1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3 
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5 
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/pci.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/delay.h>
13 #include <linux/netdevice.h>
14 #include <linux/interrupt.h>
15 #include <linux/tcp.h>
16 #include <linux/ipv6.h>
17 #include <linux/slab.h>
18 #include <net/checksum.h>
19 #include <net/ip6_checksum.h>
20 #include <linux/ethtool.h>
21 #include <linux/if_vlan.h>
22 #include <linux/cpu.h>
23 #include <linux/smp.h>
24 #include <linux/pm_qos.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/aer.h>
27 #include <linux/prefetch.h>
28 
29 #include "e1000.h"
30 
31 char e1000e_driver_name[] = "e1000e";
32 
33 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
34 static int debug = -1;
35 module_param(debug, int, 0);
36 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
37 
38 static const struct e1000_info *e1000_info_tbl[] = {
39 	[board_82571]		= &e1000_82571_info,
40 	[board_82572]		= &e1000_82572_info,
41 	[board_82573]		= &e1000_82573_info,
42 	[board_82574]		= &e1000_82574_info,
43 	[board_82583]		= &e1000_82583_info,
44 	[board_80003es2lan]	= &e1000_es2_info,
45 	[board_ich8lan]		= &e1000_ich8_info,
46 	[board_ich9lan]		= &e1000_ich9_info,
47 	[board_ich10lan]	= &e1000_ich10_info,
48 	[board_pchlan]		= &e1000_pch_info,
49 	[board_pch2lan]		= &e1000_pch2_info,
50 	[board_pch_lpt]		= &e1000_pch_lpt_info,
51 	[board_pch_spt]		= &e1000_pch_spt_info,
52 	[board_pch_cnp]		= &e1000_pch_cnp_info,
53 };
54 
55 struct e1000_reg_info {
56 	u32 ofs;
57 	char *name;
58 };
59 
60 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
61 	/* General Registers */
62 	{E1000_CTRL, "CTRL"},
63 	{E1000_STATUS, "STATUS"},
64 	{E1000_CTRL_EXT, "CTRL_EXT"},
65 
66 	/* Interrupt Registers */
67 	{E1000_ICR, "ICR"},
68 
69 	/* Rx Registers */
70 	{E1000_RCTL, "RCTL"},
71 	{E1000_RDLEN(0), "RDLEN"},
72 	{E1000_RDH(0), "RDH"},
73 	{E1000_RDT(0), "RDT"},
74 	{E1000_RDTR, "RDTR"},
75 	{E1000_RXDCTL(0), "RXDCTL"},
76 	{E1000_ERT, "ERT"},
77 	{E1000_RDBAL(0), "RDBAL"},
78 	{E1000_RDBAH(0), "RDBAH"},
79 	{E1000_RDFH, "RDFH"},
80 	{E1000_RDFT, "RDFT"},
81 	{E1000_RDFHS, "RDFHS"},
82 	{E1000_RDFTS, "RDFTS"},
83 	{E1000_RDFPC, "RDFPC"},
84 
85 	/* Tx Registers */
86 	{E1000_TCTL, "TCTL"},
87 	{E1000_TDBAL(0), "TDBAL"},
88 	{E1000_TDBAH(0), "TDBAH"},
89 	{E1000_TDLEN(0), "TDLEN"},
90 	{E1000_TDH(0), "TDH"},
91 	{E1000_TDT(0), "TDT"},
92 	{E1000_TIDV, "TIDV"},
93 	{E1000_TXDCTL(0), "TXDCTL"},
94 	{E1000_TADV, "TADV"},
95 	{E1000_TARC(0), "TARC"},
96 	{E1000_TDFH, "TDFH"},
97 	{E1000_TDFT, "TDFT"},
98 	{E1000_TDFHS, "TDFHS"},
99 	{E1000_TDFTS, "TDFTS"},
100 	{E1000_TDFPC, "TDFPC"},
101 
102 	/* List Terminator */
103 	{0, NULL}
104 };
105 
106 struct e1000e_me_supported {
107 	u16 device_id;		/* supported device ID */
108 };
109 
110 static const struct e1000e_me_supported me_supported[] = {
111 	{E1000_DEV_ID_PCH_LPT_I217_LM},
112 	{E1000_DEV_ID_PCH_LPTLP_I218_LM},
113 	{E1000_DEV_ID_PCH_I218_LM2},
114 	{E1000_DEV_ID_PCH_I218_LM3},
115 	{E1000_DEV_ID_PCH_SPT_I219_LM},
116 	{E1000_DEV_ID_PCH_SPT_I219_LM2},
117 	{E1000_DEV_ID_PCH_LBG_I219_LM3},
118 	{E1000_DEV_ID_PCH_SPT_I219_LM4},
119 	{E1000_DEV_ID_PCH_SPT_I219_LM5},
120 	{E1000_DEV_ID_PCH_CNP_I219_LM6},
121 	{E1000_DEV_ID_PCH_CNP_I219_LM7},
122 	{E1000_DEV_ID_PCH_ICP_I219_LM8},
123 	{E1000_DEV_ID_PCH_ICP_I219_LM9},
124 	{E1000_DEV_ID_PCH_CMP_I219_LM10},
125 	{E1000_DEV_ID_PCH_CMP_I219_LM11},
126 	{E1000_DEV_ID_PCH_CMP_I219_LM12},
127 	{E1000_DEV_ID_PCH_TGP_I219_LM13},
128 	{E1000_DEV_ID_PCH_TGP_I219_LM14},
129 	{E1000_DEV_ID_PCH_TGP_I219_LM15},
130 	{0}
131 };
132 
133 static bool e1000e_check_me(u16 device_id)
134 {
135 	struct e1000e_me_supported *id;
136 
137 	for (id = (struct e1000e_me_supported *)me_supported;
138 	     id->device_id; id++)
139 		if (device_id == id->device_id)
140 			return true;
141 
142 	return false;
143 }
144 
145 /**
146  * __ew32_prepare - prepare to write to MAC CSR register on certain parts
147  * @hw: pointer to the HW structure
148  *
149  * When updating the MAC CSR registers, the Manageability Engine (ME) could
150  * be accessing the registers at the same time.  Normally, this is handled in
151  * h/w by an arbiter but on some parts there is a bug that acknowledges Host
152  * accesses later than it should which could result in the register to have
153  * an incorrect value.  Workaround this by checking the FWSM register which
154  * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set
155  * and try again a number of times.
156  **/
157 static void __ew32_prepare(struct e1000_hw *hw)
158 {
159 	s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT;
160 
161 	while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i)
162 		udelay(50);
163 }
164 
165 void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val)
166 {
167 	if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
168 		__ew32_prepare(hw);
169 
170 	writel(val, hw->hw_addr + reg);
171 }
172 
173 /**
174  * e1000_regdump - register printout routine
175  * @hw: pointer to the HW structure
176  * @reginfo: pointer to the register info table
177  **/
178 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
179 {
180 	int n = 0;
181 	char rname[16];
182 	u32 regs[8];
183 
184 	switch (reginfo->ofs) {
185 	case E1000_RXDCTL(0):
186 		for (n = 0; n < 2; n++)
187 			regs[n] = __er32(hw, E1000_RXDCTL(n));
188 		break;
189 	case E1000_TXDCTL(0):
190 		for (n = 0; n < 2; n++)
191 			regs[n] = __er32(hw, E1000_TXDCTL(n));
192 		break;
193 	case E1000_TARC(0):
194 		for (n = 0; n < 2; n++)
195 			regs[n] = __er32(hw, E1000_TARC(n));
196 		break;
197 	default:
198 		pr_info("%-15s %08x\n",
199 			reginfo->name, __er32(hw, reginfo->ofs));
200 		return;
201 	}
202 
203 	snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
204 	pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
205 }
206 
207 static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
208 				 struct e1000_buffer *bi)
209 {
210 	int i;
211 	struct e1000_ps_page *ps_page;
212 
213 	for (i = 0; i < adapter->rx_ps_pages; i++) {
214 		ps_page = &bi->ps_pages[i];
215 
216 		if (ps_page->page) {
217 			pr_info("packet dump for ps_page %d:\n", i);
218 			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
219 				       16, 1, page_address(ps_page->page),
220 				       PAGE_SIZE, true);
221 		}
222 	}
223 }
224 
225 /**
226  * e1000e_dump - Print registers, Tx-ring and Rx-ring
227  * @adapter: board private structure
228  **/
229 static void e1000e_dump(struct e1000_adapter *adapter)
230 {
231 	struct net_device *netdev = adapter->netdev;
232 	struct e1000_hw *hw = &adapter->hw;
233 	struct e1000_reg_info *reginfo;
234 	struct e1000_ring *tx_ring = adapter->tx_ring;
235 	struct e1000_tx_desc *tx_desc;
236 	struct my_u0 {
237 		__le64 a;
238 		__le64 b;
239 	} *u0;
240 	struct e1000_buffer *buffer_info;
241 	struct e1000_ring *rx_ring = adapter->rx_ring;
242 	union e1000_rx_desc_packet_split *rx_desc_ps;
243 	union e1000_rx_desc_extended *rx_desc;
244 	struct my_u1 {
245 		__le64 a;
246 		__le64 b;
247 		__le64 c;
248 		__le64 d;
249 	} *u1;
250 	u32 staterr;
251 	int i = 0;
252 
253 	if (!netif_msg_hw(adapter))
254 		return;
255 
256 	/* Print netdevice Info */
257 	if (netdev) {
258 		dev_info(&adapter->pdev->dev, "Net device Info\n");
259 		pr_info("Device Name     state            trans_start\n");
260 		pr_info("%-15s %016lX %016lX\n", netdev->name,
261 			netdev->state, dev_trans_start(netdev));
262 	}
263 
264 	/* Print Registers */
265 	dev_info(&adapter->pdev->dev, "Register Dump\n");
266 	pr_info(" Register Name   Value\n");
267 	for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
268 	     reginfo->name; reginfo++) {
269 		e1000_regdump(hw, reginfo);
270 	}
271 
272 	/* Print Tx Ring Summary */
273 	if (!netdev || !netif_running(netdev))
274 		return;
275 
276 	dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
277 	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
278 	buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
279 	pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
280 		0, tx_ring->next_to_use, tx_ring->next_to_clean,
281 		(unsigned long long)buffer_info->dma,
282 		buffer_info->length,
283 		buffer_info->next_to_watch,
284 		(unsigned long long)buffer_info->time_stamp);
285 
286 	/* Print Tx Ring */
287 	if (!netif_msg_tx_done(adapter))
288 		goto rx_ring_summary;
289 
290 	dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
291 
292 	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
293 	 *
294 	 * Legacy Transmit Descriptor
295 	 *   +--------------------------------------------------------------+
296 	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
297 	 *   +--------------------------------------------------------------+
298 	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
299 	 *   +--------------------------------------------------------------+
300 	 *   63       48 47        36 35    32 31     24 23    16 15        0
301 	 *
302 	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
303 	 *   63      48 47    40 39       32 31             16 15    8 7      0
304 	 *   +----------------------------------------------------------------+
305 	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
306 	 *   +----------------------------------------------------------------+
307 	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
308 	 *   +----------------------------------------------------------------+
309 	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
310 	 *
311 	 * Extended Data Descriptor (DTYP=0x1)
312 	 *   +----------------------------------------------------------------+
313 	 * 0 |                     Buffer Address [63:0]                      |
314 	 *   +----------------------------------------------------------------+
315 	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
316 	 *   +----------------------------------------------------------------+
317 	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
318 	 */
319 	pr_info("Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Legacy format\n");
320 	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Context format\n");
321 	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Data format\n");
322 	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
323 		const char *next_desc;
324 		tx_desc = E1000_TX_DESC(*tx_ring, i);
325 		buffer_info = &tx_ring->buffer_info[i];
326 		u0 = (struct my_u0 *)tx_desc;
327 		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
328 			next_desc = " NTC/U";
329 		else if (i == tx_ring->next_to_use)
330 			next_desc = " NTU";
331 		else if (i == tx_ring->next_to_clean)
332 			next_desc = " NTC";
333 		else
334 			next_desc = "";
335 		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p%s\n",
336 			(!(le64_to_cpu(u0->b) & BIT(29)) ? 'l' :
337 			 ((le64_to_cpu(u0->b) & BIT(20)) ? 'd' : 'c')),
338 			i,
339 			(unsigned long long)le64_to_cpu(u0->a),
340 			(unsigned long long)le64_to_cpu(u0->b),
341 			(unsigned long long)buffer_info->dma,
342 			buffer_info->length, buffer_info->next_to_watch,
343 			(unsigned long long)buffer_info->time_stamp,
344 			buffer_info->skb, next_desc);
345 
346 		if (netif_msg_pktdata(adapter) && buffer_info->skb)
347 			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
348 				       16, 1, buffer_info->skb->data,
349 				       buffer_info->skb->len, true);
350 	}
351 
352 	/* Print Rx Ring Summary */
353 rx_ring_summary:
354 	dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
355 	pr_info("Queue [NTU] [NTC]\n");
356 	pr_info(" %5d %5X %5X\n",
357 		0, rx_ring->next_to_use, rx_ring->next_to_clean);
358 
359 	/* Print Rx Ring */
360 	if (!netif_msg_rx_status(adapter))
361 		return;
362 
363 	dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
364 	switch (adapter->rx_ps_pages) {
365 	case 1:
366 	case 2:
367 	case 3:
368 		/* [Extended] Packet Split Receive Descriptor Format
369 		 *
370 		 *    +-----------------------------------------------------+
371 		 *  0 |                Buffer Address 0 [63:0]              |
372 		 *    +-----------------------------------------------------+
373 		 *  8 |                Buffer Address 1 [63:0]              |
374 		 *    +-----------------------------------------------------+
375 		 * 16 |                Buffer Address 2 [63:0]              |
376 		 *    +-----------------------------------------------------+
377 		 * 24 |                Buffer Address 3 [63:0]              |
378 		 *    +-----------------------------------------------------+
379 		 */
380 		pr_info("R  [desc]      [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] [bi->skb] <-- Ext Pkt Split format\n");
381 		/* [Extended] Receive Descriptor (Write-Back) Format
382 		 *
383 		 *   63       48 47    32 31     13 12    8 7    4 3        0
384 		 *   +------------------------------------------------------+
385 		 * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
386 		 *   | Checksum | Ident  |         | Queue |      |  Type   |
387 		 *   +------------------------------------------------------+
388 		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
389 		 *   +------------------------------------------------------+
390 		 *   63       48 47    32 31            20 19               0
391 		 */
392 		pr_info("RWB[desc]      [ck ipid mrqhsh] [vl   l0 ee  es] [ l3  l2  l1 hs] [reserved      ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
393 		for (i = 0; i < rx_ring->count; i++) {
394 			const char *next_desc;
395 			buffer_info = &rx_ring->buffer_info[i];
396 			rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
397 			u1 = (struct my_u1 *)rx_desc_ps;
398 			staterr =
399 			    le32_to_cpu(rx_desc_ps->wb.middle.status_error);
400 
401 			if (i == rx_ring->next_to_use)
402 				next_desc = " NTU";
403 			else if (i == rx_ring->next_to_clean)
404 				next_desc = " NTC";
405 			else
406 				next_desc = "";
407 
408 			if (staterr & E1000_RXD_STAT_DD) {
409 				/* Descriptor Done */
410 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX ---------------- %p%s\n",
411 					"RWB", i,
412 					(unsigned long long)le64_to_cpu(u1->a),
413 					(unsigned long long)le64_to_cpu(u1->b),
414 					(unsigned long long)le64_to_cpu(u1->c),
415 					(unsigned long long)le64_to_cpu(u1->d),
416 					buffer_info->skb, next_desc);
417 			} else {
418 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX %016llX %p%s\n",
419 					"R  ", i,
420 					(unsigned long long)le64_to_cpu(u1->a),
421 					(unsigned long long)le64_to_cpu(u1->b),
422 					(unsigned long long)le64_to_cpu(u1->c),
423 					(unsigned long long)le64_to_cpu(u1->d),
424 					(unsigned long long)buffer_info->dma,
425 					buffer_info->skb, next_desc);
426 
427 				if (netif_msg_pktdata(adapter))
428 					e1000e_dump_ps_pages(adapter,
429 							     buffer_info);
430 			}
431 		}
432 		break;
433 	default:
434 	case 0:
435 		/* Extended Receive Descriptor (Read) Format
436 		 *
437 		 *   +-----------------------------------------------------+
438 		 * 0 |                Buffer Address [63:0]                |
439 		 *   +-----------------------------------------------------+
440 		 * 8 |                      Reserved                       |
441 		 *   +-----------------------------------------------------+
442 		 */
443 		pr_info("R  [desc]      [buf addr 63:0 ] [reserved 63:0 ] [bi->dma       ] [bi->skb] <-- Ext (Read) format\n");
444 		/* Extended Receive Descriptor (Write-Back) Format
445 		 *
446 		 *   63       48 47    32 31    24 23            4 3        0
447 		 *   +------------------------------------------------------+
448 		 *   |     RSS Hash      |        |               |         |
449 		 * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
450 		 *   | Packet   | IP     |        |               |  Type   |
451 		 *   | Checksum | Ident  |        |               |         |
452 		 *   +------------------------------------------------------+
453 		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
454 		 *   +------------------------------------------------------+
455 		 *   63       48 47    32 31            20 19               0
456 		 */
457 		pr_info("RWB[desc]      [cs ipid    mrq] [vt   ln xe  xs] [bi->skb] <-- Ext (Write-Back) format\n");
458 
459 		for (i = 0; i < rx_ring->count; i++) {
460 			const char *next_desc;
461 
462 			buffer_info = &rx_ring->buffer_info[i];
463 			rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
464 			u1 = (struct my_u1 *)rx_desc;
465 			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
466 
467 			if (i == rx_ring->next_to_use)
468 				next_desc = " NTU";
469 			else if (i == rx_ring->next_to_clean)
470 				next_desc = " NTC";
471 			else
472 				next_desc = "";
473 
474 			if (staterr & E1000_RXD_STAT_DD) {
475 				/* Descriptor Done */
476 				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %p%s\n",
477 					"RWB", i,
478 					(unsigned long long)le64_to_cpu(u1->a),
479 					(unsigned long long)le64_to_cpu(u1->b),
480 					buffer_info->skb, next_desc);
481 			} else {
482 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %p%s\n",
483 					"R  ", i,
484 					(unsigned long long)le64_to_cpu(u1->a),
485 					(unsigned long long)le64_to_cpu(u1->b),
486 					(unsigned long long)buffer_info->dma,
487 					buffer_info->skb, next_desc);
488 
489 				if (netif_msg_pktdata(adapter) &&
490 				    buffer_info->skb)
491 					print_hex_dump(KERN_INFO, "",
492 						       DUMP_PREFIX_ADDRESS, 16,
493 						       1,
494 						       buffer_info->skb->data,
495 						       adapter->rx_buffer_len,
496 						       true);
497 			}
498 		}
499 	}
500 }
501 
502 /**
503  * e1000_desc_unused - calculate if we have unused descriptors
504  **/
505 static int e1000_desc_unused(struct e1000_ring *ring)
506 {
507 	if (ring->next_to_clean > ring->next_to_use)
508 		return ring->next_to_clean - ring->next_to_use - 1;
509 
510 	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
511 }
512 
513 /**
514  * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
515  * @adapter: board private structure
516  * @hwtstamps: time stamp structure to update
517  * @systim: unsigned 64bit system time value.
518  *
519  * Convert the system time value stored in the RX/TXSTMP registers into a
520  * hwtstamp which can be used by the upper level time stamping functions.
521  *
522  * The 'systim_lock' spinlock is used to protect the consistency of the
523  * system time value. This is needed because reading the 64 bit time
524  * value involves reading two 32 bit registers. The first read latches the
525  * value.
526  **/
527 static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter,
528 				      struct skb_shared_hwtstamps *hwtstamps,
529 				      u64 systim)
530 {
531 	u64 ns;
532 	unsigned long flags;
533 
534 	spin_lock_irqsave(&adapter->systim_lock, flags);
535 	ns = timecounter_cyc2time(&adapter->tc, systim);
536 	spin_unlock_irqrestore(&adapter->systim_lock, flags);
537 
538 	memset(hwtstamps, 0, sizeof(*hwtstamps));
539 	hwtstamps->hwtstamp = ns_to_ktime(ns);
540 }
541 
542 /**
543  * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
544  * @adapter: board private structure
545  * @status: descriptor extended error and status field
546  * @skb: particular skb to include time stamp
547  *
548  * If the time stamp is valid, convert it into the timecounter ns value
549  * and store that result into the shhwtstamps structure which is passed
550  * up the network stack.
551  **/
552 static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status,
553 			       struct sk_buff *skb)
554 {
555 	struct e1000_hw *hw = &adapter->hw;
556 	u64 rxstmp;
557 
558 	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) ||
559 	    !(status & E1000_RXDEXT_STATERR_TST) ||
560 	    !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
561 		return;
562 
563 	/* The Rx time stamp registers contain the time stamp.  No other
564 	 * received packet will be time stamped until the Rx time stamp
565 	 * registers are read.  Because only one packet can be time stamped
566 	 * at a time, the register values must belong to this packet and
567 	 * therefore none of the other additional attributes need to be
568 	 * compared.
569 	 */
570 	rxstmp = (u64)er32(RXSTMPL);
571 	rxstmp |= (u64)er32(RXSTMPH) << 32;
572 	e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp);
573 
574 	adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP;
575 }
576 
577 /**
578  * e1000_receive_skb - helper function to handle Rx indications
579  * @adapter: board private structure
580  * @staterr: descriptor extended error and status field as written by hardware
581  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
582  * @skb: pointer to sk_buff to be indicated to stack
583  **/
584 static void e1000_receive_skb(struct e1000_adapter *adapter,
585 			      struct net_device *netdev, struct sk_buff *skb,
586 			      u32 staterr, __le16 vlan)
587 {
588 	u16 tag = le16_to_cpu(vlan);
589 
590 	e1000e_rx_hwtstamp(adapter, staterr, skb);
591 
592 	skb->protocol = eth_type_trans(skb, netdev);
593 
594 	if (staterr & E1000_RXD_STAT_VP)
595 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag);
596 
597 	napi_gro_receive(&adapter->napi, skb);
598 }
599 
600 /**
601  * e1000_rx_checksum - Receive Checksum Offload
602  * @adapter: board private structure
603  * @status_err: receive descriptor status and error fields
604  * @csum: receive descriptor csum field
605  * @sk_buff: socket buffer with received data
606  **/
607 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
608 			      struct sk_buff *skb)
609 {
610 	u16 status = (u16)status_err;
611 	u8 errors = (u8)(status_err >> 24);
612 
613 	skb_checksum_none_assert(skb);
614 
615 	/* Rx checksum disabled */
616 	if (!(adapter->netdev->features & NETIF_F_RXCSUM))
617 		return;
618 
619 	/* Ignore Checksum bit is set */
620 	if (status & E1000_RXD_STAT_IXSM)
621 		return;
622 
623 	/* TCP/UDP checksum error bit or IP checksum error bit is set */
624 	if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
625 		/* let the stack verify checksum errors */
626 		adapter->hw_csum_err++;
627 		return;
628 	}
629 
630 	/* TCP/UDP Checksum has not been calculated */
631 	if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
632 		return;
633 
634 	/* It must be a TCP or UDP packet with a valid checksum */
635 	skb->ip_summed = CHECKSUM_UNNECESSARY;
636 	adapter->hw_csum_good++;
637 }
638 
639 static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
640 {
641 	struct e1000_adapter *adapter = rx_ring->adapter;
642 	struct e1000_hw *hw = &adapter->hw;
643 
644 	__ew32_prepare(hw);
645 	writel(i, rx_ring->tail);
646 
647 	if (unlikely(i != readl(rx_ring->tail))) {
648 		u32 rctl = er32(RCTL);
649 
650 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
651 		e_err("ME firmware caused invalid RDT - resetting\n");
652 		schedule_work(&adapter->reset_task);
653 	}
654 }
655 
656 static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
657 {
658 	struct e1000_adapter *adapter = tx_ring->adapter;
659 	struct e1000_hw *hw = &adapter->hw;
660 
661 	__ew32_prepare(hw);
662 	writel(i, tx_ring->tail);
663 
664 	if (unlikely(i != readl(tx_ring->tail))) {
665 		u32 tctl = er32(TCTL);
666 
667 		ew32(TCTL, tctl & ~E1000_TCTL_EN);
668 		e_err("ME firmware caused invalid TDT - resetting\n");
669 		schedule_work(&adapter->reset_task);
670 	}
671 }
672 
673 /**
674  * e1000_alloc_rx_buffers - Replace used receive buffers
675  * @rx_ring: Rx descriptor ring
676  **/
677 static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
678 				   int cleaned_count, gfp_t gfp)
679 {
680 	struct e1000_adapter *adapter = rx_ring->adapter;
681 	struct net_device *netdev = adapter->netdev;
682 	struct pci_dev *pdev = adapter->pdev;
683 	union e1000_rx_desc_extended *rx_desc;
684 	struct e1000_buffer *buffer_info;
685 	struct sk_buff *skb;
686 	unsigned int i;
687 	unsigned int bufsz = adapter->rx_buffer_len;
688 
689 	i = rx_ring->next_to_use;
690 	buffer_info = &rx_ring->buffer_info[i];
691 
692 	while (cleaned_count--) {
693 		skb = buffer_info->skb;
694 		if (skb) {
695 			skb_trim(skb, 0);
696 			goto map_skb;
697 		}
698 
699 		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
700 		if (!skb) {
701 			/* Better luck next round */
702 			adapter->alloc_rx_buff_failed++;
703 			break;
704 		}
705 
706 		buffer_info->skb = skb;
707 map_skb:
708 		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
709 						  adapter->rx_buffer_len,
710 						  DMA_FROM_DEVICE);
711 		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
712 			dev_err(&pdev->dev, "Rx DMA map failed\n");
713 			adapter->rx_dma_failed++;
714 			break;
715 		}
716 
717 		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
718 		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
719 
720 		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
721 			/* Force memory writes to complete before letting h/w
722 			 * know there are new descriptors to fetch.  (Only
723 			 * applicable for weak-ordered memory model archs,
724 			 * such as IA-64).
725 			 */
726 			wmb();
727 			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
728 				e1000e_update_rdt_wa(rx_ring, i);
729 			else
730 				writel(i, rx_ring->tail);
731 		}
732 		i++;
733 		if (i == rx_ring->count)
734 			i = 0;
735 		buffer_info = &rx_ring->buffer_info[i];
736 	}
737 
738 	rx_ring->next_to_use = i;
739 }
740 
741 /**
742  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
743  * @rx_ring: Rx descriptor ring
744  **/
745 static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
746 				      int cleaned_count, gfp_t gfp)
747 {
748 	struct e1000_adapter *adapter = rx_ring->adapter;
749 	struct net_device *netdev = adapter->netdev;
750 	struct pci_dev *pdev = adapter->pdev;
751 	union e1000_rx_desc_packet_split *rx_desc;
752 	struct e1000_buffer *buffer_info;
753 	struct e1000_ps_page *ps_page;
754 	struct sk_buff *skb;
755 	unsigned int i, j;
756 
757 	i = rx_ring->next_to_use;
758 	buffer_info = &rx_ring->buffer_info[i];
759 
760 	while (cleaned_count--) {
761 		rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
762 
763 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
764 			ps_page = &buffer_info->ps_pages[j];
765 			if (j >= adapter->rx_ps_pages) {
766 				/* all unused desc entries get hw null ptr */
767 				rx_desc->read.buffer_addr[j + 1] =
768 				    ~cpu_to_le64(0);
769 				continue;
770 			}
771 			if (!ps_page->page) {
772 				ps_page->page = alloc_page(gfp);
773 				if (!ps_page->page) {
774 					adapter->alloc_rx_buff_failed++;
775 					goto no_buffers;
776 				}
777 				ps_page->dma = dma_map_page(&pdev->dev,
778 							    ps_page->page,
779 							    0, PAGE_SIZE,
780 							    DMA_FROM_DEVICE);
781 				if (dma_mapping_error(&pdev->dev,
782 						      ps_page->dma)) {
783 					dev_err(&adapter->pdev->dev,
784 						"Rx DMA page map failed\n");
785 					adapter->rx_dma_failed++;
786 					goto no_buffers;
787 				}
788 			}
789 			/* Refresh the desc even if buffer_addrs
790 			 * didn't change because each write-back
791 			 * erases this info.
792 			 */
793 			rx_desc->read.buffer_addr[j + 1] =
794 			    cpu_to_le64(ps_page->dma);
795 		}
796 
797 		skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0,
798 						  gfp);
799 
800 		if (!skb) {
801 			adapter->alloc_rx_buff_failed++;
802 			break;
803 		}
804 
805 		buffer_info->skb = skb;
806 		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
807 						  adapter->rx_ps_bsize0,
808 						  DMA_FROM_DEVICE);
809 		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
810 			dev_err(&pdev->dev, "Rx DMA map failed\n");
811 			adapter->rx_dma_failed++;
812 			/* cleanup skb */
813 			dev_kfree_skb_any(skb);
814 			buffer_info->skb = NULL;
815 			break;
816 		}
817 
818 		rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
819 
820 		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
821 			/* Force memory writes to complete before letting h/w
822 			 * know there are new descriptors to fetch.  (Only
823 			 * applicable for weak-ordered memory model archs,
824 			 * such as IA-64).
825 			 */
826 			wmb();
827 			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
828 				e1000e_update_rdt_wa(rx_ring, i << 1);
829 			else
830 				writel(i << 1, rx_ring->tail);
831 		}
832 
833 		i++;
834 		if (i == rx_ring->count)
835 			i = 0;
836 		buffer_info = &rx_ring->buffer_info[i];
837 	}
838 
839 no_buffers:
840 	rx_ring->next_to_use = i;
841 }
842 
843 /**
844  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
845  * @rx_ring: Rx descriptor ring
846  * @cleaned_count: number of buffers to allocate this pass
847  **/
848 
849 static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
850 					 int cleaned_count, gfp_t gfp)
851 {
852 	struct e1000_adapter *adapter = rx_ring->adapter;
853 	struct net_device *netdev = adapter->netdev;
854 	struct pci_dev *pdev = adapter->pdev;
855 	union e1000_rx_desc_extended *rx_desc;
856 	struct e1000_buffer *buffer_info;
857 	struct sk_buff *skb;
858 	unsigned int i;
859 	unsigned int bufsz = 256 - 16;	/* for skb_reserve */
860 
861 	i = rx_ring->next_to_use;
862 	buffer_info = &rx_ring->buffer_info[i];
863 
864 	while (cleaned_count--) {
865 		skb = buffer_info->skb;
866 		if (skb) {
867 			skb_trim(skb, 0);
868 			goto check_page;
869 		}
870 
871 		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
872 		if (unlikely(!skb)) {
873 			/* Better luck next round */
874 			adapter->alloc_rx_buff_failed++;
875 			break;
876 		}
877 
878 		buffer_info->skb = skb;
879 check_page:
880 		/* allocate a new page if necessary */
881 		if (!buffer_info->page) {
882 			buffer_info->page = alloc_page(gfp);
883 			if (unlikely(!buffer_info->page)) {
884 				adapter->alloc_rx_buff_failed++;
885 				break;
886 			}
887 		}
888 
889 		if (!buffer_info->dma) {
890 			buffer_info->dma = dma_map_page(&pdev->dev,
891 							buffer_info->page, 0,
892 							PAGE_SIZE,
893 							DMA_FROM_DEVICE);
894 			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
895 				adapter->alloc_rx_buff_failed++;
896 				break;
897 			}
898 		}
899 
900 		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
901 		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
902 
903 		if (unlikely(++i == rx_ring->count))
904 			i = 0;
905 		buffer_info = &rx_ring->buffer_info[i];
906 	}
907 
908 	if (likely(rx_ring->next_to_use != i)) {
909 		rx_ring->next_to_use = i;
910 		if (unlikely(i-- == 0))
911 			i = (rx_ring->count - 1);
912 
913 		/* Force memory writes to complete before letting h/w
914 		 * know there are new descriptors to fetch.  (Only
915 		 * applicable for weak-ordered memory model archs,
916 		 * such as IA-64).
917 		 */
918 		wmb();
919 		if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
920 			e1000e_update_rdt_wa(rx_ring, i);
921 		else
922 			writel(i, rx_ring->tail);
923 	}
924 }
925 
926 static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
927 				 struct sk_buff *skb)
928 {
929 	if (netdev->features & NETIF_F_RXHASH)
930 		skb_set_hash(skb, le32_to_cpu(rss), PKT_HASH_TYPE_L3);
931 }
932 
933 /**
934  * e1000_clean_rx_irq - Send received data up the network stack
935  * @rx_ring: Rx descriptor ring
936  *
937  * the return value indicates whether actual cleaning was done, there
938  * is no guarantee that everything was cleaned
939  **/
940 static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
941 			       int work_to_do)
942 {
943 	struct e1000_adapter *adapter = rx_ring->adapter;
944 	struct net_device *netdev = adapter->netdev;
945 	struct pci_dev *pdev = adapter->pdev;
946 	struct e1000_hw *hw = &adapter->hw;
947 	union e1000_rx_desc_extended *rx_desc, *next_rxd;
948 	struct e1000_buffer *buffer_info, *next_buffer;
949 	u32 length, staterr;
950 	unsigned int i;
951 	int cleaned_count = 0;
952 	bool cleaned = false;
953 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
954 
955 	i = rx_ring->next_to_clean;
956 	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
957 	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
958 	buffer_info = &rx_ring->buffer_info[i];
959 
960 	while (staterr & E1000_RXD_STAT_DD) {
961 		struct sk_buff *skb;
962 
963 		if (*work_done >= work_to_do)
964 			break;
965 		(*work_done)++;
966 		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
967 
968 		skb = buffer_info->skb;
969 		buffer_info->skb = NULL;
970 
971 		prefetch(skb->data - NET_IP_ALIGN);
972 
973 		i++;
974 		if (i == rx_ring->count)
975 			i = 0;
976 		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
977 		prefetch(next_rxd);
978 
979 		next_buffer = &rx_ring->buffer_info[i];
980 
981 		cleaned = true;
982 		cleaned_count++;
983 		dma_unmap_single(&pdev->dev, buffer_info->dma,
984 				 adapter->rx_buffer_len, DMA_FROM_DEVICE);
985 		buffer_info->dma = 0;
986 
987 		length = le16_to_cpu(rx_desc->wb.upper.length);
988 
989 		/* !EOP means multiple descriptors were used to store a single
990 		 * packet, if that's the case we need to toss it.  In fact, we
991 		 * need to toss every packet with the EOP bit clear and the
992 		 * next frame that _does_ have the EOP bit set, as it is by
993 		 * definition only a frame fragment
994 		 */
995 		if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
996 			adapter->flags2 |= FLAG2_IS_DISCARDING;
997 
998 		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
999 			/* All receives must fit into a single buffer */
1000 			e_dbg("Receive packet consumed multiple buffers\n");
1001 			/* recycle */
1002 			buffer_info->skb = skb;
1003 			if (staterr & E1000_RXD_STAT_EOP)
1004 				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1005 			goto next_desc;
1006 		}
1007 
1008 		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1009 			     !(netdev->features & NETIF_F_RXALL))) {
1010 			/* recycle */
1011 			buffer_info->skb = skb;
1012 			goto next_desc;
1013 		}
1014 
1015 		/* adjust length to remove Ethernet CRC */
1016 		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1017 			/* If configured to store CRC, don't subtract FCS,
1018 			 * but keep the FCS bytes out of the total_rx_bytes
1019 			 * counter
1020 			 */
1021 			if (netdev->features & NETIF_F_RXFCS)
1022 				total_rx_bytes -= 4;
1023 			else
1024 				length -= 4;
1025 		}
1026 
1027 		total_rx_bytes += length;
1028 		total_rx_packets++;
1029 
1030 		/* code added for copybreak, this should improve
1031 		 * performance for small packets with large amounts
1032 		 * of reassembly being done in the stack
1033 		 */
1034 		if (length < copybreak) {
1035 			struct sk_buff *new_skb =
1036 				napi_alloc_skb(&adapter->napi, length);
1037 			if (new_skb) {
1038 				skb_copy_to_linear_data_offset(new_skb,
1039 							       -NET_IP_ALIGN,
1040 							       (skb->data -
1041 								NET_IP_ALIGN),
1042 							       (length +
1043 								NET_IP_ALIGN));
1044 				/* save the skb in buffer_info as good */
1045 				buffer_info->skb = skb;
1046 				skb = new_skb;
1047 			}
1048 			/* else just continue with the old one */
1049 		}
1050 		/* end copybreak code */
1051 		skb_put(skb, length);
1052 
1053 		/* Receive Checksum Offload */
1054 		e1000_rx_checksum(adapter, staterr, skb);
1055 
1056 		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1057 
1058 		e1000_receive_skb(adapter, netdev, skb, staterr,
1059 				  rx_desc->wb.upper.vlan);
1060 
1061 next_desc:
1062 		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1063 
1064 		/* return some buffers to hardware, one at a time is too slow */
1065 		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1066 			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1067 					      GFP_ATOMIC);
1068 			cleaned_count = 0;
1069 		}
1070 
1071 		/* use prefetched values */
1072 		rx_desc = next_rxd;
1073 		buffer_info = next_buffer;
1074 
1075 		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1076 	}
1077 	rx_ring->next_to_clean = i;
1078 
1079 	cleaned_count = e1000_desc_unused(rx_ring);
1080 	if (cleaned_count)
1081 		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1082 
1083 	adapter->total_rx_bytes += total_rx_bytes;
1084 	adapter->total_rx_packets += total_rx_packets;
1085 	return cleaned;
1086 }
1087 
1088 static void e1000_put_txbuf(struct e1000_ring *tx_ring,
1089 			    struct e1000_buffer *buffer_info,
1090 			    bool drop)
1091 {
1092 	struct e1000_adapter *adapter = tx_ring->adapter;
1093 
1094 	if (buffer_info->dma) {
1095 		if (buffer_info->mapped_as_page)
1096 			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1097 				       buffer_info->length, DMA_TO_DEVICE);
1098 		else
1099 			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1100 					 buffer_info->length, DMA_TO_DEVICE);
1101 		buffer_info->dma = 0;
1102 	}
1103 	if (buffer_info->skb) {
1104 		if (drop)
1105 			dev_kfree_skb_any(buffer_info->skb);
1106 		else
1107 			dev_consume_skb_any(buffer_info->skb);
1108 		buffer_info->skb = NULL;
1109 	}
1110 	buffer_info->time_stamp = 0;
1111 }
1112 
1113 static void e1000_print_hw_hang(struct work_struct *work)
1114 {
1115 	struct e1000_adapter *adapter = container_of(work,
1116 						     struct e1000_adapter,
1117 						     print_hang_task);
1118 	struct net_device *netdev = adapter->netdev;
1119 	struct e1000_ring *tx_ring = adapter->tx_ring;
1120 	unsigned int i = tx_ring->next_to_clean;
1121 	unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1122 	struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1123 	struct e1000_hw *hw = &adapter->hw;
1124 	u16 phy_status, phy_1000t_status, phy_ext_status;
1125 	u16 pci_status;
1126 
1127 	if (test_bit(__E1000_DOWN, &adapter->state))
1128 		return;
1129 
1130 	if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) {
1131 		/* May be block on write-back, flush and detect again
1132 		 * flush pending descriptor writebacks to memory
1133 		 */
1134 		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1135 		/* execute the writes immediately */
1136 		e1e_flush();
1137 		/* Due to rare timing issues, write to TIDV again to ensure
1138 		 * the write is successful
1139 		 */
1140 		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1141 		/* execute the writes immediately */
1142 		e1e_flush();
1143 		adapter->tx_hang_recheck = true;
1144 		return;
1145 	}
1146 	adapter->tx_hang_recheck = false;
1147 
1148 	if (er32(TDH(0)) == er32(TDT(0))) {
1149 		e_dbg("false hang detected, ignoring\n");
1150 		return;
1151 	}
1152 
1153 	/* Real hang detected */
1154 	netif_stop_queue(netdev);
1155 
1156 	e1e_rphy(hw, MII_BMSR, &phy_status);
1157 	e1e_rphy(hw, MII_STAT1000, &phy_1000t_status);
1158 	e1e_rphy(hw, MII_ESTATUS, &phy_ext_status);
1159 
1160 	pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1161 
1162 	/* detected Hardware unit hang */
1163 	e_err("Detected Hardware Unit Hang:\n"
1164 	      "  TDH                  <%x>\n"
1165 	      "  TDT                  <%x>\n"
1166 	      "  next_to_use          <%x>\n"
1167 	      "  next_to_clean        <%x>\n"
1168 	      "buffer_info[next_to_clean]:\n"
1169 	      "  time_stamp           <%lx>\n"
1170 	      "  next_to_watch        <%x>\n"
1171 	      "  jiffies              <%lx>\n"
1172 	      "  next_to_watch.status <%x>\n"
1173 	      "MAC Status             <%x>\n"
1174 	      "PHY Status             <%x>\n"
1175 	      "PHY 1000BASE-T Status  <%x>\n"
1176 	      "PHY Extended Status    <%x>\n"
1177 	      "PCI Status             <%x>\n",
1178 	      readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use,
1179 	      tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp,
1180 	      eop, jiffies, eop_desc->upper.fields.status, er32(STATUS),
1181 	      phy_status, phy_1000t_status, phy_ext_status, pci_status);
1182 
1183 	e1000e_dump(adapter);
1184 
1185 	/* Suggest workaround for known h/w issue */
1186 	if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1187 		e_err("Try turning off Tx pause (flow control) via ethtool\n");
1188 }
1189 
1190 /**
1191  * e1000e_tx_hwtstamp_work - check for Tx time stamp
1192  * @work: pointer to work struct
1193  *
1194  * This work function polls the TSYNCTXCTL valid bit to determine when a
1195  * timestamp has been taken for the current stored skb.  The timestamp must
1196  * be for this skb because only one such packet is allowed in the queue.
1197  */
1198 static void e1000e_tx_hwtstamp_work(struct work_struct *work)
1199 {
1200 	struct e1000_adapter *adapter = container_of(work, struct e1000_adapter,
1201 						     tx_hwtstamp_work);
1202 	struct e1000_hw *hw = &adapter->hw;
1203 
1204 	if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) {
1205 		struct sk_buff *skb = adapter->tx_hwtstamp_skb;
1206 		struct skb_shared_hwtstamps shhwtstamps;
1207 		u64 txstmp;
1208 
1209 		txstmp = er32(TXSTMPL);
1210 		txstmp |= (u64)er32(TXSTMPH) << 32;
1211 
1212 		e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp);
1213 
1214 		/* Clear the global tx_hwtstamp_skb pointer and force writes
1215 		 * prior to notifying the stack of a Tx timestamp.
1216 		 */
1217 		adapter->tx_hwtstamp_skb = NULL;
1218 		wmb(); /* force write prior to skb_tstamp_tx */
1219 
1220 		skb_tstamp_tx(skb, &shhwtstamps);
1221 		dev_consume_skb_any(skb);
1222 	} else if (time_after(jiffies, adapter->tx_hwtstamp_start
1223 			      + adapter->tx_timeout_factor * HZ)) {
1224 		dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1225 		adapter->tx_hwtstamp_skb = NULL;
1226 		adapter->tx_hwtstamp_timeouts++;
1227 		e_warn("clearing Tx timestamp hang\n");
1228 	} else {
1229 		/* reschedule to check later */
1230 		schedule_work(&adapter->tx_hwtstamp_work);
1231 	}
1232 }
1233 
1234 /**
1235  * e1000_clean_tx_irq - Reclaim resources after transmit completes
1236  * @tx_ring: Tx descriptor ring
1237  *
1238  * the return value indicates whether actual cleaning was done, there
1239  * is no guarantee that everything was cleaned
1240  **/
1241 static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1242 {
1243 	struct e1000_adapter *adapter = tx_ring->adapter;
1244 	struct net_device *netdev = adapter->netdev;
1245 	struct e1000_hw *hw = &adapter->hw;
1246 	struct e1000_tx_desc *tx_desc, *eop_desc;
1247 	struct e1000_buffer *buffer_info;
1248 	unsigned int i, eop;
1249 	unsigned int count = 0;
1250 	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1251 	unsigned int bytes_compl = 0, pkts_compl = 0;
1252 
1253 	i = tx_ring->next_to_clean;
1254 	eop = tx_ring->buffer_info[i].next_to_watch;
1255 	eop_desc = E1000_TX_DESC(*tx_ring, eop);
1256 
1257 	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1258 	       (count < tx_ring->count)) {
1259 		bool cleaned = false;
1260 
1261 		dma_rmb();		/* read buffer_info after eop_desc */
1262 		for (; !cleaned; count++) {
1263 			tx_desc = E1000_TX_DESC(*tx_ring, i);
1264 			buffer_info = &tx_ring->buffer_info[i];
1265 			cleaned = (i == eop);
1266 
1267 			if (cleaned) {
1268 				total_tx_packets += buffer_info->segs;
1269 				total_tx_bytes += buffer_info->bytecount;
1270 				if (buffer_info->skb) {
1271 					bytes_compl += buffer_info->skb->len;
1272 					pkts_compl++;
1273 				}
1274 			}
1275 
1276 			e1000_put_txbuf(tx_ring, buffer_info, false);
1277 			tx_desc->upper.data = 0;
1278 
1279 			i++;
1280 			if (i == tx_ring->count)
1281 				i = 0;
1282 		}
1283 
1284 		if (i == tx_ring->next_to_use)
1285 			break;
1286 		eop = tx_ring->buffer_info[i].next_to_watch;
1287 		eop_desc = E1000_TX_DESC(*tx_ring, eop);
1288 	}
1289 
1290 	tx_ring->next_to_clean = i;
1291 
1292 	netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1293 
1294 #define TX_WAKE_THRESHOLD 32
1295 	if (count && netif_carrier_ok(netdev) &&
1296 	    e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1297 		/* Make sure that anybody stopping the queue after this
1298 		 * sees the new next_to_clean.
1299 		 */
1300 		smp_mb();
1301 
1302 		if (netif_queue_stopped(netdev) &&
1303 		    !(test_bit(__E1000_DOWN, &adapter->state))) {
1304 			netif_wake_queue(netdev);
1305 			++adapter->restart_queue;
1306 		}
1307 	}
1308 
1309 	if (adapter->detect_tx_hung) {
1310 		/* Detect a transmit hang in hardware, this serializes the
1311 		 * check with the clearing of time_stamp and movement of i
1312 		 */
1313 		adapter->detect_tx_hung = false;
1314 		if (tx_ring->buffer_info[i].time_stamp &&
1315 		    time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1316 			       + (adapter->tx_timeout_factor * HZ)) &&
1317 		    !(er32(STATUS) & E1000_STATUS_TXOFF))
1318 			schedule_work(&adapter->print_hang_task);
1319 		else
1320 			adapter->tx_hang_recheck = false;
1321 	}
1322 	adapter->total_tx_bytes += total_tx_bytes;
1323 	adapter->total_tx_packets += total_tx_packets;
1324 	return count < tx_ring->count;
1325 }
1326 
1327 /**
1328  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1329  * @rx_ring: Rx descriptor ring
1330  *
1331  * the return value indicates whether actual cleaning was done, there
1332  * is no guarantee that everything was cleaned
1333  **/
1334 static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1335 				  int work_to_do)
1336 {
1337 	struct e1000_adapter *adapter = rx_ring->adapter;
1338 	struct e1000_hw *hw = &adapter->hw;
1339 	union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1340 	struct net_device *netdev = adapter->netdev;
1341 	struct pci_dev *pdev = adapter->pdev;
1342 	struct e1000_buffer *buffer_info, *next_buffer;
1343 	struct e1000_ps_page *ps_page;
1344 	struct sk_buff *skb;
1345 	unsigned int i, j;
1346 	u32 length, staterr;
1347 	int cleaned_count = 0;
1348 	bool cleaned = false;
1349 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1350 
1351 	i = rx_ring->next_to_clean;
1352 	rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1353 	staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1354 	buffer_info = &rx_ring->buffer_info[i];
1355 
1356 	while (staterr & E1000_RXD_STAT_DD) {
1357 		if (*work_done >= work_to_do)
1358 			break;
1359 		(*work_done)++;
1360 		skb = buffer_info->skb;
1361 		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
1362 
1363 		/* in the packet split case this is header only */
1364 		prefetch(skb->data - NET_IP_ALIGN);
1365 
1366 		i++;
1367 		if (i == rx_ring->count)
1368 			i = 0;
1369 		next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1370 		prefetch(next_rxd);
1371 
1372 		next_buffer = &rx_ring->buffer_info[i];
1373 
1374 		cleaned = true;
1375 		cleaned_count++;
1376 		dma_unmap_single(&pdev->dev, buffer_info->dma,
1377 				 adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1378 		buffer_info->dma = 0;
1379 
1380 		/* see !EOP comment in other Rx routine */
1381 		if (!(staterr & E1000_RXD_STAT_EOP))
1382 			adapter->flags2 |= FLAG2_IS_DISCARDING;
1383 
1384 		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1385 			e_dbg("Packet Split buffers didn't pick up the full packet\n");
1386 			dev_kfree_skb_irq(skb);
1387 			if (staterr & E1000_RXD_STAT_EOP)
1388 				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1389 			goto next_desc;
1390 		}
1391 
1392 		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1393 			     !(netdev->features & NETIF_F_RXALL))) {
1394 			dev_kfree_skb_irq(skb);
1395 			goto next_desc;
1396 		}
1397 
1398 		length = le16_to_cpu(rx_desc->wb.middle.length0);
1399 
1400 		if (!length) {
1401 			e_dbg("Last part of the packet spanning multiple descriptors\n");
1402 			dev_kfree_skb_irq(skb);
1403 			goto next_desc;
1404 		}
1405 
1406 		/* Good Receive */
1407 		skb_put(skb, length);
1408 
1409 		{
1410 			/* this looks ugly, but it seems compiler issues make
1411 			 * it more efficient than reusing j
1412 			 */
1413 			int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1414 
1415 			/* page alloc/put takes too long and effects small
1416 			 * packet throughput, so unsplit small packets and
1417 			 * save the alloc/put only valid in softirq (napi)
1418 			 * context to call kmap_*
1419 			 */
1420 			if (l1 && (l1 <= copybreak) &&
1421 			    ((length + l1) <= adapter->rx_ps_bsize0)) {
1422 				u8 *vaddr;
1423 
1424 				ps_page = &buffer_info->ps_pages[0];
1425 
1426 				/* there is no documentation about how to call
1427 				 * kmap_atomic, so we can't hold the mapping
1428 				 * very long
1429 				 */
1430 				dma_sync_single_for_cpu(&pdev->dev,
1431 							ps_page->dma,
1432 							PAGE_SIZE,
1433 							DMA_FROM_DEVICE);
1434 				vaddr = kmap_atomic(ps_page->page);
1435 				memcpy(skb_tail_pointer(skb), vaddr, l1);
1436 				kunmap_atomic(vaddr);
1437 				dma_sync_single_for_device(&pdev->dev,
1438 							   ps_page->dma,
1439 							   PAGE_SIZE,
1440 							   DMA_FROM_DEVICE);
1441 
1442 				/* remove the CRC */
1443 				if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1444 					if (!(netdev->features & NETIF_F_RXFCS))
1445 						l1 -= 4;
1446 				}
1447 
1448 				skb_put(skb, l1);
1449 				goto copydone;
1450 			}	/* if */
1451 		}
1452 
1453 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1454 			length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1455 			if (!length)
1456 				break;
1457 
1458 			ps_page = &buffer_info->ps_pages[j];
1459 			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1460 				       DMA_FROM_DEVICE);
1461 			ps_page->dma = 0;
1462 			skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1463 			ps_page->page = NULL;
1464 			skb->len += length;
1465 			skb->data_len += length;
1466 			skb->truesize += PAGE_SIZE;
1467 		}
1468 
1469 		/* strip the ethernet crc, problem is we're using pages now so
1470 		 * this whole operation can get a little cpu intensive
1471 		 */
1472 		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1473 			if (!(netdev->features & NETIF_F_RXFCS))
1474 				pskb_trim(skb, skb->len - 4);
1475 		}
1476 
1477 copydone:
1478 		total_rx_bytes += skb->len;
1479 		total_rx_packets++;
1480 
1481 		e1000_rx_checksum(adapter, staterr, skb);
1482 
1483 		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1484 
1485 		if (rx_desc->wb.upper.header_status &
1486 		    cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1487 			adapter->rx_hdr_split++;
1488 
1489 		e1000_receive_skb(adapter, netdev, skb, staterr,
1490 				  rx_desc->wb.middle.vlan);
1491 
1492 next_desc:
1493 		rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1494 		buffer_info->skb = NULL;
1495 
1496 		/* return some buffers to hardware, one at a time is too slow */
1497 		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1498 			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1499 					      GFP_ATOMIC);
1500 			cleaned_count = 0;
1501 		}
1502 
1503 		/* use prefetched values */
1504 		rx_desc = next_rxd;
1505 		buffer_info = next_buffer;
1506 
1507 		staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1508 	}
1509 	rx_ring->next_to_clean = i;
1510 
1511 	cleaned_count = e1000_desc_unused(rx_ring);
1512 	if (cleaned_count)
1513 		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1514 
1515 	adapter->total_rx_bytes += total_rx_bytes;
1516 	adapter->total_rx_packets += total_rx_packets;
1517 	return cleaned;
1518 }
1519 
1520 /**
1521  * e1000_consume_page - helper function
1522  **/
1523 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1524 			       u16 length)
1525 {
1526 	bi->page = NULL;
1527 	skb->len += length;
1528 	skb->data_len += length;
1529 	skb->truesize += PAGE_SIZE;
1530 }
1531 
1532 /**
1533  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1534  * @adapter: board private structure
1535  *
1536  * the return value indicates whether actual cleaning was done, there
1537  * is no guarantee that everything was cleaned
1538  **/
1539 static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1540 				     int work_to_do)
1541 {
1542 	struct e1000_adapter *adapter = rx_ring->adapter;
1543 	struct net_device *netdev = adapter->netdev;
1544 	struct pci_dev *pdev = adapter->pdev;
1545 	union e1000_rx_desc_extended *rx_desc, *next_rxd;
1546 	struct e1000_buffer *buffer_info, *next_buffer;
1547 	u32 length, staterr;
1548 	unsigned int i;
1549 	int cleaned_count = 0;
1550 	bool cleaned = false;
1551 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1552 	struct skb_shared_info *shinfo;
1553 
1554 	i = rx_ring->next_to_clean;
1555 	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1556 	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1557 	buffer_info = &rx_ring->buffer_info[i];
1558 
1559 	while (staterr & E1000_RXD_STAT_DD) {
1560 		struct sk_buff *skb;
1561 
1562 		if (*work_done >= work_to_do)
1563 			break;
1564 		(*work_done)++;
1565 		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
1566 
1567 		skb = buffer_info->skb;
1568 		buffer_info->skb = NULL;
1569 
1570 		++i;
1571 		if (i == rx_ring->count)
1572 			i = 0;
1573 		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1574 		prefetch(next_rxd);
1575 
1576 		next_buffer = &rx_ring->buffer_info[i];
1577 
1578 		cleaned = true;
1579 		cleaned_count++;
1580 		dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1581 			       DMA_FROM_DEVICE);
1582 		buffer_info->dma = 0;
1583 
1584 		length = le16_to_cpu(rx_desc->wb.upper.length);
1585 
1586 		/* errors is only valid for DD + EOP descriptors */
1587 		if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1588 			     ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1589 			      !(netdev->features & NETIF_F_RXALL)))) {
1590 			/* recycle both page and skb */
1591 			buffer_info->skb = skb;
1592 			/* an error means any chain goes out the window too */
1593 			if (rx_ring->rx_skb_top)
1594 				dev_kfree_skb_irq(rx_ring->rx_skb_top);
1595 			rx_ring->rx_skb_top = NULL;
1596 			goto next_desc;
1597 		}
1598 #define rxtop (rx_ring->rx_skb_top)
1599 		if (!(staterr & E1000_RXD_STAT_EOP)) {
1600 			/* this descriptor is only the beginning (or middle) */
1601 			if (!rxtop) {
1602 				/* this is the beginning of a chain */
1603 				rxtop = skb;
1604 				skb_fill_page_desc(rxtop, 0, buffer_info->page,
1605 						   0, length);
1606 			} else {
1607 				/* this is the middle of a chain */
1608 				shinfo = skb_shinfo(rxtop);
1609 				skb_fill_page_desc(rxtop, shinfo->nr_frags,
1610 						   buffer_info->page, 0,
1611 						   length);
1612 				/* re-use the skb, only consumed the page */
1613 				buffer_info->skb = skb;
1614 			}
1615 			e1000_consume_page(buffer_info, rxtop, length);
1616 			goto next_desc;
1617 		} else {
1618 			if (rxtop) {
1619 				/* end of the chain */
1620 				shinfo = skb_shinfo(rxtop);
1621 				skb_fill_page_desc(rxtop, shinfo->nr_frags,
1622 						   buffer_info->page, 0,
1623 						   length);
1624 				/* re-use the current skb, we only consumed the
1625 				 * page
1626 				 */
1627 				buffer_info->skb = skb;
1628 				skb = rxtop;
1629 				rxtop = NULL;
1630 				e1000_consume_page(buffer_info, skb, length);
1631 			} else {
1632 				/* no chain, got EOP, this buf is the packet
1633 				 * copybreak to save the put_page/alloc_page
1634 				 */
1635 				if (length <= copybreak &&
1636 				    skb_tailroom(skb) >= length) {
1637 					u8 *vaddr;
1638 					vaddr = kmap_atomic(buffer_info->page);
1639 					memcpy(skb_tail_pointer(skb), vaddr,
1640 					       length);
1641 					kunmap_atomic(vaddr);
1642 					/* re-use the page, so don't erase
1643 					 * buffer_info->page
1644 					 */
1645 					skb_put(skb, length);
1646 				} else {
1647 					skb_fill_page_desc(skb, 0,
1648 							   buffer_info->page, 0,
1649 							   length);
1650 					e1000_consume_page(buffer_info, skb,
1651 							   length);
1652 				}
1653 			}
1654 		}
1655 
1656 		/* Receive Checksum Offload */
1657 		e1000_rx_checksum(adapter, staterr, skb);
1658 
1659 		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1660 
1661 		/* probably a little skewed due to removing CRC */
1662 		total_rx_bytes += skb->len;
1663 		total_rx_packets++;
1664 
1665 		/* eth type trans needs skb->data to point to something */
1666 		if (!pskb_may_pull(skb, ETH_HLEN)) {
1667 			e_err("pskb_may_pull failed.\n");
1668 			dev_kfree_skb_irq(skb);
1669 			goto next_desc;
1670 		}
1671 
1672 		e1000_receive_skb(adapter, netdev, skb, staterr,
1673 				  rx_desc->wb.upper.vlan);
1674 
1675 next_desc:
1676 		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1677 
1678 		/* return some buffers to hardware, one at a time is too slow */
1679 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1680 			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1681 					      GFP_ATOMIC);
1682 			cleaned_count = 0;
1683 		}
1684 
1685 		/* use prefetched values */
1686 		rx_desc = next_rxd;
1687 		buffer_info = next_buffer;
1688 
1689 		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1690 	}
1691 	rx_ring->next_to_clean = i;
1692 
1693 	cleaned_count = e1000_desc_unused(rx_ring);
1694 	if (cleaned_count)
1695 		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1696 
1697 	adapter->total_rx_bytes += total_rx_bytes;
1698 	adapter->total_rx_packets += total_rx_packets;
1699 	return cleaned;
1700 }
1701 
1702 /**
1703  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1704  * @rx_ring: Rx descriptor ring
1705  **/
1706 static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1707 {
1708 	struct e1000_adapter *adapter = rx_ring->adapter;
1709 	struct e1000_buffer *buffer_info;
1710 	struct e1000_ps_page *ps_page;
1711 	struct pci_dev *pdev = adapter->pdev;
1712 	unsigned int i, j;
1713 
1714 	/* Free all the Rx ring sk_buffs */
1715 	for (i = 0; i < rx_ring->count; i++) {
1716 		buffer_info = &rx_ring->buffer_info[i];
1717 		if (buffer_info->dma) {
1718 			if (adapter->clean_rx == e1000_clean_rx_irq)
1719 				dma_unmap_single(&pdev->dev, buffer_info->dma,
1720 						 adapter->rx_buffer_len,
1721 						 DMA_FROM_DEVICE);
1722 			else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1723 				dma_unmap_page(&pdev->dev, buffer_info->dma,
1724 					       PAGE_SIZE, DMA_FROM_DEVICE);
1725 			else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1726 				dma_unmap_single(&pdev->dev, buffer_info->dma,
1727 						 adapter->rx_ps_bsize0,
1728 						 DMA_FROM_DEVICE);
1729 			buffer_info->dma = 0;
1730 		}
1731 
1732 		if (buffer_info->page) {
1733 			put_page(buffer_info->page);
1734 			buffer_info->page = NULL;
1735 		}
1736 
1737 		if (buffer_info->skb) {
1738 			dev_kfree_skb(buffer_info->skb);
1739 			buffer_info->skb = NULL;
1740 		}
1741 
1742 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1743 			ps_page = &buffer_info->ps_pages[j];
1744 			if (!ps_page->page)
1745 				break;
1746 			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1747 				       DMA_FROM_DEVICE);
1748 			ps_page->dma = 0;
1749 			put_page(ps_page->page);
1750 			ps_page->page = NULL;
1751 		}
1752 	}
1753 
1754 	/* there also may be some cached data from a chained receive */
1755 	if (rx_ring->rx_skb_top) {
1756 		dev_kfree_skb(rx_ring->rx_skb_top);
1757 		rx_ring->rx_skb_top = NULL;
1758 	}
1759 
1760 	/* Zero out the descriptor ring */
1761 	memset(rx_ring->desc, 0, rx_ring->size);
1762 
1763 	rx_ring->next_to_clean = 0;
1764 	rx_ring->next_to_use = 0;
1765 	adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1766 }
1767 
1768 static void e1000e_downshift_workaround(struct work_struct *work)
1769 {
1770 	struct e1000_adapter *adapter = container_of(work,
1771 						     struct e1000_adapter,
1772 						     downshift_task);
1773 
1774 	if (test_bit(__E1000_DOWN, &adapter->state))
1775 		return;
1776 
1777 	e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1778 }
1779 
1780 /**
1781  * e1000_intr_msi - Interrupt Handler
1782  * @irq: interrupt number
1783  * @data: pointer to a network interface device structure
1784  **/
1785 static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data)
1786 {
1787 	struct net_device *netdev = data;
1788 	struct e1000_adapter *adapter = netdev_priv(netdev);
1789 	struct e1000_hw *hw = &adapter->hw;
1790 	u32 icr = er32(ICR);
1791 
1792 	/* read ICR disables interrupts using IAM */
1793 	if (icr & E1000_ICR_LSC) {
1794 		hw->mac.get_link_status = true;
1795 		/* ICH8 workaround-- Call gig speed drop workaround on cable
1796 		 * disconnect (LSC) before accessing any PHY registers
1797 		 */
1798 		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1799 		    (!(er32(STATUS) & E1000_STATUS_LU)))
1800 			schedule_work(&adapter->downshift_task);
1801 
1802 		/* 80003ES2LAN workaround-- For packet buffer work-around on
1803 		 * link down event; disable receives here in the ISR and reset
1804 		 * adapter in watchdog
1805 		 */
1806 		if (netif_carrier_ok(netdev) &&
1807 		    adapter->flags & FLAG_RX_NEEDS_RESTART) {
1808 			/* disable receives */
1809 			u32 rctl = er32(RCTL);
1810 
1811 			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1812 			adapter->flags |= FLAG_RESTART_NOW;
1813 		}
1814 		/* guard against interrupt when we're going down */
1815 		if (!test_bit(__E1000_DOWN, &adapter->state))
1816 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1817 	}
1818 
1819 	/* Reset on uncorrectable ECC error */
1820 	if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1821 		u32 pbeccsts = er32(PBECCSTS);
1822 
1823 		adapter->corr_errors +=
1824 		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1825 		adapter->uncorr_errors +=
1826 		    (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1827 		    E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1828 
1829 		/* Do the reset outside of interrupt context */
1830 		schedule_work(&adapter->reset_task);
1831 
1832 		/* return immediately since reset is imminent */
1833 		return IRQ_HANDLED;
1834 	}
1835 
1836 	if (napi_schedule_prep(&adapter->napi)) {
1837 		adapter->total_tx_bytes = 0;
1838 		adapter->total_tx_packets = 0;
1839 		adapter->total_rx_bytes = 0;
1840 		adapter->total_rx_packets = 0;
1841 		__napi_schedule(&adapter->napi);
1842 	}
1843 
1844 	return IRQ_HANDLED;
1845 }
1846 
1847 /**
1848  * e1000_intr - Interrupt Handler
1849  * @irq: interrupt number
1850  * @data: pointer to a network interface device structure
1851  **/
1852 static irqreturn_t e1000_intr(int __always_unused irq, void *data)
1853 {
1854 	struct net_device *netdev = data;
1855 	struct e1000_adapter *adapter = netdev_priv(netdev);
1856 	struct e1000_hw *hw = &adapter->hw;
1857 	u32 rctl, icr = er32(ICR);
1858 
1859 	if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1860 		return IRQ_NONE;	/* Not our interrupt */
1861 
1862 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1863 	 * not set, then the adapter didn't send an interrupt
1864 	 */
1865 	if (!(icr & E1000_ICR_INT_ASSERTED))
1866 		return IRQ_NONE;
1867 
1868 	/* Interrupt Auto-Mask...upon reading ICR,
1869 	 * interrupts are masked.  No need for the
1870 	 * IMC write
1871 	 */
1872 
1873 	if (icr & E1000_ICR_LSC) {
1874 		hw->mac.get_link_status = true;
1875 		/* ICH8 workaround-- Call gig speed drop workaround on cable
1876 		 * disconnect (LSC) before accessing any PHY registers
1877 		 */
1878 		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1879 		    (!(er32(STATUS) & E1000_STATUS_LU)))
1880 			schedule_work(&adapter->downshift_task);
1881 
1882 		/* 80003ES2LAN workaround--
1883 		 * For packet buffer work-around on link down event;
1884 		 * disable receives here in the ISR and
1885 		 * reset adapter in watchdog
1886 		 */
1887 		if (netif_carrier_ok(netdev) &&
1888 		    (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1889 			/* disable receives */
1890 			rctl = er32(RCTL);
1891 			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1892 			adapter->flags |= FLAG_RESTART_NOW;
1893 		}
1894 		/* guard against interrupt when we're going down */
1895 		if (!test_bit(__E1000_DOWN, &adapter->state))
1896 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1897 	}
1898 
1899 	/* Reset on uncorrectable ECC error */
1900 	if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1901 		u32 pbeccsts = er32(PBECCSTS);
1902 
1903 		adapter->corr_errors +=
1904 		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1905 		adapter->uncorr_errors +=
1906 		    (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1907 		    E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1908 
1909 		/* Do the reset outside of interrupt context */
1910 		schedule_work(&adapter->reset_task);
1911 
1912 		/* return immediately since reset is imminent */
1913 		return IRQ_HANDLED;
1914 	}
1915 
1916 	if (napi_schedule_prep(&adapter->napi)) {
1917 		adapter->total_tx_bytes = 0;
1918 		adapter->total_tx_packets = 0;
1919 		adapter->total_rx_bytes = 0;
1920 		adapter->total_rx_packets = 0;
1921 		__napi_schedule(&adapter->napi);
1922 	}
1923 
1924 	return IRQ_HANDLED;
1925 }
1926 
1927 static irqreturn_t e1000_msix_other(int __always_unused irq, void *data)
1928 {
1929 	struct net_device *netdev = data;
1930 	struct e1000_adapter *adapter = netdev_priv(netdev);
1931 	struct e1000_hw *hw = &adapter->hw;
1932 	u32 icr = er32(ICR);
1933 
1934 	if (icr & adapter->eiac_mask)
1935 		ew32(ICS, (icr & adapter->eiac_mask));
1936 
1937 	if (icr & E1000_ICR_LSC) {
1938 		hw->mac.get_link_status = true;
1939 		/* guard against interrupt when we're going down */
1940 		if (!test_bit(__E1000_DOWN, &adapter->state))
1941 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1942 	}
1943 
1944 	if (!test_bit(__E1000_DOWN, &adapter->state))
1945 		ew32(IMS, E1000_IMS_OTHER | IMS_OTHER_MASK);
1946 
1947 	return IRQ_HANDLED;
1948 }
1949 
1950 static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data)
1951 {
1952 	struct net_device *netdev = data;
1953 	struct e1000_adapter *adapter = netdev_priv(netdev);
1954 	struct e1000_hw *hw = &adapter->hw;
1955 	struct e1000_ring *tx_ring = adapter->tx_ring;
1956 
1957 	adapter->total_tx_bytes = 0;
1958 	adapter->total_tx_packets = 0;
1959 
1960 	if (!e1000_clean_tx_irq(tx_ring))
1961 		/* Ring was not completely cleaned, so fire another interrupt */
1962 		ew32(ICS, tx_ring->ims_val);
1963 
1964 	if (!test_bit(__E1000_DOWN, &adapter->state))
1965 		ew32(IMS, adapter->tx_ring->ims_val);
1966 
1967 	return IRQ_HANDLED;
1968 }
1969 
1970 static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data)
1971 {
1972 	struct net_device *netdev = data;
1973 	struct e1000_adapter *adapter = netdev_priv(netdev);
1974 	struct e1000_ring *rx_ring = adapter->rx_ring;
1975 
1976 	/* Write the ITR value calculated at the end of the
1977 	 * previous interrupt.
1978 	 */
1979 	if (rx_ring->set_itr) {
1980 		u32 itr = rx_ring->itr_val ?
1981 			  1000000000 / (rx_ring->itr_val * 256) : 0;
1982 
1983 		writel(itr, rx_ring->itr_register);
1984 		rx_ring->set_itr = 0;
1985 	}
1986 
1987 	if (napi_schedule_prep(&adapter->napi)) {
1988 		adapter->total_rx_bytes = 0;
1989 		adapter->total_rx_packets = 0;
1990 		__napi_schedule(&adapter->napi);
1991 	}
1992 	return IRQ_HANDLED;
1993 }
1994 
1995 /**
1996  * e1000_configure_msix - Configure MSI-X hardware
1997  *
1998  * e1000_configure_msix sets up the hardware to properly
1999  * generate MSI-X interrupts.
2000  **/
2001 static void e1000_configure_msix(struct e1000_adapter *adapter)
2002 {
2003 	struct e1000_hw *hw = &adapter->hw;
2004 	struct e1000_ring *rx_ring = adapter->rx_ring;
2005 	struct e1000_ring *tx_ring = adapter->tx_ring;
2006 	int vector = 0;
2007 	u32 ctrl_ext, ivar = 0;
2008 
2009 	adapter->eiac_mask = 0;
2010 
2011 	/* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
2012 	if (hw->mac.type == e1000_82574) {
2013 		u32 rfctl = er32(RFCTL);
2014 
2015 		rfctl |= E1000_RFCTL_ACK_DIS;
2016 		ew32(RFCTL, rfctl);
2017 	}
2018 
2019 	/* Configure Rx vector */
2020 	rx_ring->ims_val = E1000_IMS_RXQ0;
2021 	adapter->eiac_mask |= rx_ring->ims_val;
2022 	if (rx_ring->itr_val)
2023 		writel(1000000000 / (rx_ring->itr_val * 256),
2024 		       rx_ring->itr_register);
2025 	else
2026 		writel(1, rx_ring->itr_register);
2027 	ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
2028 
2029 	/* Configure Tx vector */
2030 	tx_ring->ims_val = E1000_IMS_TXQ0;
2031 	vector++;
2032 	if (tx_ring->itr_val)
2033 		writel(1000000000 / (tx_ring->itr_val * 256),
2034 		       tx_ring->itr_register);
2035 	else
2036 		writel(1, tx_ring->itr_register);
2037 	adapter->eiac_mask |= tx_ring->ims_val;
2038 	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
2039 
2040 	/* set vector for Other Causes, e.g. link changes */
2041 	vector++;
2042 	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
2043 	if (rx_ring->itr_val)
2044 		writel(1000000000 / (rx_ring->itr_val * 256),
2045 		       hw->hw_addr + E1000_EITR_82574(vector));
2046 	else
2047 		writel(1, hw->hw_addr + E1000_EITR_82574(vector));
2048 
2049 	/* Cause Tx interrupts on every write back */
2050 	ivar |= BIT(31);
2051 
2052 	ew32(IVAR, ivar);
2053 
2054 	/* enable MSI-X PBA support */
2055 	ctrl_ext = er32(CTRL_EXT) & ~E1000_CTRL_EXT_IAME;
2056 	ctrl_ext |= E1000_CTRL_EXT_PBA_CLR | E1000_CTRL_EXT_EIAME;
2057 	ew32(CTRL_EXT, ctrl_ext);
2058 	e1e_flush();
2059 }
2060 
2061 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
2062 {
2063 	if (adapter->msix_entries) {
2064 		pci_disable_msix(adapter->pdev);
2065 		kfree(adapter->msix_entries);
2066 		adapter->msix_entries = NULL;
2067 	} else if (adapter->flags & FLAG_MSI_ENABLED) {
2068 		pci_disable_msi(adapter->pdev);
2069 		adapter->flags &= ~FLAG_MSI_ENABLED;
2070 	}
2071 }
2072 
2073 /**
2074  * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
2075  *
2076  * Attempt to configure interrupts using the best available
2077  * capabilities of the hardware and kernel.
2078  **/
2079 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
2080 {
2081 	int err;
2082 	int i;
2083 
2084 	switch (adapter->int_mode) {
2085 	case E1000E_INT_MODE_MSIX:
2086 		if (adapter->flags & FLAG_HAS_MSIX) {
2087 			adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
2088 			adapter->msix_entries = kcalloc(adapter->num_vectors,
2089 							sizeof(struct
2090 							       msix_entry),
2091 							GFP_KERNEL);
2092 			if (adapter->msix_entries) {
2093 				struct e1000_adapter *a = adapter;
2094 
2095 				for (i = 0; i < adapter->num_vectors; i++)
2096 					adapter->msix_entries[i].entry = i;
2097 
2098 				err = pci_enable_msix_range(a->pdev,
2099 							    a->msix_entries,
2100 							    a->num_vectors,
2101 							    a->num_vectors);
2102 				if (err > 0)
2103 					return;
2104 			}
2105 			/* MSI-X failed, so fall through and try MSI */
2106 			e_err("Failed to initialize MSI-X interrupts.  Falling back to MSI interrupts.\n");
2107 			e1000e_reset_interrupt_capability(adapter);
2108 		}
2109 		adapter->int_mode = E1000E_INT_MODE_MSI;
2110 		fallthrough;
2111 	case E1000E_INT_MODE_MSI:
2112 		if (!pci_enable_msi(adapter->pdev)) {
2113 			adapter->flags |= FLAG_MSI_ENABLED;
2114 		} else {
2115 			adapter->int_mode = E1000E_INT_MODE_LEGACY;
2116 			e_err("Failed to initialize MSI interrupts.  Falling back to legacy interrupts.\n");
2117 		}
2118 		fallthrough;
2119 	case E1000E_INT_MODE_LEGACY:
2120 		/* Don't do anything; this is the system default */
2121 		break;
2122 	}
2123 
2124 	/* store the number of vectors being used */
2125 	adapter->num_vectors = 1;
2126 }
2127 
2128 /**
2129  * e1000_request_msix - Initialize MSI-X interrupts
2130  *
2131  * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2132  * kernel.
2133  **/
2134 static int e1000_request_msix(struct e1000_adapter *adapter)
2135 {
2136 	struct net_device *netdev = adapter->netdev;
2137 	int err = 0, vector = 0;
2138 
2139 	if (strlen(netdev->name) < (IFNAMSIZ - 5))
2140 		snprintf(adapter->rx_ring->name,
2141 			 sizeof(adapter->rx_ring->name) - 1,
2142 			 "%.14s-rx-0", netdev->name);
2143 	else
2144 		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
2145 	err = request_irq(adapter->msix_entries[vector].vector,
2146 			  e1000_intr_msix_rx, 0, adapter->rx_ring->name,
2147 			  netdev);
2148 	if (err)
2149 		return err;
2150 	adapter->rx_ring->itr_register = adapter->hw.hw_addr +
2151 	    E1000_EITR_82574(vector);
2152 	adapter->rx_ring->itr_val = adapter->itr;
2153 	vector++;
2154 
2155 	if (strlen(netdev->name) < (IFNAMSIZ - 5))
2156 		snprintf(adapter->tx_ring->name,
2157 			 sizeof(adapter->tx_ring->name) - 1,
2158 			 "%.14s-tx-0", netdev->name);
2159 	else
2160 		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2161 	err = request_irq(adapter->msix_entries[vector].vector,
2162 			  e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2163 			  netdev);
2164 	if (err)
2165 		return err;
2166 	adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2167 	    E1000_EITR_82574(vector);
2168 	adapter->tx_ring->itr_val = adapter->itr;
2169 	vector++;
2170 
2171 	err = request_irq(adapter->msix_entries[vector].vector,
2172 			  e1000_msix_other, 0, netdev->name, netdev);
2173 	if (err)
2174 		return err;
2175 
2176 	e1000_configure_msix(adapter);
2177 
2178 	return 0;
2179 }
2180 
2181 /**
2182  * e1000_request_irq - initialize interrupts
2183  *
2184  * Attempts to configure interrupts using the best available
2185  * capabilities of the hardware and kernel.
2186  **/
2187 static int e1000_request_irq(struct e1000_adapter *adapter)
2188 {
2189 	struct net_device *netdev = adapter->netdev;
2190 	int err;
2191 
2192 	if (adapter->msix_entries) {
2193 		err = e1000_request_msix(adapter);
2194 		if (!err)
2195 			return err;
2196 		/* fall back to MSI */
2197 		e1000e_reset_interrupt_capability(adapter);
2198 		adapter->int_mode = E1000E_INT_MODE_MSI;
2199 		e1000e_set_interrupt_capability(adapter);
2200 	}
2201 	if (adapter->flags & FLAG_MSI_ENABLED) {
2202 		err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2203 				  netdev->name, netdev);
2204 		if (!err)
2205 			return err;
2206 
2207 		/* fall back to legacy interrupt */
2208 		e1000e_reset_interrupt_capability(adapter);
2209 		adapter->int_mode = E1000E_INT_MODE_LEGACY;
2210 	}
2211 
2212 	err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2213 			  netdev->name, netdev);
2214 	if (err)
2215 		e_err("Unable to allocate interrupt, Error: %d\n", err);
2216 
2217 	return err;
2218 }
2219 
2220 static void e1000_free_irq(struct e1000_adapter *adapter)
2221 {
2222 	struct net_device *netdev = adapter->netdev;
2223 
2224 	if (adapter->msix_entries) {
2225 		int vector = 0;
2226 
2227 		free_irq(adapter->msix_entries[vector].vector, netdev);
2228 		vector++;
2229 
2230 		free_irq(adapter->msix_entries[vector].vector, netdev);
2231 		vector++;
2232 
2233 		/* Other Causes interrupt vector */
2234 		free_irq(adapter->msix_entries[vector].vector, netdev);
2235 		return;
2236 	}
2237 
2238 	free_irq(adapter->pdev->irq, netdev);
2239 }
2240 
2241 /**
2242  * e1000_irq_disable - Mask off interrupt generation on the NIC
2243  **/
2244 static void e1000_irq_disable(struct e1000_adapter *adapter)
2245 {
2246 	struct e1000_hw *hw = &adapter->hw;
2247 
2248 	ew32(IMC, ~0);
2249 	if (adapter->msix_entries)
2250 		ew32(EIAC_82574, 0);
2251 	e1e_flush();
2252 
2253 	if (adapter->msix_entries) {
2254 		int i;
2255 
2256 		for (i = 0; i < adapter->num_vectors; i++)
2257 			synchronize_irq(adapter->msix_entries[i].vector);
2258 	} else {
2259 		synchronize_irq(adapter->pdev->irq);
2260 	}
2261 }
2262 
2263 /**
2264  * e1000_irq_enable - Enable default interrupt generation settings
2265  **/
2266 static void e1000_irq_enable(struct e1000_adapter *adapter)
2267 {
2268 	struct e1000_hw *hw = &adapter->hw;
2269 
2270 	if (adapter->msix_entries) {
2271 		ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2272 		ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER |
2273 		     IMS_OTHER_MASK);
2274 	} else if (hw->mac.type >= e1000_pch_lpt) {
2275 		ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER);
2276 	} else {
2277 		ew32(IMS, IMS_ENABLE_MASK);
2278 	}
2279 	e1e_flush();
2280 }
2281 
2282 /**
2283  * e1000e_get_hw_control - get control of the h/w from f/w
2284  * @adapter: address of board private structure
2285  *
2286  * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2287  * For ASF and Pass Through versions of f/w this means that
2288  * the driver is loaded. For AMT version (only with 82573)
2289  * of the f/w this means that the network i/f is open.
2290  **/
2291 void e1000e_get_hw_control(struct e1000_adapter *adapter)
2292 {
2293 	struct e1000_hw *hw = &adapter->hw;
2294 	u32 ctrl_ext;
2295 	u32 swsm;
2296 
2297 	/* Let firmware know the driver has taken over */
2298 	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2299 		swsm = er32(SWSM);
2300 		ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2301 	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2302 		ctrl_ext = er32(CTRL_EXT);
2303 		ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2304 	}
2305 }
2306 
2307 /**
2308  * e1000e_release_hw_control - release control of the h/w to f/w
2309  * @adapter: address of board private structure
2310  *
2311  * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2312  * For ASF and Pass Through versions of f/w this means that the
2313  * driver is no longer loaded. For AMT version (only with 82573) i
2314  * of the f/w this means that the network i/f is closed.
2315  *
2316  **/
2317 void e1000e_release_hw_control(struct e1000_adapter *adapter)
2318 {
2319 	struct e1000_hw *hw = &adapter->hw;
2320 	u32 ctrl_ext;
2321 	u32 swsm;
2322 
2323 	/* Let firmware taken over control of h/w */
2324 	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2325 		swsm = er32(SWSM);
2326 		ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2327 	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2328 		ctrl_ext = er32(CTRL_EXT);
2329 		ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2330 	}
2331 }
2332 
2333 /**
2334  * e1000_alloc_ring_dma - allocate memory for a ring structure
2335  **/
2336 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2337 				struct e1000_ring *ring)
2338 {
2339 	struct pci_dev *pdev = adapter->pdev;
2340 
2341 	ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2342 					GFP_KERNEL);
2343 	if (!ring->desc)
2344 		return -ENOMEM;
2345 
2346 	return 0;
2347 }
2348 
2349 /**
2350  * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2351  * @tx_ring: Tx descriptor ring
2352  *
2353  * Return 0 on success, negative on failure
2354  **/
2355 int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2356 {
2357 	struct e1000_adapter *adapter = tx_ring->adapter;
2358 	int err = -ENOMEM, size;
2359 
2360 	size = sizeof(struct e1000_buffer) * tx_ring->count;
2361 	tx_ring->buffer_info = vzalloc(size);
2362 	if (!tx_ring->buffer_info)
2363 		goto err;
2364 
2365 	/* round up to nearest 4K */
2366 	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2367 	tx_ring->size = ALIGN(tx_ring->size, 4096);
2368 
2369 	err = e1000_alloc_ring_dma(adapter, tx_ring);
2370 	if (err)
2371 		goto err;
2372 
2373 	tx_ring->next_to_use = 0;
2374 	tx_ring->next_to_clean = 0;
2375 
2376 	return 0;
2377 err:
2378 	vfree(tx_ring->buffer_info);
2379 	e_err("Unable to allocate memory for the transmit descriptor ring\n");
2380 	return err;
2381 }
2382 
2383 /**
2384  * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2385  * @rx_ring: Rx descriptor ring
2386  *
2387  * Returns 0 on success, negative on failure
2388  **/
2389 int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2390 {
2391 	struct e1000_adapter *adapter = rx_ring->adapter;
2392 	struct e1000_buffer *buffer_info;
2393 	int i, size, desc_len, err = -ENOMEM;
2394 
2395 	size = sizeof(struct e1000_buffer) * rx_ring->count;
2396 	rx_ring->buffer_info = vzalloc(size);
2397 	if (!rx_ring->buffer_info)
2398 		goto err;
2399 
2400 	for (i = 0; i < rx_ring->count; i++) {
2401 		buffer_info = &rx_ring->buffer_info[i];
2402 		buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2403 						sizeof(struct e1000_ps_page),
2404 						GFP_KERNEL);
2405 		if (!buffer_info->ps_pages)
2406 			goto err_pages;
2407 	}
2408 
2409 	desc_len = sizeof(union e1000_rx_desc_packet_split);
2410 
2411 	/* Round up to nearest 4K */
2412 	rx_ring->size = rx_ring->count * desc_len;
2413 	rx_ring->size = ALIGN(rx_ring->size, 4096);
2414 
2415 	err = e1000_alloc_ring_dma(adapter, rx_ring);
2416 	if (err)
2417 		goto err_pages;
2418 
2419 	rx_ring->next_to_clean = 0;
2420 	rx_ring->next_to_use = 0;
2421 	rx_ring->rx_skb_top = NULL;
2422 
2423 	return 0;
2424 
2425 err_pages:
2426 	for (i = 0; i < rx_ring->count; i++) {
2427 		buffer_info = &rx_ring->buffer_info[i];
2428 		kfree(buffer_info->ps_pages);
2429 	}
2430 err:
2431 	vfree(rx_ring->buffer_info);
2432 	e_err("Unable to allocate memory for the receive descriptor ring\n");
2433 	return err;
2434 }
2435 
2436 /**
2437  * e1000_clean_tx_ring - Free Tx Buffers
2438  * @tx_ring: Tx descriptor ring
2439  **/
2440 static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2441 {
2442 	struct e1000_adapter *adapter = tx_ring->adapter;
2443 	struct e1000_buffer *buffer_info;
2444 	unsigned long size;
2445 	unsigned int i;
2446 
2447 	for (i = 0; i < tx_ring->count; i++) {
2448 		buffer_info = &tx_ring->buffer_info[i];
2449 		e1000_put_txbuf(tx_ring, buffer_info, false);
2450 	}
2451 
2452 	netdev_reset_queue(adapter->netdev);
2453 	size = sizeof(struct e1000_buffer) * tx_ring->count;
2454 	memset(tx_ring->buffer_info, 0, size);
2455 
2456 	memset(tx_ring->desc, 0, tx_ring->size);
2457 
2458 	tx_ring->next_to_use = 0;
2459 	tx_ring->next_to_clean = 0;
2460 }
2461 
2462 /**
2463  * e1000e_free_tx_resources - Free Tx Resources per Queue
2464  * @tx_ring: Tx descriptor ring
2465  *
2466  * Free all transmit software resources
2467  **/
2468 void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2469 {
2470 	struct e1000_adapter *adapter = tx_ring->adapter;
2471 	struct pci_dev *pdev = adapter->pdev;
2472 
2473 	e1000_clean_tx_ring(tx_ring);
2474 
2475 	vfree(tx_ring->buffer_info);
2476 	tx_ring->buffer_info = NULL;
2477 
2478 	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2479 			  tx_ring->dma);
2480 	tx_ring->desc = NULL;
2481 }
2482 
2483 /**
2484  * e1000e_free_rx_resources - Free Rx Resources
2485  * @rx_ring: Rx descriptor ring
2486  *
2487  * Free all receive software resources
2488  **/
2489 void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2490 {
2491 	struct e1000_adapter *adapter = rx_ring->adapter;
2492 	struct pci_dev *pdev = adapter->pdev;
2493 	int i;
2494 
2495 	e1000_clean_rx_ring(rx_ring);
2496 
2497 	for (i = 0; i < rx_ring->count; i++)
2498 		kfree(rx_ring->buffer_info[i].ps_pages);
2499 
2500 	vfree(rx_ring->buffer_info);
2501 	rx_ring->buffer_info = NULL;
2502 
2503 	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2504 			  rx_ring->dma);
2505 	rx_ring->desc = NULL;
2506 }
2507 
2508 /**
2509  * e1000_update_itr - update the dynamic ITR value based on statistics
2510  * @adapter: pointer to adapter
2511  * @itr_setting: current adapter->itr
2512  * @packets: the number of packets during this measurement interval
2513  * @bytes: the number of bytes during this measurement interval
2514  *
2515  *      Stores a new ITR value based on packets and byte
2516  *      counts during the last interrupt.  The advantage of per interrupt
2517  *      computation is faster updates and more accurate ITR for the current
2518  *      traffic pattern.  Constants in this function were computed
2519  *      based on theoretical maximum wire speed and thresholds were set based
2520  *      on testing data as well as attempting to minimize response time
2521  *      while increasing bulk throughput.  This functionality is controlled
2522  *      by the InterruptThrottleRate module parameter.
2523  **/
2524 static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes)
2525 {
2526 	unsigned int retval = itr_setting;
2527 
2528 	if (packets == 0)
2529 		return itr_setting;
2530 
2531 	switch (itr_setting) {
2532 	case lowest_latency:
2533 		/* handle TSO and jumbo frames */
2534 		if (bytes / packets > 8000)
2535 			retval = bulk_latency;
2536 		else if ((packets < 5) && (bytes > 512))
2537 			retval = low_latency;
2538 		break;
2539 	case low_latency:	/* 50 usec aka 20000 ints/s */
2540 		if (bytes > 10000) {
2541 			/* this if handles the TSO accounting */
2542 			if (bytes / packets > 8000)
2543 				retval = bulk_latency;
2544 			else if ((packets < 10) || ((bytes / packets) > 1200))
2545 				retval = bulk_latency;
2546 			else if ((packets > 35))
2547 				retval = lowest_latency;
2548 		} else if (bytes / packets > 2000) {
2549 			retval = bulk_latency;
2550 		} else if (packets <= 2 && bytes < 512) {
2551 			retval = lowest_latency;
2552 		}
2553 		break;
2554 	case bulk_latency:	/* 250 usec aka 4000 ints/s */
2555 		if (bytes > 25000) {
2556 			if (packets > 35)
2557 				retval = low_latency;
2558 		} else if (bytes < 6000) {
2559 			retval = low_latency;
2560 		}
2561 		break;
2562 	}
2563 
2564 	return retval;
2565 }
2566 
2567 static void e1000_set_itr(struct e1000_adapter *adapter)
2568 {
2569 	u16 current_itr;
2570 	u32 new_itr = adapter->itr;
2571 
2572 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2573 	if (adapter->link_speed != SPEED_1000) {
2574 		current_itr = 0;
2575 		new_itr = 4000;
2576 		goto set_itr_now;
2577 	}
2578 
2579 	if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2580 		new_itr = 0;
2581 		goto set_itr_now;
2582 	}
2583 
2584 	adapter->tx_itr = e1000_update_itr(adapter->tx_itr,
2585 					   adapter->total_tx_packets,
2586 					   adapter->total_tx_bytes);
2587 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2588 	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2589 		adapter->tx_itr = low_latency;
2590 
2591 	adapter->rx_itr = e1000_update_itr(adapter->rx_itr,
2592 					   adapter->total_rx_packets,
2593 					   adapter->total_rx_bytes);
2594 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2595 	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2596 		adapter->rx_itr = low_latency;
2597 
2598 	current_itr = max(adapter->rx_itr, adapter->tx_itr);
2599 
2600 	/* counts and packets in update_itr are dependent on these numbers */
2601 	switch (current_itr) {
2602 	case lowest_latency:
2603 		new_itr = 70000;
2604 		break;
2605 	case low_latency:
2606 		new_itr = 20000;	/* aka hwitr = ~200 */
2607 		break;
2608 	case bulk_latency:
2609 		new_itr = 4000;
2610 		break;
2611 	default:
2612 		break;
2613 	}
2614 
2615 set_itr_now:
2616 	if (new_itr != adapter->itr) {
2617 		/* this attempts to bias the interrupt rate towards Bulk
2618 		 * by adding intermediate steps when interrupt rate is
2619 		 * increasing
2620 		 */
2621 		new_itr = new_itr > adapter->itr ?
2622 		    min(adapter->itr + (new_itr >> 2), new_itr) : new_itr;
2623 		adapter->itr = new_itr;
2624 		adapter->rx_ring->itr_val = new_itr;
2625 		if (adapter->msix_entries)
2626 			adapter->rx_ring->set_itr = 1;
2627 		else
2628 			e1000e_write_itr(adapter, new_itr);
2629 	}
2630 }
2631 
2632 /**
2633  * e1000e_write_itr - write the ITR value to the appropriate registers
2634  * @adapter: address of board private structure
2635  * @itr: new ITR value to program
2636  *
2637  * e1000e_write_itr determines if the adapter is in MSI-X mode
2638  * and, if so, writes the EITR registers with the ITR value.
2639  * Otherwise, it writes the ITR value into the ITR register.
2640  **/
2641 void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
2642 {
2643 	struct e1000_hw *hw = &adapter->hw;
2644 	u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
2645 
2646 	if (adapter->msix_entries) {
2647 		int vector;
2648 
2649 		for (vector = 0; vector < adapter->num_vectors; vector++)
2650 			writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
2651 	} else {
2652 		ew32(ITR, new_itr);
2653 	}
2654 }
2655 
2656 /**
2657  * e1000_alloc_queues - Allocate memory for all rings
2658  * @adapter: board private structure to initialize
2659  **/
2660 static int e1000_alloc_queues(struct e1000_adapter *adapter)
2661 {
2662 	int size = sizeof(struct e1000_ring);
2663 
2664 	adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2665 	if (!adapter->tx_ring)
2666 		goto err;
2667 	adapter->tx_ring->count = adapter->tx_ring_count;
2668 	adapter->tx_ring->adapter = adapter;
2669 
2670 	adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2671 	if (!adapter->rx_ring)
2672 		goto err;
2673 	adapter->rx_ring->count = adapter->rx_ring_count;
2674 	adapter->rx_ring->adapter = adapter;
2675 
2676 	return 0;
2677 err:
2678 	e_err("Unable to allocate memory for queues\n");
2679 	kfree(adapter->rx_ring);
2680 	kfree(adapter->tx_ring);
2681 	return -ENOMEM;
2682 }
2683 
2684 /**
2685  * e1000e_poll - NAPI Rx polling callback
2686  * @napi: struct associated with this polling callback
2687  * @budget: number of packets driver is allowed to process this poll
2688  **/
2689 static int e1000e_poll(struct napi_struct *napi, int budget)
2690 {
2691 	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2692 						     napi);
2693 	struct e1000_hw *hw = &adapter->hw;
2694 	struct net_device *poll_dev = adapter->netdev;
2695 	int tx_cleaned = 1, work_done = 0;
2696 
2697 	adapter = netdev_priv(poll_dev);
2698 
2699 	if (!adapter->msix_entries ||
2700 	    (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2701 		tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2702 
2703 	adapter->clean_rx(adapter->rx_ring, &work_done, budget);
2704 
2705 	if (!tx_cleaned || work_done == budget)
2706 		return budget;
2707 
2708 	/* Exit the polling mode, but don't re-enable interrupts if stack might
2709 	 * poll us due to busy-polling
2710 	 */
2711 	if (likely(napi_complete_done(napi, work_done))) {
2712 		if (adapter->itr_setting & 3)
2713 			e1000_set_itr(adapter);
2714 		if (!test_bit(__E1000_DOWN, &adapter->state)) {
2715 			if (adapter->msix_entries)
2716 				ew32(IMS, adapter->rx_ring->ims_val);
2717 			else
2718 				e1000_irq_enable(adapter);
2719 		}
2720 	}
2721 
2722 	return work_done;
2723 }
2724 
2725 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
2726 				 __always_unused __be16 proto, u16 vid)
2727 {
2728 	struct e1000_adapter *adapter = netdev_priv(netdev);
2729 	struct e1000_hw *hw = &adapter->hw;
2730 	u32 vfta, index;
2731 
2732 	/* don't update vlan cookie if already programmed */
2733 	if ((adapter->hw.mng_cookie.status &
2734 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2735 	    (vid == adapter->mng_vlan_id))
2736 		return 0;
2737 
2738 	/* add VID to filter table */
2739 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2740 		index = (vid >> 5) & 0x7F;
2741 		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2742 		vfta |= BIT((vid & 0x1F));
2743 		hw->mac.ops.write_vfta(hw, index, vfta);
2744 	}
2745 
2746 	set_bit(vid, adapter->active_vlans);
2747 
2748 	return 0;
2749 }
2750 
2751 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
2752 				  __always_unused __be16 proto, u16 vid)
2753 {
2754 	struct e1000_adapter *adapter = netdev_priv(netdev);
2755 	struct e1000_hw *hw = &adapter->hw;
2756 	u32 vfta, index;
2757 
2758 	if ((adapter->hw.mng_cookie.status &
2759 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2760 	    (vid == adapter->mng_vlan_id)) {
2761 		/* release control to f/w */
2762 		e1000e_release_hw_control(adapter);
2763 		return 0;
2764 	}
2765 
2766 	/* remove VID from filter table */
2767 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2768 		index = (vid >> 5) & 0x7F;
2769 		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2770 		vfta &= ~BIT((vid & 0x1F));
2771 		hw->mac.ops.write_vfta(hw, index, vfta);
2772 	}
2773 
2774 	clear_bit(vid, adapter->active_vlans);
2775 
2776 	return 0;
2777 }
2778 
2779 /**
2780  * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2781  * @adapter: board private structure to initialize
2782  **/
2783 static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2784 {
2785 	struct net_device *netdev = adapter->netdev;
2786 	struct e1000_hw *hw = &adapter->hw;
2787 	u32 rctl;
2788 
2789 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2790 		/* disable VLAN receive filtering */
2791 		rctl = er32(RCTL);
2792 		rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2793 		ew32(RCTL, rctl);
2794 
2795 		if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2796 			e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
2797 					       adapter->mng_vlan_id);
2798 			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2799 		}
2800 	}
2801 }
2802 
2803 /**
2804  * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2805  * @adapter: board private structure to initialize
2806  **/
2807 static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2808 {
2809 	struct e1000_hw *hw = &adapter->hw;
2810 	u32 rctl;
2811 
2812 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2813 		/* enable VLAN receive filtering */
2814 		rctl = er32(RCTL);
2815 		rctl |= E1000_RCTL_VFE;
2816 		rctl &= ~E1000_RCTL_CFIEN;
2817 		ew32(RCTL, rctl);
2818 	}
2819 }
2820 
2821 /**
2822  * e1000e_vlan_strip_disable - helper to disable HW VLAN stripping
2823  * @adapter: board private structure to initialize
2824  **/
2825 static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2826 {
2827 	struct e1000_hw *hw = &adapter->hw;
2828 	u32 ctrl;
2829 
2830 	/* disable VLAN tag insert/strip */
2831 	ctrl = er32(CTRL);
2832 	ctrl &= ~E1000_CTRL_VME;
2833 	ew32(CTRL, ctrl);
2834 }
2835 
2836 /**
2837  * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2838  * @adapter: board private structure to initialize
2839  **/
2840 static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2841 {
2842 	struct e1000_hw *hw = &adapter->hw;
2843 	u32 ctrl;
2844 
2845 	/* enable VLAN tag insert/strip */
2846 	ctrl = er32(CTRL);
2847 	ctrl |= E1000_CTRL_VME;
2848 	ew32(CTRL, ctrl);
2849 }
2850 
2851 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2852 {
2853 	struct net_device *netdev = adapter->netdev;
2854 	u16 vid = adapter->hw.mng_cookie.vlan_id;
2855 	u16 old_vid = adapter->mng_vlan_id;
2856 
2857 	if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2858 		e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
2859 		adapter->mng_vlan_id = vid;
2860 	}
2861 
2862 	if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2863 		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid);
2864 }
2865 
2866 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2867 {
2868 	u16 vid;
2869 
2870 	e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
2871 
2872 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2873 	    e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
2874 }
2875 
2876 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2877 {
2878 	struct e1000_hw *hw = &adapter->hw;
2879 	u32 manc, manc2h, mdef, i, j;
2880 
2881 	if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2882 		return;
2883 
2884 	manc = er32(MANC);
2885 
2886 	/* enable receiving management packets to the host. this will probably
2887 	 * generate destination unreachable messages from the host OS, but
2888 	 * the packets will be handled on SMBUS
2889 	 */
2890 	manc |= E1000_MANC_EN_MNG2HOST;
2891 	manc2h = er32(MANC2H);
2892 
2893 	switch (hw->mac.type) {
2894 	default:
2895 		manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2896 		break;
2897 	case e1000_82574:
2898 	case e1000_82583:
2899 		/* Check if IPMI pass-through decision filter already exists;
2900 		 * if so, enable it.
2901 		 */
2902 		for (i = 0, j = 0; i < 8; i++) {
2903 			mdef = er32(MDEF(i));
2904 
2905 			/* Ignore filters with anything other than IPMI ports */
2906 			if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2907 				continue;
2908 
2909 			/* Enable this decision filter in MANC2H */
2910 			if (mdef)
2911 				manc2h |= BIT(i);
2912 
2913 			j |= mdef;
2914 		}
2915 
2916 		if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2917 			break;
2918 
2919 		/* Create new decision filter in an empty filter */
2920 		for (i = 0, j = 0; i < 8; i++)
2921 			if (er32(MDEF(i)) == 0) {
2922 				ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2923 					       E1000_MDEF_PORT_664));
2924 				manc2h |= BIT(1);
2925 				j++;
2926 				break;
2927 			}
2928 
2929 		if (!j)
2930 			e_warn("Unable to create IPMI pass-through filter\n");
2931 		break;
2932 	}
2933 
2934 	ew32(MANC2H, manc2h);
2935 	ew32(MANC, manc);
2936 }
2937 
2938 /**
2939  * e1000_configure_tx - Configure Transmit Unit after Reset
2940  * @adapter: board private structure
2941  *
2942  * Configure the Tx unit of the MAC after a reset.
2943  **/
2944 static void e1000_configure_tx(struct e1000_adapter *adapter)
2945 {
2946 	struct e1000_hw *hw = &adapter->hw;
2947 	struct e1000_ring *tx_ring = adapter->tx_ring;
2948 	u64 tdba;
2949 	u32 tdlen, tctl, tarc;
2950 
2951 	/* Setup the HW Tx Head and Tail descriptor pointers */
2952 	tdba = tx_ring->dma;
2953 	tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2954 	ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2955 	ew32(TDBAH(0), (tdba >> 32));
2956 	ew32(TDLEN(0), tdlen);
2957 	ew32(TDH(0), 0);
2958 	ew32(TDT(0), 0);
2959 	tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2960 	tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2961 
2962 	writel(0, tx_ring->head);
2963 	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2964 		e1000e_update_tdt_wa(tx_ring, 0);
2965 	else
2966 		writel(0, tx_ring->tail);
2967 
2968 	/* Set the Tx Interrupt Delay register */
2969 	ew32(TIDV, adapter->tx_int_delay);
2970 	/* Tx irq moderation */
2971 	ew32(TADV, adapter->tx_abs_int_delay);
2972 
2973 	if (adapter->flags2 & FLAG2_DMA_BURST) {
2974 		u32 txdctl = er32(TXDCTL(0));
2975 
2976 		txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2977 			    E1000_TXDCTL_WTHRESH);
2978 		/* set up some performance related parameters to encourage the
2979 		 * hardware to use the bus more efficiently in bursts, depends
2980 		 * on the tx_int_delay to be enabled,
2981 		 * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2982 		 * hthresh = 1 ==> prefetch when one or more available
2983 		 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2984 		 * BEWARE: this seems to work but should be considered first if
2985 		 * there are Tx hangs or other Tx related bugs
2986 		 */
2987 		txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2988 		ew32(TXDCTL(0), txdctl);
2989 	}
2990 	/* erratum work around: set txdctl the same for both queues */
2991 	ew32(TXDCTL(1), er32(TXDCTL(0)));
2992 
2993 	/* Program the Transmit Control Register */
2994 	tctl = er32(TCTL);
2995 	tctl &= ~E1000_TCTL_CT;
2996 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2997 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2998 
2999 	if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
3000 		tarc = er32(TARC(0));
3001 		/* set the speed mode bit, we'll clear it if we're not at
3002 		 * gigabit link later
3003 		 */
3004 #define SPEED_MODE_BIT BIT(21)
3005 		tarc |= SPEED_MODE_BIT;
3006 		ew32(TARC(0), tarc);
3007 	}
3008 
3009 	/* errata: program both queues to unweighted RR */
3010 	if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
3011 		tarc = er32(TARC(0));
3012 		tarc |= 1;
3013 		ew32(TARC(0), tarc);
3014 		tarc = er32(TARC(1));
3015 		tarc |= 1;
3016 		ew32(TARC(1), tarc);
3017 	}
3018 
3019 	/* Setup Transmit Descriptor Settings for eop descriptor */
3020 	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
3021 
3022 	/* only set IDE if we are delaying interrupts using the timers */
3023 	if (adapter->tx_int_delay)
3024 		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
3025 
3026 	/* enable Report Status bit */
3027 	adapter->txd_cmd |= E1000_TXD_CMD_RS;
3028 
3029 	ew32(TCTL, tctl);
3030 
3031 	hw->mac.ops.config_collision_dist(hw);
3032 
3033 	/* SPT and KBL Si errata workaround to avoid data corruption */
3034 	if (hw->mac.type == e1000_pch_spt) {
3035 		u32 reg_val;
3036 
3037 		reg_val = er32(IOSFPC);
3038 		reg_val |= E1000_RCTL_RDMTS_HEX;
3039 		ew32(IOSFPC, reg_val);
3040 
3041 		reg_val = er32(TARC(0));
3042 		/* SPT and KBL Si errata workaround to avoid Tx hang.
3043 		 * Dropping the number of outstanding requests from
3044 		 * 3 to 2 in order to avoid a buffer overrun.
3045 		 */
3046 		reg_val &= ~E1000_TARC0_CB_MULTIQ_3_REQ;
3047 		reg_val |= E1000_TARC0_CB_MULTIQ_2_REQ;
3048 		ew32(TARC(0), reg_val);
3049 	}
3050 }
3051 
3052 /**
3053  * e1000_setup_rctl - configure the receive control registers
3054  * @adapter: Board private structure
3055  **/
3056 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
3057 			   (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
3058 static void e1000_setup_rctl(struct e1000_adapter *adapter)
3059 {
3060 	struct e1000_hw *hw = &adapter->hw;
3061 	u32 rctl, rfctl;
3062 	u32 pages = 0;
3063 
3064 	/* Workaround Si errata on PCHx - configure jumbo frame flow.
3065 	 * If jumbo frames not set, program related MAC/PHY registers
3066 	 * to h/w defaults
3067 	 */
3068 	if (hw->mac.type >= e1000_pch2lan) {
3069 		s32 ret_val;
3070 
3071 		if (adapter->netdev->mtu > ETH_DATA_LEN)
3072 			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
3073 		else
3074 			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
3075 
3076 		if (ret_val)
3077 			e_dbg("failed to enable|disable jumbo frame workaround mode\n");
3078 	}
3079 
3080 	/* Program MC offset vector base */
3081 	rctl = er32(RCTL);
3082 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3083 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3084 	    E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3085 	    (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3086 
3087 	/* Do not Store bad packets */
3088 	rctl &= ~E1000_RCTL_SBP;
3089 
3090 	/* Enable Long Packet receive */
3091 	if (adapter->netdev->mtu <= ETH_DATA_LEN)
3092 		rctl &= ~E1000_RCTL_LPE;
3093 	else
3094 		rctl |= E1000_RCTL_LPE;
3095 
3096 	/* Some systems expect that the CRC is included in SMBUS traffic. The
3097 	 * hardware strips the CRC before sending to both SMBUS (BMC) and to
3098 	 * host memory when this is enabled
3099 	 */
3100 	if (adapter->flags2 & FLAG2_CRC_STRIPPING)
3101 		rctl |= E1000_RCTL_SECRC;
3102 
3103 	/* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3104 	if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
3105 		u16 phy_data;
3106 
3107 		e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
3108 		phy_data &= 0xfff8;
3109 		phy_data |= BIT(2);
3110 		e1e_wphy(hw, PHY_REG(770, 26), phy_data);
3111 
3112 		e1e_rphy(hw, 22, &phy_data);
3113 		phy_data &= 0x0fff;
3114 		phy_data |= BIT(14);
3115 		e1e_wphy(hw, 0x10, 0x2823);
3116 		e1e_wphy(hw, 0x11, 0x0003);
3117 		e1e_wphy(hw, 22, phy_data);
3118 	}
3119 
3120 	/* Setup buffer sizes */
3121 	rctl &= ~E1000_RCTL_SZ_4096;
3122 	rctl |= E1000_RCTL_BSEX;
3123 	switch (adapter->rx_buffer_len) {
3124 	case 2048:
3125 	default:
3126 		rctl |= E1000_RCTL_SZ_2048;
3127 		rctl &= ~E1000_RCTL_BSEX;
3128 		break;
3129 	case 4096:
3130 		rctl |= E1000_RCTL_SZ_4096;
3131 		break;
3132 	case 8192:
3133 		rctl |= E1000_RCTL_SZ_8192;
3134 		break;
3135 	case 16384:
3136 		rctl |= E1000_RCTL_SZ_16384;
3137 		break;
3138 	}
3139 
3140 	/* Enable Extended Status in all Receive Descriptors */
3141 	rfctl = er32(RFCTL);
3142 	rfctl |= E1000_RFCTL_EXTEN;
3143 	ew32(RFCTL, rfctl);
3144 
3145 	/* 82571 and greater support packet-split where the protocol
3146 	 * header is placed in skb->data and the packet data is
3147 	 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3148 	 * In the case of a non-split, skb->data is linearly filled,
3149 	 * followed by the page buffers.  Therefore, skb->data is
3150 	 * sized to hold the largest protocol header.
3151 	 *
3152 	 * allocations using alloc_page take too long for regular MTU
3153 	 * so only enable packet split for jumbo frames
3154 	 *
3155 	 * Using pages when the page size is greater than 16k wastes
3156 	 * a lot of memory, since we allocate 3 pages at all times
3157 	 * per packet.
3158 	 */
3159 	pages = PAGE_USE_COUNT(adapter->netdev->mtu);
3160 	if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
3161 		adapter->rx_ps_pages = pages;
3162 	else
3163 		adapter->rx_ps_pages = 0;
3164 
3165 	if (adapter->rx_ps_pages) {
3166 		u32 psrctl = 0;
3167 
3168 		/* Enable Packet split descriptors */
3169 		rctl |= E1000_RCTL_DTYP_PS;
3170 
3171 		psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT;
3172 
3173 		switch (adapter->rx_ps_pages) {
3174 		case 3:
3175 			psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT;
3176 			fallthrough;
3177 		case 2:
3178 			psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT;
3179 			fallthrough;
3180 		case 1:
3181 			psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT;
3182 			break;
3183 		}
3184 
3185 		ew32(PSRCTL, psrctl);
3186 	}
3187 
3188 	/* This is useful for sniffing bad packets. */
3189 	if (adapter->netdev->features & NETIF_F_RXALL) {
3190 		/* UPE and MPE will be handled by normal PROMISC logic
3191 		 * in e1000e_set_rx_mode
3192 		 */
3193 		rctl |= (E1000_RCTL_SBP |	/* Receive bad packets */
3194 			 E1000_RCTL_BAM |	/* RX All Bcast Pkts */
3195 			 E1000_RCTL_PMCF);	/* RX All MAC Ctrl Pkts */
3196 
3197 		rctl &= ~(E1000_RCTL_VFE |	/* Disable VLAN filter */
3198 			  E1000_RCTL_DPF |	/* Allow filtered pause */
3199 			  E1000_RCTL_CFIEN);	/* Dis VLAN CFIEN Filter */
3200 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3201 		 * and that breaks VLANs.
3202 		 */
3203 	}
3204 
3205 	ew32(RCTL, rctl);
3206 	/* just started the receive unit, no need to restart */
3207 	adapter->flags &= ~FLAG_RESTART_NOW;
3208 }
3209 
3210 /**
3211  * e1000_configure_rx - Configure Receive Unit after Reset
3212  * @adapter: board private structure
3213  *
3214  * Configure the Rx unit of the MAC after a reset.
3215  **/
3216 static void e1000_configure_rx(struct e1000_adapter *adapter)
3217 {
3218 	struct e1000_hw *hw = &adapter->hw;
3219 	struct e1000_ring *rx_ring = adapter->rx_ring;
3220 	u64 rdba;
3221 	u32 rdlen, rctl, rxcsum, ctrl_ext;
3222 
3223 	if (adapter->rx_ps_pages) {
3224 		/* this is a 32 byte descriptor */
3225 		rdlen = rx_ring->count *
3226 		    sizeof(union e1000_rx_desc_packet_split);
3227 		adapter->clean_rx = e1000_clean_rx_irq_ps;
3228 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3229 	} else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3230 		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3231 		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3232 		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3233 	} else {
3234 		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3235 		adapter->clean_rx = e1000_clean_rx_irq;
3236 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3237 	}
3238 
3239 	/* disable receives while setting up the descriptors */
3240 	rctl = er32(RCTL);
3241 	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3242 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
3243 	e1e_flush();
3244 	usleep_range(10000, 11000);
3245 
3246 	if (adapter->flags2 & FLAG2_DMA_BURST) {
3247 		/* set the writeback threshold (only takes effect if the RDTR
3248 		 * is set). set GRAN=1 and write back up to 0x4 worth, and
3249 		 * enable prefetching of 0x20 Rx descriptors
3250 		 * granularity = 01
3251 		 * wthresh = 04,
3252 		 * hthresh = 04,
3253 		 * pthresh = 0x20
3254 		 */
3255 		ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3256 		ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3257 	}
3258 
3259 	/* set the Receive Delay Timer Register */
3260 	ew32(RDTR, adapter->rx_int_delay);
3261 
3262 	/* irq moderation */
3263 	ew32(RADV, adapter->rx_abs_int_delay);
3264 	if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3265 		e1000e_write_itr(adapter, adapter->itr);
3266 
3267 	ctrl_ext = er32(CTRL_EXT);
3268 	/* Auto-Mask interrupts upon ICR access */
3269 	ctrl_ext |= E1000_CTRL_EXT_IAME;
3270 	ew32(IAM, 0xffffffff);
3271 	ew32(CTRL_EXT, ctrl_ext);
3272 	e1e_flush();
3273 
3274 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
3275 	 * the Base and Length of the Rx Descriptor Ring
3276 	 */
3277 	rdba = rx_ring->dma;
3278 	ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3279 	ew32(RDBAH(0), (rdba >> 32));
3280 	ew32(RDLEN(0), rdlen);
3281 	ew32(RDH(0), 0);
3282 	ew32(RDT(0), 0);
3283 	rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3284 	rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3285 
3286 	writel(0, rx_ring->head);
3287 	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
3288 		e1000e_update_rdt_wa(rx_ring, 0);
3289 	else
3290 		writel(0, rx_ring->tail);
3291 
3292 	/* Enable Receive Checksum Offload for TCP and UDP */
3293 	rxcsum = er32(RXCSUM);
3294 	if (adapter->netdev->features & NETIF_F_RXCSUM)
3295 		rxcsum |= E1000_RXCSUM_TUOFL;
3296 	else
3297 		rxcsum &= ~E1000_RXCSUM_TUOFL;
3298 	ew32(RXCSUM, rxcsum);
3299 
3300 	/* With jumbo frames, excessive C-state transition latencies result
3301 	 * in dropped transactions.
3302 	 */
3303 	if (adapter->netdev->mtu > ETH_DATA_LEN) {
3304 		u32 lat =
3305 		    ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 -
3306 		     adapter->max_frame_size) * 8 / 1000;
3307 
3308 		if (adapter->flags & FLAG_IS_ICH) {
3309 			u32 rxdctl = er32(RXDCTL(0));
3310 
3311 			ew32(RXDCTL(0), rxdctl | 0x3 | BIT(8));
3312 		}
3313 
3314 		dev_info(&adapter->pdev->dev,
3315 			 "Some CPU C-states have been disabled in order to enable jumbo frames\n");
3316 		cpu_latency_qos_update_request(&adapter->pm_qos_req, lat);
3317 	} else {
3318 		cpu_latency_qos_update_request(&adapter->pm_qos_req,
3319 					       PM_QOS_DEFAULT_VALUE);
3320 	}
3321 
3322 	/* Enable Receives */
3323 	ew32(RCTL, rctl);
3324 }
3325 
3326 /**
3327  * e1000e_write_mc_addr_list - write multicast addresses to MTA
3328  * @netdev: network interface device structure
3329  *
3330  * Writes multicast address list to the MTA hash table.
3331  * Returns: -ENOMEM on failure
3332  *                0 on no addresses written
3333  *                X on writing X addresses to MTA
3334  */
3335 static int e1000e_write_mc_addr_list(struct net_device *netdev)
3336 {
3337 	struct e1000_adapter *adapter = netdev_priv(netdev);
3338 	struct e1000_hw *hw = &adapter->hw;
3339 	struct netdev_hw_addr *ha;
3340 	u8 *mta_list;
3341 	int i;
3342 
3343 	if (netdev_mc_empty(netdev)) {
3344 		/* nothing to program, so clear mc list */
3345 		hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3346 		return 0;
3347 	}
3348 
3349 	mta_list = kcalloc(netdev_mc_count(netdev), ETH_ALEN, GFP_ATOMIC);
3350 	if (!mta_list)
3351 		return -ENOMEM;
3352 
3353 	/* update_mc_addr_list expects a packed array of only addresses. */
3354 	i = 0;
3355 	netdev_for_each_mc_addr(ha, netdev)
3356 	    memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3357 
3358 	hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3359 	kfree(mta_list);
3360 
3361 	return netdev_mc_count(netdev);
3362 }
3363 
3364 /**
3365  * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3366  * @netdev: network interface device structure
3367  *
3368  * Writes unicast address list to the RAR table.
3369  * Returns: -ENOMEM on failure/insufficient address space
3370  *                0 on no addresses written
3371  *                X on writing X addresses to the RAR table
3372  **/
3373 static int e1000e_write_uc_addr_list(struct net_device *netdev)
3374 {
3375 	struct e1000_adapter *adapter = netdev_priv(netdev);
3376 	struct e1000_hw *hw = &adapter->hw;
3377 	unsigned int rar_entries;
3378 	int count = 0;
3379 
3380 	rar_entries = hw->mac.ops.rar_get_count(hw);
3381 
3382 	/* save a rar entry for our hardware address */
3383 	rar_entries--;
3384 
3385 	/* save a rar entry for the LAA workaround */
3386 	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3387 		rar_entries--;
3388 
3389 	/* return ENOMEM indicating insufficient memory for addresses */
3390 	if (netdev_uc_count(netdev) > rar_entries)
3391 		return -ENOMEM;
3392 
3393 	if (!netdev_uc_empty(netdev) && rar_entries) {
3394 		struct netdev_hw_addr *ha;
3395 
3396 		/* write the addresses in reverse order to avoid write
3397 		 * combining
3398 		 */
3399 		netdev_for_each_uc_addr(ha, netdev) {
3400 			int ret_val;
3401 
3402 			if (!rar_entries)
3403 				break;
3404 			ret_val = hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3405 			if (ret_val < 0)
3406 				return -ENOMEM;
3407 			count++;
3408 		}
3409 	}
3410 
3411 	/* zero out the remaining RAR entries not used above */
3412 	for (; rar_entries > 0; rar_entries--) {
3413 		ew32(RAH(rar_entries), 0);
3414 		ew32(RAL(rar_entries), 0);
3415 	}
3416 	e1e_flush();
3417 
3418 	return count;
3419 }
3420 
3421 /**
3422  * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3423  * @netdev: network interface device structure
3424  *
3425  * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3426  * address list or the network interface flags are updated.  This routine is
3427  * responsible for configuring the hardware for proper unicast, multicast,
3428  * promiscuous mode, and all-multi behavior.
3429  **/
3430 static void e1000e_set_rx_mode(struct net_device *netdev)
3431 {
3432 	struct e1000_adapter *adapter = netdev_priv(netdev);
3433 	struct e1000_hw *hw = &adapter->hw;
3434 	u32 rctl;
3435 
3436 	if (pm_runtime_suspended(netdev->dev.parent))
3437 		return;
3438 
3439 	/* Check for Promiscuous and All Multicast modes */
3440 	rctl = er32(RCTL);
3441 
3442 	/* clear the affected bits */
3443 	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3444 
3445 	if (netdev->flags & IFF_PROMISC) {
3446 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3447 		/* Do not hardware filter VLANs in promisc mode */
3448 		e1000e_vlan_filter_disable(adapter);
3449 	} else {
3450 		int count;
3451 
3452 		if (netdev->flags & IFF_ALLMULTI) {
3453 			rctl |= E1000_RCTL_MPE;
3454 		} else {
3455 			/* Write addresses to the MTA, if the attempt fails
3456 			 * then we should just turn on promiscuous mode so
3457 			 * that we can at least receive multicast traffic
3458 			 */
3459 			count = e1000e_write_mc_addr_list(netdev);
3460 			if (count < 0)
3461 				rctl |= E1000_RCTL_MPE;
3462 		}
3463 		e1000e_vlan_filter_enable(adapter);
3464 		/* Write addresses to available RAR registers, if there is not
3465 		 * sufficient space to store all the addresses then enable
3466 		 * unicast promiscuous mode
3467 		 */
3468 		count = e1000e_write_uc_addr_list(netdev);
3469 		if (count < 0)
3470 			rctl |= E1000_RCTL_UPE;
3471 	}
3472 
3473 	ew32(RCTL, rctl);
3474 
3475 	if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
3476 		e1000e_vlan_strip_enable(adapter);
3477 	else
3478 		e1000e_vlan_strip_disable(adapter);
3479 }
3480 
3481 static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3482 {
3483 	struct e1000_hw *hw = &adapter->hw;
3484 	u32 mrqc, rxcsum;
3485 	u32 rss_key[10];
3486 	int i;
3487 
3488 	netdev_rss_key_fill(rss_key, sizeof(rss_key));
3489 	for (i = 0; i < 10; i++)
3490 		ew32(RSSRK(i), rss_key[i]);
3491 
3492 	/* Direct all traffic to queue 0 */
3493 	for (i = 0; i < 32; i++)
3494 		ew32(RETA(i), 0);
3495 
3496 	/* Disable raw packet checksumming so that RSS hash is placed in
3497 	 * descriptor on writeback.
3498 	 */
3499 	rxcsum = er32(RXCSUM);
3500 	rxcsum |= E1000_RXCSUM_PCSD;
3501 
3502 	ew32(RXCSUM, rxcsum);
3503 
3504 	mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3505 		E1000_MRQC_RSS_FIELD_IPV4_TCP |
3506 		E1000_MRQC_RSS_FIELD_IPV6 |
3507 		E1000_MRQC_RSS_FIELD_IPV6_TCP |
3508 		E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3509 
3510 	ew32(MRQC, mrqc);
3511 }
3512 
3513 /**
3514  * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3515  * @adapter: board private structure
3516  * @timinca: pointer to returned time increment attributes
3517  *
3518  * Get attributes for incrementing the System Time Register SYSTIML/H at
3519  * the default base frequency, and set the cyclecounter shift value.
3520  **/
3521 s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca)
3522 {
3523 	struct e1000_hw *hw = &adapter->hw;
3524 	u32 incvalue, incperiod, shift;
3525 
3526 	/* Make sure clock is enabled on I217/I218/I219  before checking
3527 	 * the frequency
3528 	 */
3529 	if ((hw->mac.type >= e1000_pch_lpt) &&
3530 	    !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) &&
3531 	    !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) {
3532 		u32 fextnvm7 = er32(FEXTNVM7);
3533 
3534 		if (!(fextnvm7 & BIT(0))) {
3535 			ew32(FEXTNVM7, fextnvm7 | BIT(0));
3536 			e1e_flush();
3537 		}
3538 	}
3539 
3540 	switch (hw->mac.type) {
3541 	case e1000_pch2lan:
3542 		/* Stable 96MHz frequency */
3543 		incperiod = INCPERIOD_96MHZ;
3544 		incvalue = INCVALUE_96MHZ;
3545 		shift = INCVALUE_SHIFT_96MHZ;
3546 		adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3547 		break;
3548 	case e1000_pch_lpt:
3549 		if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3550 			/* Stable 96MHz frequency */
3551 			incperiod = INCPERIOD_96MHZ;
3552 			incvalue = INCVALUE_96MHZ;
3553 			shift = INCVALUE_SHIFT_96MHZ;
3554 			adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3555 		} else {
3556 			/* Stable 25MHz frequency */
3557 			incperiod = INCPERIOD_25MHZ;
3558 			incvalue = INCVALUE_25MHZ;
3559 			shift = INCVALUE_SHIFT_25MHZ;
3560 			adapter->cc.shift = shift;
3561 		}
3562 		break;
3563 	case e1000_pch_spt:
3564 		/* Stable 24MHz frequency */
3565 		incperiod = INCPERIOD_24MHZ;
3566 		incvalue = INCVALUE_24MHZ;
3567 		shift = INCVALUE_SHIFT_24MHZ;
3568 		adapter->cc.shift = shift;
3569 		break;
3570 	case e1000_pch_cnp:
3571 	case e1000_pch_tgp:
3572 	case e1000_pch_adp:
3573 		if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3574 			/* Stable 24MHz frequency */
3575 			incperiod = INCPERIOD_24MHZ;
3576 			incvalue = INCVALUE_24MHZ;
3577 			shift = INCVALUE_SHIFT_24MHZ;
3578 			adapter->cc.shift = shift;
3579 		} else {
3580 			/* Stable 38400KHz frequency */
3581 			incperiod = INCPERIOD_38400KHZ;
3582 			incvalue = INCVALUE_38400KHZ;
3583 			shift = INCVALUE_SHIFT_38400KHZ;
3584 			adapter->cc.shift = shift;
3585 		}
3586 		break;
3587 	case e1000_82574:
3588 	case e1000_82583:
3589 		/* Stable 25MHz frequency */
3590 		incperiod = INCPERIOD_25MHZ;
3591 		incvalue = INCVALUE_25MHZ;
3592 		shift = INCVALUE_SHIFT_25MHZ;
3593 		adapter->cc.shift = shift;
3594 		break;
3595 	default:
3596 		return -EINVAL;
3597 	}
3598 
3599 	*timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) |
3600 		    ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK));
3601 
3602 	return 0;
3603 }
3604 
3605 /**
3606  * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3607  * @adapter: board private structure
3608  *
3609  * Outgoing time stamping can be enabled and disabled. Play nice and
3610  * disable it when requested, although it shouldn't cause any overhead
3611  * when no packet needs it. At most one packet in the queue may be
3612  * marked for time stamping, otherwise it would be impossible to tell
3613  * for sure to which packet the hardware time stamp belongs.
3614  *
3615  * Incoming time stamping has to be configured via the hardware filters.
3616  * Not all combinations are supported, in particular event type has to be
3617  * specified. Matching the kind of event packet is not supported, with the
3618  * exception of "all V2 events regardless of level 2 or 4".
3619  **/
3620 static int e1000e_config_hwtstamp(struct e1000_adapter *adapter,
3621 				  struct hwtstamp_config *config)
3622 {
3623 	struct e1000_hw *hw = &adapter->hw;
3624 	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
3625 	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
3626 	u32 rxmtrl = 0;
3627 	u16 rxudp = 0;
3628 	bool is_l4 = false;
3629 	bool is_l2 = false;
3630 	u32 regval;
3631 
3632 	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3633 		return -EINVAL;
3634 
3635 	/* flags reserved for future extensions - must be zero */
3636 	if (config->flags)
3637 		return -EINVAL;
3638 
3639 	switch (config->tx_type) {
3640 	case HWTSTAMP_TX_OFF:
3641 		tsync_tx_ctl = 0;
3642 		break;
3643 	case HWTSTAMP_TX_ON:
3644 		break;
3645 	default:
3646 		return -ERANGE;
3647 	}
3648 
3649 	switch (config->rx_filter) {
3650 	case HWTSTAMP_FILTER_NONE:
3651 		tsync_rx_ctl = 0;
3652 		break;
3653 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3654 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3655 		rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE;
3656 		is_l4 = true;
3657 		break;
3658 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3659 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3660 		rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE;
3661 		is_l4 = true;
3662 		break;
3663 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3664 		/* Also time stamps V2 L2 Path Delay Request/Response */
3665 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3666 		rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3667 		is_l2 = true;
3668 		break;
3669 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3670 		/* Also time stamps V2 L2 Path Delay Request/Response. */
3671 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3672 		rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3673 		is_l2 = true;
3674 		break;
3675 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3676 		/* Hardware cannot filter just V2 L4 Sync messages */
3677 		fallthrough;
3678 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
3679 		/* Also time stamps V2 Path Delay Request/Response. */
3680 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3681 		rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3682 		is_l2 = true;
3683 		is_l4 = true;
3684 		break;
3685 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3686 		/* Hardware cannot filter just V2 L4 Delay Request messages */
3687 		fallthrough;
3688 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3689 		/* Also time stamps V2 Path Delay Request/Response. */
3690 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3691 		rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3692 		is_l2 = true;
3693 		is_l4 = true;
3694 		break;
3695 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3696 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3697 		/* Hardware cannot filter just V2 L4 or L2 Event messages */
3698 		fallthrough;
3699 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
3700 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
3701 		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
3702 		is_l2 = true;
3703 		is_l4 = true;
3704 		break;
3705 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3706 		/* For V1, the hardware can only filter Sync messages or
3707 		 * Delay Request messages but not both so fall-through to
3708 		 * time stamp all packets.
3709 		 */
3710 		fallthrough;
3711 	case HWTSTAMP_FILTER_NTP_ALL:
3712 	case HWTSTAMP_FILTER_ALL:
3713 		is_l2 = true;
3714 		is_l4 = true;
3715 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
3716 		config->rx_filter = HWTSTAMP_FILTER_ALL;
3717 		break;
3718 	default:
3719 		return -ERANGE;
3720 	}
3721 
3722 	adapter->hwtstamp_config = *config;
3723 
3724 	/* enable/disable Tx h/w time stamping */
3725 	regval = er32(TSYNCTXCTL);
3726 	regval &= ~E1000_TSYNCTXCTL_ENABLED;
3727 	regval |= tsync_tx_ctl;
3728 	ew32(TSYNCTXCTL, regval);
3729 	if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) !=
3730 	    (regval & E1000_TSYNCTXCTL_ENABLED)) {
3731 		e_err("Timesync Tx Control register not set as expected\n");
3732 		return -EAGAIN;
3733 	}
3734 
3735 	/* enable/disable Rx h/w time stamping */
3736 	regval = er32(TSYNCRXCTL);
3737 	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
3738 	regval |= tsync_rx_ctl;
3739 	ew32(TSYNCRXCTL, regval);
3740 	if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED |
3741 				 E1000_TSYNCRXCTL_TYPE_MASK)) !=
3742 	    (regval & (E1000_TSYNCRXCTL_ENABLED |
3743 		       E1000_TSYNCRXCTL_TYPE_MASK))) {
3744 		e_err("Timesync Rx Control register not set as expected\n");
3745 		return -EAGAIN;
3746 	}
3747 
3748 	/* L2: define ethertype filter for time stamped packets */
3749 	if (is_l2)
3750 		rxmtrl |= ETH_P_1588;
3751 
3752 	/* define which PTP packets get time stamped */
3753 	ew32(RXMTRL, rxmtrl);
3754 
3755 	/* Filter by destination port */
3756 	if (is_l4) {
3757 		rxudp = PTP_EV_PORT;
3758 		cpu_to_be16s(&rxudp);
3759 	}
3760 	ew32(RXUDP, rxudp);
3761 
3762 	e1e_flush();
3763 
3764 	/* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
3765 	er32(RXSTMPH);
3766 	er32(TXSTMPH);
3767 
3768 	return 0;
3769 }
3770 
3771 /**
3772  * e1000_configure - configure the hardware for Rx and Tx
3773  * @adapter: private board structure
3774  **/
3775 static void e1000_configure(struct e1000_adapter *adapter)
3776 {
3777 	struct e1000_ring *rx_ring = adapter->rx_ring;
3778 
3779 	e1000e_set_rx_mode(adapter->netdev);
3780 
3781 	e1000_restore_vlan(adapter);
3782 	e1000_init_manageability_pt(adapter);
3783 
3784 	e1000_configure_tx(adapter);
3785 
3786 	if (adapter->netdev->features & NETIF_F_RXHASH)
3787 		e1000e_setup_rss_hash(adapter);
3788 	e1000_setup_rctl(adapter);
3789 	e1000_configure_rx(adapter);
3790 	adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3791 }
3792 
3793 /**
3794  * e1000e_power_up_phy - restore link in case the phy was powered down
3795  * @adapter: address of board private structure
3796  *
3797  * The phy may be powered down to save power and turn off link when the
3798  * driver is unloaded and wake on lan is not enabled (among others)
3799  * *** this routine MUST be followed by a call to e1000e_reset ***
3800  **/
3801 void e1000e_power_up_phy(struct e1000_adapter *adapter)
3802 {
3803 	if (adapter->hw.phy.ops.power_up)
3804 		adapter->hw.phy.ops.power_up(&adapter->hw);
3805 
3806 	adapter->hw.mac.ops.setup_link(&adapter->hw);
3807 }
3808 
3809 /**
3810  * e1000_power_down_phy - Power down the PHY
3811  *
3812  * Power down the PHY so no link is implied when interface is down.
3813  * The PHY cannot be powered down if management or WoL is active.
3814  */
3815 static void e1000_power_down_phy(struct e1000_adapter *adapter)
3816 {
3817 	if (adapter->hw.phy.ops.power_down)
3818 		adapter->hw.phy.ops.power_down(&adapter->hw);
3819 }
3820 
3821 /**
3822  * e1000_flush_tx_ring - remove all descriptors from the tx_ring
3823  *
3824  * We want to clear all pending descriptors from the TX ring.
3825  * zeroing happens when the HW reads the regs. We  assign the ring itself as
3826  * the data of the next descriptor. We don't care about the data we are about
3827  * to reset the HW.
3828  */
3829 static void e1000_flush_tx_ring(struct e1000_adapter *adapter)
3830 {
3831 	struct e1000_hw *hw = &adapter->hw;
3832 	struct e1000_ring *tx_ring = adapter->tx_ring;
3833 	struct e1000_tx_desc *tx_desc = NULL;
3834 	u32 tdt, tctl, txd_lower = E1000_TXD_CMD_IFCS;
3835 	u16 size = 512;
3836 
3837 	tctl = er32(TCTL);
3838 	ew32(TCTL, tctl | E1000_TCTL_EN);
3839 	tdt = er32(TDT(0));
3840 	BUG_ON(tdt != tx_ring->next_to_use);
3841 	tx_desc =  E1000_TX_DESC(*tx_ring, tx_ring->next_to_use);
3842 	tx_desc->buffer_addr = cpu_to_le64(tx_ring->dma);
3843 
3844 	tx_desc->lower.data = cpu_to_le32(txd_lower | size);
3845 	tx_desc->upper.data = 0;
3846 	/* flush descriptors to memory before notifying the HW */
3847 	wmb();
3848 	tx_ring->next_to_use++;
3849 	if (tx_ring->next_to_use == tx_ring->count)
3850 		tx_ring->next_to_use = 0;
3851 	ew32(TDT(0), tx_ring->next_to_use);
3852 	usleep_range(200, 250);
3853 }
3854 
3855 /**
3856  * e1000_flush_rx_ring - remove all descriptors from the rx_ring
3857  *
3858  * Mark all descriptors in the RX ring as consumed and disable the rx ring
3859  */
3860 static void e1000_flush_rx_ring(struct e1000_adapter *adapter)
3861 {
3862 	u32 rctl, rxdctl;
3863 	struct e1000_hw *hw = &adapter->hw;
3864 
3865 	rctl = er32(RCTL);
3866 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
3867 	e1e_flush();
3868 	usleep_range(100, 150);
3869 
3870 	rxdctl = er32(RXDCTL(0));
3871 	/* zero the lower 14 bits (prefetch and host thresholds) */
3872 	rxdctl &= 0xffffc000;
3873 
3874 	/* update thresholds: prefetch threshold to 31, host threshold to 1
3875 	 * and make sure the granularity is "descriptors" and not "cache lines"
3876 	 */
3877 	rxdctl |= (0x1F | BIT(8) | E1000_RXDCTL_THRESH_UNIT_DESC);
3878 
3879 	ew32(RXDCTL(0), rxdctl);
3880 	/* momentarily enable the RX ring for the changes to take effect */
3881 	ew32(RCTL, rctl | E1000_RCTL_EN);
3882 	e1e_flush();
3883 	usleep_range(100, 150);
3884 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
3885 }
3886 
3887 /**
3888  * e1000_flush_desc_rings - remove all descriptors from the descriptor rings
3889  *
3890  * In i219, the descriptor rings must be emptied before resetting the HW
3891  * or before changing the device state to D3 during runtime (runtime PM).
3892  *
3893  * Failure to do this will cause the HW to enter a unit hang state which can
3894  * only be released by PCI reset on the device
3895  *
3896  */
3897 
3898 static void e1000_flush_desc_rings(struct e1000_adapter *adapter)
3899 {
3900 	u16 hang_state;
3901 	u32 fext_nvm11, tdlen;
3902 	struct e1000_hw *hw = &adapter->hw;
3903 
3904 	/* First, disable MULR fix in FEXTNVM11 */
3905 	fext_nvm11 = er32(FEXTNVM11);
3906 	fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
3907 	ew32(FEXTNVM11, fext_nvm11);
3908 	/* do nothing if we're not in faulty state, or if the queue is empty */
3909 	tdlen = er32(TDLEN(0));
3910 	pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3911 			     &hang_state);
3912 	if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen)
3913 		return;
3914 	e1000_flush_tx_ring(adapter);
3915 	/* recheck, maybe the fault is caused by the rx ring */
3916 	pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3917 			     &hang_state);
3918 	if (hang_state & FLUSH_DESC_REQUIRED)
3919 		e1000_flush_rx_ring(adapter);
3920 }
3921 
3922 /**
3923  * e1000e_systim_reset - reset the timesync registers after a hardware reset
3924  * @adapter: board private structure
3925  *
3926  * When the MAC is reset, all hardware bits for timesync will be reset to the
3927  * default values. This function will restore the settings last in place.
3928  * Since the clock SYSTIME registers are reset, we will simply restore the
3929  * cyclecounter to the kernel real clock time.
3930  **/
3931 static void e1000e_systim_reset(struct e1000_adapter *adapter)
3932 {
3933 	struct ptp_clock_info *info = &adapter->ptp_clock_info;
3934 	struct e1000_hw *hw = &adapter->hw;
3935 	unsigned long flags;
3936 	u32 timinca;
3937 	s32 ret_val;
3938 
3939 	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3940 		return;
3941 
3942 	if (info->adjfreq) {
3943 		/* restore the previous ptp frequency delta */
3944 		ret_val = info->adjfreq(info, adapter->ptp_delta);
3945 	} else {
3946 		/* set the default base frequency if no adjustment possible */
3947 		ret_val = e1000e_get_base_timinca(adapter, &timinca);
3948 		if (!ret_val)
3949 			ew32(TIMINCA, timinca);
3950 	}
3951 
3952 	if (ret_val) {
3953 		dev_warn(&adapter->pdev->dev,
3954 			 "Failed to restore TIMINCA clock rate delta: %d\n",
3955 			 ret_val);
3956 		return;
3957 	}
3958 
3959 	/* reset the systim ns time counter */
3960 	spin_lock_irqsave(&adapter->systim_lock, flags);
3961 	timecounter_init(&adapter->tc, &adapter->cc,
3962 			 ktime_to_ns(ktime_get_real()));
3963 	spin_unlock_irqrestore(&adapter->systim_lock, flags);
3964 
3965 	/* restore the previous hwtstamp configuration settings */
3966 	e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config);
3967 }
3968 
3969 /**
3970  * e1000e_reset - bring the hardware into a known good state
3971  *
3972  * This function boots the hardware and enables some settings that
3973  * require a configuration cycle of the hardware - those cannot be
3974  * set/changed during runtime. After reset the device needs to be
3975  * properly configured for Rx, Tx etc.
3976  */
3977 void e1000e_reset(struct e1000_adapter *adapter)
3978 {
3979 	struct e1000_mac_info *mac = &adapter->hw.mac;
3980 	struct e1000_fc_info *fc = &adapter->hw.fc;
3981 	struct e1000_hw *hw = &adapter->hw;
3982 	u32 tx_space, min_tx_space, min_rx_space;
3983 	u32 pba = adapter->pba;
3984 	u16 hwm;
3985 
3986 	/* reset Packet Buffer Allocation to default */
3987 	ew32(PBA, pba);
3988 
3989 	if (adapter->max_frame_size > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) {
3990 		/* To maintain wire speed transmits, the Tx FIFO should be
3991 		 * large enough to accommodate two full transmit packets,
3992 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
3993 		 * the Rx FIFO should be large enough to accommodate at least
3994 		 * one full receive packet and is similarly rounded up and
3995 		 * expressed in KB.
3996 		 */
3997 		pba = er32(PBA);
3998 		/* upper 16 bits has Tx packet buffer allocation size in KB */
3999 		tx_space = pba >> 16;
4000 		/* lower 16 bits has Rx packet buffer allocation size in KB */
4001 		pba &= 0xffff;
4002 		/* the Tx fifo also stores 16 bytes of information about the Tx
4003 		 * but don't include ethernet FCS because hardware appends it
4004 		 */
4005 		min_tx_space = (adapter->max_frame_size +
4006 				sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2;
4007 		min_tx_space = ALIGN(min_tx_space, 1024);
4008 		min_tx_space >>= 10;
4009 		/* software strips receive CRC, so leave room for it */
4010 		min_rx_space = adapter->max_frame_size;
4011 		min_rx_space = ALIGN(min_rx_space, 1024);
4012 		min_rx_space >>= 10;
4013 
4014 		/* If current Tx allocation is less than the min Tx FIFO size,
4015 		 * and the min Tx FIFO size is less than the current Rx FIFO
4016 		 * allocation, take space away from current Rx allocation
4017 		 */
4018 		if ((tx_space < min_tx_space) &&
4019 		    ((min_tx_space - tx_space) < pba)) {
4020 			pba -= min_tx_space - tx_space;
4021 
4022 			/* if short on Rx space, Rx wins and must trump Tx
4023 			 * adjustment
4024 			 */
4025 			if (pba < min_rx_space)
4026 				pba = min_rx_space;
4027 		}
4028 
4029 		ew32(PBA, pba);
4030 	}
4031 
4032 	/* flow control settings
4033 	 *
4034 	 * The high water mark must be low enough to fit one full frame
4035 	 * (or the size used for early receive) above it in the Rx FIFO.
4036 	 * Set it to the lower of:
4037 	 * - 90% of the Rx FIFO size, and
4038 	 * - the full Rx FIFO size minus one full frame
4039 	 */
4040 	if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
4041 		fc->pause_time = 0xFFFF;
4042 	else
4043 		fc->pause_time = E1000_FC_PAUSE_TIME;
4044 	fc->send_xon = true;
4045 	fc->current_mode = fc->requested_mode;
4046 
4047 	switch (hw->mac.type) {
4048 	case e1000_ich9lan:
4049 	case e1000_ich10lan:
4050 		if (adapter->netdev->mtu > ETH_DATA_LEN) {
4051 			pba = 14;
4052 			ew32(PBA, pba);
4053 			fc->high_water = 0x2800;
4054 			fc->low_water = fc->high_water - 8;
4055 			break;
4056 		}
4057 		fallthrough;
4058 	default:
4059 		hwm = min(((pba << 10) * 9 / 10),
4060 			  ((pba << 10) - adapter->max_frame_size));
4061 
4062 		fc->high_water = hwm & E1000_FCRTH_RTH;	/* 8-byte granularity */
4063 		fc->low_water = fc->high_water - 8;
4064 		break;
4065 	case e1000_pchlan:
4066 		/* Workaround PCH LOM adapter hangs with certain network
4067 		 * loads.  If hangs persist, try disabling Tx flow control.
4068 		 */
4069 		if (adapter->netdev->mtu > ETH_DATA_LEN) {
4070 			fc->high_water = 0x3500;
4071 			fc->low_water = 0x1500;
4072 		} else {
4073 			fc->high_water = 0x5000;
4074 			fc->low_water = 0x3000;
4075 		}
4076 		fc->refresh_time = 0x1000;
4077 		break;
4078 	case e1000_pch2lan:
4079 	case e1000_pch_lpt:
4080 	case e1000_pch_spt:
4081 	case e1000_pch_cnp:
4082 		fallthrough;
4083 	case e1000_pch_tgp:
4084 	case e1000_pch_adp:
4085 		fc->refresh_time = 0xFFFF;
4086 		fc->pause_time = 0xFFFF;
4087 
4088 		if (adapter->netdev->mtu <= ETH_DATA_LEN) {
4089 			fc->high_water = 0x05C20;
4090 			fc->low_water = 0x05048;
4091 			break;
4092 		}
4093 
4094 		pba = 14;
4095 		ew32(PBA, pba);
4096 		fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH;
4097 		fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL;
4098 		break;
4099 	}
4100 
4101 	/* Alignment of Tx data is on an arbitrary byte boundary with the
4102 	 * maximum size per Tx descriptor limited only to the transmit
4103 	 * allocation of the packet buffer minus 96 bytes with an upper
4104 	 * limit of 24KB due to receive synchronization limitations.
4105 	 */
4106 	adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
4107 				       24 << 10);
4108 
4109 	/* Disable Adaptive Interrupt Moderation if 2 full packets cannot
4110 	 * fit in receive buffer.
4111 	 */
4112 	if (adapter->itr_setting & 0x3) {
4113 		if ((adapter->max_frame_size * 2) > (pba << 10)) {
4114 			if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
4115 				dev_info(&adapter->pdev->dev,
4116 					 "Interrupt Throttle Rate off\n");
4117 				adapter->flags2 |= FLAG2_DISABLE_AIM;
4118 				e1000e_write_itr(adapter, 0);
4119 			}
4120 		} else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
4121 			dev_info(&adapter->pdev->dev,
4122 				 "Interrupt Throttle Rate on\n");
4123 			adapter->flags2 &= ~FLAG2_DISABLE_AIM;
4124 			adapter->itr = 20000;
4125 			e1000e_write_itr(adapter, adapter->itr);
4126 		}
4127 	}
4128 
4129 	if (hw->mac.type >= e1000_pch_spt)
4130 		e1000_flush_desc_rings(adapter);
4131 	/* Allow time for pending master requests to run */
4132 	mac->ops.reset_hw(hw);
4133 
4134 	/* For parts with AMT enabled, let the firmware know
4135 	 * that the network interface is in control
4136 	 */
4137 	if (adapter->flags & FLAG_HAS_AMT)
4138 		e1000e_get_hw_control(adapter);
4139 
4140 	ew32(WUC, 0);
4141 
4142 	if (mac->ops.init_hw(hw))
4143 		e_err("Hardware Error\n");
4144 
4145 	e1000_update_mng_vlan(adapter);
4146 
4147 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
4148 	ew32(VET, ETH_P_8021Q);
4149 
4150 	e1000e_reset_adaptive(hw);
4151 
4152 	/* restore systim and hwtstamp settings */
4153 	e1000e_systim_reset(adapter);
4154 
4155 	/* Set EEE advertisement as appropriate */
4156 	if (adapter->flags2 & FLAG2_HAS_EEE) {
4157 		s32 ret_val;
4158 		u16 adv_addr;
4159 
4160 		switch (hw->phy.type) {
4161 		case e1000_phy_82579:
4162 			adv_addr = I82579_EEE_ADVERTISEMENT;
4163 			break;
4164 		case e1000_phy_i217:
4165 			adv_addr = I217_EEE_ADVERTISEMENT;
4166 			break;
4167 		default:
4168 			dev_err(&adapter->pdev->dev,
4169 				"Invalid PHY type setting EEE advertisement\n");
4170 			return;
4171 		}
4172 
4173 		ret_val = hw->phy.ops.acquire(hw);
4174 		if (ret_val) {
4175 			dev_err(&adapter->pdev->dev,
4176 				"EEE advertisement - unable to acquire PHY\n");
4177 			return;
4178 		}
4179 
4180 		e1000_write_emi_reg_locked(hw, adv_addr,
4181 					   hw->dev_spec.ich8lan.eee_disable ?
4182 					   0 : adapter->eee_advert);
4183 
4184 		hw->phy.ops.release(hw);
4185 	}
4186 
4187 	if (!netif_running(adapter->netdev) &&
4188 	    !test_bit(__E1000_TESTING, &adapter->state))
4189 		e1000_power_down_phy(adapter);
4190 
4191 	e1000_get_phy_info(hw);
4192 
4193 	if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
4194 	    !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
4195 		u16 phy_data = 0;
4196 		/* speed up time to link by disabling smart power down, ignore
4197 		 * the return value of this function because there is nothing
4198 		 * different we would do if it failed
4199 		 */
4200 		e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
4201 		phy_data &= ~IGP02E1000_PM_SPD;
4202 		e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
4203 	}
4204 	if (hw->mac.type >= e1000_pch_spt && adapter->int_mode == 0) {
4205 		u32 reg;
4206 
4207 		/* Fextnvm7 @ 0xe4[2] = 1 */
4208 		reg = er32(FEXTNVM7);
4209 		reg |= E1000_FEXTNVM7_SIDE_CLK_UNGATE;
4210 		ew32(FEXTNVM7, reg);
4211 		/* Fextnvm9 @ 0x5bb4[13:12] = 11 */
4212 		reg = er32(FEXTNVM9);
4213 		reg |= E1000_FEXTNVM9_IOSFSB_CLKGATE_DIS |
4214 		       E1000_FEXTNVM9_IOSFSB_CLKREQ_DIS;
4215 		ew32(FEXTNVM9, reg);
4216 	}
4217 
4218 }
4219 
4220 /**
4221  * e1000e_trigger_lsc - trigger an LSC interrupt
4222  * @adapter:
4223  *
4224  * Fire a link status change interrupt to start the watchdog.
4225  **/
4226 static void e1000e_trigger_lsc(struct e1000_adapter *adapter)
4227 {
4228 	struct e1000_hw *hw = &adapter->hw;
4229 
4230 	if (adapter->msix_entries)
4231 		ew32(ICS, E1000_ICS_LSC | E1000_ICS_OTHER);
4232 	else
4233 		ew32(ICS, E1000_ICS_LSC);
4234 }
4235 
4236 void e1000e_up(struct e1000_adapter *adapter)
4237 {
4238 	/* hardware has been reset, we need to reload some things */
4239 	e1000_configure(adapter);
4240 
4241 	clear_bit(__E1000_DOWN, &adapter->state);
4242 
4243 	if (adapter->msix_entries)
4244 		e1000_configure_msix(adapter);
4245 	e1000_irq_enable(adapter);
4246 
4247 	/* Tx queue started by watchdog timer when link is up */
4248 
4249 	e1000e_trigger_lsc(adapter);
4250 }
4251 
4252 static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
4253 {
4254 	struct e1000_hw *hw = &adapter->hw;
4255 
4256 	if (!(adapter->flags2 & FLAG2_DMA_BURST))
4257 		return;
4258 
4259 	/* flush pending descriptor writebacks to memory */
4260 	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4261 	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4262 
4263 	/* execute the writes immediately */
4264 	e1e_flush();
4265 
4266 	/* due to rare timing issues, write to TIDV/RDTR again to ensure the
4267 	 * write is successful
4268 	 */
4269 	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4270 	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4271 
4272 	/* execute the writes immediately */
4273 	e1e_flush();
4274 }
4275 
4276 static void e1000e_update_stats(struct e1000_adapter *adapter);
4277 
4278 /**
4279  * e1000e_down - quiesce the device and optionally reset the hardware
4280  * @adapter: board private structure
4281  * @reset: boolean flag to reset the hardware or not
4282  */
4283 void e1000e_down(struct e1000_adapter *adapter, bool reset)
4284 {
4285 	struct net_device *netdev = adapter->netdev;
4286 	struct e1000_hw *hw = &adapter->hw;
4287 	u32 tctl, rctl;
4288 
4289 	/* signal that we're down so the interrupt handler does not
4290 	 * reschedule our watchdog timer
4291 	 */
4292 	set_bit(__E1000_DOWN, &adapter->state);
4293 
4294 	netif_carrier_off(netdev);
4295 
4296 	/* disable receives in the hardware */
4297 	rctl = er32(RCTL);
4298 	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
4299 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
4300 	/* flush and sleep below */
4301 
4302 	netif_stop_queue(netdev);
4303 
4304 	/* disable transmits in the hardware */
4305 	tctl = er32(TCTL);
4306 	tctl &= ~E1000_TCTL_EN;
4307 	ew32(TCTL, tctl);
4308 
4309 	/* flush both disables and wait for them to finish */
4310 	e1e_flush();
4311 	usleep_range(10000, 11000);
4312 
4313 	e1000_irq_disable(adapter);
4314 
4315 	napi_synchronize(&adapter->napi);
4316 
4317 	del_timer_sync(&adapter->watchdog_timer);
4318 	del_timer_sync(&adapter->phy_info_timer);
4319 
4320 	spin_lock(&adapter->stats64_lock);
4321 	e1000e_update_stats(adapter);
4322 	spin_unlock(&adapter->stats64_lock);
4323 
4324 	e1000e_flush_descriptors(adapter);
4325 
4326 	adapter->link_speed = 0;
4327 	adapter->link_duplex = 0;
4328 
4329 	/* Disable Si errata workaround on PCHx for jumbo frame flow */
4330 	if ((hw->mac.type >= e1000_pch2lan) &&
4331 	    (adapter->netdev->mtu > ETH_DATA_LEN) &&
4332 	    e1000_lv_jumbo_workaround_ich8lan(hw, false))
4333 		e_dbg("failed to disable jumbo frame workaround mode\n");
4334 
4335 	if (!pci_channel_offline(adapter->pdev)) {
4336 		if (reset)
4337 			e1000e_reset(adapter);
4338 		else if (hw->mac.type >= e1000_pch_spt)
4339 			e1000_flush_desc_rings(adapter);
4340 	}
4341 	e1000_clean_tx_ring(adapter->tx_ring);
4342 	e1000_clean_rx_ring(adapter->rx_ring);
4343 }
4344 
4345 void e1000e_reinit_locked(struct e1000_adapter *adapter)
4346 {
4347 	might_sleep();
4348 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4349 		usleep_range(1000, 1100);
4350 	e1000e_down(adapter, true);
4351 	e1000e_up(adapter);
4352 	clear_bit(__E1000_RESETTING, &adapter->state);
4353 }
4354 
4355 /**
4356  * e1000e_sanitize_systim - sanitize raw cycle counter reads
4357  * @hw: pointer to the HW structure
4358  * @systim: PHC time value read, sanitized and returned
4359  * @sts: structure to hold system time before and after reading SYSTIML,
4360  * may be NULL
4361  *
4362  * Errata for 82574/82583 possible bad bits read from SYSTIMH/L:
4363  * check to see that the time is incrementing at a reasonable
4364  * rate and is a multiple of incvalue.
4365  **/
4366 static u64 e1000e_sanitize_systim(struct e1000_hw *hw, u64 systim,
4367 				  struct ptp_system_timestamp *sts)
4368 {
4369 	u64 time_delta, rem, temp;
4370 	u64 systim_next;
4371 	u32 incvalue;
4372 	int i;
4373 
4374 	incvalue = er32(TIMINCA) & E1000_TIMINCA_INCVALUE_MASK;
4375 	for (i = 0; i < E1000_MAX_82574_SYSTIM_REREADS; i++) {
4376 		/* latch SYSTIMH on read of SYSTIML */
4377 		ptp_read_system_prets(sts);
4378 		systim_next = (u64)er32(SYSTIML);
4379 		ptp_read_system_postts(sts);
4380 		systim_next |= (u64)er32(SYSTIMH) << 32;
4381 
4382 		time_delta = systim_next - systim;
4383 		temp = time_delta;
4384 		/* VMWare users have seen incvalue of zero, don't div / 0 */
4385 		rem = incvalue ? do_div(temp, incvalue) : (time_delta != 0);
4386 
4387 		systim = systim_next;
4388 
4389 		if ((time_delta < E1000_82574_SYSTIM_EPSILON) && (rem == 0))
4390 			break;
4391 	}
4392 
4393 	return systim;
4394 }
4395 
4396 /**
4397  * e1000e_read_systim - read SYSTIM register
4398  * @adapter: board private structure
4399  * @sts: structure which will contain system time before and after reading
4400  * SYSTIML, may be NULL
4401  **/
4402 u64 e1000e_read_systim(struct e1000_adapter *adapter,
4403 		       struct ptp_system_timestamp *sts)
4404 {
4405 	struct e1000_hw *hw = &adapter->hw;
4406 	u32 systimel, systimel_2, systimeh;
4407 	u64 systim;
4408 	/* SYSTIMH latching upon SYSTIML read does not work well.
4409 	 * This means that if SYSTIML overflows after we read it but before
4410 	 * we read SYSTIMH, the value of SYSTIMH has been incremented and we
4411 	 * will experience a huge non linear increment in the systime value
4412 	 * to fix that we test for overflow and if true, we re-read systime.
4413 	 */
4414 	ptp_read_system_prets(sts);
4415 	systimel = er32(SYSTIML);
4416 	ptp_read_system_postts(sts);
4417 	systimeh = er32(SYSTIMH);
4418 	/* Is systimel is so large that overflow is possible? */
4419 	if (systimel >= (u32)0xffffffff - E1000_TIMINCA_INCVALUE_MASK) {
4420 		ptp_read_system_prets(sts);
4421 		systimel_2 = er32(SYSTIML);
4422 		ptp_read_system_postts(sts);
4423 		if (systimel > systimel_2) {
4424 			/* There was an overflow, read again SYSTIMH, and use
4425 			 * systimel_2
4426 			 */
4427 			systimeh = er32(SYSTIMH);
4428 			systimel = systimel_2;
4429 		}
4430 	}
4431 	systim = (u64)systimel;
4432 	systim |= (u64)systimeh << 32;
4433 
4434 	if (adapter->flags2 & FLAG2_CHECK_SYSTIM_OVERFLOW)
4435 		systim = e1000e_sanitize_systim(hw, systim, sts);
4436 
4437 	return systim;
4438 }
4439 
4440 /**
4441  * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4442  * @cc: cyclecounter structure
4443  **/
4444 static u64 e1000e_cyclecounter_read(const struct cyclecounter *cc)
4445 {
4446 	struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter,
4447 						     cc);
4448 
4449 	return e1000e_read_systim(adapter, NULL);
4450 }
4451 
4452 /**
4453  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4454  * @adapter: board private structure to initialize
4455  *
4456  * e1000_sw_init initializes the Adapter private data structure.
4457  * Fields are initialized based on PCI device information and
4458  * OS network device settings (MTU size).
4459  **/
4460 static int e1000_sw_init(struct e1000_adapter *adapter)
4461 {
4462 	struct net_device *netdev = adapter->netdev;
4463 
4464 	adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
4465 	adapter->rx_ps_bsize0 = 128;
4466 	adapter->max_frame_size = netdev->mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
4467 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4468 	adapter->tx_ring_count = E1000_DEFAULT_TXD;
4469 	adapter->rx_ring_count = E1000_DEFAULT_RXD;
4470 
4471 	spin_lock_init(&adapter->stats64_lock);
4472 
4473 	e1000e_set_interrupt_capability(adapter);
4474 
4475 	if (e1000_alloc_queues(adapter))
4476 		return -ENOMEM;
4477 
4478 	/* Setup hardware time stamping cyclecounter */
4479 	if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
4480 		adapter->cc.read = e1000e_cyclecounter_read;
4481 		adapter->cc.mask = CYCLECOUNTER_MASK(64);
4482 		adapter->cc.mult = 1;
4483 		/* cc.shift set in e1000e_get_base_tininca() */
4484 
4485 		spin_lock_init(&adapter->systim_lock);
4486 		INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work);
4487 	}
4488 
4489 	/* Explicitly disable IRQ since the NIC can be in any state. */
4490 	e1000_irq_disable(adapter);
4491 
4492 	set_bit(__E1000_DOWN, &adapter->state);
4493 	return 0;
4494 }
4495 
4496 /**
4497  * e1000_intr_msi_test - Interrupt Handler
4498  * @irq: interrupt number
4499  * @data: pointer to a network interface device structure
4500  **/
4501 static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data)
4502 {
4503 	struct net_device *netdev = data;
4504 	struct e1000_adapter *adapter = netdev_priv(netdev);
4505 	struct e1000_hw *hw = &adapter->hw;
4506 	u32 icr = er32(ICR);
4507 
4508 	e_dbg("icr is %08X\n", icr);
4509 	if (icr & E1000_ICR_RXSEQ) {
4510 		adapter->flags &= ~FLAG_MSI_TEST_FAILED;
4511 		/* Force memory writes to complete before acknowledging the
4512 		 * interrupt is handled.
4513 		 */
4514 		wmb();
4515 	}
4516 
4517 	return IRQ_HANDLED;
4518 }
4519 
4520 /**
4521  * e1000_test_msi_interrupt - Returns 0 for successful test
4522  * @adapter: board private struct
4523  *
4524  * code flow taken from tg3.c
4525  **/
4526 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
4527 {
4528 	struct net_device *netdev = adapter->netdev;
4529 	struct e1000_hw *hw = &adapter->hw;
4530 	int err;
4531 
4532 	/* poll_enable hasn't been called yet, so don't need disable */
4533 	/* clear any pending events */
4534 	er32(ICR);
4535 
4536 	/* free the real vector and request a test handler */
4537 	e1000_free_irq(adapter);
4538 	e1000e_reset_interrupt_capability(adapter);
4539 
4540 	/* Assume that the test fails, if it succeeds then the test
4541 	 * MSI irq handler will unset this flag
4542 	 */
4543 	adapter->flags |= FLAG_MSI_TEST_FAILED;
4544 
4545 	err = pci_enable_msi(adapter->pdev);
4546 	if (err)
4547 		goto msi_test_failed;
4548 
4549 	err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
4550 			  netdev->name, netdev);
4551 	if (err) {
4552 		pci_disable_msi(adapter->pdev);
4553 		goto msi_test_failed;
4554 	}
4555 
4556 	/* Force memory writes to complete before enabling and firing an
4557 	 * interrupt.
4558 	 */
4559 	wmb();
4560 
4561 	e1000_irq_enable(adapter);
4562 
4563 	/* fire an unusual interrupt on the test handler */
4564 	ew32(ICS, E1000_ICS_RXSEQ);
4565 	e1e_flush();
4566 	msleep(100);
4567 
4568 	e1000_irq_disable(adapter);
4569 
4570 	rmb();			/* read flags after interrupt has been fired */
4571 
4572 	if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4573 		adapter->int_mode = E1000E_INT_MODE_LEGACY;
4574 		e_info("MSI interrupt test failed, using legacy interrupt.\n");
4575 	} else {
4576 		e_dbg("MSI interrupt test succeeded!\n");
4577 	}
4578 
4579 	free_irq(adapter->pdev->irq, netdev);
4580 	pci_disable_msi(adapter->pdev);
4581 
4582 msi_test_failed:
4583 	e1000e_set_interrupt_capability(adapter);
4584 	return e1000_request_irq(adapter);
4585 }
4586 
4587 /**
4588  * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4589  * @adapter: board private struct
4590  *
4591  * code flow taken from tg3.c, called with e1000 interrupts disabled.
4592  **/
4593 static int e1000_test_msi(struct e1000_adapter *adapter)
4594 {
4595 	int err;
4596 	u16 pci_cmd;
4597 
4598 	if (!(adapter->flags & FLAG_MSI_ENABLED))
4599 		return 0;
4600 
4601 	/* disable SERR in case the MSI write causes a master abort */
4602 	pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4603 	if (pci_cmd & PCI_COMMAND_SERR)
4604 		pci_write_config_word(adapter->pdev, PCI_COMMAND,
4605 				      pci_cmd & ~PCI_COMMAND_SERR);
4606 
4607 	err = e1000_test_msi_interrupt(adapter);
4608 
4609 	/* re-enable SERR */
4610 	if (pci_cmd & PCI_COMMAND_SERR) {
4611 		pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4612 		pci_cmd |= PCI_COMMAND_SERR;
4613 		pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
4614 	}
4615 
4616 	return err;
4617 }
4618 
4619 /**
4620  * e1000e_open - Called when a network interface is made active
4621  * @netdev: network interface device structure
4622  *
4623  * Returns 0 on success, negative value on failure
4624  *
4625  * The open entry point is called when a network interface is made
4626  * active by the system (IFF_UP).  At this point all resources needed
4627  * for transmit and receive operations are allocated, the interrupt
4628  * handler is registered with the OS, the watchdog timer is started,
4629  * and the stack is notified that the interface is ready.
4630  **/
4631 int e1000e_open(struct net_device *netdev)
4632 {
4633 	struct e1000_adapter *adapter = netdev_priv(netdev);
4634 	struct e1000_hw *hw = &adapter->hw;
4635 	struct pci_dev *pdev = adapter->pdev;
4636 	int err;
4637 
4638 	/* disallow open during test */
4639 	if (test_bit(__E1000_TESTING, &adapter->state))
4640 		return -EBUSY;
4641 
4642 	pm_runtime_get_sync(&pdev->dev);
4643 
4644 	netif_carrier_off(netdev);
4645 	netif_stop_queue(netdev);
4646 
4647 	/* allocate transmit descriptors */
4648 	err = e1000e_setup_tx_resources(adapter->tx_ring);
4649 	if (err)
4650 		goto err_setup_tx;
4651 
4652 	/* allocate receive descriptors */
4653 	err = e1000e_setup_rx_resources(adapter->rx_ring);
4654 	if (err)
4655 		goto err_setup_rx;
4656 
4657 	/* If AMT is enabled, let the firmware know that the network
4658 	 * interface is now open and reset the part to a known state.
4659 	 */
4660 	if (adapter->flags & FLAG_HAS_AMT) {
4661 		e1000e_get_hw_control(adapter);
4662 		e1000e_reset(adapter);
4663 	}
4664 
4665 	e1000e_power_up_phy(adapter);
4666 
4667 	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4668 	if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
4669 		e1000_update_mng_vlan(adapter);
4670 
4671 	/* DMA latency requirement to workaround jumbo issue */
4672 	cpu_latency_qos_add_request(&adapter->pm_qos_req, PM_QOS_DEFAULT_VALUE);
4673 
4674 	/* before we allocate an interrupt, we must be ready to handle it.
4675 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4676 	 * as soon as we call pci_request_irq, so we have to setup our
4677 	 * clean_rx handler before we do so.
4678 	 */
4679 	e1000_configure(adapter);
4680 
4681 	err = e1000_request_irq(adapter);
4682 	if (err)
4683 		goto err_req_irq;
4684 
4685 	/* Work around PCIe errata with MSI interrupts causing some chipsets to
4686 	 * ignore e1000e MSI messages, which means we need to test our MSI
4687 	 * interrupt now
4688 	 */
4689 	if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
4690 		err = e1000_test_msi(adapter);
4691 		if (err) {
4692 			e_err("Interrupt allocation failed\n");
4693 			goto err_req_irq;
4694 		}
4695 	}
4696 
4697 	/* From here on the code is the same as e1000e_up() */
4698 	clear_bit(__E1000_DOWN, &adapter->state);
4699 
4700 	napi_enable(&adapter->napi);
4701 
4702 	e1000_irq_enable(adapter);
4703 
4704 	adapter->tx_hang_recheck = false;
4705 
4706 	hw->mac.get_link_status = true;
4707 	pm_runtime_put(&pdev->dev);
4708 
4709 	e1000e_trigger_lsc(adapter);
4710 
4711 	return 0;
4712 
4713 err_req_irq:
4714 	cpu_latency_qos_remove_request(&adapter->pm_qos_req);
4715 	e1000e_release_hw_control(adapter);
4716 	e1000_power_down_phy(adapter);
4717 	e1000e_free_rx_resources(adapter->rx_ring);
4718 err_setup_rx:
4719 	e1000e_free_tx_resources(adapter->tx_ring);
4720 err_setup_tx:
4721 	e1000e_reset(adapter);
4722 	pm_runtime_put_sync(&pdev->dev);
4723 
4724 	return err;
4725 }
4726 
4727 /**
4728  * e1000e_close - Disables a network interface
4729  * @netdev: network interface device structure
4730  *
4731  * Returns 0, this is not allowed to fail
4732  *
4733  * The close entry point is called when an interface is de-activated
4734  * by the OS.  The hardware is still under the drivers control, but
4735  * needs to be disabled.  A global MAC reset is issued to stop the
4736  * hardware, and all transmit and receive resources are freed.
4737  **/
4738 int e1000e_close(struct net_device *netdev)
4739 {
4740 	struct e1000_adapter *adapter = netdev_priv(netdev);
4741 	struct pci_dev *pdev = adapter->pdev;
4742 	int count = E1000_CHECK_RESET_COUNT;
4743 
4744 	while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
4745 		usleep_range(10000, 11000);
4746 
4747 	WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4748 
4749 	pm_runtime_get_sync(&pdev->dev);
4750 
4751 	if (netif_device_present(netdev)) {
4752 		e1000e_down(adapter, true);
4753 		e1000_free_irq(adapter);
4754 
4755 		/* Link status message must follow this format */
4756 		netdev_info(netdev, "NIC Link is Down\n");
4757 	}
4758 
4759 	napi_disable(&adapter->napi);
4760 
4761 	e1000e_free_tx_resources(adapter->tx_ring);
4762 	e1000e_free_rx_resources(adapter->rx_ring);
4763 
4764 	/* kill manageability vlan ID if supported, but not if a vlan with
4765 	 * the same ID is registered on the host OS (let 8021q kill it)
4766 	 */
4767 	if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
4768 		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
4769 				       adapter->mng_vlan_id);
4770 
4771 	/* If AMT is enabled, let the firmware know that the network
4772 	 * interface is now closed
4773 	 */
4774 	if ((adapter->flags & FLAG_HAS_AMT) &&
4775 	    !test_bit(__E1000_TESTING, &adapter->state))
4776 		e1000e_release_hw_control(adapter);
4777 
4778 	cpu_latency_qos_remove_request(&adapter->pm_qos_req);
4779 
4780 	pm_runtime_put_sync(&pdev->dev);
4781 
4782 	return 0;
4783 }
4784 
4785 /**
4786  * e1000_set_mac - Change the Ethernet Address of the NIC
4787  * @netdev: network interface device structure
4788  * @p: pointer to an address structure
4789  *
4790  * Returns 0 on success, negative on failure
4791  **/
4792 static int e1000_set_mac(struct net_device *netdev, void *p)
4793 {
4794 	struct e1000_adapter *adapter = netdev_priv(netdev);
4795 	struct e1000_hw *hw = &adapter->hw;
4796 	struct sockaddr *addr = p;
4797 
4798 	if (!is_valid_ether_addr(addr->sa_data))
4799 		return -EADDRNOTAVAIL;
4800 
4801 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4802 	memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4803 
4804 	hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4805 
4806 	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4807 		/* activate the work around */
4808 		e1000e_set_laa_state_82571(&adapter->hw, 1);
4809 
4810 		/* Hold a copy of the LAA in RAR[14] This is done so that
4811 		 * between the time RAR[0] gets clobbered  and the time it
4812 		 * gets fixed (in e1000_watchdog), the actual LAA is in one
4813 		 * of the RARs and no incoming packets directed to this port
4814 		 * are dropped. Eventually the LAA will be in RAR[0] and
4815 		 * RAR[14]
4816 		 */
4817 		hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4818 				    adapter->hw.mac.rar_entry_count - 1);
4819 	}
4820 
4821 	return 0;
4822 }
4823 
4824 /**
4825  * e1000e_update_phy_task - work thread to update phy
4826  * @work: pointer to our work struct
4827  *
4828  * this worker thread exists because we must acquire a
4829  * semaphore to read the phy, which we could msleep while
4830  * waiting for it, and we can't msleep in a timer.
4831  **/
4832 static void e1000e_update_phy_task(struct work_struct *work)
4833 {
4834 	struct e1000_adapter *adapter = container_of(work,
4835 						     struct e1000_adapter,
4836 						     update_phy_task);
4837 	struct e1000_hw *hw = &adapter->hw;
4838 
4839 	if (test_bit(__E1000_DOWN, &adapter->state))
4840 		return;
4841 
4842 	e1000_get_phy_info(hw);
4843 
4844 	/* Enable EEE on 82579 after link up */
4845 	if (hw->phy.type >= e1000_phy_82579)
4846 		e1000_set_eee_pchlan(hw);
4847 }
4848 
4849 /**
4850  * e1000_update_phy_info - timre call-back to update PHY info
4851  * @data: pointer to adapter cast into an unsigned long
4852  *
4853  * Need to wait a few seconds after link up to get diagnostic information from
4854  * the phy
4855  **/
4856 static void e1000_update_phy_info(struct timer_list *t)
4857 {
4858 	struct e1000_adapter *adapter = from_timer(adapter, t, phy_info_timer);
4859 
4860 	if (test_bit(__E1000_DOWN, &adapter->state))
4861 		return;
4862 
4863 	schedule_work(&adapter->update_phy_task);
4864 }
4865 
4866 /**
4867  * e1000e_update_phy_stats - Update the PHY statistics counters
4868  * @adapter: board private structure
4869  *
4870  * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4871  **/
4872 static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4873 {
4874 	struct e1000_hw *hw = &adapter->hw;
4875 	s32 ret_val;
4876 	u16 phy_data;
4877 
4878 	ret_val = hw->phy.ops.acquire(hw);
4879 	if (ret_val)
4880 		return;
4881 
4882 	/* A page set is expensive so check if already on desired page.
4883 	 * If not, set to the page with the PHY status registers.
4884 	 */
4885 	hw->phy.addr = 1;
4886 	ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4887 					   &phy_data);
4888 	if (ret_val)
4889 		goto release;
4890 	if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4891 		ret_val = hw->phy.ops.set_page(hw,
4892 					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
4893 		if (ret_val)
4894 			goto release;
4895 	}
4896 
4897 	/* Single Collision Count */
4898 	hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4899 	ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4900 	if (!ret_val)
4901 		adapter->stats.scc += phy_data;
4902 
4903 	/* Excessive Collision Count */
4904 	hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4905 	ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4906 	if (!ret_val)
4907 		adapter->stats.ecol += phy_data;
4908 
4909 	/* Multiple Collision Count */
4910 	hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4911 	ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4912 	if (!ret_val)
4913 		adapter->stats.mcc += phy_data;
4914 
4915 	/* Late Collision Count */
4916 	hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4917 	ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4918 	if (!ret_val)
4919 		adapter->stats.latecol += phy_data;
4920 
4921 	/* Collision Count - also used for adaptive IFS */
4922 	hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4923 	ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4924 	if (!ret_val)
4925 		hw->mac.collision_delta = phy_data;
4926 
4927 	/* Defer Count */
4928 	hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4929 	ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4930 	if (!ret_val)
4931 		adapter->stats.dc += phy_data;
4932 
4933 	/* Transmit with no CRS */
4934 	hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4935 	ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4936 	if (!ret_val)
4937 		adapter->stats.tncrs += phy_data;
4938 
4939 release:
4940 	hw->phy.ops.release(hw);
4941 }
4942 
4943 /**
4944  * e1000e_update_stats - Update the board statistics counters
4945  * @adapter: board private structure
4946  **/
4947 static void e1000e_update_stats(struct e1000_adapter *adapter)
4948 {
4949 	struct net_device *netdev = adapter->netdev;
4950 	struct e1000_hw *hw = &adapter->hw;
4951 	struct pci_dev *pdev = adapter->pdev;
4952 
4953 	/* Prevent stats update while adapter is being reset, or if the pci
4954 	 * connection is down.
4955 	 */
4956 	if (adapter->link_speed == 0)
4957 		return;
4958 	if (pci_channel_offline(pdev))
4959 		return;
4960 
4961 	adapter->stats.crcerrs += er32(CRCERRS);
4962 	adapter->stats.gprc += er32(GPRC);
4963 	adapter->stats.gorc += er32(GORCL);
4964 	er32(GORCH);		/* Clear gorc */
4965 	adapter->stats.bprc += er32(BPRC);
4966 	adapter->stats.mprc += er32(MPRC);
4967 	adapter->stats.roc += er32(ROC);
4968 
4969 	adapter->stats.mpc += er32(MPC);
4970 
4971 	/* Half-duplex statistics */
4972 	if (adapter->link_duplex == HALF_DUPLEX) {
4973 		if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4974 			e1000e_update_phy_stats(adapter);
4975 		} else {
4976 			adapter->stats.scc += er32(SCC);
4977 			adapter->stats.ecol += er32(ECOL);
4978 			adapter->stats.mcc += er32(MCC);
4979 			adapter->stats.latecol += er32(LATECOL);
4980 			adapter->stats.dc += er32(DC);
4981 
4982 			hw->mac.collision_delta = er32(COLC);
4983 
4984 			if ((hw->mac.type != e1000_82574) &&
4985 			    (hw->mac.type != e1000_82583))
4986 				adapter->stats.tncrs += er32(TNCRS);
4987 		}
4988 		adapter->stats.colc += hw->mac.collision_delta;
4989 	}
4990 
4991 	adapter->stats.xonrxc += er32(XONRXC);
4992 	adapter->stats.xontxc += er32(XONTXC);
4993 	adapter->stats.xoffrxc += er32(XOFFRXC);
4994 	adapter->stats.xofftxc += er32(XOFFTXC);
4995 	adapter->stats.gptc += er32(GPTC);
4996 	adapter->stats.gotc += er32(GOTCL);
4997 	er32(GOTCH);		/* Clear gotc */
4998 	adapter->stats.rnbc += er32(RNBC);
4999 	adapter->stats.ruc += er32(RUC);
5000 
5001 	adapter->stats.mptc += er32(MPTC);
5002 	adapter->stats.bptc += er32(BPTC);
5003 
5004 	/* used for adaptive IFS */
5005 
5006 	hw->mac.tx_packet_delta = er32(TPT);
5007 	adapter->stats.tpt += hw->mac.tx_packet_delta;
5008 
5009 	adapter->stats.algnerrc += er32(ALGNERRC);
5010 	adapter->stats.rxerrc += er32(RXERRC);
5011 	adapter->stats.cexterr += er32(CEXTERR);
5012 	adapter->stats.tsctc += er32(TSCTC);
5013 	adapter->stats.tsctfc += er32(TSCTFC);
5014 
5015 	/* Fill out the OS statistics structure */
5016 	netdev->stats.multicast = adapter->stats.mprc;
5017 	netdev->stats.collisions = adapter->stats.colc;
5018 
5019 	/* Rx Errors */
5020 
5021 	/* RLEC on some newer hardware can be incorrect so build
5022 	 * our own version based on RUC and ROC
5023 	 */
5024 	netdev->stats.rx_errors = adapter->stats.rxerrc +
5025 	    adapter->stats.crcerrs + adapter->stats.algnerrc +
5026 	    adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5027 	netdev->stats.rx_length_errors = adapter->stats.ruc +
5028 	    adapter->stats.roc;
5029 	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
5030 	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
5031 	netdev->stats.rx_missed_errors = adapter->stats.mpc;
5032 
5033 	/* Tx Errors */
5034 	netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol;
5035 	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
5036 	netdev->stats.tx_window_errors = adapter->stats.latecol;
5037 	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
5038 
5039 	/* Tx Dropped needs to be maintained elsewhere */
5040 
5041 	/* Management Stats */
5042 	adapter->stats.mgptc += er32(MGTPTC);
5043 	adapter->stats.mgprc += er32(MGTPRC);
5044 	adapter->stats.mgpdc += er32(MGTPDC);
5045 
5046 	/* Correctable ECC Errors */
5047 	if (hw->mac.type >= e1000_pch_lpt) {
5048 		u32 pbeccsts = er32(PBECCSTS);
5049 
5050 		adapter->corr_errors +=
5051 		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
5052 		adapter->uncorr_errors +=
5053 		    (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
5054 		    E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
5055 	}
5056 }
5057 
5058 /**
5059  * e1000_phy_read_status - Update the PHY register status snapshot
5060  * @adapter: board private structure
5061  **/
5062 static void e1000_phy_read_status(struct e1000_adapter *adapter)
5063 {
5064 	struct e1000_hw *hw = &adapter->hw;
5065 	struct e1000_phy_regs *phy = &adapter->phy_regs;
5066 
5067 	if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) &&
5068 	    (er32(STATUS) & E1000_STATUS_LU) &&
5069 	    (adapter->hw.phy.media_type == e1000_media_type_copper)) {
5070 		int ret_val;
5071 
5072 		ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr);
5073 		ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr);
5074 		ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise);
5075 		ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa);
5076 		ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion);
5077 		ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000);
5078 		ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000);
5079 		ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus);
5080 		if (ret_val)
5081 			e_warn("Error reading PHY register\n");
5082 	} else {
5083 		/* Do not read PHY registers if link is not up
5084 		 * Set values to typical power-on defaults
5085 		 */
5086 		phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
5087 		phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
5088 			     BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
5089 			     BMSR_ERCAP);
5090 		phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
5091 				  ADVERTISE_ALL | ADVERTISE_CSMA);
5092 		phy->lpa = 0;
5093 		phy->expansion = EXPANSION_ENABLENPAGE;
5094 		phy->ctrl1000 = ADVERTISE_1000FULL;
5095 		phy->stat1000 = 0;
5096 		phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
5097 	}
5098 }
5099 
5100 static void e1000_print_link_info(struct e1000_adapter *adapter)
5101 {
5102 	struct e1000_hw *hw = &adapter->hw;
5103 	u32 ctrl = er32(CTRL);
5104 
5105 	/* Link status message must follow this format for user tools */
5106 	netdev_info(adapter->netdev,
5107 		    "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5108 		    adapter->link_speed,
5109 		    adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
5110 		    (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
5111 		    (ctrl & E1000_CTRL_RFCE) ? "Rx" :
5112 		    (ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
5113 }
5114 
5115 static bool e1000e_has_link(struct e1000_adapter *adapter)
5116 {
5117 	struct e1000_hw *hw = &adapter->hw;
5118 	bool link_active = false;
5119 	s32 ret_val = 0;
5120 
5121 	/* get_link_status is set on LSC (link status) interrupt or
5122 	 * Rx sequence error interrupt.  get_link_status will stay
5123 	 * true until the check_for_link establishes link
5124 	 * for copper adapters ONLY
5125 	 */
5126 	switch (hw->phy.media_type) {
5127 	case e1000_media_type_copper:
5128 		if (hw->mac.get_link_status) {
5129 			ret_val = hw->mac.ops.check_for_link(hw);
5130 			link_active = !hw->mac.get_link_status;
5131 		} else {
5132 			link_active = true;
5133 		}
5134 		break;
5135 	case e1000_media_type_fiber:
5136 		ret_val = hw->mac.ops.check_for_link(hw);
5137 		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
5138 		break;
5139 	case e1000_media_type_internal_serdes:
5140 		ret_val = hw->mac.ops.check_for_link(hw);
5141 		link_active = hw->mac.serdes_has_link;
5142 		break;
5143 	default:
5144 	case e1000_media_type_unknown:
5145 		break;
5146 	}
5147 
5148 	if ((ret_val == -E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
5149 	    (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
5150 		/* See e1000_kmrn_lock_loss_workaround_ich8lan() */
5151 		e_info("Gigabit has been disabled, downgrading speed\n");
5152 	}
5153 
5154 	return link_active;
5155 }
5156 
5157 static void e1000e_enable_receives(struct e1000_adapter *adapter)
5158 {
5159 	/* make sure the receive unit is started */
5160 	if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
5161 	    (adapter->flags & FLAG_RESTART_NOW)) {
5162 		struct e1000_hw *hw = &adapter->hw;
5163 		u32 rctl = er32(RCTL);
5164 
5165 		ew32(RCTL, rctl | E1000_RCTL_EN);
5166 		adapter->flags &= ~FLAG_RESTART_NOW;
5167 	}
5168 }
5169 
5170 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
5171 {
5172 	struct e1000_hw *hw = &adapter->hw;
5173 
5174 	/* With 82574 controllers, PHY needs to be checked periodically
5175 	 * for hung state and reset, if two calls return true
5176 	 */
5177 	if (e1000_check_phy_82574(hw))
5178 		adapter->phy_hang_count++;
5179 	else
5180 		adapter->phy_hang_count = 0;
5181 
5182 	if (adapter->phy_hang_count > 1) {
5183 		adapter->phy_hang_count = 0;
5184 		e_dbg("PHY appears hung - resetting\n");
5185 		schedule_work(&adapter->reset_task);
5186 	}
5187 }
5188 
5189 /**
5190  * e1000_watchdog - Timer Call-back
5191  * @data: pointer to adapter cast into an unsigned long
5192  **/
5193 static void e1000_watchdog(struct timer_list *t)
5194 {
5195 	struct e1000_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5196 
5197 	/* Do the rest outside of interrupt context */
5198 	schedule_work(&adapter->watchdog_task);
5199 
5200 	/* TODO: make this use queue_delayed_work() */
5201 }
5202 
5203 static void e1000_watchdog_task(struct work_struct *work)
5204 {
5205 	struct e1000_adapter *adapter = container_of(work,
5206 						     struct e1000_adapter,
5207 						     watchdog_task);
5208 	struct net_device *netdev = adapter->netdev;
5209 	struct e1000_mac_info *mac = &adapter->hw.mac;
5210 	struct e1000_phy_info *phy = &adapter->hw.phy;
5211 	struct e1000_ring *tx_ring = adapter->tx_ring;
5212 	u32 dmoff_exit_timeout = 100, tries = 0;
5213 	struct e1000_hw *hw = &adapter->hw;
5214 	u32 link, tctl, pcim_state;
5215 
5216 	if (test_bit(__E1000_DOWN, &adapter->state))
5217 		return;
5218 
5219 	link = e1000e_has_link(adapter);
5220 	if ((netif_carrier_ok(netdev)) && link) {
5221 		/* Cancel scheduled suspend requests. */
5222 		pm_runtime_resume(netdev->dev.parent);
5223 
5224 		e1000e_enable_receives(adapter);
5225 		goto link_up;
5226 	}
5227 
5228 	if ((e1000e_enable_tx_pkt_filtering(hw)) &&
5229 	    (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
5230 		e1000_update_mng_vlan(adapter);
5231 
5232 	if (link) {
5233 		if (!netif_carrier_ok(netdev)) {
5234 			bool txb2b = true;
5235 
5236 			/* Cancel scheduled suspend requests. */
5237 			pm_runtime_resume(netdev->dev.parent);
5238 
5239 			/* Checking if MAC is in DMoff state*/
5240 			pcim_state = er32(STATUS);
5241 			while (pcim_state & E1000_STATUS_PCIM_STATE) {
5242 				if (tries++ == dmoff_exit_timeout) {
5243 					e_dbg("Error in exiting dmoff\n");
5244 					break;
5245 				}
5246 				usleep_range(10000, 20000);
5247 				pcim_state = er32(STATUS);
5248 
5249 				/* Checking if MAC exited DMoff state */
5250 				if (!(pcim_state & E1000_STATUS_PCIM_STATE))
5251 					e1000_phy_hw_reset(&adapter->hw);
5252 			}
5253 
5254 			/* update snapshot of PHY registers on LSC */
5255 			e1000_phy_read_status(adapter);
5256 			mac->ops.get_link_up_info(&adapter->hw,
5257 						  &adapter->link_speed,
5258 						  &adapter->link_duplex);
5259 			e1000_print_link_info(adapter);
5260 
5261 			/* check if SmartSpeed worked */
5262 			e1000e_check_downshift(hw);
5263 			if (phy->speed_downgraded)
5264 				netdev_warn(netdev,
5265 					    "Link Speed was downgraded by SmartSpeed\n");
5266 
5267 			/* On supported PHYs, check for duplex mismatch only
5268 			 * if link has autonegotiated at 10/100 half
5269 			 */
5270 			if ((hw->phy.type == e1000_phy_igp_3 ||
5271 			     hw->phy.type == e1000_phy_bm) &&
5272 			    hw->mac.autoneg &&
5273 			    (adapter->link_speed == SPEED_10 ||
5274 			     adapter->link_speed == SPEED_100) &&
5275 			    (adapter->link_duplex == HALF_DUPLEX)) {
5276 				u16 autoneg_exp;
5277 
5278 				e1e_rphy(hw, MII_EXPANSION, &autoneg_exp);
5279 
5280 				if (!(autoneg_exp & EXPANSION_NWAY))
5281 					e_info("Autonegotiated half duplex but link partner cannot autoneg.  Try forcing full duplex if link gets many collisions.\n");
5282 			}
5283 
5284 			/* adjust timeout factor according to speed/duplex */
5285 			adapter->tx_timeout_factor = 1;
5286 			switch (adapter->link_speed) {
5287 			case SPEED_10:
5288 				txb2b = false;
5289 				adapter->tx_timeout_factor = 16;
5290 				break;
5291 			case SPEED_100:
5292 				txb2b = false;
5293 				adapter->tx_timeout_factor = 10;
5294 				break;
5295 			}
5296 
5297 			/* workaround: re-program speed mode bit after
5298 			 * link-up event
5299 			 */
5300 			if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
5301 			    !txb2b) {
5302 				u32 tarc0;
5303 
5304 				tarc0 = er32(TARC(0));
5305 				tarc0 &= ~SPEED_MODE_BIT;
5306 				ew32(TARC(0), tarc0);
5307 			}
5308 
5309 			/* disable TSO for pcie and 10/100 speeds, to avoid
5310 			 * some hardware issues
5311 			 */
5312 			if (!(adapter->flags & FLAG_TSO_FORCE)) {
5313 				switch (adapter->link_speed) {
5314 				case SPEED_10:
5315 				case SPEED_100:
5316 					e_info("10/100 speed: disabling TSO\n");
5317 					netdev->features &= ~NETIF_F_TSO;
5318 					netdev->features &= ~NETIF_F_TSO6;
5319 					break;
5320 				case SPEED_1000:
5321 					netdev->features |= NETIF_F_TSO;
5322 					netdev->features |= NETIF_F_TSO6;
5323 					break;
5324 				default:
5325 					/* oops */
5326 					break;
5327 				}
5328 				if (hw->mac.type == e1000_pch_spt) {
5329 					netdev->features &= ~NETIF_F_TSO;
5330 					netdev->features &= ~NETIF_F_TSO6;
5331 				}
5332 			}
5333 
5334 			/* enable transmits in the hardware, need to do this
5335 			 * after setting TARC(0)
5336 			 */
5337 			tctl = er32(TCTL);
5338 			tctl |= E1000_TCTL_EN;
5339 			ew32(TCTL, tctl);
5340 
5341 			/* Perform any post-link-up configuration before
5342 			 * reporting link up.
5343 			 */
5344 			if (phy->ops.cfg_on_link_up)
5345 				phy->ops.cfg_on_link_up(hw);
5346 
5347 			netif_wake_queue(netdev);
5348 			netif_carrier_on(netdev);
5349 
5350 			if (!test_bit(__E1000_DOWN, &adapter->state))
5351 				mod_timer(&adapter->phy_info_timer,
5352 					  round_jiffies(jiffies + 2 * HZ));
5353 		}
5354 	} else {
5355 		if (netif_carrier_ok(netdev)) {
5356 			adapter->link_speed = 0;
5357 			adapter->link_duplex = 0;
5358 			/* Link status message must follow this format */
5359 			netdev_info(netdev, "NIC Link is Down\n");
5360 			netif_carrier_off(netdev);
5361 			netif_stop_queue(netdev);
5362 			if (!test_bit(__E1000_DOWN, &adapter->state))
5363 				mod_timer(&adapter->phy_info_timer,
5364 					  round_jiffies(jiffies + 2 * HZ));
5365 
5366 			/* 8000ES2LAN requires a Rx packet buffer work-around
5367 			 * on link down event; reset the controller to flush
5368 			 * the Rx packet buffer.
5369 			 */
5370 			if (adapter->flags & FLAG_RX_NEEDS_RESTART)
5371 				adapter->flags |= FLAG_RESTART_NOW;
5372 			else
5373 				pm_schedule_suspend(netdev->dev.parent,
5374 						    LINK_TIMEOUT);
5375 		}
5376 	}
5377 
5378 link_up:
5379 	spin_lock(&adapter->stats64_lock);
5380 	e1000e_update_stats(adapter);
5381 
5382 	mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
5383 	adapter->tpt_old = adapter->stats.tpt;
5384 	mac->collision_delta = adapter->stats.colc - adapter->colc_old;
5385 	adapter->colc_old = adapter->stats.colc;
5386 
5387 	adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
5388 	adapter->gorc_old = adapter->stats.gorc;
5389 	adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
5390 	adapter->gotc_old = adapter->stats.gotc;
5391 	spin_unlock(&adapter->stats64_lock);
5392 
5393 	/* If the link is lost the controller stops DMA, but
5394 	 * if there is queued Tx work it cannot be done.  So
5395 	 * reset the controller to flush the Tx packet buffers.
5396 	 */
5397 	if (!netif_carrier_ok(netdev) &&
5398 	    (e1000_desc_unused(tx_ring) + 1 < tx_ring->count))
5399 		adapter->flags |= FLAG_RESTART_NOW;
5400 
5401 	/* If reset is necessary, do it outside of interrupt context. */
5402 	if (adapter->flags & FLAG_RESTART_NOW) {
5403 		schedule_work(&adapter->reset_task);
5404 		/* return immediately since reset is imminent */
5405 		return;
5406 	}
5407 
5408 	e1000e_update_adaptive(&adapter->hw);
5409 
5410 	/* Simple mode for Interrupt Throttle Rate (ITR) */
5411 	if (adapter->itr_setting == 4) {
5412 		/* Symmetric Tx/Rx gets a reduced ITR=2000;
5413 		 * Total asymmetrical Tx or Rx gets ITR=8000;
5414 		 * everyone else is between 2000-8000.
5415 		 */
5416 		u32 goc = (adapter->gotc + adapter->gorc) / 10000;
5417 		u32 dif = (adapter->gotc > adapter->gorc ?
5418 			   adapter->gotc - adapter->gorc :
5419 			   adapter->gorc - adapter->gotc) / 10000;
5420 		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
5421 
5422 		e1000e_write_itr(adapter, itr);
5423 	}
5424 
5425 	/* Cause software interrupt to ensure Rx ring is cleaned */
5426 	if (adapter->msix_entries)
5427 		ew32(ICS, adapter->rx_ring->ims_val);
5428 	else
5429 		ew32(ICS, E1000_ICS_RXDMT0);
5430 
5431 	/* flush pending descriptors to memory before detecting Tx hang */
5432 	e1000e_flush_descriptors(adapter);
5433 
5434 	/* Force detection of hung controller every watchdog period */
5435 	adapter->detect_tx_hung = true;
5436 
5437 	/* With 82571 controllers, LAA may be overwritten due to controller
5438 	 * reset from the other port. Set the appropriate LAA in RAR[0]
5439 	 */
5440 	if (e1000e_get_laa_state_82571(hw))
5441 		hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
5442 
5443 	if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
5444 		e1000e_check_82574_phy_workaround(adapter);
5445 
5446 	/* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5447 	if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) {
5448 		if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) &&
5449 		    (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) {
5450 			er32(RXSTMPH);
5451 			adapter->rx_hwtstamp_cleared++;
5452 		} else {
5453 			adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP;
5454 		}
5455 	}
5456 
5457 	/* Reset the timer */
5458 	if (!test_bit(__E1000_DOWN, &adapter->state))
5459 		mod_timer(&adapter->watchdog_timer,
5460 			  round_jiffies(jiffies + 2 * HZ));
5461 }
5462 
5463 #define E1000_TX_FLAGS_CSUM		0x00000001
5464 #define E1000_TX_FLAGS_VLAN		0x00000002
5465 #define E1000_TX_FLAGS_TSO		0x00000004
5466 #define E1000_TX_FLAGS_IPV4		0x00000008
5467 #define E1000_TX_FLAGS_NO_FCS		0x00000010
5468 #define E1000_TX_FLAGS_HWTSTAMP		0x00000020
5469 #define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
5470 #define E1000_TX_FLAGS_VLAN_SHIFT	16
5471 
5472 static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb,
5473 		     __be16 protocol)
5474 {
5475 	struct e1000_context_desc *context_desc;
5476 	struct e1000_buffer *buffer_info;
5477 	unsigned int i;
5478 	u32 cmd_length = 0;
5479 	u16 ipcse = 0, mss;
5480 	u8 ipcss, ipcso, tucss, tucso, hdr_len;
5481 	int err;
5482 
5483 	if (!skb_is_gso(skb))
5484 		return 0;
5485 
5486 	err = skb_cow_head(skb, 0);
5487 	if (err < 0)
5488 		return err;
5489 
5490 	hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5491 	mss = skb_shinfo(skb)->gso_size;
5492 	if (protocol == htons(ETH_P_IP)) {
5493 		struct iphdr *iph = ip_hdr(skb);
5494 		iph->tot_len = 0;
5495 		iph->check = 0;
5496 		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
5497 							 0, IPPROTO_TCP, 0);
5498 		cmd_length = E1000_TXD_CMD_IP;
5499 		ipcse = skb_transport_offset(skb) - 1;
5500 	} else if (skb_is_gso_v6(skb)) {
5501 		tcp_v6_gso_csum_prep(skb);
5502 		ipcse = 0;
5503 	}
5504 	ipcss = skb_network_offset(skb);
5505 	ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
5506 	tucss = skb_transport_offset(skb);
5507 	tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
5508 
5509 	cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
5510 		       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
5511 
5512 	i = tx_ring->next_to_use;
5513 	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5514 	buffer_info = &tx_ring->buffer_info[i];
5515 
5516 	context_desc->lower_setup.ip_fields.ipcss = ipcss;
5517 	context_desc->lower_setup.ip_fields.ipcso = ipcso;
5518 	context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
5519 	context_desc->upper_setup.tcp_fields.tucss = tucss;
5520 	context_desc->upper_setup.tcp_fields.tucso = tucso;
5521 	context_desc->upper_setup.tcp_fields.tucse = 0;
5522 	context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
5523 	context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
5524 	context_desc->cmd_and_length = cpu_to_le32(cmd_length);
5525 
5526 	buffer_info->time_stamp = jiffies;
5527 	buffer_info->next_to_watch = i;
5528 
5529 	i++;
5530 	if (i == tx_ring->count)
5531 		i = 0;
5532 	tx_ring->next_to_use = i;
5533 
5534 	return 1;
5535 }
5536 
5537 static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb,
5538 			  __be16 protocol)
5539 {
5540 	struct e1000_adapter *adapter = tx_ring->adapter;
5541 	struct e1000_context_desc *context_desc;
5542 	struct e1000_buffer *buffer_info;
5543 	unsigned int i;
5544 	u8 css;
5545 	u32 cmd_len = E1000_TXD_CMD_DEXT;
5546 
5547 	if (skb->ip_summed != CHECKSUM_PARTIAL)
5548 		return false;
5549 
5550 	switch (protocol) {
5551 	case cpu_to_be16(ETH_P_IP):
5552 		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
5553 			cmd_len |= E1000_TXD_CMD_TCP;
5554 		break;
5555 	case cpu_to_be16(ETH_P_IPV6):
5556 		/* XXX not handling all IPV6 headers */
5557 		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
5558 			cmd_len |= E1000_TXD_CMD_TCP;
5559 		break;
5560 	default:
5561 		if (unlikely(net_ratelimit()))
5562 			e_warn("checksum_partial proto=%x!\n",
5563 			       be16_to_cpu(protocol));
5564 		break;
5565 	}
5566 
5567 	css = skb_checksum_start_offset(skb);
5568 
5569 	i = tx_ring->next_to_use;
5570 	buffer_info = &tx_ring->buffer_info[i];
5571 	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5572 
5573 	context_desc->lower_setup.ip_config = 0;
5574 	context_desc->upper_setup.tcp_fields.tucss = css;
5575 	context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset;
5576 	context_desc->upper_setup.tcp_fields.tucse = 0;
5577 	context_desc->tcp_seg_setup.data = 0;
5578 	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
5579 
5580 	buffer_info->time_stamp = jiffies;
5581 	buffer_info->next_to_watch = i;
5582 
5583 	i++;
5584 	if (i == tx_ring->count)
5585 		i = 0;
5586 	tx_ring->next_to_use = i;
5587 
5588 	return true;
5589 }
5590 
5591 static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
5592 			unsigned int first, unsigned int max_per_txd,
5593 			unsigned int nr_frags)
5594 {
5595 	struct e1000_adapter *adapter = tx_ring->adapter;
5596 	struct pci_dev *pdev = adapter->pdev;
5597 	struct e1000_buffer *buffer_info;
5598 	unsigned int len = skb_headlen(skb);
5599 	unsigned int offset = 0, size, count = 0, i;
5600 	unsigned int f, bytecount, segs;
5601 
5602 	i = tx_ring->next_to_use;
5603 
5604 	while (len) {
5605 		buffer_info = &tx_ring->buffer_info[i];
5606 		size = min(len, max_per_txd);
5607 
5608 		buffer_info->length = size;
5609 		buffer_info->time_stamp = jiffies;
5610 		buffer_info->next_to_watch = i;
5611 		buffer_info->dma = dma_map_single(&pdev->dev,
5612 						  skb->data + offset,
5613 						  size, DMA_TO_DEVICE);
5614 		buffer_info->mapped_as_page = false;
5615 		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5616 			goto dma_error;
5617 
5618 		len -= size;
5619 		offset += size;
5620 		count++;
5621 
5622 		if (len) {
5623 			i++;
5624 			if (i == tx_ring->count)
5625 				i = 0;
5626 		}
5627 	}
5628 
5629 	for (f = 0; f < nr_frags; f++) {
5630 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
5631 
5632 		len = skb_frag_size(frag);
5633 		offset = 0;
5634 
5635 		while (len) {
5636 			i++;
5637 			if (i == tx_ring->count)
5638 				i = 0;
5639 
5640 			buffer_info = &tx_ring->buffer_info[i];
5641 			size = min(len, max_per_txd);
5642 
5643 			buffer_info->length = size;
5644 			buffer_info->time_stamp = jiffies;
5645 			buffer_info->next_to_watch = i;
5646 			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
5647 							    offset, size,
5648 							    DMA_TO_DEVICE);
5649 			buffer_info->mapped_as_page = true;
5650 			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5651 				goto dma_error;
5652 
5653 			len -= size;
5654 			offset += size;
5655 			count++;
5656 		}
5657 	}
5658 
5659 	segs = skb_shinfo(skb)->gso_segs ? : 1;
5660 	/* multiply data chunks by size of headers */
5661 	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
5662 
5663 	tx_ring->buffer_info[i].skb = skb;
5664 	tx_ring->buffer_info[i].segs = segs;
5665 	tx_ring->buffer_info[i].bytecount = bytecount;
5666 	tx_ring->buffer_info[first].next_to_watch = i;
5667 
5668 	return count;
5669 
5670 dma_error:
5671 	dev_err(&pdev->dev, "Tx DMA map failed\n");
5672 	buffer_info->dma = 0;
5673 	if (count)
5674 		count--;
5675 
5676 	while (count--) {
5677 		if (i == 0)
5678 			i += tx_ring->count;
5679 		i--;
5680 		buffer_info = &tx_ring->buffer_info[i];
5681 		e1000_put_txbuf(tx_ring, buffer_info, true);
5682 	}
5683 
5684 	return 0;
5685 }
5686 
5687 static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
5688 {
5689 	struct e1000_adapter *adapter = tx_ring->adapter;
5690 	struct e1000_tx_desc *tx_desc = NULL;
5691 	struct e1000_buffer *buffer_info;
5692 	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
5693 	unsigned int i;
5694 
5695 	if (tx_flags & E1000_TX_FLAGS_TSO) {
5696 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
5697 		    E1000_TXD_CMD_TSE;
5698 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5699 
5700 		if (tx_flags & E1000_TX_FLAGS_IPV4)
5701 			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
5702 	}
5703 
5704 	if (tx_flags & E1000_TX_FLAGS_CSUM) {
5705 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5706 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5707 	}
5708 
5709 	if (tx_flags & E1000_TX_FLAGS_VLAN) {
5710 		txd_lower |= E1000_TXD_CMD_VLE;
5711 		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
5712 	}
5713 
5714 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5715 		txd_lower &= ~(E1000_TXD_CMD_IFCS);
5716 
5717 	if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) {
5718 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5719 		txd_upper |= E1000_TXD_EXTCMD_TSTAMP;
5720 	}
5721 
5722 	i = tx_ring->next_to_use;
5723 
5724 	do {
5725 		buffer_info = &tx_ring->buffer_info[i];
5726 		tx_desc = E1000_TX_DESC(*tx_ring, i);
5727 		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
5728 		tx_desc->lower.data = cpu_to_le32(txd_lower |
5729 						  buffer_info->length);
5730 		tx_desc->upper.data = cpu_to_le32(txd_upper);
5731 
5732 		i++;
5733 		if (i == tx_ring->count)
5734 			i = 0;
5735 	} while (--count > 0);
5736 
5737 	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
5738 
5739 	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5740 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5741 		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
5742 
5743 	/* Force memory writes to complete before letting h/w
5744 	 * know there are new descriptors to fetch.  (Only
5745 	 * applicable for weak-ordered memory model archs,
5746 	 * such as IA-64).
5747 	 */
5748 	wmb();
5749 
5750 	tx_ring->next_to_use = i;
5751 }
5752 
5753 #define MINIMUM_DHCP_PACKET_SIZE 282
5754 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
5755 				    struct sk_buff *skb)
5756 {
5757 	struct e1000_hw *hw = &adapter->hw;
5758 	u16 length, offset;
5759 
5760 	if (skb_vlan_tag_present(skb) &&
5761 	    !((skb_vlan_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
5762 	      (adapter->hw.mng_cookie.status &
5763 	       E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
5764 		return 0;
5765 
5766 	if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
5767 		return 0;
5768 
5769 	if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP))
5770 		return 0;
5771 
5772 	{
5773 		const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14);
5774 		struct udphdr *udp;
5775 
5776 		if (ip->protocol != IPPROTO_UDP)
5777 			return 0;
5778 
5779 		udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
5780 		if (ntohs(udp->dest) != 67)
5781 			return 0;
5782 
5783 		offset = (u8 *)udp + 8 - skb->data;
5784 		length = skb->len - offset;
5785 		return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
5786 	}
5787 
5788 	return 0;
5789 }
5790 
5791 static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5792 {
5793 	struct e1000_adapter *adapter = tx_ring->adapter;
5794 
5795 	netif_stop_queue(adapter->netdev);
5796 	/* Herbert's original patch had:
5797 	 *  smp_mb__after_netif_stop_queue();
5798 	 * but since that doesn't exist yet, just open code it.
5799 	 */
5800 	smp_mb();
5801 
5802 	/* We need to check again in a case another CPU has just
5803 	 * made room available.
5804 	 */
5805 	if (e1000_desc_unused(tx_ring) < size)
5806 		return -EBUSY;
5807 
5808 	/* A reprieve! */
5809 	netif_start_queue(adapter->netdev);
5810 	++adapter->restart_queue;
5811 	return 0;
5812 }
5813 
5814 static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5815 {
5816 	BUG_ON(size > tx_ring->count);
5817 
5818 	if (e1000_desc_unused(tx_ring) >= size)
5819 		return 0;
5820 	return __e1000_maybe_stop_tx(tx_ring, size);
5821 }
5822 
5823 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5824 				    struct net_device *netdev)
5825 {
5826 	struct e1000_adapter *adapter = netdev_priv(netdev);
5827 	struct e1000_ring *tx_ring = adapter->tx_ring;
5828 	unsigned int first;
5829 	unsigned int tx_flags = 0;
5830 	unsigned int len = skb_headlen(skb);
5831 	unsigned int nr_frags;
5832 	unsigned int mss;
5833 	int count = 0;
5834 	int tso;
5835 	unsigned int f;
5836 	__be16 protocol = vlan_get_protocol(skb);
5837 
5838 	if (test_bit(__E1000_DOWN, &adapter->state)) {
5839 		dev_kfree_skb_any(skb);
5840 		return NETDEV_TX_OK;
5841 	}
5842 
5843 	if (skb->len <= 0) {
5844 		dev_kfree_skb_any(skb);
5845 		return NETDEV_TX_OK;
5846 	}
5847 
5848 	/* The minimum packet size with TCTL.PSP set is 17 bytes so
5849 	 * pad skb in order to meet this minimum size requirement
5850 	 */
5851 	if (skb_put_padto(skb, 17))
5852 		return NETDEV_TX_OK;
5853 
5854 	mss = skb_shinfo(skb)->gso_size;
5855 	if (mss) {
5856 		u8 hdr_len;
5857 
5858 		/* TSO Workaround for 82571/2/3 Controllers -- if skb->data
5859 		 * points to just header, pull a few bytes of payload from
5860 		 * frags into skb->data
5861 		 */
5862 		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5863 		/* we do this workaround for ES2LAN, but it is un-necessary,
5864 		 * avoiding it could save a lot of cycles
5865 		 */
5866 		if (skb->data_len && (hdr_len == len)) {
5867 			unsigned int pull_size;
5868 
5869 			pull_size = min_t(unsigned int, 4, skb->data_len);
5870 			if (!__pskb_pull_tail(skb, pull_size)) {
5871 				e_err("__pskb_pull_tail failed.\n");
5872 				dev_kfree_skb_any(skb);
5873 				return NETDEV_TX_OK;
5874 			}
5875 			len = skb_headlen(skb);
5876 		}
5877 	}
5878 
5879 	/* reserve a descriptor for the offload context */
5880 	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5881 		count++;
5882 	count++;
5883 
5884 	count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
5885 
5886 	nr_frags = skb_shinfo(skb)->nr_frags;
5887 	for (f = 0; f < nr_frags; f++)
5888 		count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5889 				      adapter->tx_fifo_limit);
5890 
5891 	if (adapter->hw.mac.tx_pkt_filtering)
5892 		e1000_transfer_dhcp_info(adapter, skb);
5893 
5894 	/* need: count + 2 desc gap to keep tail from touching
5895 	 * head, otherwise try next time
5896 	 */
5897 	if (e1000_maybe_stop_tx(tx_ring, count + 2))
5898 		return NETDEV_TX_BUSY;
5899 
5900 	if (skb_vlan_tag_present(skb)) {
5901 		tx_flags |= E1000_TX_FLAGS_VLAN;
5902 		tx_flags |= (skb_vlan_tag_get(skb) <<
5903 			     E1000_TX_FLAGS_VLAN_SHIFT);
5904 	}
5905 
5906 	first = tx_ring->next_to_use;
5907 
5908 	tso = e1000_tso(tx_ring, skb, protocol);
5909 	if (tso < 0) {
5910 		dev_kfree_skb_any(skb);
5911 		return NETDEV_TX_OK;
5912 	}
5913 
5914 	if (tso)
5915 		tx_flags |= E1000_TX_FLAGS_TSO;
5916 	else if (e1000_tx_csum(tx_ring, skb, protocol))
5917 		tx_flags |= E1000_TX_FLAGS_CSUM;
5918 
5919 	/* Old method was to assume IPv4 packet by default if TSO was enabled.
5920 	 * 82571 hardware supports TSO capabilities for IPv6 as well...
5921 	 * no longer assume, we must.
5922 	 */
5923 	if (protocol == htons(ETH_P_IP))
5924 		tx_flags |= E1000_TX_FLAGS_IPV4;
5925 
5926 	if (unlikely(skb->no_fcs))
5927 		tx_flags |= E1000_TX_FLAGS_NO_FCS;
5928 
5929 	/* if count is 0 then mapping error has occurred */
5930 	count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5931 			     nr_frags);
5932 	if (count) {
5933 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
5934 		    (adapter->flags & FLAG_HAS_HW_TIMESTAMP)) {
5935 			if (!adapter->tx_hwtstamp_skb) {
5936 				skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5937 				tx_flags |= E1000_TX_FLAGS_HWTSTAMP;
5938 				adapter->tx_hwtstamp_skb = skb_get(skb);
5939 				adapter->tx_hwtstamp_start = jiffies;
5940 				schedule_work(&adapter->tx_hwtstamp_work);
5941 			} else {
5942 				adapter->tx_hwtstamp_skipped++;
5943 			}
5944 		}
5945 
5946 		skb_tx_timestamp(skb);
5947 
5948 		netdev_sent_queue(netdev, skb->len);
5949 		e1000_tx_queue(tx_ring, tx_flags, count);
5950 		/* Make sure there is space in the ring for the next send. */
5951 		e1000_maybe_stop_tx(tx_ring,
5952 				    (MAX_SKB_FRAGS *
5953 				     DIV_ROUND_UP(PAGE_SIZE,
5954 						  adapter->tx_fifo_limit) + 2));
5955 
5956 		if (!netdev_xmit_more() ||
5957 		    netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
5958 			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
5959 				e1000e_update_tdt_wa(tx_ring,
5960 						     tx_ring->next_to_use);
5961 			else
5962 				writel(tx_ring->next_to_use, tx_ring->tail);
5963 		}
5964 	} else {
5965 		dev_kfree_skb_any(skb);
5966 		tx_ring->buffer_info[first].time_stamp = 0;
5967 		tx_ring->next_to_use = first;
5968 	}
5969 
5970 	return NETDEV_TX_OK;
5971 }
5972 
5973 /**
5974  * e1000_tx_timeout - Respond to a Tx Hang
5975  * @netdev: network interface device structure
5976  **/
5977 static void e1000_tx_timeout(struct net_device *netdev, unsigned int txqueue)
5978 {
5979 	struct e1000_adapter *adapter = netdev_priv(netdev);
5980 
5981 	/* Do the reset outside of interrupt context */
5982 	adapter->tx_timeout_count++;
5983 	schedule_work(&adapter->reset_task);
5984 }
5985 
5986 static void e1000_reset_task(struct work_struct *work)
5987 {
5988 	struct e1000_adapter *adapter;
5989 	adapter = container_of(work, struct e1000_adapter, reset_task);
5990 
5991 	/* don't run the task if already down */
5992 	if (test_bit(__E1000_DOWN, &adapter->state))
5993 		return;
5994 
5995 	if (!(adapter->flags & FLAG_RESTART_NOW)) {
5996 		e1000e_dump(adapter);
5997 		e_err("Reset adapter unexpectedly\n");
5998 	}
5999 	e1000e_reinit_locked(adapter);
6000 }
6001 
6002 /**
6003  * e1000_get_stats64 - Get System Network Statistics
6004  * @netdev: network interface device structure
6005  * @stats: rtnl_link_stats64 pointer
6006  *
6007  * Returns the address of the device statistics structure.
6008  **/
6009 void e1000e_get_stats64(struct net_device *netdev,
6010 			struct rtnl_link_stats64 *stats)
6011 {
6012 	struct e1000_adapter *adapter = netdev_priv(netdev);
6013 
6014 	spin_lock(&adapter->stats64_lock);
6015 	e1000e_update_stats(adapter);
6016 	/* Fill out the OS statistics structure */
6017 	stats->rx_bytes = adapter->stats.gorc;
6018 	stats->rx_packets = adapter->stats.gprc;
6019 	stats->tx_bytes = adapter->stats.gotc;
6020 	stats->tx_packets = adapter->stats.gptc;
6021 	stats->multicast = adapter->stats.mprc;
6022 	stats->collisions = adapter->stats.colc;
6023 
6024 	/* Rx Errors */
6025 
6026 	/* RLEC on some newer hardware can be incorrect so build
6027 	 * our own version based on RUC and ROC
6028 	 */
6029 	stats->rx_errors = adapter->stats.rxerrc +
6030 	    adapter->stats.crcerrs + adapter->stats.algnerrc +
6031 	    adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
6032 	stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc;
6033 	stats->rx_crc_errors = adapter->stats.crcerrs;
6034 	stats->rx_frame_errors = adapter->stats.algnerrc;
6035 	stats->rx_missed_errors = adapter->stats.mpc;
6036 
6037 	/* Tx Errors */
6038 	stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol;
6039 	stats->tx_aborted_errors = adapter->stats.ecol;
6040 	stats->tx_window_errors = adapter->stats.latecol;
6041 	stats->tx_carrier_errors = adapter->stats.tncrs;
6042 
6043 	/* Tx Dropped needs to be maintained elsewhere */
6044 
6045 	spin_unlock(&adapter->stats64_lock);
6046 }
6047 
6048 /**
6049  * e1000_change_mtu - Change the Maximum Transfer Unit
6050  * @netdev: network interface device structure
6051  * @new_mtu: new value for maximum frame size
6052  *
6053  * Returns 0 on success, negative on failure
6054  **/
6055 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
6056 {
6057 	struct e1000_adapter *adapter = netdev_priv(netdev);
6058 	int max_frame = new_mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
6059 
6060 	/* Jumbo frame support */
6061 	if ((new_mtu > ETH_DATA_LEN) &&
6062 	    !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
6063 		e_err("Jumbo Frames not supported.\n");
6064 		return -EINVAL;
6065 	}
6066 
6067 	/* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
6068 	if ((adapter->hw.mac.type >= e1000_pch2lan) &&
6069 	    !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
6070 	    (new_mtu > ETH_DATA_LEN)) {
6071 		e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
6072 		return -EINVAL;
6073 	}
6074 
6075 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
6076 		usleep_range(1000, 1100);
6077 	/* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
6078 	adapter->max_frame_size = max_frame;
6079 	netdev_dbg(netdev, "changing MTU from %d to %d\n",
6080 		   netdev->mtu, new_mtu);
6081 	netdev->mtu = new_mtu;
6082 
6083 	pm_runtime_get_sync(netdev->dev.parent);
6084 
6085 	if (netif_running(netdev))
6086 		e1000e_down(adapter, true);
6087 
6088 	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
6089 	 * means we reserve 2 more, this pushes us to allocate from the next
6090 	 * larger slab size.
6091 	 * i.e. RXBUFFER_2048 --> size-4096 slab
6092 	 * However with the new *_jumbo_rx* routines, jumbo receives will use
6093 	 * fragmented skbs
6094 	 */
6095 
6096 	if (max_frame <= 2048)
6097 		adapter->rx_buffer_len = 2048;
6098 	else
6099 		adapter->rx_buffer_len = 4096;
6100 
6101 	/* adjust allocation if LPE protects us, and we aren't using SBP */
6102 	if (max_frame <= (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN))
6103 		adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
6104 
6105 	if (netif_running(netdev))
6106 		e1000e_up(adapter);
6107 	else
6108 		e1000e_reset(adapter);
6109 
6110 	pm_runtime_put_sync(netdev->dev.parent);
6111 
6112 	clear_bit(__E1000_RESETTING, &adapter->state);
6113 
6114 	return 0;
6115 }
6116 
6117 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
6118 			   int cmd)
6119 {
6120 	struct e1000_adapter *adapter = netdev_priv(netdev);
6121 	struct mii_ioctl_data *data = if_mii(ifr);
6122 
6123 	if (adapter->hw.phy.media_type != e1000_media_type_copper)
6124 		return -EOPNOTSUPP;
6125 
6126 	switch (cmd) {
6127 	case SIOCGMIIPHY:
6128 		data->phy_id = adapter->hw.phy.addr;
6129 		break;
6130 	case SIOCGMIIREG:
6131 		e1000_phy_read_status(adapter);
6132 
6133 		switch (data->reg_num & 0x1F) {
6134 		case MII_BMCR:
6135 			data->val_out = adapter->phy_regs.bmcr;
6136 			break;
6137 		case MII_BMSR:
6138 			data->val_out = adapter->phy_regs.bmsr;
6139 			break;
6140 		case MII_PHYSID1:
6141 			data->val_out = (adapter->hw.phy.id >> 16);
6142 			break;
6143 		case MII_PHYSID2:
6144 			data->val_out = (adapter->hw.phy.id & 0xFFFF);
6145 			break;
6146 		case MII_ADVERTISE:
6147 			data->val_out = adapter->phy_regs.advertise;
6148 			break;
6149 		case MII_LPA:
6150 			data->val_out = adapter->phy_regs.lpa;
6151 			break;
6152 		case MII_EXPANSION:
6153 			data->val_out = adapter->phy_regs.expansion;
6154 			break;
6155 		case MII_CTRL1000:
6156 			data->val_out = adapter->phy_regs.ctrl1000;
6157 			break;
6158 		case MII_STAT1000:
6159 			data->val_out = adapter->phy_regs.stat1000;
6160 			break;
6161 		case MII_ESTATUS:
6162 			data->val_out = adapter->phy_regs.estatus;
6163 			break;
6164 		default:
6165 			return -EIO;
6166 		}
6167 		break;
6168 	case SIOCSMIIREG:
6169 	default:
6170 		return -EOPNOTSUPP;
6171 	}
6172 	return 0;
6173 }
6174 
6175 /**
6176  * e1000e_hwtstamp_ioctl - control hardware time stamping
6177  * @netdev: network interface device structure
6178  * @ifreq: interface request
6179  *
6180  * Outgoing time stamping can be enabled and disabled. Play nice and
6181  * disable it when requested, although it shouldn't cause any overhead
6182  * when no packet needs it. At most one packet in the queue may be
6183  * marked for time stamping, otherwise it would be impossible to tell
6184  * for sure to which packet the hardware time stamp belongs.
6185  *
6186  * Incoming time stamping has to be configured via the hardware filters.
6187  * Not all combinations are supported, in particular event type has to be
6188  * specified. Matching the kind of event packet is not supported, with the
6189  * exception of "all V2 events regardless of level 2 or 4".
6190  **/
6191 static int e1000e_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
6192 {
6193 	struct e1000_adapter *adapter = netdev_priv(netdev);
6194 	struct hwtstamp_config config;
6195 	int ret_val;
6196 
6197 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
6198 		return -EFAULT;
6199 
6200 	ret_val = e1000e_config_hwtstamp(adapter, &config);
6201 	if (ret_val)
6202 		return ret_val;
6203 
6204 	switch (config.rx_filter) {
6205 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6206 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6207 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
6208 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6209 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6210 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6211 		/* With V2 type filters which specify a Sync or Delay Request,
6212 		 * Path Delay Request/Response messages are also time stamped
6213 		 * by hardware so notify the caller the requested packets plus
6214 		 * some others are time stamped.
6215 		 */
6216 		config.rx_filter = HWTSTAMP_FILTER_SOME;
6217 		break;
6218 	default:
6219 		break;
6220 	}
6221 
6222 	return copy_to_user(ifr->ifr_data, &config,
6223 			    sizeof(config)) ? -EFAULT : 0;
6224 }
6225 
6226 static int e1000e_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
6227 {
6228 	struct e1000_adapter *adapter = netdev_priv(netdev);
6229 
6230 	return copy_to_user(ifr->ifr_data, &adapter->hwtstamp_config,
6231 			    sizeof(adapter->hwtstamp_config)) ? -EFAULT : 0;
6232 }
6233 
6234 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6235 {
6236 	switch (cmd) {
6237 	case SIOCGMIIPHY:
6238 	case SIOCGMIIREG:
6239 	case SIOCSMIIREG:
6240 		return e1000_mii_ioctl(netdev, ifr, cmd);
6241 	case SIOCSHWTSTAMP:
6242 		return e1000e_hwtstamp_set(netdev, ifr);
6243 	case SIOCGHWTSTAMP:
6244 		return e1000e_hwtstamp_get(netdev, ifr);
6245 	default:
6246 		return -EOPNOTSUPP;
6247 	}
6248 }
6249 
6250 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
6251 {
6252 	struct e1000_hw *hw = &adapter->hw;
6253 	u32 i, mac_reg, wuc;
6254 	u16 phy_reg, wuc_enable;
6255 	int retval;
6256 
6257 	/* copy MAC RARs to PHY RARs */
6258 	e1000_copy_rx_addrs_to_phy_ich8lan(hw);
6259 
6260 	retval = hw->phy.ops.acquire(hw);
6261 	if (retval) {
6262 		e_err("Could not acquire PHY\n");
6263 		return retval;
6264 	}
6265 
6266 	/* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
6267 	retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6268 	if (retval)
6269 		goto release;
6270 
6271 	/* copy MAC MTA to PHY MTA - only needed for pchlan */
6272 	for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
6273 		mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
6274 		hw->phy.ops.write_reg_page(hw, BM_MTA(i),
6275 					   (u16)(mac_reg & 0xFFFF));
6276 		hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
6277 					   (u16)((mac_reg >> 16) & 0xFFFF));
6278 	}
6279 
6280 	/* configure PHY Rx Control register */
6281 	hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
6282 	mac_reg = er32(RCTL);
6283 	if (mac_reg & E1000_RCTL_UPE)
6284 		phy_reg |= BM_RCTL_UPE;
6285 	if (mac_reg & E1000_RCTL_MPE)
6286 		phy_reg |= BM_RCTL_MPE;
6287 	phy_reg &= ~(BM_RCTL_MO_MASK);
6288 	if (mac_reg & E1000_RCTL_MO_3)
6289 		phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
6290 			    << BM_RCTL_MO_SHIFT);
6291 	if (mac_reg & E1000_RCTL_BAM)
6292 		phy_reg |= BM_RCTL_BAM;
6293 	if (mac_reg & E1000_RCTL_PMCF)
6294 		phy_reg |= BM_RCTL_PMCF;
6295 	mac_reg = er32(CTRL);
6296 	if (mac_reg & E1000_CTRL_RFCE)
6297 		phy_reg |= BM_RCTL_RFCE;
6298 	hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
6299 
6300 	wuc = E1000_WUC_PME_EN;
6301 	if (wufc & (E1000_WUFC_MAG | E1000_WUFC_LNKC))
6302 		wuc |= E1000_WUC_APME;
6303 
6304 	/* enable PHY wakeup in MAC register */
6305 	ew32(WUFC, wufc);
6306 	ew32(WUC, (E1000_WUC_PHY_WAKE | E1000_WUC_APMPME |
6307 		   E1000_WUC_PME_STATUS | wuc));
6308 
6309 	/* configure and enable PHY wakeup in PHY registers */
6310 	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
6311 	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, wuc);
6312 
6313 	/* activate PHY wakeup */
6314 	wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
6315 	retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6316 	if (retval)
6317 		e_err("Could not set PHY Host Wakeup bit\n");
6318 release:
6319 	hw->phy.ops.release(hw);
6320 
6321 	return retval;
6322 }
6323 
6324 static void e1000e_flush_lpic(struct pci_dev *pdev)
6325 {
6326 	struct net_device *netdev = pci_get_drvdata(pdev);
6327 	struct e1000_adapter *adapter = netdev_priv(netdev);
6328 	struct e1000_hw *hw = &adapter->hw;
6329 	u32 ret_val;
6330 
6331 	pm_runtime_get_sync(netdev->dev.parent);
6332 
6333 	ret_val = hw->phy.ops.acquire(hw);
6334 	if (ret_val)
6335 		goto fl_out;
6336 
6337 	pr_info("EEE TX LPI TIMER: %08X\n",
6338 		er32(LPIC) >> E1000_LPIC_LPIET_SHIFT);
6339 
6340 	hw->phy.ops.release(hw);
6341 
6342 fl_out:
6343 	pm_runtime_put_sync(netdev->dev.parent);
6344 }
6345 
6346 /* S0ix implementation */
6347 static void e1000e_s0ix_entry_flow(struct e1000_adapter *adapter)
6348 {
6349 	struct e1000_hw *hw = &adapter->hw;
6350 	u32 mac_data;
6351 	u16 phy_data;
6352 
6353 	/* Disable the periodic inband message,
6354 	 * don't request PCIe clock in K1 page770_17[10:9] = 10b
6355 	 */
6356 	e1e_rphy(hw, HV_PM_CTRL, &phy_data);
6357 	phy_data &= ~HV_PM_CTRL_K1_CLK_REQ;
6358 	phy_data |= BIT(10);
6359 	e1e_wphy(hw, HV_PM_CTRL, phy_data);
6360 
6361 	/* Make sure we don't exit K1 every time a new packet arrives
6362 	 * 772_29[5] = 1 CS_Mode_Stay_In_K1
6363 	 */
6364 	e1e_rphy(hw, I217_CGFREG, &phy_data);
6365 	phy_data |= BIT(5);
6366 	e1e_wphy(hw, I217_CGFREG, phy_data);
6367 
6368 	/* Change the MAC/PHY interface to SMBus
6369 	 * Force the SMBus in PHY page769_23[0] = 1
6370 	 * Force the SMBus in MAC CTRL_EXT[11] = 1
6371 	 */
6372 	e1e_rphy(hw, CV_SMB_CTRL, &phy_data);
6373 	phy_data |= CV_SMB_CTRL_FORCE_SMBUS;
6374 	e1e_wphy(hw, CV_SMB_CTRL, phy_data);
6375 	mac_data = er32(CTRL_EXT);
6376 	mac_data |= E1000_CTRL_EXT_FORCE_SMBUS;
6377 	ew32(CTRL_EXT, mac_data);
6378 
6379 	/* DFT control: PHY bit: page769_20[0] = 1
6380 	 * Gate PPW via EXTCNF_CTRL - set 0x0F00[7] = 1
6381 	 */
6382 	e1e_rphy(hw, I82579_DFT_CTRL, &phy_data);
6383 	phy_data |= BIT(0);
6384 	e1e_wphy(hw, I82579_DFT_CTRL, phy_data);
6385 
6386 	mac_data = er32(EXTCNF_CTRL);
6387 	mac_data |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
6388 	ew32(EXTCNF_CTRL, mac_data);
6389 
6390 	/* Check MAC Tx/Rx packet buffer pointers.
6391 	 * Reset MAC Tx/Rx packet buffer pointers to suppress any
6392 	 * pending traffic indication that would prevent power gating.
6393 	 */
6394 	mac_data = er32(TDFH);
6395 	if (mac_data)
6396 		ew32(TDFH, 0);
6397 	mac_data = er32(TDFT);
6398 	if (mac_data)
6399 		ew32(TDFT, 0);
6400 	mac_data = er32(TDFHS);
6401 	if (mac_data)
6402 		ew32(TDFHS, 0);
6403 	mac_data = er32(TDFTS);
6404 	if (mac_data)
6405 		ew32(TDFTS, 0);
6406 	mac_data = er32(TDFPC);
6407 	if (mac_data)
6408 		ew32(TDFPC, 0);
6409 	mac_data = er32(RDFH);
6410 	if (mac_data)
6411 		ew32(RDFH, 0);
6412 	mac_data = er32(RDFT);
6413 	if (mac_data)
6414 		ew32(RDFT, 0);
6415 	mac_data = er32(RDFHS);
6416 	if (mac_data)
6417 		ew32(RDFHS, 0);
6418 	mac_data = er32(RDFTS);
6419 	if (mac_data)
6420 		ew32(RDFTS, 0);
6421 	mac_data = er32(RDFPC);
6422 	if (mac_data)
6423 		ew32(RDFPC, 0);
6424 
6425 	/* Enable the Dynamic Power Gating in the MAC */
6426 	mac_data = er32(FEXTNVM7);
6427 	mac_data |= BIT(22);
6428 	ew32(FEXTNVM7, mac_data);
6429 
6430 	/* Disable the time synchronization clock */
6431 	mac_data = er32(FEXTNVM7);
6432 	mac_data |= BIT(31);
6433 	mac_data &= ~BIT(0);
6434 	ew32(FEXTNVM7, mac_data);
6435 
6436 	/* Dynamic Power Gating Enable */
6437 	mac_data = er32(CTRL_EXT);
6438 	mac_data |= BIT(3);
6439 	ew32(CTRL_EXT, mac_data);
6440 
6441 	/* Disable disconnected cable conditioning for Power Gating */
6442 	mac_data = er32(DPGFR);
6443 	mac_data |= BIT(2);
6444 	ew32(DPGFR, mac_data);
6445 
6446 	/* Don't wake from dynamic Power Gating with clock request */
6447 	mac_data = er32(FEXTNVM12);
6448 	mac_data |= BIT(12);
6449 	ew32(FEXTNVM12, mac_data);
6450 
6451 	/* Ungate PGCB clock */
6452 	mac_data = er32(FEXTNVM9);
6453 	mac_data |= BIT(28);
6454 	ew32(FEXTNVM9, mac_data);
6455 
6456 	/* Enable K1 off to enable mPHY Power Gating */
6457 	mac_data = er32(FEXTNVM6);
6458 	mac_data |= BIT(31);
6459 	ew32(FEXTNVM12, mac_data);
6460 
6461 	/* Enable mPHY power gating for any link and speed */
6462 	mac_data = er32(FEXTNVM8);
6463 	mac_data |= BIT(9);
6464 	ew32(FEXTNVM8, mac_data);
6465 
6466 	/* Enable the Dynamic Clock Gating in the DMA and MAC */
6467 	mac_data = er32(CTRL_EXT);
6468 	mac_data |= E1000_CTRL_EXT_DMA_DYN_CLK_EN;
6469 	ew32(CTRL_EXT, mac_data);
6470 
6471 	/* No MAC DPG gating SLP_S0 in modern standby
6472 	 * Switch the logic of the lanphypc to use PMC counter
6473 	 */
6474 	mac_data = er32(FEXTNVM5);
6475 	mac_data |= BIT(7);
6476 	ew32(FEXTNVM5, mac_data);
6477 }
6478 
6479 static void e1000e_s0ix_exit_flow(struct e1000_adapter *adapter)
6480 {
6481 	struct e1000_hw *hw = &adapter->hw;
6482 	u32 mac_data;
6483 	u16 phy_data;
6484 
6485 	/* Disable the Dynamic Power Gating in the MAC */
6486 	mac_data = er32(FEXTNVM7);
6487 	mac_data &= 0xFFBFFFFF;
6488 	ew32(FEXTNVM7, mac_data);
6489 
6490 	/* Enable the time synchronization clock */
6491 	mac_data = er32(FEXTNVM7);
6492 	mac_data |= BIT(0);
6493 	ew32(FEXTNVM7, mac_data);
6494 
6495 	/* Disable mPHY power gating for any link and speed */
6496 	mac_data = er32(FEXTNVM8);
6497 	mac_data &= ~BIT(9);
6498 	ew32(FEXTNVM8, mac_data);
6499 
6500 	/* Disable K1 off */
6501 	mac_data = er32(FEXTNVM6);
6502 	mac_data &= ~BIT(31);
6503 	ew32(FEXTNVM12, mac_data);
6504 
6505 	/* Disable Ungate PGCB clock */
6506 	mac_data = er32(FEXTNVM9);
6507 	mac_data &= ~BIT(28);
6508 	ew32(FEXTNVM9, mac_data);
6509 
6510 	/* Cancel not waking from dynamic
6511 	 * Power Gating with clock request
6512 	 */
6513 	mac_data = er32(FEXTNVM12);
6514 	mac_data &= ~BIT(12);
6515 	ew32(FEXTNVM12, mac_data);
6516 
6517 	/* Cancel disable disconnected cable conditioning
6518 	 * for Power Gating
6519 	 */
6520 	mac_data = er32(DPGFR);
6521 	mac_data &= ~BIT(2);
6522 	ew32(DPGFR, mac_data);
6523 
6524 	/* Disable Dynamic Power Gating */
6525 	mac_data = er32(CTRL_EXT);
6526 	mac_data &= 0xFFFFFFF7;
6527 	ew32(CTRL_EXT, mac_data);
6528 
6529 	/* Disable the Dynamic Clock Gating in the DMA and MAC */
6530 	mac_data = er32(CTRL_EXT);
6531 	mac_data &= 0xFFF7FFFF;
6532 	ew32(CTRL_EXT, mac_data);
6533 
6534 	/* Revert the lanphypc logic to use the internal Gbe counter
6535 	 * and not the PMC counter
6536 	 */
6537 	mac_data = er32(FEXTNVM5);
6538 	mac_data &= 0xFFFFFF7F;
6539 	ew32(FEXTNVM5, mac_data);
6540 
6541 	/* Enable the periodic inband message,
6542 	 * Request PCIe clock in K1 page770_17[10:9] =01b
6543 	 */
6544 	e1e_rphy(hw, HV_PM_CTRL, &phy_data);
6545 	phy_data &= 0xFBFF;
6546 	phy_data |= HV_PM_CTRL_K1_CLK_REQ;
6547 	e1e_wphy(hw, HV_PM_CTRL, phy_data);
6548 
6549 	/* Return back configuration
6550 	 * 772_29[5] = 0 CS_Mode_Stay_In_K1
6551 	 */
6552 	e1e_rphy(hw, I217_CGFREG, &phy_data);
6553 	phy_data &= 0xFFDF;
6554 	e1e_wphy(hw, I217_CGFREG, phy_data);
6555 
6556 	/* Change the MAC/PHY interface to Kumeran
6557 	 * Unforce the SMBus in PHY page769_23[0] = 0
6558 	 * Unforce the SMBus in MAC CTRL_EXT[11] = 0
6559 	 */
6560 	e1e_rphy(hw, CV_SMB_CTRL, &phy_data);
6561 	phy_data &= ~CV_SMB_CTRL_FORCE_SMBUS;
6562 	e1e_wphy(hw, CV_SMB_CTRL, phy_data);
6563 	mac_data = er32(CTRL_EXT);
6564 	mac_data &= ~E1000_CTRL_EXT_FORCE_SMBUS;
6565 	ew32(CTRL_EXT, mac_data);
6566 }
6567 
6568 static int e1000e_pm_freeze(struct device *dev)
6569 {
6570 	struct net_device *netdev = dev_get_drvdata(dev);
6571 	struct e1000_adapter *adapter = netdev_priv(netdev);
6572 	bool present;
6573 
6574 	rtnl_lock();
6575 
6576 	present = netif_device_present(netdev);
6577 	netif_device_detach(netdev);
6578 
6579 	if (present && netif_running(netdev)) {
6580 		int count = E1000_CHECK_RESET_COUNT;
6581 
6582 		while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6583 			usleep_range(10000, 11000);
6584 
6585 		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6586 
6587 		/* Quiesce the device without resetting the hardware */
6588 		e1000e_down(adapter, false);
6589 		e1000_free_irq(adapter);
6590 	}
6591 	rtnl_unlock();
6592 
6593 	e1000e_reset_interrupt_capability(adapter);
6594 
6595 	/* Allow time for pending master requests to run */
6596 	e1000e_disable_pcie_master(&adapter->hw);
6597 
6598 	return 0;
6599 }
6600 
6601 static int __e1000_shutdown(struct pci_dev *pdev, bool runtime)
6602 {
6603 	struct net_device *netdev = pci_get_drvdata(pdev);
6604 	struct e1000_adapter *adapter = netdev_priv(netdev);
6605 	struct e1000_hw *hw = &adapter->hw;
6606 	u32 ctrl, ctrl_ext, rctl, status, wufc;
6607 	int retval = 0;
6608 
6609 	/* Runtime suspend should only enable wakeup for link changes */
6610 	if (runtime)
6611 		wufc = E1000_WUFC_LNKC;
6612 	else if (device_may_wakeup(&pdev->dev))
6613 		wufc = adapter->wol;
6614 	else
6615 		wufc = 0;
6616 
6617 	status = er32(STATUS);
6618 	if (status & E1000_STATUS_LU)
6619 		wufc &= ~E1000_WUFC_LNKC;
6620 
6621 	if (wufc) {
6622 		e1000_setup_rctl(adapter);
6623 		e1000e_set_rx_mode(netdev);
6624 
6625 		/* turn on all-multi mode if wake on multicast is enabled */
6626 		if (wufc & E1000_WUFC_MC) {
6627 			rctl = er32(RCTL);
6628 			rctl |= E1000_RCTL_MPE;
6629 			ew32(RCTL, rctl);
6630 		}
6631 
6632 		ctrl = er32(CTRL);
6633 		ctrl |= E1000_CTRL_ADVD3WUC;
6634 		if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
6635 			ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
6636 		ew32(CTRL, ctrl);
6637 
6638 		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
6639 		    adapter->hw.phy.media_type ==
6640 		    e1000_media_type_internal_serdes) {
6641 			/* keep the laser running in D3 */
6642 			ctrl_ext = er32(CTRL_EXT);
6643 			ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
6644 			ew32(CTRL_EXT, ctrl_ext);
6645 		}
6646 
6647 		if (!runtime)
6648 			e1000e_power_up_phy(adapter);
6649 
6650 		if (adapter->flags & FLAG_IS_ICH)
6651 			e1000_suspend_workarounds_ich8lan(&adapter->hw);
6652 
6653 		if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6654 			/* enable wakeup by the PHY */
6655 			retval = e1000_init_phy_wakeup(adapter, wufc);
6656 			if (retval)
6657 				return retval;
6658 		} else {
6659 			/* enable wakeup by the MAC */
6660 			ew32(WUFC, wufc);
6661 			ew32(WUC, E1000_WUC_PME_EN);
6662 		}
6663 	} else {
6664 		ew32(WUC, 0);
6665 		ew32(WUFC, 0);
6666 
6667 		e1000_power_down_phy(adapter);
6668 	}
6669 
6670 	if (adapter->hw.phy.type == e1000_phy_igp_3) {
6671 		e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
6672 	} else if (hw->mac.type >= e1000_pch_lpt) {
6673 		if (wufc && !(wufc & (E1000_WUFC_EX | E1000_WUFC_MC | E1000_WUFC_BC)))
6674 			/* ULP does not support wake from unicast, multicast
6675 			 * or broadcast.
6676 			 */
6677 			retval = e1000_enable_ulp_lpt_lp(hw, !runtime);
6678 
6679 		if (retval)
6680 			return retval;
6681 	}
6682 
6683 	/* Ensure that the appropriate bits are set in LPI_CTRL
6684 	 * for EEE in Sx
6685 	 */
6686 	if ((hw->phy.type >= e1000_phy_i217) &&
6687 	    adapter->eee_advert && hw->dev_spec.ich8lan.eee_lp_ability) {
6688 		u16 lpi_ctrl = 0;
6689 
6690 		retval = hw->phy.ops.acquire(hw);
6691 		if (!retval) {
6692 			retval = e1e_rphy_locked(hw, I82579_LPI_CTRL,
6693 						 &lpi_ctrl);
6694 			if (!retval) {
6695 				if (adapter->eee_advert &
6696 				    hw->dev_spec.ich8lan.eee_lp_ability &
6697 				    I82579_EEE_100_SUPPORTED)
6698 					lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
6699 				if (adapter->eee_advert &
6700 				    hw->dev_spec.ich8lan.eee_lp_ability &
6701 				    I82579_EEE_1000_SUPPORTED)
6702 					lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
6703 
6704 				retval = e1e_wphy_locked(hw, I82579_LPI_CTRL,
6705 							 lpi_ctrl);
6706 			}
6707 		}
6708 		hw->phy.ops.release(hw);
6709 	}
6710 
6711 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
6712 	 * would have already happened in close and is redundant.
6713 	 */
6714 	e1000e_release_hw_control(adapter);
6715 
6716 	pci_clear_master(pdev);
6717 
6718 	/* The pci-e switch on some quad port adapters will report a
6719 	 * correctable error when the MAC transitions from D0 to D3.  To
6720 	 * prevent this we need to mask off the correctable errors on the
6721 	 * downstream port of the pci-e switch.
6722 	 *
6723 	 * We don't have the associated upstream bridge while assigning
6724 	 * the PCI device into guest. For example, the KVM on power is
6725 	 * one of the cases.
6726 	 */
6727 	if (adapter->flags & FLAG_IS_QUAD_PORT) {
6728 		struct pci_dev *us_dev = pdev->bus->self;
6729 		u16 devctl;
6730 
6731 		if (!us_dev)
6732 			return 0;
6733 
6734 		pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl);
6735 		pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL,
6736 					   (devctl & ~PCI_EXP_DEVCTL_CERE));
6737 
6738 		pci_save_state(pdev);
6739 		pci_prepare_to_sleep(pdev);
6740 
6741 		pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl);
6742 	}
6743 
6744 	return 0;
6745 }
6746 
6747 /**
6748  * __e1000e_disable_aspm - Disable ASPM states
6749  * @pdev: pointer to PCI device struct
6750  * @state: bit-mask of ASPM states to disable
6751  * @locked: indication if this context holds pci_bus_sem locked.
6752  *
6753  * Some devices *must* have certain ASPM states disabled per hardware errata.
6754  **/
6755 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state, int locked)
6756 {
6757 	struct pci_dev *parent = pdev->bus->self;
6758 	u16 aspm_dis_mask = 0;
6759 	u16 pdev_aspmc, parent_aspmc;
6760 
6761 	switch (state) {
6762 	case PCIE_LINK_STATE_L0S:
6763 	case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1:
6764 		aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S;
6765 		fallthrough; /* can't have L1 without L0s */
6766 	case PCIE_LINK_STATE_L1:
6767 		aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1;
6768 		break;
6769 	default:
6770 		return;
6771 	}
6772 
6773 	pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6774 	pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6775 
6776 	if (parent) {
6777 		pcie_capability_read_word(parent, PCI_EXP_LNKCTL,
6778 					  &parent_aspmc);
6779 		parent_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6780 	}
6781 
6782 	/* Nothing to do if the ASPM states to be disabled already are */
6783 	if (!(pdev_aspmc & aspm_dis_mask) &&
6784 	    (!parent || !(parent_aspmc & aspm_dis_mask)))
6785 		return;
6786 
6787 	dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
6788 		 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ?
6789 		 "L0s" : "",
6790 		 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ?
6791 		 "L1" : "");
6792 
6793 #ifdef CONFIG_PCIEASPM
6794 	if (locked)
6795 		pci_disable_link_state_locked(pdev, state);
6796 	else
6797 		pci_disable_link_state(pdev, state);
6798 
6799 	/* Double-check ASPM control.  If not disabled by the above, the
6800 	 * BIOS is preventing that from happening (or CONFIG_PCIEASPM is
6801 	 * not enabled); override by writing PCI config space directly.
6802 	 */
6803 	pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6804 	pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6805 
6806 	if (!(aspm_dis_mask & pdev_aspmc))
6807 		return;
6808 #endif
6809 
6810 	/* Both device and parent should have the same ASPM setting.
6811 	 * Disable ASPM in downstream component first and then upstream.
6812 	 */
6813 	pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask);
6814 
6815 	if (parent)
6816 		pcie_capability_clear_word(parent, PCI_EXP_LNKCTL,
6817 					   aspm_dis_mask);
6818 }
6819 
6820 /**
6821  * e1000e_disable_aspm - Disable ASPM states.
6822  * @pdev: pointer to PCI device struct
6823  * @state: bit-mask of ASPM states to disable
6824  *
6825  * This function acquires the pci_bus_sem!
6826  * Some devices *must* have certain ASPM states disabled per hardware errata.
6827  **/
6828 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6829 {
6830 	__e1000e_disable_aspm(pdev, state, 0);
6831 }
6832 
6833 /**
6834  * e1000e_disable_aspm_locked   Disable ASPM states.
6835  * @pdev: pointer to PCI device struct
6836  * @state: bit-mask of ASPM states to disable
6837  *
6838  * This function must be called with pci_bus_sem acquired!
6839  * Some devices *must* have certain ASPM states disabled per hardware errata.
6840  **/
6841 static void e1000e_disable_aspm_locked(struct pci_dev *pdev, u16 state)
6842 {
6843 	__e1000e_disable_aspm(pdev, state, 1);
6844 }
6845 
6846 static int e1000e_pm_thaw(struct device *dev)
6847 {
6848 	struct net_device *netdev = dev_get_drvdata(dev);
6849 	struct e1000_adapter *adapter = netdev_priv(netdev);
6850 	int rc = 0;
6851 
6852 	e1000e_set_interrupt_capability(adapter);
6853 
6854 	rtnl_lock();
6855 	if (netif_running(netdev)) {
6856 		rc = e1000_request_irq(adapter);
6857 		if (rc)
6858 			goto err_irq;
6859 
6860 		e1000e_up(adapter);
6861 	}
6862 
6863 	netif_device_attach(netdev);
6864 err_irq:
6865 	rtnl_unlock();
6866 
6867 	return rc;
6868 }
6869 
6870 static int __e1000_resume(struct pci_dev *pdev)
6871 {
6872 	struct net_device *netdev = pci_get_drvdata(pdev);
6873 	struct e1000_adapter *adapter = netdev_priv(netdev);
6874 	struct e1000_hw *hw = &adapter->hw;
6875 	u16 aspm_disable_flag = 0;
6876 
6877 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6878 		aspm_disable_flag = PCIE_LINK_STATE_L0S;
6879 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6880 		aspm_disable_flag |= PCIE_LINK_STATE_L1;
6881 	if (aspm_disable_flag)
6882 		e1000e_disable_aspm(pdev, aspm_disable_flag);
6883 
6884 	pci_set_master(pdev);
6885 
6886 	if (hw->mac.type >= e1000_pch2lan)
6887 		e1000_resume_workarounds_pchlan(&adapter->hw);
6888 
6889 	e1000e_power_up_phy(adapter);
6890 
6891 	/* report the system wakeup cause from S3/S4 */
6892 	if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6893 		u16 phy_data;
6894 
6895 		e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
6896 		if (phy_data) {
6897 			e_info("PHY Wakeup cause - %s\n",
6898 			       phy_data & E1000_WUS_EX ? "Unicast Packet" :
6899 			       phy_data & E1000_WUS_MC ? "Multicast Packet" :
6900 			       phy_data & E1000_WUS_BC ? "Broadcast Packet" :
6901 			       phy_data & E1000_WUS_MAG ? "Magic Packet" :
6902 			       phy_data & E1000_WUS_LNKC ?
6903 			       "Link Status Change" : "other");
6904 		}
6905 		e1e_wphy(&adapter->hw, BM_WUS, ~0);
6906 	} else {
6907 		u32 wus = er32(WUS);
6908 
6909 		if (wus) {
6910 			e_info("MAC Wakeup cause - %s\n",
6911 			       wus & E1000_WUS_EX ? "Unicast Packet" :
6912 			       wus & E1000_WUS_MC ? "Multicast Packet" :
6913 			       wus & E1000_WUS_BC ? "Broadcast Packet" :
6914 			       wus & E1000_WUS_MAG ? "Magic Packet" :
6915 			       wus & E1000_WUS_LNKC ? "Link Status Change" :
6916 			       "other");
6917 		}
6918 		ew32(WUS, ~0);
6919 	}
6920 
6921 	e1000e_reset(adapter);
6922 
6923 	e1000_init_manageability_pt(adapter);
6924 
6925 	/* If the controller has AMT, do not set DRV_LOAD until the interface
6926 	 * is up.  For all other cases, let the f/w know that the h/w is now
6927 	 * under the control of the driver.
6928 	 */
6929 	if (!(adapter->flags & FLAG_HAS_AMT))
6930 		e1000e_get_hw_control(adapter);
6931 
6932 	return 0;
6933 }
6934 
6935 static __maybe_unused int e1000e_pm_suspend(struct device *dev)
6936 {
6937 	struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6938 	struct e1000_adapter *adapter = netdev_priv(netdev);
6939 	struct pci_dev *pdev = to_pci_dev(dev);
6940 	struct e1000_hw *hw = &adapter->hw;
6941 	int rc;
6942 
6943 	e1000e_flush_lpic(pdev);
6944 
6945 	e1000e_pm_freeze(dev);
6946 
6947 	rc = __e1000_shutdown(pdev, false);
6948 	if (rc)
6949 		e1000e_pm_thaw(dev);
6950 
6951 	/* Introduce S0ix implementation */
6952 	if (hw->mac.type >= e1000_pch_cnp &&
6953 	    !e1000e_check_me(hw->adapter->pdev->device))
6954 		e1000e_s0ix_entry_flow(adapter);
6955 
6956 	return rc;
6957 }
6958 
6959 static __maybe_unused int e1000e_pm_resume(struct device *dev)
6960 {
6961 	struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6962 	struct e1000_adapter *adapter = netdev_priv(netdev);
6963 	struct pci_dev *pdev = to_pci_dev(dev);
6964 	struct e1000_hw *hw = &adapter->hw;
6965 	int rc;
6966 
6967 	/* Introduce S0ix implementation */
6968 	if (hw->mac.type >= e1000_pch_cnp &&
6969 	    !e1000e_check_me(hw->adapter->pdev->device))
6970 		e1000e_s0ix_exit_flow(adapter);
6971 
6972 	rc = __e1000_resume(pdev);
6973 	if (rc)
6974 		return rc;
6975 
6976 	return e1000e_pm_thaw(dev);
6977 }
6978 
6979 static __maybe_unused int e1000e_pm_runtime_idle(struct device *dev)
6980 {
6981 	struct net_device *netdev = dev_get_drvdata(dev);
6982 	struct e1000_adapter *adapter = netdev_priv(netdev);
6983 	u16 eee_lp;
6984 
6985 	eee_lp = adapter->hw.dev_spec.ich8lan.eee_lp_ability;
6986 
6987 	if (!e1000e_has_link(adapter)) {
6988 		adapter->hw.dev_spec.ich8lan.eee_lp_ability = eee_lp;
6989 		pm_schedule_suspend(dev, 5 * MSEC_PER_SEC);
6990 	}
6991 
6992 	return -EBUSY;
6993 }
6994 
6995 static __maybe_unused int e1000e_pm_runtime_resume(struct device *dev)
6996 {
6997 	struct pci_dev *pdev = to_pci_dev(dev);
6998 	struct net_device *netdev = pci_get_drvdata(pdev);
6999 	struct e1000_adapter *adapter = netdev_priv(netdev);
7000 	int rc;
7001 
7002 	rc = __e1000_resume(pdev);
7003 	if (rc)
7004 		return rc;
7005 
7006 	if (netdev->flags & IFF_UP)
7007 		e1000e_up(adapter);
7008 
7009 	return rc;
7010 }
7011 
7012 static __maybe_unused int e1000e_pm_runtime_suspend(struct device *dev)
7013 {
7014 	struct pci_dev *pdev = to_pci_dev(dev);
7015 	struct net_device *netdev = pci_get_drvdata(pdev);
7016 	struct e1000_adapter *adapter = netdev_priv(netdev);
7017 
7018 	if (netdev->flags & IFF_UP) {
7019 		int count = E1000_CHECK_RESET_COUNT;
7020 
7021 		while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
7022 			usleep_range(10000, 11000);
7023 
7024 		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
7025 
7026 		/* Down the device without resetting the hardware */
7027 		e1000e_down(adapter, false);
7028 	}
7029 
7030 	if (__e1000_shutdown(pdev, true)) {
7031 		e1000e_pm_runtime_resume(dev);
7032 		return -EBUSY;
7033 	}
7034 
7035 	return 0;
7036 }
7037 
7038 static void e1000_shutdown(struct pci_dev *pdev)
7039 {
7040 	e1000e_flush_lpic(pdev);
7041 
7042 	e1000e_pm_freeze(&pdev->dev);
7043 
7044 	__e1000_shutdown(pdev, false);
7045 }
7046 
7047 #ifdef CONFIG_NET_POLL_CONTROLLER
7048 
7049 static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data)
7050 {
7051 	struct net_device *netdev = data;
7052 	struct e1000_adapter *adapter = netdev_priv(netdev);
7053 
7054 	if (adapter->msix_entries) {
7055 		int vector, msix_irq;
7056 
7057 		vector = 0;
7058 		msix_irq = adapter->msix_entries[vector].vector;
7059 		if (disable_hardirq(msix_irq))
7060 			e1000_intr_msix_rx(msix_irq, netdev);
7061 		enable_irq(msix_irq);
7062 
7063 		vector++;
7064 		msix_irq = adapter->msix_entries[vector].vector;
7065 		if (disable_hardirq(msix_irq))
7066 			e1000_intr_msix_tx(msix_irq, netdev);
7067 		enable_irq(msix_irq);
7068 
7069 		vector++;
7070 		msix_irq = adapter->msix_entries[vector].vector;
7071 		if (disable_hardirq(msix_irq))
7072 			e1000_msix_other(msix_irq, netdev);
7073 		enable_irq(msix_irq);
7074 	}
7075 
7076 	return IRQ_HANDLED;
7077 }
7078 
7079 /**
7080  * e1000_netpoll
7081  * @netdev: network interface device structure
7082  *
7083  * Polling 'interrupt' - used by things like netconsole to send skbs
7084  * without having to re-enable interrupts. It's not called while
7085  * the interrupt routine is executing.
7086  */
7087 static void e1000_netpoll(struct net_device *netdev)
7088 {
7089 	struct e1000_adapter *adapter = netdev_priv(netdev);
7090 
7091 	switch (adapter->int_mode) {
7092 	case E1000E_INT_MODE_MSIX:
7093 		e1000_intr_msix(adapter->pdev->irq, netdev);
7094 		break;
7095 	case E1000E_INT_MODE_MSI:
7096 		if (disable_hardirq(adapter->pdev->irq))
7097 			e1000_intr_msi(adapter->pdev->irq, netdev);
7098 		enable_irq(adapter->pdev->irq);
7099 		break;
7100 	default:		/* E1000E_INT_MODE_LEGACY */
7101 		if (disable_hardirq(adapter->pdev->irq))
7102 			e1000_intr(adapter->pdev->irq, netdev);
7103 		enable_irq(adapter->pdev->irq);
7104 		break;
7105 	}
7106 }
7107 #endif
7108 
7109 /**
7110  * e1000_io_error_detected - called when PCI error is detected
7111  * @pdev: Pointer to PCI device
7112  * @state: The current pci connection state
7113  *
7114  * This function is called after a PCI bus error affecting
7115  * this device has been detected.
7116  */
7117 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
7118 						pci_channel_state_t state)
7119 {
7120 	e1000e_pm_freeze(&pdev->dev);
7121 
7122 	if (state == pci_channel_io_perm_failure)
7123 		return PCI_ERS_RESULT_DISCONNECT;
7124 
7125 	pci_disable_device(pdev);
7126 
7127 	/* Request a slot slot reset. */
7128 	return PCI_ERS_RESULT_NEED_RESET;
7129 }
7130 
7131 /**
7132  * e1000_io_slot_reset - called after the pci bus has been reset.
7133  * @pdev: Pointer to PCI device
7134  *
7135  * Restart the card from scratch, as if from a cold-boot. Implementation
7136  * resembles the first-half of the e1000e_pm_resume routine.
7137  */
7138 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
7139 {
7140 	struct net_device *netdev = pci_get_drvdata(pdev);
7141 	struct e1000_adapter *adapter = netdev_priv(netdev);
7142 	struct e1000_hw *hw = &adapter->hw;
7143 	u16 aspm_disable_flag = 0;
7144 	int err;
7145 	pci_ers_result_t result;
7146 
7147 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
7148 		aspm_disable_flag = PCIE_LINK_STATE_L0S;
7149 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
7150 		aspm_disable_flag |= PCIE_LINK_STATE_L1;
7151 	if (aspm_disable_flag)
7152 		e1000e_disable_aspm_locked(pdev, aspm_disable_flag);
7153 
7154 	err = pci_enable_device_mem(pdev);
7155 	if (err) {
7156 		dev_err(&pdev->dev,
7157 			"Cannot re-enable PCI device after reset.\n");
7158 		result = PCI_ERS_RESULT_DISCONNECT;
7159 	} else {
7160 		pdev->state_saved = true;
7161 		pci_restore_state(pdev);
7162 		pci_set_master(pdev);
7163 
7164 		pci_enable_wake(pdev, PCI_D3hot, 0);
7165 		pci_enable_wake(pdev, PCI_D3cold, 0);
7166 
7167 		e1000e_reset(adapter);
7168 		ew32(WUS, ~0);
7169 		result = PCI_ERS_RESULT_RECOVERED;
7170 	}
7171 
7172 	return result;
7173 }
7174 
7175 /**
7176  * e1000_io_resume - called when traffic can start flowing again.
7177  * @pdev: Pointer to PCI device
7178  *
7179  * This callback is called when the error recovery driver tells us that
7180  * its OK to resume normal operation. Implementation resembles the
7181  * second-half of the e1000e_pm_resume routine.
7182  */
7183 static void e1000_io_resume(struct pci_dev *pdev)
7184 {
7185 	struct net_device *netdev = pci_get_drvdata(pdev);
7186 	struct e1000_adapter *adapter = netdev_priv(netdev);
7187 
7188 	e1000_init_manageability_pt(adapter);
7189 
7190 	e1000e_pm_thaw(&pdev->dev);
7191 
7192 	/* If the controller has AMT, do not set DRV_LOAD until the interface
7193 	 * is up.  For all other cases, let the f/w know that the h/w is now
7194 	 * under the control of the driver.
7195 	 */
7196 	if (!(adapter->flags & FLAG_HAS_AMT))
7197 		e1000e_get_hw_control(adapter);
7198 }
7199 
7200 static void e1000_print_device_info(struct e1000_adapter *adapter)
7201 {
7202 	struct e1000_hw *hw = &adapter->hw;
7203 	struct net_device *netdev = adapter->netdev;
7204 	u32 ret_val;
7205 	u8 pba_str[E1000_PBANUM_LENGTH];
7206 
7207 	/* print bus type/speed/width info */
7208 	e_info("(PCI Express:2.5GT/s:%s) %pM\n",
7209 	       /* bus width */
7210 	       ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
7211 		"Width x1"),
7212 	       /* MAC address */
7213 	       netdev->dev_addr);
7214 	e_info("Intel(R) PRO/%s Network Connection\n",
7215 	       (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
7216 	ret_val = e1000_read_pba_string_generic(hw, pba_str,
7217 						E1000_PBANUM_LENGTH);
7218 	if (ret_val)
7219 		strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
7220 	e_info("MAC: %d, PHY: %d, PBA No: %s\n",
7221 	       hw->mac.type, hw->phy.type, pba_str);
7222 }
7223 
7224 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
7225 {
7226 	struct e1000_hw *hw = &adapter->hw;
7227 	int ret_val;
7228 	u16 buf = 0;
7229 
7230 	if (hw->mac.type != e1000_82573)
7231 		return;
7232 
7233 	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
7234 	le16_to_cpus(&buf);
7235 	if (!ret_val && (!(buf & BIT(0)))) {
7236 		/* Deep Smart Power Down (DSPD) */
7237 		dev_warn(&adapter->pdev->dev,
7238 			 "Warning: detected DSPD enabled in EEPROM\n");
7239 	}
7240 }
7241 
7242 static netdev_features_t e1000_fix_features(struct net_device *netdev,
7243 					    netdev_features_t features)
7244 {
7245 	struct e1000_adapter *adapter = netdev_priv(netdev);
7246 	struct e1000_hw *hw = &adapter->hw;
7247 
7248 	/* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
7249 	if ((hw->mac.type >= e1000_pch2lan) && (netdev->mtu > ETH_DATA_LEN))
7250 		features &= ~NETIF_F_RXFCS;
7251 
7252 	/* Since there is no support for separate Rx/Tx vlan accel
7253 	 * enable/disable make sure Tx flag is always in same state as Rx.
7254 	 */
7255 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
7256 		features |= NETIF_F_HW_VLAN_CTAG_TX;
7257 	else
7258 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
7259 
7260 	return features;
7261 }
7262 
7263 static int e1000_set_features(struct net_device *netdev,
7264 			      netdev_features_t features)
7265 {
7266 	struct e1000_adapter *adapter = netdev_priv(netdev);
7267 	netdev_features_t changed = features ^ netdev->features;
7268 
7269 	if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
7270 		adapter->flags |= FLAG_TSO_FORCE;
7271 
7272 	if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
7273 			 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
7274 			 NETIF_F_RXALL)))
7275 		return 0;
7276 
7277 	if (changed & NETIF_F_RXFCS) {
7278 		if (features & NETIF_F_RXFCS) {
7279 			adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
7280 		} else {
7281 			/* We need to take it back to defaults, which might mean
7282 			 * stripping is still disabled at the adapter level.
7283 			 */
7284 			if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
7285 				adapter->flags2 |= FLAG2_CRC_STRIPPING;
7286 			else
7287 				adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
7288 		}
7289 	}
7290 
7291 	netdev->features = features;
7292 
7293 	if (netif_running(netdev))
7294 		e1000e_reinit_locked(adapter);
7295 	else
7296 		e1000e_reset(adapter);
7297 
7298 	return 1;
7299 }
7300 
7301 static const struct net_device_ops e1000e_netdev_ops = {
7302 	.ndo_open		= e1000e_open,
7303 	.ndo_stop		= e1000e_close,
7304 	.ndo_start_xmit		= e1000_xmit_frame,
7305 	.ndo_get_stats64	= e1000e_get_stats64,
7306 	.ndo_set_rx_mode	= e1000e_set_rx_mode,
7307 	.ndo_set_mac_address	= e1000_set_mac,
7308 	.ndo_change_mtu		= e1000_change_mtu,
7309 	.ndo_do_ioctl		= e1000_ioctl,
7310 	.ndo_tx_timeout		= e1000_tx_timeout,
7311 	.ndo_validate_addr	= eth_validate_addr,
7312 
7313 	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
7314 	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
7315 #ifdef CONFIG_NET_POLL_CONTROLLER
7316 	.ndo_poll_controller	= e1000_netpoll,
7317 #endif
7318 	.ndo_set_features = e1000_set_features,
7319 	.ndo_fix_features = e1000_fix_features,
7320 	.ndo_features_check	= passthru_features_check,
7321 };
7322 
7323 /**
7324  * e1000_probe - Device Initialization Routine
7325  * @pdev: PCI device information struct
7326  * @ent: entry in e1000_pci_tbl
7327  *
7328  * Returns 0 on success, negative on failure
7329  *
7330  * e1000_probe initializes an adapter identified by a pci_dev structure.
7331  * The OS initialization, configuring of the adapter private structure,
7332  * and a hardware reset occur.
7333  **/
7334 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
7335 {
7336 	struct net_device *netdev;
7337 	struct e1000_adapter *adapter;
7338 	struct e1000_hw *hw;
7339 	const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
7340 	resource_size_t mmio_start, mmio_len;
7341 	resource_size_t flash_start, flash_len;
7342 	static int cards_found;
7343 	u16 aspm_disable_flag = 0;
7344 	int bars, i, err, pci_using_dac;
7345 	u16 eeprom_data = 0;
7346 	u16 eeprom_apme_mask = E1000_EEPROM_APME;
7347 	s32 ret_val = 0;
7348 
7349 	if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
7350 		aspm_disable_flag = PCIE_LINK_STATE_L0S;
7351 	if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
7352 		aspm_disable_flag |= PCIE_LINK_STATE_L1;
7353 	if (aspm_disable_flag)
7354 		e1000e_disable_aspm(pdev, aspm_disable_flag);
7355 
7356 	err = pci_enable_device_mem(pdev);
7357 	if (err)
7358 		return err;
7359 
7360 	pci_using_dac = 0;
7361 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
7362 	if (!err) {
7363 		pci_using_dac = 1;
7364 	} else {
7365 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
7366 		if (err) {
7367 			dev_err(&pdev->dev,
7368 				"No usable DMA configuration, aborting\n");
7369 			goto err_dma;
7370 		}
7371 	}
7372 
7373 	bars = pci_select_bars(pdev, IORESOURCE_MEM);
7374 	err = pci_request_selected_regions_exclusive(pdev, bars,
7375 						     e1000e_driver_name);
7376 	if (err)
7377 		goto err_pci_reg;
7378 
7379 	/* AER (Advanced Error Reporting) hooks */
7380 	pci_enable_pcie_error_reporting(pdev);
7381 
7382 	pci_set_master(pdev);
7383 	/* PCI config space info */
7384 	err = pci_save_state(pdev);
7385 	if (err)
7386 		goto err_alloc_etherdev;
7387 
7388 	err = -ENOMEM;
7389 	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
7390 	if (!netdev)
7391 		goto err_alloc_etherdev;
7392 
7393 	SET_NETDEV_DEV(netdev, &pdev->dev);
7394 
7395 	netdev->irq = pdev->irq;
7396 
7397 	pci_set_drvdata(pdev, netdev);
7398 	adapter = netdev_priv(netdev);
7399 	hw = &adapter->hw;
7400 	adapter->netdev = netdev;
7401 	adapter->pdev = pdev;
7402 	adapter->ei = ei;
7403 	adapter->pba = ei->pba;
7404 	adapter->flags = ei->flags;
7405 	adapter->flags2 = ei->flags2;
7406 	adapter->hw.adapter = adapter;
7407 	adapter->hw.mac.type = ei->mac;
7408 	adapter->max_hw_frame_size = ei->max_hw_frame_size;
7409 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
7410 
7411 	mmio_start = pci_resource_start(pdev, 0);
7412 	mmio_len = pci_resource_len(pdev, 0);
7413 
7414 	err = -EIO;
7415 	adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
7416 	if (!adapter->hw.hw_addr)
7417 		goto err_ioremap;
7418 
7419 	if ((adapter->flags & FLAG_HAS_FLASH) &&
7420 	    (pci_resource_flags(pdev, 1) & IORESOURCE_MEM) &&
7421 	    (hw->mac.type < e1000_pch_spt)) {
7422 		flash_start = pci_resource_start(pdev, 1);
7423 		flash_len = pci_resource_len(pdev, 1);
7424 		adapter->hw.flash_address = ioremap(flash_start, flash_len);
7425 		if (!adapter->hw.flash_address)
7426 			goto err_flashmap;
7427 	}
7428 
7429 	/* Set default EEE advertisement */
7430 	if (adapter->flags2 & FLAG2_HAS_EEE)
7431 		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
7432 
7433 	/* construct the net_device struct */
7434 	netdev->netdev_ops = &e1000e_netdev_ops;
7435 	e1000e_set_ethtool_ops(netdev);
7436 	netdev->watchdog_timeo = 5 * HZ;
7437 	netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64);
7438 	strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
7439 
7440 	netdev->mem_start = mmio_start;
7441 	netdev->mem_end = mmio_start + mmio_len;
7442 
7443 	adapter->bd_number = cards_found++;
7444 
7445 	e1000e_check_options(adapter);
7446 
7447 	/* setup adapter struct */
7448 	err = e1000_sw_init(adapter);
7449 	if (err)
7450 		goto err_sw_init;
7451 
7452 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
7453 	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
7454 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
7455 
7456 	err = ei->get_variants(adapter);
7457 	if (err)
7458 		goto err_hw_init;
7459 
7460 	if ((adapter->flags & FLAG_IS_ICH) &&
7461 	    (adapter->flags & FLAG_READ_ONLY_NVM) &&
7462 	    (hw->mac.type < e1000_pch_spt))
7463 		e1000e_write_protect_nvm_ich8lan(&adapter->hw);
7464 
7465 	hw->mac.ops.get_bus_info(&adapter->hw);
7466 
7467 	adapter->hw.phy.autoneg_wait_to_complete = 0;
7468 
7469 	/* Copper options */
7470 	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
7471 		adapter->hw.phy.mdix = AUTO_ALL_MODES;
7472 		adapter->hw.phy.disable_polarity_correction = 0;
7473 		adapter->hw.phy.ms_type = e1000_ms_hw_default;
7474 	}
7475 
7476 	if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
7477 		dev_info(&pdev->dev,
7478 			 "PHY reset is blocked due to SOL/IDER session.\n");
7479 
7480 	/* Set initial default active device features */
7481 	netdev->features = (NETIF_F_SG |
7482 			    NETIF_F_HW_VLAN_CTAG_RX |
7483 			    NETIF_F_HW_VLAN_CTAG_TX |
7484 			    NETIF_F_TSO |
7485 			    NETIF_F_TSO6 |
7486 			    NETIF_F_RXHASH |
7487 			    NETIF_F_RXCSUM |
7488 			    NETIF_F_HW_CSUM);
7489 
7490 	/* Set user-changeable features (subset of all device features) */
7491 	netdev->hw_features = netdev->features;
7492 	netdev->hw_features |= NETIF_F_RXFCS;
7493 	netdev->priv_flags |= IFF_SUPP_NOFCS;
7494 	netdev->hw_features |= NETIF_F_RXALL;
7495 
7496 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
7497 		netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7498 
7499 	netdev->vlan_features |= (NETIF_F_SG |
7500 				  NETIF_F_TSO |
7501 				  NETIF_F_TSO6 |
7502 				  NETIF_F_HW_CSUM);
7503 
7504 	netdev->priv_flags |= IFF_UNICAST_FLT;
7505 
7506 	if (pci_using_dac) {
7507 		netdev->features |= NETIF_F_HIGHDMA;
7508 		netdev->vlan_features |= NETIF_F_HIGHDMA;
7509 	}
7510 
7511 	/* MTU range: 68 - max_hw_frame_size */
7512 	netdev->min_mtu = ETH_MIN_MTU;
7513 	netdev->max_mtu = adapter->max_hw_frame_size -
7514 			  (VLAN_ETH_HLEN + ETH_FCS_LEN);
7515 
7516 	if (e1000e_enable_mng_pass_thru(&adapter->hw))
7517 		adapter->flags |= FLAG_MNG_PT_ENABLED;
7518 
7519 	/* before reading the NVM, reset the controller to
7520 	 * put the device in a known good starting state
7521 	 */
7522 	adapter->hw.mac.ops.reset_hw(&adapter->hw);
7523 
7524 	/* systems with ASPM and others may see the checksum fail on the first
7525 	 * attempt. Let's give it a few tries
7526 	 */
7527 	for (i = 0;; i++) {
7528 		if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
7529 			break;
7530 		if (i == 2) {
7531 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
7532 			err = -EIO;
7533 			goto err_eeprom;
7534 		}
7535 	}
7536 
7537 	e1000_eeprom_checks(adapter);
7538 
7539 	/* copy the MAC address */
7540 	if (e1000e_read_mac_addr(&adapter->hw))
7541 		dev_err(&pdev->dev,
7542 			"NVM Read Error while reading MAC address\n");
7543 
7544 	memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
7545 
7546 	if (!is_valid_ether_addr(netdev->dev_addr)) {
7547 		dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
7548 			netdev->dev_addr);
7549 		err = -EIO;
7550 		goto err_eeprom;
7551 	}
7552 
7553 	timer_setup(&adapter->watchdog_timer, e1000_watchdog, 0);
7554 	timer_setup(&adapter->phy_info_timer, e1000_update_phy_info, 0);
7555 
7556 	INIT_WORK(&adapter->reset_task, e1000_reset_task);
7557 	INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
7558 	INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
7559 	INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
7560 	INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
7561 
7562 	/* Initialize link parameters. User can change them with ethtool */
7563 	adapter->hw.mac.autoneg = 1;
7564 	adapter->fc_autoneg = true;
7565 	adapter->hw.fc.requested_mode = e1000_fc_default;
7566 	adapter->hw.fc.current_mode = e1000_fc_default;
7567 	adapter->hw.phy.autoneg_advertised = 0x2f;
7568 
7569 	/* Initial Wake on LAN setting - If APM wake is enabled in
7570 	 * the EEPROM, enable the ACPI Magic Packet filter
7571 	 */
7572 	if (adapter->flags & FLAG_APME_IN_WUC) {
7573 		/* APME bit in EEPROM is mapped to WUC.APME */
7574 		eeprom_data = er32(WUC);
7575 		eeprom_apme_mask = E1000_WUC_APME;
7576 		if ((hw->mac.type > e1000_ich10lan) &&
7577 		    (eeprom_data & E1000_WUC_PHY_WAKE))
7578 			adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
7579 	} else if (adapter->flags & FLAG_APME_IN_CTRL3) {
7580 		if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
7581 		    (adapter->hw.bus.func == 1))
7582 			ret_val = e1000_read_nvm(&adapter->hw,
7583 					      NVM_INIT_CONTROL3_PORT_B,
7584 					      1, &eeprom_data);
7585 		else
7586 			ret_val = e1000_read_nvm(&adapter->hw,
7587 					      NVM_INIT_CONTROL3_PORT_A,
7588 					      1, &eeprom_data);
7589 	}
7590 
7591 	/* fetch WoL from EEPROM */
7592 	if (ret_val)
7593 		e_dbg("NVM read error getting WoL initial values: %d\n", ret_val);
7594 	else if (eeprom_data & eeprom_apme_mask)
7595 		adapter->eeprom_wol |= E1000_WUFC_MAG;
7596 
7597 	/* now that we have the eeprom settings, apply the special cases
7598 	 * where the eeprom may be wrong or the board simply won't support
7599 	 * wake on lan on a particular port
7600 	 */
7601 	if (!(adapter->flags & FLAG_HAS_WOL))
7602 		adapter->eeprom_wol = 0;
7603 
7604 	/* initialize the wol settings based on the eeprom settings */
7605 	adapter->wol = adapter->eeprom_wol;
7606 
7607 	/* make sure adapter isn't asleep if manageability is enabled */
7608 	if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) ||
7609 	    (hw->mac.ops.check_mng_mode(hw)))
7610 		device_wakeup_enable(&pdev->dev);
7611 
7612 	/* save off EEPROM version number */
7613 	ret_val = e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
7614 
7615 	if (ret_val) {
7616 		e_dbg("NVM read error getting EEPROM version: %d\n", ret_val);
7617 		adapter->eeprom_vers = 0;
7618 	}
7619 
7620 	/* init PTP hardware clock */
7621 	e1000e_ptp_init(adapter);
7622 
7623 	/* reset the hardware with the new settings */
7624 	e1000e_reset(adapter);
7625 
7626 	/* If the controller has AMT, do not set DRV_LOAD until the interface
7627 	 * is up.  For all other cases, let the f/w know that the h/w is now
7628 	 * under the control of the driver.
7629 	 */
7630 	if (!(adapter->flags & FLAG_HAS_AMT))
7631 		e1000e_get_hw_control(adapter);
7632 
7633 	strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
7634 	err = register_netdev(netdev);
7635 	if (err)
7636 		goto err_register;
7637 
7638 	/* carrier off reporting is important to ethtool even BEFORE open */
7639 	netif_carrier_off(netdev);
7640 
7641 	e1000_print_device_info(adapter);
7642 
7643 	dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
7644 
7645 	if (pci_dev_run_wake(pdev) && hw->mac.type < e1000_pch_cnp)
7646 		pm_runtime_put_noidle(&pdev->dev);
7647 
7648 	return 0;
7649 
7650 err_register:
7651 	if (!(adapter->flags & FLAG_HAS_AMT))
7652 		e1000e_release_hw_control(adapter);
7653 err_eeprom:
7654 	if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
7655 		e1000_phy_hw_reset(&adapter->hw);
7656 err_hw_init:
7657 	kfree(adapter->tx_ring);
7658 	kfree(adapter->rx_ring);
7659 err_sw_init:
7660 	if ((adapter->hw.flash_address) && (hw->mac.type < e1000_pch_spt))
7661 		iounmap(adapter->hw.flash_address);
7662 	e1000e_reset_interrupt_capability(adapter);
7663 err_flashmap:
7664 	iounmap(adapter->hw.hw_addr);
7665 err_ioremap:
7666 	free_netdev(netdev);
7667 err_alloc_etherdev:
7668 	pci_release_mem_regions(pdev);
7669 err_pci_reg:
7670 err_dma:
7671 	pci_disable_device(pdev);
7672 	return err;
7673 }
7674 
7675 /**
7676  * e1000_remove - Device Removal Routine
7677  * @pdev: PCI device information struct
7678  *
7679  * e1000_remove is called by the PCI subsystem to alert the driver
7680  * that it should release a PCI device.  The could be caused by a
7681  * Hot-Plug event, or because the driver is going to be removed from
7682  * memory.
7683  **/
7684 static void e1000_remove(struct pci_dev *pdev)
7685 {
7686 	struct net_device *netdev = pci_get_drvdata(pdev);
7687 	struct e1000_adapter *adapter = netdev_priv(netdev);
7688 
7689 	e1000e_ptp_remove(adapter);
7690 
7691 	/* The timers may be rescheduled, so explicitly disable them
7692 	 * from being rescheduled.
7693 	 */
7694 	set_bit(__E1000_DOWN, &adapter->state);
7695 	del_timer_sync(&adapter->watchdog_timer);
7696 	del_timer_sync(&adapter->phy_info_timer);
7697 
7698 	cancel_work_sync(&adapter->reset_task);
7699 	cancel_work_sync(&adapter->watchdog_task);
7700 	cancel_work_sync(&adapter->downshift_task);
7701 	cancel_work_sync(&adapter->update_phy_task);
7702 	cancel_work_sync(&adapter->print_hang_task);
7703 
7704 	if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
7705 		cancel_work_sync(&adapter->tx_hwtstamp_work);
7706 		if (adapter->tx_hwtstamp_skb) {
7707 			dev_consume_skb_any(adapter->tx_hwtstamp_skb);
7708 			adapter->tx_hwtstamp_skb = NULL;
7709 		}
7710 	}
7711 
7712 	unregister_netdev(netdev);
7713 
7714 	if (pci_dev_run_wake(pdev))
7715 		pm_runtime_get_noresume(&pdev->dev);
7716 
7717 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7718 	 * would have already happened in close and is redundant.
7719 	 */
7720 	e1000e_release_hw_control(adapter);
7721 
7722 	e1000e_reset_interrupt_capability(adapter);
7723 	kfree(adapter->tx_ring);
7724 	kfree(adapter->rx_ring);
7725 
7726 	iounmap(adapter->hw.hw_addr);
7727 	if ((adapter->hw.flash_address) &&
7728 	    (adapter->hw.mac.type < e1000_pch_spt))
7729 		iounmap(adapter->hw.flash_address);
7730 	pci_release_mem_regions(pdev);
7731 
7732 	free_netdev(netdev);
7733 
7734 	/* AER disable */
7735 	pci_disable_pcie_error_reporting(pdev);
7736 
7737 	pci_disable_device(pdev);
7738 }
7739 
7740 /* PCI Error Recovery (ERS) */
7741 static const struct pci_error_handlers e1000_err_handler = {
7742 	.error_detected = e1000_io_error_detected,
7743 	.slot_reset = e1000_io_slot_reset,
7744 	.resume = e1000_io_resume,
7745 };
7746 
7747 static const struct pci_device_id e1000_pci_tbl[] = {
7748 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
7749 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
7750 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
7751 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP),
7752 	  board_82571 },
7753 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
7754 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
7755 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
7756 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
7757 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
7758 
7759 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
7760 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
7761 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
7762 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
7763 
7764 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
7765 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
7766 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
7767 
7768 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
7769 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
7770 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
7771 
7772 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
7773 	  board_80003es2lan },
7774 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
7775 	  board_80003es2lan },
7776 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
7777 	  board_80003es2lan },
7778 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
7779 	  board_80003es2lan },
7780 
7781 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
7782 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
7783 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
7784 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
7785 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
7786 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
7787 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
7788 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
7789 
7790 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
7791 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
7792 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
7793 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
7794 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
7795 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
7796 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
7797 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
7798 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
7799 
7800 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
7801 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
7802 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
7803 
7804 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
7805 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
7806 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
7807 
7808 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
7809 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
7810 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
7811 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
7812 
7813 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
7814 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
7815 
7816 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
7817 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
7818 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt },
7819 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt },
7820 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt },
7821 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt },
7822 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt },
7823 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt },
7824 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM), board_pch_spt },
7825 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V), board_pch_spt },
7826 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM2), board_pch_spt },
7827 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V2), board_pch_spt },
7828 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LBG_I219_LM3), board_pch_spt },
7829 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM4), board_pch_spt },
7830 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V4), board_pch_spt },
7831 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM5), board_pch_spt },
7832 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V5), board_pch_spt },
7833 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM6), board_pch_cnp },
7834 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V6), board_pch_cnp },
7835 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM7), board_pch_cnp },
7836 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V7), board_pch_cnp },
7837 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM8), board_pch_cnp },
7838 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V8), board_pch_cnp },
7839 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM9), board_pch_cnp },
7840 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V9), board_pch_cnp },
7841 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM10), board_pch_cnp },
7842 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V10), board_pch_cnp },
7843 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM11), board_pch_cnp },
7844 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V11), board_pch_cnp },
7845 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM12), board_pch_spt },
7846 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V12), board_pch_spt },
7847 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM13), board_pch_cnp },
7848 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V13), board_pch_cnp },
7849 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM14), board_pch_cnp },
7850 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V14), board_pch_cnp },
7851 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM15), board_pch_cnp },
7852 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V15), board_pch_cnp },
7853 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_LM16), board_pch_cnp },
7854 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_V16), board_pch_cnp },
7855 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_LM17), board_pch_cnp },
7856 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_V17), board_pch_cnp },
7857 
7858 	{ 0, 0, 0, 0, 0, 0, 0 }	/* terminate list */
7859 };
7860 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
7861 
7862 static const struct dev_pm_ops e1000_pm_ops = {
7863 #ifdef CONFIG_PM_SLEEP
7864 	.suspend	= e1000e_pm_suspend,
7865 	.resume		= e1000e_pm_resume,
7866 	.freeze		= e1000e_pm_freeze,
7867 	.thaw		= e1000e_pm_thaw,
7868 	.poweroff	= e1000e_pm_suspend,
7869 	.restore	= e1000e_pm_resume,
7870 #endif
7871 	SET_RUNTIME_PM_OPS(e1000e_pm_runtime_suspend, e1000e_pm_runtime_resume,
7872 			   e1000e_pm_runtime_idle)
7873 };
7874 
7875 /* PCI Device API Driver */
7876 static struct pci_driver e1000_driver = {
7877 	.name     = e1000e_driver_name,
7878 	.id_table = e1000_pci_tbl,
7879 	.probe    = e1000_probe,
7880 	.remove   = e1000_remove,
7881 	.driver   = {
7882 		.pm = &e1000_pm_ops,
7883 	},
7884 	.shutdown = e1000_shutdown,
7885 	.err_handler = &e1000_err_handler
7886 };
7887 
7888 /**
7889  * e1000_init_module - Driver Registration Routine
7890  *
7891  * e1000_init_module is the first routine called when the driver is
7892  * loaded. All it does is register with the PCI subsystem.
7893  **/
7894 static int __init e1000_init_module(void)
7895 {
7896 	pr_info("Intel(R) PRO/1000 Network Driver\n");
7897 	pr_info("Copyright(c) 1999 - 2015 Intel Corporation.\n");
7898 
7899 	return pci_register_driver(&e1000_driver);
7900 }
7901 module_init(e1000_init_module);
7902 
7903 /**
7904  * e1000_exit_module - Driver Exit Cleanup Routine
7905  *
7906  * e1000_exit_module is called just before the driver is removed
7907  * from memory.
7908  **/
7909 static void __exit e1000_exit_module(void)
7910 {
7911 	pci_unregister_driver(&e1000_driver);
7912 }
7913 module_exit(e1000_exit_module);
7914 
7915 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
7916 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7917 MODULE_LICENSE("GPL v2");
7918 
7919 /* netdev.c */
7920