1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3 
4 /* 82562G 10/100 Network Connection
5  * 82562G-2 10/100 Network Connection
6  * 82562GT 10/100 Network Connection
7  * 82562GT-2 10/100 Network Connection
8  * 82562V 10/100 Network Connection
9  * 82562V-2 10/100 Network Connection
10  * 82566DC-2 Gigabit Network Connection
11  * 82566DC Gigabit Network Connection
12  * 82566DM-2 Gigabit Network Connection
13  * 82566DM Gigabit Network Connection
14  * 82566MC Gigabit Network Connection
15  * 82566MM Gigabit Network Connection
16  * 82567LM Gigabit Network Connection
17  * 82567LF Gigabit Network Connection
18  * 82567V Gigabit Network Connection
19  * 82567LM-2 Gigabit Network Connection
20  * 82567LF-2 Gigabit Network Connection
21  * 82567V-2 Gigabit Network Connection
22  * 82567LF-3 Gigabit Network Connection
23  * 82567LM-3 Gigabit Network Connection
24  * 82567LM-4 Gigabit Network Connection
25  * 82577LM Gigabit Network Connection
26  * 82577LC Gigabit Network Connection
27  * 82578DM Gigabit Network Connection
28  * 82578DC Gigabit Network Connection
29  * 82579LM Gigabit Network Connection
30  * 82579V Gigabit Network Connection
31  * Ethernet Connection I217-LM
32  * Ethernet Connection I217-V
33  * Ethernet Connection I218-V
34  * Ethernet Connection I218-LM
35  * Ethernet Connection (2) I218-LM
36  * Ethernet Connection (2) I218-V
37  * Ethernet Connection (3) I218-LM
38  * Ethernet Connection (3) I218-V
39  */
40 
41 #include "e1000.h"
42 
43 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
44 /* Offset 04h HSFSTS */
45 union ich8_hws_flash_status {
46 	struct ich8_hsfsts {
47 		u16 flcdone:1;	/* bit 0 Flash Cycle Done */
48 		u16 flcerr:1;	/* bit 1 Flash Cycle Error */
49 		u16 dael:1;	/* bit 2 Direct Access error Log */
50 		u16 berasesz:2;	/* bit 4:3 Sector Erase Size */
51 		u16 flcinprog:1;	/* bit 5 flash cycle in Progress */
52 		u16 reserved1:2;	/* bit 13:6 Reserved */
53 		u16 reserved2:6;	/* bit 13:6 Reserved */
54 		u16 fldesvalid:1;	/* bit 14 Flash Descriptor Valid */
55 		u16 flockdn:1;	/* bit 15 Flash Config Lock-Down */
56 	} hsf_status;
57 	u16 regval;
58 };
59 
60 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
61 /* Offset 06h FLCTL */
62 union ich8_hws_flash_ctrl {
63 	struct ich8_hsflctl {
64 		u16 flcgo:1;	/* 0 Flash Cycle Go */
65 		u16 flcycle:2;	/* 2:1 Flash Cycle */
66 		u16 reserved:5;	/* 7:3 Reserved  */
67 		u16 fldbcount:2;	/* 9:8 Flash Data Byte Count */
68 		u16 flockdn:6;	/* 15:10 Reserved */
69 	} hsf_ctrl;
70 	u16 regval;
71 };
72 
73 /* ICH Flash Region Access Permissions */
74 union ich8_hws_flash_regacc {
75 	struct ich8_flracc {
76 		u32 grra:8;	/* 0:7 GbE region Read Access */
77 		u32 grwa:8;	/* 8:15 GbE region Write Access */
78 		u32 gmrag:8;	/* 23:16 GbE Master Read Access Grant */
79 		u32 gmwag:8;	/* 31:24 GbE Master Write Access Grant */
80 	} hsf_flregacc;
81 	u16 regval;
82 };
83 
84 /* ICH Flash Protected Region */
85 union ich8_flash_protected_range {
86 	struct ich8_pr {
87 		u32 base:13;	/* 0:12 Protected Range Base */
88 		u32 reserved1:2;	/* 13:14 Reserved */
89 		u32 rpe:1;	/* 15 Read Protection Enable */
90 		u32 limit:13;	/* 16:28 Protected Range Limit */
91 		u32 reserved2:2;	/* 29:30 Reserved */
92 		u32 wpe:1;	/* 31 Write Protection Enable */
93 	} range;
94 	u32 regval;
95 };
96 
97 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
98 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
99 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
100 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
101 						u32 offset, u8 byte);
102 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
103 					 u8 *data);
104 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
105 					 u16 *data);
106 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
107 					 u8 size, u16 *data);
108 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
109 					   u32 *data);
110 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
111 					  u32 offset, u32 *data);
112 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
113 					    u32 offset, u32 data);
114 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
115 						 u32 offset, u32 dword);
116 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
117 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
118 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
119 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
120 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
121 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
122 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
123 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
124 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
125 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
126 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
127 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
128 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
129 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
130 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
131 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
132 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
133 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
134 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw);
135 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
136 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
137 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
138 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
139 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
140 
141 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
142 {
143 	return readw(hw->flash_address + reg);
144 }
145 
146 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
147 {
148 	return readl(hw->flash_address + reg);
149 }
150 
151 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
152 {
153 	writew(val, hw->flash_address + reg);
154 }
155 
156 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
157 {
158 	writel(val, hw->flash_address + reg);
159 }
160 
161 #define er16flash(reg)		__er16flash(hw, (reg))
162 #define er32flash(reg)		__er32flash(hw, (reg))
163 #define ew16flash(reg, val)	__ew16flash(hw, (reg), (val))
164 #define ew32flash(reg, val)	__ew32flash(hw, (reg), (val))
165 
166 /**
167  *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
168  *  @hw: pointer to the HW structure
169  *
170  *  Test access to the PHY registers by reading the PHY ID registers.  If
171  *  the PHY ID is already known (e.g. resume path) compare it with known ID,
172  *  otherwise assume the read PHY ID is correct if it is valid.
173  *
174  *  Assumes the sw/fw/hw semaphore is already acquired.
175  **/
176 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
177 {
178 	u16 phy_reg = 0;
179 	u32 phy_id = 0;
180 	s32 ret_val = 0;
181 	u16 retry_count;
182 	u32 mac_reg = 0;
183 
184 	for (retry_count = 0; retry_count < 2; retry_count++) {
185 		ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
186 		if (ret_val || (phy_reg == 0xFFFF))
187 			continue;
188 		phy_id = (u32)(phy_reg << 16);
189 
190 		ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
191 		if (ret_val || (phy_reg == 0xFFFF)) {
192 			phy_id = 0;
193 			continue;
194 		}
195 		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
196 		break;
197 	}
198 
199 	if (hw->phy.id) {
200 		if (hw->phy.id == phy_id)
201 			goto out;
202 	} else if (phy_id) {
203 		hw->phy.id = phy_id;
204 		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
205 		goto out;
206 	}
207 
208 	/* In case the PHY needs to be in mdio slow mode,
209 	 * set slow mode and try to get the PHY id again.
210 	 */
211 	if (hw->mac.type < e1000_pch_lpt) {
212 		hw->phy.ops.release(hw);
213 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
214 		if (!ret_val)
215 			ret_val = e1000e_get_phy_id(hw);
216 		hw->phy.ops.acquire(hw);
217 	}
218 
219 	if (ret_val)
220 		return false;
221 out:
222 	if (hw->mac.type >= e1000_pch_lpt) {
223 		/* Only unforce SMBus if ME is not active */
224 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
225 			/* Unforce SMBus mode in PHY */
226 			e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
227 			phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
228 			e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
229 
230 			/* Unforce SMBus mode in MAC */
231 			mac_reg = er32(CTRL_EXT);
232 			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
233 			ew32(CTRL_EXT, mac_reg);
234 		}
235 	}
236 
237 	return true;
238 }
239 
240 /**
241  *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
242  *  @hw: pointer to the HW structure
243  *
244  *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
245  *  used to reset the PHY to a quiescent state when necessary.
246  **/
247 static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
248 {
249 	u32 mac_reg;
250 
251 	/* Set Phy Config Counter to 50msec */
252 	mac_reg = er32(FEXTNVM3);
253 	mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
254 	mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
255 	ew32(FEXTNVM3, mac_reg);
256 
257 	/* Toggle LANPHYPC Value bit */
258 	mac_reg = er32(CTRL);
259 	mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
260 	mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
261 	ew32(CTRL, mac_reg);
262 	e1e_flush();
263 	usleep_range(10, 20);
264 	mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
265 	ew32(CTRL, mac_reg);
266 	e1e_flush();
267 
268 	if (hw->mac.type < e1000_pch_lpt) {
269 		msleep(50);
270 	} else {
271 		u16 count = 20;
272 
273 		do {
274 			usleep_range(5000, 6000);
275 		} while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
276 
277 		msleep(30);
278 	}
279 }
280 
281 /**
282  *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
283  *  @hw: pointer to the HW structure
284  *
285  *  Workarounds/flow necessary for PHY initialization during driver load
286  *  and resume paths.
287  **/
288 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
289 {
290 	struct e1000_adapter *adapter = hw->adapter;
291 	u32 mac_reg, fwsm = er32(FWSM);
292 	s32 ret_val;
293 
294 	/* Gate automatic PHY configuration by hardware on managed and
295 	 * non-managed 82579 and newer adapters.
296 	 */
297 	e1000_gate_hw_phy_config_ich8lan(hw, true);
298 
299 	/* It is not possible to be certain of the current state of ULP
300 	 * so forcibly disable it.
301 	 */
302 	hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
303 	ret_val = e1000_disable_ulp_lpt_lp(hw, true);
304 	if (ret_val) {
305 		e_warn("Failed to disable ULP\n");
306 		goto out;
307 	}
308 
309 	ret_val = hw->phy.ops.acquire(hw);
310 	if (ret_val) {
311 		e_dbg("Failed to initialize PHY flow\n");
312 		goto out;
313 	}
314 
315 	/* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
316 	 * inaccessible and resetting the PHY is not blocked, toggle the
317 	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
318 	 */
319 	switch (hw->mac.type) {
320 	case e1000_pch_lpt:
321 	case e1000_pch_spt:
322 	case e1000_pch_cnp:
323 	case e1000_pch_tgp:
324 	case e1000_pch_adp:
325 		if (e1000_phy_is_accessible_pchlan(hw))
326 			break;
327 
328 		/* Before toggling LANPHYPC, see if PHY is accessible by
329 		 * forcing MAC to SMBus mode first.
330 		 */
331 		mac_reg = er32(CTRL_EXT);
332 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
333 		ew32(CTRL_EXT, mac_reg);
334 
335 		/* Wait 50 milliseconds for MAC to finish any retries
336 		 * that it might be trying to perform from previous
337 		 * attempts to acknowledge any phy read requests.
338 		 */
339 		msleep(50);
340 
341 		/* fall-through */
342 	case e1000_pch2lan:
343 		if (e1000_phy_is_accessible_pchlan(hw))
344 			break;
345 
346 		/* fall-through */
347 	case e1000_pchlan:
348 		if ((hw->mac.type == e1000_pchlan) &&
349 		    (fwsm & E1000_ICH_FWSM_FW_VALID))
350 			break;
351 
352 		if (hw->phy.ops.check_reset_block(hw)) {
353 			e_dbg("Required LANPHYPC toggle blocked by ME\n");
354 			ret_val = -E1000_ERR_PHY;
355 			break;
356 		}
357 
358 		/* Toggle LANPHYPC Value bit */
359 		e1000_toggle_lanphypc_pch_lpt(hw);
360 		if (hw->mac.type >= e1000_pch_lpt) {
361 			if (e1000_phy_is_accessible_pchlan(hw))
362 				break;
363 
364 			/* Toggling LANPHYPC brings the PHY out of SMBus mode
365 			 * so ensure that the MAC is also out of SMBus mode
366 			 */
367 			mac_reg = er32(CTRL_EXT);
368 			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
369 			ew32(CTRL_EXT, mac_reg);
370 
371 			if (e1000_phy_is_accessible_pchlan(hw))
372 				break;
373 
374 			ret_val = -E1000_ERR_PHY;
375 		}
376 		break;
377 	default:
378 		break;
379 	}
380 
381 	hw->phy.ops.release(hw);
382 	if (!ret_val) {
383 
384 		/* Check to see if able to reset PHY.  Print error if not */
385 		if (hw->phy.ops.check_reset_block(hw)) {
386 			e_err("Reset blocked by ME\n");
387 			goto out;
388 		}
389 
390 		/* Reset the PHY before any access to it.  Doing so, ensures
391 		 * that the PHY is in a known good state before we read/write
392 		 * PHY registers.  The generic reset is sufficient here,
393 		 * because we haven't determined the PHY type yet.
394 		 */
395 		ret_val = e1000e_phy_hw_reset_generic(hw);
396 		if (ret_val)
397 			goto out;
398 
399 		/* On a successful reset, possibly need to wait for the PHY
400 		 * to quiesce to an accessible state before returning control
401 		 * to the calling function.  If the PHY does not quiesce, then
402 		 * return E1000E_BLK_PHY_RESET, as this is the condition that
403 		 *  the PHY is in.
404 		 */
405 		ret_val = hw->phy.ops.check_reset_block(hw);
406 		if (ret_val)
407 			e_err("ME blocked access to PHY after reset\n");
408 	}
409 
410 out:
411 	/* Ungate automatic PHY configuration on non-managed 82579 */
412 	if ((hw->mac.type == e1000_pch2lan) &&
413 	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
414 		usleep_range(10000, 11000);
415 		e1000_gate_hw_phy_config_ich8lan(hw, false);
416 	}
417 
418 	return ret_val;
419 }
420 
421 /**
422  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
423  *  @hw: pointer to the HW structure
424  *
425  *  Initialize family-specific PHY parameters and function pointers.
426  **/
427 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
428 {
429 	struct e1000_phy_info *phy = &hw->phy;
430 	s32 ret_val;
431 
432 	phy->addr = 1;
433 	phy->reset_delay_us = 100;
434 
435 	phy->ops.set_page = e1000_set_page_igp;
436 	phy->ops.read_reg = e1000_read_phy_reg_hv;
437 	phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
438 	phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
439 	phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
440 	phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
441 	phy->ops.write_reg = e1000_write_phy_reg_hv;
442 	phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
443 	phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
444 	phy->ops.power_up = e1000_power_up_phy_copper;
445 	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
446 	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
447 
448 	phy->id = e1000_phy_unknown;
449 
450 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
451 	if (ret_val)
452 		return ret_val;
453 
454 	if (phy->id == e1000_phy_unknown)
455 		switch (hw->mac.type) {
456 		default:
457 			ret_val = e1000e_get_phy_id(hw);
458 			if (ret_val)
459 				return ret_val;
460 			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
461 				break;
462 			/* fall-through */
463 		case e1000_pch2lan:
464 		case e1000_pch_lpt:
465 		case e1000_pch_spt:
466 		case e1000_pch_cnp:
467 		case e1000_pch_tgp:
468 		case e1000_pch_adp:
469 			/* In case the PHY needs to be in mdio slow mode,
470 			 * set slow mode and try to get the PHY id again.
471 			 */
472 			ret_val = e1000_set_mdio_slow_mode_hv(hw);
473 			if (ret_val)
474 				return ret_val;
475 			ret_val = e1000e_get_phy_id(hw);
476 			if (ret_val)
477 				return ret_val;
478 			break;
479 		}
480 	phy->type = e1000e_get_phy_type_from_id(phy->id);
481 
482 	switch (phy->type) {
483 	case e1000_phy_82577:
484 	case e1000_phy_82579:
485 	case e1000_phy_i217:
486 		phy->ops.check_polarity = e1000_check_polarity_82577;
487 		phy->ops.force_speed_duplex =
488 		    e1000_phy_force_speed_duplex_82577;
489 		phy->ops.get_cable_length = e1000_get_cable_length_82577;
490 		phy->ops.get_info = e1000_get_phy_info_82577;
491 		phy->ops.commit = e1000e_phy_sw_reset;
492 		break;
493 	case e1000_phy_82578:
494 		phy->ops.check_polarity = e1000_check_polarity_m88;
495 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
496 		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
497 		phy->ops.get_info = e1000e_get_phy_info_m88;
498 		break;
499 	default:
500 		ret_val = -E1000_ERR_PHY;
501 		break;
502 	}
503 
504 	return ret_val;
505 }
506 
507 /**
508  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
509  *  @hw: pointer to the HW structure
510  *
511  *  Initialize family-specific PHY parameters and function pointers.
512  **/
513 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
514 {
515 	struct e1000_phy_info *phy = &hw->phy;
516 	s32 ret_val;
517 	u16 i = 0;
518 
519 	phy->addr = 1;
520 	phy->reset_delay_us = 100;
521 
522 	phy->ops.power_up = e1000_power_up_phy_copper;
523 	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
524 
525 	/* We may need to do this twice - once for IGP and if that fails,
526 	 * we'll set BM func pointers and try again
527 	 */
528 	ret_val = e1000e_determine_phy_address(hw);
529 	if (ret_val) {
530 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
531 		phy->ops.read_reg = e1000e_read_phy_reg_bm;
532 		ret_val = e1000e_determine_phy_address(hw);
533 		if (ret_val) {
534 			e_dbg("Cannot determine PHY addr. Erroring out\n");
535 			return ret_val;
536 		}
537 	}
538 
539 	phy->id = 0;
540 	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
541 	       (i++ < 100)) {
542 		usleep_range(1000, 1100);
543 		ret_val = e1000e_get_phy_id(hw);
544 		if (ret_val)
545 			return ret_val;
546 	}
547 
548 	/* Verify phy id */
549 	switch (phy->id) {
550 	case IGP03E1000_E_PHY_ID:
551 		phy->type = e1000_phy_igp_3;
552 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
553 		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
554 		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
555 		phy->ops.get_info = e1000e_get_phy_info_igp;
556 		phy->ops.check_polarity = e1000_check_polarity_igp;
557 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
558 		break;
559 	case IFE_E_PHY_ID:
560 	case IFE_PLUS_E_PHY_ID:
561 	case IFE_C_E_PHY_ID:
562 		phy->type = e1000_phy_ife;
563 		phy->autoneg_mask = E1000_ALL_NOT_GIG;
564 		phy->ops.get_info = e1000_get_phy_info_ife;
565 		phy->ops.check_polarity = e1000_check_polarity_ife;
566 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
567 		break;
568 	case BME1000_E_PHY_ID:
569 		phy->type = e1000_phy_bm;
570 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
571 		phy->ops.read_reg = e1000e_read_phy_reg_bm;
572 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
573 		phy->ops.commit = e1000e_phy_sw_reset;
574 		phy->ops.get_info = e1000e_get_phy_info_m88;
575 		phy->ops.check_polarity = e1000_check_polarity_m88;
576 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
577 		break;
578 	default:
579 		return -E1000_ERR_PHY;
580 	}
581 
582 	return 0;
583 }
584 
585 /**
586  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
587  *  @hw: pointer to the HW structure
588  *
589  *  Initialize family-specific NVM parameters and function
590  *  pointers.
591  **/
592 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
593 {
594 	struct e1000_nvm_info *nvm = &hw->nvm;
595 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
596 	u32 gfpreg, sector_base_addr, sector_end_addr;
597 	u16 i;
598 	u32 nvm_size;
599 
600 	nvm->type = e1000_nvm_flash_sw;
601 
602 	if (hw->mac.type >= e1000_pch_spt) {
603 		/* in SPT, gfpreg doesn't exist. NVM size is taken from the
604 		 * STRAP register. This is because in SPT the GbE Flash region
605 		 * is no longer accessed through the flash registers. Instead,
606 		 * the mechanism has changed, and the Flash region access
607 		 * registers are now implemented in GbE memory space.
608 		 */
609 		nvm->flash_base_addr = 0;
610 		nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1)
611 		    * NVM_SIZE_MULTIPLIER;
612 		nvm->flash_bank_size = nvm_size / 2;
613 		/* Adjust to word count */
614 		nvm->flash_bank_size /= sizeof(u16);
615 		/* Set the base address for flash register access */
616 		hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
617 	} else {
618 		/* Can't read flash registers if register set isn't mapped. */
619 		if (!hw->flash_address) {
620 			e_dbg("ERROR: Flash registers not mapped\n");
621 			return -E1000_ERR_CONFIG;
622 		}
623 
624 		gfpreg = er32flash(ICH_FLASH_GFPREG);
625 
626 		/* sector_X_addr is a "sector"-aligned address (4096 bytes)
627 		 * Add 1 to sector_end_addr since this sector is included in
628 		 * the overall size.
629 		 */
630 		sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
631 		sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
632 
633 		/* flash_base_addr is byte-aligned */
634 		nvm->flash_base_addr = sector_base_addr
635 		    << FLASH_SECTOR_ADDR_SHIFT;
636 
637 		/* find total size of the NVM, then cut in half since the total
638 		 * size represents two separate NVM banks.
639 		 */
640 		nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
641 					<< FLASH_SECTOR_ADDR_SHIFT);
642 		nvm->flash_bank_size /= 2;
643 		/* Adjust to word count */
644 		nvm->flash_bank_size /= sizeof(u16);
645 	}
646 
647 	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
648 
649 	/* Clear shadow ram */
650 	for (i = 0; i < nvm->word_size; i++) {
651 		dev_spec->shadow_ram[i].modified = false;
652 		dev_spec->shadow_ram[i].value = 0xFFFF;
653 	}
654 
655 	return 0;
656 }
657 
658 /**
659  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
660  *  @hw: pointer to the HW structure
661  *
662  *  Initialize family-specific MAC parameters and function
663  *  pointers.
664  **/
665 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
666 {
667 	struct e1000_mac_info *mac = &hw->mac;
668 
669 	/* Set media type function pointer */
670 	hw->phy.media_type = e1000_media_type_copper;
671 
672 	/* Set mta register count */
673 	mac->mta_reg_count = 32;
674 	/* Set rar entry count */
675 	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
676 	if (mac->type == e1000_ich8lan)
677 		mac->rar_entry_count--;
678 	/* FWSM register */
679 	mac->has_fwsm = true;
680 	/* ARC subsystem not supported */
681 	mac->arc_subsystem_valid = false;
682 	/* Adaptive IFS supported */
683 	mac->adaptive_ifs = true;
684 
685 	/* LED and other operations */
686 	switch (mac->type) {
687 	case e1000_ich8lan:
688 	case e1000_ich9lan:
689 	case e1000_ich10lan:
690 		/* check management mode */
691 		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
692 		/* ID LED init */
693 		mac->ops.id_led_init = e1000e_id_led_init_generic;
694 		/* blink LED */
695 		mac->ops.blink_led = e1000e_blink_led_generic;
696 		/* setup LED */
697 		mac->ops.setup_led = e1000e_setup_led_generic;
698 		/* cleanup LED */
699 		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
700 		/* turn on/off LED */
701 		mac->ops.led_on = e1000_led_on_ich8lan;
702 		mac->ops.led_off = e1000_led_off_ich8lan;
703 		break;
704 	case e1000_pch2lan:
705 		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
706 		mac->ops.rar_set = e1000_rar_set_pch2lan;
707 		/* fall-through */
708 	case e1000_pch_lpt:
709 	case e1000_pch_spt:
710 	case e1000_pch_cnp:
711 	case e1000_pch_tgp:
712 	case e1000_pch_adp:
713 	case e1000_pchlan:
714 		/* check management mode */
715 		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
716 		/* ID LED init */
717 		mac->ops.id_led_init = e1000_id_led_init_pchlan;
718 		/* setup LED */
719 		mac->ops.setup_led = e1000_setup_led_pchlan;
720 		/* cleanup LED */
721 		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
722 		/* turn on/off LED */
723 		mac->ops.led_on = e1000_led_on_pchlan;
724 		mac->ops.led_off = e1000_led_off_pchlan;
725 		break;
726 	default:
727 		break;
728 	}
729 
730 	if (mac->type >= e1000_pch_lpt) {
731 		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
732 		mac->ops.rar_set = e1000_rar_set_pch_lpt;
733 		mac->ops.setup_physical_interface =
734 		    e1000_setup_copper_link_pch_lpt;
735 		mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt;
736 	}
737 
738 	/* Enable PCS Lock-loss workaround for ICH8 */
739 	if (mac->type == e1000_ich8lan)
740 		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
741 
742 	return 0;
743 }
744 
745 /**
746  *  __e1000_access_emi_reg_locked - Read/write EMI register
747  *  @hw: pointer to the HW structure
748  *  @addr: EMI address to program
749  *  @data: pointer to value to read/write from/to the EMI address
750  *  @read: boolean flag to indicate read or write
751  *
752  *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
753  **/
754 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
755 					 u16 *data, bool read)
756 {
757 	s32 ret_val;
758 
759 	ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
760 	if (ret_val)
761 		return ret_val;
762 
763 	if (read)
764 		ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
765 	else
766 		ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
767 
768 	return ret_val;
769 }
770 
771 /**
772  *  e1000_read_emi_reg_locked - Read Extended Management Interface register
773  *  @hw: pointer to the HW structure
774  *  @addr: EMI address to program
775  *  @data: value to be read from the EMI address
776  *
777  *  Assumes the SW/FW/HW Semaphore is already acquired.
778  **/
779 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
780 {
781 	return __e1000_access_emi_reg_locked(hw, addr, data, true);
782 }
783 
784 /**
785  *  e1000_write_emi_reg_locked - Write Extended Management Interface register
786  *  @hw: pointer to the HW structure
787  *  @addr: EMI address to program
788  *  @data: value to be written to the EMI address
789  *
790  *  Assumes the SW/FW/HW Semaphore is already acquired.
791  **/
792 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
793 {
794 	return __e1000_access_emi_reg_locked(hw, addr, &data, false);
795 }
796 
797 /**
798  *  e1000_set_eee_pchlan - Enable/disable EEE support
799  *  @hw: pointer to the HW structure
800  *
801  *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
802  *  the link and the EEE capabilities of the link partner.  The LPI Control
803  *  register bits will remain set only if/when link is up.
804  *
805  *  EEE LPI must not be asserted earlier than one second after link is up.
806  *  On 82579, EEE LPI should not be enabled until such time otherwise there
807  *  can be link issues with some switches.  Other devices can have EEE LPI
808  *  enabled immediately upon link up since they have a timer in hardware which
809  *  prevents LPI from being asserted too early.
810  **/
811 s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
812 {
813 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
814 	s32 ret_val;
815 	u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
816 
817 	switch (hw->phy.type) {
818 	case e1000_phy_82579:
819 		lpa = I82579_EEE_LP_ABILITY;
820 		pcs_status = I82579_EEE_PCS_STATUS;
821 		adv_addr = I82579_EEE_ADVERTISEMENT;
822 		break;
823 	case e1000_phy_i217:
824 		lpa = I217_EEE_LP_ABILITY;
825 		pcs_status = I217_EEE_PCS_STATUS;
826 		adv_addr = I217_EEE_ADVERTISEMENT;
827 		break;
828 	default:
829 		return 0;
830 	}
831 
832 	ret_val = hw->phy.ops.acquire(hw);
833 	if (ret_val)
834 		return ret_val;
835 
836 	ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
837 	if (ret_val)
838 		goto release;
839 
840 	/* Clear bits that enable EEE in various speeds */
841 	lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
842 
843 	/* Enable EEE if not disabled by user */
844 	if (!dev_spec->eee_disable) {
845 		/* Save off link partner's EEE ability */
846 		ret_val = e1000_read_emi_reg_locked(hw, lpa,
847 						    &dev_spec->eee_lp_ability);
848 		if (ret_val)
849 			goto release;
850 
851 		/* Read EEE advertisement */
852 		ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
853 		if (ret_val)
854 			goto release;
855 
856 		/* Enable EEE only for speeds in which the link partner is
857 		 * EEE capable and for which we advertise EEE.
858 		 */
859 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
860 			lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
861 
862 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
863 			e1e_rphy_locked(hw, MII_LPA, &data);
864 			if (data & LPA_100FULL)
865 				lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
866 			else
867 				/* EEE is not supported in 100Half, so ignore
868 				 * partner's EEE in 100 ability if full-duplex
869 				 * is not advertised.
870 				 */
871 				dev_spec->eee_lp_ability &=
872 				    ~I82579_EEE_100_SUPPORTED;
873 		}
874 	}
875 
876 	if (hw->phy.type == e1000_phy_82579) {
877 		ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
878 						    &data);
879 		if (ret_val)
880 			goto release;
881 
882 		data &= ~I82579_LPI_100_PLL_SHUT;
883 		ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
884 						     data);
885 	}
886 
887 	/* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
888 	ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
889 	if (ret_val)
890 		goto release;
891 
892 	ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
893 release:
894 	hw->phy.ops.release(hw);
895 
896 	return ret_val;
897 }
898 
899 /**
900  *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
901  *  @hw:   pointer to the HW structure
902  *  @link: link up bool flag
903  *
904  *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
905  *  preventing further DMA write requests.  Workaround the issue by disabling
906  *  the de-assertion of the clock request when in 1Gpbs mode.
907  *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
908  *  speeds in order to avoid Tx hangs.
909  **/
910 static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
911 {
912 	u32 fextnvm6 = er32(FEXTNVM6);
913 	u32 status = er32(STATUS);
914 	s32 ret_val = 0;
915 	u16 reg;
916 
917 	if (link && (status & E1000_STATUS_SPEED_1000)) {
918 		ret_val = hw->phy.ops.acquire(hw);
919 		if (ret_val)
920 			return ret_val;
921 
922 		ret_val =
923 		    e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
924 						&reg);
925 		if (ret_val)
926 			goto release;
927 
928 		ret_val =
929 		    e1000e_write_kmrn_reg_locked(hw,
930 						 E1000_KMRNCTRLSTA_K1_CONFIG,
931 						 reg &
932 						 ~E1000_KMRNCTRLSTA_K1_ENABLE);
933 		if (ret_val)
934 			goto release;
935 
936 		usleep_range(10, 20);
937 
938 		ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
939 
940 		ret_val =
941 		    e1000e_write_kmrn_reg_locked(hw,
942 						 E1000_KMRNCTRLSTA_K1_CONFIG,
943 						 reg);
944 release:
945 		hw->phy.ops.release(hw);
946 	} else {
947 		/* clear FEXTNVM6 bit 8 on link down or 10/100 */
948 		fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
949 
950 		if ((hw->phy.revision > 5) || !link ||
951 		    ((status & E1000_STATUS_SPEED_100) &&
952 		     (status & E1000_STATUS_FD)))
953 			goto update_fextnvm6;
954 
955 		ret_val = e1e_rphy(hw, I217_INBAND_CTRL, &reg);
956 		if (ret_val)
957 			return ret_val;
958 
959 		/* Clear link status transmit timeout */
960 		reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
961 
962 		if (status & E1000_STATUS_SPEED_100) {
963 			/* Set inband Tx timeout to 5x10us for 100Half */
964 			reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
965 
966 			/* Do not extend the K1 entry latency for 100Half */
967 			fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
968 		} else {
969 			/* Set inband Tx timeout to 50x10us for 10Full/Half */
970 			reg |= 50 <<
971 			    I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
972 
973 			/* Extend the K1 entry latency for 10 Mbps */
974 			fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
975 		}
976 
977 		ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
978 		if (ret_val)
979 			return ret_val;
980 
981 update_fextnvm6:
982 		ew32(FEXTNVM6, fextnvm6);
983 	}
984 
985 	return ret_val;
986 }
987 
988 /**
989  *  e1000_platform_pm_pch_lpt - Set platform power management values
990  *  @hw: pointer to the HW structure
991  *  @link: bool indicating link status
992  *
993  *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
994  *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
995  *  when link is up (which must not exceed the maximum latency supported
996  *  by the platform), otherwise specify there is no LTR requirement.
997  *  Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
998  *  latencies in the LTR Extended Capability Structure in the PCIe Extended
999  *  Capability register set, on this device LTR is set by writing the
1000  *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1001  *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1002  *  message to the PMC.
1003  **/
1004 static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1005 {
1006 	u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1007 	    link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1008 	u16 lat_enc = 0;	/* latency encoded */
1009 
1010 	if (link) {
1011 		u16 speed, duplex, scale = 0;
1012 		u16 max_snoop, max_nosnoop;
1013 		u16 max_ltr_enc;	/* max LTR latency encoded */
1014 		u64 value;
1015 		u32 rxa;
1016 
1017 		if (!hw->adapter->max_frame_size) {
1018 			e_dbg("max_frame_size not set.\n");
1019 			return -E1000_ERR_CONFIG;
1020 		}
1021 
1022 		hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1023 		if (!speed) {
1024 			e_dbg("Speed not set.\n");
1025 			return -E1000_ERR_CONFIG;
1026 		}
1027 
1028 		/* Rx Packet Buffer Allocation size (KB) */
1029 		rxa = er32(PBA) & E1000_PBA_RXA_MASK;
1030 
1031 		/* Determine the maximum latency tolerated by the device.
1032 		 *
1033 		 * Per the PCIe spec, the tolerated latencies are encoded as
1034 		 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1035 		 * a 10-bit value (0-1023) to provide a range from 1 ns to
1036 		 * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1037 		 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1038 		 */
1039 		rxa *= 512;
1040 		value = (rxa > hw->adapter->max_frame_size) ?
1041 			(rxa - hw->adapter->max_frame_size) * (16000 / speed) :
1042 			0;
1043 
1044 		while (value > PCI_LTR_VALUE_MASK) {
1045 			scale++;
1046 			value = DIV_ROUND_UP(value, BIT(5));
1047 		}
1048 		if (scale > E1000_LTRV_SCALE_MAX) {
1049 			e_dbg("Invalid LTR latency scale %d\n", scale);
1050 			return -E1000_ERR_CONFIG;
1051 		}
1052 		lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1053 
1054 		/* Determine the maximum latency tolerated by the platform */
1055 		pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1056 				     &max_snoop);
1057 		pci_read_config_word(hw->adapter->pdev,
1058 				     E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1059 		max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1060 
1061 		if (lat_enc > max_ltr_enc)
1062 			lat_enc = max_ltr_enc;
1063 	}
1064 
1065 	/* Set Snoop and No-Snoop latencies the same */
1066 	reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1067 	ew32(LTRV, reg);
1068 
1069 	return 0;
1070 }
1071 
1072 /**
1073  *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1074  *  @hw: pointer to the HW structure
1075  *  @to_sx: boolean indicating a system power state transition to Sx
1076  *
1077  *  When link is down, configure ULP mode to significantly reduce the power
1078  *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1079  *  ME firmware to start the ULP configuration.  If not on an ME enabled
1080  *  system, configure the ULP mode by software.
1081  */
1082 s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1083 {
1084 	u32 mac_reg;
1085 	s32 ret_val = 0;
1086 	u16 phy_reg;
1087 	u16 oem_reg = 0;
1088 
1089 	if ((hw->mac.type < e1000_pch_lpt) ||
1090 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1091 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1092 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1093 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1094 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1095 		return 0;
1096 
1097 	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1098 		/* Request ME configure ULP mode in the PHY */
1099 		mac_reg = er32(H2ME);
1100 		mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1101 		ew32(H2ME, mac_reg);
1102 
1103 		goto out;
1104 	}
1105 
1106 	if (!to_sx) {
1107 		int i = 0;
1108 
1109 		/* Poll up to 5 seconds for Cable Disconnected indication */
1110 		while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1111 			/* Bail if link is re-acquired */
1112 			if (er32(STATUS) & E1000_STATUS_LU)
1113 				return -E1000_ERR_PHY;
1114 
1115 			if (i++ == 100)
1116 				break;
1117 
1118 			msleep(50);
1119 		}
1120 		e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1121 		      (er32(FEXT) &
1122 		       E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1123 	}
1124 
1125 	ret_val = hw->phy.ops.acquire(hw);
1126 	if (ret_val)
1127 		goto out;
1128 
1129 	/* Force SMBus mode in PHY */
1130 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1131 	if (ret_val)
1132 		goto release;
1133 	phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1134 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1135 
1136 	/* Force SMBus mode in MAC */
1137 	mac_reg = er32(CTRL_EXT);
1138 	mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1139 	ew32(CTRL_EXT, mac_reg);
1140 
1141 	/* Si workaround for ULP entry flow on i127/rev6 h/w.  Enable
1142 	 * LPLU and disable Gig speed when entering ULP
1143 	 */
1144 	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1145 		ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1146 						       &oem_reg);
1147 		if (ret_val)
1148 			goto release;
1149 
1150 		phy_reg = oem_reg;
1151 		phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1152 
1153 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1154 							phy_reg);
1155 
1156 		if (ret_val)
1157 			goto release;
1158 	}
1159 
1160 	/* Set Inband ULP Exit, Reset to SMBus mode and
1161 	 * Disable SMBus Release on PERST# in PHY
1162 	 */
1163 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1164 	if (ret_val)
1165 		goto release;
1166 	phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1167 		    I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1168 	if (to_sx) {
1169 		if (er32(WUFC) & E1000_WUFC_LNKC)
1170 			phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1171 		else
1172 			phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1173 
1174 		phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1175 		phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1176 	} else {
1177 		phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1178 		phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1179 		phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1180 	}
1181 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1182 
1183 	/* Set Disable SMBus Release on PERST# in MAC */
1184 	mac_reg = er32(FEXTNVM7);
1185 	mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1186 	ew32(FEXTNVM7, mac_reg);
1187 
1188 	/* Commit ULP changes in PHY by starting auto ULP configuration */
1189 	phy_reg |= I218_ULP_CONFIG1_START;
1190 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1191 
1192 	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1193 	    to_sx && (er32(STATUS) & E1000_STATUS_LU)) {
1194 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1195 							oem_reg);
1196 		if (ret_val)
1197 			goto release;
1198 	}
1199 
1200 release:
1201 	hw->phy.ops.release(hw);
1202 out:
1203 	if (ret_val)
1204 		e_dbg("Error in ULP enable flow: %d\n", ret_val);
1205 	else
1206 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1207 
1208 	return ret_val;
1209 }
1210 
1211 /**
1212  *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1213  *  @hw: pointer to the HW structure
1214  *  @force: boolean indicating whether or not to force disabling ULP
1215  *
1216  *  Un-configure ULP mode when link is up, the system is transitioned from
1217  *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1218  *  system, poll for an indication from ME that ULP has been un-configured.
1219  *  If not on an ME enabled system, un-configure the ULP mode by software.
1220  *
1221  *  During nominal operation, this function is called when link is acquired
1222  *  to disable ULP mode (force=false); otherwise, for example when unloading
1223  *  the driver or during Sx->S0 transitions, this is called with force=true
1224  *  to forcibly disable ULP.
1225  */
1226 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1227 {
1228 	s32 ret_val = 0;
1229 	u32 mac_reg;
1230 	u16 phy_reg;
1231 	int i = 0;
1232 
1233 	if ((hw->mac.type < e1000_pch_lpt) ||
1234 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1235 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1236 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1237 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1238 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1239 		return 0;
1240 
1241 	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1242 		if (force) {
1243 			/* Request ME un-configure ULP mode in the PHY */
1244 			mac_reg = er32(H2ME);
1245 			mac_reg &= ~E1000_H2ME_ULP;
1246 			mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1247 			ew32(H2ME, mac_reg);
1248 		}
1249 
1250 		/* Poll up to 300msec for ME to clear ULP_CFG_DONE. */
1251 		while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1252 			if (i++ == 30) {
1253 				ret_val = -E1000_ERR_PHY;
1254 				goto out;
1255 			}
1256 
1257 			usleep_range(10000, 11000);
1258 		}
1259 		e_dbg("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10);
1260 
1261 		if (force) {
1262 			mac_reg = er32(H2ME);
1263 			mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1264 			ew32(H2ME, mac_reg);
1265 		} else {
1266 			/* Clear H2ME.ULP after ME ULP configuration */
1267 			mac_reg = er32(H2ME);
1268 			mac_reg &= ~E1000_H2ME_ULP;
1269 			ew32(H2ME, mac_reg);
1270 		}
1271 
1272 		goto out;
1273 	}
1274 
1275 	ret_val = hw->phy.ops.acquire(hw);
1276 	if (ret_val)
1277 		goto out;
1278 
1279 	if (force)
1280 		/* Toggle LANPHYPC Value bit */
1281 		e1000_toggle_lanphypc_pch_lpt(hw);
1282 
1283 	/* Unforce SMBus mode in PHY */
1284 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1285 	if (ret_val) {
1286 		/* The MAC might be in PCIe mode, so temporarily force to
1287 		 * SMBus mode in order to access the PHY.
1288 		 */
1289 		mac_reg = er32(CTRL_EXT);
1290 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1291 		ew32(CTRL_EXT, mac_reg);
1292 
1293 		msleep(50);
1294 
1295 		ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1296 						       &phy_reg);
1297 		if (ret_val)
1298 			goto release;
1299 	}
1300 	phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1301 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1302 
1303 	/* Unforce SMBus mode in MAC */
1304 	mac_reg = er32(CTRL_EXT);
1305 	mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1306 	ew32(CTRL_EXT, mac_reg);
1307 
1308 	/* When ULP mode was previously entered, K1 was disabled by the
1309 	 * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1310 	 */
1311 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1312 	if (ret_val)
1313 		goto release;
1314 	phy_reg |= HV_PM_CTRL_K1_ENABLE;
1315 	e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1316 
1317 	/* Clear ULP enabled configuration */
1318 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1319 	if (ret_val)
1320 		goto release;
1321 	phy_reg &= ~(I218_ULP_CONFIG1_IND |
1322 		     I218_ULP_CONFIG1_STICKY_ULP |
1323 		     I218_ULP_CONFIG1_RESET_TO_SMBUS |
1324 		     I218_ULP_CONFIG1_WOL_HOST |
1325 		     I218_ULP_CONFIG1_INBAND_EXIT |
1326 		     I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
1327 		     I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
1328 		     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1329 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1330 
1331 	/* Commit ULP changes by starting auto ULP configuration */
1332 	phy_reg |= I218_ULP_CONFIG1_START;
1333 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1334 
1335 	/* Clear Disable SMBus Release on PERST# in MAC */
1336 	mac_reg = er32(FEXTNVM7);
1337 	mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1338 	ew32(FEXTNVM7, mac_reg);
1339 
1340 release:
1341 	hw->phy.ops.release(hw);
1342 	if (force) {
1343 		e1000_phy_hw_reset(hw);
1344 		msleep(50);
1345 	}
1346 out:
1347 	if (ret_val)
1348 		e_dbg("Error in ULP disable flow: %d\n", ret_val);
1349 	else
1350 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1351 
1352 	return ret_val;
1353 }
1354 
1355 /**
1356  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1357  *  @hw: pointer to the HW structure
1358  *
1359  *  Checks to see of the link status of the hardware has changed.  If a
1360  *  change in link status has been detected, then we read the PHY registers
1361  *  to get the current speed/duplex if link exists.
1362  **/
1363 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1364 {
1365 	struct e1000_mac_info *mac = &hw->mac;
1366 	s32 ret_val, tipg_reg = 0;
1367 	u16 emi_addr, emi_val = 0;
1368 	bool link;
1369 	u16 phy_reg;
1370 
1371 	/* We only want to go out to the PHY registers to see if Auto-Neg
1372 	 * has completed and/or if our link status has changed.  The
1373 	 * get_link_status flag is set upon receiving a Link Status
1374 	 * Change or Rx Sequence Error interrupt.
1375 	 */
1376 	if (!mac->get_link_status)
1377 		return 0;
1378 	mac->get_link_status = false;
1379 
1380 	/* First we want to see if the MII Status Register reports
1381 	 * link.  If so, then we want to get the current speed/duplex
1382 	 * of the PHY.
1383 	 */
1384 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1385 	if (ret_val)
1386 		goto out;
1387 
1388 	if (hw->mac.type == e1000_pchlan) {
1389 		ret_val = e1000_k1_gig_workaround_hv(hw, link);
1390 		if (ret_val)
1391 			goto out;
1392 	}
1393 
1394 	/* When connected at 10Mbps half-duplex, some parts are excessively
1395 	 * aggressive resulting in many collisions. To avoid this, increase
1396 	 * the IPG and reduce Rx latency in the PHY.
1397 	 */
1398 	if ((hw->mac.type >= e1000_pch2lan) && link) {
1399 		u16 speed, duplex;
1400 
1401 		e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex);
1402 		tipg_reg = er32(TIPG);
1403 		tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1404 
1405 		if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1406 			tipg_reg |= 0xFF;
1407 			/* Reduce Rx latency in analog PHY */
1408 			emi_val = 0;
1409 		} else if (hw->mac.type >= e1000_pch_spt &&
1410 			   duplex == FULL_DUPLEX && speed != SPEED_1000) {
1411 			tipg_reg |= 0xC;
1412 			emi_val = 1;
1413 		} else {
1414 
1415 			/* Roll back the default values */
1416 			tipg_reg |= 0x08;
1417 			emi_val = 1;
1418 		}
1419 
1420 		ew32(TIPG, tipg_reg);
1421 
1422 		ret_val = hw->phy.ops.acquire(hw);
1423 		if (ret_val)
1424 			goto out;
1425 
1426 		if (hw->mac.type == e1000_pch2lan)
1427 			emi_addr = I82579_RX_CONFIG;
1428 		else
1429 			emi_addr = I217_RX_CONFIG;
1430 		ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1431 
1432 		if (hw->mac.type >= e1000_pch_lpt) {
1433 			u16 phy_reg;
1434 
1435 			e1e_rphy_locked(hw, I217_PLL_CLOCK_GATE_REG, &phy_reg);
1436 			phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
1437 			if (speed == SPEED_100 || speed == SPEED_10)
1438 				phy_reg |= 0x3E8;
1439 			else
1440 				phy_reg |= 0xFA;
1441 			e1e_wphy_locked(hw, I217_PLL_CLOCK_GATE_REG, phy_reg);
1442 
1443 			if (speed == SPEED_1000) {
1444 				hw->phy.ops.read_reg_locked(hw, HV_PM_CTRL,
1445 							    &phy_reg);
1446 
1447 				phy_reg |= HV_PM_CTRL_K1_CLK_REQ;
1448 
1449 				hw->phy.ops.write_reg_locked(hw, HV_PM_CTRL,
1450 							     phy_reg);
1451 			}
1452 		}
1453 		hw->phy.ops.release(hw);
1454 
1455 		if (ret_val)
1456 			goto out;
1457 
1458 		if (hw->mac.type >= e1000_pch_spt) {
1459 			u16 data;
1460 			u16 ptr_gap;
1461 
1462 			if (speed == SPEED_1000) {
1463 				ret_val = hw->phy.ops.acquire(hw);
1464 				if (ret_val)
1465 					goto out;
1466 
1467 				ret_val = e1e_rphy_locked(hw,
1468 							  PHY_REG(776, 20),
1469 							  &data);
1470 				if (ret_val) {
1471 					hw->phy.ops.release(hw);
1472 					goto out;
1473 				}
1474 
1475 				ptr_gap = (data & (0x3FF << 2)) >> 2;
1476 				if (ptr_gap < 0x18) {
1477 					data &= ~(0x3FF << 2);
1478 					data |= (0x18 << 2);
1479 					ret_val =
1480 					    e1e_wphy_locked(hw,
1481 							    PHY_REG(776, 20),
1482 							    data);
1483 				}
1484 				hw->phy.ops.release(hw);
1485 				if (ret_val)
1486 					goto out;
1487 			} else {
1488 				ret_val = hw->phy.ops.acquire(hw);
1489 				if (ret_val)
1490 					goto out;
1491 
1492 				ret_val = e1e_wphy_locked(hw,
1493 							  PHY_REG(776, 20),
1494 							  0xC023);
1495 				hw->phy.ops.release(hw);
1496 				if (ret_val)
1497 					goto out;
1498 
1499 			}
1500 		}
1501 	}
1502 
1503 	/* I217 Packet Loss issue:
1504 	 * ensure that FEXTNVM4 Beacon Duration is set correctly
1505 	 * on power up.
1506 	 * Set the Beacon Duration for I217 to 8 usec
1507 	 */
1508 	if (hw->mac.type >= e1000_pch_lpt) {
1509 		u32 mac_reg;
1510 
1511 		mac_reg = er32(FEXTNVM4);
1512 		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1513 		mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1514 		ew32(FEXTNVM4, mac_reg);
1515 	}
1516 
1517 	/* Work-around I218 hang issue */
1518 	if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1519 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1520 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1521 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
1522 		ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1523 		if (ret_val)
1524 			goto out;
1525 	}
1526 	if (hw->mac.type >= e1000_pch_lpt) {
1527 		/* Set platform power management values for
1528 		 * Latency Tolerance Reporting (LTR)
1529 		 */
1530 		ret_val = e1000_platform_pm_pch_lpt(hw, link);
1531 		if (ret_val)
1532 			goto out;
1533 	}
1534 
1535 	/* Clear link partner's EEE ability */
1536 	hw->dev_spec.ich8lan.eee_lp_ability = 0;
1537 
1538 	if (hw->mac.type >= e1000_pch_lpt) {
1539 		u32 fextnvm6 = er32(FEXTNVM6);
1540 
1541 		if (hw->mac.type == e1000_pch_spt) {
1542 			/* FEXTNVM6 K1-off workaround - for SPT only */
1543 			u32 pcieanacfg = er32(PCIEANACFG);
1544 
1545 			if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1546 				fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1547 			else
1548 				fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1549 		}
1550 
1551 		ew32(FEXTNVM6, fextnvm6);
1552 	}
1553 
1554 	if (!link)
1555 		goto out;
1556 
1557 	switch (hw->mac.type) {
1558 	case e1000_pch2lan:
1559 		ret_val = e1000_k1_workaround_lv(hw);
1560 		if (ret_val)
1561 			return ret_val;
1562 		/* fall-thru */
1563 	case e1000_pchlan:
1564 		if (hw->phy.type == e1000_phy_82578) {
1565 			ret_val = e1000_link_stall_workaround_hv(hw);
1566 			if (ret_val)
1567 				return ret_val;
1568 		}
1569 
1570 		/* Workaround for PCHx parts in half-duplex:
1571 		 * Set the number of preambles removed from the packet
1572 		 * when it is passed from the PHY to the MAC to prevent
1573 		 * the MAC from misinterpreting the packet type.
1574 		 */
1575 		e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1576 		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1577 
1578 		if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1579 			phy_reg |= BIT(HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1580 
1581 		e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1582 		break;
1583 	default:
1584 		break;
1585 	}
1586 
1587 	/* Check if there was DownShift, must be checked
1588 	 * immediately after link-up
1589 	 */
1590 	e1000e_check_downshift(hw);
1591 
1592 	/* Enable/Disable EEE after link up */
1593 	if (hw->phy.type > e1000_phy_82579) {
1594 		ret_val = e1000_set_eee_pchlan(hw);
1595 		if (ret_val)
1596 			return ret_val;
1597 	}
1598 
1599 	/* If we are forcing speed/duplex, then we simply return since
1600 	 * we have already determined whether we have link or not.
1601 	 */
1602 	if (!mac->autoneg)
1603 		return -E1000_ERR_CONFIG;
1604 
1605 	/* Auto-Neg is enabled.  Auto Speed Detection takes care
1606 	 * of MAC speed/duplex configuration.  So we only need to
1607 	 * configure Collision Distance in the MAC.
1608 	 */
1609 	mac->ops.config_collision_dist(hw);
1610 
1611 	/* Configure Flow Control now that Auto-Neg has completed.
1612 	 * First, we need to restore the desired flow control
1613 	 * settings because we may have had to re-autoneg with a
1614 	 * different link partner.
1615 	 */
1616 	ret_val = e1000e_config_fc_after_link_up(hw);
1617 	if (ret_val)
1618 		e_dbg("Error configuring flow control\n");
1619 
1620 	return ret_val;
1621 
1622 out:
1623 	mac->get_link_status = true;
1624 	return ret_val;
1625 }
1626 
1627 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1628 {
1629 	struct e1000_hw *hw = &adapter->hw;
1630 	s32 rc;
1631 
1632 	rc = e1000_init_mac_params_ich8lan(hw);
1633 	if (rc)
1634 		return rc;
1635 
1636 	rc = e1000_init_nvm_params_ich8lan(hw);
1637 	if (rc)
1638 		return rc;
1639 
1640 	switch (hw->mac.type) {
1641 	case e1000_ich8lan:
1642 	case e1000_ich9lan:
1643 	case e1000_ich10lan:
1644 		rc = e1000_init_phy_params_ich8lan(hw);
1645 		break;
1646 	case e1000_pchlan:
1647 	case e1000_pch2lan:
1648 	case e1000_pch_lpt:
1649 	case e1000_pch_spt:
1650 	case e1000_pch_cnp:
1651 	case e1000_pch_tgp:
1652 	case e1000_pch_adp:
1653 		rc = e1000_init_phy_params_pchlan(hw);
1654 		break;
1655 	default:
1656 		break;
1657 	}
1658 	if (rc)
1659 		return rc;
1660 
1661 	/* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1662 	 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1663 	 */
1664 	if ((adapter->hw.phy.type == e1000_phy_ife) ||
1665 	    ((adapter->hw.mac.type >= e1000_pch2lan) &&
1666 	     (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1667 		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1668 		adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
1669 
1670 		hw->mac.ops.blink_led = NULL;
1671 	}
1672 
1673 	if ((adapter->hw.mac.type == e1000_ich8lan) &&
1674 	    (adapter->hw.phy.type != e1000_phy_ife))
1675 		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1676 
1677 	/* Enable workaround for 82579 w/ ME enabled */
1678 	if ((adapter->hw.mac.type == e1000_pch2lan) &&
1679 	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1680 		adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1681 
1682 	return 0;
1683 }
1684 
1685 static DEFINE_MUTEX(nvm_mutex);
1686 
1687 /**
1688  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1689  *  @hw: pointer to the HW structure
1690  *
1691  *  Acquires the mutex for performing NVM operations.
1692  **/
1693 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1694 {
1695 	mutex_lock(&nvm_mutex);
1696 
1697 	return 0;
1698 }
1699 
1700 /**
1701  *  e1000_release_nvm_ich8lan - Release NVM mutex
1702  *  @hw: pointer to the HW structure
1703  *
1704  *  Releases the mutex used while performing NVM operations.
1705  **/
1706 static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1707 {
1708 	mutex_unlock(&nvm_mutex);
1709 }
1710 
1711 /**
1712  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1713  *  @hw: pointer to the HW structure
1714  *
1715  *  Acquires the software control flag for performing PHY and select
1716  *  MAC CSR accesses.
1717  **/
1718 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1719 {
1720 	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1721 	s32 ret_val = 0;
1722 
1723 	if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1724 			     &hw->adapter->state)) {
1725 		e_dbg("contention for Phy access\n");
1726 		return -E1000_ERR_PHY;
1727 	}
1728 
1729 	while (timeout) {
1730 		extcnf_ctrl = er32(EXTCNF_CTRL);
1731 		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1732 			break;
1733 
1734 		mdelay(1);
1735 		timeout--;
1736 	}
1737 
1738 	if (!timeout) {
1739 		e_dbg("SW has already locked the resource.\n");
1740 		ret_val = -E1000_ERR_CONFIG;
1741 		goto out;
1742 	}
1743 
1744 	timeout = SW_FLAG_TIMEOUT;
1745 
1746 	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1747 	ew32(EXTCNF_CTRL, extcnf_ctrl);
1748 
1749 	while (timeout) {
1750 		extcnf_ctrl = er32(EXTCNF_CTRL);
1751 		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1752 			break;
1753 
1754 		mdelay(1);
1755 		timeout--;
1756 	}
1757 
1758 	if (!timeout) {
1759 		e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1760 		      er32(FWSM), extcnf_ctrl);
1761 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1762 		ew32(EXTCNF_CTRL, extcnf_ctrl);
1763 		ret_val = -E1000_ERR_CONFIG;
1764 		goto out;
1765 	}
1766 
1767 out:
1768 	if (ret_val)
1769 		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1770 
1771 	return ret_val;
1772 }
1773 
1774 /**
1775  *  e1000_release_swflag_ich8lan - Release software control flag
1776  *  @hw: pointer to the HW structure
1777  *
1778  *  Releases the software control flag for performing PHY and select
1779  *  MAC CSR accesses.
1780  **/
1781 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1782 {
1783 	u32 extcnf_ctrl;
1784 
1785 	extcnf_ctrl = er32(EXTCNF_CTRL);
1786 
1787 	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1788 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1789 		ew32(EXTCNF_CTRL, extcnf_ctrl);
1790 	} else {
1791 		e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1792 	}
1793 
1794 	clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1795 }
1796 
1797 /**
1798  *  e1000_check_mng_mode_ich8lan - Checks management mode
1799  *  @hw: pointer to the HW structure
1800  *
1801  *  This checks if the adapter has any manageability enabled.
1802  *  This is a function pointer entry point only called by read/write
1803  *  routines for the PHY and NVM parts.
1804  **/
1805 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1806 {
1807 	u32 fwsm;
1808 
1809 	fwsm = er32(FWSM);
1810 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1811 		((fwsm & E1000_FWSM_MODE_MASK) ==
1812 		 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1813 }
1814 
1815 /**
1816  *  e1000_check_mng_mode_pchlan - Checks management mode
1817  *  @hw: pointer to the HW structure
1818  *
1819  *  This checks if the adapter has iAMT enabled.
1820  *  This is a function pointer entry point only called by read/write
1821  *  routines for the PHY and NVM parts.
1822  **/
1823 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1824 {
1825 	u32 fwsm;
1826 
1827 	fwsm = er32(FWSM);
1828 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1829 	    (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1830 }
1831 
1832 /**
1833  *  e1000_rar_set_pch2lan - Set receive address register
1834  *  @hw: pointer to the HW structure
1835  *  @addr: pointer to the receive address
1836  *  @index: receive address array register
1837  *
1838  *  Sets the receive address array register at index to the address passed
1839  *  in by addr.  For 82579, RAR[0] is the base address register that is to
1840  *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1841  *  Use SHRA[0-3] in place of those reserved for ME.
1842  **/
1843 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1844 {
1845 	u32 rar_low, rar_high;
1846 
1847 	/* HW expects these in little endian so we reverse the byte order
1848 	 * from network order (big endian) to little endian
1849 	 */
1850 	rar_low = ((u32)addr[0] |
1851 		   ((u32)addr[1] << 8) |
1852 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1853 
1854 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1855 
1856 	/* If MAC address zero, no need to set the AV bit */
1857 	if (rar_low || rar_high)
1858 		rar_high |= E1000_RAH_AV;
1859 
1860 	if (index == 0) {
1861 		ew32(RAL(index), rar_low);
1862 		e1e_flush();
1863 		ew32(RAH(index), rar_high);
1864 		e1e_flush();
1865 		return 0;
1866 	}
1867 
1868 	/* RAR[1-6] are owned by manageability.  Skip those and program the
1869 	 * next address into the SHRA register array.
1870 	 */
1871 	if (index < (u32)(hw->mac.rar_entry_count)) {
1872 		s32 ret_val;
1873 
1874 		ret_val = e1000_acquire_swflag_ich8lan(hw);
1875 		if (ret_val)
1876 			goto out;
1877 
1878 		ew32(SHRAL(index - 1), rar_low);
1879 		e1e_flush();
1880 		ew32(SHRAH(index - 1), rar_high);
1881 		e1e_flush();
1882 
1883 		e1000_release_swflag_ich8lan(hw);
1884 
1885 		/* verify the register updates */
1886 		if ((er32(SHRAL(index - 1)) == rar_low) &&
1887 		    (er32(SHRAH(index - 1)) == rar_high))
1888 			return 0;
1889 
1890 		e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1891 		      (index - 1), er32(FWSM));
1892 	}
1893 
1894 out:
1895 	e_dbg("Failed to write receive address at index %d\n", index);
1896 	return -E1000_ERR_CONFIG;
1897 }
1898 
1899 /**
1900  *  e1000_rar_get_count_pch_lpt - Get the number of available SHRA
1901  *  @hw: pointer to the HW structure
1902  *
1903  *  Get the number of available receive registers that the Host can
1904  *  program. SHRA[0-10] are the shared receive address registers
1905  *  that are shared between the Host and manageability engine (ME).
1906  *  ME can reserve any number of addresses and the host needs to be
1907  *  able to tell how many available registers it has access to.
1908  **/
1909 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw)
1910 {
1911 	u32 wlock_mac;
1912 	u32 num_entries;
1913 
1914 	wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1915 	wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1916 
1917 	switch (wlock_mac) {
1918 	case 0:
1919 		/* All SHRA[0..10] and RAR[0] available */
1920 		num_entries = hw->mac.rar_entry_count;
1921 		break;
1922 	case 1:
1923 		/* Only RAR[0] available */
1924 		num_entries = 1;
1925 		break;
1926 	default:
1927 		/* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
1928 		num_entries = wlock_mac + 1;
1929 		break;
1930 	}
1931 
1932 	return num_entries;
1933 }
1934 
1935 /**
1936  *  e1000_rar_set_pch_lpt - Set receive address registers
1937  *  @hw: pointer to the HW structure
1938  *  @addr: pointer to the receive address
1939  *  @index: receive address array register
1940  *
1941  *  Sets the receive address register array at index to the address passed
1942  *  in by addr. For LPT, RAR[0] is the base address register that is to
1943  *  contain the MAC address. SHRA[0-10] are the shared receive address
1944  *  registers that are shared between the Host and manageability engine (ME).
1945  **/
1946 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1947 {
1948 	u32 rar_low, rar_high;
1949 	u32 wlock_mac;
1950 
1951 	/* HW expects these in little endian so we reverse the byte order
1952 	 * from network order (big endian) to little endian
1953 	 */
1954 	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1955 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1956 
1957 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1958 
1959 	/* If MAC address zero, no need to set the AV bit */
1960 	if (rar_low || rar_high)
1961 		rar_high |= E1000_RAH_AV;
1962 
1963 	if (index == 0) {
1964 		ew32(RAL(index), rar_low);
1965 		e1e_flush();
1966 		ew32(RAH(index), rar_high);
1967 		e1e_flush();
1968 		return 0;
1969 	}
1970 
1971 	/* The manageability engine (ME) can lock certain SHRAR registers that
1972 	 * it is using - those registers are unavailable for use.
1973 	 */
1974 	if (index < hw->mac.rar_entry_count) {
1975 		wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1976 		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1977 
1978 		/* Check if all SHRAR registers are locked */
1979 		if (wlock_mac == 1)
1980 			goto out;
1981 
1982 		if ((wlock_mac == 0) || (index <= wlock_mac)) {
1983 			s32 ret_val;
1984 
1985 			ret_val = e1000_acquire_swflag_ich8lan(hw);
1986 
1987 			if (ret_val)
1988 				goto out;
1989 
1990 			ew32(SHRAL_PCH_LPT(index - 1), rar_low);
1991 			e1e_flush();
1992 			ew32(SHRAH_PCH_LPT(index - 1), rar_high);
1993 			e1e_flush();
1994 
1995 			e1000_release_swflag_ich8lan(hw);
1996 
1997 			/* verify the register updates */
1998 			if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
1999 			    (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
2000 				return 0;
2001 		}
2002 	}
2003 
2004 out:
2005 	e_dbg("Failed to write receive address at index %d\n", index);
2006 	return -E1000_ERR_CONFIG;
2007 }
2008 
2009 /**
2010  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2011  *  @hw: pointer to the HW structure
2012  *
2013  *  Checks if firmware is blocking the reset of the PHY.
2014  *  This is a function pointer entry point only called by
2015  *  reset routines.
2016  **/
2017 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2018 {
2019 	bool blocked = false;
2020 	int i = 0;
2021 
2022 	while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
2023 	       (i++ < 30))
2024 		usleep_range(10000, 11000);
2025 	return blocked ? E1000_BLK_PHY_RESET : 0;
2026 }
2027 
2028 /**
2029  *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2030  *  @hw: pointer to the HW structure
2031  *
2032  *  Assumes semaphore already acquired.
2033  *
2034  **/
2035 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2036 {
2037 	u16 phy_data;
2038 	u32 strap = er32(STRAP);
2039 	u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
2040 	    E1000_STRAP_SMT_FREQ_SHIFT;
2041 	s32 ret_val;
2042 
2043 	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2044 
2045 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2046 	if (ret_val)
2047 		return ret_val;
2048 
2049 	phy_data &= ~HV_SMB_ADDR_MASK;
2050 	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2051 	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2052 
2053 	if (hw->phy.type == e1000_phy_i217) {
2054 		/* Restore SMBus frequency */
2055 		if (freq--) {
2056 			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2057 			phy_data |= (freq & BIT(0)) <<
2058 			    HV_SMB_ADDR_FREQ_LOW_SHIFT;
2059 			phy_data |= (freq & BIT(1)) <<
2060 			    (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2061 		} else {
2062 			e_dbg("Unsupported SMB frequency in PHY\n");
2063 		}
2064 	}
2065 
2066 	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2067 }
2068 
2069 /**
2070  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2071  *  @hw:   pointer to the HW structure
2072  *
2073  *  SW should configure the LCD from the NVM extended configuration region
2074  *  as a workaround for certain parts.
2075  **/
2076 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2077 {
2078 	struct e1000_phy_info *phy = &hw->phy;
2079 	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2080 	s32 ret_val = 0;
2081 	u16 word_addr, reg_data, reg_addr, phy_page = 0;
2082 
2083 	/* Initialize the PHY from the NVM on ICH platforms.  This
2084 	 * is needed due to an issue where the NVM configuration is
2085 	 * not properly autoloaded after power transitions.
2086 	 * Therefore, after each PHY reset, we will load the
2087 	 * configuration data out of the NVM manually.
2088 	 */
2089 	switch (hw->mac.type) {
2090 	case e1000_ich8lan:
2091 		if (phy->type != e1000_phy_igp_3)
2092 			return ret_val;
2093 
2094 		if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
2095 		    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
2096 			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2097 			break;
2098 		}
2099 		/* Fall-thru */
2100 	case e1000_pchlan:
2101 	case e1000_pch2lan:
2102 	case e1000_pch_lpt:
2103 	case e1000_pch_spt:
2104 	case e1000_pch_cnp:
2105 	case e1000_pch_tgp:
2106 	case e1000_pch_adp:
2107 		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2108 		break;
2109 	default:
2110 		return ret_val;
2111 	}
2112 
2113 	ret_val = hw->phy.ops.acquire(hw);
2114 	if (ret_val)
2115 		return ret_val;
2116 
2117 	data = er32(FEXTNVM);
2118 	if (!(data & sw_cfg_mask))
2119 		goto release;
2120 
2121 	/* Make sure HW does not configure LCD from PHY
2122 	 * extended configuration before SW configuration
2123 	 */
2124 	data = er32(EXTCNF_CTRL);
2125 	if ((hw->mac.type < e1000_pch2lan) &&
2126 	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2127 		goto release;
2128 
2129 	cnf_size = er32(EXTCNF_SIZE);
2130 	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2131 	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2132 	if (!cnf_size)
2133 		goto release;
2134 
2135 	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2136 	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2137 
2138 	if (((hw->mac.type == e1000_pchlan) &&
2139 	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2140 	    (hw->mac.type > e1000_pchlan)) {
2141 		/* HW configures the SMBus address and LEDs when the
2142 		 * OEM and LCD Write Enable bits are set in the NVM.
2143 		 * When both NVM bits are cleared, SW will configure
2144 		 * them instead.
2145 		 */
2146 		ret_val = e1000_write_smbus_addr(hw);
2147 		if (ret_val)
2148 			goto release;
2149 
2150 		data = er32(LEDCTL);
2151 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2152 							(u16)data);
2153 		if (ret_val)
2154 			goto release;
2155 	}
2156 
2157 	/* Configure LCD from extended configuration region. */
2158 
2159 	/* cnf_base_addr is in DWORD */
2160 	word_addr = (u16)(cnf_base_addr << 1);
2161 
2162 	for (i = 0; i < cnf_size; i++) {
2163 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, &reg_data);
2164 		if (ret_val)
2165 			goto release;
2166 
2167 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
2168 					 1, &reg_addr);
2169 		if (ret_val)
2170 			goto release;
2171 
2172 		/* Save off the PHY page for future writes. */
2173 		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2174 			phy_page = reg_data;
2175 			continue;
2176 		}
2177 
2178 		reg_addr &= PHY_REG_MASK;
2179 		reg_addr |= phy_page;
2180 
2181 		ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
2182 		if (ret_val)
2183 			goto release;
2184 	}
2185 
2186 release:
2187 	hw->phy.ops.release(hw);
2188 	return ret_val;
2189 }
2190 
2191 /**
2192  *  e1000_k1_gig_workaround_hv - K1 Si workaround
2193  *  @hw:   pointer to the HW structure
2194  *  @link: link up bool flag
2195  *
2196  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2197  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2198  *  If link is down, the function will restore the default K1 setting located
2199  *  in the NVM.
2200  **/
2201 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2202 {
2203 	s32 ret_val = 0;
2204 	u16 status_reg = 0;
2205 	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2206 
2207 	if (hw->mac.type != e1000_pchlan)
2208 		return 0;
2209 
2210 	/* Wrap the whole flow with the sw flag */
2211 	ret_val = hw->phy.ops.acquire(hw);
2212 	if (ret_val)
2213 		return ret_val;
2214 
2215 	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2216 	if (link) {
2217 		if (hw->phy.type == e1000_phy_82578) {
2218 			ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
2219 						  &status_reg);
2220 			if (ret_val)
2221 				goto release;
2222 
2223 			status_reg &= (BM_CS_STATUS_LINK_UP |
2224 				       BM_CS_STATUS_RESOLVED |
2225 				       BM_CS_STATUS_SPEED_MASK);
2226 
2227 			if (status_reg == (BM_CS_STATUS_LINK_UP |
2228 					   BM_CS_STATUS_RESOLVED |
2229 					   BM_CS_STATUS_SPEED_1000))
2230 				k1_enable = false;
2231 		}
2232 
2233 		if (hw->phy.type == e1000_phy_82577) {
2234 			ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2235 			if (ret_val)
2236 				goto release;
2237 
2238 			status_reg &= (HV_M_STATUS_LINK_UP |
2239 				       HV_M_STATUS_AUTONEG_COMPLETE |
2240 				       HV_M_STATUS_SPEED_MASK);
2241 
2242 			if (status_reg == (HV_M_STATUS_LINK_UP |
2243 					   HV_M_STATUS_AUTONEG_COMPLETE |
2244 					   HV_M_STATUS_SPEED_1000))
2245 				k1_enable = false;
2246 		}
2247 
2248 		/* Link stall fix for link up */
2249 		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2250 		if (ret_val)
2251 			goto release;
2252 
2253 	} else {
2254 		/* Link stall fix for link down */
2255 		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2256 		if (ret_val)
2257 			goto release;
2258 	}
2259 
2260 	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2261 
2262 release:
2263 	hw->phy.ops.release(hw);
2264 
2265 	return ret_val;
2266 }
2267 
2268 /**
2269  *  e1000_configure_k1_ich8lan - Configure K1 power state
2270  *  @hw: pointer to the HW structure
2271  *  @enable: K1 state to configure
2272  *
2273  *  Configure the K1 power state based on the provided parameter.
2274  *  Assumes semaphore already acquired.
2275  *
2276  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2277  **/
2278 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2279 {
2280 	s32 ret_val;
2281 	u32 ctrl_reg = 0;
2282 	u32 ctrl_ext = 0;
2283 	u32 reg = 0;
2284 	u16 kmrn_reg = 0;
2285 
2286 	ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2287 					      &kmrn_reg);
2288 	if (ret_val)
2289 		return ret_val;
2290 
2291 	if (k1_enable)
2292 		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2293 	else
2294 		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2295 
2296 	ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2297 					       kmrn_reg);
2298 	if (ret_val)
2299 		return ret_val;
2300 
2301 	usleep_range(20, 40);
2302 	ctrl_ext = er32(CTRL_EXT);
2303 	ctrl_reg = er32(CTRL);
2304 
2305 	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2306 	reg |= E1000_CTRL_FRCSPD;
2307 	ew32(CTRL, reg);
2308 
2309 	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2310 	e1e_flush();
2311 	usleep_range(20, 40);
2312 	ew32(CTRL, ctrl_reg);
2313 	ew32(CTRL_EXT, ctrl_ext);
2314 	e1e_flush();
2315 	usleep_range(20, 40);
2316 
2317 	return 0;
2318 }
2319 
2320 /**
2321  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2322  *  @hw:       pointer to the HW structure
2323  *  @d0_state: boolean if entering d0 or d3 device state
2324  *
2325  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2326  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2327  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2328  **/
2329 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2330 {
2331 	s32 ret_val = 0;
2332 	u32 mac_reg;
2333 	u16 oem_reg;
2334 
2335 	if (hw->mac.type < e1000_pchlan)
2336 		return ret_val;
2337 
2338 	ret_val = hw->phy.ops.acquire(hw);
2339 	if (ret_val)
2340 		return ret_val;
2341 
2342 	if (hw->mac.type == e1000_pchlan) {
2343 		mac_reg = er32(EXTCNF_CTRL);
2344 		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2345 			goto release;
2346 	}
2347 
2348 	mac_reg = er32(FEXTNVM);
2349 	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2350 		goto release;
2351 
2352 	mac_reg = er32(PHY_CTRL);
2353 
2354 	ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2355 	if (ret_val)
2356 		goto release;
2357 
2358 	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2359 
2360 	if (d0_state) {
2361 		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2362 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2363 
2364 		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2365 			oem_reg |= HV_OEM_BITS_LPLU;
2366 	} else {
2367 		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2368 			       E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2369 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2370 
2371 		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2372 			       E1000_PHY_CTRL_NOND0A_LPLU))
2373 			oem_reg |= HV_OEM_BITS_LPLU;
2374 	}
2375 
2376 	/* Set Restart auto-neg to activate the bits */
2377 	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2378 	    !hw->phy.ops.check_reset_block(hw))
2379 		oem_reg |= HV_OEM_BITS_RESTART_AN;
2380 
2381 	ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2382 
2383 release:
2384 	hw->phy.ops.release(hw);
2385 
2386 	return ret_val;
2387 }
2388 
2389 /**
2390  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2391  *  @hw:   pointer to the HW structure
2392  **/
2393 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2394 {
2395 	s32 ret_val;
2396 	u16 data;
2397 
2398 	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2399 	if (ret_val)
2400 		return ret_val;
2401 
2402 	data |= HV_KMRN_MDIO_SLOW;
2403 
2404 	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2405 
2406 	return ret_val;
2407 }
2408 
2409 /**
2410  *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2411  *  done after every PHY reset.
2412  **/
2413 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2414 {
2415 	s32 ret_val = 0;
2416 	u16 phy_data;
2417 
2418 	if (hw->mac.type != e1000_pchlan)
2419 		return 0;
2420 
2421 	/* Set MDIO slow mode before any other MDIO access */
2422 	if (hw->phy.type == e1000_phy_82577) {
2423 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
2424 		if (ret_val)
2425 			return ret_val;
2426 	}
2427 
2428 	if (((hw->phy.type == e1000_phy_82577) &&
2429 	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2430 	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2431 		/* Disable generation of early preamble */
2432 		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2433 		if (ret_val)
2434 			return ret_val;
2435 
2436 		/* Preamble tuning for SSC */
2437 		ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2438 		if (ret_val)
2439 			return ret_val;
2440 	}
2441 
2442 	if (hw->phy.type == e1000_phy_82578) {
2443 		/* Return registers to default by doing a soft reset then
2444 		 * writing 0x3140 to the control register.
2445 		 */
2446 		if (hw->phy.revision < 2) {
2447 			e1000e_phy_sw_reset(hw);
2448 			ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
2449 			if (ret_val)
2450 				return ret_val;
2451 		}
2452 	}
2453 
2454 	/* Select page 0 */
2455 	ret_val = hw->phy.ops.acquire(hw);
2456 	if (ret_val)
2457 		return ret_val;
2458 
2459 	hw->phy.addr = 1;
2460 	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2461 	hw->phy.ops.release(hw);
2462 	if (ret_val)
2463 		return ret_val;
2464 
2465 	/* Configure the K1 Si workaround during phy reset assuming there is
2466 	 * link so that it disables K1 if link is in 1Gbps.
2467 	 */
2468 	ret_val = e1000_k1_gig_workaround_hv(hw, true);
2469 	if (ret_val)
2470 		return ret_val;
2471 
2472 	/* Workaround for link disconnects on a busy hub in half duplex */
2473 	ret_val = hw->phy.ops.acquire(hw);
2474 	if (ret_val)
2475 		return ret_val;
2476 	ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2477 	if (ret_val)
2478 		goto release;
2479 	ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2480 	if (ret_val)
2481 		goto release;
2482 
2483 	/* set MSE higher to enable link to stay up when noise is high */
2484 	ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2485 release:
2486 	hw->phy.ops.release(hw);
2487 
2488 	return ret_val;
2489 }
2490 
2491 /**
2492  *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2493  *  @hw:   pointer to the HW structure
2494  **/
2495 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2496 {
2497 	u32 mac_reg;
2498 	u16 i, phy_reg = 0;
2499 	s32 ret_val;
2500 
2501 	ret_val = hw->phy.ops.acquire(hw);
2502 	if (ret_val)
2503 		return;
2504 	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2505 	if (ret_val)
2506 		goto release;
2507 
2508 	/* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2509 	for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2510 		mac_reg = er32(RAL(i));
2511 		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2512 					   (u16)(mac_reg & 0xFFFF));
2513 		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2514 					   (u16)((mac_reg >> 16) & 0xFFFF));
2515 
2516 		mac_reg = er32(RAH(i));
2517 		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2518 					   (u16)(mac_reg & 0xFFFF));
2519 		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2520 					   (u16)((mac_reg & E1000_RAH_AV)
2521 						 >> 16));
2522 	}
2523 
2524 	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2525 
2526 release:
2527 	hw->phy.ops.release(hw);
2528 }
2529 
2530 /**
2531  *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2532  *  with 82579 PHY
2533  *  @hw: pointer to the HW structure
2534  *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2535  **/
2536 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2537 {
2538 	s32 ret_val = 0;
2539 	u16 phy_reg, data;
2540 	u32 mac_reg;
2541 	u16 i;
2542 
2543 	if (hw->mac.type < e1000_pch2lan)
2544 		return 0;
2545 
2546 	/* disable Rx path while enabling/disabling workaround */
2547 	e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2548 	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | BIT(14));
2549 	if (ret_val)
2550 		return ret_val;
2551 
2552 	if (enable) {
2553 		/* Write Rx addresses (rar_entry_count for RAL/H, and
2554 		 * SHRAL/H) and initial CRC values to the MAC
2555 		 */
2556 		for (i = 0; i < hw->mac.rar_entry_count; i++) {
2557 			u8 mac_addr[ETH_ALEN] = { 0 };
2558 			u32 addr_high, addr_low;
2559 
2560 			addr_high = er32(RAH(i));
2561 			if (!(addr_high & E1000_RAH_AV))
2562 				continue;
2563 			addr_low = er32(RAL(i));
2564 			mac_addr[0] = (addr_low & 0xFF);
2565 			mac_addr[1] = ((addr_low >> 8) & 0xFF);
2566 			mac_addr[2] = ((addr_low >> 16) & 0xFF);
2567 			mac_addr[3] = ((addr_low >> 24) & 0xFF);
2568 			mac_addr[4] = (addr_high & 0xFF);
2569 			mac_addr[5] = ((addr_high >> 8) & 0xFF);
2570 
2571 			ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2572 		}
2573 
2574 		/* Write Rx addresses to the PHY */
2575 		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2576 
2577 		/* Enable jumbo frame workaround in the MAC */
2578 		mac_reg = er32(FFLT_DBG);
2579 		mac_reg &= ~BIT(14);
2580 		mac_reg |= (7 << 15);
2581 		ew32(FFLT_DBG, mac_reg);
2582 
2583 		mac_reg = er32(RCTL);
2584 		mac_reg |= E1000_RCTL_SECRC;
2585 		ew32(RCTL, mac_reg);
2586 
2587 		ret_val = e1000e_read_kmrn_reg(hw,
2588 					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2589 					       &data);
2590 		if (ret_val)
2591 			return ret_val;
2592 		ret_val = e1000e_write_kmrn_reg(hw,
2593 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2594 						data | BIT(0));
2595 		if (ret_val)
2596 			return ret_val;
2597 		ret_val = e1000e_read_kmrn_reg(hw,
2598 					       E1000_KMRNCTRLSTA_HD_CTRL,
2599 					       &data);
2600 		if (ret_val)
2601 			return ret_val;
2602 		data &= ~(0xF << 8);
2603 		data |= (0xB << 8);
2604 		ret_val = e1000e_write_kmrn_reg(hw,
2605 						E1000_KMRNCTRLSTA_HD_CTRL,
2606 						data);
2607 		if (ret_val)
2608 			return ret_val;
2609 
2610 		/* Enable jumbo frame workaround in the PHY */
2611 		e1e_rphy(hw, PHY_REG(769, 23), &data);
2612 		data &= ~(0x7F << 5);
2613 		data |= (0x37 << 5);
2614 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2615 		if (ret_val)
2616 			return ret_val;
2617 		e1e_rphy(hw, PHY_REG(769, 16), &data);
2618 		data &= ~BIT(13);
2619 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2620 		if (ret_val)
2621 			return ret_val;
2622 		e1e_rphy(hw, PHY_REG(776, 20), &data);
2623 		data &= ~(0x3FF << 2);
2624 		data |= (E1000_TX_PTR_GAP << 2);
2625 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2626 		if (ret_val)
2627 			return ret_val;
2628 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2629 		if (ret_val)
2630 			return ret_val;
2631 		e1e_rphy(hw, HV_PM_CTRL, &data);
2632 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data | BIT(10));
2633 		if (ret_val)
2634 			return ret_val;
2635 	} else {
2636 		/* Write MAC register values back to h/w defaults */
2637 		mac_reg = er32(FFLT_DBG);
2638 		mac_reg &= ~(0xF << 14);
2639 		ew32(FFLT_DBG, mac_reg);
2640 
2641 		mac_reg = er32(RCTL);
2642 		mac_reg &= ~E1000_RCTL_SECRC;
2643 		ew32(RCTL, mac_reg);
2644 
2645 		ret_val = e1000e_read_kmrn_reg(hw,
2646 					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2647 					       &data);
2648 		if (ret_val)
2649 			return ret_val;
2650 		ret_val = e1000e_write_kmrn_reg(hw,
2651 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2652 						data & ~BIT(0));
2653 		if (ret_val)
2654 			return ret_val;
2655 		ret_val = e1000e_read_kmrn_reg(hw,
2656 					       E1000_KMRNCTRLSTA_HD_CTRL,
2657 					       &data);
2658 		if (ret_val)
2659 			return ret_val;
2660 		data &= ~(0xF << 8);
2661 		data |= (0xB << 8);
2662 		ret_val = e1000e_write_kmrn_reg(hw,
2663 						E1000_KMRNCTRLSTA_HD_CTRL,
2664 						data);
2665 		if (ret_val)
2666 			return ret_val;
2667 
2668 		/* Write PHY register values back to h/w defaults */
2669 		e1e_rphy(hw, PHY_REG(769, 23), &data);
2670 		data &= ~(0x7F << 5);
2671 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2672 		if (ret_val)
2673 			return ret_val;
2674 		e1e_rphy(hw, PHY_REG(769, 16), &data);
2675 		data |= BIT(13);
2676 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2677 		if (ret_val)
2678 			return ret_val;
2679 		e1e_rphy(hw, PHY_REG(776, 20), &data);
2680 		data &= ~(0x3FF << 2);
2681 		data |= (0x8 << 2);
2682 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2683 		if (ret_val)
2684 			return ret_val;
2685 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2686 		if (ret_val)
2687 			return ret_val;
2688 		e1e_rphy(hw, HV_PM_CTRL, &data);
2689 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~BIT(10));
2690 		if (ret_val)
2691 			return ret_val;
2692 	}
2693 
2694 	/* re-enable Rx path after enabling/disabling workaround */
2695 	return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~BIT(14));
2696 }
2697 
2698 /**
2699  *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2700  *  done after every PHY reset.
2701  **/
2702 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2703 {
2704 	s32 ret_val = 0;
2705 
2706 	if (hw->mac.type != e1000_pch2lan)
2707 		return 0;
2708 
2709 	/* Set MDIO slow mode before any other MDIO access */
2710 	ret_val = e1000_set_mdio_slow_mode_hv(hw);
2711 	if (ret_val)
2712 		return ret_val;
2713 
2714 	ret_val = hw->phy.ops.acquire(hw);
2715 	if (ret_val)
2716 		return ret_val;
2717 	/* set MSE higher to enable link to stay up when noise is high */
2718 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2719 	if (ret_val)
2720 		goto release;
2721 	/* drop link after 5 times MSE threshold was reached */
2722 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2723 release:
2724 	hw->phy.ops.release(hw);
2725 
2726 	return ret_val;
2727 }
2728 
2729 /**
2730  *  e1000_k1_gig_workaround_lv - K1 Si workaround
2731  *  @hw:   pointer to the HW structure
2732  *
2733  *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2734  *  Disable K1 in 1000Mbps and 100Mbps
2735  **/
2736 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2737 {
2738 	s32 ret_val = 0;
2739 	u16 status_reg = 0;
2740 
2741 	if (hw->mac.type != e1000_pch2lan)
2742 		return 0;
2743 
2744 	/* Set K1 beacon duration based on 10Mbs speed */
2745 	ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2746 	if (ret_val)
2747 		return ret_val;
2748 
2749 	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2750 	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2751 		if (status_reg &
2752 		    (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2753 			u16 pm_phy_reg;
2754 
2755 			/* LV 1G/100 Packet drop issue wa  */
2756 			ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2757 			if (ret_val)
2758 				return ret_val;
2759 			pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2760 			ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2761 			if (ret_val)
2762 				return ret_val;
2763 		} else {
2764 			u32 mac_reg;
2765 
2766 			mac_reg = er32(FEXTNVM4);
2767 			mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2768 			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2769 			ew32(FEXTNVM4, mac_reg);
2770 		}
2771 	}
2772 
2773 	return ret_val;
2774 }
2775 
2776 /**
2777  *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2778  *  @hw:   pointer to the HW structure
2779  *  @gate: boolean set to true to gate, false to ungate
2780  *
2781  *  Gate/ungate the automatic PHY configuration via hardware; perform
2782  *  the configuration via software instead.
2783  **/
2784 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2785 {
2786 	u32 extcnf_ctrl;
2787 
2788 	if (hw->mac.type < e1000_pch2lan)
2789 		return;
2790 
2791 	extcnf_ctrl = er32(EXTCNF_CTRL);
2792 
2793 	if (gate)
2794 		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2795 	else
2796 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2797 
2798 	ew32(EXTCNF_CTRL, extcnf_ctrl);
2799 }
2800 
2801 /**
2802  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2803  *  @hw: pointer to the HW structure
2804  *
2805  *  Check the appropriate indication the MAC has finished configuring the
2806  *  PHY after a software reset.
2807  **/
2808 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2809 {
2810 	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2811 
2812 	/* Wait for basic configuration completes before proceeding */
2813 	do {
2814 		data = er32(STATUS);
2815 		data &= E1000_STATUS_LAN_INIT_DONE;
2816 		usleep_range(100, 200);
2817 	} while ((!data) && --loop);
2818 
2819 	/* If basic configuration is incomplete before the above loop
2820 	 * count reaches 0, loading the configuration from NVM will
2821 	 * leave the PHY in a bad state possibly resulting in no link.
2822 	 */
2823 	if (loop == 0)
2824 		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2825 
2826 	/* Clear the Init Done bit for the next init event */
2827 	data = er32(STATUS);
2828 	data &= ~E1000_STATUS_LAN_INIT_DONE;
2829 	ew32(STATUS, data);
2830 }
2831 
2832 /**
2833  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2834  *  @hw: pointer to the HW structure
2835  **/
2836 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2837 {
2838 	s32 ret_val = 0;
2839 	u16 reg;
2840 
2841 	if (hw->phy.ops.check_reset_block(hw))
2842 		return 0;
2843 
2844 	/* Allow time for h/w to get to quiescent state after reset */
2845 	usleep_range(10000, 11000);
2846 
2847 	/* Perform any necessary post-reset workarounds */
2848 	switch (hw->mac.type) {
2849 	case e1000_pchlan:
2850 		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2851 		if (ret_val)
2852 			return ret_val;
2853 		break;
2854 	case e1000_pch2lan:
2855 		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2856 		if (ret_val)
2857 			return ret_val;
2858 		break;
2859 	default:
2860 		break;
2861 	}
2862 
2863 	/* Clear the host wakeup bit after lcd reset */
2864 	if (hw->mac.type >= e1000_pchlan) {
2865 		e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2866 		reg &= ~BM_WUC_HOST_WU_BIT;
2867 		e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2868 	}
2869 
2870 	/* Configure the LCD with the extended configuration region in NVM */
2871 	ret_val = e1000_sw_lcd_config_ich8lan(hw);
2872 	if (ret_val)
2873 		return ret_val;
2874 
2875 	/* Configure the LCD with the OEM bits in NVM */
2876 	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2877 
2878 	if (hw->mac.type == e1000_pch2lan) {
2879 		/* Ungate automatic PHY configuration on non-managed 82579 */
2880 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2881 			usleep_range(10000, 11000);
2882 			e1000_gate_hw_phy_config_ich8lan(hw, false);
2883 		}
2884 
2885 		/* Set EEE LPI Update Timer to 200usec */
2886 		ret_val = hw->phy.ops.acquire(hw);
2887 		if (ret_val)
2888 			return ret_val;
2889 		ret_val = e1000_write_emi_reg_locked(hw,
2890 						     I82579_LPI_UPDATE_TIMER,
2891 						     0x1387);
2892 		hw->phy.ops.release(hw);
2893 	}
2894 
2895 	return ret_val;
2896 }
2897 
2898 /**
2899  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2900  *  @hw: pointer to the HW structure
2901  *
2902  *  Resets the PHY
2903  *  This is a function pointer entry point called by drivers
2904  *  or other shared routines.
2905  **/
2906 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2907 {
2908 	s32 ret_val = 0;
2909 
2910 	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
2911 	if ((hw->mac.type == e1000_pch2lan) &&
2912 	    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2913 		e1000_gate_hw_phy_config_ich8lan(hw, true);
2914 
2915 	ret_val = e1000e_phy_hw_reset_generic(hw);
2916 	if (ret_val)
2917 		return ret_val;
2918 
2919 	return e1000_post_phy_reset_ich8lan(hw);
2920 }
2921 
2922 /**
2923  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2924  *  @hw: pointer to the HW structure
2925  *  @active: true to enable LPLU, false to disable
2926  *
2927  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
2928  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2929  *  the phy speed. This function will manually set the LPLU bit and restart
2930  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
2931  *  since it configures the same bit.
2932  **/
2933 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2934 {
2935 	s32 ret_val;
2936 	u16 oem_reg;
2937 
2938 	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2939 	if (ret_val)
2940 		return ret_val;
2941 
2942 	if (active)
2943 		oem_reg |= HV_OEM_BITS_LPLU;
2944 	else
2945 		oem_reg &= ~HV_OEM_BITS_LPLU;
2946 
2947 	if (!hw->phy.ops.check_reset_block(hw))
2948 		oem_reg |= HV_OEM_BITS_RESTART_AN;
2949 
2950 	return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2951 }
2952 
2953 /**
2954  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2955  *  @hw: pointer to the HW structure
2956  *  @active: true to enable LPLU, false to disable
2957  *
2958  *  Sets the LPLU D0 state according to the active flag.  When
2959  *  activating LPLU this function also disables smart speed
2960  *  and vice versa.  LPLU will not be activated unless the
2961  *  device autonegotiation advertisement meets standards of
2962  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2963  *  This is a function pointer entry point only called by
2964  *  PHY setup routines.
2965  **/
2966 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2967 {
2968 	struct e1000_phy_info *phy = &hw->phy;
2969 	u32 phy_ctrl;
2970 	s32 ret_val = 0;
2971 	u16 data;
2972 
2973 	if (phy->type == e1000_phy_ife)
2974 		return 0;
2975 
2976 	phy_ctrl = er32(PHY_CTRL);
2977 
2978 	if (active) {
2979 		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2980 		ew32(PHY_CTRL, phy_ctrl);
2981 
2982 		if (phy->type != e1000_phy_igp_3)
2983 			return 0;
2984 
2985 		/* Call gig speed drop workaround on LPLU before accessing
2986 		 * any PHY registers
2987 		 */
2988 		if (hw->mac.type == e1000_ich8lan)
2989 			e1000e_gig_downshift_workaround_ich8lan(hw);
2990 
2991 		/* When LPLU is enabled, we should disable SmartSpeed */
2992 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2993 		if (ret_val)
2994 			return ret_val;
2995 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2996 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2997 		if (ret_val)
2998 			return ret_val;
2999 	} else {
3000 		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
3001 		ew32(PHY_CTRL, phy_ctrl);
3002 
3003 		if (phy->type != e1000_phy_igp_3)
3004 			return 0;
3005 
3006 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3007 		 * during Dx states where the power conservation is most
3008 		 * important.  During driver activity we should enable
3009 		 * SmartSpeed, so performance is maintained.
3010 		 */
3011 		if (phy->smart_speed == e1000_smart_speed_on) {
3012 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3013 					   &data);
3014 			if (ret_val)
3015 				return ret_val;
3016 
3017 			data |= IGP01E1000_PSCFR_SMART_SPEED;
3018 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3019 					   data);
3020 			if (ret_val)
3021 				return ret_val;
3022 		} else if (phy->smart_speed == e1000_smart_speed_off) {
3023 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3024 					   &data);
3025 			if (ret_val)
3026 				return ret_val;
3027 
3028 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3029 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3030 					   data);
3031 			if (ret_val)
3032 				return ret_val;
3033 		}
3034 	}
3035 
3036 	return 0;
3037 }
3038 
3039 /**
3040  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3041  *  @hw: pointer to the HW structure
3042  *  @active: true to enable LPLU, false to disable
3043  *
3044  *  Sets the LPLU D3 state according to the active flag.  When
3045  *  activating LPLU this function also disables smart speed
3046  *  and vice versa.  LPLU will not be activated unless the
3047  *  device autonegotiation advertisement meets standards of
3048  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3049  *  This is a function pointer entry point only called by
3050  *  PHY setup routines.
3051  **/
3052 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3053 {
3054 	struct e1000_phy_info *phy = &hw->phy;
3055 	u32 phy_ctrl;
3056 	s32 ret_val = 0;
3057 	u16 data;
3058 
3059 	phy_ctrl = er32(PHY_CTRL);
3060 
3061 	if (!active) {
3062 		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3063 		ew32(PHY_CTRL, phy_ctrl);
3064 
3065 		if (phy->type != e1000_phy_igp_3)
3066 			return 0;
3067 
3068 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3069 		 * during Dx states where the power conservation is most
3070 		 * important.  During driver activity we should enable
3071 		 * SmartSpeed, so performance is maintained.
3072 		 */
3073 		if (phy->smart_speed == e1000_smart_speed_on) {
3074 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3075 					   &data);
3076 			if (ret_val)
3077 				return ret_val;
3078 
3079 			data |= IGP01E1000_PSCFR_SMART_SPEED;
3080 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3081 					   data);
3082 			if (ret_val)
3083 				return ret_val;
3084 		} else if (phy->smart_speed == e1000_smart_speed_off) {
3085 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3086 					   &data);
3087 			if (ret_val)
3088 				return ret_val;
3089 
3090 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3091 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3092 					   data);
3093 			if (ret_val)
3094 				return ret_val;
3095 		}
3096 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3097 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3098 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3099 		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3100 		ew32(PHY_CTRL, phy_ctrl);
3101 
3102 		if (phy->type != e1000_phy_igp_3)
3103 			return 0;
3104 
3105 		/* Call gig speed drop workaround on LPLU before accessing
3106 		 * any PHY registers
3107 		 */
3108 		if (hw->mac.type == e1000_ich8lan)
3109 			e1000e_gig_downshift_workaround_ich8lan(hw);
3110 
3111 		/* When LPLU is enabled, we should disable SmartSpeed */
3112 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3113 		if (ret_val)
3114 			return ret_val;
3115 
3116 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3117 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3118 	}
3119 
3120 	return ret_val;
3121 }
3122 
3123 /**
3124  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3125  *  @hw: pointer to the HW structure
3126  *  @bank:  pointer to the variable that returns the active bank
3127  *
3128  *  Reads signature byte from the NVM using the flash access registers.
3129  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3130  **/
3131 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3132 {
3133 	u32 eecd;
3134 	struct e1000_nvm_info *nvm = &hw->nvm;
3135 	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3136 	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3137 	u32 nvm_dword = 0;
3138 	u8 sig_byte = 0;
3139 	s32 ret_val;
3140 
3141 	switch (hw->mac.type) {
3142 	case e1000_pch_spt:
3143 	case e1000_pch_cnp:
3144 	case e1000_pch_tgp:
3145 	case e1000_pch_adp:
3146 		bank1_offset = nvm->flash_bank_size;
3147 		act_offset = E1000_ICH_NVM_SIG_WORD;
3148 
3149 		/* set bank to 0 in case flash read fails */
3150 		*bank = 0;
3151 
3152 		/* Check bank 0 */
3153 		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
3154 							 &nvm_dword);
3155 		if (ret_val)
3156 			return ret_val;
3157 		sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3158 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3159 		    E1000_ICH_NVM_SIG_VALUE) {
3160 			*bank = 0;
3161 			return 0;
3162 		}
3163 
3164 		/* Check bank 1 */
3165 		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
3166 							 bank1_offset,
3167 							 &nvm_dword);
3168 		if (ret_val)
3169 			return ret_val;
3170 		sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3171 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3172 		    E1000_ICH_NVM_SIG_VALUE) {
3173 			*bank = 1;
3174 			return 0;
3175 		}
3176 
3177 		e_dbg("ERROR: No valid NVM bank present\n");
3178 		return -E1000_ERR_NVM;
3179 	case e1000_ich8lan:
3180 	case e1000_ich9lan:
3181 		eecd = er32(EECD);
3182 		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3183 		    E1000_EECD_SEC1VAL_VALID_MASK) {
3184 			if (eecd & E1000_EECD_SEC1VAL)
3185 				*bank = 1;
3186 			else
3187 				*bank = 0;
3188 
3189 			return 0;
3190 		}
3191 		e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3192 		/* fall-thru */
3193 	default:
3194 		/* set bank to 0 in case flash read fails */
3195 		*bank = 0;
3196 
3197 		/* Check bank 0 */
3198 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3199 							&sig_byte);
3200 		if (ret_val)
3201 			return ret_val;
3202 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3203 		    E1000_ICH_NVM_SIG_VALUE) {
3204 			*bank = 0;
3205 			return 0;
3206 		}
3207 
3208 		/* Check bank 1 */
3209 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3210 							bank1_offset,
3211 							&sig_byte);
3212 		if (ret_val)
3213 			return ret_val;
3214 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3215 		    E1000_ICH_NVM_SIG_VALUE) {
3216 			*bank = 1;
3217 			return 0;
3218 		}
3219 
3220 		e_dbg("ERROR: No valid NVM bank present\n");
3221 		return -E1000_ERR_NVM;
3222 	}
3223 }
3224 
3225 /**
3226  *  e1000_read_nvm_spt - NVM access for SPT
3227  *  @hw: pointer to the HW structure
3228  *  @offset: The offset (in bytes) of the word(s) to read.
3229  *  @words: Size of data to read in words.
3230  *  @data: pointer to the word(s) to read at offset.
3231  *
3232  *  Reads a word(s) from the NVM
3233  **/
3234 static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3235 			      u16 *data)
3236 {
3237 	struct e1000_nvm_info *nvm = &hw->nvm;
3238 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3239 	u32 act_offset;
3240 	s32 ret_val = 0;
3241 	u32 bank = 0;
3242 	u32 dword = 0;
3243 	u16 offset_to_read;
3244 	u16 i;
3245 
3246 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3247 	    (words == 0)) {
3248 		e_dbg("nvm parameter(s) out of bounds\n");
3249 		ret_val = -E1000_ERR_NVM;
3250 		goto out;
3251 	}
3252 
3253 	nvm->ops.acquire(hw);
3254 
3255 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3256 	if (ret_val) {
3257 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3258 		bank = 0;
3259 	}
3260 
3261 	act_offset = (bank) ? nvm->flash_bank_size : 0;
3262 	act_offset += offset;
3263 
3264 	ret_val = 0;
3265 
3266 	for (i = 0; i < words; i += 2) {
3267 		if (words - i == 1) {
3268 			if (dev_spec->shadow_ram[offset + i].modified) {
3269 				data[i] =
3270 				    dev_spec->shadow_ram[offset + i].value;
3271 			} else {
3272 				offset_to_read = act_offset + i -
3273 				    ((act_offset + i) % 2);
3274 				ret_val =
3275 				  e1000_read_flash_dword_ich8lan(hw,
3276 								 offset_to_read,
3277 								 &dword);
3278 				if (ret_val)
3279 					break;
3280 				if ((act_offset + i) % 2 == 0)
3281 					data[i] = (u16)(dword & 0xFFFF);
3282 				else
3283 					data[i] = (u16)((dword >> 16) & 0xFFFF);
3284 			}
3285 		} else {
3286 			offset_to_read = act_offset + i;
3287 			if (!(dev_spec->shadow_ram[offset + i].modified) ||
3288 			    !(dev_spec->shadow_ram[offset + i + 1].modified)) {
3289 				ret_val =
3290 				  e1000_read_flash_dword_ich8lan(hw,
3291 								 offset_to_read,
3292 								 &dword);
3293 				if (ret_val)
3294 					break;
3295 			}
3296 			if (dev_spec->shadow_ram[offset + i].modified)
3297 				data[i] =
3298 				    dev_spec->shadow_ram[offset + i].value;
3299 			else
3300 				data[i] = (u16)(dword & 0xFFFF);
3301 			if (dev_spec->shadow_ram[offset + i].modified)
3302 				data[i + 1] =
3303 				    dev_spec->shadow_ram[offset + i + 1].value;
3304 			else
3305 				data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
3306 		}
3307 	}
3308 
3309 	nvm->ops.release(hw);
3310 
3311 out:
3312 	if (ret_val)
3313 		e_dbg("NVM read error: %d\n", ret_val);
3314 
3315 	return ret_val;
3316 }
3317 
3318 /**
3319  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3320  *  @hw: pointer to the HW structure
3321  *  @offset: The offset (in bytes) of the word(s) to read.
3322  *  @words: Size of data to read in words
3323  *  @data: Pointer to the word(s) to read at offset.
3324  *
3325  *  Reads a word(s) from the NVM using the flash access registers.
3326  **/
3327 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3328 				  u16 *data)
3329 {
3330 	struct e1000_nvm_info *nvm = &hw->nvm;
3331 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3332 	u32 act_offset;
3333 	s32 ret_val = 0;
3334 	u32 bank = 0;
3335 	u16 i, word;
3336 
3337 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3338 	    (words == 0)) {
3339 		e_dbg("nvm parameter(s) out of bounds\n");
3340 		ret_val = -E1000_ERR_NVM;
3341 		goto out;
3342 	}
3343 
3344 	nvm->ops.acquire(hw);
3345 
3346 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3347 	if (ret_val) {
3348 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3349 		bank = 0;
3350 	}
3351 
3352 	act_offset = (bank) ? nvm->flash_bank_size : 0;
3353 	act_offset += offset;
3354 
3355 	ret_val = 0;
3356 	for (i = 0; i < words; i++) {
3357 		if (dev_spec->shadow_ram[offset + i].modified) {
3358 			data[i] = dev_spec->shadow_ram[offset + i].value;
3359 		} else {
3360 			ret_val = e1000_read_flash_word_ich8lan(hw,
3361 								act_offset + i,
3362 								&word);
3363 			if (ret_val)
3364 				break;
3365 			data[i] = word;
3366 		}
3367 	}
3368 
3369 	nvm->ops.release(hw);
3370 
3371 out:
3372 	if (ret_val)
3373 		e_dbg("NVM read error: %d\n", ret_val);
3374 
3375 	return ret_val;
3376 }
3377 
3378 /**
3379  *  e1000_flash_cycle_init_ich8lan - Initialize flash
3380  *  @hw: pointer to the HW structure
3381  *
3382  *  This function does initial flash setup so that a new read/write/erase cycle
3383  *  can be started.
3384  **/
3385 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3386 {
3387 	union ich8_hws_flash_status hsfsts;
3388 	s32 ret_val = -E1000_ERR_NVM;
3389 
3390 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3391 
3392 	/* Check if the flash descriptor is valid */
3393 	if (!hsfsts.hsf_status.fldesvalid) {
3394 		e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
3395 		return -E1000_ERR_NVM;
3396 	}
3397 
3398 	/* Clear FCERR and DAEL in hw status by writing 1 */
3399 	hsfsts.hsf_status.flcerr = 1;
3400 	hsfsts.hsf_status.dael = 1;
3401 	if (hw->mac.type >= e1000_pch_spt)
3402 		ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3403 	else
3404 		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3405 
3406 	/* Either we should have a hardware SPI cycle in progress
3407 	 * bit to check against, in order to start a new cycle or
3408 	 * FDONE bit should be changed in the hardware so that it
3409 	 * is 1 after hardware reset, which can then be used as an
3410 	 * indication whether a cycle is in progress or has been
3411 	 * completed.
3412 	 */
3413 
3414 	if (!hsfsts.hsf_status.flcinprog) {
3415 		/* There is no cycle running at present,
3416 		 * so we can start a cycle.
3417 		 * Begin by setting Flash Cycle Done.
3418 		 */
3419 		hsfsts.hsf_status.flcdone = 1;
3420 		if (hw->mac.type >= e1000_pch_spt)
3421 			ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3422 		else
3423 			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3424 		ret_val = 0;
3425 	} else {
3426 		s32 i;
3427 
3428 		/* Otherwise poll for sometime so the current
3429 		 * cycle has a chance to end before giving up.
3430 		 */
3431 		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3432 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3433 			if (!hsfsts.hsf_status.flcinprog) {
3434 				ret_val = 0;
3435 				break;
3436 			}
3437 			udelay(1);
3438 		}
3439 		if (!ret_val) {
3440 			/* Successful in waiting for previous cycle to timeout,
3441 			 * now set the Flash Cycle Done.
3442 			 */
3443 			hsfsts.hsf_status.flcdone = 1;
3444 			if (hw->mac.type >= e1000_pch_spt)
3445 				ew32flash(ICH_FLASH_HSFSTS,
3446 					  hsfsts.regval & 0xFFFF);
3447 			else
3448 				ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3449 		} else {
3450 			e_dbg("Flash controller busy, cannot get access\n");
3451 		}
3452 	}
3453 
3454 	return ret_val;
3455 }
3456 
3457 /**
3458  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3459  *  @hw: pointer to the HW structure
3460  *  @timeout: maximum time to wait for completion
3461  *
3462  *  This function starts a flash cycle and waits for its completion.
3463  **/
3464 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3465 {
3466 	union ich8_hws_flash_ctrl hsflctl;
3467 	union ich8_hws_flash_status hsfsts;
3468 	u32 i = 0;
3469 
3470 	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3471 	if (hw->mac.type >= e1000_pch_spt)
3472 		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3473 	else
3474 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3475 	hsflctl.hsf_ctrl.flcgo = 1;
3476 
3477 	if (hw->mac.type >= e1000_pch_spt)
3478 		ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
3479 	else
3480 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3481 
3482 	/* wait till FDONE bit is set to 1 */
3483 	do {
3484 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3485 		if (hsfsts.hsf_status.flcdone)
3486 			break;
3487 		udelay(1);
3488 	} while (i++ < timeout);
3489 
3490 	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3491 		return 0;
3492 
3493 	return -E1000_ERR_NVM;
3494 }
3495 
3496 /**
3497  *  e1000_read_flash_dword_ich8lan - Read dword from flash
3498  *  @hw: pointer to the HW structure
3499  *  @offset: offset to data location
3500  *  @data: pointer to the location for storing the data
3501  *
3502  *  Reads the flash dword at offset into data.  Offset is converted
3503  *  to bytes before read.
3504  **/
3505 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3506 					  u32 *data)
3507 {
3508 	/* Must convert word offset into bytes. */
3509 	offset <<= 1;
3510 	return e1000_read_flash_data32_ich8lan(hw, offset, data);
3511 }
3512 
3513 /**
3514  *  e1000_read_flash_word_ich8lan - Read word from flash
3515  *  @hw: pointer to the HW structure
3516  *  @offset: offset to data location
3517  *  @data: pointer to the location for storing the data
3518  *
3519  *  Reads the flash word at offset into data.  Offset is converted
3520  *  to bytes before read.
3521  **/
3522 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3523 					 u16 *data)
3524 {
3525 	/* Must convert offset into bytes. */
3526 	offset <<= 1;
3527 
3528 	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3529 }
3530 
3531 /**
3532  *  e1000_read_flash_byte_ich8lan - Read byte from flash
3533  *  @hw: pointer to the HW structure
3534  *  @offset: The offset of the byte to read.
3535  *  @data: Pointer to a byte to store the value read.
3536  *
3537  *  Reads a single byte from the NVM using the flash access registers.
3538  **/
3539 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3540 					 u8 *data)
3541 {
3542 	s32 ret_val;
3543 	u16 word = 0;
3544 
3545 	/* In SPT, only 32 bits access is supported,
3546 	 * so this function should not be called.
3547 	 */
3548 	if (hw->mac.type >= e1000_pch_spt)
3549 		return -E1000_ERR_NVM;
3550 	else
3551 		ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3552 
3553 	if (ret_val)
3554 		return ret_val;
3555 
3556 	*data = (u8)word;
3557 
3558 	return 0;
3559 }
3560 
3561 /**
3562  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3563  *  @hw: pointer to the HW structure
3564  *  @offset: The offset (in bytes) of the byte or word to read.
3565  *  @size: Size of data to read, 1=byte 2=word
3566  *  @data: Pointer to the word to store the value read.
3567  *
3568  *  Reads a byte or word from the NVM using the flash access registers.
3569  **/
3570 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3571 					 u8 size, u16 *data)
3572 {
3573 	union ich8_hws_flash_status hsfsts;
3574 	union ich8_hws_flash_ctrl hsflctl;
3575 	u32 flash_linear_addr;
3576 	u32 flash_data = 0;
3577 	s32 ret_val = -E1000_ERR_NVM;
3578 	u8 count = 0;
3579 
3580 	if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3581 		return -E1000_ERR_NVM;
3582 
3583 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3584 			     hw->nvm.flash_base_addr);
3585 
3586 	do {
3587 		udelay(1);
3588 		/* Steps */
3589 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3590 		if (ret_val)
3591 			break;
3592 
3593 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3594 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3595 		hsflctl.hsf_ctrl.fldbcount = size - 1;
3596 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3597 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3598 
3599 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3600 
3601 		ret_val =
3602 		    e1000_flash_cycle_ich8lan(hw,
3603 					      ICH_FLASH_READ_COMMAND_TIMEOUT);
3604 
3605 		/* Check if FCERR is set to 1, if set to 1, clear it
3606 		 * and try the whole sequence a few more times, else
3607 		 * read in (shift in) the Flash Data0, the order is
3608 		 * least significant byte first msb to lsb
3609 		 */
3610 		if (!ret_val) {
3611 			flash_data = er32flash(ICH_FLASH_FDATA0);
3612 			if (size == 1)
3613 				*data = (u8)(flash_data & 0x000000FF);
3614 			else if (size == 2)
3615 				*data = (u16)(flash_data & 0x0000FFFF);
3616 			break;
3617 		} else {
3618 			/* If we've gotten here, then things are probably
3619 			 * completely hosed, but if the error condition is
3620 			 * detected, it won't hurt to give it another try...
3621 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3622 			 */
3623 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3624 			if (hsfsts.hsf_status.flcerr) {
3625 				/* Repeat for some time before giving up. */
3626 				continue;
3627 			} else if (!hsfsts.hsf_status.flcdone) {
3628 				e_dbg("Timeout error - flash cycle did not complete.\n");
3629 				break;
3630 			}
3631 		}
3632 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3633 
3634 	return ret_val;
3635 }
3636 
3637 /**
3638  *  e1000_read_flash_data32_ich8lan - Read dword from NVM
3639  *  @hw: pointer to the HW structure
3640  *  @offset: The offset (in bytes) of the dword to read.
3641  *  @data: Pointer to the dword to store the value read.
3642  *
3643  *  Reads a byte or word from the NVM using the flash access registers.
3644  **/
3645 
3646 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3647 					   u32 *data)
3648 {
3649 	union ich8_hws_flash_status hsfsts;
3650 	union ich8_hws_flash_ctrl hsflctl;
3651 	u32 flash_linear_addr;
3652 	s32 ret_val = -E1000_ERR_NVM;
3653 	u8 count = 0;
3654 
3655 	if (offset > ICH_FLASH_LINEAR_ADDR_MASK || hw->mac.type < e1000_pch_spt)
3656 		return -E1000_ERR_NVM;
3657 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3658 			     hw->nvm.flash_base_addr);
3659 
3660 	do {
3661 		udelay(1);
3662 		/* Steps */
3663 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3664 		if (ret_val)
3665 			break;
3666 		/* In SPT, This register is in Lan memory space, not flash.
3667 		 * Therefore, only 32 bit access is supported
3668 		 */
3669 		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3670 
3671 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3672 		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3673 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3674 		/* In SPT, This register is in Lan memory space, not flash.
3675 		 * Therefore, only 32 bit access is supported
3676 		 */
3677 		ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16);
3678 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3679 
3680 		ret_val =
3681 		   e1000_flash_cycle_ich8lan(hw,
3682 					     ICH_FLASH_READ_COMMAND_TIMEOUT);
3683 
3684 		/* Check if FCERR is set to 1, if set to 1, clear it
3685 		 * and try the whole sequence a few more times, else
3686 		 * read in (shift in) the Flash Data0, the order is
3687 		 * least significant byte first msb to lsb
3688 		 */
3689 		if (!ret_val) {
3690 			*data = er32flash(ICH_FLASH_FDATA0);
3691 			break;
3692 		} else {
3693 			/* If we've gotten here, then things are probably
3694 			 * completely hosed, but if the error condition is
3695 			 * detected, it won't hurt to give it another try...
3696 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3697 			 */
3698 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3699 			if (hsfsts.hsf_status.flcerr) {
3700 				/* Repeat for some time before giving up. */
3701 				continue;
3702 			} else if (!hsfsts.hsf_status.flcdone) {
3703 				e_dbg("Timeout error - flash cycle did not complete.\n");
3704 				break;
3705 			}
3706 		}
3707 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3708 
3709 	return ret_val;
3710 }
3711 
3712 /**
3713  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
3714  *  @hw: pointer to the HW structure
3715  *  @offset: The offset (in bytes) of the word(s) to write.
3716  *  @words: Size of data to write in words
3717  *  @data: Pointer to the word(s) to write at offset.
3718  *
3719  *  Writes a byte or word to the NVM using the flash access registers.
3720  **/
3721 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3722 				   u16 *data)
3723 {
3724 	struct e1000_nvm_info *nvm = &hw->nvm;
3725 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3726 	u16 i;
3727 
3728 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3729 	    (words == 0)) {
3730 		e_dbg("nvm parameter(s) out of bounds\n");
3731 		return -E1000_ERR_NVM;
3732 	}
3733 
3734 	nvm->ops.acquire(hw);
3735 
3736 	for (i = 0; i < words; i++) {
3737 		dev_spec->shadow_ram[offset + i].modified = true;
3738 		dev_spec->shadow_ram[offset + i].value = data[i];
3739 	}
3740 
3741 	nvm->ops.release(hw);
3742 
3743 	return 0;
3744 }
3745 
3746 /**
3747  *  e1000_update_nvm_checksum_spt - Update the checksum for NVM
3748  *  @hw: pointer to the HW structure
3749  *
3750  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3751  *  which writes the checksum to the shadow ram.  The changes in the shadow
3752  *  ram are then committed to the EEPROM by processing each bank at a time
3753  *  checking for the modified bit and writing only the pending changes.
3754  *  After a successful commit, the shadow ram is cleared and is ready for
3755  *  future writes.
3756  **/
3757 static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
3758 {
3759 	struct e1000_nvm_info *nvm = &hw->nvm;
3760 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3761 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3762 	s32 ret_val;
3763 	u32 dword = 0;
3764 
3765 	ret_val = e1000e_update_nvm_checksum_generic(hw);
3766 	if (ret_val)
3767 		goto out;
3768 
3769 	if (nvm->type != e1000_nvm_flash_sw)
3770 		goto out;
3771 
3772 	nvm->ops.acquire(hw);
3773 
3774 	/* We're writing to the opposite bank so if we're on bank 1,
3775 	 * write to bank 0 etc.  We also need to erase the segment that
3776 	 * is going to be written
3777 	 */
3778 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3779 	if (ret_val) {
3780 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3781 		bank = 0;
3782 	}
3783 
3784 	if (bank == 0) {
3785 		new_bank_offset = nvm->flash_bank_size;
3786 		old_bank_offset = 0;
3787 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3788 		if (ret_val)
3789 			goto release;
3790 	} else {
3791 		old_bank_offset = nvm->flash_bank_size;
3792 		new_bank_offset = 0;
3793 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3794 		if (ret_val)
3795 			goto release;
3796 	}
3797 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) {
3798 		/* Determine whether to write the value stored
3799 		 * in the other NVM bank or a modified value stored
3800 		 * in the shadow RAM
3801 		 */
3802 		ret_val = e1000_read_flash_dword_ich8lan(hw,
3803 							 i + old_bank_offset,
3804 							 &dword);
3805 
3806 		if (dev_spec->shadow_ram[i].modified) {
3807 			dword &= 0xffff0000;
3808 			dword |= (dev_spec->shadow_ram[i].value & 0xffff);
3809 		}
3810 		if (dev_spec->shadow_ram[i + 1].modified) {
3811 			dword &= 0x0000ffff;
3812 			dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
3813 				  << 16);
3814 		}
3815 		if (ret_val)
3816 			break;
3817 
3818 		/* If the word is 0x13, then make sure the signature bits
3819 		 * (15:14) are 11b until the commit has completed.
3820 		 * This will allow us to write 10b which indicates the
3821 		 * signature is valid.  We want to do this after the write
3822 		 * has completed so that we don't mark the segment valid
3823 		 * while the write is still in progress
3824 		 */
3825 		if (i == E1000_ICH_NVM_SIG_WORD - 1)
3826 			dword |= E1000_ICH_NVM_SIG_MASK << 16;
3827 
3828 		/* Convert offset to bytes. */
3829 		act_offset = (i + new_bank_offset) << 1;
3830 
3831 		usleep_range(100, 200);
3832 
3833 		/* Write the data to the new bank. Offset in words */
3834 		act_offset = i + new_bank_offset;
3835 		ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
3836 								dword);
3837 		if (ret_val)
3838 			break;
3839 	}
3840 
3841 	/* Don't bother writing the segment valid bits if sector
3842 	 * programming failed.
3843 	 */
3844 	if (ret_val) {
3845 		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3846 		e_dbg("Flash commit failed.\n");
3847 		goto release;
3848 	}
3849 
3850 	/* Finally validate the new segment by setting bit 15:14
3851 	 * to 10b in word 0x13 , this can be done without an
3852 	 * erase as well since these bits are 11 to start with
3853 	 * and we need to change bit 14 to 0b
3854 	 */
3855 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3856 
3857 	/*offset in words but we read dword */
3858 	--act_offset;
3859 	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3860 
3861 	if (ret_val)
3862 		goto release;
3863 
3864 	dword &= 0xBFFFFFFF;
3865 	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3866 
3867 	if (ret_val)
3868 		goto release;
3869 
3870 	/* And invalidate the previously valid segment by setting
3871 	 * its signature word (0x13) high_byte to 0b. This can be
3872 	 * done without an erase because flash erase sets all bits
3873 	 * to 1's. We can write 1's to 0's without an erase
3874 	 */
3875 	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
3876 
3877 	/* offset in words but we read dword */
3878 	act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
3879 	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3880 
3881 	if (ret_val)
3882 		goto release;
3883 
3884 	dword &= 0x00FFFFFF;
3885 	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3886 
3887 	if (ret_val)
3888 		goto release;
3889 
3890 	/* Great!  Everything worked, we can now clear the cached entries. */
3891 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3892 		dev_spec->shadow_ram[i].modified = false;
3893 		dev_spec->shadow_ram[i].value = 0xFFFF;
3894 	}
3895 
3896 release:
3897 	nvm->ops.release(hw);
3898 
3899 	/* Reload the EEPROM, or else modifications will not appear
3900 	 * until after the next adapter reset.
3901 	 */
3902 	if (!ret_val) {
3903 		nvm->ops.reload(hw);
3904 		usleep_range(10000, 11000);
3905 	}
3906 
3907 out:
3908 	if (ret_val)
3909 		e_dbg("NVM update error: %d\n", ret_val);
3910 
3911 	return ret_val;
3912 }
3913 
3914 /**
3915  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3916  *  @hw: pointer to the HW structure
3917  *
3918  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3919  *  which writes the checksum to the shadow ram.  The changes in the shadow
3920  *  ram are then committed to the EEPROM by processing each bank at a time
3921  *  checking for the modified bit and writing only the pending changes.
3922  *  After a successful commit, the shadow ram is cleared and is ready for
3923  *  future writes.
3924  **/
3925 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
3926 {
3927 	struct e1000_nvm_info *nvm = &hw->nvm;
3928 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3929 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3930 	s32 ret_val;
3931 	u16 data = 0;
3932 
3933 	ret_val = e1000e_update_nvm_checksum_generic(hw);
3934 	if (ret_val)
3935 		goto out;
3936 
3937 	if (nvm->type != e1000_nvm_flash_sw)
3938 		goto out;
3939 
3940 	nvm->ops.acquire(hw);
3941 
3942 	/* We're writing to the opposite bank so if we're on bank 1,
3943 	 * write to bank 0 etc.  We also need to erase the segment that
3944 	 * is going to be written
3945 	 */
3946 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3947 	if (ret_val) {
3948 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3949 		bank = 0;
3950 	}
3951 
3952 	if (bank == 0) {
3953 		new_bank_offset = nvm->flash_bank_size;
3954 		old_bank_offset = 0;
3955 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3956 		if (ret_val)
3957 			goto release;
3958 	} else {
3959 		old_bank_offset = nvm->flash_bank_size;
3960 		new_bank_offset = 0;
3961 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3962 		if (ret_val)
3963 			goto release;
3964 	}
3965 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3966 		if (dev_spec->shadow_ram[i].modified) {
3967 			data = dev_spec->shadow_ram[i].value;
3968 		} else {
3969 			ret_val = e1000_read_flash_word_ich8lan(hw, i +
3970 								old_bank_offset,
3971 								&data);
3972 			if (ret_val)
3973 				break;
3974 		}
3975 
3976 		/* If the word is 0x13, then make sure the signature bits
3977 		 * (15:14) are 11b until the commit has completed.
3978 		 * This will allow us to write 10b which indicates the
3979 		 * signature is valid.  We want to do this after the write
3980 		 * has completed so that we don't mark the segment valid
3981 		 * while the write is still in progress
3982 		 */
3983 		if (i == E1000_ICH_NVM_SIG_WORD)
3984 			data |= E1000_ICH_NVM_SIG_MASK;
3985 
3986 		/* Convert offset to bytes. */
3987 		act_offset = (i + new_bank_offset) << 1;
3988 
3989 		usleep_range(100, 200);
3990 		/* Write the bytes to the new bank. */
3991 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3992 							       act_offset,
3993 							       (u8)data);
3994 		if (ret_val)
3995 			break;
3996 
3997 		usleep_range(100, 200);
3998 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3999 							       act_offset + 1,
4000 							       (u8)(data >> 8));
4001 		if (ret_val)
4002 			break;
4003 	}
4004 
4005 	/* Don't bother writing the segment valid bits if sector
4006 	 * programming failed.
4007 	 */
4008 	if (ret_val) {
4009 		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
4010 		e_dbg("Flash commit failed.\n");
4011 		goto release;
4012 	}
4013 
4014 	/* Finally validate the new segment by setting bit 15:14
4015 	 * to 10b in word 0x13 , this can be done without an
4016 	 * erase as well since these bits are 11 to start with
4017 	 * and we need to change bit 14 to 0b
4018 	 */
4019 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4020 	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
4021 	if (ret_val)
4022 		goto release;
4023 
4024 	data &= 0xBFFF;
4025 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4026 						       act_offset * 2 + 1,
4027 						       (u8)(data >> 8));
4028 	if (ret_val)
4029 		goto release;
4030 
4031 	/* And invalidate the previously valid segment by setting
4032 	 * its signature word (0x13) high_byte to 0b. This can be
4033 	 * done without an erase because flash erase sets all bits
4034 	 * to 1's. We can write 1's to 0's without an erase
4035 	 */
4036 	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4037 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
4038 	if (ret_val)
4039 		goto release;
4040 
4041 	/* Great!  Everything worked, we can now clear the cached entries. */
4042 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4043 		dev_spec->shadow_ram[i].modified = false;
4044 		dev_spec->shadow_ram[i].value = 0xFFFF;
4045 	}
4046 
4047 release:
4048 	nvm->ops.release(hw);
4049 
4050 	/* Reload the EEPROM, or else modifications will not appear
4051 	 * until after the next adapter reset.
4052 	 */
4053 	if (!ret_val) {
4054 		nvm->ops.reload(hw);
4055 		usleep_range(10000, 11000);
4056 	}
4057 
4058 out:
4059 	if (ret_val)
4060 		e_dbg("NVM update error: %d\n", ret_val);
4061 
4062 	return ret_val;
4063 }
4064 
4065 /**
4066  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4067  *  @hw: pointer to the HW structure
4068  *
4069  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4070  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
4071  *  calculated, in which case we need to calculate the checksum and set bit 6.
4072  **/
4073 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4074 {
4075 	s32 ret_val;
4076 	u16 data;
4077 	u16 word;
4078 	u16 valid_csum_mask;
4079 
4080 	/* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
4081 	 * the checksum needs to be fixed.  This bit is an indication that
4082 	 * the NVM was prepared by OEM software and did not calculate
4083 	 * the checksum...a likely scenario.
4084 	 */
4085 	switch (hw->mac.type) {
4086 	case e1000_pch_lpt:
4087 	case e1000_pch_spt:
4088 	case e1000_pch_cnp:
4089 	case e1000_pch_tgp:
4090 	case e1000_pch_adp:
4091 		word = NVM_COMPAT;
4092 		valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4093 		break;
4094 	default:
4095 		word = NVM_FUTURE_INIT_WORD1;
4096 		valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4097 		break;
4098 	}
4099 
4100 	ret_val = e1000_read_nvm(hw, word, 1, &data);
4101 	if (ret_val)
4102 		return ret_val;
4103 
4104 	if (!(data & valid_csum_mask)) {
4105 		data |= valid_csum_mask;
4106 		ret_val = e1000_write_nvm(hw, word, 1, &data);
4107 		if (ret_val)
4108 			return ret_val;
4109 		ret_val = e1000e_update_nvm_checksum(hw);
4110 		if (ret_val)
4111 			return ret_val;
4112 	}
4113 
4114 	return e1000e_validate_nvm_checksum_generic(hw);
4115 }
4116 
4117 /**
4118  *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
4119  *  @hw: pointer to the HW structure
4120  *
4121  *  To prevent malicious write/erase of the NVM, set it to be read-only
4122  *  so that the hardware ignores all write/erase cycles of the NVM via
4123  *  the flash control registers.  The shadow-ram copy of the NVM will
4124  *  still be updated, however any updates to this copy will not stick
4125  *  across driver reloads.
4126  **/
4127 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
4128 {
4129 	struct e1000_nvm_info *nvm = &hw->nvm;
4130 	union ich8_flash_protected_range pr0;
4131 	union ich8_hws_flash_status hsfsts;
4132 	u32 gfpreg;
4133 
4134 	nvm->ops.acquire(hw);
4135 
4136 	gfpreg = er32flash(ICH_FLASH_GFPREG);
4137 
4138 	/* Write-protect GbE Sector of NVM */
4139 	pr0.regval = er32flash(ICH_FLASH_PR0);
4140 	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
4141 	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
4142 	pr0.range.wpe = true;
4143 	ew32flash(ICH_FLASH_PR0, pr0.regval);
4144 
4145 	/* Lock down a subset of GbE Flash Control Registers, e.g.
4146 	 * PR0 to prevent the write-protection from being lifted.
4147 	 * Once FLOCKDN is set, the registers protected by it cannot
4148 	 * be written until FLOCKDN is cleared by a hardware reset.
4149 	 */
4150 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4151 	hsfsts.hsf_status.flockdn = true;
4152 	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
4153 
4154 	nvm->ops.release(hw);
4155 }
4156 
4157 /**
4158  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4159  *  @hw: pointer to the HW structure
4160  *  @offset: The offset (in bytes) of the byte/word to read.
4161  *  @size: Size of data to read, 1=byte 2=word
4162  *  @data: The byte(s) to write to the NVM.
4163  *
4164  *  Writes one/two bytes to the NVM using the flash access registers.
4165  **/
4166 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4167 					  u8 size, u16 data)
4168 {
4169 	union ich8_hws_flash_status hsfsts;
4170 	union ich8_hws_flash_ctrl hsflctl;
4171 	u32 flash_linear_addr;
4172 	u32 flash_data = 0;
4173 	s32 ret_val;
4174 	u8 count = 0;
4175 
4176 	if (hw->mac.type >= e1000_pch_spt) {
4177 		if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4178 			return -E1000_ERR_NVM;
4179 	} else {
4180 		if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4181 			return -E1000_ERR_NVM;
4182 	}
4183 
4184 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4185 			     hw->nvm.flash_base_addr);
4186 
4187 	do {
4188 		udelay(1);
4189 		/* Steps */
4190 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4191 		if (ret_val)
4192 			break;
4193 		/* In SPT, This register is in Lan memory space, not
4194 		 * flash.  Therefore, only 32 bit access is supported
4195 		 */
4196 		if (hw->mac.type >= e1000_pch_spt)
4197 			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
4198 		else
4199 			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4200 
4201 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4202 		hsflctl.hsf_ctrl.fldbcount = size - 1;
4203 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4204 		/* In SPT, This register is in Lan memory space,
4205 		 * not flash.  Therefore, only 32 bit access is
4206 		 * supported
4207 		 */
4208 		if (hw->mac.type >= e1000_pch_spt)
4209 			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4210 		else
4211 			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4212 
4213 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4214 
4215 		if (size == 1)
4216 			flash_data = (u32)data & 0x00FF;
4217 		else
4218 			flash_data = (u32)data;
4219 
4220 		ew32flash(ICH_FLASH_FDATA0, flash_data);
4221 
4222 		/* check if FCERR is set to 1 , if set to 1, clear it
4223 		 * and try the whole sequence a few more times else done
4224 		 */
4225 		ret_val =
4226 		    e1000_flash_cycle_ich8lan(hw,
4227 					      ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4228 		if (!ret_val)
4229 			break;
4230 
4231 		/* If we're here, then things are most likely
4232 		 * completely hosed, but if the error condition
4233 		 * is detected, it won't hurt to give it another
4234 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4235 		 */
4236 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4237 		if (hsfsts.hsf_status.flcerr)
4238 			/* Repeat for some time before giving up. */
4239 			continue;
4240 		if (!hsfsts.hsf_status.flcdone) {
4241 			e_dbg("Timeout error - flash cycle did not complete.\n");
4242 			break;
4243 		}
4244 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4245 
4246 	return ret_val;
4247 }
4248 
4249 /**
4250 *  e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4251 *  @hw: pointer to the HW structure
4252 *  @offset: The offset (in bytes) of the dwords to read.
4253 *  @data: The 4 bytes to write to the NVM.
4254 *
4255 *  Writes one/two/four bytes to the NVM using the flash access registers.
4256 **/
4257 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4258 					    u32 data)
4259 {
4260 	union ich8_hws_flash_status hsfsts;
4261 	union ich8_hws_flash_ctrl hsflctl;
4262 	u32 flash_linear_addr;
4263 	s32 ret_val;
4264 	u8 count = 0;
4265 
4266 	if (hw->mac.type >= e1000_pch_spt) {
4267 		if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4268 			return -E1000_ERR_NVM;
4269 	}
4270 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4271 			     hw->nvm.flash_base_addr);
4272 	do {
4273 		udelay(1);
4274 		/* Steps */
4275 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4276 		if (ret_val)
4277 			break;
4278 
4279 		/* In SPT, This register is in Lan memory space, not
4280 		 * flash.  Therefore, only 32 bit access is supported
4281 		 */
4282 		if (hw->mac.type >= e1000_pch_spt)
4283 			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS)
4284 			    >> 16;
4285 		else
4286 			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4287 
4288 		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4289 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4290 
4291 		/* In SPT, This register is in Lan memory space,
4292 		 * not flash.  Therefore, only 32 bit access is
4293 		 * supported
4294 		 */
4295 		if (hw->mac.type >= e1000_pch_spt)
4296 			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4297 		else
4298 			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4299 
4300 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4301 
4302 		ew32flash(ICH_FLASH_FDATA0, data);
4303 
4304 		/* check if FCERR is set to 1 , if set to 1, clear it
4305 		 * and try the whole sequence a few more times else done
4306 		 */
4307 		ret_val =
4308 		   e1000_flash_cycle_ich8lan(hw,
4309 					     ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4310 
4311 		if (!ret_val)
4312 			break;
4313 
4314 		/* If we're here, then things are most likely
4315 		 * completely hosed, but if the error condition
4316 		 * is detected, it won't hurt to give it another
4317 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4318 		 */
4319 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4320 
4321 		if (hsfsts.hsf_status.flcerr)
4322 			/* Repeat for some time before giving up. */
4323 			continue;
4324 		if (!hsfsts.hsf_status.flcdone) {
4325 			e_dbg("Timeout error - flash cycle did not complete.\n");
4326 			break;
4327 		}
4328 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4329 
4330 	return ret_val;
4331 }
4332 
4333 /**
4334  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4335  *  @hw: pointer to the HW structure
4336  *  @offset: The index of the byte to read.
4337  *  @data: The byte to write to the NVM.
4338  *
4339  *  Writes a single byte to the NVM using the flash access registers.
4340  **/
4341 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4342 					  u8 data)
4343 {
4344 	u16 word = (u16)data;
4345 
4346 	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4347 }
4348 
4349 /**
4350 *  e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4351 *  @hw: pointer to the HW structure
4352 *  @offset: The offset of the word to write.
4353 *  @dword: The dword to write to the NVM.
4354 *
4355 *  Writes a single dword to the NVM using the flash access registers.
4356 *  Goes through a retry algorithm before giving up.
4357 **/
4358 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4359 						 u32 offset, u32 dword)
4360 {
4361 	s32 ret_val;
4362 	u16 program_retries;
4363 
4364 	/* Must convert word offset into bytes. */
4365 	offset <<= 1;
4366 	ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4367 
4368 	if (!ret_val)
4369 		return ret_val;
4370 	for (program_retries = 0; program_retries < 100; program_retries++) {
4371 		e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset);
4372 		usleep_range(100, 200);
4373 		ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4374 		if (!ret_val)
4375 			break;
4376 	}
4377 	if (program_retries == 100)
4378 		return -E1000_ERR_NVM;
4379 
4380 	return 0;
4381 }
4382 
4383 /**
4384  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4385  *  @hw: pointer to the HW structure
4386  *  @offset: The offset of the byte to write.
4387  *  @byte: The byte to write to the NVM.
4388  *
4389  *  Writes a single byte to the NVM using the flash access registers.
4390  *  Goes through a retry algorithm before giving up.
4391  **/
4392 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4393 						u32 offset, u8 byte)
4394 {
4395 	s32 ret_val;
4396 	u16 program_retries;
4397 
4398 	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4399 	if (!ret_val)
4400 		return ret_val;
4401 
4402 	for (program_retries = 0; program_retries < 100; program_retries++) {
4403 		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
4404 		usleep_range(100, 200);
4405 		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4406 		if (!ret_val)
4407 			break;
4408 	}
4409 	if (program_retries == 100)
4410 		return -E1000_ERR_NVM;
4411 
4412 	return 0;
4413 }
4414 
4415 /**
4416  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4417  *  @hw: pointer to the HW structure
4418  *  @bank: 0 for first bank, 1 for second bank, etc.
4419  *
4420  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4421  *  bank N is 4096 * N + flash_reg_addr.
4422  **/
4423 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4424 {
4425 	struct e1000_nvm_info *nvm = &hw->nvm;
4426 	union ich8_hws_flash_status hsfsts;
4427 	union ich8_hws_flash_ctrl hsflctl;
4428 	u32 flash_linear_addr;
4429 	/* bank size is in 16bit words - adjust to bytes */
4430 	u32 flash_bank_size = nvm->flash_bank_size * 2;
4431 	s32 ret_val;
4432 	s32 count = 0;
4433 	s32 j, iteration, sector_size;
4434 
4435 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4436 
4437 	/* Determine HW Sector size: Read BERASE bits of hw flash status
4438 	 * register
4439 	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
4440 	 *     consecutive sectors.  The start index for the nth Hw sector
4441 	 *     can be calculated as = bank * 4096 + n * 256
4442 	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4443 	 *     The start index for the nth Hw sector can be calculated
4444 	 *     as = bank * 4096
4445 	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4446 	 *     (ich9 only, otherwise error condition)
4447 	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4448 	 */
4449 	switch (hsfsts.hsf_status.berasesz) {
4450 	case 0:
4451 		/* Hw sector size 256 */
4452 		sector_size = ICH_FLASH_SEG_SIZE_256;
4453 		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4454 		break;
4455 	case 1:
4456 		sector_size = ICH_FLASH_SEG_SIZE_4K;
4457 		iteration = 1;
4458 		break;
4459 	case 2:
4460 		sector_size = ICH_FLASH_SEG_SIZE_8K;
4461 		iteration = 1;
4462 		break;
4463 	case 3:
4464 		sector_size = ICH_FLASH_SEG_SIZE_64K;
4465 		iteration = 1;
4466 		break;
4467 	default:
4468 		return -E1000_ERR_NVM;
4469 	}
4470 
4471 	/* Start with the base address, then add the sector offset. */
4472 	flash_linear_addr = hw->nvm.flash_base_addr;
4473 	flash_linear_addr += (bank) ? flash_bank_size : 0;
4474 
4475 	for (j = 0; j < iteration; j++) {
4476 		do {
4477 			u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4478 
4479 			/* Steps */
4480 			ret_val = e1000_flash_cycle_init_ich8lan(hw);
4481 			if (ret_val)
4482 				return ret_val;
4483 
4484 			/* Write a value 11 (block Erase) in Flash
4485 			 * Cycle field in hw flash control
4486 			 */
4487 			if (hw->mac.type >= e1000_pch_spt)
4488 				hsflctl.regval =
4489 				    er32flash(ICH_FLASH_HSFSTS) >> 16;
4490 			else
4491 				hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4492 
4493 			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4494 			if (hw->mac.type >= e1000_pch_spt)
4495 				ew32flash(ICH_FLASH_HSFSTS,
4496 					  hsflctl.regval << 16);
4497 			else
4498 				ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4499 
4500 			/* Write the last 24 bits of an index within the
4501 			 * block into Flash Linear address field in Flash
4502 			 * Address.
4503 			 */
4504 			flash_linear_addr += (j * sector_size);
4505 			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4506 
4507 			ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4508 			if (!ret_val)
4509 				break;
4510 
4511 			/* Check if FCERR is set to 1.  If 1,
4512 			 * clear it and try the whole sequence
4513 			 * a few more times else Done
4514 			 */
4515 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4516 			if (hsfsts.hsf_status.flcerr)
4517 				/* repeat for some time before giving up */
4518 				continue;
4519 			else if (!hsfsts.hsf_status.flcdone)
4520 				return ret_val;
4521 		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4522 	}
4523 
4524 	return 0;
4525 }
4526 
4527 /**
4528  *  e1000_valid_led_default_ich8lan - Set the default LED settings
4529  *  @hw: pointer to the HW structure
4530  *  @data: Pointer to the LED settings
4531  *
4532  *  Reads the LED default settings from the NVM to data.  If the NVM LED
4533  *  settings is all 0's or F's, set the LED default to a valid LED default
4534  *  setting.
4535  **/
4536 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4537 {
4538 	s32 ret_val;
4539 
4540 	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
4541 	if (ret_val) {
4542 		e_dbg("NVM Read Error\n");
4543 		return ret_val;
4544 	}
4545 
4546 	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4547 		*data = ID_LED_DEFAULT_ICH8LAN;
4548 
4549 	return 0;
4550 }
4551 
4552 /**
4553  *  e1000_id_led_init_pchlan - store LED configurations
4554  *  @hw: pointer to the HW structure
4555  *
4556  *  PCH does not control LEDs via the LEDCTL register, rather it uses
4557  *  the PHY LED configuration register.
4558  *
4559  *  PCH also does not have an "always on" or "always off" mode which
4560  *  complicates the ID feature.  Instead of using the "on" mode to indicate
4561  *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
4562  *  use "link_up" mode.  The LEDs will still ID on request if there is no
4563  *  link based on logic in e1000_led_[on|off]_pchlan().
4564  **/
4565 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4566 {
4567 	struct e1000_mac_info *mac = &hw->mac;
4568 	s32 ret_val;
4569 	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4570 	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4571 	u16 data, i, temp, shift;
4572 
4573 	/* Get default ID LED modes */
4574 	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4575 	if (ret_val)
4576 		return ret_val;
4577 
4578 	mac->ledctl_default = er32(LEDCTL);
4579 	mac->ledctl_mode1 = mac->ledctl_default;
4580 	mac->ledctl_mode2 = mac->ledctl_default;
4581 
4582 	for (i = 0; i < 4; i++) {
4583 		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4584 		shift = (i * 5);
4585 		switch (temp) {
4586 		case ID_LED_ON1_DEF2:
4587 		case ID_LED_ON1_ON2:
4588 		case ID_LED_ON1_OFF2:
4589 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4590 			mac->ledctl_mode1 |= (ledctl_on << shift);
4591 			break;
4592 		case ID_LED_OFF1_DEF2:
4593 		case ID_LED_OFF1_ON2:
4594 		case ID_LED_OFF1_OFF2:
4595 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4596 			mac->ledctl_mode1 |= (ledctl_off << shift);
4597 			break;
4598 		default:
4599 			/* Do nothing */
4600 			break;
4601 		}
4602 		switch (temp) {
4603 		case ID_LED_DEF1_ON2:
4604 		case ID_LED_ON1_ON2:
4605 		case ID_LED_OFF1_ON2:
4606 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4607 			mac->ledctl_mode2 |= (ledctl_on << shift);
4608 			break;
4609 		case ID_LED_DEF1_OFF2:
4610 		case ID_LED_ON1_OFF2:
4611 		case ID_LED_OFF1_OFF2:
4612 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4613 			mac->ledctl_mode2 |= (ledctl_off << shift);
4614 			break;
4615 		default:
4616 			/* Do nothing */
4617 			break;
4618 		}
4619 	}
4620 
4621 	return 0;
4622 }
4623 
4624 /**
4625  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4626  *  @hw: pointer to the HW structure
4627  *
4628  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4629  *  register, so the the bus width is hard coded.
4630  **/
4631 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4632 {
4633 	struct e1000_bus_info *bus = &hw->bus;
4634 	s32 ret_val;
4635 
4636 	ret_val = e1000e_get_bus_info_pcie(hw);
4637 
4638 	/* ICH devices are "PCI Express"-ish.  They have
4639 	 * a configuration space, but do not contain
4640 	 * PCI Express Capability registers, so bus width
4641 	 * must be hardcoded.
4642 	 */
4643 	if (bus->width == e1000_bus_width_unknown)
4644 		bus->width = e1000_bus_width_pcie_x1;
4645 
4646 	return ret_val;
4647 }
4648 
4649 /**
4650  *  e1000_reset_hw_ich8lan - Reset the hardware
4651  *  @hw: pointer to the HW structure
4652  *
4653  *  Does a full reset of the hardware which includes a reset of the PHY and
4654  *  MAC.
4655  **/
4656 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4657 {
4658 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4659 	u16 kum_cfg;
4660 	u32 ctrl, reg;
4661 	s32 ret_val;
4662 
4663 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
4664 	 * on the last TLP read/write transaction when MAC is reset.
4665 	 */
4666 	ret_val = e1000e_disable_pcie_master(hw);
4667 	if (ret_val)
4668 		e_dbg("PCI-E Master disable polling has failed.\n");
4669 
4670 	e_dbg("Masking off all interrupts\n");
4671 	ew32(IMC, 0xffffffff);
4672 
4673 	/* Disable the Transmit and Receive units.  Then delay to allow
4674 	 * any pending transactions to complete before we hit the MAC
4675 	 * with the global reset.
4676 	 */
4677 	ew32(RCTL, 0);
4678 	ew32(TCTL, E1000_TCTL_PSP);
4679 	e1e_flush();
4680 
4681 	usleep_range(10000, 11000);
4682 
4683 	/* Workaround for ICH8 bit corruption issue in FIFO memory */
4684 	if (hw->mac.type == e1000_ich8lan) {
4685 		/* Set Tx and Rx buffer allocation to 8k apiece. */
4686 		ew32(PBA, E1000_PBA_8K);
4687 		/* Set Packet Buffer Size to 16k. */
4688 		ew32(PBS, E1000_PBS_16K);
4689 	}
4690 
4691 	if (hw->mac.type == e1000_pchlan) {
4692 		/* Save the NVM K1 bit setting */
4693 		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4694 		if (ret_val)
4695 			return ret_val;
4696 
4697 		if (kum_cfg & E1000_NVM_K1_ENABLE)
4698 			dev_spec->nvm_k1_enabled = true;
4699 		else
4700 			dev_spec->nvm_k1_enabled = false;
4701 	}
4702 
4703 	ctrl = er32(CTRL);
4704 
4705 	if (!hw->phy.ops.check_reset_block(hw)) {
4706 		/* Full-chip reset requires MAC and PHY reset at the same
4707 		 * time to make sure the interface between MAC and the
4708 		 * external PHY is reset.
4709 		 */
4710 		ctrl |= E1000_CTRL_PHY_RST;
4711 
4712 		/* Gate automatic PHY configuration by hardware on
4713 		 * non-managed 82579
4714 		 */
4715 		if ((hw->mac.type == e1000_pch2lan) &&
4716 		    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
4717 			e1000_gate_hw_phy_config_ich8lan(hw, true);
4718 	}
4719 	ret_val = e1000_acquire_swflag_ich8lan(hw);
4720 	e_dbg("Issuing a global reset to ich8lan\n");
4721 	ew32(CTRL, (ctrl | E1000_CTRL_RST));
4722 	/* cannot issue a flush here because it hangs the hardware */
4723 	msleep(20);
4724 
4725 	/* Set Phy Config Counter to 50msec */
4726 	if (hw->mac.type == e1000_pch2lan) {
4727 		reg = er32(FEXTNVM3);
4728 		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4729 		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4730 		ew32(FEXTNVM3, reg);
4731 	}
4732 
4733 	if (!ret_val)
4734 		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
4735 
4736 	if (ctrl & E1000_CTRL_PHY_RST) {
4737 		ret_val = hw->phy.ops.get_cfg_done(hw);
4738 		if (ret_val)
4739 			return ret_val;
4740 
4741 		ret_val = e1000_post_phy_reset_ich8lan(hw);
4742 		if (ret_val)
4743 			return ret_val;
4744 	}
4745 
4746 	/* For PCH, this write will make sure that any noise
4747 	 * will be detected as a CRC error and be dropped rather than show up
4748 	 * as a bad packet to the DMA engine.
4749 	 */
4750 	if (hw->mac.type == e1000_pchlan)
4751 		ew32(CRC_OFFSET, 0x65656565);
4752 
4753 	ew32(IMC, 0xffffffff);
4754 	er32(ICR);
4755 
4756 	reg = er32(KABGTXD);
4757 	reg |= E1000_KABGTXD_BGSQLBIAS;
4758 	ew32(KABGTXD, reg);
4759 
4760 	return 0;
4761 }
4762 
4763 /**
4764  *  e1000_init_hw_ich8lan - Initialize the hardware
4765  *  @hw: pointer to the HW structure
4766  *
4767  *  Prepares the hardware for transmit and receive by doing the following:
4768  *   - initialize hardware bits
4769  *   - initialize LED identification
4770  *   - setup receive address registers
4771  *   - setup flow control
4772  *   - setup transmit descriptors
4773  *   - clear statistics
4774  **/
4775 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4776 {
4777 	struct e1000_mac_info *mac = &hw->mac;
4778 	u32 ctrl_ext, txdctl, snoop;
4779 	s32 ret_val;
4780 	u16 i;
4781 
4782 	e1000_initialize_hw_bits_ich8lan(hw);
4783 
4784 	/* Initialize identification LED */
4785 	ret_val = mac->ops.id_led_init(hw);
4786 	/* An error is not fatal and we should not stop init due to this */
4787 	if (ret_val)
4788 		e_dbg("Error initializing identification LED\n");
4789 
4790 	/* Setup the receive address. */
4791 	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
4792 
4793 	/* Zero out the Multicast HASH table */
4794 	e_dbg("Zeroing the MTA\n");
4795 	for (i = 0; i < mac->mta_reg_count; i++)
4796 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4797 
4798 	/* The 82578 Rx buffer will stall if wakeup is enabled in host and
4799 	 * the ME.  Disable wakeup by clearing the host wakeup bit.
4800 	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
4801 	 */
4802 	if (hw->phy.type == e1000_phy_82578) {
4803 		e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4804 		i &= ~BM_WUC_HOST_WU_BIT;
4805 		e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4806 		ret_val = e1000_phy_hw_reset_ich8lan(hw);
4807 		if (ret_val)
4808 			return ret_val;
4809 	}
4810 
4811 	/* Setup link and flow control */
4812 	ret_val = mac->ops.setup_link(hw);
4813 
4814 	/* Set the transmit descriptor write-back policy for both queues */
4815 	txdctl = er32(TXDCTL(0));
4816 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4817 		  E1000_TXDCTL_FULL_TX_DESC_WB);
4818 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4819 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4820 	ew32(TXDCTL(0), txdctl);
4821 	txdctl = er32(TXDCTL(1));
4822 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4823 		  E1000_TXDCTL_FULL_TX_DESC_WB);
4824 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4825 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4826 	ew32(TXDCTL(1), txdctl);
4827 
4828 	/* ICH8 has opposite polarity of no_snoop bits.
4829 	 * By default, we should use snoop behavior.
4830 	 */
4831 	if (mac->type == e1000_ich8lan)
4832 		snoop = PCIE_ICH8_SNOOP_ALL;
4833 	else
4834 		snoop = (u32)~(PCIE_NO_SNOOP_ALL);
4835 	e1000e_set_pcie_no_snoop(hw, snoop);
4836 
4837 	ctrl_ext = er32(CTRL_EXT);
4838 	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4839 	ew32(CTRL_EXT, ctrl_ext);
4840 
4841 	/* Clear all of the statistics registers (clear on read).  It is
4842 	 * important that we do this after we have tried to establish link
4843 	 * because the symbol error count will increment wildly if there
4844 	 * is no link.
4845 	 */
4846 	e1000_clear_hw_cntrs_ich8lan(hw);
4847 
4848 	return ret_val;
4849 }
4850 
4851 /**
4852  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4853  *  @hw: pointer to the HW structure
4854  *
4855  *  Sets/Clears required hardware bits necessary for correctly setting up the
4856  *  hardware for transmit and receive.
4857  **/
4858 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4859 {
4860 	u32 reg;
4861 
4862 	/* Extended Device Control */
4863 	reg = er32(CTRL_EXT);
4864 	reg |= BIT(22);
4865 	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
4866 	if (hw->mac.type >= e1000_pchlan)
4867 		reg |= E1000_CTRL_EXT_PHYPDEN;
4868 	ew32(CTRL_EXT, reg);
4869 
4870 	/* Transmit Descriptor Control 0 */
4871 	reg = er32(TXDCTL(0));
4872 	reg |= BIT(22);
4873 	ew32(TXDCTL(0), reg);
4874 
4875 	/* Transmit Descriptor Control 1 */
4876 	reg = er32(TXDCTL(1));
4877 	reg |= BIT(22);
4878 	ew32(TXDCTL(1), reg);
4879 
4880 	/* Transmit Arbitration Control 0 */
4881 	reg = er32(TARC(0));
4882 	if (hw->mac.type == e1000_ich8lan)
4883 		reg |= BIT(28) | BIT(29);
4884 	reg |= BIT(23) | BIT(24) | BIT(26) | BIT(27);
4885 	ew32(TARC(0), reg);
4886 
4887 	/* Transmit Arbitration Control 1 */
4888 	reg = er32(TARC(1));
4889 	if (er32(TCTL) & E1000_TCTL_MULR)
4890 		reg &= ~BIT(28);
4891 	else
4892 		reg |= BIT(28);
4893 	reg |= BIT(24) | BIT(26) | BIT(30);
4894 	ew32(TARC(1), reg);
4895 
4896 	/* Device Status */
4897 	if (hw->mac.type == e1000_ich8lan) {
4898 		reg = er32(STATUS);
4899 		reg &= ~BIT(31);
4900 		ew32(STATUS, reg);
4901 	}
4902 
4903 	/* work-around descriptor data corruption issue during nfs v2 udp
4904 	 * traffic, just disable the nfs filtering capability
4905 	 */
4906 	reg = er32(RFCTL);
4907 	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
4908 
4909 	/* Disable IPv6 extension header parsing because some malformed
4910 	 * IPv6 headers can hang the Rx.
4911 	 */
4912 	if (hw->mac.type == e1000_ich8lan)
4913 		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
4914 	ew32(RFCTL, reg);
4915 
4916 	/* Enable ECC on Lynxpoint */
4917 	if (hw->mac.type >= e1000_pch_lpt) {
4918 		reg = er32(PBECCSTS);
4919 		reg |= E1000_PBECCSTS_ECC_ENABLE;
4920 		ew32(PBECCSTS, reg);
4921 
4922 		reg = er32(CTRL);
4923 		reg |= E1000_CTRL_MEHE;
4924 		ew32(CTRL, reg);
4925 	}
4926 }
4927 
4928 /**
4929  *  e1000_setup_link_ich8lan - Setup flow control and link settings
4930  *  @hw: pointer to the HW structure
4931  *
4932  *  Determines which flow control settings to use, then configures flow
4933  *  control.  Calls the appropriate media-specific link configuration
4934  *  function.  Assuming the adapter has a valid link partner, a valid link
4935  *  should be established.  Assumes the hardware has previously been reset
4936  *  and the transmitter and receiver are not enabled.
4937  **/
4938 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
4939 {
4940 	s32 ret_val;
4941 
4942 	if (hw->phy.ops.check_reset_block(hw))
4943 		return 0;
4944 
4945 	/* ICH parts do not have a word in the NVM to determine
4946 	 * the default flow control setting, so we explicitly
4947 	 * set it to full.
4948 	 */
4949 	if (hw->fc.requested_mode == e1000_fc_default) {
4950 		/* Workaround h/w hang when Tx flow control enabled */
4951 		if (hw->mac.type == e1000_pchlan)
4952 			hw->fc.requested_mode = e1000_fc_rx_pause;
4953 		else
4954 			hw->fc.requested_mode = e1000_fc_full;
4955 	}
4956 
4957 	/* Save off the requested flow control mode for use later.  Depending
4958 	 * on the link partner's capabilities, we may or may not use this mode.
4959 	 */
4960 	hw->fc.current_mode = hw->fc.requested_mode;
4961 
4962 	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
4963 
4964 	/* Continue to configure the copper link. */
4965 	ret_val = hw->mac.ops.setup_physical_interface(hw);
4966 	if (ret_val)
4967 		return ret_val;
4968 
4969 	ew32(FCTTV, hw->fc.pause_time);
4970 	if ((hw->phy.type == e1000_phy_82578) ||
4971 	    (hw->phy.type == e1000_phy_82579) ||
4972 	    (hw->phy.type == e1000_phy_i217) ||
4973 	    (hw->phy.type == e1000_phy_82577)) {
4974 		ew32(FCRTV_PCH, hw->fc.refresh_time);
4975 
4976 		ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
4977 				   hw->fc.pause_time);
4978 		if (ret_val)
4979 			return ret_val;
4980 	}
4981 
4982 	return e1000e_set_fc_watermarks(hw);
4983 }
4984 
4985 /**
4986  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
4987  *  @hw: pointer to the HW structure
4988  *
4989  *  Configures the kumeran interface to the PHY to wait the appropriate time
4990  *  when polling the PHY, then call the generic setup_copper_link to finish
4991  *  configuring the copper link.
4992  **/
4993 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
4994 {
4995 	u32 ctrl;
4996 	s32 ret_val;
4997 	u16 reg_data;
4998 
4999 	ctrl = er32(CTRL);
5000 	ctrl |= E1000_CTRL_SLU;
5001 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5002 	ew32(CTRL, ctrl);
5003 
5004 	/* Set the mac to wait the maximum time between each iteration
5005 	 * and increase the max iterations when polling the phy;
5006 	 * this fixes erroneous timeouts at 10Mbps.
5007 	 */
5008 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
5009 	if (ret_val)
5010 		return ret_val;
5011 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5012 				       &reg_data);
5013 	if (ret_val)
5014 		return ret_val;
5015 	reg_data |= 0x3F;
5016 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5017 					reg_data);
5018 	if (ret_val)
5019 		return ret_val;
5020 
5021 	switch (hw->phy.type) {
5022 	case e1000_phy_igp_3:
5023 		ret_val = e1000e_copper_link_setup_igp(hw);
5024 		if (ret_val)
5025 			return ret_val;
5026 		break;
5027 	case e1000_phy_bm:
5028 	case e1000_phy_82578:
5029 		ret_val = e1000e_copper_link_setup_m88(hw);
5030 		if (ret_val)
5031 			return ret_val;
5032 		break;
5033 	case e1000_phy_82577:
5034 	case e1000_phy_82579:
5035 		ret_val = e1000_copper_link_setup_82577(hw);
5036 		if (ret_val)
5037 			return ret_val;
5038 		break;
5039 	case e1000_phy_ife:
5040 		ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
5041 		if (ret_val)
5042 			return ret_val;
5043 
5044 		reg_data &= ~IFE_PMC_AUTO_MDIX;
5045 
5046 		switch (hw->phy.mdix) {
5047 		case 1:
5048 			reg_data &= ~IFE_PMC_FORCE_MDIX;
5049 			break;
5050 		case 2:
5051 			reg_data |= IFE_PMC_FORCE_MDIX;
5052 			break;
5053 		case 0:
5054 		default:
5055 			reg_data |= IFE_PMC_AUTO_MDIX;
5056 			break;
5057 		}
5058 		ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
5059 		if (ret_val)
5060 			return ret_val;
5061 		break;
5062 	default:
5063 		break;
5064 	}
5065 
5066 	return e1000e_setup_copper_link(hw);
5067 }
5068 
5069 /**
5070  *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5071  *  @hw: pointer to the HW structure
5072  *
5073  *  Calls the PHY specific link setup function and then calls the
5074  *  generic setup_copper_link to finish configuring the link for
5075  *  Lynxpoint PCH devices
5076  **/
5077 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5078 {
5079 	u32 ctrl;
5080 	s32 ret_val;
5081 
5082 	ctrl = er32(CTRL);
5083 	ctrl |= E1000_CTRL_SLU;
5084 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5085 	ew32(CTRL, ctrl);
5086 
5087 	ret_val = e1000_copper_link_setup_82577(hw);
5088 	if (ret_val)
5089 		return ret_val;
5090 
5091 	return e1000e_setup_copper_link(hw);
5092 }
5093 
5094 /**
5095  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5096  *  @hw: pointer to the HW structure
5097  *  @speed: pointer to store current link speed
5098  *  @duplex: pointer to store the current link duplex
5099  *
5100  *  Calls the generic get_speed_and_duplex to retrieve the current link
5101  *  information and then calls the Kumeran lock loss workaround for links at
5102  *  gigabit speeds.
5103  **/
5104 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5105 					  u16 *duplex)
5106 {
5107 	s32 ret_val;
5108 
5109 	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
5110 	if (ret_val)
5111 		return ret_val;
5112 
5113 	if ((hw->mac.type == e1000_ich8lan) &&
5114 	    (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
5115 		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5116 	}
5117 
5118 	return ret_val;
5119 }
5120 
5121 /**
5122  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5123  *  @hw: pointer to the HW structure
5124  *
5125  *  Work-around for 82566 Kumeran PCS lock loss:
5126  *  On link status change (i.e. PCI reset, speed change) and link is up and
5127  *  speed is gigabit-
5128  *    0) if workaround is optionally disabled do nothing
5129  *    1) wait 1ms for Kumeran link to come up
5130  *    2) check Kumeran Diagnostic register PCS lock loss bit
5131  *    3) if not set the link is locked (all is good), otherwise...
5132  *    4) reset the PHY
5133  *    5) repeat up to 10 times
5134  *  Note: this is only called for IGP3 copper when speed is 1gb.
5135  **/
5136 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5137 {
5138 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5139 	u32 phy_ctrl;
5140 	s32 ret_val;
5141 	u16 i, data;
5142 	bool link;
5143 
5144 	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5145 		return 0;
5146 
5147 	/* Make sure link is up before proceeding.  If not just return.
5148 	 * Attempting this while link is negotiating fouled up link
5149 	 * stability
5150 	 */
5151 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
5152 	if (!link)
5153 		return 0;
5154 
5155 	for (i = 0; i < 10; i++) {
5156 		/* read once to clear */
5157 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5158 		if (ret_val)
5159 			return ret_val;
5160 		/* and again to get new status */
5161 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5162 		if (ret_val)
5163 			return ret_val;
5164 
5165 		/* check for PCS lock */
5166 		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5167 			return 0;
5168 
5169 		/* Issue PHY reset */
5170 		e1000_phy_hw_reset(hw);
5171 		mdelay(5);
5172 	}
5173 	/* Disable GigE link negotiation */
5174 	phy_ctrl = er32(PHY_CTRL);
5175 	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5176 		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5177 	ew32(PHY_CTRL, phy_ctrl);
5178 
5179 	/* Call gig speed drop workaround on Gig disable before accessing
5180 	 * any PHY registers
5181 	 */
5182 	e1000e_gig_downshift_workaround_ich8lan(hw);
5183 
5184 	/* unable to acquire PCS lock */
5185 	return -E1000_ERR_PHY;
5186 }
5187 
5188 /**
5189  *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5190  *  @hw: pointer to the HW structure
5191  *  @state: boolean value used to set the current Kumeran workaround state
5192  *
5193  *  If ICH8, set the current Kumeran workaround state (enabled - true
5194  *  /disabled - false).
5195  **/
5196 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5197 						  bool state)
5198 {
5199 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5200 
5201 	if (hw->mac.type != e1000_ich8lan) {
5202 		e_dbg("Workaround applies to ICH8 only.\n");
5203 		return;
5204 	}
5205 
5206 	dev_spec->kmrn_lock_loss_workaround_enabled = state;
5207 }
5208 
5209 /**
5210  *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5211  *  @hw: pointer to the HW structure
5212  *
5213  *  Workaround for 82566 power-down on D3 entry:
5214  *    1) disable gigabit link
5215  *    2) write VR power-down enable
5216  *    3) read it back
5217  *  Continue if successful, else issue LCD reset and repeat
5218  **/
5219 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5220 {
5221 	u32 reg;
5222 	u16 data;
5223 	u8 retry = 0;
5224 
5225 	if (hw->phy.type != e1000_phy_igp_3)
5226 		return;
5227 
5228 	/* Try the workaround twice (if needed) */
5229 	do {
5230 		/* Disable link */
5231 		reg = er32(PHY_CTRL);
5232 		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5233 			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5234 		ew32(PHY_CTRL, reg);
5235 
5236 		/* Call gig speed drop workaround on Gig disable before
5237 		 * accessing any PHY registers
5238 		 */
5239 		if (hw->mac.type == e1000_ich8lan)
5240 			e1000e_gig_downshift_workaround_ich8lan(hw);
5241 
5242 		/* Write VR power-down enable */
5243 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5244 		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5245 		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5246 
5247 		/* Read it back and test */
5248 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5249 		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5250 		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5251 			break;
5252 
5253 		/* Issue PHY reset and repeat at most one more time */
5254 		reg = er32(CTRL);
5255 		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
5256 		retry++;
5257 	} while (retry);
5258 }
5259 
5260 /**
5261  *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5262  *  @hw: pointer to the HW structure
5263  *
5264  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5265  *  LPLU, Gig disable, MDIC PHY reset):
5266  *    1) Set Kumeran Near-end loopback
5267  *    2) Clear Kumeran Near-end loopback
5268  *  Should only be called for ICH8[m] devices with any 1G Phy.
5269  **/
5270 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5271 {
5272 	s32 ret_val;
5273 	u16 reg_data;
5274 
5275 	if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
5276 		return;
5277 
5278 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5279 				       &reg_data);
5280 	if (ret_val)
5281 		return;
5282 	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5283 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5284 					reg_data);
5285 	if (ret_val)
5286 		return;
5287 	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5288 	e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
5289 }
5290 
5291 /**
5292  *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5293  *  @hw: pointer to the HW structure
5294  *
5295  *  During S0 to Sx transition, it is possible the link remains at gig
5296  *  instead of negotiating to a lower speed.  Before going to Sx, set
5297  *  'Gig Disable' to force link speed negotiation to a lower speed based on
5298  *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
5299  *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5300  *  needs to be written.
5301  *  Parts that support (and are linked to a partner which support) EEE in
5302  *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5303  *  than 10Mbps w/o EEE.
5304  **/
5305 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5306 {
5307 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5308 	u32 phy_ctrl;
5309 	s32 ret_val;
5310 
5311 	phy_ctrl = er32(PHY_CTRL);
5312 	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5313 
5314 	if (hw->phy.type == e1000_phy_i217) {
5315 		u16 phy_reg, device_id = hw->adapter->pdev->device;
5316 
5317 		if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5318 		    (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5319 		    (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5320 		    (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5321 		    (hw->mac.type >= e1000_pch_spt)) {
5322 			u32 fextnvm6 = er32(FEXTNVM6);
5323 
5324 			ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5325 		}
5326 
5327 		ret_val = hw->phy.ops.acquire(hw);
5328 		if (ret_val)
5329 			goto out;
5330 
5331 		if (!dev_spec->eee_disable) {
5332 			u16 eee_advert;
5333 
5334 			ret_val =
5335 			    e1000_read_emi_reg_locked(hw,
5336 						      I217_EEE_ADVERTISEMENT,
5337 						      &eee_advert);
5338 			if (ret_val)
5339 				goto release;
5340 
5341 			/* Disable LPLU if both link partners support 100BaseT
5342 			 * EEE and 100Full is advertised on both ends of the
5343 			 * link, and enable Auto Enable LPI since there will
5344 			 * be no driver to enable LPI while in Sx.
5345 			 */
5346 			if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5347 			    (dev_spec->eee_lp_ability &
5348 			     I82579_EEE_100_SUPPORTED) &&
5349 			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5350 				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5351 					      E1000_PHY_CTRL_NOND0A_LPLU);
5352 
5353 				/* Set Auto Enable LPI after link up */
5354 				e1e_rphy_locked(hw,
5355 						I217_LPI_GPIO_CTRL, &phy_reg);
5356 				phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5357 				e1e_wphy_locked(hw,
5358 						I217_LPI_GPIO_CTRL, phy_reg);
5359 			}
5360 		}
5361 
5362 		/* For i217 Intel Rapid Start Technology support,
5363 		 * when the system is going into Sx and no manageability engine
5364 		 * is present, the driver must configure proxy to reset only on
5365 		 * power good.  LPI (Low Power Idle) state must also reset only
5366 		 * on power good, as well as the MTA (Multicast table array).
5367 		 * The SMBus release must also be disabled on LCD reset.
5368 		 */
5369 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5370 			/* Enable proxy to reset only on power good. */
5371 			e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
5372 			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5373 			e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
5374 
5375 			/* Set bit enable LPI (EEE) to reset only on
5376 			 * power good.
5377 			 */
5378 			e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
5379 			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5380 			e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
5381 
5382 			/* Disable the SMB release on LCD reset. */
5383 			e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5384 			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5385 			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5386 		}
5387 
5388 		/* Enable MTA to reset for Intel Rapid Start Technology
5389 		 * Support
5390 		 */
5391 		e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5392 		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5393 		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5394 
5395 release:
5396 		hw->phy.ops.release(hw);
5397 	}
5398 out:
5399 	ew32(PHY_CTRL, phy_ctrl);
5400 
5401 	if (hw->mac.type == e1000_ich8lan)
5402 		e1000e_gig_downshift_workaround_ich8lan(hw);
5403 
5404 	if (hw->mac.type >= e1000_pchlan) {
5405 		e1000_oem_bits_config_ich8lan(hw, false);
5406 
5407 		/* Reset PHY to activate OEM bits on 82577/8 */
5408 		if (hw->mac.type == e1000_pchlan)
5409 			e1000e_phy_hw_reset_generic(hw);
5410 
5411 		ret_val = hw->phy.ops.acquire(hw);
5412 		if (ret_val)
5413 			return;
5414 		e1000_write_smbus_addr(hw);
5415 		hw->phy.ops.release(hw);
5416 	}
5417 }
5418 
5419 /**
5420  *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5421  *  @hw: pointer to the HW structure
5422  *
5423  *  During Sx to S0 transitions on non-managed devices or managed devices
5424  *  on which PHY resets are not blocked, if the PHY registers cannot be
5425  *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
5426  *  the PHY.
5427  *  On i217, setup Intel Rapid Start Technology.
5428  **/
5429 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5430 {
5431 	s32 ret_val;
5432 
5433 	if (hw->mac.type < e1000_pch2lan)
5434 		return;
5435 
5436 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
5437 	if (ret_val) {
5438 		e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
5439 		return;
5440 	}
5441 
5442 	/* For i217 Intel Rapid Start Technology support when the system
5443 	 * is transitioning from Sx and no manageability engine is present
5444 	 * configure SMBus to restore on reset, disable proxy, and enable
5445 	 * the reset on MTA (Multicast table array).
5446 	 */
5447 	if (hw->phy.type == e1000_phy_i217) {
5448 		u16 phy_reg;
5449 
5450 		ret_val = hw->phy.ops.acquire(hw);
5451 		if (ret_val) {
5452 			e_dbg("Failed to setup iRST\n");
5453 			return;
5454 		}
5455 
5456 		/* Clear Auto Enable LPI after link up */
5457 		e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5458 		phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5459 		e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5460 
5461 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5462 			/* Restore clear on SMB if no manageability engine
5463 			 * is present
5464 			 */
5465 			ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5466 			if (ret_val)
5467 				goto release;
5468 			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5469 			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5470 
5471 			/* Disable Proxy */
5472 			e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
5473 		}
5474 		/* Enable reset on MTA */
5475 		ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5476 		if (ret_val)
5477 			goto release;
5478 		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5479 		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5480 release:
5481 		if (ret_val)
5482 			e_dbg("Error %d in resume workarounds\n", ret_val);
5483 		hw->phy.ops.release(hw);
5484 	}
5485 }
5486 
5487 /**
5488  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
5489  *  @hw: pointer to the HW structure
5490  *
5491  *  Return the LED back to the default configuration.
5492  **/
5493 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5494 {
5495 	if (hw->phy.type == e1000_phy_ife)
5496 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
5497 
5498 	ew32(LEDCTL, hw->mac.ledctl_default);
5499 	return 0;
5500 }
5501 
5502 /**
5503  *  e1000_led_on_ich8lan - Turn LEDs on
5504  *  @hw: pointer to the HW structure
5505  *
5506  *  Turn on the LEDs.
5507  **/
5508 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5509 {
5510 	if (hw->phy.type == e1000_phy_ife)
5511 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5512 				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5513 
5514 	ew32(LEDCTL, hw->mac.ledctl_mode2);
5515 	return 0;
5516 }
5517 
5518 /**
5519  *  e1000_led_off_ich8lan - Turn LEDs off
5520  *  @hw: pointer to the HW structure
5521  *
5522  *  Turn off the LEDs.
5523  **/
5524 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5525 {
5526 	if (hw->phy.type == e1000_phy_ife)
5527 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5528 				(IFE_PSCL_PROBE_MODE |
5529 				 IFE_PSCL_PROBE_LEDS_OFF));
5530 
5531 	ew32(LEDCTL, hw->mac.ledctl_mode1);
5532 	return 0;
5533 }
5534 
5535 /**
5536  *  e1000_setup_led_pchlan - Configures SW controllable LED
5537  *  @hw: pointer to the HW structure
5538  *
5539  *  This prepares the SW controllable LED for use.
5540  **/
5541 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5542 {
5543 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
5544 }
5545 
5546 /**
5547  *  e1000_cleanup_led_pchlan - Restore the default LED operation
5548  *  @hw: pointer to the HW structure
5549  *
5550  *  Return the LED back to the default configuration.
5551  **/
5552 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5553 {
5554 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
5555 }
5556 
5557 /**
5558  *  e1000_led_on_pchlan - Turn LEDs on
5559  *  @hw: pointer to the HW structure
5560  *
5561  *  Turn on the LEDs.
5562  **/
5563 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5564 {
5565 	u16 data = (u16)hw->mac.ledctl_mode2;
5566 	u32 i, led;
5567 
5568 	/* If no link, then turn LED on by setting the invert bit
5569 	 * for each LED that's mode is "link_up" in ledctl_mode2.
5570 	 */
5571 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5572 		for (i = 0; i < 3; i++) {
5573 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5574 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5575 			    E1000_LEDCTL_MODE_LINK_UP)
5576 				continue;
5577 			if (led & E1000_PHY_LED0_IVRT)
5578 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5579 			else
5580 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5581 		}
5582 	}
5583 
5584 	return e1e_wphy(hw, HV_LED_CONFIG, data);
5585 }
5586 
5587 /**
5588  *  e1000_led_off_pchlan - Turn LEDs off
5589  *  @hw: pointer to the HW structure
5590  *
5591  *  Turn off the LEDs.
5592  **/
5593 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5594 {
5595 	u16 data = (u16)hw->mac.ledctl_mode1;
5596 	u32 i, led;
5597 
5598 	/* If no link, then turn LED off by clearing the invert bit
5599 	 * for each LED that's mode is "link_up" in ledctl_mode1.
5600 	 */
5601 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5602 		for (i = 0; i < 3; i++) {
5603 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5604 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5605 			    E1000_LEDCTL_MODE_LINK_UP)
5606 				continue;
5607 			if (led & E1000_PHY_LED0_IVRT)
5608 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5609 			else
5610 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5611 		}
5612 	}
5613 
5614 	return e1e_wphy(hw, HV_LED_CONFIG, data);
5615 }
5616 
5617 /**
5618  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5619  *  @hw: pointer to the HW structure
5620  *
5621  *  Read appropriate register for the config done bit for completion status
5622  *  and configure the PHY through s/w for EEPROM-less parts.
5623  *
5624  *  NOTE: some silicon which is EEPROM-less will fail trying to read the
5625  *  config done bit, so only an error is logged and continues.  If we were
5626  *  to return with error, EEPROM-less silicon would not be able to be reset
5627  *  or change link.
5628  **/
5629 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5630 {
5631 	s32 ret_val = 0;
5632 	u32 bank = 0;
5633 	u32 status;
5634 
5635 	e1000e_get_cfg_done_generic(hw);
5636 
5637 	/* Wait for indication from h/w that it has completed basic config */
5638 	if (hw->mac.type >= e1000_ich10lan) {
5639 		e1000_lan_init_done_ich8lan(hw);
5640 	} else {
5641 		ret_val = e1000e_get_auto_rd_done(hw);
5642 		if (ret_val) {
5643 			/* When auto config read does not complete, do not
5644 			 * return with an error. This can happen in situations
5645 			 * where there is no eeprom and prevents getting link.
5646 			 */
5647 			e_dbg("Auto Read Done did not complete\n");
5648 			ret_val = 0;
5649 		}
5650 	}
5651 
5652 	/* Clear PHY Reset Asserted bit */
5653 	status = er32(STATUS);
5654 	if (status & E1000_STATUS_PHYRA)
5655 		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
5656 	else
5657 		e_dbg("PHY Reset Asserted not set - needs delay\n");
5658 
5659 	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
5660 	if (hw->mac.type <= e1000_ich9lan) {
5661 		if (!(er32(EECD) & E1000_EECD_PRES) &&
5662 		    (hw->phy.type == e1000_phy_igp_3)) {
5663 			e1000e_phy_init_script_igp3(hw);
5664 		}
5665 	} else {
5666 		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5667 			/* Maybe we should do a basic PHY config */
5668 			e_dbg("EEPROM not present\n");
5669 			ret_val = -E1000_ERR_CONFIG;
5670 		}
5671 	}
5672 
5673 	return ret_val;
5674 }
5675 
5676 /**
5677  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5678  * @hw: pointer to the HW structure
5679  *
5680  * In the case of a PHY power down to save power, or to turn off link during a
5681  * driver unload, or wake on lan is not enabled, remove the link.
5682  **/
5683 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5684 {
5685 	/* If the management interface is not enabled, then power down */
5686 	if (!(hw->mac.ops.check_mng_mode(hw) ||
5687 	      hw->phy.ops.check_reset_block(hw)))
5688 		e1000_power_down_phy_copper(hw);
5689 }
5690 
5691 /**
5692  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5693  *  @hw: pointer to the HW structure
5694  *
5695  *  Clears hardware counters specific to the silicon family and calls
5696  *  clear_hw_cntrs_generic to clear all general purpose counters.
5697  **/
5698 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5699 {
5700 	u16 phy_data;
5701 	s32 ret_val;
5702 
5703 	e1000e_clear_hw_cntrs_base(hw);
5704 
5705 	er32(ALGNERRC);
5706 	er32(RXERRC);
5707 	er32(TNCRS);
5708 	er32(CEXTERR);
5709 	er32(TSCTC);
5710 	er32(TSCTFC);
5711 
5712 	er32(MGTPRC);
5713 	er32(MGTPDC);
5714 	er32(MGTPTC);
5715 
5716 	er32(IAC);
5717 	er32(ICRXOC);
5718 
5719 	/* Clear PHY statistics registers */
5720 	if ((hw->phy.type == e1000_phy_82578) ||
5721 	    (hw->phy.type == e1000_phy_82579) ||
5722 	    (hw->phy.type == e1000_phy_i217) ||
5723 	    (hw->phy.type == e1000_phy_82577)) {
5724 		ret_val = hw->phy.ops.acquire(hw);
5725 		if (ret_val)
5726 			return;
5727 		ret_val = hw->phy.ops.set_page(hw,
5728 					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
5729 		if (ret_val)
5730 			goto release;
5731 		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5732 		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5733 		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5734 		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5735 		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5736 		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5737 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5738 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5739 		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5740 		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5741 		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5742 		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5743 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5744 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5745 release:
5746 		hw->phy.ops.release(hw);
5747 	}
5748 }
5749 
5750 static const struct e1000_mac_operations ich8_mac_ops = {
5751 	/* check_mng_mode dependent on mac type */
5752 	.check_for_link		= e1000_check_for_copper_link_ich8lan,
5753 	/* cleanup_led dependent on mac type */
5754 	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
5755 	.get_bus_info		= e1000_get_bus_info_ich8lan,
5756 	.set_lan_id		= e1000_set_lan_id_single_port,
5757 	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
5758 	/* led_on dependent on mac type */
5759 	/* led_off dependent on mac type */
5760 	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
5761 	.reset_hw		= e1000_reset_hw_ich8lan,
5762 	.init_hw		= e1000_init_hw_ich8lan,
5763 	.setup_link		= e1000_setup_link_ich8lan,
5764 	.setup_physical_interface = e1000_setup_copper_link_ich8lan,
5765 	/* id_led_init dependent on mac type */
5766 	.config_collision_dist	= e1000e_config_collision_dist_generic,
5767 	.rar_set		= e1000e_rar_set_generic,
5768 	.rar_get_count		= e1000e_rar_get_count_generic,
5769 };
5770 
5771 static const struct e1000_phy_operations ich8_phy_ops = {
5772 	.acquire		= e1000_acquire_swflag_ich8lan,
5773 	.check_reset_block	= e1000_check_reset_block_ich8lan,
5774 	.commit			= NULL,
5775 	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
5776 	.get_cable_length	= e1000e_get_cable_length_igp_2,
5777 	.read_reg		= e1000e_read_phy_reg_igp,
5778 	.release		= e1000_release_swflag_ich8lan,
5779 	.reset			= e1000_phy_hw_reset_ich8lan,
5780 	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
5781 	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
5782 	.write_reg		= e1000e_write_phy_reg_igp,
5783 };
5784 
5785 static const struct e1000_nvm_operations ich8_nvm_ops = {
5786 	.acquire		= e1000_acquire_nvm_ich8lan,
5787 	.read			= e1000_read_nvm_ich8lan,
5788 	.release		= e1000_release_nvm_ich8lan,
5789 	.reload			= e1000e_reload_nvm_generic,
5790 	.update			= e1000_update_nvm_checksum_ich8lan,
5791 	.valid_led_default	= e1000_valid_led_default_ich8lan,
5792 	.validate		= e1000_validate_nvm_checksum_ich8lan,
5793 	.write			= e1000_write_nvm_ich8lan,
5794 };
5795 
5796 static const struct e1000_nvm_operations spt_nvm_ops = {
5797 	.acquire		= e1000_acquire_nvm_ich8lan,
5798 	.release		= e1000_release_nvm_ich8lan,
5799 	.read			= e1000_read_nvm_spt,
5800 	.update			= e1000_update_nvm_checksum_spt,
5801 	.reload			= e1000e_reload_nvm_generic,
5802 	.valid_led_default	= e1000_valid_led_default_ich8lan,
5803 	.validate		= e1000_validate_nvm_checksum_ich8lan,
5804 	.write			= e1000_write_nvm_ich8lan,
5805 };
5806 
5807 const struct e1000_info e1000_ich8_info = {
5808 	.mac			= e1000_ich8lan,
5809 	.flags			= FLAG_HAS_WOL
5810 				  | FLAG_IS_ICH
5811 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5812 				  | FLAG_HAS_AMT
5813 				  | FLAG_HAS_FLASH
5814 				  | FLAG_APME_IN_WUC,
5815 	.pba			= 8,
5816 	.max_hw_frame_size	= VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
5817 	.get_variants		= e1000_get_variants_ich8lan,
5818 	.mac_ops		= &ich8_mac_ops,
5819 	.phy_ops		= &ich8_phy_ops,
5820 	.nvm_ops		= &ich8_nvm_ops,
5821 };
5822 
5823 const struct e1000_info e1000_ich9_info = {
5824 	.mac			= e1000_ich9lan,
5825 	.flags			= FLAG_HAS_JUMBO_FRAMES
5826 				  | FLAG_IS_ICH
5827 				  | FLAG_HAS_WOL
5828 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5829 				  | FLAG_HAS_AMT
5830 				  | FLAG_HAS_FLASH
5831 				  | FLAG_APME_IN_WUC,
5832 	.pba			= 18,
5833 	.max_hw_frame_size	= DEFAULT_JUMBO,
5834 	.get_variants		= e1000_get_variants_ich8lan,
5835 	.mac_ops		= &ich8_mac_ops,
5836 	.phy_ops		= &ich8_phy_ops,
5837 	.nvm_ops		= &ich8_nvm_ops,
5838 };
5839 
5840 const struct e1000_info e1000_ich10_info = {
5841 	.mac			= e1000_ich10lan,
5842 	.flags			= FLAG_HAS_JUMBO_FRAMES
5843 				  | FLAG_IS_ICH
5844 				  | FLAG_HAS_WOL
5845 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5846 				  | FLAG_HAS_AMT
5847 				  | FLAG_HAS_FLASH
5848 				  | FLAG_APME_IN_WUC,
5849 	.pba			= 18,
5850 	.max_hw_frame_size	= DEFAULT_JUMBO,
5851 	.get_variants		= e1000_get_variants_ich8lan,
5852 	.mac_ops		= &ich8_mac_ops,
5853 	.phy_ops		= &ich8_phy_ops,
5854 	.nvm_ops		= &ich8_nvm_ops,
5855 };
5856 
5857 const struct e1000_info e1000_pch_info = {
5858 	.mac			= e1000_pchlan,
5859 	.flags			= FLAG_IS_ICH
5860 				  | FLAG_HAS_WOL
5861 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5862 				  | FLAG_HAS_AMT
5863 				  | FLAG_HAS_FLASH
5864 				  | FLAG_HAS_JUMBO_FRAMES
5865 				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
5866 				  | FLAG_APME_IN_WUC,
5867 	.flags2			= FLAG2_HAS_PHY_STATS,
5868 	.pba			= 26,
5869 	.max_hw_frame_size	= 4096,
5870 	.get_variants		= e1000_get_variants_ich8lan,
5871 	.mac_ops		= &ich8_mac_ops,
5872 	.phy_ops		= &ich8_phy_ops,
5873 	.nvm_ops		= &ich8_nvm_ops,
5874 };
5875 
5876 const struct e1000_info e1000_pch2_info = {
5877 	.mac			= e1000_pch2lan,
5878 	.flags			= FLAG_IS_ICH
5879 				  | FLAG_HAS_WOL
5880 				  | FLAG_HAS_HW_TIMESTAMP
5881 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5882 				  | FLAG_HAS_AMT
5883 				  | FLAG_HAS_FLASH
5884 				  | FLAG_HAS_JUMBO_FRAMES
5885 				  | FLAG_APME_IN_WUC,
5886 	.flags2			= FLAG2_HAS_PHY_STATS
5887 				  | FLAG2_HAS_EEE
5888 				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
5889 	.pba			= 26,
5890 	.max_hw_frame_size	= 9022,
5891 	.get_variants		= e1000_get_variants_ich8lan,
5892 	.mac_ops		= &ich8_mac_ops,
5893 	.phy_ops		= &ich8_phy_ops,
5894 	.nvm_ops		= &ich8_nvm_ops,
5895 };
5896 
5897 const struct e1000_info e1000_pch_lpt_info = {
5898 	.mac			= e1000_pch_lpt,
5899 	.flags			= FLAG_IS_ICH
5900 				  | FLAG_HAS_WOL
5901 				  | FLAG_HAS_HW_TIMESTAMP
5902 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5903 				  | FLAG_HAS_AMT
5904 				  | FLAG_HAS_FLASH
5905 				  | FLAG_HAS_JUMBO_FRAMES
5906 				  | FLAG_APME_IN_WUC,
5907 	.flags2			= FLAG2_HAS_PHY_STATS
5908 				  | FLAG2_HAS_EEE
5909 				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
5910 	.pba			= 26,
5911 	.max_hw_frame_size	= 9022,
5912 	.get_variants		= e1000_get_variants_ich8lan,
5913 	.mac_ops		= &ich8_mac_ops,
5914 	.phy_ops		= &ich8_phy_ops,
5915 	.nvm_ops		= &ich8_nvm_ops,
5916 };
5917 
5918 const struct e1000_info e1000_pch_spt_info = {
5919 	.mac			= e1000_pch_spt,
5920 	.flags			= FLAG_IS_ICH
5921 				  | FLAG_HAS_WOL
5922 				  | FLAG_HAS_HW_TIMESTAMP
5923 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5924 				  | FLAG_HAS_AMT
5925 				  | FLAG_HAS_FLASH
5926 				  | FLAG_HAS_JUMBO_FRAMES
5927 				  | FLAG_APME_IN_WUC,
5928 	.flags2			= FLAG2_HAS_PHY_STATS
5929 				  | FLAG2_HAS_EEE,
5930 	.pba			= 26,
5931 	.max_hw_frame_size	= 9022,
5932 	.get_variants		= e1000_get_variants_ich8lan,
5933 	.mac_ops		= &ich8_mac_ops,
5934 	.phy_ops		= &ich8_phy_ops,
5935 	.nvm_ops		= &spt_nvm_ops,
5936 };
5937 
5938 const struct e1000_info e1000_pch_cnp_info = {
5939 	.mac			= e1000_pch_cnp,
5940 	.flags			= FLAG_IS_ICH
5941 				  | FLAG_HAS_WOL
5942 				  | FLAG_HAS_HW_TIMESTAMP
5943 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5944 				  | FLAG_HAS_AMT
5945 				  | FLAG_HAS_FLASH
5946 				  | FLAG_HAS_JUMBO_FRAMES
5947 				  | FLAG_APME_IN_WUC,
5948 	.flags2			= FLAG2_HAS_PHY_STATS
5949 				  | FLAG2_HAS_EEE,
5950 	.pba			= 26,
5951 	.max_hw_frame_size	= 9022,
5952 	.get_variants		= e1000_get_variants_ich8lan,
5953 	.mac_ops		= &ich8_mac_ops,
5954 	.phy_ops		= &ich8_phy_ops,
5955 	.nvm_ops		= &spt_nvm_ops,
5956 };
5957