1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3 
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5 
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/pci.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/delay.h>
13 #include <linux/netdevice.h>
14 #include <linux/interrupt.h>
15 #include <linux/tcp.h>
16 #include <linux/ipv6.h>
17 #include <linux/slab.h>
18 #include <net/checksum.h>
19 #include <net/ip6_checksum.h>
20 #include <linux/ethtool.h>
21 #include <linux/if_vlan.h>
22 #include <linux/cpu.h>
23 #include <linux/smp.h>
24 #include <linux/pm_qos.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/aer.h>
27 #include <linux/prefetch.h>
28 
29 #include "e1000.h"
30 
31 char e1000e_driver_name[] = "e1000e";
32 
33 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
34 static int debug = -1;
35 module_param(debug, int, 0);
36 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
37 
38 static const struct e1000_info *e1000_info_tbl[] = {
39 	[board_82571]		= &e1000_82571_info,
40 	[board_82572]		= &e1000_82572_info,
41 	[board_82573]		= &e1000_82573_info,
42 	[board_82574]		= &e1000_82574_info,
43 	[board_82583]		= &e1000_82583_info,
44 	[board_80003es2lan]	= &e1000_es2_info,
45 	[board_ich8lan]		= &e1000_ich8_info,
46 	[board_ich9lan]		= &e1000_ich9_info,
47 	[board_ich10lan]	= &e1000_ich10_info,
48 	[board_pchlan]		= &e1000_pch_info,
49 	[board_pch2lan]		= &e1000_pch2_info,
50 	[board_pch_lpt]		= &e1000_pch_lpt_info,
51 	[board_pch_spt]		= &e1000_pch_spt_info,
52 	[board_pch_cnp]		= &e1000_pch_cnp_info,
53 };
54 
55 struct e1000_reg_info {
56 	u32 ofs;
57 	char *name;
58 };
59 
60 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
61 	/* General Registers */
62 	{E1000_CTRL, "CTRL"},
63 	{E1000_STATUS, "STATUS"},
64 	{E1000_CTRL_EXT, "CTRL_EXT"},
65 
66 	/* Interrupt Registers */
67 	{E1000_ICR, "ICR"},
68 
69 	/* Rx Registers */
70 	{E1000_RCTL, "RCTL"},
71 	{E1000_RDLEN(0), "RDLEN"},
72 	{E1000_RDH(0), "RDH"},
73 	{E1000_RDT(0), "RDT"},
74 	{E1000_RDTR, "RDTR"},
75 	{E1000_RXDCTL(0), "RXDCTL"},
76 	{E1000_ERT, "ERT"},
77 	{E1000_RDBAL(0), "RDBAL"},
78 	{E1000_RDBAH(0), "RDBAH"},
79 	{E1000_RDFH, "RDFH"},
80 	{E1000_RDFT, "RDFT"},
81 	{E1000_RDFHS, "RDFHS"},
82 	{E1000_RDFTS, "RDFTS"},
83 	{E1000_RDFPC, "RDFPC"},
84 
85 	/* Tx Registers */
86 	{E1000_TCTL, "TCTL"},
87 	{E1000_TDBAL(0), "TDBAL"},
88 	{E1000_TDBAH(0), "TDBAH"},
89 	{E1000_TDLEN(0), "TDLEN"},
90 	{E1000_TDH(0), "TDH"},
91 	{E1000_TDT(0), "TDT"},
92 	{E1000_TIDV, "TIDV"},
93 	{E1000_TXDCTL(0), "TXDCTL"},
94 	{E1000_TADV, "TADV"},
95 	{E1000_TARC(0), "TARC"},
96 	{E1000_TDFH, "TDFH"},
97 	{E1000_TDFT, "TDFT"},
98 	{E1000_TDFHS, "TDFHS"},
99 	{E1000_TDFTS, "TDFTS"},
100 	{E1000_TDFPC, "TDFPC"},
101 
102 	/* List Terminator */
103 	{0, NULL}
104 };
105 
106 /**
107  * __ew32_prepare - prepare to write to MAC CSR register on certain parts
108  * @hw: pointer to the HW structure
109  *
110  * When updating the MAC CSR registers, the Manageability Engine (ME) could
111  * be accessing the registers at the same time.  Normally, this is handled in
112  * h/w by an arbiter but on some parts there is a bug that acknowledges Host
113  * accesses later than it should which could result in the register to have
114  * an incorrect value.  Workaround this by checking the FWSM register which
115  * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set
116  * and try again a number of times.
117  **/
118 static void __ew32_prepare(struct e1000_hw *hw)
119 {
120 	s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT;
121 
122 	while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i)
123 		udelay(50);
124 }
125 
126 void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val)
127 {
128 	if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
129 		__ew32_prepare(hw);
130 
131 	writel(val, hw->hw_addr + reg);
132 }
133 
134 /**
135  * e1000_regdump - register printout routine
136  * @hw: pointer to the HW structure
137  * @reginfo: pointer to the register info table
138  **/
139 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
140 {
141 	int n = 0;
142 	char rname[16];
143 	u32 regs[8];
144 
145 	switch (reginfo->ofs) {
146 	case E1000_RXDCTL(0):
147 		for (n = 0; n < 2; n++)
148 			regs[n] = __er32(hw, E1000_RXDCTL(n));
149 		break;
150 	case E1000_TXDCTL(0):
151 		for (n = 0; n < 2; n++)
152 			regs[n] = __er32(hw, E1000_TXDCTL(n));
153 		break;
154 	case E1000_TARC(0):
155 		for (n = 0; n < 2; n++)
156 			regs[n] = __er32(hw, E1000_TARC(n));
157 		break;
158 	default:
159 		pr_info("%-15s %08x\n",
160 			reginfo->name, __er32(hw, reginfo->ofs));
161 		return;
162 	}
163 
164 	snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
165 	pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
166 }
167 
168 static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
169 				 struct e1000_buffer *bi)
170 {
171 	int i;
172 	struct e1000_ps_page *ps_page;
173 
174 	for (i = 0; i < adapter->rx_ps_pages; i++) {
175 		ps_page = &bi->ps_pages[i];
176 
177 		if (ps_page->page) {
178 			pr_info("packet dump for ps_page %d:\n", i);
179 			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
180 				       16, 1, page_address(ps_page->page),
181 				       PAGE_SIZE, true);
182 		}
183 	}
184 }
185 
186 /**
187  * e1000e_dump - Print registers, Tx-ring and Rx-ring
188  * @adapter: board private structure
189  **/
190 static void e1000e_dump(struct e1000_adapter *adapter)
191 {
192 	struct net_device *netdev = adapter->netdev;
193 	struct e1000_hw *hw = &adapter->hw;
194 	struct e1000_reg_info *reginfo;
195 	struct e1000_ring *tx_ring = adapter->tx_ring;
196 	struct e1000_tx_desc *tx_desc;
197 	struct my_u0 {
198 		__le64 a;
199 		__le64 b;
200 	} *u0;
201 	struct e1000_buffer *buffer_info;
202 	struct e1000_ring *rx_ring = adapter->rx_ring;
203 	union e1000_rx_desc_packet_split *rx_desc_ps;
204 	union e1000_rx_desc_extended *rx_desc;
205 	struct my_u1 {
206 		__le64 a;
207 		__le64 b;
208 		__le64 c;
209 		__le64 d;
210 	} *u1;
211 	u32 staterr;
212 	int i = 0;
213 
214 	if (!netif_msg_hw(adapter))
215 		return;
216 
217 	/* Print netdevice Info */
218 	if (netdev) {
219 		dev_info(&adapter->pdev->dev, "Net device Info\n");
220 		pr_info("Device Name     state            trans_start\n");
221 		pr_info("%-15s %016lX %016lX\n", netdev->name,
222 			netdev->state, dev_trans_start(netdev));
223 	}
224 
225 	/* Print Registers */
226 	dev_info(&adapter->pdev->dev, "Register Dump\n");
227 	pr_info(" Register Name   Value\n");
228 	for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
229 	     reginfo->name; reginfo++) {
230 		e1000_regdump(hw, reginfo);
231 	}
232 
233 	/* Print Tx Ring Summary */
234 	if (!netdev || !netif_running(netdev))
235 		return;
236 
237 	dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
238 	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
239 	buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
240 	pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
241 		0, tx_ring->next_to_use, tx_ring->next_to_clean,
242 		(unsigned long long)buffer_info->dma,
243 		buffer_info->length,
244 		buffer_info->next_to_watch,
245 		(unsigned long long)buffer_info->time_stamp);
246 
247 	/* Print Tx Ring */
248 	if (!netif_msg_tx_done(adapter))
249 		goto rx_ring_summary;
250 
251 	dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
252 
253 	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
254 	 *
255 	 * Legacy Transmit Descriptor
256 	 *   +--------------------------------------------------------------+
257 	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
258 	 *   +--------------------------------------------------------------+
259 	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
260 	 *   +--------------------------------------------------------------+
261 	 *   63       48 47        36 35    32 31     24 23    16 15        0
262 	 *
263 	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
264 	 *   63      48 47    40 39       32 31             16 15    8 7      0
265 	 *   +----------------------------------------------------------------+
266 	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
267 	 *   +----------------------------------------------------------------+
268 	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
269 	 *   +----------------------------------------------------------------+
270 	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
271 	 *
272 	 * Extended Data Descriptor (DTYP=0x1)
273 	 *   +----------------------------------------------------------------+
274 	 * 0 |                     Buffer Address [63:0]                      |
275 	 *   +----------------------------------------------------------------+
276 	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
277 	 *   +----------------------------------------------------------------+
278 	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
279 	 */
280 	pr_info("Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Legacy format\n");
281 	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Context format\n");
282 	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Data format\n");
283 	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
284 		const char *next_desc;
285 		tx_desc = E1000_TX_DESC(*tx_ring, i);
286 		buffer_info = &tx_ring->buffer_info[i];
287 		u0 = (struct my_u0 *)tx_desc;
288 		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
289 			next_desc = " NTC/U";
290 		else if (i == tx_ring->next_to_use)
291 			next_desc = " NTU";
292 		else if (i == tx_ring->next_to_clean)
293 			next_desc = " NTC";
294 		else
295 			next_desc = "";
296 		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p%s\n",
297 			(!(le64_to_cpu(u0->b) & BIT(29)) ? 'l' :
298 			 ((le64_to_cpu(u0->b) & BIT(20)) ? 'd' : 'c')),
299 			i,
300 			(unsigned long long)le64_to_cpu(u0->a),
301 			(unsigned long long)le64_to_cpu(u0->b),
302 			(unsigned long long)buffer_info->dma,
303 			buffer_info->length, buffer_info->next_to_watch,
304 			(unsigned long long)buffer_info->time_stamp,
305 			buffer_info->skb, next_desc);
306 
307 		if (netif_msg_pktdata(adapter) && buffer_info->skb)
308 			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
309 				       16, 1, buffer_info->skb->data,
310 				       buffer_info->skb->len, true);
311 	}
312 
313 	/* Print Rx Ring Summary */
314 rx_ring_summary:
315 	dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
316 	pr_info("Queue [NTU] [NTC]\n");
317 	pr_info(" %5d %5X %5X\n",
318 		0, rx_ring->next_to_use, rx_ring->next_to_clean);
319 
320 	/* Print Rx Ring */
321 	if (!netif_msg_rx_status(adapter))
322 		return;
323 
324 	dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
325 	switch (adapter->rx_ps_pages) {
326 	case 1:
327 	case 2:
328 	case 3:
329 		/* [Extended] Packet Split Receive Descriptor Format
330 		 *
331 		 *    +-----------------------------------------------------+
332 		 *  0 |                Buffer Address 0 [63:0]              |
333 		 *    +-----------------------------------------------------+
334 		 *  8 |                Buffer Address 1 [63:0]              |
335 		 *    +-----------------------------------------------------+
336 		 * 16 |                Buffer Address 2 [63:0]              |
337 		 *    +-----------------------------------------------------+
338 		 * 24 |                Buffer Address 3 [63:0]              |
339 		 *    +-----------------------------------------------------+
340 		 */
341 		pr_info("R  [desc]      [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] [bi->skb] <-- Ext Pkt Split format\n");
342 		/* [Extended] Receive Descriptor (Write-Back) Format
343 		 *
344 		 *   63       48 47    32 31     13 12    8 7    4 3        0
345 		 *   +------------------------------------------------------+
346 		 * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
347 		 *   | Checksum | Ident  |         | Queue |      |  Type   |
348 		 *   +------------------------------------------------------+
349 		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
350 		 *   +------------------------------------------------------+
351 		 *   63       48 47    32 31            20 19               0
352 		 */
353 		pr_info("RWB[desc]      [ck ipid mrqhsh] [vl   l0 ee  es] [ l3  l2  l1 hs] [reserved      ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
354 		for (i = 0; i < rx_ring->count; i++) {
355 			const char *next_desc;
356 			buffer_info = &rx_ring->buffer_info[i];
357 			rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
358 			u1 = (struct my_u1 *)rx_desc_ps;
359 			staterr =
360 			    le32_to_cpu(rx_desc_ps->wb.middle.status_error);
361 
362 			if (i == rx_ring->next_to_use)
363 				next_desc = " NTU";
364 			else if (i == rx_ring->next_to_clean)
365 				next_desc = " NTC";
366 			else
367 				next_desc = "";
368 
369 			if (staterr & E1000_RXD_STAT_DD) {
370 				/* Descriptor Done */
371 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX ---------------- %p%s\n",
372 					"RWB", i,
373 					(unsigned long long)le64_to_cpu(u1->a),
374 					(unsigned long long)le64_to_cpu(u1->b),
375 					(unsigned long long)le64_to_cpu(u1->c),
376 					(unsigned long long)le64_to_cpu(u1->d),
377 					buffer_info->skb, next_desc);
378 			} else {
379 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX %016llX %p%s\n",
380 					"R  ", i,
381 					(unsigned long long)le64_to_cpu(u1->a),
382 					(unsigned long long)le64_to_cpu(u1->b),
383 					(unsigned long long)le64_to_cpu(u1->c),
384 					(unsigned long long)le64_to_cpu(u1->d),
385 					(unsigned long long)buffer_info->dma,
386 					buffer_info->skb, next_desc);
387 
388 				if (netif_msg_pktdata(adapter))
389 					e1000e_dump_ps_pages(adapter,
390 							     buffer_info);
391 			}
392 		}
393 		break;
394 	default:
395 	case 0:
396 		/* Extended Receive Descriptor (Read) Format
397 		 *
398 		 *   +-----------------------------------------------------+
399 		 * 0 |                Buffer Address [63:0]                |
400 		 *   +-----------------------------------------------------+
401 		 * 8 |                      Reserved                       |
402 		 *   +-----------------------------------------------------+
403 		 */
404 		pr_info("R  [desc]      [buf addr 63:0 ] [reserved 63:0 ] [bi->dma       ] [bi->skb] <-- Ext (Read) format\n");
405 		/* Extended Receive Descriptor (Write-Back) Format
406 		 *
407 		 *   63       48 47    32 31    24 23            4 3        0
408 		 *   +------------------------------------------------------+
409 		 *   |     RSS Hash      |        |               |         |
410 		 * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
411 		 *   | Packet   | IP     |        |               |  Type   |
412 		 *   | Checksum | Ident  |        |               |         |
413 		 *   +------------------------------------------------------+
414 		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
415 		 *   +------------------------------------------------------+
416 		 *   63       48 47    32 31            20 19               0
417 		 */
418 		pr_info("RWB[desc]      [cs ipid    mrq] [vt   ln xe  xs] [bi->skb] <-- Ext (Write-Back) format\n");
419 
420 		for (i = 0; i < rx_ring->count; i++) {
421 			const char *next_desc;
422 
423 			buffer_info = &rx_ring->buffer_info[i];
424 			rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
425 			u1 = (struct my_u1 *)rx_desc;
426 			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
427 
428 			if (i == rx_ring->next_to_use)
429 				next_desc = " NTU";
430 			else if (i == rx_ring->next_to_clean)
431 				next_desc = " NTC";
432 			else
433 				next_desc = "";
434 
435 			if (staterr & E1000_RXD_STAT_DD) {
436 				/* Descriptor Done */
437 				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %p%s\n",
438 					"RWB", i,
439 					(unsigned long long)le64_to_cpu(u1->a),
440 					(unsigned long long)le64_to_cpu(u1->b),
441 					buffer_info->skb, next_desc);
442 			} else {
443 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %p%s\n",
444 					"R  ", i,
445 					(unsigned long long)le64_to_cpu(u1->a),
446 					(unsigned long long)le64_to_cpu(u1->b),
447 					(unsigned long long)buffer_info->dma,
448 					buffer_info->skb, next_desc);
449 
450 				if (netif_msg_pktdata(adapter) &&
451 				    buffer_info->skb)
452 					print_hex_dump(KERN_INFO, "",
453 						       DUMP_PREFIX_ADDRESS, 16,
454 						       1,
455 						       buffer_info->skb->data,
456 						       adapter->rx_buffer_len,
457 						       true);
458 			}
459 		}
460 	}
461 }
462 
463 /**
464  * e1000_desc_unused - calculate if we have unused descriptors
465  * @ring: pointer to ring struct to perform calculation on
466  **/
467 static int e1000_desc_unused(struct e1000_ring *ring)
468 {
469 	if (ring->next_to_clean > ring->next_to_use)
470 		return ring->next_to_clean - ring->next_to_use - 1;
471 
472 	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
473 }
474 
475 /**
476  * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
477  * @adapter: board private structure
478  * @hwtstamps: time stamp structure to update
479  * @systim: unsigned 64bit system time value.
480  *
481  * Convert the system time value stored in the RX/TXSTMP registers into a
482  * hwtstamp which can be used by the upper level time stamping functions.
483  *
484  * The 'systim_lock' spinlock is used to protect the consistency of the
485  * system time value. This is needed because reading the 64 bit time
486  * value involves reading two 32 bit registers. The first read latches the
487  * value.
488  **/
489 static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter,
490 				      struct skb_shared_hwtstamps *hwtstamps,
491 				      u64 systim)
492 {
493 	u64 ns;
494 	unsigned long flags;
495 
496 	spin_lock_irqsave(&adapter->systim_lock, flags);
497 	ns = timecounter_cyc2time(&adapter->tc, systim);
498 	spin_unlock_irqrestore(&adapter->systim_lock, flags);
499 
500 	memset(hwtstamps, 0, sizeof(*hwtstamps));
501 	hwtstamps->hwtstamp = ns_to_ktime(ns);
502 }
503 
504 /**
505  * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
506  * @adapter: board private structure
507  * @status: descriptor extended error and status field
508  * @skb: particular skb to include time stamp
509  *
510  * If the time stamp is valid, convert it into the timecounter ns value
511  * and store that result into the shhwtstamps structure which is passed
512  * up the network stack.
513  **/
514 static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status,
515 			       struct sk_buff *skb)
516 {
517 	struct e1000_hw *hw = &adapter->hw;
518 	u64 rxstmp;
519 
520 	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) ||
521 	    !(status & E1000_RXDEXT_STATERR_TST) ||
522 	    !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
523 		return;
524 
525 	/* The Rx time stamp registers contain the time stamp.  No other
526 	 * received packet will be time stamped until the Rx time stamp
527 	 * registers are read.  Because only one packet can be time stamped
528 	 * at a time, the register values must belong to this packet and
529 	 * therefore none of the other additional attributes need to be
530 	 * compared.
531 	 */
532 	rxstmp = (u64)er32(RXSTMPL);
533 	rxstmp |= (u64)er32(RXSTMPH) << 32;
534 	e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp);
535 
536 	adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP;
537 }
538 
539 /**
540  * e1000_receive_skb - helper function to handle Rx indications
541  * @adapter: board private structure
542  * @netdev: pointer to netdev struct
543  * @staterr: descriptor extended error and status field as written by hardware
544  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
545  * @skb: pointer to sk_buff to be indicated to stack
546  **/
547 static void e1000_receive_skb(struct e1000_adapter *adapter,
548 			      struct net_device *netdev, struct sk_buff *skb,
549 			      u32 staterr, __le16 vlan)
550 {
551 	u16 tag = le16_to_cpu(vlan);
552 
553 	e1000e_rx_hwtstamp(adapter, staterr, skb);
554 
555 	skb->protocol = eth_type_trans(skb, netdev);
556 
557 	if (staterr & E1000_RXD_STAT_VP)
558 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag);
559 
560 	napi_gro_receive(&adapter->napi, skb);
561 }
562 
563 /**
564  * e1000_rx_checksum - Receive Checksum Offload
565  * @adapter: board private structure
566  * @status_err: receive descriptor status and error fields
567  * @skb: socket buffer with received data
568  **/
569 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
570 			      struct sk_buff *skb)
571 {
572 	u16 status = (u16)status_err;
573 	u8 errors = (u8)(status_err >> 24);
574 
575 	skb_checksum_none_assert(skb);
576 
577 	/* Rx checksum disabled */
578 	if (!(adapter->netdev->features & NETIF_F_RXCSUM))
579 		return;
580 
581 	/* Ignore Checksum bit is set */
582 	if (status & E1000_RXD_STAT_IXSM)
583 		return;
584 
585 	/* TCP/UDP checksum error bit or IP checksum error bit is set */
586 	if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
587 		/* let the stack verify checksum errors */
588 		adapter->hw_csum_err++;
589 		return;
590 	}
591 
592 	/* TCP/UDP Checksum has not been calculated */
593 	if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
594 		return;
595 
596 	/* It must be a TCP or UDP packet with a valid checksum */
597 	skb->ip_summed = CHECKSUM_UNNECESSARY;
598 	adapter->hw_csum_good++;
599 }
600 
601 static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
602 {
603 	struct e1000_adapter *adapter = rx_ring->adapter;
604 	struct e1000_hw *hw = &adapter->hw;
605 
606 	__ew32_prepare(hw);
607 	writel(i, rx_ring->tail);
608 
609 	if (unlikely(i != readl(rx_ring->tail))) {
610 		u32 rctl = er32(RCTL);
611 
612 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
613 		e_err("ME firmware caused invalid RDT - resetting\n");
614 		schedule_work(&adapter->reset_task);
615 	}
616 }
617 
618 static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
619 {
620 	struct e1000_adapter *adapter = tx_ring->adapter;
621 	struct e1000_hw *hw = &adapter->hw;
622 
623 	__ew32_prepare(hw);
624 	writel(i, tx_ring->tail);
625 
626 	if (unlikely(i != readl(tx_ring->tail))) {
627 		u32 tctl = er32(TCTL);
628 
629 		ew32(TCTL, tctl & ~E1000_TCTL_EN);
630 		e_err("ME firmware caused invalid TDT - resetting\n");
631 		schedule_work(&adapter->reset_task);
632 	}
633 }
634 
635 /**
636  * e1000_alloc_rx_buffers - Replace used receive buffers
637  * @rx_ring: Rx descriptor ring
638  * @cleaned_count: number to reallocate
639  * @gfp: flags for allocation
640  **/
641 static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
642 				   int cleaned_count, gfp_t gfp)
643 {
644 	struct e1000_adapter *adapter = rx_ring->adapter;
645 	struct net_device *netdev = adapter->netdev;
646 	struct pci_dev *pdev = adapter->pdev;
647 	union e1000_rx_desc_extended *rx_desc;
648 	struct e1000_buffer *buffer_info;
649 	struct sk_buff *skb;
650 	unsigned int i;
651 	unsigned int bufsz = adapter->rx_buffer_len;
652 
653 	i = rx_ring->next_to_use;
654 	buffer_info = &rx_ring->buffer_info[i];
655 
656 	while (cleaned_count--) {
657 		skb = buffer_info->skb;
658 		if (skb) {
659 			skb_trim(skb, 0);
660 			goto map_skb;
661 		}
662 
663 		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
664 		if (!skb) {
665 			/* Better luck next round */
666 			adapter->alloc_rx_buff_failed++;
667 			break;
668 		}
669 
670 		buffer_info->skb = skb;
671 map_skb:
672 		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
673 						  adapter->rx_buffer_len,
674 						  DMA_FROM_DEVICE);
675 		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
676 			dev_err(&pdev->dev, "Rx DMA map failed\n");
677 			adapter->rx_dma_failed++;
678 			break;
679 		}
680 
681 		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
682 		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
683 
684 		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
685 			/* Force memory writes to complete before letting h/w
686 			 * know there are new descriptors to fetch.  (Only
687 			 * applicable for weak-ordered memory model archs,
688 			 * such as IA-64).
689 			 */
690 			wmb();
691 			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
692 				e1000e_update_rdt_wa(rx_ring, i);
693 			else
694 				writel(i, rx_ring->tail);
695 		}
696 		i++;
697 		if (i == rx_ring->count)
698 			i = 0;
699 		buffer_info = &rx_ring->buffer_info[i];
700 	}
701 
702 	rx_ring->next_to_use = i;
703 }
704 
705 /**
706  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
707  * @rx_ring: Rx descriptor ring
708  * @cleaned_count: number to reallocate
709  * @gfp: flags for allocation
710  **/
711 static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
712 				      int cleaned_count, gfp_t gfp)
713 {
714 	struct e1000_adapter *adapter = rx_ring->adapter;
715 	struct net_device *netdev = adapter->netdev;
716 	struct pci_dev *pdev = adapter->pdev;
717 	union e1000_rx_desc_packet_split *rx_desc;
718 	struct e1000_buffer *buffer_info;
719 	struct e1000_ps_page *ps_page;
720 	struct sk_buff *skb;
721 	unsigned int i, j;
722 
723 	i = rx_ring->next_to_use;
724 	buffer_info = &rx_ring->buffer_info[i];
725 
726 	while (cleaned_count--) {
727 		rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
728 
729 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
730 			ps_page = &buffer_info->ps_pages[j];
731 			if (j >= adapter->rx_ps_pages) {
732 				/* all unused desc entries get hw null ptr */
733 				rx_desc->read.buffer_addr[j + 1] =
734 				    ~cpu_to_le64(0);
735 				continue;
736 			}
737 			if (!ps_page->page) {
738 				ps_page->page = alloc_page(gfp);
739 				if (!ps_page->page) {
740 					adapter->alloc_rx_buff_failed++;
741 					goto no_buffers;
742 				}
743 				ps_page->dma = dma_map_page(&pdev->dev,
744 							    ps_page->page,
745 							    0, PAGE_SIZE,
746 							    DMA_FROM_DEVICE);
747 				if (dma_mapping_error(&pdev->dev,
748 						      ps_page->dma)) {
749 					dev_err(&adapter->pdev->dev,
750 						"Rx DMA page map failed\n");
751 					adapter->rx_dma_failed++;
752 					goto no_buffers;
753 				}
754 			}
755 			/* Refresh the desc even if buffer_addrs
756 			 * didn't change because each write-back
757 			 * erases this info.
758 			 */
759 			rx_desc->read.buffer_addr[j + 1] =
760 			    cpu_to_le64(ps_page->dma);
761 		}
762 
763 		skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0,
764 						  gfp);
765 
766 		if (!skb) {
767 			adapter->alloc_rx_buff_failed++;
768 			break;
769 		}
770 
771 		buffer_info->skb = skb;
772 		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
773 						  adapter->rx_ps_bsize0,
774 						  DMA_FROM_DEVICE);
775 		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
776 			dev_err(&pdev->dev, "Rx DMA map failed\n");
777 			adapter->rx_dma_failed++;
778 			/* cleanup skb */
779 			dev_kfree_skb_any(skb);
780 			buffer_info->skb = NULL;
781 			break;
782 		}
783 
784 		rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
785 
786 		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
787 			/* Force memory writes to complete before letting h/w
788 			 * know there are new descriptors to fetch.  (Only
789 			 * applicable for weak-ordered memory model archs,
790 			 * such as IA-64).
791 			 */
792 			wmb();
793 			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
794 				e1000e_update_rdt_wa(rx_ring, i << 1);
795 			else
796 				writel(i << 1, rx_ring->tail);
797 		}
798 
799 		i++;
800 		if (i == rx_ring->count)
801 			i = 0;
802 		buffer_info = &rx_ring->buffer_info[i];
803 	}
804 
805 no_buffers:
806 	rx_ring->next_to_use = i;
807 }
808 
809 /**
810  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
811  * @rx_ring: Rx descriptor ring
812  * @cleaned_count: number of buffers to allocate this pass
813  * @gfp: flags for allocation
814  **/
815 
816 static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
817 					 int cleaned_count, gfp_t gfp)
818 {
819 	struct e1000_adapter *adapter = rx_ring->adapter;
820 	struct net_device *netdev = adapter->netdev;
821 	struct pci_dev *pdev = adapter->pdev;
822 	union e1000_rx_desc_extended *rx_desc;
823 	struct e1000_buffer *buffer_info;
824 	struct sk_buff *skb;
825 	unsigned int i;
826 	unsigned int bufsz = 256 - 16;	/* for skb_reserve */
827 
828 	i = rx_ring->next_to_use;
829 	buffer_info = &rx_ring->buffer_info[i];
830 
831 	while (cleaned_count--) {
832 		skb = buffer_info->skb;
833 		if (skb) {
834 			skb_trim(skb, 0);
835 			goto check_page;
836 		}
837 
838 		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
839 		if (unlikely(!skb)) {
840 			/* Better luck next round */
841 			adapter->alloc_rx_buff_failed++;
842 			break;
843 		}
844 
845 		buffer_info->skb = skb;
846 check_page:
847 		/* allocate a new page if necessary */
848 		if (!buffer_info->page) {
849 			buffer_info->page = alloc_page(gfp);
850 			if (unlikely(!buffer_info->page)) {
851 				adapter->alloc_rx_buff_failed++;
852 				break;
853 			}
854 		}
855 
856 		if (!buffer_info->dma) {
857 			buffer_info->dma = dma_map_page(&pdev->dev,
858 							buffer_info->page, 0,
859 							PAGE_SIZE,
860 							DMA_FROM_DEVICE);
861 			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
862 				adapter->alloc_rx_buff_failed++;
863 				break;
864 			}
865 		}
866 
867 		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
868 		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
869 
870 		if (unlikely(++i == rx_ring->count))
871 			i = 0;
872 		buffer_info = &rx_ring->buffer_info[i];
873 	}
874 
875 	if (likely(rx_ring->next_to_use != i)) {
876 		rx_ring->next_to_use = i;
877 		if (unlikely(i-- == 0))
878 			i = (rx_ring->count - 1);
879 
880 		/* Force memory writes to complete before letting h/w
881 		 * know there are new descriptors to fetch.  (Only
882 		 * applicable for weak-ordered memory model archs,
883 		 * such as IA-64).
884 		 */
885 		wmb();
886 		if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
887 			e1000e_update_rdt_wa(rx_ring, i);
888 		else
889 			writel(i, rx_ring->tail);
890 	}
891 }
892 
893 static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
894 				 struct sk_buff *skb)
895 {
896 	if (netdev->features & NETIF_F_RXHASH)
897 		skb_set_hash(skb, le32_to_cpu(rss), PKT_HASH_TYPE_L3);
898 }
899 
900 /**
901  * e1000_clean_rx_irq - Send received data up the network stack
902  * @rx_ring: Rx descriptor ring
903  * @work_done: output parameter for indicating completed work
904  * @work_to_do: how many packets we can clean
905  *
906  * the return value indicates whether actual cleaning was done, there
907  * is no guarantee that everything was cleaned
908  **/
909 static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
910 			       int work_to_do)
911 {
912 	struct e1000_adapter *adapter = rx_ring->adapter;
913 	struct net_device *netdev = adapter->netdev;
914 	struct pci_dev *pdev = adapter->pdev;
915 	struct e1000_hw *hw = &adapter->hw;
916 	union e1000_rx_desc_extended *rx_desc, *next_rxd;
917 	struct e1000_buffer *buffer_info, *next_buffer;
918 	u32 length, staterr;
919 	unsigned int i;
920 	int cleaned_count = 0;
921 	bool cleaned = false;
922 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
923 
924 	i = rx_ring->next_to_clean;
925 	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
926 	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
927 	buffer_info = &rx_ring->buffer_info[i];
928 
929 	while (staterr & E1000_RXD_STAT_DD) {
930 		struct sk_buff *skb;
931 
932 		if (*work_done >= work_to_do)
933 			break;
934 		(*work_done)++;
935 		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
936 
937 		skb = buffer_info->skb;
938 		buffer_info->skb = NULL;
939 
940 		prefetch(skb->data - NET_IP_ALIGN);
941 
942 		i++;
943 		if (i == rx_ring->count)
944 			i = 0;
945 		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
946 		prefetch(next_rxd);
947 
948 		next_buffer = &rx_ring->buffer_info[i];
949 
950 		cleaned = true;
951 		cleaned_count++;
952 		dma_unmap_single(&pdev->dev, buffer_info->dma,
953 				 adapter->rx_buffer_len, DMA_FROM_DEVICE);
954 		buffer_info->dma = 0;
955 
956 		length = le16_to_cpu(rx_desc->wb.upper.length);
957 
958 		/* !EOP means multiple descriptors were used to store a single
959 		 * packet, if that's the case we need to toss it.  In fact, we
960 		 * need to toss every packet with the EOP bit clear and the
961 		 * next frame that _does_ have the EOP bit set, as it is by
962 		 * definition only a frame fragment
963 		 */
964 		if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
965 			adapter->flags2 |= FLAG2_IS_DISCARDING;
966 
967 		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
968 			/* All receives must fit into a single buffer */
969 			e_dbg("Receive packet consumed multiple buffers\n");
970 			/* recycle */
971 			buffer_info->skb = skb;
972 			if (staterr & E1000_RXD_STAT_EOP)
973 				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
974 			goto next_desc;
975 		}
976 
977 		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
978 			     !(netdev->features & NETIF_F_RXALL))) {
979 			/* recycle */
980 			buffer_info->skb = skb;
981 			goto next_desc;
982 		}
983 
984 		/* adjust length to remove Ethernet CRC */
985 		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
986 			/* If configured to store CRC, don't subtract FCS,
987 			 * but keep the FCS bytes out of the total_rx_bytes
988 			 * counter
989 			 */
990 			if (netdev->features & NETIF_F_RXFCS)
991 				total_rx_bytes -= 4;
992 			else
993 				length -= 4;
994 		}
995 
996 		total_rx_bytes += length;
997 		total_rx_packets++;
998 
999 		/* code added for copybreak, this should improve
1000 		 * performance for small packets with large amounts
1001 		 * of reassembly being done in the stack
1002 		 */
1003 		if (length < copybreak) {
1004 			struct sk_buff *new_skb =
1005 				napi_alloc_skb(&adapter->napi, length);
1006 			if (new_skb) {
1007 				skb_copy_to_linear_data_offset(new_skb,
1008 							       -NET_IP_ALIGN,
1009 							       (skb->data -
1010 								NET_IP_ALIGN),
1011 							       (length +
1012 								NET_IP_ALIGN));
1013 				/* save the skb in buffer_info as good */
1014 				buffer_info->skb = skb;
1015 				skb = new_skb;
1016 			}
1017 			/* else just continue with the old one */
1018 		}
1019 		/* end copybreak code */
1020 		skb_put(skb, length);
1021 
1022 		/* Receive Checksum Offload */
1023 		e1000_rx_checksum(adapter, staterr, skb);
1024 
1025 		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1026 
1027 		e1000_receive_skb(adapter, netdev, skb, staterr,
1028 				  rx_desc->wb.upper.vlan);
1029 
1030 next_desc:
1031 		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1032 
1033 		/* return some buffers to hardware, one at a time is too slow */
1034 		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1035 			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1036 					      GFP_ATOMIC);
1037 			cleaned_count = 0;
1038 		}
1039 
1040 		/* use prefetched values */
1041 		rx_desc = next_rxd;
1042 		buffer_info = next_buffer;
1043 
1044 		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1045 	}
1046 	rx_ring->next_to_clean = i;
1047 
1048 	cleaned_count = e1000_desc_unused(rx_ring);
1049 	if (cleaned_count)
1050 		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1051 
1052 	adapter->total_rx_bytes += total_rx_bytes;
1053 	adapter->total_rx_packets += total_rx_packets;
1054 	return cleaned;
1055 }
1056 
1057 static void e1000_put_txbuf(struct e1000_ring *tx_ring,
1058 			    struct e1000_buffer *buffer_info,
1059 			    bool drop)
1060 {
1061 	struct e1000_adapter *adapter = tx_ring->adapter;
1062 
1063 	if (buffer_info->dma) {
1064 		if (buffer_info->mapped_as_page)
1065 			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1066 				       buffer_info->length, DMA_TO_DEVICE);
1067 		else
1068 			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1069 					 buffer_info->length, DMA_TO_DEVICE);
1070 		buffer_info->dma = 0;
1071 	}
1072 	if (buffer_info->skb) {
1073 		if (drop)
1074 			dev_kfree_skb_any(buffer_info->skb);
1075 		else
1076 			dev_consume_skb_any(buffer_info->skb);
1077 		buffer_info->skb = NULL;
1078 	}
1079 	buffer_info->time_stamp = 0;
1080 }
1081 
1082 static void e1000_print_hw_hang(struct work_struct *work)
1083 {
1084 	struct e1000_adapter *adapter = container_of(work,
1085 						     struct e1000_adapter,
1086 						     print_hang_task);
1087 	struct net_device *netdev = adapter->netdev;
1088 	struct e1000_ring *tx_ring = adapter->tx_ring;
1089 	unsigned int i = tx_ring->next_to_clean;
1090 	unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1091 	struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1092 	struct e1000_hw *hw = &adapter->hw;
1093 	u16 phy_status, phy_1000t_status, phy_ext_status;
1094 	u16 pci_status;
1095 
1096 	if (test_bit(__E1000_DOWN, &adapter->state))
1097 		return;
1098 
1099 	if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) {
1100 		/* May be block on write-back, flush and detect again
1101 		 * flush pending descriptor writebacks to memory
1102 		 */
1103 		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1104 		/* execute the writes immediately */
1105 		e1e_flush();
1106 		/* Due to rare timing issues, write to TIDV again to ensure
1107 		 * the write is successful
1108 		 */
1109 		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1110 		/* execute the writes immediately */
1111 		e1e_flush();
1112 		adapter->tx_hang_recheck = true;
1113 		return;
1114 	}
1115 	adapter->tx_hang_recheck = false;
1116 
1117 	if (er32(TDH(0)) == er32(TDT(0))) {
1118 		e_dbg("false hang detected, ignoring\n");
1119 		return;
1120 	}
1121 
1122 	/* Real hang detected */
1123 	netif_stop_queue(netdev);
1124 
1125 	e1e_rphy(hw, MII_BMSR, &phy_status);
1126 	e1e_rphy(hw, MII_STAT1000, &phy_1000t_status);
1127 	e1e_rphy(hw, MII_ESTATUS, &phy_ext_status);
1128 
1129 	pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1130 
1131 	/* detected Hardware unit hang */
1132 	e_err("Detected Hardware Unit Hang:\n"
1133 	      "  TDH                  <%x>\n"
1134 	      "  TDT                  <%x>\n"
1135 	      "  next_to_use          <%x>\n"
1136 	      "  next_to_clean        <%x>\n"
1137 	      "buffer_info[next_to_clean]:\n"
1138 	      "  time_stamp           <%lx>\n"
1139 	      "  next_to_watch        <%x>\n"
1140 	      "  jiffies              <%lx>\n"
1141 	      "  next_to_watch.status <%x>\n"
1142 	      "MAC Status             <%x>\n"
1143 	      "PHY Status             <%x>\n"
1144 	      "PHY 1000BASE-T Status  <%x>\n"
1145 	      "PHY Extended Status    <%x>\n"
1146 	      "PCI Status             <%x>\n",
1147 	      readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use,
1148 	      tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp,
1149 	      eop, jiffies, eop_desc->upper.fields.status, er32(STATUS),
1150 	      phy_status, phy_1000t_status, phy_ext_status, pci_status);
1151 
1152 	e1000e_dump(adapter);
1153 
1154 	/* Suggest workaround for known h/w issue */
1155 	if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1156 		e_err("Try turning off Tx pause (flow control) via ethtool\n");
1157 }
1158 
1159 /**
1160  * e1000e_tx_hwtstamp_work - check for Tx time stamp
1161  * @work: pointer to work struct
1162  *
1163  * This work function polls the TSYNCTXCTL valid bit to determine when a
1164  * timestamp has been taken for the current stored skb.  The timestamp must
1165  * be for this skb because only one such packet is allowed in the queue.
1166  */
1167 static void e1000e_tx_hwtstamp_work(struct work_struct *work)
1168 {
1169 	struct e1000_adapter *adapter = container_of(work, struct e1000_adapter,
1170 						     tx_hwtstamp_work);
1171 	struct e1000_hw *hw = &adapter->hw;
1172 
1173 	if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) {
1174 		struct sk_buff *skb = adapter->tx_hwtstamp_skb;
1175 		struct skb_shared_hwtstamps shhwtstamps;
1176 		u64 txstmp;
1177 
1178 		txstmp = er32(TXSTMPL);
1179 		txstmp |= (u64)er32(TXSTMPH) << 32;
1180 
1181 		e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp);
1182 
1183 		/* Clear the global tx_hwtstamp_skb pointer and force writes
1184 		 * prior to notifying the stack of a Tx timestamp.
1185 		 */
1186 		adapter->tx_hwtstamp_skb = NULL;
1187 		wmb(); /* force write prior to skb_tstamp_tx */
1188 
1189 		skb_tstamp_tx(skb, &shhwtstamps);
1190 		dev_consume_skb_any(skb);
1191 	} else if (time_after(jiffies, adapter->tx_hwtstamp_start
1192 			      + adapter->tx_timeout_factor * HZ)) {
1193 		dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1194 		adapter->tx_hwtstamp_skb = NULL;
1195 		adapter->tx_hwtstamp_timeouts++;
1196 		e_warn("clearing Tx timestamp hang\n");
1197 	} else {
1198 		/* reschedule to check later */
1199 		schedule_work(&adapter->tx_hwtstamp_work);
1200 	}
1201 }
1202 
1203 /**
1204  * e1000_clean_tx_irq - Reclaim resources after transmit completes
1205  * @tx_ring: Tx descriptor ring
1206  *
1207  * the return value indicates whether actual cleaning was done, there
1208  * is no guarantee that everything was cleaned
1209  **/
1210 static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1211 {
1212 	struct e1000_adapter *adapter = tx_ring->adapter;
1213 	struct net_device *netdev = adapter->netdev;
1214 	struct e1000_hw *hw = &adapter->hw;
1215 	struct e1000_tx_desc *tx_desc, *eop_desc;
1216 	struct e1000_buffer *buffer_info;
1217 	unsigned int i, eop;
1218 	unsigned int count = 0;
1219 	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1220 	unsigned int bytes_compl = 0, pkts_compl = 0;
1221 
1222 	i = tx_ring->next_to_clean;
1223 	eop = tx_ring->buffer_info[i].next_to_watch;
1224 	eop_desc = E1000_TX_DESC(*tx_ring, eop);
1225 
1226 	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1227 	       (count < tx_ring->count)) {
1228 		bool cleaned = false;
1229 
1230 		dma_rmb();		/* read buffer_info after eop_desc */
1231 		for (; !cleaned; count++) {
1232 			tx_desc = E1000_TX_DESC(*tx_ring, i);
1233 			buffer_info = &tx_ring->buffer_info[i];
1234 			cleaned = (i == eop);
1235 
1236 			if (cleaned) {
1237 				total_tx_packets += buffer_info->segs;
1238 				total_tx_bytes += buffer_info->bytecount;
1239 				if (buffer_info->skb) {
1240 					bytes_compl += buffer_info->skb->len;
1241 					pkts_compl++;
1242 				}
1243 			}
1244 
1245 			e1000_put_txbuf(tx_ring, buffer_info, false);
1246 			tx_desc->upper.data = 0;
1247 
1248 			i++;
1249 			if (i == tx_ring->count)
1250 				i = 0;
1251 		}
1252 
1253 		if (i == tx_ring->next_to_use)
1254 			break;
1255 		eop = tx_ring->buffer_info[i].next_to_watch;
1256 		eop_desc = E1000_TX_DESC(*tx_ring, eop);
1257 	}
1258 
1259 	tx_ring->next_to_clean = i;
1260 
1261 	netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1262 
1263 #define TX_WAKE_THRESHOLD 32
1264 	if (count && netif_carrier_ok(netdev) &&
1265 	    e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1266 		/* Make sure that anybody stopping the queue after this
1267 		 * sees the new next_to_clean.
1268 		 */
1269 		smp_mb();
1270 
1271 		if (netif_queue_stopped(netdev) &&
1272 		    !(test_bit(__E1000_DOWN, &adapter->state))) {
1273 			netif_wake_queue(netdev);
1274 			++adapter->restart_queue;
1275 		}
1276 	}
1277 
1278 	if (adapter->detect_tx_hung) {
1279 		/* Detect a transmit hang in hardware, this serializes the
1280 		 * check with the clearing of time_stamp and movement of i
1281 		 */
1282 		adapter->detect_tx_hung = false;
1283 		if (tx_ring->buffer_info[i].time_stamp &&
1284 		    time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1285 			       + (adapter->tx_timeout_factor * HZ)) &&
1286 		    !(er32(STATUS) & E1000_STATUS_TXOFF))
1287 			schedule_work(&adapter->print_hang_task);
1288 		else
1289 			adapter->tx_hang_recheck = false;
1290 	}
1291 	adapter->total_tx_bytes += total_tx_bytes;
1292 	adapter->total_tx_packets += total_tx_packets;
1293 	return count < tx_ring->count;
1294 }
1295 
1296 /**
1297  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1298  * @rx_ring: Rx descriptor ring
1299  * @work_done: output parameter for indicating completed work
1300  * @work_to_do: how many packets we can clean
1301  *
1302  * the return value indicates whether actual cleaning was done, there
1303  * is no guarantee that everything was cleaned
1304  **/
1305 static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1306 				  int work_to_do)
1307 {
1308 	struct e1000_adapter *adapter = rx_ring->adapter;
1309 	struct e1000_hw *hw = &adapter->hw;
1310 	union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1311 	struct net_device *netdev = adapter->netdev;
1312 	struct pci_dev *pdev = adapter->pdev;
1313 	struct e1000_buffer *buffer_info, *next_buffer;
1314 	struct e1000_ps_page *ps_page;
1315 	struct sk_buff *skb;
1316 	unsigned int i, j;
1317 	u32 length, staterr;
1318 	int cleaned_count = 0;
1319 	bool cleaned = false;
1320 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1321 
1322 	i = rx_ring->next_to_clean;
1323 	rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1324 	staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1325 	buffer_info = &rx_ring->buffer_info[i];
1326 
1327 	while (staterr & E1000_RXD_STAT_DD) {
1328 		if (*work_done >= work_to_do)
1329 			break;
1330 		(*work_done)++;
1331 		skb = buffer_info->skb;
1332 		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
1333 
1334 		/* in the packet split case this is header only */
1335 		prefetch(skb->data - NET_IP_ALIGN);
1336 
1337 		i++;
1338 		if (i == rx_ring->count)
1339 			i = 0;
1340 		next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1341 		prefetch(next_rxd);
1342 
1343 		next_buffer = &rx_ring->buffer_info[i];
1344 
1345 		cleaned = true;
1346 		cleaned_count++;
1347 		dma_unmap_single(&pdev->dev, buffer_info->dma,
1348 				 adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1349 		buffer_info->dma = 0;
1350 
1351 		/* see !EOP comment in other Rx routine */
1352 		if (!(staterr & E1000_RXD_STAT_EOP))
1353 			adapter->flags2 |= FLAG2_IS_DISCARDING;
1354 
1355 		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1356 			e_dbg("Packet Split buffers didn't pick up the full packet\n");
1357 			dev_kfree_skb_irq(skb);
1358 			if (staterr & E1000_RXD_STAT_EOP)
1359 				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1360 			goto next_desc;
1361 		}
1362 
1363 		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1364 			     !(netdev->features & NETIF_F_RXALL))) {
1365 			dev_kfree_skb_irq(skb);
1366 			goto next_desc;
1367 		}
1368 
1369 		length = le16_to_cpu(rx_desc->wb.middle.length0);
1370 
1371 		if (!length) {
1372 			e_dbg("Last part of the packet spanning multiple descriptors\n");
1373 			dev_kfree_skb_irq(skb);
1374 			goto next_desc;
1375 		}
1376 
1377 		/* Good Receive */
1378 		skb_put(skb, length);
1379 
1380 		{
1381 			/* this looks ugly, but it seems compiler issues make
1382 			 * it more efficient than reusing j
1383 			 */
1384 			int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1385 
1386 			/* page alloc/put takes too long and effects small
1387 			 * packet throughput, so unsplit small packets and
1388 			 * save the alloc/put only valid in softirq (napi)
1389 			 * context to call kmap_*
1390 			 */
1391 			if (l1 && (l1 <= copybreak) &&
1392 			    ((length + l1) <= adapter->rx_ps_bsize0)) {
1393 				u8 *vaddr;
1394 
1395 				ps_page = &buffer_info->ps_pages[0];
1396 
1397 				/* there is no documentation about how to call
1398 				 * kmap_atomic, so we can't hold the mapping
1399 				 * very long
1400 				 */
1401 				dma_sync_single_for_cpu(&pdev->dev,
1402 							ps_page->dma,
1403 							PAGE_SIZE,
1404 							DMA_FROM_DEVICE);
1405 				vaddr = kmap_atomic(ps_page->page);
1406 				memcpy(skb_tail_pointer(skb), vaddr, l1);
1407 				kunmap_atomic(vaddr);
1408 				dma_sync_single_for_device(&pdev->dev,
1409 							   ps_page->dma,
1410 							   PAGE_SIZE,
1411 							   DMA_FROM_DEVICE);
1412 
1413 				/* remove the CRC */
1414 				if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1415 					if (!(netdev->features & NETIF_F_RXFCS))
1416 						l1 -= 4;
1417 				}
1418 
1419 				skb_put(skb, l1);
1420 				goto copydone;
1421 			}	/* if */
1422 		}
1423 
1424 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1425 			length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1426 			if (!length)
1427 				break;
1428 
1429 			ps_page = &buffer_info->ps_pages[j];
1430 			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1431 				       DMA_FROM_DEVICE);
1432 			ps_page->dma = 0;
1433 			skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1434 			ps_page->page = NULL;
1435 			skb->len += length;
1436 			skb->data_len += length;
1437 			skb->truesize += PAGE_SIZE;
1438 		}
1439 
1440 		/* strip the ethernet crc, problem is we're using pages now so
1441 		 * this whole operation can get a little cpu intensive
1442 		 */
1443 		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1444 			if (!(netdev->features & NETIF_F_RXFCS))
1445 				pskb_trim(skb, skb->len - 4);
1446 		}
1447 
1448 copydone:
1449 		total_rx_bytes += skb->len;
1450 		total_rx_packets++;
1451 
1452 		e1000_rx_checksum(adapter, staterr, skb);
1453 
1454 		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1455 
1456 		if (rx_desc->wb.upper.header_status &
1457 		    cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1458 			adapter->rx_hdr_split++;
1459 
1460 		e1000_receive_skb(adapter, netdev, skb, staterr,
1461 				  rx_desc->wb.middle.vlan);
1462 
1463 next_desc:
1464 		rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1465 		buffer_info->skb = NULL;
1466 
1467 		/* return some buffers to hardware, one at a time is too slow */
1468 		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1469 			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1470 					      GFP_ATOMIC);
1471 			cleaned_count = 0;
1472 		}
1473 
1474 		/* use prefetched values */
1475 		rx_desc = next_rxd;
1476 		buffer_info = next_buffer;
1477 
1478 		staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1479 	}
1480 	rx_ring->next_to_clean = i;
1481 
1482 	cleaned_count = e1000_desc_unused(rx_ring);
1483 	if (cleaned_count)
1484 		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1485 
1486 	adapter->total_rx_bytes += total_rx_bytes;
1487 	adapter->total_rx_packets += total_rx_packets;
1488 	return cleaned;
1489 }
1490 
1491 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1492 			       u16 length)
1493 {
1494 	bi->page = NULL;
1495 	skb->len += length;
1496 	skb->data_len += length;
1497 	skb->truesize += PAGE_SIZE;
1498 }
1499 
1500 /**
1501  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1502  * @rx_ring: Rx descriptor ring
1503  * @work_done: output parameter for indicating completed work
1504  * @work_to_do: how many packets we can clean
1505  *
1506  * the return value indicates whether actual cleaning was done, there
1507  * is no guarantee that everything was cleaned
1508  **/
1509 static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1510 				     int work_to_do)
1511 {
1512 	struct e1000_adapter *adapter = rx_ring->adapter;
1513 	struct net_device *netdev = adapter->netdev;
1514 	struct pci_dev *pdev = adapter->pdev;
1515 	union e1000_rx_desc_extended *rx_desc, *next_rxd;
1516 	struct e1000_buffer *buffer_info, *next_buffer;
1517 	u32 length, staterr;
1518 	unsigned int i;
1519 	int cleaned_count = 0;
1520 	bool cleaned = false;
1521 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1522 	struct skb_shared_info *shinfo;
1523 
1524 	i = rx_ring->next_to_clean;
1525 	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1526 	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1527 	buffer_info = &rx_ring->buffer_info[i];
1528 
1529 	while (staterr & E1000_RXD_STAT_DD) {
1530 		struct sk_buff *skb;
1531 
1532 		if (*work_done >= work_to_do)
1533 			break;
1534 		(*work_done)++;
1535 		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
1536 
1537 		skb = buffer_info->skb;
1538 		buffer_info->skb = NULL;
1539 
1540 		++i;
1541 		if (i == rx_ring->count)
1542 			i = 0;
1543 		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1544 		prefetch(next_rxd);
1545 
1546 		next_buffer = &rx_ring->buffer_info[i];
1547 
1548 		cleaned = true;
1549 		cleaned_count++;
1550 		dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1551 			       DMA_FROM_DEVICE);
1552 		buffer_info->dma = 0;
1553 
1554 		length = le16_to_cpu(rx_desc->wb.upper.length);
1555 
1556 		/* errors is only valid for DD + EOP descriptors */
1557 		if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1558 			     ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1559 			      !(netdev->features & NETIF_F_RXALL)))) {
1560 			/* recycle both page and skb */
1561 			buffer_info->skb = skb;
1562 			/* an error means any chain goes out the window too */
1563 			if (rx_ring->rx_skb_top)
1564 				dev_kfree_skb_irq(rx_ring->rx_skb_top);
1565 			rx_ring->rx_skb_top = NULL;
1566 			goto next_desc;
1567 		}
1568 #define rxtop (rx_ring->rx_skb_top)
1569 		if (!(staterr & E1000_RXD_STAT_EOP)) {
1570 			/* this descriptor is only the beginning (or middle) */
1571 			if (!rxtop) {
1572 				/* this is the beginning of a chain */
1573 				rxtop = skb;
1574 				skb_fill_page_desc(rxtop, 0, buffer_info->page,
1575 						   0, length);
1576 			} else {
1577 				/* this is the middle of a chain */
1578 				shinfo = skb_shinfo(rxtop);
1579 				skb_fill_page_desc(rxtop, shinfo->nr_frags,
1580 						   buffer_info->page, 0,
1581 						   length);
1582 				/* re-use the skb, only consumed the page */
1583 				buffer_info->skb = skb;
1584 			}
1585 			e1000_consume_page(buffer_info, rxtop, length);
1586 			goto next_desc;
1587 		} else {
1588 			if (rxtop) {
1589 				/* end of the chain */
1590 				shinfo = skb_shinfo(rxtop);
1591 				skb_fill_page_desc(rxtop, shinfo->nr_frags,
1592 						   buffer_info->page, 0,
1593 						   length);
1594 				/* re-use the current skb, we only consumed the
1595 				 * page
1596 				 */
1597 				buffer_info->skb = skb;
1598 				skb = rxtop;
1599 				rxtop = NULL;
1600 				e1000_consume_page(buffer_info, skb, length);
1601 			} else {
1602 				/* no chain, got EOP, this buf is the packet
1603 				 * copybreak to save the put_page/alloc_page
1604 				 */
1605 				if (length <= copybreak &&
1606 				    skb_tailroom(skb) >= length) {
1607 					u8 *vaddr;
1608 					vaddr = kmap_atomic(buffer_info->page);
1609 					memcpy(skb_tail_pointer(skb), vaddr,
1610 					       length);
1611 					kunmap_atomic(vaddr);
1612 					/* re-use the page, so don't erase
1613 					 * buffer_info->page
1614 					 */
1615 					skb_put(skb, length);
1616 				} else {
1617 					skb_fill_page_desc(skb, 0,
1618 							   buffer_info->page, 0,
1619 							   length);
1620 					e1000_consume_page(buffer_info, skb,
1621 							   length);
1622 				}
1623 			}
1624 		}
1625 
1626 		/* Receive Checksum Offload */
1627 		e1000_rx_checksum(adapter, staterr, skb);
1628 
1629 		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1630 
1631 		/* probably a little skewed due to removing CRC */
1632 		total_rx_bytes += skb->len;
1633 		total_rx_packets++;
1634 
1635 		/* eth type trans needs skb->data to point to something */
1636 		if (!pskb_may_pull(skb, ETH_HLEN)) {
1637 			e_err("pskb_may_pull failed.\n");
1638 			dev_kfree_skb_irq(skb);
1639 			goto next_desc;
1640 		}
1641 
1642 		e1000_receive_skb(adapter, netdev, skb, staterr,
1643 				  rx_desc->wb.upper.vlan);
1644 
1645 next_desc:
1646 		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1647 
1648 		/* return some buffers to hardware, one at a time is too slow */
1649 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1650 			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1651 					      GFP_ATOMIC);
1652 			cleaned_count = 0;
1653 		}
1654 
1655 		/* use prefetched values */
1656 		rx_desc = next_rxd;
1657 		buffer_info = next_buffer;
1658 
1659 		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1660 	}
1661 	rx_ring->next_to_clean = i;
1662 
1663 	cleaned_count = e1000_desc_unused(rx_ring);
1664 	if (cleaned_count)
1665 		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1666 
1667 	adapter->total_rx_bytes += total_rx_bytes;
1668 	adapter->total_rx_packets += total_rx_packets;
1669 	return cleaned;
1670 }
1671 
1672 /**
1673  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1674  * @rx_ring: Rx descriptor ring
1675  **/
1676 static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1677 {
1678 	struct e1000_adapter *adapter = rx_ring->adapter;
1679 	struct e1000_buffer *buffer_info;
1680 	struct e1000_ps_page *ps_page;
1681 	struct pci_dev *pdev = adapter->pdev;
1682 	unsigned int i, j;
1683 
1684 	/* Free all the Rx ring sk_buffs */
1685 	for (i = 0; i < rx_ring->count; i++) {
1686 		buffer_info = &rx_ring->buffer_info[i];
1687 		if (buffer_info->dma) {
1688 			if (adapter->clean_rx == e1000_clean_rx_irq)
1689 				dma_unmap_single(&pdev->dev, buffer_info->dma,
1690 						 adapter->rx_buffer_len,
1691 						 DMA_FROM_DEVICE);
1692 			else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1693 				dma_unmap_page(&pdev->dev, buffer_info->dma,
1694 					       PAGE_SIZE, DMA_FROM_DEVICE);
1695 			else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1696 				dma_unmap_single(&pdev->dev, buffer_info->dma,
1697 						 adapter->rx_ps_bsize0,
1698 						 DMA_FROM_DEVICE);
1699 			buffer_info->dma = 0;
1700 		}
1701 
1702 		if (buffer_info->page) {
1703 			put_page(buffer_info->page);
1704 			buffer_info->page = NULL;
1705 		}
1706 
1707 		if (buffer_info->skb) {
1708 			dev_kfree_skb(buffer_info->skb);
1709 			buffer_info->skb = NULL;
1710 		}
1711 
1712 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1713 			ps_page = &buffer_info->ps_pages[j];
1714 			if (!ps_page->page)
1715 				break;
1716 			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1717 				       DMA_FROM_DEVICE);
1718 			ps_page->dma = 0;
1719 			put_page(ps_page->page);
1720 			ps_page->page = NULL;
1721 		}
1722 	}
1723 
1724 	/* there also may be some cached data from a chained receive */
1725 	if (rx_ring->rx_skb_top) {
1726 		dev_kfree_skb(rx_ring->rx_skb_top);
1727 		rx_ring->rx_skb_top = NULL;
1728 	}
1729 
1730 	/* Zero out the descriptor ring */
1731 	memset(rx_ring->desc, 0, rx_ring->size);
1732 
1733 	rx_ring->next_to_clean = 0;
1734 	rx_ring->next_to_use = 0;
1735 	adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1736 }
1737 
1738 static void e1000e_downshift_workaround(struct work_struct *work)
1739 {
1740 	struct e1000_adapter *adapter = container_of(work,
1741 						     struct e1000_adapter,
1742 						     downshift_task);
1743 
1744 	if (test_bit(__E1000_DOWN, &adapter->state))
1745 		return;
1746 
1747 	e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1748 }
1749 
1750 /**
1751  * e1000_intr_msi - Interrupt Handler
1752  * @irq: interrupt number
1753  * @data: pointer to a network interface device structure
1754  **/
1755 static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data)
1756 {
1757 	struct net_device *netdev = data;
1758 	struct e1000_adapter *adapter = netdev_priv(netdev);
1759 	struct e1000_hw *hw = &adapter->hw;
1760 	u32 icr = er32(ICR);
1761 
1762 	/* read ICR disables interrupts using IAM */
1763 	if (icr & E1000_ICR_LSC) {
1764 		hw->mac.get_link_status = true;
1765 		/* ICH8 workaround-- Call gig speed drop workaround on cable
1766 		 * disconnect (LSC) before accessing any PHY registers
1767 		 */
1768 		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1769 		    (!(er32(STATUS) & E1000_STATUS_LU)))
1770 			schedule_work(&adapter->downshift_task);
1771 
1772 		/* 80003ES2LAN workaround-- For packet buffer work-around on
1773 		 * link down event; disable receives here in the ISR and reset
1774 		 * adapter in watchdog
1775 		 */
1776 		if (netif_carrier_ok(netdev) &&
1777 		    adapter->flags & FLAG_RX_NEEDS_RESTART) {
1778 			/* disable receives */
1779 			u32 rctl = er32(RCTL);
1780 
1781 			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1782 			adapter->flags |= FLAG_RESTART_NOW;
1783 		}
1784 		/* guard against interrupt when we're going down */
1785 		if (!test_bit(__E1000_DOWN, &adapter->state))
1786 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1787 	}
1788 
1789 	/* Reset on uncorrectable ECC error */
1790 	if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1791 		u32 pbeccsts = er32(PBECCSTS);
1792 
1793 		adapter->corr_errors +=
1794 		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1795 		adapter->uncorr_errors +=
1796 		    (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1797 		    E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1798 
1799 		/* Do the reset outside of interrupt context */
1800 		schedule_work(&adapter->reset_task);
1801 
1802 		/* return immediately since reset is imminent */
1803 		return IRQ_HANDLED;
1804 	}
1805 
1806 	if (napi_schedule_prep(&adapter->napi)) {
1807 		adapter->total_tx_bytes = 0;
1808 		adapter->total_tx_packets = 0;
1809 		adapter->total_rx_bytes = 0;
1810 		adapter->total_rx_packets = 0;
1811 		__napi_schedule(&adapter->napi);
1812 	}
1813 
1814 	return IRQ_HANDLED;
1815 }
1816 
1817 /**
1818  * e1000_intr - Interrupt Handler
1819  * @irq: interrupt number
1820  * @data: pointer to a network interface device structure
1821  **/
1822 static irqreturn_t e1000_intr(int __always_unused irq, void *data)
1823 {
1824 	struct net_device *netdev = data;
1825 	struct e1000_adapter *adapter = netdev_priv(netdev);
1826 	struct e1000_hw *hw = &adapter->hw;
1827 	u32 rctl, icr = er32(ICR);
1828 
1829 	if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1830 		return IRQ_NONE;	/* Not our interrupt */
1831 
1832 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1833 	 * not set, then the adapter didn't send an interrupt
1834 	 */
1835 	if (!(icr & E1000_ICR_INT_ASSERTED))
1836 		return IRQ_NONE;
1837 
1838 	/* Interrupt Auto-Mask...upon reading ICR,
1839 	 * interrupts are masked.  No need for the
1840 	 * IMC write
1841 	 */
1842 
1843 	if (icr & E1000_ICR_LSC) {
1844 		hw->mac.get_link_status = true;
1845 		/* ICH8 workaround-- Call gig speed drop workaround on cable
1846 		 * disconnect (LSC) before accessing any PHY registers
1847 		 */
1848 		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1849 		    (!(er32(STATUS) & E1000_STATUS_LU)))
1850 			schedule_work(&adapter->downshift_task);
1851 
1852 		/* 80003ES2LAN workaround--
1853 		 * For packet buffer work-around on link down event;
1854 		 * disable receives here in the ISR and
1855 		 * reset adapter in watchdog
1856 		 */
1857 		if (netif_carrier_ok(netdev) &&
1858 		    (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1859 			/* disable receives */
1860 			rctl = er32(RCTL);
1861 			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1862 			adapter->flags |= FLAG_RESTART_NOW;
1863 		}
1864 		/* guard against interrupt when we're going down */
1865 		if (!test_bit(__E1000_DOWN, &adapter->state))
1866 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1867 	}
1868 
1869 	/* Reset on uncorrectable ECC error */
1870 	if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1871 		u32 pbeccsts = er32(PBECCSTS);
1872 
1873 		adapter->corr_errors +=
1874 		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1875 		adapter->uncorr_errors +=
1876 		    (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1877 		    E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1878 
1879 		/* Do the reset outside of interrupt context */
1880 		schedule_work(&adapter->reset_task);
1881 
1882 		/* return immediately since reset is imminent */
1883 		return IRQ_HANDLED;
1884 	}
1885 
1886 	if (napi_schedule_prep(&adapter->napi)) {
1887 		adapter->total_tx_bytes = 0;
1888 		adapter->total_tx_packets = 0;
1889 		adapter->total_rx_bytes = 0;
1890 		adapter->total_rx_packets = 0;
1891 		__napi_schedule(&adapter->napi);
1892 	}
1893 
1894 	return IRQ_HANDLED;
1895 }
1896 
1897 static irqreturn_t e1000_msix_other(int __always_unused irq, void *data)
1898 {
1899 	struct net_device *netdev = data;
1900 	struct e1000_adapter *adapter = netdev_priv(netdev);
1901 	struct e1000_hw *hw = &adapter->hw;
1902 	u32 icr = er32(ICR);
1903 
1904 	if (icr & adapter->eiac_mask)
1905 		ew32(ICS, (icr & adapter->eiac_mask));
1906 
1907 	if (icr & E1000_ICR_LSC) {
1908 		hw->mac.get_link_status = true;
1909 		/* guard against interrupt when we're going down */
1910 		if (!test_bit(__E1000_DOWN, &adapter->state))
1911 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1912 	}
1913 
1914 	if (!test_bit(__E1000_DOWN, &adapter->state))
1915 		ew32(IMS, E1000_IMS_OTHER | IMS_OTHER_MASK);
1916 
1917 	return IRQ_HANDLED;
1918 }
1919 
1920 static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data)
1921 {
1922 	struct net_device *netdev = data;
1923 	struct e1000_adapter *adapter = netdev_priv(netdev);
1924 	struct e1000_hw *hw = &adapter->hw;
1925 	struct e1000_ring *tx_ring = adapter->tx_ring;
1926 
1927 	adapter->total_tx_bytes = 0;
1928 	adapter->total_tx_packets = 0;
1929 
1930 	if (!e1000_clean_tx_irq(tx_ring))
1931 		/* Ring was not completely cleaned, so fire another interrupt */
1932 		ew32(ICS, tx_ring->ims_val);
1933 
1934 	if (!test_bit(__E1000_DOWN, &adapter->state))
1935 		ew32(IMS, adapter->tx_ring->ims_val);
1936 
1937 	return IRQ_HANDLED;
1938 }
1939 
1940 static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data)
1941 {
1942 	struct net_device *netdev = data;
1943 	struct e1000_adapter *adapter = netdev_priv(netdev);
1944 	struct e1000_ring *rx_ring = adapter->rx_ring;
1945 
1946 	/* Write the ITR value calculated at the end of the
1947 	 * previous interrupt.
1948 	 */
1949 	if (rx_ring->set_itr) {
1950 		u32 itr = rx_ring->itr_val ?
1951 			  1000000000 / (rx_ring->itr_val * 256) : 0;
1952 
1953 		writel(itr, rx_ring->itr_register);
1954 		rx_ring->set_itr = 0;
1955 	}
1956 
1957 	if (napi_schedule_prep(&adapter->napi)) {
1958 		adapter->total_rx_bytes = 0;
1959 		adapter->total_rx_packets = 0;
1960 		__napi_schedule(&adapter->napi);
1961 	}
1962 	return IRQ_HANDLED;
1963 }
1964 
1965 /**
1966  * e1000_configure_msix - Configure MSI-X hardware
1967  * @adapter: board private structure
1968  *
1969  * e1000_configure_msix sets up the hardware to properly
1970  * generate MSI-X interrupts.
1971  **/
1972 static void e1000_configure_msix(struct e1000_adapter *adapter)
1973 {
1974 	struct e1000_hw *hw = &adapter->hw;
1975 	struct e1000_ring *rx_ring = adapter->rx_ring;
1976 	struct e1000_ring *tx_ring = adapter->tx_ring;
1977 	int vector = 0;
1978 	u32 ctrl_ext, ivar = 0;
1979 
1980 	adapter->eiac_mask = 0;
1981 
1982 	/* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1983 	if (hw->mac.type == e1000_82574) {
1984 		u32 rfctl = er32(RFCTL);
1985 
1986 		rfctl |= E1000_RFCTL_ACK_DIS;
1987 		ew32(RFCTL, rfctl);
1988 	}
1989 
1990 	/* Configure Rx vector */
1991 	rx_ring->ims_val = E1000_IMS_RXQ0;
1992 	adapter->eiac_mask |= rx_ring->ims_val;
1993 	if (rx_ring->itr_val)
1994 		writel(1000000000 / (rx_ring->itr_val * 256),
1995 		       rx_ring->itr_register);
1996 	else
1997 		writel(1, rx_ring->itr_register);
1998 	ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1999 
2000 	/* Configure Tx vector */
2001 	tx_ring->ims_val = E1000_IMS_TXQ0;
2002 	vector++;
2003 	if (tx_ring->itr_val)
2004 		writel(1000000000 / (tx_ring->itr_val * 256),
2005 		       tx_ring->itr_register);
2006 	else
2007 		writel(1, tx_ring->itr_register);
2008 	adapter->eiac_mask |= tx_ring->ims_val;
2009 	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
2010 
2011 	/* set vector for Other Causes, e.g. link changes */
2012 	vector++;
2013 	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
2014 	if (rx_ring->itr_val)
2015 		writel(1000000000 / (rx_ring->itr_val * 256),
2016 		       hw->hw_addr + E1000_EITR_82574(vector));
2017 	else
2018 		writel(1, hw->hw_addr + E1000_EITR_82574(vector));
2019 
2020 	/* Cause Tx interrupts on every write back */
2021 	ivar |= BIT(31);
2022 
2023 	ew32(IVAR, ivar);
2024 
2025 	/* enable MSI-X PBA support */
2026 	ctrl_ext = er32(CTRL_EXT) & ~E1000_CTRL_EXT_IAME;
2027 	ctrl_ext |= E1000_CTRL_EXT_PBA_CLR | E1000_CTRL_EXT_EIAME;
2028 	ew32(CTRL_EXT, ctrl_ext);
2029 	e1e_flush();
2030 }
2031 
2032 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
2033 {
2034 	if (adapter->msix_entries) {
2035 		pci_disable_msix(adapter->pdev);
2036 		kfree(adapter->msix_entries);
2037 		adapter->msix_entries = NULL;
2038 	} else if (adapter->flags & FLAG_MSI_ENABLED) {
2039 		pci_disable_msi(adapter->pdev);
2040 		adapter->flags &= ~FLAG_MSI_ENABLED;
2041 	}
2042 }
2043 
2044 /**
2045  * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
2046  * @adapter: board private structure
2047  *
2048  * Attempt to configure interrupts using the best available
2049  * capabilities of the hardware and kernel.
2050  **/
2051 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
2052 {
2053 	int err;
2054 	int i;
2055 
2056 	switch (adapter->int_mode) {
2057 	case E1000E_INT_MODE_MSIX:
2058 		if (adapter->flags & FLAG_HAS_MSIX) {
2059 			adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
2060 			adapter->msix_entries = kcalloc(adapter->num_vectors,
2061 							sizeof(struct
2062 							       msix_entry),
2063 							GFP_KERNEL);
2064 			if (adapter->msix_entries) {
2065 				struct e1000_adapter *a = adapter;
2066 
2067 				for (i = 0; i < adapter->num_vectors; i++)
2068 					adapter->msix_entries[i].entry = i;
2069 
2070 				err = pci_enable_msix_range(a->pdev,
2071 							    a->msix_entries,
2072 							    a->num_vectors,
2073 							    a->num_vectors);
2074 				if (err > 0)
2075 					return;
2076 			}
2077 			/* MSI-X failed, so fall through and try MSI */
2078 			e_err("Failed to initialize MSI-X interrupts.  Falling back to MSI interrupts.\n");
2079 			e1000e_reset_interrupt_capability(adapter);
2080 		}
2081 		adapter->int_mode = E1000E_INT_MODE_MSI;
2082 		fallthrough;
2083 	case E1000E_INT_MODE_MSI:
2084 		if (!pci_enable_msi(adapter->pdev)) {
2085 			adapter->flags |= FLAG_MSI_ENABLED;
2086 		} else {
2087 			adapter->int_mode = E1000E_INT_MODE_LEGACY;
2088 			e_err("Failed to initialize MSI interrupts.  Falling back to legacy interrupts.\n");
2089 		}
2090 		fallthrough;
2091 	case E1000E_INT_MODE_LEGACY:
2092 		/* Don't do anything; this is the system default */
2093 		break;
2094 	}
2095 
2096 	/* store the number of vectors being used */
2097 	adapter->num_vectors = 1;
2098 }
2099 
2100 /**
2101  * e1000_request_msix - Initialize MSI-X interrupts
2102  * @adapter: board private structure
2103  *
2104  * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2105  * kernel.
2106  **/
2107 static int e1000_request_msix(struct e1000_adapter *adapter)
2108 {
2109 	struct net_device *netdev = adapter->netdev;
2110 	int err = 0, vector = 0;
2111 
2112 	if (strlen(netdev->name) < (IFNAMSIZ - 5))
2113 		snprintf(adapter->rx_ring->name,
2114 			 sizeof(adapter->rx_ring->name) - 1,
2115 			 "%.14s-rx-0", netdev->name);
2116 	else
2117 		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
2118 	err = request_irq(adapter->msix_entries[vector].vector,
2119 			  e1000_intr_msix_rx, 0, adapter->rx_ring->name,
2120 			  netdev);
2121 	if (err)
2122 		return err;
2123 	adapter->rx_ring->itr_register = adapter->hw.hw_addr +
2124 	    E1000_EITR_82574(vector);
2125 	adapter->rx_ring->itr_val = adapter->itr;
2126 	vector++;
2127 
2128 	if (strlen(netdev->name) < (IFNAMSIZ - 5))
2129 		snprintf(adapter->tx_ring->name,
2130 			 sizeof(adapter->tx_ring->name) - 1,
2131 			 "%.14s-tx-0", netdev->name);
2132 	else
2133 		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2134 	err = request_irq(adapter->msix_entries[vector].vector,
2135 			  e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2136 			  netdev);
2137 	if (err)
2138 		return err;
2139 	adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2140 	    E1000_EITR_82574(vector);
2141 	adapter->tx_ring->itr_val = adapter->itr;
2142 	vector++;
2143 
2144 	err = request_irq(adapter->msix_entries[vector].vector,
2145 			  e1000_msix_other, 0, netdev->name, netdev);
2146 	if (err)
2147 		return err;
2148 
2149 	e1000_configure_msix(adapter);
2150 
2151 	return 0;
2152 }
2153 
2154 /**
2155  * e1000_request_irq - initialize interrupts
2156  * @adapter: board private structure
2157  *
2158  * Attempts to configure interrupts using the best available
2159  * capabilities of the hardware and kernel.
2160  **/
2161 static int e1000_request_irq(struct e1000_adapter *adapter)
2162 {
2163 	struct net_device *netdev = adapter->netdev;
2164 	int err;
2165 
2166 	if (adapter->msix_entries) {
2167 		err = e1000_request_msix(adapter);
2168 		if (!err)
2169 			return err;
2170 		/* fall back to MSI */
2171 		e1000e_reset_interrupt_capability(adapter);
2172 		adapter->int_mode = E1000E_INT_MODE_MSI;
2173 		e1000e_set_interrupt_capability(adapter);
2174 	}
2175 	if (adapter->flags & FLAG_MSI_ENABLED) {
2176 		err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2177 				  netdev->name, netdev);
2178 		if (!err)
2179 			return err;
2180 
2181 		/* fall back to legacy interrupt */
2182 		e1000e_reset_interrupt_capability(adapter);
2183 		adapter->int_mode = E1000E_INT_MODE_LEGACY;
2184 	}
2185 
2186 	err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2187 			  netdev->name, netdev);
2188 	if (err)
2189 		e_err("Unable to allocate interrupt, Error: %d\n", err);
2190 
2191 	return err;
2192 }
2193 
2194 static void e1000_free_irq(struct e1000_adapter *adapter)
2195 {
2196 	struct net_device *netdev = adapter->netdev;
2197 
2198 	if (adapter->msix_entries) {
2199 		int vector = 0;
2200 
2201 		free_irq(adapter->msix_entries[vector].vector, netdev);
2202 		vector++;
2203 
2204 		free_irq(adapter->msix_entries[vector].vector, netdev);
2205 		vector++;
2206 
2207 		/* Other Causes interrupt vector */
2208 		free_irq(adapter->msix_entries[vector].vector, netdev);
2209 		return;
2210 	}
2211 
2212 	free_irq(adapter->pdev->irq, netdev);
2213 }
2214 
2215 /**
2216  * e1000_irq_disable - Mask off interrupt generation on the NIC
2217  * @adapter: board private structure
2218  **/
2219 static void e1000_irq_disable(struct e1000_adapter *adapter)
2220 {
2221 	struct e1000_hw *hw = &adapter->hw;
2222 
2223 	ew32(IMC, ~0);
2224 	if (adapter->msix_entries)
2225 		ew32(EIAC_82574, 0);
2226 	e1e_flush();
2227 
2228 	if (adapter->msix_entries) {
2229 		int i;
2230 
2231 		for (i = 0; i < adapter->num_vectors; i++)
2232 			synchronize_irq(adapter->msix_entries[i].vector);
2233 	} else {
2234 		synchronize_irq(adapter->pdev->irq);
2235 	}
2236 }
2237 
2238 /**
2239  * e1000_irq_enable - Enable default interrupt generation settings
2240  * @adapter: board private structure
2241  **/
2242 static void e1000_irq_enable(struct e1000_adapter *adapter)
2243 {
2244 	struct e1000_hw *hw = &adapter->hw;
2245 
2246 	if (adapter->msix_entries) {
2247 		ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2248 		ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER |
2249 		     IMS_OTHER_MASK);
2250 	} else if (hw->mac.type >= e1000_pch_lpt) {
2251 		ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER);
2252 	} else {
2253 		ew32(IMS, IMS_ENABLE_MASK);
2254 	}
2255 	e1e_flush();
2256 }
2257 
2258 /**
2259  * e1000e_get_hw_control - get control of the h/w from f/w
2260  * @adapter: address of board private structure
2261  *
2262  * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2263  * For ASF and Pass Through versions of f/w this means that
2264  * the driver is loaded. For AMT version (only with 82573)
2265  * of the f/w this means that the network i/f is open.
2266  **/
2267 void e1000e_get_hw_control(struct e1000_adapter *adapter)
2268 {
2269 	struct e1000_hw *hw = &adapter->hw;
2270 	u32 ctrl_ext;
2271 	u32 swsm;
2272 
2273 	/* Let firmware know the driver has taken over */
2274 	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2275 		swsm = er32(SWSM);
2276 		ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2277 	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2278 		ctrl_ext = er32(CTRL_EXT);
2279 		ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2280 	}
2281 }
2282 
2283 /**
2284  * e1000e_release_hw_control - release control of the h/w to f/w
2285  * @adapter: address of board private structure
2286  *
2287  * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2288  * For ASF and Pass Through versions of f/w this means that the
2289  * driver is no longer loaded. For AMT version (only with 82573) i
2290  * of the f/w this means that the network i/f is closed.
2291  *
2292  **/
2293 void e1000e_release_hw_control(struct e1000_adapter *adapter)
2294 {
2295 	struct e1000_hw *hw = &adapter->hw;
2296 	u32 ctrl_ext;
2297 	u32 swsm;
2298 
2299 	/* Let firmware taken over control of h/w */
2300 	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2301 		swsm = er32(SWSM);
2302 		ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2303 	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2304 		ctrl_ext = er32(CTRL_EXT);
2305 		ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2306 	}
2307 }
2308 
2309 /**
2310  * e1000_alloc_ring_dma - allocate memory for a ring structure
2311  * @adapter: board private structure
2312  * @ring: ring struct for which to allocate dma
2313  **/
2314 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2315 				struct e1000_ring *ring)
2316 {
2317 	struct pci_dev *pdev = adapter->pdev;
2318 
2319 	ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2320 					GFP_KERNEL);
2321 	if (!ring->desc)
2322 		return -ENOMEM;
2323 
2324 	return 0;
2325 }
2326 
2327 /**
2328  * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2329  * @tx_ring: Tx descriptor ring
2330  *
2331  * Return 0 on success, negative on failure
2332  **/
2333 int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2334 {
2335 	struct e1000_adapter *adapter = tx_ring->adapter;
2336 	int err = -ENOMEM, size;
2337 
2338 	size = sizeof(struct e1000_buffer) * tx_ring->count;
2339 	tx_ring->buffer_info = vzalloc(size);
2340 	if (!tx_ring->buffer_info)
2341 		goto err;
2342 
2343 	/* round up to nearest 4K */
2344 	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2345 	tx_ring->size = ALIGN(tx_ring->size, 4096);
2346 
2347 	err = e1000_alloc_ring_dma(adapter, tx_ring);
2348 	if (err)
2349 		goto err;
2350 
2351 	tx_ring->next_to_use = 0;
2352 	tx_ring->next_to_clean = 0;
2353 
2354 	return 0;
2355 err:
2356 	vfree(tx_ring->buffer_info);
2357 	e_err("Unable to allocate memory for the transmit descriptor ring\n");
2358 	return err;
2359 }
2360 
2361 /**
2362  * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2363  * @rx_ring: Rx descriptor ring
2364  *
2365  * Returns 0 on success, negative on failure
2366  **/
2367 int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2368 {
2369 	struct e1000_adapter *adapter = rx_ring->adapter;
2370 	struct e1000_buffer *buffer_info;
2371 	int i, size, desc_len, err = -ENOMEM;
2372 
2373 	size = sizeof(struct e1000_buffer) * rx_ring->count;
2374 	rx_ring->buffer_info = vzalloc(size);
2375 	if (!rx_ring->buffer_info)
2376 		goto err;
2377 
2378 	for (i = 0; i < rx_ring->count; i++) {
2379 		buffer_info = &rx_ring->buffer_info[i];
2380 		buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2381 						sizeof(struct e1000_ps_page),
2382 						GFP_KERNEL);
2383 		if (!buffer_info->ps_pages)
2384 			goto err_pages;
2385 	}
2386 
2387 	desc_len = sizeof(union e1000_rx_desc_packet_split);
2388 
2389 	/* Round up to nearest 4K */
2390 	rx_ring->size = rx_ring->count * desc_len;
2391 	rx_ring->size = ALIGN(rx_ring->size, 4096);
2392 
2393 	err = e1000_alloc_ring_dma(adapter, rx_ring);
2394 	if (err)
2395 		goto err_pages;
2396 
2397 	rx_ring->next_to_clean = 0;
2398 	rx_ring->next_to_use = 0;
2399 	rx_ring->rx_skb_top = NULL;
2400 
2401 	return 0;
2402 
2403 err_pages:
2404 	for (i = 0; i < rx_ring->count; i++) {
2405 		buffer_info = &rx_ring->buffer_info[i];
2406 		kfree(buffer_info->ps_pages);
2407 	}
2408 err:
2409 	vfree(rx_ring->buffer_info);
2410 	e_err("Unable to allocate memory for the receive descriptor ring\n");
2411 	return err;
2412 }
2413 
2414 /**
2415  * e1000_clean_tx_ring - Free Tx Buffers
2416  * @tx_ring: Tx descriptor ring
2417  **/
2418 static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2419 {
2420 	struct e1000_adapter *adapter = tx_ring->adapter;
2421 	struct e1000_buffer *buffer_info;
2422 	unsigned long size;
2423 	unsigned int i;
2424 
2425 	for (i = 0; i < tx_ring->count; i++) {
2426 		buffer_info = &tx_ring->buffer_info[i];
2427 		e1000_put_txbuf(tx_ring, buffer_info, false);
2428 	}
2429 
2430 	netdev_reset_queue(adapter->netdev);
2431 	size = sizeof(struct e1000_buffer) * tx_ring->count;
2432 	memset(tx_ring->buffer_info, 0, size);
2433 
2434 	memset(tx_ring->desc, 0, tx_ring->size);
2435 
2436 	tx_ring->next_to_use = 0;
2437 	tx_ring->next_to_clean = 0;
2438 }
2439 
2440 /**
2441  * e1000e_free_tx_resources - Free Tx Resources per Queue
2442  * @tx_ring: Tx descriptor ring
2443  *
2444  * Free all transmit software resources
2445  **/
2446 void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2447 {
2448 	struct e1000_adapter *adapter = tx_ring->adapter;
2449 	struct pci_dev *pdev = adapter->pdev;
2450 
2451 	e1000_clean_tx_ring(tx_ring);
2452 
2453 	vfree(tx_ring->buffer_info);
2454 	tx_ring->buffer_info = NULL;
2455 
2456 	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2457 			  tx_ring->dma);
2458 	tx_ring->desc = NULL;
2459 }
2460 
2461 /**
2462  * e1000e_free_rx_resources - Free Rx Resources
2463  * @rx_ring: Rx descriptor ring
2464  *
2465  * Free all receive software resources
2466  **/
2467 void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2468 {
2469 	struct e1000_adapter *adapter = rx_ring->adapter;
2470 	struct pci_dev *pdev = adapter->pdev;
2471 	int i;
2472 
2473 	e1000_clean_rx_ring(rx_ring);
2474 
2475 	for (i = 0; i < rx_ring->count; i++)
2476 		kfree(rx_ring->buffer_info[i].ps_pages);
2477 
2478 	vfree(rx_ring->buffer_info);
2479 	rx_ring->buffer_info = NULL;
2480 
2481 	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2482 			  rx_ring->dma);
2483 	rx_ring->desc = NULL;
2484 }
2485 
2486 /**
2487  * e1000_update_itr - update the dynamic ITR value based on statistics
2488  * @itr_setting: current adapter->itr
2489  * @packets: the number of packets during this measurement interval
2490  * @bytes: the number of bytes during this measurement interval
2491  *
2492  *      Stores a new ITR value based on packets and byte
2493  *      counts during the last interrupt.  The advantage of per interrupt
2494  *      computation is faster updates and more accurate ITR for the current
2495  *      traffic pattern.  Constants in this function were computed
2496  *      based on theoretical maximum wire speed and thresholds were set based
2497  *      on testing data as well as attempting to minimize response time
2498  *      while increasing bulk throughput.  This functionality is controlled
2499  *      by the InterruptThrottleRate module parameter.
2500  **/
2501 static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes)
2502 {
2503 	unsigned int retval = itr_setting;
2504 
2505 	if (packets == 0)
2506 		return itr_setting;
2507 
2508 	switch (itr_setting) {
2509 	case lowest_latency:
2510 		/* handle TSO and jumbo frames */
2511 		if (bytes / packets > 8000)
2512 			retval = bulk_latency;
2513 		else if ((packets < 5) && (bytes > 512))
2514 			retval = low_latency;
2515 		break;
2516 	case low_latency:	/* 50 usec aka 20000 ints/s */
2517 		if (bytes > 10000) {
2518 			/* this if handles the TSO accounting */
2519 			if (bytes / packets > 8000)
2520 				retval = bulk_latency;
2521 			else if ((packets < 10) || ((bytes / packets) > 1200))
2522 				retval = bulk_latency;
2523 			else if ((packets > 35))
2524 				retval = lowest_latency;
2525 		} else if (bytes / packets > 2000) {
2526 			retval = bulk_latency;
2527 		} else if (packets <= 2 && bytes < 512) {
2528 			retval = lowest_latency;
2529 		}
2530 		break;
2531 	case bulk_latency:	/* 250 usec aka 4000 ints/s */
2532 		if (bytes > 25000) {
2533 			if (packets > 35)
2534 				retval = low_latency;
2535 		} else if (bytes < 6000) {
2536 			retval = low_latency;
2537 		}
2538 		break;
2539 	}
2540 
2541 	return retval;
2542 }
2543 
2544 static void e1000_set_itr(struct e1000_adapter *adapter)
2545 {
2546 	u16 current_itr;
2547 	u32 new_itr = adapter->itr;
2548 
2549 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2550 	if (adapter->link_speed != SPEED_1000) {
2551 		current_itr = 0;
2552 		new_itr = 4000;
2553 		goto set_itr_now;
2554 	}
2555 
2556 	if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2557 		new_itr = 0;
2558 		goto set_itr_now;
2559 	}
2560 
2561 	adapter->tx_itr = e1000_update_itr(adapter->tx_itr,
2562 					   adapter->total_tx_packets,
2563 					   adapter->total_tx_bytes);
2564 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2565 	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2566 		adapter->tx_itr = low_latency;
2567 
2568 	adapter->rx_itr = e1000_update_itr(adapter->rx_itr,
2569 					   adapter->total_rx_packets,
2570 					   adapter->total_rx_bytes);
2571 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2572 	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2573 		adapter->rx_itr = low_latency;
2574 
2575 	current_itr = max(adapter->rx_itr, adapter->tx_itr);
2576 
2577 	/* counts and packets in update_itr are dependent on these numbers */
2578 	switch (current_itr) {
2579 	case lowest_latency:
2580 		new_itr = 70000;
2581 		break;
2582 	case low_latency:
2583 		new_itr = 20000;	/* aka hwitr = ~200 */
2584 		break;
2585 	case bulk_latency:
2586 		new_itr = 4000;
2587 		break;
2588 	default:
2589 		break;
2590 	}
2591 
2592 set_itr_now:
2593 	if (new_itr != adapter->itr) {
2594 		/* this attempts to bias the interrupt rate towards Bulk
2595 		 * by adding intermediate steps when interrupt rate is
2596 		 * increasing
2597 		 */
2598 		new_itr = new_itr > adapter->itr ?
2599 		    min(adapter->itr + (new_itr >> 2), new_itr) : new_itr;
2600 		adapter->itr = new_itr;
2601 		adapter->rx_ring->itr_val = new_itr;
2602 		if (adapter->msix_entries)
2603 			adapter->rx_ring->set_itr = 1;
2604 		else
2605 			e1000e_write_itr(adapter, new_itr);
2606 	}
2607 }
2608 
2609 /**
2610  * e1000e_write_itr - write the ITR value to the appropriate registers
2611  * @adapter: address of board private structure
2612  * @itr: new ITR value to program
2613  *
2614  * e1000e_write_itr determines if the adapter is in MSI-X mode
2615  * and, if so, writes the EITR registers with the ITR value.
2616  * Otherwise, it writes the ITR value into the ITR register.
2617  **/
2618 void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
2619 {
2620 	struct e1000_hw *hw = &adapter->hw;
2621 	u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
2622 
2623 	if (adapter->msix_entries) {
2624 		int vector;
2625 
2626 		for (vector = 0; vector < adapter->num_vectors; vector++)
2627 			writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
2628 	} else {
2629 		ew32(ITR, new_itr);
2630 	}
2631 }
2632 
2633 /**
2634  * e1000_alloc_queues - Allocate memory for all rings
2635  * @adapter: board private structure to initialize
2636  **/
2637 static int e1000_alloc_queues(struct e1000_adapter *adapter)
2638 {
2639 	int size = sizeof(struct e1000_ring);
2640 
2641 	adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2642 	if (!adapter->tx_ring)
2643 		goto err;
2644 	adapter->tx_ring->count = adapter->tx_ring_count;
2645 	adapter->tx_ring->adapter = adapter;
2646 
2647 	adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2648 	if (!adapter->rx_ring)
2649 		goto err;
2650 	adapter->rx_ring->count = adapter->rx_ring_count;
2651 	adapter->rx_ring->adapter = adapter;
2652 
2653 	return 0;
2654 err:
2655 	e_err("Unable to allocate memory for queues\n");
2656 	kfree(adapter->rx_ring);
2657 	kfree(adapter->tx_ring);
2658 	return -ENOMEM;
2659 }
2660 
2661 /**
2662  * e1000e_poll - NAPI Rx polling callback
2663  * @napi: struct associated with this polling callback
2664  * @budget: number of packets driver is allowed to process this poll
2665  **/
2666 static int e1000e_poll(struct napi_struct *napi, int budget)
2667 {
2668 	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2669 						     napi);
2670 	struct e1000_hw *hw = &adapter->hw;
2671 	struct net_device *poll_dev = adapter->netdev;
2672 	int tx_cleaned = 1, work_done = 0;
2673 
2674 	adapter = netdev_priv(poll_dev);
2675 
2676 	if (!adapter->msix_entries ||
2677 	    (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2678 		tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2679 
2680 	adapter->clean_rx(adapter->rx_ring, &work_done, budget);
2681 
2682 	if (!tx_cleaned || work_done == budget)
2683 		return budget;
2684 
2685 	/* Exit the polling mode, but don't re-enable interrupts if stack might
2686 	 * poll us due to busy-polling
2687 	 */
2688 	if (likely(napi_complete_done(napi, work_done))) {
2689 		if (adapter->itr_setting & 3)
2690 			e1000_set_itr(adapter);
2691 		if (!test_bit(__E1000_DOWN, &adapter->state)) {
2692 			if (adapter->msix_entries)
2693 				ew32(IMS, adapter->rx_ring->ims_val);
2694 			else
2695 				e1000_irq_enable(adapter);
2696 		}
2697 	}
2698 
2699 	return work_done;
2700 }
2701 
2702 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
2703 				 __always_unused __be16 proto, u16 vid)
2704 {
2705 	struct e1000_adapter *adapter = netdev_priv(netdev);
2706 	struct e1000_hw *hw = &adapter->hw;
2707 	u32 vfta, index;
2708 
2709 	/* don't update vlan cookie if already programmed */
2710 	if ((adapter->hw.mng_cookie.status &
2711 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2712 	    (vid == adapter->mng_vlan_id))
2713 		return 0;
2714 
2715 	/* add VID to filter table */
2716 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2717 		index = (vid >> 5) & 0x7F;
2718 		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2719 		vfta |= BIT((vid & 0x1F));
2720 		hw->mac.ops.write_vfta(hw, index, vfta);
2721 	}
2722 
2723 	set_bit(vid, adapter->active_vlans);
2724 
2725 	return 0;
2726 }
2727 
2728 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
2729 				  __always_unused __be16 proto, u16 vid)
2730 {
2731 	struct e1000_adapter *adapter = netdev_priv(netdev);
2732 	struct e1000_hw *hw = &adapter->hw;
2733 	u32 vfta, index;
2734 
2735 	if ((adapter->hw.mng_cookie.status &
2736 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2737 	    (vid == adapter->mng_vlan_id)) {
2738 		/* release control to f/w */
2739 		e1000e_release_hw_control(adapter);
2740 		return 0;
2741 	}
2742 
2743 	/* remove VID from filter table */
2744 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2745 		index = (vid >> 5) & 0x7F;
2746 		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2747 		vfta &= ~BIT((vid & 0x1F));
2748 		hw->mac.ops.write_vfta(hw, index, vfta);
2749 	}
2750 
2751 	clear_bit(vid, adapter->active_vlans);
2752 
2753 	return 0;
2754 }
2755 
2756 /**
2757  * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2758  * @adapter: board private structure to initialize
2759  **/
2760 static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2761 {
2762 	struct net_device *netdev = adapter->netdev;
2763 	struct e1000_hw *hw = &adapter->hw;
2764 	u32 rctl;
2765 
2766 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2767 		/* disable VLAN receive filtering */
2768 		rctl = er32(RCTL);
2769 		rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2770 		ew32(RCTL, rctl);
2771 
2772 		if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2773 			e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
2774 					       adapter->mng_vlan_id);
2775 			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2776 		}
2777 	}
2778 }
2779 
2780 /**
2781  * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2782  * @adapter: board private structure to initialize
2783  **/
2784 static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2785 {
2786 	struct e1000_hw *hw = &adapter->hw;
2787 	u32 rctl;
2788 
2789 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2790 		/* enable VLAN receive filtering */
2791 		rctl = er32(RCTL);
2792 		rctl |= E1000_RCTL_VFE;
2793 		rctl &= ~E1000_RCTL_CFIEN;
2794 		ew32(RCTL, rctl);
2795 	}
2796 }
2797 
2798 /**
2799  * e1000e_vlan_strip_disable - helper to disable HW VLAN stripping
2800  * @adapter: board private structure to initialize
2801  **/
2802 static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2803 {
2804 	struct e1000_hw *hw = &adapter->hw;
2805 	u32 ctrl;
2806 
2807 	/* disable VLAN tag insert/strip */
2808 	ctrl = er32(CTRL);
2809 	ctrl &= ~E1000_CTRL_VME;
2810 	ew32(CTRL, ctrl);
2811 }
2812 
2813 /**
2814  * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2815  * @adapter: board private structure to initialize
2816  **/
2817 static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2818 {
2819 	struct e1000_hw *hw = &adapter->hw;
2820 	u32 ctrl;
2821 
2822 	/* enable VLAN tag insert/strip */
2823 	ctrl = er32(CTRL);
2824 	ctrl |= E1000_CTRL_VME;
2825 	ew32(CTRL, ctrl);
2826 }
2827 
2828 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2829 {
2830 	struct net_device *netdev = adapter->netdev;
2831 	u16 vid = adapter->hw.mng_cookie.vlan_id;
2832 	u16 old_vid = adapter->mng_vlan_id;
2833 
2834 	if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2835 		e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
2836 		adapter->mng_vlan_id = vid;
2837 	}
2838 
2839 	if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2840 		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid);
2841 }
2842 
2843 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2844 {
2845 	u16 vid;
2846 
2847 	e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
2848 
2849 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2850 	    e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
2851 }
2852 
2853 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2854 {
2855 	struct e1000_hw *hw = &adapter->hw;
2856 	u32 manc, manc2h, mdef, i, j;
2857 
2858 	if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2859 		return;
2860 
2861 	manc = er32(MANC);
2862 
2863 	/* enable receiving management packets to the host. this will probably
2864 	 * generate destination unreachable messages from the host OS, but
2865 	 * the packets will be handled on SMBUS
2866 	 */
2867 	manc |= E1000_MANC_EN_MNG2HOST;
2868 	manc2h = er32(MANC2H);
2869 
2870 	switch (hw->mac.type) {
2871 	default:
2872 		manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2873 		break;
2874 	case e1000_82574:
2875 	case e1000_82583:
2876 		/* Check if IPMI pass-through decision filter already exists;
2877 		 * if so, enable it.
2878 		 */
2879 		for (i = 0, j = 0; i < 8; i++) {
2880 			mdef = er32(MDEF(i));
2881 
2882 			/* Ignore filters with anything other than IPMI ports */
2883 			if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2884 				continue;
2885 
2886 			/* Enable this decision filter in MANC2H */
2887 			if (mdef)
2888 				manc2h |= BIT(i);
2889 
2890 			j |= mdef;
2891 		}
2892 
2893 		if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2894 			break;
2895 
2896 		/* Create new decision filter in an empty filter */
2897 		for (i = 0, j = 0; i < 8; i++)
2898 			if (er32(MDEF(i)) == 0) {
2899 				ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2900 					       E1000_MDEF_PORT_664));
2901 				manc2h |= BIT(1);
2902 				j++;
2903 				break;
2904 			}
2905 
2906 		if (!j)
2907 			e_warn("Unable to create IPMI pass-through filter\n");
2908 		break;
2909 	}
2910 
2911 	ew32(MANC2H, manc2h);
2912 	ew32(MANC, manc);
2913 }
2914 
2915 /**
2916  * e1000_configure_tx - Configure Transmit Unit after Reset
2917  * @adapter: board private structure
2918  *
2919  * Configure the Tx unit of the MAC after a reset.
2920  **/
2921 static void e1000_configure_tx(struct e1000_adapter *adapter)
2922 {
2923 	struct e1000_hw *hw = &adapter->hw;
2924 	struct e1000_ring *tx_ring = adapter->tx_ring;
2925 	u64 tdba;
2926 	u32 tdlen, tctl, tarc;
2927 
2928 	/* Setup the HW Tx Head and Tail descriptor pointers */
2929 	tdba = tx_ring->dma;
2930 	tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2931 	ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2932 	ew32(TDBAH(0), (tdba >> 32));
2933 	ew32(TDLEN(0), tdlen);
2934 	ew32(TDH(0), 0);
2935 	ew32(TDT(0), 0);
2936 	tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2937 	tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2938 
2939 	writel(0, tx_ring->head);
2940 	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2941 		e1000e_update_tdt_wa(tx_ring, 0);
2942 	else
2943 		writel(0, tx_ring->tail);
2944 
2945 	/* Set the Tx Interrupt Delay register */
2946 	ew32(TIDV, adapter->tx_int_delay);
2947 	/* Tx irq moderation */
2948 	ew32(TADV, adapter->tx_abs_int_delay);
2949 
2950 	if (adapter->flags2 & FLAG2_DMA_BURST) {
2951 		u32 txdctl = er32(TXDCTL(0));
2952 
2953 		txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2954 			    E1000_TXDCTL_WTHRESH);
2955 		/* set up some performance related parameters to encourage the
2956 		 * hardware to use the bus more efficiently in bursts, depends
2957 		 * on the tx_int_delay to be enabled,
2958 		 * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2959 		 * hthresh = 1 ==> prefetch when one or more available
2960 		 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2961 		 * BEWARE: this seems to work but should be considered first if
2962 		 * there are Tx hangs or other Tx related bugs
2963 		 */
2964 		txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2965 		ew32(TXDCTL(0), txdctl);
2966 	}
2967 	/* erratum work around: set txdctl the same for both queues */
2968 	ew32(TXDCTL(1), er32(TXDCTL(0)));
2969 
2970 	/* Program the Transmit Control Register */
2971 	tctl = er32(TCTL);
2972 	tctl &= ~E1000_TCTL_CT;
2973 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2974 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2975 
2976 	if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2977 		tarc = er32(TARC(0));
2978 		/* set the speed mode bit, we'll clear it if we're not at
2979 		 * gigabit link later
2980 		 */
2981 #define SPEED_MODE_BIT BIT(21)
2982 		tarc |= SPEED_MODE_BIT;
2983 		ew32(TARC(0), tarc);
2984 	}
2985 
2986 	/* errata: program both queues to unweighted RR */
2987 	if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2988 		tarc = er32(TARC(0));
2989 		tarc |= 1;
2990 		ew32(TARC(0), tarc);
2991 		tarc = er32(TARC(1));
2992 		tarc |= 1;
2993 		ew32(TARC(1), tarc);
2994 	}
2995 
2996 	/* Setup Transmit Descriptor Settings for eop descriptor */
2997 	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2998 
2999 	/* only set IDE if we are delaying interrupts using the timers */
3000 	if (adapter->tx_int_delay)
3001 		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
3002 
3003 	/* enable Report Status bit */
3004 	adapter->txd_cmd |= E1000_TXD_CMD_RS;
3005 
3006 	ew32(TCTL, tctl);
3007 
3008 	hw->mac.ops.config_collision_dist(hw);
3009 
3010 	/* SPT and KBL Si errata workaround to avoid data corruption */
3011 	if (hw->mac.type == e1000_pch_spt) {
3012 		u32 reg_val;
3013 
3014 		reg_val = er32(IOSFPC);
3015 		reg_val |= E1000_RCTL_RDMTS_HEX;
3016 		ew32(IOSFPC, reg_val);
3017 
3018 		reg_val = er32(TARC(0));
3019 		/* SPT and KBL Si errata workaround to avoid Tx hang.
3020 		 * Dropping the number of outstanding requests from
3021 		 * 3 to 2 in order to avoid a buffer overrun.
3022 		 */
3023 		reg_val &= ~E1000_TARC0_CB_MULTIQ_3_REQ;
3024 		reg_val |= E1000_TARC0_CB_MULTIQ_2_REQ;
3025 		ew32(TARC(0), reg_val);
3026 	}
3027 }
3028 
3029 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
3030 			   (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
3031 
3032 /**
3033  * e1000_setup_rctl - configure the receive control registers
3034  * @adapter: Board private structure
3035  **/
3036 static void e1000_setup_rctl(struct e1000_adapter *adapter)
3037 {
3038 	struct e1000_hw *hw = &adapter->hw;
3039 	u32 rctl, rfctl;
3040 	u32 pages = 0;
3041 
3042 	/* Workaround Si errata on PCHx - configure jumbo frame flow.
3043 	 * If jumbo frames not set, program related MAC/PHY registers
3044 	 * to h/w defaults
3045 	 */
3046 	if (hw->mac.type >= e1000_pch2lan) {
3047 		s32 ret_val;
3048 
3049 		if (adapter->netdev->mtu > ETH_DATA_LEN)
3050 			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
3051 		else
3052 			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
3053 
3054 		if (ret_val)
3055 			e_dbg("failed to enable|disable jumbo frame workaround mode\n");
3056 	}
3057 
3058 	/* Program MC offset vector base */
3059 	rctl = er32(RCTL);
3060 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3061 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3062 	    E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3063 	    (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3064 
3065 	/* Do not Store bad packets */
3066 	rctl &= ~E1000_RCTL_SBP;
3067 
3068 	/* Enable Long Packet receive */
3069 	if (adapter->netdev->mtu <= ETH_DATA_LEN)
3070 		rctl &= ~E1000_RCTL_LPE;
3071 	else
3072 		rctl |= E1000_RCTL_LPE;
3073 
3074 	/* Some systems expect that the CRC is included in SMBUS traffic. The
3075 	 * hardware strips the CRC before sending to both SMBUS (BMC) and to
3076 	 * host memory when this is enabled
3077 	 */
3078 	if (adapter->flags2 & FLAG2_CRC_STRIPPING)
3079 		rctl |= E1000_RCTL_SECRC;
3080 
3081 	/* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3082 	if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
3083 		u16 phy_data;
3084 
3085 		e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
3086 		phy_data &= 0xfff8;
3087 		phy_data |= BIT(2);
3088 		e1e_wphy(hw, PHY_REG(770, 26), phy_data);
3089 
3090 		e1e_rphy(hw, 22, &phy_data);
3091 		phy_data &= 0x0fff;
3092 		phy_data |= BIT(14);
3093 		e1e_wphy(hw, 0x10, 0x2823);
3094 		e1e_wphy(hw, 0x11, 0x0003);
3095 		e1e_wphy(hw, 22, phy_data);
3096 	}
3097 
3098 	/* Setup buffer sizes */
3099 	rctl &= ~E1000_RCTL_SZ_4096;
3100 	rctl |= E1000_RCTL_BSEX;
3101 	switch (adapter->rx_buffer_len) {
3102 	case 2048:
3103 	default:
3104 		rctl |= E1000_RCTL_SZ_2048;
3105 		rctl &= ~E1000_RCTL_BSEX;
3106 		break;
3107 	case 4096:
3108 		rctl |= E1000_RCTL_SZ_4096;
3109 		break;
3110 	case 8192:
3111 		rctl |= E1000_RCTL_SZ_8192;
3112 		break;
3113 	case 16384:
3114 		rctl |= E1000_RCTL_SZ_16384;
3115 		break;
3116 	}
3117 
3118 	/* Enable Extended Status in all Receive Descriptors */
3119 	rfctl = er32(RFCTL);
3120 	rfctl |= E1000_RFCTL_EXTEN;
3121 	ew32(RFCTL, rfctl);
3122 
3123 	/* 82571 and greater support packet-split where the protocol
3124 	 * header is placed in skb->data and the packet data is
3125 	 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3126 	 * In the case of a non-split, skb->data is linearly filled,
3127 	 * followed by the page buffers.  Therefore, skb->data is
3128 	 * sized to hold the largest protocol header.
3129 	 *
3130 	 * allocations using alloc_page take too long for regular MTU
3131 	 * so only enable packet split for jumbo frames
3132 	 *
3133 	 * Using pages when the page size is greater than 16k wastes
3134 	 * a lot of memory, since we allocate 3 pages at all times
3135 	 * per packet.
3136 	 */
3137 	pages = PAGE_USE_COUNT(adapter->netdev->mtu);
3138 	if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
3139 		adapter->rx_ps_pages = pages;
3140 	else
3141 		adapter->rx_ps_pages = 0;
3142 
3143 	if (adapter->rx_ps_pages) {
3144 		u32 psrctl = 0;
3145 
3146 		/* Enable Packet split descriptors */
3147 		rctl |= E1000_RCTL_DTYP_PS;
3148 
3149 		psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT;
3150 
3151 		switch (adapter->rx_ps_pages) {
3152 		case 3:
3153 			psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT;
3154 			fallthrough;
3155 		case 2:
3156 			psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT;
3157 			fallthrough;
3158 		case 1:
3159 			psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT;
3160 			break;
3161 		}
3162 
3163 		ew32(PSRCTL, psrctl);
3164 	}
3165 
3166 	/* This is useful for sniffing bad packets. */
3167 	if (adapter->netdev->features & NETIF_F_RXALL) {
3168 		/* UPE and MPE will be handled by normal PROMISC logic
3169 		 * in e1000e_set_rx_mode
3170 		 */
3171 		rctl |= (E1000_RCTL_SBP |	/* Receive bad packets */
3172 			 E1000_RCTL_BAM |	/* RX All Bcast Pkts */
3173 			 E1000_RCTL_PMCF);	/* RX All MAC Ctrl Pkts */
3174 
3175 		rctl &= ~(E1000_RCTL_VFE |	/* Disable VLAN filter */
3176 			  E1000_RCTL_DPF |	/* Allow filtered pause */
3177 			  E1000_RCTL_CFIEN);	/* Dis VLAN CFIEN Filter */
3178 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3179 		 * and that breaks VLANs.
3180 		 */
3181 	}
3182 
3183 	ew32(RCTL, rctl);
3184 	/* just started the receive unit, no need to restart */
3185 	adapter->flags &= ~FLAG_RESTART_NOW;
3186 }
3187 
3188 /**
3189  * e1000_configure_rx - Configure Receive Unit after Reset
3190  * @adapter: board private structure
3191  *
3192  * Configure the Rx unit of the MAC after a reset.
3193  **/
3194 static void e1000_configure_rx(struct e1000_adapter *adapter)
3195 {
3196 	struct e1000_hw *hw = &adapter->hw;
3197 	struct e1000_ring *rx_ring = adapter->rx_ring;
3198 	u64 rdba;
3199 	u32 rdlen, rctl, rxcsum, ctrl_ext;
3200 
3201 	if (adapter->rx_ps_pages) {
3202 		/* this is a 32 byte descriptor */
3203 		rdlen = rx_ring->count *
3204 		    sizeof(union e1000_rx_desc_packet_split);
3205 		adapter->clean_rx = e1000_clean_rx_irq_ps;
3206 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3207 	} else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3208 		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3209 		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3210 		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3211 	} else {
3212 		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3213 		adapter->clean_rx = e1000_clean_rx_irq;
3214 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3215 	}
3216 
3217 	/* disable receives while setting up the descriptors */
3218 	rctl = er32(RCTL);
3219 	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3220 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
3221 	e1e_flush();
3222 	usleep_range(10000, 11000);
3223 
3224 	if (adapter->flags2 & FLAG2_DMA_BURST) {
3225 		/* set the writeback threshold (only takes effect if the RDTR
3226 		 * is set). set GRAN=1 and write back up to 0x4 worth, and
3227 		 * enable prefetching of 0x20 Rx descriptors
3228 		 * granularity = 01
3229 		 * wthresh = 04,
3230 		 * hthresh = 04,
3231 		 * pthresh = 0x20
3232 		 */
3233 		ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3234 		ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3235 	}
3236 
3237 	/* set the Receive Delay Timer Register */
3238 	ew32(RDTR, adapter->rx_int_delay);
3239 
3240 	/* irq moderation */
3241 	ew32(RADV, adapter->rx_abs_int_delay);
3242 	if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3243 		e1000e_write_itr(adapter, adapter->itr);
3244 
3245 	ctrl_ext = er32(CTRL_EXT);
3246 	/* Auto-Mask interrupts upon ICR access */
3247 	ctrl_ext |= E1000_CTRL_EXT_IAME;
3248 	ew32(IAM, 0xffffffff);
3249 	ew32(CTRL_EXT, ctrl_ext);
3250 	e1e_flush();
3251 
3252 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
3253 	 * the Base and Length of the Rx Descriptor Ring
3254 	 */
3255 	rdba = rx_ring->dma;
3256 	ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3257 	ew32(RDBAH(0), (rdba >> 32));
3258 	ew32(RDLEN(0), rdlen);
3259 	ew32(RDH(0), 0);
3260 	ew32(RDT(0), 0);
3261 	rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3262 	rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3263 
3264 	writel(0, rx_ring->head);
3265 	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
3266 		e1000e_update_rdt_wa(rx_ring, 0);
3267 	else
3268 		writel(0, rx_ring->tail);
3269 
3270 	/* Enable Receive Checksum Offload for TCP and UDP */
3271 	rxcsum = er32(RXCSUM);
3272 	if (adapter->netdev->features & NETIF_F_RXCSUM)
3273 		rxcsum |= E1000_RXCSUM_TUOFL;
3274 	else
3275 		rxcsum &= ~E1000_RXCSUM_TUOFL;
3276 	ew32(RXCSUM, rxcsum);
3277 
3278 	/* With jumbo frames, excessive C-state transition latencies result
3279 	 * in dropped transactions.
3280 	 */
3281 	if (adapter->netdev->mtu > ETH_DATA_LEN) {
3282 		u32 lat =
3283 		    ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 -
3284 		     adapter->max_frame_size) * 8 / 1000;
3285 
3286 		if (adapter->flags & FLAG_IS_ICH) {
3287 			u32 rxdctl = er32(RXDCTL(0));
3288 
3289 			ew32(RXDCTL(0), rxdctl | 0x3 | BIT(8));
3290 		}
3291 
3292 		dev_info(&adapter->pdev->dev,
3293 			 "Some CPU C-states have been disabled in order to enable jumbo frames\n");
3294 		cpu_latency_qos_update_request(&adapter->pm_qos_req, lat);
3295 	} else {
3296 		cpu_latency_qos_update_request(&adapter->pm_qos_req,
3297 					       PM_QOS_DEFAULT_VALUE);
3298 	}
3299 
3300 	/* Enable Receives */
3301 	ew32(RCTL, rctl);
3302 }
3303 
3304 /**
3305  * e1000e_write_mc_addr_list - write multicast addresses to MTA
3306  * @netdev: network interface device structure
3307  *
3308  * Writes multicast address list to the MTA hash table.
3309  * Returns: -ENOMEM on failure
3310  *                0 on no addresses written
3311  *                X on writing X addresses to MTA
3312  */
3313 static int e1000e_write_mc_addr_list(struct net_device *netdev)
3314 {
3315 	struct e1000_adapter *adapter = netdev_priv(netdev);
3316 	struct e1000_hw *hw = &adapter->hw;
3317 	struct netdev_hw_addr *ha;
3318 	u8 *mta_list;
3319 	int i;
3320 
3321 	if (netdev_mc_empty(netdev)) {
3322 		/* nothing to program, so clear mc list */
3323 		hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3324 		return 0;
3325 	}
3326 
3327 	mta_list = kcalloc(netdev_mc_count(netdev), ETH_ALEN, GFP_ATOMIC);
3328 	if (!mta_list)
3329 		return -ENOMEM;
3330 
3331 	/* update_mc_addr_list expects a packed array of only addresses. */
3332 	i = 0;
3333 	netdev_for_each_mc_addr(ha, netdev)
3334 	    memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3335 
3336 	hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3337 	kfree(mta_list);
3338 
3339 	return netdev_mc_count(netdev);
3340 }
3341 
3342 /**
3343  * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3344  * @netdev: network interface device structure
3345  *
3346  * Writes unicast address list to the RAR table.
3347  * Returns: -ENOMEM on failure/insufficient address space
3348  *                0 on no addresses written
3349  *                X on writing X addresses to the RAR table
3350  **/
3351 static int e1000e_write_uc_addr_list(struct net_device *netdev)
3352 {
3353 	struct e1000_adapter *adapter = netdev_priv(netdev);
3354 	struct e1000_hw *hw = &adapter->hw;
3355 	unsigned int rar_entries;
3356 	int count = 0;
3357 
3358 	rar_entries = hw->mac.ops.rar_get_count(hw);
3359 
3360 	/* save a rar entry for our hardware address */
3361 	rar_entries--;
3362 
3363 	/* save a rar entry for the LAA workaround */
3364 	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3365 		rar_entries--;
3366 
3367 	/* return ENOMEM indicating insufficient memory for addresses */
3368 	if (netdev_uc_count(netdev) > rar_entries)
3369 		return -ENOMEM;
3370 
3371 	if (!netdev_uc_empty(netdev) && rar_entries) {
3372 		struct netdev_hw_addr *ha;
3373 
3374 		/* write the addresses in reverse order to avoid write
3375 		 * combining
3376 		 */
3377 		netdev_for_each_uc_addr(ha, netdev) {
3378 			int ret_val;
3379 
3380 			if (!rar_entries)
3381 				break;
3382 			ret_val = hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3383 			if (ret_val < 0)
3384 				return -ENOMEM;
3385 			count++;
3386 		}
3387 	}
3388 
3389 	/* zero out the remaining RAR entries not used above */
3390 	for (; rar_entries > 0; rar_entries--) {
3391 		ew32(RAH(rar_entries), 0);
3392 		ew32(RAL(rar_entries), 0);
3393 	}
3394 	e1e_flush();
3395 
3396 	return count;
3397 }
3398 
3399 /**
3400  * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3401  * @netdev: network interface device structure
3402  *
3403  * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3404  * address list or the network interface flags are updated.  This routine is
3405  * responsible for configuring the hardware for proper unicast, multicast,
3406  * promiscuous mode, and all-multi behavior.
3407  **/
3408 static void e1000e_set_rx_mode(struct net_device *netdev)
3409 {
3410 	struct e1000_adapter *adapter = netdev_priv(netdev);
3411 	struct e1000_hw *hw = &adapter->hw;
3412 	u32 rctl;
3413 
3414 	if (pm_runtime_suspended(netdev->dev.parent))
3415 		return;
3416 
3417 	/* Check for Promiscuous and All Multicast modes */
3418 	rctl = er32(RCTL);
3419 
3420 	/* clear the affected bits */
3421 	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3422 
3423 	if (netdev->flags & IFF_PROMISC) {
3424 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3425 		/* Do not hardware filter VLANs in promisc mode */
3426 		e1000e_vlan_filter_disable(adapter);
3427 	} else {
3428 		int count;
3429 
3430 		if (netdev->flags & IFF_ALLMULTI) {
3431 			rctl |= E1000_RCTL_MPE;
3432 		} else {
3433 			/* Write addresses to the MTA, if the attempt fails
3434 			 * then we should just turn on promiscuous mode so
3435 			 * that we can at least receive multicast traffic
3436 			 */
3437 			count = e1000e_write_mc_addr_list(netdev);
3438 			if (count < 0)
3439 				rctl |= E1000_RCTL_MPE;
3440 		}
3441 		e1000e_vlan_filter_enable(adapter);
3442 		/* Write addresses to available RAR registers, if there is not
3443 		 * sufficient space to store all the addresses then enable
3444 		 * unicast promiscuous mode
3445 		 */
3446 		count = e1000e_write_uc_addr_list(netdev);
3447 		if (count < 0)
3448 			rctl |= E1000_RCTL_UPE;
3449 	}
3450 
3451 	ew32(RCTL, rctl);
3452 
3453 	if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
3454 		e1000e_vlan_strip_enable(adapter);
3455 	else
3456 		e1000e_vlan_strip_disable(adapter);
3457 }
3458 
3459 static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3460 {
3461 	struct e1000_hw *hw = &adapter->hw;
3462 	u32 mrqc, rxcsum;
3463 	u32 rss_key[10];
3464 	int i;
3465 
3466 	netdev_rss_key_fill(rss_key, sizeof(rss_key));
3467 	for (i = 0; i < 10; i++)
3468 		ew32(RSSRK(i), rss_key[i]);
3469 
3470 	/* Direct all traffic to queue 0 */
3471 	for (i = 0; i < 32; i++)
3472 		ew32(RETA(i), 0);
3473 
3474 	/* Disable raw packet checksumming so that RSS hash is placed in
3475 	 * descriptor on writeback.
3476 	 */
3477 	rxcsum = er32(RXCSUM);
3478 	rxcsum |= E1000_RXCSUM_PCSD;
3479 
3480 	ew32(RXCSUM, rxcsum);
3481 
3482 	mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3483 		E1000_MRQC_RSS_FIELD_IPV4_TCP |
3484 		E1000_MRQC_RSS_FIELD_IPV6 |
3485 		E1000_MRQC_RSS_FIELD_IPV6_TCP |
3486 		E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3487 
3488 	ew32(MRQC, mrqc);
3489 }
3490 
3491 /**
3492  * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3493  * @adapter: board private structure
3494  * @timinca: pointer to returned time increment attributes
3495  *
3496  * Get attributes for incrementing the System Time Register SYSTIML/H at
3497  * the default base frequency, and set the cyclecounter shift value.
3498  **/
3499 s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca)
3500 {
3501 	struct e1000_hw *hw = &adapter->hw;
3502 	u32 incvalue, incperiod, shift;
3503 
3504 	/* Make sure clock is enabled on I217/I218/I219  before checking
3505 	 * the frequency
3506 	 */
3507 	if ((hw->mac.type >= e1000_pch_lpt) &&
3508 	    !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) &&
3509 	    !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) {
3510 		u32 fextnvm7 = er32(FEXTNVM7);
3511 
3512 		if (!(fextnvm7 & BIT(0))) {
3513 			ew32(FEXTNVM7, fextnvm7 | BIT(0));
3514 			e1e_flush();
3515 		}
3516 	}
3517 
3518 	switch (hw->mac.type) {
3519 	case e1000_pch2lan:
3520 		/* Stable 96MHz frequency */
3521 		incperiod = INCPERIOD_96MHZ;
3522 		incvalue = INCVALUE_96MHZ;
3523 		shift = INCVALUE_SHIFT_96MHZ;
3524 		adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3525 		break;
3526 	case e1000_pch_lpt:
3527 		if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3528 			/* Stable 96MHz frequency */
3529 			incperiod = INCPERIOD_96MHZ;
3530 			incvalue = INCVALUE_96MHZ;
3531 			shift = INCVALUE_SHIFT_96MHZ;
3532 			adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3533 		} else {
3534 			/* Stable 25MHz frequency */
3535 			incperiod = INCPERIOD_25MHZ;
3536 			incvalue = INCVALUE_25MHZ;
3537 			shift = INCVALUE_SHIFT_25MHZ;
3538 			adapter->cc.shift = shift;
3539 		}
3540 		break;
3541 	case e1000_pch_spt:
3542 		/* Stable 24MHz frequency */
3543 		incperiod = INCPERIOD_24MHZ;
3544 		incvalue = INCVALUE_24MHZ;
3545 		shift = INCVALUE_SHIFT_24MHZ;
3546 		adapter->cc.shift = shift;
3547 		break;
3548 	case e1000_pch_cnp:
3549 	case e1000_pch_tgp:
3550 	case e1000_pch_adp:
3551 	case e1000_pch_mtp:
3552 		if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3553 			/* Stable 24MHz frequency */
3554 			incperiod = INCPERIOD_24MHZ;
3555 			incvalue = INCVALUE_24MHZ;
3556 			shift = INCVALUE_SHIFT_24MHZ;
3557 			adapter->cc.shift = shift;
3558 		} else {
3559 			/* Stable 38400KHz frequency */
3560 			incperiod = INCPERIOD_38400KHZ;
3561 			incvalue = INCVALUE_38400KHZ;
3562 			shift = INCVALUE_SHIFT_38400KHZ;
3563 			adapter->cc.shift = shift;
3564 		}
3565 		break;
3566 	case e1000_82574:
3567 	case e1000_82583:
3568 		/* Stable 25MHz frequency */
3569 		incperiod = INCPERIOD_25MHZ;
3570 		incvalue = INCVALUE_25MHZ;
3571 		shift = INCVALUE_SHIFT_25MHZ;
3572 		adapter->cc.shift = shift;
3573 		break;
3574 	default:
3575 		return -EINVAL;
3576 	}
3577 
3578 	*timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) |
3579 		    ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK));
3580 
3581 	return 0;
3582 }
3583 
3584 /**
3585  * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3586  * @adapter: board private structure
3587  * @config: timestamp configuration
3588  *
3589  * Outgoing time stamping can be enabled and disabled. Play nice and
3590  * disable it when requested, although it shouldn't cause any overhead
3591  * when no packet needs it. At most one packet in the queue may be
3592  * marked for time stamping, otherwise it would be impossible to tell
3593  * for sure to which packet the hardware time stamp belongs.
3594  *
3595  * Incoming time stamping has to be configured via the hardware filters.
3596  * Not all combinations are supported, in particular event type has to be
3597  * specified. Matching the kind of event packet is not supported, with the
3598  * exception of "all V2 events regardless of level 2 or 4".
3599  **/
3600 static int e1000e_config_hwtstamp(struct e1000_adapter *adapter,
3601 				  struct hwtstamp_config *config)
3602 {
3603 	struct e1000_hw *hw = &adapter->hw;
3604 	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
3605 	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
3606 	u32 rxmtrl = 0;
3607 	u16 rxudp = 0;
3608 	bool is_l4 = false;
3609 	bool is_l2 = false;
3610 	u32 regval;
3611 
3612 	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3613 		return -EINVAL;
3614 
3615 	/* flags reserved for future extensions - must be zero */
3616 	if (config->flags)
3617 		return -EINVAL;
3618 
3619 	switch (config->tx_type) {
3620 	case HWTSTAMP_TX_OFF:
3621 		tsync_tx_ctl = 0;
3622 		break;
3623 	case HWTSTAMP_TX_ON:
3624 		break;
3625 	default:
3626 		return -ERANGE;
3627 	}
3628 
3629 	switch (config->rx_filter) {
3630 	case HWTSTAMP_FILTER_NONE:
3631 		tsync_rx_ctl = 0;
3632 		break;
3633 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3634 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3635 		rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE;
3636 		is_l4 = true;
3637 		break;
3638 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3639 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3640 		rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE;
3641 		is_l4 = true;
3642 		break;
3643 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3644 		/* Also time stamps V2 L2 Path Delay Request/Response */
3645 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3646 		rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3647 		is_l2 = true;
3648 		break;
3649 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3650 		/* Also time stamps V2 L2 Path Delay Request/Response. */
3651 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3652 		rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3653 		is_l2 = true;
3654 		break;
3655 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3656 		/* Hardware cannot filter just V2 L4 Sync messages */
3657 		fallthrough;
3658 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
3659 		/* Also time stamps V2 Path Delay Request/Response. */
3660 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3661 		rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3662 		is_l2 = true;
3663 		is_l4 = true;
3664 		break;
3665 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3666 		/* Hardware cannot filter just V2 L4 Delay Request messages */
3667 		fallthrough;
3668 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3669 		/* Also time stamps V2 Path Delay Request/Response. */
3670 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3671 		rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3672 		is_l2 = true;
3673 		is_l4 = true;
3674 		break;
3675 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3676 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3677 		/* Hardware cannot filter just V2 L4 or L2 Event messages */
3678 		fallthrough;
3679 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
3680 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
3681 		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
3682 		is_l2 = true;
3683 		is_l4 = true;
3684 		break;
3685 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3686 		/* For V1, the hardware can only filter Sync messages or
3687 		 * Delay Request messages but not both so fall-through to
3688 		 * time stamp all packets.
3689 		 */
3690 		fallthrough;
3691 	case HWTSTAMP_FILTER_NTP_ALL:
3692 	case HWTSTAMP_FILTER_ALL:
3693 		is_l2 = true;
3694 		is_l4 = true;
3695 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
3696 		config->rx_filter = HWTSTAMP_FILTER_ALL;
3697 		break;
3698 	default:
3699 		return -ERANGE;
3700 	}
3701 
3702 	adapter->hwtstamp_config = *config;
3703 
3704 	/* enable/disable Tx h/w time stamping */
3705 	regval = er32(TSYNCTXCTL);
3706 	regval &= ~E1000_TSYNCTXCTL_ENABLED;
3707 	regval |= tsync_tx_ctl;
3708 	ew32(TSYNCTXCTL, regval);
3709 	if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) !=
3710 	    (regval & E1000_TSYNCTXCTL_ENABLED)) {
3711 		e_err("Timesync Tx Control register not set as expected\n");
3712 		return -EAGAIN;
3713 	}
3714 
3715 	/* enable/disable Rx h/w time stamping */
3716 	regval = er32(TSYNCRXCTL);
3717 	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
3718 	regval |= tsync_rx_ctl;
3719 	ew32(TSYNCRXCTL, regval);
3720 	if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED |
3721 				 E1000_TSYNCRXCTL_TYPE_MASK)) !=
3722 	    (regval & (E1000_TSYNCRXCTL_ENABLED |
3723 		       E1000_TSYNCRXCTL_TYPE_MASK))) {
3724 		e_err("Timesync Rx Control register not set as expected\n");
3725 		return -EAGAIN;
3726 	}
3727 
3728 	/* L2: define ethertype filter for time stamped packets */
3729 	if (is_l2)
3730 		rxmtrl |= ETH_P_1588;
3731 
3732 	/* define which PTP packets get time stamped */
3733 	ew32(RXMTRL, rxmtrl);
3734 
3735 	/* Filter by destination port */
3736 	if (is_l4) {
3737 		rxudp = PTP_EV_PORT;
3738 		cpu_to_be16s(&rxudp);
3739 	}
3740 	ew32(RXUDP, rxudp);
3741 
3742 	e1e_flush();
3743 
3744 	/* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
3745 	er32(RXSTMPH);
3746 	er32(TXSTMPH);
3747 
3748 	return 0;
3749 }
3750 
3751 /**
3752  * e1000_configure - configure the hardware for Rx and Tx
3753  * @adapter: private board structure
3754  **/
3755 static void e1000_configure(struct e1000_adapter *adapter)
3756 {
3757 	struct e1000_ring *rx_ring = adapter->rx_ring;
3758 
3759 	e1000e_set_rx_mode(adapter->netdev);
3760 
3761 	e1000_restore_vlan(adapter);
3762 	e1000_init_manageability_pt(adapter);
3763 
3764 	e1000_configure_tx(adapter);
3765 
3766 	if (adapter->netdev->features & NETIF_F_RXHASH)
3767 		e1000e_setup_rss_hash(adapter);
3768 	e1000_setup_rctl(adapter);
3769 	e1000_configure_rx(adapter);
3770 	adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3771 }
3772 
3773 /**
3774  * e1000e_power_up_phy - restore link in case the phy was powered down
3775  * @adapter: address of board private structure
3776  *
3777  * The phy may be powered down to save power and turn off link when the
3778  * driver is unloaded and wake on lan is not enabled (among others)
3779  * *** this routine MUST be followed by a call to e1000e_reset ***
3780  **/
3781 void e1000e_power_up_phy(struct e1000_adapter *adapter)
3782 {
3783 	if (adapter->hw.phy.ops.power_up)
3784 		adapter->hw.phy.ops.power_up(&adapter->hw);
3785 
3786 	adapter->hw.mac.ops.setup_link(&adapter->hw);
3787 }
3788 
3789 /**
3790  * e1000_power_down_phy - Power down the PHY
3791  * @adapter: board private structure
3792  *
3793  * Power down the PHY so no link is implied when interface is down.
3794  * The PHY cannot be powered down if management or WoL is active.
3795  */
3796 static void e1000_power_down_phy(struct e1000_adapter *adapter)
3797 {
3798 	if (adapter->hw.phy.ops.power_down)
3799 		adapter->hw.phy.ops.power_down(&adapter->hw);
3800 }
3801 
3802 /**
3803  * e1000_flush_tx_ring - remove all descriptors from the tx_ring
3804  * @adapter: board private structure
3805  *
3806  * We want to clear all pending descriptors from the TX ring.
3807  * zeroing happens when the HW reads the regs. We  assign the ring itself as
3808  * the data of the next descriptor. We don't care about the data we are about
3809  * to reset the HW.
3810  */
3811 static void e1000_flush_tx_ring(struct e1000_adapter *adapter)
3812 {
3813 	struct e1000_hw *hw = &adapter->hw;
3814 	struct e1000_ring *tx_ring = adapter->tx_ring;
3815 	struct e1000_tx_desc *tx_desc = NULL;
3816 	u32 tdt, tctl, txd_lower = E1000_TXD_CMD_IFCS;
3817 	u16 size = 512;
3818 
3819 	tctl = er32(TCTL);
3820 	ew32(TCTL, tctl | E1000_TCTL_EN);
3821 	tdt = er32(TDT(0));
3822 	BUG_ON(tdt != tx_ring->next_to_use);
3823 	tx_desc =  E1000_TX_DESC(*tx_ring, tx_ring->next_to_use);
3824 	tx_desc->buffer_addr = cpu_to_le64(tx_ring->dma);
3825 
3826 	tx_desc->lower.data = cpu_to_le32(txd_lower | size);
3827 	tx_desc->upper.data = 0;
3828 	/* flush descriptors to memory before notifying the HW */
3829 	wmb();
3830 	tx_ring->next_to_use++;
3831 	if (tx_ring->next_to_use == tx_ring->count)
3832 		tx_ring->next_to_use = 0;
3833 	ew32(TDT(0), tx_ring->next_to_use);
3834 	usleep_range(200, 250);
3835 }
3836 
3837 /**
3838  * e1000_flush_rx_ring - remove all descriptors from the rx_ring
3839  * @adapter: board private structure
3840  *
3841  * Mark all descriptors in the RX ring as consumed and disable the rx ring
3842  */
3843 static void e1000_flush_rx_ring(struct e1000_adapter *adapter)
3844 {
3845 	u32 rctl, rxdctl;
3846 	struct e1000_hw *hw = &adapter->hw;
3847 
3848 	rctl = er32(RCTL);
3849 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
3850 	e1e_flush();
3851 	usleep_range(100, 150);
3852 
3853 	rxdctl = er32(RXDCTL(0));
3854 	/* zero the lower 14 bits (prefetch and host thresholds) */
3855 	rxdctl &= 0xffffc000;
3856 
3857 	/* update thresholds: prefetch threshold to 31, host threshold to 1
3858 	 * and make sure the granularity is "descriptors" and not "cache lines"
3859 	 */
3860 	rxdctl |= (0x1F | BIT(8) | E1000_RXDCTL_THRESH_UNIT_DESC);
3861 
3862 	ew32(RXDCTL(0), rxdctl);
3863 	/* momentarily enable the RX ring for the changes to take effect */
3864 	ew32(RCTL, rctl | E1000_RCTL_EN);
3865 	e1e_flush();
3866 	usleep_range(100, 150);
3867 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
3868 }
3869 
3870 /**
3871  * e1000_flush_desc_rings - remove all descriptors from the descriptor rings
3872  * @adapter: board private structure
3873  *
3874  * In i219, the descriptor rings must be emptied before resetting the HW
3875  * or before changing the device state to D3 during runtime (runtime PM).
3876  *
3877  * Failure to do this will cause the HW to enter a unit hang state which can
3878  * only be released by PCI reset on the device
3879  *
3880  */
3881 
3882 static void e1000_flush_desc_rings(struct e1000_adapter *adapter)
3883 {
3884 	u16 hang_state;
3885 	u32 fext_nvm11, tdlen;
3886 	struct e1000_hw *hw = &adapter->hw;
3887 
3888 	/* First, disable MULR fix in FEXTNVM11 */
3889 	fext_nvm11 = er32(FEXTNVM11);
3890 	fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
3891 	ew32(FEXTNVM11, fext_nvm11);
3892 	/* do nothing if we're not in faulty state, or if the queue is empty */
3893 	tdlen = er32(TDLEN(0));
3894 	pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3895 			     &hang_state);
3896 	if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen)
3897 		return;
3898 	e1000_flush_tx_ring(adapter);
3899 	/* recheck, maybe the fault is caused by the rx ring */
3900 	pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3901 			     &hang_state);
3902 	if (hang_state & FLUSH_DESC_REQUIRED)
3903 		e1000_flush_rx_ring(adapter);
3904 }
3905 
3906 /**
3907  * e1000e_systim_reset - reset the timesync registers after a hardware reset
3908  * @adapter: board private structure
3909  *
3910  * When the MAC is reset, all hardware bits for timesync will be reset to the
3911  * default values. This function will restore the settings last in place.
3912  * Since the clock SYSTIME registers are reset, we will simply restore the
3913  * cyclecounter to the kernel real clock time.
3914  **/
3915 static void e1000e_systim_reset(struct e1000_adapter *adapter)
3916 {
3917 	struct ptp_clock_info *info = &adapter->ptp_clock_info;
3918 	struct e1000_hw *hw = &adapter->hw;
3919 	unsigned long flags;
3920 	u32 timinca;
3921 	s32 ret_val;
3922 
3923 	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3924 		return;
3925 
3926 	if (info->adjfreq) {
3927 		/* restore the previous ptp frequency delta */
3928 		ret_val = info->adjfreq(info, adapter->ptp_delta);
3929 	} else {
3930 		/* set the default base frequency if no adjustment possible */
3931 		ret_val = e1000e_get_base_timinca(adapter, &timinca);
3932 		if (!ret_val)
3933 			ew32(TIMINCA, timinca);
3934 	}
3935 
3936 	if (ret_val) {
3937 		dev_warn(&adapter->pdev->dev,
3938 			 "Failed to restore TIMINCA clock rate delta: %d\n",
3939 			 ret_val);
3940 		return;
3941 	}
3942 
3943 	/* reset the systim ns time counter */
3944 	spin_lock_irqsave(&adapter->systim_lock, flags);
3945 	timecounter_init(&adapter->tc, &adapter->cc,
3946 			 ktime_to_ns(ktime_get_real()));
3947 	spin_unlock_irqrestore(&adapter->systim_lock, flags);
3948 
3949 	/* restore the previous hwtstamp configuration settings */
3950 	e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config);
3951 }
3952 
3953 /**
3954  * e1000e_reset - bring the hardware into a known good state
3955  * @adapter: board private structure
3956  *
3957  * This function boots the hardware and enables some settings that
3958  * require a configuration cycle of the hardware - those cannot be
3959  * set/changed during runtime. After reset the device needs to be
3960  * properly configured for Rx, Tx etc.
3961  */
3962 void e1000e_reset(struct e1000_adapter *adapter)
3963 {
3964 	struct e1000_mac_info *mac = &adapter->hw.mac;
3965 	struct e1000_fc_info *fc = &adapter->hw.fc;
3966 	struct e1000_hw *hw = &adapter->hw;
3967 	u32 tx_space, min_tx_space, min_rx_space;
3968 	u32 pba = adapter->pba;
3969 	u16 hwm;
3970 
3971 	/* reset Packet Buffer Allocation to default */
3972 	ew32(PBA, pba);
3973 
3974 	if (adapter->max_frame_size > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) {
3975 		/* To maintain wire speed transmits, the Tx FIFO should be
3976 		 * large enough to accommodate two full transmit packets,
3977 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
3978 		 * the Rx FIFO should be large enough to accommodate at least
3979 		 * one full receive packet and is similarly rounded up and
3980 		 * expressed in KB.
3981 		 */
3982 		pba = er32(PBA);
3983 		/* upper 16 bits has Tx packet buffer allocation size in KB */
3984 		tx_space = pba >> 16;
3985 		/* lower 16 bits has Rx packet buffer allocation size in KB */
3986 		pba &= 0xffff;
3987 		/* the Tx fifo also stores 16 bytes of information about the Tx
3988 		 * but don't include ethernet FCS because hardware appends it
3989 		 */
3990 		min_tx_space = (adapter->max_frame_size +
3991 				sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2;
3992 		min_tx_space = ALIGN(min_tx_space, 1024);
3993 		min_tx_space >>= 10;
3994 		/* software strips receive CRC, so leave room for it */
3995 		min_rx_space = adapter->max_frame_size;
3996 		min_rx_space = ALIGN(min_rx_space, 1024);
3997 		min_rx_space >>= 10;
3998 
3999 		/* If current Tx allocation is less than the min Tx FIFO size,
4000 		 * and the min Tx FIFO size is less than the current Rx FIFO
4001 		 * allocation, take space away from current Rx allocation
4002 		 */
4003 		if ((tx_space < min_tx_space) &&
4004 		    ((min_tx_space - tx_space) < pba)) {
4005 			pba -= min_tx_space - tx_space;
4006 
4007 			/* if short on Rx space, Rx wins and must trump Tx
4008 			 * adjustment
4009 			 */
4010 			if (pba < min_rx_space)
4011 				pba = min_rx_space;
4012 		}
4013 
4014 		ew32(PBA, pba);
4015 	}
4016 
4017 	/* flow control settings
4018 	 *
4019 	 * The high water mark must be low enough to fit one full frame
4020 	 * (or the size used for early receive) above it in the Rx FIFO.
4021 	 * Set it to the lower of:
4022 	 * - 90% of the Rx FIFO size, and
4023 	 * - the full Rx FIFO size minus one full frame
4024 	 */
4025 	if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
4026 		fc->pause_time = 0xFFFF;
4027 	else
4028 		fc->pause_time = E1000_FC_PAUSE_TIME;
4029 	fc->send_xon = true;
4030 	fc->current_mode = fc->requested_mode;
4031 
4032 	switch (hw->mac.type) {
4033 	case e1000_ich9lan:
4034 	case e1000_ich10lan:
4035 		if (adapter->netdev->mtu > ETH_DATA_LEN) {
4036 			pba = 14;
4037 			ew32(PBA, pba);
4038 			fc->high_water = 0x2800;
4039 			fc->low_water = fc->high_water - 8;
4040 			break;
4041 		}
4042 		fallthrough;
4043 	default:
4044 		hwm = min(((pba << 10) * 9 / 10),
4045 			  ((pba << 10) - adapter->max_frame_size));
4046 
4047 		fc->high_water = hwm & E1000_FCRTH_RTH;	/* 8-byte granularity */
4048 		fc->low_water = fc->high_water - 8;
4049 		break;
4050 	case e1000_pchlan:
4051 		/* Workaround PCH LOM adapter hangs with certain network
4052 		 * loads.  If hangs persist, try disabling Tx flow control.
4053 		 */
4054 		if (adapter->netdev->mtu > ETH_DATA_LEN) {
4055 			fc->high_water = 0x3500;
4056 			fc->low_water = 0x1500;
4057 		} else {
4058 			fc->high_water = 0x5000;
4059 			fc->low_water = 0x3000;
4060 		}
4061 		fc->refresh_time = 0x1000;
4062 		break;
4063 	case e1000_pch2lan:
4064 	case e1000_pch_lpt:
4065 	case e1000_pch_spt:
4066 	case e1000_pch_cnp:
4067 	case e1000_pch_tgp:
4068 	case e1000_pch_adp:
4069 	case e1000_pch_mtp:
4070 		fc->refresh_time = 0xFFFF;
4071 		fc->pause_time = 0xFFFF;
4072 
4073 		if (adapter->netdev->mtu <= ETH_DATA_LEN) {
4074 			fc->high_water = 0x05C20;
4075 			fc->low_water = 0x05048;
4076 			break;
4077 		}
4078 
4079 		pba = 14;
4080 		ew32(PBA, pba);
4081 		fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH;
4082 		fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL;
4083 		break;
4084 	}
4085 
4086 	/* Alignment of Tx data is on an arbitrary byte boundary with the
4087 	 * maximum size per Tx descriptor limited only to the transmit
4088 	 * allocation of the packet buffer minus 96 bytes with an upper
4089 	 * limit of 24KB due to receive synchronization limitations.
4090 	 */
4091 	adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
4092 				       24 << 10);
4093 
4094 	/* Disable Adaptive Interrupt Moderation if 2 full packets cannot
4095 	 * fit in receive buffer.
4096 	 */
4097 	if (adapter->itr_setting & 0x3) {
4098 		if ((adapter->max_frame_size * 2) > (pba << 10)) {
4099 			if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
4100 				dev_info(&adapter->pdev->dev,
4101 					 "Interrupt Throttle Rate off\n");
4102 				adapter->flags2 |= FLAG2_DISABLE_AIM;
4103 				e1000e_write_itr(adapter, 0);
4104 			}
4105 		} else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
4106 			dev_info(&adapter->pdev->dev,
4107 				 "Interrupt Throttle Rate on\n");
4108 			adapter->flags2 &= ~FLAG2_DISABLE_AIM;
4109 			adapter->itr = 20000;
4110 			e1000e_write_itr(adapter, adapter->itr);
4111 		}
4112 	}
4113 
4114 	if (hw->mac.type >= e1000_pch_spt)
4115 		e1000_flush_desc_rings(adapter);
4116 	/* Allow time for pending master requests to run */
4117 	mac->ops.reset_hw(hw);
4118 
4119 	/* For parts with AMT enabled, let the firmware know
4120 	 * that the network interface is in control
4121 	 */
4122 	if (adapter->flags & FLAG_HAS_AMT)
4123 		e1000e_get_hw_control(adapter);
4124 
4125 	ew32(WUC, 0);
4126 
4127 	if (mac->ops.init_hw(hw))
4128 		e_err("Hardware Error\n");
4129 
4130 	e1000_update_mng_vlan(adapter);
4131 
4132 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
4133 	ew32(VET, ETH_P_8021Q);
4134 
4135 	e1000e_reset_adaptive(hw);
4136 
4137 	/* restore systim and hwtstamp settings */
4138 	e1000e_systim_reset(adapter);
4139 
4140 	/* Set EEE advertisement as appropriate */
4141 	if (adapter->flags2 & FLAG2_HAS_EEE) {
4142 		s32 ret_val;
4143 		u16 adv_addr;
4144 
4145 		switch (hw->phy.type) {
4146 		case e1000_phy_82579:
4147 			adv_addr = I82579_EEE_ADVERTISEMENT;
4148 			break;
4149 		case e1000_phy_i217:
4150 			adv_addr = I217_EEE_ADVERTISEMENT;
4151 			break;
4152 		default:
4153 			dev_err(&adapter->pdev->dev,
4154 				"Invalid PHY type setting EEE advertisement\n");
4155 			return;
4156 		}
4157 
4158 		ret_val = hw->phy.ops.acquire(hw);
4159 		if (ret_val) {
4160 			dev_err(&adapter->pdev->dev,
4161 				"EEE advertisement - unable to acquire PHY\n");
4162 			return;
4163 		}
4164 
4165 		e1000_write_emi_reg_locked(hw, adv_addr,
4166 					   hw->dev_spec.ich8lan.eee_disable ?
4167 					   0 : adapter->eee_advert);
4168 
4169 		hw->phy.ops.release(hw);
4170 	}
4171 
4172 	if (!netif_running(adapter->netdev) &&
4173 	    !test_bit(__E1000_TESTING, &adapter->state))
4174 		e1000_power_down_phy(adapter);
4175 
4176 	e1000_get_phy_info(hw);
4177 
4178 	if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
4179 	    !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
4180 		u16 phy_data = 0;
4181 		/* speed up time to link by disabling smart power down, ignore
4182 		 * the return value of this function because there is nothing
4183 		 * different we would do if it failed
4184 		 */
4185 		e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
4186 		phy_data &= ~IGP02E1000_PM_SPD;
4187 		e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
4188 	}
4189 	if (hw->mac.type >= e1000_pch_spt && adapter->int_mode == 0) {
4190 		u32 reg;
4191 
4192 		/* Fextnvm7 @ 0xe4[2] = 1 */
4193 		reg = er32(FEXTNVM7);
4194 		reg |= E1000_FEXTNVM7_SIDE_CLK_UNGATE;
4195 		ew32(FEXTNVM7, reg);
4196 		/* Fextnvm9 @ 0x5bb4[13:12] = 11 */
4197 		reg = er32(FEXTNVM9);
4198 		reg |= E1000_FEXTNVM9_IOSFSB_CLKGATE_DIS |
4199 		       E1000_FEXTNVM9_IOSFSB_CLKREQ_DIS;
4200 		ew32(FEXTNVM9, reg);
4201 	}
4202 
4203 }
4204 
4205 /**
4206  * e1000e_trigger_lsc - trigger an LSC interrupt
4207  * @adapter:
4208  *
4209  * Fire a link status change interrupt to start the watchdog.
4210  **/
4211 static void e1000e_trigger_lsc(struct e1000_adapter *adapter)
4212 {
4213 	struct e1000_hw *hw = &adapter->hw;
4214 
4215 	if (adapter->msix_entries)
4216 		ew32(ICS, E1000_ICS_LSC | E1000_ICS_OTHER);
4217 	else
4218 		ew32(ICS, E1000_ICS_LSC);
4219 }
4220 
4221 void e1000e_up(struct e1000_adapter *adapter)
4222 {
4223 	/* hardware has been reset, we need to reload some things */
4224 	e1000_configure(adapter);
4225 
4226 	clear_bit(__E1000_DOWN, &adapter->state);
4227 
4228 	if (adapter->msix_entries)
4229 		e1000_configure_msix(adapter);
4230 	e1000_irq_enable(adapter);
4231 
4232 	/* Tx queue started by watchdog timer when link is up */
4233 
4234 	e1000e_trigger_lsc(adapter);
4235 }
4236 
4237 static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
4238 {
4239 	struct e1000_hw *hw = &adapter->hw;
4240 
4241 	if (!(adapter->flags2 & FLAG2_DMA_BURST))
4242 		return;
4243 
4244 	/* flush pending descriptor writebacks to memory */
4245 	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4246 	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4247 
4248 	/* execute the writes immediately */
4249 	e1e_flush();
4250 
4251 	/* due to rare timing issues, write to TIDV/RDTR again to ensure the
4252 	 * write is successful
4253 	 */
4254 	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4255 	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4256 
4257 	/* execute the writes immediately */
4258 	e1e_flush();
4259 }
4260 
4261 static void e1000e_update_stats(struct e1000_adapter *adapter);
4262 
4263 /**
4264  * e1000e_down - quiesce the device and optionally reset the hardware
4265  * @adapter: board private structure
4266  * @reset: boolean flag to reset the hardware or not
4267  */
4268 void e1000e_down(struct e1000_adapter *adapter, bool reset)
4269 {
4270 	struct net_device *netdev = adapter->netdev;
4271 	struct e1000_hw *hw = &adapter->hw;
4272 	u32 tctl, rctl;
4273 
4274 	/* signal that we're down so the interrupt handler does not
4275 	 * reschedule our watchdog timer
4276 	 */
4277 	set_bit(__E1000_DOWN, &adapter->state);
4278 
4279 	netif_carrier_off(netdev);
4280 
4281 	/* disable receives in the hardware */
4282 	rctl = er32(RCTL);
4283 	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
4284 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
4285 	/* flush and sleep below */
4286 
4287 	netif_stop_queue(netdev);
4288 
4289 	/* disable transmits in the hardware */
4290 	tctl = er32(TCTL);
4291 	tctl &= ~E1000_TCTL_EN;
4292 	ew32(TCTL, tctl);
4293 
4294 	/* flush both disables and wait for them to finish */
4295 	e1e_flush();
4296 	usleep_range(10000, 11000);
4297 
4298 	e1000_irq_disable(adapter);
4299 
4300 	napi_synchronize(&adapter->napi);
4301 
4302 	del_timer_sync(&adapter->watchdog_timer);
4303 	del_timer_sync(&adapter->phy_info_timer);
4304 
4305 	spin_lock(&adapter->stats64_lock);
4306 	e1000e_update_stats(adapter);
4307 	spin_unlock(&adapter->stats64_lock);
4308 
4309 	e1000e_flush_descriptors(adapter);
4310 
4311 	adapter->link_speed = 0;
4312 	adapter->link_duplex = 0;
4313 
4314 	/* Disable Si errata workaround on PCHx for jumbo frame flow */
4315 	if ((hw->mac.type >= e1000_pch2lan) &&
4316 	    (adapter->netdev->mtu > ETH_DATA_LEN) &&
4317 	    e1000_lv_jumbo_workaround_ich8lan(hw, false))
4318 		e_dbg("failed to disable jumbo frame workaround mode\n");
4319 
4320 	if (!pci_channel_offline(adapter->pdev)) {
4321 		if (reset)
4322 			e1000e_reset(adapter);
4323 		else if (hw->mac.type >= e1000_pch_spt)
4324 			e1000_flush_desc_rings(adapter);
4325 	}
4326 	e1000_clean_tx_ring(adapter->tx_ring);
4327 	e1000_clean_rx_ring(adapter->rx_ring);
4328 }
4329 
4330 void e1000e_reinit_locked(struct e1000_adapter *adapter)
4331 {
4332 	might_sleep();
4333 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4334 		usleep_range(1000, 1100);
4335 	e1000e_down(adapter, true);
4336 	e1000e_up(adapter);
4337 	clear_bit(__E1000_RESETTING, &adapter->state);
4338 }
4339 
4340 /**
4341  * e1000e_sanitize_systim - sanitize raw cycle counter reads
4342  * @hw: pointer to the HW structure
4343  * @systim: PHC time value read, sanitized and returned
4344  * @sts: structure to hold system time before and after reading SYSTIML,
4345  * may be NULL
4346  *
4347  * Errata for 82574/82583 possible bad bits read from SYSTIMH/L:
4348  * check to see that the time is incrementing at a reasonable
4349  * rate and is a multiple of incvalue.
4350  **/
4351 static u64 e1000e_sanitize_systim(struct e1000_hw *hw, u64 systim,
4352 				  struct ptp_system_timestamp *sts)
4353 {
4354 	u64 time_delta, rem, temp;
4355 	u64 systim_next;
4356 	u32 incvalue;
4357 	int i;
4358 
4359 	incvalue = er32(TIMINCA) & E1000_TIMINCA_INCVALUE_MASK;
4360 	for (i = 0; i < E1000_MAX_82574_SYSTIM_REREADS; i++) {
4361 		/* latch SYSTIMH on read of SYSTIML */
4362 		ptp_read_system_prets(sts);
4363 		systim_next = (u64)er32(SYSTIML);
4364 		ptp_read_system_postts(sts);
4365 		systim_next |= (u64)er32(SYSTIMH) << 32;
4366 
4367 		time_delta = systim_next - systim;
4368 		temp = time_delta;
4369 		/* VMWare users have seen incvalue of zero, don't div / 0 */
4370 		rem = incvalue ? do_div(temp, incvalue) : (time_delta != 0);
4371 
4372 		systim = systim_next;
4373 
4374 		if ((time_delta < E1000_82574_SYSTIM_EPSILON) && (rem == 0))
4375 			break;
4376 	}
4377 
4378 	return systim;
4379 }
4380 
4381 /**
4382  * e1000e_read_systim - read SYSTIM register
4383  * @adapter: board private structure
4384  * @sts: structure which will contain system time before and after reading
4385  * SYSTIML, may be NULL
4386  **/
4387 u64 e1000e_read_systim(struct e1000_adapter *adapter,
4388 		       struct ptp_system_timestamp *sts)
4389 {
4390 	struct e1000_hw *hw = &adapter->hw;
4391 	u32 systimel, systimel_2, systimeh;
4392 	u64 systim;
4393 	/* SYSTIMH latching upon SYSTIML read does not work well.
4394 	 * This means that if SYSTIML overflows after we read it but before
4395 	 * we read SYSTIMH, the value of SYSTIMH has been incremented and we
4396 	 * will experience a huge non linear increment in the systime value
4397 	 * to fix that we test for overflow and if true, we re-read systime.
4398 	 */
4399 	ptp_read_system_prets(sts);
4400 	systimel = er32(SYSTIML);
4401 	ptp_read_system_postts(sts);
4402 	systimeh = er32(SYSTIMH);
4403 	/* Is systimel is so large that overflow is possible? */
4404 	if (systimel >= (u32)0xffffffff - E1000_TIMINCA_INCVALUE_MASK) {
4405 		ptp_read_system_prets(sts);
4406 		systimel_2 = er32(SYSTIML);
4407 		ptp_read_system_postts(sts);
4408 		if (systimel > systimel_2) {
4409 			/* There was an overflow, read again SYSTIMH, and use
4410 			 * systimel_2
4411 			 */
4412 			systimeh = er32(SYSTIMH);
4413 			systimel = systimel_2;
4414 		}
4415 	}
4416 	systim = (u64)systimel;
4417 	systim |= (u64)systimeh << 32;
4418 
4419 	if (adapter->flags2 & FLAG2_CHECK_SYSTIM_OVERFLOW)
4420 		systim = e1000e_sanitize_systim(hw, systim, sts);
4421 
4422 	return systim;
4423 }
4424 
4425 /**
4426  * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4427  * @cc: cyclecounter structure
4428  **/
4429 static u64 e1000e_cyclecounter_read(const struct cyclecounter *cc)
4430 {
4431 	struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter,
4432 						     cc);
4433 
4434 	return e1000e_read_systim(adapter, NULL);
4435 }
4436 
4437 /**
4438  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4439  * @adapter: board private structure to initialize
4440  *
4441  * e1000_sw_init initializes the Adapter private data structure.
4442  * Fields are initialized based on PCI device information and
4443  * OS network device settings (MTU size).
4444  **/
4445 static int e1000_sw_init(struct e1000_adapter *adapter)
4446 {
4447 	struct net_device *netdev = adapter->netdev;
4448 
4449 	adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
4450 	adapter->rx_ps_bsize0 = 128;
4451 	adapter->max_frame_size = netdev->mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
4452 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4453 	adapter->tx_ring_count = E1000_DEFAULT_TXD;
4454 	adapter->rx_ring_count = E1000_DEFAULT_RXD;
4455 
4456 	spin_lock_init(&adapter->stats64_lock);
4457 
4458 	e1000e_set_interrupt_capability(adapter);
4459 
4460 	if (e1000_alloc_queues(adapter))
4461 		return -ENOMEM;
4462 
4463 	/* Setup hardware time stamping cyclecounter */
4464 	if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
4465 		adapter->cc.read = e1000e_cyclecounter_read;
4466 		adapter->cc.mask = CYCLECOUNTER_MASK(64);
4467 		adapter->cc.mult = 1;
4468 		/* cc.shift set in e1000e_get_base_tininca() */
4469 
4470 		spin_lock_init(&adapter->systim_lock);
4471 		INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work);
4472 	}
4473 
4474 	/* Explicitly disable IRQ since the NIC can be in any state. */
4475 	e1000_irq_disable(adapter);
4476 
4477 	set_bit(__E1000_DOWN, &adapter->state);
4478 	return 0;
4479 }
4480 
4481 /**
4482  * e1000_intr_msi_test - Interrupt Handler
4483  * @irq: interrupt number
4484  * @data: pointer to a network interface device structure
4485  **/
4486 static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data)
4487 {
4488 	struct net_device *netdev = data;
4489 	struct e1000_adapter *adapter = netdev_priv(netdev);
4490 	struct e1000_hw *hw = &adapter->hw;
4491 	u32 icr = er32(ICR);
4492 
4493 	e_dbg("icr is %08X\n", icr);
4494 	if (icr & E1000_ICR_RXSEQ) {
4495 		adapter->flags &= ~FLAG_MSI_TEST_FAILED;
4496 		/* Force memory writes to complete before acknowledging the
4497 		 * interrupt is handled.
4498 		 */
4499 		wmb();
4500 	}
4501 
4502 	return IRQ_HANDLED;
4503 }
4504 
4505 /**
4506  * e1000_test_msi_interrupt - Returns 0 for successful test
4507  * @adapter: board private struct
4508  *
4509  * code flow taken from tg3.c
4510  **/
4511 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
4512 {
4513 	struct net_device *netdev = adapter->netdev;
4514 	struct e1000_hw *hw = &adapter->hw;
4515 	int err;
4516 
4517 	/* poll_enable hasn't been called yet, so don't need disable */
4518 	/* clear any pending events */
4519 	er32(ICR);
4520 
4521 	/* free the real vector and request a test handler */
4522 	e1000_free_irq(adapter);
4523 	e1000e_reset_interrupt_capability(adapter);
4524 
4525 	/* Assume that the test fails, if it succeeds then the test
4526 	 * MSI irq handler will unset this flag
4527 	 */
4528 	adapter->flags |= FLAG_MSI_TEST_FAILED;
4529 
4530 	err = pci_enable_msi(adapter->pdev);
4531 	if (err)
4532 		goto msi_test_failed;
4533 
4534 	err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
4535 			  netdev->name, netdev);
4536 	if (err) {
4537 		pci_disable_msi(adapter->pdev);
4538 		goto msi_test_failed;
4539 	}
4540 
4541 	/* Force memory writes to complete before enabling and firing an
4542 	 * interrupt.
4543 	 */
4544 	wmb();
4545 
4546 	e1000_irq_enable(adapter);
4547 
4548 	/* fire an unusual interrupt on the test handler */
4549 	ew32(ICS, E1000_ICS_RXSEQ);
4550 	e1e_flush();
4551 	msleep(100);
4552 
4553 	e1000_irq_disable(adapter);
4554 
4555 	rmb();			/* read flags after interrupt has been fired */
4556 
4557 	if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4558 		adapter->int_mode = E1000E_INT_MODE_LEGACY;
4559 		e_info("MSI interrupt test failed, using legacy interrupt.\n");
4560 	} else {
4561 		e_dbg("MSI interrupt test succeeded!\n");
4562 	}
4563 
4564 	free_irq(adapter->pdev->irq, netdev);
4565 	pci_disable_msi(adapter->pdev);
4566 
4567 msi_test_failed:
4568 	e1000e_set_interrupt_capability(adapter);
4569 	return e1000_request_irq(adapter);
4570 }
4571 
4572 /**
4573  * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4574  * @adapter: board private struct
4575  *
4576  * code flow taken from tg3.c, called with e1000 interrupts disabled.
4577  **/
4578 static int e1000_test_msi(struct e1000_adapter *adapter)
4579 {
4580 	int err;
4581 	u16 pci_cmd;
4582 
4583 	if (!(adapter->flags & FLAG_MSI_ENABLED))
4584 		return 0;
4585 
4586 	/* disable SERR in case the MSI write causes a master abort */
4587 	pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4588 	if (pci_cmd & PCI_COMMAND_SERR)
4589 		pci_write_config_word(adapter->pdev, PCI_COMMAND,
4590 				      pci_cmd & ~PCI_COMMAND_SERR);
4591 
4592 	err = e1000_test_msi_interrupt(adapter);
4593 
4594 	/* re-enable SERR */
4595 	if (pci_cmd & PCI_COMMAND_SERR) {
4596 		pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4597 		pci_cmd |= PCI_COMMAND_SERR;
4598 		pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
4599 	}
4600 
4601 	return err;
4602 }
4603 
4604 /**
4605  * e1000e_open - Called when a network interface is made active
4606  * @netdev: network interface device structure
4607  *
4608  * Returns 0 on success, negative value on failure
4609  *
4610  * The open entry point is called when a network interface is made
4611  * active by the system (IFF_UP).  At this point all resources needed
4612  * for transmit and receive operations are allocated, the interrupt
4613  * handler is registered with the OS, the watchdog timer is started,
4614  * and the stack is notified that the interface is ready.
4615  **/
4616 int e1000e_open(struct net_device *netdev)
4617 {
4618 	struct e1000_adapter *adapter = netdev_priv(netdev);
4619 	struct e1000_hw *hw = &adapter->hw;
4620 	struct pci_dev *pdev = adapter->pdev;
4621 	int err;
4622 
4623 	/* disallow open during test */
4624 	if (test_bit(__E1000_TESTING, &adapter->state))
4625 		return -EBUSY;
4626 
4627 	pm_runtime_get_sync(&pdev->dev);
4628 
4629 	netif_carrier_off(netdev);
4630 	netif_stop_queue(netdev);
4631 
4632 	/* allocate transmit descriptors */
4633 	err = e1000e_setup_tx_resources(adapter->tx_ring);
4634 	if (err)
4635 		goto err_setup_tx;
4636 
4637 	/* allocate receive descriptors */
4638 	err = e1000e_setup_rx_resources(adapter->rx_ring);
4639 	if (err)
4640 		goto err_setup_rx;
4641 
4642 	/* If AMT is enabled, let the firmware know that the network
4643 	 * interface is now open and reset the part to a known state.
4644 	 */
4645 	if (adapter->flags & FLAG_HAS_AMT) {
4646 		e1000e_get_hw_control(adapter);
4647 		e1000e_reset(adapter);
4648 	}
4649 
4650 	e1000e_power_up_phy(adapter);
4651 
4652 	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4653 	if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
4654 		e1000_update_mng_vlan(adapter);
4655 
4656 	/* DMA latency requirement to workaround jumbo issue */
4657 	cpu_latency_qos_add_request(&adapter->pm_qos_req, PM_QOS_DEFAULT_VALUE);
4658 
4659 	/* before we allocate an interrupt, we must be ready to handle it.
4660 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4661 	 * as soon as we call pci_request_irq, so we have to setup our
4662 	 * clean_rx handler before we do so.
4663 	 */
4664 	e1000_configure(adapter);
4665 
4666 	err = e1000_request_irq(adapter);
4667 	if (err)
4668 		goto err_req_irq;
4669 
4670 	/* Work around PCIe errata with MSI interrupts causing some chipsets to
4671 	 * ignore e1000e MSI messages, which means we need to test our MSI
4672 	 * interrupt now
4673 	 */
4674 	if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
4675 		err = e1000_test_msi(adapter);
4676 		if (err) {
4677 			e_err("Interrupt allocation failed\n");
4678 			goto err_req_irq;
4679 		}
4680 	}
4681 
4682 	/* From here on the code is the same as e1000e_up() */
4683 	clear_bit(__E1000_DOWN, &adapter->state);
4684 
4685 	napi_enable(&adapter->napi);
4686 
4687 	e1000_irq_enable(adapter);
4688 
4689 	adapter->tx_hang_recheck = false;
4690 
4691 	hw->mac.get_link_status = true;
4692 	pm_runtime_put(&pdev->dev);
4693 
4694 	e1000e_trigger_lsc(adapter);
4695 
4696 	return 0;
4697 
4698 err_req_irq:
4699 	cpu_latency_qos_remove_request(&adapter->pm_qos_req);
4700 	e1000e_release_hw_control(adapter);
4701 	e1000_power_down_phy(adapter);
4702 	e1000e_free_rx_resources(adapter->rx_ring);
4703 err_setup_rx:
4704 	e1000e_free_tx_resources(adapter->tx_ring);
4705 err_setup_tx:
4706 	e1000e_reset(adapter);
4707 	pm_runtime_put_sync(&pdev->dev);
4708 
4709 	return err;
4710 }
4711 
4712 /**
4713  * e1000e_close - Disables a network interface
4714  * @netdev: network interface device structure
4715  *
4716  * Returns 0, this is not allowed to fail
4717  *
4718  * The close entry point is called when an interface is de-activated
4719  * by the OS.  The hardware is still under the drivers control, but
4720  * needs to be disabled.  A global MAC reset is issued to stop the
4721  * hardware, and all transmit and receive resources are freed.
4722  **/
4723 int e1000e_close(struct net_device *netdev)
4724 {
4725 	struct e1000_adapter *adapter = netdev_priv(netdev);
4726 	struct pci_dev *pdev = adapter->pdev;
4727 	int count = E1000_CHECK_RESET_COUNT;
4728 
4729 	while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
4730 		usleep_range(10000, 11000);
4731 
4732 	WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4733 
4734 	pm_runtime_get_sync(&pdev->dev);
4735 
4736 	if (netif_device_present(netdev)) {
4737 		e1000e_down(adapter, true);
4738 		e1000_free_irq(adapter);
4739 
4740 		/* Link status message must follow this format */
4741 		netdev_info(netdev, "NIC Link is Down\n");
4742 	}
4743 
4744 	napi_disable(&adapter->napi);
4745 
4746 	e1000e_free_tx_resources(adapter->tx_ring);
4747 	e1000e_free_rx_resources(adapter->rx_ring);
4748 
4749 	/* kill manageability vlan ID if supported, but not if a vlan with
4750 	 * the same ID is registered on the host OS (let 8021q kill it)
4751 	 */
4752 	if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
4753 		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
4754 				       adapter->mng_vlan_id);
4755 
4756 	/* If AMT is enabled, let the firmware know that the network
4757 	 * interface is now closed
4758 	 */
4759 	if ((adapter->flags & FLAG_HAS_AMT) &&
4760 	    !test_bit(__E1000_TESTING, &adapter->state))
4761 		e1000e_release_hw_control(adapter);
4762 
4763 	cpu_latency_qos_remove_request(&adapter->pm_qos_req);
4764 
4765 	pm_runtime_put_sync(&pdev->dev);
4766 
4767 	return 0;
4768 }
4769 
4770 /**
4771  * e1000_set_mac - Change the Ethernet Address of the NIC
4772  * @netdev: network interface device structure
4773  * @p: pointer to an address structure
4774  *
4775  * Returns 0 on success, negative on failure
4776  **/
4777 static int e1000_set_mac(struct net_device *netdev, void *p)
4778 {
4779 	struct e1000_adapter *adapter = netdev_priv(netdev);
4780 	struct e1000_hw *hw = &adapter->hw;
4781 	struct sockaddr *addr = p;
4782 
4783 	if (!is_valid_ether_addr(addr->sa_data))
4784 		return -EADDRNOTAVAIL;
4785 
4786 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4787 	memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4788 
4789 	hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4790 
4791 	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4792 		/* activate the work around */
4793 		e1000e_set_laa_state_82571(&adapter->hw, 1);
4794 
4795 		/* Hold a copy of the LAA in RAR[14] This is done so that
4796 		 * between the time RAR[0] gets clobbered  and the time it
4797 		 * gets fixed (in e1000_watchdog), the actual LAA is in one
4798 		 * of the RARs and no incoming packets directed to this port
4799 		 * are dropped. Eventually the LAA will be in RAR[0] and
4800 		 * RAR[14]
4801 		 */
4802 		hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4803 				    adapter->hw.mac.rar_entry_count - 1);
4804 	}
4805 
4806 	return 0;
4807 }
4808 
4809 /**
4810  * e1000e_update_phy_task - work thread to update phy
4811  * @work: pointer to our work struct
4812  *
4813  * this worker thread exists because we must acquire a
4814  * semaphore to read the phy, which we could msleep while
4815  * waiting for it, and we can't msleep in a timer.
4816  **/
4817 static void e1000e_update_phy_task(struct work_struct *work)
4818 {
4819 	struct e1000_adapter *adapter = container_of(work,
4820 						     struct e1000_adapter,
4821 						     update_phy_task);
4822 	struct e1000_hw *hw = &adapter->hw;
4823 
4824 	if (test_bit(__E1000_DOWN, &adapter->state))
4825 		return;
4826 
4827 	e1000_get_phy_info(hw);
4828 
4829 	/* Enable EEE on 82579 after link up */
4830 	if (hw->phy.type >= e1000_phy_82579)
4831 		e1000_set_eee_pchlan(hw);
4832 }
4833 
4834 /**
4835  * e1000_update_phy_info - timre call-back to update PHY info
4836  * @t: pointer to timer_list containing private info adapter
4837  *
4838  * Need to wait a few seconds after link up to get diagnostic information from
4839  * the phy
4840  **/
4841 static void e1000_update_phy_info(struct timer_list *t)
4842 {
4843 	struct e1000_adapter *adapter = from_timer(adapter, t, phy_info_timer);
4844 
4845 	if (test_bit(__E1000_DOWN, &adapter->state))
4846 		return;
4847 
4848 	schedule_work(&adapter->update_phy_task);
4849 }
4850 
4851 /**
4852  * e1000e_update_phy_stats - Update the PHY statistics counters
4853  * @adapter: board private structure
4854  *
4855  * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4856  **/
4857 static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4858 {
4859 	struct e1000_hw *hw = &adapter->hw;
4860 	s32 ret_val;
4861 	u16 phy_data;
4862 
4863 	ret_val = hw->phy.ops.acquire(hw);
4864 	if (ret_val)
4865 		return;
4866 
4867 	/* A page set is expensive so check if already on desired page.
4868 	 * If not, set to the page with the PHY status registers.
4869 	 */
4870 	hw->phy.addr = 1;
4871 	ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4872 					   &phy_data);
4873 	if (ret_val)
4874 		goto release;
4875 	if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4876 		ret_val = hw->phy.ops.set_page(hw,
4877 					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
4878 		if (ret_val)
4879 			goto release;
4880 	}
4881 
4882 	/* Single Collision Count */
4883 	hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4884 	ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4885 	if (!ret_val)
4886 		adapter->stats.scc += phy_data;
4887 
4888 	/* Excessive Collision Count */
4889 	hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4890 	ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4891 	if (!ret_val)
4892 		adapter->stats.ecol += phy_data;
4893 
4894 	/* Multiple Collision Count */
4895 	hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4896 	ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4897 	if (!ret_val)
4898 		adapter->stats.mcc += phy_data;
4899 
4900 	/* Late Collision Count */
4901 	hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4902 	ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4903 	if (!ret_val)
4904 		adapter->stats.latecol += phy_data;
4905 
4906 	/* Collision Count - also used for adaptive IFS */
4907 	hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4908 	ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4909 	if (!ret_val)
4910 		hw->mac.collision_delta = phy_data;
4911 
4912 	/* Defer Count */
4913 	hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4914 	ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4915 	if (!ret_val)
4916 		adapter->stats.dc += phy_data;
4917 
4918 	/* Transmit with no CRS */
4919 	hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4920 	ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4921 	if (!ret_val)
4922 		adapter->stats.tncrs += phy_data;
4923 
4924 release:
4925 	hw->phy.ops.release(hw);
4926 }
4927 
4928 /**
4929  * e1000e_update_stats - Update the board statistics counters
4930  * @adapter: board private structure
4931  **/
4932 static void e1000e_update_stats(struct e1000_adapter *adapter)
4933 {
4934 	struct net_device *netdev = adapter->netdev;
4935 	struct e1000_hw *hw = &adapter->hw;
4936 	struct pci_dev *pdev = adapter->pdev;
4937 
4938 	/* Prevent stats update while adapter is being reset, or if the pci
4939 	 * connection is down.
4940 	 */
4941 	if (adapter->link_speed == 0)
4942 		return;
4943 	if (pci_channel_offline(pdev))
4944 		return;
4945 
4946 	adapter->stats.crcerrs += er32(CRCERRS);
4947 	adapter->stats.gprc += er32(GPRC);
4948 	adapter->stats.gorc += er32(GORCL);
4949 	er32(GORCH);		/* Clear gorc */
4950 	adapter->stats.bprc += er32(BPRC);
4951 	adapter->stats.mprc += er32(MPRC);
4952 	adapter->stats.roc += er32(ROC);
4953 
4954 	adapter->stats.mpc += er32(MPC);
4955 
4956 	/* Half-duplex statistics */
4957 	if (adapter->link_duplex == HALF_DUPLEX) {
4958 		if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4959 			e1000e_update_phy_stats(adapter);
4960 		} else {
4961 			adapter->stats.scc += er32(SCC);
4962 			adapter->stats.ecol += er32(ECOL);
4963 			adapter->stats.mcc += er32(MCC);
4964 			adapter->stats.latecol += er32(LATECOL);
4965 			adapter->stats.dc += er32(DC);
4966 
4967 			hw->mac.collision_delta = er32(COLC);
4968 
4969 			if ((hw->mac.type != e1000_82574) &&
4970 			    (hw->mac.type != e1000_82583))
4971 				adapter->stats.tncrs += er32(TNCRS);
4972 		}
4973 		adapter->stats.colc += hw->mac.collision_delta;
4974 	}
4975 
4976 	adapter->stats.xonrxc += er32(XONRXC);
4977 	adapter->stats.xontxc += er32(XONTXC);
4978 	adapter->stats.xoffrxc += er32(XOFFRXC);
4979 	adapter->stats.xofftxc += er32(XOFFTXC);
4980 	adapter->stats.gptc += er32(GPTC);
4981 	adapter->stats.gotc += er32(GOTCL);
4982 	er32(GOTCH);		/* Clear gotc */
4983 	adapter->stats.rnbc += er32(RNBC);
4984 	adapter->stats.ruc += er32(RUC);
4985 
4986 	adapter->stats.mptc += er32(MPTC);
4987 	adapter->stats.bptc += er32(BPTC);
4988 
4989 	/* used for adaptive IFS */
4990 
4991 	hw->mac.tx_packet_delta = er32(TPT);
4992 	adapter->stats.tpt += hw->mac.tx_packet_delta;
4993 
4994 	adapter->stats.algnerrc += er32(ALGNERRC);
4995 	adapter->stats.rxerrc += er32(RXERRC);
4996 	adapter->stats.cexterr += er32(CEXTERR);
4997 	adapter->stats.tsctc += er32(TSCTC);
4998 	adapter->stats.tsctfc += er32(TSCTFC);
4999 
5000 	/* Fill out the OS statistics structure */
5001 	netdev->stats.multicast = adapter->stats.mprc;
5002 	netdev->stats.collisions = adapter->stats.colc;
5003 
5004 	/* Rx Errors */
5005 
5006 	/* RLEC on some newer hardware can be incorrect so build
5007 	 * our own version based on RUC and ROC
5008 	 */
5009 	netdev->stats.rx_errors = adapter->stats.rxerrc +
5010 	    adapter->stats.crcerrs + adapter->stats.algnerrc +
5011 	    adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5012 	netdev->stats.rx_length_errors = adapter->stats.ruc +
5013 	    adapter->stats.roc;
5014 	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
5015 	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
5016 	netdev->stats.rx_missed_errors = adapter->stats.mpc;
5017 
5018 	/* Tx Errors */
5019 	netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol;
5020 	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
5021 	netdev->stats.tx_window_errors = adapter->stats.latecol;
5022 	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
5023 
5024 	/* Tx Dropped needs to be maintained elsewhere */
5025 
5026 	/* Management Stats */
5027 	adapter->stats.mgptc += er32(MGTPTC);
5028 	adapter->stats.mgprc += er32(MGTPRC);
5029 	adapter->stats.mgpdc += er32(MGTPDC);
5030 
5031 	/* Correctable ECC Errors */
5032 	if (hw->mac.type >= e1000_pch_lpt) {
5033 		u32 pbeccsts = er32(PBECCSTS);
5034 
5035 		adapter->corr_errors +=
5036 		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
5037 		adapter->uncorr_errors +=
5038 		    (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
5039 		    E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
5040 	}
5041 }
5042 
5043 /**
5044  * e1000_phy_read_status - Update the PHY register status snapshot
5045  * @adapter: board private structure
5046  **/
5047 static void e1000_phy_read_status(struct e1000_adapter *adapter)
5048 {
5049 	struct e1000_hw *hw = &adapter->hw;
5050 	struct e1000_phy_regs *phy = &adapter->phy_regs;
5051 
5052 	if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) &&
5053 	    (er32(STATUS) & E1000_STATUS_LU) &&
5054 	    (adapter->hw.phy.media_type == e1000_media_type_copper)) {
5055 		int ret_val;
5056 
5057 		ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr);
5058 		ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr);
5059 		ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise);
5060 		ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa);
5061 		ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion);
5062 		ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000);
5063 		ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000);
5064 		ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus);
5065 		if (ret_val)
5066 			e_warn("Error reading PHY register\n");
5067 	} else {
5068 		/* Do not read PHY registers if link is not up
5069 		 * Set values to typical power-on defaults
5070 		 */
5071 		phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
5072 		phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
5073 			     BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
5074 			     BMSR_ERCAP);
5075 		phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
5076 				  ADVERTISE_ALL | ADVERTISE_CSMA);
5077 		phy->lpa = 0;
5078 		phy->expansion = EXPANSION_ENABLENPAGE;
5079 		phy->ctrl1000 = ADVERTISE_1000FULL;
5080 		phy->stat1000 = 0;
5081 		phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
5082 	}
5083 }
5084 
5085 static void e1000_print_link_info(struct e1000_adapter *adapter)
5086 {
5087 	struct e1000_hw *hw = &adapter->hw;
5088 	u32 ctrl = er32(CTRL);
5089 
5090 	/* Link status message must follow this format for user tools */
5091 	netdev_info(adapter->netdev,
5092 		    "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5093 		    adapter->link_speed,
5094 		    adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
5095 		    (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
5096 		    (ctrl & E1000_CTRL_RFCE) ? "Rx" :
5097 		    (ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
5098 }
5099 
5100 static bool e1000e_has_link(struct e1000_adapter *adapter)
5101 {
5102 	struct e1000_hw *hw = &adapter->hw;
5103 	bool link_active = false;
5104 	s32 ret_val = 0;
5105 
5106 	/* get_link_status is set on LSC (link status) interrupt or
5107 	 * Rx sequence error interrupt.  get_link_status will stay
5108 	 * true until the check_for_link establishes link
5109 	 * for copper adapters ONLY
5110 	 */
5111 	switch (hw->phy.media_type) {
5112 	case e1000_media_type_copper:
5113 		if (hw->mac.get_link_status) {
5114 			ret_val = hw->mac.ops.check_for_link(hw);
5115 			link_active = !hw->mac.get_link_status;
5116 		} else {
5117 			link_active = true;
5118 		}
5119 		break;
5120 	case e1000_media_type_fiber:
5121 		ret_val = hw->mac.ops.check_for_link(hw);
5122 		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
5123 		break;
5124 	case e1000_media_type_internal_serdes:
5125 		ret_val = hw->mac.ops.check_for_link(hw);
5126 		link_active = hw->mac.serdes_has_link;
5127 		break;
5128 	default:
5129 	case e1000_media_type_unknown:
5130 		break;
5131 	}
5132 
5133 	if ((ret_val == -E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
5134 	    (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
5135 		/* See e1000_kmrn_lock_loss_workaround_ich8lan() */
5136 		e_info("Gigabit has been disabled, downgrading speed\n");
5137 	}
5138 
5139 	return link_active;
5140 }
5141 
5142 static void e1000e_enable_receives(struct e1000_adapter *adapter)
5143 {
5144 	/* make sure the receive unit is started */
5145 	if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
5146 	    (adapter->flags & FLAG_RESTART_NOW)) {
5147 		struct e1000_hw *hw = &adapter->hw;
5148 		u32 rctl = er32(RCTL);
5149 
5150 		ew32(RCTL, rctl | E1000_RCTL_EN);
5151 		adapter->flags &= ~FLAG_RESTART_NOW;
5152 	}
5153 }
5154 
5155 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
5156 {
5157 	struct e1000_hw *hw = &adapter->hw;
5158 
5159 	/* With 82574 controllers, PHY needs to be checked periodically
5160 	 * for hung state and reset, if two calls return true
5161 	 */
5162 	if (e1000_check_phy_82574(hw))
5163 		adapter->phy_hang_count++;
5164 	else
5165 		adapter->phy_hang_count = 0;
5166 
5167 	if (adapter->phy_hang_count > 1) {
5168 		adapter->phy_hang_count = 0;
5169 		e_dbg("PHY appears hung - resetting\n");
5170 		schedule_work(&adapter->reset_task);
5171 	}
5172 }
5173 
5174 /**
5175  * e1000_watchdog - Timer Call-back
5176  * @t: pointer to timer_list containing private info adapter
5177  **/
5178 static void e1000_watchdog(struct timer_list *t)
5179 {
5180 	struct e1000_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5181 
5182 	/* Do the rest outside of interrupt context */
5183 	schedule_work(&adapter->watchdog_task);
5184 
5185 	/* TODO: make this use queue_delayed_work() */
5186 }
5187 
5188 static void e1000_watchdog_task(struct work_struct *work)
5189 {
5190 	struct e1000_adapter *adapter = container_of(work,
5191 						     struct e1000_adapter,
5192 						     watchdog_task);
5193 	struct net_device *netdev = adapter->netdev;
5194 	struct e1000_mac_info *mac = &adapter->hw.mac;
5195 	struct e1000_phy_info *phy = &adapter->hw.phy;
5196 	struct e1000_ring *tx_ring = adapter->tx_ring;
5197 	u32 dmoff_exit_timeout = 100, tries = 0;
5198 	struct e1000_hw *hw = &adapter->hw;
5199 	u32 link, tctl, pcim_state;
5200 
5201 	if (test_bit(__E1000_DOWN, &adapter->state))
5202 		return;
5203 
5204 	link = e1000e_has_link(adapter);
5205 	if ((netif_carrier_ok(netdev)) && link) {
5206 		/* Cancel scheduled suspend requests. */
5207 		pm_runtime_resume(netdev->dev.parent);
5208 
5209 		e1000e_enable_receives(adapter);
5210 		goto link_up;
5211 	}
5212 
5213 	if ((e1000e_enable_tx_pkt_filtering(hw)) &&
5214 	    (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
5215 		e1000_update_mng_vlan(adapter);
5216 
5217 	if (link) {
5218 		if (!netif_carrier_ok(netdev)) {
5219 			bool txb2b = true;
5220 
5221 			/* Cancel scheduled suspend requests. */
5222 			pm_runtime_resume(netdev->dev.parent);
5223 
5224 			/* Checking if MAC is in DMoff state*/
5225 			pcim_state = er32(STATUS);
5226 			while (pcim_state & E1000_STATUS_PCIM_STATE) {
5227 				if (tries++ == dmoff_exit_timeout) {
5228 					e_dbg("Error in exiting dmoff\n");
5229 					break;
5230 				}
5231 				usleep_range(10000, 20000);
5232 				pcim_state = er32(STATUS);
5233 
5234 				/* Checking if MAC exited DMoff state */
5235 				if (!(pcim_state & E1000_STATUS_PCIM_STATE))
5236 					e1000_phy_hw_reset(&adapter->hw);
5237 			}
5238 
5239 			/* update snapshot of PHY registers on LSC */
5240 			e1000_phy_read_status(adapter);
5241 			mac->ops.get_link_up_info(&adapter->hw,
5242 						  &adapter->link_speed,
5243 						  &adapter->link_duplex);
5244 			e1000_print_link_info(adapter);
5245 
5246 			/* check if SmartSpeed worked */
5247 			e1000e_check_downshift(hw);
5248 			if (phy->speed_downgraded)
5249 				netdev_warn(netdev,
5250 					    "Link Speed was downgraded by SmartSpeed\n");
5251 
5252 			/* On supported PHYs, check for duplex mismatch only
5253 			 * if link has autonegotiated at 10/100 half
5254 			 */
5255 			if ((hw->phy.type == e1000_phy_igp_3 ||
5256 			     hw->phy.type == e1000_phy_bm) &&
5257 			    hw->mac.autoneg &&
5258 			    (adapter->link_speed == SPEED_10 ||
5259 			     adapter->link_speed == SPEED_100) &&
5260 			    (adapter->link_duplex == HALF_DUPLEX)) {
5261 				u16 autoneg_exp;
5262 
5263 				e1e_rphy(hw, MII_EXPANSION, &autoneg_exp);
5264 
5265 				if (!(autoneg_exp & EXPANSION_NWAY))
5266 					e_info("Autonegotiated half duplex but link partner cannot autoneg.  Try forcing full duplex if link gets many collisions.\n");
5267 			}
5268 
5269 			/* adjust timeout factor according to speed/duplex */
5270 			adapter->tx_timeout_factor = 1;
5271 			switch (adapter->link_speed) {
5272 			case SPEED_10:
5273 				txb2b = false;
5274 				adapter->tx_timeout_factor = 16;
5275 				break;
5276 			case SPEED_100:
5277 				txb2b = false;
5278 				adapter->tx_timeout_factor = 10;
5279 				break;
5280 			}
5281 
5282 			/* workaround: re-program speed mode bit after
5283 			 * link-up event
5284 			 */
5285 			if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
5286 			    !txb2b) {
5287 				u32 tarc0;
5288 
5289 				tarc0 = er32(TARC(0));
5290 				tarc0 &= ~SPEED_MODE_BIT;
5291 				ew32(TARC(0), tarc0);
5292 			}
5293 
5294 			/* disable TSO for pcie and 10/100 speeds, to avoid
5295 			 * some hardware issues
5296 			 */
5297 			if (!(adapter->flags & FLAG_TSO_FORCE)) {
5298 				switch (adapter->link_speed) {
5299 				case SPEED_10:
5300 				case SPEED_100:
5301 					e_info("10/100 speed: disabling TSO\n");
5302 					netdev->features &= ~NETIF_F_TSO;
5303 					netdev->features &= ~NETIF_F_TSO6;
5304 					break;
5305 				case SPEED_1000:
5306 					netdev->features |= NETIF_F_TSO;
5307 					netdev->features |= NETIF_F_TSO6;
5308 					break;
5309 				default:
5310 					/* oops */
5311 					break;
5312 				}
5313 				if (hw->mac.type == e1000_pch_spt) {
5314 					netdev->features &= ~NETIF_F_TSO;
5315 					netdev->features &= ~NETIF_F_TSO6;
5316 				}
5317 			}
5318 
5319 			/* enable transmits in the hardware, need to do this
5320 			 * after setting TARC(0)
5321 			 */
5322 			tctl = er32(TCTL);
5323 			tctl |= E1000_TCTL_EN;
5324 			ew32(TCTL, tctl);
5325 
5326 			/* Perform any post-link-up configuration before
5327 			 * reporting link up.
5328 			 */
5329 			if (phy->ops.cfg_on_link_up)
5330 				phy->ops.cfg_on_link_up(hw);
5331 
5332 			netif_wake_queue(netdev);
5333 			netif_carrier_on(netdev);
5334 
5335 			if (!test_bit(__E1000_DOWN, &adapter->state))
5336 				mod_timer(&adapter->phy_info_timer,
5337 					  round_jiffies(jiffies + 2 * HZ));
5338 		}
5339 	} else {
5340 		if (netif_carrier_ok(netdev)) {
5341 			adapter->link_speed = 0;
5342 			adapter->link_duplex = 0;
5343 			/* Link status message must follow this format */
5344 			netdev_info(netdev, "NIC Link is Down\n");
5345 			netif_carrier_off(netdev);
5346 			netif_stop_queue(netdev);
5347 			if (!test_bit(__E1000_DOWN, &adapter->state))
5348 				mod_timer(&adapter->phy_info_timer,
5349 					  round_jiffies(jiffies + 2 * HZ));
5350 
5351 			/* 8000ES2LAN requires a Rx packet buffer work-around
5352 			 * on link down event; reset the controller to flush
5353 			 * the Rx packet buffer.
5354 			 */
5355 			if (adapter->flags & FLAG_RX_NEEDS_RESTART)
5356 				adapter->flags |= FLAG_RESTART_NOW;
5357 			else
5358 				pm_schedule_suspend(netdev->dev.parent,
5359 						    LINK_TIMEOUT);
5360 		}
5361 	}
5362 
5363 link_up:
5364 	spin_lock(&adapter->stats64_lock);
5365 	e1000e_update_stats(adapter);
5366 
5367 	mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
5368 	adapter->tpt_old = adapter->stats.tpt;
5369 	mac->collision_delta = adapter->stats.colc - adapter->colc_old;
5370 	adapter->colc_old = adapter->stats.colc;
5371 
5372 	adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
5373 	adapter->gorc_old = adapter->stats.gorc;
5374 	adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
5375 	adapter->gotc_old = adapter->stats.gotc;
5376 	spin_unlock(&adapter->stats64_lock);
5377 
5378 	/* If the link is lost the controller stops DMA, but
5379 	 * if there is queued Tx work it cannot be done.  So
5380 	 * reset the controller to flush the Tx packet buffers.
5381 	 */
5382 	if (!netif_carrier_ok(netdev) &&
5383 	    (e1000_desc_unused(tx_ring) + 1 < tx_ring->count))
5384 		adapter->flags |= FLAG_RESTART_NOW;
5385 
5386 	/* If reset is necessary, do it outside of interrupt context. */
5387 	if (adapter->flags & FLAG_RESTART_NOW) {
5388 		schedule_work(&adapter->reset_task);
5389 		/* return immediately since reset is imminent */
5390 		return;
5391 	}
5392 
5393 	e1000e_update_adaptive(&adapter->hw);
5394 
5395 	/* Simple mode for Interrupt Throttle Rate (ITR) */
5396 	if (adapter->itr_setting == 4) {
5397 		/* Symmetric Tx/Rx gets a reduced ITR=2000;
5398 		 * Total asymmetrical Tx or Rx gets ITR=8000;
5399 		 * everyone else is between 2000-8000.
5400 		 */
5401 		u32 goc = (adapter->gotc + adapter->gorc) / 10000;
5402 		u32 dif = (adapter->gotc > adapter->gorc ?
5403 			   adapter->gotc - adapter->gorc :
5404 			   adapter->gorc - adapter->gotc) / 10000;
5405 		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
5406 
5407 		e1000e_write_itr(adapter, itr);
5408 	}
5409 
5410 	/* Cause software interrupt to ensure Rx ring is cleaned */
5411 	if (adapter->msix_entries)
5412 		ew32(ICS, adapter->rx_ring->ims_val);
5413 	else
5414 		ew32(ICS, E1000_ICS_RXDMT0);
5415 
5416 	/* flush pending descriptors to memory before detecting Tx hang */
5417 	e1000e_flush_descriptors(adapter);
5418 
5419 	/* Force detection of hung controller every watchdog period */
5420 	adapter->detect_tx_hung = true;
5421 
5422 	/* With 82571 controllers, LAA may be overwritten due to controller
5423 	 * reset from the other port. Set the appropriate LAA in RAR[0]
5424 	 */
5425 	if (e1000e_get_laa_state_82571(hw))
5426 		hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
5427 
5428 	if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
5429 		e1000e_check_82574_phy_workaround(adapter);
5430 
5431 	/* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5432 	if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) {
5433 		if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) &&
5434 		    (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) {
5435 			er32(RXSTMPH);
5436 			adapter->rx_hwtstamp_cleared++;
5437 		} else {
5438 			adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP;
5439 		}
5440 	}
5441 
5442 	/* Reset the timer */
5443 	if (!test_bit(__E1000_DOWN, &adapter->state))
5444 		mod_timer(&adapter->watchdog_timer,
5445 			  round_jiffies(jiffies + 2 * HZ));
5446 }
5447 
5448 #define E1000_TX_FLAGS_CSUM		0x00000001
5449 #define E1000_TX_FLAGS_VLAN		0x00000002
5450 #define E1000_TX_FLAGS_TSO		0x00000004
5451 #define E1000_TX_FLAGS_IPV4		0x00000008
5452 #define E1000_TX_FLAGS_NO_FCS		0x00000010
5453 #define E1000_TX_FLAGS_HWTSTAMP		0x00000020
5454 #define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
5455 #define E1000_TX_FLAGS_VLAN_SHIFT	16
5456 
5457 static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb,
5458 		     __be16 protocol)
5459 {
5460 	struct e1000_context_desc *context_desc;
5461 	struct e1000_buffer *buffer_info;
5462 	unsigned int i;
5463 	u32 cmd_length = 0;
5464 	u16 ipcse = 0, mss;
5465 	u8 ipcss, ipcso, tucss, tucso, hdr_len;
5466 	int err;
5467 
5468 	if (!skb_is_gso(skb))
5469 		return 0;
5470 
5471 	err = skb_cow_head(skb, 0);
5472 	if (err < 0)
5473 		return err;
5474 
5475 	hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5476 	mss = skb_shinfo(skb)->gso_size;
5477 	if (protocol == htons(ETH_P_IP)) {
5478 		struct iphdr *iph = ip_hdr(skb);
5479 		iph->tot_len = 0;
5480 		iph->check = 0;
5481 		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
5482 							 0, IPPROTO_TCP, 0);
5483 		cmd_length = E1000_TXD_CMD_IP;
5484 		ipcse = skb_transport_offset(skb) - 1;
5485 	} else if (skb_is_gso_v6(skb)) {
5486 		tcp_v6_gso_csum_prep(skb);
5487 		ipcse = 0;
5488 	}
5489 	ipcss = skb_network_offset(skb);
5490 	ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
5491 	tucss = skb_transport_offset(skb);
5492 	tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
5493 
5494 	cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
5495 		       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
5496 
5497 	i = tx_ring->next_to_use;
5498 	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5499 	buffer_info = &tx_ring->buffer_info[i];
5500 
5501 	context_desc->lower_setup.ip_fields.ipcss = ipcss;
5502 	context_desc->lower_setup.ip_fields.ipcso = ipcso;
5503 	context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
5504 	context_desc->upper_setup.tcp_fields.tucss = tucss;
5505 	context_desc->upper_setup.tcp_fields.tucso = tucso;
5506 	context_desc->upper_setup.tcp_fields.tucse = 0;
5507 	context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
5508 	context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
5509 	context_desc->cmd_and_length = cpu_to_le32(cmd_length);
5510 
5511 	buffer_info->time_stamp = jiffies;
5512 	buffer_info->next_to_watch = i;
5513 
5514 	i++;
5515 	if (i == tx_ring->count)
5516 		i = 0;
5517 	tx_ring->next_to_use = i;
5518 
5519 	return 1;
5520 }
5521 
5522 static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb,
5523 			  __be16 protocol)
5524 {
5525 	struct e1000_adapter *adapter = tx_ring->adapter;
5526 	struct e1000_context_desc *context_desc;
5527 	struct e1000_buffer *buffer_info;
5528 	unsigned int i;
5529 	u8 css;
5530 	u32 cmd_len = E1000_TXD_CMD_DEXT;
5531 
5532 	if (skb->ip_summed != CHECKSUM_PARTIAL)
5533 		return false;
5534 
5535 	switch (protocol) {
5536 	case cpu_to_be16(ETH_P_IP):
5537 		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
5538 			cmd_len |= E1000_TXD_CMD_TCP;
5539 		break;
5540 	case cpu_to_be16(ETH_P_IPV6):
5541 		/* XXX not handling all IPV6 headers */
5542 		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
5543 			cmd_len |= E1000_TXD_CMD_TCP;
5544 		break;
5545 	default:
5546 		if (unlikely(net_ratelimit()))
5547 			e_warn("checksum_partial proto=%x!\n",
5548 			       be16_to_cpu(protocol));
5549 		break;
5550 	}
5551 
5552 	css = skb_checksum_start_offset(skb);
5553 
5554 	i = tx_ring->next_to_use;
5555 	buffer_info = &tx_ring->buffer_info[i];
5556 	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5557 
5558 	context_desc->lower_setup.ip_config = 0;
5559 	context_desc->upper_setup.tcp_fields.tucss = css;
5560 	context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset;
5561 	context_desc->upper_setup.tcp_fields.tucse = 0;
5562 	context_desc->tcp_seg_setup.data = 0;
5563 	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
5564 
5565 	buffer_info->time_stamp = jiffies;
5566 	buffer_info->next_to_watch = i;
5567 
5568 	i++;
5569 	if (i == tx_ring->count)
5570 		i = 0;
5571 	tx_ring->next_to_use = i;
5572 
5573 	return true;
5574 }
5575 
5576 static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
5577 			unsigned int first, unsigned int max_per_txd,
5578 			unsigned int nr_frags)
5579 {
5580 	struct e1000_adapter *adapter = tx_ring->adapter;
5581 	struct pci_dev *pdev = adapter->pdev;
5582 	struct e1000_buffer *buffer_info;
5583 	unsigned int len = skb_headlen(skb);
5584 	unsigned int offset = 0, size, count = 0, i;
5585 	unsigned int f, bytecount, segs;
5586 
5587 	i = tx_ring->next_to_use;
5588 
5589 	while (len) {
5590 		buffer_info = &tx_ring->buffer_info[i];
5591 		size = min(len, max_per_txd);
5592 
5593 		buffer_info->length = size;
5594 		buffer_info->time_stamp = jiffies;
5595 		buffer_info->next_to_watch = i;
5596 		buffer_info->dma = dma_map_single(&pdev->dev,
5597 						  skb->data + offset,
5598 						  size, DMA_TO_DEVICE);
5599 		buffer_info->mapped_as_page = false;
5600 		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5601 			goto dma_error;
5602 
5603 		len -= size;
5604 		offset += size;
5605 		count++;
5606 
5607 		if (len) {
5608 			i++;
5609 			if (i == tx_ring->count)
5610 				i = 0;
5611 		}
5612 	}
5613 
5614 	for (f = 0; f < nr_frags; f++) {
5615 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
5616 
5617 		len = skb_frag_size(frag);
5618 		offset = 0;
5619 
5620 		while (len) {
5621 			i++;
5622 			if (i == tx_ring->count)
5623 				i = 0;
5624 
5625 			buffer_info = &tx_ring->buffer_info[i];
5626 			size = min(len, max_per_txd);
5627 
5628 			buffer_info->length = size;
5629 			buffer_info->time_stamp = jiffies;
5630 			buffer_info->next_to_watch = i;
5631 			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
5632 							    offset, size,
5633 							    DMA_TO_DEVICE);
5634 			buffer_info->mapped_as_page = true;
5635 			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5636 				goto dma_error;
5637 
5638 			len -= size;
5639 			offset += size;
5640 			count++;
5641 		}
5642 	}
5643 
5644 	segs = skb_shinfo(skb)->gso_segs ? : 1;
5645 	/* multiply data chunks by size of headers */
5646 	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
5647 
5648 	tx_ring->buffer_info[i].skb = skb;
5649 	tx_ring->buffer_info[i].segs = segs;
5650 	tx_ring->buffer_info[i].bytecount = bytecount;
5651 	tx_ring->buffer_info[first].next_to_watch = i;
5652 
5653 	return count;
5654 
5655 dma_error:
5656 	dev_err(&pdev->dev, "Tx DMA map failed\n");
5657 	buffer_info->dma = 0;
5658 	if (count)
5659 		count--;
5660 
5661 	while (count--) {
5662 		if (i == 0)
5663 			i += tx_ring->count;
5664 		i--;
5665 		buffer_info = &tx_ring->buffer_info[i];
5666 		e1000_put_txbuf(tx_ring, buffer_info, true);
5667 	}
5668 
5669 	return 0;
5670 }
5671 
5672 static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
5673 {
5674 	struct e1000_adapter *adapter = tx_ring->adapter;
5675 	struct e1000_tx_desc *tx_desc = NULL;
5676 	struct e1000_buffer *buffer_info;
5677 	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
5678 	unsigned int i;
5679 
5680 	if (tx_flags & E1000_TX_FLAGS_TSO) {
5681 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
5682 		    E1000_TXD_CMD_TSE;
5683 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5684 
5685 		if (tx_flags & E1000_TX_FLAGS_IPV4)
5686 			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
5687 	}
5688 
5689 	if (tx_flags & E1000_TX_FLAGS_CSUM) {
5690 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5691 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5692 	}
5693 
5694 	if (tx_flags & E1000_TX_FLAGS_VLAN) {
5695 		txd_lower |= E1000_TXD_CMD_VLE;
5696 		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
5697 	}
5698 
5699 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5700 		txd_lower &= ~(E1000_TXD_CMD_IFCS);
5701 
5702 	if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) {
5703 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5704 		txd_upper |= E1000_TXD_EXTCMD_TSTAMP;
5705 	}
5706 
5707 	i = tx_ring->next_to_use;
5708 
5709 	do {
5710 		buffer_info = &tx_ring->buffer_info[i];
5711 		tx_desc = E1000_TX_DESC(*tx_ring, i);
5712 		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
5713 		tx_desc->lower.data = cpu_to_le32(txd_lower |
5714 						  buffer_info->length);
5715 		tx_desc->upper.data = cpu_to_le32(txd_upper);
5716 
5717 		i++;
5718 		if (i == tx_ring->count)
5719 			i = 0;
5720 	} while (--count > 0);
5721 
5722 	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
5723 
5724 	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5725 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5726 		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
5727 
5728 	/* Force memory writes to complete before letting h/w
5729 	 * know there are new descriptors to fetch.  (Only
5730 	 * applicable for weak-ordered memory model archs,
5731 	 * such as IA-64).
5732 	 */
5733 	wmb();
5734 
5735 	tx_ring->next_to_use = i;
5736 }
5737 
5738 #define MINIMUM_DHCP_PACKET_SIZE 282
5739 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
5740 				    struct sk_buff *skb)
5741 {
5742 	struct e1000_hw *hw = &adapter->hw;
5743 	u16 length, offset;
5744 
5745 	if (skb_vlan_tag_present(skb) &&
5746 	    !((skb_vlan_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
5747 	      (adapter->hw.mng_cookie.status &
5748 	       E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
5749 		return 0;
5750 
5751 	if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
5752 		return 0;
5753 
5754 	if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP))
5755 		return 0;
5756 
5757 	{
5758 		const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14);
5759 		struct udphdr *udp;
5760 
5761 		if (ip->protocol != IPPROTO_UDP)
5762 			return 0;
5763 
5764 		udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
5765 		if (ntohs(udp->dest) != 67)
5766 			return 0;
5767 
5768 		offset = (u8 *)udp + 8 - skb->data;
5769 		length = skb->len - offset;
5770 		return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
5771 	}
5772 
5773 	return 0;
5774 }
5775 
5776 static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5777 {
5778 	struct e1000_adapter *adapter = tx_ring->adapter;
5779 
5780 	netif_stop_queue(adapter->netdev);
5781 	/* Herbert's original patch had:
5782 	 *  smp_mb__after_netif_stop_queue();
5783 	 * but since that doesn't exist yet, just open code it.
5784 	 */
5785 	smp_mb();
5786 
5787 	/* We need to check again in a case another CPU has just
5788 	 * made room available.
5789 	 */
5790 	if (e1000_desc_unused(tx_ring) < size)
5791 		return -EBUSY;
5792 
5793 	/* A reprieve! */
5794 	netif_start_queue(adapter->netdev);
5795 	++adapter->restart_queue;
5796 	return 0;
5797 }
5798 
5799 static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5800 {
5801 	BUG_ON(size > tx_ring->count);
5802 
5803 	if (e1000_desc_unused(tx_ring) >= size)
5804 		return 0;
5805 	return __e1000_maybe_stop_tx(tx_ring, size);
5806 }
5807 
5808 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5809 				    struct net_device *netdev)
5810 {
5811 	struct e1000_adapter *adapter = netdev_priv(netdev);
5812 	struct e1000_ring *tx_ring = adapter->tx_ring;
5813 	unsigned int first;
5814 	unsigned int tx_flags = 0;
5815 	unsigned int len = skb_headlen(skb);
5816 	unsigned int nr_frags;
5817 	unsigned int mss;
5818 	int count = 0;
5819 	int tso;
5820 	unsigned int f;
5821 	__be16 protocol = vlan_get_protocol(skb);
5822 
5823 	if (test_bit(__E1000_DOWN, &adapter->state)) {
5824 		dev_kfree_skb_any(skb);
5825 		return NETDEV_TX_OK;
5826 	}
5827 
5828 	if (skb->len <= 0) {
5829 		dev_kfree_skb_any(skb);
5830 		return NETDEV_TX_OK;
5831 	}
5832 
5833 	/* The minimum packet size with TCTL.PSP set is 17 bytes so
5834 	 * pad skb in order to meet this minimum size requirement
5835 	 */
5836 	if (skb_put_padto(skb, 17))
5837 		return NETDEV_TX_OK;
5838 
5839 	mss = skb_shinfo(skb)->gso_size;
5840 	if (mss) {
5841 		u8 hdr_len;
5842 
5843 		/* TSO Workaround for 82571/2/3 Controllers -- if skb->data
5844 		 * points to just header, pull a few bytes of payload from
5845 		 * frags into skb->data
5846 		 */
5847 		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5848 		/* we do this workaround for ES2LAN, but it is un-necessary,
5849 		 * avoiding it could save a lot of cycles
5850 		 */
5851 		if (skb->data_len && (hdr_len == len)) {
5852 			unsigned int pull_size;
5853 
5854 			pull_size = min_t(unsigned int, 4, skb->data_len);
5855 			if (!__pskb_pull_tail(skb, pull_size)) {
5856 				e_err("__pskb_pull_tail failed.\n");
5857 				dev_kfree_skb_any(skb);
5858 				return NETDEV_TX_OK;
5859 			}
5860 			len = skb_headlen(skb);
5861 		}
5862 	}
5863 
5864 	/* reserve a descriptor for the offload context */
5865 	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5866 		count++;
5867 	count++;
5868 
5869 	count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
5870 
5871 	nr_frags = skb_shinfo(skb)->nr_frags;
5872 	for (f = 0; f < nr_frags; f++)
5873 		count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5874 				      adapter->tx_fifo_limit);
5875 
5876 	if (adapter->hw.mac.tx_pkt_filtering)
5877 		e1000_transfer_dhcp_info(adapter, skb);
5878 
5879 	/* need: count + 2 desc gap to keep tail from touching
5880 	 * head, otherwise try next time
5881 	 */
5882 	if (e1000_maybe_stop_tx(tx_ring, count + 2))
5883 		return NETDEV_TX_BUSY;
5884 
5885 	if (skb_vlan_tag_present(skb)) {
5886 		tx_flags |= E1000_TX_FLAGS_VLAN;
5887 		tx_flags |= (skb_vlan_tag_get(skb) <<
5888 			     E1000_TX_FLAGS_VLAN_SHIFT);
5889 	}
5890 
5891 	first = tx_ring->next_to_use;
5892 
5893 	tso = e1000_tso(tx_ring, skb, protocol);
5894 	if (tso < 0) {
5895 		dev_kfree_skb_any(skb);
5896 		return NETDEV_TX_OK;
5897 	}
5898 
5899 	if (tso)
5900 		tx_flags |= E1000_TX_FLAGS_TSO;
5901 	else if (e1000_tx_csum(tx_ring, skb, protocol))
5902 		tx_flags |= E1000_TX_FLAGS_CSUM;
5903 
5904 	/* Old method was to assume IPv4 packet by default if TSO was enabled.
5905 	 * 82571 hardware supports TSO capabilities for IPv6 as well...
5906 	 * no longer assume, we must.
5907 	 */
5908 	if (protocol == htons(ETH_P_IP))
5909 		tx_flags |= E1000_TX_FLAGS_IPV4;
5910 
5911 	if (unlikely(skb->no_fcs))
5912 		tx_flags |= E1000_TX_FLAGS_NO_FCS;
5913 
5914 	/* if count is 0 then mapping error has occurred */
5915 	count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5916 			     nr_frags);
5917 	if (count) {
5918 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
5919 		    (adapter->flags & FLAG_HAS_HW_TIMESTAMP)) {
5920 			if (!adapter->tx_hwtstamp_skb) {
5921 				skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5922 				tx_flags |= E1000_TX_FLAGS_HWTSTAMP;
5923 				adapter->tx_hwtstamp_skb = skb_get(skb);
5924 				adapter->tx_hwtstamp_start = jiffies;
5925 				schedule_work(&adapter->tx_hwtstamp_work);
5926 			} else {
5927 				adapter->tx_hwtstamp_skipped++;
5928 			}
5929 		}
5930 
5931 		skb_tx_timestamp(skb);
5932 
5933 		netdev_sent_queue(netdev, skb->len);
5934 		e1000_tx_queue(tx_ring, tx_flags, count);
5935 		/* Make sure there is space in the ring for the next send. */
5936 		e1000_maybe_stop_tx(tx_ring,
5937 				    (MAX_SKB_FRAGS *
5938 				     DIV_ROUND_UP(PAGE_SIZE,
5939 						  adapter->tx_fifo_limit) + 2));
5940 
5941 		if (!netdev_xmit_more() ||
5942 		    netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
5943 			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
5944 				e1000e_update_tdt_wa(tx_ring,
5945 						     tx_ring->next_to_use);
5946 			else
5947 				writel(tx_ring->next_to_use, tx_ring->tail);
5948 		}
5949 	} else {
5950 		dev_kfree_skb_any(skb);
5951 		tx_ring->buffer_info[first].time_stamp = 0;
5952 		tx_ring->next_to_use = first;
5953 	}
5954 
5955 	return NETDEV_TX_OK;
5956 }
5957 
5958 /**
5959  * e1000_tx_timeout - Respond to a Tx Hang
5960  * @netdev: network interface device structure
5961  * @txqueue: index of the hung queue (unused)
5962  **/
5963 static void e1000_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
5964 {
5965 	struct e1000_adapter *adapter = netdev_priv(netdev);
5966 
5967 	/* Do the reset outside of interrupt context */
5968 	adapter->tx_timeout_count++;
5969 	schedule_work(&adapter->reset_task);
5970 }
5971 
5972 static void e1000_reset_task(struct work_struct *work)
5973 {
5974 	struct e1000_adapter *adapter;
5975 	adapter = container_of(work, struct e1000_adapter, reset_task);
5976 
5977 	/* don't run the task if already down */
5978 	if (test_bit(__E1000_DOWN, &adapter->state))
5979 		return;
5980 
5981 	if (!(adapter->flags & FLAG_RESTART_NOW)) {
5982 		e1000e_dump(adapter);
5983 		e_err("Reset adapter unexpectedly\n");
5984 	}
5985 	e1000e_reinit_locked(adapter);
5986 }
5987 
5988 /**
5989  * e1000_get_stats64 - Get System Network Statistics
5990  * @netdev: network interface device structure
5991  * @stats: rtnl_link_stats64 pointer
5992  *
5993  * Returns the address of the device statistics structure.
5994  **/
5995 void e1000e_get_stats64(struct net_device *netdev,
5996 			struct rtnl_link_stats64 *stats)
5997 {
5998 	struct e1000_adapter *adapter = netdev_priv(netdev);
5999 
6000 	spin_lock(&adapter->stats64_lock);
6001 	e1000e_update_stats(adapter);
6002 	/* Fill out the OS statistics structure */
6003 	stats->rx_bytes = adapter->stats.gorc;
6004 	stats->rx_packets = adapter->stats.gprc;
6005 	stats->tx_bytes = adapter->stats.gotc;
6006 	stats->tx_packets = adapter->stats.gptc;
6007 	stats->multicast = adapter->stats.mprc;
6008 	stats->collisions = adapter->stats.colc;
6009 
6010 	/* Rx Errors */
6011 
6012 	/* RLEC on some newer hardware can be incorrect so build
6013 	 * our own version based on RUC and ROC
6014 	 */
6015 	stats->rx_errors = adapter->stats.rxerrc +
6016 	    adapter->stats.crcerrs + adapter->stats.algnerrc +
6017 	    adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
6018 	stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc;
6019 	stats->rx_crc_errors = adapter->stats.crcerrs;
6020 	stats->rx_frame_errors = adapter->stats.algnerrc;
6021 	stats->rx_missed_errors = adapter->stats.mpc;
6022 
6023 	/* Tx Errors */
6024 	stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol;
6025 	stats->tx_aborted_errors = adapter->stats.ecol;
6026 	stats->tx_window_errors = adapter->stats.latecol;
6027 	stats->tx_carrier_errors = adapter->stats.tncrs;
6028 
6029 	/* Tx Dropped needs to be maintained elsewhere */
6030 
6031 	spin_unlock(&adapter->stats64_lock);
6032 }
6033 
6034 /**
6035  * e1000_change_mtu - Change the Maximum Transfer Unit
6036  * @netdev: network interface device structure
6037  * @new_mtu: new value for maximum frame size
6038  *
6039  * Returns 0 on success, negative on failure
6040  **/
6041 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
6042 {
6043 	struct e1000_adapter *adapter = netdev_priv(netdev);
6044 	int max_frame = new_mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
6045 
6046 	/* Jumbo frame support */
6047 	if ((new_mtu > ETH_DATA_LEN) &&
6048 	    !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
6049 		e_err("Jumbo Frames not supported.\n");
6050 		return -EINVAL;
6051 	}
6052 
6053 	/* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
6054 	if ((adapter->hw.mac.type >= e1000_pch2lan) &&
6055 	    !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
6056 	    (new_mtu > ETH_DATA_LEN)) {
6057 		e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
6058 		return -EINVAL;
6059 	}
6060 
6061 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
6062 		usleep_range(1000, 1100);
6063 	/* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
6064 	adapter->max_frame_size = max_frame;
6065 	netdev_dbg(netdev, "changing MTU from %d to %d\n",
6066 		   netdev->mtu, new_mtu);
6067 	netdev->mtu = new_mtu;
6068 
6069 	pm_runtime_get_sync(netdev->dev.parent);
6070 
6071 	if (netif_running(netdev))
6072 		e1000e_down(adapter, true);
6073 
6074 	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
6075 	 * means we reserve 2 more, this pushes us to allocate from the next
6076 	 * larger slab size.
6077 	 * i.e. RXBUFFER_2048 --> size-4096 slab
6078 	 * However with the new *_jumbo_rx* routines, jumbo receives will use
6079 	 * fragmented skbs
6080 	 */
6081 
6082 	if (max_frame <= 2048)
6083 		adapter->rx_buffer_len = 2048;
6084 	else
6085 		adapter->rx_buffer_len = 4096;
6086 
6087 	/* adjust allocation if LPE protects us, and we aren't using SBP */
6088 	if (max_frame <= (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN))
6089 		adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
6090 
6091 	if (netif_running(netdev))
6092 		e1000e_up(adapter);
6093 	else
6094 		e1000e_reset(adapter);
6095 
6096 	pm_runtime_put_sync(netdev->dev.parent);
6097 
6098 	clear_bit(__E1000_RESETTING, &adapter->state);
6099 
6100 	return 0;
6101 }
6102 
6103 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
6104 			   int cmd)
6105 {
6106 	struct e1000_adapter *adapter = netdev_priv(netdev);
6107 	struct mii_ioctl_data *data = if_mii(ifr);
6108 
6109 	if (adapter->hw.phy.media_type != e1000_media_type_copper)
6110 		return -EOPNOTSUPP;
6111 
6112 	switch (cmd) {
6113 	case SIOCGMIIPHY:
6114 		data->phy_id = adapter->hw.phy.addr;
6115 		break;
6116 	case SIOCGMIIREG:
6117 		e1000_phy_read_status(adapter);
6118 
6119 		switch (data->reg_num & 0x1F) {
6120 		case MII_BMCR:
6121 			data->val_out = adapter->phy_regs.bmcr;
6122 			break;
6123 		case MII_BMSR:
6124 			data->val_out = adapter->phy_regs.bmsr;
6125 			break;
6126 		case MII_PHYSID1:
6127 			data->val_out = (adapter->hw.phy.id >> 16);
6128 			break;
6129 		case MII_PHYSID2:
6130 			data->val_out = (adapter->hw.phy.id & 0xFFFF);
6131 			break;
6132 		case MII_ADVERTISE:
6133 			data->val_out = adapter->phy_regs.advertise;
6134 			break;
6135 		case MII_LPA:
6136 			data->val_out = adapter->phy_regs.lpa;
6137 			break;
6138 		case MII_EXPANSION:
6139 			data->val_out = adapter->phy_regs.expansion;
6140 			break;
6141 		case MII_CTRL1000:
6142 			data->val_out = adapter->phy_regs.ctrl1000;
6143 			break;
6144 		case MII_STAT1000:
6145 			data->val_out = adapter->phy_regs.stat1000;
6146 			break;
6147 		case MII_ESTATUS:
6148 			data->val_out = adapter->phy_regs.estatus;
6149 			break;
6150 		default:
6151 			return -EIO;
6152 		}
6153 		break;
6154 	case SIOCSMIIREG:
6155 	default:
6156 		return -EOPNOTSUPP;
6157 	}
6158 	return 0;
6159 }
6160 
6161 /**
6162  * e1000e_hwtstamp_ioctl - control hardware time stamping
6163  * @netdev: network interface device structure
6164  * @ifr: interface request
6165  *
6166  * Outgoing time stamping can be enabled and disabled. Play nice and
6167  * disable it when requested, although it shouldn't cause any overhead
6168  * when no packet needs it. At most one packet in the queue may be
6169  * marked for time stamping, otherwise it would be impossible to tell
6170  * for sure to which packet the hardware time stamp belongs.
6171  *
6172  * Incoming time stamping has to be configured via the hardware filters.
6173  * Not all combinations are supported, in particular event type has to be
6174  * specified. Matching the kind of event packet is not supported, with the
6175  * exception of "all V2 events regardless of level 2 or 4".
6176  **/
6177 static int e1000e_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
6178 {
6179 	struct e1000_adapter *adapter = netdev_priv(netdev);
6180 	struct hwtstamp_config config;
6181 	int ret_val;
6182 
6183 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
6184 		return -EFAULT;
6185 
6186 	ret_val = e1000e_config_hwtstamp(adapter, &config);
6187 	if (ret_val)
6188 		return ret_val;
6189 
6190 	switch (config.rx_filter) {
6191 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6192 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6193 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
6194 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6195 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6196 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6197 		/* With V2 type filters which specify a Sync or Delay Request,
6198 		 * Path Delay Request/Response messages are also time stamped
6199 		 * by hardware so notify the caller the requested packets plus
6200 		 * some others are time stamped.
6201 		 */
6202 		config.rx_filter = HWTSTAMP_FILTER_SOME;
6203 		break;
6204 	default:
6205 		break;
6206 	}
6207 
6208 	return copy_to_user(ifr->ifr_data, &config,
6209 			    sizeof(config)) ? -EFAULT : 0;
6210 }
6211 
6212 static int e1000e_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
6213 {
6214 	struct e1000_adapter *adapter = netdev_priv(netdev);
6215 
6216 	return copy_to_user(ifr->ifr_data, &adapter->hwtstamp_config,
6217 			    sizeof(adapter->hwtstamp_config)) ? -EFAULT : 0;
6218 }
6219 
6220 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6221 {
6222 	switch (cmd) {
6223 	case SIOCGMIIPHY:
6224 	case SIOCGMIIREG:
6225 	case SIOCSMIIREG:
6226 		return e1000_mii_ioctl(netdev, ifr, cmd);
6227 	case SIOCSHWTSTAMP:
6228 		return e1000e_hwtstamp_set(netdev, ifr);
6229 	case SIOCGHWTSTAMP:
6230 		return e1000e_hwtstamp_get(netdev, ifr);
6231 	default:
6232 		return -EOPNOTSUPP;
6233 	}
6234 }
6235 
6236 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
6237 {
6238 	struct e1000_hw *hw = &adapter->hw;
6239 	u32 i, mac_reg, wuc;
6240 	u16 phy_reg, wuc_enable;
6241 	int retval;
6242 
6243 	/* copy MAC RARs to PHY RARs */
6244 	e1000_copy_rx_addrs_to_phy_ich8lan(hw);
6245 
6246 	retval = hw->phy.ops.acquire(hw);
6247 	if (retval) {
6248 		e_err("Could not acquire PHY\n");
6249 		return retval;
6250 	}
6251 
6252 	/* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
6253 	retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6254 	if (retval)
6255 		goto release;
6256 
6257 	/* copy MAC MTA to PHY MTA - only needed for pchlan */
6258 	for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
6259 		mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
6260 		hw->phy.ops.write_reg_page(hw, BM_MTA(i),
6261 					   (u16)(mac_reg & 0xFFFF));
6262 		hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
6263 					   (u16)((mac_reg >> 16) & 0xFFFF));
6264 	}
6265 
6266 	/* configure PHY Rx Control register */
6267 	hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
6268 	mac_reg = er32(RCTL);
6269 	if (mac_reg & E1000_RCTL_UPE)
6270 		phy_reg |= BM_RCTL_UPE;
6271 	if (mac_reg & E1000_RCTL_MPE)
6272 		phy_reg |= BM_RCTL_MPE;
6273 	phy_reg &= ~(BM_RCTL_MO_MASK);
6274 	if (mac_reg & E1000_RCTL_MO_3)
6275 		phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
6276 			    << BM_RCTL_MO_SHIFT);
6277 	if (mac_reg & E1000_RCTL_BAM)
6278 		phy_reg |= BM_RCTL_BAM;
6279 	if (mac_reg & E1000_RCTL_PMCF)
6280 		phy_reg |= BM_RCTL_PMCF;
6281 	mac_reg = er32(CTRL);
6282 	if (mac_reg & E1000_CTRL_RFCE)
6283 		phy_reg |= BM_RCTL_RFCE;
6284 	hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
6285 
6286 	wuc = E1000_WUC_PME_EN;
6287 	if (wufc & (E1000_WUFC_MAG | E1000_WUFC_LNKC))
6288 		wuc |= E1000_WUC_APME;
6289 
6290 	/* enable PHY wakeup in MAC register */
6291 	ew32(WUFC, wufc);
6292 	ew32(WUC, (E1000_WUC_PHY_WAKE | E1000_WUC_APMPME |
6293 		   E1000_WUC_PME_STATUS | wuc));
6294 
6295 	/* configure and enable PHY wakeup in PHY registers */
6296 	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
6297 	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, wuc);
6298 
6299 	/* activate PHY wakeup */
6300 	wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
6301 	retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6302 	if (retval)
6303 		e_err("Could not set PHY Host Wakeup bit\n");
6304 release:
6305 	hw->phy.ops.release(hw);
6306 
6307 	return retval;
6308 }
6309 
6310 static void e1000e_flush_lpic(struct pci_dev *pdev)
6311 {
6312 	struct net_device *netdev = pci_get_drvdata(pdev);
6313 	struct e1000_adapter *adapter = netdev_priv(netdev);
6314 	struct e1000_hw *hw = &adapter->hw;
6315 	u32 ret_val;
6316 
6317 	pm_runtime_get_sync(netdev->dev.parent);
6318 
6319 	ret_val = hw->phy.ops.acquire(hw);
6320 	if (ret_val)
6321 		goto fl_out;
6322 
6323 	pr_info("EEE TX LPI TIMER: %08X\n",
6324 		er32(LPIC) >> E1000_LPIC_LPIET_SHIFT);
6325 
6326 	hw->phy.ops.release(hw);
6327 
6328 fl_out:
6329 	pm_runtime_put_sync(netdev->dev.parent);
6330 }
6331 
6332 /* S0ix implementation */
6333 static void e1000e_s0ix_entry_flow(struct e1000_adapter *adapter)
6334 {
6335 	struct e1000_hw *hw = &adapter->hw;
6336 	u32 mac_data;
6337 	u16 phy_data;
6338 
6339 	/* Disable the periodic inband message,
6340 	 * don't request PCIe clock in K1 page770_17[10:9] = 10b
6341 	 */
6342 	e1e_rphy(hw, HV_PM_CTRL, &phy_data);
6343 	phy_data &= ~HV_PM_CTRL_K1_CLK_REQ;
6344 	phy_data |= BIT(10);
6345 	e1e_wphy(hw, HV_PM_CTRL, phy_data);
6346 
6347 	/* Make sure we don't exit K1 every time a new packet arrives
6348 	 * 772_29[5] = 1 CS_Mode_Stay_In_K1
6349 	 */
6350 	e1e_rphy(hw, I217_CGFREG, &phy_data);
6351 	phy_data |= BIT(5);
6352 	e1e_wphy(hw, I217_CGFREG, phy_data);
6353 
6354 	/* Change the MAC/PHY interface to SMBus
6355 	 * Force the SMBus in PHY page769_23[0] = 1
6356 	 * Force the SMBus in MAC CTRL_EXT[11] = 1
6357 	 */
6358 	e1e_rphy(hw, CV_SMB_CTRL, &phy_data);
6359 	phy_data |= CV_SMB_CTRL_FORCE_SMBUS;
6360 	e1e_wphy(hw, CV_SMB_CTRL, phy_data);
6361 	mac_data = er32(CTRL_EXT);
6362 	mac_data |= E1000_CTRL_EXT_FORCE_SMBUS;
6363 	ew32(CTRL_EXT, mac_data);
6364 
6365 	/* DFT control: PHY bit: page769_20[0] = 1
6366 	 * Gate PPW via EXTCNF_CTRL - set 0x0F00[7] = 1
6367 	 */
6368 	e1e_rphy(hw, I82579_DFT_CTRL, &phy_data);
6369 	phy_data |= BIT(0);
6370 	e1e_wphy(hw, I82579_DFT_CTRL, phy_data);
6371 
6372 	mac_data = er32(EXTCNF_CTRL);
6373 	mac_data |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
6374 	ew32(EXTCNF_CTRL, mac_data);
6375 
6376 	/* Check MAC Tx/Rx packet buffer pointers.
6377 	 * Reset MAC Tx/Rx packet buffer pointers to suppress any
6378 	 * pending traffic indication that would prevent power gating.
6379 	 */
6380 	mac_data = er32(TDFH);
6381 	if (mac_data)
6382 		ew32(TDFH, 0);
6383 	mac_data = er32(TDFT);
6384 	if (mac_data)
6385 		ew32(TDFT, 0);
6386 	mac_data = er32(TDFHS);
6387 	if (mac_data)
6388 		ew32(TDFHS, 0);
6389 	mac_data = er32(TDFTS);
6390 	if (mac_data)
6391 		ew32(TDFTS, 0);
6392 	mac_data = er32(TDFPC);
6393 	if (mac_data)
6394 		ew32(TDFPC, 0);
6395 	mac_data = er32(RDFH);
6396 	if (mac_data)
6397 		ew32(RDFH, 0);
6398 	mac_data = er32(RDFT);
6399 	if (mac_data)
6400 		ew32(RDFT, 0);
6401 	mac_data = er32(RDFHS);
6402 	if (mac_data)
6403 		ew32(RDFHS, 0);
6404 	mac_data = er32(RDFTS);
6405 	if (mac_data)
6406 		ew32(RDFTS, 0);
6407 	mac_data = er32(RDFPC);
6408 	if (mac_data)
6409 		ew32(RDFPC, 0);
6410 
6411 	/* Enable the Dynamic Power Gating in the MAC */
6412 	mac_data = er32(FEXTNVM7);
6413 	mac_data |= BIT(22);
6414 	ew32(FEXTNVM7, mac_data);
6415 
6416 	/* Disable the time synchronization clock */
6417 	mac_data = er32(FEXTNVM7);
6418 	mac_data |= BIT(31);
6419 	mac_data &= ~BIT(0);
6420 	ew32(FEXTNVM7, mac_data);
6421 
6422 	/* Dynamic Power Gating Enable */
6423 	mac_data = er32(CTRL_EXT);
6424 	mac_data |= BIT(3);
6425 	ew32(CTRL_EXT, mac_data);
6426 
6427 	/* Disable disconnected cable conditioning for Power Gating */
6428 	mac_data = er32(DPGFR);
6429 	mac_data |= BIT(2);
6430 	ew32(DPGFR, mac_data);
6431 
6432 	/* Don't wake from dynamic Power Gating with clock request */
6433 	mac_data = er32(FEXTNVM12);
6434 	mac_data |= BIT(12);
6435 	ew32(FEXTNVM12, mac_data);
6436 
6437 	/* Ungate PGCB clock */
6438 	mac_data = er32(FEXTNVM9);
6439 	mac_data &= ~BIT(28);
6440 	ew32(FEXTNVM9, mac_data);
6441 
6442 	/* Enable K1 off to enable mPHY Power Gating */
6443 	mac_data = er32(FEXTNVM6);
6444 	mac_data |= BIT(31);
6445 	ew32(FEXTNVM6, mac_data);
6446 
6447 	/* Enable mPHY power gating for any link and speed */
6448 	mac_data = er32(FEXTNVM8);
6449 	mac_data |= BIT(9);
6450 	ew32(FEXTNVM8, mac_data);
6451 
6452 	/* Enable the Dynamic Clock Gating in the DMA and MAC */
6453 	mac_data = er32(CTRL_EXT);
6454 	mac_data |= E1000_CTRL_EXT_DMA_DYN_CLK_EN;
6455 	ew32(CTRL_EXT, mac_data);
6456 
6457 	/* No MAC DPG gating SLP_S0 in modern standby
6458 	 * Switch the logic of the lanphypc to use PMC counter
6459 	 */
6460 	mac_data = er32(FEXTNVM5);
6461 	mac_data |= BIT(7);
6462 	ew32(FEXTNVM5, mac_data);
6463 }
6464 
6465 static void e1000e_s0ix_exit_flow(struct e1000_adapter *adapter)
6466 {
6467 	struct e1000_hw *hw = &adapter->hw;
6468 	u32 mac_data;
6469 	u16 phy_data;
6470 
6471 	/* Disable the Dynamic Power Gating in the MAC */
6472 	mac_data = er32(FEXTNVM7);
6473 	mac_data &= 0xFFBFFFFF;
6474 	ew32(FEXTNVM7, mac_data);
6475 
6476 	/* Enable the time synchronization clock */
6477 	mac_data = er32(FEXTNVM7);
6478 	mac_data |= BIT(0);
6479 	ew32(FEXTNVM7, mac_data);
6480 
6481 	/* Disable mPHY power gating for any link and speed */
6482 	mac_data = er32(FEXTNVM8);
6483 	mac_data &= ~BIT(9);
6484 	ew32(FEXTNVM8, mac_data);
6485 
6486 	/* Disable K1 off */
6487 	mac_data = er32(FEXTNVM6);
6488 	mac_data &= ~BIT(31);
6489 	ew32(FEXTNVM6, mac_data);
6490 
6491 	/* Disable Ungate PGCB clock */
6492 	mac_data = er32(FEXTNVM9);
6493 	mac_data |= BIT(28);
6494 	ew32(FEXTNVM9, mac_data);
6495 
6496 	/* Cancel not waking from dynamic
6497 	 * Power Gating with clock request
6498 	 */
6499 	mac_data = er32(FEXTNVM12);
6500 	mac_data &= ~BIT(12);
6501 	ew32(FEXTNVM12, mac_data);
6502 
6503 	/* Cancel disable disconnected cable conditioning
6504 	 * for Power Gating
6505 	 */
6506 	mac_data = er32(DPGFR);
6507 	mac_data &= ~BIT(2);
6508 	ew32(DPGFR, mac_data);
6509 
6510 	/* Disable Dynamic Power Gating */
6511 	mac_data = er32(CTRL_EXT);
6512 	mac_data &= 0xFFFFFFF7;
6513 	ew32(CTRL_EXT, mac_data);
6514 
6515 	/* Disable the Dynamic Clock Gating in the DMA and MAC */
6516 	mac_data = er32(CTRL_EXT);
6517 	mac_data &= 0xFFF7FFFF;
6518 	ew32(CTRL_EXT, mac_data);
6519 
6520 	/* Revert the lanphypc logic to use the internal Gbe counter
6521 	 * and not the PMC counter
6522 	 */
6523 	mac_data = er32(FEXTNVM5);
6524 	mac_data &= 0xFFFFFF7F;
6525 	ew32(FEXTNVM5, mac_data);
6526 
6527 	/* Enable the periodic inband message,
6528 	 * Request PCIe clock in K1 page770_17[10:9] =01b
6529 	 */
6530 	e1e_rphy(hw, HV_PM_CTRL, &phy_data);
6531 	phy_data &= 0xFBFF;
6532 	phy_data |= HV_PM_CTRL_K1_CLK_REQ;
6533 	e1e_wphy(hw, HV_PM_CTRL, phy_data);
6534 
6535 	/* Return back configuration
6536 	 * 772_29[5] = 0 CS_Mode_Stay_In_K1
6537 	 */
6538 	e1e_rphy(hw, I217_CGFREG, &phy_data);
6539 	phy_data &= 0xFFDF;
6540 	e1e_wphy(hw, I217_CGFREG, phy_data);
6541 
6542 	/* Change the MAC/PHY interface to Kumeran
6543 	 * Unforce the SMBus in PHY page769_23[0] = 0
6544 	 * Unforce the SMBus in MAC CTRL_EXT[11] = 0
6545 	 */
6546 	e1e_rphy(hw, CV_SMB_CTRL, &phy_data);
6547 	phy_data &= ~CV_SMB_CTRL_FORCE_SMBUS;
6548 	e1e_wphy(hw, CV_SMB_CTRL, phy_data);
6549 	mac_data = er32(CTRL_EXT);
6550 	mac_data &= ~E1000_CTRL_EXT_FORCE_SMBUS;
6551 	ew32(CTRL_EXT, mac_data);
6552 }
6553 
6554 static int e1000e_pm_freeze(struct device *dev)
6555 {
6556 	struct net_device *netdev = dev_get_drvdata(dev);
6557 	struct e1000_adapter *adapter = netdev_priv(netdev);
6558 	bool present;
6559 
6560 	rtnl_lock();
6561 
6562 	present = netif_device_present(netdev);
6563 	netif_device_detach(netdev);
6564 
6565 	if (present && netif_running(netdev)) {
6566 		int count = E1000_CHECK_RESET_COUNT;
6567 
6568 		while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6569 			usleep_range(10000, 11000);
6570 
6571 		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6572 
6573 		/* Quiesce the device without resetting the hardware */
6574 		e1000e_down(adapter, false);
6575 		e1000_free_irq(adapter);
6576 	}
6577 	rtnl_unlock();
6578 
6579 	e1000e_reset_interrupt_capability(adapter);
6580 
6581 	/* Allow time for pending master requests to run */
6582 	e1000e_disable_pcie_master(&adapter->hw);
6583 
6584 	return 0;
6585 }
6586 
6587 static int __e1000_shutdown(struct pci_dev *pdev, bool runtime)
6588 {
6589 	struct net_device *netdev = pci_get_drvdata(pdev);
6590 	struct e1000_adapter *adapter = netdev_priv(netdev);
6591 	struct e1000_hw *hw = &adapter->hw;
6592 	u32 ctrl, ctrl_ext, rctl, status, wufc;
6593 	int retval = 0;
6594 
6595 	/* Runtime suspend should only enable wakeup for link changes */
6596 	if (runtime)
6597 		wufc = E1000_WUFC_LNKC;
6598 	else if (device_may_wakeup(&pdev->dev))
6599 		wufc = adapter->wol;
6600 	else
6601 		wufc = 0;
6602 
6603 	status = er32(STATUS);
6604 	if (status & E1000_STATUS_LU)
6605 		wufc &= ~E1000_WUFC_LNKC;
6606 
6607 	if (wufc) {
6608 		e1000_setup_rctl(adapter);
6609 		e1000e_set_rx_mode(netdev);
6610 
6611 		/* turn on all-multi mode if wake on multicast is enabled */
6612 		if (wufc & E1000_WUFC_MC) {
6613 			rctl = er32(RCTL);
6614 			rctl |= E1000_RCTL_MPE;
6615 			ew32(RCTL, rctl);
6616 		}
6617 
6618 		ctrl = er32(CTRL);
6619 		ctrl |= E1000_CTRL_ADVD3WUC;
6620 		if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
6621 			ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
6622 		ew32(CTRL, ctrl);
6623 
6624 		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
6625 		    adapter->hw.phy.media_type ==
6626 		    e1000_media_type_internal_serdes) {
6627 			/* keep the laser running in D3 */
6628 			ctrl_ext = er32(CTRL_EXT);
6629 			ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
6630 			ew32(CTRL_EXT, ctrl_ext);
6631 		}
6632 
6633 		if (!runtime)
6634 			e1000e_power_up_phy(adapter);
6635 
6636 		if (adapter->flags & FLAG_IS_ICH)
6637 			e1000_suspend_workarounds_ich8lan(&adapter->hw);
6638 
6639 		if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6640 			/* enable wakeup by the PHY */
6641 			retval = e1000_init_phy_wakeup(adapter, wufc);
6642 			if (retval)
6643 				return retval;
6644 		} else {
6645 			/* enable wakeup by the MAC */
6646 			ew32(WUFC, wufc);
6647 			ew32(WUC, E1000_WUC_PME_EN);
6648 		}
6649 	} else {
6650 		ew32(WUC, 0);
6651 		ew32(WUFC, 0);
6652 
6653 		e1000_power_down_phy(adapter);
6654 	}
6655 
6656 	if (adapter->hw.phy.type == e1000_phy_igp_3) {
6657 		e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
6658 	} else if (hw->mac.type >= e1000_pch_lpt) {
6659 		if (wufc && !(wufc & (E1000_WUFC_EX | E1000_WUFC_MC | E1000_WUFC_BC)))
6660 			/* ULP does not support wake from unicast, multicast
6661 			 * or broadcast.
6662 			 */
6663 			retval = e1000_enable_ulp_lpt_lp(hw, !runtime);
6664 
6665 		if (retval)
6666 			return retval;
6667 	}
6668 
6669 	/* Ensure that the appropriate bits are set in LPI_CTRL
6670 	 * for EEE in Sx
6671 	 */
6672 	if ((hw->phy.type >= e1000_phy_i217) &&
6673 	    adapter->eee_advert && hw->dev_spec.ich8lan.eee_lp_ability) {
6674 		u16 lpi_ctrl = 0;
6675 
6676 		retval = hw->phy.ops.acquire(hw);
6677 		if (!retval) {
6678 			retval = e1e_rphy_locked(hw, I82579_LPI_CTRL,
6679 						 &lpi_ctrl);
6680 			if (!retval) {
6681 				if (adapter->eee_advert &
6682 				    hw->dev_spec.ich8lan.eee_lp_ability &
6683 				    I82579_EEE_100_SUPPORTED)
6684 					lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
6685 				if (adapter->eee_advert &
6686 				    hw->dev_spec.ich8lan.eee_lp_ability &
6687 				    I82579_EEE_1000_SUPPORTED)
6688 					lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
6689 
6690 				retval = e1e_wphy_locked(hw, I82579_LPI_CTRL,
6691 							 lpi_ctrl);
6692 			}
6693 		}
6694 		hw->phy.ops.release(hw);
6695 	}
6696 
6697 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
6698 	 * would have already happened in close and is redundant.
6699 	 */
6700 	e1000e_release_hw_control(adapter);
6701 
6702 	pci_clear_master(pdev);
6703 
6704 	/* The pci-e switch on some quad port adapters will report a
6705 	 * correctable error when the MAC transitions from D0 to D3.  To
6706 	 * prevent this we need to mask off the correctable errors on the
6707 	 * downstream port of the pci-e switch.
6708 	 *
6709 	 * We don't have the associated upstream bridge while assigning
6710 	 * the PCI device into guest. For example, the KVM on power is
6711 	 * one of the cases.
6712 	 */
6713 	if (adapter->flags & FLAG_IS_QUAD_PORT) {
6714 		struct pci_dev *us_dev = pdev->bus->self;
6715 		u16 devctl;
6716 
6717 		if (!us_dev)
6718 			return 0;
6719 
6720 		pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl);
6721 		pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL,
6722 					   (devctl & ~PCI_EXP_DEVCTL_CERE));
6723 
6724 		pci_save_state(pdev);
6725 		pci_prepare_to_sleep(pdev);
6726 
6727 		pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl);
6728 	}
6729 
6730 	return 0;
6731 }
6732 
6733 /**
6734  * __e1000e_disable_aspm - Disable ASPM states
6735  * @pdev: pointer to PCI device struct
6736  * @state: bit-mask of ASPM states to disable
6737  * @locked: indication if this context holds pci_bus_sem locked.
6738  *
6739  * Some devices *must* have certain ASPM states disabled per hardware errata.
6740  **/
6741 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state, int locked)
6742 {
6743 	struct pci_dev *parent = pdev->bus->self;
6744 	u16 aspm_dis_mask = 0;
6745 	u16 pdev_aspmc, parent_aspmc;
6746 
6747 	switch (state) {
6748 	case PCIE_LINK_STATE_L0S:
6749 	case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1:
6750 		aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S;
6751 		fallthrough; /* can't have L1 without L0s */
6752 	case PCIE_LINK_STATE_L1:
6753 		aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1;
6754 		break;
6755 	default:
6756 		return;
6757 	}
6758 
6759 	pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6760 	pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6761 
6762 	if (parent) {
6763 		pcie_capability_read_word(parent, PCI_EXP_LNKCTL,
6764 					  &parent_aspmc);
6765 		parent_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6766 	}
6767 
6768 	/* Nothing to do if the ASPM states to be disabled already are */
6769 	if (!(pdev_aspmc & aspm_dis_mask) &&
6770 	    (!parent || !(parent_aspmc & aspm_dis_mask)))
6771 		return;
6772 
6773 	dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
6774 		 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ?
6775 		 "L0s" : "",
6776 		 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ?
6777 		 "L1" : "");
6778 
6779 #ifdef CONFIG_PCIEASPM
6780 	if (locked)
6781 		pci_disable_link_state_locked(pdev, state);
6782 	else
6783 		pci_disable_link_state(pdev, state);
6784 
6785 	/* Double-check ASPM control.  If not disabled by the above, the
6786 	 * BIOS is preventing that from happening (or CONFIG_PCIEASPM is
6787 	 * not enabled); override by writing PCI config space directly.
6788 	 */
6789 	pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6790 	pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6791 
6792 	if (!(aspm_dis_mask & pdev_aspmc))
6793 		return;
6794 #endif
6795 
6796 	/* Both device and parent should have the same ASPM setting.
6797 	 * Disable ASPM in downstream component first and then upstream.
6798 	 */
6799 	pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask);
6800 
6801 	if (parent)
6802 		pcie_capability_clear_word(parent, PCI_EXP_LNKCTL,
6803 					   aspm_dis_mask);
6804 }
6805 
6806 /**
6807  * e1000e_disable_aspm - Disable ASPM states.
6808  * @pdev: pointer to PCI device struct
6809  * @state: bit-mask of ASPM states to disable
6810  *
6811  * This function acquires the pci_bus_sem!
6812  * Some devices *must* have certain ASPM states disabled per hardware errata.
6813  **/
6814 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6815 {
6816 	__e1000e_disable_aspm(pdev, state, 0);
6817 }
6818 
6819 /**
6820  * e1000e_disable_aspm_locked   Disable ASPM states.
6821  * @pdev: pointer to PCI device struct
6822  * @state: bit-mask of ASPM states to disable
6823  *
6824  * This function must be called with pci_bus_sem acquired!
6825  * Some devices *must* have certain ASPM states disabled per hardware errata.
6826  **/
6827 static void e1000e_disable_aspm_locked(struct pci_dev *pdev, u16 state)
6828 {
6829 	__e1000e_disable_aspm(pdev, state, 1);
6830 }
6831 
6832 static int e1000e_pm_thaw(struct device *dev)
6833 {
6834 	struct net_device *netdev = dev_get_drvdata(dev);
6835 	struct e1000_adapter *adapter = netdev_priv(netdev);
6836 	int rc = 0;
6837 
6838 	e1000e_set_interrupt_capability(adapter);
6839 
6840 	rtnl_lock();
6841 	if (netif_running(netdev)) {
6842 		rc = e1000_request_irq(adapter);
6843 		if (rc)
6844 			goto err_irq;
6845 
6846 		e1000e_up(adapter);
6847 	}
6848 
6849 	netif_device_attach(netdev);
6850 err_irq:
6851 	rtnl_unlock();
6852 
6853 	return rc;
6854 }
6855 
6856 static int __e1000_resume(struct pci_dev *pdev)
6857 {
6858 	struct net_device *netdev = pci_get_drvdata(pdev);
6859 	struct e1000_adapter *adapter = netdev_priv(netdev);
6860 	struct e1000_hw *hw = &adapter->hw;
6861 	u16 aspm_disable_flag = 0;
6862 
6863 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6864 		aspm_disable_flag = PCIE_LINK_STATE_L0S;
6865 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6866 		aspm_disable_flag |= PCIE_LINK_STATE_L1;
6867 	if (aspm_disable_flag)
6868 		e1000e_disable_aspm(pdev, aspm_disable_flag);
6869 
6870 	pci_set_master(pdev);
6871 
6872 	if (hw->mac.type >= e1000_pch2lan)
6873 		e1000_resume_workarounds_pchlan(&adapter->hw);
6874 
6875 	e1000e_power_up_phy(adapter);
6876 
6877 	/* report the system wakeup cause from S3/S4 */
6878 	if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6879 		u16 phy_data;
6880 
6881 		e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
6882 		if (phy_data) {
6883 			e_info("PHY Wakeup cause - %s\n",
6884 			       phy_data & E1000_WUS_EX ? "Unicast Packet" :
6885 			       phy_data & E1000_WUS_MC ? "Multicast Packet" :
6886 			       phy_data & E1000_WUS_BC ? "Broadcast Packet" :
6887 			       phy_data & E1000_WUS_MAG ? "Magic Packet" :
6888 			       phy_data & E1000_WUS_LNKC ?
6889 			       "Link Status Change" : "other");
6890 		}
6891 		e1e_wphy(&adapter->hw, BM_WUS, ~0);
6892 	} else {
6893 		u32 wus = er32(WUS);
6894 
6895 		if (wus) {
6896 			e_info("MAC Wakeup cause - %s\n",
6897 			       wus & E1000_WUS_EX ? "Unicast Packet" :
6898 			       wus & E1000_WUS_MC ? "Multicast Packet" :
6899 			       wus & E1000_WUS_BC ? "Broadcast Packet" :
6900 			       wus & E1000_WUS_MAG ? "Magic Packet" :
6901 			       wus & E1000_WUS_LNKC ? "Link Status Change" :
6902 			       "other");
6903 		}
6904 		ew32(WUS, ~0);
6905 	}
6906 
6907 	e1000e_reset(adapter);
6908 
6909 	e1000_init_manageability_pt(adapter);
6910 
6911 	/* If the controller has AMT, do not set DRV_LOAD until the interface
6912 	 * is up.  For all other cases, let the f/w know that the h/w is now
6913 	 * under the control of the driver.
6914 	 */
6915 	if (!(adapter->flags & FLAG_HAS_AMT))
6916 		e1000e_get_hw_control(adapter);
6917 
6918 	return 0;
6919 }
6920 
6921 static __maybe_unused int e1000e_pm_suspend(struct device *dev)
6922 {
6923 	struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6924 	struct e1000_adapter *adapter = netdev_priv(netdev);
6925 	struct pci_dev *pdev = to_pci_dev(dev);
6926 	int rc;
6927 
6928 	e1000e_flush_lpic(pdev);
6929 
6930 	e1000e_pm_freeze(dev);
6931 
6932 	rc = __e1000_shutdown(pdev, false);
6933 	if (rc) {
6934 		e1000e_pm_thaw(dev);
6935 	} else {
6936 		/* Introduce S0ix implementation */
6937 		if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS)
6938 			e1000e_s0ix_entry_flow(adapter);
6939 	}
6940 
6941 	return rc;
6942 }
6943 
6944 static __maybe_unused int e1000e_pm_resume(struct device *dev)
6945 {
6946 	struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6947 	struct e1000_adapter *adapter = netdev_priv(netdev);
6948 	struct pci_dev *pdev = to_pci_dev(dev);
6949 	int rc;
6950 
6951 	/* Introduce S0ix implementation */
6952 	if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS)
6953 		e1000e_s0ix_exit_flow(adapter);
6954 
6955 	rc = __e1000_resume(pdev);
6956 	if (rc)
6957 		return rc;
6958 
6959 	return e1000e_pm_thaw(dev);
6960 }
6961 
6962 static __maybe_unused int e1000e_pm_runtime_idle(struct device *dev)
6963 {
6964 	struct net_device *netdev = dev_get_drvdata(dev);
6965 	struct e1000_adapter *adapter = netdev_priv(netdev);
6966 	u16 eee_lp;
6967 
6968 	eee_lp = adapter->hw.dev_spec.ich8lan.eee_lp_ability;
6969 
6970 	if (!e1000e_has_link(adapter)) {
6971 		adapter->hw.dev_spec.ich8lan.eee_lp_ability = eee_lp;
6972 		pm_schedule_suspend(dev, 5 * MSEC_PER_SEC);
6973 	}
6974 
6975 	return -EBUSY;
6976 }
6977 
6978 static __maybe_unused int e1000e_pm_runtime_resume(struct device *dev)
6979 {
6980 	struct pci_dev *pdev = to_pci_dev(dev);
6981 	struct net_device *netdev = pci_get_drvdata(pdev);
6982 	struct e1000_adapter *adapter = netdev_priv(netdev);
6983 	int rc;
6984 
6985 	rc = __e1000_resume(pdev);
6986 	if (rc)
6987 		return rc;
6988 
6989 	if (netdev->flags & IFF_UP)
6990 		e1000e_up(adapter);
6991 
6992 	return rc;
6993 }
6994 
6995 static __maybe_unused int e1000e_pm_runtime_suspend(struct device *dev)
6996 {
6997 	struct pci_dev *pdev = to_pci_dev(dev);
6998 	struct net_device *netdev = pci_get_drvdata(pdev);
6999 	struct e1000_adapter *adapter = netdev_priv(netdev);
7000 
7001 	if (netdev->flags & IFF_UP) {
7002 		int count = E1000_CHECK_RESET_COUNT;
7003 
7004 		while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
7005 			usleep_range(10000, 11000);
7006 
7007 		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
7008 
7009 		/* Down the device without resetting the hardware */
7010 		e1000e_down(adapter, false);
7011 	}
7012 
7013 	if (__e1000_shutdown(pdev, true)) {
7014 		e1000e_pm_runtime_resume(dev);
7015 		return -EBUSY;
7016 	}
7017 
7018 	return 0;
7019 }
7020 
7021 static void e1000_shutdown(struct pci_dev *pdev)
7022 {
7023 	e1000e_flush_lpic(pdev);
7024 
7025 	e1000e_pm_freeze(&pdev->dev);
7026 
7027 	__e1000_shutdown(pdev, false);
7028 }
7029 
7030 #ifdef CONFIG_NET_POLL_CONTROLLER
7031 
7032 static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data)
7033 {
7034 	struct net_device *netdev = data;
7035 	struct e1000_adapter *adapter = netdev_priv(netdev);
7036 
7037 	if (adapter->msix_entries) {
7038 		int vector, msix_irq;
7039 
7040 		vector = 0;
7041 		msix_irq = adapter->msix_entries[vector].vector;
7042 		if (disable_hardirq(msix_irq))
7043 			e1000_intr_msix_rx(msix_irq, netdev);
7044 		enable_irq(msix_irq);
7045 
7046 		vector++;
7047 		msix_irq = adapter->msix_entries[vector].vector;
7048 		if (disable_hardirq(msix_irq))
7049 			e1000_intr_msix_tx(msix_irq, netdev);
7050 		enable_irq(msix_irq);
7051 
7052 		vector++;
7053 		msix_irq = adapter->msix_entries[vector].vector;
7054 		if (disable_hardirq(msix_irq))
7055 			e1000_msix_other(msix_irq, netdev);
7056 		enable_irq(msix_irq);
7057 	}
7058 
7059 	return IRQ_HANDLED;
7060 }
7061 
7062 /**
7063  * e1000_netpoll
7064  * @netdev: network interface device structure
7065  *
7066  * Polling 'interrupt' - used by things like netconsole to send skbs
7067  * without having to re-enable interrupts. It's not called while
7068  * the interrupt routine is executing.
7069  */
7070 static void e1000_netpoll(struct net_device *netdev)
7071 {
7072 	struct e1000_adapter *adapter = netdev_priv(netdev);
7073 
7074 	switch (adapter->int_mode) {
7075 	case E1000E_INT_MODE_MSIX:
7076 		e1000_intr_msix(adapter->pdev->irq, netdev);
7077 		break;
7078 	case E1000E_INT_MODE_MSI:
7079 		if (disable_hardirq(adapter->pdev->irq))
7080 			e1000_intr_msi(adapter->pdev->irq, netdev);
7081 		enable_irq(adapter->pdev->irq);
7082 		break;
7083 	default:		/* E1000E_INT_MODE_LEGACY */
7084 		if (disable_hardirq(adapter->pdev->irq))
7085 			e1000_intr(adapter->pdev->irq, netdev);
7086 		enable_irq(adapter->pdev->irq);
7087 		break;
7088 	}
7089 }
7090 #endif
7091 
7092 /**
7093  * e1000_io_error_detected - called when PCI error is detected
7094  * @pdev: Pointer to PCI device
7095  * @state: The current pci connection state
7096  *
7097  * This function is called after a PCI bus error affecting
7098  * this device has been detected.
7099  */
7100 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
7101 						pci_channel_state_t state)
7102 {
7103 	e1000e_pm_freeze(&pdev->dev);
7104 
7105 	if (state == pci_channel_io_perm_failure)
7106 		return PCI_ERS_RESULT_DISCONNECT;
7107 
7108 	pci_disable_device(pdev);
7109 
7110 	/* Request a slot slot reset. */
7111 	return PCI_ERS_RESULT_NEED_RESET;
7112 }
7113 
7114 /**
7115  * e1000_io_slot_reset - called after the pci bus has been reset.
7116  * @pdev: Pointer to PCI device
7117  *
7118  * Restart the card from scratch, as if from a cold-boot. Implementation
7119  * resembles the first-half of the e1000e_pm_resume routine.
7120  */
7121 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
7122 {
7123 	struct net_device *netdev = pci_get_drvdata(pdev);
7124 	struct e1000_adapter *adapter = netdev_priv(netdev);
7125 	struct e1000_hw *hw = &adapter->hw;
7126 	u16 aspm_disable_flag = 0;
7127 	int err;
7128 	pci_ers_result_t result;
7129 
7130 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
7131 		aspm_disable_flag = PCIE_LINK_STATE_L0S;
7132 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
7133 		aspm_disable_flag |= PCIE_LINK_STATE_L1;
7134 	if (aspm_disable_flag)
7135 		e1000e_disable_aspm_locked(pdev, aspm_disable_flag);
7136 
7137 	err = pci_enable_device_mem(pdev);
7138 	if (err) {
7139 		dev_err(&pdev->dev,
7140 			"Cannot re-enable PCI device after reset.\n");
7141 		result = PCI_ERS_RESULT_DISCONNECT;
7142 	} else {
7143 		pdev->state_saved = true;
7144 		pci_restore_state(pdev);
7145 		pci_set_master(pdev);
7146 
7147 		pci_enable_wake(pdev, PCI_D3hot, 0);
7148 		pci_enable_wake(pdev, PCI_D3cold, 0);
7149 
7150 		e1000e_reset(adapter);
7151 		ew32(WUS, ~0);
7152 		result = PCI_ERS_RESULT_RECOVERED;
7153 	}
7154 
7155 	return result;
7156 }
7157 
7158 /**
7159  * e1000_io_resume - called when traffic can start flowing again.
7160  * @pdev: Pointer to PCI device
7161  *
7162  * This callback is called when the error recovery driver tells us that
7163  * its OK to resume normal operation. Implementation resembles the
7164  * second-half of the e1000e_pm_resume routine.
7165  */
7166 static void e1000_io_resume(struct pci_dev *pdev)
7167 {
7168 	struct net_device *netdev = pci_get_drvdata(pdev);
7169 	struct e1000_adapter *adapter = netdev_priv(netdev);
7170 
7171 	e1000_init_manageability_pt(adapter);
7172 
7173 	e1000e_pm_thaw(&pdev->dev);
7174 
7175 	/* If the controller has AMT, do not set DRV_LOAD until the interface
7176 	 * is up.  For all other cases, let the f/w know that the h/w is now
7177 	 * under the control of the driver.
7178 	 */
7179 	if (!(adapter->flags & FLAG_HAS_AMT))
7180 		e1000e_get_hw_control(adapter);
7181 }
7182 
7183 static void e1000_print_device_info(struct e1000_adapter *adapter)
7184 {
7185 	struct e1000_hw *hw = &adapter->hw;
7186 	struct net_device *netdev = adapter->netdev;
7187 	u32 ret_val;
7188 	u8 pba_str[E1000_PBANUM_LENGTH];
7189 
7190 	/* print bus type/speed/width info */
7191 	e_info("(PCI Express:2.5GT/s:%s) %pM\n",
7192 	       /* bus width */
7193 	       ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
7194 		"Width x1"),
7195 	       /* MAC address */
7196 	       netdev->dev_addr);
7197 	e_info("Intel(R) PRO/%s Network Connection\n",
7198 	       (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
7199 	ret_val = e1000_read_pba_string_generic(hw, pba_str,
7200 						E1000_PBANUM_LENGTH);
7201 	if (ret_val)
7202 		strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
7203 	e_info("MAC: %d, PHY: %d, PBA No: %s\n",
7204 	       hw->mac.type, hw->phy.type, pba_str);
7205 }
7206 
7207 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
7208 {
7209 	struct e1000_hw *hw = &adapter->hw;
7210 	int ret_val;
7211 	u16 buf = 0;
7212 
7213 	if (hw->mac.type != e1000_82573)
7214 		return;
7215 
7216 	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
7217 	le16_to_cpus(&buf);
7218 	if (!ret_val && (!(buf & BIT(0)))) {
7219 		/* Deep Smart Power Down (DSPD) */
7220 		dev_warn(&adapter->pdev->dev,
7221 			 "Warning: detected DSPD enabled in EEPROM\n");
7222 	}
7223 }
7224 
7225 static netdev_features_t e1000_fix_features(struct net_device *netdev,
7226 					    netdev_features_t features)
7227 {
7228 	struct e1000_adapter *adapter = netdev_priv(netdev);
7229 	struct e1000_hw *hw = &adapter->hw;
7230 
7231 	/* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
7232 	if ((hw->mac.type >= e1000_pch2lan) && (netdev->mtu > ETH_DATA_LEN))
7233 		features &= ~NETIF_F_RXFCS;
7234 
7235 	/* Since there is no support for separate Rx/Tx vlan accel
7236 	 * enable/disable make sure Tx flag is always in same state as Rx.
7237 	 */
7238 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
7239 		features |= NETIF_F_HW_VLAN_CTAG_TX;
7240 	else
7241 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
7242 
7243 	return features;
7244 }
7245 
7246 static int e1000_set_features(struct net_device *netdev,
7247 			      netdev_features_t features)
7248 {
7249 	struct e1000_adapter *adapter = netdev_priv(netdev);
7250 	netdev_features_t changed = features ^ netdev->features;
7251 
7252 	if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
7253 		adapter->flags |= FLAG_TSO_FORCE;
7254 
7255 	if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
7256 			 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
7257 			 NETIF_F_RXALL)))
7258 		return 0;
7259 
7260 	if (changed & NETIF_F_RXFCS) {
7261 		if (features & NETIF_F_RXFCS) {
7262 			adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
7263 		} else {
7264 			/* We need to take it back to defaults, which might mean
7265 			 * stripping is still disabled at the adapter level.
7266 			 */
7267 			if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
7268 				adapter->flags2 |= FLAG2_CRC_STRIPPING;
7269 			else
7270 				adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
7271 		}
7272 	}
7273 
7274 	netdev->features = features;
7275 
7276 	if (netif_running(netdev))
7277 		e1000e_reinit_locked(adapter);
7278 	else
7279 		e1000e_reset(adapter);
7280 
7281 	return 1;
7282 }
7283 
7284 static const struct net_device_ops e1000e_netdev_ops = {
7285 	.ndo_open		= e1000e_open,
7286 	.ndo_stop		= e1000e_close,
7287 	.ndo_start_xmit		= e1000_xmit_frame,
7288 	.ndo_get_stats64	= e1000e_get_stats64,
7289 	.ndo_set_rx_mode	= e1000e_set_rx_mode,
7290 	.ndo_set_mac_address	= e1000_set_mac,
7291 	.ndo_change_mtu		= e1000_change_mtu,
7292 	.ndo_do_ioctl		= e1000_ioctl,
7293 	.ndo_tx_timeout		= e1000_tx_timeout,
7294 	.ndo_validate_addr	= eth_validate_addr,
7295 
7296 	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
7297 	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
7298 #ifdef CONFIG_NET_POLL_CONTROLLER
7299 	.ndo_poll_controller	= e1000_netpoll,
7300 #endif
7301 	.ndo_set_features = e1000_set_features,
7302 	.ndo_fix_features = e1000_fix_features,
7303 	.ndo_features_check	= passthru_features_check,
7304 };
7305 
7306 /**
7307  * e1000_probe - Device Initialization Routine
7308  * @pdev: PCI device information struct
7309  * @ent: entry in e1000_pci_tbl
7310  *
7311  * Returns 0 on success, negative on failure
7312  *
7313  * e1000_probe initializes an adapter identified by a pci_dev structure.
7314  * The OS initialization, configuring of the adapter private structure,
7315  * and a hardware reset occur.
7316  **/
7317 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
7318 {
7319 	struct net_device *netdev;
7320 	struct e1000_adapter *adapter;
7321 	struct e1000_hw *hw;
7322 	const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
7323 	resource_size_t mmio_start, mmio_len;
7324 	resource_size_t flash_start, flash_len;
7325 	static int cards_found;
7326 	u16 aspm_disable_flag = 0;
7327 	int bars, i, err, pci_using_dac;
7328 	u16 eeprom_data = 0;
7329 	u16 eeprom_apme_mask = E1000_EEPROM_APME;
7330 	s32 ret_val = 0;
7331 
7332 	if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
7333 		aspm_disable_flag = PCIE_LINK_STATE_L0S;
7334 	if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
7335 		aspm_disable_flag |= PCIE_LINK_STATE_L1;
7336 	if (aspm_disable_flag)
7337 		e1000e_disable_aspm(pdev, aspm_disable_flag);
7338 
7339 	err = pci_enable_device_mem(pdev);
7340 	if (err)
7341 		return err;
7342 
7343 	pci_using_dac = 0;
7344 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
7345 	if (!err) {
7346 		pci_using_dac = 1;
7347 	} else {
7348 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
7349 		if (err) {
7350 			dev_err(&pdev->dev,
7351 				"No usable DMA configuration, aborting\n");
7352 			goto err_dma;
7353 		}
7354 	}
7355 
7356 	bars = pci_select_bars(pdev, IORESOURCE_MEM);
7357 	err = pci_request_selected_regions_exclusive(pdev, bars,
7358 						     e1000e_driver_name);
7359 	if (err)
7360 		goto err_pci_reg;
7361 
7362 	/* AER (Advanced Error Reporting) hooks */
7363 	pci_enable_pcie_error_reporting(pdev);
7364 
7365 	pci_set_master(pdev);
7366 	/* PCI config space info */
7367 	err = pci_save_state(pdev);
7368 	if (err)
7369 		goto err_alloc_etherdev;
7370 
7371 	err = -ENOMEM;
7372 	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
7373 	if (!netdev)
7374 		goto err_alloc_etherdev;
7375 
7376 	SET_NETDEV_DEV(netdev, &pdev->dev);
7377 
7378 	netdev->irq = pdev->irq;
7379 
7380 	pci_set_drvdata(pdev, netdev);
7381 	adapter = netdev_priv(netdev);
7382 	hw = &adapter->hw;
7383 	adapter->netdev = netdev;
7384 	adapter->pdev = pdev;
7385 	adapter->ei = ei;
7386 	adapter->pba = ei->pba;
7387 	adapter->flags = ei->flags;
7388 	adapter->flags2 = ei->flags2;
7389 	adapter->hw.adapter = adapter;
7390 	adapter->hw.mac.type = ei->mac;
7391 	adapter->max_hw_frame_size = ei->max_hw_frame_size;
7392 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
7393 
7394 	mmio_start = pci_resource_start(pdev, 0);
7395 	mmio_len = pci_resource_len(pdev, 0);
7396 
7397 	err = -EIO;
7398 	adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
7399 	if (!adapter->hw.hw_addr)
7400 		goto err_ioremap;
7401 
7402 	if ((adapter->flags & FLAG_HAS_FLASH) &&
7403 	    (pci_resource_flags(pdev, 1) & IORESOURCE_MEM) &&
7404 	    (hw->mac.type < e1000_pch_spt)) {
7405 		flash_start = pci_resource_start(pdev, 1);
7406 		flash_len = pci_resource_len(pdev, 1);
7407 		adapter->hw.flash_address = ioremap(flash_start, flash_len);
7408 		if (!adapter->hw.flash_address)
7409 			goto err_flashmap;
7410 	}
7411 
7412 	/* Set default EEE advertisement */
7413 	if (adapter->flags2 & FLAG2_HAS_EEE)
7414 		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
7415 
7416 	/* construct the net_device struct */
7417 	netdev->netdev_ops = &e1000e_netdev_ops;
7418 	e1000e_set_ethtool_ops(netdev);
7419 	netdev->watchdog_timeo = 5 * HZ;
7420 	netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64);
7421 	strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
7422 
7423 	netdev->mem_start = mmio_start;
7424 	netdev->mem_end = mmio_start + mmio_len;
7425 
7426 	adapter->bd_number = cards_found++;
7427 
7428 	e1000e_check_options(adapter);
7429 
7430 	/* setup adapter struct */
7431 	err = e1000_sw_init(adapter);
7432 	if (err)
7433 		goto err_sw_init;
7434 
7435 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
7436 	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
7437 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
7438 
7439 	err = ei->get_variants(adapter);
7440 	if (err)
7441 		goto err_hw_init;
7442 
7443 	if ((adapter->flags & FLAG_IS_ICH) &&
7444 	    (adapter->flags & FLAG_READ_ONLY_NVM) &&
7445 	    (hw->mac.type < e1000_pch_spt))
7446 		e1000e_write_protect_nvm_ich8lan(&adapter->hw);
7447 
7448 	hw->mac.ops.get_bus_info(&adapter->hw);
7449 
7450 	adapter->hw.phy.autoneg_wait_to_complete = 0;
7451 
7452 	/* Copper options */
7453 	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
7454 		adapter->hw.phy.mdix = AUTO_ALL_MODES;
7455 		adapter->hw.phy.disable_polarity_correction = 0;
7456 		adapter->hw.phy.ms_type = e1000_ms_hw_default;
7457 	}
7458 
7459 	if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
7460 		dev_info(&pdev->dev,
7461 			 "PHY reset is blocked due to SOL/IDER session.\n");
7462 
7463 	/* Set initial default active device features */
7464 	netdev->features = (NETIF_F_SG |
7465 			    NETIF_F_HW_VLAN_CTAG_RX |
7466 			    NETIF_F_HW_VLAN_CTAG_TX |
7467 			    NETIF_F_TSO |
7468 			    NETIF_F_TSO6 |
7469 			    NETIF_F_RXHASH |
7470 			    NETIF_F_RXCSUM |
7471 			    NETIF_F_HW_CSUM);
7472 
7473 	/* Set user-changeable features (subset of all device features) */
7474 	netdev->hw_features = netdev->features;
7475 	netdev->hw_features |= NETIF_F_RXFCS;
7476 	netdev->priv_flags |= IFF_SUPP_NOFCS;
7477 	netdev->hw_features |= NETIF_F_RXALL;
7478 
7479 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
7480 		netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7481 
7482 	netdev->vlan_features |= (NETIF_F_SG |
7483 				  NETIF_F_TSO |
7484 				  NETIF_F_TSO6 |
7485 				  NETIF_F_HW_CSUM);
7486 
7487 	netdev->priv_flags |= IFF_UNICAST_FLT;
7488 
7489 	if (pci_using_dac) {
7490 		netdev->features |= NETIF_F_HIGHDMA;
7491 		netdev->vlan_features |= NETIF_F_HIGHDMA;
7492 	}
7493 
7494 	/* MTU range: 68 - max_hw_frame_size */
7495 	netdev->min_mtu = ETH_MIN_MTU;
7496 	netdev->max_mtu = adapter->max_hw_frame_size -
7497 			  (VLAN_ETH_HLEN + ETH_FCS_LEN);
7498 
7499 	if (e1000e_enable_mng_pass_thru(&adapter->hw))
7500 		adapter->flags |= FLAG_MNG_PT_ENABLED;
7501 
7502 	/* before reading the NVM, reset the controller to
7503 	 * put the device in a known good starting state
7504 	 */
7505 	adapter->hw.mac.ops.reset_hw(&adapter->hw);
7506 
7507 	/* systems with ASPM and others may see the checksum fail on the first
7508 	 * attempt. Let's give it a few tries
7509 	 */
7510 	for (i = 0;; i++) {
7511 		if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
7512 			break;
7513 		if (i == 2) {
7514 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
7515 			err = -EIO;
7516 			goto err_eeprom;
7517 		}
7518 	}
7519 
7520 	e1000_eeprom_checks(adapter);
7521 
7522 	/* copy the MAC address */
7523 	if (e1000e_read_mac_addr(&adapter->hw))
7524 		dev_err(&pdev->dev,
7525 			"NVM Read Error while reading MAC address\n");
7526 
7527 	memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
7528 
7529 	if (!is_valid_ether_addr(netdev->dev_addr)) {
7530 		dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
7531 			netdev->dev_addr);
7532 		err = -EIO;
7533 		goto err_eeprom;
7534 	}
7535 
7536 	timer_setup(&adapter->watchdog_timer, e1000_watchdog, 0);
7537 	timer_setup(&adapter->phy_info_timer, e1000_update_phy_info, 0);
7538 
7539 	INIT_WORK(&adapter->reset_task, e1000_reset_task);
7540 	INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
7541 	INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
7542 	INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
7543 	INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
7544 
7545 	/* Initialize link parameters. User can change them with ethtool */
7546 	adapter->hw.mac.autoneg = 1;
7547 	adapter->fc_autoneg = true;
7548 	adapter->hw.fc.requested_mode = e1000_fc_default;
7549 	adapter->hw.fc.current_mode = e1000_fc_default;
7550 	adapter->hw.phy.autoneg_advertised = 0x2f;
7551 
7552 	/* Initial Wake on LAN setting - If APM wake is enabled in
7553 	 * the EEPROM, enable the ACPI Magic Packet filter
7554 	 */
7555 	if (adapter->flags & FLAG_APME_IN_WUC) {
7556 		/* APME bit in EEPROM is mapped to WUC.APME */
7557 		eeprom_data = er32(WUC);
7558 		eeprom_apme_mask = E1000_WUC_APME;
7559 		if ((hw->mac.type > e1000_ich10lan) &&
7560 		    (eeprom_data & E1000_WUC_PHY_WAKE))
7561 			adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
7562 	} else if (adapter->flags & FLAG_APME_IN_CTRL3) {
7563 		if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
7564 		    (adapter->hw.bus.func == 1))
7565 			ret_val = e1000_read_nvm(&adapter->hw,
7566 					      NVM_INIT_CONTROL3_PORT_B,
7567 					      1, &eeprom_data);
7568 		else
7569 			ret_val = e1000_read_nvm(&adapter->hw,
7570 					      NVM_INIT_CONTROL3_PORT_A,
7571 					      1, &eeprom_data);
7572 	}
7573 
7574 	/* fetch WoL from EEPROM */
7575 	if (ret_val)
7576 		e_dbg("NVM read error getting WoL initial values: %d\n", ret_val);
7577 	else if (eeprom_data & eeprom_apme_mask)
7578 		adapter->eeprom_wol |= E1000_WUFC_MAG;
7579 
7580 	/* now that we have the eeprom settings, apply the special cases
7581 	 * where the eeprom may be wrong or the board simply won't support
7582 	 * wake on lan on a particular port
7583 	 */
7584 	if (!(adapter->flags & FLAG_HAS_WOL))
7585 		adapter->eeprom_wol = 0;
7586 
7587 	/* initialize the wol settings based on the eeprom settings */
7588 	adapter->wol = adapter->eeprom_wol;
7589 
7590 	/* make sure adapter isn't asleep if manageability is enabled */
7591 	if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) ||
7592 	    (hw->mac.ops.check_mng_mode(hw)))
7593 		device_wakeup_enable(&pdev->dev);
7594 
7595 	/* save off EEPROM version number */
7596 	ret_val = e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
7597 
7598 	if (ret_val) {
7599 		e_dbg("NVM read error getting EEPROM version: %d\n", ret_val);
7600 		adapter->eeprom_vers = 0;
7601 	}
7602 
7603 	/* init PTP hardware clock */
7604 	e1000e_ptp_init(adapter);
7605 
7606 	/* reset the hardware with the new settings */
7607 	e1000e_reset(adapter);
7608 
7609 	/* If the controller has AMT, do not set DRV_LOAD until the interface
7610 	 * is up.  For all other cases, let the f/w know that the h/w is now
7611 	 * under the control of the driver.
7612 	 */
7613 	if (!(adapter->flags & FLAG_HAS_AMT))
7614 		e1000e_get_hw_control(adapter);
7615 
7616 	if (hw->mac.type >= e1000_pch_cnp)
7617 		adapter->flags2 |= FLAG2_ENABLE_S0IX_FLOWS;
7618 
7619 	strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
7620 	err = register_netdev(netdev);
7621 	if (err)
7622 		goto err_register;
7623 
7624 	/* carrier off reporting is important to ethtool even BEFORE open */
7625 	netif_carrier_off(netdev);
7626 
7627 	e1000_print_device_info(adapter);
7628 
7629 	dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
7630 
7631 	if (pci_dev_run_wake(pdev) && hw->mac.type < e1000_pch_cnp)
7632 		pm_runtime_put_noidle(&pdev->dev);
7633 
7634 	return 0;
7635 
7636 err_register:
7637 	if (!(adapter->flags & FLAG_HAS_AMT))
7638 		e1000e_release_hw_control(adapter);
7639 err_eeprom:
7640 	if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
7641 		e1000_phy_hw_reset(&adapter->hw);
7642 err_hw_init:
7643 	kfree(adapter->tx_ring);
7644 	kfree(adapter->rx_ring);
7645 err_sw_init:
7646 	if ((adapter->hw.flash_address) && (hw->mac.type < e1000_pch_spt))
7647 		iounmap(adapter->hw.flash_address);
7648 	e1000e_reset_interrupt_capability(adapter);
7649 err_flashmap:
7650 	iounmap(adapter->hw.hw_addr);
7651 err_ioremap:
7652 	free_netdev(netdev);
7653 err_alloc_etherdev:
7654 	pci_release_mem_regions(pdev);
7655 err_pci_reg:
7656 err_dma:
7657 	pci_disable_device(pdev);
7658 	return err;
7659 }
7660 
7661 /**
7662  * e1000_remove - Device Removal Routine
7663  * @pdev: PCI device information struct
7664  *
7665  * e1000_remove is called by the PCI subsystem to alert the driver
7666  * that it should release a PCI device.  The could be caused by a
7667  * Hot-Plug event, or because the driver is going to be removed from
7668  * memory.
7669  **/
7670 static void e1000_remove(struct pci_dev *pdev)
7671 {
7672 	struct net_device *netdev = pci_get_drvdata(pdev);
7673 	struct e1000_adapter *adapter = netdev_priv(netdev);
7674 
7675 	e1000e_ptp_remove(adapter);
7676 
7677 	/* The timers may be rescheduled, so explicitly disable them
7678 	 * from being rescheduled.
7679 	 */
7680 	set_bit(__E1000_DOWN, &adapter->state);
7681 	del_timer_sync(&adapter->watchdog_timer);
7682 	del_timer_sync(&adapter->phy_info_timer);
7683 
7684 	cancel_work_sync(&adapter->reset_task);
7685 	cancel_work_sync(&adapter->watchdog_task);
7686 	cancel_work_sync(&adapter->downshift_task);
7687 	cancel_work_sync(&adapter->update_phy_task);
7688 	cancel_work_sync(&adapter->print_hang_task);
7689 
7690 	if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
7691 		cancel_work_sync(&adapter->tx_hwtstamp_work);
7692 		if (adapter->tx_hwtstamp_skb) {
7693 			dev_consume_skb_any(adapter->tx_hwtstamp_skb);
7694 			adapter->tx_hwtstamp_skb = NULL;
7695 		}
7696 	}
7697 
7698 	unregister_netdev(netdev);
7699 
7700 	if (pci_dev_run_wake(pdev))
7701 		pm_runtime_get_noresume(&pdev->dev);
7702 
7703 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7704 	 * would have already happened in close and is redundant.
7705 	 */
7706 	e1000e_release_hw_control(adapter);
7707 
7708 	e1000e_reset_interrupt_capability(adapter);
7709 	kfree(adapter->tx_ring);
7710 	kfree(adapter->rx_ring);
7711 
7712 	iounmap(adapter->hw.hw_addr);
7713 	if ((adapter->hw.flash_address) &&
7714 	    (adapter->hw.mac.type < e1000_pch_spt))
7715 		iounmap(adapter->hw.flash_address);
7716 	pci_release_mem_regions(pdev);
7717 
7718 	free_netdev(netdev);
7719 
7720 	/* AER disable */
7721 	pci_disable_pcie_error_reporting(pdev);
7722 
7723 	pci_disable_device(pdev);
7724 }
7725 
7726 /* PCI Error Recovery (ERS) */
7727 static const struct pci_error_handlers e1000_err_handler = {
7728 	.error_detected = e1000_io_error_detected,
7729 	.slot_reset = e1000_io_slot_reset,
7730 	.resume = e1000_io_resume,
7731 };
7732 
7733 static const struct pci_device_id e1000_pci_tbl[] = {
7734 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
7735 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
7736 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
7737 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP),
7738 	  board_82571 },
7739 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
7740 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
7741 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
7742 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
7743 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
7744 
7745 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
7746 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
7747 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
7748 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
7749 
7750 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
7751 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
7752 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
7753 
7754 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
7755 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
7756 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
7757 
7758 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
7759 	  board_80003es2lan },
7760 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
7761 	  board_80003es2lan },
7762 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
7763 	  board_80003es2lan },
7764 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
7765 	  board_80003es2lan },
7766 
7767 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
7768 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
7769 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
7770 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
7771 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
7772 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
7773 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
7774 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
7775 
7776 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
7777 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
7778 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
7779 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
7780 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
7781 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
7782 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
7783 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
7784 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
7785 
7786 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
7787 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
7788 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
7789 
7790 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
7791 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
7792 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
7793 
7794 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
7795 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
7796 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
7797 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
7798 
7799 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
7800 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
7801 
7802 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
7803 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
7804 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt },
7805 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt },
7806 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt },
7807 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt },
7808 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt },
7809 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt },
7810 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM), board_pch_spt },
7811 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V), board_pch_spt },
7812 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM2), board_pch_spt },
7813 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V2), board_pch_spt },
7814 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LBG_I219_LM3), board_pch_spt },
7815 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM4), board_pch_spt },
7816 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V4), board_pch_spt },
7817 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM5), board_pch_spt },
7818 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V5), board_pch_spt },
7819 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM6), board_pch_cnp },
7820 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V6), board_pch_cnp },
7821 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM7), board_pch_cnp },
7822 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V7), board_pch_cnp },
7823 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM8), board_pch_cnp },
7824 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V8), board_pch_cnp },
7825 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM9), board_pch_cnp },
7826 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V9), board_pch_cnp },
7827 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM10), board_pch_cnp },
7828 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V10), board_pch_cnp },
7829 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM11), board_pch_cnp },
7830 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V11), board_pch_cnp },
7831 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM12), board_pch_spt },
7832 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V12), board_pch_spt },
7833 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM13), board_pch_cnp },
7834 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V13), board_pch_cnp },
7835 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM14), board_pch_cnp },
7836 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V14), board_pch_cnp },
7837 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM15), board_pch_cnp },
7838 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V15), board_pch_cnp },
7839 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_LM16), board_pch_cnp },
7840 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_V16), board_pch_cnp },
7841 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_LM17), board_pch_cnp },
7842 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_V17), board_pch_cnp },
7843 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_LM18), board_pch_cnp },
7844 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_V18), board_pch_cnp },
7845 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_LM19), board_pch_cnp },
7846 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_V19), board_pch_cnp },
7847 
7848 	{ 0, 0, 0, 0, 0, 0, 0 }	/* terminate list */
7849 };
7850 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
7851 
7852 static const struct dev_pm_ops e1000_pm_ops = {
7853 #ifdef CONFIG_PM_SLEEP
7854 	.suspend	= e1000e_pm_suspend,
7855 	.resume		= e1000e_pm_resume,
7856 	.freeze		= e1000e_pm_freeze,
7857 	.thaw		= e1000e_pm_thaw,
7858 	.poweroff	= e1000e_pm_suspend,
7859 	.restore	= e1000e_pm_resume,
7860 #endif
7861 	SET_RUNTIME_PM_OPS(e1000e_pm_runtime_suspend, e1000e_pm_runtime_resume,
7862 			   e1000e_pm_runtime_idle)
7863 };
7864 
7865 /* PCI Device API Driver */
7866 static struct pci_driver e1000_driver = {
7867 	.name     = e1000e_driver_name,
7868 	.id_table = e1000_pci_tbl,
7869 	.probe    = e1000_probe,
7870 	.remove   = e1000_remove,
7871 	.driver   = {
7872 		.pm = &e1000_pm_ops,
7873 	},
7874 	.shutdown = e1000_shutdown,
7875 	.err_handler = &e1000_err_handler
7876 };
7877 
7878 /**
7879  * e1000_init_module - Driver Registration Routine
7880  *
7881  * e1000_init_module is the first routine called when the driver is
7882  * loaded. All it does is register with the PCI subsystem.
7883  **/
7884 static int __init e1000_init_module(void)
7885 {
7886 	pr_info("Intel(R) PRO/1000 Network Driver\n");
7887 	pr_info("Copyright(c) 1999 - 2015 Intel Corporation.\n");
7888 
7889 	return pci_register_driver(&e1000_driver);
7890 }
7891 module_init(e1000_init_module);
7892 
7893 /**
7894  * e1000_exit_module - Driver Exit Cleanup Routine
7895  *
7896  * e1000_exit_module is called just before the driver is removed
7897  * from memory.
7898  **/
7899 static void __exit e1000_exit_module(void)
7900 {
7901 	pci_unregister_driver(&e1000_driver);
7902 }
7903 module_exit(e1000_exit_module);
7904 
7905 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
7906 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7907 MODULE_LICENSE("GPL v2");
7908 
7909 /* netdev.c */
7910