1 /******************************************************************************* 2 3 Intel PRO/1000 Linux driver 4 Copyright(c) 1999 - 2012 Intel Corporation. 5 6 This program is free software; you can redistribute it and/or modify it 7 under the terms and conditions of the GNU General Public License, 8 version 2, as published by the Free Software Foundation. 9 10 This program is distributed in the hope it will be useful, but WITHOUT 11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 more details. 14 15 You should have received a copy of the GNU General Public License along with 16 this program; if not, write to the Free Software Foundation, Inc., 17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 18 19 The full GNU General Public License is included in this distribution in 20 the file called "COPYING". 21 22 Contact Information: 23 Linux NICS <linux.nics@intel.com> 24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 26 27 *******************************************************************************/ 28 29 #include "e1000.h" 30 31 /** 32 * e1000e_get_bus_info_pcie - Get PCIe bus information 33 * @hw: pointer to the HW structure 34 * 35 * Determines and stores the system bus information for a particular 36 * network interface. The following bus information is determined and stored: 37 * bus speed, bus width, type (PCIe), and PCIe function. 38 **/ 39 s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw) 40 { 41 struct e1000_mac_info *mac = &hw->mac; 42 struct e1000_bus_info *bus = &hw->bus; 43 struct e1000_adapter *adapter = hw->adapter; 44 u16 pcie_link_status, cap_offset; 45 46 cap_offset = adapter->pdev->pcie_cap; 47 if (!cap_offset) { 48 bus->width = e1000_bus_width_unknown; 49 } else { 50 pci_read_config_word(adapter->pdev, 51 cap_offset + PCIE_LINK_STATUS, 52 &pcie_link_status); 53 bus->width = (enum e1000_bus_width)((pcie_link_status & 54 PCIE_LINK_WIDTH_MASK) >> 55 PCIE_LINK_WIDTH_SHIFT); 56 } 57 58 mac->ops.set_lan_id(hw); 59 60 return 0; 61 } 62 63 /** 64 * e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices 65 * 66 * @hw: pointer to the HW structure 67 * 68 * Determines the LAN function id by reading memory-mapped registers 69 * and swaps the port value if requested. 70 **/ 71 void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw) 72 { 73 struct e1000_bus_info *bus = &hw->bus; 74 u32 reg; 75 76 /* 77 * The status register reports the correct function number 78 * for the device regardless of function swap state. 79 */ 80 reg = er32(STATUS); 81 bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT; 82 } 83 84 /** 85 * e1000_set_lan_id_single_port - Set LAN id for a single port device 86 * @hw: pointer to the HW structure 87 * 88 * Sets the LAN function id to zero for a single port device. 89 **/ 90 void e1000_set_lan_id_single_port(struct e1000_hw *hw) 91 { 92 struct e1000_bus_info *bus = &hw->bus; 93 94 bus->func = 0; 95 } 96 97 /** 98 * e1000_clear_vfta_generic - Clear VLAN filter table 99 * @hw: pointer to the HW structure 100 * 101 * Clears the register array which contains the VLAN filter table by 102 * setting all the values to 0. 103 **/ 104 void e1000_clear_vfta_generic(struct e1000_hw *hw) 105 { 106 u32 offset; 107 108 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { 109 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0); 110 e1e_flush(); 111 } 112 } 113 114 /** 115 * e1000_write_vfta_generic - Write value to VLAN filter table 116 * @hw: pointer to the HW structure 117 * @offset: register offset in VLAN filter table 118 * @value: register value written to VLAN filter table 119 * 120 * Writes value at the given offset in the register array which stores 121 * the VLAN filter table. 122 **/ 123 void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value) 124 { 125 E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value); 126 e1e_flush(); 127 } 128 129 /** 130 * e1000e_init_rx_addrs - Initialize receive address's 131 * @hw: pointer to the HW structure 132 * @rar_count: receive address registers 133 * 134 * Setup the receive address registers by setting the base receive address 135 * register to the devices MAC address and clearing all the other receive 136 * address registers to 0. 137 **/ 138 void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count) 139 { 140 u32 i; 141 u8 mac_addr[ETH_ALEN] = { 0 }; 142 143 /* Setup the receive address */ 144 e_dbg("Programming MAC Address into RAR[0]\n"); 145 146 e1000e_rar_set(hw, hw->mac.addr, 0); 147 148 /* Zero out the other (rar_entry_count - 1) receive addresses */ 149 e_dbg("Clearing RAR[1-%u]\n", rar_count - 1); 150 for (i = 1; i < rar_count; i++) 151 e1000e_rar_set(hw, mac_addr, i); 152 } 153 154 /** 155 * e1000_check_alt_mac_addr_generic - Check for alternate MAC addr 156 * @hw: pointer to the HW structure 157 * 158 * Checks the nvm for an alternate MAC address. An alternate MAC address 159 * can be setup by pre-boot software and must be treated like a permanent 160 * address and must override the actual permanent MAC address. If an 161 * alternate MAC address is found it is programmed into RAR0, replacing 162 * the permanent address that was installed into RAR0 by the Si on reset. 163 * This function will return SUCCESS unless it encounters an error while 164 * reading the EEPROM. 165 **/ 166 s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw) 167 { 168 u32 i; 169 s32 ret_val = 0; 170 u16 offset, nvm_alt_mac_addr_offset, nvm_data; 171 u8 alt_mac_addr[ETH_ALEN]; 172 173 ret_val = e1000_read_nvm(hw, NVM_COMPAT, 1, &nvm_data); 174 if (ret_val) 175 return ret_val; 176 177 /* not supported on 82573 */ 178 if (hw->mac.type == e1000_82573) 179 return 0; 180 181 ret_val = e1000_read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1, 182 &nvm_alt_mac_addr_offset); 183 if (ret_val) { 184 e_dbg("NVM Read Error\n"); 185 return ret_val; 186 } 187 188 if ((nvm_alt_mac_addr_offset == 0xFFFF) || 189 (nvm_alt_mac_addr_offset == 0x0000)) 190 /* There is no Alternate MAC Address */ 191 return 0; 192 193 if (hw->bus.func == E1000_FUNC_1) 194 nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1; 195 for (i = 0; i < ETH_ALEN; i += 2) { 196 offset = nvm_alt_mac_addr_offset + (i >> 1); 197 ret_val = e1000_read_nvm(hw, offset, 1, &nvm_data); 198 if (ret_val) { 199 e_dbg("NVM Read Error\n"); 200 return ret_val; 201 } 202 203 alt_mac_addr[i] = (u8)(nvm_data & 0xFF); 204 alt_mac_addr[i + 1] = (u8)(nvm_data >> 8); 205 } 206 207 /* if multicast bit is set, the alternate address will not be used */ 208 if (is_multicast_ether_addr(alt_mac_addr)) { 209 e_dbg("Ignoring Alternate Mac Address with MC bit set\n"); 210 return 0; 211 } 212 213 /* 214 * We have a valid alternate MAC address, and we want to treat it the 215 * same as the normal permanent MAC address stored by the HW into the 216 * RAR. Do this by mapping this address into RAR0. 217 */ 218 e1000e_rar_set(hw, alt_mac_addr, 0); 219 220 return 0; 221 } 222 223 /** 224 * e1000e_rar_set - Set receive address register 225 * @hw: pointer to the HW structure 226 * @addr: pointer to the receive address 227 * @index: receive address array register 228 * 229 * Sets the receive address array register at index to the address passed 230 * in by addr. 231 **/ 232 void e1000e_rar_set(struct e1000_hw *hw, u8 *addr, u32 index) 233 { 234 u32 rar_low, rar_high; 235 236 /* 237 * HW expects these in little endian so we reverse the byte order 238 * from network order (big endian) to little endian 239 */ 240 rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) | 241 ((u32)addr[2] << 16) | ((u32)addr[3] << 24)); 242 243 rar_high = ((u32)addr[4] | ((u32)addr[5] << 8)); 244 245 /* If MAC address zero, no need to set the AV bit */ 246 if (rar_low || rar_high) 247 rar_high |= E1000_RAH_AV; 248 249 /* 250 * Some bridges will combine consecutive 32-bit writes into 251 * a single burst write, which will malfunction on some parts. 252 * The flushes avoid this. 253 */ 254 ew32(RAL(index), rar_low); 255 e1e_flush(); 256 ew32(RAH(index), rar_high); 257 e1e_flush(); 258 } 259 260 /** 261 * e1000_hash_mc_addr - Generate a multicast hash value 262 * @hw: pointer to the HW structure 263 * @mc_addr: pointer to a multicast address 264 * 265 * Generates a multicast address hash value which is used to determine 266 * the multicast filter table array address and new table value. 267 **/ 268 static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) 269 { 270 u32 hash_value, hash_mask; 271 u8 bit_shift = 0; 272 273 /* Register count multiplied by bits per register */ 274 hash_mask = (hw->mac.mta_reg_count * 32) - 1; 275 276 /* 277 * For a mc_filter_type of 0, bit_shift is the number of left-shifts 278 * where 0xFF would still fall within the hash mask. 279 */ 280 while (hash_mask >> bit_shift != 0xFF) 281 bit_shift++; 282 283 /* 284 * The portion of the address that is used for the hash table 285 * is determined by the mc_filter_type setting. 286 * The algorithm is such that there is a total of 8 bits of shifting. 287 * The bit_shift for a mc_filter_type of 0 represents the number of 288 * left-shifts where the MSB of mc_addr[5] would still fall within 289 * the hash_mask. Case 0 does this exactly. Since there are a total 290 * of 8 bits of shifting, then mc_addr[4] will shift right the 291 * remaining number of bits. Thus 8 - bit_shift. The rest of the 292 * cases are a variation of this algorithm...essentially raising the 293 * number of bits to shift mc_addr[5] left, while still keeping the 294 * 8-bit shifting total. 295 * 296 * For example, given the following Destination MAC Address and an 297 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask), 298 * we can see that the bit_shift for case 0 is 4. These are the hash 299 * values resulting from each mc_filter_type... 300 * [0] [1] [2] [3] [4] [5] 301 * 01 AA 00 12 34 56 302 * LSB MSB 303 * 304 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563 305 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6 306 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163 307 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634 308 */ 309 switch (hw->mac.mc_filter_type) { 310 default: 311 case 0: 312 break; 313 case 1: 314 bit_shift += 1; 315 break; 316 case 2: 317 bit_shift += 2; 318 break; 319 case 3: 320 bit_shift += 4; 321 break; 322 } 323 324 hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) | 325 (((u16)mc_addr[5]) << bit_shift))); 326 327 return hash_value; 328 } 329 330 /** 331 * e1000e_update_mc_addr_list_generic - Update Multicast addresses 332 * @hw: pointer to the HW structure 333 * @mc_addr_list: array of multicast addresses to program 334 * @mc_addr_count: number of multicast addresses to program 335 * 336 * Updates entire Multicast Table Array. 337 * The caller must have a packed mc_addr_list of multicast addresses. 338 **/ 339 void e1000e_update_mc_addr_list_generic(struct e1000_hw *hw, 340 u8 *mc_addr_list, u32 mc_addr_count) 341 { 342 u32 hash_value, hash_bit, hash_reg; 343 int i; 344 345 /* clear mta_shadow */ 346 memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow)); 347 348 /* update mta_shadow from mc_addr_list */ 349 for (i = 0; (u32)i < mc_addr_count; i++) { 350 hash_value = e1000_hash_mc_addr(hw, mc_addr_list); 351 352 hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1); 353 hash_bit = hash_value & 0x1F; 354 355 hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit); 356 mc_addr_list += (ETH_ALEN); 357 } 358 359 /* replace the entire MTA table */ 360 for (i = hw->mac.mta_reg_count - 1; i >= 0; i--) 361 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]); 362 e1e_flush(); 363 } 364 365 /** 366 * e1000e_clear_hw_cntrs_base - Clear base hardware counters 367 * @hw: pointer to the HW structure 368 * 369 * Clears the base hardware counters by reading the counter registers. 370 **/ 371 void e1000e_clear_hw_cntrs_base(struct e1000_hw *hw) 372 { 373 er32(CRCERRS); 374 er32(SYMERRS); 375 er32(MPC); 376 er32(SCC); 377 er32(ECOL); 378 er32(MCC); 379 er32(LATECOL); 380 er32(COLC); 381 er32(DC); 382 er32(SEC); 383 er32(RLEC); 384 er32(XONRXC); 385 er32(XONTXC); 386 er32(XOFFRXC); 387 er32(XOFFTXC); 388 er32(FCRUC); 389 er32(GPRC); 390 er32(BPRC); 391 er32(MPRC); 392 er32(GPTC); 393 er32(GORCL); 394 er32(GORCH); 395 er32(GOTCL); 396 er32(GOTCH); 397 er32(RNBC); 398 er32(RUC); 399 er32(RFC); 400 er32(ROC); 401 er32(RJC); 402 er32(TORL); 403 er32(TORH); 404 er32(TOTL); 405 er32(TOTH); 406 er32(TPR); 407 er32(TPT); 408 er32(MPTC); 409 er32(BPTC); 410 } 411 412 /** 413 * e1000e_check_for_copper_link - Check for link (Copper) 414 * @hw: pointer to the HW structure 415 * 416 * Checks to see of the link status of the hardware has changed. If a 417 * change in link status has been detected, then we read the PHY registers 418 * to get the current speed/duplex if link exists. 419 **/ 420 s32 e1000e_check_for_copper_link(struct e1000_hw *hw) 421 { 422 struct e1000_mac_info *mac = &hw->mac; 423 s32 ret_val; 424 bool link; 425 426 /* 427 * We only want to go out to the PHY registers to see if Auto-Neg 428 * has completed and/or if our link status has changed. The 429 * get_link_status flag is set upon receiving a Link Status 430 * Change or Rx Sequence Error interrupt. 431 */ 432 if (!mac->get_link_status) 433 return 0; 434 435 /* 436 * First we want to see if the MII Status Register reports 437 * link. If so, then we want to get the current speed/duplex 438 * of the PHY. 439 */ 440 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); 441 if (ret_val) 442 return ret_val; 443 444 if (!link) 445 return 0; /* No link detected */ 446 447 mac->get_link_status = false; 448 449 /* 450 * Check if there was DownShift, must be checked 451 * immediately after link-up 452 */ 453 e1000e_check_downshift(hw); 454 455 /* 456 * If we are forcing speed/duplex, then we simply return since 457 * we have already determined whether we have link or not. 458 */ 459 if (!mac->autoneg) 460 return -E1000_ERR_CONFIG; 461 462 /* 463 * Auto-Neg is enabled. Auto Speed Detection takes care 464 * of MAC speed/duplex configuration. So we only need to 465 * configure Collision Distance in the MAC. 466 */ 467 mac->ops.config_collision_dist(hw); 468 469 /* 470 * Configure Flow Control now that Auto-Neg has completed. 471 * First, we need to restore the desired flow control 472 * settings because we may have had to re-autoneg with a 473 * different link partner. 474 */ 475 ret_val = e1000e_config_fc_after_link_up(hw); 476 if (ret_val) 477 e_dbg("Error configuring flow control\n"); 478 479 return ret_val; 480 } 481 482 /** 483 * e1000e_check_for_fiber_link - Check for link (Fiber) 484 * @hw: pointer to the HW structure 485 * 486 * Checks for link up on the hardware. If link is not up and we have 487 * a signal, then we need to force link up. 488 **/ 489 s32 e1000e_check_for_fiber_link(struct e1000_hw *hw) 490 { 491 struct e1000_mac_info *mac = &hw->mac; 492 u32 rxcw; 493 u32 ctrl; 494 u32 status; 495 s32 ret_val; 496 497 ctrl = er32(CTRL); 498 status = er32(STATUS); 499 rxcw = er32(RXCW); 500 501 /* 502 * If we don't have link (auto-negotiation failed or link partner 503 * cannot auto-negotiate), the cable is plugged in (we have signal), 504 * and our link partner is not trying to auto-negotiate with us (we 505 * are receiving idles or data), we need to force link up. We also 506 * need to give auto-negotiation time to complete, in case the cable 507 * was just plugged in. The autoneg_failed flag does this. 508 */ 509 /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */ 510 if ((ctrl & E1000_CTRL_SWDPIN1) && !(status & E1000_STATUS_LU) && 511 !(rxcw & E1000_RXCW_C)) { 512 if (!mac->autoneg_failed) { 513 mac->autoneg_failed = true; 514 return 0; 515 } 516 e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n"); 517 518 /* Disable auto-negotiation in the TXCW register */ 519 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE)); 520 521 /* Force link-up and also force full-duplex. */ 522 ctrl = er32(CTRL); 523 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); 524 ew32(CTRL, ctrl); 525 526 /* Configure Flow Control after forcing link up. */ 527 ret_val = e1000e_config_fc_after_link_up(hw); 528 if (ret_val) { 529 e_dbg("Error configuring flow control\n"); 530 return ret_val; 531 } 532 } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { 533 /* 534 * If we are forcing link and we are receiving /C/ ordered 535 * sets, re-enable auto-negotiation in the TXCW register 536 * and disable forced link in the Device Control register 537 * in an attempt to auto-negotiate with our link partner. 538 */ 539 e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n"); 540 ew32(TXCW, mac->txcw); 541 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU)); 542 543 mac->serdes_has_link = true; 544 } 545 546 return 0; 547 } 548 549 /** 550 * e1000e_check_for_serdes_link - Check for link (Serdes) 551 * @hw: pointer to the HW structure 552 * 553 * Checks for link up on the hardware. If link is not up and we have 554 * a signal, then we need to force link up. 555 **/ 556 s32 e1000e_check_for_serdes_link(struct e1000_hw *hw) 557 { 558 struct e1000_mac_info *mac = &hw->mac; 559 u32 rxcw; 560 u32 ctrl; 561 u32 status; 562 s32 ret_val; 563 564 ctrl = er32(CTRL); 565 status = er32(STATUS); 566 rxcw = er32(RXCW); 567 568 /* 569 * If we don't have link (auto-negotiation failed or link partner 570 * cannot auto-negotiate), and our link partner is not trying to 571 * auto-negotiate with us (we are receiving idles or data), 572 * we need to force link up. We also need to give auto-negotiation 573 * time to complete. 574 */ 575 /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */ 576 if (!(status & E1000_STATUS_LU) && !(rxcw & E1000_RXCW_C)) { 577 if (!mac->autoneg_failed) { 578 mac->autoneg_failed = true; 579 return 0; 580 } 581 e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n"); 582 583 /* Disable auto-negotiation in the TXCW register */ 584 ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE)); 585 586 /* Force link-up and also force full-duplex. */ 587 ctrl = er32(CTRL); 588 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); 589 ew32(CTRL, ctrl); 590 591 /* Configure Flow Control after forcing link up. */ 592 ret_val = e1000e_config_fc_after_link_up(hw); 593 if (ret_val) { 594 e_dbg("Error configuring flow control\n"); 595 return ret_val; 596 } 597 } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { 598 /* 599 * If we are forcing link and we are receiving /C/ ordered 600 * sets, re-enable auto-negotiation in the TXCW register 601 * and disable forced link in the Device Control register 602 * in an attempt to auto-negotiate with our link partner. 603 */ 604 e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n"); 605 ew32(TXCW, mac->txcw); 606 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU)); 607 608 mac->serdes_has_link = true; 609 } else if (!(E1000_TXCW_ANE & er32(TXCW))) { 610 /* 611 * If we force link for non-auto-negotiation switch, check 612 * link status based on MAC synchronization for internal 613 * serdes media type. 614 */ 615 /* SYNCH bit and IV bit are sticky. */ 616 udelay(10); 617 rxcw = er32(RXCW); 618 if (rxcw & E1000_RXCW_SYNCH) { 619 if (!(rxcw & E1000_RXCW_IV)) { 620 mac->serdes_has_link = true; 621 e_dbg("SERDES: Link up - forced.\n"); 622 } 623 } else { 624 mac->serdes_has_link = false; 625 e_dbg("SERDES: Link down - force failed.\n"); 626 } 627 } 628 629 if (E1000_TXCW_ANE & er32(TXCW)) { 630 status = er32(STATUS); 631 if (status & E1000_STATUS_LU) { 632 /* SYNCH bit and IV bit are sticky, so reread rxcw. */ 633 udelay(10); 634 rxcw = er32(RXCW); 635 if (rxcw & E1000_RXCW_SYNCH) { 636 if (!(rxcw & E1000_RXCW_IV)) { 637 mac->serdes_has_link = true; 638 e_dbg("SERDES: Link up - autoneg completed successfully.\n"); 639 } else { 640 mac->serdes_has_link = false; 641 e_dbg("SERDES: Link down - invalid codewords detected in autoneg.\n"); 642 } 643 } else { 644 mac->serdes_has_link = false; 645 e_dbg("SERDES: Link down - no sync.\n"); 646 } 647 } else { 648 mac->serdes_has_link = false; 649 e_dbg("SERDES: Link down - autoneg failed\n"); 650 } 651 } 652 653 return 0; 654 } 655 656 /** 657 * e1000_set_default_fc_generic - Set flow control default values 658 * @hw: pointer to the HW structure 659 * 660 * Read the EEPROM for the default values for flow control and store the 661 * values. 662 **/ 663 static s32 e1000_set_default_fc_generic(struct e1000_hw *hw) 664 { 665 s32 ret_val; 666 u16 nvm_data; 667 668 /* 669 * Read and store word 0x0F of the EEPROM. This word contains bits 670 * that determine the hardware's default PAUSE (flow control) mode, 671 * a bit that determines whether the HW defaults to enabling or 672 * disabling auto-negotiation, and the direction of the 673 * SW defined pins. If there is no SW over-ride of the flow 674 * control setting, then the variable hw->fc will 675 * be initialized based on a value in the EEPROM. 676 */ 677 ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data); 678 679 if (ret_val) { 680 e_dbg("NVM Read Error\n"); 681 return ret_val; 682 } 683 684 if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0) 685 hw->fc.requested_mode = e1000_fc_none; 686 else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == NVM_WORD0F_ASM_DIR) 687 hw->fc.requested_mode = e1000_fc_tx_pause; 688 else 689 hw->fc.requested_mode = e1000_fc_full; 690 691 return 0; 692 } 693 694 /** 695 * e1000e_setup_link_generic - Setup flow control and link settings 696 * @hw: pointer to the HW structure 697 * 698 * Determines which flow control settings to use, then configures flow 699 * control. Calls the appropriate media-specific link configuration 700 * function. Assuming the adapter has a valid link partner, a valid link 701 * should be established. Assumes the hardware has previously been reset 702 * and the transmitter and receiver are not enabled. 703 **/ 704 s32 e1000e_setup_link_generic(struct e1000_hw *hw) 705 { 706 s32 ret_val; 707 708 /* 709 * In the case of the phy reset being blocked, we already have a link. 710 * We do not need to set it up again. 711 */ 712 if (hw->phy.ops.check_reset_block(hw)) 713 return 0; 714 715 /* 716 * If requested flow control is set to default, set flow control 717 * based on the EEPROM flow control settings. 718 */ 719 if (hw->fc.requested_mode == e1000_fc_default) { 720 ret_val = e1000_set_default_fc_generic(hw); 721 if (ret_val) 722 return ret_val; 723 } 724 725 /* 726 * Save off the requested flow control mode for use later. Depending 727 * on the link partner's capabilities, we may or may not use this mode. 728 */ 729 hw->fc.current_mode = hw->fc.requested_mode; 730 731 e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode); 732 733 /* Call the necessary media_type subroutine to configure the link. */ 734 ret_val = hw->mac.ops.setup_physical_interface(hw); 735 if (ret_val) 736 return ret_val; 737 738 /* 739 * Initialize the flow control address, type, and PAUSE timer 740 * registers to their default values. This is done even if flow 741 * control is disabled, because it does not hurt anything to 742 * initialize these registers. 743 */ 744 e_dbg("Initializing the Flow Control address, type and timer regs\n"); 745 ew32(FCT, FLOW_CONTROL_TYPE); 746 ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH); 747 ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW); 748 749 ew32(FCTTV, hw->fc.pause_time); 750 751 return e1000e_set_fc_watermarks(hw); 752 } 753 754 /** 755 * e1000_commit_fc_settings_generic - Configure flow control 756 * @hw: pointer to the HW structure 757 * 758 * Write the flow control settings to the Transmit Config Word Register (TXCW) 759 * base on the flow control settings in e1000_mac_info. 760 **/ 761 static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw) 762 { 763 struct e1000_mac_info *mac = &hw->mac; 764 u32 txcw; 765 766 /* 767 * Check for a software override of the flow control settings, and 768 * setup the device accordingly. If auto-negotiation is enabled, then 769 * software will have to set the "PAUSE" bits to the correct value in 770 * the Transmit Config Word Register (TXCW) and re-start auto- 771 * negotiation. However, if auto-negotiation is disabled, then 772 * software will have to manually configure the two flow control enable 773 * bits in the CTRL register. 774 * 775 * The possible values of the "fc" parameter are: 776 * 0: Flow control is completely disabled 777 * 1: Rx flow control is enabled (we can receive pause frames, 778 * but not send pause frames). 779 * 2: Tx flow control is enabled (we can send pause frames but we 780 * do not support receiving pause frames). 781 * 3: Both Rx and Tx flow control (symmetric) are enabled. 782 */ 783 switch (hw->fc.current_mode) { 784 case e1000_fc_none: 785 /* Flow control completely disabled by a software over-ride. */ 786 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD); 787 break; 788 case e1000_fc_rx_pause: 789 /* 790 * Rx Flow control is enabled and Tx Flow control is disabled 791 * by a software over-ride. Since there really isn't a way to 792 * advertise that we are capable of Rx Pause ONLY, we will 793 * advertise that we support both symmetric and asymmetric Rx 794 * PAUSE. Later, we will disable the adapter's ability to send 795 * PAUSE frames. 796 */ 797 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); 798 break; 799 case e1000_fc_tx_pause: 800 /* 801 * Tx Flow control is enabled, and Rx Flow control is disabled, 802 * by a software over-ride. 803 */ 804 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR); 805 break; 806 case e1000_fc_full: 807 /* 808 * Flow control (both Rx and Tx) is enabled by a software 809 * over-ride. 810 */ 811 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); 812 break; 813 default: 814 e_dbg("Flow control param set incorrectly\n"); 815 return -E1000_ERR_CONFIG; 816 break; 817 } 818 819 ew32(TXCW, txcw); 820 mac->txcw = txcw; 821 822 return 0; 823 } 824 825 /** 826 * e1000_poll_fiber_serdes_link_generic - Poll for link up 827 * @hw: pointer to the HW structure 828 * 829 * Polls for link up by reading the status register, if link fails to come 830 * up with auto-negotiation, then the link is forced if a signal is detected. 831 **/ 832 static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw) 833 { 834 struct e1000_mac_info *mac = &hw->mac; 835 u32 i, status; 836 s32 ret_val; 837 838 /* 839 * If we have a signal (the cable is plugged in, or assumed true for 840 * serdes media) then poll for a "Link-Up" indication in the Device 841 * Status Register. Time-out if a link isn't seen in 500 milliseconds 842 * seconds (Auto-negotiation should complete in less than 500 843 * milliseconds even if the other end is doing it in SW). 844 */ 845 for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) { 846 usleep_range(10000, 20000); 847 status = er32(STATUS); 848 if (status & E1000_STATUS_LU) 849 break; 850 } 851 if (i == FIBER_LINK_UP_LIMIT) { 852 e_dbg("Never got a valid link from auto-neg!!!\n"); 853 mac->autoneg_failed = true; 854 /* 855 * AutoNeg failed to achieve a link, so we'll call 856 * mac->check_for_link. This routine will force the 857 * link up if we detect a signal. This will allow us to 858 * communicate with non-autonegotiating link partners. 859 */ 860 ret_val = mac->ops.check_for_link(hw); 861 if (ret_val) { 862 e_dbg("Error while checking for link\n"); 863 return ret_val; 864 } 865 mac->autoneg_failed = false; 866 } else { 867 mac->autoneg_failed = false; 868 e_dbg("Valid Link Found\n"); 869 } 870 871 return 0; 872 } 873 874 /** 875 * e1000e_setup_fiber_serdes_link - Setup link for fiber/serdes 876 * @hw: pointer to the HW structure 877 * 878 * Configures collision distance and flow control for fiber and serdes 879 * links. Upon successful setup, poll for link. 880 **/ 881 s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw) 882 { 883 u32 ctrl; 884 s32 ret_val; 885 886 ctrl = er32(CTRL); 887 888 /* Take the link out of reset */ 889 ctrl &= ~E1000_CTRL_LRST; 890 891 hw->mac.ops.config_collision_dist(hw); 892 893 ret_val = e1000_commit_fc_settings_generic(hw); 894 if (ret_val) 895 return ret_val; 896 897 /* 898 * Since auto-negotiation is enabled, take the link out of reset (the 899 * link will be in reset, because we previously reset the chip). This 900 * will restart auto-negotiation. If auto-negotiation is successful 901 * then the link-up status bit will be set and the flow control enable 902 * bits (RFCE and TFCE) will be set according to their negotiated value. 903 */ 904 e_dbg("Auto-negotiation enabled\n"); 905 906 ew32(CTRL, ctrl); 907 e1e_flush(); 908 usleep_range(1000, 2000); 909 910 /* 911 * For these adapters, the SW definable pin 1 is set when the optics 912 * detect a signal. If we have a signal, then poll for a "Link-Up" 913 * indication. 914 */ 915 if (hw->phy.media_type == e1000_media_type_internal_serdes || 916 (er32(CTRL) & E1000_CTRL_SWDPIN1)) { 917 ret_val = e1000_poll_fiber_serdes_link_generic(hw); 918 } else { 919 e_dbg("No signal detected\n"); 920 } 921 922 return ret_val; 923 } 924 925 /** 926 * e1000e_config_collision_dist_generic - Configure collision distance 927 * @hw: pointer to the HW structure 928 * 929 * Configures the collision distance to the default value and is used 930 * during link setup. 931 **/ 932 void e1000e_config_collision_dist_generic(struct e1000_hw *hw) 933 { 934 u32 tctl; 935 936 tctl = er32(TCTL); 937 938 tctl &= ~E1000_TCTL_COLD; 939 tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT; 940 941 ew32(TCTL, tctl); 942 e1e_flush(); 943 } 944 945 /** 946 * e1000e_set_fc_watermarks - Set flow control high/low watermarks 947 * @hw: pointer to the HW structure 948 * 949 * Sets the flow control high/low threshold (watermark) registers. If 950 * flow control XON frame transmission is enabled, then set XON frame 951 * transmission as well. 952 **/ 953 s32 e1000e_set_fc_watermarks(struct e1000_hw *hw) 954 { 955 u32 fcrtl = 0, fcrth = 0; 956 957 /* 958 * Set the flow control receive threshold registers. Normally, 959 * these registers will be set to a default threshold that may be 960 * adjusted later by the driver's runtime code. However, if the 961 * ability to transmit pause frames is not enabled, then these 962 * registers will be set to 0. 963 */ 964 if (hw->fc.current_mode & e1000_fc_tx_pause) { 965 /* 966 * We need to set up the Receive Threshold high and low water 967 * marks as well as (optionally) enabling the transmission of 968 * XON frames. 969 */ 970 fcrtl = hw->fc.low_water; 971 if (hw->fc.send_xon) 972 fcrtl |= E1000_FCRTL_XONE; 973 974 fcrth = hw->fc.high_water; 975 } 976 ew32(FCRTL, fcrtl); 977 ew32(FCRTH, fcrth); 978 979 return 0; 980 } 981 982 /** 983 * e1000e_force_mac_fc - Force the MAC's flow control settings 984 * @hw: pointer to the HW structure 985 * 986 * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the 987 * device control register to reflect the adapter settings. TFCE and RFCE 988 * need to be explicitly set by software when a copper PHY is used because 989 * autonegotiation is managed by the PHY rather than the MAC. Software must 990 * also configure these bits when link is forced on a fiber connection. 991 **/ 992 s32 e1000e_force_mac_fc(struct e1000_hw *hw) 993 { 994 u32 ctrl; 995 996 ctrl = er32(CTRL); 997 998 /* 999 * Because we didn't get link via the internal auto-negotiation 1000 * mechanism (we either forced link or we got link via PHY 1001 * auto-neg), we have to manually enable/disable transmit an 1002 * receive flow control. 1003 * 1004 * The "Case" statement below enables/disable flow control 1005 * according to the "hw->fc.current_mode" parameter. 1006 * 1007 * The possible values of the "fc" parameter are: 1008 * 0: Flow control is completely disabled 1009 * 1: Rx flow control is enabled (we can receive pause 1010 * frames but not send pause frames). 1011 * 2: Tx flow control is enabled (we can send pause frames 1012 * frames but we do not receive pause frames). 1013 * 3: Both Rx and Tx flow control (symmetric) is enabled. 1014 * other: No other values should be possible at this point. 1015 */ 1016 e_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode); 1017 1018 switch (hw->fc.current_mode) { 1019 case e1000_fc_none: 1020 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); 1021 break; 1022 case e1000_fc_rx_pause: 1023 ctrl &= (~E1000_CTRL_TFCE); 1024 ctrl |= E1000_CTRL_RFCE; 1025 break; 1026 case e1000_fc_tx_pause: 1027 ctrl &= (~E1000_CTRL_RFCE); 1028 ctrl |= E1000_CTRL_TFCE; 1029 break; 1030 case e1000_fc_full: 1031 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); 1032 break; 1033 default: 1034 e_dbg("Flow control param set incorrectly\n"); 1035 return -E1000_ERR_CONFIG; 1036 } 1037 1038 ew32(CTRL, ctrl); 1039 1040 return 0; 1041 } 1042 1043 /** 1044 * e1000e_config_fc_after_link_up - Configures flow control after link 1045 * @hw: pointer to the HW structure 1046 * 1047 * Checks the status of auto-negotiation after link up to ensure that the 1048 * speed and duplex were not forced. If the link needed to be forced, then 1049 * flow control needs to be forced also. If auto-negotiation is enabled 1050 * and did not fail, then we configure flow control based on our link 1051 * partner. 1052 **/ 1053 s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw) 1054 { 1055 struct e1000_mac_info *mac = &hw->mac; 1056 s32 ret_val = 0; 1057 u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg; 1058 u16 speed, duplex; 1059 1060 /* 1061 * Check for the case where we have fiber media and auto-neg failed 1062 * so we had to force link. In this case, we need to force the 1063 * configuration of the MAC to match the "fc" parameter. 1064 */ 1065 if (mac->autoneg_failed) { 1066 if (hw->phy.media_type == e1000_media_type_fiber || 1067 hw->phy.media_type == e1000_media_type_internal_serdes) 1068 ret_val = e1000e_force_mac_fc(hw); 1069 } else { 1070 if (hw->phy.media_type == e1000_media_type_copper) 1071 ret_val = e1000e_force_mac_fc(hw); 1072 } 1073 1074 if (ret_val) { 1075 e_dbg("Error forcing flow control settings\n"); 1076 return ret_val; 1077 } 1078 1079 /* 1080 * Check for the case where we have copper media and auto-neg is 1081 * enabled. In this case, we need to check and see if Auto-Neg 1082 * has completed, and if so, how the PHY and link partner has 1083 * flow control configured. 1084 */ 1085 if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) { 1086 /* 1087 * Read the MII Status Register and check to see if AutoNeg 1088 * has completed. We read this twice because this reg has 1089 * some "sticky" (latched) bits. 1090 */ 1091 ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg); 1092 if (ret_val) 1093 return ret_val; 1094 ret_val = e1e_rphy(hw, PHY_STATUS, &mii_status_reg); 1095 if (ret_val) 1096 return ret_val; 1097 1098 if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) { 1099 e_dbg("Copper PHY and Auto Neg has not completed.\n"); 1100 return ret_val; 1101 } 1102 1103 /* 1104 * The AutoNeg process has completed, so we now need to 1105 * read both the Auto Negotiation Advertisement 1106 * Register (Address 4) and the Auto_Negotiation Base 1107 * Page Ability Register (Address 5) to determine how 1108 * flow control was negotiated. 1109 */ 1110 ret_val = e1e_rphy(hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg); 1111 if (ret_val) 1112 return ret_val; 1113 ret_val = 1114 e1e_rphy(hw, PHY_LP_ABILITY, &mii_nway_lp_ability_reg); 1115 if (ret_val) 1116 return ret_val; 1117 1118 /* 1119 * Two bits in the Auto Negotiation Advertisement Register 1120 * (Address 4) and two bits in the Auto Negotiation Base 1121 * Page Ability Register (Address 5) determine flow control 1122 * for both the PHY and the link partner. The following 1123 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, 1124 * 1999, describes these PAUSE resolution bits and how flow 1125 * control is determined based upon these settings. 1126 * NOTE: DC = Don't Care 1127 * 1128 * LOCAL DEVICE | LINK PARTNER 1129 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution 1130 *-------|---------|-------|---------|-------------------- 1131 * 0 | 0 | DC | DC | e1000_fc_none 1132 * 0 | 1 | 0 | DC | e1000_fc_none 1133 * 0 | 1 | 1 | 0 | e1000_fc_none 1134 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause 1135 * 1 | 0 | 0 | DC | e1000_fc_none 1136 * 1 | DC | 1 | DC | e1000_fc_full 1137 * 1 | 1 | 0 | 0 | e1000_fc_none 1138 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause 1139 * 1140 * Are both PAUSE bits set to 1? If so, this implies 1141 * Symmetric Flow Control is enabled at both ends. The 1142 * ASM_DIR bits are irrelevant per the spec. 1143 * 1144 * For Symmetric Flow Control: 1145 * 1146 * LOCAL DEVICE | LINK PARTNER 1147 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result 1148 *-------|---------|-------|---------|-------------------- 1149 * 1 | DC | 1 | DC | E1000_fc_full 1150 * 1151 */ 1152 if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && 1153 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { 1154 /* 1155 * Now we need to check if the user selected Rx ONLY 1156 * of pause frames. In this case, we had to advertise 1157 * FULL flow control because we could not advertise Rx 1158 * ONLY. Hence, we must now check to see if we need to 1159 * turn OFF the TRANSMISSION of PAUSE frames. 1160 */ 1161 if (hw->fc.requested_mode == e1000_fc_full) { 1162 hw->fc.current_mode = e1000_fc_full; 1163 e_dbg("Flow Control = FULL.\n"); 1164 } else { 1165 hw->fc.current_mode = e1000_fc_rx_pause; 1166 e_dbg("Flow Control = Rx PAUSE frames only.\n"); 1167 } 1168 } 1169 /* 1170 * For receiving PAUSE frames ONLY. 1171 * 1172 * LOCAL DEVICE | LINK PARTNER 1173 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result 1174 *-------|---------|-------|---------|-------------------- 1175 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause 1176 */ 1177 else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) && 1178 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && 1179 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && 1180 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { 1181 hw->fc.current_mode = e1000_fc_tx_pause; 1182 e_dbg("Flow Control = Tx PAUSE frames only.\n"); 1183 } 1184 /* 1185 * For transmitting PAUSE frames ONLY. 1186 * 1187 * LOCAL DEVICE | LINK PARTNER 1188 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result 1189 *-------|---------|-------|---------|-------------------- 1190 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause 1191 */ 1192 else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && 1193 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && 1194 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && 1195 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { 1196 hw->fc.current_mode = e1000_fc_rx_pause; 1197 e_dbg("Flow Control = Rx PAUSE frames only.\n"); 1198 } else { 1199 /* 1200 * Per the IEEE spec, at this point flow control 1201 * should be disabled. 1202 */ 1203 hw->fc.current_mode = e1000_fc_none; 1204 e_dbg("Flow Control = NONE.\n"); 1205 } 1206 1207 /* 1208 * Now we need to do one last check... If we auto- 1209 * negotiated to HALF DUPLEX, flow control should not be 1210 * enabled per IEEE 802.3 spec. 1211 */ 1212 ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex); 1213 if (ret_val) { 1214 e_dbg("Error getting link speed and duplex\n"); 1215 return ret_val; 1216 } 1217 1218 if (duplex == HALF_DUPLEX) 1219 hw->fc.current_mode = e1000_fc_none; 1220 1221 /* 1222 * Now we call a subroutine to actually force the MAC 1223 * controller to use the correct flow control settings. 1224 */ 1225 ret_val = e1000e_force_mac_fc(hw); 1226 if (ret_val) { 1227 e_dbg("Error forcing flow control settings\n"); 1228 return ret_val; 1229 } 1230 } 1231 1232 return 0; 1233 } 1234 1235 /** 1236 * e1000e_get_speed_and_duplex_copper - Retrieve current speed/duplex 1237 * @hw: pointer to the HW structure 1238 * @speed: stores the current speed 1239 * @duplex: stores the current duplex 1240 * 1241 * Read the status register for the current speed/duplex and store the current 1242 * speed and duplex for copper connections. 1243 **/ 1244 s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed, 1245 u16 *duplex) 1246 { 1247 u32 status; 1248 1249 status = er32(STATUS); 1250 if (status & E1000_STATUS_SPEED_1000) 1251 *speed = SPEED_1000; 1252 else if (status & E1000_STATUS_SPEED_100) 1253 *speed = SPEED_100; 1254 else 1255 *speed = SPEED_10; 1256 1257 if (status & E1000_STATUS_FD) 1258 *duplex = FULL_DUPLEX; 1259 else 1260 *duplex = HALF_DUPLEX; 1261 1262 e_dbg("%u Mbps, %s Duplex\n", 1263 *speed == SPEED_1000 ? 1000 : *speed == SPEED_100 ? 100 : 10, 1264 *duplex == FULL_DUPLEX ? "Full" : "Half"); 1265 1266 return 0; 1267 } 1268 1269 /** 1270 * e1000e_get_speed_and_duplex_fiber_serdes - Retrieve current speed/duplex 1271 * @hw: pointer to the HW structure 1272 * @speed: stores the current speed 1273 * @duplex: stores the current duplex 1274 * 1275 * Sets the speed and duplex to gigabit full duplex (the only possible option) 1276 * for fiber/serdes links. 1277 **/ 1278 s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw *hw, u16 *speed, 1279 u16 *duplex) 1280 { 1281 *speed = SPEED_1000; 1282 *duplex = FULL_DUPLEX; 1283 1284 return 0; 1285 } 1286 1287 /** 1288 * e1000e_get_hw_semaphore - Acquire hardware semaphore 1289 * @hw: pointer to the HW structure 1290 * 1291 * Acquire the HW semaphore to access the PHY or NVM 1292 **/ 1293 s32 e1000e_get_hw_semaphore(struct e1000_hw *hw) 1294 { 1295 u32 swsm; 1296 s32 timeout = hw->nvm.word_size + 1; 1297 s32 i = 0; 1298 1299 /* Get the SW semaphore */ 1300 while (i < timeout) { 1301 swsm = er32(SWSM); 1302 if (!(swsm & E1000_SWSM_SMBI)) 1303 break; 1304 1305 udelay(50); 1306 i++; 1307 } 1308 1309 if (i == timeout) { 1310 e_dbg("Driver can't access device - SMBI bit is set.\n"); 1311 return -E1000_ERR_NVM; 1312 } 1313 1314 /* Get the FW semaphore. */ 1315 for (i = 0; i < timeout; i++) { 1316 swsm = er32(SWSM); 1317 ew32(SWSM, swsm | E1000_SWSM_SWESMBI); 1318 1319 /* Semaphore acquired if bit latched */ 1320 if (er32(SWSM) & E1000_SWSM_SWESMBI) 1321 break; 1322 1323 udelay(50); 1324 } 1325 1326 if (i == timeout) { 1327 /* Release semaphores */ 1328 e1000e_put_hw_semaphore(hw); 1329 e_dbg("Driver can't access the NVM\n"); 1330 return -E1000_ERR_NVM; 1331 } 1332 1333 return 0; 1334 } 1335 1336 /** 1337 * e1000e_put_hw_semaphore - Release hardware semaphore 1338 * @hw: pointer to the HW structure 1339 * 1340 * Release hardware semaphore used to access the PHY or NVM 1341 **/ 1342 void e1000e_put_hw_semaphore(struct e1000_hw *hw) 1343 { 1344 u32 swsm; 1345 1346 swsm = er32(SWSM); 1347 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI); 1348 ew32(SWSM, swsm); 1349 } 1350 1351 /** 1352 * e1000e_get_auto_rd_done - Check for auto read completion 1353 * @hw: pointer to the HW structure 1354 * 1355 * Check EEPROM for Auto Read done bit. 1356 **/ 1357 s32 e1000e_get_auto_rd_done(struct e1000_hw *hw) 1358 { 1359 s32 i = 0; 1360 1361 while (i < AUTO_READ_DONE_TIMEOUT) { 1362 if (er32(EECD) & E1000_EECD_AUTO_RD) 1363 break; 1364 usleep_range(1000, 2000); 1365 i++; 1366 } 1367 1368 if (i == AUTO_READ_DONE_TIMEOUT) { 1369 e_dbg("Auto read by HW from NVM has not completed.\n"); 1370 return -E1000_ERR_RESET; 1371 } 1372 1373 return 0; 1374 } 1375 1376 /** 1377 * e1000e_valid_led_default - Verify a valid default LED config 1378 * @hw: pointer to the HW structure 1379 * @data: pointer to the NVM (EEPROM) 1380 * 1381 * Read the EEPROM for the current default LED configuration. If the 1382 * LED configuration is not valid, set to a valid LED configuration. 1383 **/ 1384 s32 e1000e_valid_led_default(struct e1000_hw *hw, u16 *data) 1385 { 1386 s32 ret_val; 1387 1388 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data); 1389 if (ret_val) { 1390 e_dbg("NVM Read Error\n"); 1391 return ret_val; 1392 } 1393 1394 if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) 1395 *data = ID_LED_DEFAULT; 1396 1397 return 0; 1398 } 1399 1400 /** 1401 * e1000e_id_led_init_generic - 1402 * @hw: pointer to the HW structure 1403 * 1404 **/ 1405 s32 e1000e_id_led_init_generic(struct e1000_hw *hw) 1406 { 1407 struct e1000_mac_info *mac = &hw->mac; 1408 s32 ret_val; 1409 const u32 ledctl_mask = 0x000000FF; 1410 const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON; 1411 const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF; 1412 u16 data, i, temp; 1413 const u16 led_mask = 0x0F; 1414 1415 ret_val = hw->nvm.ops.valid_led_default(hw, &data); 1416 if (ret_val) 1417 return ret_val; 1418 1419 mac->ledctl_default = er32(LEDCTL); 1420 mac->ledctl_mode1 = mac->ledctl_default; 1421 mac->ledctl_mode2 = mac->ledctl_default; 1422 1423 for (i = 0; i < 4; i++) { 1424 temp = (data >> (i << 2)) & led_mask; 1425 switch (temp) { 1426 case ID_LED_ON1_DEF2: 1427 case ID_LED_ON1_ON2: 1428 case ID_LED_ON1_OFF2: 1429 mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); 1430 mac->ledctl_mode1 |= ledctl_on << (i << 3); 1431 break; 1432 case ID_LED_OFF1_DEF2: 1433 case ID_LED_OFF1_ON2: 1434 case ID_LED_OFF1_OFF2: 1435 mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); 1436 mac->ledctl_mode1 |= ledctl_off << (i << 3); 1437 break; 1438 default: 1439 /* Do nothing */ 1440 break; 1441 } 1442 switch (temp) { 1443 case ID_LED_DEF1_ON2: 1444 case ID_LED_ON1_ON2: 1445 case ID_LED_OFF1_ON2: 1446 mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); 1447 mac->ledctl_mode2 |= ledctl_on << (i << 3); 1448 break; 1449 case ID_LED_DEF1_OFF2: 1450 case ID_LED_ON1_OFF2: 1451 case ID_LED_OFF1_OFF2: 1452 mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); 1453 mac->ledctl_mode2 |= ledctl_off << (i << 3); 1454 break; 1455 default: 1456 /* Do nothing */ 1457 break; 1458 } 1459 } 1460 1461 return 0; 1462 } 1463 1464 /** 1465 * e1000e_setup_led_generic - Configures SW controllable LED 1466 * @hw: pointer to the HW structure 1467 * 1468 * This prepares the SW controllable LED for use and saves the current state 1469 * of the LED so it can be later restored. 1470 **/ 1471 s32 e1000e_setup_led_generic(struct e1000_hw *hw) 1472 { 1473 u32 ledctl; 1474 1475 if (hw->mac.ops.setup_led != e1000e_setup_led_generic) 1476 return -E1000_ERR_CONFIG; 1477 1478 if (hw->phy.media_type == e1000_media_type_fiber) { 1479 ledctl = er32(LEDCTL); 1480 hw->mac.ledctl_default = ledctl; 1481 /* Turn off LED0 */ 1482 ledctl &= ~(E1000_LEDCTL_LED0_IVRT | E1000_LEDCTL_LED0_BLINK | 1483 E1000_LEDCTL_LED0_MODE_MASK); 1484 ledctl |= (E1000_LEDCTL_MODE_LED_OFF << 1485 E1000_LEDCTL_LED0_MODE_SHIFT); 1486 ew32(LEDCTL, ledctl); 1487 } else if (hw->phy.media_type == e1000_media_type_copper) { 1488 ew32(LEDCTL, hw->mac.ledctl_mode1); 1489 } 1490 1491 return 0; 1492 } 1493 1494 /** 1495 * e1000e_cleanup_led_generic - Set LED config to default operation 1496 * @hw: pointer to the HW structure 1497 * 1498 * Remove the current LED configuration and set the LED configuration 1499 * to the default value, saved from the EEPROM. 1500 **/ 1501 s32 e1000e_cleanup_led_generic(struct e1000_hw *hw) 1502 { 1503 ew32(LEDCTL, hw->mac.ledctl_default); 1504 return 0; 1505 } 1506 1507 /** 1508 * e1000e_blink_led_generic - Blink LED 1509 * @hw: pointer to the HW structure 1510 * 1511 * Blink the LEDs which are set to be on. 1512 **/ 1513 s32 e1000e_blink_led_generic(struct e1000_hw *hw) 1514 { 1515 u32 ledctl_blink = 0; 1516 u32 i; 1517 1518 if (hw->phy.media_type == e1000_media_type_fiber) { 1519 /* always blink LED0 for PCI-E fiber */ 1520 ledctl_blink = E1000_LEDCTL_LED0_BLINK | 1521 (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT); 1522 } else { 1523 /* 1524 * set the blink bit for each LED that's "on" (0x0E) 1525 * in ledctl_mode2 1526 */ 1527 ledctl_blink = hw->mac.ledctl_mode2; 1528 for (i = 0; i < 4; i++) 1529 if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) == 1530 E1000_LEDCTL_MODE_LED_ON) 1531 ledctl_blink |= (E1000_LEDCTL_LED0_BLINK << 1532 (i * 8)); 1533 } 1534 1535 ew32(LEDCTL, ledctl_blink); 1536 1537 return 0; 1538 } 1539 1540 /** 1541 * e1000e_led_on_generic - Turn LED on 1542 * @hw: pointer to the HW structure 1543 * 1544 * Turn LED on. 1545 **/ 1546 s32 e1000e_led_on_generic(struct e1000_hw *hw) 1547 { 1548 u32 ctrl; 1549 1550 switch (hw->phy.media_type) { 1551 case e1000_media_type_fiber: 1552 ctrl = er32(CTRL); 1553 ctrl &= ~E1000_CTRL_SWDPIN0; 1554 ctrl |= E1000_CTRL_SWDPIO0; 1555 ew32(CTRL, ctrl); 1556 break; 1557 case e1000_media_type_copper: 1558 ew32(LEDCTL, hw->mac.ledctl_mode2); 1559 break; 1560 default: 1561 break; 1562 } 1563 1564 return 0; 1565 } 1566 1567 /** 1568 * e1000e_led_off_generic - Turn LED off 1569 * @hw: pointer to the HW structure 1570 * 1571 * Turn LED off. 1572 **/ 1573 s32 e1000e_led_off_generic(struct e1000_hw *hw) 1574 { 1575 u32 ctrl; 1576 1577 switch (hw->phy.media_type) { 1578 case e1000_media_type_fiber: 1579 ctrl = er32(CTRL); 1580 ctrl |= E1000_CTRL_SWDPIN0; 1581 ctrl |= E1000_CTRL_SWDPIO0; 1582 ew32(CTRL, ctrl); 1583 break; 1584 case e1000_media_type_copper: 1585 ew32(LEDCTL, hw->mac.ledctl_mode1); 1586 break; 1587 default: 1588 break; 1589 } 1590 1591 return 0; 1592 } 1593 1594 /** 1595 * e1000e_set_pcie_no_snoop - Set PCI-express capabilities 1596 * @hw: pointer to the HW structure 1597 * @no_snoop: bitmap of snoop events 1598 * 1599 * Set the PCI-express register to snoop for events enabled in 'no_snoop'. 1600 **/ 1601 void e1000e_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop) 1602 { 1603 u32 gcr; 1604 1605 if (no_snoop) { 1606 gcr = er32(GCR); 1607 gcr &= ~(PCIE_NO_SNOOP_ALL); 1608 gcr |= no_snoop; 1609 ew32(GCR, gcr); 1610 } 1611 } 1612 1613 /** 1614 * e1000e_disable_pcie_master - Disables PCI-express master access 1615 * @hw: pointer to the HW structure 1616 * 1617 * Returns 0 if successful, else returns -10 1618 * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused 1619 * the master requests to be disabled. 1620 * 1621 * Disables PCI-Express master access and verifies there are no pending 1622 * requests. 1623 **/ 1624 s32 e1000e_disable_pcie_master(struct e1000_hw *hw) 1625 { 1626 u32 ctrl; 1627 s32 timeout = MASTER_DISABLE_TIMEOUT; 1628 1629 ctrl = er32(CTRL); 1630 ctrl |= E1000_CTRL_GIO_MASTER_DISABLE; 1631 ew32(CTRL, ctrl); 1632 1633 while (timeout) { 1634 if (!(er32(STATUS) & E1000_STATUS_GIO_MASTER_ENABLE)) 1635 break; 1636 udelay(100); 1637 timeout--; 1638 } 1639 1640 if (!timeout) { 1641 e_dbg("Master requests are pending.\n"); 1642 return -E1000_ERR_MASTER_REQUESTS_PENDING; 1643 } 1644 1645 return 0; 1646 } 1647 1648 /** 1649 * e1000e_reset_adaptive - Reset Adaptive Interframe Spacing 1650 * @hw: pointer to the HW structure 1651 * 1652 * Reset the Adaptive Interframe Spacing throttle to default values. 1653 **/ 1654 void e1000e_reset_adaptive(struct e1000_hw *hw) 1655 { 1656 struct e1000_mac_info *mac = &hw->mac; 1657 1658 if (!mac->adaptive_ifs) { 1659 e_dbg("Not in Adaptive IFS mode!\n"); 1660 return; 1661 } 1662 1663 mac->current_ifs_val = 0; 1664 mac->ifs_min_val = IFS_MIN; 1665 mac->ifs_max_val = IFS_MAX; 1666 mac->ifs_step_size = IFS_STEP; 1667 mac->ifs_ratio = IFS_RATIO; 1668 1669 mac->in_ifs_mode = false; 1670 ew32(AIT, 0); 1671 } 1672 1673 /** 1674 * e1000e_update_adaptive - Update Adaptive Interframe Spacing 1675 * @hw: pointer to the HW structure 1676 * 1677 * Update the Adaptive Interframe Spacing Throttle value based on the 1678 * time between transmitted packets and time between collisions. 1679 **/ 1680 void e1000e_update_adaptive(struct e1000_hw *hw) 1681 { 1682 struct e1000_mac_info *mac = &hw->mac; 1683 1684 if (!mac->adaptive_ifs) { 1685 e_dbg("Not in Adaptive IFS mode!\n"); 1686 return; 1687 } 1688 1689 if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) { 1690 if (mac->tx_packet_delta > MIN_NUM_XMITS) { 1691 mac->in_ifs_mode = true; 1692 if (mac->current_ifs_val < mac->ifs_max_val) { 1693 if (!mac->current_ifs_val) 1694 mac->current_ifs_val = mac->ifs_min_val; 1695 else 1696 mac->current_ifs_val += 1697 mac->ifs_step_size; 1698 ew32(AIT, mac->current_ifs_val); 1699 } 1700 } 1701 } else { 1702 if (mac->in_ifs_mode && 1703 (mac->tx_packet_delta <= MIN_NUM_XMITS)) { 1704 mac->current_ifs_val = 0; 1705 mac->in_ifs_mode = false; 1706 ew32(AIT, 0); 1707 } 1708 } 1709 } 1710