1 /* Intel PRO/1000 Linux driver
2  * Copyright(c) 1999 - 2015 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * The full GNU General Public License is included in this distribution in
14  * the file called "COPYING".
15  *
16  * Contact Information:
17  * Linux NICS <linux.nics@intel.com>
18  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
20  */
21 
22 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
23 
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/init.h>
27 #include <linux/pci.h>
28 #include <linux/vmalloc.h>
29 #include <linux/pagemap.h>
30 #include <linux/delay.h>
31 #include <linux/netdevice.h>
32 #include <linux/interrupt.h>
33 #include <linux/tcp.h>
34 #include <linux/ipv6.h>
35 #include <linux/slab.h>
36 #include <net/checksum.h>
37 #include <net/ip6_checksum.h>
38 #include <linux/ethtool.h>
39 #include <linux/if_vlan.h>
40 #include <linux/cpu.h>
41 #include <linux/smp.h>
42 #include <linux/pm_qos.h>
43 #include <linux/pm_runtime.h>
44 #include <linux/aer.h>
45 #include <linux/prefetch.h>
46 
47 #include "e1000.h"
48 
49 #define DRV_EXTRAVERSION "-k"
50 
51 #define DRV_VERSION "3.2.6" DRV_EXTRAVERSION
52 char e1000e_driver_name[] = "e1000e";
53 const char e1000e_driver_version[] = DRV_VERSION;
54 
55 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
56 static int debug = -1;
57 module_param(debug, int, 0);
58 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
59 
60 static const struct e1000_info *e1000_info_tbl[] = {
61 	[board_82571]		= &e1000_82571_info,
62 	[board_82572]		= &e1000_82572_info,
63 	[board_82573]		= &e1000_82573_info,
64 	[board_82574]		= &e1000_82574_info,
65 	[board_82583]		= &e1000_82583_info,
66 	[board_80003es2lan]	= &e1000_es2_info,
67 	[board_ich8lan]		= &e1000_ich8_info,
68 	[board_ich9lan]		= &e1000_ich9_info,
69 	[board_ich10lan]	= &e1000_ich10_info,
70 	[board_pchlan]		= &e1000_pch_info,
71 	[board_pch2lan]		= &e1000_pch2_info,
72 	[board_pch_lpt]		= &e1000_pch_lpt_info,
73 	[board_pch_spt]		= &e1000_pch_spt_info,
74 	[board_pch_cnp]		= &e1000_pch_cnp_info,
75 };
76 
77 struct e1000_reg_info {
78 	u32 ofs;
79 	char *name;
80 };
81 
82 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
83 	/* General Registers */
84 	{E1000_CTRL, "CTRL"},
85 	{E1000_STATUS, "STATUS"},
86 	{E1000_CTRL_EXT, "CTRL_EXT"},
87 
88 	/* Interrupt Registers */
89 	{E1000_ICR, "ICR"},
90 
91 	/* Rx Registers */
92 	{E1000_RCTL, "RCTL"},
93 	{E1000_RDLEN(0), "RDLEN"},
94 	{E1000_RDH(0), "RDH"},
95 	{E1000_RDT(0), "RDT"},
96 	{E1000_RDTR, "RDTR"},
97 	{E1000_RXDCTL(0), "RXDCTL"},
98 	{E1000_ERT, "ERT"},
99 	{E1000_RDBAL(0), "RDBAL"},
100 	{E1000_RDBAH(0), "RDBAH"},
101 	{E1000_RDFH, "RDFH"},
102 	{E1000_RDFT, "RDFT"},
103 	{E1000_RDFHS, "RDFHS"},
104 	{E1000_RDFTS, "RDFTS"},
105 	{E1000_RDFPC, "RDFPC"},
106 
107 	/* Tx Registers */
108 	{E1000_TCTL, "TCTL"},
109 	{E1000_TDBAL(0), "TDBAL"},
110 	{E1000_TDBAH(0), "TDBAH"},
111 	{E1000_TDLEN(0), "TDLEN"},
112 	{E1000_TDH(0), "TDH"},
113 	{E1000_TDT(0), "TDT"},
114 	{E1000_TIDV, "TIDV"},
115 	{E1000_TXDCTL(0), "TXDCTL"},
116 	{E1000_TADV, "TADV"},
117 	{E1000_TARC(0), "TARC"},
118 	{E1000_TDFH, "TDFH"},
119 	{E1000_TDFT, "TDFT"},
120 	{E1000_TDFHS, "TDFHS"},
121 	{E1000_TDFTS, "TDFTS"},
122 	{E1000_TDFPC, "TDFPC"},
123 
124 	/* List Terminator */
125 	{0, NULL}
126 };
127 
128 /**
129  * __ew32_prepare - prepare to write to MAC CSR register on certain parts
130  * @hw: pointer to the HW structure
131  *
132  * When updating the MAC CSR registers, the Manageability Engine (ME) could
133  * be accessing the registers at the same time.  Normally, this is handled in
134  * h/w by an arbiter but on some parts there is a bug that acknowledges Host
135  * accesses later than it should which could result in the register to have
136  * an incorrect value.  Workaround this by checking the FWSM register which
137  * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set
138  * and try again a number of times.
139  **/
140 s32 __ew32_prepare(struct e1000_hw *hw)
141 {
142 	s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT;
143 
144 	while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i)
145 		udelay(50);
146 
147 	return i;
148 }
149 
150 void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val)
151 {
152 	if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
153 		__ew32_prepare(hw);
154 
155 	writel(val, hw->hw_addr + reg);
156 }
157 
158 /**
159  * e1000_regdump - register printout routine
160  * @hw: pointer to the HW structure
161  * @reginfo: pointer to the register info table
162  **/
163 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
164 {
165 	int n = 0;
166 	char rname[16];
167 	u32 regs[8];
168 
169 	switch (reginfo->ofs) {
170 	case E1000_RXDCTL(0):
171 		for (n = 0; n < 2; n++)
172 			regs[n] = __er32(hw, E1000_RXDCTL(n));
173 		break;
174 	case E1000_TXDCTL(0):
175 		for (n = 0; n < 2; n++)
176 			regs[n] = __er32(hw, E1000_TXDCTL(n));
177 		break;
178 	case E1000_TARC(0):
179 		for (n = 0; n < 2; n++)
180 			regs[n] = __er32(hw, E1000_TARC(n));
181 		break;
182 	default:
183 		pr_info("%-15s %08x\n",
184 			reginfo->name, __er32(hw, reginfo->ofs));
185 		return;
186 	}
187 
188 	snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
189 	pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
190 }
191 
192 static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
193 				 struct e1000_buffer *bi)
194 {
195 	int i;
196 	struct e1000_ps_page *ps_page;
197 
198 	for (i = 0; i < adapter->rx_ps_pages; i++) {
199 		ps_page = &bi->ps_pages[i];
200 
201 		if (ps_page->page) {
202 			pr_info("packet dump for ps_page %d:\n", i);
203 			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
204 				       16, 1, page_address(ps_page->page),
205 				       PAGE_SIZE, true);
206 		}
207 	}
208 }
209 
210 /**
211  * e1000e_dump - Print registers, Tx-ring and Rx-ring
212  * @adapter: board private structure
213  **/
214 static void e1000e_dump(struct e1000_adapter *adapter)
215 {
216 	struct net_device *netdev = adapter->netdev;
217 	struct e1000_hw *hw = &adapter->hw;
218 	struct e1000_reg_info *reginfo;
219 	struct e1000_ring *tx_ring = adapter->tx_ring;
220 	struct e1000_tx_desc *tx_desc;
221 	struct my_u0 {
222 		__le64 a;
223 		__le64 b;
224 	} *u0;
225 	struct e1000_buffer *buffer_info;
226 	struct e1000_ring *rx_ring = adapter->rx_ring;
227 	union e1000_rx_desc_packet_split *rx_desc_ps;
228 	union e1000_rx_desc_extended *rx_desc;
229 	struct my_u1 {
230 		__le64 a;
231 		__le64 b;
232 		__le64 c;
233 		__le64 d;
234 	} *u1;
235 	u32 staterr;
236 	int i = 0;
237 
238 	if (!netif_msg_hw(adapter))
239 		return;
240 
241 	/* Print netdevice Info */
242 	if (netdev) {
243 		dev_info(&adapter->pdev->dev, "Net device Info\n");
244 		pr_info("Device Name     state            trans_start\n");
245 		pr_info("%-15s %016lX %016lX\n", netdev->name,
246 			netdev->state, dev_trans_start(netdev));
247 	}
248 
249 	/* Print Registers */
250 	dev_info(&adapter->pdev->dev, "Register Dump\n");
251 	pr_info(" Register Name   Value\n");
252 	for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
253 	     reginfo->name; reginfo++) {
254 		e1000_regdump(hw, reginfo);
255 	}
256 
257 	/* Print Tx Ring Summary */
258 	if (!netdev || !netif_running(netdev))
259 		return;
260 
261 	dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
262 	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
263 	buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
264 	pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
265 		0, tx_ring->next_to_use, tx_ring->next_to_clean,
266 		(unsigned long long)buffer_info->dma,
267 		buffer_info->length,
268 		buffer_info->next_to_watch,
269 		(unsigned long long)buffer_info->time_stamp);
270 
271 	/* Print Tx Ring */
272 	if (!netif_msg_tx_done(adapter))
273 		goto rx_ring_summary;
274 
275 	dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
276 
277 	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
278 	 *
279 	 * Legacy Transmit Descriptor
280 	 *   +--------------------------------------------------------------+
281 	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
282 	 *   +--------------------------------------------------------------+
283 	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
284 	 *   +--------------------------------------------------------------+
285 	 *   63       48 47        36 35    32 31     24 23    16 15        0
286 	 *
287 	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
288 	 *   63      48 47    40 39       32 31             16 15    8 7      0
289 	 *   +----------------------------------------------------------------+
290 	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
291 	 *   +----------------------------------------------------------------+
292 	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
293 	 *   +----------------------------------------------------------------+
294 	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
295 	 *
296 	 * Extended Data Descriptor (DTYP=0x1)
297 	 *   +----------------------------------------------------------------+
298 	 * 0 |                     Buffer Address [63:0]                      |
299 	 *   +----------------------------------------------------------------+
300 	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
301 	 *   +----------------------------------------------------------------+
302 	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
303 	 */
304 	pr_info("Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Legacy format\n");
305 	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Context format\n");
306 	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Data format\n");
307 	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
308 		const char *next_desc;
309 		tx_desc = E1000_TX_DESC(*tx_ring, i);
310 		buffer_info = &tx_ring->buffer_info[i];
311 		u0 = (struct my_u0 *)tx_desc;
312 		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
313 			next_desc = " NTC/U";
314 		else if (i == tx_ring->next_to_use)
315 			next_desc = " NTU";
316 		else if (i == tx_ring->next_to_clean)
317 			next_desc = " NTC";
318 		else
319 			next_desc = "";
320 		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p%s\n",
321 			(!(le64_to_cpu(u0->b) & BIT(29)) ? 'l' :
322 			 ((le64_to_cpu(u0->b) & BIT(20)) ? 'd' : 'c')),
323 			i,
324 			(unsigned long long)le64_to_cpu(u0->a),
325 			(unsigned long long)le64_to_cpu(u0->b),
326 			(unsigned long long)buffer_info->dma,
327 			buffer_info->length, buffer_info->next_to_watch,
328 			(unsigned long long)buffer_info->time_stamp,
329 			buffer_info->skb, next_desc);
330 
331 		if (netif_msg_pktdata(adapter) && buffer_info->skb)
332 			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
333 				       16, 1, buffer_info->skb->data,
334 				       buffer_info->skb->len, true);
335 	}
336 
337 	/* Print Rx Ring Summary */
338 rx_ring_summary:
339 	dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
340 	pr_info("Queue [NTU] [NTC]\n");
341 	pr_info(" %5d %5X %5X\n",
342 		0, rx_ring->next_to_use, rx_ring->next_to_clean);
343 
344 	/* Print Rx Ring */
345 	if (!netif_msg_rx_status(adapter))
346 		return;
347 
348 	dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
349 	switch (adapter->rx_ps_pages) {
350 	case 1:
351 	case 2:
352 	case 3:
353 		/* [Extended] Packet Split Receive Descriptor Format
354 		 *
355 		 *    +-----------------------------------------------------+
356 		 *  0 |                Buffer Address 0 [63:0]              |
357 		 *    +-----------------------------------------------------+
358 		 *  8 |                Buffer Address 1 [63:0]              |
359 		 *    +-----------------------------------------------------+
360 		 * 16 |                Buffer Address 2 [63:0]              |
361 		 *    +-----------------------------------------------------+
362 		 * 24 |                Buffer Address 3 [63:0]              |
363 		 *    +-----------------------------------------------------+
364 		 */
365 		pr_info("R  [desc]      [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] [bi->skb] <-- Ext Pkt Split format\n");
366 		/* [Extended] Receive Descriptor (Write-Back) Format
367 		 *
368 		 *   63       48 47    32 31     13 12    8 7    4 3        0
369 		 *   +------------------------------------------------------+
370 		 * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
371 		 *   | Checksum | Ident  |         | Queue |      |  Type   |
372 		 *   +------------------------------------------------------+
373 		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
374 		 *   +------------------------------------------------------+
375 		 *   63       48 47    32 31            20 19               0
376 		 */
377 		pr_info("RWB[desc]      [ck ipid mrqhsh] [vl   l0 ee  es] [ l3  l2  l1 hs] [reserved      ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
378 		for (i = 0; i < rx_ring->count; i++) {
379 			const char *next_desc;
380 			buffer_info = &rx_ring->buffer_info[i];
381 			rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
382 			u1 = (struct my_u1 *)rx_desc_ps;
383 			staterr =
384 			    le32_to_cpu(rx_desc_ps->wb.middle.status_error);
385 
386 			if (i == rx_ring->next_to_use)
387 				next_desc = " NTU";
388 			else if (i == rx_ring->next_to_clean)
389 				next_desc = " NTC";
390 			else
391 				next_desc = "";
392 
393 			if (staterr & E1000_RXD_STAT_DD) {
394 				/* Descriptor Done */
395 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX ---------------- %p%s\n",
396 					"RWB", i,
397 					(unsigned long long)le64_to_cpu(u1->a),
398 					(unsigned long long)le64_to_cpu(u1->b),
399 					(unsigned long long)le64_to_cpu(u1->c),
400 					(unsigned long long)le64_to_cpu(u1->d),
401 					buffer_info->skb, next_desc);
402 			} else {
403 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX %016llX %p%s\n",
404 					"R  ", i,
405 					(unsigned long long)le64_to_cpu(u1->a),
406 					(unsigned long long)le64_to_cpu(u1->b),
407 					(unsigned long long)le64_to_cpu(u1->c),
408 					(unsigned long long)le64_to_cpu(u1->d),
409 					(unsigned long long)buffer_info->dma,
410 					buffer_info->skb, next_desc);
411 
412 				if (netif_msg_pktdata(adapter))
413 					e1000e_dump_ps_pages(adapter,
414 							     buffer_info);
415 			}
416 		}
417 		break;
418 	default:
419 	case 0:
420 		/* Extended Receive Descriptor (Read) Format
421 		 *
422 		 *   +-----------------------------------------------------+
423 		 * 0 |                Buffer Address [63:0]                |
424 		 *   +-----------------------------------------------------+
425 		 * 8 |                      Reserved                       |
426 		 *   +-----------------------------------------------------+
427 		 */
428 		pr_info("R  [desc]      [buf addr 63:0 ] [reserved 63:0 ] [bi->dma       ] [bi->skb] <-- Ext (Read) format\n");
429 		/* Extended Receive Descriptor (Write-Back) Format
430 		 *
431 		 *   63       48 47    32 31    24 23            4 3        0
432 		 *   +------------------------------------------------------+
433 		 *   |     RSS Hash      |        |               |         |
434 		 * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
435 		 *   | Packet   | IP     |        |               |  Type   |
436 		 *   | Checksum | Ident  |        |               |         |
437 		 *   +------------------------------------------------------+
438 		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
439 		 *   +------------------------------------------------------+
440 		 *   63       48 47    32 31            20 19               0
441 		 */
442 		pr_info("RWB[desc]      [cs ipid    mrq] [vt   ln xe  xs] [bi->skb] <-- Ext (Write-Back) format\n");
443 
444 		for (i = 0; i < rx_ring->count; i++) {
445 			const char *next_desc;
446 
447 			buffer_info = &rx_ring->buffer_info[i];
448 			rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
449 			u1 = (struct my_u1 *)rx_desc;
450 			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
451 
452 			if (i == rx_ring->next_to_use)
453 				next_desc = " NTU";
454 			else if (i == rx_ring->next_to_clean)
455 				next_desc = " NTC";
456 			else
457 				next_desc = "";
458 
459 			if (staterr & E1000_RXD_STAT_DD) {
460 				/* Descriptor Done */
461 				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %p%s\n",
462 					"RWB", i,
463 					(unsigned long long)le64_to_cpu(u1->a),
464 					(unsigned long long)le64_to_cpu(u1->b),
465 					buffer_info->skb, next_desc);
466 			} else {
467 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %p%s\n",
468 					"R  ", i,
469 					(unsigned long long)le64_to_cpu(u1->a),
470 					(unsigned long long)le64_to_cpu(u1->b),
471 					(unsigned long long)buffer_info->dma,
472 					buffer_info->skb, next_desc);
473 
474 				if (netif_msg_pktdata(adapter) &&
475 				    buffer_info->skb)
476 					print_hex_dump(KERN_INFO, "",
477 						       DUMP_PREFIX_ADDRESS, 16,
478 						       1,
479 						       buffer_info->skb->data,
480 						       adapter->rx_buffer_len,
481 						       true);
482 			}
483 		}
484 	}
485 }
486 
487 /**
488  * e1000_desc_unused - calculate if we have unused descriptors
489  **/
490 static int e1000_desc_unused(struct e1000_ring *ring)
491 {
492 	if (ring->next_to_clean > ring->next_to_use)
493 		return ring->next_to_clean - ring->next_to_use - 1;
494 
495 	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
496 }
497 
498 /**
499  * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
500  * @adapter: board private structure
501  * @hwtstamps: time stamp structure to update
502  * @systim: unsigned 64bit system time value.
503  *
504  * Convert the system time value stored in the RX/TXSTMP registers into a
505  * hwtstamp which can be used by the upper level time stamping functions.
506  *
507  * The 'systim_lock' spinlock is used to protect the consistency of the
508  * system time value. This is needed because reading the 64 bit time
509  * value involves reading two 32 bit registers. The first read latches the
510  * value.
511  **/
512 static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter,
513 				      struct skb_shared_hwtstamps *hwtstamps,
514 				      u64 systim)
515 {
516 	u64 ns;
517 	unsigned long flags;
518 
519 	spin_lock_irqsave(&adapter->systim_lock, flags);
520 	ns = timecounter_cyc2time(&adapter->tc, systim);
521 	spin_unlock_irqrestore(&adapter->systim_lock, flags);
522 
523 	memset(hwtstamps, 0, sizeof(*hwtstamps));
524 	hwtstamps->hwtstamp = ns_to_ktime(ns);
525 }
526 
527 /**
528  * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
529  * @adapter: board private structure
530  * @status: descriptor extended error and status field
531  * @skb: particular skb to include time stamp
532  *
533  * If the time stamp is valid, convert it into the timecounter ns value
534  * and store that result into the shhwtstamps structure which is passed
535  * up the network stack.
536  **/
537 static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status,
538 			       struct sk_buff *skb)
539 {
540 	struct e1000_hw *hw = &adapter->hw;
541 	u64 rxstmp;
542 
543 	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) ||
544 	    !(status & E1000_RXDEXT_STATERR_TST) ||
545 	    !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
546 		return;
547 
548 	/* The Rx time stamp registers contain the time stamp.  No other
549 	 * received packet will be time stamped until the Rx time stamp
550 	 * registers are read.  Because only one packet can be time stamped
551 	 * at a time, the register values must belong to this packet and
552 	 * therefore none of the other additional attributes need to be
553 	 * compared.
554 	 */
555 	rxstmp = (u64)er32(RXSTMPL);
556 	rxstmp |= (u64)er32(RXSTMPH) << 32;
557 	e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp);
558 
559 	adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP;
560 }
561 
562 /**
563  * e1000_receive_skb - helper function to handle Rx indications
564  * @adapter: board private structure
565  * @staterr: descriptor extended error and status field as written by hardware
566  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
567  * @skb: pointer to sk_buff to be indicated to stack
568  **/
569 static void e1000_receive_skb(struct e1000_adapter *adapter,
570 			      struct net_device *netdev, struct sk_buff *skb,
571 			      u32 staterr, __le16 vlan)
572 {
573 	u16 tag = le16_to_cpu(vlan);
574 
575 	e1000e_rx_hwtstamp(adapter, staterr, skb);
576 
577 	skb->protocol = eth_type_trans(skb, netdev);
578 
579 	if (staterr & E1000_RXD_STAT_VP)
580 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag);
581 
582 	napi_gro_receive(&adapter->napi, skb);
583 }
584 
585 /**
586  * e1000_rx_checksum - Receive Checksum Offload
587  * @adapter: board private structure
588  * @status_err: receive descriptor status and error fields
589  * @csum: receive descriptor csum field
590  * @sk_buff: socket buffer with received data
591  **/
592 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
593 			      struct sk_buff *skb)
594 {
595 	u16 status = (u16)status_err;
596 	u8 errors = (u8)(status_err >> 24);
597 
598 	skb_checksum_none_assert(skb);
599 
600 	/* Rx checksum disabled */
601 	if (!(adapter->netdev->features & NETIF_F_RXCSUM))
602 		return;
603 
604 	/* Ignore Checksum bit is set */
605 	if (status & E1000_RXD_STAT_IXSM)
606 		return;
607 
608 	/* TCP/UDP checksum error bit or IP checksum error bit is set */
609 	if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
610 		/* let the stack verify checksum errors */
611 		adapter->hw_csum_err++;
612 		return;
613 	}
614 
615 	/* TCP/UDP Checksum has not been calculated */
616 	if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
617 		return;
618 
619 	/* It must be a TCP or UDP packet with a valid checksum */
620 	skb->ip_summed = CHECKSUM_UNNECESSARY;
621 	adapter->hw_csum_good++;
622 }
623 
624 static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
625 {
626 	struct e1000_adapter *adapter = rx_ring->adapter;
627 	struct e1000_hw *hw = &adapter->hw;
628 	s32 ret_val = __ew32_prepare(hw);
629 
630 	writel(i, rx_ring->tail);
631 
632 	if (unlikely(!ret_val && (i != readl(rx_ring->tail)))) {
633 		u32 rctl = er32(RCTL);
634 
635 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
636 		e_err("ME firmware caused invalid RDT - resetting\n");
637 		schedule_work(&adapter->reset_task);
638 	}
639 }
640 
641 static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
642 {
643 	struct e1000_adapter *adapter = tx_ring->adapter;
644 	struct e1000_hw *hw = &adapter->hw;
645 	s32 ret_val = __ew32_prepare(hw);
646 
647 	writel(i, tx_ring->tail);
648 
649 	if (unlikely(!ret_val && (i != readl(tx_ring->tail)))) {
650 		u32 tctl = er32(TCTL);
651 
652 		ew32(TCTL, tctl & ~E1000_TCTL_EN);
653 		e_err("ME firmware caused invalid TDT - resetting\n");
654 		schedule_work(&adapter->reset_task);
655 	}
656 }
657 
658 /**
659  * e1000_alloc_rx_buffers - Replace used receive buffers
660  * @rx_ring: Rx descriptor ring
661  **/
662 static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
663 				   int cleaned_count, gfp_t gfp)
664 {
665 	struct e1000_adapter *adapter = rx_ring->adapter;
666 	struct net_device *netdev = adapter->netdev;
667 	struct pci_dev *pdev = adapter->pdev;
668 	union e1000_rx_desc_extended *rx_desc;
669 	struct e1000_buffer *buffer_info;
670 	struct sk_buff *skb;
671 	unsigned int i;
672 	unsigned int bufsz = adapter->rx_buffer_len;
673 
674 	i = rx_ring->next_to_use;
675 	buffer_info = &rx_ring->buffer_info[i];
676 
677 	while (cleaned_count--) {
678 		skb = buffer_info->skb;
679 		if (skb) {
680 			skb_trim(skb, 0);
681 			goto map_skb;
682 		}
683 
684 		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
685 		if (!skb) {
686 			/* Better luck next round */
687 			adapter->alloc_rx_buff_failed++;
688 			break;
689 		}
690 
691 		buffer_info->skb = skb;
692 map_skb:
693 		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
694 						  adapter->rx_buffer_len,
695 						  DMA_FROM_DEVICE);
696 		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
697 			dev_err(&pdev->dev, "Rx DMA map failed\n");
698 			adapter->rx_dma_failed++;
699 			break;
700 		}
701 
702 		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
703 		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
704 
705 		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
706 			/* Force memory writes to complete before letting h/w
707 			 * know there are new descriptors to fetch.  (Only
708 			 * applicable for weak-ordered memory model archs,
709 			 * such as IA-64).
710 			 */
711 			wmb();
712 			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
713 				e1000e_update_rdt_wa(rx_ring, i);
714 			else
715 				writel(i, rx_ring->tail);
716 		}
717 		i++;
718 		if (i == rx_ring->count)
719 			i = 0;
720 		buffer_info = &rx_ring->buffer_info[i];
721 	}
722 
723 	rx_ring->next_to_use = i;
724 }
725 
726 /**
727  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
728  * @rx_ring: Rx descriptor ring
729  **/
730 static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
731 				      int cleaned_count, gfp_t gfp)
732 {
733 	struct e1000_adapter *adapter = rx_ring->adapter;
734 	struct net_device *netdev = adapter->netdev;
735 	struct pci_dev *pdev = adapter->pdev;
736 	union e1000_rx_desc_packet_split *rx_desc;
737 	struct e1000_buffer *buffer_info;
738 	struct e1000_ps_page *ps_page;
739 	struct sk_buff *skb;
740 	unsigned int i, j;
741 
742 	i = rx_ring->next_to_use;
743 	buffer_info = &rx_ring->buffer_info[i];
744 
745 	while (cleaned_count--) {
746 		rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
747 
748 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
749 			ps_page = &buffer_info->ps_pages[j];
750 			if (j >= adapter->rx_ps_pages) {
751 				/* all unused desc entries get hw null ptr */
752 				rx_desc->read.buffer_addr[j + 1] =
753 				    ~cpu_to_le64(0);
754 				continue;
755 			}
756 			if (!ps_page->page) {
757 				ps_page->page = alloc_page(gfp);
758 				if (!ps_page->page) {
759 					adapter->alloc_rx_buff_failed++;
760 					goto no_buffers;
761 				}
762 				ps_page->dma = dma_map_page(&pdev->dev,
763 							    ps_page->page,
764 							    0, PAGE_SIZE,
765 							    DMA_FROM_DEVICE);
766 				if (dma_mapping_error(&pdev->dev,
767 						      ps_page->dma)) {
768 					dev_err(&adapter->pdev->dev,
769 						"Rx DMA page map failed\n");
770 					adapter->rx_dma_failed++;
771 					goto no_buffers;
772 				}
773 			}
774 			/* Refresh the desc even if buffer_addrs
775 			 * didn't change because each write-back
776 			 * erases this info.
777 			 */
778 			rx_desc->read.buffer_addr[j + 1] =
779 			    cpu_to_le64(ps_page->dma);
780 		}
781 
782 		skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0,
783 						  gfp);
784 
785 		if (!skb) {
786 			adapter->alloc_rx_buff_failed++;
787 			break;
788 		}
789 
790 		buffer_info->skb = skb;
791 		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
792 						  adapter->rx_ps_bsize0,
793 						  DMA_FROM_DEVICE);
794 		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
795 			dev_err(&pdev->dev, "Rx DMA map failed\n");
796 			adapter->rx_dma_failed++;
797 			/* cleanup skb */
798 			dev_kfree_skb_any(skb);
799 			buffer_info->skb = NULL;
800 			break;
801 		}
802 
803 		rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
804 
805 		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
806 			/* Force memory writes to complete before letting h/w
807 			 * know there are new descriptors to fetch.  (Only
808 			 * applicable for weak-ordered memory model archs,
809 			 * such as IA-64).
810 			 */
811 			wmb();
812 			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
813 				e1000e_update_rdt_wa(rx_ring, i << 1);
814 			else
815 				writel(i << 1, rx_ring->tail);
816 		}
817 
818 		i++;
819 		if (i == rx_ring->count)
820 			i = 0;
821 		buffer_info = &rx_ring->buffer_info[i];
822 	}
823 
824 no_buffers:
825 	rx_ring->next_to_use = i;
826 }
827 
828 /**
829  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
830  * @rx_ring: Rx descriptor ring
831  * @cleaned_count: number of buffers to allocate this pass
832  **/
833 
834 static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
835 					 int cleaned_count, gfp_t gfp)
836 {
837 	struct e1000_adapter *adapter = rx_ring->adapter;
838 	struct net_device *netdev = adapter->netdev;
839 	struct pci_dev *pdev = adapter->pdev;
840 	union e1000_rx_desc_extended *rx_desc;
841 	struct e1000_buffer *buffer_info;
842 	struct sk_buff *skb;
843 	unsigned int i;
844 	unsigned int bufsz = 256 - 16;	/* for skb_reserve */
845 
846 	i = rx_ring->next_to_use;
847 	buffer_info = &rx_ring->buffer_info[i];
848 
849 	while (cleaned_count--) {
850 		skb = buffer_info->skb;
851 		if (skb) {
852 			skb_trim(skb, 0);
853 			goto check_page;
854 		}
855 
856 		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
857 		if (unlikely(!skb)) {
858 			/* Better luck next round */
859 			adapter->alloc_rx_buff_failed++;
860 			break;
861 		}
862 
863 		buffer_info->skb = skb;
864 check_page:
865 		/* allocate a new page if necessary */
866 		if (!buffer_info->page) {
867 			buffer_info->page = alloc_page(gfp);
868 			if (unlikely(!buffer_info->page)) {
869 				adapter->alloc_rx_buff_failed++;
870 				break;
871 			}
872 		}
873 
874 		if (!buffer_info->dma) {
875 			buffer_info->dma = dma_map_page(&pdev->dev,
876 							buffer_info->page, 0,
877 							PAGE_SIZE,
878 							DMA_FROM_DEVICE);
879 			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
880 				adapter->alloc_rx_buff_failed++;
881 				break;
882 			}
883 		}
884 
885 		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
886 		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
887 
888 		if (unlikely(++i == rx_ring->count))
889 			i = 0;
890 		buffer_info = &rx_ring->buffer_info[i];
891 	}
892 
893 	if (likely(rx_ring->next_to_use != i)) {
894 		rx_ring->next_to_use = i;
895 		if (unlikely(i-- == 0))
896 			i = (rx_ring->count - 1);
897 
898 		/* Force memory writes to complete before letting h/w
899 		 * know there are new descriptors to fetch.  (Only
900 		 * applicable for weak-ordered memory model archs,
901 		 * such as IA-64).
902 		 */
903 		wmb();
904 		if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
905 			e1000e_update_rdt_wa(rx_ring, i);
906 		else
907 			writel(i, rx_ring->tail);
908 	}
909 }
910 
911 static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
912 				 struct sk_buff *skb)
913 {
914 	if (netdev->features & NETIF_F_RXHASH)
915 		skb_set_hash(skb, le32_to_cpu(rss), PKT_HASH_TYPE_L3);
916 }
917 
918 /**
919  * e1000_clean_rx_irq - Send received data up the network stack
920  * @rx_ring: Rx descriptor ring
921  *
922  * the return value indicates whether actual cleaning was done, there
923  * is no guarantee that everything was cleaned
924  **/
925 static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
926 			       int work_to_do)
927 {
928 	struct e1000_adapter *adapter = rx_ring->adapter;
929 	struct net_device *netdev = adapter->netdev;
930 	struct pci_dev *pdev = adapter->pdev;
931 	struct e1000_hw *hw = &adapter->hw;
932 	union e1000_rx_desc_extended *rx_desc, *next_rxd;
933 	struct e1000_buffer *buffer_info, *next_buffer;
934 	u32 length, staterr;
935 	unsigned int i;
936 	int cleaned_count = 0;
937 	bool cleaned = false;
938 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
939 
940 	i = rx_ring->next_to_clean;
941 	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
942 	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
943 	buffer_info = &rx_ring->buffer_info[i];
944 
945 	while (staterr & E1000_RXD_STAT_DD) {
946 		struct sk_buff *skb;
947 
948 		if (*work_done >= work_to_do)
949 			break;
950 		(*work_done)++;
951 		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
952 
953 		skb = buffer_info->skb;
954 		buffer_info->skb = NULL;
955 
956 		prefetch(skb->data - NET_IP_ALIGN);
957 
958 		i++;
959 		if (i == rx_ring->count)
960 			i = 0;
961 		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
962 		prefetch(next_rxd);
963 
964 		next_buffer = &rx_ring->buffer_info[i];
965 
966 		cleaned = true;
967 		cleaned_count++;
968 		dma_unmap_single(&pdev->dev, buffer_info->dma,
969 				 adapter->rx_buffer_len, DMA_FROM_DEVICE);
970 		buffer_info->dma = 0;
971 
972 		length = le16_to_cpu(rx_desc->wb.upper.length);
973 
974 		/* !EOP means multiple descriptors were used to store a single
975 		 * packet, if that's the case we need to toss it.  In fact, we
976 		 * need to toss every packet with the EOP bit clear and the
977 		 * next frame that _does_ have the EOP bit set, as it is by
978 		 * definition only a frame fragment
979 		 */
980 		if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
981 			adapter->flags2 |= FLAG2_IS_DISCARDING;
982 
983 		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
984 			/* All receives must fit into a single buffer */
985 			e_dbg("Receive packet consumed multiple buffers\n");
986 			/* recycle */
987 			buffer_info->skb = skb;
988 			if (staterr & E1000_RXD_STAT_EOP)
989 				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
990 			goto next_desc;
991 		}
992 
993 		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
994 			     !(netdev->features & NETIF_F_RXALL))) {
995 			/* recycle */
996 			buffer_info->skb = skb;
997 			goto next_desc;
998 		}
999 
1000 		/* adjust length to remove Ethernet CRC */
1001 		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1002 			/* If configured to store CRC, don't subtract FCS,
1003 			 * but keep the FCS bytes out of the total_rx_bytes
1004 			 * counter
1005 			 */
1006 			if (netdev->features & NETIF_F_RXFCS)
1007 				total_rx_bytes -= 4;
1008 			else
1009 				length -= 4;
1010 		}
1011 
1012 		total_rx_bytes += length;
1013 		total_rx_packets++;
1014 
1015 		/* code added for copybreak, this should improve
1016 		 * performance for small packets with large amounts
1017 		 * of reassembly being done in the stack
1018 		 */
1019 		if (length < copybreak) {
1020 			struct sk_buff *new_skb =
1021 				napi_alloc_skb(&adapter->napi, length);
1022 			if (new_skb) {
1023 				skb_copy_to_linear_data_offset(new_skb,
1024 							       -NET_IP_ALIGN,
1025 							       (skb->data -
1026 								NET_IP_ALIGN),
1027 							       (length +
1028 								NET_IP_ALIGN));
1029 				/* save the skb in buffer_info as good */
1030 				buffer_info->skb = skb;
1031 				skb = new_skb;
1032 			}
1033 			/* else just continue with the old one */
1034 		}
1035 		/* end copybreak code */
1036 		skb_put(skb, length);
1037 
1038 		/* Receive Checksum Offload */
1039 		e1000_rx_checksum(adapter, staterr, skb);
1040 
1041 		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1042 
1043 		e1000_receive_skb(adapter, netdev, skb, staterr,
1044 				  rx_desc->wb.upper.vlan);
1045 
1046 next_desc:
1047 		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1048 
1049 		/* return some buffers to hardware, one at a time is too slow */
1050 		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1051 			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1052 					      GFP_ATOMIC);
1053 			cleaned_count = 0;
1054 		}
1055 
1056 		/* use prefetched values */
1057 		rx_desc = next_rxd;
1058 		buffer_info = next_buffer;
1059 
1060 		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1061 	}
1062 	rx_ring->next_to_clean = i;
1063 
1064 	cleaned_count = e1000_desc_unused(rx_ring);
1065 	if (cleaned_count)
1066 		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1067 
1068 	adapter->total_rx_bytes += total_rx_bytes;
1069 	adapter->total_rx_packets += total_rx_packets;
1070 	return cleaned;
1071 }
1072 
1073 static void e1000_put_txbuf(struct e1000_ring *tx_ring,
1074 			    struct e1000_buffer *buffer_info)
1075 {
1076 	struct e1000_adapter *adapter = tx_ring->adapter;
1077 
1078 	if (buffer_info->dma) {
1079 		if (buffer_info->mapped_as_page)
1080 			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1081 				       buffer_info->length, DMA_TO_DEVICE);
1082 		else
1083 			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1084 					 buffer_info->length, DMA_TO_DEVICE);
1085 		buffer_info->dma = 0;
1086 	}
1087 	if (buffer_info->skb) {
1088 		dev_kfree_skb_any(buffer_info->skb);
1089 		buffer_info->skb = NULL;
1090 	}
1091 	buffer_info->time_stamp = 0;
1092 }
1093 
1094 static void e1000_print_hw_hang(struct work_struct *work)
1095 {
1096 	struct e1000_adapter *adapter = container_of(work,
1097 						     struct e1000_adapter,
1098 						     print_hang_task);
1099 	struct net_device *netdev = adapter->netdev;
1100 	struct e1000_ring *tx_ring = adapter->tx_ring;
1101 	unsigned int i = tx_ring->next_to_clean;
1102 	unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1103 	struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1104 	struct e1000_hw *hw = &adapter->hw;
1105 	u16 phy_status, phy_1000t_status, phy_ext_status;
1106 	u16 pci_status;
1107 
1108 	if (test_bit(__E1000_DOWN, &adapter->state))
1109 		return;
1110 
1111 	if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) {
1112 		/* May be block on write-back, flush and detect again
1113 		 * flush pending descriptor writebacks to memory
1114 		 */
1115 		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1116 		/* execute the writes immediately */
1117 		e1e_flush();
1118 		/* Due to rare timing issues, write to TIDV again to ensure
1119 		 * the write is successful
1120 		 */
1121 		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1122 		/* execute the writes immediately */
1123 		e1e_flush();
1124 		adapter->tx_hang_recheck = true;
1125 		return;
1126 	}
1127 	adapter->tx_hang_recheck = false;
1128 
1129 	if (er32(TDH(0)) == er32(TDT(0))) {
1130 		e_dbg("false hang detected, ignoring\n");
1131 		return;
1132 	}
1133 
1134 	/* Real hang detected */
1135 	netif_stop_queue(netdev);
1136 
1137 	e1e_rphy(hw, MII_BMSR, &phy_status);
1138 	e1e_rphy(hw, MII_STAT1000, &phy_1000t_status);
1139 	e1e_rphy(hw, MII_ESTATUS, &phy_ext_status);
1140 
1141 	pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1142 
1143 	/* detected Hardware unit hang */
1144 	e_err("Detected Hardware Unit Hang:\n"
1145 	      "  TDH                  <%x>\n"
1146 	      "  TDT                  <%x>\n"
1147 	      "  next_to_use          <%x>\n"
1148 	      "  next_to_clean        <%x>\n"
1149 	      "buffer_info[next_to_clean]:\n"
1150 	      "  time_stamp           <%lx>\n"
1151 	      "  next_to_watch        <%x>\n"
1152 	      "  jiffies              <%lx>\n"
1153 	      "  next_to_watch.status <%x>\n"
1154 	      "MAC Status             <%x>\n"
1155 	      "PHY Status             <%x>\n"
1156 	      "PHY 1000BASE-T Status  <%x>\n"
1157 	      "PHY Extended Status    <%x>\n"
1158 	      "PCI Status             <%x>\n",
1159 	      readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use,
1160 	      tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp,
1161 	      eop, jiffies, eop_desc->upper.fields.status, er32(STATUS),
1162 	      phy_status, phy_1000t_status, phy_ext_status, pci_status);
1163 
1164 	e1000e_dump(adapter);
1165 
1166 	/* Suggest workaround for known h/w issue */
1167 	if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1168 		e_err("Try turning off Tx pause (flow control) via ethtool\n");
1169 }
1170 
1171 /**
1172  * e1000e_tx_hwtstamp_work - check for Tx time stamp
1173  * @work: pointer to work struct
1174  *
1175  * This work function polls the TSYNCTXCTL valid bit to determine when a
1176  * timestamp has been taken for the current stored skb.  The timestamp must
1177  * be for this skb because only one such packet is allowed in the queue.
1178  */
1179 static void e1000e_tx_hwtstamp_work(struct work_struct *work)
1180 {
1181 	struct e1000_adapter *adapter = container_of(work, struct e1000_adapter,
1182 						     tx_hwtstamp_work);
1183 	struct e1000_hw *hw = &adapter->hw;
1184 
1185 	if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) {
1186 		struct sk_buff *skb = adapter->tx_hwtstamp_skb;
1187 		struct skb_shared_hwtstamps shhwtstamps;
1188 		u64 txstmp;
1189 
1190 		txstmp = er32(TXSTMPL);
1191 		txstmp |= (u64)er32(TXSTMPH) << 32;
1192 
1193 		e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp);
1194 
1195 		/* Clear the global tx_hwtstamp_skb pointer and force writes
1196 		 * prior to notifying the stack of a Tx timestamp.
1197 		 */
1198 		adapter->tx_hwtstamp_skb = NULL;
1199 		wmb(); /* force write prior to skb_tstamp_tx */
1200 
1201 		skb_tstamp_tx(skb, &shhwtstamps);
1202 		dev_kfree_skb_any(skb);
1203 	} else if (time_after(jiffies, adapter->tx_hwtstamp_start
1204 			      + adapter->tx_timeout_factor * HZ)) {
1205 		dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1206 		adapter->tx_hwtstamp_skb = NULL;
1207 		adapter->tx_hwtstamp_timeouts++;
1208 		e_warn("clearing Tx timestamp hang\n");
1209 	} else {
1210 		/* reschedule to check later */
1211 		schedule_work(&adapter->tx_hwtstamp_work);
1212 	}
1213 }
1214 
1215 /**
1216  * e1000_clean_tx_irq - Reclaim resources after transmit completes
1217  * @tx_ring: Tx descriptor ring
1218  *
1219  * the return value indicates whether actual cleaning was done, there
1220  * is no guarantee that everything was cleaned
1221  **/
1222 static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1223 {
1224 	struct e1000_adapter *adapter = tx_ring->adapter;
1225 	struct net_device *netdev = adapter->netdev;
1226 	struct e1000_hw *hw = &adapter->hw;
1227 	struct e1000_tx_desc *tx_desc, *eop_desc;
1228 	struct e1000_buffer *buffer_info;
1229 	unsigned int i, eop;
1230 	unsigned int count = 0;
1231 	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1232 	unsigned int bytes_compl = 0, pkts_compl = 0;
1233 
1234 	i = tx_ring->next_to_clean;
1235 	eop = tx_ring->buffer_info[i].next_to_watch;
1236 	eop_desc = E1000_TX_DESC(*tx_ring, eop);
1237 
1238 	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1239 	       (count < tx_ring->count)) {
1240 		bool cleaned = false;
1241 
1242 		dma_rmb();		/* read buffer_info after eop_desc */
1243 		for (; !cleaned; count++) {
1244 			tx_desc = E1000_TX_DESC(*tx_ring, i);
1245 			buffer_info = &tx_ring->buffer_info[i];
1246 			cleaned = (i == eop);
1247 
1248 			if (cleaned) {
1249 				total_tx_packets += buffer_info->segs;
1250 				total_tx_bytes += buffer_info->bytecount;
1251 				if (buffer_info->skb) {
1252 					bytes_compl += buffer_info->skb->len;
1253 					pkts_compl++;
1254 				}
1255 			}
1256 
1257 			e1000_put_txbuf(tx_ring, buffer_info);
1258 			tx_desc->upper.data = 0;
1259 
1260 			i++;
1261 			if (i == tx_ring->count)
1262 				i = 0;
1263 		}
1264 
1265 		if (i == tx_ring->next_to_use)
1266 			break;
1267 		eop = tx_ring->buffer_info[i].next_to_watch;
1268 		eop_desc = E1000_TX_DESC(*tx_ring, eop);
1269 	}
1270 
1271 	tx_ring->next_to_clean = i;
1272 
1273 	netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1274 
1275 #define TX_WAKE_THRESHOLD 32
1276 	if (count && netif_carrier_ok(netdev) &&
1277 	    e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1278 		/* Make sure that anybody stopping the queue after this
1279 		 * sees the new next_to_clean.
1280 		 */
1281 		smp_mb();
1282 
1283 		if (netif_queue_stopped(netdev) &&
1284 		    !(test_bit(__E1000_DOWN, &adapter->state))) {
1285 			netif_wake_queue(netdev);
1286 			++adapter->restart_queue;
1287 		}
1288 	}
1289 
1290 	if (adapter->detect_tx_hung) {
1291 		/* Detect a transmit hang in hardware, this serializes the
1292 		 * check with the clearing of time_stamp and movement of i
1293 		 */
1294 		adapter->detect_tx_hung = false;
1295 		if (tx_ring->buffer_info[i].time_stamp &&
1296 		    time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1297 			       + (adapter->tx_timeout_factor * HZ)) &&
1298 		    !(er32(STATUS) & E1000_STATUS_TXOFF))
1299 			schedule_work(&adapter->print_hang_task);
1300 		else
1301 			adapter->tx_hang_recheck = false;
1302 	}
1303 	adapter->total_tx_bytes += total_tx_bytes;
1304 	adapter->total_tx_packets += total_tx_packets;
1305 	return count < tx_ring->count;
1306 }
1307 
1308 /**
1309  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1310  * @rx_ring: Rx descriptor ring
1311  *
1312  * the return value indicates whether actual cleaning was done, there
1313  * is no guarantee that everything was cleaned
1314  **/
1315 static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1316 				  int work_to_do)
1317 {
1318 	struct e1000_adapter *adapter = rx_ring->adapter;
1319 	struct e1000_hw *hw = &adapter->hw;
1320 	union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1321 	struct net_device *netdev = adapter->netdev;
1322 	struct pci_dev *pdev = adapter->pdev;
1323 	struct e1000_buffer *buffer_info, *next_buffer;
1324 	struct e1000_ps_page *ps_page;
1325 	struct sk_buff *skb;
1326 	unsigned int i, j;
1327 	u32 length, staterr;
1328 	int cleaned_count = 0;
1329 	bool cleaned = false;
1330 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1331 
1332 	i = rx_ring->next_to_clean;
1333 	rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1334 	staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1335 	buffer_info = &rx_ring->buffer_info[i];
1336 
1337 	while (staterr & E1000_RXD_STAT_DD) {
1338 		if (*work_done >= work_to_do)
1339 			break;
1340 		(*work_done)++;
1341 		skb = buffer_info->skb;
1342 		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
1343 
1344 		/* in the packet split case this is header only */
1345 		prefetch(skb->data - NET_IP_ALIGN);
1346 
1347 		i++;
1348 		if (i == rx_ring->count)
1349 			i = 0;
1350 		next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1351 		prefetch(next_rxd);
1352 
1353 		next_buffer = &rx_ring->buffer_info[i];
1354 
1355 		cleaned = true;
1356 		cleaned_count++;
1357 		dma_unmap_single(&pdev->dev, buffer_info->dma,
1358 				 adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1359 		buffer_info->dma = 0;
1360 
1361 		/* see !EOP comment in other Rx routine */
1362 		if (!(staterr & E1000_RXD_STAT_EOP))
1363 			adapter->flags2 |= FLAG2_IS_DISCARDING;
1364 
1365 		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1366 			e_dbg("Packet Split buffers didn't pick up the full packet\n");
1367 			dev_kfree_skb_irq(skb);
1368 			if (staterr & E1000_RXD_STAT_EOP)
1369 				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1370 			goto next_desc;
1371 		}
1372 
1373 		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1374 			     !(netdev->features & NETIF_F_RXALL))) {
1375 			dev_kfree_skb_irq(skb);
1376 			goto next_desc;
1377 		}
1378 
1379 		length = le16_to_cpu(rx_desc->wb.middle.length0);
1380 
1381 		if (!length) {
1382 			e_dbg("Last part of the packet spanning multiple descriptors\n");
1383 			dev_kfree_skb_irq(skb);
1384 			goto next_desc;
1385 		}
1386 
1387 		/* Good Receive */
1388 		skb_put(skb, length);
1389 
1390 		{
1391 			/* this looks ugly, but it seems compiler issues make
1392 			 * it more efficient than reusing j
1393 			 */
1394 			int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1395 
1396 			/* page alloc/put takes too long and effects small
1397 			 * packet throughput, so unsplit small packets and
1398 			 * save the alloc/put only valid in softirq (napi)
1399 			 * context to call kmap_*
1400 			 */
1401 			if (l1 && (l1 <= copybreak) &&
1402 			    ((length + l1) <= adapter->rx_ps_bsize0)) {
1403 				u8 *vaddr;
1404 
1405 				ps_page = &buffer_info->ps_pages[0];
1406 
1407 				/* there is no documentation about how to call
1408 				 * kmap_atomic, so we can't hold the mapping
1409 				 * very long
1410 				 */
1411 				dma_sync_single_for_cpu(&pdev->dev,
1412 							ps_page->dma,
1413 							PAGE_SIZE,
1414 							DMA_FROM_DEVICE);
1415 				vaddr = kmap_atomic(ps_page->page);
1416 				memcpy(skb_tail_pointer(skb), vaddr, l1);
1417 				kunmap_atomic(vaddr);
1418 				dma_sync_single_for_device(&pdev->dev,
1419 							   ps_page->dma,
1420 							   PAGE_SIZE,
1421 							   DMA_FROM_DEVICE);
1422 
1423 				/* remove the CRC */
1424 				if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1425 					if (!(netdev->features & NETIF_F_RXFCS))
1426 						l1 -= 4;
1427 				}
1428 
1429 				skb_put(skb, l1);
1430 				goto copydone;
1431 			}	/* if */
1432 		}
1433 
1434 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1435 			length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1436 			if (!length)
1437 				break;
1438 
1439 			ps_page = &buffer_info->ps_pages[j];
1440 			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1441 				       DMA_FROM_DEVICE);
1442 			ps_page->dma = 0;
1443 			skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1444 			ps_page->page = NULL;
1445 			skb->len += length;
1446 			skb->data_len += length;
1447 			skb->truesize += PAGE_SIZE;
1448 		}
1449 
1450 		/* strip the ethernet crc, problem is we're using pages now so
1451 		 * this whole operation can get a little cpu intensive
1452 		 */
1453 		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1454 			if (!(netdev->features & NETIF_F_RXFCS))
1455 				pskb_trim(skb, skb->len - 4);
1456 		}
1457 
1458 copydone:
1459 		total_rx_bytes += skb->len;
1460 		total_rx_packets++;
1461 
1462 		e1000_rx_checksum(adapter, staterr, skb);
1463 
1464 		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1465 
1466 		if (rx_desc->wb.upper.header_status &
1467 		    cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1468 			adapter->rx_hdr_split++;
1469 
1470 		e1000_receive_skb(adapter, netdev, skb, staterr,
1471 				  rx_desc->wb.middle.vlan);
1472 
1473 next_desc:
1474 		rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1475 		buffer_info->skb = NULL;
1476 
1477 		/* return some buffers to hardware, one at a time is too slow */
1478 		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1479 			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1480 					      GFP_ATOMIC);
1481 			cleaned_count = 0;
1482 		}
1483 
1484 		/* use prefetched values */
1485 		rx_desc = next_rxd;
1486 		buffer_info = next_buffer;
1487 
1488 		staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1489 	}
1490 	rx_ring->next_to_clean = i;
1491 
1492 	cleaned_count = e1000_desc_unused(rx_ring);
1493 	if (cleaned_count)
1494 		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1495 
1496 	adapter->total_rx_bytes += total_rx_bytes;
1497 	adapter->total_rx_packets += total_rx_packets;
1498 	return cleaned;
1499 }
1500 
1501 /**
1502  * e1000_consume_page - helper function
1503  **/
1504 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1505 			       u16 length)
1506 {
1507 	bi->page = NULL;
1508 	skb->len += length;
1509 	skb->data_len += length;
1510 	skb->truesize += PAGE_SIZE;
1511 }
1512 
1513 /**
1514  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1515  * @adapter: board private structure
1516  *
1517  * the return value indicates whether actual cleaning was done, there
1518  * is no guarantee that everything was cleaned
1519  **/
1520 static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1521 				     int work_to_do)
1522 {
1523 	struct e1000_adapter *adapter = rx_ring->adapter;
1524 	struct net_device *netdev = adapter->netdev;
1525 	struct pci_dev *pdev = adapter->pdev;
1526 	union e1000_rx_desc_extended *rx_desc, *next_rxd;
1527 	struct e1000_buffer *buffer_info, *next_buffer;
1528 	u32 length, staterr;
1529 	unsigned int i;
1530 	int cleaned_count = 0;
1531 	bool cleaned = false;
1532 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1533 	struct skb_shared_info *shinfo;
1534 
1535 	i = rx_ring->next_to_clean;
1536 	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1537 	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1538 	buffer_info = &rx_ring->buffer_info[i];
1539 
1540 	while (staterr & E1000_RXD_STAT_DD) {
1541 		struct sk_buff *skb;
1542 
1543 		if (*work_done >= work_to_do)
1544 			break;
1545 		(*work_done)++;
1546 		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
1547 
1548 		skb = buffer_info->skb;
1549 		buffer_info->skb = NULL;
1550 
1551 		++i;
1552 		if (i == rx_ring->count)
1553 			i = 0;
1554 		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1555 		prefetch(next_rxd);
1556 
1557 		next_buffer = &rx_ring->buffer_info[i];
1558 
1559 		cleaned = true;
1560 		cleaned_count++;
1561 		dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1562 			       DMA_FROM_DEVICE);
1563 		buffer_info->dma = 0;
1564 
1565 		length = le16_to_cpu(rx_desc->wb.upper.length);
1566 
1567 		/* errors is only valid for DD + EOP descriptors */
1568 		if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1569 			     ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1570 			      !(netdev->features & NETIF_F_RXALL)))) {
1571 			/* recycle both page and skb */
1572 			buffer_info->skb = skb;
1573 			/* an error means any chain goes out the window too */
1574 			if (rx_ring->rx_skb_top)
1575 				dev_kfree_skb_irq(rx_ring->rx_skb_top);
1576 			rx_ring->rx_skb_top = NULL;
1577 			goto next_desc;
1578 		}
1579 #define rxtop (rx_ring->rx_skb_top)
1580 		if (!(staterr & E1000_RXD_STAT_EOP)) {
1581 			/* this descriptor is only the beginning (or middle) */
1582 			if (!rxtop) {
1583 				/* this is the beginning of a chain */
1584 				rxtop = skb;
1585 				skb_fill_page_desc(rxtop, 0, buffer_info->page,
1586 						   0, length);
1587 			} else {
1588 				/* this is the middle of a chain */
1589 				shinfo = skb_shinfo(rxtop);
1590 				skb_fill_page_desc(rxtop, shinfo->nr_frags,
1591 						   buffer_info->page, 0,
1592 						   length);
1593 				/* re-use the skb, only consumed the page */
1594 				buffer_info->skb = skb;
1595 			}
1596 			e1000_consume_page(buffer_info, rxtop, length);
1597 			goto next_desc;
1598 		} else {
1599 			if (rxtop) {
1600 				/* end of the chain */
1601 				shinfo = skb_shinfo(rxtop);
1602 				skb_fill_page_desc(rxtop, shinfo->nr_frags,
1603 						   buffer_info->page, 0,
1604 						   length);
1605 				/* re-use the current skb, we only consumed the
1606 				 * page
1607 				 */
1608 				buffer_info->skb = skb;
1609 				skb = rxtop;
1610 				rxtop = NULL;
1611 				e1000_consume_page(buffer_info, skb, length);
1612 			} else {
1613 				/* no chain, got EOP, this buf is the packet
1614 				 * copybreak to save the put_page/alloc_page
1615 				 */
1616 				if (length <= copybreak &&
1617 				    skb_tailroom(skb) >= length) {
1618 					u8 *vaddr;
1619 					vaddr = kmap_atomic(buffer_info->page);
1620 					memcpy(skb_tail_pointer(skb), vaddr,
1621 					       length);
1622 					kunmap_atomic(vaddr);
1623 					/* re-use the page, so don't erase
1624 					 * buffer_info->page
1625 					 */
1626 					skb_put(skb, length);
1627 				} else {
1628 					skb_fill_page_desc(skb, 0,
1629 							   buffer_info->page, 0,
1630 							   length);
1631 					e1000_consume_page(buffer_info, skb,
1632 							   length);
1633 				}
1634 			}
1635 		}
1636 
1637 		/* Receive Checksum Offload */
1638 		e1000_rx_checksum(adapter, staterr, skb);
1639 
1640 		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1641 
1642 		/* probably a little skewed due to removing CRC */
1643 		total_rx_bytes += skb->len;
1644 		total_rx_packets++;
1645 
1646 		/* eth type trans needs skb->data to point to something */
1647 		if (!pskb_may_pull(skb, ETH_HLEN)) {
1648 			e_err("pskb_may_pull failed.\n");
1649 			dev_kfree_skb_irq(skb);
1650 			goto next_desc;
1651 		}
1652 
1653 		e1000_receive_skb(adapter, netdev, skb, staterr,
1654 				  rx_desc->wb.upper.vlan);
1655 
1656 next_desc:
1657 		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1658 
1659 		/* return some buffers to hardware, one at a time is too slow */
1660 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1661 			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1662 					      GFP_ATOMIC);
1663 			cleaned_count = 0;
1664 		}
1665 
1666 		/* use prefetched values */
1667 		rx_desc = next_rxd;
1668 		buffer_info = next_buffer;
1669 
1670 		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1671 	}
1672 	rx_ring->next_to_clean = i;
1673 
1674 	cleaned_count = e1000_desc_unused(rx_ring);
1675 	if (cleaned_count)
1676 		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1677 
1678 	adapter->total_rx_bytes += total_rx_bytes;
1679 	adapter->total_rx_packets += total_rx_packets;
1680 	return cleaned;
1681 }
1682 
1683 /**
1684  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1685  * @rx_ring: Rx descriptor ring
1686  **/
1687 static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1688 {
1689 	struct e1000_adapter *adapter = rx_ring->adapter;
1690 	struct e1000_buffer *buffer_info;
1691 	struct e1000_ps_page *ps_page;
1692 	struct pci_dev *pdev = adapter->pdev;
1693 	unsigned int i, j;
1694 
1695 	/* Free all the Rx ring sk_buffs */
1696 	for (i = 0; i < rx_ring->count; i++) {
1697 		buffer_info = &rx_ring->buffer_info[i];
1698 		if (buffer_info->dma) {
1699 			if (adapter->clean_rx == e1000_clean_rx_irq)
1700 				dma_unmap_single(&pdev->dev, buffer_info->dma,
1701 						 adapter->rx_buffer_len,
1702 						 DMA_FROM_DEVICE);
1703 			else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1704 				dma_unmap_page(&pdev->dev, buffer_info->dma,
1705 					       PAGE_SIZE, DMA_FROM_DEVICE);
1706 			else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1707 				dma_unmap_single(&pdev->dev, buffer_info->dma,
1708 						 adapter->rx_ps_bsize0,
1709 						 DMA_FROM_DEVICE);
1710 			buffer_info->dma = 0;
1711 		}
1712 
1713 		if (buffer_info->page) {
1714 			put_page(buffer_info->page);
1715 			buffer_info->page = NULL;
1716 		}
1717 
1718 		if (buffer_info->skb) {
1719 			dev_kfree_skb(buffer_info->skb);
1720 			buffer_info->skb = NULL;
1721 		}
1722 
1723 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1724 			ps_page = &buffer_info->ps_pages[j];
1725 			if (!ps_page->page)
1726 				break;
1727 			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1728 				       DMA_FROM_DEVICE);
1729 			ps_page->dma = 0;
1730 			put_page(ps_page->page);
1731 			ps_page->page = NULL;
1732 		}
1733 	}
1734 
1735 	/* there also may be some cached data from a chained receive */
1736 	if (rx_ring->rx_skb_top) {
1737 		dev_kfree_skb(rx_ring->rx_skb_top);
1738 		rx_ring->rx_skb_top = NULL;
1739 	}
1740 
1741 	/* Zero out the descriptor ring */
1742 	memset(rx_ring->desc, 0, rx_ring->size);
1743 
1744 	rx_ring->next_to_clean = 0;
1745 	rx_ring->next_to_use = 0;
1746 	adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1747 }
1748 
1749 static void e1000e_downshift_workaround(struct work_struct *work)
1750 {
1751 	struct e1000_adapter *adapter = container_of(work,
1752 						     struct e1000_adapter,
1753 						     downshift_task);
1754 
1755 	if (test_bit(__E1000_DOWN, &adapter->state))
1756 		return;
1757 
1758 	e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1759 }
1760 
1761 /**
1762  * e1000_intr_msi - Interrupt Handler
1763  * @irq: interrupt number
1764  * @data: pointer to a network interface device structure
1765  **/
1766 static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data)
1767 {
1768 	struct net_device *netdev = data;
1769 	struct e1000_adapter *adapter = netdev_priv(netdev);
1770 	struct e1000_hw *hw = &adapter->hw;
1771 	u32 icr = er32(ICR);
1772 
1773 	/* read ICR disables interrupts using IAM */
1774 	if (icr & E1000_ICR_LSC) {
1775 		hw->mac.get_link_status = true;
1776 		/* ICH8 workaround-- Call gig speed drop workaround on cable
1777 		 * disconnect (LSC) before accessing any PHY registers
1778 		 */
1779 		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1780 		    (!(er32(STATUS) & E1000_STATUS_LU)))
1781 			schedule_work(&adapter->downshift_task);
1782 
1783 		/* 80003ES2LAN workaround-- For packet buffer work-around on
1784 		 * link down event; disable receives here in the ISR and reset
1785 		 * adapter in watchdog
1786 		 */
1787 		if (netif_carrier_ok(netdev) &&
1788 		    adapter->flags & FLAG_RX_NEEDS_RESTART) {
1789 			/* disable receives */
1790 			u32 rctl = er32(RCTL);
1791 
1792 			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1793 			adapter->flags |= FLAG_RESTART_NOW;
1794 		}
1795 		/* guard against interrupt when we're going down */
1796 		if (!test_bit(__E1000_DOWN, &adapter->state))
1797 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1798 	}
1799 
1800 	/* Reset on uncorrectable ECC error */
1801 	if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1802 		u32 pbeccsts = er32(PBECCSTS);
1803 
1804 		adapter->corr_errors +=
1805 		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1806 		adapter->uncorr_errors +=
1807 		    (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1808 		    E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1809 
1810 		/* Do the reset outside of interrupt context */
1811 		schedule_work(&adapter->reset_task);
1812 
1813 		/* return immediately since reset is imminent */
1814 		return IRQ_HANDLED;
1815 	}
1816 
1817 	if (napi_schedule_prep(&adapter->napi)) {
1818 		adapter->total_tx_bytes = 0;
1819 		adapter->total_tx_packets = 0;
1820 		adapter->total_rx_bytes = 0;
1821 		adapter->total_rx_packets = 0;
1822 		__napi_schedule(&adapter->napi);
1823 	}
1824 
1825 	return IRQ_HANDLED;
1826 }
1827 
1828 /**
1829  * e1000_intr - Interrupt Handler
1830  * @irq: interrupt number
1831  * @data: pointer to a network interface device structure
1832  **/
1833 static irqreturn_t e1000_intr(int __always_unused irq, void *data)
1834 {
1835 	struct net_device *netdev = data;
1836 	struct e1000_adapter *adapter = netdev_priv(netdev);
1837 	struct e1000_hw *hw = &adapter->hw;
1838 	u32 rctl, icr = er32(ICR);
1839 
1840 	if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1841 		return IRQ_NONE;	/* Not our interrupt */
1842 
1843 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1844 	 * not set, then the adapter didn't send an interrupt
1845 	 */
1846 	if (!(icr & E1000_ICR_INT_ASSERTED))
1847 		return IRQ_NONE;
1848 
1849 	/* Interrupt Auto-Mask...upon reading ICR,
1850 	 * interrupts are masked.  No need for the
1851 	 * IMC write
1852 	 */
1853 
1854 	if (icr & E1000_ICR_LSC) {
1855 		hw->mac.get_link_status = true;
1856 		/* ICH8 workaround-- Call gig speed drop workaround on cable
1857 		 * disconnect (LSC) before accessing any PHY registers
1858 		 */
1859 		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1860 		    (!(er32(STATUS) & E1000_STATUS_LU)))
1861 			schedule_work(&adapter->downshift_task);
1862 
1863 		/* 80003ES2LAN workaround--
1864 		 * For packet buffer work-around on link down event;
1865 		 * disable receives here in the ISR and
1866 		 * reset adapter in watchdog
1867 		 */
1868 		if (netif_carrier_ok(netdev) &&
1869 		    (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1870 			/* disable receives */
1871 			rctl = er32(RCTL);
1872 			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1873 			adapter->flags |= FLAG_RESTART_NOW;
1874 		}
1875 		/* guard against interrupt when we're going down */
1876 		if (!test_bit(__E1000_DOWN, &adapter->state))
1877 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1878 	}
1879 
1880 	/* Reset on uncorrectable ECC error */
1881 	if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1882 		u32 pbeccsts = er32(PBECCSTS);
1883 
1884 		adapter->corr_errors +=
1885 		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1886 		adapter->uncorr_errors +=
1887 		    (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1888 		    E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1889 
1890 		/* Do the reset outside of interrupt context */
1891 		schedule_work(&adapter->reset_task);
1892 
1893 		/* return immediately since reset is imminent */
1894 		return IRQ_HANDLED;
1895 	}
1896 
1897 	if (napi_schedule_prep(&adapter->napi)) {
1898 		adapter->total_tx_bytes = 0;
1899 		adapter->total_tx_packets = 0;
1900 		adapter->total_rx_bytes = 0;
1901 		adapter->total_rx_packets = 0;
1902 		__napi_schedule(&adapter->napi);
1903 	}
1904 
1905 	return IRQ_HANDLED;
1906 }
1907 
1908 static irqreturn_t e1000_msix_other(int __always_unused irq, void *data)
1909 {
1910 	struct net_device *netdev = data;
1911 	struct e1000_adapter *adapter = netdev_priv(netdev);
1912 	struct e1000_hw *hw = &adapter->hw;
1913 
1914 	hw->mac.get_link_status = true;
1915 
1916 	/* guard against interrupt when we're going down */
1917 	if (!test_bit(__E1000_DOWN, &adapter->state)) {
1918 		mod_timer(&adapter->watchdog_timer, jiffies + 1);
1919 		ew32(IMS, E1000_IMS_OTHER);
1920 	}
1921 
1922 	return IRQ_HANDLED;
1923 }
1924 
1925 static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data)
1926 {
1927 	struct net_device *netdev = data;
1928 	struct e1000_adapter *adapter = netdev_priv(netdev);
1929 	struct e1000_hw *hw = &adapter->hw;
1930 	struct e1000_ring *tx_ring = adapter->tx_ring;
1931 
1932 	adapter->total_tx_bytes = 0;
1933 	adapter->total_tx_packets = 0;
1934 
1935 	if (!e1000_clean_tx_irq(tx_ring))
1936 		/* Ring was not completely cleaned, so fire another interrupt */
1937 		ew32(ICS, tx_ring->ims_val);
1938 
1939 	if (!test_bit(__E1000_DOWN, &adapter->state))
1940 		ew32(IMS, adapter->tx_ring->ims_val);
1941 
1942 	return IRQ_HANDLED;
1943 }
1944 
1945 static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data)
1946 {
1947 	struct net_device *netdev = data;
1948 	struct e1000_adapter *adapter = netdev_priv(netdev);
1949 	struct e1000_ring *rx_ring = adapter->rx_ring;
1950 
1951 	/* Write the ITR value calculated at the end of the
1952 	 * previous interrupt.
1953 	 */
1954 	if (rx_ring->set_itr) {
1955 		u32 itr = rx_ring->itr_val ?
1956 			  1000000000 / (rx_ring->itr_val * 256) : 0;
1957 
1958 		writel(itr, rx_ring->itr_register);
1959 		rx_ring->set_itr = 0;
1960 	}
1961 
1962 	if (napi_schedule_prep(&adapter->napi)) {
1963 		adapter->total_rx_bytes = 0;
1964 		adapter->total_rx_packets = 0;
1965 		__napi_schedule(&adapter->napi);
1966 	}
1967 	return IRQ_HANDLED;
1968 }
1969 
1970 /**
1971  * e1000_configure_msix - Configure MSI-X hardware
1972  *
1973  * e1000_configure_msix sets up the hardware to properly
1974  * generate MSI-X interrupts.
1975  **/
1976 static void e1000_configure_msix(struct e1000_adapter *adapter)
1977 {
1978 	struct e1000_hw *hw = &adapter->hw;
1979 	struct e1000_ring *rx_ring = adapter->rx_ring;
1980 	struct e1000_ring *tx_ring = adapter->tx_ring;
1981 	int vector = 0;
1982 	u32 ctrl_ext, ivar = 0;
1983 
1984 	adapter->eiac_mask = 0;
1985 
1986 	/* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1987 	if (hw->mac.type == e1000_82574) {
1988 		u32 rfctl = er32(RFCTL);
1989 
1990 		rfctl |= E1000_RFCTL_ACK_DIS;
1991 		ew32(RFCTL, rfctl);
1992 	}
1993 
1994 	/* Configure Rx vector */
1995 	rx_ring->ims_val = E1000_IMS_RXQ0;
1996 	adapter->eiac_mask |= rx_ring->ims_val;
1997 	if (rx_ring->itr_val)
1998 		writel(1000000000 / (rx_ring->itr_val * 256),
1999 		       rx_ring->itr_register);
2000 	else
2001 		writel(1, rx_ring->itr_register);
2002 	ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
2003 
2004 	/* Configure Tx vector */
2005 	tx_ring->ims_val = E1000_IMS_TXQ0;
2006 	vector++;
2007 	if (tx_ring->itr_val)
2008 		writel(1000000000 / (tx_ring->itr_val * 256),
2009 		       tx_ring->itr_register);
2010 	else
2011 		writel(1, tx_ring->itr_register);
2012 	adapter->eiac_mask |= tx_ring->ims_val;
2013 	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
2014 
2015 	/* set vector for Other Causes, e.g. link changes */
2016 	vector++;
2017 	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
2018 	if (rx_ring->itr_val)
2019 		writel(1000000000 / (rx_ring->itr_val * 256),
2020 		       hw->hw_addr + E1000_EITR_82574(vector));
2021 	else
2022 		writel(1, hw->hw_addr + E1000_EITR_82574(vector));
2023 	adapter->eiac_mask |= E1000_IMS_OTHER;
2024 
2025 	/* Cause Tx interrupts on every write back */
2026 	ivar |= BIT(31);
2027 
2028 	ew32(IVAR, ivar);
2029 
2030 	/* enable MSI-X PBA support */
2031 	ctrl_ext = er32(CTRL_EXT) & ~E1000_CTRL_EXT_IAME;
2032 	ctrl_ext |= E1000_CTRL_EXT_PBA_CLR | E1000_CTRL_EXT_EIAME;
2033 	ew32(CTRL_EXT, ctrl_ext);
2034 	e1e_flush();
2035 }
2036 
2037 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
2038 {
2039 	if (adapter->msix_entries) {
2040 		pci_disable_msix(adapter->pdev);
2041 		kfree(adapter->msix_entries);
2042 		adapter->msix_entries = NULL;
2043 	} else if (adapter->flags & FLAG_MSI_ENABLED) {
2044 		pci_disable_msi(adapter->pdev);
2045 		adapter->flags &= ~FLAG_MSI_ENABLED;
2046 	}
2047 }
2048 
2049 /**
2050  * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
2051  *
2052  * Attempt to configure interrupts using the best available
2053  * capabilities of the hardware and kernel.
2054  **/
2055 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
2056 {
2057 	int err;
2058 	int i;
2059 
2060 	switch (adapter->int_mode) {
2061 	case E1000E_INT_MODE_MSIX:
2062 		if (adapter->flags & FLAG_HAS_MSIX) {
2063 			adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
2064 			adapter->msix_entries = kcalloc(adapter->num_vectors,
2065 							sizeof(struct
2066 							       msix_entry),
2067 							GFP_KERNEL);
2068 			if (adapter->msix_entries) {
2069 				struct e1000_adapter *a = adapter;
2070 
2071 				for (i = 0; i < adapter->num_vectors; i++)
2072 					adapter->msix_entries[i].entry = i;
2073 
2074 				err = pci_enable_msix_range(a->pdev,
2075 							    a->msix_entries,
2076 							    a->num_vectors,
2077 							    a->num_vectors);
2078 				if (err > 0)
2079 					return;
2080 			}
2081 			/* MSI-X failed, so fall through and try MSI */
2082 			e_err("Failed to initialize MSI-X interrupts.  Falling back to MSI interrupts.\n");
2083 			e1000e_reset_interrupt_capability(adapter);
2084 		}
2085 		adapter->int_mode = E1000E_INT_MODE_MSI;
2086 		/* Fall through */
2087 	case E1000E_INT_MODE_MSI:
2088 		if (!pci_enable_msi(adapter->pdev)) {
2089 			adapter->flags |= FLAG_MSI_ENABLED;
2090 		} else {
2091 			adapter->int_mode = E1000E_INT_MODE_LEGACY;
2092 			e_err("Failed to initialize MSI interrupts.  Falling back to legacy interrupts.\n");
2093 		}
2094 		/* Fall through */
2095 	case E1000E_INT_MODE_LEGACY:
2096 		/* Don't do anything; this is the system default */
2097 		break;
2098 	}
2099 
2100 	/* store the number of vectors being used */
2101 	adapter->num_vectors = 1;
2102 }
2103 
2104 /**
2105  * e1000_request_msix - Initialize MSI-X interrupts
2106  *
2107  * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2108  * kernel.
2109  **/
2110 static int e1000_request_msix(struct e1000_adapter *adapter)
2111 {
2112 	struct net_device *netdev = adapter->netdev;
2113 	int err = 0, vector = 0;
2114 
2115 	if (strlen(netdev->name) < (IFNAMSIZ - 5))
2116 		snprintf(adapter->rx_ring->name,
2117 			 sizeof(adapter->rx_ring->name) - 1,
2118 			 "%s-rx-0", netdev->name);
2119 	else
2120 		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
2121 	err = request_irq(adapter->msix_entries[vector].vector,
2122 			  e1000_intr_msix_rx, 0, adapter->rx_ring->name,
2123 			  netdev);
2124 	if (err)
2125 		return err;
2126 	adapter->rx_ring->itr_register = adapter->hw.hw_addr +
2127 	    E1000_EITR_82574(vector);
2128 	adapter->rx_ring->itr_val = adapter->itr;
2129 	vector++;
2130 
2131 	if (strlen(netdev->name) < (IFNAMSIZ - 5))
2132 		snprintf(adapter->tx_ring->name,
2133 			 sizeof(adapter->tx_ring->name) - 1,
2134 			 "%s-tx-0", netdev->name);
2135 	else
2136 		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2137 	err = request_irq(adapter->msix_entries[vector].vector,
2138 			  e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2139 			  netdev);
2140 	if (err)
2141 		return err;
2142 	adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2143 	    E1000_EITR_82574(vector);
2144 	adapter->tx_ring->itr_val = adapter->itr;
2145 	vector++;
2146 
2147 	err = request_irq(adapter->msix_entries[vector].vector,
2148 			  e1000_msix_other, 0, netdev->name, netdev);
2149 	if (err)
2150 		return err;
2151 
2152 	e1000_configure_msix(adapter);
2153 
2154 	return 0;
2155 }
2156 
2157 /**
2158  * e1000_request_irq - initialize interrupts
2159  *
2160  * Attempts to configure interrupts using the best available
2161  * capabilities of the hardware and kernel.
2162  **/
2163 static int e1000_request_irq(struct e1000_adapter *adapter)
2164 {
2165 	struct net_device *netdev = adapter->netdev;
2166 	int err;
2167 
2168 	if (adapter->msix_entries) {
2169 		err = e1000_request_msix(adapter);
2170 		if (!err)
2171 			return err;
2172 		/* fall back to MSI */
2173 		e1000e_reset_interrupt_capability(adapter);
2174 		adapter->int_mode = E1000E_INT_MODE_MSI;
2175 		e1000e_set_interrupt_capability(adapter);
2176 	}
2177 	if (adapter->flags & FLAG_MSI_ENABLED) {
2178 		err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2179 				  netdev->name, netdev);
2180 		if (!err)
2181 			return err;
2182 
2183 		/* fall back to legacy interrupt */
2184 		e1000e_reset_interrupt_capability(adapter);
2185 		adapter->int_mode = E1000E_INT_MODE_LEGACY;
2186 	}
2187 
2188 	err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2189 			  netdev->name, netdev);
2190 	if (err)
2191 		e_err("Unable to allocate interrupt, Error: %d\n", err);
2192 
2193 	return err;
2194 }
2195 
2196 static void e1000_free_irq(struct e1000_adapter *adapter)
2197 {
2198 	struct net_device *netdev = adapter->netdev;
2199 
2200 	if (adapter->msix_entries) {
2201 		int vector = 0;
2202 
2203 		free_irq(adapter->msix_entries[vector].vector, netdev);
2204 		vector++;
2205 
2206 		free_irq(adapter->msix_entries[vector].vector, netdev);
2207 		vector++;
2208 
2209 		/* Other Causes interrupt vector */
2210 		free_irq(adapter->msix_entries[vector].vector, netdev);
2211 		return;
2212 	}
2213 
2214 	free_irq(adapter->pdev->irq, netdev);
2215 }
2216 
2217 /**
2218  * e1000_irq_disable - Mask off interrupt generation on the NIC
2219  **/
2220 static void e1000_irq_disable(struct e1000_adapter *adapter)
2221 {
2222 	struct e1000_hw *hw = &adapter->hw;
2223 
2224 	ew32(IMC, ~0);
2225 	if (adapter->msix_entries)
2226 		ew32(EIAC_82574, 0);
2227 	e1e_flush();
2228 
2229 	if (adapter->msix_entries) {
2230 		int i;
2231 
2232 		for (i = 0; i < adapter->num_vectors; i++)
2233 			synchronize_irq(adapter->msix_entries[i].vector);
2234 	} else {
2235 		synchronize_irq(adapter->pdev->irq);
2236 	}
2237 }
2238 
2239 /**
2240  * e1000_irq_enable - Enable default interrupt generation settings
2241  **/
2242 static void e1000_irq_enable(struct e1000_adapter *adapter)
2243 {
2244 	struct e1000_hw *hw = &adapter->hw;
2245 
2246 	if (adapter->msix_entries) {
2247 		ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2248 		ew32(IMS, adapter->eiac_mask | E1000_IMS_LSC);
2249 	} else if (hw->mac.type >= e1000_pch_lpt) {
2250 		ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER);
2251 	} else {
2252 		ew32(IMS, IMS_ENABLE_MASK);
2253 	}
2254 	e1e_flush();
2255 }
2256 
2257 /**
2258  * e1000e_get_hw_control - get control of the h/w from f/w
2259  * @adapter: address of board private structure
2260  *
2261  * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2262  * For ASF and Pass Through versions of f/w this means that
2263  * the driver is loaded. For AMT version (only with 82573)
2264  * of the f/w this means that the network i/f is open.
2265  **/
2266 void e1000e_get_hw_control(struct e1000_adapter *adapter)
2267 {
2268 	struct e1000_hw *hw = &adapter->hw;
2269 	u32 ctrl_ext;
2270 	u32 swsm;
2271 
2272 	/* Let firmware know the driver has taken over */
2273 	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2274 		swsm = er32(SWSM);
2275 		ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2276 	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2277 		ctrl_ext = er32(CTRL_EXT);
2278 		ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2279 	}
2280 }
2281 
2282 /**
2283  * e1000e_release_hw_control - release control of the h/w to f/w
2284  * @adapter: address of board private structure
2285  *
2286  * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2287  * For ASF and Pass Through versions of f/w this means that the
2288  * driver is no longer loaded. For AMT version (only with 82573) i
2289  * of the f/w this means that the network i/f is closed.
2290  *
2291  **/
2292 void e1000e_release_hw_control(struct e1000_adapter *adapter)
2293 {
2294 	struct e1000_hw *hw = &adapter->hw;
2295 	u32 ctrl_ext;
2296 	u32 swsm;
2297 
2298 	/* Let firmware taken over control of h/w */
2299 	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2300 		swsm = er32(SWSM);
2301 		ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2302 	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2303 		ctrl_ext = er32(CTRL_EXT);
2304 		ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2305 	}
2306 }
2307 
2308 /**
2309  * e1000_alloc_ring_dma - allocate memory for a ring structure
2310  **/
2311 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2312 				struct e1000_ring *ring)
2313 {
2314 	struct pci_dev *pdev = adapter->pdev;
2315 
2316 	ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2317 					GFP_KERNEL);
2318 	if (!ring->desc)
2319 		return -ENOMEM;
2320 
2321 	return 0;
2322 }
2323 
2324 /**
2325  * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2326  * @tx_ring: Tx descriptor ring
2327  *
2328  * Return 0 on success, negative on failure
2329  **/
2330 int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2331 {
2332 	struct e1000_adapter *adapter = tx_ring->adapter;
2333 	int err = -ENOMEM, size;
2334 
2335 	size = sizeof(struct e1000_buffer) * tx_ring->count;
2336 	tx_ring->buffer_info = vzalloc(size);
2337 	if (!tx_ring->buffer_info)
2338 		goto err;
2339 
2340 	/* round up to nearest 4K */
2341 	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2342 	tx_ring->size = ALIGN(tx_ring->size, 4096);
2343 
2344 	err = e1000_alloc_ring_dma(adapter, tx_ring);
2345 	if (err)
2346 		goto err;
2347 
2348 	tx_ring->next_to_use = 0;
2349 	tx_ring->next_to_clean = 0;
2350 
2351 	return 0;
2352 err:
2353 	vfree(tx_ring->buffer_info);
2354 	e_err("Unable to allocate memory for the transmit descriptor ring\n");
2355 	return err;
2356 }
2357 
2358 /**
2359  * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2360  * @rx_ring: Rx descriptor ring
2361  *
2362  * Returns 0 on success, negative on failure
2363  **/
2364 int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2365 {
2366 	struct e1000_adapter *adapter = rx_ring->adapter;
2367 	struct e1000_buffer *buffer_info;
2368 	int i, size, desc_len, err = -ENOMEM;
2369 
2370 	size = sizeof(struct e1000_buffer) * rx_ring->count;
2371 	rx_ring->buffer_info = vzalloc(size);
2372 	if (!rx_ring->buffer_info)
2373 		goto err;
2374 
2375 	for (i = 0; i < rx_ring->count; i++) {
2376 		buffer_info = &rx_ring->buffer_info[i];
2377 		buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2378 						sizeof(struct e1000_ps_page),
2379 						GFP_KERNEL);
2380 		if (!buffer_info->ps_pages)
2381 			goto err_pages;
2382 	}
2383 
2384 	desc_len = sizeof(union e1000_rx_desc_packet_split);
2385 
2386 	/* Round up to nearest 4K */
2387 	rx_ring->size = rx_ring->count * desc_len;
2388 	rx_ring->size = ALIGN(rx_ring->size, 4096);
2389 
2390 	err = e1000_alloc_ring_dma(adapter, rx_ring);
2391 	if (err)
2392 		goto err_pages;
2393 
2394 	rx_ring->next_to_clean = 0;
2395 	rx_ring->next_to_use = 0;
2396 	rx_ring->rx_skb_top = NULL;
2397 
2398 	return 0;
2399 
2400 err_pages:
2401 	for (i = 0; i < rx_ring->count; i++) {
2402 		buffer_info = &rx_ring->buffer_info[i];
2403 		kfree(buffer_info->ps_pages);
2404 	}
2405 err:
2406 	vfree(rx_ring->buffer_info);
2407 	e_err("Unable to allocate memory for the receive descriptor ring\n");
2408 	return err;
2409 }
2410 
2411 /**
2412  * e1000_clean_tx_ring - Free Tx Buffers
2413  * @tx_ring: Tx descriptor ring
2414  **/
2415 static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2416 {
2417 	struct e1000_adapter *adapter = tx_ring->adapter;
2418 	struct e1000_buffer *buffer_info;
2419 	unsigned long size;
2420 	unsigned int i;
2421 
2422 	for (i = 0; i < tx_ring->count; i++) {
2423 		buffer_info = &tx_ring->buffer_info[i];
2424 		e1000_put_txbuf(tx_ring, buffer_info);
2425 	}
2426 
2427 	netdev_reset_queue(adapter->netdev);
2428 	size = sizeof(struct e1000_buffer) * tx_ring->count;
2429 	memset(tx_ring->buffer_info, 0, size);
2430 
2431 	memset(tx_ring->desc, 0, tx_ring->size);
2432 
2433 	tx_ring->next_to_use = 0;
2434 	tx_ring->next_to_clean = 0;
2435 }
2436 
2437 /**
2438  * e1000e_free_tx_resources - Free Tx Resources per Queue
2439  * @tx_ring: Tx descriptor ring
2440  *
2441  * Free all transmit software resources
2442  **/
2443 void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2444 {
2445 	struct e1000_adapter *adapter = tx_ring->adapter;
2446 	struct pci_dev *pdev = adapter->pdev;
2447 
2448 	e1000_clean_tx_ring(tx_ring);
2449 
2450 	vfree(tx_ring->buffer_info);
2451 	tx_ring->buffer_info = NULL;
2452 
2453 	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2454 			  tx_ring->dma);
2455 	tx_ring->desc = NULL;
2456 }
2457 
2458 /**
2459  * e1000e_free_rx_resources - Free Rx Resources
2460  * @rx_ring: Rx descriptor ring
2461  *
2462  * Free all receive software resources
2463  **/
2464 void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2465 {
2466 	struct e1000_adapter *adapter = rx_ring->adapter;
2467 	struct pci_dev *pdev = adapter->pdev;
2468 	int i;
2469 
2470 	e1000_clean_rx_ring(rx_ring);
2471 
2472 	for (i = 0; i < rx_ring->count; i++)
2473 		kfree(rx_ring->buffer_info[i].ps_pages);
2474 
2475 	vfree(rx_ring->buffer_info);
2476 	rx_ring->buffer_info = NULL;
2477 
2478 	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2479 			  rx_ring->dma);
2480 	rx_ring->desc = NULL;
2481 }
2482 
2483 /**
2484  * e1000_update_itr - update the dynamic ITR value based on statistics
2485  * @adapter: pointer to adapter
2486  * @itr_setting: current adapter->itr
2487  * @packets: the number of packets during this measurement interval
2488  * @bytes: the number of bytes during this measurement interval
2489  *
2490  *      Stores a new ITR value based on packets and byte
2491  *      counts during the last interrupt.  The advantage of per interrupt
2492  *      computation is faster updates and more accurate ITR for the current
2493  *      traffic pattern.  Constants in this function were computed
2494  *      based on theoretical maximum wire speed and thresholds were set based
2495  *      on testing data as well as attempting to minimize response time
2496  *      while increasing bulk throughput.  This functionality is controlled
2497  *      by the InterruptThrottleRate module parameter.
2498  **/
2499 static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes)
2500 {
2501 	unsigned int retval = itr_setting;
2502 
2503 	if (packets == 0)
2504 		return itr_setting;
2505 
2506 	switch (itr_setting) {
2507 	case lowest_latency:
2508 		/* handle TSO and jumbo frames */
2509 		if (bytes / packets > 8000)
2510 			retval = bulk_latency;
2511 		else if ((packets < 5) && (bytes > 512))
2512 			retval = low_latency;
2513 		break;
2514 	case low_latency:	/* 50 usec aka 20000 ints/s */
2515 		if (bytes > 10000) {
2516 			/* this if handles the TSO accounting */
2517 			if (bytes / packets > 8000)
2518 				retval = bulk_latency;
2519 			else if ((packets < 10) || ((bytes / packets) > 1200))
2520 				retval = bulk_latency;
2521 			else if ((packets > 35))
2522 				retval = lowest_latency;
2523 		} else if (bytes / packets > 2000) {
2524 			retval = bulk_latency;
2525 		} else if (packets <= 2 && bytes < 512) {
2526 			retval = lowest_latency;
2527 		}
2528 		break;
2529 	case bulk_latency:	/* 250 usec aka 4000 ints/s */
2530 		if (bytes > 25000) {
2531 			if (packets > 35)
2532 				retval = low_latency;
2533 		} else if (bytes < 6000) {
2534 			retval = low_latency;
2535 		}
2536 		break;
2537 	}
2538 
2539 	return retval;
2540 }
2541 
2542 static void e1000_set_itr(struct e1000_adapter *adapter)
2543 {
2544 	u16 current_itr;
2545 	u32 new_itr = adapter->itr;
2546 
2547 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2548 	if (adapter->link_speed != SPEED_1000) {
2549 		current_itr = 0;
2550 		new_itr = 4000;
2551 		goto set_itr_now;
2552 	}
2553 
2554 	if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2555 		new_itr = 0;
2556 		goto set_itr_now;
2557 	}
2558 
2559 	adapter->tx_itr = e1000_update_itr(adapter->tx_itr,
2560 					   adapter->total_tx_packets,
2561 					   adapter->total_tx_bytes);
2562 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2563 	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2564 		adapter->tx_itr = low_latency;
2565 
2566 	adapter->rx_itr = e1000_update_itr(adapter->rx_itr,
2567 					   adapter->total_rx_packets,
2568 					   adapter->total_rx_bytes);
2569 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2570 	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2571 		adapter->rx_itr = low_latency;
2572 
2573 	current_itr = max(adapter->rx_itr, adapter->tx_itr);
2574 
2575 	/* counts and packets in update_itr are dependent on these numbers */
2576 	switch (current_itr) {
2577 	case lowest_latency:
2578 		new_itr = 70000;
2579 		break;
2580 	case low_latency:
2581 		new_itr = 20000;	/* aka hwitr = ~200 */
2582 		break;
2583 	case bulk_latency:
2584 		new_itr = 4000;
2585 		break;
2586 	default:
2587 		break;
2588 	}
2589 
2590 set_itr_now:
2591 	if (new_itr != adapter->itr) {
2592 		/* this attempts to bias the interrupt rate towards Bulk
2593 		 * by adding intermediate steps when interrupt rate is
2594 		 * increasing
2595 		 */
2596 		new_itr = new_itr > adapter->itr ?
2597 		    min(adapter->itr + (new_itr >> 2), new_itr) : new_itr;
2598 		adapter->itr = new_itr;
2599 		adapter->rx_ring->itr_val = new_itr;
2600 		if (adapter->msix_entries)
2601 			adapter->rx_ring->set_itr = 1;
2602 		else
2603 			e1000e_write_itr(adapter, new_itr);
2604 	}
2605 }
2606 
2607 /**
2608  * e1000e_write_itr - write the ITR value to the appropriate registers
2609  * @adapter: address of board private structure
2610  * @itr: new ITR value to program
2611  *
2612  * e1000e_write_itr determines if the adapter is in MSI-X mode
2613  * and, if so, writes the EITR registers with the ITR value.
2614  * Otherwise, it writes the ITR value into the ITR register.
2615  **/
2616 void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
2617 {
2618 	struct e1000_hw *hw = &adapter->hw;
2619 	u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
2620 
2621 	if (adapter->msix_entries) {
2622 		int vector;
2623 
2624 		for (vector = 0; vector < adapter->num_vectors; vector++)
2625 			writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
2626 	} else {
2627 		ew32(ITR, new_itr);
2628 	}
2629 }
2630 
2631 /**
2632  * e1000_alloc_queues - Allocate memory for all rings
2633  * @adapter: board private structure to initialize
2634  **/
2635 static int e1000_alloc_queues(struct e1000_adapter *adapter)
2636 {
2637 	int size = sizeof(struct e1000_ring);
2638 
2639 	adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2640 	if (!adapter->tx_ring)
2641 		goto err;
2642 	adapter->tx_ring->count = adapter->tx_ring_count;
2643 	adapter->tx_ring->adapter = adapter;
2644 
2645 	adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2646 	if (!adapter->rx_ring)
2647 		goto err;
2648 	adapter->rx_ring->count = adapter->rx_ring_count;
2649 	adapter->rx_ring->adapter = adapter;
2650 
2651 	return 0;
2652 err:
2653 	e_err("Unable to allocate memory for queues\n");
2654 	kfree(adapter->rx_ring);
2655 	kfree(adapter->tx_ring);
2656 	return -ENOMEM;
2657 }
2658 
2659 /**
2660  * e1000e_poll - NAPI Rx polling callback
2661  * @napi: struct associated with this polling callback
2662  * @weight: number of packets driver is allowed to process this poll
2663  **/
2664 static int e1000e_poll(struct napi_struct *napi, int weight)
2665 {
2666 	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2667 						     napi);
2668 	struct e1000_hw *hw = &adapter->hw;
2669 	struct net_device *poll_dev = adapter->netdev;
2670 	int tx_cleaned = 1, work_done = 0;
2671 
2672 	adapter = netdev_priv(poll_dev);
2673 
2674 	if (!adapter->msix_entries ||
2675 	    (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2676 		tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2677 
2678 	adapter->clean_rx(adapter->rx_ring, &work_done, weight);
2679 
2680 	if (!tx_cleaned)
2681 		work_done = weight;
2682 
2683 	/* If weight not fully consumed, exit the polling mode */
2684 	if (work_done < weight) {
2685 		if (adapter->itr_setting & 3)
2686 			e1000_set_itr(adapter);
2687 		napi_complete_done(napi, work_done);
2688 		if (!test_bit(__E1000_DOWN, &adapter->state)) {
2689 			if (adapter->msix_entries)
2690 				ew32(IMS, adapter->rx_ring->ims_val);
2691 			else
2692 				e1000_irq_enable(adapter);
2693 		}
2694 	}
2695 
2696 	return work_done;
2697 }
2698 
2699 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
2700 				 __always_unused __be16 proto, u16 vid)
2701 {
2702 	struct e1000_adapter *adapter = netdev_priv(netdev);
2703 	struct e1000_hw *hw = &adapter->hw;
2704 	u32 vfta, index;
2705 
2706 	/* don't update vlan cookie if already programmed */
2707 	if ((adapter->hw.mng_cookie.status &
2708 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2709 	    (vid == adapter->mng_vlan_id))
2710 		return 0;
2711 
2712 	/* add VID to filter table */
2713 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2714 		index = (vid >> 5) & 0x7F;
2715 		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2716 		vfta |= BIT((vid & 0x1F));
2717 		hw->mac.ops.write_vfta(hw, index, vfta);
2718 	}
2719 
2720 	set_bit(vid, adapter->active_vlans);
2721 
2722 	return 0;
2723 }
2724 
2725 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
2726 				  __always_unused __be16 proto, u16 vid)
2727 {
2728 	struct e1000_adapter *adapter = netdev_priv(netdev);
2729 	struct e1000_hw *hw = &adapter->hw;
2730 	u32 vfta, index;
2731 
2732 	if ((adapter->hw.mng_cookie.status &
2733 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2734 	    (vid == adapter->mng_vlan_id)) {
2735 		/* release control to f/w */
2736 		e1000e_release_hw_control(adapter);
2737 		return 0;
2738 	}
2739 
2740 	/* remove VID from filter table */
2741 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2742 		index = (vid >> 5) & 0x7F;
2743 		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2744 		vfta &= ~BIT((vid & 0x1F));
2745 		hw->mac.ops.write_vfta(hw, index, vfta);
2746 	}
2747 
2748 	clear_bit(vid, adapter->active_vlans);
2749 
2750 	return 0;
2751 }
2752 
2753 /**
2754  * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2755  * @adapter: board private structure to initialize
2756  **/
2757 static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2758 {
2759 	struct net_device *netdev = adapter->netdev;
2760 	struct e1000_hw *hw = &adapter->hw;
2761 	u32 rctl;
2762 
2763 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2764 		/* disable VLAN receive filtering */
2765 		rctl = er32(RCTL);
2766 		rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2767 		ew32(RCTL, rctl);
2768 
2769 		if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2770 			e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
2771 					       adapter->mng_vlan_id);
2772 			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2773 		}
2774 	}
2775 }
2776 
2777 /**
2778  * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2779  * @adapter: board private structure to initialize
2780  **/
2781 static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2782 {
2783 	struct e1000_hw *hw = &adapter->hw;
2784 	u32 rctl;
2785 
2786 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2787 		/* enable VLAN receive filtering */
2788 		rctl = er32(RCTL);
2789 		rctl |= E1000_RCTL_VFE;
2790 		rctl &= ~E1000_RCTL_CFIEN;
2791 		ew32(RCTL, rctl);
2792 	}
2793 }
2794 
2795 /**
2796  * e1000e_vlan_strip_disable - helper to disable HW VLAN stripping
2797  * @adapter: board private structure to initialize
2798  **/
2799 static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2800 {
2801 	struct e1000_hw *hw = &adapter->hw;
2802 	u32 ctrl;
2803 
2804 	/* disable VLAN tag insert/strip */
2805 	ctrl = er32(CTRL);
2806 	ctrl &= ~E1000_CTRL_VME;
2807 	ew32(CTRL, ctrl);
2808 }
2809 
2810 /**
2811  * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2812  * @adapter: board private structure to initialize
2813  **/
2814 static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2815 {
2816 	struct e1000_hw *hw = &adapter->hw;
2817 	u32 ctrl;
2818 
2819 	/* enable VLAN tag insert/strip */
2820 	ctrl = er32(CTRL);
2821 	ctrl |= E1000_CTRL_VME;
2822 	ew32(CTRL, ctrl);
2823 }
2824 
2825 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2826 {
2827 	struct net_device *netdev = adapter->netdev;
2828 	u16 vid = adapter->hw.mng_cookie.vlan_id;
2829 	u16 old_vid = adapter->mng_vlan_id;
2830 
2831 	if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2832 		e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
2833 		adapter->mng_vlan_id = vid;
2834 	}
2835 
2836 	if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2837 		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid);
2838 }
2839 
2840 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2841 {
2842 	u16 vid;
2843 
2844 	e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
2845 
2846 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2847 	    e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
2848 }
2849 
2850 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2851 {
2852 	struct e1000_hw *hw = &adapter->hw;
2853 	u32 manc, manc2h, mdef, i, j;
2854 
2855 	if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2856 		return;
2857 
2858 	manc = er32(MANC);
2859 
2860 	/* enable receiving management packets to the host. this will probably
2861 	 * generate destination unreachable messages from the host OS, but
2862 	 * the packets will be handled on SMBUS
2863 	 */
2864 	manc |= E1000_MANC_EN_MNG2HOST;
2865 	manc2h = er32(MANC2H);
2866 
2867 	switch (hw->mac.type) {
2868 	default:
2869 		manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2870 		break;
2871 	case e1000_82574:
2872 	case e1000_82583:
2873 		/* Check if IPMI pass-through decision filter already exists;
2874 		 * if so, enable it.
2875 		 */
2876 		for (i = 0, j = 0; i < 8; i++) {
2877 			mdef = er32(MDEF(i));
2878 
2879 			/* Ignore filters with anything other than IPMI ports */
2880 			if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2881 				continue;
2882 
2883 			/* Enable this decision filter in MANC2H */
2884 			if (mdef)
2885 				manc2h |= BIT(i);
2886 
2887 			j |= mdef;
2888 		}
2889 
2890 		if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2891 			break;
2892 
2893 		/* Create new decision filter in an empty filter */
2894 		for (i = 0, j = 0; i < 8; i++)
2895 			if (er32(MDEF(i)) == 0) {
2896 				ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2897 					       E1000_MDEF_PORT_664));
2898 				manc2h |= BIT(1);
2899 				j++;
2900 				break;
2901 			}
2902 
2903 		if (!j)
2904 			e_warn("Unable to create IPMI pass-through filter\n");
2905 		break;
2906 	}
2907 
2908 	ew32(MANC2H, manc2h);
2909 	ew32(MANC, manc);
2910 }
2911 
2912 /**
2913  * e1000_configure_tx - Configure Transmit Unit after Reset
2914  * @adapter: board private structure
2915  *
2916  * Configure the Tx unit of the MAC after a reset.
2917  **/
2918 static void e1000_configure_tx(struct e1000_adapter *adapter)
2919 {
2920 	struct e1000_hw *hw = &adapter->hw;
2921 	struct e1000_ring *tx_ring = adapter->tx_ring;
2922 	u64 tdba;
2923 	u32 tdlen, tctl, tarc;
2924 
2925 	/* Setup the HW Tx Head and Tail descriptor pointers */
2926 	tdba = tx_ring->dma;
2927 	tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2928 	ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2929 	ew32(TDBAH(0), (tdba >> 32));
2930 	ew32(TDLEN(0), tdlen);
2931 	ew32(TDH(0), 0);
2932 	ew32(TDT(0), 0);
2933 	tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2934 	tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2935 
2936 	writel(0, tx_ring->head);
2937 	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2938 		e1000e_update_tdt_wa(tx_ring, 0);
2939 	else
2940 		writel(0, tx_ring->tail);
2941 
2942 	/* Set the Tx Interrupt Delay register */
2943 	ew32(TIDV, adapter->tx_int_delay);
2944 	/* Tx irq moderation */
2945 	ew32(TADV, adapter->tx_abs_int_delay);
2946 
2947 	if (adapter->flags2 & FLAG2_DMA_BURST) {
2948 		u32 txdctl = er32(TXDCTL(0));
2949 
2950 		txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2951 			    E1000_TXDCTL_WTHRESH);
2952 		/* set up some performance related parameters to encourage the
2953 		 * hardware to use the bus more efficiently in bursts, depends
2954 		 * on the tx_int_delay to be enabled,
2955 		 * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2956 		 * hthresh = 1 ==> prefetch when one or more available
2957 		 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2958 		 * BEWARE: this seems to work but should be considered first if
2959 		 * there are Tx hangs or other Tx related bugs
2960 		 */
2961 		txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2962 		ew32(TXDCTL(0), txdctl);
2963 	}
2964 	/* erratum work around: set txdctl the same for both queues */
2965 	ew32(TXDCTL(1), er32(TXDCTL(0)));
2966 
2967 	/* Program the Transmit Control Register */
2968 	tctl = er32(TCTL);
2969 	tctl &= ~E1000_TCTL_CT;
2970 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2971 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2972 
2973 	if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2974 		tarc = er32(TARC(0));
2975 		/* set the speed mode bit, we'll clear it if we're not at
2976 		 * gigabit link later
2977 		 */
2978 #define SPEED_MODE_BIT BIT(21)
2979 		tarc |= SPEED_MODE_BIT;
2980 		ew32(TARC(0), tarc);
2981 	}
2982 
2983 	/* errata: program both queues to unweighted RR */
2984 	if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2985 		tarc = er32(TARC(0));
2986 		tarc |= 1;
2987 		ew32(TARC(0), tarc);
2988 		tarc = er32(TARC(1));
2989 		tarc |= 1;
2990 		ew32(TARC(1), tarc);
2991 	}
2992 
2993 	/* Setup Transmit Descriptor Settings for eop descriptor */
2994 	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2995 
2996 	/* only set IDE if we are delaying interrupts using the timers */
2997 	if (adapter->tx_int_delay)
2998 		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2999 
3000 	/* enable Report Status bit */
3001 	adapter->txd_cmd |= E1000_TXD_CMD_RS;
3002 
3003 	ew32(TCTL, tctl);
3004 
3005 	hw->mac.ops.config_collision_dist(hw);
3006 
3007 	/* SPT and CNP Si errata workaround to avoid data corruption */
3008 	if (hw->mac.type >= e1000_pch_spt) {
3009 		u32 reg_val;
3010 
3011 		reg_val = er32(IOSFPC);
3012 		reg_val |= E1000_RCTL_RDMTS_HEX;
3013 		ew32(IOSFPC, reg_val);
3014 
3015 		reg_val = er32(TARC(0));
3016 		reg_val |= E1000_TARC0_CB_MULTIQ_3_REQ;
3017 		ew32(TARC(0), reg_val);
3018 	}
3019 }
3020 
3021 /**
3022  * e1000_setup_rctl - configure the receive control registers
3023  * @adapter: Board private structure
3024  **/
3025 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
3026 			   (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
3027 static void e1000_setup_rctl(struct e1000_adapter *adapter)
3028 {
3029 	struct e1000_hw *hw = &adapter->hw;
3030 	u32 rctl, rfctl;
3031 	u32 pages = 0;
3032 
3033 	/* Workaround Si errata on PCHx - configure jumbo frame flow.
3034 	 * If jumbo frames not set, program related MAC/PHY registers
3035 	 * to h/w defaults
3036 	 */
3037 	if (hw->mac.type >= e1000_pch2lan) {
3038 		s32 ret_val;
3039 
3040 		if (adapter->netdev->mtu > ETH_DATA_LEN)
3041 			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
3042 		else
3043 			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
3044 
3045 		if (ret_val)
3046 			e_dbg("failed to enable|disable jumbo frame workaround mode\n");
3047 	}
3048 
3049 	/* Program MC offset vector base */
3050 	rctl = er32(RCTL);
3051 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3052 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3053 	    E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3054 	    (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3055 
3056 	/* Do not Store bad packets */
3057 	rctl &= ~E1000_RCTL_SBP;
3058 
3059 	/* Enable Long Packet receive */
3060 	if (adapter->netdev->mtu <= ETH_DATA_LEN)
3061 		rctl &= ~E1000_RCTL_LPE;
3062 	else
3063 		rctl |= E1000_RCTL_LPE;
3064 
3065 	/* Some systems expect that the CRC is included in SMBUS traffic. The
3066 	 * hardware strips the CRC before sending to both SMBUS (BMC) and to
3067 	 * host memory when this is enabled
3068 	 */
3069 	if (adapter->flags2 & FLAG2_CRC_STRIPPING)
3070 		rctl |= E1000_RCTL_SECRC;
3071 
3072 	/* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3073 	if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
3074 		u16 phy_data;
3075 
3076 		e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
3077 		phy_data &= 0xfff8;
3078 		phy_data |= BIT(2);
3079 		e1e_wphy(hw, PHY_REG(770, 26), phy_data);
3080 
3081 		e1e_rphy(hw, 22, &phy_data);
3082 		phy_data &= 0x0fff;
3083 		phy_data |= BIT(14);
3084 		e1e_wphy(hw, 0x10, 0x2823);
3085 		e1e_wphy(hw, 0x11, 0x0003);
3086 		e1e_wphy(hw, 22, phy_data);
3087 	}
3088 
3089 	/* Setup buffer sizes */
3090 	rctl &= ~E1000_RCTL_SZ_4096;
3091 	rctl |= E1000_RCTL_BSEX;
3092 	switch (adapter->rx_buffer_len) {
3093 	case 2048:
3094 	default:
3095 		rctl |= E1000_RCTL_SZ_2048;
3096 		rctl &= ~E1000_RCTL_BSEX;
3097 		break;
3098 	case 4096:
3099 		rctl |= E1000_RCTL_SZ_4096;
3100 		break;
3101 	case 8192:
3102 		rctl |= E1000_RCTL_SZ_8192;
3103 		break;
3104 	case 16384:
3105 		rctl |= E1000_RCTL_SZ_16384;
3106 		break;
3107 	}
3108 
3109 	/* Enable Extended Status in all Receive Descriptors */
3110 	rfctl = er32(RFCTL);
3111 	rfctl |= E1000_RFCTL_EXTEN;
3112 	ew32(RFCTL, rfctl);
3113 
3114 	/* 82571 and greater support packet-split where the protocol
3115 	 * header is placed in skb->data and the packet data is
3116 	 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3117 	 * In the case of a non-split, skb->data is linearly filled,
3118 	 * followed by the page buffers.  Therefore, skb->data is
3119 	 * sized to hold the largest protocol header.
3120 	 *
3121 	 * allocations using alloc_page take too long for regular MTU
3122 	 * so only enable packet split for jumbo frames
3123 	 *
3124 	 * Using pages when the page size is greater than 16k wastes
3125 	 * a lot of memory, since we allocate 3 pages at all times
3126 	 * per packet.
3127 	 */
3128 	pages = PAGE_USE_COUNT(adapter->netdev->mtu);
3129 	if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
3130 		adapter->rx_ps_pages = pages;
3131 	else
3132 		adapter->rx_ps_pages = 0;
3133 
3134 	if (adapter->rx_ps_pages) {
3135 		u32 psrctl = 0;
3136 
3137 		/* Enable Packet split descriptors */
3138 		rctl |= E1000_RCTL_DTYP_PS;
3139 
3140 		psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT;
3141 
3142 		switch (adapter->rx_ps_pages) {
3143 		case 3:
3144 			psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT;
3145 			/* fall-through */
3146 		case 2:
3147 			psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT;
3148 			/* fall-through */
3149 		case 1:
3150 			psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT;
3151 			break;
3152 		}
3153 
3154 		ew32(PSRCTL, psrctl);
3155 	}
3156 
3157 	/* This is useful for sniffing bad packets. */
3158 	if (adapter->netdev->features & NETIF_F_RXALL) {
3159 		/* UPE and MPE will be handled by normal PROMISC logic
3160 		 * in e1000e_set_rx_mode
3161 		 */
3162 		rctl |= (E1000_RCTL_SBP |	/* Receive bad packets */
3163 			 E1000_RCTL_BAM |	/* RX All Bcast Pkts */
3164 			 E1000_RCTL_PMCF);	/* RX All MAC Ctrl Pkts */
3165 
3166 		rctl &= ~(E1000_RCTL_VFE |	/* Disable VLAN filter */
3167 			  E1000_RCTL_DPF |	/* Allow filtered pause */
3168 			  E1000_RCTL_CFIEN);	/* Dis VLAN CFIEN Filter */
3169 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3170 		 * and that breaks VLANs.
3171 		 */
3172 	}
3173 
3174 	ew32(RCTL, rctl);
3175 	/* just started the receive unit, no need to restart */
3176 	adapter->flags &= ~FLAG_RESTART_NOW;
3177 }
3178 
3179 /**
3180  * e1000_configure_rx - Configure Receive Unit after Reset
3181  * @adapter: board private structure
3182  *
3183  * Configure the Rx unit of the MAC after a reset.
3184  **/
3185 static void e1000_configure_rx(struct e1000_adapter *adapter)
3186 {
3187 	struct e1000_hw *hw = &adapter->hw;
3188 	struct e1000_ring *rx_ring = adapter->rx_ring;
3189 	u64 rdba;
3190 	u32 rdlen, rctl, rxcsum, ctrl_ext;
3191 
3192 	if (adapter->rx_ps_pages) {
3193 		/* this is a 32 byte descriptor */
3194 		rdlen = rx_ring->count *
3195 		    sizeof(union e1000_rx_desc_packet_split);
3196 		adapter->clean_rx = e1000_clean_rx_irq_ps;
3197 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3198 	} else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3199 		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3200 		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3201 		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3202 	} else {
3203 		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3204 		adapter->clean_rx = e1000_clean_rx_irq;
3205 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3206 	}
3207 
3208 	/* disable receives while setting up the descriptors */
3209 	rctl = er32(RCTL);
3210 	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3211 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
3212 	e1e_flush();
3213 	usleep_range(10000, 20000);
3214 
3215 	if (adapter->flags2 & FLAG2_DMA_BURST) {
3216 		/* set the writeback threshold (only takes effect if the RDTR
3217 		 * is set). set GRAN=1 and write back up to 0x4 worth, and
3218 		 * enable prefetching of 0x20 Rx descriptors
3219 		 * granularity = 01
3220 		 * wthresh = 04,
3221 		 * hthresh = 04,
3222 		 * pthresh = 0x20
3223 		 */
3224 		ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3225 		ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3226 
3227 		/* override the delay timers for enabling bursting, only if
3228 		 * the value was not set by the user via module options
3229 		 */
3230 		if (adapter->rx_int_delay == DEFAULT_RDTR)
3231 			adapter->rx_int_delay = BURST_RDTR;
3232 		if (adapter->rx_abs_int_delay == DEFAULT_RADV)
3233 			adapter->rx_abs_int_delay = BURST_RADV;
3234 	}
3235 
3236 	/* set the Receive Delay Timer Register */
3237 	ew32(RDTR, adapter->rx_int_delay);
3238 
3239 	/* irq moderation */
3240 	ew32(RADV, adapter->rx_abs_int_delay);
3241 	if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3242 		e1000e_write_itr(adapter, adapter->itr);
3243 
3244 	ctrl_ext = er32(CTRL_EXT);
3245 	/* Auto-Mask interrupts upon ICR access */
3246 	ctrl_ext |= E1000_CTRL_EXT_IAME;
3247 	ew32(IAM, 0xffffffff);
3248 	ew32(CTRL_EXT, ctrl_ext);
3249 	e1e_flush();
3250 
3251 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
3252 	 * the Base and Length of the Rx Descriptor Ring
3253 	 */
3254 	rdba = rx_ring->dma;
3255 	ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3256 	ew32(RDBAH(0), (rdba >> 32));
3257 	ew32(RDLEN(0), rdlen);
3258 	ew32(RDH(0), 0);
3259 	ew32(RDT(0), 0);
3260 	rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3261 	rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3262 
3263 	writel(0, rx_ring->head);
3264 	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
3265 		e1000e_update_rdt_wa(rx_ring, 0);
3266 	else
3267 		writel(0, rx_ring->tail);
3268 
3269 	/* Enable Receive Checksum Offload for TCP and UDP */
3270 	rxcsum = er32(RXCSUM);
3271 	if (adapter->netdev->features & NETIF_F_RXCSUM)
3272 		rxcsum |= E1000_RXCSUM_TUOFL;
3273 	else
3274 		rxcsum &= ~E1000_RXCSUM_TUOFL;
3275 	ew32(RXCSUM, rxcsum);
3276 
3277 	/* With jumbo frames, excessive C-state transition latencies result
3278 	 * in dropped transactions.
3279 	 */
3280 	if (adapter->netdev->mtu > ETH_DATA_LEN) {
3281 		u32 lat =
3282 		    ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 -
3283 		     adapter->max_frame_size) * 8 / 1000;
3284 
3285 		if (adapter->flags & FLAG_IS_ICH) {
3286 			u32 rxdctl = er32(RXDCTL(0));
3287 
3288 			ew32(RXDCTL(0), rxdctl | 0x3);
3289 		}
3290 
3291 		pm_qos_update_request(&adapter->pm_qos_req, lat);
3292 	} else {
3293 		pm_qos_update_request(&adapter->pm_qos_req,
3294 				      PM_QOS_DEFAULT_VALUE);
3295 	}
3296 
3297 	/* Enable Receives */
3298 	ew32(RCTL, rctl);
3299 }
3300 
3301 /**
3302  * e1000e_write_mc_addr_list - write multicast addresses to MTA
3303  * @netdev: network interface device structure
3304  *
3305  * Writes multicast address list to the MTA hash table.
3306  * Returns: -ENOMEM on failure
3307  *                0 on no addresses written
3308  *                X on writing X addresses to MTA
3309  */
3310 static int e1000e_write_mc_addr_list(struct net_device *netdev)
3311 {
3312 	struct e1000_adapter *adapter = netdev_priv(netdev);
3313 	struct e1000_hw *hw = &adapter->hw;
3314 	struct netdev_hw_addr *ha;
3315 	u8 *mta_list;
3316 	int i;
3317 
3318 	if (netdev_mc_empty(netdev)) {
3319 		/* nothing to program, so clear mc list */
3320 		hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3321 		return 0;
3322 	}
3323 
3324 	mta_list = kzalloc(netdev_mc_count(netdev) * ETH_ALEN, GFP_ATOMIC);
3325 	if (!mta_list)
3326 		return -ENOMEM;
3327 
3328 	/* update_mc_addr_list expects a packed array of only addresses. */
3329 	i = 0;
3330 	netdev_for_each_mc_addr(ha, netdev)
3331 	    memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3332 
3333 	hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3334 	kfree(mta_list);
3335 
3336 	return netdev_mc_count(netdev);
3337 }
3338 
3339 /**
3340  * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3341  * @netdev: network interface device structure
3342  *
3343  * Writes unicast address list to the RAR table.
3344  * Returns: -ENOMEM on failure/insufficient address space
3345  *                0 on no addresses written
3346  *                X on writing X addresses to the RAR table
3347  **/
3348 static int e1000e_write_uc_addr_list(struct net_device *netdev)
3349 {
3350 	struct e1000_adapter *adapter = netdev_priv(netdev);
3351 	struct e1000_hw *hw = &adapter->hw;
3352 	unsigned int rar_entries;
3353 	int count = 0;
3354 
3355 	rar_entries = hw->mac.ops.rar_get_count(hw);
3356 
3357 	/* save a rar entry for our hardware address */
3358 	rar_entries--;
3359 
3360 	/* save a rar entry for the LAA workaround */
3361 	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3362 		rar_entries--;
3363 
3364 	/* return ENOMEM indicating insufficient memory for addresses */
3365 	if (netdev_uc_count(netdev) > rar_entries)
3366 		return -ENOMEM;
3367 
3368 	if (!netdev_uc_empty(netdev) && rar_entries) {
3369 		struct netdev_hw_addr *ha;
3370 
3371 		/* write the addresses in reverse order to avoid write
3372 		 * combining
3373 		 */
3374 		netdev_for_each_uc_addr(ha, netdev) {
3375 			int ret_val;
3376 
3377 			if (!rar_entries)
3378 				break;
3379 			ret_val = hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3380 			if (ret_val < 0)
3381 				return -ENOMEM;
3382 			count++;
3383 		}
3384 	}
3385 
3386 	/* zero out the remaining RAR entries not used above */
3387 	for (; rar_entries > 0; rar_entries--) {
3388 		ew32(RAH(rar_entries), 0);
3389 		ew32(RAL(rar_entries), 0);
3390 	}
3391 	e1e_flush();
3392 
3393 	return count;
3394 }
3395 
3396 /**
3397  * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3398  * @netdev: network interface device structure
3399  *
3400  * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3401  * address list or the network interface flags are updated.  This routine is
3402  * responsible for configuring the hardware for proper unicast, multicast,
3403  * promiscuous mode, and all-multi behavior.
3404  **/
3405 static void e1000e_set_rx_mode(struct net_device *netdev)
3406 {
3407 	struct e1000_adapter *adapter = netdev_priv(netdev);
3408 	struct e1000_hw *hw = &adapter->hw;
3409 	u32 rctl;
3410 
3411 	if (pm_runtime_suspended(netdev->dev.parent))
3412 		return;
3413 
3414 	/* Check for Promiscuous and All Multicast modes */
3415 	rctl = er32(RCTL);
3416 
3417 	/* clear the affected bits */
3418 	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3419 
3420 	if (netdev->flags & IFF_PROMISC) {
3421 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3422 		/* Do not hardware filter VLANs in promisc mode */
3423 		e1000e_vlan_filter_disable(adapter);
3424 	} else {
3425 		int count;
3426 
3427 		if (netdev->flags & IFF_ALLMULTI) {
3428 			rctl |= E1000_RCTL_MPE;
3429 		} else {
3430 			/* Write addresses to the MTA, if the attempt fails
3431 			 * then we should just turn on promiscuous mode so
3432 			 * that we can at least receive multicast traffic
3433 			 */
3434 			count = e1000e_write_mc_addr_list(netdev);
3435 			if (count < 0)
3436 				rctl |= E1000_RCTL_MPE;
3437 		}
3438 		e1000e_vlan_filter_enable(adapter);
3439 		/* Write addresses to available RAR registers, if there is not
3440 		 * sufficient space to store all the addresses then enable
3441 		 * unicast promiscuous mode
3442 		 */
3443 		count = e1000e_write_uc_addr_list(netdev);
3444 		if (count < 0)
3445 			rctl |= E1000_RCTL_UPE;
3446 	}
3447 
3448 	ew32(RCTL, rctl);
3449 
3450 	if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
3451 		e1000e_vlan_strip_enable(adapter);
3452 	else
3453 		e1000e_vlan_strip_disable(adapter);
3454 }
3455 
3456 static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3457 {
3458 	struct e1000_hw *hw = &adapter->hw;
3459 	u32 mrqc, rxcsum;
3460 	u32 rss_key[10];
3461 	int i;
3462 
3463 	netdev_rss_key_fill(rss_key, sizeof(rss_key));
3464 	for (i = 0; i < 10; i++)
3465 		ew32(RSSRK(i), rss_key[i]);
3466 
3467 	/* Direct all traffic to queue 0 */
3468 	for (i = 0; i < 32; i++)
3469 		ew32(RETA(i), 0);
3470 
3471 	/* Disable raw packet checksumming so that RSS hash is placed in
3472 	 * descriptor on writeback.
3473 	 */
3474 	rxcsum = er32(RXCSUM);
3475 	rxcsum |= E1000_RXCSUM_PCSD;
3476 
3477 	ew32(RXCSUM, rxcsum);
3478 
3479 	mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3480 		E1000_MRQC_RSS_FIELD_IPV4_TCP |
3481 		E1000_MRQC_RSS_FIELD_IPV6 |
3482 		E1000_MRQC_RSS_FIELD_IPV6_TCP |
3483 		E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3484 
3485 	ew32(MRQC, mrqc);
3486 }
3487 
3488 /**
3489  * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3490  * @adapter: board private structure
3491  * @timinca: pointer to returned time increment attributes
3492  *
3493  * Get attributes for incrementing the System Time Register SYSTIML/H at
3494  * the default base frequency, and set the cyclecounter shift value.
3495  **/
3496 s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca)
3497 {
3498 	struct e1000_hw *hw = &adapter->hw;
3499 	u32 incvalue, incperiod, shift;
3500 
3501 	/* Make sure clock is enabled on I217/I218/I219  before checking
3502 	 * the frequency
3503 	 */
3504 	if ((hw->mac.type >= e1000_pch_lpt) &&
3505 	    !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) &&
3506 	    !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) {
3507 		u32 fextnvm7 = er32(FEXTNVM7);
3508 
3509 		if (!(fextnvm7 & BIT(0))) {
3510 			ew32(FEXTNVM7, fextnvm7 | BIT(0));
3511 			e1e_flush();
3512 		}
3513 	}
3514 
3515 	switch (hw->mac.type) {
3516 	case e1000_pch2lan:
3517 		/* Stable 96MHz frequency */
3518 		incperiod = INCPERIOD_96MHZ;
3519 		incvalue = INCVALUE_96MHZ;
3520 		shift = INCVALUE_SHIFT_96MHZ;
3521 		adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3522 		break;
3523 	case e1000_pch_lpt:
3524 		if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3525 			/* Stable 96MHz frequency */
3526 			incperiod = INCPERIOD_96MHZ;
3527 			incvalue = INCVALUE_96MHZ;
3528 			shift = INCVALUE_SHIFT_96MHZ;
3529 			adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3530 		} else {
3531 			/* Stable 25MHz frequency */
3532 			incperiod = INCPERIOD_25MHZ;
3533 			incvalue = INCVALUE_25MHZ;
3534 			shift = INCVALUE_SHIFT_25MHZ;
3535 			adapter->cc.shift = shift;
3536 		}
3537 		break;
3538 	case e1000_pch_spt:
3539 		if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3540 			/* Stable 24MHz frequency */
3541 			incperiod = INCPERIOD_24MHZ;
3542 			incvalue = INCVALUE_24MHZ;
3543 			shift = INCVALUE_SHIFT_24MHZ;
3544 			adapter->cc.shift = shift;
3545 			break;
3546 		}
3547 		return -EINVAL;
3548 	case e1000_pch_cnp:
3549 		if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3550 			/* Stable 24MHz frequency */
3551 			incperiod = INCPERIOD_24MHZ;
3552 			incvalue = INCVALUE_24MHZ;
3553 			shift = INCVALUE_SHIFT_24MHZ;
3554 			adapter->cc.shift = shift;
3555 		} else {
3556 			/* Stable 38400KHz frequency */
3557 			incperiod = INCPERIOD_38400KHZ;
3558 			incvalue = INCVALUE_38400KHZ;
3559 			shift = INCVALUE_SHIFT_38400KHZ;
3560 			adapter->cc.shift = shift;
3561 		}
3562 		break;
3563 	case e1000_82574:
3564 	case e1000_82583:
3565 		/* Stable 25MHz frequency */
3566 		incperiod = INCPERIOD_25MHZ;
3567 		incvalue = INCVALUE_25MHZ;
3568 		shift = INCVALUE_SHIFT_25MHZ;
3569 		adapter->cc.shift = shift;
3570 		break;
3571 	default:
3572 		return -EINVAL;
3573 	}
3574 
3575 	*timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) |
3576 		    ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK));
3577 
3578 	return 0;
3579 }
3580 
3581 /**
3582  * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3583  * @adapter: board private structure
3584  *
3585  * Outgoing time stamping can be enabled and disabled. Play nice and
3586  * disable it when requested, although it shouldn't cause any overhead
3587  * when no packet needs it. At most one packet in the queue may be
3588  * marked for time stamping, otherwise it would be impossible to tell
3589  * for sure to which packet the hardware time stamp belongs.
3590  *
3591  * Incoming time stamping has to be configured via the hardware filters.
3592  * Not all combinations are supported, in particular event type has to be
3593  * specified. Matching the kind of event packet is not supported, with the
3594  * exception of "all V2 events regardless of level 2 or 4".
3595  **/
3596 static int e1000e_config_hwtstamp(struct e1000_adapter *adapter,
3597 				  struct hwtstamp_config *config)
3598 {
3599 	struct e1000_hw *hw = &adapter->hw;
3600 	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
3601 	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
3602 	u32 rxmtrl = 0;
3603 	u16 rxudp = 0;
3604 	bool is_l4 = false;
3605 	bool is_l2 = false;
3606 	u32 regval;
3607 
3608 	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3609 		return -EINVAL;
3610 
3611 	/* flags reserved for future extensions - must be zero */
3612 	if (config->flags)
3613 		return -EINVAL;
3614 
3615 	switch (config->tx_type) {
3616 	case HWTSTAMP_TX_OFF:
3617 		tsync_tx_ctl = 0;
3618 		break;
3619 	case HWTSTAMP_TX_ON:
3620 		break;
3621 	default:
3622 		return -ERANGE;
3623 	}
3624 
3625 	switch (config->rx_filter) {
3626 	case HWTSTAMP_FILTER_NONE:
3627 		tsync_rx_ctl = 0;
3628 		break;
3629 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3630 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3631 		rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE;
3632 		is_l4 = true;
3633 		break;
3634 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3635 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3636 		rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE;
3637 		is_l4 = true;
3638 		break;
3639 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3640 		/* Also time stamps V2 L2 Path Delay Request/Response */
3641 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3642 		rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3643 		is_l2 = true;
3644 		break;
3645 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3646 		/* Also time stamps V2 L2 Path Delay Request/Response. */
3647 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3648 		rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3649 		is_l2 = true;
3650 		break;
3651 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3652 		/* Hardware cannot filter just V2 L4 Sync messages;
3653 		 * fall-through to V2 (both L2 and L4) Sync.
3654 		 */
3655 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
3656 		/* Also time stamps V2 Path Delay Request/Response. */
3657 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3658 		rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3659 		is_l2 = true;
3660 		is_l4 = true;
3661 		break;
3662 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3663 		/* Hardware cannot filter just V2 L4 Delay Request messages;
3664 		 * fall-through to V2 (both L2 and L4) Delay Request.
3665 		 */
3666 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3667 		/* Also time stamps V2 Path Delay Request/Response. */
3668 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3669 		rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3670 		is_l2 = true;
3671 		is_l4 = true;
3672 		break;
3673 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3674 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3675 		/* Hardware cannot filter just V2 L4 or L2 Event messages;
3676 		 * fall-through to all V2 (both L2 and L4) Events.
3677 		 */
3678 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
3679 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
3680 		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
3681 		is_l2 = true;
3682 		is_l4 = true;
3683 		break;
3684 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3685 		/* For V1, the hardware can only filter Sync messages or
3686 		 * Delay Request messages but not both so fall-through to
3687 		 * time stamp all packets.
3688 		 */
3689 	case HWTSTAMP_FILTER_NTP_ALL:
3690 	case HWTSTAMP_FILTER_ALL:
3691 		is_l2 = true;
3692 		is_l4 = true;
3693 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
3694 		config->rx_filter = HWTSTAMP_FILTER_ALL;
3695 		break;
3696 	default:
3697 		return -ERANGE;
3698 	}
3699 
3700 	adapter->hwtstamp_config = *config;
3701 
3702 	/* enable/disable Tx h/w time stamping */
3703 	regval = er32(TSYNCTXCTL);
3704 	regval &= ~E1000_TSYNCTXCTL_ENABLED;
3705 	regval |= tsync_tx_ctl;
3706 	ew32(TSYNCTXCTL, regval);
3707 	if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) !=
3708 	    (regval & E1000_TSYNCTXCTL_ENABLED)) {
3709 		e_err("Timesync Tx Control register not set as expected\n");
3710 		return -EAGAIN;
3711 	}
3712 
3713 	/* enable/disable Rx h/w time stamping */
3714 	regval = er32(TSYNCRXCTL);
3715 	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
3716 	regval |= tsync_rx_ctl;
3717 	ew32(TSYNCRXCTL, regval);
3718 	if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED |
3719 				 E1000_TSYNCRXCTL_TYPE_MASK)) !=
3720 	    (regval & (E1000_TSYNCRXCTL_ENABLED |
3721 		       E1000_TSYNCRXCTL_TYPE_MASK))) {
3722 		e_err("Timesync Rx Control register not set as expected\n");
3723 		return -EAGAIN;
3724 	}
3725 
3726 	/* L2: define ethertype filter for time stamped packets */
3727 	if (is_l2)
3728 		rxmtrl |= ETH_P_1588;
3729 
3730 	/* define which PTP packets get time stamped */
3731 	ew32(RXMTRL, rxmtrl);
3732 
3733 	/* Filter by destination port */
3734 	if (is_l4) {
3735 		rxudp = PTP_EV_PORT;
3736 		cpu_to_be16s(&rxudp);
3737 	}
3738 	ew32(RXUDP, rxudp);
3739 
3740 	e1e_flush();
3741 
3742 	/* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
3743 	er32(RXSTMPH);
3744 	er32(TXSTMPH);
3745 
3746 	return 0;
3747 }
3748 
3749 /**
3750  * e1000_configure - configure the hardware for Rx and Tx
3751  * @adapter: private board structure
3752  **/
3753 static void e1000_configure(struct e1000_adapter *adapter)
3754 {
3755 	struct e1000_ring *rx_ring = adapter->rx_ring;
3756 
3757 	e1000e_set_rx_mode(adapter->netdev);
3758 
3759 	e1000_restore_vlan(adapter);
3760 	e1000_init_manageability_pt(adapter);
3761 
3762 	e1000_configure_tx(adapter);
3763 
3764 	if (adapter->netdev->features & NETIF_F_RXHASH)
3765 		e1000e_setup_rss_hash(adapter);
3766 	e1000_setup_rctl(adapter);
3767 	e1000_configure_rx(adapter);
3768 	adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3769 }
3770 
3771 /**
3772  * e1000e_power_up_phy - restore link in case the phy was powered down
3773  * @adapter: address of board private structure
3774  *
3775  * The phy may be powered down to save power and turn off link when the
3776  * driver is unloaded and wake on lan is not enabled (among others)
3777  * *** this routine MUST be followed by a call to e1000e_reset ***
3778  **/
3779 void e1000e_power_up_phy(struct e1000_adapter *adapter)
3780 {
3781 	if (adapter->hw.phy.ops.power_up)
3782 		adapter->hw.phy.ops.power_up(&adapter->hw);
3783 
3784 	adapter->hw.mac.ops.setup_link(&adapter->hw);
3785 }
3786 
3787 /**
3788  * e1000_power_down_phy - Power down the PHY
3789  *
3790  * Power down the PHY so no link is implied when interface is down.
3791  * The PHY cannot be powered down if management or WoL is active.
3792  */
3793 static void e1000_power_down_phy(struct e1000_adapter *adapter)
3794 {
3795 	if (adapter->hw.phy.ops.power_down)
3796 		adapter->hw.phy.ops.power_down(&adapter->hw);
3797 }
3798 
3799 /**
3800  * e1000_flush_tx_ring - remove all descriptors from the tx_ring
3801  *
3802  * We want to clear all pending descriptors from the TX ring.
3803  * zeroing happens when the HW reads the regs. We  assign the ring itself as
3804  * the data of the next descriptor. We don't care about the data we are about
3805  * to reset the HW.
3806  */
3807 static void e1000_flush_tx_ring(struct e1000_adapter *adapter)
3808 {
3809 	struct e1000_hw *hw = &adapter->hw;
3810 	struct e1000_ring *tx_ring = adapter->tx_ring;
3811 	struct e1000_tx_desc *tx_desc = NULL;
3812 	u32 tdt, tctl, txd_lower = E1000_TXD_CMD_IFCS;
3813 	u16 size = 512;
3814 
3815 	tctl = er32(TCTL);
3816 	ew32(TCTL, tctl | E1000_TCTL_EN);
3817 	tdt = er32(TDT(0));
3818 	BUG_ON(tdt != tx_ring->next_to_use);
3819 	tx_desc =  E1000_TX_DESC(*tx_ring, tx_ring->next_to_use);
3820 	tx_desc->buffer_addr = tx_ring->dma;
3821 
3822 	tx_desc->lower.data = cpu_to_le32(txd_lower | size);
3823 	tx_desc->upper.data = 0;
3824 	/* flush descriptors to memory before notifying the HW */
3825 	wmb();
3826 	tx_ring->next_to_use++;
3827 	if (tx_ring->next_to_use == tx_ring->count)
3828 		tx_ring->next_to_use = 0;
3829 	ew32(TDT(0), tx_ring->next_to_use);
3830 	mmiowb();
3831 	usleep_range(200, 250);
3832 }
3833 
3834 /**
3835  * e1000_flush_rx_ring - remove all descriptors from the rx_ring
3836  *
3837  * Mark all descriptors in the RX ring as consumed and disable the rx ring
3838  */
3839 static void e1000_flush_rx_ring(struct e1000_adapter *adapter)
3840 {
3841 	u32 rctl, rxdctl;
3842 	struct e1000_hw *hw = &adapter->hw;
3843 
3844 	rctl = er32(RCTL);
3845 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
3846 	e1e_flush();
3847 	usleep_range(100, 150);
3848 
3849 	rxdctl = er32(RXDCTL(0));
3850 	/* zero the lower 14 bits (prefetch and host thresholds) */
3851 	rxdctl &= 0xffffc000;
3852 
3853 	/* update thresholds: prefetch threshold to 31, host threshold to 1
3854 	 * and make sure the granularity is "descriptors" and not "cache lines"
3855 	 */
3856 	rxdctl |= (0x1F | BIT(8) | E1000_RXDCTL_THRESH_UNIT_DESC);
3857 
3858 	ew32(RXDCTL(0), rxdctl);
3859 	/* momentarily enable the RX ring for the changes to take effect */
3860 	ew32(RCTL, rctl | E1000_RCTL_EN);
3861 	e1e_flush();
3862 	usleep_range(100, 150);
3863 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
3864 }
3865 
3866 /**
3867  * e1000_flush_desc_rings - remove all descriptors from the descriptor rings
3868  *
3869  * In i219, the descriptor rings must be emptied before resetting the HW
3870  * or before changing the device state to D3 during runtime (runtime PM).
3871  *
3872  * Failure to do this will cause the HW to enter a unit hang state which can
3873  * only be released by PCI reset on the device
3874  *
3875  */
3876 
3877 static void e1000_flush_desc_rings(struct e1000_adapter *adapter)
3878 {
3879 	u16 hang_state;
3880 	u32 fext_nvm11, tdlen;
3881 	struct e1000_hw *hw = &adapter->hw;
3882 
3883 	/* First, disable MULR fix in FEXTNVM11 */
3884 	fext_nvm11 = er32(FEXTNVM11);
3885 	fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
3886 	ew32(FEXTNVM11, fext_nvm11);
3887 	/* do nothing if we're not in faulty state, or if the queue is empty */
3888 	tdlen = er32(TDLEN(0));
3889 	pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3890 			     &hang_state);
3891 	if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen)
3892 		return;
3893 	e1000_flush_tx_ring(adapter);
3894 	/* recheck, maybe the fault is caused by the rx ring */
3895 	pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3896 			     &hang_state);
3897 	if (hang_state & FLUSH_DESC_REQUIRED)
3898 		e1000_flush_rx_ring(adapter);
3899 }
3900 
3901 /**
3902  * e1000e_systim_reset - reset the timesync registers after a hardware reset
3903  * @adapter: board private structure
3904  *
3905  * When the MAC is reset, all hardware bits for timesync will be reset to the
3906  * default values. This function will restore the settings last in place.
3907  * Since the clock SYSTIME registers are reset, we will simply restore the
3908  * cyclecounter to the kernel real clock time.
3909  **/
3910 static void e1000e_systim_reset(struct e1000_adapter *adapter)
3911 {
3912 	struct ptp_clock_info *info = &adapter->ptp_clock_info;
3913 	struct e1000_hw *hw = &adapter->hw;
3914 	unsigned long flags;
3915 	u32 timinca;
3916 	s32 ret_val;
3917 
3918 	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3919 		return;
3920 
3921 	if (info->adjfreq) {
3922 		/* restore the previous ptp frequency delta */
3923 		ret_val = info->adjfreq(info, adapter->ptp_delta);
3924 	} else {
3925 		/* set the default base frequency if no adjustment possible */
3926 		ret_val = e1000e_get_base_timinca(adapter, &timinca);
3927 		if (!ret_val)
3928 			ew32(TIMINCA, timinca);
3929 	}
3930 
3931 	if (ret_val) {
3932 		dev_warn(&adapter->pdev->dev,
3933 			 "Failed to restore TIMINCA clock rate delta: %d\n",
3934 			 ret_val);
3935 		return;
3936 	}
3937 
3938 	/* reset the systim ns time counter */
3939 	spin_lock_irqsave(&adapter->systim_lock, flags);
3940 	timecounter_init(&adapter->tc, &adapter->cc,
3941 			 ktime_to_ns(ktime_get_real()));
3942 	spin_unlock_irqrestore(&adapter->systim_lock, flags);
3943 
3944 	/* restore the previous hwtstamp configuration settings */
3945 	e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config);
3946 }
3947 
3948 /**
3949  * e1000e_reset - bring the hardware into a known good state
3950  *
3951  * This function boots the hardware and enables some settings that
3952  * require a configuration cycle of the hardware - those cannot be
3953  * set/changed during runtime. After reset the device needs to be
3954  * properly configured for Rx, Tx etc.
3955  */
3956 void e1000e_reset(struct e1000_adapter *adapter)
3957 {
3958 	struct e1000_mac_info *mac = &adapter->hw.mac;
3959 	struct e1000_fc_info *fc = &adapter->hw.fc;
3960 	struct e1000_hw *hw = &adapter->hw;
3961 	u32 tx_space, min_tx_space, min_rx_space;
3962 	u32 pba = adapter->pba;
3963 	u16 hwm;
3964 
3965 	/* reset Packet Buffer Allocation to default */
3966 	ew32(PBA, pba);
3967 
3968 	if (adapter->max_frame_size > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) {
3969 		/* To maintain wire speed transmits, the Tx FIFO should be
3970 		 * large enough to accommodate two full transmit packets,
3971 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
3972 		 * the Rx FIFO should be large enough to accommodate at least
3973 		 * one full receive packet and is similarly rounded up and
3974 		 * expressed in KB.
3975 		 */
3976 		pba = er32(PBA);
3977 		/* upper 16 bits has Tx packet buffer allocation size in KB */
3978 		tx_space = pba >> 16;
3979 		/* lower 16 bits has Rx packet buffer allocation size in KB */
3980 		pba &= 0xffff;
3981 		/* the Tx fifo also stores 16 bytes of information about the Tx
3982 		 * but don't include ethernet FCS because hardware appends it
3983 		 */
3984 		min_tx_space = (adapter->max_frame_size +
3985 				sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2;
3986 		min_tx_space = ALIGN(min_tx_space, 1024);
3987 		min_tx_space >>= 10;
3988 		/* software strips receive CRC, so leave room for it */
3989 		min_rx_space = adapter->max_frame_size;
3990 		min_rx_space = ALIGN(min_rx_space, 1024);
3991 		min_rx_space >>= 10;
3992 
3993 		/* If current Tx allocation is less than the min Tx FIFO size,
3994 		 * and the min Tx FIFO size is less than the current Rx FIFO
3995 		 * allocation, take space away from current Rx allocation
3996 		 */
3997 		if ((tx_space < min_tx_space) &&
3998 		    ((min_tx_space - tx_space) < pba)) {
3999 			pba -= min_tx_space - tx_space;
4000 
4001 			/* if short on Rx space, Rx wins and must trump Tx
4002 			 * adjustment
4003 			 */
4004 			if (pba < min_rx_space)
4005 				pba = min_rx_space;
4006 		}
4007 
4008 		ew32(PBA, pba);
4009 	}
4010 
4011 	/* flow control settings
4012 	 *
4013 	 * The high water mark must be low enough to fit one full frame
4014 	 * (or the size used for early receive) above it in the Rx FIFO.
4015 	 * Set it to the lower of:
4016 	 * - 90% of the Rx FIFO size, and
4017 	 * - the full Rx FIFO size minus one full frame
4018 	 */
4019 	if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
4020 		fc->pause_time = 0xFFFF;
4021 	else
4022 		fc->pause_time = E1000_FC_PAUSE_TIME;
4023 	fc->send_xon = true;
4024 	fc->current_mode = fc->requested_mode;
4025 
4026 	switch (hw->mac.type) {
4027 	case e1000_ich9lan:
4028 	case e1000_ich10lan:
4029 		if (adapter->netdev->mtu > ETH_DATA_LEN) {
4030 			pba = 14;
4031 			ew32(PBA, pba);
4032 			fc->high_water = 0x2800;
4033 			fc->low_water = fc->high_water - 8;
4034 			break;
4035 		}
4036 		/* fall-through */
4037 	default:
4038 		hwm = min(((pba << 10) * 9 / 10),
4039 			  ((pba << 10) - adapter->max_frame_size));
4040 
4041 		fc->high_water = hwm & E1000_FCRTH_RTH;	/* 8-byte granularity */
4042 		fc->low_water = fc->high_water - 8;
4043 		break;
4044 	case e1000_pchlan:
4045 		/* Workaround PCH LOM adapter hangs with certain network
4046 		 * loads.  If hangs persist, try disabling Tx flow control.
4047 		 */
4048 		if (adapter->netdev->mtu > ETH_DATA_LEN) {
4049 			fc->high_water = 0x3500;
4050 			fc->low_water = 0x1500;
4051 		} else {
4052 			fc->high_water = 0x5000;
4053 			fc->low_water = 0x3000;
4054 		}
4055 		fc->refresh_time = 0x1000;
4056 		break;
4057 	case e1000_pch2lan:
4058 	case e1000_pch_lpt:
4059 	case e1000_pch_spt:
4060 	case e1000_pch_cnp:
4061 		fc->refresh_time = 0x0400;
4062 
4063 		if (adapter->netdev->mtu <= ETH_DATA_LEN) {
4064 			fc->high_water = 0x05C20;
4065 			fc->low_water = 0x05048;
4066 			fc->pause_time = 0x0650;
4067 			break;
4068 		}
4069 
4070 		pba = 14;
4071 		ew32(PBA, pba);
4072 		fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH;
4073 		fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL;
4074 		break;
4075 	}
4076 
4077 	/* Alignment of Tx data is on an arbitrary byte boundary with the
4078 	 * maximum size per Tx descriptor limited only to the transmit
4079 	 * allocation of the packet buffer minus 96 bytes with an upper
4080 	 * limit of 24KB due to receive synchronization limitations.
4081 	 */
4082 	adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
4083 				       24 << 10);
4084 
4085 	/* Disable Adaptive Interrupt Moderation if 2 full packets cannot
4086 	 * fit in receive buffer.
4087 	 */
4088 	if (adapter->itr_setting & 0x3) {
4089 		if ((adapter->max_frame_size * 2) > (pba << 10)) {
4090 			if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
4091 				dev_info(&adapter->pdev->dev,
4092 					 "Interrupt Throttle Rate off\n");
4093 				adapter->flags2 |= FLAG2_DISABLE_AIM;
4094 				e1000e_write_itr(adapter, 0);
4095 			}
4096 		} else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
4097 			dev_info(&adapter->pdev->dev,
4098 				 "Interrupt Throttle Rate on\n");
4099 			adapter->flags2 &= ~FLAG2_DISABLE_AIM;
4100 			adapter->itr = 20000;
4101 			e1000e_write_itr(adapter, adapter->itr);
4102 		}
4103 	}
4104 
4105 	if (hw->mac.type >= e1000_pch_spt)
4106 		e1000_flush_desc_rings(adapter);
4107 	/* Allow time for pending master requests to run */
4108 	mac->ops.reset_hw(hw);
4109 
4110 	/* For parts with AMT enabled, let the firmware know
4111 	 * that the network interface is in control
4112 	 */
4113 	if (adapter->flags & FLAG_HAS_AMT)
4114 		e1000e_get_hw_control(adapter);
4115 
4116 	ew32(WUC, 0);
4117 
4118 	if (mac->ops.init_hw(hw))
4119 		e_err("Hardware Error\n");
4120 
4121 	e1000_update_mng_vlan(adapter);
4122 
4123 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
4124 	ew32(VET, ETH_P_8021Q);
4125 
4126 	e1000e_reset_adaptive(hw);
4127 
4128 	/* restore systim and hwtstamp settings */
4129 	e1000e_systim_reset(adapter);
4130 
4131 	/* Set EEE advertisement as appropriate */
4132 	if (adapter->flags2 & FLAG2_HAS_EEE) {
4133 		s32 ret_val;
4134 		u16 adv_addr;
4135 
4136 		switch (hw->phy.type) {
4137 		case e1000_phy_82579:
4138 			adv_addr = I82579_EEE_ADVERTISEMENT;
4139 			break;
4140 		case e1000_phy_i217:
4141 			adv_addr = I217_EEE_ADVERTISEMENT;
4142 			break;
4143 		default:
4144 			dev_err(&adapter->pdev->dev,
4145 				"Invalid PHY type setting EEE advertisement\n");
4146 			return;
4147 		}
4148 
4149 		ret_val = hw->phy.ops.acquire(hw);
4150 		if (ret_val) {
4151 			dev_err(&adapter->pdev->dev,
4152 				"EEE advertisement - unable to acquire PHY\n");
4153 			return;
4154 		}
4155 
4156 		e1000_write_emi_reg_locked(hw, adv_addr,
4157 					   hw->dev_spec.ich8lan.eee_disable ?
4158 					   0 : adapter->eee_advert);
4159 
4160 		hw->phy.ops.release(hw);
4161 	}
4162 
4163 	if (!netif_running(adapter->netdev) &&
4164 	    !test_bit(__E1000_TESTING, &adapter->state))
4165 		e1000_power_down_phy(adapter);
4166 
4167 	e1000_get_phy_info(hw);
4168 
4169 	if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
4170 	    !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
4171 		u16 phy_data = 0;
4172 		/* speed up time to link by disabling smart power down, ignore
4173 		 * the return value of this function because there is nothing
4174 		 * different we would do if it failed
4175 		 */
4176 		e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
4177 		phy_data &= ~IGP02E1000_PM_SPD;
4178 		e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
4179 	}
4180 	if (hw->mac.type >= e1000_pch_spt && adapter->int_mode == 0) {
4181 		u32 reg;
4182 
4183 		/* Fextnvm7 @ 0xe4[2] = 1 */
4184 		reg = er32(FEXTNVM7);
4185 		reg |= E1000_FEXTNVM7_SIDE_CLK_UNGATE;
4186 		ew32(FEXTNVM7, reg);
4187 		/* Fextnvm9 @ 0x5bb4[13:12] = 11 */
4188 		reg = er32(FEXTNVM9);
4189 		reg |= E1000_FEXTNVM9_IOSFSB_CLKGATE_DIS |
4190 		       E1000_FEXTNVM9_IOSFSB_CLKREQ_DIS;
4191 		ew32(FEXTNVM9, reg);
4192 	}
4193 
4194 }
4195 
4196 /**
4197  * e1000e_trigger_lsc - trigger an LSC interrupt
4198  * @adapter:
4199  *
4200  * Fire a link status change interrupt to start the watchdog.
4201  **/
4202 static void e1000e_trigger_lsc(struct e1000_adapter *adapter)
4203 {
4204 	struct e1000_hw *hw = &adapter->hw;
4205 
4206 	if (adapter->msix_entries)
4207 		ew32(ICS, E1000_ICS_OTHER);
4208 	else
4209 		ew32(ICS, E1000_ICS_LSC);
4210 }
4211 
4212 void e1000e_up(struct e1000_adapter *adapter)
4213 {
4214 	/* hardware has been reset, we need to reload some things */
4215 	e1000_configure(adapter);
4216 
4217 	clear_bit(__E1000_DOWN, &adapter->state);
4218 
4219 	if (adapter->msix_entries)
4220 		e1000_configure_msix(adapter);
4221 	e1000_irq_enable(adapter);
4222 
4223 	netif_start_queue(adapter->netdev);
4224 
4225 	e1000e_trigger_lsc(adapter);
4226 }
4227 
4228 static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
4229 {
4230 	struct e1000_hw *hw = &adapter->hw;
4231 
4232 	if (!(adapter->flags2 & FLAG2_DMA_BURST))
4233 		return;
4234 
4235 	/* flush pending descriptor writebacks to memory */
4236 	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4237 	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4238 
4239 	/* execute the writes immediately */
4240 	e1e_flush();
4241 
4242 	/* due to rare timing issues, write to TIDV/RDTR again to ensure the
4243 	 * write is successful
4244 	 */
4245 	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4246 	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4247 
4248 	/* execute the writes immediately */
4249 	e1e_flush();
4250 }
4251 
4252 static void e1000e_update_stats(struct e1000_adapter *adapter);
4253 
4254 /**
4255  * e1000e_down - quiesce the device and optionally reset the hardware
4256  * @adapter: board private structure
4257  * @reset: boolean flag to reset the hardware or not
4258  */
4259 void e1000e_down(struct e1000_adapter *adapter, bool reset)
4260 {
4261 	struct net_device *netdev = adapter->netdev;
4262 	struct e1000_hw *hw = &adapter->hw;
4263 	u32 tctl, rctl;
4264 
4265 	/* signal that we're down so the interrupt handler does not
4266 	 * reschedule our watchdog timer
4267 	 */
4268 	set_bit(__E1000_DOWN, &adapter->state);
4269 
4270 	netif_carrier_off(netdev);
4271 
4272 	/* disable receives in the hardware */
4273 	rctl = er32(RCTL);
4274 	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
4275 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
4276 	/* flush and sleep below */
4277 
4278 	netif_stop_queue(netdev);
4279 
4280 	/* disable transmits in the hardware */
4281 	tctl = er32(TCTL);
4282 	tctl &= ~E1000_TCTL_EN;
4283 	ew32(TCTL, tctl);
4284 
4285 	/* flush both disables and wait for them to finish */
4286 	e1e_flush();
4287 	usleep_range(10000, 20000);
4288 
4289 	e1000_irq_disable(adapter);
4290 
4291 	napi_synchronize(&adapter->napi);
4292 
4293 	del_timer_sync(&adapter->watchdog_timer);
4294 	del_timer_sync(&adapter->phy_info_timer);
4295 
4296 	spin_lock(&adapter->stats64_lock);
4297 	e1000e_update_stats(adapter);
4298 	spin_unlock(&adapter->stats64_lock);
4299 
4300 	e1000e_flush_descriptors(adapter);
4301 
4302 	adapter->link_speed = 0;
4303 	adapter->link_duplex = 0;
4304 
4305 	/* Disable Si errata workaround on PCHx for jumbo frame flow */
4306 	if ((hw->mac.type >= e1000_pch2lan) &&
4307 	    (adapter->netdev->mtu > ETH_DATA_LEN) &&
4308 	    e1000_lv_jumbo_workaround_ich8lan(hw, false))
4309 		e_dbg("failed to disable jumbo frame workaround mode\n");
4310 
4311 	if (!pci_channel_offline(adapter->pdev)) {
4312 		if (reset)
4313 			e1000e_reset(adapter);
4314 		else if (hw->mac.type >= e1000_pch_spt)
4315 			e1000_flush_desc_rings(adapter);
4316 	}
4317 	e1000_clean_tx_ring(adapter->tx_ring);
4318 	e1000_clean_rx_ring(adapter->rx_ring);
4319 }
4320 
4321 void e1000e_reinit_locked(struct e1000_adapter *adapter)
4322 {
4323 	might_sleep();
4324 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4325 		usleep_range(1000, 2000);
4326 	e1000e_down(adapter, true);
4327 	e1000e_up(adapter);
4328 	clear_bit(__E1000_RESETTING, &adapter->state);
4329 }
4330 
4331 /**
4332  * e1000e_sanitize_systim - sanitize raw cycle counter reads
4333  * @hw: pointer to the HW structure
4334  * @systim: time value read, sanitized and returned
4335  *
4336  * Errata for 82574/82583 possible bad bits read from SYSTIMH/L:
4337  * check to see that the time is incrementing at a reasonable
4338  * rate and is a multiple of incvalue.
4339  **/
4340 static u64 e1000e_sanitize_systim(struct e1000_hw *hw, u64 systim)
4341 {
4342 	u64 time_delta, rem, temp;
4343 	u64 systim_next;
4344 	u32 incvalue;
4345 	int i;
4346 
4347 	incvalue = er32(TIMINCA) & E1000_TIMINCA_INCVALUE_MASK;
4348 	for (i = 0; i < E1000_MAX_82574_SYSTIM_REREADS; i++) {
4349 		/* latch SYSTIMH on read of SYSTIML */
4350 		systim_next = (u64)er32(SYSTIML);
4351 		systim_next |= (u64)er32(SYSTIMH) << 32;
4352 
4353 		time_delta = systim_next - systim;
4354 		temp = time_delta;
4355 		/* VMWare users have seen incvalue of zero, don't div / 0 */
4356 		rem = incvalue ? do_div(temp, incvalue) : (time_delta != 0);
4357 
4358 		systim = systim_next;
4359 
4360 		if ((time_delta < E1000_82574_SYSTIM_EPSILON) && (rem == 0))
4361 			break;
4362 	}
4363 
4364 	return systim;
4365 }
4366 
4367 /**
4368  * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4369  * @cc: cyclecounter structure
4370  **/
4371 static u64 e1000e_cyclecounter_read(const struct cyclecounter *cc)
4372 {
4373 	struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter,
4374 						     cc);
4375 	struct e1000_hw *hw = &adapter->hw;
4376 	u32 systimel, systimeh;
4377 	u64 systim;
4378 	/* SYSTIMH latching upon SYSTIML read does not work well.
4379 	 * This means that if SYSTIML overflows after we read it but before
4380 	 * we read SYSTIMH, the value of SYSTIMH has been incremented and we
4381 	 * will experience a huge non linear increment in the systime value
4382 	 * to fix that we test for overflow and if true, we re-read systime.
4383 	 */
4384 	systimel = er32(SYSTIML);
4385 	systimeh = er32(SYSTIMH);
4386 	/* Is systimel is so large that overflow is possible? */
4387 	if (systimel >= (u32)0xffffffff - E1000_TIMINCA_INCVALUE_MASK) {
4388 		u32 systimel_2 = er32(SYSTIML);
4389 		if (systimel > systimel_2) {
4390 			/* There was an overflow, read again SYSTIMH, and use
4391 			 * systimel_2
4392 			 */
4393 			systimeh = er32(SYSTIMH);
4394 			systimel = systimel_2;
4395 		}
4396 	}
4397 	systim = (u64)systimel;
4398 	systim |= (u64)systimeh << 32;
4399 
4400 	if (adapter->flags2 & FLAG2_CHECK_SYSTIM_OVERFLOW)
4401 		systim = e1000e_sanitize_systim(hw, systim);
4402 
4403 	return systim;
4404 }
4405 
4406 /**
4407  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4408  * @adapter: board private structure to initialize
4409  *
4410  * e1000_sw_init initializes the Adapter private data structure.
4411  * Fields are initialized based on PCI device information and
4412  * OS network device settings (MTU size).
4413  **/
4414 static int e1000_sw_init(struct e1000_adapter *adapter)
4415 {
4416 	struct net_device *netdev = adapter->netdev;
4417 
4418 	adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
4419 	adapter->rx_ps_bsize0 = 128;
4420 	adapter->max_frame_size = netdev->mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
4421 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4422 	adapter->tx_ring_count = E1000_DEFAULT_TXD;
4423 	adapter->rx_ring_count = E1000_DEFAULT_RXD;
4424 
4425 	spin_lock_init(&adapter->stats64_lock);
4426 
4427 	e1000e_set_interrupt_capability(adapter);
4428 
4429 	if (e1000_alloc_queues(adapter))
4430 		return -ENOMEM;
4431 
4432 	/* Setup hardware time stamping cyclecounter */
4433 	if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
4434 		adapter->cc.read = e1000e_cyclecounter_read;
4435 		adapter->cc.mask = CYCLECOUNTER_MASK(64);
4436 		adapter->cc.mult = 1;
4437 		/* cc.shift set in e1000e_get_base_tininca() */
4438 
4439 		spin_lock_init(&adapter->systim_lock);
4440 		INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work);
4441 	}
4442 
4443 	/* Explicitly disable IRQ since the NIC can be in any state. */
4444 	e1000_irq_disable(adapter);
4445 
4446 	set_bit(__E1000_DOWN, &adapter->state);
4447 	return 0;
4448 }
4449 
4450 /**
4451  * e1000_intr_msi_test - Interrupt Handler
4452  * @irq: interrupt number
4453  * @data: pointer to a network interface device structure
4454  **/
4455 static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data)
4456 {
4457 	struct net_device *netdev = data;
4458 	struct e1000_adapter *adapter = netdev_priv(netdev);
4459 	struct e1000_hw *hw = &adapter->hw;
4460 	u32 icr = er32(ICR);
4461 
4462 	e_dbg("icr is %08X\n", icr);
4463 	if (icr & E1000_ICR_RXSEQ) {
4464 		adapter->flags &= ~FLAG_MSI_TEST_FAILED;
4465 		/* Force memory writes to complete before acknowledging the
4466 		 * interrupt is handled.
4467 		 */
4468 		wmb();
4469 	}
4470 
4471 	return IRQ_HANDLED;
4472 }
4473 
4474 /**
4475  * e1000_test_msi_interrupt - Returns 0 for successful test
4476  * @adapter: board private struct
4477  *
4478  * code flow taken from tg3.c
4479  **/
4480 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
4481 {
4482 	struct net_device *netdev = adapter->netdev;
4483 	struct e1000_hw *hw = &adapter->hw;
4484 	int err;
4485 
4486 	/* poll_enable hasn't been called yet, so don't need disable */
4487 	/* clear any pending events */
4488 	er32(ICR);
4489 
4490 	/* free the real vector and request a test handler */
4491 	e1000_free_irq(adapter);
4492 	e1000e_reset_interrupt_capability(adapter);
4493 
4494 	/* Assume that the test fails, if it succeeds then the test
4495 	 * MSI irq handler will unset this flag
4496 	 */
4497 	adapter->flags |= FLAG_MSI_TEST_FAILED;
4498 
4499 	err = pci_enable_msi(adapter->pdev);
4500 	if (err)
4501 		goto msi_test_failed;
4502 
4503 	err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
4504 			  netdev->name, netdev);
4505 	if (err) {
4506 		pci_disable_msi(adapter->pdev);
4507 		goto msi_test_failed;
4508 	}
4509 
4510 	/* Force memory writes to complete before enabling and firing an
4511 	 * interrupt.
4512 	 */
4513 	wmb();
4514 
4515 	e1000_irq_enable(adapter);
4516 
4517 	/* fire an unusual interrupt on the test handler */
4518 	ew32(ICS, E1000_ICS_RXSEQ);
4519 	e1e_flush();
4520 	msleep(100);
4521 
4522 	e1000_irq_disable(adapter);
4523 
4524 	rmb();			/* read flags after interrupt has been fired */
4525 
4526 	if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4527 		adapter->int_mode = E1000E_INT_MODE_LEGACY;
4528 		e_info("MSI interrupt test failed, using legacy interrupt.\n");
4529 	} else {
4530 		e_dbg("MSI interrupt test succeeded!\n");
4531 	}
4532 
4533 	free_irq(adapter->pdev->irq, netdev);
4534 	pci_disable_msi(adapter->pdev);
4535 
4536 msi_test_failed:
4537 	e1000e_set_interrupt_capability(adapter);
4538 	return e1000_request_irq(adapter);
4539 }
4540 
4541 /**
4542  * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4543  * @adapter: board private struct
4544  *
4545  * code flow taken from tg3.c, called with e1000 interrupts disabled.
4546  **/
4547 static int e1000_test_msi(struct e1000_adapter *adapter)
4548 {
4549 	int err;
4550 	u16 pci_cmd;
4551 
4552 	if (!(adapter->flags & FLAG_MSI_ENABLED))
4553 		return 0;
4554 
4555 	/* disable SERR in case the MSI write causes a master abort */
4556 	pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4557 	if (pci_cmd & PCI_COMMAND_SERR)
4558 		pci_write_config_word(adapter->pdev, PCI_COMMAND,
4559 				      pci_cmd & ~PCI_COMMAND_SERR);
4560 
4561 	err = e1000_test_msi_interrupt(adapter);
4562 
4563 	/* re-enable SERR */
4564 	if (pci_cmd & PCI_COMMAND_SERR) {
4565 		pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4566 		pci_cmd |= PCI_COMMAND_SERR;
4567 		pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
4568 	}
4569 
4570 	return err;
4571 }
4572 
4573 /**
4574  * e1000e_open - Called when a network interface is made active
4575  * @netdev: network interface device structure
4576  *
4577  * Returns 0 on success, negative value on failure
4578  *
4579  * The open entry point is called when a network interface is made
4580  * active by the system (IFF_UP).  At this point all resources needed
4581  * for transmit and receive operations are allocated, the interrupt
4582  * handler is registered with the OS, the watchdog timer is started,
4583  * and the stack is notified that the interface is ready.
4584  **/
4585 int e1000e_open(struct net_device *netdev)
4586 {
4587 	struct e1000_adapter *adapter = netdev_priv(netdev);
4588 	struct e1000_hw *hw = &adapter->hw;
4589 	struct pci_dev *pdev = adapter->pdev;
4590 	int err;
4591 
4592 	/* disallow open during test */
4593 	if (test_bit(__E1000_TESTING, &adapter->state))
4594 		return -EBUSY;
4595 
4596 	pm_runtime_get_sync(&pdev->dev);
4597 
4598 	netif_carrier_off(netdev);
4599 
4600 	/* allocate transmit descriptors */
4601 	err = e1000e_setup_tx_resources(adapter->tx_ring);
4602 	if (err)
4603 		goto err_setup_tx;
4604 
4605 	/* allocate receive descriptors */
4606 	err = e1000e_setup_rx_resources(adapter->rx_ring);
4607 	if (err)
4608 		goto err_setup_rx;
4609 
4610 	/* If AMT is enabled, let the firmware know that the network
4611 	 * interface is now open and reset the part to a known state.
4612 	 */
4613 	if (adapter->flags & FLAG_HAS_AMT) {
4614 		e1000e_get_hw_control(adapter);
4615 		e1000e_reset(adapter);
4616 	}
4617 
4618 	e1000e_power_up_phy(adapter);
4619 
4620 	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4621 	if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
4622 		e1000_update_mng_vlan(adapter);
4623 
4624 	/* DMA latency requirement to workaround jumbo issue */
4625 	pm_qos_add_request(&adapter->pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
4626 			   PM_QOS_DEFAULT_VALUE);
4627 
4628 	/* before we allocate an interrupt, we must be ready to handle it.
4629 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4630 	 * as soon as we call pci_request_irq, so we have to setup our
4631 	 * clean_rx handler before we do so.
4632 	 */
4633 	e1000_configure(adapter);
4634 
4635 	err = e1000_request_irq(adapter);
4636 	if (err)
4637 		goto err_req_irq;
4638 
4639 	/* Work around PCIe errata with MSI interrupts causing some chipsets to
4640 	 * ignore e1000e MSI messages, which means we need to test our MSI
4641 	 * interrupt now
4642 	 */
4643 	if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
4644 		err = e1000_test_msi(adapter);
4645 		if (err) {
4646 			e_err("Interrupt allocation failed\n");
4647 			goto err_req_irq;
4648 		}
4649 	}
4650 
4651 	/* From here on the code is the same as e1000e_up() */
4652 	clear_bit(__E1000_DOWN, &adapter->state);
4653 
4654 	napi_enable(&adapter->napi);
4655 
4656 	e1000_irq_enable(adapter);
4657 
4658 	adapter->tx_hang_recheck = false;
4659 	netif_start_queue(netdev);
4660 
4661 	hw->mac.get_link_status = true;
4662 	pm_runtime_put(&pdev->dev);
4663 
4664 	e1000e_trigger_lsc(adapter);
4665 
4666 	return 0;
4667 
4668 err_req_irq:
4669 	pm_qos_remove_request(&adapter->pm_qos_req);
4670 	e1000e_release_hw_control(adapter);
4671 	e1000_power_down_phy(adapter);
4672 	e1000e_free_rx_resources(adapter->rx_ring);
4673 err_setup_rx:
4674 	e1000e_free_tx_resources(adapter->tx_ring);
4675 err_setup_tx:
4676 	e1000e_reset(adapter);
4677 	pm_runtime_put_sync(&pdev->dev);
4678 
4679 	return err;
4680 }
4681 
4682 /**
4683  * e1000e_close - Disables a network interface
4684  * @netdev: network interface device structure
4685  *
4686  * Returns 0, this is not allowed to fail
4687  *
4688  * The close entry point is called when an interface is de-activated
4689  * by the OS.  The hardware is still under the drivers control, but
4690  * needs to be disabled.  A global MAC reset is issued to stop the
4691  * hardware, and all transmit and receive resources are freed.
4692  **/
4693 int e1000e_close(struct net_device *netdev)
4694 {
4695 	struct e1000_adapter *adapter = netdev_priv(netdev);
4696 	struct pci_dev *pdev = adapter->pdev;
4697 	int count = E1000_CHECK_RESET_COUNT;
4698 
4699 	while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
4700 		usleep_range(10000, 20000);
4701 
4702 	WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4703 
4704 	pm_runtime_get_sync(&pdev->dev);
4705 
4706 	if (!test_bit(__E1000_DOWN, &adapter->state)) {
4707 		e1000e_down(adapter, true);
4708 		e1000_free_irq(adapter);
4709 
4710 		/* Link status message must follow this format */
4711 		pr_info("%s NIC Link is Down\n", adapter->netdev->name);
4712 	}
4713 
4714 	napi_disable(&adapter->napi);
4715 
4716 	e1000e_free_tx_resources(adapter->tx_ring);
4717 	e1000e_free_rx_resources(adapter->rx_ring);
4718 
4719 	/* kill manageability vlan ID if supported, but not if a vlan with
4720 	 * the same ID is registered on the host OS (let 8021q kill it)
4721 	 */
4722 	if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
4723 		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
4724 				       adapter->mng_vlan_id);
4725 
4726 	/* If AMT is enabled, let the firmware know that the network
4727 	 * interface is now closed
4728 	 */
4729 	if ((adapter->flags & FLAG_HAS_AMT) &&
4730 	    !test_bit(__E1000_TESTING, &adapter->state))
4731 		e1000e_release_hw_control(adapter);
4732 
4733 	pm_qos_remove_request(&adapter->pm_qos_req);
4734 
4735 	pm_runtime_put_sync(&pdev->dev);
4736 
4737 	return 0;
4738 }
4739 
4740 /**
4741  * e1000_set_mac - Change the Ethernet Address of the NIC
4742  * @netdev: network interface device structure
4743  * @p: pointer to an address structure
4744  *
4745  * Returns 0 on success, negative on failure
4746  **/
4747 static int e1000_set_mac(struct net_device *netdev, void *p)
4748 {
4749 	struct e1000_adapter *adapter = netdev_priv(netdev);
4750 	struct e1000_hw *hw = &adapter->hw;
4751 	struct sockaddr *addr = p;
4752 
4753 	if (!is_valid_ether_addr(addr->sa_data))
4754 		return -EADDRNOTAVAIL;
4755 
4756 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4757 	memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4758 
4759 	hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4760 
4761 	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4762 		/* activate the work around */
4763 		e1000e_set_laa_state_82571(&adapter->hw, 1);
4764 
4765 		/* Hold a copy of the LAA in RAR[14] This is done so that
4766 		 * between the time RAR[0] gets clobbered  and the time it
4767 		 * gets fixed (in e1000_watchdog), the actual LAA is in one
4768 		 * of the RARs and no incoming packets directed to this port
4769 		 * are dropped. Eventually the LAA will be in RAR[0] and
4770 		 * RAR[14]
4771 		 */
4772 		hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4773 				    adapter->hw.mac.rar_entry_count - 1);
4774 	}
4775 
4776 	return 0;
4777 }
4778 
4779 /**
4780  * e1000e_update_phy_task - work thread to update phy
4781  * @work: pointer to our work struct
4782  *
4783  * this worker thread exists because we must acquire a
4784  * semaphore to read the phy, which we could msleep while
4785  * waiting for it, and we can't msleep in a timer.
4786  **/
4787 static void e1000e_update_phy_task(struct work_struct *work)
4788 {
4789 	struct e1000_adapter *adapter = container_of(work,
4790 						     struct e1000_adapter,
4791 						     update_phy_task);
4792 	struct e1000_hw *hw = &adapter->hw;
4793 
4794 	if (test_bit(__E1000_DOWN, &adapter->state))
4795 		return;
4796 
4797 	e1000_get_phy_info(hw);
4798 
4799 	/* Enable EEE on 82579 after link up */
4800 	if (hw->phy.type >= e1000_phy_82579)
4801 		e1000_set_eee_pchlan(hw);
4802 }
4803 
4804 /**
4805  * e1000_update_phy_info - timre call-back to update PHY info
4806  * @data: pointer to adapter cast into an unsigned long
4807  *
4808  * Need to wait a few seconds after link up to get diagnostic information from
4809  * the phy
4810  **/
4811 static void e1000_update_phy_info(unsigned long data)
4812 {
4813 	struct e1000_adapter *adapter = (struct e1000_adapter *)data;
4814 
4815 	if (test_bit(__E1000_DOWN, &adapter->state))
4816 		return;
4817 
4818 	schedule_work(&adapter->update_phy_task);
4819 }
4820 
4821 /**
4822  * e1000e_update_phy_stats - Update the PHY statistics counters
4823  * @adapter: board private structure
4824  *
4825  * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4826  **/
4827 static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4828 {
4829 	struct e1000_hw *hw = &adapter->hw;
4830 	s32 ret_val;
4831 	u16 phy_data;
4832 
4833 	ret_val = hw->phy.ops.acquire(hw);
4834 	if (ret_val)
4835 		return;
4836 
4837 	/* A page set is expensive so check if already on desired page.
4838 	 * If not, set to the page with the PHY status registers.
4839 	 */
4840 	hw->phy.addr = 1;
4841 	ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4842 					   &phy_data);
4843 	if (ret_val)
4844 		goto release;
4845 	if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4846 		ret_val = hw->phy.ops.set_page(hw,
4847 					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
4848 		if (ret_val)
4849 			goto release;
4850 	}
4851 
4852 	/* Single Collision Count */
4853 	hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4854 	ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4855 	if (!ret_val)
4856 		adapter->stats.scc += phy_data;
4857 
4858 	/* Excessive Collision Count */
4859 	hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4860 	ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4861 	if (!ret_val)
4862 		adapter->stats.ecol += phy_data;
4863 
4864 	/* Multiple Collision Count */
4865 	hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4866 	ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4867 	if (!ret_val)
4868 		adapter->stats.mcc += phy_data;
4869 
4870 	/* Late Collision Count */
4871 	hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4872 	ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4873 	if (!ret_val)
4874 		adapter->stats.latecol += phy_data;
4875 
4876 	/* Collision Count - also used for adaptive IFS */
4877 	hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4878 	ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4879 	if (!ret_val)
4880 		hw->mac.collision_delta = phy_data;
4881 
4882 	/* Defer Count */
4883 	hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4884 	ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4885 	if (!ret_val)
4886 		adapter->stats.dc += phy_data;
4887 
4888 	/* Transmit with no CRS */
4889 	hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4890 	ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4891 	if (!ret_val)
4892 		adapter->stats.tncrs += phy_data;
4893 
4894 release:
4895 	hw->phy.ops.release(hw);
4896 }
4897 
4898 /**
4899  * e1000e_update_stats - Update the board statistics counters
4900  * @adapter: board private structure
4901  **/
4902 static void e1000e_update_stats(struct e1000_adapter *adapter)
4903 {
4904 	struct net_device *netdev = adapter->netdev;
4905 	struct e1000_hw *hw = &adapter->hw;
4906 	struct pci_dev *pdev = adapter->pdev;
4907 
4908 	/* Prevent stats update while adapter is being reset, or if the pci
4909 	 * connection is down.
4910 	 */
4911 	if (adapter->link_speed == 0)
4912 		return;
4913 	if (pci_channel_offline(pdev))
4914 		return;
4915 
4916 	adapter->stats.crcerrs += er32(CRCERRS);
4917 	adapter->stats.gprc += er32(GPRC);
4918 	adapter->stats.gorc += er32(GORCL);
4919 	er32(GORCH);		/* Clear gorc */
4920 	adapter->stats.bprc += er32(BPRC);
4921 	adapter->stats.mprc += er32(MPRC);
4922 	adapter->stats.roc += er32(ROC);
4923 
4924 	adapter->stats.mpc += er32(MPC);
4925 
4926 	/* Half-duplex statistics */
4927 	if (adapter->link_duplex == HALF_DUPLEX) {
4928 		if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4929 			e1000e_update_phy_stats(adapter);
4930 		} else {
4931 			adapter->stats.scc += er32(SCC);
4932 			adapter->stats.ecol += er32(ECOL);
4933 			adapter->stats.mcc += er32(MCC);
4934 			adapter->stats.latecol += er32(LATECOL);
4935 			adapter->stats.dc += er32(DC);
4936 
4937 			hw->mac.collision_delta = er32(COLC);
4938 
4939 			if ((hw->mac.type != e1000_82574) &&
4940 			    (hw->mac.type != e1000_82583))
4941 				adapter->stats.tncrs += er32(TNCRS);
4942 		}
4943 		adapter->stats.colc += hw->mac.collision_delta;
4944 	}
4945 
4946 	adapter->stats.xonrxc += er32(XONRXC);
4947 	adapter->stats.xontxc += er32(XONTXC);
4948 	adapter->stats.xoffrxc += er32(XOFFRXC);
4949 	adapter->stats.xofftxc += er32(XOFFTXC);
4950 	adapter->stats.gptc += er32(GPTC);
4951 	adapter->stats.gotc += er32(GOTCL);
4952 	er32(GOTCH);		/* Clear gotc */
4953 	adapter->stats.rnbc += er32(RNBC);
4954 	adapter->stats.ruc += er32(RUC);
4955 
4956 	adapter->stats.mptc += er32(MPTC);
4957 	adapter->stats.bptc += er32(BPTC);
4958 
4959 	/* used for adaptive IFS */
4960 
4961 	hw->mac.tx_packet_delta = er32(TPT);
4962 	adapter->stats.tpt += hw->mac.tx_packet_delta;
4963 
4964 	adapter->stats.algnerrc += er32(ALGNERRC);
4965 	adapter->stats.rxerrc += er32(RXERRC);
4966 	adapter->stats.cexterr += er32(CEXTERR);
4967 	adapter->stats.tsctc += er32(TSCTC);
4968 	adapter->stats.tsctfc += er32(TSCTFC);
4969 
4970 	/* Fill out the OS statistics structure */
4971 	netdev->stats.multicast = adapter->stats.mprc;
4972 	netdev->stats.collisions = adapter->stats.colc;
4973 
4974 	/* Rx Errors */
4975 
4976 	/* RLEC on some newer hardware can be incorrect so build
4977 	 * our own version based on RUC and ROC
4978 	 */
4979 	netdev->stats.rx_errors = adapter->stats.rxerrc +
4980 	    adapter->stats.crcerrs + adapter->stats.algnerrc +
4981 	    adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
4982 	netdev->stats.rx_length_errors = adapter->stats.ruc +
4983 	    adapter->stats.roc;
4984 	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
4985 	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
4986 	netdev->stats.rx_missed_errors = adapter->stats.mpc;
4987 
4988 	/* Tx Errors */
4989 	netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol;
4990 	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
4991 	netdev->stats.tx_window_errors = adapter->stats.latecol;
4992 	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
4993 
4994 	/* Tx Dropped needs to be maintained elsewhere */
4995 
4996 	/* Management Stats */
4997 	adapter->stats.mgptc += er32(MGTPTC);
4998 	adapter->stats.mgprc += er32(MGTPRC);
4999 	adapter->stats.mgpdc += er32(MGTPDC);
5000 
5001 	/* Correctable ECC Errors */
5002 	if (hw->mac.type >= e1000_pch_lpt) {
5003 		u32 pbeccsts = er32(PBECCSTS);
5004 
5005 		adapter->corr_errors +=
5006 		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
5007 		adapter->uncorr_errors +=
5008 		    (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
5009 		    E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
5010 	}
5011 }
5012 
5013 /**
5014  * e1000_phy_read_status - Update the PHY register status snapshot
5015  * @adapter: board private structure
5016  **/
5017 static void e1000_phy_read_status(struct e1000_adapter *adapter)
5018 {
5019 	struct e1000_hw *hw = &adapter->hw;
5020 	struct e1000_phy_regs *phy = &adapter->phy_regs;
5021 
5022 	if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) &&
5023 	    (er32(STATUS) & E1000_STATUS_LU) &&
5024 	    (adapter->hw.phy.media_type == e1000_media_type_copper)) {
5025 		int ret_val;
5026 
5027 		ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr);
5028 		ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr);
5029 		ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise);
5030 		ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa);
5031 		ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion);
5032 		ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000);
5033 		ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000);
5034 		ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus);
5035 		if (ret_val)
5036 			e_warn("Error reading PHY register\n");
5037 	} else {
5038 		/* Do not read PHY registers if link is not up
5039 		 * Set values to typical power-on defaults
5040 		 */
5041 		phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
5042 		phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
5043 			     BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
5044 			     BMSR_ERCAP);
5045 		phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
5046 				  ADVERTISE_ALL | ADVERTISE_CSMA);
5047 		phy->lpa = 0;
5048 		phy->expansion = EXPANSION_ENABLENPAGE;
5049 		phy->ctrl1000 = ADVERTISE_1000FULL;
5050 		phy->stat1000 = 0;
5051 		phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
5052 	}
5053 }
5054 
5055 static void e1000_print_link_info(struct e1000_adapter *adapter)
5056 {
5057 	struct e1000_hw *hw = &adapter->hw;
5058 	u32 ctrl = er32(CTRL);
5059 
5060 	/* Link status message must follow this format for user tools */
5061 	pr_info("%s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5062 		adapter->netdev->name, adapter->link_speed,
5063 		adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
5064 		(ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
5065 		(ctrl & E1000_CTRL_RFCE) ? "Rx" :
5066 		(ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
5067 }
5068 
5069 static bool e1000e_has_link(struct e1000_adapter *adapter)
5070 {
5071 	struct e1000_hw *hw = &adapter->hw;
5072 	bool link_active = false;
5073 	s32 ret_val = 0;
5074 
5075 	/* get_link_status is set on LSC (link status) interrupt or
5076 	 * Rx sequence error interrupt.  get_link_status will stay
5077 	 * false until the check_for_link establishes link
5078 	 * for copper adapters ONLY
5079 	 */
5080 	switch (hw->phy.media_type) {
5081 	case e1000_media_type_copper:
5082 		if (hw->mac.get_link_status) {
5083 			ret_val = hw->mac.ops.check_for_link(hw);
5084 			link_active = !hw->mac.get_link_status;
5085 		} else {
5086 			link_active = true;
5087 		}
5088 		break;
5089 	case e1000_media_type_fiber:
5090 		ret_val = hw->mac.ops.check_for_link(hw);
5091 		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
5092 		break;
5093 	case e1000_media_type_internal_serdes:
5094 		ret_val = hw->mac.ops.check_for_link(hw);
5095 		link_active = adapter->hw.mac.serdes_has_link;
5096 		break;
5097 	default:
5098 	case e1000_media_type_unknown:
5099 		break;
5100 	}
5101 
5102 	if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
5103 	    (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
5104 		/* See e1000_kmrn_lock_loss_workaround_ich8lan() */
5105 		e_info("Gigabit has been disabled, downgrading speed\n");
5106 	}
5107 
5108 	return link_active;
5109 }
5110 
5111 static void e1000e_enable_receives(struct e1000_adapter *adapter)
5112 {
5113 	/* make sure the receive unit is started */
5114 	if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
5115 	    (adapter->flags & FLAG_RESTART_NOW)) {
5116 		struct e1000_hw *hw = &adapter->hw;
5117 		u32 rctl = er32(RCTL);
5118 
5119 		ew32(RCTL, rctl | E1000_RCTL_EN);
5120 		adapter->flags &= ~FLAG_RESTART_NOW;
5121 	}
5122 }
5123 
5124 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
5125 {
5126 	struct e1000_hw *hw = &adapter->hw;
5127 
5128 	/* With 82574 controllers, PHY needs to be checked periodically
5129 	 * for hung state and reset, if two calls return true
5130 	 */
5131 	if (e1000_check_phy_82574(hw))
5132 		adapter->phy_hang_count++;
5133 	else
5134 		adapter->phy_hang_count = 0;
5135 
5136 	if (adapter->phy_hang_count > 1) {
5137 		adapter->phy_hang_count = 0;
5138 		e_dbg("PHY appears hung - resetting\n");
5139 		schedule_work(&adapter->reset_task);
5140 	}
5141 }
5142 
5143 /**
5144  * e1000_watchdog - Timer Call-back
5145  * @data: pointer to adapter cast into an unsigned long
5146  **/
5147 static void e1000_watchdog(unsigned long data)
5148 {
5149 	struct e1000_adapter *adapter = (struct e1000_adapter *)data;
5150 
5151 	/* Do the rest outside of interrupt context */
5152 	schedule_work(&adapter->watchdog_task);
5153 
5154 	/* TODO: make this use queue_delayed_work() */
5155 }
5156 
5157 static void e1000_watchdog_task(struct work_struct *work)
5158 {
5159 	struct e1000_adapter *adapter = container_of(work,
5160 						     struct e1000_adapter,
5161 						     watchdog_task);
5162 	struct net_device *netdev = adapter->netdev;
5163 	struct e1000_mac_info *mac = &adapter->hw.mac;
5164 	struct e1000_phy_info *phy = &adapter->hw.phy;
5165 	struct e1000_ring *tx_ring = adapter->tx_ring;
5166 	struct e1000_hw *hw = &adapter->hw;
5167 	u32 link, tctl;
5168 
5169 	if (test_bit(__E1000_DOWN, &adapter->state))
5170 		return;
5171 
5172 	link = e1000e_has_link(adapter);
5173 	if ((netif_carrier_ok(netdev)) && link) {
5174 		/* Cancel scheduled suspend requests. */
5175 		pm_runtime_resume(netdev->dev.parent);
5176 
5177 		e1000e_enable_receives(adapter);
5178 		goto link_up;
5179 	}
5180 
5181 	if ((e1000e_enable_tx_pkt_filtering(hw)) &&
5182 	    (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
5183 		e1000_update_mng_vlan(adapter);
5184 
5185 	if (link) {
5186 		if (!netif_carrier_ok(netdev)) {
5187 			bool txb2b = true;
5188 
5189 			/* Cancel scheduled suspend requests. */
5190 			pm_runtime_resume(netdev->dev.parent);
5191 
5192 			/* update snapshot of PHY registers on LSC */
5193 			e1000_phy_read_status(adapter);
5194 			mac->ops.get_link_up_info(&adapter->hw,
5195 						  &adapter->link_speed,
5196 						  &adapter->link_duplex);
5197 			e1000_print_link_info(adapter);
5198 
5199 			/* check if SmartSpeed worked */
5200 			e1000e_check_downshift(hw);
5201 			if (phy->speed_downgraded)
5202 				netdev_warn(netdev,
5203 					    "Link Speed was downgraded by SmartSpeed\n");
5204 
5205 			/* On supported PHYs, check for duplex mismatch only
5206 			 * if link has autonegotiated at 10/100 half
5207 			 */
5208 			if ((hw->phy.type == e1000_phy_igp_3 ||
5209 			     hw->phy.type == e1000_phy_bm) &&
5210 			    hw->mac.autoneg &&
5211 			    (adapter->link_speed == SPEED_10 ||
5212 			     adapter->link_speed == SPEED_100) &&
5213 			    (adapter->link_duplex == HALF_DUPLEX)) {
5214 				u16 autoneg_exp;
5215 
5216 				e1e_rphy(hw, MII_EXPANSION, &autoneg_exp);
5217 
5218 				if (!(autoneg_exp & EXPANSION_NWAY))
5219 					e_info("Autonegotiated half duplex but link partner cannot autoneg.  Try forcing full duplex if link gets many collisions.\n");
5220 			}
5221 
5222 			/* adjust timeout factor according to speed/duplex */
5223 			adapter->tx_timeout_factor = 1;
5224 			switch (adapter->link_speed) {
5225 			case SPEED_10:
5226 				txb2b = false;
5227 				adapter->tx_timeout_factor = 16;
5228 				break;
5229 			case SPEED_100:
5230 				txb2b = false;
5231 				adapter->tx_timeout_factor = 10;
5232 				break;
5233 			}
5234 
5235 			/* workaround: re-program speed mode bit after
5236 			 * link-up event
5237 			 */
5238 			if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
5239 			    !txb2b) {
5240 				u32 tarc0;
5241 
5242 				tarc0 = er32(TARC(0));
5243 				tarc0 &= ~SPEED_MODE_BIT;
5244 				ew32(TARC(0), tarc0);
5245 			}
5246 
5247 			/* disable TSO for pcie and 10/100 speeds, to avoid
5248 			 * some hardware issues
5249 			 */
5250 			if (!(adapter->flags & FLAG_TSO_FORCE)) {
5251 				switch (adapter->link_speed) {
5252 				case SPEED_10:
5253 				case SPEED_100:
5254 					e_info("10/100 speed: disabling TSO\n");
5255 					netdev->features &= ~NETIF_F_TSO;
5256 					netdev->features &= ~NETIF_F_TSO6;
5257 					break;
5258 				case SPEED_1000:
5259 					netdev->features |= NETIF_F_TSO;
5260 					netdev->features |= NETIF_F_TSO6;
5261 					break;
5262 				default:
5263 					/* oops */
5264 					break;
5265 				}
5266 			}
5267 
5268 			/* enable transmits in the hardware, need to do this
5269 			 * after setting TARC(0)
5270 			 */
5271 			tctl = er32(TCTL);
5272 			tctl |= E1000_TCTL_EN;
5273 			ew32(TCTL, tctl);
5274 
5275 			/* Perform any post-link-up configuration before
5276 			 * reporting link up.
5277 			 */
5278 			if (phy->ops.cfg_on_link_up)
5279 				phy->ops.cfg_on_link_up(hw);
5280 
5281 			netif_carrier_on(netdev);
5282 
5283 			if (!test_bit(__E1000_DOWN, &adapter->state))
5284 				mod_timer(&adapter->phy_info_timer,
5285 					  round_jiffies(jiffies + 2 * HZ));
5286 		}
5287 	} else {
5288 		if (netif_carrier_ok(netdev)) {
5289 			adapter->link_speed = 0;
5290 			adapter->link_duplex = 0;
5291 			/* Link status message must follow this format */
5292 			pr_info("%s NIC Link is Down\n", adapter->netdev->name);
5293 			netif_carrier_off(netdev);
5294 			if (!test_bit(__E1000_DOWN, &adapter->state))
5295 				mod_timer(&adapter->phy_info_timer,
5296 					  round_jiffies(jiffies + 2 * HZ));
5297 
5298 			/* 8000ES2LAN requires a Rx packet buffer work-around
5299 			 * on link down event; reset the controller to flush
5300 			 * the Rx packet buffer.
5301 			 */
5302 			if (adapter->flags & FLAG_RX_NEEDS_RESTART)
5303 				adapter->flags |= FLAG_RESTART_NOW;
5304 			else
5305 				pm_schedule_suspend(netdev->dev.parent,
5306 						    LINK_TIMEOUT);
5307 		}
5308 	}
5309 
5310 link_up:
5311 	spin_lock(&adapter->stats64_lock);
5312 	e1000e_update_stats(adapter);
5313 
5314 	mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
5315 	adapter->tpt_old = adapter->stats.tpt;
5316 	mac->collision_delta = adapter->stats.colc - adapter->colc_old;
5317 	adapter->colc_old = adapter->stats.colc;
5318 
5319 	adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
5320 	adapter->gorc_old = adapter->stats.gorc;
5321 	adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
5322 	adapter->gotc_old = adapter->stats.gotc;
5323 	spin_unlock(&adapter->stats64_lock);
5324 
5325 	/* If the link is lost the controller stops DMA, but
5326 	 * if there is queued Tx work it cannot be done.  So
5327 	 * reset the controller to flush the Tx packet buffers.
5328 	 */
5329 	if (!netif_carrier_ok(netdev) &&
5330 	    (e1000_desc_unused(tx_ring) + 1 < tx_ring->count))
5331 		adapter->flags |= FLAG_RESTART_NOW;
5332 
5333 	/* If reset is necessary, do it outside of interrupt context. */
5334 	if (adapter->flags & FLAG_RESTART_NOW) {
5335 		schedule_work(&adapter->reset_task);
5336 		/* return immediately since reset is imminent */
5337 		return;
5338 	}
5339 
5340 	e1000e_update_adaptive(&adapter->hw);
5341 
5342 	/* Simple mode for Interrupt Throttle Rate (ITR) */
5343 	if (adapter->itr_setting == 4) {
5344 		/* Symmetric Tx/Rx gets a reduced ITR=2000;
5345 		 * Total asymmetrical Tx or Rx gets ITR=8000;
5346 		 * everyone else is between 2000-8000.
5347 		 */
5348 		u32 goc = (adapter->gotc + adapter->gorc) / 10000;
5349 		u32 dif = (adapter->gotc > adapter->gorc ?
5350 			   adapter->gotc - adapter->gorc :
5351 			   adapter->gorc - adapter->gotc) / 10000;
5352 		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
5353 
5354 		e1000e_write_itr(adapter, itr);
5355 	}
5356 
5357 	/* Cause software interrupt to ensure Rx ring is cleaned */
5358 	if (adapter->msix_entries)
5359 		ew32(ICS, adapter->rx_ring->ims_val);
5360 	else
5361 		ew32(ICS, E1000_ICS_RXDMT0);
5362 
5363 	/* flush pending descriptors to memory before detecting Tx hang */
5364 	e1000e_flush_descriptors(adapter);
5365 
5366 	/* Force detection of hung controller every watchdog period */
5367 	adapter->detect_tx_hung = true;
5368 
5369 	/* With 82571 controllers, LAA may be overwritten due to controller
5370 	 * reset from the other port. Set the appropriate LAA in RAR[0]
5371 	 */
5372 	if (e1000e_get_laa_state_82571(hw))
5373 		hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
5374 
5375 	if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
5376 		e1000e_check_82574_phy_workaround(adapter);
5377 
5378 	/* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5379 	if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) {
5380 		if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) &&
5381 		    (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) {
5382 			er32(RXSTMPH);
5383 			adapter->rx_hwtstamp_cleared++;
5384 		} else {
5385 			adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP;
5386 		}
5387 	}
5388 
5389 	/* Reset the timer */
5390 	if (!test_bit(__E1000_DOWN, &adapter->state))
5391 		mod_timer(&adapter->watchdog_timer,
5392 			  round_jiffies(jiffies + 2 * HZ));
5393 }
5394 
5395 #define E1000_TX_FLAGS_CSUM		0x00000001
5396 #define E1000_TX_FLAGS_VLAN		0x00000002
5397 #define E1000_TX_FLAGS_TSO		0x00000004
5398 #define E1000_TX_FLAGS_IPV4		0x00000008
5399 #define E1000_TX_FLAGS_NO_FCS		0x00000010
5400 #define E1000_TX_FLAGS_HWTSTAMP		0x00000020
5401 #define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
5402 #define E1000_TX_FLAGS_VLAN_SHIFT	16
5403 
5404 static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb,
5405 		     __be16 protocol)
5406 {
5407 	struct e1000_context_desc *context_desc;
5408 	struct e1000_buffer *buffer_info;
5409 	unsigned int i;
5410 	u32 cmd_length = 0;
5411 	u16 ipcse = 0, mss;
5412 	u8 ipcss, ipcso, tucss, tucso, hdr_len;
5413 	int err;
5414 
5415 	if (!skb_is_gso(skb))
5416 		return 0;
5417 
5418 	err = skb_cow_head(skb, 0);
5419 	if (err < 0)
5420 		return err;
5421 
5422 	hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5423 	mss = skb_shinfo(skb)->gso_size;
5424 	if (protocol == htons(ETH_P_IP)) {
5425 		struct iphdr *iph = ip_hdr(skb);
5426 		iph->tot_len = 0;
5427 		iph->check = 0;
5428 		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
5429 							 0, IPPROTO_TCP, 0);
5430 		cmd_length = E1000_TXD_CMD_IP;
5431 		ipcse = skb_transport_offset(skb) - 1;
5432 	} else if (skb_is_gso_v6(skb)) {
5433 		ipv6_hdr(skb)->payload_len = 0;
5434 		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5435 						       &ipv6_hdr(skb)->daddr,
5436 						       0, IPPROTO_TCP, 0);
5437 		ipcse = 0;
5438 	}
5439 	ipcss = skb_network_offset(skb);
5440 	ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
5441 	tucss = skb_transport_offset(skb);
5442 	tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
5443 
5444 	cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
5445 		       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
5446 
5447 	i = tx_ring->next_to_use;
5448 	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5449 	buffer_info = &tx_ring->buffer_info[i];
5450 
5451 	context_desc->lower_setup.ip_fields.ipcss = ipcss;
5452 	context_desc->lower_setup.ip_fields.ipcso = ipcso;
5453 	context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
5454 	context_desc->upper_setup.tcp_fields.tucss = tucss;
5455 	context_desc->upper_setup.tcp_fields.tucso = tucso;
5456 	context_desc->upper_setup.tcp_fields.tucse = 0;
5457 	context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
5458 	context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
5459 	context_desc->cmd_and_length = cpu_to_le32(cmd_length);
5460 
5461 	buffer_info->time_stamp = jiffies;
5462 	buffer_info->next_to_watch = i;
5463 
5464 	i++;
5465 	if (i == tx_ring->count)
5466 		i = 0;
5467 	tx_ring->next_to_use = i;
5468 
5469 	return 1;
5470 }
5471 
5472 static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb,
5473 			  __be16 protocol)
5474 {
5475 	struct e1000_adapter *adapter = tx_ring->adapter;
5476 	struct e1000_context_desc *context_desc;
5477 	struct e1000_buffer *buffer_info;
5478 	unsigned int i;
5479 	u8 css;
5480 	u32 cmd_len = E1000_TXD_CMD_DEXT;
5481 
5482 	if (skb->ip_summed != CHECKSUM_PARTIAL)
5483 		return false;
5484 
5485 	switch (protocol) {
5486 	case cpu_to_be16(ETH_P_IP):
5487 		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
5488 			cmd_len |= E1000_TXD_CMD_TCP;
5489 		break;
5490 	case cpu_to_be16(ETH_P_IPV6):
5491 		/* XXX not handling all IPV6 headers */
5492 		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
5493 			cmd_len |= E1000_TXD_CMD_TCP;
5494 		break;
5495 	default:
5496 		if (unlikely(net_ratelimit()))
5497 			e_warn("checksum_partial proto=%x!\n",
5498 			       be16_to_cpu(protocol));
5499 		break;
5500 	}
5501 
5502 	css = skb_checksum_start_offset(skb);
5503 
5504 	i = tx_ring->next_to_use;
5505 	buffer_info = &tx_ring->buffer_info[i];
5506 	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5507 
5508 	context_desc->lower_setup.ip_config = 0;
5509 	context_desc->upper_setup.tcp_fields.tucss = css;
5510 	context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset;
5511 	context_desc->upper_setup.tcp_fields.tucse = 0;
5512 	context_desc->tcp_seg_setup.data = 0;
5513 	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
5514 
5515 	buffer_info->time_stamp = jiffies;
5516 	buffer_info->next_to_watch = i;
5517 
5518 	i++;
5519 	if (i == tx_ring->count)
5520 		i = 0;
5521 	tx_ring->next_to_use = i;
5522 
5523 	return true;
5524 }
5525 
5526 static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
5527 			unsigned int first, unsigned int max_per_txd,
5528 			unsigned int nr_frags)
5529 {
5530 	struct e1000_adapter *adapter = tx_ring->adapter;
5531 	struct pci_dev *pdev = adapter->pdev;
5532 	struct e1000_buffer *buffer_info;
5533 	unsigned int len = skb_headlen(skb);
5534 	unsigned int offset = 0, size, count = 0, i;
5535 	unsigned int f, bytecount, segs;
5536 
5537 	i = tx_ring->next_to_use;
5538 
5539 	while (len) {
5540 		buffer_info = &tx_ring->buffer_info[i];
5541 		size = min(len, max_per_txd);
5542 
5543 		buffer_info->length = size;
5544 		buffer_info->time_stamp = jiffies;
5545 		buffer_info->next_to_watch = i;
5546 		buffer_info->dma = dma_map_single(&pdev->dev,
5547 						  skb->data + offset,
5548 						  size, DMA_TO_DEVICE);
5549 		buffer_info->mapped_as_page = false;
5550 		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5551 			goto dma_error;
5552 
5553 		len -= size;
5554 		offset += size;
5555 		count++;
5556 
5557 		if (len) {
5558 			i++;
5559 			if (i == tx_ring->count)
5560 				i = 0;
5561 		}
5562 	}
5563 
5564 	for (f = 0; f < nr_frags; f++) {
5565 		const struct skb_frag_struct *frag;
5566 
5567 		frag = &skb_shinfo(skb)->frags[f];
5568 		len = skb_frag_size(frag);
5569 		offset = 0;
5570 
5571 		while (len) {
5572 			i++;
5573 			if (i == tx_ring->count)
5574 				i = 0;
5575 
5576 			buffer_info = &tx_ring->buffer_info[i];
5577 			size = min(len, max_per_txd);
5578 
5579 			buffer_info->length = size;
5580 			buffer_info->time_stamp = jiffies;
5581 			buffer_info->next_to_watch = i;
5582 			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
5583 							    offset, size,
5584 							    DMA_TO_DEVICE);
5585 			buffer_info->mapped_as_page = true;
5586 			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5587 				goto dma_error;
5588 
5589 			len -= size;
5590 			offset += size;
5591 			count++;
5592 		}
5593 	}
5594 
5595 	segs = skb_shinfo(skb)->gso_segs ? : 1;
5596 	/* multiply data chunks by size of headers */
5597 	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
5598 
5599 	tx_ring->buffer_info[i].skb = skb;
5600 	tx_ring->buffer_info[i].segs = segs;
5601 	tx_ring->buffer_info[i].bytecount = bytecount;
5602 	tx_ring->buffer_info[first].next_to_watch = i;
5603 
5604 	return count;
5605 
5606 dma_error:
5607 	dev_err(&pdev->dev, "Tx DMA map failed\n");
5608 	buffer_info->dma = 0;
5609 	if (count)
5610 		count--;
5611 
5612 	while (count--) {
5613 		if (i == 0)
5614 			i += tx_ring->count;
5615 		i--;
5616 		buffer_info = &tx_ring->buffer_info[i];
5617 		e1000_put_txbuf(tx_ring, buffer_info);
5618 	}
5619 
5620 	return 0;
5621 }
5622 
5623 static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
5624 {
5625 	struct e1000_adapter *adapter = tx_ring->adapter;
5626 	struct e1000_tx_desc *tx_desc = NULL;
5627 	struct e1000_buffer *buffer_info;
5628 	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
5629 	unsigned int i;
5630 
5631 	if (tx_flags & E1000_TX_FLAGS_TSO) {
5632 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
5633 		    E1000_TXD_CMD_TSE;
5634 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5635 
5636 		if (tx_flags & E1000_TX_FLAGS_IPV4)
5637 			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
5638 	}
5639 
5640 	if (tx_flags & E1000_TX_FLAGS_CSUM) {
5641 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5642 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5643 	}
5644 
5645 	if (tx_flags & E1000_TX_FLAGS_VLAN) {
5646 		txd_lower |= E1000_TXD_CMD_VLE;
5647 		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
5648 	}
5649 
5650 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5651 		txd_lower &= ~(E1000_TXD_CMD_IFCS);
5652 
5653 	if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) {
5654 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5655 		txd_upper |= E1000_TXD_EXTCMD_TSTAMP;
5656 	}
5657 
5658 	i = tx_ring->next_to_use;
5659 
5660 	do {
5661 		buffer_info = &tx_ring->buffer_info[i];
5662 		tx_desc = E1000_TX_DESC(*tx_ring, i);
5663 		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
5664 		tx_desc->lower.data = cpu_to_le32(txd_lower |
5665 						  buffer_info->length);
5666 		tx_desc->upper.data = cpu_to_le32(txd_upper);
5667 
5668 		i++;
5669 		if (i == tx_ring->count)
5670 			i = 0;
5671 	} while (--count > 0);
5672 
5673 	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
5674 
5675 	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5676 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5677 		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
5678 
5679 	/* Force memory writes to complete before letting h/w
5680 	 * know there are new descriptors to fetch.  (Only
5681 	 * applicable for weak-ordered memory model archs,
5682 	 * such as IA-64).
5683 	 */
5684 	wmb();
5685 
5686 	tx_ring->next_to_use = i;
5687 }
5688 
5689 #define MINIMUM_DHCP_PACKET_SIZE 282
5690 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
5691 				    struct sk_buff *skb)
5692 {
5693 	struct e1000_hw *hw = &adapter->hw;
5694 	u16 length, offset;
5695 
5696 	if (skb_vlan_tag_present(skb) &&
5697 	    !((skb_vlan_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
5698 	      (adapter->hw.mng_cookie.status &
5699 	       E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
5700 		return 0;
5701 
5702 	if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
5703 		return 0;
5704 
5705 	if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP))
5706 		return 0;
5707 
5708 	{
5709 		const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14);
5710 		struct udphdr *udp;
5711 
5712 		if (ip->protocol != IPPROTO_UDP)
5713 			return 0;
5714 
5715 		udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
5716 		if (ntohs(udp->dest) != 67)
5717 			return 0;
5718 
5719 		offset = (u8 *)udp + 8 - skb->data;
5720 		length = skb->len - offset;
5721 		return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
5722 	}
5723 
5724 	return 0;
5725 }
5726 
5727 static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5728 {
5729 	struct e1000_adapter *adapter = tx_ring->adapter;
5730 
5731 	netif_stop_queue(adapter->netdev);
5732 	/* Herbert's original patch had:
5733 	 *  smp_mb__after_netif_stop_queue();
5734 	 * but since that doesn't exist yet, just open code it.
5735 	 */
5736 	smp_mb();
5737 
5738 	/* We need to check again in a case another CPU has just
5739 	 * made room available.
5740 	 */
5741 	if (e1000_desc_unused(tx_ring) < size)
5742 		return -EBUSY;
5743 
5744 	/* A reprieve! */
5745 	netif_start_queue(adapter->netdev);
5746 	++adapter->restart_queue;
5747 	return 0;
5748 }
5749 
5750 static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5751 {
5752 	BUG_ON(size > tx_ring->count);
5753 
5754 	if (e1000_desc_unused(tx_ring) >= size)
5755 		return 0;
5756 	return __e1000_maybe_stop_tx(tx_ring, size);
5757 }
5758 
5759 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5760 				    struct net_device *netdev)
5761 {
5762 	struct e1000_adapter *adapter = netdev_priv(netdev);
5763 	struct e1000_ring *tx_ring = adapter->tx_ring;
5764 	unsigned int first;
5765 	unsigned int tx_flags = 0;
5766 	unsigned int len = skb_headlen(skb);
5767 	unsigned int nr_frags;
5768 	unsigned int mss;
5769 	int count = 0;
5770 	int tso;
5771 	unsigned int f;
5772 	__be16 protocol = vlan_get_protocol(skb);
5773 
5774 	if (test_bit(__E1000_DOWN, &adapter->state)) {
5775 		dev_kfree_skb_any(skb);
5776 		return NETDEV_TX_OK;
5777 	}
5778 
5779 	if (skb->len <= 0) {
5780 		dev_kfree_skb_any(skb);
5781 		return NETDEV_TX_OK;
5782 	}
5783 
5784 	/* The minimum packet size with TCTL.PSP set is 17 bytes so
5785 	 * pad skb in order to meet this minimum size requirement
5786 	 */
5787 	if (skb_put_padto(skb, 17))
5788 		return NETDEV_TX_OK;
5789 
5790 	mss = skb_shinfo(skb)->gso_size;
5791 	if (mss) {
5792 		u8 hdr_len;
5793 
5794 		/* TSO Workaround for 82571/2/3 Controllers -- if skb->data
5795 		 * points to just header, pull a few bytes of payload from
5796 		 * frags into skb->data
5797 		 */
5798 		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5799 		/* we do this workaround for ES2LAN, but it is un-necessary,
5800 		 * avoiding it could save a lot of cycles
5801 		 */
5802 		if (skb->data_len && (hdr_len == len)) {
5803 			unsigned int pull_size;
5804 
5805 			pull_size = min_t(unsigned int, 4, skb->data_len);
5806 			if (!__pskb_pull_tail(skb, pull_size)) {
5807 				e_err("__pskb_pull_tail failed.\n");
5808 				dev_kfree_skb_any(skb);
5809 				return NETDEV_TX_OK;
5810 			}
5811 			len = skb_headlen(skb);
5812 		}
5813 	}
5814 
5815 	/* reserve a descriptor for the offload context */
5816 	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5817 		count++;
5818 	count++;
5819 
5820 	count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
5821 
5822 	nr_frags = skb_shinfo(skb)->nr_frags;
5823 	for (f = 0; f < nr_frags; f++)
5824 		count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5825 				      adapter->tx_fifo_limit);
5826 
5827 	if (adapter->hw.mac.tx_pkt_filtering)
5828 		e1000_transfer_dhcp_info(adapter, skb);
5829 
5830 	/* need: count + 2 desc gap to keep tail from touching
5831 	 * head, otherwise try next time
5832 	 */
5833 	if (e1000_maybe_stop_tx(tx_ring, count + 2))
5834 		return NETDEV_TX_BUSY;
5835 
5836 	if (skb_vlan_tag_present(skb)) {
5837 		tx_flags |= E1000_TX_FLAGS_VLAN;
5838 		tx_flags |= (skb_vlan_tag_get(skb) <<
5839 			     E1000_TX_FLAGS_VLAN_SHIFT);
5840 	}
5841 
5842 	first = tx_ring->next_to_use;
5843 
5844 	tso = e1000_tso(tx_ring, skb, protocol);
5845 	if (tso < 0) {
5846 		dev_kfree_skb_any(skb);
5847 		return NETDEV_TX_OK;
5848 	}
5849 
5850 	if (tso)
5851 		tx_flags |= E1000_TX_FLAGS_TSO;
5852 	else if (e1000_tx_csum(tx_ring, skb, protocol))
5853 		tx_flags |= E1000_TX_FLAGS_CSUM;
5854 
5855 	/* Old method was to assume IPv4 packet by default if TSO was enabled.
5856 	 * 82571 hardware supports TSO capabilities for IPv6 as well...
5857 	 * no longer assume, we must.
5858 	 */
5859 	if (protocol == htons(ETH_P_IP))
5860 		tx_flags |= E1000_TX_FLAGS_IPV4;
5861 
5862 	if (unlikely(skb->no_fcs))
5863 		tx_flags |= E1000_TX_FLAGS_NO_FCS;
5864 
5865 	/* if count is 0 then mapping error has occurred */
5866 	count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5867 			     nr_frags);
5868 	if (count) {
5869 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
5870 		    (adapter->flags & FLAG_HAS_HW_TIMESTAMP)) {
5871 			if (!adapter->tx_hwtstamp_skb) {
5872 				skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5873 				tx_flags |= E1000_TX_FLAGS_HWTSTAMP;
5874 				adapter->tx_hwtstamp_skb = skb_get(skb);
5875 				adapter->tx_hwtstamp_start = jiffies;
5876 				schedule_work(&adapter->tx_hwtstamp_work);
5877 			} else {
5878 				adapter->tx_hwtstamp_skipped++;
5879 			}
5880 		}
5881 
5882 		skb_tx_timestamp(skb);
5883 
5884 		netdev_sent_queue(netdev, skb->len);
5885 		e1000_tx_queue(tx_ring, tx_flags, count);
5886 		/* Make sure there is space in the ring for the next send. */
5887 		e1000_maybe_stop_tx(tx_ring,
5888 				    (MAX_SKB_FRAGS *
5889 				     DIV_ROUND_UP(PAGE_SIZE,
5890 						  adapter->tx_fifo_limit) + 2));
5891 
5892 		if (!skb->xmit_more ||
5893 		    netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
5894 			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
5895 				e1000e_update_tdt_wa(tx_ring,
5896 						     tx_ring->next_to_use);
5897 			else
5898 				writel(tx_ring->next_to_use, tx_ring->tail);
5899 
5900 			/* we need this if more than one processor can write
5901 			 * to our tail at a time, it synchronizes IO on
5902 			 *IA64/Altix systems
5903 			 */
5904 			mmiowb();
5905 		}
5906 	} else {
5907 		dev_kfree_skb_any(skb);
5908 		tx_ring->buffer_info[first].time_stamp = 0;
5909 		tx_ring->next_to_use = first;
5910 	}
5911 
5912 	return NETDEV_TX_OK;
5913 }
5914 
5915 /**
5916  * e1000_tx_timeout - Respond to a Tx Hang
5917  * @netdev: network interface device structure
5918  **/
5919 static void e1000_tx_timeout(struct net_device *netdev)
5920 {
5921 	struct e1000_adapter *adapter = netdev_priv(netdev);
5922 
5923 	/* Do the reset outside of interrupt context */
5924 	adapter->tx_timeout_count++;
5925 	schedule_work(&adapter->reset_task);
5926 }
5927 
5928 static void e1000_reset_task(struct work_struct *work)
5929 {
5930 	struct e1000_adapter *adapter;
5931 	adapter = container_of(work, struct e1000_adapter, reset_task);
5932 
5933 	/* don't run the task if already down */
5934 	if (test_bit(__E1000_DOWN, &adapter->state))
5935 		return;
5936 
5937 	if (!(adapter->flags & FLAG_RESTART_NOW)) {
5938 		e1000e_dump(adapter);
5939 		e_err("Reset adapter unexpectedly\n");
5940 	}
5941 	e1000e_reinit_locked(adapter);
5942 }
5943 
5944 /**
5945  * e1000_get_stats64 - Get System Network Statistics
5946  * @netdev: network interface device structure
5947  * @stats: rtnl_link_stats64 pointer
5948  *
5949  * Returns the address of the device statistics structure.
5950  **/
5951 void e1000e_get_stats64(struct net_device *netdev,
5952 			struct rtnl_link_stats64 *stats)
5953 {
5954 	struct e1000_adapter *adapter = netdev_priv(netdev);
5955 
5956 	spin_lock(&adapter->stats64_lock);
5957 	e1000e_update_stats(adapter);
5958 	/* Fill out the OS statistics structure */
5959 	stats->rx_bytes = adapter->stats.gorc;
5960 	stats->rx_packets = adapter->stats.gprc;
5961 	stats->tx_bytes = adapter->stats.gotc;
5962 	stats->tx_packets = adapter->stats.gptc;
5963 	stats->multicast = adapter->stats.mprc;
5964 	stats->collisions = adapter->stats.colc;
5965 
5966 	/* Rx Errors */
5967 
5968 	/* RLEC on some newer hardware can be incorrect so build
5969 	 * our own version based on RUC and ROC
5970 	 */
5971 	stats->rx_errors = adapter->stats.rxerrc +
5972 	    adapter->stats.crcerrs + adapter->stats.algnerrc +
5973 	    adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5974 	stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc;
5975 	stats->rx_crc_errors = adapter->stats.crcerrs;
5976 	stats->rx_frame_errors = adapter->stats.algnerrc;
5977 	stats->rx_missed_errors = adapter->stats.mpc;
5978 
5979 	/* Tx Errors */
5980 	stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol;
5981 	stats->tx_aborted_errors = adapter->stats.ecol;
5982 	stats->tx_window_errors = adapter->stats.latecol;
5983 	stats->tx_carrier_errors = adapter->stats.tncrs;
5984 
5985 	/* Tx Dropped needs to be maintained elsewhere */
5986 
5987 	spin_unlock(&adapter->stats64_lock);
5988 }
5989 
5990 /**
5991  * e1000_change_mtu - Change the Maximum Transfer Unit
5992  * @netdev: network interface device structure
5993  * @new_mtu: new value for maximum frame size
5994  *
5995  * Returns 0 on success, negative on failure
5996  **/
5997 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
5998 {
5999 	struct e1000_adapter *adapter = netdev_priv(netdev);
6000 	int max_frame = new_mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
6001 
6002 	/* Jumbo frame support */
6003 	if ((new_mtu > ETH_DATA_LEN) &&
6004 	    !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
6005 		e_err("Jumbo Frames not supported.\n");
6006 		return -EINVAL;
6007 	}
6008 
6009 	/* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
6010 	if ((adapter->hw.mac.type >= e1000_pch2lan) &&
6011 	    !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
6012 	    (new_mtu > ETH_DATA_LEN)) {
6013 		e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
6014 		return -EINVAL;
6015 	}
6016 
6017 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
6018 		usleep_range(1000, 2000);
6019 	/* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
6020 	adapter->max_frame_size = max_frame;
6021 	e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
6022 	netdev->mtu = new_mtu;
6023 
6024 	pm_runtime_get_sync(netdev->dev.parent);
6025 
6026 	if (netif_running(netdev))
6027 		e1000e_down(adapter, true);
6028 
6029 	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
6030 	 * means we reserve 2 more, this pushes us to allocate from the next
6031 	 * larger slab size.
6032 	 * i.e. RXBUFFER_2048 --> size-4096 slab
6033 	 * However with the new *_jumbo_rx* routines, jumbo receives will use
6034 	 * fragmented skbs
6035 	 */
6036 
6037 	if (max_frame <= 2048)
6038 		adapter->rx_buffer_len = 2048;
6039 	else
6040 		adapter->rx_buffer_len = 4096;
6041 
6042 	/* adjust allocation if LPE protects us, and we aren't using SBP */
6043 	if (max_frame <= (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN))
6044 		adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
6045 
6046 	if (netif_running(netdev))
6047 		e1000e_up(adapter);
6048 	else
6049 		e1000e_reset(adapter);
6050 
6051 	pm_runtime_put_sync(netdev->dev.parent);
6052 
6053 	clear_bit(__E1000_RESETTING, &adapter->state);
6054 
6055 	return 0;
6056 }
6057 
6058 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
6059 			   int cmd)
6060 {
6061 	struct e1000_adapter *adapter = netdev_priv(netdev);
6062 	struct mii_ioctl_data *data = if_mii(ifr);
6063 
6064 	if (adapter->hw.phy.media_type != e1000_media_type_copper)
6065 		return -EOPNOTSUPP;
6066 
6067 	switch (cmd) {
6068 	case SIOCGMIIPHY:
6069 		data->phy_id = adapter->hw.phy.addr;
6070 		break;
6071 	case SIOCGMIIREG:
6072 		e1000_phy_read_status(adapter);
6073 
6074 		switch (data->reg_num & 0x1F) {
6075 		case MII_BMCR:
6076 			data->val_out = adapter->phy_regs.bmcr;
6077 			break;
6078 		case MII_BMSR:
6079 			data->val_out = adapter->phy_regs.bmsr;
6080 			break;
6081 		case MII_PHYSID1:
6082 			data->val_out = (adapter->hw.phy.id >> 16);
6083 			break;
6084 		case MII_PHYSID2:
6085 			data->val_out = (adapter->hw.phy.id & 0xFFFF);
6086 			break;
6087 		case MII_ADVERTISE:
6088 			data->val_out = adapter->phy_regs.advertise;
6089 			break;
6090 		case MII_LPA:
6091 			data->val_out = adapter->phy_regs.lpa;
6092 			break;
6093 		case MII_EXPANSION:
6094 			data->val_out = adapter->phy_regs.expansion;
6095 			break;
6096 		case MII_CTRL1000:
6097 			data->val_out = adapter->phy_regs.ctrl1000;
6098 			break;
6099 		case MII_STAT1000:
6100 			data->val_out = adapter->phy_regs.stat1000;
6101 			break;
6102 		case MII_ESTATUS:
6103 			data->val_out = adapter->phy_regs.estatus;
6104 			break;
6105 		default:
6106 			return -EIO;
6107 		}
6108 		break;
6109 	case SIOCSMIIREG:
6110 	default:
6111 		return -EOPNOTSUPP;
6112 	}
6113 	return 0;
6114 }
6115 
6116 /**
6117  * e1000e_hwtstamp_ioctl - control hardware time stamping
6118  * @netdev: network interface device structure
6119  * @ifreq: interface request
6120  *
6121  * Outgoing time stamping can be enabled and disabled. Play nice and
6122  * disable it when requested, although it shouldn't cause any overhead
6123  * when no packet needs it. At most one packet in the queue may be
6124  * marked for time stamping, otherwise it would be impossible to tell
6125  * for sure to which packet the hardware time stamp belongs.
6126  *
6127  * Incoming time stamping has to be configured via the hardware filters.
6128  * Not all combinations are supported, in particular event type has to be
6129  * specified. Matching the kind of event packet is not supported, with the
6130  * exception of "all V2 events regardless of level 2 or 4".
6131  **/
6132 static int e1000e_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
6133 {
6134 	struct e1000_adapter *adapter = netdev_priv(netdev);
6135 	struct hwtstamp_config config;
6136 	int ret_val;
6137 
6138 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
6139 		return -EFAULT;
6140 
6141 	ret_val = e1000e_config_hwtstamp(adapter, &config);
6142 	if (ret_val)
6143 		return ret_val;
6144 
6145 	switch (config.rx_filter) {
6146 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6147 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6148 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
6149 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6150 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6151 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6152 		/* With V2 type filters which specify a Sync or Delay Request,
6153 		 * Path Delay Request/Response messages are also time stamped
6154 		 * by hardware so notify the caller the requested packets plus
6155 		 * some others are time stamped.
6156 		 */
6157 		config.rx_filter = HWTSTAMP_FILTER_SOME;
6158 		break;
6159 	default:
6160 		break;
6161 	}
6162 
6163 	return copy_to_user(ifr->ifr_data, &config,
6164 			    sizeof(config)) ? -EFAULT : 0;
6165 }
6166 
6167 static int e1000e_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
6168 {
6169 	struct e1000_adapter *adapter = netdev_priv(netdev);
6170 
6171 	return copy_to_user(ifr->ifr_data, &adapter->hwtstamp_config,
6172 			    sizeof(adapter->hwtstamp_config)) ? -EFAULT : 0;
6173 }
6174 
6175 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6176 {
6177 	switch (cmd) {
6178 	case SIOCGMIIPHY:
6179 	case SIOCGMIIREG:
6180 	case SIOCSMIIREG:
6181 		return e1000_mii_ioctl(netdev, ifr, cmd);
6182 	case SIOCSHWTSTAMP:
6183 		return e1000e_hwtstamp_set(netdev, ifr);
6184 	case SIOCGHWTSTAMP:
6185 		return e1000e_hwtstamp_get(netdev, ifr);
6186 	default:
6187 		return -EOPNOTSUPP;
6188 	}
6189 }
6190 
6191 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
6192 {
6193 	struct e1000_hw *hw = &adapter->hw;
6194 	u32 i, mac_reg, wuc;
6195 	u16 phy_reg, wuc_enable;
6196 	int retval;
6197 
6198 	/* copy MAC RARs to PHY RARs */
6199 	e1000_copy_rx_addrs_to_phy_ich8lan(hw);
6200 
6201 	retval = hw->phy.ops.acquire(hw);
6202 	if (retval) {
6203 		e_err("Could not acquire PHY\n");
6204 		return retval;
6205 	}
6206 
6207 	/* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
6208 	retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6209 	if (retval)
6210 		goto release;
6211 
6212 	/* copy MAC MTA to PHY MTA - only needed for pchlan */
6213 	for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
6214 		mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
6215 		hw->phy.ops.write_reg_page(hw, BM_MTA(i),
6216 					   (u16)(mac_reg & 0xFFFF));
6217 		hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
6218 					   (u16)((mac_reg >> 16) & 0xFFFF));
6219 	}
6220 
6221 	/* configure PHY Rx Control register */
6222 	hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
6223 	mac_reg = er32(RCTL);
6224 	if (mac_reg & E1000_RCTL_UPE)
6225 		phy_reg |= BM_RCTL_UPE;
6226 	if (mac_reg & E1000_RCTL_MPE)
6227 		phy_reg |= BM_RCTL_MPE;
6228 	phy_reg &= ~(BM_RCTL_MO_MASK);
6229 	if (mac_reg & E1000_RCTL_MO_3)
6230 		phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
6231 			    << BM_RCTL_MO_SHIFT);
6232 	if (mac_reg & E1000_RCTL_BAM)
6233 		phy_reg |= BM_RCTL_BAM;
6234 	if (mac_reg & E1000_RCTL_PMCF)
6235 		phy_reg |= BM_RCTL_PMCF;
6236 	mac_reg = er32(CTRL);
6237 	if (mac_reg & E1000_CTRL_RFCE)
6238 		phy_reg |= BM_RCTL_RFCE;
6239 	hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
6240 
6241 	wuc = E1000_WUC_PME_EN;
6242 	if (wufc & (E1000_WUFC_MAG | E1000_WUFC_LNKC))
6243 		wuc |= E1000_WUC_APME;
6244 
6245 	/* enable PHY wakeup in MAC register */
6246 	ew32(WUFC, wufc);
6247 	ew32(WUC, (E1000_WUC_PHY_WAKE | E1000_WUC_APMPME |
6248 		   E1000_WUC_PME_STATUS | wuc));
6249 
6250 	/* configure and enable PHY wakeup in PHY registers */
6251 	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
6252 	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, wuc);
6253 
6254 	/* activate PHY wakeup */
6255 	wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
6256 	retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6257 	if (retval)
6258 		e_err("Could not set PHY Host Wakeup bit\n");
6259 release:
6260 	hw->phy.ops.release(hw);
6261 
6262 	return retval;
6263 }
6264 
6265 static void e1000e_flush_lpic(struct pci_dev *pdev)
6266 {
6267 	struct net_device *netdev = pci_get_drvdata(pdev);
6268 	struct e1000_adapter *adapter = netdev_priv(netdev);
6269 	struct e1000_hw *hw = &adapter->hw;
6270 	u32 ret_val;
6271 
6272 	pm_runtime_get_sync(netdev->dev.parent);
6273 
6274 	ret_val = hw->phy.ops.acquire(hw);
6275 	if (ret_val)
6276 		goto fl_out;
6277 
6278 	pr_info("EEE TX LPI TIMER: %08X\n",
6279 		er32(LPIC) >> E1000_LPIC_LPIET_SHIFT);
6280 
6281 	hw->phy.ops.release(hw);
6282 
6283 fl_out:
6284 	pm_runtime_put_sync(netdev->dev.parent);
6285 }
6286 
6287 static int e1000e_pm_freeze(struct device *dev)
6288 {
6289 	struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6290 	struct e1000_adapter *adapter = netdev_priv(netdev);
6291 
6292 	netif_device_detach(netdev);
6293 
6294 	if (netif_running(netdev)) {
6295 		int count = E1000_CHECK_RESET_COUNT;
6296 
6297 		while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6298 			usleep_range(10000, 20000);
6299 
6300 		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6301 
6302 		/* Quiesce the device without resetting the hardware */
6303 		e1000e_down(adapter, false);
6304 		e1000_free_irq(adapter);
6305 	}
6306 	e1000e_reset_interrupt_capability(adapter);
6307 
6308 	/* Allow time for pending master requests to run */
6309 	e1000e_disable_pcie_master(&adapter->hw);
6310 
6311 	return 0;
6312 }
6313 
6314 static int __e1000_shutdown(struct pci_dev *pdev, bool runtime)
6315 {
6316 	struct net_device *netdev = pci_get_drvdata(pdev);
6317 	struct e1000_adapter *adapter = netdev_priv(netdev);
6318 	struct e1000_hw *hw = &adapter->hw;
6319 	u32 ctrl, ctrl_ext, rctl, status;
6320 	/* Runtime suspend should only enable wakeup for link changes */
6321 	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
6322 	int retval = 0;
6323 
6324 	status = er32(STATUS);
6325 	if (status & E1000_STATUS_LU)
6326 		wufc &= ~E1000_WUFC_LNKC;
6327 
6328 	if (wufc) {
6329 		e1000_setup_rctl(adapter);
6330 		e1000e_set_rx_mode(netdev);
6331 
6332 		/* turn on all-multi mode if wake on multicast is enabled */
6333 		if (wufc & E1000_WUFC_MC) {
6334 			rctl = er32(RCTL);
6335 			rctl |= E1000_RCTL_MPE;
6336 			ew32(RCTL, rctl);
6337 		}
6338 
6339 		ctrl = er32(CTRL);
6340 		ctrl |= E1000_CTRL_ADVD3WUC;
6341 		if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
6342 			ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
6343 		ew32(CTRL, ctrl);
6344 
6345 		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
6346 		    adapter->hw.phy.media_type ==
6347 		    e1000_media_type_internal_serdes) {
6348 			/* keep the laser running in D3 */
6349 			ctrl_ext = er32(CTRL_EXT);
6350 			ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
6351 			ew32(CTRL_EXT, ctrl_ext);
6352 		}
6353 
6354 		if (!runtime)
6355 			e1000e_power_up_phy(adapter);
6356 
6357 		if (adapter->flags & FLAG_IS_ICH)
6358 			e1000_suspend_workarounds_ich8lan(&adapter->hw);
6359 
6360 		if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6361 			/* enable wakeup by the PHY */
6362 			retval = e1000_init_phy_wakeup(adapter, wufc);
6363 			if (retval)
6364 				return retval;
6365 		} else {
6366 			/* enable wakeup by the MAC */
6367 			ew32(WUFC, wufc);
6368 			ew32(WUC, E1000_WUC_PME_EN);
6369 		}
6370 	} else {
6371 		ew32(WUC, 0);
6372 		ew32(WUFC, 0);
6373 
6374 		e1000_power_down_phy(adapter);
6375 	}
6376 
6377 	if (adapter->hw.phy.type == e1000_phy_igp_3) {
6378 		e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
6379 	} else if (hw->mac.type >= e1000_pch_lpt) {
6380 		if (!(wufc & (E1000_WUFC_EX | E1000_WUFC_MC | E1000_WUFC_BC)))
6381 			/* ULP does not support wake from unicast, multicast
6382 			 * or broadcast.
6383 			 */
6384 			retval = e1000_enable_ulp_lpt_lp(hw, !runtime);
6385 
6386 		if (retval)
6387 			return retval;
6388 	}
6389 
6390 	/* Ensure that the appropriate bits are set in LPI_CTRL
6391 	 * for EEE in Sx
6392 	 */
6393 	if ((hw->phy.type >= e1000_phy_i217) &&
6394 	    adapter->eee_advert && hw->dev_spec.ich8lan.eee_lp_ability) {
6395 		u16 lpi_ctrl = 0;
6396 
6397 		retval = hw->phy.ops.acquire(hw);
6398 		if (!retval) {
6399 			retval = e1e_rphy_locked(hw, I82579_LPI_CTRL,
6400 						 &lpi_ctrl);
6401 			if (!retval) {
6402 				if (adapter->eee_advert &
6403 				    hw->dev_spec.ich8lan.eee_lp_ability &
6404 				    I82579_EEE_100_SUPPORTED)
6405 					lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
6406 				if (adapter->eee_advert &
6407 				    hw->dev_spec.ich8lan.eee_lp_ability &
6408 				    I82579_EEE_1000_SUPPORTED)
6409 					lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
6410 
6411 				retval = e1e_wphy_locked(hw, I82579_LPI_CTRL,
6412 							 lpi_ctrl);
6413 			}
6414 		}
6415 		hw->phy.ops.release(hw);
6416 	}
6417 
6418 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
6419 	 * would have already happened in close and is redundant.
6420 	 */
6421 	e1000e_release_hw_control(adapter);
6422 
6423 	pci_clear_master(pdev);
6424 
6425 	/* The pci-e switch on some quad port adapters will report a
6426 	 * correctable error when the MAC transitions from D0 to D3.  To
6427 	 * prevent this we need to mask off the correctable errors on the
6428 	 * downstream port of the pci-e switch.
6429 	 *
6430 	 * We don't have the associated upstream bridge while assigning
6431 	 * the PCI device into guest. For example, the KVM on power is
6432 	 * one of the cases.
6433 	 */
6434 	if (adapter->flags & FLAG_IS_QUAD_PORT) {
6435 		struct pci_dev *us_dev = pdev->bus->self;
6436 		u16 devctl;
6437 
6438 		if (!us_dev)
6439 			return 0;
6440 
6441 		pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl);
6442 		pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL,
6443 					   (devctl & ~PCI_EXP_DEVCTL_CERE));
6444 
6445 		pci_save_state(pdev);
6446 		pci_prepare_to_sleep(pdev);
6447 
6448 		pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl);
6449 	}
6450 
6451 	return 0;
6452 }
6453 
6454 /**
6455  * __e1000e_disable_aspm - Disable ASPM states
6456  * @pdev: pointer to PCI device struct
6457  * @state: bit-mask of ASPM states to disable
6458  * @locked: indication if this context holds pci_bus_sem locked.
6459  *
6460  * Some devices *must* have certain ASPM states disabled per hardware errata.
6461  **/
6462 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state, int locked)
6463 {
6464 	struct pci_dev *parent = pdev->bus->self;
6465 	u16 aspm_dis_mask = 0;
6466 	u16 pdev_aspmc, parent_aspmc;
6467 
6468 	switch (state) {
6469 	case PCIE_LINK_STATE_L0S:
6470 	case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1:
6471 		aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S;
6472 		/* fall-through - can't have L1 without L0s */
6473 	case PCIE_LINK_STATE_L1:
6474 		aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1;
6475 		break;
6476 	default:
6477 		return;
6478 	}
6479 
6480 	pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6481 	pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6482 
6483 	if (parent) {
6484 		pcie_capability_read_word(parent, PCI_EXP_LNKCTL,
6485 					  &parent_aspmc);
6486 		parent_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6487 	}
6488 
6489 	/* Nothing to do if the ASPM states to be disabled already are */
6490 	if (!(pdev_aspmc & aspm_dis_mask) &&
6491 	    (!parent || !(parent_aspmc & aspm_dis_mask)))
6492 		return;
6493 
6494 	dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
6495 		 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ?
6496 		 "L0s" : "",
6497 		 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ?
6498 		 "L1" : "");
6499 
6500 #ifdef CONFIG_PCIEASPM
6501 	if (locked)
6502 		pci_disable_link_state_locked(pdev, state);
6503 	else
6504 		pci_disable_link_state(pdev, state);
6505 
6506 	/* Double-check ASPM control.  If not disabled by the above, the
6507 	 * BIOS is preventing that from happening (or CONFIG_PCIEASPM is
6508 	 * not enabled); override by writing PCI config space directly.
6509 	 */
6510 	pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6511 	pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6512 
6513 	if (!(aspm_dis_mask & pdev_aspmc))
6514 		return;
6515 #endif
6516 
6517 	/* Both device and parent should have the same ASPM setting.
6518 	 * Disable ASPM in downstream component first and then upstream.
6519 	 */
6520 	pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask);
6521 
6522 	if (parent)
6523 		pcie_capability_clear_word(parent, PCI_EXP_LNKCTL,
6524 					   aspm_dis_mask);
6525 }
6526 
6527 /**
6528  * e1000e_disable_aspm - Disable ASPM states.
6529  * @pdev: pointer to PCI device struct
6530  * @state: bit-mask of ASPM states to disable
6531  *
6532  * This function acquires the pci_bus_sem!
6533  * Some devices *must* have certain ASPM states disabled per hardware errata.
6534  **/
6535 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6536 {
6537 	__e1000e_disable_aspm(pdev, state, 0);
6538 }
6539 
6540 /**
6541  * e1000e_disable_aspm_locked   Disable ASPM states.
6542  * @pdev: pointer to PCI device struct
6543  * @state: bit-mask of ASPM states to disable
6544  *
6545  * This function must be called with pci_bus_sem acquired!
6546  * Some devices *must* have certain ASPM states disabled per hardware errata.
6547  **/
6548 static void e1000e_disable_aspm_locked(struct pci_dev *pdev, u16 state)
6549 {
6550 	__e1000e_disable_aspm(pdev, state, 1);
6551 }
6552 
6553 #ifdef CONFIG_PM
6554 static int __e1000_resume(struct pci_dev *pdev)
6555 {
6556 	struct net_device *netdev = pci_get_drvdata(pdev);
6557 	struct e1000_adapter *adapter = netdev_priv(netdev);
6558 	struct e1000_hw *hw = &adapter->hw;
6559 	u16 aspm_disable_flag = 0;
6560 
6561 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6562 		aspm_disable_flag = PCIE_LINK_STATE_L0S;
6563 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6564 		aspm_disable_flag |= PCIE_LINK_STATE_L1;
6565 	if (aspm_disable_flag)
6566 		e1000e_disable_aspm(pdev, aspm_disable_flag);
6567 
6568 	pci_set_master(pdev);
6569 
6570 	if (hw->mac.type >= e1000_pch2lan)
6571 		e1000_resume_workarounds_pchlan(&adapter->hw);
6572 
6573 	e1000e_power_up_phy(adapter);
6574 
6575 	/* report the system wakeup cause from S3/S4 */
6576 	if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6577 		u16 phy_data;
6578 
6579 		e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
6580 		if (phy_data) {
6581 			e_info("PHY Wakeup cause - %s\n",
6582 			       phy_data & E1000_WUS_EX ? "Unicast Packet" :
6583 			       phy_data & E1000_WUS_MC ? "Multicast Packet" :
6584 			       phy_data & E1000_WUS_BC ? "Broadcast Packet" :
6585 			       phy_data & E1000_WUS_MAG ? "Magic Packet" :
6586 			       phy_data & E1000_WUS_LNKC ?
6587 			       "Link Status Change" : "other");
6588 		}
6589 		e1e_wphy(&adapter->hw, BM_WUS, ~0);
6590 	} else {
6591 		u32 wus = er32(WUS);
6592 
6593 		if (wus) {
6594 			e_info("MAC Wakeup cause - %s\n",
6595 			       wus & E1000_WUS_EX ? "Unicast Packet" :
6596 			       wus & E1000_WUS_MC ? "Multicast Packet" :
6597 			       wus & E1000_WUS_BC ? "Broadcast Packet" :
6598 			       wus & E1000_WUS_MAG ? "Magic Packet" :
6599 			       wus & E1000_WUS_LNKC ? "Link Status Change" :
6600 			       "other");
6601 		}
6602 		ew32(WUS, ~0);
6603 	}
6604 
6605 	e1000e_reset(adapter);
6606 
6607 	e1000_init_manageability_pt(adapter);
6608 
6609 	/* If the controller has AMT, do not set DRV_LOAD until the interface
6610 	 * is up.  For all other cases, let the f/w know that the h/w is now
6611 	 * under the control of the driver.
6612 	 */
6613 	if (!(adapter->flags & FLAG_HAS_AMT))
6614 		e1000e_get_hw_control(adapter);
6615 
6616 	return 0;
6617 }
6618 
6619 #ifdef CONFIG_PM_SLEEP
6620 static int e1000e_pm_thaw(struct device *dev)
6621 {
6622 	struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6623 	struct e1000_adapter *adapter = netdev_priv(netdev);
6624 
6625 	e1000e_set_interrupt_capability(adapter);
6626 	if (netif_running(netdev)) {
6627 		u32 err = e1000_request_irq(adapter);
6628 
6629 		if (err)
6630 			return err;
6631 
6632 		e1000e_up(adapter);
6633 	}
6634 
6635 	netif_device_attach(netdev);
6636 
6637 	return 0;
6638 }
6639 
6640 static int e1000e_pm_suspend(struct device *dev)
6641 {
6642 	struct pci_dev *pdev = to_pci_dev(dev);
6643 	int rc;
6644 
6645 	e1000e_flush_lpic(pdev);
6646 
6647 	e1000e_pm_freeze(dev);
6648 
6649 	rc = __e1000_shutdown(pdev, false);
6650 	if (rc)
6651 		e1000e_pm_thaw(dev);
6652 
6653 	return rc;
6654 }
6655 
6656 static int e1000e_pm_resume(struct device *dev)
6657 {
6658 	struct pci_dev *pdev = to_pci_dev(dev);
6659 	int rc;
6660 
6661 	rc = __e1000_resume(pdev);
6662 	if (rc)
6663 		return rc;
6664 
6665 	return e1000e_pm_thaw(dev);
6666 }
6667 #endif /* CONFIG_PM_SLEEP */
6668 
6669 static int e1000e_pm_runtime_idle(struct device *dev)
6670 {
6671 	struct pci_dev *pdev = to_pci_dev(dev);
6672 	struct net_device *netdev = pci_get_drvdata(pdev);
6673 	struct e1000_adapter *adapter = netdev_priv(netdev);
6674 	u16 eee_lp;
6675 
6676 	eee_lp = adapter->hw.dev_spec.ich8lan.eee_lp_ability;
6677 
6678 	if (!e1000e_has_link(adapter)) {
6679 		adapter->hw.dev_spec.ich8lan.eee_lp_ability = eee_lp;
6680 		pm_schedule_suspend(dev, 5 * MSEC_PER_SEC);
6681 	}
6682 
6683 	return -EBUSY;
6684 }
6685 
6686 static int e1000e_pm_runtime_resume(struct device *dev)
6687 {
6688 	struct pci_dev *pdev = to_pci_dev(dev);
6689 	struct net_device *netdev = pci_get_drvdata(pdev);
6690 	struct e1000_adapter *adapter = netdev_priv(netdev);
6691 	int rc;
6692 
6693 	rc = __e1000_resume(pdev);
6694 	if (rc)
6695 		return rc;
6696 
6697 	if (netdev->flags & IFF_UP)
6698 		e1000e_up(adapter);
6699 
6700 	return rc;
6701 }
6702 
6703 static int e1000e_pm_runtime_suspend(struct device *dev)
6704 {
6705 	struct pci_dev *pdev = to_pci_dev(dev);
6706 	struct net_device *netdev = pci_get_drvdata(pdev);
6707 	struct e1000_adapter *adapter = netdev_priv(netdev);
6708 
6709 	if (netdev->flags & IFF_UP) {
6710 		int count = E1000_CHECK_RESET_COUNT;
6711 
6712 		while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6713 			usleep_range(10000, 20000);
6714 
6715 		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6716 
6717 		/* Down the device without resetting the hardware */
6718 		e1000e_down(adapter, false);
6719 	}
6720 
6721 	if (__e1000_shutdown(pdev, true)) {
6722 		e1000e_pm_runtime_resume(dev);
6723 		return -EBUSY;
6724 	}
6725 
6726 	return 0;
6727 }
6728 #endif /* CONFIG_PM */
6729 
6730 static void e1000_shutdown(struct pci_dev *pdev)
6731 {
6732 	e1000e_flush_lpic(pdev);
6733 
6734 	e1000e_pm_freeze(&pdev->dev);
6735 
6736 	__e1000_shutdown(pdev, false);
6737 }
6738 
6739 #ifdef CONFIG_NET_POLL_CONTROLLER
6740 
6741 static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data)
6742 {
6743 	struct net_device *netdev = data;
6744 	struct e1000_adapter *adapter = netdev_priv(netdev);
6745 
6746 	if (adapter->msix_entries) {
6747 		int vector, msix_irq;
6748 
6749 		vector = 0;
6750 		msix_irq = adapter->msix_entries[vector].vector;
6751 		if (disable_hardirq(msix_irq))
6752 			e1000_intr_msix_rx(msix_irq, netdev);
6753 		enable_irq(msix_irq);
6754 
6755 		vector++;
6756 		msix_irq = adapter->msix_entries[vector].vector;
6757 		if (disable_hardirq(msix_irq))
6758 			e1000_intr_msix_tx(msix_irq, netdev);
6759 		enable_irq(msix_irq);
6760 
6761 		vector++;
6762 		msix_irq = adapter->msix_entries[vector].vector;
6763 		if (disable_hardirq(msix_irq))
6764 			e1000_msix_other(msix_irq, netdev);
6765 		enable_irq(msix_irq);
6766 	}
6767 
6768 	return IRQ_HANDLED;
6769 }
6770 
6771 /**
6772  * e1000_netpoll
6773  * @netdev: network interface device structure
6774  *
6775  * Polling 'interrupt' - used by things like netconsole to send skbs
6776  * without having to re-enable interrupts. It's not called while
6777  * the interrupt routine is executing.
6778  */
6779 static void e1000_netpoll(struct net_device *netdev)
6780 {
6781 	struct e1000_adapter *adapter = netdev_priv(netdev);
6782 
6783 	switch (adapter->int_mode) {
6784 	case E1000E_INT_MODE_MSIX:
6785 		e1000_intr_msix(adapter->pdev->irq, netdev);
6786 		break;
6787 	case E1000E_INT_MODE_MSI:
6788 		if (disable_hardirq(adapter->pdev->irq))
6789 			e1000_intr_msi(adapter->pdev->irq, netdev);
6790 		enable_irq(adapter->pdev->irq);
6791 		break;
6792 	default:		/* E1000E_INT_MODE_LEGACY */
6793 		if (disable_hardirq(adapter->pdev->irq))
6794 			e1000_intr(adapter->pdev->irq, netdev);
6795 		enable_irq(adapter->pdev->irq);
6796 		break;
6797 	}
6798 }
6799 #endif
6800 
6801 /**
6802  * e1000_io_error_detected - called when PCI error is detected
6803  * @pdev: Pointer to PCI device
6804  * @state: The current pci connection state
6805  *
6806  * This function is called after a PCI bus error affecting
6807  * this device has been detected.
6808  */
6809 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
6810 						pci_channel_state_t state)
6811 {
6812 	struct net_device *netdev = pci_get_drvdata(pdev);
6813 	struct e1000_adapter *adapter = netdev_priv(netdev);
6814 
6815 	netif_device_detach(netdev);
6816 
6817 	if (state == pci_channel_io_perm_failure)
6818 		return PCI_ERS_RESULT_DISCONNECT;
6819 
6820 	if (netif_running(netdev))
6821 		e1000e_down(adapter, true);
6822 	pci_disable_device(pdev);
6823 
6824 	/* Request a slot slot reset. */
6825 	return PCI_ERS_RESULT_NEED_RESET;
6826 }
6827 
6828 /**
6829  * e1000_io_slot_reset - called after the pci bus has been reset.
6830  * @pdev: Pointer to PCI device
6831  *
6832  * Restart the card from scratch, as if from a cold-boot. Implementation
6833  * resembles the first-half of the e1000e_pm_resume routine.
6834  */
6835 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
6836 {
6837 	struct net_device *netdev = pci_get_drvdata(pdev);
6838 	struct e1000_adapter *adapter = netdev_priv(netdev);
6839 	struct e1000_hw *hw = &adapter->hw;
6840 	u16 aspm_disable_flag = 0;
6841 	int err;
6842 	pci_ers_result_t result;
6843 
6844 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6845 		aspm_disable_flag = PCIE_LINK_STATE_L0S;
6846 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6847 		aspm_disable_flag |= PCIE_LINK_STATE_L1;
6848 	if (aspm_disable_flag)
6849 		e1000e_disable_aspm_locked(pdev, aspm_disable_flag);
6850 
6851 	err = pci_enable_device_mem(pdev);
6852 	if (err) {
6853 		dev_err(&pdev->dev,
6854 			"Cannot re-enable PCI device after reset.\n");
6855 		result = PCI_ERS_RESULT_DISCONNECT;
6856 	} else {
6857 		pdev->state_saved = true;
6858 		pci_restore_state(pdev);
6859 		pci_set_master(pdev);
6860 
6861 		pci_enable_wake(pdev, PCI_D3hot, 0);
6862 		pci_enable_wake(pdev, PCI_D3cold, 0);
6863 
6864 		e1000e_reset(adapter);
6865 		ew32(WUS, ~0);
6866 		result = PCI_ERS_RESULT_RECOVERED;
6867 	}
6868 
6869 	pci_cleanup_aer_uncorrect_error_status(pdev);
6870 
6871 	return result;
6872 }
6873 
6874 /**
6875  * e1000_io_resume - called when traffic can start flowing again.
6876  * @pdev: Pointer to PCI device
6877  *
6878  * This callback is called when the error recovery driver tells us that
6879  * its OK to resume normal operation. Implementation resembles the
6880  * second-half of the e1000e_pm_resume routine.
6881  */
6882 static void e1000_io_resume(struct pci_dev *pdev)
6883 {
6884 	struct net_device *netdev = pci_get_drvdata(pdev);
6885 	struct e1000_adapter *adapter = netdev_priv(netdev);
6886 
6887 	e1000_init_manageability_pt(adapter);
6888 
6889 	if (netif_running(netdev))
6890 		e1000e_up(adapter);
6891 
6892 	netif_device_attach(netdev);
6893 
6894 	/* If the controller has AMT, do not set DRV_LOAD until the interface
6895 	 * is up.  For all other cases, let the f/w know that the h/w is now
6896 	 * under the control of the driver.
6897 	 */
6898 	if (!(adapter->flags & FLAG_HAS_AMT))
6899 		e1000e_get_hw_control(adapter);
6900 }
6901 
6902 static void e1000_print_device_info(struct e1000_adapter *adapter)
6903 {
6904 	struct e1000_hw *hw = &adapter->hw;
6905 	struct net_device *netdev = adapter->netdev;
6906 	u32 ret_val;
6907 	u8 pba_str[E1000_PBANUM_LENGTH];
6908 
6909 	/* print bus type/speed/width info */
6910 	e_info("(PCI Express:2.5GT/s:%s) %pM\n",
6911 	       /* bus width */
6912 	       ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
6913 		"Width x1"),
6914 	       /* MAC address */
6915 	       netdev->dev_addr);
6916 	e_info("Intel(R) PRO/%s Network Connection\n",
6917 	       (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
6918 	ret_val = e1000_read_pba_string_generic(hw, pba_str,
6919 						E1000_PBANUM_LENGTH);
6920 	if (ret_val)
6921 		strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
6922 	e_info("MAC: %d, PHY: %d, PBA No: %s\n",
6923 	       hw->mac.type, hw->phy.type, pba_str);
6924 }
6925 
6926 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
6927 {
6928 	struct e1000_hw *hw = &adapter->hw;
6929 	int ret_val;
6930 	u16 buf = 0;
6931 
6932 	if (hw->mac.type != e1000_82573)
6933 		return;
6934 
6935 	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
6936 	le16_to_cpus(&buf);
6937 	if (!ret_val && (!(buf & BIT(0)))) {
6938 		/* Deep Smart Power Down (DSPD) */
6939 		dev_warn(&adapter->pdev->dev,
6940 			 "Warning: detected DSPD enabled in EEPROM\n");
6941 	}
6942 }
6943 
6944 static netdev_features_t e1000_fix_features(struct net_device *netdev,
6945 					    netdev_features_t features)
6946 {
6947 	struct e1000_adapter *adapter = netdev_priv(netdev);
6948 	struct e1000_hw *hw = &adapter->hw;
6949 
6950 	/* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
6951 	if ((hw->mac.type >= e1000_pch2lan) && (netdev->mtu > ETH_DATA_LEN))
6952 		features &= ~NETIF_F_RXFCS;
6953 
6954 	/* Since there is no support for separate Rx/Tx vlan accel
6955 	 * enable/disable make sure Tx flag is always in same state as Rx.
6956 	 */
6957 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
6958 		features |= NETIF_F_HW_VLAN_CTAG_TX;
6959 	else
6960 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
6961 
6962 	return features;
6963 }
6964 
6965 static int e1000_set_features(struct net_device *netdev,
6966 			      netdev_features_t features)
6967 {
6968 	struct e1000_adapter *adapter = netdev_priv(netdev);
6969 	netdev_features_t changed = features ^ netdev->features;
6970 
6971 	if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
6972 		adapter->flags |= FLAG_TSO_FORCE;
6973 
6974 	if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
6975 			 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
6976 			 NETIF_F_RXALL)))
6977 		return 0;
6978 
6979 	if (changed & NETIF_F_RXFCS) {
6980 		if (features & NETIF_F_RXFCS) {
6981 			adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6982 		} else {
6983 			/* We need to take it back to defaults, which might mean
6984 			 * stripping is still disabled at the adapter level.
6985 			 */
6986 			if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
6987 				adapter->flags2 |= FLAG2_CRC_STRIPPING;
6988 			else
6989 				adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6990 		}
6991 	}
6992 
6993 	netdev->features = features;
6994 
6995 	if (netif_running(netdev))
6996 		e1000e_reinit_locked(adapter);
6997 	else
6998 		e1000e_reset(adapter);
6999 
7000 	return 0;
7001 }
7002 
7003 static const struct net_device_ops e1000e_netdev_ops = {
7004 	.ndo_open		= e1000e_open,
7005 	.ndo_stop		= e1000e_close,
7006 	.ndo_start_xmit		= e1000_xmit_frame,
7007 	.ndo_get_stats64	= e1000e_get_stats64,
7008 	.ndo_set_rx_mode	= e1000e_set_rx_mode,
7009 	.ndo_set_mac_address	= e1000_set_mac,
7010 	.ndo_change_mtu		= e1000_change_mtu,
7011 	.ndo_do_ioctl		= e1000_ioctl,
7012 	.ndo_tx_timeout		= e1000_tx_timeout,
7013 	.ndo_validate_addr	= eth_validate_addr,
7014 
7015 	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
7016 	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
7017 #ifdef CONFIG_NET_POLL_CONTROLLER
7018 	.ndo_poll_controller	= e1000_netpoll,
7019 #endif
7020 	.ndo_set_features = e1000_set_features,
7021 	.ndo_fix_features = e1000_fix_features,
7022 	.ndo_features_check	= passthru_features_check,
7023 };
7024 
7025 /**
7026  * e1000_probe - Device Initialization Routine
7027  * @pdev: PCI device information struct
7028  * @ent: entry in e1000_pci_tbl
7029  *
7030  * Returns 0 on success, negative on failure
7031  *
7032  * e1000_probe initializes an adapter identified by a pci_dev structure.
7033  * The OS initialization, configuring of the adapter private structure,
7034  * and a hardware reset occur.
7035  **/
7036 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
7037 {
7038 	struct net_device *netdev;
7039 	struct e1000_adapter *adapter;
7040 	struct e1000_hw *hw;
7041 	const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
7042 	resource_size_t mmio_start, mmio_len;
7043 	resource_size_t flash_start, flash_len;
7044 	static int cards_found;
7045 	u16 aspm_disable_flag = 0;
7046 	int bars, i, err, pci_using_dac;
7047 	u16 eeprom_data = 0;
7048 	u16 eeprom_apme_mask = E1000_EEPROM_APME;
7049 	s32 ret_val = 0;
7050 
7051 	if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
7052 		aspm_disable_flag = PCIE_LINK_STATE_L0S;
7053 	if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
7054 		aspm_disable_flag |= PCIE_LINK_STATE_L1;
7055 	if (aspm_disable_flag)
7056 		e1000e_disable_aspm(pdev, aspm_disable_flag);
7057 
7058 	err = pci_enable_device_mem(pdev);
7059 	if (err)
7060 		return err;
7061 
7062 	pci_using_dac = 0;
7063 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
7064 	if (!err) {
7065 		pci_using_dac = 1;
7066 	} else {
7067 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
7068 		if (err) {
7069 			dev_err(&pdev->dev,
7070 				"No usable DMA configuration, aborting\n");
7071 			goto err_dma;
7072 		}
7073 	}
7074 
7075 	bars = pci_select_bars(pdev, IORESOURCE_MEM);
7076 	err = pci_request_selected_regions_exclusive(pdev, bars,
7077 						     e1000e_driver_name);
7078 	if (err)
7079 		goto err_pci_reg;
7080 
7081 	/* AER (Advanced Error Reporting) hooks */
7082 	pci_enable_pcie_error_reporting(pdev);
7083 
7084 	pci_set_master(pdev);
7085 	/* PCI config space info */
7086 	err = pci_save_state(pdev);
7087 	if (err)
7088 		goto err_alloc_etherdev;
7089 
7090 	err = -ENOMEM;
7091 	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
7092 	if (!netdev)
7093 		goto err_alloc_etherdev;
7094 
7095 	SET_NETDEV_DEV(netdev, &pdev->dev);
7096 
7097 	netdev->irq = pdev->irq;
7098 
7099 	pci_set_drvdata(pdev, netdev);
7100 	adapter = netdev_priv(netdev);
7101 	hw = &adapter->hw;
7102 	adapter->netdev = netdev;
7103 	adapter->pdev = pdev;
7104 	adapter->ei = ei;
7105 	adapter->pba = ei->pba;
7106 	adapter->flags = ei->flags;
7107 	adapter->flags2 = ei->flags2;
7108 	adapter->hw.adapter = adapter;
7109 	adapter->hw.mac.type = ei->mac;
7110 	adapter->max_hw_frame_size = ei->max_hw_frame_size;
7111 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
7112 
7113 	mmio_start = pci_resource_start(pdev, 0);
7114 	mmio_len = pci_resource_len(pdev, 0);
7115 
7116 	err = -EIO;
7117 	adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
7118 	if (!adapter->hw.hw_addr)
7119 		goto err_ioremap;
7120 
7121 	if ((adapter->flags & FLAG_HAS_FLASH) &&
7122 	    (pci_resource_flags(pdev, 1) & IORESOURCE_MEM) &&
7123 	    (hw->mac.type < e1000_pch_spt)) {
7124 		flash_start = pci_resource_start(pdev, 1);
7125 		flash_len = pci_resource_len(pdev, 1);
7126 		adapter->hw.flash_address = ioremap(flash_start, flash_len);
7127 		if (!adapter->hw.flash_address)
7128 			goto err_flashmap;
7129 	}
7130 
7131 	/* Set default EEE advertisement */
7132 	if (adapter->flags2 & FLAG2_HAS_EEE)
7133 		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
7134 
7135 	/* construct the net_device struct */
7136 	netdev->netdev_ops = &e1000e_netdev_ops;
7137 	e1000e_set_ethtool_ops(netdev);
7138 	netdev->watchdog_timeo = 5 * HZ;
7139 	netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64);
7140 	strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
7141 
7142 	netdev->mem_start = mmio_start;
7143 	netdev->mem_end = mmio_start + mmio_len;
7144 
7145 	adapter->bd_number = cards_found++;
7146 
7147 	e1000e_check_options(adapter);
7148 
7149 	/* setup adapter struct */
7150 	err = e1000_sw_init(adapter);
7151 	if (err)
7152 		goto err_sw_init;
7153 
7154 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
7155 	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
7156 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
7157 
7158 	err = ei->get_variants(adapter);
7159 	if (err)
7160 		goto err_hw_init;
7161 
7162 	if ((adapter->flags & FLAG_IS_ICH) &&
7163 	    (adapter->flags & FLAG_READ_ONLY_NVM) &&
7164 	    (hw->mac.type < e1000_pch_spt))
7165 		e1000e_write_protect_nvm_ich8lan(&adapter->hw);
7166 
7167 	hw->mac.ops.get_bus_info(&adapter->hw);
7168 
7169 	adapter->hw.phy.autoneg_wait_to_complete = 0;
7170 
7171 	/* Copper options */
7172 	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
7173 		adapter->hw.phy.mdix = AUTO_ALL_MODES;
7174 		adapter->hw.phy.disable_polarity_correction = 0;
7175 		adapter->hw.phy.ms_type = e1000_ms_hw_default;
7176 	}
7177 
7178 	if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
7179 		dev_info(&pdev->dev,
7180 			 "PHY reset is blocked due to SOL/IDER session.\n");
7181 
7182 	/* Set initial default active device features */
7183 	netdev->features = (NETIF_F_SG |
7184 			    NETIF_F_HW_VLAN_CTAG_RX |
7185 			    NETIF_F_HW_VLAN_CTAG_TX |
7186 			    NETIF_F_TSO |
7187 			    NETIF_F_TSO6 |
7188 			    NETIF_F_RXHASH |
7189 			    NETIF_F_RXCSUM |
7190 			    NETIF_F_HW_CSUM);
7191 
7192 	/* Set user-changeable features (subset of all device features) */
7193 	netdev->hw_features = netdev->features;
7194 	netdev->hw_features |= NETIF_F_RXFCS;
7195 	netdev->priv_flags |= IFF_SUPP_NOFCS;
7196 	netdev->hw_features |= NETIF_F_RXALL;
7197 
7198 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
7199 		netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7200 
7201 	netdev->vlan_features |= (NETIF_F_SG |
7202 				  NETIF_F_TSO |
7203 				  NETIF_F_TSO6 |
7204 				  NETIF_F_HW_CSUM);
7205 
7206 	netdev->priv_flags |= IFF_UNICAST_FLT;
7207 
7208 	if (pci_using_dac) {
7209 		netdev->features |= NETIF_F_HIGHDMA;
7210 		netdev->vlan_features |= NETIF_F_HIGHDMA;
7211 	}
7212 
7213 	/* MTU range: 68 - max_hw_frame_size */
7214 	netdev->min_mtu = ETH_MIN_MTU;
7215 	netdev->max_mtu = adapter->max_hw_frame_size -
7216 			  (VLAN_ETH_HLEN + ETH_FCS_LEN);
7217 
7218 	if (e1000e_enable_mng_pass_thru(&adapter->hw))
7219 		adapter->flags |= FLAG_MNG_PT_ENABLED;
7220 
7221 	/* before reading the NVM, reset the controller to
7222 	 * put the device in a known good starting state
7223 	 */
7224 	adapter->hw.mac.ops.reset_hw(&adapter->hw);
7225 
7226 	/* systems with ASPM and others may see the checksum fail on the first
7227 	 * attempt. Let's give it a few tries
7228 	 */
7229 	for (i = 0;; i++) {
7230 		if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
7231 			break;
7232 		if (i == 2) {
7233 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
7234 			err = -EIO;
7235 			goto err_eeprom;
7236 		}
7237 	}
7238 
7239 	e1000_eeprom_checks(adapter);
7240 
7241 	/* copy the MAC address */
7242 	if (e1000e_read_mac_addr(&adapter->hw))
7243 		dev_err(&pdev->dev,
7244 			"NVM Read Error while reading MAC address\n");
7245 
7246 	memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
7247 
7248 	if (!is_valid_ether_addr(netdev->dev_addr)) {
7249 		dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
7250 			netdev->dev_addr);
7251 		err = -EIO;
7252 		goto err_eeprom;
7253 	}
7254 
7255 	init_timer(&adapter->watchdog_timer);
7256 	adapter->watchdog_timer.function = e1000_watchdog;
7257 	adapter->watchdog_timer.data = (unsigned long)adapter;
7258 
7259 	init_timer(&adapter->phy_info_timer);
7260 	adapter->phy_info_timer.function = e1000_update_phy_info;
7261 	adapter->phy_info_timer.data = (unsigned long)adapter;
7262 
7263 	INIT_WORK(&adapter->reset_task, e1000_reset_task);
7264 	INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
7265 	INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
7266 	INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
7267 	INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
7268 
7269 	/* Initialize link parameters. User can change them with ethtool */
7270 	adapter->hw.mac.autoneg = 1;
7271 	adapter->fc_autoneg = true;
7272 	adapter->hw.fc.requested_mode = e1000_fc_default;
7273 	adapter->hw.fc.current_mode = e1000_fc_default;
7274 	adapter->hw.phy.autoneg_advertised = 0x2f;
7275 
7276 	/* Initial Wake on LAN setting - If APM wake is enabled in
7277 	 * the EEPROM, enable the ACPI Magic Packet filter
7278 	 */
7279 	if (adapter->flags & FLAG_APME_IN_WUC) {
7280 		/* APME bit in EEPROM is mapped to WUC.APME */
7281 		eeprom_data = er32(WUC);
7282 		eeprom_apme_mask = E1000_WUC_APME;
7283 		if ((hw->mac.type > e1000_ich10lan) &&
7284 		    (eeprom_data & E1000_WUC_PHY_WAKE))
7285 			adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
7286 	} else if (adapter->flags & FLAG_APME_IN_CTRL3) {
7287 		if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
7288 		    (adapter->hw.bus.func == 1))
7289 			ret_val = e1000_read_nvm(&adapter->hw,
7290 					      NVM_INIT_CONTROL3_PORT_B,
7291 					      1, &eeprom_data);
7292 		else
7293 			ret_val = e1000_read_nvm(&adapter->hw,
7294 					      NVM_INIT_CONTROL3_PORT_A,
7295 					      1, &eeprom_data);
7296 	}
7297 
7298 	/* fetch WoL from EEPROM */
7299 	if (ret_val)
7300 		e_dbg("NVM read error getting WoL initial values: %d\n", ret_val);
7301 	else if (eeprom_data & eeprom_apme_mask)
7302 		adapter->eeprom_wol |= E1000_WUFC_MAG;
7303 
7304 	/* now that we have the eeprom settings, apply the special cases
7305 	 * where the eeprom may be wrong or the board simply won't support
7306 	 * wake on lan on a particular port
7307 	 */
7308 	if (!(adapter->flags & FLAG_HAS_WOL))
7309 		adapter->eeprom_wol = 0;
7310 
7311 	/* initialize the wol settings based on the eeprom settings */
7312 	adapter->wol = adapter->eeprom_wol;
7313 
7314 	/* make sure adapter isn't asleep if manageability is enabled */
7315 	if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) ||
7316 	    (hw->mac.ops.check_mng_mode(hw)))
7317 		device_wakeup_enable(&pdev->dev);
7318 
7319 	/* save off EEPROM version number */
7320 	ret_val = e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
7321 
7322 	if (ret_val) {
7323 		e_dbg("NVM read error getting EEPROM version: %d\n", ret_val);
7324 		adapter->eeprom_vers = 0;
7325 	}
7326 
7327 	/* init PTP hardware clock */
7328 	e1000e_ptp_init(adapter);
7329 
7330 	/* reset the hardware with the new settings */
7331 	e1000e_reset(adapter);
7332 
7333 	/* If the controller has AMT, do not set DRV_LOAD until the interface
7334 	 * is up.  For all other cases, let the f/w know that the h/w is now
7335 	 * under the control of the driver.
7336 	 */
7337 	if (!(adapter->flags & FLAG_HAS_AMT))
7338 		e1000e_get_hw_control(adapter);
7339 
7340 	strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
7341 	err = register_netdev(netdev);
7342 	if (err)
7343 		goto err_register;
7344 
7345 	/* carrier off reporting is important to ethtool even BEFORE open */
7346 	netif_carrier_off(netdev);
7347 
7348 	e1000_print_device_info(adapter);
7349 
7350 	if (pci_dev_run_wake(pdev))
7351 		pm_runtime_put_noidle(&pdev->dev);
7352 
7353 	return 0;
7354 
7355 err_register:
7356 	if (!(adapter->flags & FLAG_HAS_AMT))
7357 		e1000e_release_hw_control(adapter);
7358 err_eeprom:
7359 	if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
7360 		e1000_phy_hw_reset(&adapter->hw);
7361 err_hw_init:
7362 	kfree(adapter->tx_ring);
7363 	kfree(adapter->rx_ring);
7364 err_sw_init:
7365 	if ((adapter->hw.flash_address) && (hw->mac.type < e1000_pch_spt))
7366 		iounmap(adapter->hw.flash_address);
7367 	e1000e_reset_interrupt_capability(adapter);
7368 err_flashmap:
7369 	iounmap(adapter->hw.hw_addr);
7370 err_ioremap:
7371 	free_netdev(netdev);
7372 err_alloc_etherdev:
7373 	pci_release_mem_regions(pdev);
7374 err_pci_reg:
7375 err_dma:
7376 	pci_disable_device(pdev);
7377 	return err;
7378 }
7379 
7380 /**
7381  * e1000_remove - Device Removal Routine
7382  * @pdev: PCI device information struct
7383  *
7384  * e1000_remove is called by the PCI subsystem to alert the driver
7385  * that it should release a PCI device.  The could be caused by a
7386  * Hot-Plug event, or because the driver is going to be removed from
7387  * memory.
7388  **/
7389 static void e1000_remove(struct pci_dev *pdev)
7390 {
7391 	struct net_device *netdev = pci_get_drvdata(pdev);
7392 	struct e1000_adapter *adapter = netdev_priv(netdev);
7393 	bool down = test_bit(__E1000_DOWN, &adapter->state);
7394 
7395 	e1000e_ptp_remove(adapter);
7396 
7397 	/* The timers may be rescheduled, so explicitly disable them
7398 	 * from being rescheduled.
7399 	 */
7400 	if (!down)
7401 		set_bit(__E1000_DOWN, &adapter->state);
7402 	del_timer_sync(&adapter->watchdog_timer);
7403 	del_timer_sync(&adapter->phy_info_timer);
7404 
7405 	cancel_work_sync(&adapter->reset_task);
7406 	cancel_work_sync(&adapter->watchdog_task);
7407 	cancel_work_sync(&adapter->downshift_task);
7408 	cancel_work_sync(&adapter->update_phy_task);
7409 	cancel_work_sync(&adapter->print_hang_task);
7410 
7411 	if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
7412 		cancel_work_sync(&adapter->tx_hwtstamp_work);
7413 		if (adapter->tx_hwtstamp_skb) {
7414 			dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
7415 			adapter->tx_hwtstamp_skb = NULL;
7416 		}
7417 	}
7418 
7419 	/* Don't lie to e1000_close() down the road. */
7420 	if (!down)
7421 		clear_bit(__E1000_DOWN, &adapter->state);
7422 	unregister_netdev(netdev);
7423 
7424 	if (pci_dev_run_wake(pdev))
7425 		pm_runtime_get_noresume(&pdev->dev);
7426 
7427 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7428 	 * would have already happened in close and is redundant.
7429 	 */
7430 	e1000e_release_hw_control(adapter);
7431 
7432 	e1000e_reset_interrupt_capability(adapter);
7433 	kfree(adapter->tx_ring);
7434 	kfree(adapter->rx_ring);
7435 
7436 	iounmap(adapter->hw.hw_addr);
7437 	if ((adapter->hw.flash_address) &&
7438 	    (adapter->hw.mac.type < e1000_pch_spt))
7439 		iounmap(adapter->hw.flash_address);
7440 	pci_release_mem_regions(pdev);
7441 
7442 	free_netdev(netdev);
7443 
7444 	/* AER disable */
7445 	pci_disable_pcie_error_reporting(pdev);
7446 
7447 	pci_disable_device(pdev);
7448 }
7449 
7450 /* PCI Error Recovery (ERS) */
7451 static const struct pci_error_handlers e1000_err_handler = {
7452 	.error_detected = e1000_io_error_detected,
7453 	.slot_reset = e1000_io_slot_reset,
7454 	.resume = e1000_io_resume,
7455 };
7456 
7457 static const struct pci_device_id e1000_pci_tbl[] = {
7458 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
7459 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
7460 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
7461 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP),
7462 	  board_82571 },
7463 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
7464 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
7465 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
7466 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
7467 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
7468 
7469 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
7470 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
7471 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
7472 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
7473 
7474 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
7475 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
7476 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
7477 
7478 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
7479 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
7480 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
7481 
7482 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
7483 	  board_80003es2lan },
7484 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
7485 	  board_80003es2lan },
7486 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
7487 	  board_80003es2lan },
7488 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
7489 	  board_80003es2lan },
7490 
7491 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
7492 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
7493 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
7494 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
7495 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
7496 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
7497 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
7498 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
7499 
7500 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
7501 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
7502 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
7503 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
7504 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
7505 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
7506 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
7507 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
7508 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
7509 
7510 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
7511 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
7512 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
7513 
7514 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
7515 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
7516 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
7517 
7518 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
7519 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
7520 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
7521 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
7522 
7523 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
7524 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
7525 
7526 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
7527 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
7528 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt },
7529 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt },
7530 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt },
7531 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt },
7532 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt },
7533 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt },
7534 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM), board_pch_spt },
7535 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V), board_pch_spt },
7536 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM2), board_pch_spt },
7537 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V2), board_pch_spt },
7538 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LBG_I219_LM3), board_pch_spt },
7539 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM4), board_pch_spt },
7540 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V4), board_pch_spt },
7541 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM5), board_pch_spt },
7542 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V5), board_pch_spt },
7543 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM6), board_pch_cnp },
7544 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V6), board_pch_cnp },
7545 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM7), board_pch_cnp },
7546 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V7), board_pch_cnp },
7547 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM8), board_pch_cnp },
7548 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V8), board_pch_cnp },
7549 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM9), board_pch_cnp },
7550 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V9), board_pch_cnp },
7551 
7552 	{ 0, 0, 0, 0, 0, 0, 0 }	/* terminate list */
7553 };
7554 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
7555 
7556 static const struct dev_pm_ops e1000_pm_ops = {
7557 #ifdef CONFIG_PM_SLEEP
7558 	.suspend	= e1000e_pm_suspend,
7559 	.resume		= e1000e_pm_resume,
7560 	.freeze		= e1000e_pm_freeze,
7561 	.thaw		= e1000e_pm_thaw,
7562 	.poweroff	= e1000e_pm_suspend,
7563 	.restore	= e1000e_pm_resume,
7564 #endif
7565 	SET_RUNTIME_PM_OPS(e1000e_pm_runtime_suspend, e1000e_pm_runtime_resume,
7566 			   e1000e_pm_runtime_idle)
7567 };
7568 
7569 /* PCI Device API Driver */
7570 static struct pci_driver e1000_driver = {
7571 	.name     = e1000e_driver_name,
7572 	.id_table = e1000_pci_tbl,
7573 	.probe    = e1000_probe,
7574 	.remove   = e1000_remove,
7575 	.driver   = {
7576 		.pm = &e1000_pm_ops,
7577 	},
7578 	.shutdown = e1000_shutdown,
7579 	.err_handler = &e1000_err_handler
7580 };
7581 
7582 /**
7583  * e1000_init_module - Driver Registration Routine
7584  *
7585  * e1000_init_module is the first routine called when the driver is
7586  * loaded. All it does is register with the PCI subsystem.
7587  **/
7588 static int __init e1000_init_module(void)
7589 {
7590 	pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
7591 		e1000e_driver_version);
7592 	pr_info("Copyright(c) 1999 - 2015 Intel Corporation.\n");
7593 
7594 	return pci_register_driver(&e1000_driver);
7595 }
7596 module_init(e1000_init_module);
7597 
7598 /**
7599  * e1000_exit_module - Driver Exit Cleanup Routine
7600  *
7601  * e1000_exit_module is called just before the driver is removed
7602  * from memory.
7603  **/
7604 static void __exit e1000_exit_module(void)
7605 {
7606 	pci_unregister_driver(&e1000_driver);
7607 }
7608 module_exit(e1000_exit_module);
7609 
7610 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
7611 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7612 MODULE_LICENSE("GPL");
7613 MODULE_VERSION(DRV_VERSION);
7614 
7615 /* netdev.c */
7616