1 /*******************************************************************************
2 
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2012 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 
27 *******************************************************************************/
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #include <linux/module.h>
32 #include <linux/types.h>
33 #include <linux/init.h>
34 #include <linux/pci.h>
35 #include <linux/vmalloc.h>
36 #include <linux/pagemap.h>
37 #include <linux/delay.h>
38 #include <linux/netdevice.h>
39 #include <linux/interrupt.h>
40 #include <linux/tcp.h>
41 #include <linux/ipv6.h>
42 #include <linux/slab.h>
43 #include <net/checksum.h>
44 #include <net/ip6_checksum.h>
45 #include <linux/mii.h>
46 #include <linux/ethtool.h>
47 #include <linux/if_vlan.h>
48 #include <linux/cpu.h>
49 #include <linux/smp.h>
50 #include <linux/pm_qos.h>
51 #include <linux/pm_runtime.h>
52 #include <linux/aer.h>
53 #include <linux/prefetch.h>
54 
55 #include "e1000.h"
56 
57 #define DRV_EXTRAVERSION "-k"
58 
59 #define DRV_VERSION "2.1.4" DRV_EXTRAVERSION
60 char e1000e_driver_name[] = "e1000e";
61 const char e1000e_driver_version[] = DRV_VERSION;
62 
63 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
64 static int debug = -1;
65 module_param(debug, int, 0);
66 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
67 
68 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state);
69 
70 static const struct e1000_info *e1000_info_tbl[] = {
71 	[board_82571]		= &e1000_82571_info,
72 	[board_82572]		= &e1000_82572_info,
73 	[board_82573]		= &e1000_82573_info,
74 	[board_82574]		= &e1000_82574_info,
75 	[board_82583]		= &e1000_82583_info,
76 	[board_80003es2lan]	= &e1000_es2_info,
77 	[board_ich8lan]		= &e1000_ich8_info,
78 	[board_ich9lan]		= &e1000_ich9_info,
79 	[board_ich10lan]	= &e1000_ich10_info,
80 	[board_pchlan]		= &e1000_pch_info,
81 	[board_pch2lan]		= &e1000_pch2_info,
82 	[board_pch_lpt]		= &e1000_pch_lpt_info,
83 };
84 
85 struct e1000_reg_info {
86 	u32 ofs;
87 	char *name;
88 };
89 
90 #define E1000_RDFH	0x02410	/* Rx Data FIFO Head - RW */
91 #define E1000_RDFT	0x02418	/* Rx Data FIFO Tail - RW */
92 #define E1000_RDFHS	0x02420	/* Rx Data FIFO Head Saved - RW */
93 #define E1000_RDFTS	0x02428	/* Rx Data FIFO Tail Saved - RW */
94 #define E1000_RDFPC	0x02430	/* Rx Data FIFO Packet Count - RW */
95 
96 #define E1000_TDFH	0x03410	/* Tx Data FIFO Head - RW */
97 #define E1000_TDFT	0x03418	/* Tx Data FIFO Tail - RW */
98 #define E1000_TDFHS	0x03420	/* Tx Data FIFO Head Saved - RW */
99 #define E1000_TDFTS	0x03428	/* Tx Data FIFO Tail Saved - RW */
100 #define E1000_TDFPC	0x03430	/* Tx Data FIFO Packet Count - RW */
101 
102 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
103 
104 	/* General Registers */
105 	{E1000_CTRL, "CTRL"},
106 	{E1000_STATUS, "STATUS"},
107 	{E1000_CTRL_EXT, "CTRL_EXT"},
108 
109 	/* Interrupt Registers */
110 	{E1000_ICR, "ICR"},
111 
112 	/* Rx Registers */
113 	{E1000_RCTL, "RCTL"},
114 	{E1000_RDLEN(0), "RDLEN"},
115 	{E1000_RDH(0), "RDH"},
116 	{E1000_RDT(0), "RDT"},
117 	{E1000_RDTR, "RDTR"},
118 	{E1000_RXDCTL(0), "RXDCTL"},
119 	{E1000_ERT, "ERT"},
120 	{E1000_RDBAL(0), "RDBAL"},
121 	{E1000_RDBAH(0), "RDBAH"},
122 	{E1000_RDFH, "RDFH"},
123 	{E1000_RDFT, "RDFT"},
124 	{E1000_RDFHS, "RDFHS"},
125 	{E1000_RDFTS, "RDFTS"},
126 	{E1000_RDFPC, "RDFPC"},
127 
128 	/* Tx Registers */
129 	{E1000_TCTL, "TCTL"},
130 	{E1000_TDBAL(0), "TDBAL"},
131 	{E1000_TDBAH(0), "TDBAH"},
132 	{E1000_TDLEN(0), "TDLEN"},
133 	{E1000_TDH(0), "TDH"},
134 	{E1000_TDT(0), "TDT"},
135 	{E1000_TIDV, "TIDV"},
136 	{E1000_TXDCTL(0), "TXDCTL"},
137 	{E1000_TADV, "TADV"},
138 	{E1000_TARC(0), "TARC"},
139 	{E1000_TDFH, "TDFH"},
140 	{E1000_TDFT, "TDFT"},
141 	{E1000_TDFHS, "TDFHS"},
142 	{E1000_TDFTS, "TDFTS"},
143 	{E1000_TDFPC, "TDFPC"},
144 
145 	/* List Terminator */
146 	{0, NULL}
147 };
148 
149 /*
150  * e1000_regdump - register printout routine
151  */
152 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
153 {
154 	int n = 0;
155 	char rname[16];
156 	u32 regs[8];
157 
158 	switch (reginfo->ofs) {
159 	case E1000_RXDCTL(0):
160 		for (n = 0; n < 2; n++)
161 			regs[n] = __er32(hw, E1000_RXDCTL(n));
162 		break;
163 	case E1000_TXDCTL(0):
164 		for (n = 0; n < 2; n++)
165 			regs[n] = __er32(hw, E1000_TXDCTL(n));
166 		break;
167 	case E1000_TARC(0):
168 		for (n = 0; n < 2; n++)
169 			regs[n] = __er32(hw, E1000_TARC(n));
170 		break;
171 	default:
172 		pr_info("%-15s %08x\n",
173 			reginfo->name, __er32(hw, reginfo->ofs));
174 		return;
175 	}
176 
177 	snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
178 	pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
179 }
180 
181 static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
182 				 struct e1000_buffer *bi)
183 {
184 	int i;
185 	struct e1000_ps_page *ps_page;
186 
187 	for (i = 0; i < adapter->rx_ps_pages; i++) {
188 		ps_page = &bi->ps_pages[i];
189 
190 		if (ps_page->page) {
191 			pr_info("packet dump for ps_page %d:\n", i);
192 			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
193 				       16, 1, page_address(ps_page->page),
194 				       PAGE_SIZE, true);
195 		}
196 	}
197 }
198 
199 /*
200  * e1000e_dump - Print registers, Tx-ring and Rx-ring
201  */
202 static void e1000e_dump(struct e1000_adapter *adapter)
203 {
204 	struct net_device *netdev = adapter->netdev;
205 	struct e1000_hw *hw = &adapter->hw;
206 	struct e1000_reg_info *reginfo;
207 	struct e1000_ring *tx_ring = adapter->tx_ring;
208 	struct e1000_tx_desc *tx_desc;
209 	struct my_u0 {
210 		__le64 a;
211 		__le64 b;
212 	} *u0;
213 	struct e1000_buffer *buffer_info;
214 	struct e1000_ring *rx_ring = adapter->rx_ring;
215 	union e1000_rx_desc_packet_split *rx_desc_ps;
216 	union e1000_rx_desc_extended *rx_desc;
217 	struct my_u1 {
218 		__le64 a;
219 		__le64 b;
220 		__le64 c;
221 		__le64 d;
222 	} *u1;
223 	u32 staterr;
224 	int i = 0;
225 
226 	if (!netif_msg_hw(adapter))
227 		return;
228 
229 	/* Print netdevice Info */
230 	if (netdev) {
231 		dev_info(&adapter->pdev->dev, "Net device Info\n");
232 		pr_info("Device Name     state            trans_start      last_rx\n");
233 		pr_info("%-15s %016lX %016lX %016lX\n",
234 			netdev->name, netdev->state, netdev->trans_start,
235 			netdev->last_rx);
236 	}
237 
238 	/* Print Registers */
239 	dev_info(&adapter->pdev->dev, "Register Dump\n");
240 	pr_info(" Register Name   Value\n");
241 	for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
242 	     reginfo->name; reginfo++) {
243 		e1000_regdump(hw, reginfo);
244 	}
245 
246 	/* Print Tx Ring Summary */
247 	if (!netdev || !netif_running(netdev))
248 		return;
249 
250 	dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
251 	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
252 	buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
253 	pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
254 		0, tx_ring->next_to_use, tx_ring->next_to_clean,
255 		(unsigned long long)buffer_info->dma,
256 		buffer_info->length,
257 		buffer_info->next_to_watch,
258 		(unsigned long long)buffer_info->time_stamp);
259 
260 	/* Print Tx Ring */
261 	if (!netif_msg_tx_done(adapter))
262 		goto rx_ring_summary;
263 
264 	dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
265 
266 	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
267 	 *
268 	 * Legacy Transmit Descriptor
269 	 *   +--------------------------------------------------------------+
270 	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
271 	 *   +--------------------------------------------------------------+
272 	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
273 	 *   +--------------------------------------------------------------+
274 	 *   63       48 47        36 35    32 31     24 23    16 15        0
275 	 *
276 	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
277 	 *   63      48 47    40 39       32 31             16 15    8 7      0
278 	 *   +----------------------------------------------------------------+
279 	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
280 	 *   +----------------------------------------------------------------+
281 	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
282 	 *   +----------------------------------------------------------------+
283 	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
284 	 *
285 	 * Extended Data Descriptor (DTYP=0x1)
286 	 *   +----------------------------------------------------------------+
287 	 * 0 |                     Buffer Address [63:0]                      |
288 	 *   +----------------------------------------------------------------+
289 	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
290 	 *   +----------------------------------------------------------------+
291 	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
292 	 */
293 	pr_info("Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Legacy format\n");
294 	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Context format\n");
295 	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Data format\n");
296 	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
297 		const char *next_desc;
298 		tx_desc = E1000_TX_DESC(*tx_ring, i);
299 		buffer_info = &tx_ring->buffer_info[i];
300 		u0 = (struct my_u0 *)tx_desc;
301 		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
302 			next_desc = " NTC/U";
303 		else if (i == tx_ring->next_to_use)
304 			next_desc = " NTU";
305 		else if (i == tx_ring->next_to_clean)
306 			next_desc = " NTC";
307 		else
308 			next_desc = "";
309 		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p%s\n",
310 			(!(le64_to_cpu(u0->b) & (1 << 29)) ? 'l' :
311 			 ((le64_to_cpu(u0->b) & (1 << 20)) ? 'd' : 'c')),
312 			i,
313 			(unsigned long long)le64_to_cpu(u0->a),
314 			(unsigned long long)le64_to_cpu(u0->b),
315 			(unsigned long long)buffer_info->dma,
316 			buffer_info->length, buffer_info->next_to_watch,
317 			(unsigned long long)buffer_info->time_stamp,
318 			buffer_info->skb, next_desc);
319 
320 		if (netif_msg_pktdata(adapter) && buffer_info->skb)
321 			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
322 				       16, 1, buffer_info->skb->data,
323 				       buffer_info->skb->len, true);
324 	}
325 
326 	/* Print Rx Ring Summary */
327 rx_ring_summary:
328 	dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
329 	pr_info("Queue [NTU] [NTC]\n");
330 	pr_info(" %5d %5X %5X\n",
331 		0, rx_ring->next_to_use, rx_ring->next_to_clean);
332 
333 	/* Print Rx Ring */
334 	if (!netif_msg_rx_status(adapter))
335 		return;
336 
337 	dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
338 	switch (adapter->rx_ps_pages) {
339 	case 1:
340 	case 2:
341 	case 3:
342 		/* [Extended] Packet Split Receive Descriptor Format
343 		 *
344 		 *    +-----------------------------------------------------+
345 		 *  0 |                Buffer Address 0 [63:0]              |
346 		 *    +-----------------------------------------------------+
347 		 *  8 |                Buffer Address 1 [63:0]              |
348 		 *    +-----------------------------------------------------+
349 		 * 16 |                Buffer Address 2 [63:0]              |
350 		 *    +-----------------------------------------------------+
351 		 * 24 |                Buffer Address 3 [63:0]              |
352 		 *    +-----------------------------------------------------+
353 		 */
354 		pr_info("R  [desc]      [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] [bi->skb] <-- Ext Pkt Split format\n");
355 		/* [Extended] Receive Descriptor (Write-Back) Format
356 		 *
357 		 *   63       48 47    32 31     13 12    8 7    4 3        0
358 		 *   +------------------------------------------------------+
359 		 * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
360 		 *   | Checksum | Ident  |         | Queue |      |  Type   |
361 		 *   +------------------------------------------------------+
362 		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
363 		 *   +------------------------------------------------------+
364 		 *   63       48 47    32 31            20 19               0
365 		 */
366 		pr_info("RWB[desc]      [ck ipid mrqhsh] [vl   l0 ee  es] [ l3  l2  l1 hs] [reserved      ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
367 		for (i = 0; i < rx_ring->count; i++) {
368 			const char *next_desc;
369 			buffer_info = &rx_ring->buffer_info[i];
370 			rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
371 			u1 = (struct my_u1 *)rx_desc_ps;
372 			staterr =
373 			    le32_to_cpu(rx_desc_ps->wb.middle.status_error);
374 
375 			if (i == rx_ring->next_to_use)
376 				next_desc = " NTU";
377 			else if (i == rx_ring->next_to_clean)
378 				next_desc = " NTC";
379 			else
380 				next_desc = "";
381 
382 			if (staterr & E1000_RXD_STAT_DD) {
383 				/* Descriptor Done */
384 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX ---------------- %p%s\n",
385 					"RWB", i,
386 					(unsigned long long)le64_to_cpu(u1->a),
387 					(unsigned long long)le64_to_cpu(u1->b),
388 					(unsigned long long)le64_to_cpu(u1->c),
389 					(unsigned long long)le64_to_cpu(u1->d),
390 					buffer_info->skb, next_desc);
391 			} else {
392 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX %016llX %p%s\n",
393 					"R  ", i,
394 					(unsigned long long)le64_to_cpu(u1->a),
395 					(unsigned long long)le64_to_cpu(u1->b),
396 					(unsigned long long)le64_to_cpu(u1->c),
397 					(unsigned long long)le64_to_cpu(u1->d),
398 					(unsigned long long)buffer_info->dma,
399 					buffer_info->skb, next_desc);
400 
401 				if (netif_msg_pktdata(adapter))
402 					e1000e_dump_ps_pages(adapter,
403 							     buffer_info);
404 			}
405 		}
406 		break;
407 	default:
408 	case 0:
409 		/* Extended Receive Descriptor (Read) Format
410 		 *
411 		 *   +-----------------------------------------------------+
412 		 * 0 |                Buffer Address [63:0]                |
413 		 *   +-----------------------------------------------------+
414 		 * 8 |                      Reserved                       |
415 		 *   +-----------------------------------------------------+
416 		 */
417 		pr_info("R  [desc]      [buf addr 63:0 ] [reserved 63:0 ] [bi->dma       ] [bi->skb] <-- Ext (Read) format\n");
418 		/* Extended Receive Descriptor (Write-Back) Format
419 		 *
420 		 *   63       48 47    32 31    24 23            4 3        0
421 		 *   +------------------------------------------------------+
422 		 *   |     RSS Hash      |        |               |         |
423 		 * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
424 		 *   | Packet   | IP     |        |               |  Type   |
425 		 *   | Checksum | Ident  |        |               |         |
426 		 *   +------------------------------------------------------+
427 		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
428 		 *   +------------------------------------------------------+
429 		 *   63       48 47    32 31            20 19               0
430 		 */
431 		pr_info("RWB[desc]      [cs ipid    mrq] [vt   ln xe  xs] [bi->skb] <-- Ext (Write-Back) format\n");
432 
433 		for (i = 0; i < rx_ring->count; i++) {
434 			const char *next_desc;
435 
436 			buffer_info = &rx_ring->buffer_info[i];
437 			rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
438 			u1 = (struct my_u1 *)rx_desc;
439 			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
440 
441 			if (i == rx_ring->next_to_use)
442 				next_desc = " NTU";
443 			else if (i == rx_ring->next_to_clean)
444 				next_desc = " NTC";
445 			else
446 				next_desc = "";
447 
448 			if (staterr & E1000_RXD_STAT_DD) {
449 				/* Descriptor Done */
450 				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %p%s\n",
451 					"RWB", i,
452 					(unsigned long long)le64_to_cpu(u1->a),
453 					(unsigned long long)le64_to_cpu(u1->b),
454 					buffer_info->skb, next_desc);
455 			} else {
456 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %p%s\n",
457 					"R  ", i,
458 					(unsigned long long)le64_to_cpu(u1->a),
459 					(unsigned long long)le64_to_cpu(u1->b),
460 					(unsigned long long)buffer_info->dma,
461 					buffer_info->skb, next_desc);
462 
463 				if (netif_msg_pktdata(adapter) &&
464 				    buffer_info->skb)
465 					print_hex_dump(KERN_INFO, "",
466 						       DUMP_PREFIX_ADDRESS, 16,
467 						       1,
468 						       buffer_info->skb->data,
469 						       adapter->rx_buffer_len,
470 						       true);
471 			}
472 		}
473 	}
474 }
475 
476 /**
477  * e1000_desc_unused - calculate if we have unused descriptors
478  **/
479 static int e1000_desc_unused(struct e1000_ring *ring)
480 {
481 	if (ring->next_to_clean > ring->next_to_use)
482 		return ring->next_to_clean - ring->next_to_use - 1;
483 
484 	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
485 }
486 
487 /**
488  * e1000_receive_skb - helper function to handle Rx indications
489  * @adapter: board private structure
490  * @status: descriptor status field as written by hardware
491  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
492  * @skb: pointer to sk_buff to be indicated to stack
493  **/
494 static void e1000_receive_skb(struct e1000_adapter *adapter,
495 			      struct net_device *netdev, struct sk_buff *skb,
496 			      u8 status, __le16 vlan)
497 {
498 	u16 tag = le16_to_cpu(vlan);
499 	skb->protocol = eth_type_trans(skb, netdev);
500 
501 	if (status & E1000_RXD_STAT_VP)
502 		__vlan_hwaccel_put_tag(skb, tag);
503 
504 	napi_gro_receive(&adapter->napi, skb);
505 }
506 
507 /**
508  * e1000_rx_checksum - Receive Checksum Offload
509  * @adapter: board private structure
510  * @status_err: receive descriptor status and error fields
511  * @csum: receive descriptor csum field
512  * @sk_buff: socket buffer with received data
513  **/
514 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
515 			      struct sk_buff *skb)
516 {
517 	u16 status = (u16)status_err;
518 	u8 errors = (u8)(status_err >> 24);
519 
520 	skb_checksum_none_assert(skb);
521 
522 	/* Rx checksum disabled */
523 	if (!(adapter->netdev->features & NETIF_F_RXCSUM))
524 		return;
525 
526 	/* Ignore Checksum bit is set */
527 	if (status & E1000_RXD_STAT_IXSM)
528 		return;
529 
530 	/* TCP/UDP checksum error bit or IP checksum error bit is set */
531 	if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
532 		/* let the stack verify checksum errors */
533 		adapter->hw_csum_err++;
534 		return;
535 	}
536 
537 	/* TCP/UDP Checksum has not been calculated */
538 	if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
539 		return;
540 
541 	/* It must be a TCP or UDP packet with a valid checksum */
542 	skb->ip_summed = CHECKSUM_UNNECESSARY;
543 	adapter->hw_csum_good++;
544 }
545 
546 static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
547 {
548 	struct e1000_adapter *adapter = rx_ring->adapter;
549 	struct e1000_hw *hw = &adapter->hw;
550 	s32 ret_val = __ew32_prepare(hw);
551 
552 	writel(i, rx_ring->tail);
553 
554 	if (unlikely(!ret_val && (i != readl(rx_ring->tail)))) {
555 		u32 rctl = er32(RCTL);
556 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
557 		e_err("ME firmware caused invalid RDT - resetting\n");
558 		schedule_work(&adapter->reset_task);
559 	}
560 }
561 
562 static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
563 {
564 	struct e1000_adapter *adapter = tx_ring->adapter;
565 	struct e1000_hw *hw = &adapter->hw;
566 	s32 ret_val = __ew32_prepare(hw);
567 
568 	writel(i, tx_ring->tail);
569 
570 	if (unlikely(!ret_val && (i != readl(tx_ring->tail)))) {
571 		u32 tctl = er32(TCTL);
572 		ew32(TCTL, tctl & ~E1000_TCTL_EN);
573 		e_err("ME firmware caused invalid TDT - resetting\n");
574 		schedule_work(&adapter->reset_task);
575 	}
576 }
577 
578 /**
579  * e1000_alloc_rx_buffers - Replace used receive buffers
580  * @rx_ring: Rx descriptor ring
581  **/
582 static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
583 				   int cleaned_count, gfp_t gfp)
584 {
585 	struct e1000_adapter *adapter = rx_ring->adapter;
586 	struct net_device *netdev = adapter->netdev;
587 	struct pci_dev *pdev = adapter->pdev;
588 	union e1000_rx_desc_extended *rx_desc;
589 	struct e1000_buffer *buffer_info;
590 	struct sk_buff *skb;
591 	unsigned int i;
592 	unsigned int bufsz = adapter->rx_buffer_len;
593 
594 	i = rx_ring->next_to_use;
595 	buffer_info = &rx_ring->buffer_info[i];
596 
597 	while (cleaned_count--) {
598 		skb = buffer_info->skb;
599 		if (skb) {
600 			skb_trim(skb, 0);
601 			goto map_skb;
602 		}
603 
604 		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
605 		if (!skb) {
606 			/* Better luck next round */
607 			adapter->alloc_rx_buff_failed++;
608 			break;
609 		}
610 
611 		buffer_info->skb = skb;
612 map_skb:
613 		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
614 						  adapter->rx_buffer_len,
615 						  DMA_FROM_DEVICE);
616 		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
617 			dev_err(&pdev->dev, "Rx DMA map failed\n");
618 			adapter->rx_dma_failed++;
619 			break;
620 		}
621 
622 		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
623 		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
624 
625 		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
626 			/*
627 			 * Force memory writes to complete before letting h/w
628 			 * know there are new descriptors to fetch.  (Only
629 			 * applicable for weak-ordered memory model archs,
630 			 * such as IA-64).
631 			 */
632 			wmb();
633 			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
634 				e1000e_update_rdt_wa(rx_ring, i);
635 			else
636 				writel(i, rx_ring->tail);
637 		}
638 		i++;
639 		if (i == rx_ring->count)
640 			i = 0;
641 		buffer_info = &rx_ring->buffer_info[i];
642 	}
643 
644 	rx_ring->next_to_use = i;
645 }
646 
647 /**
648  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
649  * @rx_ring: Rx descriptor ring
650  **/
651 static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
652 				      int cleaned_count, gfp_t gfp)
653 {
654 	struct e1000_adapter *adapter = rx_ring->adapter;
655 	struct net_device *netdev = adapter->netdev;
656 	struct pci_dev *pdev = adapter->pdev;
657 	union e1000_rx_desc_packet_split *rx_desc;
658 	struct e1000_buffer *buffer_info;
659 	struct e1000_ps_page *ps_page;
660 	struct sk_buff *skb;
661 	unsigned int i, j;
662 
663 	i = rx_ring->next_to_use;
664 	buffer_info = &rx_ring->buffer_info[i];
665 
666 	while (cleaned_count--) {
667 		rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
668 
669 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
670 			ps_page = &buffer_info->ps_pages[j];
671 			if (j >= adapter->rx_ps_pages) {
672 				/* all unused desc entries get hw null ptr */
673 				rx_desc->read.buffer_addr[j + 1] =
674 				    ~cpu_to_le64(0);
675 				continue;
676 			}
677 			if (!ps_page->page) {
678 				ps_page->page = alloc_page(gfp);
679 				if (!ps_page->page) {
680 					adapter->alloc_rx_buff_failed++;
681 					goto no_buffers;
682 				}
683 				ps_page->dma = dma_map_page(&pdev->dev,
684 							    ps_page->page,
685 							    0, PAGE_SIZE,
686 							    DMA_FROM_DEVICE);
687 				if (dma_mapping_error(&pdev->dev,
688 						      ps_page->dma)) {
689 					dev_err(&adapter->pdev->dev,
690 						"Rx DMA page map failed\n");
691 					adapter->rx_dma_failed++;
692 					goto no_buffers;
693 				}
694 			}
695 			/*
696 			 * Refresh the desc even if buffer_addrs
697 			 * didn't change because each write-back
698 			 * erases this info.
699 			 */
700 			rx_desc->read.buffer_addr[j + 1] =
701 			    cpu_to_le64(ps_page->dma);
702 		}
703 
704 		skb = __netdev_alloc_skb_ip_align(netdev,
705 						  adapter->rx_ps_bsize0,
706 						  gfp);
707 
708 		if (!skb) {
709 			adapter->alloc_rx_buff_failed++;
710 			break;
711 		}
712 
713 		buffer_info->skb = skb;
714 		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
715 						  adapter->rx_ps_bsize0,
716 						  DMA_FROM_DEVICE);
717 		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
718 			dev_err(&pdev->dev, "Rx DMA map failed\n");
719 			adapter->rx_dma_failed++;
720 			/* cleanup skb */
721 			dev_kfree_skb_any(skb);
722 			buffer_info->skb = NULL;
723 			break;
724 		}
725 
726 		rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
727 
728 		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
729 			/*
730 			 * Force memory writes to complete before letting h/w
731 			 * know there are new descriptors to fetch.  (Only
732 			 * applicable for weak-ordered memory model archs,
733 			 * such as IA-64).
734 			 */
735 			wmb();
736 			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
737 				e1000e_update_rdt_wa(rx_ring, i << 1);
738 			else
739 				writel(i << 1, rx_ring->tail);
740 		}
741 
742 		i++;
743 		if (i == rx_ring->count)
744 			i = 0;
745 		buffer_info = &rx_ring->buffer_info[i];
746 	}
747 
748 no_buffers:
749 	rx_ring->next_to_use = i;
750 }
751 
752 /**
753  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
754  * @rx_ring: Rx descriptor ring
755  * @cleaned_count: number of buffers to allocate this pass
756  **/
757 
758 static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
759 					 int cleaned_count, gfp_t gfp)
760 {
761 	struct e1000_adapter *adapter = rx_ring->adapter;
762 	struct net_device *netdev = adapter->netdev;
763 	struct pci_dev *pdev = adapter->pdev;
764 	union e1000_rx_desc_extended *rx_desc;
765 	struct e1000_buffer *buffer_info;
766 	struct sk_buff *skb;
767 	unsigned int i;
768 	unsigned int bufsz = 256 - 16 /* for skb_reserve */;
769 
770 	i = rx_ring->next_to_use;
771 	buffer_info = &rx_ring->buffer_info[i];
772 
773 	while (cleaned_count--) {
774 		skb = buffer_info->skb;
775 		if (skb) {
776 			skb_trim(skb, 0);
777 			goto check_page;
778 		}
779 
780 		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
781 		if (unlikely(!skb)) {
782 			/* Better luck next round */
783 			adapter->alloc_rx_buff_failed++;
784 			break;
785 		}
786 
787 		buffer_info->skb = skb;
788 check_page:
789 		/* allocate a new page if necessary */
790 		if (!buffer_info->page) {
791 			buffer_info->page = alloc_page(gfp);
792 			if (unlikely(!buffer_info->page)) {
793 				adapter->alloc_rx_buff_failed++;
794 				break;
795 			}
796 		}
797 
798 		if (!buffer_info->dma)
799 			buffer_info->dma = dma_map_page(&pdev->dev,
800 			                                buffer_info->page, 0,
801 			                                PAGE_SIZE,
802 							DMA_FROM_DEVICE);
803 
804 		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
805 		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
806 
807 		if (unlikely(++i == rx_ring->count))
808 			i = 0;
809 		buffer_info = &rx_ring->buffer_info[i];
810 	}
811 
812 	if (likely(rx_ring->next_to_use != i)) {
813 		rx_ring->next_to_use = i;
814 		if (unlikely(i-- == 0))
815 			i = (rx_ring->count - 1);
816 
817 		/* Force memory writes to complete before letting h/w
818 		 * know there are new descriptors to fetch.  (Only
819 		 * applicable for weak-ordered memory model archs,
820 		 * such as IA-64). */
821 		wmb();
822 		if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
823 			e1000e_update_rdt_wa(rx_ring, i);
824 		else
825 			writel(i, rx_ring->tail);
826 	}
827 }
828 
829 static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
830 				 struct sk_buff *skb)
831 {
832 	if (netdev->features & NETIF_F_RXHASH)
833 		skb->rxhash = le32_to_cpu(rss);
834 }
835 
836 /**
837  * e1000_clean_rx_irq - Send received data up the network stack
838  * @rx_ring: Rx descriptor ring
839  *
840  * the return value indicates whether actual cleaning was done, there
841  * is no guarantee that everything was cleaned
842  **/
843 static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
844 			       int work_to_do)
845 {
846 	struct e1000_adapter *adapter = rx_ring->adapter;
847 	struct net_device *netdev = adapter->netdev;
848 	struct pci_dev *pdev = adapter->pdev;
849 	struct e1000_hw *hw = &adapter->hw;
850 	union e1000_rx_desc_extended *rx_desc, *next_rxd;
851 	struct e1000_buffer *buffer_info, *next_buffer;
852 	u32 length, staterr;
853 	unsigned int i;
854 	int cleaned_count = 0;
855 	bool cleaned = false;
856 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
857 
858 	i = rx_ring->next_to_clean;
859 	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
860 	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
861 	buffer_info = &rx_ring->buffer_info[i];
862 
863 	while (staterr & E1000_RXD_STAT_DD) {
864 		struct sk_buff *skb;
865 
866 		if (*work_done >= work_to_do)
867 			break;
868 		(*work_done)++;
869 		rmb();	/* read descriptor and rx_buffer_info after status DD */
870 
871 		skb = buffer_info->skb;
872 		buffer_info->skb = NULL;
873 
874 		prefetch(skb->data - NET_IP_ALIGN);
875 
876 		i++;
877 		if (i == rx_ring->count)
878 			i = 0;
879 		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
880 		prefetch(next_rxd);
881 
882 		next_buffer = &rx_ring->buffer_info[i];
883 
884 		cleaned = true;
885 		cleaned_count++;
886 		dma_unmap_single(&pdev->dev,
887 				 buffer_info->dma,
888 				 adapter->rx_buffer_len,
889 				 DMA_FROM_DEVICE);
890 		buffer_info->dma = 0;
891 
892 		length = le16_to_cpu(rx_desc->wb.upper.length);
893 
894 		/*
895 		 * !EOP means multiple descriptors were used to store a single
896 		 * packet, if that's the case we need to toss it.  In fact, we
897 		 * need to toss every packet with the EOP bit clear and the
898 		 * next frame that _does_ have the EOP bit set, as it is by
899 		 * definition only a frame fragment
900 		 */
901 		if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
902 			adapter->flags2 |= FLAG2_IS_DISCARDING;
903 
904 		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
905 			/* All receives must fit into a single buffer */
906 			e_dbg("Receive packet consumed multiple buffers\n");
907 			/* recycle */
908 			buffer_info->skb = skb;
909 			if (staterr & E1000_RXD_STAT_EOP)
910 				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
911 			goto next_desc;
912 		}
913 
914 		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
915 			     !(netdev->features & NETIF_F_RXALL))) {
916 			/* recycle */
917 			buffer_info->skb = skb;
918 			goto next_desc;
919 		}
920 
921 		/* adjust length to remove Ethernet CRC */
922 		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
923 			/* If configured to store CRC, don't subtract FCS,
924 			 * but keep the FCS bytes out of the total_rx_bytes
925 			 * counter
926 			 */
927 			if (netdev->features & NETIF_F_RXFCS)
928 				total_rx_bytes -= 4;
929 			else
930 				length -= 4;
931 		}
932 
933 		total_rx_bytes += length;
934 		total_rx_packets++;
935 
936 		/*
937 		 * code added for copybreak, this should improve
938 		 * performance for small packets with large amounts
939 		 * of reassembly being done in the stack
940 		 */
941 		if (length < copybreak) {
942 			struct sk_buff *new_skb =
943 			    netdev_alloc_skb_ip_align(netdev, length);
944 			if (new_skb) {
945 				skb_copy_to_linear_data_offset(new_skb,
946 							       -NET_IP_ALIGN,
947 							       (skb->data -
948 								NET_IP_ALIGN),
949 							       (length +
950 								NET_IP_ALIGN));
951 				/* save the skb in buffer_info as good */
952 				buffer_info->skb = skb;
953 				skb = new_skb;
954 			}
955 			/* else just continue with the old one */
956 		}
957 		/* end copybreak code */
958 		skb_put(skb, length);
959 
960 		/* Receive Checksum Offload */
961 		e1000_rx_checksum(adapter, staterr, skb);
962 
963 		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
964 
965 		e1000_receive_skb(adapter, netdev, skb, staterr,
966 				  rx_desc->wb.upper.vlan);
967 
968 next_desc:
969 		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
970 
971 		/* return some buffers to hardware, one at a time is too slow */
972 		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
973 			adapter->alloc_rx_buf(rx_ring, cleaned_count,
974 					      GFP_ATOMIC);
975 			cleaned_count = 0;
976 		}
977 
978 		/* use prefetched values */
979 		rx_desc = next_rxd;
980 		buffer_info = next_buffer;
981 
982 		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
983 	}
984 	rx_ring->next_to_clean = i;
985 
986 	cleaned_count = e1000_desc_unused(rx_ring);
987 	if (cleaned_count)
988 		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
989 
990 	adapter->total_rx_bytes += total_rx_bytes;
991 	adapter->total_rx_packets += total_rx_packets;
992 	return cleaned;
993 }
994 
995 static void e1000_put_txbuf(struct e1000_ring *tx_ring,
996 			    struct e1000_buffer *buffer_info)
997 {
998 	struct e1000_adapter *adapter = tx_ring->adapter;
999 
1000 	if (buffer_info->dma) {
1001 		if (buffer_info->mapped_as_page)
1002 			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1003 				       buffer_info->length, DMA_TO_DEVICE);
1004 		else
1005 			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1006 					 buffer_info->length, DMA_TO_DEVICE);
1007 		buffer_info->dma = 0;
1008 	}
1009 	if (buffer_info->skb) {
1010 		dev_kfree_skb_any(buffer_info->skb);
1011 		buffer_info->skb = NULL;
1012 	}
1013 	buffer_info->time_stamp = 0;
1014 }
1015 
1016 static void e1000_print_hw_hang(struct work_struct *work)
1017 {
1018 	struct e1000_adapter *adapter = container_of(work,
1019 	                                             struct e1000_adapter,
1020 	                                             print_hang_task);
1021 	struct net_device *netdev = adapter->netdev;
1022 	struct e1000_ring *tx_ring = adapter->tx_ring;
1023 	unsigned int i = tx_ring->next_to_clean;
1024 	unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1025 	struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1026 	struct e1000_hw *hw = &adapter->hw;
1027 	u16 phy_status, phy_1000t_status, phy_ext_status;
1028 	u16 pci_status;
1029 
1030 	if (test_bit(__E1000_DOWN, &adapter->state))
1031 		return;
1032 
1033 	if (!adapter->tx_hang_recheck &&
1034 	    (adapter->flags2 & FLAG2_DMA_BURST)) {
1035 		/*
1036 		 * May be block on write-back, flush and detect again
1037 		 * flush pending descriptor writebacks to memory
1038 		 */
1039 		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1040 		/* execute the writes immediately */
1041 		e1e_flush();
1042 		/*
1043 		 * Due to rare timing issues, write to TIDV again to ensure
1044 		 * the write is successful
1045 		 */
1046 		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1047 		/* execute the writes immediately */
1048 		e1e_flush();
1049 		adapter->tx_hang_recheck = true;
1050 		return;
1051 	}
1052 	/* Real hang detected */
1053 	adapter->tx_hang_recheck = false;
1054 	netif_stop_queue(netdev);
1055 
1056 	e1e_rphy(hw, PHY_STATUS, &phy_status);
1057 	e1e_rphy(hw, PHY_1000T_STATUS, &phy_1000t_status);
1058 	e1e_rphy(hw, PHY_EXT_STATUS, &phy_ext_status);
1059 
1060 	pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1061 
1062 	/* detected Hardware unit hang */
1063 	e_err("Detected Hardware Unit Hang:\n"
1064 	      "  TDH                  <%x>\n"
1065 	      "  TDT                  <%x>\n"
1066 	      "  next_to_use          <%x>\n"
1067 	      "  next_to_clean        <%x>\n"
1068 	      "buffer_info[next_to_clean]:\n"
1069 	      "  time_stamp           <%lx>\n"
1070 	      "  next_to_watch        <%x>\n"
1071 	      "  jiffies              <%lx>\n"
1072 	      "  next_to_watch.status <%x>\n"
1073 	      "MAC Status             <%x>\n"
1074 	      "PHY Status             <%x>\n"
1075 	      "PHY 1000BASE-T Status  <%x>\n"
1076 	      "PHY Extended Status    <%x>\n"
1077 	      "PCI Status             <%x>\n",
1078 	      readl(tx_ring->head),
1079 	      readl(tx_ring->tail),
1080 	      tx_ring->next_to_use,
1081 	      tx_ring->next_to_clean,
1082 	      tx_ring->buffer_info[eop].time_stamp,
1083 	      eop,
1084 	      jiffies,
1085 	      eop_desc->upper.fields.status,
1086 	      er32(STATUS),
1087 	      phy_status,
1088 	      phy_1000t_status,
1089 	      phy_ext_status,
1090 	      pci_status);
1091 
1092 	/* Suggest workaround for known h/w issue */
1093 	if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1094 		e_err("Try turning off Tx pause (flow control) via ethtool\n");
1095 }
1096 
1097 /**
1098  * e1000_clean_tx_irq - Reclaim resources after transmit completes
1099  * @tx_ring: Tx descriptor ring
1100  *
1101  * the return value indicates whether actual cleaning was done, there
1102  * is no guarantee that everything was cleaned
1103  **/
1104 static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1105 {
1106 	struct e1000_adapter *adapter = tx_ring->adapter;
1107 	struct net_device *netdev = adapter->netdev;
1108 	struct e1000_hw *hw = &adapter->hw;
1109 	struct e1000_tx_desc *tx_desc, *eop_desc;
1110 	struct e1000_buffer *buffer_info;
1111 	unsigned int i, eop;
1112 	unsigned int count = 0;
1113 	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1114 	unsigned int bytes_compl = 0, pkts_compl = 0;
1115 
1116 	i = tx_ring->next_to_clean;
1117 	eop = tx_ring->buffer_info[i].next_to_watch;
1118 	eop_desc = E1000_TX_DESC(*tx_ring, eop);
1119 
1120 	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1121 	       (count < tx_ring->count)) {
1122 		bool cleaned = false;
1123 		rmb(); /* read buffer_info after eop_desc */
1124 		for (; !cleaned; count++) {
1125 			tx_desc = E1000_TX_DESC(*tx_ring, i);
1126 			buffer_info = &tx_ring->buffer_info[i];
1127 			cleaned = (i == eop);
1128 
1129 			if (cleaned) {
1130 				total_tx_packets += buffer_info->segs;
1131 				total_tx_bytes += buffer_info->bytecount;
1132 				if (buffer_info->skb) {
1133 					bytes_compl += buffer_info->skb->len;
1134 					pkts_compl++;
1135 				}
1136 			}
1137 
1138 			e1000_put_txbuf(tx_ring, buffer_info);
1139 			tx_desc->upper.data = 0;
1140 
1141 			i++;
1142 			if (i == tx_ring->count)
1143 				i = 0;
1144 		}
1145 
1146 		if (i == tx_ring->next_to_use)
1147 			break;
1148 		eop = tx_ring->buffer_info[i].next_to_watch;
1149 		eop_desc = E1000_TX_DESC(*tx_ring, eop);
1150 	}
1151 
1152 	tx_ring->next_to_clean = i;
1153 
1154 	netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1155 
1156 #define TX_WAKE_THRESHOLD 32
1157 	if (count && netif_carrier_ok(netdev) &&
1158 	    e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1159 		/* Make sure that anybody stopping the queue after this
1160 		 * sees the new next_to_clean.
1161 		 */
1162 		smp_mb();
1163 
1164 		if (netif_queue_stopped(netdev) &&
1165 		    !(test_bit(__E1000_DOWN, &adapter->state))) {
1166 			netif_wake_queue(netdev);
1167 			++adapter->restart_queue;
1168 		}
1169 	}
1170 
1171 	if (adapter->detect_tx_hung) {
1172 		/*
1173 		 * Detect a transmit hang in hardware, this serializes the
1174 		 * check with the clearing of time_stamp and movement of i
1175 		 */
1176 		adapter->detect_tx_hung = false;
1177 		if (tx_ring->buffer_info[i].time_stamp &&
1178 		    time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1179 			       + (adapter->tx_timeout_factor * HZ)) &&
1180 		    !(er32(STATUS) & E1000_STATUS_TXOFF))
1181 			schedule_work(&adapter->print_hang_task);
1182 		else
1183 			adapter->tx_hang_recheck = false;
1184 	}
1185 	adapter->total_tx_bytes += total_tx_bytes;
1186 	adapter->total_tx_packets += total_tx_packets;
1187 	return count < tx_ring->count;
1188 }
1189 
1190 /**
1191  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1192  * @rx_ring: Rx descriptor ring
1193  *
1194  * the return value indicates whether actual cleaning was done, there
1195  * is no guarantee that everything was cleaned
1196  **/
1197 static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1198 				  int work_to_do)
1199 {
1200 	struct e1000_adapter *adapter = rx_ring->adapter;
1201 	struct e1000_hw *hw = &adapter->hw;
1202 	union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1203 	struct net_device *netdev = adapter->netdev;
1204 	struct pci_dev *pdev = adapter->pdev;
1205 	struct e1000_buffer *buffer_info, *next_buffer;
1206 	struct e1000_ps_page *ps_page;
1207 	struct sk_buff *skb;
1208 	unsigned int i, j;
1209 	u32 length, staterr;
1210 	int cleaned_count = 0;
1211 	bool cleaned = false;
1212 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1213 
1214 	i = rx_ring->next_to_clean;
1215 	rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1216 	staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1217 	buffer_info = &rx_ring->buffer_info[i];
1218 
1219 	while (staterr & E1000_RXD_STAT_DD) {
1220 		if (*work_done >= work_to_do)
1221 			break;
1222 		(*work_done)++;
1223 		skb = buffer_info->skb;
1224 		rmb();	/* read descriptor and rx_buffer_info after status DD */
1225 
1226 		/* in the packet split case this is header only */
1227 		prefetch(skb->data - NET_IP_ALIGN);
1228 
1229 		i++;
1230 		if (i == rx_ring->count)
1231 			i = 0;
1232 		next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1233 		prefetch(next_rxd);
1234 
1235 		next_buffer = &rx_ring->buffer_info[i];
1236 
1237 		cleaned = true;
1238 		cleaned_count++;
1239 		dma_unmap_single(&pdev->dev, buffer_info->dma,
1240 				 adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1241 		buffer_info->dma = 0;
1242 
1243 		/* see !EOP comment in other Rx routine */
1244 		if (!(staterr & E1000_RXD_STAT_EOP))
1245 			adapter->flags2 |= FLAG2_IS_DISCARDING;
1246 
1247 		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1248 			e_dbg("Packet Split buffers didn't pick up the full packet\n");
1249 			dev_kfree_skb_irq(skb);
1250 			if (staterr & E1000_RXD_STAT_EOP)
1251 				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1252 			goto next_desc;
1253 		}
1254 
1255 		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1256 			     !(netdev->features & NETIF_F_RXALL))) {
1257 			dev_kfree_skb_irq(skb);
1258 			goto next_desc;
1259 		}
1260 
1261 		length = le16_to_cpu(rx_desc->wb.middle.length0);
1262 
1263 		if (!length) {
1264 			e_dbg("Last part of the packet spanning multiple descriptors\n");
1265 			dev_kfree_skb_irq(skb);
1266 			goto next_desc;
1267 		}
1268 
1269 		/* Good Receive */
1270 		skb_put(skb, length);
1271 
1272 		{
1273 			/*
1274 			 * this looks ugly, but it seems compiler issues make
1275 			 * it more efficient than reusing j
1276 			 */
1277 			int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1278 
1279 			/*
1280 			 * page alloc/put takes too long and effects small
1281 			 * packet throughput, so unsplit small packets and
1282 			 * save the alloc/put only valid in softirq (napi)
1283 			 * context to call kmap_*
1284 			 */
1285 			if (l1 && (l1 <= copybreak) &&
1286 			    ((length + l1) <= adapter->rx_ps_bsize0)) {
1287 				u8 *vaddr;
1288 
1289 				ps_page = &buffer_info->ps_pages[0];
1290 
1291 				/*
1292 				 * there is no documentation about how to call
1293 				 * kmap_atomic, so we can't hold the mapping
1294 				 * very long
1295 				 */
1296 				dma_sync_single_for_cpu(&pdev->dev,
1297 							ps_page->dma,
1298 							PAGE_SIZE,
1299 							DMA_FROM_DEVICE);
1300 				vaddr = kmap_atomic(ps_page->page);
1301 				memcpy(skb_tail_pointer(skb), vaddr, l1);
1302 				kunmap_atomic(vaddr);
1303 				dma_sync_single_for_device(&pdev->dev,
1304 							   ps_page->dma,
1305 							   PAGE_SIZE,
1306 							   DMA_FROM_DEVICE);
1307 
1308 				/* remove the CRC */
1309 				if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1310 					if (!(netdev->features & NETIF_F_RXFCS))
1311 						l1 -= 4;
1312 				}
1313 
1314 				skb_put(skb, l1);
1315 				goto copydone;
1316 			} /* if */
1317 		}
1318 
1319 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1320 			length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1321 			if (!length)
1322 				break;
1323 
1324 			ps_page = &buffer_info->ps_pages[j];
1325 			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1326 				       DMA_FROM_DEVICE);
1327 			ps_page->dma = 0;
1328 			skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1329 			ps_page->page = NULL;
1330 			skb->len += length;
1331 			skb->data_len += length;
1332 			skb->truesize += PAGE_SIZE;
1333 		}
1334 
1335 		/* strip the ethernet crc, problem is we're using pages now so
1336 		 * this whole operation can get a little cpu intensive
1337 		 */
1338 		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1339 			if (!(netdev->features & NETIF_F_RXFCS))
1340 				pskb_trim(skb, skb->len - 4);
1341 		}
1342 
1343 copydone:
1344 		total_rx_bytes += skb->len;
1345 		total_rx_packets++;
1346 
1347 		e1000_rx_checksum(adapter, staterr, skb);
1348 
1349 		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1350 
1351 		if (rx_desc->wb.upper.header_status &
1352 			   cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1353 			adapter->rx_hdr_split++;
1354 
1355 		e1000_receive_skb(adapter, netdev, skb,
1356 				  staterr, rx_desc->wb.middle.vlan);
1357 
1358 next_desc:
1359 		rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1360 		buffer_info->skb = NULL;
1361 
1362 		/* return some buffers to hardware, one at a time is too slow */
1363 		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1364 			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1365 					      GFP_ATOMIC);
1366 			cleaned_count = 0;
1367 		}
1368 
1369 		/* use prefetched values */
1370 		rx_desc = next_rxd;
1371 		buffer_info = next_buffer;
1372 
1373 		staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1374 	}
1375 	rx_ring->next_to_clean = i;
1376 
1377 	cleaned_count = e1000_desc_unused(rx_ring);
1378 	if (cleaned_count)
1379 		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1380 
1381 	adapter->total_rx_bytes += total_rx_bytes;
1382 	adapter->total_rx_packets += total_rx_packets;
1383 	return cleaned;
1384 }
1385 
1386 /**
1387  * e1000_consume_page - helper function
1388  **/
1389 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1390                                u16 length)
1391 {
1392 	bi->page = NULL;
1393 	skb->len += length;
1394 	skb->data_len += length;
1395 	skb->truesize += PAGE_SIZE;
1396 }
1397 
1398 /**
1399  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1400  * @adapter: board private structure
1401  *
1402  * the return value indicates whether actual cleaning was done, there
1403  * is no guarantee that everything was cleaned
1404  **/
1405 static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1406 				     int work_to_do)
1407 {
1408 	struct e1000_adapter *adapter = rx_ring->adapter;
1409 	struct net_device *netdev = adapter->netdev;
1410 	struct pci_dev *pdev = adapter->pdev;
1411 	union e1000_rx_desc_extended *rx_desc, *next_rxd;
1412 	struct e1000_buffer *buffer_info, *next_buffer;
1413 	u32 length, staterr;
1414 	unsigned int i;
1415 	int cleaned_count = 0;
1416 	bool cleaned = false;
1417 	unsigned int total_rx_bytes=0, total_rx_packets=0;
1418 
1419 	i = rx_ring->next_to_clean;
1420 	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1421 	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1422 	buffer_info = &rx_ring->buffer_info[i];
1423 
1424 	while (staterr & E1000_RXD_STAT_DD) {
1425 		struct sk_buff *skb;
1426 
1427 		if (*work_done >= work_to_do)
1428 			break;
1429 		(*work_done)++;
1430 		rmb();	/* read descriptor and rx_buffer_info after status DD */
1431 
1432 		skb = buffer_info->skb;
1433 		buffer_info->skb = NULL;
1434 
1435 		++i;
1436 		if (i == rx_ring->count)
1437 			i = 0;
1438 		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1439 		prefetch(next_rxd);
1440 
1441 		next_buffer = &rx_ring->buffer_info[i];
1442 
1443 		cleaned = true;
1444 		cleaned_count++;
1445 		dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1446 			       DMA_FROM_DEVICE);
1447 		buffer_info->dma = 0;
1448 
1449 		length = le16_to_cpu(rx_desc->wb.upper.length);
1450 
1451 		/* errors is only valid for DD + EOP descriptors */
1452 		if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1453 			     ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1454 			      !(netdev->features & NETIF_F_RXALL)))) {
1455 			/* recycle both page and skb */
1456 			buffer_info->skb = skb;
1457 			/* an error means any chain goes out the window too */
1458 			if (rx_ring->rx_skb_top)
1459 				dev_kfree_skb_irq(rx_ring->rx_skb_top);
1460 			rx_ring->rx_skb_top = NULL;
1461 			goto next_desc;
1462 		}
1463 
1464 #define rxtop (rx_ring->rx_skb_top)
1465 		if (!(staterr & E1000_RXD_STAT_EOP)) {
1466 			/* this descriptor is only the beginning (or middle) */
1467 			if (!rxtop) {
1468 				/* this is the beginning of a chain */
1469 				rxtop = skb;
1470 				skb_fill_page_desc(rxtop, 0, buffer_info->page,
1471 				                   0, length);
1472 			} else {
1473 				/* this is the middle of a chain */
1474 				skb_fill_page_desc(rxtop,
1475 				    skb_shinfo(rxtop)->nr_frags,
1476 				    buffer_info->page, 0, length);
1477 				/* re-use the skb, only consumed the page */
1478 				buffer_info->skb = skb;
1479 			}
1480 			e1000_consume_page(buffer_info, rxtop, length);
1481 			goto next_desc;
1482 		} else {
1483 			if (rxtop) {
1484 				/* end of the chain */
1485 				skb_fill_page_desc(rxtop,
1486 				    skb_shinfo(rxtop)->nr_frags,
1487 				    buffer_info->page, 0, length);
1488 				/* re-use the current skb, we only consumed the
1489 				 * page */
1490 				buffer_info->skb = skb;
1491 				skb = rxtop;
1492 				rxtop = NULL;
1493 				e1000_consume_page(buffer_info, skb, length);
1494 			} else {
1495 				/* no chain, got EOP, this buf is the packet
1496 				 * copybreak to save the put_page/alloc_page */
1497 				if (length <= copybreak &&
1498 				    skb_tailroom(skb) >= length) {
1499 					u8 *vaddr;
1500 					vaddr = kmap_atomic(buffer_info->page);
1501 					memcpy(skb_tail_pointer(skb), vaddr,
1502 					       length);
1503 					kunmap_atomic(vaddr);
1504 					/* re-use the page, so don't erase
1505 					 * buffer_info->page */
1506 					skb_put(skb, length);
1507 				} else {
1508 					skb_fill_page_desc(skb, 0,
1509 					                   buffer_info->page, 0,
1510 				                           length);
1511 					e1000_consume_page(buffer_info, skb,
1512 					                   length);
1513 				}
1514 			}
1515 		}
1516 
1517 		/* Receive Checksum Offload */
1518 		e1000_rx_checksum(adapter, staterr, skb);
1519 
1520 		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1521 
1522 		/* probably a little skewed due to removing CRC */
1523 		total_rx_bytes += skb->len;
1524 		total_rx_packets++;
1525 
1526 		/* eth type trans needs skb->data to point to something */
1527 		if (!pskb_may_pull(skb, ETH_HLEN)) {
1528 			e_err("pskb_may_pull failed.\n");
1529 			dev_kfree_skb_irq(skb);
1530 			goto next_desc;
1531 		}
1532 
1533 		e1000_receive_skb(adapter, netdev, skb, staterr,
1534 				  rx_desc->wb.upper.vlan);
1535 
1536 next_desc:
1537 		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1538 
1539 		/* return some buffers to hardware, one at a time is too slow */
1540 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1541 			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1542 					      GFP_ATOMIC);
1543 			cleaned_count = 0;
1544 		}
1545 
1546 		/* use prefetched values */
1547 		rx_desc = next_rxd;
1548 		buffer_info = next_buffer;
1549 
1550 		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1551 	}
1552 	rx_ring->next_to_clean = i;
1553 
1554 	cleaned_count = e1000_desc_unused(rx_ring);
1555 	if (cleaned_count)
1556 		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1557 
1558 	adapter->total_rx_bytes += total_rx_bytes;
1559 	adapter->total_rx_packets += total_rx_packets;
1560 	return cleaned;
1561 }
1562 
1563 /**
1564  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1565  * @rx_ring: Rx descriptor ring
1566  **/
1567 static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1568 {
1569 	struct e1000_adapter *adapter = rx_ring->adapter;
1570 	struct e1000_buffer *buffer_info;
1571 	struct e1000_ps_page *ps_page;
1572 	struct pci_dev *pdev = adapter->pdev;
1573 	unsigned int i, j;
1574 
1575 	/* Free all the Rx ring sk_buffs */
1576 	for (i = 0; i < rx_ring->count; i++) {
1577 		buffer_info = &rx_ring->buffer_info[i];
1578 		if (buffer_info->dma) {
1579 			if (adapter->clean_rx == e1000_clean_rx_irq)
1580 				dma_unmap_single(&pdev->dev, buffer_info->dma,
1581 						 adapter->rx_buffer_len,
1582 						 DMA_FROM_DEVICE);
1583 			else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1584 				dma_unmap_page(&pdev->dev, buffer_info->dma,
1585 				               PAGE_SIZE,
1586 					       DMA_FROM_DEVICE);
1587 			else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1588 				dma_unmap_single(&pdev->dev, buffer_info->dma,
1589 						 adapter->rx_ps_bsize0,
1590 						 DMA_FROM_DEVICE);
1591 			buffer_info->dma = 0;
1592 		}
1593 
1594 		if (buffer_info->page) {
1595 			put_page(buffer_info->page);
1596 			buffer_info->page = NULL;
1597 		}
1598 
1599 		if (buffer_info->skb) {
1600 			dev_kfree_skb(buffer_info->skb);
1601 			buffer_info->skb = NULL;
1602 		}
1603 
1604 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1605 			ps_page = &buffer_info->ps_pages[j];
1606 			if (!ps_page->page)
1607 				break;
1608 			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1609 				       DMA_FROM_DEVICE);
1610 			ps_page->dma = 0;
1611 			put_page(ps_page->page);
1612 			ps_page->page = NULL;
1613 		}
1614 	}
1615 
1616 	/* there also may be some cached data from a chained receive */
1617 	if (rx_ring->rx_skb_top) {
1618 		dev_kfree_skb(rx_ring->rx_skb_top);
1619 		rx_ring->rx_skb_top = NULL;
1620 	}
1621 
1622 	/* Zero out the descriptor ring */
1623 	memset(rx_ring->desc, 0, rx_ring->size);
1624 
1625 	rx_ring->next_to_clean = 0;
1626 	rx_ring->next_to_use = 0;
1627 	adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1628 
1629 	writel(0, rx_ring->head);
1630 	if (rx_ring->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
1631 		e1000e_update_rdt_wa(rx_ring, 0);
1632 	else
1633 		writel(0, rx_ring->tail);
1634 }
1635 
1636 static void e1000e_downshift_workaround(struct work_struct *work)
1637 {
1638 	struct e1000_adapter *adapter = container_of(work,
1639 					struct e1000_adapter, downshift_task);
1640 
1641 	if (test_bit(__E1000_DOWN, &adapter->state))
1642 		return;
1643 
1644 	e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1645 }
1646 
1647 /**
1648  * e1000_intr_msi - Interrupt Handler
1649  * @irq: interrupt number
1650  * @data: pointer to a network interface device structure
1651  **/
1652 static irqreturn_t e1000_intr_msi(int irq, void *data)
1653 {
1654 	struct net_device *netdev = data;
1655 	struct e1000_adapter *adapter = netdev_priv(netdev);
1656 	struct e1000_hw *hw = &adapter->hw;
1657 	u32 icr = er32(ICR);
1658 
1659 	/*
1660 	 * read ICR disables interrupts using IAM
1661 	 */
1662 
1663 	if (icr & E1000_ICR_LSC) {
1664 		hw->mac.get_link_status = true;
1665 		/*
1666 		 * ICH8 workaround-- Call gig speed drop workaround on cable
1667 		 * disconnect (LSC) before accessing any PHY registers
1668 		 */
1669 		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1670 		    (!(er32(STATUS) & E1000_STATUS_LU)))
1671 			schedule_work(&adapter->downshift_task);
1672 
1673 		/*
1674 		 * 80003ES2LAN workaround-- For packet buffer work-around on
1675 		 * link down event; disable receives here in the ISR and reset
1676 		 * adapter in watchdog
1677 		 */
1678 		if (netif_carrier_ok(netdev) &&
1679 		    adapter->flags & FLAG_RX_NEEDS_RESTART) {
1680 			/* disable receives */
1681 			u32 rctl = er32(RCTL);
1682 			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1683 			adapter->flags |= FLAG_RX_RESTART_NOW;
1684 		}
1685 		/* guard against interrupt when we're going down */
1686 		if (!test_bit(__E1000_DOWN, &adapter->state))
1687 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1688 	}
1689 
1690 	if (napi_schedule_prep(&adapter->napi)) {
1691 		adapter->total_tx_bytes = 0;
1692 		adapter->total_tx_packets = 0;
1693 		adapter->total_rx_bytes = 0;
1694 		adapter->total_rx_packets = 0;
1695 		__napi_schedule(&adapter->napi);
1696 	}
1697 
1698 	return IRQ_HANDLED;
1699 }
1700 
1701 /**
1702  * e1000_intr - Interrupt Handler
1703  * @irq: interrupt number
1704  * @data: pointer to a network interface device structure
1705  **/
1706 static irqreturn_t e1000_intr(int irq, void *data)
1707 {
1708 	struct net_device *netdev = data;
1709 	struct e1000_adapter *adapter = netdev_priv(netdev);
1710 	struct e1000_hw *hw = &adapter->hw;
1711 	u32 rctl, icr = er32(ICR);
1712 
1713 	if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1714 		return IRQ_NONE;  /* Not our interrupt */
1715 
1716 	/*
1717 	 * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1718 	 * not set, then the adapter didn't send an interrupt
1719 	 */
1720 	if (!(icr & E1000_ICR_INT_ASSERTED))
1721 		return IRQ_NONE;
1722 
1723 	/*
1724 	 * Interrupt Auto-Mask...upon reading ICR,
1725 	 * interrupts are masked.  No need for the
1726 	 * IMC write
1727 	 */
1728 
1729 	if (icr & E1000_ICR_LSC) {
1730 		hw->mac.get_link_status = true;
1731 		/*
1732 		 * ICH8 workaround-- Call gig speed drop workaround on cable
1733 		 * disconnect (LSC) before accessing any PHY registers
1734 		 */
1735 		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1736 		    (!(er32(STATUS) & E1000_STATUS_LU)))
1737 			schedule_work(&adapter->downshift_task);
1738 
1739 		/*
1740 		 * 80003ES2LAN workaround--
1741 		 * For packet buffer work-around on link down event;
1742 		 * disable receives here in the ISR and
1743 		 * reset adapter in watchdog
1744 		 */
1745 		if (netif_carrier_ok(netdev) &&
1746 		    (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1747 			/* disable receives */
1748 			rctl = er32(RCTL);
1749 			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1750 			adapter->flags |= FLAG_RX_RESTART_NOW;
1751 		}
1752 		/* guard against interrupt when we're going down */
1753 		if (!test_bit(__E1000_DOWN, &adapter->state))
1754 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1755 	}
1756 
1757 	if (napi_schedule_prep(&adapter->napi)) {
1758 		adapter->total_tx_bytes = 0;
1759 		adapter->total_tx_packets = 0;
1760 		adapter->total_rx_bytes = 0;
1761 		adapter->total_rx_packets = 0;
1762 		__napi_schedule(&adapter->napi);
1763 	}
1764 
1765 	return IRQ_HANDLED;
1766 }
1767 
1768 static irqreturn_t e1000_msix_other(int irq, void *data)
1769 {
1770 	struct net_device *netdev = data;
1771 	struct e1000_adapter *adapter = netdev_priv(netdev);
1772 	struct e1000_hw *hw = &adapter->hw;
1773 	u32 icr = er32(ICR);
1774 
1775 	if (!(icr & E1000_ICR_INT_ASSERTED)) {
1776 		if (!test_bit(__E1000_DOWN, &adapter->state))
1777 			ew32(IMS, E1000_IMS_OTHER);
1778 		return IRQ_NONE;
1779 	}
1780 
1781 	if (icr & adapter->eiac_mask)
1782 		ew32(ICS, (icr & adapter->eiac_mask));
1783 
1784 	if (icr & E1000_ICR_OTHER) {
1785 		if (!(icr & E1000_ICR_LSC))
1786 			goto no_link_interrupt;
1787 		hw->mac.get_link_status = true;
1788 		/* guard against interrupt when we're going down */
1789 		if (!test_bit(__E1000_DOWN, &adapter->state))
1790 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1791 	}
1792 
1793 no_link_interrupt:
1794 	if (!test_bit(__E1000_DOWN, &adapter->state))
1795 		ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1796 
1797 	return IRQ_HANDLED;
1798 }
1799 
1800 
1801 static irqreturn_t e1000_intr_msix_tx(int irq, void *data)
1802 {
1803 	struct net_device *netdev = data;
1804 	struct e1000_adapter *adapter = netdev_priv(netdev);
1805 	struct e1000_hw *hw = &adapter->hw;
1806 	struct e1000_ring *tx_ring = adapter->tx_ring;
1807 
1808 
1809 	adapter->total_tx_bytes = 0;
1810 	adapter->total_tx_packets = 0;
1811 
1812 	if (!e1000_clean_tx_irq(tx_ring))
1813 		/* Ring was not completely cleaned, so fire another interrupt */
1814 		ew32(ICS, tx_ring->ims_val);
1815 
1816 	return IRQ_HANDLED;
1817 }
1818 
1819 static irqreturn_t e1000_intr_msix_rx(int irq, void *data)
1820 {
1821 	struct net_device *netdev = data;
1822 	struct e1000_adapter *adapter = netdev_priv(netdev);
1823 	struct e1000_ring *rx_ring = adapter->rx_ring;
1824 
1825 	/* Write the ITR value calculated at the end of the
1826 	 * previous interrupt.
1827 	 */
1828 	if (rx_ring->set_itr) {
1829 		writel(1000000000 / (rx_ring->itr_val * 256),
1830 		       rx_ring->itr_register);
1831 		rx_ring->set_itr = 0;
1832 	}
1833 
1834 	if (napi_schedule_prep(&adapter->napi)) {
1835 		adapter->total_rx_bytes = 0;
1836 		adapter->total_rx_packets = 0;
1837 		__napi_schedule(&adapter->napi);
1838 	}
1839 	return IRQ_HANDLED;
1840 }
1841 
1842 /**
1843  * e1000_configure_msix - Configure MSI-X hardware
1844  *
1845  * e1000_configure_msix sets up the hardware to properly
1846  * generate MSI-X interrupts.
1847  **/
1848 static void e1000_configure_msix(struct e1000_adapter *adapter)
1849 {
1850 	struct e1000_hw *hw = &adapter->hw;
1851 	struct e1000_ring *rx_ring = adapter->rx_ring;
1852 	struct e1000_ring *tx_ring = adapter->tx_ring;
1853 	int vector = 0;
1854 	u32 ctrl_ext, ivar = 0;
1855 
1856 	adapter->eiac_mask = 0;
1857 
1858 	/* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1859 	if (hw->mac.type == e1000_82574) {
1860 		u32 rfctl = er32(RFCTL);
1861 		rfctl |= E1000_RFCTL_ACK_DIS;
1862 		ew32(RFCTL, rfctl);
1863 	}
1864 
1865 #define E1000_IVAR_INT_ALLOC_VALID	0x8
1866 	/* Configure Rx vector */
1867 	rx_ring->ims_val = E1000_IMS_RXQ0;
1868 	adapter->eiac_mask |= rx_ring->ims_val;
1869 	if (rx_ring->itr_val)
1870 		writel(1000000000 / (rx_ring->itr_val * 256),
1871 		       rx_ring->itr_register);
1872 	else
1873 		writel(1, rx_ring->itr_register);
1874 	ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1875 
1876 	/* Configure Tx vector */
1877 	tx_ring->ims_val = E1000_IMS_TXQ0;
1878 	vector++;
1879 	if (tx_ring->itr_val)
1880 		writel(1000000000 / (tx_ring->itr_val * 256),
1881 		       tx_ring->itr_register);
1882 	else
1883 		writel(1, tx_ring->itr_register);
1884 	adapter->eiac_mask |= tx_ring->ims_val;
1885 	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
1886 
1887 	/* set vector for Other Causes, e.g. link changes */
1888 	vector++;
1889 	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
1890 	if (rx_ring->itr_val)
1891 		writel(1000000000 / (rx_ring->itr_val * 256),
1892 		       hw->hw_addr + E1000_EITR_82574(vector));
1893 	else
1894 		writel(1, hw->hw_addr + E1000_EITR_82574(vector));
1895 
1896 	/* Cause Tx interrupts on every write back */
1897 	ivar |= (1 << 31);
1898 
1899 	ew32(IVAR, ivar);
1900 
1901 	/* enable MSI-X PBA support */
1902 	ctrl_ext = er32(CTRL_EXT);
1903 	ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
1904 
1905 	/* Auto-Mask Other interrupts upon ICR read */
1906 #define E1000_EIAC_MASK_82574   0x01F00000
1907 	ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
1908 	ctrl_ext |= E1000_CTRL_EXT_EIAME;
1909 	ew32(CTRL_EXT, ctrl_ext);
1910 	e1e_flush();
1911 }
1912 
1913 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
1914 {
1915 	if (adapter->msix_entries) {
1916 		pci_disable_msix(adapter->pdev);
1917 		kfree(adapter->msix_entries);
1918 		adapter->msix_entries = NULL;
1919 	} else if (adapter->flags & FLAG_MSI_ENABLED) {
1920 		pci_disable_msi(adapter->pdev);
1921 		adapter->flags &= ~FLAG_MSI_ENABLED;
1922 	}
1923 }
1924 
1925 /**
1926  * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
1927  *
1928  * Attempt to configure interrupts using the best available
1929  * capabilities of the hardware and kernel.
1930  **/
1931 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
1932 {
1933 	int err;
1934 	int i;
1935 
1936 	switch (adapter->int_mode) {
1937 	case E1000E_INT_MODE_MSIX:
1938 		if (adapter->flags & FLAG_HAS_MSIX) {
1939 			adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
1940 			adapter->msix_entries = kcalloc(adapter->num_vectors,
1941 						      sizeof(struct msix_entry),
1942 						      GFP_KERNEL);
1943 			if (adapter->msix_entries) {
1944 				for (i = 0; i < adapter->num_vectors; i++)
1945 					adapter->msix_entries[i].entry = i;
1946 
1947 				err = pci_enable_msix(adapter->pdev,
1948 						      adapter->msix_entries,
1949 						      adapter->num_vectors);
1950 				if (err == 0)
1951 					return;
1952 			}
1953 			/* MSI-X failed, so fall through and try MSI */
1954 			e_err("Failed to initialize MSI-X interrupts.  Falling back to MSI interrupts.\n");
1955 			e1000e_reset_interrupt_capability(adapter);
1956 		}
1957 		adapter->int_mode = E1000E_INT_MODE_MSI;
1958 		/* Fall through */
1959 	case E1000E_INT_MODE_MSI:
1960 		if (!pci_enable_msi(adapter->pdev)) {
1961 			adapter->flags |= FLAG_MSI_ENABLED;
1962 		} else {
1963 			adapter->int_mode = E1000E_INT_MODE_LEGACY;
1964 			e_err("Failed to initialize MSI interrupts.  Falling back to legacy interrupts.\n");
1965 		}
1966 		/* Fall through */
1967 	case E1000E_INT_MODE_LEGACY:
1968 		/* Don't do anything; this is the system default */
1969 		break;
1970 	}
1971 
1972 	/* store the number of vectors being used */
1973 	adapter->num_vectors = 1;
1974 }
1975 
1976 /**
1977  * e1000_request_msix - Initialize MSI-X interrupts
1978  *
1979  * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
1980  * kernel.
1981  **/
1982 static int e1000_request_msix(struct e1000_adapter *adapter)
1983 {
1984 	struct net_device *netdev = adapter->netdev;
1985 	int err = 0, vector = 0;
1986 
1987 	if (strlen(netdev->name) < (IFNAMSIZ - 5))
1988 		snprintf(adapter->rx_ring->name,
1989 			 sizeof(adapter->rx_ring->name) - 1,
1990 			 "%s-rx-0", netdev->name);
1991 	else
1992 		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1993 	err = request_irq(adapter->msix_entries[vector].vector,
1994 			  e1000_intr_msix_rx, 0, adapter->rx_ring->name,
1995 			  netdev);
1996 	if (err)
1997 		return err;
1998 	adapter->rx_ring->itr_register = adapter->hw.hw_addr +
1999 	    E1000_EITR_82574(vector);
2000 	adapter->rx_ring->itr_val = adapter->itr;
2001 	vector++;
2002 
2003 	if (strlen(netdev->name) < (IFNAMSIZ - 5))
2004 		snprintf(adapter->tx_ring->name,
2005 			 sizeof(adapter->tx_ring->name) - 1,
2006 			 "%s-tx-0", netdev->name);
2007 	else
2008 		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2009 	err = request_irq(adapter->msix_entries[vector].vector,
2010 			  e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2011 			  netdev);
2012 	if (err)
2013 		return err;
2014 	adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2015 	    E1000_EITR_82574(vector);
2016 	adapter->tx_ring->itr_val = adapter->itr;
2017 	vector++;
2018 
2019 	err = request_irq(adapter->msix_entries[vector].vector,
2020 			  e1000_msix_other, 0, netdev->name, netdev);
2021 	if (err)
2022 		return err;
2023 
2024 	e1000_configure_msix(adapter);
2025 
2026 	return 0;
2027 }
2028 
2029 /**
2030  * e1000_request_irq - initialize interrupts
2031  *
2032  * Attempts to configure interrupts using the best available
2033  * capabilities of the hardware and kernel.
2034  **/
2035 static int e1000_request_irq(struct e1000_adapter *adapter)
2036 {
2037 	struct net_device *netdev = adapter->netdev;
2038 	int err;
2039 
2040 	if (adapter->msix_entries) {
2041 		err = e1000_request_msix(adapter);
2042 		if (!err)
2043 			return err;
2044 		/* fall back to MSI */
2045 		e1000e_reset_interrupt_capability(adapter);
2046 		adapter->int_mode = E1000E_INT_MODE_MSI;
2047 		e1000e_set_interrupt_capability(adapter);
2048 	}
2049 	if (adapter->flags & FLAG_MSI_ENABLED) {
2050 		err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2051 				  netdev->name, netdev);
2052 		if (!err)
2053 			return err;
2054 
2055 		/* fall back to legacy interrupt */
2056 		e1000e_reset_interrupt_capability(adapter);
2057 		adapter->int_mode = E1000E_INT_MODE_LEGACY;
2058 	}
2059 
2060 	err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2061 			  netdev->name, netdev);
2062 	if (err)
2063 		e_err("Unable to allocate interrupt, Error: %d\n", err);
2064 
2065 	return err;
2066 }
2067 
2068 static void e1000_free_irq(struct e1000_adapter *adapter)
2069 {
2070 	struct net_device *netdev = adapter->netdev;
2071 
2072 	if (adapter->msix_entries) {
2073 		int vector = 0;
2074 
2075 		free_irq(adapter->msix_entries[vector].vector, netdev);
2076 		vector++;
2077 
2078 		free_irq(adapter->msix_entries[vector].vector, netdev);
2079 		vector++;
2080 
2081 		/* Other Causes interrupt vector */
2082 		free_irq(adapter->msix_entries[vector].vector, netdev);
2083 		return;
2084 	}
2085 
2086 	free_irq(adapter->pdev->irq, netdev);
2087 }
2088 
2089 /**
2090  * e1000_irq_disable - Mask off interrupt generation on the NIC
2091  **/
2092 static void e1000_irq_disable(struct e1000_adapter *adapter)
2093 {
2094 	struct e1000_hw *hw = &adapter->hw;
2095 
2096 	ew32(IMC, ~0);
2097 	if (adapter->msix_entries)
2098 		ew32(EIAC_82574, 0);
2099 	e1e_flush();
2100 
2101 	if (adapter->msix_entries) {
2102 		int i;
2103 		for (i = 0; i < adapter->num_vectors; i++)
2104 			synchronize_irq(adapter->msix_entries[i].vector);
2105 	} else {
2106 		synchronize_irq(adapter->pdev->irq);
2107 	}
2108 }
2109 
2110 /**
2111  * e1000_irq_enable - Enable default interrupt generation settings
2112  **/
2113 static void e1000_irq_enable(struct e1000_adapter *adapter)
2114 {
2115 	struct e1000_hw *hw = &adapter->hw;
2116 
2117 	if (adapter->msix_entries) {
2118 		ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2119 		ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
2120 	} else {
2121 		ew32(IMS, IMS_ENABLE_MASK);
2122 	}
2123 	e1e_flush();
2124 }
2125 
2126 /**
2127  * e1000e_get_hw_control - get control of the h/w from f/w
2128  * @adapter: address of board private structure
2129  *
2130  * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2131  * For ASF and Pass Through versions of f/w this means that
2132  * the driver is loaded. For AMT version (only with 82573)
2133  * of the f/w this means that the network i/f is open.
2134  **/
2135 void e1000e_get_hw_control(struct e1000_adapter *adapter)
2136 {
2137 	struct e1000_hw *hw = &adapter->hw;
2138 	u32 ctrl_ext;
2139 	u32 swsm;
2140 
2141 	/* Let firmware know the driver has taken over */
2142 	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2143 		swsm = er32(SWSM);
2144 		ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2145 	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2146 		ctrl_ext = er32(CTRL_EXT);
2147 		ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2148 	}
2149 }
2150 
2151 /**
2152  * e1000e_release_hw_control - release control of the h/w to f/w
2153  * @adapter: address of board private structure
2154  *
2155  * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2156  * For ASF and Pass Through versions of f/w this means that the
2157  * driver is no longer loaded. For AMT version (only with 82573) i
2158  * of the f/w this means that the network i/f is closed.
2159  *
2160  **/
2161 void e1000e_release_hw_control(struct e1000_adapter *adapter)
2162 {
2163 	struct e1000_hw *hw = &adapter->hw;
2164 	u32 ctrl_ext;
2165 	u32 swsm;
2166 
2167 	/* Let firmware taken over control of h/w */
2168 	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2169 		swsm = er32(SWSM);
2170 		ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2171 	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2172 		ctrl_ext = er32(CTRL_EXT);
2173 		ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2174 	}
2175 }
2176 
2177 /**
2178  * e1000_alloc_ring_dma - allocate memory for a ring structure
2179  **/
2180 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2181 				struct e1000_ring *ring)
2182 {
2183 	struct pci_dev *pdev = adapter->pdev;
2184 
2185 	ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2186 					GFP_KERNEL);
2187 	if (!ring->desc)
2188 		return -ENOMEM;
2189 
2190 	return 0;
2191 }
2192 
2193 /**
2194  * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2195  * @tx_ring: Tx descriptor ring
2196  *
2197  * Return 0 on success, negative on failure
2198  **/
2199 int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2200 {
2201 	struct e1000_adapter *adapter = tx_ring->adapter;
2202 	int err = -ENOMEM, size;
2203 
2204 	size = sizeof(struct e1000_buffer) * tx_ring->count;
2205 	tx_ring->buffer_info = vzalloc(size);
2206 	if (!tx_ring->buffer_info)
2207 		goto err;
2208 
2209 	/* round up to nearest 4K */
2210 	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2211 	tx_ring->size = ALIGN(tx_ring->size, 4096);
2212 
2213 	err = e1000_alloc_ring_dma(adapter, tx_ring);
2214 	if (err)
2215 		goto err;
2216 
2217 	tx_ring->next_to_use = 0;
2218 	tx_ring->next_to_clean = 0;
2219 
2220 	return 0;
2221 err:
2222 	vfree(tx_ring->buffer_info);
2223 	e_err("Unable to allocate memory for the transmit descriptor ring\n");
2224 	return err;
2225 }
2226 
2227 /**
2228  * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2229  * @rx_ring: Rx descriptor ring
2230  *
2231  * Returns 0 on success, negative on failure
2232  **/
2233 int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2234 {
2235 	struct e1000_adapter *adapter = rx_ring->adapter;
2236 	struct e1000_buffer *buffer_info;
2237 	int i, size, desc_len, err = -ENOMEM;
2238 
2239 	size = sizeof(struct e1000_buffer) * rx_ring->count;
2240 	rx_ring->buffer_info = vzalloc(size);
2241 	if (!rx_ring->buffer_info)
2242 		goto err;
2243 
2244 	for (i = 0; i < rx_ring->count; i++) {
2245 		buffer_info = &rx_ring->buffer_info[i];
2246 		buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2247 						sizeof(struct e1000_ps_page),
2248 						GFP_KERNEL);
2249 		if (!buffer_info->ps_pages)
2250 			goto err_pages;
2251 	}
2252 
2253 	desc_len = sizeof(union e1000_rx_desc_packet_split);
2254 
2255 	/* Round up to nearest 4K */
2256 	rx_ring->size = rx_ring->count * desc_len;
2257 	rx_ring->size = ALIGN(rx_ring->size, 4096);
2258 
2259 	err = e1000_alloc_ring_dma(adapter, rx_ring);
2260 	if (err)
2261 		goto err_pages;
2262 
2263 	rx_ring->next_to_clean = 0;
2264 	rx_ring->next_to_use = 0;
2265 	rx_ring->rx_skb_top = NULL;
2266 
2267 	return 0;
2268 
2269 err_pages:
2270 	for (i = 0; i < rx_ring->count; i++) {
2271 		buffer_info = &rx_ring->buffer_info[i];
2272 		kfree(buffer_info->ps_pages);
2273 	}
2274 err:
2275 	vfree(rx_ring->buffer_info);
2276 	e_err("Unable to allocate memory for the receive descriptor ring\n");
2277 	return err;
2278 }
2279 
2280 /**
2281  * e1000_clean_tx_ring - Free Tx Buffers
2282  * @tx_ring: Tx descriptor ring
2283  **/
2284 static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2285 {
2286 	struct e1000_adapter *adapter = tx_ring->adapter;
2287 	struct e1000_buffer *buffer_info;
2288 	unsigned long size;
2289 	unsigned int i;
2290 
2291 	for (i = 0; i < tx_ring->count; i++) {
2292 		buffer_info = &tx_ring->buffer_info[i];
2293 		e1000_put_txbuf(tx_ring, buffer_info);
2294 	}
2295 
2296 	netdev_reset_queue(adapter->netdev);
2297 	size = sizeof(struct e1000_buffer) * tx_ring->count;
2298 	memset(tx_ring->buffer_info, 0, size);
2299 
2300 	memset(tx_ring->desc, 0, tx_ring->size);
2301 
2302 	tx_ring->next_to_use = 0;
2303 	tx_ring->next_to_clean = 0;
2304 
2305 	writel(0, tx_ring->head);
2306 	if (tx_ring->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2307 		e1000e_update_tdt_wa(tx_ring, 0);
2308 	else
2309 		writel(0, tx_ring->tail);
2310 }
2311 
2312 /**
2313  * e1000e_free_tx_resources - Free Tx Resources per Queue
2314  * @tx_ring: Tx descriptor ring
2315  *
2316  * Free all transmit software resources
2317  **/
2318 void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2319 {
2320 	struct e1000_adapter *adapter = tx_ring->adapter;
2321 	struct pci_dev *pdev = adapter->pdev;
2322 
2323 	e1000_clean_tx_ring(tx_ring);
2324 
2325 	vfree(tx_ring->buffer_info);
2326 	tx_ring->buffer_info = NULL;
2327 
2328 	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2329 			  tx_ring->dma);
2330 	tx_ring->desc = NULL;
2331 }
2332 
2333 /**
2334  * e1000e_free_rx_resources - Free Rx Resources
2335  * @rx_ring: Rx descriptor ring
2336  *
2337  * Free all receive software resources
2338  **/
2339 void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2340 {
2341 	struct e1000_adapter *adapter = rx_ring->adapter;
2342 	struct pci_dev *pdev = adapter->pdev;
2343 	int i;
2344 
2345 	e1000_clean_rx_ring(rx_ring);
2346 
2347 	for (i = 0; i < rx_ring->count; i++)
2348 		kfree(rx_ring->buffer_info[i].ps_pages);
2349 
2350 	vfree(rx_ring->buffer_info);
2351 	rx_ring->buffer_info = NULL;
2352 
2353 	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2354 			  rx_ring->dma);
2355 	rx_ring->desc = NULL;
2356 }
2357 
2358 /**
2359  * e1000_update_itr - update the dynamic ITR value based on statistics
2360  * @adapter: pointer to adapter
2361  * @itr_setting: current adapter->itr
2362  * @packets: the number of packets during this measurement interval
2363  * @bytes: the number of bytes during this measurement interval
2364  *
2365  *      Stores a new ITR value based on packets and byte
2366  *      counts during the last interrupt.  The advantage of per interrupt
2367  *      computation is faster updates and more accurate ITR for the current
2368  *      traffic pattern.  Constants in this function were computed
2369  *      based on theoretical maximum wire speed and thresholds were set based
2370  *      on testing data as well as attempting to minimize response time
2371  *      while increasing bulk throughput.  This functionality is controlled
2372  *      by the InterruptThrottleRate module parameter.
2373  **/
2374 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2375 				     u16 itr_setting, int packets,
2376 				     int bytes)
2377 {
2378 	unsigned int retval = itr_setting;
2379 
2380 	if (packets == 0)
2381 		return itr_setting;
2382 
2383 	switch (itr_setting) {
2384 	case lowest_latency:
2385 		/* handle TSO and jumbo frames */
2386 		if (bytes/packets > 8000)
2387 			retval = bulk_latency;
2388 		else if ((packets < 5) && (bytes > 512))
2389 			retval = low_latency;
2390 		break;
2391 	case low_latency:  /* 50 usec aka 20000 ints/s */
2392 		if (bytes > 10000) {
2393 			/* this if handles the TSO accounting */
2394 			if (bytes/packets > 8000)
2395 				retval = bulk_latency;
2396 			else if ((packets < 10) || ((bytes/packets) > 1200))
2397 				retval = bulk_latency;
2398 			else if ((packets > 35))
2399 				retval = lowest_latency;
2400 		} else if (bytes/packets > 2000) {
2401 			retval = bulk_latency;
2402 		} else if (packets <= 2 && bytes < 512) {
2403 			retval = lowest_latency;
2404 		}
2405 		break;
2406 	case bulk_latency: /* 250 usec aka 4000 ints/s */
2407 		if (bytes > 25000) {
2408 			if (packets > 35)
2409 				retval = low_latency;
2410 		} else if (bytes < 6000) {
2411 			retval = low_latency;
2412 		}
2413 		break;
2414 	}
2415 
2416 	return retval;
2417 }
2418 
2419 static void e1000_set_itr(struct e1000_adapter *adapter)
2420 {
2421 	struct e1000_hw *hw = &adapter->hw;
2422 	u16 current_itr;
2423 	u32 new_itr = adapter->itr;
2424 
2425 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2426 	if (adapter->link_speed != SPEED_1000) {
2427 		current_itr = 0;
2428 		new_itr = 4000;
2429 		goto set_itr_now;
2430 	}
2431 
2432 	if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2433 		new_itr = 0;
2434 		goto set_itr_now;
2435 	}
2436 
2437 	adapter->tx_itr = e1000_update_itr(adapter,
2438 				    adapter->tx_itr,
2439 				    adapter->total_tx_packets,
2440 				    adapter->total_tx_bytes);
2441 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2442 	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2443 		adapter->tx_itr = low_latency;
2444 
2445 	adapter->rx_itr = e1000_update_itr(adapter,
2446 				    adapter->rx_itr,
2447 				    adapter->total_rx_packets,
2448 				    adapter->total_rx_bytes);
2449 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2450 	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2451 		adapter->rx_itr = low_latency;
2452 
2453 	current_itr = max(adapter->rx_itr, adapter->tx_itr);
2454 
2455 	switch (current_itr) {
2456 	/* counts and packets in update_itr are dependent on these numbers */
2457 	case lowest_latency:
2458 		new_itr = 70000;
2459 		break;
2460 	case low_latency:
2461 		new_itr = 20000; /* aka hwitr = ~200 */
2462 		break;
2463 	case bulk_latency:
2464 		new_itr = 4000;
2465 		break;
2466 	default:
2467 		break;
2468 	}
2469 
2470 set_itr_now:
2471 	if (new_itr != adapter->itr) {
2472 		/*
2473 		 * this attempts to bias the interrupt rate towards Bulk
2474 		 * by adding intermediate steps when interrupt rate is
2475 		 * increasing
2476 		 */
2477 		new_itr = new_itr > adapter->itr ?
2478 			     min(adapter->itr + (new_itr >> 2), new_itr) :
2479 			     new_itr;
2480 		adapter->itr = new_itr;
2481 		adapter->rx_ring->itr_val = new_itr;
2482 		if (adapter->msix_entries)
2483 			adapter->rx_ring->set_itr = 1;
2484 		else
2485 			if (new_itr)
2486 				ew32(ITR, 1000000000 / (new_itr * 256));
2487 			else
2488 				ew32(ITR, 0);
2489 	}
2490 }
2491 
2492 /**
2493  * e1000e_write_itr - write the ITR value to the appropriate registers
2494  * @adapter: address of board private structure
2495  * @itr: new ITR value to program
2496  *
2497  * e1000e_write_itr determines if the adapter is in MSI-X mode
2498  * and, if so, writes the EITR registers with the ITR value.
2499  * Otherwise, it writes the ITR value into the ITR register.
2500  **/
2501 void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
2502 {
2503 	struct e1000_hw *hw = &adapter->hw;
2504 	u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
2505 
2506 	if (adapter->msix_entries) {
2507 		int vector;
2508 
2509 		for (vector = 0; vector < adapter->num_vectors; vector++)
2510 			writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
2511 	} else {
2512 		ew32(ITR, new_itr);
2513 	}
2514 }
2515 
2516 /**
2517  * e1000_alloc_queues - Allocate memory for all rings
2518  * @adapter: board private structure to initialize
2519  **/
2520 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
2521 {
2522 	int size = sizeof(struct e1000_ring);
2523 
2524 	adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2525 	if (!adapter->tx_ring)
2526 		goto err;
2527 	adapter->tx_ring->count = adapter->tx_ring_count;
2528 	adapter->tx_ring->adapter = adapter;
2529 
2530 	adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2531 	if (!adapter->rx_ring)
2532 		goto err;
2533 	adapter->rx_ring->count = adapter->rx_ring_count;
2534 	adapter->rx_ring->adapter = adapter;
2535 
2536 	return 0;
2537 err:
2538 	e_err("Unable to allocate memory for queues\n");
2539 	kfree(adapter->rx_ring);
2540 	kfree(adapter->tx_ring);
2541 	return -ENOMEM;
2542 }
2543 
2544 /**
2545  * e1000e_poll - NAPI Rx polling callback
2546  * @napi: struct associated with this polling callback
2547  * @weight: number of packets driver is allowed to process this poll
2548  **/
2549 static int e1000e_poll(struct napi_struct *napi, int weight)
2550 {
2551 	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2552 						     napi);
2553 	struct e1000_hw *hw = &adapter->hw;
2554 	struct net_device *poll_dev = adapter->netdev;
2555 	int tx_cleaned = 1, work_done = 0;
2556 
2557 	adapter = netdev_priv(poll_dev);
2558 
2559 	if (!adapter->msix_entries ||
2560 	    (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2561 		tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2562 
2563 	adapter->clean_rx(adapter->rx_ring, &work_done, weight);
2564 
2565 	if (!tx_cleaned)
2566 		work_done = weight;
2567 
2568 	/* If weight not fully consumed, exit the polling mode */
2569 	if (work_done < weight) {
2570 		if (adapter->itr_setting & 3)
2571 			e1000_set_itr(adapter);
2572 		napi_complete(napi);
2573 		if (!test_bit(__E1000_DOWN, &adapter->state)) {
2574 			if (adapter->msix_entries)
2575 				ew32(IMS, adapter->rx_ring->ims_val);
2576 			else
2577 				e1000_irq_enable(adapter);
2578 		}
2579 	}
2580 
2581 	return work_done;
2582 }
2583 
2584 static int e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
2585 {
2586 	struct e1000_adapter *adapter = netdev_priv(netdev);
2587 	struct e1000_hw *hw = &adapter->hw;
2588 	u32 vfta, index;
2589 
2590 	/* don't update vlan cookie if already programmed */
2591 	if ((adapter->hw.mng_cookie.status &
2592 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2593 	    (vid == adapter->mng_vlan_id))
2594 		return 0;
2595 
2596 	/* add VID to filter table */
2597 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2598 		index = (vid >> 5) & 0x7F;
2599 		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2600 		vfta |= (1 << (vid & 0x1F));
2601 		hw->mac.ops.write_vfta(hw, index, vfta);
2602 	}
2603 
2604 	set_bit(vid, adapter->active_vlans);
2605 
2606 	return 0;
2607 }
2608 
2609 static int e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
2610 {
2611 	struct e1000_adapter *adapter = netdev_priv(netdev);
2612 	struct e1000_hw *hw = &adapter->hw;
2613 	u32 vfta, index;
2614 
2615 	if ((adapter->hw.mng_cookie.status &
2616 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2617 	    (vid == adapter->mng_vlan_id)) {
2618 		/* release control to f/w */
2619 		e1000e_release_hw_control(adapter);
2620 		return 0;
2621 	}
2622 
2623 	/* remove VID from filter table */
2624 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2625 		index = (vid >> 5) & 0x7F;
2626 		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2627 		vfta &= ~(1 << (vid & 0x1F));
2628 		hw->mac.ops.write_vfta(hw, index, vfta);
2629 	}
2630 
2631 	clear_bit(vid, adapter->active_vlans);
2632 
2633 	return 0;
2634 }
2635 
2636 /**
2637  * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2638  * @adapter: board private structure to initialize
2639  **/
2640 static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2641 {
2642 	struct net_device *netdev = adapter->netdev;
2643 	struct e1000_hw *hw = &adapter->hw;
2644 	u32 rctl;
2645 
2646 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2647 		/* disable VLAN receive filtering */
2648 		rctl = er32(RCTL);
2649 		rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2650 		ew32(RCTL, rctl);
2651 
2652 		if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2653 			e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
2654 			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2655 		}
2656 	}
2657 }
2658 
2659 /**
2660  * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2661  * @adapter: board private structure to initialize
2662  **/
2663 static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2664 {
2665 	struct e1000_hw *hw = &adapter->hw;
2666 	u32 rctl;
2667 
2668 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2669 		/* enable VLAN receive filtering */
2670 		rctl = er32(RCTL);
2671 		rctl |= E1000_RCTL_VFE;
2672 		rctl &= ~E1000_RCTL_CFIEN;
2673 		ew32(RCTL, rctl);
2674 	}
2675 }
2676 
2677 /**
2678  * e1000e_vlan_strip_enable - helper to disable HW VLAN stripping
2679  * @adapter: board private structure to initialize
2680  **/
2681 static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2682 {
2683 	struct e1000_hw *hw = &adapter->hw;
2684 	u32 ctrl;
2685 
2686 	/* disable VLAN tag insert/strip */
2687 	ctrl = er32(CTRL);
2688 	ctrl &= ~E1000_CTRL_VME;
2689 	ew32(CTRL, ctrl);
2690 }
2691 
2692 /**
2693  * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2694  * @adapter: board private structure to initialize
2695  **/
2696 static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2697 {
2698 	struct e1000_hw *hw = &adapter->hw;
2699 	u32 ctrl;
2700 
2701 	/* enable VLAN tag insert/strip */
2702 	ctrl = er32(CTRL);
2703 	ctrl |= E1000_CTRL_VME;
2704 	ew32(CTRL, ctrl);
2705 }
2706 
2707 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2708 {
2709 	struct net_device *netdev = adapter->netdev;
2710 	u16 vid = adapter->hw.mng_cookie.vlan_id;
2711 	u16 old_vid = adapter->mng_vlan_id;
2712 
2713 	if (adapter->hw.mng_cookie.status &
2714 	    E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2715 		e1000_vlan_rx_add_vid(netdev, vid);
2716 		adapter->mng_vlan_id = vid;
2717 	}
2718 
2719 	if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2720 		e1000_vlan_rx_kill_vid(netdev, old_vid);
2721 }
2722 
2723 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2724 {
2725 	u16 vid;
2726 
2727 	e1000_vlan_rx_add_vid(adapter->netdev, 0);
2728 
2729 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2730 		e1000_vlan_rx_add_vid(adapter->netdev, vid);
2731 }
2732 
2733 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2734 {
2735 	struct e1000_hw *hw = &adapter->hw;
2736 	u32 manc, manc2h, mdef, i, j;
2737 
2738 	if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2739 		return;
2740 
2741 	manc = er32(MANC);
2742 
2743 	/*
2744 	 * enable receiving management packets to the host. this will probably
2745 	 * generate destination unreachable messages from the host OS, but
2746 	 * the packets will be handled on SMBUS
2747 	 */
2748 	manc |= E1000_MANC_EN_MNG2HOST;
2749 	manc2h = er32(MANC2H);
2750 
2751 	switch (hw->mac.type) {
2752 	default:
2753 		manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2754 		break;
2755 	case e1000_82574:
2756 	case e1000_82583:
2757 		/*
2758 		 * Check if IPMI pass-through decision filter already exists;
2759 		 * if so, enable it.
2760 		 */
2761 		for (i = 0, j = 0; i < 8; i++) {
2762 			mdef = er32(MDEF(i));
2763 
2764 			/* Ignore filters with anything other than IPMI ports */
2765 			if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2766 				continue;
2767 
2768 			/* Enable this decision filter in MANC2H */
2769 			if (mdef)
2770 				manc2h |= (1 << i);
2771 
2772 			j |= mdef;
2773 		}
2774 
2775 		if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2776 			break;
2777 
2778 		/* Create new decision filter in an empty filter */
2779 		for (i = 0, j = 0; i < 8; i++)
2780 			if (er32(MDEF(i)) == 0) {
2781 				ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2782 					       E1000_MDEF_PORT_664));
2783 				manc2h |= (1 << 1);
2784 				j++;
2785 				break;
2786 			}
2787 
2788 		if (!j)
2789 			e_warn("Unable to create IPMI pass-through filter\n");
2790 		break;
2791 	}
2792 
2793 	ew32(MANC2H, manc2h);
2794 	ew32(MANC, manc);
2795 }
2796 
2797 /**
2798  * e1000_configure_tx - Configure Transmit Unit after Reset
2799  * @adapter: board private structure
2800  *
2801  * Configure the Tx unit of the MAC after a reset.
2802  **/
2803 static void e1000_configure_tx(struct e1000_adapter *adapter)
2804 {
2805 	struct e1000_hw *hw = &adapter->hw;
2806 	struct e1000_ring *tx_ring = adapter->tx_ring;
2807 	u64 tdba;
2808 	u32 tdlen, tarc;
2809 
2810 	/* Setup the HW Tx Head and Tail descriptor pointers */
2811 	tdba = tx_ring->dma;
2812 	tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2813 	ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2814 	ew32(TDBAH(0), (tdba >> 32));
2815 	ew32(TDLEN(0), tdlen);
2816 	ew32(TDH(0), 0);
2817 	ew32(TDT(0), 0);
2818 	tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2819 	tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2820 
2821 	/* Set the Tx Interrupt Delay register */
2822 	ew32(TIDV, adapter->tx_int_delay);
2823 	/* Tx irq moderation */
2824 	ew32(TADV, adapter->tx_abs_int_delay);
2825 
2826 	if (adapter->flags2 & FLAG2_DMA_BURST) {
2827 		u32 txdctl = er32(TXDCTL(0));
2828 		txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2829 			    E1000_TXDCTL_WTHRESH);
2830 		/*
2831 		 * set up some performance related parameters to encourage the
2832 		 * hardware to use the bus more efficiently in bursts, depends
2833 		 * on the tx_int_delay to be enabled,
2834 		 * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2835 		 * hthresh = 1 ==> prefetch when one or more available
2836 		 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2837 		 * BEWARE: this seems to work but should be considered first if
2838 		 * there are Tx hangs or other Tx related bugs
2839 		 */
2840 		txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2841 		ew32(TXDCTL(0), txdctl);
2842 	}
2843 	/* erratum work around: set txdctl the same for both queues */
2844 	ew32(TXDCTL(1), er32(TXDCTL(0)));
2845 
2846 	if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2847 		tarc = er32(TARC(0));
2848 		/*
2849 		 * set the speed mode bit, we'll clear it if we're not at
2850 		 * gigabit link later
2851 		 */
2852 #define SPEED_MODE_BIT (1 << 21)
2853 		tarc |= SPEED_MODE_BIT;
2854 		ew32(TARC(0), tarc);
2855 	}
2856 
2857 	/* errata: program both queues to unweighted RR */
2858 	if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2859 		tarc = er32(TARC(0));
2860 		tarc |= 1;
2861 		ew32(TARC(0), tarc);
2862 		tarc = er32(TARC(1));
2863 		tarc |= 1;
2864 		ew32(TARC(1), tarc);
2865 	}
2866 
2867 	/* Setup Transmit Descriptor Settings for eop descriptor */
2868 	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2869 
2870 	/* only set IDE if we are delaying interrupts using the timers */
2871 	if (adapter->tx_int_delay)
2872 		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2873 
2874 	/* enable Report Status bit */
2875 	adapter->txd_cmd |= E1000_TXD_CMD_RS;
2876 
2877 	hw->mac.ops.config_collision_dist(hw);
2878 }
2879 
2880 /**
2881  * e1000_setup_rctl - configure the receive control registers
2882  * @adapter: Board private structure
2883  **/
2884 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
2885 			   (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
2886 static void e1000_setup_rctl(struct e1000_adapter *adapter)
2887 {
2888 	struct e1000_hw *hw = &adapter->hw;
2889 	u32 rctl, rfctl;
2890 	u32 pages = 0;
2891 
2892 	/* Workaround Si errata on PCHx - configure jumbo frame flow */
2893 	if (hw->mac.type >= e1000_pch2lan) {
2894 		s32 ret_val;
2895 
2896 		if (adapter->netdev->mtu > ETH_DATA_LEN)
2897 			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
2898 		else
2899 			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
2900 
2901 		if (ret_val)
2902 			e_dbg("failed to enable jumbo frame workaround mode\n");
2903 	}
2904 
2905 	/* Program MC offset vector base */
2906 	rctl = er32(RCTL);
2907 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2908 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
2909 		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
2910 		(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2911 
2912 	/* Do not Store bad packets */
2913 	rctl &= ~E1000_RCTL_SBP;
2914 
2915 	/* Enable Long Packet receive */
2916 	if (adapter->netdev->mtu <= ETH_DATA_LEN)
2917 		rctl &= ~E1000_RCTL_LPE;
2918 	else
2919 		rctl |= E1000_RCTL_LPE;
2920 
2921 	/* Some systems expect that the CRC is included in SMBUS traffic. The
2922 	 * hardware strips the CRC before sending to both SMBUS (BMC) and to
2923 	 * host memory when this is enabled
2924 	 */
2925 	if (adapter->flags2 & FLAG2_CRC_STRIPPING)
2926 		rctl |= E1000_RCTL_SECRC;
2927 
2928 	/* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
2929 	if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
2930 		u16 phy_data;
2931 
2932 		e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
2933 		phy_data &= 0xfff8;
2934 		phy_data |= (1 << 2);
2935 		e1e_wphy(hw, PHY_REG(770, 26), phy_data);
2936 
2937 		e1e_rphy(hw, 22, &phy_data);
2938 		phy_data &= 0x0fff;
2939 		phy_data |= (1 << 14);
2940 		e1e_wphy(hw, 0x10, 0x2823);
2941 		e1e_wphy(hw, 0x11, 0x0003);
2942 		e1e_wphy(hw, 22, phy_data);
2943 	}
2944 
2945 	/* Setup buffer sizes */
2946 	rctl &= ~E1000_RCTL_SZ_4096;
2947 	rctl |= E1000_RCTL_BSEX;
2948 	switch (adapter->rx_buffer_len) {
2949 	case 2048:
2950 	default:
2951 		rctl |= E1000_RCTL_SZ_2048;
2952 		rctl &= ~E1000_RCTL_BSEX;
2953 		break;
2954 	case 4096:
2955 		rctl |= E1000_RCTL_SZ_4096;
2956 		break;
2957 	case 8192:
2958 		rctl |= E1000_RCTL_SZ_8192;
2959 		break;
2960 	case 16384:
2961 		rctl |= E1000_RCTL_SZ_16384;
2962 		break;
2963 	}
2964 
2965 	/* Enable Extended Status in all Receive Descriptors */
2966 	rfctl = er32(RFCTL);
2967 	rfctl |= E1000_RFCTL_EXTEN;
2968 	ew32(RFCTL, rfctl);
2969 
2970 	/*
2971 	 * 82571 and greater support packet-split where the protocol
2972 	 * header is placed in skb->data and the packet data is
2973 	 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2974 	 * In the case of a non-split, skb->data is linearly filled,
2975 	 * followed by the page buffers.  Therefore, skb->data is
2976 	 * sized to hold the largest protocol header.
2977 	 *
2978 	 * allocations using alloc_page take too long for regular MTU
2979 	 * so only enable packet split for jumbo frames
2980 	 *
2981 	 * Using pages when the page size is greater than 16k wastes
2982 	 * a lot of memory, since we allocate 3 pages at all times
2983 	 * per packet.
2984 	 */
2985 	pages = PAGE_USE_COUNT(adapter->netdev->mtu);
2986 	if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
2987 		adapter->rx_ps_pages = pages;
2988 	else
2989 		adapter->rx_ps_pages = 0;
2990 
2991 	if (adapter->rx_ps_pages) {
2992 		u32 psrctl = 0;
2993 
2994 		/* Enable Packet split descriptors */
2995 		rctl |= E1000_RCTL_DTYP_PS;
2996 
2997 		psrctl |= adapter->rx_ps_bsize0 >>
2998 			E1000_PSRCTL_BSIZE0_SHIFT;
2999 
3000 		switch (adapter->rx_ps_pages) {
3001 		case 3:
3002 			psrctl |= PAGE_SIZE <<
3003 				E1000_PSRCTL_BSIZE3_SHIFT;
3004 		case 2:
3005 			psrctl |= PAGE_SIZE <<
3006 				E1000_PSRCTL_BSIZE2_SHIFT;
3007 		case 1:
3008 			psrctl |= PAGE_SIZE >>
3009 				E1000_PSRCTL_BSIZE1_SHIFT;
3010 			break;
3011 		}
3012 
3013 		ew32(PSRCTL, psrctl);
3014 	}
3015 
3016 	/* This is useful for sniffing bad packets. */
3017 	if (adapter->netdev->features & NETIF_F_RXALL) {
3018 		/* UPE and MPE will be handled by normal PROMISC logic
3019 		 * in e1000e_set_rx_mode */
3020 		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3021 			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3022 			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3023 
3024 		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3025 			  E1000_RCTL_DPF | /* Allow filtered pause */
3026 			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3027 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3028 		 * and that breaks VLANs.
3029 		 */
3030 	}
3031 
3032 	ew32(RCTL, rctl);
3033 	/* just started the receive unit, no need to restart */
3034 	adapter->flags &= ~FLAG_RX_RESTART_NOW;
3035 }
3036 
3037 /**
3038  * e1000_configure_rx - Configure Receive Unit after Reset
3039  * @adapter: board private structure
3040  *
3041  * Configure the Rx unit of the MAC after a reset.
3042  **/
3043 static void e1000_configure_rx(struct e1000_adapter *adapter)
3044 {
3045 	struct e1000_hw *hw = &adapter->hw;
3046 	struct e1000_ring *rx_ring = adapter->rx_ring;
3047 	u64 rdba;
3048 	u32 rdlen, rctl, rxcsum, ctrl_ext;
3049 
3050 	if (adapter->rx_ps_pages) {
3051 		/* this is a 32 byte descriptor */
3052 		rdlen = rx_ring->count *
3053 		    sizeof(union e1000_rx_desc_packet_split);
3054 		adapter->clean_rx = e1000_clean_rx_irq_ps;
3055 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3056 	} else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3057 		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3058 		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3059 		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3060 	} else {
3061 		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3062 		adapter->clean_rx = e1000_clean_rx_irq;
3063 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3064 	}
3065 
3066 	/* disable receives while setting up the descriptors */
3067 	rctl = er32(RCTL);
3068 	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3069 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
3070 	e1e_flush();
3071 	usleep_range(10000, 20000);
3072 
3073 	if (adapter->flags2 & FLAG2_DMA_BURST) {
3074 		/*
3075 		 * set the writeback threshold (only takes effect if the RDTR
3076 		 * is set). set GRAN=1 and write back up to 0x4 worth, and
3077 		 * enable prefetching of 0x20 Rx descriptors
3078 		 * granularity = 01
3079 		 * wthresh = 04,
3080 		 * hthresh = 04,
3081 		 * pthresh = 0x20
3082 		 */
3083 		ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3084 		ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3085 
3086 		/*
3087 		 * override the delay timers for enabling bursting, only if
3088 		 * the value was not set by the user via module options
3089 		 */
3090 		if (adapter->rx_int_delay == DEFAULT_RDTR)
3091 			adapter->rx_int_delay = BURST_RDTR;
3092 		if (adapter->rx_abs_int_delay == DEFAULT_RADV)
3093 			adapter->rx_abs_int_delay = BURST_RADV;
3094 	}
3095 
3096 	/* set the Receive Delay Timer Register */
3097 	ew32(RDTR, adapter->rx_int_delay);
3098 
3099 	/* irq moderation */
3100 	ew32(RADV, adapter->rx_abs_int_delay);
3101 	if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3102 		e1000e_write_itr(adapter, adapter->itr);
3103 
3104 	ctrl_ext = er32(CTRL_EXT);
3105 	/* Auto-Mask interrupts upon ICR access */
3106 	ctrl_ext |= E1000_CTRL_EXT_IAME;
3107 	ew32(IAM, 0xffffffff);
3108 	ew32(CTRL_EXT, ctrl_ext);
3109 	e1e_flush();
3110 
3111 	/*
3112 	 * Setup the HW Rx Head and Tail Descriptor Pointers and
3113 	 * the Base and Length of the Rx Descriptor Ring
3114 	 */
3115 	rdba = rx_ring->dma;
3116 	ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3117 	ew32(RDBAH(0), (rdba >> 32));
3118 	ew32(RDLEN(0), rdlen);
3119 	ew32(RDH(0), 0);
3120 	ew32(RDT(0), 0);
3121 	rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3122 	rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3123 
3124 	/* Enable Receive Checksum Offload for TCP and UDP */
3125 	rxcsum = er32(RXCSUM);
3126 	if (adapter->netdev->features & NETIF_F_RXCSUM)
3127 		rxcsum |= E1000_RXCSUM_TUOFL;
3128 	else
3129 		rxcsum &= ~E1000_RXCSUM_TUOFL;
3130 	ew32(RXCSUM, rxcsum);
3131 
3132 	if (adapter->hw.mac.type == e1000_pch2lan) {
3133 		/*
3134 		 * With jumbo frames, excessive C-state transition
3135 		 * latencies result in dropped transactions.
3136 		 */
3137 		if (adapter->netdev->mtu > ETH_DATA_LEN) {
3138 			u32 rxdctl = er32(RXDCTL(0));
3139 			ew32(RXDCTL(0), rxdctl | 0x3);
3140 			pm_qos_update_request(&adapter->netdev->pm_qos_req, 55);
3141 		} else {
3142 			pm_qos_update_request(&adapter->netdev->pm_qos_req,
3143 					      PM_QOS_DEFAULT_VALUE);
3144 		}
3145 	}
3146 
3147 	/* Enable Receives */
3148 	ew32(RCTL, rctl);
3149 }
3150 
3151 /**
3152  * e1000e_write_mc_addr_list - write multicast addresses to MTA
3153  * @netdev: network interface device structure
3154  *
3155  * Writes multicast address list to the MTA hash table.
3156  * Returns: -ENOMEM on failure
3157  *                0 on no addresses written
3158  *                X on writing X addresses to MTA
3159  */
3160 static int e1000e_write_mc_addr_list(struct net_device *netdev)
3161 {
3162 	struct e1000_adapter *adapter = netdev_priv(netdev);
3163 	struct e1000_hw *hw = &adapter->hw;
3164 	struct netdev_hw_addr *ha;
3165 	u8 *mta_list;
3166 	int i;
3167 
3168 	if (netdev_mc_empty(netdev)) {
3169 		/* nothing to program, so clear mc list */
3170 		hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3171 		return 0;
3172 	}
3173 
3174 	mta_list = kzalloc(netdev_mc_count(netdev) * ETH_ALEN, GFP_ATOMIC);
3175 	if (!mta_list)
3176 		return -ENOMEM;
3177 
3178 	/* update_mc_addr_list expects a packed array of only addresses. */
3179 	i = 0;
3180 	netdev_for_each_mc_addr(ha, netdev)
3181 		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3182 
3183 	hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3184 	kfree(mta_list);
3185 
3186 	return netdev_mc_count(netdev);
3187 }
3188 
3189 /**
3190  * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3191  * @netdev: network interface device structure
3192  *
3193  * Writes unicast address list to the RAR table.
3194  * Returns: -ENOMEM on failure/insufficient address space
3195  *                0 on no addresses written
3196  *                X on writing X addresses to the RAR table
3197  **/
3198 static int e1000e_write_uc_addr_list(struct net_device *netdev)
3199 {
3200 	struct e1000_adapter *adapter = netdev_priv(netdev);
3201 	struct e1000_hw *hw = &adapter->hw;
3202 	unsigned int rar_entries = hw->mac.rar_entry_count;
3203 	int count = 0;
3204 
3205 	/* save a rar entry for our hardware address */
3206 	rar_entries--;
3207 
3208 	/* save a rar entry for the LAA workaround */
3209 	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3210 		rar_entries--;
3211 
3212 	/* return ENOMEM indicating insufficient memory for addresses */
3213 	if (netdev_uc_count(netdev) > rar_entries)
3214 		return -ENOMEM;
3215 
3216 	if (!netdev_uc_empty(netdev) && rar_entries) {
3217 		struct netdev_hw_addr *ha;
3218 
3219 		/*
3220 		 * write the addresses in reverse order to avoid write
3221 		 * combining
3222 		 */
3223 		netdev_for_each_uc_addr(ha, netdev) {
3224 			if (!rar_entries)
3225 				break;
3226 			hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3227 			count++;
3228 		}
3229 	}
3230 
3231 	/* zero out the remaining RAR entries not used above */
3232 	for (; rar_entries > 0; rar_entries--) {
3233 		ew32(RAH(rar_entries), 0);
3234 		ew32(RAL(rar_entries), 0);
3235 	}
3236 	e1e_flush();
3237 
3238 	return count;
3239 }
3240 
3241 /**
3242  * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3243  * @netdev: network interface device structure
3244  *
3245  * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3246  * address list or the network interface flags are updated.  This routine is
3247  * responsible for configuring the hardware for proper unicast, multicast,
3248  * promiscuous mode, and all-multi behavior.
3249  **/
3250 static void e1000e_set_rx_mode(struct net_device *netdev)
3251 {
3252 	struct e1000_adapter *adapter = netdev_priv(netdev);
3253 	struct e1000_hw *hw = &adapter->hw;
3254 	u32 rctl;
3255 
3256 	/* Check for Promiscuous and All Multicast modes */
3257 	rctl = er32(RCTL);
3258 
3259 	/* clear the affected bits */
3260 	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3261 
3262 	if (netdev->flags & IFF_PROMISC) {
3263 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3264 		/* Do not hardware filter VLANs in promisc mode */
3265 		e1000e_vlan_filter_disable(adapter);
3266 	} else {
3267 		int count;
3268 
3269 		if (netdev->flags & IFF_ALLMULTI) {
3270 			rctl |= E1000_RCTL_MPE;
3271 		} else {
3272 			/*
3273 			 * Write addresses to the MTA, if the attempt fails
3274 			 * then we should just turn on promiscuous mode so
3275 			 * that we can at least receive multicast traffic
3276 			 */
3277 			count = e1000e_write_mc_addr_list(netdev);
3278 			if (count < 0)
3279 				rctl |= E1000_RCTL_MPE;
3280 		}
3281 		e1000e_vlan_filter_enable(adapter);
3282 		/*
3283 		 * Write addresses to available RAR registers, if there is not
3284 		 * sufficient space to store all the addresses then enable
3285 		 * unicast promiscuous mode
3286 		 */
3287 		count = e1000e_write_uc_addr_list(netdev);
3288 		if (count < 0)
3289 			rctl |= E1000_RCTL_UPE;
3290 	}
3291 
3292 	ew32(RCTL, rctl);
3293 
3294 	if (netdev->features & NETIF_F_HW_VLAN_RX)
3295 		e1000e_vlan_strip_enable(adapter);
3296 	else
3297 		e1000e_vlan_strip_disable(adapter);
3298 }
3299 
3300 static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3301 {
3302 	struct e1000_hw *hw = &adapter->hw;
3303 	u32 mrqc, rxcsum;
3304 	int i;
3305 	static const u32 rsskey[10] = {
3306 		0xda565a6d, 0xc20e5b25, 0x3d256741, 0xb08fa343, 0xcb2bcad0,
3307 		0xb4307bae, 0xa32dcb77, 0x0cf23080, 0x3bb7426a, 0xfa01acbe
3308 	};
3309 
3310 	/* Fill out hash function seed */
3311 	for (i = 0; i < 10; i++)
3312 		ew32(RSSRK(i), rsskey[i]);
3313 
3314 	/* Direct all traffic to queue 0 */
3315 	for (i = 0; i < 32; i++)
3316 		ew32(RETA(i), 0);
3317 
3318 	/*
3319 	 * Disable raw packet checksumming so that RSS hash is placed in
3320 	 * descriptor on writeback.
3321 	 */
3322 	rxcsum = er32(RXCSUM);
3323 	rxcsum |= E1000_RXCSUM_PCSD;
3324 
3325 	ew32(RXCSUM, rxcsum);
3326 
3327 	mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3328 		E1000_MRQC_RSS_FIELD_IPV4_TCP |
3329 		E1000_MRQC_RSS_FIELD_IPV6 |
3330 		E1000_MRQC_RSS_FIELD_IPV6_TCP |
3331 		E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3332 
3333 	ew32(MRQC, mrqc);
3334 }
3335 
3336 /**
3337  * e1000_configure - configure the hardware for Rx and Tx
3338  * @adapter: private board structure
3339  **/
3340 static void e1000_configure(struct e1000_adapter *adapter)
3341 {
3342 	struct e1000_ring *rx_ring = adapter->rx_ring;
3343 
3344 	e1000e_set_rx_mode(adapter->netdev);
3345 
3346 	e1000_restore_vlan(adapter);
3347 	e1000_init_manageability_pt(adapter);
3348 
3349 	e1000_configure_tx(adapter);
3350 
3351 	if (adapter->netdev->features & NETIF_F_RXHASH)
3352 		e1000e_setup_rss_hash(adapter);
3353 	e1000_setup_rctl(adapter);
3354 	e1000_configure_rx(adapter);
3355 	adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3356 }
3357 
3358 /**
3359  * e1000e_power_up_phy - restore link in case the phy was powered down
3360  * @adapter: address of board private structure
3361  *
3362  * The phy may be powered down to save power and turn off link when the
3363  * driver is unloaded and wake on lan is not enabled (among others)
3364  * *** this routine MUST be followed by a call to e1000e_reset ***
3365  **/
3366 void e1000e_power_up_phy(struct e1000_adapter *adapter)
3367 {
3368 	if (adapter->hw.phy.ops.power_up)
3369 		adapter->hw.phy.ops.power_up(&adapter->hw);
3370 
3371 	adapter->hw.mac.ops.setup_link(&adapter->hw);
3372 }
3373 
3374 /**
3375  * e1000_power_down_phy - Power down the PHY
3376  *
3377  * Power down the PHY so no link is implied when interface is down.
3378  * The PHY cannot be powered down if management or WoL is active.
3379  */
3380 static void e1000_power_down_phy(struct e1000_adapter *adapter)
3381 {
3382 	/* WoL is enabled */
3383 	if (adapter->wol)
3384 		return;
3385 
3386 	if (adapter->hw.phy.ops.power_down)
3387 		adapter->hw.phy.ops.power_down(&adapter->hw);
3388 }
3389 
3390 /**
3391  * e1000e_reset - bring the hardware into a known good state
3392  *
3393  * This function boots the hardware and enables some settings that
3394  * require a configuration cycle of the hardware - those cannot be
3395  * set/changed during runtime. After reset the device needs to be
3396  * properly configured for Rx, Tx etc.
3397  */
3398 void e1000e_reset(struct e1000_adapter *adapter)
3399 {
3400 	struct e1000_mac_info *mac = &adapter->hw.mac;
3401 	struct e1000_fc_info *fc = &adapter->hw.fc;
3402 	struct e1000_hw *hw = &adapter->hw;
3403 	u32 tx_space, min_tx_space, min_rx_space;
3404 	u32 pba = adapter->pba;
3405 	u16 hwm;
3406 
3407 	/* reset Packet Buffer Allocation to default */
3408 	ew32(PBA, pba);
3409 
3410 	if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
3411 		/*
3412 		 * To maintain wire speed transmits, the Tx FIFO should be
3413 		 * large enough to accommodate two full transmit packets,
3414 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
3415 		 * the Rx FIFO should be large enough to accommodate at least
3416 		 * one full receive packet and is similarly rounded up and
3417 		 * expressed in KB.
3418 		 */
3419 		pba = er32(PBA);
3420 		/* upper 16 bits has Tx packet buffer allocation size in KB */
3421 		tx_space = pba >> 16;
3422 		/* lower 16 bits has Rx packet buffer allocation size in KB */
3423 		pba &= 0xffff;
3424 		/*
3425 		 * the Tx fifo also stores 16 bytes of information about the Tx
3426 		 * but don't include ethernet FCS because hardware appends it
3427 		 */
3428 		min_tx_space = (adapter->max_frame_size +
3429 				sizeof(struct e1000_tx_desc) -
3430 				ETH_FCS_LEN) * 2;
3431 		min_tx_space = ALIGN(min_tx_space, 1024);
3432 		min_tx_space >>= 10;
3433 		/* software strips receive CRC, so leave room for it */
3434 		min_rx_space = adapter->max_frame_size;
3435 		min_rx_space = ALIGN(min_rx_space, 1024);
3436 		min_rx_space >>= 10;
3437 
3438 		/*
3439 		 * If current Tx allocation is less than the min Tx FIFO size,
3440 		 * and the min Tx FIFO size is less than the current Rx FIFO
3441 		 * allocation, take space away from current Rx allocation
3442 		 */
3443 		if ((tx_space < min_tx_space) &&
3444 		    ((min_tx_space - tx_space) < pba)) {
3445 			pba -= min_tx_space - tx_space;
3446 
3447 			/*
3448 			 * if short on Rx space, Rx wins and must trump Tx
3449 			 * adjustment
3450 			 */
3451 			if (pba < min_rx_space)
3452 				pba = min_rx_space;
3453 		}
3454 
3455 		ew32(PBA, pba);
3456 	}
3457 
3458 	/*
3459 	 * flow control settings
3460 	 *
3461 	 * The high water mark must be low enough to fit one full frame
3462 	 * (or the size used for early receive) above it in the Rx FIFO.
3463 	 * Set it to the lower of:
3464 	 * - 90% of the Rx FIFO size, and
3465 	 * - the full Rx FIFO size minus one full frame
3466 	 */
3467 	if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
3468 		fc->pause_time = 0xFFFF;
3469 	else
3470 		fc->pause_time = E1000_FC_PAUSE_TIME;
3471 	fc->send_xon = true;
3472 	fc->current_mode = fc->requested_mode;
3473 
3474 	switch (hw->mac.type) {
3475 	case e1000_ich9lan:
3476 	case e1000_ich10lan:
3477 		if (adapter->netdev->mtu > ETH_DATA_LEN) {
3478 			pba = 14;
3479 			ew32(PBA, pba);
3480 			fc->high_water = 0x2800;
3481 			fc->low_water = fc->high_water - 8;
3482 			break;
3483 		}
3484 		/* fall-through */
3485 	default:
3486 		hwm = min(((pba << 10) * 9 / 10),
3487 			  ((pba << 10) - adapter->max_frame_size));
3488 
3489 		fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
3490 		fc->low_water = fc->high_water - 8;
3491 		break;
3492 	case e1000_pchlan:
3493 		/*
3494 		 * Workaround PCH LOM adapter hangs with certain network
3495 		 * loads.  If hangs persist, try disabling Tx flow control.
3496 		 */
3497 		if (adapter->netdev->mtu > ETH_DATA_LEN) {
3498 			fc->high_water = 0x3500;
3499 			fc->low_water  = 0x1500;
3500 		} else {
3501 			fc->high_water = 0x5000;
3502 			fc->low_water  = 0x3000;
3503 		}
3504 		fc->refresh_time = 0x1000;
3505 		break;
3506 	case e1000_pch2lan:
3507 	case e1000_pch_lpt:
3508 		fc->high_water = 0x05C20;
3509 		fc->low_water = 0x05048;
3510 		fc->pause_time = 0x0650;
3511 		fc->refresh_time = 0x0400;
3512 		if (adapter->netdev->mtu > ETH_DATA_LEN) {
3513 			pba = 14;
3514 			ew32(PBA, pba);
3515 		}
3516 		break;
3517 	}
3518 
3519 	/*
3520 	 * Alignment of Tx data is on an arbitrary byte boundary with the
3521 	 * maximum size per Tx descriptor limited only to the transmit
3522 	 * allocation of the packet buffer minus 96 bytes with an upper
3523 	 * limit of 24KB due to receive synchronization limitations.
3524 	 */
3525 	adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
3526 				       24 << 10);
3527 
3528 	/*
3529 	 * Disable Adaptive Interrupt Moderation if 2 full packets cannot
3530 	 * fit in receive buffer.
3531 	 */
3532 	if (adapter->itr_setting & 0x3) {
3533 		if ((adapter->max_frame_size * 2) > (pba << 10)) {
3534 			if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
3535 				dev_info(&adapter->pdev->dev,
3536 					"Interrupt Throttle Rate turned off\n");
3537 				adapter->flags2 |= FLAG2_DISABLE_AIM;
3538 				e1000e_write_itr(adapter, 0);
3539 			}
3540 		} else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
3541 			dev_info(&adapter->pdev->dev,
3542 				 "Interrupt Throttle Rate turned on\n");
3543 			adapter->flags2 &= ~FLAG2_DISABLE_AIM;
3544 			adapter->itr = 20000;
3545 			e1000e_write_itr(adapter, adapter->itr);
3546 		}
3547 	}
3548 
3549 	/* Allow time for pending master requests to run */
3550 	mac->ops.reset_hw(hw);
3551 
3552 	/*
3553 	 * For parts with AMT enabled, let the firmware know
3554 	 * that the network interface is in control
3555 	 */
3556 	if (adapter->flags & FLAG_HAS_AMT)
3557 		e1000e_get_hw_control(adapter);
3558 
3559 	ew32(WUC, 0);
3560 
3561 	if (mac->ops.init_hw(hw))
3562 		e_err("Hardware Error\n");
3563 
3564 	e1000_update_mng_vlan(adapter);
3565 
3566 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
3567 	ew32(VET, ETH_P_8021Q);
3568 
3569 	e1000e_reset_adaptive(hw);
3570 
3571 	if (!netif_running(adapter->netdev) &&
3572 	    !test_bit(__E1000_TESTING, &adapter->state)) {
3573 		e1000_power_down_phy(adapter);
3574 		return;
3575 	}
3576 
3577 	e1000_get_phy_info(hw);
3578 
3579 	if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
3580 	    !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
3581 		u16 phy_data = 0;
3582 		/*
3583 		 * speed up time to link by disabling smart power down, ignore
3584 		 * the return value of this function because there is nothing
3585 		 * different we would do if it failed
3586 		 */
3587 		e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
3588 		phy_data &= ~IGP02E1000_PM_SPD;
3589 		e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
3590 	}
3591 }
3592 
3593 int e1000e_up(struct e1000_adapter *adapter)
3594 {
3595 	struct e1000_hw *hw = &adapter->hw;
3596 
3597 	/* hardware has been reset, we need to reload some things */
3598 	e1000_configure(adapter);
3599 
3600 	clear_bit(__E1000_DOWN, &adapter->state);
3601 
3602 	if (adapter->msix_entries)
3603 		e1000_configure_msix(adapter);
3604 	e1000_irq_enable(adapter);
3605 
3606 	netif_start_queue(adapter->netdev);
3607 
3608 	/* fire a link change interrupt to start the watchdog */
3609 	if (adapter->msix_entries)
3610 		ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
3611 	else
3612 		ew32(ICS, E1000_ICS_LSC);
3613 
3614 	return 0;
3615 }
3616 
3617 static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
3618 {
3619 	struct e1000_hw *hw = &adapter->hw;
3620 
3621 	if (!(adapter->flags2 & FLAG2_DMA_BURST))
3622 		return;
3623 
3624 	/* flush pending descriptor writebacks to memory */
3625 	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
3626 	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
3627 
3628 	/* execute the writes immediately */
3629 	e1e_flush();
3630 
3631 	/*
3632 	 * due to rare timing issues, write to TIDV/RDTR again to ensure the
3633 	 * write is successful
3634 	 */
3635 	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
3636 	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
3637 
3638 	/* execute the writes immediately */
3639 	e1e_flush();
3640 }
3641 
3642 static void e1000e_update_stats(struct e1000_adapter *adapter);
3643 
3644 void e1000e_down(struct e1000_adapter *adapter)
3645 {
3646 	struct net_device *netdev = adapter->netdev;
3647 	struct e1000_hw *hw = &adapter->hw;
3648 	u32 tctl, rctl;
3649 
3650 	/*
3651 	 * signal that we're down so the interrupt handler does not
3652 	 * reschedule our watchdog timer
3653 	 */
3654 	set_bit(__E1000_DOWN, &adapter->state);
3655 
3656 	/* disable receives in the hardware */
3657 	rctl = er32(RCTL);
3658 	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3659 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
3660 	/* flush and sleep below */
3661 
3662 	netif_stop_queue(netdev);
3663 
3664 	/* disable transmits in the hardware */
3665 	tctl = er32(TCTL);
3666 	tctl &= ~E1000_TCTL_EN;
3667 	ew32(TCTL, tctl);
3668 
3669 	/* flush both disables and wait for them to finish */
3670 	e1e_flush();
3671 	usleep_range(10000, 20000);
3672 
3673 	e1000_irq_disable(adapter);
3674 
3675 	del_timer_sync(&adapter->watchdog_timer);
3676 	del_timer_sync(&adapter->phy_info_timer);
3677 
3678 	netif_carrier_off(netdev);
3679 
3680 	spin_lock(&adapter->stats64_lock);
3681 	e1000e_update_stats(adapter);
3682 	spin_unlock(&adapter->stats64_lock);
3683 
3684 	e1000e_flush_descriptors(adapter);
3685 	e1000_clean_tx_ring(adapter->tx_ring);
3686 	e1000_clean_rx_ring(adapter->rx_ring);
3687 
3688 	adapter->link_speed = 0;
3689 	adapter->link_duplex = 0;
3690 
3691 	if (!pci_channel_offline(adapter->pdev))
3692 		e1000e_reset(adapter);
3693 
3694 	/*
3695 	 * TODO: for power management, we could drop the link and
3696 	 * pci_disable_device here.
3697 	 */
3698 }
3699 
3700 void e1000e_reinit_locked(struct e1000_adapter *adapter)
3701 {
3702 	might_sleep();
3703 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
3704 		usleep_range(1000, 2000);
3705 	e1000e_down(adapter);
3706 	e1000e_up(adapter);
3707 	clear_bit(__E1000_RESETTING, &adapter->state);
3708 }
3709 
3710 /**
3711  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
3712  * @adapter: board private structure to initialize
3713  *
3714  * e1000_sw_init initializes the Adapter private data structure.
3715  * Fields are initialized based on PCI device information and
3716  * OS network device settings (MTU size).
3717  **/
3718 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
3719 {
3720 	struct net_device *netdev = adapter->netdev;
3721 
3722 	adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
3723 	adapter->rx_ps_bsize0 = 128;
3724 	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
3725 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3726 	adapter->tx_ring_count = E1000_DEFAULT_TXD;
3727 	adapter->rx_ring_count = E1000_DEFAULT_RXD;
3728 
3729 	spin_lock_init(&adapter->stats64_lock);
3730 
3731 	e1000e_set_interrupt_capability(adapter);
3732 
3733 	if (e1000_alloc_queues(adapter))
3734 		return -ENOMEM;
3735 
3736 	/* Explicitly disable IRQ since the NIC can be in any state. */
3737 	e1000_irq_disable(adapter);
3738 
3739 	set_bit(__E1000_DOWN, &adapter->state);
3740 	return 0;
3741 }
3742 
3743 /**
3744  * e1000_intr_msi_test - Interrupt Handler
3745  * @irq: interrupt number
3746  * @data: pointer to a network interface device structure
3747  **/
3748 static irqreturn_t e1000_intr_msi_test(int irq, void *data)
3749 {
3750 	struct net_device *netdev = data;
3751 	struct e1000_adapter *adapter = netdev_priv(netdev);
3752 	struct e1000_hw *hw = &adapter->hw;
3753 	u32 icr = er32(ICR);
3754 
3755 	e_dbg("icr is %08X\n", icr);
3756 	if (icr & E1000_ICR_RXSEQ) {
3757 		adapter->flags &= ~FLAG_MSI_TEST_FAILED;
3758 		/*
3759 		 * Force memory writes to complete before acknowledging the
3760 		 * interrupt is handled.
3761 		 */
3762 		wmb();
3763 	}
3764 
3765 	return IRQ_HANDLED;
3766 }
3767 
3768 /**
3769  * e1000_test_msi_interrupt - Returns 0 for successful test
3770  * @adapter: board private struct
3771  *
3772  * code flow taken from tg3.c
3773  **/
3774 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
3775 {
3776 	struct net_device *netdev = adapter->netdev;
3777 	struct e1000_hw *hw = &adapter->hw;
3778 	int err;
3779 
3780 	/* poll_enable hasn't been called yet, so don't need disable */
3781 	/* clear any pending events */
3782 	er32(ICR);
3783 
3784 	/* free the real vector and request a test handler */
3785 	e1000_free_irq(adapter);
3786 	e1000e_reset_interrupt_capability(adapter);
3787 
3788 	/* Assume that the test fails, if it succeeds then the test
3789 	 * MSI irq handler will unset this flag */
3790 	adapter->flags |= FLAG_MSI_TEST_FAILED;
3791 
3792 	err = pci_enable_msi(adapter->pdev);
3793 	if (err)
3794 		goto msi_test_failed;
3795 
3796 	err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
3797 			  netdev->name, netdev);
3798 	if (err) {
3799 		pci_disable_msi(adapter->pdev);
3800 		goto msi_test_failed;
3801 	}
3802 
3803 	/*
3804 	 * Force memory writes to complete before enabling and firing an
3805 	 * interrupt.
3806 	 */
3807 	wmb();
3808 
3809 	e1000_irq_enable(adapter);
3810 
3811 	/* fire an unusual interrupt on the test handler */
3812 	ew32(ICS, E1000_ICS_RXSEQ);
3813 	e1e_flush();
3814 	msleep(100);
3815 
3816 	e1000_irq_disable(adapter);
3817 
3818 	rmb();			/* read flags after interrupt has been fired */
3819 
3820 	if (adapter->flags & FLAG_MSI_TEST_FAILED) {
3821 		adapter->int_mode = E1000E_INT_MODE_LEGACY;
3822 		e_info("MSI interrupt test failed, using legacy interrupt.\n");
3823 	} else {
3824 		e_dbg("MSI interrupt test succeeded!\n");
3825 	}
3826 
3827 	free_irq(adapter->pdev->irq, netdev);
3828 	pci_disable_msi(adapter->pdev);
3829 
3830 msi_test_failed:
3831 	e1000e_set_interrupt_capability(adapter);
3832 	return e1000_request_irq(adapter);
3833 }
3834 
3835 /**
3836  * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
3837  * @adapter: board private struct
3838  *
3839  * code flow taken from tg3.c, called with e1000 interrupts disabled.
3840  **/
3841 static int e1000_test_msi(struct e1000_adapter *adapter)
3842 {
3843 	int err;
3844 	u16 pci_cmd;
3845 
3846 	if (!(adapter->flags & FLAG_MSI_ENABLED))
3847 		return 0;
3848 
3849 	/* disable SERR in case the MSI write causes a master abort */
3850 	pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3851 	if (pci_cmd & PCI_COMMAND_SERR)
3852 		pci_write_config_word(adapter->pdev, PCI_COMMAND,
3853 				      pci_cmd & ~PCI_COMMAND_SERR);
3854 
3855 	err = e1000_test_msi_interrupt(adapter);
3856 
3857 	/* re-enable SERR */
3858 	if (pci_cmd & PCI_COMMAND_SERR) {
3859 		pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3860 		pci_cmd |= PCI_COMMAND_SERR;
3861 		pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
3862 	}
3863 
3864 	return err;
3865 }
3866 
3867 /**
3868  * e1000_open - Called when a network interface is made active
3869  * @netdev: network interface device structure
3870  *
3871  * Returns 0 on success, negative value on failure
3872  *
3873  * The open entry point is called when a network interface is made
3874  * active by the system (IFF_UP).  At this point all resources needed
3875  * for transmit and receive operations are allocated, the interrupt
3876  * handler is registered with the OS, the watchdog timer is started,
3877  * and the stack is notified that the interface is ready.
3878  **/
3879 static int e1000_open(struct net_device *netdev)
3880 {
3881 	struct e1000_adapter *adapter = netdev_priv(netdev);
3882 	struct e1000_hw *hw = &adapter->hw;
3883 	struct pci_dev *pdev = adapter->pdev;
3884 	int err;
3885 
3886 	/* disallow open during test */
3887 	if (test_bit(__E1000_TESTING, &adapter->state))
3888 		return -EBUSY;
3889 
3890 	pm_runtime_get_sync(&pdev->dev);
3891 
3892 	netif_carrier_off(netdev);
3893 
3894 	/* allocate transmit descriptors */
3895 	err = e1000e_setup_tx_resources(adapter->tx_ring);
3896 	if (err)
3897 		goto err_setup_tx;
3898 
3899 	/* allocate receive descriptors */
3900 	err = e1000e_setup_rx_resources(adapter->rx_ring);
3901 	if (err)
3902 		goto err_setup_rx;
3903 
3904 	/*
3905 	 * If AMT is enabled, let the firmware know that the network
3906 	 * interface is now open and reset the part to a known state.
3907 	 */
3908 	if (adapter->flags & FLAG_HAS_AMT) {
3909 		e1000e_get_hw_control(adapter);
3910 		e1000e_reset(adapter);
3911 	}
3912 
3913 	e1000e_power_up_phy(adapter);
3914 
3915 	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
3916 	if ((adapter->hw.mng_cookie.status &
3917 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
3918 		e1000_update_mng_vlan(adapter);
3919 
3920 	/* DMA latency requirement to workaround jumbo issue */
3921 	if (adapter->hw.mac.type == e1000_pch2lan)
3922 		pm_qos_add_request(&adapter->netdev->pm_qos_req,
3923 				   PM_QOS_CPU_DMA_LATENCY,
3924 				   PM_QOS_DEFAULT_VALUE);
3925 
3926 	/*
3927 	 * before we allocate an interrupt, we must be ready to handle it.
3928 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3929 	 * as soon as we call pci_request_irq, so we have to setup our
3930 	 * clean_rx handler before we do so.
3931 	 */
3932 	e1000_configure(adapter);
3933 
3934 	err = e1000_request_irq(adapter);
3935 	if (err)
3936 		goto err_req_irq;
3937 
3938 	/*
3939 	 * Work around PCIe errata with MSI interrupts causing some chipsets to
3940 	 * ignore e1000e MSI messages, which means we need to test our MSI
3941 	 * interrupt now
3942 	 */
3943 	if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
3944 		err = e1000_test_msi(adapter);
3945 		if (err) {
3946 			e_err("Interrupt allocation failed\n");
3947 			goto err_req_irq;
3948 		}
3949 	}
3950 
3951 	/* From here on the code is the same as e1000e_up() */
3952 	clear_bit(__E1000_DOWN, &adapter->state);
3953 
3954 	napi_enable(&adapter->napi);
3955 
3956 	e1000_irq_enable(adapter);
3957 
3958 	adapter->tx_hang_recheck = false;
3959 	netif_start_queue(netdev);
3960 
3961 	adapter->idle_check = true;
3962 	pm_runtime_put(&pdev->dev);
3963 
3964 	/* fire a link status change interrupt to start the watchdog */
3965 	if (adapter->msix_entries)
3966 		ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
3967 	else
3968 		ew32(ICS, E1000_ICS_LSC);
3969 
3970 	return 0;
3971 
3972 err_req_irq:
3973 	e1000e_release_hw_control(adapter);
3974 	e1000_power_down_phy(adapter);
3975 	e1000e_free_rx_resources(adapter->rx_ring);
3976 err_setup_rx:
3977 	e1000e_free_tx_resources(adapter->tx_ring);
3978 err_setup_tx:
3979 	e1000e_reset(adapter);
3980 	pm_runtime_put_sync(&pdev->dev);
3981 
3982 	return err;
3983 }
3984 
3985 /**
3986  * e1000_close - Disables a network interface
3987  * @netdev: network interface device structure
3988  *
3989  * Returns 0, this is not allowed to fail
3990  *
3991  * The close entry point is called when an interface is de-activated
3992  * by the OS.  The hardware is still under the drivers control, but
3993  * needs to be disabled.  A global MAC reset is issued to stop the
3994  * hardware, and all transmit and receive resources are freed.
3995  **/
3996 static int e1000_close(struct net_device *netdev)
3997 {
3998 	struct e1000_adapter *adapter = netdev_priv(netdev);
3999 	struct pci_dev *pdev = adapter->pdev;
4000 	int count = E1000_CHECK_RESET_COUNT;
4001 
4002 	while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
4003 		usleep_range(10000, 20000);
4004 
4005 	WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4006 
4007 	pm_runtime_get_sync(&pdev->dev);
4008 
4009 	napi_disable(&adapter->napi);
4010 
4011 	if (!test_bit(__E1000_DOWN, &adapter->state)) {
4012 		e1000e_down(adapter);
4013 		e1000_free_irq(adapter);
4014 	}
4015 	e1000_power_down_phy(adapter);
4016 
4017 	e1000e_free_tx_resources(adapter->tx_ring);
4018 	e1000e_free_rx_resources(adapter->rx_ring);
4019 
4020 	/*
4021 	 * kill manageability vlan ID if supported, but not if a vlan with
4022 	 * the same ID is registered on the host OS (let 8021q kill it)
4023 	 */
4024 	if (adapter->hw.mng_cookie.status &
4025 	    E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
4026 		e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4027 
4028 	/*
4029 	 * If AMT is enabled, let the firmware know that the network
4030 	 * interface is now closed
4031 	 */
4032 	if ((adapter->flags & FLAG_HAS_AMT) &&
4033 	    !test_bit(__E1000_TESTING, &adapter->state))
4034 		e1000e_release_hw_control(adapter);
4035 
4036 	if (adapter->hw.mac.type == e1000_pch2lan)
4037 		pm_qos_remove_request(&adapter->netdev->pm_qos_req);
4038 
4039 	pm_runtime_put_sync(&pdev->dev);
4040 
4041 	return 0;
4042 }
4043 /**
4044  * e1000_set_mac - Change the Ethernet Address of the NIC
4045  * @netdev: network interface device structure
4046  * @p: pointer to an address structure
4047  *
4048  * Returns 0 on success, negative on failure
4049  **/
4050 static int e1000_set_mac(struct net_device *netdev, void *p)
4051 {
4052 	struct e1000_adapter *adapter = netdev_priv(netdev);
4053 	struct e1000_hw *hw = &adapter->hw;
4054 	struct sockaddr *addr = p;
4055 
4056 	if (!is_valid_ether_addr(addr->sa_data))
4057 		return -EADDRNOTAVAIL;
4058 
4059 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4060 	memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4061 
4062 	hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4063 
4064 	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4065 		/* activate the work around */
4066 		e1000e_set_laa_state_82571(&adapter->hw, 1);
4067 
4068 		/*
4069 		 * Hold a copy of the LAA in RAR[14] This is done so that
4070 		 * between the time RAR[0] gets clobbered  and the time it
4071 		 * gets fixed (in e1000_watchdog), the actual LAA is in one
4072 		 * of the RARs and no incoming packets directed to this port
4073 		 * are dropped. Eventually the LAA will be in RAR[0] and
4074 		 * RAR[14]
4075 		 */
4076 		hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4077 				    adapter->hw.mac.rar_entry_count - 1);
4078 	}
4079 
4080 	return 0;
4081 }
4082 
4083 /**
4084  * e1000e_update_phy_task - work thread to update phy
4085  * @work: pointer to our work struct
4086  *
4087  * this worker thread exists because we must acquire a
4088  * semaphore to read the phy, which we could msleep while
4089  * waiting for it, and we can't msleep in a timer.
4090  **/
4091 static void e1000e_update_phy_task(struct work_struct *work)
4092 {
4093 	struct e1000_adapter *adapter = container_of(work,
4094 					struct e1000_adapter, update_phy_task);
4095 
4096 	if (test_bit(__E1000_DOWN, &adapter->state))
4097 		return;
4098 
4099 	e1000_get_phy_info(&adapter->hw);
4100 }
4101 
4102 /*
4103  * Need to wait a few seconds after link up to get diagnostic information from
4104  * the phy
4105  */
4106 static void e1000_update_phy_info(unsigned long data)
4107 {
4108 	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
4109 
4110 	if (test_bit(__E1000_DOWN, &adapter->state))
4111 		return;
4112 
4113 	schedule_work(&adapter->update_phy_task);
4114 }
4115 
4116 /**
4117  * e1000e_update_phy_stats - Update the PHY statistics counters
4118  * @adapter: board private structure
4119  *
4120  * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4121  **/
4122 static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4123 {
4124 	struct e1000_hw *hw = &adapter->hw;
4125 	s32 ret_val;
4126 	u16 phy_data;
4127 
4128 	ret_val = hw->phy.ops.acquire(hw);
4129 	if (ret_val)
4130 		return;
4131 
4132 	/*
4133 	 * A page set is expensive so check if already on desired page.
4134 	 * If not, set to the page with the PHY status registers.
4135 	 */
4136 	hw->phy.addr = 1;
4137 	ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4138 					   &phy_data);
4139 	if (ret_val)
4140 		goto release;
4141 	if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4142 		ret_val = hw->phy.ops.set_page(hw,
4143 					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
4144 		if (ret_val)
4145 			goto release;
4146 	}
4147 
4148 	/* Single Collision Count */
4149 	hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4150 	ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4151 	if (!ret_val)
4152 		adapter->stats.scc += phy_data;
4153 
4154 	/* Excessive Collision Count */
4155 	hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4156 	ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4157 	if (!ret_val)
4158 		adapter->stats.ecol += phy_data;
4159 
4160 	/* Multiple Collision Count */
4161 	hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4162 	ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4163 	if (!ret_val)
4164 		adapter->stats.mcc += phy_data;
4165 
4166 	/* Late Collision Count */
4167 	hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4168 	ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4169 	if (!ret_val)
4170 		adapter->stats.latecol += phy_data;
4171 
4172 	/* Collision Count - also used for adaptive IFS */
4173 	hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4174 	ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4175 	if (!ret_val)
4176 		hw->mac.collision_delta = phy_data;
4177 
4178 	/* Defer Count */
4179 	hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4180 	ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4181 	if (!ret_val)
4182 		adapter->stats.dc += phy_data;
4183 
4184 	/* Transmit with no CRS */
4185 	hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4186 	ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4187 	if (!ret_val)
4188 		adapter->stats.tncrs += phy_data;
4189 
4190 release:
4191 	hw->phy.ops.release(hw);
4192 }
4193 
4194 /**
4195  * e1000e_update_stats - Update the board statistics counters
4196  * @adapter: board private structure
4197  **/
4198 static void e1000e_update_stats(struct e1000_adapter *adapter)
4199 {
4200 	struct net_device *netdev = adapter->netdev;
4201 	struct e1000_hw *hw = &adapter->hw;
4202 	struct pci_dev *pdev = adapter->pdev;
4203 
4204 	/*
4205 	 * Prevent stats update while adapter is being reset, or if the pci
4206 	 * connection is down.
4207 	 */
4208 	if (adapter->link_speed == 0)
4209 		return;
4210 	if (pci_channel_offline(pdev))
4211 		return;
4212 
4213 	adapter->stats.crcerrs += er32(CRCERRS);
4214 	adapter->stats.gprc += er32(GPRC);
4215 	adapter->stats.gorc += er32(GORCL);
4216 	er32(GORCH); /* Clear gorc */
4217 	adapter->stats.bprc += er32(BPRC);
4218 	adapter->stats.mprc += er32(MPRC);
4219 	adapter->stats.roc += er32(ROC);
4220 
4221 	adapter->stats.mpc += er32(MPC);
4222 
4223 	/* Half-duplex statistics */
4224 	if (adapter->link_duplex == HALF_DUPLEX) {
4225 		if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4226 			e1000e_update_phy_stats(adapter);
4227 		} else {
4228 			adapter->stats.scc += er32(SCC);
4229 			adapter->stats.ecol += er32(ECOL);
4230 			adapter->stats.mcc += er32(MCC);
4231 			adapter->stats.latecol += er32(LATECOL);
4232 			adapter->stats.dc += er32(DC);
4233 
4234 			hw->mac.collision_delta = er32(COLC);
4235 
4236 			if ((hw->mac.type != e1000_82574) &&
4237 			    (hw->mac.type != e1000_82583))
4238 				adapter->stats.tncrs += er32(TNCRS);
4239 		}
4240 		adapter->stats.colc += hw->mac.collision_delta;
4241 	}
4242 
4243 	adapter->stats.xonrxc += er32(XONRXC);
4244 	adapter->stats.xontxc += er32(XONTXC);
4245 	adapter->stats.xoffrxc += er32(XOFFRXC);
4246 	adapter->stats.xofftxc += er32(XOFFTXC);
4247 	adapter->stats.gptc += er32(GPTC);
4248 	adapter->stats.gotc += er32(GOTCL);
4249 	er32(GOTCH); /* Clear gotc */
4250 	adapter->stats.rnbc += er32(RNBC);
4251 	adapter->stats.ruc += er32(RUC);
4252 
4253 	adapter->stats.mptc += er32(MPTC);
4254 	adapter->stats.bptc += er32(BPTC);
4255 
4256 	/* used for adaptive IFS */
4257 
4258 	hw->mac.tx_packet_delta = er32(TPT);
4259 	adapter->stats.tpt += hw->mac.tx_packet_delta;
4260 
4261 	adapter->stats.algnerrc += er32(ALGNERRC);
4262 	adapter->stats.rxerrc += er32(RXERRC);
4263 	adapter->stats.cexterr += er32(CEXTERR);
4264 	adapter->stats.tsctc += er32(TSCTC);
4265 	adapter->stats.tsctfc += er32(TSCTFC);
4266 
4267 	/* Fill out the OS statistics structure */
4268 	netdev->stats.multicast = adapter->stats.mprc;
4269 	netdev->stats.collisions = adapter->stats.colc;
4270 
4271 	/* Rx Errors */
4272 
4273 	/*
4274 	 * RLEC on some newer hardware can be incorrect so build
4275 	 * our own version based on RUC and ROC
4276 	 */
4277 	netdev->stats.rx_errors = adapter->stats.rxerrc +
4278 		adapter->stats.crcerrs + adapter->stats.algnerrc +
4279 		adapter->stats.ruc + adapter->stats.roc +
4280 		adapter->stats.cexterr;
4281 	netdev->stats.rx_length_errors = adapter->stats.ruc +
4282 					      adapter->stats.roc;
4283 	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
4284 	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
4285 	netdev->stats.rx_missed_errors = adapter->stats.mpc;
4286 
4287 	/* Tx Errors */
4288 	netdev->stats.tx_errors = adapter->stats.ecol +
4289 				       adapter->stats.latecol;
4290 	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
4291 	netdev->stats.tx_window_errors = adapter->stats.latecol;
4292 	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
4293 
4294 	/* Tx Dropped needs to be maintained elsewhere */
4295 
4296 	/* Management Stats */
4297 	adapter->stats.mgptc += er32(MGTPTC);
4298 	adapter->stats.mgprc += er32(MGTPRC);
4299 	adapter->stats.mgpdc += er32(MGTPDC);
4300 }
4301 
4302 /**
4303  * e1000_phy_read_status - Update the PHY register status snapshot
4304  * @adapter: board private structure
4305  **/
4306 static void e1000_phy_read_status(struct e1000_adapter *adapter)
4307 {
4308 	struct e1000_hw *hw = &adapter->hw;
4309 	struct e1000_phy_regs *phy = &adapter->phy_regs;
4310 
4311 	if ((er32(STATUS) & E1000_STATUS_LU) &&
4312 	    (adapter->hw.phy.media_type == e1000_media_type_copper)) {
4313 		int ret_val;
4314 
4315 		ret_val  = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr);
4316 		ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr);
4317 		ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise);
4318 		ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa);
4319 		ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion);
4320 		ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000);
4321 		ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000);
4322 		ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus);
4323 		if (ret_val)
4324 			e_warn("Error reading PHY register\n");
4325 	} else {
4326 		/*
4327 		 * Do not read PHY registers if link is not up
4328 		 * Set values to typical power-on defaults
4329 		 */
4330 		phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
4331 		phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
4332 			     BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
4333 			     BMSR_ERCAP);
4334 		phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
4335 				  ADVERTISE_ALL | ADVERTISE_CSMA);
4336 		phy->lpa = 0;
4337 		phy->expansion = EXPANSION_ENABLENPAGE;
4338 		phy->ctrl1000 = ADVERTISE_1000FULL;
4339 		phy->stat1000 = 0;
4340 		phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
4341 	}
4342 }
4343 
4344 static void e1000_print_link_info(struct e1000_adapter *adapter)
4345 {
4346 	struct e1000_hw *hw = &adapter->hw;
4347 	u32 ctrl = er32(CTRL);
4348 
4349 	/* Link status message must follow this format for user tools */
4350 	printk(KERN_INFO "e1000e: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4351 		adapter->netdev->name,
4352 		adapter->link_speed,
4353 		adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
4354 		(ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
4355 		(ctrl & E1000_CTRL_RFCE) ? "Rx" :
4356 		(ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
4357 }
4358 
4359 static bool e1000e_has_link(struct e1000_adapter *adapter)
4360 {
4361 	struct e1000_hw *hw = &adapter->hw;
4362 	bool link_active = false;
4363 	s32 ret_val = 0;
4364 
4365 	/*
4366 	 * get_link_status is set on LSC (link status) interrupt or
4367 	 * Rx sequence error interrupt.  get_link_status will stay
4368 	 * false until the check_for_link establishes link
4369 	 * for copper adapters ONLY
4370 	 */
4371 	switch (hw->phy.media_type) {
4372 	case e1000_media_type_copper:
4373 		if (hw->mac.get_link_status) {
4374 			ret_val = hw->mac.ops.check_for_link(hw);
4375 			link_active = !hw->mac.get_link_status;
4376 		} else {
4377 			link_active = true;
4378 		}
4379 		break;
4380 	case e1000_media_type_fiber:
4381 		ret_val = hw->mac.ops.check_for_link(hw);
4382 		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
4383 		break;
4384 	case e1000_media_type_internal_serdes:
4385 		ret_val = hw->mac.ops.check_for_link(hw);
4386 		link_active = adapter->hw.mac.serdes_has_link;
4387 		break;
4388 	default:
4389 	case e1000_media_type_unknown:
4390 		break;
4391 	}
4392 
4393 	if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
4394 	    (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
4395 		/* See e1000_kmrn_lock_loss_workaround_ich8lan() */
4396 		e_info("Gigabit has been disabled, downgrading speed\n");
4397 	}
4398 
4399 	return link_active;
4400 }
4401 
4402 static void e1000e_enable_receives(struct e1000_adapter *adapter)
4403 {
4404 	/* make sure the receive unit is started */
4405 	if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
4406 	    (adapter->flags & FLAG_RX_RESTART_NOW)) {
4407 		struct e1000_hw *hw = &adapter->hw;
4408 		u32 rctl = er32(RCTL);
4409 		ew32(RCTL, rctl | E1000_RCTL_EN);
4410 		adapter->flags &= ~FLAG_RX_RESTART_NOW;
4411 	}
4412 }
4413 
4414 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
4415 {
4416 	struct e1000_hw *hw = &adapter->hw;
4417 
4418 	/*
4419 	 * With 82574 controllers, PHY needs to be checked periodically
4420 	 * for hung state and reset, if two calls return true
4421 	 */
4422 	if (e1000_check_phy_82574(hw))
4423 		adapter->phy_hang_count++;
4424 	else
4425 		adapter->phy_hang_count = 0;
4426 
4427 	if (adapter->phy_hang_count > 1) {
4428 		adapter->phy_hang_count = 0;
4429 		schedule_work(&adapter->reset_task);
4430 	}
4431 }
4432 
4433 /**
4434  * e1000_watchdog - Timer Call-back
4435  * @data: pointer to adapter cast into an unsigned long
4436  **/
4437 static void e1000_watchdog(unsigned long data)
4438 {
4439 	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
4440 
4441 	/* Do the rest outside of interrupt context */
4442 	schedule_work(&adapter->watchdog_task);
4443 
4444 	/* TODO: make this use queue_delayed_work() */
4445 }
4446 
4447 static void e1000_watchdog_task(struct work_struct *work)
4448 {
4449 	struct e1000_adapter *adapter = container_of(work,
4450 					struct e1000_adapter, watchdog_task);
4451 	struct net_device *netdev = adapter->netdev;
4452 	struct e1000_mac_info *mac = &adapter->hw.mac;
4453 	struct e1000_phy_info *phy = &adapter->hw.phy;
4454 	struct e1000_ring *tx_ring = adapter->tx_ring;
4455 	struct e1000_hw *hw = &adapter->hw;
4456 	u32 link, tctl;
4457 
4458 	if (test_bit(__E1000_DOWN, &adapter->state))
4459 		return;
4460 
4461 	link = e1000e_has_link(adapter);
4462 	if ((netif_carrier_ok(netdev)) && link) {
4463 		/* Cancel scheduled suspend requests. */
4464 		pm_runtime_resume(netdev->dev.parent);
4465 
4466 		e1000e_enable_receives(adapter);
4467 		goto link_up;
4468 	}
4469 
4470 	if ((e1000e_enable_tx_pkt_filtering(hw)) &&
4471 	    (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
4472 		e1000_update_mng_vlan(adapter);
4473 
4474 	if (link) {
4475 		if (!netif_carrier_ok(netdev)) {
4476 			bool txb2b = true;
4477 
4478 			/* Cancel scheduled suspend requests. */
4479 			pm_runtime_resume(netdev->dev.parent);
4480 
4481 			/* update snapshot of PHY registers on LSC */
4482 			e1000_phy_read_status(adapter);
4483 			mac->ops.get_link_up_info(&adapter->hw,
4484 						   &adapter->link_speed,
4485 						   &adapter->link_duplex);
4486 			e1000_print_link_info(adapter);
4487 			/*
4488 			 * On supported PHYs, check for duplex mismatch only
4489 			 * if link has autonegotiated at 10/100 half
4490 			 */
4491 			if ((hw->phy.type == e1000_phy_igp_3 ||
4492 			     hw->phy.type == e1000_phy_bm) &&
4493 			    (hw->mac.autoneg == true) &&
4494 			    (adapter->link_speed == SPEED_10 ||
4495 			     adapter->link_speed == SPEED_100) &&
4496 			    (adapter->link_duplex == HALF_DUPLEX)) {
4497 				u16 autoneg_exp;
4498 
4499 				e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp);
4500 
4501 				if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS))
4502 					e_info("Autonegotiated half duplex but link partner cannot autoneg.  Try forcing full duplex if link gets many collisions.\n");
4503 			}
4504 
4505 			/* adjust timeout factor according to speed/duplex */
4506 			adapter->tx_timeout_factor = 1;
4507 			switch (adapter->link_speed) {
4508 			case SPEED_10:
4509 				txb2b = false;
4510 				adapter->tx_timeout_factor = 16;
4511 				break;
4512 			case SPEED_100:
4513 				txb2b = false;
4514 				adapter->tx_timeout_factor = 10;
4515 				break;
4516 			}
4517 
4518 			/*
4519 			 * workaround: re-program speed mode bit after
4520 			 * link-up event
4521 			 */
4522 			if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
4523 			    !txb2b) {
4524 				u32 tarc0;
4525 				tarc0 = er32(TARC(0));
4526 				tarc0 &= ~SPEED_MODE_BIT;
4527 				ew32(TARC(0), tarc0);
4528 			}
4529 
4530 			/*
4531 			 * disable TSO for pcie and 10/100 speeds, to avoid
4532 			 * some hardware issues
4533 			 */
4534 			if (!(adapter->flags & FLAG_TSO_FORCE)) {
4535 				switch (adapter->link_speed) {
4536 				case SPEED_10:
4537 				case SPEED_100:
4538 					e_info("10/100 speed: disabling TSO\n");
4539 					netdev->features &= ~NETIF_F_TSO;
4540 					netdev->features &= ~NETIF_F_TSO6;
4541 					break;
4542 				case SPEED_1000:
4543 					netdev->features |= NETIF_F_TSO;
4544 					netdev->features |= NETIF_F_TSO6;
4545 					break;
4546 				default:
4547 					/* oops */
4548 					break;
4549 				}
4550 			}
4551 
4552 			/*
4553 			 * enable transmits in the hardware, need to do this
4554 			 * after setting TARC(0)
4555 			 */
4556 			tctl = er32(TCTL);
4557 			tctl |= E1000_TCTL_EN;
4558 			ew32(TCTL, tctl);
4559 
4560                         /*
4561 			 * Perform any post-link-up configuration before
4562 			 * reporting link up.
4563 			 */
4564 			if (phy->ops.cfg_on_link_up)
4565 				phy->ops.cfg_on_link_up(hw);
4566 
4567 			netif_carrier_on(netdev);
4568 
4569 			if (!test_bit(__E1000_DOWN, &adapter->state))
4570 				mod_timer(&adapter->phy_info_timer,
4571 					  round_jiffies(jiffies + 2 * HZ));
4572 		}
4573 	} else {
4574 		if (netif_carrier_ok(netdev)) {
4575 			adapter->link_speed = 0;
4576 			adapter->link_duplex = 0;
4577 			/* Link status message must follow this format */
4578 			printk(KERN_INFO "e1000e: %s NIC Link is Down\n",
4579 			       adapter->netdev->name);
4580 			netif_carrier_off(netdev);
4581 			if (!test_bit(__E1000_DOWN, &adapter->state))
4582 				mod_timer(&adapter->phy_info_timer,
4583 					  round_jiffies(jiffies + 2 * HZ));
4584 
4585 			if (adapter->flags & FLAG_RX_NEEDS_RESTART)
4586 				schedule_work(&adapter->reset_task);
4587 			else
4588 				pm_schedule_suspend(netdev->dev.parent,
4589 							LINK_TIMEOUT);
4590 		}
4591 	}
4592 
4593 link_up:
4594 	spin_lock(&adapter->stats64_lock);
4595 	e1000e_update_stats(adapter);
4596 
4597 	mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
4598 	adapter->tpt_old = adapter->stats.tpt;
4599 	mac->collision_delta = adapter->stats.colc - adapter->colc_old;
4600 	adapter->colc_old = adapter->stats.colc;
4601 
4602 	adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
4603 	adapter->gorc_old = adapter->stats.gorc;
4604 	adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
4605 	adapter->gotc_old = adapter->stats.gotc;
4606 	spin_unlock(&adapter->stats64_lock);
4607 
4608 	e1000e_update_adaptive(&adapter->hw);
4609 
4610 	if (!netif_carrier_ok(netdev) &&
4611 	    (e1000_desc_unused(tx_ring) + 1 < tx_ring->count)) {
4612 		/*
4613 		 * We've lost link, so the controller stops DMA,
4614 		 * but we've got queued Tx work that's never going
4615 		 * to get done, so reset controller to flush Tx.
4616 		 * (Do the reset outside of interrupt context).
4617 		 */
4618 		schedule_work(&adapter->reset_task);
4619 		/* return immediately since reset is imminent */
4620 		return;
4621 	}
4622 
4623 	/* Simple mode for Interrupt Throttle Rate (ITR) */
4624 	if (adapter->itr_setting == 4) {
4625 		/*
4626 		 * Symmetric Tx/Rx gets a reduced ITR=2000;
4627 		 * Total asymmetrical Tx or Rx gets ITR=8000;
4628 		 * everyone else is between 2000-8000.
4629 		 */
4630 		u32 goc = (adapter->gotc + adapter->gorc) / 10000;
4631 		u32 dif = (adapter->gotc > adapter->gorc ?
4632 			    adapter->gotc - adapter->gorc :
4633 			    adapter->gorc - adapter->gotc) / 10000;
4634 		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
4635 
4636 		e1000e_write_itr(adapter, itr);
4637 	}
4638 
4639 	/* Cause software interrupt to ensure Rx ring is cleaned */
4640 	if (adapter->msix_entries)
4641 		ew32(ICS, adapter->rx_ring->ims_val);
4642 	else
4643 		ew32(ICS, E1000_ICS_RXDMT0);
4644 
4645 	/* flush pending descriptors to memory before detecting Tx hang */
4646 	e1000e_flush_descriptors(adapter);
4647 
4648 	/* Force detection of hung controller every watchdog period */
4649 	adapter->detect_tx_hung = true;
4650 
4651 	/*
4652 	 * With 82571 controllers, LAA may be overwritten due to controller
4653 	 * reset from the other port. Set the appropriate LAA in RAR[0]
4654 	 */
4655 	if (e1000e_get_laa_state_82571(hw))
4656 		hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
4657 
4658 	if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
4659 		e1000e_check_82574_phy_workaround(adapter);
4660 
4661 	/* Reset the timer */
4662 	if (!test_bit(__E1000_DOWN, &adapter->state))
4663 		mod_timer(&adapter->watchdog_timer,
4664 			  round_jiffies(jiffies + 2 * HZ));
4665 }
4666 
4667 #define E1000_TX_FLAGS_CSUM		0x00000001
4668 #define E1000_TX_FLAGS_VLAN		0x00000002
4669 #define E1000_TX_FLAGS_TSO		0x00000004
4670 #define E1000_TX_FLAGS_IPV4		0x00000008
4671 #define E1000_TX_FLAGS_NO_FCS		0x00000010
4672 #define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
4673 #define E1000_TX_FLAGS_VLAN_SHIFT	16
4674 
4675 static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb)
4676 {
4677 	struct e1000_context_desc *context_desc;
4678 	struct e1000_buffer *buffer_info;
4679 	unsigned int i;
4680 	u32 cmd_length = 0;
4681 	u16 ipcse = 0, mss;
4682 	u8 ipcss, ipcso, tucss, tucso, hdr_len;
4683 
4684 	if (!skb_is_gso(skb))
4685 		return 0;
4686 
4687 	if (skb_header_cloned(skb)) {
4688 		int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4689 
4690 		if (err)
4691 			return err;
4692 	}
4693 
4694 	hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
4695 	mss = skb_shinfo(skb)->gso_size;
4696 	if (skb->protocol == htons(ETH_P_IP)) {
4697 		struct iphdr *iph = ip_hdr(skb);
4698 		iph->tot_len = 0;
4699 		iph->check = 0;
4700 		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
4701 		                                         0, IPPROTO_TCP, 0);
4702 		cmd_length = E1000_TXD_CMD_IP;
4703 		ipcse = skb_transport_offset(skb) - 1;
4704 	} else if (skb_is_gso_v6(skb)) {
4705 		ipv6_hdr(skb)->payload_len = 0;
4706 		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4707 		                                       &ipv6_hdr(skb)->daddr,
4708 		                                       0, IPPROTO_TCP, 0);
4709 		ipcse = 0;
4710 	}
4711 	ipcss = skb_network_offset(skb);
4712 	ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
4713 	tucss = skb_transport_offset(skb);
4714 	tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
4715 
4716 	cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
4717 	               E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
4718 
4719 	i = tx_ring->next_to_use;
4720 	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
4721 	buffer_info = &tx_ring->buffer_info[i];
4722 
4723 	context_desc->lower_setup.ip_fields.ipcss  = ipcss;
4724 	context_desc->lower_setup.ip_fields.ipcso  = ipcso;
4725 	context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
4726 	context_desc->upper_setup.tcp_fields.tucss = tucss;
4727 	context_desc->upper_setup.tcp_fields.tucso = tucso;
4728 	context_desc->upper_setup.tcp_fields.tucse = 0;
4729 	context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
4730 	context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
4731 	context_desc->cmd_and_length = cpu_to_le32(cmd_length);
4732 
4733 	buffer_info->time_stamp = jiffies;
4734 	buffer_info->next_to_watch = i;
4735 
4736 	i++;
4737 	if (i == tx_ring->count)
4738 		i = 0;
4739 	tx_ring->next_to_use = i;
4740 
4741 	return 1;
4742 }
4743 
4744 static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb)
4745 {
4746 	struct e1000_adapter *adapter = tx_ring->adapter;
4747 	struct e1000_context_desc *context_desc;
4748 	struct e1000_buffer *buffer_info;
4749 	unsigned int i;
4750 	u8 css;
4751 	u32 cmd_len = E1000_TXD_CMD_DEXT;
4752 	__be16 protocol;
4753 
4754 	if (skb->ip_summed != CHECKSUM_PARTIAL)
4755 		return 0;
4756 
4757 	if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
4758 		protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
4759 	else
4760 		protocol = skb->protocol;
4761 
4762 	switch (protocol) {
4763 	case cpu_to_be16(ETH_P_IP):
4764 		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
4765 			cmd_len |= E1000_TXD_CMD_TCP;
4766 		break;
4767 	case cpu_to_be16(ETH_P_IPV6):
4768 		/* XXX not handling all IPV6 headers */
4769 		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
4770 			cmd_len |= E1000_TXD_CMD_TCP;
4771 		break;
4772 	default:
4773 		if (unlikely(net_ratelimit()))
4774 			e_warn("checksum_partial proto=%x!\n",
4775 			       be16_to_cpu(protocol));
4776 		break;
4777 	}
4778 
4779 	css = skb_checksum_start_offset(skb);
4780 
4781 	i = tx_ring->next_to_use;
4782 	buffer_info = &tx_ring->buffer_info[i];
4783 	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
4784 
4785 	context_desc->lower_setup.ip_config = 0;
4786 	context_desc->upper_setup.tcp_fields.tucss = css;
4787 	context_desc->upper_setup.tcp_fields.tucso =
4788 				css + skb->csum_offset;
4789 	context_desc->upper_setup.tcp_fields.tucse = 0;
4790 	context_desc->tcp_seg_setup.data = 0;
4791 	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
4792 
4793 	buffer_info->time_stamp = jiffies;
4794 	buffer_info->next_to_watch = i;
4795 
4796 	i++;
4797 	if (i == tx_ring->count)
4798 		i = 0;
4799 	tx_ring->next_to_use = i;
4800 
4801 	return 1;
4802 }
4803 
4804 static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
4805 			unsigned int first, unsigned int max_per_txd,
4806 			unsigned int nr_frags)
4807 {
4808 	struct e1000_adapter *adapter = tx_ring->adapter;
4809 	struct pci_dev *pdev = adapter->pdev;
4810 	struct e1000_buffer *buffer_info;
4811 	unsigned int len = skb_headlen(skb);
4812 	unsigned int offset = 0, size, count = 0, i;
4813 	unsigned int f, bytecount, segs;
4814 
4815 	i = tx_ring->next_to_use;
4816 
4817 	while (len) {
4818 		buffer_info = &tx_ring->buffer_info[i];
4819 		size = min(len, max_per_txd);
4820 
4821 		buffer_info->length = size;
4822 		buffer_info->time_stamp = jiffies;
4823 		buffer_info->next_to_watch = i;
4824 		buffer_info->dma = dma_map_single(&pdev->dev,
4825 						  skb->data + offset,
4826 						  size, DMA_TO_DEVICE);
4827 		buffer_info->mapped_as_page = false;
4828 		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4829 			goto dma_error;
4830 
4831 		len -= size;
4832 		offset += size;
4833 		count++;
4834 
4835 		if (len) {
4836 			i++;
4837 			if (i == tx_ring->count)
4838 				i = 0;
4839 		}
4840 	}
4841 
4842 	for (f = 0; f < nr_frags; f++) {
4843 		const struct skb_frag_struct *frag;
4844 
4845 		frag = &skb_shinfo(skb)->frags[f];
4846 		len = skb_frag_size(frag);
4847 		offset = 0;
4848 
4849 		while (len) {
4850 			i++;
4851 			if (i == tx_ring->count)
4852 				i = 0;
4853 
4854 			buffer_info = &tx_ring->buffer_info[i];
4855 			size = min(len, max_per_txd);
4856 
4857 			buffer_info->length = size;
4858 			buffer_info->time_stamp = jiffies;
4859 			buffer_info->next_to_watch = i;
4860 			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
4861 						offset, size, DMA_TO_DEVICE);
4862 			buffer_info->mapped_as_page = true;
4863 			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4864 				goto dma_error;
4865 
4866 			len -= size;
4867 			offset += size;
4868 			count++;
4869 		}
4870 	}
4871 
4872 	segs = skb_shinfo(skb)->gso_segs ? : 1;
4873 	/* multiply data chunks by size of headers */
4874 	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
4875 
4876 	tx_ring->buffer_info[i].skb = skb;
4877 	tx_ring->buffer_info[i].segs = segs;
4878 	tx_ring->buffer_info[i].bytecount = bytecount;
4879 	tx_ring->buffer_info[first].next_to_watch = i;
4880 
4881 	return count;
4882 
4883 dma_error:
4884 	dev_err(&pdev->dev, "Tx DMA map failed\n");
4885 	buffer_info->dma = 0;
4886 	if (count)
4887 		count--;
4888 
4889 	while (count--) {
4890 		if (i == 0)
4891 			i += tx_ring->count;
4892 		i--;
4893 		buffer_info = &tx_ring->buffer_info[i];
4894 		e1000_put_txbuf(tx_ring, buffer_info);
4895 	}
4896 
4897 	return 0;
4898 }
4899 
4900 static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
4901 {
4902 	struct e1000_adapter *adapter = tx_ring->adapter;
4903 	struct e1000_tx_desc *tx_desc = NULL;
4904 	struct e1000_buffer *buffer_info;
4905 	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
4906 	unsigned int i;
4907 
4908 	if (tx_flags & E1000_TX_FLAGS_TSO) {
4909 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
4910 			     E1000_TXD_CMD_TSE;
4911 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
4912 
4913 		if (tx_flags & E1000_TX_FLAGS_IPV4)
4914 			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
4915 	}
4916 
4917 	if (tx_flags & E1000_TX_FLAGS_CSUM) {
4918 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
4919 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
4920 	}
4921 
4922 	if (tx_flags & E1000_TX_FLAGS_VLAN) {
4923 		txd_lower |= E1000_TXD_CMD_VLE;
4924 		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
4925 	}
4926 
4927 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
4928 		txd_lower &= ~(E1000_TXD_CMD_IFCS);
4929 
4930 	i = tx_ring->next_to_use;
4931 
4932 	do {
4933 		buffer_info = &tx_ring->buffer_info[i];
4934 		tx_desc = E1000_TX_DESC(*tx_ring, i);
4935 		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4936 		tx_desc->lower.data =
4937 			cpu_to_le32(txd_lower | buffer_info->length);
4938 		tx_desc->upper.data = cpu_to_le32(txd_upper);
4939 
4940 		i++;
4941 		if (i == tx_ring->count)
4942 			i = 0;
4943 	} while (--count > 0);
4944 
4945 	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
4946 
4947 	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
4948 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
4949 		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
4950 
4951 	/*
4952 	 * Force memory writes to complete before letting h/w
4953 	 * know there are new descriptors to fetch.  (Only
4954 	 * applicable for weak-ordered memory model archs,
4955 	 * such as IA-64).
4956 	 */
4957 	wmb();
4958 
4959 	tx_ring->next_to_use = i;
4960 
4961 	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
4962 		e1000e_update_tdt_wa(tx_ring, i);
4963 	else
4964 		writel(i, tx_ring->tail);
4965 
4966 	/*
4967 	 * we need this if more than one processor can write to our tail
4968 	 * at a time, it synchronizes IO on IA64/Altix systems
4969 	 */
4970 	mmiowb();
4971 }
4972 
4973 #define MINIMUM_DHCP_PACKET_SIZE 282
4974 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
4975 				    struct sk_buff *skb)
4976 {
4977 	struct e1000_hw *hw =  &adapter->hw;
4978 	u16 length, offset;
4979 
4980 	if (vlan_tx_tag_present(skb)) {
4981 		if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
4982 		    (adapter->hw.mng_cookie.status &
4983 			E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
4984 			return 0;
4985 	}
4986 
4987 	if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
4988 		return 0;
4989 
4990 	if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
4991 		return 0;
4992 
4993 	{
4994 		const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
4995 		struct udphdr *udp;
4996 
4997 		if (ip->protocol != IPPROTO_UDP)
4998 			return 0;
4999 
5000 		udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
5001 		if (ntohs(udp->dest) != 67)
5002 			return 0;
5003 
5004 		offset = (u8 *)udp + 8 - skb->data;
5005 		length = skb->len - offset;
5006 		return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
5007 	}
5008 
5009 	return 0;
5010 }
5011 
5012 static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5013 {
5014 	struct e1000_adapter *adapter = tx_ring->adapter;
5015 
5016 	netif_stop_queue(adapter->netdev);
5017 	/*
5018 	 * Herbert's original patch had:
5019 	 *  smp_mb__after_netif_stop_queue();
5020 	 * but since that doesn't exist yet, just open code it.
5021 	 */
5022 	smp_mb();
5023 
5024 	/*
5025 	 * We need to check again in a case another CPU has just
5026 	 * made room available.
5027 	 */
5028 	if (e1000_desc_unused(tx_ring) < size)
5029 		return -EBUSY;
5030 
5031 	/* A reprieve! */
5032 	netif_start_queue(adapter->netdev);
5033 	++adapter->restart_queue;
5034 	return 0;
5035 }
5036 
5037 static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5038 {
5039 	BUG_ON(size > tx_ring->count);
5040 
5041 	if (e1000_desc_unused(tx_ring) >= size)
5042 		return 0;
5043 	return __e1000_maybe_stop_tx(tx_ring, size);
5044 }
5045 
5046 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5047 				    struct net_device *netdev)
5048 {
5049 	struct e1000_adapter *adapter = netdev_priv(netdev);
5050 	struct e1000_ring *tx_ring = adapter->tx_ring;
5051 	unsigned int first;
5052 	unsigned int tx_flags = 0;
5053 	unsigned int len = skb_headlen(skb);
5054 	unsigned int nr_frags;
5055 	unsigned int mss;
5056 	int count = 0;
5057 	int tso;
5058 	unsigned int f;
5059 
5060 	if (test_bit(__E1000_DOWN, &adapter->state)) {
5061 		dev_kfree_skb_any(skb);
5062 		return NETDEV_TX_OK;
5063 	}
5064 
5065 	if (skb->len <= 0) {
5066 		dev_kfree_skb_any(skb);
5067 		return NETDEV_TX_OK;
5068 	}
5069 
5070 	mss = skb_shinfo(skb)->gso_size;
5071 	if (mss) {
5072 		u8 hdr_len;
5073 
5074 		/*
5075 		 * TSO Workaround for 82571/2/3 Controllers -- if skb->data
5076 		 * points to just header, pull a few bytes of payload from
5077 		 * frags into skb->data
5078 		 */
5079 		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5080 		/*
5081 		 * we do this workaround for ES2LAN, but it is un-necessary,
5082 		 * avoiding it could save a lot of cycles
5083 		 */
5084 		if (skb->data_len && (hdr_len == len)) {
5085 			unsigned int pull_size;
5086 
5087 			pull_size = min_t(unsigned int, 4, skb->data_len);
5088 			if (!__pskb_pull_tail(skb, pull_size)) {
5089 				e_err("__pskb_pull_tail failed.\n");
5090 				dev_kfree_skb_any(skb);
5091 				return NETDEV_TX_OK;
5092 			}
5093 			len = skb_headlen(skb);
5094 		}
5095 	}
5096 
5097 	/* reserve a descriptor for the offload context */
5098 	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5099 		count++;
5100 	count++;
5101 
5102 	count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
5103 
5104 	nr_frags = skb_shinfo(skb)->nr_frags;
5105 	for (f = 0; f < nr_frags; f++)
5106 		count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5107 				      adapter->tx_fifo_limit);
5108 
5109 	if (adapter->hw.mac.tx_pkt_filtering)
5110 		e1000_transfer_dhcp_info(adapter, skb);
5111 
5112 	/*
5113 	 * need: count + 2 desc gap to keep tail from touching
5114 	 * head, otherwise try next time
5115 	 */
5116 	if (e1000_maybe_stop_tx(tx_ring, count + 2))
5117 		return NETDEV_TX_BUSY;
5118 
5119 	if (vlan_tx_tag_present(skb)) {
5120 		tx_flags |= E1000_TX_FLAGS_VLAN;
5121 		tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
5122 	}
5123 
5124 	first = tx_ring->next_to_use;
5125 
5126 	tso = e1000_tso(tx_ring, skb);
5127 	if (tso < 0) {
5128 		dev_kfree_skb_any(skb);
5129 		return NETDEV_TX_OK;
5130 	}
5131 
5132 	if (tso)
5133 		tx_flags |= E1000_TX_FLAGS_TSO;
5134 	else if (e1000_tx_csum(tx_ring, skb))
5135 		tx_flags |= E1000_TX_FLAGS_CSUM;
5136 
5137 	/*
5138 	 * Old method was to assume IPv4 packet by default if TSO was enabled.
5139 	 * 82571 hardware supports TSO capabilities for IPv6 as well...
5140 	 * no longer assume, we must.
5141 	 */
5142 	if (skb->protocol == htons(ETH_P_IP))
5143 		tx_flags |= E1000_TX_FLAGS_IPV4;
5144 
5145 	if (unlikely(skb->no_fcs))
5146 		tx_flags |= E1000_TX_FLAGS_NO_FCS;
5147 
5148 	/* if count is 0 then mapping error has occurred */
5149 	count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5150 			     nr_frags);
5151 	if (count) {
5152 		skb_tx_timestamp(skb);
5153 
5154 		netdev_sent_queue(netdev, skb->len);
5155 		e1000_tx_queue(tx_ring, tx_flags, count);
5156 		/* Make sure there is space in the ring for the next send. */
5157 		e1000_maybe_stop_tx(tx_ring,
5158 				    (MAX_SKB_FRAGS *
5159 				     DIV_ROUND_UP(PAGE_SIZE,
5160 						  adapter->tx_fifo_limit) + 2));
5161 	} else {
5162 		dev_kfree_skb_any(skb);
5163 		tx_ring->buffer_info[first].time_stamp = 0;
5164 		tx_ring->next_to_use = first;
5165 	}
5166 
5167 	return NETDEV_TX_OK;
5168 }
5169 
5170 /**
5171  * e1000_tx_timeout - Respond to a Tx Hang
5172  * @netdev: network interface device structure
5173  **/
5174 static void e1000_tx_timeout(struct net_device *netdev)
5175 {
5176 	struct e1000_adapter *adapter = netdev_priv(netdev);
5177 
5178 	/* Do the reset outside of interrupt context */
5179 	adapter->tx_timeout_count++;
5180 	schedule_work(&adapter->reset_task);
5181 }
5182 
5183 static void e1000_reset_task(struct work_struct *work)
5184 {
5185 	struct e1000_adapter *adapter;
5186 	adapter = container_of(work, struct e1000_adapter, reset_task);
5187 
5188 	/* don't run the task if already down */
5189 	if (test_bit(__E1000_DOWN, &adapter->state))
5190 		return;
5191 
5192 	if (!((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
5193 	      (adapter->flags & FLAG_RX_RESTART_NOW))) {
5194 		e1000e_dump(adapter);
5195 		e_err("Reset adapter\n");
5196 	}
5197 	e1000e_reinit_locked(adapter);
5198 }
5199 
5200 /**
5201  * e1000_get_stats64 - Get System Network Statistics
5202  * @netdev: network interface device structure
5203  * @stats: rtnl_link_stats64 pointer
5204  *
5205  * Returns the address of the device statistics structure.
5206  **/
5207 struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev,
5208                                              struct rtnl_link_stats64 *stats)
5209 {
5210 	struct e1000_adapter *adapter = netdev_priv(netdev);
5211 
5212 	memset(stats, 0, sizeof(struct rtnl_link_stats64));
5213 	spin_lock(&adapter->stats64_lock);
5214 	e1000e_update_stats(adapter);
5215 	/* Fill out the OS statistics structure */
5216 	stats->rx_bytes = adapter->stats.gorc;
5217 	stats->rx_packets = adapter->stats.gprc;
5218 	stats->tx_bytes = adapter->stats.gotc;
5219 	stats->tx_packets = adapter->stats.gptc;
5220 	stats->multicast = adapter->stats.mprc;
5221 	stats->collisions = adapter->stats.colc;
5222 
5223 	/* Rx Errors */
5224 
5225 	/*
5226 	 * RLEC on some newer hardware can be incorrect so build
5227 	 * our own version based on RUC and ROC
5228 	 */
5229 	stats->rx_errors = adapter->stats.rxerrc +
5230 		adapter->stats.crcerrs + adapter->stats.algnerrc +
5231 		adapter->stats.ruc + adapter->stats.roc +
5232 		adapter->stats.cexterr;
5233 	stats->rx_length_errors = adapter->stats.ruc +
5234 					      adapter->stats.roc;
5235 	stats->rx_crc_errors = adapter->stats.crcerrs;
5236 	stats->rx_frame_errors = adapter->stats.algnerrc;
5237 	stats->rx_missed_errors = adapter->stats.mpc;
5238 
5239 	/* Tx Errors */
5240 	stats->tx_errors = adapter->stats.ecol +
5241 				       adapter->stats.latecol;
5242 	stats->tx_aborted_errors = adapter->stats.ecol;
5243 	stats->tx_window_errors = adapter->stats.latecol;
5244 	stats->tx_carrier_errors = adapter->stats.tncrs;
5245 
5246 	/* Tx Dropped needs to be maintained elsewhere */
5247 
5248 	spin_unlock(&adapter->stats64_lock);
5249 	return stats;
5250 }
5251 
5252 /**
5253  * e1000_change_mtu - Change the Maximum Transfer Unit
5254  * @netdev: network interface device structure
5255  * @new_mtu: new value for maximum frame size
5256  *
5257  * Returns 0 on success, negative on failure
5258  **/
5259 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
5260 {
5261 	struct e1000_adapter *adapter = netdev_priv(netdev);
5262 	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
5263 
5264 	/* Jumbo frame support */
5265 	if ((max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) &&
5266 	    !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
5267 		e_err("Jumbo Frames not supported.\n");
5268 		return -EINVAL;
5269 	}
5270 
5271 	/* Supported frame sizes */
5272 	if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
5273 	    (max_frame > adapter->max_hw_frame_size)) {
5274 		e_err("Unsupported MTU setting\n");
5275 		return -EINVAL;
5276 	}
5277 
5278 	/* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
5279 	if ((adapter->hw.mac.type >= e1000_pch2lan) &&
5280 	    !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
5281 	    (new_mtu > ETH_DATA_LEN)) {
5282 		e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
5283 		return -EINVAL;
5284 	}
5285 
5286 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
5287 		usleep_range(1000, 2000);
5288 	/* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
5289 	adapter->max_frame_size = max_frame;
5290 	e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
5291 	netdev->mtu = new_mtu;
5292 	if (netif_running(netdev))
5293 		e1000e_down(adapter);
5294 
5295 	/*
5296 	 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
5297 	 * means we reserve 2 more, this pushes us to allocate from the next
5298 	 * larger slab size.
5299 	 * i.e. RXBUFFER_2048 --> size-4096 slab
5300 	 * However with the new *_jumbo_rx* routines, jumbo receives will use
5301 	 * fragmented skbs
5302 	 */
5303 
5304 	if (max_frame <= 2048)
5305 		adapter->rx_buffer_len = 2048;
5306 	else
5307 		adapter->rx_buffer_len = 4096;
5308 
5309 	/* adjust allocation if LPE protects us, and we aren't using SBP */
5310 	if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
5311 	     (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
5312 		adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
5313 					 + ETH_FCS_LEN;
5314 
5315 	if (netif_running(netdev))
5316 		e1000e_up(adapter);
5317 	else
5318 		e1000e_reset(adapter);
5319 
5320 	clear_bit(__E1000_RESETTING, &adapter->state);
5321 
5322 	return 0;
5323 }
5324 
5325 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
5326 			   int cmd)
5327 {
5328 	struct e1000_adapter *adapter = netdev_priv(netdev);
5329 	struct mii_ioctl_data *data = if_mii(ifr);
5330 
5331 	if (adapter->hw.phy.media_type != e1000_media_type_copper)
5332 		return -EOPNOTSUPP;
5333 
5334 	switch (cmd) {
5335 	case SIOCGMIIPHY:
5336 		data->phy_id = adapter->hw.phy.addr;
5337 		break;
5338 	case SIOCGMIIREG:
5339 		e1000_phy_read_status(adapter);
5340 
5341 		switch (data->reg_num & 0x1F) {
5342 		case MII_BMCR:
5343 			data->val_out = adapter->phy_regs.bmcr;
5344 			break;
5345 		case MII_BMSR:
5346 			data->val_out = adapter->phy_regs.bmsr;
5347 			break;
5348 		case MII_PHYSID1:
5349 			data->val_out = (adapter->hw.phy.id >> 16);
5350 			break;
5351 		case MII_PHYSID2:
5352 			data->val_out = (adapter->hw.phy.id & 0xFFFF);
5353 			break;
5354 		case MII_ADVERTISE:
5355 			data->val_out = adapter->phy_regs.advertise;
5356 			break;
5357 		case MII_LPA:
5358 			data->val_out = adapter->phy_regs.lpa;
5359 			break;
5360 		case MII_EXPANSION:
5361 			data->val_out = adapter->phy_regs.expansion;
5362 			break;
5363 		case MII_CTRL1000:
5364 			data->val_out = adapter->phy_regs.ctrl1000;
5365 			break;
5366 		case MII_STAT1000:
5367 			data->val_out = adapter->phy_regs.stat1000;
5368 			break;
5369 		case MII_ESTATUS:
5370 			data->val_out = adapter->phy_regs.estatus;
5371 			break;
5372 		default:
5373 			return -EIO;
5374 		}
5375 		break;
5376 	case SIOCSMIIREG:
5377 	default:
5378 		return -EOPNOTSUPP;
5379 	}
5380 	return 0;
5381 }
5382 
5383 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5384 {
5385 	switch (cmd) {
5386 	case SIOCGMIIPHY:
5387 	case SIOCGMIIREG:
5388 	case SIOCSMIIREG:
5389 		return e1000_mii_ioctl(netdev, ifr, cmd);
5390 	default:
5391 		return -EOPNOTSUPP;
5392 	}
5393 }
5394 
5395 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
5396 {
5397 	struct e1000_hw *hw = &adapter->hw;
5398 	u32 i, mac_reg;
5399 	u16 phy_reg, wuc_enable;
5400 	int retval = 0;
5401 
5402 	/* copy MAC RARs to PHY RARs */
5403 	e1000_copy_rx_addrs_to_phy_ich8lan(hw);
5404 
5405 	retval = hw->phy.ops.acquire(hw);
5406 	if (retval) {
5407 		e_err("Could not acquire PHY\n");
5408 		return retval;
5409 	}
5410 
5411 	/* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
5412 	retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
5413 	if (retval)
5414 		goto release;
5415 
5416 	/* copy MAC MTA to PHY MTA - only needed for pchlan */
5417 	for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
5418 		mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
5419 		hw->phy.ops.write_reg_page(hw, BM_MTA(i),
5420 					   (u16)(mac_reg & 0xFFFF));
5421 		hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
5422 					   (u16)((mac_reg >> 16) & 0xFFFF));
5423 	}
5424 
5425 	/* configure PHY Rx Control register */
5426 	hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
5427 	mac_reg = er32(RCTL);
5428 	if (mac_reg & E1000_RCTL_UPE)
5429 		phy_reg |= BM_RCTL_UPE;
5430 	if (mac_reg & E1000_RCTL_MPE)
5431 		phy_reg |= BM_RCTL_MPE;
5432 	phy_reg &= ~(BM_RCTL_MO_MASK);
5433 	if (mac_reg & E1000_RCTL_MO_3)
5434 		phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
5435 				<< BM_RCTL_MO_SHIFT);
5436 	if (mac_reg & E1000_RCTL_BAM)
5437 		phy_reg |= BM_RCTL_BAM;
5438 	if (mac_reg & E1000_RCTL_PMCF)
5439 		phy_reg |= BM_RCTL_PMCF;
5440 	mac_reg = er32(CTRL);
5441 	if (mac_reg & E1000_CTRL_RFCE)
5442 		phy_reg |= BM_RCTL_RFCE;
5443 	hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
5444 
5445 	/* enable PHY wakeup in MAC register */
5446 	ew32(WUFC, wufc);
5447 	ew32(WUC, E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN);
5448 
5449 	/* configure and enable PHY wakeup in PHY registers */
5450 	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
5451 	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);
5452 
5453 	/* activate PHY wakeup */
5454 	wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
5455 	retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
5456 	if (retval)
5457 		e_err("Could not set PHY Host Wakeup bit\n");
5458 release:
5459 	hw->phy.ops.release(hw);
5460 
5461 	return retval;
5462 }
5463 
5464 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake,
5465 			    bool runtime)
5466 {
5467 	struct net_device *netdev = pci_get_drvdata(pdev);
5468 	struct e1000_adapter *adapter = netdev_priv(netdev);
5469 	struct e1000_hw *hw = &adapter->hw;
5470 	u32 ctrl, ctrl_ext, rctl, status;
5471 	/* Runtime suspend should only enable wakeup for link changes */
5472 	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
5473 	int retval = 0;
5474 
5475 	netif_device_detach(netdev);
5476 
5477 	if (netif_running(netdev)) {
5478 		int count = E1000_CHECK_RESET_COUNT;
5479 
5480 		while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
5481 			usleep_range(10000, 20000);
5482 
5483 		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
5484 		e1000e_down(adapter);
5485 		e1000_free_irq(adapter);
5486 	}
5487 	e1000e_reset_interrupt_capability(adapter);
5488 
5489 	retval = pci_save_state(pdev);
5490 	if (retval)
5491 		return retval;
5492 
5493 	status = er32(STATUS);
5494 	if (status & E1000_STATUS_LU)
5495 		wufc &= ~E1000_WUFC_LNKC;
5496 
5497 	if (wufc) {
5498 		e1000_setup_rctl(adapter);
5499 		e1000e_set_rx_mode(netdev);
5500 
5501 		/* turn on all-multi mode if wake on multicast is enabled */
5502 		if (wufc & E1000_WUFC_MC) {
5503 			rctl = er32(RCTL);
5504 			rctl |= E1000_RCTL_MPE;
5505 			ew32(RCTL, rctl);
5506 		}
5507 
5508 		ctrl = er32(CTRL);
5509 		/* advertise wake from D3Cold */
5510 		#define E1000_CTRL_ADVD3WUC 0x00100000
5511 		/* phy power management enable */
5512 		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5513 		ctrl |= E1000_CTRL_ADVD3WUC;
5514 		if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
5515 			ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
5516 		ew32(CTRL, ctrl);
5517 
5518 		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
5519 		    adapter->hw.phy.media_type ==
5520 		    e1000_media_type_internal_serdes) {
5521 			/* keep the laser running in D3 */
5522 			ctrl_ext = er32(CTRL_EXT);
5523 			ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
5524 			ew32(CTRL_EXT, ctrl_ext);
5525 		}
5526 
5527 		if (adapter->flags & FLAG_IS_ICH)
5528 			e1000_suspend_workarounds_ich8lan(&adapter->hw);
5529 
5530 		/* Allow time for pending master requests to run */
5531 		e1000e_disable_pcie_master(&adapter->hw);
5532 
5533 		if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
5534 			/* enable wakeup by the PHY */
5535 			retval = e1000_init_phy_wakeup(adapter, wufc);
5536 			if (retval)
5537 				return retval;
5538 		} else {
5539 			/* enable wakeup by the MAC */
5540 			ew32(WUFC, wufc);
5541 			ew32(WUC, E1000_WUC_PME_EN);
5542 		}
5543 	} else {
5544 		ew32(WUC, 0);
5545 		ew32(WUFC, 0);
5546 	}
5547 
5548 	*enable_wake = !!wufc;
5549 
5550 	/* make sure adapter isn't asleep if manageability is enabled */
5551 	if ((adapter->flags & FLAG_MNG_PT_ENABLED) ||
5552 	    (hw->mac.ops.check_mng_mode(hw)))
5553 		*enable_wake = true;
5554 
5555 	if (adapter->hw.phy.type == e1000_phy_igp_3)
5556 		e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
5557 
5558 	/*
5559 	 * Release control of h/w to f/w.  If f/w is AMT enabled, this
5560 	 * would have already happened in close and is redundant.
5561 	 */
5562 	e1000e_release_hw_control(adapter);
5563 
5564 	pci_disable_device(pdev);
5565 
5566 	return 0;
5567 }
5568 
5569 static void e1000_power_off(struct pci_dev *pdev, bool sleep, bool wake)
5570 {
5571 	if (sleep && wake) {
5572 		pci_prepare_to_sleep(pdev);
5573 		return;
5574 	}
5575 
5576 	pci_wake_from_d3(pdev, wake);
5577 	pci_set_power_state(pdev, PCI_D3hot);
5578 }
5579 
5580 static void e1000_complete_shutdown(struct pci_dev *pdev, bool sleep,
5581                                     bool wake)
5582 {
5583 	struct net_device *netdev = pci_get_drvdata(pdev);
5584 	struct e1000_adapter *adapter = netdev_priv(netdev);
5585 
5586 	/*
5587 	 * The pci-e switch on some quad port adapters will report a
5588 	 * correctable error when the MAC transitions from D0 to D3.  To
5589 	 * prevent this we need to mask off the correctable errors on the
5590 	 * downstream port of the pci-e switch.
5591 	 */
5592 	if (adapter->flags & FLAG_IS_QUAD_PORT) {
5593 		struct pci_dev *us_dev = pdev->bus->self;
5594 		u16 devctl;
5595 
5596 		pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl);
5597 		pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL,
5598 					   (devctl & ~PCI_EXP_DEVCTL_CERE));
5599 
5600 		e1000_power_off(pdev, sleep, wake);
5601 
5602 		pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl);
5603 	} else {
5604 		e1000_power_off(pdev, sleep, wake);
5605 	}
5606 }
5607 
5608 #ifdef CONFIG_PCIEASPM
5609 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5610 {
5611 	pci_disable_link_state_locked(pdev, state);
5612 }
5613 #else
5614 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5615 {
5616 	/*
5617 	 * Both device and parent should have the same ASPM setting.
5618 	 * Disable ASPM in downstream component first and then upstream.
5619 	 */
5620 	pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, state);
5621 
5622 	if (pdev->bus->self)
5623 		pcie_capability_clear_word(pdev->bus->self, PCI_EXP_LNKCTL,
5624 					   state);
5625 }
5626 #endif
5627 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5628 {
5629 	dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
5630 		 (state & PCIE_LINK_STATE_L0S) ? "L0s" : "",
5631 		 (state & PCIE_LINK_STATE_L1) ? "L1" : "");
5632 
5633 	__e1000e_disable_aspm(pdev, state);
5634 }
5635 
5636 #ifdef CONFIG_PM
5637 static bool e1000e_pm_ready(struct e1000_adapter *adapter)
5638 {
5639 	return !!adapter->tx_ring->buffer_info;
5640 }
5641 
5642 static int __e1000_resume(struct pci_dev *pdev)
5643 {
5644 	struct net_device *netdev = pci_get_drvdata(pdev);
5645 	struct e1000_adapter *adapter = netdev_priv(netdev);
5646 	struct e1000_hw *hw = &adapter->hw;
5647 	u16 aspm_disable_flag = 0;
5648 	u32 err;
5649 
5650 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
5651 		aspm_disable_flag = PCIE_LINK_STATE_L0S;
5652 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
5653 		aspm_disable_flag |= PCIE_LINK_STATE_L1;
5654 	if (aspm_disable_flag)
5655 		e1000e_disable_aspm(pdev, aspm_disable_flag);
5656 
5657 	pci_set_power_state(pdev, PCI_D0);
5658 	pci_restore_state(pdev);
5659 	pci_save_state(pdev);
5660 
5661 	e1000e_set_interrupt_capability(adapter);
5662 	if (netif_running(netdev)) {
5663 		err = e1000_request_irq(adapter);
5664 		if (err)
5665 			return err;
5666 	}
5667 
5668 	if (hw->mac.type >= e1000_pch2lan)
5669 		e1000_resume_workarounds_pchlan(&adapter->hw);
5670 
5671 	e1000e_power_up_phy(adapter);
5672 
5673 	/* report the system wakeup cause from S3/S4 */
5674 	if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
5675 		u16 phy_data;
5676 
5677 		e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
5678 		if (phy_data) {
5679 			e_info("PHY Wakeup cause - %s\n",
5680 				phy_data & E1000_WUS_EX ? "Unicast Packet" :
5681 				phy_data & E1000_WUS_MC ? "Multicast Packet" :
5682 				phy_data & E1000_WUS_BC ? "Broadcast Packet" :
5683 				phy_data & E1000_WUS_MAG ? "Magic Packet" :
5684 				phy_data & E1000_WUS_LNKC ?
5685 				"Link Status Change" : "other");
5686 		}
5687 		e1e_wphy(&adapter->hw, BM_WUS, ~0);
5688 	} else {
5689 		u32 wus = er32(WUS);
5690 		if (wus) {
5691 			e_info("MAC Wakeup cause - %s\n",
5692 				wus & E1000_WUS_EX ? "Unicast Packet" :
5693 				wus & E1000_WUS_MC ? "Multicast Packet" :
5694 				wus & E1000_WUS_BC ? "Broadcast Packet" :
5695 				wus & E1000_WUS_MAG ? "Magic Packet" :
5696 				wus & E1000_WUS_LNKC ? "Link Status Change" :
5697 				"other");
5698 		}
5699 		ew32(WUS, ~0);
5700 	}
5701 
5702 	e1000e_reset(adapter);
5703 
5704 	e1000_init_manageability_pt(adapter);
5705 
5706 	if (netif_running(netdev))
5707 		e1000e_up(adapter);
5708 
5709 	netif_device_attach(netdev);
5710 
5711 	/*
5712 	 * If the controller has AMT, do not set DRV_LOAD until the interface
5713 	 * is up.  For all other cases, let the f/w know that the h/w is now
5714 	 * under the control of the driver.
5715 	 */
5716 	if (!(adapter->flags & FLAG_HAS_AMT))
5717 		e1000e_get_hw_control(adapter);
5718 
5719 	return 0;
5720 }
5721 
5722 #ifdef CONFIG_PM_SLEEP
5723 static int e1000_suspend(struct device *dev)
5724 {
5725 	struct pci_dev *pdev = to_pci_dev(dev);
5726 	int retval;
5727 	bool wake;
5728 
5729 	retval = __e1000_shutdown(pdev, &wake, false);
5730 	if (!retval)
5731 		e1000_complete_shutdown(pdev, true, wake);
5732 
5733 	return retval;
5734 }
5735 
5736 static int e1000_resume(struct device *dev)
5737 {
5738 	struct pci_dev *pdev = to_pci_dev(dev);
5739 	struct net_device *netdev = pci_get_drvdata(pdev);
5740 	struct e1000_adapter *adapter = netdev_priv(netdev);
5741 
5742 	if (e1000e_pm_ready(adapter))
5743 		adapter->idle_check = true;
5744 
5745 	return __e1000_resume(pdev);
5746 }
5747 #endif /* CONFIG_PM_SLEEP */
5748 
5749 #ifdef CONFIG_PM_RUNTIME
5750 static int e1000_runtime_suspend(struct device *dev)
5751 {
5752 	struct pci_dev *pdev = to_pci_dev(dev);
5753 	struct net_device *netdev = pci_get_drvdata(pdev);
5754 	struct e1000_adapter *adapter = netdev_priv(netdev);
5755 
5756 	if (e1000e_pm_ready(adapter)) {
5757 		bool wake;
5758 
5759 		__e1000_shutdown(pdev, &wake, true);
5760 	}
5761 
5762 	return 0;
5763 }
5764 
5765 static int e1000_idle(struct device *dev)
5766 {
5767 	struct pci_dev *pdev = to_pci_dev(dev);
5768 	struct net_device *netdev = pci_get_drvdata(pdev);
5769 	struct e1000_adapter *adapter = netdev_priv(netdev);
5770 
5771 	if (!e1000e_pm_ready(adapter))
5772 		return 0;
5773 
5774 	if (adapter->idle_check) {
5775 		adapter->idle_check = false;
5776 		if (!e1000e_has_link(adapter))
5777 			pm_schedule_suspend(dev, MSEC_PER_SEC);
5778 	}
5779 
5780 	return -EBUSY;
5781 }
5782 
5783 static int e1000_runtime_resume(struct device *dev)
5784 {
5785 	struct pci_dev *pdev = to_pci_dev(dev);
5786 	struct net_device *netdev = pci_get_drvdata(pdev);
5787 	struct e1000_adapter *adapter = netdev_priv(netdev);
5788 
5789 	if (!e1000e_pm_ready(adapter))
5790 		return 0;
5791 
5792 	adapter->idle_check = !dev->power.runtime_auto;
5793 	return __e1000_resume(pdev);
5794 }
5795 #endif /* CONFIG_PM_RUNTIME */
5796 #endif /* CONFIG_PM */
5797 
5798 static void e1000_shutdown(struct pci_dev *pdev)
5799 {
5800 	bool wake = false;
5801 
5802 	__e1000_shutdown(pdev, &wake, false);
5803 
5804 	if (system_state == SYSTEM_POWER_OFF)
5805 		e1000_complete_shutdown(pdev, false, wake);
5806 }
5807 
5808 #ifdef CONFIG_NET_POLL_CONTROLLER
5809 
5810 static irqreturn_t e1000_intr_msix(int irq, void *data)
5811 {
5812 	struct net_device *netdev = data;
5813 	struct e1000_adapter *adapter = netdev_priv(netdev);
5814 
5815 	if (adapter->msix_entries) {
5816 		int vector, msix_irq;
5817 
5818 		vector = 0;
5819 		msix_irq = adapter->msix_entries[vector].vector;
5820 		disable_irq(msix_irq);
5821 		e1000_intr_msix_rx(msix_irq, netdev);
5822 		enable_irq(msix_irq);
5823 
5824 		vector++;
5825 		msix_irq = adapter->msix_entries[vector].vector;
5826 		disable_irq(msix_irq);
5827 		e1000_intr_msix_tx(msix_irq, netdev);
5828 		enable_irq(msix_irq);
5829 
5830 		vector++;
5831 		msix_irq = adapter->msix_entries[vector].vector;
5832 		disable_irq(msix_irq);
5833 		e1000_msix_other(msix_irq, netdev);
5834 		enable_irq(msix_irq);
5835 	}
5836 
5837 	return IRQ_HANDLED;
5838 }
5839 
5840 /*
5841  * Polling 'interrupt' - used by things like netconsole to send skbs
5842  * without having to re-enable interrupts. It's not called while
5843  * the interrupt routine is executing.
5844  */
5845 static void e1000_netpoll(struct net_device *netdev)
5846 {
5847 	struct e1000_adapter *adapter = netdev_priv(netdev);
5848 
5849 	switch (adapter->int_mode) {
5850 	case E1000E_INT_MODE_MSIX:
5851 		e1000_intr_msix(adapter->pdev->irq, netdev);
5852 		break;
5853 	case E1000E_INT_MODE_MSI:
5854 		disable_irq(adapter->pdev->irq);
5855 		e1000_intr_msi(adapter->pdev->irq, netdev);
5856 		enable_irq(adapter->pdev->irq);
5857 		break;
5858 	default: /* E1000E_INT_MODE_LEGACY */
5859 		disable_irq(adapter->pdev->irq);
5860 		e1000_intr(adapter->pdev->irq, netdev);
5861 		enable_irq(adapter->pdev->irq);
5862 		break;
5863 	}
5864 }
5865 #endif
5866 
5867 /**
5868  * e1000_io_error_detected - called when PCI error is detected
5869  * @pdev: Pointer to PCI device
5870  * @state: The current pci connection state
5871  *
5872  * This function is called after a PCI bus error affecting
5873  * this device has been detected.
5874  */
5875 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5876 						pci_channel_state_t state)
5877 {
5878 	struct net_device *netdev = pci_get_drvdata(pdev);
5879 	struct e1000_adapter *adapter = netdev_priv(netdev);
5880 
5881 	netif_device_detach(netdev);
5882 
5883 	if (state == pci_channel_io_perm_failure)
5884 		return PCI_ERS_RESULT_DISCONNECT;
5885 
5886 	if (netif_running(netdev))
5887 		e1000e_down(adapter);
5888 	pci_disable_device(pdev);
5889 
5890 	/* Request a slot slot reset. */
5891 	return PCI_ERS_RESULT_NEED_RESET;
5892 }
5893 
5894 /**
5895  * e1000_io_slot_reset - called after the pci bus has been reset.
5896  * @pdev: Pointer to PCI device
5897  *
5898  * Restart the card from scratch, as if from a cold-boot. Implementation
5899  * resembles the first-half of the e1000_resume routine.
5900  */
5901 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5902 {
5903 	struct net_device *netdev = pci_get_drvdata(pdev);
5904 	struct e1000_adapter *adapter = netdev_priv(netdev);
5905 	struct e1000_hw *hw = &adapter->hw;
5906 	u16 aspm_disable_flag = 0;
5907 	int err;
5908 	pci_ers_result_t result;
5909 
5910 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
5911 		aspm_disable_flag = PCIE_LINK_STATE_L0S;
5912 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
5913 		aspm_disable_flag |= PCIE_LINK_STATE_L1;
5914 	if (aspm_disable_flag)
5915 		e1000e_disable_aspm(pdev, aspm_disable_flag);
5916 
5917 	err = pci_enable_device_mem(pdev);
5918 	if (err) {
5919 		dev_err(&pdev->dev,
5920 			"Cannot re-enable PCI device after reset.\n");
5921 		result = PCI_ERS_RESULT_DISCONNECT;
5922 	} else {
5923 		pci_set_master(pdev);
5924 		pdev->state_saved = true;
5925 		pci_restore_state(pdev);
5926 
5927 		pci_enable_wake(pdev, PCI_D3hot, 0);
5928 		pci_enable_wake(pdev, PCI_D3cold, 0);
5929 
5930 		e1000e_reset(adapter);
5931 		ew32(WUS, ~0);
5932 		result = PCI_ERS_RESULT_RECOVERED;
5933 	}
5934 
5935 	pci_cleanup_aer_uncorrect_error_status(pdev);
5936 
5937 	return result;
5938 }
5939 
5940 /**
5941  * e1000_io_resume - called when traffic can start flowing again.
5942  * @pdev: Pointer to PCI device
5943  *
5944  * This callback is called when the error recovery driver tells us that
5945  * its OK to resume normal operation. Implementation resembles the
5946  * second-half of the e1000_resume routine.
5947  */
5948 static void e1000_io_resume(struct pci_dev *pdev)
5949 {
5950 	struct net_device *netdev = pci_get_drvdata(pdev);
5951 	struct e1000_adapter *adapter = netdev_priv(netdev);
5952 
5953 	e1000_init_manageability_pt(adapter);
5954 
5955 	if (netif_running(netdev)) {
5956 		if (e1000e_up(adapter)) {
5957 			dev_err(&pdev->dev,
5958 				"can't bring device back up after reset\n");
5959 			return;
5960 		}
5961 	}
5962 
5963 	netif_device_attach(netdev);
5964 
5965 	/*
5966 	 * If the controller has AMT, do not set DRV_LOAD until the interface
5967 	 * is up.  For all other cases, let the f/w know that the h/w is now
5968 	 * under the control of the driver.
5969 	 */
5970 	if (!(adapter->flags & FLAG_HAS_AMT))
5971 		e1000e_get_hw_control(adapter);
5972 
5973 }
5974 
5975 static void e1000_print_device_info(struct e1000_adapter *adapter)
5976 {
5977 	struct e1000_hw *hw = &adapter->hw;
5978 	struct net_device *netdev = adapter->netdev;
5979 	u32 ret_val;
5980 	u8 pba_str[E1000_PBANUM_LENGTH];
5981 
5982 	/* print bus type/speed/width info */
5983 	e_info("(PCI Express:2.5GT/s:%s) %pM\n",
5984 	       /* bus width */
5985 	       ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
5986 	        "Width x1"),
5987 	       /* MAC address */
5988 	       netdev->dev_addr);
5989 	e_info("Intel(R) PRO/%s Network Connection\n",
5990 	       (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
5991 	ret_val = e1000_read_pba_string_generic(hw, pba_str,
5992 						E1000_PBANUM_LENGTH);
5993 	if (ret_val)
5994 		strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
5995 	e_info("MAC: %d, PHY: %d, PBA No: %s\n",
5996 	       hw->mac.type, hw->phy.type, pba_str);
5997 }
5998 
5999 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
6000 {
6001 	struct e1000_hw *hw = &adapter->hw;
6002 	int ret_val;
6003 	u16 buf = 0;
6004 
6005 	if (hw->mac.type != e1000_82573)
6006 		return;
6007 
6008 	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
6009 	le16_to_cpus(&buf);
6010 	if (!ret_val && (!(buf & (1 << 0)))) {
6011 		/* Deep Smart Power Down (DSPD) */
6012 		dev_warn(&adapter->pdev->dev,
6013 			 "Warning: detected DSPD enabled in EEPROM\n");
6014 	}
6015 }
6016 
6017 static int e1000_set_features(struct net_device *netdev,
6018 			      netdev_features_t features)
6019 {
6020 	struct e1000_adapter *adapter = netdev_priv(netdev);
6021 	netdev_features_t changed = features ^ netdev->features;
6022 
6023 	if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
6024 		adapter->flags |= FLAG_TSO_FORCE;
6025 
6026 	if (!(changed & (NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX |
6027 			 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
6028 			 NETIF_F_RXALL)))
6029 		return 0;
6030 
6031 	if (changed & NETIF_F_RXFCS) {
6032 		if (features & NETIF_F_RXFCS) {
6033 			adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6034 		} else {
6035 			/* We need to take it back to defaults, which might mean
6036 			 * stripping is still disabled at the adapter level.
6037 			 */
6038 			if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
6039 				adapter->flags2 |= FLAG2_CRC_STRIPPING;
6040 			else
6041 				adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6042 		}
6043 	}
6044 
6045 	netdev->features = features;
6046 
6047 	if (netif_running(netdev))
6048 		e1000e_reinit_locked(adapter);
6049 	else
6050 		e1000e_reset(adapter);
6051 
6052 	return 0;
6053 }
6054 
6055 static const struct net_device_ops e1000e_netdev_ops = {
6056 	.ndo_open		= e1000_open,
6057 	.ndo_stop		= e1000_close,
6058 	.ndo_start_xmit		= e1000_xmit_frame,
6059 	.ndo_get_stats64	= e1000e_get_stats64,
6060 	.ndo_set_rx_mode	= e1000e_set_rx_mode,
6061 	.ndo_set_mac_address	= e1000_set_mac,
6062 	.ndo_change_mtu		= e1000_change_mtu,
6063 	.ndo_do_ioctl		= e1000_ioctl,
6064 	.ndo_tx_timeout		= e1000_tx_timeout,
6065 	.ndo_validate_addr	= eth_validate_addr,
6066 
6067 	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
6068 	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
6069 #ifdef CONFIG_NET_POLL_CONTROLLER
6070 	.ndo_poll_controller	= e1000_netpoll,
6071 #endif
6072 	.ndo_set_features = e1000_set_features,
6073 };
6074 
6075 /**
6076  * e1000_probe - Device Initialization Routine
6077  * @pdev: PCI device information struct
6078  * @ent: entry in e1000_pci_tbl
6079  *
6080  * Returns 0 on success, negative on failure
6081  *
6082  * e1000_probe initializes an adapter identified by a pci_dev structure.
6083  * The OS initialization, configuring of the adapter private structure,
6084  * and a hardware reset occur.
6085  **/
6086 static int __devinit e1000_probe(struct pci_dev *pdev,
6087 				 const struct pci_device_id *ent)
6088 {
6089 	struct net_device *netdev;
6090 	struct e1000_adapter *adapter;
6091 	struct e1000_hw *hw;
6092 	const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
6093 	resource_size_t mmio_start, mmio_len;
6094 	resource_size_t flash_start, flash_len;
6095 	static int cards_found;
6096 	u16 aspm_disable_flag = 0;
6097 	int i, err, pci_using_dac;
6098 	u16 eeprom_data = 0;
6099 	u16 eeprom_apme_mask = E1000_EEPROM_APME;
6100 
6101 	if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
6102 		aspm_disable_flag = PCIE_LINK_STATE_L0S;
6103 	if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
6104 		aspm_disable_flag |= PCIE_LINK_STATE_L1;
6105 	if (aspm_disable_flag)
6106 		e1000e_disable_aspm(pdev, aspm_disable_flag);
6107 
6108 	err = pci_enable_device_mem(pdev);
6109 	if (err)
6110 		return err;
6111 
6112 	pci_using_dac = 0;
6113 	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
6114 	if (!err) {
6115 		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
6116 		if (!err)
6117 			pci_using_dac = 1;
6118 	} else {
6119 		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
6120 		if (err) {
6121 			err = dma_set_coherent_mask(&pdev->dev,
6122 						    DMA_BIT_MASK(32));
6123 			if (err) {
6124 				dev_err(&pdev->dev, "No usable DMA configuration, aborting\n");
6125 				goto err_dma;
6126 			}
6127 		}
6128 	}
6129 
6130 	err = pci_request_selected_regions_exclusive(pdev,
6131 	                                  pci_select_bars(pdev, IORESOURCE_MEM),
6132 	                                  e1000e_driver_name);
6133 	if (err)
6134 		goto err_pci_reg;
6135 
6136 	/* AER (Advanced Error Reporting) hooks */
6137 	pci_enable_pcie_error_reporting(pdev);
6138 
6139 	pci_set_master(pdev);
6140 	/* PCI config space info */
6141 	err = pci_save_state(pdev);
6142 	if (err)
6143 		goto err_alloc_etherdev;
6144 
6145 	err = -ENOMEM;
6146 	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
6147 	if (!netdev)
6148 		goto err_alloc_etherdev;
6149 
6150 	SET_NETDEV_DEV(netdev, &pdev->dev);
6151 
6152 	netdev->irq = pdev->irq;
6153 
6154 	pci_set_drvdata(pdev, netdev);
6155 	adapter = netdev_priv(netdev);
6156 	hw = &adapter->hw;
6157 	adapter->netdev = netdev;
6158 	adapter->pdev = pdev;
6159 	adapter->ei = ei;
6160 	adapter->pba = ei->pba;
6161 	adapter->flags = ei->flags;
6162 	adapter->flags2 = ei->flags2;
6163 	adapter->hw.adapter = adapter;
6164 	adapter->hw.mac.type = ei->mac;
6165 	adapter->max_hw_frame_size = ei->max_hw_frame_size;
6166 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
6167 
6168 	mmio_start = pci_resource_start(pdev, 0);
6169 	mmio_len = pci_resource_len(pdev, 0);
6170 
6171 	err = -EIO;
6172 	adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
6173 	if (!adapter->hw.hw_addr)
6174 		goto err_ioremap;
6175 
6176 	if ((adapter->flags & FLAG_HAS_FLASH) &&
6177 	    (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
6178 		flash_start = pci_resource_start(pdev, 1);
6179 		flash_len = pci_resource_len(pdev, 1);
6180 		adapter->hw.flash_address = ioremap(flash_start, flash_len);
6181 		if (!adapter->hw.flash_address)
6182 			goto err_flashmap;
6183 	}
6184 
6185 	/* construct the net_device struct */
6186 	netdev->netdev_ops		= &e1000e_netdev_ops;
6187 	e1000e_set_ethtool_ops(netdev);
6188 	netdev->watchdog_timeo		= 5 * HZ;
6189 	netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64);
6190 	strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
6191 
6192 	netdev->mem_start = mmio_start;
6193 	netdev->mem_end = mmio_start + mmio_len;
6194 
6195 	adapter->bd_number = cards_found++;
6196 
6197 	e1000e_check_options(adapter);
6198 
6199 	/* setup adapter struct */
6200 	err = e1000_sw_init(adapter);
6201 	if (err)
6202 		goto err_sw_init;
6203 
6204 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
6205 	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
6206 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
6207 
6208 	err = ei->get_variants(adapter);
6209 	if (err)
6210 		goto err_hw_init;
6211 
6212 	if ((adapter->flags & FLAG_IS_ICH) &&
6213 	    (adapter->flags & FLAG_READ_ONLY_NVM))
6214 		e1000e_write_protect_nvm_ich8lan(&adapter->hw);
6215 
6216 	hw->mac.ops.get_bus_info(&adapter->hw);
6217 
6218 	adapter->hw.phy.autoneg_wait_to_complete = 0;
6219 
6220 	/* Copper options */
6221 	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
6222 		adapter->hw.phy.mdix = AUTO_ALL_MODES;
6223 		adapter->hw.phy.disable_polarity_correction = 0;
6224 		adapter->hw.phy.ms_type = e1000_ms_hw_default;
6225 	}
6226 
6227 	if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
6228 		dev_info(&pdev->dev,
6229 			 "PHY reset is blocked due to SOL/IDER session.\n");
6230 
6231 	/* Set initial default active device features */
6232 	netdev->features = (NETIF_F_SG |
6233 			    NETIF_F_HW_VLAN_RX |
6234 			    NETIF_F_HW_VLAN_TX |
6235 			    NETIF_F_TSO |
6236 			    NETIF_F_TSO6 |
6237 			    NETIF_F_RXHASH |
6238 			    NETIF_F_RXCSUM |
6239 			    NETIF_F_HW_CSUM);
6240 
6241 	/* Set user-changeable features (subset of all device features) */
6242 	netdev->hw_features = netdev->features;
6243 	netdev->hw_features |= NETIF_F_RXFCS;
6244 	netdev->priv_flags |= IFF_SUPP_NOFCS;
6245 	netdev->hw_features |= NETIF_F_RXALL;
6246 
6247 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
6248 		netdev->features |= NETIF_F_HW_VLAN_FILTER;
6249 
6250 	netdev->vlan_features |= (NETIF_F_SG |
6251 				  NETIF_F_TSO |
6252 				  NETIF_F_TSO6 |
6253 				  NETIF_F_HW_CSUM);
6254 
6255 	netdev->priv_flags |= IFF_UNICAST_FLT;
6256 
6257 	if (pci_using_dac) {
6258 		netdev->features |= NETIF_F_HIGHDMA;
6259 		netdev->vlan_features |= NETIF_F_HIGHDMA;
6260 	}
6261 
6262 	if (e1000e_enable_mng_pass_thru(&adapter->hw))
6263 		adapter->flags |= FLAG_MNG_PT_ENABLED;
6264 
6265 	/*
6266 	 * before reading the NVM, reset the controller to
6267 	 * put the device in a known good starting state
6268 	 */
6269 	adapter->hw.mac.ops.reset_hw(&adapter->hw);
6270 
6271 	/*
6272 	 * systems with ASPM and others may see the checksum fail on the first
6273 	 * attempt. Let's give it a few tries
6274 	 */
6275 	for (i = 0;; i++) {
6276 		if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
6277 			break;
6278 		if (i == 2) {
6279 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
6280 			err = -EIO;
6281 			goto err_eeprom;
6282 		}
6283 	}
6284 
6285 	e1000_eeprom_checks(adapter);
6286 
6287 	/* copy the MAC address */
6288 	if (e1000e_read_mac_addr(&adapter->hw))
6289 		dev_err(&pdev->dev,
6290 			"NVM Read Error while reading MAC address\n");
6291 
6292 	memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
6293 	memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
6294 
6295 	if (!is_valid_ether_addr(netdev->perm_addr)) {
6296 		dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
6297 			netdev->perm_addr);
6298 		err = -EIO;
6299 		goto err_eeprom;
6300 	}
6301 
6302 	init_timer(&adapter->watchdog_timer);
6303 	adapter->watchdog_timer.function = e1000_watchdog;
6304 	adapter->watchdog_timer.data = (unsigned long) adapter;
6305 
6306 	init_timer(&adapter->phy_info_timer);
6307 	adapter->phy_info_timer.function = e1000_update_phy_info;
6308 	adapter->phy_info_timer.data = (unsigned long) adapter;
6309 
6310 	INIT_WORK(&adapter->reset_task, e1000_reset_task);
6311 	INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
6312 	INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
6313 	INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
6314 	INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
6315 
6316 	/* Initialize link parameters. User can change them with ethtool */
6317 	adapter->hw.mac.autoneg = 1;
6318 	adapter->fc_autoneg = true;
6319 	adapter->hw.fc.requested_mode = e1000_fc_default;
6320 	adapter->hw.fc.current_mode = e1000_fc_default;
6321 	adapter->hw.phy.autoneg_advertised = 0x2f;
6322 
6323 	/* ring size defaults */
6324 	adapter->rx_ring->count = E1000_DEFAULT_RXD;
6325 	adapter->tx_ring->count = E1000_DEFAULT_TXD;
6326 
6327 	/*
6328 	 * Initial Wake on LAN setting - If APM wake is enabled in
6329 	 * the EEPROM, enable the ACPI Magic Packet filter
6330 	 */
6331 	if (adapter->flags & FLAG_APME_IN_WUC) {
6332 		/* APME bit in EEPROM is mapped to WUC.APME */
6333 		eeprom_data = er32(WUC);
6334 		eeprom_apme_mask = E1000_WUC_APME;
6335 		if ((hw->mac.type > e1000_ich10lan) &&
6336 		    (eeprom_data & E1000_WUC_PHY_WAKE))
6337 			adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
6338 	} else if (adapter->flags & FLAG_APME_IN_CTRL3) {
6339 		if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
6340 		    (adapter->hw.bus.func == 1))
6341 			e1000_read_nvm(&adapter->hw, NVM_INIT_CONTROL3_PORT_B,
6342 				       1, &eeprom_data);
6343 		else
6344 			e1000_read_nvm(&adapter->hw, NVM_INIT_CONTROL3_PORT_A,
6345 				       1, &eeprom_data);
6346 	}
6347 
6348 	/* fetch WoL from EEPROM */
6349 	if (eeprom_data & eeprom_apme_mask)
6350 		adapter->eeprom_wol |= E1000_WUFC_MAG;
6351 
6352 	/*
6353 	 * now that we have the eeprom settings, apply the special cases
6354 	 * where the eeprom may be wrong or the board simply won't support
6355 	 * wake on lan on a particular port
6356 	 */
6357 	if (!(adapter->flags & FLAG_HAS_WOL))
6358 		adapter->eeprom_wol = 0;
6359 
6360 	/* initialize the wol settings based on the eeprom settings */
6361 	adapter->wol = adapter->eeprom_wol;
6362 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
6363 
6364 	/* save off EEPROM version number */
6365 	e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
6366 
6367 	/* reset the hardware with the new settings */
6368 	e1000e_reset(adapter);
6369 
6370 	/*
6371 	 * If the controller has AMT, do not set DRV_LOAD until the interface
6372 	 * is up.  For all other cases, let the f/w know that the h/w is now
6373 	 * under the control of the driver.
6374 	 */
6375 	if (!(adapter->flags & FLAG_HAS_AMT))
6376 		e1000e_get_hw_control(adapter);
6377 
6378 	strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
6379 	err = register_netdev(netdev);
6380 	if (err)
6381 		goto err_register;
6382 
6383 	/* carrier off reporting is important to ethtool even BEFORE open */
6384 	netif_carrier_off(netdev);
6385 
6386 	e1000_print_device_info(adapter);
6387 
6388 	if (pci_dev_run_wake(pdev))
6389 		pm_runtime_put_noidle(&pdev->dev);
6390 
6391 	return 0;
6392 
6393 err_register:
6394 	if (!(adapter->flags & FLAG_HAS_AMT))
6395 		e1000e_release_hw_control(adapter);
6396 err_eeprom:
6397 	if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
6398 		e1000_phy_hw_reset(&adapter->hw);
6399 err_hw_init:
6400 	kfree(adapter->tx_ring);
6401 	kfree(adapter->rx_ring);
6402 err_sw_init:
6403 	if (adapter->hw.flash_address)
6404 		iounmap(adapter->hw.flash_address);
6405 	e1000e_reset_interrupt_capability(adapter);
6406 err_flashmap:
6407 	iounmap(adapter->hw.hw_addr);
6408 err_ioremap:
6409 	free_netdev(netdev);
6410 err_alloc_etherdev:
6411 	pci_release_selected_regions(pdev,
6412 	                             pci_select_bars(pdev, IORESOURCE_MEM));
6413 err_pci_reg:
6414 err_dma:
6415 	pci_disable_device(pdev);
6416 	return err;
6417 }
6418 
6419 /**
6420  * e1000_remove - Device Removal Routine
6421  * @pdev: PCI device information struct
6422  *
6423  * e1000_remove is called by the PCI subsystem to alert the driver
6424  * that it should release a PCI device.  The could be caused by a
6425  * Hot-Plug event, or because the driver is going to be removed from
6426  * memory.
6427  **/
6428 static void __devexit e1000_remove(struct pci_dev *pdev)
6429 {
6430 	struct net_device *netdev = pci_get_drvdata(pdev);
6431 	struct e1000_adapter *adapter = netdev_priv(netdev);
6432 	bool down = test_bit(__E1000_DOWN, &adapter->state);
6433 
6434 	/*
6435 	 * The timers may be rescheduled, so explicitly disable them
6436 	 * from being rescheduled.
6437 	 */
6438 	if (!down)
6439 		set_bit(__E1000_DOWN, &adapter->state);
6440 	del_timer_sync(&adapter->watchdog_timer);
6441 	del_timer_sync(&adapter->phy_info_timer);
6442 
6443 	cancel_work_sync(&adapter->reset_task);
6444 	cancel_work_sync(&adapter->watchdog_task);
6445 	cancel_work_sync(&adapter->downshift_task);
6446 	cancel_work_sync(&adapter->update_phy_task);
6447 	cancel_work_sync(&adapter->print_hang_task);
6448 
6449 	if (!(netdev->flags & IFF_UP))
6450 		e1000_power_down_phy(adapter);
6451 
6452 	/* Don't lie to e1000_close() down the road. */
6453 	if (!down)
6454 		clear_bit(__E1000_DOWN, &adapter->state);
6455 	unregister_netdev(netdev);
6456 
6457 	if (pci_dev_run_wake(pdev))
6458 		pm_runtime_get_noresume(&pdev->dev);
6459 
6460 	/*
6461 	 * Release control of h/w to f/w.  If f/w is AMT enabled, this
6462 	 * would have already happened in close and is redundant.
6463 	 */
6464 	e1000e_release_hw_control(adapter);
6465 
6466 	e1000e_reset_interrupt_capability(adapter);
6467 	kfree(adapter->tx_ring);
6468 	kfree(adapter->rx_ring);
6469 
6470 	iounmap(adapter->hw.hw_addr);
6471 	if (adapter->hw.flash_address)
6472 		iounmap(adapter->hw.flash_address);
6473 	pci_release_selected_regions(pdev,
6474 	                             pci_select_bars(pdev, IORESOURCE_MEM));
6475 
6476 	free_netdev(netdev);
6477 
6478 	/* AER disable */
6479 	pci_disable_pcie_error_reporting(pdev);
6480 
6481 	pci_disable_device(pdev);
6482 }
6483 
6484 /* PCI Error Recovery (ERS) */
6485 static const struct pci_error_handlers e1000_err_handler = {
6486 	.error_detected = e1000_io_error_detected,
6487 	.slot_reset = e1000_io_slot_reset,
6488 	.resume = e1000_io_resume,
6489 };
6490 
6491 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
6492 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
6493 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
6494 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
6495 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
6496 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
6497 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
6498 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
6499 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
6500 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
6501 
6502 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
6503 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
6504 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
6505 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
6506 
6507 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
6508 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
6509 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
6510 
6511 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
6512 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
6513 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
6514 
6515 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
6516 	  board_80003es2lan },
6517 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
6518 	  board_80003es2lan },
6519 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
6520 	  board_80003es2lan },
6521 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
6522 	  board_80003es2lan },
6523 
6524 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
6525 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
6526 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
6527 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
6528 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
6529 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
6530 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
6531 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
6532 
6533 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
6534 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
6535 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
6536 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
6537 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
6538 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
6539 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
6540 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
6541 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
6542 
6543 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
6544 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
6545 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
6546 
6547 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
6548 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
6549 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
6550 
6551 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
6552 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
6553 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
6554 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
6555 
6556 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
6557 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
6558 
6559 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
6560 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
6561 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt },
6562 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt },
6563 
6564 	{ 0, 0, 0, 0, 0, 0, 0 }	/* terminate list */
6565 };
6566 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
6567 
6568 #ifdef CONFIG_PM
6569 static const struct dev_pm_ops e1000_pm_ops = {
6570 	SET_SYSTEM_SLEEP_PM_OPS(e1000_suspend, e1000_resume)
6571 	SET_RUNTIME_PM_OPS(e1000_runtime_suspend,
6572 				e1000_runtime_resume, e1000_idle)
6573 };
6574 #endif
6575 
6576 /* PCI Device API Driver */
6577 static struct pci_driver e1000_driver = {
6578 	.name     = e1000e_driver_name,
6579 	.id_table = e1000_pci_tbl,
6580 	.probe    = e1000_probe,
6581 	.remove   = __devexit_p(e1000_remove),
6582 #ifdef CONFIG_PM
6583 	.driver   = {
6584 		.pm = &e1000_pm_ops,
6585 	},
6586 #endif
6587 	.shutdown = e1000_shutdown,
6588 	.err_handler = &e1000_err_handler
6589 };
6590 
6591 /**
6592  * e1000_init_module - Driver Registration Routine
6593  *
6594  * e1000_init_module is the first routine called when the driver is
6595  * loaded. All it does is register with the PCI subsystem.
6596  **/
6597 static int __init e1000_init_module(void)
6598 {
6599 	int ret;
6600 	pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
6601 		e1000e_driver_version);
6602 	pr_info("Copyright(c) 1999 - 2012 Intel Corporation.\n");
6603 	ret = pci_register_driver(&e1000_driver);
6604 
6605 	return ret;
6606 }
6607 module_init(e1000_init_module);
6608 
6609 /**
6610  * e1000_exit_module - Driver Exit Cleanup Routine
6611  *
6612  * e1000_exit_module is called just before the driver is removed
6613  * from memory.
6614  **/
6615 static void __exit e1000_exit_module(void)
6616 {
6617 	pci_unregister_driver(&e1000_driver);
6618 }
6619 module_exit(e1000_exit_module);
6620 
6621 
6622 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
6623 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
6624 MODULE_LICENSE("GPL");
6625 MODULE_VERSION(DRV_VERSION);
6626 
6627 /* netdev.c */
6628