1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3 
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5 
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/pci.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/delay.h>
13 #include <linux/netdevice.h>
14 #include <linux/interrupt.h>
15 #include <linux/tcp.h>
16 #include <linux/ipv6.h>
17 #include <linux/slab.h>
18 #include <net/checksum.h>
19 #include <net/ip6_checksum.h>
20 #include <linux/ethtool.h>
21 #include <linux/if_vlan.h>
22 #include <linux/cpu.h>
23 #include <linux/smp.h>
24 #include <linux/pm_qos.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/aer.h>
27 #include <linux/prefetch.h>
28 #include <linux/suspend.h>
29 
30 #include "e1000.h"
31 
32 char e1000e_driver_name[] = "e1000e";
33 
34 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
35 static int debug = -1;
36 module_param(debug, int, 0);
37 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
38 
39 static const struct e1000_info *e1000_info_tbl[] = {
40 	[board_82571]		= &e1000_82571_info,
41 	[board_82572]		= &e1000_82572_info,
42 	[board_82573]		= &e1000_82573_info,
43 	[board_82574]		= &e1000_82574_info,
44 	[board_82583]		= &e1000_82583_info,
45 	[board_80003es2lan]	= &e1000_es2_info,
46 	[board_ich8lan]		= &e1000_ich8_info,
47 	[board_ich9lan]		= &e1000_ich9_info,
48 	[board_ich10lan]	= &e1000_ich10_info,
49 	[board_pchlan]		= &e1000_pch_info,
50 	[board_pch2lan]		= &e1000_pch2_info,
51 	[board_pch_lpt]		= &e1000_pch_lpt_info,
52 	[board_pch_spt]		= &e1000_pch_spt_info,
53 	[board_pch_cnp]		= &e1000_pch_cnp_info,
54 	[board_pch_tgp]		= &e1000_pch_tgp_info,
55 	[board_pch_adp]		= &e1000_pch_adp_info,
56 };
57 
58 struct e1000_reg_info {
59 	u32 ofs;
60 	char *name;
61 };
62 
63 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
64 	/* General Registers */
65 	{E1000_CTRL, "CTRL"},
66 	{E1000_STATUS, "STATUS"},
67 	{E1000_CTRL_EXT, "CTRL_EXT"},
68 
69 	/* Interrupt Registers */
70 	{E1000_ICR, "ICR"},
71 
72 	/* Rx Registers */
73 	{E1000_RCTL, "RCTL"},
74 	{E1000_RDLEN(0), "RDLEN"},
75 	{E1000_RDH(0), "RDH"},
76 	{E1000_RDT(0), "RDT"},
77 	{E1000_RDTR, "RDTR"},
78 	{E1000_RXDCTL(0), "RXDCTL"},
79 	{E1000_ERT, "ERT"},
80 	{E1000_RDBAL(0), "RDBAL"},
81 	{E1000_RDBAH(0), "RDBAH"},
82 	{E1000_RDFH, "RDFH"},
83 	{E1000_RDFT, "RDFT"},
84 	{E1000_RDFHS, "RDFHS"},
85 	{E1000_RDFTS, "RDFTS"},
86 	{E1000_RDFPC, "RDFPC"},
87 
88 	/* Tx Registers */
89 	{E1000_TCTL, "TCTL"},
90 	{E1000_TDBAL(0), "TDBAL"},
91 	{E1000_TDBAH(0), "TDBAH"},
92 	{E1000_TDLEN(0), "TDLEN"},
93 	{E1000_TDH(0), "TDH"},
94 	{E1000_TDT(0), "TDT"},
95 	{E1000_TIDV, "TIDV"},
96 	{E1000_TXDCTL(0), "TXDCTL"},
97 	{E1000_TADV, "TADV"},
98 	{E1000_TARC(0), "TARC"},
99 	{E1000_TDFH, "TDFH"},
100 	{E1000_TDFT, "TDFT"},
101 	{E1000_TDFHS, "TDFHS"},
102 	{E1000_TDFTS, "TDFTS"},
103 	{E1000_TDFPC, "TDFPC"},
104 
105 	/* List Terminator */
106 	{0, NULL}
107 };
108 
109 /**
110  * __ew32_prepare - prepare to write to MAC CSR register on certain parts
111  * @hw: pointer to the HW structure
112  *
113  * When updating the MAC CSR registers, the Manageability Engine (ME) could
114  * be accessing the registers at the same time.  Normally, this is handled in
115  * h/w by an arbiter but on some parts there is a bug that acknowledges Host
116  * accesses later than it should which could result in the register to have
117  * an incorrect value.  Workaround this by checking the FWSM register which
118  * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set
119  * and try again a number of times.
120  **/
121 static void __ew32_prepare(struct e1000_hw *hw)
122 {
123 	s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT;
124 
125 	while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i)
126 		udelay(50);
127 }
128 
129 void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val)
130 {
131 	if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
132 		__ew32_prepare(hw);
133 
134 	writel(val, hw->hw_addr + reg);
135 }
136 
137 /**
138  * e1000_regdump - register printout routine
139  * @hw: pointer to the HW structure
140  * @reginfo: pointer to the register info table
141  **/
142 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
143 {
144 	int n = 0;
145 	char rname[16];
146 	u32 regs[8];
147 
148 	switch (reginfo->ofs) {
149 	case E1000_RXDCTL(0):
150 		for (n = 0; n < 2; n++)
151 			regs[n] = __er32(hw, E1000_RXDCTL(n));
152 		break;
153 	case E1000_TXDCTL(0):
154 		for (n = 0; n < 2; n++)
155 			regs[n] = __er32(hw, E1000_TXDCTL(n));
156 		break;
157 	case E1000_TARC(0):
158 		for (n = 0; n < 2; n++)
159 			regs[n] = __er32(hw, E1000_TARC(n));
160 		break;
161 	default:
162 		pr_info("%-15s %08x\n",
163 			reginfo->name, __er32(hw, reginfo->ofs));
164 		return;
165 	}
166 
167 	snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
168 	pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
169 }
170 
171 static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
172 				 struct e1000_buffer *bi)
173 {
174 	int i;
175 	struct e1000_ps_page *ps_page;
176 
177 	for (i = 0; i < adapter->rx_ps_pages; i++) {
178 		ps_page = &bi->ps_pages[i];
179 
180 		if (ps_page->page) {
181 			pr_info("packet dump for ps_page %d:\n", i);
182 			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
183 				       16, 1, page_address(ps_page->page),
184 				       PAGE_SIZE, true);
185 		}
186 	}
187 }
188 
189 /**
190  * e1000e_dump - Print registers, Tx-ring and Rx-ring
191  * @adapter: board private structure
192  **/
193 static void e1000e_dump(struct e1000_adapter *adapter)
194 {
195 	struct net_device *netdev = adapter->netdev;
196 	struct e1000_hw *hw = &adapter->hw;
197 	struct e1000_reg_info *reginfo;
198 	struct e1000_ring *tx_ring = adapter->tx_ring;
199 	struct e1000_tx_desc *tx_desc;
200 	struct my_u0 {
201 		__le64 a;
202 		__le64 b;
203 	} *u0;
204 	struct e1000_buffer *buffer_info;
205 	struct e1000_ring *rx_ring = adapter->rx_ring;
206 	union e1000_rx_desc_packet_split *rx_desc_ps;
207 	union e1000_rx_desc_extended *rx_desc;
208 	struct my_u1 {
209 		__le64 a;
210 		__le64 b;
211 		__le64 c;
212 		__le64 d;
213 	} *u1;
214 	u32 staterr;
215 	int i = 0;
216 
217 	if (!netif_msg_hw(adapter))
218 		return;
219 
220 	/* Print netdevice Info */
221 	if (netdev) {
222 		dev_info(&adapter->pdev->dev, "Net device Info\n");
223 		pr_info("Device Name     state            trans_start\n");
224 		pr_info("%-15s %016lX %016lX\n", netdev->name,
225 			netdev->state, dev_trans_start(netdev));
226 	}
227 
228 	/* Print Registers */
229 	dev_info(&adapter->pdev->dev, "Register Dump\n");
230 	pr_info(" Register Name   Value\n");
231 	for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
232 	     reginfo->name; reginfo++) {
233 		e1000_regdump(hw, reginfo);
234 	}
235 
236 	/* Print Tx Ring Summary */
237 	if (!netdev || !netif_running(netdev))
238 		return;
239 
240 	dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
241 	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
242 	buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
243 	pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
244 		0, tx_ring->next_to_use, tx_ring->next_to_clean,
245 		(unsigned long long)buffer_info->dma,
246 		buffer_info->length,
247 		buffer_info->next_to_watch,
248 		(unsigned long long)buffer_info->time_stamp);
249 
250 	/* Print Tx Ring */
251 	if (!netif_msg_tx_done(adapter))
252 		goto rx_ring_summary;
253 
254 	dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
255 
256 	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
257 	 *
258 	 * Legacy Transmit Descriptor
259 	 *   +--------------------------------------------------------------+
260 	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
261 	 *   +--------------------------------------------------------------+
262 	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
263 	 *   +--------------------------------------------------------------+
264 	 *   63       48 47        36 35    32 31     24 23    16 15        0
265 	 *
266 	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
267 	 *   63      48 47    40 39       32 31             16 15    8 7      0
268 	 *   +----------------------------------------------------------------+
269 	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
270 	 *   +----------------------------------------------------------------+
271 	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
272 	 *   +----------------------------------------------------------------+
273 	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
274 	 *
275 	 * Extended Data Descriptor (DTYP=0x1)
276 	 *   +----------------------------------------------------------------+
277 	 * 0 |                     Buffer Address [63:0]                      |
278 	 *   +----------------------------------------------------------------+
279 	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
280 	 *   +----------------------------------------------------------------+
281 	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
282 	 */
283 	pr_info("Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Legacy format\n");
284 	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Context format\n");
285 	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Data format\n");
286 	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
287 		const char *next_desc;
288 		tx_desc = E1000_TX_DESC(*tx_ring, i);
289 		buffer_info = &tx_ring->buffer_info[i];
290 		u0 = (struct my_u0 *)tx_desc;
291 		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
292 			next_desc = " NTC/U";
293 		else if (i == tx_ring->next_to_use)
294 			next_desc = " NTU";
295 		else if (i == tx_ring->next_to_clean)
296 			next_desc = " NTC";
297 		else
298 			next_desc = "";
299 		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p%s\n",
300 			(!(le64_to_cpu(u0->b) & BIT(29)) ? 'l' :
301 			 ((le64_to_cpu(u0->b) & BIT(20)) ? 'd' : 'c')),
302 			i,
303 			(unsigned long long)le64_to_cpu(u0->a),
304 			(unsigned long long)le64_to_cpu(u0->b),
305 			(unsigned long long)buffer_info->dma,
306 			buffer_info->length, buffer_info->next_to_watch,
307 			(unsigned long long)buffer_info->time_stamp,
308 			buffer_info->skb, next_desc);
309 
310 		if (netif_msg_pktdata(adapter) && buffer_info->skb)
311 			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
312 				       16, 1, buffer_info->skb->data,
313 				       buffer_info->skb->len, true);
314 	}
315 
316 	/* Print Rx Ring Summary */
317 rx_ring_summary:
318 	dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
319 	pr_info("Queue [NTU] [NTC]\n");
320 	pr_info(" %5d %5X %5X\n",
321 		0, rx_ring->next_to_use, rx_ring->next_to_clean);
322 
323 	/* Print Rx Ring */
324 	if (!netif_msg_rx_status(adapter))
325 		return;
326 
327 	dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
328 	switch (adapter->rx_ps_pages) {
329 	case 1:
330 	case 2:
331 	case 3:
332 		/* [Extended] Packet Split Receive Descriptor Format
333 		 *
334 		 *    +-----------------------------------------------------+
335 		 *  0 |                Buffer Address 0 [63:0]              |
336 		 *    +-----------------------------------------------------+
337 		 *  8 |                Buffer Address 1 [63:0]              |
338 		 *    +-----------------------------------------------------+
339 		 * 16 |                Buffer Address 2 [63:0]              |
340 		 *    +-----------------------------------------------------+
341 		 * 24 |                Buffer Address 3 [63:0]              |
342 		 *    +-----------------------------------------------------+
343 		 */
344 		pr_info("R  [desc]      [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] [bi->skb] <-- Ext Pkt Split format\n");
345 		/* [Extended] Receive Descriptor (Write-Back) Format
346 		 *
347 		 *   63       48 47    32 31     13 12    8 7    4 3        0
348 		 *   +------------------------------------------------------+
349 		 * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
350 		 *   | Checksum | Ident  |         | Queue |      |  Type   |
351 		 *   +------------------------------------------------------+
352 		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
353 		 *   +------------------------------------------------------+
354 		 *   63       48 47    32 31            20 19               0
355 		 */
356 		pr_info("RWB[desc]      [ck ipid mrqhsh] [vl   l0 ee  es] [ l3  l2  l1 hs] [reserved      ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
357 		for (i = 0; i < rx_ring->count; i++) {
358 			const char *next_desc;
359 			buffer_info = &rx_ring->buffer_info[i];
360 			rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
361 			u1 = (struct my_u1 *)rx_desc_ps;
362 			staterr =
363 			    le32_to_cpu(rx_desc_ps->wb.middle.status_error);
364 
365 			if (i == rx_ring->next_to_use)
366 				next_desc = " NTU";
367 			else if (i == rx_ring->next_to_clean)
368 				next_desc = " NTC";
369 			else
370 				next_desc = "";
371 
372 			if (staterr & E1000_RXD_STAT_DD) {
373 				/* Descriptor Done */
374 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX ---------------- %p%s\n",
375 					"RWB", i,
376 					(unsigned long long)le64_to_cpu(u1->a),
377 					(unsigned long long)le64_to_cpu(u1->b),
378 					(unsigned long long)le64_to_cpu(u1->c),
379 					(unsigned long long)le64_to_cpu(u1->d),
380 					buffer_info->skb, next_desc);
381 			} else {
382 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX %016llX %p%s\n",
383 					"R  ", i,
384 					(unsigned long long)le64_to_cpu(u1->a),
385 					(unsigned long long)le64_to_cpu(u1->b),
386 					(unsigned long long)le64_to_cpu(u1->c),
387 					(unsigned long long)le64_to_cpu(u1->d),
388 					(unsigned long long)buffer_info->dma,
389 					buffer_info->skb, next_desc);
390 
391 				if (netif_msg_pktdata(adapter))
392 					e1000e_dump_ps_pages(adapter,
393 							     buffer_info);
394 			}
395 		}
396 		break;
397 	default:
398 	case 0:
399 		/* Extended Receive Descriptor (Read) Format
400 		 *
401 		 *   +-----------------------------------------------------+
402 		 * 0 |                Buffer Address [63:0]                |
403 		 *   +-----------------------------------------------------+
404 		 * 8 |                      Reserved                       |
405 		 *   +-----------------------------------------------------+
406 		 */
407 		pr_info("R  [desc]      [buf addr 63:0 ] [reserved 63:0 ] [bi->dma       ] [bi->skb] <-- Ext (Read) format\n");
408 		/* Extended Receive Descriptor (Write-Back) Format
409 		 *
410 		 *   63       48 47    32 31    24 23            4 3        0
411 		 *   +------------------------------------------------------+
412 		 *   |     RSS Hash      |        |               |         |
413 		 * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
414 		 *   | Packet   | IP     |        |               |  Type   |
415 		 *   | Checksum | Ident  |        |               |         |
416 		 *   +------------------------------------------------------+
417 		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
418 		 *   +------------------------------------------------------+
419 		 *   63       48 47    32 31            20 19               0
420 		 */
421 		pr_info("RWB[desc]      [cs ipid    mrq] [vt   ln xe  xs] [bi->skb] <-- Ext (Write-Back) format\n");
422 
423 		for (i = 0; i < rx_ring->count; i++) {
424 			const char *next_desc;
425 
426 			buffer_info = &rx_ring->buffer_info[i];
427 			rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
428 			u1 = (struct my_u1 *)rx_desc;
429 			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
430 
431 			if (i == rx_ring->next_to_use)
432 				next_desc = " NTU";
433 			else if (i == rx_ring->next_to_clean)
434 				next_desc = " NTC";
435 			else
436 				next_desc = "";
437 
438 			if (staterr & E1000_RXD_STAT_DD) {
439 				/* Descriptor Done */
440 				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %p%s\n",
441 					"RWB", i,
442 					(unsigned long long)le64_to_cpu(u1->a),
443 					(unsigned long long)le64_to_cpu(u1->b),
444 					buffer_info->skb, next_desc);
445 			} else {
446 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %p%s\n",
447 					"R  ", i,
448 					(unsigned long long)le64_to_cpu(u1->a),
449 					(unsigned long long)le64_to_cpu(u1->b),
450 					(unsigned long long)buffer_info->dma,
451 					buffer_info->skb, next_desc);
452 
453 				if (netif_msg_pktdata(adapter) &&
454 				    buffer_info->skb)
455 					print_hex_dump(KERN_INFO, "",
456 						       DUMP_PREFIX_ADDRESS, 16,
457 						       1,
458 						       buffer_info->skb->data,
459 						       adapter->rx_buffer_len,
460 						       true);
461 			}
462 		}
463 	}
464 }
465 
466 /**
467  * e1000_desc_unused - calculate if we have unused descriptors
468  * @ring: pointer to ring struct to perform calculation on
469  **/
470 static int e1000_desc_unused(struct e1000_ring *ring)
471 {
472 	if (ring->next_to_clean > ring->next_to_use)
473 		return ring->next_to_clean - ring->next_to_use - 1;
474 
475 	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
476 }
477 
478 /**
479  * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
480  * @adapter: board private structure
481  * @hwtstamps: time stamp structure to update
482  * @systim: unsigned 64bit system time value.
483  *
484  * Convert the system time value stored in the RX/TXSTMP registers into a
485  * hwtstamp which can be used by the upper level time stamping functions.
486  *
487  * The 'systim_lock' spinlock is used to protect the consistency of the
488  * system time value. This is needed because reading the 64 bit time
489  * value involves reading two 32 bit registers. The first read latches the
490  * value.
491  **/
492 static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter,
493 				      struct skb_shared_hwtstamps *hwtstamps,
494 				      u64 systim)
495 {
496 	u64 ns;
497 	unsigned long flags;
498 
499 	spin_lock_irqsave(&adapter->systim_lock, flags);
500 	ns = timecounter_cyc2time(&adapter->tc, systim);
501 	spin_unlock_irqrestore(&adapter->systim_lock, flags);
502 
503 	memset(hwtstamps, 0, sizeof(*hwtstamps));
504 	hwtstamps->hwtstamp = ns_to_ktime(ns);
505 }
506 
507 /**
508  * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
509  * @adapter: board private structure
510  * @status: descriptor extended error and status field
511  * @skb: particular skb to include time stamp
512  *
513  * If the time stamp is valid, convert it into the timecounter ns value
514  * and store that result into the shhwtstamps structure which is passed
515  * up the network stack.
516  **/
517 static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status,
518 			       struct sk_buff *skb)
519 {
520 	struct e1000_hw *hw = &adapter->hw;
521 	u64 rxstmp;
522 
523 	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) ||
524 	    !(status & E1000_RXDEXT_STATERR_TST) ||
525 	    !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
526 		return;
527 
528 	/* The Rx time stamp registers contain the time stamp.  No other
529 	 * received packet will be time stamped until the Rx time stamp
530 	 * registers are read.  Because only one packet can be time stamped
531 	 * at a time, the register values must belong to this packet and
532 	 * therefore none of the other additional attributes need to be
533 	 * compared.
534 	 */
535 	rxstmp = (u64)er32(RXSTMPL);
536 	rxstmp |= (u64)er32(RXSTMPH) << 32;
537 	e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp);
538 
539 	adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP;
540 }
541 
542 /**
543  * e1000_receive_skb - helper function to handle Rx indications
544  * @adapter: board private structure
545  * @netdev: pointer to netdev struct
546  * @staterr: descriptor extended error and status field as written by hardware
547  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
548  * @skb: pointer to sk_buff to be indicated to stack
549  **/
550 static void e1000_receive_skb(struct e1000_adapter *adapter,
551 			      struct net_device *netdev, struct sk_buff *skb,
552 			      u32 staterr, __le16 vlan)
553 {
554 	u16 tag = le16_to_cpu(vlan);
555 
556 	e1000e_rx_hwtstamp(adapter, staterr, skb);
557 
558 	skb->protocol = eth_type_trans(skb, netdev);
559 
560 	if (staterr & E1000_RXD_STAT_VP)
561 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag);
562 
563 	napi_gro_receive(&adapter->napi, skb);
564 }
565 
566 /**
567  * e1000_rx_checksum - Receive Checksum Offload
568  * @adapter: board private structure
569  * @status_err: receive descriptor status and error fields
570  * @skb: socket buffer with received data
571  **/
572 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
573 			      struct sk_buff *skb)
574 {
575 	u16 status = (u16)status_err;
576 	u8 errors = (u8)(status_err >> 24);
577 
578 	skb_checksum_none_assert(skb);
579 
580 	/* Rx checksum disabled */
581 	if (!(adapter->netdev->features & NETIF_F_RXCSUM))
582 		return;
583 
584 	/* Ignore Checksum bit is set */
585 	if (status & E1000_RXD_STAT_IXSM)
586 		return;
587 
588 	/* TCP/UDP checksum error bit or IP checksum error bit is set */
589 	if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
590 		/* let the stack verify checksum errors */
591 		adapter->hw_csum_err++;
592 		return;
593 	}
594 
595 	/* TCP/UDP Checksum has not been calculated */
596 	if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
597 		return;
598 
599 	/* It must be a TCP or UDP packet with a valid checksum */
600 	skb->ip_summed = CHECKSUM_UNNECESSARY;
601 	adapter->hw_csum_good++;
602 }
603 
604 static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
605 {
606 	struct e1000_adapter *adapter = rx_ring->adapter;
607 	struct e1000_hw *hw = &adapter->hw;
608 
609 	__ew32_prepare(hw);
610 	writel(i, rx_ring->tail);
611 
612 	if (unlikely(i != readl(rx_ring->tail))) {
613 		u32 rctl = er32(RCTL);
614 
615 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
616 		e_err("ME firmware caused invalid RDT - resetting\n");
617 		schedule_work(&adapter->reset_task);
618 	}
619 }
620 
621 static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
622 {
623 	struct e1000_adapter *adapter = tx_ring->adapter;
624 	struct e1000_hw *hw = &adapter->hw;
625 
626 	__ew32_prepare(hw);
627 	writel(i, tx_ring->tail);
628 
629 	if (unlikely(i != readl(tx_ring->tail))) {
630 		u32 tctl = er32(TCTL);
631 
632 		ew32(TCTL, tctl & ~E1000_TCTL_EN);
633 		e_err("ME firmware caused invalid TDT - resetting\n");
634 		schedule_work(&adapter->reset_task);
635 	}
636 }
637 
638 /**
639  * e1000_alloc_rx_buffers - Replace used receive buffers
640  * @rx_ring: Rx descriptor ring
641  * @cleaned_count: number to reallocate
642  * @gfp: flags for allocation
643  **/
644 static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
645 				   int cleaned_count, gfp_t gfp)
646 {
647 	struct e1000_adapter *adapter = rx_ring->adapter;
648 	struct net_device *netdev = adapter->netdev;
649 	struct pci_dev *pdev = adapter->pdev;
650 	union e1000_rx_desc_extended *rx_desc;
651 	struct e1000_buffer *buffer_info;
652 	struct sk_buff *skb;
653 	unsigned int i;
654 	unsigned int bufsz = adapter->rx_buffer_len;
655 
656 	i = rx_ring->next_to_use;
657 	buffer_info = &rx_ring->buffer_info[i];
658 
659 	while (cleaned_count--) {
660 		skb = buffer_info->skb;
661 		if (skb) {
662 			skb_trim(skb, 0);
663 			goto map_skb;
664 		}
665 
666 		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
667 		if (!skb) {
668 			/* Better luck next round */
669 			adapter->alloc_rx_buff_failed++;
670 			break;
671 		}
672 
673 		buffer_info->skb = skb;
674 map_skb:
675 		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
676 						  adapter->rx_buffer_len,
677 						  DMA_FROM_DEVICE);
678 		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
679 			dev_err(&pdev->dev, "Rx DMA map failed\n");
680 			adapter->rx_dma_failed++;
681 			break;
682 		}
683 
684 		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
685 		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
686 
687 		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
688 			/* Force memory writes to complete before letting h/w
689 			 * know there are new descriptors to fetch.  (Only
690 			 * applicable for weak-ordered memory model archs,
691 			 * such as IA-64).
692 			 */
693 			wmb();
694 			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
695 				e1000e_update_rdt_wa(rx_ring, i);
696 			else
697 				writel(i, rx_ring->tail);
698 		}
699 		i++;
700 		if (i == rx_ring->count)
701 			i = 0;
702 		buffer_info = &rx_ring->buffer_info[i];
703 	}
704 
705 	rx_ring->next_to_use = i;
706 }
707 
708 /**
709  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
710  * @rx_ring: Rx descriptor ring
711  * @cleaned_count: number to reallocate
712  * @gfp: flags for allocation
713  **/
714 static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
715 				      int cleaned_count, gfp_t gfp)
716 {
717 	struct e1000_adapter *adapter = rx_ring->adapter;
718 	struct net_device *netdev = adapter->netdev;
719 	struct pci_dev *pdev = adapter->pdev;
720 	union e1000_rx_desc_packet_split *rx_desc;
721 	struct e1000_buffer *buffer_info;
722 	struct e1000_ps_page *ps_page;
723 	struct sk_buff *skb;
724 	unsigned int i, j;
725 
726 	i = rx_ring->next_to_use;
727 	buffer_info = &rx_ring->buffer_info[i];
728 
729 	while (cleaned_count--) {
730 		rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
731 
732 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
733 			ps_page = &buffer_info->ps_pages[j];
734 			if (j >= adapter->rx_ps_pages) {
735 				/* all unused desc entries get hw null ptr */
736 				rx_desc->read.buffer_addr[j + 1] =
737 				    ~cpu_to_le64(0);
738 				continue;
739 			}
740 			if (!ps_page->page) {
741 				ps_page->page = alloc_page(gfp);
742 				if (!ps_page->page) {
743 					adapter->alloc_rx_buff_failed++;
744 					goto no_buffers;
745 				}
746 				ps_page->dma = dma_map_page(&pdev->dev,
747 							    ps_page->page,
748 							    0, PAGE_SIZE,
749 							    DMA_FROM_DEVICE);
750 				if (dma_mapping_error(&pdev->dev,
751 						      ps_page->dma)) {
752 					dev_err(&adapter->pdev->dev,
753 						"Rx DMA page map failed\n");
754 					adapter->rx_dma_failed++;
755 					goto no_buffers;
756 				}
757 			}
758 			/* Refresh the desc even if buffer_addrs
759 			 * didn't change because each write-back
760 			 * erases this info.
761 			 */
762 			rx_desc->read.buffer_addr[j + 1] =
763 			    cpu_to_le64(ps_page->dma);
764 		}
765 
766 		skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0,
767 						  gfp);
768 
769 		if (!skb) {
770 			adapter->alloc_rx_buff_failed++;
771 			break;
772 		}
773 
774 		buffer_info->skb = skb;
775 		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
776 						  adapter->rx_ps_bsize0,
777 						  DMA_FROM_DEVICE);
778 		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
779 			dev_err(&pdev->dev, "Rx DMA map failed\n");
780 			adapter->rx_dma_failed++;
781 			/* cleanup skb */
782 			dev_kfree_skb_any(skb);
783 			buffer_info->skb = NULL;
784 			break;
785 		}
786 
787 		rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
788 
789 		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
790 			/* Force memory writes to complete before letting h/w
791 			 * know there are new descriptors to fetch.  (Only
792 			 * applicable for weak-ordered memory model archs,
793 			 * such as IA-64).
794 			 */
795 			wmb();
796 			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
797 				e1000e_update_rdt_wa(rx_ring, i << 1);
798 			else
799 				writel(i << 1, rx_ring->tail);
800 		}
801 
802 		i++;
803 		if (i == rx_ring->count)
804 			i = 0;
805 		buffer_info = &rx_ring->buffer_info[i];
806 	}
807 
808 no_buffers:
809 	rx_ring->next_to_use = i;
810 }
811 
812 /**
813  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
814  * @rx_ring: Rx descriptor ring
815  * @cleaned_count: number of buffers to allocate this pass
816  * @gfp: flags for allocation
817  **/
818 
819 static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
820 					 int cleaned_count, gfp_t gfp)
821 {
822 	struct e1000_adapter *adapter = rx_ring->adapter;
823 	struct net_device *netdev = adapter->netdev;
824 	struct pci_dev *pdev = adapter->pdev;
825 	union e1000_rx_desc_extended *rx_desc;
826 	struct e1000_buffer *buffer_info;
827 	struct sk_buff *skb;
828 	unsigned int i;
829 	unsigned int bufsz = 256 - 16;	/* for skb_reserve */
830 
831 	i = rx_ring->next_to_use;
832 	buffer_info = &rx_ring->buffer_info[i];
833 
834 	while (cleaned_count--) {
835 		skb = buffer_info->skb;
836 		if (skb) {
837 			skb_trim(skb, 0);
838 			goto check_page;
839 		}
840 
841 		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
842 		if (unlikely(!skb)) {
843 			/* Better luck next round */
844 			adapter->alloc_rx_buff_failed++;
845 			break;
846 		}
847 
848 		buffer_info->skb = skb;
849 check_page:
850 		/* allocate a new page if necessary */
851 		if (!buffer_info->page) {
852 			buffer_info->page = alloc_page(gfp);
853 			if (unlikely(!buffer_info->page)) {
854 				adapter->alloc_rx_buff_failed++;
855 				break;
856 			}
857 		}
858 
859 		if (!buffer_info->dma) {
860 			buffer_info->dma = dma_map_page(&pdev->dev,
861 							buffer_info->page, 0,
862 							PAGE_SIZE,
863 							DMA_FROM_DEVICE);
864 			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
865 				adapter->alloc_rx_buff_failed++;
866 				break;
867 			}
868 		}
869 
870 		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
871 		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
872 
873 		if (unlikely(++i == rx_ring->count))
874 			i = 0;
875 		buffer_info = &rx_ring->buffer_info[i];
876 	}
877 
878 	if (likely(rx_ring->next_to_use != i)) {
879 		rx_ring->next_to_use = i;
880 		if (unlikely(i-- == 0))
881 			i = (rx_ring->count - 1);
882 
883 		/* Force memory writes to complete before letting h/w
884 		 * know there are new descriptors to fetch.  (Only
885 		 * applicable for weak-ordered memory model archs,
886 		 * such as IA-64).
887 		 */
888 		wmb();
889 		if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
890 			e1000e_update_rdt_wa(rx_ring, i);
891 		else
892 			writel(i, rx_ring->tail);
893 	}
894 }
895 
896 static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
897 				 struct sk_buff *skb)
898 {
899 	if (netdev->features & NETIF_F_RXHASH)
900 		skb_set_hash(skb, le32_to_cpu(rss), PKT_HASH_TYPE_L3);
901 }
902 
903 /**
904  * e1000_clean_rx_irq - Send received data up the network stack
905  * @rx_ring: Rx descriptor ring
906  * @work_done: output parameter for indicating completed work
907  * @work_to_do: how many packets we can clean
908  *
909  * the return value indicates whether actual cleaning was done, there
910  * is no guarantee that everything was cleaned
911  **/
912 static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
913 			       int work_to_do)
914 {
915 	struct e1000_adapter *adapter = rx_ring->adapter;
916 	struct net_device *netdev = adapter->netdev;
917 	struct pci_dev *pdev = adapter->pdev;
918 	struct e1000_hw *hw = &adapter->hw;
919 	union e1000_rx_desc_extended *rx_desc, *next_rxd;
920 	struct e1000_buffer *buffer_info, *next_buffer;
921 	u32 length, staterr;
922 	unsigned int i;
923 	int cleaned_count = 0;
924 	bool cleaned = false;
925 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
926 
927 	i = rx_ring->next_to_clean;
928 	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
929 	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
930 	buffer_info = &rx_ring->buffer_info[i];
931 
932 	while (staterr & E1000_RXD_STAT_DD) {
933 		struct sk_buff *skb;
934 
935 		if (*work_done >= work_to_do)
936 			break;
937 		(*work_done)++;
938 		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
939 
940 		skb = buffer_info->skb;
941 		buffer_info->skb = NULL;
942 
943 		prefetch(skb->data - NET_IP_ALIGN);
944 
945 		i++;
946 		if (i == rx_ring->count)
947 			i = 0;
948 		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
949 		prefetch(next_rxd);
950 
951 		next_buffer = &rx_ring->buffer_info[i];
952 
953 		cleaned = true;
954 		cleaned_count++;
955 		dma_unmap_single(&pdev->dev, buffer_info->dma,
956 				 adapter->rx_buffer_len, DMA_FROM_DEVICE);
957 		buffer_info->dma = 0;
958 
959 		length = le16_to_cpu(rx_desc->wb.upper.length);
960 
961 		/* !EOP means multiple descriptors were used to store a single
962 		 * packet, if that's the case we need to toss it.  In fact, we
963 		 * need to toss every packet with the EOP bit clear and the
964 		 * next frame that _does_ have the EOP bit set, as it is by
965 		 * definition only a frame fragment
966 		 */
967 		if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
968 			adapter->flags2 |= FLAG2_IS_DISCARDING;
969 
970 		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
971 			/* All receives must fit into a single buffer */
972 			e_dbg("Receive packet consumed multiple buffers\n");
973 			/* recycle */
974 			buffer_info->skb = skb;
975 			if (staterr & E1000_RXD_STAT_EOP)
976 				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
977 			goto next_desc;
978 		}
979 
980 		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
981 			     !(netdev->features & NETIF_F_RXALL))) {
982 			/* recycle */
983 			buffer_info->skb = skb;
984 			goto next_desc;
985 		}
986 
987 		/* adjust length to remove Ethernet CRC */
988 		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
989 			/* If configured to store CRC, don't subtract FCS,
990 			 * but keep the FCS bytes out of the total_rx_bytes
991 			 * counter
992 			 */
993 			if (netdev->features & NETIF_F_RXFCS)
994 				total_rx_bytes -= 4;
995 			else
996 				length -= 4;
997 		}
998 
999 		total_rx_bytes += length;
1000 		total_rx_packets++;
1001 
1002 		/* code added for copybreak, this should improve
1003 		 * performance for small packets with large amounts
1004 		 * of reassembly being done in the stack
1005 		 */
1006 		if (length < copybreak) {
1007 			struct sk_buff *new_skb =
1008 				napi_alloc_skb(&adapter->napi, length);
1009 			if (new_skb) {
1010 				skb_copy_to_linear_data_offset(new_skb,
1011 							       -NET_IP_ALIGN,
1012 							       (skb->data -
1013 								NET_IP_ALIGN),
1014 							       (length +
1015 								NET_IP_ALIGN));
1016 				/* save the skb in buffer_info as good */
1017 				buffer_info->skb = skb;
1018 				skb = new_skb;
1019 			}
1020 			/* else just continue with the old one */
1021 		}
1022 		/* end copybreak code */
1023 		skb_put(skb, length);
1024 
1025 		/* Receive Checksum Offload */
1026 		e1000_rx_checksum(adapter, staterr, skb);
1027 
1028 		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1029 
1030 		e1000_receive_skb(adapter, netdev, skb, staterr,
1031 				  rx_desc->wb.upper.vlan);
1032 
1033 next_desc:
1034 		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1035 
1036 		/* return some buffers to hardware, one at a time is too slow */
1037 		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1038 			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1039 					      GFP_ATOMIC);
1040 			cleaned_count = 0;
1041 		}
1042 
1043 		/* use prefetched values */
1044 		rx_desc = next_rxd;
1045 		buffer_info = next_buffer;
1046 
1047 		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1048 	}
1049 	rx_ring->next_to_clean = i;
1050 
1051 	cleaned_count = e1000_desc_unused(rx_ring);
1052 	if (cleaned_count)
1053 		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1054 
1055 	adapter->total_rx_bytes += total_rx_bytes;
1056 	adapter->total_rx_packets += total_rx_packets;
1057 	return cleaned;
1058 }
1059 
1060 static void e1000_put_txbuf(struct e1000_ring *tx_ring,
1061 			    struct e1000_buffer *buffer_info,
1062 			    bool drop)
1063 {
1064 	struct e1000_adapter *adapter = tx_ring->adapter;
1065 
1066 	if (buffer_info->dma) {
1067 		if (buffer_info->mapped_as_page)
1068 			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1069 				       buffer_info->length, DMA_TO_DEVICE);
1070 		else
1071 			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1072 					 buffer_info->length, DMA_TO_DEVICE);
1073 		buffer_info->dma = 0;
1074 	}
1075 	if (buffer_info->skb) {
1076 		if (drop)
1077 			dev_kfree_skb_any(buffer_info->skb);
1078 		else
1079 			dev_consume_skb_any(buffer_info->skb);
1080 		buffer_info->skb = NULL;
1081 	}
1082 	buffer_info->time_stamp = 0;
1083 }
1084 
1085 static void e1000_print_hw_hang(struct work_struct *work)
1086 {
1087 	struct e1000_adapter *adapter = container_of(work,
1088 						     struct e1000_adapter,
1089 						     print_hang_task);
1090 	struct net_device *netdev = adapter->netdev;
1091 	struct e1000_ring *tx_ring = adapter->tx_ring;
1092 	unsigned int i = tx_ring->next_to_clean;
1093 	unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1094 	struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1095 	struct e1000_hw *hw = &adapter->hw;
1096 	u16 phy_status, phy_1000t_status, phy_ext_status;
1097 	u16 pci_status;
1098 
1099 	if (test_bit(__E1000_DOWN, &adapter->state))
1100 		return;
1101 
1102 	if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) {
1103 		/* May be block on write-back, flush and detect again
1104 		 * flush pending descriptor writebacks to memory
1105 		 */
1106 		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1107 		/* execute the writes immediately */
1108 		e1e_flush();
1109 		/* Due to rare timing issues, write to TIDV again to ensure
1110 		 * the write is successful
1111 		 */
1112 		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1113 		/* execute the writes immediately */
1114 		e1e_flush();
1115 		adapter->tx_hang_recheck = true;
1116 		return;
1117 	}
1118 	adapter->tx_hang_recheck = false;
1119 
1120 	if (er32(TDH(0)) == er32(TDT(0))) {
1121 		e_dbg("false hang detected, ignoring\n");
1122 		return;
1123 	}
1124 
1125 	/* Real hang detected */
1126 	netif_stop_queue(netdev);
1127 
1128 	e1e_rphy(hw, MII_BMSR, &phy_status);
1129 	e1e_rphy(hw, MII_STAT1000, &phy_1000t_status);
1130 	e1e_rphy(hw, MII_ESTATUS, &phy_ext_status);
1131 
1132 	pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1133 
1134 	/* detected Hardware unit hang */
1135 	e_err("Detected Hardware Unit Hang:\n"
1136 	      "  TDH                  <%x>\n"
1137 	      "  TDT                  <%x>\n"
1138 	      "  next_to_use          <%x>\n"
1139 	      "  next_to_clean        <%x>\n"
1140 	      "buffer_info[next_to_clean]:\n"
1141 	      "  time_stamp           <%lx>\n"
1142 	      "  next_to_watch        <%x>\n"
1143 	      "  jiffies              <%lx>\n"
1144 	      "  next_to_watch.status <%x>\n"
1145 	      "MAC Status             <%x>\n"
1146 	      "PHY Status             <%x>\n"
1147 	      "PHY 1000BASE-T Status  <%x>\n"
1148 	      "PHY Extended Status    <%x>\n"
1149 	      "PCI Status             <%x>\n",
1150 	      readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use,
1151 	      tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp,
1152 	      eop, jiffies, eop_desc->upper.fields.status, er32(STATUS),
1153 	      phy_status, phy_1000t_status, phy_ext_status, pci_status);
1154 
1155 	e1000e_dump(adapter);
1156 
1157 	/* Suggest workaround for known h/w issue */
1158 	if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1159 		e_err("Try turning off Tx pause (flow control) via ethtool\n");
1160 }
1161 
1162 /**
1163  * e1000e_tx_hwtstamp_work - check for Tx time stamp
1164  * @work: pointer to work struct
1165  *
1166  * This work function polls the TSYNCTXCTL valid bit to determine when a
1167  * timestamp has been taken for the current stored skb.  The timestamp must
1168  * be for this skb because only one such packet is allowed in the queue.
1169  */
1170 static void e1000e_tx_hwtstamp_work(struct work_struct *work)
1171 {
1172 	struct e1000_adapter *adapter = container_of(work, struct e1000_adapter,
1173 						     tx_hwtstamp_work);
1174 	struct e1000_hw *hw = &adapter->hw;
1175 
1176 	if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) {
1177 		struct sk_buff *skb = adapter->tx_hwtstamp_skb;
1178 		struct skb_shared_hwtstamps shhwtstamps;
1179 		u64 txstmp;
1180 
1181 		txstmp = er32(TXSTMPL);
1182 		txstmp |= (u64)er32(TXSTMPH) << 32;
1183 
1184 		e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp);
1185 
1186 		/* Clear the global tx_hwtstamp_skb pointer and force writes
1187 		 * prior to notifying the stack of a Tx timestamp.
1188 		 */
1189 		adapter->tx_hwtstamp_skb = NULL;
1190 		wmb(); /* force write prior to skb_tstamp_tx */
1191 
1192 		skb_tstamp_tx(skb, &shhwtstamps);
1193 		dev_consume_skb_any(skb);
1194 	} else if (time_after(jiffies, adapter->tx_hwtstamp_start
1195 			      + adapter->tx_timeout_factor * HZ)) {
1196 		dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1197 		adapter->tx_hwtstamp_skb = NULL;
1198 		adapter->tx_hwtstamp_timeouts++;
1199 		e_warn("clearing Tx timestamp hang\n");
1200 	} else {
1201 		/* reschedule to check later */
1202 		schedule_work(&adapter->tx_hwtstamp_work);
1203 	}
1204 }
1205 
1206 /**
1207  * e1000_clean_tx_irq - Reclaim resources after transmit completes
1208  * @tx_ring: Tx descriptor ring
1209  *
1210  * the return value indicates whether actual cleaning was done, there
1211  * is no guarantee that everything was cleaned
1212  **/
1213 static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1214 {
1215 	struct e1000_adapter *adapter = tx_ring->adapter;
1216 	struct net_device *netdev = adapter->netdev;
1217 	struct e1000_hw *hw = &adapter->hw;
1218 	struct e1000_tx_desc *tx_desc, *eop_desc;
1219 	struct e1000_buffer *buffer_info;
1220 	unsigned int i, eop;
1221 	unsigned int count = 0;
1222 	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1223 	unsigned int bytes_compl = 0, pkts_compl = 0;
1224 
1225 	i = tx_ring->next_to_clean;
1226 	eop = tx_ring->buffer_info[i].next_to_watch;
1227 	eop_desc = E1000_TX_DESC(*tx_ring, eop);
1228 
1229 	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1230 	       (count < tx_ring->count)) {
1231 		bool cleaned = false;
1232 
1233 		dma_rmb();		/* read buffer_info after eop_desc */
1234 		for (; !cleaned; count++) {
1235 			tx_desc = E1000_TX_DESC(*tx_ring, i);
1236 			buffer_info = &tx_ring->buffer_info[i];
1237 			cleaned = (i == eop);
1238 
1239 			if (cleaned) {
1240 				total_tx_packets += buffer_info->segs;
1241 				total_tx_bytes += buffer_info->bytecount;
1242 				if (buffer_info->skb) {
1243 					bytes_compl += buffer_info->skb->len;
1244 					pkts_compl++;
1245 				}
1246 			}
1247 
1248 			e1000_put_txbuf(tx_ring, buffer_info, false);
1249 			tx_desc->upper.data = 0;
1250 
1251 			i++;
1252 			if (i == tx_ring->count)
1253 				i = 0;
1254 		}
1255 
1256 		if (i == tx_ring->next_to_use)
1257 			break;
1258 		eop = tx_ring->buffer_info[i].next_to_watch;
1259 		eop_desc = E1000_TX_DESC(*tx_ring, eop);
1260 	}
1261 
1262 	tx_ring->next_to_clean = i;
1263 
1264 	netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1265 
1266 #define TX_WAKE_THRESHOLD 32
1267 	if (count && netif_carrier_ok(netdev) &&
1268 	    e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1269 		/* Make sure that anybody stopping the queue after this
1270 		 * sees the new next_to_clean.
1271 		 */
1272 		smp_mb();
1273 
1274 		if (netif_queue_stopped(netdev) &&
1275 		    !(test_bit(__E1000_DOWN, &adapter->state))) {
1276 			netif_wake_queue(netdev);
1277 			++adapter->restart_queue;
1278 		}
1279 	}
1280 
1281 	if (adapter->detect_tx_hung) {
1282 		/* Detect a transmit hang in hardware, this serializes the
1283 		 * check with the clearing of time_stamp and movement of i
1284 		 */
1285 		adapter->detect_tx_hung = false;
1286 		if (tx_ring->buffer_info[i].time_stamp &&
1287 		    time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1288 			       + (adapter->tx_timeout_factor * HZ)) &&
1289 		    !(er32(STATUS) & E1000_STATUS_TXOFF))
1290 			schedule_work(&adapter->print_hang_task);
1291 		else
1292 			adapter->tx_hang_recheck = false;
1293 	}
1294 	adapter->total_tx_bytes += total_tx_bytes;
1295 	adapter->total_tx_packets += total_tx_packets;
1296 	return count < tx_ring->count;
1297 }
1298 
1299 /**
1300  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1301  * @rx_ring: Rx descriptor ring
1302  * @work_done: output parameter for indicating completed work
1303  * @work_to_do: how many packets we can clean
1304  *
1305  * the return value indicates whether actual cleaning was done, there
1306  * is no guarantee that everything was cleaned
1307  **/
1308 static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1309 				  int work_to_do)
1310 {
1311 	struct e1000_adapter *adapter = rx_ring->adapter;
1312 	struct e1000_hw *hw = &adapter->hw;
1313 	union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1314 	struct net_device *netdev = adapter->netdev;
1315 	struct pci_dev *pdev = adapter->pdev;
1316 	struct e1000_buffer *buffer_info, *next_buffer;
1317 	struct e1000_ps_page *ps_page;
1318 	struct sk_buff *skb;
1319 	unsigned int i, j;
1320 	u32 length, staterr;
1321 	int cleaned_count = 0;
1322 	bool cleaned = false;
1323 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1324 
1325 	i = rx_ring->next_to_clean;
1326 	rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1327 	staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1328 	buffer_info = &rx_ring->buffer_info[i];
1329 
1330 	while (staterr & E1000_RXD_STAT_DD) {
1331 		if (*work_done >= work_to_do)
1332 			break;
1333 		(*work_done)++;
1334 		skb = buffer_info->skb;
1335 		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
1336 
1337 		/* in the packet split case this is header only */
1338 		prefetch(skb->data - NET_IP_ALIGN);
1339 
1340 		i++;
1341 		if (i == rx_ring->count)
1342 			i = 0;
1343 		next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1344 		prefetch(next_rxd);
1345 
1346 		next_buffer = &rx_ring->buffer_info[i];
1347 
1348 		cleaned = true;
1349 		cleaned_count++;
1350 		dma_unmap_single(&pdev->dev, buffer_info->dma,
1351 				 adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1352 		buffer_info->dma = 0;
1353 
1354 		/* see !EOP comment in other Rx routine */
1355 		if (!(staterr & E1000_RXD_STAT_EOP))
1356 			adapter->flags2 |= FLAG2_IS_DISCARDING;
1357 
1358 		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1359 			e_dbg("Packet Split buffers didn't pick up the full packet\n");
1360 			dev_kfree_skb_irq(skb);
1361 			if (staterr & E1000_RXD_STAT_EOP)
1362 				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1363 			goto next_desc;
1364 		}
1365 
1366 		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1367 			     !(netdev->features & NETIF_F_RXALL))) {
1368 			dev_kfree_skb_irq(skb);
1369 			goto next_desc;
1370 		}
1371 
1372 		length = le16_to_cpu(rx_desc->wb.middle.length0);
1373 
1374 		if (!length) {
1375 			e_dbg("Last part of the packet spanning multiple descriptors\n");
1376 			dev_kfree_skb_irq(skb);
1377 			goto next_desc;
1378 		}
1379 
1380 		/* Good Receive */
1381 		skb_put(skb, length);
1382 
1383 		{
1384 			/* this looks ugly, but it seems compiler issues make
1385 			 * it more efficient than reusing j
1386 			 */
1387 			int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1388 
1389 			/* page alloc/put takes too long and effects small
1390 			 * packet throughput, so unsplit small packets and
1391 			 * save the alloc/put only valid in softirq (napi)
1392 			 * context to call kmap_*
1393 			 */
1394 			if (l1 && (l1 <= copybreak) &&
1395 			    ((length + l1) <= adapter->rx_ps_bsize0)) {
1396 				u8 *vaddr;
1397 
1398 				ps_page = &buffer_info->ps_pages[0];
1399 
1400 				/* there is no documentation about how to call
1401 				 * kmap_atomic, so we can't hold the mapping
1402 				 * very long
1403 				 */
1404 				dma_sync_single_for_cpu(&pdev->dev,
1405 							ps_page->dma,
1406 							PAGE_SIZE,
1407 							DMA_FROM_DEVICE);
1408 				vaddr = kmap_atomic(ps_page->page);
1409 				memcpy(skb_tail_pointer(skb), vaddr, l1);
1410 				kunmap_atomic(vaddr);
1411 				dma_sync_single_for_device(&pdev->dev,
1412 							   ps_page->dma,
1413 							   PAGE_SIZE,
1414 							   DMA_FROM_DEVICE);
1415 
1416 				/* remove the CRC */
1417 				if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1418 					if (!(netdev->features & NETIF_F_RXFCS))
1419 						l1 -= 4;
1420 				}
1421 
1422 				skb_put(skb, l1);
1423 				goto copydone;
1424 			}	/* if */
1425 		}
1426 
1427 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1428 			length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1429 			if (!length)
1430 				break;
1431 
1432 			ps_page = &buffer_info->ps_pages[j];
1433 			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1434 				       DMA_FROM_DEVICE);
1435 			ps_page->dma = 0;
1436 			skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1437 			ps_page->page = NULL;
1438 			skb->len += length;
1439 			skb->data_len += length;
1440 			skb->truesize += PAGE_SIZE;
1441 		}
1442 
1443 		/* strip the ethernet crc, problem is we're using pages now so
1444 		 * this whole operation can get a little cpu intensive
1445 		 */
1446 		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1447 			if (!(netdev->features & NETIF_F_RXFCS))
1448 				pskb_trim(skb, skb->len - 4);
1449 		}
1450 
1451 copydone:
1452 		total_rx_bytes += skb->len;
1453 		total_rx_packets++;
1454 
1455 		e1000_rx_checksum(adapter, staterr, skb);
1456 
1457 		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1458 
1459 		if (rx_desc->wb.upper.header_status &
1460 		    cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1461 			adapter->rx_hdr_split++;
1462 
1463 		e1000_receive_skb(adapter, netdev, skb, staterr,
1464 				  rx_desc->wb.middle.vlan);
1465 
1466 next_desc:
1467 		rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1468 		buffer_info->skb = NULL;
1469 
1470 		/* return some buffers to hardware, one at a time is too slow */
1471 		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1472 			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1473 					      GFP_ATOMIC);
1474 			cleaned_count = 0;
1475 		}
1476 
1477 		/* use prefetched values */
1478 		rx_desc = next_rxd;
1479 		buffer_info = next_buffer;
1480 
1481 		staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1482 	}
1483 	rx_ring->next_to_clean = i;
1484 
1485 	cleaned_count = e1000_desc_unused(rx_ring);
1486 	if (cleaned_count)
1487 		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1488 
1489 	adapter->total_rx_bytes += total_rx_bytes;
1490 	adapter->total_rx_packets += total_rx_packets;
1491 	return cleaned;
1492 }
1493 
1494 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1495 			       u16 length)
1496 {
1497 	bi->page = NULL;
1498 	skb->len += length;
1499 	skb->data_len += length;
1500 	skb->truesize += PAGE_SIZE;
1501 }
1502 
1503 /**
1504  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1505  * @rx_ring: Rx descriptor ring
1506  * @work_done: output parameter for indicating completed work
1507  * @work_to_do: how many packets we can clean
1508  *
1509  * the return value indicates whether actual cleaning was done, there
1510  * is no guarantee that everything was cleaned
1511  **/
1512 static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1513 				     int work_to_do)
1514 {
1515 	struct e1000_adapter *adapter = rx_ring->adapter;
1516 	struct net_device *netdev = adapter->netdev;
1517 	struct pci_dev *pdev = adapter->pdev;
1518 	union e1000_rx_desc_extended *rx_desc, *next_rxd;
1519 	struct e1000_buffer *buffer_info, *next_buffer;
1520 	u32 length, staterr;
1521 	unsigned int i;
1522 	int cleaned_count = 0;
1523 	bool cleaned = false;
1524 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1525 	struct skb_shared_info *shinfo;
1526 
1527 	i = rx_ring->next_to_clean;
1528 	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1529 	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1530 	buffer_info = &rx_ring->buffer_info[i];
1531 
1532 	while (staterr & E1000_RXD_STAT_DD) {
1533 		struct sk_buff *skb;
1534 
1535 		if (*work_done >= work_to_do)
1536 			break;
1537 		(*work_done)++;
1538 		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
1539 
1540 		skb = buffer_info->skb;
1541 		buffer_info->skb = NULL;
1542 
1543 		++i;
1544 		if (i == rx_ring->count)
1545 			i = 0;
1546 		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1547 		prefetch(next_rxd);
1548 
1549 		next_buffer = &rx_ring->buffer_info[i];
1550 
1551 		cleaned = true;
1552 		cleaned_count++;
1553 		dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1554 			       DMA_FROM_DEVICE);
1555 		buffer_info->dma = 0;
1556 
1557 		length = le16_to_cpu(rx_desc->wb.upper.length);
1558 
1559 		/* errors is only valid for DD + EOP descriptors */
1560 		if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1561 			     ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1562 			      !(netdev->features & NETIF_F_RXALL)))) {
1563 			/* recycle both page and skb */
1564 			buffer_info->skb = skb;
1565 			/* an error means any chain goes out the window too */
1566 			if (rx_ring->rx_skb_top)
1567 				dev_kfree_skb_irq(rx_ring->rx_skb_top);
1568 			rx_ring->rx_skb_top = NULL;
1569 			goto next_desc;
1570 		}
1571 #define rxtop (rx_ring->rx_skb_top)
1572 		if (!(staterr & E1000_RXD_STAT_EOP)) {
1573 			/* this descriptor is only the beginning (or middle) */
1574 			if (!rxtop) {
1575 				/* this is the beginning of a chain */
1576 				rxtop = skb;
1577 				skb_fill_page_desc(rxtop, 0, buffer_info->page,
1578 						   0, length);
1579 			} else {
1580 				/* this is the middle of a chain */
1581 				shinfo = skb_shinfo(rxtop);
1582 				skb_fill_page_desc(rxtop, shinfo->nr_frags,
1583 						   buffer_info->page, 0,
1584 						   length);
1585 				/* re-use the skb, only consumed the page */
1586 				buffer_info->skb = skb;
1587 			}
1588 			e1000_consume_page(buffer_info, rxtop, length);
1589 			goto next_desc;
1590 		} else {
1591 			if (rxtop) {
1592 				/* end of the chain */
1593 				shinfo = skb_shinfo(rxtop);
1594 				skb_fill_page_desc(rxtop, shinfo->nr_frags,
1595 						   buffer_info->page, 0,
1596 						   length);
1597 				/* re-use the current skb, we only consumed the
1598 				 * page
1599 				 */
1600 				buffer_info->skb = skb;
1601 				skb = rxtop;
1602 				rxtop = NULL;
1603 				e1000_consume_page(buffer_info, skb, length);
1604 			} else {
1605 				/* no chain, got EOP, this buf is the packet
1606 				 * copybreak to save the put_page/alloc_page
1607 				 */
1608 				if (length <= copybreak &&
1609 				    skb_tailroom(skb) >= length) {
1610 					u8 *vaddr;
1611 					vaddr = kmap_atomic(buffer_info->page);
1612 					memcpy(skb_tail_pointer(skb), vaddr,
1613 					       length);
1614 					kunmap_atomic(vaddr);
1615 					/* re-use the page, so don't erase
1616 					 * buffer_info->page
1617 					 */
1618 					skb_put(skb, length);
1619 				} else {
1620 					skb_fill_page_desc(skb, 0,
1621 							   buffer_info->page, 0,
1622 							   length);
1623 					e1000_consume_page(buffer_info, skb,
1624 							   length);
1625 				}
1626 			}
1627 		}
1628 
1629 		/* Receive Checksum Offload */
1630 		e1000_rx_checksum(adapter, staterr, skb);
1631 
1632 		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1633 
1634 		/* probably a little skewed due to removing CRC */
1635 		total_rx_bytes += skb->len;
1636 		total_rx_packets++;
1637 
1638 		/* eth type trans needs skb->data to point to something */
1639 		if (!pskb_may_pull(skb, ETH_HLEN)) {
1640 			e_err("pskb_may_pull failed.\n");
1641 			dev_kfree_skb_irq(skb);
1642 			goto next_desc;
1643 		}
1644 
1645 		e1000_receive_skb(adapter, netdev, skb, staterr,
1646 				  rx_desc->wb.upper.vlan);
1647 
1648 next_desc:
1649 		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1650 
1651 		/* return some buffers to hardware, one at a time is too slow */
1652 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1653 			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1654 					      GFP_ATOMIC);
1655 			cleaned_count = 0;
1656 		}
1657 
1658 		/* use prefetched values */
1659 		rx_desc = next_rxd;
1660 		buffer_info = next_buffer;
1661 
1662 		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1663 	}
1664 	rx_ring->next_to_clean = i;
1665 
1666 	cleaned_count = e1000_desc_unused(rx_ring);
1667 	if (cleaned_count)
1668 		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1669 
1670 	adapter->total_rx_bytes += total_rx_bytes;
1671 	adapter->total_rx_packets += total_rx_packets;
1672 	return cleaned;
1673 }
1674 
1675 /**
1676  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1677  * @rx_ring: Rx descriptor ring
1678  **/
1679 static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1680 {
1681 	struct e1000_adapter *adapter = rx_ring->adapter;
1682 	struct e1000_buffer *buffer_info;
1683 	struct e1000_ps_page *ps_page;
1684 	struct pci_dev *pdev = adapter->pdev;
1685 	unsigned int i, j;
1686 
1687 	/* Free all the Rx ring sk_buffs */
1688 	for (i = 0; i < rx_ring->count; i++) {
1689 		buffer_info = &rx_ring->buffer_info[i];
1690 		if (buffer_info->dma) {
1691 			if (adapter->clean_rx == e1000_clean_rx_irq)
1692 				dma_unmap_single(&pdev->dev, buffer_info->dma,
1693 						 adapter->rx_buffer_len,
1694 						 DMA_FROM_DEVICE);
1695 			else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1696 				dma_unmap_page(&pdev->dev, buffer_info->dma,
1697 					       PAGE_SIZE, DMA_FROM_DEVICE);
1698 			else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1699 				dma_unmap_single(&pdev->dev, buffer_info->dma,
1700 						 adapter->rx_ps_bsize0,
1701 						 DMA_FROM_DEVICE);
1702 			buffer_info->dma = 0;
1703 		}
1704 
1705 		if (buffer_info->page) {
1706 			put_page(buffer_info->page);
1707 			buffer_info->page = NULL;
1708 		}
1709 
1710 		if (buffer_info->skb) {
1711 			dev_kfree_skb(buffer_info->skb);
1712 			buffer_info->skb = NULL;
1713 		}
1714 
1715 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1716 			ps_page = &buffer_info->ps_pages[j];
1717 			if (!ps_page->page)
1718 				break;
1719 			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1720 				       DMA_FROM_DEVICE);
1721 			ps_page->dma = 0;
1722 			put_page(ps_page->page);
1723 			ps_page->page = NULL;
1724 		}
1725 	}
1726 
1727 	/* there also may be some cached data from a chained receive */
1728 	if (rx_ring->rx_skb_top) {
1729 		dev_kfree_skb(rx_ring->rx_skb_top);
1730 		rx_ring->rx_skb_top = NULL;
1731 	}
1732 
1733 	/* Zero out the descriptor ring */
1734 	memset(rx_ring->desc, 0, rx_ring->size);
1735 
1736 	rx_ring->next_to_clean = 0;
1737 	rx_ring->next_to_use = 0;
1738 	adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1739 }
1740 
1741 static void e1000e_downshift_workaround(struct work_struct *work)
1742 {
1743 	struct e1000_adapter *adapter = container_of(work,
1744 						     struct e1000_adapter,
1745 						     downshift_task);
1746 
1747 	if (test_bit(__E1000_DOWN, &adapter->state))
1748 		return;
1749 
1750 	e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1751 }
1752 
1753 /**
1754  * e1000_intr_msi - Interrupt Handler
1755  * @irq: interrupt number
1756  * @data: pointer to a network interface device structure
1757  **/
1758 static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data)
1759 {
1760 	struct net_device *netdev = data;
1761 	struct e1000_adapter *adapter = netdev_priv(netdev);
1762 	struct e1000_hw *hw = &adapter->hw;
1763 	u32 icr = er32(ICR);
1764 
1765 	/* read ICR disables interrupts using IAM */
1766 	if (icr & E1000_ICR_LSC) {
1767 		hw->mac.get_link_status = true;
1768 		/* ICH8 workaround-- Call gig speed drop workaround on cable
1769 		 * disconnect (LSC) before accessing any PHY registers
1770 		 */
1771 		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1772 		    (!(er32(STATUS) & E1000_STATUS_LU)))
1773 			schedule_work(&adapter->downshift_task);
1774 
1775 		/* 80003ES2LAN workaround-- For packet buffer work-around on
1776 		 * link down event; disable receives here in the ISR and reset
1777 		 * adapter in watchdog
1778 		 */
1779 		if (netif_carrier_ok(netdev) &&
1780 		    adapter->flags & FLAG_RX_NEEDS_RESTART) {
1781 			/* disable receives */
1782 			u32 rctl = er32(RCTL);
1783 
1784 			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1785 			adapter->flags |= FLAG_RESTART_NOW;
1786 		}
1787 		/* guard against interrupt when we're going down */
1788 		if (!test_bit(__E1000_DOWN, &adapter->state))
1789 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1790 	}
1791 
1792 	/* Reset on uncorrectable ECC error */
1793 	if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1794 		u32 pbeccsts = er32(PBECCSTS);
1795 
1796 		adapter->corr_errors +=
1797 		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1798 		adapter->uncorr_errors +=
1799 		    (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1800 		    E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1801 
1802 		/* Do the reset outside of interrupt context */
1803 		schedule_work(&adapter->reset_task);
1804 
1805 		/* return immediately since reset is imminent */
1806 		return IRQ_HANDLED;
1807 	}
1808 
1809 	if (napi_schedule_prep(&adapter->napi)) {
1810 		adapter->total_tx_bytes = 0;
1811 		adapter->total_tx_packets = 0;
1812 		adapter->total_rx_bytes = 0;
1813 		adapter->total_rx_packets = 0;
1814 		__napi_schedule(&adapter->napi);
1815 	}
1816 
1817 	return IRQ_HANDLED;
1818 }
1819 
1820 /**
1821  * e1000_intr - Interrupt Handler
1822  * @irq: interrupt number
1823  * @data: pointer to a network interface device structure
1824  **/
1825 static irqreturn_t e1000_intr(int __always_unused irq, void *data)
1826 {
1827 	struct net_device *netdev = data;
1828 	struct e1000_adapter *adapter = netdev_priv(netdev);
1829 	struct e1000_hw *hw = &adapter->hw;
1830 	u32 rctl, icr = er32(ICR);
1831 
1832 	if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1833 		return IRQ_NONE;	/* Not our interrupt */
1834 
1835 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1836 	 * not set, then the adapter didn't send an interrupt
1837 	 */
1838 	if (!(icr & E1000_ICR_INT_ASSERTED))
1839 		return IRQ_NONE;
1840 
1841 	/* Interrupt Auto-Mask...upon reading ICR,
1842 	 * interrupts are masked.  No need for the
1843 	 * IMC write
1844 	 */
1845 
1846 	if (icr & E1000_ICR_LSC) {
1847 		hw->mac.get_link_status = true;
1848 		/* ICH8 workaround-- Call gig speed drop workaround on cable
1849 		 * disconnect (LSC) before accessing any PHY registers
1850 		 */
1851 		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1852 		    (!(er32(STATUS) & E1000_STATUS_LU)))
1853 			schedule_work(&adapter->downshift_task);
1854 
1855 		/* 80003ES2LAN workaround--
1856 		 * For packet buffer work-around on link down event;
1857 		 * disable receives here in the ISR and
1858 		 * reset adapter in watchdog
1859 		 */
1860 		if (netif_carrier_ok(netdev) &&
1861 		    (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1862 			/* disable receives */
1863 			rctl = er32(RCTL);
1864 			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1865 			adapter->flags |= FLAG_RESTART_NOW;
1866 		}
1867 		/* guard against interrupt when we're going down */
1868 		if (!test_bit(__E1000_DOWN, &adapter->state))
1869 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1870 	}
1871 
1872 	/* Reset on uncorrectable ECC error */
1873 	if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1874 		u32 pbeccsts = er32(PBECCSTS);
1875 
1876 		adapter->corr_errors +=
1877 		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1878 		adapter->uncorr_errors +=
1879 		    (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1880 		    E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1881 
1882 		/* Do the reset outside of interrupt context */
1883 		schedule_work(&adapter->reset_task);
1884 
1885 		/* return immediately since reset is imminent */
1886 		return IRQ_HANDLED;
1887 	}
1888 
1889 	if (napi_schedule_prep(&adapter->napi)) {
1890 		adapter->total_tx_bytes = 0;
1891 		adapter->total_tx_packets = 0;
1892 		adapter->total_rx_bytes = 0;
1893 		adapter->total_rx_packets = 0;
1894 		__napi_schedule(&adapter->napi);
1895 	}
1896 
1897 	return IRQ_HANDLED;
1898 }
1899 
1900 static irqreturn_t e1000_msix_other(int __always_unused irq, void *data)
1901 {
1902 	struct net_device *netdev = data;
1903 	struct e1000_adapter *adapter = netdev_priv(netdev);
1904 	struct e1000_hw *hw = &adapter->hw;
1905 	u32 icr = er32(ICR);
1906 
1907 	if (icr & adapter->eiac_mask)
1908 		ew32(ICS, (icr & adapter->eiac_mask));
1909 
1910 	if (icr & E1000_ICR_LSC) {
1911 		hw->mac.get_link_status = true;
1912 		/* guard against interrupt when we're going down */
1913 		if (!test_bit(__E1000_DOWN, &adapter->state))
1914 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1915 	}
1916 
1917 	if (!test_bit(__E1000_DOWN, &adapter->state))
1918 		ew32(IMS, E1000_IMS_OTHER | IMS_OTHER_MASK);
1919 
1920 	return IRQ_HANDLED;
1921 }
1922 
1923 static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data)
1924 {
1925 	struct net_device *netdev = data;
1926 	struct e1000_adapter *adapter = netdev_priv(netdev);
1927 	struct e1000_hw *hw = &adapter->hw;
1928 	struct e1000_ring *tx_ring = adapter->tx_ring;
1929 
1930 	adapter->total_tx_bytes = 0;
1931 	adapter->total_tx_packets = 0;
1932 
1933 	if (!e1000_clean_tx_irq(tx_ring))
1934 		/* Ring was not completely cleaned, so fire another interrupt */
1935 		ew32(ICS, tx_ring->ims_val);
1936 
1937 	if (!test_bit(__E1000_DOWN, &adapter->state))
1938 		ew32(IMS, adapter->tx_ring->ims_val);
1939 
1940 	return IRQ_HANDLED;
1941 }
1942 
1943 static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data)
1944 {
1945 	struct net_device *netdev = data;
1946 	struct e1000_adapter *adapter = netdev_priv(netdev);
1947 	struct e1000_ring *rx_ring = adapter->rx_ring;
1948 
1949 	/* Write the ITR value calculated at the end of the
1950 	 * previous interrupt.
1951 	 */
1952 	if (rx_ring->set_itr) {
1953 		u32 itr = rx_ring->itr_val ?
1954 			  1000000000 / (rx_ring->itr_val * 256) : 0;
1955 
1956 		writel(itr, rx_ring->itr_register);
1957 		rx_ring->set_itr = 0;
1958 	}
1959 
1960 	if (napi_schedule_prep(&adapter->napi)) {
1961 		adapter->total_rx_bytes = 0;
1962 		adapter->total_rx_packets = 0;
1963 		__napi_schedule(&adapter->napi);
1964 	}
1965 	return IRQ_HANDLED;
1966 }
1967 
1968 /**
1969  * e1000_configure_msix - Configure MSI-X hardware
1970  * @adapter: board private structure
1971  *
1972  * e1000_configure_msix sets up the hardware to properly
1973  * generate MSI-X interrupts.
1974  **/
1975 static void e1000_configure_msix(struct e1000_adapter *adapter)
1976 {
1977 	struct e1000_hw *hw = &adapter->hw;
1978 	struct e1000_ring *rx_ring = adapter->rx_ring;
1979 	struct e1000_ring *tx_ring = adapter->tx_ring;
1980 	int vector = 0;
1981 	u32 ctrl_ext, ivar = 0;
1982 
1983 	adapter->eiac_mask = 0;
1984 
1985 	/* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1986 	if (hw->mac.type == e1000_82574) {
1987 		u32 rfctl = er32(RFCTL);
1988 
1989 		rfctl |= E1000_RFCTL_ACK_DIS;
1990 		ew32(RFCTL, rfctl);
1991 	}
1992 
1993 	/* Configure Rx vector */
1994 	rx_ring->ims_val = E1000_IMS_RXQ0;
1995 	adapter->eiac_mask |= rx_ring->ims_val;
1996 	if (rx_ring->itr_val)
1997 		writel(1000000000 / (rx_ring->itr_val * 256),
1998 		       rx_ring->itr_register);
1999 	else
2000 		writel(1, rx_ring->itr_register);
2001 	ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
2002 
2003 	/* Configure Tx vector */
2004 	tx_ring->ims_val = E1000_IMS_TXQ0;
2005 	vector++;
2006 	if (tx_ring->itr_val)
2007 		writel(1000000000 / (tx_ring->itr_val * 256),
2008 		       tx_ring->itr_register);
2009 	else
2010 		writel(1, tx_ring->itr_register);
2011 	adapter->eiac_mask |= tx_ring->ims_val;
2012 	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
2013 
2014 	/* set vector for Other Causes, e.g. link changes */
2015 	vector++;
2016 	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
2017 	if (rx_ring->itr_val)
2018 		writel(1000000000 / (rx_ring->itr_val * 256),
2019 		       hw->hw_addr + E1000_EITR_82574(vector));
2020 	else
2021 		writel(1, hw->hw_addr + E1000_EITR_82574(vector));
2022 
2023 	/* Cause Tx interrupts on every write back */
2024 	ivar |= BIT(31);
2025 
2026 	ew32(IVAR, ivar);
2027 
2028 	/* enable MSI-X PBA support */
2029 	ctrl_ext = er32(CTRL_EXT) & ~E1000_CTRL_EXT_IAME;
2030 	ctrl_ext |= E1000_CTRL_EXT_PBA_CLR | E1000_CTRL_EXT_EIAME;
2031 	ew32(CTRL_EXT, ctrl_ext);
2032 	e1e_flush();
2033 }
2034 
2035 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
2036 {
2037 	if (adapter->msix_entries) {
2038 		pci_disable_msix(adapter->pdev);
2039 		kfree(adapter->msix_entries);
2040 		adapter->msix_entries = NULL;
2041 	} else if (adapter->flags & FLAG_MSI_ENABLED) {
2042 		pci_disable_msi(adapter->pdev);
2043 		adapter->flags &= ~FLAG_MSI_ENABLED;
2044 	}
2045 }
2046 
2047 /**
2048  * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
2049  * @adapter: board private structure
2050  *
2051  * Attempt to configure interrupts using the best available
2052  * capabilities of the hardware and kernel.
2053  **/
2054 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
2055 {
2056 	int err;
2057 	int i;
2058 
2059 	switch (adapter->int_mode) {
2060 	case E1000E_INT_MODE_MSIX:
2061 		if (adapter->flags & FLAG_HAS_MSIX) {
2062 			adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
2063 			adapter->msix_entries = kcalloc(adapter->num_vectors,
2064 							sizeof(struct
2065 							       msix_entry),
2066 							GFP_KERNEL);
2067 			if (adapter->msix_entries) {
2068 				struct e1000_adapter *a = adapter;
2069 
2070 				for (i = 0; i < adapter->num_vectors; i++)
2071 					adapter->msix_entries[i].entry = i;
2072 
2073 				err = pci_enable_msix_range(a->pdev,
2074 							    a->msix_entries,
2075 							    a->num_vectors,
2076 							    a->num_vectors);
2077 				if (err > 0)
2078 					return;
2079 			}
2080 			/* MSI-X failed, so fall through and try MSI */
2081 			e_err("Failed to initialize MSI-X interrupts.  Falling back to MSI interrupts.\n");
2082 			e1000e_reset_interrupt_capability(adapter);
2083 		}
2084 		adapter->int_mode = E1000E_INT_MODE_MSI;
2085 		fallthrough;
2086 	case E1000E_INT_MODE_MSI:
2087 		if (!pci_enable_msi(adapter->pdev)) {
2088 			adapter->flags |= FLAG_MSI_ENABLED;
2089 		} else {
2090 			adapter->int_mode = E1000E_INT_MODE_LEGACY;
2091 			e_err("Failed to initialize MSI interrupts.  Falling back to legacy interrupts.\n");
2092 		}
2093 		fallthrough;
2094 	case E1000E_INT_MODE_LEGACY:
2095 		/* Don't do anything; this is the system default */
2096 		break;
2097 	}
2098 
2099 	/* store the number of vectors being used */
2100 	adapter->num_vectors = 1;
2101 }
2102 
2103 /**
2104  * e1000_request_msix - Initialize MSI-X interrupts
2105  * @adapter: board private structure
2106  *
2107  * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2108  * kernel.
2109  **/
2110 static int e1000_request_msix(struct e1000_adapter *adapter)
2111 {
2112 	struct net_device *netdev = adapter->netdev;
2113 	int err = 0, vector = 0;
2114 
2115 	if (strlen(netdev->name) < (IFNAMSIZ - 5))
2116 		snprintf(adapter->rx_ring->name,
2117 			 sizeof(adapter->rx_ring->name) - 1,
2118 			 "%.14s-rx-0", netdev->name);
2119 	else
2120 		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
2121 	err = request_irq(adapter->msix_entries[vector].vector,
2122 			  e1000_intr_msix_rx, 0, adapter->rx_ring->name,
2123 			  netdev);
2124 	if (err)
2125 		return err;
2126 	adapter->rx_ring->itr_register = adapter->hw.hw_addr +
2127 	    E1000_EITR_82574(vector);
2128 	adapter->rx_ring->itr_val = adapter->itr;
2129 	vector++;
2130 
2131 	if (strlen(netdev->name) < (IFNAMSIZ - 5))
2132 		snprintf(adapter->tx_ring->name,
2133 			 sizeof(adapter->tx_ring->name) - 1,
2134 			 "%.14s-tx-0", netdev->name);
2135 	else
2136 		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2137 	err = request_irq(adapter->msix_entries[vector].vector,
2138 			  e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2139 			  netdev);
2140 	if (err)
2141 		return err;
2142 	adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2143 	    E1000_EITR_82574(vector);
2144 	adapter->tx_ring->itr_val = adapter->itr;
2145 	vector++;
2146 
2147 	err = request_irq(adapter->msix_entries[vector].vector,
2148 			  e1000_msix_other, 0, netdev->name, netdev);
2149 	if (err)
2150 		return err;
2151 
2152 	e1000_configure_msix(adapter);
2153 
2154 	return 0;
2155 }
2156 
2157 /**
2158  * e1000_request_irq - initialize interrupts
2159  * @adapter: board private structure
2160  *
2161  * Attempts to configure interrupts using the best available
2162  * capabilities of the hardware and kernel.
2163  **/
2164 static int e1000_request_irq(struct e1000_adapter *adapter)
2165 {
2166 	struct net_device *netdev = adapter->netdev;
2167 	int err;
2168 
2169 	if (adapter->msix_entries) {
2170 		err = e1000_request_msix(adapter);
2171 		if (!err)
2172 			return err;
2173 		/* fall back to MSI */
2174 		e1000e_reset_interrupt_capability(adapter);
2175 		adapter->int_mode = E1000E_INT_MODE_MSI;
2176 		e1000e_set_interrupt_capability(adapter);
2177 	}
2178 	if (adapter->flags & FLAG_MSI_ENABLED) {
2179 		err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2180 				  netdev->name, netdev);
2181 		if (!err)
2182 			return err;
2183 
2184 		/* fall back to legacy interrupt */
2185 		e1000e_reset_interrupt_capability(adapter);
2186 		adapter->int_mode = E1000E_INT_MODE_LEGACY;
2187 	}
2188 
2189 	err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2190 			  netdev->name, netdev);
2191 	if (err)
2192 		e_err("Unable to allocate interrupt, Error: %d\n", err);
2193 
2194 	return err;
2195 }
2196 
2197 static void e1000_free_irq(struct e1000_adapter *adapter)
2198 {
2199 	struct net_device *netdev = adapter->netdev;
2200 
2201 	if (adapter->msix_entries) {
2202 		int vector = 0;
2203 
2204 		free_irq(adapter->msix_entries[vector].vector, netdev);
2205 		vector++;
2206 
2207 		free_irq(adapter->msix_entries[vector].vector, netdev);
2208 		vector++;
2209 
2210 		/* Other Causes interrupt vector */
2211 		free_irq(adapter->msix_entries[vector].vector, netdev);
2212 		return;
2213 	}
2214 
2215 	free_irq(adapter->pdev->irq, netdev);
2216 }
2217 
2218 /**
2219  * e1000_irq_disable - Mask off interrupt generation on the NIC
2220  * @adapter: board private structure
2221  **/
2222 static void e1000_irq_disable(struct e1000_adapter *adapter)
2223 {
2224 	struct e1000_hw *hw = &adapter->hw;
2225 
2226 	ew32(IMC, ~0);
2227 	if (adapter->msix_entries)
2228 		ew32(EIAC_82574, 0);
2229 	e1e_flush();
2230 
2231 	if (adapter->msix_entries) {
2232 		int i;
2233 
2234 		for (i = 0; i < adapter->num_vectors; i++)
2235 			synchronize_irq(adapter->msix_entries[i].vector);
2236 	} else {
2237 		synchronize_irq(adapter->pdev->irq);
2238 	}
2239 }
2240 
2241 /**
2242  * e1000_irq_enable - Enable default interrupt generation settings
2243  * @adapter: board private structure
2244  **/
2245 static void e1000_irq_enable(struct e1000_adapter *adapter)
2246 {
2247 	struct e1000_hw *hw = &adapter->hw;
2248 
2249 	if (adapter->msix_entries) {
2250 		ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2251 		ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER |
2252 		     IMS_OTHER_MASK);
2253 	} else if (hw->mac.type >= e1000_pch_lpt) {
2254 		ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER);
2255 	} else {
2256 		ew32(IMS, IMS_ENABLE_MASK);
2257 	}
2258 	e1e_flush();
2259 }
2260 
2261 /**
2262  * e1000e_get_hw_control - get control of the h/w from f/w
2263  * @adapter: address of board private structure
2264  *
2265  * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2266  * For ASF and Pass Through versions of f/w this means that
2267  * the driver is loaded. For AMT version (only with 82573)
2268  * of the f/w this means that the network i/f is open.
2269  **/
2270 void e1000e_get_hw_control(struct e1000_adapter *adapter)
2271 {
2272 	struct e1000_hw *hw = &adapter->hw;
2273 	u32 ctrl_ext;
2274 	u32 swsm;
2275 
2276 	/* Let firmware know the driver has taken over */
2277 	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2278 		swsm = er32(SWSM);
2279 		ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2280 	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2281 		ctrl_ext = er32(CTRL_EXT);
2282 		ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2283 	}
2284 }
2285 
2286 /**
2287  * e1000e_release_hw_control - release control of the h/w to f/w
2288  * @adapter: address of board private structure
2289  *
2290  * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2291  * For ASF and Pass Through versions of f/w this means that the
2292  * driver is no longer loaded. For AMT version (only with 82573) i
2293  * of the f/w this means that the network i/f is closed.
2294  *
2295  **/
2296 void e1000e_release_hw_control(struct e1000_adapter *adapter)
2297 {
2298 	struct e1000_hw *hw = &adapter->hw;
2299 	u32 ctrl_ext;
2300 	u32 swsm;
2301 
2302 	/* Let firmware taken over control of h/w */
2303 	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2304 		swsm = er32(SWSM);
2305 		ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2306 	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2307 		ctrl_ext = er32(CTRL_EXT);
2308 		ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2309 	}
2310 }
2311 
2312 /**
2313  * e1000_alloc_ring_dma - allocate memory for a ring structure
2314  * @adapter: board private structure
2315  * @ring: ring struct for which to allocate dma
2316  **/
2317 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2318 				struct e1000_ring *ring)
2319 {
2320 	struct pci_dev *pdev = adapter->pdev;
2321 
2322 	ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2323 					GFP_KERNEL);
2324 	if (!ring->desc)
2325 		return -ENOMEM;
2326 
2327 	return 0;
2328 }
2329 
2330 /**
2331  * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2332  * @tx_ring: Tx descriptor ring
2333  *
2334  * Return 0 on success, negative on failure
2335  **/
2336 int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2337 {
2338 	struct e1000_adapter *adapter = tx_ring->adapter;
2339 	int err = -ENOMEM, size;
2340 
2341 	size = sizeof(struct e1000_buffer) * tx_ring->count;
2342 	tx_ring->buffer_info = vzalloc(size);
2343 	if (!tx_ring->buffer_info)
2344 		goto err;
2345 
2346 	/* round up to nearest 4K */
2347 	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2348 	tx_ring->size = ALIGN(tx_ring->size, 4096);
2349 
2350 	err = e1000_alloc_ring_dma(adapter, tx_ring);
2351 	if (err)
2352 		goto err;
2353 
2354 	tx_ring->next_to_use = 0;
2355 	tx_ring->next_to_clean = 0;
2356 
2357 	return 0;
2358 err:
2359 	vfree(tx_ring->buffer_info);
2360 	e_err("Unable to allocate memory for the transmit descriptor ring\n");
2361 	return err;
2362 }
2363 
2364 /**
2365  * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2366  * @rx_ring: Rx descriptor ring
2367  *
2368  * Returns 0 on success, negative on failure
2369  **/
2370 int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2371 {
2372 	struct e1000_adapter *adapter = rx_ring->adapter;
2373 	struct e1000_buffer *buffer_info;
2374 	int i, size, desc_len, err = -ENOMEM;
2375 
2376 	size = sizeof(struct e1000_buffer) * rx_ring->count;
2377 	rx_ring->buffer_info = vzalloc(size);
2378 	if (!rx_ring->buffer_info)
2379 		goto err;
2380 
2381 	for (i = 0; i < rx_ring->count; i++) {
2382 		buffer_info = &rx_ring->buffer_info[i];
2383 		buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2384 						sizeof(struct e1000_ps_page),
2385 						GFP_KERNEL);
2386 		if (!buffer_info->ps_pages)
2387 			goto err_pages;
2388 	}
2389 
2390 	desc_len = sizeof(union e1000_rx_desc_packet_split);
2391 
2392 	/* Round up to nearest 4K */
2393 	rx_ring->size = rx_ring->count * desc_len;
2394 	rx_ring->size = ALIGN(rx_ring->size, 4096);
2395 
2396 	err = e1000_alloc_ring_dma(adapter, rx_ring);
2397 	if (err)
2398 		goto err_pages;
2399 
2400 	rx_ring->next_to_clean = 0;
2401 	rx_ring->next_to_use = 0;
2402 	rx_ring->rx_skb_top = NULL;
2403 
2404 	return 0;
2405 
2406 err_pages:
2407 	for (i = 0; i < rx_ring->count; i++) {
2408 		buffer_info = &rx_ring->buffer_info[i];
2409 		kfree(buffer_info->ps_pages);
2410 	}
2411 err:
2412 	vfree(rx_ring->buffer_info);
2413 	e_err("Unable to allocate memory for the receive descriptor ring\n");
2414 	return err;
2415 }
2416 
2417 /**
2418  * e1000_clean_tx_ring - Free Tx Buffers
2419  * @tx_ring: Tx descriptor ring
2420  **/
2421 static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2422 {
2423 	struct e1000_adapter *adapter = tx_ring->adapter;
2424 	struct e1000_buffer *buffer_info;
2425 	unsigned long size;
2426 	unsigned int i;
2427 
2428 	for (i = 0; i < tx_ring->count; i++) {
2429 		buffer_info = &tx_ring->buffer_info[i];
2430 		e1000_put_txbuf(tx_ring, buffer_info, false);
2431 	}
2432 
2433 	netdev_reset_queue(adapter->netdev);
2434 	size = sizeof(struct e1000_buffer) * tx_ring->count;
2435 	memset(tx_ring->buffer_info, 0, size);
2436 
2437 	memset(tx_ring->desc, 0, tx_ring->size);
2438 
2439 	tx_ring->next_to_use = 0;
2440 	tx_ring->next_to_clean = 0;
2441 }
2442 
2443 /**
2444  * e1000e_free_tx_resources - Free Tx Resources per Queue
2445  * @tx_ring: Tx descriptor ring
2446  *
2447  * Free all transmit software resources
2448  **/
2449 void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2450 {
2451 	struct e1000_adapter *adapter = tx_ring->adapter;
2452 	struct pci_dev *pdev = adapter->pdev;
2453 
2454 	e1000_clean_tx_ring(tx_ring);
2455 
2456 	vfree(tx_ring->buffer_info);
2457 	tx_ring->buffer_info = NULL;
2458 
2459 	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2460 			  tx_ring->dma);
2461 	tx_ring->desc = NULL;
2462 }
2463 
2464 /**
2465  * e1000e_free_rx_resources - Free Rx Resources
2466  * @rx_ring: Rx descriptor ring
2467  *
2468  * Free all receive software resources
2469  **/
2470 void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2471 {
2472 	struct e1000_adapter *adapter = rx_ring->adapter;
2473 	struct pci_dev *pdev = adapter->pdev;
2474 	int i;
2475 
2476 	e1000_clean_rx_ring(rx_ring);
2477 
2478 	for (i = 0; i < rx_ring->count; i++)
2479 		kfree(rx_ring->buffer_info[i].ps_pages);
2480 
2481 	vfree(rx_ring->buffer_info);
2482 	rx_ring->buffer_info = NULL;
2483 
2484 	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2485 			  rx_ring->dma);
2486 	rx_ring->desc = NULL;
2487 }
2488 
2489 /**
2490  * e1000_update_itr - update the dynamic ITR value based on statistics
2491  * @itr_setting: current adapter->itr
2492  * @packets: the number of packets during this measurement interval
2493  * @bytes: the number of bytes during this measurement interval
2494  *
2495  *      Stores a new ITR value based on packets and byte
2496  *      counts during the last interrupt.  The advantage of per interrupt
2497  *      computation is faster updates and more accurate ITR for the current
2498  *      traffic pattern.  Constants in this function were computed
2499  *      based on theoretical maximum wire speed and thresholds were set based
2500  *      on testing data as well as attempting to minimize response time
2501  *      while increasing bulk throughput.  This functionality is controlled
2502  *      by the InterruptThrottleRate module parameter.
2503  **/
2504 static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes)
2505 {
2506 	unsigned int retval = itr_setting;
2507 
2508 	if (packets == 0)
2509 		return itr_setting;
2510 
2511 	switch (itr_setting) {
2512 	case lowest_latency:
2513 		/* handle TSO and jumbo frames */
2514 		if (bytes / packets > 8000)
2515 			retval = bulk_latency;
2516 		else if ((packets < 5) && (bytes > 512))
2517 			retval = low_latency;
2518 		break;
2519 	case low_latency:	/* 50 usec aka 20000 ints/s */
2520 		if (bytes > 10000) {
2521 			/* this if handles the TSO accounting */
2522 			if (bytes / packets > 8000)
2523 				retval = bulk_latency;
2524 			else if ((packets < 10) || ((bytes / packets) > 1200))
2525 				retval = bulk_latency;
2526 			else if ((packets > 35))
2527 				retval = lowest_latency;
2528 		} else if (bytes / packets > 2000) {
2529 			retval = bulk_latency;
2530 		} else if (packets <= 2 && bytes < 512) {
2531 			retval = lowest_latency;
2532 		}
2533 		break;
2534 	case bulk_latency:	/* 250 usec aka 4000 ints/s */
2535 		if (bytes > 25000) {
2536 			if (packets > 35)
2537 				retval = low_latency;
2538 		} else if (bytes < 6000) {
2539 			retval = low_latency;
2540 		}
2541 		break;
2542 	}
2543 
2544 	return retval;
2545 }
2546 
2547 static void e1000_set_itr(struct e1000_adapter *adapter)
2548 {
2549 	u16 current_itr;
2550 	u32 new_itr = adapter->itr;
2551 
2552 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2553 	if (adapter->link_speed != SPEED_1000) {
2554 		new_itr = 4000;
2555 		goto set_itr_now;
2556 	}
2557 
2558 	if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2559 		new_itr = 0;
2560 		goto set_itr_now;
2561 	}
2562 
2563 	adapter->tx_itr = e1000_update_itr(adapter->tx_itr,
2564 					   adapter->total_tx_packets,
2565 					   adapter->total_tx_bytes);
2566 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2567 	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2568 		adapter->tx_itr = low_latency;
2569 
2570 	adapter->rx_itr = e1000_update_itr(adapter->rx_itr,
2571 					   adapter->total_rx_packets,
2572 					   adapter->total_rx_bytes);
2573 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2574 	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2575 		adapter->rx_itr = low_latency;
2576 
2577 	current_itr = max(adapter->rx_itr, adapter->tx_itr);
2578 
2579 	/* counts and packets in update_itr are dependent on these numbers */
2580 	switch (current_itr) {
2581 	case lowest_latency:
2582 		new_itr = 70000;
2583 		break;
2584 	case low_latency:
2585 		new_itr = 20000;	/* aka hwitr = ~200 */
2586 		break;
2587 	case bulk_latency:
2588 		new_itr = 4000;
2589 		break;
2590 	default:
2591 		break;
2592 	}
2593 
2594 set_itr_now:
2595 	if (new_itr != adapter->itr) {
2596 		/* this attempts to bias the interrupt rate towards Bulk
2597 		 * by adding intermediate steps when interrupt rate is
2598 		 * increasing
2599 		 */
2600 		new_itr = new_itr > adapter->itr ?
2601 		    min(adapter->itr + (new_itr >> 2), new_itr) : new_itr;
2602 		adapter->itr = new_itr;
2603 		adapter->rx_ring->itr_val = new_itr;
2604 		if (adapter->msix_entries)
2605 			adapter->rx_ring->set_itr = 1;
2606 		else
2607 			e1000e_write_itr(adapter, new_itr);
2608 	}
2609 }
2610 
2611 /**
2612  * e1000e_write_itr - write the ITR value to the appropriate registers
2613  * @adapter: address of board private structure
2614  * @itr: new ITR value to program
2615  *
2616  * e1000e_write_itr determines if the adapter is in MSI-X mode
2617  * and, if so, writes the EITR registers with the ITR value.
2618  * Otherwise, it writes the ITR value into the ITR register.
2619  **/
2620 void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
2621 {
2622 	struct e1000_hw *hw = &adapter->hw;
2623 	u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
2624 
2625 	if (adapter->msix_entries) {
2626 		int vector;
2627 
2628 		for (vector = 0; vector < adapter->num_vectors; vector++)
2629 			writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
2630 	} else {
2631 		ew32(ITR, new_itr);
2632 	}
2633 }
2634 
2635 /**
2636  * e1000_alloc_queues - Allocate memory for all rings
2637  * @adapter: board private structure to initialize
2638  **/
2639 static int e1000_alloc_queues(struct e1000_adapter *adapter)
2640 {
2641 	int size = sizeof(struct e1000_ring);
2642 
2643 	adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2644 	if (!adapter->tx_ring)
2645 		goto err;
2646 	adapter->tx_ring->count = adapter->tx_ring_count;
2647 	adapter->tx_ring->adapter = adapter;
2648 
2649 	adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2650 	if (!adapter->rx_ring)
2651 		goto err;
2652 	adapter->rx_ring->count = adapter->rx_ring_count;
2653 	adapter->rx_ring->adapter = adapter;
2654 
2655 	return 0;
2656 err:
2657 	e_err("Unable to allocate memory for queues\n");
2658 	kfree(adapter->rx_ring);
2659 	kfree(adapter->tx_ring);
2660 	return -ENOMEM;
2661 }
2662 
2663 /**
2664  * e1000e_poll - NAPI Rx polling callback
2665  * @napi: struct associated with this polling callback
2666  * @budget: number of packets driver is allowed to process this poll
2667  **/
2668 static int e1000e_poll(struct napi_struct *napi, int budget)
2669 {
2670 	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2671 						     napi);
2672 	struct e1000_hw *hw = &adapter->hw;
2673 	struct net_device *poll_dev = adapter->netdev;
2674 	int tx_cleaned = 1, work_done = 0;
2675 
2676 	adapter = netdev_priv(poll_dev);
2677 
2678 	if (!adapter->msix_entries ||
2679 	    (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2680 		tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2681 
2682 	adapter->clean_rx(adapter->rx_ring, &work_done, budget);
2683 
2684 	if (!tx_cleaned || work_done == budget)
2685 		return budget;
2686 
2687 	/* Exit the polling mode, but don't re-enable interrupts if stack might
2688 	 * poll us due to busy-polling
2689 	 */
2690 	if (likely(napi_complete_done(napi, work_done))) {
2691 		if (adapter->itr_setting & 3)
2692 			e1000_set_itr(adapter);
2693 		if (!test_bit(__E1000_DOWN, &adapter->state)) {
2694 			if (adapter->msix_entries)
2695 				ew32(IMS, adapter->rx_ring->ims_val);
2696 			else
2697 				e1000_irq_enable(adapter);
2698 		}
2699 	}
2700 
2701 	return work_done;
2702 }
2703 
2704 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
2705 				 __always_unused __be16 proto, u16 vid)
2706 {
2707 	struct e1000_adapter *adapter = netdev_priv(netdev);
2708 	struct e1000_hw *hw = &adapter->hw;
2709 	u32 vfta, index;
2710 
2711 	/* don't update vlan cookie if already programmed */
2712 	if ((adapter->hw.mng_cookie.status &
2713 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2714 	    (vid == adapter->mng_vlan_id))
2715 		return 0;
2716 
2717 	/* add VID to filter table */
2718 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2719 		index = (vid >> 5) & 0x7F;
2720 		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2721 		vfta |= BIT((vid & 0x1F));
2722 		hw->mac.ops.write_vfta(hw, index, vfta);
2723 	}
2724 
2725 	set_bit(vid, adapter->active_vlans);
2726 
2727 	return 0;
2728 }
2729 
2730 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
2731 				  __always_unused __be16 proto, u16 vid)
2732 {
2733 	struct e1000_adapter *adapter = netdev_priv(netdev);
2734 	struct e1000_hw *hw = &adapter->hw;
2735 	u32 vfta, index;
2736 
2737 	if ((adapter->hw.mng_cookie.status &
2738 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2739 	    (vid == adapter->mng_vlan_id)) {
2740 		/* release control to f/w */
2741 		e1000e_release_hw_control(adapter);
2742 		return 0;
2743 	}
2744 
2745 	/* remove VID from filter table */
2746 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2747 		index = (vid >> 5) & 0x7F;
2748 		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2749 		vfta &= ~BIT((vid & 0x1F));
2750 		hw->mac.ops.write_vfta(hw, index, vfta);
2751 	}
2752 
2753 	clear_bit(vid, adapter->active_vlans);
2754 
2755 	return 0;
2756 }
2757 
2758 /**
2759  * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2760  * @adapter: board private structure to initialize
2761  **/
2762 static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2763 {
2764 	struct net_device *netdev = adapter->netdev;
2765 	struct e1000_hw *hw = &adapter->hw;
2766 	u32 rctl;
2767 
2768 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2769 		/* disable VLAN receive filtering */
2770 		rctl = er32(RCTL);
2771 		rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2772 		ew32(RCTL, rctl);
2773 
2774 		if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2775 			e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
2776 					       adapter->mng_vlan_id);
2777 			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2778 		}
2779 	}
2780 }
2781 
2782 /**
2783  * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2784  * @adapter: board private structure to initialize
2785  **/
2786 static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2787 {
2788 	struct e1000_hw *hw = &adapter->hw;
2789 	u32 rctl;
2790 
2791 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2792 		/* enable VLAN receive filtering */
2793 		rctl = er32(RCTL);
2794 		rctl |= E1000_RCTL_VFE;
2795 		rctl &= ~E1000_RCTL_CFIEN;
2796 		ew32(RCTL, rctl);
2797 	}
2798 }
2799 
2800 /**
2801  * e1000e_vlan_strip_disable - helper to disable HW VLAN stripping
2802  * @adapter: board private structure to initialize
2803  **/
2804 static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2805 {
2806 	struct e1000_hw *hw = &adapter->hw;
2807 	u32 ctrl;
2808 
2809 	/* disable VLAN tag insert/strip */
2810 	ctrl = er32(CTRL);
2811 	ctrl &= ~E1000_CTRL_VME;
2812 	ew32(CTRL, ctrl);
2813 }
2814 
2815 /**
2816  * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2817  * @adapter: board private structure to initialize
2818  **/
2819 static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2820 {
2821 	struct e1000_hw *hw = &adapter->hw;
2822 	u32 ctrl;
2823 
2824 	/* enable VLAN tag insert/strip */
2825 	ctrl = er32(CTRL);
2826 	ctrl |= E1000_CTRL_VME;
2827 	ew32(CTRL, ctrl);
2828 }
2829 
2830 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2831 {
2832 	struct net_device *netdev = adapter->netdev;
2833 	u16 vid = adapter->hw.mng_cookie.vlan_id;
2834 	u16 old_vid = adapter->mng_vlan_id;
2835 
2836 	if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2837 		e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
2838 		adapter->mng_vlan_id = vid;
2839 	}
2840 
2841 	if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2842 		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid);
2843 }
2844 
2845 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2846 {
2847 	u16 vid;
2848 
2849 	e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
2850 
2851 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2852 	    e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
2853 }
2854 
2855 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2856 {
2857 	struct e1000_hw *hw = &adapter->hw;
2858 	u32 manc, manc2h, mdef, i, j;
2859 
2860 	if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2861 		return;
2862 
2863 	manc = er32(MANC);
2864 
2865 	/* enable receiving management packets to the host. this will probably
2866 	 * generate destination unreachable messages from the host OS, but
2867 	 * the packets will be handled on SMBUS
2868 	 */
2869 	manc |= E1000_MANC_EN_MNG2HOST;
2870 	manc2h = er32(MANC2H);
2871 
2872 	switch (hw->mac.type) {
2873 	default:
2874 		manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2875 		break;
2876 	case e1000_82574:
2877 	case e1000_82583:
2878 		/* Check if IPMI pass-through decision filter already exists;
2879 		 * if so, enable it.
2880 		 */
2881 		for (i = 0, j = 0; i < 8; i++) {
2882 			mdef = er32(MDEF(i));
2883 
2884 			/* Ignore filters with anything other than IPMI ports */
2885 			if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2886 				continue;
2887 
2888 			/* Enable this decision filter in MANC2H */
2889 			if (mdef)
2890 				manc2h |= BIT(i);
2891 
2892 			j |= mdef;
2893 		}
2894 
2895 		if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2896 			break;
2897 
2898 		/* Create new decision filter in an empty filter */
2899 		for (i = 0, j = 0; i < 8; i++)
2900 			if (er32(MDEF(i)) == 0) {
2901 				ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2902 					       E1000_MDEF_PORT_664));
2903 				manc2h |= BIT(1);
2904 				j++;
2905 				break;
2906 			}
2907 
2908 		if (!j)
2909 			e_warn("Unable to create IPMI pass-through filter\n");
2910 		break;
2911 	}
2912 
2913 	ew32(MANC2H, manc2h);
2914 	ew32(MANC, manc);
2915 }
2916 
2917 /**
2918  * e1000_configure_tx - Configure Transmit Unit after Reset
2919  * @adapter: board private structure
2920  *
2921  * Configure the Tx unit of the MAC after a reset.
2922  **/
2923 static void e1000_configure_tx(struct e1000_adapter *adapter)
2924 {
2925 	struct e1000_hw *hw = &adapter->hw;
2926 	struct e1000_ring *tx_ring = adapter->tx_ring;
2927 	u64 tdba;
2928 	u32 tdlen, tctl, tarc;
2929 
2930 	/* Setup the HW Tx Head and Tail descriptor pointers */
2931 	tdba = tx_ring->dma;
2932 	tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2933 	ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2934 	ew32(TDBAH(0), (tdba >> 32));
2935 	ew32(TDLEN(0), tdlen);
2936 	ew32(TDH(0), 0);
2937 	ew32(TDT(0), 0);
2938 	tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2939 	tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2940 
2941 	writel(0, tx_ring->head);
2942 	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2943 		e1000e_update_tdt_wa(tx_ring, 0);
2944 	else
2945 		writel(0, tx_ring->tail);
2946 
2947 	/* Set the Tx Interrupt Delay register */
2948 	ew32(TIDV, adapter->tx_int_delay);
2949 	/* Tx irq moderation */
2950 	ew32(TADV, adapter->tx_abs_int_delay);
2951 
2952 	if (adapter->flags2 & FLAG2_DMA_BURST) {
2953 		u32 txdctl = er32(TXDCTL(0));
2954 
2955 		txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2956 			    E1000_TXDCTL_WTHRESH);
2957 		/* set up some performance related parameters to encourage the
2958 		 * hardware to use the bus more efficiently in bursts, depends
2959 		 * on the tx_int_delay to be enabled,
2960 		 * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2961 		 * hthresh = 1 ==> prefetch when one or more available
2962 		 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2963 		 * BEWARE: this seems to work but should be considered first if
2964 		 * there are Tx hangs or other Tx related bugs
2965 		 */
2966 		txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2967 		ew32(TXDCTL(0), txdctl);
2968 	}
2969 	/* erratum work around: set txdctl the same for both queues */
2970 	ew32(TXDCTL(1), er32(TXDCTL(0)));
2971 
2972 	/* Program the Transmit Control Register */
2973 	tctl = er32(TCTL);
2974 	tctl &= ~E1000_TCTL_CT;
2975 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2976 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2977 
2978 	if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2979 		tarc = er32(TARC(0));
2980 		/* set the speed mode bit, we'll clear it if we're not at
2981 		 * gigabit link later
2982 		 */
2983 #define SPEED_MODE_BIT BIT(21)
2984 		tarc |= SPEED_MODE_BIT;
2985 		ew32(TARC(0), tarc);
2986 	}
2987 
2988 	/* errata: program both queues to unweighted RR */
2989 	if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2990 		tarc = er32(TARC(0));
2991 		tarc |= 1;
2992 		ew32(TARC(0), tarc);
2993 		tarc = er32(TARC(1));
2994 		tarc |= 1;
2995 		ew32(TARC(1), tarc);
2996 	}
2997 
2998 	/* Setup Transmit Descriptor Settings for eop descriptor */
2999 	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
3000 
3001 	/* only set IDE if we are delaying interrupts using the timers */
3002 	if (adapter->tx_int_delay)
3003 		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
3004 
3005 	/* enable Report Status bit */
3006 	adapter->txd_cmd |= E1000_TXD_CMD_RS;
3007 
3008 	ew32(TCTL, tctl);
3009 
3010 	hw->mac.ops.config_collision_dist(hw);
3011 
3012 	/* SPT and KBL Si errata workaround to avoid data corruption */
3013 	if (hw->mac.type == e1000_pch_spt) {
3014 		u32 reg_val;
3015 
3016 		reg_val = er32(IOSFPC);
3017 		reg_val |= E1000_RCTL_RDMTS_HEX;
3018 		ew32(IOSFPC, reg_val);
3019 
3020 		reg_val = er32(TARC(0));
3021 		/* SPT and KBL Si errata workaround to avoid Tx hang.
3022 		 * Dropping the number of outstanding requests from
3023 		 * 3 to 2 in order to avoid a buffer overrun.
3024 		 */
3025 		reg_val &= ~E1000_TARC0_CB_MULTIQ_3_REQ;
3026 		reg_val |= E1000_TARC0_CB_MULTIQ_2_REQ;
3027 		ew32(TARC(0), reg_val);
3028 	}
3029 }
3030 
3031 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
3032 			   (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
3033 
3034 /**
3035  * e1000_setup_rctl - configure the receive control registers
3036  * @adapter: Board private structure
3037  **/
3038 static void e1000_setup_rctl(struct e1000_adapter *adapter)
3039 {
3040 	struct e1000_hw *hw = &adapter->hw;
3041 	u32 rctl, rfctl;
3042 	u32 pages = 0;
3043 
3044 	/* Workaround Si errata on PCHx - configure jumbo frame flow.
3045 	 * If jumbo frames not set, program related MAC/PHY registers
3046 	 * to h/w defaults
3047 	 */
3048 	if (hw->mac.type >= e1000_pch2lan) {
3049 		s32 ret_val;
3050 
3051 		if (adapter->netdev->mtu > ETH_DATA_LEN)
3052 			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
3053 		else
3054 			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
3055 
3056 		if (ret_val)
3057 			e_dbg("failed to enable|disable jumbo frame workaround mode\n");
3058 	}
3059 
3060 	/* Program MC offset vector base */
3061 	rctl = er32(RCTL);
3062 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3063 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3064 	    E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3065 	    (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3066 
3067 	/* Do not Store bad packets */
3068 	rctl &= ~E1000_RCTL_SBP;
3069 
3070 	/* Enable Long Packet receive */
3071 	if (adapter->netdev->mtu <= ETH_DATA_LEN)
3072 		rctl &= ~E1000_RCTL_LPE;
3073 	else
3074 		rctl |= E1000_RCTL_LPE;
3075 
3076 	/* Some systems expect that the CRC is included in SMBUS traffic. The
3077 	 * hardware strips the CRC before sending to both SMBUS (BMC) and to
3078 	 * host memory when this is enabled
3079 	 */
3080 	if (adapter->flags2 & FLAG2_CRC_STRIPPING)
3081 		rctl |= E1000_RCTL_SECRC;
3082 
3083 	/* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3084 	if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
3085 		u16 phy_data;
3086 
3087 		e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
3088 		phy_data &= 0xfff8;
3089 		phy_data |= BIT(2);
3090 		e1e_wphy(hw, PHY_REG(770, 26), phy_data);
3091 
3092 		e1e_rphy(hw, 22, &phy_data);
3093 		phy_data &= 0x0fff;
3094 		phy_data |= BIT(14);
3095 		e1e_wphy(hw, 0x10, 0x2823);
3096 		e1e_wphy(hw, 0x11, 0x0003);
3097 		e1e_wphy(hw, 22, phy_data);
3098 	}
3099 
3100 	/* Setup buffer sizes */
3101 	rctl &= ~E1000_RCTL_SZ_4096;
3102 	rctl |= E1000_RCTL_BSEX;
3103 	switch (adapter->rx_buffer_len) {
3104 	case 2048:
3105 	default:
3106 		rctl |= E1000_RCTL_SZ_2048;
3107 		rctl &= ~E1000_RCTL_BSEX;
3108 		break;
3109 	case 4096:
3110 		rctl |= E1000_RCTL_SZ_4096;
3111 		break;
3112 	case 8192:
3113 		rctl |= E1000_RCTL_SZ_8192;
3114 		break;
3115 	case 16384:
3116 		rctl |= E1000_RCTL_SZ_16384;
3117 		break;
3118 	}
3119 
3120 	/* Enable Extended Status in all Receive Descriptors */
3121 	rfctl = er32(RFCTL);
3122 	rfctl |= E1000_RFCTL_EXTEN;
3123 	ew32(RFCTL, rfctl);
3124 
3125 	/* 82571 and greater support packet-split where the protocol
3126 	 * header is placed in skb->data and the packet data is
3127 	 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3128 	 * In the case of a non-split, skb->data is linearly filled,
3129 	 * followed by the page buffers.  Therefore, skb->data is
3130 	 * sized to hold the largest protocol header.
3131 	 *
3132 	 * allocations using alloc_page take too long for regular MTU
3133 	 * so only enable packet split for jumbo frames
3134 	 *
3135 	 * Using pages when the page size is greater than 16k wastes
3136 	 * a lot of memory, since we allocate 3 pages at all times
3137 	 * per packet.
3138 	 */
3139 	pages = PAGE_USE_COUNT(adapter->netdev->mtu);
3140 	if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
3141 		adapter->rx_ps_pages = pages;
3142 	else
3143 		adapter->rx_ps_pages = 0;
3144 
3145 	if (adapter->rx_ps_pages) {
3146 		u32 psrctl = 0;
3147 
3148 		/* Enable Packet split descriptors */
3149 		rctl |= E1000_RCTL_DTYP_PS;
3150 
3151 		psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT;
3152 
3153 		switch (adapter->rx_ps_pages) {
3154 		case 3:
3155 			psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT;
3156 			fallthrough;
3157 		case 2:
3158 			psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT;
3159 			fallthrough;
3160 		case 1:
3161 			psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT;
3162 			break;
3163 		}
3164 
3165 		ew32(PSRCTL, psrctl);
3166 	}
3167 
3168 	/* This is useful for sniffing bad packets. */
3169 	if (adapter->netdev->features & NETIF_F_RXALL) {
3170 		/* UPE and MPE will be handled by normal PROMISC logic
3171 		 * in e1000e_set_rx_mode
3172 		 */
3173 		rctl |= (E1000_RCTL_SBP |	/* Receive bad packets */
3174 			 E1000_RCTL_BAM |	/* RX All Bcast Pkts */
3175 			 E1000_RCTL_PMCF);	/* RX All MAC Ctrl Pkts */
3176 
3177 		rctl &= ~(E1000_RCTL_VFE |	/* Disable VLAN filter */
3178 			  E1000_RCTL_DPF |	/* Allow filtered pause */
3179 			  E1000_RCTL_CFIEN);	/* Dis VLAN CFIEN Filter */
3180 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3181 		 * and that breaks VLANs.
3182 		 */
3183 	}
3184 
3185 	ew32(RCTL, rctl);
3186 	/* just started the receive unit, no need to restart */
3187 	adapter->flags &= ~FLAG_RESTART_NOW;
3188 }
3189 
3190 /**
3191  * e1000_configure_rx - Configure Receive Unit after Reset
3192  * @adapter: board private structure
3193  *
3194  * Configure the Rx unit of the MAC after a reset.
3195  **/
3196 static void e1000_configure_rx(struct e1000_adapter *adapter)
3197 {
3198 	struct e1000_hw *hw = &adapter->hw;
3199 	struct e1000_ring *rx_ring = adapter->rx_ring;
3200 	u64 rdba;
3201 	u32 rdlen, rctl, rxcsum, ctrl_ext;
3202 
3203 	if (adapter->rx_ps_pages) {
3204 		/* this is a 32 byte descriptor */
3205 		rdlen = rx_ring->count *
3206 		    sizeof(union e1000_rx_desc_packet_split);
3207 		adapter->clean_rx = e1000_clean_rx_irq_ps;
3208 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3209 	} else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3210 		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3211 		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3212 		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3213 	} else {
3214 		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3215 		adapter->clean_rx = e1000_clean_rx_irq;
3216 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3217 	}
3218 
3219 	/* disable receives while setting up the descriptors */
3220 	rctl = er32(RCTL);
3221 	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3222 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
3223 	e1e_flush();
3224 	usleep_range(10000, 11000);
3225 
3226 	if (adapter->flags2 & FLAG2_DMA_BURST) {
3227 		/* set the writeback threshold (only takes effect if the RDTR
3228 		 * is set). set GRAN=1 and write back up to 0x4 worth, and
3229 		 * enable prefetching of 0x20 Rx descriptors
3230 		 * granularity = 01
3231 		 * wthresh = 04,
3232 		 * hthresh = 04,
3233 		 * pthresh = 0x20
3234 		 */
3235 		ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3236 		ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3237 	}
3238 
3239 	/* set the Receive Delay Timer Register */
3240 	ew32(RDTR, adapter->rx_int_delay);
3241 
3242 	/* irq moderation */
3243 	ew32(RADV, adapter->rx_abs_int_delay);
3244 	if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3245 		e1000e_write_itr(adapter, adapter->itr);
3246 
3247 	ctrl_ext = er32(CTRL_EXT);
3248 	/* Auto-Mask interrupts upon ICR access */
3249 	ctrl_ext |= E1000_CTRL_EXT_IAME;
3250 	ew32(IAM, 0xffffffff);
3251 	ew32(CTRL_EXT, ctrl_ext);
3252 	e1e_flush();
3253 
3254 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
3255 	 * the Base and Length of the Rx Descriptor Ring
3256 	 */
3257 	rdba = rx_ring->dma;
3258 	ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3259 	ew32(RDBAH(0), (rdba >> 32));
3260 	ew32(RDLEN(0), rdlen);
3261 	ew32(RDH(0), 0);
3262 	ew32(RDT(0), 0);
3263 	rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3264 	rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3265 
3266 	writel(0, rx_ring->head);
3267 	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
3268 		e1000e_update_rdt_wa(rx_ring, 0);
3269 	else
3270 		writel(0, rx_ring->tail);
3271 
3272 	/* Enable Receive Checksum Offload for TCP and UDP */
3273 	rxcsum = er32(RXCSUM);
3274 	if (adapter->netdev->features & NETIF_F_RXCSUM)
3275 		rxcsum |= E1000_RXCSUM_TUOFL;
3276 	else
3277 		rxcsum &= ~E1000_RXCSUM_TUOFL;
3278 	ew32(RXCSUM, rxcsum);
3279 
3280 	/* With jumbo frames, excessive C-state transition latencies result
3281 	 * in dropped transactions.
3282 	 */
3283 	if (adapter->netdev->mtu > ETH_DATA_LEN) {
3284 		u32 lat =
3285 		    ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 -
3286 		     adapter->max_frame_size) * 8 / 1000;
3287 
3288 		if (adapter->flags & FLAG_IS_ICH) {
3289 			u32 rxdctl = er32(RXDCTL(0));
3290 
3291 			ew32(RXDCTL(0), rxdctl | 0x3 | BIT(8));
3292 		}
3293 
3294 		dev_info(&adapter->pdev->dev,
3295 			 "Some CPU C-states have been disabled in order to enable jumbo frames\n");
3296 		cpu_latency_qos_update_request(&adapter->pm_qos_req, lat);
3297 	} else {
3298 		cpu_latency_qos_update_request(&adapter->pm_qos_req,
3299 					       PM_QOS_DEFAULT_VALUE);
3300 	}
3301 
3302 	/* Enable Receives */
3303 	ew32(RCTL, rctl);
3304 }
3305 
3306 /**
3307  * e1000e_write_mc_addr_list - write multicast addresses to MTA
3308  * @netdev: network interface device structure
3309  *
3310  * Writes multicast address list to the MTA hash table.
3311  * Returns: -ENOMEM on failure
3312  *                0 on no addresses written
3313  *                X on writing X addresses to MTA
3314  */
3315 static int e1000e_write_mc_addr_list(struct net_device *netdev)
3316 {
3317 	struct e1000_adapter *adapter = netdev_priv(netdev);
3318 	struct e1000_hw *hw = &adapter->hw;
3319 	struct netdev_hw_addr *ha;
3320 	u8 *mta_list;
3321 	int i;
3322 
3323 	if (netdev_mc_empty(netdev)) {
3324 		/* nothing to program, so clear mc list */
3325 		hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3326 		return 0;
3327 	}
3328 
3329 	mta_list = kcalloc(netdev_mc_count(netdev), ETH_ALEN, GFP_ATOMIC);
3330 	if (!mta_list)
3331 		return -ENOMEM;
3332 
3333 	/* update_mc_addr_list expects a packed array of only addresses. */
3334 	i = 0;
3335 	netdev_for_each_mc_addr(ha, netdev)
3336 	    memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3337 
3338 	hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3339 	kfree(mta_list);
3340 
3341 	return netdev_mc_count(netdev);
3342 }
3343 
3344 /**
3345  * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3346  * @netdev: network interface device structure
3347  *
3348  * Writes unicast address list to the RAR table.
3349  * Returns: -ENOMEM on failure/insufficient address space
3350  *                0 on no addresses written
3351  *                X on writing X addresses to the RAR table
3352  **/
3353 static int e1000e_write_uc_addr_list(struct net_device *netdev)
3354 {
3355 	struct e1000_adapter *adapter = netdev_priv(netdev);
3356 	struct e1000_hw *hw = &adapter->hw;
3357 	unsigned int rar_entries;
3358 	int count = 0;
3359 
3360 	rar_entries = hw->mac.ops.rar_get_count(hw);
3361 
3362 	/* save a rar entry for our hardware address */
3363 	rar_entries--;
3364 
3365 	/* save a rar entry for the LAA workaround */
3366 	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3367 		rar_entries--;
3368 
3369 	/* return ENOMEM indicating insufficient memory for addresses */
3370 	if (netdev_uc_count(netdev) > rar_entries)
3371 		return -ENOMEM;
3372 
3373 	if (!netdev_uc_empty(netdev) && rar_entries) {
3374 		struct netdev_hw_addr *ha;
3375 
3376 		/* write the addresses in reverse order to avoid write
3377 		 * combining
3378 		 */
3379 		netdev_for_each_uc_addr(ha, netdev) {
3380 			int ret_val;
3381 
3382 			if (!rar_entries)
3383 				break;
3384 			ret_val = hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3385 			if (ret_val < 0)
3386 				return -ENOMEM;
3387 			count++;
3388 		}
3389 	}
3390 
3391 	/* zero out the remaining RAR entries not used above */
3392 	for (; rar_entries > 0; rar_entries--) {
3393 		ew32(RAH(rar_entries), 0);
3394 		ew32(RAL(rar_entries), 0);
3395 	}
3396 	e1e_flush();
3397 
3398 	return count;
3399 }
3400 
3401 /**
3402  * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3403  * @netdev: network interface device structure
3404  *
3405  * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3406  * address list or the network interface flags are updated.  This routine is
3407  * responsible for configuring the hardware for proper unicast, multicast,
3408  * promiscuous mode, and all-multi behavior.
3409  **/
3410 static void e1000e_set_rx_mode(struct net_device *netdev)
3411 {
3412 	struct e1000_adapter *adapter = netdev_priv(netdev);
3413 	struct e1000_hw *hw = &adapter->hw;
3414 	u32 rctl;
3415 
3416 	if (pm_runtime_suspended(netdev->dev.parent))
3417 		return;
3418 
3419 	/* Check for Promiscuous and All Multicast modes */
3420 	rctl = er32(RCTL);
3421 
3422 	/* clear the affected bits */
3423 	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3424 
3425 	if (netdev->flags & IFF_PROMISC) {
3426 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3427 		/* Do not hardware filter VLANs in promisc mode */
3428 		e1000e_vlan_filter_disable(adapter);
3429 	} else {
3430 		int count;
3431 
3432 		if (netdev->flags & IFF_ALLMULTI) {
3433 			rctl |= E1000_RCTL_MPE;
3434 		} else {
3435 			/* Write addresses to the MTA, if the attempt fails
3436 			 * then we should just turn on promiscuous mode so
3437 			 * that we can at least receive multicast traffic
3438 			 */
3439 			count = e1000e_write_mc_addr_list(netdev);
3440 			if (count < 0)
3441 				rctl |= E1000_RCTL_MPE;
3442 		}
3443 		e1000e_vlan_filter_enable(adapter);
3444 		/* Write addresses to available RAR registers, if there is not
3445 		 * sufficient space to store all the addresses then enable
3446 		 * unicast promiscuous mode
3447 		 */
3448 		count = e1000e_write_uc_addr_list(netdev);
3449 		if (count < 0)
3450 			rctl |= E1000_RCTL_UPE;
3451 	}
3452 
3453 	ew32(RCTL, rctl);
3454 
3455 	if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
3456 		e1000e_vlan_strip_enable(adapter);
3457 	else
3458 		e1000e_vlan_strip_disable(adapter);
3459 }
3460 
3461 static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3462 {
3463 	struct e1000_hw *hw = &adapter->hw;
3464 	u32 mrqc, rxcsum;
3465 	u32 rss_key[10];
3466 	int i;
3467 
3468 	netdev_rss_key_fill(rss_key, sizeof(rss_key));
3469 	for (i = 0; i < 10; i++)
3470 		ew32(RSSRK(i), rss_key[i]);
3471 
3472 	/* Direct all traffic to queue 0 */
3473 	for (i = 0; i < 32; i++)
3474 		ew32(RETA(i), 0);
3475 
3476 	/* Disable raw packet checksumming so that RSS hash is placed in
3477 	 * descriptor on writeback.
3478 	 */
3479 	rxcsum = er32(RXCSUM);
3480 	rxcsum |= E1000_RXCSUM_PCSD;
3481 
3482 	ew32(RXCSUM, rxcsum);
3483 
3484 	mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3485 		E1000_MRQC_RSS_FIELD_IPV4_TCP |
3486 		E1000_MRQC_RSS_FIELD_IPV6 |
3487 		E1000_MRQC_RSS_FIELD_IPV6_TCP |
3488 		E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3489 
3490 	ew32(MRQC, mrqc);
3491 }
3492 
3493 /**
3494  * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3495  * @adapter: board private structure
3496  * @timinca: pointer to returned time increment attributes
3497  *
3498  * Get attributes for incrementing the System Time Register SYSTIML/H at
3499  * the default base frequency, and set the cyclecounter shift value.
3500  **/
3501 s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca)
3502 {
3503 	struct e1000_hw *hw = &adapter->hw;
3504 	u32 incvalue, incperiod, shift;
3505 
3506 	/* Make sure clock is enabled on I217/I218/I219  before checking
3507 	 * the frequency
3508 	 */
3509 	if ((hw->mac.type >= e1000_pch_lpt) &&
3510 	    !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) &&
3511 	    !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) {
3512 		u32 fextnvm7 = er32(FEXTNVM7);
3513 
3514 		if (!(fextnvm7 & BIT(0))) {
3515 			ew32(FEXTNVM7, fextnvm7 | BIT(0));
3516 			e1e_flush();
3517 		}
3518 	}
3519 
3520 	switch (hw->mac.type) {
3521 	case e1000_pch2lan:
3522 		/* Stable 96MHz frequency */
3523 		incperiod = INCPERIOD_96MHZ;
3524 		incvalue = INCVALUE_96MHZ;
3525 		shift = INCVALUE_SHIFT_96MHZ;
3526 		adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3527 		break;
3528 	case e1000_pch_lpt:
3529 		if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3530 			/* Stable 96MHz frequency */
3531 			incperiod = INCPERIOD_96MHZ;
3532 			incvalue = INCVALUE_96MHZ;
3533 			shift = INCVALUE_SHIFT_96MHZ;
3534 			adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3535 		} else {
3536 			/* Stable 25MHz frequency */
3537 			incperiod = INCPERIOD_25MHZ;
3538 			incvalue = INCVALUE_25MHZ;
3539 			shift = INCVALUE_SHIFT_25MHZ;
3540 			adapter->cc.shift = shift;
3541 		}
3542 		break;
3543 	case e1000_pch_spt:
3544 		/* Stable 24MHz frequency */
3545 		incperiod = INCPERIOD_24MHZ;
3546 		incvalue = INCVALUE_24MHZ;
3547 		shift = INCVALUE_SHIFT_24MHZ;
3548 		adapter->cc.shift = shift;
3549 		break;
3550 	case e1000_pch_cnp:
3551 	case e1000_pch_tgp:
3552 	case e1000_pch_adp:
3553 	case e1000_pch_mtp:
3554 	case e1000_pch_lnp:
3555 		if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3556 			/* Stable 24MHz frequency */
3557 			incperiod = INCPERIOD_24MHZ;
3558 			incvalue = INCVALUE_24MHZ;
3559 			shift = INCVALUE_SHIFT_24MHZ;
3560 			adapter->cc.shift = shift;
3561 		} else {
3562 			/* Stable 38400KHz frequency */
3563 			incperiod = INCPERIOD_38400KHZ;
3564 			incvalue = INCVALUE_38400KHZ;
3565 			shift = INCVALUE_SHIFT_38400KHZ;
3566 			adapter->cc.shift = shift;
3567 		}
3568 		break;
3569 	case e1000_82574:
3570 	case e1000_82583:
3571 		/* Stable 25MHz frequency */
3572 		incperiod = INCPERIOD_25MHZ;
3573 		incvalue = INCVALUE_25MHZ;
3574 		shift = INCVALUE_SHIFT_25MHZ;
3575 		adapter->cc.shift = shift;
3576 		break;
3577 	default:
3578 		return -EINVAL;
3579 	}
3580 
3581 	*timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) |
3582 		    ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK));
3583 
3584 	return 0;
3585 }
3586 
3587 /**
3588  * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3589  * @adapter: board private structure
3590  * @config: timestamp configuration
3591  *
3592  * Outgoing time stamping can be enabled and disabled. Play nice and
3593  * disable it when requested, although it shouldn't cause any overhead
3594  * when no packet needs it. At most one packet in the queue may be
3595  * marked for time stamping, otherwise it would be impossible to tell
3596  * for sure to which packet the hardware time stamp belongs.
3597  *
3598  * Incoming time stamping has to be configured via the hardware filters.
3599  * Not all combinations are supported, in particular event type has to be
3600  * specified. Matching the kind of event packet is not supported, with the
3601  * exception of "all V2 events regardless of level 2 or 4".
3602  **/
3603 static int e1000e_config_hwtstamp(struct e1000_adapter *adapter,
3604 				  struct hwtstamp_config *config)
3605 {
3606 	struct e1000_hw *hw = &adapter->hw;
3607 	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
3608 	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
3609 	u32 rxmtrl = 0;
3610 	u16 rxudp = 0;
3611 	bool is_l4 = false;
3612 	bool is_l2 = false;
3613 	u32 regval;
3614 
3615 	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3616 		return -EINVAL;
3617 
3618 	switch (config->tx_type) {
3619 	case HWTSTAMP_TX_OFF:
3620 		tsync_tx_ctl = 0;
3621 		break;
3622 	case HWTSTAMP_TX_ON:
3623 		break;
3624 	default:
3625 		return -ERANGE;
3626 	}
3627 
3628 	switch (config->rx_filter) {
3629 	case HWTSTAMP_FILTER_NONE:
3630 		tsync_rx_ctl = 0;
3631 		break;
3632 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3633 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3634 		rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE;
3635 		is_l4 = true;
3636 		break;
3637 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3638 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3639 		rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE;
3640 		is_l4 = true;
3641 		break;
3642 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3643 		/* Also time stamps V2 L2 Path Delay Request/Response */
3644 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3645 		rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3646 		is_l2 = true;
3647 		break;
3648 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3649 		/* Also time stamps V2 L2 Path Delay Request/Response. */
3650 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3651 		rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3652 		is_l2 = true;
3653 		break;
3654 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3655 		/* Hardware cannot filter just V2 L4 Sync messages */
3656 		fallthrough;
3657 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
3658 		/* Also time stamps V2 Path Delay Request/Response. */
3659 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3660 		rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3661 		is_l2 = true;
3662 		is_l4 = true;
3663 		break;
3664 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3665 		/* Hardware cannot filter just V2 L4 Delay Request messages */
3666 		fallthrough;
3667 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3668 		/* Also time stamps V2 Path Delay Request/Response. */
3669 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3670 		rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3671 		is_l2 = true;
3672 		is_l4 = true;
3673 		break;
3674 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3675 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3676 		/* Hardware cannot filter just V2 L4 or L2 Event messages */
3677 		fallthrough;
3678 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
3679 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
3680 		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
3681 		is_l2 = true;
3682 		is_l4 = true;
3683 		break;
3684 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3685 		/* For V1, the hardware can only filter Sync messages or
3686 		 * Delay Request messages but not both so fall-through to
3687 		 * time stamp all packets.
3688 		 */
3689 		fallthrough;
3690 	case HWTSTAMP_FILTER_NTP_ALL:
3691 	case HWTSTAMP_FILTER_ALL:
3692 		is_l2 = true;
3693 		is_l4 = true;
3694 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
3695 		config->rx_filter = HWTSTAMP_FILTER_ALL;
3696 		break;
3697 	default:
3698 		return -ERANGE;
3699 	}
3700 
3701 	adapter->hwtstamp_config = *config;
3702 
3703 	/* enable/disable Tx h/w time stamping */
3704 	regval = er32(TSYNCTXCTL);
3705 	regval &= ~E1000_TSYNCTXCTL_ENABLED;
3706 	regval |= tsync_tx_ctl;
3707 	ew32(TSYNCTXCTL, regval);
3708 	if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) !=
3709 	    (regval & E1000_TSYNCTXCTL_ENABLED)) {
3710 		e_err("Timesync Tx Control register not set as expected\n");
3711 		return -EAGAIN;
3712 	}
3713 
3714 	/* enable/disable Rx h/w time stamping */
3715 	regval = er32(TSYNCRXCTL);
3716 	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
3717 	regval |= tsync_rx_ctl;
3718 	ew32(TSYNCRXCTL, regval);
3719 	if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED |
3720 				 E1000_TSYNCRXCTL_TYPE_MASK)) !=
3721 	    (regval & (E1000_TSYNCRXCTL_ENABLED |
3722 		       E1000_TSYNCRXCTL_TYPE_MASK))) {
3723 		e_err("Timesync Rx Control register not set as expected\n");
3724 		return -EAGAIN;
3725 	}
3726 
3727 	/* L2: define ethertype filter for time stamped packets */
3728 	if (is_l2)
3729 		rxmtrl |= ETH_P_1588;
3730 
3731 	/* define which PTP packets get time stamped */
3732 	ew32(RXMTRL, rxmtrl);
3733 
3734 	/* Filter by destination port */
3735 	if (is_l4) {
3736 		rxudp = PTP_EV_PORT;
3737 		cpu_to_be16s(&rxudp);
3738 	}
3739 	ew32(RXUDP, rxudp);
3740 
3741 	e1e_flush();
3742 
3743 	/* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
3744 	er32(RXSTMPH);
3745 	er32(TXSTMPH);
3746 
3747 	return 0;
3748 }
3749 
3750 /**
3751  * e1000_configure - configure the hardware for Rx and Tx
3752  * @adapter: private board structure
3753  **/
3754 static void e1000_configure(struct e1000_adapter *adapter)
3755 {
3756 	struct e1000_ring *rx_ring = adapter->rx_ring;
3757 
3758 	e1000e_set_rx_mode(adapter->netdev);
3759 
3760 	e1000_restore_vlan(adapter);
3761 	e1000_init_manageability_pt(adapter);
3762 
3763 	e1000_configure_tx(adapter);
3764 
3765 	if (adapter->netdev->features & NETIF_F_RXHASH)
3766 		e1000e_setup_rss_hash(adapter);
3767 	e1000_setup_rctl(adapter);
3768 	e1000_configure_rx(adapter);
3769 	adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3770 }
3771 
3772 /**
3773  * e1000e_power_up_phy - restore link in case the phy was powered down
3774  * @adapter: address of board private structure
3775  *
3776  * The phy may be powered down to save power and turn off link when the
3777  * driver is unloaded and wake on lan is not enabled (among others)
3778  * *** this routine MUST be followed by a call to e1000e_reset ***
3779  **/
3780 void e1000e_power_up_phy(struct e1000_adapter *adapter)
3781 {
3782 	if (adapter->hw.phy.ops.power_up)
3783 		adapter->hw.phy.ops.power_up(&adapter->hw);
3784 
3785 	adapter->hw.mac.ops.setup_link(&adapter->hw);
3786 }
3787 
3788 /**
3789  * e1000_power_down_phy - Power down the PHY
3790  * @adapter: board private structure
3791  *
3792  * Power down the PHY so no link is implied when interface is down.
3793  * The PHY cannot be powered down if management or WoL is active.
3794  */
3795 static void e1000_power_down_phy(struct e1000_adapter *adapter)
3796 {
3797 	if (adapter->hw.phy.ops.power_down)
3798 		adapter->hw.phy.ops.power_down(&adapter->hw);
3799 }
3800 
3801 /**
3802  * e1000_flush_tx_ring - remove all descriptors from the tx_ring
3803  * @adapter: board private structure
3804  *
3805  * We want to clear all pending descriptors from the TX ring.
3806  * zeroing happens when the HW reads the regs. We  assign the ring itself as
3807  * the data of the next descriptor. We don't care about the data we are about
3808  * to reset the HW.
3809  */
3810 static void e1000_flush_tx_ring(struct e1000_adapter *adapter)
3811 {
3812 	struct e1000_hw *hw = &adapter->hw;
3813 	struct e1000_ring *tx_ring = adapter->tx_ring;
3814 	struct e1000_tx_desc *tx_desc = NULL;
3815 	u32 tdt, tctl, txd_lower = E1000_TXD_CMD_IFCS;
3816 	u16 size = 512;
3817 
3818 	tctl = er32(TCTL);
3819 	ew32(TCTL, tctl | E1000_TCTL_EN);
3820 	tdt = er32(TDT(0));
3821 	BUG_ON(tdt != tx_ring->next_to_use);
3822 	tx_desc =  E1000_TX_DESC(*tx_ring, tx_ring->next_to_use);
3823 	tx_desc->buffer_addr = cpu_to_le64(tx_ring->dma);
3824 
3825 	tx_desc->lower.data = cpu_to_le32(txd_lower | size);
3826 	tx_desc->upper.data = 0;
3827 	/* flush descriptors to memory before notifying the HW */
3828 	wmb();
3829 	tx_ring->next_to_use++;
3830 	if (tx_ring->next_to_use == tx_ring->count)
3831 		tx_ring->next_to_use = 0;
3832 	ew32(TDT(0), tx_ring->next_to_use);
3833 	usleep_range(200, 250);
3834 }
3835 
3836 /**
3837  * e1000_flush_rx_ring - remove all descriptors from the rx_ring
3838  * @adapter: board private structure
3839  *
3840  * Mark all descriptors in the RX ring as consumed and disable the rx ring
3841  */
3842 static void e1000_flush_rx_ring(struct e1000_adapter *adapter)
3843 {
3844 	u32 rctl, rxdctl;
3845 	struct e1000_hw *hw = &adapter->hw;
3846 
3847 	rctl = er32(RCTL);
3848 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
3849 	e1e_flush();
3850 	usleep_range(100, 150);
3851 
3852 	rxdctl = er32(RXDCTL(0));
3853 	/* zero the lower 14 bits (prefetch and host thresholds) */
3854 	rxdctl &= 0xffffc000;
3855 
3856 	/* update thresholds: prefetch threshold to 31, host threshold to 1
3857 	 * and make sure the granularity is "descriptors" and not "cache lines"
3858 	 */
3859 	rxdctl |= (0x1F | BIT(8) | E1000_RXDCTL_THRESH_UNIT_DESC);
3860 
3861 	ew32(RXDCTL(0), rxdctl);
3862 	/* momentarily enable the RX ring for the changes to take effect */
3863 	ew32(RCTL, rctl | E1000_RCTL_EN);
3864 	e1e_flush();
3865 	usleep_range(100, 150);
3866 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
3867 }
3868 
3869 /**
3870  * e1000_flush_desc_rings - remove all descriptors from the descriptor rings
3871  * @adapter: board private structure
3872  *
3873  * In i219, the descriptor rings must be emptied before resetting the HW
3874  * or before changing the device state to D3 during runtime (runtime PM).
3875  *
3876  * Failure to do this will cause the HW to enter a unit hang state which can
3877  * only be released by PCI reset on the device
3878  *
3879  */
3880 
3881 static void e1000_flush_desc_rings(struct e1000_adapter *adapter)
3882 {
3883 	u16 hang_state;
3884 	u32 fext_nvm11, tdlen;
3885 	struct e1000_hw *hw = &adapter->hw;
3886 
3887 	/* First, disable MULR fix in FEXTNVM11 */
3888 	fext_nvm11 = er32(FEXTNVM11);
3889 	fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
3890 	ew32(FEXTNVM11, fext_nvm11);
3891 	/* do nothing if we're not in faulty state, or if the queue is empty */
3892 	tdlen = er32(TDLEN(0));
3893 	pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3894 			     &hang_state);
3895 	if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen)
3896 		return;
3897 	e1000_flush_tx_ring(adapter);
3898 	/* recheck, maybe the fault is caused by the rx ring */
3899 	pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3900 			     &hang_state);
3901 	if (hang_state & FLUSH_DESC_REQUIRED)
3902 		e1000_flush_rx_ring(adapter);
3903 }
3904 
3905 /**
3906  * e1000e_systim_reset - reset the timesync registers after a hardware reset
3907  * @adapter: board private structure
3908  *
3909  * When the MAC is reset, all hardware bits for timesync will be reset to the
3910  * default values. This function will restore the settings last in place.
3911  * Since the clock SYSTIME registers are reset, we will simply restore the
3912  * cyclecounter to the kernel real clock time.
3913  **/
3914 static void e1000e_systim_reset(struct e1000_adapter *adapter)
3915 {
3916 	struct ptp_clock_info *info = &adapter->ptp_clock_info;
3917 	struct e1000_hw *hw = &adapter->hw;
3918 	unsigned long flags;
3919 	u32 timinca;
3920 	s32 ret_val;
3921 
3922 	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3923 		return;
3924 
3925 	if (info->adjfine) {
3926 		/* restore the previous ptp frequency delta */
3927 		ret_val = info->adjfine(info, adapter->ptp_delta);
3928 	} else {
3929 		/* set the default base frequency if no adjustment possible */
3930 		ret_val = e1000e_get_base_timinca(adapter, &timinca);
3931 		if (!ret_val)
3932 			ew32(TIMINCA, timinca);
3933 	}
3934 
3935 	if (ret_val) {
3936 		dev_warn(&adapter->pdev->dev,
3937 			 "Failed to restore TIMINCA clock rate delta: %d\n",
3938 			 ret_val);
3939 		return;
3940 	}
3941 
3942 	/* reset the systim ns time counter */
3943 	spin_lock_irqsave(&adapter->systim_lock, flags);
3944 	timecounter_init(&adapter->tc, &adapter->cc,
3945 			 ktime_to_ns(ktime_get_real()));
3946 	spin_unlock_irqrestore(&adapter->systim_lock, flags);
3947 
3948 	/* restore the previous hwtstamp configuration settings */
3949 	e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config);
3950 }
3951 
3952 /**
3953  * e1000e_reset - bring the hardware into a known good state
3954  * @adapter: board private structure
3955  *
3956  * This function boots the hardware and enables some settings that
3957  * require a configuration cycle of the hardware - those cannot be
3958  * set/changed during runtime. After reset the device needs to be
3959  * properly configured for Rx, Tx etc.
3960  */
3961 void e1000e_reset(struct e1000_adapter *adapter)
3962 {
3963 	struct e1000_mac_info *mac = &adapter->hw.mac;
3964 	struct e1000_fc_info *fc = &adapter->hw.fc;
3965 	struct e1000_hw *hw = &adapter->hw;
3966 	u32 tx_space, min_tx_space, min_rx_space;
3967 	u32 pba = adapter->pba;
3968 	u16 hwm;
3969 
3970 	/* reset Packet Buffer Allocation to default */
3971 	ew32(PBA, pba);
3972 
3973 	if (adapter->max_frame_size > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) {
3974 		/* To maintain wire speed transmits, the Tx FIFO should be
3975 		 * large enough to accommodate two full transmit packets,
3976 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
3977 		 * the Rx FIFO should be large enough to accommodate at least
3978 		 * one full receive packet and is similarly rounded up and
3979 		 * expressed in KB.
3980 		 */
3981 		pba = er32(PBA);
3982 		/* upper 16 bits has Tx packet buffer allocation size in KB */
3983 		tx_space = pba >> 16;
3984 		/* lower 16 bits has Rx packet buffer allocation size in KB */
3985 		pba &= 0xffff;
3986 		/* the Tx fifo also stores 16 bytes of information about the Tx
3987 		 * but don't include ethernet FCS because hardware appends it
3988 		 */
3989 		min_tx_space = (adapter->max_frame_size +
3990 				sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2;
3991 		min_tx_space = ALIGN(min_tx_space, 1024);
3992 		min_tx_space >>= 10;
3993 		/* software strips receive CRC, so leave room for it */
3994 		min_rx_space = adapter->max_frame_size;
3995 		min_rx_space = ALIGN(min_rx_space, 1024);
3996 		min_rx_space >>= 10;
3997 
3998 		/* If current Tx allocation is less than the min Tx FIFO size,
3999 		 * and the min Tx FIFO size is less than the current Rx FIFO
4000 		 * allocation, take space away from current Rx allocation
4001 		 */
4002 		if ((tx_space < min_tx_space) &&
4003 		    ((min_tx_space - tx_space) < pba)) {
4004 			pba -= min_tx_space - tx_space;
4005 
4006 			/* if short on Rx space, Rx wins and must trump Tx
4007 			 * adjustment
4008 			 */
4009 			if (pba < min_rx_space)
4010 				pba = min_rx_space;
4011 		}
4012 
4013 		ew32(PBA, pba);
4014 	}
4015 
4016 	/* flow control settings
4017 	 *
4018 	 * The high water mark must be low enough to fit one full frame
4019 	 * (or the size used for early receive) above it in the Rx FIFO.
4020 	 * Set it to the lower of:
4021 	 * - 90% of the Rx FIFO size, and
4022 	 * - the full Rx FIFO size minus one full frame
4023 	 */
4024 	if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
4025 		fc->pause_time = 0xFFFF;
4026 	else
4027 		fc->pause_time = E1000_FC_PAUSE_TIME;
4028 	fc->send_xon = true;
4029 	fc->current_mode = fc->requested_mode;
4030 
4031 	switch (hw->mac.type) {
4032 	case e1000_ich9lan:
4033 	case e1000_ich10lan:
4034 		if (adapter->netdev->mtu > ETH_DATA_LEN) {
4035 			pba = 14;
4036 			ew32(PBA, pba);
4037 			fc->high_water = 0x2800;
4038 			fc->low_water = fc->high_water - 8;
4039 			break;
4040 		}
4041 		fallthrough;
4042 	default:
4043 		hwm = min(((pba << 10) * 9 / 10),
4044 			  ((pba << 10) - adapter->max_frame_size));
4045 
4046 		fc->high_water = hwm & E1000_FCRTH_RTH;	/* 8-byte granularity */
4047 		fc->low_water = fc->high_water - 8;
4048 		break;
4049 	case e1000_pchlan:
4050 		/* Workaround PCH LOM adapter hangs with certain network
4051 		 * loads.  If hangs persist, try disabling Tx flow control.
4052 		 */
4053 		if (adapter->netdev->mtu > ETH_DATA_LEN) {
4054 			fc->high_water = 0x3500;
4055 			fc->low_water = 0x1500;
4056 		} else {
4057 			fc->high_water = 0x5000;
4058 			fc->low_water = 0x3000;
4059 		}
4060 		fc->refresh_time = 0x1000;
4061 		break;
4062 	case e1000_pch2lan:
4063 	case e1000_pch_lpt:
4064 	case e1000_pch_spt:
4065 	case e1000_pch_cnp:
4066 	case e1000_pch_tgp:
4067 	case e1000_pch_adp:
4068 	case e1000_pch_mtp:
4069 	case e1000_pch_lnp:
4070 		fc->refresh_time = 0xFFFF;
4071 		fc->pause_time = 0xFFFF;
4072 
4073 		if (adapter->netdev->mtu <= ETH_DATA_LEN) {
4074 			fc->high_water = 0x05C20;
4075 			fc->low_water = 0x05048;
4076 			break;
4077 		}
4078 
4079 		pba = 14;
4080 		ew32(PBA, pba);
4081 		fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH;
4082 		fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL;
4083 		break;
4084 	}
4085 
4086 	/* Alignment of Tx data is on an arbitrary byte boundary with the
4087 	 * maximum size per Tx descriptor limited only to the transmit
4088 	 * allocation of the packet buffer minus 96 bytes with an upper
4089 	 * limit of 24KB due to receive synchronization limitations.
4090 	 */
4091 	adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
4092 				       24 << 10);
4093 
4094 	/* Disable Adaptive Interrupt Moderation if 2 full packets cannot
4095 	 * fit in receive buffer.
4096 	 */
4097 	if (adapter->itr_setting & 0x3) {
4098 		if ((adapter->max_frame_size * 2) > (pba << 10)) {
4099 			if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
4100 				dev_info(&adapter->pdev->dev,
4101 					 "Interrupt Throttle Rate off\n");
4102 				adapter->flags2 |= FLAG2_DISABLE_AIM;
4103 				e1000e_write_itr(adapter, 0);
4104 			}
4105 		} else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
4106 			dev_info(&adapter->pdev->dev,
4107 				 "Interrupt Throttle Rate on\n");
4108 			adapter->flags2 &= ~FLAG2_DISABLE_AIM;
4109 			adapter->itr = 20000;
4110 			e1000e_write_itr(adapter, adapter->itr);
4111 		}
4112 	}
4113 
4114 	if (hw->mac.type >= e1000_pch_spt)
4115 		e1000_flush_desc_rings(adapter);
4116 	/* Allow time for pending master requests to run */
4117 	mac->ops.reset_hw(hw);
4118 
4119 	/* For parts with AMT enabled, let the firmware know
4120 	 * that the network interface is in control
4121 	 */
4122 	if (adapter->flags & FLAG_HAS_AMT)
4123 		e1000e_get_hw_control(adapter);
4124 
4125 	ew32(WUC, 0);
4126 
4127 	if (mac->ops.init_hw(hw))
4128 		e_err("Hardware Error\n");
4129 
4130 	e1000_update_mng_vlan(adapter);
4131 
4132 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
4133 	ew32(VET, ETH_P_8021Q);
4134 
4135 	e1000e_reset_adaptive(hw);
4136 
4137 	/* restore systim and hwtstamp settings */
4138 	e1000e_systim_reset(adapter);
4139 
4140 	/* Set EEE advertisement as appropriate */
4141 	if (adapter->flags2 & FLAG2_HAS_EEE) {
4142 		s32 ret_val;
4143 		u16 adv_addr;
4144 
4145 		switch (hw->phy.type) {
4146 		case e1000_phy_82579:
4147 			adv_addr = I82579_EEE_ADVERTISEMENT;
4148 			break;
4149 		case e1000_phy_i217:
4150 			adv_addr = I217_EEE_ADVERTISEMENT;
4151 			break;
4152 		default:
4153 			dev_err(&adapter->pdev->dev,
4154 				"Invalid PHY type setting EEE advertisement\n");
4155 			return;
4156 		}
4157 
4158 		ret_val = hw->phy.ops.acquire(hw);
4159 		if (ret_val) {
4160 			dev_err(&adapter->pdev->dev,
4161 				"EEE advertisement - unable to acquire PHY\n");
4162 			return;
4163 		}
4164 
4165 		e1000_write_emi_reg_locked(hw, adv_addr,
4166 					   hw->dev_spec.ich8lan.eee_disable ?
4167 					   0 : adapter->eee_advert);
4168 
4169 		hw->phy.ops.release(hw);
4170 	}
4171 
4172 	if (!netif_running(adapter->netdev) &&
4173 	    !test_bit(__E1000_TESTING, &adapter->state))
4174 		e1000_power_down_phy(adapter);
4175 
4176 	e1000_get_phy_info(hw);
4177 
4178 	if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
4179 	    !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
4180 		u16 phy_data = 0;
4181 		/* speed up time to link by disabling smart power down, ignore
4182 		 * the return value of this function because there is nothing
4183 		 * different we would do if it failed
4184 		 */
4185 		e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
4186 		phy_data &= ~IGP02E1000_PM_SPD;
4187 		e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
4188 	}
4189 	if (hw->mac.type >= e1000_pch_spt && adapter->int_mode == 0) {
4190 		u32 reg;
4191 
4192 		/* Fextnvm7 @ 0xe4[2] = 1 */
4193 		reg = er32(FEXTNVM7);
4194 		reg |= E1000_FEXTNVM7_SIDE_CLK_UNGATE;
4195 		ew32(FEXTNVM7, reg);
4196 		/* Fextnvm9 @ 0x5bb4[13:12] = 11 */
4197 		reg = er32(FEXTNVM9);
4198 		reg |= E1000_FEXTNVM9_IOSFSB_CLKGATE_DIS |
4199 		       E1000_FEXTNVM9_IOSFSB_CLKREQ_DIS;
4200 		ew32(FEXTNVM9, reg);
4201 	}
4202 
4203 }
4204 
4205 /**
4206  * e1000e_trigger_lsc - trigger an LSC interrupt
4207  * @adapter:
4208  *
4209  * Fire a link status change interrupt to start the watchdog.
4210  **/
4211 static void e1000e_trigger_lsc(struct e1000_adapter *adapter)
4212 {
4213 	struct e1000_hw *hw = &adapter->hw;
4214 
4215 	if (adapter->msix_entries)
4216 		ew32(ICS, E1000_ICS_LSC | E1000_ICS_OTHER);
4217 	else
4218 		ew32(ICS, E1000_ICS_LSC);
4219 }
4220 
4221 void e1000e_up(struct e1000_adapter *adapter)
4222 {
4223 	/* hardware has been reset, we need to reload some things */
4224 	e1000_configure(adapter);
4225 
4226 	clear_bit(__E1000_DOWN, &adapter->state);
4227 
4228 	if (adapter->msix_entries)
4229 		e1000_configure_msix(adapter);
4230 	e1000_irq_enable(adapter);
4231 
4232 	/* Tx queue started by watchdog timer when link is up */
4233 
4234 	e1000e_trigger_lsc(adapter);
4235 }
4236 
4237 static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
4238 {
4239 	struct e1000_hw *hw = &adapter->hw;
4240 
4241 	if (!(adapter->flags2 & FLAG2_DMA_BURST))
4242 		return;
4243 
4244 	/* flush pending descriptor writebacks to memory */
4245 	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4246 	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4247 
4248 	/* execute the writes immediately */
4249 	e1e_flush();
4250 
4251 	/* due to rare timing issues, write to TIDV/RDTR again to ensure the
4252 	 * write is successful
4253 	 */
4254 	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4255 	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4256 
4257 	/* execute the writes immediately */
4258 	e1e_flush();
4259 }
4260 
4261 static void e1000e_update_stats(struct e1000_adapter *adapter);
4262 
4263 /**
4264  * e1000e_down - quiesce the device and optionally reset the hardware
4265  * @adapter: board private structure
4266  * @reset: boolean flag to reset the hardware or not
4267  */
4268 void e1000e_down(struct e1000_adapter *adapter, bool reset)
4269 {
4270 	struct net_device *netdev = adapter->netdev;
4271 	struct e1000_hw *hw = &adapter->hw;
4272 	u32 tctl, rctl;
4273 
4274 	/* signal that we're down so the interrupt handler does not
4275 	 * reschedule our watchdog timer
4276 	 */
4277 	set_bit(__E1000_DOWN, &adapter->state);
4278 
4279 	netif_carrier_off(netdev);
4280 
4281 	/* disable receives in the hardware */
4282 	rctl = er32(RCTL);
4283 	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
4284 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
4285 	/* flush and sleep below */
4286 
4287 	netif_stop_queue(netdev);
4288 
4289 	/* disable transmits in the hardware */
4290 	tctl = er32(TCTL);
4291 	tctl &= ~E1000_TCTL_EN;
4292 	ew32(TCTL, tctl);
4293 
4294 	/* flush both disables and wait for them to finish */
4295 	e1e_flush();
4296 	usleep_range(10000, 11000);
4297 
4298 	e1000_irq_disable(adapter);
4299 
4300 	napi_synchronize(&adapter->napi);
4301 
4302 	del_timer_sync(&adapter->watchdog_timer);
4303 	del_timer_sync(&adapter->phy_info_timer);
4304 
4305 	spin_lock(&adapter->stats64_lock);
4306 	e1000e_update_stats(adapter);
4307 	spin_unlock(&adapter->stats64_lock);
4308 
4309 	e1000e_flush_descriptors(adapter);
4310 
4311 	adapter->link_speed = 0;
4312 	adapter->link_duplex = 0;
4313 
4314 	/* Disable Si errata workaround on PCHx for jumbo frame flow */
4315 	if ((hw->mac.type >= e1000_pch2lan) &&
4316 	    (adapter->netdev->mtu > ETH_DATA_LEN) &&
4317 	    e1000_lv_jumbo_workaround_ich8lan(hw, false))
4318 		e_dbg("failed to disable jumbo frame workaround mode\n");
4319 
4320 	if (!pci_channel_offline(adapter->pdev)) {
4321 		if (reset)
4322 			e1000e_reset(adapter);
4323 		else if (hw->mac.type >= e1000_pch_spt)
4324 			e1000_flush_desc_rings(adapter);
4325 	}
4326 	e1000_clean_tx_ring(adapter->tx_ring);
4327 	e1000_clean_rx_ring(adapter->rx_ring);
4328 }
4329 
4330 void e1000e_reinit_locked(struct e1000_adapter *adapter)
4331 {
4332 	might_sleep();
4333 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4334 		usleep_range(1000, 1100);
4335 	e1000e_down(adapter, true);
4336 	e1000e_up(adapter);
4337 	clear_bit(__E1000_RESETTING, &adapter->state);
4338 }
4339 
4340 /**
4341  * e1000e_sanitize_systim - sanitize raw cycle counter reads
4342  * @hw: pointer to the HW structure
4343  * @systim: PHC time value read, sanitized and returned
4344  * @sts: structure to hold system time before and after reading SYSTIML,
4345  * may be NULL
4346  *
4347  * Errata for 82574/82583 possible bad bits read from SYSTIMH/L:
4348  * check to see that the time is incrementing at a reasonable
4349  * rate and is a multiple of incvalue.
4350  **/
4351 static u64 e1000e_sanitize_systim(struct e1000_hw *hw, u64 systim,
4352 				  struct ptp_system_timestamp *sts)
4353 {
4354 	u64 time_delta, rem, temp;
4355 	u64 systim_next;
4356 	u32 incvalue;
4357 	int i;
4358 
4359 	incvalue = er32(TIMINCA) & E1000_TIMINCA_INCVALUE_MASK;
4360 	for (i = 0; i < E1000_MAX_82574_SYSTIM_REREADS; i++) {
4361 		/* latch SYSTIMH on read of SYSTIML */
4362 		ptp_read_system_prets(sts);
4363 		systim_next = (u64)er32(SYSTIML);
4364 		ptp_read_system_postts(sts);
4365 		systim_next |= (u64)er32(SYSTIMH) << 32;
4366 
4367 		time_delta = systim_next - systim;
4368 		temp = time_delta;
4369 		/* VMWare users have seen incvalue of zero, don't div / 0 */
4370 		rem = incvalue ? do_div(temp, incvalue) : (time_delta != 0);
4371 
4372 		systim = systim_next;
4373 
4374 		if ((time_delta < E1000_82574_SYSTIM_EPSILON) && (rem == 0))
4375 			break;
4376 	}
4377 
4378 	return systim;
4379 }
4380 
4381 /**
4382  * e1000e_read_systim - read SYSTIM register
4383  * @adapter: board private structure
4384  * @sts: structure which will contain system time before and after reading
4385  * SYSTIML, may be NULL
4386  **/
4387 u64 e1000e_read_systim(struct e1000_adapter *adapter,
4388 		       struct ptp_system_timestamp *sts)
4389 {
4390 	struct e1000_hw *hw = &adapter->hw;
4391 	u32 systimel, systimel_2, systimeh;
4392 	u64 systim;
4393 	/* SYSTIMH latching upon SYSTIML read does not work well.
4394 	 * This means that if SYSTIML overflows after we read it but before
4395 	 * we read SYSTIMH, the value of SYSTIMH has been incremented and we
4396 	 * will experience a huge non linear increment in the systime value
4397 	 * to fix that we test for overflow and if true, we re-read systime.
4398 	 */
4399 	ptp_read_system_prets(sts);
4400 	systimel = er32(SYSTIML);
4401 	ptp_read_system_postts(sts);
4402 	systimeh = er32(SYSTIMH);
4403 	/* Is systimel is so large that overflow is possible? */
4404 	if (systimel >= (u32)0xffffffff - E1000_TIMINCA_INCVALUE_MASK) {
4405 		ptp_read_system_prets(sts);
4406 		systimel_2 = er32(SYSTIML);
4407 		ptp_read_system_postts(sts);
4408 		if (systimel > systimel_2) {
4409 			/* There was an overflow, read again SYSTIMH, and use
4410 			 * systimel_2
4411 			 */
4412 			systimeh = er32(SYSTIMH);
4413 			systimel = systimel_2;
4414 		}
4415 	}
4416 	systim = (u64)systimel;
4417 	systim |= (u64)systimeh << 32;
4418 
4419 	if (adapter->flags2 & FLAG2_CHECK_SYSTIM_OVERFLOW)
4420 		systim = e1000e_sanitize_systim(hw, systim, sts);
4421 
4422 	return systim;
4423 }
4424 
4425 /**
4426  * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4427  * @cc: cyclecounter structure
4428  **/
4429 static u64 e1000e_cyclecounter_read(const struct cyclecounter *cc)
4430 {
4431 	struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter,
4432 						     cc);
4433 
4434 	return e1000e_read_systim(adapter, NULL);
4435 }
4436 
4437 /**
4438  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4439  * @adapter: board private structure to initialize
4440  *
4441  * e1000_sw_init initializes the Adapter private data structure.
4442  * Fields are initialized based on PCI device information and
4443  * OS network device settings (MTU size).
4444  **/
4445 static int e1000_sw_init(struct e1000_adapter *adapter)
4446 {
4447 	struct net_device *netdev = adapter->netdev;
4448 
4449 	adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
4450 	adapter->rx_ps_bsize0 = 128;
4451 	adapter->max_frame_size = netdev->mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
4452 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4453 	adapter->tx_ring_count = E1000_DEFAULT_TXD;
4454 	adapter->rx_ring_count = E1000_DEFAULT_RXD;
4455 
4456 	spin_lock_init(&adapter->stats64_lock);
4457 
4458 	e1000e_set_interrupt_capability(adapter);
4459 
4460 	if (e1000_alloc_queues(adapter))
4461 		return -ENOMEM;
4462 
4463 	/* Setup hardware time stamping cyclecounter */
4464 	if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
4465 		adapter->cc.read = e1000e_cyclecounter_read;
4466 		adapter->cc.mask = CYCLECOUNTER_MASK(64);
4467 		adapter->cc.mult = 1;
4468 		/* cc.shift set in e1000e_get_base_tininca() */
4469 
4470 		spin_lock_init(&adapter->systim_lock);
4471 		INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work);
4472 	}
4473 
4474 	/* Explicitly disable IRQ since the NIC can be in any state. */
4475 	e1000_irq_disable(adapter);
4476 
4477 	set_bit(__E1000_DOWN, &adapter->state);
4478 	return 0;
4479 }
4480 
4481 /**
4482  * e1000_intr_msi_test - Interrupt Handler
4483  * @irq: interrupt number
4484  * @data: pointer to a network interface device structure
4485  **/
4486 static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data)
4487 {
4488 	struct net_device *netdev = data;
4489 	struct e1000_adapter *adapter = netdev_priv(netdev);
4490 	struct e1000_hw *hw = &adapter->hw;
4491 	u32 icr = er32(ICR);
4492 
4493 	e_dbg("icr is %08X\n", icr);
4494 	if (icr & E1000_ICR_RXSEQ) {
4495 		adapter->flags &= ~FLAG_MSI_TEST_FAILED;
4496 		/* Force memory writes to complete before acknowledging the
4497 		 * interrupt is handled.
4498 		 */
4499 		wmb();
4500 	}
4501 
4502 	return IRQ_HANDLED;
4503 }
4504 
4505 /**
4506  * e1000_test_msi_interrupt - Returns 0 for successful test
4507  * @adapter: board private struct
4508  *
4509  * code flow taken from tg3.c
4510  **/
4511 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
4512 {
4513 	struct net_device *netdev = adapter->netdev;
4514 	struct e1000_hw *hw = &adapter->hw;
4515 	int err;
4516 
4517 	/* poll_enable hasn't been called yet, so don't need disable */
4518 	/* clear any pending events */
4519 	er32(ICR);
4520 
4521 	/* free the real vector and request a test handler */
4522 	e1000_free_irq(adapter);
4523 	e1000e_reset_interrupt_capability(adapter);
4524 
4525 	/* Assume that the test fails, if it succeeds then the test
4526 	 * MSI irq handler will unset this flag
4527 	 */
4528 	adapter->flags |= FLAG_MSI_TEST_FAILED;
4529 
4530 	err = pci_enable_msi(adapter->pdev);
4531 	if (err)
4532 		goto msi_test_failed;
4533 
4534 	err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
4535 			  netdev->name, netdev);
4536 	if (err) {
4537 		pci_disable_msi(adapter->pdev);
4538 		goto msi_test_failed;
4539 	}
4540 
4541 	/* Force memory writes to complete before enabling and firing an
4542 	 * interrupt.
4543 	 */
4544 	wmb();
4545 
4546 	e1000_irq_enable(adapter);
4547 
4548 	/* fire an unusual interrupt on the test handler */
4549 	ew32(ICS, E1000_ICS_RXSEQ);
4550 	e1e_flush();
4551 	msleep(100);
4552 
4553 	e1000_irq_disable(adapter);
4554 
4555 	rmb();			/* read flags after interrupt has been fired */
4556 
4557 	if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4558 		adapter->int_mode = E1000E_INT_MODE_LEGACY;
4559 		e_info("MSI interrupt test failed, using legacy interrupt.\n");
4560 	} else {
4561 		e_dbg("MSI interrupt test succeeded!\n");
4562 	}
4563 
4564 	free_irq(adapter->pdev->irq, netdev);
4565 	pci_disable_msi(adapter->pdev);
4566 
4567 msi_test_failed:
4568 	e1000e_set_interrupt_capability(adapter);
4569 	return e1000_request_irq(adapter);
4570 }
4571 
4572 /**
4573  * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4574  * @adapter: board private struct
4575  *
4576  * code flow taken from tg3.c, called with e1000 interrupts disabled.
4577  **/
4578 static int e1000_test_msi(struct e1000_adapter *adapter)
4579 {
4580 	int err;
4581 	u16 pci_cmd;
4582 
4583 	if (!(adapter->flags & FLAG_MSI_ENABLED))
4584 		return 0;
4585 
4586 	/* disable SERR in case the MSI write causes a master abort */
4587 	pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4588 	if (pci_cmd & PCI_COMMAND_SERR)
4589 		pci_write_config_word(adapter->pdev, PCI_COMMAND,
4590 				      pci_cmd & ~PCI_COMMAND_SERR);
4591 
4592 	err = e1000_test_msi_interrupt(adapter);
4593 
4594 	/* re-enable SERR */
4595 	if (pci_cmd & PCI_COMMAND_SERR) {
4596 		pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4597 		pci_cmd |= PCI_COMMAND_SERR;
4598 		pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
4599 	}
4600 
4601 	return err;
4602 }
4603 
4604 /**
4605  * e1000e_open - Called when a network interface is made active
4606  * @netdev: network interface device structure
4607  *
4608  * Returns 0 on success, negative value on failure
4609  *
4610  * The open entry point is called when a network interface is made
4611  * active by the system (IFF_UP).  At this point all resources needed
4612  * for transmit and receive operations are allocated, the interrupt
4613  * handler is registered with the OS, the watchdog timer is started,
4614  * and the stack is notified that the interface is ready.
4615  **/
4616 int e1000e_open(struct net_device *netdev)
4617 {
4618 	struct e1000_adapter *adapter = netdev_priv(netdev);
4619 	struct e1000_hw *hw = &adapter->hw;
4620 	struct pci_dev *pdev = adapter->pdev;
4621 	int err;
4622 
4623 	/* disallow open during test */
4624 	if (test_bit(__E1000_TESTING, &adapter->state))
4625 		return -EBUSY;
4626 
4627 	pm_runtime_get_sync(&pdev->dev);
4628 
4629 	netif_carrier_off(netdev);
4630 	netif_stop_queue(netdev);
4631 
4632 	/* allocate transmit descriptors */
4633 	err = e1000e_setup_tx_resources(adapter->tx_ring);
4634 	if (err)
4635 		goto err_setup_tx;
4636 
4637 	/* allocate receive descriptors */
4638 	err = e1000e_setup_rx_resources(adapter->rx_ring);
4639 	if (err)
4640 		goto err_setup_rx;
4641 
4642 	/* If AMT is enabled, let the firmware know that the network
4643 	 * interface is now open and reset the part to a known state.
4644 	 */
4645 	if (adapter->flags & FLAG_HAS_AMT) {
4646 		e1000e_get_hw_control(adapter);
4647 		e1000e_reset(adapter);
4648 	}
4649 
4650 	e1000e_power_up_phy(adapter);
4651 
4652 	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4653 	if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
4654 		e1000_update_mng_vlan(adapter);
4655 
4656 	/* DMA latency requirement to workaround jumbo issue */
4657 	cpu_latency_qos_add_request(&adapter->pm_qos_req, PM_QOS_DEFAULT_VALUE);
4658 
4659 	/* before we allocate an interrupt, we must be ready to handle it.
4660 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4661 	 * as soon as we call pci_request_irq, so we have to setup our
4662 	 * clean_rx handler before we do so.
4663 	 */
4664 	e1000_configure(adapter);
4665 
4666 	err = e1000_request_irq(adapter);
4667 	if (err)
4668 		goto err_req_irq;
4669 
4670 	/* Work around PCIe errata with MSI interrupts causing some chipsets to
4671 	 * ignore e1000e MSI messages, which means we need to test our MSI
4672 	 * interrupt now
4673 	 */
4674 	if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
4675 		err = e1000_test_msi(adapter);
4676 		if (err) {
4677 			e_err("Interrupt allocation failed\n");
4678 			goto err_req_irq;
4679 		}
4680 	}
4681 
4682 	/* From here on the code is the same as e1000e_up() */
4683 	clear_bit(__E1000_DOWN, &adapter->state);
4684 
4685 	napi_enable(&adapter->napi);
4686 
4687 	e1000_irq_enable(adapter);
4688 
4689 	adapter->tx_hang_recheck = false;
4690 
4691 	hw->mac.get_link_status = true;
4692 	pm_runtime_put(&pdev->dev);
4693 
4694 	e1000e_trigger_lsc(adapter);
4695 
4696 	return 0;
4697 
4698 err_req_irq:
4699 	cpu_latency_qos_remove_request(&adapter->pm_qos_req);
4700 	e1000e_release_hw_control(adapter);
4701 	e1000_power_down_phy(adapter);
4702 	e1000e_free_rx_resources(adapter->rx_ring);
4703 err_setup_rx:
4704 	e1000e_free_tx_resources(adapter->tx_ring);
4705 err_setup_tx:
4706 	e1000e_reset(adapter);
4707 	pm_runtime_put_sync(&pdev->dev);
4708 
4709 	return err;
4710 }
4711 
4712 /**
4713  * e1000e_close - Disables a network interface
4714  * @netdev: network interface device structure
4715  *
4716  * Returns 0, this is not allowed to fail
4717  *
4718  * The close entry point is called when an interface is de-activated
4719  * by the OS.  The hardware is still under the drivers control, but
4720  * needs to be disabled.  A global MAC reset is issued to stop the
4721  * hardware, and all transmit and receive resources are freed.
4722  **/
4723 int e1000e_close(struct net_device *netdev)
4724 {
4725 	struct e1000_adapter *adapter = netdev_priv(netdev);
4726 	struct pci_dev *pdev = adapter->pdev;
4727 	int count = E1000_CHECK_RESET_COUNT;
4728 
4729 	while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
4730 		usleep_range(10000, 11000);
4731 
4732 	WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4733 
4734 	pm_runtime_get_sync(&pdev->dev);
4735 
4736 	if (netif_device_present(netdev)) {
4737 		e1000e_down(adapter, true);
4738 		e1000_free_irq(adapter);
4739 
4740 		/* Link status message must follow this format */
4741 		netdev_info(netdev, "NIC Link is Down\n");
4742 	}
4743 
4744 	napi_disable(&adapter->napi);
4745 
4746 	e1000e_free_tx_resources(adapter->tx_ring);
4747 	e1000e_free_rx_resources(adapter->rx_ring);
4748 
4749 	/* kill manageability vlan ID if supported, but not if a vlan with
4750 	 * the same ID is registered on the host OS (let 8021q kill it)
4751 	 */
4752 	if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
4753 		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
4754 				       adapter->mng_vlan_id);
4755 
4756 	/* If AMT is enabled, let the firmware know that the network
4757 	 * interface is now closed
4758 	 */
4759 	if ((adapter->flags & FLAG_HAS_AMT) &&
4760 	    !test_bit(__E1000_TESTING, &adapter->state))
4761 		e1000e_release_hw_control(adapter);
4762 
4763 	cpu_latency_qos_remove_request(&adapter->pm_qos_req);
4764 
4765 	pm_runtime_put_sync(&pdev->dev);
4766 
4767 	return 0;
4768 }
4769 
4770 /**
4771  * e1000_set_mac - Change the Ethernet Address of the NIC
4772  * @netdev: network interface device structure
4773  * @p: pointer to an address structure
4774  *
4775  * Returns 0 on success, negative on failure
4776  **/
4777 static int e1000_set_mac(struct net_device *netdev, void *p)
4778 {
4779 	struct e1000_adapter *adapter = netdev_priv(netdev);
4780 	struct e1000_hw *hw = &adapter->hw;
4781 	struct sockaddr *addr = p;
4782 
4783 	if (!is_valid_ether_addr(addr->sa_data))
4784 		return -EADDRNOTAVAIL;
4785 
4786 	eth_hw_addr_set(netdev, addr->sa_data);
4787 	memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4788 
4789 	hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4790 
4791 	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4792 		/* activate the work around */
4793 		e1000e_set_laa_state_82571(&adapter->hw, 1);
4794 
4795 		/* Hold a copy of the LAA in RAR[14] This is done so that
4796 		 * between the time RAR[0] gets clobbered  and the time it
4797 		 * gets fixed (in e1000_watchdog), the actual LAA is in one
4798 		 * of the RARs and no incoming packets directed to this port
4799 		 * are dropped. Eventually the LAA will be in RAR[0] and
4800 		 * RAR[14]
4801 		 */
4802 		hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4803 				    adapter->hw.mac.rar_entry_count - 1);
4804 	}
4805 
4806 	return 0;
4807 }
4808 
4809 /**
4810  * e1000e_update_phy_task - work thread to update phy
4811  * @work: pointer to our work struct
4812  *
4813  * this worker thread exists because we must acquire a
4814  * semaphore to read the phy, which we could msleep while
4815  * waiting for it, and we can't msleep in a timer.
4816  **/
4817 static void e1000e_update_phy_task(struct work_struct *work)
4818 {
4819 	struct e1000_adapter *adapter = container_of(work,
4820 						     struct e1000_adapter,
4821 						     update_phy_task);
4822 	struct e1000_hw *hw = &adapter->hw;
4823 
4824 	if (test_bit(__E1000_DOWN, &adapter->state))
4825 		return;
4826 
4827 	e1000_get_phy_info(hw);
4828 
4829 	/* Enable EEE on 82579 after link up */
4830 	if (hw->phy.type >= e1000_phy_82579)
4831 		e1000_set_eee_pchlan(hw);
4832 }
4833 
4834 /**
4835  * e1000_update_phy_info - timre call-back to update PHY info
4836  * @t: pointer to timer_list containing private info adapter
4837  *
4838  * Need to wait a few seconds after link up to get diagnostic information from
4839  * the phy
4840  **/
4841 static void e1000_update_phy_info(struct timer_list *t)
4842 {
4843 	struct e1000_adapter *adapter = from_timer(adapter, t, phy_info_timer);
4844 
4845 	if (test_bit(__E1000_DOWN, &adapter->state))
4846 		return;
4847 
4848 	schedule_work(&adapter->update_phy_task);
4849 }
4850 
4851 /**
4852  * e1000e_update_phy_stats - Update the PHY statistics counters
4853  * @adapter: board private structure
4854  *
4855  * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4856  **/
4857 static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4858 {
4859 	struct e1000_hw *hw = &adapter->hw;
4860 	s32 ret_val;
4861 	u16 phy_data;
4862 
4863 	ret_val = hw->phy.ops.acquire(hw);
4864 	if (ret_val)
4865 		return;
4866 
4867 	/* A page set is expensive so check if already on desired page.
4868 	 * If not, set to the page with the PHY status registers.
4869 	 */
4870 	hw->phy.addr = 1;
4871 	ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4872 					   &phy_data);
4873 	if (ret_val)
4874 		goto release;
4875 	if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4876 		ret_val = hw->phy.ops.set_page(hw,
4877 					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
4878 		if (ret_val)
4879 			goto release;
4880 	}
4881 
4882 	/* Single Collision Count */
4883 	hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4884 	ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4885 	if (!ret_val)
4886 		adapter->stats.scc += phy_data;
4887 
4888 	/* Excessive Collision Count */
4889 	hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4890 	ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4891 	if (!ret_val)
4892 		adapter->stats.ecol += phy_data;
4893 
4894 	/* Multiple Collision Count */
4895 	hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4896 	ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4897 	if (!ret_val)
4898 		adapter->stats.mcc += phy_data;
4899 
4900 	/* Late Collision Count */
4901 	hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4902 	ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4903 	if (!ret_val)
4904 		adapter->stats.latecol += phy_data;
4905 
4906 	/* Collision Count - also used for adaptive IFS */
4907 	hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4908 	ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4909 	if (!ret_val)
4910 		hw->mac.collision_delta = phy_data;
4911 
4912 	/* Defer Count */
4913 	hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4914 	ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4915 	if (!ret_val)
4916 		adapter->stats.dc += phy_data;
4917 
4918 	/* Transmit with no CRS */
4919 	hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4920 	ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4921 	if (!ret_val)
4922 		adapter->stats.tncrs += phy_data;
4923 
4924 release:
4925 	hw->phy.ops.release(hw);
4926 }
4927 
4928 /**
4929  * e1000e_update_stats - Update the board statistics counters
4930  * @adapter: board private structure
4931  **/
4932 static void e1000e_update_stats(struct e1000_adapter *adapter)
4933 {
4934 	struct net_device *netdev = adapter->netdev;
4935 	struct e1000_hw *hw = &adapter->hw;
4936 	struct pci_dev *pdev = adapter->pdev;
4937 
4938 	/* Prevent stats update while adapter is being reset, or if the pci
4939 	 * connection is down.
4940 	 */
4941 	if (adapter->link_speed == 0)
4942 		return;
4943 	if (pci_channel_offline(pdev))
4944 		return;
4945 
4946 	adapter->stats.crcerrs += er32(CRCERRS);
4947 	adapter->stats.gprc += er32(GPRC);
4948 	adapter->stats.gorc += er32(GORCL);
4949 	er32(GORCH);		/* Clear gorc */
4950 	adapter->stats.bprc += er32(BPRC);
4951 	adapter->stats.mprc += er32(MPRC);
4952 	adapter->stats.roc += er32(ROC);
4953 
4954 	adapter->stats.mpc += er32(MPC);
4955 
4956 	/* Half-duplex statistics */
4957 	if (adapter->link_duplex == HALF_DUPLEX) {
4958 		if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4959 			e1000e_update_phy_stats(adapter);
4960 		} else {
4961 			adapter->stats.scc += er32(SCC);
4962 			adapter->stats.ecol += er32(ECOL);
4963 			adapter->stats.mcc += er32(MCC);
4964 			adapter->stats.latecol += er32(LATECOL);
4965 			adapter->stats.dc += er32(DC);
4966 
4967 			hw->mac.collision_delta = er32(COLC);
4968 
4969 			if ((hw->mac.type != e1000_82574) &&
4970 			    (hw->mac.type != e1000_82583))
4971 				adapter->stats.tncrs += er32(TNCRS);
4972 		}
4973 		adapter->stats.colc += hw->mac.collision_delta;
4974 	}
4975 
4976 	adapter->stats.xonrxc += er32(XONRXC);
4977 	adapter->stats.xontxc += er32(XONTXC);
4978 	adapter->stats.xoffrxc += er32(XOFFRXC);
4979 	adapter->stats.xofftxc += er32(XOFFTXC);
4980 	adapter->stats.gptc += er32(GPTC);
4981 	adapter->stats.gotc += er32(GOTCL);
4982 	er32(GOTCH);		/* Clear gotc */
4983 	adapter->stats.rnbc += er32(RNBC);
4984 	adapter->stats.ruc += er32(RUC);
4985 
4986 	adapter->stats.mptc += er32(MPTC);
4987 	adapter->stats.bptc += er32(BPTC);
4988 
4989 	/* used for adaptive IFS */
4990 
4991 	hw->mac.tx_packet_delta = er32(TPT);
4992 	adapter->stats.tpt += hw->mac.tx_packet_delta;
4993 
4994 	adapter->stats.algnerrc += er32(ALGNERRC);
4995 	adapter->stats.rxerrc += er32(RXERRC);
4996 	adapter->stats.cexterr += er32(CEXTERR);
4997 	adapter->stats.tsctc += er32(TSCTC);
4998 	adapter->stats.tsctfc += er32(TSCTFC);
4999 
5000 	/* Fill out the OS statistics structure */
5001 	netdev->stats.multicast = adapter->stats.mprc;
5002 	netdev->stats.collisions = adapter->stats.colc;
5003 
5004 	/* Rx Errors */
5005 
5006 	/* RLEC on some newer hardware can be incorrect so build
5007 	 * our own version based on RUC and ROC
5008 	 */
5009 	netdev->stats.rx_errors = adapter->stats.rxerrc +
5010 	    adapter->stats.crcerrs + adapter->stats.algnerrc +
5011 	    adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5012 	netdev->stats.rx_length_errors = adapter->stats.ruc +
5013 	    adapter->stats.roc;
5014 	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
5015 	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
5016 	netdev->stats.rx_missed_errors = adapter->stats.mpc;
5017 
5018 	/* Tx Errors */
5019 	netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol;
5020 	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
5021 	netdev->stats.tx_window_errors = adapter->stats.latecol;
5022 	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
5023 
5024 	/* Tx Dropped needs to be maintained elsewhere */
5025 
5026 	/* Management Stats */
5027 	adapter->stats.mgptc += er32(MGTPTC);
5028 	adapter->stats.mgprc += er32(MGTPRC);
5029 	adapter->stats.mgpdc += er32(MGTPDC);
5030 
5031 	/* Correctable ECC Errors */
5032 	if (hw->mac.type >= e1000_pch_lpt) {
5033 		u32 pbeccsts = er32(PBECCSTS);
5034 
5035 		adapter->corr_errors +=
5036 		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
5037 		adapter->uncorr_errors +=
5038 		    (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
5039 		    E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
5040 	}
5041 }
5042 
5043 /**
5044  * e1000_phy_read_status - Update the PHY register status snapshot
5045  * @adapter: board private structure
5046  **/
5047 static void e1000_phy_read_status(struct e1000_adapter *adapter)
5048 {
5049 	struct e1000_hw *hw = &adapter->hw;
5050 	struct e1000_phy_regs *phy = &adapter->phy_regs;
5051 
5052 	if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) &&
5053 	    (er32(STATUS) & E1000_STATUS_LU) &&
5054 	    (adapter->hw.phy.media_type == e1000_media_type_copper)) {
5055 		int ret_val;
5056 
5057 		ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr);
5058 		ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr);
5059 		ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise);
5060 		ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa);
5061 		ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion);
5062 		ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000);
5063 		ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000);
5064 		ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus);
5065 		if (ret_val)
5066 			e_warn("Error reading PHY register\n");
5067 	} else {
5068 		/* Do not read PHY registers if link is not up
5069 		 * Set values to typical power-on defaults
5070 		 */
5071 		phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
5072 		phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
5073 			     BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
5074 			     BMSR_ERCAP);
5075 		phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
5076 				  ADVERTISE_ALL | ADVERTISE_CSMA);
5077 		phy->lpa = 0;
5078 		phy->expansion = EXPANSION_ENABLENPAGE;
5079 		phy->ctrl1000 = ADVERTISE_1000FULL;
5080 		phy->stat1000 = 0;
5081 		phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
5082 	}
5083 }
5084 
5085 static void e1000_print_link_info(struct e1000_adapter *adapter)
5086 {
5087 	struct e1000_hw *hw = &adapter->hw;
5088 	u32 ctrl = er32(CTRL);
5089 
5090 	/* Link status message must follow this format for user tools */
5091 	netdev_info(adapter->netdev,
5092 		    "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5093 		    adapter->link_speed,
5094 		    adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
5095 		    (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
5096 		    (ctrl & E1000_CTRL_RFCE) ? "Rx" :
5097 		    (ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
5098 }
5099 
5100 static bool e1000e_has_link(struct e1000_adapter *adapter)
5101 {
5102 	struct e1000_hw *hw = &adapter->hw;
5103 	bool link_active = false;
5104 	s32 ret_val = 0;
5105 
5106 	/* get_link_status is set on LSC (link status) interrupt or
5107 	 * Rx sequence error interrupt.  get_link_status will stay
5108 	 * true until the check_for_link establishes link
5109 	 * for copper adapters ONLY
5110 	 */
5111 	switch (hw->phy.media_type) {
5112 	case e1000_media_type_copper:
5113 		if (hw->mac.get_link_status) {
5114 			ret_val = hw->mac.ops.check_for_link(hw);
5115 			link_active = !hw->mac.get_link_status;
5116 		} else {
5117 			link_active = true;
5118 		}
5119 		break;
5120 	case e1000_media_type_fiber:
5121 		ret_val = hw->mac.ops.check_for_link(hw);
5122 		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
5123 		break;
5124 	case e1000_media_type_internal_serdes:
5125 		ret_val = hw->mac.ops.check_for_link(hw);
5126 		link_active = hw->mac.serdes_has_link;
5127 		break;
5128 	default:
5129 	case e1000_media_type_unknown:
5130 		break;
5131 	}
5132 
5133 	if ((ret_val == -E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
5134 	    (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
5135 		/* See e1000_kmrn_lock_loss_workaround_ich8lan() */
5136 		e_info("Gigabit has been disabled, downgrading speed\n");
5137 	}
5138 
5139 	return link_active;
5140 }
5141 
5142 static void e1000e_enable_receives(struct e1000_adapter *adapter)
5143 {
5144 	/* make sure the receive unit is started */
5145 	if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
5146 	    (adapter->flags & FLAG_RESTART_NOW)) {
5147 		struct e1000_hw *hw = &adapter->hw;
5148 		u32 rctl = er32(RCTL);
5149 
5150 		ew32(RCTL, rctl | E1000_RCTL_EN);
5151 		adapter->flags &= ~FLAG_RESTART_NOW;
5152 	}
5153 }
5154 
5155 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
5156 {
5157 	struct e1000_hw *hw = &adapter->hw;
5158 
5159 	/* With 82574 controllers, PHY needs to be checked periodically
5160 	 * for hung state and reset, if two calls return true
5161 	 */
5162 	if (e1000_check_phy_82574(hw))
5163 		adapter->phy_hang_count++;
5164 	else
5165 		adapter->phy_hang_count = 0;
5166 
5167 	if (adapter->phy_hang_count > 1) {
5168 		adapter->phy_hang_count = 0;
5169 		e_dbg("PHY appears hung - resetting\n");
5170 		schedule_work(&adapter->reset_task);
5171 	}
5172 }
5173 
5174 /**
5175  * e1000_watchdog - Timer Call-back
5176  * @t: pointer to timer_list containing private info adapter
5177  **/
5178 static void e1000_watchdog(struct timer_list *t)
5179 {
5180 	struct e1000_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5181 
5182 	/* Do the rest outside of interrupt context */
5183 	schedule_work(&adapter->watchdog_task);
5184 
5185 	/* TODO: make this use queue_delayed_work() */
5186 }
5187 
5188 static void e1000_watchdog_task(struct work_struct *work)
5189 {
5190 	struct e1000_adapter *adapter = container_of(work,
5191 						     struct e1000_adapter,
5192 						     watchdog_task);
5193 	struct net_device *netdev = adapter->netdev;
5194 	struct e1000_mac_info *mac = &adapter->hw.mac;
5195 	struct e1000_phy_info *phy = &adapter->hw.phy;
5196 	struct e1000_ring *tx_ring = adapter->tx_ring;
5197 	u32 dmoff_exit_timeout = 100, tries = 0;
5198 	struct e1000_hw *hw = &adapter->hw;
5199 	u32 link, tctl, pcim_state;
5200 
5201 	if (test_bit(__E1000_DOWN, &adapter->state))
5202 		return;
5203 
5204 	link = e1000e_has_link(adapter);
5205 	if ((netif_carrier_ok(netdev)) && link) {
5206 		/* Cancel scheduled suspend requests. */
5207 		pm_runtime_resume(netdev->dev.parent);
5208 
5209 		e1000e_enable_receives(adapter);
5210 		goto link_up;
5211 	}
5212 
5213 	if ((e1000e_enable_tx_pkt_filtering(hw)) &&
5214 	    (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
5215 		e1000_update_mng_vlan(adapter);
5216 
5217 	if (link) {
5218 		if (!netif_carrier_ok(netdev)) {
5219 			bool txb2b = true;
5220 
5221 			/* Cancel scheduled suspend requests. */
5222 			pm_runtime_resume(netdev->dev.parent);
5223 
5224 			/* Checking if MAC is in DMoff state*/
5225 			if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
5226 				pcim_state = er32(STATUS);
5227 				while (pcim_state & E1000_STATUS_PCIM_STATE) {
5228 					if (tries++ == dmoff_exit_timeout) {
5229 						e_dbg("Error in exiting dmoff\n");
5230 						break;
5231 					}
5232 					usleep_range(10000, 20000);
5233 					pcim_state = er32(STATUS);
5234 
5235 					/* Checking if MAC exited DMoff state */
5236 					if (!(pcim_state & E1000_STATUS_PCIM_STATE))
5237 						e1000_phy_hw_reset(&adapter->hw);
5238 				}
5239 			}
5240 
5241 			/* update snapshot of PHY registers on LSC */
5242 			e1000_phy_read_status(adapter);
5243 			mac->ops.get_link_up_info(&adapter->hw,
5244 						  &adapter->link_speed,
5245 						  &adapter->link_duplex);
5246 			e1000_print_link_info(adapter);
5247 
5248 			/* check if SmartSpeed worked */
5249 			e1000e_check_downshift(hw);
5250 			if (phy->speed_downgraded)
5251 				netdev_warn(netdev,
5252 					    "Link Speed was downgraded by SmartSpeed\n");
5253 
5254 			/* On supported PHYs, check for duplex mismatch only
5255 			 * if link has autonegotiated at 10/100 half
5256 			 */
5257 			if ((hw->phy.type == e1000_phy_igp_3 ||
5258 			     hw->phy.type == e1000_phy_bm) &&
5259 			    hw->mac.autoneg &&
5260 			    (adapter->link_speed == SPEED_10 ||
5261 			     adapter->link_speed == SPEED_100) &&
5262 			    (adapter->link_duplex == HALF_DUPLEX)) {
5263 				u16 autoneg_exp;
5264 
5265 				e1e_rphy(hw, MII_EXPANSION, &autoneg_exp);
5266 
5267 				if (!(autoneg_exp & EXPANSION_NWAY))
5268 					e_info("Autonegotiated half duplex but link partner cannot autoneg.  Try forcing full duplex if link gets many collisions.\n");
5269 			}
5270 
5271 			/* adjust timeout factor according to speed/duplex */
5272 			adapter->tx_timeout_factor = 1;
5273 			switch (adapter->link_speed) {
5274 			case SPEED_10:
5275 				txb2b = false;
5276 				adapter->tx_timeout_factor = 16;
5277 				break;
5278 			case SPEED_100:
5279 				txb2b = false;
5280 				adapter->tx_timeout_factor = 10;
5281 				break;
5282 			}
5283 
5284 			/* workaround: re-program speed mode bit after
5285 			 * link-up event
5286 			 */
5287 			if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
5288 			    !txb2b) {
5289 				u32 tarc0;
5290 
5291 				tarc0 = er32(TARC(0));
5292 				tarc0 &= ~SPEED_MODE_BIT;
5293 				ew32(TARC(0), tarc0);
5294 			}
5295 
5296 			/* disable TSO for pcie and 10/100 speeds, to avoid
5297 			 * some hardware issues
5298 			 */
5299 			if (!(adapter->flags & FLAG_TSO_FORCE)) {
5300 				switch (adapter->link_speed) {
5301 				case SPEED_10:
5302 				case SPEED_100:
5303 					e_info("10/100 speed: disabling TSO\n");
5304 					netdev->features &= ~NETIF_F_TSO;
5305 					netdev->features &= ~NETIF_F_TSO6;
5306 					break;
5307 				case SPEED_1000:
5308 					netdev->features |= NETIF_F_TSO;
5309 					netdev->features |= NETIF_F_TSO6;
5310 					break;
5311 				default:
5312 					/* oops */
5313 					break;
5314 				}
5315 				if (hw->mac.type == e1000_pch_spt) {
5316 					netdev->features &= ~NETIF_F_TSO;
5317 					netdev->features &= ~NETIF_F_TSO6;
5318 				}
5319 			}
5320 
5321 			/* enable transmits in the hardware, need to do this
5322 			 * after setting TARC(0)
5323 			 */
5324 			tctl = er32(TCTL);
5325 			tctl |= E1000_TCTL_EN;
5326 			ew32(TCTL, tctl);
5327 
5328 			/* Perform any post-link-up configuration before
5329 			 * reporting link up.
5330 			 */
5331 			if (phy->ops.cfg_on_link_up)
5332 				phy->ops.cfg_on_link_up(hw);
5333 
5334 			netif_wake_queue(netdev);
5335 			netif_carrier_on(netdev);
5336 
5337 			if (!test_bit(__E1000_DOWN, &adapter->state))
5338 				mod_timer(&adapter->phy_info_timer,
5339 					  round_jiffies(jiffies + 2 * HZ));
5340 		}
5341 	} else {
5342 		if (netif_carrier_ok(netdev)) {
5343 			adapter->link_speed = 0;
5344 			adapter->link_duplex = 0;
5345 			/* Link status message must follow this format */
5346 			netdev_info(netdev, "NIC Link is Down\n");
5347 			netif_carrier_off(netdev);
5348 			netif_stop_queue(netdev);
5349 			if (!test_bit(__E1000_DOWN, &adapter->state))
5350 				mod_timer(&adapter->phy_info_timer,
5351 					  round_jiffies(jiffies + 2 * HZ));
5352 
5353 			/* 8000ES2LAN requires a Rx packet buffer work-around
5354 			 * on link down event; reset the controller to flush
5355 			 * the Rx packet buffer.
5356 			 */
5357 			if (adapter->flags & FLAG_RX_NEEDS_RESTART)
5358 				adapter->flags |= FLAG_RESTART_NOW;
5359 			else
5360 				pm_schedule_suspend(netdev->dev.parent,
5361 						    LINK_TIMEOUT);
5362 		}
5363 	}
5364 
5365 link_up:
5366 	spin_lock(&adapter->stats64_lock);
5367 	e1000e_update_stats(adapter);
5368 
5369 	mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
5370 	adapter->tpt_old = adapter->stats.tpt;
5371 	mac->collision_delta = adapter->stats.colc - adapter->colc_old;
5372 	adapter->colc_old = adapter->stats.colc;
5373 
5374 	adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
5375 	adapter->gorc_old = adapter->stats.gorc;
5376 	adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
5377 	adapter->gotc_old = adapter->stats.gotc;
5378 	spin_unlock(&adapter->stats64_lock);
5379 
5380 	/* If the link is lost the controller stops DMA, but
5381 	 * if there is queued Tx work it cannot be done.  So
5382 	 * reset the controller to flush the Tx packet buffers.
5383 	 */
5384 	if (!netif_carrier_ok(netdev) &&
5385 	    (e1000_desc_unused(tx_ring) + 1 < tx_ring->count))
5386 		adapter->flags |= FLAG_RESTART_NOW;
5387 
5388 	/* If reset is necessary, do it outside of interrupt context. */
5389 	if (adapter->flags & FLAG_RESTART_NOW) {
5390 		schedule_work(&adapter->reset_task);
5391 		/* return immediately since reset is imminent */
5392 		return;
5393 	}
5394 
5395 	e1000e_update_adaptive(&adapter->hw);
5396 
5397 	/* Simple mode for Interrupt Throttle Rate (ITR) */
5398 	if (adapter->itr_setting == 4) {
5399 		/* Symmetric Tx/Rx gets a reduced ITR=2000;
5400 		 * Total asymmetrical Tx or Rx gets ITR=8000;
5401 		 * everyone else is between 2000-8000.
5402 		 */
5403 		u32 goc = (adapter->gotc + adapter->gorc) / 10000;
5404 		u32 dif = (adapter->gotc > adapter->gorc ?
5405 			   adapter->gotc - adapter->gorc :
5406 			   adapter->gorc - adapter->gotc) / 10000;
5407 		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
5408 
5409 		e1000e_write_itr(adapter, itr);
5410 	}
5411 
5412 	/* Cause software interrupt to ensure Rx ring is cleaned */
5413 	if (adapter->msix_entries)
5414 		ew32(ICS, adapter->rx_ring->ims_val);
5415 	else
5416 		ew32(ICS, E1000_ICS_RXDMT0);
5417 
5418 	/* flush pending descriptors to memory before detecting Tx hang */
5419 	e1000e_flush_descriptors(adapter);
5420 
5421 	/* Force detection of hung controller every watchdog period */
5422 	adapter->detect_tx_hung = true;
5423 
5424 	/* With 82571 controllers, LAA may be overwritten due to controller
5425 	 * reset from the other port. Set the appropriate LAA in RAR[0]
5426 	 */
5427 	if (e1000e_get_laa_state_82571(hw))
5428 		hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
5429 
5430 	if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
5431 		e1000e_check_82574_phy_workaround(adapter);
5432 
5433 	/* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5434 	if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) {
5435 		if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) &&
5436 		    (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) {
5437 			er32(RXSTMPH);
5438 			adapter->rx_hwtstamp_cleared++;
5439 		} else {
5440 			adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP;
5441 		}
5442 	}
5443 
5444 	/* Reset the timer */
5445 	if (!test_bit(__E1000_DOWN, &adapter->state))
5446 		mod_timer(&adapter->watchdog_timer,
5447 			  round_jiffies(jiffies + 2 * HZ));
5448 }
5449 
5450 #define E1000_TX_FLAGS_CSUM		0x00000001
5451 #define E1000_TX_FLAGS_VLAN		0x00000002
5452 #define E1000_TX_FLAGS_TSO		0x00000004
5453 #define E1000_TX_FLAGS_IPV4		0x00000008
5454 #define E1000_TX_FLAGS_NO_FCS		0x00000010
5455 #define E1000_TX_FLAGS_HWTSTAMP		0x00000020
5456 #define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
5457 #define E1000_TX_FLAGS_VLAN_SHIFT	16
5458 
5459 static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb,
5460 		     __be16 protocol)
5461 {
5462 	struct e1000_context_desc *context_desc;
5463 	struct e1000_buffer *buffer_info;
5464 	unsigned int i;
5465 	u32 cmd_length = 0;
5466 	u16 ipcse = 0, mss;
5467 	u8 ipcss, ipcso, tucss, tucso, hdr_len;
5468 	int err;
5469 
5470 	if (!skb_is_gso(skb))
5471 		return 0;
5472 
5473 	err = skb_cow_head(skb, 0);
5474 	if (err < 0)
5475 		return err;
5476 
5477 	hdr_len = skb_tcp_all_headers(skb);
5478 	mss = skb_shinfo(skb)->gso_size;
5479 	if (protocol == htons(ETH_P_IP)) {
5480 		struct iphdr *iph = ip_hdr(skb);
5481 		iph->tot_len = 0;
5482 		iph->check = 0;
5483 		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
5484 							 0, IPPROTO_TCP, 0);
5485 		cmd_length = E1000_TXD_CMD_IP;
5486 		ipcse = skb_transport_offset(skb) - 1;
5487 	} else if (skb_is_gso_v6(skb)) {
5488 		tcp_v6_gso_csum_prep(skb);
5489 		ipcse = 0;
5490 	}
5491 	ipcss = skb_network_offset(skb);
5492 	ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
5493 	tucss = skb_transport_offset(skb);
5494 	tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
5495 
5496 	cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
5497 		       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
5498 
5499 	i = tx_ring->next_to_use;
5500 	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5501 	buffer_info = &tx_ring->buffer_info[i];
5502 
5503 	context_desc->lower_setup.ip_fields.ipcss = ipcss;
5504 	context_desc->lower_setup.ip_fields.ipcso = ipcso;
5505 	context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
5506 	context_desc->upper_setup.tcp_fields.tucss = tucss;
5507 	context_desc->upper_setup.tcp_fields.tucso = tucso;
5508 	context_desc->upper_setup.tcp_fields.tucse = 0;
5509 	context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
5510 	context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
5511 	context_desc->cmd_and_length = cpu_to_le32(cmd_length);
5512 
5513 	buffer_info->time_stamp = jiffies;
5514 	buffer_info->next_to_watch = i;
5515 
5516 	i++;
5517 	if (i == tx_ring->count)
5518 		i = 0;
5519 	tx_ring->next_to_use = i;
5520 
5521 	return 1;
5522 }
5523 
5524 static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb,
5525 			  __be16 protocol)
5526 {
5527 	struct e1000_adapter *adapter = tx_ring->adapter;
5528 	struct e1000_context_desc *context_desc;
5529 	struct e1000_buffer *buffer_info;
5530 	unsigned int i;
5531 	u8 css;
5532 	u32 cmd_len = E1000_TXD_CMD_DEXT;
5533 
5534 	if (skb->ip_summed != CHECKSUM_PARTIAL)
5535 		return false;
5536 
5537 	switch (protocol) {
5538 	case cpu_to_be16(ETH_P_IP):
5539 		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
5540 			cmd_len |= E1000_TXD_CMD_TCP;
5541 		break;
5542 	case cpu_to_be16(ETH_P_IPV6):
5543 		/* XXX not handling all IPV6 headers */
5544 		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
5545 			cmd_len |= E1000_TXD_CMD_TCP;
5546 		break;
5547 	default:
5548 		if (unlikely(net_ratelimit()))
5549 			e_warn("checksum_partial proto=%x!\n",
5550 			       be16_to_cpu(protocol));
5551 		break;
5552 	}
5553 
5554 	css = skb_checksum_start_offset(skb);
5555 
5556 	i = tx_ring->next_to_use;
5557 	buffer_info = &tx_ring->buffer_info[i];
5558 	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5559 
5560 	context_desc->lower_setup.ip_config = 0;
5561 	context_desc->upper_setup.tcp_fields.tucss = css;
5562 	context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset;
5563 	context_desc->upper_setup.tcp_fields.tucse = 0;
5564 	context_desc->tcp_seg_setup.data = 0;
5565 	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
5566 
5567 	buffer_info->time_stamp = jiffies;
5568 	buffer_info->next_to_watch = i;
5569 
5570 	i++;
5571 	if (i == tx_ring->count)
5572 		i = 0;
5573 	tx_ring->next_to_use = i;
5574 
5575 	return true;
5576 }
5577 
5578 static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
5579 			unsigned int first, unsigned int max_per_txd,
5580 			unsigned int nr_frags)
5581 {
5582 	struct e1000_adapter *adapter = tx_ring->adapter;
5583 	struct pci_dev *pdev = adapter->pdev;
5584 	struct e1000_buffer *buffer_info;
5585 	unsigned int len = skb_headlen(skb);
5586 	unsigned int offset = 0, size, count = 0, i;
5587 	unsigned int f, bytecount, segs;
5588 
5589 	i = tx_ring->next_to_use;
5590 
5591 	while (len) {
5592 		buffer_info = &tx_ring->buffer_info[i];
5593 		size = min(len, max_per_txd);
5594 
5595 		buffer_info->length = size;
5596 		buffer_info->time_stamp = jiffies;
5597 		buffer_info->next_to_watch = i;
5598 		buffer_info->dma = dma_map_single(&pdev->dev,
5599 						  skb->data + offset,
5600 						  size, DMA_TO_DEVICE);
5601 		buffer_info->mapped_as_page = false;
5602 		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5603 			goto dma_error;
5604 
5605 		len -= size;
5606 		offset += size;
5607 		count++;
5608 
5609 		if (len) {
5610 			i++;
5611 			if (i == tx_ring->count)
5612 				i = 0;
5613 		}
5614 	}
5615 
5616 	for (f = 0; f < nr_frags; f++) {
5617 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
5618 
5619 		len = skb_frag_size(frag);
5620 		offset = 0;
5621 
5622 		while (len) {
5623 			i++;
5624 			if (i == tx_ring->count)
5625 				i = 0;
5626 
5627 			buffer_info = &tx_ring->buffer_info[i];
5628 			size = min(len, max_per_txd);
5629 
5630 			buffer_info->length = size;
5631 			buffer_info->time_stamp = jiffies;
5632 			buffer_info->next_to_watch = i;
5633 			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
5634 							    offset, size,
5635 							    DMA_TO_DEVICE);
5636 			buffer_info->mapped_as_page = true;
5637 			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5638 				goto dma_error;
5639 
5640 			len -= size;
5641 			offset += size;
5642 			count++;
5643 		}
5644 	}
5645 
5646 	segs = skb_shinfo(skb)->gso_segs ? : 1;
5647 	/* multiply data chunks by size of headers */
5648 	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
5649 
5650 	tx_ring->buffer_info[i].skb = skb;
5651 	tx_ring->buffer_info[i].segs = segs;
5652 	tx_ring->buffer_info[i].bytecount = bytecount;
5653 	tx_ring->buffer_info[first].next_to_watch = i;
5654 
5655 	return count;
5656 
5657 dma_error:
5658 	dev_err(&pdev->dev, "Tx DMA map failed\n");
5659 	buffer_info->dma = 0;
5660 	if (count)
5661 		count--;
5662 
5663 	while (count--) {
5664 		if (i == 0)
5665 			i += tx_ring->count;
5666 		i--;
5667 		buffer_info = &tx_ring->buffer_info[i];
5668 		e1000_put_txbuf(tx_ring, buffer_info, true);
5669 	}
5670 
5671 	return 0;
5672 }
5673 
5674 static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
5675 {
5676 	struct e1000_adapter *adapter = tx_ring->adapter;
5677 	struct e1000_tx_desc *tx_desc = NULL;
5678 	struct e1000_buffer *buffer_info;
5679 	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
5680 	unsigned int i;
5681 
5682 	if (tx_flags & E1000_TX_FLAGS_TSO) {
5683 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
5684 		    E1000_TXD_CMD_TSE;
5685 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5686 
5687 		if (tx_flags & E1000_TX_FLAGS_IPV4)
5688 			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
5689 	}
5690 
5691 	if (tx_flags & E1000_TX_FLAGS_CSUM) {
5692 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5693 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5694 	}
5695 
5696 	if (tx_flags & E1000_TX_FLAGS_VLAN) {
5697 		txd_lower |= E1000_TXD_CMD_VLE;
5698 		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
5699 	}
5700 
5701 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5702 		txd_lower &= ~(E1000_TXD_CMD_IFCS);
5703 
5704 	if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) {
5705 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5706 		txd_upper |= E1000_TXD_EXTCMD_TSTAMP;
5707 	}
5708 
5709 	i = tx_ring->next_to_use;
5710 
5711 	do {
5712 		buffer_info = &tx_ring->buffer_info[i];
5713 		tx_desc = E1000_TX_DESC(*tx_ring, i);
5714 		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
5715 		tx_desc->lower.data = cpu_to_le32(txd_lower |
5716 						  buffer_info->length);
5717 		tx_desc->upper.data = cpu_to_le32(txd_upper);
5718 
5719 		i++;
5720 		if (i == tx_ring->count)
5721 			i = 0;
5722 	} while (--count > 0);
5723 
5724 	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
5725 
5726 	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5727 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5728 		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
5729 
5730 	/* Force memory writes to complete before letting h/w
5731 	 * know there are new descriptors to fetch.  (Only
5732 	 * applicable for weak-ordered memory model archs,
5733 	 * such as IA-64).
5734 	 */
5735 	wmb();
5736 
5737 	tx_ring->next_to_use = i;
5738 }
5739 
5740 #define MINIMUM_DHCP_PACKET_SIZE 282
5741 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
5742 				    struct sk_buff *skb)
5743 {
5744 	struct e1000_hw *hw = &adapter->hw;
5745 	u16 length, offset;
5746 
5747 	if (skb_vlan_tag_present(skb) &&
5748 	    !((skb_vlan_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
5749 	      (adapter->hw.mng_cookie.status &
5750 	       E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
5751 		return 0;
5752 
5753 	if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
5754 		return 0;
5755 
5756 	if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP))
5757 		return 0;
5758 
5759 	{
5760 		const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14);
5761 		struct udphdr *udp;
5762 
5763 		if (ip->protocol != IPPROTO_UDP)
5764 			return 0;
5765 
5766 		udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
5767 		if (ntohs(udp->dest) != 67)
5768 			return 0;
5769 
5770 		offset = (u8 *)udp + 8 - skb->data;
5771 		length = skb->len - offset;
5772 		return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
5773 	}
5774 
5775 	return 0;
5776 }
5777 
5778 static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5779 {
5780 	struct e1000_adapter *adapter = tx_ring->adapter;
5781 
5782 	netif_stop_queue(adapter->netdev);
5783 	/* Herbert's original patch had:
5784 	 *  smp_mb__after_netif_stop_queue();
5785 	 * but since that doesn't exist yet, just open code it.
5786 	 */
5787 	smp_mb();
5788 
5789 	/* We need to check again in a case another CPU has just
5790 	 * made room available.
5791 	 */
5792 	if (e1000_desc_unused(tx_ring) < size)
5793 		return -EBUSY;
5794 
5795 	/* A reprieve! */
5796 	netif_start_queue(adapter->netdev);
5797 	++adapter->restart_queue;
5798 	return 0;
5799 }
5800 
5801 static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5802 {
5803 	BUG_ON(size > tx_ring->count);
5804 
5805 	if (e1000_desc_unused(tx_ring) >= size)
5806 		return 0;
5807 	return __e1000_maybe_stop_tx(tx_ring, size);
5808 }
5809 
5810 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5811 				    struct net_device *netdev)
5812 {
5813 	struct e1000_adapter *adapter = netdev_priv(netdev);
5814 	struct e1000_ring *tx_ring = adapter->tx_ring;
5815 	unsigned int first;
5816 	unsigned int tx_flags = 0;
5817 	unsigned int len = skb_headlen(skb);
5818 	unsigned int nr_frags;
5819 	unsigned int mss;
5820 	int count = 0;
5821 	int tso;
5822 	unsigned int f;
5823 	__be16 protocol = vlan_get_protocol(skb);
5824 
5825 	if (test_bit(__E1000_DOWN, &adapter->state)) {
5826 		dev_kfree_skb_any(skb);
5827 		return NETDEV_TX_OK;
5828 	}
5829 
5830 	if (skb->len <= 0) {
5831 		dev_kfree_skb_any(skb);
5832 		return NETDEV_TX_OK;
5833 	}
5834 
5835 	/* The minimum packet size with TCTL.PSP set is 17 bytes so
5836 	 * pad skb in order to meet this minimum size requirement
5837 	 */
5838 	if (skb_put_padto(skb, 17))
5839 		return NETDEV_TX_OK;
5840 
5841 	mss = skb_shinfo(skb)->gso_size;
5842 	if (mss) {
5843 		u8 hdr_len;
5844 
5845 		/* TSO Workaround for 82571/2/3 Controllers -- if skb->data
5846 		 * points to just header, pull a few bytes of payload from
5847 		 * frags into skb->data
5848 		 */
5849 		hdr_len = skb_tcp_all_headers(skb);
5850 		/* we do this workaround for ES2LAN, but it is un-necessary,
5851 		 * avoiding it could save a lot of cycles
5852 		 */
5853 		if (skb->data_len && (hdr_len == len)) {
5854 			unsigned int pull_size;
5855 
5856 			pull_size = min_t(unsigned int, 4, skb->data_len);
5857 			if (!__pskb_pull_tail(skb, pull_size)) {
5858 				e_err("__pskb_pull_tail failed.\n");
5859 				dev_kfree_skb_any(skb);
5860 				return NETDEV_TX_OK;
5861 			}
5862 			len = skb_headlen(skb);
5863 		}
5864 	}
5865 
5866 	/* reserve a descriptor for the offload context */
5867 	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5868 		count++;
5869 	count++;
5870 
5871 	count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
5872 
5873 	nr_frags = skb_shinfo(skb)->nr_frags;
5874 	for (f = 0; f < nr_frags; f++)
5875 		count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5876 				      adapter->tx_fifo_limit);
5877 
5878 	if (adapter->hw.mac.tx_pkt_filtering)
5879 		e1000_transfer_dhcp_info(adapter, skb);
5880 
5881 	/* need: count + 2 desc gap to keep tail from touching
5882 	 * head, otherwise try next time
5883 	 */
5884 	if (e1000_maybe_stop_tx(tx_ring, count + 2))
5885 		return NETDEV_TX_BUSY;
5886 
5887 	if (skb_vlan_tag_present(skb)) {
5888 		tx_flags |= E1000_TX_FLAGS_VLAN;
5889 		tx_flags |= (skb_vlan_tag_get(skb) <<
5890 			     E1000_TX_FLAGS_VLAN_SHIFT);
5891 	}
5892 
5893 	first = tx_ring->next_to_use;
5894 
5895 	tso = e1000_tso(tx_ring, skb, protocol);
5896 	if (tso < 0) {
5897 		dev_kfree_skb_any(skb);
5898 		return NETDEV_TX_OK;
5899 	}
5900 
5901 	if (tso)
5902 		tx_flags |= E1000_TX_FLAGS_TSO;
5903 	else if (e1000_tx_csum(tx_ring, skb, protocol))
5904 		tx_flags |= E1000_TX_FLAGS_CSUM;
5905 
5906 	/* Old method was to assume IPv4 packet by default if TSO was enabled.
5907 	 * 82571 hardware supports TSO capabilities for IPv6 as well...
5908 	 * no longer assume, we must.
5909 	 */
5910 	if (protocol == htons(ETH_P_IP))
5911 		tx_flags |= E1000_TX_FLAGS_IPV4;
5912 
5913 	if (unlikely(skb->no_fcs))
5914 		tx_flags |= E1000_TX_FLAGS_NO_FCS;
5915 
5916 	/* if count is 0 then mapping error has occurred */
5917 	count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5918 			     nr_frags);
5919 	if (count) {
5920 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
5921 		    (adapter->flags & FLAG_HAS_HW_TIMESTAMP)) {
5922 			if (!adapter->tx_hwtstamp_skb) {
5923 				skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5924 				tx_flags |= E1000_TX_FLAGS_HWTSTAMP;
5925 				adapter->tx_hwtstamp_skb = skb_get(skb);
5926 				adapter->tx_hwtstamp_start = jiffies;
5927 				schedule_work(&adapter->tx_hwtstamp_work);
5928 			} else {
5929 				adapter->tx_hwtstamp_skipped++;
5930 			}
5931 		}
5932 
5933 		skb_tx_timestamp(skb);
5934 
5935 		netdev_sent_queue(netdev, skb->len);
5936 		e1000_tx_queue(tx_ring, tx_flags, count);
5937 		/* Make sure there is space in the ring for the next send. */
5938 		e1000_maybe_stop_tx(tx_ring,
5939 				    (MAX_SKB_FRAGS *
5940 				     DIV_ROUND_UP(PAGE_SIZE,
5941 						  adapter->tx_fifo_limit) + 2));
5942 
5943 		if (!netdev_xmit_more() ||
5944 		    netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
5945 			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
5946 				e1000e_update_tdt_wa(tx_ring,
5947 						     tx_ring->next_to_use);
5948 			else
5949 				writel(tx_ring->next_to_use, tx_ring->tail);
5950 		}
5951 	} else {
5952 		dev_kfree_skb_any(skb);
5953 		tx_ring->buffer_info[first].time_stamp = 0;
5954 		tx_ring->next_to_use = first;
5955 	}
5956 
5957 	return NETDEV_TX_OK;
5958 }
5959 
5960 /**
5961  * e1000_tx_timeout - Respond to a Tx Hang
5962  * @netdev: network interface device structure
5963  * @txqueue: index of the hung queue (unused)
5964  **/
5965 static void e1000_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
5966 {
5967 	struct e1000_adapter *adapter = netdev_priv(netdev);
5968 
5969 	/* Do the reset outside of interrupt context */
5970 	adapter->tx_timeout_count++;
5971 	schedule_work(&adapter->reset_task);
5972 }
5973 
5974 static void e1000_reset_task(struct work_struct *work)
5975 {
5976 	struct e1000_adapter *adapter;
5977 	adapter = container_of(work, struct e1000_adapter, reset_task);
5978 
5979 	rtnl_lock();
5980 	/* don't run the task if already down */
5981 	if (test_bit(__E1000_DOWN, &adapter->state)) {
5982 		rtnl_unlock();
5983 		return;
5984 	}
5985 
5986 	if (!(adapter->flags & FLAG_RESTART_NOW)) {
5987 		e1000e_dump(adapter);
5988 		e_err("Reset adapter unexpectedly\n");
5989 	}
5990 	e1000e_reinit_locked(adapter);
5991 	rtnl_unlock();
5992 }
5993 
5994 /**
5995  * e1000e_get_stats64 - Get System Network Statistics
5996  * @netdev: network interface device structure
5997  * @stats: rtnl_link_stats64 pointer
5998  *
5999  * Returns the address of the device statistics structure.
6000  **/
6001 void e1000e_get_stats64(struct net_device *netdev,
6002 			struct rtnl_link_stats64 *stats)
6003 {
6004 	struct e1000_adapter *adapter = netdev_priv(netdev);
6005 
6006 	spin_lock(&adapter->stats64_lock);
6007 	e1000e_update_stats(adapter);
6008 	/* Fill out the OS statistics structure */
6009 	stats->rx_bytes = adapter->stats.gorc;
6010 	stats->rx_packets = adapter->stats.gprc;
6011 	stats->tx_bytes = adapter->stats.gotc;
6012 	stats->tx_packets = adapter->stats.gptc;
6013 	stats->multicast = adapter->stats.mprc;
6014 	stats->collisions = adapter->stats.colc;
6015 
6016 	/* Rx Errors */
6017 
6018 	/* RLEC on some newer hardware can be incorrect so build
6019 	 * our own version based on RUC and ROC
6020 	 */
6021 	stats->rx_errors = adapter->stats.rxerrc +
6022 	    adapter->stats.crcerrs + adapter->stats.algnerrc +
6023 	    adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
6024 	stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc;
6025 	stats->rx_crc_errors = adapter->stats.crcerrs;
6026 	stats->rx_frame_errors = adapter->stats.algnerrc;
6027 	stats->rx_missed_errors = adapter->stats.mpc;
6028 
6029 	/* Tx Errors */
6030 	stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol;
6031 	stats->tx_aborted_errors = adapter->stats.ecol;
6032 	stats->tx_window_errors = adapter->stats.latecol;
6033 	stats->tx_carrier_errors = adapter->stats.tncrs;
6034 
6035 	/* Tx Dropped needs to be maintained elsewhere */
6036 
6037 	spin_unlock(&adapter->stats64_lock);
6038 }
6039 
6040 /**
6041  * e1000_change_mtu - Change the Maximum Transfer Unit
6042  * @netdev: network interface device structure
6043  * @new_mtu: new value for maximum frame size
6044  *
6045  * Returns 0 on success, negative on failure
6046  **/
6047 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
6048 {
6049 	struct e1000_adapter *adapter = netdev_priv(netdev);
6050 	int max_frame = new_mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
6051 
6052 	/* Jumbo frame support */
6053 	if ((new_mtu > ETH_DATA_LEN) &&
6054 	    !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
6055 		e_err("Jumbo Frames not supported.\n");
6056 		return -EINVAL;
6057 	}
6058 
6059 	/* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
6060 	if ((adapter->hw.mac.type >= e1000_pch2lan) &&
6061 	    !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
6062 	    (new_mtu > ETH_DATA_LEN)) {
6063 		e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
6064 		return -EINVAL;
6065 	}
6066 
6067 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
6068 		usleep_range(1000, 1100);
6069 	/* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
6070 	adapter->max_frame_size = max_frame;
6071 	netdev_dbg(netdev, "changing MTU from %d to %d\n",
6072 		   netdev->mtu, new_mtu);
6073 	netdev->mtu = new_mtu;
6074 
6075 	pm_runtime_get_sync(netdev->dev.parent);
6076 
6077 	if (netif_running(netdev))
6078 		e1000e_down(adapter, true);
6079 
6080 	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
6081 	 * means we reserve 2 more, this pushes us to allocate from the next
6082 	 * larger slab size.
6083 	 * i.e. RXBUFFER_2048 --> size-4096 slab
6084 	 * However with the new *_jumbo_rx* routines, jumbo receives will use
6085 	 * fragmented skbs
6086 	 */
6087 
6088 	if (max_frame <= 2048)
6089 		adapter->rx_buffer_len = 2048;
6090 	else
6091 		adapter->rx_buffer_len = 4096;
6092 
6093 	/* adjust allocation if LPE protects us, and we aren't using SBP */
6094 	if (max_frame <= (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN))
6095 		adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
6096 
6097 	if (netif_running(netdev))
6098 		e1000e_up(adapter);
6099 	else
6100 		e1000e_reset(adapter);
6101 
6102 	pm_runtime_put_sync(netdev->dev.parent);
6103 
6104 	clear_bit(__E1000_RESETTING, &adapter->state);
6105 
6106 	return 0;
6107 }
6108 
6109 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
6110 			   int cmd)
6111 {
6112 	struct e1000_adapter *adapter = netdev_priv(netdev);
6113 	struct mii_ioctl_data *data = if_mii(ifr);
6114 
6115 	if (adapter->hw.phy.media_type != e1000_media_type_copper)
6116 		return -EOPNOTSUPP;
6117 
6118 	switch (cmd) {
6119 	case SIOCGMIIPHY:
6120 		data->phy_id = adapter->hw.phy.addr;
6121 		break;
6122 	case SIOCGMIIREG:
6123 		e1000_phy_read_status(adapter);
6124 
6125 		switch (data->reg_num & 0x1F) {
6126 		case MII_BMCR:
6127 			data->val_out = adapter->phy_regs.bmcr;
6128 			break;
6129 		case MII_BMSR:
6130 			data->val_out = adapter->phy_regs.bmsr;
6131 			break;
6132 		case MII_PHYSID1:
6133 			data->val_out = (adapter->hw.phy.id >> 16);
6134 			break;
6135 		case MII_PHYSID2:
6136 			data->val_out = (adapter->hw.phy.id & 0xFFFF);
6137 			break;
6138 		case MII_ADVERTISE:
6139 			data->val_out = adapter->phy_regs.advertise;
6140 			break;
6141 		case MII_LPA:
6142 			data->val_out = adapter->phy_regs.lpa;
6143 			break;
6144 		case MII_EXPANSION:
6145 			data->val_out = adapter->phy_regs.expansion;
6146 			break;
6147 		case MII_CTRL1000:
6148 			data->val_out = adapter->phy_regs.ctrl1000;
6149 			break;
6150 		case MII_STAT1000:
6151 			data->val_out = adapter->phy_regs.stat1000;
6152 			break;
6153 		case MII_ESTATUS:
6154 			data->val_out = adapter->phy_regs.estatus;
6155 			break;
6156 		default:
6157 			return -EIO;
6158 		}
6159 		break;
6160 	case SIOCSMIIREG:
6161 	default:
6162 		return -EOPNOTSUPP;
6163 	}
6164 	return 0;
6165 }
6166 
6167 /**
6168  * e1000e_hwtstamp_set - control hardware time stamping
6169  * @netdev: network interface device structure
6170  * @ifr: interface request
6171  *
6172  * Outgoing time stamping can be enabled and disabled. Play nice and
6173  * disable it when requested, although it shouldn't cause any overhead
6174  * when no packet needs it. At most one packet in the queue may be
6175  * marked for time stamping, otherwise it would be impossible to tell
6176  * for sure to which packet the hardware time stamp belongs.
6177  *
6178  * Incoming time stamping has to be configured via the hardware filters.
6179  * Not all combinations are supported, in particular event type has to be
6180  * specified. Matching the kind of event packet is not supported, with the
6181  * exception of "all V2 events regardless of level 2 or 4".
6182  **/
6183 static int e1000e_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
6184 {
6185 	struct e1000_adapter *adapter = netdev_priv(netdev);
6186 	struct hwtstamp_config config;
6187 	int ret_val;
6188 
6189 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
6190 		return -EFAULT;
6191 
6192 	ret_val = e1000e_config_hwtstamp(adapter, &config);
6193 	if (ret_val)
6194 		return ret_val;
6195 
6196 	switch (config.rx_filter) {
6197 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6198 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6199 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
6200 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6201 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6202 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6203 		/* With V2 type filters which specify a Sync or Delay Request,
6204 		 * Path Delay Request/Response messages are also time stamped
6205 		 * by hardware so notify the caller the requested packets plus
6206 		 * some others are time stamped.
6207 		 */
6208 		config.rx_filter = HWTSTAMP_FILTER_SOME;
6209 		break;
6210 	default:
6211 		break;
6212 	}
6213 
6214 	return copy_to_user(ifr->ifr_data, &config,
6215 			    sizeof(config)) ? -EFAULT : 0;
6216 }
6217 
6218 static int e1000e_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
6219 {
6220 	struct e1000_adapter *adapter = netdev_priv(netdev);
6221 
6222 	return copy_to_user(ifr->ifr_data, &adapter->hwtstamp_config,
6223 			    sizeof(adapter->hwtstamp_config)) ? -EFAULT : 0;
6224 }
6225 
6226 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6227 {
6228 	switch (cmd) {
6229 	case SIOCGMIIPHY:
6230 	case SIOCGMIIREG:
6231 	case SIOCSMIIREG:
6232 		return e1000_mii_ioctl(netdev, ifr, cmd);
6233 	case SIOCSHWTSTAMP:
6234 		return e1000e_hwtstamp_set(netdev, ifr);
6235 	case SIOCGHWTSTAMP:
6236 		return e1000e_hwtstamp_get(netdev, ifr);
6237 	default:
6238 		return -EOPNOTSUPP;
6239 	}
6240 }
6241 
6242 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
6243 {
6244 	struct e1000_hw *hw = &adapter->hw;
6245 	u32 i, mac_reg, wuc;
6246 	u16 phy_reg, wuc_enable;
6247 	int retval;
6248 
6249 	/* copy MAC RARs to PHY RARs */
6250 	e1000_copy_rx_addrs_to_phy_ich8lan(hw);
6251 
6252 	retval = hw->phy.ops.acquire(hw);
6253 	if (retval) {
6254 		e_err("Could not acquire PHY\n");
6255 		return retval;
6256 	}
6257 
6258 	/* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
6259 	retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6260 	if (retval)
6261 		goto release;
6262 
6263 	/* copy MAC MTA to PHY MTA - only needed for pchlan */
6264 	for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
6265 		mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
6266 		hw->phy.ops.write_reg_page(hw, BM_MTA(i),
6267 					   (u16)(mac_reg & 0xFFFF));
6268 		hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
6269 					   (u16)((mac_reg >> 16) & 0xFFFF));
6270 	}
6271 
6272 	/* configure PHY Rx Control register */
6273 	hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
6274 	mac_reg = er32(RCTL);
6275 	if (mac_reg & E1000_RCTL_UPE)
6276 		phy_reg |= BM_RCTL_UPE;
6277 	if (mac_reg & E1000_RCTL_MPE)
6278 		phy_reg |= BM_RCTL_MPE;
6279 	phy_reg &= ~(BM_RCTL_MO_MASK);
6280 	if (mac_reg & E1000_RCTL_MO_3)
6281 		phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
6282 			    << BM_RCTL_MO_SHIFT);
6283 	if (mac_reg & E1000_RCTL_BAM)
6284 		phy_reg |= BM_RCTL_BAM;
6285 	if (mac_reg & E1000_RCTL_PMCF)
6286 		phy_reg |= BM_RCTL_PMCF;
6287 	mac_reg = er32(CTRL);
6288 	if (mac_reg & E1000_CTRL_RFCE)
6289 		phy_reg |= BM_RCTL_RFCE;
6290 	hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
6291 
6292 	wuc = E1000_WUC_PME_EN;
6293 	if (wufc & (E1000_WUFC_MAG | E1000_WUFC_LNKC))
6294 		wuc |= E1000_WUC_APME;
6295 
6296 	/* enable PHY wakeup in MAC register */
6297 	ew32(WUFC, wufc);
6298 	ew32(WUC, (E1000_WUC_PHY_WAKE | E1000_WUC_APMPME |
6299 		   E1000_WUC_PME_STATUS | wuc));
6300 
6301 	/* configure and enable PHY wakeup in PHY registers */
6302 	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
6303 	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, wuc);
6304 
6305 	/* activate PHY wakeup */
6306 	wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
6307 	retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6308 	if (retval)
6309 		e_err("Could not set PHY Host Wakeup bit\n");
6310 release:
6311 	hw->phy.ops.release(hw);
6312 
6313 	return retval;
6314 }
6315 
6316 static void e1000e_flush_lpic(struct pci_dev *pdev)
6317 {
6318 	struct net_device *netdev = pci_get_drvdata(pdev);
6319 	struct e1000_adapter *adapter = netdev_priv(netdev);
6320 	struct e1000_hw *hw = &adapter->hw;
6321 	u32 ret_val;
6322 
6323 	pm_runtime_get_sync(netdev->dev.parent);
6324 
6325 	ret_val = hw->phy.ops.acquire(hw);
6326 	if (ret_val)
6327 		goto fl_out;
6328 
6329 	pr_info("EEE TX LPI TIMER: %08X\n",
6330 		er32(LPIC) >> E1000_LPIC_LPIET_SHIFT);
6331 
6332 	hw->phy.ops.release(hw);
6333 
6334 fl_out:
6335 	pm_runtime_put_sync(netdev->dev.parent);
6336 }
6337 
6338 /* S0ix implementation */
6339 static void e1000e_s0ix_entry_flow(struct e1000_adapter *adapter)
6340 {
6341 	struct e1000_hw *hw = &adapter->hw;
6342 	u32 mac_data;
6343 	u16 phy_data;
6344 
6345 	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID &&
6346 	    hw->mac.type >= e1000_pch_adp) {
6347 		/* Request ME configure the device for S0ix */
6348 		mac_data = er32(H2ME);
6349 		mac_data |= E1000_H2ME_START_DPG;
6350 		mac_data &= ~E1000_H2ME_EXIT_DPG;
6351 		ew32(H2ME, mac_data);
6352 	} else {
6353 		/* Request driver configure the device to S0ix */
6354 		/* Disable the periodic inband message,
6355 		 * don't request PCIe clock in K1 page770_17[10:9] = 10b
6356 		 */
6357 		e1e_rphy(hw, HV_PM_CTRL, &phy_data);
6358 		phy_data &= ~HV_PM_CTRL_K1_CLK_REQ;
6359 		phy_data |= BIT(10);
6360 		e1e_wphy(hw, HV_PM_CTRL, phy_data);
6361 
6362 		/* Make sure we don't exit K1 every time a new packet arrives
6363 		 * 772_29[5] = 1 CS_Mode_Stay_In_K1
6364 		 */
6365 		e1e_rphy(hw, I217_CGFREG, &phy_data);
6366 		phy_data |= BIT(5);
6367 		e1e_wphy(hw, I217_CGFREG, phy_data);
6368 
6369 		/* Change the MAC/PHY interface to SMBus
6370 		 * Force the SMBus in PHY page769_23[0] = 1
6371 		 * Force the SMBus in MAC CTRL_EXT[11] = 1
6372 		 */
6373 		e1e_rphy(hw, CV_SMB_CTRL, &phy_data);
6374 		phy_data |= CV_SMB_CTRL_FORCE_SMBUS;
6375 		e1e_wphy(hw, CV_SMB_CTRL, phy_data);
6376 		mac_data = er32(CTRL_EXT);
6377 		mac_data |= E1000_CTRL_EXT_FORCE_SMBUS;
6378 		ew32(CTRL_EXT, mac_data);
6379 
6380 		/* DFT control: PHY bit: page769_20[0] = 1
6381 		 * page769_20[7] - PHY PLL stop
6382 		 * page769_20[8] - PHY go to the electrical idle
6383 		 * page769_20[9] - PHY serdes disable
6384 		 * Gate PPW via EXTCNF_CTRL - set 0x0F00[7] = 1
6385 		 */
6386 		e1e_rphy(hw, I82579_DFT_CTRL, &phy_data);
6387 		phy_data |= BIT(0);
6388 		phy_data |= BIT(7);
6389 		phy_data |= BIT(8);
6390 		phy_data |= BIT(9);
6391 		e1e_wphy(hw, I82579_DFT_CTRL, phy_data);
6392 
6393 		mac_data = er32(EXTCNF_CTRL);
6394 		mac_data |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
6395 		ew32(EXTCNF_CTRL, mac_data);
6396 
6397 		/* Enable the Dynamic Power Gating in the MAC */
6398 		mac_data = er32(FEXTNVM7);
6399 		mac_data |= BIT(22);
6400 		ew32(FEXTNVM7, mac_data);
6401 
6402 		/* Disable disconnected cable conditioning for Power Gating */
6403 		mac_data = er32(DPGFR);
6404 		mac_data |= BIT(2);
6405 		ew32(DPGFR, mac_data);
6406 
6407 		/* Don't wake from dynamic Power Gating with clock request */
6408 		mac_data = er32(FEXTNVM12);
6409 		mac_data |= BIT(12);
6410 		ew32(FEXTNVM12, mac_data);
6411 
6412 		/* Ungate PGCB clock */
6413 		mac_data = er32(FEXTNVM9);
6414 		mac_data &= ~BIT(28);
6415 		ew32(FEXTNVM9, mac_data);
6416 
6417 		/* Enable K1 off to enable mPHY Power Gating */
6418 		mac_data = er32(FEXTNVM6);
6419 		mac_data |= BIT(31);
6420 		ew32(FEXTNVM6, mac_data);
6421 
6422 		/* Enable mPHY power gating for any link and speed */
6423 		mac_data = er32(FEXTNVM8);
6424 		mac_data |= BIT(9);
6425 		ew32(FEXTNVM8, mac_data);
6426 
6427 		/* Enable the Dynamic Clock Gating in the DMA and MAC */
6428 		mac_data = er32(CTRL_EXT);
6429 		mac_data |= E1000_CTRL_EXT_DMA_DYN_CLK_EN;
6430 		ew32(CTRL_EXT, mac_data);
6431 
6432 		/* No MAC DPG gating SLP_S0 in modern standby
6433 		 * Switch the logic of the lanphypc to use PMC counter
6434 		 */
6435 		mac_data = er32(FEXTNVM5);
6436 		mac_data |= BIT(7);
6437 		ew32(FEXTNVM5, mac_data);
6438 	}
6439 
6440 	/* Disable the time synchronization clock */
6441 	mac_data = er32(FEXTNVM7);
6442 	mac_data |= BIT(31);
6443 	mac_data &= ~BIT(0);
6444 	ew32(FEXTNVM7, mac_data);
6445 
6446 	/* Dynamic Power Gating Enable */
6447 	mac_data = er32(CTRL_EXT);
6448 	mac_data |= BIT(3);
6449 	ew32(CTRL_EXT, mac_data);
6450 
6451 	/* Check MAC Tx/Rx packet buffer pointers.
6452 	 * Reset MAC Tx/Rx packet buffer pointers to suppress any
6453 	 * pending traffic indication that would prevent power gating.
6454 	 */
6455 	mac_data = er32(TDFH);
6456 	if (mac_data)
6457 		ew32(TDFH, 0);
6458 	mac_data = er32(TDFT);
6459 	if (mac_data)
6460 		ew32(TDFT, 0);
6461 	mac_data = er32(TDFHS);
6462 	if (mac_data)
6463 		ew32(TDFHS, 0);
6464 	mac_data = er32(TDFTS);
6465 	if (mac_data)
6466 		ew32(TDFTS, 0);
6467 	mac_data = er32(TDFPC);
6468 	if (mac_data)
6469 		ew32(TDFPC, 0);
6470 	mac_data = er32(RDFH);
6471 	if (mac_data)
6472 		ew32(RDFH, 0);
6473 	mac_data = er32(RDFT);
6474 	if (mac_data)
6475 		ew32(RDFT, 0);
6476 	mac_data = er32(RDFHS);
6477 	if (mac_data)
6478 		ew32(RDFHS, 0);
6479 	mac_data = er32(RDFTS);
6480 	if (mac_data)
6481 		ew32(RDFTS, 0);
6482 	mac_data = er32(RDFPC);
6483 	if (mac_data)
6484 		ew32(RDFPC, 0);
6485 }
6486 
6487 static void e1000e_s0ix_exit_flow(struct e1000_adapter *adapter)
6488 {
6489 	struct e1000_hw *hw = &adapter->hw;
6490 	bool firmware_bug = false;
6491 	u32 mac_data;
6492 	u16 phy_data;
6493 	u32 i = 0;
6494 
6495 	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID &&
6496 	    hw->mac.type >= e1000_pch_adp) {
6497 		/* Keep the GPT clock enabled for CSME */
6498 		mac_data = er32(FEXTNVM);
6499 		mac_data |= BIT(3);
6500 		ew32(FEXTNVM, mac_data);
6501 		/* Request ME unconfigure the device from S0ix */
6502 		mac_data = er32(H2ME);
6503 		mac_data &= ~E1000_H2ME_START_DPG;
6504 		mac_data |= E1000_H2ME_EXIT_DPG;
6505 		ew32(H2ME, mac_data);
6506 
6507 		/* Poll up to 2.5 seconds for ME to unconfigure DPG.
6508 		 * If this takes more than 1 second, show a warning indicating a
6509 		 * firmware bug
6510 		 */
6511 		while (!(er32(EXFWSM) & E1000_EXFWSM_DPG_EXIT_DONE)) {
6512 			if (i > 100 && !firmware_bug)
6513 				firmware_bug = true;
6514 
6515 			if (i++ == 250) {
6516 				e_dbg("Timeout (firmware bug): %d msec\n",
6517 				      i * 10);
6518 				break;
6519 			}
6520 
6521 			usleep_range(10000, 11000);
6522 		}
6523 		if (firmware_bug)
6524 			e_warn("DPG_EXIT_DONE took %d msec. This is a firmware bug\n",
6525 			       i * 10);
6526 		else
6527 			e_dbg("DPG_EXIT_DONE cleared after %d msec\n", i * 10);
6528 	} else {
6529 		/* Request driver unconfigure the device from S0ix */
6530 
6531 		/* Disable the Dynamic Power Gating in the MAC */
6532 		mac_data = er32(FEXTNVM7);
6533 		mac_data &= 0xFFBFFFFF;
6534 		ew32(FEXTNVM7, mac_data);
6535 
6536 		/* Disable mPHY power gating for any link and speed */
6537 		mac_data = er32(FEXTNVM8);
6538 		mac_data &= ~BIT(9);
6539 		ew32(FEXTNVM8, mac_data);
6540 
6541 		/* Disable K1 off */
6542 		mac_data = er32(FEXTNVM6);
6543 		mac_data &= ~BIT(31);
6544 		ew32(FEXTNVM6, mac_data);
6545 
6546 		/* Disable Ungate PGCB clock */
6547 		mac_data = er32(FEXTNVM9);
6548 		mac_data |= BIT(28);
6549 		ew32(FEXTNVM9, mac_data);
6550 
6551 		/* Cancel not waking from dynamic
6552 		 * Power Gating with clock request
6553 		 */
6554 		mac_data = er32(FEXTNVM12);
6555 		mac_data &= ~BIT(12);
6556 		ew32(FEXTNVM12, mac_data);
6557 
6558 		/* Cancel disable disconnected cable conditioning
6559 		 * for Power Gating
6560 		 */
6561 		mac_data = er32(DPGFR);
6562 		mac_data &= ~BIT(2);
6563 		ew32(DPGFR, mac_data);
6564 
6565 		/* Disable the Dynamic Clock Gating in the DMA and MAC */
6566 		mac_data = er32(CTRL_EXT);
6567 		mac_data &= 0xFFF7FFFF;
6568 		ew32(CTRL_EXT, mac_data);
6569 
6570 		/* Revert the lanphypc logic to use the internal Gbe counter
6571 		 * and not the PMC counter
6572 		 */
6573 		mac_data = er32(FEXTNVM5);
6574 		mac_data &= 0xFFFFFF7F;
6575 		ew32(FEXTNVM5, mac_data);
6576 
6577 		/* Enable the periodic inband message,
6578 		 * Request PCIe clock in K1 page770_17[10:9] =01b
6579 		 */
6580 		e1e_rphy(hw, HV_PM_CTRL, &phy_data);
6581 		phy_data &= 0xFBFF;
6582 		phy_data |= HV_PM_CTRL_K1_CLK_REQ;
6583 		e1e_wphy(hw, HV_PM_CTRL, phy_data);
6584 
6585 		/* Return back configuration
6586 		 * 772_29[5] = 0 CS_Mode_Stay_In_K1
6587 		 */
6588 		e1e_rphy(hw, I217_CGFREG, &phy_data);
6589 		phy_data &= 0xFFDF;
6590 		e1e_wphy(hw, I217_CGFREG, phy_data);
6591 
6592 		/* Change the MAC/PHY interface to Kumeran
6593 		 * Unforce the SMBus in PHY page769_23[0] = 0
6594 		 * Unforce the SMBus in MAC CTRL_EXT[11] = 0
6595 		 */
6596 		e1e_rphy(hw, CV_SMB_CTRL, &phy_data);
6597 		phy_data &= ~CV_SMB_CTRL_FORCE_SMBUS;
6598 		e1e_wphy(hw, CV_SMB_CTRL, phy_data);
6599 		mac_data = er32(CTRL_EXT);
6600 		mac_data &= ~E1000_CTRL_EXT_FORCE_SMBUS;
6601 		ew32(CTRL_EXT, mac_data);
6602 	}
6603 
6604 	/* Disable Dynamic Power Gating */
6605 	mac_data = er32(CTRL_EXT);
6606 	mac_data &= 0xFFFFFFF7;
6607 	ew32(CTRL_EXT, mac_data);
6608 
6609 	/* Enable the time synchronization clock */
6610 	mac_data = er32(FEXTNVM7);
6611 	mac_data &= ~BIT(31);
6612 	mac_data |= BIT(0);
6613 	ew32(FEXTNVM7, mac_data);
6614 }
6615 
6616 static int e1000e_pm_freeze(struct device *dev)
6617 {
6618 	struct net_device *netdev = dev_get_drvdata(dev);
6619 	struct e1000_adapter *adapter = netdev_priv(netdev);
6620 	bool present;
6621 
6622 	rtnl_lock();
6623 
6624 	present = netif_device_present(netdev);
6625 	netif_device_detach(netdev);
6626 
6627 	if (present && netif_running(netdev)) {
6628 		int count = E1000_CHECK_RESET_COUNT;
6629 
6630 		while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6631 			usleep_range(10000, 11000);
6632 
6633 		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6634 
6635 		/* Quiesce the device without resetting the hardware */
6636 		e1000e_down(adapter, false);
6637 		e1000_free_irq(adapter);
6638 	}
6639 	rtnl_unlock();
6640 
6641 	e1000e_reset_interrupt_capability(adapter);
6642 
6643 	/* Allow time for pending master requests to run */
6644 	e1000e_disable_pcie_master(&adapter->hw);
6645 
6646 	return 0;
6647 }
6648 
6649 static int __e1000_shutdown(struct pci_dev *pdev, bool runtime)
6650 {
6651 	struct net_device *netdev = pci_get_drvdata(pdev);
6652 	struct e1000_adapter *adapter = netdev_priv(netdev);
6653 	struct e1000_hw *hw = &adapter->hw;
6654 	u32 ctrl, ctrl_ext, rctl, status, wufc;
6655 	int retval = 0;
6656 
6657 	/* Runtime suspend should only enable wakeup for link changes */
6658 	if (runtime)
6659 		wufc = E1000_WUFC_LNKC;
6660 	else if (device_may_wakeup(&pdev->dev))
6661 		wufc = adapter->wol;
6662 	else
6663 		wufc = 0;
6664 
6665 	status = er32(STATUS);
6666 	if (status & E1000_STATUS_LU)
6667 		wufc &= ~E1000_WUFC_LNKC;
6668 
6669 	if (wufc) {
6670 		e1000_setup_rctl(adapter);
6671 		e1000e_set_rx_mode(netdev);
6672 
6673 		/* turn on all-multi mode if wake on multicast is enabled */
6674 		if (wufc & E1000_WUFC_MC) {
6675 			rctl = er32(RCTL);
6676 			rctl |= E1000_RCTL_MPE;
6677 			ew32(RCTL, rctl);
6678 		}
6679 
6680 		ctrl = er32(CTRL);
6681 		ctrl |= E1000_CTRL_ADVD3WUC;
6682 		if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
6683 			ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
6684 		ew32(CTRL, ctrl);
6685 
6686 		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
6687 		    adapter->hw.phy.media_type ==
6688 		    e1000_media_type_internal_serdes) {
6689 			/* keep the laser running in D3 */
6690 			ctrl_ext = er32(CTRL_EXT);
6691 			ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
6692 			ew32(CTRL_EXT, ctrl_ext);
6693 		}
6694 
6695 		if (!runtime)
6696 			e1000e_power_up_phy(adapter);
6697 
6698 		if (adapter->flags & FLAG_IS_ICH)
6699 			e1000_suspend_workarounds_ich8lan(&adapter->hw);
6700 
6701 		if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6702 			/* enable wakeup by the PHY */
6703 			retval = e1000_init_phy_wakeup(adapter, wufc);
6704 			if (retval)
6705 				return retval;
6706 		} else {
6707 			/* enable wakeup by the MAC */
6708 			ew32(WUFC, wufc);
6709 			ew32(WUC, E1000_WUC_PME_EN);
6710 		}
6711 	} else {
6712 		ew32(WUC, 0);
6713 		ew32(WUFC, 0);
6714 
6715 		e1000_power_down_phy(adapter);
6716 	}
6717 
6718 	if (adapter->hw.phy.type == e1000_phy_igp_3) {
6719 		e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
6720 	} else if (hw->mac.type >= e1000_pch_lpt) {
6721 		if (wufc && !(wufc & (E1000_WUFC_EX | E1000_WUFC_MC | E1000_WUFC_BC)))
6722 			/* ULP does not support wake from unicast, multicast
6723 			 * or broadcast.
6724 			 */
6725 			retval = e1000_enable_ulp_lpt_lp(hw, !runtime);
6726 
6727 		if (retval)
6728 			return retval;
6729 	}
6730 
6731 	/* Ensure that the appropriate bits are set in LPI_CTRL
6732 	 * for EEE in Sx
6733 	 */
6734 	if ((hw->phy.type >= e1000_phy_i217) &&
6735 	    adapter->eee_advert && hw->dev_spec.ich8lan.eee_lp_ability) {
6736 		u16 lpi_ctrl = 0;
6737 
6738 		retval = hw->phy.ops.acquire(hw);
6739 		if (!retval) {
6740 			retval = e1e_rphy_locked(hw, I82579_LPI_CTRL,
6741 						 &lpi_ctrl);
6742 			if (!retval) {
6743 				if (adapter->eee_advert &
6744 				    hw->dev_spec.ich8lan.eee_lp_ability &
6745 				    I82579_EEE_100_SUPPORTED)
6746 					lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
6747 				if (adapter->eee_advert &
6748 				    hw->dev_spec.ich8lan.eee_lp_ability &
6749 				    I82579_EEE_1000_SUPPORTED)
6750 					lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
6751 
6752 				retval = e1e_wphy_locked(hw, I82579_LPI_CTRL,
6753 							 lpi_ctrl);
6754 			}
6755 		}
6756 		hw->phy.ops.release(hw);
6757 	}
6758 
6759 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
6760 	 * would have already happened in close and is redundant.
6761 	 */
6762 	e1000e_release_hw_control(adapter);
6763 
6764 	pci_clear_master(pdev);
6765 
6766 	/* The pci-e switch on some quad port adapters will report a
6767 	 * correctable error when the MAC transitions from D0 to D3.  To
6768 	 * prevent this we need to mask off the correctable errors on the
6769 	 * downstream port of the pci-e switch.
6770 	 *
6771 	 * We don't have the associated upstream bridge while assigning
6772 	 * the PCI device into guest. For example, the KVM on power is
6773 	 * one of the cases.
6774 	 */
6775 	if (adapter->flags & FLAG_IS_QUAD_PORT) {
6776 		struct pci_dev *us_dev = pdev->bus->self;
6777 		u16 devctl;
6778 
6779 		if (!us_dev)
6780 			return 0;
6781 
6782 		pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl);
6783 		pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL,
6784 					   (devctl & ~PCI_EXP_DEVCTL_CERE));
6785 
6786 		pci_save_state(pdev);
6787 		pci_prepare_to_sleep(pdev);
6788 
6789 		pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl);
6790 	}
6791 
6792 	return 0;
6793 }
6794 
6795 /**
6796  * __e1000e_disable_aspm - Disable ASPM states
6797  * @pdev: pointer to PCI device struct
6798  * @state: bit-mask of ASPM states to disable
6799  * @locked: indication if this context holds pci_bus_sem locked.
6800  *
6801  * Some devices *must* have certain ASPM states disabled per hardware errata.
6802  **/
6803 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state, int locked)
6804 {
6805 	struct pci_dev *parent = pdev->bus->self;
6806 	u16 aspm_dis_mask = 0;
6807 	u16 pdev_aspmc, parent_aspmc;
6808 
6809 	switch (state) {
6810 	case PCIE_LINK_STATE_L0S:
6811 	case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1:
6812 		aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S;
6813 		fallthrough; /* can't have L1 without L0s */
6814 	case PCIE_LINK_STATE_L1:
6815 		aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1;
6816 		break;
6817 	default:
6818 		return;
6819 	}
6820 
6821 	pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6822 	pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6823 
6824 	if (parent) {
6825 		pcie_capability_read_word(parent, PCI_EXP_LNKCTL,
6826 					  &parent_aspmc);
6827 		parent_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6828 	}
6829 
6830 	/* Nothing to do if the ASPM states to be disabled already are */
6831 	if (!(pdev_aspmc & aspm_dis_mask) &&
6832 	    (!parent || !(parent_aspmc & aspm_dis_mask)))
6833 		return;
6834 
6835 	dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
6836 		 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ?
6837 		 "L0s" : "",
6838 		 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ?
6839 		 "L1" : "");
6840 
6841 #ifdef CONFIG_PCIEASPM
6842 	if (locked)
6843 		pci_disable_link_state_locked(pdev, state);
6844 	else
6845 		pci_disable_link_state(pdev, state);
6846 
6847 	/* Double-check ASPM control.  If not disabled by the above, the
6848 	 * BIOS is preventing that from happening (or CONFIG_PCIEASPM is
6849 	 * not enabled); override by writing PCI config space directly.
6850 	 */
6851 	pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6852 	pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6853 
6854 	if (!(aspm_dis_mask & pdev_aspmc))
6855 		return;
6856 #endif
6857 
6858 	/* Both device and parent should have the same ASPM setting.
6859 	 * Disable ASPM in downstream component first and then upstream.
6860 	 */
6861 	pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask);
6862 
6863 	if (parent)
6864 		pcie_capability_clear_word(parent, PCI_EXP_LNKCTL,
6865 					   aspm_dis_mask);
6866 }
6867 
6868 /**
6869  * e1000e_disable_aspm - Disable ASPM states.
6870  * @pdev: pointer to PCI device struct
6871  * @state: bit-mask of ASPM states to disable
6872  *
6873  * This function acquires the pci_bus_sem!
6874  * Some devices *must* have certain ASPM states disabled per hardware errata.
6875  **/
6876 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6877 {
6878 	__e1000e_disable_aspm(pdev, state, 0);
6879 }
6880 
6881 /**
6882  * e1000e_disable_aspm_locked - Disable ASPM states.
6883  * @pdev: pointer to PCI device struct
6884  * @state: bit-mask of ASPM states to disable
6885  *
6886  * This function must be called with pci_bus_sem acquired!
6887  * Some devices *must* have certain ASPM states disabled per hardware errata.
6888  **/
6889 static void e1000e_disable_aspm_locked(struct pci_dev *pdev, u16 state)
6890 {
6891 	__e1000e_disable_aspm(pdev, state, 1);
6892 }
6893 
6894 static int e1000e_pm_thaw(struct device *dev)
6895 {
6896 	struct net_device *netdev = dev_get_drvdata(dev);
6897 	struct e1000_adapter *adapter = netdev_priv(netdev);
6898 	int rc = 0;
6899 
6900 	e1000e_set_interrupt_capability(adapter);
6901 
6902 	rtnl_lock();
6903 	if (netif_running(netdev)) {
6904 		rc = e1000_request_irq(adapter);
6905 		if (rc)
6906 			goto err_irq;
6907 
6908 		e1000e_up(adapter);
6909 	}
6910 
6911 	netif_device_attach(netdev);
6912 err_irq:
6913 	rtnl_unlock();
6914 
6915 	return rc;
6916 }
6917 
6918 static int __e1000_resume(struct pci_dev *pdev)
6919 {
6920 	struct net_device *netdev = pci_get_drvdata(pdev);
6921 	struct e1000_adapter *adapter = netdev_priv(netdev);
6922 	struct e1000_hw *hw = &adapter->hw;
6923 	u16 aspm_disable_flag = 0;
6924 
6925 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6926 		aspm_disable_flag = PCIE_LINK_STATE_L0S;
6927 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6928 		aspm_disable_flag |= PCIE_LINK_STATE_L1;
6929 	if (aspm_disable_flag)
6930 		e1000e_disable_aspm(pdev, aspm_disable_flag);
6931 
6932 	pci_set_master(pdev);
6933 
6934 	if (hw->mac.type >= e1000_pch2lan)
6935 		e1000_resume_workarounds_pchlan(&adapter->hw);
6936 
6937 	e1000e_power_up_phy(adapter);
6938 
6939 	/* report the system wakeup cause from S3/S4 */
6940 	if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6941 		u16 phy_data;
6942 
6943 		e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
6944 		if (phy_data) {
6945 			e_info("PHY Wakeup cause - %s\n",
6946 			       phy_data & E1000_WUS_EX ? "Unicast Packet" :
6947 			       phy_data & E1000_WUS_MC ? "Multicast Packet" :
6948 			       phy_data & E1000_WUS_BC ? "Broadcast Packet" :
6949 			       phy_data & E1000_WUS_MAG ? "Magic Packet" :
6950 			       phy_data & E1000_WUS_LNKC ?
6951 			       "Link Status Change" : "other");
6952 		}
6953 		e1e_wphy(&adapter->hw, BM_WUS, ~0);
6954 	} else {
6955 		u32 wus = er32(WUS);
6956 
6957 		if (wus) {
6958 			e_info("MAC Wakeup cause - %s\n",
6959 			       wus & E1000_WUS_EX ? "Unicast Packet" :
6960 			       wus & E1000_WUS_MC ? "Multicast Packet" :
6961 			       wus & E1000_WUS_BC ? "Broadcast Packet" :
6962 			       wus & E1000_WUS_MAG ? "Magic Packet" :
6963 			       wus & E1000_WUS_LNKC ? "Link Status Change" :
6964 			       "other");
6965 		}
6966 		ew32(WUS, ~0);
6967 	}
6968 
6969 	e1000e_reset(adapter);
6970 
6971 	e1000_init_manageability_pt(adapter);
6972 
6973 	/* If the controller has AMT, do not set DRV_LOAD until the interface
6974 	 * is up.  For all other cases, let the f/w know that the h/w is now
6975 	 * under the control of the driver.
6976 	 */
6977 	if (!(adapter->flags & FLAG_HAS_AMT))
6978 		e1000e_get_hw_control(adapter);
6979 
6980 	return 0;
6981 }
6982 
6983 static __maybe_unused int e1000e_pm_prepare(struct device *dev)
6984 {
6985 	return pm_runtime_suspended(dev) &&
6986 		pm_suspend_via_firmware();
6987 }
6988 
6989 static __maybe_unused int e1000e_pm_suspend(struct device *dev)
6990 {
6991 	struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6992 	struct e1000_adapter *adapter = netdev_priv(netdev);
6993 	struct pci_dev *pdev = to_pci_dev(dev);
6994 	int rc;
6995 
6996 	e1000e_flush_lpic(pdev);
6997 
6998 	e1000e_pm_freeze(dev);
6999 
7000 	rc = __e1000_shutdown(pdev, false);
7001 	if (rc) {
7002 		e1000e_pm_thaw(dev);
7003 	} else {
7004 		/* Introduce S0ix implementation */
7005 		if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS)
7006 			e1000e_s0ix_entry_flow(adapter);
7007 	}
7008 
7009 	return rc;
7010 }
7011 
7012 static __maybe_unused int e1000e_pm_resume(struct device *dev)
7013 {
7014 	struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
7015 	struct e1000_adapter *adapter = netdev_priv(netdev);
7016 	struct pci_dev *pdev = to_pci_dev(dev);
7017 	int rc;
7018 
7019 	/* Introduce S0ix implementation */
7020 	if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS)
7021 		e1000e_s0ix_exit_flow(adapter);
7022 
7023 	rc = __e1000_resume(pdev);
7024 	if (rc)
7025 		return rc;
7026 
7027 	return e1000e_pm_thaw(dev);
7028 }
7029 
7030 static __maybe_unused int e1000e_pm_runtime_idle(struct device *dev)
7031 {
7032 	struct net_device *netdev = dev_get_drvdata(dev);
7033 	struct e1000_adapter *adapter = netdev_priv(netdev);
7034 	u16 eee_lp;
7035 
7036 	eee_lp = adapter->hw.dev_spec.ich8lan.eee_lp_ability;
7037 
7038 	if (!e1000e_has_link(adapter)) {
7039 		adapter->hw.dev_spec.ich8lan.eee_lp_ability = eee_lp;
7040 		pm_schedule_suspend(dev, 5 * MSEC_PER_SEC);
7041 	}
7042 
7043 	return -EBUSY;
7044 }
7045 
7046 static __maybe_unused int e1000e_pm_runtime_resume(struct device *dev)
7047 {
7048 	struct pci_dev *pdev = to_pci_dev(dev);
7049 	struct net_device *netdev = pci_get_drvdata(pdev);
7050 	struct e1000_adapter *adapter = netdev_priv(netdev);
7051 	int rc;
7052 
7053 	rc = __e1000_resume(pdev);
7054 	if (rc)
7055 		return rc;
7056 
7057 	if (netdev->flags & IFF_UP)
7058 		e1000e_up(adapter);
7059 
7060 	return rc;
7061 }
7062 
7063 static __maybe_unused int e1000e_pm_runtime_suspend(struct device *dev)
7064 {
7065 	struct pci_dev *pdev = to_pci_dev(dev);
7066 	struct net_device *netdev = pci_get_drvdata(pdev);
7067 	struct e1000_adapter *adapter = netdev_priv(netdev);
7068 
7069 	if (netdev->flags & IFF_UP) {
7070 		int count = E1000_CHECK_RESET_COUNT;
7071 
7072 		while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
7073 			usleep_range(10000, 11000);
7074 
7075 		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
7076 
7077 		/* Down the device without resetting the hardware */
7078 		e1000e_down(adapter, false);
7079 	}
7080 
7081 	if (__e1000_shutdown(pdev, true)) {
7082 		e1000e_pm_runtime_resume(dev);
7083 		return -EBUSY;
7084 	}
7085 
7086 	return 0;
7087 }
7088 
7089 static void e1000_shutdown(struct pci_dev *pdev)
7090 {
7091 	e1000e_flush_lpic(pdev);
7092 
7093 	e1000e_pm_freeze(&pdev->dev);
7094 
7095 	__e1000_shutdown(pdev, false);
7096 }
7097 
7098 #ifdef CONFIG_NET_POLL_CONTROLLER
7099 
7100 static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data)
7101 {
7102 	struct net_device *netdev = data;
7103 	struct e1000_adapter *adapter = netdev_priv(netdev);
7104 
7105 	if (adapter->msix_entries) {
7106 		int vector, msix_irq;
7107 
7108 		vector = 0;
7109 		msix_irq = adapter->msix_entries[vector].vector;
7110 		if (disable_hardirq(msix_irq))
7111 			e1000_intr_msix_rx(msix_irq, netdev);
7112 		enable_irq(msix_irq);
7113 
7114 		vector++;
7115 		msix_irq = adapter->msix_entries[vector].vector;
7116 		if (disable_hardirq(msix_irq))
7117 			e1000_intr_msix_tx(msix_irq, netdev);
7118 		enable_irq(msix_irq);
7119 
7120 		vector++;
7121 		msix_irq = adapter->msix_entries[vector].vector;
7122 		if (disable_hardirq(msix_irq))
7123 			e1000_msix_other(msix_irq, netdev);
7124 		enable_irq(msix_irq);
7125 	}
7126 
7127 	return IRQ_HANDLED;
7128 }
7129 
7130 /**
7131  * e1000_netpoll
7132  * @netdev: network interface device structure
7133  *
7134  * Polling 'interrupt' - used by things like netconsole to send skbs
7135  * without having to re-enable interrupts. It's not called while
7136  * the interrupt routine is executing.
7137  */
7138 static void e1000_netpoll(struct net_device *netdev)
7139 {
7140 	struct e1000_adapter *adapter = netdev_priv(netdev);
7141 
7142 	switch (adapter->int_mode) {
7143 	case E1000E_INT_MODE_MSIX:
7144 		e1000_intr_msix(adapter->pdev->irq, netdev);
7145 		break;
7146 	case E1000E_INT_MODE_MSI:
7147 		if (disable_hardirq(adapter->pdev->irq))
7148 			e1000_intr_msi(adapter->pdev->irq, netdev);
7149 		enable_irq(adapter->pdev->irq);
7150 		break;
7151 	default:		/* E1000E_INT_MODE_LEGACY */
7152 		if (disable_hardirq(adapter->pdev->irq))
7153 			e1000_intr(adapter->pdev->irq, netdev);
7154 		enable_irq(adapter->pdev->irq);
7155 		break;
7156 	}
7157 }
7158 #endif
7159 
7160 /**
7161  * e1000_io_error_detected - called when PCI error is detected
7162  * @pdev: Pointer to PCI device
7163  * @state: The current pci connection state
7164  *
7165  * This function is called after a PCI bus error affecting
7166  * this device has been detected.
7167  */
7168 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
7169 						pci_channel_state_t state)
7170 {
7171 	e1000e_pm_freeze(&pdev->dev);
7172 
7173 	if (state == pci_channel_io_perm_failure)
7174 		return PCI_ERS_RESULT_DISCONNECT;
7175 
7176 	pci_disable_device(pdev);
7177 
7178 	/* Request a slot reset. */
7179 	return PCI_ERS_RESULT_NEED_RESET;
7180 }
7181 
7182 /**
7183  * e1000_io_slot_reset - called after the pci bus has been reset.
7184  * @pdev: Pointer to PCI device
7185  *
7186  * Restart the card from scratch, as if from a cold-boot. Implementation
7187  * resembles the first-half of the e1000e_pm_resume routine.
7188  */
7189 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
7190 {
7191 	struct net_device *netdev = pci_get_drvdata(pdev);
7192 	struct e1000_adapter *adapter = netdev_priv(netdev);
7193 	struct e1000_hw *hw = &adapter->hw;
7194 	u16 aspm_disable_flag = 0;
7195 	int err;
7196 	pci_ers_result_t result;
7197 
7198 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
7199 		aspm_disable_flag = PCIE_LINK_STATE_L0S;
7200 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
7201 		aspm_disable_flag |= PCIE_LINK_STATE_L1;
7202 	if (aspm_disable_flag)
7203 		e1000e_disable_aspm_locked(pdev, aspm_disable_flag);
7204 
7205 	err = pci_enable_device_mem(pdev);
7206 	if (err) {
7207 		dev_err(&pdev->dev,
7208 			"Cannot re-enable PCI device after reset.\n");
7209 		result = PCI_ERS_RESULT_DISCONNECT;
7210 	} else {
7211 		pdev->state_saved = true;
7212 		pci_restore_state(pdev);
7213 		pci_set_master(pdev);
7214 
7215 		pci_enable_wake(pdev, PCI_D3hot, 0);
7216 		pci_enable_wake(pdev, PCI_D3cold, 0);
7217 
7218 		e1000e_reset(adapter);
7219 		ew32(WUS, ~0);
7220 		result = PCI_ERS_RESULT_RECOVERED;
7221 	}
7222 
7223 	return result;
7224 }
7225 
7226 /**
7227  * e1000_io_resume - called when traffic can start flowing again.
7228  * @pdev: Pointer to PCI device
7229  *
7230  * This callback is called when the error recovery driver tells us that
7231  * its OK to resume normal operation. Implementation resembles the
7232  * second-half of the e1000e_pm_resume routine.
7233  */
7234 static void e1000_io_resume(struct pci_dev *pdev)
7235 {
7236 	struct net_device *netdev = pci_get_drvdata(pdev);
7237 	struct e1000_adapter *adapter = netdev_priv(netdev);
7238 
7239 	e1000_init_manageability_pt(adapter);
7240 
7241 	e1000e_pm_thaw(&pdev->dev);
7242 
7243 	/* If the controller has AMT, do not set DRV_LOAD until the interface
7244 	 * is up.  For all other cases, let the f/w know that the h/w is now
7245 	 * under the control of the driver.
7246 	 */
7247 	if (!(adapter->flags & FLAG_HAS_AMT))
7248 		e1000e_get_hw_control(adapter);
7249 }
7250 
7251 static void e1000_print_device_info(struct e1000_adapter *adapter)
7252 {
7253 	struct e1000_hw *hw = &adapter->hw;
7254 	struct net_device *netdev = adapter->netdev;
7255 	u32 ret_val;
7256 	u8 pba_str[E1000_PBANUM_LENGTH];
7257 
7258 	/* print bus type/speed/width info */
7259 	e_info("(PCI Express:2.5GT/s:%s) %pM\n",
7260 	       /* bus width */
7261 	       ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
7262 		"Width x1"),
7263 	       /* MAC address */
7264 	       netdev->dev_addr);
7265 	e_info("Intel(R) PRO/%s Network Connection\n",
7266 	       (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
7267 	ret_val = e1000_read_pba_string_generic(hw, pba_str,
7268 						E1000_PBANUM_LENGTH);
7269 	if (ret_val)
7270 		strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
7271 	e_info("MAC: %d, PHY: %d, PBA No: %s\n",
7272 	       hw->mac.type, hw->phy.type, pba_str);
7273 }
7274 
7275 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
7276 {
7277 	struct e1000_hw *hw = &adapter->hw;
7278 	int ret_val;
7279 	u16 buf = 0;
7280 
7281 	if (hw->mac.type != e1000_82573)
7282 		return;
7283 
7284 	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
7285 	le16_to_cpus(&buf);
7286 	if (!ret_val && (!(buf & BIT(0)))) {
7287 		/* Deep Smart Power Down (DSPD) */
7288 		dev_warn(&adapter->pdev->dev,
7289 			 "Warning: detected DSPD enabled in EEPROM\n");
7290 	}
7291 }
7292 
7293 static netdev_features_t e1000_fix_features(struct net_device *netdev,
7294 					    netdev_features_t features)
7295 {
7296 	struct e1000_adapter *adapter = netdev_priv(netdev);
7297 	struct e1000_hw *hw = &adapter->hw;
7298 
7299 	/* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
7300 	if ((hw->mac.type >= e1000_pch2lan) && (netdev->mtu > ETH_DATA_LEN))
7301 		features &= ~NETIF_F_RXFCS;
7302 
7303 	/* Since there is no support for separate Rx/Tx vlan accel
7304 	 * enable/disable make sure Tx flag is always in same state as Rx.
7305 	 */
7306 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
7307 		features |= NETIF_F_HW_VLAN_CTAG_TX;
7308 	else
7309 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
7310 
7311 	return features;
7312 }
7313 
7314 static int e1000_set_features(struct net_device *netdev,
7315 			      netdev_features_t features)
7316 {
7317 	struct e1000_adapter *adapter = netdev_priv(netdev);
7318 	netdev_features_t changed = features ^ netdev->features;
7319 
7320 	if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
7321 		adapter->flags |= FLAG_TSO_FORCE;
7322 
7323 	if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
7324 			 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
7325 			 NETIF_F_RXALL)))
7326 		return 0;
7327 
7328 	if (changed & NETIF_F_RXFCS) {
7329 		if (features & NETIF_F_RXFCS) {
7330 			adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
7331 		} else {
7332 			/* We need to take it back to defaults, which might mean
7333 			 * stripping is still disabled at the adapter level.
7334 			 */
7335 			if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
7336 				adapter->flags2 |= FLAG2_CRC_STRIPPING;
7337 			else
7338 				adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
7339 		}
7340 	}
7341 
7342 	netdev->features = features;
7343 
7344 	if (netif_running(netdev))
7345 		e1000e_reinit_locked(adapter);
7346 	else
7347 		e1000e_reset(adapter);
7348 
7349 	return 1;
7350 }
7351 
7352 static const struct net_device_ops e1000e_netdev_ops = {
7353 	.ndo_open		= e1000e_open,
7354 	.ndo_stop		= e1000e_close,
7355 	.ndo_start_xmit		= e1000_xmit_frame,
7356 	.ndo_get_stats64	= e1000e_get_stats64,
7357 	.ndo_set_rx_mode	= e1000e_set_rx_mode,
7358 	.ndo_set_mac_address	= e1000_set_mac,
7359 	.ndo_change_mtu		= e1000_change_mtu,
7360 	.ndo_eth_ioctl		= e1000_ioctl,
7361 	.ndo_tx_timeout		= e1000_tx_timeout,
7362 	.ndo_validate_addr	= eth_validate_addr,
7363 
7364 	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
7365 	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
7366 #ifdef CONFIG_NET_POLL_CONTROLLER
7367 	.ndo_poll_controller	= e1000_netpoll,
7368 #endif
7369 	.ndo_set_features = e1000_set_features,
7370 	.ndo_fix_features = e1000_fix_features,
7371 	.ndo_features_check	= passthru_features_check,
7372 };
7373 
7374 /**
7375  * e1000_probe - Device Initialization Routine
7376  * @pdev: PCI device information struct
7377  * @ent: entry in e1000_pci_tbl
7378  *
7379  * Returns 0 on success, negative on failure
7380  *
7381  * e1000_probe initializes an adapter identified by a pci_dev structure.
7382  * The OS initialization, configuring of the adapter private structure,
7383  * and a hardware reset occur.
7384  **/
7385 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
7386 {
7387 	struct net_device *netdev;
7388 	struct e1000_adapter *adapter;
7389 	struct e1000_hw *hw;
7390 	const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
7391 	resource_size_t mmio_start, mmio_len;
7392 	resource_size_t flash_start, flash_len;
7393 	static int cards_found;
7394 	u16 aspm_disable_flag = 0;
7395 	u16 eeprom_data = 0;
7396 	u16 eeprom_apme_mask = E1000_EEPROM_APME;
7397 	int bars, i, err;
7398 	s32 ret_val = 0;
7399 
7400 	if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
7401 		aspm_disable_flag = PCIE_LINK_STATE_L0S;
7402 	if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
7403 		aspm_disable_flag |= PCIE_LINK_STATE_L1;
7404 	if (aspm_disable_flag)
7405 		e1000e_disable_aspm(pdev, aspm_disable_flag);
7406 
7407 	err = pci_enable_device_mem(pdev);
7408 	if (err)
7409 		return err;
7410 
7411 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
7412 	if (err) {
7413 		dev_err(&pdev->dev,
7414 			"No usable DMA configuration, aborting\n");
7415 		goto err_dma;
7416 	}
7417 
7418 	bars = pci_select_bars(pdev, IORESOURCE_MEM);
7419 	err = pci_request_selected_regions_exclusive(pdev, bars,
7420 						     e1000e_driver_name);
7421 	if (err)
7422 		goto err_pci_reg;
7423 
7424 	/* AER (Advanced Error Reporting) hooks */
7425 	pci_enable_pcie_error_reporting(pdev);
7426 
7427 	pci_set_master(pdev);
7428 	/* PCI config space info */
7429 	err = pci_save_state(pdev);
7430 	if (err)
7431 		goto err_alloc_etherdev;
7432 
7433 	err = -ENOMEM;
7434 	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
7435 	if (!netdev)
7436 		goto err_alloc_etherdev;
7437 
7438 	SET_NETDEV_DEV(netdev, &pdev->dev);
7439 
7440 	netdev->irq = pdev->irq;
7441 
7442 	pci_set_drvdata(pdev, netdev);
7443 	adapter = netdev_priv(netdev);
7444 	hw = &adapter->hw;
7445 	adapter->netdev = netdev;
7446 	adapter->pdev = pdev;
7447 	adapter->ei = ei;
7448 	adapter->pba = ei->pba;
7449 	adapter->flags = ei->flags;
7450 	adapter->flags2 = ei->flags2;
7451 	adapter->hw.adapter = adapter;
7452 	adapter->hw.mac.type = ei->mac;
7453 	adapter->max_hw_frame_size = ei->max_hw_frame_size;
7454 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
7455 
7456 	mmio_start = pci_resource_start(pdev, 0);
7457 	mmio_len = pci_resource_len(pdev, 0);
7458 
7459 	err = -EIO;
7460 	adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
7461 	if (!adapter->hw.hw_addr)
7462 		goto err_ioremap;
7463 
7464 	if ((adapter->flags & FLAG_HAS_FLASH) &&
7465 	    (pci_resource_flags(pdev, 1) & IORESOURCE_MEM) &&
7466 	    (hw->mac.type < e1000_pch_spt)) {
7467 		flash_start = pci_resource_start(pdev, 1);
7468 		flash_len = pci_resource_len(pdev, 1);
7469 		adapter->hw.flash_address = ioremap(flash_start, flash_len);
7470 		if (!adapter->hw.flash_address)
7471 			goto err_flashmap;
7472 	}
7473 
7474 	/* Set default EEE advertisement */
7475 	if (adapter->flags2 & FLAG2_HAS_EEE)
7476 		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
7477 
7478 	/* construct the net_device struct */
7479 	netdev->netdev_ops = &e1000e_netdev_ops;
7480 	e1000e_set_ethtool_ops(netdev);
7481 	netdev->watchdog_timeo = 5 * HZ;
7482 	netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64);
7483 	strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
7484 
7485 	netdev->mem_start = mmio_start;
7486 	netdev->mem_end = mmio_start + mmio_len;
7487 
7488 	adapter->bd_number = cards_found++;
7489 
7490 	e1000e_check_options(adapter);
7491 
7492 	/* setup adapter struct */
7493 	err = e1000_sw_init(adapter);
7494 	if (err)
7495 		goto err_sw_init;
7496 
7497 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
7498 	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
7499 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
7500 
7501 	err = ei->get_variants(adapter);
7502 	if (err)
7503 		goto err_hw_init;
7504 
7505 	if ((adapter->flags & FLAG_IS_ICH) &&
7506 	    (adapter->flags & FLAG_READ_ONLY_NVM) &&
7507 	    (hw->mac.type < e1000_pch_spt))
7508 		e1000e_write_protect_nvm_ich8lan(&adapter->hw);
7509 
7510 	hw->mac.ops.get_bus_info(&adapter->hw);
7511 
7512 	adapter->hw.phy.autoneg_wait_to_complete = 0;
7513 
7514 	/* Copper options */
7515 	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
7516 		adapter->hw.phy.mdix = AUTO_ALL_MODES;
7517 		adapter->hw.phy.disable_polarity_correction = 0;
7518 		adapter->hw.phy.ms_type = e1000_ms_hw_default;
7519 	}
7520 
7521 	if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
7522 		dev_info(&pdev->dev,
7523 			 "PHY reset is blocked due to SOL/IDER session.\n");
7524 
7525 	/* Set initial default active device features */
7526 	netdev->features = (NETIF_F_SG |
7527 			    NETIF_F_HW_VLAN_CTAG_RX |
7528 			    NETIF_F_HW_VLAN_CTAG_TX |
7529 			    NETIF_F_TSO |
7530 			    NETIF_F_TSO6 |
7531 			    NETIF_F_RXHASH |
7532 			    NETIF_F_RXCSUM |
7533 			    NETIF_F_HW_CSUM);
7534 
7535 	/* Set user-changeable features (subset of all device features) */
7536 	netdev->hw_features = netdev->features;
7537 	netdev->hw_features |= NETIF_F_RXFCS;
7538 	netdev->priv_flags |= IFF_SUPP_NOFCS;
7539 	netdev->hw_features |= NETIF_F_RXALL;
7540 
7541 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
7542 		netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7543 
7544 	netdev->vlan_features |= (NETIF_F_SG |
7545 				  NETIF_F_TSO |
7546 				  NETIF_F_TSO6 |
7547 				  NETIF_F_HW_CSUM);
7548 
7549 	netdev->priv_flags |= IFF_UNICAST_FLT;
7550 
7551 	netdev->features |= NETIF_F_HIGHDMA;
7552 	netdev->vlan_features |= NETIF_F_HIGHDMA;
7553 
7554 	/* MTU range: 68 - max_hw_frame_size */
7555 	netdev->min_mtu = ETH_MIN_MTU;
7556 	netdev->max_mtu = adapter->max_hw_frame_size -
7557 			  (VLAN_ETH_HLEN + ETH_FCS_LEN);
7558 
7559 	if (e1000e_enable_mng_pass_thru(&adapter->hw))
7560 		adapter->flags |= FLAG_MNG_PT_ENABLED;
7561 
7562 	/* before reading the NVM, reset the controller to
7563 	 * put the device in a known good starting state
7564 	 */
7565 	adapter->hw.mac.ops.reset_hw(&adapter->hw);
7566 
7567 	/* systems with ASPM and others may see the checksum fail on the first
7568 	 * attempt. Let's give it a few tries
7569 	 */
7570 	for (i = 0;; i++) {
7571 		if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
7572 			break;
7573 		if (i == 2) {
7574 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
7575 			err = -EIO;
7576 			goto err_eeprom;
7577 		}
7578 	}
7579 
7580 	e1000_eeprom_checks(adapter);
7581 
7582 	/* copy the MAC address */
7583 	if (e1000e_read_mac_addr(&adapter->hw))
7584 		dev_err(&pdev->dev,
7585 			"NVM Read Error while reading MAC address\n");
7586 
7587 	eth_hw_addr_set(netdev, adapter->hw.mac.addr);
7588 
7589 	if (!is_valid_ether_addr(netdev->dev_addr)) {
7590 		dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
7591 			netdev->dev_addr);
7592 		err = -EIO;
7593 		goto err_eeprom;
7594 	}
7595 
7596 	timer_setup(&adapter->watchdog_timer, e1000_watchdog, 0);
7597 	timer_setup(&adapter->phy_info_timer, e1000_update_phy_info, 0);
7598 
7599 	INIT_WORK(&adapter->reset_task, e1000_reset_task);
7600 	INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
7601 	INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
7602 	INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
7603 	INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
7604 
7605 	/* Initialize link parameters. User can change them with ethtool */
7606 	adapter->hw.mac.autoneg = 1;
7607 	adapter->fc_autoneg = true;
7608 	adapter->hw.fc.requested_mode = e1000_fc_default;
7609 	adapter->hw.fc.current_mode = e1000_fc_default;
7610 	adapter->hw.phy.autoneg_advertised = 0x2f;
7611 
7612 	/* Initial Wake on LAN setting - If APM wake is enabled in
7613 	 * the EEPROM, enable the ACPI Magic Packet filter
7614 	 */
7615 	if (adapter->flags & FLAG_APME_IN_WUC) {
7616 		/* APME bit in EEPROM is mapped to WUC.APME */
7617 		eeprom_data = er32(WUC);
7618 		eeprom_apme_mask = E1000_WUC_APME;
7619 		if ((hw->mac.type > e1000_ich10lan) &&
7620 		    (eeprom_data & E1000_WUC_PHY_WAKE))
7621 			adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
7622 	} else if (adapter->flags & FLAG_APME_IN_CTRL3) {
7623 		if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
7624 		    (adapter->hw.bus.func == 1))
7625 			ret_val = e1000_read_nvm(&adapter->hw,
7626 					      NVM_INIT_CONTROL3_PORT_B,
7627 					      1, &eeprom_data);
7628 		else
7629 			ret_val = e1000_read_nvm(&adapter->hw,
7630 					      NVM_INIT_CONTROL3_PORT_A,
7631 					      1, &eeprom_data);
7632 	}
7633 
7634 	/* fetch WoL from EEPROM */
7635 	if (ret_val)
7636 		e_dbg("NVM read error getting WoL initial values: %d\n", ret_val);
7637 	else if (eeprom_data & eeprom_apme_mask)
7638 		adapter->eeprom_wol |= E1000_WUFC_MAG;
7639 
7640 	/* now that we have the eeprom settings, apply the special cases
7641 	 * where the eeprom may be wrong or the board simply won't support
7642 	 * wake on lan on a particular port
7643 	 */
7644 	if (!(adapter->flags & FLAG_HAS_WOL))
7645 		adapter->eeprom_wol = 0;
7646 
7647 	/* initialize the wol settings based on the eeprom settings */
7648 	adapter->wol = adapter->eeprom_wol;
7649 
7650 	/* make sure adapter isn't asleep if manageability is enabled */
7651 	if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) ||
7652 	    (hw->mac.ops.check_mng_mode(hw)))
7653 		device_wakeup_enable(&pdev->dev);
7654 
7655 	/* save off EEPROM version number */
7656 	ret_val = e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
7657 
7658 	if (ret_val) {
7659 		e_dbg("NVM read error getting EEPROM version: %d\n", ret_val);
7660 		adapter->eeprom_vers = 0;
7661 	}
7662 
7663 	/* init PTP hardware clock */
7664 	e1000e_ptp_init(adapter);
7665 
7666 	/* reset the hardware with the new settings */
7667 	e1000e_reset(adapter);
7668 
7669 	/* If the controller has AMT, do not set DRV_LOAD until the interface
7670 	 * is up.  For all other cases, let the f/w know that the h/w is now
7671 	 * under the control of the driver.
7672 	 */
7673 	if (!(adapter->flags & FLAG_HAS_AMT))
7674 		e1000e_get_hw_control(adapter);
7675 
7676 	if (hw->mac.type >= e1000_pch_cnp)
7677 		adapter->flags2 |= FLAG2_ENABLE_S0IX_FLOWS;
7678 
7679 	strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
7680 	err = register_netdev(netdev);
7681 	if (err)
7682 		goto err_register;
7683 
7684 	/* carrier off reporting is important to ethtool even BEFORE open */
7685 	netif_carrier_off(netdev);
7686 
7687 	e1000_print_device_info(adapter);
7688 
7689 	dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_SMART_PREPARE);
7690 
7691 	if (pci_dev_run_wake(pdev) && hw->mac.type != e1000_pch_cnp)
7692 		pm_runtime_put_noidle(&pdev->dev);
7693 
7694 	return 0;
7695 
7696 err_register:
7697 	if (!(adapter->flags & FLAG_HAS_AMT))
7698 		e1000e_release_hw_control(adapter);
7699 err_eeprom:
7700 	if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
7701 		e1000_phy_hw_reset(&adapter->hw);
7702 err_hw_init:
7703 	kfree(adapter->tx_ring);
7704 	kfree(adapter->rx_ring);
7705 err_sw_init:
7706 	if ((adapter->hw.flash_address) && (hw->mac.type < e1000_pch_spt))
7707 		iounmap(adapter->hw.flash_address);
7708 	e1000e_reset_interrupt_capability(adapter);
7709 err_flashmap:
7710 	iounmap(adapter->hw.hw_addr);
7711 err_ioremap:
7712 	free_netdev(netdev);
7713 err_alloc_etherdev:
7714 	pci_disable_pcie_error_reporting(pdev);
7715 	pci_release_mem_regions(pdev);
7716 err_pci_reg:
7717 err_dma:
7718 	pci_disable_device(pdev);
7719 	return err;
7720 }
7721 
7722 /**
7723  * e1000_remove - Device Removal Routine
7724  * @pdev: PCI device information struct
7725  *
7726  * e1000_remove is called by the PCI subsystem to alert the driver
7727  * that it should release a PCI device.  This could be caused by a
7728  * Hot-Plug event, or because the driver is going to be removed from
7729  * memory.
7730  **/
7731 static void e1000_remove(struct pci_dev *pdev)
7732 {
7733 	struct net_device *netdev = pci_get_drvdata(pdev);
7734 	struct e1000_adapter *adapter = netdev_priv(netdev);
7735 
7736 	e1000e_ptp_remove(adapter);
7737 
7738 	/* The timers may be rescheduled, so explicitly disable them
7739 	 * from being rescheduled.
7740 	 */
7741 	set_bit(__E1000_DOWN, &adapter->state);
7742 	del_timer_sync(&adapter->watchdog_timer);
7743 	del_timer_sync(&adapter->phy_info_timer);
7744 
7745 	cancel_work_sync(&adapter->reset_task);
7746 	cancel_work_sync(&adapter->watchdog_task);
7747 	cancel_work_sync(&adapter->downshift_task);
7748 	cancel_work_sync(&adapter->update_phy_task);
7749 	cancel_work_sync(&adapter->print_hang_task);
7750 
7751 	if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
7752 		cancel_work_sync(&adapter->tx_hwtstamp_work);
7753 		if (adapter->tx_hwtstamp_skb) {
7754 			dev_consume_skb_any(adapter->tx_hwtstamp_skb);
7755 			adapter->tx_hwtstamp_skb = NULL;
7756 		}
7757 	}
7758 
7759 	unregister_netdev(netdev);
7760 
7761 	if (pci_dev_run_wake(pdev))
7762 		pm_runtime_get_noresume(&pdev->dev);
7763 
7764 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7765 	 * would have already happened in close and is redundant.
7766 	 */
7767 	e1000e_release_hw_control(adapter);
7768 
7769 	e1000e_reset_interrupt_capability(adapter);
7770 	kfree(adapter->tx_ring);
7771 	kfree(adapter->rx_ring);
7772 
7773 	iounmap(adapter->hw.hw_addr);
7774 	if ((adapter->hw.flash_address) &&
7775 	    (adapter->hw.mac.type < e1000_pch_spt))
7776 		iounmap(adapter->hw.flash_address);
7777 	pci_release_mem_regions(pdev);
7778 
7779 	free_netdev(netdev);
7780 
7781 	/* AER disable */
7782 	pci_disable_pcie_error_reporting(pdev);
7783 
7784 	pci_disable_device(pdev);
7785 }
7786 
7787 /* PCI Error Recovery (ERS) */
7788 static const struct pci_error_handlers e1000_err_handler = {
7789 	.error_detected = e1000_io_error_detected,
7790 	.slot_reset = e1000_io_slot_reset,
7791 	.resume = e1000_io_resume,
7792 };
7793 
7794 static const struct pci_device_id e1000_pci_tbl[] = {
7795 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
7796 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
7797 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
7798 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP),
7799 	  board_82571 },
7800 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
7801 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
7802 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
7803 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
7804 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
7805 
7806 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
7807 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
7808 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
7809 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
7810 
7811 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
7812 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
7813 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
7814 
7815 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
7816 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
7817 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
7818 
7819 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
7820 	  board_80003es2lan },
7821 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
7822 	  board_80003es2lan },
7823 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
7824 	  board_80003es2lan },
7825 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
7826 	  board_80003es2lan },
7827 
7828 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
7829 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
7830 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
7831 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
7832 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
7833 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
7834 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
7835 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
7836 
7837 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
7838 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
7839 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
7840 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
7841 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
7842 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
7843 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
7844 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
7845 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
7846 
7847 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
7848 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
7849 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
7850 
7851 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
7852 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
7853 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
7854 
7855 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
7856 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
7857 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
7858 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
7859 
7860 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
7861 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
7862 
7863 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
7864 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
7865 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt },
7866 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt },
7867 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt },
7868 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt },
7869 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt },
7870 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt },
7871 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM), board_pch_spt },
7872 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V), board_pch_spt },
7873 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM2), board_pch_spt },
7874 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V2), board_pch_spt },
7875 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LBG_I219_LM3), board_pch_spt },
7876 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM4), board_pch_spt },
7877 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V4), board_pch_spt },
7878 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM5), board_pch_spt },
7879 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V5), board_pch_spt },
7880 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM6), board_pch_cnp },
7881 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V6), board_pch_cnp },
7882 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM7), board_pch_cnp },
7883 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V7), board_pch_cnp },
7884 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM8), board_pch_cnp },
7885 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V8), board_pch_cnp },
7886 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM9), board_pch_cnp },
7887 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V9), board_pch_cnp },
7888 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM10), board_pch_cnp },
7889 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V10), board_pch_cnp },
7890 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM11), board_pch_cnp },
7891 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V11), board_pch_cnp },
7892 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM12), board_pch_spt },
7893 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V12), board_pch_spt },
7894 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM13), board_pch_tgp },
7895 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V13), board_pch_tgp },
7896 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM14), board_pch_tgp },
7897 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V14), board_pch_tgp },
7898 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM15), board_pch_tgp },
7899 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V15), board_pch_tgp },
7900 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_LM23), board_pch_adp },
7901 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_V23), board_pch_adp },
7902 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_LM16), board_pch_adp },
7903 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_V16), board_pch_adp },
7904 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_LM17), board_pch_adp },
7905 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_V17), board_pch_adp },
7906 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_LM22), board_pch_adp },
7907 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_V22), board_pch_adp },
7908 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_LM18), board_pch_adp },
7909 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_V18), board_pch_adp },
7910 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_LM19), board_pch_adp },
7911 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_V19), board_pch_adp },
7912 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_LM20), board_pch_adp },
7913 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_V20), board_pch_adp },
7914 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_LM21), board_pch_adp },
7915 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_V21), board_pch_adp },
7916 
7917 	{ 0, 0, 0, 0, 0, 0, 0 }	/* terminate list */
7918 };
7919 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
7920 
7921 static const struct dev_pm_ops e1000_pm_ops = {
7922 #ifdef CONFIG_PM_SLEEP
7923 	.prepare	= e1000e_pm_prepare,
7924 	.suspend	= e1000e_pm_suspend,
7925 	.resume		= e1000e_pm_resume,
7926 	.freeze		= e1000e_pm_freeze,
7927 	.thaw		= e1000e_pm_thaw,
7928 	.poweroff	= e1000e_pm_suspend,
7929 	.restore	= e1000e_pm_resume,
7930 #endif
7931 	SET_RUNTIME_PM_OPS(e1000e_pm_runtime_suspend, e1000e_pm_runtime_resume,
7932 			   e1000e_pm_runtime_idle)
7933 };
7934 
7935 /* PCI Device API Driver */
7936 static struct pci_driver e1000_driver = {
7937 	.name     = e1000e_driver_name,
7938 	.id_table = e1000_pci_tbl,
7939 	.probe    = e1000_probe,
7940 	.remove   = e1000_remove,
7941 	.driver   = {
7942 		.pm = &e1000_pm_ops,
7943 	},
7944 	.shutdown = e1000_shutdown,
7945 	.err_handler = &e1000_err_handler
7946 };
7947 
7948 /**
7949  * e1000_init_module - Driver Registration Routine
7950  *
7951  * e1000_init_module is the first routine called when the driver is
7952  * loaded. All it does is register with the PCI subsystem.
7953  **/
7954 static int __init e1000_init_module(void)
7955 {
7956 	pr_info("Intel(R) PRO/1000 Network Driver\n");
7957 	pr_info("Copyright(c) 1999 - 2015 Intel Corporation.\n");
7958 
7959 	return pci_register_driver(&e1000_driver);
7960 }
7961 module_init(e1000_init_module);
7962 
7963 /**
7964  * e1000_exit_module - Driver Exit Cleanup Routine
7965  *
7966  * e1000_exit_module is called just before the driver is removed
7967  * from memory.
7968  **/
7969 static void __exit e1000_exit_module(void)
7970 {
7971 	pci_unregister_driver(&e1000_driver);
7972 }
7973 module_exit(e1000_exit_module);
7974 
7975 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
7976 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7977 MODULE_LICENSE("GPL v2");
7978 
7979 /* netdev.c */
7980