1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3 
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5 
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/pci.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/delay.h>
13 #include <linux/netdevice.h>
14 #include <linux/interrupt.h>
15 #include <linux/tcp.h>
16 #include <linux/ipv6.h>
17 #include <linux/slab.h>
18 #include <net/checksum.h>
19 #include <net/ip6_checksum.h>
20 #include <linux/ethtool.h>
21 #include <linux/if_vlan.h>
22 #include <linux/cpu.h>
23 #include <linux/smp.h>
24 #include <linux/pm_qos.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/aer.h>
27 #include <linux/prefetch.h>
28 
29 #include "e1000.h"
30 
31 char e1000e_driver_name[] = "e1000e";
32 
33 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
34 static int debug = -1;
35 module_param(debug, int, 0);
36 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
37 
38 static const struct e1000_info *e1000_info_tbl[] = {
39 	[board_82571]		= &e1000_82571_info,
40 	[board_82572]		= &e1000_82572_info,
41 	[board_82573]		= &e1000_82573_info,
42 	[board_82574]		= &e1000_82574_info,
43 	[board_82583]		= &e1000_82583_info,
44 	[board_80003es2lan]	= &e1000_es2_info,
45 	[board_ich8lan]		= &e1000_ich8_info,
46 	[board_ich9lan]		= &e1000_ich9_info,
47 	[board_ich10lan]	= &e1000_ich10_info,
48 	[board_pchlan]		= &e1000_pch_info,
49 	[board_pch2lan]		= &e1000_pch2_info,
50 	[board_pch_lpt]		= &e1000_pch_lpt_info,
51 	[board_pch_spt]		= &e1000_pch_spt_info,
52 	[board_pch_cnp]		= &e1000_pch_cnp_info,
53 };
54 
55 struct e1000_reg_info {
56 	u32 ofs;
57 	char *name;
58 };
59 
60 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
61 	/* General Registers */
62 	{E1000_CTRL, "CTRL"},
63 	{E1000_STATUS, "STATUS"},
64 	{E1000_CTRL_EXT, "CTRL_EXT"},
65 
66 	/* Interrupt Registers */
67 	{E1000_ICR, "ICR"},
68 
69 	/* Rx Registers */
70 	{E1000_RCTL, "RCTL"},
71 	{E1000_RDLEN(0), "RDLEN"},
72 	{E1000_RDH(0), "RDH"},
73 	{E1000_RDT(0), "RDT"},
74 	{E1000_RDTR, "RDTR"},
75 	{E1000_RXDCTL(0), "RXDCTL"},
76 	{E1000_ERT, "ERT"},
77 	{E1000_RDBAL(0), "RDBAL"},
78 	{E1000_RDBAH(0), "RDBAH"},
79 	{E1000_RDFH, "RDFH"},
80 	{E1000_RDFT, "RDFT"},
81 	{E1000_RDFHS, "RDFHS"},
82 	{E1000_RDFTS, "RDFTS"},
83 	{E1000_RDFPC, "RDFPC"},
84 
85 	/* Tx Registers */
86 	{E1000_TCTL, "TCTL"},
87 	{E1000_TDBAL(0), "TDBAL"},
88 	{E1000_TDBAH(0), "TDBAH"},
89 	{E1000_TDLEN(0), "TDLEN"},
90 	{E1000_TDH(0), "TDH"},
91 	{E1000_TDT(0), "TDT"},
92 	{E1000_TIDV, "TIDV"},
93 	{E1000_TXDCTL(0), "TXDCTL"},
94 	{E1000_TADV, "TADV"},
95 	{E1000_TARC(0), "TARC"},
96 	{E1000_TDFH, "TDFH"},
97 	{E1000_TDFT, "TDFT"},
98 	{E1000_TDFHS, "TDFHS"},
99 	{E1000_TDFTS, "TDFTS"},
100 	{E1000_TDFPC, "TDFPC"},
101 
102 	/* List Terminator */
103 	{0, NULL}
104 };
105 
106 struct e1000e_me_supported {
107 	u16 device_id;		/* supported device ID */
108 };
109 
110 static const struct e1000e_me_supported me_supported[] = {
111 	{E1000_DEV_ID_PCH_LPT_I217_LM},
112 	{E1000_DEV_ID_PCH_LPTLP_I218_LM},
113 	{E1000_DEV_ID_PCH_I218_LM2},
114 	{E1000_DEV_ID_PCH_I218_LM3},
115 	{E1000_DEV_ID_PCH_SPT_I219_LM},
116 	{E1000_DEV_ID_PCH_SPT_I219_LM2},
117 	{E1000_DEV_ID_PCH_LBG_I219_LM3},
118 	{E1000_DEV_ID_PCH_SPT_I219_LM4},
119 	{E1000_DEV_ID_PCH_SPT_I219_LM5},
120 	{E1000_DEV_ID_PCH_CNP_I219_LM6},
121 	{E1000_DEV_ID_PCH_CNP_I219_LM7},
122 	{E1000_DEV_ID_PCH_ICP_I219_LM8},
123 	{E1000_DEV_ID_PCH_ICP_I219_LM9},
124 	{E1000_DEV_ID_PCH_CMP_I219_LM10},
125 	{E1000_DEV_ID_PCH_CMP_I219_LM11},
126 	{E1000_DEV_ID_PCH_CMP_I219_LM12},
127 	{E1000_DEV_ID_PCH_TGP_I219_LM13},
128 	{E1000_DEV_ID_PCH_TGP_I219_LM14},
129 	{E1000_DEV_ID_PCH_TGP_I219_LM15},
130 	{0}
131 };
132 
133 static bool e1000e_check_me(u16 device_id)
134 {
135 	struct e1000e_me_supported *id;
136 
137 	for (id = (struct e1000e_me_supported *)me_supported;
138 	     id->device_id; id++)
139 		if (device_id == id->device_id)
140 			return true;
141 
142 	return false;
143 }
144 
145 /**
146  * __ew32_prepare - prepare to write to MAC CSR register on certain parts
147  * @hw: pointer to the HW structure
148  *
149  * When updating the MAC CSR registers, the Manageability Engine (ME) could
150  * be accessing the registers at the same time.  Normally, this is handled in
151  * h/w by an arbiter but on some parts there is a bug that acknowledges Host
152  * accesses later than it should which could result in the register to have
153  * an incorrect value.  Workaround this by checking the FWSM register which
154  * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set
155  * and try again a number of times.
156  **/
157 static void __ew32_prepare(struct e1000_hw *hw)
158 {
159 	s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT;
160 
161 	while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i)
162 		udelay(50);
163 }
164 
165 void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val)
166 {
167 	if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
168 		__ew32_prepare(hw);
169 
170 	writel(val, hw->hw_addr + reg);
171 }
172 
173 /**
174  * e1000_regdump - register printout routine
175  * @hw: pointer to the HW structure
176  * @reginfo: pointer to the register info table
177  **/
178 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
179 {
180 	int n = 0;
181 	char rname[16];
182 	u32 regs[8];
183 
184 	switch (reginfo->ofs) {
185 	case E1000_RXDCTL(0):
186 		for (n = 0; n < 2; n++)
187 			regs[n] = __er32(hw, E1000_RXDCTL(n));
188 		break;
189 	case E1000_TXDCTL(0):
190 		for (n = 0; n < 2; n++)
191 			regs[n] = __er32(hw, E1000_TXDCTL(n));
192 		break;
193 	case E1000_TARC(0):
194 		for (n = 0; n < 2; n++)
195 			regs[n] = __er32(hw, E1000_TARC(n));
196 		break;
197 	default:
198 		pr_info("%-15s %08x\n",
199 			reginfo->name, __er32(hw, reginfo->ofs));
200 		return;
201 	}
202 
203 	snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
204 	pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
205 }
206 
207 static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
208 				 struct e1000_buffer *bi)
209 {
210 	int i;
211 	struct e1000_ps_page *ps_page;
212 
213 	for (i = 0; i < adapter->rx_ps_pages; i++) {
214 		ps_page = &bi->ps_pages[i];
215 
216 		if (ps_page->page) {
217 			pr_info("packet dump for ps_page %d:\n", i);
218 			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
219 				       16, 1, page_address(ps_page->page),
220 				       PAGE_SIZE, true);
221 		}
222 	}
223 }
224 
225 /**
226  * e1000e_dump - Print registers, Tx-ring and Rx-ring
227  * @adapter: board private structure
228  **/
229 static void e1000e_dump(struct e1000_adapter *adapter)
230 {
231 	struct net_device *netdev = adapter->netdev;
232 	struct e1000_hw *hw = &adapter->hw;
233 	struct e1000_reg_info *reginfo;
234 	struct e1000_ring *tx_ring = adapter->tx_ring;
235 	struct e1000_tx_desc *tx_desc;
236 	struct my_u0 {
237 		__le64 a;
238 		__le64 b;
239 	} *u0;
240 	struct e1000_buffer *buffer_info;
241 	struct e1000_ring *rx_ring = adapter->rx_ring;
242 	union e1000_rx_desc_packet_split *rx_desc_ps;
243 	union e1000_rx_desc_extended *rx_desc;
244 	struct my_u1 {
245 		__le64 a;
246 		__le64 b;
247 		__le64 c;
248 		__le64 d;
249 	} *u1;
250 	u32 staterr;
251 	int i = 0;
252 
253 	if (!netif_msg_hw(adapter))
254 		return;
255 
256 	/* Print netdevice Info */
257 	if (netdev) {
258 		dev_info(&adapter->pdev->dev, "Net device Info\n");
259 		pr_info("Device Name     state            trans_start\n");
260 		pr_info("%-15s %016lX %016lX\n", netdev->name,
261 			netdev->state, dev_trans_start(netdev));
262 	}
263 
264 	/* Print Registers */
265 	dev_info(&adapter->pdev->dev, "Register Dump\n");
266 	pr_info(" Register Name   Value\n");
267 	for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
268 	     reginfo->name; reginfo++) {
269 		e1000_regdump(hw, reginfo);
270 	}
271 
272 	/* Print Tx Ring Summary */
273 	if (!netdev || !netif_running(netdev))
274 		return;
275 
276 	dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
277 	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
278 	buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
279 	pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
280 		0, tx_ring->next_to_use, tx_ring->next_to_clean,
281 		(unsigned long long)buffer_info->dma,
282 		buffer_info->length,
283 		buffer_info->next_to_watch,
284 		(unsigned long long)buffer_info->time_stamp);
285 
286 	/* Print Tx Ring */
287 	if (!netif_msg_tx_done(adapter))
288 		goto rx_ring_summary;
289 
290 	dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
291 
292 	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
293 	 *
294 	 * Legacy Transmit Descriptor
295 	 *   +--------------------------------------------------------------+
296 	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
297 	 *   +--------------------------------------------------------------+
298 	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
299 	 *   +--------------------------------------------------------------+
300 	 *   63       48 47        36 35    32 31     24 23    16 15        0
301 	 *
302 	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
303 	 *   63      48 47    40 39       32 31             16 15    8 7      0
304 	 *   +----------------------------------------------------------------+
305 	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
306 	 *   +----------------------------------------------------------------+
307 	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
308 	 *   +----------------------------------------------------------------+
309 	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
310 	 *
311 	 * Extended Data Descriptor (DTYP=0x1)
312 	 *   +----------------------------------------------------------------+
313 	 * 0 |                     Buffer Address [63:0]                      |
314 	 *   +----------------------------------------------------------------+
315 	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
316 	 *   +----------------------------------------------------------------+
317 	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
318 	 */
319 	pr_info("Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Legacy format\n");
320 	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Context format\n");
321 	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Data format\n");
322 	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
323 		const char *next_desc;
324 		tx_desc = E1000_TX_DESC(*tx_ring, i);
325 		buffer_info = &tx_ring->buffer_info[i];
326 		u0 = (struct my_u0 *)tx_desc;
327 		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
328 			next_desc = " NTC/U";
329 		else if (i == tx_ring->next_to_use)
330 			next_desc = " NTU";
331 		else if (i == tx_ring->next_to_clean)
332 			next_desc = " NTC";
333 		else
334 			next_desc = "";
335 		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p%s\n",
336 			(!(le64_to_cpu(u0->b) & BIT(29)) ? 'l' :
337 			 ((le64_to_cpu(u0->b) & BIT(20)) ? 'd' : 'c')),
338 			i,
339 			(unsigned long long)le64_to_cpu(u0->a),
340 			(unsigned long long)le64_to_cpu(u0->b),
341 			(unsigned long long)buffer_info->dma,
342 			buffer_info->length, buffer_info->next_to_watch,
343 			(unsigned long long)buffer_info->time_stamp,
344 			buffer_info->skb, next_desc);
345 
346 		if (netif_msg_pktdata(adapter) && buffer_info->skb)
347 			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
348 				       16, 1, buffer_info->skb->data,
349 				       buffer_info->skb->len, true);
350 	}
351 
352 	/* Print Rx Ring Summary */
353 rx_ring_summary:
354 	dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
355 	pr_info("Queue [NTU] [NTC]\n");
356 	pr_info(" %5d %5X %5X\n",
357 		0, rx_ring->next_to_use, rx_ring->next_to_clean);
358 
359 	/* Print Rx Ring */
360 	if (!netif_msg_rx_status(adapter))
361 		return;
362 
363 	dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
364 	switch (adapter->rx_ps_pages) {
365 	case 1:
366 	case 2:
367 	case 3:
368 		/* [Extended] Packet Split Receive Descriptor Format
369 		 *
370 		 *    +-----------------------------------------------------+
371 		 *  0 |                Buffer Address 0 [63:0]              |
372 		 *    +-----------------------------------------------------+
373 		 *  8 |                Buffer Address 1 [63:0]              |
374 		 *    +-----------------------------------------------------+
375 		 * 16 |                Buffer Address 2 [63:0]              |
376 		 *    +-----------------------------------------------------+
377 		 * 24 |                Buffer Address 3 [63:0]              |
378 		 *    +-----------------------------------------------------+
379 		 */
380 		pr_info("R  [desc]      [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] [bi->skb] <-- Ext Pkt Split format\n");
381 		/* [Extended] Receive Descriptor (Write-Back) Format
382 		 *
383 		 *   63       48 47    32 31     13 12    8 7    4 3        0
384 		 *   +------------------------------------------------------+
385 		 * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
386 		 *   | Checksum | Ident  |         | Queue |      |  Type   |
387 		 *   +------------------------------------------------------+
388 		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
389 		 *   +------------------------------------------------------+
390 		 *   63       48 47    32 31            20 19               0
391 		 */
392 		pr_info("RWB[desc]      [ck ipid mrqhsh] [vl   l0 ee  es] [ l3  l2  l1 hs] [reserved      ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
393 		for (i = 0; i < rx_ring->count; i++) {
394 			const char *next_desc;
395 			buffer_info = &rx_ring->buffer_info[i];
396 			rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
397 			u1 = (struct my_u1 *)rx_desc_ps;
398 			staterr =
399 			    le32_to_cpu(rx_desc_ps->wb.middle.status_error);
400 
401 			if (i == rx_ring->next_to_use)
402 				next_desc = " NTU";
403 			else if (i == rx_ring->next_to_clean)
404 				next_desc = " NTC";
405 			else
406 				next_desc = "";
407 
408 			if (staterr & E1000_RXD_STAT_DD) {
409 				/* Descriptor Done */
410 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX ---------------- %p%s\n",
411 					"RWB", i,
412 					(unsigned long long)le64_to_cpu(u1->a),
413 					(unsigned long long)le64_to_cpu(u1->b),
414 					(unsigned long long)le64_to_cpu(u1->c),
415 					(unsigned long long)le64_to_cpu(u1->d),
416 					buffer_info->skb, next_desc);
417 			} else {
418 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX %016llX %p%s\n",
419 					"R  ", i,
420 					(unsigned long long)le64_to_cpu(u1->a),
421 					(unsigned long long)le64_to_cpu(u1->b),
422 					(unsigned long long)le64_to_cpu(u1->c),
423 					(unsigned long long)le64_to_cpu(u1->d),
424 					(unsigned long long)buffer_info->dma,
425 					buffer_info->skb, next_desc);
426 
427 				if (netif_msg_pktdata(adapter))
428 					e1000e_dump_ps_pages(adapter,
429 							     buffer_info);
430 			}
431 		}
432 		break;
433 	default:
434 	case 0:
435 		/* Extended Receive Descriptor (Read) Format
436 		 *
437 		 *   +-----------------------------------------------------+
438 		 * 0 |                Buffer Address [63:0]                |
439 		 *   +-----------------------------------------------------+
440 		 * 8 |                      Reserved                       |
441 		 *   +-----------------------------------------------------+
442 		 */
443 		pr_info("R  [desc]      [buf addr 63:0 ] [reserved 63:0 ] [bi->dma       ] [bi->skb] <-- Ext (Read) format\n");
444 		/* Extended Receive Descriptor (Write-Back) Format
445 		 *
446 		 *   63       48 47    32 31    24 23            4 3        0
447 		 *   +------------------------------------------------------+
448 		 *   |     RSS Hash      |        |               |         |
449 		 * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
450 		 *   | Packet   | IP     |        |               |  Type   |
451 		 *   | Checksum | Ident  |        |               |         |
452 		 *   +------------------------------------------------------+
453 		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
454 		 *   +------------------------------------------------------+
455 		 *   63       48 47    32 31            20 19               0
456 		 */
457 		pr_info("RWB[desc]      [cs ipid    mrq] [vt   ln xe  xs] [bi->skb] <-- Ext (Write-Back) format\n");
458 
459 		for (i = 0; i < rx_ring->count; i++) {
460 			const char *next_desc;
461 
462 			buffer_info = &rx_ring->buffer_info[i];
463 			rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
464 			u1 = (struct my_u1 *)rx_desc;
465 			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
466 
467 			if (i == rx_ring->next_to_use)
468 				next_desc = " NTU";
469 			else if (i == rx_ring->next_to_clean)
470 				next_desc = " NTC";
471 			else
472 				next_desc = "";
473 
474 			if (staterr & E1000_RXD_STAT_DD) {
475 				/* Descriptor Done */
476 				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %p%s\n",
477 					"RWB", i,
478 					(unsigned long long)le64_to_cpu(u1->a),
479 					(unsigned long long)le64_to_cpu(u1->b),
480 					buffer_info->skb, next_desc);
481 			} else {
482 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %p%s\n",
483 					"R  ", i,
484 					(unsigned long long)le64_to_cpu(u1->a),
485 					(unsigned long long)le64_to_cpu(u1->b),
486 					(unsigned long long)buffer_info->dma,
487 					buffer_info->skb, next_desc);
488 
489 				if (netif_msg_pktdata(adapter) &&
490 				    buffer_info->skb)
491 					print_hex_dump(KERN_INFO, "",
492 						       DUMP_PREFIX_ADDRESS, 16,
493 						       1,
494 						       buffer_info->skb->data,
495 						       adapter->rx_buffer_len,
496 						       true);
497 			}
498 		}
499 	}
500 }
501 
502 /**
503  * e1000_desc_unused - calculate if we have unused descriptors
504  * @ring: pointer to ring struct to perform calculation on
505  **/
506 static int e1000_desc_unused(struct e1000_ring *ring)
507 {
508 	if (ring->next_to_clean > ring->next_to_use)
509 		return ring->next_to_clean - ring->next_to_use - 1;
510 
511 	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
512 }
513 
514 /**
515  * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
516  * @adapter: board private structure
517  * @hwtstamps: time stamp structure to update
518  * @systim: unsigned 64bit system time value.
519  *
520  * Convert the system time value stored in the RX/TXSTMP registers into a
521  * hwtstamp which can be used by the upper level time stamping functions.
522  *
523  * The 'systim_lock' spinlock is used to protect the consistency of the
524  * system time value. This is needed because reading the 64 bit time
525  * value involves reading two 32 bit registers. The first read latches the
526  * value.
527  **/
528 static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter,
529 				      struct skb_shared_hwtstamps *hwtstamps,
530 				      u64 systim)
531 {
532 	u64 ns;
533 	unsigned long flags;
534 
535 	spin_lock_irqsave(&adapter->systim_lock, flags);
536 	ns = timecounter_cyc2time(&adapter->tc, systim);
537 	spin_unlock_irqrestore(&adapter->systim_lock, flags);
538 
539 	memset(hwtstamps, 0, sizeof(*hwtstamps));
540 	hwtstamps->hwtstamp = ns_to_ktime(ns);
541 }
542 
543 /**
544  * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
545  * @adapter: board private structure
546  * @status: descriptor extended error and status field
547  * @skb: particular skb to include time stamp
548  *
549  * If the time stamp is valid, convert it into the timecounter ns value
550  * and store that result into the shhwtstamps structure which is passed
551  * up the network stack.
552  **/
553 static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status,
554 			       struct sk_buff *skb)
555 {
556 	struct e1000_hw *hw = &adapter->hw;
557 	u64 rxstmp;
558 
559 	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) ||
560 	    !(status & E1000_RXDEXT_STATERR_TST) ||
561 	    !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
562 		return;
563 
564 	/* The Rx time stamp registers contain the time stamp.  No other
565 	 * received packet will be time stamped until the Rx time stamp
566 	 * registers are read.  Because only one packet can be time stamped
567 	 * at a time, the register values must belong to this packet and
568 	 * therefore none of the other additional attributes need to be
569 	 * compared.
570 	 */
571 	rxstmp = (u64)er32(RXSTMPL);
572 	rxstmp |= (u64)er32(RXSTMPH) << 32;
573 	e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp);
574 
575 	adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP;
576 }
577 
578 /**
579  * e1000_receive_skb - helper function to handle Rx indications
580  * @adapter: board private structure
581  * @netdev: pointer to netdev struct
582  * @staterr: descriptor extended error and status field as written by hardware
583  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
584  * @skb: pointer to sk_buff to be indicated to stack
585  **/
586 static void e1000_receive_skb(struct e1000_adapter *adapter,
587 			      struct net_device *netdev, struct sk_buff *skb,
588 			      u32 staterr, __le16 vlan)
589 {
590 	u16 tag = le16_to_cpu(vlan);
591 
592 	e1000e_rx_hwtstamp(adapter, staterr, skb);
593 
594 	skb->protocol = eth_type_trans(skb, netdev);
595 
596 	if (staterr & E1000_RXD_STAT_VP)
597 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag);
598 
599 	napi_gro_receive(&adapter->napi, skb);
600 }
601 
602 /**
603  * e1000_rx_checksum - Receive Checksum Offload
604  * @adapter: board private structure
605  * @status_err: receive descriptor status and error fields
606  * @skb: socket buffer with received data
607  **/
608 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
609 			      struct sk_buff *skb)
610 {
611 	u16 status = (u16)status_err;
612 	u8 errors = (u8)(status_err >> 24);
613 
614 	skb_checksum_none_assert(skb);
615 
616 	/* Rx checksum disabled */
617 	if (!(adapter->netdev->features & NETIF_F_RXCSUM))
618 		return;
619 
620 	/* Ignore Checksum bit is set */
621 	if (status & E1000_RXD_STAT_IXSM)
622 		return;
623 
624 	/* TCP/UDP checksum error bit or IP checksum error bit is set */
625 	if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
626 		/* let the stack verify checksum errors */
627 		adapter->hw_csum_err++;
628 		return;
629 	}
630 
631 	/* TCP/UDP Checksum has not been calculated */
632 	if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
633 		return;
634 
635 	/* It must be a TCP or UDP packet with a valid checksum */
636 	skb->ip_summed = CHECKSUM_UNNECESSARY;
637 	adapter->hw_csum_good++;
638 }
639 
640 static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
641 {
642 	struct e1000_adapter *adapter = rx_ring->adapter;
643 	struct e1000_hw *hw = &adapter->hw;
644 
645 	__ew32_prepare(hw);
646 	writel(i, rx_ring->tail);
647 
648 	if (unlikely(i != readl(rx_ring->tail))) {
649 		u32 rctl = er32(RCTL);
650 
651 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
652 		e_err("ME firmware caused invalid RDT - resetting\n");
653 		schedule_work(&adapter->reset_task);
654 	}
655 }
656 
657 static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
658 {
659 	struct e1000_adapter *adapter = tx_ring->adapter;
660 	struct e1000_hw *hw = &adapter->hw;
661 
662 	__ew32_prepare(hw);
663 	writel(i, tx_ring->tail);
664 
665 	if (unlikely(i != readl(tx_ring->tail))) {
666 		u32 tctl = er32(TCTL);
667 
668 		ew32(TCTL, tctl & ~E1000_TCTL_EN);
669 		e_err("ME firmware caused invalid TDT - resetting\n");
670 		schedule_work(&adapter->reset_task);
671 	}
672 }
673 
674 /**
675  * e1000_alloc_rx_buffers - Replace used receive buffers
676  * @rx_ring: Rx descriptor ring
677  * @cleaned_count: number to reallocate
678  * @gfp: flags for allocation
679  **/
680 static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
681 				   int cleaned_count, gfp_t gfp)
682 {
683 	struct e1000_adapter *adapter = rx_ring->adapter;
684 	struct net_device *netdev = adapter->netdev;
685 	struct pci_dev *pdev = adapter->pdev;
686 	union e1000_rx_desc_extended *rx_desc;
687 	struct e1000_buffer *buffer_info;
688 	struct sk_buff *skb;
689 	unsigned int i;
690 	unsigned int bufsz = adapter->rx_buffer_len;
691 
692 	i = rx_ring->next_to_use;
693 	buffer_info = &rx_ring->buffer_info[i];
694 
695 	while (cleaned_count--) {
696 		skb = buffer_info->skb;
697 		if (skb) {
698 			skb_trim(skb, 0);
699 			goto map_skb;
700 		}
701 
702 		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
703 		if (!skb) {
704 			/* Better luck next round */
705 			adapter->alloc_rx_buff_failed++;
706 			break;
707 		}
708 
709 		buffer_info->skb = skb;
710 map_skb:
711 		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
712 						  adapter->rx_buffer_len,
713 						  DMA_FROM_DEVICE);
714 		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
715 			dev_err(&pdev->dev, "Rx DMA map failed\n");
716 			adapter->rx_dma_failed++;
717 			break;
718 		}
719 
720 		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
721 		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
722 
723 		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
724 			/* Force memory writes to complete before letting h/w
725 			 * know there are new descriptors to fetch.  (Only
726 			 * applicable for weak-ordered memory model archs,
727 			 * such as IA-64).
728 			 */
729 			wmb();
730 			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
731 				e1000e_update_rdt_wa(rx_ring, i);
732 			else
733 				writel(i, rx_ring->tail);
734 		}
735 		i++;
736 		if (i == rx_ring->count)
737 			i = 0;
738 		buffer_info = &rx_ring->buffer_info[i];
739 	}
740 
741 	rx_ring->next_to_use = i;
742 }
743 
744 /**
745  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
746  * @rx_ring: Rx descriptor ring
747  * @cleaned_count: number to reallocate
748  * @gfp: flags for allocation
749  **/
750 static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
751 				      int cleaned_count, gfp_t gfp)
752 {
753 	struct e1000_adapter *adapter = rx_ring->adapter;
754 	struct net_device *netdev = adapter->netdev;
755 	struct pci_dev *pdev = adapter->pdev;
756 	union e1000_rx_desc_packet_split *rx_desc;
757 	struct e1000_buffer *buffer_info;
758 	struct e1000_ps_page *ps_page;
759 	struct sk_buff *skb;
760 	unsigned int i, j;
761 
762 	i = rx_ring->next_to_use;
763 	buffer_info = &rx_ring->buffer_info[i];
764 
765 	while (cleaned_count--) {
766 		rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
767 
768 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
769 			ps_page = &buffer_info->ps_pages[j];
770 			if (j >= adapter->rx_ps_pages) {
771 				/* all unused desc entries get hw null ptr */
772 				rx_desc->read.buffer_addr[j + 1] =
773 				    ~cpu_to_le64(0);
774 				continue;
775 			}
776 			if (!ps_page->page) {
777 				ps_page->page = alloc_page(gfp);
778 				if (!ps_page->page) {
779 					adapter->alloc_rx_buff_failed++;
780 					goto no_buffers;
781 				}
782 				ps_page->dma = dma_map_page(&pdev->dev,
783 							    ps_page->page,
784 							    0, PAGE_SIZE,
785 							    DMA_FROM_DEVICE);
786 				if (dma_mapping_error(&pdev->dev,
787 						      ps_page->dma)) {
788 					dev_err(&adapter->pdev->dev,
789 						"Rx DMA page map failed\n");
790 					adapter->rx_dma_failed++;
791 					goto no_buffers;
792 				}
793 			}
794 			/* Refresh the desc even if buffer_addrs
795 			 * didn't change because each write-back
796 			 * erases this info.
797 			 */
798 			rx_desc->read.buffer_addr[j + 1] =
799 			    cpu_to_le64(ps_page->dma);
800 		}
801 
802 		skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0,
803 						  gfp);
804 
805 		if (!skb) {
806 			adapter->alloc_rx_buff_failed++;
807 			break;
808 		}
809 
810 		buffer_info->skb = skb;
811 		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
812 						  adapter->rx_ps_bsize0,
813 						  DMA_FROM_DEVICE);
814 		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
815 			dev_err(&pdev->dev, "Rx DMA map failed\n");
816 			adapter->rx_dma_failed++;
817 			/* cleanup skb */
818 			dev_kfree_skb_any(skb);
819 			buffer_info->skb = NULL;
820 			break;
821 		}
822 
823 		rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
824 
825 		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
826 			/* Force memory writes to complete before letting h/w
827 			 * know there are new descriptors to fetch.  (Only
828 			 * applicable for weak-ordered memory model archs,
829 			 * such as IA-64).
830 			 */
831 			wmb();
832 			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
833 				e1000e_update_rdt_wa(rx_ring, i << 1);
834 			else
835 				writel(i << 1, rx_ring->tail);
836 		}
837 
838 		i++;
839 		if (i == rx_ring->count)
840 			i = 0;
841 		buffer_info = &rx_ring->buffer_info[i];
842 	}
843 
844 no_buffers:
845 	rx_ring->next_to_use = i;
846 }
847 
848 /**
849  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
850  * @rx_ring: Rx descriptor ring
851  * @cleaned_count: number of buffers to allocate this pass
852  * @gfp: flags for allocation
853  **/
854 
855 static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
856 					 int cleaned_count, gfp_t gfp)
857 {
858 	struct e1000_adapter *adapter = rx_ring->adapter;
859 	struct net_device *netdev = adapter->netdev;
860 	struct pci_dev *pdev = adapter->pdev;
861 	union e1000_rx_desc_extended *rx_desc;
862 	struct e1000_buffer *buffer_info;
863 	struct sk_buff *skb;
864 	unsigned int i;
865 	unsigned int bufsz = 256 - 16;	/* for skb_reserve */
866 
867 	i = rx_ring->next_to_use;
868 	buffer_info = &rx_ring->buffer_info[i];
869 
870 	while (cleaned_count--) {
871 		skb = buffer_info->skb;
872 		if (skb) {
873 			skb_trim(skb, 0);
874 			goto check_page;
875 		}
876 
877 		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
878 		if (unlikely(!skb)) {
879 			/* Better luck next round */
880 			adapter->alloc_rx_buff_failed++;
881 			break;
882 		}
883 
884 		buffer_info->skb = skb;
885 check_page:
886 		/* allocate a new page if necessary */
887 		if (!buffer_info->page) {
888 			buffer_info->page = alloc_page(gfp);
889 			if (unlikely(!buffer_info->page)) {
890 				adapter->alloc_rx_buff_failed++;
891 				break;
892 			}
893 		}
894 
895 		if (!buffer_info->dma) {
896 			buffer_info->dma = dma_map_page(&pdev->dev,
897 							buffer_info->page, 0,
898 							PAGE_SIZE,
899 							DMA_FROM_DEVICE);
900 			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
901 				adapter->alloc_rx_buff_failed++;
902 				break;
903 			}
904 		}
905 
906 		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
907 		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
908 
909 		if (unlikely(++i == rx_ring->count))
910 			i = 0;
911 		buffer_info = &rx_ring->buffer_info[i];
912 	}
913 
914 	if (likely(rx_ring->next_to_use != i)) {
915 		rx_ring->next_to_use = i;
916 		if (unlikely(i-- == 0))
917 			i = (rx_ring->count - 1);
918 
919 		/* Force memory writes to complete before letting h/w
920 		 * know there are new descriptors to fetch.  (Only
921 		 * applicable for weak-ordered memory model archs,
922 		 * such as IA-64).
923 		 */
924 		wmb();
925 		if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
926 			e1000e_update_rdt_wa(rx_ring, i);
927 		else
928 			writel(i, rx_ring->tail);
929 	}
930 }
931 
932 static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
933 				 struct sk_buff *skb)
934 {
935 	if (netdev->features & NETIF_F_RXHASH)
936 		skb_set_hash(skb, le32_to_cpu(rss), PKT_HASH_TYPE_L3);
937 }
938 
939 /**
940  * e1000_clean_rx_irq - Send received data up the network stack
941  * @rx_ring: Rx descriptor ring
942  * @work_done: output parameter for indicating completed work
943  * @work_to_do: how many packets we can clean
944  *
945  * the return value indicates whether actual cleaning was done, there
946  * is no guarantee that everything was cleaned
947  **/
948 static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
949 			       int work_to_do)
950 {
951 	struct e1000_adapter *adapter = rx_ring->adapter;
952 	struct net_device *netdev = adapter->netdev;
953 	struct pci_dev *pdev = adapter->pdev;
954 	struct e1000_hw *hw = &adapter->hw;
955 	union e1000_rx_desc_extended *rx_desc, *next_rxd;
956 	struct e1000_buffer *buffer_info, *next_buffer;
957 	u32 length, staterr;
958 	unsigned int i;
959 	int cleaned_count = 0;
960 	bool cleaned = false;
961 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
962 
963 	i = rx_ring->next_to_clean;
964 	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
965 	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
966 	buffer_info = &rx_ring->buffer_info[i];
967 
968 	while (staterr & E1000_RXD_STAT_DD) {
969 		struct sk_buff *skb;
970 
971 		if (*work_done >= work_to_do)
972 			break;
973 		(*work_done)++;
974 		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
975 
976 		skb = buffer_info->skb;
977 		buffer_info->skb = NULL;
978 
979 		prefetch(skb->data - NET_IP_ALIGN);
980 
981 		i++;
982 		if (i == rx_ring->count)
983 			i = 0;
984 		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
985 		prefetch(next_rxd);
986 
987 		next_buffer = &rx_ring->buffer_info[i];
988 
989 		cleaned = true;
990 		cleaned_count++;
991 		dma_unmap_single(&pdev->dev, buffer_info->dma,
992 				 adapter->rx_buffer_len, DMA_FROM_DEVICE);
993 		buffer_info->dma = 0;
994 
995 		length = le16_to_cpu(rx_desc->wb.upper.length);
996 
997 		/* !EOP means multiple descriptors were used to store a single
998 		 * packet, if that's the case we need to toss it.  In fact, we
999 		 * need to toss every packet with the EOP bit clear and the
1000 		 * next frame that _does_ have the EOP bit set, as it is by
1001 		 * definition only a frame fragment
1002 		 */
1003 		if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
1004 			adapter->flags2 |= FLAG2_IS_DISCARDING;
1005 
1006 		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1007 			/* All receives must fit into a single buffer */
1008 			e_dbg("Receive packet consumed multiple buffers\n");
1009 			/* recycle */
1010 			buffer_info->skb = skb;
1011 			if (staterr & E1000_RXD_STAT_EOP)
1012 				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1013 			goto next_desc;
1014 		}
1015 
1016 		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1017 			     !(netdev->features & NETIF_F_RXALL))) {
1018 			/* recycle */
1019 			buffer_info->skb = skb;
1020 			goto next_desc;
1021 		}
1022 
1023 		/* adjust length to remove Ethernet CRC */
1024 		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1025 			/* If configured to store CRC, don't subtract FCS,
1026 			 * but keep the FCS bytes out of the total_rx_bytes
1027 			 * counter
1028 			 */
1029 			if (netdev->features & NETIF_F_RXFCS)
1030 				total_rx_bytes -= 4;
1031 			else
1032 				length -= 4;
1033 		}
1034 
1035 		total_rx_bytes += length;
1036 		total_rx_packets++;
1037 
1038 		/* code added for copybreak, this should improve
1039 		 * performance for small packets with large amounts
1040 		 * of reassembly being done in the stack
1041 		 */
1042 		if (length < copybreak) {
1043 			struct sk_buff *new_skb =
1044 				napi_alloc_skb(&adapter->napi, length);
1045 			if (new_skb) {
1046 				skb_copy_to_linear_data_offset(new_skb,
1047 							       -NET_IP_ALIGN,
1048 							       (skb->data -
1049 								NET_IP_ALIGN),
1050 							       (length +
1051 								NET_IP_ALIGN));
1052 				/* save the skb in buffer_info as good */
1053 				buffer_info->skb = skb;
1054 				skb = new_skb;
1055 			}
1056 			/* else just continue with the old one */
1057 		}
1058 		/* end copybreak code */
1059 		skb_put(skb, length);
1060 
1061 		/* Receive Checksum Offload */
1062 		e1000_rx_checksum(adapter, staterr, skb);
1063 
1064 		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1065 
1066 		e1000_receive_skb(adapter, netdev, skb, staterr,
1067 				  rx_desc->wb.upper.vlan);
1068 
1069 next_desc:
1070 		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1071 
1072 		/* return some buffers to hardware, one at a time is too slow */
1073 		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1074 			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1075 					      GFP_ATOMIC);
1076 			cleaned_count = 0;
1077 		}
1078 
1079 		/* use prefetched values */
1080 		rx_desc = next_rxd;
1081 		buffer_info = next_buffer;
1082 
1083 		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1084 	}
1085 	rx_ring->next_to_clean = i;
1086 
1087 	cleaned_count = e1000_desc_unused(rx_ring);
1088 	if (cleaned_count)
1089 		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1090 
1091 	adapter->total_rx_bytes += total_rx_bytes;
1092 	adapter->total_rx_packets += total_rx_packets;
1093 	return cleaned;
1094 }
1095 
1096 static void e1000_put_txbuf(struct e1000_ring *tx_ring,
1097 			    struct e1000_buffer *buffer_info,
1098 			    bool drop)
1099 {
1100 	struct e1000_adapter *adapter = tx_ring->adapter;
1101 
1102 	if (buffer_info->dma) {
1103 		if (buffer_info->mapped_as_page)
1104 			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1105 				       buffer_info->length, DMA_TO_DEVICE);
1106 		else
1107 			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1108 					 buffer_info->length, DMA_TO_DEVICE);
1109 		buffer_info->dma = 0;
1110 	}
1111 	if (buffer_info->skb) {
1112 		if (drop)
1113 			dev_kfree_skb_any(buffer_info->skb);
1114 		else
1115 			dev_consume_skb_any(buffer_info->skb);
1116 		buffer_info->skb = NULL;
1117 	}
1118 	buffer_info->time_stamp = 0;
1119 }
1120 
1121 static void e1000_print_hw_hang(struct work_struct *work)
1122 {
1123 	struct e1000_adapter *adapter = container_of(work,
1124 						     struct e1000_adapter,
1125 						     print_hang_task);
1126 	struct net_device *netdev = adapter->netdev;
1127 	struct e1000_ring *tx_ring = adapter->tx_ring;
1128 	unsigned int i = tx_ring->next_to_clean;
1129 	unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1130 	struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1131 	struct e1000_hw *hw = &adapter->hw;
1132 	u16 phy_status, phy_1000t_status, phy_ext_status;
1133 	u16 pci_status;
1134 
1135 	if (test_bit(__E1000_DOWN, &adapter->state))
1136 		return;
1137 
1138 	if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) {
1139 		/* May be block on write-back, flush and detect again
1140 		 * flush pending descriptor writebacks to memory
1141 		 */
1142 		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1143 		/* execute the writes immediately */
1144 		e1e_flush();
1145 		/* Due to rare timing issues, write to TIDV again to ensure
1146 		 * the write is successful
1147 		 */
1148 		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1149 		/* execute the writes immediately */
1150 		e1e_flush();
1151 		adapter->tx_hang_recheck = true;
1152 		return;
1153 	}
1154 	adapter->tx_hang_recheck = false;
1155 
1156 	if (er32(TDH(0)) == er32(TDT(0))) {
1157 		e_dbg("false hang detected, ignoring\n");
1158 		return;
1159 	}
1160 
1161 	/* Real hang detected */
1162 	netif_stop_queue(netdev);
1163 
1164 	e1e_rphy(hw, MII_BMSR, &phy_status);
1165 	e1e_rphy(hw, MII_STAT1000, &phy_1000t_status);
1166 	e1e_rphy(hw, MII_ESTATUS, &phy_ext_status);
1167 
1168 	pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1169 
1170 	/* detected Hardware unit hang */
1171 	e_err("Detected Hardware Unit Hang:\n"
1172 	      "  TDH                  <%x>\n"
1173 	      "  TDT                  <%x>\n"
1174 	      "  next_to_use          <%x>\n"
1175 	      "  next_to_clean        <%x>\n"
1176 	      "buffer_info[next_to_clean]:\n"
1177 	      "  time_stamp           <%lx>\n"
1178 	      "  next_to_watch        <%x>\n"
1179 	      "  jiffies              <%lx>\n"
1180 	      "  next_to_watch.status <%x>\n"
1181 	      "MAC Status             <%x>\n"
1182 	      "PHY Status             <%x>\n"
1183 	      "PHY 1000BASE-T Status  <%x>\n"
1184 	      "PHY Extended Status    <%x>\n"
1185 	      "PCI Status             <%x>\n",
1186 	      readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use,
1187 	      tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp,
1188 	      eop, jiffies, eop_desc->upper.fields.status, er32(STATUS),
1189 	      phy_status, phy_1000t_status, phy_ext_status, pci_status);
1190 
1191 	e1000e_dump(adapter);
1192 
1193 	/* Suggest workaround for known h/w issue */
1194 	if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1195 		e_err("Try turning off Tx pause (flow control) via ethtool\n");
1196 }
1197 
1198 /**
1199  * e1000e_tx_hwtstamp_work - check for Tx time stamp
1200  * @work: pointer to work struct
1201  *
1202  * This work function polls the TSYNCTXCTL valid bit to determine when a
1203  * timestamp has been taken for the current stored skb.  The timestamp must
1204  * be for this skb because only one such packet is allowed in the queue.
1205  */
1206 static void e1000e_tx_hwtstamp_work(struct work_struct *work)
1207 {
1208 	struct e1000_adapter *adapter = container_of(work, struct e1000_adapter,
1209 						     tx_hwtstamp_work);
1210 	struct e1000_hw *hw = &adapter->hw;
1211 
1212 	if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) {
1213 		struct sk_buff *skb = adapter->tx_hwtstamp_skb;
1214 		struct skb_shared_hwtstamps shhwtstamps;
1215 		u64 txstmp;
1216 
1217 		txstmp = er32(TXSTMPL);
1218 		txstmp |= (u64)er32(TXSTMPH) << 32;
1219 
1220 		e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp);
1221 
1222 		/* Clear the global tx_hwtstamp_skb pointer and force writes
1223 		 * prior to notifying the stack of a Tx timestamp.
1224 		 */
1225 		adapter->tx_hwtstamp_skb = NULL;
1226 		wmb(); /* force write prior to skb_tstamp_tx */
1227 
1228 		skb_tstamp_tx(skb, &shhwtstamps);
1229 		dev_consume_skb_any(skb);
1230 	} else if (time_after(jiffies, adapter->tx_hwtstamp_start
1231 			      + adapter->tx_timeout_factor * HZ)) {
1232 		dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1233 		adapter->tx_hwtstamp_skb = NULL;
1234 		adapter->tx_hwtstamp_timeouts++;
1235 		e_warn("clearing Tx timestamp hang\n");
1236 	} else {
1237 		/* reschedule to check later */
1238 		schedule_work(&adapter->tx_hwtstamp_work);
1239 	}
1240 }
1241 
1242 /**
1243  * e1000_clean_tx_irq - Reclaim resources after transmit completes
1244  * @tx_ring: Tx descriptor ring
1245  *
1246  * the return value indicates whether actual cleaning was done, there
1247  * is no guarantee that everything was cleaned
1248  **/
1249 static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1250 {
1251 	struct e1000_adapter *adapter = tx_ring->adapter;
1252 	struct net_device *netdev = adapter->netdev;
1253 	struct e1000_hw *hw = &adapter->hw;
1254 	struct e1000_tx_desc *tx_desc, *eop_desc;
1255 	struct e1000_buffer *buffer_info;
1256 	unsigned int i, eop;
1257 	unsigned int count = 0;
1258 	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1259 	unsigned int bytes_compl = 0, pkts_compl = 0;
1260 
1261 	i = tx_ring->next_to_clean;
1262 	eop = tx_ring->buffer_info[i].next_to_watch;
1263 	eop_desc = E1000_TX_DESC(*tx_ring, eop);
1264 
1265 	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1266 	       (count < tx_ring->count)) {
1267 		bool cleaned = false;
1268 
1269 		dma_rmb();		/* read buffer_info after eop_desc */
1270 		for (; !cleaned; count++) {
1271 			tx_desc = E1000_TX_DESC(*tx_ring, i);
1272 			buffer_info = &tx_ring->buffer_info[i];
1273 			cleaned = (i == eop);
1274 
1275 			if (cleaned) {
1276 				total_tx_packets += buffer_info->segs;
1277 				total_tx_bytes += buffer_info->bytecount;
1278 				if (buffer_info->skb) {
1279 					bytes_compl += buffer_info->skb->len;
1280 					pkts_compl++;
1281 				}
1282 			}
1283 
1284 			e1000_put_txbuf(tx_ring, buffer_info, false);
1285 			tx_desc->upper.data = 0;
1286 
1287 			i++;
1288 			if (i == tx_ring->count)
1289 				i = 0;
1290 		}
1291 
1292 		if (i == tx_ring->next_to_use)
1293 			break;
1294 		eop = tx_ring->buffer_info[i].next_to_watch;
1295 		eop_desc = E1000_TX_DESC(*tx_ring, eop);
1296 	}
1297 
1298 	tx_ring->next_to_clean = i;
1299 
1300 	netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1301 
1302 #define TX_WAKE_THRESHOLD 32
1303 	if (count && netif_carrier_ok(netdev) &&
1304 	    e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1305 		/* Make sure that anybody stopping the queue after this
1306 		 * sees the new next_to_clean.
1307 		 */
1308 		smp_mb();
1309 
1310 		if (netif_queue_stopped(netdev) &&
1311 		    !(test_bit(__E1000_DOWN, &adapter->state))) {
1312 			netif_wake_queue(netdev);
1313 			++adapter->restart_queue;
1314 		}
1315 	}
1316 
1317 	if (adapter->detect_tx_hung) {
1318 		/* Detect a transmit hang in hardware, this serializes the
1319 		 * check with the clearing of time_stamp and movement of i
1320 		 */
1321 		adapter->detect_tx_hung = false;
1322 		if (tx_ring->buffer_info[i].time_stamp &&
1323 		    time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1324 			       + (adapter->tx_timeout_factor * HZ)) &&
1325 		    !(er32(STATUS) & E1000_STATUS_TXOFF))
1326 			schedule_work(&adapter->print_hang_task);
1327 		else
1328 			adapter->tx_hang_recheck = false;
1329 	}
1330 	adapter->total_tx_bytes += total_tx_bytes;
1331 	adapter->total_tx_packets += total_tx_packets;
1332 	return count < tx_ring->count;
1333 }
1334 
1335 /**
1336  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1337  * @rx_ring: Rx descriptor ring
1338  * @work_done: output parameter for indicating completed work
1339  * @work_to_do: how many packets we can clean
1340  *
1341  * the return value indicates whether actual cleaning was done, there
1342  * is no guarantee that everything was cleaned
1343  **/
1344 static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1345 				  int work_to_do)
1346 {
1347 	struct e1000_adapter *adapter = rx_ring->adapter;
1348 	struct e1000_hw *hw = &adapter->hw;
1349 	union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1350 	struct net_device *netdev = adapter->netdev;
1351 	struct pci_dev *pdev = adapter->pdev;
1352 	struct e1000_buffer *buffer_info, *next_buffer;
1353 	struct e1000_ps_page *ps_page;
1354 	struct sk_buff *skb;
1355 	unsigned int i, j;
1356 	u32 length, staterr;
1357 	int cleaned_count = 0;
1358 	bool cleaned = false;
1359 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1360 
1361 	i = rx_ring->next_to_clean;
1362 	rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1363 	staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1364 	buffer_info = &rx_ring->buffer_info[i];
1365 
1366 	while (staterr & E1000_RXD_STAT_DD) {
1367 		if (*work_done >= work_to_do)
1368 			break;
1369 		(*work_done)++;
1370 		skb = buffer_info->skb;
1371 		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
1372 
1373 		/* in the packet split case this is header only */
1374 		prefetch(skb->data - NET_IP_ALIGN);
1375 
1376 		i++;
1377 		if (i == rx_ring->count)
1378 			i = 0;
1379 		next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1380 		prefetch(next_rxd);
1381 
1382 		next_buffer = &rx_ring->buffer_info[i];
1383 
1384 		cleaned = true;
1385 		cleaned_count++;
1386 		dma_unmap_single(&pdev->dev, buffer_info->dma,
1387 				 adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1388 		buffer_info->dma = 0;
1389 
1390 		/* see !EOP comment in other Rx routine */
1391 		if (!(staterr & E1000_RXD_STAT_EOP))
1392 			adapter->flags2 |= FLAG2_IS_DISCARDING;
1393 
1394 		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1395 			e_dbg("Packet Split buffers didn't pick up the full packet\n");
1396 			dev_kfree_skb_irq(skb);
1397 			if (staterr & E1000_RXD_STAT_EOP)
1398 				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1399 			goto next_desc;
1400 		}
1401 
1402 		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1403 			     !(netdev->features & NETIF_F_RXALL))) {
1404 			dev_kfree_skb_irq(skb);
1405 			goto next_desc;
1406 		}
1407 
1408 		length = le16_to_cpu(rx_desc->wb.middle.length0);
1409 
1410 		if (!length) {
1411 			e_dbg("Last part of the packet spanning multiple descriptors\n");
1412 			dev_kfree_skb_irq(skb);
1413 			goto next_desc;
1414 		}
1415 
1416 		/* Good Receive */
1417 		skb_put(skb, length);
1418 
1419 		{
1420 			/* this looks ugly, but it seems compiler issues make
1421 			 * it more efficient than reusing j
1422 			 */
1423 			int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1424 
1425 			/* page alloc/put takes too long and effects small
1426 			 * packet throughput, so unsplit small packets and
1427 			 * save the alloc/put only valid in softirq (napi)
1428 			 * context to call kmap_*
1429 			 */
1430 			if (l1 && (l1 <= copybreak) &&
1431 			    ((length + l1) <= adapter->rx_ps_bsize0)) {
1432 				u8 *vaddr;
1433 
1434 				ps_page = &buffer_info->ps_pages[0];
1435 
1436 				/* there is no documentation about how to call
1437 				 * kmap_atomic, so we can't hold the mapping
1438 				 * very long
1439 				 */
1440 				dma_sync_single_for_cpu(&pdev->dev,
1441 							ps_page->dma,
1442 							PAGE_SIZE,
1443 							DMA_FROM_DEVICE);
1444 				vaddr = kmap_atomic(ps_page->page);
1445 				memcpy(skb_tail_pointer(skb), vaddr, l1);
1446 				kunmap_atomic(vaddr);
1447 				dma_sync_single_for_device(&pdev->dev,
1448 							   ps_page->dma,
1449 							   PAGE_SIZE,
1450 							   DMA_FROM_DEVICE);
1451 
1452 				/* remove the CRC */
1453 				if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1454 					if (!(netdev->features & NETIF_F_RXFCS))
1455 						l1 -= 4;
1456 				}
1457 
1458 				skb_put(skb, l1);
1459 				goto copydone;
1460 			}	/* if */
1461 		}
1462 
1463 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1464 			length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1465 			if (!length)
1466 				break;
1467 
1468 			ps_page = &buffer_info->ps_pages[j];
1469 			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1470 				       DMA_FROM_DEVICE);
1471 			ps_page->dma = 0;
1472 			skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1473 			ps_page->page = NULL;
1474 			skb->len += length;
1475 			skb->data_len += length;
1476 			skb->truesize += PAGE_SIZE;
1477 		}
1478 
1479 		/* strip the ethernet crc, problem is we're using pages now so
1480 		 * this whole operation can get a little cpu intensive
1481 		 */
1482 		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1483 			if (!(netdev->features & NETIF_F_RXFCS))
1484 				pskb_trim(skb, skb->len - 4);
1485 		}
1486 
1487 copydone:
1488 		total_rx_bytes += skb->len;
1489 		total_rx_packets++;
1490 
1491 		e1000_rx_checksum(adapter, staterr, skb);
1492 
1493 		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1494 
1495 		if (rx_desc->wb.upper.header_status &
1496 		    cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1497 			adapter->rx_hdr_split++;
1498 
1499 		e1000_receive_skb(adapter, netdev, skb, staterr,
1500 				  rx_desc->wb.middle.vlan);
1501 
1502 next_desc:
1503 		rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1504 		buffer_info->skb = NULL;
1505 
1506 		/* return some buffers to hardware, one at a time is too slow */
1507 		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1508 			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1509 					      GFP_ATOMIC);
1510 			cleaned_count = 0;
1511 		}
1512 
1513 		/* use prefetched values */
1514 		rx_desc = next_rxd;
1515 		buffer_info = next_buffer;
1516 
1517 		staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1518 	}
1519 	rx_ring->next_to_clean = i;
1520 
1521 	cleaned_count = e1000_desc_unused(rx_ring);
1522 	if (cleaned_count)
1523 		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1524 
1525 	adapter->total_rx_bytes += total_rx_bytes;
1526 	adapter->total_rx_packets += total_rx_packets;
1527 	return cleaned;
1528 }
1529 
1530 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1531 			       u16 length)
1532 {
1533 	bi->page = NULL;
1534 	skb->len += length;
1535 	skb->data_len += length;
1536 	skb->truesize += PAGE_SIZE;
1537 }
1538 
1539 /**
1540  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1541  * @rx_ring: Rx descriptor ring
1542  * @work_done: output parameter for indicating completed work
1543  * @work_to_do: how many packets we can clean
1544  *
1545  * the return value indicates whether actual cleaning was done, there
1546  * is no guarantee that everything was cleaned
1547  **/
1548 static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1549 				     int work_to_do)
1550 {
1551 	struct e1000_adapter *adapter = rx_ring->adapter;
1552 	struct net_device *netdev = adapter->netdev;
1553 	struct pci_dev *pdev = adapter->pdev;
1554 	union e1000_rx_desc_extended *rx_desc, *next_rxd;
1555 	struct e1000_buffer *buffer_info, *next_buffer;
1556 	u32 length, staterr;
1557 	unsigned int i;
1558 	int cleaned_count = 0;
1559 	bool cleaned = false;
1560 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1561 	struct skb_shared_info *shinfo;
1562 
1563 	i = rx_ring->next_to_clean;
1564 	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1565 	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1566 	buffer_info = &rx_ring->buffer_info[i];
1567 
1568 	while (staterr & E1000_RXD_STAT_DD) {
1569 		struct sk_buff *skb;
1570 
1571 		if (*work_done >= work_to_do)
1572 			break;
1573 		(*work_done)++;
1574 		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
1575 
1576 		skb = buffer_info->skb;
1577 		buffer_info->skb = NULL;
1578 
1579 		++i;
1580 		if (i == rx_ring->count)
1581 			i = 0;
1582 		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1583 		prefetch(next_rxd);
1584 
1585 		next_buffer = &rx_ring->buffer_info[i];
1586 
1587 		cleaned = true;
1588 		cleaned_count++;
1589 		dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1590 			       DMA_FROM_DEVICE);
1591 		buffer_info->dma = 0;
1592 
1593 		length = le16_to_cpu(rx_desc->wb.upper.length);
1594 
1595 		/* errors is only valid for DD + EOP descriptors */
1596 		if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1597 			     ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1598 			      !(netdev->features & NETIF_F_RXALL)))) {
1599 			/* recycle both page and skb */
1600 			buffer_info->skb = skb;
1601 			/* an error means any chain goes out the window too */
1602 			if (rx_ring->rx_skb_top)
1603 				dev_kfree_skb_irq(rx_ring->rx_skb_top);
1604 			rx_ring->rx_skb_top = NULL;
1605 			goto next_desc;
1606 		}
1607 #define rxtop (rx_ring->rx_skb_top)
1608 		if (!(staterr & E1000_RXD_STAT_EOP)) {
1609 			/* this descriptor is only the beginning (or middle) */
1610 			if (!rxtop) {
1611 				/* this is the beginning of a chain */
1612 				rxtop = skb;
1613 				skb_fill_page_desc(rxtop, 0, buffer_info->page,
1614 						   0, length);
1615 			} else {
1616 				/* this is the middle of a chain */
1617 				shinfo = skb_shinfo(rxtop);
1618 				skb_fill_page_desc(rxtop, shinfo->nr_frags,
1619 						   buffer_info->page, 0,
1620 						   length);
1621 				/* re-use the skb, only consumed the page */
1622 				buffer_info->skb = skb;
1623 			}
1624 			e1000_consume_page(buffer_info, rxtop, length);
1625 			goto next_desc;
1626 		} else {
1627 			if (rxtop) {
1628 				/* end of the chain */
1629 				shinfo = skb_shinfo(rxtop);
1630 				skb_fill_page_desc(rxtop, shinfo->nr_frags,
1631 						   buffer_info->page, 0,
1632 						   length);
1633 				/* re-use the current skb, we only consumed the
1634 				 * page
1635 				 */
1636 				buffer_info->skb = skb;
1637 				skb = rxtop;
1638 				rxtop = NULL;
1639 				e1000_consume_page(buffer_info, skb, length);
1640 			} else {
1641 				/* no chain, got EOP, this buf is the packet
1642 				 * copybreak to save the put_page/alloc_page
1643 				 */
1644 				if (length <= copybreak &&
1645 				    skb_tailroom(skb) >= length) {
1646 					u8 *vaddr;
1647 					vaddr = kmap_atomic(buffer_info->page);
1648 					memcpy(skb_tail_pointer(skb), vaddr,
1649 					       length);
1650 					kunmap_atomic(vaddr);
1651 					/* re-use the page, so don't erase
1652 					 * buffer_info->page
1653 					 */
1654 					skb_put(skb, length);
1655 				} else {
1656 					skb_fill_page_desc(skb, 0,
1657 							   buffer_info->page, 0,
1658 							   length);
1659 					e1000_consume_page(buffer_info, skb,
1660 							   length);
1661 				}
1662 			}
1663 		}
1664 
1665 		/* Receive Checksum Offload */
1666 		e1000_rx_checksum(adapter, staterr, skb);
1667 
1668 		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1669 
1670 		/* probably a little skewed due to removing CRC */
1671 		total_rx_bytes += skb->len;
1672 		total_rx_packets++;
1673 
1674 		/* eth type trans needs skb->data to point to something */
1675 		if (!pskb_may_pull(skb, ETH_HLEN)) {
1676 			e_err("pskb_may_pull failed.\n");
1677 			dev_kfree_skb_irq(skb);
1678 			goto next_desc;
1679 		}
1680 
1681 		e1000_receive_skb(adapter, netdev, skb, staterr,
1682 				  rx_desc->wb.upper.vlan);
1683 
1684 next_desc:
1685 		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1686 
1687 		/* return some buffers to hardware, one at a time is too slow */
1688 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1689 			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1690 					      GFP_ATOMIC);
1691 			cleaned_count = 0;
1692 		}
1693 
1694 		/* use prefetched values */
1695 		rx_desc = next_rxd;
1696 		buffer_info = next_buffer;
1697 
1698 		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1699 	}
1700 	rx_ring->next_to_clean = i;
1701 
1702 	cleaned_count = e1000_desc_unused(rx_ring);
1703 	if (cleaned_count)
1704 		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1705 
1706 	adapter->total_rx_bytes += total_rx_bytes;
1707 	adapter->total_rx_packets += total_rx_packets;
1708 	return cleaned;
1709 }
1710 
1711 /**
1712  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1713  * @rx_ring: Rx descriptor ring
1714  **/
1715 static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1716 {
1717 	struct e1000_adapter *adapter = rx_ring->adapter;
1718 	struct e1000_buffer *buffer_info;
1719 	struct e1000_ps_page *ps_page;
1720 	struct pci_dev *pdev = adapter->pdev;
1721 	unsigned int i, j;
1722 
1723 	/* Free all the Rx ring sk_buffs */
1724 	for (i = 0; i < rx_ring->count; i++) {
1725 		buffer_info = &rx_ring->buffer_info[i];
1726 		if (buffer_info->dma) {
1727 			if (adapter->clean_rx == e1000_clean_rx_irq)
1728 				dma_unmap_single(&pdev->dev, buffer_info->dma,
1729 						 adapter->rx_buffer_len,
1730 						 DMA_FROM_DEVICE);
1731 			else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1732 				dma_unmap_page(&pdev->dev, buffer_info->dma,
1733 					       PAGE_SIZE, DMA_FROM_DEVICE);
1734 			else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1735 				dma_unmap_single(&pdev->dev, buffer_info->dma,
1736 						 adapter->rx_ps_bsize0,
1737 						 DMA_FROM_DEVICE);
1738 			buffer_info->dma = 0;
1739 		}
1740 
1741 		if (buffer_info->page) {
1742 			put_page(buffer_info->page);
1743 			buffer_info->page = NULL;
1744 		}
1745 
1746 		if (buffer_info->skb) {
1747 			dev_kfree_skb(buffer_info->skb);
1748 			buffer_info->skb = NULL;
1749 		}
1750 
1751 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1752 			ps_page = &buffer_info->ps_pages[j];
1753 			if (!ps_page->page)
1754 				break;
1755 			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1756 				       DMA_FROM_DEVICE);
1757 			ps_page->dma = 0;
1758 			put_page(ps_page->page);
1759 			ps_page->page = NULL;
1760 		}
1761 	}
1762 
1763 	/* there also may be some cached data from a chained receive */
1764 	if (rx_ring->rx_skb_top) {
1765 		dev_kfree_skb(rx_ring->rx_skb_top);
1766 		rx_ring->rx_skb_top = NULL;
1767 	}
1768 
1769 	/* Zero out the descriptor ring */
1770 	memset(rx_ring->desc, 0, rx_ring->size);
1771 
1772 	rx_ring->next_to_clean = 0;
1773 	rx_ring->next_to_use = 0;
1774 	adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1775 }
1776 
1777 static void e1000e_downshift_workaround(struct work_struct *work)
1778 {
1779 	struct e1000_adapter *adapter = container_of(work,
1780 						     struct e1000_adapter,
1781 						     downshift_task);
1782 
1783 	if (test_bit(__E1000_DOWN, &adapter->state))
1784 		return;
1785 
1786 	e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1787 }
1788 
1789 /**
1790  * e1000_intr_msi - Interrupt Handler
1791  * @irq: interrupt number
1792  * @data: pointer to a network interface device structure
1793  **/
1794 static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data)
1795 {
1796 	struct net_device *netdev = data;
1797 	struct e1000_adapter *adapter = netdev_priv(netdev);
1798 	struct e1000_hw *hw = &adapter->hw;
1799 	u32 icr = er32(ICR);
1800 
1801 	/* read ICR disables interrupts using IAM */
1802 	if (icr & E1000_ICR_LSC) {
1803 		hw->mac.get_link_status = true;
1804 		/* ICH8 workaround-- Call gig speed drop workaround on cable
1805 		 * disconnect (LSC) before accessing any PHY registers
1806 		 */
1807 		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1808 		    (!(er32(STATUS) & E1000_STATUS_LU)))
1809 			schedule_work(&adapter->downshift_task);
1810 
1811 		/* 80003ES2LAN workaround-- For packet buffer work-around on
1812 		 * link down event; disable receives here in the ISR and reset
1813 		 * adapter in watchdog
1814 		 */
1815 		if (netif_carrier_ok(netdev) &&
1816 		    adapter->flags & FLAG_RX_NEEDS_RESTART) {
1817 			/* disable receives */
1818 			u32 rctl = er32(RCTL);
1819 
1820 			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1821 			adapter->flags |= FLAG_RESTART_NOW;
1822 		}
1823 		/* guard against interrupt when we're going down */
1824 		if (!test_bit(__E1000_DOWN, &adapter->state))
1825 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1826 	}
1827 
1828 	/* Reset on uncorrectable ECC error */
1829 	if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1830 		u32 pbeccsts = er32(PBECCSTS);
1831 
1832 		adapter->corr_errors +=
1833 		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1834 		adapter->uncorr_errors +=
1835 		    (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1836 		    E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1837 
1838 		/* Do the reset outside of interrupt context */
1839 		schedule_work(&adapter->reset_task);
1840 
1841 		/* return immediately since reset is imminent */
1842 		return IRQ_HANDLED;
1843 	}
1844 
1845 	if (napi_schedule_prep(&adapter->napi)) {
1846 		adapter->total_tx_bytes = 0;
1847 		adapter->total_tx_packets = 0;
1848 		adapter->total_rx_bytes = 0;
1849 		adapter->total_rx_packets = 0;
1850 		__napi_schedule(&adapter->napi);
1851 	}
1852 
1853 	return IRQ_HANDLED;
1854 }
1855 
1856 /**
1857  * e1000_intr - Interrupt Handler
1858  * @irq: interrupt number
1859  * @data: pointer to a network interface device structure
1860  **/
1861 static irqreturn_t e1000_intr(int __always_unused irq, void *data)
1862 {
1863 	struct net_device *netdev = data;
1864 	struct e1000_adapter *adapter = netdev_priv(netdev);
1865 	struct e1000_hw *hw = &adapter->hw;
1866 	u32 rctl, icr = er32(ICR);
1867 
1868 	if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1869 		return IRQ_NONE;	/* Not our interrupt */
1870 
1871 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1872 	 * not set, then the adapter didn't send an interrupt
1873 	 */
1874 	if (!(icr & E1000_ICR_INT_ASSERTED))
1875 		return IRQ_NONE;
1876 
1877 	/* Interrupt Auto-Mask...upon reading ICR,
1878 	 * interrupts are masked.  No need for the
1879 	 * IMC write
1880 	 */
1881 
1882 	if (icr & E1000_ICR_LSC) {
1883 		hw->mac.get_link_status = true;
1884 		/* ICH8 workaround-- Call gig speed drop workaround on cable
1885 		 * disconnect (LSC) before accessing any PHY registers
1886 		 */
1887 		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1888 		    (!(er32(STATUS) & E1000_STATUS_LU)))
1889 			schedule_work(&adapter->downshift_task);
1890 
1891 		/* 80003ES2LAN workaround--
1892 		 * For packet buffer work-around on link down event;
1893 		 * disable receives here in the ISR and
1894 		 * reset adapter in watchdog
1895 		 */
1896 		if (netif_carrier_ok(netdev) &&
1897 		    (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1898 			/* disable receives */
1899 			rctl = er32(RCTL);
1900 			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1901 			adapter->flags |= FLAG_RESTART_NOW;
1902 		}
1903 		/* guard against interrupt when we're going down */
1904 		if (!test_bit(__E1000_DOWN, &adapter->state))
1905 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1906 	}
1907 
1908 	/* Reset on uncorrectable ECC error */
1909 	if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1910 		u32 pbeccsts = er32(PBECCSTS);
1911 
1912 		adapter->corr_errors +=
1913 		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1914 		adapter->uncorr_errors +=
1915 		    (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1916 		    E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1917 
1918 		/* Do the reset outside of interrupt context */
1919 		schedule_work(&adapter->reset_task);
1920 
1921 		/* return immediately since reset is imminent */
1922 		return IRQ_HANDLED;
1923 	}
1924 
1925 	if (napi_schedule_prep(&adapter->napi)) {
1926 		adapter->total_tx_bytes = 0;
1927 		adapter->total_tx_packets = 0;
1928 		adapter->total_rx_bytes = 0;
1929 		adapter->total_rx_packets = 0;
1930 		__napi_schedule(&adapter->napi);
1931 	}
1932 
1933 	return IRQ_HANDLED;
1934 }
1935 
1936 static irqreturn_t e1000_msix_other(int __always_unused irq, void *data)
1937 {
1938 	struct net_device *netdev = data;
1939 	struct e1000_adapter *adapter = netdev_priv(netdev);
1940 	struct e1000_hw *hw = &adapter->hw;
1941 	u32 icr = er32(ICR);
1942 
1943 	if (icr & adapter->eiac_mask)
1944 		ew32(ICS, (icr & adapter->eiac_mask));
1945 
1946 	if (icr & E1000_ICR_LSC) {
1947 		hw->mac.get_link_status = true;
1948 		/* guard against interrupt when we're going down */
1949 		if (!test_bit(__E1000_DOWN, &adapter->state))
1950 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1951 	}
1952 
1953 	if (!test_bit(__E1000_DOWN, &adapter->state))
1954 		ew32(IMS, E1000_IMS_OTHER | IMS_OTHER_MASK);
1955 
1956 	return IRQ_HANDLED;
1957 }
1958 
1959 static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data)
1960 {
1961 	struct net_device *netdev = data;
1962 	struct e1000_adapter *adapter = netdev_priv(netdev);
1963 	struct e1000_hw *hw = &adapter->hw;
1964 	struct e1000_ring *tx_ring = adapter->tx_ring;
1965 
1966 	adapter->total_tx_bytes = 0;
1967 	adapter->total_tx_packets = 0;
1968 
1969 	if (!e1000_clean_tx_irq(tx_ring))
1970 		/* Ring was not completely cleaned, so fire another interrupt */
1971 		ew32(ICS, tx_ring->ims_val);
1972 
1973 	if (!test_bit(__E1000_DOWN, &adapter->state))
1974 		ew32(IMS, adapter->tx_ring->ims_val);
1975 
1976 	return IRQ_HANDLED;
1977 }
1978 
1979 static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data)
1980 {
1981 	struct net_device *netdev = data;
1982 	struct e1000_adapter *adapter = netdev_priv(netdev);
1983 	struct e1000_ring *rx_ring = adapter->rx_ring;
1984 
1985 	/* Write the ITR value calculated at the end of the
1986 	 * previous interrupt.
1987 	 */
1988 	if (rx_ring->set_itr) {
1989 		u32 itr = rx_ring->itr_val ?
1990 			  1000000000 / (rx_ring->itr_val * 256) : 0;
1991 
1992 		writel(itr, rx_ring->itr_register);
1993 		rx_ring->set_itr = 0;
1994 	}
1995 
1996 	if (napi_schedule_prep(&adapter->napi)) {
1997 		adapter->total_rx_bytes = 0;
1998 		adapter->total_rx_packets = 0;
1999 		__napi_schedule(&adapter->napi);
2000 	}
2001 	return IRQ_HANDLED;
2002 }
2003 
2004 /**
2005  * e1000_configure_msix - Configure MSI-X hardware
2006  * @adapter: board private structure
2007  *
2008  * e1000_configure_msix sets up the hardware to properly
2009  * generate MSI-X interrupts.
2010  **/
2011 static void e1000_configure_msix(struct e1000_adapter *adapter)
2012 {
2013 	struct e1000_hw *hw = &adapter->hw;
2014 	struct e1000_ring *rx_ring = adapter->rx_ring;
2015 	struct e1000_ring *tx_ring = adapter->tx_ring;
2016 	int vector = 0;
2017 	u32 ctrl_ext, ivar = 0;
2018 
2019 	adapter->eiac_mask = 0;
2020 
2021 	/* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
2022 	if (hw->mac.type == e1000_82574) {
2023 		u32 rfctl = er32(RFCTL);
2024 
2025 		rfctl |= E1000_RFCTL_ACK_DIS;
2026 		ew32(RFCTL, rfctl);
2027 	}
2028 
2029 	/* Configure Rx vector */
2030 	rx_ring->ims_val = E1000_IMS_RXQ0;
2031 	adapter->eiac_mask |= rx_ring->ims_val;
2032 	if (rx_ring->itr_val)
2033 		writel(1000000000 / (rx_ring->itr_val * 256),
2034 		       rx_ring->itr_register);
2035 	else
2036 		writel(1, rx_ring->itr_register);
2037 	ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
2038 
2039 	/* Configure Tx vector */
2040 	tx_ring->ims_val = E1000_IMS_TXQ0;
2041 	vector++;
2042 	if (tx_ring->itr_val)
2043 		writel(1000000000 / (tx_ring->itr_val * 256),
2044 		       tx_ring->itr_register);
2045 	else
2046 		writel(1, tx_ring->itr_register);
2047 	adapter->eiac_mask |= tx_ring->ims_val;
2048 	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
2049 
2050 	/* set vector for Other Causes, e.g. link changes */
2051 	vector++;
2052 	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
2053 	if (rx_ring->itr_val)
2054 		writel(1000000000 / (rx_ring->itr_val * 256),
2055 		       hw->hw_addr + E1000_EITR_82574(vector));
2056 	else
2057 		writel(1, hw->hw_addr + E1000_EITR_82574(vector));
2058 
2059 	/* Cause Tx interrupts on every write back */
2060 	ivar |= BIT(31);
2061 
2062 	ew32(IVAR, ivar);
2063 
2064 	/* enable MSI-X PBA support */
2065 	ctrl_ext = er32(CTRL_EXT) & ~E1000_CTRL_EXT_IAME;
2066 	ctrl_ext |= E1000_CTRL_EXT_PBA_CLR | E1000_CTRL_EXT_EIAME;
2067 	ew32(CTRL_EXT, ctrl_ext);
2068 	e1e_flush();
2069 }
2070 
2071 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
2072 {
2073 	if (adapter->msix_entries) {
2074 		pci_disable_msix(adapter->pdev);
2075 		kfree(adapter->msix_entries);
2076 		adapter->msix_entries = NULL;
2077 	} else if (adapter->flags & FLAG_MSI_ENABLED) {
2078 		pci_disable_msi(adapter->pdev);
2079 		adapter->flags &= ~FLAG_MSI_ENABLED;
2080 	}
2081 }
2082 
2083 /**
2084  * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
2085  * @adapter: board private structure
2086  *
2087  * Attempt to configure interrupts using the best available
2088  * capabilities of the hardware and kernel.
2089  **/
2090 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
2091 {
2092 	int err;
2093 	int i;
2094 
2095 	switch (adapter->int_mode) {
2096 	case E1000E_INT_MODE_MSIX:
2097 		if (adapter->flags & FLAG_HAS_MSIX) {
2098 			adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
2099 			adapter->msix_entries = kcalloc(adapter->num_vectors,
2100 							sizeof(struct
2101 							       msix_entry),
2102 							GFP_KERNEL);
2103 			if (adapter->msix_entries) {
2104 				struct e1000_adapter *a = adapter;
2105 
2106 				for (i = 0; i < adapter->num_vectors; i++)
2107 					adapter->msix_entries[i].entry = i;
2108 
2109 				err = pci_enable_msix_range(a->pdev,
2110 							    a->msix_entries,
2111 							    a->num_vectors,
2112 							    a->num_vectors);
2113 				if (err > 0)
2114 					return;
2115 			}
2116 			/* MSI-X failed, so fall through and try MSI */
2117 			e_err("Failed to initialize MSI-X interrupts.  Falling back to MSI interrupts.\n");
2118 			e1000e_reset_interrupt_capability(adapter);
2119 		}
2120 		adapter->int_mode = E1000E_INT_MODE_MSI;
2121 		fallthrough;
2122 	case E1000E_INT_MODE_MSI:
2123 		if (!pci_enable_msi(adapter->pdev)) {
2124 			adapter->flags |= FLAG_MSI_ENABLED;
2125 		} else {
2126 			adapter->int_mode = E1000E_INT_MODE_LEGACY;
2127 			e_err("Failed to initialize MSI interrupts.  Falling back to legacy interrupts.\n");
2128 		}
2129 		fallthrough;
2130 	case E1000E_INT_MODE_LEGACY:
2131 		/* Don't do anything; this is the system default */
2132 		break;
2133 	}
2134 
2135 	/* store the number of vectors being used */
2136 	adapter->num_vectors = 1;
2137 }
2138 
2139 /**
2140  * e1000_request_msix - Initialize MSI-X interrupts
2141  * @adapter: board private structure
2142  *
2143  * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2144  * kernel.
2145  **/
2146 static int e1000_request_msix(struct e1000_adapter *adapter)
2147 {
2148 	struct net_device *netdev = adapter->netdev;
2149 	int err = 0, vector = 0;
2150 
2151 	if (strlen(netdev->name) < (IFNAMSIZ - 5))
2152 		snprintf(adapter->rx_ring->name,
2153 			 sizeof(adapter->rx_ring->name) - 1,
2154 			 "%.14s-rx-0", netdev->name);
2155 	else
2156 		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
2157 	err = request_irq(adapter->msix_entries[vector].vector,
2158 			  e1000_intr_msix_rx, 0, adapter->rx_ring->name,
2159 			  netdev);
2160 	if (err)
2161 		return err;
2162 	adapter->rx_ring->itr_register = adapter->hw.hw_addr +
2163 	    E1000_EITR_82574(vector);
2164 	adapter->rx_ring->itr_val = adapter->itr;
2165 	vector++;
2166 
2167 	if (strlen(netdev->name) < (IFNAMSIZ - 5))
2168 		snprintf(adapter->tx_ring->name,
2169 			 sizeof(adapter->tx_ring->name) - 1,
2170 			 "%.14s-tx-0", netdev->name);
2171 	else
2172 		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2173 	err = request_irq(adapter->msix_entries[vector].vector,
2174 			  e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2175 			  netdev);
2176 	if (err)
2177 		return err;
2178 	adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2179 	    E1000_EITR_82574(vector);
2180 	adapter->tx_ring->itr_val = adapter->itr;
2181 	vector++;
2182 
2183 	err = request_irq(adapter->msix_entries[vector].vector,
2184 			  e1000_msix_other, 0, netdev->name, netdev);
2185 	if (err)
2186 		return err;
2187 
2188 	e1000_configure_msix(adapter);
2189 
2190 	return 0;
2191 }
2192 
2193 /**
2194  * e1000_request_irq - initialize interrupts
2195  * @adapter: board private structure
2196  *
2197  * Attempts to configure interrupts using the best available
2198  * capabilities of the hardware and kernel.
2199  **/
2200 static int e1000_request_irq(struct e1000_adapter *adapter)
2201 {
2202 	struct net_device *netdev = adapter->netdev;
2203 	int err;
2204 
2205 	if (adapter->msix_entries) {
2206 		err = e1000_request_msix(adapter);
2207 		if (!err)
2208 			return err;
2209 		/* fall back to MSI */
2210 		e1000e_reset_interrupt_capability(adapter);
2211 		adapter->int_mode = E1000E_INT_MODE_MSI;
2212 		e1000e_set_interrupt_capability(adapter);
2213 	}
2214 	if (adapter->flags & FLAG_MSI_ENABLED) {
2215 		err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2216 				  netdev->name, netdev);
2217 		if (!err)
2218 			return err;
2219 
2220 		/* fall back to legacy interrupt */
2221 		e1000e_reset_interrupt_capability(adapter);
2222 		adapter->int_mode = E1000E_INT_MODE_LEGACY;
2223 	}
2224 
2225 	err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2226 			  netdev->name, netdev);
2227 	if (err)
2228 		e_err("Unable to allocate interrupt, Error: %d\n", err);
2229 
2230 	return err;
2231 }
2232 
2233 static void e1000_free_irq(struct e1000_adapter *adapter)
2234 {
2235 	struct net_device *netdev = adapter->netdev;
2236 
2237 	if (adapter->msix_entries) {
2238 		int vector = 0;
2239 
2240 		free_irq(adapter->msix_entries[vector].vector, netdev);
2241 		vector++;
2242 
2243 		free_irq(adapter->msix_entries[vector].vector, netdev);
2244 		vector++;
2245 
2246 		/* Other Causes interrupt vector */
2247 		free_irq(adapter->msix_entries[vector].vector, netdev);
2248 		return;
2249 	}
2250 
2251 	free_irq(adapter->pdev->irq, netdev);
2252 }
2253 
2254 /**
2255  * e1000_irq_disable - Mask off interrupt generation on the NIC
2256  * @adapter: board private structure
2257  **/
2258 static void e1000_irq_disable(struct e1000_adapter *adapter)
2259 {
2260 	struct e1000_hw *hw = &adapter->hw;
2261 
2262 	ew32(IMC, ~0);
2263 	if (adapter->msix_entries)
2264 		ew32(EIAC_82574, 0);
2265 	e1e_flush();
2266 
2267 	if (adapter->msix_entries) {
2268 		int i;
2269 
2270 		for (i = 0; i < adapter->num_vectors; i++)
2271 			synchronize_irq(adapter->msix_entries[i].vector);
2272 	} else {
2273 		synchronize_irq(adapter->pdev->irq);
2274 	}
2275 }
2276 
2277 /**
2278  * e1000_irq_enable - Enable default interrupt generation settings
2279  * @adapter: board private structure
2280  **/
2281 static void e1000_irq_enable(struct e1000_adapter *adapter)
2282 {
2283 	struct e1000_hw *hw = &adapter->hw;
2284 
2285 	if (adapter->msix_entries) {
2286 		ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2287 		ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER |
2288 		     IMS_OTHER_MASK);
2289 	} else if (hw->mac.type >= e1000_pch_lpt) {
2290 		ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER);
2291 	} else {
2292 		ew32(IMS, IMS_ENABLE_MASK);
2293 	}
2294 	e1e_flush();
2295 }
2296 
2297 /**
2298  * e1000e_get_hw_control - get control of the h/w from f/w
2299  * @adapter: address of board private structure
2300  *
2301  * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2302  * For ASF and Pass Through versions of f/w this means that
2303  * the driver is loaded. For AMT version (only with 82573)
2304  * of the f/w this means that the network i/f is open.
2305  **/
2306 void e1000e_get_hw_control(struct e1000_adapter *adapter)
2307 {
2308 	struct e1000_hw *hw = &adapter->hw;
2309 	u32 ctrl_ext;
2310 	u32 swsm;
2311 
2312 	/* Let firmware know the driver has taken over */
2313 	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2314 		swsm = er32(SWSM);
2315 		ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2316 	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2317 		ctrl_ext = er32(CTRL_EXT);
2318 		ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2319 	}
2320 }
2321 
2322 /**
2323  * e1000e_release_hw_control - release control of the h/w to f/w
2324  * @adapter: address of board private structure
2325  *
2326  * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2327  * For ASF and Pass Through versions of f/w this means that the
2328  * driver is no longer loaded. For AMT version (only with 82573) i
2329  * of the f/w this means that the network i/f is closed.
2330  *
2331  **/
2332 void e1000e_release_hw_control(struct e1000_adapter *adapter)
2333 {
2334 	struct e1000_hw *hw = &adapter->hw;
2335 	u32 ctrl_ext;
2336 	u32 swsm;
2337 
2338 	/* Let firmware taken over control of h/w */
2339 	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2340 		swsm = er32(SWSM);
2341 		ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2342 	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2343 		ctrl_ext = er32(CTRL_EXT);
2344 		ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2345 	}
2346 }
2347 
2348 /**
2349  * e1000_alloc_ring_dma - allocate memory for a ring structure
2350  * @adapter: board private structure
2351  * @ring: ring struct for which to allocate dma
2352  **/
2353 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2354 				struct e1000_ring *ring)
2355 {
2356 	struct pci_dev *pdev = adapter->pdev;
2357 
2358 	ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2359 					GFP_KERNEL);
2360 	if (!ring->desc)
2361 		return -ENOMEM;
2362 
2363 	return 0;
2364 }
2365 
2366 /**
2367  * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2368  * @tx_ring: Tx descriptor ring
2369  *
2370  * Return 0 on success, negative on failure
2371  **/
2372 int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2373 {
2374 	struct e1000_adapter *adapter = tx_ring->adapter;
2375 	int err = -ENOMEM, size;
2376 
2377 	size = sizeof(struct e1000_buffer) * tx_ring->count;
2378 	tx_ring->buffer_info = vzalloc(size);
2379 	if (!tx_ring->buffer_info)
2380 		goto err;
2381 
2382 	/* round up to nearest 4K */
2383 	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2384 	tx_ring->size = ALIGN(tx_ring->size, 4096);
2385 
2386 	err = e1000_alloc_ring_dma(adapter, tx_ring);
2387 	if (err)
2388 		goto err;
2389 
2390 	tx_ring->next_to_use = 0;
2391 	tx_ring->next_to_clean = 0;
2392 
2393 	return 0;
2394 err:
2395 	vfree(tx_ring->buffer_info);
2396 	e_err("Unable to allocate memory for the transmit descriptor ring\n");
2397 	return err;
2398 }
2399 
2400 /**
2401  * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2402  * @rx_ring: Rx descriptor ring
2403  *
2404  * Returns 0 on success, negative on failure
2405  **/
2406 int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2407 {
2408 	struct e1000_adapter *adapter = rx_ring->adapter;
2409 	struct e1000_buffer *buffer_info;
2410 	int i, size, desc_len, err = -ENOMEM;
2411 
2412 	size = sizeof(struct e1000_buffer) * rx_ring->count;
2413 	rx_ring->buffer_info = vzalloc(size);
2414 	if (!rx_ring->buffer_info)
2415 		goto err;
2416 
2417 	for (i = 0; i < rx_ring->count; i++) {
2418 		buffer_info = &rx_ring->buffer_info[i];
2419 		buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2420 						sizeof(struct e1000_ps_page),
2421 						GFP_KERNEL);
2422 		if (!buffer_info->ps_pages)
2423 			goto err_pages;
2424 	}
2425 
2426 	desc_len = sizeof(union e1000_rx_desc_packet_split);
2427 
2428 	/* Round up to nearest 4K */
2429 	rx_ring->size = rx_ring->count * desc_len;
2430 	rx_ring->size = ALIGN(rx_ring->size, 4096);
2431 
2432 	err = e1000_alloc_ring_dma(adapter, rx_ring);
2433 	if (err)
2434 		goto err_pages;
2435 
2436 	rx_ring->next_to_clean = 0;
2437 	rx_ring->next_to_use = 0;
2438 	rx_ring->rx_skb_top = NULL;
2439 
2440 	return 0;
2441 
2442 err_pages:
2443 	for (i = 0; i < rx_ring->count; i++) {
2444 		buffer_info = &rx_ring->buffer_info[i];
2445 		kfree(buffer_info->ps_pages);
2446 	}
2447 err:
2448 	vfree(rx_ring->buffer_info);
2449 	e_err("Unable to allocate memory for the receive descriptor ring\n");
2450 	return err;
2451 }
2452 
2453 /**
2454  * e1000_clean_tx_ring - Free Tx Buffers
2455  * @tx_ring: Tx descriptor ring
2456  **/
2457 static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2458 {
2459 	struct e1000_adapter *adapter = tx_ring->adapter;
2460 	struct e1000_buffer *buffer_info;
2461 	unsigned long size;
2462 	unsigned int i;
2463 
2464 	for (i = 0; i < tx_ring->count; i++) {
2465 		buffer_info = &tx_ring->buffer_info[i];
2466 		e1000_put_txbuf(tx_ring, buffer_info, false);
2467 	}
2468 
2469 	netdev_reset_queue(adapter->netdev);
2470 	size = sizeof(struct e1000_buffer) * tx_ring->count;
2471 	memset(tx_ring->buffer_info, 0, size);
2472 
2473 	memset(tx_ring->desc, 0, tx_ring->size);
2474 
2475 	tx_ring->next_to_use = 0;
2476 	tx_ring->next_to_clean = 0;
2477 }
2478 
2479 /**
2480  * e1000e_free_tx_resources - Free Tx Resources per Queue
2481  * @tx_ring: Tx descriptor ring
2482  *
2483  * Free all transmit software resources
2484  **/
2485 void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2486 {
2487 	struct e1000_adapter *adapter = tx_ring->adapter;
2488 	struct pci_dev *pdev = adapter->pdev;
2489 
2490 	e1000_clean_tx_ring(tx_ring);
2491 
2492 	vfree(tx_ring->buffer_info);
2493 	tx_ring->buffer_info = NULL;
2494 
2495 	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2496 			  tx_ring->dma);
2497 	tx_ring->desc = NULL;
2498 }
2499 
2500 /**
2501  * e1000e_free_rx_resources - Free Rx Resources
2502  * @rx_ring: Rx descriptor ring
2503  *
2504  * Free all receive software resources
2505  **/
2506 void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2507 {
2508 	struct e1000_adapter *adapter = rx_ring->adapter;
2509 	struct pci_dev *pdev = adapter->pdev;
2510 	int i;
2511 
2512 	e1000_clean_rx_ring(rx_ring);
2513 
2514 	for (i = 0; i < rx_ring->count; i++)
2515 		kfree(rx_ring->buffer_info[i].ps_pages);
2516 
2517 	vfree(rx_ring->buffer_info);
2518 	rx_ring->buffer_info = NULL;
2519 
2520 	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2521 			  rx_ring->dma);
2522 	rx_ring->desc = NULL;
2523 }
2524 
2525 /**
2526  * e1000_update_itr - update the dynamic ITR value based on statistics
2527  * @itr_setting: current adapter->itr
2528  * @packets: the number of packets during this measurement interval
2529  * @bytes: the number of bytes during this measurement interval
2530  *
2531  *      Stores a new ITR value based on packets and byte
2532  *      counts during the last interrupt.  The advantage of per interrupt
2533  *      computation is faster updates and more accurate ITR for the current
2534  *      traffic pattern.  Constants in this function were computed
2535  *      based on theoretical maximum wire speed and thresholds were set based
2536  *      on testing data as well as attempting to minimize response time
2537  *      while increasing bulk throughput.  This functionality is controlled
2538  *      by the InterruptThrottleRate module parameter.
2539  **/
2540 static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes)
2541 {
2542 	unsigned int retval = itr_setting;
2543 
2544 	if (packets == 0)
2545 		return itr_setting;
2546 
2547 	switch (itr_setting) {
2548 	case lowest_latency:
2549 		/* handle TSO and jumbo frames */
2550 		if (bytes / packets > 8000)
2551 			retval = bulk_latency;
2552 		else if ((packets < 5) && (bytes > 512))
2553 			retval = low_latency;
2554 		break;
2555 	case low_latency:	/* 50 usec aka 20000 ints/s */
2556 		if (bytes > 10000) {
2557 			/* this if handles the TSO accounting */
2558 			if (bytes / packets > 8000)
2559 				retval = bulk_latency;
2560 			else if ((packets < 10) || ((bytes / packets) > 1200))
2561 				retval = bulk_latency;
2562 			else if ((packets > 35))
2563 				retval = lowest_latency;
2564 		} else if (bytes / packets > 2000) {
2565 			retval = bulk_latency;
2566 		} else if (packets <= 2 && bytes < 512) {
2567 			retval = lowest_latency;
2568 		}
2569 		break;
2570 	case bulk_latency:	/* 250 usec aka 4000 ints/s */
2571 		if (bytes > 25000) {
2572 			if (packets > 35)
2573 				retval = low_latency;
2574 		} else if (bytes < 6000) {
2575 			retval = low_latency;
2576 		}
2577 		break;
2578 	}
2579 
2580 	return retval;
2581 }
2582 
2583 static void e1000_set_itr(struct e1000_adapter *adapter)
2584 {
2585 	u16 current_itr;
2586 	u32 new_itr = adapter->itr;
2587 
2588 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2589 	if (adapter->link_speed != SPEED_1000) {
2590 		current_itr = 0;
2591 		new_itr = 4000;
2592 		goto set_itr_now;
2593 	}
2594 
2595 	if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2596 		new_itr = 0;
2597 		goto set_itr_now;
2598 	}
2599 
2600 	adapter->tx_itr = e1000_update_itr(adapter->tx_itr,
2601 					   adapter->total_tx_packets,
2602 					   adapter->total_tx_bytes);
2603 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2604 	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2605 		adapter->tx_itr = low_latency;
2606 
2607 	adapter->rx_itr = e1000_update_itr(adapter->rx_itr,
2608 					   adapter->total_rx_packets,
2609 					   adapter->total_rx_bytes);
2610 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2611 	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2612 		adapter->rx_itr = low_latency;
2613 
2614 	current_itr = max(adapter->rx_itr, adapter->tx_itr);
2615 
2616 	/* counts and packets in update_itr are dependent on these numbers */
2617 	switch (current_itr) {
2618 	case lowest_latency:
2619 		new_itr = 70000;
2620 		break;
2621 	case low_latency:
2622 		new_itr = 20000;	/* aka hwitr = ~200 */
2623 		break;
2624 	case bulk_latency:
2625 		new_itr = 4000;
2626 		break;
2627 	default:
2628 		break;
2629 	}
2630 
2631 set_itr_now:
2632 	if (new_itr != adapter->itr) {
2633 		/* this attempts to bias the interrupt rate towards Bulk
2634 		 * by adding intermediate steps when interrupt rate is
2635 		 * increasing
2636 		 */
2637 		new_itr = new_itr > adapter->itr ?
2638 		    min(adapter->itr + (new_itr >> 2), new_itr) : new_itr;
2639 		adapter->itr = new_itr;
2640 		adapter->rx_ring->itr_val = new_itr;
2641 		if (adapter->msix_entries)
2642 			adapter->rx_ring->set_itr = 1;
2643 		else
2644 			e1000e_write_itr(adapter, new_itr);
2645 	}
2646 }
2647 
2648 /**
2649  * e1000e_write_itr - write the ITR value to the appropriate registers
2650  * @adapter: address of board private structure
2651  * @itr: new ITR value to program
2652  *
2653  * e1000e_write_itr determines if the adapter is in MSI-X mode
2654  * and, if so, writes the EITR registers with the ITR value.
2655  * Otherwise, it writes the ITR value into the ITR register.
2656  **/
2657 void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
2658 {
2659 	struct e1000_hw *hw = &adapter->hw;
2660 	u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
2661 
2662 	if (adapter->msix_entries) {
2663 		int vector;
2664 
2665 		for (vector = 0; vector < adapter->num_vectors; vector++)
2666 			writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
2667 	} else {
2668 		ew32(ITR, new_itr);
2669 	}
2670 }
2671 
2672 /**
2673  * e1000_alloc_queues - Allocate memory for all rings
2674  * @adapter: board private structure to initialize
2675  **/
2676 static int e1000_alloc_queues(struct e1000_adapter *adapter)
2677 {
2678 	int size = sizeof(struct e1000_ring);
2679 
2680 	adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2681 	if (!adapter->tx_ring)
2682 		goto err;
2683 	adapter->tx_ring->count = adapter->tx_ring_count;
2684 	adapter->tx_ring->adapter = adapter;
2685 
2686 	adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2687 	if (!adapter->rx_ring)
2688 		goto err;
2689 	adapter->rx_ring->count = adapter->rx_ring_count;
2690 	adapter->rx_ring->adapter = adapter;
2691 
2692 	return 0;
2693 err:
2694 	e_err("Unable to allocate memory for queues\n");
2695 	kfree(adapter->rx_ring);
2696 	kfree(adapter->tx_ring);
2697 	return -ENOMEM;
2698 }
2699 
2700 /**
2701  * e1000e_poll - NAPI Rx polling callback
2702  * @napi: struct associated with this polling callback
2703  * @budget: number of packets driver is allowed to process this poll
2704  **/
2705 static int e1000e_poll(struct napi_struct *napi, int budget)
2706 {
2707 	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2708 						     napi);
2709 	struct e1000_hw *hw = &adapter->hw;
2710 	struct net_device *poll_dev = adapter->netdev;
2711 	int tx_cleaned = 1, work_done = 0;
2712 
2713 	adapter = netdev_priv(poll_dev);
2714 
2715 	if (!adapter->msix_entries ||
2716 	    (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2717 		tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2718 
2719 	adapter->clean_rx(adapter->rx_ring, &work_done, budget);
2720 
2721 	if (!tx_cleaned || work_done == budget)
2722 		return budget;
2723 
2724 	/* Exit the polling mode, but don't re-enable interrupts if stack might
2725 	 * poll us due to busy-polling
2726 	 */
2727 	if (likely(napi_complete_done(napi, work_done))) {
2728 		if (adapter->itr_setting & 3)
2729 			e1000_set_itr(adapter);
2730 		if (!test_bit(__E1000_DOWN, &adapter->state)) {
2731 			if (adapter->msix_entries)
2732 				ew32(IMS, adapter->rx_ring->ims_val);
2733 			else
2734 				e1000_irq_enable(adapter);
2735 		}
2736 	}
2737 
2738 	return work_done;
2739 }
2740 
2741 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
2742 				 __always_unused __be16 proto, u16 vid)
2743 {
2744 	struct e1000_adapter *adapter = netdev_priv(netdev);
2745 	struct e1000_hw *hw = &adapter->hw;
2746 	u32 vfta, index;
2747 
2748 	/* don't update vlan cookie if already programmed */
2749 	if ((adapter->hw.mng_cookie.status &
2750 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2751 	    (vid == adapter->mng_vlan_id))
2752 		return 0;
2753 
2754 	/* add VID to filter table */
2755 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2756 		index = (vid >> 5) & 0x7F;
2757 		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2758 		vfta |= BIT((vid & 0x1F));
2759 		hw->mac.ops.write_vfta(hw, index, vfta);
2760 	}
2761 
2762 	set_bit(vid, adapter->active_vlans);
2763 
2764 	return 0;
2765 }
2766 
2767 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
2768 				  __always_unused __be16 proto, u16 vid)
2769 {
2770 	struct e1000_adapter *adapter = netdev_priv(netdev);
2771 	struct e1000_hw *hw = &adapter->hw;
2772 	u32 vfta, index;
2773 
2774 	if ((adapter->hw.mng_cookie.status &
2775 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2776 	    (vid == adapter->mng_vlan_id)) {
2777 		/* release control to f/w */
2778 		e1000e_release_hw_control(adapter);
2779 		return 0;
2780 	}
2781 
2782 	/* remove VID from filter table */
2783 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2784 		index = (vid >> 5) & 0x7F;
2785 		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2786 		vfta &= ~BIT((vid & 0x1F));
2787 		hw->mac.ops.write_vfta(hw, index, vfta);
2788 	}
2789 
2790 	clear_bit(vid, adapter->active_vlans);
2791 
2792 	return 0;
2793 }
2794 
2795 /**
2796  * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2797  * @adapter: board private structure to initialize
2798  **/
2799 static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2800 {
2801 	struct net_device *netdev = adapter->netdev;
2802 	struct e1000_hw *hw = &adapter->hw;
2803 	u32 rctl;
2804 
2805 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2806 		/* disable VLAN receive filtering */
2807 		rctl = er32(RCTL);
2808 		rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2809 		ew32(RCTL, rctl);
2810 
2811 		if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2812 			e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
2813 					       adapter->mng_vlan_id);
2814 			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2815 		}
2816 	}
2817 }
2818 
2819 /**
2820  * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2821  * @adapter: board private structure to initialize
2822  **/
2823 static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2824 {
2825 	struct e1000_hw *hw = &adapter->hw;
2826 	u32 rctl;
2827 
2828 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2829 		/* enable VLAN receive filtering */
2830 		rctl = er32(RCTL);
2831 		rctl |= E1000_RCTL_VFE;
2832 		rctl &= ~E1000_RCTL_CFIEN;
2833 		ew32(RCTL, rctl);
2834 	}
2835 }
2836 
2837 /**
2838  * e1000e_vlan_strip_disable - helper to disable HW VLAN stripping
2839  * @adapter: board private structure to initialize
2840  **/
2841 static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2842 {
2843 	struct e1000_hw *hw = &adapter->hw;
2844 	u32 ctrl;
2845 
2846 	/* disable VLAN tag insert/strip */
2847 	ctrl = er32(CTRL);
2848 	ctrl &= ~E1000_CTRL_VME;
2849 	ew32(CTRL, ctrl);
2850 }
2851 
2852 /**
2853  * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2854  * @adapter: board private structure to initialize
2855  **/
2856 static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2857 {
2858 	struct e1000_hw *hw = &adapter->hw;
2859 	u32 ctrl;
2860 
2861 	/* enable VLAN tag insert/strip */
2862 	ctrl = er32(CTRL);
2863 	ctrl |= E1000_CTRL_VME;
2864 	ew32(CTRL, ctrl);
2865 }
2866 
2867 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2868 {
2869 	struct net_device *netdev = adapter->netdev;
2870 	u16 vid = adapter->hw.mng_cookie.vlan_id;
2871 	u16 old_vid = adapter->mng_vlan_id;
2872 
2873 	if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2874 		e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
2875 		adapter->mng_vlan_id = vid;
2876 	}
2877 
2878 	if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2879 		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid);
2880 }
2881 
2882 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2883 {
2884 	u16 vid;
2885 
2886 	e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
2887 
2888 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2889 	    e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
2890 }
2891 
2892 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2893 {
2894 	struct e1000_hw *hw = &adapter->hw;
2895 	u32 manc, manc2h, mdef, i, j;
2896 
2897 	if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2898 		return;
2899 
2900 	manc = er32(MANC);
2901 
2902 	/* enable receiving management packets to the host. this will probably
2903 	 * generate destination unreachable messages from the host OS, but
2904 	 * the packets will be handled on SMBUS
2905 	 */
2906 	manc |= E1000_MANC_EN_MNG2HOST;
2907 	manc2h = er32(MANC2H);
2908 
2909 	switch (hw->mac.type) {
2910 	default:
2911 		manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2912 		break;
2913 	case e1000_82574:
2914 	case e1000_82583:
2915 		/* Check if IPMI pass-through decision filter already exists;
2916 		 * if so, enable it.
2917 		 */
2918 		for (i = 0, j = 0; i < 8; i++) {
2919 			mdef = er32(MDEF(i));
2920 
2921 			/* Ignore filters with anything other than IPMI ports */
2922 			if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2923 				continue;
2924 
2925 			/* Enable this decision filter in MANC2H */
2926 			if (mdef)
2927 				manc2h |= BIT(i);
2928 
2929 			j |= mdef;
2930 		}
2931 
2932 		if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2933 			break;
2934 
2935 		/* Create new decision filter in an empty filter */
2936 		for (i = 0, j = 0; i < 8; i++)
2937 			if (er32(MDEF(i)) == 0) {
2938 				ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2939 					       E1000_MDEF_PORT_664));
2940 				manc2h |= BIT(1);
2941 				j++;
2942 				break;
2943 			}
2944 
2945 		if (!j)
2946 			e_warn("Unable to create IPMI pass-through filter\n");
2947 		break;
2948 	}
2949 
2950 	ew32(MANC2H, manc2h);
2951 	ew32(MANC, manc);
2952 }
2953 
2954 /**
2955  * e1000_configure_tx - Configure Transmit Unit after Reset
2956  * @adapter: board private structure
2957  *
2958  * Configure the Tx unit of the MAC after a reset.
2959  **/
2960 static void e1000_configure_tx(struct e1000_adapter *adapter)
2961 {
2962 	struct e1000_hw *hw = &adapter->hw;
2963 	struct e1000_ring *tx_ring = adapter->tx_ring;
2964 	u64 tdba;
2965 	u32 tdlen, tctl, tarc;
2966 
2967 	/* Setup the HW Tx Head and Tail descriptor pointers */
2968 	tdba = tx_ring->dma;
2969 	tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2970 	ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2971 	ew32(TDBAH(0), (tdba >> 32));
2972 	ew32(TDLEN(0), tdlen);
2973 	ew32(TDH(0), 0);
2974 	ew32(TDT(0), 0);
2975 	tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2976 	tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2977 
2978 	writel(0, tx_ring->head);
2979 	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2980 		e1000e_update_tdt_wa(tx_ring, 0);
2981 	else
2982 		writel(0, tx_ring->tail);
2983 
2984 	/* Set the Tx Interrupt Delay register */
2985 	ew32(TIDV, adapter->tx_int_delay);
2986 	/* Tx irq moderation */
2987 	ew32(TADV, adapter->tx_abs_int_delay);
2988 
2989 	if (adapter->flags2 & FLAG2_DMA_BURST) {
2990 		u32 txdctl = er32(TXDCTL(0));
2991 
2992 		txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2993 			    E1000_TXDCTL_WTHRESH);
2994 		/* set up some performance related parameters to encourage the
2995 		 * hardware to use the bus more efficiently in bursts, depends
2996 		 * on the tx_int_delay to be enabled,
2997 		 * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2998 		 * hthresh = 1 ==> prefetch when one or more available
2999 		 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
3000 		 * BEWARE: this seems to work but should be considered first if
3001 		 * there are Tx hangs or other Tx related bugs
3002 		 */
3003 		txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
3004 		ew32(TXDCTL(0), txdctl);
3005 	}
3006 	/* erratum work around: set txdctl the same for both queues */
3007 	ew32(TXDCTL(1), er32(TXDCTL(0)));
3008 
3009 	/* Program the Transmit Control Register */
3010 	tctl = er32(TCTL);
3011 	tctl &= ~E1000_TCTL_CT;
3012 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
3013 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
3014 
3015 	if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
3016 		tarc = er32(TARC(0));
3017 		/* set the speed mode bit, we'll clear it if we're not at
3018 		 * gigabit link later
3019 		 */
3020 #define SPEED_MODE_BIT BIT(21)
3021 		tarc |= SPEED_MODE_BIT;
3022 		ew32(TARC(0), tarc);
3023 	}
3024 
3025 	/* errata: program both queues to unweighted RR */
3026 	if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
3027 		tarc = er32(TARC(0));
3028 		tarc |= 1;
3029 		ew32(TARC(0), tarc);
3030 		tarc = er32(TARC(1));
3031 		tarc |= 1;
3032 		ew32(TARC(1), tarc);
3033 	}
3034 
3035 	/* Setup Transmit Descriptor Settings for eop descriptor */
3036 	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
3037 
3038 	/* only set IDE if we are delaying interrupts using the timers */
3039 	if (adapter->tx_int_delay)
3040 		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
3041 
3042 	/* enable Report Status bit */
3043 	adapter->txd_cmd |= E1000_TXD_CMD_RS;
3044 
3045 	ew32(TCTL, tctl);
3046 
3047 	hw->mac.ops.config_collision_dist(hw);
3048 
3049 	/* SPT and KBL Si errata workaround to avoid data corruption */
3050 	if (hw->mac.type == e1000_pch_spt) {
3051 		u32 reg_val;
3052 
3053 		reg_val = er32(IOSFPC);
3054 		reg_val |= E1000_RCTL_RDMTS_HEX;
3055 		ew32(IOSFPC, reg_val);
3056 
3057 		reg_val = er32(TARC(0));
3058 		/* SPT and KBL Si errata workaround to avoid Tx hang.
3059 		 * Dropping the number of outstanding requests from
3060 		 * 3 to 2 in order to avoid a buffer overrun.
3061 		 */
3062 		reg_val &= ~E1000_TARC0_CB_MULTIQ_3_REQ;
3063 		reg_val |= E1000_TARC0_CB_MULTIQ_2_REQ;
3064 		ew32(TARC(0), reg_val);
3065 	}
3066 }
3067 
3068 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
3069 			   (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
3070 
3071 /**
3072  * e1000_setup_rctl - configure the receive control registers
3073  * @adapter: Board private structure
3074  **/
3075 static void e1000_setup_rctl(struct e1000_adapter *adapter)
3076 {
3077 	struct e1000_hw *hw = &adapter->hw;
3078 	u32 rctl, rfctl;
3079 	u32 pages = 0;
3080 
3081 	/* Workaround Si errata on PCHx - configure jumbo frame flow.
3082 	 * If jumbo frames not set, program related MAC/PHY registers
3083 	 * to h/w defaults
3084 	 */
3085 	if (hw->mac.type >= e1000_pch2lan) {
3086 		s32 ret_val;
3087 
3088 		if (adapter->netdev->mtu > ETH_DATA_LEN)
3089 			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
3090 		else
3091 			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
3092 
3093 		if (ret_val)
3094 			e_dbg("failed to enable|disable jumbo frame workaround mode\n");
3095 	}
3096 
3097 	/* Program MC offset vector base */
3098 	rctl = er32(RCTL);
3099 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3100 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3101 	    E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3102 	    (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3103 
3104 	/* Do not Store bad packets */
3105 	rctl &= ~E1000_RCTL_SBP;
3106 
3107 	/* Enable Long Packet receive */
3108 	if (adapter->netdev->mtu <= ETH_DATA_LEN)
3109 		rctl &= ~E1000_RCTL_LPE;
3110 	else
3111 		rctl |= E1000_RCTL_LPE;
3112 
3113 	/* Some systems expect that the CRC is included in SMBUS traffic. The
3114 	 * hardware strips the CRC before sending to both SMBUS (BMC) and to
3115 	 * host memory when this is enabled
3116 	 */
3117 	if (adapter->flags2 & FLAG2_CRC_STRIPPING)
3118 		rctl |= E1000_RCTL_SECRC;
3119 
3120 	/* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3121 	if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
3122 		u16 phy_data;
3123 
3124 		e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
3125 		phy_data &= 0xfff8;
3126 		phy_data |= BIT(2);
3127 		e1e_wphy(hw, PHY_REG(770, 26), phy_data);
3128 
3129 		e1e_rphy(hw, 22, &phy_data);
3130 		phy_data &= 0x0fff;
3131 		phy_data |= BIT(14);
3132 		e1e_wphy(hw, 0x10, 0x2823);
3133 		e1e_wphy(hw, 0x11, 0x0003);
3134 		e1e_wphy(hw, 22, phy_data);
3135 	}
3136 
3137 	/* Setup buffer sizes */
3138 	rctl &= ~E1000_RCTL_SZ_4096;
3139 	rctl |= E1000_RCTL_BSEX;
3140 	switch (adapter->rx_buffer_len) {
3141 	case 2048:
3142 	default:
3143 		rctl |= E1000_RCTL_SZ_2048;
3144 		rctl &= ~E1000_RCTL_BSEX;
3145 		break;
3146 	case 4096:
3147 		rctl |= E1000_RCTL_SZ_4096;
3148 		break;
3149 	case 8192:
3150 		rctl |= E1000_RCTL_SZ_8192;
3151 		break;
3152 	case 16384:
3153 		rctl |= E1000_RCTL_SZ_16384;
3154 		break;
3155 	}
3156 
3157 	/* Enable Extended Status in all Receive Descriptors */
3158 	rfctl = er32(RFCTL);
3159 	rfctl |= E1000_RFCTL_EXTEN;
3160 	ew32(RFCTL, rfctl);
3161 
3162 	/* 82571 and greater support packet-split where the protocol
3163 	 * header is placed in skb->data and the packet data is
3164 	 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3165 	 * In the case of a non-split, skb->data is linearly filled,
3166 	 * followed by the page buffers.  Therefore, skb->data is
3167 	 * sized to hold the largest protocol header.
3168 	 *
3169 	 * allocations using alloc_page take too long for regular MTU
3170 	 * so only enable packet split for jumbo frames
3171 	 *
3172 	 * Using pages when the page size is greater than 16k wastes
3173 	 * a lot of memory, since we allocate 3 pages at all times
3174 	 * per packet.
3175 	 */
3176 	pages = PAGE_USE_COUNT(adapter->netdev->mtu);
3177 	if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
3178 		adapter->rx_ps_pages = pages;
3179 	else
3180 		adapter->rx_ps_pages = 0;
3181 
3182 	if (adapter->rx_ps_pages) {
3183 		u32 psrctl = 0;
3184 
3185 		/* Enable Packet split descriptors */
3186 		rctl |= E1000_RCTL_DTYP_PS;
3187 
3188 		psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT;
3189 
3190 		switch (adapter->rx_ps_pages) {
3191 		case 3:
3192 			psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT;
3193 			fallthrough;
3194 		case 2:
3195 			psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT;
3196 			fallthrough;
3197 		case 1:
3198 			psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT;
3199 			break;
3200 		}
3201 
3202 		ew32(PSRCTL, psrctl);
3203 	}
3204 
3205 	/* This is useful for sniffing bad packets. */
3206 	if (adapter->netdev->features & NETIF_F_RXALL) {
3207 		/* UPE and MPE will be handled by normal PROMISC logic
3208 		 * in e1000e_set_rx_mode
3209 		 */
3210 		rctl |= (E1000_RCTL_SBP |	/* Receive bad packets */
3211 			 E1000_RCTL_BAM |	/* RX All Bcast Pkts */
3212 			 E1000_RCTL_PMCF);	/* RX All MAC Ctrl Pkts */
3213 
3214 		rctl &= ~(E1000_RCTL_VFE |	/* Disable VLAN filter */
3215 			  E1000_RCTL_DPF |	/* Allow filtered pause */
3216 			  E1000_RCTL_CFIEN);	/* Dis VLAN CFIEN Filter */
3217 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3218 		 * and that breaks VLANs.
3219 		 */
3220 	}
3221 
3222 	ew32(RCTL, rctl);
3223 	/* just started the receive unit, no need to restart */
3224 	adapter->flags &= ~FLAG_RESTART_NOW;
3225 }
3226 
3227 /**
3228  * e1000_configure_rx - Configure Receive Unit after Reset
3229  * @adapter: board private structure
3230  *
3231  * Configure the Rx unit of the MAC after a reset.
3232  **/
3233 static void e1000_configure_rx(struct e1000_adapter *adapter)
3234 {
3235 	struct e1000_hw *hw = &adapter->hw;
3236 	struct e1000_ring *rx_ring = adapter->rx_ring;
3237 	u64 rdba;
3238 	u32 rdlen, rctl, rxcsum, ctrl_ext;
3239 
3240 	if (adapter->rx_ps_pages) {
3241 		/* this is a 32 byte descriptor */
3242 		rdlen = rx_ring->count *
3243 		    sizeof(union e1000_rx_desc_packet_split);
3244 		adapter->clean_rx = e1000_clean_rx_irq_ps;
3245 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3246 	} else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3247 		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3248 		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3249 		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3250 	} else {
3251 		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3252 		adapter->clean_rx = e1000_clean_rx_irq;
3253 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3254 	}
3255 
3256 	/* disable receives while setting up the descriptors */
3257 	rctl = er32(RCTL);
3258 	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3259 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
3260 	e1e_flush();
3261 	usleep_range(10000, 11000);
3262 
3263 	if (adapter->flags2 & FLAG2_DMA_BURST) {
3264 		/* set the writeback threshold (only takes effect if the RDTR
3265 		 * is set). set GRAN=1 and write back up to 0x4 worth, and
3266 		 * enable prefetching of 0x20 Rx descriptors
3267 		 * granularity = 01
3268 		 * wthresh = 04,
3269 		 * hthresh = 04,
3270 		 * pthresh = 0x20
3271 		 */
3272 		ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3273 		ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3274 	}
3275 
3276 	/* set the Receive Delay Timer Register */
3277 	ew32(RDTR, adapter->rx_int_delay);
3278 
3279 	/* irq moderation */
3280 	ew32(RADV, adapter->rx_abs_int_delay);
3281 	if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3282 		e1000e_write_itr(adapter, adapter->itr);
3283 
3284 	ctrl_ext = er32(CTRL_EXT);
3285 	/* Auto-Mask interrupts upon ICR access */
3286 	ctrl_ext |= E1000_CTRL_EXT_IAME;
3287 	ew32(IAM, 0xffffffff);
3288 	ew32(CTRL_EXT, ctrl_ext);
3289 	e1e_flush();
3290 
3291 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
3292 	 * the Base and Length of the Rx Descriptor Ring
3293 	 */
3294 	rdba = rx_ring->dma;
3295 	ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3296 	ew32(RDBAH(0), (rdba >> 32));
3297 	ew32(RDLEN(0), rdlen);
3298 	ew32(RDH(0), 0);
3299 	ew32(RDT(0), 0);
3300 	rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3301 	rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3302 
3303 	writel(0, rx_ring->head);
3304 	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
3305 		e1000e_update_rdt_wa(rx_ring, 0);
3306 	else
3307 		writel(0, rx_ring->tail);
3308 
3309 	/* Enable Receive Checksum Offload for TCP and UDP */
3310 	rxcsum = er32(RXCSUM);
3311 	if (adapter->netdev->features & NETIF_F_RXCSUM)
3312 		rxcsum |= E1000_RXCSUM_TUOFL;
3313 	else
3314 		rxcsum &= ~E1000_RXCSUM_TUOFL;
3315 	ew32(RXCSUM, rxcsum);
3316 
3317 	/* With jumbo frames, excessive C-state transition latencies result
3318 	 * in dropped transactions.
3319 	 */
3320 	if (adapter->netdev->mtu > ETH_DATA_LEN) {
3321 		u32 lat =
3322 		    ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 -
3323 		     adapter->max_frame_size) * 8 / 1000;
3324 
3325 		if (adapter->flags & FLAG_IS_ICH) {
3326 			u32 rxdctl = er32(RXDCTL(0));
3327 
3328 			ew32(RXDCTL(0), rxdctl | 0x3 | BIT(8));
3329 		}
3330 
3331 		dev_info(&adapter->pdev->dev,
3332 			 "Some CPU C-states have been disabled in order to enable jumbo frames\n");
3333 		cpu_latency_qos_update_request(&adapter->pm_qos_req, lat);
3334 	} else {
3335 		cpu_latency_qos_update_request(&adapter->pm_qos_req,
3336 					       PM_QOS_DEFAULT_VALUE);
3337 	}
3338 
3339 	/* Enable Receives */
3340 	ew32(RCTL, rctl);
3341 }
3342 
3343 /**
3344  * e1000e_write_mc_addr_list - write multicast addresses to MTA
3345  * @netdev: network interface device structure
3346  *
3347  * Writes multicast address list to the MTA hash table.
3348  * Returns: -ENOMEM on failure
3349  *                0 on no addresses written
3350  *                X on writing X addresses to MTA
3351  */
3352 static int e1000e_write_mc_addr_list(struct net_device *netdev)
3353 {
3354 	struct e1000_adapter *adapter = netdev_priv(netdev);
3355 	struct e1000_hw *hw = &adapter->hw;
3356 	struct netdev_hw_addr *ha;
3357 	u8 *mta_list;
3358 	int i;
3359 
3360 	if (netdev_mc_empty(netdev)) {
3361 		/* nothing to program, so clear mc list */
3362 		hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3363 		return 0;
3364 	}
3365 
3366 	mta_list = kcalloc(netdev_mc_count(netdev), ETH_ALEN, GFP_ATOMIC);
3367 	if (!mta_list)
3368 		return -ENOMEM;
3369 
3370 	/* update_mc_addr_list expects a packed array of only addresses. */
3371 	i = 0;
3372 	netdev_for_each_mc_addr(ha, netdev)
3373 	    memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3374 
3375 	hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3376 	kfree(mta_list);
3377 
3378 	return netdev_mc_count(netdev);
3379 }
3380 
3381 /**
3382  * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3383  * @netdev: network interface device structure
3384  *
3385  * Writes unicast address list to the RAR table.
3386  * Returns: -ENOMEM on failure/insufficient address space
3387  *                0 on no addresses written
3388  *                X on writing X addresses to the RAR table
3389  **/
3390 static int e1000e_write_uc_addr_list(struct net_device *netdev)
3391 {
3392 	struct e1000_adapter *adapter = netdev_priv(netdev);
3393 	struct e1000_hw *hw = &adapter->hw;
3394 	unsigned int rar_entries;
3395 	int count = 0;
3396 
3397 	rar_entries = hw->mac.ops.rar_get_count(hw);
3398 
3399 	/* save a rar entry for our hardware address */
3400 	rar_entries--;
3401 
3402 	/* save a rar entry for the LAA workaround */
3403 	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3404 		rar_entries--;
3405 
3406 	/* return ENOMEM indicating insufficient memory for addresses */
3407 	if (netdev_uc_count(netdev) > rar_entries)
3408 		return -ENOMEM;
3409 
3410 	if (!netdev_uc_empty(netdev) && rar_entries) {
3411 		struct netdev_hw_addr *ha;
3412 
3413 		/* write the addresses in reverse order to avoid write
3414 		 * combining
3415 		 */
3416 		netdev_for_each_uc_addr(ha, netdev) {
3417 			int ret_val;
3418 
3419 			if (!rar_entries)
3420 				break;
3421 			ret_val = hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3422 			if (ret_val < 0)
3423 				return -ENOMEM;
3424 			count++;
3425 		}
3426 	}
3427 
3428 	/* zero out the remaining RAR entries not used above */
3429 	for (; rar_entries > 0; rar_entries--) {
3430 		ew32(RAH(rar_entries), 0);
3431 		ew32(RAL(rar_entries), 0);
3432 	}
3433 	e1e_flush();
3434 
3435 	return count;
3436 }
3437 
3438 /**
3439  * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3440  * @netdev: network interface device structure
3441  *
3442  * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3443  * address list or the network interface flags are updated.  This routine is
3444  * responsible for configuring the hardware for proper unicast, multicast,
3445  * promiscuous mode, and all-multi behavior.
3446  **/
3447 static void e1000e_set_rx_mode(struct net_device *netdev)
3448 {
3449 	struct e1000_adapter *adapter = netdev_priv(netdev);
3450 	struct e1000_hw *hw = &adapter->hw;
3451 	u32 rctl;
3452 
3453 	if (pm_runtime_suspended(netdev->dev.parent))
3454 		return;
3455 
3456 	/* Check for Promiscuous and All Multicast modes */
3457 	rctl = er32(RCTL);
3458 
3459 	/* clear the affected bits */
3460 	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3461 
3462 	if (netdev->flags & IFF_PROMISC) {
3463 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3464 		/* Do not hardware filter VLANs in promisc mode */
3465 		e1000e_vlan_filter_disable(adapter);
3466 	} else {
3467 		int count;
3468 
3469 		if (netdev->flags & IFF_ALLMULTI) {
3470 			rctl |= E1000_RCTL_MPE;
3471 		} else {
3472 			/* Write addresses to the MTA, if the attempt fails
3473 			 * then we should just turn on promiscuous mode so
3474 			 * that we can at least receive multicast traffic
3475 			 */
3476 			count = e1000e_write_mc_addr_list(netdev);
3477 			if (count < 0)
3478 				rctl |= E1000_RCTL_MPE;
3479 		}
3480 		e1000e_vlan_filter_enable(adapter);
3481 		/* Write addresses to available RAR registers, if there is not
3482 		 * sufficient space to store all the addresses then enable
3483 		 * unicast promiscuous mode
3484 		 */
3485 		count = e1000e_write_uc_addr_list(netdev);
3486 		if (count < 0)
3487 			rctl |= E1000_RCTL_UPE;
3488 	}
3489 
3490 	ew32(RCTL, rctl);
3491 
3492 	if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
3493 		e1000e_vlan_strip_enable(adapter);
3494 	else
3495 		e1000e_vlan_strip_disable(adapter);
3496 }
3497 
3498 static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3499 {
3500 	struct e1000_hw *hw = &adapter->hw;
3501 	u32 mrqc, rxcsum;
3502 	u32 rss_key[10];
3503 	int i;
3504 
3505 	netdev_rss_key_fill(rss_key, sizeof(rss_key));
3506 	for (i = 0; i < 10; i++)
3507 		ew32(RSSRK(i), rss_key[i]);
3508 
3509 	/* Direct all traffic to queue 0 */
3510 	for (i = 0; i < 32; i++)
3511 		ew32(RETA(i), 0);
3512 
3513 	/* Disable raw packet checksumming so that RSS hash is placed in
3514 	 * descriptor on writeback.
3515 	 */
3516 	rxcsum = er32(RXCSUM);
3517 	rxcsum |= E1000_RXCSUM_PCSD;
3518 
3519 	ew32(RXCSUM, rxcsum);
3520 
3521 	mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3522 		E1000_MRQC_RSS_FIELD_IPV4_TCP |
3523 		E1000_MRQC_RSS_FIELD_IPV6 |
3524 		E1000_MRQC_RSS_FIELD_IPV6_TCP |
3525 		E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3526 
3527 	ew32(MRQC, mrqc);
3528 }
3529 
3530 /**
3531  * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3532  * @adapter: board private structure
3533  * @timinca: pointer to returned time increment attributes
3534  *
3535  * Get attributes for incrementing the System Time Register SYSTIML/H at
3536  * the default base frequency, and set the cyclecounter shift value.
3537  **/
3538 s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca)
3539 {
3540 	struct e1000_hw *hw = &adapter->hw;
3541 	u32 incvalue, incperiod, shift;
3542 
3543 	/* Make sure clock is enabled on I217/I218/I219  before checking
3544 	 * the frequency
3545 	 */
3546 	if ((hw->mac.type >= e1000_pch_lpt) &&
3547 	    !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) &&
3548 	    !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) {
3549 		u32 fextnvm7 = er32(FEXTNVM7);
3550 
3551 		if (!(fextnvm7 & BIT(0))) {
3552 			ew32(FEXTNVM7, fextnvm7 | BIT(0));
3553 			e1e_flush();
3554 		}
3555 	}
3556 
3557 	switch (hw->mac.type) {
3558 	case e1000_pch2lan:
3559 		/* Stable 96MHz frequency */
3560 		incperiod = INCPERIOD_96MHZ;
3561 		incvalue = INCVALUE_96MHZ;
3562 		shift = INCVALUE_SHIFT_96MHZ;
3563 		adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3564 		break;
3565 	case e1000_pch_lpt:
3566 		if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3567 			/* Stable 96MHz frequency */
3568 			incperiod = INCPERIOD_96MHZ;
3569 			incvalue = INCVALUE_96MHZ;
3570 			shift = INCVALUE_SHIFT_96MHZ;
3571 			adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3572 		} else {
3573 			/* Stable 25MHz frequency */
3574 			incperiod = INCPERIOD_25MHZ;
3575 			incvalue = INCVALUE_25MHZ;
3576 			shift = INCVALUE_SHIFT_25MHZ;
3577 			adapter->cc.shift = shift;
3578 		}
3579 		break;
3580 	case e1000_pch_spt:
3581 		/* Stable 24MHz frequency */
3582 		incperiod = INCPERIOD_24MHZ;
3583 		incvalue = INCVALUE_24MHZ;
3584 		shift = INCVALUE_SHIFT_24MHZ;
3585 		adapter->cc.shift = shift;
3586 		break;
3587 	case e1000_pch_cnp:
3588 	case e1000_pch_tgp:
3589 	case e1000_pch_adp:
3590 	case e1000_pch_mtp:
3591 		if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3592 			/* Stable 24MHz frequency */
3593 			incperiod = INCPERIOD_24MHZ;
3594 			incvalue = INCVALUE_24MHZ;
3595 			shift = INCVALUE_SHIFT_24MHZ;
3596 			adapter->cc.shift = shift;
3597 		} else {
3598 			/* Stable 38400KHz frequency */
3599 			incperiod = INCPERIOD_38400KHZ;
3600 			incvalue = INCVALUE_38400KHZ;
3601 			shift = INCVALUE_SHIFT_38400KHZ;
3602 			adapter->cc.shift = shift;
3603 		}
3604 		break;
3605 	case e1000_82574:
3606 	case e1000_82583:
3607 		/* Stable 25MHz frequency */
3608 		incperiod = INCPERIOD_25MHZ;
3609 		incvalue = INCVALUE_25MHZ;
3610 		shift = INCVALUE_SHIFT_25MHZ;
3611 		adapter->cc.shift = shift;
3612 		break;
3613 	default:
3614 		return -EINVAL;
3615 	}
3616 
3617 	*timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) |
3618 		    ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK));
3619 
3620 	return 0;
3621 }
3622 
3623 /**
3624  * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3625  * @adapter: board private structure
3626  * @config: timestamp configuration
3627  *
3628  * Outgoing time stamping can be enabled and disabled. Play nice and
3629  * disable it when requested, although it shouldn't cause any overhead
3630  * when no packet needs it. At most one packet in the queue may be
3631  * marked for time stamping, otherwise it would be impossible to tell
3632  * for sure to which packet the hardware time stamp belongs.
3633  *
3634  * Incoming time stamping has to be configured via the hardware filters.
3635  * Not all combinations are supported, in particular event type has to be
3636  * specified. Matching the kind of event packet is not supported, with the
3637  * exception of "all V2 events regardless of level 2 or 4".
3638  **/
3639 static int e1000e_config_hwtstamp(struct e1000_adapter *adapter,
3640 				  struct hwtstamp_config *config)
3641 {
3642 	struct e1000_hw *hw = &adapter->hw;
3643 	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
3644 	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
3645 	u32 rxmtrl = 0;
3646 	u16 rxudp = 0;
3647 	bool is_l4 = false;
3648 	bool is_l2 = false;
3649 	u32 regval;
3650 
3651 	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3652 		return -EINVAL;
3653 
3654 	/* flags reserved for future extensions - must be zero */
3655 	if (config->flags)
3656 		return -EINVAL;
3657 
3658 	switch (config->tx_type) {
3659 	case HWTSTAMP_TX_OFF:
3660 		tsync_tx_ctl = 0;
3661 		break;
3662 	case HWTSTAMP_TX_ON:
3663 		break;
3664 	default:
3665 		return -ERANGE;
3666 	}
3667 
3668 	switch (config->rx_filter) {
3669 	case HWTSTAMP_FILTER_NONE:
3670 		tsync_rx_ctl = 0;
3671 		break;
3672 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3673 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3674 		rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE;
3675 		is_l4 = true;
3676 		break;
3677 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3678 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3679 		rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE;
3680 		is_l4 = true;
3681 		break;
3682 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3683 		/* Also time stamps V2 L2 Path Delay Request/Response */
3684 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3685 		rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3686 		is_l2 = true;
3687 		break;
3688 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3689 		/* Also time stamps V2 L2 Path Delay Request/Response. */
3690 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3691 		rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3692 		is_l2 = true;
3693 		break;
3694 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3695 		/* Hardware cannot filter just V2 L4 Sync messages */
3696 		fallthrough;
3697 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
3698 		/* Also time stamps V2 Path Delay Request/Response. */
3699 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3700 		rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3701 		is_l2 = true;
3702 		is_l4 = true;
3703 		break;
3704 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3705 		/* Hardware cannot filter just V2 L4 Delay Request messages */
3706 		fallthrough;
3707 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3708 		/* Also time stamps V2 Path Delay Request/Response. */
3709 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3710 		rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3711 		is_l2 = true;
3712 		is_l4 = true;
3713 		break;
3714 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3715 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3716 		/* Hardware cannot filter just V2 L4 or L2 Event messages */
3717 		fallthrough;
3718 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
3719 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
3720 		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
3721 		is_l2 = true;
3722 		is_l4 = true;
3723 		break;
3724 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3725 		/* For V1, the hardware can only filter Sync messages or
3726 		 * Delay Request messages but not both so fall-through to
3727 		 * time stamp all packets.
3728 		 */
3729 		fallthrough;
3730 	case HWTSTAMP_FILTER_NTP_ALL:
3731 	case HWTSTAMP_FILTER_ALL:
3732 		is_l2 = true;
3733 		is_l4 = true;
3734 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
3735 		config->rx_filter = HWTSTAMP_FILTER_ALL;
3736 		break;
3737 	default:
3738 		return -ERANGE;
3739 	}
3740 
3741 	adapter->hwtstamp_config = *config;
3742 
3743 	/* enable/disable Tx h/w time stamping */
3744 	regval = er32(TSYNCTXCTL);
3745 	regval &= ~E1000_TSYNCTXCTL_ENABLED;
3746 	regval |= tsync_tx_ctl;
3747 	ew32(TSYNCTXCTL, regval);
3748 	if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) !=
3749 	    (regval & E1000_TSYNCTXCTL_ENABLED)) {
3750 		e_err("Timesync Tx Control register not set as expected\n");
3751 		return -EAGAIN;
3752 	}
3753 
3754 	/* enable/disable Rx h/w time stamping */
3755 	regval = er32(TSYNCRXCTL);
3756 	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
3757 	regval |= tsync_rx_ctl;
3758 	ew32(TSYNCRXCTL, regval);
3759 	if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED |
3760 				 E1000_TSYNCRXCTL_TYPE_MASK)) !=
3761 	    (regval & (E1000_TSYNCRXCTL_ENABLED |
3762 		       E1000_TSYNCRXCTL_TYPE_MASK))) {
3763 		e_err("Timesync Rx Control register not set as expected\n");
3764 		return -EAGAIN;
3765 	}
3766 
3767 	/* L2: define ethertype filter for time stamped packets */
3768 	if (is_l2)
3769 		rxmtrl |= ETH_P_1588;
3770 
3771 	/* define which PTP packets get time stamped */
3772 	ew32(RXMTRL, rxmtrl);
3773 
3774 	/* Filter by destination port */
3775 	if (is_l4) {
3776 		rxudp = PTP_EV_PORT;
3777 		cpu_to_be16s(&rxudp);
3778 	}
3779 	ew32(RXUDP, rxudp);
3780 
3781 	e1e_flush();
3782 
3783 	/* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
3784 	er32(RXSTMPH);
3785 	er32(TXSTMPH);
3786 
3787 	return 0;
3788 }
3789 
3790 /**
3791  * e1000_configure - configure the hardware for Rx and Tx
3792  * @adapter: private board structure
3793  **/
3794 static void e1000_configure(struct e1000_adapter *adapter)
3795 {
3796 	struct e1000_ring *rx_ring = adapter->rx_ring;
3797 
3798 	e1000e_set_rx_mode(adapter->netdev);
3799 
3800 	e1000_restore_vlan(adapter);
3801 	e1000_init_manageability_pt(adapter);
3802 
3803 	e1000_configure_tx(adapter);
3804 
3805 	if (adapter->netdev->features & NETIF_F_RXHASH)
3806 		e1000e_setup_rss_hash(adapter);
3807 	e1000_setup_rctl(adapter);
3808 	e1000_configure_rx(adapter);
3809 	adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3810 }
3811 
3812 /**
3813  * e1000e_power_up_phy - restore link in case the phy was powered down
3814  * @adapter: address of board private structure
3815  *
3816  * The phy may be powered down to save power and turn off link when the
3817  * driver is unloaded and wake on lan is not enabled (among others)
3818  * *** this routine MUST be followed by a call to e1000e_reset ***
3819  **/
3820 void e1000e_power_up_phy(struct e1000_adapter *adapter)
3821 {
3822 	if (adapter->hw.phy.ops.power_up)
3823 		adapter->hw.phy.ops.power_up(&adapter->hw);
3824 
3825 	adapter->hw.mac.ops.setup_link(&adapter->hw);
3826 }
3827 
3828 /**
3829  * e1000_power_down_phy - Power down the PHY
3830  * @adapter: board private structure
3831  *
3832  * Power down the PHY so no link is implied when interface is down.
3833  * The PHY cannot be powered down if management or WoL is active.
3834  */
3835 static void e1000_power_down_phy(struct e1000_adapter *adapter)
3836 {
3837 	if (adapter->hw.phy.ops.power_down)
3838 		adapter->hw.phy.ops.power_down(&adapter->hw);
3839 }
3840 
3841 /**
3842  * e1000_flush_tx_ring - remove all descriptors from the tx_ring
3843  * @adapter: board private structure
3844  *
3845  * We want to clear all pending descriptors from the TX ring.
3846  * zeroing happens when the HW reads the regs. We  assign the ring itself as
3847  * the data of the next descriptor. We don't care about the data we are about
3848  * to reset the HW.
3849  */
3850 static void e1000_flush_tx_ring(struct e1000_adapter *adapter)
3851 {
3852 	struct e1000_hw *hw = &adapter->hw;
3853 	struct e1000_ring *tx_ring = adapter->tx_ring;
3854 	struct e1000_tx_desc *tx_desc = NULL;
3855 	u32 tdt, tctl, txd_lower = E1000_TXD_CMD_IFCS;
3856 	u16 size = 512;
3857 
3858 	tctl = er32(TCTL);
3859 	ew32(TCTL, tctl | E1000_TCTL_EN);
3860 	tdt = er32(TDT(0));
3861 	BUG_ON(tdt != tx_ring->next_to_use);
3862 	tx_desc =  E1000_TX_DESC(*tx_ring, tx_ring->next_to_use);
3863 	tx_desc->buffer_addr = cpu_to_le64(tx_ring->dma);
3864 
3865 	tx_desc->lower.data = cpu_to_le32(txd_lower | size);
3866 	tx_desc->upper.data = 0;
3867 	/* flush descriptors to memory before notifying the HW */
3868 	wmb();
3869 	tx_ring->next_to_use++;
3870 	if (tx_ring->next_to_use == tx_ring->count)
3871 		tx_ring->next_to_use = 0;
3872 	ew32(TDT(0), tx_ring->next_to_use);
3873 	usleep_range(200, 250);
3874 }
3875 
3876 /**
3877  * e1000_flush_rx_ring - remove all descriptors from the rx_ring
3878  * @adapter: board private structure
3879  *
3880  * Mark all descriptors in the RX ring as consumed and disable the rx ring
3881  */
3882 static void e1000_flush_rx_ring(struct e1000_adapter *adapter)
3883 {
3884 	u32 rctl, rxdctl;
3885 	struct e1000_hw *hw = &adapter->hw;
3886 
3887 	rctl = er32(RCTL);
3888 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
3889 	e1e_flush();
3890 	usleep_range(100, 150);
3891 
3892 	rxdctl = er32(RXDCTL(0));
3893 	/* zero the lower 14 bits (prefetch and host thresholds) */
3894 	rxdctl &= 0xffffc000;
3895 
3896 	/* update thresholds: prefetch threshold to 31, host threshold to 1
3897 	 * and make sure the granularity is "descriptors" and not "cache lines"
3898 	 */
3899 	rxdctl |= (0x1F | BIT(8) | E1000_RXDCTL_THRESH_UNIT_DESC);
3900 
3901 	ew32(RXDCTL(0), rxdctl);
3902 	/* momentarily enable the RX ring for the changes to take effect */
3903 	ew32(RCTL, rctl | E1000_RCTL_EN);
3904 	e1e_flush();
3905 	usleep_range(100, 150);
3906 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
3907 }
3908 
3909 /**
3910  * e1000_flush_desc_rings - remove all descriptors from the descriptor rings
3911  * @adapter: board private structure
3912  *
3913  * In i219, the descriptor rings must be emptied before resetting the HW
3914  * or before changing the device state to D3 during runtime (runtime PM).
3915  *
3916  * Failure to do this will cause the HW to enter a unit hang state which can
3917  * only be released by PCI reset on the device
3918  *
3919  */
3920 
3921 static void e1000_flush_desc_rings(struct e1000_adapter *adapter)
3922 {
3923 	u16 hang_state;
3924 	u32 fext_nvm11, tdlen;
3925 	struct e1000_hw *hw = &adapter->hw;
3926 
3927 	/* First, disable MULR fix in FEXTNVM11 */
3928 	fext_nvm11 = er32(FEXTNVM11);
3929 	fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
3930 	ew32(FEXTNVM11, fext_nvm11);
3931 	/* do nothing if we're not in faulty state, or if the queue is empty */
3932 	tdlen = er32(TDLEN(0));
3933 	pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3934 			     &hang_state);
3935 	if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen)
3936 		return;
3937 	e1000_flush_tx_ring(adapter);
3938 	/* recheck, maybe the fault is caused by the rx ring */
3939 	pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3940 			     &hang_state);
3941 	if (hang_state & FLUSH_DESC_REQUIRED)
3942 		e1000_flush_rx_ring(adapter);
3943 }
3944 
3945 /**
3946  * e1000e_systim_reset - reset the timesync registers after a hardware reset
3947  * @adapter: board private structure
3948  *
3949  * When the MAC is reset, all hardware bits for timesync will be reset to the
3950  * default values. This function will restore the settings last in place.
3951  * Since the clock SYSTIME registers are reset, we will simply restore the
3952  * cyclecounter to the kernel real clock time.
3953  **/
3954 static void e1000e_systim_reset(struct e1000_adapter *adapter)
3955 {
3956 	struct ptp_clock_info *info = &adapter->ptp_clock_info;
3957 	struct e1000_hw *hw = &adapter->hw;
3958 	unsigned long flags;
3959 	u32 timinca;
3960 	s32 ret_val;
3961 
3962 	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3963 		return;
3964 
3965 	if (info->adjfreq) {
3966 		/* restore the previous ptp frequency delta */
3967 		ret_val = info->adjfreq(info, adapter->ptp_delta);
3968 	} else {
3969 		/* set the default base frequency if no adjustment possible */
3970 		ret_val = e1000e_get_base_timinca(adapter, &timinca);
3971 		if (!ret_val)
3972 			ew32(TIMINCA, timinca);
3973 	}
3974 
3975 	if (ret_val) {
3976 		dev_warn(&adapter->pdev->dev,
3977 			 "Failed to restore TIMINCA clock rate delta: %d\n",
3978 			 ret_val);
3979 		return;
3980 	}
3981 
3982 	/* reset the systim ns time counter */
3983 	spin_lock_irqsave(&adapter->systim_lock, flags);
3984 	timecounter_init(&adapter->tc, &adapter->cc,
3985 			 ktime_to_ns(ktime_get_real()));
3986 	spin_unlock_irqrestore(&adapter->systim_lock, flags);
3987 
3988 	/* restore the previous hwtstamp configuration settings */
3989 	e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config);
3990 }
3991 
3992 /**
3993  * e1000e_reset - bring the hardware into a known good state
3994  * @adapter: board private structure
3995  *
3996  * This function boots the hardware and enables some settings that
3997  * require a configuration cycle of the hardware - those cannot be
3998  * set/changed during runtime. After reset the device needs to be
3999  * properly configured for Rx, Tx etc.
4000  */
4001 void e1000e_reset(struct e1000_adapter *adapter)
4002 {
4003 	struct e1000_mac_info *mac = &adapter->hw.mac;
4004 	struct e1000_fc_info *fc = &adapter->hw.fc;
4005 	struct e1000_hw *hw = &adapter->hw;
4006 	u32 tx_space, min_tx_space, min_rx_space;
4007 	u32 pba = adapter->pba;
4008 	u16 hwm;
4009 
4010 	/* reset Packet Buffer Allocation to default */
4011 	ew32(PBA, pba);
4012 
4013 	if (adapter->max_frame_size > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) {
4014 		/* To maintain wire speed transmits, the Tx FIFO should be
4015 		 * large enough to accommodate two full transmit packets,
4016 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
4017 		 * the Rx FIFO should be large enough to accommodate at least
4018 		 * one full receive packet and is similarly rounded up and
4019 		 * expressed in KB.
4020 		 */
4021 		pba = er32(PBA);
4022 		/* upper 16 bits has Tx packet buffer allocation size in KB */
4023 		tx_space = pba >> 16;
4024 		/* lower 16 bits has Rx packet buffer allocation size in KB */
4025 		pba &= 0xffff;
4026 		/* the Tx fifo also stores 16 bytes of information about the Tx
4027 		 * but don't include ethernet FCS because hardware appends it
4028 		 */
4029 		min_tx_space = (adapter->max_frame_size +
4030 				sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2;
4031 		min_tx_space = ALIGN(min_tx_space, 1024);
4032 		min_tx_space >>= 10;
4033 		/* software strips receive CRC, so leave room for it */
4034 		min_rx_space = adapter->max_frame_size;
4035 		min_rx_space = ALIGN(min_rx_space, 1024);
4036 		min_rx_space >>= 10;
4037 
4038 		/* If current Tx allocation is less than the min Tx FIFO size,
4039 		 * and the min Tx FIFO size is less than the current Rx FIFO
4040 		 * allocation, take space away from current Rx allocation
4041 		 */
4042 		if ((tx_space < min_tx_space) &&
4043 		    ((min_tx_space - tx_space) < pba)) {
4044 			pba -= min_tx_space - tx_space;
4045 
4046 			/* if short on Rx space, Rx wins and must trump Tx
4047 			 * adjustment
4048 			 */
4049 			if (pba < min_rx_space)
4050 				pba = min_rx_space;
4051 		}
4052 
4053 		ew32(PBA, pba);
4054 	}
4055 
4056 	/* flow control settings
4057 	 *
4058 	 * The high water mark must be low enough to fit one full frame
4059 	 * (or the size used for early receive) above it in the Rx FIFO.
4060 	 * Set it to the lower of:
4061 	 * - 90% of the Rx FIFO size, and
4062 	 * - the full Rx FIFO size minus one full frame
4063 	 */
4064 	if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
4065 		fc->pause_time = 0xFFFF;
4066 	else
4067 		fc->pause_time = E1000_FC_PAUSE_TIME;
4068 	fc->send_xon = true;
4069 	fc->current_mode = fc->requested_mode;
4070 
4071 	switch (hw->mac.type) {
4072 	case e1000_ich9lan:
4073 	case e1000_ich10lan:
4074 		if (adapter->netdev->mtu > ETH_DATA_LEN) {
4075 			pba = 14;
4076 			ew32(PBA, pba);
4077 			fc->high_water = 0x2800;
4078 			fc->low_water = fc->high_water - 8;
4079 			break;
4080 		}
4081 		fallthrough;
4082 	default:
4083 		hwm = min(((pba << 10) * 9 / 10),
4084 			  ((pba << 10) - adapter->max_frame_size));
4085 
4086 		fc->high_water = hwm & E1000_FCRTH_RTH;	/* 8-byte granularity */
4087 		fc->low_water = fc->high_water - 8;
4088 		break;
4089 	case e1000_pchlan:
4090 		/* Workaround PCH LOM adapter hangs with certain network
4091 		 * loads.  If hangs persist, try disabling Tx flow control.
4092 		 */
4093 		if (adapter->netdev->mtu > ETH_DATA_LEN) {
4094 			fc->high_water = 0x3500;
4095 			fc->low_water = 0x1500;
4096 		} else {
4097 			fc->high_water = 0x5000;
4098 			fc->low_water = 0x3000;
4099 		}
4100 		fc->refresh_time = 0x1000;
4101 		break;
4102 	case e1000_pch2lan:
4103 	case e1000_pch_lpt:
4104 	case e1000_pch_spt:
4105 	case e1000_pch_cnp:
4106 	case e1000_pch_tgp:
4107 	case e1000_pch_adp:
4108 	case e1000_pch_mtp:
4109 		fc->refresh_time = 0xFFFF;
4110 		fc->pause_time = 0xFFFF;
4111 
4112 		if (adapter->netdev->mtu <= ETH_DATA_LEN) {
4113 			fc->high_water = 0x05C20;
4114 			fc->low_water = 0x05048;
4115 			break;
4116 		}
4117 
4118 		pba = 14;
4119 		ew32(PBA, pba);
4120 		fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH;
4121 		fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL;
4122 		break;
4123 	}
4124 
4125 	/* Alignment of Tx data is on an arbitrary byte boundary with the
4126 	 * maximum size per Tx descriptor limited only to the transmit
4127 	 * allocation of the packet buffer minus 96 bytes with an upper
4128 	 * limit of 24KB due to receive synchronization limitations.
4129 	 */
4130 	adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
4131 				       24 << 10);
4132 
4133 	/* Disable Adaptive Interrupt Moderation if 2 full packets cannot
4134 	 * fit in receive buffer.
4135 	 */
4136 	if (adapter->itr_setting & 0x3) {
4137 		if ((adapter->max_frame_size * 2) > (pba << 10)) {
4138 			if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
4139 				dev_info(&adapter->pdev->dev,
4140 					 "Interrupt Throttle Rate off\n");
4141 				adapter->flags2 |= FLAG2_DISABLE_AIM;
4142 				e1000e_write_itr(adapter, 0);
4143 			}
4144 		} else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
4145 			dev_info(&adapter->pdev->dev,
4146 				 "Interrupt Throttle Rate on\n");
4147 			adapter->flags2 &= ~FLAG2_DISABLE_AIM;
4148 			adapter->itr = 20000;
4149 			e1000e_write_itr(adapter, adapter->itr);
4150 		}
4151 	}
4152 
4153 	if (hw->mac.type >= e1000_pch_spt)
4154 		e1000_flush_desc_rings(adapter);
4155 	/* Allow time for pending master requests to run */
4156 	mac->ops.reset_hw(hw);
4157 
4158 	/* For parts with AMT enabled, let the firmware know
4159 	 * that the network interface is in control
4160 	 */
4161 	if (adapter->flags & FLAG_HAS_AMT)
4162 		e1000e_get_hw_control(adapter);
4163 
4164 	ew32(WUC, 0);
4165 
4166 	if (mac->ops.init_hw(hw))
4167 		e_err("Hardware Error\n");
4168 
4169 	e1000_update_mng_vlan(adapter);
4170 
4171 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
4172 	ew32(VET, ETH_P_8021Q);
4173 
4174 	e1000e_reset_adaptive(hw);
4175 
4176 	/* restore systim and hwtstamp settings */
4177 	e1000e_systim_reset(adapter);
4178 
4179 	/* Set EEE advertisement as appropriate */
4180 	if (adapter->flags2 & FLAG2_HAS_EEE) {
4181 		s32 ret_val;
4182 		u16 adv_addr;
4183 
4184 		switch (hw->phy.type) {
4185 		case e1000_phy_82579:
4186 			adv_addr = I82579_EEE_ADVERTISEMENT;
4187 			break;
4188 		case e1000_phy_i217:
4189 			adv_addr = I217_EEE_ADVERTISEMENT;
4190 			break;
4191 		default:
4192 			dev_err(&adapter->pdev->dev,
4193 				"Invalid PHY type setting EEE advertisement\n");
4194 			return;
4195 		}
4196 
4197 		ret_val = hw->phy.ops.acquire(hw);
4198 		if (ret_val) {
4199 			dev_err(&adapter->pdev->dev,
4200 				"EEE advertisement - unable to acquire PHY\n");
4201 			return;
4202 		}
4203 
4204 		e1000_write_emi_reg_locked(hw, adv_addr,
4205 					   hw->dev_spec.ich8lan.eee_disable ?
4206 					   0 : adapter->eee_advert);
4207 
4208 		hw->phy.ops.release(hw);
4209 	}
4210 
4211 	if (!netif_running(adapter->netdev) &&
4212 	    !test_bit(__E1000_TESTING, &adapter->state))
4213 		e1000_power_down_phy(adapter);
4214 
4215 	e1000_get_phy_info(hw);
4216 
4217 	if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
4218 	    !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
4219 		u16 phy_data = 0;
4220 		/* speed up time to link by disabling smart power down, ignore
4221 		 * the return value of this function because there is nothing
4222 		 * different we would do if it failed
4223 		 */
4224 		e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
4225 		phy_data &= ~IGP02E1000_PM_SPD;
4226 		e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
4227 	}
4228 	if (hw->mac.type >= e1000_pch_spt && adapter->int_mode == 0) {
4229 		u32 reg;
4230 
4231 		/* Fextnvm7 @ 0xe4[2] = 1 */
4232 		reg = er32(FEXTNVM7);
4233 		reg |= E1000_FEXTNVM7_SIDE_CLK_UNGATE;
4234 		ew32(FEXTNVM7, reg);
4235 		/* Fextnvm9 @ 0x5bb4[13:12] = 11 */
4236 		reg = er32(FEXTNVM9);
4237 		reg |= E1000_FEXTNVM9_IOSFSB_CLKGATE_DIS |
4238 		       E1000_FEXTNVM9_IOSFSB_CLKREQ_DIS;
4239 		ew32(FEXTNVM9, reg);
4240 	}
4241 
4242 }
4243 
4244 /**
4245  * e1000e_trigger_lsc - trigger an LSC interrupt
4246  * @adapter:
4247  *
4248  * Fire a link status change interrupt to start the watchdog.
4249  **/
4250 static void e1000e_trigger_lsc(struct e1000_adapter *adapter)
4251 {
4252 	struct e1000_hw *hw = &adapter->hw;
4253 
4254 	if (adapter->msix_entries)
4255 		ew32(ICS, E1000_ICS_LSC | E1000_ICS_OTHER);
4256 	else
4257 		ew32(ICS, E1000_ICS_LSC);
4258 }
4259 
4260 void e1000e_up(struct e1000_adapter *adapter)
4261 {
4262 	/* hardware has been reset, we need to reload some things */
4263 	e1000_configure(adapter);
4264 
4265 	clear_bit(__E1000_DOWN, &adapter->state);
4266 
4267 	if (adapter->msix_entries)
4268 		e1000_configure_msix(adapter);
4269 	e1000_irq_enable(adapter);
4270 
4271 	/* Tx queue started by watchdog timer when link is up */
4272 
4273 	e1000e_trigger_lsc(adapter);
4274 }
4275 
4276 static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
4277 {
4278 	struct e1000_hw *hw = &adapter->hw;
4279 
4280 	if (!(adapter->flags2 & FLAG2_DMA_BURST))
4281 		return;
4282 
4283 	/* flush pending descriptor writebacks to memory */
4284 	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4285 	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4286 
4287 	/* execute the writes immediately */
4288 	e1e_flush();
4289 
4290 	/* due to rare timing issues, write to TIDV/RDTR again to ensure the
4291 	 * write is successful
4292 	 */
4293 	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4294 	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4295 
4296 	/* execute the writes immediately */
4297 	e1e_flush();
4298 }
4299 
4300 static void e1000e_update_stats(struct e1000_adapter *adapter);
4301 
4302 /**
4303  * e1000e_down - quiesce the device and optionally reset the hardware
4304  * @adapter: board private structure
4305  * @reset: boolean flag to reset the hardware or not
4306  */
4307 void e1000e_down(struct e1000_adapter *adapter, bool reset)
4308 {
4309 	struct net_device *netdev = adapter->netdev;
4310 	struct e1000_hw *hw = &adapter->hw;
4311 	u32 tctl, rctl;
4312 
4313 	/* signal that we're down so the interrupt handler does not
4314 	 * reschedule our watchdog timer
4315 	 */
4316 	set_bit(__E1000_DOWN, &adapter->state);
4317 
4318 	netif_carrier_off(netdev);
4319 
4320 	/* disable receives in the hardware */
4321 	rctl = er32(RCTL);
4322 	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
4323 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
4324 	/* flush and sleep below */
4325 
4326 	netif_stop_queue(netdev);
4327 
4328 	/* disable transmits in the hardware */
4329 	tctl = er32(TCTL);
4330 	tctl &= ~E1000_TCTL_EN;
4331 	ew32(TCTL, tctl);
4332 
4333 	/* flush both disables and wait for them to finish */
4334 	e1e_flush();
4335 	usleep_range(10000, 11000);
4336 
4337 	e1000_irq_disable(adapter);
4338 
4339 	napi_synchronize(&adapter->napi);
4340 
4341 	del_timer_sync(&adapter->watchdog_timer);
4342 	del_timer_sync(&adapter->phy_info_timer);
4343 
4344 	spin_lock(&adapter->stats64_lock);
4345 	e1000e_update_stats(adapter);
4346 	spin_unlock(&adapter->stats64_lock);
4347 
4348 	e1000e_flush_descriptors(adapter);
4349 
4350 	adapter->link_speed = 0;
4351 	adapter->link_duplex = 0;
4352 
4353 	/* Disable Si errata workaround on PCHx for jumbo frame flow */
4354 	if ((hw->mac.type >= e1000_pch2lan) &&
4355 	    (adapter->netdev->mtu > ETH_DATA_LEN) &&
4356 	    e1000_lv_jumbo_workaround_ich8lan(hw, false))
4357 		e_dbg("failed to disable jumbo frame workaround mode\n");
4358 
4359 	if (!pci_channel_offline(adapter->pdev)) {
4360 		if (reset)
4361 			e1000e_reset(adapter);
4362 		else if (hw->mac.type >= e1000_pch_spt)
4363 			e1000_flush_desc_rings(adapter);
4364 	}
4365 	e1000_clean_tx_ring(adapter->tx_ring);
4366 	e1000_clean_rx_ring(adapter->rx_ring);
4367 }
4368 
4369 void e1000e_reinit_locked(struct e1000_adapter *adapter)
4370 {
4371 	might_sleep();
4372 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4373 		usleep_range(1000, 1100);
4374 	e1000e_down(adapter, true);
4375 	e1000e_up(adapter);
4376 	clear_bit(__E1000_RESETTING, &adapter->state);
4377 }
4378 
4379 /**
4380  * e1000e_sanitize_systim - sanitize raw cycle counter reads
4381  * @hw: pointer to the HW structure
4382  * @systim: PHC time value read, sanitized and returned
4383  * @sts: structure to hold system time before and after reading SYSTIML,
4384  * may be NULL
4385  *
4386  * Errata for 82574/82583 possible bad bits read from SYSTIMH/L:
4387  * check to see that the time is incrementing at a reasonable
4388  * rate and is a multiple of incvalue.
4389  **/
4390 static u64 e1000e_sanitize_systim(struct e1000_hw *hw, u64 systim,
4391 				  struct ptp_system_timestamp *sts)
4392 {
4393 	u64 time_delta, rem, temp;
4394 	u64 systim_next;
4395 	u32 incvalue;
4396 	int i;
4397 
4398 	incvalue = er32(TIMINCA) & E1000_TIMINCA_INCVALUE_MASK;
4399 	for (i = 0; i < E1000_MAX_82574_SYSTIM_REREADS; i++) {
4400 		/* latch SYSTIMH on read of SYSTIML */
4401 		ptp_read_system_prets(sts);
4402 		systim_next = (u64)er32(SYSTIML);
4403 		ptp_read_system_postts(sts);
4404 		systim_next |= (u64)er32(SYSTIMH) << 32;
4405 
4406 		time_delta = systim_next - systim;
4407 		temp = time_delta;
4408 		/* VMWare users have seen incvalue of zero, don't div / 0 */
4409 		rem = incvalue ? do_div(temp, incvalue) : (time_delta != 0);
4410 
4411 		systim = systim_next;
4412 
4413 		if ((time_delta < E1000_82574_SYSTIM_EPSILON) && (rem == 0))
4414 			break;
4415 	}
4416 
4417 	return systim;
4418 }
4419 
4420 /**
4421  * e1000e_read_systim - read SYSTIM register
4422  * @adapter: board private structure
4423  * @sts: structure which will contain system time before and after reading
4424  * SYSTIML, may be NULL
4425  **/
4426 u64 e1000e_read_systim(struct e1000_adapter *adapter,
4427 		       struct ptp_system_timestamp *sts)
4428 {
4429 	struct e1000_hw *hw = &adapter->hw;
4430 	u32 systimel, systimel_2, systimeh;
4431 	u64 systim;
4432 	/* SYSTIMH latching upon SYSTIML read does not work well.
4433 	 * This means that if SYSTIML overflows after we read it but before
4434 	 * we read SYSTIMH, the value of SYSTIMH has been incremented and we
4435 	 * will experience a huge non linear increment in the systime value
4436 	 * to fix that we test for overflow and if true, we re-read systime.
4437 	 */
4438 	ptp_read_system_prets(sts);
4439 	systimel = er32(SYSTIML);
4440 	ptp_read_system_postts(sts);
4441 	systimeh = er32(SYSTIMH);
4442 	/* Is systimel is so large that overflow is possible? */
4443 	if (systimel >= (u32)0xffffffff - E1000_TIMINCA_INCVALUE_MASK) {
4444 		ptp_read_system_prets(sts);
4445 		systimel_2 = er32(SYSTIML);
4446 		ptp_read_system_postts(sts);
4447 		if (systimel > systimel_2) {
4448 			/* There was an overflow, read again SYSTIMH, and use
4449 			 * systimel_2
4450 			 */
4451 			systimeh = er32(SYSTIMH);
4452 			systimel = systimel_2;
4453 		}
4454 	}
4455 	systim = (u64)systimel;
4456 	systim |= (u64)systimeh << 32;
4457 
4458 	if (adapter->flags2 & FLAG2_CHECK_SYSTIM_OVERFLOW)
4459 		systim = e1000e_sanitize_systim(hw, systim, sts);
4460 
4461 	return systim;
4462 }
4463 
4464 /**
4465  * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4466  * @cc: cyclecounter structure
4467  **/
4468 static u64 e1000e_cyclecounter_read(const struct cyclecounter *cc)
4469 {
4470 	struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter,
4471 						     cc);
4472 
4473 	return e1000e_read_systim(adapter, NULL);
4474 }
4475 
4476 /**
4477  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4478  * @adapter: board private structure to initialize
4479  *
4480  * e1000_sw_init initializes the Adapter private data structure.
4481  * Fields are initialized based on PCI device information and
4482  * OS network device settings (MTU size).
4483  **/
4484 static int e1000_sw_init(struct e1000_adapter *adapter)
4485 {
4486 	struct net_device *netdev = adapter->netdev;
4487 
4488 	adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
4489 	adapter->rx_ps_bsize0 = 128;
4490 	adapter->max_frame_size = netdev->mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
4491 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4492 	adapter->tx_ring_count = E1000_DEFAULT_TXD;
4493 	adapter->rx_ring_count = E1000_DEFAULT_RXD;
4494 
4495 	spin_lock_init(&adapter->stats64_lock);
4496 
4497 	e1000e_set_interrupt_capability(adapter);
4498 
4499 	if (e1000_alloc_queues(adapter))
4500 		return -ENOMEM;
4501 
4502 	/* Setup hardware time stamping cyclecounter */
4503 	if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
4504 		adapter->cc.read = e1000e_cyclecounter_read;
4505 		adapter->cc.mask = CYCLECOUNTER_MASK(64);
4506 		adapter->cc.mult = 1;
4507 		/* cc.shift set in e1000e_get_base_tininca() */
4508 
4509 		spin_lock_init(&adapter->systim_lock);
4510 		INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work);
4511 	}
4512 
4513 	/* Explicitly disable IRQ since the NIC can be in any state. */
4514 	e1000_irq_disable(adapter);
4515 
4516 	set_bit(__E1000_DOWN, &adapter->state);
4517 	return 0;
4518 }
4519 
4520 /**
4521  * e1000_intr_msi_test - Interrupt Handler
4522  * @irq: interrupt number
4523  * @data: pointer to a network interface device structure
4524  **/
4525 static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data)
4526 {
4527 	struct net_device *netdev = data;
4528 	struct e1000_adapter *adapter = netdev_priv(netdev);
4529 	struct e1000_hw *hw = &adapter->hw;
4530 	u32 icr = er32(ICR);
4531 
4532 	e_dbg("icr is %08X\n", icr);
4533 	if (icr & E1000_ICR_RXSEQ) {
4534 		adapter->flags &= ~FLAG_MSI_TEST_FAILED;
4535 		/* Force memory writes to complete before acknowledging the
4536 		 * interrupt is handled.
4537 		 */
4538 		wmb();
4539 	}
4540 
4541 	return IRQ_HANDLED;
4542 }
4543 
4544 /**
4545  * e1000_test_msi_interrupt - Returns 0 for successful test
4546  * @adapter: board private struct
4547  *
4548  * code flow taken from tg3.c
4549  **/
4550 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
4551 {
4552 	struct net_device *netdev = adapter->netdev;
4553 	struct e1000_hw *hw = &adapter->hw;
4554 	int err;
4555 
4556 	/* poll_enable hasn't been called yet, so don't need disable */
4557 	/* clear any pending events */
4558 	er32(ICR);
4559 
4560 	/* free the real vector and request a test handler */
4561 	e1000_free_irq(adapter);
4562 	e1000e_reset_interrupt_capability(adapter);
4563 
4564 	/* Assume that the test fails, if it succeeds then the test
4565 	 * MSI irq handler will unset this flag
4566 	 */
4567 	adapter->flags |= FLAG_MSI_TEST_FAILED;
4568 
4569 	err = pci_enable_msi(adapter->pdev);
4570 	if (err)
4571 		goto msi_test_failed;
4572 
4573 	err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
4574 			  netdev->name, netdev);
4575 	if (err) {
4576 		pci_disable_msi(adapter->pdev);
4577 		goto msi_test_failed;
4578 	}
4579 
4580 	/* Force memory writes to complete before enabling and firing an
4581 	 * interrupt.
4582 	 */
4583 	wmb();
4584 
4585 	e1000_irq_enable(adapter);
4586 
4587 	/* fire an unusual interrupt on the test handler */
4588 	ew32(ICS, E1000_ICS_RXSEQ);
4589 	e1e_flush();
4590 	msleep(100);
4591 
4592 	e1000_irq_disable(adapter);
4593 
4594 	rmb();			/* read flags after interrupt has been fired */
4595 
4596 	if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4597 		adapter->int_mode = E1000E_INT_MODE_LEGACY;
4598 		e_info("MSI interrupt test failed, using legacy interrupt.\n");
4599 	} else {
4600 		e_dbg("MSI interrupt test succeeded!\n");
4601 	}
4602 
4603 	free_irq(adapter->pdev->irq, netdev);
4604 	pci_disable_msi(adapter->pdev);
4605 
4606 msi_test_failed:
4607 	e1000e_set_interrupt_capability(adapter);
4608 	return e1000_request_irq(adapter);
4609 }
4610 
4611 /**
4612  * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4613  * @adapter: board private struct
4614  *
4615  * code flow taken from tg3.c, called with e1000 interrupts disabled.
4616  **/
4617 static int e1000_test_msi(struct e1000_adapter *adapter)
4618 {
4619 	int err;
4620 	u16 pci_cmd;
4621 
4622 	if (!(adapter->flags & FLAG_MSI_ENABLED))
4623 		return 0;
4624 
4625 	/* disable SERR in case the MSI write causes a master abort */
4626 	pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4627 	if (pci_cmd & PCI_COMMAND_SERR)
4628 		pci_write_config_word(adapter->pdev, PCI_COMMAND,
4629 				      pci_cmd & ~PCI_COMMAND_SERR);
4630 
4631 	err = e1000_test_msi_interrupt(adapter);
4632 
4633 	/* re-enable SERR */
4634 	if (pci_cmd & PCI_COMMAND_SERR) {
4635 		pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4636 		pci_cmd |= PCI_COMMAND_SERR;
4637 		pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
4638 	}
4639 
4640 	return err;
4641 }
4642 
4643 /**
4644  * e1000e_open - Called when a network interface is made active
4645  * @netdev: network interface device structure
4646  *
4647  * Returns 0 on success, negative value on failure
4648  *
4649  * The open entry point is called when a network interface is made
4650  * active by the system (IFF_UP).  At this point all resources needed
4651  * for transmit and receive operations are allocated, the interrupt
4652  * handler is registered with the OS, the watchdog timer is started,
4653  * and the stack is notified that the interface is ready.
4654  **/
4655 int e1000e_open(struct net_device *netdev)
4656 {
4657 	struct e1000_adapter *adapter = netdev_priv(netdev);
4658 	struct e1000_hw *hw = &adapter->hw;
4659 	struct pci_dev *pdev = adapter->pdev;
4660 	int err;
4661 
4662 	/* disallow open during test */
4663 	if (test_bit(__E1000_TESTING, &adapter->state))
4664 		return -EBUSY;
4665 
4666 	pm_runtime_get_sync(&pdev->dev);
4667 
4668 	netif_carrier_off(netdev);
4669 	netif_stop_queue(netdev);
4670 
4671 	/* allocate transmit descriptors */
4672 	err = e1000e_setup_tx_resources(adapter->tx_ring);
4673 	if (err)
4674 		goto err_setup_tx;
4675 
4676 	/* allocate receive descriptors */
4677 	err = e1000e_setup_rx_resources(adapter->rx_ring);
4678 	if (err)
4679 		goto err_setup_rx;
4680 
4681 	/* If AMT is enabled, let the firmware know that the network
4682 	 * interface is now open and reset the part to a known state.
4683 	 */
4684 	if (adapter->flags & FLAG_HAS_AMT) {
4685 		e1000e_get_hw_control(adapter);
4686 		e1000e_reset(adapter);
4687 	}
4688 
4689 	e1000e_power_up_phy(adapter);
4690 
4691 	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4692 	if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
4693 		e1000_update_mng_vlan(adapter);
4694 
4695 	/* DMA latency requirement to workaround jumbo issue */
4696 	cpu_latency_qos_add_request(&adapter->pm_qos_req, PM_QOS_DEFAULT_VALUE);
4697 
4698 	/* before we allocate an interrupt, we must be ready to handle it.
4699 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4700 	 * as soon as we call pci_request_irq, so we have to setup our
4701 	 * clean_rx handler before we do so.
4702 	 */
4703 	e1000_configure(adapter);
4704 
4705 	err = e1000_request_irq(adapter);
4706 	if (err)
4707 		goto err_req_irq;
4708 
4709 	/* Work around PCIe errata with MSI interrupts causing some chipsets to
4710 	 * ignore e1000e MSI messages, which means we need to test our MSI
4711 	 * interrupt now
4712 	 */
4713 	if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
4714 		err = e1000_test_msi(adapter);
4715 		if (err) {
4716 			e_err("Interrupt allocation failed\n");
4717 			goto err_req_irq;
4718 		}
4719 	}
4720 
4721 	/* From here on the code is the same as e1000e_up() */
4722 	clear_bit(__E1000_DOWN, &adapter->state);
4723 
4724 	napi_enable(&adapter->napi);
4725 
4726 	e1000_irq_enable(adapter);
4727 
4728 	adapter->tx_hang_recheck = false;
4729 
4730 	hw->mac.get_link_status = true;
4731 	pm_runtime_put(&pdev->dev);
4732 
4733 	e1000e_trigger_lsc(adapter);
4734 
4735 	return 0;
4736 
4737 err_req_irq:
4738 	cpu_latency_qos_remove_request(&adapter->pm_qos_req);
4739 	e1000e_release_hw_control(adapter);
4740 	e1000_power_down_phy(adapter);
4741 	e1000e_free_rx_resources(adapter->rx_ring);
4742 err_setup_rx:
4743 	e1000e_free_tx_resources(adapter->tx_ring);
4744 err_setup_tx:
4745 	e1000e_reset(adapter);
4746 	pm_runtime_put_sync(&pdev->dev);
4747 
4748 	return err;
4749 }
4750 
4751 /**
4752  * e1000e_close - Disables a network interface
4753  * @netdev: network interface device structure
4754  *
4755  * Returns 0, this is not allowed to fail
4756  *
4757  * The close entry point is called when an interface is de-activated
4758  * by the OS.  The hardware is still under the drivers control, but
4759  * needs to be disabled.  A global MAC reset is issued to stop the
4760  * hardware, and all transmit and receive resources are freed.
4761  **/
4762 int e1000e_close(struct net_device *netdev)
4763 {
4764 	struct e1000_adapter *adapter = netdev_priv(netdev);
4765 	struct pci_dev *pdev = adapter->pdev;
4766 	int count = E1000_CHECK_RESET_COUNT;
4767 
4768 	while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
4769 		usleep_range(10000, 11000);
4770 
4771 	WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4772 
4773 	pm_runtime_get_sync(&pdev->dev);
4774 
4775 	if (netif_device_present(netdev)) {
4776 		e1000e_down(adapter, true);
4777 		e1000_free_irq(adapter);
4778 
4779 		/* Link status message must follow this format */
4780 		netdev_info(netdev, "NIC Link is Down\n");
4781 	}
4782 
4783 	napi_disable(&adapter->napi);
4784 
4785 	e1000e_free_tx_resources(adapter->tx_ring);
4786 	e1000e_free_rx_resources(adapter->rx_ring);
4787 
4788 	/* kill manageability vlan ID if supported, but not if a vlan with
4789 	 * the same ID is registered on the host OS (let 8021q kill it)
4790 	 */
4791 	if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
4792 		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
4793 				       adapter->mng_vlan_id);
4794 
4795 	/* If AMT is enabled, let the firmware know that the network
4796 	 * interface is now closed
4797 	 */
4798 	if ((adapter->flags & FLAG_HAS_AMT) &&
4799 	    !test_bit(__E1000_TESTING, &adapter->state))
4800 		e1000e_release_hw_control(adapter);
4801 
4802 	cpu_latency_qos_remove_request(&adapter->pm_qos_req);
4803 
4804 	pm_runtime_put_sync(&pdev->dev);
4805 
4806 	return 0;
4807 }
4808 
4809 /**
4810  * e1000_set_mac - Change the Ethernet Address of the NIC
4811  * @netdev: network interface device structure
4812  * @p: pointer to an address structure
4813  *
4814  * Returns 0 on success, negative on failure
4815  **/
4816 static int e1000_set_mac(struct net_device *netdev, void *p)
4817 {
4818 	struct e1000_adapter *adapter = netdev_priv(netdev);
4819 	struct e1000_hw *hw = &adapter->hw;
4820 	struct sockaddr *addr = p;
4821 
4822 	if (!is_valid_ether_addr(addr->sa_data))
4823 		return -EADDRNOTAVAIL;
4824 
4825 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4826 	memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4827 
4828 	hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4829 
4830 	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4831 		/* activate the work around */
4832 		e1000e_set_laa_state_82571(&adapter->hw, 1);
4833 
4834 		/* Hold a copy of the LAA in RAR[14] This is done so that
4835 		 * between the time RAR[0] gets clobbered  and the time it
4836 		 * gets fixed (in e1000_watchdog), the actual LAA is in one
4837 		 * of the RARs and no incoming packets directed to this port
4838 		 * are dropped. Eventually the LAA will be in RAR[0] and
4839 		 * RAR[14]
4840 		 */
4841 		hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4842 				    adapter->hw.mac.rar_entry_count - 1);
4843 	}
4844 
4845 	return 0;
4846 }
4847 
4848 /**
4849  * e1000e_update_phy_task - work thread to update phy
4850  * @work: pointer to our work struct
4851  *
4852  * this worker thread exists because we must acquire a
4853  * semaphore to read the phy, which we could msleep while
4854  * waiting for it, and we can't msleep in a timer.
4855  **/
4856 static void e1000e_update_phy_task(struct work_struct *work)
4857 {
4858 	struct e1000_adapter *adapter = container_of(work,
4859 						     struct e1000_adapter,
4860 						     update_phy_task);
4861 	struct e1000_hw *hw = &adapter->hw;
4862 
4863 	if (test_bit(__E1000_DOWN, &adapter->state))
4864 		return;
4865 
4866 	e1000_get_phy_info(hw);
4867 
4868 	/* Enable EEE on 82579 after link up */
4869 	if (hw->phy.type >= e1000_phy_82579)
4870 		e1000_set_eee_pchlan(hw);
4871 }
4872 
4873 /**
4874  * e1000_update_phy_info - timre call-back to update PHY info
4875  * @t: pointer to timer_list containing private info adapter
4876  *
4877  * Need to wait a few seconds after link up to get diagnostic information from
4878  * the phy
4879  **/
4880 static void e1000_update_phy_info(struct timer_list *t)
4881 {
4882 	struct e1000_adapter *adapter = from_timer(adapter, t, phy_info_timer);
4883 
4884 	if (test_bit(__E1000_DOWN, &adapter->state))
4885 		return;
4886 
4887 	schedule_work(&adapter->update_phy_task);
4888 }
4889 
4890 /**
4891  * e1000e_update_phy_stats - Update the PHY statistics counters
4892  * @adapter: board private structure
4893  *
4894  * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4895  **/
4896 static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4897 {
4898 	struct e1000_hw *hw = &adapter->hw;
4899 	s32 ret_val;
4900 	u16 phy_data;
4901 
4902 	ret_val = hw->phy.ops.acquire(hw);
4903 	if (ret_val)
4904 		return;
4905 
4906 	/* A page set is expensive so check if already on desired page.
4907 	 * If not, set to the page with the PHY status registers.
4908 	 */
4909 	hw->phy.addr = 1;
4910 	ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4911 					   &phy_data);
4912 	if (ret_val)
4913 		goto release;
4914 	if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4915 		ret_val = hw->phy.ops.set_page(hw,
4916 					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
4917 		if (ret_val)
4918 			goto release;
4919 	}
4920 
4921 	/* Single Collision Count */
4922 	hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4923 	ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4924 	if (!ret_val)
4925 		adapter->stats.scc += phy_data;
4926 
4927 	/* Excessive Collision Count */
4928 	hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4929 	ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4930 	if (!ret_val)
4931 		adapter->stats.ecol += phy_data;
4932 
4933 	/* Multiple Collision Count */
4934 	hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4935 	ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4936 	if (!ret_val)
4937 		adapter->stats.mcc += phy_data;
4938 
4939 	/* Late Collision Count */
4940 	hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4941 	ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4942 	if (!ret_val)
4943 		adapter->stats.latecol += phy_data;
4944 
4945 	/* Collision Count - also used for adaptive IFS */
4946 	hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4947 	ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4948 	if (!ret_val)
4949 		hw->mac.collision_delta = phy_data;
4950 
4951 	/* Defer Count */
4952 	hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4953 	ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4954 	if (!ret_val)
4955 		adapter->stats.dc += phy_data;
4956 
4957 	/* Transmit with no CRS */
4958 	hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4959 	ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4960 	if (!ret_val)
4961 		adapter->stats.tncrs += phy_data;
4962 
4963 release:
4964 	hw->phy.ops.release(hw);
4965 }
4966 
4967 /**
4968  * e1000e_update_stats - Update the board statistics counters
4969  * @adapter: board private structure
4970  **/
4971 static void e1000e_update_stats(struct e1000_adapter *adapter)
4972 {
4973 	struct net_device *netdev = adapter->netdev;
4974 	struct e1000_hw *hw = &adapter->hw;
4975 	struct pci_dev *pdev = adapter->pdev;
4976 
4977 	/* Prevent stats update while adapter is being reset, or if the pci
4978 	 * connection is down.
4979 	 */
4980 	if (adapter->link_speed == 0)
4981 		return;
4982 	if (pci_channel_offline(pdev))
4983 		return;
4984 
4985 	adapter->stats.crcerrs += er32(CRCERRS);
4986 	adapter->stats.gprc += er32(GPRC);
4987 	adapter->stats.gorc += er32(GORCL);
4988 	er32(GORCH);		/* Clear gorc */
4989 	adapter->stats.bprc += er32(BPRC);
4990 	adapter->stats.mprc += er32(MPRC);
4991 	adapter->stats.roc += er32(ROC);
4992 
4993 	adapter->stats.mpc += er32(MPC);
4994 
4995 	/* Half-duplex statistics */
4996 	if (adapter->link_duplex == HALF_DUPLEX) {
4997 		if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4998 			e1000e_update_phy_stats(adapter);
4999 		} else {
5000 			adapter->stats.scc += er32(SCC);
5001 			adapter->stats.ecol += er32(ECOL);
5002 			adapter->stats.mcc += er32(MCC);
5003 			adapter->stats.latecol += er32(LATECOL);
5004 			adapter->stats.dc += er32(DC);
5005 
5006 			hw->mac.collision_delta = er32(COLC);
5007 
5008 			if ((hw->mac.type != e1000_82574) &&
5009 			    (hw->mac.type != e1000_82583))
5010 				adapter->stats.tncrs += er32(TNCRS);
5011 		}
5012 		adapter->stats.colc += hw->mac.collision_delta;
5013 	}
5014 
5015 	adapter->stats.xonrxc += er32(XONRXC);
5016 	adapter->stats.xontxc += er32(XONTXC);
5017 	adapter->stats.xoffrxc += er32(XOFFRXC);
5018 	adapter->stats.xofftxc += er32(XOFFTXC);
5019 	adapter->stats.gptc += er32(GPTC);
5020 	adapter->stats.gotc += er32(GOTCL);
5021 	er32(GOTCH);		/* Clear gotc */
5022 	adapter->stats.rnbc += er32(RNBC);
5023 	adapter->stats.ruc += er32(RUC);
5024 
5025 	adapter->stats.mptc += er32(MPTC);
5026 	adapter->stats.bptc += er32(BPTC);
5027 
5028 	/* used for adaptive IFS */
5029 
5030 	hw->mac.tx_packet_delta = er32(TPT);
5031 	adapter->stats.tpt += hw->mac.tx_packet_delta;
5032 
5033 	adapter->stats.algnerrc += er32(ALGNERRC);
5034 	adapter->stats.rxerrc += er32(RXERRC);
5035 	adapter->stats.cexterr += er32(CEXTERR);
5036 	adapter->stats.tsctc += er32(TSCTC);
5037 	adapter->stats.tsctfc += er32(TSCTFC);
5038 
5039 	/* Fill out the OS statistics structure */
5040 	netdev->stats.multicast = adapter->stats.mprc;
5041 	netdev->stats.collisions = adapter->stats.colc;
5042 
5043 	/* Rx Errors */
5044 
5045 	/* RLEC on some newer hardware can be incorrect so build
5046 	 * our own version based on RUC and ROC
5047 	 */
5048 	netdev->stats.rx_errors = adapter->stats.rxerrc +
5049 	    adapter->stats.crcerrs + adapter->stats.algnerrc +
5050 	    adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5051 	netdev->stats.rx_length_errors = adapter->stats.ruc +
5052 	    adapter->stats.roc;
5053 	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
5054 	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
5055 	netdev->stats.rx_missed_errors = adapter->stats.mpc;
5056 
5057 	/* Tx Errors */
5058 	netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol;
5059 	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
5060 	netdev->stats.tx_window_errors = adapter->stats.latecol;
5061 	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
5062 
5063 	/* Tx Dropped needs to be maintained elsewhere */
5064 
5065 	/* Management Stats */
5066 	adapter->stats.mgptc += er32(MGTPTC);
5067 	adapter->stats.mgprc += er32(MGTPRC);
5068 	adapter->stats.mgpdc += er32(MGTPDC);
5069 
5070 	/* Correctable ECC Errors */
5071 	if (hw->mac.type >= e1000_pch_lpt) {
5072 		u32 pbeccsts = er32(PBECCSTS);
5073 
5074 		adapter->corr_errors +=
5075 		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
5076 		adapter->uncorr_errors +=
5077 		    (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
5078 		    E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
5079 	}
5080 }
5081 
5082 /**
5083  * e1000_phy_read_status - Update the PHY register status snapshot
5084  * @adapter: board private structure
5085  **/
5086 static void e1000_phy_read_status(struct e1000_adapter *adapter)
5087 {
5088 	struct e1000_hw *hw = &adapter->hw;
5089 	struct e1000_phy_regs *phy = &adapter->phy_regs;
5090 
5091 	if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) &&
5092 	    (er32(STATUS) & E1000_STATUS_LU) &&
5093 	    (adapter->hw.phy.media_type == e1000_media_type_copper)) {
5094 		int ret_val;
5095 
5096 		ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr);
5097 		ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr);
5098 		ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise);
5099 		ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa);
5100 		ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion);
5101 		ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000);
5102 		ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000);
5103 		ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus);
5104 		if (ret_val)
5105 			e_warn("Error reading PHY register\n");
5106 	} else {
5107 		/* Do not read PHY registers if link is not up
5108 		 * Set values to typical power-on defaults
5109 		 */
5110 		phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
5111 		phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
5112 			     BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
5113 			     BMSR_ERCAP);
5114 		phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
5115 				  ADVERTISE_ALL | ADVERTISE_CSMA);
5116 		phy->lpa = 0;
5117 		phy->expansion = EXPANSION_ENABLENPAGE;
5118 		phy->ctrl1000 = ADVERTISE_1000FULL;
5119 		phy->stat1000 = 0;
5120 		phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
5121 	}
5122 }
5123 
5124 static void e1000_print_link_info(struct e1000_adapter *adapter)
5125 {
5126 	struct e1000_hw *hw = &adapter->hw;
5127 	u32 ctrl = er32(CTRL);
5128 
5129 	/* Link status message must follow this format for user tools */
5130 	netdev_info(adapter->netdev,
5131 		    "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5132 		    adapter->link_speed,
5133 		    adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
5134 		    (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
5135 		    (ctrl & E1000_CTRL_RFCE) ? "Rx" :
5136 		    (ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
5137 }
5138 
5139 static bool e1000e_has_link(struct e1000_adapter *adapter)
5140 {
5141 	struct e1000_hw *hw = &adapter->hw;
5142 	bool link_active = false;
5143 	s32 ret_val = 0;
5144 
5145 	/* get_link_status is set on LSC (link status) interrupt or
5146 	 * Rx sequence error interrupt.  get_link_status will stay
5147 	 * true until the check_for_link establishes link
5148 	 * for copper adapters ONLY
5149 	 */
5150 	switch (hw->phy.media_type) {
5151 	case e1000_media_type_copper:
5152 		if (hw->mac.get_link_status) {
5153 			ret_val = hw->mac.ops.check_for_link(hw);
5154 			link_active = !hw->mac.get_link_status;
5155 		} else {
5156 			link_active = true;
5157 		}
5158 		break;
5159 	case e1000_media_type_fiber:
5160 		ret_val = hw->mac.ops.check_for_link(hw);
5161 		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
5162 		break;
5163 	case e1000_media_type_internal_serdes:
5164 		ret_val = hw->mac.ops.check_for_link(hw);
5165 		link_active = hw->mac.serdes_has_link;
5166 		break;
5167 	default:
5168 	case e1000_media_type_unknown:
5169 		break;
5170 	}
5171 
5172 	if ((ret_val == -E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
5173 	    (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
5174 		/* See e1000_kmrn_lock_loss_workaround_ich8lan() */
5175 		e_info("Gigabit has been disabled, downgrading speed\n");
5176 	}
5177 
5178 	return link_active;
5179 }
5180 
5181 static void e1000e_enable_receives(struct e1000_adapter *adapter)
5182 {
5183 	/* make sure the receive unit is started */
5184 	if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
5185 	    (adapter->flags & FLAG_RESTART_NOW)) {
5186 		struct e1000_hw *hw = &adapter->hw;
5187 		u32 rctl = er32(RCTL);
5188 
5189 		ew32(RCTL, rctl | E1000_RCTL_EN);
5190 		adapter->flags &= ~FLAG_RESTART_NOW;
5191 	}
5192 }
5193 
5194 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
5195 {
5196 	struct e1000_hw *hw = &adapter->hw;
5197 
5198 	/* With 82574 controllers, PHY needs to be checked periodically
5199 	 * for hung state and reset, if two calls return true
5200 	 */
5201 	if (e1000_check_phy_82574(hw))
5202 		adapter->phy_hang_count++;
5203 	else
5204 		adapter->phy_hang_count = 0;
5205 
5206 	if (adapter->phy_hang_count > 1) {
5207 		adapter->phy_hang_count = 0;
5208 		e_dbg("PHY appears hung - resetting\n");
5209 		schedule_work(&adapter->reset_task);
5210 	}
5211 }
5212 
5213 /**
5214  * e1000_watchdog - Timer Call-back
5215  * @t: pointer to timer_list containing private info adapter
5216  **/
5217 static void e1000_watchdog(struct timer_list *t)
5218 {
5219 	struct e1000_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5220 
5221 	/* Do the rest outside of interrupt context */
5222 	schedule_work(&adapter->watchdog_task);
5223 
5224 	/* TODO: make this use queue_delayed_work() */
5225 }
5226 
5227 static void e1000_watchdog_task(struct work_struct *work)
5228 {
5229 	struct e1000_adapter *adapter = container_of(work,
5230 						     struct e1000_adapter,
5231 						     watchdog_task);
5232 	struct net_device *netdev = adapter->netdev;
5233 	struct e1000_mac_info *mac = &adapter->hw.mac;
5234 	struct e1000_phy_info *phy = &adapter->hw.phy;
5235 	struct e1000_ring *tx_ring = adapter->tx_ring;
5236 	u32 dmoff_exit_timeout = 100, tries = 0;
5237 	struct e1000_hw *hw = &adapter->hw;
5238 	u32 link, tctl, pcim_state;
5239 
5240 	if (test_bit(__E1000_DOWN, &adapter->state))
5241 		return;
5242 
5243 	link = e1000e_has_link(adapter);
5244 	if ((netif_carrier_ok(netdev)) && link) {
5245 		/* Cancel scheduled suspend requests. */
5246 		pm_runtime_resume(netdev->dev.parent);
5247 
5248 		e1000e_enable_receives(adapter);
5249 		goto link_up;
5250 	}
5251 
5252 	if ((e1000e_enable_tx_pkt_filtering(hw)) &&
5253 	    (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
5254 		e1000_update_mng_vlan(adapter);
5255 
5256 	if (link) {
5257 		if (!netif_carrier_ok(netdev)) {
5258 			bool txb2b = true;
5259 
5260 			/* Cancel scheduled suspend requests. */
5261 			pm_runtime_resume(netdev->dev.parent);
5262 
5263 			/* Checking if MAC is in DMoff state*/
5264 			pcim_state = er32(STATUS);
5265 			while (pcim_state & E1000_STATUS_PCIM_STATE) {
5266 				if (tries++ == dmoff_exit_timeout) {
5267 					e_dbg("Error in exiting dmoff\n");
5268 					break;
5269 				}
5270 				usleep_range(10000, 20000);
5271 				pcim_state = er32(STATUS);
5272 
5273 				/* Checking if MAC exited DMoff state */
5274 				if (!(pcim_state & E1000_STATUS_PCIM_STATE))
5275 					e1000_phy_hw_reset(&adapter->hw);
5276 			}
5277 
5278 			/* update snapshot of PHY registers on LSC */
5279 			e1000_phy_read_status(adapter);
5280 			mac->ops.get_link_up_info(&adapter->hw,
5281 						  &adapter->link_speed,
5282 						  &adapter->link_duplex);
5283 			e1000_print_link_info(adapter);
5284 
5285 			/* check if SmartSpeed worked */
5286 			e1000e_check_downshift(hw);
5287 			if (phy->speed_downgraded)
5288 				netdev_warn(netdev,
5289 					    "Link Speed was downgraded by SmartSpeed\n");
5290 
5291 			/* On supported PHYs, check for duplex mismatch only
5292 			 * if link has autonegotiated at 10/100 half
5293 			 */
5294 			if ((hw->phy.type == e1000_phy_igp_3 ||
5295 			     hw->phy.type == e1000_phy_bm) &&
5296 			    hw->mac.autoneg &&
5297 			    (adapter->link_speed == SPEED_10 ||
5298 			     adapter->link_speed == SPEED_100) &&
5299 			    (adapter->link_duplex == HALF_DUPLEX)) {
5300 				u16 autoneg_exp;
5301 
5302 				e1e_rphy(hw, MII_EXPANSION, &autoneg_exp);
5303 
5304 				if (!(autoneg_exp & EXPANSION_NWAY))
5305 					e_info("Autonegotiated half duplex but link partner cannot autoneg.  Try forcing full duplex if link gets many collisions.\n");
5306 			}
5307 
5308 			/* adjust timeout factor according to speed/duplex */
5309 			adapter->tx_timeout_factor = 1;
5310 			switch (adapter->link_speed) {
5311 			case SPEED_10:
5312 				txb2b = false;
5313 				adapter->tx_timeout_factor = 16;
5314 				break;
5315 			case SPEED_100:
5316 				txb2b = false;
5317 				adapter->tx_timeout_factor = 10;
5318 				break;
5319 			}
5320 
5321 			/* workaround: re-program speed mode bit after
5322 			 * link-up event
5323 			 */
5324 			if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
5325 			    !txb2b) {
5326 				u32 tarc0;
5327 
5328 				tarc0 = er32(TARC(0));
5329 				tarc0 &= ~SPEED_MODE_BIT;
5330 				ew32(TARC(0), tarc0);
5331 			}
5332 
5333 			/* disable TSO for pcie and 10/100 speeds, to avoid
5334 			 * some hardware issues
5335 			 */
5336 			if (!(adapter->flags & FLAG_TSO_FORCE)) {
5337 				switch (adapter->link_speed) {
5338 				case SPEED_10:
5339 				case SPEED_100:
5340 					e_info("10/100 speed: disabling TSO\n");
5341 					netdev->features &= ~NETIF_F_TSO;
5342 					netdev->features &= ~NETIF_F_TSO6;
5343 					break;
5344 				case SPEED_1000:
5345 					netdev->features |= NETIF_F_TSO;
5346 					netdev->features |= NETIF_F_TSO6;
5347 					break;
5348 				default:
5349 					/* oops */
5350 					break;
5351 				}
5352 				if (hw->mac.type == e1000_pch_spt) {
5353 					netdev->features &= ~NETIF_F_TSO;
5354 					netdev->features &= ~NETIF_F_TSO6;
5355 				}
5356 			}
5357 
5358 			/* enable transmits in the hardware, need to do this
5359 			 * after setting TARC(0)
5360 			 */
5361 			tctl = er32(TCTL);
5362 			tctl |= E1000_TCTL_EN;
5363 			ew32(TCTL, tctl);
5364 
5365 			/* Perform any post-link-up configuration before
5366 			 * reporting link up.
5367 			 */
5368 			if (phy->ops.cfg_on_link_up)
5369 				phy->ops.cfg_on_link_up(hw);
5370 
5371 			netif_wake_queue(netdev);
5372 			netif_carrier_on(netdev);
5373 
5374 			if (!test_bit(__E1000_DOWN, &adapter->state))
5375 				mod_timer(&adapter->phy_info_timer,
5376 					  round_jiffies(jiffies + 2 * HZ));
5377 		}
5378 	} else {
5379 		if (netif_carrier_ok(netdev)) {
5380 			adapter->link_speed = 0;
5381 			adapter->link_duplex = 0;
5382 			/* Link status message must follow this format */
5383 			netdev_info(netdev, "NIC Link is Down\n");
5384 			netif_carrier_off(netdev);
5385 			netif_stop_queue(netdev);
5386 			if (!test_bit(__E1000_DOWN, &adapter->state))
5387 				mod_timer(&adapter->phy_info_timer,
5388 					  round_jiffies(jiffies + 2 * HZ));
5389 
5390 			/* 8000ES2LAN requires a Rx packet buffer work-around
5391 			 * on link down event; reset the controller to flush
5392 			 * the Rx packet buffer.
5393 			 */
5394 			if (adapter->flags & FLAG_RX_NEEDS_RESTART)
5395 				adapter->flags |= FLAG_RESTART_NOW;
5396 			else
5397 				pm_schedule_suspend(netdev->dev.parent,
5398 						    LINK_TIMEOUT);
5399 		}
5400 	}
5401 
5402 link_up:
5403 	spin_lock(&adapter->stats64_lock);
5404 	e1000e_update_stats(adapter);
5405 
5406 	mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
5407 	adapter->tpt_old = adapter->stats.tpt;
5408 	mac->collision_delta = adapter->stats.colc - adapter->colc_old;
5409 	adapter->colc_old = adapter->stats.colc;
5410 
5411 	adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
5412 	adapter->gorc_old = adapter->stats.gorc;
5413 	adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
5414 	adapter->gotc_old = adapter->stats.gotc;
5415 	spin_unlock(&adapter->stats64_lock);
5416 
5417 	/* If the link is lost the controller stops DMA, but
5418 	 * if there is queued Tx work it cannot be done.  So
5419 	 * reset the controller to flush the Tx packet buffers.
5420 	 */
5421 	if (!netif_carrier_ok(netdev) &&
5422 	    (e1000_desc_unused(tx_ring) + 1 < tx_ring->count))
5423 		adapter->flags |= FLAG_RESTART_NOW;
5424 
5425 	/* If reset is necessary, do it outside of interrupt context. */
5426 	if (adapter->flags & FLAG_RESTART_NOW) {
5427 		schedule_work(&adapter->reset_task);
5428 		/* return immediately since reset is imminent */
5429 		return;
5430 	}
5431 
5432 	e1000e_update_adaptive(&adapter->hw);
5433 
5434 	/* Simple mode for Interrupt Throttle Rate (ITR) */
5435 	if (adapter->itr_setting == 4) {
5436 		/* Symmetric Tx/Rx gets a reduced ITR=2000;
5437 		 * Total asymmetrical Tx or Rx gets ITR=8000;
5438 		 * everyone else is between 2000-8000.
5439 		 */
5440 		u32 goc = (adapter->gotc + adapter->gorc) / 10000;
5441 		u32 dif = (adapter->gotc > adapter->gorc ?
5442 			   adapter->gotc - adapter->gorc :
5443 			   adapter->gorc - adapter->gotc) / 10000;
5444 		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
5445 
5446 		e1000e_write_itr(adapter, itr);
5447 	}
5448 
5449 	/* Cause software interrupt to ensure Rx ring is cleaned */
5450 	if (adapter->msix_entries)
5451 		ew32(ICS, adapter->rx_ring->ims_val);
5452 	else
5453 		ew32(ICS, E1000_ICS_RXDMT0);
5454 
5455 	/* flush pending descriptors to memory before detecting Tx hang */
5456 	e1000e_flush_descriptors(adapter);
5457 
5458 	/* Force detection of hung controller every watchdog period */
5459 	adapter->detect_tx_hung = true;
5460 
5461 	/* With 82571 controllers, LAA may be overwritten due to controller
5462 	 * reset from the other port. Set the appropriate LAA in RAR[0]
5463 	 */
5464 	if (e1000e_get_laa_state_82571(hw))
5465 		hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
5466 
5467 	if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
5468 		e1000e_check_82574_phy_workaround(adapter);
5469 
5470 	/* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5471 	if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) {
5472 		if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) &&
5473 		    (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) {
5474 			er32(RXSTMPH);
5475 			adapter->rx_hwtstamp_cleared++;
5476 		} else {
5477 			adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP;
5478 		}
5479 	}
5480 
5481 	/* Reset the timer */
5482 	if (!test_bit(__E1000_DOWN, &adapter->state))
5483 		mod_timer(&adapter->watchdog_timer,
5484 			  round_jiffies(jiffies + 2 * HZ));
5485 }
5486 
5487 #define E1000_TX_FLAGS_CSUM		0x00000001
5488 #define E1000_TX_FLAGS_VLAN		0x00000002
5489 #define E1000_TX_FLAGS_TSO		0x00000004
5490 #define E1000_TX_FLAGS_IPV4		0x00000008
5491 #define E1000_TX_FLAGS_NO_FCS		0x00000010
5492 #define E1000_TX_FLAGS_HWTSTAMP		0x00000020
5493 #define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
5494 #define E1000_TX_FLAGS_VLAN_SHIFT	16
5495 
5496 static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb,
5497 		     __be16 protocol)
5498 {
5499 	struct e1000_context_desc *context_desc;
5500 	struct e1000_buffer *buffer_info;
5501 	unsigned int i;
5502 	u32 cmd_length = 0;
5503 	u16 ipcse = 0, mss;
5504 	u8 ipcss, ipcso, tucss, tucso, hdr_len;
5505 	int err;
5506 
5507 	if (!skb_is_gso(skb))
5508 		return 0;
5509 
5510 	err = skb_cow_head(skb, 0);
5511 	if (err < 0)
5512 		return err;
5513 
5514 	hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5515 	mss = skb_shinfo(skb)->gso_size;
5516 	if (protocol == htons(ETH_P_IP)) {
5517 		struct iphdr *iph = ip_hdr(skb);
5518 		iph->tot_len = 0;
5519 		iph->check = 0;
5520 		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
5521 							 0, IPPROTO_TCP, 0);
5522 		cmd_length = E1000_TXD_CMD_IP;
5523 		ipcse = skb_transport_offset(skb) - 1;
5524 	} else if (skb_is_gso_v6(skb)) {
5525 		tcp_v6_gso_csum_prep(skb);
5526 		ipcse = 0;
5527 	}
5528 	ipcss = skb_network_offset(skb);
5529 	ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
5530 	tucss = skb_transport_offset(skb);
5531 	tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
5532 
5533 	cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
5534 		       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
5535 
5536 	i = tx_ring->next_to_use;
5537 	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5538 	buffer_info = &tx_ring->buffer_info[i];
5539 
5540 	context_desc->lower_setup.ip_fields.ipcss = ipcss;
5541 	context_desc->lower_setup.ip_fields.ipcso = ipcso;
5542 	context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
5543 	context_desc->upper_setup.tcp_fields.tucss = tucss;
5544 	context_desc->upper_setup.tcp_fields.tucso = tucso;
5545 	context_desc->upper_setup.tcp_fields.tucse = 0;
5546 	context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
5547 	context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
5548 	context_desc->cmd_and_length = cpu_to_le32(cmd_length);
5549 
5550 	buffer_info->time_stamp = jiffies;
5551 	buffer_info->next_to_watch = i;
5552 
5553 	i++;
5554 	if (i == tx_ring->count)
5555 		i = 0;
5556 	tx_ring->next_to_use = i;
5557 
5558 	return 1;
5559 }
5560 
5561 static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb,
5562 			  __be16 protocol)
5563 {
5564 	struct e1000_adapter *adapter = tx_ring->adapter;
5565 	struct e1000_context_desc *context_desc;
5566 	struct e1000_buffer *buffer_info;
5567 	unsigned int i;
5568 	u8 css;
5569 	u32 cmd_len = E1000_TXD_CMD_DEXT;
5570 
5571 	if (skb->ip_summed != CHECKSUM_PARTIAL)
5572 		return false;
5573 
5574 	switch (protocol) {
5575 	case cpu_to_be16(ETH_P_IP):
5576 		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
5577 			cmd_len |= E1000_TXD_CMD_TCP;
5578 		break;
5579 	case cpu_to_be16(ETH_P_IPV6):
5580 		/* XXX not handling all IPV6 headers */
5581 		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
5582 			cmd_len |= E1000_TXD_CMD_TCP;
5583 		break;
5584 	default:
5585 		if (unlikely(net_ratelimit()))
5586 			e_warn("checksum_partial proto=%x!\n",
5587 			       be16_to_cpu(protocol));
5588 		break;
5589 	}
5590 
5591 	css = skb_checksum_start_offset(skb);
5592 
5593 	i = tx_ring->next_to_use;
5594 	buffer_info = &tx_ring->buffer_info[i];
5595 	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5596 
5597 	context_desc->lower_setup.ip_config = 0;
5598 	context_desc->upper_setup.tcp_fields.tucss = css;
5599 	context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset;
5600 	context_desc->upper_setup.tcp_fields.tucse = 0;
5601 	context_desc->tcp_seg_setup.data = 0;
5602 	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
5603 
5604 	buffer_info->time_stamp = jiffies;
5605 	buffer_info->next_to_watch = i;
5606 
5607 	i++;
5608 	if (i == tx_ring->count)
5609 		i = 0;
5610 	tx_ring->next_to_use = i;
5611 
5612 	return true;
5613 }
5614 
5615 static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
5616 			unsigned int first, unsigned int max_per_txd,
5617 			unsigned int nr_frags)
5618 {
5619 	struct e1000_adapter *adapter = tx_ring->adapter;
5620 	struct pci_dev *pdev = adapter->pdev;
5621 	struct e1000_buffer *buffer_info;
5622 	unsigned int len = skb_headlen(skb);
5623 	unsigned int offset = 0, size, count = 0, i;
5624 	unsigned int f, bytecount, segs;
5625 
5626 	i = tx_ring->next_to_use;
5627 
5628 	while (len) {
5629 		buffer_info = &tx_ring->buffer_info[i];
5630 		size = min(len, max_per_txd);
5631 
5632 		buffer_info->length = size;
5633 		buffer_info->time_stamp = jiffies;
5634 		buffer_info->next_to_watch = i;
5635 		buffer_info->dma = dma_map_single(&pdev->dev,
5636 						  skb->data + offset,
5637 						  size, DMA_TO_DEVICE);
5638 		buffer_info->mapped_as_page = false;
5639 		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5640 			goto dma_error;
5641 
5642 		len -= size;
5643 		offset += size;
5644 		count++;
5645 
5646 		if (len) {
5647 			i++;
5648 			if (i == tx_ring->count)
5649 				i = 0;
5650 		}
5651 	}
5652 
5653 	for (f = 0; f < nr_frags; f++) {
5654 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
5655 
5656 		len = skb_frag_size(frag);
5657 		offset = 0;
5658 
5659 		while (len) {
5660 			i++;
5661 			if (i == tx_ring->count)
5662 				i = 0;
5663 
5664 			buffer_info = &tx_ring->buffer_info[i];
5665 			size = min(len, max_per_txd);
5666 
5667 			buffer_info->length = size;
5668 			buffer_info->time_stamp = jiffies;
5669 			buffer_info->next_to_watch = i;
5670 			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
5671 							    offset, size,
5672 							    DMA_TO_DEVICE);
5673 			buffer_info->mapped_as_page = true;
5674 			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5675 				goto dma_error;
5676 
5677 			len -= size;
5678 			offset += size;
5679 			count++;
5680 		}
5681 	}
5682 
5683 	segs = skb_shinfo(skb)->gso_segs ? : 1;
5684 	/* multiply data chunks by size of headers */
5685 	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
5686 
5687 	tx_ring->buffer_info[i].skb = skb;
5688 	tx_ring->buffer_info[i].segs = segs;
5689 	tx_ring->buffer_info[i].bytecount = bytecount;
5690 	tx_ring->buffer_info[first].next_to_watch = i;
5691 
5692 	return count;
5693 
5694 dma_error:
5695 	dev_err(&pdev->dev, "Tx DMA map failed\n");
5696 	buffer_info->dma = 0;
5697 	if (count)
5698 		count--;
5699 
5700 	while (count--) {
5701 		if (i == 0)
5702 			i += tx_ring->count;
5703 		i--;
5704 		buffer_info = &tx_ring->buffer_info[i];
5705 		e1000_put_txbuf(tx_ring, buffer_info, true);
5706 	}
5707 
5708 	return 0;
5709 }
5710 
5711 static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
5712 {
5713 	struct e1000_adapter *adapter = tx_ring->adapter;
5714 	struct e1000_tx_desc *tx_desc = NULL;
5715 	struct e1000_buffer *buffer_info;
5716 	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
5717 	unsigned int i;
5718 
5719 	if (tx_flags & E1000_TX_FLAGS_TSO) {
5720 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
5721 		    E1000_TXD_CMD_TSE;
5722 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5723 
5724 		if (tx_flags & E1000_TX_FLAGS_IPV4)
5725 			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
5726 	}
5727 
5728 	if (tx_flags & E1000_TX_FLAGS_CSUM) {
5729 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5730 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5731 	}
5732 
5733 	if (tx_flags & E1000_TX_FLAGS_VLAN) {
5734 		txd_lower |= E1000_TXD_CMD_VLE;
5735 		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
5736 	}
5737 
5738 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5739 		txd_lower &= ~(E1000_TXD_CMD_IFCS);
5740 
5741 	if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) {
5742 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5743 		txd_upper |= E1000_TXD_EXTCMD_TSTAMP;
5744 	}
5745 
5746 	i = tx_ring->next_to_use;
5747 
5748 	do {
5749 		buffer_info = &tx_ring->buffer_info[i];
5750 		tx_desc = E1000_TX_DESC(*tx_ring, i);
5751 		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
5752 		tx_desc->lower.data = cpu_to_le32(txd_lower |
5753 						  buffer_info->length);
5754 		tx_desc->upper.data = cpu_to_le32(txd_upper);
5755 
5756 		i++;
5757 		if (i == tx_ring->count)
5758 			i = 0;
5759 	} while (--count > 0);
5760 
5761 	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
5762 
5763 	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5764 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5765 		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
5766 
5767 	/* Force memory writes to complete before letting h/w
5768 	 * know there are new descriptors to fetch.  (Only
5769 	 * applicable for weak-ordered memory model archs,
5770 	 * such as IA-64).
5771 	 */
5772 	wmb();
5773 
5774 	tx_ring->next_to_use = i;
5775 }
5776 
5777 #define MINIMUM_DHCP_PACKET_SIZE 282
5778 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
5779 				    struct sk_buff *skb)
5780 {
5781 	struct e1000_hw *hw = &adapter->hw;
5782 	u16 length, offset;
5783 
5784 	if (skb_vlan_tag_present(skb) &&
5785 	    !((skb_vlan_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
5786 	      (adapter->hw.mng_cookie.status &
5787 	       E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
5788 		return 0;
5789 
5790 	if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
5791 		return 0;
5792 
5793 	if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP))
5794 		return 0;
5795 
5796 	{
5797 		const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14);
5798 		struct udphdr *udp;
5799 
5800 		if (ip->protocol != IPPROTO_UDP)
5801 			return 0;
5802 
5803 		udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
5804 		if (ntohs(udp->dest) != 67)
5805 			return 0;
5806 
5807 		offset = (u8 *)udp + 8 - skb->data;
5808 		length = skb->len - offset;
5809 		return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
5810 	}
5811 
5812 	return 0;
5813 }
5814 
5815 static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5816 {
5817 	struct e1000_adapter *adapter = tx_ring->adapter;
5818 
5819 	netif_stop_queue(adapter->netdev);
5820 	/* Herbert's original patch had:
5821 	 *  smp_mb__after_netif_stop_queue();
5822 	 * but since that doesn't exist yet, just open code it.
5823 	 */
5824 	smp_mb();
5825 
5826 	/* We need to check again in a case another CPU has just
5827 	 * made room available.
5828 	 */
5829 	if (e1000_desc_unused(tx_ring) < size)
5830 		return -EBUSY;
5831 
5832 	/* A reprieve! */
5833 	netif_start_queue(adapter->netdev);
5834 	++adapter->restart_queue;
5835 	return 0;
5836 }
5837 
5838 static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5839 {
5840 	BUG_ON(size > tx_ring->count);
5841 
5842 	if (e1000_desc_unused(tx_ring) >= size)
5843 		return 0;
5844 	return __e1000_maybe_stop_tx(tx_ring, size);
5845 }
5846 
5847 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5848 				    struct net_device *netdev)
5849 {
5850 	struct e1000_adapter *adapter = netdev_priv(netdev);
5851 	struct e1000_ring *tx_ring = adapter->tx_ring;
5852 	unsigned int first;
5853 	unsigned int tx_flags = 0;
5854 	unsigned int len = skb_headlen(skb);
5855 	unsigned int nr_frags;
5856 	unsigned int mss;
5857 	int count = 0;
5858 	int tso;
5859 	unsigned int f;
5860 	__be16 protocol = vlan_get_protocol(skb);
5861 
5862 	if (test_bit(__E1000_DOWN, &adapter->state)) {
5863 		dev_kfree_skb_any(skb);
5864 		return NETDEV_TX_OK;
5865 	}
5866 
5867 	if (skb->len <= 0) {
5868 		dev_kfree_skb_any(skb);
5869 		return NETDEV_TX_OK;
5870 	}
5871 
5872 	/* The minimum packet size with TCTL.PSP set is 17 bytes so
5873 	 * pad skb in order to meet this minimum size requirement
5874 	 */
5875 	if (skb_put_padto(skb, 17))
5876 		return NETDEV_TX_OK;
5877 
5878 	mss = skb_shinfo(skb)->gso_size;
5879 	if (mss) {
5880 		u8 hdr_len;
5881 
5882 		/* TSO Workaround for 82571/2/3 Controllers -- if skb->data
5883 		 * points to just header, pull a few bytes of payload from
5884 		 * frags into skb->data
5885 		 */
5886 		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5887 		/* we do this workaround for ES2LAN, but it is un-necessary,
5888 		 * avoiding it could save a lot of cycles
5889 		 */
5890 		if (skb->data_len && (hdr_len == len)) {
5891 			unsigned int pull_size;
5892 
5893 			pull_size = min_t(unsigned int, 4, skb->data_len);
5894 			if (!__pskb_pull_tail(skb, pull_size)) {
5895 				e_err("__pskb_pull_tail failed.\n");
5896 				dev_kfree_skb_any(skb);
5897 				return NETDEV_TX_OK;
5898 			}
5899 			len = skb_headlen(skb);
5900 		}
5901 	}
5902 
5903 	/* reserve a descriptor for the offload context */
5904 	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5905 		count++;
5906 	count++;
5907 
5908 	count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
5909 
5910 	nr_frags = skb_shinfo(skb)->nr_frags;
5911 	for (f = 0; f < nr_frags; f++)
5912 		count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5913 				      adapter->tx_fifo_limit);
5914 
5915 	if (adapter->hw.mac.tx_pkt_filtering)
5916 		e1000_transfer_dhcp_info(adapter, skb);
5917 
5918 	/* need: count + 2 desc gap to keep tail from touching
5919 	 * head, otherwise try next time
5920 	 */
5921 	if (e1000_maybe_stop_tx(tx_ring, count + 2))
5922 		return NETDEV_TX_BUSY;
5923 
5924 	if (skb_vlan_tag_present(skb)) {
5925 		tx_flags |= E1000_TX_FLAGS_VLAN;
5926 		tx_flags |= (skb_vlan_tag_get(skb) <<
5927 			     E1000_TX_FLAGS_VLAN_SHIFT);
5928 	}
5929 
5930 	first = tx_ring->next_to_use;
5931 
5932 	tso = e1000_tso(tx_ring, skb, protocol);
5933 	if (tso < 0) {
5934 		dev_kfree_skb_any(skb);
5935 		return NETDEV_TX_OK;
5936 	}
5937 
5938 	if (tso)
5939 		tx_flags |= E1000_TX_FLAGS_TSO;
5940 	else if (e1000_tx_csum(tx_ring, skb, protocol))
5941 		tx_flags |= E1000_TX_FLAGS_CSUM;
5942 
5943 	/* Old method was to assume IPv4 packet by default if TSO was enabled.
5944 	 * 82571 hardware supports TSO capabilities for IPv6 as well...
5945 	 * no longer assume, we must.
5946 	 */
5947 	if (protocol == htons(ETH_P_IP))
5948 		tx_flags |= E1000_TX_FLAGS_IPV4;
5949 
5950 	if (unlikely(skb->no_fcs))
5951 		tx_flags |= E1000_TX_FLAGS_NO_FCS;
5952 
5953 	/* if count is 0 then mapping error has occurred */
5954 	count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5955 			     nr_frags);
5956 	if (count) {
5957 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
5958 		    (adapter->flags & FLAG_HAS_HW_TIMESTAMP)) {
5959 			if (!adapter->tx_hwtstamp_skb) {
5960 				skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5961 				tx_flags |= E1000_TX_FLAGS_HWTSTAMP;
5962 				adapter->tx_hwtstamp_skb = skb_get(skb);
5963 				adapter->tx_hwtstamp_start = jiffies;
5964 				schedule_work(&adapter->tx_hwtstamp_work);
5965 			} else {
5966 				adapter->tx_hwtstamp_skipped++;
5967 			}
5968 		}
5969 
5970 		skb_tx_timestamp(skb);
5971 
5972 		netdev_sent_queue(netdev, skb->len);
5973 		e1000_tx_queue(tx_ring, tx_flags, count);
5974 		/* Make sure there is space in the ring for the next send. */
5975 		e1000_maybe_stop_tx(tx_ring,
5976 				    (MAX_SKB_FRAGS *
5977 				     DIV_ROUND_UP(PAGE_SIZE,
5978 						  adapter->tx_fifo_limit) + 2));
5979 
5980 		if (!netdev_xmit_more() ||
5981 		    netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
5982 			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
5983 				e1000e_update_tdt_wa(tx_ring,
5984 						     tx_ring->next_to_use);
5985 			else
5986 				writel(tx_ring->next_to_use, tx_ring->tail);
5987 		}
5988 	} else {
5989 		dev_kfree_skb_any(skb);
5990 		tx_ring->buffer_info[first].time_stamp = 0;
5991 		tx_ring->next_to_use = first;
5992 	}
5993 
5994 	return NETDEV_TX_OK;
5995 }
5996 
5997 /**
5998  * e1000_tx_timeout - Respond to a Tx Hang
5999  * @netdev: network interface device structure
6000  * @txqueue: index of the hung queue (unused)
6001  **/
6002 static void e1000_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
6003 {
6004 	struct e1000_adapter *adapter = netdev_priv(netdev);
6005 
6006 	/* Do the reset outside of interrupt context */
6007 	adapter->tx_timeout_count++;
6008 	schedule_work(&adapter->reset_task);
6009 }
6010 
6011 static void e1000_reset_task(struct work_struct *work)
6012 {
6013 	struct e1000_adapter *adapter;
6014 	adapter = container_of(work, struct e1000_adapter, reset_task);
6015 
6016 	/* don't run the task if already down */
6017 	if (test_bit(__E1000_DOWN, &adapter->state))
6018 		return;
6019 
6020 	if (!(adapter->flags & FLAG_RESTART_NOW)) {
6021 		e1000e_dump(adapter);
6022 		e_err("Reset adapter unexpectedly\n");
6023 	}
6024 	e1000e_reinit_locked(adapter);
6025 }
6026 
6027 /**
6028  * e1000_get_stats64 - Get System Network Statistics
6029  * @netdev: network interface device structure
6030  * @stats: rtnl_link_stats64 pointer
6031  *
6032  * Returns the address of the device statistics structure.
6033  **/
6034 void e1000e_get_stats64(struct net_device *netdev,
6035 			struct rtnl_link_stats64 *stats)
6036 {
6037 	struct e1000_adapter *adapter = netdev_priv(netdev);
6038 
6039 	spin_lock(&adapter->stats64_lock);
6040 	e1000e_update_stats(adapter);
6041 	/* Fill out the OS statistics structure */
6042 	stats->rx_bytes = adapter->stats.gorc;
6043 	stats->rx_packets = adapter->stats.gprc;
6044 	stats->tx_bytes = adapter->stats.gotc;
6045 	stats->tx_packets = adapter->stats.gptc;
6046 	stats->multicast = adapter->stats.mprc;
6047 	stats->collisions = adapter->stats.colc;
6048 
6049 	/* Rx Errors */
6050 
6051 	/* RLEC on some newer hardware can be incorrect so build
6052 	 * our own version based on RUC and ROC
6053 	 */
6054 	stats->rx_errors = adapter->stats.rxerrc +
6055 	    adapter->stats.crcerrs + adapter->stats.algnerrc +
6056 	    adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
6057 	stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc;
6058 	stats->rx_crc_errors = adapter->stats.crcerrs;
6059 	stats->rx_frame_errors = adapter->stats.algnerrc;
6060 	stats->rx_missed_errors = adapter->stats.mpc;
6061 
6062 	/* Tx Errors */
6063 	stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol;
6064 	stats->tx_aborted_errors = adapter->stats.ecol;
6065 	stats->tx_window_errors = adapter->stats.latecol;
6066 	stats->tx_carrier_errors = adapter->stats.tncrs;
6067 
6068 	/* Tx Dropped needs to be maintained elsewhere */
6069 
6070 	spin_unlock(&adapter->stats64_lock);
6071 }
6072 
6073 /**
6074  * e1000_change_mtu - Change the Maximum Transfer Unit
6075  * @netdev: network interface device structure
6076  * @new_mtu: new value for maximum frame size
6077  *
6078  * Returns 0 on success, negative on failure
6079  **/
6080 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
6081 {
6082 	struct e1000_adapter *adapter = netdev_priv(netdev);
6083 	int max_frame = new_mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
6084 
6085 	/* Jumbo frame support */
6086 	if ((new_mtu > ETH_DATA_LEN) &&
6087 	    !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
6088 		e_err("Jumbo Frames not supported.\n");
6089 		return -EINVAL;
6090 	}
6091 
6092 	/* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
6093 	if ((adapter->hw.mac.type >= e1000_pch2lan) &&
6094 	    !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
6095 	    (new_mtu > ETH_DATA_LEN)) {
6096 		e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
6097 		return -EINVAL;
6098 	}
6099 
6100 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
6101 		usleep_range(1000, 1100);
6102 	/* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
6103 	adapter->max_frame_size = max_frame;
6104 	netdev_dbg(netdev, "changing MTU from %d to %d\n",
6105 		   netdev->mtu, new_mtu);
6106 	netdev->mtu = new_mtu;
6107 
6108 	pm_runtime_get_sync(netdev->dev.parent);
6109 
6110 	if (netif_running(netdev))
6111 		e1000e_down(adapter, true);
6112 
6113 	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
6114 	 * means we reserve 2 more, this pushes us to allocate from the next
6115 	 * larger slab size.
6116 	 * i.e. RXBUFFER_2048 --> size-4096 slab
6117 	 * However with the new *_jumbo_rx* routines, jumbo receives will use
6118 	 * fragmented skbs
6119 	 */
6120 
6121 	if (max_frame <= 2048)
6122 		adapter->rx_buffer_len = 2048;
6123 	else
6124 		adapter->rx_buffer_len = 4096;
6125 
6126 	/* adjust allocation if LPE protects us, and we aren't using SBP */
6127 	if (max_frame <= (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN))
6128 		adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
6129 
6130 	if (netif_running(netdev))
6131 		e1000e_up(adapter);
6132 	else
6133 		e1000e_reset(adapter);
6134 
6135 	pm_runtime_put_sync(netdev->dev.parent);
6136 
6137 	clear_bit(__E1000_RESETTING, &adapter->state);
6138 
6139 	return 0;
6140 }
6141 
6142 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
6143 			   int cmd)
6144 {
6145 	struct e1000_adapter *adapter = netdev_priv(netdev);
6146 	struct mii_ioctl_data *data = if_mii(ifr);
6147 
6148 	if (adapter->hw.phy.media_type != e1000_media_type_copper)
6149 		return -EOPNOTSUPP;
6150 
6151 	switch (cmd) {
6152 	case SIOCGMIIPHY:
6153 		data->phy_id = adapter->hw.phy.addr;
6154 		break;
6155 	case SIOCGMIIREG:
6156 		e1000_phy_read_status(adapter);
6157 
6158 		switch (data->reg_num & 0x1F) {
6159 		case MII_BMCR:
6160 			data->val_out = adapter->phy_regs.bmcr;
6161 			break;
6162 		case MII_BMSR:
6163 			data->val_out = adapter->phy_regs.bmsr;
6164 			break;
6165 		case MII_PHYSID1:
6166 			data->val_out = (adapter->hw.phy.id >> 16);
6167 			break;
6168 		case MII_PHYSID2:
6169 			data->val_out = (adapter->hw.phy.id & 0xFFFF);
6170 			break;
6171 		case MII_ADVERTISE:
6172 			data->val_out = adapter->phy_regs.advertise;
6173 			break;
6174 		case MII_LPA:
6175 			data->val_out = adapter->phy_regs.lpa;
6176 			break;
6177 		case MII_EXPANSION:
6178 			data->val_out = adapter->phy_regs.expansion;
6179 			break;
6180 		case MII_CTRL1000:
6181 			data->val_out = adapter->phy_regs.ctrl1000;
6182 			break;
6183 		case MII_STAT1000:
6184 			data->val_out = adapter->phy_regs.stat1000;
6185 			break;
6186 		case MII_ESTATUS:
6187 			data->val_out = adapter->phy_regs.estatus;
6188 			break;
6189 		default:
6190 			return -EIO;
6191 		}
6192 		break;
6193 	case SIOCSMIIREG:
6194 	default:
6195 		return -EOPNOTSUPP;
6196 	}
6197 	return 0;
6198 }
6199 
6200 /**
6201  * e1000e_hwtstamp_ioctl - control hardware time stamping
6202  * @netdev: network interface device structure
6203  * @ifr: interface request
6204  *
6205  * Outgoing time stamping can be enabled and disabled. Play nice and
6206  * disable it when requested, although it shouldn't cause any overhead
6207  * when no packet needs it. At most one packet in the queue may be
6208  * marked for time stamping, otherwise it would be impossible to tell
6209  * for sure to which packet the hardware time stamp belongs.
6210  *
6211  * Incoming time stamping has to be configured via the hardware filters.
6212  * Not all combinations are supported, in particular event type has to be
6213  * specified. Matching the kind of event packet is not supported, with the
6214  * exception of "all V2 events regardless of level 2 or 4".
6215  **/
6216 static int e1000e_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
6217 {
6218 	struct e1000_adapter *adapter = netdev_priv(netdev);
6219 	struct hwtstamp_config config;
6220 	int ret_val;
6221 
6222 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
6223 		return -EFAULT;
6224 
6225 	ret_val = e1000e_config_hwtstamp(adapter, &config);
6226 	if (ret_val)
6227 		return ret_val;
6228 
6229 	switch (config.rx_filter) {
6230 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6231 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6232 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
6233 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6234 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6235 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6236 		/* With V2 type filters which specify a Sync or Delay Request,
6237 		 * Path Delay Request/Response messages are also time stamped
6238 		 * by hardware so notify the caller the requested packets plus
6239 		 * some others are time stamped.
6240 		 */
6241 		config.rx_filter = HWTSTAMP_FILTER_SOME;
6242 		break;
6243 	default:
6244 		break;
6245 	}
6246 
6247 	return copy_to_user(ifr->ifr_data, &config,
6248 			    sizeof(config)) ? -EFAULT : 0;
6249 }
6250 
6251 static int e1000e_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
6252 {
6253 	struct e1000_adapter *adapter = netdev_priv(netdev);
6254 
6255 	return copy_to_user(ifr->ifr_data, &adapter->hwtstamp_config,
6256 			    sizeof(adapter->hwtstamp_config)) ? -EFAULT : 0;
6257 }
6258 
6259 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6260 {
6261 	switch (cmd) {
6262 	case SIOCGMIIPHY:
6263 	case SIOCGMIIREG:
6264 	case SIOCSMIIREG:
6265 		return e1000_mii_ioctl(netdev, ifr, cmd);
6266 	case SIOCSHWTSTAMP:
6267 		return e1000e_hwtstamp_set(netdev, ifr);
6268 	case SIOCGHWTSTAMP:
6269 		return e1000e_hwtstamp_get(netdev, ifr);
6270 	default:
6271 		return -EOPNOTSUPP;
6272 	}
6273 }
6274 
6275 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
6276 {
6277 	struct e1000_hw *hw = &adapter->hw;
6278 	u32 i, mac_reg, wuc;
6279 	u16 phy_reg, wuc_enable;
6280 	int retval;
6281 
6282 	/* copy MAC RARs to PHY RARs */
6283 	e1000_copy_rx_addrs_to_phy_ich8lan(hw);
6284 
6285 	retval = hw->phy.ops.acquire(hw);
6286 	if (retval) {
6287 		e_err("Could not acquire PHY\n");
6288 		return retval;
6289 	}
6290 
6291 	/* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
6292 	retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6293 	if (retval)
6294 		goto release;
6295 
6296 	/* copy MAC MTA to PHY MTA - only needed for pchlan */
6297 	for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
6298 		mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
6299 		hw->phy.ops.write_reg_page(hw, BM_MTA(i),
6300 					   (u16)(mac_reg & 0xFFFF));
6301 		hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
6302 					   (u16)((mac_reg >> 16) & 0xFFFF));
6303 	}
6304 
6305 	/* configure PHY Rx Control register */
6306 	hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
6307 	mac_reg = er32(RCTL);
6308 	if (mac_reg & E1000_RCTL_UPE)
6309 		phy_reg |= BM_RCTL_UPE;
6310 	if (mac_reg & E1000_RCTL_MPE)
6311 		phy_reg |= BM_RCTL_MPE;
6312 	phy_reg &= ~(BM_RCTL_MO_MASK);
6313 	if (mac_reg & E1000_RCTL_MO_3)
6314 		phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
6315 			    << BM_RCTL_MO_SHIFT);
6316 	if (mac_reg & E1000_RCTL_BAM)
6317 		phy_reg |= BM_RCTL_BAM;
6318 	if (mac_reg & E1000_RCTL_PMCF)
6319 		phy_reg |= BM_RCTL_PMCF;
6320 	mac_reg = er32(CTRL);
6321 	if (mac_reg & E1000_CTRL_RFCE)
6322 		phy_reg |= BM_RCTL_RFCE;
6323 	hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
6324 
6325 	wuc = E1000_WUC_PME_EN;
6326 	if (wufc & (E1000_WUFC_MAG | E1000_WUFC_LNKC))
6327 		wuc |= E1000_WUC_APME;
6328 
6329 	/* enable PHY wakeup in MAC register */
6330 	ew32(WUFC, wufc);
6331 	ew32(WUC, (E1000_WUC_PHY_WAKE | E1000_WUC_APMPME |
6332 		   E1000_WUC_PME_STATUS | wuc));
6333 
6334 	/* configure and enable PHY wakeup in PHY registers */
6335 	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
6336 	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, wuc);
6337 
6338 	/* activate PHY wakeup */
6339 	wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
6340 	retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6341 	if (retval)
6342 		e_err("Could not set PHY Host Wakeup bit\n");
6343 release:
6344 	hw->phy.ops.release(hw);
6345 
6346 	return retval;
6347 }
6348 
6349 static void e1000e_flush_lpic(struct pci_dev *pdev)
6350 {
6351 	struct net_device *netdev = pci_get_drvdata(pdev);
6352 	struct e1000_adapter *adapter = netdev_priv(netdev);
6353 	struct e1000_hw *hw = &adapter->hw;
6354 	u32 ret_val;
6355 
6356 	pm_runtime_get_sync(netdev->dev.parent);
6357 
6358 	ret_val = hw->phy.ops.acquire(hw);
6359 	if (ret_val)
6360 		goto fl_out;
6361 
6362 	pr_info("EEE TX LPI TIMER: %08X\n",
6363 		er32(LPIC) >> E1000_LPIC_LPIET_SHIFT);
6364 
6365 	hw->phy.ops.release(hw);
6366 
6367 fl_out:
6368 	pm_runtime_put_sync(netdev->dev.parent);
6369 }
6370 
6371 /* S0ix implementation */
6372 static void e1000e_s0ix_entry_flow(struct e1000_adapter *adapter)
6373 {
6374 	struct e1000_hw *hw = &adapter->hw;
6375 	u32 mac_data;
6376 	u16 phy_data;
6377 
6378 	/* Disable the periodic inband message,
6379 	 * don't request PCIe clock in K1 page770_17[10:9] = 10b
6380 	 */
6381 	e1e_rphy(hw, HV_PM_CTRL, &phy_data);
6382 	phy_data &= ~HV_PM_CTRL_K1_CLK_REQ;
6383 	phy_data |= BIT(10);
6384 	e1e_wphy(hw, HV_PM_CTRL, phy_data);
6385 
6386 	/* Make sure we don't exit K1 every time a new packet arrives
6387 	 * 772_29[5] = 1 CS_Mode_Stay_In_K1
6388 	 */
6389 	e1e_rphy(hw, I217_CGFREG, &phy_data);
6390 	phy_data |= BIT(5);
6391 	e1e_wphy(hw, I217_CGFREG, phy_data);
6392 
6393 	/* Change the MAC/PHY interface to SMBus
6394 	 * Force the SMBus in PHY page769_23[0] = 1
6395 	 * Force the SMBus in MAC CTRL_EXT[11] = 1
6396 	 */
6397 	e1e_rphy(hw, CV_SMB_CTRL, &phy_data);
6398 	phy_data |= CV_SMB_CTRL_FORCE_SMBUS;
6399 	e1e_wphy(hw, CV_SMB_CTRL, phy_data);
6400 	mac_data = er32(CTRL_EXT);
6401 	mac_data |= E1000_CTRL_EXT_FORCE_SMBUS;
6402 	ew32(CTRL_EXT, mac_data);
6403 
6404 	/* DFT control: PHY bit: page769_20[0] = 1
6405 	 * Gate PPW via EXTCNF_CTRL - set 0x0F00[7] = 1
6406 	 */
6407 	e1e_rphy(hw, I82579_DFT_CTRL, &phy_data);
6408 	phy_data |= BIT(0);
6409 	e1e_wphy(hw, I82579_DFT_CTRL, phy_data);
6410 
6411 	mac_data = er32(EXTCNF_CTRL);
6412 	mac_data |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
6413 	ew32(EXTCNF_CTRL, mac_data);
6414 
6415 	/* Check MAC Tx/Rx packet buffer pointers.
6416 	 * Reset MAC Tx/Rx packet buffer pointers to suppress any
6417 	 * pending traffic indication that would prevent power gating.
6418 	 */
6419 	mac_data = er32(TDFH);
6420 	if (mac_data)
6421 		ew32(TDFH, 0);
6422 	mac_data = er32(TDFT);
6423 	if (mac_data)
6424 		ew32(TDFT, 0);
6425 	mac_data = er32(TDFHS);
6426 	if (mac_data)
6427 		ew32(TDFHS, 0);
6428 	mac_data = er32(TDFTS);
6429 	if (mac_data)
6430 		ew32(TDFTS, 0);
6431 	mac_data = er32(TDFPC);
6432 	if (mac_data)
6433 		ew32(TDFPC, 0);
6434 	mac_data = er32(RDFH);
6435 	if (mac_data)
6436 		ew32(RDFH, 0);
6437 	mac_data = er32(RDFT);
6438 	if (mac_data)
6439 		ew32(RDFT, 0);
6440 	mac_data = er32(RDFHS);
6441 	if (mac_data)
6442 		ew32(RDFHS, 0);
6443 	mac_data = er32(RDFTS);
6444 	if (mac_data)
6445 		ew32(RDFTS, 0);
6446 	mac_data = er32(RDFPC);
6447 	if (mac_data)
6448 		ew32(RDFPC, 0);
6449 
6450 	/* Enable the Dynamic Power Gating in the MAC */
6451 	mac_data = er32(FEXTNVM7);
6452 	mac_data |= BIT(22);
6453 	ew32(FEXTNVM7, mac_data);
6454 
6455 	/* Disable the time synchronization clock */
6456 	mac_data = er32(FEXTNVM7);
6457 	mac_data |= BIT(31);
6458 	mac_data &= ~BIT(0);
6459 	ew32(FEXTNVM7, mac_data);
6460 
6461 	/* Dynamic Power Gating Enable */
6462 	mac_data = er32(CTRL_EXT);
6463 	mac_data |= BIT(3);
6464 	ew32(CTRL_EXT, mac_data);
6465 
6466 	/* Disable disconnected cable conditioning for Power Gating */
6467 	mac_data = er32(DPGFR);
6468 	mac_data |= BIT(2);
6469 	ew32(DPGFR, mac_data);
6470 
6471 	/* Don't wake from dynamic Power Gating with clock request */
6472 	mac_data = er32(FEXTNVM12);
6473 	mac_data |= BIT(12);
6474 	ew32(FEXTNVM12, mac_data);
6475 
6476 	/* Ungate PGCB clock */
6477 	mac_data = er32(FEXTNVM9);
6478 	mac_data |= BIT(28);
6479 	ew32(FEXTNVM9, mac_data);
6480 
6481 	/* Enable K1 off to enable mPHY Power Gating */
6482 	mac_data = er32(FEXTNVM6);
6483 	mac_data |= BIT(31);
6484 	ew32(FEXTNVM12, mac_data);
6485 
6486 	/* Enable mPHY power gating for any link and speed */
6487 	mac_data = er32(FEXTNVM8);
6488 	mac_data |= BIT(9);
6489 	ew32(FEXTNVM8, mac_data);
6490 
6491 	/* Enable the Dynamic Clock Gating in the DMA and MAC */
6492 	mac_data = er32(CTRL_EXT);
6493 	mac_data |= E1000_CTRL_EXT_DMA_DYN_CLK_EN;
6494 	ew32(CTRL_EXT, mac_data);
6495 
6496 	/* No MAC DPG gating SLP_S0 in modern standby
6497 	 * Switch the logic of the lanphypc to use PMC counter
6498 	 */
6499 	mac_data = er32(FEXTNVM5);
6500 	mac_data |= BIT(7);
6501 	ew32(FEXTNVM5, mac_data);
6502 }
6503 
6504 static void e1000e_s0ix_exit_flow(struct e1000_adapter *adapter)
6505 {
6506 	struct e1000_hw *hw = &adapter->hw;
6507 	u32 mac_data;
6508 	u16 phy_data;
6509 
6510 	/* Disable the Dynamic Power Gating in the MAC */
6511 	mac_data = er32(FEXTNVM7);
6512 	mac_data &= 0xFFBFFFFF;
6513 	ew32(FEXTNVM7, mac_data);
6514 
6515 	/* Enable the time synchronization clock */
6516 	mac_data = er32(FEXTNVM7);
6517 	mac_data |= BIT(0);
6518 	ew32(FEXTNVM7, mac_data);
6519 
6520 	/* Disable mPHY power gating for any link and speed */
6521 	mac_data = er32(FEXTNVM8);
6522 	mac_data &= ~BIT(9);
6523 	ew32(FEXTNVM8, mac_data);
6524 
6525 	/* Disable K1 off */
6526 	mac_data = er32(FEXTNVM6);
6527 	mac_data &= ~BIT(31);
6528 	ew32(FEXTNVM12, mac_data);
6529 
6530 	/* Disable Ungate PGCB clock */
6531 	mac_data = er32(FEXTNVM9);
6532 	mac_data &= ~BIT(28);
6533 	ew32(FEXTNVM9, mac_data);
6534 
6535 	/* Cancel not waking from dynamic
6536 	 * Power Gating with clock request
6537 	 */
6538 	mac_data = er32(FEXTNVM12);
6539 	mac_data &= ~BIT(12);
6540 	ew32(FEXTNVM12, mac_data);
6541 
6542 	/* Cancel disable disconnected cable conditioning
6543 	 * for Power Gating
6544 	 */
6545 	mac_data = er32(DPGFR);
6546 	mac_data &= ~BIT(2);
6547 	ew32(DPGFR, mac_data);
6548 
6549 	/* Disable Dynamic Power Gating */
6550 	mac_data = er32(CTRL_EXT);
6551 	mac_data &= 0xFFFFFFF7;
6552 	ew32(CTRL_EXT, mac_data);
6553 
6554 	/* Disable the Dynamic Clock Gating in the DMA and MAC */
6555 	mac_data = er32(CTRL_EXT);
6556 	mac_data &= 0xFFF7FFFF;
6557 	ew32(CTRL_EXT, mac_data);
6558 
6559 	/* Revert the lanphypc logic to use the internal Gbe counter
6560 	 * and not the PMC counter
6561 	 */
6562 	mac_data = er32(FEXTNVM5);
6563 	mac_data &= 0xFFFFFF7F;
6564 	ew32(FEXTNVM5, mac_data);
6565 
6566 	/* Enable the periodic inband message,
6567 	 * Request PCIe clock in K1 page770_17[10:9] =01b
6568 	 */
6569 	e1e_rphy(hw, HV_PM_CTRL, &phy_data);
6570 	phy_data &= 0xFBFF;
6571 	phy_data |= HV_PM_CTRL_K1_CLK_REQ;
6572 	e1e_wphy(hw, HV_PM_CTRL, phy_data);
6573 
6574 	/* Return back configuration
6575 	 * 772_29[5] = 0 CS_Mode_Stay_In_K1
6576 	 */
6577 	e1e_rphy(hw, I217_CGFREG, &phy_data);
6578 	phy_data &= 0xFFDF;
6579 	e1e_wphy(hw, I217_CGFREG, phy_data);
6580 
6581 	/* Change the MAC/PHY interface to Kumeran
6582 	 * Unforce the SMBus in PHY page769_23[0] = 0
6583 	 * Unforce the SMBus in MAC CTRL_EXT[11] = 0
6584 	 */
6585 	e1e_rphy(hw, CV_SMB_CTRL, &phy_data);
6586 	phy_data &= ~CV_SMB_CTRL_FORCE_SMBUS;
6587 	e1e_wphy(hw, CV_SMB_CTRL, phy_data);
6588 	mac_data = er32(CTRL_EXT);
6589 	mac_data &= ~E1000_CTRL_EXT_FORCE_SMBUS;
6590 	ew32(CTRL_EXT, mac_data);
6591 }
6592 
6593 static int e1000e_pm_freeze(struct device *dev)
6594 {
6595 	struct net_device *netdev = dev_get_drvdata(dev);
6596 	struct e1000_adapter *adapter = netdev_priv(netdev);
6597 	bool present;
6598 
6599 	rtnl_lock();
6600 
6601 	present = netif_device_present(netdev);
6602 	netif_device_detach(netdev);
6603 
6604 	if (present && netif_running(netdev)) {
6605 		int count = E1000_CHECK_RESET_COUNT;
6606 
6607 		while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6608 			usleep_range(10000, 11000);
6609 
6610 		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6611 
6612 		/* Quiesce the device without resetting the hardware */
6613 		e1000e_down(adapter, false);
6614 		e1000_free_irq(adapter);
6615 	}
6616 	rtnl_unlock();
6617 
6618 	e1000e_reset_interrupt_capability(adapter);
6619 
6620 	/* Allow time for pending master requests to run */
6621 	e1000e_disable_pcie_master(&adapter->hw);
6622 
6623 	return 0;
6624 }
6625 
6626 static int __e1000_shutdown(struct pci_dev *pdev, bool runtime)
6627 {
6628 	struct net_device *netdev = pci_get_drvdata(pdev);
6629 	struct e1000_adapter *adapter = netdev_priv(netdev);
6630 	struct e1000_hw *hw = &adapter->hw;
6631 	u32 ctrl, ctrl_ext, rctl, status, wufc;
6632 	int retval = 0;
6633 
6634 	/* Runtime suspend should only enable wakeup for link changes */
6635 	if (runtime)
6636 		wufc = E1000_WUFC_LNKC;
6637 	else if (device_may_wakeup(&pdev->dev))
6638 		wufc = adapter->wol;
6639 	else
6640 		wufc = 0;
6641 
6642 	status = er32(STATUS);
6643 	if (status & E1000_STATUS_LU)
6644 		wufc &= ~E1000_WUFC_LNKC;
6645 
6646 	if (wufc) {
6647 		e1000_setup_rctl(adapter);
6648 		e1000e_set_rx_mode(netdev);
6649 
6650 		/* turn on all-multi mode if wake on multicast is enabled */
6651 		if (wufc & E1000_WUFC_MC) {
6652 			rctl = er32(RCTL);
6653 			rctl |= E1000_RCTL_MPE;
6654 			ew32(RCTL, rctl);
6655 		}
6656 
6657 		ctrl = er32(CTRL);
6658 		ctrl |= E1000_CTRL_ADVD3WUC;
6659 		if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
6660 			ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
6661 		ew32(CTRL, ctrl);
6662 
6663 		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
6664 		    adapter->hw.phy.media_type ==
6665 		    e1000_media_type_internal_serdes) {
6666 			/* keep the laser running in D3 */
6667 			ctrl_ext = er32(CTRL_EXT);
6668 			ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
6669 			ew32(CTRL_EXT, ctrl_ext);
6670 		}
6671 
6672 		if (!runtime)
6673 			e1000e_power_up_phy(adapter);
6674 
6675 		if (adapter->flags & FLAG_IS_ICH)
6676 			e1000_suspend_workarounds_ich8lan(&adapter->hw);
6677 
6678 		if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6679 			/* enable wakeup by the PHY */
6680 			retval = e1000_init_phy_wakeup(adapter, wufc);
6681 			if (retval)
6682 				return retval;
6683 		} else {
6684 			/* enable wakeup by the MAC */
6685 			ew32(WUFC, wufc);
6686 			ew32(WUC, E1000_WUC_PME_EN);
6687 		}
6688 	} else {
6689 		ew32(WUC, 0);
6690 		ew32(WUFC, 0);
6691 
6692 		e1000_power_down_phy(adapter);
6693 	}
6694 
6695 	if (adapter->hw.phy.type == e1000_phy_igp_3) {
6696 		e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
6697 	} else if (hw->mac.type >= e1000_pch_lpt) {
6698 		if (wufc && !(wufc & (E1000_WUFC_EX | E1000_WUFC_MC | E1000_WUFC_BC)))
6699 			/* ULP does not support wake from unicast, multicast
6700 			 * or broadcast.
6701 			 */
6702 			retval = e1000_enable_ulp_lpt_lp(hw, !runtime);
6703 
6704 		if (retval)
6705 			return retval;
6706 	}
6707 
6708 	/* Ensure that the appropriate bits are set in LPI_CTRL
6709 	 * for EEE in Sx
6710 	 */
6711 	if ((hw->phy.type >= e1000_phy_i217) &&
6712 	    adapter->eee_advert && hw->dev_spec.ich8lan.eee_lp_ability) {
6713 		u16 lpi_ctrl = 0;
6714 
6715 		retval = hw->phy.ops.acquire(hw);
6716 		if (!retval) {
6717 			retval = e1e_rphy_locked(hw, I82579_LPI_CTRL,
6718 						 &lpi_ctrl);
6719 			if (!retval) {
6720 				if (adapter->eee_advert &
6721 				    hw->dev_spec.ich8lan.eee_lp_ability &
6722 				    I82579_EEE_100_SUPPORTED)
6723 					lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
6724 				if (adapter->eee_advert &
6725 				    hw->dev_spec.ich8lan.eee_lp_ability &
6726 				    I82579_EEE_1000_SUPPORTED)
6727 					lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
6728 
6729 				retval = e1e_wphy_locked(hw, I82579_LPI_CTRL,
6730 							 lpi_ctrl);
6731 			}
6732 		}
6733 		hw->phy.ops.release(hw);
6734 	}
6735 
6736 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
6737 	 * would have already happened in close and is redundant.
6738 	 */
6739 	e1000e_release_hw_control(adapter);
6740 
6741 	pci_clear_master(pdev);
6742 
6743 	/* The pci-e switch on some quad port adapters will report a
6744 	 * correctable error when the MAC transitions from D0 to D3.  To
6745 	 * prevent this we need to mask off the correctable errors on the
6746 	 * downstream port of the pci-e switch.
6747 	 *
6748 	 * We don't have the associated upstream bridge while assigning
6749 	 * the PCI device into guest. For example, the KVM on power is
6750 	 * one of the cases.
6751 	 */
6752 	if (adapter->flags & FLAG_IS_QUAD_PORT) {
6753 		struct pci_dev *us_dev = pdev->bus->self;
6754 		u16 devctl;
6755 
6756 		if (!us_dev)
6757 			return 0;
6758 
6759 		pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl);
6760 		pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL,
6761 					   (devctl & ~PCI_EXP_DEVCTL_CERE));
6762 
6763 		pci_save_state(pdev);
6764 		pci_prepare_to_sleep(pdev);
6765 
6766 		pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl);
6767 	}
6768 
6769 	return 0;
6770 }
6771 
6772 /**
6773  * __e1000e_disable_aspm - Disable ASPM states
6774  * @pdev: pointer to PCI device struct
6775  * @state: bit-mask of ASPM states to disable
6776  * @locked: indication if this context holds pci_bus_sem locked.
6777  *
6778  * Some devices *must* have certain ASPM states disabled per hardware errata.
6779  **/
6780 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state, int locked)
6781 {
6782 	struct pci_dev *parent = pdev->bus->self;
6783 	u16 aspm_dis_mask = 0;
6784 	u16 pdev_aspmc, parent_aspmc;
6785 
6786 	switch (state) {
6787 	case PCIE_LINK_STATE_L0S:
6788 	case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1:
6789 		aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S;
6790 		fallthrough; /* can't have L1 without L0s */
6791 	case PCIE_LINK_STATE_L1:
6792 		aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1;
6793 		break;
6794 	default:
6795 		return;
6796 	}
6797 
6798 	pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6799 	pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6800 
6801 	if (parent) {
6802 		pcie_capability_read_word(parent, PCI_EXP_LNKCTL,
6803 					  &parent_aspmc);
6804 		parent_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6805 	}
6806 
6807 	/* Nothing to do if the ASPM states to be disabled already are */
6808 	if (!(pdev_aspmc & aspm_dis_mask) &&
6809 	    (!parent || !(parent_aspmc & aspm_dis_mask)))
6810 		return;
6811 
6812 	dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
6813 		 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ?
6814 		 "L0s" : "",
6815 		 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ?
6816 		 "L1" : "");
6817 
6818 #ifdef CONFIG_PCIEASPM
6819 	if (locked)
6820 		pci_disable_link_state_locked(pdev, state);
6821 	else
6822 		pci_disable_link_state(pdev, state);
6823 
6824 	/* Double-check ASPM control.  If not disabled by the above, the
6825 	 * BIOS is preventing that from happening (or CONFIG_PCIEASPM is
6826 	 * not enabled); override by writing PCI config space directly.
6827 	 */
6828 	pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6829 	pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6830 
6831 	if (!(aspm_dis_mask & pdev_aspmc))
6832 		return;
6833 #endif
6834 
6835 	/* Both device and parent should have the same ASPM setting.
6836 	 * Disable ASPM in downstream component first and then upstream.
6837 	 */
6838 	pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask);
6839 
6840 	if (parent)
6841 		pcie_capability_clear_word(parent, PCI_EXP_LNKCTL,
6842 					   aspm_dis_mask);
6843 }
6844 
6845 /**
6846  * e1000e_disable_aspm - Disable ASPM states.
6847  * @pdev: pointer to PCI device struct
6848  * @state: bit-mask of ASPM states to disable
6849  *
6850  * This function acquires the pci_bus_sem!
6851  * Some devices *must* have certain ASPM states disabled per hardware errata.
6852  **/
6853 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6854 {
6855 	__e1000e_disable_aspm(pdev, state, 0);
6856 }
6857 
6858 /**
6859  * e1000e_disable_aspm_locked   Disable ASPM states.
6860  * @pdev: pointer to PCI device struct
6861  * @state: bit-mask of ASPM states to disable
6862  *
6863  * This function must be called with pci_bus_sem acquired!
6864  * Some devices *must* have certain ASPM states disabled per hardware errata.
6865  **/
6866 static void e1000e_disable_aspm_locked(struct pci_dev *pdev, u16 state)
6867 {
6868 	__e1000e_disable_aspm(pdev, state, 1);
6869 }
6870 
6871 static int e1000e_pm_thaw(struct device *dev)
6872 {
6873 	struct net_device *netdev = dev_get_drvdata(dev);
6874 	struct e1000_adapter *adapter = netdev_priv(netdev);
6875 	int rc = 0;
6876 
6877 	e1000e_set_interrupt_capability(adapter);
6878 
6879 	rtnl_lock();
6880 	if (netif_running(netdev)) {
6881 		rc = e1000_request_irq(adapter);
6882 		if (rc)
6883 			goto err_irq;
6884 
6885 		e1000e_up(adapter);
6886 	}
6887 
6888 	netif_device_attach(netdev);
6889 err_irq:
6890 	rtnl_unlock();
6891 
6892 	return rc;
6893 }
6894 
6895 static int __e1000_resume(struct pci_dev *pdev)
6896 {
6897 	struct net_device *netdev = pci_get_drvdata(pdev);
6898 	struct e1000_adapter *adapter = netdev_priv(netdev);
6899 	struct e1000_hw *hw = &adapter->hw;
6900 	u16 aspm_disable_flag = 0;
6901 
6902 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6903 		aspm_disable_flag = PCIE_LINK_STATE_L0S;
6904 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6905 		aspm_disable_flag |= PCIE_LINK_STATE_L1;
6906 	if (aspm_disable_flag)
6907 		e1000e_disable_aspm(pdev, aspm_disable_flag);
6908 
6909 	pci_set_master(pdev);
6910 
6911 	if (hw->mac.type >= e1000_pch2lan)
6912 		e1000_resume_workarounds_pchlan(&adapter->hw);
6913 
6914 	e1000e_power_up_phy(adapter);
6915 
6916 	/* report the system wakeup cause from S3/S4 */
6917 	if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6918 		u16 phy_data;
6919 
6920 		e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
6921 		if (phy_data) {
6922 			e_info("PHY Wakeup cause - %s\n",
6923 			       phy_data & E1000_WUS_EX ? "Unicast Packet" :
6924 			       phy_data & E1000_WUS_MC ? "Multicast Packet" :
6925 			       phy_data & E1000_WUS_BC ? "Broadcast Packet" :
6926 			       phy_data & E1000_WUS_MAG ? "Magic Packet" :
6927 			       phy_data & E1000_WUS_LNKC ?
6928 			       "Link Status Change" : "other");
6929 		}
6930 		e1e_wphy(&adapter->hw, BM_WUS, ~0);
6931 	} else {
6932 		u32 wus = er32(WUS);
6933 
6934 		if (wus) {
6935 			e_info("MAC Wakeup cause - %s\n",
6936 			       wus & E1000_WUS_EX ? "Unicast Packet" :
6937 			       wus & E1000_WUS_MC ? "Multicast Packet" :
6938 			       wus & E1000_WUS_BC ? "Broadcast Packet" :
6939 			       wus & E1000_WUS_MAG ? "Magic Packet" :
6940 			       wus & E1000_WUS_LNKC ? "Link Status Change" :
6941 			       "other");
6942 		}
6943 		ew32(WUS, ~0);
6944 	}
6945 
6946 	e1000e_reset(adapter);
6947 
6948 	e1000_init_manageability_pt(adapter);
6949 
6950 	/* If the controller has AMT, do not set DRV_LOAD until the interface
6951 	 * is up.  For all other cases, let the f/w know that the h/w is now
6952 	 * under the control of the driver.
6953 	 */
6954 	if (!(adapter->flags & FLAG_HAS_AMT))
6955 		e1000e_get_hw_control(adapter);
6956 
6957 	return 0;
6958 }
6959 
6960 static __maybe_unused int e1000e_pm_suspend(struct device *dev)
6961 {
6962 	struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6963 	struct e1000_adapter *adapter = netdev_priv(netdev);
6964 	struct pci_dev *pdev = to_pci_dev(dev);
6965 	struct e1000_hw *hw = &adapter->hw;
6966 	int rc;
6967 
6968 	e1000e_flush_lpic(pdev);
6969 
6970 	e1000e_pm_freeze(dev);
6971 
6972 	rc = __e1000_shutdown(pdev, false);
6973 	if (rc)
6974 		e1000e_pm_thaw(dev);
6975 
6976 	/* Introduce S0ix implementation */
6977 	if (hw->mac.type >= e1000_pch_cnp &&
6978 	    !e1000e_check_me(hw->adapter->pdev->device))
6979 		e1000e_s0ix_entry_flow(adapter);
6980 
6981 	return rc;
6982 }
6983 
6984 static __maybe_unused int e1000e_pm_resume(struct device *dev)
6985 {
6986 	struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6987 	struct e1000_adapter *adapter = netdev_priv(netdev);
6988 	struct pci_dev *pdev = to_pci_dev(dev);
6989 	struct e1000_hw *hw = &adapter->hw;
6990 	int rc;
6991 
6992 	/* Introduce S0ix implementation */
6993 	if (hw->mac.type >= e1000_pch_cnp &&
6994 	    !e1000e_check_me(hw->adapter->pdev->device))
6995 		e1000e_s0ix_exit_flow(adapter);
6996 
6997 	rc = __e1000_resume(pdev);
6998 	if (rc)
6999 		return rc;
7000 
7001 	return e1000e_pm_thaw(dev);
7002 }
7003 
7004 static __maybe_unused int e1000e_pm_runtime_idle(struct device *dev)
7005 {
7006 	struct net_device *netdev = dev_get_drvdata(dev);
7007 	struct e1000_adapter *adapter = netdev_priv(netdev);
7008 	u16 eee_lp;
7009 
7010 	eee_lp = adapter->hw.dev_spec.ich8lan.eee_lp_ability;
7011 
7012 	if (!e1000e_has_link(adapter)) {
7013 		adapter->hw.dev_spec.ich8lan.eee_lp_ability = eee_lp;
7014 		pm_schedule_suspend(dev, 5 * MSEC_PER_SEC);
7015 	}
7016 
7017 	return -EBUSY;
7018 }
7019 
7020 static __maybe_unused int e1000e_pm_runtime_resume(struct device *dev)
7021 {
7022 	struct pci_dev *pdev = to_pci_dev(dev);
7023 	struct net_device *netdev = pci_get_drvdata(pdev);
7024 	struct e1000_adapter *adapter = netdev_priv(netdev);
7025 	int rc;
7026 
7027 	rc = __e1000_resume(pdev);
7028 	if (rc)
7029 		return rc;
7030 
7031 	if (netdev->flags & IFF_UP)
7032 		e1000e_up(adapter);
7033 
7034 	return rc;
7035 }
7036 
7037 static __maybe_unused int e1000e_pm_runtime_suspend(struct device *dev)
7038 {
7039 	struct pci_dev *pdev = to_pci_dev(dev);
7040 	struct net_device *netdev = pci_get_drvdata(pdev);
7041 	struct e1000_adapter *adapter = netdev_priv(netdev);
7042 
7043 	if (netdev->flags & IFF_UP) {
7044 		int count = E1000_CHECK_RESET_COUNT;
7045 
7046 		while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
7047 			usleep_range(10000, 11000);
7048 
7049 		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
7050 
7051 		/* Down the device without resetting the hardware */
7052 		e1000e_down(adapter, false);
7053 	}
7054 
7055 	if (__e1000_shutdown(pdev, true)) {
7056 		e1000e_pm_runtime_resume(dev);
7057 		return -EBUSY;
7058 	}
7059 
7060 	return 0;
7061 }
7062 
7063 static void e1000_shutdown(struct pci_dev *pdev)
7064 {
7065 	e1000e_flush_lpic(pdev);
7066 
7067 	e1000e_pm_freeze(&pdev->dev);
7068 
7069 	__e1000_shutdown(pdev, false);
7070 }
7071 
7072 #ifdef CONFIG_NET_POLL_CONTROLLER
7073 
7074 static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data)
7075 {
7076 	struct net_device *netdev = data;
7077 	struct e1000_adapter *adapter = netdev_priv(netdev);
7078 
7079 	if (adapter->msix_entries) {
7080 		int vector, msix_irq;
7081 
7082 		vector = 0;
7083 		msix_irq = adapter->msix_entries[vector].vector;
7084 		if (disable_hardirq(msix_irq))
7085 			e1000_intr_msix_rx(msix_irq, netdev);
7086 		enable_irq(msix_irq);
7087 
7088 		vector++;
7089 		msix_irq = adapter->msix_entries[vector].vector;
7090 		if (disable_hardirq(msix_irq))
7091 			e1000_intr_msix_tx(msix_irq, netdev);
7092 		enable_irq(msix_irq);
7093 
7094 		vector++;
7095 		msix_irq = adapter->msix_entries[vector].vector;
7096 		if (disable_hardirq(msix_irq))
7097 			e1000_msix_other(msix_irq, netdev);
7098 		enable_irq(msix_irq);
7099 	}
7100 
7101 	return IRQ_HANDLED;
7102 }
7103 
7104 /**
7105  * e1000_netpoll
7106  * @netdev: network interface device structure
7107  *
7108  * Polling 'interrupt' - used by things like netconsole to send skbs
7109  * without having to re-enable interrupts. It's not called while
7110  * the interrupt routine is executing.
7111  */
7112 static void e1000_netpoll(struct net_device *netdev)
7113 {
7114 	struct e1000_adapter *adapter = netdev_priv(netdev);
7115 
7116 	switch (adapter->int_mode) {
7117 	case E1000E_INT_MODE_MSIX:
7118 		e1000_intr_msix(adapter->pdev->irq, netdev);
7119 		break;
7120 	case E1000E_INT_MODE_MSI:
7121 		if (disable_hardirq(adapter->pdev->irq))
7122 			e1000_intr_msi(adapter->pdev->irq, netdev);
7123 		enable_irq(adapter->pdev->irq);
7124 		break;
7125 	default:		/* E1000E_INT_MODE_LEGACY */
7126 		if (disable_hardirq(adapter->pdev->irq))
7127 			e1000_intr(adapter->pdev->irq, netdev);
7128 		enable_irq(adapter->pdev->irq);
7129 		break;
7130 	}
7131 }
7132 #endif
7133 
7134 /**
7135  * e1000_io_error_detected - called when PCI error is detected
7136  * @pdev: Pointer to PCI device
7137  * @state: The current pci connection state
7138  *
7139  * This function is called after a PCI bus error affecting
7140  * this device has been detected.
7141  */
7142 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
7143 						pci_channel_state_t state)
7144 {
7145 	e1000e_pm_freeze(&pdev->dev);
7146 
7147 	if (state == pci_channel_io_perm_failure)
7148 		return PCI_ERS_RESULT_DISCONNECT;
7149 
7150 	pci_disable_device(pdev);
7151 
7152 	/* Request a slot slot reset. */
7153 	return PCI_ERS_RESULT_NEED_RESET;
7154 }
7155 
7156 /**
7157  * e1000_io_slot_reset - called after the pci bus has been reset.
7158  * @pdev: Pointer to PCI device
7159  *
7160  * Restart the card from scratch, as if from a cold-boot. Implementation
7161  * resembles the first-half of the e1000e_pm_resume routine.
7162  */
7163 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
7164 {
7165 	struct net_device *netdev = pci_get_drvdata(pdev);
7166 	struct e1000_adapter *adapter = netdev_priv(netdev);
7167 	struct e1000_hw *hw = &adapter->hw;
7168 	u16 aspm_disable_flag = 0;
7169 	int err;
7170 	pci_ers_result_t result;
7171 
7172 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
7173 		aspm_disable_flag = PCIE_LINK_STATE_L0S;
7174 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
7175 		aspm_disable_flag |= PCIE_LINK_STATE_L1;
7176 	if (aspm_disable_flag)
7177 		e1000e_disable_aspm_locked(pdev, aspm_disable_flag);
7178 
7179 	err = pci_enable_device_mem(pdev);
7180 	if (err) {
7181 		dev_err(&pdev->dev,
7182 			"Cannot re-enable PCI device after reset.\n");
7183 		result = PCI_ERS_RESULT_DISCONNECT;
7184 	} else {
7185 		pdev->state_saved = true;
7186 		pci_restore_state(pdev);
7187 		pci_set_master(pdev);
7188 
7189 		pci_enable_wake(pdev, PCI_D3hot, 0);
7190 		pci_enable_wake(pdev, PCI_D3cold, 0);
7191 
7192 		e1000e_reset(adapter);
7193 		ew32(WUS, ~0);
7194 		result = PCI_ERS_RESULT_RECOVERED;
7195 	}
7196 
7197 	return result;
7198 }
7199 
7200 /**
7201  * e1000_io_resume - called when traffic can start flowing again.
7202  * @pdev: Pointer to PCI device
7203  *
7204  * This callback is called when the error recovery driver tells us that
7205  * its OK to resume normal operation. Implementation resembles the
7206  * second-half of the e1000e_pm_resume routine.
7207  */
7208 static void e1000_io_resume(struct pci_dev *pdev)
7209 {
7210 	struct net_device *netdev = pci_get_drvdata(pdev);
7211 	struct e1000_adapter *adapter = netdev_priv(netdev);
7212 
7213 	e1000_init_manageability_pt(adapter);
7214 
7215 	e1000e_pm_thaw(&pdev->dev);
7216 
7217 	/* If the controller has AMT, do not set DRV_LOAD until the interface
7218 	 * is up.  For all other cases, let the f/w know that the h/w is now
7219 	 * under the control of the driver.
7220 	 */
7221 	if (!(adapter->flags & FLAG_HAS_AMT))
7222 		e1000e_get_hw_control(adapter);
7223 }
7224 
7225 static void e1000_print_device_info(struct e1000_adapter *adapter)
7226 {
7227 	struct e1000_hw *hw = &adapter->hw;
7228 	struct net_device *netdev = adapter->netdev;
7229 	u32 ret_val;
7230 	u8 pba_str[E1000_PBANUM_LENGTH];
7231 
7232 	/* print bus type/speed/width info */
7233 	e_info("(PCI Express:2.5GT/s:%s) %pM\n",
7234 	       /* bus width */
7235 	       ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
7236 		"Width x1"),
7237 	       /* MAC address */
7238 	       netdev->dev_addr);
7239 	e_info("Intel(R) PRO/%s Network Connection\n",
7240 	       (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
7241 	ret_val = e1000_read_pba_string_generic(hw, pba_str,
7242 						E1000_PBANUM_LENGTH);
7243 	if (ret_val)
7244 		strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
7245 	e_info("MAC: %d, PHY: %d, PBA No: %s\n",
7246 	       hw->mac.type, hw->phy.type, pba_str);
7247 }
7248 
7249 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
7250 {
7251 	struct e1000_hw *hw = &adapter->hw;
7252 	int ret_val;
7253 	u16 buf = 0;
7254 
7255 	if (hw->mac.type != e1000_82573)
7256 		return;
7257 
7258 	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
7259 	le16_to_cpus(&buf);
7260 	if (!ret_val && (!(buf & BIT(0)))) {
7261 		/* Deep Smart Power Down (DSPD) */
7262 		dev_warn(&adapter->pdev->dev,
7263 			 "Warning: detected DSPD enabled in EEPROM\n");
7264 	}
7265 }
7266 
7267 static netdev_features_t e1000_fix_features(struct net_device *netdev,
7268 					    netdev_features_t features)
7269 {
7270 	struct e1000_adapter *adapter = netdev_priv(netdev);
7271 	struct e1000_hw *hw = &adapter->hw;
7272 
7273 	/* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
7274 	if ((hw->mac.type >= e1000_pch2lan) && (netdev->mtu > ETH_DATA_LEN))
7275 		features &= ~NETIF_F_RXFCS;
7276 
7277 	/* Since there is no support for separate Rx/Tx vlan accel
7278 	 * enable/disable make sure Tx flag is always in same state as Rx.
7279 	 */
7280 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
7281 		features |= NETIF_F_HW_VLAN_CTAG_TX;
7282 	else
7283 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
7284 
7285 	return features;
7286 }
7287 
7288 static int e1000_set_features(struct net_device *netdev,
7289 			      netdev_features_t features)
7290 {
7291 	struct e1000_adapter *adapter = netdev_priv(netdev);
7292 	netdev_features_t changed = features ^ netdev->features;
7293 
7294 	if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
7295 		adapter->flags |= FLAG_TSO_FORCE;
7296 
7297 	if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
7298 			 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
7299 			 NETIF_F_RXALL)))
7300 		return 0;
7301 
7302 	if (changed & NETIF_F_RXFCS) {
7303 		if (features & NETIF_F_RXFCS) {
7304 			adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
7305 		} else {
7306 			/* We need to take it back to defaults, which might mean
7307 			 * stripping is still disabled at the adapter level.
7308 			 */
7309 			if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
7310 				adapter->flags2 |= FLAG2_CRC_STRIPPING;
7311 			else
7312 				adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
7313 		}
7314 	}
7315 
7316 	netdev->features = features;
7317 
7318 	if (netif_running(netdev))
7319 		e1000e_reinit_locked(adapter);
7320 	else
7321 		e1000e_reset(adapter);
7322 
7323 	return 1;
7324 }
7325 
7326 static const struct net_device_ops e1000e_netdev_ops = {
7327 	.ndo_open		= e1000e_open,
7328 	.ndo_stop		= e1000e_close,
7329 	.ndo_start_xmit		= e1000_xmit_frame,
7330 	.ndo_get_stats64	= e1000e_get_stats64,
7331 	.ndo_set_rx_mode	= e1000e_set_rx_mode,
7332 	.ndo_set_mac_address	= e1000_set_mac,
7333 	.ndo_change_mtu		= e1000_change_mtu,
7334 	.ndo_do_ioctl		= e1000_ioctl,
7335 	.ndo_tx_timeout		= e1000_tx_timeout,
7336 	.ndo_validate_addr	= eth_validate_addr,
7337 
7338 	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
7339 	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
7340 #ifdef CONFIG_NET_POLL_CONTROLLER
7341 	.ndo_poll_controller	= e1000_netpoll,
7342 #endif
7343 	.ndo_set_features = e1000_set_features,
7344 	.ndo_fix_features = e1000_fix_features,
7345 	.ndo_features_check	= passthru_features_check,
7346 };
7347 
7348 /**
7349  * e1000_probe - Device Initialization Routine
7350  * @pdev: PCI device information struct
7351  * @ent: entry in e1000_pci_tbl
7352  *
7353  * Returns 0 on success, negative on failure
7354  *
7355  * e1000_probe initializes an adapter identified by a pci_dev structure.
7356  * The OS initialization, configuring of the adapter private structure,
7357  * and a hardware reset occur.
7358  **/
7359 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
7360 {
7361 	struct net_device *netdev;
7362 	struct e1000_adapter *adapter;
7363 	struct e1000_hw *hw;
7364 	const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
7365 	resource_size_t mmio_start, mmio_len;
7366 	resource_size_t flash_start, flash_len;
7367 	static int cards_found;
7368 	u16 aspm_disable_flag = 0;
7369 	int bars, i, err, pci_using_dac;
7370 	u16 eeprom_data = 0;
7371 	u16 eeprom_apme_mask = E1000_EEPROM_APME;
7372 	s32 ret_val = 0;
7373 
7374 	if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
7375 		aspm_disable_flag = PCIE_LINK_STATE_L0S;
7376 	if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
7377 		aspm_disable_flag |= PCIE_LINK_STATE_L1;
7378 	if (aspm_disable_flag)
7379 		e1000e_disable_aspm(pdev, aspm_disable_flag);
7380 
7381 	err = pci_enable_device_mem(pdev);
7382 	if (err)
7383 		return err;
7384 
7385 	pci_using_dac = 0;
7386 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
7387 	if (!err) {
7388 		pci_using_dac = 1;
7389 	} else {
7390 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
7391 		if (err) {
7392 			dev_err(&pdev->dev,
7393 				"No usable DMA configuration, aborting\n");
7394 			goto err_dma;
7395 		}
7396 	}
7397 
7398 	bars = pci_select_bars(pdev, IORESOURCE_MEM);
7399 	err = pci_request_selected_regions_exclusive(pdev, bars,
7400 						     e1000e_driver_name);
7401 	if (err)
7402 		goto err_pci_reg;
7403 
7404 	/* AER (Advanced Error Reporting) hooks */
7405 	pci_enable_pcie_error_reporting(pdev);
7406 
7407 	pci_set_master(pdev);
7408 	/* PCI config space info */
7409 	err = pci_save_state(pdev);
7410 	if (err)
7411 		goto err_alloc_etherdev;
7412 
7413 	err = -ENOMEM;
7414 	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
7415 	if (!netdev)
7416 		goto err_alloc_etherdev;
7417 
7418 	SET_NETDEV_DEV(netdev, &pdev->dev);
7419 
7420 	netdev->irq = pdev->irq;
7421 
7422 	pci_set_drvdata(pdev, netdev);
7423 	adapter = netdev_priv(netdev);
7424 	hw = &adapter->hw;
7425 	adapter->netdev = netdev;
7426 	adapter->pdev = pdev;
7427 	adapter->ei = ei;
7428 	adapter->pba = ei->pba;
7429 	adapter->flags = ei->flags;
7430 	adapter->flags2 = ei->flags2;
7431 	adapter->hw.adapter = adapter;
7432 	adapter->hw.mac.type = ei->mac;
7433 	adapter->max_hw_frame_size = ei->max_hw_frame_size;
7434 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
7435 
7436 	mmio_start = pci_resource_start(pdev, 0);
7437 	mmio_len = pci_resource_len(pdev, 0);
7438 
7439 	err = -EIO;
7440 	adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
7441 	if (!adapter->hw.hw_addr)
7442 		goto err_ioremap;
7443 
7444 	if ((adapter->flags & FLAG_HAS_FLASH) &&
7445 	    (pci_resource_flags(pdev, 1) & IORESOURCE_MEM) &&
7446 	    (hw->mac.type < e1000_pch_spt)) {
7447 		flash_start = pci_resource_start(pdev, 1);
7448 		flash_len = pci_resource_len(pdev, 1);
7449 		adapter->hw.flash_address = ioremap(flash_start, flash_len);
7450 		if (!adapter->hw.flash_address)
7451 			goto err_flashmap;
7452 	}
7453 
7454 	/* Set default EEE advertisement */
7455 	if (adapter->flags2 & FLAG2_HAS_EEE)
7456 		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
7457 
7458 	/* construct the net_device struct */
7459 	netdev->netdev_ops = &e1000e_netdev_ops;
7460 	e1000e_set_ethtool_ops(netdev);
7461 	netdev->watchdog_timeo = 5 * HZ;
7462 	netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64);
7463 	strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
7464 
7465 	netdev->mem_start = mmio_start;
7466 	netdev->mem_end = mmio_start + mmio_len;
7467 
7468 	adapter->bd_number = cards_found++;
7469 
7470 	e1000e_check_options(adapter);
7471 
7472 	/* setup adapter struct */
7473 	err = e1000_sw_init(adapter);
7474 	if (err)
7475 		goto err_sw_init;
7476 
7477 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
7478 	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
7479 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
7480 
7481 	err = ei->get_variants(adapter);
7482 	if (err)
7483 		goto err_hw_init;
7484 
7485 	if ((adapter->flags & FLAG_IS_ICH) &&
7486 	    (adapter->flags & FLAG_READ_ONLY_NVM) &&
7487 	    (hw->mac.type < e1000_pch_spt))
7488 		e1000e_write_protect_nvm_ich8lan(&adapter->hw);
7489 
7490 	hw->mac.ops.get_bus_info(&adapter->hw);
7491 
7492 	adapter->hw.phy.autoneg_wait_to_complete = 0;
7493 
7494 	/* Copper options */
7495 	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
7496 		adapter->hw.phy.mdix = AUTO_ALL_MODES;
7497 		adapter->hw.phy.disable_polarity_correction = 0;
7498 		adapter->hw.phy.ms_type = e1000_ms_hw_default;
7499 	}
7500 
7501 	if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
7502 		dev_info(&pdev->dev,
7503 			 "PHY reset is blocked due to SOL/IDER session.\n");
7504 
7505 	/* Set initial default active device features */
7506 	netdev->features = (NETIF_F_SG |
7507 			    NETIF_F_HW_VLAN_CTAG_RX |
7508 			    NETIF_F_HW_VLAN_CTAG_TX |
7509 			    NETIF_F_TSO |
7510 			    NETIF_F_TSO6 |
7511 			    NETIF_F_RXHASH |
7512 			    NETIF_F_RXCSUM |
7513 			    NETIF_F_HW_CSUM);
7514 
7515 	/* Set user-changeable features (subset of all device features) */
7516 	netdev->hw_features = netdev->features;
7517 	netdev->hw_features |= NETIF_F_RXFCS;
7518 	netdev->priv_flags |= IFF_SUPP_NOFCS;
7519 	netdev->hw_features |= NETIF_F_RXALL;
7520 
7521 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
7522 		netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7523 
7524 	netdev->vlan_features |= (NETIF_F_SG |
7525 				  NETIF_F_TSO |
7526 				  NETIF_F_TSO6 |
7527 				  NETIF_F_HW_CSUM);
7528 
7529 	netdev->priv_flags |= IFF_UNICAST_FLT;
7530 
7531 	if (pci_using_dac) {
7532 		netdev->features |= NETIF_F_HIGHDMA;
7533 		netdev->vlan_features |= NETIF_F_HIGHDMA;
7534 	}
7535 
7536 	/* MTU range: 68 - max_hw_frame_size */
7537 	netdev->min_mtu = ETH_MIN_MTU;
7538 	netdev->max_mtu = adapter->max_hw_frame_size -
7539 			  (VLAN_ETH_HLEN + ETH_FCS_LEN);
7540 
7541 	if (e1000e_enable_mng_pass_thru(&adapter->hw))
7542 		adapter->flags |= FLAG_MNG_PT_ENABLED;
7543 
7544 	/* before reading the NVM, reset the controller to
7545 	 * put the device in a known good starting state
7546 	 */
7547 	adapter->hw.mac.ops.reset_hw(&adapter->hw);
7548 
7549 	/* systems with ASPM and others may see the checksum fail on the first
7550 	 * attempt. Let's give it a few tries
7551 	 */
7552 	for (i = 0;; i++) {
7553 		if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
7554 			break;
7555 		if (i == 2) {
7556 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
7557 			err = -EIO;
7558 			goto err_eeprom;
7559 		}
7560 	}
7561 
7562 	e1000_eeprom_checks(adapter);
7563 
7564 	/* copy the MAC address */
7565 	if (e1000e_read_mac_addr(&adapter->hw))
7566 		dev_err(&pdev->dev,
7567 			"NVM Read Error while reading MAC address\n");
7568 
7569 	memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
7570 
7571 	if (!is_valid_ether_addr(netdev->dev_addr)) {
7572 		dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
7573 			netdev->dev_addr);
7574 		err = -EIO;
7575 		goto err_eeprom;
7576 	}
7577 
7578 	timer_setup(&adapter->watchdog_timer, e1000_watchdog, 0);
7579 	timer_setup(&adapter->phy_info_timer, e1000_update_phy_info, 0);
7580 
7581 	INIT_WORK(&adapter->reset_task, e1000_reset_task);
7582 	INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
7583 	INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
7584 	INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
7585 	INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
7586 
7587 	/* Initialize link parameters. User can change them with ethtool */
7588 	adapter->hw.mac.autoneg = 1;
7589 	adapter->fc_autoneg = true;
7590 	adapter->hw.fc.requested_mode = e1000_fc_default;
7591 	adapter->hw.fc.current_mode = e1000_fc_default;
7592 	adapter->hw.phy.autoneg_advertised = 0x2f;
7593 
7594 	/* Initial Wake on LAN setting - If APM wake is enabled in
7595 	 * the EEPROM, enable the ACPI Magic Packet filter
7596 	 */
7597 	if (adapter->flags & FLAG_APME_IN_WUC) {
7598 		/* APME bit in EEPROM is mapped to WUC.APME */
7599 		eeprom_data = er32(WUC);
7600 		eeprom_apme_mask = E1000_WUC_APME;
7601 		if ((hw->mac.type > e1000_ich10lan) &&
7602 		    (eeprom_data & E1000_WUC_PHY_WAKE))
7603 			adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
7604 	} else if (adapter->flags & FLAG_APME_IN_CTRL3) {
7605 		if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
7606 		    (adapter->hw.bus.func == 1))
7607 			ret_val = e1000_read_nvm(&adapter->hw,
7608 					      NVM_INIT_CONTROL3_PORT_B,
7609 					      1, &eeprom_data);
7610 		else
7611 			ret_val = e1000_read_nvm(&adapter->hw,
7612 					      NVM_INIT_CONTROL3_PORT_A,
7613 					      1, &eeprom_data);
7614 	}
7615 
7616 	/* fetch WoL from EEPROM */
7617 	if (ret_val)
7618 		e_dbg("NVM read error getting WoL initial values: %d\n", ret_val);
7619 	else if (eeprom_data & eeprom_apme_mask)
7620 		adapter->eeprom_wol |= E1000_WUFC_MAG;
7621 
7622 	/* now that we have the eeprom settings, apply the special cases
7623 	 * where the eeprom may be wrong or the board simply won't support
7624 	 * wake on lan on a particular port
7625 	 */
7626 	if (!(adapter->flags & FLAG_HAS_WOL))
7627 		adapter->eeprom_wol = 0;
7628 
7629 	/* initialize the wol settings based on the eeprom settings */
7630 	adapter->wol = adapter->eeprom_wol;
7631 
7632 	/* make sure adapter isn't asleep if manageability is enabled */
7633 	if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) ||
7634 	    (hw->mac.ops.check_mng_mode(hw)))
7635 		device_wakeup_enable(&pdev->dev);
7636 
7637 	/* save off EEPROM version number */
7638 	ret_val = e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
7639 
7640 	if (ret_val) {
7641 		e_dbg("NVM read error getting EEPROM version: %d\n", ret_val);
7642 		adapter->eeprom_vers = 0;
7643 	}
7644 
7645 	/* init PTP hardware clock */
7646 	e1000e_ptp_init(adapter);
7647 
7648 	/* reset the hardware with the new settings */
7649 	e1000e_reset(adapter);
7650 
7651 	/* If the controller has AMT, do not set DRV_LOAD until the interface
7652 	 * is up.  For all other cases, let the f/w know that the h/w is now
7653 	 * under the control of the driver.
7654 	 */
7655 	if (!(adapter->flags & FLAG_HAS_AMT))
7656 		e1000e_get_hw_control(adapter);
7657 
7658 	strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
7659 	err = register_netdev(netdev);
7660 	if (err)
7661 		goto err_register;
7662 
7663 	/* carrier off reporting is important to ethtool even BEFORE open */
7664 	netif_carrier_off(netdev);
7665 
7666 	e1000_print_device_info(adapter);
7667 
7668 	dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
7669 
7670 	if (pci_dev_run_wake(pdev) && hw->mac.type < e1000_pch_cnp)
7671 		pm_runtime_put_noidle(&pdev->dev);
7672 
7673 	return 0;
7674 
7675 err_register:
7676 	if (!(adapter->flags & FLAG_HAS_AMT))
7677 		e1000e_release_hw_control(adapter);
7678 err_eeprom:
7679 	if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
7680 		e1000_phy_hw_reset(&adapter->hw);
7681 err_hw_init:
7682 	kfree(adapter->tx_ring);
7683 	kfree(adapter->rx_ring);
7684 err_sw_init:
7685 	if ((adapter->hw.flash_address) && (hw->mac.type < e1000_pch_spt))
7686 		iounmap(adapter->hw.flash_address);
7687 	e1000e_reset_interrupt_capability(adapter);
7688 err_flashmap:
7689 	iounmap(adapter->hw.hw_addr);
7690 err_ioremap:
7691 	free_netdev(netdev);
7692 err_alloc_etherdev:
7693 	pci_release_mem_regions(pdev);
7694 err_pci_reg:
7695 err_dma:
7696 	pci_disable_device(pdev);
7697 	return err;
7698 }
7699 
7700 /**
7701  * e1000_remove - Device Removal Routine
7702  * @pdev: PCI device information struct
7703  *
7704  * e1000_remove is called by the PCI subsystem to alert the driver
7705  * that it should release a PCI device.  The could be caused by a
7706  * Hot-Plug event, or because the driver is going to be removed from
7707  * memory.
7708  **/
7709 static void e1000_remove(struct pci_dev *pdev)
7710 {
7711 	struct net_device *netdev = pci_get_drvdata(pdev);
7712 	struct e1000_adapter *adapter = netdev_priv(netdev);
7713 
7714 	e1000e_ptp_remove(adapter);
7715 
7716 	/* The timers may be rescheduled, so explicitly disable them
7717 	 * from being rescheduled.
7718 	 */
7719 	set_bit(__E1000_DOWN, &adapter->state);
7720 	del_timer_sync(&adapter->watchdog_timer);
7721 	del_timer_sync(&adapter->phy_info_timer);
7722 
7723 	cancel_work_sync(&adapter->reset_task);
7724 	cancel_work_sync(&adapter->watchdog_task);
7725 	cancel_work_sync(&adapter->downshift_task);
7726 	cancel_work_sync(&adapter->update_phy_task);
7727 	cancel_work_sync(&adapter->print_hang_task);
7728 
7729 	if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
7730 		cancel_work_sync(&adapter->tx_hwtstamp_work);
7731 		if (adapter->tx_hwtstamp_skb) {
7732 			dev_consume_skb_any(adapter->tx_hwtstamp_skb);
7733 			adapter->tx_hwtstamp_skb = NULL;
7734 		}
7735 	}
7736 
7737 	unregister_netdev(netdev);
7738 
7739 	if (pci_dev_run_wake(pdev))
7740 		pm_runtime_get_noresume(&pdev->dev);
7741 
7742 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7743 	 * would have already happened in close and is redundant.
7744 	 */
7745 	e1000e_release_hw_control(adapter);
7746 
7747 	e1000e_reset_interrupt_capability(adapter);
7748 	kfree(adapter->tx_ring);
7749 	kfree(adapter->rx_ring);
7750 
7751 	iounmap(adapter->hw.hw_addr);
7752 	if ((adapter->hw.flash_address) &&
7753 	    (adapter->hw.mac.type < e1000_pch_spt))
7754 		iounmap(adapter->hw.flash_address);
7755 	pci_release_mem_regions(pdev);
7756 
7757 	free_netdev(netdev);
7758 
7759 	/* AER disable */
7760 	pci_disable_pcie_error_reporting(pdev);
7761 
7762 	pci_disable_device(pdev);
7763 }
7764 
7765 /* PCI Error Recovery (ERS) */
7766 static const struct pci_error_handlers e1000_err_handler = {
7767 	.error_detected = e1000_io_error_detected,
7768 	.slot_reset = e1000_io_slot_reset,
7769 	.resume = e1000_io_resume,
7770 };
7771 
7772 static const struct pci_device_id e1000_pci_tbl[] = {
7773 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
7774 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
7775 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
7776 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP),
7777 	  board_82571 },
7778 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
7779 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
7780 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
7781 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
7782 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
7783 
7784 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
7785 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
7786 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
7787 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
7788 
7789 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
7790 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
7791 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
7792 
7793 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
7794 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
7795 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
7796 
7797 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
7798 	  board_80003es2lan },
7799 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
7800 	  board_80003es2lan },
7801 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
7802 	  board_80003es2lan },
7803 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
7804 	  board_80003es2lan },
7805 
7806 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
7807 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
7808 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
7809 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
7810 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
7811 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
7812 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
7813 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
7814 
7815 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
7816 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
7817 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
7818 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
7819 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
7820 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
7821 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
7822 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
7823 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
7824 
7825 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
7826 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
7827 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
7828 
7829 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
7830 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
7831 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
7832 
7833 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
7834 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
7835 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
7836 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
7837 
7838 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
7839 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
7840 
7841 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
7842 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
7843 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt },
7844 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt },
7845 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt },
7846 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt },
7847 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt },
7848 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt },
7849 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM), board_pch_spt },
7850 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V), board_pch_spt },
7851 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM2), board_pch_spt },
7852 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V2), board_pch_spt },
7853 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LBG_I219_LM3), board_pch_spt },
7854 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM4), board_pch_spt },
7855 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V4), board_pch_spt },
7856 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM5), board_pch_spt },
7857 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V5), board_pch_spt },
7858 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM6), board_pch_cnp },
7859 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V6), board_pch_cnp },
7860 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM7), board_pch_cnp },
7861 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V7), board_pch_cnp },
7862 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM8), board_pch_cnp },
7863 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V8), board_pch_cnp },
7864 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM9), board_pch_cnp },
7865 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V9), board_pch_cnp },
7866 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM10), board_pch_cnp },
7867 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V10), board_pch_cnp },
7868 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM11), board_pch_cnp },
7869 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V11), board_pch_cnp },
7870 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM12), board_pch_spt },
7871 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V12), board_pch_spt },
7872 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM13), board_pch_cnp },
7873 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V13), board_pch_cnp },
7874 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM14), board_pch_cnp },
7875 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V14), board_pch_cnp },
7876 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM15), board_pch_cnp },
7877 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V15), board_pch_cnp },
7878 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_LM16), board_pch_cnp },
7879 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_V16), board_pch_cnp },
7880 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_LM17), board_pch_cnp },
7881 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_V17), board_pch_cnp },
7882 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_LM18), board_pch_cnp },
7883 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_V18), board_pch_cnp },
7884 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_LM19), board_pch_cnp },
7885 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_V19), board_pch_cnp },
7886 
7887 	{ 0, 0, 0, 0, 0, 0, 0 }	/* terminate list */
7888 };
7889 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
7890 
7891 static const struct dev_pm_ops e1000_pm_ops = {
7892 #ifdef CONFIG_PM_SLEEP
7893 	.suspend	= e1000e_pm_suspend,
7894 	.resume		= e1000e_pm_resume,
7895 	.freeze		= e1000e_pm_freeze,
7896 	.thaw		= e1000e_pm_thaw,
7897 	.poweroff	= e1000e_pm_suspend,
7898 	.restore	= e1000e_pm_resume,
7899 #endif
7900 	SET_RUNTIME_PM_OPS(e1000e_pm_runtime_suspend, e1000e_pm_runtime_resume,
7901 			   e1000e_pm_runtime_idle)
7902 };
7903 
7904 /* PCI Device API Driver */
7905 static struct pci_driver e1000_driver = {
7906 	.name     = e1000e_driver_name,
7907 	.id_table = e1000_pci_tbl,
7908 	.probe    = e1000_probe,
7909 	.remove   = e1000_remove,
7910 	.driver   = {
7911 		.pm = &e1000_pm_ops,
7912 	},
7913 	.shutdown = e1000_shutdown,
7914 	.err_handler = &e1000_err_handler
7915 };
7916 
7917 /**
7918  * e1000_init_module - Driver Registration Routine
7919  *
7920  * e1000_init_module is the first routine called when the driver is
7921  * loaded. All it does is register with the PCI subsystem.
7922  **/
7923 static int __init e1000_init_module(void)
7924 {
7925 	pr_info("Intel(R) PRO/1000 Network Driver\n");
7926 	pr_info("Copyright(c) 1999 - 2015 Intel Corporation.\n");
7927 
7928 	return pci_register_driver(&e1000_driver);
7929 }
7930 module_init(e1000_init_module);
7931 
7932 /**
7933  * e1000_exit_module - Driver Exit Cleanup Routine
7934  *
7935  * e1000_exit_module is called just before the driver is removed
7936  * from memory.
7937  **/
7938 static void __exit e1000_exit_module(void)
7939 {
7940 	pci_unregister_driver(&e1000_driver);
7941 }
7942 module_exit(e1000_exit_module);
7943 
7944 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
7945 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7946 MODULE_LICENSE("GPL v2");
7947 
7948 /* netdev.c */
7949