1 /* Intel PRO/1000 Linux driver 2 * Copyright(c) 1999 - 2014 Intel Corporation. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms and conditions of the GNU General Public License, 6 * version 2, as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope it will be useful, but WITHOUT 9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 11 * more details. 12 * 13 * The full GNU General Public License is included in this distribution in 14 * the file called "COPYING". 15 * 16 * Contact Information: 17 * Linux NICS <linux.nics@intel.com> 18 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 19 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 20 */ 21 22 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 23 24 #include <linux/module.h> 25 #include <linux/types.h> 26 #include <linux/init.h> 27 #include <linux/pci.h> 28 #include <linux/vmalloc.h> 29 #include <linux/pagemap.h> 30 #include <linux/delay.h> 31 #include <linux/netdevice.h> 32 #include <linux/interrupt.h> 33 #include <linux/tcp.h> 34 #include <linux/ipv6.h> 35 #include <linux/slab.h> 36 #include <net/checksum.h> 37 #include <net/ip6_checksum.h> 38 #include <linux/ethtool.h> 39 #include <linux/if_vlan.h> 40 #include <linux/cpu.h> 41 #include <linux/smp.h> 42 #include <linux/pm_qos.h> 43 #include <linux/pm_runtime.h> 44 #include <linux/aer.h> 45 #include <linux/prefetch.h> 46 47 #include "e1000.h" 48 49 #define DRV_EXTRAVERSION "-k" 50 51 #define DRV_VERSION "2.3.2" DRV_EXTRAVERSION 52 char e1000e_driver_name[] = "e1000e"; 53 const char e1000e_driver_version[] = DRV_VERSION; 54 55 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK) 56 static int debug = -1; 57 module_param(debug, int, 0); 58 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 59 60 static const struct e1000_info *e1000_info_tbl[] = { 61 [board_82571] = &e1000_82571_info, 62 [board_82572] = &e1000_82572_info, 63 [board_82573] = &e1000_82573_info, 64 [board_82574] = &e1000_82574_info, 65 [board_82583] = &e1000_82583_info, 66 [board_80003es2lan] = &e1000_es2_info, 67 [board_ich8lan] = &e1000_ich8_info, 68 [board_ich9lan] = &e1000_ich9_info, 69 [board_ich10lan] = &e1000_ich10_info, 70 [board_pchlan] = &e1000_pch_info, 71 [board_pch2lan] = &e1000_pch2_info, 72 [board_pch_lpt] = &e1000_pch_lpt_info, 73 }; 74 75 struct e1000_reg_info { 76 u32 ofs; 77 char *name; 78 }; 79 80 static const struct e1000_reg_info e1000_reg_info_tbl[] = { 81 /* General Registers */ 82 {E1000_CTRL, "CTRL"}, 83 {E1000_STATUS, "STATUS"}, 84 {E1000_CTRL_EXT, "CTRL_EXT"}, 85 86 /* Interrupt Registers */ 87 {E1000_ICR, "ICR"}, 88 89 /* Rx Registers */ 90 {E1000_RCTL, "RCTL"}, 91 {E1000_RDLEN(0), "RDLEN"}, 92 {E1000_RDH(0), "RDH"}, 93 {E1000_RDT(0), "RDT"}, 94 {E1000_RDTR, "RDTR"}, 95 {E1000_RXDCTL(0), "RXDCTL"}, 96 {E1000_ERT, "ERT"}, 97 {E1000_RDBAL(0), "RDBAL"}, 98 {E1000_RDBAH(0), "RDBAH"}, 99 {E1000_RDFH, "RDFH"}, 100 {E1000_RDFT, "RDFT"}, 101 {E1000_RDFHS, "RDFHS"}, 102 {E1000_RDFTS, "RDFTS"}, 103 {E1000_RDFPC, "RDFPC"}, 104 105 /* Tx Registers */ 106 {E1000_TCTL, "TCTL"}, 107 {E1000_TDBAL(0), "TDBAL"}, 108 {E1000_TDBAH(0), "TDBAH"}, 109 {E1000_TDLEN(0), "TDLEN"}, 110 {E1000_TDH(0), "TDH"}, 111 {E1000_TDT(0), "TDT"}, 112 {E1000_TIDV, "TIDV"}, 113 {E1000_TXDCTL(0), "TXDCTL"}, 114 {E1000_TADV, "TADV"}, 115 {E1000_TARC(0), "TARC"}, 116 {E1000_TDFH, "TDFH"}, 117 {E1000_TDFT, "TDFT"}, 118 {E1000_TDFHS, "TDFHS"}, 119 {E1000_TDFTS, "TDFTS"}, 120 {E1000_TDFPC, "TDFPC"}, 121 122 /* List Terminator */ 123 {0, NULL} 124 }; 125 126 /** 127 * __ew32_prepare - prepare to write to MAC CSR register on certain parts 128 * @hw: pointer to the HW structure 129 * 130 * When updating the MAC CSR registers, the Manageability Engine (ME) could 131 * be accessing the registers at the same time. Normally, this is handled in 132 * h/w by an arbiter but on some parts there is a bug that acknowledges Host 133 * accesses later than it should which could result in the register to have 134 * an incorrect value. Workaround this by checking the FWSM register which 135 * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set 136 * and try again a number of times. 137 **/ 138 s32 __ew32_prepare(struct e1000_hw *hw) 139 { 140 s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT; 141 142 while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i) 143 udelay(50); 144 145 return i; 146 } 147 148 void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val) 149 { 150 if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA) 151 __ew32_prepare(hw); 152 153 writel(val, hw->hw_addr + reg); 154 } 155 156 /** 157 * e1000_regdump - register printout routine 158 * @hw: pointer to the HW structure 159 * @reginfo: pointer to the register info table 160 **/ 161 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo) 162 { 163 int n = 0; 164 char rname[16]; 165 u32 regs[8]; 166 167 switch (reginfo->ofs) { 168 case E1000_RXDCTL(0): 169 for (n = 0; n < 2; n++) 170 regs[n] = __er32(hw, E1000_RXDCTL(n)); 171 break; 172 case E1000_TXDCTL(0): 173 for (n = 0; n < 2; n++) 174 regs[n] = __er32(hw, E1000_TXDCTL(n)); 175 break; 176 case E1000_TARC(0): 177 for (n = 0; n < 2; n++) 178 regs[n] = __er32(hw, E1000_TARC(n)); 179 break; 180 default: 181 pr_info("%-15s %08x\n", 182 reginfo->name, __er32(hw, reginfo->ofs)); 183 return; 184 } 185 186 snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]"); 187 pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]); 188 } 189 190 static void e1000e_dump_ps_pages(struct e1000_adapter *adapter, 191 struct e1000_buffer *bi) 192 { 193 int i; 194 struct e1000_ps_page *ps_page; 195 196 for (i = 0; i < adapter->rx_ps_pages; i++) { 197 ps_page = &bi->ps_pages[i]; 198 199 if (ps_page->page) { 200 pr_info("packet dump for ps_page %d:\n", i); 201 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 202 16, 1, page_address(ps_page->page), 203 PAGE_SIZE, true); 204 } 205 } 206 } 207 208 /** 209 * e1000e_dump - Print registers, Tx-ring and Rx-ring 210 * @adapter: board private structure 211 **/ 212 static void e1000e_dump(struct e1000_adapter *adapter) 213 { 214 struct net_device *netdev = adapter->netdev; 215 struct e1000_hw *hw = &adapter->hw; 216 struct e1000_reg_info *reginfo; 217 struct e1000_ring *tx_ring = adapter->tx_ring; 218 struct e1000_tx_desc *tx_desc; 219 struct my_u0 { 220 __le64 a; 221 __le64 b; 222 } *u0; 223 struct e1000_buffer *buffer_info; 224 struct e1000_ring *rx_ring = adapter->rx_ring; 225 union e1000_rx_desc_packet_split *rx_desc_ps; 226 union e1000_rx_desc_extended *rx_desc; 227 struct my_u1 { 228 __le64 a; 229 __le64 b; 230 __le64 c; 231 __le64 d; 232 } *u1; 233 u32 staterr; 234 int i = 0; 235 236 if (!netif_msg_hw(adapter)) 237 return; 238 239 /* Print netdevice Info */ 240 if (netdev) { 241 dev_info(&adapter->pdev->dev, "Net device Info\n"); 242 pr_info("Device Name state trans_start last_rx\n"); 243 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name, 244 netdev->state, netdev->trans_start, netdev->last_rx); 245 } 246 247 /* Print Registers */ 248 dev_info(&adapter->pdev->dev, "Register Dump\n"); 249 pr_info(" Register Name Value\n"); 250 for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl; 251 reginfo->name; reginfo++) { 252 e1000_regdump(hw, reginfo); 253 } 254 255 /* Print Tx Ring Summary */ 256 if (!netdev || !netif_running(netdev)) 257 return; 258 259 dev_info(&adapter->pdev->dev, "Tx Ring Summary\n"); 260 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n"); 261 buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean]; 262 pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n", 263 0, tx_ring->next_to_use, tx_ring->next_to_clean, 264 (unsigned long long)buffer_info->dma, 265 buffer_info->length, 266 buffer_info->next_to_watch, 267 (unsigned long long)buffer_info->time_stamp); 268 269 /* Print Tx Ring */ 270 if (!netif_msg_tx_done(adapter)) 271 goto rx_ring_summary; 272 273 dev_info(&adapter->pdev->dev, "Tx Ring Dump\n"); 274 275 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended) 276 * 277 * Legacy Transmit Descriptor 278 * +--------------------------------------------------------------+ 279 * 0 | Buffer Address [63:0] (Reserved on Write Back) | 280 * +--------------------------------------------------------------+ 281 * 8 | Special | CSS | Status | CMD | CSO | Length | 282 * +--------------------------------------------------------------+ 283 * 63 48 47 36 35 32 31 24 23 16 15 0 284 * 285 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload 286 * 63 48 47 40 39 32 31 16 15 8 7 0 287 * +----------------------------------------------------------------+ 288 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS | 289 * +----------------------------------------------------------------+ 290 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN | 291 * +----------------------------------------------------------------+ 292 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0 293 * 294 * Extended Data Descriptor (DTYP=0x1) 295 * +----------------------------------------------------------------+ 296 * 0 | Buffer Address [63:0] | 297 * +----------------------------------------------------------------+ 298 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN | 299 * +----------------------------------------------------------------+ 300 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0 301 */ 302 pr_info("Tl[desc] [address 63:0 ] [SpeCssSCmCsLen] [bi->dma ] leng ntw timestamp bi->skb <-- Legacy format\n"); 303 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Context format\n"); 304 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Data format\n"); 305 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) { 306 const char *next_desc; 307 tx_desc = E1000_TX_DESC(*tx_ring, i); 308 buffer_info = &tx_ring->buffer_info[i]; 309 u0 = (struct my_u0 *)tx_desc; 310 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean) 311 next_desc = " NTC/U"; 312 else if (i == tx_ring->next_to_use) 313 next_desc = " NTU"; 314 else if (i == tx_ring->next_to_clean) 315 next_desc = " NTC"; 316 else 317 next_desc = ""; 318 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p%s\n", 319 (!(le64_to_cpu(u0->b) & (1 << 29)) ? 'l' : 320 ((le64_to_cpu(u0->b) & (1 << 20)) ? 'd' : 'c')), 321 i, 322 (unsigned long long)le64_to_cpu(u0->a), 323 (unsigned long long)le64_to_cpu(u0->b), 324 (unsigned long long)buffer_info->dma, 325 buffer_info->length, buffer_info->next_to_watch, 326 (unsigned long long)buffer_info->time_stamp, 327 buffer_info->skb, next_desc); 328 329 if (netif_msg_pktdata(adapter) && buffer_info->skb) 330 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 331 16, 1, buffer_info->skb->data, 332 buffer_info->skb->len, true); 333 } 334 335 /* Print Rx Ring Summary */ 336 rx_ring_summary: 337 dev_info(&adapter->pdev->dev, "Rx Ring Summary\n"); 338 pr_info("Queue [NTU] [NTC]\n"); 339 pr_info(" %5d %5X %5X\n", 340 0, rx_ring->next_to_use, rx_ring->next_to_clean); 341 342 /* Print Rx Ring */ 343 if (!netif_msg_rx_status(adapter)) 344 return; 345 346 dev_info(&adapter->pdev->dev, "Rx Ring Dump\n"); 347 switch (adapter->rx_ps_pages) { 348 case 1: 349 case 2: 350 case 3: 351 /* [Extended] Packet Split Receive Descriptor Format 352 * 353 * +-----------------------------------------------------+ 354 * 0 | Buffer Address 0 [63:0] | 355 * +-----------------------------------------------------+ 356 * 8 | Buffer Address 1 [63:0] | 357 * +-----------------------------------------------------+ 358 * 16 | Buffer Address 2 [63:0] | 359 * +-----------------------------------------------------+ 360 * 24 | Buffer Address 3 [63:0] | 361 * +-----------------------------------------------------+ 362 */ 363 pr_info("R [desc] [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma ] [bi->skb] <-- Ext Pkt Split format\n"); 364 /* [Extended] Receive Descriptor (Write-Back) Format 365 * 366 * 63 48 47 32 31 13 12 8 7 4 3 0 367 * +------------------------------------------------------+ 368 * 0 | Packet | IP | Rsvd | MRQ | Rsvd | MRQ RSS | 369 * | Checksum | Ident | | Queue | | Type | 370 * +------------------------------------------------------+ 371 * 8 | VLAN Tag | Length | Extended Error | Extended Status | 372 * +------------------------------------------------------+ 373 * 63 48 47 32 31 20 19 0 374 */ 375 pr_info("RWB[desc] [ck ipid mrqhsh] [vl l0 ee es] [ l3 l2 l1 hs] [reserved ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n"); 376 for (i = 0; i < rx_ring->count; i++) { 377 const char *next_desc; 378 buffer_info = &rx_ring->buffer_info[i]; 379 rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i); 380 u1 = (struct my_u1 *)rx_desc_ps; 381 staterr = 382 le32_to_cpu(rx_desc_ps->wb.middle.status_error); 383 384 if (i == rx_ring->next_to_use) 385 next_desc = " NTU"; 386 else if (i == rx_ring->next_to_clean) 387 next_desc = " NTC"; 388 else 389 next_desc = ""; 390 391 if (staterr & E1000_RXD_STAT_DD) { 392 /* Descriptor Done */ 393 pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX ---------------- %p%s\n", 394 "RWB", i, 395 (unsigned long long)le64_to_cpu(u1->a), 396 (unsigned long long)le64_to_cpu(u1->b), 397 (unsigned long long)le64_to_cpu(u1->c), 398 (unsigned long long)le64_to_cpu(u1->d), 399 buffer_info->skb, next_desc); 400 } else { 401 pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX %016llX %p%s\n", 402 "R ", i, 403 (unsigned long long)le64_to_cpu(u1->a), 404 (unsigned long long)le64_to_cpu(u1->b), 405 (unsigned long long)le64_to_cpu(u1->c), 406 (unsigned long long)le64_to_cpu(u1->d), 407 (unsigned long long)buffer_info->dma, 408 buffer_info->skb, next_desc); 409 410 if (netif_msg_pktdata(adapter)) 411 e1000e_dump_ps_pages(adapter, 412 buffer_info); 413 } 414 } 415 break; 416 default: 417 case 0: 418 /* Extended Receive Descriptor (Read) Format 419 * 420 * +-----------------------------------------------------+ 421 * 0 | Buffer Address [63:0] | 422 * +-----------------------------------------------------+ 423 * 8 | Reserved | 424 * +-----------------------------------------------------+ 425 */ 426 pr_info("R [desc] [buf addr 63:0 ] [reserved 63:0 ] [bi->dma ] [bi->skb] <-- Ext (Read) format\n"); 427 /* Extended Receive Descriptor (Write-Back) Format 428 * 429 * 63 48 47 32 31 24 23 4 3 0 430 * +------------------------------------------------------+ 431 * | RSS Hash | | | | 432 * 0 +-------------------+ Rsvd | Reserved | MRQ RSS | 433 * | Packet | IP | | | Type | 434 * | Checksum | Ident | | | | 435 * +------------------------------------------------------+ 436 * 8 | VLAN Tag | Length | Extended Error | Extended Status | 437 * +------------------------------------------------------+ 438 * 63 48 47 32 31 20 19 0 439 */ 440 pr_info("RWB[desc] [cs ipid mrq] [vt ln xe xs] [bi->skb] <-- Ext (Write-Back) format\n"); 441 442 for (i = 0; i < rx_ring->count; i++) { 443 const char *next_desc; 444 445 buffer_info = &rx_ring->buffer_info[i]; 446 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i); 447 u1 = (struct my_u1 *)rx_desc; 448 staterr = le32_to_cpu(rx_desc->wb.upper.status_error); 449 450 if (i == rx_ring->next_to_use) 451 next_desc = " NTU"; 452 else if (i == rx_ring->next_to_clean) 453 next_desc = " NTC"; 454 else 455 next_desc = ""; 456 457 if (staterr & E1000_RXD_STAT_DD) { 458 /* Descriptor Done */ 459 pr_info("%s[0x%03X] %016llX %016llX ---------------- %p%s\n", 460 "RWB", i, 461 (unsigned long long)le64_to_cpu(u1->a), 462 (unsigned long long)le64_to_cpu(u1->b), 463 buffer_info->skb, next_desc); 464 } else { 465 pr_info("%s[0x%03X] %016llX %016llX %016llX %p%s\n", 466 "R ", i, 467 (unsigned long long)le64_to_cpu(u1->a), 468 (unsigned long long)le64_to_cpu(u1->b), 469 (unsigned long long)buffer_info->dma, 470 buffer_info->skb, next_desc); 471 472 if (netif_msg_pktdata(adapter) && 473 buffer_info->skb) 474 print_hex_dump(KERN_INFO, "", 475 DUMP_PREFIX_ADDRESS, 16, 476 1, 477 buffer_info->skb->data, 478 adapter->rx_buffer_len, 479 true); 480 } 481 } 482 } 483 } 484 485 /** 486 * e1000_desc_unused - calculate if we have unused descriptors 487 **/ 488 static int e1000_desc_unused(struct e1000_ring *ring) 489 { 490 if (ring->next_to_clean > ring->next_to_use) 491 return ring->next_to_clean - ring->next_to_use - 1; 492 493 return ring->count + ring->next_to_clean - ring->next_to_use - 1; 494 } 495 496 /** 497 * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp 498 * @adapter: board private structure 499 * @hwtstamps: time stamp structure to update 500 * @systim: unsigned 64bit system time value. 501 * 502 * Convert the system time value stored in the RX/TXSTMP registers into a 503 * hwtstamp which can be used by the upper level time stamping functions. 504 * 505 * The 'systim_lock' spinlock is used to protect the consistency of the 506 * system time value. This is needed because reading the 64 bit time 507 * value involves reading two 32 bit registers. The first read latches the 508 * value. 509 **/ 510 static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter, 511 struct skb_shared_hwtstamps *hwtstamps, 512 u64 systim) 513 { 514 u64 ns; 515 unsigned long flags; 516 517 spin_lock_irqsave(&adapter->systim_lock, flags); 518 ns = timecounter_cyc2time(&adapter->tc, systim); 519 spin_unlock_irqrestore(&adapter->systim_lock, flags); 520 521 memset(hwtstamps, 0, sizeof(*hwtstamps)); 522 hwtstamps->hwtstamp = ns_to_ktime(ns); 523 } 524 525 /** 526 * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp 527 * @adapter: board private structure 528 * @status: descriptor extended error and status field 529 * @skb: particular skb to include time stamp 530 * 531 * If the time stamp is valid, convert it into the timecounter ns value 532 * and store that result into the shhwtstamps structure which is passed 533 * up the network stack. 534 **/ 535 static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status, 536 struct sk_buff *skb) 537 { 538 struct e1000_hw *hw = &adapter->hw; 539 u64 rxstmp; 540 541 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) || 542 !(status & E1000_RXDEXT_STATERR_TST) || 543 !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) 544 return; 545 546 /* The Rx time stamp registers contain the time stamp. No other 547 * received packet will be time stamped until the Rx time stamp 548 * registers are read. Because only one packet can be time stamped 549 * at a time, the register values must belong to this packet and 550 * therefore none of the other additional attributes need to be 551 * compared. 552 */ 553 rxstmp = (u64)er32(RXSTMPL); 554 rxstmp |= (u64)er32(RXSTMPH) << 32; 555 e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp); 556 557 adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP; 558 } 559 560 /** 561 * e1000_receive_skb - helper function to handle Rx indications 562 * @adapter: board private structure 563 * @staterr: descriptor extended error and status field as written by hardware 564 * @vlan: descriptor vlan field as written by hardware (no le/be conversion) 565 * @skb: pointer to sk_buff to be indicated to stack 566 **/ 567 static void e1000_receive_skb(struct e1000_adapter *adapter, 568 struct net_device *netdev, struct sk_buff *skb, 569 u32 staterr, __le16 vlan) 570 { 571 u16 tag = le16_to_cpu(vlan); 572 573 e1000e_rx_hwtstamp(adapter, staterr, skb); 574 575 skb->protocol = eth_type_trans(skb, netdev); 576 577 if (staterr & E1000_RXD_STAT_VP) 578 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag); 579 580 napi_gro_receive(&adapter->napi, skb); 581 } 582 583 /** 584 * e1000_rx_checksum - Receive Checksum Offload 585 * @adapter: board private structure 586 * @status_err: receive descriptor status and error fields 587 * @csum: receive descriptor csum field 588 * @sk_buff: socket buffer with received data 589 **/ 590 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err, 591 struct sk_buff *skb) 592 { 593 u16 status = (u16)status_err; 594 u8 errors = (u8)(status_err >> 24); 595 596 skb_checksum_none_assert(skb); 597 598 /* Rx checksum disabled */ 599 if (!(adapter->netdev->features & NETIF_F_RXCSUM)) 600 return; 601 602 /* Ignore Checksum bit is set */ 603 if (status & E1000_RXD_STAT_IXSM) 604 return; 605 606 /* TCP/UDP checksum error bit or IP checksum error bit is set */ 607 if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) { 608 /* let the stack verify checksum errors */ 609 adapter->hw_csum_err++; 610 return; 611 } 612 613 /* TCP/UDP Checksum has not been calculated */ 614 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))) 615 return; 616 617 /* It must be a TCP or UDP packet with a valid checksum */ 618 skb->ip_summed = CHECKSUM_UNNECESSARY; 619 adapter->hw_csum_good++; 620 } 621 622 static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i) 623 { 624 struct e1000_adapter *adapter = rx_ring->adapter; 625 struct e1000_hw *hw = &adapter->hw; 626 s32 ret_val = __ew32_prepare(hw); 627 628 writel(i, rx_ring->tail); 629 630 if (unlikely(!ret_val && (i != readl(rx_ring->tail)))) { 631 u32 rctl = er32(RCTL); 632 633 ew32(RCTL, rctl & ~E1000_RCTL_EN); 634 e_err("ME firmware caused invalid RDT - resetting\n"); 635 schedule_work(&adapter->reset_task); 636 } 637 } 638 639 static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i) 640 { 641 struct e1000_adapter *adapter = tx_ring->adapter; 642 struct e1000_hw *hw = &adapter->hw; 643 s32 ret_val = __ew32_prepare(hw); 644 645 writel(i, tx_ring->tail); 646 647 if (unlikely(!ret_val && (i != readl(tx_ring->tail)))) { 648 u32 tctl = er32(TCTL); 649 650 ew32(TCTL, tctl & ~E1000_TCTL_EN); 651 e_err("ME firmware caused invalid TDT - resetting\n"); 652 schedule_work(&adapter->reset_task); 653 } 654 } 655 656 /** 657 * e1000_alloc_rx_buffers - Replace used receive buffers 658 * @rx_ring: Rx descriptor ring 659 **/ 660 static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring, 661 int cleaned_count, gfp_t gfp) 662 { 663 struct e1000_adapter *adapter = rx_ring->adapter; 664 struct net_device *netdev = adapter->netdev; 665 struct pci_dev *pdev = adapter->pdev; 666 union e1000_rx_desc_extended *rx_desc; 667 struct e1000_buffer *buffer_info; 668 struct sk_buff *skb; 669 unsigned int i; 670 unsigned int bufsz = adapter->rx_buffer_len; 671 672 i = rx_ring->next_to_use; 673 buffer_info = &rx_ring->buffer_info[i]; 674 675 while (cleaned_count--) { 676 skb = buffer_info->skb; 677 if (skb) { 678 skb_trim(skb, 0); 679 goto map_skb; 680 } 681 682 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp); 683 if (!skb) { 684 /* Better luck next round */ 685 adapter->alloc_rx_buff_failed++; 686 break; 687 } 688 689 buffer_info->skb = skb; 690 map_skb: 691 buffer_info->dma = dma_map_single(&pdev->dev, skb->data, 692 adapter->rx_buffer_len, 693 DMA_FROM_DEVICE); 694 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { 695 dev_err(&pdev->dev, "Rx DMA map failed\n"); 696 adapter->rx_dma_failed++; 697 break; 698 } 699 700 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i); 701 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma); 702 703 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) { 704 /* Force memory writes to complete before letting h/w 705 * know there are new descriptors to fetch. (Only 706 * applicable for weak-ordered memory model archs, 707 * such as IA-64). 708 */ 709 wmb(); 710 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA) 711 e1000e_update_rdt_wa(rx_ring, i); 712 else 713 writel(i, rx_ring->tail); 714 } 715 i++; 716 if (i == rx_ring->count) 717 i = 0; 718 buffer_info = &rx_ring->buffer_info[i]; 719 } 720 721 rx_ring->next_to_use = i; 722 } 723 724 /** 725 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split 726 * @rx_ring: Rx descriptor ring 727 **/ 728 static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring, 729 int cleaned_count, gfp_t gfp) 730 { 731 struct e1000_adapter *adapter = rx_ring->adapter; 732 struct net_device *netdev = adapter->netdev; 733 struct pci_dev *pdev = adapter->pdev; 734 union e1000_rx_desc_packet_split *rx_desc; 735 struct e1000_buffer *buffer_info; 736 struct e1000_ps_page *ps_page; 737 struct sk_buff *skb; 738 unsigned int i, j; 739 740 i = rx_ring->next_to_use; 741 buffer_info = &rx_ring->buffer_info[i]; 742 743 while (cleaned_count--) { 744 rx_desc = E1000_RX_DESC_PS(*rx_ring, i); 745 746 for (j = 0; j < PS_PAGE_BUFFERS; j++) { 747 ps_page = &buffer_info->ps_pages[j]; 748 if (j >= adapter->rx_ps_pages) { 749 /* all unused desc entries get hw null ptr */ 750 rx_desc->read.buffer_addr[j + 1] = 751 ~cpu_to_le64(0); 752 continue; 753 } 754 if (!ps_page->page) { 755 ps_page->page = alloc_page(gfp); 756 if (!ps_page->page) { 757 adapter->alloc_rx_buff_failed++; 758 goto no_buffers; 759 } 760 ps_page->dma = dma_map_page(&pdev->dev, 761 ps_page->page, 762 0, PAGE_SIZE, 763 DMA_FROM_DEVICE); 764 if (dma_mapping_error(&pdev->dev, 765 ps_page->dma)) { 766 dev_err(&adapter->pdev->dev, 767 "Rx DMA page map failed\n"); 768 adapter->rx_dma_failed++; 769 goto no_buffers; 770 } 771 } 772 /* Refresh the desc even if buffer_addrs 773 * didn't change because each write-back 774 * erases this info. 775 */ 776 rx_desc->read.buffer_addr[j + 1] = 777 cpu_to_le64(ps_page->dma); 778 } 779 780 skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0, 781 gfp); 782 783 if (!skb) { 784 adapter->alloc_rx_buff_failed++; 785 break; 786 } 787 788 buffer_info->skb = skb; 789 buffer_info->dma = dma_map_single(&pdev->dev, skb->data, 790 adapter->rx_ps_bsize0, 791 DMA_FROM_DEVICE); 792 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { 793 dev_err(&pdev->dev, "Rx DMA map failed\n"); 794 adapter->rx_dma_failed++; 795 /* cleanup skb */ 796 dev_kfree_skb_any(skb); 797 buffer_info->skb = NULL; 798 break; 799 } 800 801 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma); 802 803 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) { 804 /* Force memory writes to complete before letting h/w 805 * know there are new descriptors to fetch. (Only 806 * applicable for weak-ordered memory model archs, 807 * such as IA-64). 808 */ 809 wmb(); 810 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA) 811 e1000e_update_rdt_wa(rx_ring, i << 1); 812 else 813 writel(i << 1, rx_ring->tail); 814 } 815 816 i++; 817 if (i == rx_ring->count) 818 i = 0; 819 buffer_info = &rx_ring->buffer_info[i]; 820 } 821 822 no_buffers: 823 rx_ring->next_to_use = i; 824 } 825 826 /** 827 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers 828 * @rx_ring: Rx descriptor ring 829 * @cleaned_count: number of buffers to allocate this pass 830 **/ 831 832 static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring, 833 int cleaned_count, gfp_t gfp) 834 { 835 struct e1000_adapter *adapter = rx_ring->adapter; 836 struct net_device *netdev = adapter->netdev; 837 struct pci_dev *pdev = adapter->pdev; 838 union e1000_rx_desc_extended *rx_desc; 839 struct e1000_buffer *buffer_info; 840 struct sk_buff *skb; 841 unsigned int i; 842 unsigned int bufsz = 256 - 16; /* for skb_reserve */ 843 844 i = rx_ring->next_to_use; 845 buffer_info = &rx_ring->buffer_info[i]; 846 847 while (cleaned_count--) { 848 skb = buffer_info->skb; 849 if (skb) { 850 skb_trim(skb, 0); 851 goto check_page; 852 } 853 854 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp); 855 if (unlikely(!skb)) { 856 /* Better luck next round */ 857 adapter->alloc_rx_buff_failed++; 858 break; 859 } 860 861 buffer_info->skb = skb; 862 check_page: 863 /* allocate a new page if necessary */ 864 if (!buffer_info->page) { 865 buffer_info->page = alloc_page(gfp); 866 if (unlikely(!buffer_info->page)) { 867 adapter->alloc_rx_buff_failed++; 868 break; 869 } 870 } 871 872 if (!buffer_info->dma) { 873 buffer_info->dma = dma_map_page(&pdev->dev, 874 buffer_info->page, 0, 875 PAGE_SIZE, 876 DMA_FROM_DEVICE); 877 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { 878 adapter->alloc_rx_buff_failed++; 879 break; 880 } 881 } 882 883 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i); 884 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma); 885 886 if (unlikely(++i == rx_ring->count)) 887 i = 0; 888 buffer_info = &rx_ring->buffer_info[i]; 889 } 890 891 if (likely(rx_ring->next_to_use != i)) { 892 rx_ring->next_to_use = i; 893 if (unlikely(i-- == 0)) 894 i = (rx_ring->count - 1); 895 896 /* Force memory writes to complete before letting h/w 897 * know there are new descriptors to fetch. (Only 898 * applicable for weak-ordered memory model archs, 899 * such as IA-64). 900 */ 901 wmb(); 902 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA) 903 e1000e_update_rdt_wa(rx_ring, i); 904 else 905 writel(i, rx_ring->tail); 906 } 907 } 908 909 static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss, 910 struct sk_buff *skb) 911 { 912 if (netdev->features & NETIF_F_RXHASH) 913 skb_set_hash(skb, le32_to_cpu(rss), PKT_HASH_TYPE_L3); 914 } 915 916 /** 917 * e1000_clean_rx_irq - Send received data up the network stack 918 * @rx_ring: Rx descriptor ring 919 * 920 * the return value indicates whether actual cleaning was done, there 921 * is no guarantee that everything was cleaned 922 **/ 923 static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done, 924 int work_to_do) 925 { 926 struct e1000_adapter *adapter = rx_ring->adapter; 927 struct net_device *netdev = adapter->netdev; 928 struct pci_dev *pdev = adapter->pdev; 929 struct e1000_hw *hw = &adapter->hw; 930 union e1000_rx_desc_extended *rx_desc, *next_rxd; 931 struct e1000_buffer *buffer_info, *next_buffer; 932 u32 length, staterr; 933 unsigned int i; 934 int cleaned_count = 0; 935 bool cleaned = false; 936 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 937 938 i = rx_ring->next_to_clean; 939 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i); 940 staterr = le32_to_cpu(rx_desc->wb.upper.status_error); 941 buffer_info = &rx_ring->buffer_info[i]; 942 943 while (staterr & E1000_RXD_STAT_DD) { 944 struct sk_buff *skb; 945 946 if (*work_done >= work_to_do) 947 break; 948 (*work_done)++; 949 rmb(); /* read descriptor and rx_buffer_info after status DD */ 950 951 skb = buffer_info->skb; 952 buffer_info->skb = NULL; 953 954 prefetch(skb->data - NET_IP_ALIGN); 955 956 i++; 957 if (i == rx_ring->count) 958 i = 0; 959 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i); 960 prefetch(next_rxd); 961 962 next_buffer = &rx_ring->buffer_info[i]; 963 964 cleaned = true; 965 cleaned_count++; 966 dma_unmap_single(&pdev->dev, buffer_info->dma, 967 adapter->rx_buffer_len, DMA_FROM_DEVICE); 968 buffer_info->dma = 0; 969 970 length = le16_to_cpu(rx_desc->wb.upper.length); 971 972 /* !EOP means multiple descriptors were used to store a single 973 * packet, if that's the case we need to toss it. In fact, we 974 * need to toss every packet with the EOP bit clear and the 975 * next frame that _does_ have the EOP bit set, as it is by 976 * definition only a frame fragment 977 */ 978 if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) 979 adapter->flags2 |= FLAG2_IS_DISCARDING; 980 981 if (adapter->flags2 & FLAG2_IS_DISCARDING) { 982 /* All receives must fit into a single buffer */ 983 e_dbg("Receive packet consumed multiple buffers\n"); 984 /* recycle */ 985 buffer_info->skb = skb; 986 if (staterr & E1000_RXD_STAT_EOP) 987 adapter->flags2 &= ~FLAG2_IS_DISCARDING; 988 goto next_desc; 989 } 990 991 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) && 992 !(netdev->features & NETIF_F_RXALL))) { 993 /* recycle */ 994 buffer_info->skb = skb; 995 goto next_desc; 996 } 997 998 /* adjust length to remove Ethernet CRC */ 999 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) { 1000 /* If configured to store CRC, don't subtract FCS, 1001 * but keep the FCS bytes out of the total_rx_bytes 1002 * counter 1003 */ 1004 if (netdev->features & NETIF_F_RXFCS) 1005 total_rx_bytes -= 4; 1006 else 1007 length -= 4; 1008 } 1009 1010 total_rx_bytes += length; 1011 total_rx_packets++; 1012 1013 /* code added for copybreak, this should improve 1014 * performance for small packets with large amounts 1015 * of reassembly being done in the stack 1016 */ 1017 if (length < copybreak) { 1018 struct sk_buff *new_skb = 1019 netdev_alloc_skb_ip_align(netdev, length); 1020 if (new_skb) { 1021 skb_copy_to_linear_data_offset(new_skb, 1022 -NET_IP_ALIGN, 1023 (skb->data - 1024 NET_IP_ALIGN), 1025 (length + 1026 NET_IP_ALIGN)); 1027 /* save the skb in buffer_info as good */ 1028 buffer_info->skb = skb; 1029 skb = new_skb; 1030 } 1031 /* else just continue with the old one */ 1032 } 1033 /* end copybreak code */ 1034 skb_put(skb, length); 1035 1036 /* Receive Checksum Offload */ 1037 e1000_rx_checksum(adapter, staterr, skb); 1038 1039 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb); 1040 1041 e1000_receive_skb(adapter, netdev, skb, staterr, 1042 rx_desc->wb.upper.vlan); 1043 1044 next_desc: 1045 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF); 1046 1047 /* return some buffers to hardware, one at a time is too slow */ 1048 if (cleaned_count >= E1000_RX_BUFFER_WRITE) { 1049 adapter->alloc_rx_buf(rx_ring, cleaned_count, 1050 GFP_ATOMIC); 1051 cleaned_count = 0; 1052 } 1053 1054 /* use prefetched values */ 1055 rx_desc = next_rxd; 1056 buffer_info = next_buffer; 1057 1058 staterr = le32_to_cpu(rx_desc->wb.upper.status_error); 1059 } 1060 rx_ring->next_to_clean = i; 1061 1062 cleaned_count = e1000_desc_unused(rx_ring); 1063 if (cleaned_count) 1064 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC); 1065 1066 adapter->total_rx_bytes += total_rx_bytes; 1067 adapter->total_rx_packets += total_rx_packets; 1068 return cleaned; 1069 } 1070 1071 static void e1000_put_txbuf(struct e1000_ring *tx_ring, 1072 struct e1000_buffer *buffer_info) 1073 { 1074 struct e1000_adapter *adapter = tx_ring->adapter; 1075 1076 if (buffer_info->dma) { 1077 if (buffer_info->mapped_as_page) 1078 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma, 1079 buffer_info->length, DMA_TO_DEVICE); 1080 else 1081 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma, 1082 buffer_info->length, DMA_TO_DEVICE); 1083 buffer_info->dma = 0; 1084 } 1085 if (buffer_info->skb) { 1086 dev_kfree_skb_any(buffer_info->skb); 1087 buffer_info->skb = NULL; 1088 } 1089 buffer_info->time_stamp = 0; 1090 } 1091 1092 static void e1000_print_hw_hang(struct work_struct *work) 1093 { 1094 struct e1000_adapter *adapter = container_of(work, 1095 struct e1000_adapter, 1096 print_hang_task); 1097 struct net_device *netdev = adapter->netdev; 1098 struct e1000_ring *tx_ring = adapter->tx_ring; 1099 unsigned int i = tx_ring->next_to_clean; 1100 unsigned int eop = tx_ring->buffer_info[i].next_to_watch; 1101 struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop); 1102 struct e1000_hw *hw = &adapter->hw; 1103 u16 phy_status, phy_1000t_status, phy_ext_status; 1104 u16 pci_status; 1105 1106 if (test_bit(__E1000_DOWN, &adapter->state)) 1107 return; 1108 1109 if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) { 1110 /* May be block on write-back, flush and detect again 1111 * flush pending descriptor writebacks to memory 1112 */ 1113 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD); 1114 /* execute the writes immediately */ 1115 e1e_flush(); 1116 /* Due to rare timing issues, write to TIDV again to ensure 1117 * the write is successful 1118 */ 1119 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD); 1120 /* execute the writes immediately */ 1121 e1e_flush(); 1122 adapter->tx_hang_recheck = true; 1123 return; 1124 } 1125 adapter->tx_hang_recheck = false; 1126 1127 if (er32(TDH(0)) == er32(TDT(0))) { 1128 e_dbg("false hang detected, ignoring\n"); 1129 return; 1130 } 1131 1132 /* Real hang detected */ 1133 netif_stop_queue(netdev); 1134 1135 e1e_rphy(hw, MII_BMSR, &phy_status); 1136 e1e_rphy(hw, MII_STAT1000, &phy_1000t_status); 1137 e1e_rphy(hw, MII_ESTATUS, &phy_ext_status); 1138 1139 pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status); 1140 1141 /* detected Hardware unit hang */ 1142 e_err("Detected Hardware Unit Hang:\n" 1143 " TDH <%x>\n" 1144 " TDT <%x>\n" 1145 " next_to_use <%x>\n" 1146 " next_to_clean <%x>\n" 1147 "buffer_info[next_to_clean]:\n" 1148 " time_stamp <%lx>\n" 1149 " next_to_watch <%x>\n" 1150 " jiffies <%lx>\n" 1151 " next_to_watch.status <%x>\n" 1152 "MAC Status <%x>\n" 1153 "PHY Status <%x>\n" 1154 "PHY 1000BASE-T Status <%x>\n" 1155 "PHY Extended Status <%x>\n" 1156 "PCI Status <%x>\n", 1157 readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use, 1158 tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp, 1159 eop, jiffies, eop_desc->upper.fields.status, er32(STATUS), 1160 phy_status, phy_1000t_status, phy_ext_status, pci_status); 1161 1162 e1000e_dump(adapter); 1163 1164 /* Suggest workaround for known h/w issue */ 1165 if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE)) 1166 e_err("Try turning off Tx pause (flow control) via ethtool\n"); 1167 } 1168 1169 /** 1170 * e1000e_tx_hwtstamp_work - check for Tx time stamp 1171 * @work: pointer to work struct 1172 * 1173 * This work function polls the TSYNCTXCTL valid bit to determine when a 1174 * timestamp has been taken for the current stored skb. The timestamp must 1175 * be for this skb because only one such packet is allowed in the queue. 1176 */ 1177 static void e1000e_tx_hwtstamp_work(struct work_struct *work) 1178 { 1179 struct e1000_adapter *adapter = container_of(work, struct e1000_adapter, 1180 tx_hwtstamp_work); 1181 struct e1000_hw *hw = &adapter->hw; 1182 1183 if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) { 1184 struct skb_shared_hwtstamps shhwtstamps; 1185 u64 txstmp; 1186 1187 txstmp = er32(TXSTMPL); 1188 txstmp |= (u64)er32(TXSTMPH) << 32; 1189 1190 e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp); 1191 1192 skb_tstamp_tx(adapter->tx_hwtstamp_skb, &shhwtstamps); 1193 dev_kfree_skb_any(adapter->tx_hwtstamp_skb); 1194 adapter->tx_hwtstamp_skb = NULL; 1195 } else if (time_after(jiffies, adapter->tx_hwtstamp_start 1196 + adapter->tx_timeout_factor * HZ)) { 1197 dev_kfree_skb_any(adapter->tx_hwtstamp_skb); 1198 adapter->tx_hwtstamp_skb = NULL; 1199 adapter->tx_hwtstamp_timeouts++; 1200 e_warn("clearing Tx timestamp hang\n"); 1201 } else { 1202 /* reschedule to check later */ 1203 schedule_work(&adapter->tx_hwtstamp_work); 1204 } 1205 } 1206 1207 /** 1208 * e1000_clean_tx_irq - Reclaim resources after transmit completes 1209 * @tx_ring: Tx descriptor ring 1210 * 1211 * the return value indicates whether actual cleaning was done, there 1212 * is no guarantee that everything was cleaned 1213 **/ 1214 static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring) 1215 { 1216 struct e1000_adapter *adapter = tx_ring->adapter; 1217 struct net_device *netdev = adapter->netdev; 1218 struct e1000_hw *hw = &adapter->hw; 1219 struct e1000_tx_desc *tx_desc, *eop_desc; 1220 struct e1000_buffer *buffer_info; 1221 unsigned int i, eop; 1222 unsigned int count = 0; 1223 unsigned int total_tx_bytes = 0, total_tx_packets = 0; 1224 unsigned int bytes_compl = 0, pkts_compl = 0; 1225 1226 i = tx_ring->next_to_clean; 1227 eop = tx_ring->buffer_info[i].next_to_watch; 1228 eop_desc = E1000_TX_DESC(*tx_ring, eop); 1229 1230 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) && 1231 (count < tx_ring->count)) { 1232 bool cleaned = false; 1233 1234 rmb(); /* read buffer_info after eop_desc */ 1235 for (; !cleaned; count++) { 1236 tx_desc = E1000_TX_DESC(*tx_ring, i); 1237 buffer_info = &tx_ring->buffer_info[i]; 1238 cleaned = (i == eop); 1239 1240 if (cleaned) { 1241 total_tx_packets += buffer_info->segs; 1242 total_tx_bytes += buffer_info->bytecount; 1243 if (buffer_info->skb) { 1244 bytes_compl += buffer_info->skb->len; 1245 pkts_compl++; 1246 } 1247 } 1248 1249 e1000_put_txbuf(tx_ring, buffer_info); 1250 tx_desc->upper.data = 0; 1251 1252 i++; 1253 if (i == tx_ring->count) 1254 i = 0; 1255 } 1256 1257 if (i == tx_ring->next_to_use) 1258 break; 1259 eop = tx_ring->buffer_info[i].next_to_watch; 1260 eop_desc = E1000_TX_DESC(*tx_ring, eop); 1261 } 1262 1263 tx_ring->next_to_clean = i; 1264 1265 netdev_completed_queue(netdev, pkts_compl, bytes_compl); 1266 1267 #define TX_WAKE_THRESHOLD 32 1268 if (count && netif_carrier_ok(netdev) && 1269 e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) { 1270 /* Make sure that anybody stopping the queue after this 1271 * sees the new next_to_clean. 1272 */ 1273 smp_mb(); 1274 1275 if (netif_queue_stopped(netdev) && 1276 !(test_bit(__E1000_DOWN, &adapter->state))) { 1277 netif_wake_queue(netdev); 1278 ++adapter->restart_queue; 1279 } 1280 } 1281 1282 if (adapter->detect_tx_hung) { 1283 /* Detect a transmit hang in hardware, this serializes the 1284 * check with the clearing of time_stamp and movement of i 1285 */ 1286 adapter->detect_tx_hung = false; 1287 if (tx_ring->buffer_info[i].time_stamp && 1288 time_after(jiffies, tx_ring->buffer_info[i].time_stamp 1289 + (adapter->tx_timeout_factor * HZ)) && 1290 !(er32(STATUS) & E1000_STATUS_TXOFF)) 1291 schedule_work(&adapter->print_hang_task); 1292 else 1293 adapter->tx_hang_recheck = false; 1294 } 1295 adapter->total_tx_bytes += total_tx_bytes; 1296 adapter->total_tx_packets += total_tx_packets; 1297 return count < tx_ring->count; 1298 } 1299 1300 /** 1301 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split 1302 * @rx_ring: Rx descriptor ring 1303 * 1304 * the return value indicates whether actual cleaning was done, there 1305 * is no guarantee that everything was cleaned 1306 **/ 1307 static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done, 1308 int work_to_do) 1309 { 1310 struct e1000_adapter *adapter = rx_ring->adapter; 1311 struct e1000_hw *hw = &adapter->hw; 1312 union e1000_rx_desc_packet_split *rx_desc, *next_rxd; 1313 struct net_device *netdev = adapter->netdev; 1314 struct pci_dev *pdev = adapter->pdev; 1315 struct e1000_buffer *buffer_info, *next_buffer; 1316 struct e1000_ps_page *ps_page; 1317 struct sk_buff *skb; 1318 unsigned int i, j; 1319 u32 length, staterr; 1320 int cleaned_count = 0; 1321 bool cleaned = false; 1322 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 1323 1324 i = rx_ring->next_to_clean; 1325 rx_desc = E1000_RX_DESC_PS(*rx_ring, i); 1326 staterr = le32_to_cpu(rx_desc->wb.middle.status_error); 1327 buffer_info = &rx_ring->buffer_info[i]; 1328 1329 while (staterr & E1000_RXD_STAT_DD) { 1330 if (*work_done >= work_to_do) 1331 break; 1332 (*work_done)++; 1333 skb = buffer_info->skb; 1334 rmb(); /* read descriptor and rx_buffer_info after status DD */ 1335 1336 /* in the packet split case this is header only */ 1337 prefetch(skb->data - NET_IP_ALIGN); 1338 1339 i++; 1340 if (i == rx_ring->count) 1341 i = 0; 1342 next_rxd = E1000_RX_DESC_PS(*rx_ring, i); 1343 prefetch(next_rxd); 1344 1345 next_buffer = &rx_ring->buffer_info[i]; 1346 1347 cleaned = true; 1348 cleaned_count++; 1349 dma_unmap_single(&pdev->dev, buffer_info->dma, 1350 adapter->rx_ps_bsize0, DMA_FROM_DEVICE); 1351 buffer_info->dma = 0; 1352 1353 /* see !EOP comment in other Rx routine */ 1354 if (!(staterr & E1000_RXD_STAT_EOP)) 1355 adapter->flags2 |= FLAG2_IS_DISCARDING; 1356 1357 if (adapter->flags2 & FLAG2_IS_DISCARDING) { 1358 e_dbg("Packet Split buffers didn't pick up the full packet\n"); 1359 dev_kfree_skb_irq(skb); 1360 if (staterr & E1000_RXD_STAT_EOP) 1361 adapter->flags2 &= ~FLAG2_IS_DISCARDING; 1362 goto next_desc; 1363 } 1364 1365 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) && 1366 !(netdev->features & NETIF_F_RXALL))) { 1367 dev_kfree_skb_irq(skb); 1368 goto next_desc; 1369 } 1370 1371 length = le16_to_cpu(rx_desc->wb.middle.length0); 1372 1373 if (!length) { 1374 e_dbg("Last part of the packet spanning multiple descriptors\n"); 1375 dev_kfree_skb_irq(skb); 1376 goto next_desc; 1377 } 1378 1379 /* Good Receive */ 1380 skb_put(skb, length); 1381 1382 { 1383 /* this looks ugly, but it seems compiler issues make 1384 * it more efficient than reusing j 1385 */ 1386 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]); 1387 1388 /* page alloc/put takes too long and effects small 1389 * packet throughput, so unsplit small packets and 1390 * save the alloc/put only valid in softirq (napi) 1391 * context to call kmap_* 1392 */ 1393 if (l1 && (l1 <= copybreak) && 1394 ((length + l1) <= adapter->rx_ps_bsize0)) { 1395 u8 *vaddr; 1396 1397 ps_page = &buffer_info->ps_pages[0]; 1398 1399 /* there is no documentation about how to call 1400 * kmap_atomic, so we can't hold the mapping 1401 * very long 1402 */ 1403 dma_sync_single_for_cpu(&pdev->dev, 1404 ps_page->dma, 1405 PAGE_SIZE, 1406 DMA_FROM_DEVICE); 1407 vaddr = kmap_atomic(ps_page->page); 1408 memcpy(skb_tail_pointer(skb), vaddr, l1); 1409 kunmap_atomic(vaddr); 1410 dma_sync_single_for_device(&pdev->dev, 1411 ps_page->dma, 1412 PAGE_SIZE, 1413 DMA_FROM_DEVICE); 1414 1415 /* remove the CRC */ 1416 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) { 1417 if (!(netdev->features & NETIF_F_RXFCS)) 1418 l1 -= 4; 1419 } 1420 1421 skb_put(skb, l1); 1422 goto copydone; 1423 } /* if */ 1424 } 1425 1426 for (j = 0; j < PS_PAGE_BUFFERS; j++) { 1427 length = le16_to_cpu(rx_desc->wb.upper.length[j]); 1428 if (!length) 1429 break; 1430 1431 ps_page = &buffer_info->ps_pages[j]; 1432 dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE, 1433 DMA_FROM_DEVICE); 1434 ps_page->dma = 0; 1435 skb_fill_page_desc(skb, j, ps_page->page, 0, length); 1436 ps_page->page = NULL; 1437 skb->len += length; 1438 skb->data_len += length; 1439 skb->truesize += PAGE_SIZE; 1440 } 1441 1442 /* strip the ethernet crc, problem is we're using pages now so 1443 * this whole operation can get a little cpu intensive 1444 */ 1445 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) { 1446 if (!(netdev->features & NETIF_F_RXFCS)) 1447 pskb_trim(skb, skb->len - 4); 1448 } 1449 1450 copydone: 1451 total_rx_bytes += skb->len; 1452 total_rx_packets++; 1453 1454 e1000_rx_checksum(adapter, staterr, skb); 1455 1456 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb); 1457 1458 if (rx_desc->wb.upper.header_status & 1459 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)) 1460 adapter->rx_hdr_split++; 1461 1462 e1000_receive_skb(adapter, netdev, skb, staterr, 1463 rx_desc->wb.middle.vlan); 1464 1465 next_desc: 1466 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF); 1467 buffer_info->skb = NULL; 1468 1469 /* return some buffers to hardware, one at a time is too slow */ 1470 if (cleaned_count >= E1000_RX_BUFFER_WRITE) { 1471 adapter->alloc_rx_buf(rx_ring, cleaned_count, 1472 GFP_ATOMIC); 1473 cleaned_count = 0; 1474 } 1475 1476 /* use prefetched values */ 1477 rx_desc = next_rxd; 1478 buffer_info = next_buffer; 1479 1480 staterr = le32_to_cpu(rx_desc->wb.middle.status_error); 1481 } 1482 rx_ring->next_to_clean = i; 1483 1484 cleaned_count = e1000_desc_unused(rx_ring); 1485 if (cleaned_count) 1486 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC); 1487 1488 adapter->total_rx_bytes += total_rx_bytes; 1489 adapter->total_rx_packets += total_rx_packets; 1490 return cleaned; 1491 } 1492 1493 /** 1494 * e1000_consume_page - helper function 1495 **/ 1496 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb, 1497 u16 length) 1498 { 1499 bi->page = NULL; 1500 skb->len += length; 1501 skb->data_len += length; 1502 skb->truesize += PAGE_SIZE; 1503 } 1504 1505 /** 1506 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy 1507 * @adapter: board private structure 1508 * 1509 * the return value indicates whether actual cleaning was done, there 1510 * is no guarantee that everything was cleaned 1511 **/ 1512 static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done, 1513 int work_to_do) 1514 { 1515 struct e1000_adapter *adapter = rx_ring->adapter; 1516 struct net_device *netdev = adapter->netdev; 1517 struct pci_dev *pdev = adapter->pdev; 1518 union e1000_rx_desc_extended *rx_desc, *next_rxd; 1519 struct e1000_buffer *buffer_info, *next_buffer; 1520 u32 length, staterr; 1521 unsigned int i; 1522 int cleaned_count = 0; 1523 bool cleaned = false; 1524 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 1525 struct skb_shared_info *shinfo; 1526 1527 i = rx_ring->next_to_clean; 1528 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i); 1529 staterr = le32_to_cpu(rx_desc->wb.upper.status_error); 1530 buffer_info = &rx_ring->buffer_info[i]; 1531 1532 while (staterr & E1000_RXD_STAT_DD) { 1533 struct sk_buff *skb; 1534 1535 if (*work_done >= work_to_do) 1536 break; 1537 (*work_done)++; 1538 rmb(); /* read descriptor and rx_buffer_info after status DD */ 1539 1540 skb = buffer_info->skb; 1541 buffer_info->skb = NULL; 1542 1543 ++i; 1544 if (i == rx_ring->count) 1545 i = 0; 1546 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i); 1547 prefetch(next_rxd); 1548 1549 next_buffer = &rx_ring->buffer_info[i]; 1550 1551 cleaned = true; 1552 cleaned_count++; 1553 dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE, 1554 DMA_FROM_DEVICE); 1555 buffer_info->dma = 0; 1556 1557 length = le16_to_cpu(rx_desc->wb.upper.length); 1558 1559 /* errors is only valid for DD + EOP descriptors */ 1560 if (unlikely((staterr & E1000_RXD_STAT_EOP) && 1561 ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) && 1562 !(netdev->features & NETIF_F_RXALL)))) { 1563 /* recycle both page and skb */ 1564 buffer_info->skb = skb; 1565 /* an error means any chain goes out the window too */ 1566 if (rx_ring->rx_skb_top) 1567 dev_kfree_skb_irq(rx_ring->rx_skb_top); 1568 rx_ring->rx_skb_top = NULL; 1569 goto next_desc; 1570 } 1571 #define rxtop (rx_ring->rx_skb_top) 1572 if (!(staterr & E1000_RXD_STAT_EOP)) { 1573 /* this descriptor is only the beginning (or middle) */ 1574 if (!rxtop) { 1575 /* this is the beginning of a chain */ 1576 rxtop = skb; 1577 skb_fill_page_desc(rxtop, 0, buffer_info->page, 1578 0, length); 1579 } else { 1580 /* this is the middle of a chain */ 1581 shinfo = skb_shinfo(rxtop); 1582 skb_fill_page_desc(rxtop, shinfo->nr_frags, 1583 buffer_info->page, 0, 1584 length); 1585 /* re-use the skb, only consumed the page */ 1586 buffer_info->skb = skb; 1587 } 1588 e1000_consume_page(buffer_info, rxtop, length); 1589 goto next_desc; 1590 } else { 1591 if (rxtop) { 1592 /* end of the chain */ 1593 shinfo = skb_shinfo(rxtop); 1594 skb_fill_page_desc(rxtop, shinfo->nr_frags, 1595 buffer_info->page, 0, 1596 length); 1597 /* re-use the current skb, we only consumed the 1598 * page 1599 */ 1600 buffer_info->skb = skb; 1601 skb = rxtop; 1602 rxtop = NULL; 1603 e1000_consume_page(buffer_info, skb, length); 1604 } else { 1605 /* no chain, got EOP, this buf is the packet 1606 * copybreak to save the put_page/alloc_page 1607 */ 1608 if (length <= copybreak && 1609 skb_tailroom(skb) >= length) { 1610 u8 *vaddr; 1611 vaddr = kmap_atomic(buffer_info->page); 1612 memcpy(skb_tail_pointer(skb), vaddr, 1613 length); 1614 kunmap_atomic(vaddr); 1615 /* re-use the page, so don't erase 1616 * buffer_info->page 1617 */ 1618 skb_put(skb, length); 1619 } else { 1620 skb_fill_page_desc(skb, 0, 1621 buffer_info->page, 0, 1622 length); 1623 e1000_consume_page(buffer_info, skb, 1624 length); 1625 } 1626 } 1627 } 1628 1629 /* Receive Checksum Offload */ 1630 e1000_rx_checksum(adapter, staterr, skb); 1631 1632 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb); 1633 1634 /* probably a little skewed due to removing CRC */ 1635 total_rx_bytes += skb->len; 1636 total_rx_packets++; 1637 1638 /* eth type trans needs skb->data to point to something */ 1639 if (!pskb_may_pull(skb, ETH_HLEN)) { 1640 e_err("pskb_may_pull failed.\n"); 1641 dev_kfree_skb_irq(skb); 1642 goto next_desc; 1643 } 1644 1645 e1000_receive_skb(adapter, netdev, skb, staterr, 1646 rx_desc->wb.upper.vlan); 1647 1648 next_desc: 1649 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF); 1650 1651 /* return some buffers to hardware, one at a time is too slow */ 1652 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) { 1653 adapter->alloc_rx_buf(rx_ring, cleaned_count, 1654 GFP_ATOMIC); 1655 cleaned_count = 0; 1656 } 1657 1658 /* use prefetched values */ 1659 rx_desc = next_rxd; 1660 buffer_info = next_buffer; 1661 1662 staterr = le32_to_cpu(rx_desc->wb.upper.status_error); 1663 } 1664 rx_ring->next_to_clean = i; 1665 1666 cleaned_count = e1000_desc_unused(rx_ring); 1667 if (cleaned_count) 1668 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC); 1669 1670 adapter->total_rx_bytes += total_rx_bytes; 1671 adapter->total_rx_packets += total_rx_packets; 1672 return cleaned; 1673 } 1674 1675 /** 1676 * e1000_clean_rx_ring - Free Rx Buffers per Queue 1677 * @rx_ring: Rx descriptor ring 1678 **/ 1679 static void e1000_clean_rx_ring(struct e1000_ring *rx_ring) 1680 { 1681 struct e1000_adapter *adapter = rx_ring->adapter; 1682 struct e1000_buffer *buffer_info; 1683 struct e1000_ps_page *ps_page; 1684 struct pci_dev *pdev = adapter->pdev; 1685 unsigned int i, j; 1686 1687 /* Free all the Rx ring sk_buffs */ 1688 for (i = 0; i < rx_ring->count; i++) { 1689 buffer_info = &rx_ring->buffer_info[i]; 1690 if (buffer_info->dma) { 1691 if (adapter->clean_rx == e1000_clean_rx_irq) 1692 dma_unmap_single(&pdev->dev, buffer_info->dma, 1693 adapter->rx_buffer_len, 1694 DMA_FROM_DEVICE); 1695 else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) 1696 dma_unmap_page(&pdev->dev, buffer_info->dma, 1697 PAGE_SIZE, DMA_FROM_DEVICE); 1698 else if (adapter->clean_rx == e1000_clean_rx_irq_ps) 1699 dma_unmap_single(&pdev->dev, buffer_info->dma, 1700 adapter->rx_ps_bsize0, 1701 DMA_FROM_DEVICE); 1702 buffer_info->dma = 0; 1703 } 1704 1705 if (buffer_info->page) { 1706 put_page(buffer_info->page); 1707 buffer_info->page = NULL; 1708 } 1709 1710 if (buffer_info->skb) { 1711 dev_kfree_skb(buffer_info->skb); 1712 buffer_info->skb = NULL; 1713 } 1714 1715 for (j = 0; j < PS_PAGE_BUFFERS; j++) { 1716 ps_page = &buffer_info->ps_pages[j]; 1717 if (!ps_page->page) 1718 break; 1719 dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE, 1720 DMA_FROM_DEVICE); 1721 ps_page->dma = 0; 1722 put_page(ps_page->page); 1723 ps_page->page = NULL; 1724 } 1725 } 1726 1727 /* there also may be some cached data from a chained receive */ 1728 if (rx_ring->rx_skb_top) { 1729 dev_kfree_skb(rx_ring->rx_skb_top); 1730 rx_ring->rx_skb_top = NULL; 1731 } 1732 1733 /* Zero out the descriptor ring */ 1734 memset(rx_ring->desc, 0, rx_ring->size); 1735 1736 rx_ring->next_to_clean = 0; 1737 rx_ring->next_to_use = 0; 1738 adapter->flags2 &= ~FLAG2_IS_DISCARDING; 1739 1740 writel(0, rx_ring->head); 1741 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA) 1742 e1000e_update_rdt_wa(rx_ring, 0); 1743 else 1744 writel(0, rx_ring->tail); 1745 } 1746 1747 static void e1000e_downshift_workaround(struct work_struct *work) 1748 { 1749 struct e1000_adapter *adapter = container_of(work, 1750 struct e1000_adapter, 1751 downshift_task); 1752 1753 if (test_bit(__E1000_DOWN, &adapter->state)) 1754 return; 1755 1756 e1000e_gig_downshift_workaround_ich8lan(&adapter->hw); 1757 } 1758 1759 /** 1760 * e1000_intr_msi - Interrupt Handler 1761 * @irq: interrupt number 1762 * @data: pointer to a network interface device structure 1763 **/ 1764 static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data) 1765 { 1766 struct net_device *netdev = data; 1767 struct e1000_adapter *adapter = netdev_priv(netdev); 1768 struct e1000_hw *hw = &adapter->hw; 1769 u32 icr = er32(ICR); 1770 1771 /* read ICR disables interrupts using IAM */ 1772 if (icr & E1000_ICR_LSC) { 1773 hw->mac.get_link_status = true; 1774 /* ICH8 workaround-- Call gig speed drop workaround on cable 1775 * disconnect (LSC) before accessing any PHY registers 1776 */ 1777 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) && 1778 (!(er32(STATUS) & E1000_STATUS_LU))) 1779 schedule_work(&adapter->downshift_task); 1780 1781 /* 80003ES2LAN workaround-- For packet buffer work-around on 1782 * link down event; disable receives here in the ISR and reset 1783 * adapter in watchdog 1784 */ 1785 if (netif_carrier_ok(netdev) && 1786 adapter->flags & FLAG_RX_NEEDS_RESTART) { 1787 /* disable receives */ 1788 u32 rctl = er32(RCTL); 1789 1790 ew32(RCTL, rctl & ~E1000_RCTL_EN); 1791 adapter->flags |= FLAG_RESTART_NOW; 1792 } 1793 /* guard against interrupt when we're going down */ 1794 if (!test_bit(__E1000_DOWN, &adapter->state)) 1795 mod_timer(&adapter->watchdog_timer, jiffies + 1); 1796 } 1797 1798 /* Reset on uncorrectable ECC error */ 1799 if ((icr & E1000_ICR_ECCER) && (hw->mac.type == e1000_pch_lpt)) { 1800 u32 pbeccsts = er32(PBECCSTS); 1801 1802 adapter->corr_errors += 1803 pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK; 1804 adapter->uncorr_errors += 1805 (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >> 1806 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT; 1807 1808 /* Do the reset outside of interrupt context */ 1809 schedule_work(&adapter->reset_task); 1810 1811 /* return immediately since reset is imminent */ 1812 return IRQ_HANDLED; 1813 } 1814 1815 if (napi_schedule_prep(&adapter->napi)) { 1816 adapter->total_tx_bytes = 0; 1817 adapter->total_tx_packets = 0; 1818 adapter->total_rx_bytes = 0; 1819 adapter->total_rx_packets = 0; 1820 __napi_schedule(&adapter->napi); 1821 } 1822 1823 return IRQ_HANDLED; 1824 } 1825 1826 /** 1827 * e1000_intr - Interrupt Handler 1828 * @irq: interrupt number 1829 * @data: pointer to a network interface device structure 1830 **/ 1831 static irqreturn_t e1000_intr(int __always_unused irq, void *data) 1832 { 1833 struct net_device *netdev = data; 1834 struct e1000_adapter *adapter = netdev_priv(netdev); 1835 struct e1000_hw *hw = &adapter->hw; 1836 u32 rctl, icr = er32(ICR); 1837 1838 if (!icr || test_bit(__E1000_DOWN, &adapter->state)) 1839 return IRQ_NONE; /* Not our interrupt */ 1840 1841 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is 1842 * not set, then the adapter didn't send an interrupt 1843 */ 1844 if (!(icr & E1000_ICR_INT_ASSERTED)) 1845 return IRQ_NONE; 1846 1847 /* Interrupt Auto-Mask...upon reading ICR, 1848 * interrupts are masked. No need for the 1849 * IMC write 1850 */ 1851 1852 if (icr & E1000_ICR_LSC) { 1853 hw->mac.get_link_status = true; 1854 /* ICH8 workaround-- Call gig speed drop workaround on cable 1855 * disconnect (LSC) before accessing any PHY registers 1856 */ 1857 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) && 1858 (!(er32(STATUS) & E1000_STATUS_LU))) 1859 schedule_work(&adapter->downshift_task); 1860 1861 /* 80003ES2LAN workaround-- 1862 * For packet buffer work-around on link down event; 1863 * disable receives here in the ISR and 1864 * reset adapter in watchdog 1865 */ 1866 if (netif_carrier_ok(netdev) && 1867 (adapter->flags & FLAG_RX_NEEDS_RESTART)) { 1868 /* disable receives */ 1869 rctl = er32(RCTL); 1870 ew32(RCTL, rctl & ~E1000_RCTL_EN); 1871 adapter->flags |= FLAG_RESTART_NOW; 1872 } 1873 /* guard against interrupt when we're going down */ 1874 if (!test_bit(__E1000_DOWN, &adapter->state)) 1875 mod_timer(&adapter->watchdog_timer, jiffies + 1); 1876 } 1877 1878 /* Reset on uncorrectable ECC error */ 1879 if ((icr & E1000_ICR_ECCER) && (hw->mac.type == e1000_pch_lpt)) { 1880 u32 pbeccsts = er32(PBECCSTS); 1881 1882 adapter->corr_errors += 1883 pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK; 1884 adapter->uncorr_errors += 1885 (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >> 1886 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT; 1887 1888 /* Do the reset outside of interrupt context */ 1889 schedule_work(&adapter->reset_task); 1890 1891 /* return immediately since reset is imminent */ 1892 return IRQ_HANDLED; 1893 } 1894 1895 if (napi_schedule_prep(&adapter->napi)) { 1896 adapter->total_tx_bytes = 0; 1897 adapter->total_tx_packets = 0; 1898 adapter->total_rx_bytes = 0; 1899 adapter->total_rx_packets = 0; 1900 __napi_schedule(&adapter->napi); 1901 } 1902 1903 return IRQ_HANDLED; 1904 } 1905 1906 static irqreturn_t e1000_msix_other(int __always_unused irq, void *data) 1907 { 1908 struct net_device *netdev = data; 1909 struct e1000_adapter *adapter = netdev_priv(netdev); 1910 struct e1000_hw *hw = &adapter->hw; 1911 u32 icr = er32(ICR); 1912 1913 if (!(icr & E1000_ICR_INT_ASSERTED)) { 1914 if (!test_bit(__E1000_DOWN, &adapter->state)) 1915 ew32(IMS, E1000_IMS_OTHER); 1916 return IRQ_NONE; 1917 } 1918 1919 if (icr & adapter->eiac_mask) 1920 ew32(ICS, (icr & adapter->eiac_mask)); 1921 1922 if (icr & E1000_ICR_OTHER) { 1923 if (!(icr & E1000_ICR_LSC)) 1924 goto no_link_interrupt; 1925 hw->mac.get_link_status = true; 1926 /* guard against interrupt when we're going down */ 1927 if (!test_bit(__E1000_DOWN, &adapter->state)) 1928 mod_timer(&adapter->watchdog_timer, jiffies + 1); 1929 } 1930 1931 no_link_interrupt: 1932 if (!test_bit(__E1000_DOWN, &adapter->state)) 1933 ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER); 1934 1935 return IRQ_HANDLED; 1936 } 1937 1938 static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data) 1939 { 1940 struct net_device *netdev = data; 1941 struct e1000_adapter *adapter = netdev_priv(netdev); 1942 struct e1000_hw *hw = &adapter->hw; 1943 struct e1000_ring *tx_ring = adapter->tx_ring; 1944 1945 adapter->total_tx_bytes = 0; 1946 adapter->total_tx_packets = 0; 1947 1948 if (!e1000_clean_tx_irq(tx_ring)) 1949 /* Ring was not completely cleaned, so fire another interrupt */ 1950 ew32(ICS, tx_ring->ims_val); 1951 1952 return IRQ_HANDLED; 1953 } 1954 1955 static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data) 1956 { 1957 struct net_device *netdev = data; 1958 struct e1000_adapter *adapter = netdev_priv(netdev); 1959 struct e1000_ring *rx_ring = adapter->rx_ring; 1960 1961 /* Write the ITR value calculated at the end of the 1962 * previous interrupt. 1963 */ 1964 if (rx_ring->set_itr) { 1965 writel(1000000000 / (rx_ring->itr_val * 256), 1966 rx_ring->itr_register); 1967 rx_ring->set_itr = 0; 1968 } 1969 1970 if (napi_schedule_prep(&adapter->napi)) { 1971 adapter->total_rx_bytes = 0; 1972 adapter->total_rx_packets = 0; 1973 __napi_schedule(&adapter->napi); 1974 } 1975 return IRQ_HANDLED; 1976 } 1977 1978 /** 1979 * e1000_configure_msix - Configure MSI-X hardware 1980 * 1981 * e1000_configure_msix sets up the hardware to properly 1982 * generate MSI-X interrupts. 1983 **/ 1984 static void e1000_configure_msix(struct e1000_adapter *adapter) 1985 { 1986 struct e1000_hw *hw = &adapter->hw; 1987 struct e1000_ring *rx_ring = adapter->rx_ring; 1988 struct e1000_ring *tx_ring = adapter->tx_ring; 1989 int vector = 0; 1990 u32 ctrl_ext, ivar = 0; 1991 1992 adapter->eiac_mask = 0; 1993 1994 /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */ 1995 if (hw->mac.type == e1000_82574) { 1996 u32 rfctl = er32(RFCTL); 1997 1998 rfctl |= E1000_RFCTL_ACK_DIS; 1999 ew32(RFCTL, rfctl); 2000 } 2001 2002 /* Configure Rx vector */ 2003 rx_ring->ims_val = E1000_IMS_RXQ0; 2004 adapter->eiac_mask |= rx_ring->ims_val; 2005 if (rx_ring->itr_val) 2006 writel(1000000000 / (rx_ring->itr_val * 256), 2007 rx_ring->itr_register); 2008 else 2009 writel(1, rx_ring->itr_register); 2010 ivar = E1000_IVAR_INT_ALLOC_VALID | vector; 2011 2012 /* Configure Tx vector */ 2013 tx_ring->ims_val = E1000_IMS_TXQ0; 2014 vector++; 2015 if (tx_ring->itr_val) 2016 writel(1000000000 / (tx_ring->itr_val * 256), 2017 tx_ring->itr_register); 2018 else 2019 writel(1, tx_ring->itr_register); 2020 adapter->eiac_mask |= tx_ring->ims_val; 2021 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8); 2022 2023 /* set vector for Other Causes, e.g. link changes */ 2024 vector++; 2025 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16); 2026 if (rx_ring->itr_val) 2027 writel(1000000000 / (rx_ring->itr_val * 256), 2028 hw->hw_addr + E1000_EITR_82574(vector)); 2029 else 2030 writel(1, hw->hw_addr + E1000_EITR_82574(vector)); 2031 2032 /* Cause Tx interrupts on every write back */ 2033 ivar |= (1 << 31); 2034 2035 ew32(IVAR, ivar); 2036 2037 /* enable MSI-X PBA support */ 2038 ctrl_ext = er32(CTRL_EXT); 2039 ctrl_ext |= E1000_CTRL_EXT_PBA_CLR; 2040 2041 /* Auto-Mask Other interrupts upon ICR read */ 2042 ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER); 2043 ctrl_ext |= E1000_CTRL_EXT_EIAME; 2044 ew32(CTRL_EXT, ctrl_ext); 2045 e1e_flush(); 2046 } 2047 2048 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter) 2049 { 2050 if (adapter->msix_entries) { 2051 pci_disable_msix(adapter->pdev); 2052 kfree(adapter->msix_entries); 2053 adapter->msix_entries = NULL; 2054 } else if (adapter->flags & FLAG_MSI_ENABLED) { 2055 pci_disable_msi(adapter->pdev); 2056 adapter->flags &= ~FLAG_MSI_ENABLED; 2057 } 2058 } 2059 2060 /** 2061 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported 2062 * 2063 * Attempt to configure interrupts using the best available 2064 * capabilities of the hardware and kernel. 2065 **/ 2066 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter) 2067 { 2068 int err; 2069 int i; 2070 2071 switch (adapter->int_mode) { 2072 case E1000E_INT_MODE_MSIX: 2073 if (adapter->flags & FLAG_HAS_MSIX) { 2074 adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */ 2075 adapter->msix_entries = kcalloc(adapter->num_vectors, 2076 sizeof(struct 2077 msix_entry), 2078 GFP_KERNEL); 2079 if (adapter->msix_entries) { 2080 struct e1000_adapter *a = adapter; 2081 2082 for (i = 0; i < adapter->num_vectors; i++) 2083 adapter->msix_entries[i].entry = i; 2084 2085 err = pci_enable_msix_range(a->pdev, 2086 a->msix_entries, 2087 a->num_vectors, 2088 a->num_vectors); 2089 if (err > 0) 2090 return; 2091 } 2092 /* MSI-X failed, so fall through and try MSI */ 2093 e_err("Failed to initialize MSI-X interrupts. Falling back to MSI interrupts.\n"); 2094 e1000e_reset_interrupt_capability(adapter); 2095 } 2096 adapter->int_mode = E1000E_INT_MODE_MSI; 2097 /* Fall through */ 2098 case E1000E_INT_MODE_MSI: 2099 if (!pci_enable_msi(adapter->pdev)) { 2100 adapter->flags |= FLAG_MSI_ENABLED; 2101 } else { 2102 adapter->int_mode = E1000E_INT_MODE_LEGACY; 2103 e_err("Failed to initialize MSI interrupts. Falling back to legacy interrupts.\n"); 2104 } 2105 /* Fall through */ 2106 case E1000E_INT_MODE_LEGACY: 2107 /* Don't do anything; this is the system default */ 2108 break; 2109 } 2110 2111 /* store the number of vectors being used */ 2112 adapter->num_vectors = 1; 2113 } 2114 2115 /** 2116 * e1000_request_msix - Initialize MSI-X interrupts 2117 * 2118 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the 2119 * kernel. 2120 **/ 2121 static int e1000_request_msix(struct e1000_adapter *adapter) 2122 { 2123 struct net_device *netdev = adapter->netdev; 2124 int err = 0, vector = 0; 2125 2126 if (strlen(netdev->name) < (IFNAMSIZ - 5)) 2127 snprintf(adapter->rx_ring->name, 2128 sizeof(adapter->rx_ring->name) - 1, 2129 "%s-rx-0", netdev->name); 2130 else 2131 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ); 2132 err = request_irq(adapter->msix_entries[vector].vector, 2133 e1000_intr_msix_rx, 0, adapter->rx_ring->name, 2134 netdev); 2135 if (err) 2136 return err; 2137 adapter->rx_ring->itr_register = adapter->hw.hw_addr + 2138 E1000_EITR_82574(vector); 2139 adapter->rx_ring->itr_val = adapter->itr; 2140 vector++; 2141 2142 if (strlen(netdev->name) < (IFNAMSIZ - 5)) 2143 snprintf(adapter->tx_ring->name, 2144 sizeof(adapter->tx_ring->name) - 1, 2145 "%s-tx-0", netdev->name); 2146 else 2147 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ); 2148 err = request_irq(adapter->msix_entries[vector].vector, 2149 e1000_intr_msix_tx, 0, adapter->tx_ring->name, 2150 netdev); 2151 if (err) 2152 return err; 2153 adapter->tx_ring->itr_register = adapter->hw.hw_addr + 2154 E1000_EITR_82574(vector); 2155 adapter->tx_ring->itr_val = adapter->itr; 2156 vector++; 2157 2158 err = request_irq(adapter->msix_entries[vector].vector, 2159 e1000_msix_other, 0, netdev->name, netdev); 2160 if (err) 2161 return err; 2162 2163 e1000_configure_msix(adapter); 2164 2165 return 0; 2166 } 2167 2168 /** 2169 * e1000_request_irq - initialize interrupts 2170 * 2171 * Attempts to configure interrupts using the best available 2172 * capabilities of the hardware and kernel. 2173 **/ 2174 static int e1000_request_irq(struct e1000_adapter *adapter) 2175 { 2176 struct net_device *netdev = adapter->netdev; 2177 int err; 2178 2179 if (adapter->msix_entries) { 2180 err = e1000_request_msix(adapter); 2181 if (!err) 2182 return err; 2183 /* fall back to MSI */ 2184 e1000e_reset_interrupt_capability(adapter); 2185 adapter->int_mode = E1000E_INT_MODE_MSI; 2186 e1000e_set_interrupt_capability(adapter); 2187 } 2188 if (adapter->flags & FLAG_MSI_ENABLED) { 2189 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0, 2190 netdev->name, netdev); 2191 if (!err) 2192 return err; 2193 2194 /* fall back to legacy interrupt */ 2195 e1000e_reset_interrupt_capability(adapter); 2196 adapter->int_mode = E1000E_INT_MODE_LEGACY; 2197 } 2198 2199 err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED, 2200 netdev->name, netdev); 2201 if (err) 2202 e_err("Unable to allocate interrupt, Error: %d\n", err); 2203 2204 return err; 2205 } 2206 2207 static void e1000_free_irq(struct e1000_adapter *adapter) 2208 { 2209 struct net_device *netdev = adapter->netdev; 2210 2211 if (adapter->msix_entries) { 2212 int vector = 0; 2213 2214 free_irq(adapter->msix_entries[vector].vector, netdev); 2215 vector++; 2216 2217 free_irq(adapter->msix_entries[vector].vector, netdev); 2218 vector++; 2219 2220 /* Other Causes interrupt vector */ 2221 free_irq(adapter->msix_entries[vector].vector, netdev); 2222 return; 2223 } 2224 2225 free_irq(adapter->pdev->irq, netdev); 2226 } 2227 2228 /** 2229 * e1000_irq_disable - Mask off interrupt generation on the NIC 2230 **/ 2231 static void e1000_irq_disable(struct e1000_adapter *adapter) 2232 { 2233 struct e1000_hw *hw = &adapter->hw; 2234 2235 ew32(IMC, ~0); 2236 if (adapter->msix_entries) 2237 ew32(EIAC_82574, 0); 2238 e1e_flush(); 2239 2240 if (adapter->msix_entries) { 2241 int i; 2242 2243 for (i = 0; i < adapter->num_vectors; i++) 2244 synchronize_irq(adapter->msix_entries[i].vector); 2245 } else { 2246 synchronize_irq(adapter->pdev->irq); 2247 } 2248 } 2249 2250 /** 2251 * e1000_irq_enable - Enable default interrupt generation settings 2252 **/ 2253 static void e1000_irq_enable(struct e1000_adapter *adapter) 2254 { 2255 struct e1000_hw *hw = &adapter->hw; 2256 2257 if (adapter->msix_entries) { 2258 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574); 2259 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC); 2260 } else if (hw->mac.type == e1000_pch_lpt) { 2261 ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER); 2262 } else { 2263 ew32(IMS, IMS_ENABLE_MASK); 2264 } 2265 e1e_flush(); 2266 } 2267 2268 /** 2269 * e1000e_get_hw_control - get control of the h/w from f/w 2270 * @adapter: address of board private structure 2271 * 2272 * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit. 2273 * For ASF and Pass Through versions of f/w this means that 2274 * the driver is loaded. For AMT version (only with 82573) 2275 * of the f/w this means that the network i/f is open. 2276 **/ 2277 void e1000e_get_hw_control(struct e1000_adapter *adapter) 2278 { 2279 struct e1000_hw *hw = &adapter->hw; 2280 u32 ctrl_ext; 2281 u32 swsm; 2282 2283 /* Let firmware know the driver has taken over */ 2284 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) { 2285 swsm = er32(SWSM); 2286 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD); 2287 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) { 2288 ctrl_ext = er32(CTRL_EXT); 2289 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); 2290 } 2291 } 2292 2293 /** 2294 * e1000e_release_hw_control - release control of the h/w to f/w 2295 * @adapter: address of board private structure 2296 * 2297 * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit. 2298 * For ASF and Pass Through versions of f/w this means that the 2299 * driver is no longer loaded. For AMT version (only with 82573) i 2300 * of the f/w this means that the network i/f is closed. 2301 * 2302 **/ 2303 void e1000e_release_hw_control(struct e1000_adapter *adapter) 2304 { 2305 struct e1000_hw *hw = &adapter->hw; 2306 u32 ctrl_ext; 2307 u32 swsm; 2308 2309 /* Let firmware taken over control of h/w */ 2310 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) { 2311 swsm = er32(SWSM); 2312 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD); 2313 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) { 2314 ctrl_ext = er32(CTRL_EXT); 2315 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); 2316 } 2317 } 2318 2319 /** 2320 * e1000_alloc_ring_dma - allocate memory for a ring structure 2321 **/ 2322 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter, 2323 struct e1000_ring *ring) 2324 { 2325 struct pci_dev *pdev = adapter->pdev; 2326 2327 ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma, 2328 GFP_KERNEL); 2329 if (!ring->desc) 2330 return -ENOMEM; 2331 2332 return 0; 2333 } 2334 2335 /** 2336 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors) 2337 * @tx_ring: Tx descriptor ring 2338 * 2339 * Return 0 on success, negative on failure 2340 **/ 2341 int e1000e_setup_tx_resources(struct e1000_ring *tx_ring) 2342 { 2343 struct e1000_adapter *adapter = tx_ring->adapter; 2344 int err = -ENOMEM, size; 2345 2346 size = sizeof(struct e1000_buffer) * tx_ring->count; 2347 tx_ring->buffer_info = vzalloc(size); 2348 if (!tx_ring->buffer_info) 2349 goto err; 2350 2351 /* round up to nearest 4K */ 2352 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc); 2353 tx_ring->size = ALIGN(tx_ring->size, 4096); 2354 2355 err = e1000_alloc_ring_dma(adapter, tx_ring); 2356 if (err) 2357 goto err; 2358 2359 tx_ring->next_to_use = 0; 2360 tx_ring->next_to_clean = 0; 2361 2362 return 0; 2363 err: 2364 vfree(tx_ring->buffer_info); 2365 e_err("Unable to allocate memory for the transmit descriptor ring\n"); 2366 return err; 2367 } 2368 2369 /** 2370 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors) 2371 * @rx_ring: Rx descriptor ring 2372 * 2373 * Returns 0 on success, negative on failure 2374 **/ 2375 int e1000e_setup_rx_resources(struct e1000_ring *rx_ring) 2376 { 2377 struct e1000_adapter *adapter = rx_ring->adapter; 2378 struct e1000_buffer *buffer_info; 2379 int i, size, desc_len, err = -ENOMEM; 2380 2381 size = sizeof(struct e1000_buffer) * rx_ring->count; 2382 rx_ring->buffer_info = vzalloc(size); 2383 if (!rx_ring->buffer_info) 2384 goto err; 2385 2386 for (i = 0; i < rx_ring->count; i++) { 2387 buffer_info = &rx_ring->buffer_info[i]; 2388 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS, 2389 sizeof(struct e1000_ps_page), 2390 GFP_KERNEL); 2391 if (!buffer_info->ps_pages) 2392 goto err_pages; 2393 } 2394 2395 desc_len = sizeof(union e1000_rx_desc_packet_split); 2396 2397 /* Round up to nearest 4K */ 2398 rx_ring->size = rx_ring->count * desc_len; 2399 rx_ring->size = ALIGN(rx_ring->size, 4096); 2400 2401 err = e1000_alloc_ring_dma(adapter, rx_ring); 2402 if (err) 2403 goto err_pages; 2404 2405 rx_ring->next_to_clean = 0; 2406 rx_ring->next_to_use = 0; 2407 rx_ring->rx_skb_top = NULL; 2408 2409 return 0; 2410 2411 err_pages: 2412 for (i = 0; i < rx_ring->count; i++) { 2413 buffer_info = &rx_ring->buffer_info[i]; 2414 kfree(buffer_info->ps_pages); 2415 } 2416 err: 2417 vfree(rx_ring->buffer_info); 2418 e_err("Unable to allocate memory for the receive descriptor ring\n"); 2419 return err; 2420 } 2421 2422 /** 2423 * e1000_clean_tx_ring - Free Tx Buffers 2424 * @tx_ring: Tx descriptor ring 2425 **/ 2426 static void e1000_clean_tx_ring(struct e1000_ring *tx_ring) 2427 { 2428 struct e1000_adapter *adapter = tx_ring->adapter; 2429 struct e1000_buffer *buffer_info; 2430 unsigned long size; 2431 unsigned int i; 2432 2433 for (i = 0; i < tx_ring->count; i++) { 2434 buffer_info = &tx_ring->buffer_info[i]; 2435 e1000_put_txbuf(tx_ring, buffer_info); 2436 } 2437 2438 netdev_reset_queue(adapter->netdev); 2439 size = sizeof(struct e1000_buffer) * tx_ring->count; 2440 memset(tx_ring->buffer_info, 0, size); 2441 2442 memset(tx_ring->desc, 0, tx_ring->size); 2443 2444 tx_ring->next_to_use = 0; 2445 tx_ring->next_to_clean = 0; 2446 2447 writel(0, tx_ring->head); 2448 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA) 2449 e1000e_update_tdt_wa(tx_ring, 0); 2450 else 2451 writel(0, tx_ring->tail); 2452 } 2453 2454 /** 2455 * e1000e_free_tx_resources - Free Tx Resources per Queue 2456 * @tx_ring: Tx descriptor ring 2457 * 2458 * Free all transmit software resources 2459 **/ 2460 void e1000e_free_tx_resources(struct e1000_ring *tx_ring) 2461 { 2462 struct e1000_adapter *adapter = tx_ring->adapter; 2463 struct pci_dev *pdev = adapter->pdev; 2464 2465 e1000_clean_tx_ring(tx_ring); 2466 2467 vfree(tx_ring->buffer_info); 2468 tx_ring->buffer_info = NULL; 2469 2470 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, 2471 tx_ring->dma); 2472 tx_ring->desc = NULL; 2473 } 2474 2475 /** 2476 * e1000e_free_rx_resources - Free Rx Resources 2477 * @rx_ring: Rx descriptor ring 2478 * 2479 * Free all receive software resources 2480 **/ 2481 void e1000e_free_rx_resources(struct e1000_ring *rx_ring) 2482 { 2483 struct e1000_adapter *adapter = rx_ring->adapter; 2484 struct pci_dev *pdev = adapter->pdev; 2485 int i; 2486 2487 e1000_clean_rx_ring(rx_ring); 2488 2489 for (i = 0; i < rx_ring->count; i++) 2490 kfree(rx_ring->buffer_info[i].ps_pages); 2491 2492 vfree(rx_ring->buffer_info); 2493 rx_ring->buffer_info = NULL; 2494 2495 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, 2496 rx_ring->dma); 2497 rx_ring->desc = NULL; 2498 } 2499 2500 /** 2501 * e1000_update_itr - update the dynamic ITR value based on statistics 2502 * @adapter: pointer to adapter 2503 * @itr_setting: current adapter->itr 2504 * @packets: the number of packets during this measurement interval 2505 * @bytes: the number of bytes during this measurement interval 2506 * 2507 * Stores a new ITR value based on packets and byte 2508 * counts during the last interrupt. The advantage of per interrupt 2509 * computation is faster updates and more accurate ITR for the current 2510 * traffic pattern. Constants in this function were computed 2511 * based on theoretical maximum wire speed and thresholds were set based 2512 * on testing data as well as attempting to minimize response time 2513 * while increasing bulk throughput. This functionality is controlled 2514 * by the InterruptThrottleRate module parameter. 2515 **/ 2516 static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes) 2517 { 2518 unsigned int retval = itr_setting; 2519 2520 if (packets == 0) 2521 return itr_setting; 2522 2523 switch (itr_setting) { 2524 case lowest_latency: 2525 /* handle TSO and jumbo frames */ 2526 if (bytes / packets > 8000) 2527 retval = bulk_latency; 2528 else if ((packets < 5) && (bytes > 512)) 2529 retval = low_latency; 2530 break; 2531 case low_latency: /* 50 usec aka 20000 ints/s */ 2532 if (bytes > 10000) { 2533 /* this if handles the TSO accounting */ 2534 if (bytes / packets > 8000) 2535 retval = bulk_latency; 2536 else if ((packets < 10) || ((bytes / packets) > 1200)) 2537 retval = bulk_latency; 2538 else if ((packets > 35)) 2539 retval = lowest_latency; 2540 } else if (bytes / packets > 2000) { 2541 retval = bulk_latency; 2542 } else if (packets <= 2 && bytes < 512) { 2543 retval = lowest_latency; 2544 } 2545 break; 2546 case bulk_latency: /* 250 usec aka 4000 ints/s */ 2547 if (bytes > 25000) { 2548 if (packets > 35) 2549 retval = low_latency; 2550 } else if (bytes < 6000) { 2551 retval = low_latency; 2552 } 2553 break; 2554 } 2555 2556 return retval; 2557 } 2558 2559 static void e1000_set_itr(struct e1000_adapter *adapter) 2560 { 2561 u16 current_itr; 2562 u32 new_itr = adapter->itr; 2563 2564 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ 2565 if (adapter->link_speed != SPEED_1000) { 2566 current_itr = 0; 2567 new_itr = 4000; 2568 goto set_itr_now; 2569 } 2570 2571 if (adapter->flags2 & FLAG2_DISABLE_AIM) { 2572 new_itr = 0; 2573 goto set_itr_now; 2574 } 2575 2576 adapter->tx_itr = e1000_update_itr(adapter->tx_itr, 2577 adapter->total_tx_packets, 2578 adapter->total_tx_bytes); 2579 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 2580 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency) 2581 adapter->tx_itr = low_latency; 2582 2583 adapter->rx_itr = e1000_update_itr(adapter->rx_itr, 2584 adapter->total_rx_packets, 2585 adapter->total_rx_bytes); 2586 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 2587 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency) 2588 adapter->rx_itr = low_latency; 2589 2590 current_itr = max(adapter->rx_itr, adapter->tx_itr); 2591 2592 /* counts and packets in update_itr are dependent on these numbers */ 2593 switch (current_itr) { 2594 case lowest_latency: 2595 new_itr = 70000; 2596 break; 2597 case low_latency: 2598 new_itr = 20000; /* aka hwitr = ~200 */ 2599 break; 2600 case bulk_latency: 2601 new_itr = 4000; 2602 break; 2603 default: 2604 break; 2605 } 2606 2607 set_itr_now: 2608 if (new_itr != adapter->itr) { 2609 /* this attempts to bias the interrupt rate towards Bulk 2610 * by adding intermediate steps when interrupt rate is 2611 * increasing 2612 */ 2613 new_itr = new_itr > adapter->itr ? 2614 min(adapter->itr + (new_itr >> 2), new_itr) : new_itr; 2615 adapter->itr = new_itr; 2616 adapter->rx_ring->itr_val = new_itr; 2617 if (adapter->msix_entries) 2618 adapter->rx_ring->set_itr = 1; 2619 else 2620 e1000e_write_itr(adapter, new_itr); 2621 } 2622 } 2623 2624 /** 2625 * e1000e_write_itr - write the ITR value to the appropriate registers 2626 * @adapter: address of board private structure 2627 * @itr: new ITR value to program 2628 * 2629 * e1000e_write_itr determines if the adapter is in MSI-X mode 2630 * and, if so, writes the EITR registers with the ITR value. 2631 * Otherwise, it writes the ITR value into the ITR register. 2632 **/ 2633 void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr) 2634 { 2635 struct e1000_hw *hw = &adapter->hw; 2636 u32 new_itr = itr ? 1000000000 / (itr * 256) : 0; 2637 2638 if (adapter->msix_entries) { 2639 int vector; 2640 2641 for (vector = 0; vector < adapter->num_vectors; vector++) 2642 writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector)); 2643 } else { 2644 ew32(ITR, new_itr); 2645 } 2646 } 2647 2648 /** 2649 * e1000_alloc_queues - Allocate memory for all rings 2650 * @adapter: board private structure to initialize 2651 **/ 2652 static int e1000_alloc_queues(struct e1000_adapter *adapter) 2653 { 2654 int size = sizeof(struct e1000_ring); 2655 2656 adapter->tx_ring = kzalloc(size, GFP_KERNEL); 2657 if (!adapter->tx_ring) 2658 goto err; 2659 adapter->tx_ring->count = adapter->tx_ring_count; 2660 adapter->tx_ring->adapter = adapter; 2661 2662 adapter->rx_ring = kzalloc(size, GFP_KERNEL); 2663 if (!adapter->rx_ring) 2664 goto err; 2665 adapter->rx_ring->count = adapter->rx_ring_count; 2666 adapter->rx_ring->adapter = adapter; 2667 2668 return 0; 2669 err: 2670 e_err("Unable to allocate memory for queues\n"); 2671 kfree(adapter->rx_ring); 2672 kfree(adapter->tx_ring); 2673 return -ENOMEM; 2674 } 2675 2676 /** 2677 * e1000e_poll - NAPI Rx polling callback 2678 * @napi: struct associated with this polling callback 2679 * @weight: number of packets driver is allowed to process this poll 2680 **/ 2681 static int e1000e_poll(struct napi_struct *napi, int weight) 2682 { 2683 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, 2684 napi); 2685 struct e1000_hw *hw = &adapter->hw; 2686 struct net_device *poll_dev = adapter->netdev; 2687 int tx_cleaned = 1, work_done = 0; 2688 2689 adapter = netdev_priv(poll_dev); 2690 2691 if (!adapter->msix_entries || 2692 (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val)) 2693 tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring); 2694 2695 adapter->clean_rx(adapter->rx_ring, &work_done, weight); 2696 2697 if (!tx_cleaned) 2698 work_done = weight; 2699 2700 /* If weight not fully consumed, exit the polling mode */ 2701 if (work_done < weight) { 2702 if (adapter->itr_setting & 3) 2703 e1000_set_itr(adapter); 2704 napi_complete(napi); 2705 if (!test_bit(__E1000_DOWN, &adapter->state)) { 2706 if (adapter->msix_entries) 2707 ew32(IMS, adapter->rx_ring->ims_val); 2708 else 2709 e1000_irq_enable(adapter); 2710 } 2711 } 2712 2713 return work_done; 2714 } 2715 2716 static int e1000_vlan_rx_add_vid(struct net_device *netdev, 2717 __always_unused __be16 proto, u16 vid) 2718 { 2719 struct e1000_adapter *adapter = netdev_priv(netdev); 2720 struct e1000_hw *hw = &adapter->hw; 2721 u32 vfta, index; 2722 2723 /* don't update vlan cookie if already programmed */ 2724 if ((adapter->hw.mng_cookie.status & 2725 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) && 2726 (vid == adapter->mng_vlan_id)) 2727 return 0; 2728 2729 /* add VID to filter table */ 2730 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { 2731 index = (vid >> 5) & 0x7F; 2732 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index); 2733 vfta |= (1 << (vid & 0x1F)); 2734 hw->mac.ops.write_vfta(hw, index, vfta); 2735 } 2736 2737 set_bit(vid, adapter->active_vlans); 2738 2739 return 0; 2740 } 2741 2742 static int e1000_vlan_rx_kill_vid(struct net_device *netdev, 2743 __always_unused __be16 proto, u16 vid) 2744 { 2745 struct e1000_adapter *adapter = netdev_priv(netdev); 2746 struct e1000_hw *hw = &adapter->hw; 2747 u32 vfta, index; 2748 2749 if ((adapter->hw.mng_cookie.status & 2750 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) && 2751 (vid == adapter->mng_vlan_id)) { 2752 /* release control to f/w */ 2753 e1000e_release_hw_control(adapter); 2754 return 0; 2755 } 2756 2757 /* remove VID from filter table */ 2758 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { 2759 index = (vid >> 5) & 0x7F; 2760 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index); 2761 vfta &= ~(1 << (vid & 0x1F)); 2762 hw->mac.ops.write_vfta(hw, index, vfta); 2763 } 2764 2765 clear_bit(vid, adapter->active_vlans); 2766 2767 return 0; 2768 } 2769 2770 /** 2771 * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering 2772 * @adapter: board private structure to initialize 2773 **/ 2774 static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter) 2775 { 2776 struct net_device *netdev = adapter->netdev; 2777 struct e1000_hw *hw = &adapter->hw; 2778 u32 rctl; 2779 2780 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { 2781 /* disable VLAN receive filtering */ 2782 rctl = er32(RCTL); 2783 rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN); 2784 ew32(RCTL, rctl); 2785 2786 if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) { 2787 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), 2788 adapter->mng_vlan_id); 2789 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; 2790 } 2791 } 2792 } 2793 2794 /** 2795 * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering 2796 * @adapter: board private structure to initialize 2797 **/ 2798 static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter) 2799 { 2800 struct e1000_hw *hw = &adapter->hw; 2801 u32 rctl; 2802 2803 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { 2804 /* enable VLAN receive filtering */ 2805 rctl = er32(RCTL); 2806 rctl |= E1000_RCTL_VFE; 2807 rctl &= ~E1000_RCTL_CFIEN; 2808 ew32(RCTL, rctl); 2809 } 2810 } 2811 2812 /** 2813 * e1000e_vlan_strip_enable - helper to disable HW VLAN stripping 2814 * @adapter: board private structure to initialize 2815 **/ 2816 static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter) 2817 { 2818 struct e1000_hw *hw = &adapter->hw; 2819 u32 ctrl; 2820 2821 /* disable VLAN tag insert/strip */ 2822 ctrl = er32(CTRL); 2823 ctrl &= ~E1000_CTRL_VME; 2824 ew32(CTRL, ctrl); 2825 } 2826 2827 /** 2828 * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping 2829 * @adapter: board private structure to initialize 2830 **/ 2831 static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter) 2832 { 2833 struct e1000_hw *hw = &adapter->hw; 2834 u32 ctrl; 2835 2836 /* enable VLAN tag insert/strip */ 2837 ctrl = er32(CTRL); 2838 ctrl |= E1000_CTRL_VME; 2839 ew32(CTRL, ctrl); 2840 } 2841 2842 static void e1000_update_mng_vlan(struct e1000_adapter *adapter) 2843 { 2844 struct net_device *netdev = adapter->netdev; 2845 u16 vid = adapter->hw.mng_cookie.vlan_id; 2846 u16 old_vid = adapter->mng_vlan_id; 2847 2848 if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) { 2849 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid); 2850 adapter->mng_vlan_id = vid; 2851 } 2852 2853 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid)) 2854 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid); 2855 } 2856 2857 static void e1000_restore_vlan(struct e1000_adapter *adapter) 2858 { 2859 u16 vid; 2860 2861 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0); 2862 2863 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) 2864 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid); 2865 } 2866 2867 static void e1000_init_manageability_pt(struct e1000_adapter *adapter) 2868 { 2869 struct e1000_hw *hw = &adapter->hw; 2870 u32 manc, manc2h, mdef, i, j; 2871 2872 if (!(adapter->flags & FLAG_MNG_PT_ENABLED)) 2873 return; 2874 2875 manc = er32(MANC); 2876 2877 /* enable receiving management packets to the host. this will probably 2878 * generate destination unreachable messages from the host OS, but 2879 * the packets will be handled on SMBUS 2880 */ 2881 manc |= E1000_MANC_EN_MNG2HOST; 2882 manc2h = er32(MANC2H); 2883 2884 switch (hw->mac.type) { 2885 default: 2886 manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664); 2887 break; 2888 case e1000_82574: 2889 case e1000_82583: 2890 /* Check if IPMI pass-through decision filter already exists; 2891 * if so, enable it. 2892 */ 2893 for (i = 0, j = 0; i < 8; i++) { 2894 mdef = er32(MDEF(i)); 2895 2896 /* Ignore filters with anything other than IPMI ports */ 2897 if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664)) 2898 continue; 2899 2900 /* Enable this decision filter in MANC2H */ 2901 if (mdef) 2902 manc2h |= (1 << i); 2903 2904 j |= mdef; 2905 } 2906 2907 if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664)) 2908 break; 2909 2910 /* Create new decision filter in an empty filter */ 2911 for (i = 0, j = 0; i < 8; i++) 2912 if (er32(MDEF(i)) == 0) { 2913 ew32(MDEF(i), (E1000_MDEF_PORT_623 | 2914 E1000_MDEF_PORT_664)); 2915 manc2h |= (1 << 1); 2916 j++; 2917 break; 2918 } 2919 2920 if (!j) 2921 e_warn("Unable to create IPMI pass-through filter\n"); 2922 break; 2923 } 2924 2925 ew32(MANC2H, manc2h); 2926 ew32(MANC, manc); 2927 } 2928 2929 /** 2930 * e1000_configure_tx - Configure Transmit Unit after Reset 2931 * @adapter: board private structure 2932 * 2933 * Configure the Tx unit of the MAC after a reset. 2934 **/ 2935 static void e1000_configure_tx(struct e1000_adapter *adapter) 2936 { 2937 struct e1000_hw *hw = &adapter->hw; 2938 struct e1000_ring *tx_ring = adapter->tx_ring; 2939 u64 tdba; 2940 u32 tdlen, tctl, tarc; 2941 2942 /* Setup the HW Tx Head and Tail descriptor pointers */ 2943 tdba = tx_ring->dma; 2944 tdlen = tx_ring->count * sizeof(struct e1000_tx_desc); 2945 ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32))); 2946 ew32(TDBAH(0), (tdba >> 32)); 2947 ew32(TDLEN(0), tdlen); 2948 ew32(TDH(0), 0); 2949 ew32(TDT(0), 0); 2950 tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0); 2951 tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0); 2952 2953 /* Set the Tx Interrupt Delay register */ 2954 ew32(TIDV, adapter->tx_int_delay); 2955 /* Tx irq moderation */ 2956 ew32(TADV, adapter->tx_abs_int_delay); 2957 2958 if (adapter->flags2 & FLAG2_DMA_BURST) { 2959 u32 txdctl = er32(TXDCTL(0)); 2960 2961 txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH | 2962 E1000_TXDCTL_WTHRESH); 2963 /* set up some performance related parameters to encourage the 2964 * hardware to use the bus more efficiently in bursts, depends 2965 * on the tx_int_delay to be enabled, 2966 * wthresh = 1 ==> burst write is disabled to avoid Tx stalls 2967 * hthresh = 1 ==> prefetch when one or more available 2968 * pthresh = 0x1f ==> prefetch if internal cache 31 or less 2969 * BEWARE: this seems to work but should be considered first if 2970 * there are Tx hangs or other Tx related bugs 2971 */ 2972 txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE; 2973 ew32(TXDCTL(0), txdctl); 2974 } 2975 /* erratum work around: set txdctl the same for both queues */ 2976 ew32(TXDCTL(1), er32(TXDCTL(0))); 2977 2978 /* Program the Transmit Control Register */ 2979 tctl = er32(TCTL); 2980 tctl &= ~E1000_TCTL_CT; 2981 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | 2982 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); 2983 2984 if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) { 2985 tarc = er32(TARC(0)); 2986 /* set the speed mode bit, we'll clear it if we're not at 2987 * gigabit link later 2988 */ 2989 #define SPEED_MODE_BIT (1 << 21) 2990 tarc |= SPEED_MODE_BIT; 2991 ew32(TARC(0), tarc); 2992 } 2993 2994 /* errata: program both queues to unweighted RR */ 2995 if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) { 2996 tarc = er32(TARC(0)); 2997 tarc |= 1; 2998 ew32(TARC(0), tarc); 2999 tarc = er32(TARC(1)); 3000 tarc |= 1; 3001 ew32(TARC(1), tarc); 3002 } 3003 3004 /* Setup Transmit Descriptor Settings for eop descriptor */ 3005 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS; 3006 3007 /* only set IDE if we are delaying interrupts using the timers */ 3008 if (adapter->tx_int_delay) 3009 adapter->txd_cmd |= E1000_TXD_CMD_IDE; 3010 3011 /* enable Report Status bit */ 3012 adapter->txd_cmd |= E1000_TXD_CMD_RS; 3013 3014 ew32(TCTL, tctl); 3015 3016 hw->mac.ops.config_collision_dist(hw); 3017 } 3018 3019 /** 3020 * e1000_setup_rctl - configure the receive control registers 3021 * @adapter: Board private structure 3022 **/ 3023 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \ 3024 (((S) & (PAGE_SIZE - 1)) ? 1 : 0)) 3025 static void e1000_setup_rctl(struct e1000_adapter *adapter) 3026 { 3027 struct e1000_hw *hw = &adapter->hw; 3028 u32 rctl, rfctl; 3029 u32 pages = 0; 3030 3031 /* Workaround Si errata on PCHx - configure jumbo frame flow. 3032 * If jumbo frames not set, program related MAC/PHY registers 3033 * to h/w defaults 3034 */ 3035 if (hw->mac.type >= e1000_pch2lan) { 3036 s32 ret_val; 3037 3038 if (adapter->netdev->mtu > ETH_DATA_LEN) 3039 ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true); 3040 else 3041 ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false); 3042 3043 if (ret_val) 3044 e_dbg("failed to enable|disable jumbo frame workaround mode\n"); 3045 } 3046 3047 /* Program MC offset vector base */ 3048 rctl = er32(RCTL); 3049 rctl &= ~(3 << E1000_RCTL_MO_SHIFT); 3050 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | 3051 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | 3052 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT); 3053 3054 /* Do not Store bad packets */ 3055 rctl &= ~E1000_RCTL_SBP; 3056 3057 /* Enable Long Packet receive */ 3058 if (adapter->netdev->mtu <= ETH_DATA_LEN) 3059 rctl &= ~E1000_RCTL_LPE; 3060 else 3061 rctl |= E1000_RCTL_LPE; 3062 3063 /* Some systems expect that the CRC is included in SMBUS traffic. The 3064 * hardware strips the CRC before sending to both SMBUS (BMC) and to 3065 * host memory when this is enabled 3066 */ 3067 if (adapter->flags2 & FLAG2_CRC_STRIPPING) 3068 rctl |= E1000_RCTL_SECRC; 3069 3070 /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */ 3071 if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) { 3072 u16 phy_data; 3073 3074 e1e_rphy(hw, PHY_REG(770, 26), &phy_data); 3075 phy_data &= 0xfff8; 3076 phy_data |= (1 << 2); 3077 e1e_wphy(hw, PHY_REG(770, 26), phy_data); 3078 3079 e1e_rphy(hw, 22, &phy_data); 3080 phy_data &= 0x0fff; 3081 phy_data |= (1 << 14); 3082 e1e_wphy(hw, 0x10, 0x2823); 3083 e1e_wphy(hw, 0x11, 0x0003); 3084 e1e_wphy(hw, 22, phy_data); 3085 } 3086 3087 /* Setup buffer sizes */ 3088 rctl &= ~E1000_RCTL_SZ_4096; 3089 rctl |= E1000_RCTL_BSEX; 3090 switch (adapter->rx_buffer_len) { 3091 case 2048: 3092 default: 3093 rctl |= E1000_RCTL_SZ_2048; 3094 rctl &= ~E1000_RCTL_BSEX; 3095 break; 3096 case 4096: 3097 rctl |= E1000_RCTL_SZ_4096; 3098 break; 3099 case 8192: 3100 rctl |= E1000_RCTL_SZ_8192; 3101 break; 3102 case 16384: 3103 rctl |= E1000_RCTL_SZ_16384; 3104 break; 3105 } 3106 3107 /* Enable Extended Status in all Receive Descriptors */ 3108 rfctl = er32(RFCTL); 3109 rfctl |= E1000_RFCTL_EXTEN; 3110 ew32(RFCTL, rfctl); 3111 3112 /* 82571 and greater support packet-split where the protocol 3113 * header is placed in skb->data and the packet data is 3114 * placed in pages hanging off of skb_shinfo(skb)->nr_frags. 3115 * In the case of a non-split, skb->data is linearly filled, 3116 * followed by the page buffers. Therefore, skb->data is 3117 * sized to hold the largest protocol header. 3118 * 3119 * allocations using alloc_page take too long for regular MTU 3120 * so only enable packet split for jumbo frames 3121 * 3122 * Using pages when the page size is greater than 16k wastes 3123 * a lot of memory, since we allocate 3 pages at all times 3124 * per packet. 3125 */ 3126 pages = PAGE_USE_COUNT(adapter->netdev->mtu); 3127 if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE)) 3128 adapter->rx_ps_pages = pages; 3129 else 3130 adapter->rx_ps_pages = 0; 3131 3132 if (adapter->rx_ps_pages) { 3133 u32 psrctl = 0; 3134 3135 /* Enable Packet split descriptors */ 3136 rctl |= E1000_RCTL_DTYP_PS; 3137 3138 psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT; 3139 3140 switch (adapter->rx_ps_pages) { 3141 case 3: 3142 psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT; 3143 /* fall-through */ 3144 case 2: 3145 psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT; 3146 /* fall-through */ 3147 case 1: 3148 psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT; 3149 break; 3150 } 3151 3152 ew32(PSRCTL, psrctl); 3153 } 3154 3155 /* This is useful for sniffing bad packets. */ 3156 if (adapter->netdev->features & NETIF_F_RXALL) { 3157 /* UPE and MPE will be handled by normal PROMISC logic 3158 * in e1000e_set_rx_mode 3159 */ 3160 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */ 3161 E1000_RCTL_BAM | /* RX All Bcast Pkts */ 3162 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */ 3163 3164 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */ 3165 E1000_RCTL_DPF | /* Allow filtered pause */ 3166 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */ 3167 /* Do not mess with E1000_CTRL_VME, it affects transmit as well, 3168 * and that breaks VLANs. 3169 */ 3170 } 3171 3172 ew32(RCTL, rctl); 3173 /* just started the receive unit, no need to restart */ 3174 adapter->flags &= ~FLAG_RESTART_NOW; 3175 } 3176 3177 /** 3178 * e1000_configure_rx - Configure Receive Unit after Reset 3179 * @adapter: board private structure 3180 * 3181 * Configure the Rx unit of the MAC after a reset. 3182 **/ 3183 static void e1000_configure_rx(struct e1000_adapter *adapter) 3184 { 3185 struct e1000_hw *hw = &adapter->hw; 3186 struct e1000_ring *rx_ring = adapter->rx_ring; 3187 u64 rdba; 3188 u32 rdlen, rctl, rxcsum, ctrl_ext; 3189 3190 if (adapter->rx_ps_pages) { 3191 /* this is a 32 byte descriptor */ 3192 rdlen = rx_ring->count * 3193 sizeof(union e1000_rx_desc_packet_split); 3194 adapter->clean_rx = e1000_clean_rx_irq_ps; 3195 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps; 3196 } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) { 3197 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended); 3198 adapter->clean_rx = e1000_clean_jumbo_rx_irq; 3199 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers; 3200 } else { 3201 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended); 3202 adapter->clean_rx = e1000_clean_rx_irq; 3203 adapter->alloc_rx_buf = e1000_alloc_rx_buffers; 3204 } 3205 3206 /* disable receives while setting up the descriptors */ 3207 rctl = er32(RCTL); 3208 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX)) 3209 ew32(RCTL, rctl & ~E1000_RCTL_EN); 3210 e1e_flush(); 3211 usleep_range(10000, 20000); 3212 3213 if (adapter->flags2 & FLAG2_DMA_BURST) { 3214 /* set the writeback threshold (only takes effect if the RDTR 3215 * is set). set GRAN=1 and write back up to 0x4 worth, and 3216 * enable prefetching of 0x20 Rx descriptors 3217 * granularity = 01 3218 * wthresh = 04, 3219 * hthresh = 04, 3220 * pthresh = 0x20 3221 */ 3222 ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE); 3223 ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE); 3224 3225 /* override the delay timers for enabling bursting, only if 3226 * the value was not set by the user via module options 3227 */ 3228 if (adapter->rx_int_delay == DEFAULT_RDTR) 3229 adapter->rx_int_delay = BURST_RDTR; 3230 if (adapter->rx_abs_int_delay == DEFAULT_RADV) 3231 adapter->rx_abs_int_delay = BURST_RADV; 3232 } 3233 3234 /* set the Receive Delay Timer Register */ 3235 ew32(RDTR, adapter->rx_int_delay); 3236 3237 /* irq moderation */ 3238 ew32(RADV, adapter->rx_abs_int_delay); 3239 if ((adapter->itr_setting != 0) && (adapter->itr != 0)) 3240 e1000e_write_itr(adapter, adapter->itr); 3241 3242 ctrl_ext = er32(CTRL_EXT); 3243 /* Auto-Mask interrupts upon ICR access */ 3244 ctrl_ext |= E1000_CTRL_EXT_IAME; 3245 ew32(IAM, 0xffffffff); 3246 ew32(CTRL_EXT, ctrl_ext); 3247 e1e_flush(); 3248 3249 /* Setup the HW Rx Head and Tail Descriptor Pointers and 3250 * the Base and Length of the Rx Descriptor Ring 3251 */ 3252 rdba = rx_ring->dma; 3253 ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32))); 3254 ew32(RDBAH(0), (rdba >> 32)); 3255 ew32(RDLEN(0), rdlen); 3256 ew32(RDH(0), 0); 3257 ew32(RDT(0), 0); 3258 rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0); 3259 rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0); 3260 3261 /* Enable Receive Checksum Offload for TCP and UDP */ 3262 rxcsum = er32(RXCSUM); 3263 if (adapter->netdev->features & NETIF_F_RXCSUM) 3264 rxcsum |= E1000_RXCSUM_TUOFL; 3265 else 3266 rxcsum &= ~E1000_RXCSUM_TUOFL; 3267 ew32(RXCSUM, rxcsum); 3268 3269 /* With jumbo frames, excessive C-state transition latencies result 3270 * in dropped transactions. 3271 */ 3272 if (adapter->netdev->mtu > ETH_DATA_LEN) { 3273 u32 lat = 3274 ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 - 3275 adapter->max_frame_size) * 8 / 1000; 3276 3277 if (adapter->flags & FLAG_IS_ICH) { 3278 u32 rxdctl = er32(RXDCTL(0)); 3279 3280 ew32(RXDCTL(0), rxdctl | 0x3); 3281 } 3282 3283 pm_qos_update_request(&adapter->netdev->pm_qos_req, lat); 3284 } else { 3285 pm_qos_update_request(&adapter->netdev->pm_qos_req, 3286 PM_QOS_DEFAULT_VALUE); 3287 } 3288 3289 /* Enable Receives */ 3290 ew32(RCTL, rctl); 3291 } 3292 3293 /** 3294 * e1000e_write_mc_addr_list - write multicast addresses to MTA 3295 * @netdev: network interface device structure 3296 * 3297 * Writes multicast address list to the MTA hash table. 3298 * Returns: -ENOMEM on failure 3299 * 0 on no addresses written 3300 * X on writing X addresses to MTA 3301 */ 3302 static int e1000e_write_mc_addr_list(struct net_device *netdev) 3303 { 3304 struct e1000_adapter *adapter = netdev_priv(netdev); 3305 struct e1000_hw *hw = &adapter->hw; 3306 struct netdev_hw_addr *ha; 3307 u8 *mta_list; 3308 int i; 3309 3310 if (netdev_mc_empty(netdev)) { 3311 /* nothing to program, so clear mc list */ 3312 hw->mac.ops.update_mc_addr_list(hw, NULL, 0); 3313 return 0; 3314 } 3315 3316 mta_list = kzalloc(netdev_mc_count(netdev) * ETH_ALEN, GFP_ATOMIC); 3317 if (!mta_list) 3318 return -ENOMEM; 3319 3320 /* update_mc_addr_list expects a packed array of only addresses. */ 3321 i = 0; 3322 netdev_for_each_mc_addr(ha, netdev) 3323 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN); 3324 3325 hw->mac.ops.update_mc_addr_list(hw, mta_list, i); 3326 kfree(mta_list); 3327 3328 return netdev_mc_count(netdev); 3329 } 3330 3331 /** 3332 * e1000e_write_uc_addr_list - write unicast addresses to RAR table 3333 * @netdev: network interface device structure 3334 * 3335 * Writes unicast address list to the RAR table. 3336 * Returns: -ENOMEM on failure/insufficient address space 3337 * 0 on no addresses written 3338 * X on writing X addresses to the RAR table 3339 **/ 3340 static int e1000e_write_uc_addr_list(struct net_device *netdev) 3341 { 3342 struct e1000_adapter *adapter = netdev_priv(netdev); 3343 struct e1000_hw *hw = &adapter->hw; 3344 unsigned int rar_entries; 3345 int count = 0; 3346 3347 rar_entries = hw->mac.ops.rar_get_count(hw); 3348 3349 /* save a rar entry for our hardware address */ 3350 rar_entries--; 3351 3352 /* save a rar entry for the LAA workaround */ 3353 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) 3354 rar_entries--; 3355 3356 /* return ENOMEM indicating insufficient memory for addresses */ 3357 if (netdev_uc_count(netdev) > rar_entries) 3358 return -ENOMEM; 3359 3360 if (!netdev_uc_empty(netdev) && rar_entries) { 3361 struct netdev_hw_addr *ha; 3362 3363 /* write the addresses in reverse order to avoid write 3364 * combining 3365 */ 3366 netdev_for_each_uc_addr(ha, netdev) { 3367 int rval; 3368 3369 if (!rar_entries) 3370 break; 3371 rval = hw->mac.ops.rar_set(hw, ha->addr, rar_entries--); 3372 if (rval < 0) 3373 return -ENOMEM; 3374 count++; 3375 } 3376 } 3377 3378 /* zero out the remaining RAR entries not used above */ 3379 for (; rar_entries > 0; rar_entries--) { 3380 ew32(RAH(rar_entries), 0); 3381 ew32(RAL(rar_entries), 0); 3382 } 3383 e1e_flush(); 3384 3385 return count; 3386 } 3387 3388 /** 3389 * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set 3390 * @netdev: network interface device structure 3391 * 3392 * The ndo_set_rx_mode entry point is called whenever the unicast or multicast 3393 * address list or the network interface flags are updated. This routine is 3394 * responsible for configuring the hardware for proper unicast, multicast, 3395 * promiscuous mode, and all-multi behavior. 3396 **/ 3397 static void e1000e_set_rx_mode(struct net_device *netdev) 3398 { 3399 struct e1000_adapter *adapter = netdev_priv(netdev); 3400 struct e1000_hw *hw = &adapter->hw; 3401 u32 rctl; 3402 3403 if (pm_runtime_suspended(netdev->dev.parent)) 3404 return; 3405 3406 /* Check for Promiscuous and All Multicast modes */ 3407 rctl = er32(RCTL); 3408 3409 /* clear the affected bits */ 3410 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE); 3411 3412 if (netdev->flags & IFF_PROMISC) { 3413 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); 3414 /* Do not hardware filter VLANs in promisc mode */ 3415 e1000e_vlan_filter_disable(adapter); 3416 } else { 3417 int count; 3418 3419 if (netdev->flags & IFF_ALLMULTI) { 3420 rctl |= E1000_RCTL_MPE; 3421 } else { 3422 /* Write addresses to the MTA, if the attempt fails 3423 * then we should just turn on promiscuous mode so 3424 * that we can at least receive multicast traffic 3425 */ 3426 count = e1000e_write_mc_addr_list(netdev); 3427 if (count < 0) 3428 rctl |= E1000_RCTL_MPE; 3429 } 3430 e1000e_vlan_filter_enable(adapter); 3431 /* Write addresses to available RAR registers, if there is not 3432 * sufficient space to store all the addresses then enable 3433 * unicast promiscuous mode 3434 */ 3435 count = e1000e_write_uc_addr_list(netdev); 3436 if (count < 0) 3437 rctl |= E1000_RCTL_UPE; 3438 } 3439 3440 ew32(RCTL, rctl); 3441 3442 if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX) 3443 e1000e_vlan_strip_enable(adapter); 3444 else 3445 e1000e_vlan_strip_disable(adapter); 3446 } 3447 3448 static void e1000e_setup_rss_hash(struct e1000_adapter *adapter) 3449 { 3450 struct e1000_hw *hw = &adapter->hw; 3451 u32 mrqc, rxcsum; 3452 int i; 3453 static const u32 rsskey[10] = { 3454 0xda565a6d, 0xc20e5b25, 0x3d256741, 0xb08fa343, 0xcb2bcad0, 3455 0xb4307bae, 0xa32dcb77, 0x0cf23080, 0x3bb7426a, 0xfa01acbe 3456 }; 3457 3458 /* Fill out hash function seed */ 3459 for (i = 0; i < 10; i++) 3460 ew32(RSSRK(i), rsskey[i]); 3461 3462 /* Direct all traffic to queue 0 */ 3463 for (i = 0; i < 32; i++) 3464 ew32(RETA(i), 0); 3465 3466 /* Disable raw packet checksumming so that RSS hash is placed in 3467 * descriptor on writeback. 3468 */ 3469 rxcsum = er32(RXCSUM); 3470 rxcsum |= E1000_RXCSUM_PCSD; 3471 3472 ew32(RXCSUM, rxcsum); 3473 3474 mrqc = (E1000_MRQC_RSS_FIELD_IPV4 | 3475 E1000_MRQC_RSS_FIELD_IPV4_TCP | 3476 E1000_MRQC_RSS_FIELD_IPV6 | 3477 E1000_MRQC_RSS_FIELD_IPV6_TCP | 3478 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX); 3479 3480 ew32(MRQC, mrqc); 3481 } 3482 3483 /** 3484 * e1000e_get_base_timinca - get default SYSTIM time increment attributes 3485 * @adapter: board private structure 3486 * @timinca: pointer to returned time increment attributes 3487 * 3488 * Get attributes for incrementing the System Time Register SYSTIML/H at 3489 * the default base frequency, and set the cyclecounter shift value. 3490 **/ 3491 s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca) 3492 { 3493 struct e1000_hw *hw = &adapter->hw; 3494 u32 incvalue, incperiod, shift; 3495 3496 /* Make sure clock is enabled on I217 before checking the frequency */ 3497 if ((hw->mac.type == e1000_pch_lpt) && 3498 !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) && 3499 !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) { 3500 u32 fextnvm7 = er32(FEXTNVM7); 3501 3502 if (!(fextnvm7 & (1 << 0))) { 3503 ew32(FEXTNVM7, fextnvm7 | (1 << 0)); 3504 e1e_flush(); 3505 } 3506 } 3507 3508 switch (hw->mac.type) { 3509 case e1000_pch2lan: 3510 case e1000_pch_lpt: 3511 /* On I217, the clock frequency is 25MHz or 96MHz as 3512 * indicated by the System Clock Frequency Indication 3513 */ 3514 if ((hw->mac.type != e1000_pch_lpt) || 3515 (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI)) { 3516 /* Stable 96MHz frequency */ 3517 incperiod = INCPERIOD_96MHz; 3518 incvalue = INCVALUE_96MHz; 3519 shift = INCVALUE_SHIFT_96MHz; 3520 adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHz; 3521 break; 3522 } 3523 /* fall-through */ 3524 case e1000_82574: 3525 case e1000_82583: 3526 /* Stable 25MHz frequency */ 3527 incperiod = INCPERIOD_25MHz; 3528 incvalue = INCVALUE_25MHz; 3529 shift = INCVALUE_SHIFT_25MHz; 3530 adapter->cc.shift = shift; 3531 break; 3532 default: 3533 return -EINVAL; 3534 } 3535 3536 *timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) | 3537 ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK)); 3538 3539 return 0; 3540 } 3541 3542 /** 3543 * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable 3544 * @adapter: board private structure 3545 * 3546 * Outgoing time stamping can be enabled and disabled. Play nice and 3547 * disable it when requested, although it shouldn't cause any overhead 3548 * when no packet needs it. At most one packet in the queue may be 3549 * marked for time stamping, otherwise it would be impossible to tell 3550 * for sure to which packet the hardware time stamp belongs. 3551 * 3552 * Incoming time stamping has to be configured via the hardware filters. 3553 * Not all combinations are supported, in particular event type has to be 3554 * specified. Matching the kind of event packet is not supported, with the 3555 * exception of "all V2 events regardless of level 2 or 4". 3556 **/ 3557 static int e1000e_config_hwtstamp(struct e1000_adapter *adapter, 3558 struct hwtstamp_config *config) 3559 { 3560 struct e1000_hw *hw = &adapter->hw; 3561 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED; 3562 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED; 3563 u32 rxmtrl = 0; 3564 u16 rxudp = 0; 3565 bool is_l4 = false; 3566 bool is_l2 = false; 3567 u32 regval; 3568 s32 ret_val; 3569 3570 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP)) 3571 return -EINVAL; 3572 3573 /* flags reserved for future extensions - must be zero */ 3574 if (config->flags) 3575 return -EINVAL; 3576 3577 switch (config->tx_type) { 3578 case HWTSTAMP_TX_OFF: 3579 tsync_tx_ctl = 0; 3580 break; 3581 case HWTSTAMP_TX_ON: 3582 break; 3583 default: 3584 return -ERANGE; 3585 } 3586 3587 switch (config->rx_filter) { 3588 case HWTSTAMP_FILTER_NONE: 3589 tsync_rx_ctl = 0; 3590 break; 3591 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 3592 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1; 3593 rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE; 3594 is_l4 = true; 3595 break; 3596 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 3597 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1; 3598 rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE; 3599 is_l4 = true; 3600 break; 3601 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 3602 /* Also time stamps V2 L2 Path Delay Request/Response */ 3603 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2; 3604 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE; 3605 is_l2 = true; 3606 break; 3607 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 3608 /* Also time stamps V2 L2 Path Delay Request/Response. */ 3609 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2; 3610 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE; 3611 is_l2 = true; 3612 break; 3613 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 3614 /* Hardware cannot filter just V2 L4 Sync messages; 3615 * fall-through to V2 (both L2 and L4) Sync. 3616 */ 3617 case HWTSTAMP_FILTER_PTP_V2_SYNC: 3618 /* Also time stamps V2 Path Delay Request/Response. */ 3619 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2; 3620 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE; 3621 is_l2 = true; 3622 is_l4 = true; 3623 break; 3624 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 3625 /* Hardware cannot filter just V2 L4 Delay Request messages; 3626 * fall-through to V2 (both L2 and L4) Delay Request. 3627 */ 3628 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 3629 /* Also time stamps V2 Path Delay Request/Response. */ 3630 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2; 3631 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE; 3632 is_l2 = true; 3633 is_l4 = true; 3634 break; 3635 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 3636 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 3637 /* Hardware cannot filter just V2 L4 or L2 Event messages; 3638 * fall-through to all V2 (both L2 and L4) Events. 3639 */ 3640 case HWTSTAMP_FILTER_PTP_V2_EVENT: 3641 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2; 3642 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; 3643 is_l2 = true; 3644 is_l4 = true; 3645 break; 3646 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 3647 /* For V1, the hardware can only filter Sync messages or 3648 * Delay Request messages but not both so fall-through to 3649 * time stamp all packets. 3650 */ 3651 case HWTSTAMP_FILTER_ALL: 3652 is_l2 = true; 3653 is_l4 = true; 3654 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL; 3655 config->rx_filter = HWTSTAMP_FILTER_ALL; 3656 break; 3657 default: 3658 return -ERANGE; 3659 } 3660 3661 adapter->hwtstamp_config = *config; 3662 3663 /* enable/disable Tx h/w time stamping */ 3664 regval = er32(TSYNCTXCTL); 3665 regval &= ~E1000_TSYNCTXCTL_ENABLED; 3666 regval |= tsync_tx_ctl; 3667 ew32(TSYNCTXCTL, regval); 3668 if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) != 3669 (regval & E1000_TSYNCTXCTL_ENABLED)) { 3670 e_err("Timesync Tx Control register not set as expected\n"); 3671 return -EAGAIN; 3672 } 3673 3674 /* enable/disable Rx h/w time stamping */ 3675 regval = er32(TSYNCRXCTL); 3676 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK); 3677 regval |= tsync_rx_ctl; 3678 ew32(TSYNCRXCTL, regval); 3679 if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED | 3680 E1000_TSYNCRXCTL_TYPE_MASK)) != 3681 (regval & (E1000_TSYNCRXCTL_ENABLED | 3682 E1000_TSYNCRXCTL_TYPE_MASK))) { 3683 e_err("Timesync Rx Control register not set as expected\n"); 3684 return -EAGAIN; 3685 } 3686 3687 /* L2: define ethertype filter for time stamped packets */ 3688 if (is_l2) 3689 rxmtrl |= ETH_P_1588; 3690 3691 /* define which PTP packets get time stamped */ 3692 ew32(RXMTRL, rxmtrl); 3693 3694 /* Filter by destination port */ 3695 if (is_l4) { 3696 rxudp = PTP_EV_PORT; 3697 cpu_to_be16s(&rxudp); 3698 } 3699 ew32(RXUDP, rxudp); 3700 3701 e1e_flush(); 3702 3703 /* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */ 3704 er32(RXSTMPH); 3705 er32(TXSTMPH); 3706 3707 /* Get and set the System Time Register SYSTIM base frequency */ 3708 ret_val = e1000e_get_base_timinca(adapter, ®val); 3709 if (ret_val) 3710 return ret_val; 3711 ew32(TIMINCA, regval); 3712 3713 /* reset the ns time counter */ 3714 timecounter_init(&adapter->tc, &adapter->cc, 3715 ktime_to_ns(ktime_get_real())); 3716 3717 return 0; 3718 } 3719 3720 /** 3721 * e1000_configure - configure the hardware for Rx and Tx 3722 * @adapter: private board structure 3723 **/ 3724 static void e1000_configure(struct e1000_adapter *adapter) 3725 { 3726 struct e1000_ring *rx_ring = adapter->rx_ring; 3727 3728 e1000e_set_rx_mode(adapter->netdev); 3729 3730 e1000_restore_vlan(adapter); 3731 e1000_init_manageability_pt(adapter); 3732 3733 e1000_configure_tx(adapter); 3734 3735 if (adapter->netdev->features & NETIF_F_RXHASH) 3736 e1000e_setup_rss_hash(adapter); 3737 e1000_setup_rctl(adapter); 3738 e1000_configure_rx(adapter); 3739 adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL); 3740 } 3741 3742 /** 3743 * e1000e_power_up_phy - restore link in case the phy was powered down 3744 * @adapter: address of board private structure 3745 * 3746 * The phy may be powered down to save power and turn off link when the 3747 * driver is unloaded and wake on lan is not enabled (among others) 3748 * *** this routine MUST be followed by a call to e1000e_reset *** 3749 **/ 3750 void e1000e_power_up_phy(struct e1000_adapter *adapter) 3751 { 3752 if (adapter->hw.phy.ops.power_up) 3753 adapter->hw.phy.ops.power_up(&adapter->hw); 3754 3755 adapter->hw.mac.ops.setup_link(&adapter->hw); 3756 } 3757 3758 /** 3759 * e1000_power_down_phy - Power down the PHY 3760 * 3761 * Power down the PHY so no link is implied when interface is down. 3762 * The PHY cannot be powered down if management or WoL is active. 3763 */ 3764 static void e1000_power_down_phy(struct e1000_adapter *adapter) 3765 { 3766 if (adapter->hw.phy.ops.power_down) 3767 adapter->hw.phy.ops.power_down(&adapter->hw); 3768 } 3769 3770 /** 3771 * e1000e_reset - bring the hardware into a known good state 3772 * 3773 * This function boots the hardware and enables some settings that 3774 * require a configuration cycle of the hardware - those cannot be 3775 * set/changed during runtime. After reset the device needs to be 3776 * properly configured for Rx, Tx etc. 3777 */ 3778 void e1000e_reset(struct e1000_adapter *adapter) 3779 { 3780 struct e1000_mac_info *mac = &adapter->hw.mac; 3781 struct e1000_fc_info *fc = &adapter->hw.fc; 3782 struct e1000_hw *hw = &adapter->hw; 3783 u32 tx_space, min_tx_space, min_rx_space; 3784 u32 pba = adapter->pba; 3785 u16 hwm; 3786 3787 /* reset Packet Buffer Allocation to default */ 3788 ew32(PBA, pba); 3789 3790 if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) { 3791 /* To maintain wire speed transmits, the Tx FIFO should be 3792 * large enough to accommodate two full transmit packets, 3793 * rounded up to the next 1KB and expressed in KB. Likewise, 3794 * the Rx FIFO should be large enough to accommodate at least 3795 * one full receive packet and is similarly rounded up and 3796 * expressed in KB. 3797 */ 3798 pba = er32(PBA); 3799 /* upper 16 bits has Tx packet buffer allocation size in KB */ 3800 tx_space = pba >> 16; 3801 /* lower 16 bits has Rx packet buffer allocation size in KB */ 3802 pba &= 0xffff; 3803 /* the Tx fifo also stores 16 bytes of information about the Tx 3804 * but don't include ethernet FCS because hardware appends it 3805 */ 3806 min_tx_space = (adapter->max_frame_size + 3807 sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2; 3808 min_tx_space = ALIGN(min_tx_space, 1024); 3809 min_tx_space >>= 10; 3810 /* software strips receive CRC, so leave room for it */ 3811 min_rx_space = adapter->max_frame_size; 3812 min_rx_space = ALIGN(min_rx_space, 1024); 3813 min_rx_space >>= 10; 3814 3815 /* If current Tx allocation is less than the min Tx FIFO size, 3816 * and the min Tx FIFO size is less than the current Rx FIFO 3817 * allocation, take space away from current Rx allocation 3818 */ 3819 if ((tx_space < min_tx_space) && 3820 ((min_tx_space - tx_space) < pba)) { 3821 pba -= min_tx_space - tx_space; 3822 3823 /* if short on Rx space, Rx wins and must trump Tx 3824 * adjustment 3825 */ 3826 if (pba < min_rx_space) 3827 pba = min_rx_space; 3828 } 3829 3830 ew32(PBA, pba); 3831 } 3832 3833 /* flow control settings 3834 * 3835 * The high water mark must be low enough to fit one full frame 3836 * (or the size used for early receive) above it in the Rx FIFO. 3837 * Set it to the lower of: 3838 * - 90% of the Rx FIFO size, and 3839 * - the full Rx FIFO size minus one full frame 3840 */ 3841 if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME) 3842 fc->pause_time = 0xFFFF; 3843 else 3844 fc->pause_time = E1000_FC_PAUSE_TIME; 3845 fc->send_xon = true; 3846 fc->current_mode = fc->requested_mode; 3847 3848 switch (hw->mac.type) { 3849 case e1000_ich9lan: 3850 case e1000_ich10lan: 3851 if (adapter->netdev->mtu > ETH_DATA_LEN) { 3852 pba = 14; 3853 ew32(PBA, pba); 3854 fc->high_water = 0x2800; 3855 fc->low_water = fc->high_water - 8; 3856 break; 3857 } 3858 /* fall-through */ 3859 default: 3860 hwm = min(((pba << 10) * 9 / 10), 3861 ((pba << 10) - adapter->max_frame_size)); 3862 3863 fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */ 3864 fc->low_water = fc->high_water - 8; 3865 break; 3866 case e1000_pchlan: 3867 /* Workaround PCH LOM adapter hangs with certain network 3868 * loads. If hangs persist, try disabling Tx flow control. 3869 */ 3870 if (adapter->netdev->mtu > ETH_DATA_LEN) { 3871 fc->high_water = 0x3500; 3872 fc->low_water = 0x1500; 3873 } else { 3874 fc->high_water = 0x5000; 3875 fc->low_water = 0x3000; 3876 } 3877 fc->refresh_time = 0x1000; 3878 break; 3879 case e1000_pch2lan: 3880 case e1000_pch_lpt: 3881 fc->refresh_time = 0x0400; 3882 3883 if (adapter->netdev->mtu <= ETH_DATA_LEN) { 3884 fc->high_water = 0x05C20; 3885 fc->low_water = 0x05048; 3886 fc->pause_time = 0x0650; 3887 break; 3888 } 3889 3890 pba = 14; 3891 ew32(PBA, pba); 3892 fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH; 3893 fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL; 3894 break; 3895 } 3896 3897 /* Alignment of Tx data is on an arbitrary byte boundary with the 3898 * maximum size per Tx descriptor limited only to the transmit 3899 * allocation of the packet buffer minus 96 bytes with an upper 3900 * limit of 24KB due to receive synchronization limitations. 3901 */ 3902 adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96, 3903 24 << 10); 3904 3905 /* Disable Adaptive Interrupt Moderation if 2 full packets cannot 3906 * fit in receive buffer. 3907 */ 3908 if (adapter->itr_setting & 0x3) { 3909 if ((adapter->max_frame_size * 2) > (pba << 10)) { 3910 if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) { 3911 dev_info(&adapter->pdev->dev, 3912 "Interrupt Throttle Rate off\n"); 3913 adapter->flags2 |= FLAG2_DISABLE_AIM; 3914 e1000e_write_itr(adapter, 0); 3915 } 3916 } else if (adapter->flags2 & FLAG2_DISABLE_AIM) { 3917 dev_info(&adapter->pdev->dev, 3918 "Interrupt Throttle Rate on\n"); 3919 adapter->flags2 &= ~FLAG2_DISABLE_AIM; 3920 adapter->itr = 20000; 3921 e1000e_write_itr(adapter, adapter->itr); 3922 } 3923 } 3924 3925 /* Allow time for pending master requests to run */ 3926 mac->ops.reset_hw(hw); 3927 3928 /* For parts with AMT enabled, let the firmware know 3929 * that the network interface is in control 3930 */ 3931 if (adapter->flags & FLAG_HAS_AMT) 3932 e1000e_get_hw_control(adapter); 3933 3934 ew32(WUC, 0); 3935 3936 if (mac->ops.init_hw(hw)) 3937 e_err("Hardware Error\n"); 3938 3939 e1000_update_mng_vlan(adapter); 3940 3941 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ 3942 ew32(VET, ETH_P_8021Q); 3943 3944 e1000e_reset_adaptive(hw); 3945 3946 /* initialize systim and reset the ns time counter */ 3947 e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config); 3948 3949 /* Set EEE advertisement as appropriate */ 3950 if (adapter->flags2 & FLAG2_HAS_EEE) { 3951 s32 ret_val; 3952 u16 adv_addr; 3953 3954 switch (hw->phy.type) { 3955 case e1000_phy_82579: 3956 adv_addr = I82579_EEE_ADVERTISEMENT; 3957 break; 3958 case e1000_phy_i217: 3959 adv_addr = I217_EEE_ADVERTISEMENT; 3960 break; 3961 default: 3962 dev_err(&adapter->pdev->dev, 3963 "Invalid PHY type setting EEE advertisement\n"); 3964 return; 3965 } 3966 3967 ret_val = hw->phy.ops.acquire(hw); 3968 if (ret_val) { 3969 dev_err(&adapter->pdev->dev, 3970 "EEE advertisement - unable to acquire PHY\n"); 3971 return; 3972 } 3973 3974 e1000_write_emi_reg_locked(hw, adv_addr, 3975 hw->dev_spec.ich8lan.eee_disable ? 3976 0 : adapter->eee_advert); 3977 3978 hw->phy.ops.release(hw); 3979 } 3980 3981 if (!netif_running(adapter->netdev) && 3982 !test_bit(__E1000_TESTING, &adapter->state)) 3983 e1000_power_down_phy(adapter); 3984 3985 e1000_get_phy_info(hw); 3986 3987 if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) && 3988 !(adapter->flags & FLAG_SMART_POWER_DOWN)) { 3989 u16 phy_data = 0; 3990 /* speed up time to link by disabling smart power down, ignore 3991 * the return value of this function because there is nothing 3992 * different we would do if it failed 3993 */ 3994 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); 3995 phy_data &= ~IGP02E1000_PM_SPD; 3996 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); 3997 } 3998 } 3999 4000 int e1000e_up(struct e1000_adapter *adapter) 4001 { 4002 struct e1000_hw *hw = &adapter->hw; 4003 4004 /* hardware has been reset, we need to reload some things */ 4005 e1000_configure(adapter); 4006 4007 clear_bit(__E1000_DOWN, &adapter->state); 4008 4009 if (adapter->msix_entries) 4010 e1000_configure_msix(adapter); 4011 e1000_irq_enable(adapter); 4012 4013 netif_start_queue(adapter->netdev); 4014 4015 /* fire a link change interrupt to start the watchdog */ 4016 if (adapter->msix_entries) 4017 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER); 4018 else 4019 ew32(ICS, E1000_ICS_LSC); 4020 4021 return 0; 4022 } 4023 4024 static void e1000e_flush_descriptors(struct e1000_adapter *adapter) 4025 { 4026 struct e1000_hw *hw = &adapter->hw; 4027 4028 if (!(adapter->flags2 & FLAG2_DMA_BURST)) 4029 return; 4030 4031 /* flush pending descriptor writebacks to memory */ 4032 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD); 4033 ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD); 4034 4035 /* execute the writes immediately */ 4036 e1e_flush(); 4037 4038 /* due to rare timing issues, write to TIDV/RDTR again to ensure the 4039 * write is successful 4040 */ 4041 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD); 4042 ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD); 4043 4044 /* execute the writes immediately */ 4045 e1e_flush(); 4046 } 4047 4048 static void e1000e_update_stats(struct e1000_adapter *adapter); 4049 4050 /** 4051 * e1000e_down - quiesce the device and optionally reset the hardware 4052 * @adapter: board private structure 4053 * @reset: boolean flag to reset the hardware or not 4054 */ 4055 void e1000e_down(struct e1000_adapter *adapter, bool reset) 4056 { 4057 struct net_device *netdev = adapter->netdev; 4058 struct e1000_hw *hw = &adapter->hw; 4059 u32 tctl, rctl; 4060 4061 /* signal that we're down so the interrupt handler does not 4062 * reschedule our watchdog timer 4063 */ 4064 set_bit(__E1000_DOWN, &adapter->state); 4065 4066 /* disable receives in the hardware */ 4067 rctl = er32(RCTL); 4068 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX)) 4069 ew32(RCTL, rctl & ~E1000_RCTL_EN); 4070 /* flush and sleep below */ 4071 4072 netif_stop_queue(netdev); 4073 4074 /* disable transmits in the hardware */ 4075 tctl = er32(TCTL); 4076 tctl &= ~E1000_TCTL_EN; 4077 ew32(TCTL, tctl); 4078 4079 /* flush both disables and wait for them to finish */ 4080 e1e_flush(); 4081 usleep_range(10000, 20000); 4082 4083 e1000_irq_disable(adapter); 4084 4085 napi_synchronize(&adapter->napi); 4086 4087 del_timer_sync(&adapter->watchdog_timer); 4088 del_timer_sync(&adapter->phy_info_timer); 4089 4090 netif_carrier_off(netdev); 4091 4092 spin_lock(&adapter->stats64_lock); 4093 e1000e_update_stats(adapter); 4094 spin_unlock(&adapter->stats64_lock); 4095 4096 e1000e_flush_descriptors(adapter); 4097 e1000_clean_tx_ring(adapter->tx_ring); 4098 e1000_clean_rx_ring(adapter->rx_ring); 4099 4100 adapter->link_speed = 0; 4101 adapter->link_duplex = 0; 4102 4103 /* Disable Si errata workaround on PCHx for jumbo frame flow */ 4104 if ((hw->mac.type >= e1000_pch2lan) && 4105 (adapter->netdev->mtu > ETH_DATA_LEN) && 4106 e1000_lv_jumbo_workaround_ich8lan(hw, false)) 4107 e_dbg("failed to disable jumbo frame workaround mode\n"); 4108 4109 if (reset && !pci_channel_offline(adapter->pdev)) 4110 e1000e_reset(adapter); 4111 } 4112 4113 void e1000e_reinit_locked(struct e1000_adapter *adapter) 4114 { 4115 might_sleep(); 4116 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 4117 usleep_range(1000, 2000); 4118 e1000e_down(adapter, true); 4119 e1000e_up(adapter); 4120 clear_bit(__E1000_RESETTING, &adapter->state); 4121 } 4122 4123 /** 4124 * e1000e_cyclecounter_read - read raw cycle counter (used by time counter) 4125 * @cc: cyclecounter structure 4126 **/ 4127 static cycle_t e1000e_cyclecounter_read(const struct cyclecounter *cc) 4128 { 4129 struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter, 4130 cc); 4131 struct e1000_hw *hw = &adapter->hw; 4132 cycle_t systim, systim_next; 4133 4134 /* latch SYSTIMH on read of SYSTIML */ 4135 systim = (cycle_t)er32(SYSTIML); 4136 systim |= (cycle_t)er32(SYSTIMH) << 32; 4137 4138 if ((hw->mac.type == e1000_82574) || (hw->mac.type == e1000_82583)) { 4139 u64 incvalue, time_delta, rem, temp; 4140 int i; 4141 4142 /* errata for 82574/82583 possible bad bits read from SYSTIMH/L 4143 * check to see that the time is incrementing at a reasonable 4144 * rate and is a multiple of incvalue 4145 */ 4146 incvalue = er32(TIMINCA) & E1000_TIMINCA_INCVALUE_MASK; 4147 for (i = 0; i < E1000_MAX_82574_SYSTIM_REREADS; i++) { 4148 /* latch SYSTIMH on read of SYSTIML */ 4149 systim_next = (cycle_t)er32(SYSTIML); 4150 systim_next |= (cycle_t)er32(SYSTIMH) << 32; 4151 4152 time_delta = systim_next - systim; 4153 temp = time_delta; 4154 rem = do_div(temp, incvalue); 4155 4156 systim = systim_next; 4157 4158 if ((time_delta < E1000_82574_SYSTIM_EPSILON) && 4159 (rem == 0)) 4160 break; 4161 } 4162 } 4163 return systim; 4164 } 4165 4166 /** 4167 * e1000_sw_init - Initialize general software structures (struct e1000_adapter) 4168 * @adapter: board private structure to initialize 4169 * 4170 * e1000_sw_init initializes the Adapter private data structure. 4171 * Fields are initialized based on PCI device information and 4172 * OS network device settings (MTU size). 4173 **/ 4174 static int e1000_sw_init(struct e1000_adapter *adapter) 4175 { 4176 struct net_device *netdev = adapter->netdev; 4177 4178 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN; 4179 adapter->rx_ps_bsize0 = 128; 4180 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN; 4181 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN; 4182 adapter->tx_ring_count = E1000_DEFAULT_TXD; 4183 adapter->rx_ring_count = E1000_DEFAULT_RXD; 4184 4185 spin_lock_init(&adapter->stats64_lock); 4186 4187 e1000e_set_interrupt_capability(adapter); 4188 4189 if (e1000_alloc_queues(adapter)) 4190 return -ENOMEM; 4191 4192 /* Setup hardware time stamping cyclecounter */ 4193 if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) { 4194 adapter->cc.read = e1000e_cyclecounter_read; 4195 adapter->cc.mask = CLOCKSOURCE_MASK(64); 4196 adapter->cc.mult = 1; 4197 /* cc.shift set in e1000e_get_base_tininca() */ 4198 4199 spin_lock_init(&adapter->systim_lock); 4200 INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work); 4201 } 4202 4203 /* Explicitly disable IRQ since the NIC can be in any state. */ 4204 e1000_irq_disable(adapter); 4205 4206 set_bit(__E1000_DOWN, &adapter->state); 4207 return 0; 4208 } 4209 4210 /** 4211 * e1000_intr_msi_test - Interrupt Handler 4212 * @irq: interrupt number 4213 * @data: pointer to a network interface device structure 4214 **/ 4215 static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data) 4216 { 4217 struct net_device *netdev = data; 4218 struct e1000_adapter *adapter = netdev_priv(netdev); 4219 struct e1000_hw *hw = &adapter->hw; 4220 u32 icr = er32(ICR); 4221 4222 e_dbg("icr is %08X\n", icr); 4223 if (icr & E1000_ICR_RXSEQ) { 4224 adapter->flags &= ~FLAG_MSI_TEST_FAILED; 4225 /* Force memory writes to complete before acknowledging the 4226 * interrupt is handled. 4227 */ 4228 wmb(); 4229 } 4230 4231 return IRQ_HANDLED; 4232 } 4233 4234 /** 4235 * e1000_test_msi_interrupt - Returns 0 for successful test 4236 * @adapter: board private struct 4237 * 4238 * code flow taken from tg3.c 4239 **/ 4240 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter) 4241 { 4242 struct net_device *netdev = adapter->netdev; 4243 struct e1000_hw *hw = &adapter->hw; 4244 int err; 4245 4246 /* poll_enable hasn't been called yet, so don't need disable */ 4247 /* clear any pending events */ 4248 er32(ICR); 4249 4250 /* free the real vector and request a test handler */ 4251 e1000_free_irq(adapter); 4252 e1000e_reset_interrupt_capability(adapter); 4253 4254 /* Assume that the test fails, if it succeeds then the test 4255 * MSI irq handler will unset this flag 4256 */ 4257 adapter->flags |= FLAG_MSI_TEST_FAILED; 4258 4259 err = pci_enable_msi(adapter->pdev); 4260 if (err) 4261 goto msi_test_failed; 4262 4263 err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0, 4264 netdev->name, netdev); 4265 if (err) { 4266 pci_disable_msi(adapter->pdev); 4267 goto msi_test_failed; 4268 } 4269 4270 /* Force memory writes to complete before enabling and firing an 4271 * interrupt. 4272 */ 4273 wmb(); 4274 4275 e1000_irq_enable(adapter); 4276 4277 /* fire an unusual interrupt on the test handler */ 4278 ew32(ICS, E1000_ICS_RXSEQ); 4279 e1e_flush(); 4280 msleep(100); 4281 4282 e1000_irq_disable(adapter); 4283 4284 rmb(); /* read flags after interrupt has been fired */ 4285 4286 if (adapter->flags & FLAG_MSI_TEST_FAILED) { 4287 adapter->int_mode = E1000E_INT_MODE_LEGACY; 4288 e_info("MSI interrupt test failed, using legacy interrupt.\n"); 4289 } else { 4290 e_dbg("MSI interrupt test succeeded!\n"); 4291 } 4292 4293 free_irq(adapter->pdev->irq, netdev); 4294 pci_disable_msi(adapter->pdev); 4295 4296 msi_test_failed: 4297 e1000e_set_interrupt_capability(adapter); 4298 return e1000_request_irq(adapter); 4299 } 4300 4301 /** 4302 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored 4303 * @adapter: board private struct 4304 * 4305 * code flow taken from tg3.c, called with e1000 interrupts disabled. 4306 **/ 4307 static int e1000_test_msi(struct e1000_adapter *adapter) 4308 { 4309 int err; 4310 u16 pci_cmd; 4311 4312 if (!(adapter->flags & FLAG_MSI_ENABLED)) 4313 return 0; 4314 4315 /* disable SERR in case the MSI write causes a master abort */ 4316 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd); 4317 if (pci_cmd & PCI_COMMAND_SERR) 4318 pci_write_config_word(adapter->pdev, PCI_COMMAND, 4319 pci_cmd & ~PCI_COMMAND_SERR); 4320 4321 err = e1000_test_msi_interrupt(adapter); 4322 4323 /* re-enable SERR */ 4324 if (pci_cmd & PCI_COMMAND_SERR) { 4325 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd); 4326 pci_cmd |= PCI_COMMAND_SERR; 4327 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd); 4328 } 4329 4330 return err; 4331 } 4332 4333 /** 4334 * e1000_open - Called when a network interface is made active 4335 * @netdev: network interface device structure 4336 * 4337 * Returns 0 on success, negative value on failure 4338 * 4339 * The open entry point is called when a network interface is made 4340 * active by the system (IFF_UP). At this point all resources needed 4341 * for transmit and receive operations are allocated, the interrupt 4342 * handler is registered with the OS, the watchdog timer is started, 4343 * and the stack is notified that the interface is ready. 4344 **/ 4345 static int e1000_open(struct net_device *netdev) 4346 { 4347 struct e1000_adapter *adapter = netdev_priv(netdev); 4348 struct e1000_hw *hw = &adapter->hw; 4349 struct pci_dev *pdev = adapter->pdev; 4350 int err; 4351 4352 /* disallow open during test */ 4353 if (test_bit(__E1000_TESTING, &adapter->state)) 4354 return -EBUSY; 4355 4356 pm_runtime_get_sync(&pdev->dev); 4357 4358 netif_carrier_off(netdev); 4359 4360 /* allocate transmit descriptors */ 4361 err = e1000e_setup_tx_resources(adapter->tx_ring); 4362 if (err) 4363 goto err_setup_tx; 4364 4365 /* allocate receive descriptors */ 4366 err = e1000e_setup_rx_resources(adapter->rx_ring); 4367 if (err) 4368 goto err_setup_rx; 4369 4370 /* If AMT is enabled, let the firmware know that the network 4371 * interface is now open and reset the part to a known state. 4372 */ 4373 if (adapter->flags & FLAG_HAS_AMT) { 4374 e1000e_get_hw_control(adapter); 4375 e1000e_reset(adapter); 4376 } 4377 4378 e1000e_power_up_phy(adapter); 4379 4380 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; 4381 if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)) 4382 e1000_update_mng_vlan(adapter); 4383 4384 /* DMA latency requirement to workaround jumbo issue */ 4385 pm_qos_add_request(&adapter->netdev->pm_qos_req, PM_QOS_CPU_DMA_LATENCY, 4386 PM_QOS_DEFAULT_VALUE); 4387 4388 /* before we allocate an interrupt, we must be ready to handle it. 4389 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt 4390 * as soon as we call pci_request_irq, so we have to setup our 4391 * clean_rx handler before we do so. 4392 */ 4393 e1000_configure(adapter); 4394 4395 err = e1000_request_irq(adapter); 4396 if (err) 4397 goto err_req_irq; 4398 4399 /* Work around PCIe errata with MSI interrupts causing some chipsets to 4400 * ignore e1000e MSI messages, which means we need to test our MSI 4401 * interrupt now 4402 */ 4403 if (adapter->int_mode != E1000E_INT_MODE_LEGACY) { 4404 err = e1000_test_msi(adapter); 4405 if (err) { 4406 e_err("Interrupt allocation failed\n"); 4407 goto err_req_irq; 4408 } 4409 } 4410 4411 /* From here on the code is the same as e1000e_up() */ 4412 clear_bit(__E1000_DOWN, &adapter->state); 4413 4414 napi_enable(&adapter->napi); 4415 4416 e1000_irq_enable(adapter); 4417 4418 adapter->tx_hang_recheck = false; 4419 netif_start_queue(netdev); 4420 4421 hw->mac.get_link_status = true; 4422 pm_runtime_put(&pdev->dev); 4423 4424 /* fire a link status change interrupt to start the watchdog */ 4425 if (adapter->msix_entries) 4426 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER); 4427 else 4428 ew32(ICS, E1000_ICS_LSC); 4429 4430 return 0; 4431 4432 err_req_irq: 4433 e1000e_release_hw_control(adapter); 4434 e1000_power_down_phy(adapter); 4435 e1000e_free_rx_resources(adapter->rx_ring); 4436 err_setup_rx: 4437 e1000e_free_tx_resources(adapter->tx_ring); 4438 err_setup_tx: 4439 e1000e_reset(adapter); 4440 pm_runtime_put_sync(&pdev->dev); 4441 4442 return err; 4443 } 4444 4445 /** 4446 * e1000_close - Disables a network interface 4447 * @netdev: network interface device structure 4448 * 4449 * Returns 0, this is not allowed to fail 4450 * 4451 * The close entry point is called when an interface is de-activated 4452 * by the OS. The hardware is still under the drivers control, but 4453 * needs to be disabled. A global MAC reset is issued to stop the 4454 * hardware, and all transmit and receive resources are freed. 4455 **/ 4456 static int e1000_close(struct net_device *netdev) 4457 { 4458 struct e1000_adapter *adapter = netdev_priv(netdev); 4459 struct pci_dev *pdev = adapter->pdev; 4460 int count = E1000_CHECK_RESET_COUNT; 4461 4462 while (test_bit(__E1000_RESETTING, &adapter->state) && count--) 4463 usleep_range(10000, 20000); 4464 4465 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state)); 4466 4467 pm_runtime_get_sync(&pdev->dev); 4468 4469 if (!test_bit(__E1000_DOWN, &adapter->state)) { 4470 e1000e_down(adapter, true); 4471 e1000_free_irq(adapter); 4472 4473 /* Link status message must follow this format */ 4474 pr_info("%s NIC Link is Down\n", adapter->netdev->name); 4475 } 4476 4477 napi_disable(&adapter->napi); 4478 4479 e1000e_free_tx_resources(adapter->tx_ring); 4480 e1000e_free_rx_resources(adapter->rx_ring); 4481 4482 /* kill manageability vlan ID if supported, but not if a vlan with 4483 * the same ID is registered on the host OS (let 8021q kill it) 4484 */ 4485 if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) 4486 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), 4487 adapter->mng_vlan_id); 4488 4489 /* If AMT is enabled, let the firmware know that the network 4490 * interface is now closed 4491 */ 4492 if ((adapter->flags & FLAG_HAS_AMT) && 4493 !test_bit(__E1000_TESTING, &adapter->state)) 4494 e1000e_release_hw_control(adapter); 4495 4496 pm_qos_remove_request(&adapter->netdev->pm_qos_req); 4497 4498 pm_runtime_put_sync(&pdev->dev); 4499 4500 return 0; 4501 } 4502 4503 /** 4504 * e1000_set_mac - Change the Ethernet Address of the NIC 4505 * @netdev: network interface device structure 4506 * @p: pointer to an address structure 4507 * 4508 * Returns 0 on success, negative on failure 4509 **/ 4510 static int e1000_set_mac(struct net_device *netdev, void *p) 4511 { 4512 struct e1000_adapter *adapter = netdev_priv(netdev); 4513 struct e1000_hw *hw = &adapter->hw; 4514 struct sockaddr *addr = p; 4515 4516 if (!is_valid_ether_addr(addr->sa_data)) 4517 return -EADDRNOTAVAIL; 4518 4519 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); 4520 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len); 4521 4522 hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0); 4523 4524 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) { 4525 /* activate the work around */ 4526 e1000e_set_laa_state_82571(&adapter->hw, 1); 4527 4528 /* Hold a copy of the LAA in RAR[14] This is done so that 4529 * between the time RAR[0] gets clobbered and the time it 4530 * gets fixed (in e1000_watchdog), the actual LAA is in one 4531 * of the RARs and no incoming packets directed to this port 4532 * are dropped. Eventually the LAA will be in RAR[0] and 4533 * RAR[14] 4534 */ 4535 hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 4536 adapter->hw.mac.rar_entry_count - 1); 4537 } 4538 4539 return 0; 4540 } 4541 4542 /** 4543 * e1000e_update_phy_task - work thread to update phy 4544 * @work: pointer to our work struct 4545 * 4546 * this worker thread exists because we must acquire a 4547 * semaphore to read the phy, which we could msleep while 4548 * waiting for it, and we can't msleep in a timer. 4549 **/ 4550 static void e1000e_update_phy_task(struct work_struct *work) 4551 { 4552 struct e1000_adapter *adapter = container_of(work, 4553 struct e1000_adapter, 4554 update_phy_task); 4555 struct e1000_hw *hw = &adapter->hw; 4556 4557 if (test_bit(__E1000_DOWN, &adapter->state)) 4558 return; 4559 4560 e1000_get_phy_info(hw); 4561 4562 /* Enable EEE on 82579 after link up */ 4563 if (hw->phy.type >= e1000_phy_82579) 4564 e1000_set_eee_pchlan(hw); 4565 } 4566 4567 /** 4568 * e1000_update_phy_info - timre call-back to update PHY info 4569 * @data: pointer to adapter cast into an unsigned long 4570 * 4571 * Need to wait a few seconds after link up to get diagnostic information from 4572 * the phy 4573 **/ 4574 static void e1000_update_phy_info(unsigned long data) 4575 { 4576 struct e1000_adapter *adapter = (struct e1000_adapter *)data; 4577 4578 if (test_bit(__E1000_DOWN, &adapter->state)) 4579 return; 4580 4581 schedule_work(&adapter->update_phy_task); 4582 } 4583 4584 /** 4585 * e1000e_update_phy_stats - Update the PHY statistics counters 4586 * @adapter: board private structure 4587 * 4588 * Read/clear the upper 16-bit PHY registers and read/accumulate lower 4589 **/ 4590 static void e1000e_update_phy_stats(struct e1000_adapter *adapter) 4591 { 4592 struct e1000_hw *hw = &adapter->hw; 4593 s32 ret_val; 4594 u16 phy_data; 4595 4596 ret_val = hw->phy.ops.acquire(hw); 4597 if (ret_val) 4598 return; 4599 4600 /* A page set is expensive so check if already on desired page. 4601 * If not, set to the page with the PHY status registers. 4602 */ 4603 hw->phy.addr = 1; 4604 ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 4605 &phy_data); 4606 if (ret_val) 4607 goto release; 4608 if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) { 4609 ret_val = hw->phy.ops.set_page(hw, 4610 HV_STATS_PAGE << IGP_PAGE_SHIFT); 4611 if (ret_val) 4612 goto release; 4613 } 4614 4615 /* Single Collision Count */ 4616 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data); 4617 ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data); 4618 if (!ret_val) 4619 adapter->stats.scc += phy_data; 4620 4621 /* Excessive Collision Count */ 4622 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data); 4623 ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data); 4624 if (!ret_val) 4625 adapter->stats.ecol += phy_data; 4626 4627 /* Multiple Collision Count */ 4628 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data); 4629 ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data); 4630 if (!ret_val) 4631 adapter->stats.mcc += phy_data; 4632 4633 /* Late Collision Count */ 4634 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data); 4635 ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data); 4636 if (!ret_val) 4637 adapter->stats.latecol += phy_data; 4638 4639 /* Collision Count - also used for adaptive IFS */ 4640 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data); 4641 ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data); 4642 if (!ret_val) 4643 hw->mac.collision_delta = phy_data; 4644 4645 /* Defer Count */ 4646 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data); 4647 ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data); 4648 if (!ret_val) 4649 adapter->stats.dc += phy_data; 4650 4651 /* Transmit with no CRS */ 4652 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data); 4653 ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data); 4654 if (!ret_val) 4655 adapter->stats.tncrs += phy_data; 4656 4657 release: 4658 hw->phy.ops.release(hw); 4659 } 4660 4661 /** 4662 * e1000e_update_stats - Update the board statistics counters 4663 * @adapter: board private structure 4664 **/ 4665 static void e1000e_update_stats(struct e1000_adapter *adapter) 4666 { 4667 struct net_device *netdev = adapter->netdev; 4668 struct e1000_hw *hw = &adapter->hw; 4669 struct pci_dev *pdev = adapter->pdev; 4670 4671 /* Prevent stats update while adapter is being reset, or if the pci 4672 * connection is down. 4673 */ 4674 if (adapter->link_speed == 0) 4675 return; 4676 if (pci_channel_offline(pdev)) 4677 return; 4678 4679 adapter->stats.crcerrs += er32(CRCERRS); 4680 adapter->stats.gprc += er32(GPRC); 4681 adapter->stats.gorc += er32(GORCL); 4682 er32(GORCH); /* Clear gorc */ 4683 adapter->stats.bprc += er32(BPRC); 4684 adapter->stats.mprc += er32(MPRC); 4685 adapter->stats.roc += er32(ROC); 4686 4687 adapter->stats.mpc += er32(MPC); 4688 4689 /* Half-duplex statistics */ 4690 if (adapter->link_duplex == HALF_DUPLEX) { 4691 if (adapter->flags2 & FLAG2_HAS_PHY_STATS) { 4692 e1000e_update_phy_stats(adapter); 4693 } else { 4694 adapter->stats.scc += er32(SCC); 4695 adapter->stats.ecol += er32(ECOL); 4696 adapter->stats.mcc += er32(MCC); 4697 adapter->stats.latecol += er32(LATECOL); 4698 adapter->stats.dc += er32(DC); 4699 4700 hw->mac.collision_delta = er32(COLC); 4701 4702 if ((hw->mac.type != e1000_82574) && 4703 (hw->mac.type != e1000_82583)) 4704 adapter->stats.tncrs += er32(TNCRS); 4705 } 4706 adapter->stats.colc += hw->mac.collision_delta; 4707 } 4708 4709 adapter->stats.xonrxc += er32(XONRXC); 4710 adapter->stats.xontxc += er32(XONTXC); 4711 adapter->stats.xoffrxc += er32(XOFFRXC); 4712 adapter->stats.xofftxc += er32(XOFFTXC); 4713 adapter->stats.gptc += er32(GPTC); 4714 adapter->stats.gotc += er32(GOTCL); 4715 er32(GOTCH); /* Clear gotc */ 4716 adapter->stats.rnbc += er32(RNBC); 4717 adapter->stats.ruc += er32(RUC); 4718 4719 adapter->stats.mptc += er32(MPTC); 4720 adapter->stats.bptc += er32(BPTC); 4721 4722 /* used for adaptive IFS */ 4723 4724 hw->mac.tx_packet_delta = er32(TPT); 4725 adapter->stats.tpt += hw->mac.tx_packet_delta; 4726 4727 adapter->stats.algnerrc += er32(ALGNERRC); 4728 adapter->stats.rxerrc += er32(RXERRC); 4729 adapter->stats.cexterr += er32(CEXTERR); 4730 adapter->stats.tsctc += er32(TSCTC); 4731 adapter->stats.tsctfc += er32(TSCTFC); 4732 4733 /* Fill out the OS statistics structure */ 4734 netdev->stats.multicast = adapter->stats.mprc; 4735 netdev->stats.collisions = adapter->stats.colc; 4736 4737 /* Rx Errors */ 4738 4739 /* RLEC on some newer hardware can be incorrect so build 4740 * our own version based on RUC and ROC 4741 */ 4742 netdev->stats.rx_errors = adapter->stats.rxerrc + 4743 adapter->stats.crcerrs + adapter->stats.algnerrc + 4744 adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr; 4745 netdev->stats.rx_length_errors = adapter->stats.ruc + 4746 adapter->stats.roc; 4747 netdev->stats.rx_crc_errors = adapter->stats.crcerrs; 4748 netdev->stats.rx_frame_errors = adapter->stats.algnerrc; 4749 netdev->stats.rx_missed_errors = adapter->stats.mpc; 4750 4751 /* Tx Errors */ 4752 netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol; 4753 netdev->stats.tx_aborted_errors = adapter->stats.ecol; 4754 netdev->stats.tx_window_errors = adapter->stats.latecol; 4755 netdev->stats.tx_carrier_errors = adapter->stats.tncrs; 4756 4757 /* Tx Dropped needs to be maintained elsewhere */ 4758 4759 /* Management Stats */ 4760 adapter->stats.mgptc += er32(MGTPTC); 4761 adapter->stats.mgprc += er32(MGTPRC); 4762 adapter->stats.mgpdc += er32(MGTPDC); 4763 4764 /* Correctable ECC Errors */ 4765 if (hw->mac.type == e1000_pch_lpt) { 4766 u32 pbeccsts = er32(PBECCSTS); 4767 4768 adapter->corr_errors += 4769 pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK; 4770 adapter->uncorr_errors += 4771 (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >> 4772 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT; 4773 } 4774 } 4775 4776 /** 4777 * e1000_phy_read_status - Update the PHY register status snapshot 4778 * @adapter: board private structure 4779 **/ 4780 static void e1000_phy_read_status(struct e1000_adapter *adapter) 4781 { 4782 struct e1000_hw *hw = &adapter->hw; 4783 struct e1000_phy_regs *phy = &adapter->phy_regs; 4784 4785 if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) && 4786 (er32(STATUS) & E1000_STATUS_LU) && 4787 (adapter->hw.phy.media_type == e1000_media_type_copper)) { 4788 int ret_val; 4789 4790 ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr); 4791 ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr); 4792 ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise); 4793 ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa); 4794 ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion); 4795 ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000); 4796 ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000); 4797 ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus); 4798 if (ret_val) 4799 e_warn("Error reading PHY register\n"); 4800 } else { 4801 /* Do not read PHY registers if link is not up 4802 * Set values to typical power-on defaults 4803 */ 4804 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX); 4805 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL | 4806 BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE | 4807 BMSR_ERCAP); 4808 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP | 4809 ADVERTISE_ALL | ADVERTISE_CSMA); 4810 phy->lpa = 0; 4811 phy->expansion = EXPANSION_ENABLENPAGE; 4812 phy->ctrl1000 = ADVERTISE_1000FULL; 4813 phy->stat1000 = 0; 4814 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF); 4815 } 4816 } 4817 4818 static void e1000_print_link_info(struct e1000_adapter *adapter) 4819 { 4820 struct e1000_hw *hw = &adapter->hw; 4821 u32 ctrl = er32(CTRL); 4822 4823 /* Link status message must follow this format for user tools */ 4824 pr_info("%s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n", 4825 adapter->netdev->name, adapter->link_speed, 4826 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half", 4827 (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" : 4828 (ctrl & E1000_CTRL_RFCE) ? "Rx" : 4829 (ctrl & E1000_CTRL_TFCE) ? "Tx" : "None"); 4830 } 4831 4832 static bool e1000e_has_link(struct e1000_adapter *adapter) 4833 { 4834 struct e1000_hw *hw = &adapter->hw; 4835 bool link_active = false; 4836 s32 ret_val = 0; 4837 4838 /* get_link_status is set on LSC (link status) interrupt or 4839 * Rx sequence error interrupt. get_link_status will stay 4840 * false until the check_for_link establishes link 4841 * for copper adapters ONLY 4842 */ 4843 switch (hw->phy.media_type) { 4844 case e1000_media_type_copper: 4845 if (hw->mac.get_link_status) { 4846 ret_val = hw->mac.ops.check_for_link(hw); 4847 link_active = !hw->mac.get_link_status; 4848 } else { 4849 link_active = true; 4850 } 4851 break; 4852 case e1000_media_type_fiber: 4853 ret_val = hw->mac.ops.check_for_link(hw); 4854 link_active = !!(er32(STATUS) & E1000_STATUS_LU); 4855 break; 4856 case e1000_media_type_internal_serdes: 4857 ret_val = hw->mac.ops.check_for_link(hw); 4858 link_active = adapter->hw.mac.serdes_has_link; 4859 break; 4860 default: 4861 case e1000_media_type_unknown: 4862 break; 4863 } 4864 4865 if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) && 4866 (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) { 4867 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */ 4868 e_info("Gigabit has been disabled, downgrading speed\n"); 4869 } 4870 4871 return link_active; 4872 } 4873 4874 static void e1000e_enable_receives(struct e1000_adapter *adapter) 4875 { 4876 /* make sure the receive unit is started */ 4877 if ((adapter->flags & FLAG_RX_NEEDS_RESTART) && 4878 (adapter->flags & FLAG_RESTART_NOW)) { 4879 struct e1000_hw *hw = &adapter->hw; 4880 u32 rctl = er32(RCTL); 4881 4882 ew32(RCTL, rctl | E1000_RCTL_EN); 4883 adapter->flags &= ~FLAG_RESTART_NOW; 4884 } 4885 } 4886 4887 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter) 4888 { 4889 struct e1000_hw *hw = &adapter->hw; 4890 4891 /* With 82574 controllers, PHY needs to be checked periodically 4892 * for hung state and reset, if two calls return true 4893 */ 4894 if (e1000_check_phy_82574(hw)) 4895 adapter->phy_hang_count++; 4896 else 4897 adapter->phy_hang_count = 0; 4898 4899 if (adapter->phy_hang_count > 1) { 4900 adapter->phy_hang_count = 0; 4901 e_dbg("PHY appears hung - resetting\n"); 4902 schedule_work(&adapter->reset_task); 4903 } 4904 } 4905 4906 /** 4907 * e1000_watchdog - Timer Call-back 4908 * @data: pointer to adapter cast into an unsigned long 4909 **/ 4910 static void e1000_watchdog(unsigned long data) 4911 { 4912 struct e1000_adapter *adapter = (struct e1000_adapter *)data; 4913 4914 /* Do the rest outside of interrupt context */ 4915 schedule_work(&adapter->watchdog_task); 4916 4917 /* TODO: make this use queue_delayed_work() */ 4918 } 4919 4920 static void e1000_watchdog_task(struct work_struct *work) 4921 { 4922 struct e1000_adapter *adapter = container_of(work, 4923 struct e1000_adapter, 4924 watchdog_task); 4925 struct net_device *netdev = adapter->netdev; 4926 struct e1000_mac_info *mac = &adapter->hw.mac; 4927 struct e1000_phy_info *phy = &adapter->hw.phy; 4928 struct e1000_ring *tx_ring = adapter->tx_ring; 4929 struct e1000_hw *hw = &adapter->hw; 4930 u32 link, tctl; 4931 4932 if (test_bit(__E1000_DOWN, &adapter->state)) 4933 return; 4934 4935 link = e1000e_has_link(adapter); 4936 if ((netif_carrier_ok(netdev)) && link) { 4937 /* Cancel scheduled suspend requests. */ 4938 pm_runtime_resume(netdev->dev.parent); 4939 4940 e1000e_enable_receives(adapter); 4941 goto link_up; 4942 } 4943 4944 if ((e1000e_enable_tx_pkt_filtering(hw)) && 4945 (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)) 4946 e1000_update_mng_vlan(adapter); 4947 4948 if (link) { 4949 if (!netif_carrier_ok(netdev)) { 4950 bool txb2b = true; 4951 4952 /* Cancel scheduled suspend requests. */ 4953 pm_runtime_resume(netdev->dev.parent); 4954 4955 /* update snapshot of PHY registers on LSC */ 4956 e1000_phy_read_status(adapter); 4957 mac->ops.get_link_up_info(&adapter->hw, 4958 &adapter->link_speed, 4959 &adapter->link_duplex); 4960 e1000_print_link_info(adapter); 4961 4962 /* check if SmartSpeed worked */ 4963 e1000e_check_downshift(hw); 4964 if (phy->speed_downgraded) 4965 netdev_warn(netdev, 4966 "Link Speed was downgraded by SmartSpeed\n"); 4967 4968 /* On supported PHYs, check for duplex mismatch only 4969 * if link has autonegotiated at 10/100 half 4970 */ 4971 if ((hw->phy.type == e1000_phy_igp_3 || 4972 hw->phy.type == e1000_phy_bm) && 4973 hw->mac.autoneg && 4974 (adapter->link_speed == SPEED_10 || 4975 adapter->link_speed == SPEED_100) && 4976 (adapter->link_duplex == HALF_DUPLEX)) { 4977 u16 autoneg_exp; 4978 4979 e1e_rphy(hw, MII_EXPANSION, &autoneg_exp); 4980 4981 if (!(autoneg_exp & EXPANSION_NWAY)) 4982 e_info("Autonegotiated half duplex but link partner cannot autoneg. Try forcing full duplex if link gets many collisions.\n"); 4983 } 4984 4985 /* adjust timeout factor according to speed/duplex */ 4986 adapter->tx_timeout_factor = 1; 4987 switch (adapter->link_speed) { 4988 case SPEED_10: 4989 txb2b = false; 4990 adapter->tx_timeout_factor = 16; 4991 break; 4992 case SPEED_100: 4993 txb2b = false; 4994 adapter->tx_timeout_factor = 10; 4995 break; 4996 } 4997 4998 /* workaround: re-program speed mode bit after 4999 * link-up event 5000 */ 5001 if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) && 5002 !txb2b) { 5003 u32 tarc0; 5004 5005 tarc0 = er32(TARC(0)); 5006 tarc0 &= ~SPEED_MODE_BIT; 5007 ew32(TARC(0), tarc0); 5008 } 5009 5010 /* disable TSO for pcie and 10/100 speeds, to avoid 5011 * some hardware issues 5012 */ 5013 if (!(adapter->flags & FLAG_TSO_FORCE)) { 5014 switch (adapter->link_speed) { 5015 case SPEED_10: 5016 case SPEED_100: 5017 e_info("10/100 speed: disabling TSO\n"); 5018 netdev->features &= ~NETIF_F_TSO; 5019 netdev->features &= ~NETIF_F_TSO6; 5020 break; 5021 case SPEED_1000: 5022 netdev->features |= NETIF_F_TSO; 5023 netdev->features |= NETIF_F_TSO6; 5024 break; 5025 default: 5026 /* oops */ 5027 break; 5028 } 5029 } 5030 5031 /* enable transmits in the hardware, need to do this 5032 * after setting TARC(0) 5033 */ 5034 tctl = er32(TCTL); 5035 tctl |= E1000_TCTL_EN; 5036 ew32(TCTL, tctl); 5037 5038 /* Perform any post-link-up configuration before 5039 * reporting link up. 5040 */ 5041 if (phy->ops.cfg_on_link_up) 5042 phy->ops.cfg_on_link_up(hw); 5043 5044 netif_carrier_on(netdev); 5045 5046 if (!test_bit(__E1000_DOWN, &adapter->state)) 5047 mod_timer(&adapter->phy_info_timer, 5048 round_jiffies(jiffies + 2 * HZ)); 5049 } 5050 } else { 5051 if (netif_carrier_ok(netdev)) { 5052 adapter->link_speed = 0; 5053 adapter->link_duplex = 0; 5054 /* Link status message must follow this format */ 5055 pr_info("%s NIC Link is Down\n", adapter->netdev->name); 5056 netif_carrier_off(netdev); 5057 if (!test_bit(__E1000_DOWN, &adapter->state)) 5058 mod_timer(&adapter->phy_info_timer, 5059 round_jiffies(jiffies + 2 * HZ)); 5060 5061 /* 8000ES2LAN requires a Rx packet buffer work-around 5062 * on link down event; reset the controller to flush 5063 * the Rx packet buffer. 5064 */ 5065 if (adapter->flags & FLAG_RX_NEEDS_RESTART) 5066 adapter->flags |= FLAG_RESTART_NOW; 5067 else 5068 pm_schedule_suspend(netdev->dev.parent, 5069 LINK_TIMEOUT); 5070 } 5071 } 5072 5073 link_up: 5074 spin_lock(&adapter->stats64_lock); 5075 e1000e_update_stats(adapter); 5076 5077 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old; 5078 adapter->tpt_old = adapter->stats.tpt; 5079 mac->collision_delta = adapter->stats.colc - adapter->colc_old; 5080 adapter->colc_old = adapter->stats.colc; 5081 5082 adapter->gorc = adapter->stats.gorc - adapter->gorc_old; 5083 adapter->gorc_old = adapter->stats.gorc; 5084 adapter->gotc = adapter->stats.gotc - adapter->gotc_old; 5085 adapter->gotc_old = adapter->stats.gotc; 5086 spin_unlock(&adapter->stats64_lock); 5087 5088 /* If the link is lost the controller stops DMA, but 5089 * if there is queued Tx work it cannot be done. So 5090 * reset the controller to flush the Tx packet buffers. 5091 */ 5092 if (!netif_carrier_ok(netdev) && 5093 (e1000_desc_unused(tx_ring) + 1 < tx_ring->count)) 5094 adapter->flags |= FLAG_RESTART_NOW; 5095 5096 /* If reset is necessary, do it outside of interrupt context. */ 5097 if (adapter->flags & FLAG_RESTART_NOW) { 5098 schedule_work(&adapter->reset_task); 5099 /* return immediately since reset is imminent */ 5100 return; 5101 } 5102 5103 e1000e_update_adaptive(&adapter->hw); 5104 5105 /* Simple mode for Interrupt Throttle Rate (ITR) */ 5106 if (adapter->itr_setting == 4) { 5107 /* Symmetric Tx/Rx gets a reduced ITR=2000; 5108 * Total asymmetrical Tx or Rx gets ITR=8000; 5109 * everyone else is between 2000-8000. 5110 */ 5111 u32 goc = (adapter->gotc + adapter->gorc) / 10000; 5112 u32 dif = (adapter->gotc > adapter->gorc ? 5113 adapter->gotc - adapter->gorc : 5114 adapter->gorc - adapter->gotc) / 10000; 5115 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000; 5116 5117 e1000e_write_itr(adapter, itr); 5118 } 5119 5120 /* Cause software interrupt to ensure Rx ring is cleaned */ 5121 if (adapter->msix_entries) 5122 ew32(ICS, adapter->rx_ring->ims_val); 5123 else 5124 ew32(ICS, E1000_ICS_RXDMT0); 5125 5126 /* flush pending descriptors to memory before detecting Tx hang */ 5127 e1000e_flush_descriptors(adapter); 5128 5129 /* Force detection of hung controller every watchdog period */ 5130 adapter->detect_tx_hung = true; 5131 5132 /* With 82571 controllers, LAA may be overwritten due to controller 5133 * reset from the other port. Set the appropriate LAA in RAR[0] 5134 */ 5135 if (e1000e_get_laa_state_82571(hw)) 5136 hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0); 5137 5138 if (adapter->flags2 & FLAG2_CHECK_PHY_HANG) 5139 e1000e_check_82574_phy_workaround(adapter); 5140 5141 /* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */ 5142 if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) { 5143 if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) && 5144 (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) { 5145 er32(RXSTMPH); 5146 adapter->rx_hwtstamp_cleared++; 5147 } else { 5148 adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP; 5149 } 5150 } 5151 5152 /* Reset the timer */ 5153 if (!test_bit(__E1000_DOWN, &adapter->state)) 5154 mod_timer(&adapter->watchdog_timer, 5155 round_jiffies(jiffies + 2 * HZ)); 5156 } 5157 5158 #define E1000_TX_FLAGS_CSUM 0x00000001 5159 #define E1000_TX_FLAGS_VLAN 0x00000002 5160 #define E1000_TX_FLAGS_TSO 0x00000004 5161 #define E1000_TX_FLAGS_IPV4 0x00000008 5162 #define E1000_TX_FLAGS_NO_FCS 0x00000010 5163 #define E1000_TX_FLAGS_HWTSTAMP 0x00000020 5164 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000 5165 #define E1000_TX_FLAGS_VLAN_SHIFT 16 5166 5167 static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb) 5168 { 5169 struct e1000_context_desc *context_desc; 5170 struct e1000_buffer *buffer_info; 5171 unsigned int i; 5172 u32 cmd_length = 0; 5173 u16 ipcse = 0, mss; 5174 u8 ipcss, ipcso, tucss, tucso, hdr_len; 5175 int err; 5176 5177 if (!skb_is_gso(skb)) 5178 return 0; 5179 5180 err = skb_cow_head(skb, 0); 5181 if (err < 0) 5182 return err; 5183 5184 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 5185 mss = skb_shinfo(skb)->gso_size; 5186 if (skb->protocol == htons(ETH_P_IP)) { 5187 struct iphdr *iph = ip_hdr(skb); 5188 iph->tot_len = 0; 5189 iph->check = 0; 5190 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr, 5191 0, IPPROTO_TCP, 0); 5192 cmd_length = E1000_TXD_CMD_IP; 5193 ipcse = skb_transport_offset(skb) - 1; 5194 } else if (skb_is_gso_v6(skb)) { 5195 ipv6_hdr(skb)->payload_len = 0; 5196 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 5197 &ipv6_hdr(skb)->daddr, 5198 0, IPPROTO_TCP, 0); 5199 ipcse = 0; 5200 } 5201 ipcss = skb_network_offset(skb); 5202 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data; 5203 tucss = skb_transport_offset(skb); 5204 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data; 5205 5206 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE | 5207 E1000_TXD_CMD_TCP | (skb->len - (hdr_len))); 5208 5209 i = tx_ring->next_to_use; 5210 context_desc = E1000_CONTEXT_DESC(*tx_ring, i); 5211 buffer_info = &tx_ring->buffer_info[i]; 5212 5213 context_desc->lower_setup.ip_fields.ipcss = ipcss; 5214 context_desc->lower_setup.ip_fields.ipcso = ipcso; 5215 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse); 5216 context_desc->upper_setup.tcp_fields.tucss = tucss; 5217 context_desc->upper_setup.tcp_fields.tucso = tucso; 5218 context_desc->upper_setup.tcp_fields.tucse = 0; 5219 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss); 5220 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len; 5221 context_desc->cmd_and_length = cpu_to_le32(cmd_length); 5222 5223 buffer_info->time_stamp = jiffies; 5224 buffer_info->next_to_watch = i; 5225 5226 i++; 5227 if (i == tx_ring->count) 5228 i = 0; 5229 tx_ring->next_to_use = i; 5230 5231 return 1; 5232 } 5233 5234 static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb) 5235 { 5236 struct e1000_adapter *adapter = tx_ring->adapter; 5237 struct e1000_context_desc *context_desc; 5238 struct e1000_buffer *buffer_info; 5239 unsigned int i; 5240 u8 css; 5241 u32 cmd_len = E1000_TXD_CMD_DEXT; 5242 __be16 protocol; 5243 5244 if (skb->ip_summed != CHECKSUM_PARTIAL) 5245 return false; 5246 5247 if (skb->protocol == cpu_to_be16(ETH_P_8021Q)) 5248 protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto; 5249 else 5250 protocol = skb->protocol; 5251 5252 switch (protocol) { 5253 case cpu_to_be16(ETH_P_IP): 5254 if (ip_hdr(skb)->protocol == IPPROTO_TCP) 5255 cmd_len |= E1000_TXD_CMD_TCP; 5256 break; 5257 case cpu_to_be16(ETH_P_IPV6): 5258 /* XXX not handling all IPV6 headers */ 5259 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) 5260 cmd_len |= E1000_TXD_CMD_TCP; 5261 break; 5262 default: 5263 if (unlikely(net_ratelimit())) 5264 e_warn("checksum_partial proto=%x!\n", 5265 be16_to_cpu(protocol)); 5266 break; 5267 } 5268 5269 css = skb_checksum_start_offset(skb); 5270 5271 i = tx_ring->next_to_use; 5272 buffer_info = &tx_ring->buffer_info[i]; 5273 context_desc = E1000_CONTEXT_DESC(*tx_ring, i); 5274 5275 context_desc->lower_setup.ip_config = 0; 5276 context_desc->upper_setup.tcp_fields.tucss = css; 5277 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset; 5278 context_desc->upper_setup.tcp_fields.tucse = 0; 5279 context_desc->tcp_seg_setup.data = 0; 5280 context_desc->cmd_and_length = cpu_to_le32(cmd_len); 5281 5282 buffer_info->time_stamp = jiffies; 5283 buffer_info->next_to_watch = i; 5284 5285 i++; 5286 if (i == tx_ring->count) 5287 i = 0; 5288 tx_ring->next_to_use = i; 5289 5290 return true; 5291 } 5292 5293 static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb, 5294 unsigned int first, unsigned int max_per_txd, 5295 unsigned int nr_frags) 5296 { 5297 struct e1000_adapter *adapter = tx_ring->adapter; 5298 struct pci_dev *pdev = adapter->pdev; 5299 struct e1000_buffer *buffer_info; 5300 unsigned int len = skb_headlen(skb); 5301 unsigned int offset = 0, size, count = 0, i; 5302 unsigned int f, bytecount, segs; 5303 5304 i = tx_ring->next_to_use; 5305 5306 while (len) { 5307 buffer_info = &tx_ring->buffer_info[i]; 5308 size = min(len, max_per_txd); 5309 5310 buffer_info->length = size; 5311 buffer_info->time_stamp = jiffies; 5312 buffer_info->next_to_watch = i; 5313 buffer_info->dma = dma_map_single(&pdev->dev, 5314 skb->data + offset, 5315 size, DMA_TO_DEVICE); 5316 buffer_info->mapped_as_page = false; 5317 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) 5318 goto dma_error; 5319 5320 len -= size; 5321 offset += size; 5322 count++; 5323 5324 if (len) { 5325 i++; 5326 if (i == tx_ring->count) 5327 i = 0; 5328 } 5329 } 5330 5331 for (f = 0; f < nr_frags; f++) { 5332 const struct skb_frag_struct *frag; 5333 5334 frag = &skb_shinfo(skb)->frags[f]; 5335 len = skb_frag_size(frag); 5336 offset = 0; 5337 5338 while (len) { 5339 i++; 5340 if (i == tx_ring->count) 5341 i = 0; 5342 5343 buffer_info = &tx_ring->buffer_info[i]; 5344 size = min(len, max_per_txd); 5345 5346 buffer_info->length = size; 5347 buffer_info->time_stamp = jiffies; 5348 buffer_info->next_to_watch = i; 5349 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 5350 offset, size, 5351 DMA_TO_DEVICE); 5352 buffer_info->mapped_as_page = true; 5353 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) 5354 goto dma_error; 5355 5356 len -= size; 5357 offset += size; 5358 count++; 5359 } 5360 } 5361 5362 segs = skb_shinfo(skb)->gso_segs ? : 1; 5363 /* multiply data chunks by size of headers */ 5364 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len; 5365 5366 tx_ring->buffer_info[i].skb = skb; 5367 tx_ring->buffer_info[i].segs = segs; 5368 tx_ring->buffer_info[i].bytecount = bytecount; 5369 tx_ring->buffer_info[first].next_to_watch = i; 5370 5371 return count; 5372 5373 dma_error: 5374 dev_err(&pdev->dev, "Tx DMA map failed\n"); 5375 buffer_info->dma = 0; 5376 if (count) 5377 count--; 5378 5379 while (count--) { 5380 if (i == 0) 5381 i += tx_ring->count; 5382 i--; 5383 buffer_info = &tx_ring->buffer_info[i]; 5384 e1000_put_txbuf(tx_ring, buffer_info); 5385 } 5386 5387 return 0; 5388 } 5389 5390 static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count) 5391 { 5392 struct e1000_adapter *adapter = tx_ring->adapter; 5393 struct e1000_tx_desc *tx_desc = NULL; 5394 struct e1000_buffer *buffer_info; 5395 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS; 5396 unsigned int i; 5397 5398 if (tx_flags & E1000_TX_FLAGS_TSO) { 5399 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D | 5400 E1000_TXD_CMD_TSE; 5401 txd_upper |= E1000_TXD_POPTS_TXSM << 8; 5402 5403 if (tx_flags & E1000_TX_FLAGS_IPV4) 5404 txd_upper |= E1000_TXD_POPTS_IXSM << 8; 5405 } 5406 5407 if (tx_flags & E1000_TX_FLAGS_CSUM) { 5408 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D; 5409 txd_upper |= E1000_TXD_POPTS_TXSM << 8; 5410 } 5411 5412 if (tx_flags & E1000_TX_FLAGS_VLAN) { 5413 txd_lower |= E1000_TXD_CMD_VLE; 5414 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK); 5415 } 5416 5417 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS)) 5418 txd_lower &= ~(E1000_TXD_CMD_IFCS); 5419 5420 if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) { 5421 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D; 5422 txd_upper |= E1000_TXD_EXTCMD_TSTAMP; 5423 } 5424 5425 i = tx_ring->next_to_use; 5426 5427 do { 5428 buffer_info = &tx_ring->buffer_info[i]; 5429 tx_desc = E1000_TX_DESC(*tx_ring, i); 5430 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); 5431 tx_desc->lower.data = cpu_to_le32(txd_lower | 5432 buffer_info->length); 5433 tx_desc->upper.data = cpu_to_le32(txd_upper); 5434 5435 i++; 5436 if (i == tx_ring->count) 5437 i = 0; 5438 } while (--count > 0); 5439 5440 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd); 5441 5442 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */ 5443 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS)) 5444 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS)); 5445 5446 /* Force memory writes to complete before letting h/w 5447 * know there are new descriptors to fetch. (Only 5448 * applicable for weak-ordered memory model archs, 5449 * such as IA-64). 5450 */ 5451 wmb(); 5452 5453 tx_ring->next_to_use = i; 5454 5455 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA) 5456 e1000e_update_tdt_wa(tx_ring, i); 5457 else 5458 writel(i, tx_ring->tail); 5459 5460 /* we need this if more than one processor can write to our tail 5461 * at a time, it synchronizes IO on IA64/Altix systems 5462 */ 5463 mmiowb(); 5464 } 5465 5466 #define MINIMUM_DHCP_PACKET_SIZE 282 5467 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter, 5468 struct sk_buff *skb) 5469 { 5470 struct e1000_hw *hw = &adapter->hw; 5471 u16 length, offset; 5472 5473 if (vlan_tx_tag_present(skb) && 5474 !((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) && 5475 (adapter->hw.mng_cookie.status & 5476 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))) 5477 return 0; 5478 5479 if (skb->len <= MINIMUM_DHCP_PACKET_SIZE) 5480 return 0; 5481 5482 if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP)) 5483 return 0; 5484 5485 { 5486 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14); 5487 struct udphdr *udp; 5488 5489 if (ip->protocol != IPPROTO_UDP) 5490 return 0; 5491 5492 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2)); 5493 if (ntohs(udp->dest) != 67) 5494 return 0; 5495 5496 offset = (u8 *)udp + 8 - skb->data; 5497 length = skb->len - offset; 5498 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length); 5499 } 5500 5501 return 0; 5502 } 5503 5504 static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size) 5505 { 5506 struct e1000_adapter *adapter = tx_ring->adapter; 5507 5508 netif_stop_queue(adapter->netdev); 5509 /* Herbert's original patch had: 5510 * smp_mb__after_netif_stop_queue(); 5511 * but since that doesn't exist yet, just open code it. 5512 */ 5513 smp_mb(); 5514 5515 /* We need to check again in a case another CPU has just 5516 * made room available. 5517 */ 5518 if (e1000_desc_unused(tx_ring) < size) 5519 return -EBUSY; 5520 5521 /* A reprieve! */ 5522 netif_start_queue(adapter->netdev); 5523 ++adapter->restart_queue; 5524 return 0; 5525 } 5526 5527 static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size) 5528 { 5529 BUG_ON(size > tx_ring->count); 5530 5531 if (e1000_desc_unused(tx_ring) >= size) 5532 return 0; 5533 return __e1000_maybe_stop_tx(tx_ring, size); 5534 } 5535 5536 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb, 5537 struct net_device *netdev) 5538 { 5539 struct e1000_adapter *adapter = netdev_priv(netdev); 5540 struct e1000_ring *tx_ring = adapter->tx_ring; 5541 unsigned int first; 5542 unsigned int tx_flags = 0; 5543 unsigned int len = skb_headlen(skb); 5544 unsigned int nr_frags; 5545 unsigned int mss; 5546 int count = 0; 5547 int tso; 5548 unsigned int f; 5549 5550 if (test_bit(__E1000_DOWN, &adapter->state)) { 5551 dev_kfree_skb_any(skb); 5552 return NETDEV_TX_OK; 5553 } 5554 5555 if (skb->len <= 0) { 5556 dev_kfree_skb_any(skb); 5557 return NETDEV_TX_OK; 5558 } 5559 5560 /* The minimum packet size with TCTL.PSP set is 17 bytes so 5561 * pad skb in order to meet this minimum size requirement 5562 */ 5563 if (unlikely(skb->len < 17)) { 5564 if (skb_pad(skb, 17 - skb->len)) 5565 return NETDEV_TX_OK; 5566 skb->len = 17; 5567 skb_set_tail_pointer(skb, 17); 5568 } 5569 5570 mss = skb_shinfo(skb)->gso_size; 5571 if (mss) { 5572 u8 hdr_len; 5573 5574 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data 5575 * points to just header, pull a few bytes of payload from 5576 * frags into skb->data 5577 */ 5578 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 5579 /* we do this workaround for ES2LAN, but it is un-necessary, 5580 * avoiding it could save a lot of cycles 5581 */ 5582 if (skb->data_len && (hdr_len == len)) { 5583 unsigned int pull_size; 5584 5585 pull_size = min_t(unsigned int, 4, skb->data_len); 5586 if (!__pskb_pull_tail(skb, pull_size)) { 5587 e_err("__pskb_pull_tail failed.\n"); 5588 dev_kfree_skb_any(skb); 5589 return NETDEV_TX_OK; 5590 } 5591 len = skb_headlen(skb); 5592 } 5593 } 5594 5595 /* reserve a descriptor for the offload context */ 5596 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL)) 5597 count++; 5598 count++; 5599 5600 count += DIV_ROUND_UP(len, adapter->tx_fifo_limit); 5601 5602 nr_frags = skb_shinfo(skb)->nr_frags; 5603 for (f = 0; f < nr_frags; f++) 5604 count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]), 5605 adapter->tx_fifo_limit); 5606 5607 if (adapter->hw.mac.tx_pkt_filtering) 5608 e1000_transfer_dhcp_info(adapter, skb); 5609 5610 /* need: count + 2 desc gap to keep tail from touching 5611 * head, otherwise try next time 5612 */ 5613 if (e1000_maybe_stop_tx(tx_ring, count + 2)) 5614 return NETDEV_TX_BUSY; 5615 5616 if (vlan_tx_tag_present(skb)) { 5617 tx_flags |= E1000_TX_FLAGS_VLAN; 5618 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT); 5619 } 5620 5621 first = tx_ring->next_to_use; 5622 5623 tso = e1000_tso(tx_ring, skb); 5624 if (tso < 0) { 5625 dev_kfree_skb_any(skb); 5626 return NETDEV_TX_OK; 5627 } 5628 5629 if (tso) 5630 tx_flags |= E1000_TX_FLAGS_TSO; 5631 else if (e1000_tx_csum(tx_ring, skb)) 5632 tx_flags |= E1000_TX_FLAGS_CSUM; 5633 5634 /* Old method was to assume IPv4 packet by default if TSO was enabled. 5635 * 82571 hardware supports TSO capabilities for IPv6 as well... 5636 * no longer assume, we must. 5637 */ 5638 if (skb->protocol == htons(ETH_P_IP)) 5639 tx_flags |= E1000_TX_FLAGS_IPV4; 5640 5641 if (unlikely(skb->no_fcs)) 5642 tx_flags |= E1000_TX_FLAGS_NO_FCS; 5643 5644 /* if count is 0 then mapping error has occurred */ 5645 count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit, 5646 nr_frags); 5647 if (count) { 5648 if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 5649 !adapter->tx_hwtstamp_skb)) { 5650 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 5651 tx_flags |= E1000_TX_FLAGS_HWTSTAMP; 5652 adapter->tx_hwtstamp_skb = skb_get(skb); 5653 adapter->tx_hwtstamp_start = jiffies; 5654 schedule_work(&adapter->tx_hwtstamp_work); 5655 } else { 5656 skb_tx_timestamp(skb); 5657 } 5658 5659 netdev_sent_queue(netdev, skb->len); 5660 e1000_tx_queue(tx_ring, tx_flags, count); 5661 /* Make sure there is space in the ring for the next send. */ 5662 e1000_maybe_stop_tx(tx_ring, 5663 (MAX_SKB_FRAGS * 5664 DIV_ROUND_UP(PAGE_SIZE, 5665 adapter->tx_fifo_limit) + 2)); 5666 } else { 5667 dev_kfree_skb_any(skb); 5668 tx_ring->buffer_info[first].time_stamp = 0; 5669 tx_ring->next_to_use = first; 5670 } 5671 5672 return NETDEV_TX_OK; 5673 } 5674 5675 /** 5676 * e1000_tx_timeout - Respond to a Tx Hang 5677 * @netdev: network interface device structure 5678 **/ 5679 static void e1000_tx_timeout(struct net_device *netdev) 5680 { 5681 struct e1000_adapter *adapter = netdev_priv(netdev); 5682 5683 /* Do the reset outside of interrupt context */ 5684 adapter->tx_timeout_count++; 5685 schedule_work(&adapter->reset_task); 5686 } 5687 5688 static void e1000_reset_task(struct work_struct *work) 5689 { 5690 struct e1000_adapter *adapter; 5691 adapter = container_of(work, struct e1000_adapter, reset_task); 5692 5693 /* don't run the task if already down */ 5694 if (test_bit(__E1000_DOWN, &adapter->state)) 5695 return; 5696 5697 if (!(adapter->flags & FLAG_RESTART_NOW)) { 5698 e1000e_dump(adapter); 5699 e_err("Reset adapter unexpectedly\n"); 5700 } 5701 e1000e_reinit_locked(adapter); 5702 } 5703 5704 /** 5705 * e1000_get_stats64 - Get System Network Statistics 5706 * @netdev: network interface device structure 5707 * @stats: rtnl_link_stats64 pointer 5708 * 5709 * Returns the address of the device statistics structure. 5710 **/ 5711 struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev, 5712 struct rtnl_link_stats64 *stats) 5713 { 5714 struct e1000_adapter *adapter = netdev_priv(netdev); 5715 5716 memset(stats, 0, sizeof(struct rtnl_link_stats64)); 5717 spin_lock(&adapter->stats64_lock); 5718 e1000e_update_stats(adapter); 5719 /* Fill out the OS statistics structure */ 5720 stats->rx_bytes = adapter->stats.gorc; 5721 stats->rx_packets = adapter->stats.gprc; 5722 stats->tx_bytes = adapter->stats.gotc; 5723 stats->tx_packets = adapter->stats.gptc; 5724 stats->multicast = adapter->stats.mprc; 5725 stats->collisions = adapter->stats.colc; 5726 5727 /* Rx Errors */ 5728 5729 /* RLEC on some newer hardware can be incorrect so build 5730 * our own version based on RUC and ROC 5731 */ 5732 stats->rx_errors = adapter->stats.rxerrc + 5733 adapter->stats.crcerrs + adapter->stats.algnerrc + 5734 adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr; 5735 stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc; 5736 stats->rx_crc_errors = adapter->stats.crcerrs; 5737 stats->rx_frame_errors = adapter->stats.algnerrc; 5738 stats->rx_missed_errors = adapter->stats.mpc; 5739 5740 /* Tx Errors */ 5741 stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol; 5742 stats->tx_aborted_errors = adapter->stats.ecol; 5743 stats->tx_window_errors = adapter->stats.latecol; 5744 stats->tx_carrier_errors = adapter->stats.tncrs; 5745 5746 /* Tx Dropped needs to be maintained elsewhere */ 5747 5748 spin_unlock(&adapter->stats64_lock); 5749 return stats; 5750 } 5751 5752 /** 5753 * e1000_change_mtu - Change the Maximum Transfer Unit 5754 * @netdev: network interface device structure 5755 * @new_mtu: new value for maximum frame size 5756 * 5757 * Returns 0 on success, negative on failure 5758 **/ 5759 static int e1000_change_mtu(struct net_device *netdev, int new_mtu) 5760 { 5761 struct e1000_adapter *adapter = netdev_priv(netdev); 5762 int max_frame = new_mtu + VLAN_HLEN + ETH_HLEN + ETH_FCS_LEN; 5763 5764 /* Jumbo frame support */ 5765 if ((max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) && 5766 !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) { 5767 e_err("Jumbo Frames not supported.\n"); 5768 return -EINVAL; 5769 } 5770 5771 /* Supported frame sizes */ 5772 if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) || 5773 (max_frame > adapter->max_hw_frame_size)) { 5774 e_err("Unsupported MTU setting\n"); 5775 return -EINVAL; 5776 } 5777 5778 /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */ 5779 if ((adapter->hw.mac.type >= e1000_pch2lan) && 5780 !(adapter->flags2 & FLAG2_CRC_STRIPPING) && 5781 (new_mtu > ETH_DATA_LEN)) { 5782 e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n"); 5783 return -EINVAL; 5784 } 5785 5786 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 5787 usleep_range(1000, 2000); 5788 /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */ 5789 adapter->max_frame_size = max_frame; 5790 e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu); 5791 netdev->mtu = new_mtu; 5792 5793 pm_runtime_get_sync(netdev->dev.parent); 5794 5795 if (netif_running(netdev)) 5796 e1000e_down(adapter, true); 5797 5798 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN 5799 * means we reserve 2 more, this pushes us to allocate from the next 5800 * larger slab size. 5801 * i.e. RXBUFFER_2048 --> size-4096 slab 5802 * However with the new *_jumbo_rx* routines, jumbo receives will use 5803 * fragmented skbs 5804 */ 5805 5806 if (max_frame <= 2048) 5807 adapter->rx_buffer_len = 2048; 5808 else 5809 adapter->rx_buffer_len = 4096; 5810 5811 /* adjust allocation if LPE protects us, and we aren't using SBP */ 5812 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) || 5813 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN)) 5814 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN 5815 + ETH_FCS_LEN; 5816 5817 if (netif_running(netdev)) 5818 e1000e_up(adapter); 5819 else 5820 e1000e_reset(adapter); 5821 5822 pm_runtime_put_sync(netdev->dev.parent); 5823 5824 clear_bit(__E1000_RESETTING, &adapter->state); 5825 5826 return 0; 5827 } 5828 5829 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, 5830 int cmd) 5831 { 5832 struct e1000_adapter *adapter = netdev_priv(netdev); 5833 struct mii_ioctl_data *data = if_mii(ifr); 5834 5835 if (adapter->hw.phy.media_type != e1000_media_type_copper) 5836 return -EOPNOTSUPP; 5837 5838 switch (cmd) { 5839 case SIOCGMIIPHY: 5840 data->phy_id = adapter->hw.phy.addr; 5841 break; 5842 case SIOCGMIIREG: 5843 e1000_phy_read_status(adapter); 5844 5845 switch (data->reg_num & 0x1F) { 5846 case MII_BMCR: 5847 data->val_out = adapter->phy_regs.bmcr; 5848 break; 5849 case MII_BMSR: 5850 data->val_out = adapter->phy_regs.bmsr; 5851 break; 5852 case MII_PHYSID1: 5853 data->val_out = (adapter->hw.phy.id >> 16); 5854 break; 5855 case MII_PHYSID2: 5856 data->val_out = (adapter->hw.phy.id & 0xFFFF); 5857 break; 5858 case MII_ADVERTISE: 5859 data->val_out = adapter->phy_regs.advertise; 5860 break; 5861 case MII_LPA: 5862 data->val_out = adapter->phy_regs.lpa; 5863 break; 5864 case MII_EXPANSION: 5865 data->val_out = adapter->phy_regs.expansion; 5866 break; 5867 case MII_CTRL1000: 5868 data->val_out = adapter->phy_regs.ctrl1000; 5869 break; 5870 case MII_STAT1000: 5871 data->val_out = adapter->phy_regs.stat1000; 5872 break; 5873 case MII_ESTATUS: 5874 data->val_out = adapter->phy_regs.estatus; 5875 break; 5876 default: 5877 return -EIO; 5878 } 5879 break; 5880 case SIOCSMIIREG: 5881 default: 5882 return -EOPNOTSUPP; 5883 } 5884 return 0; 5885 } 5886 5887 /** 5888 * e1000e_hwtstamp_ioctl - control hardware time stamping 5889 * @netdev: network interface device structure 5890 * @ifreq: interface request 5891 * 5892 * Outgoing time stamping can be enabled and disabled. Play nice and 5893 * disable it when requested, although it shouldn't cause any overhead 5894 * when no packet needs it. At most one packet in the queue may be 5895 * marked for time stamping, otherwise it would be impossible to tell 5896 * for sure to which packet the hardware time stamp belongs. 5897 * 5898 * Incoming time stamping has to be configured via the hardware filters. 5899 * Not all combinations are supported, in particular event type has to be 5900 * specified. Matching the kind of event packet is not supported, with the 5901 * exception of "all V2 events regardless of level 2 or 4". 5902 **/ 5903 static int e1000e_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr) 5904 { 5905 struct e1000_adapter *adapter = netdev_priv(netdev); 5906 struct hwtstamp_config config; 5907 int ret_val; 5908 5909 if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) 5910 return -EFAULT; 5911 5912 ret_val = e1000e_config_hwtstamp(adapter, &config); 5913 if (ret_val) 5914 return ret_val; 5915 5916 switch (config.rx_filter) { 5917 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 5918 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 5919 case HWTSTAMP_FILTER_PTP_V2_SYNC: 5920 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 5921 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 5922 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 5923 /* With V2 type filters which specify a Sync or Delay Request, 5924 * Path Delay Request/Response messages are also time stamped 5925 * by hardware so notify the caller the requested packets plus 5926 * some others are time stamped. 5927 */ 5928 config.rx_filter = HWTSTAMP_FILTER_SOME; 5929 break; 5930 default: 5931 break; 5932 } 5933 5934 return copy_to_user(ifr->ifr_data, &config, 5935 sizeof(config)) ? -EFAULT : 0; 5936 } 5937 5938 static int e1000e_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr) 5939 { 5940 struct e1000_adapter *adapter = netdev_priv(netdev); 5941 5942 return copy_to_user(ifr->ifr_data, &adapter->hwtstamp_config, 5943 sizeof(adapter->hwtstamp_config)) ? -EFAULT : 0; 5944 } 5945 5946 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 5947 { 5948 switch (cmd) { 5949 case SIOCGMIIPHY: 5950 case SIOCGMIIREG: 5951 case SIOCSMIIREG: 5952 return e1000_mii_ioctl(netdev, ifr, cmd); 5953 case SIOCSHWTSTAMP: 5954 return e1000e_hwtstamp_set(netdev, ifr); 5955 case SIOCGHWTSTAMP: 5956 return e1000e_hwtstamp_get(netdev, ifr); 5957 default: 5958 return -EOPNOTSUPP; 5959 } 5960 } 5961 5962 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc) 5963 { 5964 struct e1000_hw *hw = &adapter->hw; 5965 u32 i, mac_reg, wuc; 5966 u16 phy_reg, wuc_enable; 5967 int retval; 5968 5969 /* copy MAC RARs to PHY RARs */ 5970 e1000_copy_rx_addrs_to_phy_ich8lan(hw); 5971 5972 retval = hw->phy.ops.acquire(hw); 5973 if (retval) { 5974 e_err("Could not acquire PHY\n"); 5975 return retval; 5976 } 5977 5978 /* Enable access to wakeup registers on and set page to BM_WUC_PAGE */ 5979 retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable); 5980 if (retval) 5981 goto release; 5982 5983 /* copy MAC MTA to PHY MTA - only needed for pchlan */ 5984 for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) { 5985 mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i); 5986 hw->phy.ops.write_reg_page(hw, BM_MTA(i), 5987 (u16)(mac_reg & 0xFFFF)); 5988 hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1, 5989 (u16)((mac_reg >> 16) & 0xFFFF)); 5990 } 5991 5992 /* configure PHY Rx Control register */ 5993 hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg); 5994 mac_reg = er32(RCTL); 5995 if (mac_reg & E1000_RCTL_UPE) 5996 phy_reg |= BM_RCTL_UPE; 5997 if (mac_reg & E1000_RCTL_MPE) 5998 phy_reg |= BM_RCTL_MPE; 5999 phy_reg &= ~(BM_RCTL_MO_MASK); 6000 if (mac_reg & E1000_RCTL_MO_3) 6001 phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT) 6002 << BM_RCTL_MO_SHIFT); 6003 if (mac_reg & E1000_RCTL_BAM) 6004 phy_reg |= BM_RCTL_BAM; 6005 if (mac_reg & E1000_RCTL_PMCF) 6006 phy_reg |= BM_RCTL_PMCF; 6007 mac_reg = er32(CTRL); 6008 if (mac_reg & E1000_CTRL_RFCE) 6009 phy_reg |= BM_RCTL_RFCE; 6010 hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg); 6011 6012 wuc = E1000_WUC_PME_EN; 6013 if (wufc & (E1000_WUFC_MAG | E1000_WUFC_LNKC)) 6014 wuc |= E1000_WUC_APME; 6015 6016 /* enable PHY wakeup in MAC register */ 6017 ew32(WUFC, wufc); 6018 ew32(WUC, (E1000_WUC_PHY_WAKE | E1000_WUC_APMPME | 6019 E1000_WUC_PME_STATUS | wuc)); 6020 6021 /* configure and enable PHY wakeup in PHY registers */ 6022 hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc); 6023 hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, wuc); 6024 6025 /* activate PHY wakeup */ 6026 wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT; 6027 retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable); 6028 if (retval) 6029 e_err("Could not set PHY Host Wakeup bit\n"); 6030 release: 6031 hw->phy.ops.release(hw); 6032 6033 return retval; 6034 } 6035 6036 static void e1000e_flush_lpic(struct pci_dev *pdev) 6037 { 6038 struct net_device *netdev = pci_get_drvdata(pdev); 6039 struct e1000_adapter *adapter = netdev_priv(netdev); 6040 struct e1000_hw *hw = &adapter->hw; 6041 u32 ret_val; 6042 6043 pm_runtime_get_sync(netdev->dev.parent); 6044 6045 ret_val = hw->phy.ops.acquire(hw); 6046 if (ret_val) 6047 goto fl_out; 6048 6049 pr_info("EEE TX LPI TIMER: %08X\n", 6050 er32(LPIC) >> E1000_LPIC_LPIET_SHIFT); 6051 6052 hw->phy.ops.release(hw); 6053 6054 fl_out: 6055 pm_runtime_put_sync(netdev->dev.parent); 6056 } 6057 6058 static int e1000e_pm_freeze(struct device *dev) 6059 { 6060 struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev)); 6061 struct e1000_adapter *adapter = netdev_priv(netdev); 6062 6063 netif_device_detach(netdev); 6064 6065 if (netif_running(netdev)) { 6066 int count = E1000_CHECK_RESET_COUNT; 6067 6068 while (test_bit(__E1000_RESETTING, &adapter->state) && count--) 6069 usleep_range(10000, 20000); 6070 6071 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state)); 6072 6073 /* Quiesce the device without resetting the hardware */ 6074 e1000e_down(adapter, false); 6075 e1000_free_irq(adapter); 6076 } 6077 e1000e_reset_interrupt_capability(adapter); 6078 6079 /* Allow time for pending master requests to run */ 6080 e1000e_disable_pcie_master(&adapter->hw); 6081 6082 return 0; 6083 } 6084 6085 static int __e1000_shutdown(struct pci_dev *pdev, bool runtime) 6086 { 6087 struct net_device *netdev = pci_get_drvdata(pdev); 6088 struct e1000_adapter *adapter = netdev_priv(netdev); 6089 struct e1000_hw *hw = &adapter->hw; 6090 u32 ctrl, ctrl_ext, rctl, status; 6091 /* Runtime suspend should only enable wakeup for link changes */ 6092 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol; 6093 int retval = 0; 6094 6095 status = er32(STATUS); 6096 if (status & E1000_STATUS_LU) 6097 wufc &= ~E1000_WUFC_LNKC; 6098 6099 if (wufc) { 6100 e1000_setup_rctl(adapter); 6101 e1000e_set_rx_mode(netdev); 6102 6103 /* turn on all-multi mode if wake on multicast is enabled */ 6104 if (wufc & E1000_WUFC_MC) { 6105 rctl = er32(RCTL); 6106 rctl |= E1000_RCTL_MPE; 6107 ew32(RCTL, rctl); 6108 } 6109 6110 ctrl = er32(CTRL); 6111 ctrl |= E1000_CTRL_ADVD3WUC; 6112 if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP)) 6113 ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT; 6114 ew32(CTRL, ctrl); 6115 6116 if (adapter->hw.phy.media_type == e1000_media_type_fiber || 6117 adapter->hw.phy.media_type == 6118 e1000_media_type_internal_serdes) { 6119 /* keep the laser running in D3 */ 6120 ctrl_ext = er32(CTRL_EXT); 6121 ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA; 6122 ew32(CTRL_EXT, ctrl_ext); 6123 } 6124 6125 if (!runtime) 6126 e1000e_power_up_phy(adapter); 6127 6128 if (adapter->flags & FLAG_IS_ICH) 6129 e1000_suspend_workarounds_ich8lan(&adapter->hw); 6130 6131 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) { 6132 /* enable wakeup by the PHY */ 6133 retval = e1000_init_phy_wakeup(adapter, wufc); 6134 if (retval) 6135 return retval; 6136 } else { 6137 /* enable wakeup by the MAC */ 6138 ew32(WUFC, wufc); 6139 ew32(WUC, E1000_WUC_PME_EN); 6140 } 6141 } else { 6142 ew32(WUC, 0); 6143 ew32(WUFC, 0); 6144 6145 e1000_power_down_phy(adapter); 6146 } 6147 6148 if (adapter->hw.phy.type == e1000_phy_igp_3) { 6149 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw); 6150 } else if (hw->mac.type == e1000_pch_lpt) { 6151 if (!(wufc & (E1000_WUFC_EX | E1000_WUFC_MC | E1000_WUFC_BC))) 6152 /* ULP does not support wake from unicast, multicast 6153 * or broadcast. 6154 */ 6155 retval = e1000_enable_ulp_lpt_lp(hw, !runtime); 6156 6157 if (retval) 6158 return retval; 6159 } 6160 6161 6162 /* Release control of h/w to f/w. If f/w is AMT enabled, this 6163 * would have already happened in close and is redundant. 6164 */ 6165 e1000e_release_hw_control(adapter); 6166 6167 pci_clear_master(pdev); 6168 6169 /* The pci-e switch on some quad port adapters will report a 6170 * correctable error when the MAC transitions from D0 to D3. To 6171 * prevent this we need to mask off the correctable errors on the 6172 * downstream port of the pci-e switch. 6173 * 6174 * We don't have the associated upstream bridge while assigning 6175 * the PCI device into guest. For example, the KVM on power is 6176 * one of the cases. 6177 */ 6178 if (adapter->flags & FLAG_IS_QUAD_PORT) { 6179 struct pci_dev *us_dev = pdev->bus->self; 6180 u16 devctl; 6181 6182 if (!us_dev) 6183 return 0; 6184 6185 pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl); 6186 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, 6187 (devctl & ~PCI_EXP_DEVCTL_CERE)); 6188 6189 pci_save_state(pdev); 6190 pci_prepare_to_sleep(pdev); 6191 6192 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl); 6193 } 6194 6195 return 0; 6196 } 6197 6198 /** 6199 * e1000e_disable_aspm - Disable ASPM states 6200 * @pdev: pointer to PCI device struct 6201 * @state: bit-mask of ASPM states to disable 6202 * 6203 * Some devices *must* have certain ASPM states disabled per hardware errata. 6204 **/ 6205 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state) 6206 { 6207 struct pci_dev *parent = pdev->bus->self; 6208 u16 aspm_dis_mask = 0; 6209 u16 pdev_aspmc, parent_aspmc; 6210 6211 switch (state) { 6212 case PCIE_LINK_STATE_L0S: 6213 case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1: 6214 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S; 6215 /* fall-through - can't have L1 without L0s */ 6216 case PCIE_LINK_STATE_L1: 6217 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1; 6218 break; 6219 default: 6220 return; 6221 } 6222 6223 pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc); 6224 pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC; 6225 6226 if (parent) { 6227 pcie_capability_read_word(parent, PCI_EXP_LNKCTL, 6228 &parent_aspmc); 6229 parent_aspmc &= PCI_EXP_LNKCTL_ASPMC; 6230 } 6231 6232 /* Nothing to do if the ASPM states to be disabled already are */ 6233 if (!(pdev_aspmc & aspm_dis_mask) && 6234 (!parent || !(parent_aspmc & aspm_dis_mask))) 6235 return; 6236 6237 dev_info(&pdev->dev, "Disabling ASPM %s %s\n", 6238 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ? 6239 "L0s" : "", 6240 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ? 6241 "L1" : ""); 6242 6243 #ifdef CONFIG_PCIEASPM 6244 pci_disable_link_state_locked(pdev, state); 6245 6246 /* Double-check ASPM control. If not disabled by the above, the 6247 * BIOS is preventing that from happening (or CONFIG_PCIEASPM is 6248 * not enabled); override by writing PCI config space directly. 6249 */ 6250 pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc); 6251 pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC; 6252 6253 if (!(aspm_dis_mask & pdev_aspmc)) 6254 return; 6255 #endif 6256 6257 /* Both device and parent should have the same ASPM setting. 6258 * Disable ASPM in downstream component first and then upstream. 6259 */ 6260 pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask); 6261 6262 if (parent) 6263 pcie_capability_clear_word(parent, PCI_EXP_LNKCTL, 6264 aspm_dis_mask); 6265 } 6266 6267 #ifdef CONFIG_PM 6268 static int __e1000_resume(struct pci_dev *pdev) 6269 { 6270 struct net_device *netdev = pci_get_drvdata(pdev); 6271 struct e1000_adapter *adapter = netdev_priv(netdev); 6272 struct e1000_hw *hw = &adapter->hw; 6273 u16 aspm_disable_flag = 0; 6274 6275 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S) 6276 aspm_disable_flag = PCIE_LINK_STATE_L0S; 6277 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1) 6278 aspm_disable_flag |= PCIE_LINK_STATE_L1; 6279 if (aspm_disable_flag) 6280 e1000e_disable_aspm(pdev, aspm_disable_flag); 6281 6282 pci_set_master(pdev); 6283 6284 if (hw->mac.type >= e1000_pch2lan) 6285 e1000_resume_workarounds_pchlan(&adapter->hw); 6286 6287 e1000e_power_up_phy(adapter); 6288 6289 /* report the system wakeup cause from S3/S4 */ 6290 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) { 6291 u16 phy_data; 6292 6293 e1e_rphy(&adapter->hw, BM_WUS, &phy_data); 6294 if (phy_data) { 6295 e_info("PHY Wakeup cause - %s\n", 6296 phy_data & E1000_WUS_EX ? "Unicast Packet" : 6297 phy_data & E1000_WUS_MC ? "Multicast Packet" : 6298 phy_data & E1000_WUS_BC ? "Broadcast Packet" : 6299 phy_data & E1000_WUS_MAG ? "Magic Packet" : 6300 phy_data & E1000_WUS_LNKC ? 6301 "Link Status Change" : "other"); 6302 } 6303 e1e_wphy(&adapter->hw, BM_WUS, ~0); 6304 } else { 6305 u32 wus = er32(WUS); 6306 6307 if (wus) { 6308 e_info("MAC Wakeup cause - %s\n", 6309 wus & E1000_WUS_EX ? "Unicast Packet" : 6310 wus & E1000_WUS_MC ? "Multicast Packet" : 6311 wus & E1000_WUS_BC ? "Broadcast Packet" : 6312 wus & E1000_WUS_MAG ? "Magic Packet" : 6313 wus & E1000_WUS_LNKC ? "Link Status Change" : 6314 "other"); 6315 } 6316 ew32(WUS, ~0); 6317 } 6318 6319 e1000e_reset(adapter); 6320 6321 e1000_init_manageability_pt(adapter); 6322 6323 /* If the controller has AMT, do not set DRV_LOAD until the interface 6324 * is up. For all other cases, let the f/w know that the h/w is now 6325 * under the control of the driver. 6326 */ 6327 if (!(adapter->flags & FLAG_HAS_AMT)) 6328 e1000e_get_hw_control(adapter); 6329 6330 return 0; 6331 } 6332 6333 #ifdef CONFIG_PM_SLEEP 6334 static int e1000e_pm_thaw(struct device *dev) 6335 { 6336 struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev)); 6337 struct e1000_adapter *adapter = netdev_priv(netdev); 6338 6339 e1000e_set_interrupt_capability(adapter); 6340 if (netif_running(netdev)) { 6341 u32 err = e1000_request_irq(adapter); 6342 6343 if (err) 6344 return err; 6345 6346 e1000e_up(adapter); 6347 } 6348 6349 netif_device_attach(netdev); 6350 6351 return 0; 6352 } 6353 6354 static int e1000e_pm_suspend(struct device *dev) 6355 { 6356 struct pci_dev *pdev = to_pci_dev(dev); 6357 6358 e1000e_flush_lpic(pdev); 6359 6360 e1000e_pm_freeze(dev); 6361 6362 return __e1000_shutdown(pdev, false); 6363 } 6364 6365 static int e1000e_pm_resume(struct device *dev) 6366 { 6367 struct pci_dev *pdev = to_pci_dev(dev); 6368 int rc; 6369 6370 rc = __e1000_resume(pdev); 6371 if (rc) 6372 return rc; 6373 6374 return e1000e_pm_thaw(dev); 6375 } 6376 #endif /* CONFIG_PM_SLEEP */ 6377 6378 #ifdef CONFIG_PM_RUNTIME 6379 static int e1000e_pm_runtime_idle(struct device *dev) 6380 { 6381 struct pci_dev *pdev = to_pci_dev(dev); 6382 struct net_device *netdev = pci_get_drvdata(pdev); 6383 struct e1000_adapter *adapter = netdev_priv(netdev); 6384 u16 eee_lp; 6385 6386 eee_lp = adapter->hw.dev_spec.ich8lan.eee_lp_ability; 6387 6388 if (!e1000e_has_link(adapter)) { 6389 adapter->hw.dev_spec.ich8lan.eee_lp_ability = eee_lp; 6390 pm_schedule_suspend(dev, 5 * MSEC_PER_SEC); 6391 } 6392 6393 return -EBUSY; 6394 } 6395 6396 static int e1000e_pm_runtime_resume(struct device *dev) 6397 { 6398 struct pci_dev *pdev = to_pci_dev(dev); 6399 struct net_device *netdev = pci_get_drvdata(pdev); 6400 struct e1000_adapter *adapter = netdev_priv(netdev); 6401 int rc; 6402 6403 rc = __e1000_resume(pdev); 6404 if (rc) 6405 return rc; 6406 6407 if (netdev->flags & IFF_UP) 6408 rc = e1000e_up(adapter); 6409 6410 return rc; 6411 } 6412 6413 static int e1000e_pm_runtime_suspend(struct device *dev) 6414 { 6415 struct pci_dev *pdev = to_pci_dev(dev); 6416 struct net_device *netdev = pci_get_drvdata(pdev); 6417 struct e1000_adapter *adapter = netdev_priv(netdev); 6418 6419 if (netdev->flags & IFF_UP) { 6420 int count = E1000_CHECK_RESET_COUNT; 6421 6422 while (test_bit(__E1000_RESETTING, &adapter->state) && count--) 6423 usleep_range(10000, 20000); 6424 6425 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state)); 6426 6427 /* Down the device without resetting the hardware */ 6428 e1000e_down(adapter, false); 6429 } 6430 6431 if (__e1000_shutdown(pdev, true)) { 6432 e1000e_pm_runtime_resume(dev); 6433 return -EBUSY; 6434 } 6435 6436 return 0; 6437 } 6438 #endif /* CONFIG_PM_RUNTIME */ 6439 #endif /* CONFIG_PM */ 6440 6441 static void e1000_shutdown(struct pci_dev *pdev) 6442 { 6443 e1000e_flush_lpic(pdev); 6444 6445 e1000e_pm_freeze(&pdev->dev); 6446 6447 __e1000_shutdown(pdev, false); 6448 } 6449 6450 #ifdef CONFIG_NET_POLL_CONTROLLER 6451 6452 static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data) 6453 { 6454 struct net_device *netdev = data; 6455 struct e1000_adapter *adapter = netdev_priv(netdev); 6456 6457 if (adapter->msix_entries) { 6458 int vector, msix_irq; 6459 6460 vector = 0; 6461 msix_irq = adapter->msix_entries[vector].vector; 6462 disable_irq(msix_irq); 6463 e1000_intr_msix_rx(msix_irq, netdev); 6464 enable_irq(msix_irq); 6465 6466 vector++; 6467 msix_irq = adapter->msix_entries[vector].vector; 6468 disable_irq(msix_irq); 6469 e1000_intr_msix_tx(msix_irq, netdev); 6470 enable_irq(msix_irq); 6471 6472 vector++; 6473 msix_irq = adapter->msix_entries[vector].vector; 6474 disable_irq(msix_irq); 6475 e1000_msix_other(msix_irq, netdev); 6476 enable_irq(msix_irq); 6477 } 6478 6479 return IRQ_HANDLED; 6480 } 6481 6482 /** 6483 * e1000_netpoll 6484 * @netdev: network interface device structure 6485 * 6486 * Polling 'interrupt' - used by things like netconsole to send skbs 6487 * without having to re-enable interrupts. It's not called while 6488 * the interrupt routine is executing. 6489 */ 6490 static void e1000_netpoll(struct net_device *netdev) 6491 { 6492 struct e1000_adapter *adapter = netdev_priv(netdev); 6493 6494 switch (adapter->int_mode) { 6495 case E1000E_INT_MODE_MSIX: 6496 e1000_intr_msix(adapter->pdev->irq, netdev); 6497 break; 6498 case E1000E_INT_MODE_MSI: 6499 disable_irq(adapter->pdev->irq); 6500 e1000_intr_msi(adapter->pdev->irq, netdev); 6501 enable_irq(adapter->pdev->irq); 6502 break; 6503 default: /* E1000E_INT_MODE_LEGACY */ 6504 disable_irq(adapter->pdev->irq); 6505 e1000_intr(adapter->pdev->irq, netdev); 6506 enable_irq(adapter->pdev->irq); 6507 break; 6508 } 6509 } 6510 #endif 6511 6512 /** 6513 * e1000_io_error_detected - called when PCI error is detected 6514 * @pdev: Pointer to PCI device 6515 * @state: The current pci connection state 6516 * 6517 * This function is called after a PCI bus error affecting 6518 * this device has been detected. 6519 */ 6520 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, 6521 pci_channel_state_t state) 6522 { 6523 struct net_device *netdev = pci_get_drvdata(pdev); 6524 struct e1000_adapter *adapter = netdev_priv(netdev); 6525 6526 netif_device_detach(netdev); 6527 6528 if (state == pci_channel_io_perm_failure) 6529 return PCI_ERS_RESULT_DISCONNECT; 6530 6531 if (netif_running(netdev)) 6532 e1000e_down(adapter, true); 6533 pci_disable_device(pdev); 6534 6535 /* Request a slot slot reset. */ 6536 return PCI_ERS_RESULT_NEED_RESET; 6537 } 6538 6539 /** 6540 * e1000_io_slot_reset - called after the pci bus has been reset. 6541 * @pdev: Pointer to PCI device 6542 * 6543 * Restart the card from scratch, as if from a cold-boot. Implementation 6544 * resembles the first-half of the e1000e_pm_resume routine. 6545 */ 6546 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev) 6547 { 6548 struct net_device *netdev = pci_get_drvdata(pdev); 6549 struct e1000_adapter *adapter = netdev_priv(netdev); 6550 struct e1000_hw *hw = &adapter->hw; 6551 u16 aspm_disable_flag = 0; 6552 int err; 6553 pci_ers_result_t result; 6554 6555 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S) 6556 aspm_disable_flag = PCIE_LINK_STATE_L0S; 6557 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1) 6558 aspm_disable_flag |= PCIE_LINK_STATE_L1; 6559 if (aspm_disable_flag) 6560 e1000e_disable_aspm(pdev, aspm_disable_flag); 6561 6562 err = pci_enable_device_mem(pdev); 6563 if (err) { 6564 dev_err(&pdev->dev, 6565 "Cannot re-enable PCI device after reset.\n"); 6566 result = PCI_ERS_RESULT_DISCONNECT; 6567 } else { 6568 pdev->state_saved = true; 6569 pci_restore_state(pdev); 6570 pci_set_master(pdev); 6571 6572 pci_enable_wake(pdev, PCI_D3hot, 0); 6573 pci_enable_wake(pdev, PCI_D3cold, 0); 6574 6575 e1000e_reset(adapter); 6576 ew32(WUS, ~0); 6577 result = PCI_ERS_RESULT_RECOVERED; 6578 } 6579 6580 pci_cleanup_aer_uncorrect_error_status(pdev); 6581 6582 return result; 6583 } 6584 6585 /** 6586 * e1000_io_resume - called when traffic can start flowing again. 6587 * @pdev: Pointer to PCI device 6588 * 6589 * This callback is called when the error recovery driver tells us that 6590 * its OK to resume normal operation. Implementation resembles the 6591 * second-half of the e1000e_pm_resume routine. 6592 */ 6593 static void e1000_io_resume(struct pci_dev *pdev) 6594 { 6595 struct net_device *netdev = pci_get_drvdata(pdev); 6596 struct e1000_adapter *adapter = netdev_priv(netdev); 6597 6598 e1000_init_manageability_pt(adapter); 6599 6600 if (netif_running(netdev)) { 6601 if (e1000e_up(adapter)) { 6602 dev_err(&pdev->dev, 6603 "can't bring device back up after reset\n"); 6604 return; 6605 } 6606 } 6607 6608 netif_device_attach(netdev); 6609 6610 /* If the controller has AMT, do not set DRV_LOAD until the interface 6611 * is up. For all other cases, let the f/w know that the h/w is now 6612 * under the control of the driver. 6613 */ 6614 if (!(adapter->flags & FLAG_HAS_AMT)) 6615 e1000e_get_hw_control(adapter); 6616 } 6617 6618 static void e1000_print_device_info(struct e1000_adapter *adapter) 6619 { 6620 struct e1000_hw *hw = &adapter->hw; 6621 struct net_device *netdev = adapter->netdev; 6622 u32 ret_val; 6623 u8 pba_str[E1000_PBANUM_LENGTH]; 6624 6625 /* print bus type/speed/width info */ 6626 e_info("(PCI Express:2.5GT/s:%s) %pM\n", 6627 /* bus width */ 6628 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" : 6629 "Width x1"), 6630 /* MAC address */ 6631 netdev->dev_addr); 6632 e_info("Intel(R) PRO/%s Network Connection\n", 6633 (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000"); 6634 ret_val = e1000_read_pba_string_generic(hw, pba_str, 6635 E1000_PBANUM_LENGTH); 6636 if (ret_val) 6637 strlcpy((char *)pba_str, "Unknown", sizeof(pba_str)); 6638 e_info("MAC: %d, PHY: %d, PBA No: %s\n", 6639 hw->mac.type, hw->phy.type, pba_str); 6640 } 6641 6642 static void e1000_eeprom_checks(struct e1000_adapter *adapter) 6643 { 6644 struct e1000_hw *hw = &adapter->hw; 6645 int ret_val; 6646 u16 buf = 0; 6647 6648 if (hw->mac.type != e1000_82573) 6649 return; 6650 6651 ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf); 6652 le16_to_cpus(&buf); 6653 if (!ret_val && (!(buf & (1 << 0)))) { 6654 /* Deep Smart Power Down (DSPD) */ 6655 dev_warn(&adapter->pdev->dev, 6656 "Warning: detected DSPD enabled in EEPROM\n"); 6657 } 6658 } 6659 6660 static int e1000_set_features(struct net_device *netdev, 6661 netdev_features_t features) 6662 { 6663 struct e1000_adapter *adapter = netdev_priv(netdev); 6664 netdev_features_t changed = features ^ netdev->features; 6665 6666 if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) 6667 adapter->flags |= FLAG_TSO_FORCE; 6668 6669 if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX | 6670 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS | 6671 NETIF_F_RXALL))) 6672 return 0; 6673 6674 if (changed & NETIF_F_RXFCS) { 6675 if (features & NETIF_F_RXFCS) { 6676 adapter->flags2 &= ~FLAG2_CRC_STRIPPING; 6677 } else { 6678 /* We need to take it back to defaults, which might mean 6679 * stripping is still disabled at the adapter level. 6680 */ 6681 if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING) 6682 adapter->flags2 |= FLAG2_CRC_STRIPPING; 6683 else 6684 adapter->flags2 &= ~FLAG2_CRC_STRIPPING; 6685 } 6686 } 6687 6688 netdev->features = features; 6689 6690 if (netif_running(netdev)) 6691 e1000e_reinit_locked(adapter); 6692 else 6693 e1000e_reset(adapter); 6694 6695 return 0; 6696 } 6697 6698 static const struct net_device_ops e1000e_netdev_ops = { 6699 .ndo_open = e1000_open, 6700 .ndo_stop = e1000_close, 6701 .ndo_start_xmit = e1000_xmit_frame, 6702 .ndo_get_stats64 = e1000e_get_stats64, 6703 .ndo_set_rx_mode = e1000e_set_rx_mode, 6704 .ndo_set_mac_address = e1000_set_mac, 6705 .ndo_change_mtu = e1000_change_mtu, 6706 .ndo_do_ioctl = e1000_ioctl, 6707 .ndo_tx_timeout = e1000_tx_timeout, 6708 .ndo_validate_addr = eth_validate_addr, 6709 6710 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid, 6711 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid, 6712 #ifdef CONFIG_NET_POLL_CONTROLLER 6713 .ndo_poll_controller = e1000_netpoll, 6714 #endif 6715 .ndo_set_features = e1000_set_features, 6716 }; 6717 6718 /** 6719 * e1000_probe - Device Initialization Routine 6720 * @pdev: PCI device information struct 6721 * @ent: entry in e1000_pci_tbl 6722 * 6723 * Returns 0 on success, negative on failure 6724 * 6725 * e1000_probe initializes an adapter identified by a pci_dev structure. 6726 * The OS initialization, configuring of the adapter private structure, 6727 * and a hardware reset occur. 6728 **/ 6729 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 6730 { 6731 struct net_device *netdev; 6732 struct e1000_adapter *adapter; 6733 struct e1000_hw *hw; 6734 const struct e1000_info *ei = e1000_info_tbl[ent->driver_data]; 6735 resource_size_t mmio_start, mmio_len; 6736 resource_size_t flash_start, flash_len; 6737 static int cards_found; 6738 u16 aspm_disable_flag = 0; 6739 int bars, i, err, pci_using_dac; 6740 u16 eeprom_data = 0; 6741 u16 eeprom_apme_mask = E1000_EEPROM_APME; 6742 s32 rval = 0; 6743 6744 if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S) 6745 aspm_disable_flag = PCIE_LINK_STATE_L0S; 6746 if (ei->flags2 & FLAG2_DISABLE_ASPM_L1) 6747 aspm_disable_flag |= PCIE_LINK_STATE_L1; 6748 if (aspm_disable_flag) 6749 e1000e_disable_aspm(pdev, aspm_disable_flag); 6750 6751 err = pci_enable_device_mem(pdev); 6752 if (err) 6753 return err; 6754 6755 pci_using_dac = 0; 6756 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 6757 if (!err) { 6758 pci_using_dac = 1; 6759 } else { 6760 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 6761 if (err) { 6762 dev_err(&pdev->dev, 6763 "No usable DMA configuration, aborting\n"); 6764 goto err_dma; 6765 } 6766 } 6767 6768 bars = pci_select_bars(pdev, IORESOURCE_MEM); 6769 err = pci_request_selected_regions_exclusive(pdev, bars, 6770 e1000e_driver_name); 6771 if (err) 6772 goto err_pci_reg; 6773 6774 /* AER (Advanced Error Reporting) hooks */ 6775 pci_enable_pcie_error_reporting(pdev); 6776 6777 pci_set_master(pdev); 6778 /* PCI config space info */ 6779 err = pci_save_state(pdev); 6780 if (err) 6781 goto err_alloc_etherdev; 6782 6783 err = -ENOMEM; 6784 netdev = alloc_etherdev(sizeof(struct e1000_adapter)); 6785 if (!netdev) 6786 goto err_alloc_etherdev; 6787 6788 SET_NETDEV_DEV(netdev, &pdev->dev); 6789 6790 netdev->irq = pdev->irq; 6791 6792 pci_set_drvdata(pdev, netdev); 6793 adapter = netdev_priv(netdev); 6794 hw = &adapter->hw; 6795 adapter->netdev = netdev; 6796 adapter->pdev = pdev; 6797 adapter->ei = ei; 6798 adapter->pba = ei->pba; 6799 adapter->flags = ei->flags; 6800 adapter->flags2 = ei->flags2; 6801 adapter->hw.adapter = adapter; 6802 adapter->hw.mac.type = ei->mac; 6803 adapter->max_hw_frame_size = ei->max_hw_frame_size; 6804 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 6805 6806 mmio_start = pci_resource_start(pdev, 0); 6807 mmio_len = pci_resource_len(pdev, 0); 6808 6809 err = -EIO; 6810 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len); 6811 if (!adapter->hw.hw_addr) 6812 goto err_ioremap; 6813 6814 if ((adapter->flags & FLAG_HAS_FLASH) && 6815 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) { 6816 flash_start = pci_resource_start(pdev, 1); 6817 flash_len = pci_resource_len(pdev, 1); 6818 adapter->hw.flash_address = ioremap(flash_start, flash_len); 6819 if (!adapter->hw.flash_address) 6820 goto err_flashmap; 6821 } 6822 6823 /* Set default EEE advertisement */ 6824 if (adapter->flags2 & FLAG2_HAS_EEE) 6825 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T; 6826 6827 /* construct the net_device struct */ 6828 netdev->netdev_ops = &e1000e_netdev_ops; 6829 e1000e_set_ethtool_ops(netdev); 6830 netdev->watchdog_timeo = 5 * HZ; 6831 netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64); 6832 strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name)); 6833 6834 netdev->mem_start = mmio_start; 6835 netdev->mem_end = mmio_start + mmio_len; 6836 6837 adapter->bd_number = cards_found++; 6838 6839 e1000e_check_options(adapter); 6840 6841 /* setup adapter struct */ 6842 err = e1000_sw_init(adapter); 6843 if (err) 6844 goto err_sw_init; 6845 6846 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops)); 6847 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops)); 6848 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops)); 6849 6850 err = ei->get_variants(adapter); 6851 if (err) 6852 goto err_hw_init; 6853 6854 if ((adapter->flags & FLAG_IS_ICH) && 6855 (adapter->flags & FLAG_READ_ONLY_NVM)) 6856 e1000e_write_protect_nvm_ich8lan(&adapter->hw); 6857 6858 hw->mac.ops.get_bus_info(&adapter->hw); 6859 6860 adapter->hw.phy.autoneg_wait_to_complete = 0; 6861 6862 /* Copper options */ 6863 if (adapter->hw.phy.media_type == e1000_media_type_copper) { 6864 adapter->hw.phy.mdix = AUTO_ALL_MODES; 6865 adapter->hw.phy.disable_polarity_correction = 0; 6866 adapter->hw.phy.ms_type = e1000_ms_hw_default; 6867 } 6868 6869 if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw)) 6870 dev_info(&pdev->dev, 6871 "PHY reset is blocked due to SOL/IDER session.\n"); 6872 6873 /* Set initial default active device features */ 6874 netdev->features = (NETIF_F_SG | 6875 NETIF_F_HW_VLAN_CTAG_RX | 6876 NETIF_F_HW_VLAN_CTAG_TX | 6877 NETIF_F_TSO | 6878 NETIF_F_TSO6 | 6879 NETIF_F_RXHASH | 6880 NETIF_F_RXCSUM | 6881 NETIF_F_HW_CSUM); 6882 6883 /* Set user-changeable features (subset of all device features) */ 6884 netdev->hw_features = netdev->features; 6885 netdev->hw_features |= NETIF_F_RXFCS; 6886 netdev->priv_flags |= IFF_SUPP_NOFCS; 6887 netdev->hw_features |= NETIF_F_RXALL; 6888 6889 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) 6890 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 6891 6892 netdev->vlan_features |= (NETIF_F_SG | 6893 NETIF_F_TSO | 6894 NETIF_F_TSO6 | 6895 NETIF_F_HW_CSUM); 6896 6897 netdev->priv_flags |= IFF_UNICAST_FLT; 6898 6899 if (pci_using_dac) { 6900 netdev->features |= NETIF_F_HIGHDMA; 6901 netdev->vlan_features |= NETIF_F_HIGHDMA; 6902 } 6903 6904 if (e1000e_enable_mng_pass_thru(&adapter->hw)) 6905 adapter->flags |= FLAG_MNG_PT_ENABLED; 6906 6907 /* before reading the NVM, reset the controller to 6908 * put the device in a known good starting state 6909 */ 6910 adapter->hw.mac.ops.reset_hw(&adapter->hw); 6911 6912 /* systems with ASPM and others may see the checksum fail on the first 6913 * attempt. Let's give it a few tries 6914 */ 6915 for (i = 0;; i++) { 6916 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0) 6917 break; 6918 if (i == 2) { 6919 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n"); 6920 err = -EIO; 6921 goto err_eeprom; 6922 } 6923 } 6924 6925 e1000_eeprom_checks(adapter); 6926 6927 /* copy the MAC address */ 6928 if (e1000e_read_mac_addr(&adapter->hw)) 6929 dev_err(&pdev->dev, 6930 "NVM Read Error while reading MAC address\n"); 6931 6932 memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len); 6933 6934 if (!is_valid_ether_addr(netdev->dev_addr)) { 6935 dev_err(&pdev->dev, "Invalid MAC Address: %pM\n", 6936 netdev->dev_addr); 6937 err = -EIO; 6938 goto err_eeprom; 6939 } 6940 6941 init_timer(&adapter->watchdog_timer); 6942 adapter->watchdog_timer.function = e1000_watchdog; 6943 adapter->watchdog_timer.data = (unsigned long)adapter; 6944 6945 init_timer(&adapter->phy_info_timer); 6946 adapter->phy_info_timer.function = e1000_update_phy_info; 6947 adapter->phy_info_timer.data = (unsigned long)adapter; 6948 6949 INIT_WORK(&adapter->reset_task, e1000_reset_task); 6950 INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task); 6951 INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround); 6952 INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task); 6953 INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang); 6954 6955 /* Initialize link parameters. User can change them with ethtool */ 6956 adapter->hw.mac.autoneg = 1; 6957 adapter->fc_autoneg = true; 6958 adapter->hw.fc.requested_mode = e1000_fc_default; 6959 adapter->hw.fc.current_mode = e1000_fc_default; 6960 adapter->hw.phy.autoneg_advertised = 0x2f; 6961 6962 /* Initial Wake on LAN setting - If APM wake is enabled in 6963 * the EEPROM, enable the ACPI Magic Packet filter 6964 */ 6965 if (adapter->flags & FLAG_APME_IN_WUC) { 6966 /* APME bit in EEPROM is mapped to WUC.APME */ 6967 eeprom_data = er32(WUC); 6968 eeprom_apme_mask = E1000_WUC_APME; 6969 if ((hw->mac.type > e1000_ich10lan) && 6970 (eeprom_data & E1000_WUC_PHY_WAKE)) 6971 adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP; 6972 } else if (adapter->flags & FLAG_APME_IN_CTRL3) { 6973 if (adapter->flags & FLAG_APME_CHECK_PORT_B && 6974 (adapter->hw.bus.func == 1)) 6975 rval = e1000_read_nvm(&adapter->hw, 6976 NVM_INIT_CONTROL3_PORT_B, 6977 1, &eeprom_data); 6978 else 6979 rval = e1000_read_nvm(&adapter->hw, 6980 NVM_INIT_CONTROL3_PORT_A, 6981 1, &eeprom_data); 6982 } 6983 6984 /* fetch WoL from EEPROM */ 6985 if (rval) 6986 e_dbg("NVM read error getting WoL initial values: %d\n", rval); 6987 else if (eeprom_data & eeprom_apme_mask) 6988 adapter->eeprom_wol |= E1000_WUFC_MAG; 6989 6990 /* now that we have the eeprom settings, apply the special cases 6991 * where the eeprom may be wrong or the board simply won't support 6992 * wake on lan on a particular port 6993 */ 6994 if (!(adapter->flags & FLAG_HAS_WOL)) 6995 adapter->eeprom_wol = 0; 6996 6997 /* initialize the wol settings based on the eeprom settings */ 6998 adapter->wol = adapter->eeprom_wol; 6999 7000 /* make sure adapter isn't asleep if manageability is enabled */ 7001 if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) || 7002 (hw->mac.ops.check_mng_mode(hw))) 7003 device_wakeup_enable(&pdev->dev); 7004 7005 /* save off EEPROM version number */ 7006 rval = e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers); 7007 7008 if (rval) { 7009 e_dbg("NVM read error getting EEPROM version: %d\n", rval); 7010 adapter->eeprom_vers = 0; 7011 } 7012 7013 /* reset the hardware with the new settings */ 7014 e1000e_reset(adapter); 7015 7016 /* If the controller has AMT, do not set DRV_LOAD until the interface 7017 * is up. For all other cases, let the f/w know that the h/w is now 7018 * under the control of the driver. 7019 */ 7020 if (!(adapter->flags & FLAG_HAS_AMT)) 7021 e1000e_get_hw_control(adapter); 7022 7023 strlcpy(netdev->name, "eth%d", sizeof(netdev->name)); 7024 err = register_netdev(netdev); 7025 if (err) 7026 goto err_register; 7027 7028 /* carrier off reporting is important to ethtool even BEFORE open */ 7029 netif_carrier_off(netdev); 7030 7031 /* init PTP hardware clock */ 7032 e1000e_ptp_init(adapter); 7033 7034 e1000_print_device_info(adapter); 7035 7036 if (pci_dev_run_wake(pdev)) 7037 pm_runtime_put_noidle(&pdev->dev); 7038 7039 return 0; 7040 7041 err_register: 7042 if (!(adapter->flags & FLAG_HAS_AMT)) 7043 e1000e_release_hw_control(adapter); 7044 err_eeprom: 7045 if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw)) 7046 e1000_phy_hw_reset(&adapter->hw); 7047 err_hw_init: 7048 kfree(adapter->tx_ring); 7049 kfree(adapter->rx_ring); 7050 err_sw_init: 7051 if (adapter->hw.flash_address) 7052 iounmap(adapter->hw.flash_address); 7053 e1000e_reset_interrupt_capability(adapter); 7054 err_flashmap: 7055 iounmap(adapter->hw.hw_addr); 7056 err_ioremap: 7057 free_netdev(netdev); 7058 err_alloc_etherdev: 7059 pci_release_selected_regions(pdev, 7060 pci_select_bars(pdev, IORESOURCE_MEM)); 7061 err_pci_reg: 7062 err_dma: 7063 pci_disable_device(pdev); 7064 return err; 7065 } 7066 7067 /** 7068 * e1000_remove - Device Removal Routine 7069 * @pdev: PCI device information struct 7070 * 7071 * e1000_remove is called by the PCI subsystem to alert the driver 7072 * that it should release a PCI device. The could be caused by a 7073 * Hot-Plug event, or because the driver is going to be removed from 7074 * memory. 7075 **/ 7076 static void e1000_remove(struct pci_dev *pdev) 7077 { 7078 struct net_device *netdev = pci_get_drvdata(pdev); 7079 struct e1000_adapter *adapter = netdev_priv(netdev); 7080 bool down = test_bit(__E1000_DOWN, &adapter->state); 7081 7082 e1000e_ptp_remove(adapter); 7083 7084 /* The timers may be rescheduled, so explicitly disable them 7085 * from being rescheduled. 7086 */ 7087 if (!down) 7088 set_bit(__E1000_DOWN, &adapter->state); 7089 del_timer_sync(&adapter->watchdog_timer); 7090 del_timer_sync(&adapter->phy_info_timer); 7091 7092 cancel_work_sync(&adapter->reset_task); 7093 cancel_work_sync(&adapter->watchdog_task); 7094 cancel_work_sync(&adapter->downshift_task); 7095 cancel_work_sync(&adapter->update_phy_task); 7096 cancel_work_sync(&adapter->print_hang_task); 7097 7098 if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) { 7099 cancel_work_sync(&adapter->tx_hwtstamp_work); 7100 if (adapter->tx_hwtstamp_skb) { 7101 dev_kfree_skb_any(adapter->tx_hwtstamp_skb); 7102 adapter->tx_hwtstamp_skb = NULL; 7103 } 7104 } 7105 7106 /* Don't lie to e1000_close() down the road. */ 7107 if (!down) 7108 clear_bit(__E1000_DOWN, &adapter->state); 7109 unregister_netdev(netdev); 7110 7111 if (pci_dev_run_wake(pdev)) 7112 pm_runtime_get_noresume(&pdev->dev); 7113 7114 /* Release control of h/w to f/w. If f/w is AMT enabled, this 7115 * would have already happened in close and is redundant. 7116 */ 7117 e1000e_release_hw_control(adapter); 7118 7119 e1000e_reset_interrupt_capability(adapter); 7120 kfree(adapter->tx_ring); 7121 kfree(adapter->rx_ring); 7122 7123 iounmap(adapter->hw.hw_addr); 7124 if (adapter->hw.flash_address) 7125 iounmap(adapter->hw.flash_address); 7126 pci_release_selected_regions(pdev, 7127 pci_select_bars(pdev, IORESOURCE_MEM)); 7128 7129 free_netdev(netdev); 7130 7131 /* AER disable */ 7132 pci_disable_pcie_error_reporting(pdev); 7133 7134 pci_disable_device(pdev); 7135 } 7136 7137 /* PCI Error Recovery (ERS) */ 7138 static const struct pci_error_handlers e1000_err_handler = { 7139 .error_detected = e1000_io_error_detected, 7140 .slot_reset = e1000_io_slot_reset, 7141 .resume = e1000_io_resume, 7142 }; 7143 7144 static const struct pci_device_id e1000_pci_tbl[] = { 7145 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 }, 7146 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 }, 7147 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 }, 7148 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), 7149 board_82571 }, 7150 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 }, 7151 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 }, 7152 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 }, 7153 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 }, 7154 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 }, 7155 7156 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 }, 7157 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 }, 7158 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 }, 7159 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 }, 7160 7161 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 }, 7162 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 }, 7163 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 }, 7164 7165 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 }, 7166 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 }, 7167 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 }, 7168 7169 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT), 7170 board_80003es2lan }, 7171 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT), 7172 board_80003es2lan }, 7173 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT), 7174 board_80003es2lan }, 7175 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT), 7176 board_80003es2lan }, 7177 7178 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan }, 7179 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan }, 7180 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan }, 7181 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan }, 7182 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan }, 7183 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan }, 7184 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan }, 7185 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan }, 7186 7187 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan }, 7188 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan }, 7189 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan }, 7190 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan }, 7191 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan }, 7192 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan }, 7193 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan }, 7194 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan }, 7195 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan }, 7196 7197 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan }, 7198 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan }, 7199 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan }, 7200 7201 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan }, 7202 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan }, 7203 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan }, 7204 7205 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan }, 7206 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan }, 7207 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan }, 7208 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan }, 7209 7210 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan }, 7211 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan }, 7212 7213 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt }, 7214 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt }, 7215 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt }, 7216 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt }, 7217 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt }, 7218 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt }, 7219 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt }, 7220 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt }, 7221 7222 { 0, 0, 0, 0, 0, 0, 0 } /* terminate list */ 7223 }; 7224 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl); 7225 7226 static const struct dev_pm_ops e1000_pm_ops = { 7227 #ifdef CONFIG_PM_SLEEP 7228 .suspend = e1000e_pm_suspend, 7229 .resume = e1000e_pm_resume, 7230 .freeze = e1000e_pm_freeze, 7231 .thaw = e1000e_pm_thaw, 7232 .poweroff = e1000e_pm_suspend, 7233 .restore = e1000e_pm_resume, 7234 #endif 7235 SET_RUNTIME_PM_OPS(e1000e_pm_runtime_suspend, e1000e_pm_runtime_resume, 7236 e1000e_pm_runtime_idle) 7237 }; 7238 7239 /* PCI Device API Driver */ 7240 static struct pci_driver e1000_driver = { 7241 .name = e1000e_driver_name, 7242 .id_table = e1000_pci_tbl, 7243 .probe = e1000_probe, 7244 .remove = e1000_remove, 7245 .driver = { 7246 .pm = &e1000_pm_ops, 7247 }, 7248 .shutdown = e1000_shutdown, 7249 .err_handler = &e1000_err_handler 7250 }; 7251 7252 /** 7253 * e1000_init_module - Driver Registration Routine 7254 * 7255 * e1000_init_module is the first routine called when the driver is 7256 * loaded. All it does is register with the PCI subsystem. 7257 **/ 7258 static int __init e1000_init_module(void) 7259 { 7260 int ret; 7261 7262 pr_info("Intel(R) PRO/1000 Network Driver - %s\n", 7263 e1000e_driver_version); 7264 pr_info("Copyright(c) 1999 - 2014 Intel Corporation.\n"); 7265 ret = pci_register_driver(&e1000_driver); 7266 7267 return ret; 7268 } 7269 module_init(e1000_init_module); 7270 7271 /** 7272 * e1000_exit_module - Driver Exit Cleanup Routine 7273 * 7274 * e1000_exit_module is called just before the driver is removed 7275 * from memory. 7276 **/ 7277 static void __exit e1000_exit_module(void) 7278 { 7279 pci_unregister_driver(&e1000_driver); 7280 } 7281 module_exit(e1000_exit_module); 7282 7283 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 7284 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver"); 7285 MODULE_LICENSE("GPL"); 7286 MODULE_VERSION(DRV_VERSION); 7287 7288 /* netdev.c */ 7289