1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 1999 - 2018 Intel Corporation. */ 3 4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 5 6 #include <linux/module.h> 7 #include <linux/types.h> 8 #include <linux/init.h> 9 #include <linux/pci.h> 10 #include <linux/vmalloc.h> 11 #include <linux/pagemap.h> 12 #include <linux/delay.h> 13 #include <linux/netdevice.h> 14 #include <linux/interrupt.h> 15 #include <linux/tcp.h> 16 #include <linux/ipv6.h> 17 #include <linux/slab.h> 18 #include <net/checksum.h> 19 #include <net/ip6_checksum.h> 20 #include <linux/ethtool.h> 21 #include <linux/if_vlan.h> 22 #include <linux/cpu.h> 23 #include <linux/smp.h> 24 #include <linux/pm_qos.h> 25 #include <linux/pm_runtime.h> 26 #include <linux/aer.h> 27 #include <linux/prefetch.h> 28 29 #include "e1000.h" 30 31 #define DRV_EXTRAVERSION "-k" 32 33 #define DRV_VERSION "3.2.6" DRV_EXTRAVERSION 34 char e1000e_driver_name[] = "e1000e"; 35 const char e1000e_driver_version[] = DRV_VERSION; 36 37 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK) 38 static int debug = -1; 39 module_param(debug, int, 0); 40 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 41 42 static const struct e1000_info *e1000_info_tbl[] = { 43 [board_82571] = &e1000_82571_info, 44 [board_82572] = &e1000_82572_info, 45 [board_82573] = &e1000_82573_info, 46 [board_82574] = &e1000_82574_info, 47 [board_82583] = &e1000_82583_info, 48 [board_80003es2lan] = &e1000_es2_info, 49 [board_ich8lan] = &e1000_ich8_info, 50 [board_ich9lan] = &e1000_ich9_info, 51 [board_ich10lan] = &e1000_ich10_info, 52 [board_pchlan] = &e1000_pch_info, 53 [board_pch2lan] = &e1000_pch2_info, 54 [board_pch_lpt] = &e1000_pch_lpt_info, 55 [board_pch_spt] = &e1000_pch_spt_info, 56 [board_pch_cnp] = &e1000_pch_cnp_info, 57 }; 58 59 struct e1000_reg_info { 60 u32 ofs; 61 char *name; 62 }; 63 64 static const struct e1000_reg_info e1000_reg_info_tbl[] = { 65 /* General Registers */ 66 {E1000_CTRL, "CTRL"}, 67 {E1000_STATUS, "STATUS"}, 68 {E1000_CTRL_EXT, "CTRL_EXT"}, 69 70 /* Interrupt Registers */ 71 {E1000_ICR, "ICR"}, 72 73 /* Rx Registers */ 74 {E1000_RCTL, "RCTL"}, 75 {E1000_RDLEN(0), "RDLEN"}, 76 {E1000_RDH(0), "RDH"}, 77 {E1000_RDT(0), "RDT"}, 78 {E1000_RDTR, "RDTR"}, 79 {E1000_RXDCTL(0), "RXDCTL"}, 80 {E1000_ERT, "ERT"}, 81 {E1000_RDBAL(0), "RDBAL"}, 82 {E1000_RDBAH(0), "RDBAH"}, 83 {E1000_RDFH, "RDFH"}, 84 {E1000_RDFT, "RDFT"}, 85 {E1000_RDFHS, "RDFHS"}, 86 {E1000_RDFTS, "RDFTS"}, 87 {E1000_RDFPC, "RDFPC"}, 88 89 /* Tx Registers */ 90 {E1000_TCTL, "TCTL"}, 91 {E1000_TDBAL(0), "TDBAL"}, 92 {E1000_TDBAH(0), "TDBAH"}, 93 {E1000_TDLEN(0), "TDLEN"}, 94 {E1000_TDH(0), "TDH"}, 95 {E1000_TDT(0), "TDT"}, 96 {E1000_TIDV, "TIDV"}, 97 {E1000_TXDCTL(0), "TXDCTL"}, 98 {E1000_TADV, "TADV"}, 99 {E1000_TARC(0), "TARC"}, 100 {E1000_TDFH, "TDFH"}, 101 {E1000_TDFT, "TDFT"}, 102 {E1000_TDFHS, "TDFHS"}, 103 {E1000_TDFTS, "TDFTS"}, 104 {E1000_TDFPC, "TDFPC"}, 105 106 /* List Terminator */ 107 {0, NULL} 108 }; 109 110 /** 111 * __ew32_prepare - prepare to write to MAC CSR register on certain parts 112 * @hw: pointer to the HW structure 113 * 114 * When updating the MAC CSR registers, the Manageability Engine (ME) could 115 * be accessing the registers at the same time. Normally, this is handled in 116 * h/w by an arbiter but on some parts there is a bug that acknowledges Host 117 * accesses later than it should which could result in the register to have 118 * an incorrect value. Workaround this by checking the FWSM register which 119 * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set 120 * and try again a number of times. 121 **/ 122 s32 __ew32_prepare(struct e1000_hw *hw) 123 { 124 s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT; 125 126 while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i) 127 udelay(50); 128 129 return i; 130 } 131 132 void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val) 133 { 134 if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA) 135 __ew32_prepare(hw); 136 137 writel(val, hw->hw_addr + reg); 138 } 139 140 /** 141 * e1000_regdump - register printout routine 142 * @hw: pointer to the HW structure 143 * @reginfo: pointer to the register info table 144 **/ 145 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo) 146 { 147 int n = 0; 148 char rname[16]; 149 u32 regs[8]; 150 151 switch (reginfo->ofs) { 152 case E1000_RXDCTL(0): 153 for (n = 0; n < 2; n++) 154 regs[n] = __er32(hw, E1000_RXDCTL(n)); 155 break; 156 case E1000_TXDCTL(0): 157 for (n = 0; n < 2; n++) 158 regs[n] = __er32(hw, E1000_TXDCTL(n)); 159 break; 160 case E1000_TARC(0): 161 for (n = 0; n < 2; n++) 162 regs[n] = __er32(hw, E1000_TARC(n)); 163 break; 164 default: 165 pr_info("%-15s %08x\n", 166 reginfo->name, __er32(hw, reginfo->ofs)); 167 return; 168 } 169 170 snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]"); 171 pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]); 172 } 173 174 static void e1000e_dump_ps_pages(struct e1000_adapter *adapter, 175 struct e1000_buffer *bi) 176 { 177 int i; 178 struct e1000_ps_page *ps_page; 179 180 for (i = 0; i < adapter->rx_ps_pages; i++) { 181 ps_page = &bi->ps_pages[i]; 182 183 if (ps_page->page) { 184 pr_info("packet dump for ps_page %d:\n", i); 185 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 186 16, 1, page_address(ps_page->page), 187 PAGE_SIZE, true); 188 } 189 } 190 } 191 192 /** 193 * e1000e_dump - Print registers, Tx-ring and Rx-ring 194 * @adapter: board private structure 195 **/ 196 static void e1000e_dump(struct e1000_adapter *adapter) 197 { 198 struct net_device *netdev = adapter->netdev; 199 struct e1000_hw *hw = &adapter->hw; 200 struct e1000_reg_info *reginfo; 201 struct e1000_ring *tx_ring = adapter->tx_ring; 202 struct e1000_tx_desc *tx_desc; 203 struct my_u0 { 204 __le64 a; 205 __le64 b; 206 } *u0; 207 struct e1000_buffer *buffer_info; 208 struct e1000_ring *rx_ring = adapter->rx_ring; 209 union e1000_rx_desc_packet_split *rx_desc_ps; 210 union e1000_rx_desc_extended *rx_desc; 211 struct my_u1 { 212 __le64 a; 213 __le64 b; 214 __le64 c; 215 __le64 d; 216 } *u1; 217 u32 staterr; 218 int i = 0; 219 220 if (!netif_msg_hw(adapter)) 221 return; 222 223 /* Print netdevice Info */ 224 if (netdev) { 225 dev_info(&adapter->pdev->dev, "Net device Info\n"); 226 pr_info("Device Name state trans_start\n"); 227 pr_info("%-15s %016lX %016lX\n", netdev->name, 228 netdev->state, dev_trans_start(netdev)); 229 } 230 231 /* Print Registers */ 232 dev_info(&adapter->pdev->dev, "Register Dump\n"); 233 pr_info(" Register Name Value\n"); 234 for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl; 235 reginfo->name; reginfo++) { 236 e1000_regdump(hw, reginfo); 237 } 238 239 /* Print Tx Ring Summary */ 240 if (!netdev || !netif_running(netdev)) 241 return; 242 243 dev_info(&adapter->pdev->dev, "Tx Ring Summary\n"); 244 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n"); 245 buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean]; 246 pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n", 247 0, tx_ring->next_to_use, tx_ring->next_to_clean, 248 (unsigned long long)buffer_info->dma, 249 buffer_info->length, 250 buffer_info->next_to_watch, 251 (unsigned long long)buffer_info->time_stamp); 252 253 /* Print Tx Ring */ 254 if (!netif_msg_tx_done(adapter)) 255 goto rx_ring_summary; 256 257 dev_info(&adapter->pdev->dev, "Tx Ring Dump\n"); 258 259 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended) 260 * 261 * Legacy Transmit Descriptor 262 * +--------------------------------------------------------------+ 263 * 0 | Buffer Address [63:0] (Reserved on Write Back) | 264 * +--------------------------------------------------------------+ 265 * 8 | Special | CSS | Status | CMD | CSO | Length | 266 * +--------------------------------------------------------------+ 267 * 63 48 47 36 35 32 31 24 23 16 15 0 268 * 269 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload 270 * 63 48 47 40 39 32 31 16 15 8 7 0 271 * +----------------------------------------------------------------+ 272 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS | 273 * +----------------------------------------------------------------+ 274 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN | 275 * +----------------------------------------------------------------+ 276 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0 277 * 278 * Extended Data Descriptor (DTYP=0x1) 279 * +----------------------------------------------------------------+ 280 * 0 | Buffer Address [63:0] | 281 * +----------------------------------------------------------------+ 282 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN | 283 * +----------------------------------------------------------------+ 284 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0 285 */ 286 pr_info("Tl[desc] [address 63:0 ] [SpeCssSCmCsLen] [bi->dma ] leng ntw timestamp bi->skb <-- Legacy format\n"); 287 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Context format\n"); 288 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Data format\n"); 289 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) { 290 const char *next_desc; 291 tx_desc = E1000_TX_DESC(*tx_ring, i); 292 buffer_info = &tx_ring->buffer_info[i]; 293 u0 = (struct my_u0 *)tx_desc; 294 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean) 295 next_desc = " NTC/U"; 296 else if (i == tx_ring->next_to_use) 297 next_desc = " NTU"; 298 else if (i == tx_ring->next_to_clean) 299 next_desc = " NTC"; 300 else 301 next_desc = ""; 302 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p%s\n", 303 (!(le64_to_cpu(u0->b) & BIT(29)) ? 'l' : 304 ((le64_to_cpu(u0->b) & BIT(20)) ? 'd' : 'c')), 305 i, 306 (unsigned long long)le64_to_cpu(u0->a), 307 (unsigned long long)le64_to_cpu(u0->b), 308 (unsigned long long)buffer_info->dma, 309 buffer_info->length, buffer_info->next_to_watch, 310 (unsigned long long)buffer_info->time_stamp, 311 buffer_info->skb, next_desc); 312 313 if (netif_msg_pktdata(adapter) && buffer_info->skb) 314 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 315 16, 1, buffer_info->skb->data, 316 buffer_info->skb->len, true); 317 } 318 319 /* Print Rx Ring Summary */ 320 rx_ring_summary: 321 dev_info(&adapter->pdev->dev, "Rx Ring Summary\n"); 322 pr_info("Queue [NTU] [NTC]\n"); 323 pr_info(" %5d %5X %5X\n", 324 0, rx_ring->next_to_use, rx_ring->next_to_clean); 325 326 /* Print Rx Ring */ 327 if (!netif_msg_rx_status(adapter)) 328 return; 329 330 dev_info(&adapter->pdev->dev, "Rx Ring Dump\n"); 331 switch (adapter->rx_ps_pages) { 332 case 1: 333 case 2: 334 case 3: 335 /* [Extended] Packet Split Receive Descriptor Format 336 * 337 * +-----------------------------------------------------+ 338 * 0 | Buffer Address 0 [63:0] | 339 * +-----------------------------------------------------+ 340 * 8 | Buffer Address 1 [63:0] | 341 * +-----------------------------------------------------+ 342 * 16 | Buffer Address 2 [63:0] | 343 * +-----------------------------------------------------+ 344 * 24 | Buffer Address 3 [63:0] | 345 * +-----------------------------------------------------+ 346 */ 347 pr_info("R [desc] [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma ] [bi->skb] <-- Ext Pkt Split format\n"); 348 /* [Extended] Receive Descriptor (Write-Back) Format 349 * 350 * 63 48 47 32 31 13 12 8 7 4 3 0 351 * +------------------------------------------------------+ 352 * 0 | Packet | IP | Rsvd | MRQ | Rsvd | MRQ RSS | 353 * | Checksum | Ident | | Queue | | Type | 354 * +------------------------------------------------------+ 355 * 8 | VLAN Tag | Length | Extended Error | Extended Status | 356 * +------------------------------------------------------+ 357 * 63 48 47 32 31 20 19 0 358 */ 359 pr_info("RWB[desc] [ck ipid mrqhsh] [vl l0 ee es] [ l3 l2 l1 hs] [reserved ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n"); 360 for (i = 0; i < rx_ring->count; i++) { 361 const char *next_desc; 362 buffer_info = &rx_ring->buffer_info[i]; 363 rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i); 364 u1 = (struct my_u1 *)rx_desc_ps; 365 staterr = 366 le32_to_cpu(rx_desc_ps->wb.middle.status_error); 367 368 if (i == rx_ring->next_to_use) 369 next_desc = " NTU"; 370 else if (i == rx_ring->next_to_clean) 371 next_desc = " NTC"; 372 else 373 next_desc = ""; 374 375 if (staterr & E1000_RXD_STAT_DD) { 376 /* Descriptor Done */ 377 pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX ---------------- %p%s\n", 378 "RWB", i, 379 (unsigned long long)le64_to_cpu(u1->a), 380 (unsigned long long)le64_to_cpu(u1->b), 381 (unsigned long long)le64_to_cpu(u1->c), 382 (unsigned long long)le64_to_cpu(u1->d), 383 buffer_info->skb, next_desc); 384 } else { 385 pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX %016llX %p%s\n", 386 "R ", i, 387 (unsigned long long)le64_to_cpu(u1->a), 388 (unsigned long long)le64_to_cpu(u1->b), 389 (unsigned long long)le64_to_cpu(u1->c), 390 (unsigned long long)le64_to_cpu(u1->d), 391 (unsigned long long)buffer_info->dma, 392 buffer_info->skb, next_desc); 393 394 if (netif_msg_pktdata(adapter)) 395 e1000e_dump_ps_pages(adapter, 396 buffer_info); 397 } 398 } 399 break; 400 default: 401 case 0: 402 /* Extended Receive Descriptor (Read) Format 403 * 404 * +-----------------------------------------------------+ 405 * 0 | Buffer Address [63:0] | 406 * +-----------------------------------------------------+ 407 * 8 | Reserved | 408 * +-----------------------------------------------------+ 409 */ 410 pr_info("R [desc] [buf addr 63:0 ] [reserved 63:0 ] [bi->dma ] [bi->skb] <-- Ext (Read) format\n"); 411 /* Extended Receive Descriptor (Write-Back) Format 412 * 413 * 63 48 47 32 31 24 23 4 3 0 414 * +------------------------------------------------------+ 415 * | RSS Hash | | | | 416 * 0 +-------------------+ Rsvd | Reserved | MRQ RSS | 417 * | Packet | IP | | | Type | 418 * | Checksum | Ident | | | | 419 * +------------------------------------------------------+ 420 * 8 | VLAN Tag | Length | Extended Error | Extended Status | 421 * +------------------------------------------------------+ 422 * 63 48 47 32 31 20 19 0 423 */ 424 pr_info("RWB[desc] [cs ipid mrq] [vt ln xe xs] [bi->skb] <-- Ext (Write-Back) format\n"); 425 426 for (i = 0; i < rx_ring->count; i++) { 427 const char *next_desc; 428 429 buffer_info = &rx_ring->buffer_info[i]; 430 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i); 431 u1 = (struct my_u1 *)rx_desc; 432 staterr = le32_to_cpu(rx_desc->wb.upper.status_error); 433 434 if (i == rx_ring->next_to_use) 435 next_desc = " NTU"; 436 else if (i == rx_ring->next_to_clean) 437 next_desc = " NTC"; 438 else 439 next_desc = ""; 440 441 if (staterr & E1000_RXD_STAT_DD) { 442 /* Descriptor Done */ 443 pr_info("%s[0x%03X] %016llX %016llX ---------------- %p%s\n", 444 "RWB", i, 445 (unsigned long long)le64_to_cpu(u1->a), 446 (unsigned long long)le64_to_cpu(u1->b), 447 buffer_info->skb, next_desc); 448 } else { 449 pr_info("%s[0x%03X] %016llX %016llX %016llX %p%s\n", 450 "R ", i, 451 (unsigned long long)le64_to_cpu(u1->a), 452 (unsigned long long)le64_to_cpu(u1->b), 453 (unsigned long long)buffer_info->dma, 454 buffer_info->skb, next_desc); 455 456 if (netif_msg_pktdata(adapter) && 457 buffer_info->skb) 458 print_hex_dump(KERN_INFO, "", 459 DUMP_PREFIX_ADDRESS, 16, 460 1, 461 buffer_info->skb->data, 462 adapter->rx_buffer_len, 463 true); 464 } 465 } 466 } 467 } 468 469 /** 470 * e1000_desc_unused - calculate if we have unused descriptors 471 **/ 472 static int e1000_desc_unused(struct e1000_ring *ring) 473 { 474 if (ring->next_to_clean > ring->next_to_use) 475 return ring->next_to_clean - ring->next_to_use - 1; 476 477 return ring->count + ring->next_to_clean - ring->next_to_use - 1; 478 } 479 480 /** 481 * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp 482 * @adapter: board private structure 483 * @hwtstamps: time stamp structure to update 484 * @systim: unsigned 64bit system time value. 485 * 486 * Convert the system time value stored in the RX/TXSTMP registers into a 487 * hwtstamp which can be used by the upper level time stamping functions. 488 * 489 * The 'systim_lock' spinlock is used to protect the consistency of the 490 * system time value. This is needed because reading the 64 bit time 491 * value involves reading two 32 bit registers. The first read latches the 492 * value. 493 **/ 494 static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter, 495 struct skb_shared_hwtstamps *hwtstamps, 496 u64 systim) 497 { 498 u64 ns; 499 unsigned long flags; 500 501 spin_lock_irqsave(&adapter->systim_lock, flags); 502 ns = timecounter_cyc2time(&adapter->tc, systim); 503 spin_unlock_irqrestore(&adapter->systim_lock, flags); 504 505 memset(hwtstamps, 0, sizeof(*hwtstamps)); 506 hwtstamps->hwtstamp = ns_to_ktime(ns); 507 } 508 509 /** 510 * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp 511 * @adapter: board private structure 512 * @status: descriptor extended error and status field 513 * @skb: particular skb to include time stamp 514 * 515 * If the time stamp is valid, convert it into the timecounter ns value 516 * and store that result into the shhwtstamps structure which is passed 517 * up the network stack. 518 **/ 519 static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status, 520 struct sk_buff *skb) 521 { 522 struct e1000_hw *hw = &adapter->hw; 523 u64 rxstmp; 524 525 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) || 526 !(status & E1000_RXDEXT_STATERR_TST) || 527 !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) 528 return; 529 530 /* The Rx time stamp registers contain the time stamp. No other 531 * received packet will be time stamped until the Rx time stamp 532 * registers are read. Because only one packet can be time stamped 533 * at a time, the register values must belong to this packet and 534 * therefore none of the other additional attributes need to be 535 * compared. 536 */ 537 rxstmp = (u64)er32(RXSTMPL); 538 rxstmp |= (u64)er32(RXSTMPH) << 32; 539 e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp); 540 541 adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP; 542 } 543 544 /** 545 * e1000_receive_skb - helper function to handle Rx indications 546 * @adapter: board private structure 547 * @staterr: descriptor extended error and status field as written by hardware 548 * @vlan: descriptor vlan field as written by hardware (no le/be conversion) 549 * @skb: pointer to sk_buff to be indicated to stack 550 **/ 551 static void e1000_receive_skb(struct e1000_adapter *adapter, 552 struct net_device *netdev, struct sk_buff *skb, 553 u32 staterr, __le16 vlan) 554 { 555 u16 tag = le16_to_cpu(vlan); 556 557 e1000e_rx_hwtstamp(adapter, staterr, skb); 558 559 skb->protocol = eth_type_trans(skb, netdev); 560 561 if (staterr & E1000_RXD_STAT_VP) 562 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag); 563 564 napi_gro_receive(&adapter->napi, skb); 565 } 566 567 /** 568 * e1000_rx_checksum - Receive Checksum Offload 569 * @adapter: board private structure 570 * @status_err: receive descriptor status and error fields 571 * @csum: receive descriptor csum field 572 * @sk_buff: socket buffer with received data 573 **/ 574 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err, 575 struct sk_buff *skb) 576 { 577 u16 status = (u16)status_err; 578 u8 errors = (u8)(status_err >> 24); 579 580 skb_checksum_none_assert(skb); 581 582 /* Rx checksum disabled */ 583 if (!(adapter->netdev->features & NETIF_F_RXCSUM)) 584 return; 585 586 /* Ignore Checksum bit is set */ 587 if (status & E1000_RXD_STAT_IXSM) 588 return; 589 590 /* TCP/UDP checksum error bit or IP checksum error bit is set */ 591 if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) { 592 /* let the stack verify checksum errors */ 593 adapter->hw_csum_err++; 594 return; 595 } 596 597 /* TCP/UDP Checksum has not been calculated */ 598 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))) 599 return; 600 601 /* It must be a TCP or UDP packet with a valid checksum */ 602 skb->ip_summed = CHECKSUM_UNNECESSARY; 603 adapter->hw_csum_good++; 604 } 605 606 static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i) 607 { 608 struct e1000_adapter *adapter = rx_ring->adapter; 609 struct e1000_hw *hw = &adapter->hw; 610 s32 ret_val = __ew32_prepare(hw); 611 612 writel(i, rx_ring->tail); 613 614 if (unlikely(!ret_val && (i != readl(rx_ring->tail)))) { 615 u32 rctl = er32(RCTL); 616 617 ew32(RCTL, rctl & ~E1000_RCTL_EN); 618 e_err("ME firmware caused invalid RDT - resetting\n"); 619 schedule_work(&adapter->reset_task); 620 } 621 } 622 623 static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i) 624 { 625 struct e1000_adapter *adapter = tx_ring->adapter; 626 struct e1000_hw *hw = &adapter->hw; 627 s32 ret_val = __ew32_prepare(hw); 628 629 writel(i, tx_ring->tail); 630 631 if (unlikely(!ret_val && (i != readl(tx_ring->tail)))) { 632 u32 tctl = er32(TCTL); 633 634 ew32(TCTL, tctl & ~E1000_TCTL_EN); 635 e_err("ME firmware caused invalid TDT - resetting\n"); 636 schedule_work(&adapter->reset_task); 637 } 638 } 639 640 /** 641 * e1000_alloc_rx_buffers - Replace used receive buffers 642 * @rx_ring: Rx descriptor ring 643 **/ 644 static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring, 645 int cleaned_count, gfp_t gfp) 646 { 647 struct e1000_adapter *adapter = rx_ring->adapter; 648 struct net_device *netdev = adapter->netdev; 649 struct pci_dev *pdev = adapter->pdev; 650 union e1000_rx_desc_extended *rx_desc; 651 struct e1000_buffer *buffer_info; 652 struct sk_buff *skb; 653 unsigned int i; 654 unsigned int bufsz = adapter->rx_buffer_len; 655 656 i = rx_ring->next_to_use; 657 buffer_info = &rx_ring->buffer_info[i]; 658 659 while (cleaned_count--) { 660 skb = buffer_info->skb; 661 if (skb) { 662 skb_trim(skb, 0); 663 goto map_skb; 664 } 665 666 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp); 667 if (!skb) { 668 /* Better luck next round */ 669 adapter->alloc_rx_buff_failed++; 670 break; 671 } 672 673 buffer_info->skb = skb; 674 map_skb: 675 buffer_info->dma = dma_map_single(&pdev->dev, skb->data, 676 adapter->rx_buffer_len, 677 DMA_FROM_DEVICE); 678 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { 679 dev_err(&pdev->dev, "Rx DMA map failed\n"); 680 adapter->rx_dma_failed++; 681 break; 682 } 683 684 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i); 685 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma); 686 687 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) { 688 /* Force memory writes to complete before letting h/w 689 * know there are new descriptors to fetch. (Only 690 * applicable for weak-ordered memory model archs, 691 * such as IA-64). 692 */ 693 wmb(); 694 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA) 695 e1000e_update_rdt_wa(rx_ring, i); 696 else 697 writel(i, rx_ring->tail); 698 } 699 i++; 700 if (i == rx_ring->count) 701 i = 0; 702 buffer_info = &rx_ring->buffer_info[i]; 703 } 704 705 rx_ring->next_to_use = i; 706 } 707 708 /** 709 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split 710 * @rx_ring: Rx descriptor ring 711 **/ 712 static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring, 713 int cleaned_count, gfp_t gfp) 714 { 715 struct e1000_adapter *adapter = rx_ring->adapter; 716 struct net_device *netdev = adapter->netdev; 717 struct pci_dev *pdev = adapter->pdev; 718 union e1000_rx_desc_packet_split *rx_desc; 719 struct e1000_buffer *buffer_info; 720 struct e1000_ps_page *ps_page; 721 struct sk_buff *skb; 722 unsigned int i, j; 723 724 i = rx_ring->next_to_use; 725 buffer_info = &rx_ring->buffer_info[i]; 726 727 while (cleaned_count--) { 728 rx_desc = E1000_RX_DESC_PS(*rx_ring, i); 729 730 for (j = 0; j < PS_PAGE_BUFFERS; j++) { 731 ps_page = &buffer_info->ps_pages[j]; 732 if (j >= adapter->rx_ps_pages) { 733 /* all unused desc entries get hw null ptr */ 734 rx_desc->read.buffer_addr[j + 1] = 735 ~cpu_to_le64(0); 736 continue; 737 } 738 if (!ps_page->page) { 739 ps_page->page = alloc_page(gfp); 740 if (!ps_page->page) { 741 adapter->alloc_rx_buff_failed++; 742 goto no_buffers; 743 } 744 ps_page->dma = dma_map_page(&pdev->dev, 745 ps_page->page, 746 0, PAGE_SIZE, 747 DMA_FROM_DEVICE); 748 if (dma_mapping_error(&pdev->dev, 749 ps_page->dma)) { 750 dev_err(&adapter->pdev->dev, 751 "Rx DMA page map failed\n"); 752 adapter->rx_dma_failed++; 753 goto no_buffers; 754 } 755 } 756 /* Refresh the desc even if buffer_addrs 757 * didn't change because each write-back 758 * erases this info. 759 */ 760 rx_desc->read.buffer_addr[j + 1] = 761 cpu_to_le64(ps_page->dma); 762 } 763 764 skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0, 765 gfp); 766 767 if (!skb) { 768 adapter->alloc_rx_buff_failed++; 769 break; 770 } 771 772 buffer_info->skb = skb; 773 buffer_info->dma = dma_map_single(&pdev->dev, skb->data, 774 adapter->rx_ps_bsize0, 775 DMA_FROM_DEVICE); 776 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { 777 dev_err(&pdev->dev, "Rx DMA map failed\n"); 778 adapter->rx_dma_failed++; 779 /* cleanup skb */ 780 dev_kfree_skb_any(skb); 781 buffer_info->skb = NULL; 782 break; 783 } 784 785 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma); 786 787 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) { 788 /* Force memory writes to complete before letting h/w 789 * know there are new descriptors to fetch. (Only 790 * applicable for weak-ordered memory model archs, 791 * such as IA-64). 792 */ 793 wmb(); 794 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA) 795 e1000e_update_rdt_wa(rx_ring, i << 1); 796 else 797 writel(i << 1, rx_ring->tail); 798 } 799 800 i++; 801 if (i == rx_ring->count) 802 i = 0; 803 buffer_info = &rx_ring->buffer_info[i]; 804 } 805 806 no_buffers: 807 rx_ring->next_to_use = i; 808 } 809 810 /** 811 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers 812 * @rx_ring: Rx descriptor ring 813 * @cleaned_count: number of buffers to allocate this pass 814 **/ 815 816 static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring, 817 int cleaned_count, gfp_t gfp) 818 { 819 struct e1000_adapter *adapter = rx_ring->adapter; 820 struct net_device *netdev = adapter->netdev; 821 struct pci_dev *pdev = adapter->pdev; 822 union e1000_rx_desc_extended *rx_desc; 823 struct e1000_buffer *buffer_info; 824 struct sk_buff *skb; 825 unsigned int i; 826 unsigned int bufsz = 256 - 16; /* for skb_reserve */ 827 828 i = rx_ring->next_to_use; 829 buffer_info = &rx_ring->buffer_info[i]; 830 831 while (cleaned_count--) { 832 skb = buffer_info->skb; 833 if (skb) { 834 skb_trim(skb, 0); 835 goto check_page; 836 } 837 838 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp); 839 if (unlikely(!skb)) { 840 /* Better luck next round */ 841 adapter->alloc_rx_buff_failed++; 842 break; 843 } 844 845 buffer_info->skb = skb; 846 check_page: 847 /* allocate a new page if necessary */ 848 if (!buffer_info->page) { 849 buffer_info->page = alloc_page(gfp); 850 if (unlikely(!buffer_info->page)) { 851 adapter->alloc_rx_buff_failed++; 852 break; 853 } 854 } 855 856 if (!buffer_info->dma) { 857 buffer_info->dma = dma_map_page(&pdev->dev, 858 buffer_info->page, 0, 859 PAGE_SIZE, 860 DMA_FROM_DEVICE); 861 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) { 862 adapter->alloc_rx_buff_failed++; 863 break; 864 } 865 } 866 867 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i); 868 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma); 869 870 if (unlikely(++i == rx_ring->count)) 871 i = 0; 872 buffer_info = &rx_ring->buffer_info[i]; 873 } 874 875 if (likely(rx_ring->next_to_use != i)) { 876 rx_ring->next_to_use = i; 877 if (unlikely(i-- == 0)) 878 i = (rx_ring->count - 1); 879 880 /* Force memory writes to complete before letting h/w 881 * know there are new descriptors to fetch. (Only 882 * applicable for weak-ordered memory model archs, 883 * such as IA-64). 884 */ 885 wmb(); 886 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA) 887 e1000e_update_rdt_wa(rx_ring, i); 888 else 889 writel(i, rx_ring->tail); 890 } 891 } 892 893 static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss, 894 struct sk_buff *skb) 895 { 896 if (netdev->features & NETIF_F_RXHASH) 897 skb_set_hash(skb, le32_to_cpu(rss), PKT_HASH_TYPE_L3); 898 } 899 900 /** 901 * e1000_clean_rx_irq - Send received data up the network stack 902 * @rx_ring: Rx descriptor ring 903 * 904 * the return value indicates whether actual cleaning was done, there 905 * is no guarantee that everything was cleaned 906 **/ 907 static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done, 908 int work_to_do) 909 { 910 struct e1000_adapter *adapter = rx_ring->adapter; 911 struct net_device *netdev = adapter->netdev; 912 struct pci_dev *pdev = adapter->pdev; 913 struct e1000_hw *hw = &adapter->hw; 914 union e1000_rx_desc_extended *rx_desc, *next_rxd; 915 struct e1000_buffer *buffer_info, *next_buffer; 916 u32 length, staterr; 917 unsigned int i; 918 int cleaned_count = 0; 919 bool cleaned = false; 920 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 921 922 i = rx_ring->next_to_clean; 923 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i); 924 staterr = le32_to_cpu(rx_desc->wb.upper.status_error); 925 buffer_info = &rx_ring->buffer_info[i]; 926 927 while (staterr & E1000_RXD_STAT_DD) { 928 struct sk_buff *skb; 929 930 if (*work_done >= work_to_do) 931 break; 932 (*work_done)++; 933 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */ 934 935 skb = buffer_info->skb; 936 buffer_info->skb = NULL; 937 938 prefetch(skb->data - NET_IP_ALIGN); 939 940 i++; 941 if (i == rx_ring->count) 942 i = 0; 943 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i); 944 prefetch(next_rxd); 945 946 next_buffer = &rx_ring->buffer_info[i]; 947 948 cleaned = true; 949 cleaned_count++; 950 dma_unmap_single(&pdev->dev, buffer_info->dma, 951 adapter->rx_buffer_len, DMA_FROM_DEVICE); 952 buffer_info->dma = 0; 953 954 length = le16_to_cpu(rx_desc->wb.upper.length); 955 956 /* !EOP means multiple descriptors were used to store a single 957 * packet, if that's the case we need to toss it. In fact, we 958 * need to toss every packet with the EOP bit clear and the 959 * next frame that _does_ have the EOP bit set, as it is by 960 * definition only a frame fragment 961 */ 962 if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) 963 adapter->flags2 |= FLAG2_IS_DISCARDING; 964 965 if (adapter->flags2 & FLAG2_IS_DISCARDING) { 966 /* All receives must fit into a single buffer */ 967 e_dbg("Receive packet consumed multiple buffers\n"); 968 /* recycle */ 969 buffer_info->skb = skb; 970 if (staterr & E1000_RXD_STAT_EOP) 971 adapter->flags2 &= ~FLAG2_IS_DISCARDING; 972 goto next_desc; 973 } 974 975 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) && 976 !(netdev->features & NETIF_F_RXALL))) { 977 /* recycle */ 978 buffer_info->skb = skb; 979 goto next_desc; 980 } 981 982 /* adjust length to remove Ethernet CRC */ 983 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) { 984 /* If configured to store CRC, don't subtract FCS, 985 * but keep the FCS bytes out of the total_rx_bytes 986 * counter 987 */ 988 if (netdev->features & NETIF_F_RXFCS) 989 total_rx_bytes -= 4; 990 else 991 length -= 4; 992 } 993 994 total_rx_bytes += length; 995 total_rx_packets++; 996 997 /* code added for copybreak, this should improve 998 * performance for small packets with large amounts 999 * of reassembly being done in the stack 1000 */ 1001 if (length < copybreak) { 1002 struct sk_buff *new_skb = 1003 napi_alloc_skb(&adapter->napi, length); 1004 if (new_skb) { 1005 skb_copy_to_linear_data_offset(new_skb, 1006 -NET_IP_ALIGN, 1007 (skb->data - 1008 NET_IP_ALIGN), 1009 (length + 1010 NET_IP_ALIGN)); 1011 /* save the skb in buffer_info as good */ 1012 buffer_info->skb = skb; 1013 skb = new_skb; 1014 } 1015 /* else just continue with the old one */ 1016 } 1017 /* end copybreak code */ 1018 skb_put(skb, length); 1019 1020 /* Receive Checksum Offload */ 1021 e1000_rx_checksum(adapter, staterr, skb); 1022 1023 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb); 1024 1025 e1000_receive_skb(adapter, netdev, skb, staterr, 1026 rx_desc->wb.upper.vlan); 1027 1028 next_desc: 1029 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF); 1030 1031 /* return some buffers to hardware, one at a time is too slow */ 1032 if (cleaned_count >= E1000_RX_BUFFER_WRITE) { 1033 adapter->alloc_rx_buf(rx_ring, cleaned_count, 1034 GFP_ATOMIC); 1035 cleaned_count = 0; 1036 } 1037 1038 /* use prefetched values */ 1039 rx_desc = next_rxd; 1040 buffer_info = next_buffer; 1041 1042 staterr = le32_to_cpu(rx_desc->wb.upper.status_error); 1043 } 1044 rx_ring->next_to_clean = i; 1045 1046 cleaned_count = e1000_desc_unused(rx_ring); 1047 if (cleaned_count) 1048 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC); 1049 1050 adapter->total_rx_bytes += total_rx_bytes; 1051 adapter->total_rx_packets += total_rx_packets; 1052 return cleaned; 1053 } 1054 1055 static void e1000_put_txbuf(struct e1000_ring *tx_ring, 1056 struct e1000_buffer *buffer_info, 1057 bool drop) 1058 { 1059 struct e1000_adapter *adapter = tx_ring->adapter; 1060 1061 if (buffer_info->dma) { 1062 if (buffer_info->mapped_as_page) 1063 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma, 1064 buffer_info->length, DMA_TO_DEVICE); 1065 else 1066 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma, 1067 buffer_info->length, DMA_TO_DEVICE); 1068 buffer_info->dma = 0; 1069 } 1070 if (buffer_info->skb) { 1071 if (drop) 1072 dev_kfree_skb_any(buffer_info->skb); 1073 else 1074 dev_consume_skb_any(buffer_info->skb); 1075 buffer_info->skb = NULL; 1076 } 1077 buffer_info->time_stamp = 0; 1078 } 1079 1080 static void e1000_print_hw_hang(struct work_struct *work) 1081 { 1082 struct e1000_adapter *adapter = container_of(work, 1083 struct e1000_adapter, 1084 print_hang_task); 1085 struct net_device *netdev = adapter->netdev; 1086 struct e1000_ring *tx_ring = adapter->tx_ring; 1087 unsigned int i = tx_ring->next_to_clean; 1088 unsigned int eop = tx_ring->buffer_info[i].next_to_watch; 1089 struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop); 1090 struct e1000_hw *hw = &adapter->hw; 1091 u16 phy_status, phy_1000t_status, phy_ext_status; 1092 u16 pci_status; 1093 1094 if (test_bit(__E1000_DOWN, &adapter->state)) 1095 return; 1096 1097 if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) { 1098 /* May be block on write-back, flush and detect again 1099 * flush pending descriptor writebacks to memory 1100 */ 1101 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD); 1102 /* execute the writes immediately */ 1103 e1e_flush(); 1104 /* Due to rare timing issues, write to TIDV again to ensure 1105 * the write is successful 1106 */ 1107 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD); 1108 /* execute the writes immediately */ 1109 e1e_flush(); 1110 adapter->tx_hang_recheck = true; 1111 return; 1112 } 1113 adapter->tx_hang_recheck = false; 1114 1115 if (er32(TDH(0)) == er32(TDT(0))) { 1116 e_dbg("false hang detected, ignoring\n"); 1117 return; 1118 } 1119 1120 /* Real hang detected */ 1121 netif_stop_queue(netdev); 1122 1123 e1e_rphy(hw, MII_BMSR, &phy_status); 1124 e1e_rphy(hw, MII_STAT1000, &phy_1000t_status); 1125 e1e_rphy(hw, MII_ESTATUS, &phy_ext_status); 1126 1127 pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status); 1128 1129 /* detected Hardware unit hang */ 1130 e_err("Detected Hardware Unit Hang:\n" 1131 " TDH <%x>\n" 1132 " TDT <%x>\n" 1133 " next_to_use <%x>\n" 1134 " next_to_clean <%x>\n" 1135 "buffer_info[next_to_clean]:\n" 1136 " time_stamp <%lx>\n" 1137 " next_to_watch <%x>\n" 1138 " jiffies <%lx>\n" 1139 " next_to_watch.status <%x>\n" 1140 "MAC Status <%x>\n" 1141 "PHY Status <%x>\n" 1142 "PHY 1000BASE-T Status <%x>\n" 1143 "PHY Extended Status <%x>\n" 1144 "PCI Status <%x>\n", 1145 readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use, 1146 tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp, 1147 eop, jiffies, eop_desc->upper.fields.status, er32(STATUS), 1148 phy_status, phy_1000t_status, phy_ext_status, pci_status); 1149 1150 e1000e_dump(adapter); 1151 1152 /* Suggest workaround for known h/w issue */ 1153 if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE)) 1154 e_err("Try turning off Tx pause (flow control) via ethtool\n"); 1155 } 1156 1157 /** 1158 * e1000e_tx_hwtstamp_work - check for Tx time stamp 1159 * @work: pointer to work struct 1160 * 1161 * This work function polls the TSYNCTXCTL valid bit to determine when a 1162 * timestamp has been taken for the current stored skb. The timestamp must 1163 * be for this skb because only one such packet is allowed in the queue. 1164 */ 1165 static void e1000e_tx_hwtstamp_work(struct work_struct *work) 1166 { 1167 struct e1000_adapter *adapter = container_of(work, struct e1000_adapter, 1168 tx_hwtstamp_work); 1169 struct e1000_hw *hw = &adapter->hw; 1170 1171 if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) { 1172 struct sk_buff *skb = adapter->tx_hwtstamp_skb; 1173 struct skb_shared_hwtstamps shhwtstamps; 1174 u64 txstmp; 1175 1176 txstmp = er32(TXSTMPL); 1177 txstmp |= (u64)er32(TXSTMPH) << 32; 1178 1179 e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp); 1180 1181 /* Clear the global tx_hwtstamp_skb pointer and force writes 1182 * prior to notifying the stack of a Tx timestamp. 1183 */ 1184 adapter->tx_hwtstamp_skb = NULL; 1185 wmb(); /* force write prior to skb_tstamp_tx */ 1186 1187 skb_tstamp_tx(skb, &shhwtstamps); 1188 dev_consume_skb_any(skb); 1189 } else if (time_after(jiffies, adapter->tx_hwtstamp_start 1190 + adapter->tx_timeout_factor * HZ)) { 1191 dev_kfree_skb_any(adapter->tx_hwtstamp_skb); 1192 adapter->tx_hwtstamp_skb = NULL; 1193 adapter->tx_hwtstamp_timeouts++; 1194 e_warn("clearing Tx timestamp hang\n"); 1195 } else { 1196 /* reschedule to check later */ 1197 schedule_work(&adapter->tx_hwtstamp_work); 1198 } 1199 } 1200 1201 /** 1202 * e1000_clean_tx_irq - Reclaim resources after transmit completes 1203 * @tx_ring: Tx descriptor ring 1204 * 1205 * the return value indicates whether actual cleaning was done, there 1206 * is no guarantee that everything was cleaned 1207 **/ 1208 static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring) 1209 { 1210 struct e1000_adapter *adapter = tx_ring->adapter; 1211 struct net_device *netdev = adapter->netdev; 1212 struct e1000_hw *hw = &adapter->hw; 1213 struct e1000_tx_desc *tx_desc, *eop_desc; 1214 struct e1000_buffer *buffer_info; 1215 unsigned int i, eop; 1216 unsigned int count = 0; 1217 unsigned int total_tx_bytes = 0, total_tx_packets = 0; 1218 unsigned int bytes_compl = 0, pkts_compl = 0; 1219 1220 i = tx_ring->next_to_clean; 1221 eop = tx_ring->buffer_info[i].next_to_watch; 1222 eop_desc = E1000_TX_DESC(*tx_ring, eop); 1223 1224 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) && 1225 (count < tx_ring->count)) { 1226 bool cleaned = false; 1227 1228 dma_rmb(); /* read buffer_info after eop_desc */ 1229 for (; !cleaned; count++) { 1230 tx_desc = E1000_TX_DESC(*tx_ring, i); 1231 buffer_info = &tx_ring->buffer_info[i]; 1232 cleaned = (i == eop); 1233 1234 if (cleaned) { 1235 total_tx_packets += buffer_info->segs; 1236 total_tx_bytes += buffer_info->bytecount; 1237 if (buffer_info->skb) { 1238 bytes_compl += buffer_info->skb->len; 1239 pkts_compl++; 1240 } 1241 } 1242 1243 e1000_put_txbuf(tx_ring, buffer_info, false); 1244 tx_desc->upper.data = 0; 1245 1246 i++; 1247 if (i == tx_ring->count) 1248 i = 0; 1249 } 1250 1251 if (i == tx_ring->next_to_use) 1252 break; 1253 eop = tx_ring->buffer_info[i].next_to_watch; 1254 eop_desc = E1000_TX_DESC(*tx_ring, eop); 1255 } 1256 1257 tx_ring->next_to_clean = i; 1258 1259 netdev_completed_queue(netdev, pkts_compl, bytes_compl); 1260 1261 #define TX_WAKE_THRESHOLD 32 1262 if (count && netif_carrier_ok(netdev) && 1263 e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) { 1264 /* Make sure that anybody stopping the queue after this 1265 * sees the new next_to_clean. 1266 */ 1267 smp_mb(); 1268 1269 if (netif_queue_stopped(netdev) && 1270 !(test_bit(__E1000_DOWN, &adapter->state))) { 1271 netif_wake_queue(netdev); 1272 ++adapter->restart_queue; 1273 } 1274 } 1275 1276 if (adapter->detect_tx_hung) { 1277 /* Detect a transmit hang in hardware, this serializes the 1278 * check with the clearing of time_stamp and movement of i 1279 */ 1280 adapter->detect_tx_hung = false; 1281 if (tx_ring->buffer_info[i].time_stamp && 1282 time_after(jiffies, tx_ring->buffer_info[i].time_stamp 1283 + (adapter->tx_timeout_factor * HZ)) && 1284 !(er32(STATUS) & E1000_STATUS_TXOFF)) 1285 schedule_work(&adapter->print_hang_task); 1286 else 1287 adapter->tx_hang_recheck = false; 1288 } 1289 adapter->total_tx_bytes += total_tx_bytes; 1290 adapter->total_tx_packets += total_tx_packets; 1291 return count < tx_ring->count; 1292 } 1293 1294 /** 1295 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split 1296 * @rx_ring: Rx descriptor ring 1297 * 1298 * the return value indicates whether actual cleaning was done, there 1299 * is no guarantee that everything was cleaned 1300 **/ 1301 static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done, 1302 int work_to_do) 1303 { 1304 struct e1000_adapter *adapter = rx_ring->adapter; 1305 struct e1000_hw *hw = &adapter->hw; 1306 union e1000_rx_desc_packet_split *rx_desc, *next_rxd; 1307 struct net_device *netdev = adapter->netdev; 1308 struct pci_dev *pdev = adapter->pdev; 1309 struct e1000_buffer *buffer_info, *next_buffer; 1310 struct e1000_ps_page *ps_page; 1311 struct sk_buff *skb; 1312 unsigned int i, j; 1313 u32 length, staterr; 1314 int cleaned_count = 0; 1315 bool cleaned = false; 1316 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 1317 1318 i = rx_ring->next_to_clean; 1319 rx_desc = E1000_RX_DESC_PS(*rx_ring, i); 1320 staterr = le32_to_cpu(rx_desc->wb.middle.status_error); 1321 buffer_info = &rx_ring->buffer_info[i]; 1322 1323 while (staterr & E1000_RXD_STAT_DD) { 1324 if (*work_done >= work_to_do) 1325 break; 1326 (*work_done)++; 1327 skb = buffer_info->skb; 1328 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */ 1329 1330 /* in the packet split case this is header only */ 1331 prefetch(skb->data - NET_IP_ALIGN); 1332 1333 i++; 1334 if (i == rx_ring->count) 1335 i = 0; 1336 next_rxd = E1000_RX_DESC_PS(*rx_ring, i); 1337 prefetch(next_rxd); 1338 1339 next_buffer = &rx_ring->buffer_info[i]; 1340 1341 cleaned = true; 1342 cleaned_count++; 1343 dma_unmap_single(&pdev->dev, buffer_info->dma, 1344 adapter->rx_ps_bsize0, DMA_FROM_DEVICE); 1345 buffer_info->dma = 0; 1346 1347 /* see !EOP comment in other Rx routine */ 1348 if (!(staterr & E1000_RXD_STAT_EOP)) 1349 adapter->flags2 |= FLAG2_IS_DISCARDING; 1350 1351 if (adapter->flags2 & FLAG2_IS_DISCARDING) { 1352 e_dbg("Packet Split buffers didn't pick up the full packet\n"); 1353 dev_kfree_skb_irq(skb); 1354 if (staterr & E1000_RXD_STAT_EOP) 1355 adapter->flags2 &= ~FLAG2_IS_DISCARDING; 1356 goto next_desc; 1357 } 1358 1359 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) && 1360 !(netdev->features & NETIF_F_RXALL))) { 1361 dev_kfree_skb_irq(skb); 1362 goto next_desc; 1363 } 1364 1365 length = le16_to_cpu(rx_desc->wb.middle.length0); 1366 1367 if (!length) { 1368 e_dbg("Last part of the packet spanning multiple descriptors\n"); 1369 dev_kfree_skb_irq(skb); 1370 goto next_desc; 1371 } 1372 1373 /* Good Receive */ 1374 skb_put(skb, length); 1375 1376 { 1377 /* this looks ugly, but it seems compiler issues make 1378 * it more efficient than reusing j 1379 */ 1380 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]); 1381 1382 /* page alloc/put takes too long and effects small 1383 * packet throughput, so unsplit small packets and 1384 * save the alloc/put only valid in softirq (napi) 1385 * context to call kmap_* 1386 */ 1387 if (l1 && (l1 <= copybreak) && 1388 ((length + l1) <= adapter->rx_ps_bsize0)) { 1389 u8 *vaddr; 1390 1391 ps_page = &buffer_info->ps_pages[0]; 1392 1393 /* there is no documentation about how to call 1394 * kmap_atomic, so we can't hold the mapping 1395 * very long 1396 */ 1397 dma_sync_single_for_cpu(&pdev->dev, 1398 ps_page->dma, 1399 PAGE_SIZE, 1400 DMA_FROM_DEVICE); 1401 vaddr = kmap_atomic(ps_page->page); 1402 memcpy(skb_tail_pointer(skb), vaddr, l1); 1403 kunmap_atomic(vaddr); 1404 dma_sync_single_for_device(&pdev->dev, 1405 ps_page->dma, 1406 PAGE_SIZE, 1407 DMA_FROM_DEVICE); 1408 1409 /* remove the CRC */ 1410 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) { 1411 if (!(netdev->features & NETIF_F_RXFCS)) 1412 l1 -= 4; 1413 } 1414 1415 skb_put(skb, l1); 1416 goto copydone; 1417 } /* if */ 1418 } 1419 1420 for (j = 0; j < PS_PAGE_BUFFERS; j++) { 1421 length = le16_to_cpu(rx_desc->wb.upper.length[j]); 1422 if (!length) 1423 break; 1424 1425 ps_page = &buffer_info->ps_pages[j]; 1426 dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE, 1427 DMA_FROM_DEVICE); 1428 ps_page->dma = 0; 1429 skb_fill_page_desc(skb, j, ps_page->page, 0, length); 1430 ps_page->page = NULL; 1431 skb->len += length; 1432 skb->data_len += length; 1433 skb->truesize += PAGE_SIZE; 1434 } 1435 1436 /* strip the ethernet crc, problem is we're using pages now so 1437 * this whole operation can get a little cpu intensive 1438 */ 1439 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) { 1440 if (!(netdev->features & NETIF_F_RXFCS)) 1441 pskb_trim(skb, skb->len - 4); 1442 } 1443 1444 copydone: 1445 total_rx_bytes += skb->len; 1446 total_rx_packets++; 1447 1448 e1000_rx_checksum(adapter, staterr, skb); 1449 1450 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb); 1451 1452 if (rx_desc->wb.upper.header_status & 1453 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)) 1454 adapter->rx_hdr_split++; 1455 1456 e1000_receive_skb(adapter, netdev, skb, staterr, 1457 rx_desc->wb.middle.vlan); 1458 1459 next_desc: 1460 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF); 1461 buffer_info->skb = NULL; 1462 1463 /* return some buffers to hardware, one at a time is too slow */ 1464 if (cleaned_count >= E1000_RX_BUFFER_WRITE) { 1465 adapter->alloc_rx_buf(rx_ring, cleaned_count, 1466 GFP_ATOMIC); 1467 cleaned_count = 0; 1468 } 1469 1470 /* use prefetched values */ 1471 rx_desc = next_rxd; 1472 buffer_info = next_buffer; 1473 1474 staterr = le32_to_cpu(rx_desc->wb.middle.status_error); 1475 } 1476 rx_ring->next_to_clean = i; 1477 1478 cleaned_count = e1000_desc_unused(rx_ring); 1479 if (cleaned_count) 1480 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC); 1481 1482 adapter->total_rx_bytes += total_rx_bytes; 1483 adapter->total_rx_packets += total_rx_packets; 1484 return cleaned; 1485 } 1486 1487 /** 1488 * e1000_consume_page - helper function 1489 **/ 1490 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb, 1491 u16 length) 1492 { 1493 bi->page = NULL; 1494 skb->len += length; 1495 skb->data_len += length; 1496 skb->truesize += PAGE_SIZE; 1497 } 1498 1499 /** 1500 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy 1501 * @adapter: board private structure 1502 * 1503 * the return value indicates whether actual cleaning was done, there 1504 * is no guarantee that everything was cleaned 1505 **/ 1506 static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done, 1507 int work_to_do) 1508 { 1509 struct e1000_adapter *adapter = rx_ring->adapter; 1510 struct net_device *netdev = adapter->netdev; 1511 struct pci_dev *pdev = adapter->pdev; 1512 union e1000_rx_desc_extended *rx_desc, *next_rxd; 1513 struct e1000_buffer *buffer_info, *next_buffer; 1514 u32 length, staterr; 1515 unsigned int i; 1516 int cleaned_count = 0; 1517 bool cleaned = false; 1518 unsigned int total_rx_bytes = 0, total_rx_packets = 0; 1519 struct skb_shared_info *shinfo; 1520 1521 i = rx_ring->next_to_clean; 1522 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i); 1523 staterr = le32_to_cpu(rx_desc->wb.upper.status_error); 1524 buffer_info = &rx_ring->buffer_info[i]; 1525 1526 while (staterr & E1000_RXD_STAT_DD) { 1527 struct sk_buff *skb; 1528 1529 if (*work_done >= work_to_do) 1530 break; 1531 (*work_done)++; 1532 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */ 1533 1534 skb = buffer_info->skb; 1535 buffer_info->skb = NULL; 1536 1537 ++i; 1538 if (i == rx_ring->count) 1539 i = 0; 1540 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i); 1541 prefetch(next_rxd); 1542 1543 next_buffer = &rx_ring->buffer_info[i]; 1544 1545 cleaned = true; 1546 cleaned_count++; 1547 dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE, 1548 DMA_FROM_DEVICE); 1549 buffer_info->dma = 0; 1550 1551 length = le16_to_cpu(rx_desc->wb.upper.length); 1552 1553 /* errors is only valid for DD + EOP descriptors */ 1554 if (unlikely((staterr & E1000_RXD_STAT_EOP) && 1555 ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) && 1556 !(netdev->features & NETIF_F_RXALL)))) { 1557 /* recycle both page and skb */ 1558 buffer_info->skb = skb; 1559 /* an error means any chain goes out the window too */ 1560 if (rx_ring->rx_skb_top) 1561 dev_kfree_skb_irq(rx_ring->rx_skb_top); 1562 rx_ring->rx_skb_top = NULL; 1563 goto next_desc; 1564 } 1565 #define rxtop (rx_ring->rx_skb_top) 1566 if (!(staterr & E1000_RXD_STAT_EOP)) { 1567 /* this descriptor is only the beginning (or middle) */ 1568 if (!rxtop) { 1569 /* this is the beginning of a chain */ 1570 rxtop = skb; 1571 skb_fill_page_desc(rxtop, 0, buffer_info->page, 1572 0, length); 1573 } else { 1574 /* this is the middle of a chain */ 1575 shinfo = skb_shinfo(rxtop); 1576 skb_fill_page_desc(rxtop, shinfo->nr_frags, 1577 buffer_info->page, 0, 1578 length); 1579 /* re-use the skb, only consumed the page */ 1580 buffer_info->skb = skb; 1581 } 1582 e1000_consume_page(buffer_info, rxtop, length); 1583 goto next_desc; 1584 } else { 1585 if (rxtop) { 1586 /* end of the chain */ 1587 shinfo = skb_shinfo(rxtop); 1588 skb_fill_page_desc(rxtop, shinfo->nr_frags, 1589 buffer_info->page, 0, 1590 length); 1591 /* re-use the current skb, we only consumed the 1592 * page 1593 */ 1594 buffer_info->skb = skb; 1595 skb = rxtop; 1596 rxtop = NULL; 1597 e1000_consume_page(buffer_info, skb, length); 1598 } else { 1599 /* no chain, got EOP, this buf is the packet 1600 * copybreak to save the put_page/alloc_page 1601 */ 1602 if (length <= copybreak && 1603 skb_tailroom(skb) >= length) { 1604 u8 *vaddr; 1605 vaddr = kmap_atomic(buffer_info->page); 1606 memcpy(skb_tail_pointer(skb), vaddr, 1607 length); 1608 kunmap_atomic(vaddr); 1609 /* re-use the page, so don't erase 1610 * buffer_info->page 1611 */ 1612 skb_put(skb, length); 1613 } else { 1614 skb_fill_page_desc(skb, 0, 1615 buffer_info->page, 0, 1616 length); 1617 e1000_consume_page(buffer_info, skb, 1618 length); 1619 } 1620 } 1621 } 1622 1623 /* Receive Checksum Offload */ 1624 e1000_rx_checksum(adapter, staterr, skb); 1625 1626 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb); 1627 1628 /* probably a little skewed due to removing CRC */ 1629 total_rx_bytes += skb->len; 1630 total_rx_packets++; 1631 1632 /* eth type trans needs skb->data to point to something */ 1633 if (!pskb_may_pull(skb, ETH_HLEN)) { 1634 e_err("pskb_may_pull failed.\n"); 1635 dev_kfree_skb_irq(skb); 1636 goto next_desc; 1637 } 1638 1639 e1000_receive_skb(adapter, netdev, skb, staterr, 1640 rx_desc->wb.upper.vlan); 1641 1642 next_desc: 1643 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF); 1644 1645 /* return some buffers to hardware, one at a time is too slow */ 1646 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) { 1647 adapter->alloc_rx_buf(rx_ring, cleaned_count, 1648 GFP_ATOMIC); 1649 cleaned_count = 0; 1650 } 1651 1652 /* use prefetched values */ 1653 rx_desc = next_rxd; 1654 buffer_info = next_buffer; 1655 1656 staterr = le32_to_cpu(rx_desc->wb.upper.status_error); 1657 } 1658 rx_ring->next_to_clean = i; 1659 1660 cleaned_count = e1000_desc_unused(rx_ring); 1661 if (cleaned_count) 1662 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC); 1663 1664 adapter->total_rx_bytes += total_rx_bytes; 1665 adapter->total_rx_packets += total_rx_packets; 1666 return cleaned; 1667 } 1668 1669 /** 1670 * e1000_clean_rx_ring - Free Rx Buffers per Queue 1671 * @rx_ring: Rx descriptor ring 1672 **/ 1673 static void e1000_clean_rx_ring(struct e1000_ring *rx_ring) 1674 { 1675 struct e1000_adapter *adapter = rx_ring->adapter; 1676 struct e1000_buffer *buffer_info; 1677 struct e1000_ps_page *ps_page; 1678 struct pci_dev *pdev = adapter->pdev; 1679 unsigned int i, j; 1680 1681 /* Free all the Rx ring sk_buffs */ 1682 for (i = 0; i < rx_ring->count; i++) { 1683 buffer_info = &rx_ring->buffer_info[i]; 1684 if (buffer_info->dma) { 1685 if (adapter->clean_rx == e1000_clean_rx_irq) 1686 dma_unmap_single(&pdev->dev, buffer_info->dma, 1687 adapter->rx_buffer_len, 1688 DMA_FROM_DEVICE); 1689 else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) 1690 dma_unmap_page(&pdev->dev, buffer_info->dma, 1691 PAGE_SIZE, DMA_FROM_DEVICE); 1692 else if (adapter->clean_rx == e1000_clean_rx_irq_ps) 1693 dma_unmap_single(&pdev->dev, buffer_info->dma, 1694 adapter->rx_ps_bsize0, 1695 DMA_FROM_DEVICE); 1696 buffer_info->dma = 0; 1697 } 1698 1699 if (buffer_info->page) { 1700 put_page(buffer_info->page); 1701 buffer_info->page = NULL; 1702 } 1703 1704 if (buffer_info->skb) { 1705 dev_kfree_skb(buffer_info->skb); 1706 buffer_info->skb = NULL; 1707 } 1708 1709 for (j = 0; j < PS_PAGE_BUFFERS; j++) { 1710 ps_page = &buffer_info->ps_pages[j]; 1711 if (!ps_page->page) 1712 break; 1713 dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE, 1714 DMA_FROM_DEVICE); 1715 ps_page->dma = 0; 1716 put_page(ps_page->page); 1717 ps_page->page = NULL; 1718 } 1719 } 1720 1721 /* there also may be some cached data from a chained receive */ 1722 if (rx_ring->rx_skb_top) { 1723 dev_kfree_skb(rx_ring->rx_skb_top); 1724 rx_ring->rx_skb_top = NULL; 1725 } 1726 1727 /* Zero out the descriptor ring */ 1728 memset(rx_ring->desc, 0, rx_ring->size); 1729 1730 rx_ring->next_to_clean = 0; 1731 rx_ring->next_to_use = 0; 1732 adapter->flags2 &= ~FLAG2_IS_DISCARDING; 1733 } 1734 1735 static void e1000e_downshift_workaround(struct work_struct *work) 1736 { 1737 struct e1000_adapter *adapter = container_of(work, 1738 struct e1000_adapter, 1739 downshift_task); 1740 1741 if (test_bit(__E1000_DOWN, &adapter->state)) 1742 return; 1743 1744 e1000e_gig_downshift_workaround_ich8lan(&adapter->hw); 1745 } 1746 1747 /** 1748 * e1000_intr_msi - Interrupt Handler 1749 * @irq: interrupt number 1750 * @data: pointer to a network interface device structure 1751 **/ 1752 static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data) 1753 { 1754 struct net_device *netdev = data; 1755 struct e1000_adapter *adapter = netdev_priv(netdev); 1756 struct e1000_hw *hw = &adapter->hw; 1757 u32 icr = er32(ICR); 1758 1759 /* read ICR disables interrupts using IAM */ 1760 if (icr & E1000_ICR_LSC) { 1761 hw->mac.get_link_status = true; 1762 /* ICH8 workaround-- Call gig speed drop workaround on cable 1763 * disconnect (LSC) before accessing any PHY registers 1764 */ 1765 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) && 1766 (!(er32(STATUS) & E1000_STATUS_LU))) 1767 schedule_work(&adapter->downshift_task); 1768 1769 /* 80003ES2LAN workaround-- For packet buffer work-around on 1770 * link down event; disable receives here in the ISR and reset 1771 * adapter in watchdog 1772 */ 1773 if (netif_carrier_ok(netdev) && 1774 adapter->flags & FLAG_RX_NEEDS_RESTART) { 1775 /* disable receives */ 1776 u32 rctl = er32(RCTL); 1777 1778 ew32(RCTL, rctl & ~E1000_RCTL_EN); 1779 adapter->flags |= FLAG_RESTART_NOW; 1780 } 1781 /* guard against interrupt when we're going down */ 1782 if (!test_bit(__E1000_DOWN, &adapter->state)) 1783 mod_timer(&adapter->watchdog_timer, jiffies + 1); 1784 } 1785 1786 /* Reset on uncorrectable ECC error */ 1787 if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) { 1788 u32 pbeccsts = er32(PBECCSTS); 1789 1790 adapter->corr_errors += 1791 pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK; 1792 adapter->uncorr_errors += 1793 (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >> 1794 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT; 1795 1796 /* Do the reset outside of interrupt context */ 1797 schedule_work(&adapter->reset_task); 1798 1799 /* return immediately since reset is imminent */ 1800 return IRQ_HANDLED; 1801 } 1802 1803 if (napi_schedule_prep(&adapter->napi)) { 1804 adapter->total_tx_bytes = 0; 1805 adapter->total_tx_packets = 0; 1806 adapter->total_rx_bytes = 0; 1807 adapter->total_rx_packets = 0; 1808 __napi_schedule(&adapter->napi); 1809 } 1810 1811 return IRQ_HANDLED; 1812 } 1813 1814 /** 1815 * e1000_intr - Interrupt Handler 1816 * @irq: interrupt number 1817 * @data: pointer to a network interface device structure 1818 **/ 1819 static irqreturn_t e1000_intr(int __always_unused irq, void *data) 1820 { 1821 struct net_device *netdev = data; 1822 struct e1000_adapter *adapter = netdev_priv(netdev); 1823 struct e1000_hw *hw = &adapter->hw; 1824 u32 rctl, icr = er32(ICR); 1825 1826 if (!icr || test_bit(__E1000_DOWN, &adapter->state)) 1827 return IRQ_NONE; /* Not our interrupt */ 1828 1829 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is 1830 * not set, then the adapter didn't send an interrupt 1831 */ 1832 if (!(icr & E1000_ICR_INT_ASSERTED)) 1833 return IRQ_NONE; 1834 1835 /* Interrupt Auto-Mask...upon reading ICR, 1836 * interrupts are masked. No need for the 1837 * IMC write 1838 */ 1839 1840 if (icr & E1000_ICR_LSC) { 1841 hw->mac.get_link_status = true; 1842 /* ICH8 workaround-- Call gig speed drop workaround on cable 1843 * disconnect (LSC) before accessing any PHY registers 1844 */ 1845 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) && 1846 (!(er32(STATUS) & E1000_STATUS_LU))) 1847 schedule_work(&adapter->downshift_task); 1848 1849 /* 80003ES2LAN workaround-- 1850 * For packet buffer work-around on link down event; 1851 * disable receives here in the ISR and 1852 * reset adapter in watchdog 1853 */ 1854 if (netif_carrier_ok(netdev) && 1855 (adapter->flags & FLAG_RX_NEEDS_RESTART)) { 1856 /* disable receives */ 1857 rctl = er32(RCTL); 1858 ew32(RCTL, rctl & ~E1000_RCTL_EN); 1859 adapter->flags |= FLAG_RESTART_NOW; 1860 } 1861 /* guard against interrupt when we're going down */ 1862 if (!test_bit(__E1000_DOWN, &adapter->state)) 1863 mod_timer(&adapter->watchdog_timer, jiffies + 1); 1864 } 1865 1866 /* Reset on uncorrectable ECC error */ 1867 if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) { 1868 u32 pbeccsts = er32(PBECCSTS); 1869 1870 adapter->corr_errors += 1871 pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK; 1872 adapter->uncorr_errors += 1873 (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >> 1874 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT; 1875 1876 /* Do the reset outside of interrupt context */ 1877 schedule_work(&adapter->reset_task); 1878 1879 /* return immediately since reset is imminent */ 1880 return IRQ_HANDLED; 1881 } 1882 1883 if (napi_schedule_prep(&adapter->napi)) { 1884 adapter->total_tx_bytes = 0; 1885 adapter->total_tx_packets = 0; 1886 adapter->total_rx_bytes = 0; 1887 adapter->total_rx_packets = 0; 1888 __napi_schedule(&adapter->napi); 1889 } 1890 1891 return IRQ_HANDLED; 1892 } 1893 1894 static irqreturn_t e1000_msix_other(int __always_unused irq, void *data) 1895 { 1896 struct net_device *netdev = data; 1897 struct e1000_adapter *adapter = netdev_priv(netdev); 1898 struct e1000_hw *hw = &adapter->hw; 1899 u32 icr = er32(ICR); 1900 1901 if (icr & adapter->eiac_mask) 1902 ew32(ICS, (icr & adapter->eiac_mask)); 1903 1904 if (icr & E1000_ICR_LSC) { 1905 hw->mac.get_link_status = true; 1906 /* guard against interrupt when we're going down */ 1907 if (!test_bit(__E1000_DOWN, &adapter->state)) 1908 mod_timer(&adapter->watchdog_timer, jiffies + 1); 1909 } 1910 1911 if (!test_bit(__E1000_DOWN, &adapter->state)) 1912 ew32(IMS, E1000_IMS_OTHER | IMS_OTHER_MASK); 1913 1914 return IRQ_HANDLED; 1915 } 1916 1917 static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data) 1918 { 1919 struct net_device *netdev = data; 1920 struct e1000_adapter *adapter = netdev_priv(netdev); 1921 struct e1000_hw *hw = &adapter->hw; 1922 struct e1000_ring *tx_ring = adapter->tx_ring; 1923 1924 adapter->total_tx_bytes = 0; 1925 adapter->total_tx_packets = 0; 1926 1927 if (!e1000_clean_tx_irq(tx_ring)) 1928 /* Ring was not completely cleaned, so fire another interrupt */ 1929 ew32(ICS, tx_ring->ims_val); 1930 1931 if (!test_bit(__E1000_DOWN, &adapter->state)) 1932 ew32(IMS, adapter->tx_ring->ims_val); 1933 1934 return IRQ_HANDLED; 1935 } 1936 1937 static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data) 1938 { 1939 struct net_device *netdev = data; 1940 struct e1000_adapter *adapter = netdev_priv(netdev); 1941 struct e1000_ring *rx_ring = adapter->rx_ring; 1942 1943 /* Write the ITR value calculated at the end of the 1944 * previous interrupt. 1945 */ 1946 if (rx_ring->set_itr) { 1947 u32 itr = rx_ring->itr_val ? 1948 1000000000 / (rx_ring->itr_val * 256) : 0; 1949 1950 writel(itr, rx_ring->itr_register); 1951 rx_ring->set_itr = 0; 1952 } 1953 1954 if (napi_schedule_prep(&adapter->napi)) { 1955 adapter->total_rx_bytes = 0; 1956 adapter->total_rx_packets = 0; 1957 __napi_schedule(&adapter->napi); 1958 } 1959 return IRQ_HANDLED; 1960 } 1961 1962 /** 1963 * e1000_configure_msix - Configure MSI-X hardware 1964 * 1965 * e1000_configure_msix sets up the hardware to properly 1966 * generate MSI-X interrupts. 1967 **/ 1968 static void e1000_configure_msix(struct e1000_adapter *adapter) 1969 { 1970 struct e1000_hw *hw = &adapter->hw; 1971 struct e1000_ring *rx_ring = adapter->rx_ring; 1972 struct e1000_ring *tx_ring = adapter->tx_ring; 1973 int vector = 0; 1974 u32 ctrl_ext, ivar = 0; 1975 1976 adapter->eiac_mask = 0; 1977 1978 /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */ 1979 if (hw->mac.type == e1000_82574) { 1980 u32 rfctl = er32(RFCTL); 1981 1982 rfctl |= E1000_RFCTL_ACK_DIS; 1983 ew32(RFCTL, rfctl); 1984 } 1985 1986 /* Configure Rx vector */ 1987 rx_ring->ims_val = E1000_IMS_RXQ0; 1988 adapter->eiac_mask |= rx_ring->ims_val; 1989 if (rx_ring->itr_val) 1990 writel(1000000000 / (rx_ring->itr_val * 256), 1991 rx_ring->itr_register); 1992 else 1993 writel(1, rx_ring->itr_register); 1994 ivar = E1000_IVAR_INT_ALLOC_VALID | vector; 1995 1996 /* Configure Tx vector */ 1997 tx_ring->ims_val = E1000_IMS_TXQ0; 1998 vector++; 1999 if (tx_ring->itr_val) 2000 writel(1000000000 / (tx_ring->itr_val * 256), 2001 tx_ring->itr_register); 2002 else 2003 writel(1, tx_ring->itr_register); 2004 adapter->eiac_mask |= tx_ring->ims_val; 2005 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8); 2006 2007 /* set vector for Other Causes, e.g. link changes */ 2008 vector++; 2009 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16); 2010 if (rx_ring->itr_val) 2011 writel(1000000000 / (rx_ring->itr_val * 256), 2012 hw->hw_addr + E1000_EITR_82574(vector)); 2013 else 2014 writel(1, hw->hw_addr + E1000_EITR_82574(vector)); 2015 2016 /* Cause Tx interrupts on every write back */ 2017 ivar |= BIT(31); 2018 2019 ew32(IVAR, ivar); 2020 2021 /* enable MSI-X PBA support */ 2022 ctrl_ext = er32(CTRL_EXT) & ~E1000_CTRL_EXT_IAME; 2023 ctrl_ext |= E1000_CTRL_EXT_PBA_CLR | E1000_CTRL_EXT_EIAME; 2024 ew32(CTRL_EXT, ctrl_ext); 2025 e1e_flush(); 2026 } 2027 2028 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter) 2029 { 2030 if (adapter->msix_entries) { 2031 pci_disable_msix(adapter->pdev); 2032 kfree(adapter->msix_entries); 2033 adapter->msix_entries = NULL; 2034 } else if (adapter->flags & FLAG_MSI_ENABLED) { 2035 pci_disable_msi(adapter->pdev); 2036 adapter->flags &= ~FLAG_MSI_ENABLED; 2037 } 2038 } 2039 2040 /** 2041 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported 2042 * 2043 * Attempt to configure interrupts using the best available 2044 * capabilities of the hardware and kernel. 2045 **/ 2046 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter) 2047 { 2048 int err; 2049 int i; 2050 2051 switch (adapter->int_mode) { 2052 case E1000E_INT_MODE_MSIX: 2053 if (adapter->flags & FLAG_HAS_MSIX) { 2054 adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */ 2055 adapter->msix_entries = kcalloc(adapter->num_vectors, 2056 sizeof(struct 2057 msix_entry), 2058 GFP_KERNEL); 2059 if (adapter->msix_entries) { 2060 struct e1000_adapter *a = adapter; 2061 2062 for (i = 0; i < adapter->num_vectors; i++) 2063 adapter->msix_entries[i].entry = i; 2064 2065 err = pci_enable_msix_range(a->pdev, 2066 a->msix_entries, 2067 a->num_vectors, 2068 a->num_vectors); 2069 if (err > 0) 2070 return; 2071 } 2072 /* MSI-X failed, so fall through and try MSI */ 2073 e_err("Failed to initialize MSI-X interrupts. Falling back to MSI interrupts.\n"); 2074 e1000e_reset_interrupt_capability(adapter); 2075 } 2076 adapter->int_mode = E1000E_INT_MODE_MSI; 2077 /* Fall through */ 2078 case E1000E_INT_MODE_MSI: 2079 if (!pci_enable_msi(adapter->pdev)) { 2080 adapter->flags |= FLAG_MSI_ENABLED; 2081 } else { 2082 adapter->int_mode = E1000E_INT_MODE_LEGACY; 2083 e_err("Failed to initialize MSI interrupts. Falling back to legacy interrupts.\n"); 2084 } 2085 /* Fall through */ 2086 case E1000E_INT_MODE_LEGACY: 2087 /* Don't do anything; this is the system default */ 2088 break; 2089 } 2090 2091 /* store the number of vectors being used */ 2092 adapter->num_vectors = 1; 2093 } 2094 2095 /** 2096 * e1000_request_msix - Initialize MSI-X interrupts 2097 * 2098 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the 2099 * kernel. 2100 **/ 2101 static int e1000_request_msix(struct e1000_adapter *adapter) 2102 { 2103 struct net_device *netdev = adapter->netdev; 2104 int err = 0, vector = 0; 2105 2106 if (strlen(netdev->name) < (IFNAMSIZ - 5)) 2107 snprintf(adapter->rx_ring->name, 2108 sizeof(adapter->rx_ring->name) - 1, 2109 "%s-rx-0", netdev->name); 2110 else 2111 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ); 2112 err = request_irq(adapter->msix_entries[vector].vector, 2113 e1000_intr_msix_rx, 0, adapter->rx_ring->name, 2114 netdev); 2115 if (err) 2116 return err; 2117 adapter->rx_ring->itr_register = adapter->hw.hw_addr + 2118 E1000_EITR_82574(vector); 2119 adapter->rx_ring->itr_val = adapter->itr; 2120 vector++; 2121 2122 if (strlen(netdev->name) < (IFNAMSIZ - 5)) 2123 snprintf(adapter->tx_ring->name, 2124 sizeof(adapter->tx_ring->name) - 1, 2125 "%s-tx-0", netdev->name); 2126 else 2127 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ); 2128 err = request_irq(adapter->msix_entries[vector].vector, 2129 e1000_intr_msix_tx, 0, adapter->tx_ring->name, 2130 netdev); 2131 if (err) 2132 return err; 2133 adapter->tx_ring->itr_register = adapter->hw.hw_addr + 2134 E1000_EITR_82574(vector); 2135 adapter->tx_ring->itr_val = adapter->itr; 2136 vector++; 2137 2138 err = request_irq(adapter->msix_entries[vector].vector, 2139 e1000_msix_other, 0, netdev->name, netdev); 2140 if (err) 2141 return err; 2142 2143 e1000_configure_msix(adapter); 2144 2145 return 0; 2146 } 2147 2148 /** 2149 * e1000_request_irq - initialize interrupts 2150 * 2151 * Attempts to configure interrupts using the best available 2152 * capabilities of the hardware and kernel. 2153 **/ 2154 static int e1000_request_irq(struct e1000_adapter *adapter) 2155 { 2156 struct net_device *netdev = adapter->netdev; 2157 int err; 2158 2159 if (adapter->msix_entries) { 2160 err = e1000_request_msix(adapter); 2161 if (!err) 2162 return err; 2163 /* fall back to MSI */ 2164 e1000e_reset_interrupt_capability(adapter); 2165 adapter->int_mode = E1000E_INT_MODE_MSI; 2166 e1000e_set_interrupt_capability(adapter); 2167 } 2168 if (adapter->flags & FLAG_MSI_ENABLED) { 2169 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0, 2170 netdev->name, netdev); 2171 if (!err) 2172 return err; 2173 2174 /* fall back to legacy interrupt */ 2175 e1000e_reset_interrupt_capability(adapter); 2176 adapter->int_mode = E1000E_INT_MODE_LEGACY; 2177 } 2178 2179 err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED, 2180 netdev->name, netdev); 2181 if (err) 2182 e_err("Unable to allocate interrupt, Error: %d\n", err); 2183 2184 return err; 2185 } 2186 2187 static void e1000_free_irq(struct e1000_adapter *adapter) 2188 { 2189 struct net_device *netdev = adapter->netdev; 2190 2191 if (adapter->msix_entries) { 2192 int vector = 0; 2193 2194 free_irq(adapter->msix_entries[vector].vector, netdev); 2195 vector++; 2196 2197 free_irq(adapter->msix_entries[vector].vector, netdev); 2198 vector++; 2199 2200 /* Other Causes interrupt vector */ 2201 free_irq(adapter->msix_entries[vector].vector, netdev); 2202 return; 2203 } 2204 2205 free_irq(adapter->pdev->irq, netdev); 2206 } 2207 2208 /** 2209 * e1000_irq_disable - Mask off interrupt generation on the NIC 2210 **/ 2211 static void e1000_irq_disable(struct e1000_adapter *adapter) 2212 { 2213 struct e1000_hw *hw = &adapter->hw; 2214 2215 ew32(IMC, ~0); 2216 if (adapter->msix_entries) 2217 ew32(EIAC_82574, 0); 2218 e1e_flush(); 2219 2220 if (adapter->msix_entries) { 2221 int i; 2222 2223 for (i = 0; i < adapter->num_vectors; i++) 2224 synchronize_irq(adapter->msix_entries[i].vector); 2225 } else { 2226 synchronize_irq(adapter->pdev->irq); 2227 } 2228 } 2229 2230 /** 2231 * e1000_irq_enable - Enable default interrupt generation settings 2232 **/ 2233 static void e1000_irq_enable(struct e1000_adapter *adapter) 2234 { 2235 struct e1000_hw *hw = &adapter->hw; 2236 2237 if (adapter->msix_entries) { 2238 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574); 2239 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | 2240 IMS_OTHER_MASK); 2241 } else if (hw->mac.type >= e1000_pch_lpt) { 2242 ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER); 2243 } else { 2244 ew32(IMS, IMS_ENABLE_MASK); 2245 } 2246 e1e_flush(); 2247 } 2248 2249 /** 2250 * e1000e_get_hw_control - get control of the h/w from f/w 2251 * @adapter: address of board private structure 2252 * 2253 * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit. 2254 * For ASF and Pass Through versions of f/w this means that 2255 * the driver is loaded. For AMT version (only with 82573) 2256 * of the f/w this means that the network i/f is open. 2257 **/ 2258 void e1000e_get_hw_control(struct e1000_adapter *adapter) 2259 { 2260 struct e1000_hw *hw = &adapter->hw; 2261 u32 ctrl_ext; 2262 u32 swsm; 2263 2264 /* Let firmware know the driver has taken over */ 2265 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) { 2266 swsm = er32(SWSM); 2267 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD); 2268 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) { 2269 ctrl_ext = er32(CTRL_EXT); 2270 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD); 2271 } 2272 } 2273 2274 /** 2275 * e1000e_release_hw_control - release control of the h/w to f/w 2276 * @adapter: address of board private structure 2277 * 2278 * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit. 2279 * For ASF and Pass Through versions of f/w this means that the 2280 * driver is no longer loaded. For AMT version (only with 82573) i 2281 * of the f/w this means that the network i/f is closed. 2282 * 2283 **/ 2284 void e1000e_release_hw_control(struct e1000_adapter *adapter) 2285 { 2286 struct e1000_hw *hw = &adapter->hw; 2287 u32 ctrl_ext; 2288 u32 swsm; 2289 2290 /* Let firmware taken over control of h/w */ 2291 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) { 2292 swsm = er32(SWSM); 2293 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD); 2294 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) { 2295 ctrl_ext = er32(CTRL_EXT); 2296 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD); 2297 } 2298 } 2299 2300 /** 2301 * e1000_alloc_ring_dma - allocate memory for a ring structure 2302 **/ 2303 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter, 2304 struct e1000_ring *ring) 2305 { 2306 struct pci_dev *pdev = adapter->pdev; 2307 2308 ring->desc = dma_zalloc_coherent(&pdev->dev, ring->size, &ring->dma, 2309 GFP_KERNEL); 2310 if (!ring->desc) 2311 return -ENOMEM; 2312 2313 return 0; 2314 } 2315 2316 /** 2317 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors) 2318 * @tx_ring: Tx descriptor ring 2319 * 2320 * Return 0 on success, negative on failure 2321 **/ 2322 int e1000e_setup_tx_resources(struct e1000_ring *tx_ring) 2323 { 2324 struct e1000_adapter *adapter = tx_ring->adapter; 2325 int err = -ENOMEM, size; 2326 2327 size = sizeof(struct e1000_buffer) * tx_ring->count; 2328 tx_ring->buffer_info = vzalloc(size); 2329 if (!tx_ring->buffer_info) 2330 goto err; 2331 2332 /* round up to nearest 4K */ 2333 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc); 2334 tx_ring->size = ALIGN(tx_ring->size, 4096); 2335 2336 err = e1000_alloc_ring_dma(adapter, tx_ring); 2337 if (err) 2338 goto err; 2339 2340 tx_ring->next_to_use = 0; 2341 tx_ring->next_to_clean = 0; 2342 2343 return 0; 2344 err: 2345 vfree(tx_ring->buffer_info); 2346 e_err("Unable to allocate memory for the transmit descriptor ring\n"); 2347 return err; 2348 } 2349 2350 /** 2351 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors) 2352 * @rx_ring: Rx descriptor ring 2353 * 2354 * Returns 0 on success, negative on failure 2355 **/ 2356 int e1000e_setup_rx_resources(struct e1000_ring *rx_ring) 2357 { 2358 struct e1000_adapter *adapter = rx_ring->adapter; 2359 struct e1000_buffer *buffer_info; 2360 int i, size, desc_len, err = -ENOMEM; 2361 2362 size = sizeof(struct e1000_buffer) * rx_ring->count; 2363 rx_ring->buffer_info = vzalloc(size); 2364 if (!rx_ring->buffer_info) 2365 goto err; 2366 2367 for (i = 0; i < rx_ring->count; i++) { 2368 buffer_info = &rx_ring->buffer_info[i]; 2369 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS, 2370 sizeof(struct e1000_ps_page), 2371 GFP_KERNEL); 2372 if (!buffer_info->ps_pages) 2373 goto err_pages; 2374 } 2375 2376 desc_len = sizeof(union e1000_rx_desc_packet_split); 2377 2378 /* Round up to nearest 4K */ 2379 rx_ring->size = rx_ring->count * desc_len; 2380 rx_ring->size = ALIGN(rx_ring->size, 4096); 2381 2382 err = e1000_alloc_ring_dma(adapter, rx_ring); 2383 if (err) 2384 goto err_pages; 2385 2386 rx_ring->next_to_clean = 0; 2387 rx_ring->next_to_use = 0; 2388 rx_ring->rx_skb_top = NULL; 2389 2390 return 0; 2391 2392 err_pages: 2393 for (i = 0; i < rx_ring->count; i++) { 2394 buffer_info = &rx_ring->buffer_info[i]; 2395 kfree(buffer_info->ps_pages); 2396 } 2397 err: 2398 vfree(rx_ring->buffer_info); 2399 e_err("Unable to allocate memory for the receive descriptor ring\n"); 2400 return err; 2401 } 2402 2403 /** 2404 * e1000_clean_tx_ring - Free Tx Buffers 2405 * @tx_ring: Tx descriptor ring 2406 **/ 2407 static void e1000_clean_tx_ring(struct e1000_ring *tx_ring) 2408 { 2409 struct e1000_adapter *adapter = tx_ring->adapter; 2410 struct e1000_buffer *buffer_info; 2411 unsigned long size; 2412 unsigned int i; 2413 2414 for (i = 0; i < tx_ring->count; i++) { 2415 buffer_info = &tx_ring->buffer_info[i]; 2416 e1000_put_txbuf(tx_ring, buffer_info, false); 2417 } 2418 2419 netdev_reset_queue(adapter->netdev); 2420 size = sizeof(struct e1000_buffer) * tx_ring->count; 2421 memset(tx_ring->buffer_info, 0, size); 2422 2423 memset(tx_ring->desc, 0, tx_ring->size); 2424 2425 tx_ring->next_to_use = 0; 2426 tx_ring->next_to_clean = 0; 2427 } 2428 2429 /** 2430 * e1000e_free_tx_resources - Free Tx Resources per Queue 2431 * @tx_ring: Tx descriptor ring 2432 * 2433 * Free all transmit software resources 2434 **/ 2435 void e1000e_free_tx_resources(struct e1000_ring *tx_ring) 2436 { 2437 struct e1000_adapter *adapter = tx_ring->adapter; 2438 struct pci_dev *pdev = adapter->pdev; 2439 2440 e1000_clean_tx_ring(tx_ring); 2441 2442 vfree(tx_ring->buffer_info); 2443 tx_ring->buffer_info = NULL; 2444 2445 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc, 2446 tx_ring->dma); 2447 tx_ring->desc = NULL; 2448 } 2449 2450 /** 2451 * e1000e_free_rx_resources - Free Rx Resources 2452 * @rx_ring: Rx descriptor ring 2453 * 2454 * Free all receive software resources 2455 **/ 2456 void e1000e_free_rx_resources(struct e1000_ring *rx_ring) 2457 { 2458 struct e1000_adapter *adapter = rx_ring->adapter; 2459 struct pci_dev *pdev = adapter->pdev; 2460 int i; 2461 2462 e1000_clean_rx_ring(rx_ring); 2463 2464 for (i = 0; i < rx_ring->count; i++) 2465 kfree(rx_ring->buffer_info[i].ps_pages); 2466 2467 vfree(rx_ring->buffer_info); 2468 rx_ring->buffer_info = NULL; 2469 2470 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc, 2471 rx_ring->dma); 2472 rx_ring->desc = NULL; 2473 } 2474 2475 /** 2476 * e1000_update_itr - update the dynamic ITR value based on statistics 2477 * @adapter: pointer to adapter 2478 * @itr_setting: current adapter->itr 2479 * @packets: the number of packets during this measurement interval 2480 * @bytes: the number of bytes during this measurement interval 2481 * 2482 * Stores a new ITR value based on packets and byte 2483 * counts during the last interrupt. The advantage of per interrupt 2484 * computation is faster updates and more accurate ITR for the current 2485 * traffic pattern. Constants in this function were computed 2486 * based on theoretical maximum wire speed and thresholds were set based 2487 * on testing data as well as attempting to minimize response time 2488 * while increasing bulk throughput. This functionality is controlled 2489 * by the InterruptThrottleRate module parameter. 2490 **/ 2491 static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes) 2492 { 2493 unsigned int retval = itr_setting; 2494 2495 if (packets == 0) 2496 return itr_setting; 2497 2498 switch (itr_setting) { 2499 case lowest_latency: 2500 /* handle TSO and jumbo frames */ 2501 if (bytes / packets > 8000) 2502 retval = bulk_latency; 2503 else if ((packets < 5) && (bytes > 512)) 2504 retval = low_latency; 2505 break; 2506 case low_latency: /* 50 usec aka 20000 ints/s */ 2507 if (bytes > 10000) { 2508 /* this if handles the TSO accounting */ 2509 if (bytes / packets > 8000) 2510 retval = bulk_latency; 2511 else if ((packets < 10) || ((bytes / packets) > 1200)) 2512 retval = bulk_latency; 2513 else if ((packets > 35)) 2514 retval = lowest_latency; 2515 } else if (bytes / packets > 2000) { 2516 retval = bulk_latency; 2517 } else if (packets <= 2 && bytes < 512) { 2518 retval = lowest_latency; 2519 } 2520 break; 2521 case bulk_latency: /* 250 usec aka 4000 ints/s */ 2522 if (bytes > 25000) { 2523 if (packets > 35) 2524 retval = low_latency; 2525 } else if (bytes < 6000) { 2526 retval = low_latency; 2527 } 2528 break; 2529 } 2530 2531 return retval; 2532 } 2533 2534 static void e1000_set_itr(struct e1000_adapter *adapter) 2535 { 2536 u16 current_itr; 2537 u32 new_itr = adapter->itr; 2538 2539 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */ 2540 if (adapter->link_speed != SPEED_1000) { 2541 current_itr = 0; 2542 new_itr = 4000; 2543 goto set_itr_now; 2544 } 2545 2546 if (adapter->flags2 & FLAG2_DISABLE_AIM) { 2547 new_itr = 0; 2548 goto set_itr_now; 2549 } 2550 2551 adapter->tx_itr = e1000_update_itr(adapter->tx_itr, 2552 adapter->total_tx_packets, 2553 adapter->total_tx_bytes); 2554 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 2555 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency) 2556 adapter->tx_itr = low_latency; 2557 2558 adapter->rx_itr = e1000_update_itr(adapter->rx_itr, 2559 adapter->total_rx_packets, 2560 adapter->total_rx_bytes); 2561 /* conservative mode (itr 3) eliminates the lowest_latency setting */ 2562 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency) 2563 adapter->rx_itr = low_latency; 2564 2565 current_itr = max(adapter->rx_itr, adapter->tx_itr); 2566 2567 /* counts and packets in update_itr are dependent on these numbers */ 2568 switch (current_itr) { 2569 case lowest_latency: 2570 new_itr = 70000; 2571 break; 2572 case low_latency: 2573 new_itr = 20000; /* aka hwitr = ~200 */ 2574 break; 2575 case bulk_latency: 2576 new_itr = 4000; 2577 break; 2578 default: 2579 break; 2580 } 2581 2582 set_itr_now: 2583 if (new_itr != adapter->itr) { 2584 /* this attempts to bias the interrupt rate towards Bulk 2585 * by adding intermediate steps when interrupt rate is 2586 * increasing 2587 */ 2588 new_itr = new_itr > adapter->itr ? 2589 min(adapter->itr + (new_itr >> 2), new_itr) : new_itr; 2590 adapter->itr = new_itr; 2591 adapter->rx_ring->itr_val = new_itr; 2592 if (adapter->msix_entries) 2593 adapter->rx_ring->set_itr = 1; 2594 else 2595 e1000e_write_itr(adapter, new_itr); 2596 } 2597 } 2598 2599 /** 2600 * e1000e_write_itr - write the ITR value to the appropriate registers 2601 * @adapter: address of board private structure 2602 * @itr: new ITR value to program 2603 * 2604 * e1000e_write_itr determines if the adapter is in MSI-X mode 2605 * and, if so, writes the EITR registers with the ITR value. 2606 * Otherwise, it writes the ITR value into the ITR register. 2607 **/ 2608 void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr) 2609 { 2610 struct e1000_hw *hw = &adapter->hw; 2611 u32 new_itr = itr ? 1000000000 / (itr * 256) : 0; 2612 2613 if (adapter->msix_entries) { 2614 int vector; 2615 2616 for (vector = 0; vector < adapter->num_vectors; vector++) 2617 writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector)); 2618 } else { 2619 ew32(ITR, new_itr); 2620 } 2621 } 2622 2623 /** 2624 * e1000_alloc_queues - Allocate memory for all rings 2625 * @adapter: board private structure to initialize 2626 **/ 2627 static int e1000_alloc_queues(struct e1000_adapter *adapter) 2628 { 2629 int size = sizeof(struct e1000_ring); 2630 2631 adapter->tx_ring = kzalloc(size, GFP_KERNEL); 2632 if (!adapter->tx_ring) 2633 goto err; 2634 adapter->tx_ring->count = adapter->tx_ring_count; 2635 adapter->tx_ring->adapter = adapter; 2636 2637 adapter->rx_ring = kzalloc(size, GFP_KERNEL); 2638 if (!adapter->rx_ring) 2639 goto err; 2640 adapter->rx_ring->count = adapter->rx_ring_count; 2641 adapter->rx_ring->adapter = adapter; 2642 2643 return 0; 2644 err: 2645 e_err("Unable to allocate memory for queues\n"); 2646 kfree(adapter->rx_ring); 2647 kfree(adapter->tx_ring); 2648 return -ENOMEM; 2649 } 2650 2651 /** 2652 * e1000e_poll - NAPI Rx polling callback 2653 * @napi: struct associated with this polling callback 2654 * @weight: number of packets driver is allowed to process this poll 2655 **/ 2656 static int e1000e_poll(struct napi_struct *napi, int weight) 2657 { 2658 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, 2659 napi); 2660 struct e1000_hw *hw = &adapter->hw; 2661 struct net_device *poll_dev = adapter->netdev; 2662 int tx_cleaned = 1, work_done = 0; 2663 2664 adapter = netdev_priv(poll_dev); 2665 2666 if (!adapter->msix_entries || 2667 (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val)) 2668 tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring); 2669 2670 adapter->clean_rx(adapter->rx_ring, &work_done, weight); 2671 2672 if (!tx_cleaned) 2673 work_done = weight; 2674 2675 /* If weight not fully consumed, exit the polling mode */ 2676 if (work_done < weight) { 2677 if (adapter->itr_setting & 3) 2678 e1000_set_itr(adapter); 2679 napi_complete_done(napi, work_done); 2680 if (!test_bit(__E1000_DOWN, &adapter->state)) { 2681 if (adapter->msix_entries) 2682 ew32(IMS, adapter->rx_ring->ims_val); 2683 else 2684 e1000_irq_enable(adapter); 2685 } 2686 } 2687 2688 return work_done; 2689 } 2690 2691 static int e1000_vlan_rx_add_vid(struct net_device *netdev, 2692 __always_unused __be16 proto, u16 vid) 2693 { 2694 struct e1000_adapter *adapter = netdev_priv(netdev); 2695 struct e1000_hw *hw = &adapter->hw; 2696 u32 vfta, index; 2697 2698 /* don't update vlan cookie if already programmed */ 2699 if ((adapter->hw.mng_cookie.status & 2700 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) && 2701 (vid == adapter->mng_vlan_id)) 2702 return 0; 2703 2704 /* add VID to filter table */ 2705 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { 2706 index = (vid >> 5) & 0x7F; 2707 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index); 2708 vfta |= BIT((vid & 0x1F)); 2709 hw->mac.ops.write_vfta(hw, index, vfta); 2710 } 2711 2712 set_bit(vid, adapter->active_vlans); 2713 2714 return 0; 2715 } 2716 2717 static int e1000_vlan_rx_kill_vid(struct net_device *netdev, 2718 __always_unused __be16 proto, u16 vid) 2719 { 2720 struct e1000_adapter *adapter = netdev_priv(netdev); 2721 struct e1000_hw *hw = &adapter->hw; 2722 u32 vfta, index; 2723 2724 if ((adapter->hw.mng_cookie.status & 2725 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) && 2726 (vid == adapter->mng_vlan_id)) { 2727 /* release control to f/w */ 2728 e1000e_release_hw_control(adapter); 2729 return 0; 2730 } 2731 2732 /* remove VID from filter table */ 2733 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { 2734 index = (vid >> 5) & 0x7F; 2735 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index); 2736 vfta &= ~BIT((vid & 0x1F)); 2737 hw->mac.ops.write_vfta(hw, index, vfta); 2738 } 2739 2740 clear_bit(vid, adapter->active_vlans); 2741 2742 return 0; 2743 } 2744 2745 /** 2746 * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering 2747 * @adapter: board private structure to initialize 2748 **/ 2749 static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter) 2750 { 2751 struct net_device *netdev = adapter->netdev; 2752 struct e1000_hw *hw = &adapter->hw; 2753 u32 rctl; 2754 2755 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { 2756 /* disable VLAN receive filtering */ 2757 rctl = er32(RCTL); 2758 rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN); 2759 ew32(RCTL, rctl); 2760 2761 if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) { 2762 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), 2763 adapter->mng_vlan_id); 2764 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; 2765 } 2766 } 2767 } 2768 2769 /** 2770 * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering 2771 * @adapter: board private structure to initialize 2772 **/ 2773 static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter) 2774 { 2775 struct e1000_hw *hw = &adapter->hw; 2776 u32 rctl; 2777 2778 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) { 2779 /* enable VLAN receive filtering */ 2780 rctl = er32(RCTL); 2781 rctl |= E1000_RCTL_VFE; 2782 rctl &= ~E1000_RCTL_CFIEN; 2783 ew32(RCTL, rctl); 2784 } 2785 } 2786 2787 /** 2788 * e1000e_vlan_strip_disable - helper to disable HW VLAN stripping 2789 * @adapter: board private structure to initialize 2790 **/ 2791 static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter) 2792 { 2793 struct e1000_hw *hw = &adapter->hw; 2794 u32 ctrl; 2795 2796 /* disable VLAN tag insert/strip */ 2797 ctrl = er32(CTRL); 2798 ctrl &= ~E1000_CTRL_VME; 2799 ew32(CTRL, ctrl); 2800 } 2801 2802 /** 2803 * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping 2804 * @adapter: board private structure to initialize 2805 **/ 2806 static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter) 2807 { 2808 struct e1000_hw *hw = &adapter->hw; 2809 u32 ctrl; 2810 2811 /* enable VLAN tag insert/strip */ 2812 ctrl = er32(CTRL); 2813 ctrl |= E1000_CTRL_VME; 2814 ew32(CTRL, ctrl); 2815 } 2816 2817 static void e1000_update_mng_vlan(struct e1000_adapter *adapter) 2818 { 2819 struct net_device *netdev = adapter->netdev; 2820 u16 vid = adapter->hw.mng_cookie.vlan_id; 2821 u16 old_vid = adapter->mng_vlan_id; 2822 2823 if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) { 2824 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid); 2825 adapter->mng_vlan_id = vid; 2826 } 2827 2828 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid)) 2829 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid); 2830 } 2831 2832 static void e1000_restore_vlan(struct e1000_adapter *adapter) 2833 { 2834 u16 vid; 2835 2836 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0); 2837 2838 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID) 2839 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid); 2840 } 2841 2842 static void e1000_init_manageability_pt(struct e1000_adapter *adapter) 2843 { 2844 struct e1000_hw *hw = &adapter->hw; 2845 u32 manc, manc2h, mdef, i, j; 2846 2847 if (!(adapter->flags & FLAG_MNG_PT_ENABLED)) 2848 return; 2849 2850 manc = er32(MANC); 2851 2852 /* enable receiving management packets to the host. this will probably 2853 * generate destination unreachable messages from the host OS, but 2854 * the packets will be handled on SMBUS 2855 */ 2856 manc |= E1000_MANC_EN_MNG2HOST; 2857 manc2h = er32(MANC2H); 2858 2859 switch (hw->mac.type) { 2860 default: 2861 manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664); 2862 break; 2863 case e1000_82574: 2864 case e1000_82583: 2865 /* Check if IPMI pass-through decision filter already exists; 2866 * if so, enable it. 2867 */ 2868 for (i = 0, j = 0; i < 8; i++) { 2869 mdef = er32(MDEF(i)); 2870 2871 /* Ignore filters with anything other than IPMI ports */ 2872 if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664)) 2873 continue; 2874 2875 /* Enable this decision filter in MANC2H */ 2876 if (mdef) 2877 manc2h |= BIT(i); 2878 2879 j |= mdef; 2880 } 2881 2882 if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664)) 2883 break; 2884 2885 /* Create new decision filter in an empty filter */ 2886 for (i = 0, j = 0; i < 8; i++) 2887 if (er32(MDEF(i)) == 0) { 2888 ew32(MDEF(i), (E1000_MDEF_PORT_623 | 2889 E1000_MDEF_PORT_664)); 2890 manc2h |= BIT(1); 2891 j++; 2892 break; 2893 } 2894 2895 if (!j) 2896 e_warn("Unable to create IPMI pass-through filter\n"); 2897 break; 2898 } 2899 2900 ew32(MANC2H, manc2h); 2901 ew32(MANC, manc); 2902 } 2903 2904 /** 2905 * e1000_configure_tx - Configure Transmit Unit after Reset 2906 * @adapter: board private structure 2907 * 2908 * Configure the Tx unit of the MAC after a reset. 2909 **/ 2910 static void e1000_configure_tx(struct e1000_adapter *adapter) 2911 { 2912 struct e1000_hw *hw = &adapter->hw; 2913 struct e1000_ring *tx_ring = adapter->tx_ring; 2914 u64 tdba; 2915 u32 tdlen, tctl, tarc; 2916 2917 /* Setup the HW Tx Head and Tail descriptor pointers */ 2918 tdba = tx_ring->dma; 2919 tdlen = tx_ring->count * sizeof(struct e1000_tx_desc); 2920 ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32))); 2921 ew32(TDBAH(0), (tdba >> 32)); 2922 ew32(TDLEN(0), tdlen); 2923 ew32(TDH(0), 0); 2924 ew32(TDT(0), 0); 2925 tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0); 2926 tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0); 2927 2928 writel(0, tx_ring->head); 2929 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA) 2930 e1000e_update_tdt_wa(tx_ring, 0); 2931 else 2932 writel(0, tx_ring->tail); 2933 2934 /* Set the Tx Interrupt Delay register */ 2935 ew32(TIDV, adapter->tx_int_delay); 2936 /* Tx irq moderation */ 2937 ew32(TADV, adapter->tx_abs_int_delay); 2938 2939 if (adapter->flags2 & FLAG2_DMA_BURST) { 2940 u32 txdctl = er32(TXDCTL(0)); 2941 2942 txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH | 2943 E1000_TXDCTL_WTHRESH); 2944 /* set up some performance related parameters to encourage the 2945 * hardware to use the bus more efficiently in bursts, depends 2946 * on the tx_int_delay to be enabled, 2947 * wthresh = 1 ==> burst write is disabled to avoid Tx stalls 2948 * hthresh = 1 ==> prefetch when one or more available 2949 * pthresh = 0x1f ==> prefetch if internal cache 31 or less 2950 * BEWARE: this seems to work but should be considered first if 2951 * there are Tx hangs or other Tx related bugs 2952 */ 2953 txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE; 2954 ew32(TXDCTL(0), txdctl); 2955 } 2956 /* erratum work around: set txdctl the same for both queues */ 2957 ew32(TXDCTL(1), er32(TXDCTL(0))); 2958 2959 /* Program the Transmit Control Register */ 2960 tctl = er32(TCTL); 2961 tctl &= ~E1000_TCTL_CT; 2962 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC | 2963 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); 2964 2965 if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) { 2966 tarc = er32(TARC(0)); 2967 /* set the speed mode bit, we'll clear it if we're not at 2968 * gigabit link later 2969 */ 2970 #define SPEED_MODE_BIT BIT(21) 2971 tarc |= SPEED_MODE_BIT; 2972 ew32(TARC(0), tarc); 2973 } 2974 2975 /* errata: program both queues to unweighted RR */ 2976 if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) { 2977 tarc = er32(TARC(0)); 2978 tarc |= 1; 2979 ew32(TARC(0), tarc); 2980 tarc = er32(TARC(1)); 2981 tarc |= 1; 2982 ew32(TARC(1), tarc); 2983 } 2984 2985 /* Setup Transmit Descriptor Settings for eop descriptor */ 2986 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS; 2987 2988 /* only set IDE if we are delaying interrupts using the timers */ 2989 if (adapter->tx_int_delay) 2990 adapter->txd_cmd |= E1000_TXD_CMD_IDE; 2991 2992 /* enable Report Status bit */ 2993 adapter->txd_cmd |= E1000_TXD_CMD_RS; 2994 2995 ew32(TCTL, tctl); 2996 2997 hw->mac.ops.config_collision_dist(hw); 2998 2999 /* SPT and KBL Si errata workaround to avoid data corruption */ 3000 if (hw->mac.type == e1000_pch_spt) { 3001 u32 reg_val; 3002 3003 reg_val = er32(IOSFPC); 3004 reg_val |= E1000_RCTL_RDMTS_HEX; 3005 ew32(IOSFPC, reg_val); 3006 3007 reg_val = er32(TARC(0)); 3008 /* SPT and KBL Si errata workaround to avoid Tx hang. 3009 * Dropping the number of outstanding requests from 3010 * 3 to 2 in order to avoid a buffer overrun. 3011 */ 3012 reg_val &= ~E1000_TARC0_CB_MULTIQ_3_REQ; 3013 reg_val |= E1000_TARC0_CB_MULTIQ_2_REQ; 3014 ew32(TARC(0), reg_val); 3015 } 3016 } 3017 3018 /** 3019 * e1000_setup_rctl - configure the receive control registers 3020 * @adapter: Board private structure 3021 **/ 3022 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \ 3023 (((S) & (PAGE_SIZE - 1)) ? 1 : 0)) 3024 static void e1000_setup_rctl(struct e1000_adapter *adapter) 3025 { 3026 struct e1000_hw *hw = &adapter->hw; 3027 u32 rctl, rfctl; 3028 u32 pages = 0; 3029 3030 /* Workaround Si errata on PCHx - configure jumbo frame flow. 3031 * If jumbo frames not set, program related MAC/PHY registers 3032 * to h/w defaults 3033 */ 3034 if (hw->mac.type >= e1000_pch2lan) { 3035 s32 ret_val; 3036 3037 if (adapter->netdev->mtu > ETH_DATA_LEN) 3038 ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true); 3039 else 3040 ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false); 3041 3042 if (ret_val) 3043 e_dbg("failed to enable|disable jumbo frame workaround mode\n"); 3044 } 3045 3046 /* Program MC offset vector base */ 3047 rctl = er32(RCTL); 3048 rctl &= ~(3 << E1000_RCTL_MO_SHIFT); 3049 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | 3050 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | 3051 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT); 3052 3053 /* Do not Store bad packets */ 3054 rctl &= ~E1000_RCTL_SBP; 3055 3056 /* Enable Long Packet receive */ 3057 if (adapter->netdev->mtu <= ETH_DATA_LEN) 3058 rctl &= ~E1000_RCTL_LPE; 3059 else 3060 rctl |= E1000_RCTL_LPE; 3061 3062 /* Some systems expect that the CRC is included in SMBUS traffic. The 3063 * hardware strips the CRC before sending to both SMBUS (BMC) and to 3064 * host memory when this is enabled 3065 */ 3066 if (adapter->flags2 & FLAG2_CRC_STRIPPING) 3067 rctl |= E1000_RCTL_SECRC; 3068 3069 /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */ 3070 if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) { 3071 u16 phy_data; 3072 3073 e1e_rphy(hw, PHY_REG(770, 26), &phy_data); 3074 phy_data &= 0xfff8; 3075 phy_data |= BIT(2); 3076 e1e_wphy(hw, PHY_REG(770, 26), phy_data); 3077 3078 e1e_rphy(hw, 22, &phy_data); 3079 phy_data &= 0x0fff; 3080 phy_data |= BIT(14); 3081 e1e_wphy(hw, 0x10, 0x2823); 3082 e1e_wphy(hw, 0x11, 0x0003); 3083 e1e_wphy(hw, 22, phy_data); 3084 } 3085 3086 /* Setup buffer sizes */ 3087 rctl &= ~E1000_RCTL_SZ_4096; 3088 rctl |= E1000_RCTL_BSEX; 3089 switch (adapter->rx_buffer_len) { 3090 case 2048: 3091 default: 3092 rctl |= E1000_RCTL_SZ_2048; 3093 rctl &= ~E1000_RCTL_BSEX; 3094 break; 3095 case 4096: 3096 rctl |= E1000_RCTL_SZ_4096; 3097 break; 3098 case 8192: 3099 rctl |= E1000_RCTL_SZ_8192; 3100 break; 3101 case 16384: 3102 rctl |= E1000_RCTL_SZ_16384; 3103 break; 3104 } 3105 3106 /* Enable Extended Status in all Receive Descriptors */ 3107 rfctl = er32(RFCTL); 3108 rfctl |= E1000_RFCTL_EXTEN; 3109 ew32(RFCTL, rfctl); 3110 3111 /* 82571 and greater support packet-split where the protocol 3112 * header is placed in skb->data and the packet data is 3113 * placed in pages hanging off of skb_shinfo(skb)->nr_frags. 3114 * In the case of a non-split, skb->data is linearly filled, 3115 * followed by the page buffers. Therefore, skb->data is 3116 * sized to hold the largest protocol header. 3117 * 3118 * allocations using alloc_page take too long for regular MTU 3119 * so only enable packet split for jumbo frames 3120 * 3121 * Using pages when the page size is greater than 16k wastes 3122 * a lot of memory, since we allocate 3 pages at all times 3123 * per packet. 3124 */ 3125 pages = PAGE_USE_COUNT(adapter->netdev->mtu); 3126 if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE)) 3127 adapter->rx_ps_pages = pages; 3128 else 3129 adapter->rx_ps_pages = 0; 3130 3131 if (adapter->rx_ps_pages) { 3132 u32 psrctl = 0; 3133 3134 /* Enable Packet split descriptors */ 3135 rctl |= E1000_RCTL_DTYP_PS; 3136 3137 psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT; 3138 3139 switch (adapter->rx_ps_pages) { 3140 case 3: 3141 psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT; 3142 /* fall-through */ 3143 case 2: 3144 psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT; 3145 /* fall-through */ 3146 case 1: 3147 psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT; 3148 break; 3149 } 3150 3151 ew32(PSRCTL, psrctl); 3152 } 3153 3154 /* This is useful for sniffing bad packets. */ 3155 if (adapter->netdev->features & NETIF_F_RXALL) { 3156 /* UPE and MPE will be handled by normal PROMISC logic 3157 * in e1000e_set_rx_mode 3158 */ 3159 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */ 3160 E1000_RCTL_BAM | /* RX All Bcast Pkts */ 3161 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */ 3162 3163 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */ 3164 E1000_RCTL_DPF | /* Allow filtered pause */ 3165 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */ 3166 /* Do not mess with E1000_CTRL_VME, it affects transmit as well, 3167 * and that breaks VLANs. 3168 */ 3169 } 3170 3171 ew32(RCTL, rctl); 3172 /* just started the receive unit, no need to restart */ 3173 adapter->flags &= ~FLAG_RESTART_NOW; 3174 } 3175 3176 /** 3177 * e1000_configure_rx - Configure Receive Unit after Reset 3178 * @adapter: board private structure 3179 * 3180 * Configure the Rx unit of the MAC after a reset. 3181 **/ 3182 static void e1000_configure_rx(struct e1000_adapter *adapter) 3183 { 3184 struct e1000_hw *hw = &adapter->hw; 3185 struct e1000_ring *rx_ring = adapter->rx_ring; 3186 u64 rdba; 3187 u32 rdlen, rctl, rxcsum, ctrl_ext; 3188 3189 if (adapter->rx_ps_pages) { 3190 /* this is a 32 byte descriptor */ 3191 rdlen = rx_ring->count * 3192 sizeof(union e1000_rx_desc_packet_split); 3193 adapter->clean_rx = e1000_clean_rx_irq_ps; 3194 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps; 3195 } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) { 3196 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended); 3197 adapter->clean_rx = e1000_clean_jumbo_rx_irq; 3198 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers; 3199 } else { 3200 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended); 3201 adapter->clean_rx = e1000_clean_rx_irq; 3202 adapter->alloc_rx_buf = e1000_alloc_rx_buffers; 3203 } 3204 3205 /* disable receives while setting up the descriptors */ 3206 rctl = er32(RCTL); 3207 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX)) 3208 ew32(RCTL, rctl & ~E1000_RCTL_EN); 3209 e1e_flush(); 3210 usleep_range(10000, 20000); 3211 3212 if (adapter->flags2 & FLAG2_DMA_BURST) { 3213 /* set the writeback threshold (only takes effect if the RDTR 3214 * is set). set GRAN=1 and write back up to 0x4 worth, and 3215 * enable prefetching of 0x20 Rx descriptors 3216 * granularity = 01 3217 * wthresh = 04, 3218 * hthresh = 04, 3219 * pthresh = 0x20 3220 */ 3221 ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE); 3222 ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE); 3223 } 3224 3225 /* set the Receive Delay Timer Register */ 3226 ew32(RDTR, adapter->rx_int_delay); 3227 3228 /* irq moderation */ 3229 ew32(RADV, adapter->rx_abs_int_delay); 3230 if ((adapter->itr_setting != 0) && (adapter->itr != 0)) 3231 e1000e_write_itr(adapter, adapter->itr); 3232 3233 ctrl_ext = er32(CTRL_EXT); 3234 /* Auto-Mask interrupts upon ICR access */ 3235 ctrl_ext |= E1000_CTRL_EXT_IAME; 3236 ew32(IAM, 0xffffffff); 3237 ew32(CTRL_EXT, ctrl_ext); 3238 e1e_flush(); 3239 3240 /* Setup the HW Rx Head and Tail Descriptor Pointers and 3241 * the Base and Length of the Rx Descriptor Ring 3242 */ 3243 rdba = rx_ring->dma; 3244 ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32))); 3245 ew32(RDBAH(0), (rdba >> 32)); 3246 ew32(RDLEN(0), rdlen); 3247 ew32(RDH(0), 0); 3248 ew32(RDT(0), 0); 3249 rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0); 3250 rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0); 3251 3252 writel(0, rx_ring->head); 3253 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA) 3254 e1000e_update_rdt_wa(rx_ring, 0); 3255 else 3256 writel(0, rx_ring->tail); 3257 3258 /* Enable Receive Checksum Offload for TCP and UDP */ 3259 rxcsum = er32(RXCSUM); 3260 if (adapter->netdev->features & NETIF_F_RXCSUM) 3261 rxcsum |= E1000_RXCSUM_TUOFL; 3262 else 3263 rxcsum &= ~E1000_RXCSUM_TUOFL; 3264 ew32(RXCSUM, rxcsum); 3265 3266 /* With jumbo frames, excessive C-state transition latencies result 3267 * in dropped transactions. 3268 */ 3269 if (adapter->netdev->mtu > ETH_DATA_LEN) { 3270 u32 lat = 3271 ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 - 3272 adapter->max_frame_size) * 8 / 1000; 3273 3274 if (adapter->flags & FLAG_IS_ICH) { 3275 u32 rxdctl = er32(RXDCTL(0)); 3276 3277 ew32(RXDCTL(0), rxdctl | 0x3 | BIT(8)); 3278 } 3279 3280 dev_info(&adapter->pdev->dev, 3281 "Some CPU C-states have been disabled in order to enable jumbo frames\n"); 3282 pm_qos_update_request(&adapter->pm_qos_req, lat); 3283 } else { 3284 pm_qos_update_request(&adapter->pm_qos_req, 3285 PM_QOS_DEFAULT_VALUE); 3286 } 3287 3288 /* Enable Receives */ 3289 ew32(RCTL, rctl); 3290 } 3291 3292 /** 3293 * e1000e_write_mc_addr_list - write multicast addresses to MTA 3294 * @netdev: network interface device structure 3295 * 3296 * Writes multicast address list to the MTA hash table. 3297 * Returns: -ENOMEM on failure 3298 * 0 on no addresses written 3299 * X on writing X addresses to MTA 3300 */ 3301 static int e1000e_write_mc_addr_list(struct net_device *netdev) 3302 { 3303 struct e1000_adapter *adapter = netdev_priv(netdev); 3304 struct e1000_hw *hw = &adapter->hw; 3305 struct netdev_hw_addr *ha; 3306 u8 *mta_list; 3307 int i; 3308 3309 if (netdev_mc_empty(netdev)) { 3310 /* nothing to program, so clear mc list */ 3311 hw->mac.ops.update_mc_addr_list(hw, NULL, 0); 3312 return 0; 3313 } 3314 3315 mta_list = kcalloc(netdev_mc_count(netdev), ETH_ALEN, GFP_ATOMIC); 3316 if (!mta_list) 3317 return -ENOMEM; 3318 3319 /* update_mc_addr_list expects a packed array of only addresses. */ 3320 i = 0; 3321 netdev_for_each_mc_addr(ha, netdev) 3322 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN); 3323 3324 hw->mac.ops.update_mc_addr_list(hw, mta_list, i); 3325 kfree(mta_list); 3326 3327 return netdev_mc_count(netdev); 3328 } 3329 3330 /** 3331 * e1000e_write_uc_addr_list - write unicast addresses to RAR table 3332 * @netdev: network interface device structure 3333 * 3334 * Writes unicast address list to the RAR table. 3335 * Returns: -ENOMEM on failure/insufficient address space 3336 * 0 on no addresses written 3337 * X on writing X addresses to the RAR table 3338 **/ 3339 static int e1000e_write_uc_addr_list(struct net_device *netdev) 3340 { 3341 struct e1000_adapter *adapter = netdev_priv(netdev); 3342 struct e1000_hw *hw = &adapter->hw; 3343 unsigned int rar_entries; 3344 int count = 0; 3345 3346 rar_entries = hw->mac.ops.rar_get_count(hw); 3347 3348 /* save a rar entry for our hardware address */ 3349 rar_entries--; 3350 3351 /* save a rar entry for the LAA workaround */ 3352 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) 3353 rar_entries--; 3354 3355 /* return ENOMEM indicating insufficient memory for addresses */ 3356 if (netdev_uc_count(netdev) > rar_entries) 3357 return -ENOMEM; 3358 3359 if (!netdev_uc_empty(netdev) && rar_entries) { 3360 struct netdev_hw_addr *ha; 3361 3362 /* write the addresses in reverse order to avoid write 3363 * combining 3364 */ 3365 netdev_for_each_uc_addr(ha, netdev) { 3366 int ret_val; 3367 3368 if (!rar_entries) 3369 break; 3370 ret_val = hw->mac.ops.rar_set(hw, ha->addr, rar_entries--); 3371 if (ret_val < 0) 3372 return -ENOMEM; 3373 count++; 3374 } 3375 } 3376 3377 /* zero out the remaining RAR entries not used above */ 3378 for (; rar_entries > 0; rar_entries--) { 3379 ew32(RAH(rar_entries), 0); 3380 ew32(RAL(rar_entries), 0); 3381 } 3382 e1e_flush(); 3383 3384 return count; 3385 } 3386 3387 /** 3388 * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set 3389 * @netdev: network interface device structure 3390 * 3391 * The ndo_set_rx_mode entry point is called whenever the unicast or multicast 3392 * address list or the network interface flags are updated. This routine is 3393 * responsible for configuring the hardware for proper unicast, multicast, 3394 * promiscuous mode, and all-multi behavior. 3395 **/ 3396 static void e1000e_set_rx_mode(struct net_device *netdev) 3397 { 3398 struct e1000_adapter *adapter = netdev_priv(netdev); 3399 struct e1000_hw *hw = &adapter->hw; 3400 u32 rctl; 3401 3402 if (pm_runtime_suspended(netdev->dev.parent)) 3403 return; 3404 3405 /* Check for Promiscuous and All Multicast modes */ 3406 rctl = er32(RCTL); 3407 3408 /* clear the affected bits */ 3409 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE); 3410 3411 if (netdev->flags & IFF_PROMISC) { 3412 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE); 3413 /* Do not hardware filter VLANs in promisc mode */ 3414 e1000e_vlan_filter_disable(adapter); 3415 } else { 3416 int count; 3417 3418 if (netdev->flags & IFF_ALLMULTI) { 3419 rctl |= E1000_RCTL_MPE; 3420 } else { 3421 /* Write addresses to the MTA, if the attempt fails 3422 * then we should just turn on promiscuous mode so 3423 * that we can at least receive multicast traffic 3424 */ 3425 count = e1000e_write_mc_addr_list(netdev); 3426 if (count < 0) 3427 rctl |= E1000_RCTL_MPE; 3428 } 3429 e1000e_vlan_filter_enable(adapter); 3430 /* Write addresses to available RAR registers, if there is not 3431 * sufficient space to store all the addresses then enable 3432 * unicast promiscuous mode 3433 */ 3434 count = e1000e_write_uc_addr_list(netdev); 3435 if (count < 0) 3436 rctl |= E1000_RCTL_UPE; 3437 } 3438 3439 ew32(RCTL, rctl); 3440 3441 if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX) 3442 e1000e_vlan_strip_enable(adapter); 3443 else 3444 e1000e_vlan_strip_disable(adapter); 3445 } 3446 3447 static void e1000e_setup_rss_hash(struct e1000_adapter *adapter) 3448 { 3449 struct e1000_hw *hw = &adapter->hw; 3450 u32 mrqc, rxcsum; 3451 u32 rss_key[10]; 3452 int i; 3453 3454 netdev_rss_key_fill(rss_key, sizeof(rss_key)); 3455 for (i = 0; i < 10; i++) 3456 ew32(RSSRK(i), rss_key[i]); 3457 3458 /* Direct all traffic to queue 0 */ 3459 for (i = 0; i < 32; i++) 3460 ew32(RETA(i), 0); 3461 3462 /* Disable raw packet checksumming so that RSS hash is placed in 3463 * descriptor on writeback. 3464 */ 3465 rxcsum = er32(RXCSUM); 3466 rxcsum |= E1000_RXCSUM_PCSD; 3467 3468 ew32(RXCSUM, rxcsum); 3469 3470 mrqc = (E1000_MRQC_RSS_FIELD_IPV4 | 3471 E1000_MRQC_RSS_FIELD_IPV4_TCP | 3472 E1000_MRQC_RSS_FIELD_IPV6 | 3473 E1000_MRQC_RSS_FIELD_IPV6_TCP | 3474 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX); 3475 3476 ew32(MRQC, mrqc); 3477 } 3478 3479 /** 3480 * e1000e_get_base_timinca - get default SYSTIM time increment attributes 3481 * @adapter: board private structure 3482 * @timinca: pointer to returned time increment attributes 3483 * 3484 * Get attributes for incrementing the System Time Register SYSTIML/H at 3485 * the default base frequency, and set the cyclecounter shift value. 3486 **/ 3487 s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca) 3488 { 3489 struct e1000_hw *hw = &adapter->hw; 3490 u32 incvalue, incperiod, shift; 3491 3492 /* Make sure clock is enabled on I217/I218/I219 before checking 3493 * the frequency 3494 */ 3495 if ((hw->mac.type >= e1000_pch_lpt) && 3496 !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) && 3497 !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) { 3498 u32 fextnvm7 = er32(FEXTNVM7); 3499 3500 if (!(fextnvm7 & BIT(0))) { 3501 ew32(FEXTNVM7, fextnvm7 | BIT(0)); 3502 e1e_flush(); 3503 } 3504 } 3505 3506 switch (hw->mac.type) { 3507 case e1000_pch2lan: 3508 /* Stable 96MHz frequency */ 3509 incperiod = INCPERIOD_96MHZ; 3510 incvalue = INCVALUE_96MHZ; 3511 shift = INCVALUE_SHIFT_96MHZ; 3512 adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ; 3513 break; 3514 case e1000_pch_lpt: 3515 if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) { 3516 /* Stable 96MHz frequency */ 3517 incperiod = INCPERIOD_96MHZ; 3518 incvalue = INCVALUE_96MHZ; 3519 shift = INCVALUE_SHIFT_96MHZ; 3520 adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ; 3521 } else { 3522 /* Stable 25MHz frequency */ 3523 incperiod = INCPERIOD_25MHZ; 3524 incvalue = INCVALUE_25MHZ; 3525 shift = INCVALUE_SHIFT_25MHZ; 3526 adapter->cc.shift = shift; 3527 } 3528 break; 3529 case e1000_pch_spt: 3530 /* Stable 24MHz frequency */ 3531 incperiod = INCPERIOD_24MHZ; 3532 incvalue = INCVALUE_24MHZ; 3533 shift = INCVALUE_SHIFT_24MHZ; 3534 adapter->cc.shift = shift; 3535 break; 3536 case e1000_pch_cnp: 3537 if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) { 3538 /* Stable 24MHz frequency */ 3539 incperiod = INCPERIOD_24MHZ; 3540 incvalue = INCVALUE_24MHZ; 3541 shift = INCVALUE_SHIFT_24MHZ; 3542 adapter->cc.shift = shift; 3543 } else { 3544 /* Stable 38400KHz frequency */ 3545 incperiod = INCPERIOD_38400KHZ; 3546 incvalue = INCVALUE_38400KHZ; 3547 shift = INCVALUE_SHIFT_38400KHZ; 3548 adapter->cc.shift = shift; 3549 } 3550 break; 3551 case e1000_82574: 3552 case e1000_82583: 3553 /* Stable 25MHz frequency */ 3554 incperiod = INCPERIOD_25MHZ; 3555 incvalue = INCVALUE_25MHZ; 3556 shift = INCVALUE_SHIFT_25MHZ; 3557 adapter->cc.shift = shift; 3558 break; 3559 default: 3560 return -EINVAL; 3561 } 3562 3563 *timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) | 3564 ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK)); 3565 3566 return 0; 3567 } 3568 3569 /** 3570 * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable 3571 * @adapter: board private structure 3572 * 3573 * Outgoing time stamping can be enabled and disabled. Play nice and 3574 * disable it when requested, although it shouldn't cause any overhead 3575 * when no packet needs it. At most one packet in the queue may be 3576 * marked for time stamping, otherwise it would be impossible to tell 3577 * for sure to which packet the hardware time stamp belongs. 3578 * 3579 * Incoming time stamping has to be configured via the hardware filters. 3580 * Not all combinations are supported, in particular event type has to be 3581 * specified. Matching the kind of event packet is not supported, with the 3582 * exception of "all V2 events regardless of level 2 or 4". 3583 **/ 3584 static int e1000e_config_hwtstamp(struct e1000_adapter *adapter, 3585 struct hwtstamp_config *config) 3586 { 3587 struct e1000_hw *hw = &adapter->hw; 3588 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED; 3589 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED; 3590 u32 rxmtrl = 0; 3591 u16 rxudp = 0; 3592 bool is_l4 = false; 3593 bool is_l2 = false; 3594 u32 regval; 3595 3596 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP)) 3597 return -EINVAL; 3598 3599 /* flags reserved for future extensions - must be zero */ 3600 if (config->flags) 3601 return -EINVAL; 3602 3603 switch (config->tx_type) { 3604 case HWTSTAMP_TX_OFF: 3605 tsync_tx_ctl = 0; 3606 break; 3607 case HWTSTAMP_TX_ON: 3608 break; 3609 default: 3610 return -ERANGE; 3611 } 3612 3613 switch (config->rx_filter) { 3614 case HWTSTAMP_FILTER_NONE: 3615 tsync_rx_ctl = 0; 3616 break; 3617 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: 3618 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1; 3619 rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE; 3620 is_l4 = true; 3621 break; 3622 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: 3623 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1; 3624 rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE; 3625 is_l4 = true; 3626 break; 3627 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 3628 /* Also time stamps V2 L2 Path Delay Request/Response */ 3629 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2; 3630 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE; 3631 is_l2 = true; 3632 break; 3633 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 3634 /* Also time stamps V2 L2 Path Delay Request/Response. */ 3635 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2; 3636 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE; 3637 is_l2 = true; 3638 break; 3639 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 3640 /* Hardware cannot filter just V2 L4 Sync messages; 3641 * fall-through to V2 (both L2 and L4) Sync. 3642 */ 3643 case HWTSTAMP_FILTER_PTP_V2_SYNC: 3644 /* Also time stamps V2 Path Delay Request/Response. */ 3645 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2; 3646 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE; 3647 is_l2 = true; 3648 is_l4 = true; 3649 break; 3650 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 3651 /* Hardware cannot filter just V2 L4 Delay Request messages; 3652 * fall-through to V2 (both L2 and L4) Delay Request. 3653 */ 3654 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 3655 /* Also time stamps V2 Path Delay Request/Response. */ 3656 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2; 3657 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE; 3658 is_l2 = true; 3659 is_l4 = true; 3660 break; 3661 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: 3662 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: 3663 /* Hardware cannot filter just V2 L4 or L2 Event messages; 3664 * fall-through to all V2 (both L2 and L4) Events. 3665 */ 3666 case HWTSTAMP_FILTER_PTP_V2_EVENT: 3667 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2; 3668 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; 3669 is_l2 = true; 3670 is_l4 = true; 3671 break; 3672 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: 3673 /* For V1, the hardware can only filter Sync messages or 3674 * Delay Request messages but not both so fall-through to 3675 * time stamp all packets. 3676 */ 3677 case HWTSTAMP_FILTER_NTP_ALL: 3678 case HWTSTAMP_FILTER_ALL: 3679 is_l2 = true; 3680 is_l4 = true; 3681 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL; 3682 config->rx_filter = HWTSTAMP_FILTER_ALL; 3683 break; 3684 default: 3685 return -ERANGE; 3686 } 3687 3688 adapter->hwtstamp_config = *config; 3689 3690 /* enable/disable Tx h/w time stamping */ 3691 regval = er32(TSYNCTXCTL); 3692 regval &= ~E1000_TSYNCTXCTL_ENABLED; 3693 regval |= tsync_tx_ctl; 3694 ew32(TSYNCTXCTL, regval); 3695 if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) != 3696 (regval & E1000_TSYNCTXCTL_ENABLED)) { 3697 e_err("Timesync Tx Control register not set as expected\n"); 3698 return -EAGAIN; 3699 } 3700 3701 /* enable/disable Rx h/w time stamping */ 3702 regval = er32(TSYNCRXCTL); 3703 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK); 3704 regval |= tsync_rx_ctl; 3705 ew32(TSYNCRXCTL, regval); 3706 if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED | 3707 E1000_TSYNCRXCTL_TYPE_MASK)) != 3708 (regval & (E1000_TSYNCRXCTL_ENABLED | 3709 E1000_TSYNCRXCTL_TYPE_MASK))) { 3710 e_err("Timesync Rx Control register not set as expected\n"); 3711 return -EAGAIN; 3712 } 3713 3714 /* L2: define ethertype filter for time stamped packets */ 3715 if (is_l2) 3716 rxmtrl |= ETH_P_1588; 3717 3718 /* define which PTP packets get time stamped */ 3719 ew32(RXMTRL, rxmtrl); 3720 3721 /* Filter by destination port */ 3722 if (is_l4) { 3723 rxudp = PTP_EV_PORT; 3724 cpu_to_be16s(&rxudp); 3725 } 3726 ew32(RXUDP, rxudp); 3727 3728 e1e_flush(); 3729 3730 /* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */ 3731 er32(RXSTMPH); 3732 er32(TXSTMPH); 3733 3734 return 0; 3735 } 3736 3737 /** 3738 * e1000_configure - configure the hardware for Rx and Tx 3739 * @adapter: private board structure 3740 **/ 3741 static void e1000_configure(struct e1000_adapter *adapter) 3742 { 3743 struct e1000_ring *rx_ring = adapter->rx_ring; 3744 3745 e1000e_set_rx_mode(adapter->netdev); 3746 3747 e1000_restore_vlan(adapter); 3748 e1000_init_manageability_pt(adapter); 3749 3750 e1000_configure_tx(adapter); 3751 3752 if (adapter->netdev->features & NETIF_F_RXHASH) 3753 e1000e_setup_rss_hash(adapter); 3754 e1000_setup_rctl(adapter); 3755 e1000_configure_rx(adapter); 3756 adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL); 3757 } 3758 3759 /** 3760 * e1000e_power_up_phy - restore link in case the phy was powered down 3761 * @adapter: address of board private structure 3762 * 3763 * The phy may be powered down to save power and turn off link when the 3764 * driver is unloaded and wake on lan is not enabled (among others) 3765 * *** this routine MUST be followed by a call to e1000e_reset *** 3766 **/ 3767 void e1000e_power_up_phy(struct e1000_adapter *adapter) 3768 { 3769 if (adapter->hw.phy.ops.power_up) 3770 adapter->hw.phy.ops.power_up(&adapter->hw); 3771 3772 adapter->hw.mac.ops.setup_link(&adapter->hw); 3773 } 3774 3775 /** 3776 * e1000_power_down_phy - Power down the PHY 3777 * 3778 * Power down the PHY so no link is implied when interface is down. 3779 * The PHY cannot be powered down if management or WoL is active. 3780 */ 3781 static void e1000_power_down_phy(struct e1000_adapter *adapter) 3782 { 3783 if (adapter->hw.phy.ops.power_down) 3784 adapter->hw.phy.ops.power_down(&adapter->hw); 3785 } 3786 3787 /** 3788 * e1000_flush_tx_ring - remove all descriptors from the tx_ring 3789 * 3790 * We want to clear all pending descriptors from the TX ring. 3791 * zeroing happens when the HW reads the regs. We assign the ring itself as 3792 * the data of the next descriptor. We don't care about the data we are about 3793 * to reset the HW. 3794 */ 3795 static void e1000_flush_tx_ring(struct e1000_adapter *adapter) 3796 { 3797 struct e1000_hw *hw = &adapter->hw; 3798 struct e1000_ring *tx_ring = adapter->tx_ring; 3799 struct e1000_tx_desc *tx_desc = NULL; 3800 u32 tdt, tctl, txd_lower = E1000_TXD_CMD_IFCS; 3801 u16 size = 512; 3802 3803 tctl = er32(TCTL); 3804 ew32(TCTL, tctl | E1000_TCTL_EN); 3805 tdt = er32(TDT(0)); 3806 BUG_ON(tdt != tx_ring->next_to_use); 3807 tx_desc = E1000_TX_DESC(*tx_ring, tx_ring->next_to_use); 3808 tx_desc->buffer_addr = tx_ring->dma; 3809 3810 tx_desc->lower.data = cpu_to_le32(txd_lower | size); 3811 tx_desc->upper.data = 0; 3812 /* flush descriptors to memory before notifying the HW */ 3813 wmb(); 3814 tx_ring->next_to_use++; 3815 if (tx_ring->next_to_use == tx_ring->count) 3816 tx_ring->next_to_use = 0; 3817 ew32(TDT(0), tx_ring->next_to_use); 3818 mmiowb(); 3819 usleep_range(200, 250); 3820 } 3821 3822 /** 3823 * e1000_flush_rx_ring - remove all descriptors from the rx_ring 3824 * 3825 * Mark all descriptors in the RX ring as consumed and disable the rx ring 3826 */ 3827 static void e1000_flush_rx_ring(struct e1000_adapter *adapter) 3828 { 3829 u32 rctl, rxdctl; 3830 struct e1000_hw *hw = &adapter->hw; 3831 3832 rctl = er32(RCTL); 3833 ew32(RCTL, rctl & ~E1000_RCTL_EN); 3834 e1e_flush(); 3835 usleep_range(100, 150); 3836 3837 rxdctl = er32(RXDCTL(0)); 3838 /* zero the lower 14 bits (prefetch and host thresholds) */ 3839 rxdctl &= 0xffffc000; 3840 3841 /* update thresholds: prefetch threshold to 31, host threshold to 1 3842 * and make sure the granularity is "descriptors" and not "cache lines" 3843 */ 3844 rxdctl |= (0x1F | BIT(8) | E1000_RXDCTL_THRESH_UNIT_DESC); 3845 3846 ew32(RXDCTL(0), rxdctl); 3847 /* momentarily enable the RX ring for the changes to take effect */ 3848 ew32(RCTL, rctl | E1000_RCTL_EN); 3849 e1e_flush(); 3850 usleep_range(100, 150); 3851 ew32(RCTL, rctl & ~E1000_RCTL_EN); 3852 } 3853 3854 /** 3855 * e1000_flush_desc_rings - remove all descriptors from the descriptor rings 3856 * 3857 * In i219, the descriptor rings must be emptied before resetting the HW 3858 * or before changing the device state to D3 during runtime (runtime PM). 3859 * 3860 * Failure to do this will cause the HW to enter a unit hang state which can 3861 * only be released by PCI reset on the device 3862 * 3863 */ 3864 3865 static void e1000_flush_desc_rings(struct e1000_adapter *adapter) 3866 { 3867 u16 hang_state; 3868 u32 fext_nvm11, tdlen; 3869 struct e1000_hw *hw = &adapter->hw; 3870 3871 /* First, disable MULR fix in FEXTNVM11 */ 3872 fext_nvm11 = er32(FEXTNVM11); 3873 fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX; 3874 ew32(FEXTNVM11, fext_nvm11); 3875 /* do nothing if we're not in faulty state, or if the queue is empty */ 3876 tdlen = er32(TDLEN(0)); 3877 pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS, 3878 &hang_state); 3879 if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen) 3880 return; 3881 e1000_flush_tx_ring(adapter); 3882 /* recheck, maybe the fault is caused by the rx ring */ 3883 pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS, 3884 &hang_state); 3885 if (hang_state & FLUSH_DESC_REQUIRED) 3886 e1000_flush_rx_ring(adapter); 3887 } 3888 3889 /** 3890 * e1000e_systim_reset - reset the timesync registers after a hardware reset 3891 * @adapter: board private structure 3892 * 3893 * When the MAC is reset, all hardware bits for timesync will be reset to the 3894 * default values. This function will restore the settings last in place. 3895 * Since the clock SYSTIME registers are reset, we will simply restore the 3896 * cyclecounter to the kernel real clock time. 3897 **/ 3898 static void e1000e_systim_reset(struct e1000_adapter *adapter) 3899 { 3900 struct ptp_clock_info *info = &adapter->ptp_clock_info; 3901 struct e1000_hw *hw = &adapter->hw; 3902 unsigned long flags; 3903 u32 timinca; 3904 s32 ret_val; 3905 3906 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP)) 3907 return; 3908 3909 if (info->adjfreq) { 3910 /* restore the previous ptp frequency delta */ 3911 ret_val = info->adjfreq(info, adapter->ptp_delta); 3912 } else { 3913 /* set the default base frequency if no adjustment possible */ 3914 ret_val = e1000e_get_base_timinca(adapter, &timinca); 3915 if (!ret_val) 3916 ew32(TIMINCA, timinca); 3917 } 3918 3919 if (ret_val) { 3920 dev_warn(&adapter->pdev->dev, 3921 "Failed to restore TIMINCA clock rate delta: %d\n", 3922 ret_val); 3923 return; 3924 } 3925 3926 /* reset the systim ns time counter */ 3927 spin_lock_irqsave(&adapter->systim_lock, flags); 3928 timecounter_init(&adapter->tc, &adapter->cc, 3929 ktime_to_ns(ktime_get_real())); 3930 spin_unlock_irqrestore(&adapter->systim_lock, flags); 3931 3932 /* restore the previous hwtstamp configuration settings */ 3933 e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config); 3934 } 3935 3936 /** 3937 * e1000e_reset - bring the hardware into a known good state 3938 * 3939 * This function boots the hardware and enables some settings that 3940 * require a configuration cycle of the hardware - those cannot be 3941 * set/changed during runtime. After reset the device needs to be 3942 * properly configured for Rx, Tx etc. 3943 */ 3944 void e1000e_reset(struct e1000_adapter *adapter) 3945 { 3946 struct e1000_mac_info *mac = &adapter->hw.mac; 3947 struct e1000_fc_info *fc = &adapter->hw.fc; 3948 struct e1000_hw *hw = &adapter->hw; 3949 u32 tx_space, min_tx_space, min_rx_space; 3950 u32 pba = adapter->pba; 3951 u16 hwm; 3952 3953 /* reset Packet Buffer Allocation to default */ 3954 ew32(PBA, pba); 3955 3956 if (adapter->max_frame_size > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) { 3957 /* To maintain wire speed transmits, the Tx FIFO should be 3958 * large enough to accommodate two full transmit packets, 3959 * rounded up to the next 1KB and expressed in KB. Likewise, 3960 * the Rx FIFO should be large enough to accommodate at least 3961 * one full receive packet and is similarly rounded up and 3962 * expressed in KB. 3963 */ 3964 pba = er32(PBA); 3965 /* upper 16 bits has Tx packet buffer allocation size in KB */ 3966 tx_space = pba >> 16; 3967 /* lower 16 bits has Rx packet buffer allocation size in KB */ 3968 pba &= 0xffff; 3969 /* the Tx fifo also stores 16 bytes of information about the Tx 3970 * but don't include ethernet FCS because hardware appends it 3971 */ 3972 min_tx_space = (adapter->max_frame_size + 3973 sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2; 3974 min_tx_space = ALIGN(min_tx_space, 1024); 3975 min_tx_space >>= 10; 3976 /* software strips receive CRC, so leave room for it */ 3977 min_rx_space = adapter->max_frame_size; 3978 min_rx_space = ALIGN(min_rx_space, 1024); 3979 min_rx_space >>= 10; 3980 3981 /* If current Tx allocation is less than the min Tx FIFO size, 3982 * and the min Tx FIFO size is less than the current Rx FIFO 3983 * allocation, take space away from current Rx allocation 3984 */ 3985 if ((tx_space < min_tx_space) && 3986 ((min_tx_space - tx_space) < pba)) { 3987 pba -= min_tx_space - tx_space; 3988 3989 /* if short on Rx space, Rx wins and must trump Tx 3990 * adjustment 3991 */ 3992 if (pba < min_rx_space) 3993 pba = min_rx_space; 3994 } 3995 3996 ew32(PBA, pba); 3997 } 3998 3999 /* flow control settings 4000 * 4001 * The high water mark must be low enough to fit one full frame 4002 * (or the size used for early receive) above it in the Rx FIFO. 4003 * Set it to the lower of: 4004 * - 90% of the Rx FIFO size, and 4005 * - the full Rx FIFO size minus one full frame 4006 */ 4007 if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME) 4008 fc->pause_time = 0xFFFF; 4009 else 4010 fc->pause_time = E1000_FC_PAUSE_TIME; 4011 fc->send_xon = true; 4012 fc->current_mode = fc->requested_mode; 4013 4014 switch (hw->mac.type) { 4015 case e1000_ich9lan: 4016 case e1000_ich10lan: 4017 if (adapter->netdev->mtu > ETH_DATA_LEN) { 4018 pba = 14; 4019 ew32(PBA, pba); 4020 fc->high_water = 0x2800; 4021 fc->low_water = fc->high_water - 8; 4022 break; 4023 } 4024 /* fall-through */ 4025 default: 4026 hwm = min(((pba << 10) * 9 / 10), 4027 ((pba << 10) - adapter->max_frame_size)); 4028 4029 fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */ 4030 fc->low_water = fc->high_water - 8; 4031 break; 4032 case e1000_pchlan: 4033 /* Workaround PCH LOM adapter hangs with certain network 4034 * loads. If hangs persist, try disabling Tx flow control. 4035 */ 4036 if (adapter->netdev->mtu > ETH_DATA_LEN) { 4037 fc->high_water = 0x3500; 4038 fc->low_water = 0x1500; 4039 } else { 4040 fc->high_water = 0x5000; 4041 fc->low_water = 0x3000; 4042 } 4043 fc->refresh_time = 0x1000; 4044 break; 4045 case e1000_pch2lan: 4046 case e1000_pch_lpt: 4047 case e1000_pch_spt: 4048 case e1000_pch_cnp: 4049 fc->refresh_time = 0x0400; 4050 4051 if (adapter->netdev->mtu <= ETH_DATA_LEN) { 4052 fc->high_water = 0x05C20; 4053 fc->low_water = 0x05048; 4054 fc->pause_time = 0x0650; 4055 break; 4056 } 4057 4058 pba = 14; 4059 ew32(PBA, pba); 4060 fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH; 4061 fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL; 4062 break; 4063 } 4064 4065 /* Alignment of Tx data is on an arbitrary byte boundary with the 4066 * maximum size per Tx descriptor limited only to the transmit 4067 * allocation of the packet buffer minus 96 bytes with an upper 4068 * limit of 24KB due to receive synchronization limitations. 4069 */ 4070 adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96, 4071 24 << 10); 4072 4073 /* Disable Adaptive Interrupt Moderation if 2 full packets cannot 4074 * fit in receive buffer. 4075 */ 4076 if (adapter->itr_setting & 0x3) { 4077 if ((adapter->max_frame_size * 2) > (pba << 10)) { 4078 if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) { 4079 dev_info(&adapter->pdev->dev, 4080 "Interrupt Throttle Rate off\n"); 4081 adapter->flags2 |= FLAG2_DISABLE_AIM; 4082 e1000e_write_itr(adapter, 0); 4083 } 4084 } else if (adapter->flags2 & FLAG2_DISABLE_AIM) { 4085 dev_info(&adapter->pdev->dev, 4086 "Interrupt Throttle Rate on\n"); 4087 adapter->flags2 &= ~FLAG2_DISABLE_AIM; 4088 adapter->itr = 20000; 4089 e1000e_write_itr(adapter, adapter->itr); 4090 } 4091 } 4092 4093 if (hw->mac.type >= e1000_pch_spt) 4094 e1000_flush_desc_rings(adapter); 4095 /* Allow time for pending master requests to run */ 4096 mac->ops.reset_hw(hw); 4097 4098 /* For parts with AMT enabled, let the firmware know 4099 * that the network interface is in control 4100 */ 4101 if (adapter->flags & FLAG_HAS_AMT) 4102 e1000e_get_hw_control(adapter); 4103 4104 ew32(WUC, 0); 4105 4106 if (mac->ops.init_hw(hw)) 4107 e_err("Hardware Error\n"); 4108 4109 e1000_update_mng_vlan(adapter); 4110 4111 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ 4112 ew32(VET, ETH_P_8021Q); 4113 4114 e1000e_reset_adaptive(hw); 4115 4116 /* restore systim and hwtstamp settings */ 4117 e1000e_systim_reset(adapter); 4118 4119 /* Set EEE advertisement as appropriate */ 4120 if (adapter->flags2 & FLAG2_HAS_EEE) { 4121 s32 ret_val; 4122 u16 adv_addr; 4123 4124 switch (hw->phy.type) { 4125 case e1000_phy_82579: 4126 adv_addr = I82579_EEE_ADVERTISEMENT; 4127 break; 4128 case e1000_phy_i217: 4129 adv_addr = I217_EEE_ADVERTISEMENT; 4130 break; 4131 default: 4132 dev_err(&adapter->pdev->dev, 4133 "Invalid PHY type setting EEE advertisement\n"); 4134 return; 4135 } 4136 4137 ret_val = hw->phy.ops.acquire(hw); 4138 if (ret_val) { 4139 dev_err(&adapter->pdev->dev, 4140 "EEE advertisement - unable to acquire PHY\n"); 4141 return; 4142 } 4143 4144 e1000_write_emi_reg_locked(hw, adv_addr, 4145 hw->dev_spec.ich8lan.eee_disable ? 4146 0 : adapter->eee_advert); 4147 4148 hw->phy.ops.release(hw); 4149 } 4150 4151 if (!netif_running(adapter->netdev) && 4152 !test_bit(__E1000_TESTING, &adapter->state)) 4153 e1000_power_down_phy(adapter); 4154 4155 e1000_get_phy_info(hw); 4156 4157 if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) && 4158 !(adapter->flags & FLAG_SMART_POWER_DOWN)) { 4159 u16 phy_data = 0; 4160 /* speed up time to link by disabling smart power down, ignore 4161 * the return value of this function because there is nothing 4162 * different we would do if it failed 4163 */ 4164 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); 4165 phy_data &= ~IGP02E1000_PM_SPD; 4166 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); 4167 } 4168 if (hw->mac.type >= e1000_pch_spt && adapter->int_mode == 0) { 4169 u32 reg; 4170 4171 /* Fextnvm7 @ 0xe4[2] = 1 */ 4172 reg = er32(FEXTNVM7); 4173 reg |= E1000_FEXTNVM7_SIDE_CLK_UNGATE; 4174 ew32(FEXTNVM7, reg); 4175 /* Fextnvm9 @ 0x5bb4[13:12] = 11 */ 4176 reg = er32(FEXTNVM9); 4177 reg |= E1000_FEXTNVM9_IOSFSB_CLKGATE_DIS | 4178 E1000_FEXTNVM9_IOSFSB_CLKREQ_DIS; 4179 ew32(FEXTNVM9, reg); 4180 } 4181 4182 } 4183 4184 /** 4185 * e1000e_trigger_lsc - trigger an LSC interrupt 4186 * @adapter: 4187 * 4188 * Fire a link status change interrupt to start the watchdog. 4189 **/ 4190 static void e1000e_trigger_lsc(struct e1000_adapter *adapter) 4191 { 4192 struct e1000_hw *hw = &adapter->hw; 4193 4194 if (adapter->msix_entries) 4195 ew32(ICS, E1000_ICS_LSC | E1000_ICS_OTHER); 4196 else 4197 ew32(ICS, E1000_ICS_LSC); 4198 } 4199 4200 void e1000e_up(struct e1000_adapter *adapter) 4201 { 4202 /* hardware has been reset, we need to reload some things */ 4203 e1000_configure(adapter); 4204 4205 clear_bit(__E1000_DOWN, &adapter->state); 4206 4207 if (adapter->msix_entries) 4208 e1000_configure_msix(adapter); 4209 e1000_irq_enable(adapter); 4210 4211 netif_start_queue(adapter->netdev); 4212 4213 e1000e_trigger_lsc(adapter); 4214 } 4215 4216 static void e1000e_flush_descriptors(struct e1000_adapter *adapter) 4217 { 4218 struct e1000_hw *hw = &adapter->hw; 4219 4220 if (!(adapter->flags2 & FLAG2_DMA_BURST)) 4221 return; 4222 4223 /* flush pending descriptor writebacks to memory */ 4224 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD); 4225 ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD); 4226 4227 /* execute the writes immediately */ 4228 e1e_flush(); 4229 4230 /* due to rare timing issues, write to TIDV/RDTR again to ensure the 4231 * write is successful 4232 */ 4233 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD); 4234 ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD); 4235 4236 /* execute the writes immediately */ 4237 e1e_flush(); 4238 } 4239 4240 static void e1000e_update_stats(struct e1000_adapter *adapter); 4241 4242 /** 4243 * e1000e_down - quiesce the device and optionally reset the hardware 4244 * @adapter: board private structure 4245 * @reset: boolean flag to reset the hardware or not 4246 */ 4247 void e1000e_down(struct e1000_adapter *adapter, bool reset) 4248 { 4249 struct net_device *netdev = adapter->netdev; 4250 struct e1000_hw *hw = &adapter->hw; 4251 u32 tctl, rctl; 4252 4253 /* signal that we're down so the interrupt handler does not 4254 * reschedule our watchdog timer 4255 */ 4256 set_bit(__E1000_DOWN, &adapter->state); 4257 4258 netif_carrier_off(netdev); 4259 4260 /* disable receives in the hardware */ 4261 rctl = er32(RCTL); 4262 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX)) 4263 ew32(RCTL, rctl & ~E1000_RCTL_EN); 4264 /* flush and sleep below */ 4265 4266 netif_stop_queue(netdev); 4267 4268 /* disable transmits in the hardware */ 4269 tctl = er32(TCTL); 4270 tctl &= ~E1000_TCTL_EN; 4271 ew32(TCTL, tctl); 4272 4273 /* flush both disables and wait for them to finish */ 4274 e1e_flush(); 4275 usleep_range(10000, 20000); 4276 4277 e1000_irq_disable(adapter); 4278 4279 napi_synchronize(&adapter->napi); 4280 4281 del_timer_sync(&adapter->watchdog_timer); 4282 del_timer_sync(&adapter->phy_info_timer); 4283 4284 spin_lock(&adapter->stats64_lock); 4285 e1000e_update_stats(adapter); 4286 spin_unlock(&adapter->stats64_lock); 4287 4288 e1000e_flush_descriptors(adapter); 4289 4290 adapter->link_speed = 0; 4291 adapter->link_duplex = 0; 4292 4293 /* Disable Si errata workaround on PCHx for jumbo frame flow */ 4294 if ((hw->mac.type >= e1000_pch2lan) && 4295 (adapter->netdev->mtu > ETH_DATA_LEN) && 4296 e1000_lv_jumbo_workaround_ich8lan(hw, false)) 4297 e_dbg("failed to disable jumbo frame workaround mode\n"); 4298 4299 if (!pci_channel_offline(adapter->pdev)) { 4300 if (reset) 4301 e1000e_reset(adapter); 4302 else if (hw->mac.type >= e1000_pch_spt) 4303 e1000_flush_desc_rings(adapter); 4304 } 4305 e1000_clean_tx_ring(adapter->tx_ring); 4306 e1000_clean_rx_ring(adapter->rx_ring); 4307 } 4308 4309 void e1000e_reinit_locked(struct e1000_adapter *adapter) 4310 { 4311 might_sleep(); 4312 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 4313 usleep_range(1000, 2000); 4314 e1000e_down(adapter, true); 4315 e1000e_up(adapter); 4316 clear_bit(__E1000_RESETTING, &adapter->state); 4317 } 4318 4319 /** 4320 * e1000e_sanitize_systim - sanitize raw cycle counter reads 4321 * @hw: pointer to the HW structure 4322 * @systim: time value read, sanitized and returned 4323 * 4324 * Errata for 82574/82583 possible bad bits read from SYSTIMH/L: 4325 * check to see that the time is incrementing at a reasonable 4326 * rate and is a multiple of incvalue. 4327 **/ 4328 static u64 e1000e_sanitize_systim(struct e1000_hw *hw, u64 systim) 4329 { 4330 u64 time_delta, rem, temp; 4331 u64 systim_next; 4332 u32 incvalue; 4333 int i; 4334 4335 incvalue = er32(TIMINCA) & E1000_TIMINCA_INCVALUE_MASK; 4336 for (i = 0; i < E1000_MAX_82574_SYSTIM_REREADS; i++) { 4337 /* latch SYSTIMH on read of SYSTIML */ 4338 systim_next = (u64)er32(SYSTIML); 4339 systim_next |= (u64)er32(SYSTIMH) << 32; 4340 4341 time_delta = systim_next - systim; 4342 temp = time_delta; 4343 /* VMWare users have seen incvalue of zero, don't div / 0 */ 4344 rem = incvalue ? do_div(temp, incvalue) : (time_delta != 0); 4345 4346 systim = systim_next; 4347 4348 if ((time_delta < E1000_82574_SYSTIM_EPSILON) && (rem == 0)) 4349 break; 4350 } 4351 4352 return systim; 4353 } 4354 4355 /** 4356 * e1000e_cyclecounter_read - read raw cycle counter (used by time counter) 4357 * @cc: cyclecounter structure 4358 **/ 4359 static u64 e1000e_cyclecounter_read(const struct cyclecounter *cc) 4360 { 4361 struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter, 4362 cc); 4363 struct e1000_hw *hw = &adapter->hw; 4364 u32 systimel, systimeh; 4365 u64 systim; 4366 /* SYSTIMH latching upon SYSTIML read does not work well. 4367 * This means that if SYSTIML overflows after we read it but before 4368 * we read SYSTIMH, the value of SYSTIMH has been incremented and we 4369 * will experience a huge non linear increment in the systime value 4370 * to fix that we test for overflow and if true, we re-read systime. 4371 */ 4372 systimel = er32(SYSTIML); 4373 systimeh = er32(SYSTIMH); 4374 /* Is systimel is so large that overflow is possible? */ 4375 if (systimel >= (u32)0xffffffff - E1000_TIMINCA_INCVALUE_MASK) { 4376 u32 systimel_2 = er32(SYSTIML); 4377 if (systimel > systimel_2) { 4378 /* There was an overflow, read again SYSTIMH, and use 4379 * systimel_2 4380 */ 4381 systimeh = er32(SYSTIMH); 4382 systimel = systimel_2; 4383 } 4384 } 4385 systim = (u64)systimel; 4386 systim |= (u64)systimeh << 32; 4387 4388 if (adapter->flags2 & FLAG2_CHECK_SYSTIM_OVERFLOW) 4389 systim = e1000e_sanitize_systim(hw, systim); 4390 4391 return systim; 4392 } 4393 4394 /** 4395 * e1000_sw_init - Initialize general software structures (struct e1000_adapter) 4396 * @adapter: board private structure to initialize 4397 * 4398 * e1000_sw_init initializes the Adapter private data structure. 4399 * Fields are initialized based on PCI device information and 4400 * OS network device settings (MTU size). 4401 **/ 4402 static int e1000_sw_init(struct e1000_adapter *adapter) 4403 { 4404 struct net_device *netdev = adapter->netdev; 4405 4406 adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN; 4407 adapter->rx_ps_bsize0 = 128; 4408 adapter->max_frame_size = netdev->mtu + VLAN_ETH_HLEN + ETH_FCS_LEN; 4409 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN; 4410 adapter->tx_ring_count = E1000_DEFAULT_TXD; 4411 adapter->rx_ring_count = E1000_DEFAULT_RXD; 4412 4413 spin_lock_init(&adapter->stats64_lock); 4414 4415 e1000e_set_interrupt_capability(adapter); 4416 4417 if (e1000_alloc_queues(adapter)) 4418 return -ENOMEM; 4419 4420 /* Setup hardware time stamping cyclecounter */ 4421 if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) { 4422 adapter->cc.read = e1000e_cyclecounter_read; 4423 adapter->cc.mask = CYCLECOUNTER_MASK(64); 4424 adapter->cc.mult = 1; 4425 /* cc.shift set in e1000e_get_base_tininca() */ 4426 4427 spin_lock_init(&adapter->systim_lock); 4428 INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work); 4429 } 4430 4431 /* Explicitly disable IRQ since the NIC can be in any state. */ 4432 e1000_irq_disable(adapter); 4433 4434 set_bit(__E1000_DOWN, &adapter->state); 4435 return 0; 4436 } 4437 4438 /** 4439 * e1000_intr_msi_test - Interrupt Handler 4440 * @irq: interrupt number 4441 * @data: pointer to a network interface device structure 4442 **/ 4443 static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data) 4444 { 4445 struct net_device *netdev = data; 4446 struct e1000_adapter *adapter = netdev_priv(netdev); 4447 struct e1000_hw *hw = &adapter->hw; 4448 u32 icr = er32(ICR); 4449 4450 e_dbg("icr is %08X\n", icr); 4451 if (icr & E1000_ICR_RXSEQ) { 4452 adapter->flags &= ~FLAG_MSI_TEST_FAILED; 4453 /* Force memory writes to complete before acknowledging the 4454 * interrupt is handled. 4455 */ 4456 wmb(); 4457 } 4458 4459 return IRQ_HANDLED; 4460 } 4461 4462 /** 4463 * e1000_test_msi_interrupt - Returns 0 for successful test 4464 * @adapter: board private struct 4465 * 4466 * code flow taken from tg3.c 4467 **/ 4468 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter) 4469 { 4470 struct net_device *netdev = adapter->netdev; 4471 struct e1000_hw *hw = &adapter->hw; 4472 int err; 4473 4474 /* poll_enable hasn't been called yet, so don't need disable */ 4475 /* clear any pending events */ 4476 er32(ICR); 4477 4478 /* free the real vector and request a test handler */ 4479 e1000_free_irq(adapter); 4480 e1000e_reset_interrupt_capability(adapter); 4481 4482 /* Assume that the test fails, if it succeeds then the test 4483 * MSI irq handler will unset this flag 4484 */ 4485 adapter->flags |= FLAG_MSI_TEST_FAILED; 4486 4487 err = pci_enable_msi(adapter->pdev); 4488 if (err) 4489 goto msi_test_failed; 4490 4491 err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0, 4492 netdev->name, netdev); 4493 if (err) { 4494 pci_disable_msi(adapter->pdev); 4495 goto msi_test_failed; 4496 } 4497 4498 /* Force memory writes to complete before enabling and firing an 4499 * interrupt. 4500 */ 4501 wmb(); 4502 4503 e1000_irq_enable(adapter); 4504 4505 /* fire an unusual interrupt on the test handler */ 4506 ew32(ICS, E1000_ICS_RXSEQ); 4507 e1e_flush(); 4508 msleep(100); 4509 4510 e1000_irq_disable(adapter); 4511 4512 rmb(); /* read flags after interrupt has been fired */ 4513 4514 if (adapter->flags & FLAG_MSI_TEST_FAILED) { 4515 adapter->int_mode = E1000E_INT_MODE_LEGACY; 4516 e_info("MSI interrupt test failed, using legacy interrupt.\n"); 4517 } else { 4518 e_dbg("MSI interrupt test succeeded!\n"); 4519 } 4520 4521 free_irq(adapter->pdev->irq, netdev); 4522 pci_disable_msi(adapter->pdev); 4523 4524 msi_test_failed: 4525 e1000e_set_interrupt_capability(adapter); 4526 return e1000_request_irq(adapter); 4527 } 4528 4529 /** 4530 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored 4531 * @adapter: board private struct 4532 * 4533 * code flow taken from tg3.c, called with e1000 interrupts disabled. 4534 **/ 4535 static int e1000_test_msi(struct e1000_adapter *adapter) 4536 { 4537 int err; 4538 u16 pci_cmd; 4539 4540 if (!(adapter->flags & FLAG_MSI_ENABLED)) 4541 return 0; 4542 4543 /* disable SERR in case the MSI write causes a master abort */ 4544 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd); 4545 if (pci_cmd & PCI_COMMAND_SERR) 4546 pci_write_config_word(adapter->pdev, PCI_COMMAND, 4547 pci_cmd & ~PCI_COMMAND_SERR); 4548 4549 err = e1000_test_msi_interrupt(adapter); 4550 4551 /* re-enable SERR */ 4552 if (pci_cmd & PCI_COMMAND_SERR) { 4553 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd); 4554 pci_cmd |= PCI_COMMAND_SERR; 4555 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd); 4556 } 4557 4558 return err; 4559 } 4560 4561 /** 4562 * e1000e_open - Called when a network interface is made active 4563 * @netdev: network interface device structure 4564 * 4565 * Returns 0 on success, negative value on failure 4566 * 4567 * The open entry point is called when a network interface is made 4568 * active by the system (IFF_UP). At this point all resources needed 4569 * for transmit and receive operations are allocated, the interrupt 4570 * handler is registered with the OS, the watchdog timer is started, 4571 * and the stack is notified that the interface is ready. 4572 **/ 4573 int e1000e_open(struct net_device *netdev) 4574 { 4575 struct e1000_adapter *adapter = netdev_priv(netdev); 4576 struct e1000_hw *hw = &adapter->hw; 4577 struct pci_dev *pdev = adapter->pdev; 4578 int err; 4579 4580 /* disallow open during test */ 4581 if (test_bit(__E1000_TESTING, &adapter->state)) 4582 return -EBUSY; 4583 4584 pm_runtime_get_sync(&pdev->dev); 4585 4586 netif_carrier_off(netdev); 4587 4588 /* allocate transmit descriptors */ 4589 err = e1000e_setup_tx_resources(adapter->tx_ring); 4590 if (err) 4591 goto err_setup_tx; 4592 4593 /* allocate receive descriptors */ 4594 err = e1000e_setup_rx_resources(adapter->rx_ring); 4595 if (err) 4596 goto err_setup_rx; 4597 4598 /* If AMT is enabled, let the firmware know that the network 4599 * interface is now open and reset the part to a known state. 4600 */ 4601 if (adapter->flags & FLAG_HAS_AMT) { 4602 e1000e_get_hw_control(adapter); 4603 e1000e_reset(adapter); 4604 } 4605 4606 e1000e_power_up_phy(adapter); 4607 4608 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; 4609 if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)) 4610 e1000_update_mng_vlan(adapter); 4611 4612 /* DMA latency requirement to workaround jumbo issue */ 4613 pm_qos_add_request(&adapter->pm_qos_req, PM_QOS_CPU_DMA_LATENCY, 4614 PM_QOS_DEFAULT_VALUE); 4615 4616 /* before we allocate an interrupt, we must be ready to handle it. 4617 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt 4618 * as soon as we call pci_request_irq, so we have to setup our 4619 * clean_rx handler before we do so. 4620 */ 4621 e1000_configure(adapter); 4622 4623 err = e1000_request_irq(adapter); 4624 if (err) 4625 goto err_req_irq; 4626 4627 /* Work around PCIe errata with MSI interrupts causing some chipsets to 4628 * ignore e1000e MSI messages, which means we need to test our MSI 4629 * interrupt now 4630 */ 4631 if (adapter->int_mode != E1000E_INT_MODE_LEGACY) { 4632 err = e1000_test_msi(adapter); 4633 if (err) { 4634 e_err("Interrupt allocation failed\n"); 4635 goto err_req_irq; 4636 } 4637 } 4638 4639 /* From here on the code is the same as e1000e_up() */ 4640 clear_bit(__E1000_DOWN, &adapter->state); 4641 4642 napi_enable(&adapter->napi); 4643 4644 e1000_irq_enable(adapter); 4645 4646 adapter->tx_hang_recheck = false; 4647 netif_start_queue(netdev); 4648 4649 hw->mac.get_link_status = true; 4650 pm_runtime_put(&pdev->dev); 4651 4652 e1000e_trigger_lsc(adapter); 4653 4654 return 0; 4655 4656 err_req_irq: 4657 pm_qos_remove_request(&adapter->pm_qos_req); 4658 e1000e_release_hw_control(adapter); 4659 e1000_power_down_phy(adapter); 4660 e1000e_free_rx_resources(adapter->rx_ring); 4661 err_setup_rx: 4662 e1000e_free_tx_resources(adapter->tx_ring); 4663 err_setup_tx: 4664 e1000e_reset(adapter); 4665 pm_runtime_put_sync(&pdev->dev); 4666 4667 return err; 4668 } 4669 4670 /** 4671 * e1000e_close - Disables a network interface 4672 * @netdev: network interface device structure 4673 * 4674 * Returns 0, this is not allowed to fail 4675 * 4676 * The close entry point is called when an interface is de-activated 4677 * by the OS. The hardware is still under the drivers control, but 4678 * needs to be disabled. A global MAC reset is issued to stop the 4679 * hardware, and all transmit and receive resources are freed. 4680 **/ 4681 int e1000e_close(struct net_device *netdev) 4682 { 4683 struct e1000_adapter *adapter = netdev_priv(netdev); 4684 struct pci_dev *pdev = adapter->pdev; 4685 int count = E1000_CHECK_RESET_COUNT; 4686 4687 while (test_bit(__E1000_RESETTING, &adapter->state) && count--) 4688 usleep_range(10000, 20000); 4689 4690 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state)); 4691 4692 pm_runtime_get_sync(&pdev->dev); 4693 4694 if (!test_bit(__E1000_DOWN, &adapter->state)) { 4695 e1000e_down(adapter, true); 4696 e1000_free_irq(adapter); 4697 4698 /* Link status message must follow this format */ 4699 pr_info("%s NIC Link is Down\n", adapter->netdev->name); 4700 } 4701 4702 napi_disable(&adapter->napi); 4703 4704 e1000e_free_tx_resources(adapter->tx_ring); 4705 e1000e_free_rx_resources(adapter->rx_ring); 4706 4707 /* kill manageability vlan ID if supported, but not if a vlan with 4708 * the same ID is registered on the host OS (let 8021q kill it) 4709 */ 4710 if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) 4711 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), 4712 adapter->mng_vlan_id); 4713 4714 /* If AMT is enabled, let the firmware know that the network 4715 * interface is now closed 4716 */ 4717 if ((adapter->flags & FLAG_HAS_AMT) && 4718 !test_bit(__E1000_TESTING, &adapter->state)) 4719 e1000e_release_hw_control(adapter); 4720 4721 pm_qos_remove_request(&adapter->pm_qos_req); 4722 4723 pm_runtime_put_sync(&pdev->dev); 4724 4725 return 0; 4726 } 4727 4728 /** 4729 * e1000_set_mac - Change the Ethernet Address of the NIC 4730 * @netdev: network interface device structure 4731 * @p: pointer to an address structure 4732 * 4733 * Returns 0 on success, negative on failure 4734 **/ 4735 static int e1000_set_mac(struct net_device *netdev, void *p) 4736 { 4737 struct e1000_adapter *adapter = netdev_priv(netdev); 4738 struct e1000_hw *hw = &adapter->hw; 4739 struct sockaddr *addr = p; 4740 4741 if (!is_valid_ether_addr(addr->sa_data)) 4742 return -EADDRNOTAVAIL; 4743 4744 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len); 4745 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len); 4746 4747 hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0); 4748 4749 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) { 4750 /* activate the work around */ 4751 e1000e_set_laa_state_82571(&adapter->hw, 1); 4752 4753 /* Hold a copy of the LAA in RAR[14] This is done so that 4754 * between the time RAR[0] gets clobbered and the time it 4755 * gets fixed (in e1000_watchdog), the actual LAA is in one 4756 * of the RARs and no incoming packets directed to this port 4757 * are dropped. Eventually the LAA will be in RAR[0] and 4758 * RAR[14] 4759 */ 4760 hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 4761 adapter->hw.mac.rar_entry_count - 1); 4762 } 4763 4764 return 0; 4765 } 4766 4767 /** 4768 * e1000e_update_phy_task - work thread to update phy 4769 * @work: pointer to our work struct 4770 * 4771 * this worker thread exists because we must acquire a 4772 * semaphore to read the phy, which we could msleep while 4773 * waiting for it, and we can't msleep in a timer. 4774 **/ 4775 static void e1000e_update_phy_task(struct work_struct *work) 4776 { 4777 struct e1000_adapter *adapter = container_of(work, 4778 struct e1000_adapter, 4779 update_phy_task); 4780 struct e1000_hw *hw = &adapter->hw; 4781 4782 if (test_bit(__E1000_DOWN, &adapter->state)) 4783 return; 4784 4785 e1000_get_phy_info(hw); 4786 4787 /* Enable EEE on 82579 after link up */ 4788 if (hw->phy.type >= e1000_phy_82579) 4789 e1000_set_eee_pchlan(hw); 4790 } 4791 4792 /** 4793 * e1000_update_phy_info - timre call-back to update PHY info 4794 * @data: pointer to adapter cast into an unsigned long 4795 * 4796 * Need to wait a few seconds after link up to get diagnostic information from 4797 * the phy 4798 **/ 4799 static void e1000_update_phy_info(struct timer_list *t) 4800 { 4801 struct e1000_adapter *adapter = from_timer(adapter, t, phy_info_timer); 4802 4803 if (test_bit(__E1000_DOWN, &adapter->state)) 4804 return; 4805 4806 schedule_work(&adapter->update_phy_task); 4807 } 4808 4809 /** 4810 * e1000e_update_phy_stats - Update the PHY statistics counters 4811 * @adapter: board private structure 4812 * 4813 * Read/clear the upper 16-bit PHY registers and read/accumulate lower 4814 **/ 4815 static void e1000e_update_phy_stats(struct e1000_adapter *adapter) 4816 { 4817 struct e1000_hw *hw = &adapter->hw; 4818 s32 ret_val; 4819 u16 phy_data; 4820 4821 ret_val = hw->phy.ops.acquire(hw); 4822 if (ret_val) 4823 return; 4824 4825 /* A page set is expensive so check if already on desired page. 4826 * If not, set to the page with the PHY status registers. 4827 */ 4828 hw->phy.addr = 1; 4829 ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 4830 &phy_data); 4831 if (ret_val) 4832 goto release; 4833 if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) { 4834 ret_val = hw->phy.ops.set_page(hw, 4835 HV_STATS_PAGE << IGP_PAGE_SHIFT); 4836 if (ret_val) 4837 goto release; 4838 } 4839 4840 /* Single Collision Count */ 4841 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data); 4842 ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data); 4843 if (!ret_val) 4844 adapter->stats.scc += phy_data; 4845 4846 /* Excessive Collision Count */ 4847 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data); 4848 ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data); 4849 if (!ret_val) 4850 adapter->stats.ecol += phy_data; 4851 4852 /* Multiple Collision Count */ 4853 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data); 4854 ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data); 4855 if (!ret_val) 4856 adapter->stats.mcc += phy_data; 4857 4858 /* Late Collision Count */ 4859 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data); 4860 ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data); 4861 if (!ret_val) 4862 adapter->stats.latecol += phy_data; 4863 4864 /* Collision Count - also used for adaptive IFS */ 4865 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data); 4866 ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data); 4867 if (!ret_val) 4868 hw->mac.collision_delta = phy_data; 4869 4870 /* Defer Count */ 4871 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data); 4872 ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data); 4873 if (!ret_val) 4874 adapter->stats.dc += phy_data; 4875 4876 /* Transmit with no CRS */ 4877 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data); 4878 ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data); 4879 if (!ret_val) 4880 adapter->stats.tncrs += phy_data; 4881 4882 release: 4883 hw->phy.ops.release(hw); 4884 } 4885 4886 /** 4887 * e1000e_update_stats - Update the board statistics counters 4888 * @adapter: board private structure 4889 **/ 4890 static void e1000e_update_stats(struct e1000_adapter *adapter) 4891 { 4892 struct net_device *netdev = adapter->netdev; 4893 struct e1000_hw *hw = &adapter->hw; 4894 struct pci_dev *pdev = adapter->pdev; 4895 4896 /* Prevent stats update while adapter is being reset, or if the pci 4897 * connection is down. 4898 */ 4899 if (adapter->link_speed == 0) 4900 return; 4901 if (pci_channel_offline(pdev)) 4902 return; 4903 4904 adapter->stats.crcerrs += er32(CRCERRS); 4905 adapter->stats.gprc += er32(GPRC); 4906 adapter->stats.gorc += er32(GORCL); 4907 er32(GORCH); /* Clear gorc */ 4908 adapter->stats.bprc += er32(BPRC); 4909 adapter->stats.mprc += er32(MPRC); 4910 adapter->stats.roc += er32(ROC); 4911 4912 adapter->stats.mpc += er32(MPC); 4913 4914 /* Half-duplex statistics */ 4915 if (adapter->link_duplex == HALF_DUPLEX) { 4916 if (adapter->flags2 & FLAG2_HAS_PHY_STATS) { 4917 e1000e_update_phy_stats(adapter); 4918 } else { 4919 adapter->stats.scc += er32(SCC); 4920 adapter->stats.ecol += er32(ECOL); 4921 adapter->stats.mcc += er32(MCC); 4922 adapter->stats.latecol += er32(LATECOL); 4923 adapter->stats.dc += er32(DC); 4924 4925 hw->mac.collision_delta = er32(COLC); 4926 4927 if ((hw->mac.type != e1000_82574) && 4928 (hw->mac.type != e1000_82583)) 4929 adapter->stats.tncrs += er32(TNCRS); 4930 } 4931 adapter->stats.colc += hw->mac.collision_delta; 4932 } 4933 4934 adapter->stats.xonrxc += er32(XONRXC); 4935 adapter->stats.xontxc += er32(XONTXC); 4936 adapter->stats.xoffrxc += er32(XOFFRXC); 4937 adapter->stats.xofftxc += er32(XOFFTXC); 4938 adapter->stats.gptc += er32(GPTC); 4939 adapter->stats.gotc += er32(GOTCL); 4940 er32(GOTCH); /* Clear gotc */ 4941 adapter->stats.rnbc += er32(RNBC); 4942 adapter->stats.ruc += er32(RUC); 4943 4944 adapter->stats.mptc += er32(MPTC); 4945 adapter->stats.bptc += er32(BPTC); 4946 4947 /* used for adaptive IFS */ 4948 4949 hw->mac.tx_packet_delta = er32(TPT); 4950 adapter->stats.tpt += hw->mac.tx_packet_delta; 4951 4952 adapter->stats.algnerrc += er32(ALGNERRC); 4953 adapter->stats.rxerrc += er32(RXERRC); 4954 adapter->stats.cexterr += er32(CEXTERR); 4955 adapter->stats.tsctc += er32(TSCTC); 4956 adapter->stats.tsctfc += er32(TSCTFC); 4957 4958 /* Fill out the OS statistics structure */ 4959 netdev->stats.multicast = adapter->stats.mprc; 4960 netdev->stats.collisions = adapter->stats.colc; 4961 4962 /* Rx Errors */ 4963 4964 /* RLEC on some newer hardware can be incorrect so build 4965 * our own version based on RUC and ROC 4966 */ 4967 netdev->stats.rx_errors = adapter->stats.rxerrc + 4968 adapter->stats.crcerrs + adapter->stats.algnerrc + 4969 adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr; 4970 netdev->stats.rx_length_errors = adapter->stats.ruc + 4971 adapter->stats.roc; 4972 netdev->stats.rx_crc_errors = adapter->stats.crcerrs; 4973 netdev->stats.rx_frame_errors = adapter->stats.algnerrc; 4974 netdev->stats.rx_missed_errors = adapter->stats.mpc; 4975 4976 /* Tx Errors */ 4977 netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol; 4978 netdev->stats.tx_aborted_errors = adapter->stats.ecol; 4979 netdev->stats.tx_window_errors = adapter->stats.latecol; 4980 netdev->stats.tx_carrier_errors = adapter->stats.tncrs; 4981 4982 /* Tx Dropped needs to be maintained elsewhere */ 4983 4984 /* Management Stats */ 4985 adapter->stats.mgptc += er32(MGTPTC); 4986 adapter->stats.mgprc += er32(MGTPRC); 4987 adapter->stats.mgpdc += er32(MGTPDC); 4988 4989 /* Correctable ECC Errors */ 4990 if (hw->mac.type >= e1000_pch_lpt) { 4991 u32 pbeccsts = er32(PBECCSTS); 4992 4993 adapter->corr_errors += 4994 pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK; 4995 adapter->uncorr_errors += 4996 (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >> 4997 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT; 4998 } 4999 } 5000 5001 /** 5002 * e1000_phy_read_status - Update the PHY register status snapshot 5003 * @adapter: board private structure 5004 **/ 5005 static void e1000_phy_read_status(struct e1000_adapter *adapter) 5006 { 5007 struct e1000_hw *hw = &adapter->hw; 5008 struct e1000_phy_regs *phy = &adapter->phy_regs; 5009 5010 if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) && 5011 (er32(STATUS) & E1000_STATUS_LU) && 5012 (adapter->hw.phy.media_type == e1000_media_type_copper)) { 5013 int ret_val; 5014 5015 ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr); 5016 ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr); 5017 ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise); 5018 ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa); 5019 ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion); 5020 ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000); 5021 ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000); 5022 ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus); 5023 if (ret_val) 5024 e_warn("Error reading PHY register\n"); 5025 } else { 5026 /* Do not read PHY registers if link is not up 5027 * Set values to typical power-on defaults 5028 */ 5029 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX); 5030 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL | 5031 BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE | 5032 BMSR_ERCAP); 5033 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP | 5034 ADVERTISE_ALL | ADVERTISE_CSMA); 5035 phy->lpa = 0; 5036 phy->expansion = EXPANSION_ENABLENPAGE; 5037 phy->ctrl1000 = ADVERTISE_1000FULL; 5038 phy->stat1000 = 0; 5039 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF); 5040 } 5041 } 5042 5043 static void e1000_print_link_info(struct e1000_adapter *adapter) 5044 { 5045 struct e1000_hw *hw = &adapter->hw; 5046 u32 ctrl = er32(CTRL); 5047 5048 /* Link status message must follow this format for user tools */ 5049 pr_info("%s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n", 5050 adapter->netdev->name, adapter->link_speed, 5051 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half", 5052 (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" : 5053 (ctrl & E1000_CTRL_RFCE) ? "Rx" : 5054 (ctrl & E1000_CTRL_TFCE) ? "Tx" : "None"); 5055 } 5056 5057 static bool e1000e_has_link(struct e1000_adapter *adapter) 5058 { 5059 struct e1000_hw *hw = &adapter->hw; 5060 bool link_active = false; 5061 s32 ret_val = 0; 5062 5063 /* get_link_status is set on LSC (link status) interrupt or 5064 * Rx sequence error interrupt. get_link_status will stay 5065 * true until the check_for_link establishes link 5066 * for copper adapters ONLY 5067 */ 5068 switch (hw->phy.media_type) { 5069 case e1000_media_type_copper: 5070 if (hw->mac.get_link_status) { 5071 ret_val = hw->mac.ops.check_for_link(hw); 5072 link_active = !hw->mac.get_link_status; 5073 } else { 5074 link_active = true; 5075 } 5076 break; 5077 case e1000_media_type_fiber: 5078 ret_val = hw->mac.ops.check_for_link(hw); 5079 link_active = !!(er32(STATUS) & E1000_STATUS_LU); 5080 break; 5081 case e1000_media_type_internal_serdes: 5082 ret_val = hw->mac.ops.check_for_link(hw); 5083 link_active = hw->mac.serdes_has_link; 5084 break; 5085 default: 5086 case e1000_media_type_unknown: 5087 break; 5088 } 5089 5090 if ((ret_val == -E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) && 5091 (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) { 5092 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */ 5093 e_info("Gigabit has been disabled, downgrading speed\n"); 5094 } 5095 5096 return link_active; 5097 } 5098 5099 static void e1000e_enable_receives(struct e1000_adapter *adapter) 5100 { 5101 /* make sure the receive unit is started */ 5102 if ((adapter->flags & FLAG_RX_NEEDS_RESTART) && 5103 (adapter->flags & FLAG_RESTART_NOW)) { 5104 struct e1000_hw *hw = &adapter->hw; 5105 u32 rctl = er32(RCTL); 5106 5107 ew32(RCTL, rctl | E1000_RCTL_EN); 5108 adapter->flags &= ~FLAG_RESTART_NOW; 5109 } 5110 } 5111 5112 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter) 5113 { 5114 struct e1000_hw *hw = &adapter->hw; 5115 5116 /* With 82574 controllers, PHY needs to be checked periodically 5117 * for hung state and reset, if two calls return true 5118 */ 5119 if (e1000_check_phy_82574(hw)) 5120 adapter->phy_hang_count++; 5121 else 5122 adapter->phy_hang_count = 0; 5123 5124 if (adapter->phy_hang_count > 1) { 5125 adapter->phy_hang_count = 0; 5126 e_dbg("PHY appears hung - resetting\n"); 5127 schedule_work(&adapter->reset_task); 5128 } 5129 } 5130 5131 /** 5132 * e1000_watchdog - Timer Call-back 5133 * @data: pointer to adapter cast into an unsigned long 5134 **/ 5135 static void e1000_watchdog(struct timer_list *t) 5136 { 5137 struct e1000_adapter *adapter = from_timer(adapter, t, watchdog_timer); 5138 5139 /* Do the rest outside of interrupt context */ 5140 schedule_work(&adapter->watchdog_task); 5141 5142 /* TODO: make this use queue_delayed_work() */ 5143 } 5144 5145 static void e1000_watchdog_task(struct work_struct *work) 5146 { 5147 struct e1000_adapter *adapter = container_of(work, 5148 struct e1000_adapter, 5149 watchdog_task); 5150 struct net_device *netdev = adapter->netdev; 5151 struct e1000_mac_info *mac = &adapter->hw.mac; 5152 struct e1000_phy_info *phy = &adapter->hw.phy; 5153 struct e1000_ring *tx_ring = adapter->tx_ring; 5154 struct e1000_hw *hw = &adapter->hw; 5155 u32 link, tctl; 5156 5157 if (test_bit(__E1000_DOWN, &adapter->state)) 5158 return; 5159 5160 link = e1000e_has_link(adapter); 5161 if ((netif_carrier_ok(netdev)) && link) { 5162 /* Cancel scheduled suspend requests. */ 5163 pm_runtime_resume(netdev->dev.parent); 5164 5165 e1000e_enable_receives(adapter); 5166 goto link_up; 5167 } 5168 5169 if ((e1000e_enable_tx_pkt_filtering(hw)) && 5170 (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)) 5171 e1000_update_mng_vlan(adapter); 5172 5173 if (link) { 5174 if (!netif_carrier_ok(netdev)) { 5175 bool txb2b = true; 5176 5177 /* Cancel scheduled suspend requests. */ 5178 pm_runtime_resume(netdev->dev.parent); 5179 5180 /* update snapshot of PHY registers on LSC */ 5181 e1000_phy_read_status(adapter); 5182 mac->ops.get_link_up_info(&adapter->hw, 5183 &adapter->link_speed, 5184 &adapter->link_duplex); 5185 e1000_print_link_info(adapter); 5186 5187 /* check if SmartSpeed worked */ 5188 e1000e_check_downshift(hw); 5189 if (phy->speed_downgraded) 5190 netdev_warn(netdev, 5191 "Link Speed was downgraded by SmartSpeed\n"); 5192 5193 /* On supported PHYs, check for duplex mismatch only 5194 * if link has autonegotiated at 10/100 half 5195 */ 5196 if ((hw->phy.type == e1000_phy_igp_3 || 5197 hw->phy.type == e1000_phy_bm) && 5198 hw->mac.autoneg && 5199 (adapter->link_speed == SPEED_10 || 5200 adapter->link_speed == SPEED_100) && 5201 (adapter->link_duplex == HALF_DUPLEX)) { 5202 u16 autoneg_exp; 5203 5204 e1e_rphy(hw, MII_EXPANSION, &autoneg_exp); 5205 5206 if (!(autoneg_exp & EXPANSION_NWAY)) 5207 e_info("Autonegotiated half duplex but link partner cannot autoneg. Try forcing full duplex if link gets many collisions.\n"); 5208 } 5209 5210 /* adjust timeout factor according to speed/duplex */ 5211 adapter->tx_timeout_factor = 1; 5212 switch (adapter->link_speed) { 5213 case SPEED_10: 5214 txb2b = false; 5215 adapter->tx_timeout_factor = 16; 5216 break; 5217 case SPEED_100: 5218 txb2b = false; 5219 adapter->tx_timeout_factor = 10; 5220 break; 5221 } 5222 5223 /* workaround: re-program speed mode bit after 5224 * link-up event 5225 */ 5226 if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) && 5227 !txb2b) { 5228 u32 tarc0; 5229 5230 tarc0 = er32(TARC(0)); 5231 tarc0 &= ~SPEED_MODE_BIT; 5232 ew32(TARC(0), tarc0); 5233 } 5234 5235 /* disable TSO for pcie and 10/100 speeds, to avoid 5236 * some hardware issues 5237 */ 5238 if (!(adapter->flags & FLAG_TSO_FORCE)) { 5239 switch (adapter->link_speed) { 5240 case SPEED_10: 5241 case SPEED_100: 5242 e_info("10/100 speed: disabling TSO\n"); 5243 netdev->features &= ~NETIF_F_TSO; 5244 netdev->features &= ~NETIF_F_TSO6; 5245 break; 5246 case SPEED_1000: 5247 netdev->features |= NETIF_F_TSO; 5248 netdev->features |= NETIF_F_TSO6; 5249 break; 5250 default: 5251 /* oops */ 5252 break; 5253 } 5254 } 5255 5256 /* enable transmits in the hardware, need to do this 5257 * after setting TARC(0) 5258 */ 5259 tctl = er32(TCTL); 5260 tctl |= E1000_TCTL_EN; 5261 ew32(TCTL, tctl); 5262 5263 /* Perform any post-link-up configuration before 5264 * reporting link up. 5265 */ 5266 if (phy->ops.cfg_on_link_up) 5267 phy->ops.cfg_on_link_up(hw); 5268 5269 netif_carrier_on(netdev); 5270 5271 if (!test_bit(__E1000_DOWN, &adapter->state)) 5272 mod_timer(&adapter->phy_info_timer, 5273 round_jiffies(jiffies + 2 * HZ)); 5274 } 5275 } else { 5276 if (netif_carrier_ok(netdev)) { 5277 adapter->link_speed = 0; 5278 adapter->link_duplex = 0; 5279 /* Link status message must follow this format */ 5280 pr_info("%s NIC Link is Down\n", adapter->netdev->name); 5281 netif_carrier_off(netdev); 5282 if (!test_bit(__E1000_DOWN, &adapter->state)) 5283 mod_timer(&adapter->phy_info_timer, 5284 round_jiffies(jiffies + 2 * HZ)); 5285 5286 /* 8000ES2LAN requires a Rx packet buffer work-around 5287 * on link down event; reset the controller to flush 5288 * the Rx packet buffer. 5289 */ 5290 if (adapter->flags & FLAG_RX_NEEDS_RESTART) 5291 adapter->flags |= FLAG_RESTART_NOW; 5292 else 5293 pm_schedule_suspend(netdev->dev.parent, 5294 LINK_TIMEOUT); 5295 } 5296 } 5297 5298 link_up: 5299 spin_lock(&adapter->stats64_lock); 5300 e1000e_update_stats(adapter); 5301 5302 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old; 5303 adapter->tpt_old = adapter->stats.tpt; 5304 mac->collision_delta = adapter->stats.colc - adapter->colc_old; 5305 adapter->colc_old = adapter->stats.colc; 5306 5307 adapter->gorc = adapter->stats.gorc - adapter->gorc_old; 5308 adapter->gorc_old = adapter->stats.gorc; 5309 adapter->gotc = adapter->stats.gotc - adapter->gotc_old; 5310 adapter->gotc_old = adapter->stats.gotc; 5311 spin_unlock(&adapter->stats64_lock); 5312 5313 /* If the link is lost the controller stops DMA, but 5314 * if there is queued Tx work it cannot be done. So 5315 * reset the controller to flush the Tx packet buffers. 5316 */ 5317 if (!netif_carrier_ok(netdev) && 5318 (e1000_desc_unused(tx_ring) + 1 < tx_ring->count)) 5319 adapter->flags |= FLAG_RESTART_NOW; 5320 5321 /* If reset is necessary, do it outside of interrupt context. */ 5322 if (adapter->flags & FLAG_RESTART_NOW) { 5323 schedule_work(&adapter->reset_task); 5324 /* return immediately since reset is imminent */ 5325 return; 5326 } 5327 5328 e1000e_update_adaptive(&adapter->hw); 5329 5330 /* Simple mode for Interrupt Throttle Rate (ITR) */ 5331 if (adapter->itr_setting == 4) { 5332 /* Symmetric Tx/Rx gets a reduced ITR=2000; 5333 * Total asymmetrical Tx or Rx gets ITR=8000; 5334 * everyone else is between 2000-8000. 5335 */ 5336 u32 goc = (adapter->gotc + adapter->gorc) / 10000; 5337 u32 dif = (adapter->gotc > adapter->gorc ? 5338 adapter->gotc - adapter->gorc : 5339 adapter->gorc - adapter->gotc) / 10000; 5340 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000; 5341 5342 e1000e_write_itr(adapter, itr); 5343 } 5344 5345 /* Cause software interrupt to ensure Rx ring is cleaned */ 5346 if (adapter->msix_entries) 5347 ew32(ICS, adapter->rx_ring->ims_val); 5348 else 5349 ew32(ICS, E1000_ICS_RXDMT0); 5350 5351 /* flush pending descriptors to memory before detecting Tx hang */ 5352 e1000e_flush_descriptors(adapter); 5353 5354 /* Force detection of hung controller every watchdog period */ 5355 adapter->detect_tx_hung = true; 5356 5357 /* With 82571 controllers, LAA may be overwritten due to controller 5358 * reset from the other port. Set the appropriate LAA in RAR[0] 5359 */ 5360 if (e1000e_get_laa_state_82571(hw)) 5361 hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0); 5362 5363 if (adapter->flags2 & FLAG2_CHECK_PHY_HANG) 5364 e1000e_check_82574_phy_workaround(adapter); 5365 5366 /* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */ 5367 if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) { 5368 if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) && 5369 (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) { 5370 er32(RXSTMPH); 5371 adapter->rx_hwtstamp_cleared++; 5372 } else { 5373 adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP; 5374 } 5375 } 5376 5377 /* Reset the timer */ 5378 if (!test_bit(__E1000_DOWN, &adapter->state)) 5379 mod_timer(&adapter->watchdog_timer, 5380 round_jiffies(jiffies + 2 * HZ)); 5381 } 5382 5383 #define E1000_TX_FLAGS_CSUM 0x00000001 5384 #define E1000_TX_FLAGS_VLAN 0x00000002 5385 #define E1000_TX_FLAGS_TSO 0x00000004 5386 #define E1000_TX_FLAGS_IPV4 0x00000008 5387 #define E1000_TX_FLAGS_NO_FCS 0x00000010 5388 #define E1000_TX_FLAGS_HWTSTAMP 0x00000020 5389 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000 5390 #define E1000_TX_FLAGS_VLAN_SHIFT 16 5391 5392 static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb, 5393 __be16 protocol) 5394 { 5395 struct e1000_context_desc *context_desc; 5396 struct e1000_buffer *buffer_info; 5397 unsigned int i; 5398 u32 cmd_length = 0; 5399 u16 ipcse = 0, mss; 5400 u8 ipcss, ipcso, tucss, tucso, hdr_len; 5401 int err; 5402 5403 if (!skb_is_gso(skb)) 5404 return 0; 5405 5406 err = skb_cow_head(skb, 0); 5407 if (err < 0) 5408 return err; 5409 5410 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 5411 mss = skb_shinfo(skb)->gso_size; 5412 if (protocol == htons(ETH_P_IP)) { 5413 struct iphdr *iph = ip_hdr(skb); 5414 iph->tot_len = 0; 5415 iph->check = 0; 5416 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr, 5417 0, IPPROTO_TCP, 0); 5418 cmd_length = E1000_TXD_CMD_IP; 5419 ipcse = skb_transport_offset(skb) - 1; 5420 } else if (skb_is_gso_v6(skb)) { 5421 ipv6_hdr(skb)->payload_len = 0; 5422 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, 5423 &ipv6_hdr(skb)->daddr, 5424 0, IPPROTO_TCP, 0); 5425 ipcse = 0; 5426 } 5427 ipcss = skb_network_offset(skb); 5428 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data; 5429 tucss = skb_transport_offset(skb); 5430 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data; 5431 5432 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE | 5433 E1000_TXD_CMD_TCP | (skb->len - (hdr_len))); 5434 5435 i = tx_ring->next_to_use; 5436 context_desc = E1000_CONTEXT_DESC(*tx_ring, i); 5437 buffer_info = &tx_ring->buffer_info[i]; 5438 5439 context_desc->lower_setup.ip_fields.ipcss = ipcss; 5440 context_desc->lower_setup.ip_fields.ipcso = ipcso; 5441 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse); 5442 context_desc->upper_setup.tcp_fields.tucss = tucss; 5443 context_desc->upper_setup.tcp_fields.tucso = tucso; 5444 context_desc->upper_setup.tcp_fields.tucse = 0; 5445 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss); 5446 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len; 5447 context_desc->cmd_and_length = cpu_to_le32(cmd_length); 5448 5449 buffer_info->time_stamp = jiffies; 5450 buffer_info->next_to_watch = i; 5451 5452 i++; 5453 if (i == tx_ring->count) 5454 i = 0; 5455 tx_ring->next_to_use = i; 5456 5457 return 1; 5458 } 5459 5460 static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb, 5461 __be16 protocol) 5462 { 5463 struct e1000_adapter *adapter = tx_ring->adapter; 5464 struct e1000_context_desc *context_desc; 5465 struct e1000_buffer *buffer_info; 5466 unsigned int i; 5467 u8 css; 5468 u32 cmd_len = E1000_TXD_CMD_DEXT; 5469 5470 if (skb->ip_summed != CHECKSUM_PARTIAL) 5471 return false; 5472 5473 switch (protocol) { 5474 case cpu_to_be16(ETH_P_IP): 5475 if (ip_hdr(skb)->protocol == IPPROTO_TCP) 5476 cmd_len |= E1000_TXD_CMD_TCP; 5477 break; 5478 case cpu_to_be16(ETH_P_IPV6): 5479 /* XXX not handling all IPV6 headers */ 5480 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) 5481 cmd_len |= E1000_TXD_CMD_TCP; 5482 break; 5483 default: 5484 if (unlikely(net_ratelimit())) 5485 e_warn("checksum_partial proto=%x!\n", 5486 be16_to_cpu(protocol)); 5487 break; 5488 } 5489 5490 css = skb_checksum_start_offset(skb); 5491 5492 i = tx_ring->next_to_use; 5493 buffer_info = &tx_ring->buffer_info[i]; 5494 context_desc = E1000_CONTEXT_DESC(*tx_ring, i); 5495 5496 context_desc->lower_setup.ip_config = 0; 5497 context_desc->upper_setup.tcp_fields.tucss = css; 5498 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset; 5499 context_desc->upper_setup.tcp_fields.tucse = 0; 5500 context_desc->tcp_seg_setup.data = 0; 5501 context_desc->cmd_and_length = cpu_to_le32(cmd_len); 5502 5503 buffer_info->time_stamp = jiffies; 5504 buffer_info->next_to_watch = i; 5505 5506 i++; 5507 if (i == tx_ring->count) 5508 i = 0; 5509 tx_ring->next_to_use = i; 5510 5511 return true; 5512 } 5513 5514 static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb, 5515 unsigned int first, unsigned int max_per_txd, 5516 unsigned int nr_frags) 5517 { 5518 struct e1000_adapter *adapter = tx_ring->adapter; 5519 struct pci_dev *pdev = adapter->pdev; 5520 struct e1000_buffer *buffer_info; 5521 unsigned int len = skb_headlen(skb); 5522 unsigned int offset = 0, size, count = 0, i; 5523 unsigned int f, bytecount, segs; 5524 5525 i = tx_ring->next_to_use; 5526 5527 while (len) { 5528 buffer_info = &tx_ring->buffer_info[i]; 5529 size = min(len, max_per_txd); 5530 5531 buffer_info->length = size; 5532 buffer_info->time_stamp = jiffies; 5533 buffer_info->next_to_watch = i; 5534 buffer_info->dma = dma_map_single(&pdev->dev, 5535 skb->data + offset, 5536 size, DMA_TO_DEVICE); 5537 buffer_info->mapped_as_page = false; 5538 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) 5539 goto dma_error; 5540 5541 len -= size; 5542 offset += size; 5543 count++; 5544 5545 if (len) { 5546 i++; 5547 if (i == tx_ring->count) 5548 i = 0; 5549 } 5550 } 5551 5552 for (f = 0; f < nr_frags; f++) { 5553 const struct skb_frag_struct *frag; 5554 5555 frag = &skb_shinfo(skb)->frags[f]; 5556 len = skb_frag_size(frag); 5557 offset = 0; 5558 5559 while (len) { 5560 i++; 5561 if (i == tx_ring->count) 5562 i = 0; 5563 5564 buffer_info = &tx_ring->buffer_info[i]; 5565 size = min(len, max_per_txd); 5566 5567 buffer_info->length = size; 5568 buffer_info->time_stamp = jiffies; 5569 buffer_info->next_to_watch = i; 5570 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag, 5571 offset, size, 5572 DMA_TO_DEVICE); 5573 buffer_info->mapped_as_page = true; 5574 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) 5575 goto dma_error; 5576 5577 len -= size; 5578 offset += size; 5579 count++; 5580 } 5581 } 5582 5583 segs = skb_shinfo(skb)->gso_segs ? : 1; 5584 /* multiply data chunks by size of headers */ 5585 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len; 5586 5587 tx_ring->buffer_info[i].skb = skb; 5588 tx_ring->buffer_info[i].segs = segs; 5589 tx_ring->buffer_info[i].bytecount = bytecount; 5590 tx_ring->buffer_info[first].next_to_watch = i; 5591 5592 return count; 5593 5594 dma_error: 5595 dev_err(&pdev->dev, "Tx DMA map failed\n"); 5596 buffer_info->dma = 0; 5597 if (count) 5598 count--; 5599 5600 while (count--) { 5601 if (i == 0) 5602 i += tx_ring->count; 5603 i--; 5604 buffer_info = &tx_ring->buffer_info[i]; 5605 e1000_put_txbuf(tx_ring, buffer_info, true); 5606 } 5607 5608 return 0; 5609 } 5610 5611 static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count) 5612 { 5613 struct e1000_adapter *adapter = tx_ring->adapter; 5614 struct e1000_tx_desc *tx_desc = NULL; 5615 struct e1000_buffer *buffer_info; 5616 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS; 5617 unsigned int i; 5618 5619 if (tx_flags & E1000_TX_FLAGS_TSO) { 5620 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D | 5621 E1000_TXD_CMD_TSE; 5622 txd_upper |= E1000_TXD_POPTS_TXSM << 8; 5623 5624 if (tx_flags & E1000_TX_FLAGS_IPV4) 5625 txd_upper |= E1000_TXD_POPTS_IXSM << 8; 5626 } 5627 5628 if (tx_flags & E1000_TX_FLAGS_CSUM) { 5629 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D; 5630 txd_upper |= E1000_TXD_POPTS_TXSM << 8; 5631 } 5632 5633 if (tx_flags & E1000_TX_FLAGS_VLAN) { 5634 txd_lower |= E1000_TXD_CMD_VLE; 5635 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK); 5636 } 5637 5638 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS)) 5639 txd_lower &= ~(E1000_TXD_CMD_IFCS); 5640 5641 if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) { 5642 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D; 5643 txd_upper |= E1000_TXD_EXTCMD_TSTAMP; 5644 } 5645 5646 i = tx_ring->next_to_use; 5647 5648 do { 5649 buffer_info = &tx_ring->buffer_info[i]; 5650 tx_desc = E1000_TX_DESC(*tx_ring, i); 5651 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma); 5652 tx_desc->lower.data = cpu_to_le32(txd_lower | 5653 buffer_info->length); 5654 tx_desc->upper.data = cpu_to_le32(txd_upper); 5655 5656 i++; 5657 if (i == tx_ring->count) 5658 i = 0; 5659 } while (--count > 0); 5660 5661 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd); 5662 5663 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */ 5664 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS)) 5665 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS)); 5666 5667 /* Force memory writes to complete before letting h/w 5668 * know there are new descriptors to fetch. (Only 5669 * applicable for weak-ordered memory model archs, 5670 * such as IA-64). 5671 */ 5672 wmb(); 5673 5674 tx_ring->next_to_use = i; 5675 } 5676 5677 #define MINIMUM_DHCP_PACKET_SIZE 282 5678 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter, 5679 struct sk_buff *skb) 5680 { 5681 struct e1000_hw *hw = &adapter->hw; 5682 u16 length, offset; 5683 5684 if (skb_vlan_tag_present(skb) && 5685 !((skb_vlan_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) && 5686 (adapter->hw.mng_cookie.status & 5687 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))) 5688 return 0; 5689 5690 if (skb->len <= MINIMUM_DHCP_PACKET_SIZE) 5691 return 0; 5692 5693 if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP)) 5694 return 0; 5695 5696 { 5697 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14); 5698 struct udphdr *udp; 5699 5700 if (ip->protocol != IPPROTO_UDP) 5701 return 0; 5702 5703 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2)); 5704 if (ntohs(udp->dest) != 67) 5705 return 0; 5706 5707 offset = (u8 *)udp + 8 - skb->data; 5708 length = skb->len - offset; 5709 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length); 5710 } 5711 5712 return 0; 5713 } 5714 5715 static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size) 5716 { 5717 struct e1000_adapter *adapter = tx_ring->adapter; 5718 5719 netif_stop_queue(adapter->netdev); 5720 /* Herbert's original patch had: 5721 * smp_mb__after_netif_stop_queue(); 5722 * but since that doesn't exist yet, just open code it. 5723 */ 5724 smp_mb(); 5725 5726 /* We need to check again in a case another CPU has just 5727 * made room available. 5728 */ 5729 if (e1000_desc_unused(tx_ring) < size) 5730 return -EBUSY; 5731 5732 /* A reprieve! */ 5733 netif_start_queue(adapter->netdev); 5734 ++adapter->restart_queue; 5735 return 0; 5736 } 5737 5738 static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size) 5739 { 5740 BUG_ON(size > tx_ring->count); 5741 5742 if (e1000_desc_unused(tx_ring) >= size) 5743 return 0; 5744 return __e1000_maybe_stop_tx(tx_ring, size); 5745 } 5746 5747 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb, 5748 struct net_device *netdev) 5749 { 5750 struct e1000_adapter *adapter = netdev_priv(netdev); 5751 struct e1000_ring *tx_ring = adapter->tx_ring; 5752 unsigned int first; 5753 unsigned int tx_flags = 0; 5754 unsigned int len = skb_headlen(skb); 5755 unsigned int nr_frags; 5756 unsigned int mss; 5757 int count = 0; 5758 int tso; 5759 unsigned int f; 5760 __be16 protocol = vlan_get_protocol(skb); 5761 5762 if (test_bit(__E1000_DOWN, &adapter->state)) { 5763 dev_kfree_skb_any(skb); 5764 return NETDEV_TX_OK; 5765 } 5766 5767 if (skb->len <= 0) { 5768 dev_kfree_skb_any(skb); 5769 return NETDEV_TX_OK; 5770 } 5771 5772 /* The minimum packet size with TCTL.PSP set is 17 bytes so 5773 * pad skb in order to meet this minimum size requirement 5774 */ 5775 if (skb_put_padto(skb, 17)) 5776 return NETDEV_TX_OK; 5777 5778 mss = skb_shinfo(skb)->gso_size; 5779 if (mss) { 5780 u8 hdr_len; 5781 5782 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data 5783 * points to just header, pull a few bytes of payload from 5784 * frags into skb->data 5785 */ 5786 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb); 5787 /* we do this workaround for ES2LAN, but it is un-necessary, 5788 * avoiding it could save a lot of cycles 5789 */ 5790 if (skb->data_len && (hdr_len == len)) { 5791 unsigned int pull_size; 5792 5793 pull_size = min_t(unsigned int, 4, skb->data_len); 5794 if (!__pskb_pull_tail(skb, pull_size)) { 5795 e_err("__pskb_pull_tail failed.\n"); 5796 dev_kfree_skb_any(skb); 5797 return NETDEV_TX_OK; 5798 } 5799 len = skb_headlen(skb); 5800 } 5801 } 5802 5803 /* reserve a descriptor for the offload context */ 5804 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL)) 5805 count++; 5806 count++; 5807 5808 count += DIV_ROUND_UP(len, adapter->tx_fifo_limit); 5809 5810 nr_frags = skb_shinfo(skb)->nr_frags; 5811 for (f = 0; f < nr_frags; f++) 5812 count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]), 5813 adapter->tx_fifo_limit); 5814 5815 if (adapter->hw.mac.tx_pkt_filtering) 5816 e1000_transfer_dhcp_info(adapter, skb); 5817 5818 /* need: count + 2 desc gap to keep tail from touching 5819 * head, otherwise try next time 5820 */ 5821 if (e1000_maybe_stop_tx(tx_ring, count + 2)) 5822 return NETDEV_TX_BUSY; 5823 5824 if (skb_vlan_tag_present(skb)) { 5825 tx_flags |= E1000_TX_FLAGS_VLAN; 5826 tx_flags |= (skb_vlan_tag_get(skb) << 5827 E1000_TX_FLAGS_VLAN_SHIFT); 5828 } 5829 5830 first = tx_ring->next_to_use; 5831 5832 tso = e1000_tso(tx_ring, skb, protocol); 5833 if (tso < 0) { 5834 dev_kfree_skb_any(skb); 5835 return NETDEV_TX_OK; 5836 } 5837 5838 if (tso) 5839 tx_flags |= E1000_TX_FLAGS_TSO; 5840 else if (e1000_tx_csum(tx_ring, skb, protocol)) 5841 tx_flags |= E1000_TX_FLAGS_CSUM; 5842 5843 /* Old method was to assume IPv4 packet by default if TSO was enabled. 5844 * 82571 hardware supports TSO capabilities for IPv6 as well... 5845 * no longer assume, we must. 5846 */ 5847 if (protocol == htons(ETH_P_IP)) 5848 tx_flags |= E1000_TX_FLAGS_IPV4; 5849 5850 if (unlikely(skb->no_fcs)) 5851 tx_flags |= E1000_TX_FLAGS_NO_FCS; 5852 5853 /* if count is 0 then mapping error has occurred */ 5854 count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit, 5855 nr_frags); 5856 if (count) { 5857 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && 5858 (adapter->flags & FLAG_HAS_HW_TIMESTAMP)) { 5859 if (!adapter->tx_hwtstamp_skb) { 5860 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 5861 tx_flags |= E1000_TX_FLAGS_HWTSTAMP; 5862 adapter->tx_hwtstamp_skb = skb_get(skb); 5863 adapter->tx_hwtstamp_start = jiffies; 5864 schedule_work(&adapter->tx_hwtstamp_work); 5865 } else { 5866 adapter->tx_hwtstamp_skipped++; 5867 } 5868 } 5869 5870 skb_tx_timestamp(skb); 5871 5872 netdev_sent_queue(netdev, skb->len); 5873 e1000_tx_queue(tx_ring, tx_flags, count); 5874 /* Make sure there is space in the ring for the next send. */ 5875 e1000_maybe_stop_tx(tx_ring, 5876 (MAX_SKB_FRAGS * 5877 DIV_ROUND_UP(PAGE_SIZE, 5878 adapter->tx_fifo_limit) + 2)); 5879 5880 if (!skb->xmit_more || 5881 netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) { 5882 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA) 5883 e1000e_update_tdt_wa(tx_ring, 5884 tx_ring->next_to_use); 5885 else 5886 writel(tx_ring->next_to_use, tx_ring->tail); 5887 5888 /* we need this if more than one processor can write 5889 * to our tail at a time, it synchronizes IO on 5890 *IA64/Altix systems 5891 */ 5892 mmiowb(); 5893 } 5894 } else { 5895 dev_kfree_skb_any(skb); 5896 tx_ring->buffer_info[first].time_stamp = 0; 5897 tx_ring->next_to_use = first; 5898 } 5899 5900 return NETDEV_TX_OK; 5901 } 5902 5903 /** 5904 * e1000_tx_timeout - Respond to a Tx Hang 5905 * @netdev: network interface device structure 5906 **/ 5907 static void e1000_tx_timeout(struct net_device *netdev) 5908 { 5909 struct e1000_adapter *adapter = netdev_priv(netdev); 5910 5911 /* Do the reset outside of interrupt context */ 5912 adapter->tx_timeout_count++; 5913 schedule_work(&adapter->reset_task); 5914 } 5915 5916 static void e1000_reset_task(struct work_struct *work) 5917 { 5918 struct e1000_adapter *adapter; 5919 adapter = container_of(work, struct e1000_adapter, reset_task); 5920 5921 /* don't run the task if already down */ 5922 if (test_bit(__E1000_DOWN, &adapter->state)) 5923 return; 5924 5925 if (!(adapter->flags & FLAG_RESTART_NOW)) { 5926 e1000e_dump(adapter); 5927 e_err("Reset adapter unexpectedly\n"); 5928 } 5929 e1000e_reinit_locked(adapter); 5930 } 5931 5932 /** 5933 * e1000_get_stats64 - Get System Network Statistics 5934 * @netdev: network interface device structure 5935 * @stats: rtnl_link_stats64 pointer 5936 * 5937 * Returns the address of the device statistics structure. 5938 **/ 5939 void e1000e_get_stats64(struct net_device *netdev, 5940 struct rtnl_link_stats64 *stats) 5941 { 5942 struct e1000_adapter *adapter = netdev_priv(netdev); 5943 5944 spin_lock(&adapter->stats64_lock); 5945 e1000e_update_stats(adapter); 5946 /* Fill out the OS statistics structure */ 5947 stats->rx_bytes = adapter->stats.gorc; 5948 stats->rx_packets = adapter->stats.gprc; 5949 stats->tx_bytes = adapter->stats.gotc; 5950 stats->tx_packets = adapter->stats.gptc; 5951 stats->multicast = adapter->stats.mprc; 5952 stats->collisions = adapter->stats.colc; 5953 5954 /* Rx Errors */ 5955 5956 /* RLEC on some newer hardware can be incorrect so build 5957 * our own version based on RUC and ROC 5958 */ 5959 stats->rx_errors = adapter->stats.rxerrc + 5960 adapter->stats.crcerrs + adapter->stats.algnerrc + 5961 adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr; 5962 stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc; 5963 stats->rx_crc_errors = adapter->stats.crcerrs; 5964 stats->rx_frame_errors = adapter->stats.algnerrc; 5965 stats->rx_missed_errors = adapter->stats.mpc; 5966 5967 /* Tx Errors */ 5968 stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol; 5969 stats->tx_aborted_errors = adapter->stats.ecol; 5970 stats->tx_window_errors = adapter->stats.latecol; 5971 stats->tx_carrier_errors = adapter->stats.tncrs; 5972 5973 /* Tx Dropped needs to be maintained elsewhere */ 5974 5975 spin_unlock(&adapter->stats64_lock); 5976 } 5977 5978 /** 5979 * e1000_change_mtu - Change the Maximum Transfer Unit 5980 * @netdev: network interface device structure 5981 * @new_mtu: new value for maximum frame size 5982 * 5983 * Returns 0 on success, negative on failure 5984 **/ 5985 static int e1000_change_mtu(struct net_device *netdev, int new_mtu) 5986 { 5987 struct e1000_adapter *adapter = netdev_priv(netdev); 5988 int max_frame = new_mtu + VLAN_ETH_HLEN + ETH_FCS_LEN; 5989 5990 /* Jumbo frame support */ 5991 if ((new_mtu > ETH_DATA_LEN) && 5992 !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) { 5993 e_err("Jumbo Frames not supported.\n"); 5994 return -EINVAL; 5995 } 5996 5997 /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */ 5998 if ((adapter->hw.mac.type >= e1000_pch2lan) && 5999 !(adapter->flags2 & FLAG2_CRC_STRIPPING) && 6000 (new_mtu > ETH_DATA_LEN)) { 6001 e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n"); 6002 return -EINVAL; 6003 } 6004 6005 while (test_and_set_bit(__E1000_RESETTING, &adapter->state)) 6006 usleep_range(1000, 2000); 6007 /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */ 6008 adapter->max_frame_size = max_frame; 6009 e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu); 6010 netdev->mtu = new_mtu; 6011 6012 pm_runtime_get_sync(netdev->dev.parent); 6013 6014 if (netif_running(netdev)) 6015 e1000e_down(adapter, true); 6016 6017 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN 6018 * means we reserve 2 more, this pushes us to allocate from the next 6019 * larger slab size. 6020 * i.e. RXBUFFER_2048 --> size-4096 slab 6021 * However with the new *_jumbo_rx* routines, jumbo receives will use 6022 * fragmented skbs 6023 */ 6024 6025 if (max_frame <= 2048) 6026 adapter->rx_buffer_len = 2048; 6027 else 6028 adapter->rx_buffer_len = 4096; 6029 6030 /* adjust allocation if LPE protects us, and we aren't using SBP */ 6031 if (max_frame <= (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) 6032 adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN; 6033 6034 if (netif_running(netdev)) 6035 e1000e_up(adapter); 6036 else 6037 e1000e_reset(adapter); 6038 6039 pm_runtime_put_sync(netdev->dev.parent); 6040 6041 clear_bit(__E1000_RESETTING, &adapter->state); 6042 6043 return 0; 6044 } 6045 6046 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, 6047 int cmd) 6048 { 6049 struct e1000_adapter *adapter = netdev_priv(netdev); 6050 struct mii_ioctl_data *data = if_mii(ifr); 6051 6052 if (adapter->hw.phy.media_type != e1000_media_type_copper) 6053 return -EOPNOTSUPP; 6054 6055 switch (cmd) { 6056 case SIOCGMIIPHY: 6057 data->phy_id = adapter->hw.phy.addr; 6058 break; 6059 case SIOCGMIIREG: 6060 e1000_phy_read_status(adapter); 6061 6062 switch (data->reg_num & 0x1F) { 6063 case MII_BMCR: 6064 data->val_out = adapter->phy_regs.bmcr; 6065 break; 6066 case MII_BMSR: 6067 data->val_out = adapter->phy_regs.bmsr; 6068 break; 6069 case MII_PHYSID1: 6070 data->val_out = (adapter->hw.phy.id >> 16); 6071 break; 6072 case MII_PHYSID2: 6073 data->val_out = (adapter->hw.phy.id & 0xFFFF); 6074 break; 6075 case MII_ADVERTISE: 6076 data->val_out = adapter->phy_regs.advertise; 6077 break; 6078 case MII_LPA: 6079 data->val_out = adapter->phy_regs.lpa; 6080 break; 6081 case MII_EXPANSION: 6082 data->val_out = adapter->phy_regs.expansion; 6083 break; 6084 case MII_CTRL1000: 6085 data->val_out = adapter->phy_regs.ctrl1000; 6086 break; 6087 case MII_STAT1000: 6088 data->val_out = adapter->phy_regs.stat1000; 6089 break; 6090 case MII_ESTATUS: 6091 data->val_out = adapter->phy_regs.estatus; 6092 break; 6093 default: 6094 return -EIO; 6095 } 6096 break; 6097 case SIOCSMIIREG: 6098 default: 6099 return -EOPNOTSUPP; 6100 } 6101 return 0; 6102 } 6103 6104 /** 6105 * e1000e_hwtstamp_ioctl - control hardware time stamping 6106 * @netdev: network interface device structure 6107 * @ifreq: interface request 6108 * 6109 * Outgoing time stamping can be enabled and disabled. Play nice and 6110 * disable it when requested, although it shouldn't cause any overhead 6111 * when no packet needs it. At most one packet in the queue may be 6112 * marked for time stamping, otherwise it would be impossible to tell 6113 * for sure to which packet the hardware time stamp belongs. 6114 * 6115 * Incoming time stamping has to be configured via the hardware filters. 6116 * Not all combinations are supported, in particular event type has to be 6117 * specified. Matching the kind of event packet is not supported, with the 6118 * exception of "all V2 events regardless of level 2 or 4". 6119 **/ 6120 static int e1000e_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr) 6121 { 6122 struct e1000_adapter *adapter = netdev_priv(netdev); 6123 struct hwtstamp_config config; 6124 int ret_val; 6125 6126 if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) 6127 return -EFAULT; 6128 6129 ret_val = e1000e_config_hwtstamp(adapter, &config); 6130 if (ret_val) 6131 return ret_val; 6132 6133 switch (config.rx_filter) { 6134 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: 6135 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: 6136 case HWTSTAMP_FILTER_PTP_V2_SYNC: 6137 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: 6138 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: 6139 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: 6140 /* With V2 type filters which specify a Sync or Delay Request, 6141 * Path Delay Request/Response messages are also time stamped 6142 * by hardware so notify the caller the requested packets plus 6143 * some others are time stamped. 6144 */ 6145 config.rx_filter = HWTSTAMP_FILTER_SOME; 6146 break; 6147 default: 6148 break; 6149 } 6150 6151 return copy_to_user(ifr->ifr_data, &config, 6152 sizeof(config)) ? -EFAULT : 0; 6153 } 6154 6155 static int e1000e_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr) 6156 { 6157 struct e1000_adapter *adapter = netdev_priv(netdev); 6158 6159 return copy_to_user(ifr->ifr_data, &adapter->hwtstamp_config, 6160 sizeof(adapter->hwtstamp_config)) ? -EFAULT : 0; 6161 } 6162 6163 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) 6164 { 6165 switch (cmd) { 6166 case SIOCGMIIPHY: 6167 case SIOCGMIIREG: 6168 case SIOCSMIIREG: 6169 return e1000_mii_ioctl(netdev, ifr, cmd); 6170 case SIOCSHWTSTAMP: 6171 return e1000e_hwtstamp_set(netdev, ifr); 6172 case SIOCGHWTSTAMP: 6173 return e1000e_hwtstamp_get(netdev, ifr); 6174 default: 6175 return -EOPNOTSUPP; 6176 } 6177 } 6178 6179 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc) 6180 { 6181 struct e1000_hw *hw = &adapter->hw; 6182 u32 i, mac_reg, wuc; 6183 u16 phy_reg, wuc_enable; 6184 int retval; 6185 6186 /* copy MAC RARs to PHY RARs */ 6187 e1000_copy_rx_addrs_to_phy_ich8lan(hw); 6188 6189 retval = hw->phy.ops.acquire(hw); 6190 if (retval) { 6191 e_err("Could not acquire PHY\n"); 6192 return retval; 6193 } 6194 6195 /* Enable access to wakeup registers on and set page to BM_WUC_PAGE */ 6196 retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable); 6197 if (retval) 6198 goto release; 6199 6200 /* copy MAC MTA to PHY MTA - only needed for pchlan */ 6201 for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) { 6202 mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i); 6203 hw->phy.ops.write_reg_page(hw, BM_MTA(i), 6204 (u16)(mac_reg & 0xFFFF)); 6205 hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1, 6206 (u16)((mac_reg >> 16) & 0xFFFF)); 6207 } 6208 6209 /* configure PHY Rx Control register */ 6210 hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg); 6211 mac_reg = er32(RCTL); 6212 if (mac_reg & E1000_RCTL_UPE) 6213 phy_reg |= BM_RCTL_UPE; 6214 if (mac_reg & E1000_RCTL_MPE) 6215 phy_reg |= BM_RCTL_MPE; 6216 phy_reg &= ~(BM_RCTL_MO_MASK); 6217 if (mac_reg & E1000_RCTL_MO_3) 6218 phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT) 6219 << BM_RCTL_MO_SHIFT); 6220 if (mac_reg & E1000_RCTL_BAM) 6221 phy_reg |= BM_RCTL_BAM; 6222 if (mac_reg & E1000_RCTL_PMCF) 6223 phy_reg |= BM_RCTL_PMCF; 6224 mac_reg = er32(CTRL); 6225 if (mac_reg & E1000_CTRL_RFCE) 6226 phy_reg |= BM_RCTL_RFCE; 6227 hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg); 6228 6229 wuc = E1000_WUC_PME_EN; 6230 if (wufc & (E1000_WUFC_MAG | E1000_WUFC_LNKC)) 6231 wuc |= E1000_WUC_APME; 6232 6233 /* enable PHY wakeup in MAC register */ 6234 ew32(WUFC, wufc); 6235 ew32(WUC, (E1000_WUC_PHY_WAKE | E1000_WUC_APMPME | 6236 E1000_WUC_PME_STATUS | wuc)); 6237 6238 /* configure and enable PHY wakeup in PHY registers */ 6239 hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc); 6240 hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, wuc); 6241 6242 /* activate PHY wakeup */ 6243 wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT; 6244 retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable); 6245 if (retval) 6246 e_err("Could not set PHY Host Wakeup bit\n"); 6247 release: 6248 hw->phy.ops.release(hw); 6249 6250 return retval; 6251 } 6252 6253 static void e1000e_flush_lpic(struct pci_dev *pdev) 6254 { 6255 struct net_device *netdev = pci_get_drvdata(pdev); 6256 struct e1000_adapter *adapter = netdev_priv(netdev); 6257 struct e1000_hw *hw = &adapter->hw; 6258 u32 ret_val; 6259 6260 pm_runtime_get_sync(netdev->dev.parent); 6261 6262 ret_val = hw->phy.ops.acquire(hw); 6263 if (ret_val) 6264 goto fl_out; 6265 6266 pr_info("EEE TX LPI TIMER: %08X\n", 6267 er32(LPIC) >> E1000_LPIC_LPIET_SHIFT); 6268 6269 hw->phy.ops.release(hw); 6270 6271 fl_out: 6272 pm_runtime_put_sync(netdev->dev.parent); 6273 } 6274 6275 static int e1000e_pm_freeze(struct device *dev) 6276 { 6277 struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev)); 6278 struct e1000_adapter *adapter = netdev_priv(netdev); 6279 6280 netif_device_detach(netdev); 6281 6282 if (netif_running(netdev)) { 6283 int count = E1000_CHECK_RESET_COUNT; 6284 6285 while (test_bit(__E1000_RESETTING, &adapter->state) && count--) 6286 usleep_range(10000, 20000); 6287 6288 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state)); 6289 6290 /* Quiesce the device without resetting the hardware */ 6291 e1000e_down(adapter, false); 6292 e1000_free_irq(adapter); 6293 } 6294 e1000e_reset_interrupt_capability(adapter); 6295 6296 /* Allow time for pending master requests to run */ 6297 e1000e_disable_pcie_master(&adapter->hw); 6298 6299 return 0; 6300 } 6301 6302 static int __e1000_shutdown(struct pci_dev *pdev, bool runtime) 6303 { 6304 struct net_device *netdev = pci_get_drvdata(pdev); 6305 struct e1000_adapter *adapter = netdev_priv(netdev); 6306 struct e1000_hw *hw = &adapter->hw; 6307 u32 ctrl, ctrl_ext, rctl, status; 6308 /* Runtime suspend should only enable wakeup for link changes */ 6309 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol; 6310 int retval = 0; 6311 6312 status = er32(STATUS); 6313 if (status & E1000_STATUS_LU) 6314 wufc &= ~E1000_WUFC_LNKC; 6315 6316 if (wufc) { 6317 e1000_setup_rctl(adapter); 6318 e1000e_set_rx_mode(netdev); 6319 6320 /* turn on all-multi mode if wake on multicast is enabled */ 6321 if (wufc & E1000_WUFC_MC) { 6322 rctl = er32(RCTL); 6323 rctl |= E1000_RCTL_MPE; 6324 ew32(RCTL, rctl); 6325 } 6326 6327 ctrl = er32(CTRL); 6328 ctrl |= E1000_CTRL_ADVD3WUC; 6329 if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP)) 6330 ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT; 6331 ew32(CTRL, ctrl); 6332 6333 if (adapter->hw.phy.media_type == e1000_media_type_fiber || 6334 adapter->hw.phy.media_type == 6335 e1000_media_type_internal_serdes) { 6336 /* keep the laser running in D3 */ 6337 ctrl_ext = er32(CTRL_EXT); 6338 ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA; 6339 ew32(CTRL_EXT, ctrl_ext); 6340 } 6341 6342 if (!runtime) 6343 e1000e_power_up_phy(adapter); 6344 6345 if (adapter->flags & FLAG_IS_ICH) 6346 e1000_suspend_workarounds_ich8lan(&adapter->hw); 6347 6348 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) { 6349 /* enable wakeup by the PHY */ 6350 retval = e1000_init_phy_wakeup(adapter, wufc); 6351 if (retval) 6352 return retval; 6353 } else { 6354 /* enable wakeup by the MAC */ 6355 ew32(WUFC, wufc); 6356 ew32(WUC, E1000_WUC_PME_EN); 6357 } 6358 } else { 6359 ew32(WUC, 0); 6360 ew32(WUFC, 0); 6361 6362 e1000_power_down_phy(adapter); 6363 } 6364 6365 if (adapter->hw.phy.type == e1000_phy_igp_3) { 6366 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw); 6367 } else if (hw->mac.type >= e1000_pch_lpt) { 6368 if (!(wufc & (E1000_WUFC_EX | E1000_WUFC_MC | E1000_WUFC_BC))) 6369 /* ULP does not support wake from unicast, multicast 6370 * or broadcast. 6371 */ 6372 retval = e1000_enable_ulp_lpt_lp(hw, !runtime); 6373 6374 if (retval) 6375 return retval; 6376 } 6377 6378 /* Ensure that the appropriate bits are set in LPI_CTRL 6379 * for EEE in Sx 6380 */ 6381 if ((hw->phy.type >= e1000_phy_i217) && 6382 adapter->eee_advert && hw->dev_spec.ich8lan.eee_lp_ability) { 6383 u16 lpi_ctrl = 0; 6384 6385 retval = hw->phy.ops.acquire(hw); 6386 if (!retval) { 6387 retval = e1e_rphy_locked(hw, I82579_LPI_CTRL, 6388 &lpi_ctrl); 6389 if (!retval) { 6390 if (adapter->eee_advert & 6391 hw->dev_spec.ich8lan.eee_lp_ability & 6392 I82579_EEE_100_SUPPORTED) 6393 lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE; 6394 if (adapter->eee_advert & 6395 hw->dev_spec.ich8lan.eee_lp_ability & 6396 I82579_EEE_1000_SUPPORTED) 6397 lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE; 6398 6399 retval = e1e_wphy_locked(hw, I82579_LPI_CTRL, 6400 lpi_ctrl); 6401 } 6402 } 6403 hw->phy.ops.release(hw); 6404 } 6405 6406 /* Release control of h/w to f/w. If f/w is AMT enabled, this 6407 * would have already happened in close and is redundant. 6408 */ 6409 e1000e_release_hw_control(adapter); 6410 6411 pci_clear_master(pdev); 6412 6413 /* The pci-e switch on some quad port adapters will report a 6414 * correctable error when the MAC transitions from D0 to D3. To 6415 * prevent this we need to mask off the correctable errors on the 6416 * downstream port of the pci-e switch. 6417 * 6418 * We don't have the associated upstream bridge while assigning 6419 * the PCI device into guest. For example, the KVM on power is 6420 * one of the cases. 6421 */ 6422 if (adapter->flags & FLAG_IS_QUAD_PORT) { 6423 struct pci_dev *us_dev = pdev->bus->self; 6424 u16 devctl; 6425 6426 if (!us_dev) 6427 return 0; 6428 6429 pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl); 6430 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, 6431 (devctl & ~PCI_EXP_DEVCTL_CERE)); 6432 6433 pci_save_state(pdev); 6434 pci_prepare_to_sleep(pdev); 6435 6436 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl); 6437 } 6438 6439 return 0; 6440 } 6441 6442 /** 6443 * __e1000e_disable_aspm - Disable ASPM states 6444 * @pdev: pointer to PCI device struct 6445 * @state: bit-mask of ASPM states to disable 6446 * @locked: indication if this context holds pci_bus_sem locked. 6447 * 6448 * Some devices *must* have certain ASPM states disabled per hardware errata. 6449 **/ 6450 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state, int locked) 6451 { 6452 struct pci_dev *parent = pdev->bus->self; 6453 u16 aspm_dis_mask = 0; 6454 u16 pdev_aspmc, parent_aspmc; 6455 6456 switch (state) { 6457 case PCIE_LINK_STATE_L0S: 6458 case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1: 6459 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S; 6460 /* fall-through - can't have L1 without L0s */ 6461 case PCIE_LINK_STATE_L1: 6462 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1; 6463 break; 6464 default: 6465 return; 6466 } 6467 6468 pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc); 6469 pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC; 6470 6471 if (parent) { 6472 pcie_capability_read_word(parent, PCI_EXP_LNKCTL, 6473 &parent_aspmc); 6474 parent_aspmc &= PCI_EXP_LNKCTL_ASPMC; 6475 } 6476 6477 /* Nothing to do if the ASPM states to be disabled already are */ 6478 if (!(pdev_aspmc & aspm_dis_mask) && 6479 (!parent || !(parent_aspmc & aspm_dis_mask))) 6480 return; 6481 6482 dev_info(&pdev->dev, "Disabling ASPM %s %s\n", 6483 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ? 6484 "L0s" : "", 6485 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ? 6486 "L1" : ""); 6487 6488 #ifdef CONFIG_PCIEASPM 6489 if (locked) 6490 pci_disable_link_state_locked(pdev, state); 6491 else 6492 pci_disable_link_state(pdev, state); 6493 6494 /* Double-check ASPM control. If not disabled by the above, the 6495 * BIOS is preventing that from happening (or CONFIG_PCIEASPM is 6496 * not enabled); override by writing PCI config space directly. 6497 */ 6498 pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc); 6499 pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC; 6500 6501 if (!(aspm_dis_mask & pdev_aspmc)) 6502 return; 6503 #endif 6504 6505 /* Both device and parent should have the same ASPM setting. 6506 * Disable ASPM in downstream component first and then upstream. 6507 */ 6508 pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask); 6509 6510 if (parent) 6511 pcie_capability_clear_word(parent, PCI_EXP_LNKCTL, 6512 aspm_dis_mask); 6513 } 6514 6515 /** 6516 * e1000e_disable_aspm - Disable ASPM states. 6517 * @pdev: pointer to PCI device struct 6518 * @state: bit-mask of ASPM states to disable 6519 * 6520 * This function acquires the pci_bus_sem! 6521 * Some devices *must* have certain ASPM states disabled per hardware errata. 6522 **/ 6523 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state) 6524 { 6525 __e1000e_disable_aspm(pdev, state, 0); 6526 } 6527 6528 /** 6529 * e1000e_disable_aspm_locked Disable ASPM states. 6530 * @pdev: pointer to PCI device struct 6531 * @state: bit-mask of ASPM states to disable 6532 * 6533 * This function must be called with pci_bus_sem acquired! 6534 * Some devices *must* have certain ASPM states disabled per hardware errata. 6535 **/ 6536 static void e1000e_disable_aspm_locked(struct pci_dev *pdev, u16 state) 6537 { 6538 __e1000e_disable_aspm(pdev, state, 1); 6539 } 6540 6541 #ifdef CONFIG_PM 6542 static int __e1000_resume(struct pci_dev *pdev) 6543 { 6544 struct net_device *netdev = pci_get_drvdata(pdev); 6545 struct e1000_adapter *adapter = netdev_priv(netdev); 6546 struct e1000_hw *hw = &adapter->hw; 6547 u16 aspm_disable_flag = 0; 6548 6549 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S) 6550 aspm_disable_flag = PCIE_LINK_STATE_L0S; 6551 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1) 6552 aspm_disable_flag |= PCIE_LINK_STATE_L1; 6553 if (aspm_disable_flag) 6554 e1000e_disable_aspm(pdev, aspm_disable_flag); 6555 6556 pci_set_master(pdev); 6557 6558 if (hw->mac.type >= e1000_pch2lan) 6559 e1000_resume_workarounds_pchlan(&adapter->hw); 6560 6561 e1000e_power_up_phy(adapter); 6562 6563 /* report the system wakeup cause from S3/S4 */ 6564 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) { 6565 u16 phy_data; 6566 6567 e1e_rphy(&adapter->hw, BM_WUS, &phy_data); 6568 if (phy_data) { 6569 e_info("PHY Wakeup cause - %s\n", 6570 phy_data & E1000_WUS_EX ? "Unicast Packet" : 6571 phy_data & E1000_WUS_MC ? "Multicast Packet" : 6572 phy_data & E1000_WUS_BC ? "Broadcast Packet" : 6573 phy_data & E1000_WUS_MAG ? "Magic Packet" : 6574 phy_data & E1000_WUS_LNKC ? 6575 "Link Status Change" : "other"); 6576 } 6577 e1e_wphy(&adapter->hw, BM_WUS, ~0); 6578 } else { 6579 u32 wus = er32(WUS); 6580 6581 if (wus) { 6582 e_info("MAC Wakeup cause - %s\n", 6583 wus & E1000_WUS_EX ? "Unicast Packet" : 6584 wus & E1000_WUS_MC ? "Multicast Packet" : 6585 wus & E1000_WUS_BC ? "Broadcast Packet" : 6586 wus & E1000_WUS_MAG ? "Magic Packet" : 6587 wus & E1000_WUS_LNKC ? "Link Status Change" : 6588 "other"); 6589 } 6590 ew32(WUS, ~0); 6591 } 6592 6593 e1000e_reset(adapter); 6594 6595 e1000_init_manageability_pt(adapter); 6596 6597 /* If the controller has AMT, do not set DRV_LOAD until the interface 6598 * is up. For all other cases, let the f/w know that the h/w is now 6599 * under the control of the driver. 6600 */ 6601 if (!(adapter->flags & FLAG_HAS_AMT)) 6602 e1000e_get_hw_control(adapter); 6603 6604 return 0; 6605 } 6606 6607 #ifdef CONFIG_PM_SLEEP 6608 static int e1000e_pm_thaw(struct device *dev) 6609 { 6610 struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev)); 6611 struct e1000_adapter *adapter = netdev_priv(netdev); 6612 6613 e1000e_set_interrupt_capability(adapter); 6614 if (netif_running(netdev)) { 6615 u32 err = e1000_request_irq(adapter); 6616 6617 if (err) 6618 return err; 6619 6620 e1000e_up(adapter); 6621 } 6622 6623 netif_device_attach(netdev); 6624 6625 return 0; 6626 } 6627 6628 static int e1000e_pm_suspend(struct device *dev) 6629 { 6630 struct pci_dev *pdev = to_pci_dev(dev); 6631 int rc; 6632 6633 e1000e_flush_lpic(pdev); 6634 6635 e1000e_pm_freeze(dev); 6636 6637 rc = __e1000_shutdown(pdev, false); 6638 if (rc) 6639 e1000e_pm_thaw(dev); 6640 6641 return rc; 6642 } 6643 6644 static int e1000e_pm_resume(struct device *dev) 6645 { 6646 struct pci_dev *pdev = to_pci_dev(dev); 6647 int rc; 6648 6649 rc = __e1000_resume(pdev); 6650 if (rc) 6651 return rc; 6652 6653 return e1000e_pm_thaw(dev); 6654 } 6655 #endif /* CONFIG_PM_SLEEP */ 6656 6657 static int e1000e_pm_runtime_idle(struct device *dev) 6658 { 6659 struct pci_dev *pdev = to_pci_dev(dev); 6660 struct net_device *netdev = pci_get_drvdata(pdev); 6661 struct e1000_adapter *adapter = netdev_priv(netdev); 6662 u16 eee_lp; 6663 6664 eee_lp = adapter->hw.dev_spec.ich8lan.eee_lp_ability; 6665 6666 if (!e1000e_has_link(adapter)) { 6667 adapter->hw.dev_spec.ich8lan.eee_lp_ability = eee_lp; 6668 pm_schedule_suspend(dev, 5 * MSEC_PER_SEC); 6669 } 6670 6671 return -EBUSY; 6672 } 6673 6674 static int e1000e_pm_runtime_resume(struct device *dev) 6675 { 6676 struct pci_dev *pdev = to_pci_dev(dev); 6677 struct net_device *netdev = pci_get_drvdata(pdev); 6678 struct e1000_adapter *adapter = netdev_priv(netdev); 6679 int rc; 6680 6681 rc = __e1000_resume(pdev); 6682 if (rc) 6683 return rc; 6684 6685 if (netdev->flags & IFF_UP) 6686 e1000e_up(adapter); 6687 6688 return rc; 6689 } 6690 6691 static int e1000e_pm_runtime_suspend(struct device *dev) 6692 { 6693 struct pci_dev *pdev = to_pci_dev(dev); 6694 struct net_device *netdev = pci_get_drvdata(pdev); 6695 struct e1000_adapter *adapter = netdev_priv(netdev); 6696 6697 if (netdev->flags & IFF_UP) { 6698 int count = E1000_CHECK_RESET_COUNT; 6699 6700 while (test_bit(__E1000_RESETTING, &adapter->state) && count--) 6701 usleep_range(10000, 20000); 6702 6703 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state)); 6704 6705 /* Down the device without resetting the hardware */ 6706 e1000e_down(adapter, false); 6707 } 6708 6709 if (__e1000_shutdown(pdev, true)) { 6710 e1000e_pm_runtime_resume(dev); 6711 return -EBUSY; 6712 } 6713 6714 return 0; 6715 } 6716 #endif /* CONFIG_PM */ 6717 6718 static void e1000_shutdown(struct pci_dev *pdev) 6719 { 6720 e1000e_flush_lpic(pdev); 6721 6722 e1000e_pm_freeze(&pdev->dev); 6723 6724 __e1000_shutdown(pdev, false); 6725 } 6726 6727 #ifdef CONFIG_NET_POLL_CONTROLLER 6728 6729 static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data) 6730 { 6731 struct net_device *netdev = data; 6732 struct e1000_adapter *adapter = netdev_priv(netdev); 6733 6734 if (adapter->msix_entries) { 6735 int vector, msix_irq; 6736 6737 vector = 0; 6738 msix_irq = adapter->msix_entries[vector].vector; 6739 if (disable_hardirq(msix_irq)) 6740 e1000_intr_msix_rx(msix_irq, netdev); 6741 enable_irq(msix_irq); 6742 6743 vector++; 6744 msix_irq = adapter->msix_entries[vector].vector; 6745 if (disable_hardirq(msix_irq)) 6746 e1000_intr_msix_tx(msix_irq, netdev); 6747 enable_irq(msix_irq); 6748 6749 vector++; 6750 msix_irq = adapter->msix_entries[vector].vector; 6751 if (disable_hardirq(msix_irq)) 6752 e1000_msix_other(msix_irq, netdev); 6753 enable_irq(msix_irq); 6754 } 6755 6756 return IRQ_HANDLED; 6757 } 6758 6759 /** 6760 * e1000_netpoll 6761 * @netdev: network interface device structure 6762 * 6763 * Polling 'interrupt' - used by things like netconsole to send skbs 6764 * without having to re-enable interrupts. It's not called while 6765 * the interrupt routine is executing. 6766 */ 6767 static void e1000_netpoll(struct net_device *netdev) 6768 { 6769 struct e1000_adapter *adapter = netdev_priv(netdev); 6770 6771 switch (adapter->int_mode) { 6772 case E1000E_INT_MODE_MSIX: 6773 e1000_intr_msix(adapter->pdev->irq, netdev); 6774 break; 6775 case E1000E_INT_MODE_MSI: 6776 if (disable_hardirq(adapter->pdev->irq)) 6777 e1000_intr_msi(adapter->pdev->irq, netdev); 6778 enable_irq(adapter->pdev->irq); 6779 break; 6780 default: /* E1000E_INT_MODE_LEGACY */ 6781 if (disable_hardirq(adapter->pdev->irq)) 6782 e1000_intr(adapter->pdev->irq, netdev); 6783 enable_irq(adapter->pdev->irq); 6784 break; 6785 } 6786 } 6787 #endif 6788 6789 /** 6790 * e1000_io_error_detected - called when PCI error is detected 6791 * @pdev: Pointer to PCI device 6792 * @state: The current pci connection state 6793 * 6794 * This function is called after a PCI bus error affecting 6795 * this device has been detected. 6796 */ 6797 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, 6798 pci_channel_state_t state) 6799 { 6800 struct net_device *netdev = pci_get_drvdata(pdev); 6801 struct e1000_adapter *adapter = netdev_priv(netdev); 6802 6803 netif_device_detach(netdev); 6804 6805 if (state == pci_channel_io_perm_failure) 6806 return PCI_ERS_RESULT_DISCONNECT; 6807 6808 if (netif_running(netdev)) 6809 e1000e_down(adapter, true); 6810 pci_disable_device(pdev); 6811 6812 /* Request a slot slot reset. */ 6813 return PCI_ERS_RESULT_NEED_RESET; 6814 } 6815 6816 /** 6817 * e1000_io_slot_reset - called after the pci bus has been reset. 6818 * @pdev: Pointer to PCI device 6819 * 6820 * Restart the card from scratch, as if from a cold-boot. Implementation 6821 * resembles the first-half of the e1000e_pm_resume routine. 6822 */ 6823 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev) 6824 { 6825 struct net_device *netdev = pci_get_drvdata(pdev); 6826 struct e1000_adapter *adapter = netdev_priv(netdev); 6827 struct e1000_hw *hw = &adapter->hw; 6828 u16 aspm_disable_flag = 0; 6829 int err; 6830 pci_ers_result_t result; 6831 6832 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S) 6833 aspm_disable_flag = PCIE_LINK_STATE_L0S; 6834 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1) 6835 aspm_disable_flag |= PCIE_LINK_STATE_L1; 6836 if (aspm_disable_flag) 6837 e1000e_disable_aspm_locked(pdev, aspm_disable_flag); 6838 6839 err = pci_enable_device_mem(pdev); 6840 if (err) { 6841 dev_err(&pdev->dev, 6842 "Cannot re-enable PCI device after reset.\n"); 6843 result = PCI_ERS_RESULT_DISCONNECT; 6844 } else { 6845 pdev->state_saved = true; 6846 pci_restore_state(pdev); 6847 pci_set_master(pdev); 6848 6849 pci_enable_wake(pdev, PCI_D3hot, 0); 6850 pci_enable_wake(pdev, PCI_D3cold, 0); 6851 6852 e1000e_reset(adapter); 6853 ew32(WUS, ~0); 6854 result = PCI_ERS_RESULT_RECOVERED; 6855 } 6856 6857 return result; 6858 } 6859 6860 /** 6861 * e1000_io_resume - called when traffic can start flowing again. 6862 * @pdev: Pointer to PCI device 6863 * 6864 * This callback is called when the error recovery driver tells us that 6865 * its OK to resume normal operation. Implementation resembles the 6866 * second-half of the e1000e_pm_resume routine. 6867 */ 6868 static void e1000_io_resume(struct pci_dev *pdev) 6869 { 6870 struct net_device *netdev = pci_get_drvdata(pdev); 6871 struct e1000_adapter *adapter = netdev_priv(netdev); 6872 6873 e1000_init_manageability_pt(adapter); 6874 6875 if (netif_running(netdev)) 6876 e1000e_up(adapter); 6877 6878 netif_device_attach(netdev); 6879 6880 /* If the controller has AMT, do not set DRV_LOAD until the interface 6881 * is up. For all other cases, let the f/w know that the h/w is now 6882 * under the control of the driver. 6883 */ 6884 if (!(adapter->flags & FLAG_HAS_AMT)) 6885 e1000e_get_hw_control(adapter); 6886 } 6887 6888 static void e1000_print_device_info(struct e1000_adapter *adapter) 6889 { 6890 struct e1000_hw *hw = &adapter->hw; 6891 struct net_device *netdev = adapter->netdev; 6892 u32 ret_val; 6893 u8 pba_str[E1000_PBANUM_LENGTH]; 6894 6895 /* print bus type/speed/width info */ 6896 e_info("(PCI Express:2.5GT/s:%s) %pM\n", 6897 /* bus width */ 6898 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" : 6899 "Width x1"), 6900 /* MAC address */ 6901 netdev->dev_addr); 6902 e_info("Intel(R) PRO/%s Network Connection\n", 6903 (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000"); 6904 ret_val = e1000_read_pba_string_generic(hw, pba_str, 6905 E1000_PBANUM_LENGTH); 6906 if (ret_val) 6907 strlcpy((char *)pba_str, "Unknown", sizeof(pba_str)); 6908 e_info("MAC: %d, PHY: %d, PBA No: %s\n", 6909 hw->mac.type, hw->phy.type, pba_str); 6910 } 6911 6912 static void e1000_eeprom_checks(struct e1000_adapter *adapter) 6913 { 6914 struct e1000_hw *hw = &adapter->hw; 6915 int ret_val; 6916 u16 buf = 0; 6917 6918 if (hw->mac.type != e1000_82573) 6919 return; 6920 6921 ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf); 6922 le16_to_cpus(&buf); 6923 if (!ret_val && (!(buf & BIT(0)))) { 6924 /* Deep Smart Power Down (DSPD) */ 6925 dev_warn(&adapter->pdev->dev, 6926 "Warning: detected DSPD enabled in EEPROM\n"); 6927 } 6928 } 6929 6930 static netdev_features_t e1000_fix_features(struct net_device *netdev, 6931 netdev_features_t features) 6932 { 6933 struct e1000_adapter *adapter = netdev_priv(netdev); 6934 struct e1000_hw *hw = &adapter->hw; 6935 6936 /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */ 6937 if ((hw->mac.type >= e1000_pch2lan) && (netdev->mtu > ETH_DATA_LEN)) 6938 features &= ~NETIF_F_RXFCS; 6939 6940 /* Since there is no support for separate Rx/Tx vlan accel 6941 * enable/disable make sure Tx flag is always in same state as Rx. 6942 */ 6943 if (features & NETIF_F_HW_VLAN_CTAG_RX) 6944 features |= NETIF_F_HW_VLAN_CTAG_TX; 6945 else 6946 features &= ~NETIF_F_HW_VLAN_CTAG_TX; 6947 6948 return features; 6949 } 6950 6951 static int e1000_set_features(struct net_device *netdev, 6952 netdev_features_t features) 6953 { 6954 struct e1000_adapter *adapter = netdev_priv(netdev); 6955 netdev_features_t changed = features ^ netdev->features; 6956 6957 if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) 6958 adapter->flags |= FLAG_TSO_FORCE; 6959 6960 if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX | 6961 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS | 6962 NETIF_F_RXALL))) 6963 return 0; 6964 6965 if (changed & NETIF_F_RXFCS) { 6966 if (features & NETIF_F_RXFCS) { 6967 adapter->flags2 &= ~FLAG2_CRC_STRIPPING; 6968 } else { 6969 /* We need to take it back to defaults, which might mean 6970 * stripping is still disabled at the adapter level. 6971 */ 6972 if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING) 6973 adapter->flags2 |= FLAG2_CRC_STRIPPING; 6974 else 6975 adapter->flags2 &= ~FLAG2_CRC_STRIPPING; 6976 } 6977 } 6978 6979 netdev->features = features; 6980 6981 if (netif_running(netdev)) 6982 e1000e_reinit_locked(adapter); 6983 else 6984 e1000e_reset(adapter); 6985 6986 return 0; 6987 } 6988 6989 static const struct net_device_ops e1000e_netdev_ops = { 6990 .ndo_open = e1000e_open, 6991 .ndo_stop = e1000e_close, 6992 .ndo_start_xmit = e1000_xmit_frame, 6993 .ndo_get_stats64 = e1000e_get_stats64, 6994 .ndo_set_rx_mode = e1000e_set_rx_mode, 6995 .ndo_set_mac_address = e1000_set_mac, 6996 .ndo_change_mtu = e1000_change_mtu, 6997 .ndo_do_ioctl = e1000_ioctl, 6998 .ndo_tx_timeout = e1000_tx_timeout, 6999 .ndo_validate_addr = eth_validate_addr, 7000 7001 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid, 7002 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid, 7003 #ifdef CONFIG_NET_POLL_CONTROLLER 7004 .ndo_poll_controller = e1000_netpoll, 7005 #endif 7006 .ndo_set_features = e1000_set_features, 7007 .ndo_fix_features = e1000_fix_features, 7008 .ndo_features_check = passthru_features_check, 7009 }; 7010 7011 /** 7012 * e1000_probe - Device Initialization Routine 7013 * @pdev: PCI device information struct 7014 * @ent: entry in e1000_pci_tbl 7015 * 7016 * Returns 0 on success, negative on failure 7017 * 7018 * e1000_probe initializes an adapter identified by a pci_dev structure. 7019 * The OS initialization, configuring of the adapter private structure, 7020 * and a hardware reset occur. 7021 **/ 7022 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent) 7023 { 7024 struct net_device *netdev; 7025 struct e1000_adapter *adapter; 7026 struct e1000_hw *hw; 7027 const struct e1000_info *ei = e1000_info_tbl[ent->driver_data]; 7028 resource_size_t mmio_start, mmio_len; 7029 resource_size_t flash_start, flash_len; 7030 static int cards_found; 7031 u16 aspm_disable_flag = 0; 7032 int bars, i, err, pci_using_dac; 7033 u16 eeprom_data = 0; 7034 u16 eeprom_apme_mask = E1000_EEPROM_APME; 7035 s32 ret_val = 0; 7036 7037 if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S) 7038 aspm_disable_flag = PCIE_LINK_STATE_L0S; 7039 if (ei->flags2 & FLAG2_DISABLE_ASPM_L1) 7040 aspm_disable_flag |= PCIE_LINK_STATE_L1; 7041 if (aspm_disable_flag) 7042 e1000e_disable_aspm(pdev, aspm_disable_flag); 7043 7044 err = pci_enable_device_mem(pdev); 7045 if (err) 7046 return err; 7047 7048 pci_using_dac = 0; 7049 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 7050 if (!err) { 7051 pci_using_dac = 1; 7052 } else { 7053 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); 7054 if (err) { 7055 dev_err(&pdev->dev, 7056 "No usable DMA configuration, aborting\n"); 7057 goto err_dma; 7058 } 7059 } 7060 7061 bars = pci_select_bars(pdev, IORESOURCE_MEM); 7062 err = pci_request_selected_regions_exclusive(pdev, bars, 7063 e1000e_driver_name); 7064 if (err) 7065 goto err_pci_reg; 7066 7067 /* AER (Advanced Error Reporting) hooks */ 7068 pci_enable_pcie_error_reporting(pdev); 7069 7070 pci_set_master(pdev); 7071 /* PCI config space info */ 7072 err = pci_save_state(pdev); 7073 if (err) 7074 goto err_alloc_etherdev; 7075 7076 err = -ENOMEM; 7077 netdev = alloc_etherdev(sizeof(struct e1000_adapter)); 7078 if (!netdev) 7079 goto err_alloc_etherdev; 7080 7081 SET_NETDEV_DEV(netdev, &pdev->dev); 7082 7083 netdev->irq = pdev->irq; 7084 7085 pci_set_drvdata(pdev, netdev); 7086 adapter = netdev_priv(netdev); 7087 hw = &adapter->hw; 7088 adapter->netdev = netdev; 7089 adapter->pdev = pdev; 7090 adapter->ei = ei; 7091 adapter->pba = ei->pba; 7092 adapter->flags = ei->flags; 7093 adapter->flags2 = ei->flags2; 7094 adapter->hw.adapter = adapter; 7095 adapter->hw.mac.type = ei->mac; 7096 adapter->max_hw_frame_size = ei->max_hw_frame_size; 7097 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE); 7098 7099 mmio_start = pci_resource_start(pdev, 0); 7100 mmio_len = pci_resource_len(pdev, 0); 7101 7102 err = -EIO; 7103 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len); 7104 if (!adapter->hw.hw_addr) 7105 goto err_ioremap; 7106 7107 if ((adapter->flags & FLAG_HAS_FLASH) && 7108 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM) && 7109 (hw->mac.type < e1000_pch_spt)) { 7110 flash_start = pci_resource_start(pdev, 1); 7111 flash_len = pci_resource_len(pdev, 1); 7112 adapter->hw.flash_address = ioremap(flash_start, flash_len); 7113 if (!adapter->hw.flash_address) 7114 goto err_flashmap; 7115 } 7116 7117 /* Set default EEE advertisement */ 7118 if (adapter->flags2 & FLAG2_HAS_EEE) 7119 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T; 7120 7121 /* construct the net_device struct */ 7122 netdev->netdev_ops = &e1000e_netdev_ops; 7123 e1000e_set_ethtool_ops(netdev); 7124 netdev->watchdog_timeo = 5 * HZ; 7125 netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64); 7126 strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name)); 7127 7128 netdev->mem_start = mmio_start; 7129 netdev->mem_end = mmio_start + mmio_len; 7130 7131 adapter->bd_number = cards_found++; 7132 7133 e1000e_check_options(adapter); 7134 7135 /* setup adapter struct */ 7136 err = e1000_sw_init(adapter); 7137 if (err) 7138 goto err_sw_init; 7139 7140 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops)); 7141 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops)); 7142 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops)); 7143 7144 err = ei->get_variants(adapter); 7145 if (err) 7146 goto err_hw_init; 7147 7148 if ((adapter->flags & FLAG_IS_ICH) && 7149 (adapter->flags & FLAG_READ_ONLY_NVM) && 7150 (hw->mac.type < e1000_pch_spt)) 7151 e1000e_write_protect_nvm_ich8lan(&adapter->hw); 7152 7153 hw->mac.ops.get_bus_info(&adapter->hw); 7154 7155 adapter->hw.phy.autoneg_wait_to_complete = 0; 7156 7157 /* Copper options */ 7158 if (adapter->hw.phy.media_type == e1000_media_type_copper) { 7159 adapter->hw.phy.mdix = AUTO_ALL_MODES; 7160 adapter->hw.phy.disable_polarity_correction = 0; 7161 adapter->hw.phy.ms_type = e1000_ms_hw_default; 7162 } 7163 7164 if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw)) 7165 dev_info(&pdev->dev, 7166 "PHY reset is blocked due to SOL/IDER session.\n"); 7167 7168 /* Set initial default active device features */ 7169 netdev->features = (NETIF_F_SG | 7170 NETIF_F_HW_VLAN_CTAG_RX | 7171 NETIF_F_HW_VLAN_CTAG_TX | 7172 NETIF_F_TSO | 7173 NETIF_F_TSO6 | 7174 NETIF_F_RXHASH | 7175 NETIF_F_RXCSUM | 7176 NETIF_F_HW_CSUM); 7177 7178 /* Set user-changeable features (subset of all device features) */ 7179 netdev->hw_features = netdev->features; 7180 netdev->hw_features |= NETIF_F_RXFCS; 7181 netdev->priv_flags |= IFF_SUPP_NOFCS; 7182 netdev->hw_features |= NETIF_F_RXALL; 7183 7184 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) 7185 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER; 7186 7187 netdev->vlan_features |= (NETIF_F_SG | 7188 NETIF_F_TSO | 7189 NETIF_F_TSO6 | 7190 NETIF_F_HW_CSUM); 7191 7192 netdev->priv_flags |= IFF_UNICAST_FLT; 7193 7194 if (pci_using_dac) { 7195 netdev->features |= NETIF_F_HIGHDMA; 7196 netdev->vlan_features |= NETIF_F_HIGHDMA; 7197 } 7198 7199 /* MTU range: 68 - max_hw_frame_size */ 7200 netdev->min_mtu = ETH_MIN_MTU; 7201 netdev->max_mtu = adapter->max_hw_frame_size - 7202 (VLAN_ETH_HLEN + ETH_FCS_LEN); 7203 7204 if (e1000e_enable_mng_pass_thru(&adapter->hw)) 7205 adapter->flags |= FLAG_MNG_PT_ENABLED; 7206 7207 /* before reading the NVM, reset the controller to 7208 * put the device in a known good starting state 7209 */ 7210 adapter->hw.mac.ops.reset_hw(&adapter->hw); 7211 7212 /* systems with ASPM and others may see the checksum fail on the first 7213 * attempt. Let's give it a few tries 7214 */ 7215 for (i = 0;; i++) { 7216 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0) 7217 break; 7218 if (i == 2) { 7219 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n"); 7220 err = -EIO; 7221 goto err_eeprom; 7222 } 7223 } 7224 7225 e1000_eeprom_checks(adapter); 7226 7227 /* copy the MAC address */ 7228 if (e1000e_read_mac_addr(&adapter->hw)) 7229 dev_err(&pdev->dev, 7230 "NVM Read Error while reading MAC address\n"); 7231 7232 memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len); 7233 7234 if (!is_valid_ether_addr(netdev->dev_addr)) { 7235 dev_err(&pdev->dev, "Invalid MAC Address: %pM\n", 7236 netdev->dev_addr); 7237 err = -EIO; 7238 goto err_eeprom; 7239 } 7240 7241 timer_setup(&adapter->watchdog_timer, e1000_watchdog, 0); 7242 timer_setup(&adapter->phy_info_timer, e1000_update_phy_info, 0); 7243 7244 INIT_WORK(&adapter->reset_task, e1000_reset_task); 7245 INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task); 7246 INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround); 7247 INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task); 7248 INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang); 7249 7250 /* Initialize link parameters. User can change them with ethtool */ 7251 adapter->hw.mac.autoneg = 1; 7252 adapter->fc_autoneg = true; 7253 adapter->hw.fc.requested_mode = e1000_fc_default; 7254 adapter->hw.fc.current_mode = e1000_fc_default; 7255 adapter->hw.phy.autoneg_advertised = 0x2f; 7256 7257 /* Initial Wake on LAN setting - If APM wake is enabled in 7258 * the EEPROM, enable the ACPI Magic Packet filter 7259 */ 7260 if (adapter->flags & FLAG_APME_IN_WUC) { 7261 /* APME bit in EEPROM is mapped to WUC.APME */ 7262 eeprom_data = er32(WUC); 7263 eeprom_apme_mask = E1000_WUC_APME; 7264 if ((hw->mac.type > e1000_ich10lan) && 7265 (eeprom_data & E1000_WUC_PHY_WAKE)) 7266 adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP; 7267 } else if (adapter->flags & FLAG_APME_IN_CTRL3) { 7268 if (adapter->flags & FLAG_APME_CHECK_PORT_B && 7269 (adapter->hw.bus.func == 1)) 7270 ret_val = e1000_read_nvm(&adapter->hw, 7271 NVM_INIT_CONTROL3_PORT_B, 7272 1, &eeprom_data); 7273 else 7274 ret_val = e1000_read_nvm(&adapter->hw, 7275 NVM_INIT_CONTROL3_PORT_A, 7276 1, &eeprom_data); 7277 } 7278 7279 /* fetch WoL from EEPROM */ 7280 if (ret_val) 7281 e_dbg("NVM read error getting WoL initial values: %d\n", ret_val); 7282 else if (eeprom_data & eeprom_apme_mask) 7283 adapter->eeprom_wol |= E1000_WUFC_MAG; 7284 7285 /* now that we have the eeprom settings, apply the special cases 7286 * where the eeprom may be wrong or the board simply won't support 7287 * wake on lan on a particular port 7288 */ 7289 if (!(adapter->flags & FLAG_HAS_WOL)) 7290 adapter->eeprom_wol = 0; 7291 7292 /* initialize the wol settings based on the eeprom settings */ 7293 adapter->wol = adapter->eeprom_wol; 7294 7295 /* make sure adapter isn't asleep if manageability is enabled */ 7296 if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) || 7297 (hw->mac.ops.check_mng_mode(hw))) 7298 device_wakeup_enable(&pdev->dev); 7299 7300 /* save off EEPROM version number */ 7301 ret_val = e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers); 7302 7303 if (ret_val) { 7304 e_dbg("NVM read error getting EEPROM version: %d\n", ret_val); 7305 adapter->eeprom_vers = 0; 7306 } 7307 7308 /* init PTP hardware clock */ 7309 e1000e_ptp_init(adapter); 7310 7311 /* reset the hardware with the new settings */ 7312 e1000e_reset(adapter); 7313 7314 /* If the controller has AMT, do not set DRV_LOAD until the interface 7315 * is up. For all other cases, let the f/w know that the h/w is now 7316 * under the control of the driver. 7317 */ 7318 if (!(adapter->flags & FLAG_HAS_AMT)) 7319 e1000e_get_hw_control(adapter); 7320 7321 strlcpy(netdev->name, "eth%d", sizeof(netdev->name)); 7322 err = register_netdev(netdev); 7323 if (err) 7324 goto err_register; 7325 7326 /* carrier off reporting is important to ethtool even BEFORE open */ 7327 netif_carrier_off(netdev); 7328 7329 e1000_print_device_info(adapter); 7330 7331 if (pci_dev_run_wake(pdev)) 7332 pm_runtime_put_noidle(&pdev->dev); 7333 7334 return 0; 7335 7336 err_register: 7337 if (!(adapter->flags & FLAG_HAS_AMT)) 7338 e1000e_release_hw_control(adapter); 7339 err_eeprom: 7340 if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw)) 7341 e1000_phy_hw_reset(&adapter->hw); 7342 err_hw_init: 7343 kfree(adapter->tx_ring); 7344 kfree(adapter->rx_ring); 7345 err_sw_init: 7346 if ((adapter->hw.flash_address) && (hw->mac.type < e1000_pch_spt)) 7347 iounmap(adapter->hw.flash_address); 7348 e1000e_reset_interrupt_capability(adapter); 7349 err_flashmap: 7350 iounmap(adapter->hw.hw_addr); 7351 err_ioremap: 7352 free_netdev(netdev); 7353 err_alloc_etherdev: 7354 pci_release_mem_regions(pdev); 7355 err_pci_reg: 7356 err_dma: 7357 pci_disable_device(pdev); 7358 return err; 7359 } 7360 7361 /** 7362 * e1000_remove - Device Removal Routine 7363 * @pdev: PCI device information struct 7364 * 7365 * e1000_remove is called by the PCI subsystem to alert the driver 7366 * that it should release a PCI device. The could be caused by a 7367 * Hot-Plug event, or because the driver is going to be removed from 7368 * memory. 7369 **/ 7370 static void e1000_remove(struct pci_dev *pdev) 7371 { 7372 struct net_device *netdev = pci_get_drvdata(pdev); 7373 struct e1000_adapter *adapter = netdev_priv(netdev); 7374 bool down = test_bit(__E1000_DOWN, &adapter->state); 7375 7376 e1000e_ptp_remove(adapter); 7377 7378 /* The timers may be rescheduled, so explicitly disable them 7379 * from being rescheduled. 7380 */ 7381 if (!down) 7382 set_bit(__E1000_DOWN, &adapter->state); 7383 del_timer_sync(&adapter->watchdog_timer); 7384 del_timer_sync(&adapter->phy_info_timer); 7385 7386 cancel_work_sync(&adapter->reset_task); 7387 cancel_work_sync(&adapter->watchdog_task); 7388 cancel_work_sync(&adapter->downshift_task); 7389 cancel_work_sync(&adapter->update_phy_task); 7390 cancel_work_sync(&adapter->print_hang_task); 7391 7392 if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) { 7393 cancel_work_sync(&adapter->tx_hwtstamp_work); 7394 if (adapter->tx_hwtstamp_skb) { 7395 dev_consume_skb_any(adapter->tx_hwtstamp_skb); 7396 adapter->tx_hwtstamp_skb = NULL; 7397 } 7398 } 7399 7400 /* Don't lie to e1000_close() down the road. */ 7401 if (!down) 7402 clear_bit(__E1000_DOWN, &adapter->state); 7403 unregister_netdev(netdev); 7404 7405 if (pci_dev_run_wake(pdev)) 7406 pm_runtime_get_noresume(&pdev->dev); 7407 7408 /* Release control of h/w to f/w. If f/w is AMT enabled, this 7409 * would have already happened in close and is redundant. 7410 */ 7411 e1000e_release_hw_control(adapter); 7412 7413 e1000e_reset_interrupt_capability(adapter); 7414 kfree(adapter->tx_ring); 7415 kfree(adapter->rx_ring); 7416 7417 iounmap(adapter->hw.hw_addr); 7418 if ((adapter->hw.flash_address) && 7419 (adapter->hw.mac.type < e1000_pch_spt)) 7420 iounmap(adapter->hw.flash_address); 7421 pci_release_mem_regions(pdev); 7422 7423 free_netdev(netdev); 7424 7425 /* AER disable */ 7426 pci_disable_pcie_error_reporting(pdev); 7427 7428 pci_disable_device(pdev); 7429 } 7430 7431 /* PCI Error Recovery (ERS) */ 7432 static const struct pci_error_handlers e1000_err_handler = { 7433 .error_detected = e1000_io_error_detected, 7434 .slot_reset = e1000_io_slot_reset, 7435 .resume = e1000_io_resume, 7436 }; 7437 7438 static const struct pci_device_id e1000_pci_tbl[] = { 7439 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 }, 7440 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 }, 7441 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 }, 7442 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), 7443 board_82571 }, 7444 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 }, 7445 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 }, 7446 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 }, 7447 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 }, 7448 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 }, 7449 7450 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 }, 7451 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 }, 7452 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 }, 7453 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 }, 7454 7455 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 }, 7456 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 }, 7457 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 }, 7458 7459 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 }, 7460 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 }, 7461 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 }, 7462 7463 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT), 7464 board_80003es2lan }, 7465 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT), 7466 board_80003es2lan }, 7467 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT), 7468 board_80003es2lan }, 7469 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT), 7470 board_80003es2lan }, 7471 7472 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan }, 7473 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan }, 7474 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan }, 7475 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan }, 7476 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan }, 7477 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan }, 7478 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan }, 7479 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan }, 7480 7481 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan }, 7482 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan }, 7483 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan }, 7484 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan }, 7485 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan }, 7486 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan }, 7487 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan }, 7488 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan }, 7489 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan }, 7490 7491 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan }, 7492 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan }, 7493 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan }, 7494 7495 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan }, 7496 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan }, 7497 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan }, 7498 7499 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan }, 7500 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan }, 7501 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan }, 7502 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan }, 7503 7504 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan }, 7505 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan }, 7506 7507 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt }, 7508 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt }, 7509 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt }, 7510 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt }, 7511 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt }, 7512 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt }, 7513 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt }, 7514 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt }, 7515 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM), board_pch_spt }, 7516 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V), board_pch_spt }, 7517 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM2), board_pch_spt }, 7518 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V2), board_pch_spt }, 7519 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LBG_I219_LM3), board_pch_spt }, 7520 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM4), board_pch_spt }, 7521 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V4), board_pch_spt }, 7522 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM5), board_pch_spt }, 7523 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V5), board_pch_spt }, 7524 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM6), board_pch_cnp }, 7525 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V6), board_pch_cnp }, 7526 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM7), board_pch_cnp }, 7527 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V7), board_pch_cnp }, 7528 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM8), board_pch_cnp }, 7529 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V8), board_pch_cnp }, 7530 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM9), board_pch_cnp }, 7531 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V9), board_pch_cnp }, 7532 7533 { 0, 0, 0, 0, 0, 0, 0 } /* terminate list */ 7534 }; 7535 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl); 7536 7537 static const struct dev_pm_ops e1000_pm_ops = { 7538 #ifdef CONFIG_PM_SLEEP 7539 .suspend = e1000e_pm_suspend, 7540 .resume = e1000e_pm_resume, 7541 .freeze = e1000e_pm_freeze, 7542 .thaw = e1000e_pm_thaw, 7543 .poweroff = e1000e_pm_suspend, 7544 .restore = e1000e_pm_resume, 7545 #endif 7546 SET_RUNTIME_PM_OPS(e1000e_pm_runtime_suspend, e1000e_pm_runtime_resume, 7547 e1000e_pm_runtime_idle) 7548 }; 7549 7550 /* PCI Device API Driver */ 7551 static struct pci_driver e1000_driver = { 7552 .name = e1000e_driver_name, 7553 .id_table = e1000_pci_tbl, 7554 .probe = e1000_probe, 7555 .remove = e1000_remove, 7556 .driver = { 7557 .pm = &e1000_pm_ops, 7558 }, 7559 .shutdown = e1000_shutdown, 7560 .err_handler = &e1000_err_handler 7561 }; 7562 7563 /** 7564 * e1000_init_module - Driver Registration Routine 7565 * 7566 * e1000_init_module is the first routine called when the driver is 7567 * loaded. All it does is register with the PCI subsystem. 7568 **/ 7569 static int __init e1000_init_module(void) 7570 { 7571 pr_info("Intel(R) PRO/1000 Network Driver - %s\n", 7572 e1000e_driver_version); 7573 pr_info("Copyright(c) 1999 - 2015 Intel Corporation.\n"); 7574 7575 return pci_register_driver(&e1000_driver); 7576 } 7577 module_init(e1000_init_module); 7578 7579 /** 7580 * e1000_exit_module - Driver Exit Cleanup Routine 7581 * 7582 * e1000_exit_module is called just before the driver is removed 7583 * from memory. 7584 **/ 7585 static void __exit e1000_exit_module(void) 7586 { 7587 pci_unregister_driver(&e1000_driver); 7588 } 7589 module_exit(e1000_exit_module); 7590 7591 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>"); 7592 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver"); 7593 MODULE_LICENSE("GPL v2"); 7594 MODULE_VERSION(DRV_VERSION); 7595 7596 /* netdev.c */ 7597