1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3 
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5 
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/pci.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/delay.h>
13 #include <linux/netdevice.h>
14 #include <linux/interrupt.h>
15 #include <linux/tcp.h>
16 #include <linux/ipv6.h>
17 #include <linux/slab.h>
18 #include <net/checksum.h>
19 #include <net/ip6_checksum.h>
20 #include <linux/ethtool.h>
21 #include <linux/if_vlan.h>
22 #include <linux/cpu.h>
23 #include <linux/smp.h>
24 #include <linux/pm_qos.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/aer.h>
27 #include <linux/prefetch.h>
28 
29 #include "e1000.h"
30 
31 #define DRV_EXTRAVERSION "-k"
32 
33 #define DRV_VERSION "3.2.6" DRV_EXTRAVERSION
34 char e1000e_driver_name[] = "e1000e";
35 const char e1000e_driver_version[] = DRV_VERSION;
36 
37 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
38 static int debug = -1;
39 module_param(debug, int, 0);
40 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
41 
42 static const struct e1000_info *e1000_info_tbl[] = {
43 	[board_82571]		= &e1000_82571_info,
44 	[board_82572]		= &e1000_82572_info,
45 	[board_82573]		= &e1000_82573_info,
46 	[board_82574]		= &e1000_82574_info,
47 	[board_82583]		= &e1000_82583_info,
48 	[board_80003es2lan]	= &e1000_es2_info,
49 	[board_ich8lan]		= &e1000_ich8_info,
50 	[board_ich9lan]		= &e1000_ich9_info,
51 	[board_ich10lan]	= &e1000_ich10_info,
52 	[board_pchlan]		= &e1000_pch_info,
53 	[board_pch2lan]		= &e1000_pch2_info,
54 	[board_pch_lpt]		= &e1000_pch_lpt_info,
55 	[board_pch_spt]		= &e1000_pch_spt_info,
56 	[board_pch_cnp]		= &e1000_pch_cnp_info,
57 };
58 
59 struct e1000_reg_info {
60 	u32 ofs;
61 	char *name;
62 };
63 
64 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
65 	/* General Registers */
66 	{E1000_CTRL, "CTRL"},
67 	{E1000_STATUS, "STATUS"},
68 	{E1000_CTRL_EXT, "CTRL_EXT"},
69 
70 	/* Interrupt Registers */
71 	{E1000_ICR, "ICR"},
72 
73 	/* Rx Registers */
74 	{E1000_RCTL, "RCTL"},
75 	{E1000_RDLEN(0), "RDLEN"},
76 	{E1000_RDH(0), "RDH"},
77 	{E1000_RDT(0), "RDT"},
78 	{E1000_RDTR, "RDTR"},
79 	{E1000_RXDCTL(0), "RXDCTL"},
80 	{E1000_ERT, "ERT"},
81 	{E1000_RDBAL(0), "RDBAL"},
82 	{E1000_RDBAH(0), "RDBAH"},
83 	{E1000_RDFH, "RDFH"},
84 	{E1000_RDFT, "RDFT"},
85 	{E1000_RDFHS, "RDFHS"},
86 	{E1000_RDFTS, "RDFTS"},
87 	{E1000_RDFPC, "RDFPC"},
88 
89 	/* Tx Registers */
90 	{E1000_TCTL, "TCTL"},
91 	{E1000_TDBAL(0), "TDBAL"},
92 	{E1000_TDBAH(0), "TDBAH"},
93 	{E1000_TDLEN(0), "TDLEN"},
94 	{E1000_TDH(0), "TDH"},
95 	{E1000_TDT(0), "TDT"},
96 	{E1000_TIDV, "TIDV"},
97 	{E1000_TXDCTL(0), "TXDCTL"},
98 	{E1000_TADV, "TADV"},
99 	{E1000_TARC(0), "TARC"},
100 	{E1000_TDFH, "TDFH"},
101 	{E1000_TDFT, "TDFT"},
102 	{E1000_TDFHS, "TDFHS"},
103 	{E1000_TDFTS, "TDFTS"},
104 	{E1000_TDFPC, "TDFPC"},
105 
106 	/* List Terminator */
107 	{0, NULL}
108 };
109 
110 struct e1000e_me_supported {
111 	u16 device_id;		/* supported device ID */
112 };
113 
114 static const struct e1000e_me_supported me_supported[] = {
115 	{E1000_DEV_ID_PCH_LPT_I217_LM},
116 	{E1000_DEV_ID_PCH_LPTLP_I218_LM},
117 	{E1000_DEV_ID_PCH_I218_LM2},
118 	{E1000_DEV_ID_PCH_I218_LM3},
119 	{E1000_DEV_ID_PCH_SPT_I219_LM},
120 	{E1000_DEV_ID_PCH_SPT_I219_LM2},
121 	{E1000_DEV_ID_PCH_LBG_I219_LM3},
122 	{E1000_DEV_ID_PCH_SPT_I219_LM4},
123 	{E1000_DEV_ID_PCH_SPT_I219_LM5},
124 	{E1000_DEV_ID_PCH_CNP_I219_LM6},
125 	{E1000_DEV_ID_PCH_CNP_I219_LM7},
126 	{E1000_DEV_ID_PCH_ICP_I219_LM8},
127 	{E1000_DEV_ID_PCH_ICP_I219_LM9},
128 	{E1000_DEV_ID_PCH_CMP_I219_LM10},
129 	{E1000_DEV_ID_PCH_CMP_I219_LM11},
130 	{E1000_DEV_ID_PCH_CMP_I219_LM12},
131 	{E1000_DEV_ID_PCH_TGP_I219_LM13},
132 	{E1000_DEV_ID_PCH_TGP_I219_LM14},
133 	{E1000_DEV_ID_PCH_TGP_I219_LM15},
134 	{0}
135 };
136 
137 static bool e1000e_check_me(u16 device_id)
138 {
139 	struct e1000e_me_supported *id;
140 
141 	for (id = (struct e1000e_me_supported *)me_supported;
142 	     id->device_id; id++)
143 		if (device_id == id->device_id)
144 			return true;
145 
146 	return false;
147 }
148 
149 /**
150  * __ew32_prepare - prepare to write to MAC CSR register on certain parts
151  * @hw: pointer to the HW structure
152  *
153  * When updating the MAC CSR registers, the Manageability Engine (ME) could
154  * be accessing the registers at the same time.  Normally, this is handled in
155  * h/w by an arbiter but on some parts there is a bug that acknowledges Host
156  * accesses later than it should which could result in the register to have
157  * an incorrect value.  Workaround this by checking the FWSM register which
158  * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set
159  * and try again a number of times.
160  **/
161 static void __ew32_prepare(struct e1000_hw *hw)
162 {
163 	s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT;
164 
165 	while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i)
166 		udelay(50);
167 }
168 
169 void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val)
170 {
171 	if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
172 		__ew32_prepare(hw);
173 
174 	writel(val, hw->hw_addr + reg);
175 }
176 
177 /**
178  * e1000_regdump - register printout routine
179  * @hw: pointer to the HW structure
180  * @reginfo: pointer to the register info table
181  **/
182 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
183 {
184 	int n = 0;
185 	char rname[16];
186 	u32 regs[8];
187 
188 	switch (reginfo->ofs) {
189 	case E1000_RXDCTL(0):
190 		for (n = 0; n < 2; n++)
191 			regs[n] = __er32(hw, E1000_RXDCTL(n));
192 		break;
193 	case E1000_TXDCTL(0):
194 		for (n = 0; n < 2; n++)
195 			regs[n] = __er32(hw, E1000_TXDCTL(n));
196 		break;
197 	case E1000_TARC(0):
198 		for (n = 0; n < 2; n++)
199 			regs[n] = __er32(hw, E1000_TARC(n));
200 		break;
201 	default:
202 		pr_info("%-15s %08x\n",
203 			reginfo->name, __er32(hw, reginfo->ofs));
204 		return;
205 	}
206 
207 	snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
208 	pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
209 }
210 
211 static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
212 				 struct e1000_buffer *bi)
213 {
214 	int i;
215 	struct e1000_ps_page *ps_page;
216 
217 	for (i = 0; i < adapter->rx_ps_pages; i++) {
218 		ps_page = &bi->ps_pages[i];
219 
220 		if (ps_page->page) {
221 			pr_info("packet dump for ps_page %d:\n", i);
222 			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
223 				       16, 1, page_address(ps_page->page),
224 				       PAGE_SIZE, true);
225 		}
226 	}
227 }
228 
229 /**
230  * e1000e_dump - Print registers, Tx-ring and Rx-ring
231  * @adapter: board private structure
232  **/
233 static void e1000e_dump(struct e1000_adapter *adapter)
234 {
235 	struct net_device *netdev = adapter->netdev;
236 	struct e1000_hw *hw = &adapter->hw;
237 	struct e1000_reg_info *reginfo;
238 	struct e1000_ring *tx_ring = adapter->tx_ring;
239 	struct e1000_tx_desc *tx_desc;
240 	struct my_u0 {
241 		__le64 a;
242 		__le64 b;
243 	} *u0;
244 	struct e1000_buffer *buffer_info;
245 	struct e1000_ring *rx_ring = adapter->rx_ring;
246 	union e1000_rx_desc_packet_split *rx_desc_ps;
247 	union e1000_rx_desc_extended *rx_desc;
248 	struct my_u1 {
249 		__le64 a;
250 		__le64 b;
251 		__le64 c;
252 		__le64 d;
253 	} *u1;
254 	u32 staterr;
255 	int i = 0;
256 
257 	if (!netif_msg_hw(adapter))
258 		return;
259 
260 	/* Print netdevice Info */
261 	if (netdev) {
262 		dev_info(&adapter->pdev->dev, "Net device Info\n");
263 		pr_info("Device Name     state            trans_start\n");
264 		pr_info("%-15s %016lX %016lX\n", netdev->name,
265 			netdev->state, dev_trans_start(netdev));
266 	}
267 
268 	/* Print Registers */
269 	dev_info(&adapter->pdev->dev, "Register Dump\n");
270 	pr_info(" Register Name   Value\n");
271 	for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
272 	     reginfo->name; reginfo++) {
273 		e1000_regdump(hw, reginfo);
274 	}
275 
276 	/* Print Tx Ring Summary */
277 	if (!netdev || !netif_running(netdev))
278 		return;
279 
280 	dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
281 	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
282 	buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
283 	pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
284 		0, tx_ring->next_to_use, tx_ring->next_to_clean,
285 		(unsigned long long)buffer_info->dma,
286 		buffer_info->length,
287 		buffer_info->next_to_watch,
288 		(unsigned long long)buffer_info->time_stamp);
289 
290 	/* Print Tx Ring */
291 	if (!netif_msg_tx_done(adapter))
292 		goto rx_ring_summary;
293 
294 	dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
295 
296 	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
297 	 *
298 	 * Legacy Transmit Descriptor
299 	 *   +--------------------------------------------------------------+
300 	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
301 	 *   +--------------------------------------------------------------+
302 	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
303 	 *   +--------------------------------------------------------------+
304 	 *   63       48 47        36 35    32 31     24 23    16 15        0
305 	 *
306 	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
307 	 *   63      48 47    40 39       32 31             16 15    8 7      0
308 	 *   +----------------------------------------------------------------+
309 	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
310 	 *   +----------------------------------------------------------------+
311 	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
312 	 *   +----------------------------------------------------------------+
313 	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
314 	 *
315 	 * Extended Data Descriptor (DTYP=0x1)
316 	 *   +----------------------------------------------------------------+
317 	 * 0 |                     Buffer Address [63:0]                      |
318 	 *   +----------------------------------------------------------------+
319 	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
320 	 *   +----------------------------------------------------------------+
321 	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
322 	 */
323 	pr_info("Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Legacy format\n");
324 	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Context format\n");
325 	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Data format\n");
326 	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
327 		const char *next_desc;
328 		tx_desc = E1000_TX_DESC(*tx_ring, i);
329 		buffer_info = &tx_ring->buffer_info[i];
330 		u0 = (struct my_u0 *)tx_desc;
331 		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
332 			next_desc = " NTC/U";
333 		else if (i == tx_ring->next_to_use)
334 			next_desc = " NTU";
335 		else if (i == tx_ring->next_to_clean)
336 			next_desc = " NTC";
337 		else
338 			next_desc = "";
339 		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p%s\n",
340 			(!(le64_to_cpu(u0->b) & BIT(29)) ? 'l' :
341 			 ((le64_to_cpu(u0->b) & BIT(20)) ? 'd' : 'c')),
342 			i,
343 			(unsigned long long)le64_to_cpu(u0->a),
344 			(unsigned long long)le64_to_cpu(u0->b),
345 			(unsigned long long)buffer_info->dma,
346 			buffer_info->length, buffer_info->next_to_watch,
347 			(unsigned long long)buffer_info->time_stamp,
348 			buffer_info->skb, next_desc);
349 
350 		if (netif_msg_pktdata(adapter) && buffer_info->skb)
351 			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
352 				       16, 1, buffer_info->skb->data,
353 				       buffer_info->skb->len, true);
354 	}
355 
356 	/* Print Rx Ring Summary */
357 rx_ring_summary:
358 	dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
359 	pr_info("Queue [NTU] [NTC]\n");
360 	pr_info(" %5d %5X %5X\n",
361 		0, rx_ring->next_to_use, rx_ring->next_to_clean);
362 
363 	/* Print Rx Ring */
364 	if (!netif_msg_rx_status(adapter))
365 		return;
366 
367 	dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
368 	switch (adapter->rx_ps_pages) {
369 	case 1:
370 	case 2:
371 	case 3:
372 		/* [Extended] Packet Split Receive Descriptor Format
373 		 *
374 		 *    +-----------------------------------------------------+
375 		 *  0 |                Buffer Address 0 [63:0]              |
376 		 *    +-----------------------------------------------------+
377 		 *  8 |                Buffer Address 1 [63:0]              |
378 		 *    +-----------------------------------------------------+
379 		 * 16 |                Buffer Address 2 [63:0]              |
380 		 *    +-----------------------------------------------------+
381 		 * 24 |                Buffer Address 3 [63:0]              |
382 		 *    +-----------------------------------------------------+
383 		 */
384 		pr_info("R  [desc]      [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] [bi->skb] <-- Ext Pkt Split format\n");
385 		/* [Extended] Receive Descriptor (Write-Back) Format
386 		 *
387 		 *   63       48 47    32 31     13 12    8 7    4 3        0
388 		 *   +------------------------------------------------------+
389 		 * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
390 		 *   | Checksum | Ident  |         | Queue |      |  Type   |
391 		 *   +------------------------------------------------------+
392 		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
393 		 *   +------------------------------------------------------+
394 		 *   63       48 47    32 31            20 19               0
395 		 */
396 		pr_info("RWB[desc]      [ck ipid mrqhsh] [vl   l0 ee  es] [ l3  l2  l1 hs] [reserved      ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
397 		for (i = 0; i < rx_ring->count; i++) {
398 			const char *next_desc;
399 			buffer_info = &rx_ring->buffer_info[i];
400 			rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
401 			u1 = (struct my_u1 *)rx_desc_ps;
402 			staterr =
403 			    le32_to_cpu(rx_desc_ps->wb.middle.status_error);
404 
405 			if (i == rx_ring->next_to_use)
406 				next_desc = " NTU";
407 			else if (i == rx_ring->next_to_clean)
408 				next_desc = " NTC";
409 			else
410 				next_desc = "";
411 
412 			if (staterr & E1000_RXD_STAT_DD) {
413 				/* Descriptor Done */
414 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX ---------------- %p%s\n",
415 					"RWB", i,
416 					(unsigned long long)le64_to_cpu(u1->a),
417 					(unsigned long long)le64_to_cpu(u1->b),
418 					(unsigned long long)le64_to_cpu(u1->c),
419 					(unsigned long long)le64_to_cpu(u1->d),
420 					buffer_info->skb, next_desc);
421 			} else {
422 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX %016llX %p%s\n",
423 					"R  ", i,
424 					(unsigned long long)le64_to_cpu(u1->a),
425 					(unsigned long long)le64_to_cpu(u1->b),
426 					(unsigned long long)le64_to_cpu(u1->c),
427 					(unsigned long long)le64_to_cpu(u1->d),
428 					(unsigned long long)buffer_info->dma,
429 					buffer_info->skb, next_desc);
430 
431 				if (netif_msg_pktdata(adapter))
432 					e1000e_dump_ps_pages(adapter,
433 							     buffer_info);
434 			}
435 		}
436 		break;
437 	default:
438 	case 0:
439 		/* Extended Receive Descriptor (Read) Format
440 		 *
441 		 *   +-----------------------------------------------------+
442 		 * 0 |                Buffer Address [63:0]                |
443 		 *   +-----------------------------------------------------+
444 		 * 8 |                      Reserved                       |
445 		 *   +-----------------------------------------------------+
446 		 */
447 		pr_info("R  [desc]      [buf addr 63:0 ] [reserved 63:0 ] [bi->dma       ] [bi->skb] <-- Ext (Read) format\n");
448 		/* Extended Receive Descriptor (Write-Back) Format
449 		 *
450 		 *   63       48 47    32 31    24 23            4 3        0
451 		 *   +------------------------------------------------------+
452 		 *   |     RSS Hash      |        |               |         |
453 		 * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
454 		 *   | Packet   | IP     |        |               |  Type   |
455 		 *   | Checksum | Ident  |        |               |         |
456 		 *   +------------------------------------------------------+
457 		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
458 		 *   +------------------------------------------------------+
459 		 *   63       48 47    32 31            20 19               0
460 		 */
461 		pr_info("RWB[desc]      [cs ipid    mrq] [vt   ln xe  xs] [bi->skb] <-- Ext (Write-Back) format\n");
462 
463 		for (i = 0; i < rx_ring->count; i++) {
464 			const char *next_desc;
465 
466 			buffer_info = &rx_ring->buffer_info[i];
467 			rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
468 			u1 = (struct my_u1 *)rx_desc;
469 			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
470 
471 			if (i == rx_ring->next_to_use)
472 				next_desc = " NTU";
473 			else if (i == rx_ring->next_to_clean)
474 				next_desc = " NTC";
475 			else
476 				next_desc = "";
477 
478 			if (staterr & E1000_RXD_STAT_DD) {
479 				/* Descriptor Done */
480 				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %p%s\n",
481 					"RWB", i,
482 					(unsigned long long)le64_to_cpu(u1->a),
483 					(unsigned long long)le64_to_cpu(u1->b),
484 					buffer_info->skb, next_desc);
485 			} else {
486 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %p%s\n",
487 					"R  ", i,
488 					(unsigned long long)le64_to_cpu(u1->a),
489 					(unsigned long long)le64_to_cpu(u1->b),
490 					(unsigned long long)buffer_info->dma,
491 					buffer_info->skb, next_desc);
492 
493 				if (netif_msg_pktdata(adapter) &&
494 				    buffer_info->skb)
495 					print_hex_dump(KERN_INFO, "",
496 						       DUMP_PREFIX_ADDRESS, 16,
497 						       1,
498 						       buffer_info->skb->data,
499 						       adapter->rx_buffer_len,
500 						       true);
501 			}
502 		}
503 	}
504 }
505 
506 /**
507  * e1000_desc_unused - calculate if we have unused descriptors
508  **/
509 static int e1000_desc_unused(struct e1000_ring *ring)
510 {
511 	if (ring->next_to_clean > ring->next_to_use)
512 		return ring->next_to_clean - ring->next_to_use - 1;
513 
514 	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
515 }
516 
517 /**
518  * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
519  * @adapter: board private structure
520  * @hwtstamps: time stamp structure to update
521  * @systim: unsigned 64bit system time value.
522  *
523  * Convert the system time value stored in the RX/TXSTMP registers into a
524  * hwtstamp which can be used by the upper level time stamping functions.
525  *
526  * The 'systim_lock' spinlock is used to protect the consistency of the
527  * system time value. This is needed because reading the 64 bit time
528  * value involves reading two 32 bit registers. The first read latches the
529  * value.
530  **/
531 static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter,
532 				      struct skb_shared_hwtstamps *hwtstamps,
533 				      u64 systim)
534 {
535 	u64 ns;
536 	unsigned long flags;
537 
538 	spin_lock_irqsave(&adapter->systim_lock, flags);
539 	ns = timecounter_cyc2time(&adapter->tc, systim);
540 	spin_unlock_irqrestore(&adapter->systim_lock, flags);
541 
542 	memset(hwtstamps, 0, sizeof(*hwtstamps));
543 	hwtstamps->hwtstamp = ns_to_ktime(ns);
544 }
545 
546 /**
547  * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
548  * @adapter: board private structure
549  * @status: descriptor extended error and status field
550  * @skb: particular skb to include time stamp
551  *
552  * If the time stamp is valid, convert it into the timecounter ns value
553  * and store that result into the shhwtstamps structure which is passed
554  * up the network stack.
555  **/
556 static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status,
557 			       struct sk_buff *skb)
558 {
559 	struct e1000_hw *hw = &adapter->hw;
560 	u64 rxstmp;
561 
562 	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) ||
563 	    !(status & E1000_RXDEXT_STATERR_TST) ||
564 	    !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
565 		return;
566 
567 	/* The Rx time stamp registers contain the time stamp.  No other
568 	 * received packet will be time stamped until the Rx time stamp
569 	 * registers are read.  Because only one packet can be time stamped
570 	 * at a time, the register values must belong to this packet and
571 	 * therefore none of the other additional attributes need to be
572 	 * compared.
573 	 */
574 	rxstmp = (u64)er32(RXSTMPL);
575 	rxstmp |= (u64)er32(RXSTMPH) << 32;
576 	e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp);
577 
578 	adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP;
579 }
580 
581 /**
582  * e1000_receive_skb - helper function to handle Rx indications
583  * @adapter: board private structure
584  * @staterr: descriptor extended error and status field as written by hardware
585  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
586  * @skb: pointer to sk_buff to be indicated to stack
587  **/
588 static void e1000_receive_skb(struct e1000_adapter *adapter,
589 			      struct net_device *netdev, struct sk_buff *skb,
590 			      u32 staterr, __le16 vlan)
591 {
592 	u16 tag = le16_to_cpu(vlan);
593 
594 	e1000e_rx_hwtstamp(adapter, staterr, skb);
595 
596 	skb->protocol = eth_type_trans(skb, netdev);
597 
598 	if (staterr & E1000_RXD_STAT_VP)
599 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag);
600 
601 	napi_gro_receive(&adapter->napi, skb);
602 }
603 
604 /**
605  * e1000_rx_checksum - Receive Checksum Offload
606  * @adapter: board private structure
607  * @status_err: receive descriptor status and error fields
608  * @csum: receive descriptor csum field
609  * @sk_buff: socket buffer with received data
610  **/
611 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
612 			      struct sk_buff *skb)
613 {
614 	u16 status = (u16)status_err;
615 	u8 errors = (u8)(status_err >> 24);
616 
617 	skb_checksum_none_assert(skb);
618 
619 	/* Rx checksum disabled */
620 	if (!(adapter->netdev->features & NETIF_F_RXCSUM))
621 		return;
622 
623 	/* Ignore Checksum bit is set */
624 	if (status & E1000_RXD_STAT_IXSM)
625 		return;
626 
627 	/* TCP/UDP checksum error bit or IP checksum error bit is set */
628 	if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
629 		/* let the stack verify checksum errors */
630 		adapter->hw_csum_err++;
631 		return;
632 	}
633 
634 	/* TCP/UDP Checksum has not been calculated */
635 	if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
636 		return;
637 
638 	/* It must be a TCP or UDP packet with a valid checksum */
639 	skb->ip_summed = CHECKSUM_UNNECESSARY;
640 	adapter->hw_csum_good++;
641 }
642 
643 static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
644 {
645 	struct e1000_adapter *adapter = rx_ring->adapter;
646 	struct e1000_hw *hw = &adapter->hw;
647 
648 	__ew32_prepare(hw);
649 	writel(i, rx_ring->tail);
650 
651 	if (unlikely(i != readl(rx_ring->tail))) {
652 		u32 rctl = er32(RCTL);
653 
654 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
655 		e_err("ME firmware caused invalid RDT - resetting\n");
656 		schedule_work(&adapter->reset_task);
657 	}
658 }
659 
660 static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
661 {
662 	struct e1000_adapter *adapter = tx_ring->adapter;
663 	struct e1000_hw *hw = &adapter->hw;
664 
665 	__ew32_prepare(hw);
666 	writel(i, tx_ring->tail);
667 
668 	if (unlikely(i != readl(tx_ring->tail))) {
669 		u32 tctl = er32(TCTL);
670 
671 		ew32(TCTL, tctl & ~E1000_TCTL_EN);
672 		e_err("ME firmware caused invalid TDT - resetting\n");
673 		schedule_work(&adapter->reset_task);
674 	}
675 }
676 
677 /**
678  * e1000_alloc_rx_buffers - Replace used receive buffers
679  * @rx_ring: Rx descriptor ring
680  **/
681 static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
682 				   int cleaned_count, gfp_t gfp)
683 {
684 	struct e1000_adapter *adapter = rx_ring->adapter;
685 	struct net_device *netdev = adapter->netdev;
686 	struct pci_dev *pdev = adapter->pdev;
687 	union e1000_rx_desc_extended *rx_desc;
688 	struct e1000_buffer *buffer_info;
689 	struct sk_buff *skb;
690 	unsigned int i;
691 	unsigned int bufsz = adapter->rx_buffer_len;
692 
693 	i = rx_ring->next_to_use;
694 	buffer_info = &rx_ring->buffer_info[i];
695 
696 	while (cleaned_count--) {
697 		skb = buffer_info->skb;
698 		if (skb) {
699 			skb_trim(skb, 0);
700 			goto map_skb;
701 		}
702 
703 		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
704 		if (!skb) {
705 			/* Better luck next round */
706 			adapter->alloc_rx_buff_failed++;
707 			break;
708 		}
709 
710 		buffer_info->skb = skb;
711 map_skb:
712 		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
713 						  adapter->rx_buffer_len,
714 						  DMA_FROM_DEVICE);
715 		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
716 			dev_err(&pdev->dev, "Rx DMA map failed\n");
717 			adapter->rx_dma_failed++;
718 			break;
719 		}
720 
721 		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
722 		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
723 
724 		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
725 			/* Force memory writes to complete before letting h/w
726 			 * know there are new descriptors to fetch.  (Only
727 			 * applicable for weak-ordered memory model archs,
728 			 * such as IA-64).
729 			 */
730 			wmb();
731 			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
732 				e1000e_update_rdt_wa(rx_ring, i);
733 			else
734 				writel(i, rx_ring->tail);
735 		}
736 		i++;
737 		if (i == rx_ring->count)
738 			i = 0;
739 		buffer_info = &rx_ring->buffer_info[i];
740 	}
741 
742 	rx_ring->next_to_use = i;
743 }
744 
745 /**
746  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
747  * @rx_ring: Rx descriptor ring
748  **/
749 static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
750 				      int cleaned_count, gfp_t gfp)
751 {
752 	struct e1000_adapter *adapter = rx_ring->adapter;
753 	struct net_device *netdev = adapter->netdev;
754 	struct pci_dev *pdev = adapter->pdev;
755 	union e1000_rx_desc_packet_split *rx_desc;
756 	struct e1000_buffer *buffer_info;
757 	struct e1000_ps_page *ps_page;
758 	struct sk_buff *skb;
759 	unsigned int i, j;
760 
761 	i = rx_ring->next_to_use;
762 	buffer_info = &rx_ring->buffer_info[i];
763 
764 	while (cleaned_count--) {
765 		rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
766 
767 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
768 			ps_page = &buffer_info->ps_pages[j];
769 			if (j >= adapter->rx_ps_pages) {
770 				/* all unused desc entries get hw null ptr */
771 				rx_desc->read.buffer_addr[j + 1] =
772 				    ~cpu_to_le64(0);
773 				continue;
774 			}
775 			if (!ps_page->page) {
776 				ps_page->page = alloc_page(gfp);
777 				if (!ps_page->page) {
778 					adapter->alloc_rx_buff_failed++;
779 					goto no_buffers;
780 				}
781 				ps_page->dma = dma_map_page(&pdev->dev,
782 							    ps_page->page,
783 							    0, PAGE_SIZE,
784 							    DMA_FROM_DEVICE);
785 				if (dma_mapping_error(&pdev->dev,
786 						      ps_page->dma)) {
787 					dev_err(&adapter->pdev->dev,
788 						"Rx DMA page map failed\n");
789 					adapter->rx_dma_failed++;
790 					goto no_buffers;
791 				}
792 			}
793 			/* Refresh the desc even if buffer_addrs
794 			 * didn't change because each write-back
795 			 * erases this info.
796 			 */
797 			rx_desc->read.buffer_addr[j + 1] =
798 			    cpu_to_le64(ps_page->dma);
799 		}
800 
801 		skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0,
802 						  gfp);
803 
804 		if (!skb) {
805 			adapter->alloc_rx_buff_failed++;
806 			break;
807 		}
808 
809 		buffer_info->skb = skb;
810 		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
811 						  adapter->rx_ps_bsize0,
812 						  DMA_FROM_DEVICE);
813 		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
814 			dev_err(&pdev->dev, "Rx DMA map failed\n");
815 			adapter->rx_dma_failed++;
816 			/* cleanup skb */
817 			dev_kfree_skb_any(skb);
818 			buffer_info->skb = NULL;
819 			break;
820 		}
821 
822 		rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
823 
824 		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
825 			/* Force memory writes to complete before letting h/w
826 			 * know there are new descriptors to fetch.  (Only
827 			 * applicable for weak-ordered memory model archs,
828 			 * such as IA-64).
829 			 */
830 			wmb();
831 			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
832 				e1000e_update_rdt_wa(rx_ring, i << 1);
833 			else
834 				writel(i << 1, rx_ring->tail);
835 		}
836 
837 		i++;
838 		if (i == rx_ring->count)
839 			i = 0;
840 		buffer_info = &rx_ring->buffer_info[i];
841 	}
842 
843 no_buffers:
844 	rx_ring->next_to_use = i;
845 }
846 
847 /**
848  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
849  * @rx_ring: Rx descriptor ring
850  * @cleaned_count: number of buffers to allocate this pass
851  **/
852 
853 static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
854 					 int cleaned_count, gfp_t gfp)
855 {
856 	struct e1000_adapter *adapter = rx_ring->adapter;
857 	struct net_device *netdev = adapter->netdev;
858 	struct pci_dev *pdev = adapter->pdev;
859 	union e1000_rx_desc_extended *rx_desc;
860 	struct e1000_buffer *buffer_info;
861 	struct sk_buff *skb;
862 	unsigned int i;
863 	unsigned int bufsz = 256 - 16;	/* for skb_reserve */
864 
865 	i = rx_ring->next_to_use;
866 	buffer_info = &rx_ring->buffer_info[i];
867 
868 	while (cleaned_count--) {
869 		skb = buffer_info->skb;
870 		if (skb) {
871 			skb_trim(skb, 0);
872 			goto check_page;
873 		}
874 
875 		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
876 		if (unlikely(!skb)) {
877 			/* Better luck next round */
878 			adapter->alloc_rx_buff_failed++;
879 			break;
880 		}
881 
882 		buffer_info->skb = skb;
883 check_page:
884 		/* allocate a new page if necessary */
885 		if (!buffer_info->page) {
886 			buffer_info->page = alloc_page(gfp);
887 			if (unlikely(!buffer_info->page)) {
888 				adapter->alloc_rx_buff_failed++;
889 				break;
890 			}
891 		}
892 
893 		if (!buffer_info->dma) {
894 			buffer_info->dma = dma_map_page(&pdev->dev,
895 							buffer_info->page, 0,
896 							PAGE_SIZE,
897 							DMA_FROM_DEVICE);
898 			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
899 				adapter->alloc_rx_buff_failed++;
900 				break;
901 			}
902 		}
903 
904 		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
905 		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
906 
907 		if (unlikely(++i == rx_ring->count))
908 			i = 0;
909 		buffer_info = &rx_ring->buffer_info[i];
910 	}
911 
912 	if (likely(rx_ring->next_to_use != i)) {
913 		rx_ring->next_to_use = i;
914 		if (unlikely(i-- == 0))
915 			i = (rx_ring->count - 1);
916 
917 		/* Force memory writes to complete before letting h/w
918 		 * know there are new descriptors to fetch.  (Only
919 		 * applicable for weak-ordered memory model archs,
920 		 * such as IA-64).
921 		 */
922 		wmb();
923 		if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
924 			e1000e_update_rdt_wa(rx_ring, i);
925 		else
926 			writel(i, rx_ring->tail);
927 	}
928 }
929 
930 static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
931 				 struct sk_buff *skb)
932 {
933 	if (netdev->features & NETIF_F_RXHASH)
934 		skb_set_hash(skb, le32_to_cpu(rss), PKT_HASH_TYPE_L3);
935 }
936 
937 /**
938  * e1000_clean_rx_irq - Send received data up the network stack
939  * @rx_ring: Rx descriptor ring
940  *
941  * the return value indicates whether actual cleaning was done, there
942  * is no guarantee that everything was cleaned
943  **/
944 static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
945 			       int work_to_do)
946 {
947 	struct e1000_adapter *adapter = rx_ring->adapter;
948 	struct net_device *netdev = adapter->netdev;
949 	struct pci_dev *pdev = adapter->pdev;
950 	struct e1000_hw *hw = &adapter->hw;
951 	union e1000_rx_desc_extended *rx_desc, *next_rxd;
952 	struct e1000_buffer *buffer_info, *next_buffer;
953 	u32 length, staterr;
954 	unsigned int i;
955 	int cleaned_count = 0;
956 	bool cleaned = false;
957 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
958 
959 	i = rx_ring->next_to_clean;
960 	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
961 	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
962 	buffer_info = &rx_ring->buffer_info[i];
963 
964 	while (staterr & E1000_RXD_STAT_DD) {
965 		struct sk_buff *skb;
966 
967 		if (*work_done >= work_to_do)
968 			break;
969 		(*work_done)++;
970 		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
971 
972 		skb = buffer_info->skb;
973 		buffer_info->skb = NULL;
974 
975 		prefetch(skb->data - NET_IP_ALIGN);
976 
977 		i++;
978 		if (i == rx_ring->count)
979 			i = 0;
980 		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
981 		prefetch(next_rxd);
982 
983 		next_buffer = &rx_ring->buffer_info[i];
984 
985 		cleaned = true;
986 		cleaned_count++;
987 		dma_unmap_single(&pdev->dev, buffer_info->dma,
988 				 adapter->rx_buffer_len, DMA_FROM_DEVICE);
989 		buffer_info->dma = 0;
990 
991 		length = le16_to_cpu(rx_desc->wb.upper.length);
992 
993 		/* !EOP means multiple descriptors were used to store a single
994 		 * packet, if that's the case we need to toss it.  In fact, we
995 		 * need to toss every packet with the EOP bit clear and the
996 		 * next frame that _does_ have the EOP bit set, as it is by
997 		 * definition only a frame fragment
998 		 */
999 		if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
1000 			adapter->flags2 |= FLAG2_IS_DISCARDING;
1001 
1002 		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1003 			/* All receives must fit into a single buffer */
1004 			e_dbg("Receive packet consumed multiple buffers\n");
1005 			/* recycle */
1006 			buffer_info->skb = skb;
1007 			if (staterr & E1000_RXD_STAT_EOP)
1008 				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1009 			goto next_desc;
1010 		}
1011 
1012 		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1013 			     !(netdev->features & NETIF_F_RXALL))) {
1014 			/* recycle */
1015 			buffer_info->skb = skb;
1016 			goto next_desc;
1017 		}
1018 
1019 		/* adjust length to remove Ethernet CRC */
1020 		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1021 			/* If configured to store CRC, don't subtract FCS,
1022 			 * but keep the FCS bytes out of the total_rx_bytes
1023 			 * counter
1024 			 */
1025 			if (netdev->features & NETIF_F_RXFCS)
1026 				total_rx_bytes -= 4;
1027 			else
1028 				length -= 4;
1029 		}
1030 
1031 		total_rx_bytes += length;
1032 		total_rx_packets++;
1033 
1034 		/* code added for copybreak, this should improve
1035 		 * performance for small packets with large amounts
1036 		 * of reassembly being done in the stack
1037 		 */
1038 		if (length < copybreak) {
1039 			struct sk_buff *new_skb =
1040 				napi_alloc_skb(&adapter->napi, length);
1041 			if (new_skb) {
1042 				skb_copy_to_linear_data_offset(new_skb,
1043 							       -NET_IP_ALIGN,
1044 							       (skb->data -
1045 								NET_IP_ALIGN),
1046 							       (length +
1047 								NET_IP_ALIGN));
1048 				/* save the skb in buffer_info as good */
1049 				buffer_info->skb = skb;
1050 				skb = new_skb;
1051 			}
1052 			/* else just continue with the old one */
1053 		}
1054 		/* end copybreak code */
1055 		skb_put(skb, length);
1056 
1057 		/* Receive Checksum Offload */
1058 		e1000_rx_checksum(adapter, staterr, skb);
1059 
1060 		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1061 
1062 		e1000_receive_skb(adapter, netdev, skb, staterr,
1063 				  rx_desc->wb.upper.vlan);
1064 
1065 next_desc:
1066 		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1067 
1068 		/* return some buffers to hardware, one at a time is too slow */
1069 		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1070 			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1071 					      GFP_ATOMIC);
1072 			cleaned_count = 0;
1073 		}
1074 
1075 		/* use prefetched values */
1076 		rx_desc = next_rxd;
1077 		buffer_info = next_buffer;
1078 
1079 		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1080 	}
1081 	rx_ring->next_to_clean = i;
1082 
1083 	cleaned_count = e1000_desc_unused(rx_ring);
1084 	if (cleaned_count)
1085 		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1086 
1087 	adapter->total_rx_bytes += total_rx_bytes;
1088 	adapter->total_rx_packets += total_rx_packets;
1089 	return cleaned;
1090 }
1091 
1092 static void e1000_put_txbuf(struct e1000_ring *tx_ring,
1093 			    struct e1000_buffer *buffer_info,
1094 			    bool drop)
1095 {
1096 	struct e1000_adapter *adapter = tx_ring->adapter;
1097 
1098 	if (buffer_info->dma) {
1099 		if (buffer_info->mapped_as_page)
1100 			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1101 				       buffer_info->length, DMA_TO_DEVICE);
1102 		else
1103 			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1104 					 buffer_info->length, DMA_TO_DEVICE);
1105 		buffer_info->dma = 0;
1106 	}
1107 	if (buffer_info->skb) {
1108 		if (drop)
1109 			dev_kfree_skb_any(buffer_info->skb);
1110 		else
1111 			dev_consume_skb_any(buffer_info->skb);
1112 		buffer_info->skb = NULL;
1113 	}
1114 	buffer_info->time_stamp = 0;
1115 }
1116 
1117 static void e1000_print_hw_hang(struct work_struct *work)
1118 {
1119 	struct e1000_adapter *adapter = container_of(work,
1120 						     struct e1000_adapter,
1121 						     print_hang_task);
1122 	struct net_device *netdev = adapter->netdev;
1123 	struct e1000_ring *tx_ring = adapter->tx_ring;
1124 	unsigned int i = tx_ring->next_to_clean;
1125 	unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1126 	struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1127 	struct e1000_hw *hw = &adapter->hw;
1128 	u16 phy_status, phy_1000t_status, phy_ext_status;
1129 	u16 pci_status;
1130 
1131 	if (test_bit(__E1000_DOWN, &adapter->state))
1132 		return;
1133 
1134 	if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) {
1135 		/* May be block on write-back, flush and detect again
1136 		 * flush pending descriptor writebacks to memory
1137 		 */
1138 		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1139 		/* execute the writes immediately */
1140 		e1e_flush();
1141 		/* Due to rare timing issues, write to TIDV again to ensure
1142 		 * the write is successful
1143 		 */
1144 		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1145 		/* execute the writes immediately */
1146 		e1e_flush();
1147 		adapter->tx_hang_recheck = true;
1148 		return;
1149 	}
1150 	adapter->tx_hang_recheck = false;
1151 
1152 	if (er32(TDH(0)) == er32(TDT(0))) {
1153 		e_dbg("false hang detected, ignoring\n");
1154 		return;
1155 	}
1156 
1157 	/* Real hang detected */
1158 	netif_stop_queue(netdev);
1159 
1160 	e1e_rphy(hw, MII_BMSR, &phy_status);
1161 	e1e_rphy(hw, MII_STAT1000, &phy_1000t_status);
1162 	e1e_rphy(hw, MII_ESTATUS, &phy_ext_status);
1163 
1164 	pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1165 
1166 	/* detected Hardware unit hang */
1167 	e_err("Detected Hardware Unit Hang:\n"
1168 	      "  TDH                  <%x>\n"
1169 	      "  TDT                  <%x>\n"
1170 	      "  next_to_use          <%x>\n"
1171 	      "  next_to_clean        <%x>\n"
1172 	      "buffer_info[next_to_clean]:\n"
1173 	      "  time_stamp           <%lx>\n"
1174 	      "  next_to_watch        <%x>\n"
1175 	      "  jiffies              <%lx>\n"
1176 	      "  next_to_watch.status <%x>\n"
1177 	      "MAC Status             <%x>\n"
1178 	      "PHY Status             <%x>\n"
1179 	      "PHY 1000BASE-T Status  <%x>\n"
1180 	      "PHY Extended Status    <%x>\n"
1181 	      "PCI Status             <%x>\n",
1182 	      readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use,
1183 	      tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp,
1184 	      eop, jiffies, eop_desc->upper.fields.status, er32(STATUS),
1185 	      phy_status, phy_1000t_status, phy_ext_status, pci_status);
1186 
1187 	e1000e_dump(adapter);
1188 
1189 	/* Suggest workaround for known h/w issue */
1190 	if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1191 		e_err("Try turning off Tx pause (flow control) via ethtool\n");
1192 }
1193 
1194 /**
1195  * e1000e_tx_hwtstamp_work - check for Tx time stamp
1196  * @work: pointer to work struct
1197  *
1198  * This work function polls the TSYNCTXCTL valid bit to determine when a
1199  * timestamp has been taken for the current stored skb.  The timestamp must
1200  * be for this skb because only one such packet is allowed in the queue.
1201  */
1202 static void e1000e_tx_hwtstamp_work(struct work_struct *work)
1203 {
1204 	struct e1000_adapter *adapter = container_of(work, struct e1000_adapter,
1205 						     tx_hwtstamp_work);
1206 	struct e1000_hw *hw = &adapter->hw;
1207 
1208 	if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) {
1209 		struct sk_buff *skb = adapter->tx_hwtstamp_skb;
1210 		struct skb_shared_hwtstamps shhwtstamps;
1211 		u64 txstmp;
1212 
1213 		txstmp = er32(TXSTMPL);
1214 		txstmp |= (u64)er32(TXSTMPH) << 32;
1215 
1216 		e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp);
1217 
1218 		/* Clear the global tx_hwtstamp_skb pointer and force writes
1219 		 * prior to notifying the stack of a Tx timestamp.
1220 		 */
1221 		adapter->tx_hwtstamp_skb = NULL;
1222 		wmb(); /* force write prior to skb_tstamp_tx */
1223 
1224 		skb_tstamp_tx(skb, &shhwtstamps);
1225 		dev_consume_skb_any(skb);
1226 	} else if (time_after(jiffies, adapter->tx_hwtstamp_start
1227 			      + adapter->tx_timeout_factor * HZ)) {
1228 		dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1229 		adapter->tx_hwtstamp_skb = NULL;
1230 		adapter->tx_hwtstamp_timeouts++;
1231 		e_warn("clearing Tx timestamp hang\n");
1232 	} else {
1233 		/* reschedule to check later */
1234 		schedule_work(&adapter->tx_hwtstamp_work);
1235 	}
1236 }
1237 
1238 /**
1239  * e1000_clean_tx_irq - Reclaim resources after transmit completes
1240  * @tx_ring: Tx descriptor ring
1241  *
1242  * the return value indicates whether actual cleaning was done, there
1243  * is no guarantee that everything was cleaned
1244  **/
1245 static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1246 {
1247 	struct e1000_adapter *adapter = tx_ring->adapter;
1248 	struct net_device *netdev = adapter->netdev;
1249 	struct e1000_hw *hw = &adapter->hw;
1250 	struct e1000_tx_desc *tx_desc, *eop_desc;
1251 	struct e1000_buffer *buffer_info;
1252 	unsigned int i, eop;
1253 	unsigned int count = 0;
1254 	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1255 	unsigned int bytes_compl = 0, pkts_compl = 0;
1256 
1257 	i = tx_ring->next_to_clean;
1258 	eop = tx_ring->buffer_info[i].next_to_watch;
1259 	eop_desc = E1000_TX_DESC(*tx_ring, eop);
1260 
1261 	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1262 	       (count < tx_ring->count)) {
1263 		bool cleaned = false;
1264 
1265 		dma_rmb();		/* read buffer_info after eop_desc */
1266 		for (; !cleaned; count++) {
1267 			tx_desc = E1000_TX_DESC(*tx_ring, i);
1268 			buffer_info = &tx_ring->buffer_info[i];
1269 			cleaned = (i == eop);
1270 
1271 			if (cleaned) {
1272 				total_tx_packets += buffer_info->segs;
1273 				total_tx_bytes += buffer_info->bytecount;
1274 				if (buffer_info->skb) {
1275 					bytes_compl += buffer_info->skb->len;
1276 					pkts_compl++;
1277 				}
1278 			}
1279 
1280 			e1000_put_txbuf(tx_ring, buffer_info, false);
1281 			tx_desc->upper.data = 0;
1282 
1283 			i++;
1284 			if (i == tx_ring->count)
1285 				i = 0;
1286 		}
1287 
1288 		if (i == tx_ring->next_to_use)
1289 			break;
1290 		eop = tx_ring->buffer_info[i].next_to_watch;
1291 		eop_desc = E1000_TX_DESC(*tx_ring, eop);
1292 	}
1293 
1294 	tx_ring->next_to_clean = i;
1295 
1296 	netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1297 
1298 #define TX_WAKE_THRESHOLD 32
1299 	if (count && netif_carrier_ok(netdev) &&
1300 	    e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1301 		/* Make sure that anybody stopping the queue after this
1302 		 * sees the new next_to_clean.
1303 		 */
1304 		smp_mb();
1305 
1306 		if (netif_queue_stopped(netdev) &&
1307 		    !(test_bit(__E1000_DOWN, &adapter->state))) {
1308 			netif_wake_queue(netdev);
1309 			++adapter->restart_queue;
1310 		}
1311 	}
1312 
1313 	if (adapter->detect_tx_hung) {
1314 		/* Detect a transmit hang in hardware, this serializes the
1315 		 * check with the clearing of time_stamp and movement of i
1316 		 */
1317 		adapter->detect_tx_hung = false;
1318 		if (tx_ring->buffer_info[i].time_stamp &&
1319 		    time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1320 			       + (adapter->tx_timeout_factor * HZ)) &&
1321 		    !(er32(STATUS) & E1000_STATUS_TXOFF))
1322 			schedule_work(&adapter->print_hang_task);
1323 		else
1324 			adapter->tx_hang_recheck = false;
1325 	}
1326 	adapter->total_tx_bytes += total_tx_bytes;
1327 	adapter->total_tx_packets += total_tx_packets;
1328 	return count < tx_ring->count;
1329 }
1330 
1331 /**
1332  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1333  * @rx_ring: Rx descriptor ring
1334  *
1335  * the return value indicates whether actual cleaning was done, there
1336  * is no guarantee that everything was cleaned
1337  **/
1338 static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1339 				  int work_to_do)
1340 {
1341 	struct e1000_adapter *adapter = rx_ring->adapter;
1342 	struct e1000_hw *hw = &adapter->hw;
1343 	union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1344 	struct net_device *netdev = adapter->netdev;
1345 	struct pci_dev *pdev = adapter->pdev;
1346 	struct e1000_buffer *buffer_info, *next_buffer;
1347 	struct e1000_ps_page *ps_page;
1348 	struct sk_buff *skb;
1349 	unsigned int i, j;
1350 	u32 length, staterr;
1351 	int cleaned_count = 0;
1352 	bool cleaned = false;
1353 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1354 
1355 	i = rx_ring->next_to_clean;
1356 	rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1357 	staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1358 	buffer_info = &rx_ring->buffer_info[i];
1359 
1360 	while (staterr & E1000_RXD_STAT_DD) {
1361 		if (*work_done >= work_to_do)
1362 			break;
1363 		(*work_done)++;
1364 		skb = buffer_info->skb;
1365 		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
1366 
1367 		/* in the packet split case this is header only */
1368 		prefetch(skb->data - NET_IP_ALIGN);
1369 
1370 		i++;
1371 		if (i == rx_ring->count)
1372 			i = 0;
1373 		next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1374 		prefetch(next_rxd);
1375 
1376 		next_buffer = &rx_ring->buffer_info[i];
1377 
1378 		cleaned = true;
1379 		cleaned_count++;
1380 		dma_unmap_single(&pdev->dev, buffer_info->dma,
1381 				 adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1382 		buffer_info->dma = 0;
1383 
1384 		/* see !EOP comment in other Rx routine */
1385 		if (!(staterr & E1000_RXD_STAT_EOP))
1386 			adapter->flags2 |= FLAG2_IS_DISCARDING;
1387 
1388 		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1389 			e_dbg("Packet Split buffers didn't pick up the full packet\n");
1390 			dev_kfree_skb_irq(skb);
1391 			if (staterr & E1000_RXD_STAT_EOP)
1392 				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1393 			goto next_desc;
1394 		}
1395 
1396 		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1397 			     !(netdev->features & NETIF_F_RXALL))) {
1398 			dev_kfree_skb_irq(skb);
1399 			goto next_desc;
1400 		}
1401 
1402 		length = le16_to_cpu(rx_desc->wb.middle.length0);
1403 
1404 		if (!length) {
1405 			e_dbg("Last part of the packet spanning multiple descriptors\n");
1406 			dev_kfree_skb_irq(skb);
1407 			goto next_desc;
1408 		}
1409 
1410 		/* Good Receive */
1411 		skb_put(skb, length);
1412 
1413 		{
1414 			/* this looks ugly, but it seems compiler issues make
1415 			 * it more efficient than reusing j
1416 			 */
1417 			int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1418 
1419 			/* page alloc/put takes too long and effects small
1420 			 * packet throughput, so unsplit small packets and
1421 			 * save the alloc/put only valid in softirq (napi)
1422 			 * context to call kmap_*
1423 			 */
1424 			if (l1 && (l1 <= copybreak) &&
1425 			    ((length + l1) <= adapter->rx_ps_bsize0)) {
1426 				u8 *vaddr;
1427 
1428 				ps_page = &buffer_info->ps_pages[0];
1429 
1430 				/* there is no documentation about how to call
1431 				 * kmap_atomic, so we can't hold the mapping
1432 				 * very long
1433 				 */
1434 				dma_sync_single_for_cpu(&pdev->dev,
1435 							ps_page->dma,
1436 							PAGE_SIZE,
1437 							DMA_FROM_DEVICE);
1438 				vaddr = kmap_atomic(ps_page->page);
1439 				memcpy(skb_tail_pointer(skb), vaddr, l1);
1440 				kunmap_atomic(vaddr);
1441 				dma_sync_single_for_device(&pdev->dev,
1442 							   ps_page->dma,
1443 							   PAGE_SIZE,
1444 							   DMA_FROM_DEVICE);
1445 
1446 				/* remove the CRC */
1447 				if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1448 					if (!(netdev->features & NETIF_F_RXFCS))
1449 						l1 -= 4;
1450 				}
1451 
1452 				skb_put(skb, l1);
1453 				goto copydone;
1454 			}	/* if */
1455 		}
1456 
1457 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1458 			length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1459 			if (!length)
1460 				break;
1461 
1462 			ps_page = &buffer_info->ps_pages[j];
1463 			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1464 				       DMA_FROM_DEVICE);
1465 			ps_page->dma = 0;
1466 			skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1467 			ps_page->page = NULL;
1468 			skb->len += length;
1469 			skb->data_len += length;
1470 			skb->truesize += PAGE_SIZE;
1471 		}
1472 
1473 		/* strip the ethernet crc, problem is we're using pages now so
1474 		 * this whole operation can get a little cpu intensive
1475 		 */
1476 		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1477 			if (!(netdev->features & NETIF_F_RXFCS))
1478 				pskb_trim(skb, skb->len - 4);
1479 		}
1480 
1481 copydone:
1482 		total_rx_bytes += skb->len;
1483 		total_rx_packets++;
1484 
1485 		e1000_rx_checksum(adapter, staterr, skb);
1486 
1487 		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1488 
1489 		if (rx_desc->wb.upper.header_status &
1490 		    cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1491 			adapter->rx_hdr_split++;
1492 
1493 		e1000_receive_skb(adapter, netdev, skb, staterr,
1494 				  rx_desc->wb.middle.vlan);
1495 
1496 next_desc:
1497 		rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1498 		buffer_info->skb = NULL;
1499 
1500 		/* return some buffers to hardware, one at a time is too slow */
1501 		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1502 			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1503 					      GFP_ATOMIC);
1504 			cleaned_count = 0;
1505 		}
1506 
1507 		/* use prefetched values */
1508 		rx_desc = next_rxd;
1509 		buffer_info = next_buffer;
1510 
1511 		staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1512 	}
1513 	rx_ring->next_to_clean = i;
1514 
1515 	cleaned_count = e1000_desc_unused(rx_ring);
1516 	if (cleaned_count)
1517 		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1518 
1519 	adapter->total_rx_bytes += total_rx_bytes;
1520 	adapter->total_rx_packets += total_rx_packets;
1521 	return cleaned;
1522 }
1523 
1524 /**
1525  * e1000_consume_page - helper function
1526  **/
1527 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1528 			       u16 length)
1529 {
1530 	bi->page = NULL;
1531 	skb->len += length;
1532 	skb->data_len += length;
1533 	skb->truesize += PAGE_SIZE;
1534 }
1535 
1536 /**
1537  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1538  * @adapter: board private structure
1539  *
1540  * the return value indicates whether actual cleaning was done, there
1541  * is no guarantee that everything was cleaned
1542  **/
1543 static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1544 				     int work_to_do)
1545 {
1546 	struct e1000_adapter *adapter = rx_ring->adapter;
1547 	struct net_device *netdev = adapter->netdev;
1548 	struct pci_dev *pdev = adapter->pdev;
1549 	union e1000_rx_desc_extended *rx_desc, *next_rxd;
1550 	struct e1000_buffer *buffer_info, *next_buffer;
1551 	u32 length, staterr;
1552 	unsigned int i;
1553 	int cleaned_count = 0;
1554 	bool cleaned = false;
1555 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1556 	struct skb_shared_info *shinfo;
1557 
1558 	i = rx_ring->next_to_clean;
1559 	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1560 	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1561 	buffer_info = &rx_ring->buffer_info[i];
1562 
1563 	while (staterr & E1000_RXD_STAT_DD) {
1564 		struct sk_buff *skb;
1565 
1566 		if (*work_done >= work_to_do)
1567 			break;
1568 		(*work_done)++;
1569 		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
1570 
1571 		skb = buffer_info->skb;
1572 		buffer_info->skb = NULL;
1573 
1574 		++i;
1575 		if (i == rx_ring->count)
1576 			i = 0;
1577 		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1578 		prefetch(next_rxd);
1579 
1580 		next_buffer = &rx_ring->buffer_info[i];
1581 
1582 		cleaned = true;
1583 		cleaned_count++;
1584 		dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1585 			       DMA_FROM_DEVICE);
1586 		buffer_info->dma = 0;
1587 
1588 		length = le16_to_cpu(rx_desc->wb.upper.length);
1589 
1590 		/* errors is only valid for DD + EOP descriptors */
1591 		if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1592 			     ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1593 			      !(netdev->features & NETIF_F_RXALL)))) {
1594 			/* recycle both page and skb */
1595 			buffer_info->skb = skb;
1596 			/* an error means any chain goes out the window too */
1597 			if (rx_ring->rx_skb_top)
1598 				dev_kfree_skb_irq(rx_ring->rx_skb_top);
1599 			rx_ring->rx_skb_top = NULL;
1600 			goto next_desc;
1601 		}
1602 #define rxtop (rx_ring->rx_skb_top)
1603 		if (!(staterr & E1000_RXD_STAT_EOP)) {
1604 			/* this descriptor is only the beginning (or middle) */
1605 			if (!rxtop) {
1606 				/* this is the beginning of a chain */
1607 				rxtop = skb;
1608 				skb_fill_page_desc(rxtop, 0, buffer_info->page,
1609 						   0, length);
1610 			} else {
1611 				/* this is the middle of a chain */
1612 				shinfo = skb_shinfo(rxtop);
1613 				skb_fill_page_desc(rxtop, shinfo->nr_frags,
1614 						   buffer_info->page, 0,
1615 						   length);
1616 				/* re-use the skb, only consumed the page */
1617 				buffer_info->skb = skb;
1618 			}
1619 			e1000_consume_page(buffer_info, rxtop, length);
1620 			goto next_desc;
1621 		} else {
1622 			if (rxtop) {
1623 				/* end of the chain */
1624 				shinfo = skb_shinfo(rxtop);
1625 				skb_fill_page_desc(rxtop, shinfo->nr_frags,
1626 						   buffer_info->page, 0,
1627 						   length);
1628 				/* re-use the current skb, we only consumed the
1629 				 * page
1630 				 */
1631 				buffer_info->skb = skb;
1632 				skb = rxtop;
1633 				rxtop = NULL;
1634 				e1000_consume_page(buffer_info, skb, length);
1635 			} else {
1636 				/* no chain, got EOP, this buf is the packet
1637 				 * copybreak to save the put_page/alloc_page
1638 				 */
1639 				if (length <= copybreak &&
1640 				    skb_tailroom(skb) >= length) {
1641 					u8 *vaddr;
1642 					vaddr = kmap_atomic(buffer_info->page);
1643 					memcpy(skb_tail_pointer(skb), vaddr,
1644 					       length);
1645 					kunmap_atomic(vaddr);
1646 					/* re-use the page, so don't erase
1647 					 * buffer_info->page
1648 					 */
1649 					skb_put(skb, length);
1650 				} else {
1651 					skb_fill_page_desc(skb, 0,
1652 							   buffer_info->page, 0,
1653 							   length);
1654 					e1000_consume_page(buffer_info, skb,
1655 							   length);
1656 				}
1657 			}
1658 		}
1659 
1660 		/* Receive Checksum Offload */
1661 		e1000_rx_checksum(adapter, staterr, skb);
1662 
1663 		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1664 
1665 		/* probably a little skewed due to removing CRC */
1666 		total_rx_bytes += skb->len;
1667 		total_rx_packets++;
1668 
1669 		/* eth type trans needs skb->data to point to something */
1670 		if (!pskb_may_pull(skb, ETH_HLEN)) {
1671 			e_err("pskb_may_pull failed.\n");
1672 			dev_kfree_skb_irq(skb);
1673 			goto next_desc;
1674 		}
1675 
1676 		e1000_receive_skb(adapter, netdev, skb, staterr,
1677 				  rx_desc->wb.upper.vlan);
1678 
1679 next_desc:
1680 		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1681 
1682 		/* return some buffers to hardware, one at a time is too slow */
1683 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1684 			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1685 					      GFP_ATOMIC);
1686 			cleaned_count = 0;
1687 		}
1688 
1689 		/* use prefetched values */
1690 		rx_desc = next_rxd;
1691 		buffer_info = next_buffer;
1692 
1693 		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1694 	}
1695 	rx_ring->next_to_clean = i;
1696 
1697 	cleaned_count = e1000_desc_unused(rx_ring);
1698 	if (cleaned_count)
1699 		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1700 
1701 	adapter->total_rx_bytes += total_rx_bytes;
1702 	adapter->total_rx_packets += total_rx_packets;
1703 	return cleaned;
1704 }
1705 
1706 /**
1707  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1708  * @rx_ring: Rx descriptor ring
1709  **/
1710 static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1711 {
1712 	struct e1000_adapter *adapter = rx_ring->adapter;
1713 	struct e1000_buffer *buffer_info;
1714 	struct e1000_ps_page *ps_page;
1715 	struct pci_dev *pdev = adapter->pdev;
1716 	unsigned int i, j;
1717 
1718 	/* Free all the Rx ring sk_buffs */
1719 	for (i = 0; i < rx_ring->count; i++) {
1720 		buffer_info = &rx_ring->buffer_info[i];
1721 		if (buffer_info->dma) {
1722 			if (adapter->clean_rx == e1000_clean_rx_irq)
1723 				dma_unmap_single(&pdev->dev, buffer_info->dma,
1724 						 adapter->rx_buffer_len,
1725 						 DMA_FROM_DEVICE);
1726 			else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1727 				dma_unmap_page(&pdev->dev, buffer_info->dma,
1728 					       PAGE_SIZE, DMA_FROM_DEVICE);
1729 			else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1730 				dma_unmap_single(&pdev->dev, buffer_info->dma,
1731 						 adapter->rx_ps_bsize0,
1732 						 DMA_FROM_DEVICE);
1733 			buffer_info->dma = 0;
1734 		}
1735 
1736 		if (buffer_info->page) {
1737 			put_page(buffer_info->page);
1738 			buffer_info->page = NULL;
1739 		}
1740 
1741 		if (buffer_info->skb) {
1742 			dev_kfree_skb(buffer_info->skb);
1743 			buffer_info->skb = NULL;
1744 		}
1745 
1746 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1747 			ps_page = &buffer_info->ps_pages[j];
1748 			if (!ps_page->page)
1749 				break;
1750 			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1751 				       DMA_FROM_DEVICE);
1752 			ps_page->dma = 0;
1753 			put_page(ps_page->page);
1754 			ps_page->page = NULL;
1755 		}
1756 	}
1757 
1758 	/* there also may be some cached data from a chained receive */
1759 	if (rx_ring->rx_skb_top) {
1760 		dev_kfree_skb(rx_ring->rx_skb_top);
1761 		rx_ring->rx_skb_top = NULL;
1762 	}
1763 
1764 	/* Zero out the descriptor ring */
1765 	memset(rx_ring->desc, 0, rx_ring->size);
1766 
1767 	rx_ring->next_to_clean = 0;
1768 	rx_ring->next_to_use = 0;
1769 	adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1770 }
1771 
1772 static void e1000e_downshift_workaround(struct work_struct *work)
1773 {
1774 	struct e1000_adapter *adapter = container_of(work,
1775 						     struct e1000_adapter,
1776 						     downshift_task);
1777 
1778 	if (test_bit(__E1000_DOWN, &adapter->state))
1779 		return;
1780 
1781 	e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1782 }
1783 
1784 /**
1785  * e1000_intr_msi - Interrupt Handler
1786  * @irq: interrupt number
1787  * @data: pointer to a network interface device structure
1788  **/
1789 static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data)
1790 {
1791 	struct net_device *netdev = data;
1792 	struct e1000_adapter *adapter = netdev_priv(netdev);
1793 	struct e1000_hw *hw = &adapter->hw;
1794 	u32 icr = er32(ICR);
1795 
1796 	/* read ICR disables interrupts using IAM */
1797 	if (icr & E1000_ICR_LSC) {
1798 		hw->mac.get_link_status = true;
1799 		/* ICH8 workaround-- Call gig speed drop workaround on cable
1800 		 * disconnect (LSC) before accessing any PHY registers
1801 		 */
1802 		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1803 		    (!(er32(STATUS) & E1000_STATUS_LU)))
1804 			schedule_work(&adapter->downshift_task);
1805 
1806 		/* 80003ES2LAN workaround-- For packet buffer work-around on
1807 		 * link down event; disable receives here in the ISR and reset
1808 		 * adapter in watchdog
1809 		 */
1810 		if (netif_carrier_ok(netdev) &&
1811 		    adapter->flags & FLAG_RX_NEEDS_RESTART) {
1812 			/* disable receives */
1813 			u32 rctl = er32(RCTL);
1814 
1815 			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1816 			adapter->flags |= FLAG_RESTART_NOW;
1817 		}
1818 		/* guard against interrupt when we're going down */
1819 		if (!test_bit(__E1000_DOWN, &adapter->state))
1820 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1821 	}
1822 
1823 	/* Reset on uncorrectable ECC error */
1824 	if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1825 		u32 pbeccsts = er32(PBECCSTS);
1826 
1827 		adapter->corr_errors +=
1828 		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1829 		adapter->uncorr_errors +=
1830 		    (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1831 		    E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1832 
1833 		/* Do the reset outside of interrupt context */
1834 		schedule_work(&adapter->reset_task);
1835 
1836 		/* return immediately since reset is imminent */
1837 		return IRQ_HANDLED;
1838 	}
1839 
1840 	if (napi_schedule_prep(&adapter->napi)) {
1841 		adapter->total_tx_bytes = 0;
1842 		adapter->total_tx_packets = 0;
1843 		adapter->total_rx_bytes = 0;
1844 		adapter->total_rx_packets = 0;
1845 		__napi_schedule(&adapter->napi);
1846 	}
1847 
1848 	return IRQ_HANDLED;
1849 }
1850 
1851 /**
1852  * e1000_intr - Interrupt Handler
1853  * @irq: interrupt number
1854  * @data: pointer to a network interface device structure
1855  **/
1856 static irqreturn_t e1000_intr(int __always_unused irq, void *data)
1857 {
1858 	struct net_device *netdev = data;
1859 	struct e1000_adapter *adapter = netdev_priv(netdev);
1860 	struct e1000_hw *hw = &adapter->hw;
1861 	u32 rctl, icr = er32(ICR);
1862 
1863 	if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1864 		return IRQ_NONE;	/* Not our interrupt */
1865 
1866 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1867 	 * not set, then the adapter didn't send an interrupt
1868 	 */
1869 	if (!(icr & E1000_ICR_INT_ASSERTED))
1870 		return IRQ_NONE;
1871 
1872 	/* Interrupt Auto-Mask...upon reading ICR,
1873 	 * interrupts are masked.  No need for the
1874 	 * IMC write
1875 	 */
1876 
1877 	if (icr & E1000_ICR_LSC) {
1878 		hw->mac.get_link_status = true;
1879 		/* ICH8 workaround-- Call gig speed drop workaround on cable
1880 		 * disconnect (LSC) before accessing any PHY registers
1881 		 */
1882 		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1883 		    (!(er32(STATUS) & E1000_STATUS_LU)))
1884 			schedule_work(&adapter->downshift_task);
1885 
1886 		/* 80003ES2LAN workaround--
1887 		 * For packet buffer work-around on link down event;
1888 		 * disable receives here in the ISR and
1889 		 * reset adapter in watchdog
1890 		 */
1891 		if (netif_carrier_ok(netdev) &&
1892 		    (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1893 			/* disable receives */
1894 			rctl = er32(RCTL);
1895 			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1896 			adapter->flags |= FLAG_RESTART_NOW;
1897 		}
1898 		/* guard against interrupt when we're going down */
1899 		if (!test_bit(__E1000_DOWN, &adapter->state))
1900 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1901 	}
1902 
1903 	/* Reset on uncorrectable ECC error */
1904 	if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1905 		u32 pbeccsts = er32(PBECCSTS);
1906 
1907 		adapter->corr_errors +=
1908 		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1909 		adapter->uncorr_errors +=
1910 		    (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1911 		    E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1912 
1913 		/* Do the reset outside of interrupt context */
1914 		schedule_work(&adapter->reset_task);
1915 
1916 		/* return immediately since reset is imminent */
1917 		return IRQ_HANDLED;
1918 	}
1919 
1920 	if (napi_schedule_prep(&adapter->napi)) {
1921 		adapter->total_tx_bytes = 0;
1922 		adapter->total_tx_packets = 0;
1923 		adapter->total_rx_bytes = 0;
1924 		adapter->total_rx_packets = 0;
1925 		__napi_schedule(&adapter->napi);
1926 	}
1927 
1928 	return IRQ_HANDLED;
1929 }
1930 
1931 static irqreturn_t e1000_msix_other(int __always_unused irq, void *data)
1932 {
1933 	struct net_device *netdev = data;
1934 	struct e1000_adapter *adapter = netdev_priv(netdev);
1935 	struct e1000_hw *hw = &adapter->hw;
1936 	u32 icr = er32(ICR);
1937 
1938 	if (icr & adapter->eiac_mask)
1939 		ew32(ICS, (icr & adapter->eiac_mask));
1940 
1941 	if (icr & E1000_ICR_LSC) {
1942 		hw->mac.get_link_status = true;
1943 		/* guard against interrupt when we're going down */
1944 		if (!test_bit(__E1000_DOWN, &adapter->state))
1945 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1946 	}
1947 
1948 	if (!test_bit(__E1000_DOWN, &adapter->state))
1949 		ew32(IMS, E1000_IMS_OTHER | IMS_OTHER_MASK);
1950 
1951 	return IRQ_HANDLED;
1952 }
1953 
1954 static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data)
1955 {
1956 	struct net_device *netdev = data;
1957 	struct e1000_adapter *adapter = netdev_priv(netdev);
1958 	struct e1000_hw *hw = &adapter->hw;
1959 	struct e1000_ring *tx_ring = adapter->tx_ring;
1960 
1961 	adapter->total_tx_bytes = 0;
1962 	adapter->total_tx_packets = 0;
1963 
1964 	if (!e1000_clean_tx_irq(tx_ring))
1965 		/* Ring was not completely cleaned, so fire another interrupt */
1966 		ew32(ICS, tx_ring->ims_val);
1967 
1968 	if (!test_bit(__E1000_DOWN, &adapter->state))
1969 		ew32(IMS, adapter->tx_ring->ims_val);
1970 
1971 	return IRQ_HANDLED;
1972 }
1973 
1974 static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data)
1975 {
1976 	struct net_device *netdev = data;
1977 	struct e1000_adapter *adapter = netdev_priv(netdev);
1978 	struct e1000_ring *rx_ring = adapter->rx_ring;
1979 
1980 	/* Write the ITR value calculated at the end of the
1981 	 * previous interrupt.
1982 	 */
1983 	if (rx_ring->set_itr) {
1984 		u32 itr = rx_ring->itr_val ?
1985 			  1000000000 / (rx_ring->itr_val * 256) : 0;
1986 
1987 		writel(itr, rx_ring->itr_register);
1988 		rx_ring->set_itr = 0;
1989 	}
1990 
1991 	if (napi_schedule_prep(&adapter->napi)) {
1992 		adapter->total_rx_bytes = 0;
1993 		adapter->total_rx_packets = 0;
1994 		__napi_schedule(&adapter->napi);
1995 	}
1996 	return IRQ_HANDLED;
1997 }
1998 
1999 /**
2000  * e1000_configure_msix - Configure MSI-X hardware
2001  *
2002  * e1000_configure_msix sets up the hardware to properly
2003  * generate MSI-X interrupts.
2004  **/
2005 static void e1000_configure_msix(struct e1000_adapter *adapter)
2006 {
2007 	struct e1000_hw *hw = &adapter->hw;
2008 	struct e1000_ring *rx_ring = adapter->rx_ring;
2009 	struct e1000_ring *tx_ring = adapter->tx_ring;
2010 	int vector = 0;
2011 	u32 ctrl_ext, ivar = 0;
2012 
2013 	adapter->eiac_mask = 0;
2014 
2015 	/* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
2016 	if (hw->mac.type == e1000_82574) {
2017 		u32 rfctl = er32(RFCTL);
2018 
2019 		rfctl |= E1000_RFCTL_ACK_DIS;
2020 		ew32(RFCTL, rfctl);
2021 	}
2022 
2023 	/* Configure Rx vector */
2024 	rx_ring->ims_val = E1000_IMS_RXQ0;
2025 	adapter->eiac_mask |= rx_ring->ims_val;
2026 	if (rx_ring->itr_val)
2027 		writel(1000000000 / (rx_ring->itr_val * 256),
2028 		       rx_ring->itr_register);
2029 	else
2030 		writel(1, rx_ring->itr_register);
2031 	ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
2032 
2033 	/* Configure Tx vector */
2034 	tx_ring->ims_val = E1000_IMS_TXQ0;
2035 	vector++;
2036 	if (tx_ring->itr_val)
2037 		writel(1000000000 / (tx_ring->itr_val * 256),
2038 		       tx_ring->itr_register);
2039 	else
2040 		writel(1, tx_ring->itr_register);
2041 	adapter->eiac_mask |= tx_ring->ims_val;
2042 	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
2043 
2044 	/* set vector for Other Causes, e.g. link changes */
2045 	vector++;
2046 	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
2047 	if (rx_ring->itr_val)
2048 		writel(1000000000 / (rx_ring->itr_val * 256),
2049 		       hw->hw_addr + E1000_EITR_82574(vector));
2050 	else
2051 		writel(1, hw->hw_addr + E1000_EITR_82574(vector));
2052 
2053 	/* Cause Tx interrupts on every write back */
2054 	ivar |= BIT(31);
2055 
2056 	ew32(IVAR, ivar);
2057 
2058 	/* enable MSI-X PBA support */
2059 	ctrl_ext = er32(CTRL_EXT) & ~E1000_CTRL_EXT_IAME;
2060 	ctrl_ext |= E1000_CTRL_EXT_PBA_CLR | E1000_CTRL_EXT_EIAME;
2061 	ew32(CTRL_EXT, ctrl_ext);
2062 	e1e_flush();
2063 }
2064 
2065 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
2066 {
2067 	if (adapter->msix_entries) {
2068 		pci_disable_msix(adapter->pdev);
2069 		kfree(adapter->msix_entries);
2070 		adapter->msix_entries = NULL;
2071 	} else if (adapter->flags & FLAG_MSI_ENABLED) {
2072 		pci_disable_msi(adapter->pdev);
2073 		adapter->flags &= ~FLAG_MSI_ENABLED;
2074 	}
2075 }
2076 
2077 /**
2078  * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
2079  *
2080  * Attempt to configure interrupts using the best available
2081  * capabilities of the hardware and kernel.
2082  **/
2083 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
2084 {
2085 	int err;
2086 	int i;
2087 
2088 	switch (adapter->int_mode) {
2089 	case E1000E_INT_MODE_MSIX:
2090 		if (adapter->flags & FLAG_HAS_MSIX) {
2091 			adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
2092 			adapter->msix_entries = kcalloc(adapter->num_vectors,
2093 							sizeof(struct
2094 							       msix_entry),
2095 							GFP_KERNEL);
2096 			if (adapter->msix_entries) {
2097 				struct e1000_adapter *a = adapter;
2098 
2099 				for (i = 0; i < adapter->num_vectors; i++)
2100 					adapter->msix_entries[i].entry = i;
2101 
2102 				err = pci_enable_msix_range(a->pdev,
2103 							    a->msix_entries,
2104 							    a->num_vectors,
2105 							    a->num_vectors);
2106 				if (err > 0)
2107 					return;
2108 			}
2109 			/* MSI-X failed, so fall through and try MSI */
2110 			e_err("Failed to initialize MSI-X interrupts.  Falling back to MSI interrupts.\n");
2111 			e1000e_reset_interrupt_capability(adapter);
2112 		}
2113 		adapter->int_mode = E1000E_INT_MODE_MSI;
2114 		/* Fall through */
2115 	case E1000E_INT_MODE_MSI:
2116 		if (!pci_enable_msi(adapter->pdev)) {
2117 			adapter->flags |= FLAG_MSI_ENABLED;
2118 		} else {
2119 			adapter->int_mode = E1000E_INT_MODE_LEGACY;
2120 			e_err("Failed to initialize MSI interrupts.  Falling back to legacy interrupts.\n");
2121 		}
2122 		/* Fall through */
2123 	case E1000E_INT_MODE_LEGACY:
2124 		/* Don't do anything; this is the system default */
2125 		break;
2126 	}
2127 
2128 	/* store the number of vectors being used */
2129 	adapter->num_vectors = 1;
2130 }
2131 
2132 /**
2133  * e1000_request_msix - Initialize MSI-X interrupts
2134  *
2135  * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2136  * kernel.
2137  **/
2138 static int e1000_request_msix(struct e1000_adapter *adapter)
2139 {
2140 	struct net_device *netdev = adapter->netdev;
2141 	int err = 0, vector = 0;
2142 
2143 	if (strlen(netdev->name) < (IFNAMSIZ - 5))
2144 		snprintf(adapter->rx_ring->name,
2145 			 sizeof(adapter->rx_ring->name) - 1,
2146 			 "%.14s-rx-0", netdev->name);
2147 	else
2148 		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
2149 	err = request_irq(adapter->msix_entries[vector].vector,
2150 			  e1000_intr_msix_rx, 0, adapter->rx_ring->name,
2151 			  netdev);
2152 	if (err)
2153 		return err;
2154 	adapter->rx_ring->itr_register = adapter->hw.hw_addr +
2155 	    E1000_EITR_82574(vector);
2156 	adapter->rx_ring->itr_val = adapter->itr;
2157 	vector++;
2158 
2159 	if (strlen(netdev->name) < (IFNAMSIZ - 5))
2160 		snprintf(adapter->tx_ring->name,
2161 			 sizeof(adapter->tx_ring->name) - 1,
2162 			 "%.14s-tx-0", netdev->name);
2163 	else
2164 		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2165 	err = request_irq(adapter->msix_entries[vector].vector,
2166 			  e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2167 			  netdev);
2168 	if (err)
2169 		return err;
2170 	adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2171 	    E1000_EITR_82574(vector);
2172 	adapter->tx_ring->itr_val = adapter->itr;
2173 	vector++;
2174 
2175 	err = request_irq(adapter->msix_entries[vector].vector,
2176 			  e1000_msix_other, 0, netdev->name, netdev);
2177 	if (err)
2178 		return err;
2179 
2180 	e1000_configure_msix(adapter);
2181 
2182 	return 0;
2183 }
2184 
2185 /**
2186  * e1000_request_irq - initialize interrupts
2187  *
2188  * Attempts to configure interrupts using the best available
2189  * capabilities of the hardware and kernel.
2190  **/
2191 static int e1000_request_irq(struct e1000_adapter *adapter)
2192 {
2193 	struct net_device *netdev = adapter->netdev;
2194 	int err;
2195 
2196 	if (adapter->msix_entries) {
2197 		err = e1000_request_msix(adapter);
2198 		if (!err)
2199 			return err;
2200 		/* fall back to MSI */
2201 		e1000e_reset_interrupt_capability(adapter);
2202 		adapter->int_mode = E1000E_INT_MODE_MSI;
2203 		e1000e_set_interrupt_capability(adapter);
2204 	}
2205 	if (adapter->flags & FLAG_MSI_ENABLED) {
2206 		err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2207 				  netdev->name, netdev);
2208 		if (!err)
2209 			return err;
2210 
2211 		/* fall back to legacy interrupt */
2212 		e1000e_reset_interrupt_capability(adapter);
2213 		adapter->int_mode = E1000E_INT_MODE_LEGACY;
2214 	}
2215 
2216 	err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2217 			  netdev->name, netdev);
2218 	if (err)
2219 		e_err("Unable to allocate interrupt, Error: %d\n", err);
2220 
2221 	return err;
2222 }
2223 
2224 static void e1000_free_irq(struct e1000_adapter *adapter)
2225 {
2226 	struct net_device *netdev = adapter->netdev;
2227 
2228 	if (adapter->msix_entries) {
2229 		int vector = 0;
2230 
2231 		free_irq(adapter->msix_entries[vector].vector, netdev);
2232 		vector++;
2233 
2234 		free_irq(adapter->msix_entries[vector].vector, netdev);
2235 		vector++;
2236 
2237 		/* Other Causes interrupt vector */
2238 		free_irq(adapter->msix_entries[vector].vector, netdev);
2239 		return;
2240 	}
2241 
2242 	free_irq(adapter->pdev->irq, netdev);
2243 }
2244 
2245 /**
2246  * e1000_irq_disable - Mask off interrupt generation on the NIC
2247  **/
2248 static void e1000_irq_disable(struct e1000_adapter *adapter)
2249 {
2250 	struct e1000_hw *hw = &adapter->hw;
2251 
2252 	ew32(IMC, ~0);
2253 	if (adapter->msix_entries)
2254 		ew32(EIAC_82574, 0);
2255 	e1e_flush();
2256 
2257 	if (adapter->msix_entries) {
2258 		int i;
2259 
2260 		for (i = 0; i < adapter->num_vectors; i++)
2261 			synchronize_irq(adapter->msix_entries[i].vector);
2262 	} else {
2263 		synchronize_irq(adapter->pdev->irq);
2264 	}
2265 }
2266 
2267 /**
2268  * e1000_irq_enable - Enable default interrupt generation settings
2269  **/
2270 static void e1000_irq_enable(struct e1000_adapter *adapter)
2271 {
2272 	struct e1000_hw *hw = &adapter->hw;
2273 
2274 	if (adapter->msix_entries) {
2275 		ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2276 		ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER |
2277 		     IMS_OTHER_MASK);
2278 	} else if (hw->mac.type >= e1000_pch_lpt) {
2279 		ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER);
2280 	} else {
2281 		ew32(IMS, IMS_ENABLE_MASK);
2282 	}
2283 	e1e_flush();
2284 }
2285 
2286 /**
2287  * e1000e_get_hw_control - get control of the h/w from f/w
2288  * @adapter: address of board private structure
2289  *
2290  * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2291  * For ASF and Pass Through versions of f/w this means that
2292  * the driver is loaded. For AMT version (only with 82573)
2293  * of the f/w this means that the network i/f is open.
2294  **/
2295 void e1000e_get_hw_control(struct e1000_adapter *adapter)
2296 {
2297 	struct e1000_hw *hw = &adapter->hw;
2298 	u32 ctrl_ext;
2299 	u32 swsm;
2300 
2301 	/* Let firmware know the driver has taken over */
2302 	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2303 		swsm = er32(SWSM);
2304 		ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2305 	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2306 		ctrl_ext = er32(CTRL_EXT);
2307 		ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2308 	}
2309 }
2310 
2311 /**
2312  * e1000e_release_hw_control - release control of the h/w to f/w
2313  * @adapter: address of board private structure
2314  *
2315  * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2316  * For ASF and Pass Through versions of f/w this means that the
2317  * driver is no longer loaded. For AMT version (only with 82573) i
2318  * of the f/w this means that the network i/f is closed.
2319  *
2320  **/
2321 void e1000e_release_hw_control(struct e1000_adapter *adapter)
2322 {
2323 	struct e1000_hw *hw = &adapter->hw;
2324 	u32 ctrl_ext;
2325 	u32 swsm;
2326 
2327 	/* Let firmware taken over control of h/w */
2328 	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2329 		swsm = er32(SWSM);
2330 		ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2331 	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2332 		ctrl_ext = er32(CTRL_EXT);
2333 		ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2334 	}
2335 }
2336 
2337 /**
2338  * e1000_alloc_ring_dma - allocate memory for a ring structure
2339  **/
2340 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2341 				struct e1000_ring *ring)
2342 {
2343 	struct pci_dev *pdev = adapter->pdev;
2344 
2345 	ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2346 					GFP_KERNEL);
2347 	if (!ring->desc)
2348 		return -ENOMEM;
2349 
2350 	return 0;
2351 }
2352 
2353 /**
2354  * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2355  * @tx_ring: Tx descriptor ring
2356  *
2357  * Return 0 on success, negative on failure
2358  **/
2359 int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2360 {
2361 	struct e1000_adapter *adapter = tx_ring->adapter;
2362 	int err = -ENOMEM, size;
2363 
2364 	size = sizeof(struct e1000_buffer) * tx_ring->count;
2365 	tx_ring->buffer_info = vzalloc(size);
2366 	if (!tx_ring->buffer_info)
2367 		goto err;
2368 
2369 	/* round up to nearest 4K */
2370 	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2371 	tx_ring->size = ALIGN(tx_ring->size, 4096);
2372 
2373 	err = e1000_alloc_ring_dma(adapter, tx_ring);
2374 	if (err)
2375 		goto err;
2376 
2377 	tx_ring->next_to_use = 0;
2378 	tx_ring->next_to_clean = 0;
2379 
2380 	return 0;
2381 err:
2382 	vfree(tx_ring->buffer_info);
2383 	e_err("Unable to allocate memory for the transmit descriptor ring\n");
2384 	return err;
2385 }
2386 
2387 /**
2388  * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2389  * @rx_ring: Rx descriptor ring
2390  *
2391  * Returns 0 on success, negative on failure
2392  **/
2393 int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2394 {
2395 	struct e1000_adapter *adapter = rx_ring->adapter;
2396 	struct e1000_buffer *buffer_info;
2397 	int i, size, desc_len, err = -ENOMEM;
2398 
2399 	size = sizeof(struct e1000_buffer) * rx_ring->count;
2400 	rx_ring->buffer_info = vzalloc(size);
2401 	if (!rx_ring->buffer_info)
2402 		goto err;
2403 
2404 	for (i = 0; i < rx_ring->count; i++) {
2405 		buffer_info = &rx_ring->buffer_info[i];
2406 		buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2407 						sizeof(struct e1000_ps_page),
2408 						GFP_KERNEL);
2409 		if (!buffer_info->ps_pages)
2410 			goto err_pages;
2411 	}
2412 
2413 	desc_len = sizeof(union e1000_rx_desc_packet_split);
2414 
2415 	/* Round up to nearest 4K */
2416 	rx_ring->size = rx_ring->count * desc_len;
2417 	rx_ring->size = ALIGN(rx_ring->size, 4096);
2418 
2419 	err = e1000_alloc_ring_dma(adapter, rx_ring);
2420 	if (err)
2421 		goto err_pages;
2422 
2423 	rx_ring->next_to_clean = 0;
2424 	rx_ring->next_to_use = 0;
2425 	rx_ring->rx_skb_top = NULL;
2426 
2427 	return 0;
2428 
2429 err_pages:
2430 	for (i = 0; i < rx_ring->count; i++) {
2431 		buffer_info = &rx_ring->buffer_info[i];
2432 		kfree(buffer_info->ps_pages);
2433 	}
2434 err:
2435 	vfree(rx_ring->buffer_info);
2436 	e_err("Unable to allocate memory for the receive descriptor ring\n");
2437 	return err;
2438 }
2439 
2440 /**
2441  * e1000_clean_tx_ring - Free Tx Buffers
2442  * @tx_ring: Tx descriptor ring
2443  **/
2444 static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2445 {
2446 	struct e1000_adapter *adapter = tx_ring->adapter;
2447 	struct e1000_buffer *buffer_info;
2448 	unsigned long size;
2449 	unsigned int i;
2450 
2451 	for (i = 0; i < tx_ring->count; i++) {
2452 		buffer_info = &tx_ring->buffer_info[i];
2453 		e1000_put_txbuf(tx_ring, buffer_info, false);
2454 	}
2455 
2456 	netdev_reset_queue(adapter->netdev);
2457 	size = sizeof(struct e1000_buffer) * tx_ring->count;
2458 	memset(tx_ring->buffer_info, 0, size);
2459 
2460 	memset(tx_ring->desc, 0, tx_ring->size);
2461 
2462 	tx_ring->next_to_use = 0;
2463 	tx_ring->next_to_clean = 0;
2464 }
2465 
2466 /**
2467  * e1000e_free_tx_resources - Free Tx Resources per Queue
2468  * @tx_ring: Tx descriptor ring
2469  *
2470  * Free all transmit software resources
2471  **/
2472 void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2473 {
2474 	struct e1000_adapter *adapter = tx_ring->adapter;
2475 	struct pci_dev *pdev = adapter->pdev;
2476 
2477 	e1000_clean_tx_ring(tx_ring);
2478 
2479 	vfree(tx_ring->buffer_info);
2480 	tx_ring->buffer_info = NULL;
2481 
2482 	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2483 			  tx_ring->dma);
2484 	tx_ring->desc = NULL;
2485 }
2486 
2487 /**
2488  * e1000e_free_rx_resources - Free Rx Resources
2489  * @rx_ring: Rx descriptor ring
2490  *
2491  * Free all receive software resources
2492  **/
2493 void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2494 {
2495 	struct e1000_adapter *adapter = rx_ring->adapter;
2496 	struct pci_dev *pdev = adapter->pdev;
2497 	int i;
2498 
2499 	e1000_clean_rx_ring(rx_ring);
2500 
2501 	for (i = 0; i < rx_ring->count; i++)
2502 		kfree(rx_ring->buffer_info[i].ps_pages);
2503 
2504 	vfree(rx_ring->buffer_info);
2505 	rx_ring->buffer_info = NULL;
2506 
2507 	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2508 			  rx_ring->dma);
2509 	rx_ring->desc = NULL;
2510 }
2511 
2512 /**
2513  * e1000_update_itr - update the dynamic ITR value based on statistics
2514  * @adapter: pointer to adapter
2515  * @itr_setting: current adapter->itr
2516  * @packets: the number of packets during this measurement interval
2517  * @bytes: the number of bytes during this measurement interval
2518  *
2519  *      Stores a new ITR value based on packets and byte
2520  *      counts during the last interrupt.  The advantage of per interrupt
2521  *      computation is faster updates and more accurate ITR for the current
2522  *      traffic pattern.  Constants in this function were computed
2523  *      based on theoretical maximum wire speed and thresholds were set based
2524  *      on testing data as well as attempting to minimize response time
2525  *      while increasing bulk throughput.  This functionality is controlled
2526  *      by the InterruptThrottleRate module parameter.
2527  **/
2528 static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes)
2529 {
2530 	unsigned int retval = itr_setting;
2531 
2532 	if (packets == 0)
2533 		return itr_setting;
2534 
2535 	switch (itr_setting) {
2536 	case lowest_latency:
2537 		/* handle TSO and jumbo frames */
2538 		if (bytes / packets > 8000)
2539 			retval = bulk_latency;
2540 		else if ((packets < 5) && (bytes > 512))
2541 			retval = low_latency;
2542 		break;
2543 	case low_latency:	/* 50 usec aka 20000 ints/s */
2544 		if (bytes > 10000) {
2545 			/* this if handles the TSO accounting */
2546 			if (bytes / packets > 8000)
2547 				retval = bulk_latency;
2548 			else if ((packets < 10) || ((bytes / packets) > 1200))
2549 				retval = bulk_latency;
2550 			else if ((packets > 35))
2551 				retval = lowest_latency;
2552 		} else if (bytes / packets > 2000) {
2553 			retval = bulk_latency;
2554 		} else if (packets <= 2 && bytes < 512) {
2555 			retval = lowest_latency;
2556 		}
2557 		break;
2558 	case bulk_latency:	/* 250 usec aka 4000 ints/s */
2559 		if (bytes > 25000) {
2560 			if (packets > 35)
2561 				retval = low_latency;
2562 		} else if (bytes < 6000) {
2563 			retval = low_latency;
2564 		}
2565 		break;
2566 	}
2567 
2568 	return retval;
2569 }
2570 
2571 static void e1000_set_itr(struct e1000_adapter *adapter)
2572 {
2573 	u16 current_itr;
2574 	u32 new_itr = adapter->itr;
2575 
2576 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2577 	if (adapter->link_speed != SPEED_1000) {
2578 		current_itr = 0;
2579 		new_itr = 4000;
2580 		goto set_itr_now;
2581 	}
2582 
2583 	if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2584 		new_itr = 0;
2585 		goto set_itr_now;
2586 	}
2587 
2588 	adapter->tx_itr = e1000_update_itr(adapter->tx_itr,
2589 					   adapter->total_tx_packets,
2590 					   adapter->total_tx_bytes);
2591 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2592 	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2593 		adapter->tx_itr = low_latency;
2594 
2595 	adapter->rx_itr = e1000_update_itr(adapter->rx_itr,
2596 					   adapter->total_rx_packets,
2597 					   adapter->total_rx_bytes);
2598 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2599 	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2600 		adapter->rx_itr = low_latency;
2601 
2602 	current_itr = max(adapter->rx_itr, adapter->tx_itr);
2603 
2604 	/* counts and packets in update_itr are dependent on these numbers */
2605 	switch (current_itr) {
2606 	case lowest_latency:
2607 		new_itr = 70000;
2608 		break;
2609 	case low_latency:
2610 		new_itr = 20000;	/* aka hwitr = ~200 */
2611 		break;
2612 	case bulk_latency:
2613 		new_itr = 4000;
2614 		break;
2615 	default:
2616 		break;
2617 	}
2618 
2619 set_itr_now:
2620 	if (new_itr != adapter->itr) {
2621 		/* this attempts to bias the interrupt rate towards Bulk
2622 		 * by adding intermediate steps when interrupt rate is
2623 		 * increasing
2624 		 */
2625 		new_itr = new_itr > adapter->itr ?
2626 		    min(adapter->itr + (new_itr >> 2), new_itr) : new_itr;
2627 		adapter->itr = new_itr;
2628 		adapter->rx_ring->itr_val = new_itr;
2629 		if (adapter->msix_entries)
2630 			adapter->rx_ring->set_itr = 1;
2631 		else
2632 			e1000e_write_itr(adapter, new_itr);
2633 	}
2634 }
2635 
2636 /**
2637  * e1000e_write_itr - write the ITR value to the appropriate registers
2638  * @adapter: address of board private structure
2639  * @itr: new ITR value to program
2640  *
2641  * e1000e_write_itr determines if the adapter is in MSI-X mode
2642  * and, if so, writes the EITR registers with the ITR value.
2643  * Otherwise, it writes the ITR value into the ITR register.
2644  **/
2645 void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
2646 {
2647 	struct e1000_hw *hw = &adapter->hw;
2648 	u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
2649 
2650 	if (adapter->msix_entries) {
2651 		int vector;
2652 
2653 		for (vector = 0; vector < adapter->num_vectors; vector++)
2654 			writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
2655 	} else {
2656 		ew32(ITR, new_itr);
2657 	}
2658 }
2659 
2660 /**
2661  * e1000_alloc_queues - Allocate memory for all rings
2662  * @adapter: board private structure to initialize
2663  **/
2664 static int e1000_alloc_queues(struct e1000_adapter *adapter)
2665 {
2666 	int size = sizeof(struct e1000_ring);
2667 
2668 	adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2669 	if (!adapter->tx_ring)
2670 		goto err;
2671 	adapter->tx_ring->count = adapter->tx_ring_count;
2672 	adapter->tx_ring->adapter = adapter;
2673 
2674 	adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2675 	if (!adapter->rx_ring)
2676 		goto err;
2677 	adapter->rx_ring->count = adapter->rx_ring_count;
2678 	adapter->rx_ring->adapter = adapter;
2679 
2680 	return 0;
2681 err:
2682 	e_err("Unable to allocate memory for queues\n");
2683 	kfree(adapter->rx_ring);
2684 	kfree(adapter->tx_ring);
2685 	return -ENOMEM;
2686 }
2687 
2688 /**
2689  * e1000e_poll - NAPI Rx polling callback
2690  * @napi: struct associated with this polling callback
2691  * @budget: number of packets driver is allowed to process this poll
2692  **/
2693 static int e1000e_poll(struct napi_struct *napi, int budget)
2694 {
2695 	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2696 						     napi);
2697 	struct e1000_hw *hw = &adapter->hw;
2698 	struct net_device *poll_dev = adapter->netdev;
2699 	int tx_cleaned = 1, work_done = 0;
2700 
2701 	adapter = netdev_priv(poll_dev);
2702 
2703 	if (!adapter->msix_entries ||
2704 	    (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2705 		tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2706 
2707 	adapter->clean_rx(adapter->rx_ring, &work_done, budget);
2708 
2709 	if (!tx_cleaned || work_done == budget)
2710 		return budget;
2711 
2712 	/* Exit the polling mode, but don't re-enable interrupts if stack might
2713 	 * poll us due to busy-polling
2714 	 */
2715 	if (likely(napi_complete_done(napi, work_done))) {
2716 		if (adapter->itr_setting & 3)
2717 			e1000_set_itr(adapter);
2718 		if (!test_bit(__E1000_DOWN, &adapter->state)) {
2719 			if (adapter->msix_entries)
2720 				ew32(IMS, adapter->rx_ring->ims_val);
2721 			else
2722 				e1000_irq_enable(adapter);
2723 		}
2724 	}
2725 
2726 	return work_done;
2727 }
2728 
2729 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
2730 				 __always_unused __be16 proto, u16 vid)
2731 {
2732 	struct e1000_adapter *adapter = netdev_priv(netdev);
2733 	struct e1000_hw *hw = &adapter->hw;
2734 	u32 vfta, index;
2735 
2736 	/* don't update vlan cookie if already programmed */
2737 	if ((adapter->hw.mng_cookie.status &
2738 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2739 	    (vid == adapter->mng_vlan_id))
2740 		return 0;
2741 
2742 	/* add VID to filter table */
2743 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2744 		index = (vid >> 5) & 0x7F;
2745 		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2746 		vfta |= BIT((vid & 0x1F));
2747 		hw->mac.ops.write_vfta(hw, index, vfta);
2748 	}
2749 
2750 	set_bit(vid, adapter->active_vlans);
2751 
2752 	return 0;
2753 }
2754 
2755 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
2756 				  __always_unused __be16 proto, u16 vid)
2757 {
2758 	struct e1000_adapter *adapter = netdev_priv(netdev);
2759 	struct e1000_hw *hw = &adapter->hw;
2760 	u32 vfta, index;
2761 
2762 	if ((adapter->hw.mng_cookie.status &
2763 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2764 	    (vid == adapter->mng_vlan_id)) {
2765 		/* release control to f/w */
2766 		e1000e_release_hw_control(adapter);
2767 		return 0;
2768 	}
2769 
2770 	/* remove VID from filter table */
2771 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2772 		index = (vid >> 5) & 0x7F;
2773 		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2774 		vfta &= ~BIT((vid & 0x1F));
2775 		hw->mac.ops.write_vfta(hw, index, vfta);
2776 	}
2777 
2778 	clear_bit(vid, adapter->active_vlans);
2779 
2780 	return 0;
2781 }
2782 
2783 /**
2784  * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2785  * @adapter: board private structure to initialize
2786  **/
2787 static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2788 {
2789 	struct net_device *netdev = adapter->netdev;
2790 	struct e1000_hw *hw = &adapter->hw;
2791 	u32 rctl;
2792 
2793 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2794 		/* disable VLAN receive filtering */
2795 		rctl = er32(RCTL);
2796 		rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2797 		ew32(RCTL, rctl);
2798 
2799 		if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2800 			e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
2801 					       adapter->mng_vlan_id);
2802 			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2803 		}
2804 	}
2805 }
2806 
2807 /**
2808  * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2809  * @adapter: board private structure to initialize
2810  **/
2811 static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2812 {
2813 	struct e1000_hw *hw = &adapter->hw;
2814 	u32 rctl;
2815 
2816 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2817 		/* enable VLAN receive filtering */
2818 		rctl = er32(RCTL);
2819 		rctl |= E1000_RCTL_VFE;
2820 		rctl &= ~E1000_RCTL_CFIEN;
2821 		ew32(RCTL, rctl);
2822 	}
2823 }
2824 
2825 /**
2826  * e1000e_vlan_strip_disable - helper to disable HW VLAN stripping
2827  * @adapter: board private structure to initialize
2828  **/
2829 static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2830 {
2831 	struct e1000_hw *hw = &adapter->hw;
2832 	u32 ctrl;
2833 
2834 	/* disable VLAN tag insert/strip */
2835 	ctrl = er32(CTRL);
2836 	ctrl &= ~E1000_CTRL_VME;
2837 	ew32(CTRL, ctrl);
2838 }
2839 
2840 /**
2841  * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2842  * @adapter: board private structure to initialize
2843  **/
2844 static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2845 {
2846 	struct e1000_hw *hw = &adapter->hw;
2847 	u32 ctrl;
2848 
2849 	/* enable VLAN tag insert/strip */
2850 	ctrl = er32(CTRL);
2851 	ctrl |= E1000_CTRL_VME;
2852 	ew32(CTRL, ctrl);
2853 }
2854 
2855 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2856 {
2857 	struct net_device *netdev = adapter->netdev;
2858 	u16 vid = adapter->hw.mng_cookie.vlan_id;
2859 	u16 old_vid = adapter->mng_vlan_id;
2860 
2861 	if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2862 		e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
2863 		adapter->mng_vlan_id = vid;
2864 	}
2865 
2866 	if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2867 		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid);
2868 }
2869 
2870 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2871 {
2872 	u16 vid;
2873 
2874 	e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
2875 
2876 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2877 	    e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
2878 }
2879 
2880 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2881 {
2882 	struct e1000_hw *hw = &adapter->hw;
2883 	u32 manc, manc2h, mdef, i, j;
2884 
2885 	if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2886 		return;
2887 
2888 	manc = er32(MANC);
2889 
2890 	/* enable receiving management packets to the host. this will probably
2891 	 * generate destination unreachable messages from the host OS, but
2892 	 * the packets will be handled on SMBUS
2893 	 */
2894 	manc |= E1000_MANC_EN_MNG2HOST;
2895 	manc2h = er32(MANC2H);
2896 
2897 	switch (hw->mac.type) {
2898 	default:
2899 		manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2900 		break;
2901 	case e1000_82574:
2902 	case e1000_82583:
2903 		/* Check if IPMI pass-through decision filter already exists;
2904 		 * if so, enable it.
2905 		 */
2906 		for (i = 0, j = 0; i < 8; i++) {
2907 			mdef = er32(MDEF(i));
2908 
2909 			/* Ignore filters with anything other than IPMI ports */
2910 			if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2911 				continue;
2912 
2913 			/* Enable this decision filter in MANC2H */
2914 			if (mdef)
2915 				manc2h |= BIT(i);
2916 
2917 			j |= mdef;
2918 		}
2919 
2920 		if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2921 			break;
2922 
2923 		/* Create new decision filter in an empty filter */
2924 		for (i = 0, j = 0; i < 8; i++)
2925 			if (er32(MDEF(i)) == 0) {
2926 				ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2927 					       E1000_MDEF_PORT_664));
2928 				manc2h |= BIT(1);
2929 				j++;
2930 				break;
2931 			}
2932 
2933 		if (!j)
2934 			e_warn("Unable to create IPMI pass-through filter\n");
2935 		break;
2936 	}
2937 
2938 	ew32(MANC2H, manc2h);
2939 	ew32(MANC, manc);
2940 }
2941 
2942 /**
2943  * e1000_configure_tx - Configure Transmit Unit after Reset
2944  * @adapter: board private structure
2945  *
2946  * Configure the Tx unit of the MAC after a reset.
2947  **/
2948 static void e1000_configure_tx(struct e1000_adapter *adapter)
2949 {
2950 	struct e1000_hw *hw = &adapter->hw;
2951 	struct e1000_ring *tx_ring = adapter->tx_ring;
2952 	u64 tdba;
2953 	u32 tdlen, tctl, tarc;
2954 
2955 	/* Setup the HW Tx Head and Tail descriptor pointers */
2956 	tdba = tx_ring->dma;
2957 	tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2958 	ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2959 	ew32(TDBAH(0), (tdba >> 32));
2960 	ew32(TDLEN(0), tdlen);
2961 	ew32(TDH(0), 0);
2962 	ew32(TDT(0), 0);
2963 	tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2964 	tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2965 
2966 	writel(0, tx_ring->head);
2967 	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2968 		e1000e_update_tdt_wa(tx_ring, 0);
2969 	else
2970 		writel(0, tx_ring->tail);
2971 
2972 	/* Set the Tx Interrupt Delay register */
2973 	ew32(TIDV, adapter->tx_int_delay);
2974 	/* Tx irq moderation */
2975 	ew32(TADV, adapter->tx_abs_int_delay);
2976 
2977 	if (adapter->flags2 & FLAG2_DMA_BURST) {
2978 		u32 txdctl = er32(TXDCTL(0));
2979 
2980 		txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2981 			    E1000_TXDCTL_WTHRESH);
2982 		/* set up some performance related parameters to encourage the
2983 		 * hardware to use the bus more efficiently in bursts, depends
2984 		 * on the tx_int_delay to be enabled,
2985 		 * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2986 		 * hthresh = 1 ==> prefetch when one or more available
2987 		 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2988 		 * BEWARE: this seems to work but should be considered first if
2989 		 * there are Tx hangs or other Tx related bugs
2990 		 */
2991 		txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2992 		ew32(TXDCTL(0), txdctl);
2993 	}
2994 	/* erratum work around: set txdctl the same for both queues */
2995 	ew32(TXDCTL(1), er32(TXDCTL(0)));
2996 
2997 	/* Program the Transmit Control Register */
2998 	tctl = er32(TCTL);
2999 	tctl &= ~E1000_TCTL_CT;
3000 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
3001 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
3002 
3003 	if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
3004 		tarc = er32(TARC(0));
3005 		/* set the speed mode bit, we'll clear it if we're not at
3006 		 * gigabit link later
3007 		 */
3008 #define SPEED_MODE_BIT BIT(21)
3009 		tarc |= SPEED_MODE_BIT;
3010 		ew32(TARC(0), tarc);
3011 	}
3012 
3013 	/* errata: program both queues to unweighted RR */
3014 	if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
3015 		tarc = er32(TARC(0));
3016 		tarc |= 1;
3017 		ew32(TARC(0), tarc);
3018 		tarc = er32(TARC(1));
3019 		tarc |= 1;
3020 		ew32(TARC(1), tarc);
3021 	}
3022 
3023 	/* Setup Transmit Descriptor Settings for eop descriptor */
3024 	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
3025 
3026 	/* only set IDE if we are delaying interrupts using the timers */
3027 	if (adapter->tx_int_delay)
3028 		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
3029 
3030 	/* enable Report Status bit */
3031 	adapter->txd_cmd |= E1000_TXD_CMD_RS;
3032 
3033 	ew32(TCTL, tctl);
3034 
3035 	hw->mac.ops.config_collision_dist(hw);
3036 
3037 	/* SPT and KBL Si errata workaround to avoid data corruption */
3038 	if (hw->mac.type == e1000_pch_spt) {
3039 		u32 reg_val;
3040 
3041 		reg_val = er32(IOSFPC);
3042 		reg_val |= E1000_RCTL_RDMTS_HEX;
3043 		ew32(IOSFPC, reg_val);
3044 
3045 		reg_val = er32(TARC(0));
3046 		/* SPT and KBL Si errata workaround to avoid Tx hang.
3047 		 * Dropping the number of outstanding requests from
3048 		 * 3 to 2 in order to avoid a buffer overrun.
3049 		 */
3050 		reg_val &= ~E1000_TARC0_CB_MULTIQ_3_REQ;
3051 		reg_val |= E1000_TARC0_CB_MULTIQ_2_REQ;
3052 		ew32(TARC(0), reg_val);
3053 	}
3054 }
3055 
3056 /**
3057  * e1000_setup_rctl - configure the receive control registers
3058  * @adapter: Board private structure
3059  **/
3060 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
3061 			   (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
3062 static void e1000_setup_rctl(struct e1000_adapter *adapter)
3063 {
3064 	struct e1000_hw *hw = &adapter->hw;
3065 	u32 rctl, rfctl;
3066 	u32 pages = 0;
3067 
3068 	/* Workaround Si errata on PCHx - configure jumbo frame flow.
3069 	 * If jumbo frames not set, program related MAC/PHY registers
3070 	 * to h/w defaults
3071 	 */
3072 	if (hw->mac.type >= e1000_pch2lan) {
3073 		s32 ret_val;
3074 
3075 		if (adapter->netdev->mtu > ETH_DATA_LEN)
3076 			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
3077 		else
3078 			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
3079 
3080 		if (ret_val)
3081 			e_dbg("failed to enable|disable jumbo frame workaround mode\n");
3082 	}
3083 
3084 	/* Program MC offset vector base */
3085 	rctl = er32(RCTL);
3086 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3087 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3088 	    E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3089 	    (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3090 
3091 	/* Do not Store bad packets */
3092 	rctl &= ~E1000_RCTL_SBP;
3093 
3094 	/* Enable Long Packet receive */
3095 	if (adapter->netdev->mtu <= ETH_DATA_LEN)
3096 		rctl &= ~E1000_RCTL_LPE;
3097 	else
3098 		rctl |= E1000_RCTL_LPE;
3099 
3100 	/* Some systems expect that the CRC is included in SMBUS traffic. The
3101 	 * hardware strips the CRC before sending to both SMBUS (BMC) and to
3102 	 * host memory when this is enabled
3103 	 */
3104 	if (adapter->flags2 & FLAG2_CRC_STRIPPING)
3105 		rctl |= E1000_RCTL_SECRC;
3106 
3107 	/* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3108 	if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
3109 		u16 phy_data;
3110 
3111 		e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
3112 		phy_data &= 0xfff8;
3113 		phy_data |= BIT(2);
3114 		e1e_wphy(hw, PHY_REG(770, 26), phy_data);
3115 
3116 		e1e_rphy(hw, 22, &phy_data);
3117 		phy_data &= 0x0fff;
3118 		phy_data |= BIT(14);
3119 		e1e_wphy(hw, 0x10, 0x2823);
3120 		e1e_wphy(hw, 0x11, 0x0003);
3121 		e1e_wphy(hw, 22, phy_data);
3122 	}
3123 
3124 	/* Setup buffer sizes */
3125 	rctl &= ~E1000_RCTL_SZ_4096;
3126 	rctl |= E1000_RCTL_BSEX;
3127 	switch (adapter->rx_buffer_len) {
3128 	case 2048:
3129 	default:
3130 		rctl |= E1000_RCTL_SZ_2048;
3131 		rctl &= ~E1000_RCTL_BSEX;
3132 		break;
3133 	case 4096:
3134 		rctl |= E1000_RCTL_SZ_4096;
3135 		break;
3136 	case 8192:
3137 		rctl |= E1000_RCTL_SZ_8192;
3138 		break;
3139 	case 16384:
3140 		rctl |= E1000_RCTL_SZ_16384;
3141 		break;
3142 	}
3143 
3144 	/* Enable Extended Status in all Receive Descriptors */
3145 	rfctl = er32(RFCTL);
3146 	rfctl |= E1000_RFCTL_EXTEN;
3147 	ew32(RFCTL, rfctl);
3148 
3149 	/* 82571 and greater support packet-split where the protocol
3150 	 * header is placed in skb->data and the packet data is
3151 	 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3152 	 * In the case of a non-split, skb->data is linearly filled,
3153 	 * followed by the page buffers.  Therefore, skb->data is
3154 	 * sized to hold the largest protocol header.
3155 	 *
3156 	 * allocations using alloc_page take too long for regular MTU
3157 	 * so only enable packet split for jumbo frames
3158 	 *
3159 	 * Using pages when the page size is greater than 16k wastes
3160 	 * a lot of memory, since we allocate 3 pages at all times
3161 	 * per packet.
3162 	 */
3163 	pages = PAGE_USE_COUNT(adapter->netdev->mtu);
3164 	if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
3165 		adapter->rx_ps_pages = pages;
3166 	else
3167 		adapter->rx_ps_pages = 0;
3168 
3169 	if (adapter->rx_ps_pages) {
3170 		u32 psrctl = 0;
3171 
3172 		/* Enable Packet split descriptors */
3173 		rctl |= E1000_RCTL_DTYP_PS;
3174 
3175 		psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT;
3176 
3177 		switch (adapter->rx_ps_pages) {
3178 		case 3:
3179 			psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT;
3180 			/* fall-through */
3181 		case 2:
3182 			psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT;
3183 			/* fall-through */
3184 		case 1:
3185 			psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT;
3186 			break;
3187 		}
3188 
3189 		ew32(PSRCTL, psrctl);
3190 	}
3191 
3192 	/* This is useful for sniffing bad packets. */
3193 	if (adapter->netdev->features & NETIF_F_RXALL) {
3194 		/* UPE and MPE will be handled by normal PROMISC logic
3195 		 * in e1000e_set_rx_mode
3196 		 */
3197 		rctl |= (E1000_RCTL_SBP |	/* Receive bad packets */
3198 			 E1000_RCTL_BAM |	/* RX All Bcast Pkts */
3199 			 E1000_RCTL_PMCF);	/* RX All MAC Ctrl Pkts */
3200 
3201 		rctl &= ~(E1000_RCTL_VFE |	/* Disable VLAN filter */
3202 			  E1000_RCTL_DPF |	/* Allow filtered pause */
3203 			  E1000_RCTL_CFIEN);	/* Dis VLAN CFIEN Filter */
3204 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3205 		 * and that breaks VLANs.
3206 		 */
3207 	}
3208 
3209 	ew32(RCTL, rctl);
3210 	/* just started the receive unit, no need to restart */
3211 	adapter->flags &= ~FLAG_RESTART_NOW;
3212 }
3213 
3214 /**
3215  * e1000_configure_rx - Configure Receive Unit after Reset
3216  * @adapter: board private structure
3217  *
3218  * Configure the Rx unit of the MAC after a reset.
3219  **/
3220 static void e1000_configure_rx(struct e1000_adapter *adapter)
3221 {
3222 	struct e1000_hw *hw = &adapter->hw;
3223 	struct e1000_ring *rx_ring = adapter->rx_ring;
3224 	u64 rdba;
3225 	u32 rdlen, rctl, rxcsum, ctrl_ext;
3226 
3227 	if (adapter->rx_ps_pages) {
3228 		/* this is a 32 byte descriptor */
3229 		rdlen = rx_ring->count *
3230 		    sizeof(union e1000_rx_desc_packet_split);
3231 		adapter->clean_rx = e1000_clean_rx_irq_ps;
3232 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3233 	} else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3234 		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3235 		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3236 		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3237 	} else {
3238 		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3239 		adapter->clean_rx = e1000_clean_rx_irq;
3240 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3241 	}
3242 
3243 	/* disable receives while setting up the descriptors */
3244 	rctl = er32(RCTL);
3245 	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3246 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
3247 	e1e_flush();
3248 	usleep_range(10000, 11000);
3249 
3250 	if (adapter->flags2 & FLAG2_DMA_BURST) {
3251 		/* set the writeback threshold (only takes effect if the RDTR
3252 		 * is set). set GRAN=1 and write back up to 0x4 worth, and
3253 		 * enable prefetching of 0x20 Rx descriptors
3254 		 * granularity = 01
3255 		 * wthresh = 04,
3256 		 * hthresh = 04,
3257 		 * pthresh = 0x20
3258 		 */
3259 		ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3260 		ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3261 	}
3262 
3263 	/* set the Receive Delay Timer Register */
3264 	ew32(RDTR, adapter->rx_int_delay);
3265 
3266 	/* irq moderation */
3267 	ew32(RADV, adapter->rx_abs_int_delay);
3268 	if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3269 		e1000e_write_itr(adapter, adapter->itr);
3270 
3271 	ctrl_ext = er32(CTRL_EXT);
3272 	/* Auto-Mask interrupts upon ICR access */
3273 	ctrl_ext |= E1000_CTRL_EXT_IAME;
3274 	ew32(IAM, 0xffffffff);
3275 	ew32(CTRL_EXT, ctrl_ext);
3276 	e1e_flush();
3277 
3278 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
3279 	 * the Base and Length of the Rx Descriptor Ring
3280 	 */
3281 	rdba = rx_ring->dma;
3282 	ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3283 	ew32(RDBAH(0), (rdba >> 32));
3284 	ew32(RDLEN(0), rdlen);
3285 	ew32(RDH(0), 0);
3286 	ew32(RDT(0), 0);
3287 	rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3288 	rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3289 
3290 	writel(0, rx_ring->head);
3291 	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
3292 		e1000e_update_rdt_wa(rx_ring, 0);
3293 	else
3294 		writel(0, rx_ring->tail);
3295 
3296 	/* Enable Receive Checksum Offload for TCP and UDP */
3297 	rxcsum = er32(RXCSUM);
3298 	if (adapter->netdev->features & NETIF_F_RXCSUM)
3299 		rxcsum |= E1000_RXCSUM_TUOFL;
3300 	else
3301 		rxcsum &= ~E1000_RXCSUM_TUOFL;
3302 	ew32(RXCSUM, rxcsum);
3303 
3304 	/* With jumbo frames, excessive C-state transition latencies result
3305 	 * in dropped transactions.
3306 	 */
3307 	if (adapter->netdev->mtu > ETH_DATA_LEN) {
3308 		u32 lat =
3309 		    ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 -
3310 		     adapter->max_frame_size) * 8 / 1000;
3311 
3312 		if (adapter->flags & FLAG_IS_ICH) {
3313 			u32 rxdctl = er32(RXDCTL(0));
3314 
3315 			ew32(RXDCTL(0), rxdctl | 0x3 | BIT(8));
3316 		}
3317 
3318 		dev_info(&adapter->pdev->dev,
3319 			 "Some CPU C-states have been disabled in order to enable jumbo frames\n");
3320 		cpu_latency_qos_update_request(&adapter->pm_qos_req, lat);
3321 	} else {
3322 		cpu_latency_qos_update_request(&adapter->pm_qos_req,
3323 					       PM_QOS_DEFAULT_VALUE);
3324 	}
3325 
3326 	/* Enable Receives */
3327 	ew32(RCTL, rctl);
3328 }
3329 
3330 /**
3331  * e1000e_write_mc_addr_list - write multicast addresses to MTA
3332  * @netdev: network interface device structure
3333  *
3334  * Writes multicast address list to the MTA hash table.
3335  * Returns: -ENOMEM on failure
3336  *                0 on no addresses written
3337  *                X on writing X addresses to MTA
3338  */
3339 static int e1000e_write_mc_addr_list(struct net_device *netdev)
3340 {
3341 	struct e1000_adapter *adapter = netdev_priv(netdev);
3342 	struct e1000_hw *hw = &adapter->hw;
3343 	struct netdev_hw_addr *ha;
3344 	u8 *mta_list;
3345 	int i;
3346 
3347 	if (netdev_mc_empty(netdev)) {
3348 		/* nothing to program, so clear mc list */
3349 		hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3350 		return 0;
3351 	}
3352 
3353 	mta_list = kcalloc(netdev_mc_count(netdev), ETH_ALEN, GFP_ATOMIC);
3354 	if (!mta_list)
3355 		return -ENOMEM;
3356 
3357 	/* update_mc_addr_list expects a packed array of only addresses. */
3358 	i = 0;
3359 	netdev_for_each_mc_addr(ha, netdev)
3360 	    memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3361 
3362 	hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3363 	kfree(mta_list);
3364 
3365 	return netdev_mc_count(netdev);
3366 }
3367 
3368 /**
3369  * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3370  * @netdev: network interface device structure
3371  *
3372  * Writes unicast address list to the RAR table.
3373  * Returns: -ENOMEM on failure/insufficient address space
3374  *                0 on no addresses written
3375  *                X on writing X addresses to the RAR table
3376  **/
3377 static int e1000e_write_uc_addr_list(struct net_device *netdev)
3378 {
3379 	struct e1000_adapter *adapter = netdev_priv(netdev);
3380 	struct e1000_hw *hw = &adapter->hw;
3381 	unsigned int rar_entries;
3382 	int count = 0;
3383 
3384 	rar_entries = hw->mac.ops.rar_get_count(hw);
3385 
3386 	/* save a rar entry for our hardware address */
3387 	rar_entries--;
3388 
3389 	/* save a rar entry for the LAA workaround */
3390 	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3391 		rar_entries--;
3392 
3393 	/* return ENOMEM indicating insufficient memory for addresses */
3394 	if (netdev_uc_count(netdev) > rar_entries)
3395 		return -ENOMEM;
3396 
3397 	if (!netdev_uc_empty(netdev) && rar_entries) {
3398 		struct netdev_hw_addr *ha;
3399 
3400 		/* write the addresses in reverse order to avoid write
3401 		 * combining
3402 		 */
3403 		netdev_for_each_uc_addr(ha, netdev) {
3404 			int ret_val;
3405 
3406 			if (!rar_entries)
3407 				break;
3408 			ret_val = hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3409 			if (ret_val < 0)
3410 				return -ENOMEM;
3411 			count++;
3412 		}
3413 	}
3414 
3415 	/* zero out the remaining RAR entries not used above */
3416 	for (; rar_entries > 0; rar_entries--) {
3417 		ew32(RAH(rar_entries), 0);
3418 		ew32(RAL(rar_entries), 0);
3419 	}
3420 	e1e_flush();
3421 
3422 	return count;
3423 }
3424 
3425 /**
3426  * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3427  * @netdev: network interface device structure
3428  *
3429  * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3430  * address list or the network interface flags are updated.  This routine is
3431  * responsible for configuring the hardware for proper unicast, multicast,
3432  * promiscuous mode, and all-multi behavior.
3433  **/
3434 static void e1000e_set_rx_mode(struct net_device *netdev)
3435 {
3436 	struct e1000_adapter *adapter = netdev_priv(netdev);
3437 	struct e1000_hw *hw = &adapter->hw;
3438 	u32 rctl;
3439 
3440 	if (pm_runtime_suspended(netdev->dev.parent))
3441 		return;
3442 
3443 	/* Check for Promiscuous and All Multicast modes */
3444 	rctl = er32(RCTL);
3445 
3446 	/* clear the affected bits */
3447 	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3448 
3449 	if (netdev->flags & IFF_PROMISC) {
3450 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3451 		/* Do not hardware filter VLANs in promisc mode */
3452 		e1000e_vlan_filter_disable(adapter);
3453 	} else {
3454 		int count;
3455 
3456 		if (netdev->flags & IFF_ALLMULTI) {
3457 			rctl |= E1000_RCTL_MPE;
3458 		} else {
3459 			/* Write addresses to the MTA, if the attempt fails
3460 			 * then we should just turn on promiscuous mode so
3461 			 * that we can at least receive multicast traffic
3462 			 */
3463 			count = e1000e_write_mc_addr_list(netdev);
3464 			if (count < 0)
3465 				rctl |= E1000_RCTL_MPE;
3466 		}
3467 		e1000e_vlan_filter_enable(adapter);
3468 		/* Write addresses to available RAR registers, if there is not
3469 		 * sufficient space to store all the addresses then enable
3470 		 * unicast promiscuous mode
3471 		 */
3472 		count = e1000e_write_uc_addr_list(netdev);
3473 		if (count < 0)
3474 			rctl |= E1000_RCTL_UPE;
3475 	}
3476 
3477 	ew32(RCTL, rctl);
3478 
3479 	if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
3480 		e1000e_vlan_strip_enable(adapter);
3481 	else
3482 		e1000e_vlan_strip_disable(adapter);
3483 }
3484 
3485 static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3486 {
3487 	struct e1000_hw *hw = &adapter->hw;
3488 	u32 mrqc, rxcsum;
3489 	u32 rss_key[10];
3490 	int i;
3491 
3492 	netdev_rss_key_fill(rss_key, sizeof(rss_key));
3493 	for (i = 0; i < 10; i++)
3494 		ew32(RSSRK(i), rss_key[i]);
3495 
3496 	/* Direct all traffic to queue 0 */
3497 	for (i = 0; i < 32; i++)
3498 		ew32(RETA(i), 0);
3499 
3500 	/* Disable raw packet checksumming so that RSS hash is placed in
3501 	 * descriptor on writeback.
3502 	 */
3503 	rxcsum = er32(RXCSUM);
3504 	rxcsum |= E1000_RXCSUM_PCSD;
3505 
3506 	ew32(RXCSUM, rxcsum);
3507 
3508 	mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3509 		E1000_MRQC_RSS_FIELD_IPV4_TCP |
3510 		E1000_MRQC_RSS_FIELD_IPV6 |
3511 		E1000_MRQC_RSS_FIELD_IPV6_TCP |
3512 		E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3513 
3514 	ew32(MRQC, mrqc);
3515 }
3516 
3517 /**
3518  * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3519  * @adapter: board private structure
3520  * @timinca: pointer to returned time increment attributes
3521  *
3522  * Get attributes for incrementing the System Time Register SYSTIML/H at
3523  * the default base frequency, and set the cyclecounter shift value.
3524  **/
3525 s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca)
3526 {
3527 	struct e1000_hw *hw = &adapter->hw;
3528 	u32 incvalue, incperiod, shift;
3529 
3530 	/* Make sure clock is enabled on I217/I218/I219  before checking
3531 	 * the frequency
3532 	 */
3533 	if ((hw->mac.type >= e1000_pch_lpt) &&
3534 	    !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) &&
3535 	    !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) {
3536 		u32 fextnvm7 = er32(FEXTNVM7);
3537 
3538 		if (!(fextnvm7 & BIT(0))) {
3539 			ew32(FEXTNVM7, fextnvm7 | BIT(0));
3540 			e1e_flush();
3541 		}
3542 	}
3543 
3544 	switch (hw->mac.type) {
3545 	case e1000_pch2lan:
3546 		/* Stable 96MHz frequency */
3547 		incperiod = INCPERIOD_96MHZ;
3548 		incvalue = INCVALUE_96MHZ;
3549 		shift = INCVALUE_SHIFT_96MHZ;
3550 		adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3551 		break;
3552 	case e1000_pch_lpt:
3553 		if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3554 			/* Stable 96MHz frequency */
3555 			incperiod = INCPERIOD_96MHZ;
3556 			incvalue = INCVALUE_96MHZ;
3557 			shift = INCVALUE_SHIFT_96MHZ;
3558 			adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3559 		} else {
3560 			/* Stable 25MHz frequency */
3561 			incperiod = INCPERIOD_25MHZ;
3562 			incvalue = INCVALUE_25MHZ;
3563 			shift = INCVALUE_SHIFT_25MHZ;
3564 			adapter->cc.shift = shift;
3565 		}
3566 		break;
3567 	case e1000_pch_spt:
3568 		/* Stable 24MHz frequency */
3569 		incperiod = INCPERIOD_24MHZ;
3570 		incvalue = INCVALUE_24MHZ;
3571 		shift = INCVALUE_SHIFT_24MHZ;
3572 		adapter->cc.shift = shift;
3573 		break;
3574 	case e1000_pch_cnp:
3575 	case e1000_pch_tgp:
3576 	case e1000_pch_adp:
3577 		if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3578 			/* Stable 24MHz frequency */
3579 			incperiod = INCPERIOD_24MHZ;
3580 			incvalue = INCVALUE_24MHZ;
3581 			shift = INCVALUE_SHIFT_24MHZ;
3582 			adapter->cc.shift = shift;
3583 		} else {
3584 			/* Stable 38400KHz frequency */
3585 			incperiod = INCPERIOD_38400KHZ;
3586 			incvalue = INCVALUE_38400KHZ;
3587 			shift = INCVALUE_SHIFT_38400KHZ;
3588 			adapter->cc.shift = shift;
3589 		}
3590 		break;
3591 	case e1000_82574:
3592 	case e1000_82583:
3593 		/* Stable 25MHz frequency */
3594 		incperiod = INCPERIOD_25MHZ;
3595 		incvalue = INCVALUE_25MHZ;
3596 		shift = INCVALUE_SHIFT_25MHZ;
3597 		adapter->cc.shift = shift;
3598 		break;
3599 	default:
3600 		return -EINVAL;
3601 	}
3602 
3603 	*timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) |
3604 		    ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK));
3605 
3606 	return 0;
3607 }
3608 
3609 /**
3610  * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3611  * @adapter: board private structure
3612  *
3613  * Outgoing time stamping can be enabled and disabled. Play nice and
3614  * disable it when requested, although it shouldn't cause any overhead
3615  * when no packet needs it. At most one packet in the queue may be
3616  * marked for time stamping, otherwise it would be impossible to tell
3617  * for sure to which packet the hardware time stamp belongs.
3618  *
3619  * Incoming time stamping has to be configured via the hardware filters.
3620  * Not all combinations are supported, in particular event type has to be
3621  * specified. Matching the kind of event packet is not supported, with the
3622  * exception of "all V2 events regardless of level 2 or 4".
3623  **/
3624 static int e1000e_config_hwtstamp(struct e1000_adapter *adapter,
3625 				  struct hwtstamp_config *config)
3626 {
3627 	struct e1000_hw *hw = &adapter->hw;
3628 	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
3629 	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
3630 	u32 rxmtrl = 0;
3631 	u16 rxudp = 0;
3632 	bool is_l4 = false;
3633 	bool is_l2 = false;
3634 	u32 regval;
3635 
3636 	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3637 		return -EINVAL;
3638 
3639 	/* flags reserved for future extensions - must be zero */
3640 	if (config->flags)
3641 		return -EINVAL;
3642 
3643 	switch (config->tx_type) {
3644 	case HWTSTAMP_TX_OFF:
3645 		tsync_tx_ctl = 0;
3646 		break;
3647 	case HWTSTAMP_TX_ON:
3648 		break;
3649 	default:
3650 		return -ERANGE;
3651 	}
3652 
3653 	switch (config->rx_filter) {
3654 	case HWTSTAMP_FILTER_NONE:
3655 		tsync_rx_ctl = 0;
3656 		break;
3657 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3658 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3659 		rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE;
3660 		is_l4 = true;
3661 		break;
3662 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3663 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3664 		rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE;
3665 		is_l4 = true;
3666 		break;
3667 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3668 		/* Also time stamps V2 L2 Path Delay Request/Response */
3669 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3670 		rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3671 		is_l2 = true;
3672 		break;
3673 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3674 		/* Also time stamps V2 L2 Path Delay Request/Response. */
3675 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3676 		rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3677 		is_l2 = true;
3678 		break;
3679 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3680 		/* Hardware cannot filter just V2 L4 Sync messages;
3681 		 * fall-through to V2 (both L2 and L4) Sync.
3682 		 */
3683 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
3684 		/* Also time stamps V2 Path Delay Request/Response. */
3685 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3686 		rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3687 		is_l2 = true;
3688 		is_l4 = true;
3689 		break;
3690 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3691 		/* Hardware cannot filter just V2 L4 Delay Request messages;
3692 		 * fall-through to V2 (both L2 and L4) Delay Request.
3693 		 */
3694 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3695 		/* Also time stamps V2 Path Delay Request/Response. */
3696 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3697 		rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3698 		is_l2 = true;
3699 		is_l4 = true;
3700 		break;
3701 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3702 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3703 		/* Hardware cannot filter just V2 L4 or L2 Event messages;
3704 		 * fall-through to all V2 (both L2 and L4) Events.
3705 		 */
3706 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
3707 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
3708 		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
3709 		is_l2 = true;
3710 		is_l4 = true;
3711 		break;
3712 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3713 		/* For V1, the hardware can only filter Sync messages or
3714 		 * Delay Request messages but not both so fall-through to
3715 		 * time stamp all packets.
3716 		 */
3717 	case HWTSTAMP_FILTER_NTP_ALL:
3718 	case HWTSTAMP_FILTER_ALL:
3719 		is_l2 = true;
3720 		is_l4 = true;
3721 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
3722 		config->rx_filter = HWTSTAMP_FILTER_ALL;
3723 		break;
3724 	default:
3725 		return -ERANGE;
3726 	}
3727 
3728 	adapter->hwtstamp_config = *config;
3729 
3730 	/* enable/disable Tx h/w time stamping */
3731 	regval = er32(TSYNCTXCTL);
3732 	regval &= ~E1000_TSYNCTXCTL_ENABLED;
3733 	regval |= tsync_tx_ctl;
3734 	ew32(TSYNCTXCTL, regval);
3735 	if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) !=
3736 	    (regval & E1000_TSYNCTXCTL_ENABLED)) {
3737 		e_err("Timesync Tx Control register not set as expected\n");
3738 		return -EAGAIN;
3739 	}
3740 
3741 	/* enable/disable Rx h/w time stamping */
3742 	regval = er32(TSYNCRXCTL);
3743 	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
3744 	regval |= tsync_rx_ctl;
3745 	ew32(TSYNCRXCTL, regval);
3746 	if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED |
3747 				 E1000_TSYNCRXCTL_TYPE_MASK)) !=
3748 	    (regval & (E1000_TSYNCRXCTL_ENABLED |
3749 		       E1000_TSYNCRXCTL_TYPE_MASK))) {
3750 		e_err("Timesync Rx Control register not set as expected\n");
3751 		return -EAGAIN;
3752 	}
3753 
3754 	/* L2: define ethertype filter for time stamped packets */
3755 	if (is_l2)
3756 		rxmtrl |= ETH_P_1588;
3757 
3758 	/* define which PTP packets get time stamped */
3759 	ew32(RXMTRL, rxmtrl);
3760 
3761 	/* Filter by destination port */
3762 	if (is_l4) {
3763 		rxudp = PTP_EV_PORT;
3764 		cpu_to_be16s(&rxudp);
3765 	}
3766 	ew32(RXUDP, rxudp);
3767 
3768 	e1e_flush();
3769 
3770 	/* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
3771 	er32(RXSTMPH);
3772 	er32(TXSTMPH);
3773 
3774 	return 0;
3775 }
3776 
3777 /**
3778  * e1000_configure - configure the hardware for Rx and Tx
3779  * @adapter: private board structure
3780  **/
3781 static void e1000_configure(struct e1000_adapter *adapter)
3782 {
3783 	struct e1000_ring *rx_ring = adapter->rx_ring;
3784 
3785 	e1000e_set_rx_mode(adapter->netdev);
3786 
3787 	e1000_restore_vlan(adapter);
3788 	e1000_init_manageability_pt(adapter);
3789 
3790 	e1000_configure_tx(adapter);
3791 
3792 	if (adapter->netdev->features & NETIF_F_RXHASH)
3793 		e1000e_setup_rss_hash(adapter);
3794 	e1000_setup_rctl(adapter);
3795 	e1000_configure_rx(adapter);
3796 	adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3797 }
3798 
3799 /**
3800  * e1000e_power_up_phy - restore link in case the phy was powered down
3801  * @adapter: address of board private structure
3802  *
3803  * The phy may be powered down to save power and turn off link when the
3804  * driver is unloaded and wake on lan is not enabled (among others)
3805  * *** this routine MUST be followed by a call to e1000e_reset ***
3806  **/
3807 void e1000e_power_up_phy(struct e1000_adapter *adapter)
3808 {
3809 	if (adapter->hw.phy.ops.power_up)
3810 		adapter->hw.phy.ops.power_up(&adapter->hw);
3811 
3812 	adapter->hw.mac.ops.setup_link(&adapter->hw);
3813 }
3814 
3815 /**
3816  * e1000_power_down_phy - Power down the PHY
3817  *
3818  * Power down the PHY so no link is implied when interface is down.
3819  * The PHY cannot be powered down if management or WoL is active.
3820  */
3821 static void e1000_power_down_phy(struct e1000_adapter *adapter)
3822 {
3823 	if (adapter->hw.phy.ops.power_down)
3824 		adapter->hw.phy.ops.power_down(&adapter->hw);
3825 }
3826 
3827 /**
3828  * e1000_flush_tx_ring - remove all descriptors from the tx_ring
3829  *
3830  * We want to clear all pending descriptors from the TX ring.
3831  * zeroing happens when the HW reads the regs. We  assign the ring itself as
3832  * the data of the next descriptor. We don't care about the data we are about
3833  * to reset the HW.
3834  */
3835 static void e1000_flush_tx_ring(struct e1000_adapter *adapter)
3836 {
3837 	struct e1000_hw *hw = &adapter->hw;
3838 	struct e1000_ring *tx_ring = adapter->tx_ring;
3839 	struct e1000_tx_desc *tx_desc = NULL;
3840 	u32 tdt, tctl, txd_lower = E1000_TXD_CMD_IFCS;
3841 	u16 size = 512;
3842 
3843 	tctl = er32(TCTL);
3844 	ew32(TCTL, tctl | E1000_TCTL_EN);
3845 	tdt = er32(TDT(0));
3846 	BUG_ON(tdt != tx_ring->next_to_use);
3847 	tx_desc =  E1000_TX_DESC(*tx_ring, tx_ring->next_to_use);
3848 	tx_desc->buffer_addr = cpu_to_le64(tx_ring->dma);
3849 
3850 	tx_desc->lower.data = cpu_to_le32(txd_lower | size);
3851 	tx_desc->upper.data = 0;
3852 	/* flush descriptors to memory before notifying the HW */
3853 	wmb();
3854 	tx_ring->next_to_use++;
3855 	if (tx_ring->next_to_use == tx_ring->count)
3856 		tx_ring->next_to_use = 0;
3857 	ew32(TDT(0), tx_ring->next_to_use);
3858 	usleep_range(200, 250);
3859 }
3860 
3861 /**
3862  * e1000_flush_rx_ring - remove all descriptors from the rx_ring
3863  *
3864  * Mark all descriptors in the RX ring as consumed and disable the rx ring
3865  */
3866 static void e1000_flush_rx_ring(struct e1000_adapter *adapter)
3867 {
3868 	u32 rctl, rxdctl;
3869 	struct e1000_hw *hw = &adapter->hw;
3870 
3871 	rctl = er32(RCTL);
3872 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
3873 	e1e_flush();
3874 	usleep_range(100, 150);
3875 
3876 	rxdctl = er32(RXDCTL(0));
3877 	/* zero the lower 14 bits (prefetch and host thresholds) */
3878 	rxdctl &= 0xffffc000;
3879 
3880 	/* update thresholds: prefetch threshold to 31, host threshold to 1
3881 	 * and make sure the granularity is "descriptors" and not "cache lines"
3882 	 */
3883 	rxdctl |= (0x1F | BIT(8) | E1000_RXDCTL_THRESH_UNIT_DESC);
3884 
3885 	ew32(RXDCTL(0), rxdctl);
3886 	/* momentarily enable the RX ring for the changes to take effect */
3887 	ew32(RCTL, rctl | E1000_RCTL_EN);
3888 	e1e_flush();
3889 	usleep_range(100, 150);
3890 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
3891 }
3892 
3893 /**
3894  * e1000_flush_desc_rings - remove all descriptors from the descriptor rings
3895  *
3896  * In i219, the descriptor rings must be emptied before resetting the HW
3897  * or before changing the device state to D3 during runtime (runtime PM).
3898  *
3899  * Failure to do this will cause the HW to enter a unit hang state which can
3900  * only be released by PCI reset on the device
3901  *
3902  */
3903 
3904 static void e1000_flush_desc_rings(struct e1000_adapter *adapter)
3905 {
3906 	u16 hang_state;
3907 	u32 fext_nvm11, tdlen;
3908 	struct e1000_hw *hw = &adapter->hw;
3909 
3910 	/* First, disable MULR fix in FEXTNVM11 */
3911 	fext_nvm11 = er32(FEXTNVM11);
3912 	fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
3913 	ew32(FEXTNVM11, fext_nvm11);
3914 	/* do nothing if we're not in faulty state, or if the queue is empty */
3915 	tdlen = er32(TDLEN(0));
3916 	pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3917 			     &hang_state);
3918 	if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen)
3919 		return;
3920 	e1000_flush_tx_ring(adapter);
3921 	/* recheck, maybe the fault is caused by the rx ring */
3922 	pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3923 			     &hang_state);
3924 	if (hang_state & FLUSH_DESC_REQUIRED)
3925 		e1000_flush_rx_ring(adapter);
3926 }
3927 
3928 /**
3929  * e1000e_systim_reset - reset the timesync registers after a hardware reset
3930  * @adapter: board private structure
3931  *
3932  * When the MAC is reset, all hardware bits for timesync will be reset to the
3933  * default values. This function will restore the settings last in place.
3934  * Since the clock SYSTIME registers are reset, we will simply restore the
3935  * cyclecounter to the kernel real clock time.
3936  **/
3937 static void e1000e_systim_reset(struct e1000_adapter *adapter)
3938 {
3939 	struct ptp_clock_info *info = &adapter->ptp_clock_info;
3940 	struct e1000_hw *hw = &adapter->hw;
3941 	unsigned long flags;
3942 	u32 timinca;
3943 	s32 ret_val;
3944 
3945 	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3946 		return;
3947 
3948 	if (info->adjfreq) {
3949 		/* restore the previous ptp frequency delta */
3950 		ret_val = info->adjfreq(info, adapter->ptp_delta);
3951 	} else {
3952 		/* set the default base frequency if no adjustment possible */
3953 		ret_val = e1000e_get_base_timinca(adapter, &timinca);
3954 		if (!ret_val)
3955 			ew32(TIMINCA, timinca);
3956 	}
3957 
3958 	if (ret_val) {
3959 		dev_warn(&adapter->pdev->dev,
3960 			 "Failed to restore TIMINCA clock rate delta: %d\n",
3961 			 ret_val);
3962 		return;
3963 	}
3964 
3965 	/* reset the systim ns time counter */
3966 	spin_lock_irqsave(&adapter->systim_lock, flags);
3967 	timecounter_init(&adapter->tc, &adapter->cc,
3968 			 ktime_to_ns(ktime_get_real()));
3969 	spin_unlock_irqrestore(&adapter->systim_lock, flags);
3970 
3971 	/* restore the previous hwtstamp configuration settings */
3972 	e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config);
3973 }
3974 
3975 /**
3976  * e1000e_reset - bring the hardware into a known good state
3977  *
3978  * This function boots the hardware and enables some settings that
3979  * require a configuration cycle of the hardware - those cannot be
3980  * set/changed during runtime. After reset the device needs to be
3981  * properly configured for Rx, Tx etc.
3982  */
3983 void e1000e_reset(struct e1000_adapter *adapter)
3984 {
3985 	struct e1000_mac_info *mac = &adapter->hw.mac;
3986 	struct e1000_fc_info *fc = &adapter->hw.fc;
3987 	struct e1000_hw *hw = &adapter->hw;
3988 	u32 tx_space, min_tx_space, min_rx_space;
3989 	u32 pba = adapter->pba;
3990 	u16 hwm;
3991 
3992 	/* reset Packet Buffer Allocation to default */
3993 	ew32(PBA, pba);
3994 
3995 	if (adapter->max_frame_size > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) {
3996 		/* To maintain wire speed transmits, the Tx FIFO should be
3997 		 * large enough to accommodate two full transmit packets,
3998 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
3999 		 * the Rx FIFO should be large enough to accommodate at least
4000 		 * one full receive packet and is similarly rounded up and
4001 		 * expressed in KB.
4002 		 */
4003 		pba = er32(PBA);
4004 		/* upper 16 bits has Tx packet buffer allocation size in KB */
4005 		tx_space = pba >> 16;
4006 		/* lower 16 bits has Rx packet buffer allocation size in KB */
4007 		pba &= 0xffff;
4008 		/* the Tx fifo also stores 16 bytes of information about the Tx
4009 		 * but don't include ethernet FCS because hardware appends it
4010 		 */
4011 		min_tx_space = (adapter->max_frame_size +
4012 				sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2;
4013 		min_tx_space = ALIGN(min_tx_space, 1024);
4014 		min_tx_space >>= 10;
4015 		/* software strips receive CRC, so leave room for it */
4016 		min_rx_space = adapter->max_frame_size;
4017 		min_rx_space = ALIGN(min_rx_space, 1024);
4018 		min_rx_space >>= 10;
4019 
4020 		/* If current Tx allocation is less than the min Tx FIFO size,
4021 		 * and the min Tx FIFO size is less than the current Rx FIFO
4022 		 * allocation, take space away from current Rx allocation
4023 		 */
4024 		if ((tx_space < min_tx_space) &&
4025 		    ((min_tx_space - tx_space) < pba)) {
4026 			pba -= min_tx_space - tx_space;
4027 
4028 			/* if short on Rx space, Rx wins and must trump Tx
4029 			 * adjustment
4030 			 */
4031 			if (pba < min_rx_space)
4032 				pba = min_rx_space;
4033 		}
4034 
4035 		ew32(PBA, pba);
4036 	}
4037 
4038 	/* flow control settings
4039 	 *
4040 	 * The high water mark must be low enough to fit one full frame
4041 	 * (or the size used for early receive) above it in the Rx FIFO.
4042 	 * Set it to the lower of:
4043 	 * - 90% of the Rx FIFO size, and
4044 	 * - the full Rx FIFO size minus one full frame
4045 	 */
4046 	if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
4047 		fc->pause_time = 0xFFFF;
4048 	else
4049 		fc->pause_time = E1000_FC_PAUSE_TIME;
4050 	fc->send_xon = true;
4051 	fc->current_mode = fc->requested_mode;
4052 
4053 	switch (hw->mac.type) {
4054 	case e1000_ich9lan:
4055 	case e1000_ich10lan:
4056 		if (adapter->netdev->mtu > ETH_DATA_LEN) {
4057 			pba = 14;
4058 			ew32(PBA, pba);
4059 			fc->high_water = 0x2800;
4060 			fc->low_water = fc->high_water - 8;
4061 			break;
4062 		}
4063 		/* fall-through */
4064 	default:
4065 		hwm = min(((pba << 10) * 9 / 10),
4066 			  ((pba << 10) - adapter->max_frame_size));
4067 
4068 		fc->high_water = hwm & E1000_FCRTH_RTH;	/* 8-byte granularity */
4069 		fc->low_water = fc->high_water - 8;
4070 		break;
4071 	case e1000_pchlan:
4072 		/* Workaround PCH LOM adapter hangs with certain network
4073 		 * loads.  If hangs persist, try disabling Tx flow control.
4074 		 */
4075 		if (adapter->netdev->mtu > ETH_DATA_LEN) {
4076 			fc->high_water = 0x3500;
4077 			fc->low_water = 0x1500;
4078 		} else {
4079 			fc->high_water = 0x5000;
4080 			fc->low_water = 0x3000;
4081 		}
4082 		fc->refresh_time = 0x1000;
4083 		break;
4084 	case e1000_pch2lan:
4085 	case e1000_pch_lpt:
4086 	case e1000_pch_spt:
4087 	case e1000_pch_cnp:
4088 		/* fall-through */
4089 	case e1000_pch_tgp:
4090 	case e1000_pch_adp:
4091 		fc->refresh_time = 0xFFFF;
4092 		fc->pause_time = 0xFFFF;
4093 
4094 		if (adapter->netdev->mtu <= ETH_DATA_LEN) {
4095 			fc->high_water = 0x05C20;
4096 			fc->low_water = 0x05048;
4097 			break;
4098 		}
4099 
4100 		pba = 14;
4101 		ew32(PBA, pba);
4102 		fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH;
4103 		fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL;
4104 		break;
4105 	}
4106 
4107 	/* Alignment of Tx data is on an arbitrary byte boundary with the
4108 	 * maximum size per Tx descriptor limited only to the transmit
4109 	 * allocation of the packet buffer minus 96 bytes with an upper
4110 	 * limit of 24KB due to receive synchronization limitations.
4111 	 */
4112 	adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
4113 				       24 << 10);
4114 
4115 	/* Disable Adaptive Interrupt Moderation if 2 full packets cannot
4116 	 * fit in receive buffer.
4117 	 */
4118 	if (adapter->itr_setting & 0x3) {
4119 		if ((adapter->max_frame_size * 2) > (pba << 10)) {
4120 			if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
4121 				dev_info(&adapter->pdev->dev,
4122 					 "Interrupt Throttle Rate off\n");
4123 				adapter->flags2 |= FLAG2_DISABLE_AIM;
4124 				e1000e_write_itr(adapter, 0);
4125 			}
4126 		} else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
4127 			dev_info(&adapter->pdev->dev,
4128 				 "Interrupt Throttle Rate on\n");
4129 			adapter->flags2 &= ~FLAG2_DISABLE_AIM;
4130 			adapter->itr = 20000;
4131 			e1000e_write_itr(adapter, adapter->itr);
4132 		}
4133 	}
4134 
4135 	if (hw->mac.type >= e1000_pch_spt)
4136 		e1000_flush_desc_rings(adapter);
4137 	/* Allow time for pending master requests to run */
4138 	mac->ops.reset_hw(hw);
4139 
4140 	/* For parts with AMT enabled, let the firmware know
4141 	 * that the network interface is in control
4142 	 */
4143 	if (adapter->flags & FLAG_HAS_AMT)
4144 		e1000e_get_hw_control(adapter);
4145 
4146 	ew32(WUC, 0);
4147 
4148 	if (mac->ops.init_hw(hw))
4149 		e_err("Hardware Error\n");
4150 
4151 	e1000_update_mng_vlan(adapter);
4152 
4153 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
4154 	ew32(VET, ETH_P_8021Q);
4155 
4156 	e1000e_reset_adaptive(hw);
4157 
4158 	/* restore systim and hwtstamp settings */
4159 	e1000e_systim_reset(adapter);
4160 
4161 	/* Set EEE advertisement as appropriate */
4162 	if (adapter->flags2 & FLAG2_HAS_EEE) {
4163 		s32 ret_val;
4164 		u16 adv_addr;
4165 
4166 		switch (hw->phy.type) {
4167 		case e1000_phy_82579:
4168 			adv_addr = I82579_EEE_ADVERTISEMENT;
4169 			break;
4170 		case e1000_phy_i217:
4171 			adv_addr = I217_EEE_ADVERTISEMENT;
4172 			break;
4173 		default:
4174 			dev_err(&adapter->pdev->dev,
4175 				"Invalid PHY type setting EEE advertisement\n");
4176 			return;
4177 		}
4178 
4179 		ret_val = hw->phy.ops.acquire(hw);
4180 		if (ret_val) {
4181 			dev_err(&adapter->pdev->dev,
4182 				"EEE advertisement - unable to acquire PHY\n");
4183 			return;
4184 		}
4185 
4186 		e1000_write_emi_reg_locked(hw, adv_addr,
4187 					   hw->dev_spec.ich8lan.eee_disable ?
4188 					   0 : adapter->eee_advert);
4189 
4190 		hw->phy.ops.release(hw);
4191 	}
4192 
4193 	if (!netif_running(adapter->netdev) &&
4194 	    !test_bit(__E1000_TESTING, &adapter->state))
4195 		e1000_power_down_phy(adapter);
4196 
4197 	e1000_get_phy_info(hw);
4198 
4199 	if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
4200 	    !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
4201 		u16 phy_data = 0;
4202 		/* speed up time to link by disabling smart power down, ignore
4203 		 * the return value of this function because there is nothing
4204 		 * different we would do if it failed
4205 		 */
4206 		e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
4207 		phy_data &= ~IGP02E1000_PM_SPD;
4208 		e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
4209 	}
4210 	if (hw->mac.type >= e1000_pch_spt && adapter->int_mode == 0) {
4211 		u32 reg;
4212 
4213 		/* Fextnvm7 @ 0xe4[2] = 1 */
4214 		reg = er32(FEXTNVM7);
4215 		reg |= E1000_FEXTNVM7_SIDE_CLK_UNGATE;
4216 		ew32(FEXTNVM7, reg);
4217 		/* Fextnvm9 @ 0x5bb4[13:12] = 11 */
4218 		reg = er32(FEXTNVM9);
4219 		reg |= E1000_FEXTNVM9_IOSFSB_CLKGATE_DIS |
4220 		       E1000_FEXTNVM9_IOSFSB_CLKREQ_DIS;
4221 		ew32(FEXTNVM9, reg);
4222 	}
4223 
4224 }
4225 
4226 /**
4227  * e1000e_trigger_lsc - trigger an LSC interrupt
4228  * @adapter:
4229  *
4230  * Fire a link status change interrupt to start the watchdog.
4231  **/
4232 static void e1000e_trigger_lsc(struct e1000_adapter *adapter)
4233 {
4234 	struct e1000_hw *hw = &adapter->hw;
4235 
4236 	if (adapter->msix_entries)
4237 		ew32(ICS, E1000_ICS_LSC | E1000_ICS_OTHER);
4238 	else
4239 		ew32(ICS, E1000_ICS_LSC);
4240 }
4241 
4242 void e1000e_up(struct e1000_adapter *adapter)
4243 {
4244 	/* hardware has been reset, we need to reload some things */
4245 	e1000_configure(adapter);
4246 
4247 	clear_bit(__E1000_DOWN, &adapter->state);
4248 
4249 	if (adapter->msix_entries)
4250 		e1000_configure_msix(adapter);
4251 	e1000_irq_enable(adapter);
4252 
4253 	/* Tx queue started by watchdog timer when link is up */
4254 
4255 	e1000e_trigger_lsc(adapter);
4256 }
4257 
4258 static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
4259 {
4260 	struct e1000_hw *hw = &adapter->hw;
4261 
4262 	if (!(adapter->flags2 & FLAG2_DMA_BURST))
4263 		return;
4264 
4265 	/* flush pending descriptor writebacks to memory */
4266 	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4267 	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4268 
4269 	/* execute the writes immediately */
4270 	e1e_flush();
4271 
4272 	/* due to rare timing issues, write to TIDV/RDTR again to ensure the
4273 	 * write is successful
4274 	 */
4275 	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4276 	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4277 
4278 	/* execute the writes immediately */
4279 	e1e_flush();
4280 }
4281 
4282 static void e1000e_update_stats(struct e1000_adapter *adapter);
4283 
4284 /**
4285  * e1000e_down - quiesce the device and optionally reset the hardware
4286  * @adapter: board private structure
4287  * @reset: boolean flag to reset the hardware or not
4288  */
4289 void e1000e_down(struct e1000_adapter *adapter, bool reset)
4290 {
4291 	struct net_device *netdev = adapter->netdev;
4292 	struct e1000_hw *hw = &adapter->hw;
4293 	u32 tctl, rctl;
4294 
4295 	/* signal that we're down so the interrupt handler does not
4296 	 * reschedule our watchdog timer
4297 	 */
4298 	set_bit(__E1000_DOWN, &adapter->state);
4299 
4300 	netif_carrier_off(netdev);
4301 
4302 	/* disable receives in the hardware */
4303 	rctl = er32(RCTL);
4304 	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
4305 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
4306 	/* flush and sleep below */
4307 
4308 	netif_stop_queue(netdev);
4309 
4310 	/* disable transmits in the hardware */
4311 	tctl = er32(TCTL);
4312 	tctl &= ~E1000_TCTL_EN;
4313 	ew32(TCTL, tctl);
4314 
4315 	/* flush both disables and wait for them to finish */
4316 	e1e_flush();
4317 	usleep_range(10000, 11000);
4318 
4319 	e1000_irq_disable(adapter);
4320 
4321 	napi_synchronize(&adapter->napi);
4322 
4323 	del_timer_sync(&adapter->watchdog_timer);
4324 	del_timer_sync(&adapter->phy_info_timer);
4325 
4326 	spin_lock(&adapter->stats64_lock);
4327 	e1000e_update_stats(adapter);
4328 	spin_unlock(&adapter->stats64_lock);
4329 
4330 	e1000e_flush_descriptors(adapter);
4331 
4332 	adapter->link_speed = 0;
4333 	adapter->link_duplex = 0;
4334 
4335 	/* Disable Si errata workaround on PCHx for jumbo frame flow */
4336 	if ((hw->mac.type >= e1000_pch2lan) &&
4337 	    (adapter->netdev->mtu > ETH_DATA_LEN) &&
4338 	    e1000_lv_jumbo_workaround_ich8lan(hw, false))
4339 		e_dbg("failed to disable jumbo frame workaround mode\n");
4340 
4341 	if (!pci_channel_offline(adapter->pdev)) {
4342 		if (reset)
4343 			e1000e_reset(adapter);
4344 		else if (hw->mac.type >= e1000_pch_spt)
4345 			e1000_flush_desc_rings(adapter);
4346 	}
4347 	e1000_clean_tx_ring(adapter->tx_ring);
4348 	e1000_clean_rx_ring(adapter->rx_ring);
4349 }
4350 
4351 void e1000e_reinit_locked(struct e1000_adapter *adapter)
4352 {
4353 	might_sleep();
4354 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4355 		usleep_range(1000, 1100);
4356 	e1000e_down(adapter, true);
4357 	e1000e_up(adapter);
4358 	clear_bit(__E1000_RESETTING, &adapter->state);
4359 }
4360 
4361 /**
4362  * e1000e_sanitize_systim - sanitize raw cycle counter reads
4363  * @hw: pointer to the HW structure
4364  * @systim: PHC time value read, sanitized and returned
4365  * @sts: structure to hold system time before and after reading SYSTIML,
4366  * may be NULL
4367  *
4368  * Errata for 82574/82583 possible bad bits read from SYSTIMH/L:
4369  * check to see that the time is incrementing at a reasonable
4370  * rate and is a multiple of incvalue.
4371  **/
4372 static u64 e1000e_sanitize_systim(struct e1000_hw *hw, u64 systim,
4373 				  struct ptp_system_timestamp *sts)
4374 {
4375 	u64 time_delta, rem, temp;
4376 	u64 systim_next;
4377 	u32 incvalue;
4378 	int i;
4379 
4380 	incvalue = er32(TIMINCA) & E1000_TIMINCA_INCVALUE_MASK;
4381 	for (i = 0; i < E1000_MAX_82574_SYSTIM_REREADS; i++) {
4382 		/* latch SYSTIMH on read of SYSTIML */
4383 		ptp_read_system_prets(sts);
4384 		systim_next = (u64)er32(SYSTIML);
4385 		ptp_read_system_postts(sts);
4386 		systim_next |= (u64)er32(SYSTIMH) << 32;
4387 
4388 		time_delta = systim_next - systim;
4389 		temp = time_delta;
4390 		/* VMWare users have seen incvalue of zero, don't div / 0 */
4391 		rem = incvalue ? do_div(temp, incvalue) : (time_delta != 0);
4392 
4393 		systim = systim_next;
4394 
4395 		if ((time_delta < E1000_82574_SYSTIM_EPSILON) && (rem == 0))
4396 			break;
4397 	}
4398 
4399 	return systim;
4400 }
4401 
4402 /**
4403  * e1000e_read_systim - read SYSTIM register
4404  * @adapter: board private structure
4405  * @sts: structure which will contain system time before and after reading
4406  * SYSTIML, may be NULL
4407  **/
4408 u64 e1000e_read_systim(struct e1000_adapter *adapter,
4409 		       struct ptp_system_timestamp *sts)
4410 {
4411 	struct e1000_hw *hw = &adapter->hw;
4412 	u32 systimel, systimel_2, systimeh;
4413 	u64 systim;
4414 	/* SYSTIMH latching upon SYSTIML read does not work well.
4415 	 * This means that if SYSTIML overflows after we read it but before
4416 	 * we read SYSTIMH, the value of SYSTIMH has been incremented and we
4417 	 * will experience a huge non linear increment in the systime value
4418 	 * to fix that we test for overflow and if true, we re-read systime.
4419 	 */
4420 	ptp_read_system_prets(sts);
4421 	systimel = er32(SYSTIML);
4422 	ptp_read_system_postts(sts);
4423 	systimeh = er32(SYSTIMH);
4424 	/* Is systimel is so large that overflow is possible? */
4425 	if (systimel >= (u32)0xffffffff - E1000_TIMINCA_INCVALUE_MASK) {
4426 		ptp_read_system_prets(sts);
4427 		systimel_2 = er32(SYSTIML);
4428 		ptp_read_system_postts(sts);
4429 		if (systimel > systimel_2) {
4430 			/* There was an overflow, read again SYSTIMH, and use
4431 			 * systimel_2
4432 			 */
4433 			systimeh = er32(SYSTIMH);
4434 			systimel = systimel_2;
4435 		}
4436 	}
4437 	systim = (u64)systimel;
4438 	systim |= (u64)systimeh << 32;
4439 
4440 	if (adapter->flags2 & FLAG2_CHECK_SYSTIM_OVERFLOW)
4441 		systim = e1000e_sanitize_systim(hw, systim, sts);
4442 
4443 	return systim;
4444 }
4445 
4446 /**
4447  * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4448  * @cc: cyclecounter structure
4449  **/
4450 static u64 e1000e_cyclecounter_read(const struct cyclecounter *cc)
4451 {
4452 	struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter,
4453 						     cc);
4454 
4455 	return e1000e_read_systim(adapter, NULL);
4456 }
4457 
4458 /**
4459  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4460  * @adapter: board private structure to initialize
4461  *
4462  * e1000_sw_init initializes the Adapter private data structure.
4463  * Fields are initialized based on PCI device information and
4464  * OS network device settings (MTU size).
4465  **/
4466 static int e1000_sw_init(struct e1000_adapter *adapter)
4467 {
4468 	struct net_device *netdev = adapter->netdev;
4469 
4470 	adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
4471 	adapter->rx_ps_bsize0 = 128;
4472 	adapter->max_frame_size = netdev->mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
4473 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4474 	adapter->tx_ring_count = E1000_DEFAULT_TXD;
4475 	adapter->rx_ring_count = E1000_DEFAULT_RXD;
4476 
4477 	spin_lock_init(&adapter->stats64_lock);
4478 
4479 	e1000e_set_interrupt_capability(adapter);
4480 
4481 	if (e1000_alloc_queues(adapter))
4482 		return -ENOMEM;
4483 
4484 	/* Setup hardware time stamping cyclecounter */
4485 	if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
4486 		adapter->cc.read = e1000e_cyclecounter_read;
4487 		adapter->cc.mask = CYCLECOUNTER_MASK(64);
4488 		adapter->cc.mult = 1;
4489 		/* cc.shift set in e1000e_get_base_tininca() */
4490 
4491 		spin_lock_init(&adapter->systim_lock);
4492 		INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work);
4493 	}
4494 
4495 	/* Explicitly disable IRQ since the NIC can be in any state. */
4496 	e1000_irq_disable(adapter);
4497 
4498 	set_bit(__E1000_DOWN, &adapter->state);
4499 	return 0;
4500 }
4501 
4502 /**
4503  * e1000_intr_msi_test - Interrupt Handler
4504  * @irq: interrupt number
4505  * @data: pointer to a network interface device structure
4506  **/
4507 static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data)
4508 {
4509 	struct net_device *netdev = data;
4510 	struct e1000_adapter *adapter = netdev_priv(netdev);
4511 	struct e1000_hw *hw = &adapter->hw;
4512 	u32 icr = er32(ICR);
4513 
4514 	e_dbg("icr is %08X\n", icr);
4515 	if (icr & E1000_ICR_RXSEQ) {
4516 		adapter->flags &= ~FLAG_MSI_TEST_FAILED;
4517 		/* Force memory writes to complete before acknowledging the
4518 		 * interrupt is handled.
4519 		 */
4520 		wmb();
4521 	}
4522 
4523 	return IRQ_HANDLED;
4524 }
4525 
4526 /**
4527  * e1000_test_msi_interrupt - Returns 0 for successful test
4528  * @adapter: board private struct
4529  *
4530  * code flow taken from tg3.c
4531  **/
4532 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
4533 {
4534 	struct net_device *netdev = adapter->netdev;
4535 	struct e1000_hw *hw = &adapter->hw;
4536 	int err;
4537 
4538 	/* poll_enable hasn't been called yet, so don't need disable */
4539 	/* clear any pending events */
4540 	er32(ICR);
4541 
4542 	/* free the real vector and request a test handler */
4543 	e1000_free_irq(adapter);
4544 	e1000e_reset_interrupt_capability(adapter);
4545 
4546 	/* Assume that the test fails, if it succeeds then the test
4547 	 * MSI irq handler will unset this flag
4548 	 */
4549 	adapter->flags |= FLAG_MSI_TEST_FAILED;
4550 
4551 	err = pci_enable_msi(adapter->pdev);
4552 	if (err)
4553 		goto msi_test_failed;
4554 
4555 	err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
4556 			  netdev->name, netdev);
4557 	if (err) {
4558 		pci_disable_msi(adapter->pdev);
4559 		goto msi_test_failed;
4560 	}
4561 
4562 	/* Force memory writes to complete before enabling and firing an
4563 	 * interrupt.
4564 	 */
4565 	wmb();
4566 
4567 	e1000_irq_enable(adapter);
4568 
4569 	/* fire an unusual interrupt on the test handler */
4570 	ew32(ICS, E1000_ICS_RXSEQ);
4571 	e1e_flush();
4572 	msleep(100);
4573 
4574 	e1000_irq_disable(adapter);
4575 
4576 	rmb();			/* read flags after interrupt has been fired */
4577 
4578 	if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4579 		adapter->int_mode = E1000E_INT_MODE_LEGACY;
4580 		e_info("MSI interrupt test failed, using legacy interrupt.\n");
4581 	} else {
4582 		e_dbg("MSI interrupt test succeeded!\n");
4583 	}
4584 
4585 	free_irq(adapter->pdev->irq, netdev);
4586 	pci_disable_msi(adapter->pdev);
4587 
4588 msi_test_failed:
4589 	e1000e_set_interrupt_capability(adapter);
4590 	return e1000_request_irq(adapter);
4591 }
4592 
4593 /**
4594  * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4595  * @adapter: board private struct
4596  *
4597  * code flow taken from tg3.c, called with e1000 interrupts disabled.
4598  **/
4599 static int e1000_test_msi(struct e1000_adapter *adapter)
4600 {
4601 	int err;
4602 	u16 pci_cmd;
4603 
4604 	if (!(adapter->flags & FLAG_MSI_ENABLED))
4605 		return 0;
4606 
4607 	/* disable SERR in case the MSI write causes a master abort */
4608 	pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4609 	if (pci_cmd & PCI_COMMAND_SERR)
4610 		pci_write_config_word(adapter->pdev, PCI_COMMAND,
4611 				      pci_cmd & ~PCI_COMMAND_SERR);
4612 
4613 	err = e1000_test_msi_interrupt(adapter);
4614 
4615 	/* re-enable SERR */
4616 	if (pci_cmd & PCI_COMMAND_SERR) {
4617 		pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4618 		pci_cmd |= PCI_COMMAND_SERR;
4619 		pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
4620 	}
4621 
4622 	return err;
4623 }
4624 
4625 /**
4626  * e1000e_open - Called when a network interface is made active
4627  * @netdev: network interface device structure
4628  *
4629  * Returns 0 on success, negative value on failure
4630  *
4631  * The open entry point is called when a network interface is made
4632  * active by the system (IFF_UP).  At this point all resources needed
4633  * for transmit and receive operations are allocated, the interrupt
4634  * handler is registered with the OS, the watchdog timer is started,
4635  * and the stack is notified that the interface is ready.
4636  **/
4637 int e1000e_open(struct net_device *netdev)
4638 {
4639 	struct e1000_adapter *adapter = netdev_priv(netdev);
4640 	struct e1000_hw *hw = &adapter->hw;
4641 	struct pci_dev *pdev = adapter->pdev;
4642 	int err;
4643 
4644 	/* disallow open during test */
4645 	if (test_bit(__E1000_TESTING, &adapter->state))
4646 		return -EBUSY;
4647 
4648 	pm_runtime_get_sync(&pdev->dev);
4649 
4650 	netif_carrier_off(netdev);
4651 	netif_stop_queue(netdev);
4652 
4653 	/* allocate transmit descriptors */
4654 	err = e1000e_setup_tx_resources(adapter->tx_ring);
4655 	if (err)
4656 		goto err_setup_tx;
4657 
4658 	/* allocate receive descriptors */
4659 	err = e1000e_setup_rx_resources(adapter->rx_ring);
4660 	if (err)
4661 		goto err_setup_rx;
4662 
4663 	/* If AMT is enabled, let the firmware know that the network
4664 	 * interface is now open and reset the part to a known state.
4665 	 */
4666 	if (adapter->flags & FLAG_HAS_AMT) {
4667 		e1000e_get_hw_control(adapter);
4668 		e1000e_reset(adapter);
4669 	}
4670 
4671 	e1000e_power_up_phy(adapter);
4672 
4673 	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4674 	if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
4675 		e1000_update_mng_vlan(adapter);
4676 
4677 	/* DMA latency requirement to workaround jumbo issue */
4678 	cpu_latency_qos_add_request(&adapter->pm_qos_req, PM_QOS_DEFAULT_VALUE);
4679 
4680 	/* before we allocate an interrupt, we must be ready to handle it.
4681 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4682 	 * as soon as we call pci_request_irq, so we have to setup our
4683 	 * clean_rx handler before we do so.
4684 	 */
4685 	e1000_configure(adapter);
4686 
4687 	err = e1000_request_irq(adapter);
4688 	if (err)
4689 		goto err_req_irq;
4690 
4691 	/* Work around PCIe errata with MSI interrupts causing some chipsets to
4692 	 * ignore e1000e MSI messages, which means we need to test our MSI
4693 	 * interrupt now
4694 	 */
4695 	if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
4696 		err = e1000_test_msi(adapter);
4697 		if (err) {
4698 			e_err("Interrupt allocation failed\n");
4699 			goto err_req_irq;
4700 		}
4701 	}
4702 
4703 	/* From here on the code is the same as e1000e_up() */
4704 	clear_bit(__E1000_DOWN, &adapter->state);
4705 
4706 	napi_enable(&adapter->napi);
4707 
4708 	e1000_irq_enable(adapter);
4709 
4710 	adapter->tx_hang_recheck = false;
4711 
4712 	hw->mac.get_link_status = true;
4713 	pm_runtime_put(&pdev->dev);
4714 
4715 	e1000e_trigger_lsc(adapter);
4716 
4717 	return 0;
4718 
4719 err_req_irq:
4720 	cpu_latency_qos_remove_request(&adapter->pm_qos_req);
4721 	e1000e_release_hw_control(adapter);
4722 	e1000_power_down_phy(adapter);
4723 	e1000e_free_rx_resources(adapter->rx_ring);
4724 err_setup_rx:
4725 	e1000e_free_tx_resources(adapter->tx_ring);
4726 err_setup_tx:
4727 	e1000e_reset(adapter);
4728 	pm_runtime_put_sync(&pdev->dev);
4729 
4730 	return err;
4731 }
4732 
4733 /**
4734  * e1000e_close - Disables a network interface
4735  * @netdev: network interface device structure
4736  *
4737  * Returns 0, this is not allowed to fail
4738  *
4739  * The close entry point is called when an interface is de-activated
4740  * by the OS.  The hardware is still under the drivers control, but
4741  * needs to be disabled.  A global MAC reset is issued to stop the
4742  * hardware, and all transmit and receive resources are freed.
4743  **/
4744 int e1000e_close(struct net_device *netdev)
4745 {
4746 	struct e1000_adapter *adapter = netdev_priv(netdev);
4747 	struct pci_dev *pdev = adapter->pdev;
4748 	int count = E1000_CHECK_RESET_COUNT;
4749 
4750 	while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
4751 		usleep_range(10000, 11000);
4752 
4753 	WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4754 
4755 	pm_runtime_get_sync(&pdev->dev);
4756 
4757 	if (netif_device_present(netdev)) {
4758 		e1000e_down(adapter, true);
4759 		e1000_free_irq(adapter);
4760 
4761 		/* Link status message must follow this format */
4762 		netdev_info(netdev, "NIC Link is Down\n");
4763 	}
4764 
4765 	napi_disable(&adapter->napi);
4766 
4767 	e1000e_free_tx_resources(adapter->tx_ring);
4768 	e1000e_free_rx_resources(adapter->rx_ring);
4769 
4770 	/* kill manageability vlan ID if supported, but not if a vlan with
4771 	 * the same ID is registered on the host OS (let 8021q kill it)
4772 	 */
4773 	if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
4774 		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
4775 				       adapter->mng_vlan_id);
4776 
4777 	/* If AMT is enabled, let the firmware know that the network
4778 	 * interface is now closed
4779 	 */
4780 	if ((adapter->flags & FLAG_HAS_AMT) &&
4781 	    !test_bit(__E1000_TESTING, &adapter->state))
4782 		e1000e_release_hw_control(adapter);
4783 
4784 	cpu_latency_qos_remove_request(&adapter->pm_qos_req);
4785 
4786 	pm_runtime_put_sync(&pdev->dev);
4787 
4788 	return 0;
4789 }
4790 
4791 /**
4792  * e1000_set_mac - Change the Ethernet Address of the NIC
4793  * @netdev: network interface device structure
4794  * @p: pointer to an address structure
4795  *
4796  * Returns 0 on success, negative on failure
4797  **/
4798 static int e1000_set_mac(struct net_device *netdev, void *p)
4799 {
4800 	struct e1000_adapter *adapter = netdev_priv(netdev);
4801 	struct e1000_hw *hw = &adapter->hw;
4802 	struct sockaddr *addr = p;
4803 
4804 	if (!is_valid_ether_addr(addr->sa_data))
4805 		return -EADDRNOTAVAIL;
4806 
4807 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4808 	memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4809 
4810 	hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4811 
4812 	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4813 		/* activate the work around */
4814 		e1000e_set_laa_state_82571(&adapter->hw, 1);
4815 
4816 		/* Hold a copy of the LAA in RAR[14] This is done so that
4817 		 * between the time RAR[0] gets clobbered  and the time it
4818 		 * gets fixed (in e1000_watchdog), the actual LAA is in one
4819 		 * of the RARs and no incoming packets directed to this port
4820 		 * are dropped. Eventually the LAA will be in RAR[0] and
4821 		 * RAR[14]
4822 		 */
4823 		hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4824 				    adapter->hw.mac.rar_entry_count - 1);
4825 	}
4826 
4827 	return 0;
4828 }
4829 
4830 /**
4831  * e1000e_update_phy_task - work thread to update phy
4832  * @work: pointer to our work struct
4833  *
4834  * this worker thread exists because we must acquire a
4835  * semaphore to read the phy, which we could msleep while
4836  * waiting for it, and we can't msleep in a timer.
4837  **/
4838 static void e1000e_update_phy_task(struct work_struct *work)
4839 {
4840 	struct e1000_adapter *adapter = container_of(work,
4841 						     struct e1000_adapter,
4842 						     update_phy_task);
4843 	struct e1000_hw *hw = &adapter->hw;
4844 
4845 	if (test_bit(__E1000_DOWN, &adapter->state))
4846 		return;
4847 
4848 	e1000_get_phy_info(hw);
4849 
4850 	/* Enable EEE on 82579 after link up */
4851 	if (hw->phy.type >= e1000_phy_82579)
4852 		e1000_set_eee_pchlan(hw);
4853 }
4854 
4855 /**
4856  * e1000_update_phy_info - timre call-back to update PHY info
4857  * @data: pointer to adapter cast into an unsigned long
4858  *
4859  * Need to wait a few seconds after link up to get diagnostic information from
4860  * the phy
4861  **/
4862 static void e1000_update_phy_info(struct timer_list *t)
4863 {
4864 	struct e1000_adapter *adapter = from_timer(adapter, t, phy_info_timer);
4865 
4866 	if (test_bit(__E1000_DOWN, &adapter->state))
4867 		return;
4868 
4869 	schedule_work(&adapter->update_phy_task);
4870 }
4871 
4872 /**
4873  * e1000e_update_phy_stats - Update the PHY statistics counters
4874  * @adapter: board private structure
4875  *
4876  * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4877  **/
4878 static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4879 {
4880 	struct e1000_hw *hw = &adapter->hw;
4881 	s32 ret_val;
4882 	u16 phy_data;
4883 
4884 	ret_val = hw->phy.ops.acquire(hw);
4885 	if (ret_val)
4886 		return;
4887 
4888 	/* A page set is expensive so check if already on desired page.
4889 	 * If not, set to the page with the PHY status registers.
4890 	 */
4891 	hw->phy.addr = 1;
4892 	ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4893 					   &phy_data);
4894 	if (ret_val)
4895 		goto release;
4896 	if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4897 		ret_val = hw->phy.ops.set_page(hw,
4898 					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
4899 		if (ret_val)
4900 			goto release;
4901 	}
4902 
4903 	/* Single Collision Count */
4904 	hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4905 	ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4906 	if (!ret_val)
4907 		adapter->stats.scc += phy_data;
4908 
4909 	/* Excessive Collision Count */
4910 	hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4911 	ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4912 	if (!ret_val)
4913 		adapter->stats.ecol += phy_data;
4914 
4915 	/* Multiple Collision Count */
4916 	hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4917 	ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4918 	if (!ret_val)
4919 		adapter->stats.mcc += phy_data;
4920 
4921 	/* Late Collision Count */
4922 	hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4923 	ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4924 	if (!ret_val)
4925 		adapter->stats.latecol += phy_data;
4926 
4927 	/* Collision Count - also used for adaptive IFS */
4928 	hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4929 	ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4930 	if (!ret_val)
4931 		hw->mac.collision_delta = phy_data;
4932 
4933 	/* Defer Count */
4934 	hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4935 	ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4936 	if (!ret_val)
4937 		adapter->stats.dc += phy_data;
4938 
4939 	/* Transmit with no CRS */
4940 	hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4941 	ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4942 	if (!ret_val)
4943 		adapter->stats.tncrs += phy_data;
4944 
4945 release:
4946 	hw->phy.ops.release(hw);
4947 }
4948 
4949 /**
4950  * e1000e_update_stats - Update the board statistics counters
4951  * @adapter: board private structure
4952  **/
4953 static void e1000e_update_stats(struct e1000_adapter *adapter)
4954 {
4955 	struct net_device *netdev = adapter->netdev;
4956 	struct e1000_hw *hw = &adapter->hw;
4957 	struct pci_dev *pdev = adapter->pdev;
4958 
4959 	/* Prevent stats update while adapter is being reset, or if the pci
4960 	 * connection is down.
4961 	 */
4962 	if (adapter->link_speed == 0)
4963 		return;
4964 	if (pci_channel_offline(pdev))
4965 		return;
4966 
4967 	adapter->stats.crcerrs += er32(CRCERRS);
4968 	adapter->stats.gprc += er32(GPRC);
4969 	adapter->stats.gorc += er32(GORCL);
4970 	er32(GORCH);		/* Clear gorc */
4971 	adapter->stats.bprc += er32(BPRC);
4972 	adapter->stats.mprc += er32(MPRC);
4973 	adapter->stats.roc += er32(ROC);
4974 
4975 	adapter->stats.mpc += er32(MPC);
4976 
4977 	/* Half-duplex statistics */
4978 	if (adapter->link_duplex == HALF_DUPLEX) {
4979 		if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4980 			e1000e_update_phy_stats(adapter);
4981 		} else {
4982 			adapter->stats.scc += er32(SCC);
4983 			adapter->stats.ecol += er32(ECOL);
4984 			adapter->stats.mcc += er32(MCC);
4985 			adapter->stats.latecol += er32(LATECOL);
4986 			adapter->stats.dc += er32(DC);
4987 
4988 			hw->mac.collision_delta = er32(COLC);
4989 
4990 			if ((hw->mac.type != e1000_82574) &&
4991 			    (hw->mac.type != e1000_82583))
4992 				adapter->stats.tncrs += er32(TNCRS);
4993 		}
4994 		adapter->stats.colc += hw->mac.collision_delta;
4995 	}
4996 
4997 	adapter->stats.xonrxc += er32(XONRXC);
4998 	adapter->stats.xontxc += er32(XONTXC);
4999 	adapter->stats.xoffrxc += er32(XOFFRXC);
5000 	adapter->stats.xofftxc += er32(XOFFTXC);
5001 	adapter->stats.gptc += er32(GPTC);
5002 	adapter->stats.gotc += er32(GOTCL);
5003 	er32(GOTCH);		/* Clear gotc */
5004 	adapter->stats.rnbc += er32(RNBC);
5005 	adapter->stats.ruc += er32(RUC);
5006 
5007 	adapter->stats.mptc += er32(MPTC);
5008 	adapter->stats.bptc += er32(BPTC);
5009 
5010 	/* used for adaptive IFS */
5011 
5012 	hw->mac.tx_packet_delta = er32(TPT);
5013 	adapter->stats.tpt += hw->mac.tx_packet_delta;
5014 
5015 	adapter->stats.algnerrc += er32(ALGNERRC);
5016 	adapter->stats.rxerrc += er32(RXERRC);
5017 	adapter->stats.cexterr += er32(CEXTERR);
5018 	adapter->stats.tsctc += er32(TSCTC);
5019 	adapter->stats.tsctfc += er32(TSCTFC);
5020 
5021 	/* Fill out the OS statistics structure */
5022 	netdev->stats.multicast = adapter->stats.mprc;
5023 	netdev->stats.collisions = adapter->stats.colc;
5024 
5025 	/* Rx Errors */
5026 
5027 	/* RLEC on some newer hardware can be incorrect so build
5028 	 * our own version based on RUC and ROC
5029 	 */
5030 	netdev->stats.rx_errors = adapter->stats.rxerrc +
5031 	    adapter->stats.crcerrs + adapter->stats.algnerrc +
5032 	    adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5033 	netdev->stats.rx_length_errors = adapter->stats.ruc +
5034 	    adapter->stats.roc;
5035 	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
5036 	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
5037 	netdev->stats.rx_missed_errors = adapter->stats.mpc;
5038 
5039 	/* Tx Errors */
5040 	netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol;
5041 	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
5042 	netdev->stats.tx_window_errors = adapter->stats.latecol;
5043 	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
5044 
5045 	/* Tx Dropped needs to be maintained elsewhere */
5046 
5047 	/* Management Stats */
5048 	adapter->stats.mgptc += er32(MGTPTC);
5049 	adapter->stats.mgprc += er32(MGTPRC);
5050 	adapter->stats.mgpdc += er32(MGTPDC);
5051 
5052 	/* Correctable ECC Errors */
5053 	if (hw->mac.type >= e1000_pch_lpt) {
5054 		u32 pbeccsts = er32(PBECCSTS);
5055 
5056 		adapter->corr_errors +=
5057 		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
5058 		adapter->uncorr_errors +=
5059 		    (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
5060 		    E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
5061 	}
5062 }
5063 
5064 /**
5065  * e1000_phy_read_status - Update the PHY register status snapshot
5066  * @adapter: board private structure
5067  **/
5068 static void e1000_phy_read_status(struct e1000_adapter *adapter)
5069 {
5070 	struct e1000_hw *hw = &adapter->hw;
5071 	struct e1000_phy_regs *phy = &adapter->phy_regs;
5072 
5073 	if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) &&
5074 	    (er32(STATUS) & E1000_STATUS_LU) &&
5075 	    (adapter->hw.phy.media_type == e1000_media_type_copper)) {
5076 		int ret_val;
5077 
5078 		ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr);
5079 		ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr);
5080 		ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise);
5081 		ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa);
5082 		ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion);
5083 		ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000);
5084 		ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000);
5085 		ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus);
5086 		if (ret_val)
5087 			e_warn("Error reading PHY register\n");
5088 	} else {
5089 		/* Do not read PHY registers if link is not up
5090 		 * Set values to typical power-on defaults
5091 		 */
5092 		phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
5093 		phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
5094 			     BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
5095 			     BMSR_ERCAP);
5096 		phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
5097 				  ADVERTISE_ALL | ADVERTISE_CSMA);
5098 		phy->lpa = 0;
5099 		phy->expansion = EXPANSION_ENABLENPAGE;
5100 		phy->ctrl1000 = ADVERTISE_1000FULL;
5101 		phy->stat1000 = 0;
5102 		phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
5103 	}
5104 }
5105 
5106 static void e1000_print_link_info(struct e1000_adapter *adapter)
5107 {
5108 	struct e1000_hw *hw = &adapter->hw;
5109 	u32 ctrl = er32(CTRL);
5110 
5111 	/* Link status message must follow this format for user tools */
5112 	netdev_info(adapter->netdev,
5113 		    "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5114 		    adapter->link_speed,
5115 		    adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
5116 		    (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
5117 		    (ctrl & E1000_CTRL_RFCE) ? "Rx" :
5118 		    (ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
5119 }
5120 
5121 static bool e1000e_has_link(struct e1000_adapter *adapter)
5122 {
5123 	struct e1000_hw *hw = &adapter->hw;
5124 	bool link_active = false;
5125 	s32 ret_val = 0;
5126 
5127 	/* get_link_status is set on LSC (link status) interrupt or
5128 	 * Rx sequence error interrupt.  get_link_status will stay
5129 	 * true until the check_for_link establishes link
5130 	 * for copper adapters ONLY
5131 	 */
5132 	switch (hw->phy.media_type) {
5133 	case e1000_media_type_copper:
5134 		if (hw->mac.get_link_status) {
5135 			ret_val = hw->mac.ops.check_for_link(hw);
5136 			link_active = !hw->mac.get_link_status;
5137 		} else {
5138 			link_active = true;
5139 		}
5140 		break;
5141 	case e1000_media_type_fiber:
5142 		ret_val = hw->mac.ops.check_for_link(hw);
5143 		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
5144 		break;
5145 	case e1000_media_type_internal_serdes:
5146 		ret_val = hw->mac.ops.check_for_link(hw);
5147 		link_active = hw->mac.serdes_has_link;
5148 		break;
5149 	default:
5150 	case e1000_media_type_unknown:
5151 		break;
5152 	}
5153 
5154 	if ((ret_val == -E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
5155 	    (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
5156 		/* See e1000_kmrn_lock_loss_workaround_ich8lan() */
5157 		e_info("Gigabit has been disabled, downgrading speed\n");
5158 	}
5159 
5160 	return link_active;
5161 }
5162 
5163 static void e1000e_enable_receives(struct e1000_adapter *adapter)
5164 {
5165 	/* make sure the receive unit is started */
5166 	if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
5167 	    (adapter->flags & FLAG_RESTART_NOW)) {
5168 		struct e1000_hw *hw = &adapter->hw;
5169 		u32 rctl = er32(RCTL);
5170 
5171 		ew32(RCTL, rctl | E1000_RCTL_EN);
5172 		adapter->flags &= ~FLAG_RESTART_NOW;
5173 	}
5174 }
5175 
5176 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
5177 {
5178 	struct e1000_hw *hw = &adapter->hw;
5179 
5180 	/* With 82574 controllers, PHY needs to be checked periodically
5181 	 * for hung state and reset, if two calls return true
5182 	 */
5183 	if (e1000_check_phy_82574(hw))
5184 		adapter->phy_hang_count++;
5185 	else
5186 		adapter->phy_hang_count = 0;
5187 
5188 	if (adapter->phy_hang_count > 1) {
5189 		adapter->phy_hang_count = 0;
5190 		e_dbg("PHY appears hung - resetting\n");
5191 		schedule_work(&adapter->reset_task);
5192 	}
5193 }
5194 
5195 /**
5196  * e1000_watchdog - Timer Call-back
5197  * @data: pointer to adapter cast into an unsigned long
5198  **/
5199 static void e1000_watchdog(struct timer_list *t)
5200 {
5201 	struct e1000_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5202 
5203 	/* Do the rest outside of interrupt context */
5204 	schedule_work(&adapter->watchdog_task);
5205 
5206 	/* TODO: make this use queue_delayed_work() */
5207 }
5208 
5209 static void e1000_watchdog_task(struct work_struct *work)
5210 {
5211 	struct e1000_adapter *adapter = container_of(work,
5212 						     struct e1000_adapter,
5213 						     watchdog_task);
5214 	struct net_device *netdev = adapter->netdev;
5215 	struct e1000_mac_info *mac = &adapter->hw.mac;
5216 	struct e1000_phy_info *phy = &adapter->hw.phy;
5217 	struct e1000_ring *tx_ring = adapter->tx_ring;
5218 	u32 dmoff_exit_timeout = 100, tries = 0;
5219 	struct e1000_hw *hw = &adapter->hw;
5220 	u32 link, tctl, pcim_state;
5221 
5222 	if (test_bit(__E1000_DOWN, &adapter->state))
5223 		return;
5224 
5225 	link = e1000e_has_link(adapter);
5226 	if ((netif_carrier_ok(netdev)) && link) {
5227 		/* Cancel scheduled suspend requests. */
5228 		pm_runtime_resume(netdev->dev.parent);
5229 
5230 		e1000e_enable_receives(adapter);
5231 		goto link_up;
5232 	}
5233 
5234 	if ((e1000e_enable_tx_pkt_filtering(hw)) &&
5235 	    (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
5236 		e1000_update_mng_vlan(adapter);
5237 
5238 	if (link) {
5239 		if (!netif_carrier_ok(netdev)) {
5240 			bool txb2b = true;
5241 
5242 			/* Cancel scheduled suspend requests. */
5243 			pm_runtime_resume(netdev->dev.parent);
5244 
5245 			/* Checking if MAC is in DMoff state*/
5246 			pcim_state = er32(STATUS);
5247 			while (pcim_state & E1000_STATUS_PCIM_STATE) {
5248 				if (tries++ == dmoff_exit_timeout) {
5249 					e_dbg("Error in exiting dmoff\n");
5250 					break;
5251 				}
5252 				usleep_range(10000, 20000);
5253 				pcim_state = er32(STATUS);
5254 
5255 				/* Checking if MAC exited DMoff state */
5256 				if (!(pcim_state & E1000_STATUS_PCIM_STATE))
5257 					e1000_phy_hw_reset(&adapter->hw);
5258 			}
5259 
5260 			/* update snapshot of PHY registers on LSC */
5261 			e1000_phy_read_status(adapter);
5262 			mac->ops.get_link_up_info(&adapter->hw,
5263 						  &adapter->link_speed,
5264 						  &adapter->link_duplex);
5265 			e1000_print_link_info(adapter);
5266 
5267 			/* check if SmartSpeed worked */
5268 			e1000e_check_downshift(hw);
5269 			if (phy->speed_downgraded)
5270 				netdev_warn(netdev,
5271 					    "Link Speed was downgraded by SmartSpeed\n");
5272 
5273 			/* On supported PHYs, check for duplex mismatch only
5274 			 * if link has autonegotiated at 10/100 half
5275 			 */
5276 			if ((hw->phy.type == e1000_phy_igp_3 ||
5277 			     hw->phy.type == e1000_phy_bm) &&
5278 			    hw->mac.autoneg &&
5279 			    (adapter->link_speed == SPEED_10 ||
5280 			     adapter->link_speed == SPEED_100) &&
5281 			    (adapter->link_duplex == HALF_DUPLEX)) {
5282 				u16 autoneg_exp;
5283 
5284 				e1e_rphy(hw, MII_EXPANSION, &autoneg_exp);
5285 
5286 				if (!(autoneg_exp & EXPANSION_NWAY))
5287 					e_info("Autonegotiated half duplex but link partner cannot autoneg.  Try forcing full duplex if link gets many collisions.\n");
5288 			}
5289 
5290 			/* adjust timeout factor according to speed/duplex */
5291 			adapter->tx_timeout_factor = 1;
5292 			switch (adapter->link_speed) {
5293 			case SPEED_10:
5294 				txb2b = false;
5295 				adapter->tx_timeout_factor = 16;
5296 				break;
5297 			case SPEED_100:
5298 				txb2b = false;
5299 				adapter->tx_timeout_factor = 10;
5300 				break;
5301 			}
5302 
5303 			/* workaround: re-program speed mode bit after
5304 			 * link-up event
5305 			 */
5306 			if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
5307 			    !txb2b) {
5308 				u32 tarc0;
5309 
5310 				tarc0 = er32(TARC(0));
5311 				tarc0 &= ~SPEED_MODE_BIT;
5312 				ew32(TARC(0), tarc0);
5313 			}
5314 
5315 			/* disable TSO for pcie and 10/100 speeds, to avoid
5316 			 * some hardware issues
5317 			 */
5318 			if (!(adapter->flags & FLAG_TSO_FORCE)) {
5319 				switch (adapter->link_speed) {
5320 				case SPEED_10:
5321 				case SPEED_100:
5322 					e_info("10/100 speed: disabling TSO\n");
5323 					netdev->features &= ~NETIF_F_TSO;
5324 					netdev->features &= ~NETIF_F_TSO6;
5325 					break;
5326 				case SPEED_1000:
5327 					netdev->features |= NETIF_F_TSO;
5328 					netdev->features |= NETIF_F_TSO6;
5329 					break;
5330 				default:
5331 					/* oops */
5332 					break;
5333 				}
5334 				if (hw->mac.type == e1000_pch_spt) {
5335 					netdev->features &= ~NETIF_F_TSO;
5336 					netdev->features &= ~NETIF_F_TSO6;
5337 				}
5338 			}
5339 
5340 			/* enable transmits in the hardware, need to do this
5341 			 * after setting TARC(0)
5342 			 */
5343 			tctl = er32(TCTL);
5344 			tctl |= E1000_TCTL_EN;
5345 			ew32(TCTL, tctl);
5346 
5347 			/* Perform any post-link-up configuration before
5348 			 * reporting link up.
5349 			 */
5350 			if (phy->ops.cfg_on_link_up)
5351 				phy->ops.cfg_on_link_up(hw);
5352 
5353 			netif_wake_queue(netdev);
5354 			netif_carrier_on(netdev);
5355 
5356 			if (!test_bit(__E1000_DOWN, &adapter->state))
5357 				mod_timer(&adapter->phy_info_timer,
5358 					  round_jiffies(jiffies + 2 * HZ));
5359 		}
5360 	} else {
5361 		if (netif_carrier_ok(netdev)) {
5362 			adapter->link_speed = 0;
5363 			adapter->link_duplex = 0;
5364 			/* Link status message must follow this format */
5365 			netdev_info(netdev, "NIC Link is Down\n");
5366 			netif_carrier_off(netdev);
5367 			netif_stop_queue(netdev);
5368 			if (!test_bit(__E1000_DOWN, &adapter->state))
5369 				mod_timer(&adapter->phy_info_timer,
5370 					  round_jiffies(jiffies + 2 * HZ));
5371 
5372 			/* 8000ES2LAN requires a Rx packet buffer work-around
5373 			 * on link down event; reset the controller to flush
5374 			 * the Rx packet buffer.
5375 			 */
5376 			if (adapter->flags & FLAG_RX_NEEDS_RESTART)
5377 				adapter->flags |= FLAG_RESTART_NOW;
5378 			else
5379 				pm_schedule_suspend(netdev->dev.parent,
5380 						    LINK_TIMEOUT);
5381 		}
5382 	}
5383 
5384 link_up:
5385 	spin_lock(&adapter->stats64_lock);
5386 	e1000e_update_stats(adapter);
5387 
5388 	mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
5389 	adapter->tpt_old = adapter->stats.tpt;
5390 	mac->collision_delta = adapter->stats.colc - adapter->colc_old;
5391 	adapter->colc_old = adapter->stats.colc;
5392 
5393 	adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
5394 	adapter->gorc_old = adapter->stats.gorc;
5395 	adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
5396 	adapter->gotc_old = adapter->stats.gotc;
5397 	spin_unlock(&adapter->stats64_lock);
5398 
5399 	/* If the link is lost the controller stops DMA, but
5400 	 * if there is queued Tx work it cannot be done.  So
5401 	 * reset the controller to flush the Tx packet buffers.
5402 	 */
5403 	if (!netif_carrier_ok(netdev) &&
5404 	    (e1000_desc_unused(tx_ring) + 1 < tx_ring->count))
5405 		adapter->flags |= FLAG_RESTART_NOW;
5406 
5407 	/* If reset is necessary, do it outside of interrupt context. */
5408 	if (adapter->flags & FLAG_RESTART_NOW) {
5409 		schedule_work(&adapter->reset_task);
5410 		/* return immediately since reset is imminent */
5411 		return;
5412 	}
5413 
5414 	e1000e_update_adaptive(&adapter->hw);
5415 
5416 	/* Simple mode for Interrupt Throttle Rate (ITR) */
5417 	if (adapter->itr_setting == 4) {
5418 		/* Symmetric Tx/Rx gets a reduced ITR=2000;
5419 		 * Total asymmetrical Tx or Rx gets ITR=8000;
5420 		 * everyone else is between 2000-8000.
5421 		 */
5422 		u32 goc = (adapter->gotc + adapter->gorc) / 10000;
5423 		u32 dif = (adapter->gotc > adapter->gorc ?
5424 			   adapter->gotc - adapter->gorc :
5425 			   adapter->gorc - adapter->gotc) / 10000;
5426 		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
5427 
5428 		e1000e_write_itr(adapter, itr);
5429 	}
5430 
5431 	/* Cause software interrupt to ensure Rx ring is cleaned */
5432 	if (adapter->msix_entries)
5433 		ew32(ICS, adapter->rx_ring->ims_val);
5434 	else
5435 		ew32(ICS, E1000_ICS_RXDMT0);
5436 
5437 	/* flush pending descriptors to memory before detecting Tx hang */
5438 	e1000e_flush_descriptors(adapter);
5439 
5440 	/* Force detection of hung controller every watchdog period */
5441 	adapter->detect_tx_hung = true;
5442 
5443 	/* With 82571 controllers, LAA may be overwritten due to controller
5444 	 * reset from the other port. Set the appropriate LAA in RAR[0]
5445 	 */
5446 	if (e1000e_get_laa_state_82571(hw))
5447 		hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
5448 
5449 	if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
5450 		e1000e_check_82574_phy_workaround(adapter);
5451 
5452 	/* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5453 	if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) {
5454 		if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) &&
5455 		    (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) {
5456 			er32(RXSTMPH);
5457 			adapter->rx_hwtstamp_cleared++;
5458 		} else {
5459 			adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP;
5460 		}
5461 	}
5462 
5463 	/* Reset the timer */
5464 	if (!test_bit(__E1000_DOWN, &adapter->state))
5465 		mod_timer(&adapter->watchdog_timer,
5466 			  round_jiffies(jiffies + 2 * HZ));
5467 }
5468 
5469 #define E1000_TX_FLAGS_CSUM		0x00000001
5470 #define E1000_TX_FLAGS_VLAN		0x00000002
5471 #define E1000_TX_FLAGS_TSO		0x00000004
5472 #define E1000_TX_FLAGS_IPV4		0x00000008
5473 #define E1000_TX_FLAGS_NO_FCS		0x00000010
5474 #define E1000_TX_FLAGS_HWTSTAMP		0x00000020
5475 #define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
5476 #define E1000_TX_FLAGS_VLAN_SHIFT	16
5477 
5478 static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb,
5479 		     __be16 protocol)
5480 {
5481 	struct e1000_context_desc *context_desc;
5482 	struct e1000_buffer *buffer_info;
5483 	unsigned int i;
5484 	u32 cmd_length = 0;
5485 	u16 ipcse = 0, mss;
5486 	u8 ipcss, ipcso, tucss, tucso, hdr_len;
5487 	int err;
5488 
5489 	if (!skb_is_gso(skb))
5490 		return 0;
5491 
5492 	err = skb_cow_head(skb, 0);
5493 	if (err < 0)
5494 		return err;
5495 
5496 	hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5497 	mss = skb_shinfo(skb)->gso_size;
5498 	if (protocol == htons(ETH_P_IP)) {
5499 		struct iphdr *iph = ip_hdr(skb);
5500 		iph->tot_len = 0;
5501 		iph->check = 0;
5502 		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
5503 							 0, IPPROTO_TCP, 0);
5504 		cmd_length = E1000_TXD_CMD_IP;
5505 		ipcse = skb_transport_offset(skb) - 1;
5506 	} else if (skb_is_gso_v6(skb)) {
5507 		tcp_v6_gso_csum_prep(skb);
5508 		ipcse = 0;
5509 	}
5510 	ipcss = skb_network_offset(skb);
5511 	ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
5512 	tucss = skb_transport_offset(skb);
5513 	tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
5514 
5515 	cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
5516 		       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
5517 
5518 	i = tx_ring->next_to_use;
5519 	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5520 	buffer_info = &tx_ring->buffer_info[i];
5521 
5522 	context_desc->lower_setup.ip_fields.ipcss = ipcss;
5523 	context_desc->lower_setup.ip_fields.ipcso = ipcso;
5524 	context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
5525 	context_desc->upper_setup.tcp_fields.tucss = tucss;
5526 	context_desc->upper_setup.tcp_fields.tucso = tucso;
5527 	context_desc->upper_setup.tcp_fields.tucse = 0;
5528 	context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
5529 	context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
5530 	context_desc->cmd_and_length = cpu_to_le32(cmd_length);
5531 
5532 	buffer_info->time_stamp = jiffies;
5533 	buffer_info->next_to_watch = i;
5534 
5535 	i++;
5536 	if (i == tx_ring->count)
5537 		i = 0;
5538 	tx_ring->next_to_use = i;
5539 
5540 	return 1;
5541 }
5542 
5543 static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb,
5544 			  __be16 protocol)
5545 {
5546 	struct e1000_adapter *adapter = tx_ring->adapter;
5547 	struct e1000_context_desc *context_desc;
5548 	struct e1000_buffer *buffer_info;
5549 	unsigned int i;
5550 	u8 css;
5551 	u32 cmd_len = E1000_TXD_CMD_DEXT;
5552 
5553 	if (skb->ip_summed != CHECKSUM_PARTIAL)
5554 		return false;
5555 
5556 	switch (protocol) {
5557 	case cpu_to_be16(ETH_P_IP):
5558 		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
5559 			cmd_len |= E1000_TXD_CMD_TCP;
5560 		break;
5561 	case cpu_to_be16(ETH_P_IPV6):
5562 		/* XXX not handling all IPV6 headers */
5563 		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
5564 			cmd_len |= E1000_TXD_CMD_TCP;
5565 		break;
5566 	default:
5567 		if (unlikely(net_ratelimit()))
5568 			e_warn("checksum_partial proto=%x!\n",
5569 			       be16_to_cpu(protocol));
5570 		break;
5571 	}
5572 
5573 	css = skb_checksum_start_offset(skb);
5574 
5575 	i = tx_ring->next_to_use;
5576 	buffer_info = &tx_ring->buffer_info[i];
5577 	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5578 
5579 	context_desc->lower_setup.ip_config = 0;
5580 	context_desc->upper_setup.tcp_fields.tucss = css;
5581 	context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset;
5582 	context_desc->upper_setup.tcp_fields.tucse = 0;
5583 	context_desc->tcp_seg_setup.data = 0;
5584 	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
5585 
5586 	buffer_info->time_stamp = jiffies;
5587 	buffer_info->next_to_watch = i;
5588 
5589 	i++;
5590 	if (i == tx_ring->count)
5591 		i = 0;
5592 	tx_ring->next_to_use = i;
5593 
5594 	return true;
5595 }
5596 
5597 static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
5598 			unsigned int first, unsigned int max_per_txd,
5599 			unsigned int nr_frags)
5600 {
5601 	struct e1000_adapter *adapter = tx_ring->adapter;
5602 	struct pci_dev *pdev = adapter->pdev;
5603 	struct e1000_buffer *buffer_info;
5604 	unsigned int len = skb_headlen(skb);
5605 	unsigned int offset = 0, size, count = 0, i;
5606 	unsigned int f, bytecount, segs;
5607 
5608 	i = tx_ring->next_to_use;
5609 
5610 	while (len) {
5611 		buffer_info = &tx_ring->buffer_info[i];
5612 		size = min(len, max_per_txd);
5613 
5614 		buffer_info->length = size;
5615 		buffer_info->time_stamp = jiffies;
5616 		buffer_info->next_to_watch = i;
5617 		buffer_info->dma = dma_map_single(&pdev->dev,
5618 						  skb->data + offset,
5619 						  size, DMA_TO_DEVICE);
5620 		buffer_info->mapped_as_page = false;
5621 		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5622 			goto dma_error;
5623 
5624 		len -= size;
5625 		offset += size;
5626 		count++;
5627 
5628 		if (len) {
5629 			i++;
5630 			if (i == tx_ring->count)
5631 				i = 0;
5632 		}
5633 	}
5634 
5635 	for (f = 0; f < nr_frags; f++) {
5636 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
5637 
5638 		len = skb_frag_size(frag);
5639 		offset = 0;
5640 
5641 		while (len) {
5642 			i++;
5643 			if (i == tx_ring->count)
5644 				i = 0;
5645 
5646 			buffer_info = &tx_ring->buffer_info[i];
5647 			size = min(len, max_per_txd);
5648 
5649 			buffer_info->length = size;
5650 			buffer_info->time_stamp = jiffies;
5651 			buffer_info->next_to_watch = i;
5652 			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
5653 							    offset, size,
5654 							    DMA_TO_DEVICE);
5655 			buffer_info->mapped_as_page = true;
5656 			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5657 				goto dma_error;
5658 
5659 			len -= size;
5660 			offset += size;
5661 			count++;
5662 		}
5663 	}
5664 
5665 	segs = skb_shinfo(skb)->gso_segs ? : 1;
5666 	/* multiply data chunks by size of headers */
5667 	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
5668 
5669 	tx_ring->buffer_info[i].skb = skb;
5670 	tx_ring->buffer_info[i].segs = segs;
5671 	tx_ring->buffer_info[i].bytecount = bytecount;
5672 	tx_ring->buffer_info[first].next_to_watch = i;
5673 
5674 	return count;
5675 
5676 dma_error:
5677 	dev_err(&pdev->dev, "Tx DMA map failed\n");
5678 	buffer_info->dma = 0;
5679 	if (count)
5680 		count--;
5681 
5682 	while (count--) {
5683 		if (i == 0)
5684 			i += tx_ring->count;
5685 		i--;
5686 		buffer_info = &tx_ring->buffer_info[i];
5687 		e1000_put_txbuf(tx_ring, buffer_info, true);
5688 	}
5689 
5690 	return 0;
5691 }
5692 
5693 static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
5694 {
5695 	struct e1000_adapter *adapter = tx_ring->adapter;
5696 	struct e1000_tx_desc *tx_desc = NULL;
5697 	struct e1000_buffer *buffer_info;
5698 	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
5699 	unsigned int i;
5700 
5701 	if (tx_flags & E1000_TX_FLAGS_TSO) {
5702 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
5703 		    E1000_TXD_CMD_TSE;
5704 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5705 
5706 		if (tx_flags & E1000_TX_FLAGS_IPV4)
5707 			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
5708 	}
5709 
5710 	if (tx_flags & E1000_TX_FLAGS_CSUM) {
5711 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5712 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5713 	}
5714 
5715 	if (tx_flags & E1000_TX_FLAGS_VLAN) {
5716 		txd_lower |= E1000_TXD_CMD_VLE;
5717 		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
5718 	}
5719 
5720 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5721 		txd_lower &= ~(E1000_TXD_CMD_IFCS);
5722 
5723 	if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) {
5724 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5725 		txd_upper |= E1000_TXD_EXTCMD_TSTAMP;
5726 	}
5727 
5728 	i = tx_ring->next_to_use;
5729 
5730 	do {
5731 		buffer_info = &tx_ring->buffer_info[i];
5732 		tx_desc = E1000_TX_DESC(*tx_ring, i);
5733 		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
5734 		tx_desc->lower.data = cpu_to_le32(txd_lower |
5735 						  buffer_info->length);
5736 		tx_desc->upper.data = cpu_to_le32(txd_upper);
5737 
5738 		i++;
5739 		if (i == tx_ring->count)
5740 			i = 0;
5741 	} while (--count > 0);
5742 
5743 	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
5744 
5745 	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5746 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5747 		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
5748 
5749 	/* Force memory writes to complete before letting h/w
5750 	 * know there are new descriptors to fetch.  (Only
5751 	 * applicable for weak-ordered memory model archs,
5752 	 * such as IA-64).
5753 	 */
5754 	wmb();
5755 
5756 	tx_ring->next_to_use = i;
5757 }
5758 
5759 #define MINIMUM_DHCP_PACKET_SIZE 282
5760 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
5761 				    struct sk_buff *skb)
5762 {
5763 	struct e1000_hw *hw = &adapter->hw;
5764 	u16 length, offset;
5765 
5766 	if (skb_vlan_tag_present(skb) &&
5767 	    !((skb_vlan_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
5768 	      (adapter->hw.mng_cookie.status &
5769 	       E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
5770 		return 0;
5771 
5772 	if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
5773 		return 0;
5774 
5775 	if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP))
5776 		return 0;
5777 
5778 	{
5779 		const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14);
5780 		struct udphdr *udp;
5781 
5782 		if (ip->protocol != IPPROTO_UDP)
5783 			return 0;
5784 
5785 		udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
5786 		if (ntohs(udp->dest) != 67)
5787 			return 0;
5788 
5789 		offset = (u8 *)udp + 8 - skb->data;
5790 		length = skb->len - offset;
5791 		return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
5792 	}
5793 
5794 	return 0;
5795 }
5796 
5797 static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5798 {
5799 	struct e1000_adapter *adapter = tx_ring->adapter;
5800 
5801 	netif_stop_queue(adapter->netdev);
5802 	/* Herbert's original patch had:
5803 	 *  smp_mb__after_netif_stop_queue();
5804 	 * but since that doesn't exist yet, just open code it.
5805 	 */
5806 	smp_mb();
5807 
5808 	/* We need to check again in a case another CPU has just
5809 	 * made room available.
5810 	 */
5811 	if (e1000_desc_unused(tx_ring) < size)
5812 		return -EBUSY;
5813 
5814 	/* A reprieve! */
5815 	netif_start_queue(adapter->netdev);
5816 	++adapter->restart_queue;
5817 	return 0;
5818 }
5819 
5820 static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5821 {
5822 	BUG_ON(size > tx_ring->count);
5823 
5824 	if (e1000_desc_unused(tx_ring) >= size)
5825 		return 0;
5826 	return __e1000_maybe_stop_tx(tx_ring, size);
5827 }
5828 
5829 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5830 				    struct net_device *netdev)
5831 {
5832 	struct e1000_adapter *adapter = netdev_priv(netdev);
5833 	struct e1000_ring *tx_ring = adapter->tx_ring;
5834 	unsigned int first;
5835 	unsigned int tx_flags = 0;
5836 	unsigned int len = skb_headlen(skb);
5837 	unsigned int nr_frags;
5838 	unsigned int mss;
5839 	int count = 0;
5840 	int tso;
5841 	unsigned int f;
5842 	__be16 protocol = vlan_get_protocol(skb);
5843 
5844 	if (test_bit(__E1000_DOWN, &adapter->state)) {
5845 		dev_kfree_skb_any(skb);
5846 		return NETDEV_TX_OK;
5847 	}
5848 
5849 	if (skb->len <= 0) {
5850 		dev_kfree_skb_any(skb);
5851 		return NETDEV_TX_OK;
5852 	}
5853 
5854 	/* The minimum packet size with TCTL.PSP set is 17 bytes so
5855 	 * pad skb in order to meet this minimum size requirement
5856 	 */
5857 	if (skb_put_padto(skb, 17))
5858 		return NETDEV_TX_OK;
5859 
5860 	mss = skb_shinfo(skb)->gso_size;
5861 	if (mss) {
5862 		u8 hdr_len;
5863 
5864 		/* TSO Workaround for 82571/2/3 Controllers -- if skb->data
5865 		 * points to just header, pull a few bytes of payload from
5866 		 * frags into skb->data
5867 		 */
5868 		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5869 		/* we do this workaround for ES2LAN, but it is un-necessary,
5870 		 * avoiding it could save a lot of cycles
5871 		 */
5872 		if (skb->data_len && (hdr_len == len)) {
5873 			unsigned int pull_size;
5874 
5875 			pull_size = min_t(unsigned int, 4, skb->data_len);
5876 			if (!__pskb_pull_tail(skb, pull_size)) {
5877 				e_err("__pskb_pull_tail failed.\n");
5878 				dev_kfree_skb_any(skb);
5879 				return NETDEV_TX_OK;
5880 			}
5881 			len = skb_headlen(skb);
5882 		}
5883 	}
5884 
5885 	/* reserve a descriptor for the offload context */
5886 	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5887 		count++;
5888 	count++;
5889 
5890 	count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
5891 
5892 	nr_frags = skb_shinfo(skb)->nr_frags;
5893 	for (f = 0; f < nr_frags; f++)
5894 		count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5895 				      adapter->tx_fifo_limit);
5896 
5897 	if (adapter->hw.mac.tx_pkt_filtering)
5898 		e1000_transfer_dhcp_info(adapter, skb);
5899 
5900 	/* need: count + 2 desc gap to keep tail from touching
5901 	 * head, otherwise try next time
5902 	 */
5903 	if (e1000_maybe_stop_tx(tx_ring, count + 2))
5904 		return NETDEV_TX_BUSY;
5905 
5906 	if (skb_vlan_tag_present(skb)) {
5907 		tx_flags |= E1000_TX_FLAGS_VLAN;
5908 		tx_flags |= (skb_vlan_tag_get(skb) <<
5909 			     E1000_TX_FLAGS_VLAN_SHIFT);
5910 	}
5911 
5912 	first = tx_ring->next_to_use;
5913 
5914 	tso = e1000_tso(tx_ring, skb, protocol);
5915 	if (tso < 0) {
5916 		dev_kfree_skb_any(skb);
5917 		return NETDEV_TX_OK;
5918 	}
5919 
5920 	if (tso)
5921 		tx_flags |= E1000_TX_FLAGS_TSO;
5922 	else if (e1000_tx_csum(tx_ring, skb, protocol))
5923 		tx_flags |= E1000_TX_FLAGS_CSUM;
5924 
5925 	/* Old method was to assume IPv4 packet by default if TSO was enabled.
5926 	 * 82571 hardware supports TSO capabilities for IPv6 as well...
5927 	 * no longer assume, we must.
5928 	 */
5929 	if (protocol == htons(ETH_P_IP))
5930 		tx_flags |= E1000_TX_FLAGS_IPV4;
5931 
5932 	if (unlikely(skb->no_fcs))
5933 		tx_flags |= E1000_TX_FLAGS_NO_FCS;
5934 
5935 	/* if count is 0 then mapping error has occurred */
5936 	count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5937 			     nr_frags);
5938 	if (count) {
5939 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
5940 		    (adapter->flags & FLAG_HAS_HW_TIMESTAMP)) {
5941 			if (!adapter->tx_hwtstamp_skb) {
5942 				skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5943 				tx_flags |= E1000_TX_FLAGS_HWTSTAMP;
5944 				adapter->tx_hwtstamp_skb = skb_get(skb);
5945 				adapter->tx_hwtstamp_start = jiffies;
5946 				schedule_work(&adapter->tx_hwtstamp_work);
5947 			} else {
5948 				adapter->tx_hwtstamp_skipped++;
5949 			}
5950 		}
5951 
5952 		skb_tx_timestamp(skb);
5953 
5954 		netdev_sent_queue(netdev, skb->len);
5955 		e1000_tx_queue(tx_ring, tx_flags, count);
5956 		/* Make sure there is space in the ring for the next send. */
5957 		e1000_maybe_stop_tx(tx_ring,
5958 				    (MAX_SKB_FRAGS *
5959 				     DIV_ROUND_UP(PAGE_SIZE,
5960 						  adapter->tx_fifo_limit) + 2));
5961 
5962 		if (!netdev_xmit_more() ||
5963 		    netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
5964 			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
5965 				e1000e_update_tdt_wa(tx_ring,
5966 						     tx_ring->next_to_use);
5967 			else
5968 				writel(tx_ring->next_to_use, tx_ring->tail);
5969 		}
5970 	} else {
5971 		dev_kfree_skb_any(skb);
5972 		tx_ring->buffer_info[first].time_stamp = 0;
5973 		tx_ring->next_to_use = first;
5974 	}
5975 
5976 	return NETDEV_TX_OK;
5977 }
5978 
5979 /**
5980  * e1000_tx_timeout - Respond to a Tx Hang
5981  * @netdev: network interface device structure
5982  **/
5983 static void e1000_tx_timeout(struct net_device *netdev, unsigned int txqueue)
5984 {
5985 	struct e1000_adapter *adapter = netdev_priv(netdev);
5986 
5987 	/* Do the reset outside of interrupt context */
5988 	adapter->tx_timeout_count++;
5989 	schedule_work(&adapter->reset_task);
5990 }
5991 
5992 static void e1000_reset_task(struct work_struct *work)
5993 {
5994 	struct e1000_adapter *adapter;
5995 	adapter = container_of(work, struct e1000_adapter, reset_task);
5996 
5997 	/* don't run the task if already down */
5998 	if (test_bit(__E1000_DOWN, &adapter->state))
5999 		return;
6000 
6001 	if (!(adapter->flags & FLAG_RESTART_NOW)) {
6002 		e1000e_dump(adapter);
6003 		e_err("Reset adapter unexpectedly\n");
6004 	}
6005 	e1000e_reinit_locked(adapter);
6006 }
6007 
6008 /**
6009  * e1000_get_stats64 - Get System Network Statistics
6010  * @netdev: network interface device structure
6011  * @stats: rtnl_link_stats64 pointer
6012  *
6013  * Returns the address of the device statistics structure.
6014  **/
6015 void e1000e_get_stats64(struct net_device *netdev,
6016 			struct rtnl_link_stats64 *stats)
6017 {
6018 	struct e1000_adapter *adapter = netdev_priv(netdev);
6019 
6020 	spin_lock(&adapter->stats64_lock);
6021 	e1000e_update_stats(adapter);
6022 	/* Fill out the OS statistics structure */
6023 	stats->rx_bytes = adapter->stats.gorc;
6024 	stats->rx_packets = adapter->stats.gprc;
6025 	stats->tx_bytes = adapter->stats.gotc;
6026 	stats->tx_packets = adapter->stats.gptc;
6027 	stats->multicast = adapter->stats.mprc;
6028 	stats->collisions = adapter->stats.colc;
6029 
6030 	/* Rx Errors */
6031 
6032 	/* RLEC on some newer hardware can be incorrect so build
6033 	 * our own version based on RUC and ROC
6034 	 */
6035 	stats->rx_errors = adapter->stats.rxerrc +
6036 	    adapter->stats.crcerrs + adapter->stats.algnerrc +
6037 	    adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
6038 	stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc;
6039 	stats->rx_crc_errors = adapter->stats.crcerrs;
6040 	stats->rx_frame_errors = adapter->stats.algnerrc;
6041 	stats->rx_missed_errors = adapter->stats.mpc;
6042 
6043 	/* Tx Errors */
6044 	stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol;
6045 	stats->tx_aborted_errors = adapter->stats.ecol;
6046 	stats->tx_window_errors = adapter->stats.latecol;
6047 	stats->tx_carrier_errors = adapter->stats.tncrs;
6048 
6049 	/* Tx Dropped needs to be maintained elsewhere */
6050 
6051 	spin_unlock(&adapter->stats64_lock);
6052 }
6053 
6054 /**
6055  * e1000_change_mtu - Change the Maximum Transfer Unit
6056  * @netdev: network interface device structure
6057  * @new_mtu: new value for maximum frame size
6058  *
6059  * Returns 0 on success, negative on failure
6060  **/
6061 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
6062 {
6063 	struct e1000_adapter *adapter = netdev_priv(netdev);
6064 	int max_frame = new_mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
6065 
6066 	/* Jumbo frame support */
6067 	if ((new_mtu > ETH_DATA_LEN) &&
6068 	    !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
6069 		e_err("Jumbo Frames not supported.\n");
6070 		return -EINVAL;
6071 	}
6072 
6073 	/* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
6074 	if ((adapter->hw.mac.type >= e1000_pch2lan) &&
6075 	    !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
6076 	    (new_mtu > ETH_DATA_LEN)) {
6077 		e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
6078 		return -EINVAL;
6079 	}
6080 
6081 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
6082 		usleep_range(1000, 1100);
6083 	/* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
6084 	adapter->max_frame_size = max_frame;
6085 	netdev_dbg(netdev, "changing MTU from %d to %d\n",
6086 		   netdev->mtu, new_mtu);
6087 	netdev->mtu = new_mtu;
6088 
6089 	pm_runtime_get_sync(netdev->dev.parent);
6090 
6091 	if (netif_running(netdev))
6092 		e1000e_down(adapter, true);
6093 
6094 	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
6095 	 * means we reserve 2 more, this pushes us to allocate from the next
6096 	 * larger slab size.
6097 	 * i.e. RXBUFFER_2048 --> size-4096 slab
6098 	 * However with the new *_jumbo_rx* routines, jumbo receives will use
6099 	 * fragmented skbs
6100 	 */
6101 
6102 	if (max_frame <= 2048)
6103 		adapter->rx_buffer_len = 2048;
6104 	else
6105 		adapter->rx_buffer_len = 4096;
6106 
6107 	/* adjust allocation if LPE protects us, and we aren't using SBP */
6108 	if (max_frame <= (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN))
6109 		adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
6110 
6111 	if (netif_running(netdev))
6112 		e1000e_up(adapter);
6113 	else
6114 		e1000e_reset(adapter);
6115 
6116 	pm_runtime_put_sync(netdev->dev.parent);
6117 
6118 	clear_bit(__E1000_RESETTING, &adapter->state);
6119 
6120 	return 0;
6121 }
6122 
6123 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
6124 			   int cmd)
6125 {
6126 	struct e1000_adapter *adapter = netdev_priv(netdev);
6127 	struct mii_ioctl_data *data = if_mii(ifr);
6128 
6129 	if (adapter->hw.phy.media_type != e1000_media_type_copper)
6130 		return -EOPNOTSUPP;
6131 
6132 	switch (cmd) {
6133 	case SIOCGMIIPHY:
6134 		data->phy_id = adapter->hw.phy.addr;
6135 		break;
6136 	case SIOCGMIIREG:
6137 		e1000_phy_read_status(adapter);
6138 
6139 		switch (data->reg_num & 0x1F) {
6140 		case MII_BMCR:
6141 			data->val_out = adapter->phy_regs.bmcr;
6142 			break;
6143 		case MII_BMSR:
6144 			data->val_out = adapter->phy_regs.bmsr;
6145 			break;
6146 		case MII_PHYSID1:
6147 			data->val_out = (adapter->hw.phy.id >> 16);
6148 			break;
6149 		case MII_PHYSID2:
6150 			data->val_out = (adapter->hw.phy.id & 0xFFFF);
6151 			break;
6152 		case MII_ADVERTISE:
6153 			data->val_out = adapter->phy_regs.advertise;
6154 			break;
6155 		case MII_LPA:
6156 			data->val_out = adapter->phy_regs.lpa;
6157 			break;
6158 		case MII_EXPANSION:
6159 			data->val_out = adapter->phy_regs.expansion;
6160 			break;
6161 		case MII_CTRL1000:
6162 			data->val_out = adapter->phy_regs.ctrl1000;
6163 			break;
6164 		case MII_STAT1000:
6165 			data->val_out = adapter->phy_regs.stat1000;
6166 			break;
6167 		case MII_ESTATUS:
6168 			data->val_out = adapter->phy_regs.estatus;
6169 			break;
6170 		default:
6171 			return -EIO;
6172 		}
6173 		break;
6174 	case SIOCSMIIREG:
6175 	default:
6176 		return -EOPNOTSUPP;
6177 	}
6178 	return 0;
6179 }
6180 
6181 /**
6182  * e1000e_hwtstamp_ioctl - control hardware time stamping
6183  * @netdev: network interface device structure
6184  * @ifreq: interface request
6185  *
6186  * Outgoing time stamping can be enabled and disabled. Play nice and
6187  * disable it when requested, although it shouldn't cause any overhead
6188  * when no packet needs it. At most one packet in the queue may be
6189  * marked for time stamping, otherwise it would be impossible to tell
6190  * for sure to which packet the hardware time stamp belongs.
6191  *
6192  * Incoming time stamping has to be configured via the hardware filters.
6193  * Not all combinations are supported, in particular event type has to be
6194  * specified. Matching the kind of event packet is not supported, with the
6195  * exception of "all V2 events regardless of level 2 or 4".
6196  **/
6197 static int e1000e_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
6198 {
6199 	struct e1000_adapter *adapter = netdev_priv(netdev);
6200 	struct hwtstamp_config config;
6201 	int ret_val;
6202 
6203 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
6204 		return -EFAULT;
6205 
6206 	ret_val = e1000e_config_hwtstamp(adapter, &config);
6207 	if (ret_val)
6208 		return ret_val;
6209 
6210 	switch (config.rx_filter) {
6211 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6212 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6213 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
6214 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6215 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6216 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6217 		/* With V2 type filters which specify a Sync or Delay Request,
6218 		 * Path Delay Request/Response messages are also time stamped
6219 		 * by hardware so notify the caller the requested packets plus
6220 		 * some others are time stamped.
6221 		 */
6222 		config.rx_filter = HWTSTAMP_FILTER_SOME;
6223 		break;
6224 	default:
6225 		break;
6226 	}
6227 
6228 	return copy_to_user(ifr->ifr_data, &config,
6229 			    sizeof(config)) ? -EFAULT : 0;
6230 }
6231 
6232 static int e1000e_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
6233 {
6234 	struct e1000_adapter *adapter = netdev_priv(netdev);
6235 
6236 	return copy_to_user(ifr->ifr_data, &adapter->hwtstamp_config,
6237 			    sizeof(adapter->hwtstamp_config)) ? -EFAULT : 0;
6238 }
6239 
6240 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6241 {
6242 	switch (cmd) {
6243 	case SIOCGMIIPHY:
6244 	case SIOCGMIIREG:
6245 	case SIOCSMIIREG:
6246 		return e1000_mii_ioctl(netdev, ifr, cmd);
6247 	case SIOCSHWTSTAMP:
6248 		return e1000e_hwtstamp_set(netdev, ifr);
6249 	case SIOCGHWTSTAMP:
6250 		return e1000e_hwtstamp_get(netdev, ifr);
6251 	default:
6252 		return -EOPNOTSUPP;
6253 	}
6254 }
6255 
6256 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
6257 {
6258 	struct e1000_hw *hw = &adapter->hw;
6259 	u32 i, mac_reg, wuc;
6260 	u16 phy_reg, wuc_enable;
6261 	int retval;
6262 
6263 	/* copy MAC RARs to PHY RARs */
6264 	e1000_copy_rx_addrs_to_phy_ich8lan(hw);
6265 
6266 	retval = hw->phy.ops.acquire(hw);
6267 	if (retval) {
6268 		e_err("Could not acquire PHY\n");
6269 		return retval;
6270 	}
6271 
6272 	/* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
6273 	retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6274 	if (retval)
6275 		goto release;
6276 
6277 	/* copy MAC MTA to PHY MTA - only needed for pchlan */
6278 	for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
6279 		mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
6280 		hw->phy.ops.write_reg_page(hw, BM_MTA(i),
6281 					   (u16)(mac_reg & 0xFFFF));
6282 		hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
6283 					   (u16)((mac_reg >> 16) & 0xFFFF));
6284 	}
6285 
6286 	/* configure PHY Rx Control register */
6287 	hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
6288 	mac_reg = er32(RCTL);
6289 	if (mac_reg & E1000_RCTL_UPE)
6290 		phy_reg |= BM_RCTL_UPE;
6291 	if (mac_reg & E1000_RCTL_MPE)
6292 		phy_reg |= BM_RCTL_MPE;
6293 	phy_reg &= ~(BM_RCTL_MO_MASK);
6294 	if (mac_reg & E1000_RCTL_MO_3)
6295 		phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
6296 			    << BM_RCTL_MO_SHIFT);
6297 	if (mac_reg & E1000_RCTL_BAM)
6298 		phy_reg |= BM_RCTL_BAM;
6299 	if (mac_reg & E1000_RCTL_PMCF)
6300 		phy_reg |= BM_RCTL_PMCF;
6301 	mac_reg = er32(CTRL);
6302 	if (mac_reg & E1000_CTRL_RFCE)
6303 		phy_reg |= BM_RCTL_RFCE;
6304 	hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
6305 
6306 	wuc = E1000_WUC_PME_EN;
6307 	if (wufc & (E1000_WUFC_MAG | E1000_WUFC_LNKC))
6308 		wuc |= E1000_WUC_APME;
6309 
6310 	/* enable PHY wakeup in MAC register */
6311 	ew32(WUFC, wufc);
6312 	ew32(WUC, (E1000_WUC_PHY_WAKE | E1000_WUC_APMPME |
6313 		   E1000_WUC_PME_STATUS | wuc));
6314 
6315 	/* configure and enable PHY wakeup in PHY registers */
6316 	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
6317 	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, wuc);
6318 
6319 	/* activate PHY wakeup */
6320 	wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
6321 	retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6322 	if (retval)
6323 		e_err("Could not set PHY Host Wakeup bit\n");
6324 release:
6325 	hw->phy.ops.release(hw);
6326 
6327 	return retval;
6328 }
6329 
6330 static void e1000e_flush_lpic(struct pci_dev *pdev)
6331 {
6332 	struct net_device *netdev = pci_get_drvdata(pdev);
6333 	struct e1000_adapter *adapter = netdev_priv(netdev);
6334 	struct e1000_hw *hw = &adapter->hw;
6335 	u32 ret_val;
6336 
6337 	pm_runtime_get_sync(netdev->dev.parent);
6338 
6339 	ret_val = hw->phy.ops.acquire(hw);
6340 	if (ret_val)
6341 		goto fl_out;
6342 
6343 	pr_info("EEE TX LPI TIMER: %08X\n",
6344 		er32(LPIC) >> E1000_LPIC_LPIET_SHIFT);
6345 
6346 	hw->phy.ops.release(hw);
6347 
6348 fl_out:
6349 	pm_runtime_put_sync(netdev->dev.parent);
6350 }
6351 
6352 #ifdef CONFIG_PM_SLEEP
6353 /* S0ix implementation */
6354 static void e1000e_s0ix_entry_flow(struct e1000_adapter *adapter)
6355 {
6356 	struct e1000_hw *hw = &adapter->hw;
6357 	u32 mac_data;
6358 	u16 phy_data;
6359 
6360 	/* Disable the periodic inband message,
6361 	 * don't request PCIe clock in K1 page770_17[10:9] = 10b
6362 	 */
6363 	e1e_rphy(hw, HV_PM_CTRL, &phy_data);
6364 	phy_data &= ~HV_PM_CTRL_K1_CLK_REQ;
6365 	phy_data |= BIT(10);
6366 	e1e_wphy(hw, HV_PM_CTRL, phy_data);
6367 
6368 	/* Make sure we don't exit K1 every time a new packet arrives
6369 	 * 772_29[5] = 1 CS_Mode_Stay_In_K1
6370 	 */
6371 	e1e_rphy(hw, I217_CGFREG, &phy_data);
6372 	phy_data |= BIT(5);
6373 	e1e_wphy(hw, I217_CGFREG, phy_data);
6374 
6375 	/* Change the MAC/PHY interface to SMBus
6376 	 * Force the SMBus in PHY page769_23[0] = 1
6377 	 * Force the SMBus in MAC CTRL_EXT[11] = 1
6378 	 */
6379 	e1e_rphy(hw, CV_SMB_CTRL, &phy_data);
6380 	phy_data |= CV_SMB_CTRL_FORCE_SMBUS;
6381 	e1e_wphy(hw, CV_SMB_CTRL, phy_data);
6382 	mac_data = er32(CTRL_EXT);
6383 	mac_data |= E1000_CTRL_EXT_FORCE_SMBUS;
6384 	ew32(CTRL_EXT, mac_data);
6385 
6386 	/* DFT control: PHY bit: page769_20[0] = 1
6387 	 * Gate PPW via EXTCNF_CTRL - set 0x0F00[7] = 1
6388 	 */
6389 	e1e_rphy(hw, I82579_DFT_CTRL, &phy_data);
6390 	phy_data |= BIT(0);
6391 	e1e_wphy(hw, I82579_DFT_CTRL, phy_data);
6392 
6393 	mac_data = er32(EXTCNF_CTRL);
6394 	mac_data |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
6395 	ew32(EXTCNF_CTRL, mac_data);
6396 
6397 	/* Check MAC Tx/Rx packet buffer pointers.
6398 	 * Reset MAC Tx/Rx packet buffer pointers to suppress any
6399 	 * pending traffic indication that would prevent power gating.
6400 	 */
6401 	mac_data = er32(TDFH);
6402 	if (mac_data)
6403 		ew32(TDFH, 0);
6404 	mac_data = er32(TDFT);
6405 	if (mac_data)
6406 		ew32(TDFT, 0);
6407 	mac_data = er32(TDFHS);
6408 	if (mac_data)
6409 		ew32(TDFHS, 0);
6410 	mac_data = er32(TDFTS);
6411 	if (mac_data)
6412 		ew32(TDFTS, 0);
6413 	mac_data = er32(TDFPC);
6414 	if (mac_data)
6415 		ew32(TDFPC, 0);
6416 	mac_data = er32(RDFH);
6417 	if (mac_data)
6418 		ew32(RDFH, 0);
6419 	mac_data = er32(RDFT);
6420 	if (mac_data)
6421 		ew32(RDFT, 0);
6422 	mac_data = er32(RDFHS);
6423 	if (mac_data)
6424 		ew32(RDFHS, 0);
6425 	mac_data = er32(RDFTS);
6426 	if (mac_data)
6427 		ew32(RDFTS, 0);
6428 	mac_data = er32(RDFPC);
6429 	if (mac_data)
6430 		ew32(RDFPC, 0);
6431 
6432 	/* Enable the Dynamic Power Gating in the MAC */
6433 	mac_data = er32(FEXTNVM7);
6434 	mac_data |= BIT(22);
6435 	ew32(FEXTNVM7, mac_data);
6436 
6437 	/* Disable the time synchronization clock */
6438 	mac_data = er32(FEXTNVM7);
6439 	mac_data |= BIT(31);
6440 	mac_data &= ~BIT(0);
6441 	ew32(FEXTNVM7, mac_data);
6442 
6443 	/* Dynamic Power Gating Enable */
6444 	mac_data = er32(CTRL_EXT);
6445 	mac_data |= BIT(3);
6446 	ew32(CTRL_EXT, mac_data);
6447 
6448 	/* Disable disconnected cable conditioning for Power Gating */
6449 	mac_data = er32(DPGFR);
6450 	mac_data |= BIT(2);
6451 	ew32(DPGFR, mac_data);
6452 
6453 	/* Don't wake from dynamic Power Gating with clock request */
6454 	mac_data = er32(FEXTNVM12);
6455 	mac_data |= BIT(12);
6456 	ew32(FEXTNVM12, mac_data);
6457 
6458 	/* Ungate PGCB clock */
6459 	mac_data = er32(FEXTNVM9);
6460 	mac_data |= BIT(28);
6461 	ew32(FEXTNVM9, mac_data);
6462 
6463 	/* Enable K1 off to enable mPHY Power Gating */
6464 	mac_data = er32(FEXTNVM6);
6465 	mac_data |= BIT(31);
6466 	ew32(FEXTNVM12, mac_data);
6467 
6468 	/* Enable mPHY power gating for any link and speed */
6469 	mac_data = er32(FEXTNVM8);
6470 	mac_data |= BIT(9);
6471 	ew32(FEXTNVM8, mac_data);
6472 
6473 	/* Enable the Dynamic Clock Gating in the DMA and MAC */
6474 	mac_data = er32(CTRL_EXT);
6475 	mac_data |= E1000_CTRL_EXT_DMA_DYN_CLK_EN;
6476 	ew32(CTRL_EXT, mac_data);
6477 
6478 	/* No MAC DPG gating SLP_S0 in modern standby
6479 	 * Switch the logic of the lanphypc to use PMC counter
6480 	 */
6481 	mac_data = er32(FEXTNVM5);
6482 	mac_data |= BIT(7);
6483 	ew32(FEXTNVM5, mac_data);
6484 }
6485 
6486 static void e1000e_s0ix_exit_flow(struct e1000_adapter *adapter)
6487 {
6488 	struct e1000_hw *hw = &adapter->hw;
6489 	u32 mac_data;
6490 	u16 phy_data;
6491 
6492 	/* Disable the Dynamic Power Gating in the MAC */
6493 	mac_data = er32(FEXTNVM7);
6494 	mac_data &= 0xFFBFFFFF;
6495 	ew32(FEXTNVM7, mac_data);
6496 
6497 	/* Enable the time synchronization clock */
6498 	mac_data = er32(FEXTNVM7);
6499 	mac_data |= BIT(0);
6500 	ew32(FEXTNVM7, mac_data);
6501 
6502 	/* Disable mPHY power gating for any link and speed */
6503 	mac_data = er32(FEXTNVM8);
6504 	mac_data &= ~BIT(9);
6505 	ew32(FEXTNVM8, mac_data);
6506 
6507 	/* Disable K1 off */
6508 	mac_data = er32(FEXTNVM6);
6509 	mac_data &= ~BIT(31);
6510 	ew32(FEXTNVM12, mac_data);
6511 
6512 	/* Disable Ungate PGCB clock */
6513 	mac_data = er32(FEXTNVM9);
6514 	mac_data &= ~BIT(28);
6515 	ew32(FEXTNVM9, mac_data);
6516 
6517 	/* Cancel not waking from dynamic
6518 	 * Power Gating with clock request
6519 	 */
6520 	mac_data = er32(FEXTNVM12);
6521 	mac_data &= ~BIT(12);
6522 	ew32(FEXTNVM12, mac_data);
6523 
6524 	/* Cancel disable disconnected cable conditioning
6525 	 * for Power Gating
6526 	 */
6527 	mac_data = er32(DPGFR);
6528 	mac_data &= ~BIT(2);
6529 	ew32(DPGFR, mac_data);
6530 
6531 	/* Disable Dynamic Power Gating */
6532 	mac_data = er32(CTRL_EXT);
6533 	mac_data &= 0xFFFFFFF7;
6534 	ew32(CTRL_EXT, mac_data);
6535 
6536 	/* Disable the Dynamic Clock Gating in the DMA and MAC */
6537 	mac_data = er32(CTRL_EXT);
6538 	mac_data &= 0xFFF7FFFF;
6539 	ew32(CTRL_EXT, mac_data);
6540 
6541 	/* Revert the lanphypc logic to use the internal Gbe counter
6542 	 * and not the PMC counter
6543 	 */
6544 	mac_data = er32(FEXTNVM5);
6545 	mac_data &= 0xFFFFFF7F;
6546 	ew32(FEXTNVM5, mac_data);
6547 
6548 	/* Enable the periodic inband message,
6549 	 * Request PCIe clock in K1 page770_17[10:9] =01b
6550 	 */
6551 	e1e_rphy(hw, HV_PM_CTRL, &phy_data);
6552 	phy_data &= 0xFBFF;
6553 	phy_data |= HV_PM_CTRL_K1_CLK_REQ;
6554 	e1e_wphy(hw, HV_PM_CTRL, phy_data);
6555 
6556 	/* Return back configuration
6557 	 * 772_29[5] = 0 CS_Mode_Stay_In_K1
6558 	 */
6559 	e1e_rphy(hw, I217_CGFREG, &phy_data);
6560 	phy_data &= 0xFFDF;
6561 	e1e_wphy(hw, I217_CGFREG, phy_data);
6562 
6563 	/* Change the MAC/PHY interface to Kumeran
6564 	 * Unforce the SMBus in PHY page769_23[0] = 0
6565 	 * Unforce the SMBus in MAC CTRL_EXT[11] = 0
6566 	 */
6567 	e1e_rphy(hw, CV_SMB_CTRL, &phy_data);
6568 	phy_data &= ~CV_SMB_CTRL_FORCE_SMBUS;
6569 	e1e_wphy(hw, CV_SMB_CTRL, phy_data);
6570 	mac_data = er32(CTRL_EXT);
6571 	mac_data &= ~E1000_CTRL_EXT_FORCE_SMBUS;
6572 	ew32(CTRL_EXT, mac_data);
6573 }
6574 #endif /* CONFIG_PM_SLEEP */
6575 
6576 static int e1000e_pm_freeze(struct device *dev)
6577 {
6578 	struct net_device *netdev = dev_get_drvdata(dev);
6579 	struct e1000_adapter *adapter = netdev_priv(netdev);
6580 	bool present;
6581 
6582 	rtnl_lock();
6583 
6584 	present = netif_device_present(netdev);
6585 	netif_device_detach(netdev);
6586 
6587 	if (present && netif_running(netdev)) {
6588 		int count = E1000_CHECK_RESET_COUNT;
6589 
6590 		while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6591 			usleep_range(10000, 11000);
6592 
6593 		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6594 
6595 		/* Quiesce the device without resetting the hardware */
6596 		e1000e_down(adapter, false);
6597 		e1000_free_irq(adapter);
6598 	}
6599 	rtnl_unlock();
6600 
6601 	e1000e_reset_interrupt_capability(adapter);
6602 
6603 	/* Allow time for pending master requests to run */
6604 	e1000e_disable_pcie_master(&adapter->hw);
6605 
6606 	return 0;
6607 }
6608 
6609 static int __e1000_shutdown(struct pci_dev *pdev, bool runtime)
6610 {
6611 	struct net_device *netdev = pci_get_drvdata(pdev);
6612 	struct e1000_adapter *adapter = netdev_priv(netdev);
6613 	struct e1000_hw *hw = &adapter->hw;
6614 	u32 ctrl, ctrl_ext, rctl, status;
6615 	/* Runtime suspend should only enable wakeup for link changes */
6616 	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
6617 	int retval = 0;
6618 
6619 	status = er32(STATUS);
6620 	if (status & E1000_STATUS_LU)
6621 		wufc &= ~E1000_WUFC_LNKC;
6622 
6623 	if (wufc) {
6624 		e1000_setup_rctl(adapter);
6625 		e1000e_set_rx_mode(netdev);
6626 
6627 		/* turn on all-multi mode if wake on multicast is enabled */
6628 		if (wufc & E1000_WUFC_MC) {
6629 			rctl = er32(RCTL);
6630 			rctl |= E1000_RCTL_MPE;
6631 			ew32(RCTL, rctl);
6632 		}
6633 
6634 		ctrl = er32(CTRL);
6635 		ctrl |= E1000_CTRL_ADVD3WUC;
6636 		if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
6637 			ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
6638 		ew32(CTRL, ctrl);
6639 
6640 		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
6641 		    adapter->hw.phy.media_type ==
6642 		    e1000_media_type_internal_serdes) {
6643 			/* keep the laser running in D3 */
6644 			ctrl_ext = er32(CTRL_EXT);
6645 			ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
6646 			ew32(CTRL_EXT, ctrl_ext);
6647 		}
6648 
6649 		if (!runtime)
6650 			e1000e_power_up_phy(adapter);
6651 
6652 		if (adapter->flags & FLAG_IS_ICH)
6653 			e1000_suspend_workarounds_ich8lan(&adapter->hw);
6654 
6655 		if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6656 			/* enable wakeup by the PHY */
6657 			retval = e1000_init_phy_wakeup(adapter, wufc);
6658 			if (retval)
6659 				return retval;
6660 		} else {
6661 			/* enable wakeup by the MAC */
6662 			ew32(WUFC, wufc);
6663 			ew32(WUC, E1000_WUC_PME_EN);
6664 		}
6665 	} else {
6666 		ew32(WUC, 0);
6667 		ew32(WUFC, 0);
6668 
6669 		e1000_power_down_phy(adapter);
6670 	}
6671 
6672 	if (adapter->hw.phy.type == e1000_phy_igp_3) {
6673 		e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
6674 	} else if (hw->mac.type >= e1000_pch_lpt) {
6675 		if (!(wufc & (E1000_WUFC_EX | E1000_WUFC_MC | E1000_WUFC_BC)))
6676 			/* ULP does not support wake from unicast, multicast
6677 			 * or broadcast.
6678 			 */
6679 			retval = e1000_enable_ulp_lpt_lp(hw, !runtime);
6680 
6681 		if (retval)
6682 			return retval;
6683 	}
6684 
6685 	/* Ensure that the appropriate bits are set in LPI_CTRL
6686 	 * for EEE in Sx
6687 	 */
6688 	if ((hw->phy.type >= e1000_phy_i217) &&
6689 	    adapter->eee_advert && hw->dev_spec.ich8lan.eee_lp_ability) {
6690 		u16 lpi_ctrl = 0;
6691 
6692 		retval = hw->phy.ops.acquire(hw);
6693 		if (!retval) {
6694 			retval = e1e_rphy_locked(hw, I82579_LPI_CTRL,
6695 						 &lpi_ctrl);
6696 			if (!retval) {
6697 				if (adapter->eee_advert &
6698 				    hw->dev_spec.ich8lan.eee_lp_ability &
6699 				    I82579_EEE_100_SUPPORTED)
6700 					lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
6701 				if (adapter->eee_advert &
6702 				    hw->dev_spec.ich8lan.eee_lp_ability &
6703 				    I82579_EEE_1000_SUPPORTED)
6704 					lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
6705 
6706 				retval = e1e_wphy_locked(hw, I82579_LPI_CTRL,
6707 							 lpi_ctrl);
6708 			}
6709 		}
6710 		hw->phy.ops.release(hw);
6711 	}
6712 
6713 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
6714 	 * would have already happened in close and is redundant.
6715 	 */
6716 	e1000e_release_hw_control(adapter);
6717 
6718 	pci_clear_master(pdev);
6719 
6720 	/* The pci-e switch on some quad port adapters will report a
6721 	 * correctable error when the MAC transitions from D0 to D3.  To
6722 	 * prevent this we need to mask off the correctable errors on the
6723 	 * downstream port of the pci-e switch.
6724 	 *
6725 	 * We don't have the associated upstream bridge while assigning
6726 	 * the PCI device into guest. For example, the KVM on power is
6727 	 * one of the cases.
6728 	 */
6729 	if (adapter->flags & FLAG_IS_QUAD_PORT) {
6730 		struct pci_dev *us_dev = pdev->bus->self;
6731 		u16 devctl;
6732 
6733 		if (!us_dev)
6734 			return 0;
6735 
6736 		pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl);
6737 		pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL,
6738 					   (devctl & ~PCI_EXP_DEVCTL_CERE));
6739 
6740 		pci_save_state(pdev);
6741 		pci_prepare_to_sleep(pdev);
6742 
6743 		pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl);
6744 	}
6745 
6746 	return 0;
6747 }
6748 
6749 /**
6750  * __e1000e_disable_aspm - Disable ASPM states
6751  * @pdev: pointer to PCI device struct
6752  * @state: bit-mask of ASPM states to disable
6753  * @locked: indication if this context holds pci_bus_sem locked.
6754  *
6755  * Some devices *must* have certain ASPM states disabled per hardware errata.
6756  **/
6757 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state, int locked)
6758 {
6759 	struct pci_dev *parent = pdev->bus->self;
6760 	u16 aspm_dis_mask = 0;
6761 	u16 pdev_aspmc, parent_aspmc;
6762 
6763 	switch (state) {
6764 	case PCIE_LINK_STATE_L0S:
6765 	case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1:
6766 		aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S;
6767 		/* fall-through - can't have L1 without L0s */
6768 	case PCIE_LINK_STATE_L1:
6769 		aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1;
6770 		break;
6771 	default:
6772 		return;
6773 	}
6774 
6775 	pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6776 	pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6777 
6778 	if (parent) {
6779 		pcie_capability_read_word(parent, PCI_EXP_LNKCTL,
6780 					  &parent_aspmc);
6781 		parent_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6782 	}
6783 
6784 	/* Nothing to do if the ASPM states to be disabled already are */
6785 	if (!(pdev_aspmc & aspm_dis_mask) &&
6786 	    (!parent || !(parent_aspmc & aspm_dis_mask)))
6787 		return;
6788 
6789 	dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
6790 		 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ?
6791 		 "L0s" : "",
6792 		 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ?
6793 		 "L1" : "");
6794 
6795 #ifdef CONFIG_PCIEASPM
6796 	if (locked)
6797 		pci_disable_link_state_locked(pdev, state);
6798 	else
6799 		pci_disable_link_state(pdev, state);
6800 
6801 	/* Double-check ASPM control.  If not disabled by the above, the
6802 	 * BIOS is preventing that from happening (or CONFIG_PCIEASPM is
6803 	 * not enabled); override by writing PCI config space directly.
6804 	 */
6805 	pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6806 	pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6807 
6808 	if (!(aspm_dis_mask & pdev_aspmc))
6809 		return;
6810 #endif
6811 
6812 	/* Both device and parent should have the same ASPM setting.
6813 	 * Disable ASPM in downstream component first and then upstream.
6814 	 */
6815 	pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask);
6816 
6817 	if (parent)
6818 		pcie_capability_clear_word(parent, PCI_EXP_LNKCTL,
6819 					   aspm_dis_mask);
6820 }
6821 
6822 /**
6823  * e1000e_disable_aspm - Disable ASPM states.
6824  * @pdev: pointer to PCI device struct
6825  * @state: bit-mask of ASPM states to disable
6826  *
6827  * This function acquires the pci_bus_sem!
6828  * Some devices *must* have certain ASPM states disabled per hardware errata.
6829  **/
6830 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6831 {
6832 	__e1000e_disable_aspm(pdev, state, 0);
6833 }
6834 
6835 /**
6836  * e1000e_disable_aspm_locked   Disable ASPM states.
6837  * @pdev: pointer to PCI device struct
6838  * @state: bit-mask of ASPM states to disable
6839  *
6840  * This function must be called with pci_bus_sem acquired!
6841  * Some devices *must* have certain ASPM states disabled per hardware errata.
6842  **/
6843 static void e1000e_disable_aspm_locked(struct pci_dev *pdev, u16 state)
6844 {
6845 	__e1000e_disable_aspm(pdev, state, 1);
6846 }
6847 
6848 static int e1000e_pm_thaw(struct device *dev)
6849 {
6850 	struct net_device *netdev = dev_get_drvdata(dev);
6851 	struct e1000_adapter *adapter = netdev_priv(netdev);
6852 	int rc = 0;
6853 
6854 	e1000e_set_interrupt_capability(adapter);
6855 
6856 	rtnl_lock();
6857 	if (netif_running(netdev)) {
6858 		rc = e1000_request_irq(adapter);
6859 		if (rc)
6860 			goto err_irq;
6861 
6862 		e1000e_up(adapter);
6863 	}
6864 
6865 	netif_device_attach(netdev);
6866 err_irq:
6867 	rtnl_unlock();
6868 
6869 	return rc;
6870 }
6871 
6872 #ifdef CONFIG_PM
6873 static int __e1000_resume(struct pci_dev *pdev)
6874 {
6875 	struct net_device *netdev = pci_get_drvdata(pdev);
6876 	struct e1000_adapter *adapter = netdev_priv(netdev);
6877 	struct e1000_hw *hw = &adapter->hw;
6878 	u16 aspm_disable_flag = 0;
6879 
6880 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6881 		aspm_disable_flag = PCIE_LINK_STATE_L0S;
6882 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6883 		aspm_disable_flag |= PCIE_LINK_STATE_L1;
6884 	if (aspm_disable_flag)
6885 		e1000e_disable_aspm(pdev, aspm_disable_flag);
6886 
6887 	pci_set_master(pdev);
6888 
6889 	if (hw->mac.type >= e1000_pch2lan)
6890 		e1000_resume_workarounds_pchlan(&adapter->hw);
6891 
6892 	e1000e_power_up_phy(adapter);
6893 
6894 	/* report the system wakeup cause from S3/S4 */
6895 	if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6896 		u16 phy_data;
6897 
6898 		e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
6899 		if (phy_data) {
6900 			e_info("PHY Wakeup cause - %s\n",
6901 			       phy_data & E1000_WUS_EX ? "Unicast Packet" :
6902 			       phy_data & E1000_WUS_MC ? "Multicast Packet" :
6903 			       phy_data & E1000_WUS_BC ? "Broadcast Packet" :
6904 			       phy_data & E1000_WUS_MAG ? "Magic Packet" :
6905 			       phy_data & E1000_WUS_LNKC ?
6906 			       "Link Status Change" : "other");
6907 		}
6908 		e1e_wphy(&adapter->hw, BM_WUS, ~0);
6909 	} else {
6910 		u32 wus = er32(WUS);
6911 
6912 		if (wus) {
6913 			e_info("MAC Wakeup cause - %s\n",
6914 			       wus & E1000_WUS_EX ? "Unicast Packet" :
6915 			       wus & E1000_WUS_MC ? "Multicast Packet" :
6916 			       wus & E1000_WUS_BC ? "Broadcast Packet" :
6917 			       wus & E1000_WUS_MAG ? "Magic Packet" :
6918 			       wus & E1000_WUS_LNKC ? "Link Status Change" :
6919 			       "other");
6920 		}
6921 		ew32(WUS, ~0);
6922 	}
6923 
6924 	e1000e_reset(adapter);
6925 
6926 	e1000_init_manageability_pt(adapter);
6927 
6928 	/* If the controller has AMT, do not set DRV_LOAD until the interface
6929 	 * is up.  For all other cases, let the f/w know that the h/w is now
6930 	 * under the control of the driver.
6931 	 */
6932 	if (!(adapter->flags & FLAG_HAS_AMT))
6933 		e1000e_get_hw_control(adapter);
6934 
6935 	return 0;
6936 }
6937 
6938 #ifdef CONFIG_PM_SLEEP
6939 static int e1000e_pm_suspend(struct device *dev)
6940 {
6941 	struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6942 	struct e1000_adapter *adapter = netdev_priv(netdev);
6943 	struct pci_dev *pdev = to_pci_dev(dev);
6944 	struct e1000_hw *hw = &adapter->hw;
6945 	int rc;
6946 
6947 	e1000e_flush_lpic(pdev);
6948 
6949 	e1000e_pm_freeze(dev);
6950 
6951 	rc = __e1000_shutdown(pdev, false);
6952 	if (rc)
6953 		e1000e_pm_thaw(dev);
6954 
6955 	/* Introduce S0ix implementation */
6956 	if (hw->mac.type >= e1000_pch_cnp &&
6957 	    !e1000e_check_me(hw->adapter->pdev->device))
6958 		e1000e_s0ix_entry_flow(adapter);
6959 
6960 	return rc;
6961 }
6962 
6963 static int e1000e_pm_resume(struct device *dev)
6964 {
6965 	struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6966 	struct e1000_adapter *adapter = netdev_priv(netdev);
6967 	struct pci_dev *pdev = to_pci_dev(dev);
6968 	struct e1000_hw *hw = &adapter->hw;
6969 	int rc;
6970 
6971 	/* Introduce S0ix implementation */
6972 	if (hw->mac.type >= e1000_pch_cnp &&
6973 	    !e1000e_check_me(hw->adapter->pdev->device))
6974 		e1000e_s0ix_exit_flow(adapter);
6975 
6976 	rc = __e1000_resume(pdev);
6977 	if (rc)
6978 		return rc;
6979 
6980 	return e1000e_pm_thaw(dev);
6981 }
6982 #endif /* CONFIG_PM_SLEEP */
6983 
6984 static int e1000e_pm_runtime_idle(struct device *dev)
6985 {
6986 	struct net_device *netdev = dev_get_drvdata(dev);
6987 	struct e1000_adapter *adapter = netdev_priv(netdev);
6988 	u16 eee_lp;
6989 
6990 	eee_lp = adapter->hw.dev_spec.ich8lan.eee_lp_ability;
6991 
6992 	if (!e1000e_has_link(adapter)) {
6993 		adapter->hw.dev_spec.ich8lan.eee_lp_ability = eee_lp;
6994 		pm_schedule_suspend(dev, 5 * MSEC_PER_SEC);
6995 	}
6996 
6997 	return -EBUSY;
6998 }
6999 
7000 static int e1000e_pm_runtime_resume(struct device *dev)
7001 {
7002 	struct pci_dev *pdev = to_pci_dev(dev);
7003 	struct net_device *netdev = pci_get_drvdata(pdev);
7004 	struct e1000_adapter *adapter = netdev_priv(netdev);
7005 	int rc;
7006 
7007 	rc = __e1000_resume(pdev);
7008 	if (rc)
7009 		return rc;
7010 
7011 	if (netdev->flags & IFF_UP)
7012 		e1000e_up(adapter);
7013 
7014 	return rc;
7015 }
7016 
7017 static int e1000e_pm_runtime_suspend(struct device *dev)
7018 {
7019 	struct pci_dev *pdev = to_pci_dev(dev);
7020 	struct net_device *netdev = pci_get_drvdata(pdev);
7021 	struct e1000_adapter *adapter = netdev_priv(netdev);
7022 
7023 	if (netdev->flags & IFF_UP) {
7024 		int count = E1000_CHECK_RESET_COUNT;
7025 
7026 		while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
7027 			usleep_range(10000, 11000);
7028 
7029 		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
7030 
7031 		/* Down the device without resetting the hardware */
7032 		e1000e_down(adapter, false);
7033 	}
7034 
7035 	if (__e1000_shutdown(pdev, true)) {
7036 		e1000e_pm_runtime_resume(dev);
7037 		return -EBUSY;
7038 	}
7039 
7040 	return 0;
7041 }
7042 #endif /* CONFIG_PM */
7043 
7044 static void e1000_shutdown(struct pci_dev *pdev)
7045 {
7046 	e1000e_flush_lpic(pdev);
7047 
7048 	e1000e_pm_freeze(&pdev->dev);
7049 
7050 	__e1000_shutdown(pdev, false);
7051 }
7052 
7053 #ifdef CONFIG_NET_POLL_CONTROLLER
7054 
7055 static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data)
7056 {
7057 	struct net_device *netdev = data;
7058 	struct e1000_adapter *adapter = netdev_priv(netdev);
7059 
7060 	if (adapter->msix_entries) {
7061 		int vector, msix_irq;
7062 
7063 		vector = 0;
7064 		msix_irq = adapter->msix_entries[vector].vector;
7065 		if (disable_hardirq(msix_irq))
7066 			e1000_intr_msix_rx(msix_irq, netdev);
7067 		enable_irq(msix_irq);
7068 
7069 		vector++;
7070 		msix_irq = adapter->msix_entries[vector].vector;
7071 		if (disable_hardirq(msix_irq))
7072 			e1000_intr_msix_tx(msix_irq, netdev);
7073 		enable_irq(msix_irq);
7074 
7075 		vector++;
7076 		msix_irq = adapter->msix_entries[vector].vector;
7077 		if (disable_hardirq(msix_irq))
7078 			e1000_msix_other(msix_irq, netdev);
7079 		enable_irq(msix_irq);
7080 	}
7081 
7082 	return IRQ_HANDLED;
7083 }
7084 
7085 /**
7086  * e1000_netpoll
7087  * @netdev: network interface device structure
7088  *
7089  * Polling 'interrupt' - used by things like netconsole to send skbs
7090  * without having to re-enable interrupts. It's not called while
7091  * the interrupt routine is executing.
7092  */
7093 static void e1000_netpoll(struct net_device *netdev)
7094 {
7095 	struct e1000_adapter *adapter = netdev_priv(netdev);
7096 
7097 	switch (adapter->int_mode) {
7098 	case E1000E_INT_MODE_MSIX:
7099 		e1000_intr_msix(adapter->pdev->irq, netdev);
7100 		break;
7101 	case E1000E_INT_MODE_MSI:
7102 		if (disable_hardirq(adapter->pdev->irq))
7103 			e1000_intr_msi(adapter->pdev->irq, netdev);
7104 		enable_irq(adapter->pdev->irq);
7105 		break;
7106 	default:		/* E1000E_INT_MODE_LEGACY */
7107 		if (disable_hardirq(adapter->pdev->irq))
7108 			e1000_intr(adapter->pdev->irq, netdev);
7109 		enable_irq(adapter->pdev->irq);
7110 		break;
7111 	}
7112 }
7113 #endif
7114 
7115 /**
7116  * e1000_io_error_detected - called when PCI error is detected
7117  * @pdev: Pointer to PCI device
7118  * @state: The current pci connection state
7119  *
7120  * This function is called after a PCI bus error affecting
7121  * this device has been detected.
7122  */
7123 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
7124 						pci_channel_state_t state)
7125 {
7126 	e1000e_pm_freeze(&pdev->dev);
7127 
7128 	if (state == pci_channel_io_perm_failure)
7129 		return PCI_ERS_RESULT_DISCONNECT;
7130 
7131 	pci_disable_device(pdev);
7132 
7133 	/* Request a slot slot reset. */
7134 	return PCI_ERS_RESULT_NEED_RESET;
7135 }
7136 
7137 /**
7138  * e1000_io_slot_reset - called after the pci bus has been reset.
7139  * @pdev: Pointer to PCI device
7140  *
7141  * Restart the card from scratch, as if from a cold-boot. Implementation
7142  * resembles the first-half of the e1000e_pm_resume routine.
7143  */
7144 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
7145 {
7146 	struct net_device *netdev = pci_get_drvdata(pdev);
7147 	struct e1000_adapter *adapter = netdev_priv(netdev);
7148 	struct e1000_hw *hw = &adapter->hw;
7149 	u16 aspm_disable_flag = 0;
7150 	int err;
7151 	pci_ers_result_t result;
7152 
7153 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
7154 		aspm_disable_flag = PCIE_LINK_STATE_L0S;
7155 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
7156 		aspm_disable_flag |= PCIE_LINK_STATE_L1;
7157 	if (aspm_disable_flag)
7158 		e1000e_disable_aspm_locked(pdev, aspm_disable_flag);
7159 
7160 	err = pci_enable_device_mem(pdev);
7161 	if (err) {
7162 		dev_err(&pdev->dev,
7163 			"Cannot re-enable PCI device after reset.\n");
7164 		result = PCI_ERS_RESULT_DISCONNECT;
7165 	} else {
7166 		pdev->state_saved = true;
7167 		pci_restore_state(pdev);
7168 		pci_set_master(pdev);
7169 
7170 		pci_enable_wake(pdev, PCI_D3hot, 0);
7171 		pci_enable_wake(pdev, PCI_D3cold, 0);
7172 
7173 		e1000e_reset(adapter);
7174 		ew32(WUS, ~0);
7175 		result = PCI_ERS_RESULT_RECOVERED;
7176 	}
7177 
7178 	return result;
7179 }
7180 
7181 /**
7182  * e1000_io_resume - called when traffic can start flowing again.
7183  * @pdev: Pointer to PCI device
7184  *
7185  * This callback is called when the error recovery driver tells us that
7186  * its OK to resume normal operation. Implementation resembles the
7187  * second-half of the e1000e_pm_resume routine.
7188  */
7189 static void e1000_io_resume(struct pci_dev *pdev)
7190 {
7191 	struct net_device *netdev = pci_get_drvdata(pdev);
7192 	struct e1000_adapter *adapter = netdev_priv(netdev);
7193 
7194 	e1000_init_manageability_pt(adapter);
7195 
7196 	e1000e_pm_thaw(&pdev->dev);
7197 
7198 	/* If the controller has AMT, do not set DRV_LOAD until the interface
7199 	 * is up.  For all other cases, let the f/w know that the h/w is now
7200 	 * under the control of the driver.
7201 	 */
7202 	if (!(adapter->flags & FLAG_HAS_AMT))
7203 		e1000e_get_hw_control(adapter);
7204 }
7205 
7206 static void e1000_print_device_info(struct e1000_adapter *adapter)
7207 {
7208 	struct e1000_hw *hw = &adapter->hw;
7209 	struct net_device *netdev = adapter->netdev;
7210 	u32 ret_val;
7211 	u8 pba_str[E1000_PBANUM_LENGTH];
7212 
7213 	/* print bus type/speed/width info */
7214 	e_info("(PCI Express:2.5GT/s:%s) %pM\n",
7215 	       /* bus width */
7216 	       ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
7217 		"Width x1"),
7218 	       /* MAC address */
7219 	       netdev->dev_addr);
7220 	e_info("Intel(R) PRO/%s Network Connection\n",
7221 	       (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
7222 	ret_val = e1000_read_pba_string_generic(hw, pba_str,
7223 						E1000_PBANUM_LENGTH);
7224 	if (ret_val)
7225 		strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
7226 	e_info("MAC: %d, PHY: %d, PBA No: %s\n",
7227 	       hw->mac.type, hw->phy.type, pba_str);
7228 }
7229 
7230 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
7231 {
7232 	struct e1000_hw *hw = &adapter->hw;
7233 	int ret_val;
7234 	u16 buf = 0;
7235 
7236 	if (hw->mac.type != e1000_82573)
7237 		return;
7238 
7239 	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
7240 	le16_to_cpus(&buf);
7241 	if (!ret_val && (!(buf & BIT(0)))) {
7242 		/* Deep Smart Power Down (DSPD) */
7243 		dev_warn(&adapter->pdev->dev,
7244 			 "Warning: detected DSPD enabled in EEPROM\n");
7245 	}
7246 }
7247 
7248 static netdev_features_t e1000_fix_features(struct net_device *netdev,
7249 					    netdev_features_t features)
7250 {
7251 	struct e1000_adapter *adapter = netdev_priv(netdev);
7252 	struct e1000_hw *hw = &adapter->hw;
7253 
7254 	/* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
7255 	if ((hw->mac.type >= e1000_pch2lan) && (netdev->mtu > ETH_DATA_LEN))
7256 		features &= ~NETIF_F_RXFCS;
7257 
7258 	/* Since there is no support for separate Rx/Tx vlan accel
7259 	 * enable/disable make sure Tx flag is always in same state as Rx.
7260 	 */
7261 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
7262 		features |= NETIF_F_HW_VLAN_CTAG_TX;
7263 	else
7264 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
7265 
7266 	return features;
7267 }
7268 
7269 static int e1000_set_features(struct net_device *netdev,
7270 			      netdev_features_t features)
7271 {
7272 	struct e1000_adapter *adapter = netdev_priv(netdev);
7273 	netdev_features_t changed = features ^ netdev->features;
7274 
7275 	if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
7276 		adapter->flags |= FLAG_TSO_FORCE;
7277 
7278 	if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
7279 			 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
7280 			 NETIF_F_RXALL)))
7281 		return 0;
7282 
7283 	if (changed & NETIF_F_RXFCS) {
7284 		if (features & NETIF_F_RXFCS) {
7285 			adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
7286 		} else {
7287 			/* We need to take it back to defaults, which might mean
7288 			 * stripping is still disabled at the adapter level.
7289 			 */
7290 			if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
7291 				adapter->flags2 |= FLAG2_CRC_STRIPPING;
7292 			else
7293 				adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
7294 		}
7295 	}
7296 
7297 	netdev->features = features;
7298 
7299 	if (netif_running(netdev))
7300 		e1000e_reinit_locked(adapter);
7301 	else
7302 		e1000e_reset(adapter);
7303 
7304 	return 1;
7305 }
7306 
7307 static const struct net_device_ops e1000e_netdev_ops = {
7308 	.ndo_open		= e1000e_open,
7309 	.ndo_stop		= e1000e_close,
7310 	.ndo_start_xmit		= e1000_xmit_frame,
7311 	.ndo_get_stats64	= e1000e_get_stats64,
7312 	.ndo_set_rx_mode	= e1000e_set_rx_mode,
7313 	.ndo_set_mac_address	= e1000_set_mac,
7314 	.ndo_change_mtu		= e1000_change_mtu,
7315 	.ndo_do_ioctl		= e1000_ioctl,
7316 	.ndo_tx_timeout		= e1000_tx_timeout,
7317 	.ndo_validate_addr	= eth_validate_addr,
7318 
7319 	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
7320 	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
7321 #ifdef CONFIG_NET_POLL_CONTROLLER
7322 	.ndo_poll_controller	= e1000_netpoll,
7323 #endif
7324 	.ndo_set_features = e1000_set_features,
7325 	.ndo_fix_features = e1000_fix_features,
7326 	.ndo_features_check	= passthru_features_check,
7327 };
7328 
7329 /**
7330  * e1000_probe - Device Initialization Routine
7331  * @pdev: PCI device information struct
7332  * @ent: entry in e1000_pci_tbl
7333  *
7334  * Returns 0 on success, negative on failure
7335  *
7336  * e1000_probe initializes an adapter identified by a pci_dev structure.
7337  * The OS initialization, configuring of the adapter private structure,
7338  * and a hardware reset occur.
7339  **/
7340 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
7341 {
7342 	struct net_device *netdev;
7343 	struct e1000_adapter *adapter;
7344 	struct e1000_hw *hw;
7345 	const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
7346 	resource_size_t mmio_start, mmio_len;
7347 	resource_size_t flash_start, flash_len;
7348 	static int cards_found;
7349 	u16 aspm_disable_flag = 0;
7350 	int bars, i, err, pci_using_dac;
7351 	u16 eeprom_data = 0;
7352 	u16 eeprom_apme_mask = E1000_EEPROM_APME;
7353 	s32 ret_val = 0;
7354 
7355 	if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
7356 		aspm_disable_flag = PCIE_LINK_STATE_L0S;
7357 	if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
7358 		aspm_disable_flag |= PCIE_LINK_STATE_L1;
7359 	if (aspm_disable_flag)
7360 		e1000e_disable_aspm(pdev, aspm_disable_flag);
7361 
7362 	err = pci_enable_device_mem(pdev);
7363 	if (err)
7364 		return err;
7365 
7366 	pci_using_dac = 0;
7367 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
7368 	if (!err) {
7369 		pci_using_dac = 1;
7370 	} else {
7371 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
7372 		if (err) {
7373 			dev_err(&pdev->dev,
7374 				"No usable DMA configuration, aborting\n");
7375 			goto err_dma;
7376 		}
7377 	}
7378 
7379 	bars = pci_select_bars(pdev, IORESOURCE_MEM);
7380 	err = pci_request_selected_regions_exclusive(pdev, bars,
7381 						     e1000e_driver_name);
7382 	if (err)
7383 		goto err_pci_reg;
7384 
7385 	/* AER (Advanced Error Reporting) hooks */
7386 	pci_enable_pcie_error_reporting(pdev);
7387 
7388 	pci_set_master(pdev);
7389 	/* PCI config space info */
7390 	err = pci_save_state(pdev);
7391 	if (err)
7392 		goto err_alloc_etherdev;
7393 
7394 	err = -ENOMEM;
7395 	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
7396 	if (!netdev)
7397 		goto err_alloc_etherdev;
7398 
7399 	SET_NETDEV_DEV(netdev, &pdev->dev);
7400 
7401 	netdev->irq = pdev->irq;
7402 
7403 	pci_set_drvdata(pdev, netdev);
7404 	adapter = netdev_priv(netdev);
7405 	hw = &adapter->hw;
7406 	adapter->netdev = netdev;
7407 	adapter->pdev = pdev;
7408 	adapter->ei = ei;
7409 	adapter->pba = ei->pba;
7410 	adapter->flags = ei->flags;
7411 	adapter->flags2 = ei->flags2;
7412 	adapter->hw.adapter = adapter;
7413 	adapter->hw.mac.type = ei->mac;
7414 	adapter->max_hw_frame_size = ei->max_hw_frame_size;
7415 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
7416 
7417 	mmio_start = pci_resource_start(pdev, 0);
7418 	mmio_len = pci_resource_len(pdev, 0);
7419 
7420 	err = -EIO;
7421 	adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
7422 	if (!adapter->hw.hw_addr)
7423 		goto err_ioremap;
7424 
7425 	if ((adapter->flags & FLAG_HAS_FLASH) &&
7426 	    (pci_resource_flags(pdev, 1) & IORESOURCE_MEM) &&
7427 	    (hw->mac.type < e1000_pch_spt)) {
7428 		flash_start = pci_resource_start(pdev, 1);
7429 		flash_len = pci_resource_len(pdev, 1);
7430 		adapter->hw.flash_address = ioremap(flash_start, flash_len);
7431 		if (!adapter->hw.flash_address)
7432 			goto err_flashmap;
7433 	}
7434 
7435 	/* Set default EEE advertisement */
7436 	if (adapter->flags2 & FLAG2_HAS_EEE)
7437 		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
7438 
7439 	/* construct the net_device struct */
7440 	netdev->netdev_ops = &e1000e_netdev_ops;
7441 	e1000e_set_ethtool_ops(netdev);
7442 	netdev->watchdog_timeo = 5 * HZ;
7443 	netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64);
7444 	strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
7445 
7446 	netdev->mem_start = mmio_start;
7447 	netdev->mem_end = mmio_start + mmio_len;
7448 
7449 	adapter->bd_number = cards_found++;
7450 
7451 	e1000e_check_options(adapter);
7452 
7453 	/* setup adapter struct */
7454 	err = e1000_sw_init(adapter);
7455 	if (err)
7456 		goto err_sw_init;
7457 
7458 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
7459 	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
7460 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
7461 
7462 	err = ei->get_variants(adapter);
7463 	if (err)
7464 		goto err_hw_init;
7465 
7466 	if ((adapter->flags & FLAG_IS_ICH) &&
7467 	    (adapter->flags & FLAG_READ_ONLY_NVM) &&
7468 	    (hw->mac.type < e1000_pch_spt))
7469 		e1000e_write_protect_nvm_ich8lan(&adapter->hw);
7470 
7471 	hw->mac.ops.get_bus_info(&adapter->hw);
7472 
7473 	adapter->hw.phy.autoneg_wait_to_complete = 0;
7474 
7475 	/* Copper options */
7476 	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
7477 		adapter->hw.phy.mdix = AUTO_ALL_MODES;
7478 		adapter->hw.phy.disable_polarity_correction = 0;
7479 		adapter->hw.phy.ms_type = e1000_ms_hw_default;
7480 	}
7481 
7482 	if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
7483 		dev_info(&pdev->dev,
7484 			 "PHY reset is blocked due to SOL/IDER session.\n");
7485 
7486 	/* Set initial default active device features */
7487 	netdev->features = (NETIF_F_SG |
7488 			    NETIF_F_HW_VLAN_CTAG_RX |
7489 			    NETIF_F_HW_VLAN_CTAG_TX |
7490 			    NETIF_F_TSO |
7491 			    NETIF_F_TSO6 |
7492 			    NETIF_F_RXHASH |
7493 			    NETIF_F_RXCSUM |
7494 			    NETIF_F_HW_CSUM);
7495 
7496 	/* Set user-changeable features (subset of all device features) */
7497 	netdev->hw_features = netdev->features;
7498 	netdev->hw_features |= NETIF_F_RXFCS;
7499 	netdev->priv_flags |= IFF_SUPP_NOFCS;
7500 	netdev->hw_features |= NETIF_F_RXALL;
7501 
7502 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
7503 		netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7504 
7505 	netdev->vlan_features |= (NETIF_F_SG |
7506 				  NETIF_F_TSO |
7507 				  NETIF_F_TSO6 |
7508 				  NETIF_F_HW_CSUM);
7509 
7510 	netdev->priv_flags |= IFF_UNICAST_FLT;
7511 
7512 	if (pci_using_dac) {
7513 		netdev->features |= NETIF_F_HIGHDMA;
7514 		netdev->vlan_features |= NETIF_F_HIGHDMA;
7515 	}
7516 
7517 	/* MTU range: 68 - max_hw_frame_size */
7518 	netdev->min_mtu = ETH_MIN_MTU;
7519 	netdev->max_mtu = adapter->max_hw_frame_size -
7520 			  (VLAN_ETH_HLEN + ETH_FCS_LEN);
7521 
7522 	if (e1000e_enable_mng_pass_thru(&adapter->hw))
7523 		adapter->flags |= FLAG_MNG_PT_ENABLED;
7524 
7525 	/* before reading the NVM, reset the controller to
7526 	 * put the device in a known good starting state
7527 	 */
7528 	adapter->hw.mac.ops.reset_hw(&adapter->hw);
7529 
7530 	/* systems with ASPM and others may see the checksum fail on the first
7531 	 * attempt. Let's give it a few tries
7532 	 */
7533 	for (i = 0;; i++) {
7534 		if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
7535 			break;
7536 		if (i == 2) {
7537 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
7538 			err = -EIO;
7539 			goto err_eeprom;
7540 		}
7541 	}
7542 
7543 	e1000_eeprom_checks(adapter);
7544 
7545 	/* copy the MAC address */
7546 	if (e1000e_read_mac_addr(&adapter->hw))
7547 		dev_err(&pdev->dev,
7548 			"NVM Read Error while reading MAC address\n");
7549 
7550 	memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
7551 
7552 	if (!is_valid_ether_addr(netdev->dev_addr)) {
7553 		dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
7554 			netdev->dev_addr);
7555 		err = -EIO;
7556 		goto err_eeprom;
7557 	}
7558 
7559 	timer_setup(&adapter->watchdog_timer, e1000_watchdog, 0);
7560 	timer_setup(&adapter->phy_info_timer, e1000_update_phy_info, 0);
7561 
7562 	INIT_WORK(&adapter->reset_task, e1000_reset_task);
7563 	INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
7564 	INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
7565 	INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
7566 	INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
7567 
7568 	/* Initialize link parameters. User can change them with ethtool */
7569 	adapter->hw.mac.autoneg = 1;
7570 	adapter->fc_autoneg = true;
7571 	adapter->hw.fc.requested_mode = e1000_fc_default;
7572 	adapter->hw.fc.current_mode = e1000_fc_default;
7573 	adapter->hw.phy.autoneg_advertised = 0x2f;
7574 
7575 	/* Initial Wake on LAN setting - If APM wake is enabled in
7576 	 * the EEPROM, enable the ACPI Magic Packet filter
7577 	 */
7578 	if (adapter->flags & FLAG_APME_IN_WUC) {
7579 		/* APME bit in EEPROM is mapped to WUC.APME */
7580 		eeprom_data = er32(WUC);
7581 		eeprom_apme_mask = E1000_WUC_APME;
7582 		if ((hw->mac.type > e1000_ich10lan) &&
7583 		    (eeprom_data & E1000_WUC_PHY_WAKE))
7584 			adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
7585 	} else if (adapter->flags & FLAG_APME_IN_CTRL3) {
7586 		if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
7587 		    (adapter->hw.bus.func == 1))
7588 			ret_val = e1000_read_nvm(&adapter->hw,
7589 					      NVM_INIT_CONTROL3_PORT_B,
7590 					      1, &eeprom_data);
7591 		else
7592 			ret_val = e1000_read_nvm(&adapter->hw,
7593 					      NVM_INIT_CONTROL3_PORT_A,
7594 					      1, &eeprom_data);
7595 	}
7596 
7597 	/* fetch WoL from EEPROM */
7598 	if (ret_val)
7599 		e_dbg("NVM read error getting WoL initial values: %d\n", ret_val);
7600 	else if (eeprom_data & eeprom_apme_mask)
7601 		adapter->eeprom_wol |= E1000_WUFC_MAG;
7602 
7603 	/* now that we have the eeprom settings, apply the special cases
7604 	 * where the eeprom may be wrong or the board simply won't support
7605 	 * wake on lan on a particular port
7606 	 */
7607 	if (!(adapter->flags & FLAG_HAS_WOL))
7608 		adapter->eeprom_wol = 0;
7609 
7610 	/* initialize the wol settings based on the eeprom settings */
7611 	adapter->wol = adapter->eeprom_wol;
7612 
7613 	/* make sure adapter isn't asleep if manageability is enabled */
7614 	if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) ||
7615 	    (hw->mac.ops.check_mng_mode(hw)))
7616 		device_wakeup_enable(&pdev->dev);
7617 
7618 	/* save off EEPROM version number */
7619 	ret_val = e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
7620 
7621 	if (ret_val) {
7622 		e_dbg("NVM read error getting EEPROM version: %d\n", ret_val);
7623 		adapter->eeprom_vers = 0;
7624 	}
7625 
7626 	/* init PTP hardware clock */
7627 	e1000e_ptp_init(adapter);
7628 
7629 	/* reset the hardware with the new settings */
7630 	e1000e_reset(adapter);
7631 
7632 	/* If the controller has AMT, do not set DRV_LOAD until the interface
7633 	 * is up.  For all other cases, let the f/w know that the h/w is now
7634 	 * under the control of the driver.
7635 	 */
7636 	if (!(adapter->flags & FLAG_HAS_AMT))
7637 		e1000e_get_hw_control(adapter);
7638 
7639 	strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
7640 	err = register_netdev(netdev);
7641 	if (err)
7642 		goto err_register;
7643 
7644 	/* carrier off reporting is important to ethtool even BEFORE open */
7645 	netif_carrier_off(netdev);
7646 
7647 	e1000_print_device_info(adapter);
7648 
7649 	dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
7650 
7651 	if (pci_dev_run_wake(pdev) && hw->mac.type < e1000_pch_cnp)
7652 		pm_runtime_put_noidle(&pdev->dev);
7653 
7654 	return 0;
7655 
7656 err_register:
7657 	if (!(adapter->flags & FLAG_HAS_AMT))
7658 		e1000e_release_hw_control(adapter);
7659 err_eeprom:
7660 	if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
7661 		e1000_phy_hw_reset(&adapter->hw);
7662 err_hw_init:
7663 	kfree(adapter->tx_ring);
7664 	kfree(adapter->rx_ring);
7665 err_sw_init:
7666 	if ((adapter->hw.flash_address) && (hw->mac.type < e1000_pch_spt))
7667 		iounmap(adapter->hw.flash_address);
7668 	e1000e_reset_interrupt_capability(adapter);
7669 err_flashmap:
7670 	iounmap(adapter->hw.hw_addr);
7671 err_ioremap:
7672 	free_netdev(netdev);
7673 err_alloc_etherdev:
7674 	pci_release_mem_regions(pdev);
7675 err_pci_reg:
7676 err_dma:
7677 	pci_disable_device(pdev);
7678 	return err;
7679 }
7680 
7681 /**
7682  * e1000_remove - Device Removal Routine
7683  * @pdev: PCI device information struct
7684  *
7685  * e1000_remove is called by the PCI subsystem to alert the driver
7686  * that it should release a PCI device.  The could be caused by a
7687  * Hot-Plug event, or because the driver is going to be removed from
7688  * memory.
7689  **/
7690 static void e1000_remove(struct pci_dev *pdev)
7691 {
7692 	struct net_device *netdev = pci_get_drvdata(pdev);
7693 	struct e1000_adapter *adapter = netdev_priv(netdev);
7694 
7695 	e1000e_ptp_remove(adapter);
7696 
7697 	/* The timers may be rescheduled, so explicitly disable them
7698 	 * from being rescheduled.
7699 	 */
7700 	set_bit(__E1000_DOWN, &adapter->state);
7701 	del_timer_sync(&adapter->watchdog_timer);
7702 	del_timer_sync(&adapter->phy_info_timer);
7703 
7704 	cancel_work_sync(&adapter->reset_task);
7705 	cancel_work_sync(&adapter->watchdog_task);
7706 	cancel_work_sync(&adapter->downshift_task);
7707 	cancel_work_sync(&adapter->update_phy_task);
7708 	cancel_work_sync(&adapter->print_hang_task);
7709 
7710 	if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
7711 		cancel_work_sync(&adapter->tx_hwtstamp_work);
7712 		if (adapter->tx_hwtstamp_skb) {
7713 			dev_consume_skb_any(adapter->tx_hwtstamp_skb);
7714 			adapter->tx_hwtstamp_skb = NULL;
7715 		}
7716 	}
7717 
7718 	unregister_netdev(netdev);
7719 
7720 	if (pci_dev_run_wake(pdev))
7721 		pm_runtime_get_noresume(&pdev->dev);
7722 
7723 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7724 	 * would have already happened in close and is redundant.
7725 	 */
7726 	e1000e_release_hw_control(adapter);
7727 
7728 	e1000e_reset_interrupt_capability(adapter);
7729 	kfree(adapter->tx_ring);
7730 	kfree(adapter->rx_ring);
7731 
7732 	iounmap(adapter->hw.hw_addr);
7733 	if ((adapter->hw.flash_address) &&
7734 	    (adapter->hw.mac.type < e1000_pch_spt))
7735 		iounmap(adapter->hw.flash_address);
7736 	pci_release_mem_regions(pdev);
7737 
7738 	free_netdev(netdev);
7739 
7740 	/* AER disable */
7741 	pci_disable_pcie_error_reporting(pdev);
7742 
7743 	pci_disable_device(pdev);
7744 }
7745 
7746 /* PCI Error Recovery (ERS) */
7747 static const struct pci_error_handlers e1000_err_handler = {
7748 	.error_detected = e1000_io_error_detected,
7749 	.slot_reset = e1000_io_slot_reset,
7750 	.resume = e1000_io_resume,
7751 };
7752 
7753 static const struct pci_device_id e1000_pci_tbl[] = {
7754 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
7755 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
7756 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
7757 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP),
7758 	  board_82571 },
7759 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
7760 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
7761 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
7762 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
7763 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
7764 
7765 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
7766 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
7767 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
7768 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
7769 
7770 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
7771 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
7772 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
7773 
7774 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
7775 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
7776 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
7777 
7778 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
7779 	  board_80003es2lan },
7780 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
7781 	  board_80003es2lan },
7782 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
7783 	  board_80003es2lan },
7784 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
7785 	  board_80003es2lan },
7786 
7787 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
7788 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
7789 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
7790 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
7791 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
7792 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
7793 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
7794 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
7795 
7796 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
7797 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
7798 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
7799 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
7800 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
7801 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
7802 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
7803 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
7804 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
7805 
7806 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
7807 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
7808 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
7809 
7810 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
7811 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
7812 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
7813 
7814 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
7815 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
7816 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
7817 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
7818 
7819 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
7820 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
7821 
7822 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
7823 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
7824 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt },
7825 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt },
7826 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt },
7827 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt },
7828 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt },
7829 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt },
7830 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM), board_pch_spt },
7831 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V), board_pch_spt },
7832 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM2), board_pch_spt },
7833 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V2), board_pch_spt },
7834 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LBG_I219_LM3), board_pch_spt },
7835 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM4), board_pch_spt },
7836 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V4), board_pch_spt },
7837 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM5), board_pch_spt },
7838 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V5), board_pch_spt },
7839 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM6), board_pch_cnp },
7840 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V6), board_pch_cnp },
7841 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM7), board_pch_cnp },
7842 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V7), board_pch_cnp },
7843 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM8), board_pch_cnp },
7844 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V8), board_pch_cnp },
7845 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM9), board_pch_cnp },
7846 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V9), board_pch_cnp },
7847 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM10), board_pch_cnp },
7848 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V10), board_pch_cnp },
7849 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM11), board_pch_cnp },
7850 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V11), board_pch_cnp },
7851 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM12), board_pch_spt },
7852 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V12), board_pch_spt },
7853 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM13), board_pch_cnp },
7854 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V13), board_pch_cnp },
7855 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM14), board_pch_cnp },
7856 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V14), board_pch_cnp },
7857 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM15), board_pch_cnp },
7858 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V15), board_pch_cnp },
7859 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_LM16), board_pch_cnp },
7860 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_V16), board_pch_cnp },
7861 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_LM17), board_pch_cnp },
7862 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_V17), board_pch_cnp },
7863 
7864 	{ 0, 0, 0, 0, 0, 0, 0 }	/* terminate list */
7865 };
7866 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
7867 
7868 static const struct dev_pm_ops e1000_pm_ops = {
7869 #ifdef CONFIG_PM_SLEEP
7870 	.suspend	= e1000e_pm_suspend,
7871 	.resume		= e1000e_pm_resume,
7872 	.freeze		= e1000e_pm_freeze,
7873 	.thaw		= e1000e_pm_thaw,
7874 	.poweroff	= e1000e_pm_suspend,
7875 	.restore	= e1000e_pm_resume,
7876 #endif
7877 	SET_RUNTIME_PM_OPS(e1000e_pm_runtime_suspend, e1000e_pm_runtime_resume,
7878 			   e1000e_pm_runtime_idle)
7879 };
7880 
7881 /* PCI Device API Driver */
7882 static struct pci_driver e1000_driver = {
7883 	.name     = e1000e_driver_name,
7884 	.id_table = e1000_pci_tbl,
7885 	.probe    = e1000_probe,
7886 	.remove   = e1000_remove,
7887 	.driver   = {
7888 		.pm = &e1000_pm_ops,
7889 	},
7890 	.shutdown = e1000_shutdown,
7891 	.err_handler = &e1000_err_handler
7892 };
7893 
7894 /**
7895  * e1000_init_module - Driver Registration Routine
7896  *
7897  * e1000_init_module is the first routine called when the driver is
7898  * loaded. All it does is register with the PCI subsystem.
7899  **/
7900 static int __init e1000_init_module(void)
7901 {
7902 	pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
7903 		e1000e_driver_version);
7904 	pr_info("Copyright(c) 1999 - 2015 Intel Corporation.\n");
7905 
7906 	return pci_register_driver(&e1000_driver);
7907 }
7908 module_init(e1000_init_module);
7909 
7910 /**
7911  * e1000_exit_module - Driver Exit Cleanup Routine
7912  *
7913  * e1000_exit_module is called just before the driver is removed
7914  * from memory.
7915  **/
7916 static void __exit e1000_exit_module(void)
7917 {
7918 	pci_unregister_driver(&e1000_driver);
7919 }
7920 module_exit(e1000_exit_module);
7921 
7922 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
7923 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7924 MODULE_LICENSE("GPL v2");
7925 MODULE_VERSION(DRV_VERSION);
7926 
7927 /* netdev.c */
7928