1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 1999 - 2018 Intel Corporation. */ 3 4 /* 82562G 10/100 Network Connection 5 * 82562G-2 10/100 Network Connection 6 * 82562GT 10/100 Network Connection 7 * 82562GT-2 10/100 Network Connection 8 * 82562V 10/100 Network Connection 9 * 82562V-2 10/100 Network Connection 10 * 82566DC-2 Gigabit Network Connection 11 * 82566DC Gigabit Network Connection 12 * 82566DM-2 Gigabit Network Connection 13 * 82566DM Gigabit Network Connection 14 * 82566MC Gigabit Network Connection 15 * 82566MM Gigabit Network Connection 16 * 82567LM Gigabit Network Connection 17 * 82567LF Gigabit Network Connection 18 * 82567V Gigabit Network Connection 19 * 82567LM-2 Gigabit Network Connection 20 * 82567LF-2 Gigabit Network Connection 21 * 82567V-2 Gigabit Network Connection 22 * 82567LF-3 Gigabit Network Connection 23 * 82567LM-3 Gigabit Network Connection 24 * 82567LM-4 Gigabit Network Connection 25 * 82577LM Gigabit Network Connection 26 * 82577LC Gigabit Network Connection 27 * 82578DM Gigabit Network Connection 28 * 82578DC Gigabit Network Connection 29 * 82579LM Gigabit Network Connection 30 * 82579V Gigabit Network Connection 31 * Ethernet Connection I217-LM 32 * Ethernet Connection I217-V 33 * Ethernet Connection I218-V 34 * Ethernet Connection I218-LM 35 * Ethernet Connection (2) I218-LM 36 * Ethernet Connection (2) I218-V 37 * Ethernet Connection (3) I218-LM 38 * Ethernet Connection (3) I218-V 39 */ 40 41 #include "e1000.h" 42 43 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */ 44 /* Offset 04h HSFSTS */ 45 union ich8_hws_flash_status { 46 struct ich8_hsfsts { 47 u16 flcdone:1; /* bit 0 Flash Cycle Done */ 48 u16 flcerr:1; /* bit 1 Flash Cycle Error */ 49 u16 dael:1; /* bit 2 Direct Access error Log */ 50 u16 berasesz:2; /* bit 4:3 Sector Erase Size */ 51 u16 flcinprog:1; /* bit 5 flash cycle in Progress */ 52 u16 reserved1:2; /* bit 13:6 Reserved */ 53 u16 reserved2:6; /* bit 13:6 Reserved */ 54 u16 fldesvalid:1; /* bit 14 Flash Descriptor Valid */ 55 u16 flockdn:1; /* bit 15 Flash Config Lock-Down */ 56 } hsf_status; 57 u16 regval; 58 }; 59 60 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */ 61 /* Offset 06h FLCTL */ 62 union ich8_hws_flash_ctrl { 63 struct ich8_hsflctl { 64 u16 flcgo:1; /* 0 Flash Cycle Go */ 65 u16 flcycle:2; /* 2:1 Flash Cycle */ 66 u16 reserved:5; /* 7:3 Reserved */ 67 u16 fldbcount:2; /* 9:8 Flash Data Byte Count */ 68 u16 flockdn:6; /* 15:10 Reserved */ 69 } hsf_ctrl; 70 u16 regval; 71 }; 72 73 /* ICH Flash Region Access Permissions */ 74 union ich8_hws_flash_regacc { 75 struct ich8_flracc { 76 u32 grra:8; /* 0:7 GbE region Read Access */ 77 u32 grwa:8; /* 8:15 GbE region Write Access */ 78 u32 gmrag:8; /* 23:16 GbE Master Read Access Grant */ 79 u32 gmwag:8; /* 31:24 GbE Master Write Access Grant */ 80 } hsf_flregacc; 81 u16 regval; 82 }; 83 84 /* ICH Flash Protected Region */ 85 union ich8_flash_protected_range { 86 struct ich8_pr { 87 u32 base:13; /* 0:12 Protected Range Base */ 88 u32 reserved1:2; /* 13:14 Reserved */ 89 u32 rpe:1; /* 15 Read Protection Enable */ 90 u32 limit:13; /* 16:28 Protected Range Limit */ 91 u32 reserved2:2; /* 29:30 Reserved */ 92 u32 wpe:1; /* 31 Write Protection Enable */ 93 } range; 94 u32 regval; 95 }; 96 97 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw); 98 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw); 99 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank); 100 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw, 101 u32 offset, u8 byte); 102 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, 103 u8 *data); 104 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset, 105 u16 *data); 106 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, 107 u8 size, u16 *data); 108 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset, 109 u32 *data); 110 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, 111 u32 offset, u32 *data); 112 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, 113 u32 offset, u32 data); 114 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw, 115 u32 offset, u32 dword); 116 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw); 117 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw); 118 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw); 119 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw); 120 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw); 121 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw); 122 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw); 123 static s32 e1000_led_on_pchlan(struct e1000_hw *hw); 124 static s32 e1000_led_off_pchlan(struct e1000_hw *hw); 125 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active); 126 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw); 127 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw); 128 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link); 129 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw); 130 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw); 131 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw); 132 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index); 133 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index); 134 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw); 135 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw); 136 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate); 137 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force); 138 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw); 139 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state); 140 141 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg) 142 { 143 return readw(hw->flash_address + reg); 144 } 145 146 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg) 147 { 148 return readl(hw->flash_address + reg); 149 } 150 151 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val) 152 { 153 writew(val, hw->flash_address + reg); 154 } 155 156 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val) 157 { 158 writel(val, hw->flash_address + reg); 159 } 160 161 #define er16flash(reg) __er16flash(hw, (reg)) 162 #define er32flash(reg) __er32flash(hw, (reg)) 163 #define ew16flash(reg, val) __ew16flash(hw, (reg), (val)) 164 #define ew32flash(reg, val) __ew32flash(hw, (reg), (val)) 165 166 /** 167 * e1000_phy_is_accessible_pchlan - Check if able to access PHY registers 168 * @hw: pointer to the HW structure 169 * 170 * Test access to the PHY registers by reading the PHY ID registers. If 171 * the PHY ID is already known (e.g. resume path) compare it with known ID, 172 * otherwise assume the read PHY ID is correct if it is valid. 173 * 174 * Assumes the sw/fw/hw semaphore is already acquired. 175 **/ 176 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw) 177 { 178 u16 phy_reg = 0; 179 u32 phy_id = 0; 180 s32 ret_val = 0; 181 u16 retry_count; 182 u32 mac_reg = 0; 183 184 for (retry_count = 0; retry_count < 2; retry_count++) { 185 ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg); 186 if (ret_val || (phy_reg == 0xFFFF)) 187 continue; 188 phy_id = (u32)(phy_reg << 16); 189 190 ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg); 191 if (ret_val || (phy_reg == 0xFFFF)) { 192 phy_id = 0; 193 continue; 194 } 195 phy_id |= (u32)(phy_reg & PHY_REVISION_MASK); 196 break; 197 } 198 199 if (hw->phy.id) { 200 if (hw->phy.id == phy_id) 201 goto out; 202 } else if (phy_id) { 203 hw->phy.id = phy_id; 204 hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK); 205 goto out; 206 } 207 208 /* In case the PHY needs to be in mdio slow mode, 209 * set slow mode and try to get the PHY id again. 210 */ 211 if (hw->mac.type < e1000_pch_lpt) { 212 hw->phy.ops.release(hw); 213 ret_val = e1000_set_mdio_slow_mode_hv(hw); 214 if (!ret_val) 215 ret_val = e1000e_get_phy_id(hw); 216 hw->phy.ops.acquire(hw); 217 } 218 219 if (ret_val) 220 return false; 221 out: 222 if (hw->mac.type >= e1000_pch_lpt) { 223 /* Only unforce SMBus if ME is not active */ 224 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) { 225 /* Switching PHY interface always returns MDI error 226 * so disable retry mechanism to avoid wasting time 227 */ 228 e1000e_disable_phy_retry(hw); 229 230 /* Unforce SMBus mode in PHY */ 231 e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg); 232 phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS; 233 e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg); 234 235 e1000e_enable_phy_retry(hw); 236 237 /* Unforce SMBus mode in MAC */ 238 mac_reg = er32(CTRL_EXT); 239 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS; 240 ew32(CTRL_EXT, mac_reg); 241 } 242 } 243 244 return true; 245 } 246 247 /** 248 * e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value 249 * @hw: pointer to the HW structure 250 * 251 * Toggling the LANPHYPC pin value fully power-cycles the PHY and is 252 * used to reset the PHY to a quiescent state when necessary. 253 **/ 254 static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw) 255 { 256 u32 mac_reg; 257 258 /* Set Phy Config Counter to 50msec */ 259 mac_reg = er32(FEXTNVM3); 260 mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK; 261 mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC; 262 ew32(FEXTNVM3, mac_reg); 263 264 /* Toggle LANPHYPC Value bit */ 265 mac_reg = er32(CTRL); 266 mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE; 267 mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE; 268 ew32(CTRL, mac_reg); 269 e1e_flush(); 270 usleep_range(10, 20); 271 mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE; 272 ew32(CTRL, mac_reg); 273 e1e_flush(); 274 275 if (hw->mac.type < e1000_pch_lpt) { 276 msleep(50); 277 } else { 278 u16 count = 20; 279 280 do { 281 usleep_range(5000, 6000); 282 } while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--); 283 284 msleep(30); 285 } 286 } 287 288 /** 289 * e1000_init_phy_workarounds_pchlan - PHY initialization workarounds 290 * @hw: pointer to the HW structure 291 * 292 * Workarounds/flow necessary for PHY initialization during driver load 293 * and resume paths. 294 **/ 295 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw) 296 { 297 struct e1000_adapter *adapter = hw->adapter; 298 u32 mac_reg, fwsm = er32(FWSM); 299 s32 ret_val; 300 301 /* Gate automatic PHY configuration by hardware on managed and 302 * non-managed 82579 and newer adapters. 303 */ 304 e1000_gate_hw_phy_config_ich8lan(hw, true); 305 306 /* It is not possible to be certain of the current state of ULP 307 * so forcibly disable it. 308 */ 309 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown; 310 ret_val = e1000_disable_ulp_lpt_lp(hw, true); 311 if (ret_val) 312 e_warn("Failed to disable ULP\n"); 313 314 ret_val = hw->phy.ops.acquire(hw); 315 if (ret_val) { 316 e_dbg("Failed to initialize PHY flow\n"); 317 goto out; 318 } 319 320 /* There is no guarantee that the PHY is accessible at this time 321 * so disable retry mechanism to avoid wasting time 322 */ 323 e1000e_disable_phy_retry(hw); 324 325 /* The MAC-PHY interconnect may be in SMBus mode. If the PHY is 326 * inaccessible and resetting the PHY is not blocked, toggle the 327 * LANPHYPC Value bit to force the interconnect to PCIe mode. 328 */ 329 switch (hw->mac.type) { 330 case e1000_pch_lpt: 331 case e1000_pch_spt: 332 case e1000_pch_cnp: 333 case e1000_pch_tgp: 334 case e1000_pch_adp: 335 case e1000_pch_mtp: 336 case e1000_pch_lnp: 337 case e1000_pch_ptp: 338 case e1000_pch_nvp: 339 if (e1000_phy_is_accessible_pchlan(hw)) 340 break; 341 342 /* Before toggling LANPHYPC, see if PHY is accessible by 343 * forcing MAC to SMBus mode first. 344 */ 345 mac_reg = er32(CTRL_EXT); 346 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS; 347 ew32(CTRL_EXT, mac_reg); 348 349 /* Wait 50 milliseconds for MAC to finish any retries 350 * that it might be trying to perform from previous 351 * attempts to acknowledge any phy read requests. 352 */ 353 msleep(50); 354 355 fallthrough; 356 case e1000_pch2lan: 357 if (e1000_phy_is_accessible_pchlan(hw)) 358 break; 359 360 fallthrough; 361 case e1000_pchlan: 362 if ((hw->mac.type == e1000_pchlan) && 363 (fwsm & E1000_ICH_FWSM_FW_VALID)) 364 break; 365 366 if (hw->phy.ops.check_reset_block(hw)) { 367 e_dbg("Required LANPHYPC toggle blocked by ME\n"); 368 ret_val = -E1000_ERR_PHY; 369 break; 370 } 371 372 /* Toggle LANPHYPC Value bit */ 373 e1000_toggle_lanphypc_pch_lpt(hw); 374 if (hw->mac.type >= e1000_pch_lpt) { 375 if (e1000_phy_is_accessible_pchlan(hw)) 376 break; 377 378 /* Toggling LANPHYPC brings the PHY out of SMBus mode 379 * so ensure that the MAC is also out of SMBus mode 380 */ 381 mac_reg = er32(CTRL_EXT); 382 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS; 383 ew32(CTRL_EXT, mac_reg); 384 385 if (e1000_phy_is_accessible_pchlan(hw)) 386 break; 387 388 ret_val = -E1000_ERR_PHY; 389 } 390 break; 391 default: 392 break; 393 } 394 395 e1000e_enable_phy_retry(hw); 396 397 hw->phy.ops.release(hw); 398 if (!ret_val) { 399 400 /* Check to see if able to reset PHY. Print error if not */ 401 if (hw->phy.ops.check_reset_block(hw)) { 402 e_err("Reset blocked by ME\n"); 403 goto out; 404 } 405 406 /* Reset the PHY before any access to it. Doing so, ensures 407 * that the PHY is in a known good state before we read/write 408 * PHY registers. The generic reset is sufficient here, 409 * because we haven't determined the PHY type yet. 410 */ 411 ret_val = e1000e_phy_hw_reset_generic(hw); 412 if (ret_val) 413 goto out; 414 415 /* On a successful reset, possibly need to wait for the PHY 416 * to quiesce to an accessible state before returning control 417 * to the calling function. If the PHY does not quiesce, then 418 * return E1000E_BLK_PHY_RESET, as this is the condition that 419 * the PHY is in. 420 */ 421 ret_val = hw->phy.ops.check_reset_block(hw); 422 if (ret_val) 423 e_err("ME blocked access to PHY after reset\n"); 424 } 425 426 out: 427 /* Ungate automatic PHY configuration on non-managed 82579 */ 428 if ((hw->mac.type == e1000_pch2lan) && 429 !(fwsm & E1000_ICH_FWSM_FW_VALID)) { 430 usleep_range(10000, 11000); 431 e1000_gate_hw_phy_config_ich8lan(hw, false); 432 } 433 434 return ret_val; 435 } 436 437 /** 438 * e1000_init_phy_params_pchlan - Initialize PHY function pointers 439 * @hw: pointer to the HW structure 440 * 441 * Initialize family-specific PHY parameters and function pointers. 442 **/ 443 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw) 444 { 445 struct e1000_phy_info *phy = &hw->phy; 446 s32 ret_val; 447 448 phy->addr = 1; 449 phy->reset_delay_us = 100; 450 451 phy->ops.set_page = e1000_set_page_igp; 452 phy->ops.read_reg = e1000_read_phy_reg_hv; 453 phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked; 454 phy->ops.read_reg_page = e1000_read_phy_reg_page_hv; 455 phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan; 456 phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan; 457 phy->ops.write_reg = e1000_write_phy_reg_hv; 458 phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked; 459 phy->ops.write_reg_page = e1000_write_phy_reg_page_hv; 460 phy->ops.power_up = e1000_power_up_phy_copper; 461 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan; 462 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; 463 464 phy->id = e1000_phy_unknown; 465 466 if (hw->mac.type == e1000_pch_mtp) { 467 phy->retry_count = 2; 468 e1000e_enable_phy_retry(hw); 469 } 470 471 ret_val = e1000_init_phy_workarounds_pchlan(hw); 472 if (ret_val) 473 return ret_val; 474 475 if (phy->id == e1000_phy_unknown) 476 switch (hw->mac.type) { 477 default: 478 ret_val = e1000e_get_phy_id(hw); 479 if (ret_val) 480 return ret_val; 481 if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK)) 482 break; 483 fallthrough; 484 case e1000_pch2lan: 485 case e1000_pch_lpt: 486 case e1000_pch_spt: 487 case e1000_pch_cnp: 488 case e1000_pch_tgp: 489 case e1000_pch_adp: 490 case e1000_pch_mtp: 491 case e1000_pch_lnp: 492 case e1000_pch_ptp: 493 case e1000_pch_nvp: 494 /* In case the PHY needs to be in mdio slow mode, 495 * set slow mode and try to get the PHY id again. 496 */ 497 ret_val = e1000_set_mdio_slow_mode_hv(hw); 498 if (ret_val) 499 return ret_val; 500 ret_val = e1000e_get_phy_id(hw); 501 if (ret_val) 502 return ret_val; 503 break; 504 } 505 phy->type = e1000e_get_phy_type_from_id(phy->id); 506 507 switch (phy->type) { 508 case e1000_phy_82577: 509 case e1000_phy_82579: 510 case e1000_phy_i217: 511 phy->ops.check_polarity = e1000_check_polarity_82577; 512 phy->ops.force_speed_duplex = 513 e1000_phy_force_speed_duplex_82577; 514 phy->ops.get_cable_length = e1000_get_cable_length_82577; 515 phy->ops.get_info = e1000_get_phy_info_82577; 516 phy->ops.commit = e1000e_phy_sw_reset; 517 break; 518 case e1000_phy_82578: 519 phy->ops.check_polarity = e1000_check_polarity_m88; 520 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88; 521 phy->ops.get_cable_length = e1000e_get_cable_length_m88; 522 phy->ops.get_info = e1000e_get_phy_info_m88; 523 break; 524 default: 525 ret_val = -E1000_ERR_PHY; 526 break; 527 } 528 529 return ret_val; 530 } 531 532 /** 533 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers 534 * @hw: pointer to the HW structure 535 * 536 * Initialize family-specific PHY parameters and function pointers. 537 **/ 538 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw) 539 { 540 struct e1000_phy_info *phy = &hw->phy; 541 s32 ret_val; 542 u16 i = 0; 543 544 phy->addr = 1; 545 phy->reset_delay_us = 100; 546 547 phy->ops.power_up = e1000_power_up_phy_copper; 548 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan; 549 550 /* We may need to do this twice - once for IGP and if that fails, 551 * we'll set BM func pointers and try again 552 */ 553 ret_val = e1000e_determine_phy_address(hw); 554 if (ret_val) { 555 phy->ops.write_reg = e1000e_write_phy_reg_bm; 556 phy->ops.read_reg = e1000e_read_phy_reg_bm; 557 ret_val = e1000e_determine_phy_address(hw); 558 if (ret_val) { 559 e_dbg("Cannot determine PHY addr. Erroring out\n"); 560 return ret_val; 561 } 562 } 563 564 phy->id = 0; 565 while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) && 566 (i++ < 100)) { 567 usleep_range(1000, 1100); 568 ret_val = e1000e_get_phy_id(hw); 569 if (ret_val) 570 return ret_val; 571 } 572 573 /* Verify phy id */ 574 switch (phy->id) { 575 case IGP03E1000_E_PHY_ID: 576 phy->type = e1000_phy_igp_3; 577 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; 578 phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked; 579 phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked; 580 phy->ops.get_info = e1000e_get_phy_info_igp; 581 phy->ops.check_polarity = e1000_check_polarity_igp; 582 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp; 583 break; 584 case IFE_E_PHY_ID: 585 case IFE_PLUS_E_PHY_ID: 586 case IFE_C_E_PHY_ID: 587 phy->type = e1000_phy_ife; 588 phy->autoneg_mask = E1000_ALL_NOT_GIG; 589 phy->ops.get_info = e1000_get_phy_info_ife; 590 phy->ops.check_polarity = e1000_check_polarity_ife; 591 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife; 592 break; 593 case BME1000_E_PHY_ID: 594 phy->type = e1000_phy_bm; 595 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; 596 phy->ops.read_reg = e1000e_read_phy_reg_bm; 597 phy->ops.write_reg = e1000e_write_phy_reg_bm; 598 phy->ops.commit = e1000e_phy_sw_reset; 599 phy->ops.get_info = e1000e_get_phy_info_m88; 600 phy->ops.check_polarity = e1000_check_polarity_m88; 601 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88; 602 break; 603 default: 604 return -E1000_ERR_PHY; 605 } 606 607 return 0; 608 } 609 610 /** 611 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers 612 * @hw: pointer to the HW structure 613 * 614 * Initialize family-specific NVM parameters and function 615 * pointers. 616 **/ 617 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw) 618 { 619 struct e1000_nvm_info *nvm = &hw->nvm; 620 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 621 u32 gfpreg, sector_base_addr, sector_end_addr; 622 u16 i; 623 u32 nvm_size; 624 625 nvm->type = e1000_nvm_flash_sw; 626 627 if (hw->mac.type >= e1000_pch_spt) { 628 /* in SPT, gfpreg doesn't exist. NVM size is taken from the 629 * STRAP register. This is because in SPT the GbE Flash region 630 * is no longer accessed through the flash registers. Instead, 631 * the mechanism has changed, and the Flash region access 632 * registers are now implemented in GbE memory space. 633 */ 634 nvm->flash_base_addr = 0; 635 nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1) 636 * NVM_SIZE_MULTIPLIER; 637 nvm->flash_bank_size = nvm_size / 2; 638 /* Adjust to word count */ 639 nvm->flash_bank_size /= sizeof(u16); 640 /* Set the base address for flash register access */ 641 hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR; 642 } else { 643 /* Can't read flash registers if register set isn't mapped. */ 644 if (!hw->flash_address) { 645 e_dbg("ERROR: Flash registers not mapped\n"); 646 return -E1000_ERR_CONFIG; 647 } 648 649 gfpreg = er32flash(ICH_FLASH_GFPREG); 650 651 /* sector_X_addr is a "sector"-aligned address (4096 bytes) 652 * Add 1 to sector_end_addr since this sector is included in 653 * the overall size. 654 */ 655 sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK; 656 sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1; 657 658 /* flash_base_addr is byte-aligned */ 659 nvm->flash_base_addr = sector_base_addr 660 << FLASH_SECTOR_ADDR_SHIFT; 661 662 /* find total size of the NVM, then cut in half since the total 663 * size represents two separate NVM banks. 664 */ 665 nvm->flash_bank_size = ((sector_end_addr - sector_base_addr) 666 << FLASH_SECTOR_ADDR_SHIFT); 667 nvm->flash_bank_size /= 2; 668 /* Adjust to word count */ 669 nvm->flash_bank_size /= sizeof(u16); 670 } 671 672 nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS; 673 674 /* Clear shadow ram */ 675 for (i = 0; i < nvm->word_size; i++) { 676 dev_spec->shadow_ram[i].modified = false; 677 dev_spec->shadow_ram[i].value = 0xFFFF; 678 } 679 680 return 0; 681 } 682 683 /** 684 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers 685 * @hw: pointer to the HW structure 686 * 687 * Initialize family-specific MAC parameters and function 688 * pointers. 689 **/ 690 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw) 691 { 692 struct e1000_mac_info *mac = &hw->mac; 693 694 /* Set media type function pointer */ 695 hw->phy.media_type = e1000_media_type_copper; 696 697 /* Set mta register count */ 698 mac->mta_reg_count = 32; 699 /* Set rar entry count */ 700 mac->rar_entry_count = E1000_ICH_RAR_ENTRIES; 701 if (mac->type == e1000_ich8lan) 702 mac->rar_entry_count--; 703 /* FWSM register */ 704 mac->has_fwsm = true; 705 /* ARC subsystem not supported */ 706 mac->arc_subsystem_valid = false; 707 /* Adaptive IFS supported */ 708 mac->adaptive_ifs = true; 709 710 /* LED and other operations */ 711 switch (mac->type) { 712 case e1000_ich8lan: 713 case e1000_ich9lan: 714 case e1000_ich10lan: 715 /* check management mode */ 716 mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan; 717 /* ID LED init */ 718 mac->ops.id_led_init = e1000e_id_led_init_generic; 719 /* blink LED */ 720 mac->ops.blink_led = e1000e_blink_led_generic; 721 /* setup LED */ 722 mac->ops.setup_led = e1000e_setup_led_generic; 723 /* cleanup LED */ 724 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan; 725 /* turn on/off LED */ 726 mac->ops.led_on = e1000_led_on_ich8lan; 727 mac->ops.led_off = e1000_led_off_ich8lan; 728 break; 729 case e1000_pch2lan: 730 mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES; 731 mac->ops.rar_set = e1000_rar_set_pch2lan; 732 fallthrough; 733 case e1000_pch_lpt: 734 case e1000_pch_spt: 735 case e1000_pch_cnp: 736 case e1000_pch_tgp: 737 case e1000_pch_adp: 738 case e1000_pch_mtp: 739 case e1000_pch_lnp: 740 case e1000_pch_ptp: 741 case e1000_pch_nvp: 742 case e1000_pchlan: 743 /* check management mode */ 744 mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan; 745 /* ID LED init */ 746 mac->ops.id_led_init = e1000_id_led_init_pchlan; 747 /* setup LED */ 748 mac->ops.setup_led = e1000_setup_led_pchlan; 749 /* cleanup LED */ 750 mac->ops.cleanup_led = e1000_cleanup_led_pchlan; 751 /* turn on/off LED */ 752 mac->ops.led_on = e1000_led_on_pchlan; 753 mac->ops.led_off = e1000_led_off_pchlan; 754 break; 755 default: 756 break; 757 } 758 759 if (mac->type >= e1000_pch_lpt) { 760 mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES; 761 mac->ops.rar_set = e1000_rar_set_pch_lpt; 762 mac->ops.setup_physical_interface = 763 e1000_setup_copper_link_pch_lpt; 764 mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt; 765 } 766 767 /* Enable PCS Lock-loss workaround for ICH8 */ 768 if (mac->type == e1000_ich8lan) 769 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true); 770 771 return 0; 772 } 773 774 /** 775 * __e1000_access_emi_reg_locked - Read/write EMI register 776 * @hw: pointer to the HW structure 777 * @address: EMI address to program 778 * @data: pointer to value to read/write from/to the EMI address 779 * @read: boolean flag to indicate read or write 780 * 781 * This helper function assumes the SW/FW/HW Semaphore is already acquired. 782 **/ 783 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address, 784 u16 *data, bool read) 785 { 786 s32 ret_val; 787 788 ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address); 789 if (ret_val) 790 return ret_val; 791 792 if (read) 793 ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data); 794 else 795 ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data); 796 797 return ret_val; 798 } 799 800 /** 801 * e1000_read_emi_reg_locked - Read Extended Management Interface register 802 * @hw: pointer to the HW structure 803 * @addr: EMI address to program 804 * @data: value to be read from the EMI address 805 * 806 * Assumes the SW/FW/HW Semaphore is already acquired. 807 **/ 808 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data) 809 { 810 return __e1000_access_emi_reg_locked(hw, addr, data, true); 811 } 812 813 /** 814 * e1000_write_emi_reg_locked - Write Extended Management Interface register 815 * @hw: pointer to the HW structure 816 * @addr: EMI address to program 817 * @data: value to be written to the EMI address 818 * 819 * Assumes the SW/FW/HW Semaphore is already acquired. 820 **/ 821 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data) 822 { 823 return __e1000_access_emi_reg_locked(hw, addr, &data, false); 824 } 825 826 /** 827 * e1000_set_eee_pchlan - Enable/disable EEE support 828 * @hw: pointer to the HW structure 829 * 830 * Enable/disable EEE based on setting in dev_spec structure, the duplex of 831 * the link and the EEE capabilities of the link partner. The LPI Control 832 * register bits will remain set only if/when link is up. 833 * 834 * EEE LPI must not be asserted earlier than one second after link is up. 835 * On 82579, EEE LPI should not be enabled until such time otherwise there 836 * can be link issues with some switches. Other devices can have EEE LPI 837 * enabled immediately upon link up since they have a timer in hardware which 838 * prevents LPI from being asserted too early. 839 **/ 840 s32 e1000_set_eee_pchlan(struct e1000_hw *hw) 841 { 842 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 843 s32 ret_val; 844 u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data; 845 846 switch (hw->phy.type) { 847 case e1000_phy_82579: 848 lpa = I82579_EEE_LP_ABILITY; 849 pcs_status = I82579_EEE_PCS_STATUS; 850 adv_addr = I82579_EEE_ADVERTISEMENT; 851 break; 852 case e1000_phy_i217: 853 lpa = I217_EEE_LP_ABILITY; 854 pcs_status = I217_EEE_PCS_STATUS; 855 adv_addr = I217_EEE_ADVERTISEMENT; 856 break; 857 default: 858 return 0; 859 } 860 861 ret_val = hw->phy.ops.acquire(hw); 862 if (ret_val) 863 return ret_val; 864 865 ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl); 866 if (ret_val) 867 goto release; 868 869 /* Clear bits that enable EEE in various speeds */ 870 lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK; 871 872 /* Enable EEE if not disabled by user */ 873 if (!dev_spec->eee_disable) { 874 /* Save off link partner's EEE ability */ 875 ret_val = e1000_read_emi_reg_locked(hw, lpa, 876 &dev_spec->eee_lp_ability); 877 if (ret_val) 878 goto release; 879 880 /* Read EEE advertisement */ 881 ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv); 882 if (ret_val) 883 goto release; 884 885 /* Enable EEE only for speeds in which the link partner is 886 * EEE capable and for which we advertise EEE. 887 */ 888 if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED) 889 lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE; 890 891 if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) { 892 e1e_rphy_locked(hw, MII_LPA, &data); 893 if (data & LPA_100FULL) 894 lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE; 895 else 896 /* EEE is not supported in 100Half, so ignore 897 * partner's EEE in 100 ability if full-duplex 898 * is not advertised. 899 */ 900 dev_spec->eee_lp_ability &= 901 ~I82579_EEE_100_SUPPORTED; 902 } 903 } 904 905 if (hw->phy.type == e1000_phy_82579) { 906 ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT, 907 &data); 908 if (ret_val) 909 goto release; 910 911 data &= ~I82579_LPI_100_PLL_SHUT; 912 ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT, 913 data); 914 } 915 916 /* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */ 917 ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data); 918 if (ret_val) 919 goto release; 920 921 ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl); 922 release: 923 hw->phy.ops.release(hw); 924 925 return ret_val; 926 } 927 928 /** 929 * e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP 930 * @hw: pointer to the HW structure 931 * @link: link up bool flag 932 * 933 * When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications 934 * preventing further DMA write requests. Workaround the issue by disabling 935 * the de-assertion of the clock request when in 1Gpbs mode. 936 * Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link 937 * speeds in order to avoid Tx hangs. 938 **/ 939 static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link) 940 { 941 u32 fextnvm6 = er32(FEXTNVM6); 942 u32 status = er32(STATUS); 943 s32 ret_val = 0; 944 u16 reg; 945 946 if (link && (status & E1000_STATUS_SPEED_1000)) { 947 ret_val = hw->phy.ops.acquire(hw); 948 if (ret_val) 949 return ret_val; 950 951 ret_val = 952 e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG, 953 ®); 954 if (ret_val) 955 goto release; 956 957 ret_val = 958 e1000e_write_kmrn_reg_locked(hw, 959 E1000_KMRNCTRLSTA_K1_CONFIG, 960 reg & 961 ~E1000_KMRNCTRLSTA_K1_ENABLE); 962 if (ret_val) 963 goto release; 964 965 usleep_range(10, 20); 966 967 ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK); 968 969 ret_val = 970 e1000e_write_kmrn_reg_locked(hw, 971 E1000_KMRNCTRLSTA_K1_CONFIG, 972 reg); 973 release: 974 hw->phy.ops.release(hw); 975 } else { 976 /* clear FEXTNVM6 bit 8 on link down or 10/100 */ 977 fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK; 978 979 if ((hw->phy.revision > 5) || !link || 980 ((status & E1000_STATUS_SPEED_100) && 981 (status & E1000_STATUS_FD))) 982 goto update_fextnvm6; 983 984 ret_val = e1e_rphy(hw, I217_INBAND_CTRL, ®); 985 if (ret_val) 986 return ret_val; 987 988 /* Clear link status transmit timeout */ 989 reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK; 990 991 if (status & E1000_STATUS_SPEED_100) { 992 /* Set inband Tx timeout to 5x10us for 100Half */ 993 reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT; 994 995 /* Do not extend the K1 entry latency for 100Half */ 996 fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION; 997 } else { 998 /* Set inband Tx timeout to 50x10us for 10Full/Half */ 999 reg |= 50 << 1000 I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT; 1001 1002 /* Extend the K1 entry latency for 10 Mbps */ 1003 fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION; 1004 } 1005 1006 ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg); 1007 if (ret_val) 1008 return ret_val; 1009 1010 update_fextnvm6: 1011 ew32(FEXTNVM6, fextnvm6); 1012 } 1013 1014 return ret_val; 1015 } 1016 1017 /** 1018 * e1000_platform_pm_pch_lpt - Set platform power management values 1019 * @hw: pointer to the HW structure 1020 * @link: bool indicating link status 1021 * 1022 * Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like" 1023 * GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed 1024 * when link is up (which must not exceed the maximum latency supported 1025 * by the platform), otherwise specify there is no LTR requirement. 1026 * Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop 1027 * latencies in the LTR Extended Capability Structure in the PCIe Extended 1028 * Capability register set, on this device LTR is set by writing the 1029 * equivalent snoop/no-snoop latencies in the LTRV register in the MAC and 1030 * set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB) 1031 * message to the PMC. 1032 **/ 1033 static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link) 1034 { 1035 u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) | 1036 link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND; 1037 u32 max_ltr_enc_d = 0; /* maximum LTR decoded by platform */ 1038 u32 lat_enc_d = 0; /* latency decoded */ 1039 u16 lat_enc = 0; /* latency encoded */ 1040 1041 if (link) { 1042 u16 speed, duplex, scale = 0; 1043 u16 max_snoop, max_nosnoop; 1044 u16 max_ltr_enc; /* max LTR latency encoded */ 1045 u64 value; 1046 u32 rxa; 1047 1048 if (!hw->adapter->max_frame_size) { 1049 e_dbg("max_frame_size not set.\n"); 1050 return -E1000_ERR_CONFIG; 1051 } 1052 1053 hw->mac.ops.get_link_up_info(hw, &speed, &duplex); 1054 if (!speed) { 1055 e_dbg("Speed not set.\n"); 1056 return -E1000_ERR_CONFIG; 1057 } 1058 1059 /* Rx Packet Buffer Allocation size (KB) */ 1060 rxa = er32(PBA) & E1000_PBA_RXA_MASK; 1061 1062 /* Determine the maximum latency tolerated by the device. 1063 * 1064 * Per the PCIe spec, the tolerated latencies are encoded as 1065 * a 3-bit encoded scale (only 0-5 are valid) multiplied by 1066 * a 10-bit value (0-1023) to provide a range from 1 ns to 1067 * 2^25*(2^10-1) ns. The scale is encoded as 0=2^0ns, 1068 * 1=2^5ns, 2=2^10ns,...5=2^25ns. 1069 */ 1070 rxa *= 512; 1071 value = (rxa > hw->adapter->max_frame_size) ? 1072 (rxa - hw->adapter->max_frame_size) * (16000 / speed) : 1073 0; 1074 1075 while (value > PCI_LTR_VALUE_MASK) { 1076 scale++; 1077 value = DIV_ROUND_UP(value, BIT(5)); 1078 } 1079 if (scale > E1000_LTRV_SCALE_MAX) { 1080 e_dbg("Invalid LTR latency scale %d\n", scale); 1081 return -E1000_ERR_CONFIG; 1082 } 1083 lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value); 1084 1085 /* Determine the maximum latency tolerated by the platform */ 1086 pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT, 1087 &max_snoop); 1088 pci_read_config_word(hw->adapter->pdev, 1089 E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop); 1090 max_ltr_enc = max_t(u16, max_snoop, max_nosnoop); 1091 1092 lat_enc_d = (lat_enc & E1000_LTRV_VALUE_MASK) * 1093 (1U << (E1000_LTRV_SCALE_FACTOR * 1094 FIELD_GET(E1000_LTRV_SCALE_MASK, lat_enc))); 1095 1096 max_ltr_enc_d = (max_ltr_enc & E1000_LTRV_VALUE_MASK) * 1097 (1U << (E1000_LTRV_SCALE_FACTOR * 1098 FIELD_GET(E1000_LTRV_SCALE_MASK, max_ltr_enc))); 1099 1100 if (lat_enc_d > max_ltr_enc_d) 1101 lat_enc = max_ltr_enc; 1102 } 1103 1104 /* Set Snoop and No-Snoop latencies the same */ 1105 reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT); 1106 ew32(LTRV, reg); 1107 1108 return 0; 1109 } 1110 1111 /** 1112 * e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP 1113 * @hw: pointer to the HW structure 1114 * @to_sx: boolean indicating a system power state transition to Sx 1115 * 1116 * When link is down, configure ULP mode to significantly reduce the power 1117 * to the PHY. If on a Manageability Engine (ME) enabled system, tell the 1118 * ME firmware to start the ULP configuration. If not on an ME enabled 1119 * system, configure the ULP mode by software. 1120 */ 1121 s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx) 1122 { 1123 u32 mac_reg; 1124 s32 ret_val = 0; 1125 u16 phy_reg; 1126 u16 oem_reg = 0; 1127 1128 if ((hw->mac.type < e1000_pch_lpt) || 1129 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) || 1130 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) || 1131 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) || 1132 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) || 1133 (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on)) 1134 return 0; 1135 1136 if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) { 1137 /* Request ME configure ULP mode in the PHY */ 1138 mac_reg = er32(H2ME); 1139 mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS; 1140 ew32(H2ME, mac_reg); 1141 1142 goto out; 1143 } 1144 1145 if (!to_sx) { 1146 int i = 0; 1147 1148 /* Poll up to 5 seconds for Cable Disconnected indication */ 1149 while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) { 1150 /* Bail if link is re-acquired */ 1151 if (er32(STATUS) & E1000_STATUS_LU) 1152 return -E1000_ERR_PHY; 1153 1154 if (i++ == 100) 1155 break; 1156 1157 msleep(50); 1158 } 1159 e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n", 1160 (er32(FEXT) & 1161 E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50); 1162 } 1163 1164 ret_val = hw->phy.ops.acquire(hw); 1165 if (ret_val) 1166 goto out; 1167 1168 /* Si workaround for ULP entry flow on i127/rev6 h/w. Enable 1169 * LPLU and disable Gig speed when entering ULP 1170 */ 1171 if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) { 1172 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS, 1173 &oem_reg); 1174 if (ret_val) 1175 goto release; 1176 1177 phy_reg = oem_reg; 1178 phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS; 1179 1180 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS, 1181 phy_reg); 1182 1183 if (ret_val) 1184 goto release; 1185 } 1186 1187 /* Set Inband ULP Exit, Reset to SMBus mode and 1188 * Disable SMBus Release on PERST# in PHY 1189 */ 1190 ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg); 1191 if (ret_val) 1192 goto release; 1193 phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS | 1194 I218_ULP_CONFIG1_DISABLE_SMB_PERST); 1195 if (to_sx) { 1196 if (er32(WUFC) & E1000_WUFC_LNKC) 1197 phy_reg |= I218_ULP_CONFIG1_WOL_HOST; 1198 else 1199 phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST; 1200 1201 phy_reg |= I218_ULP_CONFIG1_STICKY_ULP; 1202 phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT; 1203 } else { 1204 phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT; 1205 phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP; 1206 phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST; 1207 } 1208 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg); 1209 1210 /* Set Disable SMBus Release on PERST# in MAC */ 1211 mac_reg = er32(FEXTNVM7); 1212 mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST; 1213 ew32(FEXTNVM7, mac_reg); 1214 1215 /* Commit ULP changes in PHY by starting auto ULP configuration */ 1216 phy_reg |= I218_ULP_CONFIG1_START; 1217 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg); 1218 1219 if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) && 1220 to_sx && (er32(STATUS) & E1000_STATUS_LU)) { 1221 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS, 1222 oem_reg); 1223 if (ret_val) 1224 goto release; 1225 } 1226 1227 release: 1228 hw->phy.ops.release(hw); 1229 out: 1230 if (ret_val) 1231 e_dbg("Error in ULP enable flow: %d\n", ret_val); 1232 else 1233 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on; 1234 1235 return ret_val; 1236 } 1237 1238 /** 1239 * e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP 1240 * @hw: pointer to the HW structure 1241 * @force: boolean indicating whether or not to force disabling ULP 1242 * 1243 * Un-configure ULP mode when link is up, the system is transitioned from 1244 * Sx or the driver is unloaded. If on a Manageability Engine (ME) enabled 1245 * system, poll for an indication from ME that ULP has been un-configured. 1246 * If not on an ME enabled system, un-configure the ULP mode by software. 1247 * 1248 * During nominal operation, this function is called when link is acquired 1249 * to disable ULP mode (force=false); otherwise, for example when unloading 1250 * the driver or during Sx->S0 transitions, this is called with force=true 1251 * to forcibly disable ULP. 1252 */ 1253 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force) 1254 { 1255 s32 ret_val = 0; 1256 u32 mac_reg; 1257 u16 phy_reg; 1258 int i = 0; 1259 1260 if ((hw->mac.type < e1000_pch_lpt) || 1261 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) || 1262 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) || 1263 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) || 1264 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) || 1265 (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off)) 1266 return 0; 1267 1268 if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) { 1269 struct e1000_adapter *adapter = hw->adapter; 1270 bool firmware_bug = false; 1271 1272 if (force) { 1273 /* Request ME un-configure ULP mode in the PHY */ 1274 mac_reg = er32(H2ME); 1275 mac_reg &= ~E1000_H2ME_ULP; 1276 mac_reg |= E1000_H2ME_ENFORCE_SETTINGS; 1277 ew32(H2ME, mac_reg); 1278 } 1279 1280 /* Poll up to 2.5 seconds for ME to clear ULP_CFG_DONE. 1281 * If this takes more than 1 second, show a warning indicating a 1282 * firmware bug 1283 */ 1284 while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) { 1285 if (i++ == 250) { 1286 ret_val = -E1000_ERR_PHY; 1287 goto out; 1288 } 1289 if (i > 100 && !firmware_bug) 1290 firmware_bug = true; 1291 1292 usleep_range(10000, 11000); 1293 } 1294 if (firmware_bug) 1295 e_warn("ULP_CONFIG_DONE took %d msec. This is a firmware bug\n", 1296 i * 10); 1297 else 1298 e_dbg("ULP_CONFIG_DONE cleared after %d msec\n", 1299 i * 10); 1300 1301 if (force) { 1302 mac_reg = er32(H2ME); 1303 mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS; 1304 ew32(H2ME, mac_reg); 1305 } else { 1306 /* Clear H2ME.ULP after ME ULP configuration */ 1307 mac_reg = er32(H2ME); 1308 mac_reg &= ~E1000_H2ME_ULP; 1309 ew32(H2ME, mac_reg); 1310 } 1311 1312 goto out; 1313 } 1314 1315 ret_val = hw->phy.ops.acquire(hw); 1316 if (ret_val) 1317 goto out; 1318 1319 if (force) 1320 /* Toggle LANPHYPC Value bit */ 1321 e1000_toggle_lanphypc_pch_lpt(hw); 1322 1323 /* Switching PHY interface always returns MDI error 1324 * so disable retry mechanism to avoid wasting time 1325 */ 1326 e1000e_disable_phy_retry(hw); 1327 1328 /* Unforce SMBus mode in PHY */ 1329 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg); 1330 if (ret_val) { 1331 /* The MAC might be in PCIe mode, so temporarily force to 1332 * SMBus mode in order to access the PHY. 1333 */ 1334 mac_reg = er32(CTRL_EXT); 1335 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS; 1336 ew32(CTRL_EXT, mac_reg); 1337 1338 msleep(50); 1339 1340 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, 1341 &phy_reg); 1342 if (ret_val) 1343 goto release; 1344 } 1345 phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS; 1346 e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg); 1347 1348 e1000e_enable_phy_retry(hw); 1349 1350 /* Unforce SMBus mode in MAC */ 1351 mac_reg = er32(CTRL_EXT); 1352 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS; 1353 ew32(CTRL_EXT, mac_reg); 1354 1355 /* When ULP mode was previously entered, K1 was disabled by the 1356 * hardware. Re-Enable K1 in the PHY when exiting ULP. 1357 */ 1358 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg); 1359 if (ret_val) 1360 goto release; 1361 phy_reg |= HV_PM_CTRL_K1_ENABLE; 1362 e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg); 1363 1364 /* Clear ULP enabled configuration */ 1365 ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg); 1366 if (ret_val) 1367 goto release; 1368 phy_reg &= ~(I218_ULP_CONFIG1_IND | 1369 I218_ULP_CONFIG1_STICKY_ULP | 1370 I218_ULP_CONFIG1_RESET_TO_SMBUS | 1371 I218_ULP_CONFIG1_WOL_HOST | 1372 I218_ULP_CONFIG1_INBAND_EXIT | 1373 I218_ULP_CONFIG1_EN_ULP_LANPHYPC | 1374 I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST | 1375 I218_ULP_CONFIG1_DISABLE_SMB_PERST); 1376 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg); 1377 1378 /* Commit ULP changes by starting auto ULP configuration */ 1379 phy_reg |= I218_ULP_CONFIG1_START; 1380 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg); 1381 1382 /* Clear Disable SMBus Release on PERST# in MAC */ 1383 mac_reg = er32(FEXTNVM7); 1384 mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST; 1385 ew32(FEXTNVM7, mac_reg); 1386 1387 release: 1388 hw->phy.ops.release(hw); 1389 if (force) { 1390 e1000_phy_hw_reset(hw); 1391 msleep(50); 1392 } 1393 out: 1394 if (ret_val) 1395 e_dbg("Error in ULP disable flow: %d\n", ret_val); 1396 else 1397 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off; 1398 1399 return ret_val; 1400 } 1401 1402 /** 1403 * e1000_check_for_copper_link_ich8lan - Check for link (Copper) 1404 * @hw: pointer to the HW structure 1405 * 1406 * Checks to see of the link status of the hardware has changed. If a 1407 * change in link status has been detected, then we read the PHY registers 1408 * to get the current speed/duplex if link exists. 1409 **/ 1410 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw) 1411 { 1412 struct e1000_mac_info *mac = &hw->mac; 1413 s32 ret_val, tipg_reg = 0; 1414 u16 emi_addr, emi_val = 0; 1415 bool link; 1416 u16 phy_reg; 1417 1418 /* We only want to go out to the PHY registers to see if Auto-Neg 1419 * has completed and/or if our link status has changed. The 1420 * get_link_status flag is set upon receiving a Link Status 1421 * Change or Rx Sequence Error interrupt. 1422 */ 1423 if (!mac->get_link_status) 1424 return 0; 1425 mac->get_link_status = false; 1426 1427 /* First we want to see if the MII Status Register reports 1428 * link. If so, then we want to get the current speed/duplex 1429 * of the PHY. 1430 */ 1431 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); 1432 if (ret_val) 1433 goto out; 1434 1435 if (hw->mac.type == e1000_pchlan) { 1436 ret_val = e1000_k1_gig_workaround_hv(hw, link); 1437 if (ret_val) 1438 goto out; 1439 } 1440 1441 /* When connected at 10Mbps half-duplex, some parts are excessively 1442 * aggressive resulting in many collisions. To avoid this, increase 1443 * the IPG and reduce Rx latency in the PHY. 1444 */ 1445 if ((hw->mac.type >= e1000_pch2lan) && link) { 1446 u16 speed, duplex; 1447 1448 e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex); 1449 tipg_reg = er32(TIPG); 1450 tipg_reg &= ~E1000_TIPG_IPGT_MASK; 1451 1452 if (duplex == HALF_DUPLEX && speed == SPEED_10) { 1453 tipg_reg |= 0xFF; 1454 /* Reduce Rx latency in analog PHY */ 1455 emi_val = 0; 1456 } else if (hw->mac.type >= e1000_pch_spt && 1457 duplex == FULL_DUPLEX && speed != SPEED_1000) { 1458 tipg_reg |= 0xC; 1459 emi_val = 1; 1460 } else { 1461 1462 /* Roll back the default values */ 1463 tipg_reg |= 0x08; 1464 emi_val = 1; 1465 } 1466 1467 ew32(TIPG, tipg_reg); 1468 1469 ret_val = hw->phy.ops.acquire(hw); 1470 if (ret_val) 1471 goto out; 1472 1473 if (hw->mac.type == e1000_pch2lan) 1474 emi_addr = I82579_RX_CONFIG; 1475 else 1476 emi_addr = I217_RX_CONFIG; 1477 ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val); 1478 1479 if (hw->mac.type >= e1000_pch_lpt) { 1480 u16 phy_reg; 1481 1482 e1e_rphy_locked(hw, I217_PLL_CLOCK_GATE_REG, &phy_reg); 1483 phy_reg &= ~I217_PLL_CLOCK_GATE_MASK; 1484 if (speed == SPEED_100 || speed == SPEED_10) 1485 phy_reg |= 0x3E8; 1486 else 1487 phy_reg |= 0xFA; 1488 e1e_wphy_locked(hw, I217_PLL_CLOCK_GATE_REG, phy_reg); 1489 1490 if (speed == SPEED_1000) { 1491 hw->phy.ops.read_reg_locked(hw, HV_PM_CTRL, 1492 &phy_reg); 1493 1494 phy_reg |= HV_PM_CTRL_K1_CLK_REQ; 1495 1496 hw->phy.ops.write_reg_locked(hw, HV_PM_CTRL, 1497 phy_reg); 1498 } 1499 } 1500 hw->phy.ops.release(hw); 1501 1502 if (ret_val) 1503 goto out; 1504 1505 if (hw->mac.type >= e1000_pch_spt) { 1506 u16 data; 1507 u16 ptr_gap; 1508 1509 if (speed == SPEED_1000) { 1510 ret_val = hw->phy.ops.acquire(hw); 1511 if (ret_val) 1512 goto out; 1513 1514 ret_val = e1e_rphy_locked(hw, 1515 PHY_REG(776, 20), 1516 &data); 1517 if (ret_val) { 1518 hw->phy.ops.release(hw); 1519 goto out; 1520 } 1521 1522 ptr_gap = (data & (0x3FF << 2)) >> 2; 1523 if (ptr_gap < 0x18) { 1524 data &= ~(0x3FF << 2); 1525 data |= (0x18 << 2); 1526 ret_val = 1527 e1e_wphy_locked(hw, 1528 PHY_REG(776, 20), 1529 data); 1530 } 1531 hw->phy.ops.release(hw); 1532 if (ret_val) 1533 goto out; 1534 } else { 1535 ret_val = hw->phy.ops.acquire(hw); 1536 if (ret_val) 1537 goto out; 1538 1539 ret_val = e1e_wphy_locked(hw, 1540 PHY_REG(776, 20), 1541 0xC023); 1542 hw->phy.ops.release(hw); 1543 if (ret_val) 1544 goto out; 1545 1546 } 1547 } 1548 } 1549 1550 /* I217 Packet Loss issue: 1551 * ensure that FEXTNVM4 Beacon Duration is set correctly 1552 * on power up. 1553 * Set the Beacon Duration for I217 to 8 usec 1554 */ 1555 if (hw->mac.type >= e1000_pch_lpt) { 1556 u32 mac_reg; 1557 1558 mac_reg = er32(FEXTNVM4); 1559 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK; 1560 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC; 1561 ew32(FEXTNVM4, mac_reg); 1562 } 1563 1564 /* Work-around I218 hang issue */ 1565 if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) || 1566 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) || 1567 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) || 1568 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) { 1569 ret_val = e1000_k1_workaround_lpt_lp(hw, link); 1570 if (ret_val) 1571 goto out; 1572 } 1573 if (hw->mac.type >= e1000_pch_lpt) { 1574 /* Set platform power management values for 1575 * Latency Tolerance Reporting (LTR) 1576 */ 1577 ret_val = e1000_platform_pm_pch_lpt(hw, link); 1578 if (ret_val) 1579 goto out; 1580 } 1581 1582 /* Clear link partner's EEE ability */ 1583 hw->dev_spec.ich8lan.eee_lp_ability = 0; 1584 1585 if (hw->mac.type >= e1000_pch_lpt) { 1586 u32 fextnvm6 = er32(FEXTNVM6); 1587 1588 if (hw->mac.type == e1000_pch_spt) { 1589 /* FEXTNVM6 K1-off workaround - for SPT only */ 1590 u32 pcieanacfg = er32(PCIEANACFG); 1591 1592 if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE) 1593 fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE; 1594 else 1595 fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE; 1596 } 1597 1598 ew32(FEXTNVM6, fextnvm6); 1599 } 1600 1601 if (!link) 1602 goto out; 1603 1604 switch (hw->mac.type) { 1605 case e1000_pch2lan: 1606 ret_val = e1000_k1_workaround_lv(hw); 1607 if (ret_val) 1608 return ret_val; 1609 fallthrough; 1610 case e1000_pchlan: 1611 if (hw->phy.type == e1000_phy_82578) { 1612 ret_val = e1000_link_stall_workaround_hv(hw); 1613 if (ret_val) 1614 return ret_val; 1615 } 1616 1617 /* Workaround for PCHx parts in half-duplex: 1618 * Set the number of preambles removed from the packet 1619 * when it is passed from the PHY to the MAC to prevent 1620 * the MAC from misinterpreting the packet type. 1621 */ 1622 e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg); 1623 phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK; 1624 1625 if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD) 1626 phy_reg |= BIT(HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT); 1627 1628 e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg); 1629 break; 1630 default: 1631 break; 1632 } 1633 1634 /* Check if there was DownShift, must be checked 1635 * immediately after link-up 1636 */ 1637 e1000e_check_downshift(hw); 1638 1639 /* Enable/Disable EEE after link up */ 1640 if (hw->phy.type > e1000_phy_82579) { 1641 ret_val = e1000_set_eee_pchlan(hw); 1642 if (ret_val) 1643 return ret_val; 1644 } 1645 1646 /* If we are forcing speed/duplex, then we simply return since 1647 * we have already determined whether we have link or not. 1648 */ 1649 if (!mac->autoneg) 1650 return -E1000_ERR_CONFIG; 1651 1652 /* Auto-Neg is enabled. Auto Speed Detection takes care 1653 * of MAC speed/duplex configuration. So we only need to 1654 * configure Collision Distance in the MAC. 1655 */ 1656 mac->ops.config_collision_dist(hw); 1657 1658 /* Configure Flow Control now that Auto-Neg has completed. 1659 * First, we need to restore the desired flow control 1660 * settings because we may have had to re-autoneg with a 1661 * different link partner. 1662 */ 1663 ret_val = e1000e_config_fc_after_link_up(hw); 1664 if (ret_val) 1665 e_dbg("Error configuring flow control\n"); 1666 1667 return ret_val; 1668 1669 out: 1670 mac->get_link_status = true; 1671 return ret_val; 1672 } 1673 1674 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter) 1675 { 1676 struct e1000_hw *hw = &adapter->hw; 1677 s32 rc; 1678 1679 rc = e1000_init_mac_params_ich8lan(hw); 1680 if (rc) 1681 return rc; 1682 1683 rc = e1000_init_nvm_params_ich8lan(hw); 1684 if (rc) 1685 return rc; 1686 1687 switch (hw->mac.type) { 1688 case e1000_ich8lan: 1689 case e1000_ich9lan: 1690 case e1000_ich10lan: 1691 rc = e1000_init_phy_params_ich8lan(hw); 1692 break; 1693 case e1000_pchlan: 1694 case e1000_pch2lan: 1695 case e1000_pch_lpt: 1696 case e1000_pch_spt: 1697 case e1000_pch_cnp: 1698 case e1000_pch_tgp: 1699 case e1000_pch_adp: 1700 case e1000_pch_mtp: 1701 case e1000_pch_lnp: 1702 case e1000_pch_ptp: 1703 case e1000_pch_nvp: 1704 rc = e1000_init_phy_params_pchlan(hw); 1705 break; 1706 default: 1707 break; 1708 } 1709 if (rc) 1710 return rc; 1711 1712 /* Disable Jumbo Frame support on parts with Intel 10/100 PHY or 1713 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT). 1714 */ 1715 if ((adapter->hw.phy.type == e1000_phy_ife) || 1716 ((adapter->hw.mac.type >= e1000_pch2lan) && 1717 (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) { 1718 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES; 1719 adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN; 1720 1721 hw->mac.ops.blink_led = NULL; 1722 } 1723 1724 if ((adapter->hw.mac.type == e1000_ich8lan) && 1725 (adapter->hw.phy.type != e1000_phy_ife)) 1726 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP; 1727 1728 /* Enable workaround for 82579 w/ ME enabled */ 1729 if ((adapter->hw.mac.type == e1000_pch2lan) && 1730 (er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) 1731 adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA; 1732 1733 return 0; 1734 } 1735 1736 static DEFINE_MUTEX(nvm_mutex); 1737 1738 /** 1739 * e1000_acquire_nvm_ich8lan - Acquire NVM mutex 1740 * @hw: pointer to the HW structure 1741 * 1742 * Acquires the mutex for performing NVM operations. 1743 **/ 1744 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw) 1745 { 1746 mutex_lock(&nvm_mutex); 1747 1748 return 0; 1749 } 1750 1751 /** 1752 * e1000_release_nvm_ich8lan - Release NVM mutex 1753 * @hw: pointer to the HW structure 1754 * 1755 * Releases the mutex used while performing NVM operations. 1756 **/ 1757 static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw) 1758 { 1759 mutex_unlock(&nvm_mutex); 1760 } 1761 1762 /** 1763 * e1000_acquire_swflag_ich8lan - Acquire software control flag 1764 * @hw: pointer to the HW structure 1765 * 1766 * Acquires the software control flag for performing PHY and select 1767 * MAC CSR accesses. 1768 **/ 1769 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw) 1770 { 1771 u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT; 1772 s32 ret_val = 0; 1773 1774 if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE, 1775 &hw->adapter->state)) { 1776 e_dbg("contention for Phy access\n"); 1777 return -E1000_ERR_PHY; 1778 } 1779 1780 while (timeout) { 1781 extcnf_ctrl = er32(EXTCNF_CTRL); 1782 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)) 1783 break; 1784 1785 mdelay(1); 1786 timeout--; 1787 } 1788 1789 if (!timeout) { 1790 e_dbg("SW has already locked the resource.\n"); 1791 ret_val = -E1000_ERR_CONFIG; 1792 goto out; 1793 } 1794 1795 timeout = SW_FLAG_TIMEOUT; 1796 1797 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG; 1798 ew32(EXTCNF_CTRL, extcnf_ctrl); 1799 1800 while (timeout) { 1801 extcnf_ctrl = er32(EXTCNF_CTRL); 1802 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) 1803 break; 1804 1805 mdelay(1); 1806 timeout--; 1807 } 1808 1809 if (!timeout) { 1810 e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n", 1811 er32(FWSM), extcnf_ctrl); 1812 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG; 1813 ew32(EXTCNF_CTRL, extcnf_ctrl); 1814 ret_val = -E1000_ERR_CONFIG; 1815 goto out; 1816 } 1817 1818 out: 1819 if (ret_val) 1820 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state); 1821 1822 return ret_val; 1823 } 1824 1825 /** 1826 * e1000_release_swflag_ich8lan - Release software control flag 1827 * @hw: pointer to the HW structure 1828 * 1829 * Releases the software control flag for performing PHY and select 1830 * MAC CSR accesses. 1831 **/ 1832 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw) 1833 { 1834 u32 extcnf_ctrl; 1835 1836 extcnf_ctrl = er32(EXTCNF_CTRL); 1837 1838 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) { 1839 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG; 1840 ew32(EXTCNF_CTRL, extcnf_ctrl); 1841 } else { 1842 e_dbg("Semaphore unexpectedly released by sw/fw/hw\n"); 1843 } 1844 1845 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state); 1846 } 1847 1848 /** 1849 * e1000_check_mng_mode_ich8lan - Checks management mode 1850 * @hw: pointer to the HW structure 1851 * 1852 * This checks if the adapter has any manageability enabled. 1853 * This is a function pointer entry point only called by read/write 1854 * routines for the PHY and NVM parts. 1855 **/ 1856 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw) 1857 { 1858 u32 fwsm; 1859 1860 fwsm = er32(FWSM); 1861 return (fwsm & E1000_ICH_FWSM_FW_VALID) && 1862 ((fwsm & E1000_FWSM_MODE_MASK) == 1863 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)); 1864 } 1865 1866 /** 1867 * e1000_check_mng_mode_pchlan - Checks management mode 1868 * @hw: pointer to the HW structure 1869 * 1870 * This checks if the adapter has iAMT enabled. 1871 * This is a function pointer entry point only called by read/write 1872 * routines for the PHY and NVM parts. 1873 **/ 1874 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw) 1875 { 1876 u32 fwsm; 1877 1878 fwsm = er32(FWSM); 1879 return (fwsm & E1000_ICH_FWSM_FW_VALID) && 1880 (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)); 1881 } 1882 1883 /** 1884 * e1000_rar_set_pch2lan - Set receive address register 1885 * @hw: pointer to the HW structure 1886 * @addr: pointer to the receive address 1887 * @index: receive address array register 1888 * 1889 * Sets the receive address array register at index to the address passed 1890 * in by addr. For 82579, RAR[0] is the base address register that is to 1891 * contain the MAC address but RAR[1-6] are reserved for manageability (ME). 1892 * Use SHRA[0-3] in place of those reserved for ME. 1893 **/ 1894 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index) 1895 { 1896 u32 rar_low, rar_high; 1897 1898 /* HW expects these in little endian so we reverse the byte order 1899 * from network order (big endian) to little endian 1900 */ 1901 rar_low = ((u32)addr[0] | 1902 ((u32)addr[1] << 8) | 1903 ((u32)addr[2] << 16) | ((u32)addr[3] << 24)); 1904 1905 rar_high = ((u32)addr[4] | ((u32)addr[5] << 8)); 1906 1907 /* If MAC address zero, no need to set the AV bit */ 1908 if (rar_low || rar_high) 1909 rar_high |= E1000_RAH_AV; 1910 1911 if (index == 0) { 1912 ew32(RAL(index), rar_low); 1913 e1e_flush(); 1914 ew32(RAH(index), rar_high); 1915 e1e_flush(); 1916 return 0; 1917 } 1918 1919 /* RAR[1-6] are owned by manageability. Skip those and program the 1920 * next address into the SHRA register array. 1921 */ 1922 if (index < (u32)(hw->mac.rar_entry_count)) { 1923 s32 ret_val; 1924 1925 ret_val = e1000_acquire_swflag_ich8lan(hw); 1926 if (ret_val) 1927 goto out; 1928 1929 ew32(SHRAL(index - 1), rar_low); 1930 e1e_flush(); 1931 ew32(SHRAH(index - 1), rar_high); 1932 e1e_flush(); 1933 1934 e1000_release_swflag_ich8lan(hw); 1935 1936 /* verify the register updates */ 1937 if ((er32(SHRAL(index - 1)) == rar_low) && 1938 (er32(SHRAH(index - 1)) == rar_high)) 1939 return 0; 1940 1941 e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n", 1942 (index - 1), er32(FWSM)); 1943 } 1944 1945 out: 1946 e_dbg("Failed to write receive address at index %d\n", index); 1947 return -E1000_ERR_CONFIG; 1948 } 1949 1950 /** 1951 * e1000_rar_get_count_pch_lpt - Get the number of available SHRA 1952 * @hw: pointer to the HW structure 1953 * 1954 * Get the number of available receive registers that the Host can 1955 * program. SHRA[0-10] are the shared receive address registers 1956 * that are shared between the Host and manageability engine (ME). 1957 * ME can reserve any number of addresses and the host needs to be 1958 * able to tell how many available registers it has access to. 1959 **/ 1960 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw) 1961 { 1962 u32 wlock_mac; 1963 u32 num_entries; 1964 1965 wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK; 1966 wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT; 1967 1968 switch (wlock_mac) { 1969 case 0: 1970 /* All SHRA[0..10] and RAR[0] available */ 1971 num_entries = hw->mac.rar_entry_count; 1972 break; 1973 case 1: 1974 /* Only RAR[0] available */ 1975 num_entries = 1; 1976 break; 1977 default: 1978 /* SHRA[0..(wlock_mac - 1)] available + RAR[0] */ 1979 num_entries = wlock_mac + 1; 1980 break; 1981 } 1982 1983 return num_entries; 1984 } 1985 1986 /** 1987 * e1000_rar_set_pch_lpt - Set receive address registers 1988 * @hw: pointer to the HW structure 1989 * @addr: pointer to the receive address 1990 * @index: receive address array register 1991 * 1992 * Sets the receive address register array at index to the address passed 1993 * in by addr. For LPT, RAR[0] is the base address register that is to 1994 * contain the MAC address. SHRA[0-10] are the shared receive address 1995 * registers that are shared between the Host and manageability engine (ME). 1996 **/ 1997 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index) 1998 { 1999 u32 rar_low, rar_high; 2000 u32 wlock_mac; 2001 2002 /* HW expects these in little endian so we reverse the byte order 2003 * from network order (big endian) to little endian 2004 */ 2005 rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) | 2006 ((u32)addr[2] << 16) | ((u32)addr[3] << 24)); 2007 2008 rar_high = ((u32)addr[4] | ((u32)addr[5] << 8)); 2009 2010 /* If MAC address zero, no need to set the AV bit */ 2011 if (rar_low || rar_high) 2012 rar_high |= E1000_RAH_AV; 2013 2014 if (index == 0) { 2015 ew32(RAL(index), rar_low); 2016 e1e_flush(); 2017 ew32(RAH(index), rar_high); 2018 e1e_flush(); 2019 return 0; 2020 } 2021 2022 /* The manageability engine (ME) can lock certain SHRAR registers that 2023 * it is using - those registers are unavailable for use. 2024 */ 2025 if (index < hw->mac.rar_entry_count) { 2026 wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK; 2027 wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT; 2028 2029 /* Check if all SHRAR registers are locked */ 2030 if (wlock_mac == 1) 2031 goto out; 2032 2033 if ((wlock_mac == 0) || (index <= wlock_mac)) { 2034 s32 ret_val; 2035 2036 ret_val = e1000_acquire_swflag_ich8lan(hw); 2037 2038 if (ret_val) 2039 goto out; 2040 2041 ew32(SHRAL_PCH_LPT(index - 1), rar_low); 2042 e1e_flush(); 2043 ew32(SHRAH_PCH_LPT(index - 1), rar_high); 2044 e1e_flush(); 2045 2046 e1000_release_swflag_ich8lan(hw); 2047 2048 /* verify the register updates */ 2049 if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) && 2050 (er32(SHRAH_PCH_LPT(index - 1)) == rar_high)) 2051 return 0; 2052 } 2053 } 2054 2055 out: 2056 e_dbg("Failed to write receive address at index %d\n", index); 2057 return -E1000_ERR_CONFIG; 2058 } 2059 2060 /** 2061 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked 2062 * @hw: pointer to the HW structure 2063 * 2064 * Checks if firmware is blocking the reset of the PHY. 2065 * This is a function pointer entry point only called by 2066 * reset routines. 2067 **/ 2068 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw) 2069 { 2070 bool blocked = false; 2071 int i = 0; 2072 2073 while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) && 2074 (i++ < 30)) 2075 usleep_range(10000, 11000); 2076 return blocked ? E1000_BLK_PHY_RESET : 0; 2077 } 2078 2079 /** 2080 * e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states 2081 * @hw: pointer to the HW structure 2082 * 2083 * Assumes semaphore already acquired. 2084 * 2085 **/ 2086 static s32 e1000_write_smbus_addr(struct e1000_hw *hw) 2087 { 2088 u16 phy_data; 2089 u32 strap = er32(STRAP); 2090 u32 freq = FIELD_GET(E1000_STRAP_SMT_FREQ_MASK, strap); 2091 s32 ret_val; 2092 2093 strap &= E1000_STRAP_SMBUS_ADDRESS_MASK; 2094 2095 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data); 2096 if (ret_val) 2097 return ret_val; 2098 2099 phy_data &= ~HV_SMB_ADDR_MASK; 2100 phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT); 2101 phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID; 2102 2103 if (hw->phy.type == e1000_phy_i217) { 2104 /* Restore SMBus frequency */ 2105 if (freq--) { 2106 phy_data &= ~HV_SMB_ADDR_FREQ_MASK; 2107 phy_data |= (freq & BIT(0)) << 2108 HV_SMB_ADDR_FREQ_LOW_SHIFT; 2109 phy_data |= (freq & BIT(1)) << 2110 (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1); 2111 } else { 2112 e_dbg("Unsupported SMB frequency in PHY\n"); 2113 } 2114 } 2115 2116 return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data); 2117 } 2118 2119 /** 2120 * e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration 2121 * @hw: pointer to the HW structure 2122 * 2123 * SW should configure the LCD from the NVM extended configuration region 2124 * as a workaround for certain parts. 2125 **/ 2126 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw) 2127 { 2128 struct e1000_phy_info *phy = &hw->phy; 2129 u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask; 2130 s32 ret_val = 0; 2131 u16 word_addr, reg_data, reg_addr, phy_page = 0; 2132 2133 /* Initialize the PHY from the NVM on ICH platforms. This 2134 * is needed due to an issue where the NVM configuration is 2135 * not properly autoloaded after power transitions. 2136 * Therefore, after each PHY reset, we will load the 2137 * configuration data out of the NVM manually. 2138 */ 2139 switch (hw->mac.type) { 2140 case e1000_ich8lan: 2141 if (phy->type != e1000_phy_igp_3) 2142 return ret_val; 2143 2144 if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) || 2145 (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) { 2146 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG; 2147 break; 2148 } 2149 fallthrough; 2150 case e1000_pchlan: 2151 case e1000_pch2lan: 2152 case e1000_pch_lpt: 2153 case e1000_pch_spt: 2154 case e1000_pch_cnp: 2155 case e1000_pch_tgp: 2156 case e1000_pch_adp: 2157 case e1000_pch_mtp: 2158 case e1000_pch_lnp: 2159 case e1000_pch_ptp: 2160 case e1000_pch_nvp: 2161 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M; 2162 break; 2163 default: 2164 return ret_val; 2165 } 2166 2167 ret_val = hw->phy.ops.acquire(hw); 2168 if (ret_val) 2169 return ret_val; 2170 2171 data = er32(FEXTNVM); 2172 if (!(data & sw_cfg_mask)) 2173 goto release; 2174 2175 /* Make sure HW does not configure LCD from PHY 2176 * extended configuration before SW configuration 2177 */ 2178 data = er32(EXTCNF_CTRL); 2179 if ((hw->mac.type < e1000_pch2lan) && 2180 (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)) 2181 goto release; 2182 2183 cnf_size = er32(EXTCNF_SIZE); 2184 cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK; 2185 cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT; 2186 if (!cnf_size) 2187 goto release; 2188 2189 cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK; 2190 cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT; 2191 2192 if (((hw->mac.type == e1000_pchlan) && 2193 !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) || 2194 (hw->mac.type > e1000_pchlan)) { 2195 /* HW configures the SMBus address and LEDs when the 2196 * OEM and LCD Write Enable bits are set in the NVM. 2197 * When both NVM bits are cleared, SW will configure 2198 * them instead. 2199 */ 2200 ret_val = e1000_write_smbus_addr(hw); 2201 if (ret_val) 2202 goto release; 2203 2204 data = er32(LEDCTL); 2205 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG, 2206 (u16)data); 2207 if (ret_val) 2208 goto release; 2209 } 2210 2211 /* Configure LCD from extended configuration region. */ 2212 2213 /* cnf_base_addr is in DWORD */ 2214 word_addr = (u16)(cnf_base_addr << 1); 2215 2216 for (i = 0; i < cnf_size; i++) { 2217 ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, ®_data); 2218 if (ret_val) 2219 goto release; 2220 2221 ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1), 2222 1, ®_addr); 2223 if (ret_val) 2224 goto release; 2225 2226 /* Save off the PHY page for future writes. */ 2227 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) { 2228 phy_page = reg_data; 2229 continue; 2230 } 2231 2232 reg_addr &= PHY_REG_MASK; 2233 reg_addr |= phy_page; 2234 2235 ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data); 2236 if (ret_val) 2237 goto release; 2238 } 2239 2240 release: 2241 hw->phy.ops.release(hw); 2242 return ret_val; 2243 } 2244 2245 /** 2246 * e1000_k1_gig_workaround_hv - K1 Si workaround 2247 * @hw: pointer to the HW structure 2248 * @link: link up bool flag 2249 * 2250 * If K1 is enabled for 1Gbps, the MAC might stall when transitioning 2251 * from a lower speed. This workaround disables K1 whenever link is at 1Gig 2252 * If link is down, the function will restore the default K1 setting located 2253 * in the NVM. 2254 **/ 2255 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link) 2256 { 2257 s32 ret_val = 0; 2258 u16 status_reg = 0; 2259 bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled; 2260 2261 if (hw->mac.type != e1000_pchlan) 2262 return 0; 2263 2264 /* Wrap the whole flow with the sw flag */ 2265 ret_val = hw->phy.ops.acquire(hw); 2266 if (ret_val) 2267 return ret_val; 2268 2269 /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */ 2270 if (link) { 2271 if (hw->phy.type == e1000_phy_82578) { 2272 ret_val = e1e_rphy_locked(hw, BM_CS_STATUS, 2273 &status_reg); 2274 if (ret_val) 2275 goto release; 2276 2277 status_reg &= (BM_CS_STATUS_LINK_UP | 2278 BM_CS_STATUS_RESOLVED | 2279 BM_CS_STATUS_SPEED_MASK); 2280 2281 if (status_reg == (BM_CS_STATUS_LINK_UP | 2282 BM_CS_STATUS_RESOLVED | 2283 BM_CS_STATUS_SPEED_1000)) 2284 k1_enable = false; 2285 } 2286 2287 if (hw->phy.type == e1000_phy_82577) { 2288 ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg); 2289 if (ret_val) 2290 goto release; 2291 2292 status_reg &= (HV_M_STATUS_LINK_UP | 2293 HV_M_STATUS_AUTONEG_COMPLETE | 2294 HV_M_STATUS_SPEED_MASK); 2295 2296 if (status_reg == (HV_M_STATUS_LINK_UP | 2297 HV_M_STATUS_AUTONEG_COMPLETE | 2298 HV_M_STATUS_SPEED_1000)) 2299 k1_enable = false; 2300 } 2301 2302 /* Link stall fix for link up */ 2303 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100); 2304 if (ret_val) 2305 goto release; 2306 2307 } else { 2308 /* Link stall fix for link down */ 2309 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100); 2310 if (ret_val) 2311 goto release; 2312 } 2313 2314 ret_val = e1000_configure_k1_ich8lan(hw, k1_enable); 2315 2316 release: 2317 hw->phy.ops.release(hw); 2318 2319 return ret_val; 2320 } 2321 2322 /** 2323 * e1000_configure_k1_ich8lan - Configure K1 power state 2324 * @hw: pointer to the HW structure 2325 * @k1_enable: K1 state to configure 2326 * 2327 * Configure the K1 power state based on the provided parameter. 2328 * Assumes semaphore already acquired. 2329 * 2330 * Success returns 0, Failure returns -E1000_ERR_PHY (-2) 2331 **/ 2332 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable) 2333 { 2334 s32 ret_val; 2335 u32 ctrl_reg = 0; 2336 u32 ctrl_ext = 0; 2337 u32 reg = 0; 2338 u16 kmrn_reg = 0; 2339 2340 ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG, 2341 &kmrn_reg); 2342 if (ret_val) 2343 return ret_val; 2344 2345 if (k1_enable) 2346 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE; 2347 else 2348 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE; 2349 2350 ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG, 2351 kmrn_reg); 2352 if (ret_val) 2353 return ret_val; 2354 2355 usleep_range(20, 40); 2356 ctrl_ext = er32(CTRL_EXT); 2357 ctrl_reg = er32(CTRL); 2358 2359 reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); 2360 reg |= E1000_CTRL_FRCSPD; 2361 ew32(CTRL, reg); 2362 2363 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS); 2364 e1e_flush(); 2365 usleep_range(20, 40); 2366 ew32(CTRL, ctrl_reg); 2367 ew32(CTRL_EXT, ctrl_ext); 2368 e1e_flush(); 2369 usleep_range(20, 40); 2370 2371 return 0; 2372 } 2373 2374 /** 2375 * e1000_oem_bits_config_ich8lan - SW-based LCD Configuration 2376 * @hw: pointer to the HW structure 2377 * @d0_state: boolean if entering d0 or d3 device state 2378 * 2379 * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are 2380 * collectively called OEM bits. The OEM Write Enable bit and SW Config bit 2381 * in NVM determines whether HW should configure LPLU and Gbe Disable. 2382 **/ 2383 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state) 2384 { 2385 s32 ret_val = 0; 2386 u32 mac_reg; 2387 u16 oem_reg; 2388 2389 if (hw->mac.type < e1000_pchlan) 2390 return ret_val; 2391 2392 ret_val = hw->phy.ops.acquire(hw); 2393 if (ret_val) 2394 return ret_val; 2395 2396 if (hw->mac.type == e1000_pchlan) { 2397 mac_reg = er32(EXTCNF_CTRL); 2398 if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) 2399 goto release; 2400 } 2401 2402 mac_reg = er32(FEXTNVM); 2403 if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M)) 2404 goto release; 2405 2406 mac_reg = er32(PHY_CTRL); 2407 2408 ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg); 2409 if (ret_val) 2410 goto release; 2411 2412 oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU); 2413 2414 if (d0_state) { 2415 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE) 2416 oem_reg |= HV_OEM_BITS_GBE_DIS; 2417 2418 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU) 2419 oem_reg |= HV_OEM_BITS_LPLU; 2420 } else { 2421 if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE | 2422 E1000_PHY_CTRL_NOND0A_GBE_DISABLE)) 2423 oem_reg |= HV_OEM_BITS_GBE_DIS; 2424 2425 if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU | 2426 E1000_PHY_CTRL_NOND0A_LPLU)) 2427 oem_reg |= HV_OEM_BITS_LPLU; 2428 } 2429 2430 /* Set Restart auto-neg to activate the bits */ 2431 if ((d0_state || (hw->mac.type != e1000_pchlan)) && 2432 !hw->phy.ops.check_reset_block(hw)) 2433 oem_reg |= HV_OEM_BITS_RESTART_AN; 2434 2435 ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg); 2436 2437 release: 2438 hw->phy.ops.release(hw); 2439 2440 return ret_val; 2441 } 2442 2443 /** 2444 * e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode 2445 * @hw: pointer to the HW structure 2446 **/ 2447 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw) 2448 { 2449 s32 ret_val; 2450 u16 data; 2451 2452 ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data); 2453 if (ret_val) 2454 return ret_val; 2455 2456 data |= HV_KMRN_MDIO_SLOW; 2457 2458 ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data); 2459 2460 return ret_val; 2461 } 2462 2463 /** 2464 * e1000_hv_phy_workarounds_ich8lan - apply PHY workarounds 2465 * @hw: pointer to the HW structure 2466 * 2467 * A series of PHY workarounds to be done after every PHY reset. 2468 **/ 2469 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw) 2470 { 2471 s32 ret_val = 0; 2472 u16 phy_data; 2473 2474 if (hw->mac.type != e1000_pchlan) 2475 return 0; 2476 2477 /* Set MDIO slow mode before any other MDIO access */ 2478 if (hw->phy.type == e1000_phy_82577) { 2479 ret_val = e1000_set_mdio_slow_mode_hv(hw); 2480 if (ret_val) 2481 return ret_val; 2482 } 2483 2484 if (((hw->phy.type == e1000_phy_82577) && 2485 ((hw->phy.revision == 1) || (hw->phy.revision == 2))) || 2486 ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) { 2487 /* Disable generation of early preamble */ 2488 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431); 2489 if (ret_val) 2490 return ret_val; 2491 2492 /* Preamble tuning for SSC */ 2493 ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204); 2494 if (ret_val) 2495 return ret_val; 2496 } 2497 2498 if (hw->phy.type == e1000_phy_82578) { 2499 /* Return registers to default by doing a soft reset then 2500 * writing 0x3140 to the control register. 2501 */ 2502 if (hw->phy.revision < 2) { 2503 e1000e_phy_sw_reset(hw); 2504 ret_val = e1e_wphy(hw, MII_BMCR, 0x3140); 2505 if (ret_val) 2506 return ret_val; 2507 } 2508 } 2509 2510 /* Select page 0 */ 2511 ret_val = hw->phy.ops.acquire(hw); 2512 if (ret_val) 2513 return ret_val; 2514 2515 hw->phy.addr = 1; 2516 ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0); 2517 hw->phy.ops.release(hw); 2518 if (ret_val) 2519 return ret_val; 2520 2521 /* Configure the K1 Si workaround during phy reset assuming there is 2522 * link so that it disables K1 if link is in 1Gbps. 2523 */ 2524 ret_val = e1000_k1_gig_workaround_hv(hw, true); 2525 if (ret_val) 2526 return ret_val; 2527 2528 /* Workaround for link disconnects on a busy hub in half duplex */ 2529 ret_val = hw->phy.ops.acquire(hw); 2530 if (ret_val) 2531 return ret_val; 2532 ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data); 2533 if (ret_val) 2534 goto release; 2535 ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF); 2536 if (ret_val) 2537 goto release; 2538 2539 /* set MSE higher to enable link to stay up when noise is high */ 2540 ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034); 2541 release: 2542 hw->phy.ops.release(hw); 2543 2544 return ret_val; 2545 } 2546 2547 /** 2548 * e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY 2549 * @hw: pointer to the HW structure 2550 **/ 2551 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw) 2552 { 2553 u32 mac_reg; 2554 u16 i, phy_reg = 0; 2555 s32 ret_val; 2556 2557 ret_val = hw->phy.ops.acquire(hw); 2558 if (ret_val) 2559 return; 2560 ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg); 2561 if (ret_val) 2562 goto release; 2563 2564 /* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */ 2565 for (i = 0; i < (hw->mac.rar_entry_count); i++) { 2566 mac_reg = er32(RAL(i)); 2567 hw->phy.ops.write_reg_page(hw, BM_RAR_L(i), 2568 (u16)(mac_reg & 0xFFFF)); 2569 hw->phy.ops.write_reg_page(hw, BM_RAR_M(i), 2570 (u16)((mac_reg >> 16) & 0xFFFF)); 2571 2572 mac_reg = er32(RAH(i)); 2573 hw->phy.ops.write_reg_page(hw, BM_RAR_H(i), 2574 (u16)(mac_reg & 0xFFFF)); 2575 hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i), 2576 FIELD_GET(E1000_RAH_AV, mac_reg)); 2577 } 2578 2579 e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg); 2580 2581 release: 2582 hw->phy.ops.release(hw); 2583 } 2584 2585 /** 2586 * e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation 2587 * with 82579 PHY 2588 * @hw: pointer to the HW structure 2589 * @enable: flag to enable/disable workaround when enabling/disabling jumbos 2590 **/ 2591 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable) 2592 { 2593 s32 ret_val = 0; 2594 u16 phy_reg, data; 2595 u32 mac_reg; 2596 u16 i; 2597 2598 if (hw->mac.type < e1000_pch2lan) 2599 return 0; 2600 2601 /* disable Rx path while enabling/disabling workaround */ 2602 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg); 2603 ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | BIT(14)); 2604 if (ret_val) 2605 return ret_val; 2606 2607 if (enable) { 2608 /* Write Rx addresses (rar_entry_count for RAL/H, and 2609 * SHRAL/H) and initial CRC values to the MAC 2610 */ 2611 for (i = 0; i < hw->mac.rar_entry_count; i++) { 2612 u8 mac_addr[ETH_ALEN] = { 0 }; 2613 u32 addr_high, addr_low; 2614 2615 addr_high = er32(RAH(i)); 2616 if (!(addr_high & E1000_RAH_AV)) 2617 continue; 2618 addr_low = er32(RAL(i)); 2619 mac_addr[0] = (addr_low & 0xFF); 2620 mac_addr[1] = ((addr_low >> 8) & 0xFF); 2621 mac_addr[2] = ((addr_low >> 16) & 0xFF); 2622 mac_addr[3] = ((addr_low >> 24) & 0xFF); 2623 mac_addr[4] = (addr_high & 0xFF); 2624 mac_addr[5] = ((addr_high >> 8) & 0xFF); 2625 2626 ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr)); 2627 } 2628 2629 /* Write Rx addresses to the PHY */ 2630 e1000_copy_rx_addrs_to_phy_ich8lan(hw); 2631 2632 /* Enable jumbo frame workaround in the MAC */ 2633 mac_reg = er32(FFLT_DBG); 2634 mac_reg &= ~BIT(14); 2635 mac_reg |= (7 << 15); 2636 ew32(FFLT_DBG, mac_reg); 2637 2638 mac_reg = er32(RCTL); 2639 mac_reg |= E1000_RCTL_SECRC; 2640 ew32(RCTL, mac_reg); 2641 2642 ret_val = e1000e_read_kmrn_reg(hw, 2643 E1000_KMRNCTRLSTA_CTRL_OFFSET, 2644 &data); 2645 if (ret_val) 2646 return ret_val; 2647 ret_val = e1000e_write_kmrn_reg(hw, 2648 E1000_KMRNCTRLSTA_CTRL_OFFSET, 2649 data | BIT(0)); 2650 if (ret_val) 2651 return ret_val; 2652 ret_val = e1000e_read_kmrn_reg(hw, 2653 E1000_KMRNCTRLSTA_HD_CTRL, 2654 &data); 2655 if (ret_val) 2656 return ret_val; 2657 data &= ~(0xF << 8); 2658 data |= (0xB << 8); 2659 ret_val = e1000e_write_kmrn_reg(hw, 2660 E1000_KMRNCTRLSTA_HD_CTRL, 2661 data); 2662 if (ret_val) 2663 return ret_val; 2664 2665 /* Enable jumbo frame workaround in the PHY */ 2666 e1e_rphy(hw, PHY_REG(769, 23), &data); 2667 data &= ~(0x7F << 5); 2668 data |= (0x37 << 5); 2669 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data); 2670 if (ret_val) 2671 return ret_val; 2672 e1e_rphy(hw, PHY_REG(769, 16), &data); 2673 data &= ~BIT(13); 2674 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data); 2675 if (ret_val) 2676 return ret_val; 2677 e1e_rphy(hw, PHY_REG(776, 20), &data); 2678 data &= ~(0x3FF << 2); 2679 data |= (E1000_TX_PTR_GAP << 2); 2680 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data); 2681 if (ret_val) 2682 return ret_val; 2683 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100); 2684 if (ret_val) 2685 return ret_val; 2686 e1e_rphy(hw, HV_PM_CTRL, &data); 2687 ret_val = e1e_wphy(hw, HV_PM_CTRL, data | BIT(10)); 2688 if (ret_val) 2689 return ret_val; 2690 } else { 2691 /* Write MAC register values back to h/w defaults */ 2692 mac_reg = er32(FFLT_DBG); 2693 mac_reg &= ~(0xF << 14); 2694 ew32(FFLT_DBG, mac_reg); 2695 2696 mac_reg = er32(RCTL); 2697 mac_reg &= ~E1000_RCTL_SECRC; 2698 ew32(RCTL, mac_reg); 2699 2700 ret_val = e1000e_read_kmrn_reg(hw, 2701 E1000_KMRNCTRLSTA_CTRL_OFFSET, 2702 &data); 2703 if (ret_val) 2704 return ret_val; 2705 ret_val = e1000e_write_kmrn_reg(hw, 2706 E1000_KMRNCTRLSTA_CTRL_OFFSET, 2707 data & ~BIT(0)); 2708 if (ret_val) 2709 return ret_val; 2710 ret_val = e1000e_read_kmrn_reg(hw, 2711 E1000_KMRNCTRLSTA_HD_CTRL, 2712 &data); 2713 if (ret_val) 2714 return ret_val; 2715 data &= ~(0xF << 8); 2716 data |= (0xB << 8); 2717 ret_val = e1000e_write_kmrn_reg(hw, 2718 E1000_KMRNCTRLSTA_HD_CTRL, 2719 data); 2720 if (ret_val) 2721 return ret_val; 2722 2723 /* Write PHY register values back to h/w defaults */ 2724 e1e_rphy(hw, PHY_REG(769, 23), &data); 2725 data &= ~(0x7F << 5); 2726 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data); 2727 if (ret_val) 2728 return ret_val; 2729 e1e_rphy(hw, PHY_REG(769, 16), &data); 2730 data |= BIT(13); 2731 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data); 2732 if (ret_val) 2733 return ret_val; 2734 e1e_rphy(hw, PHY_REG(776, 20), &data); 2735 data &= ~(0x3FF << 2); 2736 data |= (0x8 << 2); 2737 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data); 2738 if (ret_val) 2739 return ret_val; 2740 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00); 2741 if (ret_val) 2742 return ret_val; 2743 e1e_rphy(hw, HV_PM_CTRL, &data); 2744 ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~BIT(10)); 2745 if (ret_val) 2746 return ret_val; 2747 } 2748 2749 /* re-enable Rx path after enabling/disabling workaround */ 2750 return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~BIT(14)); 2751 } 2752 2753 /** 2754 * e1000_lv_phy_workarounds_ich8lan - apply ich8 specific workarounds 2755 * @hw: pointer to the HW structure 2756 * 2757 * A series of PHY workarounds to be done after every PHY reset. 2758 **/ 2759 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw) 2760 { 2761 s32 ret_val = 0; 2762 2763 if (hw->mac.type != e1000_pch2lan) 2764 return 0; 2765 2766 /* Set MDIO slow mode before any other MDIO access */ 2767 ret_val = e1000_set_mdio_slow_mode_hv(hw); 2768 if (ret_val) 2769 return ret_val; 2770 2771 ret_val = hw->phy.ops.acquire(hw); 2772 if (ret_val) 2773 return ret_val; 2774 /* set MSE higher to enable link to stay up when noise is high */ 2775 ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034); 2776 if (ret_val) 2777 goto release; 2778 /* drop link after 5 times MSE threshold was reached */ 2779 ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005); 2780 release: 2781 hw->phy.ops.release(hw); 2782 2783 return ret_val; 2784 } 2785 2786 /** 2787 * e1000_k1_workaround_lv - K1 Si workaround 2788 * @hw: pointer to the HW structure 2789 * 2790 * Workaround to set the K1 beacon duration for 82579 parts in 10Mbps 2791 * Disable K1 in 1000Mbps and 100Mbps 2792 **/ 2793 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw) 2794 { 2795 s32 ret_val = 0; 2796 u16 status_reg = 0; 2797 2798 if (hw->mac.type != e1000_pch2lan) 2799 return 0; 2800 2801 /* Set K1 beacon duration based on 10Mbs speed */ 2802 ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg); 2803 if (ret_val) 2804 return ret_val; 2805 2806 if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) 2807 == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) { 2808 if (status_reg & 2809 (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) { 2810 u16 pm_phy_reg; 2811 2812 /* LV 1G/100 Packet drop issue wa */ 2813 ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg); 2814 if (ret_val) 2815 return ret_val; 2816 pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE; 2817 ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg); 2818 if (ret_val) 2819 return ret_val; 2820 } else { 2821 u32 mac_reg; 2822 2823 mac_reg = er32(FEXTNVM4); 2824 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK; 2825 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC; 2826 ew32(FEXTNVM4, mac_reg); 2827 } 2828 } 2829 2830 return ret_val; 2831 } 2832 2833 /** 2834 * e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware 2835 * @hw: pointer to the HW structure 2836 * @gate: boolean set to true to gate, false to ungate 2837 * 2838 * Gate/ungate the automatic PHY configuration via hardware; perform 2839 * the configuration via software instead. 2840 **/ 2841 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate) 2842 { 2843 u32 extcnf_ctrl; 2844 2845 if (hw->mac.type < e1000_pch2lan) 2846 return; 2847 2848 extcnf_ctrl = er32(EXTCNF_CTRL); 2849 2850 if (gate) 2851 extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG; 2852 else 2853 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG; 2854 2855 ew32(EXTCNF_CTRL, extcnf_ctrl); 2856 } 2857 2858 /** 2859 * e1000_lan_init_done_ich8lan - Check for PHY config completion 2860 * @hw: pointer to the HW structure 2861 * 2862 * Check the appropriate indication the MAC has finished configuring the 2863 * PHY after a software reset. 2864 **/ 2865 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw) 2866 { 2867 u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT; 2868 2869 /* Wait for basic configuration completes before proceeding */ 2870 do { 2871 data = er32(STATUS); 2872 data &= E1000_STATUS_LAN_INIT_DONE; 2873 usleep_range(100, 200); 2874 } while ((!data) && --loop); 2875 2876 /* If basic configuration is incomplete before the above loop 2877 * count reaches 0, loading the configuration from NVM will 2878 * leave the PHY in a bad state possibly resulting in no link. 2879 */ 2880 if (loop == 0) 2881 e_dbg("LAN_INIT_DONE not set, increase timeout\n"); 2882 2883 /* Clear the Init Done bit for the next init event */ 2884 data = er32(STATUS); 2885 data &= ~E1000_STATUS_LAN_INIT_DONE; 2886 ew32(STATUS, data); 2887 } 2888 2889 /** 2890 * e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset 2891 * @hw: pointer to the HW structure 2892 **/ 2893 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw) 2894 { 2895 s32 ret_val = 0; 2896 u16 reg; 2897 2898 if (hw->phy.ops.check_reset_block(hw)) 2899 return 0; 2900 2901 /* Allow time for h/w to get to quiescent state after reset */ 2902 usleep_range(10000, 11000); 2903 2904 /* Perform any necessary post-reset workarounds */ 2905 switch (hw->mac.type) { 2906 case e1000_pchlan: 2907 ret_val = e1000_hv_phy_workarounds_ich8lan(hw); 2908 if (ret_val) 2909 return ret_val; 2910 break; 2911 case e1000_pch2lan: 2912 ret_val = e1000_lv_phy_workarounds_ich8lan(hw); 2913 if (ret_val) 2914 return ret_val; 2915 break; 2916 default: 2917 break; 2918 } 2919 2920 /* Clear the host wakeup bit after lcd reset */ 2921 if (hw->mac.type >= e1000_pchlan) { 2922 e1e_rphy(hw, BM_PORT_GEN_CFG, ®); 2923 reg &= ~BM_WUC_HOST_WU_BIT; 2924 e1e_wphy(hw, BM_PORT_GEN_CFG, reg); 2925 } 2926 2927 /* Configure the LCD with the extended configuration region in NVM */ 2928 ret_val = e1000_sw_lcd_config_ich8lan(hw); 2929 if (ret_val) 2930 return ret_val; 2931 2932 /* Configure the LCD with the OEM bits in NVM */ 2933 ret_val = e1000_oem_bits_config_ich8lan(hw, true); 2934 2935 if (hw->mac.type == e1000_pch2lan) { 2936 /* Ungate automatic PHY configuration on non-managed 82579 */ 2937 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) { 2938 usleep_range(10000, 11000); 2939 e1000_gate_hw_phy_config_ich8lan(hw, false); 2940 } 2941 2942 /* Set EEE LPI Update Timer to 200usec */ 2943 ret_val = hw->phy.ops.acquire(hw); 2944 if (ret_val) 2945 return ret_val; 2946 ret_val = e1000_write_emi_reg_locked(hw, 2947 I82579_LPI_UPDATE_TIMER, 2948 0x1387); 2949 hw->phy.ops.release(hw); 2950 } 2951 2952 return ret_val; 2953 } 2954 2955 /** 2956 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset 2957 * @hw: pointer to the HW structure 2958 * 2959 * Resets the PHY 2960 * This is a function pointer entry point called by drivers 2961 * or other shared routines. 2962 **/ 2963 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw) 2964 { 2965 s32 ret_val = 0; 2966 2967 /* Gate automatic PHY configuration by hardware on non-managed 82579 */ 2968 if ((hw->mac.type == e1000_pch2lan) && 2969 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) 2970 e1000_gate_hw_phy_config_ich8lan(hw, true); 2971 2972 ret_val = e1000e_phy_hw_reset_generic(hw); 2973 if (ret_val) 2974 return ret_val; 2975 2976 return e1000_post_phy_reset_ich8lan(hw); 2977 } 2978 2979 /** 2980 * e1000_set_lplu_state_pchlan - Set Low Power Link Up state 2981 * @hw: pointer to the HW structure 2982 * @active: true to enable LPLU, false to disable 2983 * 2984 * Sets the LPLU state according to the active flag. For PCH, if OEM write 2985 * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set 2986 * the phy speed. This function will manually set the LPLU bit and restart 2987 * auto-neg as hw would do. D3 and D0 LPLU will call the same function 2988 * since it configures the same bit. 2989 **/ 2990 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active) 2991 { 2992 s32 ret_val; 2993 u16 oem_reg; 2994 2995 ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg); 2996 if (ret_val) 2997 return ret_val; 2998 2999 if (active) 3000 oem_reg |= HV_OEM_BITS_LPLU; 3001 else 3002 oem_reg &= ~HV_OEM_BITS_LPLU; 3003 3004 if (!hw->phy.ops.check_reset_block(hw)) 3005 oem_reg |= HV_OEM_BITS_RESTART_AN; 3006 3007 return e1e_wphy(hw, HV_OEM_BITS, oem_reg); 3008 } 3009 3010 /** 3011 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state 3012 * @hw: pointer to the HW structure 3013 * @active: true to enable LPLU, false to disable 3014 * 3015 * Sets the LPLU D0 state according to the active flag. When 3016 * activating LPLU this function also disables smart speed 3017 * and vice versa. LPLU will not be activated unless the 3018 * device autonegotiation advertisement meets standards of 3019 * either 10 or 10/100 or 10/100/1000 at all duplexes. 3020 * This is a function pointer entry point only called by 3021 * PHY setup routines. 3022 **/ 3023 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active) 3024 { 3025 struct e1000_phy_info *phy = &hw->phy; 3026 u32 phy_ctrl; 3027 s32 ret_val = 0; 3028 u16 data; 3029 3030 if (phy->type == e1000_phy_ife) 3031 return 0; 3032 3033 phy_ctrl = er32(PHY_CTRL); 3034 3035 if (active) { 3036 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU; 3037 ew32(PHY_CTRL, phy_ctrl); 3038 3039 if (phy->type != e1000_phy_igp_3) 3040 return 0; 3041 3042 /* Call gig speed drop workaround on LPLU before accessing 3043 * any PHY registers 3044 */ 3045 if (hw->mac.type == e1000_ich8lan) 3046 e1000e_gig_downshift_workaround_ich8lan(hw); 3047 3048 /* When LPLU is enabled, we should disable SmartSpeed */ 3049 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data); 3050 if (ret_val) 3051 return ret_val; 3052 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 3053 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data); 3054 if (ret_val) 3055 return ret_val; 3056 } else { 3057 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU; 3058 ew32(PHY_CTRL, phy_ctrl); 3059 3060 if (phy->type != e1000_phy_igp_3) 3061 return 0; 3062 3063 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used 3064 * during Dx states where the power conservation is most 3065 * important. During driver activity we should enable 3066 * SmartSpeed, so performance is maintained. 3067 */ 3068 if (phy->smart_speed == e1000_smart_speed_on) { 3069 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, 3070 &data); 3071 if (ret_val) 3072 return ret_val; 3073 3074 data |= IGP01E1000_PSCFR_SMART_SPEED; 3075 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, 3076 data); 3077 if (ret_val) 3078 return ret_val; 3079 } else if (phy->smart_speed == e1000_smart_speed_off) { 3080 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, 3081 &data); 3082 if (ret_val) 3083 return ret_val; 3084 3085 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 3086 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, 3087 data); 3088 if (ret_val) 3089 return ret_val; 3090 } 3091 } 3092 3093 return 0; 3094 } 3095 3096 /** 3097 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state 3098 * @hw: pointer to the HW structure 3099 * @active: true to enable LPLU, false to disable 3100 * 3101 * Sets the LPLU D3 state according to the active flag. When 3102 * activating LPLU this function also disables smart speed 3103 * and vice versa. LPLU will not be activated unless the 3104 * device autonegotiation advertisement meets standards of 3105 * either 10 or 10/100 or 10/100/1000 at all duplexes. 3106 * This is a function pointer entry point only called by 3107 * PHY setup routines. 3108 **/ 3109 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active) 3110 { 3111 struct e1000_phy_info *phy = &hw->phy; 3112 u32 phy_ctrl; 3113 s32 ret_val = 0; 3114 u16 data; 3115 3116 phy_ctrl = er32(PHY_CTRL); 3117 3118 if (!active) { 3119 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU; 3120 ew32(PHY_CTRL, phy_ctrl); 3121 3122 if (phy->type != e1000_phy_igp_3) 3123 return 0; 3124 3125 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used 3126 * during Dx states where the power conservation is most 3127 * important. During driver activity we should enable 3128 * SmartSpeed, so performance is maintained. 3129 */ 3130 if (phy->smart_speed == e1000_smart_speed_on) { 3131 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, 3132 &data); 3133 if (ret_val) 3134 return ret_val; 3135 3136 data |= IGP01E1000_PSCFR_SMART_SPEED; 3137 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, 3138 data); 3139 if (ret_val) 3140 return ret_val; 3141 } else if (phy->smart_speed == e1000_smart_speed_off) { 3142 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, 3143 &data); 3144 if (ret_val) 3145 return ret_val; 3146 3147 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 3148 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, 3149 data); 3150 if (ret_val) 3151 return ret_val; 3152 } 3153 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || 3154 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || 3155 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { 3156 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU; 3157 ew32(PHY_CTRL, phy_ctrl); 3158 3159 if (phy->type != e1000_phy_igp_3) 3160 return 0; 3161 3162 /* Call gig speed drop workaround on LPLU before accessing 3163 * any PHY registers 3164 */ 3165 if (hw->mac.type == e1000_ich8lan) 3166 e1000e_gig_downshift_workaround_ich8lan(hw); 3167 3168 /* When LPLU is enabled, we should disable SmartSpeed */ 3169 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data); 3170 if (ret_val) 3171 return ret_val; 3172 3173 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 3174 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data); 3175 } 3176 3177 return ret_val; 3178 } 3179 3180 /** 3181 * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1 3182 * @hw: pointer to the HW structure 3183 * @bank: pointer to the variable that returns the active bank 3184 * 3185 * Reads signature byte from the NVM using the flash access registers. 3186 * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank. 3187 **/ 3188 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank) 3189 { 3190 u32 eecd; 3191 struct e1000_nvm_info *nvm = &hw->nvm; 3192 u32 bank1_offset = nvm->flash_bank_size * sizeof(u16); 3193 u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1; 3194 u32 nvm_dword = 0; 3195 u8 sig_byte = 0; 3196 s32 ret_val; 3197 3198 switch (hw->mac.type) { 3199 case e1000_pch_spt: 3200 case e1000_pch_cnp: 3201 case e1000_pch_tgp: 3202 case e1000_pch_adp: 3203 case e1000_pch_mtp: 3204 case e1000_pch_lnp: 3205 case e1000_pch_ptp: 3206 case e1000_pch_nvp: 3207 bank1_offset = nvm->flash_bank_size; 3208 act_offset = E1000_ICH_NVM_SIG_WORD; 3209 3210 /* set bank to 0 in case flash read fails */ 3211 *bank = 0; 3212 3213 /* Check bank 0 */ 3214 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, 3215 &nvm_dword); 3216 if (ret_val) 3217 return ret_val; 3218 sig_byte = FIELD_GET(0xFF00, nvm_dword); 3219 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == 3220 E1000_ICH_NVM_SIG_VALUE) { 3221 *bank = 0; 3222 return 0; 3223 } 3224 3225 /* Check bank 1 */ 3226 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset + 3227 bank1_offset, 3228 &nvm_dword); 3229 if (ret_val) 3230 return ret_val; 3231 sig_byte = FIELD_GET(0xFF00, nvm_dword); 3232 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == 3233 E1000_ICH_NVM_SIG_VALUE) { 3234 *bank = 1; 3235 return 0; 3236 } 3237 3238 e_dbg("ERROR: No valid NVM bank present\n"); 3239 return -E1000_ERR_NVM; 3240 case e1000_ich8lan: 3241 case e1000_ich9lan: 3242 eecd = er32(EECD); 3243 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) == 3244 E1000_EECD_SEC1VAL_VALID_MASK) { 3245 if (eecd & E1000_EECD_SEC1VAL) 3246 *bank = 1; 3247 else 3248 *bank = 0; 3249 3250 return 0; 3251 } 3252 e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n"); 3253 fallthrough; 3254 default: 3255 /* set bank to 0 in case flash read fails */ 3256 *bank = 0; 3257 3258 /* Check bank 0 */ 3259 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset, 3260 &sig_byte); 3261 if (ret_val) 3262 return ret_val; 3263 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == 3264 E1000_ICH_NVM_SIG_VALUE) { 3265 *bank = 0; 3266 return 0; 3267 } 3268 3269 /* Check bank 1 */ 3270 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset + 3271 bank1_offset, 3272 &sig_byte); 3273 if (ret_val) 3274 return ret_val; 3275 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == 3276 E1000_ICH_NVM_SIG_VALUE) { 3277 *bank = 1; 3278 return 0; 3279 } 3280 3281 e_dbg("ERROR: No valid NVM bank present\n"); 3282 return -E1000_ERR_NVM; 3283 } 3284 } 3285 3286 /** 3287 * e1000_read_nvm_spt - NVM access for SPT 3288 * @hw: pointer to the HW structure 3289 * @offset: The offset (in bytes) of the word(s) to read. 3290 * @words: Size of data to read in words. 3291 * @data: pointer to the word(s) to read at offset. 3292 * 3293 * Reads a word(s) from the NVM 3294 **/ 3295 static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words, 3296 u16 *data) 3297 { 3298 struct e1000_nvm_info *nvm = &hw->nvm; 3299 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 3300 u32 act_offset; 3301 s32 ret_val = 0; 3302 u32 bank = 0; 3303 u32 dword = 0; 3304 u16 offset_to_read; 3305 u16 i; 3306 3307 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) || 3308 (words == 0)) { 3309 e_dbg("nvm parameter(s) out of bounds\n"); 3310 ret_val = -E1000_ERR_NVM; 3311 goto out; 3312 } 3313 3314 nvm->ops.acquire(hw); 3315 3316 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); 3317 if (ret_val) { 3318 e_dbg("Could not detect valid bank, assuming bank 0\n"); 3319 bank = 0; 3320 } 3321 3322 act_offset = (bank) ? nvm->flash_bank_size : 0; 3323 act_offset += offset; 3324 3325 ret_val = 0; 3326 3327 for (i = 0; i < words; i += 2) { 3328 if (words - i == 1) { 3329 if (dev_spec->shadow_ram[offset + i].modified) { 3330 data[i] = 3331 dev_spec->shadow_ram[offset + i].value; 3332 } else { 3333 offset_to_read = act_offset + i - 3334 ((act_offset + i) % 2); 3335 ret_val = 3336 e1000_read_flash_dword_ich8lan(hw, 3337 offset_to_read, 3338 &dword); 3339 if (ret_val) 3340 break; 3341 if ((act_offset + i) % 2 == 0) 3342 data[i] = (u16)(dword & 0xFFFF); 3343 else 3344 data[i] = (u16)((dword >> 16) & 0xFFFF); 3345 } 3346 } else { 3347 offset_to_read = act_offset + i; 3348 if (!(dev_spec->shadow_ram[offset + i].modified) || 3349 !(dev_spec->shadow_ram[offset + i + 1].modified)) { 3350 ret_val = 3351 e1000_read_flash_dword_ich8lan(hw, 3352 offset_to_read, 3353 &dword); 3354 if (ret_val) 3355 break; 3356 } 3357 if (dev_spec->shadow_ram[offset + i].modified) 3358 data[i] = 3359 dev_spec->shadow_ram[offset + i].value; 3360 else 3361 data[i] = (u16)(dword & 0xFFFF); 3362 if (dev_spec->shadow_ram[offset + i].modified) 3363 data[i + 1] = 3364 dev_spec->shadow_ram[offset + i + 1].value; 3365 else 3366 data[i + 1] = (u16)(dword >> 16 & 0xFFFF); 3367 } 3368 } 3369 3370 nvm->ops.release(hw); 3371 3372 out: 3373 if (ret_val) 3374 e_dbg("NVM read error: %d\n", ret_val); 3375 3376 return ret_val; 3377 } 3378 3379 /** 3380 * e1000_read_nvm_ich8lan - Read word(s) from the NVM 3381 * @hw: pointer to the HW structure 3382 * @offset: The offset (in bytes) of the word(s) to read. 3383 * @words: Size of data to read in words 3384 * @data: Pointer to the word(s) to read at offset. 3385 * 3386 * Reads a word(s) from the NVM using the flash access registers. 3387 **/ 3388 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words, 3389 u16 *data) 3390 { 3391 struct e1000_nvm_info *nvm = &hw->nvm; 3392 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 3393 u32 act_offset; 3394 s32 ret_val = 0; 3395 u32 bank = 0; 3396 u16 i, word; 3397 3398 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) || 3399 (words == 0)) { 3400 e_dbg("nvm parameter(s) out of bounds\n"); 3401 ret_val = -E1000_ERR_NVM; 3402 goto out; 3403 } 3404 3405 nvm->ops.acquire(hw); 3406 3407 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); 3408 if (ret_val) { 3409 e_dbg("Could not detect valid bank, assuming bank 0\n"); 3410 bank = 0; 3411 } 3412 3413 act_offset = (bank) ? nvm->flash_bank_size : 0; 3414 act_offset += offset; 3415 3416 ret_val = 0; 3417 for (i = 0; i < words; i++) { 3418 if (dev_spec->shadow_ram[offset + i].modified) { 3419 data[i] = dev_spec->shadow_ram[offset + i].value; 3420 } else { 3421 ret_val = e1000_read_flash_word_ich8lan(hw, 3422 act_offset + i, 3423 &word); 3424 if (ret_val) 3425 break; 3426 data[i] = word; 3427 } 3428 } 3429 3430 nvm->ops.release(hw); 3431 3432 out: 3433 if (ret_val) 3434 e_dbg("NVM read error: %d\n", ret_val); 3435 3436 return ret_val; 3437 } 3438 3439 /** 3440 * e1000_flash_cycle_init_ich8lan - Initialize flash 3441 * @hw: pointer to the HW structure 3442 * 3443 * This function does initial flash setup so that a new read/write/erase cycle 3444 * can be started. 3445 **/ 3446 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw) 3447 { 3448 union ich8_hws_flash_status hsfsts; 3449 s32 ret_val = -E1000_ERR_NVM; 3450 3451 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 3452 3453 /* Check if the flash descriptor is valid */ 3454 if (!hsfsts.hsf_status.fldesvalid) { 3455 e_dbg("Flash descriptor invalid. SW Sequencing must be used.\n"); 3456 return -E1000_ERR_NVM; 3457 } 3458 3459 /* Clear FCERR and DAEL in hw status by writing 1 */ 3460 hsfsts.hsf_status.flcerr = 1; 3461 hsfsts.hsf_status.dael = 1; 3462 if (hw->mac.type >= e1000_pch_spt) 3463 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF); 3464 else 3465 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval); 3466 3467 /* Either we should have a hardware SPI cycle in progress 3468 * bit to check against, in order to start a new cycle or 3469 * FDONE bit should be changed in the hardware so that it 3470 * is 1 after hardware reset, which can then be used as an 3471 * indication whether a cycle is in progress or has been 3472 * completed. 3473 */ 3474 3475 if (!hsfsts.hsf_status.flcinprog) { 3476 /* There is no cycle running at present, 3477 * so we can start a cycle. 3478 * Begin by setting Flash Cycle Done. 3479 */ 3480 hsfsts.hsf_status.flcdone = 1; 3481 if (hw->mac.type >= e1000_pch_spt) 3482 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF); 3483 else 3484 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval); 3485 ret_val = 0; 3486 } else { 3487 s32 i; 3488 3489 /* Otherwise poll for sometime so the current 3490 * cycle has a chance to end before giving up. 3491 */ 3492 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) { 3493 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 3494 if (!hsfsts.hsf_status.flcinprog) { 3495 ret_val = 0; 3496 break; 3497 } 3498 udelay(1); 3499 } 3500 if (!ret_val) { 3501 /* Successful in waiting for previous cycle to timeout, 3502 * now set the Flash Cycle Done. 3503 */ 3504 hsfsts.hsf_status.flcdone = 1; 3505 if (hw->mac.type >= e1000_pch_spt) 3506 ew32flash(ICH_FLASH_HSFSTS, 3507 hsfsts.regval & 0xFFFF); 3508 else 3509 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval); 3510 } else { 3511 e_dbg("Flash controller busy, cannot get access\n"); 3512 } 3513 } 3514 3515 return ret_val; 3516 } 3517 3518 /** 3519 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase) 3520 * @hw: pointer to the HW structure 3521 * @timeout: maximum time to wait for completion 3522 * 3523 * This function starts a flash cycle and waits for its completion. 3524 **/ 3525 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout) 3526 { 3527 union ich8_hws_flash_ctrl hsflctl; 3528 union ich8_hws_flash_status hsfsts; 3529 u32 i = 0; 3530 3531 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */ 3532 if (hw->mac.type >= e1000_pch_spt) 3533 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16; 3534 else 3535 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); 3536 hsflctl.hsf_ctrl.flcgo = 1; 3537 3538 if (hw->mac.type >= e1000_pch_spt) 3539 ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16); 3540 else 3541 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); 3542 3543 /* wait till FDONE bit is set to 1 */ 3544 do { 3545 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 3546 if (hsfsts.hsf_status.flcdone) 3547 break; 3548 udelay(1); 3549 } while (i++ < timeout); 3550 3551 if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr) 3552 return 0; 3553 3554 return -E1000_ERR_NVM; 3555 } 3556 3557 /** 3558 * e1000_read_flash_dword_ich8lan - Read dword from flash 3559 * @hw: pointer to the HW structure 3560 * @offset: offset to data location 3561 * @data: pointer to the location for storing the data 3562 * 3563 * Reads the flash dword at offset into data. Offset is converted 3564 * to bytes before read. 3565 **/ 3566 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset, 3567 u32 *data) 3568 { 3569 /* Must convert word offset into bytes. */ 3570 offset <<= 1; 3571 return e1000_read_flash_data32_ich8lan(hw, offset, data); 3572 } 3573 3574 /** 3575 * e1000_read_flash_word_ich8lan - Read word from flash 3576 * @hw: pointer to the HW structure 3577 * @offset: offset to data location 3578 * @data: pointer to the location for storing the data 3579 * 3580 * Reads the flash word at offset into data. Offset is converted 3581 * to bytes before read. 3582 **/ 3583 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset, 3584 u16 *data) 3585 { 3586 /* Must convert offset into bytes. */ 3587 offset <<= 1; 3588 3589 return e1000_read_flash_data_ich8lan(hw, offset, 2, data); 3590 } 3591 3592 /** 3593 * e1000_read_flash_byte_ich8lan - Read byte from flash 3594 * @hw: pointer to the HW structure 3595 * @offset: The offset of the byte to read. 3596 * @data: Pointer to a byte to store the value read. 3597 * 3598 * Reads a single byte from the NVM using the flash access registers. 3599 **/ 3600 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, 3601 u8 *data) 3602 { 3603 s32 ret_val; 3604 u16 word = 0; 3605 3606 /* In SPT, only 32 bits access is supported, 3607 * so this function should not be called. 3608 */ 3609 if (hw->mac.type >= e1000_pch_spt) 3610 return -E1000_ERR_NVM; 3611 else 3612 ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word); 3613 3614 if (ret_val) 3615 return ret_val; 3616 3617 *data = (u8)word; 3618 3619 return 0; 3620 } 3621 3622 /** 3623 * e1000_read_flash_data_ich8lan - Read byte or word from NVM 3624 * @hw: pointer to the HW structure 3625 * @offset: The offset (in bytes) of the byte or word to read. 3626 * @size: Size of data to read, 1=byte 2=word 3627 * @data: Pointer to the word to store the value read. 3628 * 3629 * Reads a byte or word from the NVM using the flash access registers. 3630 **/ 3631 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, 3632 u8 size, u16 *data) 3633 { 3634 union ich8_hws_flash_status hsfsts; 3635 union ich8_hws_flash_ctrl hsflctl; 3636 u32 flash_linear_addr; 3637 u32 flash_data = 0; 3638 s32 ret_val = -E1000_ERR_NVM; 3639 u8 count = 0; 3640 3641 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK) 3642 return -E1000_ERR_NVM; 3643 3644 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) + 3645 hw->nvm.flash_base_addr); 3646 3647 do { 3648 udelay(1); 3649 /* Steps */ 3650 ret_val = e1000_flash_cycle_init_ich8lan(hw); 3651 if (ret_val) 3652 break; 3653 3654 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); 3655 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ 3656 hsflctl.hsf_ctrl.fldbcount = size - 1; 3657 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ; 3658 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); 3659 3660 ew32flash(ICH_FLASH_FADDR, flash_linear_addr); 3661 3662 ret_val = 3663 e1000_flash_cycle_ich8lan(hw, 3664 ICH_FLASH_READ_COMMAND_TIMEOUT); 3665 3666 /* Check if FCERR is set to 1, if set to 1, clear it 3667 * and try the whole sequence a few more times, else 3668 * read in (shift in) the Flash Data0, the order is 3669 * least significant byte first msb to lsb 3670 */ 3671 if (!ret_val) { 3672 flash_data = er32flash(ICH_FLASH_FDATA0); 3673 if (size == 1) 3674 *data = (u8)(flash_data & 0x000000FF); 3675 else if (size == 2) 3676 *data = (u16)(flash_data & 0x0000FFFF); 3677 break; 3678 } else { 3679 /* If we've gotten here, then things are probably 3680 * completely hosed, but if the error condition is 3681 * detected, it won't hurt to give it another try... 3682 * ICH_FLASH_CYCLE_REPEAT_COUNT times. 3683 */ 3684 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 3685 if (hsfsts.hsf_status.flcerr) { 3686 /* Repeat for some time before giving up. */ 3687 continue; 3688 } else if (!hsfsts.hsf_status.flcdone) { 3689 e_dbg("Timeout error - flash cycle did not complete.\n"); 3690 break; 3691 } 3692 } 3693 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); 3694 3695 return ret_val; 3696 } 3697 3698 /** 3699 * e1000_read_flash_data32_ich8lan - Read dword from NVM 3700 * @hw: pointer to the HW structure 3701 * @offset: The offset (in bytes) of the dword to read. 3702 * @data: Pointer to the dword to store the value read. 3703 * 3704 * Reads a byte or word from the NVM using the flash access registers. 3705 **/ 3706 3707 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset, 3708 u32 *data) 3709 { 3710 union ich8_hws_flash_status hsfsts; 3711 union ich8_hws_flash_ctrl hsflctl; 3712 u32 flash_linear_addr; 3713 s32 ret_val = -E1000_ERR_NVM; 3714 u8 count = 0; 3715 3716 if (offset > ICH_FLASH_LINEAR_ADDR_MASK || hw->mac.type < e1000_pch_spt) 3717 return -E1000_ERR_NVM; 3718 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) + 3719 hw->nvm.flash_base_addr); 3720 3721 do { 3722 udelay(1); 3723 /* Steps */ 3724 ret_val = e1000_flash_cycle_init_ich8lan(hw); 3725 if (ret_val) 3726 break; 3727 /* In SPT, This register is in Lan memory space, not flash. 3728 * Therefore, only 32 bit access is supported 3729 */ 3730 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16; 3731 3732 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ 3733 hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1; 3734 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ; 3735 /* In SPT, This register is in Lan memory space, not flash. 3736 * Therefore, only 32 bit access is supported 3737 */ 3738 ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16); 3739 ew32flash(ICH_FLASH_FADDR, flash_linear_addr); 3740 3741 ret_val = 3742 e1000_flash_cycle_ich8lan(hw, 3743 ICH_FLASH_READ_COMMAND_TIMEOUT); 3744 3745 /* Check if FCERR is set to 1, if set to 1, clear it 3746 * and try the whole sequence a few more times, else 3747 * read in (shift in) the Flash Data0, the order is 3748 * least significant byte first msb to lsb 3749 */ 3750 if (!ret_val) { 3751 *data = er32flash(ICH_FLASH_FDATA0); 3752 break; 3753 } else { 3754 /* If we've gotten here, then things are probably 3755 * completely hosed, but if the error condition is 3756 * detected, it won't hurt to give it another try... 3757 * ICH_FLASH_CYCLE_REPEAT_COUNT times. 3758 */ 3759 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 3760 if (hsfsts.hsf_status.flcerr) { 3761 /* Repeat for some time before giving up. */ 3762 continue; 3763 } else if (!hsfsts.hsf_status.flcdone) { 3764 e_dbg("Timeout error - flash cycle did not complete.\n"); 3765 break; 3766 } 3767 } 3768 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); 3769 3770 return ret_val; 3771 } 3772 3773 /** 3774 * e1000_write_nvm_ich8lan - Write word(s) to the NVM 3775 * @hw: pointer to the HW structure 3776 * @offset: The offset (in bytes) of the word(s) to write. 3777 * @words: Size of data to write in words 3778 * @data: Pointer to the word(s) to write at offset. 3779 * 3780 * Writes a byte or word to the NVM using the flash access registers. 3781 **/ 3782 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words, 3783 u16 *data) 3784 { 3785 struct e1000_nvm_info *nvm = &hw->nvm; 3786 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 3787 u16 i; 3788 3789 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) || 3790 (words == 0)) { 3791 e_dbg("nvm parameter(s) out of bounds\n"); 3792 return -E1000_ERR_NVM; 3793 } 3794 3795 nvm->ops.acquire(hw); 3796 3797 for (i = 0; i < words; i++) { 3798 dev_spec->shadow_ram[offset + i].modified = true; 3799 dev_spec->shadow_ram[offset + i].value = data[i]; 3800 } 3801 3802 nvm->ops.release(hw); 3803 3804 return 0; 3805 } 3806 3807 /** 3808 * e1000_update_nvm_checksum_spt - Update the checksum for NVM 3809 * @hw: pointer to the HW structure 3810 * 3811 * The NVM checksum is updated by calling the generic update_nvm_checksum, 3812 * which writes the checksum to the shadow ram. The changes in the shadow 3813 * ram are then committed to the EEPROM by processing each bank at a time 3814 * checking for the modified bit and writing only the pending changes. 3815 * After a successful commit, the shadow ram is cleared and is ready for 3816 * future writes. 3817 **/ 3818 static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw) 3819 { 3820 struct e1000_nvm_info *nvm = &hw->nvm; 3821 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 3822 u32 i, act_offset, new_bank_offset, old_bank_offset, bank; 3823 s32 ret_val; 3824 u32 dword = 0; 3825 3826 ret_val = e1000e_update_nvm_checksum_generic(hw); 3827 if (ret_val) 3828 goto out; 3829 3830 if (nvm->type != e1000_nvm_flash_sw) 3831 goto out; 3832 3833 nvm->ops.acquire(hw); 3834 3835 /* We're writing to the opposite bank so if we're on bank 1, 3836 * write to bank 0 etc. We also need to erase the segment that 3837 * is going to be written 3838 */ 3839 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); 3840 if (ret_val) { 3841 e_dbg("Could not detect valid bank, assuming bank 0\n"); 3842 bank = 0; 3843 } 3844 3845 if (bank == 0) { 3846 new_bank_offset = nvm->flash_bank_size; 3847 old_bank_offset = 0; 3848 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1); 3849 if (ret_val) 3850 goto release; 3851 } else { 3852 old_bank_offset = nvm->flash_bank_size; 3853 new_bank_offset = 0; 3854 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0); 3855 if (ret_val) 3856 goto release; 3857 } 3858 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) { 3859 /* Determine whether to write the value stored 3860 * in the other NVM bank or a modified value stored 3861 * in the shadow RAM 3862 */ 3863 ret_val = e1000_read_flash_dword_ich8lan(hw, 3864 i + old_bank_offset, 3865 &dword); 3866 3867 if (dev_spec->shadow_ram[i].modified) { 3868 dword &= 0xffff0000; 3869 dword |= (dev_spec->shadow_ram[i].value & 0xffff); 3870 } 3871 if (dev_spec->shadow_ram[i + 1].modified) { 3872 dword &= 0x0000ffff; 3873 dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff) 3874 << 16); 3875 } 3876 if (ret_val) 3877 break; 3878 3879 /* If the word is 0x13, then make sure the signature bits 3880 * (15:14) are 11b until the commit has completed. 3881 * This will allow us to write 10b which indicates the 3882 * signature is valid. We want to do this after the write 3883 * has completed so that we don't mark the segment valid 3884 * while the write is still in progress 3885 */ 3886 if (i == E1000_ICH_NVM_SIG_WORD - 1) 3887 dword |= E1000_ICH_NVM_SIG_MASK << 16; 3888 3889 /* Convert offset to bytes. */ 3890 act_offset = (i + new_bank_offset) << 1; 3891 3892 usleep_range(100, 200); 3893 3894 /* Write the data to the new bank. Offset in words */ 3895 act_offset = i + new_bank_offset; 3896 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, 3897 dword); 3898 if (ret_val) 3899 break; 3900 } 3901 3902 /* Don't bother writing the segment valid bits if sector 3903 * programming failed. 3904 */ 3905 if (ret_val) { 3906 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */ 3907 e_dbg("Flash commit failed.\n"); 3908 goto release; 3909 } 3910 3911 /* Finally validate the new segment by setting bit 15:14 3912 * to 10b in word 0x13 , this can be done without an 3913 * erase as well since these bits are 11 to start with 3914 * and we need to change bit 14 to 0b 3915 */ 3916 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD; 3917 3918 /*offset in words but we read dword */ 3919 --act_offset; 3920 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword); 3921 3922 if (ret_val) 3923 goto release; 3924 3925 dword &= 0xBFFFFFFF; 3926 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword); 3927 3928 if (ret_val) 3929 goto release; 3930 3931 /* offset in words but we read dword */ 3932 act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1; 3933 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword); 3934 3935 if (ret_val) 3936 goto release; 3937 3938 dword &= 0x00FFFFFF; 3939 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword); 3940 3941 if (ret_val) 3942 goto release; 3943 3944 /* Great! Everything worked, we can now clear the cached entries. */ 3945 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) { 3946 dev_spec->shadow_ram[i].modified = false; 3947 dev_spec->shadow_ram[i].value = 0xFFFF; 3948 } 3949 3950 release: 3951 nvm->ops.release(hw); 3952 3953 /* Reload the EEPROM, or else modifications will not appear 3954 * until after the next adapter reset. 3955 */ 3956 if (!ret_val) { 3957 nvm->ops.reload(hw); 3958 usleep_range(10000, 11000); 3959 } 3960 3961 out: 3962 if (ret_val) 3963 e_dbg("NVM update error: %d\n", ret_val); 3964 3965 return ret_val; 3966 } 3967 3968 /** 3969 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM 3970 * @hw: pointer to the HW structure 3971 * 3972 * The NVM checksum is updated by calling the generic update_nvm_checksum, 3973 * which writes the checksum to the shadow ram. The changes in the shadow 3974 * ram are then committed to the EEPROM by processing each bank at a time 3975 * checking for the modified bit and writing only the pending changes. 3976 * After a successful commit, the shadow ram is cleared and is ready for 3977 * future writes. 3978 **/ 3979 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw) 3980 { 3981 struct e1000_nvm_info *nvm = &hw->nvm; 3982 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 3983 u32 i, act_offset, new_bank_offset, old_bank_offset, bank; 3984 s32 ret_val; 3985 u16 data = 0; 3986 3987 ret_val = e1000e_update_nvm_checksum_generic(hw); 3988 if (ret_val) 3989 goto out; 3990 3991 if (nvm->type != e1000_nvm_flash_sw) 3992 goto out; 3993 3994 nvm->ops.acquire(hw); 3995 3996 /* We're writing to the opposite bank so if we're on bank 1, 3997 * write to bank 0 etc. We also need to erase the segment that 3998 * is going to be written 3999 */ 4000 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); 4001 if (ret_val) { 4002 e_dbg("Could not detect valid bank, assuming bank 0\n"); 4003 bank = 0; 4004 } 4005 4006 if (bank == 0) { 4007 new_bank_offset = nvm->flash_bank_size; 4008 old_bank_offset = 0; 4009 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1); 4010 if (ret_val) 4011 goto release; 4012 } else { 4013 old_bank_offset = nvm->flash_bank_size; 4014 new_bank_offset = 0; 4015 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0); 4016 if (ret_val) 4017 goto release; 4018 } 4019 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) { 4020 if (dev_spec->shadow_ram[i].modified) { 4021 data = dev_spec->shadow_ram[i].value; 4022 } else { 4023 ret_val = e1000_read_flash_word_ich8lan(hw, i + 4024 old_bank_offset, 4025 &data); 4026 if (ret_val) 4027 break; 4028 } 4029 4030 /* If the word is 0x13, then make sure the signature bits 4031 * (15:14) are 11b until the commit has completed. 4032 * This will allow us to write 10b which indicates the 4033 * signature is valid. We want to do this after the write 4034 * has completed so that we don't mark the segment valid 4035 * while the write is still in progress 4036 */ 4037 if (i == E1000_ICH_NVM_SIG_WORD) 4038 data |= E1000_ICH_NVM_SIG_MASK; 4039 4040 /* Convert offset to bytes. */ 4041 act_offset = (i + new_bank_offset) << 1; 4042 4043 usleep_range(100, 200); 4044 /* Write the bytes to the new bank. */ 4045 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, 4046 act_offset, 4047 (u8)data); 4048 if (ret_val) 4049 break; 4050 4051 usleep_range(100, 200); 4052 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, 4053 act_offset + 1, 4054 (u8)(data >> 8)); 4055 if (ret_val) 4056 break; 4057 } 4058 4059 /* Don't bother writing the segment valid bits if sector 4060 * programming failed. 4061 */ 4062 if (ret_val) { 4063 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */ 4064 e_dbg("Flash commit failed.\n"); 4065 goto release; 4066 } 4067 4068 /* Finally validate the new segment by setting bit 15:14 4069 * to 10b in word 0x13 , this can be done without an 4070 * erase as well since these bits are 11 to start with 4071 * and we need to change bit 14 to 0b 4072 */ 4073 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD; 4074 ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data); 4075 if (ret_val) 4076 goto release; 4077 4078 data &= 0xBFFF; 4079 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, 4080 act_offset * 2 + 1, 4081 (u8)(data >> 8)); 4082 if (ret_val) 4083 goto release; 4084 4085 /* And invalidate the previously valid segment by setting 4086 * its signature word (0x13) high_byte to 0b. This can be 4087 * done without an erase because flash erase sets all bits 4088 * to 1's. We can write 1's to 0's without an erase 4089 */ 4090 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1; 4091 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0); 4092 if (ret_val) 4093 goto release; 4094 4095 /* Great! Everything worked, we can now clear the cached entries. */ 4096 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) { 4097 dev_spec->shadow_ram[i].modified = false; 4098 dev_spec->shadow_ram[i].value = 0xFFFF; 4099 } 4100 4101 release: 4102 nvm->ops.release(hw); 4103 4104 /* Reload the EEPROM, or else modifications will not appear 4105 * until after the next adapter reset. 4106 */ 4107 if (!ret_val) { 4108 nvm->ops.reload(hw); 4109 usleep_range(10000, 11000); 4110 } 4111 4112 out: 4113 if (ret_val) 4114 e_dbg("NVM update error: %d\n", ret_val); 4115 4116 return ret_val; 4117 } 4118 4119 /** 4120 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum 4121 * @hw: pointer to the HW structure 4122 * 4123 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19. 4124 * If the bit is 0, that the EEPROM had been modified, but the checksum was not 4125 * calculated, in which case we need to calculate the checksum and set bit 6. 4126 **/ 4127 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw) 4128 { 4129 s32 ret_val; 4130 u16 data; 4131 u16 word; 4132 u16 valid_csum_mask; 4133 4134 /* Read NVM and check Invalid Image CSUM bit. If this bit is 0, 4135 * the checksum needs to be fixed. This bit is an indication that 4136 * the NVM was prepared by OEM software and did not calculate 4137 * the checksum...a likely scenario. 4138 */ 4139 switch (hw->mac.type) { 4140 case e1000_pch_lpt: 4141 case e1000_pch_spt: 4142 case e1000_pch_cnp: 4143 case e1000_pch_tgp: 4144 case e1000_pch_adp: 4145 case e1000_pch_mtp: 4146 case e1000_pch_lnp: 4147 case e1000_pch_ptp: 4148 case e1000_pch_nvp: 4149 word = NVM_COMPAT; 4150 valid_csum_mask = NVM_COMPAT_VALID_CSUM; 4151 break; 4152 default: 4153 word = NVM_FUTURE_INIT_WORD1; 4154 valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM; 4155 break; 4156 } 4157 4158 ret_val = e1000_read_nvm(hw, word, 1, &data); 4159 if (ret_val) 4160 return ret_val; 4161 4162 if (!(data & valid_csum_mask)) { 4163 e_dbg("NVM Checksum valid bit not set\n"); 4164 4165 if (hw->mac.type < e1000_pch_tgp) { 4166 data |= valid_csum_mask; 4167 ret_val = e1000_write_nvm(hw, word, 1, &data); 4168 if (ret_val) 4169 return ret_val; 4170 ret_val = e1000e_update_nvm_checksum(hw); 4171 if (ret_val) 4172 return ret_val; 4173 } 4174 } 4175 4176 return e1000e_validate_nvm_checksum_generic(hw); 4177 } 4178 4179 /** 4180 * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only 4181 * @hw: pointer to the HW structure 4182 * 4183 * To prevent malicious write/erase of the NVM, set it to be read-only 4184 * so that the hardware ignores all write/erase cycles of the NVM via 4185 * the flash control registers. The shadow-ram copy of the NVM will 4186 * still be updated, however any updates to this copy will not stick 4187 * across driver reloads. 4188 **/ 4189 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw) 4190 { 4191 struct e1000_nvm_info *nvm = &hw->nvm; 4192 union ich8_flash_protected_range pr0; 4193 union ich8_hws_flash_status hsfsts; 4194 u32 gfpreg; 4195 4196 nvm->ops.acquire(hw); 4197 4198 gfpreg = er32flash(ICH_FLASH_GFPREG); 4199 4200 /* Write-protect GbE Sector of NVM */ 4201 pr0.regval = er32flash(ICH_FLASH_PR0); 4202 pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK; 4203 pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK); 4204 pr0.range.wpe = true; 4205 ew32flash(ICH_FLASH_PR0, pr0.regval); 4206 4207 /* Lock down a subset of GbE Flash Control Registers, e.g. 4208 * PR0 to prevent the write-protection from being lifted. 4209 * Once FLOCKDN is set, the registers protected by it cannot 4210 * be written until FLOCKDN is cleared by a hardware reset. 4211 */ 4212 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 4213 hsfsts.hsf_status.flockdn = true; 4214 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval); 4215 4216 nvm->ops.release(hw); 4217 } 4218 4219 /** 4220 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM 4221 * @hw: pointer to the HW structure 4222 * @offset: The offset (in bytes) of the byte/word to read. 4223 * @size: Size of data to read, 1=byte 2=word 4224 * @data: The byte(s) to write to the NVM. 4225 * 4226 * Writes one/two bytes to the NVM using the flash access registers. 4227 **/ 4228 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, 4229 u8 size, u16 data) 4230 { 4231 union ich8_hws_flash_status hsfsts; 4232 union ich8_hws_flash_ctrl hsflctl; 4233 u32 flash_linear_addr; 4234 u32 flash_data = 0; 4235 s32 ret_val; 4236 u8 count = 0; 4237 4238 if (hw->mac.type >= e1000_pch_spt) { 4239 if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK) 4240 return -E1000_ERR_NVM; 4241 } else { 4242 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK) 4243 return -E1000_ERR_NVM; 4244 } 4245 4246 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) + 4247 hw->nvm.flash_base_addr); 4248 4249 do { 4250 udelay(1); 4251 /* Steps */ 4252 ret_val = e1000_flash_cycle_init_ich8lan(hw); 4253 if (ret_val) 4254 break; 4255 /* In SPT, This register is in Lan memory space, not 4256 * flash. Therefore, only 32 bit access is supported 4257 */ 4258 if (hw->mac.type >= e1000_pch_spt) 4259 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16; 4260 else 4261 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); 4262 4263 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ 4264 hsflctl.hsf_ctrl.fldbcount = size - 1; 4265 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE; 4266 /* In SPT, This register is in Lan memory space, 4267 * not flash. Therefore, only 32 bit access is 4268 * supported 4269 */ 4270 if (hw->mac.type >= e1000_pch_spt) 4271 ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16); 4272 else 4273 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); 4274 4275 ew32flash(ICH_FLASH_FADDR, flash_linear_addr); 4276 4277 if (size == 1) 4278 flash_data = (u32)data & 0x00FF; 4279 else 4280 flash_data = (u32)data; 4281 4282 ew32flash(ICH_FLASH_FDATA0, flash_data); 4283 4284 /* check if FCERR is set to 1 , if set to 1, clear it 4285 * and try the whole sequence a few more times else done 4286 */ 4287 ret_val = 4288 e1000_flash_cycle_ich8lan(hw, 4289 ICH_FLASH_WRITE_COMMAND_TIMEOUT); 4290 if (!ret_val) 4291 break; 4292 4293 /* If we're here, then things are most likely 4294 * completely hosed, but if the error condition 4295 * is detected, it won't hurt to give it another 4296 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times. 4297 */ 4298 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 4299 if (hsfsts.hsf_status.flcerr) 4300 /* Repeat for some time before giving up. */ 4301 continue; 4302 if (!hsfsts.hsf_status.flcdone) { 4303 e_dbg("Timeout error - flash cycle did not complete.\n"); 4304 break; 4305 } 4306 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); 4307 4308 return ret_val; 4309 } 4310 4311 /** 4312 * e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM 4313 * @hw: pointer to the HW structure 4314 * @offset: The offset (in bytes) of the dwords to read. 4315 * @data: The 4 bytes to write to the NVM. 4316 * 4317 * Writes one/two/four bytes to the NVM using the flash access registers. 4318 **/ 4319 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset, 4320 u32 data) 4321 { 4322 union ich8_hws_flash_status hsfsts; 4323 union ich8_hws_flash_ctrl hsflctl; 4324 u32 flash_linear_addr; 4325 s32 ret_val; 4326 u8 count = 0; 4327 4328 if (hw->mac.type >= e1000_pch_spt) { 4329 if (offset > ICH_FLASH_LINEAR_ADDR_MASK) 4330 return -E1000_ERR_NVM; 4331 } 4332 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) + 4333 hw->nvm.flash_base_addr); 4334 do { 4335 udelay(1); 4336 /* Steps */ 4337 ret_val = e1000_flash_cycle_init_ich8lan(hw); 4338 if (ret_val) 4339 break; 4340 4341 /* In SPT, This register is in Lan memory space, not 4342 * flash. Therefore, only 32 bit access is supported 4343 */ 4344 if (hw->mac.type >= e1000_pch_spt) 4345 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) 4346 >> 16; 4347 else 4348 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); 4349 4350 hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1; 4351 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE; 4352 4353 /* In SPT, This register is in Lan memory space, 4354 * not flash. Therefore, only 32 bit access is 4355 * supported 4356 */ 4357 if (hw->mac.type >= e1000_pch_spt) 4358 ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16); 4359 else 4360 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); 4361 4362 ew32flash(ICH_FLASH_FADDR, flash_linear_addr); 4363 4364 ew32flash(ICH_FLASH_FDATA0, data); 4365 4366 /* check if FCERR is set to 1 , if set to 1, clear it 4367 * and try the whole sequence a few more times else done 4368 */ 4369 ret_val = 4370 e1000_flash_cycle_ich8lan(hw, 4371 ICH_FLASH_WRITE_COMMAND_TIMEOUT); 4372 4373 if (!ret_val) 4374 break; 4375 4376 /* If we're here, then things are most likely 4377 * completely hosed, but if the error condition 4378 * is detected, it won't hurt to give it another 4379 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times. 4380 */ 4381 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 4382 4383 if (hsfsts.hsf_status.flcerr) 4384 /* Repeat for some time before giving up. */ 4385 continue; 4386 if (!hsfsts.hsf_status.flcdone) { 4387 e_dbg("Timeout error - flash cycle did not complete.\n"); 4388 break; 4389 } 4390 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); 4391 4392 return ret_val; 4393 } 4394 4395 /** 4396 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM 4397 * @hw: pointer to the HW structure 4398 * @offset: The index of the byte to read. 4399 * @data: The byte to write to the NVM. 4400 * 4401 * Writes a single byte to the NVM using the flash access registers. 4402 **/ 4403 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, 4404 u8 data) 4405 { 4406 u16 word = (u16)data; 4407 4408 return e1000_write_flash_data_ich8lan(hw, offset, 1, word); 4409 } 4410 4411 /** 4412 * e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM 4413 * @hw: pointer to the HW structure 4414 * @offset: The offset of the word to write. 4415 * @dword: The dword to write to the NVM. 4416 * 4417 * Writes a single dword to the NVM using the flash access registers. 4418 * Goes through a retry algorithm before giving up. 4419 **/ 4420 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw, 4421 u32 offset, u32 dword) 4422 { 4423 s32 ret_val; 4424 u16 program_retries; 4425 4426 /* Must convert word offset into bytes. */ 4427 offset <<= 1; 4428 ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword); 4429 4430 if (!ret_val) 4431 return ret_val; 4432 for (program_retries = 0; program_retries < 100; program_retries++) { 4433 e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset); 4434 usleep_range(100, 200); 4435 ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword); 4436 if (!ret_val) 4437 break; 4438 } 4439 if (program_retries == 100) 4440 return -E1000_ERR_NVM; 4441 4442 return 0; 4443 } 4444 4445 /** 4446 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM 4447 * @hw: pointer to the HW structure 4448 * @offset: The offset of the byte to write. 4449 * @byte: The byte to write to the NVM. 4450 * 4451 * Writes a single byte to the NVM using the flash access registers. 4452 * Goes through a retry algorithm before giving up. 4453 **/ 4454 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw, 4455 u32 offset, u8 byte) 4456 { 4457 s32 ret_val; 4458 u16 program_retries; 4459 4460 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte); 4461 if (!ret_val) 4462 return ret_val; 4463 4464 for (program_retries = 0; program_retries < 100; program_retries++) { 4465 e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset); 4466 usleep_range(100, 200); 4467 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte); 4468 if (!ret_val) 4469 break; 4470 } 4471 if (program_retries == 100) 4472 return -E1000_ERR_NVM; 4473 4474 return 0; 4475 } 4476 4477 /** 4478 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM 4479 * @hw: pointer to the HW structure 4480 * @bank: 0 for first bank, 1 for second bank, etc. 4481 * 4482 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based. 4483 * bank N is 4096 * N + flash_reg_addr. 4484 **/ 4485 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank) 4486 { 4487 struct e1000_nvm_info *nvm = &hw->nvm; 4488 union ich8_hws_flash_status hsfsts; 4489 union ich8_hws_flash_ctrl hsflctl; 4490 u32 flash_linear_addr; 4491 /* bank size is in 16bit words - adjust to bytes */ 4492 u32 flash_bank_size = nvm->flash_bank_size * 2; 4493 s32 ret_val; 4494 s32 count = 0; 4495 s32 j, iteration, sector_size; 4496 4497 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 4498 4499 /* Determine HW Sector size: Read BERASE bits of hw flash status 4500 * register 4501 * 00: The Hw sector is 256 bytes, hence we need to erase 16 4502 * consecutive sectors. The start index for the nth Hw sector 4503 * can be calculated as = bank * 4096 + n * 256 4504 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector. 4505 * The start index for the nth Hw sector can be calculated 4506 * as = bank * 4096 4507 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192 4508 * (ich9 only, otherwise error condition) 4509 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536 4510 */ 4511 switch (hsfsts.hsf_status.berasesz) { 4512 case 0: 4513 /* Hw sector size 256 */ 4514 sector_size = ICH_FLASH_SEG_SIZE_256; 4515 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256; 4516 break; 4517 case 1: 4518 sector_size = ICH_FLASH_SEG_SIZE_4K; 4519 iteration = 1; 4520 break; 4521 case 2: 4522 sector_size = ICH_FLASH_SEG_SIZE_8K; 4523 iteration = 1; 4524 break; 4525 case 3: 4526 sector_size = ICH_FLASH_SEG_SIZE_64K; 4527 iteration = 1; 4528 break; 4529 default: 4530 return -E1000_ERR_NVM; 4531 } 4532 4533 /* Start with the base address, then add the sector offset. */ 4534 flash_linear_addr = hw->nvm.flash_base_addr; 4535 flash_linear_addr += (bank) ? flash_bank_size : 0; 4536 4537 for (j = 0; j < iteration; j++) { 4538 do { 4539 u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT; 4540 4541 /* Steps */ 4542 ret_val = e1000_flash_cycle_init_ich8lan(hw); 4543 if (ret_val) 4544 return ret_val; 4545 4546 /* Write a value 11 (block Erase) in Flash 4547 * Cycle field in hw flash control 4548 */ 4549 if (hw->mac.type >= e1000_pch_spt) 4550 hsflctl.regval = 4551 er32flash(ICH_FLASH_HSFSTS) >> 16; 4552 else 4553 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); 4554 4555 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE; 4556 if (hw->mac.type >= e1000_pch_spt) 4557 ew32flash(ICH_FLASH_HSFSTS, 4558 hsflctl.regval << 16); 4559 else 4560 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); 4561 4562 /* Write the last 24 bits of an index within the 4563 * block into Flash Linear address field in Flash 4564 * Address. 4565 */ 4566 flash_linear_addr += (j * sector_size); 4567 ew32flash(ICH_FLASH_FADDR, flash_linear_addr); 4568 4569 ret_val = e1000_flash_cycle_ich8lan(hw, timeout); 4570 if (!ret_val) 4571 break; 4572 4573 /* Check if FCERR is set to 1. If 1, 4574 * clear it and try the whole sequence 4575 * a few more times else Done 4576 */ 4577 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 4578 if (hsfsts.hsf_status.flcerr) 4579 /* repeat for some time before giving up */ 4580 continue; 4581 else if (!hsfsts.hsf_status.flcdone) 4582 return ret_val; 4583 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT); 4584 } 4585 4586 return 0; 4587 } 4588 4589 /** 4590 * e1000_valid_led_default_ich8lan - Set the default LED settings 4591 * @hw: pointer to the HW structure 4592 * @data: Pointer to the LED settings 4593 * 4594 * Reads the LED default settings from the NVM to data. If the NVM LED 4595 * settings is all 0's or F's, set the LED default to a valid LED default 4596 * setting. 4597 **/ 4598 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data) 4599 { 4600 s32 ret_val; 4601 4602 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data); 4603 if (ret_val) { 4604 e_dbg("NVM Read Error\n"); 4605 return ret_val; 4606 } 4607 4608 if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) 4609 *data = ID_LED_DEFAULT_ICH8LAN; 4610 4611 return 0; 4612 } 4613 4614 /** 4615 * e1000_id_led_init_pchlan - store LED configurations 4616 * @hw: pointer to the HW structure 4617 * 4618 * PCH does not control LEDs via the LEDCTL register, rather it uses 4619 * the PHY LED configuration register. 4620 * 4621 * PCH also does not have an "always on" or "always off" mode which 4622 * complicates the ID feature. Instead of using the "on" mode to indicate 4623 * in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()), 4624 * use "link_up" mode. The LEDs will still ID on request if there is no 4625 * link based on logic in e1000_led_[on|off]_pchlan(). 4626 **/ 4627 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw) 4628 { 4629 struct e1000_mac_info *mac = &hw->mac; 4630 s32 ret_val; 4631 const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP; 4632 const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT; 4633 u16 data, i, temp, shift; 4634 4635 /* Get default ID LED modes */ 4636 ret_val = hw->nvm.ops.valid_led_default(hw, &data); 4637 if (ret_val) 4638 return ret_val; 4639 4640 mac->ledctl_default = er32(LEDCTL); 4641 mac->ledctl_mode1 = mac->ledctl_default; 4642 mac->ledctl_mode2 = mac->ledctl_default; 4643 4644 for (i = 0; i < 4; i++) { 4645 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK; 4646 shift = (i * 5); 4647 switch (temp) { 4648 case ID_LED_ON1_DEF2: 4649 case ID_LED_ON1_ON2: 4650 case ID_LED_ON1_OFF2: 4651 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift); 4652 mac->ledctl_mode1 |= (ledctl_on << shift); 4653 break; 4654 case ID_LED_OFF1_DEF2: 4655 case ID_LED_OFF1_ON2: 4656 case ID_LED_OFF1_OFF2: 4657 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift); 4658 mac->ledctl_mode1 |= (ledctl_off << shift); 4659 break; 4660 default: 4661 /* Do nothing */ 4662 break; 4663 } 4664 switch (temp) { 4665 case ID_LED_DEF1_ON2: 4666 case ID_LED_ON1_ON2: 4667 case ID_LED_OFF1_ON2: 4668 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift); 4669 mac->ledctl_mode2 |= (ledctl_on << shift); 4670 break; 4671 case ID_LED_DEF1_OFF2: 4672 case ID_LED_ON1_OFF2: 4673 case ID_LED_OFF1_OFF2: 4674 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift); 4675 mac->ledctl_mode2 |= (ledctl_off << shift); 4676 break; 4677 default: 4678 /* Do nothing */ 4679 break; 4680 } 4681 } 4682 4683 return 0; 4684 } 4685 4686 /** 4687 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width 4688 * @hw: pointer to the HW structure 4689 * 4690 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability 4691 * register, so the bus width is hard coded. 4692 **/ 4693 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw) 4694 { 4695 struct e1000_bus_info *bus = &hw->bus; 4696 s32 ret_val; 4697 4698 ret_val = e1000e_get_bus_info_pcie(hw); 4699 4700 /* ICH devices are "PCI Express"-ish. They have 4701 * a configuration space, but do not contain 4702 * PCI Express Capability registers, so bus width 4703 * must be hardcoded. 4704 */ 4705 if (bus->width == e1000_bus_width_unknown) 4706 bus->width = e1000_bus_width_pcie_x1; 4707 4708 return ret_val; 4709 } 4710 4711 /** 4712 * e1000_reset_hw_ich8lan - Reset the hardware 4713 * @hw: pointer to the HW structure 4714 * 4715 * Does a full reset of the hardware which includes a reset of the PHY and 4716 * MAC. 4717 **/ 4718 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw) 4719 { 4720 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 4721 u16 kum_cfg; 4722 u32 ctrl, reg; 4723 s32 ret_val; 4724 4725 /* Prevent the PCI-E bus from sticking if there is no TLP connection 4726 * on the last TLP read/write transaction when MAC is reset. 4727 */ 4728 ret_val = e1000e_disable_pcie_master(hw); 4729 if (ret_val) 4730 e_dbg("PCI-E Master disable polling has failed.\n"); 4731 4732 e_dbg("Masking off all interrupts\n"); 4733 ew32(IMC, 0xffffffff); 4734 4735 /* Disable the Transmit and Receive units. Then delay to allow 4736 * any pending transactions to complete before we hit the MAC 4737 * with the global reset. 4738 */ 4739 ew32(RCTL, 0); 4740 ew32(TCTL, E1000_TCTL_PSP); 4741 e1e_flush(); 4742 4743 usleep_range(10000, 11000); 4744 4745 /* Workaround for ICH8 bit corruption issue in FIFO memory */ 4746 if (hw->mac.type == e1000_ich8lan) { 4747 /* Set Tx and Rx buffer allocation to 8k apiece. */ 4748 ew32(PBA, E1000_PBA_8K); 4749 /* Set Packet Buffer Size to 16k. */ 4750 ew32(PBS, E1000_PBS_16K); 4751 } 4752 4753 if (hw->mac.type == e1000_pchlan) { 4754 /* Save the NVM K1 bit setting */ 4755 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg); 4756 if (ret_val) 4757 return ret_val; 4758 4759 if (kum_cfg & E1000_NVM_K1_ENABLE) 4760 dev_spec->nvm_k1_enabled = true; 4761 else 4762 dev_spec->nvm_k1_enabled = false; 4763 } 4764 4765 ctrl = er32(CTRL); 4766 4767 if (!hw->phy.ops.check_reset_block(hw)) { 4768 /* Full-chip reset requires MAC and PHY reset at the same 4769 * time to make sure the interface between MAC and the 4770 * external PHY is reset. 4771 */ 4772 ctrl |= E1000_CTRL_PHY_RST; 4773 4774 /* Gate automatic PHY configuration by hardware on 4775 * non-managed 82579 4776 */ 4777 if ((hw->mac.type == e1000_pch2lan) && 4778 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) 4779 e1000_gate_hw_phy_config_ich8lan(hw, true); 4780 } 4781 ret_val = e1000_acquire_swflag_ich8lan(hw); 4782 e_dbg("Issuing a global reset to ich8lan\n"); 4783 ew32(CTRL, (ctrl | E1000_CTRL_RST)); 4784 /* cannot issue a flush here because it hangs the hardware */ 4785 msleep(20); 4786 4787 /* Set Phy Config Counter to 50msec */ 4788 if (hw->mac.type == e1000_pch2lan) { 4789 reg = er32(FEXTNVM3); 4790 reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK; 4791 reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC; 4792 ew32(FEXTNVM3, reg); 4793 } 4794 4795 if (!ret_val) 4796 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state); 4797 4798 if (ctrl & E1000_CTRL_PHY_RST) { 4799 ret_val = hw->phy.ops.get_cfg_done(hw); 4800 if (ret_val) 4801 return ret_val; 4802 4803 ret_val = e1000_post_phy_reset_ich8lan(hw); 4804 if (ret_val) 4805 return ret_val; 4806 } 4807 4808 /* For PCH, this write will make sure that any noise 4809 * will be detected as a CRC error and be dropped rather than show up 4810 * as a bad packet to the DMA engine. 4811 */ 4812 if (hw->mac.type == e1000_pchlan) 4813 ew32(CRC_OFFSET, 0x65656565); 4814 4815 ew32(IMC, 0xffffffff); 4816 er32(ICR); 4817 4818 reg = er32(KABGTXD); 4819 reg |= E1000_KABGTXD_BGSQLBIAS; 4820 ew32(KABGTXD, reg); 4821 4822 return 0; 4823 } 4824 4825 /** 4826 * e1000_init_hw_ich8lan - Initialize the hardware 4827 * @hw: pointer to the HW structure 4828 * 4829 * Prepares the hardware for transmit and receive by doing the following: 4830 * - initialize hardware bits 4831 * - initialize LED identification 4832 * - setup receive address registers 4833 * - setup flow control 4834 * - setup transmit descriptors 4835 * - clear statistics 4836 **/ 4837 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw) 4838 { 4839 struct e1000_mac_info *mac = &hw->mac; 4840 u32 ctrl_ext, txdctl, snoop, fflt_dbg; 4841 s32 ret_val; 4842 u16 i; 4843 4844 e1000_initialize_hw_bits_ich8lan(hw); 4845 4846 /* Initialize identification LED */ 4847 ret_val = mac->ops.id_led_init(hw); 4848 /* An error is not fatal and we should not stop init due to this */ 4849 if (ret_val) 4850 e_dbg("Error initializing identification LED\n"); 4851 4852 /* Setup the receive address. */ 4853 e1000e_init_rx_addrs(hw, mac->rar_entry_count); 4854 4855 /* Zero out the Multicast HASH table */ 4856 e_dbg("Zeroing the MTA\n"); 4857 for (i = 0; i < mac->mta_reg_count; i++) 4858 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); 4859 4860 /* The 82578 Rx buffer will stall if wakeup is enabled in host and 4861 * the ME. Disable wakeup by clearing the host wakeup bit. 4862 * Reset the phy after disabling host wakeup to reset the Rx buffer. 4863 */ 4864 if (hw->phy.type == e1000_phy_82578) { 4865 e1e_rphy(hw, BM_PORT_GEN_CFG, &i); 4866 i &= ~BM_WUC_HOST_WU_BIT; 4867 e1e_wphy(hw, BM_PORT_GEN_CFG, i); 4868 ret_val = e1000_phy_hw_reset_ich8lan(hw); 4869 if (ret_val) 4870 return ret_val; 4871 } 4872 4873 /* Setup link and flow control */ 4874 ret_val = mac->ops.setup_link(hw); 4875 4876 /* Set the transmit descriptor write-back policy for both queues */ 4877 txdctl = er32(TXDCTL(0)); 4878 txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) | 4879 E1000_TXDCTL_FULL_TX_DESC_WB); 4880 txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) | 4881 E1000_TXDCTL_MAX_TX_DESC_PREFETCH); 4882 ew32(TXDCTL(0), txdctl); 4883 txdctl = er32(TXDCTL(1)); 4884 txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) | 4885 E1000_TXDCTL_FULL_TX_DESC_WB); 4886 txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) | 4887 E1000_TXDCTL_MAX_TX_DESC_PREFETCH); 4888 ew32(TXDCTL(1), txdctl); 4889 4890 /* ICH8 has opposite polarity of no_snoop bits. 4891 * By default, we should use snoop behavior. 4892 */ 4893 if (mac->type == e1000_ich8lan) 4894 snoop = PCIE_ICH8_SNOOP_ALL; 4895 else 4896 snoop = (u32)~(PCIE_NO_SNOOP_ALL); 4897 e1000e_set_pcie_no_snoop(hw, snoop); 4898 4899 /* Enable workaround for packet loss issue on TGP PCH 4900 * Do not gate DMA clock from the modPHY block 4901 */ 4902 if (mac->type >= e1000_pch_tgp) { 4903 fflt_dbg = er32(FFLT_DBG); 4904 fflt_dbg |= E1000_FFLT_DBG_DONT_GATE_WAKE_DMA_CLK; 4905 ew32(FFLT_DBG, fflt_dbg); 4906 } 4907 4908 ctrl_ext = er32(CTRL_EXT); 4909 ctrl_ext |= E1000_CTRL_EXT_RO_DIS; 4910 ew32(CTRL_EXT, ctrl_ext); 4911 4912 /* Clear all of the statistics registers (clear on read). It is 4913 * important that we do this after we have tried to establish link 4914 * because the symbol error count will increment wildly if there 4915 * is no link. 4916 */ 4917 e1000_clear_hw_cntrs_ich8lan(hw); 4918 4919 return ret_val; 4920 } 4921 4922 /** 4923 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits 4924 * @hw: pointer to the HW structure 4925 * 4926 * Sets/Clears required hardware bits necessary for correctly setting up the 4927 * hardware for transmit and receive. 4928 **/ 4929 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw) 4930 { 4931 u32 reg; 4932 4933 /* Extended Device Control */ 4934 reg = er32(CTRL_EXT); 4935 reg |= BIT(22); 4936 /* Enable PHY low-power state when MAC is at D3 w/o WoL */ 4937 if (hw->mac.type >= e1000_pchlan) 4938 reg |= E1000_CTRL_EXT_PHYPDEN; 4939 ew32(CTRL_EXT, reg); 4940 4941 /* Transmit Descriptor Control 0 */ 4942 reg = er32(TXDCTL(0)); 4943 reg |= BIT(22); 4944 ew32(TXDCTL(0), reg); 4945 4946 /* Transmit Descriptor Control 1 */ 4947 reg = er32(TXDCTL(1)); 4948 reg |= BIT(22); 4949 ew32(TXDCTL(1), reg); 4950 4951 /* Transmit Arbitration Control 0 */ 4952 reg = er32(TARC(0)); 4953 if (hw->mac.type == e1000_ich8lan) 4954 reg |= BIT(28) | BIT(29); 4955 reg |= BIT(23) | BIT(24) | BIT(26) | BIT(27); 4956 ew32(TARC(0), reg); 4957 4958 /* Transmit Arbitration Control 1 */ 4959 reg = er32(TARC(1)); 4960 if (er32(TCTL) & E1000_TCTL_MULR) 4961 reg &= ~BIT(28); 4962 else 4963 reg |= BIT(28); 4964 reg |= BIT(24) | BIT(26) | BIT(30); 4965 ew32(TARC(1), reg); 4966 4967 /* Device Status */ 4968 if (hw->mac.type == e1000_ich8lan) { 4969 reg = er32(STATUS); 4970 reg &= ~BIT(31); 4971 ew32(STATUS, reg); 4972 } 4973 4974 /* work-around descriptor data corruption issue during nfs v2 udp 4975 * traffic, just disable the nfs filtering capability 4976 */ 4977 reg = er32(RFCTL); 4978 reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS); 4979 4980 /* Disable IPv6 extension header parsing because some malformed 4981 * IPv6 headers can hang the Rx. 4982 */ 4983 if (hw->mac.type == e1000_ich8lan) 4984 reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS); 4985 ew32(RFCTL, reg); 4986 4987 /* Enable ECC on Lynxpoint */ 4988 if (hw->mac.type >= e1000_pch_lpt) { 4989 reg = er32(PBECCSTS); 4990 reg |= E1000_PBECCSTS_ECC_ENABLE; 4991 ew32(PBECCSTS, reg); 4992 4993 reg = er32(CTRL); 4994 reg |= E1000_CTRL_MEHE; 4995 ew32(CTRL, reg); 4996 } 4997 } 4998 4999 /** 5000 * e1000_setup_link_ich8lan - Setup flow control and link settings 5001 * @hw: pointer to the HW structure 5002 * 5003 * Determines which flow control settings to use, then configures flow 5004 * control. Calls the appropriate media-specific link configuration 5005 * function. Assuming the adapter has a valid link partner, a valid link 5006 * should be established. Assumes the hardware has previously been reset 5007 * and the transmitter and receiver are not enabled. 5008 **/ 5009 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw) 5010 { 5011 s32 ret_val; 5012 5013 if (hw->phy.ops.check_reset_block(hw)) 5014 return 0; 5015 5016 /* ICH parts do not have a word in the NVM to determine 5017 * the default flow control setting, so we explicitly 5018 * set it to full. 5019 */ 5020 if (hw->fc.requested_mode == e1000_fc_default) { 5021 /* Workaround h/w hang when Tx flow control enabled */ 5022 if (hw->mac.type == e1000_pchlan) 5023 hw->fc.requested_mode = e1000_fc_rx_pause; 5024 else 5025 hw->fc.requested_mode = e1000_fc_full; 5026 } 5027 5028 /* Save off the requested flow control mode for use later. Depending 5029 * on the link partner's capabilities, we may or may not use this mode. 5030 */ 5031 hw->fc.current_mode = hw->fc.requested_mode; 5032 5033 e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode); 5034 5035 /* Continue to configure the copper link. */ 5036 ret_val = hw->mac.ops.setup_physical_interface(hw); 5037 if (ret_val) 5038 return ret_val; 5039 5040 ew32(FCTTV, hw->fc.pause_time); 5041 if ((hw->phy.type == e1000_phy_82578) || 5042 (hw->phy.type == e1000_phy_82579) || 5043 (hw->phy.type == e1000_phy_i217) || 5044 (hw->phy.type == e1000_phy_82577)) { 5045 ew32(FCRTV_PCH, hw->fc.refresh_time); 5046 5047 ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27), 5048 hw->fc.pause_time); 5049 if (ret_val) 5050 return ret_val; 5051 } 5052 5053 return e1000e_set_fc_watermarks(hw); 5054 } 5055 5056 /** 5057 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface 5058 * @hw: pointer to the HW structure 5059 * 5060 * Configures the kumeran interface to the PHY to wait the appropriate time 5061 * when polling the PHY, then call the generic setup_copper_link to finish 5062 * configuring the copper link. 5063 **/ 5064 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw) 5065 { 5066 u32 ctrl; 5067 s32 ret_val; 5068 u16 reg_data; 5069 5070 ctrl = er32(CTRL); 5071 ctrl |= E1000_CTRL_SLU; 5072 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); 5073 ew32(CTRL, ctrl); 5074 5075 /* Set the mac to wait the maximum time between each iteration 5076 * and increase the max iterations when polling the phy; 5077 * this fixes erroneous timeouts at 10Mbps. 5078 */ 5079 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF); 5080 if (ret_val) 5081 return ret_val; 5082 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM, 5083 ®_data); 5084 if (ret_val) 5085 return ret_val; 5086 reg_data |= 0x3F; 5087 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM, 5088 reg_data); 5089 if (ret_val) 5090 return ret_val; 5091 5092 switch (hw->phy.type) { 5093 case e1000_phy_igp_3: 5094 ret_val = e1000e_copper_link_setup_igp(hw); 5095 if (ret_val) 5096 return ret_val; 5097 break; 5098 case e1000_phy_bm: 5099 case e1000_phy_82578: 5100 ret_val = e1000e_copper_link_setup_m88(hw); 5101 if (ret_val) 5102 return ret_val; 5103 break; 5104 case e1000_phy_82577: 5105 case e1000_phy_82579: 5106 ret_val = e1000_copper_link_setup_82577(hw); 5107 if (ret_val) 5108 return ret_val; 5109 break; 5110 case e1000_phy_ife: 5111 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, ®_data); 5112 if (ret_val) 5113 return ret_val; 5114 5115 reg_data &= ~IFE_PMC_AUTO_MDIX; 5116 5117 switch (hw->phy.mdix) { 5118 case 1: 5119 reg_data &= ~IFE_PMC_FORCE_MDIX; 5120 break; 5121 case 2: 5122 reg_data |= IFE_PMC_FORCE_MDIX; 5123 break; 5124 case 0: 5125 default: 5126 reg_data |= IFE_PMC_AUTO_MDIX; 5127 break; 5128 } 5129 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data); 5130 if (ret_val) 5131 return ret_val; 5132 break; 5133 default: 5134 break; 5135 } 5136 5137 return e1000e_setup_copper_link(hw); 5138 } 5139 5140 /** 5141 * e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface 5142 * @hw: pointer to the HW structure 5143 * 5144 * Calls the PHY specific link setup function and then calls the 5145 * generic setup_copper_link to finish configuring the link for 5146 * Lynxpoint PCH devices 5147 **/ 5148 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw) 5149 { 5150 u32 ctrl; 5151 s32 ret_val; 5152 5153 ctrl = er32(CTRL); 5154 ctrl |= E1000_CTRL_SLU; 5155 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); 5156 ew32(CTRL, ctrl); 5157 5158 ret_val = e1000_copper_link_setup_82577(hw); 5159 if (ret_val) 5160 return ret_val; 5161 5162 return e1000e_setup_copper_link(hw); 5163 } 5164 5165 /** 5166 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex 5167 * @hw: pointer to the HW structure 5168 * @speed: pointer to store current link speed 5169 * @duplex: pointer to store the current link duplex 5170 * 5171 * Calls the generic get_speed_and_duplex to retrieve the current link 5172 * information and then calls the Kumeran lock loss workaround for links at 5173 * gigabit speeds. 5174 **/ 5175 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed, 5176 u16 *duplex) 5177 { 5178 s32 ret_val; 5179 5180 ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex); 5181 if (ret_val) 5182 return ret_val; 5183 5184 if ((hw->mac.type == e1000_ich8lan) && 5185 (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) { 5186 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw); 5187 } 5188 5189 return ret_val; 5190 } 5191 5192 /** 5193 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround 5194 * @hw: pointer to the HW structure 5195 * 5196 * Work-around for 82566 Kumeran PCS lock loss: 5197 * On link status change (i.e. PCI reset, speed change) and link is up and 5198 * speed is gigabit- 5199 * 0) if workaround is optionally disabled do nothing 5200 * 1) wait 1ms for Kumeran link to come up 5201 * 2) check Kumeran Diagnostic register PCS lock loss bit 5202 * 3) if not set the link is locked (all is good), otherwise... 5203 * 4) reset the PHY 5204 * 5) repeat up to 10 times 5205 * Note: this is only called for IGP3 copper when speed is 1gb. 5206 **/ 5207 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw) 5208 { 5209 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 5210 u32 phy_ctrl; 5211 s32 ret_val; 5212 u16 i, data; 5213 bool link; 5214 5215 if (!dev_spec->kmrn_lock_loss_workaround_enabled) 5216 return 0; 5217 5218 /* Make sure link is up before proceeding. If not just return. 5219 * Attempting this while link is negotiating fouled up link 5220 * stability 5221 */ 5222 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); 5223 if (!link) 5224 return 0; 5225 5226 for (i = 0; i < 10; i++) { 5227 /* read once to clear */ 5228 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data); 5229 if (ret_val) 5230 return ret_val; 5231 /* and again to get new status */ 5232 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data); 5233 if (ret_val) 5234 return ret_val; 5235 5236 /* check for PCS lock */ 5237 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS)) 5238 return 0; 5239 5240 /* Issue PHY reset */ 5241 e1000_phy_hw_reset(hw); 5242 mdelay(5); 5243 } 5244 /* Disable GigE link negotiation */ 5245 phy_ctrl = er32(PHY_CTRL); 5246 phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE | 5247 E1000_PHY_CTRL_NOND0A_GBE_DISABLE); 5248 ew32(PHY_CTRL, phy_ctrl); 5249 5250 /* Call gig speed drop workaround on Gig disable before accessing 5251 * any PHY registers 5252 */ 5253 e1000e_gig_downshift_workaround_ich8lan(hw); 5254 5255 /* unable to acquire PCS lock */ 5256 return -E1000_ERR_PHY; 5257 } 5258 5259 /** 5260 * e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state 5261 * @hw: pointer to the HW structure 5262 * @state: boolean value used to set the current Kumeran workaround state 5263 * 5264 * If ICH8, set the current Kumeran workaround state (enabled - true 5265 * /disabled - false). 5266 **/ 5267 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw, 5268 bool state) 5269 { 5270 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 5271 5272 if (hw->mac.type != e1000_ich8lan) { 5273 e_dbg("Workaround applies to ICH8 only.\n"); 5274 return; 5275 } 5276 5277 dev_spec->kmrn_lock_loss_workaround_enabled = state; 5278 } 5279 5280 /** 5281 * e1000e_igp3_phy_powerdown_workaround_ich8lan - Power down workaround on D3 5282 * @hw: pointer to the HW structure 5283 * 5284 * Workaround for 82566 power-down on D3 entry: 5285 * 1) disable gigabit link 5286 * 2) write VR power-down enable 5287 * 3) read it back 5288 * Continue if successful, else issue LCD reset and repeat 5289 **/ 5290 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw) 5291 { 5292 u32 reg; 5293 u16 data; 5294 u8 retry = 0; 5295 5296 if (hw->phy.type != e1000_phy_igp_3) 5297 return; 5298 5299 /* Try the workaround twice (if needed) */ 5300 do { 5301 /* Disable link */ 5302 reg = er32(PHY_CTRL); 5303 reg |= (E1000_PHY_CTRL_GBE_DISABLE | 5304 E1000_PHY_CTRL_NOND0A_GBE_DISABLE); 5305 ew32(PHY_CTRL, reg); 5306 5307 /* Call gig speed drop workaround on Gig disable before 5308 * accessing any PHY registers 5309 */ 5310 if (hw->mac.type == e1000_ich8lan) 5311 e1000e_gig_downshift_workaround_ich8lan(hw); 5312 5313 /* Write VR power-down enable */ 5314 e1e_rphy(hw, IGP3_VR_CTRL, &data); 5315 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK; 5316 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN); 5317 5318 /* Read it back and test */ 5319 e1e_rphy(hw, IGP3_VR_CTRL, &data); 5320 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK; 5321 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry) 5322 break; 5323 5324 /* Issue PHY reset and repeat at most one more time */ 5325 reg = er32(CTRL); 5326 ew32(CTRL, reg | E1000_CTRL_PHY_RST); 5327 retry++; 5328 } while (retry); 5329 } 5330 5331 /** 5332 * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working 5333 * @hw: pointer to the HW structure 5334 * 5335 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC), 5336 * LPLU, Gig disable, MDIC PHY reset): 5337 * 1) Set Kumeran Near-end loopback 5338 * 2) Clear Kumeran Near-end loopback 5339 * Should only be called for ICH8[m] devices with any 1G Phy. 5340 **/ 5341 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw) 5342 { 5343 s32 ret_val; 5344 u16 reg_data; 5345 5346 if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife)) 5347 return; 5348 5349 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, 5350 ®_data); 5351 if (ret_val) 5352 return; 5353 reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK; 5354 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, 5355 reg_data); 5356 if (ret_val) 5357 return; 5358 reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK; 5359 e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data); 5360 } 5361 5362 /** 5363 * e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx 5364 * @hw: pointer to the HW structure 5365 * 5366 * During S0 to Sx transition, it is possible the link remains at gig 5367 * instead of negotiating to a lower speed. Before going to Sx, set 5368 * 'Gig Disable' to force link speed negotiation to a lower speed based on 5369 * the LPLU setting in the NVM or custom setting. For PCH and newer parts, 5370 * the OEM bits PHY register (LED, GbE disable and LPLU configurations) also 5371 * needs to be written. 5372 * Parts that support (and are linked to a partner which support) EEE in 5373 * 100Mbps should disable LPLU since 100Mbps w/ EEE requires less power 5374 * than 10Mbps w/o EEE. 5375 **/ 5376 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw) 5377 { 5378 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 5379 u32 phy_ctrl; 5380 s32 ret_val; 5381 5382 phy_ctrl = er32(PHY_CTRL); 5383 phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE; 5384 5385 if (hw->phy.type == e1000_phy_i217) { 5386 u16 phy_reg, device_id = hw->adapter->pdev->device; 5387 5388 if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) || 5389 (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) || 5390 (device_id == E1000_DEV_ID_PCH_I218_LM3) || 5391 (device_id == E1000_DEV_ID_PCH_I218_V3) || 5392 (hw->mac.type >= e1000_pch_spt)) { 5393 u32 fextnvm6 = er32(FEXTNVM6); 5394 5395 ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK); 5396 } 5397 5398 ret_val = hw->phy.ops.acquire(hw); 5399 if (ret_val) 5400 goto out; 5401 5402 if (!dev_spec->eee_disable) { 5403 u16 eee_advert; 5404 5405 ret_val = 5406 e1000_read_emi_reg_locked(hw, 5407 I217_EEE_ADVERTISEMENT, 5408 &eee_advert); 5409 if (ret_val) 5410 goto release; 5411 5412 /* Disable LPLU if both link partners support 100BaseT 5413 * EEE and 100Full is advertised on both ends of the 5414 * link, and enable Auto Enable LPI since there will 5415 * be no driver to enable LPI while in Sx. 5416 */ 5417 if ((eee_advert & I82579_EEE_100_SUPPORTED) && 5418 (dev_spec->eee_lp_ability & 5419 I82579_EEE_100_SUPPORTED) && 5420 (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) { 5421 phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU | 5422 E1000_PHY_CTRL_NOND0A_LPLU); 5423 5424 /* Set Auto Enable LPI after link up */ 5425 e1e_rphy_locked(hw, 5426 I217_LPI_GPIO_CTRL, &phy_reg); 5427 phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI; 5428 e1e_wphy_locked(hw, 5429 I217_LPI_GPIO_CTRL, phy_reg); 5430 } 5431 } 5432 5433 /* For i217 Intel Rapid Start Technology support, 5434 * when the system is going into Sx and no manageability engine 5435 * is present, the driver must configure proxy to reset only on 5436 * power good. LPI (Low Power Idle) state must also reset only 5437 * on power good, as well as the MTA (Multicast table array). 5438 * The SMBus release must also be disabled on LCD reset. 5439 */ 5440 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) { 5441 /* Enable proxy to reset only on power good. */ 5442 e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg); 5443 phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE; 5444 e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg); 5445 5446 /* Set bit enable LPI (EEE) to reset only on 5447 * power good. 5448 */ 5449 e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg); 5450 phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET; 5451 e1e_wphy_locked(hw, I217_SxCTRL, phy_reg); 5452 5453 /* Disable the SMB release on LCD reset. */ 5454 e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg); 5455 phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE; 5456 e1e_wphy_locked(hw, I217_MEMPWR, phy_reg); 5457 } 5458 5459 /* Enable MTA to reset for Intel Rapid Start Technology 5460 * Support 5461 */ 5462 e1e_rphy_locked(hw, I217_CGFREG, &phy_reg); 5463 phy_reg |= I217_CGFREG_ENABLE_MTA_RESET; 5464 e1e_wphy_locked(hw, I217_CGFREG, phy_reg); 5465 5466 release: 5467 hw->phy.ops.release(hw); 5468 } 5469 out: 5470 ew32(PHY_CTRL, phy_ctrl); 5471 5472 if (hw->mac.type == e1000_ich8lan) 5473 e1000e_gig_downshift_workaround_ich8lan(hw); 5474 5475 if (hw->mac.type >= e1000_pchlan) { 5476 e1000_oem_bits_config_ich8lan(hw, false); 5477 5478 /* Reset PHY to activate OEM bits on 82577/8 */ 5479 if (hw->mac.type == e1000_pchlan) 5480 e1000e_phy_hw_reset_generic(hw); 5481 5482 ret_val = hw->phy.ops.acquire(hw); 5483 if (ret_val) 5484 return; 5485 e1000_write_smbus_addr(hw); 5486 hw->phy.ops.release(hw); 5487 } 5488 } 5489 5490 /** 5491 * e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0 5492 * @hw: pointer to the HW structure 5493 * 5494 * During Sx to S0 transitions on non-managed devices or managed devices 5495 * on which PHY resets are not blocked, if the PHY registers cannot be 5496 * accessed properly by the s/w toggle the LANPHYPC value to power cycle 5497 * the PHY. 5498 * On i217, setup Intel Rapid Start Technology. 5499 **/ 5500 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw) 5501 { 5502 s32 ret_val; 5503 5504 if (hw->mac.type < e1000_pch2lan) 5505 return; 5506 5507 ret_val = e1000_init_phy_workarounds_pchlan(hw); 5508 if (ret_val) { 5509 e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val); 5510 return; 5511 } 5512 5513 /* For i217 Intel Rapid Start Technology support when the system 5514 * is transitioning from Sx and no manageability engine is present 5515 * configure SMBus to restore on reset, disable proxy, and enable 5516 * the reset on MTA (Multicast table array). 5517 */ 5518 if (hw->phy.type == e1000_phy_i217) { 5519 u16 phy_reg; 5520 5521 ret_val = hw->phy.ops.acquire(hw); 5522 if (ret_val) { 5523 e_dbg("Failed to setup iRST\n"); 5524 return; 5525 } 5526 5527 /* Clear Auto Enable LPI after link up */ 5528 e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg); 5529 phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI; 5530 e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg); 5531 5532 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) { 5533 /* Restore clear on SMB if no manageability engine 5534 * is present 5535 */ 5536 ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg); 5537 if (ret_val) 5538 goto release; 5539 phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE; 5540 e1e_wphy_locked(hw, I217_MEMPWR, phy_reg); 5541 5542 /* Disable Proxy */ 5543 e1e_wphy_locked(hw, I217_PROXY_CTRL, 0); 5544 } 5545 /* Enable reset on MTA */ 5546 ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg); 5547 if (ret_val) 5548 goto release; 5549 phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET; 5550 e1e_wphy_locked(hw, I217_CGFREG, phy_reg); 5551 release: 5552 if (ret_val) 5553 e_dbg("Error %d in resume workarounds\n", ret_val); 5554 hw->phy.ops.release(hw); 5555 } 5556 } 5557 5558 /** 5559 * e1000_cleanup_led_ich8lan - Restore the default LED operation 5560 * @hw: pointer to the HW structure 5561 * 5562 * Return the LED back to the default configuration. 5563 **/ 5564 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw) 5565 { 5566 if (hw->phy.type == e1000_phy_ife) 5567 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0); 5568 5569 ew32(LEDCTL, hw->mac.ledctl_default); 5570 return 0; 5571 } 5572 5573 /** 5574 * e1000_led_on_ich8lan - Turn LEDs on 5575 * @hw: pointer to the HW structure 5576 * 5577 * Turn on the LEDs. 5578 **/ 5579 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw) 5580 { 5581 if (hw->phy.type == e1000_phy_ife) 5582 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 5583 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON)); 5584 5585 ew32(LEDCTL, hw->mac.ledctl_mode2); 5586 return 0; 5587 } 5588 5589 /** 5590 * e1000_led_off_ich8lan - Turn LEDs off 5591 * @hw: pointer to the HW structure 5592 * 5593 * Turn off the LEDs. 5594 **/ 5595 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw) 5596 { 5597 if (hw->phy.type == e1000_phy_ife) 5598 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 5599 (IFE_PSCL_PROBE_MODE | 5600 IFE_PSCL_PROBE_LEDS_OFF)); 5601 5602 ew32(LEDCTL, hw->mac.ledctl_mode1); 5603 return 0; 5604 } 5605 5606 /** 5607 * e1000_setup_led_pchlan - Configures SW controllable LED 5608 * @hw: pointer to the HW structure 5609 * 5610 * This prepares the SW controllable LED for use. 5611 **/ 5612 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw) 5613 { 5614 return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1); 5615 } 5616 5617 /** 5618 * e1000_cleanup_led_pchlan - Restore the default LED operation 5619 * @hw: pointer to the HW structure 5620 * 5621 * Return the LED back to the default configuration. 5622 **/ 5623 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw) 5624 { 5625 return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default); 5626 } 5627 5628 /** 5629 * e1000_led_on_pchlan - Turn LEDs on 5630 * @hw: pointer to the HW structure 5631 * 5632 * Turn on the LEDs. 5633 **/ 5634 static s32 e1000_led_on_pchlan(struct e1000_hw *hw) 5635 { 5636 u16 data = (u16)hw->mac.ledctl_mode2; 5637 u32 i, led; 5638 5639 /* If no link, then turn LED on by setting the invert bit 5640 * for each LED that's mode is "link_up" in ledctl_mode2. 5641 */ 5642 if (!(er32(STATUS) & E1000_STATUS_LU)) { 5643 for (i = 0; i < 3; i++) { 5644 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK; 5645 if ((led & E1000_PHY_LED0_MODE_MASK) != 5646 E1000_LEDCTL_MODE_LINK_UP) 5647 continue; 5648 if (led & E1000_PHY_LED0_IVRT) 5649 data &= ~(E1000_PHY_LED0_IVRT << (i * 5)); 5650 else 5651 data |= (E1000_PHY_LED0_IVRT << (i * 5)); 5652 } 5653 } 5654 5655 return e1e_wphy(hw, HV_LED_CONFIG, data); 5656 } 5657 5658 /** 5659 * e1000_led_off_pchlan - Turn LEDs off 5660 * @hw: pointer to the HW structure 5661 * 5662 * Turn off the LEDs. 5663 **/ 5664 static s32 e1000_led_off_pchlan(struct e1000_hw *hw) 5665 { 5666 u16 data = (u16)hw->mac.ledctl_mode1; 5667 u32 i, led; 5668 5669 /* If no link, then turn LED off by clearing the invert bit 5670 * for each LED that's mode is "link_up" in ledctl_mode1. 5671 */ 5672 if (!(er32(STATUS) & E1000_STATUS_LU)) { 5673 for (i = 0; i < 3; i++) { 5674 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK; 5675 if ((led & E1000_PHY_LED0_MODE_MASK) != 5676 E1000_LEDCTL_MODE_LINK_UP) 5677 continue; 5678 if (led & E1000_PHY_LED0_IVRT) 5679 data &= ~(E1000_PHY_LED0_IVRT << (i * 5)); 5680 else 5681 data |= (E1000_PHY_LED0_IVRT << (i * 5)); 5682 } 5683 } 5684 5685 return e1e_wphy(hw, HV_LED_CONFIG, data); 5686 } 5687 5688 /** 5689 * e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset 5690 * @hw: pointer to the HW structure 5691 * 5692 * Read appropriate register for the config done bit for completion status 5693 * and configure the PHY through s/w for EEPROM-less parts. 5694 * 5695 * NOTE: some silicon which is EEPROM-less will fail trying to read the 5696 * config done bit, so only an error is logged and continues. If we were 5697 * to return with error, EEPROM-less silicon would not be able to be reset 5698 * or change link. 5699 **/ 5700 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw) 5701 { 5702 s32 ret_val = 0; 5703 u32 bank = 0; 5704 u32 status; 5705 5706 e1000e_get_cfg_done_generic(hw); 5707 5708 /* Wait for indication from h/w that it has completed basic config */ 5709 if (hw->mac.type >= e1000_ich10lan) { 5710 e1000_lan_init_done_ich8lan(hw); 5711 } else { 5712 ret_val = e1000e_get_auto_rd_done(hw); 5713 if (ret_val) { 5714 /* When auto config read does not complete, do not 5715 * return with an error. This can happen in situations 5716 * where there is no eeprom and prevents getting link. 5717 */ 5718 e_dbg("Auto Read Done did not complete\n"); 5719 ret_val = 0; 5720 } 5721 } 5722 5723 /* Clear PHY Reset Asserted bit */ 5724 status = er32(STATUS); 5725 if (status & E1000_STATUS_PHYRA) 5726 ew32(STATUS, status & ~E1000_STATUS_PHYRA); 5727 else 5728 e_dbg("PHY Reset Asserted not set - needs delay\n"); 5729 5730 /* If EEPROM is not marked present, init the IGP 3 PHY manually */ 5731 if (hw->mac.type <= e1000_ich9lan) { 5732 if (!(er32(EECD) & E1000_EECD_PRES) && 5733 (hw->phy.type == e1000_phy_igp_3)) { 5734 e1000e_phy_init_script_igp3(hw); 5735 } 5736 } else { 5737 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) { 5738 /* Maybe we should do a basic PHY config */ 5739 e_dbg("EEPROM not present\n"); 5740 ret_val = -E1000_ERR_CONFIG; 5741 } 5742 } 5743 5744 return ret_val; 5745 } 5746 5747 /** 5748 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down 5749 * @hw: pointer to the HW structure 5750 * 5751 * In the case of a PHY power down to save power, or to turn off link during a 5752 * driver unload, or wake on lan is not enabled, remove the link. 5753 **/ 5754 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw) 5755 { 5756 /* If the management interface is not enabled, then power down */ 5757 if (!(hw->mac.ops.check_mng_mode(hw) || 5758 hw->phy.ops.check_reset_block(hw))) 5759 e1000_power_down_phy_copper(hw); 5760 } 5761 5762 /** 5763 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters 5764 * @hw: pointer to the HW structure 5765 * 5766 * Clears hardware counters specific to the silicon family and calls 5767 * clear_hw_cntrs_generic to clear all general purpose counters. 5768 **/ 5769 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw) 5770 { 5771 u16 phy_data; 5772 s32 ret_val; 5773 5774 e1000e_clear_hw_cntrs_base(hw); 5775 5776 er32(ALGNERRC); 5777 er32(RXERRC); 5778 er32(TNCRS); 5779 er32(CEXTERR); 5780 er32(TSCTC); 5781 er32(TSCTFC); 5782 5783 er32(MGTPRC); 5784 er32(MGTPDC); 5785 er32(MGTPTC); 5786 5787 er32(IAC); 5788 er32(ICRXOC); 5789 5790 /* Clear PHY statistics registers */ 5791 if ((hw->phy.type == e1000_phy_82578) || 5792 (hw->phy.type == e1000_phy_82579) || 5793 (hw->phy.type == e1000_phy_i217) || 5794 (hw->phy.type == e1000_phy_82577)) { 5795 ret_val = hw->phy.ops.acquire(hw); 5796 if (ret_val) 5797 return; 5798 ret_val = hw->phy.ops.set_page(hw, 5799 HV_STATS_PAGE << IGP_PAGE_SHIFT); 5800 if (ret_val) 5801 goto release; 5802 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data); 5803 hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data); 5804 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data); 5805 hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data); 5806 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data); 5807 hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data); 5808 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data); 5809 hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data); 5810 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data); 5811 hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data); 5812 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data); 5813 hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data); 5814 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data); 5815 hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data); 5816 release: 5817 hw->phy.ops.release(hw); 5818 } 5819 } 5820 5821 static const struct e1000_mac_operations ich8_mac_ops = { 5822 /* check_mng_mode dependent on mac type */ 5823 .check_for_link = e1000_check_for_copper_link_ich8lan, 5824 /* cleanup_led dependent on mac type */ 5825 .clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan, 5826 .get_bus_info = e1000_get_bus_info_ich8lan, 5827 .set_lan_id = e1000_set_lan_id_single_port, 5828 .get_link_up_info = e1000_get_link_up_info_ich8lan, 5829 /* led_on dependent on mac type */ 5830 /* led_off dependent on mac type */ 5831 .update_mc_addr_list = e1000e_update_mc_addr_list_generic, 5832 .reset_hw = e1000_reset_hw_ich8lan, 5833 .init_hw = e1000_init_hw_ich8lan, 5834 .setup_link = e1000_setup_link_ich8lan, 5835 .setup_physical_interface = e1000_setup_copper_link_ich8lan, 5836 /* id_led_init dependent on mac type */ 5837 .config_collision_dist = e1000e_config_collision_dist_generic, 5838 .rar_set = e1000e_rar_set_generic, 5839 .rar_get_count = e1000e_rar_get_count_generic, 5840 }; 5841 5842 static const struct e1000_phy_operations ich8_phy_ops = { 5843 .acquire = e1000_acquire_swflag_ich8lan, 5844 .check_reset_block = e1000_check_reset_block_ich8lan, 5845 .commit = NULL, 5846 .get_cfg_done = e1000_get_cfg_done_ich8lan, 5847 .get_cable_length = e1000e_get_cable_length_igp_2, 5848 .read_reg = e1000e_read_phy_reg_igp, 5849 .release = e1000_release_swflag_ich8lan, 5850 .reset = e1000_phy_hw_reset_ich8lan, 5851 .set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan, 5852 .set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan, 5853 .write_reg = e1000e_write_phy_reg_igp, 5854 }; 5855 5856 static const struct e1000_nvm_operations ich8_nvm_ops = { 5857 .acquire = e1000_acquire_nvm_ich8lan, 5858 .read = e1000_read_nvm_ich8lan, 5859 .release = e1000_release_nvm_ich8lan, 5860 .reload = e1000e_reload_nvm_generic, 5861 .update = e1000_update_nvm_checksum_ich8lan, 5862 .valid_led_default = e1000_valid_led_default_ich8lan, 5863 .validate = e1000_validate_nvm_checksum_ich8lan, 5864 .write = e1000_write_nvm_ich8lan, 5865 }; 5866 5867 static const struct e1000_nvm_operations spt_nvm_ops = { 5868 .acquire = e1000_acquire_nvm_ich8lan, 5869 .release = e1000_release_nvm_ich8lan, 5870 .read = e1000_read_nvm_spt, 5871 .update = e1000_update_nvm_checksum_spt, 5872 .reload = e1000e_reload_nvm_generic, 5873 .valid_led_default = e1000_valid_led_default_ich8lan, 5874 .validate = e1000_validate_nvm_checksum_ich8lan, 5875 .write = e1000_write_nvm_ich8lan, 5876 }; 5877 5878 const struct e1000_info e1000_ich8_info = { 5879 .mac = e1000_ich8lan, 5880 .flags = FLAG_HAS_WOL 5881 | FLAG_IS_ICH 5882 | FLAG_HAS_CTRLEXT_ON_LOAD 5883 | FLAG_HAS_AMT 5884 | FLAG_HAS_FLASH 5885 | FLAG_APME_IN_WUC, 5886 .pba = 8, 5887 .max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN, 5888 .get_variants = e1000_get_variants_ich8lan, 5889 .mac_ops = &ich8_mac_ops, 5890 .phy_ops = &ich8_phy_ops, 5891 .nvm_ops = &ich8_nvm_ops, 5892 }; 5893 5894 const struct e1000_info e1000_ich9_info = { 5895 .mac = e1000_ich9lan, 5896 .flags = FLAG_HAS_JUMBO_FRAMES 5897 | FLAG_IS_ICH 5898 | FLAG_HAS_WOL 5899 | FLAG_HAS_CTRLEXT_ON_LOAD 5900 | FLAG_HAS_AMT 5901 | FLAG_HAS_FLASH 5902 | FLAG_APME_IN_WUC, 5903 .pba = 18, 5904 .max_hw_frame_size = DEFAULT_JUMBO, 5905 .get_variants = e1000_get_variants_ich8lan, 5906 .mac_ops = &ich8_mac_ops, 5907 .phy_ops = &ich8_phy_ops, 5908 .nvm_ops = &ich8_nvm_ops, 5909 }; 5910 5911 const struct e1000_info e1000_ich10_info = { 5912 .mac = e1000_ich10lan, 5913 .flags = FLAG_HAS_JUMBO_FRAMES 5914 | FLAG_IS_ICH 5915 | FLAG_HAS_WOL 5916 | FLAG_HAS_CTRLEXT_ON_LOAD 5917 | FLAG_HAS_AMT 5918 | FLAG_HAS_FLASH 5919 | FLAG_APME_IN_WUC, 5920 .pba = 18, 5921 .max_hw_frame_size = DEFAULT_JUMBO, 5922 .get_variants = e1000_get_variants_ich8lan, 5923 .mac_ops = &ich8_mac_ops, 5924 .phy_ops = &ich8_phy_ops, 5925 .nvm_ops = &ich8_nvm_ops, 5926 }; 5927 5928 const struct e1000_info e1000_pch_info = { 5929 .mac = e1000_pchlan, 5930 .flags = FLAG_IS_ICH 5931 | FLAG_HAS_WOL 5932 | FLAG_HAS_CTRLEXT_ON_LOAD 5933 | FLAG_HAS_AMT 5934 | FLAG_HAS_FLASH 5935 | FLAG_HAS_JUMBO_FRAMES 5936 | FLAG_DISABLE_FC_PAUSE_TIME /* errata */ 5937 | FLAG_APME_IN_WUC, 5938 .flags2 = FLAG2_HAS_PHY_STATS, 5939 .pba = 26, 5940 .max_hw_frame_size = 4096, 5941 .get_variants = e1000_get_variants_ich8lan, 5942 .mac_ops = &ich8_mac_ops, 5943 .phy_ops = &ich8_phy_ops, 5944 .nvm_ops = &ich8_nvm_ops, 5945 }; 5946 5947 const struct e1000_info e1000_pch2_info = { 5948 .mac = e1000_pch2lan, 5949 .flags = FLAG_IS_ICH 5950 | FLAG_HAS_WOL 5951 | FLAG_HAS_HW_TIMESTAMP 5952 | FLAG_HAS_CTRLEXT_ON_LOAD 5953 | FLAG_HAS_AMT 5954 | FLAG_HAS_FLASH 5955 | FLAG_HAS_JUMBO_FRAMES 5956 | FLAG_APME_IN_WUC, 5957 .flags2 = FLAG2_HAS_PHY_STATS 5958 | FLAG2_HAS_EEE 5959 | FLAG2_CHECK_SYSTIM_OVERFLOW, 5960 .pba = 26, 5961 .max_hw_frame_size = 9022, 5962 .get_variants = e1000_get_variants_ich8lan, 5963 .mac_ops = &ich8_mac_ops, 5964 .phy_ops = &ich8_phy_ops, 5965 .nvm_ops = &ich8_nvm_ops, 5966 }; 5967 5968 const struct e1000_info e1000_pch_lpt_info = { 5969 .mac = e1000_pch_lpt, 5970 .flags = FLAG_IS_ICH 5971 | FLAG_HAS_WOL 5972 | FLAG_HAS_HW_TIMESTAMP 5973 | FLAG_HAS_CTRLEXT_ON_LOAD 5974 | FLAG_HAS_AMT 5975 | FLAG_HAS_FLASH 5976 | FLAG_HAS_JUMBO_FRAMES 5977 | FLAG_APME_IN_WUC, 5978 .flags2 = FLAG2_HAS_PHY_STATS 5979 | FLAG2_HAS_EEE 5980 | FLAG2_CHECK_SYSTIM_OVERFLOW, 5981 .pba = 26, 5982 .max_hw_frame_size = 9022, 5983 .get_variants = e1000_get_variants_ich8lan, 5984 .mac_ops = &ich8_mac_ops, 5985 .phy_ops = &ich8_phy_ops, 5986 .nvm_ops = &ich8_nvm_ops, 5987 }; 5988 5989 const struct e1000_info e1000_pch_spt_info = { 5990 .mac = e1000_pch_spt, 5991 .flags = FLAG_IS_ICH 5992 | FLAG_HAS_WOL 5993 | FLAG_HAS_HW_TIMESTAMP 5994 | FLAG_HAS_CTRLEXT_ON_LOAD 5995 | FLAG_HAS_AMT 5996 | FLAG_HAS_FLASH 5997 | FLAG_HAS_JUMBO_FRAMES 5998 | FLAG_APME_IN_WUC, 5999 .flags2 = FLAG2_HAS_PHY_STATS 6000 | FLAG2_HAS_EEE, 6001 .pba = 26, 6002 .max_hw_frame_size = 9022, 6003 .get_variants = e1000_get_variants_ich8lan, 6004 .mac_ops = &ich8_mac_ops, 6005 .phy_ops = &ich8_phy_ops, 6006 .nvm_ops = &spt_nvm_ops, 6007 }; 6008 6009 const struct e1000_info e1000_pch_cnp_info = { 6010 .mac = e1000_pch_cnp, 6011 .flags = FLAG_IS_ICH 6012 | FLAG_HAS_WOL 6013 | FLAG_HAS_HW_TIMESTAMP 6014 | FLAG_HAS_CTRLEXT_ON_LOAD 6015 | FLAG_HAS_AMT 6016 | FLAG_HAS_FLASH 6017 | FLAG_HAS_JUMBO_FRAMES 6018 | FLAG_APME_IN_WUC, 6019 .flags2 = FLAG2_HAS_PHY_STATS 6020 | FLAG2_HAS_EEE, 6021 .pba = 26, 6022 .max_hw_frame_size = 9022, 6023 .get_variants = e1000_get_variants_ich8lan, 6024 .mac_ops = &ich8_mac_ops, 6025 .phy_ops = &ich8_phy_ops, 6026 .nvm_ops = &spt_nvm_ops, 6027 }; 6028 6029 const struct e1000_info e1000_pch_tgp_info = { 6030 .mac = e1000_pch_tgp, 6031 .flags = FLAG_IS_ICH 6032 | FLAG_HAS_WOL 6033 | FLAG_HAS_HW_TIMESTAMP 6034 | FLAG_HAS_CTRLEXT_ON_LOAD 6035 | FLAG_HAS_AMT 6036 | FLAG_HAS_FLASH 6037 | FLAG_HAS_JUMBO_FRAMES 6038 | FLAG_APME_IN_WUC, 6039 .flags2 = FLAG2_HAS_PHY_STATS 6040 | FLAG2_HAS_EEE, 6041 .pba = 26, 6042 .max_hw_frame_size = 9022, 6043 .get_variants = e1000_get_variants_ich8lan, 6044 .mac_ops = &ich8_mac_ops, 6045 .phy_ops = &ich8_phy_ops, 6046 .nvm_ops = &spt_nvm_ops, 6047 }; 6048 6049 const struct e1000_info e1000_pch_adp_info = { 6050 .mac = e1000_pch_adp, 6051 .flags = FLAG_IS_ICH 6052 | FLAG_HAS_WOL 6053 | FLAG_HAS_HW_TIMESTAMP 6054 | FLAG_HAS_CTRLEXT_ON_LOAD 6055 | FLAG_HAS_AMT 6056 | FLAG_HAS_FLASH 6057 | FLAG_HAS_JUMBO_FRAMES 6058 | FLAG_APME_IN_WUC, 6059 .flags2 = FLAG2_HAS_PHY_STATS 6060 | FLAG2_HAS_EEE, 6061 .pba = 26, 6062 .max_hw_frame_size = 9022, 6063 .get_variants = e1000_get_variants_ich8lan, 6064 .mac_ops = &ich8_mac_ops, 6065 .phy_ops = &ich8_phy_ops, 6066 .nvm_ops = &spt_nvm_ops, 6067 }; 6068 6069 const struct e1000_info e1000_pch_mtp_info = { 6070 .mac = e1000_pch_mtp, 6071 .flags = FLAG_IS_ICH 6072 | FLAG_HAS_WOL 6073 | FLAG_HAS_HW_TIMESTAMP 6074 | FLAG_HAS_CTRLEXT_ON_LOAD 6075 | FLAG_HAS_AMT 6076 | FLAG_HAS_FLASH 6077 | FLAG_HAS_JUMBO_FRAMES 6078 | FLAG_APME_IN_WUC, 6079 .flags2 = FLAG2_HAS_PHY_STATS 6080 | FLAG2_HAS_EEE, 6081 .pba = 26, 6082 .max_hw_frame_size = 9022, 6083 .get_variants = e1000_get_variants_ich8lan, 6084 .mac_ops = &ich8_mac_ops, 6085 .phy_ops = &ich8_phy_ops, 6086 .nvm_ops = &spt_nvm_ops, 6087 }; 6088