buffer_info = &rx_ring->buffer_info[i];
1331 
1332 	while (staterr & E1000_RXD_STAT_DD) {
1333 		if (*work_done >= work_to_do)
1334 			break;
1335 		(*work_done)++;
1336 		skb = buffer_info->skb;
1337 		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
1338 
1339 		/* in the packet split case this is header only */
1340 		prefetch(skb->data - NET_IP_ALIGN);
1341 
1342 		i++;
1343 		if (i == rx_ring->count)
1344 			i = 0;
1345 		next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1346 		prefetch(next_rxd);
1347 
1348 		next_buffer = &rx_ring->buffer_info[i];
1349 
1350 		cleaned = true;
1351 		cleaned_count++;
1352 		dma_unmap_single(&pdev->dev, buffer_info->dma,
1353 				 adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1354 		buffer_info->dma = 0;
1355 
1356 		/* see !EOP comment in other Rx routine */
1357 		if (!(staterr & E1000_RXD_STAT_EOP))
1358 			adapter->flags2 |= FLAG2_IS_DISCARDING;
1359 
1360 		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1361 			e_dbg("Packet Split buffers didn't pick up the full packet\n");
1362 			dev_kfree_skb_irq(skb);
1363 			if (staterr & E1000_RXD_STAT_EOP)
1364 				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1365 			goto next_desc;
1366 		}
1367 
1368 		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1369 			     !(netdev->features & NETIF_F_RXALL))) {
1370 			dev_kfree_skb_irq(skb);
1371 			goto next_desc;
1372 		}
1373 
1374 		length = le16_to_cpu(rx_desc->wb.middle.length0);
1375 
1376 		if (!length) {
1377 			e_dbg("Last part of the packet spanning multiple descriptors\n");
1378 			dev_kfree_skb_irq(skb);
1379 			goto next_desc;
1380 		}
1381 
1382 		/* Good Receive */
1383 		skb_put(skb, length);
1384 
1385 		{
1386 			/* this looks ugly, but it seems compiler issues make
1387 			 * it more efficient than reusing j
1388 			 */
1389 			int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1390 
1391 			/* page alloc/put takes too long and effects small
1392 			 * packet throughput, so unsplit small packets and
1393 			 * save the alloc/put
1394 			 */
1395 			if (l1 && (l1 <= copybreak) &&
1396 			    ((length + l1) <= adapter->rx_ps_bsize0)) {
1397 				ps_page = &buffer_info->ps_pages[0];
1398 
1399 				dma_sync_single_for_cpu(&pdev->dev,
1400 							ps_page->dma,
1401 							PAGE_SIZE,
1402 							DMA_FROM_DEVICE);
1403 				memcpy(skb_tail_pointer(skb),
1404 				       page_address(ps_page->page), l1);
1405 				dma_sync_single_for_device(&pdev->dev,
1406 							   ps_page->dma,
1407 							   PAGE_SIZE,
1408 							   DMA_FROM_DEVICE);
1409 
1410 				/* remove the CRC */
1411 				if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1412 					if (!(netdev->features & NETIF_F_RXFCS))
1413 						l1 -= 4;
1414 				}
1415 
1416 				skb_put(skb, l1);
1417 				goto copydone;
1418 			}	/* if */
1419 		}
1420 
1421 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1422 			length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1423 			if (!length)
1424 				break;
1425 
1426 			ps_page = &buffer_info->ps_pages[j];
1427 			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1428 				       DMA_FROM_DEVICE);
1429 			ps_page->dma = 0;
1430 			skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1431 			ps_page->page = NULL;
1432 			skb->len += length;
1433 			skb->data_len += length;
1434 			skb->truesize += PAGE_SIZE;
1435 		}
1436 
1437 		/* strip the ethernet crc, problem is we're using pages now so
1438 		 * this whole operation can get a little cpu intensive
1439 		 */
1440 		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1441 			if (!(netdev->features & NETIF_F_RXFCS))
1442 				pskb_trim(skb, skb->len - 4);
1443 		}
1444 
1445 copydone:
1446 		total_rx_bytes += skb->len;
1447 		total_rx_packets++;
1448 
1449 		e1000_rx_checksum(adapter, staterr, skb);
1450 
1451 		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1452 
1453 		if (rx_desc->wb.upper.header_status &
1454 		    cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1455 			adapter->rx_hdr_split++;
1456 
1457 		e1000_receive_skb(adapter, netdev, skb, staterr,
1458 				  rx_desc->wb.middle.vlan);
1459 
1460 next_desc:
1461 		rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1462 		buffer_info->skb = NULL;
1463 
1464 		/* return some buffers to hardware, one at a time is too slow */
1465 		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1466 			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1467 					      GFP_ATOMIC);
1468 			cleaned_count = 0;
1469 		}
1470 
1471 		/* use prefetched values */
1472 		rx_desc = next_rxd;
1473 		buffer_info = next_buffer;
1474 
1475 		staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1476 	}
1477 	rx_ring->next_to_clean = i;
1478 
1479 	cleaned_count = e1000_desc_unused(rx_ring);
1480 	if (cleaned_count)
1481 		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1482 
1483 	adapter->total_rx_bytes += total_rx_bytes;
1484 	adapter->total_rx_packets += total_rx_packets;
1485 	return cleaned;
1486 }
1487 
1488 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1489 			       u16 length)
1490 {
1491 	bi->page = NULL;
1492 	skb->len += length;
1493 	skb->data_len += length;
1494 	skb->truesize += PAGE_SIZE;
1495 }
1496 
1497 /**
1498  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1499  * @rx_ring: Rx descriptor ring
1500  * @work_done: output parameter for indicating completed work
1501  * @work_to_do: how many packets we can clean
1502  *
1503  * the return value indicates whether actual cleaning was done, there
1504  * is no guarantee that everything was cleaned
1505  **/
1506 static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1507 				     int work_to_do)
1508 {
1509 	struct e1000_adapter *adapter = rx_ring->adapter;
1510 	struct net_device *netdev = adapter->netdev;
1511 	struct pci_dev *pdev = adapter->pdev;
1512 	union e1000_rx_desc_extended *rx_desc, *next_rxd;
1513 	struct e1000_buffer *buffer_info, *next_buffer;
1514 	u32 length, staterr;
1515 	unsigned int i;
1516 	int cleaned_count = 0;
1517 	bool cleaned = false;
1518 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1519 	struct skb_shared_info *shinfo;
1520 
1521 	i = rx_ring->next_to_clean;
1522 	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1523 	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1524 	buffer_info = &rx_ring->buffer_info[i];
1525 
1526 	while (staterr & E1000_RXD_STAT_DD) {
1527 		struct sk_buff *skb;
1528 
1529 		if (*work_done >= work_to_do)
1530 			break;
1531 		(*work_done)++;
1532 		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
1533 
1534 		skb = buffer_info->skb;
1535 		buffer_info->skb = NULL;
1536 
1537 		++i;
1538 		if (i == rx_ring->count)
1539 			i = 0;
1540 		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1541 		prefetch(next_rxd);
1542 
1543 		next_buffer = &rx_ring->buffer_info[i];
1544 
1545 		cleaned = true;
1546 		cleaned_count++;
1547 		dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1548 			       DMA_FROM_DEVICE);
1549 		buffer_info->dma = 0;
1550 
1551 		length = le16_to_cpu(rx_desc->wb.upper.length);
1552 
1553 		/* errors is only valid for DD + EOP descriptors */
1554 		if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1555 			     ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1556 			      !(netdev->features & NETIF_F_RXALL)))) {
1557 			/* recycle both page and skb */
1558 			buffer_info->skb = skb;
1559 			/* an error means any chain goes out the window too */
1560 			if (rx_ring->rx_skb_top)
1561 				dev_kfree_skb_irq(rx_ring->rx_skb_top);
1562 			rx_ring->rx_skb_top = NULL;
1563 			goto next_desc;
1564 		}
1565 #define rxtop (rx_ring->rx_skb_top)
1566 		if (!(staterr & E1000_RXD_STAT_EOP)) {
1567 			/* this descriptor is only the beginning (or middle) */
1568 			if (!rxtop) {
1569 				/* this is the beginning of a chain */
1570 				rxtop = skb;
1571 				skb_fill_page_desc(rxtop, 0, buffer_info->page,
1572 						   0, length);
1573 			} else {
1574 				/* this is the middle of a chain */
1575 				shinfo = skb_shinfo(rxtop);
1576 				skb_fill_page_desc(rxtop, shinfo->nr_frags,
1577 						   buffer_info->page, 0,
1578 						   length);
1579 				/* re-use the skb, only consumed the page */
1580 				buffer_info->skb = skb;
1581 			}
1582 			e1000_consume_page(buffer_info, rxtop, length);
1583 			goto next_desc;
1584 		} else {
1585 			if (rxtop) {
1586 				/* end of the chain */
1587 				shinfo = skb_shinfo(rxtop);
1588 				skb_fill_page_desc(rxtop, shinfo->nr_frags,
1589 						   buffer_info->page, 0,
1590 						   length);
1591 				/* re-use the current skb, we only consumed the
1592 				 * page
1593 				 */
1594 				buffer_info->skb = skb;
1595 				skb = rxtop;
1596 				rxtop = NULL;
1597 				e1000_consume_page(buffer_info, skb, length);
1598 			} else {
1599 				/* no chain, got EOP, this buf is the packet
1600 				 * copybreak to save the put_page/alloc_page
1601 				 */
1602 				if (length <= copybreak &&
1603 				    skb_tailroom(skb) >= length) {
1604 					memcpy(skb_tail_pointer(skb),
1605 					       page_address(buffer_info->page),
1606 					       length);
1607 					/* re-use the page, so don't erase
1608 					 * buffer_info->page
1609 					 */
1610 					skb_put(skb, length);
1611 				} else {
1612 					skb_fill_page_desc(skb, 0,
1613 							   buffer_info->page, 0,
1614 							   length);
1615 					e1000_consume_page(buffer_info, skb,
1616 							   length);
1617 				}
1618 			}
1619 		}
1620 
1621 		/* Receive Checksum Offload */
1622 		e1000_rx_checksum(adapter, staterr, skb);
1623 
1624 		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1625 
1626 		/* probably a little skewed due to removing CRC */
1627 		total_rx_bytes += skb->len;
1628 		total_rx_packets++;
1629 
1630 		/* eth type trans needs skb->data to point to something */
1631 		if (!pskb_may_pull(skb, ETH_HLEN)) {
1632 			e_err("pskb_may_pull failed.\n");
1633 			dev_kfree_skb_irq(skb);
1634 			goto next_desc;
1635 		}
1636 
1637 		e1000_receive_skb(adapter, netdev, skb, staterr,
1638 				  rx_desc->wb.upper.vlan);
1639 
1640 next_desc:
1641 		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1642 
1643 		/* return some buffers to hardware, one at a time is too slow */
1644 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1645 			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1646 					      GFP_ATOMIC);
1647 			cleaned_count = 0;
1648 		}
1649 
1650 		/* use prefetched values */
1651 		rx_desc = next_rxd;
1652 		buffer_info = next_buffer;
1653 
1654 		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1655 	}
1656 	rx_ring->next_to_clean = i;
1657 
1658 	cleaned_count = e1000_desc_unused(rx_ring);
1659 	if (cleaned_count)
1660 		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1661 
1662 	adapter->total_rx_bytes += total_rx_bytes;
1663 	adapter->total_rx_packets += total_rx_packets;
1664 	return cleaned;
1665 }
1666 
1667 /**
1668  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1669  * @rx_ring: Rx descriptor ring
1670  **/
1671 static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1672 {
1673 	struct e1000_adapter *adapter = rx_ring->adapter;
1674 	struct e1000_buffer *buffer_info;
1675 	struct e1000_ps_page *ps_page;
1676 	struct pci_dev *pdev = adapter->pdev;
1677 	unsigned int i, j;
1678 
1679 	/* Free all the Rx ring sk_buffs */
1680 	for (i = 0; i < rx_ring->count; i++) {
1681 		buffer_info = &rx_ring->buffer_info[i];
1682 		if (buffer_info->dma) {
1683 			if (adapter->clean_rx == e1000_clean_rx_irq)
1684 				dma_unmap_single(&pdev->dev, buffer_info->dma,
1685 						 adapter->rx_buffer_len,
1686 						 DMA_FROM_DEVICE);
1687 			else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1688 				dma_unmap_page(&pdev->dev, buffer_info->dma,
1689 					       PAGE_SIZE, DMA_FROM_DEVICE);
1690 			else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1691 				dma_unmap_single(&pdev->dev, buffer_info->dma,
1692 						 adapter->rx_ps_bsize0,
1693 						 DMA_FROM_DEVICE);
1694 			buffer_info->dma = 0;
1695 		}
1696 
1697 		if (buffer_info->page) {
1698 			put_page(buffer_info->page);
1699 			buffer_info->page = NULL;
1700 		}
1701 
1702 		if (buffer_info->skb) {
1703 			dev_kfree_skb(buffer_info->skb);
1704 			buffer_info->skb = NULL;
1705 		}
1706 
1707 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1708 			ps_page = &buffer_info->ps_pages[j];
1709 			if (!ps_page->page)
1710 				break;
1711 			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1712 				       DMA_FROM_DEVICE);
1713 			ps_page->dma = 0;
1714 			put_page(ps_page->page);
1715 			ps_page->page = NULL;
1716 		}
1717 	}
1718 
1719 	/* there also may be some cached data from a chained receive */
1720 	if (rx_ring->rx_skb_top) {
1721 		dev_kfree_skb(rx_ring->rx_skb_top);
1722 		rx_ring->rx_skb_top = NULL;
1723 	}
1724 
1725 	/* Zero out the descriptor ring */
1726 	memset(rx_ring->desc, 0, rx_ring->size);
1727 
1728 	rx_ring->next_to_clean = 0;
1729 	rx_ring->next_to_use = 0;
1730 	adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1731 }
1732 
1733 static void e1000e_downshift_workaround(struct work_struct *work)
1734 {
1735 	struct e1000_adapter *adapter = container_of(work,
1736 						     struct e1000_adapter,
1737 						     downshift_task);
1738 
1739 	if (test_bit(__E1000_DOWN, &adapter->state))
1740 		return;
1741 
1742 	e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1743 }
1744 
1745 /**
1746  * e1000_intr_msi - Interrupt Handler
1747  * @irq: interrupt number
1748  * @data: pointer to a network interface device structure
1749  **/
1750 static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data)
1751 {
1752 	struct net_device *netdev = data;
1753 	struct e1000_adapter *adapter = netdev_priv(netdev);
1754 	struct e1000_hw *hw = &adapter->hw;
1755 	u32 icr = er32(ICR);
1756 
1757 	/* read ICR disables interrupts using IAM */
1758 	if (icr & E1000_ICR_LSC) {
1759 		hw->mac.get_link_status = true;
1760 		/* ICH8 workaround-- Call gig speed drop workaround on cable
1761 		 * disconnect (LSC) before accessing any PHY registers
1762 		 */
1763 		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1764 		    (!(er32(STATUS) & E1000_STATUS_LU)))
1765 			schedule_work(&adapter->downshift_task);
1766 
1767 		/* 80003ES2LAN workaround-- For packet buffer work-around on
1768 		 * link down event; disable receives here in the ISR and reset
1769 		 * adapter in watchdog
1770 		 */
1771 		if (netif_carrier_ok(netdev) &&
1772 		    adapter->flags & FLAG_RX_NEEDS_RESTART) {
1773 			/* disable receives */
1774 			u32 rctl = er32(RCTL);
1775 
1776 			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1777 			adapter->flags |= FLAG_RESTART_NOW;
1778 		}
1779 		/* guard against interrupt when we're going down */
1780 		if (!test_bit(__E1000_DOWN, &adapter->state))
1781 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1782 	}
1783 
1784 	/* Reset on uncorrectable ECC error */
1785 	if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1786 		u32 pbeccsts = er32(PBECCSTS);
1787 
1788 		adapter->corr_errors +=
1789 		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1790 		adapter->uncorr_errors +=
1791 		    FIELD_GET(E1000_PBECCSTS_UNCORR_ERR_CNT_MASK, pbeccsts);
1792 
1793 		/* Do the reset outside of interrupt context */
1794 		schedule_work(&adapter->reset_task);
1795 
1796 		/* return immediately since reset is imminent */
1797 		return IRQ_HANDLED;
1798 	}
1799 
1800 	if (napi_schedule_prep(&adapter->napi)) {
1801 		adapter->total_tx_bytes = 0;
1802 		adapter->total_tx_packets = 0;
1803 		adapter->total_rx_bytes = 0;
1804 		adapter->total_rx_packets = 0;
1805 		__napi_schedule(&adapter->napi);
1806 	}
1807 
1808 	return IRQ_HANDLED;
1809 }
1810 
1811 /**
1812  * e1000_intr - Interrupt Handler
1813  * @irq: interrupt number
1814  * @data: pointer to a network interface device structure
1815  **/
1816 static irqreturn_t e1000_intr(int __always_unused irq, void *data)
1817 {
1818 	struct net_device *netdev = data;
1819 	struct e1000_adapter *adapter = netdev_priv(netdev);
1820 	struct e1000_hw *hw = &adapter->hw;
1821 	u32 rctl, icr = er32(ICR);
1822 
1823 	if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1824 		return IRQ_NONE;	/* Not our interrupt */
1825 
1826 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1827 	 * not set, then the adapter didn't send an interrupt
1828 	 */
1829 	if (!(icr & E1000_ICR_INT_ASSERTED))
1830 		return IRQ_NONE;
1831 
1832 	/* Interrupt Auto-Mask...upon reading ICR,
1833 	 * interrupts are masked.  No need for the
1834 	 * IMC write
1835 	 */
1836 
1837 	if (icr & E1000_ICR_LSC) {
1838 		hw->mac.get_link_status = true;
1839 		/* ICH8 workaround-- Call gig speed drop workaround on cable
1840 		 * disconnect (LSC) before accessing any PHY registers
1841 		 */
1842 		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1843 		    (!(er32(STATUS) & E1000_STATUS_LU)))
1844 			schedule_work(&adapter->downshift_task);
1845 
1846 		/* 80003ES2LAN workaround--
1847 		 * For packet buffer work-around on link down event;
1848 		 * disable receives here in the ISR and
1849 		 * reset adapter in watchdog
1850 		 */
1851 		if (netif_carrier_ok(netdev) &&
1852 		    (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1853 			/* disable receives */
1854 			rctl = er32(RCTL);
1855 			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1856 			adapter->flags |= FLAG_RESTART_NOW;
1857 		}
1858 		/* guard against interrupt when we're going down */
1859 		if (!test_bit(__E1000_DOWN, &adapter->state))
1860 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1861 	}
1862 
1863 	/* Reset on uncorrectable ECC error */
1864 	if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1865 		u32 pbeccsts = er32(PBECCSTS);
1866 
1867 		adapter->corr_errors +=
1868 		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1869 		adapter->uncorr_errors +=
1870 		    FIELD_GET(E1000_PBECCSTS_UNCORR_ERR_CNT_MASK, pbeccsts);
1871 
1872 		/* Do the reset outside of interrupt context */
1873 		schedule_work(&adapter->reset_task);
1874 
1875 		/* return immediately since reset is imminent */
1876 		return IRQ_HANDLED;
1877 	}
1878 
1879 	if (napi_schedule_prep(&adapter->napi)) {
1880 		adapter->total_tx_bytes = 0;
1881 		adapter->total_tx_packets = 0;
1882 		adapter->total_rx_bytes = 0;
1883 		adapter->total_rx_packets = 0;
1884 		__napi_schedule(&adapter->napi);
1885 	}
1886 
1887 	return IRQ_HANDLED;
1888 }
1889 
1890 static irqreturn_t e1000_msix_other(int __always_unused irq, void *data)
1891 {
1892 	struct net_device *netdev = data;
1893 	struct e1000_adapter *adapter = netdev_priv(netdev);
1894 	struct e1000_hw *hw = &adapter->hw;
1895 	u32 icr = er32(ICR);
1896 
1897 	if (icr & adapter->eiac_mask)
1898 		ew32(ICS, (icr & adapter->eiac_mask));
1899 
1900 	if (icr & E1000_ICR_LSC) {
1901 		hw->mac.get_link_status = true;
1902 		/* guard against interrupt when we're going down */
1903 		if (!test_bit(__E1000_DOWN, &adapter->state))
1904 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1905 	}
1906 
1907 	if (!test_bit(__E1000_DOWN, &adapter->state))
1908 		ew32(IMS, E1000_IMS_OTHER | IMS_OTHER_MASK);
1909 
1910 	return IRQ_HANDLED;
1911 }
1912 
1913 static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data)
1914 {
1915 	struct net_device *netdev = data;
1916 	struct e1000_adapter *adapter = netdev_priv(netdev);
1917 	struct e1000_hw *hw = &adapter->hw;
1918 	struct e1000_ring *tx_ring = adapter->tx_ring;
1919 
1920 	adapter->total_tx_bytes = 0;
1921 	adapter->total_tx_packets = 0;
1922 
1923 	if (!e1000_clean_tx_irq(tx_ring))
1924 		/* Ring was not completely cleaned, so fire another interrupt */
1925 		ew32(ICS, tx_ring->ims_val);
1926 
1927 	if (!test_bit(__E1000_DOWN, &adapter->state))
1928 		ew32(IMS, adapter->tx_ring->ims_val);
1929 
1930 	return IRQ_HANDLED;
1931 }
1932 
1933 static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data)
1934 {
1935 	struct net_device *netdev = data;
1936 	struct e1000_adapter *adapter = netdev_priv(netdev);
1937 	struct e1000_ring *rx_ring = adapter->rx_ring;
1938 
1939 	/* Write the ITR value calculated at the end of the
1940 	 * previous interrupt.
1941 	 */
1942 	if (rx_ring->set_itr) {
1943 		u32 itr = rx_ring->itr_val ?
1944 			  1000000000 / (rx_ring->itr_val * 256) : 0;
1945 
1946 		writel(itr, rx_ring->itr_register);
1947 		rx_ring->set_itr = 0;
1948 	}
1949 
1950 	if (napi_schedule_prep(&adapter->napi)) {
1951 		adapter->total_rx_bytes = 0;
1952 		adapter->total_rx_packets = 0;
1953 		__napi_schedule(&adapter->napi);
1954 	}
1955 	return IRQ_HANDLED;
1956 }
1957 
1958 /**
1959  * e1000_configure_msix - Configure MSI-X hardware
1960  * @adapter: board private structure
1961  *
1962  * e1000_configure_msix sets up the hardware to properly
1963  * generate MSI-X interrupts.
1964  **/
1965 static void e1000_configure_msix(struct e1000_adapter *adapter)
1966 {
1967 	struct e1000_hw *hw = &adapter->hw;
1968 	struct e1000_ring *rx_ring = adapter->rx_ring;
1969 	struct e1000_ring *tx_ring = adapter->tx_ring;
1970 	int vector = 0;
1971 	u32 ctrl_ext, ivar = 0;
1972 
1973 	adapter->eiac_mask = 0;
1974 
1975 	/* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1976 	if (hw->mac.type == e1000_82574) {
1977 		u32 rfctl = er32(RFCTL);
1978 
1979 		rfctl |= E1000_RFCTL_ACK_DIS;
1980 		ew32(RFCTL, rfctl);
1981 	}
1982 
1983 	/* Configure Rx vector */
1984 	rx_ring->ims_val = E1000_IMS_RXQ0;
1985 	adapter->eiac_mask |= rx_ring->ims_val;
1986 	if (rx_ring->itr_val)
1987 		writel(1000000000 / (rx_ring->itr_val * 256),
1988 		       rx_ring->itr_register);
1989 	else
1990 		writel(1, rx_ring->itr_register);
1991 	ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1992 
1993 	/* Configure Tx vector */
1994 	tx_ring->ims_val = E1000_IMS_TXQ0;
1995 	vector++;
1996 	if (tx_ring->itr_val)
1997 		writel(1000000000 / (tx_ring->itr_val * 256),
1998 		       tx_ring->itr_register);
1999 	else
2000 		writel(1, tx_ring->itr_register);
2001 	adapter->eiac_mask |= tx_ring->ims_val;
2002 	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
2003 
2004 	/* set vector for Other Causes, e.g. link changes */
2005 	vector++;
2006 	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
2007 	if (rx_ring->itr_val)
2008 		writel(1000000000 / (rx_ring->itr_val * 256),
2009 		       hw->hw_addr + E1000_EITR_82574(vector));
2010 	else
2011 		writel(1, hw->hw_addr + E1000_EITR_82574(vector));
2012 
2013 	/* Cause Tx interrupts on every write back */
2014 	ivar |= BIT(31);
2015 
2016 	ew32(IVAR, ivar);
2017 
2018 	/* enable MSI-X PBA support */
2019 	ctrl_ext = er32(CTRL_EXT) & ~E1000_CTRL_EXT_IAME;
2020 	ctrl_ext |= E1000_CTRL_EXT_PBA_CLR | E1000_CTRL_EXT_EIAME;
2021 	ew32(CTRL_EXT, ctrl_ext);
2022 	e1e_flush();
2023 }
2024 
2025 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
2026 {
2027 	if (adapter->msix_entries) {
2028 		pci_disable_msix(adapter->pdev);
2029 		kfree(adapter->msix_entries);
2030 		adapter->msix_entries = NULL;
2031 	} else if (adapter->flags & FLAG_MSI_ENABLED) {
2032 		pci_disable_msi(adapter->pdev);
2033 		adapter->flags &= ~FLAG_MSI_ENABLED;
2034 	}
2035 }
2036 
2037 /**
2038  * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
2039  * @adapter: board private structure
2040  *
2041  * Attempt to configure interrupts using the best available
2042  * capabilities of the hardware and kernel.
2043  **/
2044 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
2045 {
2046 	int err;
2047 	int i;
2048 
2049 	switch (adapter->int_mode) {
2050 	case E1000E_INT_MODE_MSIX:
2051 		if (adapter->flags & FLAG_HAS_MSIX) {
2052 			adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
2053 			adapter->msix_entries = kcalloc(adapter->num_vectors,
2054 							sizeof(struct
2055 							       msix_entry),
2056 							GFP_KERNEL);
2057 			if (adapter->msix_entries) {
2058 				struct e1000_adapter *a = adapter;
2059 
2060 				for (i = 0; i < adapter->num_vectors; i++)
2061 					adapter->msix_entries[i].entry = i;
2062 
2063 				err = pci_enable_msix_range(a->pdev,
2064 							    a->msix_entries,
2065 							    a->num_vectors,
2066 							    a->num_vectors);
2067 				if (err > 0)
2068 					return;
2069 			}
2070 			/* MSI-X failed, so fall through and try MSI */
2071 			e_err("Failed to initialize MSI-X interrupts.  Falling back to MSI interrupts.\n");
2072 			e1000e_reset_interrupt_capability(adapter);
2073 		}
2074 		adapter->int_mode = E1000E_INT_MODE_MSI;
2075 		fallthrough;
2076 	case E1000E_INT_MODE_MSI:
2077 		if (!pci_enable_msi(adapter->pdev)) {
2078 			adapter->flags |= FLAG_MSI_ENABLED;
2079 		} else {
2080 			adapter->int_mode = E1000E_INT_MODE_LEGACY;
2081 			e_err("Failed to initialize MSI interrupts.  Falling back to legacy interrupts.\n");
2082 		}
2083 		fallthrough;
2084 	case E1000E_INT_MODE_LEGACY:
2085 		/* Don't do anything; this is the system default */
2086 		break;
2087 	}
2088 
2089 	/* store the number of vectors being used */
2090 	adapter->num_vectors = 1;
2091 }
2092 
2093 /**
2094  * e1000_request_msix - Initialize MSI-X interrupts
2095  * @adapter: board private structure
2096  *
2097  * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2098  * kernel.
2099  **/
2100 static int e1000_request_msix(struct e1000_adapter *adapter)
2101 {
2102 	struct net_device *netdev = adapter->netdev;
2103 	int err = 0, vector = 0;
2104 
2105 	if (strlen(netdev->name) < (IFNAMSIZ - 5))
2106 		snprintf(adapter->rx_ring->name,
2107 			 sizeof(adapter->rx_ring->name) - 1,
2108 			 "%.14s-rx-0", netdev->name);
2109 	else
2110 		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
2111 	err = request_irq(adapter->msix_entries[vector].vector,
2112 			  e1000_intr_msix_rx, 0, adapter->rx_ring->name,
2113 			  netdev);
2114 	if (err)
2115 		return err;
2116 	adapter->rx_ring->itr_register = adapter->hw.hw_addr +
2117 	    E1000_EITR_82574(vector);
2118 	adapter->rx_ring->itr_val = adapter->itr;
2119 	vector++;
2120 
2121 	if (strlen(netdev->name) < (IFNAMSIZ - 5))
2122 		snprintf(adapter->tx_ring->name,
2123 			 sizeof(adapter->tx_ring->name) - 1,
2124 			 "%.14s-tx-0", netdev->name);
2125 	else
2126 		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2127 	err = request_irq(adapter->msix_entries[vector].vector,
2128 			  e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2129 			  netdev);
2130 	if (err)
2131 		return err;
2132 	adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2133 	    E1000_EITR_82574(vector);
2134 	adapter->tx_ring->itr_val = adapter->itr;
2135 	vector++;
2136 
2137 	err = request_irq(adapter->msix_entries[vector].vector,
2138 			  e1000_msix_other, 0, netdev->name, netdev);
2139 	if (err)
2140 		return err;
2141 
2142 	e1000_configure_msix(adapter);
2143 
2144 	return 0;
2145 }
2146 
2147 /**
2148  * e1000_request_irq - initialize interrupts
2149  * @adapter: board private structure
2150  *
2151  * Attempts to configure interrupts using the best available
2152  * capabilities of the hardware and kernel.
2153  **/
2154 static int e1000_request_irq(struct e1000_adapter *adapter)
2155 {
2156 	struct net_device *netdev = adapter->netdev;
2157 	int err;
2158 
2159 	if (adapter->msix_entries) {
2160 		err = e1000_request_msix(adapter);
2161 		if (!err)
2162 			return err;
2163 		/* fall back to MSI */
2164 		e1000e_reset_interrupt_capability(adapter);
2165 		adapter->int_mode = E1000E_INT_MODE_MSI;
2166 		e1000e_set_interrupt_capability(adapter);
2167 	}
2168 	if (adapter->flags & FLAG_MSI_ENABLED) {
2169 		err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2170 				  netdev->name, netdev);
2171 		if (!err)
2172 			return err;
2173 
2174 		/* fall back to legacy interrupt */
2175 		e1000e_reset_interrupt_capability(adapter);
2176 		adapter->int_mode = E1000E_INT_MODE_LEGACY;
2177 	}
2178 
2179 	err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2180 			  netdev->name, netdev);
2181 	if (err)
2182 		e_err("Unable to allocate interrupt, Error: %d\n", err);
2183 
2184 	return err;
2185 }
2186 
2187 static void e1000_free_irq(struct e1000_adapter *adapter)
2188 {
2189 	struct net_device *netdev = adapter->netdev;
2190 
2191 	if (adapter->msix_entries) {
2192 		int vector = 0;
2193 
2194 		free_irq(adapter->msix_entries[vector].vector, netdev);
2195 		vector++;
2196 
2197 		free_irq(adapter->msix_entries[vector].vector, netdev);
2198 		vector++;
2199 
2200 		/* Other Causes interrupt vector */
2201 		free_irq(adapter->msix_entries[vector].vector, netdev);
2202 		return;
2203 	}
2204 
2205 	free_irq(adapter->pdev->irq, netdev);
2206 }
2207 
2208 /**
2209  * e1000_irq_disable - Mask off interrupt generation on the NIC
2210  * @adapter: board private structure
2211  **/
2212 static void e1000_irq_disable(struct e1000_adapter *adapter)
2213 {
2214 	struct e1000_hw *hw = &adapter->hw;
2215 
2216 	ew32(IMC, ~0);
2217 	if (adapter->msix_entries)
2218 		ew32(EIAC_82574, 0);
2219 	e1e_flush();
2220 
2221 	if (adapter->msix_entries) {
2222 		int i;
2223 
2224 		for (i = 0; i < adapter->num_vectors; i++)
2225 			synchronize_irq(adapter->msix_entries[i].vector);
2226 	} else {
2227 		synchronize_irq(adapter->pdev->irq);
2228 	}
2229 }
2230 
2231 /**
2232  * e1000_irq_enable - Enable default interrupt generation settings
2233  * @adapter: board private structure
2234  **/
2235 static void e1000_irq_enable(struct e1000_adapter *adapter)
2236 {
2237 	struct e1000_hw *hw = &adapter->hw;
2238 
2239 	if (adapter->msix_entries) {
2240 		ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2241 		ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER |
2242 		     IMS_OTHER_MASK);
2243 	} else if (hw->mac.type >= e1000_pch_lpt) {
2244 		ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER);
2245 	} else {
2246 		ew32(IMS, IMS_ENABLE_MASK);
2247 	}
2248 	e1e_flush();
2249 }
2250 
2251 /**
2252  * e1000e_get_hw_control - get control of the h/w from f/w
2253  * @adapter: address of board private structure
2254  *
2255  * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2256  * For ASF and Pass Through versions of f/w this means that
2257  * the driver is loaded. For AMT version (only with 82573)
2258  * of the f/w this means that the network i/f is open.
2259  **/
2260 void e1000e_get_hw_control(struct e1000_adapter *adapter)
2261 {
2262 	struct e1000_hw *hw = &adapter->hw;
2263 	u32 ctrl_ext;
2264 	u32 swsm;
2265 
2266 	/* Let firmware know the driver has taken over */
2267 	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2268 		swsm = er32(SWSM);
2269 		ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2270 	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2271 		ctrl_ext = er32(CTRL_EXT);
2272 		ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2273 	}
2274 }
2275 
2276 /**
2277  * e1000e_release_hw_control - release control of the h/w to f/w
2278  * @adapter: address of board private structure
2279  *
2280  * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2281  * For ASF and Pass Through versions of f/w this means that the
2282  * driver is no longer loaded. For AMT version (only with 82573) i
2283  * of the f/w this means that the network i/f is closed.
2284  *
2285  **/
2286 void e1000e_release_hw_control(struct e1000_adapter *adapter)
2287 {
2288 	struct e1000_hw *hw = &adapter->hw;
2289 	u32 ctrl_ext;
2290 	u32 swsm;
2291 
2292 	/* Let firmware taken over control of h/w */
2293 	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2294 		swsm = er32(SWSM);
2295 		ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2296 	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2297 		ctrl_ext = er32(CTRL_EXT);
2298 		ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2299 	}
2300 }
2301 
2302 /**
2303  * e1000_alloc_ring_dma - allocate memory for a ring structure
2304  * @adapter: board private structure
2305  * @ring: ring struct for which to allocate dma
2306  **/
2307 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2308 				struct e1000_ring *ring)
2309 {
2310 	struct pci_dev *pdev = adapter->pdev;
2311 
2312 	ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2313 					GFP_KERNEL);
2314 	if (!ring->desc)
2315 		return -ENOMEM;
2316 
2317 	return 0;
2318 }
2319 
2320 /**
2321  * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2322  * @tx_ring: Tx descriptor ring
2323  *
2324  * Return 0 on success, negative on failure
2325  **/
2326 int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2327 {
2328 	struct e1000_adapter *adapter = tx_ring->adapter;
2329 	int err = -ENOMEM, size;
2330 
2331 	size = sizeof(struct e1000_buffer) * tx_ring->count;
2332 	tx_ring->buffer_info = vzalloc(size);
2333 	if (!tx_ring->buffer_info)
2334 		goto err;
2335 
2336 	/* round up to nearest 4K */
2337 	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2338 	tx_ring->size = ALIGN(tx_ring->size, 4096);
2339 
2340 	err = e1000_alloc_ring_dma(adapter, tx_ring);
2341 	if (err)
2342 		goto err;
2343 
2344 	tx_ring->next_to_use = 0;
2345 	tx_ring->next_to_clean = 0;
2346 
2347 	return 0;
2348 err:
2349 	vfree(tx_ring->buffer_info);
2350 	e_err("Unable to allocate memory for the transmit descriptor ring\n");
2351 	return err;
2352 }
2353 
2354 /**
2355  * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2356  * @rx_ring: Rx descriptor ring
2357  *
2358  * Returns 0 on success, negative on failure
2359  **/
2360 int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2361 {
2362 	struct e1000_adapter *adapter = rx_ring->adapter;
2363 	struct e1000_buffer *buffer_info;
2364 	int i, size, desc_len, err = -ENOMEM;
2365 
2366 	size = sizeof(struct e1000_buffer) * rx_ring->count;
2367 	rx_ring->buffer_info = vzalloc(size);
2368 	if (!rx_ring->buffer_info)
2369 		goto err;
2370 
2371 	for (i = 0; i < rx_ring->count; i++) {
2372 		buffer_info = &rx_ring->buffer_info[i];
2373 		buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2374 						sizeof(struct e1000_ps_page),
2375 						GFP_KERNEL);
2376 		if (!buffer_info->ps_pages)
2377 			goto err_pages;
2378 	}
2379 
2380 	desc_len = sizeof(union e1000_rx_desc_packet_split);
2381 
2382 	/* Round up to nearest 4K */
2383 	rx_ring->size = rx_ring->count * desc_len;
2384 	rx_ring->size = ALIGN(rx_ring->size, 4096);
2385 
2386 	err = e1000_alloc_ring_dma(adapter, rx_ring);
2387 	if (err)
2388 		goto err_pages;
2389 
2390 	rx_ring->next_to_clean = 0;
2391 	rx_ring->next_to_use = 0;
2392 	rx_ring->rx_skb_top = NULL;
2393 
2394 	return 0;
2395 
2396 err_pages:
2397 	for (i = 0; i < rx_ring->count; i++) {
2398 		buffer_info = &rx_ring->buffer_info[i];
2399 		kfree(buffer_info->ps_pages);
2400 	}
2401 err:
2402 	vfree(rx_ring->buffer_info);
2403 	e_err("Unable to allocate memory for the receive descriptor ring\n");
2404 	return err;
2405 }
2406 
2407 /**
2408  * e1000_clean_tx_ring - Free Tx Buffers
2409  * @tx_ring: Tx descriptor ring
2410  **/
2411 static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2412 {
2413 	struct e1000_adapter *adapter = tx_ring->adapter;
2414 	struct e1000_buffer *buffer_info;
2415 	unsigned long size;
2416 	unsigned int i;
2417 
2418 	for (i = 0; i < tx_ring->count; i++) {
2419 		buffer_info = &tx_ring->buffer_info[i];
2420 		e1000_put_txbuf(tx_ring, buffer_info, false);
2421 	}
2422 
2423 	netdev_reset_queue(adapter->netdev);
2424 	size = sizeof(struct e1000_buffer) * tx_ring->count;
2425 	memset(tx_ring->buffer_info, 0, size);
2426 
2427 	memset(tx_ring->desc, 0, tx_ring->size);
2428 
2429 	tx_ring->next_to_use = 0;
2430 	tx_ring->next_to_clean = 0;
2431 }
2432 
2433 /**
2434  * e1000e_free_tx_resources - Free Tx Resources per Queue
2435  * @tx_ring: Tx descriptor ring
2436  *
2437  * Free all transmit software resources
2438  **/
2439 void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2440 {
2441 	struct e1000_adapter *adapter = tx_ring->adapter;
2442 	struct pci_dev *pdev = adapter->pdev;
2443 
2444 	e1000_clean_tx_ring(tx_ring);
2445 
2446 	vfree(tx_ring->buffer_info);
2447 	tx_ring->buffer_info = NULL;
2448 
2449 	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2450 			  tx_ring->dma);
2451 	tx_ring->desc = NULL;
2452 }
2453 
2454 /**
2455  * e1000e_free_rx_resources - Free Rx Resources
2456  * @rx_ring: Rx descriptor ring
2457  *
2458  * Free all receive software resources
2459  **/
2460 void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2461 {
2462 	struct e1000_adapter *adapter = rx_ring->adapter;
2463 	struct pci_dev *pdev = adapter->pdev;
2464 	int i;
2465 
2466 	e1000_clean_rx_ring(rx_ring);
2467 
2468 	for (i = 0; i < rx_ring->count; i++)
2469 		kfree(rx_ring->buffer_info[i].ps_pages);
2470 
2471 	vfree(rx_ring->buffer_info);
2472 	rx_ring->buffer_info = NULL;
2473 
2474 	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2475 			  rx_ring->dma);
2476 	rx_ring->desc = NULL;
2477 }
2478 
2479 /**
2480  * e1000_update_itr - update the dynamic ITR value based on statistics
2481  * @itr_setting: current adapter->itr
2482  * @packets: the number of packets during this measurement interval
2483  * @bytes: the number of bytes during this measurement interval
2484  *
2485  *      Stores a new ITR value based on packets and byte
2486  *      counts during the last interrupt.  The advantage of per interrupt
2487  *      computation is faster updates and more accurate ITR for the current
2488  *      traffic pattern.  Constants in this function were computed
2489  *      based on theoretical maximum wire speed and thresholds were set based
2490  *      on testing data as well as attempting to minimize response time
2491  *      while increasing bulk throughput.  This functionality is controlled
2492  *      by the InterruptThrottleRate module parameter.
2493  **/
2494 static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes)
2495 {
2496 	unsigned int retval = itr_setting;
2497 
2498 	if (packets == 0)
2499 		return itr_setting;
2500 
2501 	switch (itr_setting) {
2502 	case lowest_latency:
2503 		/* handle TSO and jumbo frames */
2504 		if (bytes / packets > 8000)
2505 			retval = bulk_latency;
2506 		else if ((packets < 5) && (bytes > 512))
2507 			retval = low_latency;
2508 		break;
2509 	case low_latency:	/* 50 usec aka 20000 ints/s */
2510 		if (bytes > 10000) {
2511 			/* this if handles the TSO accounting */
2512 			if (bytes / packets > 8000)
2513 				retval = bulk_latency;
2514 			else if ((packets < 10) || ((bytes / packets) > 1200))
2515 				retval = bulk_latency;
2516 			else if ((packets > 35))
2517 				retval = lowest_latency;
2518 		} else if (bytes / packets > 2000) {
2519 			retval = bulk_latency;
2520 		} else if (packets <= 2 && bytes < 512) {
2521 			retval = lowest_latency;
2522 		}
2523 		break;
2524 	case bulk_latency:	/* 250 usec aka 4000 ints/s */
2525 		if (bytes > 25000) {
2526 			if (packets > 35)
2527 				retval = low_latency;
2528 		} else if (bytes < 6000) {
2529 			retval = low_latency;
2530 		}
2531 		break;
2532 	}
2533 
2534 	return retval;
2535 }
2536 
2537 static void e1000_set_itr(struct e1000_adapter *adapter)
2538 {
2539 	u16 current_itr;
2540 	u32 new_itr = adapter->itr;
2541 
2542 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2543 	if (adapter->link_speed != SPEED_1000) {
2544 		new_itr = 4000;
2545 		goto set_itr_now;
2546 	}
2547 
2548 	if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2549 		new_itr = 0;
2550 		goto set_itr_now;
2551 	}
2552 
2553 	adapter->tx_itr = e1000_update_itr(adapter->tx_itr,
2554 					   adapter->total_tx_packets,
2555 					   adapter->total_tx_bytes);
2556 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2557 	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2558 		adapter->tx_itr = low_latency;
2559 
2560 	adapter->rx_itr = e1000_update_itr(adapter->rx_itr,
2561 					   adapter->total_rx_packets,
2562 					   adapter->total_rx_bytes);
2563 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2564 	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2565 		adapter->rx_itr = low_latency;
2566 
2567 	current_itr = max(adapter->rx_itr, adapter->tx_itr);
2568 
2569 	/* counts and packets in update_itr are dependent on these numbers */
2570 	switch (current_itr) {
2571 	case lowest_latency:
2572 		new_itr = 70000;
2573 		break;
2574 	case low_latency:
2575 		new_itr = 20000;	/* aka hwitr = ~200 */
2576 		break;
2577 	case bulk_latency:
2578 		new_itr = 4000;
2579 		break;
2580 	default:
2581 		break;
2582 	}
2583 
2584 set_itr_now:
2585 	if (new_itr != adapter->itr) {
2586 		/* this attempts to bias the interrupt rate towards Bulk
2587 		 * by adding intermediate steps when interrupt rate is
2588 		 * increasing
2589 		 */
2590 		new_itr = new_itr > adapter->itr ?
2591 		    min(adapter->itr + (new_itr >> 2), new_itr) : new_itr;
2592 		adapter->itr = new_itr;
2593 		adapter->rx_ring->itr_val = new_itr;
2594 		if (adapter->msix_entries)
2595 			adapter->rx_ring->set_itr = 1;
2596 		else
2597 			e1000e_write_itr(adapter, new_itr);
2598 	}
2599 }
2600 
2601 /**
2602  * e1000e_write_itr - write the ITR value to the appropriate registers
2603  * @adapter: address of board private structure
2604  * @itr: new ITR value to program
2605  *
2606  * e1000e_write_itr determines if the adapter is in MSI-X mode
2607  * and, if so, writes the EITR registers with the ITR value.
2608  * Otherwise, it writes the ITR value into the ITR register.
2609  **/
2610 void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
2611 {
2612 	struct e1000_hw *hw = &adapter->hw;
2613 	u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
2614 
2615 	if (adapter->msix_entries) {
2616 		int vector;
2617 
2618 		for (vector = 0; vector < adapter->num_vectors; vector++)
2619 			writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
2620 	} else {
2621 		ew32(ITR, new_itr);
2622 	}
2623 }
2624 
2625 /**
2626  * e1000_alloc_queues - Allocate memory for all rings
2627  * @adapter: board private structure to initialize
2628  **/
2629 static int e1000_alloc_queues(struct e1000_adapter *adapter)
2630 {
2631 	int size = sizeof(struct e1000_ring);
2632 
2633 	adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2634 	if (!adapter->tx_ring)
2635 		goto err;
2636 	adapter->tx_ring->count = adapter->tx_ring_count;
2637 	adapter->tx_ring->adapter = adapter;
2638 
2639 	adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2640 	if (!adapter->rx_ring)
2641 		goto err;
2642 	adapter->rx_ring->count = adapter->rx_ring_count;
2643 	adapter->rx_ring->adapter = adapter;
2644 
2645 	return 0;
2646 err:
2647 	e_err("Unable to allocate memory for queues\n");
2648 	kfree(adapter->rx_ring);
2649 	kfree(adapter->tx_ring);
2650 	return -ENOMEM;
2651 }
2652 
2653 /**
2654  * e1000e_poll - NAPI Rx polling callback
2655  * @napi: struct associated with this polling callback
2656  * @budget: number of packets driver is allowed to process this poll
2657  **/
2658 static int e1000e_poll(struct napi_struct *napi, int budget)
2659 {
2660 	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2661 						     napi);
2662 	struct e1000_hw *hw = &adapter->hw;
2663 	struct net_device *poll_dev = adapter->netdev;
2664 	int tx_cleaned = 1, work_done = 0;
2665 
2666 	adapter = netdev_priv(poll_dev);
2667 
2668 	if (!adapter->msix_entries ||
2669 	    (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2670 		tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2671 
2672 	adapter->clean_rx(adapter->rx_ring, &work_done, budget);
2673 
2674 	if (!tx_cleaned || work_done == budget)
2675 		return budget;
2676 
2677 	/* Exit the polling mode, but don't re-enable interrupts if stack might
2678 	 * poll us due to busy-polling
2679 	 */
2680 	if (likely(napi_complete_done(napi, work_done))) {
2681 		if (adapter->itr_setting & 3)
2682 			e1000_set_itr(adapter);
2683 		if (!test_bit(__E1000_DOWN, &adapter->state)) {
2684 			if (adapter->msix_entries)
2685 				ew32(IMS, adapter->rx_ring->ims_val);
2686 			else
2687 				e1000_irq_enable(adapter);
2688 		}
2689 	}
2690 
2691 	return work_done;
2692 }
2693 
2694 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
2695 				 __always_unused __be16 proto, u16 vid)
2696 {
2697 	struct e1000_adapter *adapter = netdev_priv(netdev);
2698 	struct e1000_hw *hw = &adapter->hw;
2699 	u32 vfta, index;
2700 
2701 	/* don't update vlan cookie if already programmed */
2702 	if ((adapter->hw.mng_cookie.status &
2703 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2704 	    (vid == adapter->mng_vlan_id))
2705 		return 0;
2706 
2707 	/* add VID to filter table */
2708 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2709 		index = (vid >> 5) & 0x7F;
2710 		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2711 		vfta |= BIT((vid & 0x1F));
2712 		hw->mac.ops.write_vfta(hw, index, vfta);
2713 	}
2714 
2715 	set_bit(vid, adapter->active_vlans);
2716 
2717 	return 0;
2718 }
2719 
2720 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
2721 				  __always_unused __be16 proto, u16 vid)
2722 {
2723 	struct e1000_adapter *adapter = netdev_priv(netdev);
2724 	struct e1000_hw *hw = &adapter->hw;
2725 	u32 vfta, index;
2726 
2727 	if ((adapter->hw.mng_cookie.status &
2728 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2729 	    (vid == adapter->mng_vlan_id)) {
2730 		/* release control to f/w */
2731 		e1000e_release_hw_control(adapter);
2732 		return 0;
2733 	}
2734 
2735 	/* remove VID from filter table */
2736 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2737 		index = (vid >> 5) & 0x7F;
2738 		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2739 		vfta &= ~BIT((vid & 0x1F));
2740 		hw->mac.ops.write_vfta(hw, index, vfta);
2741 	}
2742 
2743 	clear_bit(vid, adapter->active_vlans);
2744 
2745 	return 0;
2746 }
2747 
2748 /**
2749  * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2750  * @adapter: board private structure to initialize
2751  **/
2752 static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2753 {
2754 	struct net_device *netdev = adapter->netdev;
2755 	struct e1000_hw *hw = &adapter->hw;
2756 	u32 rctl;
2757 
2758 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2759 		/* disable VLAN receive filtering */
2760 		rctl = er32(RCTL);
2761 		rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2762 		ew32(RCTL, rctl);
2763 
2764 		if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2765 			e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
2766 					       adapter->mng_vlan_id);
2767 			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2768 		}
2769 	}
2770 }
2771 
2772 /**
2773  * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2774  * @adapter: board private structure to initialize
2775  **/
2776 static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2777 {
2778 	struct e1000_hw *hw = &adapter->hw;
2779 	u32 rctl;
2780 
2781 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2782 		/* enable VLAN receive filtering */
2783 		rctl = er32(RCTL);
2784 		rctl |= E1000_RCTL_VFE;
2785 		rctl &= ~E1000_RCTL_CFIEN;
2786 		ew32(RCTL, rctl);
2787 	}
2788 }
2789 
2790 /**
2791  * e1000e_vlan_strip_disable - helper to disable HW VLAN stripping
2792  * @adapter: board private structure to initialize
2793  **/
2794 static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2795 {
2796 	struct e1000_hw *hw = &adapter->hw;
2797 	u32 ctrl;
2798 
2799 	/* disable VLAN tag insert/strip */
2800 	ctrl = er32(CTRL);
2801 	ctrl &= ~E1000_CTRL_VME;
2802 	ew32(CTRL, ctrl);
2803 }
2804 
2805 /**
2806  * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2807  * @adapter: board private structure to initialize
2808  **/
2809 static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2810 {
2811 	struct e1000_hw *hw = &adapter->hw;
2812 	u32 ctrl;
2813 
2814 	/* enable VLAN tag insert/strip */
2815 	ctrl = er32(CTRL);
2816 	ctrl |= E1000_CTRL_VME;
2817 	ew32(CTRL, ctrl);
2818 }
2819 
2820 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2821 {
2822 	struct net_device *netdev = adapter->netdev;
2823 	u16 vid = adapter->hw.mng_cookie.vlan_id;
2824 	u16 old_vid = adapter->mng_vlan_id;
2825 
2826 	if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2827 		e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
2828 		adapter->mng_vlan_id = vid;
2829 	}
2830 
2831 	if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2832 		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid);
2833 }
2834 
2835 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2836 {
2837 	u16 vid;
2838 
2839 	e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
2840 
2841 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2842 	    e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
2843 }
2844 
2845 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2846 {
2847 	struct e1000_hw *hw = &adapter->hw;
2848 	u32 manc, manc2h, mdef, i, j;
2849 
2850 	if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2851 		return;
2852 
2853 	manc = er32(MANC);
2854 
2855 	/* enable receiving management packets to the host. this will probably
2856 	 * generate destination unreachable messages from the host OS, but
2857 	 * the packets will be handled on SMBUS
2858 	 */
2859 	manc |= E1000_MANC_EN_MNG2HOST;
2860 	manc2h = er32(MANC2H);
2861 
2862 	switch (hw->mac.type) {
2863 	default:
2864 		manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2865 		break;
2866 	case e1000_82574:
2867 	case e1000_82583:
2868 		/* Check if IPMI pass-through decision filter already exists;
2869 		 * if so, enable it.
2870 		 */
2871 		for (i = 0, j = 0; i < 8; i++) {
2872 			mdef = er32(MDEF(i));
2873 
2874 			/* Ignore filters with anything other than IPMI ports */
2875 			if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2876 				continue;
2877 
2878 			/* Enable this decision filter in MANC2H */
2879 			if (mdef)
2880 				manc2h |= BIT(i);
2881 
2882 			j |= mdef;
2883 		}
2884 
2885 		if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2886 			break;
2887 
2888 		/* Create new decision filter in an empty filter */
2889 		for (i = 0, j = 0; i < 8; i++)
2890 			if (er32(MDEF(i)) == 0) {
2891 				ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2892 					       E1000_MDEF_PORT_664));
2893 				manc2h |= BIT(1);
2894 				j++;
2895 				break;
2896 			}
2897 
2898 		if (!j)
2899 			e_warn("Unable to create IPMI pass-through filter\n");
2900 		break;
2901 	}
2902 
2903 	ew32(MANC2H, manc2h);
2904 	ew32(MANC, manc);
2905 }
2906 
2907 /**
2908  * e1000_configure_tx - Configure Transmit Unit after Reset
2909  * @adapter: board private structure
2910  *
2911  * Configure the Tx unit of the MAC after a reset.
2912  **/
2913 static void e1000_configure_tx(struct e1000_adapter *adapter)
2914 {
2915 	struct e1000_hw *hw = &adapter->hw;
2916 	struct e1000_ring *tx_ring = adapter->tx_ring;
2917 	u64 tdba;
2918 	u32 tdlen, tctl, tarc;
2919 
2920 	/* Setup the HW Tx Head and Tail descriptor pointers */
2921 	tdba = tx_ring->dma;
2922 	tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2923 	ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2924 	ew32(TDBAH(0), (tdba >> 32));
2925 	ew32(TDLEN(0), tdlen);
2926 	ew32(TDH(0), 0);
2927 	ew32(TDT(0), 0);
2928 	tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2929 	tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2930 
2931 	writel(0, tx_ring->head);
2932 	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2933 		e1000e_update_tdt_wa(tx_ring, 0);
2934 	else
2935 		writel(0, tx_ring->tail);
2936 
2937 	/* Set the Tx Interrupt Delay register */
2938 	ew32(TIDV, adapter->tx_int_delay);
2939 	/* Tx irq moderation */
2940 	ew32(TADV, adapter->tx_abs_int_delay);
2941 
2942 	if (adapter->flags2 & FLAG2_DMA_BURST) {
2943 		u32 txdctl = er32(TXDCTL(0));
2944 
2945 		txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2946 			    E1000_TXDCTL_WTHRESH);
2947 		/* set up some performance related parameters to encourage the
2948 		 * hardware to use the bus more efficiently in bursts, depends
2949 		 * on the tx_int_delay to be enabled,
2950 		 * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2951 		 * hthresh = 1 ==> prefetch when one or more available
2952 		 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2953 		 * BEWARE: this seems to work but should be considered first if
2954 		 * there are Tx hangs or other Tx related bugs
2955 		 */
2956 		txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2957 		ew32(TXDCTL(0), txdctl);
2958 	}
2959 	/* erratum work around: set txdctl the same for both queues */
2960 	ew32(TXDCTL(1), er32(TXDCTL(0)));
2961 
2962 	/* Program the Transmit Control Register */
2963 	tctl = er32(TCTL);
2964 	tctl &= ~E1000_TCTL_CT;
2965 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2966 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2967 
2968 	if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2969 		tarc = er32(TARC(0));
2970 		/* set the speed mode bit, we'll clear it if we're not at
2971 		 * gigabit link later
2972 		 */
2973 #define SPEED_MODE_BIT BIT(21)
2974 		tarc |= SPEED_MODE_BIT;
2975 		ew32(TARC(0), tarc);
2976 	}
2977 
2978 	/* errata: program both queues to unweighted RR */
2979 	if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2980 		tarc = er32(TARC(0));
2981 		tarc |= 1;
2982 		ew32(TARC(0), tarc);
2983 		tarc = er32(TARC(1));
2984 		tarc |= 1;
2985 		ew32(TARC(1), tarc);
2986 	}
2987 
2988 	/* Setup Transmit Descriptor Settings for eop descriptor */
2989 	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2990 
2991 	/* only set IDE if we are delaying interrupts using the timers */
2992 	if (adapter->tx_int_delay)
2993 		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2994 
2995 	/* enable Report Status bit */
2996 	adapter->txd_cmd |= E1000_TXD_CMD_RS;
2997 
2998 	ew32(TCTL, tctl);
2999 
3000 	hw->mac.ops.config_collision_dist(hw);
3001 
3002 	/* SPT and KBL Si errata workaround to avoid data corruption */
3003 	if (hw->mac.type == e1000_pch_spt) {
3004 		u32 reg_val;
3005 
3006 		reg_val = er32(IOSFPC);
3007 		reg_val |= E1000_RCTL_RDMTS_HEX;
3008 		ew32(IOSFPC, reg_val);
3009 
3010 		reg_val = er32(TARC(0));
3011 		/* SPT and KBL Si errata workaround to avoid Tx hang.
3012 		 * Dropping the number of outstanding requests from
3013 		 * 3 to 2 in order to avoid a buffer overrun.
3014 		 */
3015 		reg_val &= ~E1000_TARC0_CB_MULTIQ_3_REQ;
3016 		reg_val |= E1000_TARC0_CB_MULTIQ_2_REQ;
3017 		ew32(TARC(0), reg_val);
3018 	}
3019 }
3020 
3021 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
3022 			   (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
3023 
3024 /**
3025  * e1000_setup_rctl - configure the receive control registers
3026  * @adapter: Board private structure
3027  **/
3028 static void e1000_setup_rctl(struct e1000_adapter *adapter)
3029 {
3030 	struct e1000_hw *hw = &adapter->hw;
3031 	u32 rctl, rfctl;
3032 	u32 pages = 0;
3033 
3034 	/* Workaround Si errata on PCHx - configure jumbo frame flow.
3035 	 * If jumbo frames not set, program related MAC/PHY registers
3036 	 * to h/w defaults
3037 	 */
3038 	if (hw->mac.type >= e1000_pch2lan) {
3039 		s32 ret_val;
3040 
3041 		if (adapter->netdev->mtu > ETH_DATA_LEN)
3042 			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
3043 		else
3044 			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
3045 
3046 		if (ret_val)
3047 			e_dbg("failed to enable|disable jumbo frame workaround mode\n");
3048 	}
3049 
3050 	/* Program MC offset vector base */
3051 	rctl = er32(RCTL);
3052 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3053 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3054 	    E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3055 	    (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3056 
3057 	/* Do not Store bad packets */
3058 	rctl &= ~E1000_RCTL_SBP;
3059 
3060 	/* Enable Long Packet receive */
3061 	if (adapter->netdev->mtu <= ETH_DATA_LEN)
3062 		rctl &= ~E1000_RCTL_LPE;
3063 	else
3064 		rctl |= E1000_RCTL_LPE;
3065 
3066 	/* Some systems expect that the CRC is included in SMBUS traffic. The
3067 	 * hardware strips the CRC before sending to both SMBUS (BMC) and to
3068 	 * host memory when this is enabled
3069 	 */
3070 	if (adapter->flags2 & FLAG2_CRC_STRIPPING)
3071 		rctl |= E1000_RCTL_SECRC;
3072 
3073 	/* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3074 	if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
3075 		u16 phy_data;
3076 
3077 		e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
3078 		phy_data &= 0xfff8;
3079 		phy_data |= BIT(2);
3080 		e1e_wphy(hw, PHY_REG(770, 26), phy_data);
3081 
3082 		e1e_rphy(hw, 22, &phy_data);
3083 		phy_data &= 0x0fff;
3084 		phy_data |= BIT(14);
3085 		e1e_wphy(hw, 0x10, 0x2823);
3086 		e1e_wphy(hw, 0x11, 0x0003);
3087 		e1e_wphy(hw, 22, phy_data);
3088 	}
3089 
3090 	/* Setup buffer sizes */
3091 	rctl &= ~E1000_RCTL_SZ_4096;
3092 	rctl |= E1000_RCTL_BSEX;
3093 	switch (adapter->rx_buffer_len) {
3094 	case 2048:
3095 	default:
3096 		rctl |= E1000_RCTL_SZ_2048;
3097 		rctl &= ~E1000_RCTL_BSEX;
3098 		break;
3099 	case 4096:
3100 		rctl |= E1000_RCTL_SZ_4096;
3101 		break;
3102 	case 8192:
3103 		rctl |= E1000_RCTL_SZ_8192;
3104 		break;
3105 	case 16384:
3106 		rctl |= E1000_RCTL_SZ_16384;
3107 		break;
3108 	}
3109 
3110 	/* Enable Extended Status in all Receive Descriptors */
3111 	rfctl = er32(RFCTL);
3112 	rfctl |= E1000_RFCTL_EXTEN;
3113 	ew32(RFCTL, rfctl);
3114 
3115 	/* 82571 and greater support packet-split where the protocol
3116 	 * header is placed in skb->data and the packet data is
3117 	 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3118 	 * In the case of a non-split, skb->data is linearly filled,
3119 	 * followed by the page buffers.  Therefore, skb->data is
3120 	 * sized to hold the largest protocol header.
3121 	 *
3122 	 * allocations using alloc_page take too long for regular MTU
3123 	 * so only enable packet split for jumbo frames
3124 	 *
3125 	 * Using pages when the page size is greater than 16k wastes
3126 	 * a lot of memory, since we allocate 3 pages at all times
3127 	 * per packet.
3128 	 */
3129 	pages = PAGE_USE_COUNT(adapter->netdev->mtu);
3130 	if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
3131 		adapter->rx_ps_pages = pages;
3132 	else
3133 		adapter->rx_ps_pages = 0;
3134 
3135 	if (adapter->rx_ps_pages) {
3136 		u32 psrctl = 0;
3137 
3138 		/* Enable Packet split descriptors */
3139 		rctl |= E1000_RCTL_DTYP_PS;
3140 
3141 		psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT;
3142 
3143 		switch (adapter->rx_ps_pages) {
3144 		case 3:
3145 			psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT;
3146 			fallthrough;
3147 		case 2:
3148 			psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT;
3149 			fallthrough;
3150 		case 1:
3151 			psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT;
3152 			break;
3153 		}
3154 
3155 		ew32(PSRCTL, psrctl);
3156 	}
3157 
3158 	/* This is useful for sniffing bad packets. */
3159 	if (adapter->netdev->features & NETIF_F_RXALL) {
3160 		/* UPE and MPE will be handled by normal PROMISC logic
3161 		 * in e1000e_set_rx_mode
3162 		 */
3163 		rctl |= (E1000_RCTL_SBP |	/* Receive bad packets */
3164 			 E1000_RCTL_BAM |	/* RX All Bcast Pkts */
3165 			 E1000_RCTL_PMCF);	/* RX All MAC Ctrl Pkts */
3166 
3167 		rctl &= ~(E1000_RCTL_VFE |	/* Disable VLAN filter */
3168 			  E1000_RCTL_DPF |	/* Allow filtered pause */
3169 			  E1000_RCTL_CFIEN);	/* Dis VLAN CFIEN Filter */
3170 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3171 		 * and that breaks VLANs.
3172 		 */
3173 	}
3174 
3175 	ew32(RCTL, rctl);
3176 	/* just started the receive unit, no need to restart */
3177 	adapter->flags &= ~FLAG_RESTART_NOW;
3178 }
3179 
3180 /**
3181  * e1000_configure_rx - Configure Receive Unit after Reset
3182  * @adapter: board private structure
3183  *
3184  * Configure the Rx unit of the MAC after a reset.
3185  **/
3186 static void e1000_configure_rx(struct e1000_adapter *adapter)
3187 {
3188 	struct e1000_hw *hw = &adapter->hw;
3189 	struct e1000_ring *rx_ring = adapter->rx_ring;
3190 	u64 rdba;
3191 	u32 rdlen, rctl, rxcsum, ctrl_ext;
3192 
3193 	if (adapter->rx_ps_pages) {
3194 		/* this is a 32 byte descriptor */
3195 		rdlen = rx_ring->count *
3196 		    sizeof(union e1000_rx_desc_packet_split);
3197 		adapter->clean_rx = e1000_clean_rx_irq_ps;
3198 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3199 	} else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3200 		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3201 		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3202 		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3203 	} else {
3204 		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3205 		adapter->clean_rx = e1000_clean_rx_irq;
3206 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3207 	}
3208 
3209 	/* disable receives while setting up the descriptors */
3210 	rctl = er32(RCTL);
3211 	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3212 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
3213 	e1e_flush();
3214 	usleep_range(10000, 11000);
3215 
3216 	if (adapter->flags2 & FLAG2_DMA_BURST) {
3217 		/* set the writeback threshold (only takes effect if the RDTR
3218 		 * is set). set GRAN=1 and write back up to 0x4 worth, and
3219 		 * enable prefetching of 0x20 Rx descriptors
3220 		 * granularity = 01
3221 		 * wthresh = 04,
3222 		 * hthresh = 04,
3223 		 * pthresh = 0x20
3224 		 */
3225 		ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3226 		ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3227 	}
3228 
3229 	/* set the Receive Delay Timer Register */
3230 	ew32(RDTR, adapter->rx_int_delay);
3231 
3232 	/* irq moderation */
3233 	ew32(RADV, adapter->rx_abs_int_delay);
3234 	if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3235 		e1000e_write_itr(adapter, adapter->itr);
3236 
3237 	ctrl_ext = er32(CTRL_EXT);
3238 	/* Auto-Mask interrupts upon ICR access */
3239 	ctrl_ext |= E1000_CTRL_EXT_IAME;
3240 	ew32(IAM, 0xffffffff);
3241 	ew32(CTRL_EXT, ctrl_ext);
3242 	e1e_flush();
3243 
3244 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
3245 	 * the Base and Length of the Rx Descriptor Ring
3246 	 */
3247 	rdba = rx_ring->dma;
3248 	ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3249 	ew32(RDBAH(0), (rdba >> 32));
3250 	ew32(RDLEN(0), rdlen);
3251 	ew32(RDH(0), 0);
3252 	ew32(RDT(0), 0);
3253 	rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3254 	rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3255 
3256 	writel(0, rx_ring->head);
3257 	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
3258 		e1000e_update_rdt_wa(rx_ring, 0);
3259 	else
3260 		writel(0, rx_ring->tail);
3261 
3262 	/* Enable Receive Checksum Offload for TCP and UDP */
3263 	rxcsum = er32(RXCSUM);
3264 	if (adapter->netdev->features & NETIF_F_RXCSUM)
3265 		rxcsum |= E1000_RXCSUM_TUOFL;
3266 	else
3267 		rxcsum &= ~E1000_RXCSUM_TUOFL;
3268 	ew32(RXCSUM, rxcsum);
3269 
3270 	/* With jumbo frames, excessive C-state transition latencies result
3271 	 * in dropped transactions.
3272 	 */
3273 	if (adapter->netdev->mtu > ETH_DATA_LEN) {
3274 		u32 lat =
3275 		    ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 -
3276 		     adapter->max_frame_size) * 8 / 1000;
3277 
3278 		if (adapter->flags & FLAG_IS_ICH) {
3279 			u32 rxdctl = er32(RXDCTL(0));
3280 
3281 			ew32(RXDCTL(0), rxdctl | 0x3 | BIT(8));
3282 		}
3283 
3284 		dev_info(&adapter->pdev->dev,
3285 			 "Some CPU C-states have been disabled in order to enable jumbo frames\n");
3286 		cpu_latency_qos_update_request(&adapter->pm_qos_req, lat);
3287 	} else {
3288 		cpu_latency_qos_update_request(&adapter->pm_qos_req,
3289 					       PM_QOS_DEFAULT_VALUE);
3290 	}
3291 
3292 	/* Enable Receives */
3293 	ew32(RCTL, rctl);
3294 }
3295 
3296 /**
3297  * e1000e_write_mc_addr_list - write multicast addresses to MTA
3298  * @netdev: network interface device structure
3299  *
3300  * Writes multicast address list to the MTA hash table.
3301  * Returns: -ENOMEM on failure
3302  *                0 on no addresses written
3303  *                X on writing X addresses to MTA
3304  */
3305 static int e1000e_write_mc_addr_list(struct net_device *netdev)
3306 {
3307 	struct e1000_adapter *adapter = netdev_priv(netdev);
3308 	struct e1000_hw *hw = &adapter->hw;
3309 	struct netdev_hw_addr *ha;
3310 	u8 *mta_list;
3311 	int i;
3312 
3313 	if (netdev_mc_empty(netdev)) {
3314 		/* nothing to program, so clear mc list */
3315 		hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3316 		return 0;
3317 	}
3318 
3319 	mta_list = kcalloc(netdev_mc_count(netdev), ETH_ALEN, GFP_ATOMIC);
3320 	if (!mta_list)
3321 		return -ENOMEM;
3322 
3323 	/* update_mc_addr_list expects a packed array of only addresses. */
3324 	i = 0;
3325 	netdev_for_each_mc_addr(ha, netdev)
3326 	    memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3327 
3328 	hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3329 	kfree(mta_list);
3330 
3331 	return netdev_mc_count(netdev);
3332 }
3333 
3334 /**
3335  * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3336  * @netdev: network interface device structure
3337  *
3338  * Writes unicast address list to the RAR table.
3339  * Returns: -ENOMEM on failure/insufficient address space
3340  *                0 on no addresses written
3341  *                X on writing X addresses to the RAR table
3342  **/
3343 static int e1000e_write_uc_addr_list(struct net_device *netdev)
3344 {
3345 	struct e1000_adapter *adapter = netdev_priv(netdev);
3346 	struct e1000_hw *hw = &adapter->hw;
3347 	unsigned int rar_entries;
3348 	int count = 0;
3349 
3350 	rar_entries = hw->mac.ops.rar_get_count(hw);
3351 
3352 	/* save a rar entry for our hardware address */
3353 	rar_entries--;
3354 
3355 	/* save a rar entry for the LAA workaround */
3356 	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3357 		rar_entries--;
3358 
3359 	/* return ENOMEM indicating insufficient memory for addresses */
3360 	if (netdev_uc_count(netdev) > rar_entries)
3361 		return -ENOMEM;
3362 
3363 	if (!netdev_uc_empty(netdev) && rar_entries) {
3364 		struct netdev_hw_addr *ha;
3365 
3366 		/* write the addresses in reverse order to avoid write
3367 		 * combining
3368 		 */
3369 		netdev_for_each_uc_addr(ha, netdev) {
3370 			int ret_val;
3371 
3372 			if (!rar_entries)
3373 				break;
3374 			ret_val = hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3375 			if (ret_val < 0)
3376 				return -ENOMEM;
3377 			count++;
3378 		}
3379 	}
3380 
3381 	/* zero out the remaining RAR entries not used above */
3382 	for (; rar_entries > 0; rar_entries--) {
3383 		ew32(RAH(rar_entries), 0);
3384 		ew32(RAL(rar_entries), 0);
3385 	}
3386 	e1e_flush();
3387 
3388 	return count;
3389 }
3390 
3391 /**
3392  * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3393  * @netdev: network interface device structure
3394  *
3395  * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3396  * address list or the network interface flags are updated.  This routine is
3397  * responsible for configuring the hardware for proper unicast, multicast,
3398  * promiscuous mode, and all-multi behavior.
3399  **/
3400 static void e1000e_set_rx_mode(struct net_device *netdev)
3401 {
3402 	struct e1000_adapter *adapter = netdev_priv(netdev);
3403 	struct e1000_hw *hw = &adapter->hw;
3404 	u32 rctl;
3405 
3406 	if (pm_runtime_suspended(netdev->dev.parent))
3407 		return;
3408 
3409 	/* Check for Promiscuous and All Multicast modes */
3410 	rctl = er32(RCTL);
3411 
3412 	/* clear the affected bits */
3413 	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3414 
3415 	if (netdev->flags & IFF_PROMISC) {
3416 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3417 		/* Do not hardware filter VLANs in promisc mode */
3418 		e1000e_vlan_filter_disable(adapter);
3419 	} else {
3420 		int count;
3421 
3422 		if (netdev->flags & IFF_ALLMULTI) {
3423 			rctl |= E1000_RCTL_MPE;
3424 		} else {
3425 			/* Write addresses to the MTA, if the attempt fails
3426 			 * then we should just turn on promiscuous mode so
3427 			 * that we can at least receive multicast traffic
3428 			 */
3429 			count = e1000e_write_mc_addr_list(netdev);
3430 			if (count < 0)
3431 				rctl |= E1000_RCTL_MPE;
3432 		}
3433 		e1000e_vlan_filter_enable(adapter);
3434 		/* Write addresses to available RAR registers, if there is not
3435 		 * sufficient space to store all the addresses then enable
3436 		 * unicast promiscuous mode
3437 		 */
3438 		count = e1000e_write_uc_addr_list(netdev);
3439 		if (count < 0)
3440 			rctl |= E1000_RCTL_UPE;
3441 	}
3442 
3443 	ew32(RCTL, rctl);
3444 
3445 	if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
3446 		e1000e_vlan_strip_enable(adapter);
3447 	else
3448 		e1000e_vlan_strip_disable(adapter);
3449 }
3450 
3451 static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3452 {
3453 	struct e1000_hw *hw = &adapter->hw;
3454 	u32 mrqc, rxcsum;
3455 	u32 rss_key[10];
3456 	int i;
3457 
3458 	netdev_rss_key_fill(rss_key, sizeof(rss_key));
3459 	for (i = 0; i < 10; i++)
3460 		ew32(RSSRK(i), rss_key[i]);
3461 
3462 	/* Direct all traffic to queue 0 */
3463 	for (i = 0; i < 32; i++)
3464 		ew32(RETA(i), 0);
3465 
3466 	/* Disable raw packet checksumming so that RSS hash is placed in
3467 	 * descriptor on writeback.
3468 	 */
3469 	rxcsum = er32(RXCSUM);
3470 	rxcsum |= E1000_RXCSUM_PCSD;
3471 
3472 	ew32(RXCSUM, rxcsum);
3473 
3474 	mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3475 		E1000_MRQC_RSS_FIELD_IPV4_TCP |
3476 		E1000_MRQC_RSS_FIELD_IPV6 |
3477 		E1000_MRQC_RSS_FIELD_IPV6_TCP |
3478 		E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3479 
3480 	ew32(MRQC, mrqc);
3481 }
3482 
3483 /**
3484  * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3485  * @adapter: board private structure
3486  * @timinca: pointer to returned time increment attributes
3487  *
3488  * Get attributes for incrementing the System Time Register SYSTIML/H at
3489  * the default base frequency, and set the cyclecounter shift value.
3490  **/
3491 s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca)
3492 {
3493 	struct e1000_hw *hw = &adapter->hw;
3494 	u32 incvalue, incperiod, shift;
3495 
3496 	/* Make sure clock is enabled on I217/I218/I219  before checking
3497 	 * the frequency
3498 	 */
3499 	if ((hw->mac.type >= e1000_pch_lpt) &&
3500 	    !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) &&
3501 	    !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) {
3502 		u32 fextnvm7 = er32(FEXTNVM7);
3503 
3504 		if (!(fextnvm7 & BIT(0))) {
3505 			ew32(FEXTNVM7, fextnvm7 | BIT(0));
3506 			e1e_flush();
3507 		}
3508 	}
3509 
3510 	switch (hw->mac.type) {
3511 	case e1000_pch2lan:
3512 		/* Stable 96MHz frequency */
3513 		incperiod = INCPERIOD_96MHZ;
3514 		incvalue = INCVALUE_96MHZ;
3515 		shift = INCVALUE_SHIFT_96MHZ;
3516 		adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3517 		break;
3518 	case e1000_pch_lpt:
3519 		if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3520 			/* Stable 96MHz frequency */
3521 			incperiod = INCPERIOD_96MHZ;
3522 			incvalue = INCVALUE_96MHZ;
3523 			shift = INCVALUE_SHIFT_96MHZ;
3524 			adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3525 		} else {
3526 			/* Stable 25MHz frequency */
3527 			incperiod = INCPERIOD_25MHZ;
3528 			incvalue = INCVALUE_25MHZ;
3529 			shift = INCVALUE_SHIFT_25MHZ;
3530 			adapter->cc.shift = shift;
3531 		}
3532 		break;
3533 	case e1000_pch_spt:
3534 		/* Stable 24MHz frequency */
3535 		incperiod = INCPERIOD_24MHZ;
3536 		incvalue = INCVALUE_24MHZ;
3537 		shift = INCVALUE_SHIFT_24MHZ;
3538 		adapter->cc.shift = shift;
3539 		break;
3540 	case e1000_pch_cnp:
3541 	case e1000_pch_tgp:
3542 	case e1000_pch_adp:
3543 	case e1000_pch_mtp:
3544 	case e1000_pch_lnp:
3545 	case e1000_pch_ptp:
3546 	case e1000_pch_nvp:
3547 		if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3548 			/* Stable 24MHz frequency */
3549 			incperiod = INCPERIOD_24MHZ;
3550 			incvalue = INCVALUE_24MHZ;
3551 			shift = INCVALUE_SHIFT_24MHZ;
3552 			adapter->cc.shift = shift;
3553 		} else {
3554 			/* Stable 38400KHz frequency */
3555 			incperiod = INCPERIOD_38400KHZ;
3556 			incvalue = INCVALUE_38400KHZ;
3557 			shift = INCVALUE_SHIFT_38400KHZ;
3558 			adapter->cc.shift = shift;
3559 		}
3560 		break;
3561 	case e1000_82574:
3562 	case e1000_82583:
3563 		/* Stable 25MHz frequency */
3564 		incperiod = INCPERIOD_25MHZ;
3565 		incvalue = INCVALUE_25MHZ;
3566 		shift = INCVALUE_SHIFT_25MHZ;
3567 		adapter->cc.shift = shift;
3568 		break;
3569 	default:
3570 		return -EINVAL;
3571 	}
3572 
3573 	*timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) |
3574 		    ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK));
3575 
3576 	return 0;
3577 }
3578 
3579 /**
3580  * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3581  * @adapter: board private structure
3582  * @config: timestamp configuration
3583  *
3584  * Outgoing time stamping can be enabled and disabled. Play nice and
3585  * disable it when requested, although it shouldn't cause any overhead
3586  * when no packet needs it. At most one packet in the queue may be
3587  * marked for time stamping, otherwise it would be impossible to tell
3588  * for sure to which packet the hardware time stamp belongs.
3589  *
3590  * Incoming time stamping has to be configured via the hardware filters.
3591  * Not all combinations are supported, in particular event type has to be
3592  * specified. Matching the kind of event packet is not supported, with the
3593  * exception of "all V2 events regardless of level 2 or 4".
3594  **/
3595 static int e1000e_config_hwtstamp(struct e1000_adapter *adapter,
3596 				  struct hwtstamp_config *config)
3597 {
3598 	struct e1000_hw *hw = &adapter->hw;
3599 	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
3600 	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
3601 	u32 rxmtrl = 0;
3602 	u16 rxudp = 0;
3603 	bool is_l4 = false;
3604 	bool is_l2 = false;
3605 	u32 regval;
3606 
3607 	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3608 		return -EINVAL;
3609 
3610 	switch (config->tx_type) {
3611 	case HWTSTAMP_TX_OFF:
3612 		tsync_tx_ctl = 0;
3613 		break;
3614 	case HWTSTAMP_TX_ON:
3615 		break;
3616 	default:
3617 		return -ERANGE;
3618 	}
3619 
3620 	switch (config->rx_filter) {
3621 	case HWTSTAMP_FILTER_NONE:
3622 		tsync_rx_ctl = 0;
3623 		break;
3624 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3625 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3626 		rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE;
3627 		is_l4 = true;
3628 		break;
3629 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3630 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3631 		rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE;
3632 		is_l4 = true;
3633 		break;
3634 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3635 		/* Also time stamps V2 L2 Path Delay Request/Response */
3636 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3637 		rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3638 		is_l2 = true;
3639 		break;
3640 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3641 		/* Also time stamps V2 L2 Path Delay Request/Response. */
3642 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3643 		rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3644 		is_l2 = true;
3645 		break;
3646 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3647 		/* Hardware cannot filter just V2 L4 Sync messages */
3648 		fallthrough;
3649 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
3650 		/* Also time stamps V2 Path Delay Request/Response. */
3651 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3652 		rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3653 		is_l2 = true;
3654 		is_l4 = true;
3655 		break;
3656 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3657 		/* Hardware cannot filter just V2 L4 Delay Request messages */
3658 		fallthrough;
3659 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3660 		/* Also time stamps V2 Path Delay Request/Response. */
3661 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3662 		rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3663 		is_l2 = true;
3664 		is_l4 = true;
3665 		break;
3666 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3667 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3668 		/* Hardware cannot filter just V2 L4 or L2 Event messages */
3669 		fallthrough;
3670 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
3671 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
3672 		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
3673 		is_l2 = true;
3674 		is_l4 = true;
3675 		break;
3676 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3677 		/* For V1, the hardware can only filter Sync messages or
3678 		 * Delay Request messages but not both so fall-through to
3679 		 * time stamp all packets.
3680 		 */
3681 		fallthrough;
3682 	case HWTSTAMP_FILTER_NTP_ALL:
3683 	case HWTSTAMP_FILTER_ALL:
3684 		is_l2 = true;
3685 		is_l4 = true;
3686 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
3687 		config->rx_filter = HWTSTAMP_FILTER_ALL;
3688 		break;
3689 	default:
3690 		return -ERANGE;
3691 	}
3692 
3693 	adapter->hwtstamp_config = *config;
3694 
3695 	/* enable/disable Tx h/w time stamping */
3696 	regval = er32(TSYNCTXCTL);
3697 	regval &= ~E1000_TSYNCTXCTL_ENABLED;
3698 	regval |= tsync_tx_ctl;
3699 	ew32(TSYNCTXCTL, regval);
3700 	if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) !=
3701 	    (regval & E1000_TSYNCTXCTL_ENABLED)) {
3702 		e_err("Timesync Tx Control register not set as expected\n");
3703 		return -EAGAIN;
3704 	}
3705 
3706 	/* enable/disable Rx h/w time stamping */
3707 	regval = er32(TSYNCRXCTL);
3708 	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
3709 	regval |= tsync_rx_ctl;
3710 	ew32(TSYNCRXCTL, regval);
3711 	if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED |
3712 				 E1000_TSYNCRXCTL_TYPE_MASK)) !=
3713 	    (regval & (E1000_TSYNCRXCTL_ENABLED |
3714 		       E1000_TSYNCRXCTL_TYPE_MASK))) {
3715 		e_err("Timesync Rx Control register not set as expected\n");
3716 		return -EAGAIN;
3717 	}
3718 
3719 	/* L2: define ethertype filter for time stamped packets */
3720 	if (is_l2)
3721 		rxmtrl |= ETH_P_1588;
3722 
3723 	/* define which PTP packets get time stamped */
3724 	ew32(RXMTRL, rxmtrl);
3725 
3726 	/* Filter by destination port */
3727 	if (is_l4) {
3728 		rxudp = PTP_EV_PORT;
3729 		cpu_to_be16s(&rxudp);
3730 	}
3731 	ew32(RXUDP, rxudp);
3732 
3733 	e1e_flush();
3734 
3735 	/* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
3736 	er32(RXSTMPH);
3737 	er32(TXSTMPH);
3738 
3739 	return 0;
3740 }
3741 
3742 /**
3743  * e1000_configure - configure the hardware for Rx and Tx
3744  * @adapter: private board structure
3745  **/
3746 static void e1000_configure(struct e1000_adapter *adapter)
3747 {
3748 	struct e1000_ring *rx_ring = adapter->rx_ring;
3749 
3750 	e1000e_set_rx_mode(adapter->netdev);
3751 
3752 	e1000_restore_vlan(adapter);
3753 	e1000_init_manageability_pt(adapter);
3754 
3755 	e1000_configure_tx(adapter);
3756 
3757 	if (adapter->netdev->features & NETIF_F_RXHASH)
3758 		e1000e_setup_rss_hash(adapter);
3759 	e1000_setup_rctl(adapter);
3760 	e1000_configure_rx(adapter);
3761 	adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3762 }
3763 
3764 /**
3765  * e1000e_power_up_phy - restore link in case the phy was powered down
3766  * @adapter: address of board private structure
3767  *
3768  * The phy may be powered down to save power and turn off link when the
3769  * driver is unloaded and wake on lan is not enabled (among others)
3770  * *** this routine MUST be followed by a call to e1000e_reset ***
3771  **/
3772 void e1000e_power_up_phy(struct e1000_adapter *adapter)
3773 {
3774 	if (adapter->hw.phy.ops.power_up)
3775 		adapter->hw.phy.ops.power_up(&adapter->hw);
3776 
3777 	adapter->hw.mac.ops.setup_link(&adapter->hw);
3778 }
3779 
3780 /**
3781  * e1000_power_down_phy - Power down the PHY
3782  * @adapter: board private structure
3783  *
3784  * Power down the PHY so no link is implied when interface is down.
3785  * The PHY cannot be powered down if management or WoL is active.
3786  */
3787 static void e1000_power_down_phy(struct e1000_adapter *adapter)
3788 {
3789 	if (adapter->hw.phy.ops.power_down)
3790 		adapter->hw.phy.ops.power_down(&adapter->hw);
3791 }
3792 
3793 /**
3794  * e1000_flush_tx_ring - remove all descriptors from the tx_ring
3795  * @adapter: board private structure
3796  *
3797  * We want to clear all pending descriptors from the TX ring.
3798  * zeroing happens when the HW reads the regs. We  assign the ring itself as
3799  * the data of the next descriptor. We don't care about the data we are about
3800  * to reset the HW.
3801  */
3802 static void e1000_flush_tx_ring(struct e1000_adapter *adapter)
3803 {
3804 	struct e1000_hw *hw = &adapter->hw;
3805 	struct e1000_ring *tx_ring = adapter->tx_ring;
3806 	struct e1000_tx_desc *tx_desc = NULL;
3807 	u32 tdt, tctl, txd_lower = E1000_TXD_CMD_IFCS;
3808 	u16 size = 512;
3809 
3810 	tctl = er32(TCTL);
3811 	ew32(TCTL, tctl | E1000_TCTL_EN);
3812 	tdt = er32(TDT(0));
3813 	BUG_ON(tdt != tx_ring->next_to_use);
3814 	tx_desc =  E1000_TX_DESC(*tx_ring, tx_ring->next_to_use);
3815 	tx_desc->buffer_addr = cpu_to_le64(tx_ring->dma);
3816 
3817 	tx_desc->lower.data = cpu_to_le32(txd_lower | size);
3818 	tx_desc->upper.data = 0;
3819 	/* flush descriptors to memory before notifying the HW */
3820 	wmb();
3821 	tx_ring->next_to_use++;
3822 	if (tx_ring->next_to_use == tx_ring->count)
3823 		tx_ring->next_to_use = 0;
3824 	ew32(TDT(0), tx_ring->next_to_use);
3825 	usleep_range(200, 250);
3826 }
3827 
3828 /**
3829  * e1000_flush_rx_ring - remove all descriptors from the rx_ring
3830  * @adapter: board private structure
3831  *
3832  * Mark all descriptors in the RX ring as consumed and disable the rx ring
3833  */
3834 static void e1000_flush_rx_ring(struct e1000_adapter *adapter)
3835 {
3836 	u32 rctl, rxdctl;
3837 	struct e1000_hw *hw = &adapter->hw;
3838 
3839 	rctl = er32(RCTL);
3840 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
3841 	e1e_flush();
3842 	usleep_range(100, 150);
3843 
3844 	rxdctl = er32(RXDCTL(0));
3845 	/* zero the lower 14 bits (prefetch and host thresholds) */
3846 	rxdctl &= 0xffffc000;
3847 
3848 	/* update thresholds: prefetch threshold to 31, host threshold to 1
3849 	 * and make sure the granularity is "descriptors" and not "cache lines"
3850 	 */
3851 	rxdctl |= (0x1F | BIT(8) | E1000_RXDCTL_THRESH_UNIT_DESC);
3852 
3853 	ew32(RXDCTL(0), rxdctl);
3854 	/* momentarily enable the RX ring for the changes to take effect */
3855 	ew32(RCTL, rctl | E1000_RCTL_EN);
3856 	e1e_flush();
3857 	usleep_range(100, 150);
3858 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
3859 }
3860 
3861 /**
3862  * e1000_flush_desc_rings - remove all descriptors from the descriptor rings
3863  * @adapter: board private structure
3864  *
3865  * In i219, the descriptor rings must be emptied before resetting the HW
3866  * or before changing the device state to D3 during runtime (runtime PM).
3867  *
3868  * Failure to do this will cause the HW to enter a unit hang state which can
3869  * only be released by PCI reset on the device
3870  *
3871  */
3872 
3873 static void e1000_flush_desc_rings(struct e1000_adapter *adapter)
3874 {
3875 	u16 hang_state;
3876 	u32 fext_nvm11, tdlen;
3877 	struct e1000_hw *hw = &adapter->hw;
3878 
3879 	/* First, disable MULR fix in FEXTNVM11 */
3880 	fext_nvm11 = er32(FEXTNVM11);
3881 	fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
3882 	ew32(FEXTNVM11, fext_nvm11);
3883 	/* do nothing if we're not in faulty state, or if the queue is empty */
3884 	tdlen = er32(TDLEN(0));
3885 	pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3886 			     &hang_state);
3887 	if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen)
3888 		return;
3889 	e1000_flush_tx_ring(adapter);
3890 	/* recheck, maybe the fault is caused by the rx ring */
3891 	pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3892 			     &hang_state);
3893 	if (hang_state & FLUSH_DESC_REQUIRED)
3894 		e1000_flush_rx_ring(adapter);
3895 }
3896 
3897 /**
3898  * e1000e_systim_reset - reset the timesync registers after a hardware reset
3899  * @adapter: board private structure
3900  *
3901  * When the MAC is reset, all hardware bits for timesync will be reset to the
3902  * default values. This function will restore the settings last in place.
3903  * Since the clock SYSTIME registers are reset, we will simply restore the
3904  * cyclecounter to the kernel real clock time.
3905  **/
3906 static void e1000e_systim_reset(struct e1000_adapter *adapter)
3907 {
3908 	struct ptp_clock_info *info = &adapter->ptp_clock_info;
3909 	struct e1000_hw *hw = &adapter->hw;
3910 	unsigned long flags;
3911 	u32 timinca;
3912 	s32 ret_val;
3913 
3914 	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3915 		return;
3916 
3917 	if (info->adjfine) {
3918 		/* restore the previous ptp frequency delta */
3919 		ret_val = info->adjfine(info, adapter->ptp_delta);
3920 	} else {
3921 		/* set the default base frequency if no adjustment possible */
3922 		ret_val = e1000e_get_base_timinca(adapter, &timinca);
3923 		if (!ret_val)
3924 			ew32(TIMINCA, timinca);
3925 	}
3926 
3927 	if (ret_val) {
3928 		dev_warn(&adapter->pdev->dev,
3929 			 "Failed to restore TIMINCA clock rate delta: %d\n",
3930 			 ret_val);
3931 		return;
3932 	}
3933 
3934 	/* reset the systim ns time counter */
3935 	spin_lock_irqsave(&adapter->systim_lock, flags);
3936 	timecounter_init(&adapter->tc, &adapter->cc,
3937 			 ktime_to_ns(ktime_get_real()));
3938 	spin_unlock_irqrestore(&adapter->systim_lock, flags);
3939 
3940 	/* restore the previous hwtstamp configuration settings */
3941 	e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config);
3942 }
3943 
3944 /**
3945  * e1000e_reset - bring the hardware into a known good state
3946  * @adapter: board private structure
3947  *
3948  * This function boots the hardware and enables some settings that
3949  * require a configuration cycle of the hardware - those cannot be
3950  * set/changed during runtime. After reset the device needs to be
3951  * properly configured for Rx, Tx etc.
3952  */
3953 void e1000e_reset(struct e1000_adapter *adapter)
3954 {
3955 	struct e1000_mac_info *mac = &adapter->hw.mac;
3956 	struct e1000_fc_info *fc = &adapter->hw.fc;
3957 	struct e1000_hw *hw = &adapter->hw;
3958 	u32 tx_space, min_tx_space, min_rx_space;
3959 	u32 pba = adapter->pba;
3960 	u16 hwm;
3961 
3962 	/* reset Packet Buffer Allocation to default */
3963 	ew32(PBA, pba);
3964 
3965 	if (adapter->max_frame_size > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) {
3966 		/* To maintain wire speed transmits, the Tx FIFO should be
3967 		 * large enough to accommodate two full transmit packets,
3968 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
3969 		 * the Rx FIFO should be large enough to accommodate at least
3970 		 * one full receive packet and is similarly rounded up and
3971 		 * expressed in KB.
3972 		 */
3973 		pba = er32(PBA);
3974 		/* upper 16 bits has Tx packet buffer allocation size in KB */
3975 		tx_space = pba >> 16;
3976 		/* lower 16 bits has Rx packet buffer allocation size in KB */
3977 		pba &= 0xffff;
3978 		/* the Tx fifo also stores 16 bytes of information about the Tx
3979 		 * but don't include ethernet FCS because hardware appends it
3980 		 */
3981 		min_tx_space = (adapter->max_frame_size +
3982 				sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2;
3983 		min_tx_space = ALIGN(min_tx_space, 1024);
3984 		min_tx_space >>= 10;
3985 		/* software strips receive CRC, so leave room for it */
3986 		min_rx_space = adapter->max_frame_size;
3987 		min_rx_space = ALIGN(min_rx_space, 1024);
3988 		min_rx_space >>= 10;
3989 
3990 		/* If current Tx allocation is less than the min Tx FIFO size,
3991 		 * and the min Tx FIFO size is less than the current Rx FIFO
3992 		 * allocation, take space away from current Rx allocation
3993 		 */
3994 		if ((tx_space < min_tx_space) &&
3995 		    ((min_tx_space - tx_space) < pba)) {
3996 			pba -= min_tx_space - tx_space;
3997 
3998 			/* if short on Rx space, Rx wins and must trump Tx
3999 			 * adjustment
4000 			 */
4001 			if (pba < min_rx_space)
4002 				pba = min_rx_space;
4003 		}
4004 
4005 		ew32(PBA, pba);
4006 	}
4007 
4008 	/* flow control settings
4009 	 *
4010 	 * The high water mark must be low enough to fit one full frame
4011 	 * (or the size used for early receive) above it in the Rx FIFO.
4012 	 * Set it to the lower of:
4013 	 * - 90% of the Rx FIFO size, and
4014 	 * - the full Rx FIFO size minus one full frame
4015 	 */
4016 	if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
4017 		fc->pause_time = 0xFFFF;
4018 	else
4019 		fc->pause_time = E1000_FC_PAUSE_TIME;
4020 	fc->send_xon = true;
4021 	fc->current_mode = fc->requested_mode;
4022 
4023 	switch (hw->mac.type) {
4024 	case e1000_ich9lan:
4025 	case e1000_ich10lan:
4026 		if (adapter->netdev->mtu > ETH_DATA_LEN) {
4027 			pba = 14;
4028 			ew32(PBA, pba);
4029 			fc->high_water = 0x2800;
4030 			fc->low_water = fc->high_water - 8;
4031 			break;
4032 		}
4033 		fallthrough;
4034 	default:
4035 		hwm = min(((pba << 10) * 9 / 10),
4036 			  ((pba << 10) - adapter->max_frame_size));
4037 
4038 		fc->high_water = hwm & E1000_FCRTH_RTH;	/* 8-byte granularity */
4039 		fc->low_water = fc->high_water - 8;
4040 		break;
4041 	case e1000_pchlan:
4042 		/* Workaround PCH LOM adapter hangs with certain network
4043 		 * loads.  If hangs persist, try disabling Tx flow control.
4044 		 */
4045 		if (adapter->netdev->mtu > ETH_DATA_LEN) {
4046 			fc->high_water = 0x3500;
4047 			fc->low_water = 0x1500;
4048 		} else {
4049 			fc->high_water = 0x5000;
4050 			fc->low_water = 0x3000;
4051 		}
4052 		fc->refresh_time = 0x1000;
4053 		break;
4054 	case e1000_pch2lan:
4055 	case e1000_pch_lpt:
4056 	case e1000_pch_spt:
4057 	case e1000_pch_cnp:
4058 	case e1000_pch_tgp:
4059 	case e1000_pch_adp:
4060 	case e1000_pch_mtp:
4061 	case e1000_pch_lnp:
4062 	case e1000_pch_ptp:
4063 	case e1000_pch_nvp:
4064 		fc->refresh_time = 0xFFFF;
4065 		fc->pause_time = 0xFFFF;
4066 
4067 		if (adapter->netdev->mtu <= ETH_DATA_LEN) {
4068 			fc->high_water = 0x05C20;
4069 			fc->low_water = 0x05048;
4070 			break;
4071 		}
4072 
4073 		pba = 14;
4074 		ew32(PBA, pba);
4075 		fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH;
4076 		fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL;
4077 		break;
4078 	}
4079 
4080 	/* Alignment of Tx data is on an arbitrary byte boundary with the
4081 	 * maximum size per Tx descriptor limited only to the transmit
4082 	 * allocation of the packet buffer minus 96 bytes with an upper
4083 	 * limit of 24KB due to receive synchronization limitations.
4084 	 */
4085 	adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
4086 				       24 << 10);
4087 
4088 	/* Disable Adaptive Interrupt Moderation if 2 full packets cannot
4089 	 * fit in receive buffer.
4090 	 */
4091 	if (adapter->itr_setting & 0x3) {
4092 		if ((adapter->max_frame_size * 2) > (pba << 10)) {
4093 			if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
4094 				dev_info(&adapter->pdev->dev,
4095 					 "Interrupt Throttle Rate off\n");
4096 				adapter->flags2 |= FLAG2_DISABLE_AIM;
4097 				e1000e_write_itr(adapter, 0);
4098 			}
4099 		} else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
4100 			dev_info(&adapter->pdev->dev,
4101 				 "Interrupt Throttle Rate on\n");
4102 			adapter->flags2 &= ~FLAG2_DISABLE_AIM;
4103 			adapter->itr = 20000;
4104 			e1000e_write_itr(adapter, adapter->itr);
4105 		}
4106 	}
4107 
4108 	if (hw->mac.type >= e1000_pch_spt)
4109 		e1000_flush_desc_rings(adapter);
4110 	/* Allow time for pending master requests to run */
4111 	mac->ops.reset_hw(hw);
4112 
4113 	/* For parts with AMT enabled, let the firmware know
4114 	 * that the network interface is in control
4115 	 */
4116 	if (adapter->flags & FLAG_HAS_AMT)
4117 		e1000e_get_hw_control(adapter);
4118 
4119 	ew32(WUC, 0);
4120 
4121 	if (mac->ops.init_hw(hw))
4122 		e_err("Hardware Error\n");
4123 
4124 	e1000_update_mng_vlan(adapter);
4125 
4126 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
4127 	ew32(VET, ETH_P_8021Q);
4128 
4129 	e1000e_reset_adaptive(hw);
4130 
4131 	/* restore systim and hwtstamp settings */
4132 	e1000e_systim_reset(adapter);
4133 
4134 	/* Set EEE advertisement as appropriate */
4135 	if (adapter->flags2 & FLAG2_HAS_EEE) {
4136 		s32 ret_val;
4137 		u16 adv_addr;
4138 
4139 		switch (hw->phy.type) {
4140 		case e1000_phy_82579:
4141 			adv_addr = I82579_EEE_ADVERTISEMENT;
4142 			break;
4143 		case e1000_phy_i217:
4144 			adv_addr = I217_EEE_ADVERTISEMENT;
4145 			break;
4146 		default:
4147 			dev_err(&adapter->pdev->dev,
4148 				"Invalid PHY type setting EEE advertisement\n");
4149 			return;
4150 		}
4151 
4152 		ret_val = hw->phy.ops.acquire(hw);
4153 		if (ret_val) {
4154 			dev_err(&adapter->pdev->dev,
4155 				"EEE advertisement - unable to acquire PHY\n");
4156 			return;
4157 		}
4158 
4159 		e1000_write_emi_reg_locked(hw, adv_addr,
4160 					   hw->dev_spec.ich8lan.eee_disable ?
4161 					   0 : adapter->eee_advert);
4162 
4163 		hw->phy.ops.release(hw);
4164 	}
4165 
4166 	if (!netif_running(adapter->netdev) &&
4167 	    !test_bit(__E1000_TESTING, &adapter->state))
4168 		e1000_power_down_phy(adapter);
4169 
4170 	e1000_get_phy_info(hw);
4171 
4172 	if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
4173 	    !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
4174 		u16 phy_data = 0;
4175 		/* speed up time to link by disabling smart power down, ignore
4176 		 * the return value of this function because there is nothing
4177 		 * different we would do if it failed
4178 		 */
4179 		e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
4180 		phy_data &= ~IGP02E1000_PM_SPD;
4181 		e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
4182 	}
4183 	if (hw->mac.type >= e1000_pch_spt && adapter->int_mode == 0) {
4184 		u32 reg;
4185 
4186 		/* Fextnvm7 @ 0xe4[2] = 1 */
4187 		reg = er32(FEXTNVM7);
4188 		reg |= E1000_FEXTNVM7_SIDE_CLK_UNGATE;
4189 		ew32(FEXTNVM7, reg);
4190 		/* Fextnvm9 @ 0x5bb4[13:12] = 11 */
4191 		reg = er32(FEXTNVM9);
4192 		reg |= E1000_FEXTNVM9_IOSFSB_CLKGATE_DIS |
4193 		       E1000_FEXTNVM9_IOSFSB_CLKREQ_DIS;
4194 		ew32(FEXTNVM9, reg);
4195 	}
4196 
4197 }
4198 
4199 /**
4200  * e1000e_trigger_lsc - trigger an LSC interrupt
4201  * @adapter: board private structure
4202  *
4203  * Fire a link status change interrupt to start the watchdog.
4204  **/
4205 static void e1000e_trigger_lsc(struct e1000_adapter *adapter)
4206 {
4207 	struct e1000_hw *hw = &adapter->hw;
4208 
4209 	if (adapter->msix_entries)
4210 		ew32(ICS, E1000_ICS_LSC | E1000_ICS_OTHER);
4211 	else
4212 		ew32(ICS, E1000_ICS_LSC);
4213 }
4214 
4215 void e1000e_up(struct e1000_adapter *adapter)
4216 {
4217 	/* hardware has been reset, we need to reload some things */
4218 	e1000_configure(adapter);
4219 
4220 	clear_bit(__E1000_DOWN, &adapter->state);
4221 
4222 	if (adapter->msix_entries)
4223 		e1000_configure_msix(adapter);
4224 	e1000_irq_enable(adapter);
4225 
4226 	/* Tx queue started by watchdog timer when link is up */
4227 
4228 	e1000e_trigger_lsc(adapter);
4229 }
4230 
4231 static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
4232 {
4233 	struct e1000_hw *hw = &adapter->hw;
4234 
4235 	if (!(adapter->flags2 & FLAG2_DMA_BURST))
4236 		return;
4237 
4238 	/* flush pending descriptor writebacks to memory */
4239 	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4240 	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4241 
4242 	/* execute the writes immediately */
4243 	e1e_flush();
4244 
4245 	/* due to rare timing issues, write to TIDV/RDTR again to ensure the
4246 	 * write is successful
4247 	 */
4248 	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4249 	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4250 
4251 	/* execute the writes immediately */
4252 	e1e_flush();
4253 }
4254 
4255 static void e1000e_update_stats(struct e1000_adapter *adapter);
4256 
4257 /**
4258  * e1000e_down - quiesce the device and optionally reset the hardware
4259  * @adapter: board private structure
4260  * @reset: boolean flag to reset the hardware or not
4261  */
4262 void e1000e_down(struct e1000_adapter *adapter, bool reset)
4263 {
4264 	struct net_device *netdev = adapter->netdev;
4265 	struct e1000_hw *hw = &adapter->hw;
4266 	u32 tctl, rctl;
4267 
4268 	/* signal that we're down so the interrupt handler does not
4269 	 * reschedule our watchdog timer
4270 	 */
4271 	set_bit(__E1000_DOWN, &adapter->state);
4272 
4273 	netif_carrier_off(netdev);
4274 
4275 	/* disable receives in the hardware */
4276 	rctl = er32(RCTL);
4277 	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
4278 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
4279 	/* flush and sleep below */
4280 
4281 	netif_stop_queue(netdev);
4282 
4283 	/* disable transmits in the hardware */
4284 	tctl = er32(TCTL);
4285 	tctl &= ~E1000_TCTL_EN;
4286 	ew32(TCTL, tctl);
4287 
4288 	/* flush both disables and wait for them to finish */
4289 	e1e_flush();
4290 	usleep_range(10000, 11000);
4291 
4292 	e1000_irq_disable(adapter);
4293 
4294 	napi_synchronize(&adapter->napi);
4295 
4296 	del_timer_sync(&adapter->watchdog_timer);
4297 	del_timer_sync(&adapter->phy_info_timer);
4298 
4299 	spin_lock(&adapter->stats64_lock);
4300 	e1000e_update_stats(adapter);
4301 	spin_unlock(&adapter->stats64_lock);
4302 
4303 	e1000e_flush_descriptors(adapter);
4304 
4305 	adapter->link_speed = 0;
4306 	adapter->link_duplex = 0;
4307 
4308 	/* Disable Si errata workaround on PCHx for jumbo frame flow */
4309 	if ((hw->mac.type >= e1000_pch2lan) &&
4310 	    (adapter->netdev->mtu > ETH_DATA_LEN) &&
4311 	    e1000_lv_jumbo_workaround_ich8lan(hw, false))
4312 		e_dbg("failed to disable jumbo frame workaround mode\n");
4313 
4314 	if (!pci_channel_offline(adapter->pdev)) {
4315 		if (reset)
4316 			e1000e_reset(adapter);
4317 		else if (hw->mac.type >= e1000_pch_spt)
4318 			e1000_flush_desc_rings(adapter);
4319 	}
4320 	e1000_clean_tx_ring(adapter->tx_ring);
4321 	e1000_clean_rx_ring(adapter->rx_ring);
4322 }
4323 
4324 void e1000e_reinit_locked(struct e1000_adapter *adapter)
4325 {
4326 	might_sleep();
4327 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4328 		usleep_range(1000, 1100);
4329 	e1000e_down(adapter, true);
4330 	e1000e_up(adapter);
4331 	clear_bit(__E1000_RESETTING, &adapter->state);
4332 }
4333 
4334 /**
4335  * e1000e_sanitize_systim - sanitize raw cycle counter reads
4336  * @hw: pointer to the HW structure
4337  * @systim: PHC time value read, sanitized and returned
4338  * @sts: structure to hold system time before and after reading SYSTIML,
4339  * may be NULL
4340  *
4341  * Errata for 82574/82583 possible bad bits read from SYSTIMH/L:
4342  * check to see that the time is incrementing at a reasonable
4343  * rate and is a multiple of incvalue.
4344  **/
4345 static u64 e1000e_sanitize_systim(struct e1000_hw *hw, u64 systim,
4346 				  struct ptp_system_timestamp *sts)
4347 {
4348 	u64 time_delta, rem, temp;
4349 	u64 systim_next;
4350 	u32 incvalue;
4351 	int i;
4352 
4353 	incvalue = er32(TIMINCA) & E1000_TIMINCA_INCVALUE_MASK;
4354 	for (i = 0; i < E1000_MAX_82574_SYSTIM_REREADS; i++) {
4355 		/* latch SYSTIMH on read of SYSTIML */
4356 		ptp_read_system_prets(sts);
4357 		systim_next = (u64)er32(SYSTIML);
4358 		ptp_read_system_postts(sts);
4359 		systim_next |= (u64)er32(SYSTIMH) << 32;
4360 
4361 		time_delta = systim_next - systim;
4362 		temp = time_delta;
4363 		/* VMWare users have seen incvalue of zero, don't div / 0 */
4364 		rem = incvalue ? do_div(temp, incvalue) : (time_delta != 0);
4365 
4366 		systim = systim_next;
4367 
4368 		if ((time_delta < E1000_82574_SYSTIM_EPSILON) && (rem == 0))
4369 			break;
4370 	}
4371 
4372 	return systim;
4373 }
4374 
4375 /**
4376  * e1000e_read_systim - read SYSTIM register
4377  * @adapter: board private structure
4378  * @sts: structure which will contain system time before and after reading
4379  * SYSTIML, may be NULL
4380  **/
4381 u64 e1000e_read_systim(struct e1000_adapter *adapter,
4382 		       struct ptp_system_timestamp *sts)
4383 {
4384 	struct e1000_hw *hw = &adapter->hw;
4385 	u32 systimel, systimel_2, systimeh;
4386 	u64 systim;
4387 	/* SYSTIMH latching upon SYSTIML read does not work well.
4388 	 * This means that if SYSTIML overflows after we read it but before
4389 	 * we read SYSTIMH, the value of SYSTIMH has been incremented and we
4390 	 * will experience a huge non linear increment in the systime value
4391 	 * to fix that we test for overflow and if true, we re-read systime.
4392 	 */
4393 	ptp_read_system_prets(sts);
4394 	systimel = er32(SYSTIML);
4395 	ptp_read_system_postts(sts);
4396 	systimeh = er32(SYSTIMH);
4397 	/* Is systimel is so large that overflow is possible? */
4398 	if (systimel >= (u32)0xffffffff - E1000_TIMINCA_INCVALUE_MASK) {
4399 		ptp_read_system_prets(sts);
4400 		systimel_2 = er32(SYSTIML);
4401 		ptp_read_system_postts(sts);
4402 		if (systimel > systimel_2) {
4403 			/* There was an overflow, read again SYSTIMH, and use
4404 			 * systimel_2
4405 			 */
4406 			systimeh = er32(SYSTIMH);
4407 			systimel = systimel_2;
4408 		}
4409 	}
4410 	systim = (u64)systimel;
4411 	systim |= (u64)systimeh << 32;
4412 
4413 	if (adapter->flags2 & FLAG2_CHECK_SYSTIM_OVERFLOW)
4414 		systim = e1000e_sanitize_systim(hw, systim, sts);
4415 
4416 	return systim;
4417 }
4418 
4419 /**
4420  * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4421  * @cc: cyclecounter structure
4422  **/
4423 static u64 e1000e_cyclecounter_read(const struct cyclecounter *cc)
4424 {
4425 	struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter,
4426 						     cc);
4427 
4428 	return e1000e_read_systim(adapter, NULL);
4429 }
4430 
4431 /**
4432  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4433  * @adapter: board private structure to initialize
4434  *
4435  * e1000_sw_init initializes the Adapter private data structure.
4436  * Fields are initialized based on PCI device information and
4437  * OS network device settings (MTU size).
4438  **/
4439 static int e1000_sw_init(struct e1000_adapter *adapter)
4440 {
4441 	struct net_device *netdev = adapter->netdev;
4442 
4443 	adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
4444 	adapter->rx_ps_bsize0 = 128;
4445 	adapter->max_frame_size = netdev->mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
4446 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4447 	adapter->tx_ring_count = E1000_DEFAULT_TXD;
4448 	adapter->rx_ring_count = E1000_DEFAULT_RXD;
4449 
4450 	spin_lock_init(&adapter->stats64_lock);
4451 
4452 	e1000e_set_interrupt_capability(adapter);
4453 
4454 	if (e1000_alloc_queues(adapter))
4455 		return -ENOMEM;
4456 
4457 	/* Setup hardware time stamping cyclecounter */
4458 	if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
4459 		adapter->cc.read = e1000e_cyclecounter_read;
4460 		adapter->cc.mask = CYCLECOUNTER_MASK(64);
4461 		adapter->cc.mult = 1;
4462 		/* cc.shift set in e1000e_get_base_tininca() */
4463 
4464 		spin_lock_init(&adapter->systim_lock);
4465 		INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work);
4466 	}
4467 
4468 	/* Explicitly disable IRQ since the NIC can be in any state. */
4469 	e1000_irq_disable(adapter);
4470 
4471 	set_bit(__E1000_DOWN, &adapter->state);
4472 	return 0;
4473 }
4474 
4475 /**
4476  * e1000_intr_msi_test - Interrupt Handler
4477  * @irq: interrupt number
4478  * @data: pointer to a network interface device structure
4479  **/
4480 static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data)
4481 {
4482 	struct net_device *netdev = data;
4483 	struct e1000_adapter *adapter = netdev_priv(netdev);
4484 	struct e1000_hw *hw = &adapter->hw;
4485 	u32 icr = er32(ICR);
4486 
4487 	e_dbg("icr is %08X\n", icr);
4488 	if (icr & E1000_ICR_RXSEQ) {
4489 		adapter->flags &= ~FLAG_MSI_TEST_FAILED;
4490 		/* Force memory writes to complete before acknowledging the
4491 		 * interrupt is handled.
4492 		 */
4493 		wmb();
4494 	}
4495 
4496 	return IRQ_HANDLED;
4497 }
4498 
4499 /**
4500  * e1000_test_msi_interrupt - Returns 0 for successful test
4501  * @adapter: board private struct
4502  *
4503  * code flow taken from tg3.c
4504  **/
4505 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
4506 {
4507 	struct net_device *netdev = adapter->netdev;
4508 	struct e1000_hw *hw = &adapter->hw;
4509 	int err;
4510 
4511 	/* poll_enable hasn't been called yet, so don't need disable */
4512 	/* clear any pending events */
4513 	er32(ICR);
4514 
4515 	/* free the real vector and request a test handler */
4516 	e1000_free_irq(adapter);
4517 	e1000e_reset_interrupt_capability(adapter);
4518 
4519 	/* Assume that the test fails, if it succeeds then the test
4520 	 * MSI irq handler will unset this flag
4521 	 */
4522 	adapter->flags |= FLAG_MSI_TEST_FAILED;
4523 
4524 	err = pci_enable_msi(adapter->pdev);
4525 	if (err)
4526 		goto msi_test_failed;
4527 
4528 	err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
4529 			  netdev->name, netdev);
4530 	if (err) {
4531 		pci_disable_msi(adapter->pdev);
4532 		goto msi_test_failed;
4533 	}
4534 
4535 	/* Force memory writes to complete before enabling and firing an
4536 	 * interrupt.
4537 	 */
4538 	wmb();
4539 
4540 	e1000_irq_enable(adapter);
4541 
4542 	/* fire an unusual interrupt on the test handler */
4543 	ew32(ICS, E1000_ICS_RXSEQ);
4544 	e1e_flush();
4545 	msleep(100);
4546 
4547 	e1000_irq_disable(adapter);
4548 
4549 	rmb();			/* read flags after interrupt has been fired */
4550 
4551 	if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4552 		adapter->int_mode = E1000E_INT_MODE_LEGACY;
4553 		e_info("MSI interrupt test failed, using legacy interrupt.\n");
4554 	} else {
4555 		e_dbg("MSI interrupt test succeeded!\n");
4556 	}
4557 
4558 	free_irq(adapter->pdev->irq, netdev);
4559 	pci_disable_msi(adapter->pdev);
4560 
4561 msi_test_failed:
4562 	e1000e_set_interrupt_capability(adapter);
4563 	return e1000_request_irq(adapter);
4564 }
4565 
4566 /**
4567  * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4568  * @adapter: board private struct
4569  *
4570  * code flow taken from tg3.c, called with e1000 interrupts disabled.
4571  **/
4572 static int e1000_test_msi(struct e1000_adapter *adapter)
4573 {
4574 	int err;
4575 	u16 pci_cmd;
4576 
4577 	if (!(adapter->flags & FLAG_MSI_ENABLED))
4578 		return 0;
4579 
4580 	/* disable SERR in case the MSI write causes a master abort */
4581 	pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4582 	if (pci_cmd & PCI_COMMAND_SERR)
4583 		pci_write_config_word(adapter->pdev, PCI_COMMAND,
4584 				      pci_cmd & ~PCI_COMMAND_SERR);
4585 
4586 	err = e1000_test_msi_interrupt(adapter);
4587 
4588 	/* re-enable SERR */
4589 	if (pci_cmd & PCI_COMMAND_SERR) {
4590 		pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4591 		pci_cmd |= PCI_COMMAND_SERR;
4592 		pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
4593 	}
4594 
4595 	return err;
4596 }
4597 
4598 /**
4599  * e1000e_open - Called when a network interface is made active
4600  * @netdev: network interface device structure
4601  *
4602  * Returns 0 on success, negative value on failure
4603  *
4604  * The open entry point is called when a network interface is made
4605  * active by the system (IFF_UP).  At this point all resources needed
4606  * for transmit and receive operations are allocated, the interrupt
4607  * handler is registered with the OS, the watchdog timer is started,
4608  * and the stack is notified that the interface is ready.
4609  **/
4610 int e1000e_open(struct net_device *netdev)
4611 {
4612 	struct e1000_adapter *adapter = netdev_priv(netdev);
4613 	struct e1000_hw *hw = &adapter->hw;
4614 	struct pci_dev *pdev = adapter->pdev;
4615 	int err;
4616 
4617 	/* disallow open during test */
4618 	if (test_bit(__E1000_TESTING, &adapter->state))
4619 		return -EBUSY;
4620 
4621 	pm_runtime_get_sync(&pdev->dev);
4622 
4623 	netif_carrier_off(netdev);
4624 	netif_stop_queue(netdev);
4625 
4626 	/* allocate transmit descriptors */
4627 	err = e1000e_setup_tx_resources(adapter->tx_ring);
4628 	if (err)
4629 		goto err_setup_tx;
4630 
4631 	/* allocate receive descriptors */
4632 	err = e1000e_setup_rx_resources(adapter->rx_ring);
4633 	if (err)
4634 		goto err_setup_rx;
4635 
4636 	/* If AMT is enabled, let the firmware know that the network
4637 	 * interface is now open and reset the part to a known state.
4638 	 */
4639 	if (adapter->flags & FLAG_HAS_AMT) {
4640 		e1000e_get_hw_control(adapter);
4641 		e1000e_reset(adapter);
4642 	}
4643 
4644 	e1000e_power_up_phy(adapter);
4645 
4646 	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4647 	if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
4648 		e1000_update_mng_vlan(adapter);
4649 
4650 	/* DMA latency requirement to workaround jumbo issue */
4651 	cpu_latency_qos_add_request(&adapter->pm_qos_req, PM_QOS_DEFAULT_VALUE);
4652 
4653 	/* before we allocate an interrupt, we must be ready to handle it.
4654 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4655 	 * as soon as we call pci_request_irq, so we have to setup our
4656 	 * clean_rx handler before we do so.
4657 	 */
4658 	e1000_configure(adapter);
4659 
4660 	err = e1000_request_irq(adapter);
4661 	if (err)
4662 		goto err_req_irq;
4663 
4664 	/* Work around PCIe errata with MSI interrupts causing some chipsets to
4665 	 * ignore e1000e MSI messages, which means we need to test our MSI
4666 	 * interrupt now
4667 	 */
4668 	if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
4669 		err = e1000_test_msi(adapter);
4670 		if (err) {
4671 			e_err("Interrupt allocation failed\n");
4672 			goto err_req_irq;
4673 		}
4674 	}
4675 
4676 	/* From here on the code is the same as e1000e_up() */
4677 	clear_bit(__E1000_DOWN, &adapter->state);
4678 
4679 	napi_enable(&adapter->napi);
4680 
4681 	e1000_irq_enable(adapter);
4682 
4683 	adapter->tx_hang_recheck = false;
4684 
4685 	hw->mac.get_link_status = true;
4686 	pm_runtime_put(&pdev->dev);
4687 
4688 	e1000e_trigger_lsc(adapter);
4689 
4690 	return 0;
4691 
4692 err_req_irq:
4693 	cpu_latency_qos_remove_request(&adapter->pm_qos_req);
4694 	e1000e_release_hw_control(adapter);
4695 	e1000_power_down_phy(adapter);
4696 	e1000e_free_rx_resources(adapter->rx_ring);
4697 err_setup_rx:
4698 	e1000e_free_tx_resources(adapter->tx_ring);
4699 err_setup_tx:
4700 	e1000e_reset(adapter);
4701 	pm_runtime_put_sync(&pdev->dev);
4702 
4703 	return err;
4704 }
4705 
4706 /**
4707  * e1000e_close - Disables a network interface
4708  * @netdev: network interface device structure
4709  *
4710  * Returns 0, this is not allowed to fail
4711  *
4712  * The close entry point is called when an interface is de-activated
4713  * by the OS.  The hardware is still under the drivers control, but
4714  * needs to be disabled.  A global MAC reset is issued to stop the
4715  * hardware, and all transmit and receive resources are freed.
4716  **/
4717 int e1000e_close(struct net_device *netdev)
4718 {
4719 	struct e1000_adapter *adapter = netdev_priv(netdev);
4720 	struct pci_dev *pdev = adapter->pdev;
4721 	int count = E1000_CHECK_RESET_COUNT;
4722 
4723 	while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
4724 		usleep_range(10000, 11000);
4725 
4726 	WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4727 
4728 	pm_runtime_get_sync(&pdev->dev);
4729 
4730 	if (netif_device_present(netdev)) {
4731 		e1000e_down(adapter, true);
4732 		e1000_free_irq(adapter);
4733 
4734 		/* Link status message must follow this format */
4735 		netdev_info(netdev, "NIC Link is Down\n");
4736 	}
4737 
4738 	napi_disable(&adapter->napi);
4739 
4740 	e1000e_free_tx_resources(adapter->tx_ring);
4741 	e1000e_free_rx_resources(adapter->rx_ring);
4742 
4743 	/* kill manageability vlan ID if supported, but not if a vlan with
4744 	 * the same ID is registered on the host OS (let 8021q kill it)
4745 	 */
4746 	if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
4747 		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
4748 				       adapter->mng_vlan_id);
4749 
4750 	/* If AMT is enabled, let the firmware know that the network
4751 	 * interface is now closed
4752 	 */
4753 	if ((adapter->flags & FLAG_HAS_AMT) &&
4754 	    !test_bit(__E1000_TESTING, &adapter->state))
4755 		e1000e_release_hw_control(adapter);
4756 
4757 	cpu_latency_qos_remove_request(&adapter->pm_qos_req);
4758 
4759 	pm_runtime_put_sync(&pdev->dev);
4760 
4761 	return 0;
4762 }
4763 
4764 /**
4765  * e1000_set_mac - Change the Ethernet Address of the NIC
4766  * @netdev: network interface device structure
4767  * @p: pointer to an address structure
4768  *
4769  * Returns 0 on success, negative on failure
4770  **/
4771 static int e1000_set_mac(struct net_device *netdev, void *p)
4772 {
4773 	struct e1000_adapter *adapter = netdev_priv(netdev);
4774 	struct e1000_hw *hw = &adapter->hw;
4775 	struct sockaddr *addr = p;
4776 
4777 	if (!is_valid_ether_addr(addr->sa_data))
4778 		return -EADDRNOTAVAIL;
4779 
4780 	eth_hw_addr_set(netdev, addr->sa_data);
4781 	memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4782 
4783 	hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4784 
4785 	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4786 		/* activate the work around */
4787 		e1000e_set_laa_state_82571(&adapter->hw, 1);
4788 
4789 		/* Hold a copy of the LAA in RAR[14] This is done so that
4790 		 * between the time RAR[0] gets clobbered  and the time it
4791 		 * gets fixed (in e1000_watchdog), the actual LAA is in one
4792 		 * of the RARs and no incoming packets directed to this port
4793 		 * are dropped. Eventually the LAA will be in RAR[0] and
4794 		 * RAR[14]
4795 		 */
4796 		hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4797 				    adapter->hw.mac.rar_entry_count - 1);
4798 	}
4799 
4800 	return 0;
4801 }
4802 
4803 /**
4804  * e1000e_update_phy_task - work thread to update phy
4805  * @work: pointer to our work struct
4806  *
4807  * this worker thread exists because we must acquire a
4808  * semaphore to read the phy, which we could msleep while
4809  * waiting for it, and we can't msleep in a timer.
4810  **/
4811 static void e1000e_update_phy_task(struct work_struct *work)
4812 {
4813 	struct e1000_adapter *adapter = container_of(work,
4814 						     struct e1000_adapter,
4815 						     update_phy_task);
4816 	struct e1000_hw *hw = &adapter->hw;
4817 
4818 	if (test_bit(__E1000_DOWN, &adapter->state))
4819 		return;
4820 
4821 	e1000_get_phy_info(hw);
4822 
4823 	/* Enable EEE on 82579 after link up */
4824 	if (hw->phy.type >= e1000_phy_82579)
4825 		e1000_set_eee_pchlan(hw);
4826 }
4827 
4828 /**
4829  * e1000_update_phy_info - timre call-back to update PHY info
4830  * @t: pointer to timer_list containing private info adapter
4831  *
4832  * Need to wait a few seconds after link up to get diagnostic information from
4833  * the phy
4834  **/
4835 static void e1000_update_phy_info(struct timer_list *t)
4836 {
4837 	struct e1000_adapter *adapter = from_timer(adapter, t, phy_info_timer);
4838 
4839 	if (test_bit(__E1000_DOWN, &adapter->state))
4840 		return;
4841 
4842 	schedule_work(&adapter->update_phy_task);
4843 }
4844 
4845 /**
4846  * e1000e_update_phy_stats - Update the PHY statistics counters
4847  * @adapter: board private structure
4848  *
4849  * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4850  **/
4851 static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4852 {
4853 	struct e1000_hw *hw = &adapter->hw;
4854 	s32 ret_val;
4855 	u16 phy_data;
4856 
4857 	ret_val = hw->phy.ops.acquire(hw);
4858 	if (ret_val)
4859 		return;
4860 
4861 	/* A page set is expensive so check if already on desired page.
4862 	 * If not, set to the page with the PHY status registers.
4863 	 */
4864 	hw->phy.addr = 1;
4865 	ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4866 					   &phy_data);
4867 	if (ret_val)
4868 		goto release;
4869 	if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4870 		ret_val = hw->phy.ops.set_page(hw,
4871 					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
4872 		if (ret_val)
4873 			goto release;
4874 	}
4875 
4876 	/* Single Collision Count */
4877 	hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4878 	ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4879 	if (!ret_val)
4880 		adapter->stats.scc += phy_data;
4881 
4882 	/* Excessive Collision Count */
4883 	hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4884 	ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4885 	if (!ret_val)
4886 		adapter->stats.ecol += phy_data;
4887 
4888 	/* Multiple Collision Count */
4889 	hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4890 	ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4891 	if (!ret_val)
4892 		adapter->stats.mcc += phy_data;
4893 
4894 	/* Late Collision Count */
4895 	hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4896 	ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4897 	if (!ret_val)
4898 		adapter->stats.latecol += phy_data;
4899 
4900 	/* Collision Count - also used for adaptive IFS */
4901 	hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4902 	ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4903 	if (!ret_val)
4904 		hw->mac.collision_delta = phy_data;
4905 
4906 	/* Defer Count */
4907 	hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4908 	ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4909 	if (!ret_val)
4910 		adapter->stats.dc += phy_data;
4911 
4912 	/* Transmit with no CRS */
4913 	hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4914 	ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4915 	if (!ret_val)
4916 		adapter->stats.tncrs += phy_data;
4917 
4918 release:
4919 	hw->phy.ops.release(hw);
4920 }
4921 
4922 /**
4923  * e1000e_update_stats - Update the board statistics counters
4924  * @adapter: board private structure
4925  **/
4926 static void e1000e_update_stats(struct e1000_adapter *adapter)
4927 {
4928 	struct net_device *netdev = adapter->netdev;
4929 	struct e1000_hw *hw = &adapter->hw;
4930 	struct pci_dev *pdev = adapter->pdev;
4931 
4932 	/* Prevent stats update while adapter is being reset, or if the pci
4933 	 * connection is down.
4934 	 */
4935 	if (adapter->link_speed == 0)
4936 		return;
4937 	if (pci_channel_offline(pdev))
4938 		return;
4939 
4940 	adapter->stats.crcerrs += er32(CRCERRS);
4941 	adapter->stats.gprc += er32(GPRC);
4942 	adapter->stats.gorc += er32(GORCL);
4943 	er32(GORCH);		/* Clear gorc */
4944 	adapter->stats.bprc += er32(BPRC);
4945 	adapter->stats.mprc += er32(MPRC);
4946 	adapter->stats.roc += er32(ROC);
4947 
4948 	adapter->stats.mpc += er32(MPC);
4949 
4950 	/* Half-duplex statistics */
4951 	if (adapter->link_duplex == HALF_DUPLEX) {
4952 		if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4953 			e1000e_update_phy_stats(adapter);
4954 		} else {
4955 			adapter->stats.scc += er32(SCC);
4956 			adapter->stats.ecol += er32(ECOL);
4957 			adapter->stats.mcc += er32(MCC);
4958 			adapter->stats.latecol += er32(LATECOL);
4959 			adapter->stats.dc += er32(DC);
4960 
4961 			hw->mac.collision_delta = er32(COLC);
4962 
4963 			if ((hw->mac.type != e1000_82574) &&
4964 			    (hw->mac.type != e1000_82583))
4965 				adapter->stats.tncrs += er32(TNCRS);
4966 		}
4967 		adapter->stats.colc += hw->mac.collision_delta;
4968 	}
4969 
4970 	adapter->stats.xonrxc += er32(XONRXC);
4971 	adapter->stats.xontxc += er32(XONTXC);
4972 	adapter->stats.xoffrxc += er32(XOFFRXC);
4973 	adapter->stats.xofftxc += er32(XOFFTXC);
4974 	adapter->stats.gptc += er32(GPTC);
4975 	adapter->stats.gotc += er32(GOTCL);
4976 	er32(GOTCH);		/* Clear gotc */
4977 	adapter->stats.rnbc += er32(RNBC);
4978 	adapter->stats.ruc += er32(RUC);
4979 
4980 	adapter->stats.mptc += er32(MPTC);
4981 	adapter->stats.bptc += er32(BPTC);
4982 
4983 	/* used for adaptive IFS */
4984 
4985 	hw->mac.tx_packet_delta = er32(TPT);
4986 	adapter->stats.tpt += hw->mac.tx_packet_delta;
4987 
4988 	adapter->stats.algnerrc += er32(ALGNERRC);
4989 	adapter->stats.rxerrc += er32(RXERRC);
4990 	adapter->stats.cexterr += er32(CEXTERR);
4991 	adapter->stats.tsctc += er32(TSCTC);
4992 	adapter->stats.tsctfc += er32(TSCTFC);
4993 
4994 	/* Fill out the OS statistics structure */
4995 	netdev->stats.multicast = adapter->stats.mprc;
4996 	netdev->stats.collisions = adapter->stats.colc;
4997 
4998 	/* Rx Errors */
4999 
5000 	/* RLEC on some newer hardware can be incorrect so build
5001 	 * our own version based on RUC and ROC
5002 	 */
5003 	netdev->stats.rx_errors = adapter->stats.rxerrc +
5004 	    adapter->stats.crcerrs + adapter->stats.algnerrc +
5005 	    adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5006 	netdev->stats.rx_length_errors = adapter->stats.ruc +
5007 	    adapter->stats.roc;
5008 	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
5009 	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
5010 	netdev->stats.rx_missed_errors = adapter->stats.mpc;
5011 
5012 	/* Tx Errors */
5013 	netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol;
5014 	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
5015 	netdev->stats.tx_window_errors = adapter->stats.latecol;
5016 	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
5017 
5018 	/* Tx Dropped needs to be maintained elsewhere */
5019 
5020 	/* Management Stats */
5021 	adapter->stats.mgptc += er32(MGTPTC);
5022 	adapter->stats.mgprc += er32(MGTPRC);
5023 	adapter->stats.mgpdc += er32(MGTPDC);
5024 
5025 	/* Correctable ECC Errors */
5026 	if (hw->mac.type >= e1000_pch_lpt) {
5027 		u32 pbeccsts = er32(PBECCSTS);
5028 
5029 		adapter->corr_errors +=
5030 		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
5031 		adapter->uncorr_errors +=
5032 		    FIELD_GET(E1000_PBECCSTS_UNCORR_ERR_CNT_MASK, pbeccsts);
5033 	}
5034 }
5035 
5036 /**
5037  * e1000_phy_read_status - Update the PHY register status snapshot
5038  * @adapter: board private structure
5039  **/
5040 static void e1000_phy_read_status(struct e1000_adapter *adapter)
5041 {
5042 	struct e1000_hw *hw = &adapter->hw;
5043 	struct e1000_phy_regs *phy = &adapter->phy_regs;
5044 
5045 	if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) &&
5046 	    (er32(STATUS) & E1000_STATUS_LU) &&
5047 	    (adapter->hw.phy.media_type == e1000_media_type_copper)) {
5048 		int ret_val;
5049 
5050 		ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr);
5051 		ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr);
5052 		ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise);
5053 		ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa);
5054 		ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion);
5055 		ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000);
5056 		ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000);
5057 		ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus);
5058 		if (ret_val)
5059 			e_warn("Error reading PHY register\n");
5060 	} else {
5061 		/* Do not read PHY registers if link is not up
5062 		 * Set values to typical power-on defaults
5063 		 */
5064 		phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
5065 		phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
5066 			     BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
5067 			     BMSR_ERCAP);
5068 		phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
5069 				  ADVERTISE_ALL | ADVERTISE_CSMA);
5070 		phy->lpa = 0;
5071 		phy->expansion = EXPANSION_ENABLENPAGE;
5072 		phy->ctrl1000 = ADVERTISE_1000FULL;
5073 		phy->stat1000 = 0;
5074 		phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
5075 	}
5076 }
5077 
5078 static void e1000_print_link_info(struct e1000_adapter *adapter)
5079 {
5080 	struct e1000_hw *hw = &adapter->hw;
5081 	u32 ctrl = er32(CTRL);
5082 
5083 	/* Link status message must follow this format for user tools */
5084 	netdev_info(adapter->netdev,
5085 		    "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5086 		    adapter->link_speed,
5087 		    adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
5088 		    (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
5089 		    (ctrl & E1000_CTRL_RFCE) ? "Rx" :
5090 		    (ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
5091 }
5092 
5093 static bool e1000e_has_link(struct e1000_adapter *adapter)
5094 {
5095 	struct e1000_hw *hw = &adapter->hw;
5096 	bool link_active = false;
5097 	s32 ret_val = 0;
5098 
5099 	/* get_link_status is set on LSC (link status) interrupt or
5100 	 * Rx sequence error interrupt.  get_link_status will stay
5101 	 * true until the check_for_link establishes link
5102 	 * for copper adapters ONLY
5103 	 */
5104 	switch (hw->phy.media_type) {
5105 	case e1000_media_type_copper:
5106 		if (hw->mac.get_link_status) {
5107 			ret_val = hw->mac.ops.check_for_link(hw);
5108 			link_active = !hw->mac.get_link_status;
5109 		} else {
5110 			link_active = true;
5111 		}
5112 		break;
5113 	case e1000_media_type_fiber:
5114 		ret_val = hw->mac.ops.check_for_link(hw);
5115 		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
5116 		break;
5117 	case e1000_media_type_internal_serdes:
5118 		ret_val = hw->mac.ops.check_for_link(hw);
5119 		link_active = hw->mac.serdes_has_link;
5120 		break;
5121 	default:
5122 	case e1000_media_type_unknown:
5123 		break;
5124 	}
5125 
5126 	if ((ret_val == -E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
5127 	    (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
5128 		/* See e1000_kmrn_lock_loss_workaround_ich8lan() */
5129 		e_info("Gigabit has been disabled, downgrading speed\n");
5130 	}
5131 
5132 	return link_active;
5133 }
5134 
5135 static void e1000e_enable_receives(struct e1000_adapter *adapter)
5136 {
5137 	/* make sure the receive unit is started */
5138 	if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
5139 	    (adapter->flags & FLAG_RESTART_NOW)) {
5140 		struct e1000_hw *hw = &adapter->hw;
5141 		u32 rctl = er32(RCTL);
5142 
5143 		ew32(RCTL, rctl | E1000_RCTL_EN);
5144 		adapter->flags &= ~FLAG_RESTART_NOW;
5145 	}
5146 }
5147 
5148 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
5149 {
5150 	struct e1000_hw *hw = &adapter->hw;
5151 
5152 	/* With 82574 controllers, PHY needs to be checked periodically
5153 	 * for hung state and reset, if two calls return true
5154 	 */
5155 	if (e1000_check_phy_82574(hw))
5156 		adapter->phy_hang_count++;
5157 	else
5158 		adapter->phy_hang_count = 0;
5159 
5160 	if (adapter->phy_hang_count > 1) {
5161 		adapter->phy_hang_count = 0;
5162 		e_dbg("PHY appears hung - resetting\n");
5163 		schedule_work(&adapter->reset_task);
5164 	}
5165 }
5166 
5167 /**
5168  * e1000_watchdog - Timer Call-back
5169  * @t: pointer to timer_list containing private info adapter
5170  **/
5171 static void e1000_watchdog(struct timer_list *t)
5172 {
5173 	struct e1000_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5174 
5175 	/* Do the rest outside of interrupt context */
5176 	schedule_work(&adapter->watchdog_task);
5177 
5178 	/* TODO: make this use queue_delayed_work() */
5179 }
5180 
5181 static void e1000_watchdog_task(struct work_struct *work)
5182 {
5183 	struct e1000_adapter *adapter = container_of(work,
5184 						     struct e1000_adapter,
5185 						     watchdog_task);
5186 	struct net_device *netdev = adapter->netdev;
5187 	struct e1000_mac_info *mac = &adapter->hw.mac;
5188 	struct e1000_phy_info *phy = &adapter->hw.phy;
5189 	struct e1000_ring *tx_ring = adapter->tx_ring;
5190 	u32 dmoff_exit_timeout = 100, tries = 0;
5191 	struct e1000_hw *hw = &adapter->hw;
5192 	u32 link, tctl, pcim_state;
5193 
5194 	if (test_bit(__E1000_DOWN, &adapter->state))
5195 		return;
5196 
5197 	link = e1000e_has_link(adapter);
5198 	if ((netif_carrier_ok(netdev)) && link) {
5199 		/* Cancel scheduled suspend requests. */
5200 		pm_runtime_resume(netdev->dev.parent);
5201 
5202 		e1000e_enable_receives(adapter);
5203 		goto link_up;
5204 	}
5205 
5206 	if ((e1000e_enable_tx_pkt_filtering(hw)) &&
5207 	    (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
5208 		e1000_update_mng_vlan(adapter);
5209 
5210 	if (link) {
5211 		if (!netif_carrier_ok(netdev)) {
5212 			bool txb2b = true;
5213 
5214 			/* Cancel scheduled suspend requests. */
5215 			pm_runtime_resume(netdev->dev.parent);
5216 
5217 			/* Checking if MAC is in DMoff state*/
5218 			if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
5219 				pcim_state = er32(STATUS);
5220 				while (pcim_state & E1000_STATUS_PCIM_STATE) {
5221 					if (tries++ == dmoff_exit_timeout) {
5222 						e_dbg("Error in exiting dmoff\n");
5223 						break;
5224 					}
5225 					usleep_range(10000, 20000);
5226 					pcim_state = er32(STATUS);
5227 
5228 					/* Checking if MAC exited DMoff state */
5229 					if (!(pcim_state & E1000_STATUS_PCIM_STATE))
5230 						e1000_phy_hw_reset(&adapter->hw);
5231 				}
5232 			}
5233 
5234 			/* update snapshot of PHY registers on LSC */
5235 			e1000_phy_read_status(adapter);
5236 			mac->ops.get_link_up_info(&adapter->hw,
5237 						  &adapter->link_speed,
5238 						  &adapter->link_duplex);
5239 			e1000_print_link_info(adapter);
5240 
5241 			/* check if SmartSpeed worked */
5242 			e1000e_check_downshift(hw);
5243 			if (phy->speed_downgraded)
5244 				netdev_warn(netdev,
5245 					    "Link Speed was downgraded by SmartSpeed\n");
5246 
5247 			/* On supported PHYs, check for duplex mismatch only
5248 			 * if link has autonegotiated at 10/100 half
5249 			 */
5250 			if ((hw->phy.type == e1000_phy_igp_3 ||
5251 			     hw->phy.type == e1000_phy_bm) &&
5252 			    hw->mac.autoneg &&
5253 			    (adapter->link_speed == SPEED_10 ||
5254 			     adapter->link_speed == SPEED_100) &&
5255 			    (adapter->link_duplex == HALF_DUPLEX)) {
5256 				u16 autoneg_exp;
5257 
5258 				e1e_rphy(hw, MII_EXPANSION, &autoneg_exp);
5259 
5260 				if (!(autoneg_exp & EXPANSION_NWAY))
5261 					e_info("Autonegotiated half duplex but link partner cannot autoneg.  Try forcing full duplex if link gets many collisions.\n");
5262 			}
5263 
5264 			/* adjust timeout factor according to speed/duplex */
5265 			adapter->tx_timeout_factor = 1;
5266 			switch (adapter->link_speed) {
5267 			case SPEED_10:
5268 				txb2b = false;
5269 				adapter->tx_timeout_factor = 16;
5270 				break;
5271 			case SPEED_100:
5272 				txb2b = false;
5273 				adapter->tx_timeout_factor = 10;
5274 				break;
5275 			}
5276 
5277 			/* workaround: re-program speed mode bit after
5278 			 * link-up event
5279 			 */
5280 			if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
5281 			    !txb2b) {
5282 				u32 tarc0;
5283 
5284 				tarc0 = er32(TARC(0));
5285 				tarc0 &= ~SPEED_MODE_BIT;
5286 				ew32(TARC(0), tarc0);
5287 			}
5288 
5289 			/* enable transmits in the hardware, need to do this
5290 			 * after setting TARC(0)
5291 			 */
5292 			tctl = er32(TCTL);
5293 			tctl |= E1000_TCTL_EN;
5294 			ew32(TCTL, tctl);
5295 
5296 			/* Perform any post-link-up configuration before
5297 			 * reporting link up.
5298 			 */
5299 			if (phy->ops.cfg_on_link_up)
5300 				phy->ops.cfg_on_link_up(hw);
5301 
5302 			netif_wake_queue(netdev);
5303 			netif_carrier_on(netdev);
5304 
5305 			if (!test_bit(__E1000_DOWN, &adapter->state))
5306 				mod_timer(&adapter->phy_info_timer,
5307 					  round_jiffies(jiffies + 2 * HZ));
5308 		}
5309 	} else {
5310 		if (netif_carrier_ok(netdev)) {
5311 			adapter->link_speed = 0;
5312 			adapter->link_duplex = 0;
5313 			/* Link status message must follow this format */
5314 			netdev_info(netdev, "NIC Link is Down\n");
5315 			netif_carrier_off(netdev);
5316 			netif_stop_queue(netdev);
5317 			if (!test_bit(__E1000_DOWN, &adapter->state))
5318 				mod_timer(&adapter->phy_info_timer,
5319 					  round_jiffies(jiffies + 2 * HZ));
5320 
5321 			/* 8000ES2LAN requires a Rx packet buffer work-around
5322 			 * on link down event; reset the controller to flush
5323 			 * the Rx packet buffer.
5324 			 */
5325 			if (adapter->flags & FLAG_RX_NEEDS_RESTART)
5326 				adapter->flags |= FLAG_RESTART_NOW;
5327 			else
5328 				pm_schedule_suspend(netdev->dev.parent,
5329 						    LINK_TIMEOUT);
5330 		}
5331 	}
5332 
5333 link_up:
5334 	spin_lock(&adapter->stats64_lock);
5335 	e1000e_update_stats(adapter);
5336 
5337 	mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
5338 	adapter->tpt_old = adapter->stats.tpt;
5339 	mac->collision_delta = adapter->stats.colc - adapter->colc_old;
5340 	adapter->colc_old = adapter->stats.colc;
5341 
5342 	adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
5343 	adapter->gorc_old = adapter->stats.gorc;
5344 	adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
5345 	adapter->gotc_old = adapter->stats.gotc;
5346 	spin_unlock(&adapter->stats64_lock);
5347 
5348 	/* If the link is lost the controller stops DMA, but
5349 	 * if there is queued Tx work it cannot be done.  So
5350 	 * reset the controller to flush the Tx packet buffers.
5351 	 */
5352 	if (!netif_carrier_ok(netdev) &&
5353 	    (e1000_desc_unused(tx_ring) + 1 < tx_ring->count))
5354 		adapter->flags |= FLAG_RESTART_NOW;
5355 
5356 	/* If reset is necessary, do it outside of interrupt context. */
5357 	if (adapter->flags & FLAG_RESTART_NOW) {
5358 		schedule_work(&adapter->reset_task);
5359 		/* return immediately since reset is imminent */
5360 		return;
5361 	}
5362 
5363 	e1000e_update_adaptive(&adapter->hw);
5364 
5365 	/* Simple mode for Interrupt Throttle Rate (ITR) */
5366 	if (adapter->itr_setting == 4) {
5367 		/* Symmetric Tx/Rx gets a reduced ITR=2000;
5368 		 * Total asymmetrical Tx or Rx gets ITR=8000;
5369 		 * everyone else is between 2000-8000.
5370 		 */
5371 		u32 goc = (adapter->gotc + adapter->gorc) / 10000;
5372 		u32 dif = (adapter->gotc > adapter->gorc ?
5373 			   adapter->gotc - adapter->gorc :
5374 			   adapter->gorc - adapter->gotc) / 10000;
5375 		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
5376 
5377 		e1000e_write_itr(adapter, itr);
5378 	}
5379 
5380 	/* Cause software interrupt to ensure Rx ring is cleaned */
5381 	if (adapter->msix_entries)
5382 		ew32(ICS, adapter->rx_ring->ims_val);
5383 	else
5384 		ew32(ICS, E1000_ICS_RXDMT0);
5385 
5386 	/* flush pending descriptors to memory before detecting Tx hang */
5387 	e1000e_flush_descriptors(adapter);
5388 
5389 	/* Force detection of hung controller every watchdog period */
5390 	adapter->detect_tx_hung = true;
5391 
5392 	/* With 82571 controllers, LAA may be overwritten due to controller
5393 	 * reset from the other port. Set the appropriate LAA in RAR[0]
5394 	 */
5395 	if (e1000e_get_laa_state_82571(hw))
5396 		hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
5397 
5398 	if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
5399 		e1000e_check_82574_phy_workaround(adapter);
5400 
5401 	/* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5402 	if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) {
5403 		if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) &&
5404 		    (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) {
5405 			er32(RXSTMPH);
5406 			adapter->rx_hwtstamp_cleared++;
5407 		} else {
5408 			adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP;
5409 		}
5410 	}
5411 
5412 	/* Reset the timer */
5413 	if (!test_bit(__E1000_DOWN, &adapter->state))
5414 		mod_timer(&adapter->watchdog_timer,
5415 			  round_jiffies(jiffies + 2 * HZ));
5416 }
5417 
5418 #define E1000_TX_FLAGS_CSUM		0x00000001
5419 #define E1000_TX_FLAGS_VLAN		0x00000002
5420 #define E1000_TX_FLAGS_TSO		0x00000004
5421 #define E1000_TX_FLAGS_IPV4		0x00000008
5422 #define E1000_TX_FLAGS_NO_FCS		0x00000010
5423 #define E1000_TX_FLAGS_HWTSTAMP		0x00000020
5424 #define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
5425 #define E1000_TX_FLAGS_VLAN_SHIFT	16
5426 
5427 static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb,
5428 		     __be16 protocol)
5429 {
5430 	struct e1000_context_desc *context_desc;
5431 	struct e1000_buffer *buffer_info;
5432 	unsigned int i;
5433 	u32 cmd_length = 0;
5434 	u16 ipcse = 0, mss;
5435 	u8 ipcss, ipcso, tucss, tucso, hdr_len;
5436 	int err;
5437 
5438 	if (!skb_is_gso(skb))
5439 		return 0;
5440 
5441 	err = skb_cow_head(skb, 0);
5442 	if (err < 0)
5443 		return err;
5444 
5445 	hdr_len = skb_tcp_all_headers(skb);
5446 	mss = skb_shinfo(skb)->gso_size;
5447 	if (protocol == htons(ETH_P_IP)) {
5448 		struct iphdr *iph = ip_hdr(skb);
5449 		iph->tot_len = 0;
5450 		iph->check = 0;
5451 		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
5452 							 0, IPPROTO_TCP, 0);
5453 		cmd_length = E1000_TXD_CMD_IP;
5454 		ipcse = skb_transport_offset(skb) - 1;
5455 	} else if (skb_is_gso_v6(skb)) {
5456 		tcp_v6_gso_csum_prep(skb);
5457 		ipcse = 0;
5458 	}
5459 	ipcss = skb_network_offset(skb);
5460 	ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
5461 	tucss = skb_transport_offset(skb);
5462 	tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
5463 
5464 	cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
5465 		       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
5466 
5467 	i = tx_ring->next_to_use;
5468 	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5469 	buffer_info = &tx_ring->buffer_info[i];
5470 
5471 	context_desc->lower_setup.ip_fields.ipcss = ipcss;
5472 	context_desc->lower_setup.ip_fields.ipcso = ipcso;
5473 	context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
5474 	context_desc->upper_setup.tcp_fields.tucss = tucss;
5475 	context_desc->upper_setup.tcp_fields.tucso = tucso;
5476 	context_desc->upper_setup.tcp_fields.tucse = 0;
5477 	context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
5478 	context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
5479 	context_desc->cmd_and_length = cpu_to_le32(cmd_length);
5480 
5481 	buffer_info->time_stamp = jiffies;
5482 	buffer_info->next_to_watch = i;
5483 
5484 	i++;
5485 	if (i == tx_ring->count)
5486 		i = 0;
5487 	tx_ring->next_to_use = i;
5488 
5489 	return 1;
5490 }
5491 
5492 static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb,
5493 			  __be16 protocol)
5494 {
5495 	struct e1000_adapter *adapter = tx_ring->adapter;
5496 	struct e1000_context_desc *context_desc;
5497 	struct e1000_buffer *buffer_info;
5498 	unsigned int i;
5499 	u8 css;
5500 	u32 cmd_len = E1000_TXD_CMD_DEXT;
5501 
5502 	if (skb->ip_summed != CHECKSUM_PARTIAL)
5503 		return false;
5504 
5505 	switch (protocol) {
5506 	case cpu_to_be16(ETH_P_IP):
5507 		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
5508 			cmd_len |= E1000_TXD_CMD_TCP;
5509 		break;
5510 	case cpu_to_be16(ETH_P_IPV6):
5511 		/* XXX not handling all IPV6 headers */
5512 		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
5513 			cmd_len |= E1000_TXD_CMD_TCP;
5514 		break;
5515 	default:
5516 		if (unlikely(net_ratelimit()))
5517 			e_warn("checksum_partial proto=%x!\n",
5518 			       be16_to_cpu(protocol));
5519 		break;
5520 	}
5521 
5522 	css = skb_checksum_start_offset(skb);
5523 
5524 	i = tx_ring->next_to_use;
5525 	buffer_info = &tx_ring->buffer_info[i];
5526 	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5527 
5528 	context_desc->lower_setup.ip_config = 0;
5529 	context_desc->upper_setup.tcp_fields.tucss = css;
5530 	context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset;
5531 	context_desc->upper_setup.tcp_fields.tucse = 0;
5532 	context_desc->tcp_seg_setup.data = 0;
5533 	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
5534 
5535 	buffer_info->time_stamp = jiffies;
5536 	buffer_info->next_to_watch = i;
5537 
5538 	i++;
5539 	if (i == tx_ring->count)
5540 		i = 0;
5541 	tx_ring->next_to_use = i;
5542 
5543 	return true;
5544 }
5545 
5546 static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
5547 			unsigned int first, unsigned int max_per_txd,
5548 			unsigned int nr_frags)
5549 {
5550 	struct e1000_adapter *adapter = tx_ring->adapter;
5551 	struct pci_dev *pdev = adapter->pdev;
5552 	struct e1000_buffer *buffer_info;
5553 	unsigned int len = skb_headlen(skb);
5554 	unsigned int offset = 0, size, count = 0, i;
5555 	unsigned int f, bytecount, segs;
5556 
5557 	i = tx_ring->next_to_use;
5558 
5559 	while (len) {
5560 		buffer_info = &tx_ring->buffer_info[i];
5561 		size = min(len, max_per_txd);
5562 
5563 		buffer_info->length = size;
5564 		buffer_info->time_stamp = jiffies;
5565 		buffer_info->next_to_watch = i;
5566 		buffer_info->dma = dma_map_single(&pdev->dev,
5567 						  skb->data + offset,
5568 						  size, DMA_TO_DEVICE);
5569 		buffer_info->mapped_as_page = false;
5570 		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5571 			goto dma_error;
5572 
5573 		len -= size;
5574 		offset += size;
5575 		count++;
5576 
5577 		if (len) {
5578 			i++;
5579 			if (i == tx_ring->count)
5580 				i = 0;
5581 		}
5582 	}
5583 
5584 	for (f = 0; f < nr_frags; f++) {
5585 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
5586 
5587 		len = skb_frag_size(frag);
5588 		offset = 0;
5589 
5590 		while (len) {
5591 			i++;
5592 			if (i == tx_ring->count)
5593 				i = 0;
5594 
5595 			buffer_info = &tx_ring->buffer_info[i];
5596 			size = min(len, max_per_txd);
5597 
5598 			buffer_info->length = size;
5599 			buffer_info->time_stamp = jiffies;
5600 			buffer_info->next_to_watch = i;
5601 			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
5602 							    offset, size,
5603 							    DMA_TO_DEVICE);
5604 			buffer_info->mapped_as_page = true;
5605 			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5606 				goto dma_error;
5607 
5608 			len -= size;
5609 			offset += size;
5610 			count++;
5611 		}
5612 	}
5613 
5614 	segs = skb_shinfo(skb)->gso_segs ? : 1;
5615 	/* multiply data chunks by size of headers */
5616 	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
5617 
5618 	tx_ring->buffer_info[i].skb = skb;
5619 	tx_ring->buffer_info[i].segs = segs;
5620 	tx_ring->buffer_info[i].bytecount = bytecount;
5621 	tx_ring->buffer_info[first].next_to_watch = i;
5622 
5623 	return count;
5624 
5625 dma_error:
5626 	dev_err(&pdev->dev, "Tx DMA map failed\n");
5627 	buffer_info->dma = 0;
5628 	if (count)
5629 		count--;
5630 
5631 	while (count--) {
5632 		if (i == 0)
5633 			i += tx_ring->count;
5634 		i--;
5635 		buffer_info = &tx_ring->buffer_info[i];
5636 		e1000_put_txbuf(tx_ring, buffer_info, true);
5637 	}
5638 
5639 	return 0;
5640 }
5641 
5642 static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
5643 {
5644 	struct e1000_adapter *adapter = tx_ring->adapter;
5645 	struct e1000_tx_desc *tx_desc = NULL;
5646 	struct e1000_buffer *buffer_info;
5647 	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
5648 	unsigned int i;
5649 
5650 	if (tx_flags & E1000_TX_FLAGS_TSO) {
5651 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
5652 		    E1000_TXD_CMD_TSE;
5653 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5654 
5655 		if (tx_flags & E1000_TX_FLAGS_IPV4)
5656 			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
5657 	}
5658 
5659 	if (tx_flags & E1000_TX_FLAGS_CSUM) {
5660 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5661 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5662 	}
5663 
5664 	if (tx_flags & E1000_TX_FLAGS_VLAN) {
5665 		txd_lower |= E1000_TXD_CMD_VLE;
5666 		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
5667 	}
5668 
5669 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5670 		txd_lower &= ~(E1000_TXD_CMD_IFCS);
5671 
5672 	if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) {
5673 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5674 		txd_upper |= E1000_TXD_EXTCMD_TSTAMP;
5675 	}
5676 
5677 	i = tx_ring->next_to_use;
5678 
5679 	do {
5680 		buffer_info = &tx_ring->buffer_info[i];
5681 		tx_desc = E1000_TX_DESC(*tx_ring, i);
5682 		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
5683 		tx_desc->lower.data = cpu_to_le32(txd_lower |
5684 						  buffer_info->length);
5685 		tx_desc->upper.data = cpu_to_le32(txd_upper);
5686 
5687 		i++;
5688 		if (i == tx_ring->count)
5689 			i = 0;
5690 	} while (--count > 0);
5691 
5692 	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
5693 
5694 	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5695 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5696 		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
5697 
5698 	/* Force memory writes to complete before letting h/w
5699 	 * know there are new descriptors to fetch.  (Only
5700 	 * applicable for weak-ordered memory model archs,
5701 	 * such as IA-64).
5702 	 */
5703 	wmb();
5704 
5705 	tx_ring->next_to_use = i;
5706 }
5707 
5708 #define MINIMUM_DHCP_PACKET_SIZE 282
5709 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
5710 				    struct sk_buff *skb)
5711 {
5712 	struct e1000_hw *hw = &adapter->hw;
5713 	u16 length, offset;
5714 
5715 	if (skb_vlan_tag_present(skb) &&
5716 	    !((skb_vlan_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
5717 	      (adapter->hw.mng_cookie.status &
5718 	       E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
5719 		return 0;
5720 
5721 	if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
5722 		return 0;
5723 
5724 	if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP))
5725 		return 0;
5726 
5727 	{
5728 		const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14);
5729 		struct udphdr *udp;
5730 
5731 		if (ip->protocol != IPPROTO_UDP)
5732 			return 0;
5733 
5734 		udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
5735 		if (ntohs(udp->dest) != 67)
5736 			return 0;
5737 
5738 		offset = (u8 *)udp + 8 - skb->data;
5739 		length = skb->len - offset;
5740 		return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
5741 	}
5742 
5743 	return 0;
5744 }
5745 
5746 static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5747 {
5748 	struct e1000_adapter *adapter = tx_ring->adapter;
5749 
5750 	netif_stop_queue(adapter->netdev);
5751 	/* Herbert's original patch had:
5752 	 *  smp_mb__after_netif_stop_queue();
5753 	 * but since that doesn't exist yet, just open code it.
5754 	 */
5755 	smp_mb();
5756 
5757 	/* We need to check again in a case another CPU has just
5758 	 * made room available.
5759 	 */
5760 	if (e1000_desc_unused(tx_ring) < size)
5761 		return -EBUSY;
5762 
5763 	/* A reprieve! */
5764 	netif_start_queue(adapter->netdev);
5765 	++adapter->restart_queue;
5766 	return 0;
5767 }
5768 
5769 static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5770 {
5771 	BUG_ON(size > tx_ring->count);
5772 
5773 	if (e1000_desc_unused(tx_ring) >= size)
5774 		return 0;
5775 	return __e1000_maybe_stop_tx(tx_ring, size);
5776 }
5777 
5778 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5779 				    struct net_device *netdev)
5780 {
5781 	struct e1000_adapter *adapter = netdev_priv(netdev);
5782 	struct e1000_ring *tx_ring = adapter->tx_ring;
5783 	unsigned int first;
5784 	unsigned int tx_flags = 0;
5785 	unsigned int len = skb_headlen(skb);
5786 	unsigned int nr_frags;
5787 	unsigned int mss;
5788 	int count = 0;
5789 	int tso;
5790 	unsigned int f;
5791 	__be16 protocol = vlan_get_protocol(skb);
5792 
5793 	if (test_bit(__E1000_DOWN, &adapter->state)) {
5794 		dev_kfree_skb_any(skb);
5795 		return NETDEV_TX_OK;
5796 	}
5797 
5798 	if (skb->len <= 0) {
5799 		dev_kfree_skb_any(skb);
5800 		return NETDEV_TX_OK;
5801 	}
5802 
5803 	/* The minimum packet size with TCTL.PSP set is 17 bytes so
5804 	 * pad skb in order to meet this minimum size requirement
5805 	 */
5806 	if (skb_put_padto(skb, 17))
5807 		return NETDEV_TX_OK;
5808 
5809 	mss = skb_shinfo(skb)->gso_size;
5810 	if (mss) {
5811 		u8 hdr_len;
5812 
5813 		/* TSO Workaround for 82571/2/3 Controllers -- if skb->data
5814 		 * points to just header, pull a few bytes of payload from
5815 		 * frags into skb->data
5816 		 */
5817 		hdr_len = skb_tcp_all_headers(skb);
5818 		/* we do this workaround for ES2LAN, but it is un-necessary,
5819 		 * avoiding it could save a lot of cycles
5820 		 */
5821 		if (skb->data_len && (hdr_len == len)) {
5822 			unsigned int pull_size;
5823 
5824 			pull_size = min_t(unsigned int, 4, skb->data_len);
5825 			if (!__pskb_pull_tail(skb, pull_size)) {
5826 				e_err("__pskb_pull_tail failed.\n");
5827 				dev_kfree_skb_any(skb);
5828 				return NETDEV_TX_OK;
5829 			}
5830 			len = skb_headlen(skb);
5831 		}
5832 	}
5833 
5834 	/* reserve a descriptor for the offload context */
5835 	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5836 		count++;
5837 	count++;
5838 
5839 	count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
5840 
5841 	nr_frags = skb_shinfo(skb)->nr_frags;
5842 	for (f = 0; f < nr_frags; f++)
5843 		count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5844 				      adapter->tx_fifo_limit);
5845 
5846 	if (adapter->hw.mac.tx_pkt_filtering)
5847 		e1000_transfer_dhcp_info(adapter, skb);
5848 
5849 	/* need: count + 2 desc gap to keep tail from touching
5850 	 * head, otherwise try next time
5851 	 */
5852 	if (e1000_maybe_stop_tx(tx_ring, count + 2))
5853 		return NETDEV_TX_BUSY;
5854 
5855 	if (skb_vlan_tag_present(skb)) {
5856 		tx_flags |= E1000_TX_FLAGS_VLAN;
5857 		tx_flags |= (skb_vlan_tag_get(skb) <<
5858 			     E1000_TX_FLAGS_VLAN_SHIFT);
5859 	}
5860 
5861 	first = tx_ring->next_to_use;
5862 
5863 	tso = e1000_tso(tx_ring, skb, protocol);
5864 	if (tso < 0) {
5865 		dev_kfree_skb_any(skb);
5866 		return NETDEV_TX_OK;
5867 	}
5868 
5869 	if (tso)
5870 		tx_flags |= E1000_TX_FLAGS_TSO;
5871 	else if (e1000_tx_csum(tx_ring, skb, protocol))
5872 		tx_flags |= E1000_TX_FLAGS_CSUM;
5873 
5874 	/* Old method was to assume IPv4 packet by default if TSO was enabled.
5875 	 * 82571 hardware supports TSO capabilities for IPv6 as well...
5876 	 * no longer assume, we must.
5877 	 */
5878 	if (protocol == htons(ETH_P_IP))
5879 		tx_flags |= E1000_TX_FLAGS_IPV4;
5880 
5881 	if (unlikely(skb->no_fcs))
5882 		tx_flags |= E1000_TX_FLAGS_NO_FCS;
5883 
5884 	/* if count is 0 then mapping error has occurred */
5885 	count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5886 			     nr_frags);
5887 	if (count) {
5888 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
5889 		    (adapter->flags & FLAG_HAS_HW_TIMESTAMP)) {
5890 			if (!adapter->tx_hwtstamp_skb) {
5891 				skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5892 				tx_flags |= E1000_TX_FLAGS_HWTSTAMP;
5893 				adapter->tx_hwtstamp_skb = skb_get(skb);
5894 				adapter->tx_hwtstamp_start = jiffies;
5895 				schedule_work(&adapter->tx_hwtstamp_work);
5896 			} else {
5897 				adapter->tx_hwtstamp_skipped++;
5898 			}
5899 		}
5900 
5901 		skb_tx_timestamp(skb);
5902 
5903 		netdev_sent_queue(netdev, skb->len);
5904 		e1000_tx_queue(tx_ring, tx_flags, count);
5905 		/* Make sure there is space in the ring for the next send. */
5906 		e1000_maybe_stop_tx(tx_ring,
5907 				    ((MAX_SKB_FRAGS + 1) *
5908 				     DIV_ROUND_UP(PAGE_SIZE,
5909 						  adapter->tx_fifo_limit) + 4));
5910 
5911 		if (!netdev_xmit_more() ||
5912 		    netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
5913 			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
5914 				e1000e_update_tdt_wa(tx_ring,
5915 						     tx_ring->next_to_use);
5916 			else
5917 				writel(tx_ring->next_to_use, tx_ring->tail);
5918 		}
5919 	} else {
5920 		dev_kfree_skb_any(skb);
5921 		tx_ring->buffer_info[first].time_stamp = 0;
5922 		tx_ring->next_to_use = first;
5923 	}
5924 
5925 	return NETDEV_TX_OK;
5926 }
5927 
5928 /**
5929  * e1000_tx_timeout - Respond to a Tx Hang
5930  * @netdev: network interface device structure
5931  * @txqueue: index of the hung queue (unused)
5932  **/
5933 static void e1000_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
5934 {
5935 	struct e1000_adapter *adapter = netdev_priv(netdev);
5936 
5937 	/* Do the reset outside of interrupt context */
5938 	adapter->tx_timeout_count++;
5939 	schedule_work(&adapter->reset_task);
5940 }
5941 
5942 static void e1000_reset_task(struct work_struct *work)
5943 {
5944 	struct e1000_adapter *adapter;
5945 	adapter = container_of(work, struct e1000_adapter, reset_task);
5946 
5947 	rtnl_lock();
5948 	/* don't run the task if already down */
5949 	if (test_bit(__E1000_DOWN, &adapter->state)) {
5950 		rtnl_unlock();
5951 		return;
5952 	}
5953 
5954 	if (!(adapter->flags & FLAG_RESTART_NOW)) {
5955 		e1000e_dump(adapter);
5956 		e_err("Reset adapter unexpectedly\n");
5957 	}
5958 	e1000e_reinit_locked(adapter);
5959 	rtnl_unlock();
5960 }
5961 
5962 /**
5963  * e1000e_get_stats64 - Get System Network Statistics
5964  * @netdev: network interface device structure
5965  * @stats: rtnl_link_stats64 pointer
5966  *
5967  * Returns the address of the device statistics structure.
5968  **/
5969 void e1000e_get_stats64(struct net_device *netdev,
5970 			struct rtnl_link_stats64 *stats)
5971 {
5972 	struct e1000_adapter *adapter = netdev_priv(netdev);
5973 
5974 	spin_lock(&adapter->stats64_lock);
5975 	e1000e_update_stats(adapter);
5976 	/* Fill out the OS statistics structure */
5977 	stats->rx_bytes = adapter->stats.gorc;
5978 	stats->rx_packets = adapter->stats.gprc;
5979 	stats->tx_bytes = adapter->stats.gotc;
5980 	stats->tx_packets = adapter->stats.gptc;
5981 	stats->multicast = adapter->stats.mprc;
5982 	stats->collisions = adapter->stats.colc;
5983 
5984 	/* Rx Errors */
5985 
5986 	/* RLEC on some newer hardware can be incorrect so build
5987 	 * our own version based on RUC and ROC
5988 	 */
5989 	stats->rx_errors = adapter->stats.rxerrc +
5990 	    adapter->stats.crcerrs + adapter->stats.algnerrc +
5991 	    adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5992 	stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc;
5993 	stats->rx_crc_errors = adapter->stats.crcerrs;
5994 	stats->rx_frame_errors = adapter->stats.algnerrc;
5995 	stats->rx_missed_errors = adapter->stats.mpc;
5996 
5997 	/* Tx Errors */
5998 	stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol;
5999 	stats->tx_aborted_errors = adapter->stats.ecol;
6000 	stats->tx_window_errors = adapter->stats.latecol;
6001 	stats->tx_carrier_errors = adapter->stats.tncrs;
6002 
6003 	/* Tx Dropped needs to be maintained elsewhere */
6004 
6005 	spin_unlock(&adapter->stats64_lock);
6006 }
6007 
6008 /**
6009  * e1000_change_mtu - Change the Maximum Transfer Unit
6010  * @netdev: network interface device structure
6011  * @new_mtu: new value for maximum frame size
6012  *
6013  * Returns 0 on success, negative on failure
6014  **/
6015 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
6016 {
6017 	struct e1000_adapter *adapter = netdev_priv(netdev);
6018 	int max_frame = new_mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
6019 
6020 	/* Jumbo frame support */
6021 	if ((new_mtu > ETH_DATA_LEN) &&
6022 	    !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
6023 		e_err("Jumbo Frames not supported.\n");
6024 		return -EINVAL;
6025 	}
6026 
6027 	/* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
6028 	if ((adapter->hw.mac.type >= e1000_pch2lan) &&
6029 	    !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
6030 	    (new_mtu > ETH_DATA_LEN)) {
6031 		e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
6032 		return -EINVAL;
6033 	}
6034 
6035 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
6036 		usleep_range(1000, 1100);
6037 	/* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
6038 	adapter->max_frame_size = max_frame;
6039 	netdev_dbg(netdev, "changing MTU from %d to %d\n",
6040 		   netdev->mtu, new_mtu);
6041 	netdev->mtu = new_mtu;
6042 
6043 	pm_runtime_get_sync(netdev->dev.parent);
6044 
6045 	if (netif_running(netdev))
6046 		e1000e_down(adapter, true);
6047 
6048 	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
6049 	 * means we reserve 2 more, this pushes us to allocate from the next
6050 	 * larger slab size.
6051 	 * i.e. RXBUFFER_2048 --> size-4096 slab
6052 	 * However with the new *_jumbo_rx* routines, jumbo receives will use
6053 	 * fragmented skbs
6054 	 */
6055 
6056 	if (max_frame <= 2048)
6057 		adapter->rx_buffer_len = 2048;
6058 	else
6059 		adapter->rx_buffer_len = 4096;
6060 
6061 	/* adjust allocation if LPE protects us, and we aren't using SBP */
6062 	if (max_frame <= (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN))
6063 		adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
6064 
6065 	if (netif_running(netdev))
6066 		e1000e_up(adapter);
6067 	else
6068 		e1000e_reset(adapter);
6069 
6070 	pm_runtime_put_sync(netdev->dev.parent);
6071 
6072 	clear_bit(__E1000_RESETTING, &adapter->state);
6073 
6074 	return 0;
6075 }
6076 
6077 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
6078 			   int cmd)
6079 {
6080 	struct e1000_adapter *adapter = netdev_priv(netdev);
6081 	struct mii_ioctl_data *data = if_mii(ifr);
6082 
6083 	if (adapter->hw.phy.media_type != e1000_media_type_copper)
6084 		return -EOPNOTSUPP;
6085 
6086 	switch (cmd) {
6087 	case SIOCGMIIPHY:
6088 		data->phy_id = adapter->hw.phy.addr;
6089 		break;
6090 	case SIOCGMIIREG:
6091 		e1000_phy_read_status(adapter);
6092 
6093 		switch (data->reg_num & 0x1F) {
6094 		case MII_BMCR:
6095 			data->val_out = adapter->phy_regs.bmcr;
6096 			break;
6097 		case MII_BMSR:
6098 			data->val_out = adapter->phy_regs.bmsr;
6099 			break;
6100 		case MII_PHYSID1:
6101 			data->val_out = (adapter->hw.phy.id >> 16);
6102 			break;
6103 		case MII_PHYSID2:
6104 			data->val_out = (adapter->hw.phy.id & 0xFFFF);
6105 			break;
6106 		case MII_ADVERTISE:
6107 			data->val_out = adapter->phy_regs.advertise;
6108 			break;
6109 		case MII_LPA:
6110 			data->val_out = adapter->phy_regs.lpa;
6111 			break;
6112 		case MII_EXPANSION:
6113 			data->val_out = adapter->phy_regs.expansion;
6114 			break;
6115 		case MII_CTRL1000:
6116 			data->val_out = adapter->phy_regs.ctrl1000;
6117 			break;
6118 		case MII_STAT1000:
6119 			data->val_out = adapter->phy_regs.stat1000;
6120 			break;
6121 		case MII_ESTATUS:
6122 			data->val_out = adapter->phy_regs.estatus;
6123 			break;
6124 		default:
6125 			return -EIO;
6126 		}
6127 		break;
6128 	case SIOCSMIIREG:
6129 	default:
6130 		return -EOPNOTSUPP;
6131 	}
6132 	return 0;
6133 }
6134 
6135 /**
6136  * e1000e_hwtstamp_set - control hardware time stamping
6137  * @netdev: network interface device structure
6138  * @ifr: interface request
6139  *
6140  * Outgoing time stamping can be enabled and disabled. Play nice and
6141  * disable it when requested, although it shouldn't cause any overhead
6142  * when no packet needs it. At most one packet in the queue may be
6143  * marked for time stamping, otherwise it would be impossible to tell
6144  * for sure to which packet the hardware time stamp belongs.
6145  *
6146  * Incoming time stamping has to be configured via the hardware filters.
6147  * Not all combinations are supported, in particular event type has to be
6148  * specified. Matching the kind of event packet is not supported, with the
6149  * exception of "all V2 events regardless of level 2 or 4".
6150  **/
6151 static int e1000e_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
6152 {
6153 	struct e1000_adapter *adapter = netdev_priv(netdev);
6154 	struct hwtstamp_config config;
6155 	int ret_val;
6156 
6157 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
6158 		return -EFAULT;
6159 
6160 	ret_val = e1000e_config_hwtstamp(adapter, &config);
6161 	if (ret_val)
6162 		return ret_val;
6163 
6164 	switch (config.rx_filter) {
6165 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6166 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6167 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
6168 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6169 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6170 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6171 		/* With V2 type filters which specify a Sync or Delay Request,
6172 		 * Path Delay Request/Response messages are also time stamped
6173 		 * by hardware so notify the caller the requested packets plus
6174 		 * some others are time stamped.
6175 		 */
6176 		config.rx_filter = HWTSTAMP_FILTER_SOME;
6177 		break;
6178 	default:
6179 		break;
6180 	}
6181 
6182 	return copy_to_user(ifr->ifr_data, &config,
6183 			    sizeof(config)) ? -EFAULT : 0;
6184 }
6185 
6186 static int e1000e_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
6187 {
6188 	struct e1000_adapter *adapter = netdev_priv(netdev);
6189 
6190 	return copy_to_user(ifr->ifr_data, &adapter->hwtstamp_config,
6191 			    sizeof(adapter->hwtstamp_config)) ? -EFAULT : 0;
6192 }
6193 
6194 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6195 {
6196 	switch (cmd) {
6197 	case SIOCGMIIPHY:
6198 	case SIOCGMIIREG:
6199 	case SIOCSMIIREG:
6200 		return e1000_mii_ioctl(netdev, ifr, cmd);
6201 	case SIOCSHWTSTAMP:
6202 		return e1000e_hwtstamp_set(netdev, ifr);
6203 	case SIOCGHWTSTAMP:
6204 		return e1000e_hwtstamp_get(netdev, ifr);
6205 	default:
6206 		return -EOPNOTSUPP;
6207 	}
6208 }
6209 
6210 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
6211 {
6212 	struct e1000_hw *hw = &adapter->hw;
6213 	u32 i, mac_reg, wuc;
6214 	u16 phy_reg, wuc_enable;
6215 	int retval;
6216 
6217 	/* copy MAC RARs to PHY RARs */
6218 	e1000_copy_rx_addrs_to_phy_ich8lan(hw);
6219 
6220 	retval = hw->phy.ops.acquire(hw);
6221 	if (retval) {
6222 		e_err("Could not acquire PHY\n");
6223 		return retval;
6224 	}
6225 
6226 	/* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
6227 	retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6228 	if (retval)
6229 		goto release;
6230 
6231 	/* copy MAC MTA to PHY MTA - only needed for pchlan */
6232 	for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
6233 		mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
6234 		hw->phy.ops.write_reg_page(hw, BM_MTA(i),
6235 					   (u16)(mac_reg & 0xFFFF));
6236 		hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
6237 					   (u16)((mac_reg >> 16) & 0xFFFF));
6238 	}
6239 
6240 	/* configure PHY Rx Control register */
6241 	hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
6242 	mac_reg = er32(RCTL);
6243 	if (mac_reg & E1000_RCTL_UPE)
6244 		phy_reg |= BM_RCTL_UPE;
6245 	if (mac_reg & E1000_RCTL_MPE)
6246 		phy_reg |= BM_RCTL_MPE;
6247 	phy_reg &= ~(BM_RCTL_MO_MASK);
6248 	if (mac_reg & E1000_RCTL_MO_3)
6249 		phy_reg |= (FIELD_GET(E1000_RCTL_MO_3, mac_reg)
6250 			    << BM_RCTL_MO_SHIFT);
6251 	if (mac_reg & E1000_RCTL_BAM)
6252 		phy_reg |= BM_RCTL_BAM;
6253 	if (mac_reg & E1000_RCTL_PMCF)
6254 		phy_reg |= BM_RCTL_PMCF;
6255 	mac_reg = er32(CTRL);
6256 	if (mac_reg & E1000_CTRL_RFCE)
6257 		phy_reg |= BM_RCTL_RFCE;
6258 	hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
6259 
6260 	wuc = E1000_WUC_PME_EN;
6261 	if (wufc & (E1000_WUFC_MAG | E1000_WUFC_LNKC))
6262 		wuc |= E1000_WUC_APME;
6263 
6264 	/* enable PHY wakeup in MAC register */
6265 	ew32(WUFC, wufc);
6266 	ew32(WUC, (E1000_WUC_PHY_WAKE | E1000_WUC_APMPME |
6267 		   E1000_WUC_PME_STATUS | wuc));
6268 
6269 	/* configure and enable PHY wakeup in PHY registers */
6270 	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
6271 	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, wuc);
6272 
6273 	/* activate PHY wakeup */
6274 	wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
6275 	retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6276 	if (retval)
6277 		e_err("Could not set PHY Host Wakeup bit\n");
6278 release:
6279 	hw->phy.ops.release(hw);
6280 
6281 	return retval;
6282 }
6283 
6284 static void e1000e_flush_lpic(struct pci_dev *pdev)
6285 {
6286 	struct net_device *netdev = pci_get_drvdata(pdev);
6287 	struct e1000_adapter *adapter = netdev_priv(netdev);
6288 	struct e1000_hw *hw = &adapter->hw;
6289 	u32 ret_val;
6290 
6291 	pm_runtime_get_sync(netdev->dev.parent);
6292 
6293 	ret_val = hw->phy.ops.acquire(hw);
6294 	if (ret_val)
6295 		goto fl_out;
6296 
6297 	pr_info("EEE TX LPI TIMER: %08X\n",
6298 		er32(LPIC) >> E1000_LPIC_LPIET_SHIFT);
6299 
6300 	hw->phy.ops.release(hw);
6301 
6302 fl_out:
6303 	pm_runtime_put_sync(netdev->dev.parent);
6304 }
6305 
6306 /* S0ix implementation */
6307 static void e1000e_s0ix_entry_flow(struct e1000_adapter *adapter)
6308 {
6309 	struct e1000_hw *hw = &adapter->hw;
6310 	u32 mac_data;
6311 	u16 phy_data;
6312 
6313 	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID &&
6314 	    hw->mac.type >= e1000_pch_adp) {
6315 		/* Request ME configure the device for S0ix */
6316 		mac_data = er32(H2ME);
6317 		mac_data |= E1000_H2ME_START_DPG;
6318 		mac_data &= ~E1000_H2ME_EXIT_DPG;
6319 		trace_e1000e_trace_mac_register(mac_data);
6320 		ew32(H2ME, mac_data);
6321 	} else {
6322 		/* Request driver configure the device to S0ix */
6323 		/* Disable the periodic inband message,
6324 		 * don't request PCIe clock in K1 page770_17[10:9] = 10b
6325 		 */
6326 		e1e_rphy(hw, HV_PM_CTRL, &phy_data);
6327 		phy_data &= ~HV_PM_CTRL_K1_CLK_REQ;
6328 		phy_data |= BIT(10);
6329 		e1e_wphy(hw, HV_PM_CTRL, phy_data);
6330 
6331 		/* Make sure we don't exit K1 every time a new packet arrives
6332 		 * 772_29[5] = 1 CS_Mode_Stay_In_K1
6333 		 */
6334 		e1e_rphy(hw, I217_CGFREG, &phy_data);
6335 		phy_data |= BIT(5);
6336 		e1e_wphy(hw, I217_CGFREG, phy_data);
6337 
6338 		/* Change the MAC/PHY interface to SMBus
6339 		 * Force the SMBus in PHY page769_23[0] = 1
6340 		 * Force the SMBus in MAC CTRL_EXT[11] = 1
6341 		 */
6342 		e1e_rphy(hw, CV_SMB_CTRL, &phy_data);
6343 		phy_data |= CV_SMB_CTRL_FORCE_SMBUS;
6344 		e1e_wphy(hw, CV_SMB_CTRL, phy_data);
6345 		mac_data = er32(CTRL_EXT);
6346 		mac_data |= E1000_CTRL_EXT_FORCE_SMBUS;
6347 		ew32(CTRL_EXT, mac_data);
6348 
6349 		/* DFT control: PHY bit: page769_20[0] = 1
6350 		 * page769_20[7] - PHY PLL stop
6351 		 * page769_20[8] - PHY go to the electrical idle
6352 		 * page769_20[9] - PHY serdes disable
6353 		 * Gate PPW via EXTCNF_CTRL - set 0x0F00[7] = 1
6354 		 */
6355 		e1e_rphy(hw, I82579_DFT_CTRL, &phy_data);
6356 		phy_data |= BIT(0);
6357 		phy_data |= BIT(7);
6358 		phy_data |= BIT(8);
6359 		phy_data |= BIT(9);
6360 		e1e_wphy(hw, I82579_DFT_CTRL, phy_data);
6361 
6362 		mac_data = er32(EXTCNF_CTRL);
6363 		mac_data |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
6364 		ew32(EXTCNF_CTRL, mac_data);
6365 
6366 		/* Disable disconnected cable conditioning for Power Gating */
6367 		mac_data = er32(DPGFR);
6368 		mac_data |= BIT(2);
6369 		ew32(DPGFR, mac_data);
6370 
6371 		/* Enable the Dynamic Clock Gating in the DMA and MAC */
6372 		mac_data = er32(CTRL_EXT);
6373 		mac_data |= E1000_CTRL_EXT_DMA_DYN_CLK_EN;
6374 		ew32(CTRL_EXT, mac_data);
6375 	}
6376 
6377 	/* Enable the Dynamic Power Gating in the MAC */
6378 	mac_data = er32(FEXTNVM7);
6379 	mac_data |= BIT(22);
6380 	ew32(FEXTNVM7, mac_data);
6381 
6382 	/* Don't wake from dynamic Power Gating with clock request */
6383 	mac_data = er32(FEXTNVM12);
6384 	mac_data |= BIT(12);
6385 	ew32(FEXTNVM12, mac_data);
6386 
6387 	/* Ungate PGCB clock */
6388 	mac_data = er32(FEXTNVM9);
6389 	mac_data &= ~BIT(28);
6390 	ew32(FEXTNVM9, mac_data);
6391 
6392 	/* Enable K1 off to enable mPHY Power Gating */
6393 	mac_data = er32(FEXTNVM6);
6394 	mac_data |= BIT(31);
6395 	ew32(FEXTNVM6, mac_data);
6396 
6397 	/* Enable mPHY power gating for any link and speed */
6398 	mac_data = er32(FEXTNVM8);
6399 	mac_data |= BIT(9);
6400 	ew32(FEXTNVM8, mac_data);
6401 
6402 	/* No MAC DPG gating SLP_S0 in modern standby
6403 	 * Switch the logic of the lanphypc to use PMC counter
6404 	 */
6405 	mac_data = er32(FEXTNVM5);
6406 	mac_data |= BIT(7);
6407 	ew32(FEXTNVM5, mac_data);
6408 
6409 	/* Disable the time synchronization clock */
6410 	mac_data = er32(FEXTNVM7);
6411 	mac_data |= BIT(31);
6412 	mac_data &= ~BIT(0);
6413 	ew32(FEXTNVM7, mac_data);
6414 
6415 	/* Dynamic Power Gating Enable */
6416 	mac_data = er32(CTRL_EXT);
6417 	mac_data |= BIT(3);
6418 	ew32(CTRL_EXT, mac_data);
6419 
6420 	/* Check MAC Tx/Rx packet buffer pointers.
6421 	 * Reset MAC Tx/Rx packet buffer pointers to suppress any
6422 	 * pending traffic indication that would prevent power gating.
6423 	 */
6424 	mac_data = er32(TDFH);
6425 	if (mac_data)
6426 		ew32(TDFH, 0);
6427 	mac_data = er32(TDFT);
6428 	if (mac_data)
6429 		ew32(TDFT, 0);
6430 	mac_data = er32(TDFHS);
6431 	if (mac_data)
6432 		ew32(TDFHS, 0);
6433 	mac_data = er32(TDFTS);
6434 	if (mac_data)
6435 		ew32(TDFTS, 0);
6436 	mac_data = er32(TDFPC);
6437 	if (mac_data)
6438 		ew32(TDFPC, 0);
6439 	mac_data = er32(RDFH);
6440 	if (mac_data)
6441 		ew32(RDFH, 0);
6442 	mac_data = er32(RDFT);
6443 	if (mac_data)
6444 		ew32(RDFT, 0);
6445 	mac_data = er32(RDFHS);
6446 	if (mac_data)
6447 		ew32(RDFHS, 0);
6448 	mac_data = er32(RDFTS);
6449 	if (mac_data)
6450 		ew32(RDFTS, 0);
6451 	mac_data = er32(RDFPC);
6452 	if (mac_data)
6453 		ew32(RDFPC, 0);
6454 }
6455 
6456 static void e1000e_s0ix_exit_flow(struct e1000_adapter *adapter)
6457 {
6458 	struct e1000_hw *hw = &adapter->hw;
6459 	bool firmware_bug = false;
6460 	u32 mac_data;
6461 	u16 phy_data;
6462 	u32 i = 0;
6463 
6464 	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID &&
6465 	    hw->mac.type >= e1000_pch_adp) {
6466 		/* Keep the GPT clock enabled for CSME */
6467 		mac_data = er32(FEXTNVM);
6468 		mac_data |= BIT(3);
6469 		ew32(FEXTNVM, mac_data);
6470 		/* Request ME unconfigure the device from S0ix */
6471 		mac_data = er32(H2ME);
6472 		mac_data &= ~E1000_H2ME_START_DPG;
6473 		mac_data |= E1000_H2ME_EXIT_DPG;
6474 		trace_e1000e_trace_mac_register(mac_data);
6475 		ew32(H2ME, mac_data);
6476 
6477 		/* Poll up to 2.5 seconds for ME to unconfigure DPG.
6478 		 * If this takes more than 1 second, show a warning indicating a
6479 		 * firmware bug
6480 		 */
6481 		while (!(er32(EXFWSM) & E1000_EXFWSM_DPG_EXIT_DONE)) {
6482 			if (i > 100 && !firmware_bug)
6483 				firmware_bug = true;
6484 
6485 			if (i++ == 250) {
6486 				e_dbg("Timeout (firmware bug): %d msec\n",
6487 				      i * 10);
6488 				break;
6489 			}
6490 
6491 			usleep_range(10000, 11000);
6492 		}
6493 		if (firmware_bug)
6494 			e_warn("DPG_EXIT_DONE took %d msec. This is a firmware bug\n",
6495 			       i * 10);
6496 		else
6497 			e_dbg("DPG_EXIT_DONE cleared after %d msec\n", i * 10);
6498 	} else {
6499 		/* Request driver unconfigure the device from S0ix */
6500 
6501 		/* Cancel disable disconnected cable conditioning
6502 		 * for Power Gating
6503 		 */
6504 		mac_data = er32(DPGFR);
6505 		mac_data &= ~BIT(2);
6506 		ew32(DPGFR, mac_data);
6507 
6508 		/* Disable the Dynamic Clock Gating in the DMA and MAC */
6509 		mac_data = er32(CTRL_EXT);
6510 		mac_data &= 0xFFF7FFFF;
6511 		ew32(CTRL_EXT, mac_data);
6512 
6513 		/* Enable the periodic inband message,
6514 		 * Request PCIe clock in K1 page770_17[10:9] =01b
6515 		 */
6516 		e1e_rphy(hw, HV_PM_CTRL, &phy_data);
6517 		phy_data &= 0xFBFF;
6518 		phy_data |= HV_PM_CTRL_K1_CLK_REQ;
6519 		e1e_wphy(hw, HV_PM_CTRL, phy_data);
6520 
6521 		/* Return back configuration
6522 		 * 772_29[5] = 0 CS_Mode_Stay_In_K1
6523 		 */
6524 		e1e_rphy(hw, I217_CGFREG, &phy_data);
6525 		phy_data &= 0xFFDF;
6526 		e1e_wphy(hw, I217_CGFREG, phy_data);
6527 
6528 		/* Change the MAC/PHY interface to Kumeran
6529 		 * Unforce the SMBus in PHY page769_23[0] = 0
6530 		 * Unforce the SMBus in MAC CTRL_EXT[11] = 0
6531 		 */
6532 		e1e_rphy(hw, CV_SMB_CTRL, &phy_data);
6533 		phy_data &= ~CV_SMB_CTRL_FORCE_SMBUS;
6534 		e1e_wphy(hw, CV_SMB_CTRL, phy_data);
6535 		mac_data = er32(CTRL_EXT);
6536 		mac_data &= ~E1000_CTRL_EXT_FORCE_SMBUS;
6537 		ew32(CTRL_EXT, mac_data);
6538 	}
6539 
6540 	/* Disable Dynamic Power Gating */
6541 	mac_data = er32(CTRL_EXT);
6542 	mac_data &= 0xFFFFFFF7;
6543 	ew32(CTRL_EXT, mac_data);
6544 
6545 	/* Enable the time synchronization clock */
6546 	mac_data = er32(FEXTNVM7);
6547 	mac_data &= ~BIT(31);
6548 	mac_data |= BIT(0);
6549 	ew32(FEXTNVM7, mac_data);
6550 
6551 	/* Disable the Dynamic Power Gating in the MAC */
6552 	mac_data = er32(FEXTNVM7);
6553 	mac_data &= 0xFFBFFFFF;
6554 	ew32(FEXTNVM7, mac_data);
6555 
6556 	/* Disable mPHY power gating for any link and speed */
6557 	mac_data = er32(FEXTNVM8);
6558 	mac_data &= ~BIT(9);
6559 	ew32(FEXTNVM8, mac_data);
6560 
6561 	/* Disable K1 off */
6562 	mac_data = er32(FEXTNVM6);
6563 	mac_data &= ~BIT(31);
6564 	ew32(FEXTNVM6, mac_data);
6565 
6566 	/* Disable Ungate PGCB clock */
6567 	mac_data = er32(FEXTNVM9);
6568 	mac_data |= BIT(28);
6569 	ew32(FEXTNVM9, mac_data);
6570 
6571 	/* Cancel not waking from dynamic
6572 	 * Power Gating with clock request
6573 	 */
6574 	mac_data = er32(FEXTNVM12);
6575 	mac_data &= ~BIT(12);
6576 	ew32(FEXTNVM12, mac_data);
6577 
6578 	/* Revert the lanphypc logic to use the internal Gbe counter
6579 	 * and not the PMC counter
6580 	 */
6581 	mac_data = er32(FEXTNVM5);
6582 	mac_data &= 0xFFFFFF7F;
6583 	ew32(FEXTNVM5, mac_data);
6584 }
6585 
6586 static int e1000e_pm_freeze(struct device *dev)
6587 {
6588 	struct net_device *netdev = dev_get_drvdata(dev);
6589 	struct e1000_adapter *adapter = netdev_priv(netdev);
6590 	bool present;
6591 
6592 	rtnl_lock();
6593 
6594 	present = netif_device_present(netdev);
6595 	netif_device_detach(netdev);
6596 
6597 	if (present && netif_running(netdev)) {
6598 		int count = E1000_CHECK_RESET_COUNT;
6599 
6600 		while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6601 			usleep_range(10000, 11000);
6602 
6603 		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6604 
6605 		/* Quiesce the device without resetting the hardware */
6606 		e1000e_down(adapter, false);
6607 		e1000_free_irq(adapter);
6608 	}
6609 	rtnl_unlock();
6610 
6611 	e1000e_reset_interrupt_capability(adapter);
6612 
6613 	/* Allow time for pending master requests to run */
6614 	e1000e_disable_pcie_master(&adapter->hw);
6615 
6616 	return 0;
6617 }
6618 
6619 static int __e1000_shutdown(struct pci_dev *pdev, bool runtime)
6620 {
6621 	struct net_device *netdev = pci_get_drvdata(pdev);
6622 	struct e1000_adapter *adapter = netdev_priv(netdev);
6623 	struct e1000_hw *hw = &adapter->hw;
6624 	u32 ctrl, ctrl_ext, rctl, status, wufc;
6625 	int retval = 0;
6626 	u16 smb_ctrl;
6627 
6628 	/* Runtime suspend should only enable wakeup for link changes */
6629 	if (runtime)
6630 		wufc = E1000_WUFC_LNKC;
6631 	else if (device_may_wakeup(&pdev->dev))
6632 		wufc = adapter->wol;
6633 	else
6634 		wufc = 0;
6635 
6636 	status = er32(STATUS);
6637 	if (status & E1000_STATUS_LU)
6638 		wufc &= ~E1000_WUFC_LNKC;
6639 
6640 	if (wufc) {
6641 		e1000_setup_rctl(adapter);
6642 		e1000e_set_rx_mode(netdev);
6643 
6644 		/* turn on all-multi mode if wake on multicast is enabled */
6645 		if (wufc & E1000_WUFC_MC) {
6646 			rctl = er32(RCTL);
6647 			rctl |= E1000_RCTL_MPE;
6648 			ew32(RCTL, rctl);
6649 		}
6650 
6651 		ctrl = er32(CTRL);
6652 		ctrl |= E1000_CTRL_ADVD3WUC;
6653 		if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
6654 			ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
6655 		ew32(CTRL, ctrl);
6656 
6657 		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
6658 		    adapter->hw.phy.media_type ==
6659 		    e1000_media_type_internal_serdes) {
6660 			/* keep the laser running in D3 */
6661 			ctrl_ext = er32(CTRL_EXT);
6662 			ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
6663 			ew32(CTRL_EXT, ctrl_ext);
6664 		}
6665 
6666 		if (!runtime)
6667 			e1000e_power_up_phy(adapter);
6668 
6669 		if (adapter->flags & FLAG_IS_ICH)
6670 			e1000_suspend_workarounds_ich8lan(&adapter->hw);
6671 
6672 		if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6673 			/* enable wakeup by the PHY */
6674 			retval = e1000_init_phy_wakeup(adapter, wufc);
6675 			if (retval) {
6676 				e_err("Failed to enable wakeup\n");
6677 				goto skip_phy_configurations;
6678 			}
6679 		} else {
6680 			/* enable wakeup by the MAC */
6681 			ew32(WUFC, wufc);
6682 			ew32(WUC, E1000_WUC_PME_EN);
6683 		}
6684 	} else {
6685 		ew32(WUC, 0);
6686 		ew32(WUFC, 0);
6687 
6688 		e1000_power_down_phy(adapter);
6689 	}
6690 
6691 	if (adapter->hw.phy.type == e1000_phy_igp_3) {
6692 		e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
6693 	} else if (hw->mac.type >= e1000_pch_lpt) {
6694 		if (wufc && !(wufc & (E1000_WUFC_EX | E1000_WUFC_MC | E1000_WUFC_BC))) {
6695 			/* ULP does not support wake from unicast, multicast
6696 			 * or broadcast.
6697 			 */
6698 			retval = e1000_enable_ulp_lpt_lp(hw, !runtime);
6699 			if (retval) {
6700 				e_err("Failed to enable ULP\n");
6701 				goto skip_phy_configurations;
6702 			}
6703 		}
6704 
6705 		/* Force SMBUS to allow WOL */
6706 		/* Switching PHY interface always returns MDI error
6707 		 * so disable retry mechanism to avoid wasting time
6708 		 */
6709 		e1000e_disable_phy_retry(hw);
6710 
6711 		e1e_rphy(hw, CV_SMB_CTRL, &smb_ctrl);
6712 		smb_ctrl |= CV_SMB_CTRL_FORCE_SMBUS;
6713 		e1e_wphy(hw, CV_SMB_CTRL, smb_ctrl);
6714 
6715 		e1000e_enable_phy_retry(hw);
6716 
6717 		/* Force SMBus mode in MAC */
6718 		ctrl_ext = er32(CTRL_EXT);
6719 		ctrl_ext |= E1000_CTRL_EXT_FORCE_SMBUS;
6720 		ew32(CTRL_EXT, ctrl_ext);
6721 	}
6722 
6723 	/* Ensure that the appropriate bits are set in LPI_CTRL
6724 	 * for EEE in Sx
6725 	 */
6726 	if ((hw->phy.type >= e1000_phy_i217) &&
6727 	    adapter->eee_advert && hw->dev_spec.ich8lan.eee_lp_ability) {
6728 		u16 lpi_ctrl = 0;
6729 
6730 		retval = hw->phy.ops.acquire(hw);
6731 		if (!retval) {
6732 			retval = e1e_rphy_locked(hw, I82579_LPI_CTRL,
6733 						 &lpi_ctrl);
6734 			if (!retval) {
6735 				if (adapter->eee_advert &
6736 				    hw->dev_spec.ich8lan.eee_lp_ability &
6737 				    I82579_EEE_100_SUPPORTED)
6738 					lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
6739 				if (adapter->eee_advert &
6740 				    hw->dev_spec.ich8lan.eee_lp_ability &
6741 				    I82579_EEE_1000_SUPPORTED)
6742 					lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
6743 
6744 				retval = e1e_wphy_locked(hw, I82579_LPI_CTRL,
6745 							 lpi_ctrl);
6746 			}
6747 		}
6748 		hw->phy.ops.release(hw);
6749 	}
6750 
6751 skip_phy_configurations:
6752 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
6753 	 * would have already happened in close and is redundant.
6754 	 */
6755 	e1000e_release_hw_control(adapter);
6756 
6757 	pci_clear_master(pdev);
6758 
6759 	/* The pci-e switch on some quad port adapters will report a
6760 	 * correctable error when the MAC transitions from D0 to D3.  To
6761 	 * prevent this we need to mask off the correctable errors on the
6762 	 * downstream port of the pci-e switch.
6763 	 *
6764 	 * We don't have the associated upstream bridge while assigning
6765 	 * the PCI device into guest. For example, the KVM on power is
6766 	 * one of the cases.
6767 	 */
6768 	if (adapter->flags & FLAG_IS_QUAD_PORT) {
6769 		struct pci_dev *us_dev = pdev->bus->self;
6770 		u16 devctl;
6771 
6772 		if (!us_dev)
6773 			return 0;
6774 
6775 		pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl);
6776 		pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL,
6777 					   (devctl & ~PCI_EXP_DEVCTL_CERE));
6778 
6779 		pci_save_state(pdev);
6780 		pci_prepare_to_sleep(pdev);
6781 
6782 		pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl);
6783 	}
6784 
6785 	return 0;
6786 }
6787 
6788 /**
6789  * __e1000e_disable_aspm - Disable ASPM states
6790  * @pdev: pointer to PCI device struct
6791  * @state: bit-mask of ASPM states to disable
6792  * @locked: indication if this context holds pci_bus_sem locked.
6793  *
6794  * Some devices *must* have certain ASPM states disabled per hardware errata.
6795  **/
6796 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state, int locked)
6797 {
6798 	struct pci_dev *parent = pdev->bus->self;
6799 	u16 aspm_dis_mask = 0;
6800 	u16 pdev_aspmc, parent_aspmc;
6801 
6802 	switch (state) {
6803 	case PCIE_LINK_STATE_L0S:
6804 	case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1:
6805 		aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S;
6806 		fallthrough; /* can't have L1 without L0s */
6807 	case PCIE_LINK_STATE_L1:
6808 		aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1;
6809 		break;
6810 	default:
6811 		return;
6812 	}
6813 
6814 	pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6815 	pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6816 
6817 	if (parent) {
6818 		pcie_capability_read_word(parent, PCI_EXP_LNKCTL,
6819 					  &parent_aspmc);
6820 		parent_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6821 	}
6822 
6823 	/* Nothing to do if the ASPM states to be disabled already are */
6824 	if (!(pdev_aspmc & aspm_dis_mask) &&
6825 	    (!parent || !(parent_aspmc & aspm_dis_mask)))
6826 		return;
6827 
6828 	dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
6829 		 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ?
6830 		 "L0s" : "",
6831 		 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ?
6832 		 "L1" : "");
6833 
6834 #ifdef CONFIG_PCIEASPM
6835 	if (locked)
6836 		pci_disable_link_state_locked(pdev, state);
6837 	else
6838 		pci_disable_link_state(pdev, state);
6839 
6840 	/* Double-check ASPM control.  If not disabled by the above, the
6841 	 * BIOS is preventing that from happening (or CONFIG_PCIEASPM is
6842 	 * not enabled); override by writing PCI config space directly.
6843 	 */
6844 	pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6845 	pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6846 
6847 	if (!(aspm_dis_mask & pdev_aspmc))
6848 		return;
6849 #endif
6850 
6851 	/* Both device and parent should have the same ASPM setting.
6852 	 * Disable ASPM in downstream component first and then upstream.
6853 	 */
6854 	pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask);
6855 
6856 	if (parent)
6857 		pcie_capability_clear_word(parent, PCI_EXP_LNKCTL,
6858 					   aspm_dis_mask);
6859 }
6860 
6861 /**
6862  * e1000e_disable_aspm - Disable ASPM states.
6863  * @pdev: pointer to PCI device struct
6864  * @state: bit-mask of ASPM states to disable
6865  *
6866  * This function acquires the pci_bus_sem!
6867  * Some devices *must* have certain ASPM states disabled per hardware errata.
6868  **/
6869 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6870 {
6871 	__e1000e_disable_aspm(pdev, state, 0);
6872 }
6873 
6874 /**
6875  * e1000e_disable_aspm_locked - Disable ASPM states.
6876  * @pdev: pointer to PCI device struct
6877  * @state: bit-mask of ASPM states to disable
6878  *
6879  * This function must be called with pci_bus_sem acquired!
6880  * Some devices *must* have certain ASPM states disabled per hardware errata.
6881  **/
6882 static void e1000e_disable_aspm_locked(struct pci_dev *pdev, u16 state)
6883 {
6884 	__e1000e_disable_aspm(pdev, state, 1);
6885 }
6886 
6887 static int e1000e_pm_thaw(struct device *dev)
6888 {
6889 	struct net_device *netdev = dev_get_drvdata(dev);
6890 	struct e1000_adapter *adapter = netdev_priv(netdev);
6891 	int rc = 0;
6892 
6893 	e1000e_set_interrupt_capability(adapter);
6894 
6895 	rtnl_lock();
6896 	if (netif_running(netdev)) {
6897 		rc = e1000_request_irq(adapter);
6898 		if (rc)
6899 			goto err_irq;
6900 
6901 		e1000e_up(adapter);
6902 	}
6903 
6904 	netif_device_attach(netdev);
6905 err_irq:
6906 	rtnl_unlock();
6907 
6908 	return rc;
6909 }
6910 
6911 static int __e1000_resume(struct pci_dev *pdev)
6912 {
6913 	struct net_device *netdev = pci_get_drvdata(pdev);
6914 	struct e1000_adapter *adapter = netdev_priv(netdev);
6915 	struct e1000_hw *hw = &adapter->hw;
6916 	u16 aspm_disable_flag = 0;
6917 
6918 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6919 		aspm_disable_flag = PCIE_LINK_STATE_L0S;
6920 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6921 		aspm_disable_flag |= PCIE_LINK_STATE_L1;
6922 	if (aspm_disable_flag)
6923 		e1000e_disable_aspm(pdev, aspm_disable_flag);
6924 
6925 	pci_set_master(pdev);
6926 
6927 	if (hw->mac.type >= e1000_pch2lan)
6928 		e1000_resume_workarounds_pchlan(&adapter->hw);
6929 
6930 	e1000e_power_up_phy(adapter);
6931 
6932 	/* report the system wakeup cause from S3/S4 */
6933 	if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6934 		u16 phy_data;
6935 
6936 		e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
6937 		if (phy_data) {
6938 			e_info("PHY Wakeup cause - %s\n",
6939 			       phy_data & E1000_WUS_EX ? "Unicast Packet" :
6940 			       phy_data & E1000_WUS_MC ? "Multicast Packet" :
6941 			       phy_data & E1000_WUS_BC ? "Broadcast Packet" :
6942 			       phy_data & E1000_WUS_MAG ? "Magic Packet" :
6943 			       phy_data & E1000_WUS_LNKC ?
6944 			       "Link Status Change" : "other");
6945 		}
6946 		e1e_wphy(&adapter->hw, BM_WUS, ~0);
6947 	} else {
6948 		u32 wus = er32(WUS);
6949 
6950 		if (wus) {
6951 			e_info("MAC Wakeup cause - %s\n",
6952 			       wus & E1000_WUS_EX ? "Unicast Packet" :
6953 			       wus & E1000_WUS_MC ? "Multicast Packet" :
6954 			       wus & E1000_WUS_BC ? "Broadcast Packet" :
6955 			       wus & E1000_WUS_MAG ? "Magic Packet" :
6956 			       wus & E1000_WUS_LNKC ? "Link Status Change" :
6957 			       "other");
6958 		}
6959 		ew32(WUS, ~0);
6960 	}
6961 
6962 	e1000e_reset(adapter);
6963 
6964 	e1000_init_manageability_pt(adapter);
6965 
6966 	/* If the controller has AMT, do not set DRV_LOAD until the interface
6967 	 * is up.  For all other cases, let the f/w know that the h/w is now
6968 	 * under the control of the driver.
6969 	 */
6970 	if (!(adapter->flags & FLAG_HAS_AMT))
6971 		e1000e_get_hw_control(adapter);
6972 
6973 	return 0;
6974 }
6975 
6976 static __maybe_unused int e1000e_pm_prepare(struct device *dev)
6977 {
6978 	return pm_runtime_suspended(dev) &&
6979 		pm_suspend_via_firmware();
6980 }
6981 
6982 static __maybe_unused int e1000e_pm_suspend(struct device *dev)
6983 {
6984 	struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6985 	struct e1000_adapter *adapter = netdev_priv(netdev);
6986 	struct pci_dev *pdev = to_pci_dev(dev);
6987 	int rc;
6988 
6989 	e1000e_flush_lpic(pdev);
6990 
6991 	e1000e_pm_freeze(dev);
6992 
6993 	rc = __e1000_shutdown(pdev, false);
6994 	if (!rc) {
6995 		/* Introduce S0ix implementation */
6996 		if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS)
6997 			e1000e_s0ix_entry_flow(adapter);
6998 	}
6999 
7000 	return 0;
7001 }
7002 
7003 static __maybe_unused int e1000e_pm_resume(struct device *dev)
7004 {
7005 	struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
7006 	struct e1000_adapter *adapter = netdev_priv(netdev);
7007 	struct pci_dev *pdev = to_pci_dev(dev);
7008 	int rc;
7009 
7010 	/* Introduce S0ix implementation */
7011 	if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS)
7012 		e1000e_s0ix_exit_flow(adapter);
7013 
7014 	rc = __e1000_resume(pdev);
7015 	if (rc)
7016 		return rc;
7017 
7018 	return e1000e_pm_thaw(dev);
7019 }
7020 
7021 static __maybe_unused int e1000e_pm_runtime_idle(struct device *dev)
7022 {
7023 	struct net_device *netdev = dev_get_drvdata(dev);
7024 	struct e1000_adapter *adapter = netdev_priv(netdev);
7025 	u16 eee_lp;
7026 
7027 	eee_lp = adapter->hw.dev_spec.ich8lan.eee_lp_ability;
7028 
7029 	if (!e1000e_has_link(adapter)) {
7030 		adapter->hw.dev_spec.ich8lan.eee_lp_ability = eee_lp;
7031 		pm_schedule_suspend(dev, 5 * MSEC_PER_SEC);
7032 	}
7033 
7034 	return -EBUSY;
7035 }
7036 
7037 static __maybe_unused int e1000e_pm_runtime_resume(struct device *dev)
7038 {
7039 	struct pci_dev *pdev = to_pci_dev(dev);
7040 	struct net_device *netdev = pci_get_drvdata(pdev);
7041 	struct e1000_adapter *adapter = netdev_priv(netdev);
7042 	int rc;
7043 
7044 	pdev->pme_poll = true;
7045 
7046 	rc = __e1000_resume(pdev);
7047 	if (rc)
7048 		return rc;
7049 
7050 	if (netdev->flags & IFF_UP)
7051 		e1000e_up(adapter);
7052 
7053 	return rc;
7054 }
7055 
7056 static __maybe_unused int e1000e_pm_runtime_suspend(struct device *dev)
7057 {
7058 	struct pci_dev *pdev = to_pci_dev(dev);
7059 	struct net_device *netdev = pci_get_drvdata(pdev);
7060 	struct e1000_adapter *adapter = netdev_priv(netdev);
7061 
7062 	if (netdev->flags & IFF_UP) {
7063 		int count = E1000_CHECK_RESET_COUNT;
7064 
7065 		while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
7066 			usleep_range(10000, 11000);
7067 
7068 		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
7069 
7070 		/* Down the device without resetting the hardware */
7071 		e1000e_down(adapter, false);
7072 	}
7073 
7074 	if (__e1000_shutdown(pdev, true)) {
7075 		e1000e_pm_runtime_resume(dev);
7076 		return -EBUSY;
7077 	}
7078 
7079 	return 0;
7080 }
7081 
7082 static void e1000_shutdown(struct pci_dev *pdev)
7083 {
7084 	e1000e_flush_lpic(pdev);
7085 
7086 	e1000e_pm_freeze(&pdev->dev);
7087 
7088 	__e1000_shutdown(pdev, false);
7089 }
7090 
7091 #ifdef CONFIG_NET_POLL_CONTROLLER
7092 
7093 static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data)
7094 {
7095 	struct net_device *netdev = data;
7096 	struct e1000_adapter *adapter = netdev_priv(netdev);
7097 
7098 	if (adapter->msix_entries) {
7099 		int vector, msix_irq;
7100 
7101 		vector = 0;
7102 		msix_irq = adapter->msix_entries[vector].vector;
7103 		if (disable_hardirq(msix_irq))
7104 			e1000_intr_msix_rx(msix_irq, netdev);
7105 		enable_irq(msix_irq);
7106 
7107 		vector++;
7108 		msix_irq = adapter->msix_entries[vector].vector;
7109 		if (disable_hardirq(msix_irq))
7110 			e1000_intr_msix_tx(msix_irq, netdev);
7111 		enable_irq(msix_irq);
7112 
7113 		vector++;
7114 		msix_irq = adapter->msix_entries[vector].vector;
7115 		if (disable_hardirq(msix_irq))
7116 			e1000_msix_other(msix_irq, netdev);
7117 		enable_irq(msix_irq);
7118 	}
7119 
7120 	return IRQ_HANDLED;
7121 }
7122 
7123 /**
7124  * e1000_netpoll
7125  * @netdev: network interface device structure
7126  *
7127  * Polling 'interrupt' - used by things like netconsole to send skbs
7128  * without having to re-enable interrupts. It's not called while
7129  * the interrupt routine is executing.
7130  */
7131 static void e1000_netpoll(struct net_device *netdev)
7132 {
7133 	struct e1000_adapter *adapter = netdev_priv(netdev);
7134 
7135 	switch (adapter->int_mode) {
7136 	case E1000E_INT_MODE_MSIX:
7137 		e1000_intr_msix(adapter->pdev->irq, netdev);
7138 		break;
7139 	case E1000E_INT_MODE_MSI:
7140 		if (disable_hardirq(adapter->pdev->irq))
7141 			e1000_intr_msi(adapter->pdev->irq, netdev);
7142 		enable_irq(adapter->pdev->irq);
7143 		break;
7144 	default:		/* E1000E_INT_MODE_LEGACY */
7145 		if (disable_hardirq(adapter->pdev->irq))
7146 			e1000_intr(adapter->pdev->irq, netdev);
7147 		enable_irq(adapter->pdev->irq);
7148 		break;
7149 	}
7150 }
7151 #endif
7152 
7153 /**
7154  * e1000_io_error_detected - called when PCI error is detected
7155  * @pdev: Pointer to PCI device
7156  * @state: The current pci connection state
7157  *
7158  * This function is called after a PCI bus error affecting
7159  * this device has been detected.
7160  */
7161 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
7162 						pci_channel_state_t state)
7163 {
7164 	e1000e_pm_freeze(&pdev->dev);
7165 
7166 	if (state == pci_channel_io_perm_failure)
7167 		return PCI_ERS_RESULT_DISCONNECT;
7168 
7169 	pci_disable_device(pdev);
7170 
7171 	/* Request a slot reset. */
7172 	return PCI_ERS_RESULT_NEED_RESET;
7173 }
7174 
7175 /**
7176  * e1000_io_slot_reset - called after the pci bus has been reset.
7177  * @pdev: Pointer to PCI device
7178  *
7179  * Restart the card from scratch, as if from a cold-boot. Implementation
7180  * resembles the first-half of the e1000e_pm_resume routine.
7181  */
7182 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
7183 {
7184 	struct net_device *netdev = pci_get_drvdata(pdev);
7185 	struct e1000_adapter *adapter = netdev_priv(netdev);
7186 	struct e1000_hw *hw = &adapter->hw;
7187 	u16 aspm_disable_flag = 0;
7188 	int err;
7189 	pci_ers_result_t result;
7190 
7191 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
7192 		aspm_disable_flag = PCIE_LINK_STATE_L0S;
7193 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
7194 		aspm_disable_flag |= PCIE_LINK_STATE_L1;
7195 	if (aspm_disable_flag)
7196 		e1000e_disable_aspm_locked(pdev, aspm_disable_flag);
7197 
7198 	err = pci_enable_device_mem(pdev);
7199 	if (err) {
7200 		dev_err(&pdev->dev,
7201 			"Cannot re-enable PCI device after reset.\n");
7202 		result = PCI_ERS_RESULT_DISCONNECT;
7203 	} else {
7204 		pdev->state_saved = true;
7205 		pci_restore_state(pdev);
7206 		pci_set_master(pdev);
7207 
7208 		pci_enable_wake(pdev, PCI_D3hot, 0);
7209 		pci_enable_wake(pdev, PCI_D3cold, 0);
7210 
7211 		e1000e_reset(adapter);
7212 		ew32(WUS, ~0);
7213 		result = PCI_ERS_RESULT_RECOVERED;
7214 	}
7215 
7216 	return result;
7217 }
7218 
7219 /**
7220  * e1000_io_resume - called when traffic can start flowing again.
7221  * @pdev: Pointer to PCI device
7222  *
7223  * This callback is called when the error recovery driver tells us that
7224  * its OK to resume normal operation. Implementation resembles the
7225  * second-half of the e1000e_pm_resume routine.
7226  */
7227 static void e1000_io_resume(struct pci_dev *pdev)
7228 {
7229 	struct net_device *netdev = pci_get_drvdata(pdev);
7230 	struct e1000_adapter *adapter = netdev_priv(netdev);
7231 
7232 	e1000_init_manageability_pt(adapter);
7233 
7234 	e1000e_pm_thaw(&pdev->dev);
7235 
7236 	/* If the controller has AMT, do not set DRV_LOAD until the interface
7237 	 * is up.  For all other cases, let the f/w know that the h/w is now
7238 	 * under the control of the driver.
7239 	 */
7240 	if (!(adapter->flags & FLAG_HAS_AMT))
7241 		e1000e_get_hw_control(adapter);
7242 }
7243 
7244 static void e1000_print_device_info(struct e1000_adapter *adapter)
7245 {
7246 	struct e1000_hw *hw = &adapter->hw;
7247 	struct net_device *netdev = adapter->netdev;
7248 	u32 ret_val;
7249 	u8 pba_str[E1000_PBANUM_LENGTH];
7250 
7251 	/* print bus type/speed/width info */
7252 	e_info("(PCI Express:2.5GT/s:%s) %pM\n",
7253 	       /* bus width */
7254 	       ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
7255 		"Width x1"),
7256 	       /* MAC address */
7257 	       netdev->dev_addr);
7258 	e_info("Intel(R) PRO/%s Network Connection\n",
7259 	       (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
7260 	ret_val = e1000_read_pba_string_generic(hw, pba_str,
7261 						E1000_PBANUM_LENGTH);
7262 	if (ret_val)
7263 		strscpy((char *)pba_str, "Unknown", sizeof(pba_str));
7264 	e_info("MAC: %d, PHY: %d, PBA No: %s\n",
7265 	       hw->mac.type, hw->phy.type, pba_str);
7266 }
7267 
7268 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
7269 {
7270 	struct e1000_hw *hw = &adapter->hw;
7271 	int ret_val;
7272 	u16 buf = 0;
7273 
7274 	if (hw->mac.type != e1000_82573)
7275 		return;
7276 
7277 	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
7278 	le16_to_cpus(&buf);
7279 	if (!ret_val && (!(buf & BIT(0)))) {
7280 		/* Deep Smart Power Down (DSPD) */
7281 		dev_warn(&adapter->pdev->dev,
7282 			 "Warning: detected DSPD enabled in EEPROM\n");
7283 	}
7284 }
7285 
7286 static netdev_features_t e1000_fix_features(struct net_device *netdev,
7287 					    netdev_features_t features)
7288 {
7289 	struct e1000_adapter *adapter = netdev_priv(netdev);
7290 	struct e1000_hw *hw = &adapter->hw;
7291 
7292 	/* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
7293 	if ((hw->mac.type >= e1000_pch2lan) && (netdev->mtu > ETH_DATA_LEN))
7294 		features &= ~NETIF_F_RXFCS;
7295 
7296 	/* Since there is no support for separate Rx/Tx vlan accel
7297 	 * enable/disable make sure Tx flag is always in same state as Rx.
7298 	 */
7299 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
7300 		features |= NETIF_F_HW_VLAN_CTAG_TX;
7301 	else
7302 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
7303 
7304 	return features;
7305 }
7306 
7307 static int e1000_set_features(struct net_device *netdev,
7308 			      netdev_features_t features)
7309 {
7310 	struct e1000_adapter *adapter = netdev_priv(netdev);
7311 	netdev_features_t changed = features ^ netdev->features;
7312 
7313 	if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
7314 		adapter->flags |= FLAG_TSO_FORCE;
7315 
7316 	if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
7317 			 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
7318 			 NETIF_F_RXALL)))
7319 		return 0;
7320 
7321 	if (changed & NETIF_F_RXFCS) {
7322 		if (features & NETIF_F_RXFCS) {
7323 			adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
7324 		} else {
7325 			/* We need to take it back to defaults, which might mean
7326 			 * stripping is still disabled at the adapter level.
7327 			 */
7328 			if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
7329 				adapter->flags2 |= FLAG2_CRC_STRIPPING;
7330 			else
7331 				adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
7332 		}
7333 	}
7334 
7335 	netdev->features = features;
7336 
7337 	if (netif_running(netdev))
7338 		e1000e_reinit_locked(adapter);
7339 	else
7340 		e1000e_reset(adapter);
7341 
7342 	return 1;
7343 }
7344 
7345 static const struct net_device_ops e1000e_netdev_ops = {
7346 	.ndo_open		= e1000e_open,
7347 	.ndo_stop		= e1000e_close,
7348 	.ndo_start_xmit		= e1000_xmit_frame,
7349 	.ndo_get_stats64	= e1000e_get_stats64,
7350 	.ndo_set_rx_mode	= e1000e_set_rx_mode,
7351 	.ndo_set_mac_address	= e1000_set_mac,
7352 	.ndo_change_mtu		= e1000_change_mtu,
7353 	.ndo_eth_ioctl		= e1000_ioctl,
7354 	.ndo_tx_timeout		= e1000_tx_timeout,
7355 	.ndo_validate_addr	= eth_validate_addr,
7356 
7357 	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
7358 	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
7359 #ifdef CONFIG_NET_POLL_CONTROLLER
7360 	.ndo_poll_controller	= e1000_netpoll,
7361 #endif
7362 	.ndo_set_features = e1000_set_features,
7363 	.ndo_fix_features = e1000_fix_features,
7364 	.ndo_features_check	= passthru_features_check,
7365 };
7366 
7367 /**
7368  * e1000_probe - Device Initialization Routine
7369  * @pdev: PCI device information struct
7370  * @ent: entry in e1000_pci_tbl
7371  *
7372  * Returns 0 on success, negative on failure
7373  *
7374  * e1000_probe initializes an adapter identified by a pci_dev structure.
7375  * The OS initialization, configuring of the adapter private structure,
7376  * and a hardware reset occur.
7377  **/
7378 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
7379 {
7380 	struct net_device *netdev;
7381 	struct e1000_adapter *adapter;
7382 	struct e1000_hw *hw;
7383 	const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
7384 	resource_size_t mmio_start, mmio_len;
7385 	resource_size_t flash_start, flash_len;
7386 	static int cards_found;
7387 	u16 aspm_disable_flag = 0;
7388 	u16 eeprom_data = 0;
7389 	u16 eeprom_apme_mask = E1000_EEPROM_APME;
7390 	int bars, i, err;
7391 	s32 ret_val = 0;
7392 
7393 	if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
7394 		aspm_disable_flag = PCIE_LINK_STATE_L0S;
7395 	if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
7396 		aspm_disable_flag |= PCIE_LINK_STATE_L1;
7397 	if (aspm_disable_flag)
7398 		e1000e_disable_aspm(pdev, aspm_disable_flag);
7399 
7400 	err = pci_enable_device_mem(pdev);
7401 	if (err)
7402 		return err;
7403 
7404 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
7405 	if (err) {
7406 		dev_err(&pdev->dev,
7407 			"No usable DMA configuration, aborting\n");
7408 		goto err_dma;
7409 	}
7410 
7411 	bars = pci_select_bars(pdev, IORESOURCE_MEM);
7412 	err = pci_request_selected_regions_exclusive(pdev, bars,
7413 						     e1000e_driver_name);
7414 	if (err)
7415 		goto err_pci_reg;
7416 
7417 	pci_set_master(pdev);
7418 	/* PCI config space info */
7419 	err = pci_save_state(pdev);
7420 	if (err)
7421 		goto err_alloc_etherdev;
7422 
7423 	err = -ENOMEM;
7424 	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
7425 	if (!netdev)
7426 		goto err_alloc_etherdev;
7427 
7428 	SET_NETDEV_DEV(netdev, &pdev->dev);
7429 
7430 	netdev->irq = pdev->irq;
7431 
7432 	pci_set_drvdata(pdev, netdev);
7433 	adapter = netdev_priv(netdev);
7434 	hw = &adapter->hw;
7435 	adapter->netdev = netdev;
7436 	adapter->pdev = pdev;
7437 	adapter->ei = ei;
7438 	adapter->pba = ei->pba;
7439 	adapter->flags = ei->flags;
7440 	adapter->flags2 = ei->flags2;
7441 	adapter->hw.adapter = adapter;
7442 	adapter->hw.mac.type = ei->mac;
7443 	adapter->max_hw_frame_size = ei->max_hw_frame_size;
7444 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
7445 
7446 	mmio_start = pci_resource_start(pdev, 0);
7447 	mmio_len = pci_resource_len(pdev, 0);
7448 
7449 	err = -EIO;
7450 	adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
7451 	if (!adapter->hw.hw_addr)
7452 		goto err_ioremap;
7453 
7454 	if ((adapter->flags & FLAG_HAS_FLASH) &&
7455 	    (pci_resource_flags(pdev, 1) & IORESOURCE_MEM) &&
7456 	    (hw->mac.type < e1000_pch_spt)) {
7457 		flash_start = pci_resource_start(pdev, 1);
7458 		flash_len = pci_resource_len(pdev, 1);
7459 		adapter->hw.flash_address = ioremap(flash_start, flash_len);
7460 		if (!adapter->hw.flash_address)
7461 			goto err_flashmap;
7462 	}
7463 
7464 	/* Set default EEE advertisement */
7465 	if (adapter->flags2 & FLAG2_HAS_EEE)
7466 		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
7467 
7468 	/* construct the net_device struct */
7469 	netdev->netdev_ops = &e1000e_netdev_ops;
7470 	e1000e_set_ethtool_ops(netdev);
7471 	netdev->watchdog_timeo = 5 * HZ;
7472 	netif_napi_add(netdev, &adapter->napi, e1000e_poll);
7473 	strscpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
7474 
7475 	netdev->mem_start = mmio_start;
7476 	netdev->mem_end = mmio_start + mmio_len;
7477 
7478 	adapter->bd_number = cards_found++;
7479 
7480 	e1000e_check_options(adapter);
7481 
7482 	/* setup adapter struct */
7483 	err = e1000_sw_init(adapter);
7484 	if (err)
7485 		goto err_sw_init;
7486 
7487 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
7488 	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
7489 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
7490 
7491 	err = ei->get_variants(adapter);
7492 	if (err)
7493 		goto err_hw_init;
7494 
7495 	if ((adapter->flags & FLAG_IS_ICH) &&
7496 	    (adapter->flags & FLAG_READ_ONLY_NVM) &&
7497 	    (hw->mac.type < e1000_pch_spt))
7498 		e1000e_write_protect_nvm_ich8lan(&adapter->hw);
7499 
7500 	hw->mac.ops.get_bus_info(&adapter->hw);
7501 
7502 	adapter->hw.phy.autoneg_wait_to_complete = 0;
7503 
7504 	/* Copper options */
7505 	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
7506 		adapter->hw.phy.mdix = AUTO_ALL_MODES;
7507 		adapter->hw.phy.disable_polarity_correction = 0;
7508 		adapter->hw.phy.ms_type = e1000_ms_hw_default;
7509 	}
7510 
7511 	if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
7512 		dev_info(&pdev->dev,
7513 			 "PHY reset is blocked due to SOL/IDER session.\n");
7514 
7515 	/* Set initial default active device features */
7516 	netdev->features = (NETIF_F_SG |
7517 			    NETIF_F_HW_VLAN_CTAG_RX |
7518 			    NETIF_F_HW_VLAN_CTAG_TX |
7519 			    NETIF_F_TSO |
7520 			    NETIF_F_TSO6 |
7521 			    NETIF_F_RXHASH |
7522 			    NETIF_F_RXCSUM |
7523 			    NETIF_F_HW_CSUM);
7524 
7525 	/* disable TSO for pcie and 10/100 speeds to avoid
7526 	 * some hardware issues and for i219 to fix transfer
7527 	 * speed being capped at 60%
7528 	 */
7529 	if (!(adapter->flags & FLAG_TSO_FORCE)) {
7530 		switch (adapter->link_speed) {
7531 		case SPEED_10:
7532 		case SPEED_100:
7533 			e_info("10/100 speed: disabling TSO\n");
7534 			netdev->features &= ~NETIF_F_TSO;
7535 			netdev->features &= ~NETIF_F_TSO6;
7536 			break;
7537 		case SPEED_1000:
7538 			netdev->features |= NETIF_F_TSO;
7539 			netdev->features |= NETIF_F_TSO6;
7540 			break;
7541 		default:
7542 			/* oops */
7543 			break;
7544 		}
7545 		if (hw->mac.type == e1000_pch_spt) {
7546 			netdev->features &= ~NETIF_F_TSO;
7547 			netdev->features &= ~NETIF_F_TSO6;
7548 		}
7549 	}
7550 
7551 	/* Set user-changeable features (subset of all device features) */
7552 	netdev->hw_features = netdev->features;
7553 	netdev->hw_features |= NETIF_F_RXFCS;
7554 	netdev->priv_flags |= IFF_SUPP_NOFCS;
7555 	netdev->hw_features |= NETIF_F_RXALL;
7556 
7557 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
7558 		netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7559 
7560 	netdev->vlan_features |= (NETIF_F_SG |
7561 				  NETIF_F_TSO |
7562 				  NETIF_F_TSO6 |
7563 				  NETIF_F_HW_CSUM);
7564 
7565 	netdev->priv_flags |= IFF_UNICAST_FLT;
7566 
7567 	netdev->features |= NETIF_F_HIGHDMA;
7568 	netdev->vlan_features |= NETIF_F_HIGHDMA;
7569 
7570 	/* MTU range: 68 - max_hw_frame_size */
7571 	netdev->min_mtu = ETH_MIN_MTU;
7572 	netdev->max_mtu = adapter->max_hw_frame_size -
7573 			  (VLAN_ETH_HLEN + ETH_FCS_LEN);
7574 
7575 	if (e1000e_enable_mng_pass_thru(&adapter->hw))
7576 		adapter->flags |= FLAG_MNG_PT_ENABLED;
7577 
7578 	/* before reading the NVM, reset the controller to
7579 	 * put the device in a known good starting state
7580 	 */
7581 	adapter->hw.mac.ops.reset_hw(&adapter->hw);
7582 
7583 	/* systems with ASPM and others may see the checksum fail on the first
7584 	 * attempt. Let's give it a few tries
7585 	 */
7586 	for (i = 0;; i++) {
7587 		if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
7588 			break;
7589 		if (i == 2) {
7590 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
7591 			err = -EIO;
7592 			goto err_eeprom;
7593 		}
7594 	}
7595 
7596 	e1000_eeprom_checks(adapter);
7597 
7598 	/* copy the MAC address */
7599 	if (e1000e_read_mac_addr(&adapter->hw))
7600 		dev_err(&pdev->dev,
7601 			"NVM Read Error while reading MAC address\n");
7602 
7603 	eth_hw_addr_set(netdev, adapter->hw.mac.addr);
7604 
7605 	if (!is_valid_ether_addr(netdev->dev_addr)) {
7606 		dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
7607 			netdev->dev_addr);
7608 		err = -EIO;
7609 		goto err_eeprom;
7610 	}
7611 
7612 	timer_setup(&adapter->watchdog_timer, e1000_watchdog, 0);
7613 	timer_setup(&adapter->phy_info_timer, e1000_update_phy_info, 0);
7614 
7615 	INIT_WORK(&adapter->reset_task, e1000_reset_task);
7616 	INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
7617 	INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
7618 	INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
7619 	INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
7620 
7621 	/* Initialize link parameters. User can change them with ethtool */
7622 	adapter->hw.mac.autoneg = 1;
7623 	adapter->fc_autoneg = true;
7624 	adapter->hw.fc.requested_mode = e1000_fc_default;
7625 	adapter->hw.fc.current_mode = e1000_fc_default;
7626 	adapter->hw.phy.autoneg_advertised = 0x2f;
7627 
7628 	/* Initial Wake on LAN setting - If APM wake is enabled in
7629 	 * the EEPROM, enable the ACPI Magic Packet filter
7630 	 */
7631 	if (adapter->flags & FLAG_APME_IN_WUC) {
7632 		/* APME bit in EEPROM is mapped to WUC.APME */
7633 		eeprom_data = er32(WUC);
7634 		eeprom_apme_mask = E1000_WUC_APME;
7635 		if ((hw->mac.type > e1000_ich10lan) &&
7636 		    (eeprom_data & E1000_WUC_PHY_WAKE))
7637 			adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
7638 	} else if (adapter->flags & FLAG_APME_IN_CTRL3) {
7639 		if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
7640 		    (adapter->hw.bus.func == 1))
7641 			ret_val = e1000_read_nvm(&adapter->hw,
7642 					      NVM_INIT_CONTROL3_PORT_B,
7643 					      1, &eeprom_data);
7644 		else
7645 			ret_val = e1000_read_nvm(&adapter->hw,
7646 					      NVM_INIT_CONTROL3_PORT_A,
7647 					      1, &eeprom_data);
7648 	}
7649 
7650 	/* fetch WoL from EEPROM */
7651 	if (ret_val)
7652 		e_dbg("NVM read error getting WoL initial values: %d\n", ret_val);
7653 	else if (eeprom_data & eeprom_apme_mask)
7654 		adapter->eeprom_wol |= E1000_WUFC_MAG;
7655 
7656 	/* now that we have the eeprom settings, apply the special cases
7657 	 * where the eeprom may be wrong or the board simply won't support
7658 	 * wake on lan on a particular port
7659 	 */
7660 	if (!(adapter->flags & FLAG_HAS_WOL))
7661 		adapter->eeprom_wol = 0;
7662 
7663 	/* initialize the wol settings based on the eeprom settings */
7664 	adapter->wol = adapter->eeprom_wol;
7665 
7666 	/* make sure adapter isn't asleep if manageability is enabled */
7667 	if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) ||
7668 	    (hw->mac.ops.check_mng_mode(hw)))
7669 		device_wakeup_enable(&pdev->dev);
7670 
7671 	/* save off EEPROM version number */
7672 	ret_val = e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
7673 
7674 	if (ret_val) {
7675 		e_dbg("NVM read error getting EEPROM version: %d\n", ret_val);
7676 		adapter->eeprom_vers = 0;
7677 	}
7678 
7679 	/* init PTP hardware clock */
7680 	e1000e_ptp_init(adapter);
7681 
7682 	/* reset the hardware with the new settings */
7683 	e1000e_reset(adapter);
7684 
7685 	/* If the controller has AMT, do not set DRV_LOAD until the interface
7686 	 * is up.  For all other cases, let the f/w know that the h/w is now
7687 	 * under the control of the driver.
7688 	 */
7689 	if (!(adapter->flags & FLAG_HAS_AMT))
7690 		e1000e_get_hw_control(adapter);
7691 
7692 	if (hw->mac.type >= e1000_pch_cnp)
7693 		adapter->flags2 |= FLAG2_ENABLE_S0IX_FLOWS;
7694 
7695 	strscpy(netdev->name, "eth%d", sizeof(netdev->name));
7696 	err = register_netdev(netdev);
7697 	if (err)
7698 		goto err_register;
7699 
7700 	/* carrier off reporting is important to ethtool even BEFORE open */
7701 	netif_carrier_off(netdev);
7702 
7703 	e1000_print_device_info(adapter);
7704 
7705 	dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_SMART_PREPARE);
7706 
7707 	if (pci_dev_run_wake(pdev))
7708 		pm_runtime_put_noidle(&pdev->dev);
7709 
7710 	return 0;
7711 
7712 err_register:
7713 	if (!(adapter->flags & FLAG_HAS_AMT))
7714 		e1000e_release_hw_control(adapter);
7715 err_eeprom:
7716 	if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
7717 		e1000_phy_hw_reset(&adapter->hw);
7718 err_hw_init:
7719 	kfree(adapter->tx_ring);
7720 	kfree(adapter->rx_ring);
7721 err_sw_init:
7722 	if ((adapter->hw.flash_address) && (hw->mac.type < e1000_pch_spt))
7723 		iounmap(adapter->hw.flash_address);
7724 	e1000e_reset_interrupt_capability(adapter);
7725 err_flashmap:
7726 	iounmap(adapter->hw.hw_addr);
7727 err_ioremap:
7728 	free_netdev(netdev);
7729 err_alloc_etherdev:
7730 	pci_release_mem_regions(pdev);
7731 err_pci_reg:
7732 err_dma:
7733 	pci_disable_device(pdev);
7734 	return err;
7735 }
7736 
7737 /**
7738  * e1000_remove - Device Removal Routine
7739  * @pdev: PCI device information struct
7740  *
7741  * e1000_remove is called by the PCI subsystem to alert the driver
7742  * that it should release a PCI device.  This could be caused by a
7743  * Hot-Plug event, or because the driver is going to be removed from
7744  * memory.
7745  **/
7746 static void e1000_remove(struct pci_dev *pdev)
7747 {
7748 	struct net_device *netdev = pci_get_drvdata(pdev);
7749 	struct e1000_adapter *adapter = netdev_priv(netdev);
7750 
7751 	e1000e_ptp_remove(adapter);
7752 
7753 	/* The timers may be rescheduled, so explicitly disable them
7754 	 * from being rescheduled.
7755 	 */
7756 	set_bit(__E1000_DOWN, &adapter->state);
7757 	del_timer_sync(&adapter->watchdog_timer);
7758 	del_timer_sync(&adapter->phy_info_timer);
7759 
7760 	cancel_work_sync(&adapter->reset_task);
7761 	cancel_work_sync(&adapter->watchdog_task);
7762 	cancel_work_sync(&adapter->downshift_task);
7763 	cancel_work_sync(&adapter->update_phy_task);
7764 	cancel_work_sync(&adapter->print_hang_task);
7765 
7766 	if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
7767 		cancel_work_sync(&adapter->tx_hwtstamp_work);
7768 		if (adapter->tx_hwtstamp_skb) {
7769 			dev_consume_skb_any(adapter->tx_hwtstamp_skb);
7770 			adapter->tx_hwtstamp_skb = NULL;
7771 		}
7772 	}
7773 
7774 	unregister_netdev(netdev);
7775 
7776 	if (pci_dev_run_wake(pdev))
7777 		pm_runtime_get_noresume(&pdev->dev);
7778 
7779 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7780 	 * would have already happened in close and is redundant.
7781 	 */
7782 	e1000e_release_hw_control(adapter);
7783 
7784 	e1000e_reset_interrupt_capability(adapter);
7785 	kfree(adapter->tx_ring);
7786 	kfree(adapter->rx_ring);
7787 
7788 	iounmap(adapter->hw.hw_addr);
7789 	if ((adapter->hw.flash_address) &&
7790 	    (adapter->hw.mac.type < e1000_pch_spt))
7791 		iounmap(adapter->hw.flash_address);
7792 	pci_release_mem_regions(pdev);
7793 
7794 	free_netdev(netdev);
7795 
7796 	pci_disable_device(pdev);
7797 }
7798 
7799 /* PCI Error Recovery (ERS) */
7800 static const struct pci_error_handlers e1000_err_handler = {
7801 	.error_detected = e1000_io_error_detected,
7802 	.slot_reset = e1000_io_slot_reset,
7803 	.resume = e1000_io_resume,
7804 };
7805 
7806 static const struct pci_device_id e1000_pci_tbl[] = {
7807 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
7808 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
7809 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
7810 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP),
7811 	  board_82571 },
7812 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
7813 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
7814 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
7815 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
7816 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
7817 
7818 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
7819 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
7820 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
7821 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
7822 
7823 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
7824 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
7825 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
7826 
7827 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
7828 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
7829 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
7830 
7831 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
7832 	  board_80003es2lan },
7833 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
7834 	  board_80003es2lan },
7835 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
7836 	  board_80003es2lan },
7837 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
7838 	  board_80003es2lan },
7839 
7840 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
7841 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
7842 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
7843 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
7844 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
7845 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
7846 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
7847 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
7848 
7849 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
7850 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
7851 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
7852 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
7853 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
7854 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
7855 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
7856 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
7857 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
7858 
7859 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
7860 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
7861 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
7862 
7863 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
7864 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
7865 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
7866 
7867 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
7868 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
7869 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
7870 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
7871 
7872 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
7873 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
7874 
7875 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
7876 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
7877 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt },
7878 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt },
7879 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt },
7880 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt },
7881 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt },
7882 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt },
7883 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM), board_pch_spt },
7884 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V), board_pch_spt },
7885 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM2), board_pch_spt },
7886 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V2), board_pch_spt },
7887 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LBG_I219_LM3), board_pch_spt },
7888 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM4), board_pch_spt },
7889 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V4), board_pch_spt },
7890 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM5), board_pch_spt },
7891 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V5), board_pch_spt },
7892 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM6), board_pch_cnp },
7893 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V6), board_pch_cnp },
7894 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM7), board_pch_cnp },
7895 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V7), board_pch_cnp },
7896 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM8), board_pch_cnp },
7897 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V8), board_pch_cnp },
7898 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM9), board_pch_cnp },
7899 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V9), board_pch_cnp },
7900 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM10), board_pch_cnp },
7901 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V10), board_pch_cnp },
7902 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM11), board_pch_cnp },
7903 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V11), board_pch_cnp },
7904 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM12), board_pch_spt },
7905 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V12), board_pch_spt },
7906 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM13), board_pch_tgp },
7907 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V13), board_pch_tgp },
7908 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM14), board_pch_tgp },
7909 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V14), board_pch_tgp },
7910 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM15), board_pch_tgp },
7911 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V15), board_pch_tgp },
7912 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_LM23), board_pch_adp },
7913 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_V23), board_pch_adp },
7914 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_LM16), board_pch_adp },
7915 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_V16), board_pch_adp },
7916 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_LM17), board_pch_adp },
7917 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_V17), board_pch_adp },
7918 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_LM22), board_pch_adp },
7919 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_V22), board_pch_adp },
7920 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_LM18), board_pch_mtp },
7921 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_V18), board_pch_mtp },
7922 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_LM19), board_pch_mtp },
7923 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_V19), board_pch_mtp },
7924 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_LM20), board_pch_mtp },
7925 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_V20), board_pch_mtp },
7926 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_LM21), board_pch_mtp },
7927 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_V21), board_pch_mtp },
7928 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ARL_I219_LM24), board_pch_mtp },
7929 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ARL_I219_V24), board_pch_mtp },
7930 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_LM25), board_pch_mtp },
7931 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_V25), board_pch_mtp },
7932 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_LM26), board_pch_mtp },
7933 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_V26), board_pch_mtp },
7934 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_LM27), board_pch_mtp },
7935 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_V27), board_pch_mtp },
7936 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_NVL_I219_LM29), board_pch_mtp },
7937 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_NVL_I219_V29), board_pch_mtp },
7938 
7939 	{ 0, 0, 0, 0, 0, 0, 0 }	/* terminate list */
7940 };
7941 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
7942 
7943 static const struct dev_pm_ops e1000_pm_ops = {
7944 #ifdef CONFIG_PM_SLEEP
7945 	.prepare	= e1000e_pm_prepare,
7946 	.suspend	= e1000e_pm_suspend,
7947 	.resume		= e1000e_pm_resume,
7948 	.freeze		= e1000e_pm_freeze,
7949 	.thaw		= e1000e_pm_thaw,
7950 	.poweroff	= e1000e_pm_suspend,
7951 	.restore	= e1000e_pm_resume,
7952 #endif
7953 	SET_RUNTIME_PM_OPS(e1000e_pm_runtime_suspend, e1000e_pm_runtime_resume,
7954 			   e1000e_pm_runtime_idle)
7955 };
7956 
7957 /* PCI Device API Driver */
7958 static struct pci_driver e1000_driver = {
7959 	.name     = e1000e_driver_name,
7960 	.id_table = e1000_pci_tbl,
7961 	.probe    = e1000_probe,
7962 	.remove   = e1000_remove,
7963 	.driver   = {
7964 		.pm = &e1000_pm_ops,
7965 	},
7966 	.shutdown = e1000_shutdown,
7967 	.err_handler = &e1000_err_handler
7968 };
7969 
7970 /**
7971  * e1000_init_module - Driver Registration Routine
7972  *
7973  * e1000_init_module is the first routine called when the driver is
7974  * loaded. All it does is register with the PCI subsystem.
7975  **/
7976 static int __init e1000_init_module(void)
7977 {
7978 	pr_info("Intel(R) PRO/1000 Network Driver\n");
7979 	pr_info("Copyright(c) 1999 - 2015 Intel Corporation.\n");
7980 
7981 	return pci_register_driver(&e1000_driver);
7982 }
7983 module_init(e1000_init_module);
7984 
7985 /**
7986  * e1000_exit_module - Driver Exit Cleanup Routine
7987  *
7988  * e1000_exit_module is called just before the driver is removed
7989  * from memory.
7990  **/
7991 static void __exit e1000_exit_module(void)
7992 {
7993 	pci_unregister_driver(&e1000_driver);
7994 }
7995 module_exit(e1000_exit_module);
7996 
7997 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
7998 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7999 MODULE_LICENSE("GPL v2");
8000 
8001 /* netdev.c */
8002