xref: /openbmc/linux/drivers/net/ethernet/intel/e1000e/mac.c (revision ce932d0c5589e9766e089c22c66890dfc48fbd94)
1 /*******************************************************************************
2 
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2012 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 
27 *******************************************************************************/
28 
29 #include "e1000.h"
30 
31 /**
32  *  e1000e_get_bus_info_pcie - Get PCIe bus information
33  *  @hw: pointer to the HW structure
34  *
35  *  Determines and stores the system bus information for a particular
36  *  network interface.  The following bus information is determined and stored:
37  *  bus speed, bus width, type (PCIe), and PCIe function.
38  **/
39 s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw)
40 {
41 	struct e1000_mac_info *mac = &hw->mac;
42 	struct e1000_bus_info *bus = &hw->bus;
43 	struct e1000_adapter *adapter = hw->adapter;
44 	u16 pcie_link_status, cap_offset;
45 
46 	cap_offset = adapter->pdev->pcie_cap;
47 	if (!cap_offset) {
48 		bus->width = e1000_bus_width_unknown;
49 	} else {
50 		pci_read_config_word(adapter->pdev,
51 				     cap_offset + PCIE_LINK_STATUS,
52 				     &pcie_link_status);
53 		bus->width = (enum e1000_bus_width)((pcie_link_status &
54 						     PCIE_LINK_WIDTH_MASK) >>
55 						    PCIE_LINK_WIDTH_SHIFT);
56 	}
57 
58 	mac->ops.set_lan_id(hw);
59 
60 	return 0;
61 }
62 
63 /**
64  *  e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
65  *
66  *  @hw: pointer to the HW structure
67  *
68  *  Determines the LAN function id by reading memory-mapped registers
69  *  and swaps the port value if requested.
70  **/
71 void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw)
72 {
73 	struct e1000_bus_info *bus = &hw->bus;
74 	u32 reg;
75 
76 	/*
77 	 * The status register reports the correct function number
78 	 * for the device regardless of function swap state.
79 	 */
80 	reg = er32(STATUS);
81 	bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
82 }
83 
84 /**
85  *  e1000_set_lan_id_single_port - Set LAN id for a single port device
86  *  @hw: pointer to the HW structure
87  *
88  *  Sets the LAN function id to zero for a single port device.
89  **/
90 void e1000_set_lan_id_single_port(struct e1000_hw *hw)
91 {
92 	struct e1000_bus_info *bus = &hw->bus;
93 
94 	bus->func = 0;
95 }
96 
97 /**
98  *  e1000_clear_vfta_generic - Clear VLAN filter table
99  *  @hw: pointer to the HW structure
100  *
101  *  Clears the register array which contains the VLAN filter table by
102  *  setting all the values to 0.
103  **/
104 void e1000_clear_vfta_generic(struct e1000_hw *hw)
105 {
106 	u32 offset;
107 
108 	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
109 		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0);
110 		e1e_flush();
111 	}
112 }
113 
114 /**
115  *  e1000_write_vfta_generic - Write value to VLAN filter table
116  *  @hw: pointer to the HW structure
117  *  @offset: register offset in VLAN filter table
118  *  @value: register value written to VLAN filter table
119  *
120  *  Writes value at the given offset in the register array which stores
121  *  the VLAN filter table.
122  **/
123 void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value)
124 {
125 	E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
126 	e1e_flush();
127 }
128 
129 /**
130  *  e1000e_init_rx_addrs - Initialize receive address's
131  *  @hw: pointer to the HW structure
132  *  @rar_count: receive address registers
133  *
134  *  Setup the receive address registers by setting the base receive address
135  *  register to the devices MAC address and clearing all the other receive
136  *  address registers to 0.
137  **/
138 void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
139 {
140 	u32 i;
141 	u8 mac_addr[ETH_ALEN] = { 0 };
142 
143 	/* Setup the receive address */
144 	e_dbg("Programming MAC Address into RAR[0]\n");
145 
146 	e1000e_rar_set(hw, hw->mac.addr, 0);
147 
148 	/* Zero out the other (rar_entry_count - 1) receive addresses */
149 	e_dbg("Clearing RAR[1-%u]\n", rar_count - 1);
150 	for (i = 1; i < rar_count; i++)
151 		e1000e_rar_set(hw, mac_addr, i);
152 }
153 
154 /**
155  *  e1000_check_alt_mac_addr_generic - Check for alternate MAC addr
156  *  @hw: pointer to the HW structure
157  *
158  *  Checks the nvm for an alternate MAC address.  An alternate MAC address
159  *  can be setup by pre-boot software and must be treated like a permanent
160  *  address and must override the actual permanent MAC address. If an
161  *  alternate MAC address is found it is programmed into RAR0, replacing
162  *  the permanent address that was installed into RAR0 by the Si on reset.
163  *  This function will return SUCCESS unless it encounters an error while
164  *  reading the EEPROM.
165  **/
166 s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw)
167 {
168 	u32 i;
169 	s32 ret_val = 0;
170 	u16 offset, nvm_alt_mac_addr_offset, nvm_data;
171 	u8 alt_mac_addr[ETH_ALEN];
172 
173 	ret_val = e1000_read_nvm(hw, NVM_COMPAT, 1, &nvm_data);
174 	if (ret_val)
175 		return ret_val;
176 
177 	/* not supported on 82573 */
178 	if (hw->mac.type == e1000_82573)
179 		return 0;
180 
181 	ret_val = e1000_read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1,
182 				 &nvm_alt_mac_addr_offset);
183 	if (ret_val) {
184 		e_dbg("NVM Read Error\n");
185 		return ret_val;
186 	}
187 
188 	if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
189 	    (nvm_alt_mac_addr_offset == 0x0000))
190 		/* There is no Alternate MAC Address */
191 		return 0;
192 
193 	if (hw->bus.func == E1000_FUNC_1)
194 		nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
195 	for (i = 0; i < ETH_ALEN; i += 2) {
196 		offset = nvm_alt_mac_addr_offset + (i >> 1);
197 		ret_val = e1000_read_nvm(hw, offset, 1, &nvm_data);
198 		if (ret_val) {
199 			e_dbg("NVM Read Error\n");
200 			return ret_val;
201 		}
202 
203 		alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
204 		alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
205 	}
206 
207 	/* if multicast bit is set, the alternate address will not be used */
208 	if (is_multicast_ether_addr(alt_mac_addr)) {
209 		e_dbg("Ignoring Alternate Mac Address with MC bit set\n");
210 		return 0;
211 	}
212 
213 	/*
214 	 * We have a valid alternate MAC address, and we want to treat it the
215 	 * same as the normal permanent MAC address stored by the HW into the
216 	 * RAR. Do this by mapping this address into RAR0.
217 	 */
218 	e1000e_rar_set(hw, alt_mac_addr, 0);
219 
220 	return 0;
221 }
222 
223 /**
224  *  e1000e_rar_set - Set receive address register
225  *  @hw: pointer to the HW structure
226  *  @addr: pointer to the receive address
227  *  @index: receive address array register
228  *
229  *  Sets the receive address array register at index to the address passed
230  *  in by addr.
231  **/
232 void e1000e_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
233 {
234 	u32 rar_low, rar_high;
235 
236 	/*
237 	 * HW expects these in little endian so we reverse the byte order
238 	 * from network order (big endian) to little endian
239 	 */
240 	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
241 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
242 
243 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
244 
245 	/* If MAC address zero, no need to set the AV bit */
246 	if (rar_low || rar_high)
247 		rar_high |= E1000_RAH_AV;
248 
249 	/*
250 	 * Some bridges will combine consecutive 32-bit writes into
251 	 * a single burst write, which will malfunction on some parts.
252 	 * The flushes avoid this.
253 	 */
254 	ew32(RAL(index), rar_low);
255 	e1e_flush();
256 	ew32(RAH(index), rar_high);
257 	e1e_flush();
258 }
259 
260 /**
261  *  e1000_hash_mc_addr - Generate a multicast hash value
262  *  @hw: pointer to the HW structure
263  *  @mc_addr: pointer to a multicast address
264  *
265  *  Generates a multicast address hash value which is used to determine
266  *  the multicast filter table array address and new table value.
267  **/
268 static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
269 {
270 	u32 hash_value, hash_mask;
271 	u8 bit_shift = 0;
272 
273 	/* Register count multiplied by bits per register */
274 	hash_mask = (hw->mac.mta_reg_count * 32) - 1;
275 
276 	/*
277 	 * For a mc_filter_type of 0, bit_shift is the number of left-shifts
278 	 * where 0xFF would still fall within the hash mask.
279 	 */
280 	while (hash_mask >> bit_shift != 0xFF)
281 		bit_shift++;
282 
283 	/*
284 	 * The portion of the address that is used for the hash table
285 	 * is determined by the mc_filter_type setting.
286 	 * The algorithm is such that there is a total of 8 bits of shifting.
287 	 * The bit_shift for a mc_filter_type of 0 represents the number of
288 	 * left-shifts where the MSB of mc_addr[5] would still fall within
289 	 * the hash_mask.  Case 0 does this exactly.  Since there are a total
290 	 * of 8 bits of shifting, then mc_addr[4] will shift right the
291 	 * remaining number of bits. Thus 8 - bit_shift.  The rest of the
292 	 * cases are a variation of this algorithm...essentially raising the
293 	 * number of bits to shift mc_addr[5] left, while still keeping the
294 	 * 8-bit shifting total.
295 	 *
296 	 * For example, given the following Destination MAC Address and an
297 	 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
298 	 * we can see that the bit_shift for case 0 is 4.  These are the hash
299 	 * values resulting from each mc_filter_type...
300 	 * [0] [1] [2] [3] [4] [5]
301 	 * 01  AA  00  12  34  56
302 	 * LSB           MSB
303 	 *
304 	 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
305 	 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
306 	 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
307 	 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
308 	 */
309 	switch (hw->mac.mc_filter_type) {
310 	default:
311 	case 0:
312 		break;
313 	case 1:
314 		bit_shift += 1;
315 		break;
316 	case 2:
317 		bit_shift += 2;
318 		break;
319 	case 3:
320 		bit_shift += 4;
321 		break;
322 	}
323 
324 	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
325 				   (((u16)mc_addr[5]) << bit_shift)));
326 
327 	return hash_value;
328 }
329 
330 /**
331  *  e1000e_update_mc_addr_list_generic - Update Multicast addresses
332  *  @hw: pointer to the HW structure
333  *  @mc_addr_list: array of multicast addresses to program
334  *  @mc_addr_count: number of multicast addresses to program
335  *
336  *  Updates entire Multicast Table Array.
337  *  The caller must have a packed mc_addr_list of multicast addresses.
338  **/
339 void e1000e_update_mc_addr_list_generic(struct e1000_hw *hw,
340 					u8 *mc_addr_list, u32 mc_addr_count)
341 {
342 	u32 hash_value, hash_bit, hash_reg;
343 	int i;
344 
345 	/* clear mta_shadow */
346 	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
347 
348 	/* update mta_shadow from mc_addr_list */
349 	for (i = 0; (u32)i < mc_addr_count; i++) {
350 		hash_value = e1000_hash_mc_addr(hw, mc_addr_list);
351 
352 		hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
353 		hash_bit = hash_value & 0x1F;
354 
355 		hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit);
356 		mc_addr_list += (ETH_ALEN);
357 	}
358 
359 	/* replace the entire MTA table */
360 	for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
361 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]);
362 	e1e_flush();
363 }
364 
365 /**
366  *  e1000e_clear_hw_cntrs_base - Clear base hardware counters
367  *  @hw: pointer to the HW structure
368  *
369  *  Clears the base hardware counters by reading the counter registers.
370  **/
371 void e1000e_clear_hw_cntrs_base(struct e1000_hw *hw)
372 {
373 	er32(CRCERRS);
374 	er32(SYMERRS);
375 	er32(MPC);
376 	er32(SCC);
377 	er32(ECOL);
378 	er32(MCC);
379 	er32(LATECOL);
380 	er32(COLC);
381 	er32(DC);
382 	er32(SEC);
383 	er32(RLEC);
384 	er32(XONRXC);
385 	er32(XONTXC);
386 	er32(XOFFRXC);
387 	er32(XOFFTXC);
388 	er32(FCRUC);
389 	er32(GPRC);
390 	er32(BPRC);
391 	er32(MPRC);
392 	er32(GPTC);
393 	er32(GORCL);
394 	er32(GORCH);
395 	er32(GOTCL);
396 	er32(GOTCH);
397 	er32(RNBC);
398 	er32(RUC);
399 	er32(RFC);
400 	er32(ROC);
401 	er32(RJC);
402 	er32(TORL);
403 	er32(TORH);
404 	er32(TOTL);
405 	er32(TOTH);
406 	er32(TPR);
407 	er32(TPT);
408 	er32(MPTC);
409 	er32(BPTC);
410 }
411 
412 /**
413  *  e1000e_check_for_copper_link - Check for link (Copper)
414  *  @hw: pointer to the HW structure
415  *
416  *  Checks to see of the link status of the hardware has changed.  If a
417  *  change in link status has been detected, then we read the PHY registers
418  *  to get the current speed/duplex if link exists.
419  **/
420 s32 e1000e_check_for_copper_link(struct e1000_hw *hw)
421 {
422 	struct e1000_mac_info *mac = &hw->mac;
423 	s32 ret_val;
424 	bool link;
425 
426 	/*
427 	 * We only want to go out to the PHY registers to see if Auto-Neg
428 	 * has completed and/or if our link status has changed.  The
429 	 * get_link_status flag is set upon receiving a Link Status
430 	 * Change or Rx Sequence Error interrupt.
431 	 */
432 	if (!mac->get_link_status)
433 		return 0;
434 
435 	/*
436 	 * First we want to see if the MII Status Register reports
437 	 * link.  If so, then we want to get the current speed/duplex
438 	 * of the PHY.
439 	 */
440 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
441 	if (ret_val)
442 		return ret_val;
443 
444 	if (!link)
445 		return 0;	/* No link detected */
446 
447 	mac->get_link_status = false;
448 
449 	/*
450 	 * Check if there was DownShift, must be checked
451 	 * immediately after link-up
452 	 */
453 	e1000e_check_downshift(hw);
454 
455 	/*
456 	 * If we are forcing speed/duplex, then we simply return since
457 	 * we have already determined whether we have link or not.
458 	 */
459 	if (!mac->autoneg)
460 		return -E1000_ERR_CONFIG;
461 
462 	/*
463 	 * Auto-Neg is enabled.  Auto Speed Detection takes care
464 	 * of MAC speed/duplex configuration.  So we only need to
465 	 * configure Collision Distance in the MAC.
466 	 */
467 	mac->ops.config_collision_dist(hw);
468 
469 	/*
470 	 * Configure Flow Control now that Auto-Neg has completed.
471 	 * First, we need to restore the desired flow control
472 	 * settings because we may have had to re-autoneg with a
473 	 * different link partner.
474 	 */
475 	ret_val = e1000e_config_fc_after_link_up(hw);
476 	if (ret_val)
477 		e_dbg("Error configuring flow control\n");
478 
479 	return ret_val;
480 }
481 
482 /**
483  *  e1000e_check_for_fiber_link - Check for link (Fiber)
484  *  @hw: pointer to the HW structure
485  *
486  *  Checks for link up on the hardware.  If link is not up and we have
487  *  a signal, then we need to force link up.
488  **/
489 s32 e1000e_check_for_fiber_link(struct e1000_hw *hw)
490 {
491 	struct e1000_mac_info *mac = &hw->mac;
492 	u32 rxcw;
493 	u32 ctrl;
494 	u32 status;
495 	s32 ret_val;
496 
497 	ctrl = er32(CTRL);
498 	status = er32(STATUS);
499 	rxcw = er32(RXCW);
500 
501 	/*
502 	 * If we don't have link (auto-negotiation failed or link partner
503 	 * cannot auto-negotiate), the cable is plugged in (we have signal),
504 	 * and our link partner is not trying to auto-negotiate with us (we
505 	 * are receiving idles or data), we need to force link up. We also
506 	 * need to give auto-negotiation time to complete, in case the cable
507 	 * was just plugged in. The autoneg_failed flag does this.
508 	 */
509 	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
510 	if ((ctrl & E1000_CTRL_SWDPIN1) && !(status & E1000_STATUS_LU) &&
511 	    !(rxcw & E1000_RXCW_C)) {
512 		if (!mac->autoneg_failed) {
513 			mac->autoneg_failed = true;
514 			return 0;
515 		}
516 		e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
517 
518 		/* Disable auto-negotiation in the TXCW register */
519 		ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
520 
521 		/* Force link-up and also force full-duplex. */
522 		ctrl = er32(CTRL);
523 		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
524 		ew32(CTRL, ctrl);
525 
526 		/* Configure Flow Control after forcing link up. */
527 		ret_val = e1000e_config_fc_after_link_up(hw);
528 		if (ret_val) {
529 			e_dbg("Error configuring flow control\n");
530 			return ret_val;
531 		}
532 	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
533 		/*
534 		 * If we are forcing link and we are receiving /C/ ordered
535 		 * sets, re-enable auto-negotiation in the TXCW register
536 		 * and disable forced link in the Device Control register
537 		 * in an attempt to auto-negotiate with our link partner.
538 		 */
539 		e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
540 		ew32(TXCW, mac->txcw);
541 		ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
542 
543 		mac->serdes_has_link = true;
544 	}
545 
546 	return 0;
547 }
548 
549 /**
550  *  e1000e_check_for_serdes_link - Check for link (Serdes)
551  *  @hw: pointer to the HW structure
552  *
553  *  Checks for link up on the hardware.  If link is not up and we have
554  *  a signal, then we need to force link up.
555  **/
556 s32 e1000e_check_for_serdes_link(struct e1000_hw *hw)
557 {
558 	struct e1000_mac_info *mac = &hw->mac;
559 	u32 rxcw;
560 	u32 ctrl;
561 	u32 status;
562 	s32 ret_val;
563 
564 	ctrl = er32(CTRL);
565 	status = er32(STATUS);
566 	rxcw = er32(RXCW);
567 
568 	/*
569 	 * If we don't have link (auto-negotiation failed or link partner
570 	 * cannot auto-negotiate), and our link partner is not trying to
571 	 * auto-negotiate with us (we are receiving idles or data),
572 	 * we need to force link up. We also need to give auto-negotiation
573 	 * time to complete.
574 	 */
575 	/* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
576 	if (!(status & E1000_STATUS_LU) && !(rxcw & E1000_RXCW_C)) {
577 		if (!mac->autoneg_failed) {
578 			mac->autoneg_failed = true;
579 			return 0;
580 		}
581 		e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
582 
583 		/* Disable auto-negotiation in the TXCW register */
584 		ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
585 
586 		/* Force link-up and also force full-duplex. */
587 		ctrl = er32(CTRL);
588 		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
589 		ew32(CTRL, ctrl);
590 
591 		/* Configure Flow Control after forcing link up. */
592 		ret_val = e1000e_config_fc_after_link_up(hw);
593 		if (ret_val) {
594 			e_dbg("Error configuring flow control\n");
595 			return ret_val;
596 		}
597 	} else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
598 		/*
599 		 * If we are forcing link and we are receiving /C/ ordered
600 		 * sets, re-enable auto-negotiation in the TXCW register
601 		 * and disable forced link in the Device Control register
602 		 * in an attempt to auto-negotiate with our link partner.
603 		 */
604 		e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
605 		ew32(TXCW, mac->txcw);
606 		ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
607 
608 		mac->serdes_has_link = true;
609 	} else if (!(E1000_TXCW_ANE & er32(TXCW))) {
610 		/*
611 		 * If we force link for non-auto-negotiation switch, check
612 		 * link status based on MAC synchronization for internal
613 		 * serdes media type.
614 		 */
615 		/* SYNCH bit and IV bit are sticky. */
616 		udelay(10);
617 		rxcw = er32(RXCW);
618 		if (rxcw & E1000_RXCW_SYNCH) {
619 			if (!(rxcw & E1000_RXCW_IV)) {
620 				mac->serdes_has_link = true;
621 				e_dbg("SERDES: Link up - forced.\n");
622 			}
623 		} else {
624 			mac->serdes_has_link = false;
625 			e_dbg("SERDES: Link down - force failed.\n");
626 		}
627 	}
628 
629 	if (E1000_TXCW_ANE & er32(TXCW)) {
630 		status = er32(STATUS);
631 		if (status & E1000_STATUS_LU) {
632 			/* SYNCH bit and IV bit are sticky, so reread rxcw. */
633 			udelay(10);
634 			rxcw = er32(RXCW);
635 			if (rxcw & E1000_RXCW_SYNCH) {
636 				if (!(rxcw & E1000_RXCW_IV)) {
637 					mac->serdes_has_link = true;
638 					e_dbg("SERDES: Link up - autoneg completed successfully.\n");
639 				} else {
640 					mac->serdes_has_link = false;
641 					e_dbg("SERDES: Link down - invalid codewords detected in autoneg.\n");
642 				}
643 			} else {
644 				mac->serdes_has_link = false;
645 				e_dbg("SERDES: Link down - no sync.\n");
646 			}
647 		} else {
648 			mac->serdes_has_link = false;
649 			e_dbg("SERDES: Link down - autoneg failed\n");
650 		}
651 	}
652 
653 	return 0;
654 }
655 
656 /**
657  *  e1000_set_default_fc_generic - Set flow control default values
658  *  @hw: pointer to the HW structure
659  *
660  *  Read the EEPROM for the default values for flow control and store the
661  *  values.
662  **/
663 static s32 e1000_set_default_fc_generic(struct e1000_hw *hw)
664 {
665 	s32 ret_val;
666 	u16 nvm_data;
667 
668 	/*
669 	 * Read and store word 0x0F of the EEPROM. This word contains bits
670 	 * that determine the hardware's default PAUSE (flow control) mode,
671 	 * a bit that determines whether the HW defaults to enabling or
672 	 * disabling auto-negotiation, and the direction of the
673 	 * SW defined pins. If there is no SW over-ride of the flow
674 	 * control setting, then the variable hw->fc will
675 	 * be initialized based on a value in the EEPROM.
676 	 */
677 	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);
678 
679 	if (ret_val) {
680 		e_dbg("NVM Read Error\n");
681 		return ret_val;
682 	}
683 
684 	if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
685 		hw->fc.requested_mode = e1000_fc_none;
686 	else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == NVM_WORD0F_ASM_DIR)
687 		hw->fc.requested_mode = e1000_fc_tx_pause;
688 	else
689 		hw->fc.requested_mode = e1000_fc_full;
690 
691 	return 0;
692 }
693 
694 /**
695  *  e1000e_setup_link_generic - Setup flow control and link settings
696  *  @hw: pointer to the HW structure
697  *
698  *  Determines which flow control settings to use, then configures flow
699  *  control.  Calls the appropriate media-specific link configuration
700  *  function.  Assuming the adapter has a valid link partner, a valid link
701  *  should be established.  Assumes the hardware has previously been reset
702  *  and the transmitter and receiver are not enabled.
703  **/
704 s32 e1000e_setup_link_generic(struct e1000_hw *hw)
705 {
706 	s32 ret_val;
707 
708 	/*
709 	 * In the case of the phy reset being blocked, we already have a link.
710 	 * We do not need to set it up again.
711 	 */
712 	if (hw->phy.ops.check_reset_block(hw))
713 		return 0;
714 
715 	/*
716 	 * If requested flow control is set to default, set flow control
717 	 * based on the EEPROM flow control settings.
718 	 */
719 	if (hw->fc.requested_mode == e1000_fc_default) {
720 		ret_val = e1000_set_default_fc_generic(hw);
721 		if (ret_val)
722 			return ret_val;
723 	}
724 
725 	/*
726 	 * Save off the requested flow control mode for use later.  Depending
727 	 * on the link partner's capabilities, we may or may not use this mode.
728 	 */
729 	hw->fc.current_mode = hw->fc.requested_mode;
730 
731 	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
732 
733 	/* Call the necessary media_type subroutine to configure the link. */
734 	ret_val = hw->mac.ops.setup_physical_interface(hw);
735 	if (ret_val)
736 		return ret_val;
737 
738 	/*
739 	 * Initialize the flow control address, type, and PAUSE timer
740 	 * registers to their default values.  This is done even if flow
741 	 * control is disabled, because it does not hurt anything to
742 	 * initialize these registers.
743 	 */
744 	e_dbg("Initializing the Flow Control address, type and timer regs\n");
745 	ew32(FCT, FLOW_CONTROL_TYPE);
746 	ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
747 	ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
748 
749 	ew32(FCTTV, hw->fc.pause_time);
750 
751 	return e1000e_set_fc_watermarks(hw);
752 }
753 
754 /**
755  *  e1000_commit_fc_settings_generic - Configure flow control
756  *  @hw: pointer to the HW structure
757  *
758  *  Write the flow control settings to the Transmit Config Word Register (TXCW)
759  *  base on the flow control settings in e1000_mac_info.
760  **/
761 static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw)
762 {
763 	struct e1000_mac_info *mac = &hw->mac;
764 	u32 txcw;
765 
766 	/*
767 	 * Check for a software override of the flow control settings, and
768 	 * setup the device accordingly.  If auto-negotiation is enabled, then
769 	 * software will have to set the "PAUSE" bits to the correct value in
770 	 * the Transmit Config Word Register (TXCW) and re-start auto-
771 	 * negotiation.  However, if auto-negotiation is disabled, then
772 	 * software will have to manually configure the two flow control enable
773 	 * bits in the CTRL register.
774 	 *
775 	 * The possible values of the "fc" parameter are:
776 	 *      0:  Flow control is completely disabled
777 	 *      1:  Rx flow control is enabled (we can receive pause frames,
778 	 *          but not send pause frames).
779 	 *      2:  Tx flow control is enabled (we can send pause frames but we
780 	 *          do not support receiving pause frames).
781 	 *      3:  Both Rx and Tx flow control (symmetric) are enabled.
782 	 */
783 	switch (hw->fc.current_mode) {
784 	case e1000_fc_none:
785 		/* Flow control completely disabled by a software over-ride. */
786 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
787 		break;
788 	case e1000_fc_rx_pause:
789 		/*
790 		 * Rx Flow control is enabled and Tx Flow control is disabled
791 		 * by a software over-ride. Since there really isn't a way to
792 		 * advertise that we are capable of Rx Pause ONLY, we will
793 		 * advertise that we support both symmetric and asymmetric Rx
794 		 * PAUSE.  Later, we will disable the adapter's ability to send
795 		 * PAUSE frames.
796 		 */
797 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
798 		break;
799 	case e1000_fc_tx_pause:
800 		/*
801 		 * Tx Flow control is enabled, and Rx Flow control is disabled,
802 		 * by a software over-ride.
803 		 */
804 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
805 		break;
806 	case e1000_fc_full:
807 		/*
808 		 * Flow control (both Rx and Tx) is enabled by a software
809 		 * over-ride.
810 		 */
811 		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
812 		break;
813 	default:
814 		e_dbg("Flow control param set incorrectly\n");
815 		return -E1000_ERR_CONFIG;
816 		break;
817 	}
818 
819 	ew32(TXCW, txcw);
820 	mac->txcw = txcw;
821 
822 	return 0;
823 }
824 
825 /**
826  *  e1000_poll_fiber_serdes_link_generic - Poll for link up
827  *  @hw: pointer to the HW structure
828  *
829  *  Polls for link up by reading the status register, if link fails to come
830  *  up with auto-negotiation, then the link is forced if a signal is detected.
831  **/
832 static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
833 {
834 	struct e1000_mac_info *mac = &hw->mac;
835 	u32 i, status;
836 	s32 ret_val;
837 
838 	/*
839 	 * If we have a signal (the cable is plugged in, or assumed true for
840 	 * serdes media) then poll for a "Link-Up" indication in the Device
841 	 * Status Register.  Time-out if a link isn't seen in 500 milliseconds
842 	 * seconds (Auto-negotiation should complete in less than 500
843 	 * milliseconds even if the other end is doing it in SW).
844 	 */
845 	for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) {
846 		usleep_range(10000, 20000);
847 		status = er32(STATUS);
848 		if (status & E1000_STATUS_LU)
849 			break;
850 	}
851 	if (i == FIBER_LINK_UP_LIMIT) {
852 		e_dbg("Never got a valid link from auto-neg!!!\n");
853 		mac->autoneg_failed = true;
854 		/*
855 		 * AutoNeg failed to achieve a link, so we'll call
856 		 * mac->check_for_link. This routine will force the
857 		 * link up if we detect a signal. This will allow us to
858 		 * communicate with non-autonegotiating link partners.
859 		 */
860 		ret_val = mac->ops.check_for_link(hw);
861 		if (ret_val) {
862 			e_dbg("Error while checking for link\n");
863 			return ret_val;
864 		}
865 		mac->autoneg_failed = false;
866 	} else {
867 		mac->autoneg_failed = false;
868 		e_dbg("Valid Link Found\n");
869 	}
870 
871 	return 0;
872 }
873 
874 /**
875  *  e1000e_setup_fiber_serdes_link - Setup link for fiber/serdes
876  *  @hw: pointer to the HW structure
877  *
878  *  Configures collision distance and flow control for fiber and serdes
879  *  links.  Upon successful setup, poll for link.
880  **/
881 s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw)
882 {
883 	u32 ctrl;
884 	s32 ret_val;
885 
886 	ctrl = er32(CTRL);
887 
888 	/* Take the link out of reset */
889 	ctrl &= ~E1000_CTRL_LRST;
890 
891 	hw->mac.ops.config_collision_dist(hw);
892 
893 	ret_val = e1000_commit_fc_settings_generic(hw);
894 	if (ret_val)
895 		return ret_val;
896 
897 	/*
898 	 * Since auto-negotiation is enabled, take the link out of reset (the
899 	 * link will be in reset, because we previously reset the chip). This
900 	 * will restart auto-negotiation.  If auto-negotiation is successful
901 	 * then the link-up status bit will be set and the flow control enable
902 	 * bits (RFCE and TFCE) will be set according to their negotiated value.
903 	 */
904 	e_dbg("Auto-negotiation enabled\n");
905 
906 	ew32(CTRL, ctrl);
907 	e1e_flush();
908 	usleep_range(1000, 2000);
909 
910 	/*
911 	 * For these adapters, the SW definable pin 1 is set when the optics
912 	 * detect a signal.  If we have a signal, then poll for a "Link-Up"
913 	 * indication.
914 	 */
915 	if (hw->phy.media_type == e1000_media_type_internal_serdes ||
916 	    (er32(CTRL) & E1000_CTRL_SWDPIN1)) {
917 		ret_val = e1000_poll_fiber_serdes_link_generic(hw);
918 	} else {
919 		e_dbg("No signal detected\n");
920 	}
921 
922 	return ret_val;
923 }
924 
925 /**
926  *  e1000e_config_collision_dist_generic - Configure collision distance
927  *  @hw: pointer to the HW structure
928  *
929  *  Configures the collision distance to the default value and is used
930  *  during link setup.
931  **/
932 void e1000e_config_collision_dist_generic(struct e1000_hw *hw)
933 {
934 	u32 tctl;
935 
936 	tctl = er32(TCTL);
937 
938 	tctl &= ~E1000_TCTL_COLD;
939 	tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
940 
941 	ew32(TCTL, tctl);
942 	e1e_flush();
943 }
944 
945 /**
946  *  e1000e_set_fc_watermarks - Set flow control high/low watermarks
947  *  @hw: pointer to the HW structure
948  *
949  *  Sets the flow control high/low threshold (watermark) registers.  If
950  *  flow control XON frame transmission is enabled, then set XON frame
951  *  transmission as well.
952  **/
953 s32 e1000e_set_fc_watermarks(struct e1000_hw *hw)
954 {
955 	u32 fcrtl = 0, fcrth = 0;
956 
957 	/*
958 	 * Set the flow control receive threshold registers.  Normally,
959 	 * these registers will be set to a default threshold that may be
960 	 * adjusted later by the driver's runtime code.  However, if the
961 	 * ability to transmit pause frames is not enabled, then these
962 	 * registers will be set to 0.
963 	 */
964 	if (hw->fc.current_mode & e1000_fc_tx_pause) {
965 		/*
966 		 * We need to set up the Receive Threshold high and low water
967 		 * marks as well as (optionally) enabling the transmission of
968 		 * XON frames.
969 		 */
970 		fcrtl = hw->fc.low_water;
971 		if (hw->fc.send_xon)
972 			fcrtl |= E1000_FCRTL_XONE;
973 
974 		fcrth = hw->fc.high_water;
975 	}
976 	ew32(FCRTL, fcrtl);
977 	ew32(FCRTH, fcrth);
978 
979 	return 0;
980 }
981 
982 /**
983  *  e1000e_force_mac_fc - Force the MAC's flow control settings
984  *  @hw: pointer to the HW structure
985  *
986  *  Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the
987  *  device control register to reflect the adapter settings.  TFCE and RFCE
988  *  need to be explicitly set by software when a copper PHY is used because
989  *  autonegotiation is managed by the PHY rather than the MAC.  Software must
990  *  also configure these bits when link is forced on a fiber connection.
991  **/
992 s32 e1000e_force_mac_fc(struct e1000_hw *hw)
993 {
994 	u32 ctrl;
995 
996 	ctrl = er32(CTRL);
997 
998 	/*
999 	 * Because we didn't get link via the internal auto-negotiation
1000 	 * mechanism (we either forced link or we got link via PHY
1001 	 * auto-neg), we have to manually enable/disable transmit an
1002 	 * receive flow control.
1003 	 *
1004 	 * The "Case" statement below enables/disable flow control
1005 	 * according to the "hw->fc.current_mode" parameter.
1006 	 *
1007 	 * The possible values of the "fc" parameter are:
1008 	 *      0:  Flow control is completely disabled
1009 	 *      1:  Rx flow control is enabled (we can receive pause
1010 	 *          frames but not send pause frames).
1011 	 *      2:  Tx flow control is enabled (we can send pause frames
1012 	 *          frames but we do not receive pause frames).
1013 	 *      3:  Both Rx and Tx flow control (symmetric) is enabled.
1014 	 *  other:  No other values should be possible at this point.
1015 	 */
1016 	e_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
1017 
1018 	switch (hw->fc.current_mode) {
1019 	case e1000_fc_none:
1020 		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
1021 		break;
1022 	case e1000_fc_rx_pause:
1023 		ctrl &= (~E1000_CTRL_TFCE);
1024 		ctrl |= E1000_CTRL_RFCE;
1025 		break;
1026 	case e1000_fc_tx_pause:
1027 		ctrl &= (~E1000_CTRL_RFCE);
1028 		ctrl |= E1000_CTRL_TFCE;
1029 		break;
1030 	case e1000_fc_full:
1031 		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
1032 		break;
1033 	default:
1034 		e_dbg("Flow control param set incorrectly\n");
1035 		return -E1000_ERR_CONFIG;
1036 	}
1037 
1038 	ew32(CTRL, ctrl);
1039 
1040 	return 0;
1041 }
1042 
1043 /**
1044  *  e1000e_config_fc_after_link_up - Configures flow control after link
1045  *  @hw: pointer to the HW structure
1046  *
1047  *  Checks the status of auto-negotiation after link up to ensure that the
1048  *  speed and duplex were not forced.  If the link needed to be forced, then
1049  *  flow control needs to be forced also.  If auto-negotiation is enabled
1050  *  and did not fail, then we configure flow control based on our link
1051  *  partner.
1052  **/
1053 s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw)
1054 {
1055 	struct e1000_mac_info *mac = &hw->mac;
1056 	s32 ret_val = 0;
1057 	u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
1058 	u16 speed, duplex;
1059 
1060 	/*
1061 	 * Check for the case where we have fiber media and auto-neg failed
1062 	 * so we had to force link.  In this case, we need to force the
1063 	 * configuration of the MAC to match the "fc" parameter.
1064 	 */
1065 	if (mac->autoneg_failed) {
1066 		if (hw->phy.media_type == e1000_media_type_fiber ||
1067 		    hw->phy.media_type == e1000_media_type_internal_serdes)
1068 			ret_val = e1000e_force_mac_fc(hw);
1069 	} else {
1070 		if (hw->phy.media_type == e1000_media_type_copper)
1071 			ret_val = e1000e_force_mac_fc(hw);
1072 	}
1073 
1074 	if (ret_val) {
1075 		e_dbg("Error forcing flow control settings\n");
1076 		return ret_val;
1077 	}
1078 
1079 	/*
1080 	 * Check for the case where we have copper media and auto-neg is
1081 	 * enabled.  In this case, we need to check and see if Auto-Neg
1082 	 * has completed, and if so, how the PHY and link partner has
1083 	 * flow control configured.
1084 	 */
1085 	if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
1086 		/*
1087 		 * Read the MII Status Register and check to see if AutoNeg
1088 		 * has completed.  We read this twice because this reg has
1089 		 * some "sticky" (latched) bits.
1090 		 */
1091 		ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg);
1092 		if (ret_val)
1093 			return ret_val;
1094 		ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg);
1095 		if (ret_val)
1096 			return ret_val;
1097 
1098 		if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
1099 			e_dbg("Copper PHY and Auto Neg has not completed.\n");
1100 			return ret_val;
1101 		}
1102 
1103 		/*
1104 		 * The AutoNeg process has completed, so we now need to
1105 		 * read both the Auto Negotiation Advertisement
1106 		 * Register (Address 4) and the Auto_Negotiation Base
1107 		 * Page Ability Register (Address 5) to determine how
1108 		 * flow control was negotiated.
1109 		 */
1110 		ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg);
1111 		if (ret_val)
1112 			return ret_val;
1113 		ret_val =
1114 		    e1e_rphy(hw, PHY_LP_ABILITY, &mii_nway_lp_ability_reg);
1115 		if (ret_val)
1116 			return ret_val;
1117 
1118 		/*
1119 		 * Two bits in the Auto Negotiation Advertisement Register
1120 		 * (Address 4) and two bits in the Auto Negotiation Base
1121 		 * Page Ability Register (Address 5) determine flow control
1122 		 * for both the PHY and the link partner.  The following
1123 		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1124 		 * 1999, describes these PAUSE resolution bits and how flow
1125 		 * control is determined based upon these settings.
1126 		 * NOTE:  DC = Don't Care
1127 		 *
1128 		 *   LOCAL DEVICE  |   LINK PARTNER
1129 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1130 		 *-------|---------|-------|---------|--------------------
1131 		 *   0   |    0    |  DC   |   DC    | e1000_fc_none
1132 		 *   0   |    1    |   0   |   DC    | e1000_fc_none
1133 		 *   0   |    1    |   1   |    0    | e1000_fc_none
1134 		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1135 		 *   1   |    0    |   0   |   DC    | e1000_fc_none
1136 		 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1137 		 *   1   |    1    |   0   |    0    | e1000_fc_none
1138 		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1139 		 *
1140 		 * Are both PAUSE bits set to 1?  If so, this implies
1141 		 * Symmetric Flow Control is enabled at both ends.  The
1142 		 * ASM_DIR bits are irrelevant per the spec.
1143 		 *
1144 		 * For Symmetric Flow Control:
1145 		 *
1146 		 *   LOCAL DEVICE  |   LINK PARTNER
1147 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1148 		 *-------|---------|-------|---------|--------------------
1149 		 *   1   |   DC    |   1   |   DC    | E1000_fc_full
1150 		 *
1151 		 */
1152 		if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1153 		    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
1154 			/*
1155 			 * Now we need to check if the user selected Rx ONLY
1156 			 * of pause frames.  In this case, we had to advertise
1157 			 * FULL flow control because we could not advertise Rx
1158 			 * ONLY. Hence, we must now check to see if we need to
1159 			 * turn OFF the TRANSMISSION of PAUSE frames.
1160 			 */
1161 			if (hw->fc.requested_mode == e1000_fc_full) {
1162 				hw->fc.current_mode = e1000_fc_full;
1163 				e_dbg("Flow Control = FULL.\n");
1164 			} else {
1165 				hw->fc.current_mode = e1000_fc_rx_pause;
1166 				e_dbg("Flow Control = Rx PAUSE frames only.\n");
1167 			}
1168 		}
1169 		/*
1170 		 * For receiving PAUSE frames ONLY.
1171 		 *
1172 		 *   LOCAL DEVICE  |   LINK PARTNER
1173 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1174 		 *-------|---------|-------|---------|--------------------
1175 		 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1176 		 */
1177 		else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1178 			 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1179 			 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1180 			 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
1181 			hw->fc.current_mode = e1000_fc_tx_pause;
1182 			e_dbg("Flow Control = Tx PAUSE frames only.\n");
1183 		}
1184 		/*
1185 		 * For transmitting PAUSE frames ONLY.
1186 		 *
1187 		 *   LOCAL DEVICE  |   LINK PARTNER
1188 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1189 		 *-------|---------|-------|---------|--------------------
1190 		 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1191 		 */
1192 		else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
1193 			 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
1194 			 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
1195 			 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
1196 			hw->fc.current_mode = e1000_fc_rx_pause;
1197 			e_dbg("Flow Control = Rx PAUSE frames only.\n");
1198 		} else {
1199 			/*
1200 			 * Per the IEEE spec, at this point flow control
1201 			 * should be disabled.
1202 			 */
1203 			hw->fc.current_mode = e1000_fc_none;
1204 			e_dbg("Flow Control = NONE.\n");
1205 		}
1206 
1207 		/*
1208 		 * Now we need to do one last check...  If we auto-
1209 		 * negotiated to HALF DUPLEX, flow control should not be
1210 		 * enabled per IEEE 802.3 spec.
1211 		 */
1212 		ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
1213 		if (ret_val) {
1214 			e_dbg("Error getting link speed and duplex\n");
1215 			return ret_val;
1216 		}
1217 
1218 		if (duplex == HALF_DUPLEX)
1219 			hw->fc.current_mode = e1000_fc_none;
1220 
1221 		/*
1222 		 * Now we call a subroutine to actually force the MAC
1223 		 * controller to use the correct flow control settings.
1224 		 */
1225 		ret_val = e1000e_force_mac_fc(hw);
1226 		if (ret_val) {
1227 			e_dbg("Error forcing flow control settings\n");
1228 			return ret_val;
1229 		}
1230 	}
1231 
1232 	return 0;
1233 }
1234 
1235 /**
1236  *  e1000e_get_speed_and_duplex_copper - Retrieve current speed/duplex
1237  *  @hw: pointer to the HW structure
1238  *  @speed: stores the current speed
1239  *  @duplex: stores the current duplex
1240  *
1241  *  Read the status register for the current speed/duplex and store the current
1242  *  speed and duplex for copper connections.
1243  **/
1244 s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed,
1245 				       u16 *duplex)
1246 {
1247 	u32 status;
1248 
1249 	status = er32(STATUS);
1250 	if (status & E1000_STATUS_SPEED_1000)
1251 		*speed = SPEED_1000;
1252 	else if (status & E1000_STATUS_SPEED_100)
1253 		*speed = SPEED_100;
1254 	else
1255 		*speed = SPEED_10;
1256 
1257 	if (status & E1000_STATUS_FD)
1258 		*duplex = FULL_DUPLEX;
1259 	else
1260 		*duplex = HALF_DUPLEX;
1261 
1262 	e_dbg("%u Mbps, %s Duplex\n",
1263 	      *speed == SPEED_1000 ? 1000 : *speed == SPEED_100 ? 100 : 10,
1264 	      *duplex == FULL_DUPLEX ? "Full" : "Half");
1265 
1266 	return 0;
1267 }
1268 
1269 /**
1270  *  e1000e_get_speed_and_duplex_fiber_serdes - Retrieve current speed/duplex
1271  *  @hw: pointer to the HW structure
1272  *  @speed: stores the current speed
1273  *  @duplex: stores the current duplex
1274  *
1275  *  Sets the speed and duplex to gigabit full duplex (the only possible option)
1276  *  for fiber/serdes links.
1277  **/
1278 s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw *hw, u16 *speed,
1279 					     u16 *duplex)
1280 {
1281 	*speed = SPEED_1000;
1282 	*duplex = FULL_DUPLEX;
1283 
1284 	return 0;
1285 }
1286 
1287 /**
1288  *  e1000e_get_hw_semaphore - Acquire hardware semaphore
1289  *  @hw: pointer to the HW structure
1290  *
1291  *  Acquire the HW semaphore to access the PHY or NVM
1292  **/
1293 s32 e1000e_get_hw_semaphore(struct e1000_hw *hw)
1294 {
1295 	u32 swsm;
1296 	s32 timeout = hw->nvm.word_size + 1;
1297 	s32 i = 0;
1298 
1299 	/* Get the SW semaphore */
1300 	while (i < timeout) {
1301 		swsm = er32(SWSM);
1302 		if (!(swsm & E1000_SWSM_SMBI))
1303 			break;
1304 
1305 		udelay(50);
1306 		i++;
1307 	}
1308 
1309 	if (i == timeout) {
1310 		e_dbg("Driver can't access device - SMBI bit is set.\n");
1311 		return -E1000_ERR_NVM;
1312 	}
1313 
1314 	/* Get the FW semaphore. */
1315 	for (i = 0; i < timeout; i++) {
1316 		swsm = er32(SWSM);
1317 		ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
1318 
1319 		/* Semaphore acquired if bit latched */
1320 		if (er32(SWSM) & E1000_SWSM_SWESMBI)
1321 			break;
1322 
1323 		udelay(50);
1324 	}
1325 
1326 	if (i == timeout) {
1327 		/* Release semaphores */
1328 		e1000e_put_hw_semaphore(hw);
1329 		e_dbg("Driver can't access the NVM\n");
1330 		return -E1000_ERR_NVM;
1331 	}
1332 
1333 	return 0;
1334 }
1335 
1336 /**
1337  *  e1000e_put_hw_semaphore - Release hardware semaphore
1338  *  @hw: pointer to the HW structure
1339  *
1340  *  Release hardware semaphore used to access the PHY or NVM
1341  **/
1342 void e1000e_put_hw_semaphore(struct e1000_hw *hw)
1343 {
1344 	u32 swsm;
1345 
1346 	swsm = er32(SWSM);
1347 	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1348 	ew32(SWSM, swsm);
1349 }
1350 
1351 /**
1352  *  e1000e_get_auto_rd_done - Check for auto read completion
1353  *  @hw: pointer to the HW structure
1354  *
1355  *  Check EEPROM for Auto Read done bit.
1356  **/
1357 s32 e1000e_get_auto_rd_done(struct e1000_hw *hw)
1358 {
1359 	s32 i = 0;
1360 
1361 	while (i < AUTO_READ_DONE_TIMEOUT) {
1362 		if (er32(EECD) & E1000_EECD_AUTO_RD)
1363 			break;
1364 		usleep_range(1000, 2000);
1365 		i++;
1366 	}
1367 
1368 	if (i == AUTO_READ_DONE_TIMEOUT) {
1369 		e_dbg("Auto read by HW from NVM has not completed.\n");
1370 		return -E1000_ERR_RESET;
1371 	}
1372 
1373 	return 0;
1374 }
1375 
1376 /**
1377  *  e1000e_valid_led_default - Verify a valid default LED config
1378  *  @hw: pointer to the HW structure
1379  *  @data: pointer to the NVM (EEPROM)
1380  *
1381  *  Read the EEPROM for the current default LED configuration.  If the
1382  *  LED configuration is not valid, set to a valid LED configuration.
1383  **/
1384 s32 e1000e_valid_led_default(struct e1000_hw *hw, u16 *data)
1385 {
1386 	s32 ret_val;
1387 
1388 	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1389 	if (ret_val) {
1390 		e_dbg("NVM Read Error\n");
1391 		return ret_val;
1392 	}
1393 
1394 	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
1395 		*data = ID_LED_DEFAULT;
1396 
1397 	return 0;
1398 }
1399 
1400 /**
1401  *  e1000e_id_led_init_generic -
1402  *  @hw: pointer to the HW structure
1403  *
1404  **/
1405 s32 e1000e_id_led_init_generic(struct e1000_hw *hw)
1406 {
1407 	struct e1000_mac_info *mac = &hw->mac;
1408 	s32 ret_val;
1409 	const u32 ledctl_mask = 0x000000FF;
1410 	const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
1411 	const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
1412 	u16 data, i, temp;
1413 	const u16 led_mask = 0x0F;
1414 
1415 	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
1416 	if (ret_val)
1417 		return ret_val;
1418 
1419 	mac->ledctl_default = er32(LEDCTL);
1420 	mac->ledctl_mode1 = mac->ledctl_default;
1421 	mac->ledctl_mode2 = mac->ledctl_default;
1422 
1423 	for (i = 0; i < 4; i++) {
1424 		temp = (data >> (i << 2)) & led_mask;
1425 		switch (temp) {
1426 		case ID_LED_ON1_DEF2:
1427 		case ID_LED_ON1_ON2:
1428 		case ID_LED_ON1_OFF2:
1429 			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1430 			mac->ledctl_mode1 |= ledctl_on << (i << 3);
1431 			break;
1432 		case ID_LED_OFF1_DEF2:
1433 		case ID_LED_OFF1_ON2:
1434 		case ID_LED_OFF1_OFF2:
1435 			mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1436 			mac->ledctl_mode1 |= ledctl_off << (i << 3);
1437 			break;
1438 		default:
1439 			/* Do nothing */
1440 			break;
1441 		}
1442 		switch (temp) {
1443 		case ID_LED_DEF1_ON2:
1444 		case ID_LED_ON1_ON2:
1445 		case ID_LED_OFF1_ON2:
1446 			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1447 			mac->ledctl_mode2 |= ledctl_on << (i << 3);
1448 			break;
1449 		case ID_LED_DEF1_OFF2:
1450 		case ID_LED_ON1_OFF2:
1451 		case ID_LED_OFF1_OFF2:
1452 			mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1453 			mac->ledctl_mode2 |= ledctl_off << (i << 3);
1454 			break;
1455 		default:
1456 			/* Do nothing */
1457 			break;
1458 		}
1459 	}
1460 
1461 	return 0;
1462 }
1463 
1464 /**
1465  *  e1000e_setup_led_generic - Configures SW controllable LED
1466  *  @hw: pointer to the HW structure
1467  *
1468  *  This prepares the SW controllable LED for use and saves the current state
1469  *  of the LED so it can be later restored.
1470  **/
1471 s32 e1000e_setup_led_generic(struct e1000_hw *hw)
1472 {
1473 	u32 ledctl;
1474 
1475 	if (hw->mac.ops.setup_led != e1000e_setup_led_generic)
1476 		return -E1000_ERR_CONFIG;
1477 
1478 	if (hw->phy.media_type == e1000_media_type_fiber) {
1479 		ledctl = er32(LEDCTL);
1480 		hw->mac.ledctl_default = ledctl;
1481 		/* Turn off LED0 */
1482 		ledctl &= ~(E1000_LEDCTL_LED0_IVRT | E1000_LEDCTL_LED0_BLINK |
1483 			    E1000_LEDCTL_LED0_MODE_MASK);
1484 		ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
1485 			   E1000_LEDCTL_LED0_MODE_SHIFT);
1486 		ew32(LEDCTL, ledctl);
1487 	} else if (hw->phy.media_type == e1000_media_type_copper) {
1488 		ew32(LEDCTL, hw->mac.ledctl_mode1);
1489 	}
1490 
1491 	return 0;
1492 }
1493 
1494 /**
1495  *  e1000e_cleanup_led_generic - Set LED config to default operation
1496  *  @hw: pointer to the HW structure
1497  *
1498  *  Remove the current LED configuration and set the LED configuration
1499  *  to the default value, saved from the EEPROM.
1500  **/
1501 s32 e1000e_cleanup_led_generic(struct e1000_hw *hw)
1502 {
1503 	ew32(LEDCTL, hw->mac.ledctl_default);
1504 	return 0;
1505 }
1506 
1507 /**
1508  *  e1000e_blink_led_generic - Blink LED
1509  *  @hw: pointer to the HW structure
1510  *
1511  *  Blink the LEDs which are set to be on.
1512  **/
1513 s32 e1000e_blink_led_generic(struct e1000_hw *hw)
1514 {
1515 	u32 ledctl_blink = 0;
1516 	u32 i;
1517 
1518 	if (hw->phy.media_type == e1000_media_type_fiber) {
1519 		/* always blink LED0 for PCI-E fiber */
1520 		ledctl_blink = E1000_LEDCTL_LED0_BLINK |
1521 		    (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
1522 	} else {
1523 		/*
1524 		 * set the blink bit for each LED that's "on" (0x0E)
1525 		 * in ledctl_mode2
1526 		 */
1527 		ledctl_blink = hw->mac.ledctl_mode2;
1528 		for (i = 0; i < 4; i++)
1529 			if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1530 			    E1000_LEDCTL_MODE_LED_ON)
1531 				ledctl_blink |= (E1000_LEDCTL_LED0_BLINK <<
1532 						 (i * 8));
1533 	}
1534 
1535 	ew32(LEDCTL, ledctl_blink);
1536 
1537 	return 0;
1538 }
1539 
1540 /**
1541  *  e1000e_led_on_generic - Turn LED on
1542  *  @hw: pointer to the HW structure
1543  *
1544  *  Turn LED on.
1545  **/
1546 s32 e1000e_led_on_generic(struct e1000_hw *hw)
1547 {
1548 	u32 ctrl;
1549 
1550 	switch (hw->phy.media_type) {
1551 	case e1000_media_type_fiber:
1552 		ctrl = er32(CTRL);
1553 		ctrl &= ~E1000_CTRL_SWDPIN0;
1554 		ctrl |= E1000_CTRL_SWDPIO0;
1555 		ew32(CTRL, ctrl);
1556 		break;
1557 	case e1000_media_type_copper:
1558 		ew32(LEDCTL, hw->mac.ledctl_mode2);
1559 		break;
1560 	default:
1561 		break;
1562 	}
1563 
1564 	return 0;
1565 }
1566 
1567 /**
1568  *  e1000e_led_off_generic - Turn LED off
1569  *  @hw: pointer to the HW structure
1570  *
1571  *  Turn LED off.
1572  **/
1573 s32 e1000e_led_off_generic(struct e1000_hw *hw)
1574 {
1575 	u32 ctrl;
1576 
1577 	switch (hw->phy.media_type) {
1578 	case e1000_media_type_fiber:
1579 		ctrl = er32(CTRL);
1580 		ctrl |= E1000_CTRL_SWDPIN0;
1581 		ctrl |= E1000_CTRL_SWDPIO0;
1582 		ew32(CTRL, ctrl);
1583 		break;
1584 	case e1000_media_type_copper:
1585 		ew32(LEDCTL, hw->mac.ledctl_mode1);
1586 		break;
1587 	default:
1588 		break;
1589 	}
1590 
1591 	return 0;
1592 }
1593 
1594 /**
1595  *  e1000e_set_pcie_no_snoop - Set PCI-express capabilities
1596  *  @hw: pointer to the HW structure
1597  *  @no_snoop: bitmap of snoop events
1598  *
1599  *  Set the PCI-express register to snoop for events enabled in 'no_snoop'.
1600  **/
1601 void e1000e_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop)
1602 {
1603 	u32 gcr;
1604 
1605 	if (no_snoop) {
1606 		gcr = er32(GCR);
1607 		gcr &= ~(PCIE_NO_SNOOP_ALL);
1608 		gcr |= no_snoop;
1609 		ew32(GCR, gcr);
1610 	}
1611 }
1612 
1613 /**
1614  *  e1000e_disable_pcie_master - Disables PCI-express master access
1615  *  @hw: pointer to the HW structure
1616  *
1617  *  Returns 0 if successful, else returns -10
1618  *  (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
1619  *  the master requests to be disabled.
1620  *
1621  *  Disables PCI-Express master access and verifies there are no pending
1622  *  requests.
1623  **/
1624 s32 e1000e_disable_pcie_master(struct e1000_hw *hw)
1625 {
1626 	u32 ctrl;
1627 	s32 timeout = MASTER_DISABLE_TIMEOUT;
1628 
1629 	ctrl = er32(CTRL);
1630 	ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
1631 	ew32(CTRL, ctrl);
1632 
1633 	while (timeout) {
1634 		if (!(er32(STATUS) & E1000_STATUS_GIO_MASTER_ENABLE))
1635 			break;
1636 		udelay(100);
1637 		timeout--;
1638 	}
1639 
1640 	if (!timeout) {
1641 		e_dbg("Master requests are pending.\n");
1642 		return -E1000_ERR_MASTER_REQUESTS_PENDING;
1643 	}
1644 
1645 	return 0;
1646 }
1647 
1648 /**
1649  *  e1000e_reset_adaptive - Reset Adaptive Interframe Spacing
1650  *  @hw: pointer to the HW structure
1651  *
1652  *  Reset the Adaptive Interframe Spacing throttle to default values.
1653  **/
1654 void e1000e_reset_adaptive(struct e1000_hw *hw)
1655 {
1656 	struct e1000_mac_info *mac = &hw->mac;
1657 
1658 	if (!mac->adaptive_ifs) {
1659 		e_dbg("Not in Adaptive IFS mode!\n");
1660 		return;
1661 	}
1662 
1663 	mac->current_ifs_val = 0;
1664 	mac->ifs_min_val = IFS_MIN;
1665 	mac->ifs_max_val = IFS_MAX;
1666 	mac->ifs_step_size = IFS_STEP;
1667 	mac->ifs_ratio = IFS_RATIO;
1668 
1669 	mac->in_ifs_mode = false;
1670 	ew32(AIT, 0);
1671 }
1672 
1673 /**
1674  *  e1000e_update_adaptive - Update Adaptive Interframe Spacing
1675  *  @hw: pointer to the HW structure
1676  *
1677  *  Update the Adaptive Interframe Spacing Throttle value based on the
1678  *  time between transmitted packets and time between collisions.
1679  **/
1680 void e1000e_update_adaptive(struct e1000_hw *hw)
1681 {
1682 	struct e1000_mac_info *mac = &hw->mac;
1683 
1684 	if (!mac->adaptive_ifs) {
1685 		e_dbg("Not in Adaptive IFS mode!\n");
1686 		return;
1687 	}
1688 
1689 	if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
1690 		if (mac->tx_packet_delta > MIN_NUM_XMITS) {
1691 			mac->in_ifs_mode = true;
1692 			if (mac->current_ifs_val < mac->ifs_max_val) {
1693 				if (!mac->current_ifs_val)
1694 					mac->current_ifs_val = mac->ifs_min_val;
1695 				else
1696 					mac->current_ifs_val +=
1697 					    mac->ifs_step_size;
1698 				ew32(AIT, mac->current_ifs_val);
1699 			}
1700 		}
1701 	} else {
1702 		if (mac->in_ifs_mode &&
1703 		    (mac->tx_packet_delta <= MIN_NUM_XMITS)) {
1704 			mac->current_ifs_val = 0;
1705 			mac->in_ifs_mode = false;
1706 			ew32(AIT, 0);
1707 		}
1708 	}
1709 }
1710