1 /* Intel PRO/1000 Linux driver
2  * Copyright(c) 1999 - 2014 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * The full GNU General Public License is included in this distribution in
14  * the file called "COPYING".
15  *
16  * Contact Information:
17  * Linux NICS <linux.nics@intel.com>
18  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
20  */
21 
22 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
23 
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/init.h>
27 #include <linux/pci.h>
28 #include <linux/vmalloc.h>
29 #include <linux/pagemap.h>
30 #include <linux/delay.h>
31 #include <linux/netdevice.h>
32 #include <linux/interrupt.h>
33 #include <linux/tcp.h>
34 #include <linux/ipv6.h>
35 #include <linux/slab.h>
36 #include <net/checksum.h>
37 #include <net/ip6_checksum.h>
38 #include <linux/ethtool.h>
39 #include <linux/if_vlan.h>
40 #include <linux/cpu.h>
41 #include <linux/smp.h>
42 #include <linux/pm_qos.h>
43 #include <linux/pm_runtime.h>
44 #include <linux/aer.h>
45 #include <linux/prefetch.h>
46 
47 #include "e1000.h"
48 
49 #define DRV_EXTRAVERSION "-k"
50 
51 #define DRV_VERSION "2.3.2" DRV_EXTRAVERSION
52 char e1000e_driver_name[] = "e1000e";
53 const char e1000e_driver_version[] = DRV_VERSION;
54 
55 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
56 static int debug = -1;
57 module_param(debug, int, 0);
58 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
59 
60 static const struct e1000_info *e1000_info_tbl[] = {
61 	[board_82571]		= &e1000_82571_info,
62 	[board_82572]		= &e1000_82572_info,
63 	[board_82573]		= &e1000_82573_info,
64 	[board_82574]		= &e1000_82574_info,
65 	[board_82583]		= &e1000_82583_info,
66 	[board_80003es2lan]	= &e1000_es2_info,
67 	[board_ich8lan]		= &e1000_ich8_info,
68 	[board_ich9lan]		= &e1000_ich9_info,
69 	[board_ich10lan]	= &e1000_ich10_info,
70 	[board_pchlan]		= &e1000_pch_info,
71 	[board_pch2lan]		= &e1000_pch2_info,
72 	[board_pch_lpt]		= &e1000_pch_lpt_info,
73 	[board_pch_spt]		= &e1000_pch_spt_info,
74 };
75 
76 struct e1000_reg_info {
77 	u32 ofs;
78 	char *name;
79 };
80 
81 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
82 	/* General Registers */
83 	{E1000_CTRL, "CTRL"},
84 	{E1000_STATUS, "STATUS"},
85 	{E1000_CTRL_EXT, "CTRL_EXT"},
86 
87 	/* Interrupt Registers */
88 	{E1000_ICR, "ICR"},
89 
90 	/* Rx Registers */
91 	{E1000_RCTL, "RCTL"},
92 	{E1000_RDLEN(0), "RDLEN"},
93 	{E1000_RDH(0), "RDH"},
94 	{E1000_RDT(0), "RDT"},
95 	{E1000_RDTR, "RDTR"},
96 	{E1000_RXDCTL(0), "RXDCTL"},
97 	{E1000_ERT, "ERT"},
98 	{E1000_RDBAL(0), "RDBAL"},
99 	{E1000_RDBAH(0), "RDBAH"},
100 	{E1000_RDFH, "RDFH"},
101 	{E1000_RDFT, "RDFT"},
102 	{E1000_RDFHS, "RDFHS"},
103 	{E1000_RDFTS, "RDFTS"},
104 	{E1000_RDFPC, "RDFPC"},
105 
106 	/* Tx Registers */
107 	{E1000_TCTL, "TCTL"},
108 	{E1000_TDBAL(0), "TDBAL"},
109 	{E1000_TDBAH(0), "TDBAH"},
110 	{E1000_TDLEN(0), "TDLEN"},
111 	{E1000_TDH(0), "TDH"},
112 	{E1000_TDT(0), "TDT"},
113 	{E1000_TIDV, "TIDV"},
114 	{E1000_TXDCTL(0), "TXDCTL"},
115 	{E1000_TADV, "TADV"},
116 	{E1000_TARC(0), "TARC"},
117 	{E1000_TDFH, "TDFH"},
118 	{E1000_TDFT, "TDFT"},
119 	{E1000_TDFHS, "TDFHS"},
120 	{E1000_TDFTS, "TDFTS"},
121 	{E1000_TDFPC, "TDFPC"},
122 
123 	/* List Terminator */
124 	{0, NULL}
125 };
126 
127 /**
128  * __ew32_prepare - prepare to write to MAC CSR register on certain parts
129  * @hw: pointer to the HW structure
130  *
131  * When updating the MAC CSR registers, the Manageability Engine (ME) could
132  * be accessing the registers at the same time.  Normally, this is handled in
133  * h/w by an arbiter but on some parts there is a bug that acknowledges Host
134  * accesses later than it should which could result in the register to have
135  * an incorrect value.  Workaround this by checking the FWSM register which
136  * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set
137  * and try again a number of times.
138  **/
139 s32 __ew32_prepare(struct e1000_hw *hw)
140 {
141 	s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT;
142 
143 	while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i)
144 		udelay(50);
145 
146 	return i;
147 }
148 
149 void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val)
150 {
151 	if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
152 		__ew32_prepare(hw);
153 
154 	writel(val, hw->hw_addr + reg);
155 }
156 
157 /**
158  * e1000_regdump - register printout routine
159  * @hw: pointer to the HW structure
160  * @reginfo: pointer to the register info table
161  **/
162 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
163 {
164 	int n = 0;
165 	char rname[16];
166 	u32 regs[8];
167 
168 	switch (reginfo->ofs) {
169 	case E1000_RXDCTL(0):
170 		for (n = 0; n < 2; n++)
171 			regs[n] = __er32(hw, E1000_RXDCTL(n));
172 		break;
173 	case E1000_TXDCTL(0):
174 		for (n = 0; n < 2; n++)
175 			regs[n] = __er32(hw, E1000_TXDCTL(n));
176 		break;
177 	case E1000_TARC(0):
178 		for (n = 0; n < 2; n++)
179 			regs[n] = __er32(hw, E1000_TARC(n));
180 		break;
181 	default:
182 		pr_info("%-15s %08x\n",
183 			reginfo->name, __er32(hw, reginfo->ofs));
184 		return;
185 	}
186 
187 	snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
188 	pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
189 }
190 
191 static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
192 				 struct e1000_buffer *bi)
193 {
194 	int i;
195 	struct e1000_ps_page *ps_page;
196 
197 	for (i = 0; i < adapter->rx_ps_pages; i++) {
198 		ps_page = &bi->ps_pages[i];
199 
200 		if (ps_page->page) {
201 			pr_info("packet dump for ps_page %d:\n", i);
202 			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
203 				       16, 1, page_address(ps_page->page),
204 				       PAGE_SIZE, true);
205 		}
206 	}
207 }
208 
209 /**
210  * e1000e_dump - Print registers, Tx-ring and Rx-ring
211  * @adapter: board private structure
212  **/
213 static void e1000e_dump(struct e1000_adapter *adapter)
214 {
215 	struct net_device *netdev = adapter->netdev;
216 	struct e1000_hw *hw = &adapter->hw;
217 	struct e1000_reg_info *reginfo;
218 	struct e1000_ring *tx_ring = adapter->tx_ring;
219 	struct e1000_tx_desc *tx_desc;
220 	struct my_u0 {
221 		__le64 a;
222 		__le64 b;
223 	} *u0;
224 	struct e1000_buffer *buffer_info;
225 	struct e1000_ring *rx_ring = adapter->rx_ring;
226 	union e1000_rx_desc_packet_split *rx_desc_ps;
227 	union e1000_rx_desc_extended *rx_desc;
228 	struct my_u1 {
229 		__le64 a;
230 		__le64 b;
231 		__le64 c;
232 		__le64 d;
233 	} *u1;
234 	u32 staterr;
235 	int i = 0;
236 
237 	if (!netif_msg_hw(adapter))
238 		return;
239 
240 	/* Print netdevice Info */
241 	if (netdev) {
242 		dev_info(&adapter->pdev->dev, "Net device Info\n");
243 		pr_info("Device Name     state            trans_start      last_rx\n");
244 		pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
245 			netdev->state, netdev->trans_start, netdev->last_rx);
246 	}
247 
248 	/* Print Registers */
249 	dev_info(&adapter->pdev->dev, "Register Dump\n");
250 	pr_info(" Register Name   Value\n");
251 	for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
252 	     reginfo->name; reginfo++) {
253 		e1000_regdump(hw, reginfo);
254 	}
255 
256 	/* Print Tx Ring Summary */
257 	if (!netdev || !netif_running(netdev))
258 		return;
259 
260 	dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
261 	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
262 	buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
263 	pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
264 		0, tx_ring->next_to_use, tx_ring->next_to_clean,
265 		(unsigned long long)buffer_info->dma,
266 		buffer_info->length,
267 		buffer_info->next_to_watch,
268 		(unsigned long long)buffer_info->time_stamp);
269 
270 	/* Print Tx Ring */
271 	if (!netif_msg_tx_done(adapter))
272 		goto rx_ring_summary;
273 
274 	dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
275 
276 	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
277 	 *
278 	 * Legacy Transmit Descriptor
279 	 *   +--------------------------------------------------------------+
280 	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
281 	 *   +--------------------------------------------------------------+
282 	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
283 	 *   +--------------------------------------------------------------+
284 	 *   63       48 47        36 35    32 31     24 23    16 15        0
285 	 *
286 	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
287 	 *   63      48 47    40 39       32 31             16 15    8 7      0
288 	 *   +----------------------------------------------------------------+
289 	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
290 	 *   +----------------------------------------------------------------+
291 	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
292 	 *   +----------------------------------------------------------------+
293 	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
294 	 *
295 	 * Extended Data Descriptor (DTYP=0x1)
296 	 *   +----------------------------------------------------------------+
297 	 * 0 |                     Buffer Address [63:0]                      |
298 	 *   +----------------------------------------------------------------+
299 	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
300 	 *   +----------------------------------------------------------------+
301 	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
302 	 */
303 	pr_info("Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Legacy format\n");
304 	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Context format\n");
305 	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Data format\n");
306 	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
307 		const char *next_desc;
308 		tx_desc = E1000_TX_DESC(*tx_ring, i);
309 		buffer_info = &tx_ring->buffer_info[i];
310 		u0 = (struct my_u0 *)tx_desc;
311 		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
312 			next_desc = " NTC/U";
313 		else if (i == tx_ring->next_to_use)
314 			next_desc = " NTU";
315 		else if (i == tx_ring->next_to_clean)
316 			next_desc = " NTC";
317 		else
318 			next_desc = "";
319 		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p%s\n",
320 			(!(le64_to_cpu(u0->b) & (1 << 29)) ? 'l' :
321 			 ((le64_to_cpu(u0->b) & (1 << 20)) ? 'd' : 'c')),
322 			i,
323 			(unsigned long long)le64_to_cpu(u0->a),
324 			(unsigned long long)le64_to_cpu(u0->b),
325 			(unsigned long long)buffer_info->dma,
326 			buffer_info->length, buffer_info->next_to_watch,
327 			(unsigned long long)buffer_info->time_stamp,
328 			buffer_info->skb, next_desc);
329 
330 		if (netif_msg_pktdata(adapter) && buffer_info->skb)
331 			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
332 				       16, 1, buffer_info->skb->data,
333 				       buffer_info->skb->len, true);
334 	}
335 
336 	/* Print Rx Ring Summary */
337 rx_ring_summary:
338 	dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
339 	pr_info("Queue [NTU] [NTC]\n");
340 	pr_info(" %5d %5X %5X\n",
341 		0, rx_ring->next_to_use, rx_ring->next_to_clean);
342 
343 	/* Print Rx Ring */
344 	if (!netif_msg_rx_status(adapter))
345 		return;
346 
347 	dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
348 	switch (adapter->rx_ps_pages) {
349 	case 1:
350 	case 2:
351 	case 3:
352 		/* [Extended] Packet Split Receive Descriptor Format
353 		 *
354 		 *    +-----------------------------------------------------+
355 		 *  0 |                Buffer Address 0 [63:0]              |
356 		 *    +-----------------------------------------------------+
357 		 *  8 |                Buffer Address 1 [63:0]              |
358 		 *    +-----------------------------------------------------+
359 		 * 16 |                Buffer Address 2 [63:0]              |
360 		 *    +-----------------------------------------------------+
361 		 * 24 |                Buffer Address 3 [63:0]              |
362 		 *    +-----------------------------------------------------+
363 		 */
364 		pr_info("R  [desc]      [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] [bi->skb] <-- Ext Pkt Split format\n");
365 		/* [Extended] Receive Descriptor (Write-Back) Format
366 		 *
367 		 *   63       48 47    32 31     13 12    8 7    4 3        0
368 		 *   +------------------------------------------------------+
369 		 * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
370 		 *   | Checksum | Ident  |         | Queue |      |  Type   |
371 		 *   +------------------------------------------------------+
372 		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
373 		 *   +------------------------------------------------------+
374 		 *   63       48 47    32 31            20 19               0
375 		 */
376 		pr_info("RWB[desc]      [ck ipid mrqhsh] [vl   l0 ee  es] [ l3  l2  l1 hs] [reserved      ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
377 		for (i = 0; i < rx_ring->count; i++) {
378 			const char *next_desc;
379 			buffer_info = &rx_ring->buffer_info[i];
380 			rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
381 			u1 = (struct my_u1 *)rx_desc_ps;
382 			staterr =
383 			    le32_to_cpu(rx_desc_ps->wb.middle.status_error);
384 
385 			if (i == rx_ring->next_to_use)
386 				next_desc = " NTU";
387 			else if (i == rx_ring->next_to_clean)
388 				next_desc = " NTC";
389 			else
390 				next_desc = "";
391 
392 			if (staterr & E1000_RXD_STAT_DD) {
393 				/* Descriptor Done */
394 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX ---------------- %p%s\n",
395 					"RWB", i,
396 					(unsigned long long)le64_to_cpu(u1->a),
397 					(unsigned long long)le64_to_cpu(u1->b),
398 					(unsigned long long)le64_to_cpu(u1->c),
399 					(unsigned long long)le64_to_cpu(u1->d),
400 					buffer_info->skb, next_desc);
401 			} else {
402 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX %016llX %p%s\n",
403 					"R  ", i,
404 					(unsigned long long)le64_to_cpu(u1->a),
405 					(unsigned long long)le64_to_cpu(u1->b),
406 					(unsigned long long)le64_to_cpu(u1->c),
407 					(unsigned long long)le64_to_cpu(u1->d),
408 					(unsigned long long)buffer_info->dma,
409 					buffer_info->skb, next_desc);
410 
411 				if (netif_msg_pktdata(adapter))
412 					e1000e_dump_ps_pages(adapter,
413 							     buffer_info);
414 			}
415 		}
416 		break;
417 	default:
418 	case 0:
419 		/* Extended Receive Descriptor (Read) Format
420 		 *
421 		 *   +-----------------------------------------------------+
422 		 * 0 |                Buffer Address [63:0]                |
423 		 *   +-----------------------------------------------------+
424 		 * 8 |                      Reserved                       |
425 		 *   +-----------------------------------------------------+
426 		 */
427 		pr_info("R  [desc]      [buf addr 63:0 ] [reserved 63:0 ] [bi->dma       ] [bi->skb] <-- Ext (Read) format\n");
428 		/* Extended Receive Descriptor (Write-Back) Format
429 		 *
430 		 *   63       48 47    32 31    24 23            4 3        0
431 		 *   +------------------------------------------------------+
432 		 *   |     RSS Hash      |        |               |         |
433 		 * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
434 		 *   | Packet   | IP     |        |               |  Type   |
435 		 *   | Checksum | Ident  |        |               |         |
436 		 *   +------------------------------------------------------+
437 		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
438 		 *   +------------------------------------------------------+
439 		 *   63       48 47    32 31            20 19               0
440 		 */
441 		pr_info("RWB[desc]      [cs ipid    mrq] [vt   ln xe  xs] [bi->skb] <-- Ext (Write-Back) format\n");
442 
443 		for (i = 0; i < rx_ring->count; i++) {
444 			const char *next_desc;
445 
446 			buffer_info = &rx_ring->buffer_info[i];
447 			rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
448 			u1 = (struct my_u1 *)rx_desc;
449 			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
450 
451 			if (i == rx_ring->next_to_use)
452 				next_desc = " NTU";
453 			else if (i == rx_ring->next_to_clean)
454 				next_desc = " NTC";
455 			else
456 				next_desc = "";
457 
458 			if (staterr & E1000_RXD_STAT_DD) {
459 				/* Descriptor Done */
460 				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %p%s\n",
461 					"RWB", i,
462 					(unsigned long long)le64_to_cpu(u1->a),
463 					(unsigned long long)le64_to_cpu(u1->b),
464 					buffer_info->skb, next_desc);
465 			} else {
466 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %p%s\n",
467 					"R  ", i,
468 					(unsigned long long)le64_to_cpu(u1->a),
469 					(unsigned long long)le64_to_cpu(u1->b),
470 					(unsigned long long)buffer_info->dma,
471 					buffer_info->skb, next_desc);
472 
473 				if (netif_msg_pktdata(adapter) &&
474 				    buffer_info->skb)
475 					print_hex_dump(KERN_INFO, "",
476 						       DUMP_PREFIX_ADDRESS, 16,
477 						       1,
478 						       buffer_info->skb->data,
479 						       adapter->rx_buffer_len,
480 						       true);
481 			}
482 		}
483 	}
484 }
485 
486 /**
487  * e1000_desc_unused - calculate if we have unused descriptors
488  **/
489 static int e1000_desc_unused(struct e1000_ring *ring)
490 {
491 	if (ring->next_to_clean > ring->next_to_use)
492 		return ring->next_to_clean - ring->next_to_use - 1;
493 
494 	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
495 }
496 
497 /**
498  * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
499  * @adapter: board private structure
500  * @hwtstamps: time stamp structure to update
501  * @systim: unsigned 64bit system time value.
502  *
503  * Convert the system time value stored in the RX/TXSTMP registers into a
504  * hwtstamp which can be used by the upper level time stamping functions.
505  *
506  * The 'systim_lock' spinlock is used to protect the consistency of the
507  * system time value. This is needed because reading the 64 bit time
508  * value involves reading two 32 bit registers. The first read latches the
509  * value.
510  **/
511 static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter,
512 				      struct skb_shared_hwtstamps *hwtstamps,
513 				      u64 systim)
514 {
515 	u64 ns;
516 	unsigned long flags;
517 
518 	spin_lock_irqsave(&adapter->systim_lock, flags);
519 	ns = timecounter_cyc2time(&adapter->tc, systim);
520 	spin_unlock_irqrestore(&adapter->systim_lock, flags);
521 
522 	memset(hwtstamps, 0, sizeof(*hwtstamps));
523 	hwtstamps->hwtstamp = ns_to_ktime(ns);
524 }
525 
526 /**
527  * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
528  * @adapter: board private structure
529  * @status: descriptor extended error and status field
530  * @skb: particular skb to include time stamp
531  *
532  * If the time stamp is valid, convert it into the timecounter ns value
533  * and store that result into the shhwtstamps structure which is passed
534  * up the network stack.
535  **/
536 static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status,
537 			       struct sk_buff *skb)
538 {
539 	struct e1000_hw *hw = &adapter->hw;
540 	u64 rxstmp;
541 
542 	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) ||
543 	    !(status & E1000_RXDEXT_STATERR_TST) ||
544 	    !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
545 		return;
546 
547 	/* The Rx time stamp registers contain the time stamp.  No other
548 	 * received packet will be time stamped until the Rx time stamp
549 	 * registers are read.  Because only one packet can be time stamped
550 	 * at a time, the register values must belong to this packet and
551 	 * therefore none of the other additional attributes need to be
552 	 * compared.
553 	 */
554 	rxstmp = (u64)er32(RXSTMPL);
555 	rxstmp |= (u64)er32(RXSTMPH) << 32;
556 	e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp);
557 
558 	adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP;
559 }
560 
561 /**
562  * e1000_receive_skb - helper function to handle Rx indications
563  * @adapter: board private structure
564  * @staterr: descriptor extended error and status field as written by hardware
565  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
566  * @skb: pointer to sk_buff to be indicated to stack
567  **/
568 static void e1000_receive_skb(struct e1000_adapter *adapter,
569 			      struct net_device *netdev, struct sk_buff *skb,
570 			      u32 staterr, __le16 vlan)
571 {
572 	u16 tag = le16_to_cpu(vlan);
573 
574 	e1000e_rx_hwtstamp(adapter, staterr, skb);
575 
576 	skb->protocol = eth_type_trans(skb, netdev);
577 
578 	if (staterr & E1000_RXD_STAT_VP)
579 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag);
580 
581 	napi_gro_receive(&adapter->napi, skb);
582 }
583 
584 /**
585  * e1000_rx_checksum - Receive Checksum Offload
586  * @adapter: board private structure
587  * @status_err: receive descriptor status and error fields
588  * @csum: receive descriptor csum field
589  * @sk_buff: socket buffer with received data
590  **/
591 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
592 			      struct sk_buff *skb)
593 {
594 	u16 status = (u16)status_err;
595 	u8 errors = (u8)(status_err >> 24);
596 
597 	skb_checksum_none_assert(skb);
598 
599 	/* Rx checksum disabled */
600 	if (!(adapter->netdev->features & NETIF_F_RXCSUM))
601 		return;
602 
603 	/* Ignore Checksum bit is set */
604 	if (status & E1000_RXD_STAT_IXSM)
605 		return;
606 
607 	/* TCP/UDP checksum error bit or IP checksum error bit is set */
608 	if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
609 		/* let the stack verify checksum errors */
610 		adapter->hw_csum_err++;
611 		return;
612 	}
613 
614 	/* TCP/UDP Checksum has not been calculated */
615 	if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
616 		return;
617 
618 	/* It must be a TCP or UDP packet with a valid checksum */
619 	skb->ip_summed = CHECKSUM_UNNECESSARY;
620 	adapter->hw_csum_good++;
621 }
622 
623 static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
624 {
625 	struct e1000_adapter *adapter = rx_ring->adapter;
626 	struct e1000_hw *hw = &adapter->hw;
627 	s32 ret_val = __ew32_prepare(hw);
628 
629 	writel(i, rx_ring->tail);
630 
631 	if (unlikely(!ret_val && (i != readl(rx_ring->tail)))) {
632 		u32 rctl = er32(RCTL);
633 
634 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
635 		e_err("ME firmware caused invalid RDT - resetting\n");
636 		schedule_work(&adapter->reset_task);
637 	}
638 }
639 
640 static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
641 {
642 	struct e1000_adapter *adapter = tx_ring->adapter;
643 	struct e1000_hw *hw = &adapter->hw;
644 	s32 ret_val = __ew32_prepare(hw);
645 
646 	writel(i, tx_ring->tail);
647 
648 	if (unlikely(!ret_val && (i != readl(tx_ring->tail)))) {
649 		u32 tctl = er32(TCTL);
650 
651 		ew32(TCTL, tctl & ~E1000_TCTL_EN);
652 		e_err("ME firmware caused invalid TDT - resetting\n");
653 		schedule_work(&adapter->reset_task);
654 	}
655 }
656 
657 /**
658  * e1000_alloc_rx_buffers - Replace used receive buffers
659  * @rx_ring: Rx descriptor ring
660  **/
661 static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
662 				   int cleaned_count, gfp_t gfp)
663 {
664 	struct e1000_adapter *adapter = rx_ring->adapter;
665 	struct net_device *netdev = adapter->netdev;
666 	struct pci_dev *pdev = adapter->pdev;
667 	union e1000_rx_desc_extended *rx_desc;
668 	struct e1000_buffer *buffer_info;
669 	struct sk_buff *skb;
670 	unsigned int i;
671 	unsigned int bufsz = adapter->rx_buffer_len;
672 
673 	i = rx_ring->next_to_use;
674 	buffer_info = &rx_ring->buffer_info[i];
675 
676 	while (cleaned_count--) {
677 		skb = buffer_info->skb;
678 		if (skb) {
679 			skb_trim(skb, 0);
680 			goto map_skb;
681 		}
682 
683 		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
684 		if (!skb) {
685 			/* Better luck next round */
686 			adapter->alloc_rx_buff_failed++;
687 			break;
688 		}
689 
690 		buffer_info->skb = skb;
691 map_skb:
692 		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
693 						  adapter->rx_buffer_len,
694 						  DMA_FROM_DEVICE);
695 		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
696 			dev_err(&pdev->dev, "Rx DMA map failed\n");
697 			adapter->rx_dma_failed++;
698 			break;
699 		}
700 
701 		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
702 		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
703 
704 		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
705 			/* Force memory writes to complete before letting h/w
706 			 * know there are new descriptors to fetch.  (Only
707 			 * applicable for weak-ordered memory model archs,
708 			 * such as IA-64).
709 			 */
710 			wmb();
711 			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
712 				e1000e_update_rdt_wa(rx_ring, i);
713 			else
714 				writel(i, rx_ring->tail);
715 		}
716 		i++;
717 		if (i == rx_ring->count)
718 			i = 0;
719 		buffer_info = &rx_ring->buffer_info[i];
720 	}
721 
722 	rx_ring->next_to_use = i;
723 }
724 
725 /**
726  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
727  * @rx_ring: Rx descriptor ring
728  **/
729 static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
730 				      int cleaned_count, gfp_t gfp)
731 {
732 	struct e1000_adapter *adapter = rx_ring->adapter;
733 	struct net_device *netdev = adapter->netdev;
734 	struct pci_dev *pdev = adapter->pdev;
735 	union e1000_rx_desc_packet_split *rx_desc;
736 	struct e1000_buffer *buffer_info;
737 	struct e1000_ps_page *ps_page;
738 	struct sk_buff *skb;
739 	unsigned int i, j;
740 
741 	i = rx_ring->next_to_use;
742 	buffer_info = &rx_ring->buffer_info[i];
743 
744 	while (cleaned_count--) {
745 		rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
746 
747 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
748 			ps_page = &buffer_info->ps_pages[j];
749 			if (j >= adapter->rx_ps_pages) {
750 				/* all unused desc entries get hw null ptr */
751 				rx_desc->read.buffer_addr[j + 1] =
752 				    ~cpu_to_le64(0);
753 				continue;
754 			}
755 			if (!ps_page->page) {
756 				ps_page->page = alloc_page(gfp);
757 				if (!ps_page->page) {
758 					adapter->alloc_rx_buff_failed++;
759 					goto no_buffers;
760 				}
761 				ps_page->dma = dma_map_page(&pdev->dev,
762 							    ps_page->page,
763 							    0, PAGE_SIZE,
764 							    DMA_FROM_DEVICE);
765 				if (dma_mapping_error(&pdev->dev,
766 						      ps_page->dma)) {
767 					dev_err(&adapter->pdev->dev,
768 						"Rx DMA page map failed\n");
769 					adapter->rx_dma_failed++;
770 					goto no_buffers;
771 				}
772 			}
773 			/* Refresh the desc even if buffer_addrs
774 			 * didn't change because each write-back
775 			 * erases this info.
776 			 */
777 			rx_desc->read.buffer_addr[j + 1] =
778 			    cpu_to_le64(ps_page->dma);
779 		}
780 
781 		skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0,
782 						  gfp);
783 
784 		if (!skb) {
785 			adapter->alloc_rx_buff_failed++;
786 			break;
787 		}
788 
789 		buffer_info->skb = skb;
790 		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
791 						  adapter->rx_ps_bsize0,
792 						  DMA_FROM_DEVICE);
793 		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
794 			dev_err(&pdev->dev, "Rx DMA map failed\n");
795 			adapter->rx_dma_failed++;
796 			/* cleanup skb */
797 			dev_kfree_skb_any(skb);
798 			buffer_info->skb = NULL;
799 			break;
800 		}
801 
802 		rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
803 
804 		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
805 			/* Force memory writes to complete before letting h/w
806 			 * know there are new descriptors to fetch.  (Only
807 			 * applicable for weak-ordered memory model archs,
808 			 * such as IA-64).
809 			 */
810 			wmb();
811 			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
812 				e1000e_update_rdt_wa(rx_ring, i << 1);
813 			else
814 				writel(i << 1, rx_ring->tail);
815 		}
816 
817 		i++;
818 		if (i == rx_ring->count)
819 			i = 0;
820 		buffer_info = &rx_ring->buffer_info[i];
821 	}
822 
823 no_buffers:
824 	rx_ring->next_to_use = i;
825 }
826 
827 /**
828  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
829  * @rx_ring: Rx descriptor ring
830  * @cleaned_count: number of buffers to allocate this pass
831  **/
832 
833 static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
834 					 int cleaned_count, gfp_t gfp)
835 {
836 	struct e1000_adapter *adapter = rx_ring->adapter;
837 	struct net_device *netdev = adapter->netdev;
838 	struct pci_dev *pdev = adapter->pdev;
839 	union e1000_rx_desc_extended *rx_desc;
840 	struct e1000_buffer *buffer_info;
841 	struct sk_buff *skb;
842 	unsigned int i;
843 	unsigned int bufsz = 256 - 16;	/* for skb_reserve */
844 
845 	i = rx_ring->next_to_use;
846 	buffer_info = &rx_ring->buffer_info[i];
847 
848 	while (cleaned_count--) {
849 		skb = buffer_info->skb;
850 		if (skb) {
851 			skb_trim(skb, 0);
852 			goto check_page;
853 		}
854 
855 		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
856 		if (unlikely(!skb)) {
857 			/* Better luck next round */
858 			adapter->alloc_rx_buff_failed++;
859 			break;
860 		}
861 
862 		buffer_info->skb = skb;
863 check_page:
864 		/* allocate a new page if necessary */
865 		if (!buffer_info->page) {
866 			buffer_info->page = alloc_page(gfp);
867 			if (unlikely(!buffer_info->page)) {
868 				adapter->alloc_rx_buff_failed++;
869 				break;
870 			}
871 		}
872 
873 		if (!buffer_info->dma) {
874 			buffer_info->dma = dma_map_page(&pdev->dev,
875 							buffer_info->page, 0,
876 							PAGE_SIZE,
877 							DMA_FROM_DEVICE);
878 			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
879 				adapter->alloc_rx_buff_failed++;
880 				break;
881 			}
882 		}
883 
884 		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
885 		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
886 
887 		if (unlikely(++i == rx_ring->count))
888 			i = 0;
889 		buffer_info = &rx_ring->buffer_info[i];
890 	}
891 
892 	if (likely(rx_ring->next_to_use != i)) {
893 		rx_ring->next_to_use = i;
894 		if (unlikely(i-- == 0))
895 			i = (rx_ring->count - 1);
896 
897 		/* Force memory writes to complete before letting h/w
898 		 * know there are new descriptors to fetch.  (Only
899 		 * applicable for weak-ordered memory model archs,
900 		 * such as IA-64).
901 		 */
902 		wmb();
903 		if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
904 			e1000e_update_rdt_wa(rx_ring, i);
905 		else
906 			writel(i, rx_ring->tail);
907 	}
908 }
909 
910 static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
911 				 struct sk_buff *skb)
912 {
913 	if (netdev->features & NETIF_F_RXHASH)
914 		skb_set_hash(skb, le32_to_cpu(rss), PKT_HASH_TYPE_L3);
915 }
916 
917 /**
918  * e1000_clean_rx_irq - Send received data up the network stack
919  * @rx_ring: Rx descriptor ring
920  *
921  * the return value indicates whether actual cleaning was done, there
922  * is no guarantee that everything was cleaned
923  **/
924 static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
925 			       int work_to_do)
926 {
927 	struct e1000_adapter *adapter = rx_ring->adapter;
928 	struct net_device *netdev = adapter->netdev;
929 	struct pci_dev *pdev = adapter->pdev;
930 	struct e1000_hw *hw = &adapter->hw;
931 	union e1000_rx_desc_extended *rx_desc, *next_rxd;
932 	struct e1000_buffer *buffer_info, *next_buffer;
933 	u32 length, staterr;
934 	unsigned int i;
935 	int cleaned_count = 0;
936 	bool cleaned = false;
937 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
938 
939 	i = rx_ring->next_to_clean;
940 	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
941 	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
942 	buffer_info = &rx_ring->buffer_info[i];
943 
944 	while (staterr & E1000_RXD_STAT_DD) {
945 		struct sk_buff *skb;
946 
947 		if (*work_done >= work_to_do)
948 			break;
949 		(*work_done)++;
950 		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
951 
952 		skb = buffer_info->skb;
953 		buffer_info->skb = NULL;
954 
955 		prefetch(skb->data - NET_IP_ALIGN);
956 
957 		i++;
958 		if (i == rx_ring->count)
959 			i = 0;
960 		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
961 		prefetch(next_rxd);
962 
963 		next_buffer = &rx_ring->buffer_info[i];
964 
965 		cleaned = true;
966 		cleaned_count++;
967 		dma_unmap_single(&pdev->dev, buffer_info->dma,
968 				 adapter->rx_buffer_len, DMA_FROM_DEVICE);
969 		buffer_info->dma = 0;
970 
971 		length = le16_to_cpu(rx_desc->wb.upper.length);
972 
973 		/* !EOP means multiple descriptors were used to store a single
974 		 * packet, if that's the case we need to toss it.  In fact, we
975 		 * need to toss every packet with the EOP bit clear and the
976 		 * next frame that _does_ have the EOP bit set, as it is by
977 		 * definition only a frame fragment
978 		 */
979 		if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
980 			adapter->flags2 |= FLAG2_IS_DISCARDING;
981 
982 		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
983 			/* All receives must fit into a single buffer */
984 			e_dbg("Receive packet consumed multiple buffers\n");
985 			/* recycle */
986 			buffer_info->skb = skb;
987 			if (staterr & E1000_RXD_STAT_EOP)
988 				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
989 			goto next_desc;
990 		}
991 
992 		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
993 			     !(netdev->features & NETIF_F_RXALL))) {
994 			/* recycle */
995 			buffer_info->skb = skb;
996 			goto next_desc;
997 		}
998 
999 		/* adjust length to remove Ethernet CRC */
1000 		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1001 			/* If configured to store CRC, don't subtract FCS,
1002 			 * but keep the FCS bytes out of the total_rx_bytes
1003 			 * counter
1004 			 */
1005 			if (netdev->features & NETIF_F_RXFCS)
1006 				total_rx_bytes -= 4;
1007 			else
1008 				length -= 4;
1009 		}
1010 
1011 		total_rx_bytes += length;
1012 		total_rx_packets++;
1013 
1014 		/* code added for copybreak, this should improve
1015 		 * performance for small packets with large amounts
1016 		 * of reassembly being done in the stack
1017 		 */
1018 		if (length < copybreak) {
1019 			struct sk_buff *new_skb =
1020 				napi_alloc_skb(&adapter->napi, length);
1021 			if (new_skb) {
1022 				skb_copy_to_linear_data_offset(new_skb,
1023 							       -NET_IP_ALIGN,
1024 							       (skb->data -
1025 								NET_IP_ALIGN),
1026 							       (length +
1027 								NET_IP_ALIGN));
1028 				/* save the skb in buffer_info as good */
1029 				buffer_info->skb = skb;
1030 				skb = new_skb;
1031 			}
1032 			/* else just continue with the old one */
1033 		}
1034 		/* end copybreak code */
1035 		skb_put(skb, length);
1036 
1037 		/* Receive Checksum Offload */
1038 		e1000_rx_checksum(adapter, staterr, skb);
1039 
1040 		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1041 
1042 		e1000_receive_skb(adapter, netdev, skb, staterr,
1043 				  rx_desc->wb.upper.vlan);
1044 
1045 next_desc:
1046 		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1047 
1048 		/* return some buffers to hardware, one at a time is too slow */
1049 		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1050 			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1051 					      GFP_ATOMIC);
1052 			cleaned_count = 0;
1053 		}
1054 
1055 		/* use prefetched values */
1056 		rx_desc = next_rxd;
1057 		buffer_info = next_buffer;
1058 
1059 		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1060 	}
1061 	rx_ring->next_to_clean = i;
1062 
1063 	cleaned_count = e1000_desc_unused(rx_ring);
1064 	if (cleaned_count)
1065 		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1066 
1067 	adapter->total_rx_bytes += total_rx_bytes;
1068 	adapter->total_rx_packets += total_rx_packets;
1069 	return cleaned;
1070 }
1071 
1072 static void e1000_put_txbuf(struct e1000_ring *tx_ring,
1073 			    struct e1000_buffer *buffer_info)
1074 {
1075 	struct e1000_adapter *adapter = tx_ring->adapter;
1076 
1077 	if (buffer_info->dma) {
1078 		if (buffer_info->mapped_as_page)
1079 			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1080 				       buffer_info->length, DMA_TO_DEVICE);
1081 		else
1082 			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1083 					 buffer_info->length, DMA_TO_DEVICE);
1084 		buffer_info->dma = 0;
1085 	}
1086 	if (buffer_info->skb) {
1087 		dev_kfree_skb_any(buffer_info->skb);
1088 		buffer_info->skb = NULL;
1089 	}
1090 	buffer_info->time_stamp = 0;
1091 }
1092 
1093 static void e1000_print_hw_hang(struct work_struct *work)
1094 {
1095 	struct e1000_adapter *adapter = container_of(work,
1096 						     struct e1000_adapter,
1097 						     print_hang_task);
1098 	struct net_device *netdev = adapter->netdev;
1099 	struct e1000_ring *tx_ring = adapter->tx_ring;
1100 	unsigned int i = tx_ring->next_to_clean;
1101 	unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1102 	struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1103 	struct e1000_hw *hw = &adapter->hw;
1104 	u16 phy_status, phy_1000t_status, phy_ext_status;
1105 	u16 pci_status;
1106 
1107 	if (test_bit(__E1000_DOWN, &adapter->state))
1108 		return;
1109 
1110 	if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) {
1111 		/* May be block on write-back, flush and detect again
1112 		 * flush pending descriptor writebacks to memory
1113 		 */
1114 		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1115 		/* execute the writes immediately */
1116 		e1e_flush();
1117 		/* Due to rare timing issues, write to TIDV again to ensure
1118 		 * the write is successful
1119 		 */
1120 		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1121 		/* execute the writes immediately */
1122 		e1e_flush();
1123 		adapter->tx_hang_recheck = true;
1124 		return;
1125 	}
1126 	adapter->tx_hang_recheck = false;
1127 
1128 	if (er32(TDH(0)) == er32(TDT(0))) {
1129 		e_dbg("false hang detected, ignoring\n");
1130 		return;
1131 	}
1132 
1133 	/* Real hang detected */
1134 	netif_stop_queue(netdev);
1135 
1136 	e1e_rphy(hw, MII_BMSR, &phy_status);
1137 	e1e_rphy(hw, MII_STAT1000, &phy_1000t_status);
1138 	e1e_rphy(hw, MII_ESTATUS, &phy_ext_status);
1139 
1140 	pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1141 
1142 	/* detected Hardware unit hang */
1143 	e_err("Detected Hardware Unit Hang:\n"
1144 	      "  TDH                  <%x>\n"
1145 	      "  TDT                  <%x>\n"
1146 	      "  next_to_use          <%x>\n"
1147 	      "  next_to_clean        <%x>\n"
1148 	      "buffer_info[next_to_clean]:\n"
1149 	      "  time_stamp           <%lx>\n"
1150 	      "  next_to_watch        <%x>\n"
1151 	      "  jiffies              <%lx>\n"
1152 	      "  next_to_watch.status <%x>\n"
1153 	      "MAC Status             <%x>\n"
1154 	      "PHY Status             <%x>\n"
1155 	      "PHY 1000BASE-T Status  <%x>\n"
1156 	      "PHY Extended Status    <%x>\n"
1157 	      "PCI Status             <%x>\n",
1158 	      readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use,
1159 	      tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp,
1160 	      eop, jiffies, eop_desc->upper.fields.status, er32(STATUS),
1161 	      phy_status, phy_1000t_status, phy_ext_status, pci_status);
1162 
1163 	e1000e_dump(adapter);
1164 
1165 	/* Suggest workaround for known h/w issue */
1166 	if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1167 		e_err("Try turning off Tx pause (flow control) via ethtool\n");
1168 }
1169 
1170 /**
1171  * e1000e_tx_hwtstamp_work - check for Tx time stamp
1172  * @work: pointer to work struct
1173  *
1174  * This work function polls the TSYNCTXCTL valid bit to determine when a
1175  * timestamp has been taken for the current stored skb.  The timestamp must
1176  * be for this skb because only one such packet is allowed in the queue.
1177  */
1178 static void e1000e_tx_hwtstamp_work(struct work_struct *work)
1179 {
1180 	struct e1000_adapter *adapter = container_of(work, struct e1000_adapter,
1181 						     tx_hwtstamp_work);
1182 	struct e1000_hw *hw = &adapter->hw;
1183 
1184 	if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) {
1185 		struct skb_shared_hwtstamps shhwtstamps;
1186 		u64 txstmp;
1187 
1188 		txstmp = er32(TXSTMPL);
1189 		txstmp |= (u64)er32(TXSTMPH) << 32;
1190 
1191 		e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp);
1192 
1193 		skb_tstamp_tx(adapter->tx_hwtstamp_skb, &shhwtstamps);
1194 		dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1195 		adapter->tx_hwtstamp_skb = NULL;
1196 	} else if (time_after(jiffies, adapter->tx_hwtstamp_start
1197 			      + adapter->tx_timeout_factor * HZ)) {
1198 		dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1199 		adapter->tx_hwtstamp_skb = NULL;
1200 		adapter->tx_hwtstamp_timeouts++;
1201 		e_warn("clearing Tx timestamp hang\n");
1202 	} else {
1203 		/* reschedule to check later */
1204 		schedule_work(&adapter->tx_hwtstamp_work);
1205 	}
1206 }
1207 
1208 /**
1209  * e1000_clean_tx_irq - Reclaim resources after transmit completes
1210  * @tx_ring: Tx descriptor ring
1211  *
1212  * the return value indicates whether actual cleaning was done, there
1213  * is no guarantee that everything was cleaned
1214  **/
1215 static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1216 {
1217 	struct e1000_adapter *adapter = tx_ring->adapter;
1218 	struct net_device *netdev = adapter->netdev;
1219 	struct e1000_hw *hw = &adapter->hw;
1220 	struct e1000_tx_desc *tx_desc, *eop_desc;
1221 	struct e1000_buffer *buffer_info;
1222 	unsigned int i, eop;
1223 	unsigned int count = 0;
1224 	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1225 	unsigned int bytes_compl = 0, pkts_compl = 0;
1226 
1227 	i = tx_ring->next_to_clean;
1228 	eop = tx_ring->buffer_info[i].next_to_watch;
1229 	eop_desc = E1000_TX_DESC(*tx_ring, eop);
1230 
1231 	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1232 	       (count < tx_ring->count)) {
1233 		bool cleaned = false;
1234 
1235 		dma_rmb();		/* read buffer_info after eop_desc */
1236 		for (; !cleaned; count++) {
1237 			tx_desc = E1000_TX_DESC(*tx_ring, i);
1238 			buffer_info = &tx_ring->buffer_info[i];
1239 			cleaned = (i == eop);
1240 
1241 			if (cleaned) {
1242 				total_tx_packets += buffer_info->segs;
1243 				total_tx_bytes += buffer_info->bytecount;
1244 				if (buffer_info->skb) {
1245 					bytes_compl += buffer_info->skb->len;
1246 					pkts_compl++;
1247 				}
1248 			}
1249 
1250 			e1000_put_txbuf(tx_ring, buffer_info);
1251 			tx_desc->upper.data = 0;
1252 
1253 			i++;
1254 			if (i == tx_ring->count)
1255 				i = 0;
1256 		}
1257 
1258 		if (i == tx_ring->next_to_use)
1259 			break;
1260 		eop = tx_ring->buffer_info[i].next_to_watch;
1261 		eop_desc = E1000_TX_DESC(*tx_ring, eop);
1262 	}
1263 
1264 	tx_ring->next_to_clean = i;
1265 
1266 	netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1267 
1268 #define TX_WAKE_THRESHOLD 32
1269 	if (count && netif_carrier_ok(netdev) &&
1270 	    e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1271 		/* Make sure that anybody stopping the queue after this
1272 		 * sees the new next_to_clean.
1273 		 */
1274 		smp_mb();
1275 
1276 		if (netif_queue_stopped(netdev) &&
1277 		    !(test_bit(__E1000_DOWN, &adapter->state))) {
1278 			netif_wake_queue(netdev);
1279 			++adapter->restart_queue;
1280 		}
1281 	}
1282 
1283 	if (adapter->detect_tx_hung) {
1284 		/* Detect a transmit hang in hardware, this serializes the
1285 		 * check with the clearing of time_stamp and movement of i
1286 		 */
1287 		adapter->detect_tx_hung = false;
1288 		if (tx_ring->buffer_info[i].time_stamp &&
1289 		    time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1290 			       + (adapter->tx_timeout_factor * HZ)) &&
1291 		    !(er32(STATUS) & E1000_STATUS_TXOFF))
1292 			schedule_work(&adapter->print_hang_task);
1293 		else
1294 			adapter->tx_hang_recheck = false;
1295 	}
1296 	adapter->total_tx_bytes += total_tx_bytes;
1297 	adapter->total_tx_packets += total_tx_packets;
1298 	return count < tx_ring->count;
1299 }
1300 
1301 /**
1302  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1303  * @rx_ring: Rx descriptor ring
1304  *
1305  * the return value indicates whether actual cleaning was done, there
1306  * is no guarantee that everything was cleaned
1307  **/
1308 static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1309 				  int work_to_do)
1310 {
1311 	struct e1000_adapter *adapter = rx_ring->adapter;
1312 	struct e1000_hw *hw = &adapter->hw;
1313 	union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1314 	struct net_device *netdev = adapter->netdev;
1315 	struct pci_dev *pdev = adapter->pdev;
1316 	struct e1000_buffer *buffer_info, *next_buffer;
1317 	struct e1000_ps_page *ps_page;
1318 	struct sk_buff *skb;
1319 	unsigned int i, j;
1320 	u32 length, staterr;
1321 	int cleaned_count = 0;
1322 	bool cleaned = false;
1323 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1324 
1325 	i = rx_ring->next_to_clean;
1326 	rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1327 	staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1328 	buffer_info = &rx_ring->buffer_info[i];
1329 
1330 	while (staterr & E1000_RXD_STAT_DD) {
1331 		if (*work_done >= work_to_do)
1332 			break;
1333 		(*work_done)++;
1334 		skb = buffer_info->skb;
1335 		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
1336 
1337 		/* in the packet split case this is header only */
1338 		prefetch(skb->data - NET_IP_ALIGN);
1339 
1340 		i++;
1341 		if (i == rx_ring->count)
1342 			i = 0;
1343 		next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1344 		prefetch(next_rxd);
1345 
1346 		next_buffer = &rx_ring->buffer_info[i];
1347 
1348 		cleaned = true;
1349 		cleaned_count++;
1350 		dma_unmap_single(&pdev->dev, buffer_info->dma,
1351 				 adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1352 		buffer_info->dma = 0;
1353 
1354 		/* see !EOP comment in other Rx routine */
1355 		if (!(staterr & E1000_RXD_STAT_EOP))
1356 			adapter->flags2 |= FLAG2_IS_DISCARDING;
1357 
1358 		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1359 			e_dbg("Packet Split buffers didn't pick up the full packet\n");
1360 			dev_kfree_skb_irq(skb);
1361 			if (staterr & E1000_RXD_STAT_EOP)
1362 				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1363 			goto next_desc;
1364 		}
1365 
1366 		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1367 			     !(netdev->features & NETIF_F_RXALL))) {
1368 			dev_kfree_skb_irq(skb);
1369 			goto next_desc;
1370 		}
1371 
1372 		length = le16_to_cpu(rx_desc->wb.middle.length0);
1373 
1374 		if (!length) {
1375 			e_dbg("Last part of the packet spanning multiple descriptors\n");
1376 			dev_kfree_skb_irq(skb);
1377 			goto next_desc;
1378 		}
1379 
1380 		/* Good Receive */
1381 		skb_put(skb, length);
1382 
1383 		{
1384 			/* this looks ugly, but it seems compiler issues make
1385 			 * it more efficient than reusing j
1386 			 */
1387 			int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1388 
1389 			/* page alloc/put takes too long and effects small
1390 			 * packet throughput, so unsplit small packets and
1391 			 * save the alloc/put only valid in softirq (napi)
1392 			 * context to call kmap_*
1393 			 */
1394 			if (l1 && (l1 <= copybreak) &&
1395 			    ((length + l1) <= adapter->rx_ps_bsize0)) {
1396 				u8 *vaddr;
1397 
1398 				ps_page = &buffer_info->ps_pages[0];
1399 
1400 				/* there is no documentation about how to call
1401 				 * kmap_atomic, so we can't hold the mapping
1402 				 * very long
1403 				 */
1404 				dma_sync_single_for_cpu(&pdev->dev,
1405 							ps_page->dma,
1406 							PAGE_SIZE,
1407 							DMA_FROM_DEVICE);
1408 				vaddr = kmap_atomic(ps_page->page);
1409 				memcpy(skb_tail_pointer(skb), vaddr, l1);
1410 				kunmap_atomic(vaddr);
1411 				dma_sync_single_for_device(&pdev->dev,
1412 							   ps_page->dma,
1413 							   PAGE_SIZE,
1414 							   DMA_FROM_DEVICE);
1415 
1416 				/* remove the CRC */
1417 				if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1418 					if (!(netdev->features & NETIF_F_RXFCS))
1419 						l1 -= 4;
1420 				}
1421 
1422 				skb_put(skb, l1);
1423 				goto copydone;
1424 			}	/* if */
1425 		}
1426 
1427 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1428 			length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1429 			if (!length)
1430 				break;
1431 
1432 			ps_page = &buffer_info->ps_pages[j];
1433 			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1434 				       DMA_FROM_DEVICE);
1435 			ps_page->dma = 0;
1436 			skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1437 			ps_page->page = NULL;
1438 			skb->len += length;
1439 			skb->data_len += length;
1440 			skb->truesize += PAGE_SIZE;
1441 		}
1442 
1443 		/* strip the ethernet crc, problem is we're using pages now so
1444 		 * this whole operation can get a little cpu intensive
1445 		 */
1446 		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1447 			if (!(netdev->features & NETIF_F_RXFCS))
1448 				pskb_trim(skb, skb->len - 4);
1449 		}
1450 
1451 copydone:
1452 		total_rx_bytes += skb->len;
1453 		total_rx_packets++;
1454 
1455 		e1000_rx_checksum(adapter, staterr, skb);
1456 
1457 		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1458 
1459 		if (rx_desc->wb.upper.header_status &
1460 		    cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1461 			adapter->rx_hdr_split++;
1462 
1463 		e1000_receive_skb(adapter, netdev, skb, staterr,
1464 				  rx_desc->wb.middle.vlan);
1465 
1466 next_desc:
1467 		rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1468 		buffer_info->skb = NULL;
1469 
1470 		/* return some buffers to hardware, one at a time is too slow */
1471 		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1472 			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1473 					      GFP_ATOMIC);
1474 			cleaned_count = 0;
1475 		}
1476 
1477 		/* use prefetched values */
1478 		rx_desc = next_rxd;
1479 		buffer_info = next_buffer;
1480 
1481 		staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1482 	}
1483 	rx_ring->next_to_clean = i;
1484 
1485 	cleaned_count = e1000_desc_unused(rx_ring);
1486 	if (cleaned_count)
1487 		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1488 
1489 	adapter->total_rx_bytes += total_rx_bytes;
1490 	adapter->total_rx_packets += total_rx_packets;
1491 	return cleaned;
1492 }
1493 
1494 /**
1495  * e1000_consume_page - helper function
1496  **/
1497 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1498 			       u16 length)
1499 {
1500 	bi->page = NULL;
1501 	skb->len += length;
1502 	skb->data_len += length;
1503 	skb->truesize += PAGE_SIZE;
1504 }
1505 
1506 /**
1507  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1508  * @adapter: board private structure
1509  *
1510  * the return value indicates whether actual cleaning was done, there
1511  * is no guarantee that everything was cleaned
1512  **/
1513 static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1514 				     int work_to_do)
1515 {
1516 	struct e1000_adapter *adapter = rx_ring->adapter;
1517 	struct net_device *netdev = adapter->netdev;
1518 	struct pci_dev *pdev = adapter->pdev;
1519 	union e1000_rx_desc_extended *rx_desc, *next_rxd;
1520 	struct e1000_buffer *buffer_info, *next_buffer;
1521 	u32 length, staterr;
1522 	unsigned int i;
1523 	int cleaned_count = 0;
1524 	bool cleaned = false;
1525 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1526 	struct skb_shared_info *shinfo;
1527 
1528 	i = rx_ring->next_to_clean;
1529 	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1530 	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1531 	buffer_info = &rx_ring->buffer_info[i];
1532 
1533 	while (staterr & E1000_RXD_STAT_DD) {
1534 		struct sk_buff *skb;
1535 
1536 		if (*work_done >= work_to_do)
1537 			break;
1538 		(*work_done)++;
1539 		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
1540 
1541 		skb = buffer_info->skb;
1542 		buffer_info->skb = NULL;
1543 
1544 		++i;
1545 		if (i == rx_ring->count)
1546 			i = 0;
1547 		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1548 		prefetch(next_rxd);
1549 
1550 		next_buffer = &rx_ring->buffer_info[i];
1551 
1552 		cleaned = true;
1553 		cleaned_count++;
1554 		dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1555 			       DMA_FROM_DEVICE);
1556 		buffer_info->dma = 0;
1557 
1558 		length = le16_to_cpu(rx_desc->wb.upper.length);
1559 
1560 		/* errors is only valid for DD + EOP descriptors */
1561 		if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1562 			     ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1563 			      !(netdev->features & NETIF_F_RXALL)))) {
1564 			/* recycle both page and skb */
1565 			buffer_info->skb = skb;
1566 			/* an error means any chain goes out the window too */
1567 			if (rx_ring->rx_skb_top)
1568 				dev_kfree_skb_irq(rx_ring->rx_skb_top);
1569 			rx_ring->rx_skb_top = NULL;
1570 			goto next_desc;
1571 		}
1572 #define rxtop (rx_ring->rx_skb_top)
1573 		if (!(staterr & E1000_RXD_STAT_EOP)) {
1574 			/* this descriptor is only the beginning (or middle) */
1575 			if (!rxtop) {
1576 				/* this is the beginning of a chain */
1577 				rxtop = skb;
1578 				skb_fill_page_desc(rxtop, 0, buffer_info->page,
1579 						   0, length);
1580 			} else {
1581 				/* this is the middle of a chain */
1582 				shinfo = skb_shinfo(rxtop);
1583 				skb_fill_page_desc(rxtop, shinfo->nr_frags,
1584 						   buffer_info->page, 0,
1585 						   length);
1586 				/* re-use the skb, only consumed the page */
1587 				buffer_info->skb = skb;
1588 			}
1589 			e1000_consume_page(buffer_info, rxtop, length);
1590 			goto next_desc;
1591 		} else {
1592 			if (rxtop) {
1593 				/* end of the chain */
1594 				shinfo = skb_shinfo(rxtop);
1595 				skb_fill_page_desc(rxtop, shinfo->nr_frags,
1596 						   buffer_info->page, 0,
1597 						   length);
1598 				/* re-use the current skb, we only consumed the
1599 				 * page
1600 				 */
1601 				buffer_info->skb = skb;
1602 				skb = rxtop;
1603 				rxtop = NULL;
1604 				e1000_consume_page(buffer_info, skb, length);
1605 			} else {
1606 				/* no chain, got EOP, this buf is the packet
1607 				 * copybreak to save the put_page/alloc_page
1608 				 */
1609 				if (length <= copybreak &&
1610 				    skb_tailroom(skb) >= length) {
1611 					u8 *vaddr;
1612 					vaddr = kmap_atomic(buffer_info->page);
1613 					memcpy(skb_tail_pointer(skb), vaddr,
1614 					       length);
1615 					kunmap_atomic(vaddr);
1616 					/* re-use the page, so don't erase
1617 					 * buffer_info->page
1618 					 */
1619 					skb_put(skb, length);
1620 				} else {
1621 					skb_fill_page_desc(skb, 0,
1622 							   buffer_info->page, 0,
1623 							   length);
1624 					e1000_consume_page(buffer_info, skb,
1625 							   length);
1626 				}
1627 			}
1628 		}
1629 
1630 		/* Receive Checksum Offload */
1631 		e1000_rx_checksum(adapter, staterr, skb);
1632 
1633 		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1634 
1635 		/* probably a little skewed due to removing CRC */
1636 		total_rx_bytes += skb->len;
1637 		total_rx_packets++;
1638 
1639 		/* eth type trans needs skb->data to point to something */
1640 		if (!pskb_may_pull(skb, ETH_HLEN)) {
1641 			e_err("pskb_may_pull failed.\n");
1642 			dev_kfree_skb_irq(skb);
1643 			goto next_desc;
1644 		}
1645 
1646 		e1000_receive_skb(adapter, netdev, skb, staterr,
1647 				  rx_desc->wb.upper.vlan);
1648 
1649 next_desc:
1650 		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1651 
1652 		/* return some buffers to hardware, one at a time is too slow */
1653 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1654 			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1655 					      GFP_ATOMIC);
1656 			cleaned_count = 0;
1657 		}
1658 
1659 		/* use prefetched values */
1660 		rx_desc = next_rxd;
1661 		buffer_info = next_buffer;
1662 
1663 		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1664 	}
1665 	rx_ring->next_to_clean = i;
1666 
1667 	cleaned_count = e1000_desc_unused(rx_ring);
1668 	if (cleaned_count)
1669 		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1670 
1671 	adapter->total_rx_bytes += total_rx_bytes;
1672 	adapter->total_rx_packets += total_rx_packets;
1673 	return cleaned;
1674 }
1675 
1676 /**
1677  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1678  * @rx_ring: Rx descriptor ring
1679  **/
1680 static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1681 {
1682 	struct e1000_adapter *adapter = rx_ring->adapter;
1683 	struct e1000_buffer *buffer_info;
1684 	struct e1000_ps_page *ps_page;
1685 	struct pci_dev *pdev = adapter->pdev;
1686 	unsigned int i, j;
1687 
1688 	/* Free all the Rx ring sk_buffs */
1689 	for (i = 0; i < rx_ring->count; i++) {
1690 		buffer_info = &rx_ring->buffer_info[i];
1691 		if (buffer_info->dma) {
1692 			if (adapter->clean_rx == e1000_clean_rx_irq)
1693 				dma_unmap_single(&pdev->dev, buffer_info->dma,
1694 						 adapter->rx_buffer_len,
1695 						 DMA_FROM_DEVICE);
1696 			else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1697 				dma_unmap_page(&pdev->dev, buffer_info->dma,
1698 					       PAGE_SIZE, DMA_FROM_DEVICE);
1699 			else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1700 				dma_unmap_single(&pdev->dev, buffer_info->dma,
1701 						 adapter->rx_ps_bsize0,
1702 						 DMA_FROM_DEVICE);
1703 			buffer_info->dma = 0;
1704 		}
1705 
1706 		if (buffer_info->page) {
1707 			put_page(buffer_info->page);
1708 			buffer_info->page = NULL;
1709 		}
1710 
1711 		if (buffer_info->skb) {
1712 			dev_kfree_skb(buffer_info->skb);
1713 			buffer_info->skb = NULL;
1714 		}
1715 
1716 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1717 			ps_page = &buffer_info->ps_pages[j];
1718 			if (!ps_page->page)
1719 				break;
1720 			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1721 				       DMA_FROM_DEVICE);
1722 			ps_page->dma = 0;
1723 			put_page(ps_page->page);
1724 			ps_page->page = NULL;
1725 		}
1726 	}
1727 
1728 	/* there also may be some cached data from a chained receive */
1729 	if (rx_ring->rx_skb_top) {
1730 		dev_kfree_skb(rx_ring->rx_skb_top);
1731 		rx_ring->rx_skb_top = NULL;
1732 	}
1733 
1734 	/* Zero out the descriptor ring */
1735 	memset(rx_ring->desc, 0, rx_ring->size);
1736 
1737 	rx_ring->next_to_clean = 0;
1738 	rx_ring->next_to_use = 0;
1739 	adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1740 
1741 	writel(0, rx_ring->head);
1742 	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
1743 		e1000e_update_rdt_wa(rx_ring, 0);
1744 	else
1745 		writel(0, rx_ring->tail);
1746 }
1747 
1748 static void e1000e_downshift_workaround(struct work_struct *work)
1749 {
1750 	struct e1000_adapter *adapter = container_of(work,
1751 						     struct e1000_adapter,
1752 						     downshift_task);
1753 
1754 	if (test_bit(__E1000_DOWN, &adapter->state))
1755 		return;
1756 
1757 	e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1758 }
1759 
1760 /**
1761  * e1000_intr_msi - Interrupt Handler
1762  * @irq: interrupt number
1763  * @data: pointer to a network interface device structure
1764  **/
1765 static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data)
1766 {
1767 	struct net_device *netdev = data;
1768 	struct e1000_adapter *adapter = netdev_priv(netdev);
1769 	struct e1000_hw *hw = &adapter->hw;
1770 	u32 icr = er32(ICR);
1771 
1772 	/* read ICR disables interrupts using IAM */
1773 	if (icr & E1000_ICR_LSC) {
1774 		hw->mac.get_link_status = true;
1775 		/* ICH8 workaround-- Call gig speed drop workaround on cable
1776 		 * disconnect (LSC) before accessing any PHY registers
1777 		 */
1778 		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1779 		    (!(er32(STATUS) & E1000_STATUS_LU)))
1780 			schedule_work(&adapter->downshift_task);
1781 
1782 		/* 80003ES2LAN workaround-- For packet buffer work-around on
1783 		 * link down event; disable receives here in the ISR and reset
1784 		 * adapter in watchdog
1785 		 */
1786 		if (netif_carrier_ok(netdev) &&
1787 		    adapter->flags & FLAG_RX_NEEDS_RESTART) {
1788 			/* disable receives */
1789 			u32 rctl = er32(RCTL);
1790 
1791 			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1792 			adapter->flags |= FLAG_RESTART_NOW;
1793 		}
1794 		/* guard against interrupt when we're going down */
1795 		if (!test_bit(__E1000_DOWN, &adapter->state))
1796 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1797 	}
1798 
1799 	/* Reset on uncorrectable ECC error */
1800 	if ((icr & E1000_ICR_ECCER) && ((hw->mac.type == e1000_pch_lpt) ||
1801 					(hw->mac.type == e1000_pch_spt))) {
1802 		u32 pbeccsts = er32(PBECCSTS);
1803 
1804 		adapter->corr_errors +=
1805 		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1806 		adapter->uncorr_errors +=
1807 		    (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1808 		    E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1809 
1810 		/* Do the reset outside of interrupt context */
1811 		schedule_work(&adapter->reset_task);
1812 
1813 		/* return immediately since reset is imminent */
1814 		return IRQ_HANDLED;
1815 	}
1816 
1817 	if (napi_schedule_prep(&adapter->napi)) {
1818 		adapter->total_tx_bytes = 0;
1819 		adapter->total_tx_packets = 0;
1820 		adapter->total_rx_bytes = 0;
1821 		adapter->total_rx_packets = 0;
1822 		__napi_schedule(&adapter->napi);
1823 	}
1824 
1825 	return IRQ_HANDLED;
1826 }
1827 
1828 /**
1829  * e1000_intr - Interrupt Handler
1830  * @irq: interrupt number
1831  * @data: pointer to a network interface device structure
1832  **/
1833 static irqreturn_t e1000_intr(int __always_unused irq, void *data)
1834 {
1835 	struct net_device *netdev = data;
1836 	struct e1000_adapter *adapter = netdev_priv(netdev);
1837 	struct e1000_hw *hw = &adapter->hw;
1838 	u32 rctl, icr = er32(ICR);
1839 
1840 	if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1841 		return IRQ_NONE;	/* Not our interrupt */
1842 
1843 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1844 	 * not set, then the adapter didn't send an interrupt
1845 	 */
1846 	if (!(icr & E1000_ICR_INT_ASSERTED))
1847 		return IRQ_NONE;
1848 
1849 	/* Interrupt Auto-Mask...upon reading ICR,
1850 	 * interrupts are masked.  No need for the
1851 	 * IMC write
1852 	 */
1853 
1854 	if (icr & E1000_ICR_LSC) {
1855 		hw->mac.get_link_status = true;
1856 		/* ICH8 workaround-- Call gig speed drop workaround on cable
1857 		 * disconnect (LSC) before accessing any PHY registers
1858 		 */
1859 		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1860 		    (!(er32(STATUS) & E1000_STATUS_LU)))
1861 			schedule_work(&adapter->downshift_task);
1862 
1863 		/* 80003ES2LAN workaround--
1864 		 * For packet buffer work-around on link down event;
1865 		 * disable receives here in the ISR and
1866 		 * reset adapter in watchdog
1867 		 */
1868 		if (netif_carrier_ok(netdev) &&
1869 		    (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1870 			/* disable receives */
1871 			rctl = er32(RCTL);
1872 			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1873 			adapter->flags |= FLAG_RESTART_NOW;
1874 		}
1875 		/* guard against interrupt when we're going down */
1876 		if (!test_bit(__E1000_DOWN, &adapter->state))
1877 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1878 	}
1879 
1880 	/* Reset on uncorrectable ECC error */
1881 	if ((icr & E1000_ICR_ECCER) && ((hw->mac.type == e1000_pch_lpt) ||
1882 					(hw->mac.type == e1000_pch_spt))) {
1883 		u32 pbeccsts = er32(PBECCSTS);
1884 
1885 		adapter->corr_errors +=
1886 		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1887 		adapter->uncorr_errors +=
1888 		    (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1889 		    E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1890 
1891 		/* Do the reset outside of interrupt context */
1892 		schedule_work(&adapter->reset_task);
1893 
1894 		/* return immediately since reset is imminent */
1895 		return IRQ_HANDLED;
1896 	}
1897 
1898 	if (napi_schedule_prep(&adapter->napi)) {
1899 		adapter->total_tx_bytes = 0;
1900 		adapter->total_tx_packets = 0;
1901 		adapter->total_rx_bytes = 0;
1902 		adapter->total_rx_packets = 0;
1903 		__napi_schedule(&adapter->napi);
1904 	}
1905 
1906 	return IRQ_HANDLED;
1907 }
1908 
1909 static irqreturn_t e1000_msix_other(int __always_unused irq, void *data)
1910 {
1911 	struct net_device *netdev = data;
1912 	struct e1000_adapter *adapter = netdev_priv(netdev);
1913 	struct e1000_hw *hw = &adapter->hw;
1914 	u32 icr = er32(ICR);
1915 
1916 	if (!(icr & E1000_ICR_INT_ASSERTED)) {
1917 		if (!test_bit(__E1000_DOWN, &adapter->state))
1918 			ew32(IMS, E1000_IMS_OTHER);
1919 		return IRQ_NONE;
1920 	}
1921 
1922 	if (icr & adapter->eiac_mask)
1923 		ew32(ICS, (icr & adapter->eiac_mask));
1924 
1925 	if (icr & E1000_ICR_OTHER) {
1926 		if (!(icr & E1000_ICR_LSC))
1927 			goto no_link_interrupt;
1928 		hw->mac.get_link_status = true;
1929 		/* guard against interrupt when we're going down */
1930 		if (!test_bit(__E1000_DOWN, &adapter->state))
1931 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1932 	}
1933 
1934 no_link_interrupt:
1935 	if (!test_bit(__E1000_DOWN, &adapter->state))
1936 		ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1937 
1938 	return IRQ_HANDLED;
1939 }
1940 
1941 static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data)
1942 {
1943 	struct net_device *netdev = data;
1944 	struct e1000_adapter *adapter = netdev_priv(netdev);
1945 	struct e1000_hw *hw = &adapter->hw;
1946 	struct e1000_ring *tx_ring = adapter->tx_ring;
1947 
1948 	adapter->total_tx_bytes = 0;
1949 	adapter->total_tx_packets = 0;
1950 
1951 	if (!e1000_clean_tx_irq(tx_ring))
1952 		/* Ring was not completely cleaned, so fire another interrupt */
1953 		ew32(ICS, tx_ring->ims_val);
1954 
1955 	return IRQ_HANDLED;
1956 }
1957 
1958 static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data)
1959 {
1960 	struct net_device *netdev = data;
1961 	struct e1000_adapter *adapter = netdev_priv(netdev);
1962 	struct e1000_ring *rx_ring = adapter->rx_ring;
1963 
1964 	/* Write the ITR value calculated at the end of the
1965 	 * previous interrupt.
1966 	 */
1967 	if (rx_ring->set_itr) {
1968 		writel(1000000000 / (rx_ring->itr_val * 256),
1969 		       rx_ring->itr_register);
1970 		rx_ring->set_itr = 0;
1971 	}
1972 
1973 	if (napi_schedule_prep(&adapter->napi)) {
1974 		adapter->total_rx_bytes = 0;
1975 		adapter->total_rx_packets = 0;
1976 		__napi_schedule(&adapter->napi);
1977 	}
1978 	return IRQ_HANDLED;
1979 }
1980 
1981 /**
1982  * e1000_configure_msix - Configure MSI-X hardware
1983  *
1984  * e1000_configure_msix sets up the hardware to properly
1985  * generate MSI-X interrupts.
1986  **/
1987 static void e1000_configure_msix(struct e1000_adapter *adapter)
1988 {
1989 	struct e1000_hw *hw = &adapter->hw;
1990 	struct e1000_ring *rx_ring = adapter->rx_ring;
1991 	struct e1000_ring *tx_ring = adapter->tx_ring;
1992 	int vector = 0;
1993 	u32 ctrl_ext, ivar = 0;
1994 
1995 	adapter->eiac_mask = 0;
1996 
1997 	/* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1998 	if (hw->mac.type == e1000_82574) {
1999 		u32 rfctl = er32(RFCTL);
2000 
2001 		rfctl |= E1000_RFCTL_ACK_DIS;
2002 		ew32(RFCTL, rfctl);
2003 	}
2004 
2005 	/* Configure Rx vector */
2006 	rx_ring->ims_val = E1000_IMS_RXQ0;
2007 	adapter->eiac_mask |= rx_ring->ims_val;
2008 	if (rx_ring->itr_val)
2009 		writel(1000000000 / (rx_ring->itr_val * 256),
2010 		       rx_ring->itr_register);
2011 	else
2012 		writel(1, rx_ring->itr_register);
2013 	ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
2014 
2015 	/* Configure Tx vector */
2016 	tx_ring->ims_val = E1000_IMS_TXQ0;
2017 	vector++;
2018 	if (tx_ring->itr_val)
2019 		writel(1000000000 / (tx_ring->itr_val * 256),
2020 		       tx_ring->itr_register);
2021 	else
2022 		writel(1, tx_ring->itr_register);
2023 	adapter->eiac_mask |= tx_ring->ims_val;
2024 	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
2025 
2026 	/* set vector for Other Causes, e.g. link changes */
2027 	vector++;
2028 	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
2029 	if (rx_ring->itr_val)
2030 		writel(1000000000 / (rx_ring->itr_val * 256),
2031 		       hw->hw_addr + E1000_EITR_82574(vector));
2032 	else
2033 		writel(1, hw->hw_addr + E1000_EITR_82574(vector));
2034 
2035 	/* Cause Tx interrupts on every write back */
2036 	ivar |= (1 << 31);
2037 
2038 	ew32(IVAR, ivar);
2039 
2040 	/* enable MSI-X PBA support */
2041 	ctrl_ext = er32(CTRL_EXT);
2042 	ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
2043 
2044 	/* Auto-Mask Other interrupts upon ICR read */
2045 	ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
2046 	ctrl_ext |= E1000_CTRL_EXT_EIAME;
2047 	ew32(CTRL_EXT, ctrl_ext);
2048 	e1e_flush();
2049 }
2050 
2051 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
2052 {
2053 	if (adapter->msix_entries) {
2054 		pci_disable_msix(adapter->pdev);
2055 		kfree(adapter->msix_entries);
2056 		adapter->msix_entries = NULL;
2057 	} else if (adapter->flags & FLAG_MSI_ENABLED) {
2058 		pci_disable_msi(adapter->pdev);
2059 		adapter->flags &= ~FLAG_MSI_ENABLED;
2060 	}
2061 }
2062 
2063 /**
2064  * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
2065  *
2066  * Attempt to configure interrupts using the best available
2067  * capabilities of the hardware and kernel.
2068  **/
2069 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
2070 {
2071 	int err;
2072 	int i;
2073 
2074 	switch (adapter->int_mode) {
2075 	case E1000E_INT_MODE_MSIX:
2076 		if (adapter->flags & FLAG_HAS_MSIX) {
2077 			adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
2078 			adapter->msix_entries = kcalloc(adapter->num_vectors,
2079 							sizeof(struct
2080 							       msix_entry),
2081 							GFP_KERNEL);
2082 			if (adapter->msix_entries) {
2083 				struct e1000_adapter *a = adapter;
2084 
2085 				for (i = 0; i < adapter->num_vectors; i++)
2086 					adapter->msix_entries[i].entry = i;
2087 
2088 				err = pci_enable_msix_range(a->pdev,
2089 							    a->msix_entries,
2090 							    a->num_vectors,
2091 							    a->num_vectors);
2092 				if (err > 0)
2093 					return;
2094 			}
2095 			/* MSI-X failed, so fall through and try MSI */
2096 			e_err("Failed to initialize MSI-X interrupts.  Falling back to MSI interrupts.\n");
2097 			e1000e_reset_interrupt_capability(adapter);
2098 		}
2099 		adapter->int_mode = E1000E_INT_MODE_MSI;
2100 		/* Fall through */
2101 	case E1000E_INT_MODE_MSI:
2102 		if (!pci_enable_msi(adapter->pdev)) {
2103 			adapter->flags |= FLAG_MSI_ENABLED;
2104 		} else {
2105 			adapter->int_mode = E1000E_INT_MODE_LEGACY;
2106 			e_err("Failed to initialize MSI interrupts.  Falling back to legacy interrupts.\n");
2107 		}
2108 		/* Fall through */
2109 	case E1000E_INT_MODE_LEGACY:
2110 		/* Don't do anything; this is the system default */
2111 		break;
2112 	}
2113 
2114 	/* store the number of vectors being used */
2115 	adapter->num_vectors = 1;
2116 }
2117 
2118 /**
2119  * e1000_request_msix - Initialize MSI-X interrupts
2120  *
2121  * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2122  * kernel.
2123  **/
2124 static int e1000_request_msix(struct e1000_adapter *adapter)
2125 {
2126 	struct net_device *netdev = adapter->netdev;
2127 	int err = 0, vector = 0;
2128 
2129 	if (strlen(netdev->name) < (IFNAMSIZ - 5))
2130 		snprintf(adapter->rx_ring->name,
2131 			 sizeof(adapter->rx_ring->name) - 1,
2132 			 "%s-rx-0", netdev->name);
2133 	else
2134 		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
2135 	err = request_irq(adapter->msix_entries[vector].vector,
2136 			  e1000_intr_msix_rx, 0, adapter->rx_ring->name,
2137 			  netdev);
2138 	if (err)
2139 		return err;
2140 	adapter->rx_ring->itr_register = adapter->hw.hw_addr +
2141 	    E1000_EITR_82574(vector);
2142 	adapter->rx_ring->itr_val = adapter->itr;
2143 	vector++;
2144 
2145 	if (strlen(netdev->name) < (IFNAMSIZ - 5))
2146 		snprintf(adapter->tx_ring->name,
2147 			 sizeof(adapter->tx_ring->name) - 1,
2148 			 "%s-tx-0", netdev->name);
2149 	else
2150 		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2151 	err = request_irq(adapter->msix_entries[vector].vector,
2152 			  e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2153 			  netdev);
2154 	if (err)
2155 		return err;
2156 	adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2157 	    E1000_EITR_82574(vector);
2158 	adapter->tx_ring->itr_val = adapter->itr;
2159 	vector++;
2160 
2161 	err = request_irq(adapter->msix_entries[vector].vector,
2162 			  e1000_msix_other, 0, netdev->name, netdev);
2163 	if (err)
2164 		return err;
2165 
2166 	e1000_configure_msix(adapter);
2167 
2168 	return 0;
2169 }
2170 
2171 /**
2172  * e1000_request_irq - initialize interrupts
2173  *
2174  * Attempts to configure interrupts using the best available
2175  * capabilities of the hardware and kernel.
2176  **/
2177 static int e1000_request_irq(struct e1000_adapter *adapter)
2178 {
2179 	struct net_device *netdev = adapter->netdev;
2180 	int err;
2181 
2182 	if (adapter->msix_entries) {
2183 		err = e1000_request_msix(adapter);
2184 		if (!err)
2185 			return err;
2186 		/* fall back to MSI */
2187 		e1000e_reset_interrupt_capability(adapter);
2188 		adapter->int_mode = E1000E_INT_MODE_MSI;
2189 		e1000e_set_interrupt_capability(adapter);
2190 	}
2191 	if (adapter->flags & FLAG_MSI_ENABLED) {
2192 		err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2193 				  netdev->name, netdev);
2194 		if (!err)
2195 			return err;
2196 
2197 		/* fall back to legacy interrupt */
2198 		e1000e_reset_interrupt_capability(adapter);
2199 		adapter->int_mode = E1000E_INT_MODE_LEGACY;
2200 	}
2201 
2202 	err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2203 			  netdev->name, netdev);
2204 	if (err)
2205 		e_err("Unable to allocate interrupt, Error: %d\n", err);
2206 
2207 	return err;
2208 }
2209 
2210 static void e1000_free_irq(struct e1000_adapter *adapter)
2211 {
2212 	struct net_device *netdev = adapter->netdev;
2213 
2214 	if (adapter->msix_entries) {
2215 		int vector = 0;
2216 
2217 		free_irq(adapter->msix_entries[vector].vector, netdev);
2218 		vector++;
2219 
2220 		free_irq(adapter->msix_entries[vector].vector, netdev);
2221 		vector++;
2222 
2223 		/* Other Causes interrupt vector */
2224 		free_irq(adapter->msix_entries[vector].vector, netdev);
2225 		return;
2226 	}
2227 
2228 	free_irq(adapter->pdev->irq, netdev);
2229 }
2230 
2231 /**
2232  * e1000_irq_disable - Mask off interrupt generation on the NIC
2233  **/
2234 static void e1000_irq_disable(struct e1000_adapter *adapter)
2235 {
2236 	struct e1000_hw *hw = &adapter->hw;
2237 
2238 	ew32(IMC, ~0);
2239 	if (adapter->msix_entries)
2240 		ew32(EIAC_82574, 0);
2241 	e1e_flush();
2242 
2243 	if (adapter->msix_entries) {
2244 		int i;
2245 
2246 		for (i = 0; i < adapter->num_vectors; i++)
2247 			synchronize_irq(adapter->msix_entries[i].vector);
2248 	} else {
2249 		synchronize_irq(adapter->pdev->irq);
2250 	}
2251 }
2252 
2253 /**
2254  * e1000_irq_enable - Enable default interrupt generation settings
2255  **/
2256 static void e1000_irq_enable(struct e1000_adapter *adapter)
2257 {
2258 	struct e1000_hw *hw = &adapter->hw;
2259 
2260 	if (adapter->msix_entries) {
2261 		ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2262 		ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
2263 	} else if ((hw->mac.type == e1000_pch_lpt) ||
2264 		   (hw->mac.type == e1000_pch_spt)) {
2265 		ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER);
2266 	} else {
2267 		ew32(IMS, IMS_ENABLE_MASK);
2268 	}
2269 	e1e_flush();
2270 }
2271 
2272 /**
2273  * e1000e_get_hw_control - get control of the h/w from f/w
2274  * @adapter: address of board private structure
2275  *
2276  * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2277  * For ASF and Pass Through versions of f/w this means that
2278  * the driver is loaded. For AMT version (only with 82573)
2279  * of the f/w this means that the network i/f is open.
2280  **/
2281 void e1000e_get_hw_control(struct e1000_adapter *adapter)
2282 {
2283 	struct e1000_hw *hw = &adapter->hw;
2284 	u32 ctrl_ext;
2285 	u32 swsm;
2286 
2287 	/* Let firmware know the driver has taken over */
2288 	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2289 		swsm = er32(SWSM);
2290 		ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2291 	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2292 		ctrl_ext = er32(CTRL_EXT);
2293 		ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2294 	}
2295 }
2296 
2297 /**
2298  * e1000e_release_hw_control - release control of the h/w to f/w
2299  * @adapter: address of board private structure
2300  *
2301  * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2302  * For ASF and Pass Through versions of f/w this means that the
2303  * driver is no longer loaded. For AMT version (only with 82573) i
2304  * of the f/w this means that the network i/f is closed.
2305  *
2306  **/
2307 void e1000e_release_hw_control(struct e1000_adapter *adapter)
2308 {
2309 	struct e1000_hw *hw = &adapter->hw;
2310 	u32 ctrl_ext;
2311 	u32 swsm;
2312 
2313 	/* Let firmware taken over control of h/w */
2314 	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2315 		swsm = er32(SWSM);
2316 		ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2317 	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2318 		ctrl_ext = er32(CTRL_EXT);
2319 		ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2320 	}
2321 }
2322 
2323 /**
2324  * e1000_alloc_ring_dma - allocate memory for a ring structure
2325  **/
2326 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2327 				struct e1000_ring *ring)
2328 {
2329 	struct pci_dev *pdev = adapter->pdev;
2330 
2331 	ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2332 					GFP_KERNEL);
2333 	if (!ring->desc)
2334 		return -ENOMEM;
2335 
2336 	return 0;
2337 }
2338 
2339 /**
2340  * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2341  * @tx_ring: Tx descriptor ring
2342  *
2343  * Return 0 on success, negative on failure
2344  **/
2345 int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2346 {
2347 	struct e1000_adapter *adapter = tx_ring->adapter;
2348 	int err = -ENOMEM, size;
2349 
2350 	size = sizeof(struct e1000_buffer) * tx_ring->count;
2351 	tx_ring->buffer_info = vzalloc(size);
2352 	if (!tx_ring->buffer_info)
2353 		goto err;
2354 
2355 	/* round up to nearest 4K */
2356 	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2357 	tx_ring->size = ALIGN(tx_ring->size, 4096);
2358 
2359 	err = e1000_alloc_ring_dma(adapter, tx_ring);
2360 	if (err)
2361 		goto err;
2362 
2363 	tx_ring->next_to_use = 0;
2364 	tx_ring->next_to_clean = 0;
2365 
2366 	return 0;
2367 err:
2368 	vfree(tx_ring->buffer_info);
2369 	e_err("Unable to allocate memory for the transmit descriptor ring\n");
2370 	return err;
2371 }
2372 
2373 /**
2374  * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2375  * @rx_ring: Rx descriptor ring
2376  *
2377  * Returns 0 on success, negative on failure
2378  **/
2379 int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2380 {
2381 	struct e1000_adapter *adapter = rx_ring->adapter;
2382 	struct e1000_buffer *buffer_info;
2383 	int i, size, desc_len, err = -ENOMEM;
2384 
2385 	size = sizeof(struct e1000_buffer) * rx_ring->count;
2386 	rx_ring->buffer_info = vzalloc(size);
2387 	if (!rx_ring->buffer_info)
2388 		goto err;
2389 
2390 	for (i = 0; i < rx_ring->count; i++) {
2391 		buffer_info = &rx_ring->buffer_info[i];
2392 		buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2393 						sizeof(struct e1000_ps_page),
2394 						GFP_KERNEL);
2395 		if (!buffer_info->ps_pages)
2396 			goto err_pages;
2397 	}
2398 
2399 	desc_len = sizeof(union e1000_rx_desc_packet_split);
2400 
2401 	/* Round up to nearest 4K */
2402 	rx_ring->size = rx_ring->count * desc_len;
2403 	rx_ring->size = ALIGN(rx_ring->size, 4096);
2404 
2405 	err = e1000_alloc_ring_dma(adapter, rx_ring);
2406 	if (err)
2407 		goto err_pages;
2408 
2409 	rx_ring->next_to_clean = 0;
2410 	rx_ring->next_to_use = 0;
2411 	rx_ring->rx_skb_top = NULL;
2412 
2413 	return 0;
2414 
2415 err_pages:
2416 	for (i = 0; i < rx_ring->count; i++) {
2417 		buffer_info = &rx_ring->buffer_info[i];
2418 		kfree(buffer_info->ps_pages);
2419 	}
2420 err:
2421 	vfree(rx_ring->buffer_info);
2422 	e_err("Unable to allocate memory for the receive descriptor ring\n");
2423 	return err;
2424 }
2425 
2426 /**
2427  * e1000_clean_tx_ring - Free Tx Buffers
2428  * @tx_ring: Tx descriptor ring
2429  **/
2430 static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2431 {
2432 	struct e1000_adapter *adapter = tx_ring->adapter;
2433 	struct e1000_buffer *buffer_info;
2434 	unsigned long size;
2435 	unsigned int i;
2436 
2437 	for (i = 0; i < tx_ring->count; i++) {
2438 		buffer_info = &tx_ring->buffer_info[i];
2439 		e1000_put_txbuf(tx_ring, buffer_info);
2440 	}
2441 
2442 	netdev_reset_queue(adapter->netdev);
2443 	size = sizeof(struct e1000_buffer) * tx_ring->count;
2444 	memset(tx_ring->buffer_info, 0, size);
2445 
2446 	memset(tx_ring->desc, 0, tx_ring->size);
2447 
2448 	tx_ring->next_to_use = 0;
2449 	tx_ring->next_to_clean = 0;
2450 
2451 	writel(0, tx_ring->head);
2452 	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2453 		e1000e_update_tdt_wa(tx_ring, 0);
2454 	else
2455 		writel(0, tx_ring->tail);
2456 }
2457 
2458 /**
2459  * e1000e_free_tx_resources - Free Tx Resources per Queue
2460  * @tx_ring: Tx descriptor ring
2461  *
2462  * Free all transmit software resources
2463  **/
2464 void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2465 {
2466 	struct e1000_adapter *adapter = tx_ring->adapter;
2467 	struct pci_dev *pdev = adapter->pdev;
2468 
2469 	e1000_clean_tx_ring(tx_ring);
2470 
2471 	vfree(tx_ring->buffer_info);
2472 	tx_ring->buffer_info = NULL;
2473 
2474 	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2475 			  tx_ring->dma);
2476 	tx_ring->desc = NULL;
2477 }
2478 
2479 /**
2480  * e1000e_free_rx_resources - Free Rx Resources
2481  * @rx_ring: Rx descriptor ring
2482  *
2483  * Free all receive software resources
2484  **/
2485 void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2486 {
2487 	struct e1000_adapter *adapter = rx_ring->adapter;
2488 	struct pci_dev *pdev = adapter->pdev;
2489 	int i;
2490 
2491 	e1000_clean_rx_ring(rx_ring);
2492 
2493 	for (i = 0; i < rx_ring->count; i++)
2494 		kfree(rx_ring->buffer_info[i].ps_pages);
2495 
2496 	vfree(rx_ring->buffer_info);
2497 	rx_ring->buffer_info = NULL;
2498 
2499 	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2500 			  rx_ring->dma);
2501 	rx_ring->desc = NULL;
2502 }
2503 
2504 /**
2505  * e1000_update_itr - update the dynamic ITR value based on statistics
2506  * @adapter: pointer to adapter
2507  * @itr_setting: current adapter->itr
2508  * @packets: the number of packets during this measurement interval
2509  * @bytes: the number of bytes during this measurement interval
2510  *
2511  *      Stores a new ITR value based on packets and byte
2512  *      counts during the last interrupt.  The advantage of per interrupt
2513  *      computation is faster updates and more accurate ITR for the current
2514  *      traffic pattern.  Constants in this function were computed
2515  *      based on theoretical maximum wire speed and thresholds were set based
2516  *      on testing data as well as attempting to minimize response time
2517  *      while increasing bulk throughput.  This functionality is controlled
2518  *      by the InterruptThrottleRate module parameter.
2519  **/
2520 static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes)
2521 {
2522 	unsigned int retval = itr_setting;
2523 
2524 	if (packets == 0)
2525 		return itr_setting;
2526 
2527 	switch (itr_setting) {
2528 	case lowest_latency:
2529 		/* handle TSO and jumbo frames */
2530 		if (bytes / packets > 8000)
2531 			retval = bulk_latency;
2532 		else if ((packets < 5) && (bytes > 512))
2533 			retval = low_latency;
2534 		break;
2535 	case low_latency:	/* 50 usec aka 20000 ints/s */
2536 		if (bytes > 10000) {
2537 			/* this if handles the TSO accounting */
2538 			if (bytes / packets > 8000)
2539 				retval = bulk_latency;
2540 			else if ((packets < 10) || ((bytes / packets) > 1200))
2541 				retval = bulk_latency;
2542 			else if ((packets > 35))
2543 				retval = lowest_latency;
2544 		} else if (bytes / packets > 2000) {
2545 			retval = bulk_latency;
2546 		} else if (packets <= 2 && bytes < 512) {
2547 			retval = lowest_latency;
2548 		}
2549 		break;
2550 	case bulk_latency:	/* 250 usec aka 4000 ints/s */
2551 		if (bytes > 25000) {
2552 			if (packets > 35)
2553 				retval = low_latency;
2554 		} else if (bytes < 6000) {
2555 			retval = low_latency;
2556 		}
2557 		break;
2558 	}
2559 
2560 	return retval;
2561 }
2562 
2563 static void e1000_set_itr(struct e1000_adapter *adapter)
2564 {
2565 	u16 current_itr;
2566 	u32 new_itr = adapter->itr;
2567 
2568 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2569 	if (adapter->link_speed != SPEED_1000) {
2570 		current_itr = 0;
2571 		new_itr = 4000;
2572 		goto set_itr_now;
2573 	}
2574 
2575 	if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2576 		new_itr = 0;
2577 		goto set_itr_now;
2578 	}
2579 
2580 	adapter->tx_itr = e1000_update_itr(adapter->tx_itr,
2581 					   adapter->total_tx_packets,
2582 					   adapter->total_tx_bytes);
2583 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2584 	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2585 		adapter->tx_itr = low_latency;
2586 
2587 	adapter->rx_itr = e1000_update_itr(adapter->rx_itr,
2588 					   adapter->total_rx_packets,
2589 					   adapter->total_rx_bytes);
2590 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2591 	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2592 		adapter->rx_itr = low_latency;
2593 
2594 	current_itr = max(adapter->rx_itr, adapter->tx_itr);
2595 
2596 	/* counts and packets in update_itr are dependent on these numbers */
2597 	switch (current_itr) {
2598 	case lowest_latency:
2599 		new_itr = 70000;
2600 		break;
2601 	case low_latency:
2602 		new_itr = 20000;	/* aka hwitr = ~200 */
2603 		break;
2604 	case bulk_latency:
2605 		new_itr = 4000;
2606 		break;
2607 	default:
2608 		break;
2609 	}
2610 
2611 set_itr_now:
2612 	if (new_itr != adapter->itr) {
2613 		/* this attempts to bias the interrupt rate towards Bulk
2614 		 * by adding intermediate steps when interrupt rate is
2615 		 * increasing
2616 		 */
2617 		new_itr = new_itr > adapter->itr ?
2618 		    min(adapter->itr + (new_itr >> 2), new_itr) : new_itr;
2619 		adapter->itr = new_itr;
2620 		adapter->rx_ring->itr_val = new_itr;
2621 		if (adapter->msix_entries)
2622 			adapter->rx_ring->set_itr = 1;
2623 		else
2624 			e1000e_write_itr(adapter, new_itr);
2625 	}
2626 }
2627 
2628 /**
2629  * e1000e_write_itr - write the ITR value to the appropriate registers
2630  * @adapter: address of board private structure
2631  * @itr: new ITR value to program
2632  *
2633  * e1000e_write_itr determines if the adapter is in MSI-X mode
2634  * and, if so, writes the EITR registers with the ITR value.
2635  * Otherwise, it writes the ITR value into the ITR register.
2636  **/
2637 void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
2638 {
2639 	struct e1000_hw *hw = &adapter->hw;
2640 	u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
2641 
2642 	if (adapter->msix_entries) {
2643 		int vector;
2644 
2645 		for (vector = 0; vector < adapter->num_vectors; vector++)
2646 			writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
2647 	} else {
2648 		ew32(ITR, new_itr);
2649 	}
2650 }
2651 
2652 /**
2653  * e1000_alloc_queues - Allocate memory for all rings
2654  * @adapter: board private structure to initialize
2655  **/
2656 static int e1000_alloc_queues(struct e1000_adapter *adapter)
2657 {
2658 	int size = sizeof(struct e1000_ring);
2659 
2660 	adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2661 	if (!adapter->tx_ring)
2662 		goto err;
2663 	adapter->tx_ring->count = adapter->tx_ring_count;
2664 	adapter->tx_ring->adapter = adapter;
2665 
2666 	adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2667 	if (!adapter->rx_ring)
2668 		goto err;
2669 	adapter->rx_ring->count = adapter->rx_ring_count;
2670 	adapter->rx_ring->adapter = adapter;
2671 
2672 	return 0;
2673 err:
2674 	e_err("Unable to allocate memory for queues\n");
2675 	kfree(adapter->rx_ring);
2676 	kfree(adapter->tx_ring);
2677 	return -ENOMEM;
2678 }
2679 
2680 /**
2681  * e1000e_poll - NAPI Rx polling callback
2682  * @napi: struct associated with this polling callback
2683  * @weight: number of packets driver is allowed to process this poll
2684  **/
2685 static int e1000e_poll(struct napi_struct *napi, int weight)
2686 {
2687 	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2688 						     napi);
2689 	struct e1000_hw *hw = &adapter->hw;
2690 	struct net_device *poll_dev = adapter->netdev;
2691 	int tx_cleaned = 1, work_done = 0;
2692 
2693 	adapter = netdev_priv(poll_dev);
2694 
2695 	if (!adapter->msix_entries ||
2696 	    (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2697 		tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2698 
2699 	adapter->clean_rx(adapter->rx_ring, &work_done, weight);
2700 
2701 	if (!tx_cleaned)
2702 		work_done = weight;
2703 
2704 	/* If weight not fully consumed, exit the polling mode */
2705 	if (work_done < weight) {
2706 		if (adapter->itr_setting & 3)
2707 			e1000_set_itr(adapter);
2708 		napi_complete(napi);
2709 		if (!test_bit(__E1000_DOWN, &adapter->state)) {
2710 			if (adapter->msix_entries)
2711 				ew32(IMS, adapter->rx_ring->ims_val);
2712 			else
2713 				e1000_irq_enable(adapter);
2714 		}
2715 	}
2716 
2717 	return work_done;
2718 }
2719 
2720 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
2721 				 __always_unused __be16 proto, u16 vid)
2722 {
2723 	struct e1000_adapter *adapter = netdev_priv(netdev);
2724 	struct e1000_hw *hw = &adapter->hw;
2725 	u32 vfta, index;
2726 
2727 	/* don't update vlan cookie if already programmed */
2728 	if ((adapter->hw.mng_cookie.status &
2729 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2730 	    (vid == adapter->mng_vlan_id))
2731 		return 0;
2732 
2733 	/* add VID to filter table */
2734 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2735 		index = (vid >> 5) & 0x7F;
2736 		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2737 		vfta |= (1 << (vid & 0x1F));
2738 		hw->mac.ops.write_vfta(hw, index, vfta);
2739 	}
2740 
2741 	set_bit(vid, adapter->active_vlans);
2742 
2743 	return 0;
2744 }
2745 
2746 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
2747 				  __always_unused __be16 proto, u16 vid)
2748 {
2749 	struct e1000_adapter *adapter = netdev_priv(netdev);
2750 	struct e1000_hw *hw = &adapter->hw;
2751 	u32 vfta, index;
2752 
2753 	if ((adapter->hw.mng_cookie.status &
2754 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2755 	    (vid == adapter->mng_vlan_id)) {
2756 		/* release control to f/w */
2757 		e1000e_release_hw_control(adapter);
2758 		return 0;
2759 	}
2760 
2761 	/* remove VID from filter table */
2762 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2763 		index = (vid >> 5) & 0x7F;
2764 		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2765 		vfta &= ~(1 << (vid & 0x1F));
2766 		hw->mac.ops.write_vfta(hw, index, vfta);
2767 	}
2768 
2769 	clear_bit(vid, adapter->active_vlans);
2770 
2771 	return 0;
2772 }
2773 
2774 /**
2775  * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2776  * @adapter: board private structure to initialize
2777  **/
2778 static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2779 {
2780 	struct net_device *netdev = adapter->netdev;
2781 	struct e1000_hw *hw = &adapter->hw;
2782 	u32 rctl;
2783 
2784 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2785 		/* disable VLAN receive filtering */
2786 		rctl = er32(RCTL);
2787 		rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2788 		ew32(RCTL, rctl);
2789 
2790 		if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2791 			e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
2792 					       adapter->mng_vlan_id);
2793 			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2794 		}
2795 	}
2796 }
2797 
2798 /**
2799  * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2800  * @adapter: board private structure to initialize
2801  **/
2802 static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2803 {
2804 	struct e1000_hw *hw = &adapter->hw;
2805 	u32 rctl;
2806 
2807 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2808 		/* enable VLAN receive filtering */
2809 		rctl = er32(RCTL);
2810 		rctl |= E1000_RCTL_VFE;
2811 		rctl &= ~E1000_RCTL_CFIEN;
2812 		ew32(RCTL, rctl);
2813 	}
2814 }
2815 
2816 /**
2817  * e1000e_vlan_strip_enable - helper to disable HW VLAN stripping
2818  * @adapter: board private structure to initialize
2819  **/
2820 static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2821 {
2822 	struct e1000_hw *hw = &adapter->hw;
2823 	u32 ctrl;
2824 
2825 	/* disable VLAN tag insert/strip */
2826 	ctrl = er32(CTRL);
2827 	ctrl &= ~E1000_CTRL_VME;
2828 	ew32(CTRL, ctrl);
2829 }
2830 
2831 /**
2832  * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2833  * @adapter: board private structure to initialize
2834  **/
2835 static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2836 {
2837 	struct e1000_hw *hw = &adapter->hw;
2838 	u32 ctrl;
2839 
2840 	/* enable VLAN tag insert/strip */
2841 	ctrl = er32(CTRL);
2842 	ctrl |= E1000_CTRL_VME;
2843 	ew32(CTRL, ctrl);
2844 }
2845 
2846 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2847 {
2848 	struct net_device *netdev = adapter->netdev;
2849 	u16 vid = adapter->hw.mng_cookie.vlan_id;
2850 	u16 old_vid = adapter->mng_vlan_id;
2851 
2852 	if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2853 		e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
2854 		adapter->mng_vlan_id = vid;
2855 	}
2856 
2857 	if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2858 		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid);
2859 }
2860 
2861 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2862 {
2863 	u16 vid;
2864 
2865 	e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
2866 
2867 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2868 	    e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
2869 }
2870 
2871 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2872 {
2873 	struct e1000_hw *hw = &adapter->hw;
2874 	u32 manc, manc2h, mdef, i, j;
2875 
2876 	if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2877 		return;
2878 
2879 	manc = er32(MANC);
2880 
2881 	/* enable receiving management packets to the host. this will probably
2882 	 * generate destination unreachable messages from the host OS, but
2883 	 * the packets will be handled on SMBUS
2884 	 */
2885 	manc |= E1000_MANC_EN_MNG2HOST;
2886 	manc2h = er32(MANC2H);
2887 
2888 	switch (hw->mac.type) {
2889 	default:
2890 		manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2891 		break;
2892 	case e1000_82574:
2893 	case e1000_82583:
2894 		/* Check if IPMI pass-through decision filter already exists;
2895 		 * if so, enable it.
2896 		 */
2897 		for (i = 0, j = 0; i < 8; i++) {
2898 			mdef = er32(MDEF(i));
2899 
2900 			/* Ignore filters with anything other than IPMI ports */
2901 			if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2902 				continue;
2903 
2904 			/* Enable this decision filter in MANC2H */
2905 			if (mdef)
2906 				manc2h |= (1 << i);
2907 
2908 			j |= mdef;
2909 		}
2910 
2911 		if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2912 			break;
2913 
2914 		/* Create new decision filter in an empty filter */
2915 		for (i = 0, j = 0; i < 8; i++)
2916 			if (er32(MDEF(i)) == 0) {
2917 				ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2918 					       E1000_MDEF_PORT_664));
2919 				manc2h |= (1 << 1);
2920 				j++;
2921 				break;
2922 			}
2923 
2924 		if (!j)
2925 			e_warn("Unable to create IPMI pass-through filter\n");
2926 		break;
2927 	}
2928 
2929 	ew32(MANC2H, manc2h);
2930 	ew32(MANC, manc);
2931 }
2932 
2933 /**
2934  * e1000_configure_tx - Configure Transmit Unit after Reset
2935  * @adapter: board private structure
2936  *
2937  * Configure the Tx unit of the MAC after a reset.
2938  **/
2939 static void e1000_configure_tx(struct e1000_adapter *adapter)
2940 {
2941 	struct e1000_hw *hw = &adapter->hw;
2942 	struct e1000_ring *tx_ring = adapter->tx_ring;
2943 	u64 tdba;
2944 	u32 tdlen, tctl, tarc;
2945 
2946 	/* Setup the HW Tx Head and Tail descriptor pointers */
2947 	tdba = tx_ring->dma;
2948 	tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2949 	ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2950 	ew32(TDBAH(0), (tdba >> 32));
2951 	ew32(TDLEN(0), tdlen);
2952 	ew32(TDH(0), 0);
2953 	ew32(TDT(0), 0);
2954 	tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2955 	tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2956 
2957 	/* Set the Tx Interrupt Delay register */
2958 	ew32(TIDV, adapter->tx_int_delay);
2959 	/* Tx irq moderation */
2960 	ew32(TADV, adapter->tx_abs_int_delay);
2961 
2962 	if (adapter->flags2 & FLAG2_DMA_BURST) {
2963 		u32 txdctl = er32(TXDCTL(0));
2964 
2965 		txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2966 			    E1000_TXDCTL_WTHRESH);
2967 		/* set up some performance related parameters to encourage the
2968 		 * hardware to use the bus more efficiently in bursts, depends
2969 		 * on the tx_int_delay to be enabled,
2970 		 * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2971 		 * hthresh = 1 ==> prefetch when one or more available
2972 		 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2973 		 * BEWARE: this seems to work but should be considered first if
2974 		 * there are Tx hangs or other Tx related bugs
2975 		 */
2976 		txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2977 		ew32(TXDCTL(0), txdctl);
2978 	}
2979 	/* erratum work around: set txdctl the same for both queues */
2980 	ew32(TXDCTL(1), er32(TXDCTL(0)));
2981 
2982 	/* Program the Transmit Control Register */
2983 	tctl = er32(TCTL);
2984 	tctl &= ~E1000_TCTL_CT;
2985 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2986 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2987 
2988 	if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2989 		tarc = er32(TARC(0));
2990 		/* set the speed mode bit, we'll clear it if we're not at
2991 		 * gigabit link later
2992 		 */
2993 #define SPEED_MODE_BIT (1 << 21)
2994 		tarc |= SPEED_MODE_BIT;
2995 		ew32(TARC(0), tarc);
2996 	}
2997 
2998 	/* errata: program both queues to unweighted RR */
2999 	if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
3000 		tarc = er32(TARC(0));
3001 		tarc |= 1;
3002 		ew32(TARC(0), tarc);
3003 		tarc = er32(TARC(1));
3004 		tarc |= 1;
3005 		ew32(TARC(1), tarc);
3006 	}
3007 
3008 	/* Setup Transmit Descriptor Settings for eop descriptor */
3009 	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
3010 
3011 	/* only set IDE if we are delaying interrupts using the timers */
3012 	if (adapter->tx_int_delay)
3013 		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
3014 
3015 	/* enable Report Status bit */
3016 	adapter->txd_cmd |= E1000_TXD_CMD_RS;
3017 
3018 	ew32(TCTL, tctl);
3019 
3020 	hw->mac.ops.config_collision_dist(hw);
3021 
3022 	/* SPT Si errata workaround to avoid data corruption */
3023 	if (hw->mac.type == e1000_pch_spt) {
3024 		u32 reg_val;
3025 
3026 		reg_val = er32(IOSFPC);
3027 		reg_val |= E1000_RCTL_RDMTS_HEX;
3028 		ew32(IOSFPC, reg_val);
3029 
3030 		reg_val = er32(TARC(0));
3031 		reg_val |= E1000_TARC0_CB_MULTIQ_3_REQ;
3032 		ew32(TARC(0), reg_val);
3033 	}
3034 }
3035 
3036 /**
3037  * e1000_setup_rctl - configure the receive control registers
3038  * @adapter: Board private structure
3039  **/
3040 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
3041 			   (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
3042 static void e1000_setup_rctl(struct e1000_adapter *adapter)
3043 {
3044 	struct e1000_hw *hw = &adapter->hw;
3045 	u32 rctl, rfctl;
3046 	u32 pages = 0;
3047 
3048 	/* Workaround Si errata on PCHx - configure jumbo frame flow.
3049 	 * If jumbo frames not set, program related MAC/PHY registers
3050 	 * to h/w defaults
3051 	 */
3052 	if (hw->mac.type >= e1000_pch2lan) {
3053 		s32 ret_val;
3054 
3055 		if (adapter->netdev->mtu > ETH_DATA_LEN)
3056 			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
3057 		else
3058 			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
3059 
3060 		if (ret_val)
3061 			e_dbg("failed to enable|disable jumbo frame workaround mode\n");
3062 	}
3063 
3064 	/* Program MC offset vector base */
3065 	rctl = er32(RCTL);
3066 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3067 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3068 	    E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3069 	    (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3070 
3071 	/* Do not Store bad packets */
3072 	rctl &= ~E1000_RCTL_SBP;
3073 
3074 	/* Enable Long Packet receive */
3075 	if (adapter->netdev->mtu <= ETH_DATA_LEN)
3076 		rctl &= ~E1000_RCTL_LPE;
3077 	else
3078 		rctl |= E1000_RCTL_LPE;
3079 
3080 	/* Some systems expect that the CRC is included in SMBUS traffic. The
3081 	 * hardware strips the CRC before sending to both SMBUS (BMC) and to
3082 	 * host memory when this is enabled
3083 	 */
3084 	if (adapter->flags2 & FLAG2_CRC_STRIPPING)
3085 		rctl |= E1000_RCTL_SECRC;
3086 
3087 	/* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3088 	if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
3089 		u16 phy_data;
3090 
3091 		e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
3092 		phy_data &= 0xfff8;
3093 		phy_data |= (1 << 2);
3094 		e1e_wphy(hw, PHY_REG(770, 26), phy_data);
3095 
3096 		e1e_rphy(hw, 22, &phy_data);
3097 		phy_data &= 0x0fff;
3098 		phy_data |= (1 << 14);
3099 		e1e_wphy(hw, 0x10, 0x2823);
3100 		e1e_wphy(hw, 0x11, 0x0003);
3101 		e1e_wphy(hw, 22, phy_data);
3102 	}
3103 
3104 	/* Setup buffer sizes */
3105 	rctl &= ~E1000_RCTL_SZ_4096;
3106 	rctl |= E1000_RCTL_BSEX;
3107 	switch (adapter->rx_buffer_len) {
3108 	case 2048:
3109 	default:
3110 		rctl |= E1000_RCTL_SZ_2048;
3111 		rctl &= ~E1000_RCTL_BSEX;
3112 		break;
3113 	case 4096:
3114 		rctl |= E1000_RCTL_SZ_4096;
3115 		break;
3116 	case 8192:
3117 		rctl |= E1000_RCTL_SZ_8192;
3118 		break;
3119 	case 16384:
3120 		rctl |= E1000_RCTL_SZ_16384;
3121 		break;
3122 	}
3123 
3124 	/* Enable Extended Status in all Receive Descriptors */
3125 	rfctl = er32(RFCTL);
3126 	rfctl |= E1000_RFCTL_EXTEN;
3127 	ew32(RFCTL, rfctl);
3128 
3129 	/* 82571 and greater support packet-split where the protocol
3130 	 * header is placed in skb->data and the packet data is
3131 	 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3132 	 * In the case of a non-split, skb->data is linearly filled,
3133 	 * followed by the page buffers.  Therefore, skb->data is
3134 	 * sized to hold the largest protocol header.
3135 	 *
3136 	 * allocations using alloc_page take too long for regular MTU
3137 	 * so only enable packet split for jumbo frames
3138 	 *
3139 	 * Using pages when the page size is greater than 16k wastes
3140 	 * a lot of memory, since we allocate 3 pages at all times
3141 	 * per packet.
3142 	 */
3143 	pages = PAGE_USE_COUNT(adapter->netdev->mtu);
3144 	if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
3145 		adapter->rx_ps_pages = pages;
3146 	else
3147 		adapter->rx_ps_pages = 0;
3148 
3149 	if (adapter->rx_ps_pages) {
3150 		u32 psrctl = 0;
3151 
3152 		/* Enable Packet split descriptors */
3153 		rctl |= E1000_RCTL_DTYP_PS;
3154 
3155 		psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT;
3156 
3157 		switch (adapter->rx_ps_pages) {
3158 		case 3:
3159 			psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT;
3160 			/* fall-through */
3161 		case 2:
3162 			psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT;
3163 			/* fall-through */
3164 		case 1:
3165 			psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT;
3166 			break;
3167 		}
3168 
3169 		ew32(PSRCTL, psrctl);
3170 	}
3171 
3172 	/* This is useful for sniffing bad packets. */
3173 	if (adapter->netdev->features & NETIF_F_RXALL) {
3174 		/* UPE and MPE will be handled by normal PROMISC logic
3175 		 * in e1000e_set_rx_mode
3176 		 */
3177 		rctl |= (E1000_RCTL_SBP |	/* Receive bad packets */
3178 			 E1000_RCTL_BAM |	/* RX All Bcast Pkts */
3179 			 E1000_RCTL_PMCF);	/* RX All MAC Ctrl Pkts */
3180 
3181 		rctl &= ~(E1000_RCTL_VFE |	/* Disable VLAN filter */
3182 			  E1000_RCTL_DPF |	/* Allow filtered pause */
3183 			  E1000_RCTL_CFIEN);	/* Dis VLAN CFIEN Filter */
3184 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3185 		 * and that breaks VLANs.
3186 		 */
3187 	}
3188 
3189 	ew32(RCTL, rctl);
3190 	/* just started the receive unit, no need to restart */
3191 	adapter->flags &= ~FLAG_RESTART_NOW;
3192 }
3193 
3194 /**
3195  * e1000_configure_rx - Configure Receive Unit after Reset
3196  * @adapter: board private structure
3197  *
3198  * Configure the Rx unit of the MAC after a reset.
3199  **/
3200 static void e1000_configure_rx(struct e1000_adapter *adapter)
3201 {
3202 	struct e1000_hw *hw = &adapter->hw;
3203 	struct e1000_ring *rx_ring = adapter->rx_ring;
3204 	u64 rdba;
3205 	u32 rdlen, rctl, rxcsum, ctrl_ext;
3206 
3207 	if (adapter->rx_ps_pages) {
3208 		/* this is a 32 byte descriptor */
3209 		rdlen = rx_ring->count *
3210 		    sizeof(union e1000_rx_desc_packet_split);
3211 		adapter->clean_rx = e1000_clean_rx_irq_ps;
3212 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3213 	} else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3214 		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3215 		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3216 		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3217 	} else {
3218 		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3219 		adapter->clean_rx = e1000_clean_rx_irq;
3220 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3221 	}
3222 
3223 	/* disable receives while setting up the descriptors */
3224 	rctl = er32(RCTL);
3225 	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3226 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
3227 	e1e_flush();
3228 	usleep_range(10000, 20000);
3229 
3230 	if (adapter->flags2 & FLAG2_DMA_BURST) {
3231 		/* set the writeback threshold (only takes effect if the RDTR
3232 		 * is set). set GRAN=1 and write back up to 0x4 worth, and
3233 		 * enable prefetching of 0x20 Rx descriptors
3234 		 * granularity = 01
3235 		 * wthresh = 04,
3236 		 * hthresh = 04,
3237 		 * pthresh = 0x20
3238 		 */
3239 		ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3240 		ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3241 
3242 		/* override the delay timers for enabling bursting, only if
3243 		 * the value was not set by the user via module options
3244 		 */
3245 		if (adapter->rx_int_delay == DEFAULT_RDTR)
3246 			adapter->rx_int_delay = BURST_RDTR;
3247 		if (adapter->rx_abs_int_delay == DEFAULT_RADV)
3248 			adapter->rx_abs_int_delay = BURST_RADV;
3249 	}
3250 
3251 	/* set the Receive Delay Timer Register */
3252 	ew32(RDTR, adapter->rx_int_delay);
3253 
3254 	/* irq moderation */
3255 	ew32(RADV, adapter->rx_abs_int_delay);
3256 	if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3257 		e1000e_write_itr(adapter, adapter->itr);
3258 
3259 	ctrl_ext = er32(CTRL_EXT);
3260 	/* Auto-Mask interrupts upon ICR access */
3261 	ctrl_ext |= E1000_CTRL_EXT_IAME;
3262 	ew32(IAM, 0xffffffff);
3263 	ew32(CTRL_EXT, ctrl_ext);
3264 	e1e_flush();
3265 
3266 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
3267 	 * the Base and Length of the Rx Descriptor Ring
3268 	 */
3269 	rdba = rx_ring->dma;
3270 	ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3271 	ew32(RDBAH(0), (rdba >> 32));
3272 	ew32(RDLEN(0), rdlen);
3273 	ew32(RDH(0), 0);
3274 	ew32(RDT(0), 0);
3275 	rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3276 	rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3277 
3278 	/* Enable Receive Checksum Offload for TCP and UDP */
3279 	rxcsum = er32(RXCSUM);
3280 	if (adapter->netdev->features & NETIF_F_RXCSUM)
3281 		rxcsum |= E1000_RXCSUM_TUOFL;
3282 	else
3283 		rxcsum &= ~E1000_RXCSUM_TUOFL;
3284 	ew32(RXCSUM, rxcsum);
3285 
3286 	/* With jumbo frames, excessive C-state transition latencies result
3287 	 * in dropped transactions.
3288 	 */
3289 	if (adapter->netdev->mtu > ETH_DATA_LEN) {
3290 		u32 lat =
3291 		    ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 -
3292 		     adapter->max_frame_size) * 8 / 1000;
3293 
3294 		if (adapter->flags & FLAG_IS_ICH) {
3295 			u32 rxdctl = er32(RXDCTL(0));
3296 
3297 			ew32(RXDCTL(0), rxdctl | 0x3);
3298 		}
3299 
3300 		pm_qos_update_request(&adapter->pm_qos_req, lat);
3301 	} else {
3302 		pm_qos_update_request(&adapter->pm_qos_req,
3303 				      PM_QOS_DEFAULT_VALUE);
3304 	}
3305 
3306 	/* Enable Receives */
3307 	ew32(RCTL, rctl);
3308 }
3309 
3310 /**
3311  * e1000e_write_mc_addr_list - write multicast addresses to MTA
3312  * @netdev: network interface device structure
3313  *
3314  * Writes multicast address list to the MTA hash table.
3315  * Returns: -ENOMEM on failure
3316  *                0 on no addresses written
3317  *                X on writing X addresses to MTA
3318  */
3319 static int e1000e_write_mc_addr_list(struct net_device *netdev)
3320 {
3321 	struct e1000_adapter *adapter = netdev_priv(netdev);
3322 	struct e1000_hw *hw = &adapter->hw;
3323 	struct netdev_hw_addr *ha;
3324 	u8 *mta_list;
3325 	int i;
3326 
3327 	if (netdev_mc_empty(netdev)) {
3328 		/* nothing to program, so clear mc list */
3329 		hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3330 		return 0;
3331 	}
3332 
3333 	mta_list = kzalloc(netdev_mc_count(netdev) * ETH_ALEN, GFP_ATOMIC);
3334 	if (!mta_list)
3335 		return -ENOMEM;
3336 
3337 	/* update_mc_addr_list expects a packed array of only addresses. */
3338 	i = 0;
3339 	netdev_for_each_mc_addr(ha, netdev)
3340 	    memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3341 
3342 	hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3343 	kfree(mta_list);
3344 
3345 	return netdev_mc_count(netdev);
3346 }
3347 
3348 /**
3349  * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3350  * @netdev: network interface device structure
3351  *
3352  * Writes unicast address list to the RAR table.
3353  * Returns: -ENOMEM on failure/insufficient address space
3354  *                0 on no addresses written
3355  *                X on writing X addresses to the RAR table
3356  **/
3357 static int e1000e_write_uc_addr_list(struct net_device *netdev)
3358 {
3359 	struct e1000_adapter *adapter = netdev_priv(netdev);
3360 	struct e1000_hw *hw = &adapter->hw;
3361 	unsigned int rar_entries;
3362 	int count = 0;
3363 
3364 	rar_entries = hw->mac.ops.rar_get_count(hw);
3365 
3366 	/* save a rar entry for our hardware address */
3367 	rar_entries--;
3368 
3369 	/* save a rar entry for the LAA workaround */
3370 	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3371 		rar_entries--;
3372 
3373 	/* return ENOMEM indicating insufficient memory for addresses */
3374 	if (netdev_uc_count(netdev) > rar_entries)
3375 		return -ENOMEM;
3376 
3377 	if (!netdev_uc_empty(netdev) && rar_entries) {
3378 		struct netdev_hw_addr *ha;
3379 
3380 		/* write the addresses in reverse order to avoid write
3381 		 * combining
3382 		 */
3383 		netdev_for_each_uc_addr(ha, netdev) {
3384 			int rval;
3385 
3386 			if (!rar_entries)
3387 				break;
3388 			rval = hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3389 			if (rval < 0)
3390 				return -ENOMEM;
3391 			count++;
3392 		}
3393 	}
3394 
3395 	/* zero out the remaining RAR entries not used above */
3396 	for (; rar_entries > 0; rar_entries--) {
3397 		ew32(RAH(rar_entries), 0);
3398 		ew32(RAL(rar_entries), 0);
3399 	}
3400 	e1e_flush();
3401 
3402 	return count;
3403 }
3404 
3405 /**
3406  * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3407  * @netdev: network interface device structure
3408  *
3409  * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3410  * address list or the network interface flags are updated.  This routine is
3411  * responsible for configuring the hardware for proper unicast, multicast,
3412  * promiscuous mode, and all-multi behavior.
3413  **/
3414 static void e1000e_set_rx_mode(struct net_device *netdev)
3415 {
3416 	struct e1000_adapter *adapter = netdev_priv(netdev);
3417 	struct e1000_hw *hw = &adapter->hw;
3418 	u32 rctl;
3419 
3420 	if (pm_runtime_suspended(netdev->dev.parent))
3421 		return;
3422 
3423 	/* Check for Promiscuous and All Multicast modes */
3424 	rctl = er32(RCTL);
3425 
3426 	/* clear the affected bits */
3427 	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3428 
3429 	if (netdev->flags & IFF_PROMISC) {
3430 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3431 		/* Do not hardware filter VLANs in promisc mode */
3432 		e1000e_vlan_filter_disable(adapter);
3433 	} else {
3434 		int count;
3435 
3436 		if (netdev->flags & IFF_ALLMULTI) {
3437 			rctl |= E1000_RCTL_MPE;
3438 		} else {
3439 			/* Write addresses to the MTA, if the attempt fails
3440 			 * then we should just turn on promiscuous mode so
3441 			 * that we can at least receive multicast traffic
3442 			 */
3443 			count = e1000e_write_mc_addr_list(netdev);
3444 			if (count < 0)
3445 				rctl |= E1000_RCTL_MPE;
3446 		}
3447 		e1000e_vlan_filter_enable(adapter);
3448 		/* Write addresses to available RAR registers, if there is not
3449 		 * sufficient space to store all the addresses then enable
3450 		 * unicast promiscuous mode
3451 		 */
3452 		count = e1000e_write_uc_addr_list(netdev);
3453 		if (count < 0)
3454 			rctl |= E1000_RCTL_UPE;
3455 	}
3456 
3457 	ew32(RCTL, rctl);
3458 
3459 	if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
3460 		e1000e_vlan_strip_enable(adapter);
3461 	else
3462 		e1000e_vlan_strip_disable(adapter);
3463 }
3464 
3465 static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3466 {
3467 	struct e1000_hw *hw = &adapter->hw;
3468 	u32 mrqc, rxcsum;
3469 	u32 rss_key[10];
3470 	int i;
3471 
3472 	netdev_rss_key_fill(rss_key, sizeof(rss_key));
3473 	for (i = 0; i < 10; i++)
3474 		ew32(RSSRK(i), rss_key[i]);
3475 
3476 	/* Direct all traffic to queue 0 */
3477 	for (i = 0; i < 32; i++)
3478 		ew32(RETA(i), 0);
3479 
3480 	/* Disable raw packet checksumming so that RSS hash is placed in
3481 	 * descriptor on writeback.
3482 	 */
3483 	rxcsum = er32(RXCSUM);
3484 	rxcsum |= E1000_RXCSUM_PCSD;
3485 
3486 	ew32(RXCSUM, rxcsum);
3487 
3488 	mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3489 		E1000_MRQC_RSS_FIELD_IPV4_TCP |
3490 		E1000_MRQC_RSS_FIELD_IPV6 |
3491 		E1000_MRQC_RSS_FIELD_IPV6_TCP |
3492 		E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3493 
3494 	ew32(MRQC, mrqc);
3495 }
3496 
3497 /**
3498  * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3499  * @adapter: board private structure
3500  * @timinca: pointer to returned time increment attributes
3501  *
3502  * Get attributes for incrementing the System Time Register SYSTIML/H at
3503  * the default base frequency, and set the cyclecounter shift value.
3504  **/
3505 s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca)
3506 {
3507 	struct e1000_hw *hw = &adapter->hw;
3508 	u32 incvalue, incperiod, shift;
3509 
3510 	/* Make sure clock is enabled on I217/I218/I219  before checking
3511 	 * the frequency
3512 	 */
3513 	if (((hw->mac.type == e1000_pch_lpt) ||
3514 	     (hw->mac.type == e1000_pch_spt)) &&
3515 	    !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) &&
3516 	    !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) {
3517 		u32 fextnvm7 = er32(FEXTNVM7);
3518 
3519 		if (!(fextnvm7 & (1 << 0))) {
3520 			ew32(FEXTNVM7, fextnvm7 | (1 << 0));
3521 			e1e_flush();
3522 		}
3523 	}
3524 
3525 	switch (hw->mac.type) {
3526 	case e1000_pch2lan:
3527 	case e1000_pch_lpt:
3528 	case e1000_pch_spt:
3529 		/* On I217, I218 and I219, the clock frequency is 25MHz
3530 		 * or 96MHz as indicated by the System Clock Frequency
3531 		 * Indication
3532 		 */
3533 		if (((hw->mac.type != e1000_pch_lpt) &&
3534 		     (hw->mac.type != e1000_pch_spt)) ||
3535 		    (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI)) {
3536 			/* Stable 96MHz frequency */
3537 			incperiod = INCPERIOD_96MHz;
3538 			incvalue = INCVALUE_96MHz;
3539 			shift = INCVALUE_SHIFT_96MHz;
3540 			adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHz;
3541 			break;
3542 		}
3543 		/* fall-through */
3544 	case e1000_82574:
3545 	case e1000_82583:
3546 		/* Stable 25MHz frequency */
3547 		incperiod = INCPERIOD_25MHz;
3548 		incvalue = INCVALUE_25MHz;
3549 		shift = INCVALUE_SHIFT_25MHz;
3550 		adapter->cc.shift = shift;
3551 		break;
3552 	default:
3553 		return -EINVAL;
3554 	}
3555 
3556 	*timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) |
3557 		    ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK));
3558 
3559 	return 0;
3560 }
3561 
3562 /**
3563  * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3564  * @adapter: board private structure
3565  *
3566  * Outgoing time stamping can be enabled and disabled. Play nice and
3567  * disable it when requested, although it shouldn't cause any overhead
3568  * when no packet needs it. At most one packet in the queue may be
3569  * marked for time stamping, otherwise it would be impossible to tell
3570  * for sure to which packet the hardware time stamp belongs.
3571  *
3572  * Incoming time stamping has to be configured via the hardware filters.
3573  * Not all combinations are supported, in particular event type has to be
3574  * specified. Matching the kind of event packet is not supported, with the
3575  * exception of "all V2 events regardless of level 2 or 4".
3576  **/
3577 static int e1000e_config_hwtstamp(struct e1000_adapter *adapter,
3578 				  struct hwtstamp_config *config)
3579 {
3580 	struct e1000_hw *hw = &adapter->hw;
3581 	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
3582 	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
3583 	u32 rxmtrl = 0;
3584 	u16 rxudp = 0;
3585 	bool is_l4 = false;
3586 	bool is_l2 = false;
3587 	u32 regval;
3588 	s32 ret_val;
3589 
3590 	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3591 		return -EINVAL;
3592 
3593 	/* flags reserved for future extensions - must be zero */
3594 	if (config->flags)
3595 		return -EINVAL;
3596 
3597 	switch (config->tx_type) {
3598 	case HWTSTAMP_TX_OFF:
3599 		tsync_tx_ctl = 0;
3600 		break;
3601 	case HWTSTAMP_TX_ON:
3602 		break;
3603 	default:
3604 		return -ERANGE;
3605 	}
3606 
3607 	switch (config->rx_filter) {
3608 	case HWTSTAMP_FILTER_NONE:
3609 		tsync_rx_ctl = 0;
3610 		break;
3611 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3612 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3613 		rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE;
3614 		is_l4 = true;
3615 		break;
3616 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3617 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3618 		rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE;
3619 		is_l4 = true;
3620 		break;
3621 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3622 		/* Also time stamps V2 L2 Path Delay Request/Response */
3623 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3624 		rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3625 		is_l2 = true;
3626 		break;
3627 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3628 		/* Also time stamps V2 L2 Path Delay Request/Response. */
3629 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3630 		rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3631 		is_l2 = true;
3632 		break;
3633 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3634 		/* Hardware cannot filter just V2 L4 Sync messages;
3635 		 * fall-through to V2 (both L2 and L4) Sync.
3636 		 */
3637 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
3638 		/* Also time stamps V2 Path Delay Request/Response. */
3639 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3640 		rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3641 		is_l2 = true;
3642 		is_l4 = true;
3643 		break;
3644 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3645 		/* Hardware cannot filter just V2 L4 Delay Request messages;
3646 		 * fall-through to V2 (both L2 and L4) Delay Request.
3647 		 */
3648 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3649 		/* Also time stamps V2 Path Delay Request/Response. */
3650 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3651 		rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3652 		is_l2 = true;
3653 		is_l4 = true;
3654 		break;
3655 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3656 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3657 		/* Hardware cannot filter just V2 L4 or L2 Event messages;
3658 		 * fall-through to all V2 (both L2 and L4) Events.
3659 		 */
3660 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
3661 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
3662 		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
3663 		is_l2 = true;
3664 		is_l4 = true;
3665 		break;
3666 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3667 		/* For V1, the hardware can only filter Sync messages or
3668 		 * Delay Request messages but not both so fall-through to
3669 		 * time stamp all packets.
3670 		 */
3671 	case HWTSTAMP_FILTER_ALL:
3672 		is_l2 = true;
3673 		is_l4 = true;
3674 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
3675 		config->rx_filter = HWTSTAMP_FILTER_ALL;
3676 		break;
3677 	default:
3678 		return -ERANGE;
3679 	}
3680 
3681 	adapter->hwtstamp_config = *config;
3682 
3683 	/* enable/disable Tx h/w time stamping */
3684 	regval = er32(TSYNCTXCTL);
3685 	regval &= ~E1000_TSYNCTXCTL_ENABLED;
3686 	regval |= tsync_tx_ctl;
3687 	ew32(TSYNCTXCTL, regval);
3688 	if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) !=
3689 	    (regval & E1000_TSYNCTXCTL_ENABLED)) {
3690 		e_err("Timesync Tx Control register not set as expected\n");
3691 		return -EAGAIN;
3692 	}
3693 
3694 	/* enable/disable Rx h/w time stamping */
3695 	regval = er32(TSYNCRXCTL);
3696 	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
3697 	regval |= tsync_rx_ctl;
3698 	ew32(TSYNCRXCTL, regval);
3699 	if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED |
3700 				 E1000_TSYNCRXCTL_TYPE_MASK)) !=
3701 	    (regval & (E1000_TSYNCRXCTL_ENABLED |
3702 		       E1000_TSYNCRXCTL_TYPE_MASK))) {
3703 		e_err("Timesync Rx Control register not set as expected\n");
3704 		return -EAGAIN;
3705 	}
3706 
3707 	/* L2: define ethertype filter for time stamped packets */
3708 	if (is_l2)
3709 		rxmtrl |= ETH_P_1588;
3710 
3711 	/* define which PTP packets get time stamped */
3712 	ew32(RXMTRL, rxmtrl);
3713 
3714 	/* Filter by destination port */
3715 	if (is_l4) {
3716 		rxudp = PTP_EV_PORT;
3717 		cpu_to_be16s(&rxudp);
3718 	}
3719 	ew32(RXUDP, rxudp);
3720 
3721 	e1e_flush();
3722 
3723 	/* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
3724 	er32(RXSTMPH);
3725 	er32(TXSTMPH);
3726 
3727 	/* Get and set the System Time Register SYSTIM base frequency */
3728 	ret_val = e1000e_get_base_timinca(adapter, &regval);
3729 	if (ret_val)
3730 		return ret_val;
3731 	ew32(TIMINCA, regval);
3732 
3733 	/* reset the ns time counter */
3734 	timecounter_init(&adapter->tc, &adapter->cc,
3735 			 ktime_to_ns(ktime_get_real()));
3736 
3737 	return 0;
3738 }
3739 
3740 /**
3741  * e1000_configure - configure the hardware for Rx and Tx
3742  * @adapter: private board structure
3743  **/
3744 static void e1000_configure(struct e1000_adapter *adapter)
3745 {
3746 	struct e1000_ring *rx_ring = adapter->rx_ring;
3747 
3748 	e1000e_set_rx_mode(adapter->netdev);
3749 
3750 	e1000_restore_vlan(adapter);
3751 	e1000_init_manageability_pt(adapter);
3752 
3753 	e1000_configure_tx(adapter);
3754 
3755 	if (adapter->netdev->features & NETIF_F_RXHASH)
3756 		e1000e_setup_rss_hash(adapter);
3757 	e1000_setup_rctl(adapter);
3758 	e1000_configure_rx(adapter);
3759 	adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3760 }
3761 
3762 /**
3763  * e1000e_power_up_phy - restore link in case the phy was powered down
3764  * @adapter: address of board private structure
3765  *
3766  * The phy may be powered down to save power and turn off link when the
3767  * driver is unloaded and wake on lan is not enabled (among others)
3768  * *** this routine MUST be followed by a call to e1000e_reset ***
3769  **/
3770 void e1000e_power_up_phy(struct e1000_adapter *adapter)
3771 {
3772 	if (adapter->hw.phy.ops.power_up)
3773 		adapter->hw.phy.ops.power_up(&adapter->hw);
3774 
3775 	adapter->hw.mac.ops.setup_link(&adapter->hw);
3776 }
3777 
3778 /**
3779  * e1000_power_down_phy - Power down the PHY
3780  *
3781  * Power down the PHY so no link is implied when interface is down.
3782  * The PHY cannot be powered down if management or WoL is active.
3783  */
3784 static void e1000_power_down_phy(struct e1000_adapter *adapter)
3785 {
3786 	if (adapter->hw.phy.ops.power_down)
3787 		adapter->hw.phy.ops.power_down(&adapter->hw);
3788 }
3789 
3790 /**
3791  * e1000e_reset - bring the hardware into a known good state
3792  *
3793  * This function boots the hardware and enables some settings that
3794  * require a configuration cycle of the hardware - those cannot be
3795  * set/changed during runtime. After reset the device needs to be
3796  * properly configured for Rx, Tx etc.
3797  */
3798 void e1000e_reset(struct e1000_adapter *adapter)
3799 {
3800 	struct e1000_mac_info *mac = &adapter->hw.mac;
3801 	struct e1000_fc_info *fc = &adapter->hw.fc;
3802 	struct e1000_hw *hw = &adapter->hw;
3803 	u32 tx_space, min_tx_space, min_rx_space;
3804 	u32 pba = adapter->pba;
3805 	u16 hwm;
3806 
3807 	/* reset Packet Buffer Allocation to default */
3808 	ew32(PBA, pba);
3809 
3810 	if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
3811 		/* To maintain wire speed transmits, the Tx FIFO should be
3812 		 * large enough to accommodate two full transmit packets,
3813 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
3814 		 * the Rx FIFO should be large enough to accommodate at least
3815 		 * one full receive packet and is similarly rounded up and
3816 		 * expressed in KB.
3817 		 */
3818 		pba = er32(PBA);
3819 		/* upper 16 bits has Tx packet buffer allocation size in KB */
3820 		tx_space = pba >> 16;
3821 		/* lower 16 bits has Rx packet buffer allocation size in KB */
3822 		pba &= 0xffff;
3823 		/* the Tx fifo also stores 16 bytes of information about the Tx
3824 		 * but don't include ethernet FCS because hardware appends it
3825 		 */
3826 		min_tx_space = (adapter->max_frame_size +
3827 				sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2;
3828 		min_tx_space = ALIGN(min_tx_space, 1024);
3829 		min_tx_space >>= 10;
3830 		/* software strips receive CRC, so leave room for it */
3831 		min_rx_space = adapter->max_frame_size;
3832 		min_rx_space = ALIGN(min_rx_space, 1024);
3833 		min_rx_space >>= 10;
3834 
3835 		/* If current Tx allocation is less than the min Tx FIFO size,
3836 		 * and the min Tx FIFO size is less than the current Rx FIFO
3837 		 * allocation, take space away from current Rx allocation
3838 		 */
3839 		if ((tx_space < min_tx_space) &&
3840 		    ((min_tx_space - tx_space) < pba)) {
3841 			pba -= min_tx_space - tx_space;
3842 
3843 			/* if short on Rx space, Rx wins and must trump Tx
3844 			 * adjustment
3845 			 */
3846 			if (pba < min_rx_space)
3847 				pba = min_rx_space;
3848 		}
3849 
3850 		ew32(PBA, pba);
3851 	}
3852 
3853 	/* flow control settings
3854 	 *
3855 	 * The high water mark must be low enough to fit one full frame
3856 	 * (or the size used for early receive) above it in the Rx FIFO.
3857 	 * Set it to the lower of:
3858 	 * - 90% of the Rx FIFO size, and
3859 	 * - the full Rx FIFO size minus one full frame
3860 	 */
3861 	if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
3862 		fc->pause_time = 0xFFFF;
3863 	else
3864 		fc->pause_time = E1000_FC_PAUSE_TIME;
3865 	fc->send_xon = true;
3866 	fc->current_mode = fc->requested_mode;
3867 
3868 	switch (hw->mac.type) {
3869 	case e1000_ich9lan:
3870 	case e1000_ich10lan:
3871 		if (adapter->netdev->mtu > ETH_DATA_LEN) {
3872 			pba = 14;
3873 			ew32(PBA, pba);
3874 			fc->high_water = 0x2800;
3875 			fc->low_water = fc->high_water - 8;
3876 			break;
3877 		}
3878 		/* fall-through */
3879 	default:
3880 		hwm = min(((pba << 10) * 9 / 10),
3881 			  ((pba << 10) - adapter->max_frame_size));
3882 
3883 		fc->high_water = hwm & E1000_FCRTH_RTH;	/* 8-byte granularity */
3884 		fc->low_water = fc->high_water - 8;
3885 		break;
3886 	case e1000_pchlan:
3887 		/* Workaround PCH LOM adapter hangs with certain network
3888 		 * loads.  If hangs persist, try disabling Tx flow control.
3889 		 */
3890 		if (adapter->netdev->mtu > ETH_DATA_LEN) {
3891 			fc->high_water = 0x3500;
3892 			fc->low_water = 0x1500;
3893 		} else {
3894 			fc->high_water = 0x5000;
3895 			fc->low_water = 0x3000;
3896 		}
3897 		fc->refresh_time = 0x1000;
3898 		break;
3899 	case e1000_pch2lan:
3900 	case e1000_pch_lpt:
3901 	case e1000_pch_spt:
3902 		fc->refresh_time = 0x0400;
3903 
3904 		if (adapter->netdev->mtu <= ETH_DATA_LEN) {
3905 			fc->high_water = 0x05C20;
3906 			fc->low_water = 0x05048;
3907 			fc->pause_time = 0x0650;
3908 			break;
3909 		}
3910 
3911 		pba = 14;
3912 		ew32(PBA, pba);
3913 		fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH;
3914 		fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL;
3915 		break;
3916 	}
3917 
3918 	/* Alignment of Tx data is on an arbitrary byte boundary with the
3919 	 * maximum size per Tx descriptor limited only to the transmit
3920 	 * allocation of the packet buffer minus 96 bytes with an upper
3921 	 * limit of 24KB due to receive synchronization limitations.
3922 	 */
3923 	adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
3924 				       24 << 10);
3925 
3926 	/* Disable Adaptive Interrupt Moderation if 2 full packets cannot
3927 	 * fit in receive buffer.
3928 	 */
3929 	if (adapter->itr_setting & 0x3) {
3930 		if ((adapter->max_frame_size * 2) > (pba << 10)) {
3931 			if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
3932 				dev_info(&adapter->pdev->dev,
3933 					 "Interrupt Throttle Rate off\n");
3934 				adapter->flags2 |= FLAG2_DISABLE_AIM;
3935 				e1000e_write_itr(adapter, 0);
3936 			}
3937 		} else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
3938 			dev_info(&adapter->pdev->dev,
3939 				 "Interrupt Throttle Rate on\n");
3940 			adapter->flags2 &= ~FLAG2_DISABLE_AIM;
3941 			adapter->itr = 20000;
3942 			e1000e_write_itr(adapter, adapter->itr);
3943 		}
3944 	}
3945 
3946 	/* Allow time for pending master requests to run */
3947 	mac->ops.reset_hw(hw);
3948 
3949 	/* For parts with AMT enabled, let the firmware know
3950 	 * that the network interface is in control
3951 	 */
3952 	if (adapter->flags & FLAG_HAS_AMT)
3953 		e1000e_get_hw_control(adapter);
3954 
3955 	ew32(WUC, 0);
3956 
3957 	if (mac->ops.init_hw(hw))
3958 		e_err("Hardware Error\n");
3959 
3960 	e1000_update_mng_vlan(adapter);
3961 
3962 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
3963 	ew32(VET, ETH_P_8021Q);
3964 
3965 	e1000e_reset_adaptive(hw);
3966 
3967 	/* initialize systim and reset the ns time counter */
3968 	e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config);
3969 
3970 	/* Set EEE advertisement as appropriate */
3971 	if (adapter->flags2 & FLAG2_HAS_EEE) {
3972 		s32 ret_val;
3973 		u16 adv_addr;
3974 
3975 		switch (hw->phy.type) {
3976 		case e1000_phy_82579:
3977 			adv_addr = I82579_EEE_ADVERTISEMENT;
3978 			break;
3979 		case e1000_phy_i217:
3980 			adv_addr = I217_EEE_ADVERTISEMENT;
3981 			break;
3982 		default:
3983 			dev_err(&adapter->pdev->dev,
3984 				"Invalid PHY type setting EEE advertisement\n");
3985 			return;
3986 		}
3987 
3988 		ret_val = hw->phy.ops.acquire(hw);
3989 		if (ret_val) {
3990 			dev_err(&adapter->pdev->dev,
3991 				"EEE advertisement - unable to acquire PHY\n");
3992 			return;
3993 		}
3994 
3995 		e1000_write_emi_reg_locked(hw, adv_addr,
3996 					   hw->dev_spec.ich8lan.eee_disable ?
3997 					   0 : adapter->eee_advert);
3998 
3999 		hw->phy.ops.release(hw);
4000 	}
4001 
4002 	if (!netif_running(adapter->netdev) &&
4003 	    !test_bit(__E1000_TESTING, &adapter->state))
4004 		e1000_power_down_phy(adapter);
4005 
4006 	e1000_get_phy_info(hw);
4007 
4008 	if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
4009 	    !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
4010 		u16 phy_data = 0;
4011 		/* speed up time to link by disabling smart power down, ignore
4012 		 * the return value of this function because there is nothing
4013 		 * different we would do if it failed
4014 		 */
4015 		e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
4016 		phy_data &= ~IGP02E1000_PM_SPD;
4017 		e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
4018 	}
4019 }
4020 
4021 int e1000e_up(struct e1000_adapter *adapter)
4022 {
4023 	struct e1000_hw *hw = &adapter->hw;
4024 
4025 	/* hardware has been reset, we need to reload some things */
4026 	e1000_configure(adapter);
4027 
4028 	clear_bit(__E1000_DOWN, &adapter->state);
4029 
4030 	if (adapter->msix_entries)
4031 		e1000_configure_msix(adapter);
4032 	e1000_irq_enable(adapter);
4033 
4034 	netif_start_queue(adapter->netdev);
4035 
4036 	/* fire a link change interrupt to start the watchdog */
4037 	if (adapter->msix_entries)
4038 		ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
4039 	else
4040 		ew32(ICS, E1000_ICS_LSC);
4041 
4042 	return 0;
4043 }
4044 
4045 static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
4046 {
4047 	struct e1000_hw *hw = &adapter->hw;
4048 
4049 	if (!(adapter->flags2 & FLAG2_DMA_BURST))
4050 		return;
4051 
4052 	/* flush pending descriptor writebacks to memory */
4053 	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4054 	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4055 
4056 	/* execute the writes immediately */
4057 	e1e_flush();
4058 
4059 	/* due to rare timing issues, write to TIDV/RDTR again to ensure the
4060 	 * write is successful
4061 	 */
4062 	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4063 	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4064 
4065 	/* execute the writes immediately */
4066 	e1e_flush();
4067 }
4068 
4069 static void e1000e_update_stats(struct e1000_adapter *adapter);
4070 
4071 /**
4072  * e1000e_down - quiesce the device and optionally reset the hardware
4073  * @adapter: board private structure
4074  * @reset: boolean flag to reset the hardware or not
4075  */
4076 void e1000e_down(struct e1000_adapter *adapter, bool reset)
4077 {
4078 	struct net_device *netdev = adapter->netdev;
4079 	struct e1000_hw *hw = &adapter->hw;
4080 	u32 tctl, rctl;
4081 
4082 	/* signal that we're down so the interrupt handler does not
4083 	 * reschedule our watchdog timer
4084 	 */
4085 	set_bit(__E1000_DOWN, &adapter->state);
4086 
4087 	netif_carrier_off(netdev);
4088 
4089 	/* disable receives in the hardware */
4090 	rctl = er32(RCTL);
4091 	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
4092 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
4093 	/* flush and sleep below */
4094 
4095 	netif_stop_queue(netdev);
4096 
4097 	/* disable transmits in the hardware */
4098 	tctl = er32(TCTL);
4099 	tctl &= ~E1000_TCTL_EN;
4100 	ew32(TCTL, tctl);
4101 
4102 	/* flush both disables and wait for them to finish */
4103 	e1e_flush();
4104 	usleep_range(10000, 20000);
4105 
4106 	e1000_irq_disable(adapter);
4107 
4108 	napi_synchronize(&adapter->napi);
4109 
4110 	del_timer_sync(&adapter->watchdog_timer);
4111 	del_timer_sync(&adapter->phy_info_timer);
4112 
4113 	spin_lock(&adapter->stats64_lock);
4114 	e1000e_update_stats(adapter);
4115 	spin_unlock(&adapter->stats64_lock);
4116 
4117 	e1000e_flush_descriptors(adapter);
4118 	e1000_clean_tx_ring(adapter->tx_ring);
4119 	e1000_clean_rx_ring(adapter->rx_ring);
4120 
4121 	adapter->link_speed = 0;
4122 	adapter->link_duplex = 0;
4123 
4124 	/* Disable Si errata workaround on PCHx for jumbo frame flow */
4125 	if ((hw->mac.type >= e1000_pch2lan) &&
4126 	    (adapter->netdev->mtu > ETH_DATA_LEN) &&
4127 	    e1000_lv_jumbo_workaround_ich8lan(hw, false))
4128 		e_dbg("failed to disable jumbo frame workaround mode\n");
4129 
4130 	if (reset && !pci_channel_offline(adapter->pdev))
4131 		e1000e_reset(adapter);
4132 }
4133 
4134 void e1000e_reinit_locked(struct e1000_adapter *adapter)
4135 {
4136 	might_sleep();
4137 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4138 		usleep_range(1000, 2000);
4139 	e1000e_down(adapter, true);
4140 	e1000e_up(adapter);
4141 	clear_bit(__E1000_RESETTING, &adapter->state);
4142 }
4143 
4144 /**
4145  * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4146  * @cc: cyclecounter structure
4147  **/
4148 static cycle_t e1000e_cyclecounter_read(const struct cyclecounter *cc)
4149 {
4150 	struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter,
4151 						     cc);
4152 	struct e1000_hw *hw = &adapter->hw;
4153 	cycle_t systim, systim_next;
4154 
4155 	/* latch SYSTIMH on read of SYSTIML */
4156 	systim = (cycle_t)er32(SYSTIML);
4157 	systim |= (cycle_t)er32(SYSTIMH) << 32;
4158 
4159 	if ((hw->mac.type == e1000_82574) || (hw->mac.type == e1000_82583)) {
4160 		u64 incvalue, time_delta, rem, temp;
4161 		int i;
4162 
4163 		/* errata for 82574/82583 possible bad bits read from SYSTIMH/L
4164 		 * check to see that the time is incrementing at a reasonable
4165 		 * rate and is a multiple of incvalue
4166 		 */
4167 		incvalue = er32(TIMINCA) & E1000_TIMINCA_INCVALUE_MASK;
4168 		for (i = 0; i < E1000_MAX_82574_SYSTIM_REREADS; i++) {
4169 			/* latch SYSTIMH on read of SYSTIML */
4170 			systim_next = (cycle_t)er32(SYSTIML);
4171 			systim_next |= (cycle_t)er32(SYSTIMH) << 32;
4172 
4173 			time_delta = systim_next - systim;
4174 			temp = time_delta;
4175 			rem = do_div(temp, incvalue);
4176 
4177 			systim = systim_next;
4178 
4179 			if ((time_delta < E1000_82574_SYSTIM_EPSILON) &&
4180 			    (rem == 0))
4181 				break;
4182 		}
4183 	}
4184 	return systim;
4185 }
4186 
4187 /**
4188  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4189  * @adapter: board private structure to initialize
4190  *
4191  * e1000_sw_init initializes the Adapter private data structure.
4192  * Fields are initialized based on PCI device information and
4193  * OS network device settings (MTU size).
4194  **/
4195 static int e1000_sw_init(struct e1000_adapter *adapter)
4196 {
4197 	struct net_device *netdev = adapter->netdev;
4198 
4199 	adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
4200 	adapter->rx_ps_bsize0 = 128;
4201 	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
4202 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4203 	adapter->tx_ring_count = E1000_DEFAULT_TXD;
4204 	adapter->rx_ring_count = E1000_DEFAULT_RXD;
4205 
4206 	spin_lock_init(&adapter->stats64_lock);
4207 
4208 	e1000e_set_interrupt_capability(adapter);
4209 
4210 	if (e1000_alloc_queues(adapter))
4211 		return -ENOMEM;
4212 
4213 	/* Setup hardware time stamping cyclecounter */
4214 	if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
4215 		adapter->cc.read = e1000e_cyclecounter_read;
4216 		adapter->cc.mask = CYCLECOUNTER_MASK(64);
4217 		adapter->cc.mult = 1;
4218 		/* cc.shift set in e1000e_get_base_tininca() */
4219 
4220 		spin_lock_init(&adapter->systim_lock);
4221 		INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work);
4222 	}
4223 
4224 	/* Explicitly disable IRQ since the NIC can be in any state. */
4225 	e1000_irq_disable(adapter);
4226 
4227 	set_bit(__E1000_DOWN, &adapter->state);
4228 	return 0;
4229 }
4230 
4231 /**
4232  * e1000_intr_msi_test - Interrupt Handler
4233  * @irq: interrupt number
4234  * @data: pointer to a network interface device structure
4235  **/
4236 static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data)
4237 {
4238 	struct net_device *netdev = data;
4239 	struct e1000_adapter *adapter = netdev_priv(netdev);
4240 	struct e1000_hw *hw = &adapter->hw;
4241 	u32 icr = er32(ICR);
4242 
4243 	e_dbg("icr is %08X\n", icr);
4244 	if (icr & E1000_ICR_RXSEQ) {
4245 		adapter->flags &= ~FLAG_MSI_TEST_FAILED;
4246 		/* Force memory writes to complete before acknowledging the
4247 		 * interrupt is handled.
4248 		 */
4249 		wmb();
4250 	}
4251 
4252 	return IRQ_HANDLED;
4253 }
4254 
4255 /**
4256  * e1000_test_msi_interrupt - Returns 0 for successful test
4257  * @adapter: board private struct
4258  *
4259  * code flow taken from tg3.c
4260  **/
4261 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
4262 {
4263 	struct net_device *netdev = adapter->netdev;
4264 	struct e1000_hw *hw = &adapter->hw;
4265 	int err;
4266 
4267 	/* poll_enable hasn't been called yet, so don't need disable */
4268 	/* clear any pending events */
4269 	er32(ICR);
4270 
4271 	/* free the real vector and request a test handler */
4272 	e1000_free_irq(adapter);
4273 	e1000e_reset_interrupt_capability(adapter);
4274 
4275 	/* Assume that the test fails, if it succeeds then the test
4276 	 * MSI irq handler will unset this flag
4277 	 */
4278 	adapter->flags |= FLAG_MSI_TEST_FAILED;
4279 
4280 	err = pci_enable_msi(adapter->pdev);
4281 	if (err)
4282 		goto msi_test_failed;
4283 
4284 	err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
4285 			  netdev->name, netdev);
4286 	if (err) {
4287 		pci_disable_msi(adapter->pdev);
4288 		goto msi_test_failed;
4289 	}
4290 
4291 	/* Force memory writes to complete before enabling and firing an
4292 	 * interrupt.
4293 	 */
4294 	wmb();
4295 
4296 	e1000_irq_enable(adapter);
4297 
4298 	/* fire an unusual interrupt on the test handler */
4299 	ew32(ICS, E1000_ICS_RXSEQ);
4300 	e1e_flush();
4301 	msleep(100);
4302 
4303 	e1000_irq_disable(adapter);
4304 
4305 	rmb();			/* read flags after interrupt has been fired */
4306 
4307 	if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4308 		adapter->int_mode = E1000E_INT_MODE_LEGACY;
4309 		e_info("MSI interrupt test failed, using legacy interrupt.\n");
4310 	} else {
4311 		e_dbg("MSI interrupt test succeeded!\n");
4312 	}
4313 
4314 	free_irq(adapter->pdev->irq, netdev);
4315 	pci_disable_msi(adapter->pdev);
4316 
4317 msi_test_failed:
4318 	e1000e_set_interrupt_capability(adapter);
4319 	return e1000_request_irq(adapter);
4320 }
4321 
4322 /**
4323  * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4324  * @adapter: board private struct
4325  *
4326  * code flow taken from tg3.c, called with e1000 interrupts disabled.
4327  **/
4328 static int e1000_test_msi(struct e1000_adapter *adapter)
4329 {
4330 	int err;
4331 	u16 pci_cmd;
4332 
4333 	if (!(adapter->flags & FLAG_MSI_ENABLED))
4334 		return 0;
4335 
4336 	/* disable SERR in case the MSI write causes a master abort */
4337 	pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4338 	if (pci_cmd & PCI_COMMAND_SERR)
4339 		pci_write_config_word(adapter->pdev, PCI_COMMAND,
4340 				      pci_cmd & ~PCI_COMMAND_SERR);
4341 
4342 	err = e1000_test_msi_interrupt(adapter);
4343 
4344 	/* re-enable SERR */
4345 	if (pci_cmd & PCI_COMMAND_SERR) {
4346 		pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4347 		pci_cmd |= PCI_COMMAND_SERR;
4348 		pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
4349 	}
4350 
4351 	return err;
4352 }
4353 
4354 /**
4355  * e1000_open - Called when a network interface is made active
4356  * @netdev: network interface device structure
4357  *
4358  * Returns 0 on success, negative value on failure
4359  *
4360  * The open entry point is called when a network interface is made
4361  * active by the system (IFF_UP).  At this point all resources needed
4362  * for transmit and receive operations are allocated, the interrupt
4363  * handler is registered with the OS, the watchdog timer is started,
4364  * and the stack is notified that the interface is ready.
4365  **/
4366 static int e1000_open(struct net_device *netdev)
4367 {
4368 	struct e1000_adapter *adapter = netdev_priv(netdev);
4369 	struct e1000_hw *hw = &adapter->hw;
4370 	struct pci_dev *pdev = adapter->pdev;
4371 	int err;
4372 
4373 	/* disallow open during test */
4374 	if (test_bit(__E1000_TESTING, &adapter->state))
4375 		return -EBUSY;
4376 
4377 	pm_runtime_get_sync(&pdev->dev);
4378 
4379 	netif_carrier_off(netdev);
4380 
4381 	/* allocate transmit descriptors */
4382 	err = e1000e_setup_tx_resources(adapter->tx_ring);
4383 	if (err)
4384 		goto err_setup_tx;
4385 
4386 	/* allocate receive descriptors */
4387 	err = e1000e_setup_rx_resources(adapter->rx_ring);
4388 	if (err)
4389 		goto err_setup_rx;
4390 
4391 	/* If AMT is enabled, let the firmware know that the network
4392 	 * interface is now open and reset the part to a known state.
4393 	 */
4394 	if (adapter->flags & FLAG_HAS_AMT) {
4395 		e1000e_get_hw_control(adapter);
4396 		e1000e_reset(adapter);
4397 	}
4398 
4399 	e1000e_power_up_phy(adapter);
4400 
4401 	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4402 	if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
4403 		e1000_update_mng_vlan(adapter);
4404 
4405 	/* DMA latency requirement to workaround jumbo issue */
4406 	pm_qos_add_request(&adapter->pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
4407 			   PM_QOS_DEFAULT_VALUE);
4408 
4409 	/* before we allocate an interrupt, we must be ready to handle it.
4410 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4411 	 * as soon as we call pci_request_irq, so we have to setup our
4412 	 * clean_rx handler before we do so.
4413 	 */
4414 	e1000_configure(adapter);
4415 
4416 	err = e1000_request_irq(adapter);
4417 	if (err)
4418 		goto err_req_irq;
4419 
4420 	/* Work around PCIe errata with MSI interrupts causing some chipsets to
4421 	 * ignore e1000e MSI messages, which means we need to test our MSI
4422 	 * interrupt now
4423 	 */
4424 	if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
4425 		err = e1000_test_msi(adapter);
4426 		if (err) {
4427 			e_err("Interrupt allocation failed\n");
4428 			goto err_req_irq;
4429 		}
4430 	}
4431 
4432 	/* From here on the code is the same as e1000e_up() */
4433 	clear_bit(__E1000_DOWN, &adapter->state);
4434 
4435 	napi_enable(&adapter->napi);
4436 
4437 	e1000_irq_enable(adapter);
4438 
4439 	adapter->tx_hang_recheck = false;
4440 	netif_start_queue(netdev);
4441 
4442 	hw->mac.get_link_status = true;
4443 	pm_runtime_put(&pdev->dev);
4444 
4445 	/* fire a link status change interrupt to start the watchdog */
4446 	if (adapter->msix_entries)
4447 		ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
4448 	else
4449 		ew32(ICS, E1000_ICS_LSC);
4450 
4451 	return 0;
4452 
4453 err_req_irq:
4454 	e1000e_release_hw_control(adapter);
4455 	e1000_power_down_phy(adapter);
4456 	e1000e_free_rx_resources(adapter->rx_ring);
4457 err_setup_rx:
4458 	e1000e_free_tx_resources(adapter->tx_ring);
4459 err_setup_tx:
4460 	e1000e_reset(adapter);
4461 	pm_runtime_put_sync(&pdev->dev);
4462 
4463 	return err;
4464 }
4465 
4466 /**
4467  * e1000_close - Disables a network interface
4468  * @netdev: network interface device structure
4469  *
4470  * Returns 0, this is not allowed to fail
4471  *
4472  * The close entry point is called when an interface is de-activated
4473  * by the OS.  The hardware is still under the drivers control, but
4474  * needs to be disabled.  A global MAC reset is issued to stop the
4475  * hardware, and all transmit and receive resources are freed.
4476  **/
4477 static int e1000_close(struct net_device *netdev)
4478 {
4479 	struct e1000_adapter *adapter = netdev_priv(netdev);
4480 	struct pci_dev *pdev = adapter->pdev;
4481 	int count = E1000_CHECK_RESET_COUNT;
4482 
4483 	while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
4484 		usleep_range(10000, 20000);
4485 
4486 	WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4487 
4488 	pm_runtime_get_sync(&pdev->dev);
4489 
4490 	if (!test_bit(__E1000_DOWN, &adapter->state)) {
4491 		e1000e_down(adapter, true);
4492 		e1000_free_irq(adapter);
4493 
4494 		/* Link status message must follow this format */
4495 		pr_info("%s NIC Link is Down\n", adapter->netdev->name);
4496 	}
4497 
4498 	napi_disable(&adapter->napi);
4499 
4500 	e1000e_free_tx_resources(adapter->tx_ring);
4501 	e1000e_free_rx_resources(adapter->rx_ring);
4502 
4503 	/* kill manageability vlan ID if supported, but not if a vlan with
4504 	 * the same ID is registered on the host OS (let 8021q kill it)
4505 	 */
4506 	if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
4507 		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
4508 				       adapter->mng_vlan_id);
4509 
4510 	/* If AMT is enabled, let the firmware know that the network
4511 	 * interface is now closed
4512 	 */
4513 	if ((adapter->flags & FLAG_HAS_AMT) &&
4514 	    !test_bit(__E1000_TESTING, &adapter->state))
4515 		e1000e_release_hw_control(adapter);
4516 
4517 	pm_qos_remove_request(&adapter->pm_qos_req);
4518 
4519 	pm_runtime_put_sync(&pdev->dev);
4520 
4521 	return 0;
4522 }
4523 
4524 /**
4525  * e1000_set_mac - Change the Ethernet Address of the NIC
4526  * @netdev: network interface device structure
4527  * @p: pointer to an address structure
4528  *
4529  * Returns 0 on success, negative on failure
4530  **/
4531 static int e1000_set_mac(struct net_device *netdev, void *p)
4532 {
4533 	struct e1000_adapter *adapter = netdev_priv(netdev);
4534 	struct e1000_hw *hw = &adapter->hw;
4535 	struct sockaddr *addr = p;
4536 
4537 	if (!is_valid_ether_addr(addr->sa_data))
4538 		return -EADDRNOTAVAIL;
4539 
4540 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4541 	memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4542 
4543 	hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4544 
4545 	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4546 		/* activate the work around */
4547 		e1000e_set_laa_state_82571(&adapter->hw, 1);
4548 
4549 		/* Hold a copy of the LAA in RAR[14] This is done so that
4550 		 * between the time RAR[0] gets clobbered  and the time it
4551 		 * gets fixed (in e1000_watchdog), the actual LAA is in one
4552 		 * of the RARs and no incoming packets directed to this port
4553 		 * are dropped. Eventually the LAA will be in RAR[0] and
4554 		 * RAR[14]
4555 		 */
4556 		hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4557 				    adapter->hw.mac.rar_entry_count - 1);
4558 	}
4559 
4560 	return 0;
4561 }
4562 
4563 /**
4564  * e1000e_update_phy_task - work thread to update phy
4565  * @work: pointer to our work struct
4566  *
4567  * this worker thread exists because we must acquire a
4568  * semaphore to read the phy, which we could msleep while
4569  * waiting for it, and we can't msleep in a timer.
4570  **/
4571 static void e1000e_update_phy_task(struct work_struct *work)
4572 {
4573 	struct e1000_adapter *adapter = container_of(work,
4574 						     struct e1000_adapter,
4575 						     update_phy_task);
4576 	struct e1000_hw *hw = &adapter->hw;
4577 
4578 	if (test_bit(__E1000_DOWN, &adapter->state))
4579 		return;
4580 
4581 	e1000_get_phy_info(hw);
4582 
4583 	/* Enable EEE on 82579 after link up */
4584 	if (hw->phy.type >= e1000_phy_82579)
4585 		e1000_set_eee_pchlan(hw);
4586 }
4587 
4588 /**
4589  * e1000_update_phy_info - timre call-back to update PHY info
4590  * @data: pointer to adapter cast into an unsigned long
4591  *
4592  * Need to wait a few seconds after link up to get diagnostic information from
4593  * the phy
4594  **/
4595 static void e1000_update_phy_info(unsigned long data)
4596 {
4597 	struct e1000_adapter *adapter = (struct e1000_adapter *)data;
4598 
4599 	if (test_bit(__E1000_DOWN, &adapter->state))
4600 		return;
4601 
4602 	schedule_work(&adapter->update_phy_task);
4603 }
4604 
4605 /**
4606  * e1000e_update_phy_stats - Update the PHY statistics counters
4607  * @adapter: board private structure
4608  *
4609  * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4610  **/
4611 static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4612 {
4613 	struct e1000_hw *hw = &adapter->hw;
4614 	s32 ret_val;
4615 	u16 phy_data;
4616 
4617 	ret_val = hw->phy.ops.acquire(hw);
4618 	if (ret_val)
4619 		return;
4620 
4621 	/* A page set is expensive so check if already on desired page.
4622 	 * If not, set to the page with the PHY status registers.
4623 	 */
4624 	hw->phy.addr = 1;
4625 	ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4626 					   &phy_data);
4627 	if (ret_val)
4628 		goto release;
4629 	if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4630 		ret_val = hw->phy.ops.set_page(hw,
4631 					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
4632 		if (ret_val)
4633 			goto release;
4634 	}
4635 
4636 	/* Single Collision Count */
4637 	hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4638 	ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4639 	if (!ret_val)
4640 		adapter->stats.scc += phy_data;
4641 
4642 	/* Excessive Collision Count */
4643 	hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4644 	ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4645 	if (!ret_val)
4646 		adapter->stats.ecol += phy_data;
4647 
4648 	/* Multiple Collision Count */
4649 	hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4650 	ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4651 	if (!ret_val)
4652 		adapter->stats.mcc += phy_data;
4653 
4654 	/* Late Collision Count */
4655 	hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4656 	ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4657 	if (!ret_val)
4658 		adapter->stats.latecol += phy_data;
4659 
4660 	/* Collision Count - also used for adaptive IFS */
4661 	hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4662 	ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4663 	if (!ret_val)
4664 		hw->mac.collision_delta = phy_data;
4665 
4666 	/* Defer Count */
4667 	hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4668 	ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4669 	if (!ret_val)
4670 		adapter->stats.dc += phy_data;
4671 
4672 	/* Transmit with no CRS */
4673 	hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4674 	ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4675 	if (!ret_val)
4676 		adapter->stats.tncrs += phy_data;
4677 
4678 release:
4679 	hw->phy.ops.release(hw);
4680 }
4681 
4682 /**
4683  * e1000e_update_stats - Update the board statistics counters
4684  * @adapter: board private structure
4685  **/
4686 static void e1000e_update_stats(struct e1000_adapter *adapter)
4687 {
4688 	struct net_device *netdev = adapter->netdev;
4689 	struct e1000_hw *hw = &adapter->hw;
4690 	struct pci_dev *pdev = adapter->pdev;
4691 
4692 	/* Prevent stats update while adapter is being reset, or if the pci
4693 	 * connection is down.
4694 	 */
4695 	if (adapter->link_speed == 0)
4696 		return;
4697 	if (pci_channel_offline(pdev))
4698 		return;
4699 
4700 	adapter->stats.crcerrs += er32(CRCERRS);
4701 	adapter->stats.gprc += er32(GPRC);
4702 	adapter->stats.gorc += er32(GORCL);
4703 	er32(GORCH);		/* Clear gorc */
4704 	adapter->stats.bprc += er32(BPRC);
4705 	adapter->stats.mprc += er32(MPRC);
4706 	adapter->stats.roc += er32(ROC);
4707 
4708 	adapter->stats.mpc += er32(MPC);
4709 
4710 	/* Half-duplex statistics */
4711 	if (adapter->link_duplex == HALF_DUPLEX) {
4712 		if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4713 			e1000e_update_phy_stats(adapter);
4714 		} else {
4715 			adapter->stats.scc += er32(SCC);
4716 			adapter->stats.ecol += er32(ECOL);
4717 			adapter->stats.mcc += er32(MCC);
4718 			adapter->stats.latecol += er32(LATECOL);
4719 			adapter->stats.dc += er32(DC);
4720 
4721 			hw->mac.collision_delta = er32(COLC);
4722 
4723 			if ((hw->mac.type != e1000_82574) &&
4724 			    (hw->mac.type != e1000_82583))
4725 				adapter->stats.tncrs += er32(TNCRS);
4726 		}
4727 		adapter->stats.colc += hw->mac.collision_delta;
4728 	}
4729 
4730 	adapter->stats.xonrxc += er32(XONRXC);
4731 	adapter->stats.xontxc += er32(XONTXC);
4732 	adapter->stats.xoffrxc += er32(XOFFRXC);
4733 	adapter->stats.xofftxc += er32(XOFFTXC);
4734 	adapter->stats.gptc += er32(GPTC);
4735 	adapter->stats.gotc += er32(GOTCL);
4736 	er32(GOTCH);		/* Clear gotc */
4737 	adapter->stats.rnbc += er32(RNBC);
4738 	adapter->stats.ruc += er32(RUC);
4739 
4740 	adapter->stats.mptc += er32(MPTC);
4741 	adapter->stats.bptc += er32(BPTC);
4742 
4743 	/* used for adaptive IFS */
4744 
4745 	hw->mac.tx_packet_delta = er32(TPT);
4746 	adapter->stats.tpt += hw->mac.tx_packet_delta;
4747 
4748 	adapter->stats.algnerrc += er32(ALGNERRC);
4749 	adapter->stats.rxerrc += er32(RXERRC);
4750 	adapter->stats.cexterr += er32(CEXTERR);
4751 	adapter->stats.tsctc += er32(TSCTC);
4752 	adapter->stats.tsctfc += er32(TSCTFC);
4753 
4754 	/* Fill out the OS statistics structure */
4755 	netdev->stats.multicast = adapter->stats.mprc;
4756 	netdev->stats.collisions = adapter->stats.colc;
4757 
4758 	/* Rx Errors */
4759 
4760 	/* RLEC on some newer hardware can be incorrect so build
4761 	 * our own version based on RUC and ROC
4762 	 */
4763 	netdev->stats.rx_errors = adapter->stats.rxerrc +
4764 	    adapter->stats.crcerrs + adapter->stats.algnerrc +
4765 	    adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
4766 	netdev->stats.rx_length_errors = adapter->stats.ruc +
4767 	    adapter->stats.roc;
4768 	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
4769 	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
4770 	netdev->stats.rx_missed_errors = adapter->stats.mpc;
4771 
4772 	/* Tx Errors */
4773 	netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol;
4774 	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
4775 	netdev->stats.tx_window_errors = adapter->stats.latecol;
4776 	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
4777 
4778 	/* Tx Dropped needs to be maintained elsewhere */
4779 
4780 	/* Management Stats */
4781 	adapter->stats.mgptc += er32(MGTPTC);
4782 	adapter->stats.mgprc += er32(MGTPRC);
4783 	adapter->stats.mgpdc += er32(MGTPDC);
4784 
4785 	/* Correctable ECC Errors */
4786 	if ((hw->mac.type == e1000_pch_lpt) ||
4787 	    (hw->mac.type == e1000_pch_spt)) {
4788 		u32 pbeccsts = er32(PBECCSTS);
4789 
4790 		adapter->corr_errors +=
4791 		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
4792 		adapter->uncorr_errors +=
4793 		    (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
4794 		    E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
4795 	}
4796 }
4797 
4798 /**
4799  * e1000_phy_read_status - Update the PHY register status snapshot
4800  * @adapter: board private structure
4801  **/
4802 static void e1000_phy_read_status(struct e1000_adapter *adapter)
4803 {
4804 	struct e1000_hw *hw = &adapter->hw;
4805 	struct e1000_phy_regs *phy = &adapter->phy_regs;
4806 
4807 	if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) &&
4808 	    (er32(STATUS) & E1000_STATUS_LU) &&
4809 	    (adapter->hw.phy.media_type == e1000_media_type_copper)) {
4810 		int ret_val;
4811 
4812 		ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr);
4813 		ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr);
4814 		ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise);
4815 		ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa);
4816 		ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion);
4817 		ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000);
4818 		ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000);
4819 		ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus);
4820 		if (ret_val)
4821 			e_warn("Error reading PHY register\n");
4822 	} else {
4823 		/* Do not read PHY registers if link is not up
4824 		 * Set values to typical power-on defaults
4825 		 */
4826 		phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
4827 		phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
4828 			     BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
4829 			     BMSR_ERCAP);
4830 		phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
4831 				  ADVERTISE_ALL | ADVERTISE_CSMA);
4832 		phy->lpa = 0;
4833 		phy->expansion = EXPANSION_ENABLENPAGE;
4834 		phy->ctrl1000 = ADVERTISE_1000FULL;
4835 		phy->stat1000 = 0;
4836 		phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
4837 	}
4838 }
4839 
4840 static void e1000_print_link_info(struct e1000_adapter *adapter)
4841 {
4842 	struct e1000_hw *hw = &adapter->hw;
4843 	u32 ctrl = er32(CTRL);
4844 
4845 	/* Link status message must follow this format for user tools */
4846 	pr_info("%s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4847 		adapter->netdev->name, adapter->link_speed,
4848 		adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
4849 		(ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
4850 		(ctrl & E1000_CTRL_RFCE) ? "Rx" :
4851 		(ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
4852 }
4853 
4854 static bool e1000e_has_link(struct e1000_adapter *adapter)
4855 {
4856 	struct e1000_hw *hw = &adapter->hw;
4857 	bool link_active = false;
4858 	s32 ret_val = 0;
4859 
4860 	/* get_link_status is set on LSC (link status) interrupt or
4861 	 * Rx sequence error interrupt.  get_link_status will stay
4862 	 * false until the check_for_link establishes link
4863 	 * for copper adapters ONLY
4864 	 */
4865 	switch (hw->phy.media_type) {
4866 	case e1000_media_type_copper:
4867 		if (hw->mac.get_link_status) {
4868 			ret_val = hw->mac.ops.check_for_link(hw);
4869 			link_active = !hw->mac.get_link_status;
4870 		} else {
4871 			link_active = true;
4872 		}
4873 		break;
4874 	case e1000_media_type_fiber:
4875 		ret_val = hw->mac.ops.check_for_link(hw);
4876 		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
4877 		break;
4878 	case e1000_media_type_internal_serdes:
4879 		ret_val = hw->mac.ops.check_for_link(hw);
4880 		link_active = adapter->hw.mac.serdes_has_link;
4881 		break;
4882 	default:
4883 	case e1000_media_type_unknown:
4884 		break;
4885 	}
4886 
4887 	if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
4888 	    (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
4889 		/* See e1000_kmrn_lock_loss_workaround_ich8lan() */
4890 		e_info("Gigabit has been disabled, downgrading speed\n");
4891 	}
4892 
4893 	return link_active;
4894 }
4895 
4896 static void e1000e_enable_receives(struct e1000_adapter *adapter)
4897 {
4898 	/* make sure the receive unit is started */
4899 	if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
4900 	    (adapter->flags & FLAG_RESTART_NOW)) {
4901 		struct e1000_hw *hw = &adapter->hw;
4902 		u32 rctl = er32(RCTL);
4903 
4904 		ew32(RCTL, rctl | E1000_RCTL_EN);
4905 		adapter->flags &= ~FLAG_RESTART_NOW;
4906 	}
4907 }
4908 
4909 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
4910 {
4911 	struct e1000_hw *hw = &adapter->hw;
4912 
4913 	/* With 82574 controllers, PHY needs to be checked periodically
4914 	 * for hung state and reset, if two calls return true
4915 	 */
4916 	if (e1000_check_phy_82574(hw))
4917 		adapter->phy_hang_count++;
4918 	else
4919 		adapter->phy_hang_count = 0;
4920 
4921 	if (adapter->phy_hang_count > 1) {
4922 		adapter->phy_hang_count = 0;
4923 		e_dbg("PHY appears hung - resetting\n");
4924 		schedule_work(&adapter->reset_task);
4925 	}
4926 }
4927 
4928 /**
4929  * e1000_watchdog - Timer Call-back
4930  * @data: pointer to adapter cast into an unsigned long
4931  **/
4932 static void e1000_watchdog(unsigned long data)
4933 {
4934 	struct e1000_adapter *adapter = (struct e1000_adapter *)data;
4935 
4936 	/* Do the rest outside of interrupt context */
4937 	schedule_work(&adapter->watchdog_task);
4938 
4939 	/* TODO: make this use queue_delayed_work() */
4940 }
4941 
4942 static void e1000_watchdog_task(struct work_struct *work)
4943 {
4944 	struct e1000_adapter *adapter = container_of(work,
4945 						     struct e1000_adapter,
4946 						     watchdog_task);
4947 	struct net_device *netdev = adapter->netdev;
4948 	struct e1000_mac_info *mac = &adapter->hw.mac;
4949 	struct e1000_phy_info *phy = &adapter->hw.phy;
4950 	struct e1000_ring *tx_ring = adapter->tx_ring;
4951 	struct e1000_hw *hw = &adapter->hw;
4952 	u32 link, tctl;
4953 
4954 	if (test_bit(__E1000_DOWN, &adapter->state))
4955 		return;
4956 
4957 	link = e1000e_has_link(adapter);
4958 	if ((netif_carrier_ok(netdev)) && link) {
4959 		/* Cancel scheduled suspend requests. */
4960 		pm_runtime_resume(netdev->dev.parent);
4961 
4962 		e1000e_enable_receives(adapter);
4963 		goto link_up;
4964 	}
4965 
4966 	if ((e1000e_enable_tx_pkt_filtering(hw)) &&
4967 	    (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
4968 		e1000_update_mng_vlan(adapter);
4969 
4970 	if (link) {
4971 		if (!netif_carrier_ok(netdev)) {
4972 			bool txb2b = true;
4973 
4974 			/* Cancel scheduled suspend requests. */
4975 			pm_runtime_resume(netdev->dev.parent);
4976 
4977 			/* update snapshot of PHY registers on LSC */
4978 			e1000_phy_read_status(adapter);
4979 			mac->ops.get_link_up_info(&adapter->hw,
4980 						  &adapter->link_speed,
4981 						  &adapter->link_duplex);
4982 			e1000_print_link_info(adapter);
4983 
4984 			/* check if SmartSpeed worked */
4985 			e1000e_check_downshift(hw);
4986 			if (phy->speed_downgraded)
4987 				netdev_warn(netdev,
4988 					    "Link Speed was downgraded by SmartSpeed\n");
4989 
4990 			/* On supported PHYs, check for duplex mismatch only
4991 			 * if link has autonegotiated at 10/100 half
4992 			 */
4993 			if ((hw->phy.type == e1000_phy_igp_3 ||
4994 			     hw->phy.type == e1000_phy_bm) &&
4995 			    hw->mac.autoneg &&
4996 			    (adapter->link_speed == SPEED_10 ||
4997 			     adapter->link_speed == SPEED_100) &&
4998 			    (adapter->link_duplex == HALF_DUPLEX)) {
4999 				u16 autoneg_exp;
5000 
5001 				e1e_rphy(hw, MII_EXPANSION, &autoneg_exp);
5002 
5003 				if (!(autoneg_exp & EXPANSION_NWAY))
5004 					e_info("Autonegotiated half duplex but link partner cannot autoneg.  Try forcing full duplex if link gets many collisions.\n");
5005 			}
5006 
5007 			/* adjust timeout factor according to speed/duplex */
5008 			adapter->tx_timeout_factor = 1;
5009 			switch (adapter->link_speed) {
5010 			case SPEED_10:
5011 				txb2b = false;
5012 				adapter->tx_timeout_factor = 16;
5013 				break;
5014 			case SPEED_100:
5015 				txb2b = false;
5016 				adapter->tx_timeout_factor = 10;
5017 				break;
5018 			}
5019 
5020 			/* workaround: re-program speed mode bit after
5021 			 * link-up event
5022 			 */
5023 			if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
5024 			    !txb2b) {
5025 				u32 tarc0;
5026 
5027 				tarc0 = er32(TARC(0));
5028 				tarc0 &= ~SPEED_MODE_BIT;
5029 				ew32(TARC(0), tarc0);
5030 			}
5031 
5032 			/* disable TSO for pcie and 10/100 speeds, to avoid
5033 			 * some hardware issues
5034 			 */
5035 			if (!(adapter->flags & FLAG_TSO_FORCE)) {
5036 				switch (adapter->link_speed) {
5037 				case SPEED_10:
5038 				case SPEED_100:
5039 					e_info("10/100 speed: disabling TSO\n");
5040 					netdev->features &= ~NETIF_F_TSO;
5041 					netdev->features &= ~NETIF_F_TSO6;
5042 					break;
5043 				case SPEED_1000:
5044 					netdev->features |= NETIF_F_TSO;
5045 					netdev->features |= NETIF_F_TSO6;
5046 					break;
5047 				default:
5048 					/* oops */
5049 					break;
5050 				}
5051 			}
5052 
5053 			/* enable transmits in the hardware, need to do this
5054 			 * after setting TARC(0)
5055 			 */
5056 			tctl = er32(TCTL);
5057 			tctl |= E1000_TCTL_EN;
5058 			ew32(TCTL, tctl);
5059 
5060 			/* Perform any post-link-up configuration before
5061 			 * reporting link up.
5062 			 */
5063 			if (phy->ops.cfg_on_link_up)
5064 				phy->ops.cfg_on_link_up(hw);
5065 
5066 			netif_carrier_on(netdev);
5067 
5068 			if (!test_bit(__E1000_DOWN, &adapter->state))
5069 				mod_timer(&adapter->phy_info_timer,
5070 					  round_jiffies(jiffies + 2 * HZ));
5071 		}
5072 	} else {
5073 		if (netif_carrier_ok(netdev)) {
5074 			adapter->link_speed = 0;
5075 			adapter->link_duplex = 0;
5076 			/* Link status message must follow this format */
5077 			pr_info("%s NIC Link is Down\n", adapter->netdev->name);
5078 			netif_carrier_off(netdev);
5079 			if (!test_bit(__E1000_DOWN, &adapter->state))
5080 				mod_timer(&adapter->phy_info_timer,
5081 					  round_jiffies(jiffies + 2 * HZ));
5082 
5083 			/* 8000ES2LAN requires a Rx packet buffer work-around
5084 			 * on link down event; reset the controller to flush
5085 			 * the Rx packet buffer.
5086 			 */
5087 			if (adapter->flags & FLAG_RX_NEEDS_RESTART)
5088 				adapter->flags |= FLAG_RESTART_NOW;
5089 			else
5090 				pm_schedule_suspend(netdev->dev.parent,
5091 						    LINK_TIMEOUT);
5092 		}
5093 	}
5094 
5095 link_up:
5096 	spin_lock(&adapter->stats64_lock);
5097 	e1000e_update_stats(adapter);
5098 
5099 	mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
5100 	adapter->tpt_old = adapter->stats.tpt;
5101 	mac->collision_delta = adapter->stats.colc - adapter->colc_old;
5102 	adapter->colc_old = adapter->stats.colc;
5103 
5104 	adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
5105 	adapter->gorc_old = adapter->stats.gorc;
5106 	adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
5107 	adapter->gotc_old = adapter->stats.gotc;
5108 	spin_unlock(&adapter->stats64_lock);
5109 
5110 	/* If the link is lost the controller stops DMA, but
5111 	 * if there is queued Tx work it cannot be done.  So
5112 	 * reset the controller to flush the Tx packet buffers.
5113 	 */
5114 	if (!netif_carrier_ok(netdev) &&
5115 	    (e1000_desc_unused(tx_ring) + 1 < tx_ring->count))
5116 		adapter->flags |= FLAG_RESTART_NOW;
5117 
5118 	/* If reset is necessary, do it outside of interrupt context. */
5119 	if (adapter->flags & FLAG_RESTART_NOW) {
5120 		schedule_work(&adapter->reset_task);
5121 		/* return immediately since reset is imminent */
5122 		return;
5123 	}
5124 
5125 	e1000e_update_adaptive(&adapter->hw);
5126 
5127 	/* Simple mode for Interrupt Throttle Rate (ITR) */
5128 	if (adapter->itr_setting == 4) {
5129 		/* Symmetric Tx/Rx gets a reduced ITR=2000;
5130 		 * Total asymmetrical Tx or Rx gets ITR=8000;
5131 		 * everyone else is between 2000-8000.
5132 		 */
5133 		u32 goc = (adapter->gotc + adapter->gorc) / 10000;
5134 		u32 dif = (adapter->gotc > adapter->gorc ?
5135 			   adapter->gotc - adapter->gorc :
5136 			   adapter->gorc - adapter->gotc) / 10000;
5137 		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
5138 
5139 		e1000e_write_itr(adapter, itr);
5140 	}
5141 
5142 	/* Cause software interrupt to ensure Rx ring is cleaned */
5143 	if (adapter->msix_entries)
5144 		ew32(ICS, adapter->rx_ring->ims_val);
5145 	else
5146 		ew32(ICS, E1000_ICS_RXDMT0);
5147 
5148 	/* flush pending descriptors to memory before detecting Tx hang */
5149 	e1000e_flush_descriptors(adapter);
5150 
5151 	/* Force detection of hung controller every watchdog period */
5152 	adapter->detect_tx_hung = true;
5153 
5154 	/* With 82571 controllers, LAA may be overwritten due to controller
5155 	 * reset from the other port. Set the appropriate LAA in RAR[0]
5156 	 */
5157 	if (e1000e_get_laa_state_82571(hw))
5158 		hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
5159 
5160 	if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
5161 		e1000e_check_82574_phy_workaround(adapter);
5162 
5163 	/* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5164 	if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) {
5165 		if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) &&
5166 		    (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) {
5167 			er32(RXSTMPH);
5168 			adapter->rx_hwtstamp_cleared++;
5169 		} else {
5170 			adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP;
5171 		}
5172 	}
5173 
5174 	/* Reset the timer */
5175 	if (!test_bit(__E1000_DOWN, &adapter->state))
5176 		mod_timer(&adapter->watchdog_timer,
5177 			  round_jiffies(jiffies + 2 * HZ));
5178 }
5179 
5180 #define E1000_TX_FLAGS_CSUM		0x00000001
5181 #define E1000_TX_FLAGS_VLAN		0x00000002
5182 #define E1000_TX_FLAGS_TSO		0x00000004
5183 #define E1000_TX_FLAGS_IPV4		0x00000008
5184 #define E1000_TX_FLAGS_NO_FCS		0x00000010
5185 #define E1000_TX_FLAGS_HWTSTAMP		0x00000020
5186 #define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
5187 #define E1000_TX_FLAGS_VLAN_SHIFT	16
5188 
5189 static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb,
5190 		     __be16 protocol)
5191 {
5192 	struct e1000_context_desc *context_desc;
5193 	struct e1000_buffer *buffer_info;
5194 	unsigned int i;
5195 	u32 cmd_length = 0;
5196 	u16 ipcse = 0, mss;
5197 	u8 ipcss, ipcso, tucss, tucso, hdr_len;
5198 	int err;
5199 
5200 	if (!skb_is_gso(skb))
5201 		return 0;
5202 
5203 	err = skb_cow_head(skb, 0);
5204 	if (err < 0)
5205 		return err;
5206 
5207 	hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5208 	mss = skb_shinfo(skb)->gso_size;
5209 	if (protocol == htons(ETH_P_IP)) {
5210 		struct iphdr *iph = ip_hdr(skb);
5211 		iph->tot_len = 0;
5212 		iph->check = 0;
5213 		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
5214 							 0, IPPROTO_TCP, 0);
5215 		cmd_length = E1000_TXD_CMD_IP;
5216 		ipcse = skb_transport_offset(skb) - 1;
5217 	} else if (skb_is_gso_v6(skb)) {
5218 		ipv6_hdr(skb)->payload_len = 0;
5219 		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5220 						       &ipv6_hdr(skb)->daddr,
5221 						       0, IPPROTO_TCP, 0);
5222 		ipcse = 0;
5223 	}
5224 	ipcss = skb_network_offset(skb);
5225 	ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
5226 	tucss = skb_transport_offset(skb);
5227 	tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
5228 
5229 	cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
5230 		       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
5231 
5232 	i = tx_ring->next_to_use;
5233 	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5234 	buffer_info = &tx_ring->buffer_info[i];
5235 
5236 	context_desc->lower_setup.ip_fields.ipcss = ipcss;
5237 	context_desc->lower_setup.ip_fields.ipcso = ipcso;
5238 	context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
5239 	context_desc->upper_setup.tcp_fields.tucss = tucss;
5240 	context_desc->upper_setup.tcp_fields.tucso = tucso;
5241 	context_desc->upper_setup.tcp_fields.tucse = 0;
5242 	context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
5243 	context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
5244 	context_desc->cmd_and_length = cpu_to_le32(cmd_length);
5245 
5246 	buffer_info->time_stamp = jiffies;
5247 	buffer_info->next_to_watch = i;
5248 
5249 	i++;
5250 	if (i == tx_ring->count)
5251 		i = 0;
5252 	tx_ring->next_to_use = i;
5253 
5254 	return 1;
5255 }
5256 
5257 static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb,
5258 			  __be16 protocol)
5259 {
5260 	struct e1000_adapter *adapter = tx_ring->adapter;
5261 	struct e1000_context_desc *context_desc;
5262 	struct e1000_buffer *buffer_info;
5263 	unsigned int i;
5264 	u8 css;
5265 	u32 cmd_len = E1000_TXD_CMD_DEXT;
5266 
5267 	if (skb->ip_summed != CHECKSUM_PARTIAL)
5268 		return false;
5269 
5270 	switch (protocol) {
5271 	case cpu_to_be16(ETH_P_IP):
5272 		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
5273 			cmd_len |= E1000_TXD_CMD_TCP;
5274 		break;
5275 	case cpu_to_be16(ETH_P_IPV6):
5276 		/* XXX not handling all IPV6 headers */
5277 		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
5278 			cmd_len |= E1000_TXD_CMD_TCP;
5279 		break;
5280 	default:
5281 		if (unlikely(net_ratelimit()))
5282 			e_warn("checksum_partial proto=%x!\n",
5283 			       be16_to_cpu(protocol));
5284 		break;
5285 	}
5286 
5287 	css = skb_checksum_start_offset(skb);
5288 
5289 	i = tx_ring->next_to_use;
5290 	buffer_info = &tx_ring->buffer_info[i];
5291 	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5292 
5293 	context_desc->lower_setup.ip_config = 0;
5294 	context_desc->upper_setup.tcp_fields.tucss = css;
5295 	context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset;
5296 	context_desc->upper_setup.tcp_fields.tucse = 0;
5297 	context_desc->tcp_seg_setup.data = 0;
5298 	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
5299 
5300 	buffer_info->time_stamp = jiffies;
5301 	buffer_info->next_to_watch = i;
5302 
5303 	i++;
5304 	if (i == tx_ring->count)
5305 		i = 0;
5306 	tx_ring->next_to_use = i;
5307 
5308 	return true;
5309 }
5310 
5311 static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
5312 			unsigned int first, unsigned int max_per_txd,
5313 			unsigned int nr_frags)
5314 {
5315 	struct e1000_adapter *adapter = tx_ring->adapter;
5316 	struct pci_dev *pdev = adapter->pdev;
5317 	struct e1000_buffer *buffer_info;
5318 	unsigned int len = skb_headlen(skb);
5319 	unsigned int offset = 0, size, count = 0, i;
5320 	unsigned int f, bytecount, segs;
5321 
5322 	i = tx_ring->next_to_use;
5323 
5324 	while (len) {
5325 		buffer_info = &tx_ring->buffer_info[i];
5326 		size = min(len, max_per_txd);
5327 
5328 		buffer_info->length = size;
5329 		buffer_info->time_stamp = jiffies;
5330 		buffer_info->next_to_watch = i;
5331 		buffer_info->dma = dma_map_single(&pdev->dev,
5332 						  skb->data + offset,
5333 						  size, DMA_TO_DEVICE);
5334 		buffer_info->mapped_as_page = false;
5335 		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5336 			goto dma_error;
5337 
5338 		len -= size;
5339 		offset += size;
5340 		count++;
5341 
5342 		if (len) {
5343 			i++;
5344 			if (i == tx_ring->count)
5345 				i = 0;
5346 		}
5347 	}
5348 
5349 	for (f = 0; f < nr_frags; f++) {
5350 		const struct skb_frag_struct *frag;
5351 
5352 		frag = &skb_shinfo(skb)->frags[f];
5353 		len = skb_frag_size(frag);
5354 		offset = 0;
5355 
5356 		while (len) {
5357 			i++;
5358 			if (i == tx_ring->count)
5359 				i = 0;
5360 
5361 			buffer_info = &tx_ring->buffer_info[i];
5362 			size = min(len, max_per_txd);
5363 
5364 			buffer_info->length = size;
5365 			buffer_info->time_stamp = jiffies;
5366 			buffer_info->next_to_watch = i;
5367 			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
5368 							    offset, size,
5369 							    DMA_TO_DEVICE);
5370 			buffer_info->mapped_as_page = true;
5371 			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5372 				goto dma_error;
5373 
5374 			len -= size;
5375 			offset += size;
5376 			count++;
5377 		}
5378 	}
5379 
5380 	segs = skb_shinfo(skb)->gso_segs ? : 1;
5381 	/* multiply data chunks by size of headers */
5382 	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
5383 
5384 	tx_ring->buffer_info[i].skb = skb;
5385 	tx_ring->buffer_info[i].segs = segs;
5386 	tx_ring->buffer_info[i].bytecount = bytecount;
5387 	tx_ring->buffer_info[first].next_to_watch = i;
5388 
5389 	return count;
5390 
5391 dma_error:
5392 	dev_err(&pdev->dev, "Tx DMA map failed\n");
5393 	buffer_info->dma = 0;
5394 	if (count)
5395 		count--;
5396 
5397 	while (count--) {
5398 		if (i == 0)
5399 			i += tx_ring->count;
5400 		i--;
5401 		buffer_info = &tx_ring->buffer_info[i];
5402 		e1000_put_txbuf(tx_ring, buffer_info);
5403 	}
5404 
5405 	return 0;
5406 }
5407 
5408 static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
5409 {
5410 	struct e1000_adapter *adapter = tx_ring->adapter;
5411 	struct e1000_tx_desc *tx_desc = NULL;
5412 	struct e1000_buffer *buffer_info;
5413 	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
5414 	unsigned int i;
5415 
5416 	if (tx_flags & E1000_TX_FLAGS_TSO) {
5417 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
5418 		    E1000_TXD_CMD_TSE;
5419 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5420 
5421 		if (tx_flags & E1000_TX_FLAGS_IPV4)
5422 			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
5423 	}
5424 
5425 	if (tx_flags & E1000_TX_FLAGS_CSUM) {
5426 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5427 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5428 	}
5429 
5430 	if (tx_flags & E1000_TX_FLAGS_VLAN) {
5431 		txd_lower |= E1000_TXD_CMD_VLE;
5432 		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
5433 	}
5434 
5435 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5436 		txd_lower &= ~(E1000_TXD_CMD_IFCS);
5437 
5438 	if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) {
5439 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5440 		txd_upper |= E1000_TXD_EXTCMD_TSTAMP;
5441 	}
5442 
5443 	i = tx_ring->next_to_use;
5444 
5445 	do {
5446 		buffer_info = &tx_ring->buffer_info[i];
5447 		tx_desc = E1000_TX_DESC(*tx_ring, i);
5448 		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
5449 		tx_desc->lower.data = cpu_to_le32(txd_lower |
5450 						  buffer_info->length);
5451 		tx_desc->upper.data = cpu_to_le32(txd_upper);
5452 
5453 		i++;
5454 		if (i == tx_ring->count)
5455 			i = 0;
5456 	} while (--count > 0);
5457 
5458 	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
5459 
5460 	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5461 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5462 		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
5463 
5464 	/* Force memory writes to complete before letting h/w
5465 	 * know there are new descriptors to fetch.  (Only
5466 	 * applicable for weak-ordered memory model archs,
5467 	 * such as IA-64).
5468 	 */
5469 	wmb();
5470 
5471 	tx_ring->next_to_use = i;
5472 }
5473 
5474 #define MINIMUM_DHCP_PACKET_SIZE 282
5475 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
5476 				    struct sk_buff *skb)
5477 {
5478 	struct e1000_hw *hw = &adapter->hw;
5479 	u16 length, offset;
5480 
5481 	if (skb_vlan_tag_present(skb) &&
5482 	    !((skb_vlan_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
5483 	      (adapter->hw.mng_cookie.status &
5484 	       E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
5485 		return 0;
5486 
5487 	if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
5488 		return 0;
5489 
5490 	if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP))
5491 		return 0;
5492 
5493 	{
5494 		const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14);
5495 		struct udphdr *udp;
5496 
5497 		if (ip->protocol != IPPROTO_UDP)
5498 			return 0;
5499 
5500 		udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
5501 		if (ntohs(udp->dest) != 67)
5502 			return 0;
5503 
5504 		offset = (u8 *)udp + 8 - skb->data;
5505 		length = skb->len - offset;
5506 		return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
5507 	}
5508 
5509 	return 0;
5510 }
5511 
5512 static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5513 {
5514 	struct e1000_adapter *adapter = tx_ring->adapter;
5515 
5516 	netif_stop_queue(adapter->netdev);
5517 	/* Herbert's original patch had:
5518 	 *  smp_mb__after_netif_stop_queue();
5519 	 * but since that doesn't exist yet, just open code it.
5520 	 */
5521 	smp_mb();
5522 
5523 	/* We need to check again in a case another CPU has just
5524 	 * made room available.
5525 	 */
5526 	if (e1000_desc_unused(tx_ring) < size)
5527 		return -EBUSY;
5528 
5529 	/* A reprieve! */
5530 	netif_start_queue(adapter->netdev);
5531 	++adapter->restart_queue;
5532 	return 0;
5533 }
5534 
5535 static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5536 {
5537 	BUG_ON(size > tx_ring->count);
5538 
5539 	if (e1000_desc_unused(tx_ring) >= size)
5540 		return 0;
5541 	return __e1000_maybe_stop_tx(tx_ring, size);
5542 }
5543 
5544 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5545 				    struct net_device *netdev)
5546 {
5547 	struct e1000_adapter *adapter = netdev_priv(netdev);
5548 	struct e1000_ring *tx_ring = adapter->tx_ring;
5549 	unsigned int first;
5550 	unsigned int tx_flags = 0;
5551 	unsigned int len = skb_headlen(skb);
5552 	unsigned int nr_frags;
5553 	unsigned int mss;
5554 	int count = 0;
5555 	int tso;
5556 	unsigned int f;
5557 	__be16 protocol = vlan_get_protocol(skb);
5558 
5559 	if (test_bit(__E1000_DOWN, &adapter->state)) {
5560 		dev_kfree_skb_any(skb);
5561 		return NETDEV_TX_OK;
5562 	}
5563 
5564 	if (skb->len <= 0) {
5565 		dev_kfree_skb_any(skb);
5566 		return NETDEV_TX_OK;
5567 	}
5568 
5569 	/* The minimum packet size with TCTL.PSP set is 17 bytes so
5570 	 * pad skb in order to meet this minimum size requirement
5571 	 */
5572 	if (skb_put_padto(skb, 17))
5573 		return NETDEV_TX_OK;
5574 
5575 	mss = skb_shinfo(skb)->gso_size;
5576 	if (mss) {
5577 		u8 hdr_len;
5578 
5579 		/* TSO Workaround for 82571/2/3 Controllers -- if skb->data
5580 		 * points to just header, pull a few bytes of payload from
5581 		 * frags into skb->data
5582 		 */
5583 		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5584 		/* we do this workaround for ES2LAN, but it is un-necessary,
5585 		 * avoiding it could save a lot of cycles
5586 		 */
5587 		if (skb->data_len && (hdr_len == len)) {
5588 			unsigned int pull_size;
5589 
5590 			pull_size = min_t(unsigned int, 4, skb->data_len);
5591 			if (!__pskb_pull_tail(skb, pull_size)) {
5592 				e_err("__pskb_pull_tail failed.\n");
5593 				dev_kfree_skb_any(skb);
5594 				return NETDEV_TX_OK;
5595 			}
5596 			len = skb_headlen(skb);
5597 		}
5598 	}
5599 
5600 	/* reserve a descriptor for the offload context */
5601 	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5602 		count++;
5603 	count++;
5604 
5605 	count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
5606 
5607 	nr_frags = skb_shinfo(skb)->nr_frags;
5608 	for (f = 0; f < nr_frags; f++)
5609 		count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5610 				      adapter->tx_fifo_limit);
5611 
5612 	if (adapter->hw.mac.tx_pkt_filtering)
5613 		e1000_transfer_dhcp_info(adapter, skb);
5614 
5615 	/* need: count + 2 desc gap to keep tail from touching
5616 	 * head, otherwise try next time
5617 	 */
5618 	if (e1000_maybe_stop_tx(tx_ring, count + 2))
5619 		return NETDEV_TX_BUSY;
5620 
5621 	if (skb_vlan_tag_present(skb)) {
5622 		tx_flags |= E1000_TX_FLAGS_VLAN;
5623 		tx_flags |= (skb_vlan_tag_get(skb) <<
5624 			     E1000_TX_FLAGS_VLAN_SHIFT);
5625 	}
5626 
5627 	first = tx_ring->next_to_use;
5628 
5629 	tso = e1000_tso(tx_ring, skb, protocol);
5630 	if (tso < 0) {
5631 		dev_kfree_skb_any(skb);
5632 		return NETDEV_TX_OK;
5633 	}
5634 
5635 	if (tso)
5636 		tx_flags |= E1000_TX_FLAGS_TSO;
5637 	else if (e1000_tx_csum(tx_ring, skb, protocol))
5638 		tx_flags |= E1000_TX_FLAGS_CSUM;
5639 
5640 	/* Old method was to assume IPv4 packet by default if TSO was enabled.
5641 	 * 82571 hardware supports TSO capabilities for IPv6 as well...
5642 	 * no longer assume, we must.
5643 	 */
5644 	if (protocol == htons(ETH_P_IP))
5645 		tx_flags |= E1000_TX_FLAGS_IPV4;
5646 
5647 	if (unlikely(skb->no_fcs))
5648 		tx_flags |= E1000_TX_FLAGS_NO_FCS;
5649 
5650 	/* if count is 0 then mapping error has occurred */
5651 	count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5652 			     nr_frags);
5653 	if (count) {
5654 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
5655 		    (adapter->flags & FLAG_HAS_HW_TIMESTAMP) &&
5656 		    !adapter->tx_hwtstamp_skb) {
5657 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5658 			tx_flags |= E1000_TX_FLAGS_HWTSTAMP;
5659 			adapter->tx_hwtstamp_skb = skb_get(skb);
5660 			adapter->tx_hwtstamp_start = jiffies;
5661 			schedule_work(&adapter->tx_hwtstamp_work);
5662 		} else {
5663 			skb_tx_timestamp(skb);
5664 		}
5665 
5666 		netdev_sent_queue(netdev, skb->len);
5667 		e1000_tx_queue(tx_ring, tx_flags, count);
5668 		/* Make sure there is space in the ring for the next send. */
5669 		e1000_maybe_stop_tx(tx_ring,
5670 				    (MAX_SKB_FRAGS *
5671 				     DIV_ROUND_UP(PAGE_SIZE,
5672 						  adapter->tx_fifo_limit) + 2));
5673 
5674 		if (!skb->xmit_more ||
5675 		    netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
5676 			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
5677 				e1000e_update_tdt_wa(tx_ring,
5678 						     tx_ring->next_to_use);
5679 			else
5680 				writel(tx_ring->next_to_use, tx_ring->tail);
5681 
5682 			/* we need this if more than one processor can write
5683 			 * to our tail at a time, it synchronizes IO on
5684 			 *IA64/Altix systems
5685 			 */
5686 			mmiowb();
5687 		}
5688 	} else {
5689 		dev_kfree_skb_any(skb);
5690 		tx_ring->buffer_info[first].time_stamp = 0;
5691 		tx_ring->next_to_use = first;
5692 	}
5693 
5694 	return NETDEV_TX_OK;
5695 }
5696 
5697 /**
5698  * e1000_tx_timeout - Respond to a Tx Hang
5699  * @netdev: network interface device structure
5700  **/
5701 static void e1000_tx_timeout(struct net_device *netdev)
5702 {
5703 	struct e1000_adapter *adapter = netdev_priv(netdev);
5704 
5705 	/* Do the reset outside of interrupt context */
5706 	adapter->tx_timeout_count++;
5707 	schedule_work(&adapter->reset_task);
5708 }
5709 
5710 static void e1000_reset_task(struct work_struct *work)
5711 {
5712 	struct e1000_adapter *adapter;
5713 	adapter = container_of(work, struct e1000_adapter, reset_task);
5714 
5715 	/* don't run the task if already down */
5716 	if (test_bit(__E1000_DOWN, &adapter->state))
5717 		return;
5718 
5719 	if (!(adapter->flags & FLAG_RESTART_NOW)) {
5720 		e1000e_dump(adapter);
5721 		e_err("Reset adapter unexpectedly\n");
5722 	}
5723 	e1000e_reinit_locked(adapter);
5724 }
5725 
5726 /**
5727  * e1000_get_stats64 - Get System Network Statistics
5728  * @netdev: network interface device structure
5729  * @stats: rtnl_link_stats64 pointer
5730  *
5731  * Returns the address of the device statistics structure.
5732  **/
5733 struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev,
5734 					     struct rtnl_link_stats64 *stats)
5735 {
5736 	struct e1000_adapter *adapter = netdev_priv(netdev);
5737 
5738 	memset(stats, 0, sizeof(struct rtnl_link_stats64));
5739 	spin_lock(&adapter->stats64_lock);
5740 	e1000e_update_stats(adapter);
5741 	/* Fill out the OS statistics structure */
5742 	stats->rx_bytes = adapter->stats.gorc;
5743 	stats->rx_packets = adapter->stats.gprc;
5744 	stats->tx_bytes = adapter->stats.gotc;
5745 	stats->tx_packets = adapter->stats.gptc;
5746 	stats->multicast = adapter->stats.mprc;
5747 	stats->collisions = adapter->stats.colc;
5748 
5749 	/* Rx Errors */
5750 
5751 	/* RLEC on some newer hardware can be incorrect so build
5752 	 * our own version based on RUC and ROC
5753 	 */
5754 	stats->rx_errors = adapter->stats.rxerrc +
5755 	    adapter->stats.crcerrs + adapter->stats.algnerrc +
5756 	    adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5757 	stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc;
5758 	stats->rx_crc_errors = adapter->stats.crcerrs;
5759 	stats->rx_frame_errors = adapter->stats.algnerrc;
5760 	stats->rx_missed_errors = adapter->stats.mpc;
5761 
5762 	/* Tx Errors */
5763 	stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol;
5764 	stats->tx_aborted_errors = adapter->stats.ecol;
5765 	stats->tx_window_errors = adapter->stats.latecol;
5766 	stats->tx_carrier_errors = adapter->stats.tncrs;
5767 
5768 	/* Tx Dropped needs to be maintained elsewhere */
5769 
5770 	spin_unlock(&adapter->stats64_lock);
5771 	return stats;
5772 }
5773 
5774 /**
5775  * e1000_change_mtu - Change the Maximum Transfer Unit
5776  * @netdev: network interface device structure
5777  * @new_mtu: new value for maximum frame size
5778  *
5779  * Returns 0 on success, negative on failure
5780  **/
5781 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
5782 {
5783 	struct e1000_adapter *adapter = netdev_priv(netdev);
5784 	int max_frame = new_mtu + VLAN_HLEN + ETH_HLEN + ETH_FCS_LEN;
5785 
5786 	/* Jumbo frame support */
5787 	if ((max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) &&
5788 	    !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
5789 		e_err("Jumbo Frames not supported.\n");
5790 		return -EINVAL;
5791 	}
5792 
5793 	/* Supported frame sizes */
5794 	if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
5795 	    (max_frame > adapter->max_hw_frame_size)) {
5796 		e_err("Unsupported MTU setting\n");
5797 		return -EINVAL;
5798 	}
5799 
5800 	/* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
5801 	if ((adapter->hw.mac.type >= e1000_pch2lan) &&
5802 	    !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
5803 	    (new_mtu > ETH_DATA_LEN)) {
5804 		e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
5805 		return -EINVAL;
5806 	}
5807 
5808 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
5809 		usleep_range(1000, 2000);
5810 	/* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
5811 	adapter->max_frame_size = max_frame;
5812 	e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
5813 	netdev->mtu = new_mtu;
5814 
5815 	pm_runtime_get_sync(netdev->dev.parent);
5816 
5817 	if (netif_running(netdev))
5818 		e1000e_down(adapter, true);
5819 
5820 	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
5821 	 * means we reserve 2 more, this pushes us to allocate from the next
5822 	 * larger slab size.
5823 	 * i.e. RXBUFFER_2048 --> size-4096 slab
5824 	 * However with the new *_jumbo_rx* routines, jumbo receives will use
5825 	 * fragmented skbs
5826 	 */
5827 
5828 	if (max_frame <= 2048)
5829 		adapter->rx_buffer_len = 2048;
5830 	else
5831 		adapter->rx_buffer_len = 4096;
5832 
5833 	/* adjust allocation if LPE protects us, and we aren't using SBP */
5834 	if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
5835 	    (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
5836 		adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
5837 		    + ETH_FCS_LEN;
5838 
5839 	if (netif_running(netdev))
5840 		e1000e_up(adapter);
5841 	else
5842 		e1000e_reset(adapter);
5843 
5844 	pm_runtime_put_sync(netdev->dev.parent);
5845 
5846 	clear_bit(__E1000_RESETTING, &adapter->state);
5847 
5848 	return 0;
5849 }
5850 
5851 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
5852 			   int cmd)
5853 {
5854 	struct e1000_adapter *adapter = netdev_priv(netdev);
5855 	struct mii_ioctl_data *data = if_mii(ifr);
5856 
5857 	if (adapter->hw.phy.media_type != e1000_media_type_copper)
5858 		return -EOPNOTSUPP;
5859 
5860 	switch (cmd) {
5861 	case SIOCGMIIPHY:
5862 		data->phy_id = adapter->hw.phy.addr;
5863 		break;
5864 	case SIOCGMIIREG:
5865 		e1000_phy_read_status(adapter);
5866 
5867 		switch (data->reg_num & 0x1F) {
5868 		case MII_BMCR:
5869 			data->val_out = adapter->phy_regs.bmcr;
5870 			break;
5871 		case MII_BMSR:
5872 			data->val_out = adapter->phy_regs.bmsr;
5873 			break;
5874 		case MII_PHYSID1:
5875 			data->val_out = (adapter->hw.phy.id >> 16);
5876 			break;
5877 		case MII_PHYSID2:
5878 			data->val_out = (adapter->hw.phy.id & 0xFFFF);
5879 			break;
5880 		case MII_ADVERTISE:
5881 			data->val_out = adapter->phy_regs.advertise;
5882 			break;
5883 		case MII_LPA:
5884 			data->val_out = adapter->phy_regs.lpa;
5885 			break;
5886 		case MII_EXPANSION:
5887 			data->val_out = adapter->phy_regs.expansion;
5888 			break;
5889 		case MII_CTRL1000:
5890 			data->val_out = adapter->phy_regs.ctrl1000;
5891 			break;
5892 		case MII_STAT1000:
5893 			data->val_out = adapter->phy_regs.stat1000;
5894 			break;
5895 		case MII_ESTATUS:
5896 			data->val_out = adapter->phy_regs.estatus;
5897 			break;
5898 		default:
5899 			return -EIO;
5900 		}
5901 		break;
5902 	case SIOCSMIIREG:
5903 	default:
5904 		return -EOPNOTSUPP;
5905 	}
5906 	return 0;
5907 }
5908 
5909 /**
5910  * e1000e_hwtstamp_ioctl - control hardware time stamping
5911  * @netdev: network interface device structure
5912  * @ifreq: interface request
5913  *
5914  * Outgoing time stamping can be enabled and disabled. Play nice and
5915  * disable it when requested, although it shouldn't cause any overhead
5916  * when no packet needs it. At most one packet in the queue may be
5917  * marked for time stamping, otherwise it would be impossible to tell
5918  * for sure to which packet the hardware time stamp belongs.
5919  *
5920  * Incoming time stamping has to be configured via the hardware filters.
5921  * Not all combinations are supported, in particular event type has to be
5922  * specified. Matching the kind of event packet is not supported, with the
5923  * exception of "all V2 events regardless of level 2 or 4".
5924  **/
5925 static int e1000e_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
5926 {
5927 	struct e1000_adapter *adapter = netdev_priv(netdev);
5928 	struct hwtstamp_config config;
5929 	int ret_val;
5930 
5931 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
5932 		return -EFAULT;
5933 
5934 	ret_val = e1000e_config_hwtstamp(adapter, &config);
5935 	if (ret_val)
5936 		return ret_val;
5937 
5938 	switch (config.rx_filter) {
5939 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
5940 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
5941 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
5942 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
5943 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
5944 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
5945 		/* With V2 type filters which specify a Sync or Delay Request,
5946 		 * Path Delay Request/Response messages are also time stamped
5947 		 * by hardware so notify the caller the requested packets plus
5948 		 * some others are time stamped.
5949 		 */
5950 		config.rx_filter = HWTSTAMP_FILTER_SOME;
5951 		break;
5952 	default:
5953 		break;
5954 	}
5955 
5956 	return copy_to_user(ifr->ifr_data, &config,
5957 			    sizeof(config)) ? -EFAULT : 0;
5958 }
5959 
5960 static int e1000e_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
5961 {
5962 	struct e1000_adapter *adapter = netdev_priv(netdev);
5963 
5964 	return copy_to_user(ifr->ifr_data, &adapter->hwtstamp_config,
5965 			    sizeof(adapter->hwtstamp_config)) ? -EFAULT : 0;
5966 }
5967 
5968 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5969 {
5970 	switch (cmd) {
5971 	case SIOCGMIIPHY:
5972 	case SIOCGMIIREG:
5973 	case SIOCSMIIREG:
5974 		return e1000_mii_ioctl(netdev, ifr, cmd);
5975 	case SIOCSHWTSTAMP:
5976 		return e1000e_hwtstamp_set(netdev, ifr);
5977 	case SIOCGHWTSTAMP:
5978 		return e1000e_hwtstamp_get(netdev, ifr);
5979 	default:
5980 		return -EOPNOTSUPP;
5981 	}
5982 }
5983 
5984 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
5985 {
5986 	struct e1000_hw *hw = &adapter->hw;
5987 	u32 i, mac_reg, wuc;
5988 	u16 phy_reg, wuc_enable;
5989 	int retval;
5990 
5991 	/* copy MAC RARs to PHY RARs */
5992 	e1000_copy_rx_addrs_to_phy_ich8lan(hw);
5993 
5994 	retval = hw->phy.ops.acquire(hw);
5995 	if (retval) {
5996 		e_err("Could not acquire PHY\n");
5997 		return retval;
5998 	}
5999 
6000 	/* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
6001 	retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6002 	if (retval)
6003 		goto release;
6004 
6005 	/* copy MAC MTA to PHY MTA - only needed for pchlan */
6006 	for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
6007 		mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
6008 		hw->phy.ops.write_reg_page(hw, BM_MTA(i),
6009 					   (u16)(mac_reg & 0xFFFF));
6010 		hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
6011 					   (u16)((mac_reg >> 16) & 0xFFFF));
6012 	}
6013 
6014 	/* configure PHY Rx Control register */
6015 	hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
6016 	mac_reg = er32(RCTL);
6017 	if (mac_reg & E1000_RCTL_UPE)
6018 		phy_reg |= BM_RCTL_UPE;
6019 	if (mac_reg & E1000_RCTL_MPE)
6020 		phy_reg |= BM_RCTL_MPE;
6021 	phy_reg &= ~(BM_RCTL_MO_MASK);
6022 	if (mac_reg & E1000_RCTL_MO_3)
6023 		phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
6024 			    << BM_RCTL_MO_SHIFT);
6025 	if (mac_reg & E1000_RCTL_BAM)
6026 		phy_reg |= BM_RCTL_BAM;
6027 	if (mac_reg & E1000_RCTL_PMCF)
6028 		phy_reg |= BM_RCTL_PMCF;
6029 	mac_reg = er32(CTRL);
6030 	if (mac_reg & E1000_CTRL_RFCE)
6031 		phy_reg |= BM_RCTL_RFCE;
6032 	hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
6033 
6034 	wuc = E1000_WUC_PME_EN;
6035 	if (wufc & (E1000_WUFC_MAG | E1000_WUFC_LNKC))
6036 		wuc |= E1000_WUC_APME;
6037 
6038 	/* enable PHY wakeup in MAC register */
6039 	ew32(WUFC, wufc);
6040 	ew32(WUC, (E1000_WUC_PHY_WAKE | E1000_WUC_APMPME |
6041 		   E1000_WUC_PME_STATUS | wuc));
6042 
6043 	/* configure and enable PHY wakeup in PHY registers */
6044 	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
6045 	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, wuc);
6046 
6047 	/* activate PHY wakeup */
6048 	wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
6049 	retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6050 	if (retval)
6051 		e_err("Could not set PHY Host Wakeup bit\n");
6052 release:
6053 	hw->phy.ops.release(hw);
6054 
6055 	return retval;
6056 }
6057 
6058 static void e1000e_flush_lpic(struct pci_dev *pdev)
6059 {
6060 	struct net_device *netdev = pci_get_drvdata(pdev);
6061 	struct e1000_adapter *adapter = netdev_priv(netdev);
6062 	struct e1000_hw *hw = &adapter->hw;
6063 	u32 ret_val;
6064 
6065 	pm_runtime_get_sync(netdev->dev.parent);
6066 
6067 	ret_val = hw->phy.ops.acquire(hw);
6068 	if (ret_val)
6069 		goto fl_out;
6070 
6071 	pr_info("EEE TX LPI TIMER: %08X\n",
6072 		er32(LPIC) >> E1000_LPIC_LPIET_SHIFT);
6073 
6074 	hw->phy.ops.release(hw);
6075 
6076 fl_out:
6077 	pm_runtime_put_sync(netdev->dev.parent);
6078 }
6079 
6080 static int e1000e_pm_freeze(struct device *dev)
6081 {
6082 	struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6083 	struct e1000_adapter *adapter = netdev_priv(netdev);
6084 
6085 	netif_device_detach(netdev);
6086 
6087 	if (netif_running(netdev)) {
6088 		int count = E1000_CHECK_RESET_COUNT;
6089 
6090 		while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6091 			usleep_range(10000, 20000);
6092 
6093 		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6094 
6095 		/* Quiesce the device without resetting the hardware */
6096 		e1000e_down(adapter, false);
6097 		e1000_free_irq(adapter);
6098 	}
6099 	e1000e_reset_interrupt_capability(adapter);
6100 
6101 	/* Allow time for pending master requests to run */
6102 	e1000e_disable_pcie_master(&adapter->hw);
6103 
6104 	return 0;
6105 }
6106 
6107 static int __e1000_shutdown(struct pci_dev *pdev, bool runtime)
6108 {
6109 	struct net_device *netdev = pci_get_drvdata(pdev);
6110 	struct e1000_adapter *adapter = netdev_priv(netdev);
6111 	struct e1000_hw *hw = &adapter->hw;
6112 	u32 ctrl, ctrl_ext, rctl, status;
6113 	/* Runtime suspend should only enable wakeup for link changes */
6114 	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
6115 	int retval = 0;
6116 
6117 	status = er32(STATUS);
6118 	if (status & E1000_STATUS_LU)
6119 		wufc &= ~E1000_WUFC_LNKC;
6120 
6121 	if (wufc) {
6122 		e1000_setup_rctl(adapter);
6123 		e1000e_set_rx_mode(netdev);
6124 
6125 		/* turn on all-multi mode if wake on multicast is enabled */
6126 		if (wufc & E1000_WUFC_MC) {
6127 			rctl = er32(RCTL);
6128 			rctl |= E1000_RCTL_MPE;
6129 			ew32(RCTL, rctl);
6130 		}
6131 
6132 		ctrl = er32(CTRL);
6133 		ctrl |= E1000_CTRL_ADVD3WUC;
6134 		if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
6135 			ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
6136 		ew32(CTRL, ctrl);
6137 
6138 		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
6139 		    adapter->hw.phy.media_type ==
6140 		    e1000_media_type_internal_serdes) {
6141 			/* keep the laser running in D3 */
6142 			ctrl_ext = er32(CTRL_EXT);
6143 			ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
6144 			ew32(CTRL_EXT, ctrl_ext);
6145 		}
6146 
6147 		if (!runtime)
6148 			e1000e_power_up_phy(adapter);
6149 
6150 		if (adapter->flags & FLAG_IS_ICH)
6151 			e1000_suspend_workarounds_ich8lan(&adapter->hw);
6152 
6153 		if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6154 			/* enable wakeup by the PHY */
6155 			retval = e1000_init_phy_wakeup(adapter, wufc);
6156 			if (retval)
6157 				return retval;
6158 		} else {
6159 			/* enable wakeup by the MAC */
6160 			ew32(WUFC, wufc);
6161 			ew32(WUC, E1000_WUC_PME_EN);
6162 		}
6163 	} else {
6164 		ew32(WUC, 0);
6165 		ew32(WUFC, 0);
6166 
6167 		e1000_power_down_phy(adapter);
6168 	}
6169 
6170 	if (adapter->hw.phy.type == e1000_phy_igp_3) {
6171 		e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
6172 	} else if ((hw->mac.type == e1000_pch_lpt) ||
6173 		   (hw->mac.type == e1000_pch_spt)) {
6174 		if (!(wufc & (E1000_WUFC_EX | E1000_WUFC_MC | E1000_WUFC_BC)))
6175 			/* ULP does not support wake from unicast, multicast
6176 			 * or broadcast.
6177 			 */
6178 			retval = e1000_enable_ulp_lpt_lp(hw, !runtime);
6179 
6180 		if (retval)
6181 			return retval;
6182 	}
6183 
6184 
6185 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
6186 	 * would have already happened in close and is redundant.
6187 	 */
6188 	e1000e_release_hw_control(adapter);
6189 
6190 	pci_clear_master(pdev);
6191 
6192 	/* The pci-e switch on some quad port adapters will report a
6193 	 * correctable error when the MAC transitions from D0 to D3.  To
6194 	 * prevent this we need to mask off the correctable errors on the
6195 	 * downstream port of the pci-e switch.
6196 	 *
6197 	 * We don't have the associated upstream bridge while assigning
6198 	 * the PCI device into guest. For example, the KVM on power is
6199 	 * one of the cases.
6200 	 */
6201 	if (adapter->flags & FLAG_IS_QUAD_PORT) {
6202 		struct pci_dev *us_dev = pdev->bus->self;
6203 		u16 devctl;
6204 
6205 		if (!us_dev)
6206 			return 0;
6207 
6208 		pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl);
6209 		pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL,
6210 					   (devctl & ~PCI_EXP_DEVCTL_CERE));
6211 
6212 		pci_save_state(pdev);
6213 		pci_prepare_to_sleep(pdev);
6214 
6215 		pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl);
6216 	}
6217 
6218 	return 0;
6219 }
6220 
6221 /**
6222  * e1000e_disable_aspm - Disable ASPM states
6223  * @pdev: pointer to PCI device struct
6224  * @state: bit-mask of ASPM states to disable
6225  *
6226  * Some devices *must* have certain ASPM states disabled per hardware errata.
6227  **/
6228 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6229 {
6230 	struct pci_dev *parent = pdev->bus->self;
6231 	u16 aspm_dis_mask = 0;
6232 	u16 pdev_aspmc, parent_aspmc;
6233 
6234 	switch (state) {
6235 	case PCIE_LINK_STATE_L0S:
6236 	case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1:
6237 		aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S;
6238 		/* fall-through - can't have L1 without L0s */
6239 	case PCIE_LINK_STATE_L1:
6240 		aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1;
6241 		break;
6242 	default:
6243 		return;
6244 	}
6245 
6246 	pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6247 	pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6248 
6249 	if (parent) {
6250 		pcie_capability_read_word(parent, PCI_EXP_LNKCTL,
6251 					  &parent_aspmc);
6252 		parent_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6253 	}
6254 
6255 	/* Nothing to do if the ASPM states to be disabled already are */
6256 	if (!(pdev_aspmc & aspm_dis_mask) &&
6257 	    (!parent || !(parent_aspmc & aspm_dis_mask)))
6258 		return;
6259 
6260 	dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
6261 		 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ?
6262 		 "L0s" : "",
6263 		 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ?
6264 		 "L1" : "");
6265 
6266 #ifdef CONFIG_PCIEASPM
6267 	pci_disable_link_state_locked(pdev, state);
6268 
6269 	/* Double-check ASPM control.  If not disabled by the above, the
6270 	 * BIOS is preventing that from happening (or CONFIG_PCIEASPM is
6271 	 * not enabled); override by writing PCI config space directly.
6272 	 */
6273 	pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6274 	pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6275 
6276 	if (!(aspm_dis_mask & pdev_aspmc))
6277 		return;
6278 #endif
6279 
6280 	/* Both device and parent should have the same ASPM setting.
6281 	 * Disable ASPM in downstream component first and then upstream.
6282 	 */
6283 	pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask);
6284 
6285 	if (parent)
6286 		pcie_capability_clear_word(parent, PCI_EXP_LNKCTL,
6287 					   aspm_dis_mask);
6288 }
6289 
6290 #ifdef CONFIG_PM
6291 static int __e1000_resume(struct pci_dev *pdev)
6292 {
6293 	struct net_device *netdev = pci_get_drvdata(pdev);
6294 	struct e1000_adapter *adapter = netdev_priv(netdev);
6295 	struct e1000_hw *hw = &adapter->hw;
6296 	u16 aspm_disable_flag = 0;
6297 
6298 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6299 		aspm_disable_flag = PCIE_LINK_STATE_L0S;
6300 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6301 		aspm_disable_flag |= PCIE_LINK_STATE_L1;
6302 	if (aspm_disable_flag)
6303 		e1000e_disable_aspm(pdev, aspm_disable_flag);
6304 
6305 	pci_set_master(pdev);
6306 
6307 	if (hw->mac.type >= e1000_pch2lan)
6308 		e1000_resume_workarounds_pchlan(&adapter->hw);
6309 
6310 	e1000e_power_up_phy(adapter);
6311 
6312 	/* report the system wakeup cause from S3/S4 */
6313 	if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6314 		u16 phy_data;
6315 
6316 		e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
6317 		if (phy_data) {
6318 			e_info("PHY Wakeup cause - %s\n",
6319 			       phy_data & E1000_WUS_EX ? "Unicast Packet" :
6320 			       phy_data & E1000_WUS_MC ? "Multicast Packet" :
6321 			       phy_data & E1000_WUS_BC ? "Broadcast Packet" :
6322 			       phy_data & E1000_WUS_MAG ? "Magic Packet" :
6323 			       phy_data & E1000_WUS_LNKC ?
6324 			       "Link Status Change" : "other");
6325 		}
6326 		e1e_wphy(&adapter->hw, BM_WUS, ~0);
6327 	} else {
6328 		u32 wus = er32(WUS);
6329 
6330 		if (wus) {
6331 			e_info("MAC Wakeup cause - %s\n",
6332 			       wus & E1000_WUS_EX ? "Unicast Packet" :
6333 			       wus & E1000_WUS_MC ? "Multicast Packet" :
6334 			       wus & E1000_WUS_BC ? "Broadcast Packet" :
6335 			       wus & E1000_WUS_MAG ? "Magic Packet" :
6336 			       wus & E1000_WUS_LNKC ? "Link Status Change" :
6337 			       "other");
6338 		}
6339 		ew32(WUS, ~0);
6340 	}
6341 
6342 	e1000e_reset(adapter);
6343 
6344 	e1000_init_manageability_pt(adapter);
6345 
6346 	/* If the controller has AMT, do not set DRV_LOAD until the interface
6347 	 * is up.  For all other cases, let the f/w know that the h/w is now
6348 	 * under the control of the driver.
6349 	 */
6350 	if (!(adapter->flags & FLAG_HAS_AMT))
6351 		e1000e_get_hw_control(adapter);
6352 
6353 	return 0;
6354 }
6355 
6356 #ifdef CONFIG_PM_SLEEP
6357 static int e1000e_pm_thaw(struct device *dev)
6358 {
6359 	struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6360 	struct e1000_adapter *adapter = netdev_priv(netdev);
6361 
6362 	e1000e_set_interrupt_capability(adapter);
6363 	if (netif_running(netdev)) {
6364 		u32 err = e1000_request_irq(adapter);
6365 
6366 		if (err)
6367 			return err;
6368 
6369 		e1000e_up(adapter);
6370 	}
6371 
6372 	netif_device_attach(netdev);
6373 
6374 	return 0;
6375 }
6376 
6377 static int e1000e_pm_suspend(struct device *dev)
6378 {
6379 	struct pci_dev *pdev = to_pci_dev(dev);
6380 
6381 	e1000e_flush_lpic(pdev);
6382 
6383 	e1000e_pm_freeze(dev);
6384 
6385 	return __e1000_shutdown(pdev, false);
6386 }
6387 
6388 static int e1000e_pm_resume(struct device *dev)
6389 {
6390 	struct pci_dev *pdev = to_pci_dev(dev);
6391 	int rc;
6392 
6393 	rc = __e1000_resume(pdev);
6394 	if (rc)
6395 		return rc;
6396 
6397 	return e1000e_pm_thaw(dev);
6398 }
6399 #endif /* CONFIG_PM_SLEEP */
6400 
6401 static int e1000e_pm_runtime_idle(struct device *dev)
6402 {
6403 	struct pci_dev *pdev = to_pci_dev(dev);
6404 	struct net_device *netdev = pci_get_drvdata(pdev);
6405 	struct e1000_adapter *adapter = netdev_priv(netdev);
6406 	u16 eee_lp;
6407 
6408 	eee_lp = adapter->hw.dev_spec.ich8lan.eee_lp_ability;
6409 
6410 	if (!e1000e_has_link(adapter)) {
6411 		adapter->hw.dev_spec.ich8lan.eee_lp_ability = eee_lp;
6412 		pm_schedule_suspend(dev, 5 * MSEC_PER_SEC);
6413 	}
6414 
6415 	return -EBUSY;
6416 }
6417 
6418 static int e1000e_pm_runtime_resume(struct device *dev)
6419 {
6420 	struct pci_dev *pdev = to_pci_dev(dev);
6421 	struct net_device *netdev = pci_get_drvdata(pdev);
6422 	struct e1000_adapter *adapter = netdev_priv(netdev);
6423 	int rc;
6424 
6425 	rc = __e1000_resume(pdev);
6426 	if (rc)
6427 		return rc;
6428 
6429 	if (netdev->flags & IFF_UP)
6430 		rc = e1000e_up(adapter);
6431 
6432 	return rc;
6433 }
6434 
6435 static int e1000e_pm_runtime_suspend(struct device *dev)
6436 {
6437 	struct pci_dev *pdev = to_pci_dev(dev);
6438 	struct net_device *netdev = pci_get_drvdata(pdev);
6439 	struct e1000_adapter *adapter = netdev_priv(netdev);
6440 
6441 	if (netdev->flags & IFF_UP) {
6442 		int count = E1000_CHECK_RESET_COUNT;
6443 
6444 		while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6445 			usleep_range(10000, 20000);
6446 
6447 		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6448 
6449 		/* Down the device without resetting the hardware */
6450 		e1000e_down(adapter, false);
6451 	}
6452 
6453 	if (__e1000_shutdown(pdev, true)) {
6454 		e1000e_pm_runtime_resume(dev);
6455 		return -EBUSY;
6456 	}
6457 
6458 	return 0;
6459 }
6460 #endif /* CONFIG_PM */
6461 
6462 static void e1000_shutdown(struct pci_dev *pdev)
6463 {
6464 	e1000e_flush_lpic(pdev);
6465 
6466 	e1000e_pm_freeze(&pdev->dev);
6467 
6468 	__e1000_shutdown(pdev, false);
6469 }
6470 
6471 #ifdef CONFIG_NET_POLL_CONTROLLER
6472 
6473 static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data)
6474 {
6475 	struct net_device *netdev = data;
6476 	struct e1000_adapter *adapter = netdev_priv(netdev);
6477 
6478 	if (adapter->msix_entries) {
6479 		int vector, msix_irq;
6480 
6481 		vector = 0;
6482 		msix_irq = adapter->msix_entries[vector].vector;
6483 		disable_irq(msix_irq);
6484 		e1000_intr_msix_rx(msix_irq, netdev);
6485 		enable_irq(msix_irq);
6486 
6487 		vector++;
6488 		msix_irq = adapter->msix_entries[vector].vector;
6489 		disable_irq(msix_irq);
6490 		e1000_intr_msix_tx(msix_irq, netdev);
6491 		enable_irq(msix_irq);
6492 
6493 		vector++;
6494 		msix_irq = adapter->msix_entries[vector].vector;
6495 		disable_irq(msix_irq);
6496 		e1000_msix_other(msix_irq, netdev);
6497 		enable_irq(msix_irq);
6498 	}
6499 
6500 	return IRQ_HANDLED;
6501 }
6502 
6503 /**
6504  * e1000_netpoll
6505  * @netdev: network interface device structure
6506  *
6507  * Polling 'interrupt' - used by things like netconsole to send skbs
6508  * without having to re-enable interrupts. It's not called while
6509  * the interrupt routine is executing.
6510  */
6511 static void e1000_netpoll(struct net_device *netdev)
6512 {
6513 	struct e1000_adapter *adapter = netdev_priv(netdev);
6514 
6515 	switch (adapter->int_mode) {
6516 	case E1000E_INT_MODE_MSIX:
6517 		e1000_intr_msix(adapter->pdev->irq, netdev);
6518 		break;
6519 	case E1000E_INT_MODE_MSI:
6520 		disable_irq(adapter->pdev->irq);
6521 		e1000_intr_msi(adapter->pdev->irq, netdev);
6522 		enable_irq(adapter->pdev->irq);
6523 		break;
6524 	default:		/* E1000E_INT_MODE_LEGACY */
6525 		disable_irq(adapter->pdev->irq);
6526 		e1000_intr(adapter->pdev->irq, netdev);
6527 		enable_irq(adapter->pdev->irq);
6528 		break;
6529 	}
6530 }
6531 #endif
6532 
6533 /**
6534  * e1000_io_error_detected - called when PCI error is detected
6535  * @pdev: Pointer to PCI device
6536  * @state: The current pci connection state
6537  *
6538  * This function is called after a PCI bus error affecting
6539  * this device has been detected.
6540  */
6541 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
6542 						pci_channel_state_t state)
6543 {
6544 	struct net_device *netdev = pci_get_drvdata(pdev);
6545 	struct e1000_adapter *adapter = netdev_priv(netdev);
6546 
6547 	netif_device_detach(netdev);
6548 
6549 	if (state == pci_channel_io_perm_failure)
6550 		return PCI_ERS_RESULT_DISCONNECT;
6551 
6552 	if (netif_running(netdev))
6553 		e1000e_down(adapter, true);
6554 	pci_disable_device(pdev);
6555 
6556 	/* Request a slot slot reset. */
6557 	return PCI_ERS_RESULT_NEED_RESET;
6558 }
6559 
6560 /**
6561  * e1000_io_slot_reset - called after the pci bus has been reset.
6562  * @pdev: Pointer to PCI device
6563  *
6564  * Restart the card from scratch, as if from a cold-boot. Implementation
6565  * resembles the first-half of the e1000e_pm_resume routine.
6566  */
6567 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
6568 {
6569 	struct net_device *netdev = pci_get_drvdata(pdev);
6570 	struct e1000_adapter *adapter = netdev_priv(netdev);
6571 	struct e1000_hw *hw = &adapter->hw;
6572 	u16 aspm_disable_flag = 0;
6573 	int err;
6574 	pci_ers_result_t result;
6575 
6576 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6577 		aspm_disable_flag = PCIE_LINK_STATE_L0S;
6578 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6579 		aspm_disable_flag |= PCIE_LINK_STATE_L1;
6580 	if (aspm_disable_flag)
6581 		e1000e_disable_aspm(pdev, aspm_disable_flag);
6582 
6583 	err = pci_enable_device_mem(pdev);
6584 	if (err) {
6585 		dev_err(&pdev->dev,
6586 			"Cannot re-enable PCI device after reset.\n");
6587 		result = PCI_ERS_RESULT_DISCONNECT;
6588 	} else {
6589 		pdev->state_saved = true;
6590 		pci_restore_state(pdev);
6591 		pci_set_master(pdev);
6592 
6593 		pci_enable_wake(pdev, PCI_D3hot, 0);
6594 		pci_enable_wake(pdev, PCI_D3cold, 0);
6595 
6596 		e1000e_reset(adapter);
6597 		ew32(WUS, ~0);
6598 		result = PCI_ERS_RESULT_RECOVERED;
6599 	}
6600 
6601 	pci_cleanup_aer_uncorrect_error_status(pdev);
6602 
6603 	return result;
6604 }
6605 
6606 /**
6607  * e1000_io_resume - called when traffic can start flowing again.
6608  * @pdev: Pointer to PCI device
6609  *
6610  * This callback is called when the error recovery driver tells us that
6611  * its OK to resume normal operation. Implementation resembles the
6612  * second-half of the e1000e_pm_resume routine.
6613  */
6614 static void e1000_io_resume(struct pci_dev *pdev)
6615 {
6616 	struct net_device *netdev = pci_get_drvdata(pdev);
6617 	struct e1000_adapter *adapter = netdev_priv(netdev);
6618 
6619 	e1000_init_manageability_pt(adapter);
6620 
6621 	if (netif_running(netdev)) {
6622 		if (e1000e_up(adapter)) {
6623 			dev_err(&pdev->dev,
6624 				"can't bring device back up after reset\n");
6625 			return;
6626 		}
6627 	}
6628 
6629 	netif_device_attach(netdev);
6630 
6631 	/* If the controller has AMT, do not set DRV_LOAD until the interface
6632 	 * is up.  For all other cases, let the f/w know that the h/w is now
6633 	 * under the control of the driver.
6634 	 */
6635 	if (!(adapter->flags & FLAG_HAS_AMT))
6636 		e1000e_get_hw_control(adapter);
6637 }
6638 
6639 static void e1000_print_device_info(struct e1000_adapter *adapter)
6640 {
6641 	struct e1000_hw *hw = &adapter->hw;
6642 	struct net_device *netdev = adapter->netdev;
6643 	u32 ret_val;
6644 	u8 pba_str[E1000_PBANUM_LENGTH];
6645 
6646 	/* print bus type/speed/width info */
6647 	e_info("(PCI Express:2.5GT/s:%s) %pM\n",
6648 	       /* bus width */
6649 	       ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
6650 		"Width x1"),
6651 	       /* MAC address */
6652 	       netdev->dev_addr);
6653 	e_info("Intel(R) PRO/%s Network Connection\n",
6654 	       (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
6655 	ret_val = e1000_read_pba_string_generic(hw, pba_str,
6656 						E1000_PBANUM_LENGTH);
6657 	if (ret_val)
6658 		strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
6659 	e_info("MAC: %d, PHY: %d, PBA No: %s\n",
6660 	       hw->mac.type, hw->phy.type, pba_str);
6661 }
6662 
6663 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
6664 {
6665 	struct e1000_hw *hw = &adapter->hw;
6666 	int ret_val;
6667 	u16 buf = 0;
6668 
6669 	if (hw->mac.type != e1000_82573)
6670 		return;
6671 
6672 	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
6673 	le16_to_cpus(&buf);
6674 	if (!ret_val && (!(buf & (1 << 0)))) {
6675 		/* Deep Smart Power Down (DSPD) */
6676 		dev_warn(&adapter->pdev->dev,
6677 			 "Warning: detected DSPD enabled in EEPROM\n");
6678 	}
6679 }
6680 
6681 static int e1000_set_features(struct net_device *netdev,
6682 			      netdev_features_t features)
6683 {
6684 	struct e1000_adapter *adapter = netdev_priv(netdev);
6685 	netdev_features_t changed = features ^ netdev->features;
6686 
6687 	if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
6688 		adapter->flags |= FLAG_TSO_FORCE;
6689 
6690 	if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
6691 			 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
6692 			 NETIF_F_RXALL)))
6693 		return 0;
6694 
6695 	if (changed & NETIF_F_RXFCS) {
6696 		if (features & NETIF_F_RXFCS) {
6697 			adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6698 		} else {
6699 			/* We need to take it back to defaults, which might mean
6700 			 * stripping is still disabled at the adapter level.
6701 			 */
6702 			if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
6703 				adapter->flags2 |= FLAG2_CRC_STRIPPING;
6704 			else
6705 				adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6706 		}
6707 	}
6708 
6709 	netdev->features = features;
6710 
6711 	if (netif_running(netdev))
6712 		e1000e_reinit_locked(adapter);
6713 	else
6714 		e1000e_reset(adapter);
6715 
6716 	return 0;
6717 }
6718 
6719 static const struct net_device_ops e1000e_netdev_ops = {
6720 	.ndo_open		= e1000_open,
6721 	.ndo_stop		= e1000_close,
6722 	.ndo_start_xmit		= e1000_xmit_frame,
6723 	.ndo_get_stats64	= e1000e_get_stats64,
6724 	.ndo_set_rx_mode	= e1000e_set_rx_mode,
6725 	.ndo_set_mac_address	= e1000_set_mac,
6726 	.ndo_change_mtu		= e1000_change_mtu,
6727 	.ndo_do_ioctl		= e1000_ioctl,
6728 	.ndo_tx_timeout		= e1000_tx_timeout,
6729 	.ndo_validate_addr	= eth_validate_addr,
6730 
6731 	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
6732 	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
6733 #ifdef CONFIG_NET_POLL_CONTROLLER
6734 	.ndo_poll_controller	= e1000_netpoll,
6735 #endif
6736 	.ndo_set_features = e1000_set_features,
6737 };
6738 
6739 /**
6740  * e1000_probe - Device Initialization Routine
6741  * @pdev: PCI device information struct
6742  * @ent: entry in e1000_pci_tbl
6743  *
6744  * Returns 0 on success, negative on failure
6745  *
6746  * e1000_probe initializes an adapter identified by a pci_dev structure.
6747  * The OS initialization, configuring of the adapter private structure,
6748  * and a hardware reset occur.
6749  **/
6750 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
6751 {
6752 	struct net_device *netdev;
6753 	struct e1000_adapter *adapter;
6754 	struct e1000_hw *hw;
6755 	const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
6756 	resource_size_t mmio_start, mmio_len;
6757 	resource_size_t flash_start, flash_len;
6758 	static int cards_found;
6759 	u16 aspm_disable_flag = 0;
6760 	int bars, i, err, pci_using_dac;
6761 	u16 eeprom_data = 0;
6762 	u16 eeprom_apme_mask = E1000_EEPROM_APME;
6763 	s32 rval = 0;
6764 
6765 	if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
6766 		aspm_disable_flag = PCIE_LINK_STATE_L0S;
6767 	if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
6768 		aspm_disable_flag |= PCIE_LINK_STATE_L1;
6769 	if (aspm_disable_flag)
6770 		e1000e_disable_aspm(pdev, aspm_disable_flag);
6771 
6772 	err = pci_enable_device_mem(pdev);
6773 	if (err)
6774 		return err;
6775 
6776 	pci_using_dac = 0;
6777 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
6778 	if (!err) {
6779 		pci_using_dac = 1;
6780 	} else {
6781 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
6782 		if (err) {
6783 			dev_err(&pdev->dev,
6784 				"No usable DMA configuration, aborting\n");
6785 			goto err_dma;
6786 		}
6787 	}
6788 
6789 	bars = pci_select_bars(pdev, IORESOURCE_MEM);
6790 	err = pci_request_selected_regions_exclusive(pdev, bars,
6791 						     e1000e_driver_name);
6792 	if (err)
6793 		goto err_pci_reg;
6794 
6795 	/* AER (Advanced Error Reporting) hooks */
6796 	pci_enable_pcie_error_reporting(pdev);
6797 
6798 	pci_set_master(pdev);
6799 	/* PCI config space info */
6800 	err = pci_save_state(pdev);
6801 	if (err)
6802 		goto err_alloc_etherdev;
6803 
6804 	err = -ENOMEM;
6805 	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
6806 	if (!netdev)
6807 		goto err_alloc_etherdev;
6808 
6809 	SET_NETDEV_DEV(netdev, &pdev->dev);
6810 
6811 	netdev->irq = pdev->irq;
6812 
6813 	pci_set_drvdata(pdev, netdev);
6814 	adapter = netdev_priv(netdev);
6815 	hw = &adapter->hw;
6816 	adapter->netdev = netdev;
6817 	adapter->pdev = pdev;
6818 	adapter->ei = ei;
6819 	adapter->pba = ei->pba;
6820 	adapter->flags = ei->flags;
6821 	adapter->flags2 = ei->flags2;
6822 	adapter->hw.adapter = adapter;
6823 	adapter->hw.mac.type = ei->mac;
6824 	adapter->max_hw_frame_size = ei->max_hw_frame_size;
6825 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
6826 
6827 	mmio_start = pci_resource_start(pdev, 0);
6828 	mmio_len = pci_resource_len(pdev, 0);
6829 
6830 	err = -EIO;
6831 	adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
6832 	if (!adapter->hw.hw_addr)
6833 		goto err_ioremap;
6834 
6835 	if ((adapter->flags & FLAG_HAS_FLASH) &&
6836 	    (pci_resource_flags(pdev, 1) & IORESOURCE_MEM) &&
6837 	    (hw->mac.type < e1000_pch_spt)) {
6838 		flash_start = pci_resource_start(pdev, 1);
6839 		flash_len = pci_resource_len(pdev, 1);
6840 		adapter->hw.flash_address = ioremap(flash_start, flash_len);
6841 		if (!adapter->hw.flash_address)
6842 			goto err_flashmap;
6843 	}
6844 
6845 	/* Set default EEE advertisement */
6846 	if (adapter->flags2 & FLAG2_HAS_EEE)
6847 		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
6848 
6849 	/* construct the net_device struct */
6850 	netdev->netdev_ops = &e1000e_netdev_ops;
6851 	e1000e_set_ethtool_ops(netdev);
6852 	netdev->watchdog_timeo = 5 * HZ;
6853 	netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64);
6854 	strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
6855 
6856 	netdev->mem_start = mmio_start;
6857 	netdev->mem_end = mmio_start + mmio_len;
6858 
6859 	adapter->bd_number = cards_found++;
6860 
6861 	e1000e_check_options(adapter);
6862 
6863 	/* setup adapter struct */
6864 	err = e1000_sw_init(adapter);
6865 	if (err)
6866 		goto err_sw_init;
6867 
6868 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
6869 	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
6870 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
6871 
6872 	err = ei->get_variants(adapter);
6873 	if (err)
6874 		goto err_hw_init;
6875 
6876 	if ((adapter->flags & FLAG_IS_ICH) &&
6877 	    (adapter->flags & FLAG_READ_ONLY_NVM) &&
6878 	    (hw->mac.type < e1000_pch_spt))
6879 		e1000e_write_protect_nvm_ich8lan(&adapter->hw);
6880 
6881 	hw->mac.ops.get_bus_info(&adapter->hw);
6882 
6883 	adapter->hw.phy.autoneg_wait_to_complete = 0;
6884 
6885 	/* Copper options */
6886 	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
6887 		adapter->hw.phy.mdix = AUTO_ALL_MODES;
6888 		adapter->hw.phy.disable_polarity_correction = 0;
6889 		adapter->hw.phy.ms_type = e1000_ms_hw_default;
6890 	}
6891 
6892 	if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
6893 		dev_info(&pdev->dev,
6894 			 "PHY reset is blocked due to SOL/IDER session.\n");
6895 
6896 	/* Set initial default active device features */
6897 	netdev->features = (NETIF_F_SG |
6898 			    NETIF_F_HW_VLAN_CTAG_RX |
6899 			    NETIF_F_HW_VLAN_CTAG_TX |
6900 			    NETIF_F_TSO |
6901 			    NETIF_F_TSO6 |
6902 			    NETIF_F_RXHASH |
6903 			    NETIF_F_RXCSUM |
6904 			    NETIF_F_HW_CSUM);
6905 
6906 	/* Set user-changeable features (subset of all device features) */
6907 	netdev->hw_features = netdev->features;
6908 	netdev->hw_features |= NETIF_F_RXFCS;
6909 	netdev->priv_flags |= IFF_SUPP_NOFCS;
6910 	netdev->hw_features |= NETIF_F_RXALL;
6911 
6912 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
6913 		netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
6914 
6915 	netdev->vlan_features |= (NETIF_F_SG |
6916 				  NETIF_F_TSO |
6917 				  NETIF_F_TSO6 |
6918 				  NETIF_F_HW_CSUM);
6919 
6920 	netdev->priv_flags |= IFF_UNICAST_FLT;
6921 
6922 	if (pci_using_dac) {
6923 		netdev->features |= NETIF_F_HIGHDMA;
6924 		netdev->vlan_features |= NETIF_F_HIGHDMA;
6925 	}
6926 
6927 	if (e1000e_enable_mng_pass_thru(&adapter->hw))
6928 		adapter->flags |= FLAG_MNG_PT_ENABLED;
6929 
6930 	/* before reading the NVM, reset the controller to
6931 	 * put the device in a known good starting state
6932 	 */
6933 	adapter->hw.mac.ops.reset_hw(&adapter->hw);
6934 
6935 	/* systems with ASPM and others may see the checksum fail on the first
6936 	 * attempt. Let's give it a few tries
6937 	 */
6938 	for (i = 0;; i++) {
6939 		if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
6940 			break;
6941 		if (i == 2) {
6942 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
6943 			err = -EIO;
6944 			goto err_eeprom;
6945 		}
6946 	}
6947 
6948 	e1000_eeprom_checks(adapter);
6949 
6950 	/* copy the MAC address */
6951 	if (e1000e_read_mac_addr(&adapter->hw))
6952 		dev_err(&pdev->dev,
6953 			"NVM Read Error while reading MAC address\n");
6954 
6955 	memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
6956 
6957 	if (!is_valid_ether_addr(netdev->dev_addr)) {
6958 		dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
6959 			netdev->dev_addr);
6960 		err = -EIO;
6961 		goto err_eeprom;
6962 	}
6963 
6964 	init_timer(&adapter->watchdog_timer);
6965 	adapter->watchdog_timer.function = e1000_watchdog;
6966 	adapter->watchdog_timer.data = (unsigned long)adapter;
6967 
6968 	init_timer(&adapter->phy_info_timer);
6969 	adapter->phy_info_timer.function = e1000_update_phy_info;
6970 	adapter->phy_info_timer.data = (unsigned long)adapter;
6971 
6972 	INIT_WORK(&adapter->reset_task, e1000_reset_task);
6973 	INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
6974 	INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
6975 	INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
6976 	INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
6977 
6978 	/* Initialize link parameters. User can change them with ethtool */
6979 	adapter->hw.mac.autoneg = 1;
6980 	adapter->fc_autoneg = true;
6981 	adapter->hw.fc.requested_mode = e1000_fc_default;
6982 	adapter->hw.fc.current_mode = e1000_fc_default;
6983 	adapter->hw.phy.autoneg_advertised = 0x2f;
6984 
6985 	/* Initial Wake on LAN setting - If APM wake is enabled in
6986 	 * the EEPROM, enable the ACPI Magic Packet filter
6987 	 */
6988 	if (adapter->flags & FLAG_APME_IN_WUC) {
6989 		/* APME bit in EEPROM is mapped to WUC.APME */
6990 		eeprom_data = er32(WUC);
6991 		eeprom_apme_mask = E1000_WUC_APME;
6992 		if ((hw->mac.type > e1000_ich10lan) &&
6993 		    (eeprom_data & E1000_WUC_PHY_WAKE))
6994 			adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
6995 	} else if (adapter->flags & FLAG_APME_IN_CTRL3) {
6996 		if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
6997 		    (adapter->hw.bus.func == 1))
6998 			rval = e1000_read_nvm(&adapter->hw,
6999 					      NVM_INIT_CONTROL3_PORT_B,
7000 					      1, &eeprom_data);
7001 		else
7002 			rval = e1000_read_nvm(&adapter->hw,
7003 					      NVM_INIT_CONTROL3_PORT_A,
7004 					      1, &eeprom_data);
7005 	}
7006 
7007 	/* fetch WoL from EEPROM */
7008 	if (rval)
7009 		e_dbg("NVM read error getting WoL initial values: %d\n", rval);
7010 	else if (eeprom_data & eeprom_apme_mask)
7011 		adapter->eeprom_wol |= E1000_WUFC_MAG;
7012 
7013 	/* now that we have the eeprom settings, apply the special cases
7014 	 * where the eeprom may be wrong or the board simply won't support
7015 	 * wake on lan on a particular port
7016 	 */
7017 	if (!(adapter->flags & FLAG_HAS_WOL))
7018 		adapter->eeprom_wol = 0;
7019 
7020 	/* initialize the wol settings based on the eeprom settings */
7021 	adapter->wol = adapter->eeprom_wol;
7022 
7023 	/* make sure adapter isn't asleep if manageability is enabled */
7024 	if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) ||
7025 	    (hw->mac.ops.check_mng_mode(hw)))
7026 		device_wakeup_enable(&pdev->dev);
7027 
7028 	/* save off EEPROM version number */
7029 	rval = e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
7030 
7031 	if (rval) {
7032 		e_dbg("NVM read error getting EEPROM version: %d\n", rval);
7033 		adapter->eeprom_vers = 0;
7034 	}
7035 
7036 	/* reset the hardware with the new settings */
7037 	e1000e_reset(adapter);
7038 
7039 	/* If the controller has AMT, do not set DRV_LOAD until the interface
7040 	 * is up.  For all other cases, let the f/w know that the h/w is now
7041 	 * under the control of the driver.
7042 	 */
7043 	if (!(adapter->flags & FLAG_HAS_AMT))
7044 		e1000e_get_hw_control(adapter);
7045 
7046 	strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
7047 	err = register_netdev(netdev);
7048 	if (err)
7049 		goto err_register;
7050 
7051 	/* carrier off reporting is important to ethtool even BEFORE open */
7052 	netif_carrier_off(netdev);
7053 
7054 	/* init PTP hardware clock */
7055 	e1000e_ptp_init(adapter);
7056 
7057 	e1000_print_device_info(adapter);
7058 
7059 	if (pci_dev_run_wake(pdev))
7060 		pm_runtime_put_noidle(&pdev->dev);
7061 
7062 	return 0;
7063 
7064 err_register:
7065 	if (!(adapter->flags & FLAG_HAS_AMT))
7066 		e1000e_release_hw_control(adapter);
7067 err_eeprom:
7068 	if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
7069 		e1000_phy_hw_reset(&adapter->hw);
7070 err_hw_init:
7071 	kfree(adapter->tx_ring);
7072 	kfree(adapter->rx_ring);
7073 err_sw_init:
7074 	if ((adapter->hw.flash_address) && (hw->mac.type < e1000_pch_spt))
7075 		iounmap(adapter->hw.flash_address);
7076 	e1000e_reset_interrupt_capability(adapter);
7077 err_flashmap:
7078 	iounmap(adapter->hw.hw_addr);
7079 err_ioremap:
7080 	free_netdev(netdev);
7081 err_alloc_etherdev:
7082 	pci_release_selected_regions(pdev,
7083 				     pci_select_bars(pdev, IORESOURCE_MEM));
7084 err_pci_reg:
7085 err_dma:
7086 	pci_disable_device(pdev);
7087 	return err;
7088 }
7089 
7090 /**
7091  * e1000_remove - Device Removal Routine
7092  * @pdev: PCI device information struct
7093  *
7094  * e1000_remove is called by the PCI subsystem to alert the driver
7095  * that it should release a PCI device.  The could be caused by a
7096  * Hot-Plug event, or because the driver is going to be removed from
7097  * memory.
7098  **/
7099 static void e1000_remove(struct pci_dev *pdev)
7100 {
7101 	struct net_device *netdev = pci_get_drvdata(pdev);
7102 	struct e1000_adapter *adapter = netdev_priv(netdev);
7103 	bool down = test_bit(__E1000_DOWN, &adapter->state);
7104 
7105 	e1000e_ptp_remove(adapter);
7106 
7107 	/* The timers may be rescheduled, so explicitly disable them
7108 	 * from being rescheduled.
7109 	 */
7110 	if (!down)
7111 		set_bit(__E1000_DOWN, &adapter->state);
7112 	del_timer_sync(&adapter->watchdog_timer);
7113 	del_timer_sync(&adapter->phy_info_timer);
7114 
7115 	cancel_work_sync(&adapter->reset_task);
7116 	cancel_work_sync(&adapter->watchdog_task);
7117 	cancel_work_sync(&adapter->downshift_task);
7118 	cancel_work_sync(&adapter->update_phy_task);
7119 	cancel_work_sync(&adapter->print_hang_task);
7120 
7121 	if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
7122 		cancel_work_sync(&adapter->tx_hwtstamp_work);
7123 		if (adapter->tx_hwtstamp_skb) {
7124 			dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
7125 			adapter->tx_hwtstamp_skb = NULL;
7126 		}
7127 	}
7128 
7129 	/* Don't lie to e1000_close() down the road. */
7130 	if (!down)
7131 		clear_bit(__E1000_DOWN, &adapter->state);
7132 	unregister_netdev(netdev);
7133 
7134 	if (pci_dev_run_wake(pdev))
7135 		pm_runtime_get_noresume(&pdev->dev);
7136 
7137 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7138 	 * would have already happened in close and is redundant.
7139 	 */
7140 	e1000e_release_hw_control(adapter);
7141 
7142 	e1000e_reset_interrupt_capability(adapter);
7143 	kfree(adapter->tx_ring);
7144 	kfree(adapter->rx_ring);
7145 
7146 	iounmap(adapter->hw.hw_addr);
7147 	if ((adapter->hw.flash_address) &&
7148 	    (adapter->hw.mac.type < e1000_pch_spt))
7149 		iounmap(adapter->hw.flash_address);
7150 	pci_release_selected_regions(pdev,
7151 				     pci_select_bars(pdev, IORESOURCE_MEM));
7152 
7153 	free_netdev(netdev);
7154 
7155 	/* AER disable */
7156 	pci_disable_pcie_error_reporting(pdev);
7157 
7158 	pci_disable_device(pdev);
7159 }
7160 
7161 /* PCI Error Recovery (ERS) */
7162 static const struct pci_error_handlers e1000_err_handler = {
7163 	.error_detected = e1000_io_error_detected,
7164 	.slot_reset = e1000_io_slot_reset,
7165 	.resume = e1000_io_resume,
7166 };
7167 
7168 static const struct pci_device_id e1000_pci_tbl[] = {
7169 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
7170 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
7171 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
7172 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP),
7173 	  board_82571 },
7174 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
7175 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
7176 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
7177 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
7178 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
7179 
7180 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
7181 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
7182 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
7183 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
7184 
7185 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
7186 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
7187 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
7188 
7189 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
7190 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
7191 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
7192 
7193 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
7194 	  board_80003es2lan },
7195 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
7196 	  board_80003es2lan },
7197 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
7198 	  board_80003es2lan },
7199 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
7200 	  board_80003es2lan },
7201 
7202 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
7203 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
7204 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
7205 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
7206 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
7207 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
7208 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
7209 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
7210 
7211 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
7212 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
7213 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
7214 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
7215 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
7216 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
7217 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
7218 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
7219 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
7220 
7221 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
7222 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
7223 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
7224 
7225 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
7226 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
7227 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
7228 
7229 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
7230 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
7231 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
7232 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
7233 
7234 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
7235 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
7236 
7237 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
7238 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
7239 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt },
7240 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt },
7241 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt },
7242 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt },
7243 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt },
7244 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt },
7245 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM), board_pch_spt },
7246 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V), board_pch_spt },
7247 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM2), board_pch_spt },
7248 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V2), board_pch_spt },
7249 
7250 	{ 0, 0, 0, 0, 0, 0, 0 }	/* terminate list */
7251 };
7252 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
7253 
7254 static const struct dev_pm_ops e1000_pm_ops = {
7255 #ifdef CONFIG_PM_SLEEP
7256 	.suspend	= e1000e_pm_suspend,
7257 	.resume		= e1000e_pm_resume,
7258 	.freeze		= e1000e_pm_freeze,
7259 	.thaw		= e1000e_pm_thaw,
7260 	.poweroff	= e1000e_pm_suspend,
7261 	.restore	= e1000e_pm_resume,
7262 #endif
7263 	SET_RUNTIME_PM_OPS(e1000e_pm_runtime_suspend, e1000e_pm_runtime_resume,
7264 			   e1000e_pm_runtime_idle)
7265 };
7266 
7267 /* PCI Device API Driver */
7268 static struct pci_driver e1000_driver = {
7269 	.name     = e1000e_driver_name,
7270 	.id_table = e1000_pci_tbl,
7271 	.probe    = e1000_probe,
7272 	.remove   = e1000_remove,
7273 	.driver   = {
7274 		.pm = &e1000_pm_ops,
7275 	},
7276 	.shutdown = e1000_shutdown,
7277 	.err_handler = &e1000_err_handler
7278 };
7279 
7280 /**
7281  * e1000_init_module - Driver Registration Routine
7282  *
7283  * e1000_init_module is the first routine called when the driver is
7284  * loaded. All it does is register with the PCI subsystem.
7285  **/
7286 static int __init e1000_init_module(void)
7287 {
7288 	int ret;
7289 
7290 	pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
7291 		e1000e_driver_version);
7292 	pr_info("Copyright(c) 1999 - 2014 Intel Corporation.\n");
7293 	ret = pci_register_driver(&e1000_driver);
7294 
7295 	return ret;
7296 }
7297 module_init(e1000_init_module);
7298 
7299 /**
7300  * e1000_exit_module - Driver Exit Cleanup Routine
7301  *
7302  * e1000_exit_module is called just before the driver is removed
7303  * from memory.
7304  **/
7305 static void __exit e1000_exit_module(void)
7306 {
7307 	pci_unregister_driver(&e1000_driver);
7308 }
7309 module_exit(e1000_exit_module);
7310 
7311 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
7312 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7313 MODULE_LICENSE("GPL");
7314 MODULE_VERSION(DRV_VERSION);
7315 
7316 /* netdev.c */
7317