1 /*******************************************************************************
2 
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2012 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 
27 *******************************************************************************/
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include <linux/module.h>
32 #include <linux/types.h>
33 #include <linux/init.h>
34 #include <linux/pci.h>
35 #include <linux/vmalloc.h>
36 #include <linux/pagemap.h>
37 #include <linux/delay.h>
38 #include <linux/netdevice.h>
39 #include <linux/interrupt.h>
40 #include <linux/tcp.h>
41 #include <linux/ipv6.h>
42 #include <linux/slab.h>
43 #include <net/checksum.h>
44 #include <net/ip6_checksum.h>
45 #include <linux/mii.h>
46 #include <linux/ethtool.h>
47 #include <linux/if_vlan.h>
48 #include <linux/cpu.h>
49 #include <linux/smp.h>
50 #include <linux/pm_qos.h>
51 #include <linux/pm_runtime.h>
52 #include <linux/aer.h>
53 #include <linux/prefetch.h>
54 
55 #include "e1000.h"
56 
57 #define DRV_EXTRAVERSION "-k"
58 
59 #define DRV_VERSION "1.9.5" DRV_EXTRAVERSION
60 char e1000e_driver_name[] = "e1000e";
61 const char e1000e_driver_version[] = DRV_VERSION;
62 
63 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
64 static int debug = -1;
65 module_param(debug, int, 0);
66 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
67 
68 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state);
69 
70 static const struct e1000_info *e1000_info_tbl[] = {
71 	[board_82571]		= &e1000_82571_info,
72 	[board_82572]		= &e1000_82572_info,
73 	[board_82573]		= &e1000_82573_info,
74 	[board_82574]		= &e1000_82574_info,
75 	[board_82583]		= &e1000_82583_info,
76 	[board_80003es2lan]	= &e1000_es2_info,
77 	[board_ich8lan]		= &e1000_ich8_info,
78 	[board_ich9lan]		= &e1000_ich9_info,
79 	[board_ich10lan]	= &e1000_ich10_info,
80 	[board_pchlan]		= &e1000_pch_info,
81 	[board_pch2lan]		= &e1000_pch2_info,
82 };
83 
84 struct e1000_reg_info {
85 	u32 ofs;
86 	char *name;
87 };
88 
89 #define E1000_RDFH	0x02410	/* Rx Data FIFO Head - RW */
90 #define E1000_RDFT	0x02418	/* Rx Data FIFO Tail - RW */
91 #define E1000_RDFHS	0x02420	/* Rx Data FIFO Head Saved - RW */
92 #define E1000_RDFTS	0x02428	/* Rx Data FIFO Tail Saved - RW */
93 #define E1000_RDFPC	0x02430	/* Rx Data FIFO Packet Count - RW */
94 
95 #define E1000_TDFH	0x03410	/* Tx Data FIFO Head - RW */
96 #define E1000_TDFT	0x03418	/* Tx Data FIFO Tail - RW */
97 #define E1000_TDFHS	0x03420	/* Tx Data FIFO Head Saved - RW */
98 #define E1000_TDFTS	0x03428	/* Tx Data FIFO Tail Saved - RW */
99 #define E1000_TDFPC	0x03430	/* Tx Data FIFO Packet Count - RW */
100 
101 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
102 
103 	/* General Registers */
104 	{E1000_CTRL, "CTRL"},
105 	{E1000_STATUS, "STATUS"},
106 	{E1000_CTRL_EXT, "CTRL_EXT"},
107 
108 	/* Interrupt Registers */
109 	{E1000_ICR, "ICR"},
110 
111 	/* Rx Registers */
112 	{E1000_RCTL, "RCTL"},
113 	{E1000_RDLEN, "RDLEN"},
114 	{E1000_RDH, "RDH"},
115 	{E1000_RDT, "RDT"},
116 	{E1000_RDTR, "RDTR"},
117 	{E1000_RXDCTL(0), "RXDCTL"},
118 	{E1000_ERT, "ERT"},
119 	{E1000_RDBAL, "RDBAL"},
120 	{E1000_RDBAH, "RDBAH"},
121 	{E1000_RDFH, "RDFH"},
122 	{E1000_RDFT, "RDFT"},
123 	{E1000_RDFHS, "RDFHS"},
124 	{E1000_RDFTS, "RDFTS"},
125 	{E1000_RDFPC, "RDFPC"},
126 
127 	/* Tx Registers */
128 	{E1000_TCTL, "TCTL"},
129 	{E1000_TDBAL, "TDBAL"},
130 	{E1000_TDBAH, "TDBAH"},
131 	{E1000_TDLEN, "TDLEN"},
132 	{E1000_TDH, "TDH"},
133 	{E1000_TDT, "TDT"},
134 	{E1000_TIDV, "TIDV"},
135 	{E1000_TXDCTL(0), "TXDCTL"},
136 	{E1000_TADV, "TADV"},
137 	{E1000_TARC(0), "TARC"},
138 	{E1000_TDFH, "TDFH"},
139 	{E1000_TDFT, "TDFT"},
140 	{E1000_TDFHS, "TDFHS"},
141 	{E1000_TDFTS, "TDFTS"},
142 	{E1000_TDFPC, "TDFPC"},
143 
144 	/* List Terminator */
145 	{0, NULL}
146 };
147 
148 /*
149  * e1000_regdump - register printout routine
150  */
151 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
152 {
153 	int n = 0;
154 	char rname[16];
155 	u32 regs[8];
156 
157 	switch (reginfo->ofs) {
158 	case E1000_RXDCTL(0):
159 		for (n = 0; n < 2; n++)
160 			regs[n] = __er32(hw, E1000_RXDCTL(n));
161 		break;
162 	case E1000_TXDCTL(0):
163 		for (n = 0; n < 2; n++)
164 			regs[n] = __er32(hw, E1000_TXDCTL(n));
165 		break;
166 	case E1000_TARC(0):
167 		for (n = 0; n < 2; n++)
168 			regs[n] = __er32(hw, E1000_TARC(n));
169 		break;
170 	default:
171 		pr_info("%-15s %08x\n",
172 			reginfo->name, __er32(hw, reginfo->ofs));
173 		return;
174 	}
175 
176 	snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
177 	pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
178 }
179 
180 /*
181  * e1000e_dump - Print registers, Tx-ring and Rx-ring
182  */
183 static void e1000e_dump(struct e1000_adapter *adapter)
184 {
185 	struct net_device *netdev = adapter->netdev;
186 	struct e1000_hw *hw = &adapter->hw;
187 	struct e1000_reg_info *reginfo;
188 	struct e1000_ring *tx_ring = adapter->tx_ring;
189 	struct e1000_tx_desc *tx_desc;
190 	struct my_u0 {
191 		__le64 a;
192 		__le64 b;
193 	} *u0;
194 	struct e1000_buffer *buffer_info;
195 	struct e1000_ring *rx_ring = adapter->rx_ring;
196 	union e1000_rx_desc_packet_split *rx_desc_ps;
197 	union e1000_rx_desc_extended *rx_desc;
198 	struct my_u1 {
199 		__le64 a;
200 		__le64 b;
201 		__le64 c;
202 		__le64 d;
203 	} *u1;
204 	u32 staterr;
205 	int i = 0;
206 
207 	if (!netif_msg_hw(adapter))
208 		return;
209 
210 	/* Print netdevice Info */
211 	if (netdev) {
212 		dev_info(&adapter->pdev->dev, "Net device Info\n");
213 		pr_info("Device Name     state            trans_start      last_rx\n");
214 		pr_info("%-15s %016lX %016lX %016lX\n",
215 			netdev->name, netdev->state, netdev->trans_start,
216 			netdev->last_rx);
217 	}
218 
219 	/* Print Registers */
220 	dev_info(&adapter->pdev->dev, "Register Dump\n");
221 	pr_info(" Register Name   Value\n");
222 	for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
223 	     reginfo->name; reginfo++) {
224 		e1000_regdump(hw, reginfo);
225 	}
226 
227 	/* Print Tx Ring Summary */
228 	if (!netdev || !netif_running(netdev))
229 		return;
230 
231 	dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
232 	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
233 	buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
234 	pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
235 		0, tx_ring->next_to_use, tx_ring->next_to_clean,
236 		(unsigned long long)buffer_info->dma,
237 		buffer_info->length,
238 		buffer_info->next_to_watch,
239 		(unsigned long long)buffer_info->time_stamp);
240 
241 	/* Print Tx Ring */
242 	if (!netif_msg_tx_done(adapter))
243 		goto rx_ring_summary;
244 
245 	dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
246 
247 	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
248 	 *
249 	 * Legacy Transmit Descriptor
250 	 *   +--------------------------------------------------------------+
251 	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
252 	 *   +--------------------------------------------------------------+
253 	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
254 	 *   +--------------------------------------------------------------+
255 	 *   63       48 47        36 35    32 31     24 23    16 15        0
256 	 *
257 	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
258 	 *   63      48 47    40 39       32 31             16 15    8 7      0
259 	 *   +----------------------------------------------------------------+
260 	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
261 	 *   +----------------------------------------------------------------+
262 	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
263 	 *   +----------------------------------------------------------------+
264 	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
265 	 *
266 	 * Extended Data Descriptor (DTYP=0x1)
267 	 *   +----------------------------------------------------------------+
268 	 * 0 |                     Buffer Address [63:0]                      |
269 	 *   +----------------------------------------------------------------+
270 	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
271 	 *   +----------------------------------------------------------------+
272 	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
273 	 */
274 	pr_info("Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Legacy format\n");
275 	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Context format\n");
276 	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Data format\n");
277 	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
278 		const char *next_desc;
279 		tx_desc = E1000_TX_DESC(*tx_ring, i);
280 		buffer_info = &tx_ring->buffer_info[i];
281 		u0 = (struct my_u0 *)tx_desc;
282 		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
283 			next_desc = " NTC/U";
284 		else if (i == tx_ring->next_to_use)
285 			next_desc = " NTU";
286 		else if (i == tx_ring->next_to_clean)
287 			next_desc = " NTC";
288 		else
289 			next_desc = "";
290 		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p%s\n",
291 			(!(le64_to_cpu(u0->b) & (1 << 29)) ? 'l' :
292 			 ((le64_to_cpu(u0->b) & (1 << 20)) ? 'd' : 'c')),
293 			i,
294 			(unsigned long long)le64_to_cpu(u0->a),
295 			(unsigned long long)le64_to_cpu(u0->b),
296 			(unsigned long long)buffer_info->dma,
297 			buffer_info->length, buffer_info->next_to_watch,
298 			(unsigned long long)buffer_info->time_stamp,
299 			buffer_info->skb, next_desc);
300 
301 		if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
302 			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
303 				       16, 1, phys_to_virt(buffer_info->dma),
304 				       buffer_info->length, true);
305 	}
306 
307 	/* Print Rx Ring Summary */
308 rx_ring_summary:
309 	dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
310 	pr_info("Queue [NTU] [NTC]\n");
311 	pr_info(" %5d %5X %5X\n",
312 		0, rx_ring->next_to_use, rx_ring->next_to_clean);
313 
314 	/* Print Rx Ring */
315 	if (!netif_msg_rx_status(adapter))
316 		return;
317 
318 	dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
319 	switch (adapter->rx_ps_pages) {
320 	case 1:
321 	case 2:
322 	case 3:
323 		/* [Extended] Packet Split Receive Descriptor Format
324 		 *
325 		 *    +-----------------------------------------------------+
326 		 *  0 |                Buffer Address 0 [63:0]              |
327 		 *    +-----------------------------------------------------+
328 		 *  8 |                Buffer Address 1 [63:0]              |
329 		 *    +-----------------------------------------------------+
330 		 * 16 |                Buffer Address 2 [63:0]              |
331 		 *    +-----------------------------------------------------+
332 		 * 24 |                Buffer Address 3 [63:0]              |
333 		 *    +-----------------------------------------------------+
334 		 */
335 		pr_info("R  [desc]      [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] [bi->skb] <-- Ext Pkt Split format\n");
336 		/* [Extended] Receive Descriptor (Write-Back) Format
337 		 *
338 		 *   63       48 47    32 31     13 12    8 7    4 3        0
339 		 *   +------------------------------------------------------+
340 		 * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
341 		 *   | Checksum | Ident  |         | Queue |      |  Type   |
342 		 *   +------------------------------------------------------+
343 		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
344 		 *   +------------------------------------------------------+
345 		 *   63       48 47    32 31            20 19               0
346 		 */
347 		pr_info("RWB[desc]      [ck ipid mrqhsh] [vl   l0 ee  es] [ l3  l2  l1 hs] [reserved      ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
348 		for (i = 0; i < rx_ring->count; i++) {
349 			const char *next_desc;
350 			buffer_info = &rx_ring->buffer_info[i];
351 			rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
352 			u1 = (struct my_u1 *)rx_desc_ps;
353 			staterr =
354 			    le32_to_cpu(rx_desc_ps->wb.middle.status_error);
355 
356 			if (i == rx_ring->next_to_use)
357 				next_desc = " NTU";
358 			else if (i == rx_ring->next_to_clean)
359 				next_desc = " NTC";
360 			else
361 				next_desc = "";
362 
363 			if (staterr & E1000_RXD_STAT_DD) {
364 				/* Descriptor Done */
365 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX ---------------- %p%s\n",
366 					"RWB", i,
367 					(unsigned long long)le64_to_cpu(u1->a),
368 					(unsigned long long)le64_to_cpu(u1->b),
369 					(unsigned long long)le64_to_cpu(u1->c),
370 					(unsigned long long)le64_to_cpu(u1->d),
371 					buffer_info->skb, next_desc);
372 			} else {
373 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX %016llX %p%s\n",
374 					"R  ", i,
375 					(unsigned long long)le64_to_cpu(u1->a),
376 					(unsigned long long)le64_to_cpu(u1->b),
377 					(unsigned long long)le64_to_cpu(u1->c),
378 					(unsigned long long)le64_to_cpu(u1->d),
379 					(unsigned long long)buffer_info->dma,
380 					buffer_info->skb, next_desc);
381 
382 				if (netif_msg_pktdata(adapter))
383 					print_hex_dump(KERN_INFO, "",
384 						DUMP_PREFIX_ADDRESS, 16, 1,
385 						phys_to_virt(buffer_info->dma),
386 						adapter->rx_ps_bsize0, true);
387 			}
388 		}
389 		break;
390 	default:
391 	case 0:
392 		/* Extended Receive Descriptor (Read) Format
393 		 *
394 		 *   +-----------------------------------------------------+
395 		 * 0 |                Buffer Address [63:0]                |
396 		 *   +-----------------------------------------------------+
397 		 * 8 |                      Reserved                       |
398 		 *   +-----------------------------------------------------+
399 		 */
400 		pr_info("R  [desc]      [buf addr 63:0 ] [reserved 63:0 ] [bi->dma       ] [bi->skb] <-- Ext (Read) format\n");
401 		/* Extended Receive Descriptor (Write-Back) Format
402 		 *
403 		 *   63       48 47    32 31    24 23            4 3        0
404 		 *   +------------------------------------------------------+
405 		 *   |     RSS Hash      |        |               |         |
406 		 * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
407 		 *   | Packet   | IP     |        |               |  Type   |
408 		 *   | Checksum | Ident  |        |               |         |
409 		 *   +------------------------------------------------------+
410 		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
411 		 *   +------------------------------------------------------+
412 		 *   63       48 47    32 31            20 19               0
413 		 */
414 		pr_info("RWB[desc]      [cs ipid    mrq] [vt   ln xe  xs] [bi->skb] <-- Ext (Write-Back) format\n");
415 
416 		for (i = 0; i < rx_ring->count; i++) {
417 			const char *next_desc;
418 
419 			buffer_info = &rx_ring->buffer_info[i];
420 			rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
421 			u1 = (struct my_u1 *)rx_desc;
422 			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
423 
424 			if (i == rx_ring->next_to_use)
425 				next_desc = " NTU";
426 			else if (i == rx_ring->next_to_clean)
427 				next_desc = " NTC";
428 			else
429 				next_desc = "";
430 
431 			if (staterr & E1000_RXD_STAT_DD) {
432 				/* Descriptor Done */
433 				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %p%s\n",
434 					"RWB", i,
435 					(unsigned long long)le64_to_cpu(u1->a),
436 					(unsigned long long)le64_to_cpu(u1->b),
437 					buffer_info->skb, next_desc);
438 			} else {
439 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %p%s\n",
440 					"R  ", i,
441 					(unsigned long long)le64_to_cpu(u1->a),
442 					(unsigned long long)le64_to_cpu(u1->b),
443 					(unsigned long long)buffer_info->dma,
444 					buffer_info->skb, next_desc);
445 
446 				if (netif_msg_pktdata(adapter))
447 					print_hex_dump(KERN_INFO, "",
448 						       DUMP_PREFIX_ADDRESS, 16,
449 						       1,
450 						       phys_to_virt
451 						       (buffer_info->dma),
452 						       adapter->rx_buffer_len,
453 						       true);
454 			}
455 		}
456 	}
457 }
458 
459 /**
460  * e1000_desc_unused - calculate if we have unused descriptors
461  **/
462 static int e1000_desc_unused(struct e1000_ring *ring)
463 {
464 	if (ring->next_to_clean > ring->next_to_use)
465 		return ring->next_to_clean - ring->next_to_use - 1;
466 
467 	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
468 }
469 
470 /**
471  * e1000_receive_skb - helper function to handle Rx indications
472  * @adapter: board private structure
473  * @status: descriptor status field as written by hardware
474  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
475  * @skb: pointer to sk_buff to be indicated to stack
476  **/
477 static void e1000_receive_skb(struct e1000_adapter *adapter,
478 			      struct net_device *netdev, struct sk_buff *skb,
479 			      u8 status, __le16 vlan)
480 {
481 	u16 tag = le16_to_cpu(vlan);
482 	skb->protocol = eth_type_trans(skb, netdev);
483 
484 	if (status & E1000_RXD_STAT_VP)
485 		__vlan_hwaccel_put_tag(skb, tag);
486 
487 	napi_gro_receive(&adapter->napi, skb);
488 }
489 
490 /**
491  * e1000_rx_checksum - Receive Checksum Offload
492  * @adapter: board private structure
493  * @status_err: receive descriptor status and error fields
494  * @csum: receive descriptor csum field
495  * @sk_buff: socket buffer with received data
496  **/
497 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
498 			      __le16 csum, struct sk_buff *skb)
499 {
500 	u16 status = (u16)status_err;
501 	u8 errors = (u8)(status_err >> 24);
502 
503 	skb_checksum_none_assert(skb);
504 
505 	/* Rx checksum disabled */
506 	if (!(adapter->netdev->features & NETIF_F_RXCSUM))
507 		return;
508 
509 	/* Ignore Checksum bit is set */
510 	if (status & E1000_RXD_STAT_IXSM)
511 		return;
512 
513 	/* TCP/UDP checksum error bit is set */
514 	if (errors & E1000_RXD_ERR_TCPE) {
515 		/* let the stack verify checksum errors */
516 		adapter->hw_csum_err++;
517 		return;
518 	}
519 
520 	/* TCP/UDP Checksum has not been calculated */
521 	if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
522 		return;
523 
524 	/* It must be a TCP or UDP packet with a valid checksum */
525 	if (status & E1000_RXD_STAT_TCPCS) {
526 		/* TCP checksum is good */
527 		skb->ip_summed = CHECKSUM_UNNECESSARY;
528 	} else {
529 		/*
530 		 * IP fragment with UDP payload
531 		 * Hardware complements the payload checksum, so we undo it
532 		 * and then put the value in host order for further stack use.
533 		 */
534 		__sum16 sum = (__force __sum16)swab16((__force u16)csum);
535 		skb->csum = csum_unfold(~sum);
536 		skb->ip_summed = CHECKSUM_COMPLETE;
537 	}
538 	adapter->hw_csum_good++;
539 }
540 
541 /**
542  * e1000e_update_tail_wa - helper function for e1000e_update_[rt]dt_wa()
543  * @hw: pointer to the HW structure
544  * @tail: address of tail descriptor register
545  * @i: value to write to tail descriptor register
546  *
547  * When updating the tail register, the ME could be accessing Host CSR
548  * registers at the same time.  Normally, this is handled in h/w by an
549  * arbiter but on some parts there is a bug that acknowledges Host accesses
550  * later than it should which could result in the descriptor register to
551  * have an incorrect value.  Workaround this by checking the FWSM register
552  * which has bit 24 set while ME is accessing Host CSR registers, wait
553  * if it is set and try again a number of times.
554  **/
555 static inline s32 e1000e_update_tail_wa(struct e1000_hw *hw, void __iomem *tail,
556 					unsigned int i)
557 {
558 	unsigned int j = 0;
559 
560 	while ((j++ < E1000_ICH_FWSM_PCIM2PCI_COUNT) &&
561 	       (er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI))
562 		udelay(50);
563 
564 	writel(i, tail);
565 
566 	if ((j == E1000_ICH_FWSM_PCIM2PCI_COUNT) && (i != readl(tail)))
567 		return E1000_ERR_SWFW_SYNC;
568 
569 	return 0;
570 }
571 
572 static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
573 {
574 	struct e1000_adapter *adapter = rx_ring->adapter;
575 	struct e1000_hw *hw = &adapter->hw;
576 
577 	if (e1000e_update_tail_wa(hw, rx_ring->tail, i)) {
578 		u32 rctl = er32(RCTL);
579 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
580 		e_err("ME firmware caused invalid RDT - resetting\n");
581 		schedule_work(&adapter->reset_task);
582 	}
583 }
584 
585 static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
586 {
587 	struct e1000_adapter *adapter = tx_ring->adapter;
588 	struct e1000_hw *hw = &adapter->hw;
589 
590 	if (e1000e_update_tail_wa(hw, tx_ring->tail, i)) {
591 		u32 tctl = er32(TCTL);
592 		ew32(TCTL, tctl & ~E1000_TCTL_EN);
593 		e_err("ME firmware caused invalid TDT - resetting\n");
594 		schedule_work(&adapter->reset_task);
595 	}
596 }
597 
598 /**
599  * e1000_alloc_rx_buffers - Replace used receive buffers
600  * @rx_ring: Rx descriptor ring
601  **/
602 static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
603 				   int cleaned_count, gfp_t gfp)
604 {
605 	struct e1000_adapter *adapter = rx_ring->adapter;
606 	struct net_device *netdev = adapter->netdev;
607 	struct pci_dev *pdev = adapter->pdev;
608 	union e1000_rx_desc_extended *rx_desc;
609 	struct e1000_buffer *buffer_info;
610 	struct sk_buff *skb;
611 	unsigned int i;
612 	unsigned int bufsz = adapter->rx_buffer_len;
613 
614 	i = rx_ring->next_to_use;
615 	buffer_info = &rx_ring->buffer_info[i];
616 
617 	while (cleaned_count--) {
618 		skb = buffer_info->skb;
619 		if (skb) {
620 			skb_trim(skb, 0);
621 			goto map_skb;
622 		}
623 
624 		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
625 		if (!skb) {
626 			/* Better luck next round */
627 			adapter->alloc_rx_buff_failed++;
628 			break;
629 		}
630 
631 		buffer_info->skb = skb;
632 map_skb:
633 		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
634 						  adapter->rx_buffer_len,
635 						  DMA_FROM_DEVICE);
636 		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
637 			dev_err(&pdev->dev, "Rx DMA map failed\n");
638 			adapter->rx_dma_failed++;
639 			break;
640 		}
641 
642 		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
643 		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
644 
645 		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
646 			/*
647 			 * Force memory writes to complete before letting h/w
648 			 * know there are new descriptors to fetch.  (Only
649 			 * applicable for weak-ordered memory model archs,
650 			 * such as IA-64).
651 			 */
652 			wmb();
653 			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
654 				e1000e_update_rdt_wa(rx_ring, i);
655 			else
656 				writel(i, rx_ring->tail);
657 		}
658 		i++;
659 		if (i == rx_ring->count)
660 			i = 0;
661 		buffer_info = &rx_ring->buffer_info[i];
662 	}
663 
664 	rx_ring->next_to_use = i;
665 }
666 
667 /**
668  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
669  * @rx_ring: Rx descriptor ring
670  **/
671 static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
672 				      int cleaned_count, gfp_t gfp)
673 {
674 	struct e1000_adapter *adapter = rx_ring->adapter;
675 	struct net_device *netdev = adapter->netdev;
676 	struct pci_dev *pdev = adapter->pdev;
677 	union e1000_rx_desc_packet_split *rx_desc;
678 	struct e1000_buffer *buffer_info;
679 	struct e1000_ps_page *ps_page;
680 	struct sk_buff *skb;
681 	unsigned int i, j;
682 
683 	i = rx_ring->next_to_use;
684 	buffer_info = &rx_ring->buffer_info[i];
685 
686 	while (cleaned_count--) {
687 		rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
688 
689 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
690 			ps_page = &buffer_info->ps_pages[j];
691 			if (j >= adapter->rx_ps_pages) {
692 				/* all unused desc entries get hw null ptr */
693 				rx_desc->read.buffer_addr[j + 1] =
694 				    ~cpu_to_le64(0);
695 				continue;
696 			}
697 			if (!ps_page->page) {
698 				ps_page->page = alloc_page(gfp);
699 				if (!ps_page->page) {
700 					adapter->alloc_rx_buff_failed++;
701 					goto no_buffers;
702 				}
703 				ps_page->dma = dma_map_page(&pdev->dev,
704 							    ps_page->page,
705 							    0, PAGE_SIZE,
706 							    DMA_FROM_DEVICE);
707 				if (dma_mapping_error(&pdev->dev,
708 						      ps_page->dma)) {
709 					dev_err(&adapter->pdev->dev,
710 						"Rx DMA page map failed\n");
711 					adapter->rx_dma_failed++;
712 					goto no_buffers;
713 				}
714 			}
715 			/*
716 			 * Refresh the desc even if buffer_addrs
717 			 * didn't change because each write-back
718 			 * erases this info.
719 			 */
720 			rx_desc->read.buffer_addr[j + 1] =
721 			    cpu_to_le64(ps_page->dma);
722 		}
723 
724 		skb = __netdev_alloc_skb_ip_align(netdev,
725 						  adapter->rx_ps_bsize0,
726 						  gfp);
727 
728 		if (!skb) {
729 			adapter->alloc_rx_buff_failed++;
730 			break;
731 		}
732 
733 		buffer_info->skb = skb;
734 		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
735 						  adapter->rx_ps_bsize0,
736 						  DMA_FROM_DEVICE);
737 		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
738 			dev_err(&pdev->dev, "Rx DMA map failed\n");
739 			adapter->rx_dma_failed++;
740 			/* cleanup skb */
741 			dev_kfree_skb_any(skb);
742 			buffer_info->skb = NULL;
743 			break;
744 		}
745 
746 		rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
747 
748 		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
749 			/*
750 			 * Force memory writes to complete before letting h/w
751 			 * know there are new descriptors to fetch.  (Only
752 			 * applicable for weak-ordered memory model archs,
753 			 * such as IA-64).
754 			 */
755 			wmb();
756 			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
757 				e1000e_update_rdt_wa(rx_ring, i << 1);
758 			else
759 				writel(i << 1, rx_ring->tail);
760 		}
761 
762 		i++;
763 		if (i == rx_ring->count)
764 			i = 0;
765 		buffer_info = &rx_ring->buffer_info[i];
766 	}
767 
768 no_buffers:
769 	rx_ring->next_to_use = i;
770 }
771 
772 /**
773  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
774  * @rx_ring: Rx descriptor ring
775  * @cleaned_count: number of buffers to allocate this pass
776  **/
777 
778 static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
779 					 int cleaned_count, gfp_t gfp)
780 {
781 	struct e1000_adapter *adapter = rx_ring->adapter;
782 	struct net_device *netdev = adapter->netdev;
783 	struct pci_dev *pdev = adapter->pdev;
784 	union e1000_rx_desc_extended *rx_desc;
785 	struct e1000_buffer *buffer_info;
786 	struct sk_buff *skb;
787 	unsigned int i;
788 	unsigned int bufsz = 256 - 16 /* for skb_reserve */;
789 
790 	i = rx_ring->next_to_use;
791 	buffer_info = &rx_ring->buffer_info[i];
792 
793 	while (cleaned_count--) {
794 		skb = buffer_info->skb;
795 		if (skb) {
796 			skb_trim(skb, 0);
797 			goto check_page;
798 		}
799 
800 		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
801 		if (unlikely(!skb)) {
802 			/* Better luck next round */
803 			adapter->alloc_rx_buff_failed++;
804 			break;
805 		}
806 
807 		buffer_info->skb = skb;
808 check_page:
809 		/* allocate a new page if necessary */
810 		if (!buffer_info->page) {
811 			buffer_info->page = alloc_page(gfp);
812 			if (unlikely(!buffer_info->page)) {
813 				adapter->alloc_rx_buff_failed++;
814 				break;
815 			}
816 		}
817 
818 		if (!buffer_info->dma)
819 			buffer_info->dma = dma_map_page(&pdev->dev,
820 			                                buffer_info->page, 0,
821 			                                PAGE_SIZE,
822 							DMA_FROM_DEVICE);
823 
824 		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
825 		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
826 
827 		if (unlikely(++i == rx_ring->count))
828 			i = 0;
829 		buffer_info = &rx_ring->buffer_info[i];
830 	}
831 
832 	if (likely(rx_ring->next_to_use != i)) {
833 		rx_ring->next_to_use = i;
834 		if (unlikely(i-- == 0))
835 			i = (rx_ring->count - 1);
836 
837 		/* Force memory writes to complete before letting h/w
838 		 * know there are new descriptors to fetch.  (Only
839 		 * applicable for weak-ordered memory model archs,
840 		 * such as IA-64). */
841 		wmb();
842 		if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
843 			e1000e_update_rdt_wa(rx_ring, i);
844 		else
845 			writel(i, rx_ring->tail);
846 	}
847 }
848 
849 static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
850 				 struct sk_buff *skb)
851 {
852 	if (netdev->features & NETIF_F_RXHASH)
853 		skb->rxhash = le32_to_cpu(rss);
854 }
855 
856 /**
857  * e1000_clean_rx_irq - Send received data up the network stack
858  * @rx_ring: Rx descriptor ring
859  *
860  * the return value indicates whether actual cleaning was done, there
861  * is no guarantee that everything was cleaned
862  **/
863 static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
864 			       int work_to_do)
865 {
866 	struct e1000_adapter *adapter = rx_ring->adapter;
867 	struct net_device *netdev = adapter->netdev;
868 	struct pci_dev *pdev = adapter->pdev;
869 	struct e1000_hw *hw = &adapter->hw;
870 	union e1000_rx_desc_extended *rx_desc, *next_rxd;
871 	struct e1000_buffer *buffer_info, *next_buffer;
872 	u32 length, staterr;
873 	unsigned int i;
874 	int cleaned_count = 0;
875 	bool cleaned = false;
876 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
877 
878 	i = rx_ring->next_to_clean;
879 	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
880 	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
881 	buffer_info = &rx_ring->buffer_info[i];
882 
883 	while (staterr & E1000_RXD_STAT_DD) {
884 		struct sk_buff *skb;
885 
886 		if (*work_done >= work_to_do)
887 			break;
888 		(*work_done)++;
889 		rmb();	/* read descriptor and rx_buffer_info after status DD */
890 
891 		skb = buffer_info->skb;
892 		buffer_info->skb = NULL;
893 
894 		prefetch(skb->data - NET_IP_ALIGN);
895 
896 		i++;
897 		if (i == rx_ring->count)
898 			i = 0;
899 		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
900 		prefetch(next_rxd);
901 
902 		next_buffer = &rx_ring->buffer_info[i];
903 
904 		cleaned = true;
905 		cleaned_count++;
906 		dma_unmap_single(&pdev->dev,
907 				 buffer_info->dma,
908 				 adapter->rx_buffer_len,
909 				 DMA_FROM_DEVICE);
910 		buffer_info->dma = 0;
911 
912 		length = le16_to_cpu(rx_desc->wb.upper.length);
913 
914 		/*
915 		 * !EOP means multiple descriptors were used to store a single
916 		 * packet, if that's the case we need to toss it.  In fact, we
917 		 * need to toss every packet with the EOP bit clear and the
918 		 * next frame that _does_ have the EOP bit set, as it is by
919 		 * definition only a frame fragment
920 		 */
921 		if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
922 			adapter->flags2 |= FLAG2_IS_DISCARDING;
923 
924 		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
925 			/* All receives must fit into a single buffer */
926 			e_dbg("Receive packet consumed multiple buffers\n");
927 			/* recycle */
928 			buffer_info->skb = skb;
929 			if (staterr & E1000_RXD_STAT_EOP)
930 				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
931 			goto next_desc;
932 		}
933 
934 		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
935 			     !(netdev->features & NETIF_F_RXALL))) {
936 			/* recycle */
937 			buffer_info->skb = skb;
938 			goto next_desc;
939 		}
940 
941 		/* adjust length to remove Ethernet CRC */
942 		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
943 			/* If configured to store CRC, don't subtract FCS,
944 			 * but keep the FCS bytes out of the total_rx_bytes
945 			 * counter
946 			 */
947 			if (netdev->features & NETIF_F_RXFCS)
948 				total_rx_bytes -= 4;
949 			else
950 				length -= 4;
951 		}
952 
953 		total_rx_bytes += length;
954 		total_rx_packets++;
955 
956 		/*
957 		 * code added for copybreak, this should improve
958 		 * performance for small packets with large amounts
959 		 * of reassembly being done in the stack
960 		 */
961 		if (length < copybreak) {
962 			struct sk_buff *new_skb =
963 			    netdev_alloc_skb_ip_align(netdev, length);
964 			if (new_skb) {
965 				skb_copy_to_linear_data_offset(new_skb,
966 							       -NET_IP_ALIGN,
967 							       (skb->data -
968 								NET_IP_ALIGN),
969 							       (length +
970 								NET_IP_ALIGN));
971 				/* save the skb in buffer_info as good */
972 				buffer_info->skb = skb;
973 				skb = new_skb;
974 			}
975 			/* else just continue with the old one */
976 		}
977 		/* end copybreak code */
978 		skb_put(skb, length);
979 
980 		/* Receive Checksum Offload */
981 		e1000_rx_checksum(adapter, staterr,
982 				  rx_desc->wb.lower.hi_dword.csum_ip.csum, skb);
983 
984 		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
985 
986 		e1000_receive_skb(adapter, netdev, skb, staterr,
987 				  rx_desc->wb.upper.vlan);
988 
989 next_desc:
990 		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
991 
992 		/* return some buffers to hardware, one at a time is too slow */
993 		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
994 			adapter->alloc_rx_buf(rx_ring, cleaned_count,
995 					      GFP_ATOMIC);
996 			cleaned_count = 0;
997 		}
998 
999 		/* use prefetched values */
1000 		rx_desc = next_rxd;
1001 		buffer_info = next_buffer;
1002 
1003 		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1004 	}
1005 	rx_ring->next_to_clean = i;
1006 
1007 	cleaned_count = e1000_desc_unused(rx_ring);
1008 	if (cleaned_count)
1009 		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1010 
1011 	adapter->total_rx_bytes += total_rx_bytes;
1012 	adapter->total_rx_packets += total_rx_packets;
1013 	return cleaned;
1014 }
1015 
1016 static void e1000_put_txbuf(struct e1000_ring *tx_ring,
1017 			    struct e1000_buffer *buffer_info)
1018 {
1019 	struct e1000_adapter *adapter = tx_ring->adapter;
1020 
1021 	if (buffer_info->dma) {
1022 		if (buffer_info->mapped_as_page)
1023 			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1024 				       buffer_info->length, DMA_TO_DEVICE);
1025 		else
1026 			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1027 					 buffer_info->length, DMA_TO_DEVICE);
1028 		buffer_info->dma = 0;
1029 	}
1030 	if (buffer_info->skb) {
1031 		dev_kfree_skb_any(buffer_info->skb);
1032 		buffer_info->skb = NULL;
1033 	}
1034 	buffer_info->time_stamp = 0;
1035 }
1036 
1037 static void e1000_print_hw_hang(struct work_struct *work)
1038 {
1039 	struct e1000_adapter *adapter = container_of(work,
1040 	                                             struct e1000_adapter,
1041 	                                             print_hang_task);
1042 	struct net_device *netdev = adapter->netdev;
1043 	struct e1000_ring *tx_ring = adapter->tx_ring;
1044 	unsigned int i = tx_ring->next_to_clean;
1045 	unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1046 	struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1047 	struct e1000_hw *hw = &adapter->hw;
1048 	u16 phy_status, phy_1000t_status, phy_ext_status;
1049 	u16 pci_status;
1050 
1051 	if (test_bit(__E1000_DOWN, &adapter->state))
1052 		return;
1053 
1054 	if (!adapter->tx_hang_recheck &&
1055 	    (adapter->flags2 & FLAG2_DMA_BURST)) {
1056 		/* May be block on write-back, flush and detect again
1057 		 * flush pending descriptor writebacks to memory
1058 		 */
1059 		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1060 		/* execute the writes immediately */
1061 		e1e_flush();
1062 		/*
1063 		 * Due to rare timing issues, write to TIDV again to ensure
1064 		 * the write is successful
1065 		 */
1066 		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1067 		/* execute the writes immediately */
1068 		e1e_flush();
1069 		adapter->tx_hang_recheck = true;
1070 		return;
1071 	}
1072 	/* Real hang detected */
1073 	adapter->tx_hang_recheck = false;
1074 	netif_stop_queue(netdev);
1075 
1076 	e1e_rphy(hw, PHY_STATUS, &phy_status);
1077 	e1e_rphy(hw, PHY_1000T_STATUS, &phy_1000t_status);
1078 	e1e_rphy(hw, PHY_EXT_STATUS, &phy_ext_status);
1079 
1080 	pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1081 
1082 	/* detected Hardware unit hang */
1083 	e_err("Detected Hardware Unit Hang:\n"
1084 	      "  TDH                  <%x>\n"
1085 	      "  TDT                  <%x>\n"
1086 	      "  next_to_use          <%x>\n"
1087 	      "  next_to_clean        <%x>\n"
1088 	      "buffer_info[next_to_clean]:\n"
1089 	      "  time_stamp           <%lx>\n"
1090 	      "  next_to_watch        <%x>\n"
1091 	      "  jiffies              <%lx>\n"
1092 	      "  next_to_watch.status <%x>\n"
1093 	      "MAC Status             <%x>\n"
1094 	      "PHY Status             <%x>\n"
1095 	      "PHY 1000BASE-T Status  <%x>\n"
1096 	      "PHY Extended Status    <%x>\n"
1097 	      "PCI Status             <%x>\n",
1098 	      readl(tx_ring->head),
1099 	      readl(tx_ring->tail),
1100 	      tx_ring->next_to_use,
1101 	      tx_ring->next_to_clean,
1102 	      tx_ring->buffer_info[eop].time_stamp,
1103 	      eop,
1104 	      jiffies,
1105 	      eop_desc->upper.fields.status,
1106 	      er32(STATUS),
1107 	      phy_status,
1108 	      phy_1000t_status,
1109 	      phy_ext_status,
1110 	      pci_status);
1111 }
1112 
1113 /**
1114  * e1000_clean_tx_irq - Reclaim resources after transmit completes
1115  * @tx_ring: Tx descriptor ring
1116  *
1117  * the return value indicates whether actual cleaning was done, there
1118  * is no guarantee that everything was cleaned
1119  **/
1120 static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1121 {
1122 	struct e1000_adapter *adapter = tx_ring->adapter;
1123 	struct net_device *netdev = adapter->netdev;
1124 	struct e1000_hw *hw = &adapter->hw;
1125 	struct e1000_tx_desc *tx_desc, *eop_desc;
1126 	struct e1000_buffer *buffer_info;
1127 	unsigned int i, eop;
1128 	unsigned int count = 0;
1129 	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1130 	unsigned int bytes_compl = 0, pkts_compl = 0;
1131 
1132 	i = tx_ring->next_to_clean;
1133 	eop = tx_ring->buffer_info[i].next_to_watch;
1134 	eop_desc = E1000_TX_DESC(*tx_ring, eop);
1135 
1136 	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1137 	       (count < tx_ring->count)) {
1138 		bool cleaned = false;
1139 		rmb(); /* read buffer_info after eop_desc */
1140 		for (; !cleaned; count++) {
1141 			tx_desc = E1000_TX_DESC(*tx_ring, i);
1142 			buffer_info = &tx_ring->buffer_info[i];
1143 			cleaned = (i == eop);
1144 
1145 			if (cleaned) {
1146 				total_tx_packets += buffer_info->segs;
1147 				total_tx_bytes += buffer_info->bytecount;
1148 				if (buffer_info->skb) {
1149 					bytes_compl += buffer_info->skb->len;
1150 					pkts_compl++;
1151 				}
1152 			}
1153 
1154 			e1000_put_txbuf(tx_ring, buffer_info);
1155 			tx_desc->upper.data = 0;
1156 
1157 			i++;
1158 			if (i == tx_ring->count)
1159 				i = 0;
1160 		}
1161 
1162 		if (i == tx_ring->next_to_use)
1163 			break;
1164 		eop = tx_ring->buffer_info[i].next_to_watch;
1165 		eop_desc = E1000_TX_DESC(*tx_ring, eop);
1166 	}
1167 
1168 	tx_ring->next_to_clean = i;
1169 
1170 	netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1171 
1172 #define TX_WAKE_THRESHOLD 32
1173 	if (count && netif_carrier_ok(netdev) &&
1174 	    e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1175 		/* Make sure that anybody stopping the queue after this
1176 		 * sees the new next_to_clean.
1177 		 */
1178 		smp_mb();
1179 
1180 		if (netif_queue_stopped(netdev) &&
1181 		    !(test_bit(__E1000_DOWN, &adapter->state))) {
1182 			netif_wake_queue(netdev);
1183 			++adapter->restart_queue;
1184 		}
1185 	}
1186 
1187 	if (adapter->detect_tx_hung) {
1188 		/*
1189 		 * Detect a transmit hang in hardware, this serializes the
1190 		 * check with the clearing of time_stamp and movement of i
1191 		 */
1192 		adapter->detect_tx_hung = false;
1193 		if (tx_ring->buffer_info[i].time_stamp &&
1194 		    time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1195 			       + (adapter->tx_timeout_factor * HZ)) &&
1196 		    !(er32(STATUS) & E1000_STATUS_TXOFF))
1197 			schedule_work(&adapter->print_hang_task);
1198 		else
1199 			adapter->tx_hang_recheck = false;
1200 	}
1201 	adapter->total_tx_bytes += total_tx_bytes;
1202 	adapter->total_tx_packets += total_tx_packets;
1203 	return count < tx_ring->count;
1204 }
1205 
1206 /**
1207  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1208  * @rx_ring: Rx descriptor ring
1209  *
1210  * the return value indicates whether actual cleaning was done, there
1211  * is no guarantee that everything was cleaned
1212  **/
1213 static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1214 				  int work_to_do)
1215 {
1216 	struct e1000_adapter *adapter = rx_ring->adapter;
1217 	struct e1000_hw *hw = &adapter->hw;
1218 	union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1219 	struct net_device *netdev = adapter->netdev;
1220 	struct pci_dev *pdev = adapter->pdev;
1221 	struct e1000_buffer *buffer_info, *next_buffer;
1222 	struct e1000_ps_page *ps_page;
1223 	struct sk_buff *skb;
1224 	unsigned int i, j;
1225 	u32 length, staterr;
1226 	int cleaned_count = 0;
1227 	bool cleaned = false;
1228 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1229 
1230 	i = rx_ring->next_to_clean;
1231 	rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1232 	staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1233 	buffer_info = &rx_ring->buffer_info[i];
1234 
1235 	while (staterr & E1000_RXD_STAT_DD) {
1236 		if (*work_done >= work_to_do)
1237 			break;
1238 		(*work_done)++;
1239 		skb = buffer_info->skb;
1240 		rmb();	/* read descriptor and rx_buffer_info after status DD */
1241 
1242 		/* in the packet split case this is header only */
1243 		prefetch(skb->data - NET_IP_ALIGN);
1244 
1245 		i++;
1246 		if (i == rx_ring->count)
1247 			i = 0;
1248 		next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1249 		prefetch(next_rxd);
1250 
1251 		next_buffer = &rx_ring->buffer_info[i];
1252 
1253 		cleaned = true;
1254 		cleaned_count++;
1255 		dma_unmap_single(&pdev->dev, buffer_info->dma,
1256 				 adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1257 		buffer_info->dma = 0;
1258 
1259 		/* see !EOP comment in other Rx routine */
1260 		if (!(staterr & E1000_RXD_STAT_EOP))
1261 			adapter->flags2 |= FLAG2_IS_DISCARDING;
1262 
1263 		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1264 			e_dbg("Packet Split buffers didn't pick up the full packet\n");
1265 			dev_kfree_skb_irq(skb);
1266 			if (staterr & E1000_RXD_STAT_EOP)
1267 				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1268 			goto next_desc;
1269 		}
1270 
1271 		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1272 			     !(netdev->features & NETIF_F_RXALL))) {
1273 			dev_kfree_skb_irq(skb);
1274 			goto next_desc;
1275 		}
1276 
1277 		length = le16_to_cpu(rx_desc->wb.middle.length0);
1278 
1279 		if (!length) {
1280 			e_dbg("Last part of the packet spanning multiple descriptors\n");
1281 			dev_kfree_skb_irq(skb);
1282 			goto next_desc;
1283 		}
1284 
1285 		/* Good Receive */
1286 		skb_put(skb, length);
1287 
1288 		{
1289 			/*
1290 			 * this looks ugly, but it seems compiler issues make
1291 			 * it more efficient than reusing j
1292 			 */
1293 			int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1294 
1295 			/*
1296 			 * page alloc/put takes too long and effects small
1297 			 * packet throughput, so unsplit small packets and
1298 			 * save the alloc/put only valid in softirq (napi)
1299 			 * context to call kmap_*
1300 			 */
1301 			if (l1 && (l1 <= copybreak) &&
1302 			    ((length + l1) <= adapter->rx_ps_bsize0)) {
1303 				u8 *vaddr;
1304 
1305 				ps_page = &buffer_info->ps_pages[0];
1306 
1307 				/*
1308 				 * there is no documentation about how to call
1309 				 * kmap_atomic, so we can't hold the mapping
1310 				 * very long
1311 				 */
1312 				dma_sync_single_for_cpu(&pdev->dev,
1313 							ps_page->dma,
1314 							PAGE_SIZE,
1315 							DMA_FROM_DEVICE);
1316 				vaddr = kmap_atomic(ps_page->page);
1317 				memcpy(skb_tail_pointer(skb), vaddr, l1);
1318 				kunmap_atomic(vaddr);
1319 				dma_sync_single_for_device(&pdev->dev,
1320 							   ps_page->dma,
1321 							   PAGE_SIZE,
1322 							   DMA_FROM_DEVICE);
1323 
1324 				/* remove the CRC */
1325 				if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1326 					if (!(netdev->features & NETIF_F_RXFCS))
1327 						l1 -= 4;
1328 				}
1329 
1330 				skb_put(skb, l1);
1331 				goto copydone;
1332 			} /* if */
1333 		}
1334 
1335 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1336 			length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1337 			if (!length)
1338 				break;
1339 
1340 			ps_page = &buffer_info->ps_pages[j];
1341 			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1342 				       DMA_FROM_DEVICE);
1343 			ps_page->dma = 0;
1344 			skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1345 			ps_page->page = NULL;
1346 			skb->len += length;
1347 			skb->data_len += length;
1348 			skb->truesize += PAGE_SIZE;
1349 		}
1350 
1351 		/* strip the ethernet crc, problem is we're using pages now so
1352 		 * this whole operation can get a little cpu intensive
1353 		 */
1354 		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1355 			if (!(netdev->features & NETIF_F_RXFCS))
1356 				pskb_trim(skb, skb->len - 4);
1357 		}
1358 
1359 copydone:
1360 		total_rx_bytes += skb->len;
1361 		total_rx_packets++;
1362 
1363 		e1000_rx_checksum(adapter, staterr,
1364 				  rx_desc->wb.lower.hi_dword.csum_ip.csum, skb);
1365 
1366 		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1367 
1368 		if (rx_desc->wb.upper.header_status &
1369 			   cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1370 			adapter->rx_hdr_split++;
1371 
1372 		e1000_receive_skb(adapter, netdev, skb,
1373 				  staterr, rx_desc->wb.middle.vlan);
1374 
1375 next_desc:
1376 		rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1377 		buffer_info->skb = NULL;
1378 
1379 		/* return some buffers to hardware, one at a time is too slow */
1380 		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1381 			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1382 					      GFP_ATOMIC);
1383 			cleaned_count = 0;
1384 		}
1385 
1386 		/* use prefetched values */
1387 		rx_desc = next_rxd;
1388 		buffer_info = next_buffer;
1389 
1390 		staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1391 	}
1392 	rx_ring->next_to_clean = i;
1393 
1394 	cleaned_count = e1000_desc_unused(rx_ring);
1395 	if (cleaned_count)
1396 		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1397 
1398 	adapter->total_rx_bytes += total_rx_bytes;
1399 	adapter->total_rx_packets += total_rx_packets;
1400 	return cleaned;
1401 }
1402 
1403 /**
1404  * e1000_consume_page - helper function
1405  **/
1406 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1407                                u16 length)
1408 {
1409 	bi->page = NULL;
1410 	skb->len += length;
1411 	skb->data_len += length;
1412 	skb->truesize += PAGE_SIZE;
1413 }
1414 
1415 /**
1416  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1417  * @adapter: board private structure
1418  *
1419  * the return value indicates whether actual cleaning was done, there
1420  * is no guarantee that everything was cleaned
1421  **/
1422 static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1423 				     int work_to_do)
1424 {
1425 	struct e1000_adapter *adapter = rx_ring->adapter;
1426 	struct net_device *netdev = adapter->netdev;
1427 	struct pci_dev *pdev = adapter->pdev;
1428 	union e1000_rx_desc_extended *rx_desc, *next_rxd;
1429 	struct e1000_buffer *buffer_info, *next_buffer;
1430 	u32 length, staterr;
1431 	unsigned int i;
1432 	int cleaned_count = 0;
1433 	bool cleaned = false;
1434 	unsigned int total_rx_bytes=0, total_rx_packets=0;
1435 
1436 	i = rx_ring->next_to_clean;
1437 	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1438 	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1439 	buffer_info = &rx_ring->buffer_info[i];
1440 
1441 	while (staterr & E1000_RXD_STAT_DD) {
1442 		struct sk_buff *skb;
1443 
1444 		if (*work_done >= work_to_do)
1445 			break;
1446 		(*work_done)++;
1447 		rmb();	/* read descriptor and rx_buffer_info after status DD */
1448 
1449 		skb = buffer_info->skb;
1450 		buffer_info->skb = NULL;
1451 
1452 		++i;
1453 		if (i == rx_ring->count)
1454 			i = 0;
1455 		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1456 		prefetch(next_rxd);
1457 
1458 		next_buffer = &rx_ring->buffer_info[i];
1459 
1460 		cleaned = true;
1461 		cleaned_count++;
1462 		dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1463 			       DMA_FROM_DEVICE);
1464 		buffer_info->dma = 0;
1465 
1466 		length = le16_to_cpu(rx_desc->wb.upper.length);
1467 
1468 		/* errors is only valid for DD + EOP descriptors */
1469 		if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1470 			     ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1471 			      !(netdev->features & NETIF_F_RXALL)))) {
1472 			/* recycle both page and skb */
1473 			buffer_info->skb = skb;
1474 			/* an error means any chain goes out the window too */
1475 			if (rx_ring->rx_skb_top)
1476 				dev_kfree_skb_irq(rx_ring->rx_skb_top);
1477 			rx_ring->rx_skb_top = NULL;
1478 			goto next_desc;
1479 		}
1480 
1481 #define rxtop (rx_ring->rx_skb_top)
1482 		if (!(staterr & E1000_RXD_STAT_EOP)) {
1483 			/* this descriptor is only the beginning (or middle) */
1484 			if (!rxtop) {
1485 				/* this is the beginning of a chain */
1486 				rxtop = skb;
1487 				skb_fill_page_desc(rxtop, 0, buffer_info->page,
1488 				                   0, length);
1489 			} else {
1490 				/* this is the middle of a chain */
1491 				skb_fill_page_desc(rxtop,
1492 				    skb_shinfo(rxtop)->nr_frags,
1493 				    buffer_info->page, 0, length);
1494 				/* re-use the skb, only consumed the page */
1495 				buffer_info->skb = skb;
1496 			}
1497 			e1000_consume_page(buffer_info, rxtop, length);
1498 			goto next_desc;
1499 		} else {
1500 			if (rxtop) {
1501 				/* end of the chain */
1502 				skb_fill_page_desc(rxtop,
1503 				    skb_shinfo(rxtop)->nr_frags,
1504 				    buffer_info->page, 0, length);
1505 				/* re-use the current skb, we only consumed the
1506 				 * page */
1507 				buffer_info->skb = skb;
1508 				skb = rxtop;
1509 				rxtop = NULL;
1510 				e1000_consume_page(buffer_info, skb, length);
1511 			} else {
1512 				/* no chain, got EOP, this buf is the packet
1513 				 * copybreak to save the put_page/alloc_page */
1514 				if (length <= copybreak &&
1515 				    skb_tailroom(skb) >= length) {
1516 					u8 *vaddr;
1517 					vaddr = kmap_atomic(buffer_info->page);
1518 					memcpy(skb_tail_pointer(skb), vaddr,
1519 					       length);
1520 					kunmap_atomic(vaddr);
1521 					/* re-use the page, so don't erase
1522 					 * buffer_info->page */
1523 					skb_put(skb, length);
1524 				} else {
1525 					skb_fill_page_desc(skb, 0,
1526 					                   buffer_info->page, 0,
1527 				                           length);
1528 					e1000_consume_page(buffer_info, skb,
1529 					                   length);
1530 				}
1531 			}
1532 		}
1533 
1534 		/* Receive Checksum Offload XXX recompute due to CRC strip? */
1535 		e1000_rx_checksum(adapter, staterr,
1536 				  rx_desc->wb.lower.hi_dword.csum_ip.csum, skb);
1537 
1538 		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1539 
1540 		/* probably a little skewed due to removing CRC */
1541 		total_rx_bytes += skb->len;
1542 		total_rx_packets++;
1543 
1544 		/* eth type trans needs skb->data to point to something */
1545 		if (!pskb_may_pull(skb, ETH_HLEN)) {
1546 			e_err("pskb_may_pull failed.\n");
1547 			dev_kfree_skb_irq(skb);
1548 			goto next_desc;
1549 		}
1550 
1551 		e1000_receive_skb(adapter, netdev, skb, staterr,
1552 				  rx_desc->wb.upper.vlan);
1553 
1554 next_desc:
1555 		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1556 
1557 		/* return some buffers to hardware, one at a time is too slow */
1558 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1559 			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1560 					      GFP_ATOMIC);
1561 			cleaned_count = 0;
1562 		}
1563 
1564 		/* use prefetched values */
1565 		rx_desc = next_rxd;
1566 		buffer_info = next_buffer;
1567 
1568 		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1569 	}
1570 	rx_ring->next_to_clean = i;
1571 
1572 	cleaned_count = e1000_desc_unused(rx_ring);
1573 	if (cleaned_count)
1574 		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1575 
1576 	adapter->total_rx_bytes += total_rx_bytes;
1577 	adapter->total_rx_packets += total_rx_packets;
1578 	return cleaned;
1579 }
1580 
1581 /**
1582  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1583  * @rx_ring: Rx descriptor ring
1584  **/
1585 static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1586 {
1587 	struct e1000_adapter *adapter = rx_ring->adapter;
1588 	struct e1000_buffer *buffer_info;
1589 	struct e1000_ps_page *ps_page;
1590 	struct pci_dev *pdev = adapter->pdev;
1591 	unsigned int i, j;
1592 
1593 	/* Free all the Rx ring sk_buffs */
1594 	for (i = 0; i < rx_ring->count; i++) {
1595 		buffer_info = &rx_ring->buffer_info[i];
1596 		if (buffer_info->dma) {
1597 			if (adapter->clean_rx == e1000_clean_rx_irq)
1598 				dma_unmap_single(&pdev->dev, buffer_info->dma,
1599 						 adapter->rx_buffer_len,
1600 						 DMA_FROM_DEVICE);
1601 			else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1602 				dma_unmap_page(&pdev->dev, buffer_info->dma,
1603 				               PAGE_SIZE,
1604 					       DMA_FROM_DEVICE);
1605 			else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1606 				dma_unmap_single(&pdev->dev, buffer_info->dma,
1607 						 adapter->rx_ps_bsize0,
1608 						 DMA_FROM_DEVICE);
1609 			buffer_info->dma = 0;
1610 		}
1611 
1612 		if (buffer_info->page) {
1613 			put_page(buffer_info->page);
1614 			buffer_info->page = NULL;
1615 		}
1616 
1617 		if (buffer_info->skb) {
1618 			dev_kfree_skb(buffer_info->skb);
1619 			buffer_info->skb = NULL;
1620 		}
1621 
1622 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1623 			ps_page = &buffer_info->ps_pages[j];
1624 			if (!ps_page->page)
1625 				break;
1626 			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1627 				       DMA_FROM_DEVICE);
1628 			ps_page->dma = 0;
1629 			put_page(ps_page->page);
1630 			ps_page->page = NULL;
1631 		}
1632 	}
1633 
1634 	/* there also may be some cached data from a chained receive */
1635 	if (rx_ring->rx_skb_top) {
1636 		dev_kfree_skb(rx_ring->rx_skb_top);
1637 		rx_ring->rx_skb_top = NULL;
1638 	}
1639 
1640 	/* Zero out the descriptor ring */
1641 	memset(rx_ring->desc, 0, rx_ring->size);
1642 
1643 	rx_ring->next_to_clean = 0;
1644 	rx_ring->next_to_use = 0;
1645 	adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1646 
1647 	writel(0, rx_ring->head);
1648 	writel(0, rx_ring->tail);
1649 }
1650 
1651 static void e1000e_downshift_workaround(struct work_struct *work)
1652 {
1653 	struct e1000_adapter *adapter = container_of(work,
1654 					struct e1000_adapter, downshift_task);
1655 
1656 	if (test_bit(__E1000_DOWN, &adapter->state))
1657 		return;
1658 
1659 	e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1660 }
1661 
1662 /**
1663  * e1000_intr_msi - Interrupt Handler
1664  * @irq: interrupt number
1665  * @data: pointer to a network interface device structure
1666  **/
1667 static irqreturn_t e1000_intr_msi(int irq, void *data)
1668 {
1669 	struct net_device *netdev = data;
1670 	struct e1000_adapter *adapter = netdev_priv(netdev);
1671 	struct e1000_hw *hw = &adapter->hw;
1672 	u32 icr = er32(ICR);
1673 
1674 	/*
1675 	 * read ICR disables interrupts using IAM
1676 	 */
1677 
1678 	if (icr & E1000_ICR_LSC) {
1679 		hw->mac.get_link_status = true;
1680 		/*
1681 		 * ICH8 workaround-- Call gig speed drop workaround on cable
1682 		 * disconnect (LSC) before accessing any PHY registers
1683 		 */
1684 		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1685 		    (!(er32(STATUS) & E1000_STATUS_LU)))
1686 			schedule_work(&adapter->downshift_task);
1687 
1688 		/*
1689 		 * 80003ES2LAN workaround-- For packet buffer work-around on
1690 		 * link down event; disable receives here in the ISR and reset
1691 		 * adapter in watchdog
1692 		 */
1693 		if (netif_carrier_ok(netdev) &&
1694 		    adapter->flags & FLAG_RX_NEEDS_RESTART) {
1695 			/* disable receives */
1696 			u32 rctl = er32(RCTL);
1697 			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1698 			adapter->flags |= FLAG_RX_RESTART_NOW;
1699 		}
1700 		/* guard against interrupt when we're going down */
1701 		if (!test_bit(__E1000_DOWN, &adapter->state))
1702 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1703 	}
1704 
1705 	if (napi_schedule_prep(&adapter->napi)) {
1706 		adapter->total_tx_bytes = 0;
1707 		adapter->total_tx_packets = 0;
1708 		adapter->total_rx_bytes = 0;
1709 		adapter->total_rx_packets = 0;
1710 		__napi_schedule(&adapter->napi);
1711 	}
1712 
1713 	return IRQ_HANDLED;
1714 }
1715 
1716 /**
1717  * e1000_intr - Interrupt Handler
1718  * @irq: interrupt number
1719  * @data: pointer to a network interface device structure
1720  **/
1721 static irqreturn_t e1000_intr(int irq, void *data)
1722 {
1723 	struct net_device *netdev = data;
1724 	struct e1000_adapter *adapter = netdev_priv(netdev);
1725 	struct e1000_hw *hw = &adapter->hw;
1726 	u32 rctl, icr = er32(ICR);
1727 
1728 	if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1729 		return IRQ_NONE;  /* Not our interrupt */
1730 
1731 	/*
1732 	 * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1733 	 * not set, then the adapter didn't send an interrupt
1734 	 */
1735 	if (!(icr & E1000_ICR_INT_ASSERTED))
1736 		return IRQ_NONE;
1737 
1738 	/*
1739 	 * Interrupt Auto-Mask...upon reading ICR,
1740 	 * interrupts are masked.  No need for the
1741 	 * IMC write
1742 	 */
1743 
1744 	if (icr & E1000_ICR_LSC) {
1745 		hw->mac.get_link_status = true;
1746 		/*
1747 		 * ICH8 workaround-- Call gig speed drop workaround on cable
1748 		 * disconnect (LSC) before accessing any PHY registers
1749 		 */
1750 		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1751 		    (!(er32(STATUS) & E1000_STATUS_LU)))
1752 			schedule_work(&adapter->downshift_task);
1753 
1754 		/*
1755 		 * 80003ES2LAN workaround--
1756 		 * For packet buffer work-around on link down event;
1757 		 * disable receives here in the ISR and
1758 		 * reset adapter in watchdog
1759 		 */
1760 		if (netif_carrier_ok(netdev) &&
1761 		    (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1762 			/* disable receives */
1763 			rctl = er32(RCTL);
1764 			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1765 			adapter->flags |= FLAG_RX_RESTART_NOW;
1766 		}
1767 		/* guard against interrupt when we're going down */
1768 		if (!test_bit(__E1000_DOWN, &adapter->state))
1769 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1770 	}
1771 
1772 	if (napi_schedule_prep(&adapter->napi)) {
1773 		adapter->total_tx_bytes = 0;
1774 		adapter->total_tx_packets = 0;
1775 		adapter->total_rx_bytes = 0;
1776 		adapter->total_rx_packets = 0;
1777 		__napi_schedule(&adapter->napi);
1778 	}
1779 
1780 	return IRQ_HANDLED;
1781 }
1782 
1783 static irqreturn_t e1000_msix_other(int irq, void *data)
1784 {
1785 	struct net_device *netdev = data;
1786 	struct e1000_adapter *adapter = netdev_priv(netdev);
1787 	struct e1000_hw *hw = &adapter->hw;
1788 	u32 icr = er32(ICR);
1789 
1790 	if (!(icr & E1000_ICR_INT_ASSERTED)) {
1791 		if (!test_bit(__E1000_DOWN, &adapter->state))
1792 			ew32(IMS, E1000_IMS_OTHER);
1793 		return IRQ_NONE;
1794 	}
1795 
1796 	if (icr & adapter->eiac_mask)
1797 		ew32(ICS, (icr & adapter->eiac_mask));
1798 
1799 	if (icr & E1000_ICR_OTHER) {
1800 		if (!(icr & E1000_ICR_LSC))
1801 			goto no_link_interrupt;
1802 		hw->mac.get_link_status = true;
1803 		/* guard against interrupt when we're going down */
1804 		if (!test_bit(__E1000_DOWN, &adapter->state))
1805 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1806 	}
1807 
1808 no_link_interrupt:
1809 	if (!test_bit(__E1000_DOWN, &adapter->state))
1810 		ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1811 
1812 	return IRQ_HANDLED;
1813 }
1814 
1815 
1816 static irqreturn_t e1000_intr_msix_tx(int irq, void *data)
1817 {
1818 	struct net_device *netdev = data;
1819 	struct e1000_adapter *adapter = netdev_priv(netdev);
1820 	struct e1000_hw *hw = &adapter->hw;
1821 	struct e1000_ring *tx_ring = adapter->tx_ring;
1822 
1823 
1824 	adapter->total_tx_bytes = 0;
1825 	adapter->total_tx_packets = 0;
1826 
1827 	if (!e1000_clean_tx_irq(tx_ring))
1828 		/* Ring was not completely cleaned, so fire another interrupt */
1829 		ew32(ICS, tx_ring->ims_val);
1830 
1831 	return IRQ_HANDLED;
1832 }
1833 
1834 static irqreturn_t e1000_intr_msix_rx(int irq, void *data)
1835 {
1836 	struct net_device *netdev = data;
1837 	struct e1000_adapter *adapter = netdev_priv(netdev);
1838 	struct e1000_ring *rx_ring = adapter->rx_ring;
1839 
1840 	/* Write the ITR value calculated at the end of the
1841 	 * previous interrupt.
1842 	 */
1843 	if (rx_ring->set_itr) {
1844 		writel(1000000000 / (rx_ring->itr_val * 256),
1845 		       rx_ring->itr_register);
1846 		rx_ring->set_itr = 0;
1847 	}
1848 
1849 	if (napi_schedule_prep(&adapter->napi)) {
1850 		adapter->total_rx_bytes = 0;
1851 		adapter->total_rx_packets = 0;
1852 		__napi_schedule(&adapter->napi);
1853 	}
1854 	return IRQ_HANDLED;
1855 }
1856 
1857 /**
1858  * e1000_configure_msix - Configure MSI-X hardware
1859  *
1860  * e1000_configure_msix sets up the hardware to properly
1861  * generate MSI-X interrupts.
1862  **/
1863 static void e1000_configure_msix(struct e1000_adapter *adapter)
1864 {
1865 	struct e1000_hw *hw = &adapter->hw;
1866 	struct e1000_ring *rx_ring = adapter->rx_ring;
1867 	struct e1000_ring *tx_ring = adapter->tx_ring;
1868 	int vector = 0;
1869 	u32 ctrl_ext, ivar = 0;
1870 
1871 	adapter->eiac_mask = 0;
1872 
1873 	/* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1874 	if (hw->mac.type == e1000_82574) {
1875 		u32 rfctl = er32(RFCTL);
1876 		rfctl |= E1000_RFCTL_ACK_DIS;
1877 		ew32(RFCTL, rfctl);
1878 	}
1879 
1880 #define E1000_IVAR_INT_ALLOC_VALID	0x8
1881 	/* Configure Rx vector */
1882 	rx_ring->ims_val = E1000_IMS_RXQ0;
1883 	adapter->eiac_mask |= rx_ring->ims_val;
1884 	if (rx_ring->itr_val)
1885 		writel(1000000000 / (rx_ring->itr_val * 256),
1886 		       rx_ring->itr_register);
1887 	else
1888 		writel(1, rx_ring->itr_register);
1889 	ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1890 
1891 	/* Configure Tx vector */
1892 	tx_ring->ims_val = E1000_IMS_TXQ0;
1893 	vector++;
1894 	if (tx_ring->itr_val)
1895 		writel(1000000000 / (tx_ring->itr_val * 256),
1896 		       tx_ring->itr_register);
1897 	else
1898 		writel(1, tx_ring->itr_register);
1899 	adapter->eiac_mask |= tx_ring->ims_val;
1900 	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
1901 
1902 	/* set vector for Other Causes, e.g. link changes */
1903 	vector++;
1904 	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
1905 	if (rx_ring->itr_val)
1906 		writel(1000000000 / (rx_ring->itr_val * 256),
1907 		       hw->hw_addr + E1000_EITR_82574(vector));
1908 	else
1909 		writel(1, hw->hw_addr + E1000_EITR_82574(vector));
1910 
1911 	/* Cause Tx interrupts on every write back */
1912 	ivar |= (1 << 31);
1913 
1914 	ew32(IVAR, ivar);
1915 
1916 	/* enable MSI-X PBA support */
1917 	ctrl_ext = er32(CTRL_EXT);
1918 	ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
1919 
1920 	/* Auto-Mask Other interrupts upon ICR read */
1921 #define E1000_EIAC_MASK_82574   0x01F00000
1922 	ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
1923 	ctrl_ext |= E1000_CTRL_EXT_EIAME;
1924 	ew32(CTRL_EXT, ctrl_ext);
1925 	e1e_flush();
1926 }
1927 
1928 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
1929 {
1930 	if (adapter->msix_entries) {
1931 		pci_disable_msix(adapter->pdev);
1932 		kfree(adapter->msix_entries);
1933 		adapter->msix_entries = NULL;
1934 	} else if (adapter->flags & FLAG_MSI_ENABLED) {
1935 		pci_disable_msi(adapter->pdev);
1936 		adapter->flags &= ~FLAG_MSI_ENABLED;
1937 	}
1938 }
1939 
1940 /**
1941  * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
1942  *
1943  * Attempt to configure interrupts using the best available
1944  * capabilities of the hardware and kernel.
1945  **/
1946 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
1947 {
1948 	int err;
1949 	int i;
1950 
1951 	switch (adapter->int_mode) {
1952 	case E1000E_INT_MODE_MSIX:
1953 		if (adapter->flags & FLAG_HAS_MSIX) {
1954 			adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
1955 			adapter->msix_entries = kcalloc(adapter->num_vectors,
1956 						      sizeof(struct msix_entry),
1957 						      GFP_KERNEL);
1958 			if (adapter->msix_entries) {
1959 				for (i = 0; i < adapter->num_vectors; i++)
1960 					adapter->msix_entries[i].entry = i;
1961 
1962 				err = pci_enable_msix(adapter->pdev,
1963 						      adapter->msix_entries,
1964 						      adapter->num_vectors);
1965 				if (err == 0)
1966 					return;
1967 			}
1968 			/* MSI-X failed, so fall through and try MSI */
1969 			e_err("Failed to initialize MSI-X interrupts.  Falling back to MSI interrupts.\n");
1970 			e1000e_reset_interrupt_capability(adapter);
1971 		}
1972 		adapter->int_mode = E1000E_INT_MODE_MSI;
1973 		/* Fall through */
1974 	case E1000E_INT_MODE_MSI:
1975 		if (!pci_enable_msi(adapter->pdev)) {
1976 			adapter->flags |= FLAG_MSI_ENABLED;
1977 		} else {
1978 			adapter->int_mode = E1000E_INT_MODE_LEGACY;
1979 			e_err("Failed to initialize MSI interrupts.  Falling back to legacy interrupts.\n");
1980 		}
1981 		/* Fall through */
1982 	case E1000E_INT_MODE_LEGACY:
1983 		/* Don't do anything; this is the system default */
1984 		break;
1985 	}
1986 
1987 	/* store the number of vectors being used */
1988 	adapter->num_vectors = 1;
1989 }
1990 
1991 /**
1992  * e1000_request_msix - Initialize MSI-X interrupts
1993  *
1994  * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
1995  * kernel.
1996  **/
1997 static int e1000_request_msix(struct e1000_adapter *adapter)
1998 {
1999 	struct net_device *netdev = adapter->netdev;
2000 	int err = 0, vector = 0;
2001 
2002 	if (strlen(netdev->name) < (IFNAMSIZ - 5))
2003 		snprintf(adapter->rx_ring->name,
2004 			 sizeof(adapter->rx_ring->name) - 1,
2005 			 "%s-rx-0", netdev->name);
2006 	else
2007 		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
2008 	err = request_irq(adapter->msix_entries[vector].vector,
2009 			  e1000_intr_msix_rx, 0, adapter->rx_ring->name,
2010 			  netdev);
2011 	if (err)
2012 		return err;
2013 	adapter->rx_ring->itr_register = adapter->hw.hw_addr +
2014 	    E1000_EITR_82574(vector);
2015 	adapter->rx_ring->itr_val = adapter->itr;
2016 	vector++;
2017 
2018 	if (strlen(netdev->name) < (IFNAMSIZ - 5))
2019 		snprintf(adapter->tx_ring->name,
2020 			 sizeof(adapter->tx_ring->name) - 1,
2021 			 "%s-tx-0", netdev->name);
2022 	else
2023 		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2024 	err = request_irq(adapter->msix_entries[vector].vector,
2025 			  e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2026 			  netdev);
2027 	if (err)
2028 		return err;
2029 	adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2030 	    E1000_EITR_82574(vector);
2031 	adapter->tx_ring->itr_val = adapter->itr;
2032 	vector++;
2033 
2034 	err = request_irq(adapter->msix_entries[vector].vector,
2035 			  e1000_msix_other, 0, netdev->name, netdev);
2036 	if (err)
2037 		return err;
2038 
2039 	e1000_configure_msix(adapter);
2040 
2041 	return 0;
2042 }
2043 
2044 /**
2045  * e1000_request_irq - initialize interrupts
2046  *
2047  * Attempts to configure interrupts using the best available
2048  * capabilities of the hardware and kernel.
2049  **/
2050 static int e1000_request_irq(struct e1000_adapter *adapter)
2051 {
2052 	struct net_device *netdev = adapter->netdev;
2053 	int err;
2054 
2055 	if (adapter->msix_entries) {
2056 		err = e1000_request_msix(adapter);
2057 		if (!err)
2058 			return err;
2059 		/* fall back to MSI */
2060 		e1000e_reset_interrupt_capability(adapter);
2061 		adapter->int_mode = E1000E_INT_MODE_MSI;
2062 		e1000e_set_interrupt_capability(adapter);
2063 	}
2064 	if (adapter->flags & FLAG_MSI_ENABLED) {
2065 		err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2066 				  netdev->name, netdev);
2067 		if (!err)
2068 			return err;
2069 
2070 		/* fall back to legacy interrupt */
2071 		e1000e_reset_interrupt_capability(adapter);
2072 		adapter->int_mode = E1000E_INT_MODE_LEGACY;
2073 	}
2074 
2075 	err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2076 			  netdev->name, netdev);
2077 	if (err)
2078 		e_err("Unable to allocate interrupt, Error: %d\n", err);
2079 
2080 	return err;
2081 }
2082 
2083 static void e1000_free_irq(struct e1000_adapter *adapter)
2084 {
2085 	struct net_device *netdev = adapter->netdev;
2086 
2087 	if (adapter->msix_entries) {
2088 		int vector = 0;
2089 
2090 		free_irq(adapter->msix_entries[vector].vector, netdev);
2091 		vector++;
2092 
2093 		free_irq(adapter->msix_entries[vector].vector, netdev);
2094 		vector++;
2095 
2096 		/* Other Causes interrupt vector */
2097 		free_irq(adapter->msix_entries[vector].vector, netdev);
2098 		return;
2099 	}
2100 
2101 	free_irq(adapter->pdev->irq, netdev);
2102 }
2103 
2104 /**
2105  * e1000_irq_disable - Mask off interrupt generation on the NIC
2106  **/
2107 static void e1000_irq_disable(struct e1000_adapter *adapter)
2108 {
2109 	struct e1000_hw *hw = &adapter->hw;
2110 
2111 	ew32(IMC, ~0);
2112 	if (adapter->msix_entries)
2113 		ew32(EIAC_82574, 0);
2114 	e1e_flush();
2115 
2116 	if (adapter->msix_entries) {
2117 		int i;
2118 		for (i = 0; i < adapter->num_vectors; i++)
2119 			synchronize_irq(adapter->msix_entries[i].vector);
2120 	} else {
2121 		synchronize_irq(adapter->pdev->irq);
2122 	}
2123 }
2124 
2125 /**
2126  * e1000_irq_enable - Enable default interrupt generation settings
2127  **/
2128 static void e1000_irq_enable(struct e1000_adapter *adapter)
2129 {
2130 	struct e1000_hw *hw = &adapter->hw;
2131 
2132 	if (adapter->msix_entries) {
2133 		ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2134 		ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
2135 	} else {
2136 		ew32(IMS, IMS_ENABLE_MASK);
2137 	}
2138 	e1e_flush();
2139 }
2140 
2141 /**
2142  * e1000e_get_hw_control - get control of the h/w from f/w
2143  * @adapter: address of board private structure
2144  *
2145  * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2146  * For ASF and Pass Through versions of f/w this means that
2147  * the driver is loaded. For AMT version (only with 82573)
2148  * of the f/w this means that the network i/f is open.
2149  **/
2150 void e1000e_get_hw_control(struct e1000_adapter *adapter)
2151 {
2152 	struct e1000_hw *hw = &adapter->hw;
2153 	u32 ctrl_ext;
2154 	u32 swsm;
2155 
2156 	/* Let firmware know the driver has taken over */
2157 	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2158 		swsm = er32(SWSM);
2159 		ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2160 	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2161 		ctrl_ext = er32(CTRL_EXT);
2162 		ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2163 	}
2164 }
2165 
2166 /**
2167  * e1000e_release_hw_control - release control of the h/w to f/w
2168  * @adapter: address of board private structure
2169  *
2170  * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2171  * For ASF and Pass Through versions of f/w this means that the
2172  * driver is no longer loaded. For AMT version (only with 82573) i
2173  * of the f/w this means that the network i/f is closed.
2174  *
2175  **/
2176 void e1000e_release_hw_control(struct e1000_adapter *adapter)
2177 {
2178 	struct e1000_hw *hw = &adapter->hw;
2179 	u32 ctrl_ext;
2180 	u32 swsm;
2181 
2182 	/* Let firmware taken over control of h/w */
2183 	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2184 		swsm = er32(SWSM);
2185 		ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2186 	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2187 		ctrl_ext = er32(CTRL_EXT);
2188 		ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2189 	}
2190 }
2191 
2192 /**
2193  * @e1000_alloc_ring - allocate memory for a ring structure
2194  **/
2195 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2196 				struct e1000_ring *ring)
2197 {
2198 	struct pci_dev *pdev = adapter->pdev;
2199 
2200 	ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2201 					GFP_KERNEL);
2202 	if (!ring->desc)
2203 		return -ENOMEM;
2204 
2205 	return 0;
2206 }
2207 
2208 /**
2209  * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2210  * @tx_ring: Tx descriptor ring
2211  *
2212  * Return 0 on success, negative on failure
2213  **/
2214 int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2215 {
2216 	struct e1000_adapter *adapter = tx_ring->adapter;
2217 	int err = -ENOMEM, size;
2218 
2219 	size = sizeof(struct e1000_buffer) * tx_ring->count;
2220 	tx_ring->buffer_info = vzalloc(size);
2221 	if (!tx_ring->buffer_info)
2222 		goto err;
2223 
2224 	/* round up to nearest 4K */
2225 	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2226 	tx_ring->size = ALIGN(tx_ring->size, 4096);
2227 
2228 	err = e1000_alloc_ring_dma(adapter, tx_ring);
2229 	if (err)
2230 		goto err;
2231 
2232 	tx_ring->next_to_use = 0;
2233 	tx_ring->next_to_clean = 0;
2234 
2235 	return 0;
2236 err:
2237 	vfree(tx_ring->buffer_info);
2238 	e_err("Unable to allocate memory for the transmit descriptor ring\n");
2239 	return err;
2240 }
2241 
2242 /**
2243  * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2244  * @rx_ring: Rx descriptor ring
2245  *
2246  * Returns 0 on success, negative on failure
2247  **/
2248 int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2249 {
2250 	struct e1000_adapter *adapter = rx_ring->adapter;
2251 	struct e1000_buffer *buffer_info;
2252 	int i, size, desc_len, err = -ENOMEM;
2253 
2254 	size = sizeof(struct e1000_buffer) * rx_ring->count;
2255 	rx_ring->buffer_info = vzalloc(size);
2256 	if (!rx_ring->buffer_info)
2257 		goto err;
2258 
2259 	for (i = 0; i < rx_ring->count; i++) {
2260 		buffer_info = &rx_ring->buffer_info[i];
2261 		buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2262 						sizeof(struct e1000_ps_page),
2263 						GFP_KERNEL);
2264 		if (!buffer_info->ps_pages)
2265 			goto err_pages;
2266 	}
2267 
2268 	desc_len = sizeof(union e1000_rx_desc_packet_split);
2269 
2270 	/* Round up to nearest 4K */
2271 	rx_ring->size = rx_ring->count * desc_len;
2272 	rx_ring->size = ALIGN(rx_ring->size, 4096);
2273 
2274 	err = e1000_alloc_ring_dma(adapter, rx_ring);
2275 	if (err)
2276 		goto err_pages;
2277 
2278 	rx_ring->next_to_clean = 0;
2279 	rx_ring->next_to_use = 0;
2280 	rx_ring->rx_skb_top = NULL;
2281 
2282 	return 0;
2283 
2284 err_pages:
2285 	for (i = 0; i < rx_ring->count; i++) {
2286 		buffer_info = &rx_ring->buffer_info[i];
2287 		kfree(buffer_info->ps_pages);
2288 	}
2289 err:
2290 	vfree(rx_ring->buffer_info);
2291 	e_err("Unable to allocate memory for the receive descriptor ring\n");
2292 	return err;
2293 }
2294 
2295 /**
2296  * e1000_clean_tx_ring - Free Tx Buffers
2297  * @tx_ring: Tx descriptor ring
2298  **/
2299 static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2300 {
2301 	struct e1000_adapter *adapter = tx_ring->adapter;
2302 	struct e1000_buffer *buffer_info;
2303 	unsigned long size;
2304 	unsigned int i;
2305 
2306 	for (i = 0; i < tx_ring->count; i++) {
2307 		buffer_info = &tx_ring->buffer_info[i];
2308 		e1000_put_txbuf(tx_ring, buffer_info);
2309 	}
2310 
2311 	netdev_reset_queue(adapter->netdev);
2312 	size = sizeof(struct e1000_buffer) * tx_ring->count;
2313 	memset(tx_ring->buffer_info, 0, size);
2314 
2315 	memset(tx_ring->desc, 0, tx_ring->size);
2316 
2317 	tx_ring->next_to_use = 0;
2318 	tx_ring->next_to_clean = 0;
2319 
2320 	writel(0, tx_ring->head);
2321 	writel(0, tx_ring->tail);
2322 }
2323 
2324 /**
2325  * e1000e_free_tx_resources - Free Tx Resources per Queue
2326  * @tx_ring: Tx descriptor ring
2327  *
2328  * Free all transmit software resources
2329  **/
2330 void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2331 {
2332 	struct e1000_adapter *adapter = tx_ring->adapter;
2333 	struct pci_dev *pdev = adapter->pdev;
2334 
2335 	e1000_clean_tx_ring(tx_ring);
2336 
2337 	vfree(tx_ring->buffer_info);
2338 	tx_ring->buffer_info = NULL;
2339 
2340 	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2341 			  tx_ring->dma);
2342 	tx_ring->desc = NULL;
2343 }
2344 
2345 /**
2346  * e1000e_free_rx_resources - Free Rx Resources
2347  * @rx_ring: Rx descriptor ring
2348  *
2349  * Free all receive software resources
2350  **/
2351 void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2352 {
2353 	struct e1000_adapter *adapter = rx_ring->adapter;
2354 	struct pci_dev *pdev = adapter->pdev;
2355 	int i;
2356 
2357 	e1000_clean_rx_ring(rx_ring);
2358 
2359 	for (i = 0; i < rx_ring->count; i++)
2360 		kfree(rx_ring->buffer_info[i].ps_pages);
2361 
2362 	vfree(rx_ring->buffer_info);
2363 	rx_ring->buffer_info = NULL;
2364 
2365 	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2366 			  rx_ring->dma);
2367 	rx_ring->desc = NULL;
2368 }
2369 
2370 /**
2371  * e1000_update_itr - update the dynamic ITR value based on statistics
2372  * @adapter: pointer to adapter
2373  * @itr_setting: current adapter->itr
2374  * @packets: the number of packets during this measurement interval
2375  * @bytes: the number of bytes during this measurement interval
2376  *
2377  *      Stores a new ITR value based on packets and byte
2378  *      counts during the last interrupt.  The advantage of per interrupt
2379  *      computation is faster updates and more accurate ITR for the current
2380  *      traffic pattern.  Constants in this function were computed
2381  *      based on theoretical maximum wire speed and thresholds were set based
2382  *      on testing data as well as attempting to minimize response time
2383  *      while increasing bulk throughput.  This functionality is controlled
2384  *      by the InterruptThrottleRate module parameter.
2385  **/
2386 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2387 				     u16 itr_setting, int packets,
2388 				     int bytes)
2389 {
2390 	unsigned int retval = itr_setting;
2391 
2392 	if (packets == 0)
2393 		return itr_setting;
2394 
2395 	switch (itr_setting) {
2396 	case lowest_latency:
2397 		/* handle TSO and jumbo frames */
2398 		if (bytes/packets > 8000)
2399 			retval = bulk_latency;
2400 		else if ((packets < 5) && (bytes > 512))
2401 			retval = low_latency;
2402 		break;
2403 	case low_latency:  /* 50 usec aka 20000 ints/s */
2404 		if (bytes > 10000) {
2405 			/* this if handles the TSO accounting */
2406 			if (bytes/packets > 8000)
2407 				retval = bulk_latency;
2408 			else if ((packets < 10) || ((bytes/packets) > 1200))
2409 				retval = bulk_latency;
2410 			else if ((packets > 35))
2411 				retval = lowest_latency;
2412 		} else if (bytes/packets > 2000) {
2413 			retval = bulk_latency;
2414 		} else if (packets <= 2 && bytes < 512) {
2415 			retval = lowest_latency;
2416 		}
2417 		break;
2418 	case bulk_latency: /* 250 usec aka 4000 ints/s */
2419 		if (bytes > 25000) {
2420 			if (packets > 35)
2421 				retval = low_latency;
2422 		} else if (bytes < 6000) {
2423 			retval = low_latency;
2424 		}
2425 		break;
2426 	}
2427 
2428 	return retval;
2429 }
2430 
2431 static void e1000_set_itr(struct e1000_adapter *adapter)
2432 {
2433 	struct e1000_hw *hw = &adapter->hw;
2434 	u16 current_itr;
2435 	u32 new_itr = adapter->itr;
2436 
2437 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2438 	if (adapter->link_speed != SPEED_1000) {
2439 		current_itr = 0;
2440 		new_itr = 4000;
2441 		goto set_itr_now;
2442 	}
2443 
2444 	if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2445 		new_itr = 0;
2446 		goto set_itr_now;
2447 	}
2448 
2449 	adapter->tx_itr = e1000_update_itr(adapter,
2450 				    adapter->tx_itr,
2451 				    adapter->total_tx_packets,
2452 				    adapter->total_tx_bytes);
2453 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2454 	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2455 		adapter->tx_itr = low_latency;
2456 
2457 	adapter->rx_itr = e1000_update_itr(adapter,
2458 				    adapter->rx_itr,
2459 				    adapter->total_rx_packets,
2460 				    adapter->total_rx_bytes);
2461 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2462 	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2463 		adapter->rx_itr = low_latency;
2464 
2465 	current_itr = max(adapter->rx_itr, adapter->tx_itr);
2466 
2467 	switch (current_itr) {
2468 	/* counts and packets in update_itr are dependent on these numbers */
2469 	case lowest_latency:
2470 		new_itr = 70000;
2471 		break;
2472 	case low_latency:
2473 		new_itr = 20000; /* aka hwitr = ~200 */
2474 		break;
2475 	case bulk_latency:
2476 		new_itr = 4000;
2477 		break;
2478 	default:
2479 		break;
2480 	}
2481 
2482 set_itr_now:
2483 	if (new_itr != adapter->itr) {
2484 		/*
2485 		 * this attempts to bias the interrupt rate towards Bulk
2486 		 * by adding intermediate steps when interrupt rate is
2487 		 * increasing
2488 		 */
2489 		new_itr = new_itr > adapter->itr ?
2490 			     min(adapter->itr + (new_itr >> 2), new_itr) :
2491 			     new_itr;
2492 		adapter->itr = new_itr;
2493 		adapter->rx_ring->itr_val = new_itr;
2494 		if (adapter->msix_entries)
2495 			adapter->rx_ring->set_itr = 1;
2496 		else
2497 			if (new_itr)
2498 				ew32(ITR, 1000000000 / (new_itr * 256));
2499 			else
2500 				ew32(ITR, 0);
2501 	}
2502 }
2503 
2504 /**
2505  * e1000_alloc_queues - Allocate memory for all rings
2506  * @adapter: board private structure to initialize
2507  **/
2508 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
2509 {
2510 	int size = sizeof(struct e1000_ring);
2511 
2512 	adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2513 	if (!adapter->tx_ring)
2514 		goto err;
2515 	adapter->tx_ring->count = adapter->tx_ring_count;
2516 	adapter->tx_ring->adapter = adapter;
2517 
2518 	adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2519 	if (!adapter->rx_ring)
2520 		goto err;
2521 	adapter->rx_ring->count = adapter->rx_ring_count;
2522 	adapter->rx_ring->adapter = adapter;
2523 
2524 	return 0;
2525 err:
2526 	e_err("Unable to allocate memory for queues\n");
2527 	kfree(adapter->rx_ring);
2528 	kfree(adapter->tx_ring);
2529 	return -ENOMEM;
2530 }
2531 
2532 /**
2533  * e1000_clean - NAPI Rx polling callback
2534  * @napi: struct associated with this polling callback
2535  * @budget: amount of packets driver is allowed to process this poll
2536  **/
2537 static int e1000_clean(struct napi_struct *napi, int budget)
2538 {
2539 	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
2540 	struct e1000_hw *hw = &adapter->hw;
2541 	struct net_device *poll_dev = adapter->netdev;
2542 	int tx_cleaned = 1, work_done = 0;
2543 
2544 	adapter = netdev_priv(poll_dev);
2545 
2546 	if (adapter->msix_entries &&
2547 	    !(adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2548 		goto clean_rx;
2549 
2550 	tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2551 
2552 clean_rx:
2553 	adapter->clean_rx(adapter->rx_ring, &work_done, budget);
2554 
2555 	if (!tx_cleaned)
2556 		work_done = budget;
2557 
2558 	/* If budget not fully consumed, exit the polling mode */
2559 	if (work_done < budget) {
2560 		if (adapter->itr_setting & 3)
2561 			e1000_set_itr(adapter);
2562 		napi_complete(napi);
2563 		if (!test_bit(__E1000_DOWN, &adapter->state)) {
2564 			if (adapter->msix_entries)
2565 				ew32(IMS, adapter->rx_ring->ims_val);
2566 			else
2567 				e1000_irq_enable(adapter);
2568 		}
2569 	}
2570 
2571 	return work_done;
2572 }
2573 
2574 static int e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
2575 {
2576 	struct e1000_adapter *adapter = netdev_priv(netdev);
2577 	struct e1000_hw *hw = &adapter->hw;
2578 	u32 vfta, index;
2579 
2580 	/* don't update vlan cookie if already programmed */
2581 	if ((adapter->hw.mng_cookie.status &
2582 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2583 	    (vid == adapter->mng_vlan_id))
2584 		return 0;
2585 
2586 	/* add VID to filter table */
2587 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2588 		index = (vid >> 5) & 0x7F;
2589 		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2590 		vfta |= (1 << (vid & 0x1F));
2591 		hw->mac.ops.write_vfta(hw, index, vfta);
2592 	}
2593 
2594 	set_bit(vid, adapter->active_vlans);
2595 
2596 	return 0;
2597 }
2598 
2599 static int e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
2600 {
2601 	struct e1000_adapter *adapter = netdev_priv(netdev);
2602 	struct e1000_hw *hw = &adapter->hw;
2603 	u32 vfta, index;
2604 
2605 	if ((adapter->hw.mng_cookie.status &
2606 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2607 	    (vid == adapter->mng_vlan_id)) {
2608 		/* release control to f/w */
2609 		e1000e_release_hw_control(adapter);
2610 		return 0;
2611 	}
2612 
2613 	/* remove VID from filter table */
2614 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2615 		index = (vid >> 5) & 0x7F;
2616 		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2617 		vfta &= ~(1 << (vid & 0x1F));
2618 		hw->mac.ops.write_vfta(hw, index, vfta);
2619 	}
2620 
2621 	clear_bit(vid, adapter->active_vlans);
2622 
2623 	return 0;
2624 }
2625 
2626 /**
2627  * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2628  * @adapter: board private structure to initialize
2629  **/
2630 static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2631 {
2632 	struct net_device *netdev = adapter->netdev;
2633 	struct e1000_hw *hw = &adapter->hw;
2634 	u32 rctl;
2635 
2636 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2637 		/* disable VLAN receive filtering */
2638 		rctl = er32(RCTL);
2639 		rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2640 		ew32(RCTL, rctl);
2641 
2642 		if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2643 			e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
2644 			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2645 		}
2646 	}
2647 }
2648 
2649 /**
2650  * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2651  * @adapter: board private structure to initialize
2652  **/
2653 static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2654 {
2655 	struct e1000_hw *hw = &adapter->hw;
2656 	u32 rctl;
2657 
2658 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2659 		/* enable VLAN receive filtering */
2660 		rctl = er32(RCTL);
2661 		rctl |= E1000_RCTL_VFE;
2662 		rctl &= ~E1000_RCTL_CFIEN;
2663 		ew32(RCTL, rctl);
2664 	}
2665 }
2666 
2667 /**
2668  * e1000e_vlan_strip_enable - helper to disable HW VLAN stripping
2669  * @adapter: board private structure to initialize
2670  **/
2671 static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2672 {
2673 	struct e1000_hw *hw = &adapter->hw;
2674 	u32 ctrl;
2675 
2676 	/* disable VLAN tag insert/strip */
2677 	ctrl = er32(CTRL);
2678 	ctrl &= ~E1000_CTRL_VME;
2679 	ew32(CTRL, ctrl);
2680 }
2681 
2682 /**
2683  * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2684  * @adapter: board private structure to initialize
2685  **/
2686 static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2687 {
2688 	struct e1000_hw *hw = &adapter->hw;
2689 	u32 ctrl;
2690 
2691 	/* enable VLAN tag insert/strip */
2692 	ctrl = er32(CTRL);
2693 	ctrl |= E1000_CTRL_VME;
2694 	ew32(CTRL, ctrl);
2695 }
2696 
2697 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2698 {
2699 	struct net_device *netdev = adapter->netdev;
2700 	u16 vid = adapter->hw.mng_cookie.vlan_id;
2701 	u16 old_vid = adapter->mng_vlan_id;
2702 
2703 	if (adapter->hw.mng_cookie.status &
2704 	    E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2705 		e1000_vlan_rx_add_vid(netdev, vid);
2706 		adapter->mng_vlan_id = vid;
2707 	}
2708 
2709 	if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2710 		e1000_vlan_rx_kill_vid(netdev, old_vid);
2711 }
2712 
2713 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2714 {
2715 	u16 vid;
2716 
2717 	e1000_vlan_rx_add_vid(adapter->netdev, 0);
2718 
2719 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2720 		e1000_vlan_rx_add_vid(adapter->netdev, vid);
2721 }
2722 
2723 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2724 {
2725 	struct e1000_hw *hw = &adapter->hw;
2726 	u32 manc, manc2h, mdef, i, j;
2727 
2728 	if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2729 		return;
2730 
2731 	manc = er32(MANC);
2732 
2733 	/*
2734 	 * enable receiving management packets to the host. this will probably
2735 	 * generate destination unreachable messages from the host OS, but
2736 	 * the packets will be handled on SMBUS
2737 	 */
2738 	manc |= E1000_MANC_EN_MNG2HOST;
2739 	manc2h = er32(MANC2H);
2740 
2741 	switch (hw->mac.type) {
2742 	default:
2743 		manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2744 		break;
2745 	case e1000_82574:
2746 	case e1000_82583:
2747 		/*
2748 		 * Check if IPMI pass-through decision filter already exists;
2749 		 * if so, enable it.
2750 		 */
2751 		for (i = 0, j = 0; i < 8; i++) {
2752 			mdef = er32(MDEF(i));
2753 
2754 			/* Ignore filters with anything other than IPMI ports */
2755 			if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2756 				continue;
2757 
2758 			/* Enable this decision filter in MANC2H */
2759 			if (mdef)
2760 				manc2h |= (1 << i);
2761 
2762 			j |= mdef;
2763 		}
2764 
2765 		if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2766 			break;
2767 
2768 		/* Create new decision filter in an empty filter */
2769 		for (i = 0, j = 0; i < 8; i++)
2770 			if (er32(MDEF(i)) == 0) {
2771 				ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2772 					       E1000_MDEF_PORT_664));
2773 				manc2h |= (1 << 1);
2774 				j++;
2775 				break;
2776 			}
2777 
2778 		if (!j)
2779 			e_warn("Unable to create IPMI pass-through filter\n");
2780 		break;
2781 	}
2782 
2783 	ew32(MANC2H, manc2h);
2784 	ew32(MANC, manc);
2785 }
2786 
2787 /**
2788  * e1000_configure_tx - Configure Transmit Unit after Reset
2789  * @adapter: board private structure
2790  *
2791  * Configure the Tx unit of the MAC after a reset.
2792  **/
2793 static void e1000_configure_tx(struct e1000_adapter *adapter)
2794 {
2795 	struct e1000_hw *hw = &adapter->hw;
2796 	struct e1000_ring *tx_ring = adapter->tx_ring;
2797 	u64 tdba;
2798 	u32 tdlen, tarc;
2799 
2800 	/* Setup the HW Tx Head and Tail descriptor pointers */
2801 	tdba = tx_ring->dma;
2802 	tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2803 	ew32(TDBAL, (tdba & DMA_BIT_MASK(32)));
2804 	ew32(TDBAH, (tdba >> 32));
2805 	ew32(TDLEN, tdlen);
2806 	ew32(TDH, 0);
2807 	ew32(TDT, 0);
2808 	tx_ring->head = adapter->hw.hw_addr + E1000_TDH;
2809 	tx_ring->tail = adapter->hw.hw_addr + E1000_TDT;
2810 
2811 	/* Set the Tx Interrupt Delay register */
2812 	ew32(TIDV, adapter->tx_int_delay);
2813 	/* Tx irq moderation */
2814 	ew32(TADV, adapter->tx_abs_int_delay);
2815 
2816 	if (adapter->flags2 & FLAG2_DMA_BURST) {
2817 		u32 txdctl = er32(TXDCTL(0));
2818 		txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2819 			    E1000_TXDCTL_WTHRESH);
2820 		/*
2821 		 * set up some performance related parameters to encourage the
2822 		 * hardware to use the bus more efficiently in bursts, depends
2823 		 * on the tx_int_delay to be enabled,
2824 		 * wthresh = 5 ==> burst write a cacheline (64 bytes) at a time
2825 		 * hthresh = 1 ==> prefetch when one or more available
2826 		 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2827 		 * BEWARE: this seems to work but should be considered first if
2828 		 * there are Tx hangs or other Tx related bugs
2829 		 */
2830 		txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2831 		ew32(TXDCTL(0), txdctl);
2832 	}
2833 	/* erratum work around: set txdctl the same for both queues */
2834 	ew32(TXDCTL(1), er32(TXDCTL(0)));
2835 
2836 	if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2837 		tarc = er32(TARC(0));
2838 		/*
2839 		 * set the speed mode bit, we'll clear it if we're not at
2840 		 * gigabit link later
2841 		 */
2842 #define SPEED_MODE_BIT (1 << 21)
2843 		tarc |= SPEED_MODE_BIT;
2844 		ew32(TARC(0), tarc);
2845 	}
2846 
2847 	/* errata: program both queues to unweighted RR */
2848 	if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2849 		tarc = er32(TARC(0));
2850 		tarc |= 1;
2851 		ew32(TARC(0), tarc);
2852 		tarc = er32(TARC(1));
2853 		tarc |= 1;
2854 		ew32(TARC(1), tarc);
2855 	}
2856 
2857 	/* Setup Transmit Descriptor Settings for eop descriptor */
2858 	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2859 
2860 	/* only set IDE if we are delaying interrupts using the timers */
2861 	if (adapter->tx_int_delay)
2862 		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2863 
2864 	/* enable Report Status bit */
2865 	adapter->txd_cmd |= E1000_TXD_CMD_RS;
2866 
2867 	hw->mac.ops.config_collision_dist(hw);
2868 }
2869 
2870 /**
2871  * e1000_setup_rctl - configure the receive control registers
2872  * @adapter: Board private structure
2873  **/
2874 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
2875 			   (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
2876 static void e1000_setup_rctl(struct e1000_adapter *adapter)
2877 {
2878 	struct e1000_hw *hw = &adapter->hw;
2879 	u32 rctl, rfctl;
2880 	u32 pages = 0;
2881 
2882 	/* Workaround Si errata on 82579 - configure jumbo frame flow */
2883 	if (hw->mac.type == e1000_pch2lan) {
2884 		s32 ret_val;
2885 
2886 		if (adapter->netdev->mtu > ETH_DATA_LEN)
2887 			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
2888 		else
2889 			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
2890 
2891 		if (ret_val)
2892 			e_dbg("failed to enable jumbo frame workaround mode\n");
2893 	}
2894 
2895 	/* Program MC offset vector base */
2896 	rctl = er32(RCTL);
2897 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2898 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
2899 		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
2900 		(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2901 
2902 	/* Do not Store bad packets */
2903 	rctl &= ~E1000_RCTL_SBP;
2904 
2905 	/* Enable Long Packet receive */
2906 	if (adapter->netdev->mtu <= ETH_DATA_LEN)
2907 		rctl &= ~E1000_RCTL_LPE;
2908 	else
2909 		rctl |= E1000_RCTL_LPE;
2910 
2911 	/* Some systems expect that the CRC is included in SMBUS traffic. The
2912 	 * hardware strips the CRC before sending to both SMBUS (BMC) and to
2913 	 * host memory when this is enabled
2914 	 */
2915 	if (adapter->flags2 & FLAG2_CRC_STRIPPING)
2916 		rctl |= E1000_RCTL_SECRC;
2917 
2918 	/* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
2919 	if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
2920 		u16 phy_data;
2921 
2922 		e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
2923 		phy_data &= 0xfff8;
2924 		phy_data |= (1 << 2);
2925 		e1e_wphy(hw, PHY_REG(770, 26), phy_data);
2926 
2927 		e1e_rphy(hw, 22, &phy_data);
2928 		phy_data &= 0x0fff;
2929 		phy_data |= (1 << 14);
2930 		e1e_wphy(hw, 0x10, 0x2823);
2931 		e1e_wphy(hw, 0x11, 0x0003);
2932 		e1e_wphy(hw, 22, phy_data);
2933 	}
2934 
2935 	/* Setup buffer sizes */
2936 	rctl &= ~E1000_RCTL_SZ_4096;
2937 	rctl |= E1000_RCTL_BSEX;
2938 	switch (adapter->rx_buffer_len) {
2939 	case 2048:
2940 	default:
2941 		rctl |= E1000_RCTL_SZ_2048;
2942 		rctl &= ~E1000_RCTL_BSEX;
2943 		break;
2944 	case 4096:
2945 		rctl |= E1000_RCTL_SZ_4096;
2946 		break;
2947 	case 8192:
2948 		rctl |= E1000_RCTL_SZ_8192;
2949 		break;
2950 	case 16384:
2951 		rctl |= E1000_RCTL_SZ_16384;
2952 		break;
2953 	}
2954 
2955 	/* Enable Extended Status in all Receive Descriptors */
2956 	rfctl = er32(RFCTL);
2957 	rfctl |= E1000_RFCTL_EXTEN;
2958 
2959 	/*
2960 	 * 82571 and greater support packet-split where the protocol
2961 	 * header is placed in skb->data and the packet data is
2962 	 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2963 	 * In the case of a non-split, skb->data is linearly filled,
2964 	 * followed by the page buffers.  Therefore, skb->data is
2965 	 * sized to hold the largest protocol header.
2966 	 *
2967 	 * allocations using alloc_page take too long for regular MTU
2968 	 * so only enable packet split for jumbo frames
2969 	 *
2970 	 * Using pages when the page size is greater than 16k wastes
2971 	 * a lot of memory, since we allocate 3 pages at all times
2972 	 * per packet.
2973 	 */
2974 	pages = PAGE_USE_COUNT(adapter->netdev->mtu);
2975 	if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
2976 		adapter->rx_ps_pages = pages;
2977 	else
2978 		adapter->rx_ps_pages = 0;
2979 
2980 	if (adapter->rx_ps_pages) {
2981 		u32 psrctl = 0;
2982 
2983 		/*
2984 		 * disable packet split support for IPv6 extension headers,
2985 		 * because some malformed IPv6 headers can hang the Rx
2986 		 */
2987 		rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
2988 			  E1000_RFCTL_NEW_IPV6_EXT_DIS);
2989 
2990 		/* Enable Packet split descriptors */
2991 		rctl |= E1000_RCTL_DTYP_PS;
2992 
2993 		psrctl |= adapter->rx_ps_bsize0 >>
2994 			E1000_PSRCTL_BSIZE0_SHIFT;
2995 
2996 		switch (adapter->rx_ps_pages) {
2997 		case 3:
2998 			psrctl |= PAGE_SIZE <<
2999 				E1000_PSRCTL_BSIZE3_SHIFT;
3000 		case 2:
3001 			psrctl |= PAGE_SIZE <<
3002 				E1000_PSRCTL_BSIZE2_SHIFT;
3003 		case 1:
3004 			psrctl |= PAGE_SIZE >>
3005 				E1000_PSRCTL_BSIZE1_SHIFT;
3006 			break;
3007 		}
3008 
3009 		ew32(PSRCTL, psrctl);
3010 	}
3011 
3012 	/* This is useful for sniffing bad packets. */
3013 	if (adapter->netdev->features & NETIF_F_RXALL) {
3014 		/* UPE and MPE will be handled by normal PROMISC logic
3015 		 * in e1000e_set_rx_mode */
3016 		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3017 			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3018 			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3019 
3020 		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3021 			  E1000_RCTL_DPF | /* Allow filtered pause */
3022 			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3023 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3024 		 * and that breaks VLANs.
3025 		 */
3026 	}
3027 
3028 	ew32(RFCTL, rfctl);
3029 	ew32(RCTL, rctl);
3030 	/* just started the receive unit, no need to restart */
3031 	adapter->flags &= ~FLAG_RX_RESTART_NOW;
3032 }
3033 
3034 /**
3035  * e1000_configure_rx - Configure Receive Unit after Reset
3036  * @adapter: board private structure
3037  *
3038  * Configure the Rx unit of the MAC after a reset.
3039  **/
3040 static void e1000_configure_rx(struct e1000_adapter *adapter)
3041 {
3042 	struct e1000_hw *hw = &adapter->hw;
3043 	struct e1000_ring *rx_ring = adapter->rx_ring;
3044 	u64 rdba;
3045 	u32 rdlen, rctl, rxcsum, ctrl_ext;
3046 
3047 	if (adapter->rx_ps_pages) {
3048 		/* this is a 32 byte descriptor */
3049 		rdlen = rx_ring->count *
3050 		    sizeof(union e1000_rx_desc_packet_split);
3051 		adapter->clean_rx = e1000_clean_rx_irq_ps;
3052 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3053 	} else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3054 		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3055 		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3056 		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3057 	} else {
3058 		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3059 		adapter->clean_rx = e1000_clean_rx_irq;
3060 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3061 	}
3062 
3063 	/* disable receives while setting up the descriptors */
3064 	rctl = er32(RCTL);
3065 	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3066 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
3067 	e1e_flush();
3068 	usleep_range(10000, 20000);
3069 
3070 	if (adapter->flags2 & FLAG2_DMA_BURST) {
3071 		/*
3072 		 * set the writeback threshold (only takes effect if the RDTR
3073 		 * is set). set GRAN=1 and write back up to 0x4 worth, and
3074 		 * enable prefetching of 0x20 Rx descriptors
3075 		 * granularity = 01
3076 		 * wthresh = 04,
3077 		 * hthresh = 04,
3078 		 * pthresh = 0x20
3079 		 */
3080 		ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3081 		ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3082 
3083 		/*
3084 		 * override the delay timers for enabling bursting, only if
3085 		 * the value was not set by the user via module options
3086 		 */
3087 		if (adapter->rx_int_delay == DEFAULT_RDTR)
3088 			adapter->rx_int_delay = BURST_RDTR;
3089 		if (adapter->rx_abs_int_delay == DEFAULT_RADV)
3090 			adapter->rx_abs_int_delay = BURST_RADV;
3091 	}
3092 
3093 	/* set the Receive Delay Timer Register */
3094 	ew32(RDTR, adapter->rx_int_delay);
3095 
3096 	/* irq moderation */
3097 	ew32(RADV, adapter->rx_abs_int_delay);
3098 	if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3099 		ew32(ITR, 1000000000 / (adapter->itr * 256));
3100 
3101 	ctrl_ext = er32(CTRL_EXT);
3102 	/* Auto-Mask interrupts upon ICR access */
3103 	ctrl_ext |= E1000_CTRL_EXT_IAME;
3104 	ew32(IAM, 0xffffffff);
3105 	ew32(CTRL_EXT, ctrl_ext);
3106 	e1e_flush();
3107 
3108 	/*
3109 	 * Setup the HW Rx Head and Tail Descriptor Pointers and
3110 	 * the Base and Length of the Rx Descriptor Ring
3111 	 */
3112 	rdba = rx_ring->dma;
3113 	ew32(RDBAL, (rdba & DMA_BIT_MASK(32)));
3114 	ew32(RDBAH, (rdba >> 32));
3115 	ew32(RDLEN, rdlen);
3116 	ew32(RDH, 0);
3117 	ew32(RDT, 0);
3118 	rx_ring->head = adapter->hw.hw_addr + E1000_RDH;
3119 	rx_ring->tail = adapter->hw.hw_addr + E1000_RDT;
3120 
3121 	/* Enable Receive Checksum Offload for TCP and UDP */
3122 	rxcsum = er32(RXCSUM);
3123 	if (adapter->netdev->features & NETIF_F_RXCSUM) {
3124 		rxcsum |= E1000_RXCSUM_TUOFL;
3125 
3126 		/*
3127 		 * IPv4 payload checksum for UDP fragments must be
3128 		 * used in conjunction with packet-split.
3129 		 */
3130 		if (adapter->rx_ps_pages)
3131 			rxcsum |= E1000_RXCSUM_IPPCSE;
3132 	} else {
3133 		rxcsum &= ~E1000_RXCSUM_TUOFL;
3134 		/* no need to clear IPPCSE as it defaults to 0 */
3135 	}
3136 	ew32(RXCSUM, rxcsum);
3137 
3138 	if (adapter->hw.mac.type == e1000_pch2lan) {
3139 		/*
3140 		 * With jumbo frames, excessive C-state transition
3141 		 * latencies result in dropped transactions.
3142 		 */
3143 		if (adapter->netdev->mtu > ETH_DATA_LEN) {
3144 			u32 rxdctl = er32(RXDCTL(0));
3145 			ew32(RXDCTL(0), rxdctl | 0x3);
3146 			pm_qos_update_request(&adapter->netdev->pm_qos_req, 55);
3147 		} else {
3148 			pm_qos_update_request(&adapter->netdev->pm_qos_req,
3149 					      PM_QOS_DEFAULT_VALUE);
3150 		}
3151 	}
3152 
3153 	/* Enable Receives */
3154 	ew32(RCTL, rctl);
3155 }
3156 
3157 /**
3158  * e1000e_write_mc_addr_list - write multicast addresses to MTA
3159  * @netdev: network interface device structure
3160  *
3161  * Writes multicast address list to the MTA hash table.
3162  * Returns: -ENOMEM on failure
3163  *                0 on no addresses written
3164  *                X on writing X addresses to MTA
3165  */
3166 static int e1000e_write_mc_addr_list(struct net_device *netdev)
3167 {
3168 	struct e1000_adapter *adapter = netdev_priv(netdev);
3169 	struct e1000_hw *hw = &adapter->hw;
3170 	struct netdev_hw_addr *ha;
3171 	u8 *mta_list;
3172 	int i;
3173 
3174 	if (netdev_mc_empty(netdev)) {
3175 		/* nothing to program, so clear mc list */
3176 		hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3177 		return 0;
3178 	}
3179 
3180 	mta_list = kzalloc(netdev_mc_count(netdev) * ETH_ALEN, GFP_ATOMIC);
3181 	if (!mta_list)
3182 		return -ENOMEM;
3183 
3184 	/* update_mc_addr_list expects a packed array of only addresses. */
3185 	i = 0;
3186 	netdev_for_each_mc_addr(ha, netdev)
3187 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3188 
3189 	hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3190 	kfree(mta_list);
3191 
3192 	return netdev_mc_count(netdev);
3193 }
3194 
3195 /**
3196  * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3197  * @netdev: network interface device structure
3198  *
3199  * Writes unicast address list to the RAR table.
3200  * Returns: -ENOMEM on failure/insufficient address space
3201  *                0 on no addresses written
3202  *                X on writing X addresses to the RAR table
3203  **/
3204 static int e1000e_write_uc_addr_list(struct net_device *netdev)
3205 {
3206 	struct e1000_adapter *adapter = netdev_priv(netdev);
3207 	struct e1000_hw *hw = &adapter->hw;
3208 	unsigned int rar_entries = hw->mac.rar_entry_count;
3209 	int count = 0;
3210 
3211 	/* save a rar entry for our hardware address */
3212 	rar_entries--;
3213 
3214 	/* save a rar entry for the LAA workaround */
3215 	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3216 		rar_entries--;
3217 
3218 	/* return ENOMEM indicating insufficient memory for addresses */
3219 	if (netdev_uc_count(netdev) > rar_entries)
3220 		return -ENOMEM;
3221 
3222 	if (!netdev_uc_empty(netdev) && rar_entries) {
3223 		struct netdev_hw_addr *ha;
3224 
3225 		/*
3226 		 * write the addresses in reverse order to avoid write
3227 		 * combining
3228 		 */
3229 		netdev_for_each_uc_addr(ha, netdev) {
3230 			if (!rar_entries)
3231 				break;
3232 			e1000e_rar_set(hw, ha->addr, rar_entries--);
3233 			count++;
3234 		}
3235 	}
3236 
3237 	/* zero out the remaining RAR entries not used above */
3238 	for (; rar_entries > 0; rar_entries--) {
3239 		ew32(RAH(rar_entries), 0);
3240 		ew32(RAL(rar_entries), 0);
3241 	}
3242 	e1e_flush();
3243 
3244 	return count;
3245 }
3246 
3247 /**
3248  * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3249  * @netdev: network interface device structure
3250  *
3251  * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3252  * address list or the network interface flags are updated.  This routine is
3253  * responsible for configuring the hardware for proper unicast, multicast,
3254  * promiscuous mode, and all-multi behavior.
3255  **/
3256 static void e1000e_set_rx_mode(struct net_device *netdev)
3257 {
3258 	struct e1000_adapter *adapter = netdev_priv(netdev);
3259 	struct e1000_hw *hw = &adapter->hw;
3260 	u32 rctl;
3261 
3262 	/* Check for Promiscuous and All Multicast modes */
3263 	rctl = er32(RCTL);
3264 
3265 	/* clear the affected bits */
3266 	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3267 
3268 	if (netdev->flags & IFF_PROMISC) {
3269 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3270 		/* Do not hardware filter VLANs in promisc mode */
3271 		e1000e_vlan_filter_disable(adapter);
3272 	} else {
3273 		int count;
3274 
3275 		if (netdev->flags & IFF_ALLMULTI) {
3276 			rctl |= E1000_RCTL_MPE;
3277 		} else {
3278 			/*
3279 			 * Write addresses to the MTA, if the attempt fails
3280 			 * then we should just turn on promiscuous mode so
3281 			 * that we can at least receive multicast traffic
3282 			 */
3283 			count = e1000e_write_mc_addr_list(netdev);
3284 			if (count < 0)
3285 				rctl |= E1000_RCTL_MPE;
3286 		}
3287 		e1000e_vlan_filter_enable(adapter);
3288 		/*
3289 		 * Write addresses to available RAR registers, if there is not
3290 		 * sufficient space to store all the addresses then enable
3291 		 * unicast promiscuous mode
3292 		 */
3293 		count = e1000e_write_uc_addr_list(netdev);
3294 		if (count < 0)
3295 			rctl |= E1000_RCTL_UPE;
3296 	}
3297 
3298 	ew32(RCTL, rctl);
3299 
3300 	if (netdev->features & NETIF_F_HW_VLAN_RX)
3301 		e1000e_vlan_strip_enable(adapter);
3302 	else
3303 		e1000e_vlan_strip_disable(adapter);
3304 }
3305 
3306 static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3307 {
3308 	struct e1000_hw *hw = &adapter->hw;
3309 	u32 mrqc, rxcsum;
3310 	int i;
3311 	static const u32 rsskey[10] = {
3312 		0xda565a6d, 0xc20e5b25, 0x3d256741, 0xb08fa343, 0xcb2bcad0,
3313 		0xb4307bae, 0xa32dcb77, 0x0cf23080, 0x3bb7426a, 0xfa01acbe
3314 	};
3315 
3316 	/* Fill out hash function seed */
3317 	for (i = 0; i < 10; i++)
3318 		ew32(RSSRK(i), rsskey[i]);
3319 
3320 	/* Direct all traffic to queue 0 */
3321 	for (i = 0; i < 32; i++)
3322 		ew32(RETA(i), 0);
3323 
3324 	/*
3325 	 * Disable raw packet checksumming so that RSS hash is placed in
3326 	 * descriptor on writeback.
3327 	 */
3328 	rxcsum = er32(RXCSUM);
3329 	rxcsum |= E1000_RXCSUM_PCSD;
3330 
3331 	ew32(RXCSUM, rxcsum);
3332 
3333 	mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3334 		E1000_MRQC_RSS_FIELD_IPV4_TCP |
3335 		E1000_MRQC_RSS_FIELD_IPV6 |
3336 		E1000_MRQC_RSS_FIELD_IPV6_TCP |
3337 		E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3338 
3339 	ew32(MRQC, mrqc);
3340 }
3341 
3342 /**
3343  * e1000_configure - configure the hardware for Rx and Tx
3344  * @adapter: private board structure
3345  **/
3346 static void e1000_configure(struct e1000_adapter *adapter)
3347 {
3348 	struct e1000_ring *rx_ring = adapter->rx_ring;
3349 
3350 	e1000e_set_rx_mode(adapter->netdev);
3351 
3352 	e1000_restore_vlan(adapter);
3353 	e1000_init_manageability_pt(adapter);
3354 
3355 	e1000_configure_tx(adapter);
3356 
3357 	if (adapter->netdev->features & NETIF_F_RXHASH)
3358 		e1000e_setup_rss_hash(adapter);
3359 	e1000_setup_rctl(adapter);
3360 	e1000_configure_rx(adapter);
3361 	adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3362 }
3363 
3364 /**
3365  * e1000e_power_up_phy - restore link in case the phy was powered down
3366  * @adapter: address of board private structure
3367  *
3368  * The phy may be powered down to save power and turn off link when the
3369  * driver is unloaded and wake on lan is not enabled (among others)
3370  * *** this routine MUST be followed by a call to e1000e_reset ***
3371  **/
3372 void e1000e_power_up_phy(struct e1000_adapter *adapter)
3373 {
3374 	if (adapter->hw.phy.ops.power_up)
3375 		adapter->hw.phy.ops.power_up(&adapter->hw);
3376 
3377 	adapter->hw.mac.ops.setup_link(&adapter->hw);
3378 }
3379 
3380 /**
3381  * e1000_power_down_phy - Power down the PHY
3382  *
3383  * Power down the PHY so no link is implied when interface is down.
3384  * The PHY cannot be powered down if management or WoL is active.
3385  */
3386 static void e1000_power_down_phy(struct e1000_adapter *adapter)
3387 {
3388 	/* WoL is enabled */
3389 	if (adapter->wol)
3390 		return;
3391 
3392 	if (adapter->hw.phy.ops.power_down)
3393 		adapter->hw.phy.ops.power_down(&adapter->hw);
3394 }
3395 
3396 /**
3397  * e1000e_reset - bring the hardware into a known good state
3398  *
3399  * This function boots the hardware and enables some settings that
3400  * require a configuration cycle of the hardware - those cannot be
3401  * set/changed during runtime. After reset the device needs to be
3402  * properly configured for Rx, Tx etc.
3403  */
3404 void e1000e_reset(struct e1000_adapter *adapter)
3405 {
3406 	struct e1000_mac_info *mac = &adapter->hw.mac;
3407 	struct e1000_fc_info *fc = &adapter->hw.fc;
3408 	struct e1000_hw *hw = &adapter->hw;
3409 	u32 tx_space, min_tx_space, min_rx_space;
3410 	u32 pba = adapter->pba;
3411 	u16 hwm;
3412 
3413 	/* reset Packet Buffer Allocation to default */
3414 	ew32(PBA, pba);
3415 
3416 	if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
3417 		/*
3418 		 * To maintain wire speed transmits, the Tx FIFO should be
3419 		 * large enough to accommodate two full transmit packets,
3420 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
3421 		 * the Rx FIFO should be large enough to accommodate at least
3422 		 * one full receive packet and is similarly rounded up and
3423 		 * expressed in KB.
3424 		 */
3425 		pba = er32(PBA);
3426 		/* upper 16 bits has Tx packet buffer allocation size in KB */
3427 		tx_space = pba >> 16;
3428 		/* lower 16 bits has Rx packet buffer allocation size in KB */
3429 		pba &= 0xffff;
3430 		/*
3431 		 * the Tx fifo also stores 16 bytes of information about the Tx
3432 		 * but don't include ethernet FCS because hardware appends it
3433 		 */
3434 		min_tx_space = (adapter->max_frame_size +
3435 				sizeof(struct e1000_tx_desc) -
3436 				ETH_FCS_LEN) * 2;
3437 		min_tx_space = ALIGN(min_tx_space, 1024);
3438 		min_tx_space >>= 10;
3439 		/* software strips receive CRC, so leave room for it */
3440 		min_rx_space = adapter->max_frame_size;
3441 		min_rx_space = ALIGN(min_rx_space, 1024);
3442 		min_rx_space >>= 10;
3443 
3444 		/*
3445 		 * If current Tx allocation is less than the min Tx FIFO size,
3446 		 * and the min Tx FIFO size is less than the current Rx FIFO
3447 		 * allocation, take space away from current Rx allocation
3448 		 */
3449 		if ((tx_space < min_tx_space) &&
3450 		    ((min_tx_space - tx_space) < pba)) {
3451 			pba -= min_tx_space - tx_space;
3452 
3453 			/*
3454 			 * if short on Rx space, Rx wins and must trump Tx
3455 			 * adjustment or use Early Receive if available
3456 			 */
3457 			if (pba < min_rx_space)
3458 				pba = min_rx_space;
3459 		}
3460 
3461 		ew32(PBA, pba);
3462 	}
3463 
3464 	/*
3465 	 * flow control settings
3466 	 *
3467 	 * The high water mark must be low enough to fit one full frame
3468 	 * (or the size used for early receive) above it in the Rx FIFO.
3469 	 * Set it to the lower of:
3470 	 * - 90% of the Rx FIFO size, and
3471 	 * - the full Rx FIFO size minus one full frame
3472 	 */
3473 	if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
3474 		fc->pause_time = 0xFFFF;
3475 	else
3476 		fc->pause_time = E1000_FC_PAUSE_TIME;
3477 	fc->send_xon = true;
3478 	fc->current_mode = fc->requested_mode;
3479 
3480 	switch (hw->mac.type) {
3481 	case e1000_ich9lan:
3482 	case e1000_ich10lan:
3483 		if (adapter->netdev->mtu > ETH_DATA_LEN) {
3484 			pba = 14;
3485 			ew32(PBA, pba);
3486 			fc->high_water = 0x2800;
3487 			fc->low_water = fc->high_water - 8;
3488 			break;
3489 		}
3490 		/* fall-through */
3491 	default:
3492 		hwm = min(((pba << 10) * 9 / 10),
3493 			  ((pba << 10) - adapter->max_frame_size));
3494 
3495 		fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
3496 		fc->low_water = fc->high_water - 8;
3497 		break;
3498 	case e1000_pchlan:
3499 		/*
3500 		 * Workaround PCH LOM adapter hangs with certain network
3501 		 * loads.  If hangs persist, try disabling Tx flow control.
3502 		 */
3503 		if (adapter->netdev->mtu > ETH_DATA_LEN) {
3504 			fc->high_water = 0x3500;
3505 			fc->low_water  = 0x1500;
3506 		} else {
3507 			fc->high_water = 0x5000;
3508 			fc->low_water  = 0x3000;
3509 		}
3510 		fc->refresh_time = 0x1000;
3511 		break;
3512 	case e1000_pch2lan:
3513 		fc->high_water = 0x05C20;
3514 		fc->low_water = 0x05048;
3515 		fc->pause_time = 0x0650;
3516 		fc->refresh_time = 0x0400;
3517 		if (adapter->netdev->mtu > ETH_DATA_LEN) {
3518 			pba = 14;
3519 			ew32(PBA, pba);
3520 		}
3521 		break;
3522 	}
3523 
3524 	/*
3525 	 * Disable Adaptive Interrupt Moderation if 2 full packets cannot
3526 	 * fit in receive buffer.
3527 	 */
3528 	if (adapter->itr_setting & 0x3) {
3529 		if ((adapter->max_frame_size * 2) > (pba << 10)) {
3530 			if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
3531 				dev_info(&adapter->pdev->dev,
3532 					"Interrupt Throttle Rate turned off\n");
3533 				adapter->flags2 |= FLAG2_DISABLE_AIM;
3534 				ew32(ITR, 0);
3535 			}
3536 		} else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
3537 			dev_info(&adapter->pdev->dev,
3538 				 "Interrupt Throttle Rate turned on\n");
3539 			adapter->flags2 &= ~FLAG2_DISABLE_AIM;
3540 			adapter->itr = 20000;
3541 			ew32(ITR, 1000000000 / (adapter->itr * 256));
3542 		}
3543 	}
3544 
3545 	/* Allow time for pending master requests to run */
3546 	mac->ops.reset_hw(hw);
3547 
3548 	/*
3549 	 * For parts with AMT enabled, let the firmware know
3550 	 * that the network interface is in control
3551 	 */
3552 	if (adapter->flags & FLAG_HAS_AMT)
3553 		e1000e_get_hw_control(adapter);
3554 
3555 	ew32(WUC, 0);
3556 
3557 	if (mac->ops.init_hw(hw))
3558 		e_err("Hardware Error\n");
3559 
3560 	e1000_update_mng_vlan(adapter);
3561 
3562 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
3563 	ew32(VET, ETH_P_8021Q);
3564 
3565 	e1000e_reset_adaptive(hw);
3566 
3567 	if (!netif_running(adapter->netdev) &&
3568 	    !test_bit(__E1000_TESTING, &adapter->state)) {
3569 		e1000_power_down_phy(adapter);
3570 		return;
3571 	}
3572 
3573 	e1000_get_phy_info(hw);
3574 
3575 	if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
3576 	    !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
3577 		u16 phy_data = 0;
3578 		/*
3579 		 * speed up time to link by disabling smart power down, ignore
3580 		 * the return value of this function because there is nothing
3581 		 * different we would do if it failed
3582 		 */
3583 		e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
3584 		phy_data &= ~IGP02E1000_PM_SPD;
3585 		e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
3586 	}
3587 }
3588 
3589 int e1000e_up(struct e1000_adapter *adapter)
3590 {
3591 	struct e1000_hw *hw = &adapter->hw;
3592 
3593 	/* hardware has been reset, we need to reload some things */
3594 	e1000_configure(adapter);
3595 
3596 	clear_bit(__E1000_DOWN, &adapter->state);
3597 
3598 	if (adapter->msix_entries)
3599 		e1000_configure_msix(adapter);
3600 	e1000_irq_enable(adapter);
3601 
3602 	netif_start_queue(adapter->netdev);
3603 
3604 	/* fire a link change interrupt to start the watchdog */
3605 	if (adapter->msix_entries)
3606 		ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
3607 	else
3608 		ew32(ICS, E1000_ICS_LSC);
3609 
3610 	return 0;
3611 }
3612 
3613 static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
3614 {
3615 	struct e1000_hw *hw = &adapter->hw;
3616 
3617 	if (!(adapter->flags2 & FLAG2_DMA_BURST))
3618 		return;
3619 
3620 	/* flush pending descriptor writebacks to memory */
3621 	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
3622 	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
3623 
3624 	/* execute the writes immediately */
3625 	e1e_flush();
3626 
3627 	/*
3628 	 * due to rare timing issues, write to TIDV/RDTR again to ensure the
3629 	 * write is successful
3630 	 */
3631 	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
3632 	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
3633 
3634 	/* execute the writes immediately */
3635 	e1e_flush();
3636 }
3637 
3638 static void e1000e_update_stats(struct e1000_adapter *adapter);
3639 
3640 void e1000e_down(struct e1000_adapter *adapter)
3641 {
3642 	struct net_device *netdev = adapter->netdev;
3643 	struct e1000_hw *hw = &adapter->hw;
3644 	u32 tctl, rctl;
3645 
3646 	/*
3647 	 * signal that we're down so the interrupt handler does not
3648 	 * reschedule our watchdog timer
3649 	 */
3650 	set_bit(__E1000_DOWN, &adapter->state);
3651 
3652 	/* disable receives in the hardware */
3653 	rctl = er32(RCTL);
3654 	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3655 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
3656 	/* flush and sleep below */
3657 
3658 	netif_stop_queue(netdev);
3659 
3660 	/* disable transmits in the hardware */
3661 	tctl = er32(TCTL);
3662 	tctl &= ~E1000_TCTL_EN;
3663 	ew32(TCTL, tctl);
3664 
3665 	/* flush both disables and wait for them to finish */
3666 	e1e_flush();
3667 	usleep_range(10000, 20000);
3668 
3669 	e1000_irq_disable(adapter);
3670 
3671 	del_timer_sync(&adapter->watchdog_timer);
3672 	del_timer_sync(&adapter->phy_info_timer);
3673 
3674 	netif_carrier_off(netdev);
3675 
3676 	spin_lock(&adapter->stats64_lock);
3677 	e1000e_update_stats(adapter);
3678 	spin_unlock(&adapter->stats64_lock);
3679 
3680 	e1000e_flush_descriptors(adapter);
3681 	e1000_clean_tx_ring(adapter->tx_ring);
3682 	e1000_clean_rx_ring(adapter->rx_ring);
3683 
3684 	adapter->link_speed = 0;
3685 	adapter->link_duplex = 0;
3686 
3687 	if (!pci_channel_offline(adapter->pdev))
3688 		e1000e_reset(adapter);
3689 
3690 	/*
3691 	 * TODO: for power management, we could drop the link and
3692 	 * pci_disable_device here.
3693 	 */
3694 }
3695 
3696 void e1000e_reinit_locked(struct e1000_adapter *adapter)
3697 {
3698 	might_sleep();
3699 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
3700 		usleep_range(1000, 2000);
3701 	e1000e_down(adapter);
3702 	e1000e_up(adapter);
3703 	clear_bit(__E1000_RESETTING, &adapter->state);
3704 }
3705 
3706 /**
3707  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
3708  * @adapter: board private structure to initialize
3709  *
3710  * e1000_sw_init initializes the Adapter private data structure.
3711  * Fields are initialized based on PCI device information and
3712  * OS network device settings (MTU size).
3713  **/
3714 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
3715 {
3716 	struct net_device *netdev = adapter->netdev;
3717 
3718 	adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
3719 	adapter->rx_ps_bsize0 = 128;
3720 	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
3721 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3722 	adapter->tx_ring_count = E1000_DEFAULT_TXD;
3723 	adapter->rx_ring_count = E1000_DEFAULT_RXD;
3724 
3725 	spin_lock_init(&adapter->stats64_lock);
3726 
3727 	e1000e_set_interrupt_capability(adapter);
3728 
3729 	if (e1000_alloc_queues(adapter))
3730 		return -ENOMEM;
3731 
3732 	/* Explicitly disable IRQ since the NIC can be in any state. */
3733 	e1000_irq_disable(adapter);
3734 
3735 	set_bit(__E1000_DOWN, &adapter->state);
3736 	return 0;
3737 }
3738 
3739 /**
3740  * e1000_intr_msi_test - Interrupt Handler
3741  * @irq: interrupt number
3742  * @data: pointer to a network interface device structure
3743  **/
3744 static irqreturn_t e1000_intr_msi_test(int irq, void *data)
3745 {
3746 	struct net_device *netdev = data;
3747 	struct e1000_adapter *adapter = netdev_priv(netdev);
3748 	struct e1000_hw *hw = &adapter->hw;
3749 	u32 icr = er32(ICR);
3750 
3751 	e_dbg("icr is %08X\n", icr);
3752 	if (icr & E1000_ICR_RXSEQ) {
3753 		adapter->flags &= ~FLAG_MSI_TEST_FAILED;
3754 		wmb();
3755 	}
3756 
3757 	return IRQ_HANDLED;
3758 }
3759 
3760 /**
3761  * e1000_test_msi_interrupt - Returns 0 for successful test
3762  * @adapter: board private struct
3763  *
3764  * code flow taken from tg3.c
3765  **/
3766 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
3767 {
3768 	struct net_device *netdev = adapter->netdev;
3769 	struct e1000_hw *hw = &adapter->hw;
3770 	int err;
3771 
3772 	/* poll_enable hasn't been called yet, so don't need disable */
3773 	/* clear any pending events */
3774 	er32(ICR);
3775 
3776 	/* free the real vector and request a test handler */
3777 	e1000_free_irq(adapter);
3778 	e1000e_reset_interrupt_capability(adapter);
3779 
3780 	/* Assume that the test fails, if it succeeds then the test
3781 	 * MSI irq handler will unset this flag */
3782 	adapter->flags |= FLAG_MSI_TEST_FAILED;
3783 
3784 	err = pci_enable_msi(adapter->pdev);
3785 	if (err)
3786 		goto msi_test_failed;
3787 
3788 	err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
3789 			  netdev->name, netdev);
3790 	if (err) {
3791 		pci_disable_msi(adapter->pdev);
3792 		goto msi_test_failed;
3793 	}
3794 
3795 	wmb();
3796 
3797 	e1000_irq_enable(adapter);
3798 
3799 	/* fire an unusual interrupt on the test handler */
3800 	ew32(ICS, E1000_ICS_RXSEQ);
3801 	e1e_flush();
3802 	msleep(100);
3803 
3804 	e1000_irq_disable(adapter);
3805 
3806 	rmb();
3807 
3808 	if (adapter->flags & FLAG_MSI_TEST_FAILED) {
3809 		adapter->int_mode = E1000E_INT_MODE_LEGACY;
3810 		e_info("MSI interrupt test failed, using legacy interrupt.\n");
3811 	} else {
3812 		e_dbg("MSI interrupt test succeeded!\n");
3813 	}
3814 
3815 	free_irq(adapter->pdev->irq, netdev);
3816 	pci_disable_msi(adapter->pdev);
3817 
3818 msi_test_failed:
3819 	e1000e_set_interrupt_capability(adapter);
3820 	return e1000_request_irq(adapter);
3821 }
3822 
3823 /**
3824  * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
3825  * @adapter: board private struct
3826  *
3827  * code flow taken from tg3.c, called with e1000 interrupts disabled.
3828  **/
3829 static int e1000_test_msi(struct e1000_adapter *adapter)
3830 {
3831 	int err;
3832 	u16 pci_cmd;
3833 
3834 	if (!(adapter->flags & FLAG_MSI_ENABLED))
3835 		return 0;
3836 
3837 	/* disable SERR in case the MSI write causes a master abort */
3838 	pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3839 	if (pci_cmd & PCI_COMMAND_SERR)
3840 		pci_write_config_word(adapter->pdev, PCI_COMMAND,
3841 				      pci_cmd & ~PCI_COMMAND_SERR);
3842 
3843 	err = e1000_test_msi_interrupt(adapter);
3844 
3845 	/* re-enable SERR */
3846 	if (pci_cmd & PCI_COMMAND_SERR) {
3847 		pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3848 		pci_cmd |= PCI_COMMAND_SERR;
3849 		pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
3850 	}
3851 
3852 	return err;
3853 }
3854 
3855 /**
3856  * e1000_open - Called when a network interface is made active
3857  * @netdev: network interface device structure
3858  *
3859  * Returns 0 on success, negative value on failure
3860  *
3861  * The open entry point is called when a network interface is made
3862  * active by the system (IFF_UP).  At this point all resources needed
3863  * for transmit and receive operations are allocated, the interrupt
3864  * handler is registered with the OS, the watchdog timer is started,
3865  * and the stack is notified that the interface is ready.
3866  **/
3867 static int e1000_open(struct net_device *netdev)
3868 {
3869 	struct e1000_adapter *adapter = netdev_priv(netdev);
3870 	struct e1000_hw *hw = &adapter->hw;
3871 	struct pci_dev *pdev = adapter->pdev;
3872 	int err;
3873 
3874 	/* disallow open during test */
3875 	if (test_bit(__E1000_TESTING, &adapter->state))
3876 		return -EBUSY;
3877 
3878 	pm_runtime_get_sync(&pdev->dev);
3879 
3880 	netif_carrier_off(netdev);
3881 
3882 	/* allocate transmit descriptors */
3883 	err = e1000e_setup_tx_resources(adapter->tx_ring);
3884 	if (err)
3885 		goto err_setup_tx;
3886 
3887 	/* allocate receive descriptors */
3888 	err = e1000e_setup_rx_resources(adapter->rx_ring);
3889 	if (err)
3890 		goto err_setup_rx;
3891 
3892 	/*
3893 	 * If AMT is enabled, let the firmware know that the network
3894 	 * interface is now open and reset the part to a known state.
3895 	 */
3896 	if (adapter->flags & FLAG_HAS_AMT) {
3897 		e1000e_get_hw_control(adapter);
3898 		e1000e_reset(adapter);
3899 	}
3900 
3901 	e1000e_power_up_phy(adapter);
3902 
3903 	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
3904 	if ((adapter->hw.mng_cookie.status &
3905 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
3906 		e1000_update_mng_vlan(adapter);
3907 
3908 	/* DMA latency requirement to workaround jumbo issue */
3909 	if (adapter->hw.mac.type == e1000_pch2lan)
3910 		pm_qos_add_request(&adapter->netdev->pm_qos_req,
3911 				   PM_QOS_CPU_DMA_LATENCY,
3912 				   PM_QOS_DEFAULT_VALUE);
3913 
3914 	/*
3915 	 * before we allocate an interrupt, we must be ready to handle it.
3916 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3917 	 * as soon as we call pci_request_irq, so we have to setup our
3918 	 * clean_rx handler before we do so.
3919 	 */
3920 	e1000_configure(adapter);
3921 
3922 	err = e1000_request_irq(adapter);
3923 	if (err)
3924 		goto err_req_irq;
3925 
3926 	/*
3927 	 * Work around PCIe errata with MSI interrupts causing some chipsets to
3928 	 * ignore e1000e MSI messages, which means we need to test our MSI
3929 	 * interrupt now
3930 	 */
3931 	if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
3932 		err = e1000_test_msi(adapter);
3933 		if (err) {
3934 			e_err("Interrupt allocation failed\n");
3935 			goto err_req_irq;
3936 		}
3937 	}
3938 
3939 	/* From here on the code is the same as e1000e_up() */
3940 	clear_bit(__E1000_DOWN, &adapter->state);
3941 
3942 	napi_enable(&adapter->napi);
3943 
3944 	e1000_irq_enable(adapter);
3945 
3946 	adapter->tx_hang_recheck = false;
3947 	netif_start_queue(netdev);
3948 
3949 	adapter->idle_check = true;
3950 	pm_runtime_put(&pdev->dev);
3951 
3952 	/* fire a link status change interrupt to start the watchdog */
3953 	if (adapter->msix_entries)
3954 		ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
3955 	else
3956 		ew32(ICS, E1000_ICS_LSC);
3957 
3958 	return 0;
3959 
3960 err_req_irq:
3961 	e1000e_release_hw_control(adapter);
3962 	e1000_power_down_phy(adapter);
3963 	e1000e_free_rx_resources(adapter->rx_ring);
3964 err_setup_rx:
3965 	e1000e_free_tx_resources(adapter->tx_ring);
3966 err_setup_tx:
3967 	e1000e_reset(adapter);
3968 	pm_runtime_put_sync(&pdev->dev);
3969 
3970 	return err;
3971 }
3972 
3973 /**
3974  * e1000_close - Disables a network interface
3975  * @netdev: network interface device structure
3976  *
3977  * Returns 0, this is not allowed to fail
3978  *
3979  * The close entry point is called when an interface is de-activated
3980  * by the OS.  The hardware is still under the drivers control, but
3981  * needs to be disabled.  A global MAC reset is issued to stop the
3982  * hardware, and all transmit and receive resources are freed.
3983  **/
3984 static int e1000_close(struct net_device *netdev)
3985 {
3986 	struct e1000_adapter *adapter = netdev_priv(netdev);
3987 	struct pci_dev *pdev = adapter->pdev;
3988 	int count = E1000_CHECK_RESET_COUNT;
3989 
3990 	while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
3991 		usleep_range(10000, 20000);
3992 
3993 	WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
3994 
3995 	pm_runtime_get_sync(&pdev->dev);
3996 
3997 	napi_disable(&adapter->napi);
3998 
3999 	if (!test_bit(__E1000_DOWN, &adapter->state)) {
4000 		e1000e_down(adapter);
4001 		e1000_free_irq(adapter);
4002 	}
4003 	e1000_power_down_phy(adapter);
4004 
4005 	e1000e_free_tx_resources(adapter->tx_ring);
4006 	e1000e_free_rx_resources(adapter->rx_ring);
4007 
4008 	/*
4009 	 * kill manageability vlan ID if supported, but not if a vlan with
4010 	 * the same ID is registered on the host OS (let 8021q kill it)
4011 	 */
4012 	if (adapter->hw.mng_cookie.status &
4013 	    E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
4014 		e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4015 
4016 	/*
4017 	 * If AMT is enabled, let the firmware know that the network
4018 	 * interface is now closed
4019 	 */
4020 	if ((adapter->flags & FLAG_HAS_AMT) &&
4021 	    !test_bit(__E1000_TESTING, &adapter->state))
4022 		e1000e_release_hw_control(adapter);
4023 
4024 	if (adapter->hw.mac.type == e1000_pch2lan)
4025 		pm_qos_remove_request(&adapter->netdev->pm_qos_req);
4026 
4027 	pm_runtime_put_sync(&pdev->dev);
4028 
4029 	return 0;
4030 }
4031 /**
4032  * e1000_set_mac - Change the Ethernet Address of the NIC
4033  * @netdev: network interface device structure
4034  * @p: pointer to an address structure
4035  *
4036  * Returns 0 on success, negative on failure
4037  **/
4038 static int e1000_set_mac(struct net_device *netdev, void *p)
4039 {
4040 	struct e1000_adapter *adapter = netdev_priv(netdev);
4041 	struct sockaddr *addr = p;
4042 
4043 	if (!is_valid_ether_addr(addr->sa_data))
4044 		return -EADDRNOTAVAIL;
4045 
4046 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4047 	memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4048 
4049 	e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4050 
4051 	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4052 		/* activate the work around */
4053 		e1000e_set_laa_state_82571(&adapter->hw, 1);
4054 
4055 		/*
4056 		 * Hold a copy of the LAA in RAR[14] This is done so that
4057 		 * between the time RAR[0] gets clobbered  and the time it
4058 		 * gets fixed (in e1000_watchdog), the actual LAA is in one
4059 		 * of the RARs and no incoming packets directed to this port
4060 		 * are dropped. Eventually the LAA will be in RAR[0] and
4061 		 * RAR[14]
4062 		 */
4063 		e1000e_rar_set(&adapter->hw,
4064 			      adapter->hw.mac.addr,
4065 			      adapter->hw.mac.rar_entry_count - 1);
4066 	}
4067 
4068 	return 0;
4069 }
4070 
4071 /**
4072  * e1000e_update_phy_task - work thread to update phy
4073  * @work: pointer to our work struct
4074  *
4075  * this worker thread exists because we must acquire a
4076  * semaphore to read the phy, which we could msleep while
4077  * waiting for it, and we can't msleep in a timer.
4078  **/
4079 static void e1000e_update_phy_task(struct work_struct *work)
4080 {
4081 	struct e1000_adapter *adapter = container_of(work,
4082 					struct e1000_adapter, update_phy_task);
4083 
4084 	if (test_bit(__E1000_DOWN, &adapter->state))
4085 		return;
4086 
4087 	e1000_get_phy_info(&adapter->hw);
4088 }
4089 
4090 /*
4091  * Need to wait a few seconds after link up to get diagnostic information from
4092  * the phy
4093  */
4094 static void e1000_update_phy_info(unsigned long data)
4095 {
4096 	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
4097 
4098 	if (test_bit(__E1000_DOWN, &adapter->state))
4099 		return;
4100 
4101 	schedule_work(&adapter->update_phy_task);
4102 }
4103 
4104 /**
4105  * e1000e_update_phy_stats - Update the PHY statistics counters
4106  * @adapter: board private structure
4107  *
4108  * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4109  **/
4110 static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4111 {
4112 	struct e1000_hw *hw = &adapter->hw;
4113 	s32 ret_val;
4114 	u16 phy_data;
4115 
4116 	ret_val = hw->phy.ops.acquire(hw);
4117 	if (ret_val)
4118 		return;
4119 
4120 	/*
4121 	 * A page set is expensive so check if already on desired page.
4122 	 * If not, set to the page with the PHY status registers.
4123 	 */
4124 	hw->phy.addr = 1;
4125 	ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4126 					   &phy_data);
4127 	if (ret_val)
4128 		goto release;
4129 	if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4130 		ret_val = hw->phy.ops.set_page(hw,
4131 					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
4132 		if (ret_val)
4133 			goto release;
4134 	}
4135 
4136 	/* Single Collision Count */
4137 	hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4138 	ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4139 	if (!ret_val)
4140 		adapter->stats.scc += phy_data;
4141 
4142 	/* Excessive Collision Count */
4143 	hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4144 	ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4145 	if (!ret_val)
4146 		adapter->stats.ecol += phy_data;
4147 
4148 	/* Multiple Collision Count */
4149 	hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4150 	ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4151 	if (!ret_val)
4152 		adapter->stats.mcc += phy_data;
4153 
4154 	/* Late Collision Count */
4155 	hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4156 	ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4157 	if (!ret_val)
4158 		adapter->stats.latecol += phy_data;
4159 
4160 	/* Collision Count - also used for adaptive IFS */
4161 	hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4162 	ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4163 	if (!ret_val)
4164 		hw->mac.collision_delta = phy_data;
4165 
4166 	/* Defer Count */
4167 	hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4168 	ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4169 	if (!ret_val)
4170 		adapter->stats.dc += phy_data;
4171 
4172 	/* Transmit with no CRS */
4173 	hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4174 	ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4175 	if (!ret_val)
4176 		adapter->stats.tncrs += phy_data;
4177 
4178 release:
4179 	hw->phy.ops.release(hw);
4180 }
4181 
4182 /**
4183  * e1000e_update_stats - Update the board statistics counters
4184  * @adapter: board private structure
4185  **/
4186 static void e1000e_update_stats(struct e1000_adapter *adapter)
4187 {
4188 	struct net_device *netdev = adapter->netdev;
4189 	struct e1000_hw *hw = &adapter->hw;
4190 	struct pci_dev *pdev = adapter->pdev;
4191 
4192 	/*
4193 	 * Prevent stats update while adapter is being reset, or if the pci
4194 	 * connection is down.
4195 	 */
4196 	if (adapter->link_speed == 0)
4197 		return;
4198 	if (pci_channel_offline(pdev))
4199 		return;
4200 
4201 	adapter->stats.crcerrs += er32(CRCERRS);
4202 	adapter->stats.gprc += er32(GPRC);
4203 	adapter->stats.gorc += er32(GORCL);
4204 	er32(GORCH); /* Clear gorc */
4205 	adapter->stats.bprc += er32(BPRC);
4206 	adapter->stats.mprc += er32(MPRC);
4207 	adapter->stats.roc += er32(ROC);
4208 
4209 	adapter->stats.mpc += er32(MPC);
4210 
4211 	/* Half-duplex statistics */
4212 	if (adapter->link_duplex == HALF_DUPLEX) {
4213 		if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4214 			e1000e_update_phy_stats(adapter);
4215 		} else {
4216 			adapter->stats.scc += er32(SCC);
4217 			adapter->stats.ecol += er32(ECOL);
4218 			adapter->stats.mcc += er32(MCC);
4219 			adapter->stats.latecol += er32(LATECOL);
4220 			adapter->stats.dc += er32(DC);
4221 
4222 			hw->mac.collision_delta = er32(COLC);
4223 
4224 			if ((hw->mac.type != e1000_82574) &&
4225 			    (hw->mac.type != e1000_82583))
4226 				adapter->stats.tncrs += er32(TNCRS);
4227 		}
4228 		adapter->stats.colc += hw->mac.collision_delta;
4229 	}
4230 
4231 	adapter->stats.xonrxc += er32(XONRXC);
4232 	adapter->stats.xontxc += er32(XONTXC);
4233 	adapter->stats.xoffrxc += er32(XOFFRXC);
4234 	adapter->stats.xofftxc += er32(XOFFTXC);
4235 	adapter->stats.gptc += er32(GPTC);
4236 	adapter->stats.gotc += er32(GOTCL);
4237 	er32(GOTCH); /* Clear gotc */
4238 	adapter->stats.rnbc += er32(RNBC);
4239 	adapter->stats.ruc += er32(RUC);
4240 
4241 	adapter->stats.mptc += er32(MPTC);
4242 	adapter->stats.bptc += er32(BPTC);
4243 
4244 	/* used for adaptive IFS */
4245 
4246 	hw->mac.tx_packet_delta = er32(TPT);
4247 	adapter->stats.tpt += hw->mac.tx_packet_delta;
4248 
4249 	adapter->stats.algnerrc += er32(ALGNERRC);
4250 	adapter->stats.rxerrc += er32(RXERRC);
4251 	adapter->stats.cexterr += er32(CEXTERR);
4252 	adapter->stats.tsctc += er32(TSCTC);
4253 	adapter->stats.tsctfc += er32(TSCTFC);
4254 
4255 	/* Fill out the OS statistics structure */
4256 	netdev->stats.multicast = adapter->stats.mprc;
4257 	netdev->stats.collisions = adapter->stats.colc;
4258 
4259 	/* Rx Errors */
4260 
4261 	/*
4262 	 * RLEC on some newer hardware can be incorrect so build
4263 	 * our own version based on RUC and ROC
4264 	 */
4265 	netdev->stats.rx_errors = adapter->stats.rxerrc +
4266 		adapter->stats.crcerrs + adapter->stats.algnerrc +
4267 		adapter->stats.ruc + adapter->stats.roc +
4268 		adapter->stats.cexterr;
4269 	netdev->stats.rx_length_errors = adapter->stats.ruc +
4270 					      adapter->stats.roc;
4271 	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
4272 	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
4273 	netdev->stats.rx_missed_errors = adapter->stats.mpc;
4274 
4275 	/* Tx Errors */
4276 	netdev->stats.tx_errors = adapter->stats.ecol +
4277 				       adapter->stats.latecol;
4278 	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
4279 	netdev->stats.tx_window_errors = adapter->stats.latecol;
4280 	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
4281 
4282 	/* Tx Dropped needs to be maintained elsewhere */
4283 
4284 	/* Management Stats */
4285 	adapter->stats.mgptc += er32(MGTPTC);
4286 	adapter->stats.mgprc += er32(MGTPRC);
4287 	adapter->stats.mgpdc += er32(MGTPDC);
4288 }
4289 
4290 /**
4291  * e1000_phy_read_status - Update the PHY register status snapshot
4292  * @adapter: board private structure
4293  **/
4294 static void e1000_phy_read_status(struct e1000_adapter *adapter)
4295 {
4296 	struct e1000_hw *hw = &adapter->hw;
4297 	struct e1000_phy_regs *phy = &adapter->phy_regs;
4298 
4299 	if ((er32(STATUS) & E1000_STATUS_LU) &&
4300 	    (adapter->hw.phy.media_type == e1000_media_type_copper)) {
4301 		int ret_val;
4302 
4303 		ret_val  = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr);
4304 		ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr);
4305 		ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise);
4306 		ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa);
4307 		ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion);
4308 		ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000);
4309 		ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000);
4310 		ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus);
4311 		if (ret_val)
4312 			e_warn("Error reading PHY register\n");
4313 	} else {
4314 		/*
4315 		 * Do not read PHY registers if link is not up
4316 		 * Set values to typical power-on defaults
4317 		 */
4318 		phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
4319 		phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
4320 			     BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
4321 			     BMSR_ERCAP);
4322 		phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
4323 				  ADVERTISE_ALL | ADVERTISE_CSMA);
4324 		phy->lpa = 0;
4325 		phy->expansion = EXPANSION_ENABLENPAGE;
4326 		phy->ctrl1000 = ADVERTISE_1000FULL;
4327 		phy->stat1000 = 0;
4328 		phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
4329 	}
4330 }
4331 
4332 static void e1000_print_link_info(struct e1000_adapter *adapter)
4333 {
4334 	struct e1000_hw *hw = &adapter->hw;
4335 	u32 ctrl = er32(CTRL);
4336 
4337 	/* Link status message must follow this format for user tools */
4338 	printk(KERN_INFO "e1000e: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4339 		adapter->netdev->name,
4340 		adapter->link_speed,
4341 		adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
4342 		(ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
4343 		(ctrl & E1000_CTRL_RFCE) ? "Rx" :
4344 		(ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
4345 }
4346 
4347 static bool e1000e_has_link(struct e1000_adapter *adapter)
4348 {
4349 	struct e1000_hw *hw = &adapter->hw;
4350 	bool link_active = false;
4351 	s32 ret_val = 0;
4352 
4353 	/*
4354 	 * get_link_status is set on LSC (link status) interrupt or
4355 	 * Rx sequence error interrupt.  get_link_status will stay
4356 	 * false until the check_for_link establishes link
4357 	 * for copper adapters ONLY
4358 	 */
4359 	switch (hw->phy.media_type) {
4360 	case e1000_media_type_copper:
4361 		if (hw->mac.get_link_status) {
4362 			ret_val = hw->mac.ops.check_for_link(hw);
4363 			link_active = !hw->mac.get_link_status;
4364 		} else {
4365 			link_active = true;
4366 		}
4367 		break;
4368 	case e1000_media_type_fiber:
4369 		ret_val = hw->mac.ops.check_for_link(hw);
4370 		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
4371 		break;
4372 	case e1000_media_type_internal_serdes:
4373 		ret_val = hw->mac.ops.check_for_link(hw);
4374 		link_active = adapter->hw.mac.serdes_has_link;
4375 		break;
4376 	default:
4377 	case e1000_media_type_unknown:
4378 		break;
4379 	}
4380 
4381 	if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
4382 	    (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
4383 		/* See e1000_kmrn_lock_loss_workaround_ich8lan() */
4384 		e_info("Gigabit has been disabled, downgrading speed\n");
4385 	}
4386 
4387 	return link_active;
4388 }
4389 
4390 static void e1000e_enable_receives(struct e1000_adapter *adapter)
4391 {
4392 	/* make sure the receive unit is started */
4393 	if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
4394 	    (adapter->flags & FLAG_RX_RESTART_NOW)) {
4395 		struct e1000_hw *hw = &adapter->hw;
4396 		u32 rctl = er32(RCTL);
4397 		ew32(RCTL, rctl | E1000_RCTL_EN);
4398 		adapter->flags &= ~FLAG_RX_RESTART_NOW;
4399 	}
4400 }
4401 
4402 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
4403 {
4404 	struct e1000_hw *hw = &adapter->hw;
4405 
4406 	/*
4407 	 * With 82574 controllers, PHY needs to be checked periodically
4408 	 * for hung state and reset, if two calls return true
4409 	 */
4410 	if (e1000_check_phy_82574(hw))
4411 		adapter->phy_hang_count++;
4412 	else
4413 		adapter->phy_hang_count = 0;
4414 
4415 	if (adapter->phy_hang_count > 1) {
4416 		adapter->phy_hang_count = 0;
4417 		schedule_work(&adapter->reset_task);
4418 	}
4419 }
4420 
4421 /**
4422  * e1000_watchdog - Timer Call-back
4423  * @data: pointer to adapter cast into an unsigned long
4424  **/
4425 static void e1000_watchdog(unsigned long data)
4426 {
4427 	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
4428 
4429 	/* Do the rest outside of interrupt context */
4430 	schedule_work(&adapter->watchdog_task);
4431 
4432 	/* TODO: make this use queue_delayed_work() */
4433 }
4434 
4435 static void e1000_watchdog_task(struct work_struct *work)
4436 {
4437 	struct e1000_adapter *adapter = container_of(work,
4438 					struct e1000_adapter, watchdog_task);
4439 	struct net_device *netdev = adapter->netdev;
4440 	struct e1000_mac_info *mac = &adapter->hw.mac;
4441 	struct e1000_phy_info *phy = &adapter->hw.phy;
4442 	struct e1000_ring *tx_ring = adapter->tx_ring;
4443 	struct e1000_hw *hw = &adapter->hw;
4444 	u32 link, tctl;
4445 
4446 	if (test_bit(__E1000_DOWN, &adapter->state))
4447 		return;
4448 
4449 	link = e1000e_has_link(adapter);
4450 	if ((netif_carrier_ok(netdev)) && link) {
4451 		/* Cancel scheduled suspend requests. */
4452 		pm_runtime_resume(netdev->dev.parent);
4453 
4454 		e1000e_enable_receives(adapter);
4455 		goto link_up;
4456 	}
4457 
4458 	if ((e1000e_enable_tx_pkt_filtering(hw)) &&
4459 	    (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
4460 		e1000_update_mng_vlan(adapter);
4461 
4462 	if (link) {
4463 		if (!netif_carrier_ok(netdev)) {
4464 			bool txb2b = true;
4465 
4466 			/* Cancel scheduled suspend requests. */
4467 			pm_runtime_resume(netdev->dev.parent);
4468 
4469 			/* update snapshot of PHY registers on LSC */
4470 			e1000_phy_read_status(adapter);
4471 			mac->ops.get_link_up_info(&adapter->hw,
4472 						   &adapter->link_speed,
4473 						   &adapter->link_duplex);
4474 			e1000_print_link_info(adapter);
4475 			/*
4476 			 * On supported PHYs, check for duplex mismatch only
4477 			 * if link has autonegotiated at 10/100 half
4478 			 */
4479 			if ((hw->phy.type == e1000_phy_igp_3 ||
4480 			     hw->phy.type == e1000_phy_bm) &&
4481 			    (hw->mac.autoneg == true) &&
4482 			    (adapter->link_speed == SPEED_10 ||
4483 			     adapter->link_speed == SPEED_100) &&
4484 			    (adapter->link_duplex == HALF_DUPLEX)) {
4485 				u16 autoneg_exp;
4486 
4487 				e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp);
4488 
4489 				if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS))
4490 					e_info("Autonegotiated half duplex but link partner cannot autoneg.  Try forcing full duplex if link gets many collisions.\n");
4491 			}
4492 
4493 			/* adjust timeout factor according to speed/duplex */
4494 			adapter->tx_timeout_factor = 1;
4495 			switch (adapter->link_speed) {
4496 			case SPEED_10:
4497 				txb2b = false;
4498 				adapter->tx_timeout_factor = 16;
4499 				break;
4500 			case SPEED_100:
4501 				txb2b = false;
4502 				adapter->tx_timeout_factor = 10;
4503 				break;
4504 			}
4505 
4506 			/*
4507 			 * workaround: re-program speed mode bit after
4508 			 * link-up event
4509 			 */
4510 			if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
4511 			    !txb2b) {
4512 				u32 tarc0;
4513 				tarc0 = er32(TARC(0));
4514 				tarc0 &= ~SPEED_MODE_BIT;
4515 				ew32(TARC(0), tarc0);
4516 			}
4517 
4518 			/*
4519 			 * disable TSO for pcie and 10/100 speeds, to avoid
4520 			 * some hardware issues
4521 			 */
4522 			if (!(adapter->flags & FLAG_TSO_FORCE)) {
4523 				switch (adapter->link_speed) {
4524 				case SPEED_10:
4525 				case SPEED_100:
4526 					e_info("10/100 speed: disabling TSO\n");
4527 					netdev->features &= ~NETIF_F_TSO;
4528 					netdev->features &= ~NETIF_F_TSO6;
4529 					break;
4530 				case SPEED_1000:
4531 					netdev->features |= NETIF_F_TSO;
4532 					netdev->features |= NETIF_F_TSO6;
4533 					break;
4534 				default:
4535 					/* oops */
4536 					break;
4537 				}
4538 			}
4539 
4540 			/*
4541 			 * enable transmits in the hardware, need to do this
4542 			 * after setting TARC(0)
4543 			 */
4544 			tctl = er32(TCTL);
4545 			tctl |= E1000_TCTL_EN;
4546 			ew32(TCTL, tctl);
4547 
4548                         /*
4549 			 * Perform any post-link-up configuration before
4550 			 * reporting link up.
4551 			 */
4552 			if (phy->ops.cfg_on_link_up)
4553 				phy->ops.cfg_on_link_up(hw);
4554 
4555 			netif_carrier_on(netdev);
4556 
4557 			if (!test_bit(__E1000_DOWN, &adapter->state))
4558 				mod_timer(&adapter->phy_info_timer,
4559 					  round_jiffies(jiffies + 2 * HZ));
4560 		}
4561 	} else {
4562 		if (netif_carrier_ok(netdev)) {
4563 			adapter->link_speed = 0;
4564 			adapter->link_duplex = 0;
4565 			/* Link status message must follow this format */
4566 			printk(KERN_INFO "e1000e: %s NIC Link is Down\n",
4567 			       adapter->netdev->name);
4568 			netif_carrier_off(netdev);
4569 			if (!test_bit(__E1000_DOWN, &adapter->state))
4570 				mod_timer(&adapter->phy_info_timer,
4571 					  round_jiffies(jiffies + 2 * HZ));
4572 
4573 			if (adapter->flags & FLAG_RX_NEEDS_RESTART)
4574 				schedule_work(&adapter->reset_task);
4575 			else
4576 				pm_schedule_suspend(netdev->dev.parent,
4577 							LINK_TIMEOUT);
4578 		}
4579 	}
4580 
4581 link_up:
4582 	spin_lock(&adapter->stats64_lock);
4583 	e1000e_update_stats(adapter);
4584 
4585 	mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
4586 	adapter->tpt_old = adapter->stats.tpt;
4587 	mac->collision_delta = adapter->stats.colc - adapter->colc_old;
4588 	adapter->colc_old = adapter->stats.colc;
4589 
4590 	adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
4591 	adapter->gorc_old = adapter->stats.gorc;
4592 	adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
4593 	adapter->gotc_old = adapter->stats.gotc;
4594 	spin_unlock(&adapter->stats64_lock);
4595 
4596 	e1000e_update_adaptive(&adapter->hw);
4597 
4598 	if (!netif_carrier_ok(netdev) &&
4599 	    (e1000_desc_unused(tx_ring) + 1 < tx_ring->count)) {
4600 		/*
4601 		 * We've lost link, so the controller stops DMA,
4602 		 * but we've got queued Tx work that's never going
4603 		 * to get done, so reset controller to flush Tx.
4604 		 * (Do the reset outside of interrupt context).
4605 		 */
4606 		schedule_work(&adapter->reset_task);
4607 		/* return immediately since reset is imminent */
4608 		return;
4609 	}
4610 
4611 	/* Simple mode for Interrupt Throttle Rate (ITR) */
4612 	if (adapter->itr_setting == 4) {
4613 		/*
4614 		 * Symmetric Tx/Rx gets a reduced ITR=2000;
4615 		 * Total asymmetrical Tx or Rx gets ITR=8000;
4616 		 * everyone else is between 2000-8000.
4617 		 */
4618 		u32 goc = (adapter->gotc + adapter->gorc) / 10000;
4619 		u32 dif = (adapter->gotc > adapter->gorc ?
4620 			    adapter->gotc - adapter->gorc :
4621 			    adapter->gorc - adapter->gotc) / 10000;
4622 		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
4623 
4624 		ew32(ITR, 1000000000 / (itr * 256));
4625 	}
4626 
4627 	/* Cause software interrupt to ensure Rx ring is cleaned */
4628 	if (adapter->msix_entries)
4629 		ew32(ICS, adapter->rx_ring->ims_val);
4630 	else
4631 		ew32(ICS, E1000_ICS_RXDMT0);
4632 
4633 	/* flush pending descriptors to memory before detecting Tx hang */
4634 	e1000e_flush_descriptors(adapter);
4635 
4636 	/* Force detection of hung controller every watchdog period */
4637 	adapter->detect_tx_hung = true;
4638 
4639 	/*
4640 	 * With 82571 controllers, LAA may be overwritten due to controller
4641 	 * reset from the other port. Set the appropriate LAA in RAR[0]
4642 	 */
4643 	if (e1000e_get_laa_state_82571(hw))
4644 		e1000e_rar_set(hw, adapter->hw.mac.addr, 0);
4645 
4646 	if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
4647 		e1000e_check_82574_phy_workaround(adapter);
4648 
4649 	/* Reset the timer */
4650 	if (!test_bit(__E1000_DOWN, &adapter->state))
4651 		mod_timer(&adapter->watchdog_timer,
4652 			  round_jiffies(jiffies + 2 * HZ));
4653 }
4654 
4655 #define E1000_TX_FLAGS_CSUM		0x00000001
4656 #define E1000_TX_FLAGS_VLAN		0x00000002
4657 #define E1000_TX_FLAGS_TSO		0x00000004
4658 #define E1000_TX_FLAGS_IPV4		0x00000008
4659 #define E1000_TX_FLAGS_NO_FCS		0x00000010
4660 #define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
4661 #define E1000_TX_FLAGS_VLAN_SHIFT	16
4662 
4663 static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb)
4664 {
4665 	struct e1000_context_desc *context_desc;
4666 	struct e1000_buffer *buffer_info;
4667 	unsigned int i;
4668 	u32 cmd_length = 0;
4669 	u16 ipcse = 0, tucse, mss;
4670 	u8 ipcss, ipcso, tucss, tucso, hdr_len;
4671 
4672 	if (!skb_is_gso(skb))
4673 		return 0;
4674 
4675 	if (skb_header_cloned(skb)) {
4676 		int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4677 
4678 		if (err)
4679 			return err;
4680 	}
4681 
4682 	hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
4683 	mss = skb_shinfo(skb)->gso_size;
4684 	if (skb->protocol == htons(ETH_P_IP)) {
4685 		struct iphdr *iph = ip_hdr(skb);
4686 		iph->tot_len = 0;
4687 		iph->check = 0;
4688 		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
4689 		                                         0, IPPROTO_TCP, 0);
4690 		cmd_length = E1000_TXD_CMD_IP;
4691 		ipcse = skb_transport_offset(skb) - 1;
4692 	} else if (skb_is_gso_v6(skb)) {
4693 		ipv6_hdr(skb)->payload_len = 0;
4694 		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4695 		                                       &ipv6_hdr(skb)->daddr,
4696 		                                       0, IPPROTO_TCP, 0);
4697 		ipcse = 0;
4698 	}
4699 	ipcss = skb_network_offset(skb);
4700 	ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
4701 	tucss = skb_transport_offset(skb);
4702 	tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
4703 	tucse = 0;
4704 
4705 	cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
4706 	               E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
4707 
4708 	i = tx_ring->next_to_use;
4709 	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
4710 	buffer_info = &tx_ring->buffer_info[i];
4711 
4712 	context_desc->lower_setup.ip_fields.ipcss  = ipcss;
4713 	context_desc->lower_setup.ip_fields.ipcso  = ipcso;
4714 	context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
4715 	context_desc->upper_setup.tcp_fields.tucss = tucss;
4716 	context_desc->upper_setup.tcp_fields.tucso = tucso;
4717 	context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
4718 	context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
4719 	context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
4720 	context_desc->cmd_and_length = cpu_to_le32(cmd_length);
4721 
4722 	buffer_info->time_stamp = jiffies;
4723 	buffer_info->next_to_watch = i;
4724 
4725 	i++;
4726 	if (i == tx_ring->count)
4727 		i = 0;
4728 	tx_ring->next_to_use = i;
4729 
4730 	return 1;
4731 }
4732 
4733 static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb)
4734 {
4735 	struct e1000_adapter *adapter = tx_ring->adapter;
4736 	struct e1000_context_desc *context_desc;
4737 	struct e1000_buffer *buffer_info;
4738 	unsigned int i;
4739 	u8 css;
4740 	u32 cmd_len = E1000_TXD_CMD_DEXT;
4741 	__be16 protocol;
4742 
4743 	if (skb->ip_summed != CHECKSUM_PARTIAL)
4744 		return 0;
4745 
4746 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
4747 		protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
4748 	else
4749 		protocol = skb->protocol;
4750 
4751 	switch (protocol) {
4752 	case cpu_to_be16(ETH_P_IP):
4753 		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
4754 			cmd_len |= E1000_TXD_CMD_TCP;
4755 		break;
4756 	case cpu_to_be16(ETH_P_IPV6):
4757 		/* XXX not handling all IPV6 headers */
4758 		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
4759 			cmd_len |= E1000_TXD_CMD_TCP;
4760 		break;
4761 	default:
4762 		if (unlikely(net_ratelimit()))
4763 			e_warn("checksum_partial proto=%x!\n",
4764 			       be16_to_cpu(protocol));
4765 		break;
4766 	}
4767 
4768 	css = skb_checksum_start_offset(skb);
4769 
4770 	i = tx_ring->next_to_use;
4771 	buffer_info = &tx_ring->buffer_info[i];
4772 	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
4773 
4774 	context_desc->lower_setup.ip_config = 0;
4775 	context_desc->upper_setup.tcp_fields.tucss = css;
4776 	context_desc->upper_setup.tcp_fields.tucso =
4777 				css + skb->csum_offset;
4778 	context_desc->upper_setup.tcp_fields.tucse = 0;
4779 	context_desc->tcp_seg_setup.data = 0;
4780 	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
4781 
4782 	buffer_info->time_stamp = jiffies;
4783 	buffer_info->next_to_watch = i;
4784 
4785 	i++;
4786 	if (i == tx_ring->count)
4787 		i = 0;
4788 	tx_ring->next_to_use = i;
4789 
4790 	return 1;
4791 }
4792 
4793 #define E1000_MAX_PER_TXD	8192
4794 #define E1000_MAX_TXD_PWR	12
4795 
4796 static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
4797 			unsigned int first, unsigned int max_per_txd,
4798 			unsigned int nr_frags, unsigned int mss)
4799 {
4800 	struct e1000_adapter *adapter = tx_ring->adapter;
4801 	struct pci_dev *pdev = adapter->pdev;
4802 	struct e1000_buffer *buffer_info;
4803 	unsigned int len = skb_headlen(skb);
4804 	unsigned int offset = 0, size, count = 0, i;
4805 	unsigned int f, bytecount, segs;
4806 
4807 	i = tx_ring->next_to_use;
4808 
4809 	while (len) {
4810 		buffer_info = &tx_ring->buffer_info[i];
4811 		size = min(len, max_per_txd);
4812 
4813 		buffer_info->length = size;
4814 		buffer_info->time_stamp = jiffies;
4815 		buffer_info->next_to_watch = i;
4816 		buffer_info->dma = dma_map_single(&pdev->dev,
4817 						  skb->data + offset,
4818 						  size, DMA_TO_DEVICE);
4819 		buffer_info->mapped_as_page = false;
4820 		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4821 			goto dma_error;
4822 
4823 		len -= size;
4824 		offset += size;
4825 		count++;
4826 
4827 		if (len) {
4828 			i++;
4829 			if (i == tx_ring->count)
4830 				i = 0;
4831 		}
4832 	}
4833 
4834 	for (f = 0; f < nr_frags; f++) {
4835 		const struct skb_frag_struct *frag;
4836 
4837 		frag = &skb_shinfo(skb)->frags[f];
4838 		len = skb_frag_size(frag);
4839 		offset = 0;
4840 
4841 		while (len) {
4842 			i++;
4843 			if (i == tx_ring->count)
4844 				i = 0;
4845 
4846 			buffer_info = &tx_ring->buffer_info[i];
4847 			size = min(len, max_per_txd);
4848 
4849 			buffer_info->length = size;
4850 			buffer_info->time_stamp = jiffies;
4851 			buffer_info->next_to_watch = i;
4852 			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
4853 						offset, size, DMA_TO_DEVICE);
4854 			buffer_info->mapped_as_page = true;
4855 			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4856 				goto dma_error;
4857 
4858 			len -= size;
4859 			offset += size;
4860 			count++;
4861 		}
4862 	}
4863 
4864 	segs = skb_shinfo(skb)->gso_segs ? : 1;
4865 	/* multiply data chunks by size of headers */
4866 	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
4867 
4868 	tx_ring->buffer_info[i].skb = skb;
4869 	tx_ring->buffer_info[i].segs = segs;
4870 	tx_ring->buffer_info[i].bytecount = bytecount;
4871 	tx_ring->buffer_info[first].next_to_watch = i;
4872 
4873 	return count;
4874 
4875 dma_error:
4876 	dev_err(&pdev->dev, "Tx DMA map failed\n");
4877 	buffer_info->dma = 0;
4878 	if (count)
4879 		count--;
4880 
4881 	while (count--) {
4882 		if (i == 0)
4883 			i += tx_ring->count;
4884 		i--;
4885 		buffer_info = &tx_ring->buffer_info[i];
4886 		e1000_put_txbuf(tx_ring, buffer_info);
4887 	}
4888 
4889 	return 0;
4890 }
4891 
4892 static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
4893 {
4894 	struct e1000_adapter *adapter = tx_ring->adapter;
4895 	struct e1000_tx_desc *tx_desc = NULL;
4896 	struct e1000_buffer *buffer_info;
4897 	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
4898 	unsigned int i;
4899 
4900 	if (tx_flags & E1000_TX_FLAGS_TSO) {
4901 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
4902 			     E1000_TXD_CMD_TSE;
4903 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
4904 
4905 		if (tx_flags & E1000_TX_FLAGS_IPV4)
4906 			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
4907 	}
4908 
4909 	if (tx_flags & E1000_TX_FLAGS_CSUM) {
4910 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
4911 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
4912 	}
4913 
4914 	if (tx_flags & E1000_TX_FLAGS_VLAN) {
4915 		txd_lower |= E1000_TXD_CMD_VLE;
4916 		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
4917 	}
4918 
4919 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
4920 		txd_lower &= ~(E1000_TXD_CMD_IFCS);
4921 
4922 	i = tx_ring->next_to_use;
4923 
4924 	do {
4925 		buffer_info = &tx_ring->buffer_info[i];
4926 		tx_desc = E1000_TX_DESC(*tx_ring, i);
4927 		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4928 		tx_desc->lower.data =
4929 			cpu_to_le32(txd_lower | buffer_info->length);
4930 		tx_desc->upper.data = cpu_to_le32(txd_upper);
4931 
4932 		i++;
4933 		if (i == tx_ring->count)
4934 			i = 0;
4935 	} while (--count > 0);
4936 
4937 	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
4938 
4939 	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
4940 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
4941 		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
4942 
4943 	/*
4944 	 * Force memory writes to complete before letting h/w
4945 	 * know there are new descriptors to fetch.  (Only
4946 	 * applicable for weak-ordered memory model archs,
4947 	 * such as IA-64).
4948 	 */
4949 	wmb();
4950 
4951 	tx_ring->next_to_use = i;
4952 
4953 	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
4954 		e1000e_update_tdt_wa(tx_ring, i);
4955 	else
4956 		writel(i, tx_ring->tail);
4957 
4958 	/*
4959 	 * we need this if more than one processor can write to our tail
4960 	 * at a time, it synchronizes IO on IA64/Altix systems
4961 	 */
4962 	mmiowb();
4963 }
4964 
4965 #define MINIMUM_DHCP_PACKET_SIZE 282
4966 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
4967 				    struct sk_buff *skb)
4968 {
4969 	struct e1000_hw *hw =  &adapter->hw;
4970 	u16 length, offset;
4971 
4972 	if (vlan_tx_tag_present(skb)) {
4973 		if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
4974 		    (adapter->hw.mng_cookie.status &
4975 			E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
4976 			return 0;
4977 	}
4978 
4979 	if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
4980 		return 0;
4981 
4982 	if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
4983 		return 0;
4984 
4985 	{
4986 		const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
4987 		struct udphdr *udp;
4988 
4989 		if (ip->protocol != IPPROTO_UDP)
4990 			return 0;
4991 
4992 		udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
4993 		if (ntohs(udp->dest) != 67)
4994 			return 0;
4995 
4996 		offset = (u8 *)udp + 8 - skb->data;
4997 		length = skb->len - offset;
4998 		return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
4999 	}
5000 
5001 	return 0;
5002 }
5003 
5004 static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5005 {
5006 	struct e1000_adapter *adapter = tx_ring->adapter;
5007 
5008 	netif_stop_queue(adapter->netdev);
5009 	/*
5010 	 * Herbert's original patch had:
5011 	 *  smp_mb__after_netif_stop_queue();
5012 	 * but since that doesn't exist yet, just open code it.
5013 	 */
5014 	smp_mb();
5015 
5016 	/*
5017 	 * We need to check again in a case another CPU has just
5018 	 * made room available.
5019 	 */
5020 	if (e1000_desc_unused(tx_ring) < size)
5021 		return -EBUSY;
5022 
5023 	/* A reprieve! */
5024 	netif_start_queue(adapter->netdev);
5025 	++adapter->restart_queue;
5026 	return 0;
5027 }
5028 
5029 static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5030 {
5031 	if (e1000_desc_unused(tx_ring) >= size)
5032 		return 0;
5033 	return __e1000_maybe_stop_tx(tx_ring, size);
5034 }
5035 
5036 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1)
5037 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5038 				    struct net_device *netdev)
5039 {
5040 	struct e1000_adapter *adapter = netdev_priv(netdev);
5041 	struct e1000_ring *tx_ring = adapter->tx_ring;
5042 	unsigned int first;
5043 	unsigned int max_per_txd = E1000_MAX_PER_TXD;
5044 	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
5045 	unsigned int tx_flags = 0;
5046 	unsigned int len = skb_headlen(skb);
5047 	unsigned int nr_frags;
5048 	unsigned int mss;
5049 	int count = 0;
5050 	int tso;
5051 	unsigned int f;
5052 
5053 	if (test_bit(__E1000_DOWN, &adapter->state)) {
5054 		dev_kfree_skb_any(skb);
5055 		return NETDEV_TX_OK;
5056 	}
5057 
5058 	if (skb->len <= 0) {
5059 		dev_kfree_skb_any(skb);
5060 		return NETDEV_TX_OK;
5061 	}
5062 
5063 	mss = skb_shinfo(skb)->gso_size;
5064 	/*
5065 	 * The controller does a simple calculation to
5066 	 * make sure there is enough room in the FIFO before
5067 	 * initiating the DMA for each buffer.  The calc is:
5068 	 * 4 = ceil(buffer len/mss).  To make sure we don't
5069 	 * overrun the FIFO, adjust the max buffer len if mss
5070 	 * drops.
5071 	 */
5072 	if (mss) {
5073 		u8 hdr_len;
5074 		max_per_txd = min(mss << 2, max_per_txd);
5075 		max_txd_pwr = fls(max_per_txd) - 1;
5076 
5077 		/*
5078 		 * TSO Workaround for 82571/2/3 Controllers -- if skb->data
5079 		 * points to just header, pull a few bytes of payload from
5080 		 * frags into skb->data
5081 		 */
5082 		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5083 		/*
5084 		 * we do this workaround for ES2LAN, but it is un-necessary,
5085 		 * avoiding it could save a lot of cycles
5086 		 */
5087 		if (skb->data_len && (hdr_len == len)) {
5088 			unsigned int pull_size;
5089 
5090 			pull_size = min_t(unsigned int, 4, skb->data_len);
5091 			if (!__pskb_pull_tail(skb, pull_size)) {
5092 				e_err("__pskb_pull_tail failed.\n");
5093 				dev_kfree_skb_any(skb);
5094 				return NETDEV_TX_OK;
5095 			}
5096 			len = skb_headlen(skb);
5097 		}
5098 	}
5099 
5100 	/* reserve a descriptor for the offload context */
5101 	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5102 		count++;
5103 	count++;
5104 
5105 	count += TXD_USE_COUNT(len, max_txd_pwr);
5106 
5107 	nr_frags = skb_shinfo(skb)->nr_frags;
5108 	for (f = 0; f < nr_frags; f++)
5109 		count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5110 				       max_txd_pwr);
5111 
5112 	if (adapter->hw.mac.tx_pkt_filtering)
5113 		e1000_transfer_dhcp_info(adapter, skb);
5114 
5115 	/*
5116 	 * need: count + 2 desc gap to keep tail from touching
5117 	 * head, otherwise try next time
5118 	 */
5119 	if (e1000_maybe_stop_tx(tx_ring, count + 2))
5120 		return NETDEV_TX_BUSY;
5121 
5122 	if (vlan_tx_tag_present(skb)) {
5123 		tx_flags |= E1000_TX_FLAGS_VLAN;
5124 		tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
5125 	}
5126 
5127 	first = tx_ring->next_to_use;
5128 
5129 	tso = e1000_tso(tx_ring, skb);
5130 	if (tso < 0) {
5131 		dev_kfree_skb_any(skb);
5132 		return NETDEV_TX_OK;
5133 	}
5134 
5135 	if (tso)
5136 		tx_flags |= E1000_TX_FLAGS_TSO;
5137 	else if (e1000_tx_csum(tx_ring, skb))
5138 		tx_flags |= E1000_TX_FLAGS_CSUM;
5139 
5140 	/*
5141 	 * Old method was to assume IPv4 packet by default if TSO was enabled.
5142 	 * 82571 hardware supports TSO capabilities for IPv6 as well...
5143 	 * no longer assume, we must.
5144 	 */
5145 	if (skb->protocol == htons(ETH_P_IP))
5146 		tx_flags |= E1000_TX_FLAGS_IPV4;
5147 
5148 	if (unlikely(skb->no_fcs))
5149 		tx_flags |= E1000_TX_FLAGS_NO_FCS;
5150 
5151 	/* if count is 0 then mapping error has occurred */
5152 	count = e1000_tx_map(tx_ring, skb, first, max_per_txd, nr_frags, mss);
5153 	if (count) {
5154 		netdev_sent_queue(netdev, skb->len);
5155 		e1000_tx_queue(tx_ring, tx_flags, count);
5156 		/* Make sure there is space in the ring for the next send. */
5157 		e1000_maybe_stop_tx(tx_ring, MAX_SKB_FRAGS + 2);
5158 
5159 	} else {
5160 		dev_kfree_skb_any(skb);
5161 		tx_ring->buffer_info[first].time_stamp = 0;
5162 		tx_ring->next_to_use = first;
5163 	}
5164 
5165 	return NETDEV_TX_OK;
5166 }
5167 
5168 /**
5169  * e1000_tx_timeout - Respond to a Tx Hang
5170  * @netdev: network interface device structure
5171  **/
5172 static void e1000_tx_timeout(struct net_device *netdev)
5173 {
5174 	struct e1000_adapter *adapter = netdev_priv(netdev);
5175 
5176 	/* Do the reset outside of interrupt context */
5177 	adapter->tx_timeout_count++;
5178 	schedule_work(&adapter->reset_task);
5179 }
5180 
5181 static void e1000_reset_task(struct work_struct *work)
5182 {
5183 	struct e1000_adapter *adapter;
5184 	adapter = container_of(work, struct e1000_adapter, reset_task);
5185 
5186 	/* don't run the task if already down */
5187 	if (test_bit(__E1000_DOWN, &adapter->state))
5188 		return;
5189 
5190 	if (!((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
5191 	      (adapter->flags & FLAG_RX_RESTART_NOW))) {
5192 		e1000e_dump(adapter);
5193 		e_err("Reset adapter\n");
5194 	}
5195 	e1000e_reinit_locked(adapter);
5196 }
5197 
5198 /**
5199  * e1000_get_stats64 - Get System Network Statistics
5200  * @netdev: network interface device structure
5201  * @stats: rtnl_link_stats64 pointer
5202  *
5203  * Returns the address of the device statistics structure.
5204  **/
5205 struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev,
5206                                              struct rtnl_link_stats64 *stats)
5207 {
5208 	struct e1000_adapter *adapter = netdev_priv(netdev);
5209 
5210 	memset(stats, 0, sizeof(struct rtnl_link_stats64));
5211 	spin_lock(&adapter->stats64_lock);
5212 	e1000e_update_stats(adapter);
5213 	/* Fill out the OS statistics structure */
5214 	stats->rx_bytes = adapter->stats.gorc;
5215 	stats->rx_packets = adapter->stats.gprc;
5216 	stats->tx_bytes = adapter->stats.gotc;
5217 	stats->tx_packets = adapter->stats.gptc;
5218 	stats->multicast = adapter->stats.mprc;
5219 	stats->collisions = adapter->stats.colc;
5220 
5221 	/* Rx Errors */
5222 
5223 	/*
5224 	 * RLEC on some newer hardware can be incorrect so build
5225 	 * our own version based on RUC and ROC
5226 	 */
5227 	stats->rx_errors = adapter->stats.rxerrc +
5228 		adapter->stats.crcerrs + adapter->stats.algnerrc +
5229 		adapter->stats.ruc + adapter->stats.roc +
5230 		adapter->stats.cexterr;
5231 	stats->rx_length_errors = adapter->stats.ruc +
5232 					      adapter->stats.roc;
5233 	stats->rx_crc_errors = adapter->stats.crcerrs;
5234 	stats->rx_frame_errors = adapter->stats.algnerrc;
5235 	stats->rx_missed_errors = adapter->stats.mpc;
5236 
5237 	/* Tx Errors */
5238 	stats->tx_errors = adapter->stats.ecol +
5239 				       adapter->stats.latecol;
5240 	stats->tx_aborted_errors = adapter->stats.ecol;
5241 	stats->tx_window_errors = adapter->stats.latecol;
5242 	stats->tx_carrier_errors = adapter->stats.tncrs;
5243 
5244 	/* Tx Dropped needs to be maintained elsewhere */
5245 
5246 	spin_unlock(&adapter->stats64_lock);
5247 	return stats;
5248 }
5249 
5250 /**
5251  * e1000_change_mtu - Change the Maximum Transfer Unit
5252  * @netdev: network interface device structure
5253  * @new_mtu: new value for maximum frame size
5254  *
5255  * Returns 0 on success, negative on failure
5256  **/
5257 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
5258 {
5259 	struct e1000_adapter *adapter = netdev_priv(netdev);
5260 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
5261 
5262 	/* Jumbo frame support */
5263 	if (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) {
5264 		if (!(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
5265 			e_err("Jumbo Frames not supported.\n");
5266 			return -EINVAL;
5267 		}
5268 
5269 		/*
5270 		 * IP payload checksum (enabled with jumbos/packet-split when
5271 		 * Rx checksum is enabled) and generation of RSS hash is
5272 		 * mutually exclusive in the hardware.
5273 		 */
5274 		if ((netdev->features & NETIF_F_RXCSUM) &&
5275 		    (netdev->features & NETIF_F_RXHASH)) {
5276 			e_err("Jumbo frames cannot be enabled when both receive checksum offload and receive hashing are enabled.  Disable one of the receive offload features before enabling jumbos.\n");
5277 			return -EINVAL;
5278 		}
5279 	}
5280 
5281 	/* Supported frame sizes */
5282 	if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
5283 	    (max_frame > adapter->max_hw_frame_size)) {
5284 		e_err("Unsupported MTU setting\n");
5285 		return -EINVAL;
5286 	}
5287 
5288 	/* Jumbo frame workaround on 82579 requires CRC be stripped */
5289 	if ((adapter->hw.mac.type == e1000_pch2lan) &&
5290 	    !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
5291 	    (new_mtu > ETH_DATA_LEN)) {
5292 		e_err("Jumbo Frames not supported on 82579 when CRC stripping is disabled.\n");
5293 		return -EINVAL;
5294 	}
5295 
5296 	/* 82573 Errata 17 */
5297 	if (((adapter->hw.mac.type == e1000_82573) ||
5298 	     (adapter->hw.mac.type == e1000_82574)) &&
5299 	    (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN)) {
5300 		adapter->flags2 |= FLAG2_DISABLE_ASPM_L1;
5301 		e1000e_disable_aspm(adapter->pdev, PCIE_LINK_STATE_L1);
5302 	}
5303 
5304 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
5305 		usleep_range(1000, 2000);
5306 	/* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
5307 	adapter->max_frame_size = max_frame;
5308 	e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
5309 	netdev->mtu = new_mtu;
5310 	if (netif_running(netdev))
5311 		e1000e_down(adapter);
5312 
5313 	/*
5314 	 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
5315 	 * means we reserve 2 more, this pushes us to allocate from the next
5316 	 * larger slab size.
5317 	 * i.e. RXBUFFER_2048 --> size-4096 slab
5318 	 * However with the new *_jumbo_rx* routines, jumbo receives will use
5319 	 * fragmented skbs
5320 	 */
5321 
5322 	if (max_frame <= 2048)
5323 		adapter->rx_buffer_len = 2048;
5324 	else
5325 		adapter->rx_buffer_len = 4096;
5326 
5327 	/* adjust allocation if LPE protects us, and we aren't using SBP */
5328 	if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
5329 	     (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
5330 		adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
5331 					 + ETH_FCS_LEN;
5332 
5333 	if (netif_running(netdev))
5334 		e1000e_up(adapter);
5335 	else
5336 		e1000e_reset(adapter);
5337 
5338 	clear_bit(__E1000_RESETTING, &adapter->state);
5339 
5340 	return 0;
5341 }
5342 
5343 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
5344 			   int cmd)
5345 {
5346 	struct e1000_adapter *adapter = netdev_priv(netdev);
5347 	struct mii_ioctl_data *data = if_mii(ifr);
5348 
5349 	if (adapter->hw.phy.media_type != e1000_media_type_copper)
5350 		return -EOPNOTSUPP;
5351 
5352 	switch (cmd) {
5353 	case SIOCGMIIPHY:
5354 		data->phy_id = adapter->hw.phy.addr;
5355 		break;
5356 	case SIOCGMIIREG:
5357 		e1000_phy_read_status(adapter);
5358 
5359 		switch (data->reg_num & 0x1F) {
5360 		case MII_BMCR:
5361 			data->val_out = adapter->phy_regs.bmcr;
5362 			break;
5363 		case MII_BMSR:
5364 			data->val_out = adapter->phy_regs.bmsr;
5365 			break;
5366 		case MII_PHYSID1:
5367 			data->val_out = (adapter->hw.phy.id >> 16);
5368 			break;
5369 		case MII_PHYSID2:
5370 			data->val_out = (adapter->hw.phy.id & 0xFFFF);
5371 			break;
5372 		case MII_ADVERTISE:
5373 			data->val_out = adapter->phy_regs.advertise;
5374 			break;
5375 		case MII_LPA:
5376 			data->val_out = adapter->phy_regs.lpa;
5377 			break;
5378 		case MII_EXPANSION:
5379 			data->val_out = adapter->phy_regs.expansion;
5380 			break;
5381 		case MII_CTRL1000:
5382 			data->val_out = adapter->phy_regs.ctrl1000;
5383 			break;
5384 		case MII_STAT1000:
5385 			data->val_out = adapter->phy_regs.stat1000;
5386 			break;
5387 		case MII_ESTATUS:
5388 			data->val_out = adapter->phy_regs.estatus;
5389 			break;
5390 		default:
5391 			return -EIO;
5392 		}
5393 		break;
5394 	case SIOCSMIIREG:
5395 	default:
5396 		return -EOPNOTSUPP;
5397 	}
5398 	return 0;
5399 }
5400 
5401 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5402 {
5403 	switch (cmd) {
5404 	case SIOCGMIIPHY:
5405 	case SIOCGMIIREG:
5406 	case SIOCSMIIREG:
5407 		return e1000_mii_ioctl(netdev, ifr, cmd);
5408 	default:
5409 		return -EOPNOTSUPP;
5410 	}
5411 }
5412 
5413 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
5414 {
5415 	struct e1000_hw *hw = &adapter->hw;
5416 	u32 i, mac_reg;
5417 	u16 phy_reg, wuc_enable;
5418 	int retval = 0;
5419 
5420 	/* copy MAC RARs to PHY RARs */
5421 	e1000_copy_rx_addrs_to_phy_ich8lan(hw);
5422 
5423 	retval = hw->phy.ops.acquire(hw);
5424 	if (retval) {
5425 		e_err("Could not acquire PHY\n");
5426 		return retval;
5427 	}
5428 
5429 	/* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
5430 	retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
5431 	if (retval)
5432 		goto release;
5433 
5434 	/* copy MAC MTA to PHY MTA - only needed for pchlan */
5435 	for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
5436 		mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
5437 		hw->phy.ops.write_reg_page(hw, BM_MTA(i),
5438 					   (u16)(mac_reg & 0xFFFF));
5439 		hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
5440 					   (u16)((mac_reg >> 16) & 0xFFFF));
5441 	}
5442 
5443 	/* configure PHY Rx Control register */
5444 	hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
5445 	mac_reg = er32(RCTL);
5446 	if (mac_reg & E1000_RCTL_UPE)
5447 		phy_reg |= BM_RCTL_UPE;
5448 	if (mac_reg & E1000_RCTL_MPE)
5449 		phy_reg |= BM_RCTL_MPE;
5450 	phy_reg &= ~(BM_RCTL_MO_MASK);
5451 	if (mac_reg & E1000_RCTL_MO_3)
5452 		phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
5453 				<< BM_RCTL_MO_SHIFT);
5454 	if (mac_reg & E1000_RCTL_BAM)
5455 		phy_reg |= BM_RCTL_BAM;
5456 	if (mac_reg & E1000_RCTL_PMCF)
5457 		phy_reg |= BM_RCTL_PMCF;
5458 	mac_reg = er32(CTRL);
5459 	if (mac_reg & E1000_CTRL_RFCE)
5460 		phy_reg |= BM_RCTL_RFCE;
5461 	hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
5462 
5463 	/* enable PHY wakeup in MAC register */
5464 	ew32(WUFC, wufc);
5465 	ew32(WUC, E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN);
5466 
5467 	/* configure and enable PHY wakeup in PHY registers */
5468 	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
5469 	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);
5470 
5471 	/* activate PHY wakeup */
5472 	wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
5473 	retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
5474 	if (retval)
5475 		e_err("Could not set PHY Host Wakeup bit\n");
5476 release:
5477 	hw->phy.ops.release(hw);
5478 
5479 	return retval;
5480 }
5481 
5482 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake,
5483 			    bool runtime)
5484 {
5485 	struct net_device *netdev = pci_get_drvdata(pdev);
5486 	struct e1000_adapter *adapter = netdev_priv(netdev);
5487 	struct e1000_hw *hw = &adapter->hw;
5488 	u32 ctrl, ctrl_ext, rctl, status;
5489 	/* Runtime suspend should only enable wakeup for link changes */
5490 	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
5491 	int retval = 0;
5492 
5493 	netif_device_detach(netdev);
5494 
5495 	if (netif_running(netdev)) {
5496 		int count = E1000_CHECK_RESET_COUNT;
5497 
5498 		while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
5499 			usleep_range(10000, 20000);
5500 
5501 		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
5502 		e1000e_down(adapter);
5503 		e1000_free_irq(adapter);
5504 	}
5505 	e1000e_reset_interrupt_capability(adapter);
5506 
5507 	retval = pci_save_state(pdev);
5508 	if (retval)
5509 		return retval;
5510 
5511 	status = er32(STATUS);
5512 	if (status & E1000_STATUS_LU)
5513 		wufc &= ~E1000_WUFC_LNKC;
5514 
5515 	if (wufc) {
5516 		e1000_setup_rctl(adapter);
5517 		e1000e_set_rx_mode(netdev);
5518 
5519 		/* turn on all-multi mode if wake on multicast is enabled */
5520 		if (wufc & E1000_WUFC_MC) {
5521 			rctl = er32(RCTL);
5522 			rctl |= E1000_RCTL_MPE;
5523 			ew32(RCTL, rctl);
5524 		}
5525 
5526 		ctrl = er32(CTRL);
5527 		/* advertise wake from D3Cold */
5528 		#define E1000_CTRL_ADVD3WUC 0x00100000
5529 		/* phy power management enable */
5530 		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5531 		ctrl |= E1000_CTRL_ADVD3WUC;
5532 		if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
5533 			ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
5534 		ew32(CTRL, ctrl);
5535 
5536 		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
5537 		    adapter->hw.phy.media_type ==
5538 		    e1000_media_type_internal_serdes) {
5539 			/* keep the laser running in D3 */
5540 			ctrl_ext = er32(CTRL_EXT);
5541 			ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
5542 			ew32(CTRL_EXT, ctrl_ext);
5543 		}
5544 
5545 		if (adapter->flags & FLAG_IS_ICH)
5546 			e1000_suspend_workarounds_ich8lan(&adapter->hw);
5547 
5548 		/* Allow time for pending master requests to run */
5549 		e1000e_disable_pcie_master(&adapter->hw);
5550 
5551 		if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
5552 			/* enable wakeup by the PHY */
5553 			retval = e1000_init_phy_wakeup(adapter, wufc);
5554 			if (retval)
5555 				return retval;
5556 		} else {
5557 			/* enable wakeup by the MAC */
5558 			ew32(WUFC, wufc);
5559 			ew32(WUC, E1000_WUC_PME_EN);
5560 		}
5561 	} else {
5562 		ew32(WUC, 0);
5563 		ew32(WUFC, 0);
5564 	}
5565 
5566 	*enable_wake = !!wufc;
5567 
5568 	/* make sure adapter isn't asleep if manageability is enabled */
5569 	if ((adapter->flags & FLAG_MNG_PT_ENABLED) ||
5570 	    (hw->mac.ops.check_mng_mode(hw)))
5571 		*enable_wake = true;
5572 
5573 	if (adapter->hw.phy.type == e1000_phy_igp_3)
5574 		e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
5575 
5576 	/*
5577 	 * Release control of h/w to f/w.  If f/w is AMT enabled, this
5578 	 * would have already happened in close and is redundant.
5579 	 */
5580 	e1000e_release_hw_control(adapter);
5581 
5582 	pci_disable_device(pdev);
5583 
5584 	return 0;
5585 }
5586 
5587 static void e1000_power_off(struct pci_dev *pdev, bool sleep, bool wake)
5588 {
5589 	if (sleep && wake) {
5590 		pci_prepare_to_sleep(pdev);
5591 		return;
5592 	}
5593 
5594 	pci_wake_from_d3(pdev, wake);
5595 	pci_set_power_state(pdev, PCI_D3hot);
5596 }
5597 
5598 static void e1000_complete_shutdown(struct pci_dev *pdev, bool sleep,
5599                                     bool wake)
5600 {
5601 	struct net_device *netdev = pci_get_drvdata(pdev);
5602 	struct e1000_adapter *adapter = netdev_priv(netdev);
5603 
5604 	/*
5605 	 * The pci-e switch on some quad port adapters will report a
5606 	 * correctable error when the MAC transitions from D0 to D3.  To
5607 	 * prevent this we need to mask off the correctable errors on the
5608 	 * downstream port of the pci-e switch.
5609 	 */
5610 	if (adapter->flags & FLAG_IS_QUAD_PORT) {
5611 		struct pci_dev *us_dev = pdev->bus->self;
5612 		int pos = pci_pcie_cap(us_dev);
5613 		u16 devctl;
5614 
5615 		pci_read_config_word(us_dev, pos + PCI_EXP_DEVCTL, &devctl);
5616 		pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL,
5617 		                      (devctl & ~PCI_EXP_DEVCTL_CERE));
5618 
5619 		e1000_power_off(pdev, sleep, wake);
5620 
5621 		pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, devctl);
5622 	} else {
5623 		e1000_power_off(pdev, sleep, wake);
5624 	}
5625 }
5626 
5627 #ifdef CONFIG_PCIEASPM
5628 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5629 {
5630 	pci_disable_link_state_locked(pdev, state);
5631 }
5632 #else
5633 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5634 {
5635 	int pos;
5636 	u16 reg16;
5637 
5638 	/*
5639 	 * Both device and parent should have the same ASPM setting.
5640 	 * Disable ASPM in downstream component first and then upstream.
5641 	 */
5642 	pos = pci_pcie_cap(pdev);
5643 	pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &reg16);
5644 	reg16 &= ~state;
5645 	pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, reg16);
5646 
5647 	if (!pdev->bus->self)
5648 		return;
5649 
5650 	pos = pci_pcie_cap(pdev->bus->self);
5651 	pci_read_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, &reg16);
5652 	reg16 &= ~state;
5653 	pci_write_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, reg16);
5654 }
5655 #endif
5656 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5657 {
5658 	dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
5659 		 (state & PCIE_LINK_STATE_L0S) ? "L0s" : "",
5660 		 (state & PCIE_LINK_STATE_L1) ? "L1" : "");
5661 
5662 	__e1000e_disable_aspm(pdev, state);
5663 }
5664 
5665 #ifdef CONFIG_PM
5666 static bool e1000e_pm_ready(struct e1000_adapter *adapter)
5667 {
5668 	return !!adapter->tx_ring->buffer_info;
5669 }
5670 
5671 static int __e1000_resume(struct pci_dev *pdev)
5672 {
5673 	struct net_device *netdev = pci_get_drvdata(pdev);
5674 	struct e1000_adapter *adapter = netdev_priv(netdev);
5675 	struct e1000_hw *hw = &adapter->hw;
5676 	u16 aspm_disable_flag = 0;
5677 	u32 err;
5678 
5679 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
5680 		aspm_disable_flag = PCIE_LINK_STATE_L0S;
5681 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
5682 		aspm_disable_flag |= PCIE_LINK_STATE_L1;
5683 	if (aspm_disable_flag)
5684 		e1000e_disable_aspm(pdev, aspm_disable_flag);
5685 
5686 	pci_set_power_state(pdev, PCI_D0);
5687 	pci_restore_state(pdev);
5688 	pci_save_state(pdev);
5689 
5690 	e1000e_set_interrupt_capability(adapter);
5691 	if (netif_running(netdev)) {
5692 		err = e1000_request_irq(adapter);
5693 		if (err)
5694 			return err;
5695 	}
5696 
5697 	if (hw->mac.type == e1000_pch2lan)
5698 		e1000_resume_workarounds_pchlan(&adapter->hw);
5699 
5700 	e1000e_power_up_phy(adapter);
5701 
5702 	/* report the system wakeup cause from S3/S4 */
5703 	if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
5704 		u16 phy_data;
5705 
5706 		e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
5707 		if (phy_data) {
5708 			e_info("PHY Wakeup cause - %s\n",
5709 				phy_data & E1000_WUS_EX ? "Unicast Packet" :
5710 				phy_data & E1000_WUS_MC ? "Multicast Packet" :
5711 				phy_data & E1000_WUS_BC ? "Broadcast Packet" :
5712 				phy_data & E1000_WUS_MAG ? "Magic Packet" :
5713 				phy_data & E1000_WUS_LNKC ?
5714 				"Link Status Change" : "other");
5715 		}
5716 		e1e_wphy(&adapter->hw, BM_WUS, ~0);
5717 	} else {
5718 		u32 wus = er32(WUS);
5719 		if (wus) {
5720 			e_info("MAC Wakeup cause - %s\n",
5721 				wus & E1000_WUS_EX ? "Unicast Packet" :
5722 				wus & E1000_WUS_MC ? "Multicast Packet" :
5723 				wus & E1000_WUS_BC ? "Broadcast Packet" :
5724 				wus & E1000_WUS_MAG ? "Magic Packet" :
5725 				wus & E1000_WUS_LNKC ? "Link Status Change" :
5726 				"other");
5727 		}
5728 		ew32(WUS, ~0);
5729 	}
5730 
5731 	e1000e_reset(adapter);
5732 
5733 	e1000_init_manageability_pt(adapter);
5734 
5735 	if (netif_running(netdev))
5736 		e1000e_up(adapter);
5737 
5738 	netif_device_attach(netdev);
5739 
5740 	/*
5741 	 * If the controller has AMT, do not set DRV_LOAD until the interface
5742 	 * is up.  For all other cases, let the f/w know that the h/w is now
5743 	 * under the control of the driver.
5744 	 */
5745 	if (!(adapter->flags & FLAG_HAS_AMT))
5746 		e1000e_get_hw_control(adapter);
5747 
5748 	return 0;
5749 }
5750 
5751 #ifdef CONFIG_PM_SLEEP
5752 static int e1000_suspend(struct device *dev)
5753 {
5754 	struct pci_dev *pdev = to_pci_dev(dev);
5755 	int retval;
5756 	bool wake;
5757 
5758 	retval = __e1000_shutdown(pdev, &wake, false);
5759 	if (!retval)
5760 		e1000_complete_shutdown(pdev, true, wake);
5761 
5762 	return retval;
5763 }
5764 
5765 static int e1000_resume(struct device *dev)
5766 {
5767 	struct pci_dev *pdev = to_pci_dev(dev);
5768 	struct net_device *netdev = pci_get_drvdata(pdev);
5769 	struct e1000_adapter *adapter = netdev_priv(netdev);
5770 
5771 	if (e1000e_pm_ready(adapter))
5772 		adapter->idle_check = true;
5773 
5774 	return __e1000_resume(pdev);
5775 }
5776 #endif /* CONFIG_PM_SLEEP */
5777 
5778 #ifdef CONFIG_PM_RUNTIME
5779 static int e1000_runtime_suspend(struct device *dev)
5780 {
5781 	struct pci_dev *pdev = to_pci_dev(dev);
5782 	struct net_device *netdev = pci_get_drvdata(pdev);
5783 	struct e1000_adapter *adapter = netdev_priv(netdev);
5784 
5785 	if (e1000e_pm_ready(adapter)) {
5786 		bool wake;
5787 
5788 		__e1000_shutdown(pdev, &wake, true);
5789 	}
5790 
5791 	return 0;
5792 }
5793 
5794 static int e1000_idle(struct device *dev)
5795 {
5796 	struct pci_dev *pdev = to_pci_dev(dev);
5797 	struct net_device *netdev = pci_get_drvdata(pdev);
5798 	struct e1000_adapter *adapter = netdev_priv(netdev);
5799 
5800 	if (!e1000e_pm_ready(adapter))
5801 		return 0;
5802 
5803 	if (adapter->idle_check) {
5804 		adapter->idle_check = false;
5805 		if (!e1000e_has_link(adapter))
5806 			pm_schedule_suspend(dev, MSEC_PER_SEC);
5807 	}
5808 
5809 	return -EBUSY;
5810 }
5811 
5812 static int e1000_runtime_resume(struct device *dev)
5813 {
5814 	struct pci_dev *pdev = to_pci_dev(dev);
5815 	struct net_device *netdev = pci_get_drvdata(pdev);
5816 	struct e1000_adapter *adapter = netdev_priv(netdev);
5817 
5818 	if (!e1000e_pm_ready(adapter))
5819 		return 0;
5820 
5821 	adapter->idle_check = !dev->power.runtime_auto;
5822 	return __e1000_resume(pdev);
5823 }
5824 #endif /* CONFIG_PM_RUNTIME */
5825 #endif /* CONFIG_PM */
5826 
5827 static void e1000_shutdown(struct pci_dev *pdev)
5828 {
5829 	bool wake = false;
5830 
5831 	__e1000_shutdown(pdev, &wake, false);
5832 
5833 	if (system_state == SYSTEM_POWER_OFF)
5834 		e1000_complete_shutdown(pdev, false, wake);
5835 }
5836 
5837 #ifdef CONFIG_NET_POLL_CONTROLLER
5838 
5839 static irqreturn_t e1000_intr_msix(int irq, void *data)
5840 {
5841 	struct net_device *netdev = data;
5842 	struct e1000_adapter *adapter = netdev_priv(netdev);
5843 
5844 	if (adapter->msix_entries) {
5845 		int vector, msix_irq;
5846 
5847 		vector = 0;
5848 		msix_irq = adapter->msix_entries[vector].vector;
5849 		disable_irq(msix_irq);
5850 		e1000_intr_msix_rx(msix_irq, netdev);
5851 		enable_irq(msix_irq);
5852 
5853 		vector++;
5854 		msix_irq = adapter->msix_entries[vector].vector;
5855 		disable_irq(msix_irq);
5856 		e1000_intr_msix_tx(msix_irq, netdev);
5857 		enable_irq(msix_irq);
5858 
5859 		vector++;
5860 		msix_irq = adapter->msix_entries[vector].vector;
5861 		disable_irq(msix_irq);
5862 		e1000_msix_other(msix_irq, netdev);
5863 		enable_irq(msix_irq);
5864 	}
5865 
5866 	return IRQ_HANDLED;
5867 }
5868 
5869 /*
5870  * Polling 'interrupt' - used by things like netconsole to send skbs
5871  * without having to re-enable interrupts. It's not called while
5872  * the interrupt routine is executing.
5873  */
5874 static void e1000_netpoll(struct net_device *netdev)
5875 {
5876 	struct e1000_adapter *adapter = netdev_priv(netdev);
5877 
5878 	switch (adapter->int_mode) {
5879 	case E1000E_INT_MODE_MSIX:
5880 		e1000_intr_msix(adapter->pdev->irq, netdev);
5881 		break;
5882 	case E1000E_INT_MODE_MSI:
5883 		disable_irq(adapter->pdev->irq);
5884 		e1000_intr_msi(adapter->pdev->irq, netdev);
5885 		enable_irq(adapter->pdev->irq);
5886 		break;
5887 	default: /* E1000E_INT_MODE_LEGACY */
5888 		disable_irq(adapter->pdev->irq);
5889 		e1000_intr(adapter->pdev->irq, netdev);
5890 		enable_irq(adapter->pdev->irq);
5891 		break;
5892 	}
5893 }
5894 #endif
5895 
5896 /**
5897  * e1000_io_error_detected - called when PCI error is detected
5898  * @pdev: Pointer to PCI device
5899  * @state: The current pci connection state
5900  *
5901  * This function is called after a PCI bus error affecting
5902  * this device has been detected.
5903  */
5904 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5905 						pci_channel_state_t state)
5906 {
5907 	struct net_device *netdev = pci_get_drvdata(pdev);
5908 	struct e1000_adapter *adapter = netdev_priv(netdev);
5909 
5910 	netif_device_detach(netdev);
5911 
5912 	if (state == pci_channel_io_perm_failure)
5913 		return PCI_ERS_RESULT_DISCONNECT;
5914 
5915 	if (netif_running(netdev))
5916 		e1000e_down(adapter);
5917 	pci_disable_device(pdev);
5918 
5919 	/* Request a slot slot reset. */
5920 	return PCI_ERS_RESULT_NEED_RESET;
5921 }
5922 
5923 /**
5924  * e1000_io_slot_reset - called after the pci bus has been reset.
5925  * @pdev: Pointer to PCI device
5926  *
5927  * Restart the card from scratch, as if from a cold-boot. Implementation
5928  * resembles the first-half of the e1000_resume routine.
5929  */
5930 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5931 {
5932 	struct net_device *netdev = pci_get_drvdata(pdev);
5933 	struct e1000_adapter *adapter = netdev_priv(netdev);
5934 	struct e1000_hw *hw = &adapter->hw;
5935 	u16 aspm_disable_flag = 0;
5936 	int err;
5937 	pci_ers_result_t result;
5938 
5939 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
5940 		aspm_disable_flag = PCIE_LINK_STATE_L0S;
5941 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
5942 		aspm_disable_flag |= PCIE_LINK_STATE_L1;
5943 	if (aspm_disable_flag)
5944 		e1000e_disable_aspm(pdev, aspm_disable_flag);
5945 
5946 	err = pci_enable_device_mem(pdev);
5947 	if (err) {
5948 		dev_err(&pdev->dev,
5949 			"Cannot re-enable PCI device after reset.\n");
5950 		result = PCI_ERS_RESULT_DISCONNECT;
5951 	} else {
5952 		pci_set_master(pdev);
5953 		pdev->state_saved = true;
5954 		pci_restore_state(pdev);
5955 
5956 		pci_enable_wake(pdev, PCI_D3hot, 0);
5957 		pci_enable_wake(pdev, PCI_D3cold, 0);
5958 
5959 		e1000e_reset(adapter);
5960 		ew32(WUS, ~0);
5961 		result = PCI_ERS_RESULT_RECOVERED;
5962 	}
5963 
5964 	pci_cleanup_aer_uncorrect_error_status(pdev);
5965 
5966 	return result;
5967 }
5968 
5969 /**
5970  * e1000_io_resume - called when traffic can start flowing again.
5971  * @pdev: Pointer to PCI device
5972  *
5973  * This callback is called when the error recovery driver tells us that
5974  * its OK to resume normal operation. Implementation resembles the
5975  * second-half of the e1000_resume routine.
5976  */
5977 static void e1000_io_resume(struct pci_dev *pdev)
5978 {
5979 	struct net_device *netdev = pci_get_drvdata(pdev);
5980 	struct e1000_adapter *adapter = netdev_priv(netdev);
5981 
5982 	e1000_init_manageability_pt(adapter);
5983 
5984 	if (netif_running(netdev)) {
5985 		if (e1000e_up(adapter)) {
5986 			dev_err(&pdev->dev,
5987 				"can't bring device back up after reset\n");
5988 			return;
5989 		}
5990 	}
5991 
5992 	netif_device_attach(netdev);
5993 
5994 	/*
5995 	 * If the controller has AMT, do not set DRV_LOAD until the interface
5996 	 * is up.  For all other cases, let the f/w know that the h/w is now
5997 	 * under the control of the driver.
5998 	 */
5999 	if (!(adapter->flags & FLAG_HAS_AMT))
6000 		e1000e_get_hw_control(adapter);
6001 
6002 }
6003 
6004 static void e1000_print_device_info(struct e1000_adapter *adapter)
6005 {
6006 	struct e1000_hw *hw = &adapter->hw;
6007 	struct net_device *netdev = adapter->netdev;
6008 	u32 ret_val;
6009 	u8 pba_str[E1000_PBANUM_LENGTH];
6010 
6011 	/* print bus type/speed/width info */
6012 	e_info("(PCI Express:2.5GT/s:%s) %pM\n",
6013 	       /* bus width */
6014 	       ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
6015 	        "Width x1"),
6016 	       /* MAC address */
6017 	       netdev->dev_addr);
6018 	e_info("Intel(R) PRO/%s Network Connection\n",
6019 	       (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
6020 	ret_val = e1000_read_pba_string_generic(hw, pba_str,
6021 						E1000_PBANUM_LENGTH);
6022 	if (ret_val)
6023 		strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
6024 	e_info("MAC: %d, PHY: %d, PBA No: %s\n",
6025 	       hw->mac.type, hw->phy.type, pba_str);
6026 }
6027 
6028 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
6029 {
6030 	struct e1000_hw *hw = &adapter->hw;
6031 	int ret_val;
6032 	u16 buf = 0;
6033 
6034 	if (hw->mac.type != e1000_82573)
6035 		return;
6036 
6037 	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
6038 	le16_to_cpus(&buf);
6039 	if (!ret_val && (!(buf & (1 << 0)))) {
6040 		/* Deep Smart Power Down (DSPD) */
6041 		dev_warn(&adapter->pdev->dev,
6042 			 "Warning: detected DSPD enabled in EEPROM\n");
6043 	}
6044 }
6045 
6046 static int e1000_set_features(struct net_device *netdev,
6047 			      netdev_features_t features)
6048 {
6049 	struct e1000_adapter *adapter = netdev_priv(netdev);
6050 	netdev_features_t changed = features ^ netdev->features;
6051 
6052 	if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
6053 		adapter->flags |= FLAG_TSO_FORCE;
6054 
6055 	if (!(changed & (NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX |
6056 			 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
6057 			 NETIF_F_RXALL)))
6058 		return 0;
6059 
6060 	/*
6061 	 * IP payload checksum (enabled with jumbos/packet-split when Rx
6062 	 * checksum is enabled) and generation of RSS hash is mutually
6063 	 * exclusive in the hardware.
6064 	 */
6065 	if (adapter->rx_ps_pages &&
6066 	    (features & NETIF_F_RXCSUM) && (features & NETIF_F_RXHASH)) {
6067 		e_err("Enabling both receive checksum offload and receive hashing is not possible with jumbo frames.  Disable jumbos or enable only one of the receive offload features.\n");
6068 		return -EINVAL;
6069 	}
6070 
6071 	if (changed & NETIF_F_RXFCS) {
6072 		if (features & NETIF_F_RXFCS) {
6073 			adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6074 		} else {
6075 			/* We need to take it back to defaults, which might mean
6076 			 * stripping is still disabled at the adapter level.
6077 			 */
6078 			if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
6079 				adapter->flags2 |= FLAG2_CRC_STRIPPING;
6080 			else
6081 				adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6082 		}
6083 	}
6084 
6085 	netdev->features = features;
6086 
6087 	if (netif_running(netdev))
6088 		e1000e_reinit_locked(adapter);
6089 	else
6090 		e1000e_reset(adapter);
6091 
6092 	return 0;
6093 }
6094 
6095 static const struct net_device_ops e1000e_netdev_ops = {
6096 	.ndo_open		= e1000_open,
6097 	.ndo_stop		= e1000_close,
6098 	.ndo_start_xmit		= e1000_xmit_frame,
6099 	.ndo_get_stats64	= e1000e_get_stats64,
6100 	.ndo_set_rx_mode	= e1000e_set_rx_mode,
6101 	.ndo_set_mac_address	= e1000_set_mac,
6102 	.ndo_change_mtu		= e1000_change_mtu,
6103 	.ndo_do_ioctl		= e1000_ioctl,
6104 	.ndo_tx_timeout		= e1000_tx_timeout,
6105 	.ndo_validate_addr	= eth_validate_addr,
6106 
6107 	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
6108 	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
6109 #ifdef CONFIG_NET_POLL_CONTROLLER
6110 	.ndo_poll_controller	= e1000_netpoll,
6111 #endif
6112 	.ndo_set_features = e1000_set_features,
6113 };
6114 
6115 /**
6116  * e1000_probe - Device Initialization Routine
6117  * @pdev: PCI device information struct
6118  * @ent: entry in e1000_pci_tbl
6119  *
6120  * Returns 0 on success, negative on failure
6121  *
6122  * e1000_probe initializes an adapter identified by a pci_dev structure.
6123  * The OS initialization, configuring of the adapter private structure,
6124  * and a hardware reset occur.
6125  **/
6126 static int __devinit e1000_probe(struct pci_dev *pdev,
6127 				 const struct pci_device_id *ent)
6128 {
6129 	struct net_device *netdev;
6130 	struct e1000_adapter *adapter;
6131 	struct e1000_hw *hw;
6132 	const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
6133 	resource_size_t mmio_start, mmio_len;
6134 	resource_size_t flash_start, flash_len;
6135 	static int cards_found;
6136 	u16 aspm_disable_flag = 0;
6137 	int i, err, pci_using_dac;
6138 	u16 eeprom_data = 0;
6139 	u16 eeprom_apme_mask = E1000_EEPROM_APME;
6140 
6141 	if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
6142 		aspm_disable_flag = PCIE_LINK_STATE_L0S;
6143 	if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
6144 		aspm_disable_flag |= PCIE_LINK_STATE_L1;
6145 	if (aspm_disable_flag)
6146 		e1000e_disable_aspm(pdev, aspm_disable_flag);
6147 
6148 	err = pci_enable_device_mem(pdev);
6149 	if (err)
6150 		return err;
6151 
6152 	pci_using_dac = 0;
6153 	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
6154 	if (!err) {
6155 		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
6156 		if (!err)
6157 			pci_using_dac = 1;
6158 	} else {
6159 		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
6160 		if (err) {
6161 			err = dma_set_coherent_mask(&pdev->dev,
6162 						    DMA_BIT_MASK(32));
6163 			if (err) {
6164 				dev_err(&pdev->dev, "No usable DMA configuration, aborting\n");
6165 				goto err_dma;
6166 			}
6167 		}
6168 	}
6169 
6170 	err = pci_request_selected_regions_exclusive(pdev,
6171 	                                  pci_select_bars(pdev, IORESOURCE_MEM),
6172 	                                  e1000e_driver_name);
6173 	if (err)
6174 		goto err_pci_reg;
6175 
6176 	/* AER (Advanced Error Reporting) hooks */
6177 	pci_enable_pcie_error_reporting(pdev);
6178 
6179 	pci_set_master(pdev);
6180 	/* PCI config space info */
6181 	err = pci_save_state(pdev);
6182 	if (err)
6183 		goto err_alloc_etherdev;
6184 
6185 	err = -ENOMEM;
6186 	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
6187 	if (!netdev)
6188 		goto err_alloc_etherdev;
6189 
6190 	SET_NETDEV_DEV(netdev, &pdev->dev);
6191 
6192 	netdev->irq = pdev->irq;
6193 
6194 	pci_set_drvdata(pdev, netdev);
6195 	adapter = netdev_priv(netdev);
6196 	hw = &adapter->hw;
6197 	adapter->netdev = netdev;
6198 	adapter->pdev = pdev;
6199 	adapter->ei = ei;
6200 	adapter->pba = ei->pba;
6201 	adapter->flags = ei->flags;
6202 	adapter->flags2 = ei->flags2;
6203 	adapter->hw.adapter = adapter;
6204 	adapter->hw.mac.type = ei->mac;
6205 	adapter->max_hw_frame_size = ei->max_hw_frame_size;
6206 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
6207 
6208 	mmio_start = pci_resource_start(pdev, 0);
6209 	mmio_len = pci_resource_len(pdev, 0);
6210 
6211 	err = -EIO;
6212 	adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
6213 	if (!adapter->hw.hw_addr)
6214 		goto err_ioremap;
6215 
6216 	if ((adapter->flags & FLAG_HAS_FLASH) &&
6217 	    (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
6218 		flash_start = pci_resource_start(pdev, 1);
6219 		flash_len = pci_resource_len(pdev, 1);
6220 		adapter->hw.flash_address = ioremap(flash_start, flash_len);
6221 		if (!adapter->hw.flash_address)
6222 			goto err_flashmap;
6223 	}
6224 
6225 	/* construct the net_device struct */
6226 	netdev->netdev_ops		= &e1000e_netdev_ops;
6227 	e1000e_set_ethtool_ops(netdev);
6228 	netdev->watchdog_timeo		= 5 * HZ;
6229 	netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
6230 	strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
6231 
6232 	netdev->mem_start = mmio_start;
6233 	netdev->mem_end = mmio_start + mmio_len;
6234 
6235 	adapter->bd_number = cards_found++;
6236 
6237 	e1000e_check_options(adapter);
6238 
6239 	/* setup adapter struct */
6240 	err = e1000_sw_init(adapter);
6241 	if (err)
6242 		goto err_sw_init;
6243 
6244 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
6245 	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
6246 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
6247 
6248 	err = ei->get_variants(adapter);
6249 	if (err)
6250 		goto err_hw_init;
6251 
6252 	if ((adapter->flags & FLAG_IS_ICH) &&
6253 	    (adapter->flags & FLAG_READ_ONLY_NVM))
6254 		e1000e_write_protect_nvm_ich8lan(&adapter->hw);
6255 
6256 	hw->mac.ops.get_bus_info(&adapter->hw);
6257 
6258 	adapter->hw.phy.autoneg_wait_to_complete = 0;
6259 
6260 	/* Copper options */
6261 	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
6262 		adapter->hw.phy.mdix = AUTO_ALL_MODES;
6263 		adapter->hw.phy.disable_polarity_correction = 0;
6264 		adapter->hw.phy.ms_type = e1000_ms_hw_default;
6265 	}
6266 
6267 	if (hw->phy.ops.check_reset_block(hw))
6268 		e_info("PHY reset is blocked due to SOL/IDER session.\n");
6269 
6270 	/* Set initial default active device features */
6271 	netdev->features = (NETIF_F_SG |
6272 			    NETIF_F_HW_VLAN_RX |
6273 			    NETIF_F_HW_VLAN_TX |
6274 			    NETIF_F_TSO |
6275 			    NETIF_F_TSO6 |
6276 			    NETIF_F_RXHASH |
6277 			    NETIF_F_RXCSUM |
6278 			    NETIF_F_HW_CSUM);
6279 
6280 	/* Set user-changeable features (subset of all device features) */
6281 	netdev->hw_features = netdev->features;
6282 	netdev->hw_features |= NETIF_F_RXFCS;
6283 	netdev->priv_flags |= IFF_SUPP_NOFCS;
6284 	netdev->hw_features |= NETIF_F_RXALL;
6285 
6286 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
6287 		netdev->features |= NETIF_F_HW_VLAN_FILTER;
6288 
6289 	netdev->vlan_features |= (NETIF_F_SG |
6290 				  NETIF_F_TSO |
6291 				  NETIF_F_TSO6 |
6292 				  NETIF_F_HW_CSUM);
6293 
6294 	netdev->priv_flags |= IFF_UNICAST_FLT;
6295 
6296 	if (pci_using_dac) {
6297 		netdev->features |= NETIF_F_HIGHDMA;
6298 		netdev->vlan_features |= NETIF_F_HIGHDMA;
6299 	}
6300 
6301 	if (e1000e_enable_mng_pass_thru(&adapter->hw))
6302 		adapter->flags |= FLAG_MNG_PT_ENABLED;
6303 
6304 	/*
6305 	 * before reading the NVM, reset the controller to
6306 	 * put the device in a known good starting state
6307 	 */
6308 	adapter->hw.mac.ops.reset_hw(&adapter->hw);
6309 
6310 	/*
6311 	 * systems with ASPM and others may see the checksum fail on the first
6312 	 * attempt. Let's give it a few tries
6313 	 */
6314 	for (i = 0;; i++) {
6315 		if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
6316 			break;
6317 		if (i == 2) {
6318 			e_err("The NVM Checksum Is Not Valid\n");
6319 			err = -EIO;
6320 			goto err_eeprom;
6321 		}
6322 	}
6323 
6324 	e1000_eeprom_checks(adapter);
6325 
6326 	/* copy the MAC address */
6327 	if (e1000e_read_mac_addr(&adapter->hw))
6328 		e_err("NVM Read Error while reading MAC address\n");
6329 
6330 	memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
6331 	memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
6332 
6333 	if (!is_valid_ether_addr(netdev->perm_addr)) {
6334 		e_err("Invalid MAC Address: %pM\n", netdev->perm_addr);
6335 		err = -EIO;
6336 		goto err_eeprom;
6337 	}
6338 
6339 	init_timer(&adapter->watchdog_timer);
6340 	adapter->watchdog_timer.function = e1000_watchdog;
6341 	adapter->watchdog_timer.data = (unsigned long) adapter;
6342 
6343 	init_timer(&adapter->phy_info_timer);
6344 	adapter->phy_info_timer.function = e1000_update_phy_info;
6345 	adapter->phy_info_timer.data = (unsigned long) adapter;
6346 
6347 	INIT_WORK(&adapter->reset_task, e1000_reset_task);
6348 	INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
6349 	INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
6350 	INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
6351 	INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
6352 
6353 	/* Initialize link parameters. User can change them with ethtool */
6354 	adapter->hw.mac.autoneg = 1;
6355 	adapter->fc_autoneg = true;
6356 	adapter->hw.fc.requested_mode = e1000_fc_default;
6357 	adapter->hw.fc.current_mode = e1000_fc_default;
6358 	adapter->hw.phy.autoneg_advertised = 0x2f;
6359 
6360 	/* ring size defaults */
6361 	adapter->rx_ring->count = 256;
6362 	adapter->tx_ring->count = 256;
6363 
6364 	/*
6365 	 * Initial Wake on LAN setting - If APM wake is enabled in
6366 	 * the EEPROM, enable the ACPI Magic Packet filter
6367 	 */
6368 	if (adapter->flags & FLAG_APME_IN_WUC) {
6369 		/* APME bit in EEPROM is mapped to WUC.APME */
6370 		eeprom_data = er32(WUC);
6371 		eeprom_apme_mask = E1000_WUC_APME;
6372 		if ((hw->mac.type > e1000_ich10lan) &&
6373 		    (eeprom_data & E1000_WUC_PHY_WAKE))
6374 			adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
6375 	} else if (adapter->flags & FLAG_APME_IN_CTRL3) {
6376 		if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
6377 		    (adapter->hw.bus.func == 1))
6378 			e1000_read_nvm(&adapter->hw, NVM_INIT_CONTROL3_PORT_B,
6379 				       1, &eeprom_data);
6380 		else
6381 			e1000_read_nvm(&adapter->hw, NVM_INIT_CONTROL3_PORT_A,
6382 				       1, &eeprom_data);
6383 	}
6384 
6385 	/* fetch WoL from EEPROM */
6386 	if (eeprom_data & eeprom_apme_mask)
6387 		adapter->eeprom_wol |= E1000_WUFC_MAG;
6388 
6389 	/*
6390 	 * now that we have the eeprom settings, apply the special cases
6391 	 * where the eeprom may be wrong or the board simply won't support
6392 	 * wake on lan on a particular port
6393 	 */
6394 	if (!(adapter->flags & FLAG_HAS_WOL))
6395 		adapter->eeprom_wol = 0;
6396 
6397 	/* initialize the wol settings based on the eeprom settings */
6398 	adapter->wol = adapter->eeprom_wol;
6399 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
6400 
6401 	/* save off EEPROM version number */
6402 	e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
6403 
6404 	/* reset the hardware with the new settings */
6405 	e1000e_reset(adapter);
6406 
6407 	/*
6408 	 * If the controller has AMT, do not set DRV_LOAD until the interface
6409 	 * is up.  For all other cases, let the f/w know that the h/w is now
6410 	 * under the control of the driver.
6411 	 */
6412 	if (!(adapter->flags & FLAG_HAS_AMT))
6413 		e1000e_get_hw_control(adapter);
6414 
6415 	strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
6416 	err = register_netdev(netdev);
6417 	if (err)
6418 		goto err_register;
6419 
6420 	/* carrier off reporting is important to ethtool even BEFORE open */
6421 	netif_carrier_off(netdev);
6422 
6423 	e1000_print_device_info(adapter);
6424 
6425 	if (pci_dev_run_wake(pdev))
6426 		pm_runtime_put_noidle(&pdev->dev);
6427 
6428 	return 0;
6429 
6430 err_register:
6431 	if (!(adapter->flags & FLAG_HAS_AMT))
6432 		e1000e_release_hw_control(adapter);
6433 err_eeprom:
6434 	if (!hw->phy.ops.check_reset_block(hw))
6435 		e1000_phy_hw_reset(&adapter->hw);
6436 err_hw_init:
6437 	kfree(adapter->tx_ring);
6438 	kfree(adapter->rx_ring);
6439 err_sw_init:
6440 	if (adapter->hw.flash_address)
6441 		iounmap(adapter->hw.flash_address);
6442 	e1000e_reset_interrupt_capability(adapter);
6443 err_flashmap:
6444 	iounmap(adapter->hw.hw_addr);
6445 err_ioremap:
6446 	free_netdev(netdev);
6447 err_alloc_etherdev:
6448 	pci_release_selected_regions(pdev,
6449 	                             pci_select_bars(pdev, IORESOURCE_MEM));
6450 err_pci_reg:
6451 err_dma:
6452 	pci_disable_device(pdev);
6453 	return err;
6454 }
6455 
6456 /**
6457  * e1000_remove - Device Removal Routine
6458  * @pdev: PCI device information struct
6459  *
6460  * e1000_remove is called by the PCI subsystem to alert the driver
6461  * that it should release a PCI device.  The could be caused by a
6462  * Hot-Plug event, or because the driver is going to be removed from
6463  * memory.
6464  **/
6465 static void __devexit e1000_remove(struct pci_dev *pdev)
6466 {
6467 	struct net_device *netdev = pci_get_drvdata(pdev);
6468 	struct e1000_adapter *adapter = netdev_priv(netdev);
6469 	bool down = test_bit(__E1000_DOWN, &adapter->state);
6470 
6471 	/*
6472 	 * The timers may be rescheduled, so explicitly disable them
6473 	 * from being rescheduled.
6474 	 */
6475 	if (!down)
6476 		set_bit(__E1000_DOWN, &adapter->state);
6477 	del_timer_sync(&adapter->watchdog_timer);
6478 	del_timer_sync(&adapter->phy_info_timer);
6479 
6480 	cancel_work_sync(&adapter->reset_task);
6481 	cancel_work_sync(&adapter->watchdog_task);
6482 	cancel_work_sync(&adapter->downshift_task);
6483 	cancel_work_sync(&adapter->update_phy_task);
6484 	cancel_work_sync(&adapter->print_hang_task);
6485 
6486 	if (!(netdev->flags & IFF_UP))
6487 		e1000_power_down_phy(adapter);
6488 
6489 	/* Don't lie to e1000_close() down the road. */
6490 	if (!down)
6491 		clear_bit(__E1000_DOWN, &adapter->state);
6492 	unregister_netdev(netdev);
6493 
6494 	if (pci_dev_run_wake(pdev))
6495 		pm_runtime_get_noresume(&pdev->dev);
6496 
6497 	/*
6498 	 * Release control of h/w to f/w.  If f/w is AMT enabled, this
6499 	 * would have already happened in close and is redundant.
6500 	 */
6501 	e1000e_release_hw_control(adapter);
6502 
6503 	e1000e_reset_interrupt_capability(adapter);
6504 	kfree(adapter->tx_ring);
6505 	kfree(adapter->rx_ring);
6506 
6507 	iounmap(adapter->hw.hw_addr);
6508 	if (adapter->hw.flash_address)
6509 		iounmap(adapter->hw.flash_address);
6510 	pci_release_selected_regions(pdev,
6511 	                             pci_select_bars(pdev, IORESOURCE_MEM));
6512 
6513 	free_netdev(netdev);
6514 
6515 	/* AER disable */
6516 	pci_disable_pcie_error_reporting(pdev);
6517 
6518 	pci_disable_device(pdev);
6519 }
6520 
6521 /* PCI Error Recovery (ERS) */
6522 static struct pci_error_handlers e1000_err_handler = {
6523 	.error_detected = e1000_io_error_detected,
6524 	.slot_reset = e1000_io_slot_reset,
6525 	.resume = e1000_io_resume,
6526 };
6527 
6528 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
6529 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
6530 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
6531 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
6532 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
6533 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
6534 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
6535 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
6536 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
6537 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
6538 
6539 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
6540 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
6541 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
6542 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
6543 
6544 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
6545 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
6546 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
6547 
6548 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
6549 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
6550 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
6551 
6552 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
6553 	  board_80003es2lan },
6554 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
6555 	  board_80003es2lan },
6556 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
6557 	  board_80003es2lan },
6558 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
6559 	  board_80003es2lan },
6560 
6561 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
6562 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
6563 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
6564 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
6565 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
6566 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
6567 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
6568 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
6569 
6570 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
6571 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
6572 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
6573 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
6574 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
6575 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
6576 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
6577 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
6578 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
6579 
6580 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
6581 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
6582 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
6583 
6584 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
6585 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
6586 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
6587 
6588 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
6589 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
6590 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
6591 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
6592 
6593 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
6594 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
6595 
6596 	{ 0, 0, 0, 0, 0, 0, 0 }	/* terminate list */
6597 };
6598 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
6599 
6600 #ifdef CONFIG_PM
6601 static const struct dev_pm_ops e1000_pm_ops = {
6602 	SET_SYSTEM_SLEEP_PM_OPS(e1000_suspend, e1000_resume)
6603 	SET_RUNTIME_PM_OPS(e1000_runtime_suspend,
6604 				e1000_runtime_resume, e1000_idle)
6605 };
6606 #endif
6607 
6608 /* PCI Device API Driver */
6609 static struct pci_driver e1000_driver = {
6610 	.name     = e1000e_driver_name,
6611 	.id_table = e1000_pci_tbl,
6612 	.probe    = e1000_probe,
6613 	.remove   = __devexit_p(e1000_remove),
6614 #ifdef CONFIG_PM
6615 	.driver   = {
6616 		.pm = &e1000_pm_ops,
6617 	},
6618 #endif
6619 	.shutdown = e1000_shutdown,
6620 	.err_handler = &e1000_err_handler
6621 };
6622 
6623 /**
6624  * e1000_init_module - Driver Registration Routine
6625  *
6626  * e1000_init_module is the first routine called when the driver is
6627  * loaded. All it does is register with the PCI subsystem.
6628  **/
6629 static int __init e1000_init_module(void)
6630 {
6631 	int ret;
6632 	pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
6633 		e1000e_driver_version);
6634 	pr_info("Copyright(c) 1999 - 2012 Intel Corporation.\n");
6635 	ret = pci_register_driver(&e1000_driver);
6636 
6637 	return ret;
6638 }
6639 module_init(e1000_init_module);
6640 
6641 /**
6642  * e1000_exit_module - Driver Exit Cleanup Routine
6643  *
6644  * e1000_exit_module is called just before the driver is removed
6645  * from memory.
6646  **/
6647 static void __exit e1000_exit_module(void)
6648 {
6649 	pci_unregister_driver(&e1000_driver);
6650 }
6651 module_exit(e1000_exit_module);
6652 
6653 
6654 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
6655 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
6656 MODULE_LICENSE("GPL");
6657 MODULE_VERSION(DRV_VERSION);
6658 
6659 /* netdev.c */
6660