1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 1999 - 2018 Intel Corporation. */ 3 4 /* 82562G 10/100 Network Connection 5 * 82562G-2 10/100 Network Connection 6 * 82562GT 10/100 Network Connection 7 * 82562GT-2 10/100 Network Connection 8 * 82562V 10/100 Network Connection 9 * 82562V-2 10/100 Network Connection 10 * 82566DC-2 Gigabit Network Connection 11 * 82566DC Gigabit Network Connection 12 * 82566DM-2 Gigabit Network Connection 13 * 82566DM Gigabit Network Connection 14 * 82566MC Gigabit Network Connection 15 * 82566MM Gigabit Network Connection 16 * 82567LM Gigabit Network Connection 17 * 82567LF Gigabit Network Connection 18 * 82567V Gigabit Network Connection 19 * 82567LM-2 Gigabit Network Connection 20 * 82567LF-2 Gigabit Network Connection 21 * 82567V-2 Gigabit Network Connection 22 * 82567LF-3 Gigabit Network Connection 23 * 82567LM-3 Gigabit Network Connection 24 * 82567LM-4 Gigabit Network Connection 25 * 82577LM Gigabit Network Connection 26 * 82577LC Gigabit Network Connection 27 * 82578DM Gigabit Network Connection 28 * 82578DC Gigabit Network Connection 29 * 82579LM Gigabit Network Connection 30 * 82579V Gigabit Network Connection 31 * Ethernet Connection I217-LM 32 * Ethernet Connection I217-V 33 * Ethernet Connection I218-V 34 * Ethernet Connection I218-LM 35 * Ethernet Connection (2) I218-LM 36 * Ethernet Connection (2) I218-V 37 * Ethernet Connection (3) I218-LM 38 * Ethernet Connection (3) I218-V 39 */ 40 41 #include "e1000.h" 42 43 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */ 44 /* Offset 04h HSFSTS */ 45 union ich8_hws_flash_status { 46 struct ich8_hsfsts { 47 u16 flcdone:1; /* bit 0 Flash Cycle Done */ 48 u16 flcerr:1; /* bit 1 Flash Cycle Error */ 49 u16 dael:1; /* bit 2 Direct Access error Log */ 50 u16 berasesz:2; /* bit 4:3 Sector Erase Size */ 51 u16 flcinprog:1; /* bit 5 flash cycle in Progress */ 52 u16 reserved1:2; /* bit 13:6 Reserved */ 53 u16 reserved2:6; /* bit 13:6 Reserved */ 54 u16 fldesvalid:1; /* bit 14 Flash Descriptor Valid */ 55 u16 flockdn:1; /* bit 15 Flash Config Lock-Down */ 56 } hsf_status; 57 u16 regval; 58 }; 59 60 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */ 61 /* Offset 06h FLCTL */ 62 union ich8_hws_flash_ctrl { 63 struct ich8_hsflctl { 64 u16 flcgo:1; /* 0 Flash Cycle Go */ 65 u16 flcycle:2; /* 2:1 Flash Cycle */ 66 u16 reserved:5; /* 7:3 Reserved */ 67 u16 fldbcount:2; /* 9:8 Flash Data Byte Count */ 68 u16 flockdn:6; /* 15:10 Reserved */ 69 } hsf_ctrl; 70 u16 regval; 71 }; 72 73 /* ICH Flash Region Access Permissions */ 74 union ich8_hws_flash_regacc { 75 struct ich8_flracc { 76 u32 grra:8; /* 0:7 GbE region Read Access */ 77 u32 grwa:8; /* 8:15 GbE region Write Access */ 78 u32 gmrag:8; /* 23:16 GbE Master Read Access Grant */ 79 u32 gmwag:8; /* 31:24 GbE Master Write Access Grant */ 80 } hsf_flregacc; 81 u16 regval; 82 }; 83 84 /* ICH Flash Protected Region */ 85 union ich8_flash_protected_range { 86 struct ich8_pr { 87 u32 base:13; /* 0:12 Protected Range Base */ 88 u32 reserved1:2; /* 13:14 Reserved */ 89 u32 rpe:1; /* 15 Read Protection Enable */ 90 u32 limit:13; /* 16:28 Protected Range Limit */ 91 u32 reserved2:2; /* 29:30 Reserved */ 92 u32 wpe:1; /* 31 Write Protection Enable */ 93 } range; 94 u32 regval; 95 }; 96 97 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw); 98 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw); 99 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank); 100 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw, 101 u32 offset, u8 byte); 102 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, 103 u8 *data); 104 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset, 105 u16 *data); 106 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, 107 u8 size, u16 *data); 108 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset, 109 u32 *data); 110 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, 111 u32 offset, u32 *data); 112 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, 113 u32 offset, u32 data); 114 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw, 115 u32 offset, u32 dword); 116 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw); 117 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw); 118 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw); 119 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw); 120 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw); 121 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw); 122 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw); 123 static s32 e1000_led_on_pchlan(struct e1000_hw *hw); 124 static s32 e1000_led_off_pchlan(struct e1000_hw *hw); 125 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active); 126 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw); 127 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw); 128 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link); 129 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw); 130 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw); 131 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw); 132 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index); 133 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index); 134 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw); 135 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw); 136 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate); 137 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force); 138 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw); 139 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state); 140 141 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg) 142 { 143 return readw(hw->flash_address + reg); 144 } 145 146 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg) 147 { 148 return readl(hw->flash_address + reg); 149 } 150 151 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val) 152 { 153 writew(val, hw->flash_address + reg); 154 } 155 156 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val) 157 { 158 writel(val, hw->flash_address + reg); 159 } 160 161 #define er16flash(reg) __er16flash(hw, (reg)) 162 #define er32flash(reg) __er32flash(hw, (reg)) 163 #define ew16flash(reg, val) __ew16flash(hw, (reg), (val)) 164 #define ew32flash(reg, val) __ew32flash(hw, (reg), (val)) 165 166 /** 167 * e1000_phy_is_accessible_pchlan - Check if able to access PHY registers 168 * @hw: pointer to the HW structure 169 * 170 * Test access to the PHY registers by reading the PHY ID registers. If 171 * the PHY ID is already known (e.g. resume path) compare it with known ID, 172 * otherwise assume the read PHY ID is correct if it is valid. 173 * 174 * Assumes the sw/fw/hw semaphore is already acquired. 175 **/ 176 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw) 177 { 178 u16 phy_reg = 0; 179 u32 phy_id = 0; 180 s32 ret_val = 0; 181 u16 retry_count; 182 u32 mac_reg = 0; 183 184 for (retry_count = 0; retry_count < 2; retry_count++) { 185 ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg); 186 if (ret_val || (phy_reg == 0xFFFF)) 187 continue; 188 phy_id = (u32)(phy_reg << 16); 189 190 ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg); 191 if (ret_val || (phy_reg == 0xFFFF)) { 192 phy_id = 0; 193 continue; 194 } 195 phy_id |= (u32)(phy_reg & PHY_REVISION_MASK); 196 break; 197 } 198 199 if (hw->phy.id) { 200 if (hw->phy.id == phy_id) 201 goto out; 202 } else if (phy_id) { 203 hw->phy.id = phy_id; 204 hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK); 205 goto out; 206 } 207 208 /* In case the PHY needs to be in mdio slow mode, 209 * set slow mode and try to get the PHY id again. 210 */ 211 if (hw->mac.type < e1000_pch_lpt) { 212 hw->phy.ops.release(hw); 213 ret_val = e1000_set_mdio_slow_mode_hv(hw); 214 if (!ret_val) 215 ret_val = e1000e_get_phy_id(hw); 216 hw->phy.ops.acquire(hw); 217 } 218 219 if (ret_val) 220 return false; 221 out: 222 if (hw->mac.type >= e1000_pch_lpt) { 223 /* Only unforce SMBus if ME is not active */ 224 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) { 225 /* Unforce SMBus mode in PHY */ 226 e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg); 227 phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS; 228 e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg); 229 230 /* Unforce SMBus mode in MAC */ 231 mac_reg = er32(CTRL_EXT); 232 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS; 233 ew32(CTRL_EXT, mac_reg); 234 } 235 } 236 237 return true; 238 } 239 240 /** 241 * e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value 242 * @hw: pointer to the HW structure 243 * 244 * Toggling the LANPHYPC pin value fully power-cycles the PHY and is 245 * used to reset the PHY to a quiescent state when necessary. 246 **/ 247 static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw) 248 { 249 u32 mac_reg; 250 251 /* Set Phy Config Counter to 50msec */ 252 mac_reg = er32(FEXTNVM3); 253 mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK; 254 mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC; 255 ew32(FEXTNVM3, mac_reg); 256 257 /* Toggle LANPHYPC Value bit */ 258 mac_reg = er32(CTRL); 259 mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE; 260 mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE; 261 ew32(CTRL, mac_reg); 262 e1e_flush(); 263 usleep_range(10, 20); 264 mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE; 265 ew32(CTRL, mac_reg); 266 e1e_flush(); 267 268 if (hw->mac.type < e1000_pch_lpt) { 269 msleep(50); 270 } else { 271 u16 count = 20; 272 273 do { 274 usleep_range(5000, 6000); 275 } while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--); 276 277 msleep(30); 278 } 279 } 280 281 /** 282 * e1000_init_phy_workarounds_pchlan - PHY initialization workarounds 283 * @hw: pointer to the HW structure 284 * 285 * Workarounds/flow necessary for PHY initialization during driver load 286 * and resume paths. 287 **/ 288 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw) 289 { 290 struct e1000_adapter *adapter = hw->adapter; 291 u32 mac_reg, fwsm = er32(FWSM); 292 s32 ret_val; 293 294 /* Gate automatic PHY configuration by hardware on managed and 295 * non-managed 82579 and newer adapters. 296 */ 297 e1000_gate_hw_phy_config_ich8lan(hw, true); 298 299 /* It is not possible to be certain of the current state of ULP 300 * so forcibly disable it. 301 */ 302 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown; 303 ret_val = e1000_disable_ulp_lpt_lp(hw, true); 304 if (ret_val) 305 e_warn("Failed to disable ULP\n"); 306 307 ret_val = hw->phy.ops.acquire(hw); 308 if (ret_val) { 309 e_dbg("Failed to initialize PHY flow\n"); 310 goto out; 311 } 312 313 /* The MAC-PHY interconnect may be in SMBus mode. If the PHY is 314 * inaccessible and resetting the PHY is not blocked, toggle the 315 * LANPHYPC Value bit to force the interconnect to PCIe mode. 316 */ 317 switch (hw->mac.type) { 318 case e1000_pch_lpt: 319 case e1000_pch_spt: 320 case e1000_pch_cnp: 321 case e1000_pch_tgp: 322 case e1000_pch_adp: 323 case e1000_pch_mtp: 324 case e1000_pch_lnp: 325 if (e1000_phy_is_accessible_pchlan(hw)) 326 break; 327 328 /* Before toggling LANPHYPC, see if PHY is accessible by 329 * forcing MAC to SMBus mode first. 330 */ 331 mac_reg = er32(CTRL_EXT); 332 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS; 333 ew32(CTRL_EXT, mac_reg); 334 335 /* Wait 50 milliseconds for MAC to finish any retries 336 * that it might be trying to perform from previous 337 * attempts to acknowledge any phy read requests. 338 */ 339 msleep(50); 340 341 fallthrough; 342 case e1000_pch2lan: 343 if (e1000_phy_is_accessible_pchlan(hw)) 344 break; 345 346 fallthrough; 347 case e1000_pchlan: 348 if ((hw->mac.type == e1000_pchlan) && 349 (fwsm & E1000_ICH_FWSM_FW_VALID)) 350 break; 351 352 if (hw->phy.ops.check_reset_block(hw)) { 353 e_dbg("Required LANPHYPC toggle blocked by ME\n"); 354 ret_val = -E1000_ERR_PHY; 355 break; 356 } 357 358 /* Toggle LANPHYPC Value bit */ 359 e1000_toggle_lanphypc_pch_lpt(hw); 360 if (hw->mac.type >= e1000_pch_lpt) { 361 if (e1000_phy_is_accessible_pchlan(hw)) 362 break; 363 364 /* Toggling LANPHYPC brings the PHY out of SMBus mode 365 * so ensure that the MAC is also out of SMBus mode 366 */ 367 mac_reg = er32(CTRL_EXT); 368 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS; 369 ew32(CTRL_EXT, mac_reg); 370 371 if (e1000_phy_is_accessible_pchlan(hw)) 372 break; 373 374 ret_val = -E1000_ERR_PHY; 375 } 376 break; 377 default: 378 break; 379 } 380 381 hw->phy.ops.release(hw); 382 if (!ret_val) { 383 384 /* Check to see if able to reset PHY. Print error if not */ 385 if (hw->phy.ops.check_reset_block(hw)) { 386 e_err("Reset blocked by ME\n"); 387 goto out; 388 } 389 390 /* Reset the PHY before any access to it. Doing so, ensures 391 * that the PHY is in a known good state before we read/write 392 * PHY registers. The generic reset is sufficient here, 393 * because we haven't determined the PHY type yet. 394 */ 395 ret_val = e1000e_phy_hw_reset_generic(hw); 396 if (ret_val) 397 goto out; 398 399 /* On a successful reset, possibly need to wait for the PHY 400 * to quiesce to an accessible state before returning control 401 * to the calling function. If the PHY does not quiesce, then 402 * return E1000E_BLK_PHY_RESET, as this is the condition that 403 * the PHY is in. 404 */ 405 ret_val = hw->phy.ops.check_reset_block(hw); 406 if (ret_val) 407 e_err("ME blocked access to PHY after reset\n"); 408 } 409 410 out: 411 /* Ungate automatic PHY configuration on non-managed 82579 */ 412 if ((hw->mac.type == e1000_pch2lan) && 413 !(fwsm & E1000_ICH_FWSM_FW_VALID)) { 414 usleep_range(10000, 11000); 415 e1000_gate_hw_phy_config_ich8lan(hw, false); 416 } 417 418 return ret_val; 419 } 420 421 /** 422 * e1000_init_phy_params_pchlan - Initialize PHY function pointers 423 * @hw: pointer to the HW structure 424 * 425 * Initialize family-specific PHY parameters and function pointers. 426 **/ 427 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw) 428 { 429 struct e1000_phy_info *phy = &hw->phy; 430 s32 ret_val; 431 432 phy->addr = 1; 433 phy->reset_delay_us = 100; 434 435 phy->ops.set_page = e1000_set_page_igp; 436 phy->ops.read_reg = e1000_read_phy_reg_hv; 437 phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked; 438 phy->ops.read_reg_page = e1000_read_phy_reg_page_hv; 439 phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan; 440 phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan; 441 phy->ops.write_reg = e1000_write_phy_reg_hv; 442 phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked; 443 phy->ops.write_reg_page = e1000_write_phy_reg_page_hv; 444 phy->ops.power_up = e1000_power_up_phy_copper; 445 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan; 446 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; 447 448 phy->id = e1000_phy_unknown; 449 450 ret_val = e1000_init_phy_workarounds_pchlan(hw); 451 if (ret_val) 452 return ret_val; 453 454 if (phy->id == e1000_phy_unknown) 455 switch (hw->mac.type) { 456 default: 457 ret_val = e1000e_get_phy_id(hw); 458 if (ret_val) 459 return ret_val; 460 if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK)) 461 break; 462 fallthrough; 463 case e1000_pch2lan: 464 case e1000_pch_lpt: 465 case e1000_pch_spt: 466 case e1000_pch_cnp: 467 case e1000_pch_tgp: 468 case e1000_pch_adp: 469 case e1000_pch_mtp: 470 case e1000_pch_lnp: 471 /* In case the PHY needs to be in mdio slow mode, 472 * set slow mode and try to get the PHY id again. 473 */ 474 ret_val = e1000_set_mdio_slow_mode_hv(hw); 475 if (ret_val) 476 return ret_val; 477 ret_val = e1000e_get_phy_id(hw); 478 if (ret_val) 479 return ret_val; 480 break; 481 } 482 phy->type = e1000e_get_phy_type_from_id(phy->id); 483 484 switch (phy->type) { 485 case e1000_phy_82577: 486 case e1000_phy_82579: 487 case e1000_phy_i217: 488 phy->ops.check_polarity = e1000_check_polarity_82577; 489 phy->ops.force_speed_duplex = 490 e1000_phy_force_speed_duplex_82577; 491 phy->ops.get_cable_length = e1000_get_cable_length_82577; 492 phy->ops.get_info = e1000_get_phy_info_82577; 493 phy->ops.commit = e1000e_phy_sw_reset; 494 break; 495 case e1000_phy_82578: 496 phy->ops.check_polarity = e1000_check_polarity_m88; 497 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88; 498 phy->ops.get_cable_length = e1000e_get_cable_length_m88; 499 phy->ops.get_info = e1000e_get_phy_info_m88; 500 break; 501 default: 502 ret_val = -E1000_ERR_PHY; 503 break; 504 } 505 506 return ret_val; 507 } 508 509 /** 510 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers 511 * @hw: pointer to the HW structure 512 * 513 * Initialize family-specific PHY parameters and function pointers. 514 **/ 515 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw) 516 { 517 struct e1000_phy_info *phy = &hw->phy; 518 s32 ret_val; 519 u16 i = 0; 520 521 phy->addr = 1; 522 phy->reset_delay_us = 100; 523 524 phy->ops.power_up = e1000_power_up_phy_copper; 525 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan; 526 527 /* We may need to do this twice - once for IGP and if that fails, 528 * we'll set BM func pointers and try again 529 */ 530 ret_val = e1000e_determine_phy_address(hw); 531 if (ret_val) { 532 phy->ops.write_reg = e1000e_write_phy_reg_bm; 533 phy->ops.read_reg = e1000e_read_phy_reg_bm; 534 ret_val = e1000e_determine_phy_address(hw); 535 if (ret_val) { 536 e_dbg("Cannot determine PHY addr. Erroring out\n"); 537 return ret_val; 538 } 539 } 540 541 phy->id = 0; 542 while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) && 543 (i++ < 100)) { 544 usleep_range(1000, 1100); 545 ret_val = e1000e_get_phy_id(hw); 546 if (ret_val) 547 return ret_val; 548 } 549 550 /* Verify phy id */ 551 switch (phy->id) { 552 case IGP03E1000_E_PHY_ID: 553 phy->type = e1000_phy_igp_3; 554 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; 555 phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked; 556 phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked; 557 phy->ops.get_info = e1000e_get_phy_info_igp; 558 phy->ops.check_polarity = e1000_check_polarity_igp; 559 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp; 560 break; 561 case IFE_E_PHY_ID: 562 case IFE_PLUS_E_PHY_ID: 563 case IFE_C_E_PHY_ID: 564 phy->type = e1000_phy_ife; 565 phy->autoneg_mask = E1000_ALL_NOT_GIG; 566 phy->ops.get_info = e1000_get_phy_info_ife; 567 phy->ops.check_polarity = e1000_check_polarity_ife; 568 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife; 569 break; 570 case BME1000_E_PHY_ID: 571 phy->type = e1000_phy_bm; 572 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; 573 phy->ops.read_reg = e1000e_read_phy_reg_bm; 574 phy->ops.write_reg = e1000e_write_phy_reg_bm; 575 phy->ops.commit = e1000e_phy_sw_reset; 576 phy->ops.get_info = e1000e_get_phy_info_m88; 577 phy->ops.check_polarity = e1000_check_polarity_m88; 578 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88; 579 break; 580 default: 581 return -E1000_ERR_PHY; 582 } 583 584 return 0; 585 } 586 587 /** 588 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers 589 * @hw: pointer to the HW structure 590 * 591 * Initialize family-specific NVM parameters and function 592 * pointers. 593 **/ 594 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw) 595 { 596 struct e1000_nvm_info *nvm = &hw->nvm; 597 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 598 u32 gfpreg, sector_base_addr, sector_end_addr; 599 u16 i; 600 u32 nvm_size; 601 602 nvm->type = e1000_nvm_flash_sw; 603 604 if (hw->mac.type >= e1000_pch_spt) { 605 /* in SPT, gfpreg doesn't exist. NVM size is taken from the 606 * STRAP register. This is because in SPT the GbE Flash region 607 * is no longer accessed through the flash registers. Instead, 608 * the mechanism has changed, and the Flash region access 609 * registers are now implemented in GbE memory space. 610 */ 611 nvm->flash_base_addr = 0; 612 nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1) 613 * NVM_SIZE_MULTIPLIER; 614 nvm->flash_bank_size = nvm_size / 2; 615 /* Adjust to word count */ 616 nvm->flash_bank_size /= sizeof(u16); 617 /* Set the base address for flash register access */ 618 hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR; 619 } else { 620 /* Can't read flash registers if register set isn't mapped. */ 621 if (!hw->flash_address) { 622 e_dbg("ERROR: Flash registers not mapped\n"); 623 return -E1000_ERR_CONFIG; 624 } 625 626 gfpreg = er32flash(ICH_FLASH_GFPREG); 627 628 /* sector_X_addr is a "sector"-aligned address (4096 bytes) 629 * Add 1 to sector_end_addr since this sector is included in 630 * the overall size. 631 */ 632 sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK; 633 sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1; 634 635 /* flash_base_addr is byte-aligned */ 636 nvm->flash_base_addr = sector_base_addr 637 << FLASH_SECTOR_ADDR_SHIFT; 638 639 /* find total size of the NVM, then cut in half since the total 640 * size represents two separate NVM banks. 641 */ 642 nvm->flash_bank_size = ((sector_end_addr - sector_base_addr) 643 << FLASH_SECTOR_ADDR_SHIFT); 644 nvm->flash_bank_size /= 2; 645 /* Adjust to word count */ 646 nvm->flash_bank_size /= sizeof(u16); 647 } 648 649 nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS; 650 651 /* Clear shadow ram */ 652 for (i = 0; i < nvm->word_size; i++) { 653 dev_spec->shadow_ram[i].modified = false; 654 dev_spec->shadow_ram[i].value = 0xFFFF; 655 } 656 657 return 0; 658 } 659 660 /** 661 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers 662 * @hw: pointer to the HW structure 663 * 664 * Initialize family-specific MAC parameters and function 665 * pointers. 666 **/ 667 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw) 668 { 669 struct e1000_mac_info *mac = &hw->mac; 670 671 /* Set media type function pointer */ 672 hw->phy.media_type = e1000_media_type_copper; 673 674 /* Set mta register count */ 675 mac->mta_reg_count = 32; 676 /* Set rar entry count */ 677 mac->rar_entry_count = E1000_ICH_RAR_ENTRIES; 678 if (mac->type == e1000_ich8lan) 679 mac->rar_entry_count--; 680 /* FWSM register */ 681 mac->has_fwsm = true; 682 /* ARC subsystem not supported */ 683 mac->arc_subsystem_valid = false; 684 /* Adaptive IFS supported */ 685 mac->adaptive_ifs = true; 686 687 /* LED and other operations */ 688 switch (mac->type) { 689 case e1000_ich8lan: 690 case e1000_ich9lan: 691 case e1000_ich10lan: 692 /* check management mode */ 693 mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan; 694 /* ID LED init */ 695 mac->ops.id_led_init = e1000e_id_led_init_generic; 696 /* blink LED */ 697 mac->ops.blink_led = e1000e_blink_led_generic; 698 /* setup LED */ 699 mac->ops.setup_led = e1000e_setup_led_generic; 700 /* cleanup LED */ 701 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan; 702 /* turn on/off LED */ 703 mac->ops.led_on = e1000_led_on_ich8lan; 704 mac->ops.led_off = e1000_led_off_ich8lan; 705 break; 706 case e1000_pch2lan: 707 mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES; 708 mac->ops.rar_set = e1000_rar_set_pch2lan; 709 fallthrough; 710 case e1000_pch_lpt: 711 case e1000_pch_spt: 712 case e1000_pch_cnp: 713 case e1000_pch_tgp: 714 case e1000_pch_adp: 715 case e1000_pch_mtp: 716 case e1000_pch_lnp: 717 case e1000_pchlan: 718 /* check management mode */ 719 mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan; 720 /* ID LED init */ 721 mac->ops.id_led_init = e1000_id_led_init_pchlan; 722 /* setup LED */ 723 mac->ops.setup_led = e1000_setup_led_pchlan; 724 /* cleanup LED */ 725 mac->ops.cleanup_led = e1000_cleanup_led_pchlan; 726 /* turn on/off LED */ 727 mac->ops.led_on = e1000_led_on_pchlan; 728 mac->ops.led_off = e1000_led_off_pchlan; 729 break; 730 default: 731 break; 732 } 733 734 if (mac->type >= e1000_pch_lpt) { 735 mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES; 736 mac->ops.rar_set = e1000_rar_set_pch_lpt; 737 mac->ops.setup_physical_interface = 738 e1000_setup_copper_link_pch_lpt; 739 mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt; 740 } 741 742 /* Enable PCS Lock-loss workaround for ICH8 */ 743 if (mac->type == e1000_ich8lan) 744 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true); 745 746 return 0; 747 } 748 749 /** 750 * __e1000_access_emi_reg_locked - Read/write EMI register 751 * @hw: pointer to the HW structure 752 * @address: EMI address to program 753 * @data: pointer to value to read/write from/to the EMI address 754 * @read: boolean flag to indicate read or write 755 * 756 * This helper function assumes the SW/FW/HW Semaphore is already acquired. 757 **/ 758 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address, 759 u16 *data, bool read) 760 { 761 s32 ret_val; 762 763 ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address); 764 if (ret_val) 765 return ret_val; 766 767 if (read) 768 ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data); 769 else 770 ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data); 771 772 return ret_val; 773 } 774 775 /** 776 * e1000_read_emi_reg_locked - Read Extended Management Interface register 777 * @hw: pointer to the HW structure 778 * @addr: EMI address to program 779 * @data: value to be read from the EMI address 780 * 781 * Assumes the SW/FW/HW Semaphore is already acquired. 782 **/ 783 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data) 784 { 785 return __e1000_access_emi_reg_locked(hw, addr, data, true); 786 } 787 788 /** 789 * e1000_write_emi_reg_locked - Write Extended Management Interface register 790 * @hw: pointer to the HW structure 791 * @addr: EMI address to program 792 * @data: value to be written to the EMI address 793 * 794 * Assumes the SW/FW/HW Semaphore is already acquired. 795 **/ 796 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data) 797 { 798 return __e1000_access_emi_reg_locked(hw, addr, &data, false); 799 } 800 801 /** 802 * e1000_set_eee_pchlan - Enable/disable EEE support 803 * @hw: pointer to the HW structure 804 * 805 * Enable/disable EEE based on setting in dev_spec structure, the duplex of 806 * the link and the EEE capabilities of the link partner. The LPI Control 807 * register bits will remain set only if/when link is up. 808 * 809 * EEE LPI must not be asserted earlier than one second after link is up. 810 * On 82579, EEE LPI should not be enabled until such time otherwise there 811 * can be link issues with some switches. Other devices can have EEE LPI 812 * enabled immediately upon link up since they have a timer in hardware which 813 * prevents LPI from being asserted too early. 814 **/ 815 s32 e1000_set_eee_pchlan(struct e1000_hw *hw) 816 { 817 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 818 s32 ret_val; 819 u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data; 820 821 switch (hw->phy.type) { 822 case e1000_phy_82579: 823 lpa = I82579_EEE_LP_ABILITY; 824 pcs_status = I82579_EEE_PCS_STATUS; 825 adv_addr = I82579_EEE_ADVERTISEMENT; 826 break; 827 case e1000_phy_i217: 828 lpa = I217_EEE_LP_ABILITY; 829 pcs_status = I217_EEE_PCS_STATUS; 830 adv_addr = I217_EEE_ADVERTISEMENT; 831 break; 832 default: 833 return 0; 834 } 835 836 ret_val = hw->phy.ops.acquire(hw); 837 if (ret_val) 838 return ret_val; 839 840 ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl); 841 if (ret_val) 842 goto release; 843 844 /* Clear bits that enable EEE in various speeds */ 845 lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK; 846 847 /* Enable EEE if not disabled by user */ 848 if (!dev_spec->eee_disable) { 849 /* Save off link partner's EEE ability */ 850 ret_val = e1000_read_emi_reg_locked(hw, lpa, 851 &dev_spec->eee_lp_ability); 852 if (ret_val) 853 goto release; 854 855 /* Read EEE advertisement */ 856 ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv); 857 if (ret_val) 858 goto release; 859 860 /* Enable EEE only for speeds in which the link partner is 861 * EEE capable and for which we advertise EEE. 862 */ 863 if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED) 864 lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE; 865 866 if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) { 867 e1e_rphy_locked(hw, MII_LPA, &data); 868 if (data & LPA_100FULL) 869 lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE; 870 else 871 /* EEE is not supported in 100Half, so ignore 872 * partner's EEE in 100 ability if full-duplex 873 * is not advertised. 874 */ 875 dev_spec->eee_lp_ability &= 876 ~I82579_EEE_100_SUPPORTED; 877 } 878 } 879 880 if (hw->phy.type == e1000_phy_82579) { 881 ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT, 882 &data); 883 if (ret_val) 884 goto release; 885 886 data &= ~I82579_LPI_100_PLL_SHUT; 887 ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT, 888 data); 889 } 890 891 /* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */ 892 ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data); 893 if (ret_val) 894 goto release; 895 896 ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl); 897 release: 898 hw->phy.ops.release(hw); 899 900 return ret_val; 901 } 902 903 /** 904 * e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP 905 * @hw: pointer to the HW structure 906 * @link: link up bool flag 907 * 908 * When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications 909 * preventing further DMA write requests. Workaround the issue by disabling 910 * the de-assertion of the clock request when in 1Gpbs mode. 911 * Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link 912 * speeds in order to avoid Tx hangs. 913 **/ 914 static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link) 915 { 916 u32 fextnvm6 = er32(FEXTNVM6); 917 u32 status = er32(STATUS); 918 s32 ret_val = 0; 919 u16 reg; 920 921 if (link && (status & E1000_STATUS_SPEED_1000)) { 922 ret_val = hw->phy.ops.acquire(hw); 923 if (ret_val) 924 return ret_val; 925 926 ret_val = 927 e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG, 928 ®); 929 if (ret_val) 930 goto release; 931 932 ret_val = 933 e1000e_write_kmrn_reg_locked(hw, 934 E1000_KMRNCTRLSTA_K1_CONFIG, 935 reg & 936 ~E1000_KMRNCTRLSTA_K1_ENABLE); 937 if (ret_val) 938 goto release; 939 940 usleep_range(10, 20); 941 942 ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK); 943 944 ret_val = 945 e1000e_write_kmrn_reg_locked(hw, 946 E1000_KMRNCTRLSTA_K1_CONFIG, 947 reg); 948 release: 949 hw->phy.ops.release(hw); 950 } else { 951 /* clear FEXTNVM6 bit 8 on link down or 10/100 */ 952 fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK; 953 954 if ((hw->phy.revision > 5) || !link || 955 ((status & E1000_STATUS_SPEED_100) && 956 (status & E1000_STATUS_FD))) 957 goto update_fextnvm6; 958 959 ret_val = e1e_rphy(hw, I217_INBAND_CTRL, ®); 960 if (ret_val) 961 return ret_val; 962 963 /* Clear link status transmit timeout */ 964 reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK; 965 966 if (status & E1000_STATUS_SPEED_100) { 967 /* Set inband Tx timeout to 5x10us for 100Half */ 968 reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT; 969 970 /* Do not extend the K1 entry latency for 100Half */ 971 fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION; 972 } else { 973 /* Set inband Tx timeout to 50x10us for 10Full/Half */ 974 reg |= 50 << 975 I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT; 976 977 /* Extend the K1 entry latency for 10 Mbps */ 978 fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION; 979 } 980 981 ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg); 982 if (ret_val) 983 return ret_val; 984 985 update_fextnvm6: 986 ew32(FEXTNVM6, fextnvm6); 987 } 988 989 return ret_val; 990 } 991 992 /** 993 * e1000_platform_pm_pch_lpt - Set platform power management values 994 * @hw: pointer to the HW structure 995 * @link: bool indicating link status 996 * 997 * Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like" 998 * GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed 999 * when link is up (which must not exceed the maximum latency supported 1000 * by the platform), otherwise specify there is no LTR requirement. 1001 * Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop 1002 * latencies in the LTR Extended Capability Structure in the PCIe Extended 1003 * Capability register set, on this device LTR is set by writing the 1004 * equivalent snoop/no-snoop latencies in the LTRV register in the MAC and 1005 * set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB) 1006 * message to the PMC. 1007 **/ 1008 static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link) 1009 { 1010 u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) | 1011 link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND; 1012 u16 max_ltr_enc_d = 0; /* maximum LTR decoded by platform */ 1013 u16 lat_enc_d = 0; /* latency decoded */ 1014 u16 lat_enc = 0; /* latency encoded */ 1015 1016 if (link) { 1017 u16 speed, duplex, scale = 0; 1018 u16 max_snoop, max_nosnoop; 1019 u16 max_ltr_enc; /* max LTR latency encoded */ 1020 u64 value; 1021 u32 rxa; 1022 1023 if (!hw->adapter->max_frame_size) { 1024 e_dbg("max_frame_size not set.\n"); 1025 return -E1000_ERR_CONFIG; 1026 } 1027 1028 hw->mac.ops.get_link_up_info(hw, &speed, &duplex); 1029 if (!speed) { 1030 e_dbg("Speed not set.\n"); 1031 return -E1000_ERR_CONFIG; 1032 } 1033 1034 /* Rx Packet Buffer Allocation size (KB) */ 1035 rxa = er32(PBA) & E1000_PBA_RXA_MASK; 1036 1037 /* Determine the maximum latency tolerated by the device. 1038 * 1039 * Per the PCIe spec, the tolerated latencies are encoded as 1040 * a 3-bit encoded scale (only 0-5 are valid) multiplied by 1041 * a 10-bit value (0-1023) to provide a range from 1 ns to 1042 * 2^25*(2^10-1) ns. The scale is encoded as 0=2^0ns, 1043 * 1=2^5ns, 2=2^10ns,...5=2^25ns. 1044 */ 1045 rxa *= 512; 1046 value = (rxa > hw->adapter->max_frame_size) ? 1047 (rxa - hw->adapter->max_frame_size) * (16000 / speed) : 1048 0; 1049 1050 while (value > PCI_LTR_VALUE_MASK) { 1051 scale++; 1052 value = DIV_ROUND_UP(value, BIT(5)); 1053 } 1054 if (scale > E1000_LTRV_SCALE_MAX) { 1055 e_dbg("Invalid LTR latency scale %d\n", scale); 1056 return -E1000_ERR_CONFIG; 1057 } 1058 lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value); 1059 1060 /* Determine the maximum latency tolerated by the platform */ 1061 pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT, 1062 &max_snoop); 1063 pci_read_config_word(hw->adapter->pdev, 1064 E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop); 1065 max_ltr_enc = max_t(u16, max_snoop, max_nosnoop); 1066 1067 lat_enc_d = (lat_enc & E1000_LTRV_VALUE_MASK) * 1068 (1U << (E1000_LTRV_SCALE_FACTOR * 1069 ((lat_enc & E1000_LTRV_SCALE_MASK) 1070 >> E1000_LTRV_SCALE_SHIFT))); 1071 1072 max_ltr_enc_d = (max_ltr_enc & E1000_LTRV_VALUE_MASK) * 1073 (1U << (E1000_LTRV_SCALE_FACTOR * 1074 ((max_ltr_enc & E1000_LTRV_SCALE_MASK) 1075 >> E1000_LTRV_SCALE_SHIFT))); 1076 1077 if (lat_enc_d > max_ltr_enc_d) 1078 lat_enc = max_ltr_enc; 1079 } 1080 1081 /* Set Snoop and No-Snoop latencies the same */ 1082 reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT); 1083 ew32(LTRV, reg); 1084 1085 return 0; 1086 } 1087 1088 /** 1089 * e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP 1090 * @hw: pointer to the HW structure 1091 * @to_sx: boolean indicating a system power state transition to Sx 1092 * 1093 * When link is down, configure ULP mode to significantly reduce the power 1094 * to the PHY. If on a Manageability Engine (ME) enabled system, tell the 1095 * ME firmware to start the ULP configuration. If not on an ME enabled 1096 * system, configure the ULP mode by software. 1097 */ 1098 s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx) 1099 { 1100 u32 mac_reg; 1101 s32 ret_val = 0; 1102 u16 phy_reg; 1103 u16 oem_reg = 0; 1104 1105 if ((hw->mac.type < e1000_pch_lpt) || 1106 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) || 1107 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) || 1108 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) || 1109 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) || 1110 (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on)) 1111 return 0; 1112 1113 if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) { 1114 /* Request ME configure ULP mode in the PHY */ 1115 mac_reg = er32(H2ME); 1116 mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS; 1117 ew32(H2ME, mac_reg); 1118 1119 goto out; 1120 } 1121 1122 if (!to_sx) { 1123 int i = 0; 1124 1125 /* Poll up to 5 seconds for Cable Disconnected indication */ 1126 while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) { 1127 /* Bail if link is re-acquired */ 1128 if (er32(STATUS) & E1000_STATUS_LU) 1129 return -E1000_ERR_PHY; 1130 1131 if (i++ == 100) 1132 break; 1133 1134 msleep(50); 1135 } 1136 e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n", 1137 (er32(FEXT) & 1138 E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50); 1139 } 1140 1141 ret_val = hw->phy.ops.acquire(hw); 1142 if (ret_val) 1143 goto out; 1144 1145 /* Force SMBus mode in PHY */ 1146 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg); 1147 if (ret_val) 1148 goto release; 1149 phy_reg |= CV_SMB_CTRL_FORCE_SMBUS; 1150 e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg); 1151 1152 /* Force SMBus mode in MAC */ 1153 mac_reg = er32(CTRL_EXT); 1154 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS; 1155 ew32(CTRL_EXT, mac_reg); 1156 1157 /* Si workaround for ULP entry flow on i127/rev6 h/w. Enable 1158 * LPLU and disable Gig speed when entering ULP 1159 */ 1160 if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) { 1161 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS, 1162 &oem_reg); 1163 if (ret_val) 1164 goto release; 1165 1166 phy_reg = oem_reg; 1167 phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS; 1168 1169 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS, 1170 phy_reg); 1171 1172 if (ret_val) 1173 goto release; 1174 } 1175 1176 /* Set Inband ULP Exit, Reset to SMBus mode and 1177 * Disable SMBus Release on PERST# in PHY 1178 */ 1179 ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg); 1180 if (ret_val) 1181 goto release; 1182 phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS | 1183 I218_ULP_CONFIG1_DISABLE_SMB_PERST); 1184 if (to_sx) { 1185 if (er32(WUFC) & E1000_WUFC_LNKC) 1186 phy_reg |= I218_ULP_CONFIG1_WOL_HOST; 1187 else 1188 phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST; 1189 1190 phy_reg |= I218_ULP_CONFIG1_STICKY_ULP; 1191 phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT; 1192 } else { 1193 phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT; 1194 phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP; 1195 phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST; 1196 } 1197 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg); 1198 1199 /* Set Disable SMBus Release on PERST# in MAC */ 1200 mac_reg = er32(FEXTNVM7); 1201 mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST; 1202 ew32(FEXTNVM7, mac_reg); 1203 1204 /* Commit ULP changes in PHY by starting auto ULP configuration */ 1205 phy_reg |= I218_ULP_CONFIG1_START; 1206 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg); 1207 1208 if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) && 1209 to_sx && (er32(STATUS) & E1000_STATUS_LU)) { 1210 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS, 1211 oem_reg); 1212 if (ret_val) 1213 goto release; 1214 } 1215 1216 release: 1217 hw->phy.ops.release(hw); 1218 out: 1219 if (ret_val) 1220 e_dbg("Error in ULP enable flow: %d\n", ret_val); 1221 else 1222 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on; 1223 1224 return ret_val; 1225 } 1226 1227 /** 1228 * e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP 1229 * @hw: pointer to the HW structure 1230 * @force: boolean indicating whether or not to force disabling ULP 1231 * 1232 * Un-configure ULP mode when link is up, the system is transitioned from 1233 * Sx or the driver is unloaded. If on a Manageability Engine (ME) enabled 1234 * system, poll for an indication from ME that ULP has been un-configured. 1235 * If not on an ME enabled system, un-configure the ULP mode by software. 1236 * 1237 * During nominal operation, this function is called when link is acquired 1238 * to disable ULP mode (force=false); otherwise, for example when unloading 1239 * the driver or during Sx->S0 transitions, this is called with force=true 1240 * to forcibly disable ULP. 1241 */ 1242 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force) 1243 { 1244 s32 ret_val = 0; 1245 u32 mac_reg; 1246 u16 phy_reg; 1247 int i = 0; 1248 1249 if ((hw->mac.type < e1000_pch_lpt) || 1250 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) || 1251 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) || 1252 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) || 1253 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) || 1254 (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off)) 1255 return 0; 1256 1257 if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) { 1258 struct e1000_adapter *adapter = hw->adapter; 1259 bool firmware_bug = false; 1260 1261 if (force) { 1262 /* Request ME un-configure ULP mode in the PHY */ 1263 mac_reg = er32(H2ME); 1264 mac_reg &= ~E1000_H2ME_ULP; 1265 mac_reg |= E1000_H2ME_ENFORCE_SETTINGS; 1266 ew32(H2ME, mac_reg); 1267 } 1268 1269 /* Poll up to 2.5 seconds for ME to clear ULP_CFG_DONE. 1270 * If this takes more than 1 second, show a warning indicating a 1271 * firmware bug 1272 */ 1273 while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) { 1274 if (i++ == 250) { 1275 ret_val = -E1000_ERR_PHY; 1276 goto out; 1277 } 1278 if (i > 100 && !firmware_bug) 1279 firmware_bug = true; 1280 1281 usleep_range(10000, 11000); 1282 } 1283 if (firmware_bug) 1284 e_warn("ULP_CONFIG_DONE took %d msec. This is a firmware bug\n", 1285 i * 10); 1286 else 1287 e_dbg("ULP_CONFIG_DONE cleared after %d msec\n", 1288 i * 10); 1289 1290 if (force) { 1291 mac_reg = er32(H2ME); 1292 mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS; 1293 ew32(H2ME, mac_reg); 1294 } else { 1295 /* Clear H2ME.ULP after ME ULP configuration */ 1296 mac_reg = er32(H2ME); 1297 mac_reg &= ~E1000_H2ME_ULP; 1298 ew32(H2ME, mac_reg); 1299 } 1300 1301 goto out; 1302 } 1303 1304 ret_val = hw->phy.ops.acquire(hw); 1305 if (ret_val) 1306 goto out; 1307 1308 if (force) 1309 /* Toggle LANPHYPC Value bit */ 1310 e1000_toggle_lanphypc_pch_lpt(hw); 1311 1312 /* Unforce SMBus mode in PHY */ 1313 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg); 1314 if (ret_val) { 1315 /* The MAC might be in PCIe mode, so temporarily force to 1316 * SMBus mode in order to access the PHY. 1317 */ 1318 mac_reg = er32(CTRL_EXT); 1319 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS; 1320 ew32(CTRL_EXT, mac_reg); 1321 1322 msleep(50); 1323 1324 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, 1325 &phy_reg); 1326 if (ret_val) 1327 goto release; 1328 } 1329 phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS; 1330 e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg); 1331 1332 /* Unforce SMBus mode in MAC */ 1333 mac_reg = er32(CTRL_EXT); 1334 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS; 1335 ew32(CTRL_EXT, mac_reg); 1336 1337 /* When ULP mode was previously entered, K1 was disabled by the 1338 * hardware. Re-Enable K1 in the PHY when exiting ULP. 1339 */ 1340 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg); 1341 if (ret_val) 1342 goto release; 1343 phy_reg |= HV_PM_CTRL_K1_ENABLE; 1344 e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg); 1345 1346 /* Clear ULP enabled configuration */ 1347 ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg); 1348 if (ret_val) 1349 goto release; 1350 phy_reg &= ~(I218_ULP_CONFIG1_IND | 1351 I218_ULP_CONFIG1_STICKY_ULP | 1352 I218_ULP_CONFIG1_RESET_TO_SMBUS | 1353 I218_ULP_CONFIG1_WOL_HOST | 1354 I218_ULP_CONFIG1_INBAND_EXIT | 1355 I218_ULP_CONFIG1_EN_ULP_LANPHYPC | 1356 I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST | 1357 I218_ULP_CONFIG1_DISABLE_SMB_PERST); 1358 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg); 1359 1360 /* Commit ULP changes by starting auto ULP configuration */ 1361 phy_reg |= I218_ULP_CONFIG1_START; 1362 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg); 1363 1364 /* Clear Disable SMBus Release on PERST# in MAC */ 1365 mac_reg = er32(FEXTNVM7); 1366 mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST; 1367 ew32(FEXTNVM7, mac_reg); 1368 1369 release: 1370 hw->phy.ops.release(hw); 1371 if (force) { 1372 e1000_phy_hw_reset(hw); 1373 msleep(50); 1374 } 1375 out: 1376 if (ret_val) 1377 e_dbg("Error in ULP disable flow: %d\n", ret_val); 1378 else 1379 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off; 1380 1381 return ret_val; 1382 } 1383 1384 /** 1385 * e1000_check_for_copper_link_ich8lan - Check for link (Copper) 1386 * @hw: pointer to the HW structure 1387 * 1388 * Checks to see of the link status of the hardware has changed. If a 1389 * change in link status has been detected, then we read the PHY registers 1390 * to get the current speed/duplex if link exists. 1391 **/ 1392 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw) 1393 { 1394 struct e1000_mac_info *mac = &hw->mac; 1395 s32 ret_val, tipg_reg = 0; 1396 u16 emi_addr, emi_val = 0; 1397 bool link; 1398 u16 phy_reg; 1399 1400 /* We only want to go out to the PHY registers to see if Auto-Neg 1401 * has completed and/or if our link status has changed. The 1402 * get_link_status flag is set upon receiving a Link Status 1403 * Change or Rx Sequence Error interrupt. 1404 */ 1405 if (!mac->get_link_status) 1406 return 0; 1407 mac->get_link_status = false; 1408 1409 /* First we want to see if the MII Status Register reports 1410 * link. If so, then we want to get the current speed/duplex 1411 * of the PHY. 1412 */ 1413 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); 1414 if (ret_val) 1415 goto out; 1416 1417 if (hw->mac.type == e1000_pchlan) { 1418 ret_val = e1000_k1_gig_workaround_hv(hw, link); 1419 if (ret_val) 1420 goto out; 1421 } 1422 1423 /* When connected at 10Mbps half-duplex, some parts are excessively 1424 * aggressive resulting in many collisions. To avoid this, increase 1425 * the IPG and reduce Rx latency in the PHY. 1426 */ 1427 if ((hw->mac.type >= e1000_pch2lan) && link) { 1428 u16 speed, duplex; 1429 1430 e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex); 1431 tipg_reg = er32(TIPG); 1432 tipg_reg &= ~E1000_TIPG_IPGT_MASK; 1433 1434 if (duplex == HALF_DUPLEX && speed == SPEED_10) { 1435 tipg_reg |= 0xFF; 1436 /* Reduce Rx latency in analog PHY */ 1437 emi_val = 0; 1438 } else if (hw->mac.type >= e1000_pch_spt && 1439 duplex == FULL_DUPLEX && speed != SPEED_1000) { 1440 tipg_reg |= 0xC; 1441 emi_val = 1; 1442 } else { 1443 1444 /* Roll back the default values */ 1445 tipg_reg |= 0x08; 1446 emi_val = 1; 1447 } 1448 1449 ew32(TIPG, tipg_reg); 1450 1451 ret_val = hw->phy.ops.acquire(hw); 1452 if (ret_val) 1453 goto out; 1454 1455 if (hw->mac.type == e1000_pch2lan) 1456 emi_addr = I82579_RX_CONFIG; 1457 else 1458 emi_addr = I217_RX_CONFIG; 1459 ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val); 1460 1461 if (hw->mac.type >= e1000_pch_lpt) { 1462 u16 phy_reg; 1463 1464 e1e_rphy_locked(hw, I217_PLL_CLOCK_GATE_REG, &phy_reg); 1465 phy_reg &= ~I217_PLL_CLOCK_GATE_MASK; 1466 if (speed == SPEED_100 || speed == SPEED_10) 1467 phy_reg |= 0x3E8; 1468 else 1469 phy_reg |= 0xFA; 1470 e1e_wphy_locked(hw, I217_PLL_CLOCK_GATE_REG, phy_reg); 1471 1472 if (speed == SPEED_1000) { 1473 hw->phy.ops.read_reg_locked(hw, HV_PM_CTRL, 1474 &phy_reg); 1475 1476 phy_reg |= HV_PM_CTRL_K1_CLK_REQ; 1477 1478 hw->phy.ops.write_reg_locked(hw, HV_PM_CTRL, 1479 phy_reg); 1480 } 1481 } 1482 hw->phy.ops.release(hw); 1483 1484 if (ret_val) 1485 goto out; 1486 1487 if (hw->mac.type >= e1000_pch_spt) { 1488 u16 data; 1489 u16 ptr_gap; 1490 1491 if (speed == SPEED_1000) { 1492 ret_val = hw->phy.ops.acquire(hw); 1493 if (ret_val) 1494 goto out; 1495 1496 ret_val = e1e_rphy_locked(hw, 1497 PHY_REG(776, 20), 1498 &data); 1499 if (ret_val) { 1500 hw->phy.ops.release(hw); 1501 goto out; 1502 } 1503 1504 ptr_gap = (data & (0x3FF << 2)) >> 2; 1505 if (ptr_gap < 0x18) { 1506 data &= ~(0x3FF << 2); 1507 data |= (0x18 << 2); 1508 ret_val = 1509 e1e_wphy_locked(hw, 1510 PHY_REG(776, 20), 1511 data); 1512 } 1513 hw->phy.ops.release(hw); 1514 if (ret_val) 1515 goto out; 1516 } else { 1517 ret_val = hw->phy.ops.acquire(hw); 1518 if (ret_val) 1519 goto out; 1520 1521 ret_val = e1e_wphy_locked(hw, 1522 PHY_REG(776, 20), 1523 0xC023); 1524 hw->phy.ops.release(hw); 1525 if (ret_val) 1526 goto out; 1527 1528 } 1529 } 1530 } 1531 1532 /* I217 Packet Loss issue: 1533 * ensure that FEXTNVM4 Beacon Duration is set correctly 1534 * on power up. 1535 * Set the Beacon Duration for I217 to 8 usec 1536 */ 1537 if (hw->mac.type >= e1000_pch_lpt) { 1538 u32 mac_reg; 1539 1540 mac_reg = er32(FEXTNVM4); 1541 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK; 1542 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC; 1543 ew32(FEXTNVM4, mac_reg); 1544 } 1545 1546 /* Work-around I218 hang issue */ 1547 if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) || 1548 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) || 1549 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) || 1550 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) { 1551 ret_val = e1000_k1_workaround_lpt_lp(hw, link); 1552 if (ret_val) 1553 goto out; 1554 } 1555 if (hw->mac.type >= e1000_pch_lpt) { 1556 /* Set platform power management values for 1557 * Latency Tolerance Reporting (LTR) 1558 */ 1559 ret_val = e1000_platform_pm_pch_lpt(hw, link); 1560 if (ret_val) 1561 goto out; 1562 } 1563 1564 /* Clear link partner's EEE ability */ 1565 hw->dev_spec.ich8lan.eee_lp_ability = 0; 1566 1567 if (hw->mac.type >= e1000_pch_lpt) { 1568 u32 fextnvm6 = er32(FEXTNVM6); 1569 1570 if (hw->mac.type == e1000_pch_spt) { 1571 /* FEXTNVM6 K1-off workaround - for SPT only */ 1572 u32 pcieanacfg = er32(PCIEANACFG); 1573 1574 if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE) 1575 fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE; 1576 else 1577 fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE; 1578 } 1579 1580 ew32(FEXTNVM6, fextnvm6); 1581 } 1582 1583 if (!link) 1584 goto out; 1585 1586 switch (hw->mac.type) { 1587 case e1000_pch2lan: 1588 ret_val = e1000_k1_workaround_lv(hw); 1589 if (ret_val) 1590 return ret_val; 1591 fallthrough; 1592 case e1000_pchlan: 1593 if (hw->phy.type == e1000_phy_82578) { 1594 ret_val = e1000_link_stall_workaround_hv(hw); 1595 if (ret_val) 1596 return ret_val; 1597 } 1598 1599 /* Workaround for PCHx parts in half-duplex: 1600 * Set the number of preambles removed from the packet 1601 * when it is passed from the PHY to the MAC to prevent 1602 * the MAC from misinterpreting the packet type. 1603 */ 1604 e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg); 1605 phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK; 1606 1607 if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD) 1608 phy_reg |= BIT(HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT); 1609 1610 e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg); 1611 break; 1612 default: 1613 break; 1614 } 1615 1616 /* Check if there was DownShift, must be checked 1617 * immediately after link-up 1618 */ 1619 e1000e_check_downshift(hw); 1620 1621 /* Enable/Disable EEE after link up */ 1622 if (hw->phy.type > e1000_phy_82579) { 1623 ret_val = e1000_set_eee_pchlan(hw); 1624 if (ret_val) 1625 return ret_val; 1626 } 1627 1628 /* If we are forcing speed/duplex, then we simply return since 1629 * we have already determined whether we have link or not. 1630 */ 1631 if (!mac->autoneg) 1632 return -E1000_ERR_CONFIG; 1633 1634 /* Auto-Neg is enabled. Auto Speed Detection takes care 1635 * of MAC speed/duplex configuration. So we only need to 1636 * configure Collision Distance in the MAC. 1637 */ 1638 mac->ops.config_collision_dist(hw); 1639 1640 /* Configure Flow Control now that Auto-Neg has completed. 1641 * First, we need to restore the desired flow control 1642 * settings because we may have had to re-autoneg with a 1643 * different link partner. 1644 */ 1645 ret_val = e1000e_config_fc_after_link_up(hw); 1646 if (ret_val) 1647 e_dbg("Error configuring flow control\n"); 1648 1649 return ret_val; 1650 1651 out: 1652 mac->get_link_status = true; 1653 return ret_val; 1654 } 1655 1656 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter) 1657 { 1658 struct e1000_hw *hw = &adapter->hw; 1659 s32 rc; 1660 1661 rc = e1000_init_mac_params_ich8lan(hw); 1662 if (rc) 1663 return rc; 1664 1665 rc = e1000_init_nvm_params_ich8lan(hw); 1666 if (rc) 1667 return rc; 1668 1669 switch (hw->mac.type) { 1670 case e1000_ich8lan: 1671 case e1000_ich9lan: 1672 case e1000_ich10lan: 1673 rc = e1000_init_phy_params_ich8lan(hw); 1674 break; 1675 case e1000_pchlan: 1676 case e1000_pch2lan: 1677 case e1000_pch_lpt: 1678 case e1000_pch_spt: 1679 case e1000_pch_cnp: 1680 case e1000_pch_tgp: 1681 case e1000_pch_adp: 1682 case e1000_pch_mtp: 1683 case e1000_pch_lnp: 1684 rc = e1000_init_phy_params_pchlan(hw); 1685 break; 1686 default: 1687 break; 1688 } 1689 if (rc) 1690 return rc; 1691 1692 /* Disable Jumbo Frame support on parts with Intel 10/100 PHY or 1693 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT). 1694 */ 1695 if ((adapter->hw.phy.type == e1000_phy_ife) || 1696 ((adapter->hw.mac.type >= e1000_pch2lan) && 1697 (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) { 1698 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES; 1699 adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN; 1700 1701 hw->mac.ops.blink_led = NULL; 1702 } 1703 1704 if ((adapter->hw.mac.type == e1000_ich8lan) && 1705 (adapter->hw.phy.type != e1000_phy_ife)) 1706 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP; 1707 1708 /* Enable workaround for 82579 w/ ME enabled */ 1709 if ((adapter->hw.mac.type == e1000_pch2lan) && 1710 (er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) 1711 adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA; 1712 1713 return 0; 1714 } 1715 1716 static DEFINE_MUTEX(nvm_mutex); 1717 1718 /** 1719 * e1000_acquire_nvm_ich8lan - Acquire NVM mutex 1720 * @hw: pointer to the HW structure 1721 * 1722 * Acquires the mutex for performing NVM operations. 1723 **/ 1724 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw) 1725 { 1726 mutex_lock(&nvm_mutex); 1727 1728 return 0; 1729 } 1730 1731 /** 1732 * e1000_release_nvm_ich8lan - Release NVM mutex 1733 * @hw: pointer to the HW structure 1734 * 1735 * Releases the mutex used while performing NVM operations. 1736 **/ 1737 static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw) 1738 { 1739 mutex_unlock(&nvm_mutex); 1740 } 1741 1742 /** 1743 * e1000_acquire_swflag_ich8lan - Acquire software control flag 1744 * @hw: pointer to the HW structure 1745 * 1746 * Acquires the software control flag for performing PHY and select 1747 * MAC CSR accesses. 1748 **/ 1749 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw) 1750 { 1751 u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT; 1752 s32 ret_val = 0; 1753 1754 if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE, 1755 &hw->adapter->state)) { 1756 e_dbg("contention for Phy access\n"); 1757 return -E1000_ERR_PHY; 1758 } 1759 1760 while (timeout) { 1761 extcnf_ctrl = er32(EXTCNF_CTRL); 1762 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)) 1763 break; 1764 1765 mdelay(1); 1766 timeout--; 1767 } 1768 1769 if (!timeout) { 1770 e_dbg("SW has already locked the resource.\n"); 1771 ret_val = -E1000_ERR_CONFIG; 1772 goto out; 1773 } 1774 1775 timeout = SW_FLAG_TIMEOUT; 1776 1777 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG; 1778 ew32(EXTCNF_CTRL, extcnf_ctrl); 1779 1780 while (timeout) { 1781 extcnf_ctrl = er32(EXTCNF_CTRL); 1782 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) 1783 break; 1784 1785 mdelay(1); 1786 timeout--; 1787 } 1788 1789 if (!timeout) { 1790 e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n", 1791 er32(FWSM), extcnf_ctrl); 1792 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG; 1793 ew32(EXTCNF_CTRL, extcnf_ctrl); 1794 ret_val = -E1000_ERR_CONFIG; 1795 goto out; 1796 } 1797 1798 out: 1799 if (ret_val) 1800 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state); 1801 1802 return ret_val; 1803 } 1804 1805 /** 1806 * e1000_release_swflag_ich8lan - Release software control flag 1807 * @hw: pointer to the HW structure 1808 * 1809 * Releases the software control flag for performing PHY and select 1810 * MAC CSR accesses. 1811 **/ 1812 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw) 1813 { 1814 u32 extcnf_ctrl; 1815 1816 extcnf_ctrl = er32(EXTCNF_CTRL); 1817 1818 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) { 1819 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG; 1820 ew32(EXTCNF_CTRL, extcnf_ctrl); 1821 } else { 1822 e_dbg("Semaphore unexpectedly released by sw/fw/hw\n"); 1823 } 1824 1825 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state); 1826 } 1827 1828 /** 1829 * e1000_check_mng_mode_ich8lan - Checks management mode 1830 * @hw: pointer to the HW structure 1831 * 1832 * This checks if the adapter has any manageability enabled. 1833 * This is a function pointer entry point only called by read/write 1834 * routines for the PHY and NVM parts. 1835 **/ 1836 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw) 1837 { 1838 u32 fwsm; 1839 1840 fwsm = er32(FWSM); 1841 return (fwsm & E1000_ICH_FWSM_FW_VALID) && 1842 ((fwsm & E1000_FWSM_MODE_MASK) == 1843 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)); 1844 } 1845 1846 /** 1847 * e1000_check_mng_mode_pchlan - Checks management mode 1848 * @hw: pointer to the HW structure 1849 * 1850 * This checks if the adapter has iAMT enabled. 1851 * This is a function pointer entry point only called by read/write 1852 * routines for the PHY and NVM parts. 1853 **/ 1854 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw) 1855 { 1856 u32 fwsm; 1857 1858 fwsm = er32(FWSM); 1859 return (fwsm & E1000_ICH_FWSM_FW_VALID) && 1860 (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)); 1861 } 1862 1863 /** 1864 * e1000_rar_set_pch2lan - Set receive address register 1865 * @hw: pointer to the HW structure 1866 * @addr: pointer to the receive address 1867 * @index: receive address array register 1868 * 1869 * Sets the receive address array register at index to the address passed 1870 * in by addr. For 82579, RAR[0] is the base address register that is to 1871 * contain the MAC address but RAR[1-6] are reserved for manageability (ME). 1872 * Use SHRA[0-3] in place of those reserved for ME. 1873 **/ 1874 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index) 1875 { 1876 u32 rar_low, rar_high; 1877 1878 /* HW expects these in little endian so we reverse the byte order 1879 * from network order (big endian) to little endian 1880 */ 1881 rar_low = ((u32)addr[0] | 1882 ((u32)addr[1] << 8) | 1883 ((u32)addr[2] << 16) | ((u32)addr[3] << 24)); 1884 1885 rar_high = ((u32)addr[4] | ((u32)addr[5] << 8)); 1886 1887 /* If MAC address zero, no need to set the AV bit */ 1888 if (rar_low || rar_high) 1889 rar_high |= E1000_RAH_AV; 1890 1891 if (index == 0) { 1892 ew32(RAL(index), rar_low); 1893 e1e_flush(); 1894 ew32(RAH(index), rar_high); 1895 e1e_flush(); 1896 return 0; 1897 } 1898 1899 /* RAR[1-6] are owned by manageability. Skip those and program the 1900 * next address into the SHRA register array. 1901 */ 1902 if (index < (u32)(hw->mac.rar_entry_count)) { 1903 s32 ret_val; 1904 1905 ret_val = e1000_acquire_swflag_ich8lan(hw); 1906 if (ret_val) 1907 goto out; 1908 1909 ew32(SHRAL(index - 1), rar_low); 1910 e1e_flush(); 1911 ew32(SHRAH(index - 1), rar_high); 1912 e1e_flush(); 1913 1914 e1000_release_swflag_ich8lan(hw); 1915 1916 /* verify the register updates */ 1917 if ((er32(SHRAL(index - 1)) == rar_low) && 1918 (er32(SHRAH(index - 1)) == rar_high)) 1919 return 0; 1920 1921 e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n", 1922 (index - 1), er32(FWSM)); 1923 } 1924 1925 out: 1926 e_dbg("Failed to write receive address at index %d\n", index); 1927 return -E1000_ERR_CONFIG; 1928 } 1929 1930 /** 1931 * e1000_rar_get_count_pch_lpt - Get the number of available SHRA 1932 * @hw: pointer to the HW structure 1933 * 1934 * Get the number of available receive registers that the Host can 1935 * program. SHRA[0-10] are the shared receive address registers 1936 * that are shared between the Host and manageability engine (ME). 1937 * ME can reserve any number of addresses and the host needs to be 1938 * able to tell how many available registers it has access to. 1939 **/ 1940 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw) 1941 { 1942 u32 wlock_mac; 1943 u32 num_entries; 1944 1945 wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK; 1946 wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT; 1947 1948 switch (wlock_mac) { 1949 case 0: 1950 /* All SHRA[0..10] and RAR[0] available */ 1951 num_entries = hw->mac.rar_entry_count; 1952 break; 1953 case 1: 1954 /* Only RAR[0] available */ 1955 num_entries = 1; 1956 break; 1957 default: 1958 /* SHRA[0..(wlock_mac - 1)] available + RAR[0] */ 1959 num_entries = wlock_mac + 1; 1960 break; 1961 } 1962 1963 return num_entries; 1964 } 1965 1966 /** 1967 * e1000_rar_set_pch_lpt - Set receive address registers 1968 * @hw: pointer to the HW structure 1969 * @addr: pointer to the receive address 1970 * @index: receive address array register 1971 * 1972 * Sets the receive address register array at index to the address passed 1973 * in by addr. For LPT, RAR[0] is the base address register that is to 1974 * contain the MAC address. SHRA[0-10] are the shared receive address 1975 * registers that are shared between the Host and manageability engine (ME). 1976 **/ 1977 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index) 1978 { 1979 u32 rar_low, rar_high; 1980 u32 wlock_mac; 1981 1982 /* HW expects these in little endian so we reverse the byte order 1983 * from network order (big endian) to little endian 1984 */ 1985 rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) | 1986 ((u32)addr[2] << 16) | ((u32)addr[3] << 24)); 1987 1988 rar_high = ((u32)addr[4] | ((u32)addr[5] << 8)); 1989 1990 /* If MAC address zero, no need to set the AV bit */ 1991 if (rar_low || rar_high) 1992 rar_high |= E1000_RAH_AV; 1993 1994 if (index == 0) { 1995 ew32(RAL(index), rar_low); 1996 e1e_flush(); 1997 ew32(RAH(index), rar_high); 1998 e1e_flush(); 1999 return 0; 2000 } 2001 2002 /* The manageability engine (ME) can lock certain SHRAR registers that 2003 * it is using - those registers are unavailable for use. 2004 */ 2005 if (index < hw->mac.rar_entry_count) { 2006 wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK; 2007 wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT; 2008 2009 /* Check if all SHRAR registers are locked */ 2010 if (wlock_mac == 1) 2011 goto out; 2012 2013 if ((wlock_mac == 0) || (index <= wlock_mac)) { 2014 s32 ret_val; 2015 2016 ret_val = e1000_acquire_swflag_ich8lan(hw); 2017 2018 if (ret_val) 2019 goto out; 2020 2021 ew32(SHRAL_PCH_LPT(index - 1), rar_low); 2022 e1e_flush(); 2023 ew32(SHRAH_PCH_LPT(index - 1), rar_high); 2024 e1e_flush(); 2025 2026 e1000_release_swflag_ich8lan(hw); 2027 2028 /* verify the register updates */ 2029 if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) && 2030 (er32(SHRAH_PCH_LPT(index - 1)) == rar_high)) 2031 return 0; 2032 } 2033 } 2034 2035 out: 2036 e_dbg("Failed to write receive address at index %d\n", index); 2037 return -E1000_ERR_CONFIG; 2038 } 2039 2040 /** 2041 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked 2042 * @hw: pointer to the HW structure 2043 * 2044 * Checks if firmware is blocking the reset of the PHY. 2045 * This is a function pointer entry point only called by 2046 * reset routines. 2047 **/ 2048 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw) 2049 { 2050 bool blocked = false; 2051 int i = 0; 2052 2053 while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) && 2054 (i++ < 30)) 2055 usleep_range(10000, 11000); 2056 return blocked ? E1000_BLK_PHY_RESET : 0; 2057 } 2058 2059 /** 2060 * e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states 2061 * @hw: pointer to the HW structure 2062 * 2063 * Assumes semaphore already acquired. 2064 * 2065 **/ 2066 static s32 e1000_write_smbus_addr(struct e1000_hw *hw) 2067 { 2068 u16 phy_data; 2069 u32 strap = er32(STRAP); 2070 u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >> 2071 E1000_STRAP_SMT_FREQ_SHIFT; 2072 s32 ret_val; 2073 2074 strap &= E1000_STRAP_SMBUS_ADDRESS_MASK; 2075 2076 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data); 2077 if (ret_val) 2078 return ret_val; 2079 2080 phy_data &= ~HV_SMB_ADDR_MASK; 2081 phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT); 2082 phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID; 2083 2084 if (hw->phy.type == e1000_phy_i217) { 2085 /* Restore SMBus frequency */ 2086 if (freq--) { 2087 phy_data &= ~HV_SMB_ADDR_FREQ_MASK; 2088 phy_data |= (freq & BIT(0)) << 2089 HV_SMB_ADDR_FREQ_LOW_SHIFT; 2090 phy_data |= (freq & BIT(1)) << 2091 (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1); 2092 } else { 2093 e_dbg("Unsupported SMB frequency in PHY\n"); 2094 } 2095 } 2096 2097 return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data); 2098 } 2099 2100 /** 2101 * e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration 2102 * @hw: pointer to the HW structure 2103 * 2104 * SW should configure the LCD from the NVM extended configuration region 2105 * as a workaround for certain parts. 2106 **/ 2107 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw) 2108 { 2109 struct e1000_phy_info *phy = &hw->phy; 2110 u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask; 2111 s32 ret_val = 0; 2112 u16 word_addr, reg_data, reg_addr, phy_page = 0; 2113 2114 /* Initialize the PHY from the NVM on ICH platforms. This 2115 * is needed due to an issue where the NVM configuration is 2116 * not properly autoloaded after power transitions. 2117 * Therefore, after each PHY reset, we will load the 2118 * configuration data out of the NVM manually. 2119 */ 2120 switch (hw->mac.type) { 2121 case e1000_ich8lan: 2122 if (phy->type != e1000_phy_igp_3) 2123 return ret_val; 2124 2125 if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) || 2126 (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) { 2127 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG; 2128 break; 2129 } 2130 fallthrough; 2131 case e1000_pchlan: 2132 case e1000_pch2lan: 2133 case e1000_pch_lpt: 2134 case e1000_pch_spt: 2135 case e1000_pch_cnp: 2136 case e1000_pch_tgp: 2137 case e1000_pch_adp: 2138 case e1000_pch_mtp: 2139 case e1000_pch_lnp: 2140 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M; 2141 break; 2142 default: 2143 return ret_val; 2144 } 2145 2146 ret_val = hw->phy.ops.acquire(hw); 2147 if (ret_val) 2148 return ret_val; 2149 2150 data = er32(FEXTNVM); 2151 if (!(data & sw_cfg_mask)) 2152 goto release; 2153 2154 /* Make sure HW does not configure LCD from PHY 2155 * extended configuration before SW configuration 2156 */ 2157 data = er32(EXTCNF_CTRL); 2158 if ((hw->mac.type < e1000_pch2lan) && 2159 (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)) 2160 goto release; 2161 2162 cnf_size = er32(EXTCNF_SIZE); 2163 cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK; 2164 cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT; 2165 if (!cnf_size) 2166 goto release; 2167 2168 cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK; 2169 cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT; 2170 2171 if (((hw->mac.type == e1000_pchlan) && 2172 !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) || 2173 (hw->mac.type > e1000_pchlan)) { 2174 /* HW configures the SMBus address and LEDs when the 2175 * OEM and LCD Write Enable bits are set in the NVM. 2176 * When both NVM bits are cleared, SW will configure 2177 * them instead. 2178 */ 2179 ret_val = e1000_write_smbus_addr(hw); 2180 if (ret_val) 2181 goto release; 2182 2183 data = er32(LEDCTL); 2184 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG, 2185 (u16)data); 2186 if (ret_val) 2187 goto release; 2188 } 2189 2190 /* Configure LCD from extended configuration region. */ 2191 2192 /* cnf_base_addr is in DWORD */ 2193 word_addr = (u16)(cnf_base_addr << 1); 2194 2195 for (i = 0; i < cnf_size; i++) { 2196 ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, ®_data); 2197 if (ret_val) 2198 goto release; 2199 2200 ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1), 2201 1, ®_addr); 2202 if (ret_val) 2203 goto release; 2204 2205 /* Save off the PHY page for future writes. */ 2206 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) { 2207 phy_page = reg_data; 2208 continue; 2209 } 2210 2211 reg_addr &= PHY_REG_MASK; 2212 reg_addr |= phy_page; 2213 2214 ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data); 2215 if (ret_val) 2216 goto release; 2217 } 2218 2219 release: 2220 hw->phy.ops.release(hw); 2221 return ret_val; 2222 } 2223 2224 /** 2225 * e1000_k1_gig_workaround_hv - K1 Si workaround 2226 * @hw: pointer to the HW structure 2227 * @link: link up bool flag 2228 * 2229 * If K1 is enabled for 1Gbps, the MAC might stall when transitioning 2230 * from a lower speed. This workaround disables K1 whenever link is at 1Gig 2231 * If link is down, the function will restore the default K1 setting located 2232 * in the NVM. 2233 **/ 2234 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link) 2235 { 2236 s32 ret_val = 0; 2237 u16 status_reg = 0; 2238 bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled; 2239 2240 if (hw->mac.type != e1000_pchlan) 2241 return 0; 2242 2243 /* Wrap the whole flow with the sw flag */ 2244 ret_val = hw->phy.ops.acquire(hw); 2245 if (ret_val) 2246 return ret_val; 2247 2248 /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */ 2249 if (link) { 2250 if (hw->phy.type == e1000_phy_82578) { 2251 ret_val = e1e_rphy_locked(hw, BM_CS_STATUS, 2252 &status_reg); 2253 if (ret_val) 2254 goto release; 2255 2256 status_reg &= (BM_CS_STATUS_LINK_UP | 2257 BM_CS_STATUS_RESOLVED | 2258 BM_CS_STATUS_SPEED_MASK); 2259 2260 if (status_reg == (BM_CS_STATUS_LINK_UP | 2261 BM_CS_STATUS_RESOLVED | 2262 BM_CS_STATUS_SPEED_1000)) 2263 k1_enable = false; 2264 } 2265 2266 if (hw->phy.type == e1000_phy_82577) { 2267 ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg); 2268 if (ret_val) 2269 goto release; 2270 2271 status_reg &= (HV_M_STATUS_LINK_UP | 2272 HV_M_STATUS_AUTONEG_COMPLETE | 2273 HV_M_STATUS_SPEED_MASK); 2274 2275 if (status_reg == (HV_M_STATUS_LINK_UP | 2276 HV_M_STATUS_AUTONEG_COMPLETE | 2277 HV_M_STATUS_SPEED_1000)) 2278 k1_enable = false; 2279 } 2280 2281 /* Link stall fix for link up */ 2282 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100); 2283 if (ret_val) 2284 goto release; 2285 2286 } else { 2287 /* Link stall fix for link down */ 2288 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100); 2289 if (ret_val) 2290 goto release; 2291 } 2292 2293 ret_val = e1000_configure_k1_ich8lan(hw, k1_enable); 2294 2295 release: 2296 hw->phy.ops.release(hw); 2297 2298 return ret_val; 2299 } 2300 2301 /** 2302 * e1000_configure_k1_ich8lan - Configure K1 power state 2303 * @hw: pointer to the HW structure 2304 * @k1_enable: K1 state to configure 2305 * 2306 * Configure the K1 power state based on the provided parameter. 2307 * Assumes semaphore already acquired. 2308 * 2309 * Success returns 0, Failure returns -E1000_ERR_PHY (-2) 2310 **/ 2311 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable) 2312 { 2313 s32 ret_val; 2314 u32 ctrl_reg = 0; 2315 u32 ctrl_ext = 0; 2316 u32 reg = 0; 2317 u16 kmrn_reg = 0; 2318 2319 ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG, 2320 &kmrn_reg); 2321 if (ret_val) 2322 return ret_val; 2323 2324 if (k1_enable) 2325 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE; 2326 else 2327 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE; 2328 2329 ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG, 2330 kmrn_reg); 2331 if (ret_val) 2332 return ret_val; 2333 2334 usleep_range(20, 40); 2335 ctrl_ext = er32(CTRL_EXT); 2336 ctrl_reg = er32(CTRL); 2337 2338 reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); 2339 reg |= E1000_CTRL_FRCSPD; 2340 ew32(CTRL, reg); 2341 2342 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS); 2343 e1e_flush(); 2344 usleep_range(20, 40); 2345 ew32(CTRL, ctrl_reg); 2346 ew32(CTRL_EXT, ctrl_ext); 2347 e1e_flush(); 2348 usleep_range(20, 40); 2349 2350 return 0; 2351 } 2352 2353 /** 2354 * e1000_oem_bits_config_ich8lan - SW-based LCD Configuration 2355 * @hw: pointer to the HW structure 2356 * @d0_state: boolean if entering d0 or d3 device state 2357 * 2358 * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are 2359 * collectively called OEM bits. The OEM Write Enable bit and SW Config bit 2360 * in NVM determines whether HW should configure LPLU and Gbe Disable. 2361 **/ 2362 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state) 2363 { 2364 s32 ret_val = 0; 2365 u32 mac_reg; 2366 u16 oem_reg; 2367 2368 if (hw->mac.type < e1000_pchlan) 2369 return ret_val; 2370 2371 ret_val = hw->phy.ops.acquire(hw); 2372 if (ret_val) 2373 return ret_val; 2374 2375 if (hw->mac.type == e1000_pchlan) { 2376 mac_reg = er32(EXTCNF_CTRL); 2377 if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) 2378 goto release; 2379 } 2380 2381 mac_reg = er32(FEXTNVM); 2382 if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M)) 2383 goto release; 2384 2385 mac_reg = er32(PHY_CTRL); 2386 2387 ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg); 2388 if (ret_val) 2389 goto release; 2390 2391 oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU); 2392 2393 if (d0_state) { 2394 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE) 2395 oem_reg |= HV_OEM_BITS_GBE_DIS; 2396 2397 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU) 2398 oem_reg |= HV_OEM_BITS_LPLU; 2399 } else { 2400 if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE | 2401 E1000_PHY_CTRL_NOND0A_GBE_DISABLE)) 2402 oem_reg |= HV_OEM_BITS_GBE_DIS; 2403 2404 if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU | 2405 E1000_PHY_CTRL_NOND0A_LPLU)) 2406 oem_reg |= HV_OEM_BITS_LPLU; 2407 } 2408 2409 /* Set Restart auto-neg to activate the bits */ 2410 if ((d0_state || (hw->mac.type != e1000_pchlan)) && 2411 !hw->phy.ops.check_reset_block(hw)) 2412 oem_reg |= HV_OEM_BITS_RESTART_AN; 2413 2414 ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg); 2415 2416 release: 2417 hw->phy.ops.release(hw); 2418 2419 return ret_val; 2420 } 2421 2422 /** 2423 * e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode 2424 * @hw: pointer to the HW structure 2425 **/ 2426 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw) 2427 { 2428 s32 ret_val; 2429 u16 data; 2430 2431 ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data); 2432 if (ret_val) 2433 return ret_val; 2434 2435 data |= HV_KMRN_MDIO_SLOW; 2436 2437 ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data); 2438 2439 return ret_val; 2440 } 2441 2442 /** 2443 * e1000_hv_phy_workarounds_ich8lan - apply PHY workarounds 2444 * @hw: pointer to the HW structure 2445 * 2446 * A series of PHY workarounds to be done after every PHY reset. 2447 **/ 2448 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw) 2449 { 2450 s32 ret_val = 0; 2451 u16 phy_data; 2452 2453 if (hw->mac.type != e1000_pchlan) 2454 return 0; 2455 2456 /* Set MDIO slow mode before any other MDIO access */ 2457 if (hw->phy.type == e1000_phy_82577) { 2458 ret_val = e1000_set_mdio_slow_mode_hv(hw); 2459 if (ret_val) 2460 return ret_val; 2461 } 2462 2463 if (((hw->phy.type == e1000_phy_82577) && 2464 ((hw->phy.revision == 1) || (hw->phy.revision == 2))) || 2465 ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) { 2466 /* Disable generation of early preamble */ 2467 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431); 2468 if (ret_val) 2469 return ret_val; 2470 2471 /* Preamble tuning for SSC */ 2472 ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204); 2473 if (ret_val) 2474 return ret_val; 2475 } 2476 2477 if (hw->phy.type == e1000_phy_82578) { 2478 /* Return registers to default by doing a soft reset then 2479 * writing 0x3140 to the control register. 2480 */ 2481 if (hw->phy.revision < 2) { 2482 e1000e_phy_sw_reset(hw); 2483 ret_val = e1e_wphy(hw, MII_BMCR, 0x3140); 2484 if (ret_val) 2485 return ret_val; 2486 } 2487 } 2488 2489 /* Select page 0 */ 2490 ret_val = hw->phy.ops.acquire(hw); 2491 if (ret_val) 2492 return ret_val; 2493 2494 hw->phy.addr = 1; 2495 ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0); 2496 hw->phy.ops.release(hw); 2497 if (ret_val) 2498 return ret_val; 2499 2500 /* Configure the K1 Si workaround during phy reset assuming there is 2501 * link so that it disables K1 if link is in 1Gbps. 2502 */ 2503 ret_val = e1000_k1_gig_workaround_hv(hw, true); 2504 if (ret_val) 2505 return ret_val; 2506 2507 /* Workaround for link disconnects on a busy hub in half duplex */ 2508 ret_val = hw->phy.ops.acquire(hw); 2509 if (ret_val) 2510 return ret_val; 2511 ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data); 2512 if (ret_val) 2513 goto release; 2514 ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF); 2515 if (ret_val) 2516 goto release; 2517 2518 /* set MSE higher to enable link to stay up when noise is high */ 2519 ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034); 2520 release: 2521 hw->phy.ops.release(hw); 2522 2523 return ret_val; 2524 } 2525 2526 /** 2527 * e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY 2528 * @hw: pointer to the HW structure 2529 **/ 2530 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw) 2531 { 2532 u32 mac_reg; 2533 u16 i, phy_reg = 0; 2534 s32 ret_val; 2535 2536 ret_val = hw->phy.ops.acquire(hw); 2537 if (ret_val) 2538 return; 2539 ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg); 2540 if (ret_val) 2541 goto release; 2542 2543 /* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */ 2544 for (i = 0; i < (hw->mac.rar_entry_count); i++) { 2545 mac_reg = er32(RAL(i)); 2546 hw->phy.ops.write_reg_page(hw, BM_RAR_L(i), 2547 (u16)(mac_reg & 0xFFFF)); 2548 hw->phy.ops.write_reg_page(hw, BM_RAR_M(i), 2549 (u16)((mac_reg >> 16) & 0xFFFF)); 2550 2551 mac_reg = er32(RAH(i)); 2552 hw->phy.ops.write_reg_page(hw, BM_RAR_H(i), 2553 (u16)(mac_reg & 0xFFFF)); 2554 hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i), 2555 (u16)((mac_reg & E1000_RAH_AV) 2556 >> 16)); 2557 } 2558 2559 e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg); 2560 2561 release: 2562 hw->phy.ops.release(hw); 2563 } 2564 2565 /** 2566 * e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation 2567 * with 82579 PHY 2568 * @hw: pointer to the HW structure 2569 * @enable: flag to enable/disable workaround when enabling/disabling jumbos 2570 **/ 2571 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable) 2572 { 2573 s32 ret_val = 0; 2574 u16 phy_reg, data; 2575 u32 mac_reg; 2576 u16 i; 2577 2578 if (hw->mac.type < e1000_pch2lan) 2579 return 0; 2580 2581 /* disable Rx path while enabling/disabling workaround */ 2582 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg); 2583 ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | BIT(14)); 2584 if (ret_val) 2585 return ret_val; 2586 2587 if (enable) { 2588 /* Write Rx addresses (rar_entry_count for RAL/H, and 2589 * SHRAL/H) and initial CRC values to the MAC 2590 */ 2591 for (i = 0; i < hw->mac.rar_entry_count; i++) { 2592 u8 mac_addr[ETH_ALEN] = { 0 }; 2593 u32 addr_high, addr_low; 2594 2595 addr_high = er32(RAH(i)); 2596 if (!(addr_high & E1000_RAH_AV)) 2597 continue; 2598 addr_low = er32(RAL(i)); 2599 mac_addr[0] = (addr_low & 0xFF); 2600 mac_addr[1] = ((addr_low >> 8) & 0xFF); 2601 mac_addr[2] = ((addr_low >> 16) & 0xFF); 2602 mac_addr[3] = ((addr_low >> 24) & 0xFF); 2603 mac_addr[4] = (addr_high & 0xFF); 2604 mac_addr[5] = ((addr_high >> 8) & 0xFF); 2605 2606 ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr)); 2607 } 2608 2609 /* Write Rx addresses to the PHY */ 2610 e1000_copy_rx_addrs_to_phy_ich8lan(hw); 2611 2612 /* Enable jumbo frame workaround in the MAC */ 2613 mac_reg = er32(FFLT_DBG); 2614 mac_reg &= ~BIT(14); 2615 mac_reg |= (7 << 15); 2616 ew32(FFLT_DBG, mac_reg); 2617 2618 mac_reg = er32(RCTL); 2619 mac_reg |= E1000_RCTL_SECRC; 2620 ew32(RCTL, mac_reg); 2621 2622 ret_val = e1000e_read_kmrn_reg(hw, 2623 E1000_KMRNCTRLSTA_CTRL_OFFSET, 2624 &data); 2625 if (ret_val) 2626 return ret_val; 2627 ret_val = e1000e_write_kmrn_reg(hw, 2628 E1000_KMRNCTRLSTA_CTRL_OFFSET, 2629 data | BIT(0)); 2630 if (ret_val) 2631 return ret_val; 2632 ret_val = e1000e_read_kmrn_reg(hw, 2633 E1000_KMRNCTRLSTA_HD_CTRL, 2634 &data); 2635 if (ret_val) 2636 return ret_val; 2637 data &= ~(0xF << 8); 2638 data |= (0xB << 8); 2639 ret_val = e1000e_write_kmrn_reg(hw, 2640 E1000_KMRNCTRLSTA_HD_CTRL, 2641 data); 2642 if (ret_val) 2643 return ret_val; 2644 2645 /* Enable jumbo frame workaround in the PHY */ 2646 e1e_rphy(hw, PHY_REG(769, 23), &data); 2647 data &= ~(0x7F << 5); 2648 data |= (0x37 << 5); 2649 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data); 2650 if (ret_val) 2651 return ret_val; 2652 e1e_rphy(hw, PHY_REG(769, 16), &data); 2653 data &= ~BIT(13); 2654 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data); 2655 if (ret_val) 2656 return ret_val; 2657 e1e_rphy(hw, PHY_REG(776, 20), &data); 2658 data &= ~(0x3FF << 2); 2659 data |= (E1000_TX_PTR_GAP << 2); 2660 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data); 2661 if (ret_val) 2662 return ret_val; 2663 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100); 2664 if (ret_val) 2665 return ret_val; 2666 e1e_rphy(hw, HV_PM_CTRL, &data); 2667 ret_val = e1e_wphy(hw, HV_PM_CTRL, data | BIT(10)); 2668 if (ret_val) 2669 return ret_val; 2670 } else { 2671 /* Write MAC register values back to h/w defaults */ 2672 mac_reg = er32(FFLT_DBG); 2673 mac_reg &= ~(0xF << 14); 2674 ew32(FFLT_DBG, mac_reg); 2675 2676 mac_reg = er32(RCTL); 2677 mac_reg &= ~E1000_RCTL_SECRC; 2678 ew32(RCTL, mac_reg); 2679 2680 ret_val = e1000e_read_kmrn_reg(hw, 2681 E1000_KMRNCTRLSTA_CTRL_OFFSET, 2682 &data); 2683 if (ret_val) 2684 return ret_val; 2685 ret_val = e1000e_write_kmrn_reg(hw, 2686 E1000_KMRNCTRLSTA_CTRL_OFFSET, 2687 data & ~BIT(0)); 2688 if (ret_val) 2689 return ret_val; 2690 ret_val = e1000e_read_kmrn_reg(hw, 2691 E1000_KMRNCTRLSTA_HD_CTRL, 2692 &data); 2693 if (ret_val) 2694 return ret_val; 2695 data &= ~(0xF << 8); 2696 data |= (0xB << 8); 2697 ret_val = e1000e_write_kmrn_reg(hw, 2698 E1000_KMRNCTRLSTA_HD_CTRL, 2699 data); 2700 if (ret_val) 2701 return ret_val; 2702 2703 /* Write PHY register values back to h/w defaults */ 2704 e1e_rphy(hw, PHY_REG(769, 23), &data); 2705 data &= ~(0x7F << 5); 2706 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data); 2707 if (ret_val) 2708 return ret_val; 2709 e1e_rphy(hw, PHY_REG(769, 16), &data); 2710 data |= BIT(13); 2711 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data); 2712 if (ret_val) 2713 return ret_val; 2714 e1e_rphy(hw, PHY_REG(776, 20), &data); 2715 data &= ~(0x3FF << 2); 2716 data |= (0x8 << 2); 2717 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data); 2718 if (ret_val) 2719 return ret_val; 2720 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00); 2721 if (ret_val) 2722 return ret_val; 2723 e1e_rphy(hw, HV_PM_CTRL, &data); 2724 ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~BIT(10)); 2725 if (ret_val) 2726 return ret_val; 2727 } 2728 2729 /* re-enable Rx path after enabling/disabling workaround */ 2730 return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~BIT(14)); 2731 } 2732 2733 /** 2734 * e1000_lv_phy_workarounds_ich8lan - apply ich8 specific workarounds 2735 * @hw: pointer to the HW structure 2736 * 2737 * A series of PHY workarounds to be done after every PHY reset. 2738 **/ 2739 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw) 2740 { 2741 s32 ret_val = 0; 2742 2743 if (hw->mac.type != e1000_pch2lan) 2744 return 0; 2745 2746 /* Set MDIO slow mode before any other MDIO access */ 2747 ret_val = e1000_set_mdio_slow_mode_hv(hw); 2748 if (ret_val) 2749 return ret_val; 2750 2751 ret_val = hw->phy.ops.acquire(hw); 2752 if (ret_val) 2753 return ret_val; 2754 /* set MSE higher to enable link to stay up when noise is high */ 2755 ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034); 2756 if (ret_val) 2757 goto release; 2758 /* drop link after 5 times MSE threshold was reached */ 2759 ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005); 2760 release: 2761 hw->phy.ops.release(hw); 2762 2763 return ret_val; 2764 } 2765 2766 /** 2767 * e1000_k1_workaround_lv - K1 Si workaround 2768 * @hw: pointer to the HW structure 2769 * 2770 * Workaround to set the K1 beacon duration for 82579 parts in 10Mbps 2771 * Disable K1 in 1000Mbps and 100Mbps 2772 **/ 2773 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw) 2774 { 2775 s32 ret_val = 0; 2776 u16 status_reg = 0; 2777 2778 if (hw->mac.type != e1000_pch2lan) 2779 return 0; 2780 2781 /* Set K1 beacon duration based on 10Mbs speed */ 2782 ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg); 2783 if (ret_val) 2784 return ret_val; 2785 2786 if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) 2787 == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) { 2788 if (status_reg & 2789 (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) { 2790 u16 pm_phy_reg; 2791 2792 /* LV 1G/100 Packet drop issue wa */ 2793 ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg); 2794 if (ret_val) 2795 return ret_val; 2796 pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE; 2797 ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg); 2798 if (ret_val) 2799 return ret_val; 2800 } else { 2801 u32 mac_reg; 2802 2803 mac_reg = er32(FEXTNVM4); 2804 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK; 2805 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC; 2806 ew32(FEXTNVM4, mac_reg); 2807 } 2808 } 2809 2810 return ret_val; 2811 } 2812 2813 /** 2814 * e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware 2815 * @hw: pointer to the HW structure 2816 * @gate: boolean set to true to gate, false to ungate 2817 * 2818 * Gate/ungate the automatic PHY configuration via hardware; perform 2819 * the configuration via software instead. 2820 **/ 2821 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate) 2822 { 2823 u32 extcnf_ctrl; 2824 2825 if (hw->mac.type < e1000_pch2lan) 2826 return; 2827 2828 extcnf_ctrl = er32(EXTCNF_CTRL); 2829 2830 if (gate) 2831 extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG; 2832 else 2833 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG; 2834 2835 ew32(EXTCNF_CTRL, extcnf_ctrl); 2836 } 2837 2838 /** 2839 * e1000_lan_init_done_ich8lan - Check for PHY config completion 2840 * @hw: pointer to the HW structure 2841 * 2842 * Check the appropriate indication the MAC has finished configuring the 2843 * PHY after a software reset. 2844 **/ 2845 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw) 2846 { 2847 u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT; 2848 2849 /* Wait for basic configuration completes before proceeding */ 2850 do { 2851 data = er32(STATUS); 2852 data &= E1000_STATUS_LAN_INIT_DONE; 2853 usleep_range(100, 200); 2854 } while ((!data) && --loop); 2855 2856 /* If basic configuration is incomplete before the above loop 2857 * count reaches 0, loading the configuration from NVM will 2858 * leave the PHY in a bad state possibly resulting in no link. 2859 */ 2860 if (loop == 0) 2861 e_dbg("LAN_INIT_DONE not set, increase timeout\n"); 2862 2863 /* Clear the Init Done bit for the next init event */ 2864 data = er32(STATUS); 2865 data &= ~E1000_STATUS_LAN_INIT_DONE; 2866 ew32(STATUS, data); 2867 } 2868 2869 /** 2870 * e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset 2871 * @hw: pointer to the HW structure 2872 **/ 2873 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw) 2874 { 2875 s32 ret_val = 0; 2876 u16 reg; 2877 2878 if (hw->phy.ops.check_reset_block(hw)) 2879 return 0; 2880 2881 /* Allow time for h/w to get to quiescent state after reset */ 2882 usleep_range(10000, 11000); 2883 2884 /* Perform any necessary post-reset workarounds */ 2885 switch (hw->mac.type) { 2886 case e1000_pchlan: 2887 ret_val = e1000_hv_phy_workarounds_ich8lan(hw); 2888 if (ret_val) 2889 return ret_val; 2890 break; 2891 case e1000_pch2lan: 2892 ret_val = e1000_lv_phy_workarounds_ich8lan(hw); 2893 if (ret_val) 2894 return ret_val; 2895 break; 2896 default: 2897 break; 2898 } 2899 2900 /* Clear the host wakeup bit after lcd reset */ 2901 if (hw->mac.type >= e1000_pchlan) { 2902 e1e_rphy(hw, BM_PORT_GEN_CFG, ®); 2903 reg &= ~BM_WUC_HOST_WU_BIT; 2904 e1e_wphy(hw, BM_PORT_GEN_CFG, reg); 2905 } 2906 2907 /* Configure the LCD with the extended configuration region in NVM */ 2908 ret_val = e1000_sw_lcd_config_ich8lan(hw); 2909 if (ret_val) 2910 return ret_val; 2911 2912 /* Configure the LCD with the OEM bits in NVM */ 2913 ret_val = e1000_oem_bits_config_ich8lan(hw, true); 2914 2915 if (hw->mac.type == e1000_pch2lan) { 2916 /* Ungate automatic PHY configuration on non-managed 82579 */ 2917 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) { 2918 usleep_range(10000, 11000); 2919 e1000_gate_hw_phy_config_ich8lan(hw, false); 2920 } 2921 2922 /* Set EEE LPI Update Timer to 200usec */ 2923 ret_val = hw->phy.ops.acquire(hw); 2924 if (ret_val) 2925 return ret_val; 2926 ret_val = e1000_write_emi_reg_locked(hw, 2927 I82579_LPI_UPDATE_TIMER, 2928 0x1387); 2929 hw->phy.ops.release(hw); 2930 } 2931 2932 return ret_val; 2933 } 2934 2935 /** 2936 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset 2937 * @hw: pointer to the HW structure 2938 * 2939 * Resets the PHY 2940 * This is a function pointer entry point called by drivers 2941 * or other shared routines. 2942 **/ 2943 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw) 2944 { 2945 s32 ret_val = 0; 2946 2947 /* Gate automatic PHY configuration by hardware on non-managed 82579 */ 2948 if ((hw->mac.type == e1000_pch2lan) && 2949 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) 2950 e1000_gate_hw_phy_config_ich8lan(hw, true); 2951 2952 ret_val = e1000e_phy_hw_reset_generic(hw); 2953 if (ret_val) 2954 return ret_val; 2955 2956 return e1000_post_phy_reset_ich8lan(hw); 2957 } 2958 2959 /** 2960 * e1000_set_lplu_state_pchlan - Set Low Power Link Up state 2961 * @hw: pointer to the HW structure 2962 * @active: true to enable LPLU, false to disable 2963 * 2964 * Sets the LPLU state according to the active flag. For PCH, if OEM write 2965 * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set 2966 * the phy speed. This function will manually set the LPLU bit and restart 2967 * auto-neg as hw would do. D3 and D0 LPLU will call the same function 2968 * since it configures the same bit. 2969 **/ 2970 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active) 2971 { 2972 s32 ret_val; 2973 u16 oem_reg; 2974 2975 ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg); 2976 if (ret_val) 2977 return ret_val; 2978 2979 if (active) 2980 oem_reg |= HV_OEM_BITS_LPLU; 2981 else 2982 oem_reg &= ~HV_OEM_BITS_LPLU; 2983 2984 if (!hw->phy.ops.check_reset_block(hw)) 2985 oem_reg |= HV_OEM_BITS_RESTART_AN; 2986 2987 return e1e_wphy(hw, HV_OEM_BITS, oem_reg); 2988 } 2989 2990 /** 2991 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state 2992 * @hw: pointer to the HW structure 2993 * @active: true to enable LPLU, false to disable 2994 * 2995 * Sets the LPLU D0 state according to the active flag. When 2996 * activating LPLU this function also disables smart speed 2997 * and vice versa. LPLU will not be activated unless the 2998 * device autonegotiation advertisement meets standards of 2999 * either 10 or 10/100 or 10/100/1000 at all duplexes. 3000 * This is a function pointer entry point only called by 3001 * PHY setup routines. 3002 **/ 3003 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active) 3004 { 3005 struct e1000_phy_info *phy = &hw->phy; 3006 u32 phy_ctrl; 3007 s32 ret_val = 0; 3008 u16 data; 3009 3010 if (phy->type == e1000_phy_ife) 3011 return 0; 3012 3013 phy_ctrl = er32(PHY_CTRL); 3014 3015 if (active) { 3016 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU; 3017 ew32(PHY_CTRL, phy_ctrl); 3018 3019 if (phy->type != e1000_phy_igp_3) 3020 return 0; 3021 3022 /* Call gig speed drop workaround on LPLU before accessing 3023 * any PHY registers 3024 */ 3025 if (hw->mac.type == e1000_ich8lan) 3026 e1000e_gig_downshift_workaround_ich8lan(hw); 3027 3028 /* When LPLU is enabled, we should disable SmartSpeed */ 3029 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data); 3030 if (ret_val) 3031 return ret_val; 3032 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 3033 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data); 3034 if (ret_val) 3035 return ret_val; 3036 } else { 3037 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU; 3038 ew32(PHY_CTRL, phy_ctrl); 3039 3040 if (phy->type != e1000_phy_igp_3) 3041 return 0; 3042 3043 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used 3044 * during Dx states where the power conservation is most 3045 * important. During driver activity we should enable 3046 * SmartSpeed, so performance is maintained. 3047 */ 3048 if (phy->smart_speed == e1000_smart_speed_on) { 3049 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, 3050 &data); 3051 if (ret_val) 3052 return ret_val; 3053 3054 data |= IGP01E1000_PSCFR_SMART_SPEED; 3055 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, 3056 data); 3057 if (ret_val) 3058 return ret_val; 3059 } else if (phy->smart_speed == e1000_smart_speed_off) { 3060 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, 3061 &data); 3062 if (ret_val) 3063 return ret_val; 3064 3065 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 3066 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, 3067 data); 3068 if (ret_val) 3069 return ret_val; 3070 } 3071 } 3072 3073 return 0; 3074 } 3075 3076 /** 3077 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state 3078 * @hw: pointer to the HW structure 3079 * @active: true to enable LPLU, false to disable 3080 * 3081 * Sets the LPLU D3 state according to the active flag. When 3082 * activating LPLU this function also disables smart speed 3083 * and vice versa. LPLU will not be activated unless the 3084 * device autonegotiation advertisement meets standards of 3085 * either 10 or 10/100 or 10/100/1000 at all duplexes. 3086 * This is a function pointer entry point only called by 3087 * PHY setup routines. 3088 **/ 3089 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active) 3090 { 3091 struct e1000_phy_info *phy = &hw->phy; 3092 u32 phy_ctrl; 3093 s32 ret_val = 0; 3094 u16 data; 3095 3096 phy_ctrl = er32(PHY_CTRL); 3097 3098 if (!active) { 3099 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU; 3100 ew32(PHY_CTRL, phy_ctrl); 3101 3102 if (phy->type != e1000_phy_igp_3) 3103 return 0; 3104 3105 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used 3106 * during Dx states where the power conservation is most 3107 * important. During driver activity we should enable 3108 * SmartSpeed, so performance is maintained. 3109 */ 3110 if (phy->smart_speed == e1000_smart_speed_on) { 3111 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, 3112 &data); 3113 if (ret_val) 3114 return ret_val; 3115 3116 data |= IGP01E1000_PSCFR_SMART_SPEED; 3117 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, 3118 data); 3119 if (ret_val) 3120 return ret_val; 3121 } else if (phy->smart_speed == e1000_smart_speed_off) { 3122 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, 3123 &data); 3124 if (ret_val) 3125 return ret_val; 3126 3127 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 3128 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, 3129 data); 3130 if (ret_val) 3131 return ret_val; 3132 } 3133 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || 3134 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || 3135 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { 3136 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU; 3137 ew32(PHY_CTRL, phy_ctrl); 3138 3139 if (phy->type != e1000_phy_igp_3) 3140 return 0; 3141 3142 /* Call gig speed drop workaround on LPLU before accessing 3143 * any PHY registers 3144 */ 3145 if (hw->mac.type == e1000_ich8lan) 3146 e1000e_gig_downshift_workaround_ich8lan(hw); 3147 3148 /* When LPLU is enabled, we should disable SmartSpeed */ 3149 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data); 3150 if (ret_val) 3151 return ret_val; 3152 3153 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 3154 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data); 3155 } 3156 3157 return ret_val; 3158 } 3159 3160 /** 3161 * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1 3162 * @hw: pointer to the HW structure 3163 * @bank: pointer to the variable that returns the active bank 3164 * 3165 * Reads signature byte from the NVM using the flash access registers. 3166 * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank. 3167 **/ 3168 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank) 3169 { 3170 u32 eecd; 3171 struct e1000_nvm_info *nvm = &hw->nvm; 3172 u32 bank1_offset = nvm->flash_bank_size * sizeof(u16); 3173 u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1; 3174 u32 nvm_dword = 0; 3175 u8 sig_byte = 0; 3176 s32 ret_val; 3177 3178 switch (hw->mac.type) { 3179 case e1000_pch_spt: 3180 case e1000_pch_cnp: 3181 case e1000_pch_tgp: 3182 case e1000_pch_adp: 3183 case e1000_pch_mtp: 3184 case e1000_pch_lnp: 3185 bank1_offset = nvm->flash_bank_size; 3186 act_offset = E1000_ICH_NVM_SIG_WORD; 3187 3188 /* set bank to 0 in case flash read fails */ 3189 *bank = 0; 3190 3191 /* Check bank 0 */ 3192 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, 3193 &nvm_dword); 3194 if (ret_val) 3195 return ret_val; 3196 sig_byte = (u8)((nvm_dword & 0xFF00) >> 8); 3197 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == 3198 E1000_ICH_NVM_SIG_VALUE) { 3199 *bank = 0; 3200 return 0; 3201 } 3202 3203 /* Check bank 1 */ 3204 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset + 3205 bank1_offset, 3206 &nvm_dword); 3207 if (ret_val) 3208 return ret_val; 3209 sig_byte = (u8)((nvm_dword & 0xFF00) >> 8); 3210 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == 3211 E1000_ICH_NVM_SIG_VALUE) { 3212 *bank = 1; 3213 return 0; 3214 } 3215 3216 e_dbg("ERROR: No valid NVM bank present\n"); 3217 return -E1000_ERR_NVM; 3218 case e1000_ich8lan: 3219 case e1000_ich9lan: 3220 eecd = er32(EECD); 3221 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) == 3222 E1000_EECD_SEC1VAL_VALID_MASK) { 3223 if (eecd & E1000_EECD_SEC1VAL) 3224 *bank = 1; 3225 else 3226 *bank = 0; 3227 3228 return 0; 3229 } 3230 e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n"); 3231 fallthrough; 3232 default: 3233 /* set bank to 0 in case flash read fails */ 3234 *bank = 0; 3235 3236 /* Check bank 0 */ 3237 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset, 3238 &sig_byte); 3239 if (ret_val) 3240 return ret_val; 3241 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == 3242 E1000_ICH_NVM_SIG_VALUE) { 3243 *bank = 0; 3244 return 0; 3245 } 3246 3247 /* Check bank 1 */ 3248 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset + 3249 bank1_offset, 3250 &sig_byte); 3251 if (ret_val) 3252 return ret_val; 3253 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == 3254 E1000_ICH_NVM_SIG_VALUE) { 3255 *bank = 1; 3256 return 0; 3257 } 3258 3259 e_dbg("ERROR: No valid NVM bank present\n"); 3260 return -E1000_ERR_NVM; 3261 } 3262 } 3263 3264 /** 3265 * e1000_read_nvm_spt - NVM access for SPT 3266 * @hw: pointer to the HW structure 3267 * @offset: The offset (in bytes) of the word(s) to read. 3268 * @words: Size of data to read in words. 3269 * @data: pointer to the word(s) to read at offset. 3270 * 3271 * Reads a word(s) from the NVM 3272 **/ 3273 static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words, 3274 u16 *data) 3275 { 3276 struct e1000_nvm_info *nvm = &hw->nvm; 3277 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 3278 u32 act_offset; 3279 s32 ret_val = 0; 3280 u32 bank = 0; 3281 u32 dword = 0; 3282 u16 offset_to_read; 3283 u16 i; 3284 3285 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) || 3286 (words == 0)) { 3287 e_dbg("nvm parameter(s) out of bounds\n"); 3288 ret_val = -E1000_ERR_NVM; 3289 goto out; 3290 } 3291 3292 nvm->ops.acquire(hw); 3293 3294 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); 3295 if (ret_val) { 3296 e_dbg("Could not detect valid bank, assuming bank 0\n"); 3297 bank = 0; 3298 } 3299 3300 act_offset = (bank) ? nvm->flash_bank_size : 0; 3301 act_offset += offset; 3302 3303 ret_val = 0; 3304 3305 for (i = 0; i < words; i += 2) { 3306 if (words - i == 1) { 3307 if (dev_spec->shadow_ram[offset + i].modified) { 3308 data[i] = 3309 dev_spec->shadow_ram[offset + i].value; 3310 } else { 3311 offset_to_read = act_offset + i - 3312 ((act_offset + i) % 2); 3313 ret_val = 3314 e1000_read_flash_dword_ich8lan(hw, 3315 offset_to_read, 3316 &dword); 3317 if (ret_val) 3318 break; 3319 if ((act_offset + i) % 2 == 0) 3320 data[i] = (u16)(dword & 0xFFFF); 3321 else 3322 data[i] = (u16)((dword >> 16) & 0xFFFF); 3323 } 3324 } else { 3325 offset_to_read = act_offset + i; 3326 if (!(dev_spec->shadow_ram[offset + i].modified) || 3327 !(dev_spec->shadow_ram[offset + i + 1].modified)) { 3328 ret_val = 3329 e1000_read_flash_dword_ich8lan(hw, 3330 offset_to_read, 3331 &dword); 3332 if (ret_val) 3333 break; 3334 } 3335 if (dev_spec->shadow_ram[offset + i].modified) 3336 data[i] = 3337 dev_spec->shadow_ram[offset + i].value; 3338 else 3339 data[i] = (u16)(dword & 0xFFFF); 3340 if (dev_spec->shadow_ram[offset + i].modified) 3341 data[i + 1] = 3342 dev_spec->shadow_ram[offset + i + 1].value; 3343 else 3344 data[i + 1] = (u16)(dword >> 16 & 0xFFFF); 3345 } 3346 } 3347 3348 nvm->ops.release(hw); 3349 3350 out: 3351 if (ret_val) 3352 e_dbg("NVM read error: %d\n", ret_val); 3353 3354 return ret_val; 3355 } 3356 3357 /** 3358 * e1000_read_nvm_ich8lan - Read word(s) from the NVM 3359 * @hw: pointer to the HW structure 3360 * @offset: The offset (in bytes) of the word(s) to read. 3361 * @words: Size of data to read in words 3362 * @data: Pointer to the word(s) to read at offset. 3363 * 3364 * Reads a word(s) from the NVM using the flash access registers. 3365 **/ 3366 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words, 3367 u16 *data) 3368 { 3369 struct e1000_nvm_info *nvm = &hw->nvm; 3370 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 3371 u32 act_offset; 3372 s32 ret_val = 0; 3373 u32 bank = 0; 3374 u16 i, word; 3375 3376 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) || 3377 (words == 0)) { 3378 e_dbg("nvm parameter(s) out of bounds\n"); 3379 ret_val = -E1000_ERR_NVM; 3380 goto out; 3381 } 3382 3383 nvm->ops.acquire(hw); 3384 3385 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); 3386 if (ret_val) { 3387 e_dbg("Could not detect valid bank, assuming bank 0\n"); 3388 bank = 0; 3389 } 3390 3391 act_offset = (bank) ? nvm->flash_bank_size : 0; 3392 act_offset += offset; 3393 3394 ret_val = 0; 3395 for (i = 0; i < words; i++) { 3396 if (dev_spec->shadow_ram[offset + i].modified) { 3397 data[i] = dev_spec->shadow_ram[offset + i].value; 3398 } else { 3399 ret_val = e1000_read_flash_word_ich8lan(hw, 3400 act_offset + i, 3401 &word); 3402 if (ret_val) 3403 break; 3404 data[i] = word; 3405 } 3406 } 3407 3408 nvm->ops.release(hw); 3409 3410 out: 3411 if (ret_val) 3412 e_dbg("NVM read error: %d\n", ret_val); 3413 3414 return ret_val; 3415 } 3416 3417 /** 3418 * e1000_flash_cycle_init_ich8lan - Initialize flash 3419 * @hw: pointer to the HW structure 3420 * 3421 * This function does initial flash setup so that a new read/write/erase cycle 3422 * can be started. 3423 **/ 3424 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw) 3425 { 3426 union ich8_hws_flash_status hsfsts; 3427 s32 ret_val = -E1000_ERR_NVM; 3428 3429 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 3430 3431 /* Check if the flash descriptor is valid */ 3432 if (!hsfsts.hsf_status.fldesvalid) { 3433 e_dbg("Flash descriptor invalid. SW Sequencing must be used.\n"); 3434 return -E1000_ERR_NVM; 3435 } 3436 3437 /* Clear FCERR and DAEL in hw status by writing 1 */ 3438 hsfsts.hsf_status.flcerr = 1; 3439 hsfsts.hsf_status.dael = 1; 3440 if (hw->mac.type >= e1000_pch_spt) 3441 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF); 3442 else 3443 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval); 3444 3445 /* Either we should have a hardware SPI cycle in progress 3446 * bit to check against, in order to start a new cycle or 3447 * FDONE bit should be changed in the hardware so that it 3448 * is 1 after hardware reset, which can then be used as an 3449 * indication whether a cycle is in progress or has been 3450 * completed. 3451 */ 3452 3453 if (!hsfsts.hsf_status.flcinprog) { 3454 /* There is no cycle running at present, 3455 * so we can start a cycle. 3456 * Begin by setting Flash Cycle Done. 3457 */ 3458 hsfsts.hsf_status.flcdone = 1; 3459 if (hw->mac.type >= e1000_pch_spt) 3460 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF); 3461 else 3462 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval); 3463 ret_val = 0; 3464 } else { 3465 s32 i; 3466 3467 /* Otherwise poll for sometime so the current 3468 * cycle has a chance to end before giving up. 3469 */ 3470 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) { 3471 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 3472 if (!hsfsts.hsf_status.flcinprog) { 3473 ret_val = 0; 3474 break; 3475 } 3476 udelay(1); 3477 } 3478 if (!ret_val) { 3479 /* Successful in waiting for previous cycle to timeout, 3480 * now set the Flash Cycle Done. 3481 */ 3482 hsfsts.hsf_status.flcdone = 1; 3483 if (hw->mac.type >= e1000_pch_spt) 3484 ew32flash(ICH_FLASH_HSFSTS, 3485 hsfsts.regval & 0xFFFF); 3486 else 3487 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval); 3488 } else { 3489 e_dbg("Flash controller busy, cannot get access\n"); 3490 } 3491 } 3492 3493 return ret_val; 3494 } 3495 3496 /** 3497 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase) 3498 * @hw: pointer to the HW structure 3499 * @timeout: maximum time to wait for completion 3500 * 3501 * This function starts a flash cycle and waits for its completion. 3502 **/ 3503 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout) 3504 { 3505 union ich8_hws_flash_ctrl hsflctl; 3506 union ich8_hws_flash_status hsfsts; 3507 u32 i = 0; 3508 3509 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */ 3510 if (hw->mac.type >= e1000_pch_spt) 3511 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16; 3512 else 3513 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); 3514 hsflctl.hsf_ctrl.flcgo = 1; 3515 3516 if (hw->mac.type >= e1000_pch_spt) 3517 ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16); 3518 else 3519 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); 3520 3521 /* wait till FDONE bit is set to 1 */ 3522 do { 3523 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 3524 if (hsfsts.hsf_status.flcdone) 3525 break; 3526 udelay(1); 3527 } while (i++ < timeout); 3528 3529 if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr) 3530 return 0; 3531 3532 return -E1000_ERR_NVM; 3533 } 3534 3535 /** 3536 * e1000_read_flash_dword_ich8lan - Read dword from flash 3537 * @hw: pointer to the HW structure 3538 * @offset: offset to data location 3539 * @data: pointer to the location for storing the data 3540 * 3541 * Reads the flash dword at offset into data. Offset is converted 3542 * to bytes before read. 3543 **/ 3544 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset, 3545 u32 *data) 3546 { 3547 /* Must convert word offset into bytes. */ 3548 offset <<= 1; 3549 return e1000_read_flash_data32_ich8lan(hw, offset, data); 3550 } 3551 3552 /** 3553 * e1000_read_flash_word_ich8lan - Read word from flash 3554 * @hw: pointer to the HW structure 3555 * @offset: offset to data location 3556 * @data: pointer to the location for storing the data 3557 * 3558 * Reads the flash word at offset into data. Offset is converted 3559 * to bytes before read. 3560 **/ 3561 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset, 3562 u16 *data) 3563 { 3564 /* Must convert offset into bytes. */ 3565 offset <<= 1; 3566 3567 return e1000_read_flash_data_ich8lan(hw, offset, 2, data); 3568 } 3569 3570 /** 3571 * e1000_read_flash_byte_ich8lan - Read byte from flash 3572 * @hw: pointer to the HW structure 3573 * @offset: The offset of the byte to read. 3574 * @data: Pointer to a byte to store the value read. 3575 * 3576 * Reads a single byte from the NVM using the flash access registers. 3577 **/ 3578 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, 3579 u8 *data) 3580 { 3581 s32 ret_val; 3582 u16 word = 0; 3583 3584 /* In SPT, only 32 bits access is supported, 3585 * so this function should not be called. 3586 */ 3587 if (hw->mac.type >= e1000_pch_spt) 3588 return -E1000_ERR_NVM; 3589 else 3590 ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word); 3591 3592 if (ret_val) 3593 return ret_val; 3594 3595 *data = (u8)word; 3596 3597 return 0; 3598 } 3599 3600 /** 3601 * e1000_read_flash_data_ich8lan - Read byte or word from NVM 3602 * @hw: pointer to the HW structure 3603 * @offset: The offset (in bytes) of the byte or word to read. 3604 * @size: Size of data to read, 1=byte 2=word 3605 * @data: Pointer to the word to store the value read. 3606 * 3607 * Reads a byte or word from the NVM using the flash access registers. 3608 **/ 3609 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, 3610 u8 size, u16 *data) 3611 { 3612 union ich8_hws_flash_status hsfsts; 3613 union ich8_hws_flash_ctrl hsflctl; 3614 u32 flash_linear_addr; 3615 u32 flash_data = 0; 3616 s32 ret_val = -E1000_ERR_NVM; 3617 u8 count = 0; 3618 3619 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK) 3620 return -E1000_ERR_NVM; 3621 3622 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) + 3623 hw->nvm.flash_base_addr); 3624 3625 do { 3626 udelay(1); 3627 /* Steps */ 3628 ret_val = e1000_flash_cycle_init_ich8lan(hw); 3629 if (ret_val) 3630 break; 3631 3632 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); 3633 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ 3634 hsflctl.hsf_ctrl.fldbcount = size - 1; 3635 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ; 3636 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); 3637 3638 ew32flash(ICH_FLASH_FADDR, flash_linear_addr); 3639 3640 ret_val = 3641 e1000_flash_cycle_ich8lan(hw, 3642 ICH_FLASH_READ_COMMAND_TIMEOUT); 3643 3644 /* Check if FCERR is set to 1, if set to 1, clear it 3645 * and try the whole sequence a few more times, else 3646 * read in (shift in) the Flash Data0, the order is 3647 * least significant byte first msb to lsb 3648 */ 3649 if (!ret_val) { 3650 flash_data = er32flash(ICH_FLASH_FDATA0); 3651 if (size == 1) 3652 *data = (u8)(flash_data & 0x000000FF); 3653 else if (size == 2) 3654 *data = (u16)(flash_data & 0x0000FFFF); 3655 break; 3656 } else { 3657 /* If we've gotten here, then things are probably 3658 * completely hosed, but if the error condition is 3659 * detected, it won't hurt to give it another try... 3660 * ICH_FLASH_CYCLE_REPEAT_COUNT times. 3661 */ 3662 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 3663 if (hsfsts.hsf_status.flcerr) { 3664 /* Repeat for some time before giving up. */ 3665 continue; 3666 } else if (!hsfsts.hsf_status.flcdone) { 3667 e_dbg("Timeout error - flash cycle did not complete.\n"); 3668 break; 3669 } 3670 } 3671 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); 3672 3673 return ret_val; 3674 } 3675 3676 /** 3677 * e1000_read_flash_data32_ich8lan - Read dword from NVM 3678 * @hw: pointer to the HW structure 3679 * @offset: The offset (in bytes) of the dword to read. 3680 * @data: Pointer to the dword to store the value read. 3681 * 3682 * Reads a byte or word from the NVM using the flash access registers. 3683 **/ 3684 3685 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset, 3686 u32 *data) 3687 { 3688 union ich8_hws_flash_status hsfsts; 3689 union ich8_hws_flash_ctrl hsflctl; 3690 u32 flash_linear_addr; 3691 s32 ret_val = -E1000_ERR_NVM; 3692 u8 count = 0; 3693 3694 if (offset > ICH_FLASH_LINEAR_ADDR_MASK || hw->mac.type < e1000_pch_spt) 3695 return -E1000_ERR_NVM; 3696 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) + 3697 hw->nvm.flash_base_addr); 3698 3699 do { 3700 udelay(1); 3701 /* Steps */ 3702 ret_val = e1000_flash_cycle_init_ich8lan(hw); 3703 if (ret_val) 3704 break; 3705 /* In SPT, This register is in Lan memory space, not flash. 3706 * Therefore, only 32 bit access is supported 3707 */ 3708 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16; 3709 3710 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ 3711 hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1; 3712 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ; 3713 /* In SPT, This register is in Lan memory space, not flash. 3714 * Therefore, only 32 bit access is supported 3715 */ 3716 ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16); 3717 ew32flash(ICH_FLASH_FADDR, flash_linear_addr); 3718 3719 ret_val = 3720 e1000_flash_cycle_ich8lan(hw, 3721 ICH_FLASH_READ_COMMAND_TIMEOUT); 3722 3723 /* Check if FCERR is set to 1, if set to 1, clear it 3724 * and try the whole sequence a few more times, else 3725 * read in (shift in) the Flash Data0, the order is 3726 * least significant byte first msb to lsb 3727 */ 3728 if (!ret_val) { 3729 *data = er32flash(ICH_FLASH_FDATA0); 3730 break; 3731 } else { 3732 /* If we've gotten here, then things are probably 3733 * completely hosed, but if the error condition is 3734 * detected, it won't hurt to give it another try... 3735 * ICH_FLASH_CYCLE_REPEAT_COUNT times. 3736 */ 3737 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 3738 if (hsfsts.hsf_status.flcerr) { 3739 /* Repeat for some time before giving up. */ 3740 continue; 3741 } else if (!hsfsts.hsf_status.flcdone) { 3742 e_dbg("Timeout error - flash cycle did not complete.\n"); 3743 break; 3744 } 3745 } 3746 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); 3747 3748 return ret_val; 3749 } 3750 3751 /** 3752 * e1000_write_nvm_ich8lan - Write word(s) to the NVM 3753 * @hw: pointer to the HW structure 3754 * @offset: The offset (in bytes) of the word(s) to write. 3755 * @words: Size of data to write in words 3756 * @data: Pointer to the word(s) to write at offset. 3757 * 3758 * Writes a byte or word to the NVM using the flash access registers. 3759 **/ 3760 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words, 3761 u16 *data) 3762 { 3763 struct e1000_nvm_info *nvm = &hw->nvm; 3764 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 3765 u16 i; 3766 3767 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) || 3768 (words == 0)) { 3769 e_dbg("nvm parameter(s) out of bounds\n"); 3770 return -E1000_ERR_NVM; 3771 } 3772 3773 nvm->ops.acquire(hw); 3774 3775 for (i = 0; i < words; i++) { 3776 dev_spec->shadow_ram[offset + i].modified = true; 3777 dev_spec->shadow_ram[offset + i].value = data[i]; 3778 } 3779 3780 nvm->ops.release(hw); 3781 3782 return 0; 3783 } 3784 3785 /** 3786 * e1000_update_nvm_checksum_spt - Update the checksum for NVM 3787 * @hw: pointer to the HW structure 3788 * 3789 * The NVM checksum is updated by calling the generic update_nvm_checksum, 3790 * which writes the checksum to the shadow ram. The changes in the shadow 3791 * ram are then committed to the EEPROM by processing each bank at a time 3792 * checking for the modified bit and writing only the pending changes. 3793 * After a successful commit, the shadow ram is cleared and is ready for 3794 * future writes. 3795 **/ 3796 static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw) 3797 { 3798 struct e1000_nvm_info *nvm = &hw->nvm; 3799 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 3800 u32 i, act_offset, new_bank_offset, old_bank_offset, bank; 3801 s32 ret_val; 3802 u32 dword = 0; 3803 3804 ret_val = e1000e_update_nvm_checksum_generic(hw); 3805 if (ret_val) 3806 goto out; 3807 3808 if (nvm->type != e1000_nvm_flash_sw) 3809 goto out; 3810 3811 nvm->ops.acquire(hw); 3812 3813 /* We're writing to the opposite bank so if we're on bank 1, 3814 * write to bank 0 etc. We also need to erase the segment that 3815 * is going to be written 3816 */ 3817 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); 3818 if (ret_val) { 3819 e_dbg("Could not detect valid bank, assuming bank 0\n"); 3820 bank = 0; 3821 } 3822 3823 if (bank == 0) { 3824 new_bank_offset = nvm->flash_bank_size; 3825 old_bank_offset = 0; 3826 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1); 3827 if (ret_val) 3828 goto release; 3829 } else { 3830 old_bank_offset = nvm->flash_bank_size; 3831 new_bank_offset = 0; 3832 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0); 3833 if (ret_val) 3834 goto release; 3835 } 3836 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) { 3837 /* Determine whether to write the value stored 3838 * in the other NVM bank or a modified value stored 3839 * in the shadow RAM 3840 */ 3841 ret_val = e1000_read_flash_dword_ich8lan(hw, 3842 i + old_bank_offset, 3843 &dword); 3844 3845 if (dev_spec->shadow_ram[i].modified) { 3846 dword &= 0xffff0000; 3847 dword |= (dev_spec->shadow_ram[i].value & 0xffff); 3848 } 3849 if (dev_spec->shadow_ram[i + 1].modified) { 3850 dword &= 0x0000ffff; 3851 dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff) 3852 << 16); 3853 } 3854 if (ret_val) 3855 break; 3856 3857 /* If the word is 0x13, then make sure the signature bits 3858 * (15:14) are 11b until the commit has completed. 3859 * This will allow us to write 10b which indicates the 3860 * signature is valid. We want to do this after the write 3861 * has completed so that we don't mark the segment valid 3862 * while the write is still in progress 3863 */ 3864 if (i == E1000_ICH_NVM_SIG_WORD - 1) 3865 dword |= E1000_ICH_NVM_SIG_MASK << 16; 3866 3867 /* Convert offset to bytes. */ 3868 act_offset = (i + new_bank_offset) << 1; 3869 3870 usleep_range(100, 200); 3871 3872 /* Write the data to the new bank. Offset in words */ 3873 act_offset = i + new_bank_offset; 3874 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, 3875 dword); 3876 if (ret_val) 3877 break; 3878 } 3879 3880 /* Don't bother writing the segment valid bits if sector 3881 * programming failed. 3882 */ 3883 if (ret_val) { 3884 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */ 3885 e_dbg("Flash commit failed.\n"); 3886 goto release; 3887 } 3888 3889 /* Finally validate the new segment by setting bit 15:14 3890 * to 10b in word 0x13 , this can be done without an 3891 * erase as well since these bits are 11 to start with 3892 * and we need to change bit 14 to 0b 3893 */ 3894 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD; 3895 3896 /*offset in words but we read dword */ 3897 --act_offset; 3898 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword); 3899 3900 if (ret_val) 3901 goto release; 3902 3903 dword &= 0xBFFFFFFF; 3904 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword); 3905 3906 if (ret_val) 3907 goto release; 3908 3909 /* offset in words but we read dword */ 3910 act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1; 3911 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword); 3912 3913 if (ret_val) 3914 goto release; 3915 3916 dword &= 0x00FFFFFF; 3917 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword); 3918 3919 if (ret_val) 3920 goto release; 3921 3922 /* Great! Everything worked, we can now clear the cached entries. */ 3923 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) { 3924 dev_spec->shadow_ram[i].modified = false; 3925 dev_spec->shadow_ram[i].value = 0xFFFF; 3926 } 3927 3928 release: 3929 nvm->ops.release(hw); 3930 3931 /* Reload the EEPROM, or else modifications will not appear 3932 * until after the next adapter reset. 3933 */ 3934 if (!ret_val) { 3935 nvm->ops.reload(hw); 3936 usleep_range(10000, 11000); 3937 } 3938 3939 out: 3940 if (ret_val) 3941 e_dbg("NVM update error: %d\n", ret_val); 3942 3943 return ret_val; 3944 } 3945 3946 /** 3947 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM 3948 * @hw: pointer to the HW structure 3949 * 3950 * The NVM checksum is updated by calling the generic update_nvm_checksum, 3951 * which writes the checksum to the shadow ram. The changes in the shadow 3952 * ram are then committed to the EEPROM by processing each bank at a time 3953 * checking for the modified bit and writing only the pending changes. 3954 * After a successful commit, the shadow ram is cleared and is ready for 3955 * future writes. 3956 **/ 3957 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw) 3958 { 3959 struct e1000_nvm_info *nvm = &hw->nvm; 3960 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 3961 u32 i, act_offset, new_bank_offset, old_bank_offset, bank; 3962 s32 ret_val; 3963 u16 data = 0; 3964 3965 ret_val = e1000e_update_nvm_checksum_generic(hw); 3966 if (ret_val) 3967 goto out; 3968 3969 if (nvm->type != e1000_nvm_flash_sw) 3970 goto out; 3971 3972 nvm->ops.acquire(hw); 3973 3974 /* We're writing to the opposite bank so if we're on bank 1, 3975 * write to bank 0 etc. We also need to erase the segment that 3976 * is going to be written 3977 */ 3978 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); 3979 if (ret_val) { 3980 e_dbg("Could not detect valid bank, assuming bank 0\n"); 3981 bank = 0; 3982 } 3983 3984 if (bank == 0) { 3985 new_bank_offset = nvm->flash_bank_size; 3986 old_bank_offset = 0; 3987 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1); 3988 if (ret_val) 3989 goto release; 3990 } else { 3991 old_bank_offset = nvm->flash_bank_size; 3992 new_bank_offset = 0; 3993 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0); 3994 if (ret_val) 3995 goto release; 3996 } 3997 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) { 3998 if (dev_spec->shadow_ram[i].modified) { 3999 data = dev_spec->shadow_ram[i].value; 4000 } else { 4001 ret_val = e1000_read_flash_word_ich8lan(hw, i + 4002 old_bank_offset, 4003 &data); 4004 if (ret_val) 4005 break; 4006 } 4007 4008 /* If the word is 0x13, then make sure the signature bits 4009 * (15:14) are 11b until the commit has completed. 4010 * This will allow us to write 10b which indicates the 4011 * signature is valid. We want to do this after the write 4012 * has completed so that we don't mark the segment valid 4013 * while the write is still in progress 4014 */ 4015 if (i == E1000_ICH_NVM_SIG_WORD) 4016 data |= E1000_ICH_NVM_SIG_MASK; 4017 4018 /* Convert offset to bytes. */ 4019 act_offset = (i + new_bank_offset) << 1; 4020 4021 usleep_range(100, 200); 4022 /* Write the bytes to the new bank. */ 4023 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, 4024 act_offset, 4025 (u8)data); 4026 if (ret_val) 4027 break; 4028 4029 usleep_range(100, 200); 4030 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, 4031 act_offset + 1, 4032 (u8)(data >> 8)); 4033 if (ret_val) 4034 break; 4035 } 4036 4037 /* Don't bother writing the segment valid bits if sector 4038 * programming failed. 4039 */ 4040 if (ret_val) { 4041 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */ 4042 e_dbg("Flash commit failed.\n"); 4043 goto release; 4044 } 4045 4046 /* Finally validate the new segment by setting bit 15:14 4047 * to 10b in word 0x13 , this can be done without an 4048 * erase as well since these bits are 11 to start with 4049 * and we need to change bit 14 to 0b 4050 */ 4051 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD; 4052 ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data); 4053 if (ret_val) 4054 goto release; 4055 4056 data &= 0xBFFF; 4057 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, 4058 act_offset * 2 + 1, 4059 (u8)(data >> 8)); 4060 if (ret_val) 4061 goto release; 4062 4063 /* And invalidate the previously valid segment by setting 4064 * its signature word (0x13) high_byte to 0b. This can be 4065 * done without an erase because flash erase sets all bits 4066 * to 1's. We can write 1's to 0's without an erase 4067 */ 4068 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1; 4069 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0); 4070 if (ret_val) 4071 goto release; 4072 4073 /* Great! Everything worked, we can now clear the cached entries. */ 4074 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) { 4075 dev_spec->shadow_ram[i].modified = false; 4076 dev_spec->shadow_ram[i].value = 0xFFFF; 4077 } 4078 4079 release: 4080 nvm->ops.release(hw); 4081 4082 /* Reload the EEPROM, or else modifications will not appear 4083 * until after the next adapter reset. 4084 */ 4085 if (!ret_val) { 4086 nvm->ops.reload(hw); 4087 usleep_range(10000, 11000); 4088 } 4089 4090 out: 4091 if (ret_val) 4092 e_dbg("NVM update error: %d\n", ret_val); 4093 4094 return ret_val; 4095 } 4096 4097 /** 4098 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum 4099 * @hw: pointer to the HW structure 4100 * 4101 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19. 4102 * If the bit is 0, that the EEPROM had been modified, but the checksum was not 4103 * calculated, in which case we need to calculate the checksum and set bit 6. 4104 **/ 4105 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw) 4106 { 4107 s32 ret_val; 4108 u16 data; 4109 u16 word; 4110 u16 valid_csum_mask; 4111 4112 /* Read NVM and check Invalid Image CSUM bit. If this bit is 0, 4113 * the checksum needs to be fixed. This bit is an indication that 4114 * the NVM was prepared by OEM software and did not calculate 4115 * the checksum...a likely scenario. 4116 */ 4117 switch (hw->mac.type) { 4118 case e1000_pch_lpt: 4119 case e1000_pch_spt: 4120 case e1000_pch_cnp: 4121 case e1000_pch_tgp: 4122 case e1000_pch_adp: 4123 case e1000_pch_mtp: 4124 case e1000_pch_lnp: 4125 word = NVM_COMPAT; 4126 valid_csum_mask = NVM_COMPAT_VALID_CSUM; 4127 break; 4128 default: 4129 word = NVM_FUTURE_INIT_WORD1; 4130 valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM; 4131 break; 4132 } 4133 4134 ret_val = e1000_read_nvm(hw, word, 1, &data); 4135 if (ret_val) 4136 return ret_val; 4137 4138 if (!(data & valid_csum_mask)) { 4139 e_dbg("NVM Checksum Invalid\n"); 4140 4141 if (hw->mac.type < e1000_pch_cnp) { 4142 data |= valid_csum_mask; 4143 ret_val = e1000_write_nvm(hw, word, 1, &data); 4144 if (ret_val) 4145 return ret_val; 4146 ret_val = e1000e_update_nvm_checksum(hw); 4147 if (ret_val) 4148 return ret_val; 4149 } 4150 } 4151 4152 return e1000e_validate_nvm_checksum_generic(hw); 4153 } 4154 4155 /** 4156 * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only 4157 * @hw: pointer to the HW structure 4158 * 4159 * To prevent malicious write/erase of the NVM, set it to be read-only 4160 * so that the hardware ignores all write/erase cycles of the NVM via 4161 * the flash control registers. The shadow-ram copy of the NVM will 4162 * still be updated, however any updates to this copy will not stick 4163 * across driver reloads. 4164 **/ 4165 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw) 4166 { 4167 struct e1000_nvm_info *nvm = &hw->nvm; 4168 union ich8_flash_protected_range pr0; 4169 union ich8_hws_flash_status hsfsts; 4170 u32 gfpreg; 4171 4172 nvm->ops.acquire(hw); 4173 4174 gfpreg = er32flash(ICH_FLASH_GFPREG); 4175 4176 /* Write-protect GbE Sector of NVM */ 4177 pr0.regval = er32flash(ICH_FLASH_PR0); 4178 pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK; 4179 pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK); 4180 pr0.range.wpe = true; 4181 ew32flash(ICH_FLASH_PR0, pr0.regval); 4182 4183 /* Lock down a subset of GbE Flash Control Registers, e.g. 4184 * PR0 to prevent the write-protection from being lifted. 4185 * Once FLOCKDN is set, the registers protected by it cannot 4186 * be written until FLOCKDN is cleared by a hardware reset. 4187 */ 4188 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 4189 hsfsts.hsf_status.flockdn = true; 4190 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval); 4191 4192 nvm->ops.release(hw); 4193 } 4194 4195 /** 4196 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM 4197 * @hw: pointer to the HW structure 4198 * @offset: The offset (in bytes) of the byte/word to read. 4199 * @size: Size of data to read, 1=byte 2=word 4200 * @data: The byte(s) to write to the NVM. 4201 * 4202 * Writes one/two bytes to the NVM using the flash access registers. 4203 **/ 4204 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, 4205 u8 size, u16 data) 4206 { 4207 union ich8_hws_flash_status hsfsts; 4208 union ich8_hws_flash_ctrl hsflctl; 4209 u32 flash_linear_addr; 4210 u32 flash_data = 0; 4211 s32 ret_val; 4212 u8 count = 0; 4213 4214 if (hw->mac.type >= e1000_pch_spt) { 4215 if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK) 4216 return -E1000_ERR_NVM; 4217 } else { 4218 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK) 4219 return -E1000_ERR_NVM; 4220 } 4221 4222 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) + 4223 hw->nvm.flash_base_addr); 4224 4225 do { 4226 udelay(1); 4227 /* Steps */ 4228 ret_val = e1000_flash_cycle_init_ich8lan(hw); 4229 if (ret_val) 4230 break; 4231 /* In SPT, This register is in Lan memory space, not 4232 * flash. Therefore, only 32 bit access is supported 4233 */ 4234 if (hw->mac.type >= e1000_pch_spt) 4235 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16; 4236 else 4237 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); 4238 4239 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ 4240 hsflctl.hsf_ctrl.fldbcount = size - 1; 4241 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE; 4242 /* In SPT, This register is in Lan memory space, 4243 * not flash. Therefore, only 32 bit access is 4244 * supported 4245 */ 4246 if (hw->mac.type >= e1000_pch_spt) 4247 ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16); 4248 else 4249 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); 4250 4251 ew32flash(ICH_FLASH_FADDR, flash_linear_addr); 4252 4253 if (size == 1) 4254 flash_data = (u32)data & 0x00FF; 4255 else 4256 flash_data = (u32)data; 4257 4258 ew32flash(ICH_FLASH_FDATA0, flash_data); 4259 4260 /* check if FCERR is set to 1 , if set to 1, clear it 4261 * and try the whole sequence a few more times else done 4262 */ 4263 ret_val = 4264 e1000_flash_cycle_ich8lan(hw, 4265 ICH_FLASH_WRITE_COMMAND_TIMEOUT); 4266 if (!ret_val) 4267 break; 4268 4269 /* If we're here, then things are most likely 4270 * completely hosed, but if the error condition 4271 * is detected, it won't hurt to give it another 4272 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times. 4273 */ 4274 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 4275 if (hsfsts.hsf_status.flcerr) 4276 /* Repeat for some time before giving up. */ 4277 continue; 4278 if (!hsfsts.hsf_status.flcdone) { 4279 e_dbg("Timeout error - flash cycle did not complete.\n"); 4280 break; 4281 } 4282 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); 4283 4284 return ret_val; 4285 } 4286 4287 /** 4288 * e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM 4289 * @hw: pointer to the HW structure 4290 * @offset: The offset (in bytes) of the dwords to read. 4291 * @data: The 4 bytes to write to the NVM. 4292 * 4293 * Writes one/two/four bytes to the NVM using the flash access registers. 4294 **/ 4295 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset, 4296 u32 data) 4297 { 4298 union ich8_hws_flash_status hsfsts; 4299 union ich8_hws_flash_ctrl hsflctl; 4300 u32 flash_linear_addr; 4301 s32 ret_val; 4302 u8 count = 0; 4303 4304 if (hw->mac.type >= e1000_pch_spt) { 4305 if (offset > ICH_FLASH_LINEAR_ADDR_MASK) 4306 return -E1000_ERR_NVM; 4307 } 4308 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) + 4309 hw->nvm.flash_base_addr); 4310 do { 4311 udelay(1); 4312 /* Steps */ 4313 ret_val = e1000_flash_cycle_init_ich8lan(hw); 4314 if (ret_val) 4315 break; 4316 4317 /* In SPT, This register is in Lan memory space, not 4318 * flash. Therefore, only 32 bit access is supported 4319 */ 4320 if (hw->mac.type >= e1000_pch_spt) 4321 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) 4322 >> 16; 4323 else 4324 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); 4325 4326 hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1; 4327 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE; 4328 4329 /* In SPT, This register is in Lan memory space, 4330 * not flash. Therefore, only 32 bit access is 4331 * supported 4332 */ 4333 if (hw->mac.type >= e1000_pch_spt) 4334 ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16); 4335 else 4336 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); 4337 4338 ew32flash(ICH_FLASH_FADDR, flash_linear_addr); 4339 4340 ew32flash(ICH_FLASH_FDATA0, data); 4341 4342 /* check if FCERR is set to 1 , if set to 1, clear it 4343 * and try the whole sequence a few more times else done 4344 */ 4345 ret_val = 4346 e1000_flash_cycle_ich8lan(hw, 4347 ICH_FLASH_WRITE_COMMAND_TIMEOUT); 4348 4349 if (!ret_val) 4350 break; 4351 4352 /* If we're here, then things are most likely 4353 * completely hosed, but if the error condition 4354 * is detected, it won't hurt to give it another 4355 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times. 4356 */ 4357 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 4358 4359 if (hsfsts.hsf_status.flcerr) 4360 /* Repeat for some time before giving up. */ 4361 continue; 4362 if (!hsfsts.hsf_status.flcdone) { 4363 e_dbg("Timeout error - flash cycle did not complete.\n"); 4364 break; 4365 } 4366 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); 4367 4368 return ret_val; 4369 } 4370 4371 /** 4372 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM 4373 * @hw: pointer to the HW structure 4374 * @offset: The index of the byte to read. 4375 * @data: The byte to write to the NVM. 4376 * 4377 * Writes a single byte to the NVM using the flash access registers. 4378 **/ 4379 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, 4380 u8 data) 4381 { 4382 u16 word = (u16)data; 4383 4384 return e1000_write_flash_data_ich8lan(hw, offset, 1, word); 4385 } 4386 4387 /** 4388 * e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM 4389 * @hw: pointer to the HW structure 4390 * @offset: The offset of the word to write. 4391 * @dword: The dword to write to the NVM. 4392 * 4393 * Writes a single dword to the NVM using the flash access registers. 4394 * Goes through a retry algorithm before giving up. 4395 **/ 4396 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw, 4397 u32 offset, u32 dword) 4398 { 4399 s32 ret_val; 4400 u16 program_retries; 4401 4402 /* Must convert word offset into bytes. */ 4403 offset <<= 1; 4404 ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword); 4405 4406 if (!ret_val) 4407 return ret_val; 4408 for (program_retries = 0; program_retries < 100; program_retries++) { 4409 e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset); 4410 usleep_range(100, 200); 4411 ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword); 4412 if (!ret_val) 4413 break; 4414 } 4415 if (program_retries == 100) 4416 return -E1000_ERR_NVM; 4417 4418 return 0; 4419 } 4420 4421 /** 4422 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM 4423 * @hw: pointer to the HW structure 4424 * @offset: The offset of the byte to write. 4425 * @byte: The byte to write to the NVM. 4426 * 4427 * Writes a single byte to the NVM using the flash access registers. 4428 * Goes through a retry algorithm before giving up. 4429 **/ 4430 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw, 4431 u32 offset, u8 byte) 4432 { 4433 s32 ret_val; 4434 u16 program_retries; 4435 4436 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte); 4437 if (!ret_val) 4438 return ret_val; 4439 4440 for (program_retries = 0; program_retries < 100; program_retries++) { 4441 e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset); 4442 usleep_range(100, 200); 4443 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte); 4444 if (!ret_val) 4445 break; 4446 } 4447 if (program_retries == 100) 4448 return -E1000_ERR_NVM; 4449 4450 return 0; 4451 } 4452 4453 /** 4454 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM 4455 * @hw: pointer to the HW structure 4456 * @bank: 0 for first bank, 1 for second bank, etc. 4457 * 4458 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based. 4459 * bank N is 4096 * N + flash_reg_addr. 4460 **/ 4461 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank) 4462 { 4463 struct e1000_nvm_info *nvm = &hw->nvm; 4464 union ich8_hws_flash_status hsfsts; 4465 union ich8_hws_flash_ctrl hsflctl; 4466 u32 flash_linear_addr; 4467 /* bank size is in 16bit words - adjust to bytes */ 4468 u32 flash_bank_size = nvm->flash_bank_size * 2; 4469 s32 ret_val; 4470 s32 count = 0; 4471 s32 j, iteration, sector_size; 4472 4473 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 4474 4475 /* Determine HW Sector size: Read BERASE bits of hw flash status 4476 * register 4477 * 00: The Hw sector is 256 bytes, hence we need to erase 16 4478 * consecutive sectors. The start index for the nth Hw sector 4479 * can be calculated as = bank * 4096 + n * 256 4480 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector. 4481 * The start index for the nth Hw sector can be calculated 4482 * as = bank * 4096 4483 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192 4484 * (ich9 only, otherwise error condition) 4485 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536 4486 */ 4487 switch (hsfsts.hsf_status.berasesz) { 4488 case 0: 4489 /* Hw sector size 256 */ 4490 sector_size = ICH_FLASH_SEG_SIZE_256; 4491 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256; 4492 break; 4493 case 1: 4494 sector_size = ICH_FLASH_SEG_SIZE_4K; 4495 iteration = 1; 4496 break; 4497 case 2: 4498 sector_size = ICH_FLASH_SEG_SIZE_8K; 4499 iteration = 1; 4500 break; 4501 case 3: 4502 sector_size = ICH_FLASH_SEG_SIZE_64K; 4503 iteration = 1; 4504 break; 4505 default: 4506 return -E1000_ERR_NVM; 4507 } 4508 4509 /* Start with the base address, then add the sector offset. */ 4510 flash_linear_addr = hw->nvm.flash_base_addr; 4511 flash_linear_addr += (bank) ? flash_bank_size : 0; 4512 4513 for (j = 0; j < iteration; j++) { 4514 do { 4515 u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT; 4516 4517 /* Steps */ 4518 ret_val = e1000_flash_cycle_init_ich8lan(hw); 4519 if (ret_val) 4520 return ret_val; 4521 4522 /* Write a value 11 (block Erase) in Flash 4523 * Cycle field in hw flash control 4524 */ 4525 if (hw->mac.type >= e1000_pch_spt) 4526 hsflctl.regval = 4527 er32flash(ICH_FLASH_HSFSTS) >> 16; 4528 else 4529 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); 4530 4531 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE; 4532 if (hw->mac.type >= e1000_pch_spt) 4533 ew32flash(ICH_FLASH_HSFSTS, 4534 hsflctl.regval << 16); 4535 else 4536 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); 4537 4538 /* Write the last 24 bits of an index within the 4539 * block into Flash Linear address field in Flash 4540 * Address. 4541 */ 4542 flash_linear_addr += (j * sector_size); 4543 ew32flash(ICH_FLASH_FADDR, flash_linear_addr); 4544 4545 ret_val = e1000_flash_cycle_ich8lan(hw, timeout); 4546 if (!ret_val) 4547 break; 4548 4549 /* Check if FCERR is set to 1. If 1, 4550 * clear it and try the whole sequence 4551 * a few more times else Done 4552 */ 4553 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 4554 if (hsfsts.hsf_status.flcerr) 4555 /* repeat for some time before giving up */ 4556 continue; 4557 else if (!hsfsts.hsf_status.flcdone) 4558 return ret_val; 4559 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT); 4560 } 4561 4562 return 0; 4563 } 4564 4565 /** 4566 * e1000_valid_led_default_ich8lan - Set the default LED settings 4567 * @hw: pointer to the HW structure 4568 * @data: Pointer to the LED settings 4569 * 4570 * Reads the LED default settings from the NVM to data. If the NVM LED 4571 * settings is all 0's or F's, set the LED default to a valid LED default 4572 * setting. 4573 **/ 4574 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data) 4575 { 4576 s32 ret_val; 4577 4578 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data); 4579 if (ret_val) { 4580 e_dbg("NVM Read Error\n"); 4581 return ret_val; 4582 } 4583 4584 if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) 4585 *data = ID_LED_DEFAULT_ICH8LAN; 4586 4587 return 0; 4588 } 4589 4590 /** 4591 * e1000_id_led_init_pchlan - store LED configurations 4592 * @hw: pointer to the HW structure 4593 * 4594 * PCH does not control LEDs via the LEDCTL register, rather it uses 4595 * the PHY LED configuration register. 4596 * 4597 * PCH also does not have an "always on" or "always off" mode which 4598 * complicates the ID feature. Instead of using the "on" mode to indicate 4599 * in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()), 4600 * use "link_up" mode. The LEDs will still ID on request if there is no 4601 * link based on logic in e1000_led_[on|off]_pchlan(). 4602 **/ 4603 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw) 4604 { 4605 struct e1000_mac_info *mac = &hw->mac; 4606 s32 ret_val; 4607 const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP; 4608 const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT; 4609 u16 data, i, temp, shift; 4610 4611 /* Get default ID LED modes */ 4612 ret_val = hw->nvm.ops.valid_led_default(hw, &data); 4613 if (ret_val) 4614 return ret_val; 4615 4616 mac->ledctl_default = er32(LEDCTL); 4617 mac->ledctl_mode1 = mac->ledctl_default; 4618 mac->ledctl_mode2 = mac->ledctl_default; 4619 4620 for (i = 0; i < 4; i++) { 4621 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK; 4622 shift = (i * 5); 4623 switch (temp) { 4624 case ID_LED_ON1_DEF2: 4625 case ID_LED_ON1_ON2: 4626 case ID_LED_ON1_OFF2: 4627 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift); 4628 mac->ledctl_mode1 |= (ledctl_on << shift); 4629 break; 4630 case ID_LED_OFF1_DEF2: 4631 case ID_LED_OFF1_ON2: 4632 case ID_LED_OFF1_OFF2: 4633 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift); 4634 mac->ledctl_mode1 |= (ledctl_off << shift); 4635 break; 4636 default: 4637 /* Do nothing */ 4638 break; 4639 } 4640 switch (temp) { 4641 case ID_LED_DEF1_ON2: 4642 case ID_LED_ON1_ON2: 4643 case ID_LED_OFF1_ON2: 4644 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift); 4645 mac->ledctl_mode2 |= (ledctl_on << shift); 4646 break; 4647 case ID_LED_DEF1_OFF2: 4648 case ID_LED_ON1_OFF2: 4649 case ID_LED_OFF1_OFF2: 4650 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift); 4651 mac->ledctl_mode2 |= (ledctl_off << shift); 4652 break; 4653 default: 4654 /* Do nothing */ 4655 break; 4656 } 4657 } 4658 4659 return 0; 4660 } 4661 4662 /** 4663 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width 4664 * @hw: pointer to the HW structure 4665 * 4666 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability 4667 * register, so the bus width is hard coded. 4668 **/ 4669 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw) 4670 { 4671 struct e1000_bus_info *bus = &hw->bus; 4672 s32 ret_val; 4673 4674 ret_val = e1000e_get_bus_info_pcie(hw); 4675 4676 /* ICH devices are "PCI Express"-ish. They have 4677 * a configuration space, but do not contain 4678 * PCI Express Capability registers, so bus width 4679 * must be hardcoded. 4680 */ 4681 if (bus->width == e1000_bus_width_unknown) 4682 bus->width = e1000_bus_width_pcie_x1; 4683 4684 return ret_val; 4685 } 4686 4687 /** 4688 * e1000_reset_hw_ich8lan - Reset the hardware 4689 * @hw: pointer to the HW structure 4690 * 4691 * Does a full reset of the hardware which includes a reset of the PHY and 4692 * MAC. 4693 **/ 4694 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw) 4695 { 4696 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 4697 u16 kum_cfg; 4698 u32 ctrl, reg; 4699 s32 ret_val; 4700 4701 /* Prevent the PCI-E bus from sticking if there is no TLP connection 4702 * on the last TLP read/write transaction when MAC is reset. 4703 */ 4704 ret_val = e1000e_disable_pcie_master(hw); 4705 if (ret_val) 4706 e_dbg("PCI-E Master disable polling has failed.\n"); 4707 4708 e_dbg("Masking off all interrupts\n"); 4709 ew32(IMC, 0xffffffff); 4710 4711 /* Disable the Transmit and Receive units. Then delay to allow 4712 * any pending transactions to complete before we hit the MAC 4713 * with the global reset. 4714 */ 4715 ew32(RCTL, 0); 4716 ew32(TCTL, E1000_TCTL_PSP); 4717 e1e_flush(); 4718 4719 usleep_range(10000, 11000); 4720 4721 /* Workaround for ICH8 bit corruption issue in FIFO memory */ 4722 if (hw->mac.type == e1000_ich8lan) { 4723 /* Set Tx and Rx buffer allocation to 8k apiece. */ 4724 ew32(PBA, E1000_PBA_8K); 4725 /* Set Packet Buffer Size to 16k. */ 4726 ew32(PBS, E1000_PBS_16K); 4727 } 4728 4729 if (hw->mac.type == e1000_pchlan) { 4730 /* Save the NVM K1 bit setting */ 4731 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg); 4732 if (ret_val) 4733 return ret_val; 4734 4735 if (kum_cfg & E1000_NVM_K1_ENABLE) 4736 dev_spec->nvm_k1_enabled = true; 4737 else 4738 dev_spec->nvm_k1_enabled = false; 4739 } 4740 4741 ctrl = er32(CTRL); 4742 4743 if (!hw->phy.ops.check_reset_block(hw)) { 4744 /* Full-chip reset requires MAC and PHY reset at the same 4745 * time to make sure the interface between MAC and the 4746 * external PHY is reset. 4747 */ 4748 ctrl |= E1000_CTRL_PHY_RST; 4749 4750 /* Gate automatic PHY configuration by hardware on 4751 * non-managed 82579 4752 */ 4753 if ((hw->mac.type == e1000_pch2lan) && 4754 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) 4755 e1000_gate_hw_phy_config_ich8lan(hw, true); 4756 } 4757 ret_val = e1000_acquire_swflag_ich8lan(hw); 4758 e_dbg("Issuing a global reset to ich8lan\n"); 4759 ew32(CTRL, (ctrl | E1000_CTRL_RST)); 4760 /* cannot issue a flush here because it hangs the hardware */ 4761 msleep(20); 4762 4763 /* Set Phy Config Counter to 50msec */ 4764 if (hw->mac.type == e1000_pch2lan) { 4765 reg = er32(FEXTNVM3); 4766 reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK; 4767 reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC; 4768 ew32(FEXTNVM3, reg); 4769 } 4770 4771 if (!ret_val) 4772 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state); 4773 4774 if (ctrl & E1000_CTRL_PHY_RST) { 4775 ret_val = hw->phy.ops.get_cfg_done(hw); 4776 if (ret_val) 4777 return ret_val; 4778 4779 ret_val = e1000_post_phy_reset_ich8lan(hw); 4780 if (ret_val) 4781 return ret_val; 4782 } 4783 4784 /* For PCH, this write will make sure that any noise 4785 * will be detected as a CRC error and be dropped rather than show up 4786 * as a bad packet to the DMA engine. 4787 */ 4788 if (hw->mac.type == e1000_pchlan) 4789 ew32(CRC_OFFSET, 0x65656565); 4790 4791 ew32(IMC, 0xffffffff); 4792 er32(ICR); 4793 4794 reg = er32(KABGTXD); 4795 reg |= E1000_KABGTXD_BGSQLBIAS; 4796 ew32(KABGTXD, reg); 4797 4798 return 0; 4799 } 4800 4801 /** 4802 * e1000_init_hw_ich8lan - Initialize the hardware 4803 * @hw: pointer to the HW structure 4804 * 4805 * Prepares the hardware for transmit and receive by doing the following: 4806 * - initialize hardware bits 4807 * - initialize LED identification 4808 * - setup receive address registers 4809 * - setup flow control 4810 * - setup transmit descriptors 4811 * - clear statistics 4812 **/ 4813 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw) 4814 { 4815 struct e1000_mac_info *mac = &hw->mac; 4816 u32 ctrl_ext, txdctl, snoop, fflt_dbg; 4817 s32 ret_val; 4818 u16 i; 4819 4820 e1000_initialize_hw_bits_ich8lan(hw); 4821 4822 /* Initialize identification LED */ 4823 ret_val = mac->ops.id_led_init(hw); 4824 /* An error is not fatal and we should not stop init due to this */ 4825 if (ret_val) 4826 e_dbg("Error initializing identification LED\n"); 4827 4828 /* Setup the receive address. */ 4829 e1000e_init_rx_addrs(hw, mac->rar_entry_count); 4830 4831 /* Zero out the Multicast HASH table */ 4832 e_dbg("Zeroing the MTA\n"); 4833 for (i = 0; i < mac->mta_reg_count; i++) 4834 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); 4835 4836 /* The 82578 Rx buffer will stall if wakeup is enabled in host and 4837 * the ME. Disable wakeup by clearing the host wakeup bit. 4838 * Reset the phy after disabling host wakeup to reset the Rx buffer. 4839 */ 4840 if (hw->phy.type == e1000_phy_82578) { 4841 e1e_rphy(hw, BM_PORT_GEN_CFG, &i); 4842 i &= ~BM_WUC_HOST_WU_BIT; 4843 e1e_wphy(hw, BM_PORT_GEN_CFG, i); 4844 ret_val = e1000_phy_hw_reset_ich8lan(hw); 4845 if (ret_val) 4846 return ret_val; 4847 } 4848 4849 /* Setup link and flow control */ 4850 ret_val = mac->ops.setup_link(hw); 4851 4852 /* Set the transmit descriptor write-back policy for both queues */ 4853 txdctl = er32(TXDCTL(0)); 4854 txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) | 4855 E1000_TXDCTL_FULL_TX_DESC_WB); 4856 txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) | 4857 E1000_TXDCTL_MAX_TX_DESC_PREFETCH); 4858 ew32(TXDCTL(0), txdctl); 4859 txdctl = er32(TXDCTL(1)); 4860 txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) | 4861 E1000_TXDCTL_FULL_TX_DESC_WB); 4862 txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) | 4863 E1000_TXDCTL_MAX_TX_DESC_PREFETCH); 4864 ew32(TXDCTL(1), txdctl); 4865 4866 /* ICH8 has opposite polarity of no_snoop bits. 4867 * By default, we should use snoop behavior. 4868 */ 4869 if (mac->type == e1000_ich8lan) 4870 snoop = PCIE_ICH8_SNOOP_ALL; 4871 else 4872 snoop = (u32)~(PCIE_NO_SNOOP_ALL); 4873 e1000e_set_pcie_no_snoop(hw, snoop); 4874 4875 /* Enable workaround for packet loss issue on TGP PCH 4876 * Do not gate DMA clock from the modPHY block 4877 */ 4878 if (mac->type >= e1000_pch_tgp) { 4879 fflt_dbg = er32(FFLT_DBG); 4880 fflt_dbg |= E1000_FFLT_DBG_DONT_GATE_WAKE_DMA_CLK; 4881 ew32(FFLT_DBG, fflt_dbg); 4882 } 4883 4884 ctrl_ext = er32(CTRL_EXT); 4885 ctrl_ext |= E1000_CTRL_EXT_RO_DIS; 4886 ew32(CTRL_EXT, ctrl_ext); 4887 4888 /* Clear all of the statistics registers (clear on read). It is 4889 * important that we do this after we have tried to establish link 4890 * because the symbol error count will increment wildly if there 4891 * is no link. 4892 */ 4893 e1000_clear_hw_cntrs_ich8lan(hw); 4894 4895 return ret_val; 4896 } 4897 4898 /** 4899 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits 4900 * @hw: pointer to the HW structure 4901 * 4902 * Sets/Clears required hardware bits necessary for correctly setting up the 4903 * hardware for transmit and receive. 4904 **/ 4905 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw) 4906 { 4907 u32 reg; 4908 4909 /* Extended Device Control */ 4910 reg = er32(CTRL_EXT); 4911 reg |= BIT(22); 4912 /* Enable PHY low-power state when MAC is at D3 w/o WoL */ 4913 if (hw->mac.type >= e1000_pchlan) 4914 reg |= E1000_CTRL_EXT_PHYPDEN; 4915 ew32(CTRL_EXT, reg); 4916 4917 /* Transmit Descriptor Control 0 */ 4918 reg = er32(TXDCTL(0)); 4919 reg |= BIT(22); 4920 ew32(TXDCTL(0), reg); 4921 4922 /* Transmit Descriptor Control 1 */ 4923 reg = er32(TXDCTL(1)); 4924 reg |= BIT(22); 4925 ew32(TXDCTL(1), reg); 4926 4927 /* Transmit Arbitration Control 0 */ 4928 reg = er32(TARC(0)); 4929 if (hw->mac.type == e1000_ich8lan) 4930 reg |= BIT(28) | BIT(29); 4931 reg |= BIT(23) | BIT(24) | BIT(26) | BIT(27); 4932 ew32(TARC(0), reg); 4933 4934 /* Transmit Arbitration Control 1 */ 4935 reg = er32(TARC(1)); 4936 if (er32(TCTL) & E1000_TCTL_MULR) 4937 reg &= ~BIT(28); 4938 else 4939 reg |= BIT(28); 4940 reg |= BIT(24) | BIT(26) | BIT(30); 4941 ew32(TARC(1), reg); 4942 4943 /* Device Status */ 4944 if (hw->mac.type == e1000_ich8lan) { 4945 reg = er32(STATUS); 4946 reg &= ~BIT(31); 4947 ew32(STATUS, reg); 4948 } 4949 4950 /* work-around descriptor data corruption issue during nfs v2 udp 4951 * traffic, just disable the nfs filtering capability 4952 */ 4953 reg = er32(RFCTL); 4954 reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS); 4955 4956 /* Disable IPv6 extension header parsing because some malformed 4957 * IPv6 headers can hang the Rx. 4958 */ 4959 if (hw->mac.type == e1000_ich8lan) 4960 reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS); 4961 ew32(RFCTL, reg); 4962 4963 /* Enable ECC on Lynxpoint */ 4964 if (hw->mac.type >= e1000_pch_lpt) { 4965 reg = er32(PBECCSTS); 4966 reg |= E1000_PBECCSTS_ECC_ENABLE; 4967 ew32(PBECCSTS, reg); 4968 4969 reg = er32(CTRL); 4970 reg |= E1000_CTRL_MEHE; 4971 ew32(CTRL, reg); 4972 } 4973 } 4974 4975 /** 4976 * e1000_setup_link_ich8lan - Setup flow control and link settings 4977 * @hw: pointer to the HW structure 4978 * 4979 * Determines which flow control settings to use, then configures flow 4980 * control. Calls the appropriate media-specific link configuration 4981 * function. Assuming the adapter has a valid link partner, a valid link 4982 * should be established. Assumes the hardware has previously been reset 4983 * and the transmitter and receiver are not enabled. 4984 **/ 4985 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw) 4986 { 4987 s32 ret_val; 4988 4989 if (hw->phy.ops.check_reset_block(hw)) 4990 return 0; 4991 4992 /* ICH parts do not have a word in the NVM to determine 4993 * the default flow control setting, so we explicitly 4994 * set it to full. 4995 */ 4996 if (hw->fc.requested_mode == e1000_fc_default) { 4997 /* Workaround h/w hang when Tx flow control enabled */ 4998 if (hw->mac.type == e1000_pchlan) 4999 hw->fc.requested_mode = e1000_fc_rx_pause; 5000 else 5001 hw->fc.requested_mode = e1000_fc_full; 5002 } 5003 5004 /* Save off the requested flow control mode for use later. Depending 5005 * on the link partner's capabilities, we may or may not use this mode. 5006 */ 5007 hw->fc.current_mode = hw->fc.requested_mode; 5008 5009 e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode); 5010 5011 /* Continue to configure the copper link. */ 5012 ret_val = hw->mac.ops.setup_physical_interface(hw); 5013 if (ret_val) 5014 return ret_val; 5015 5016 ew32(FCTTV, hw->fc.pause_time); 5017 if ((hw->phy.type == e1000_phy_82578) || 5018 (hw->phy.type == e1000_phy_82579) || 5019 (hw->phy.type == e1000_phy_i217) || 5020 (hw->phy.type == e1000_phy_82577)) { 5021 ew32(FCRTV_PCH, hw->fc.refresh_time); 5022 5023 ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27), 5024 hw->fc.pause_time); 5025 if (ret_val) 5026 return ret_val; 5027 } 5028 5029 return e1000e_set_fc_watermarks(hw); 5030 } 5031 5032 /** 5033 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface 5034 * @hw: pointer to the HW structure 5035 * 5036 * Configures the kumeran interface to the PHY to wait the appropriate time 5037 * when polling the PHY, then call the generic setup_copper_link to finish 5038 * configuring the copper link. 5039 **/ 5040 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw) 5041 { 5042 u32 ctrl; 5043 s32 ret_val; 5044 u16 reg_data; 5045 5046 ctrl = er32(CTRL); 5047 ctrl |= E1000_CTRL_SLU; 5048 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); 5049 ew32(CTRL, ctrl); 5050 5051 /* Set the mac to wait the maximum time between each iteration 5052 * and increase the max iterations when polling the phy; 5053 * this fixes erroneous timeouts at 10Mbps. 5054 */ 5055 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF); 5056 if (ret_val) 5057 return ret_val; 5058 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM, 5059 ®_data); 5060 if (ret_val) 5061 return ret_val; 5062 reg_data |= 0x3F; 5063 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM, 5064 reg_data); 5065 if (ret_val) 5066 return ret_val; 5067 5068 switch (hw->phy.type) { 5069 case e1000_phy_igp_3: 5070 ret_val = e1000e_copper_link_setup_igp(hw); 5071 if (ret_val) 5072 return ret_val; 5073 break; 5074 case e1000_phy_bm: 5075 case e1000_phy_82578: 5076 ret_val = e1000e_copper_link_setup_m88(hw); 5077 if (ret_val) 5078 return ret_val; 5079 break; 5080 case e1000_phy_82577: 5081 case e1000_phy_82579: 5082 ret_val = e1000_copper_link_setup_82577(hw); 5083 if (ret_val) 5084 return ret_val; 5085 break; 5086 case e1000_phy_ife: 5087 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, ®_data); 5088 if (ret_val) 5089 return ret_val; 5090 5091 reg_data &= ~IFE_PMC_AUTO_MDIX; 5092 5093 switch (hw->phy.mdix) { 5094 case 1: 5095 reg_data &= ~IFE_PMC_FORCE_MDIX; 5096 break; 5097 case 2: 5098 reg_data |= IFE_PMC_FORCE_MDIX; 5099 break; 5100 case 0: 5101 default: 5102 reg_data |= IFE_PMC_AUTO_MDIX; 5103 break; 5104 } 5105 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data); 5106 if (ret_val) 5107 return ret_val; 5108 break; 5109 default: 5110 break; 5111 } 5112 5113 return e1000e_setup_copper_link(hw); 5114 } 5115 5116 /** 5117 * e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface 5118 * @hw: pointer to the HW structure 5119 * 5120 * Calls the PHY specific link setup function and then calls the 5121 * generic setup_copper_link to finish configuring the link for 5122 * Lynxpoint PCH devices 5123 **/ 5124 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw) 5125 { 5126 u32 ctrl; 5127 s32 ret_val; 5128 5129 ctrl = er32(CTRL); 5130 ctrl |= E1000_CTRL_SLU; 5131 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); 5132 ew32(CTRL, ctrl); 5133 5134 ret_val = e1000_copper_link_setup_82577(hw); 5135 if (ret_val) 5136 return ret_val; 5137 5138 return e1000e_setup_copper_link(hw); 5139 } 5140 5141 /** 5142 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex 5143 * @hw: pointer to the HW structure 5144 * @speed: pointer to store current link speed 5145 * @duplex: pointer to store the current link duplex 5146 * 5147 * Calls the generic get_speed_and_duplex to retrieve the current link 5148 * information and then calls the Kumeran lock loss workaround for links at 5149 * gigabit speeds. 5150 **/ 5151 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed, 5152 u16 *duplex) 5153 { 5154 s32 ret_val; 5155 5156 ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex); 5157 if (ret_val) 5158 return ret_val; 5159 5160 if ((hw->mac.type == e1000_ich8lan) && 5161 (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) { 5162 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw); 5163 } 5164 5165 return ret_val; 5166 } 5167 5168 /** 5169 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround 5170 * @hw: pointer to the HW structure 5171 * 5172 * Work-around for 82566 Kumeran PCS lock loss: 5173 * On link status change (i.e. PCI reset, speed change) and link is up and 5174 * speed is gigabit- 5175 * 0) if workaround is optionally disabled do nothing 5176 * 1) wait 1ms for Kumeran link to come up 5177 * 2) check Kumeran Diagnostic register PCS lock loss bit 5178 * 3) if not set the link is locked (all is good), otherwise... 5179 * 4) reset the PHY 5180 * 5) repeat up to 10 times 5181 * Note: this is only called for IGP3 copper when speed is 1gb. 5182 **/ 5183 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw) 5184 { 5185 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 5186 u32 phy_ctrl; 5187 s32 ret_val; 5188 u16 i, data; 5189 bool link; 5190 5191 if (!dev_spec->kmrn_lock_loss_workaround_enabled) 5192 return 0; 5193 5194 /* Make sure link is up before proceeding. If not just return. 5195 * Attempting this while link is negotiating fouled up link 5196 * stability 5197 */ 5198 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); 5199 if (!link) 5200 return 0; 5201 5202 for (i = 0; i < 10; i++) { 5203 /* read once to clear */ 5204 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data); 5205 if (ret_val) 5206 return ret_val; 5207 /* and again to get new status */ 5208 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data); 5209 if (ret_val) 5210 return ret_val; 5211 5212 /* check for PCS lock */ 5213 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS)) 5214 return 0; 5215 5216 /* Issue PHY reset */ 5217 e1000_phy_hw_reset(hw); 5218 mdelay(5); 5219 } 5220 /* Disable GigE link negotiation */ 5221 phy_ctrl = er32(PHY_CTRL); 5222 phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE | 5223 E1000_PHY_CTRL_NOND0A_GBE_DISABLE); 5224 ew32(PHY_CTRL, phy_ctrl); 5225 5226 /* Call gig speed drop workaround on Gig disable before accessing 5227 * any PHY registers 5228 */ 5229 e1000e_gig_downshift_workaround_ich8lan(hw); 5230 5231 /* unable to acquire PCS lock */ 5232 return -E1000_ERR_PHY; 5233 } 5234 5235 /** 5236 * e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state 5237 * @hw: pointer to the HW structure 5238 * @state: boolean value used to set the current Kumeran workaround state 5239 * 5240 * If ICH8, set the current Kumeran workaround state (enabled - true 5241 * /disabled - false). 5242 **/ 5243 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw, 5244 bool state) 5245 { 5246 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 5247 5248 if (hw->mac.type != e1000_ich8lan) { 5249 e_dbg("Workaround applies to ICH8 only.\n"); 5250 return; 5251 } 5252 5253 dev_spec->kmrn_lock_loss_workaround_enabled = state; 5254 } 5255 5256 /** 5257 * e1000e_igp3_phy_powerdown_workaround_ich8lan - Power down workaround on D3 5258 * @hw: pointer to the HW structure 5259 * 5260 * Workaround for 82566 power-down on D3 entry: 5261 * 1) disable gigabit link 5262 * 2) write VR power-down enable 5263 * 3) read it back 5264 * Continue if successful, else issue LCD reset and repeat 5265 **/ 5266 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw) 5267 { 5268 u32 reg; 5269 u16 data; 5270 u8 retry = 0; 5271 5272 if (hw->phy.type != e1000_phy_igp_3) 5273 return; 5274 5275 /* Try the workaround twice (if needed) */ 5276 do { 5277 /* Disable link */ 5278 reg = er32(PHY_CTRL); 5279 reg |= (E1000_PHY_CTRL_GBE_DISABLE | 5280 E1000_PHY_CTRL_NOND0A_GBE_DISABLE); 5281 ew32(PHY_CTRL, reg); 5282 5283 /* Call gig speed drop workaround on Gig disable before 5284 * accessing any PHY registers 5285 */ 5286 if (hw->mac.type == e1000_ich8lan) 5287 e1000e_gig_downshift_workaround_ich8lan(hw); 5288 5289 /* Write VR power-down enable */ 5290 e1e_rphy(hw, IGP3_VR_CTRL, &data); 5291 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK; 5292 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN); 5293 5294 /* Read it back and test */ 5295 e1e_rphy(hw, IGP3_VR_CTRL, &data); 5296 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK; 5297 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry) 5298 break; 5299 5300 /* Issue PHY reset and repeat at most one more time */ 5301 reg = er32(CTRL); 5302 ew32(CTRL, reg | E1000_CTRL_PHY_RST); 5303 retry++; 5304 } while (retry); 5305 } 5306 5307 /** 5308 * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working 5309 * @hw: pointer to the HW structure 5310 * 5311 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC), 5312 * LPLU, Gig disable, MDIC PHY reset): 5313 * 1) Set Kumeran Near-end loopback 5314 * 2) Clear Kumeran Near-end loopback 5315 * Should only be called for ICH8[m] devices with any 1G Phy. 5316 **/ 5317 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw) 5318 { 5319 s32 ret_val; 5320 u16 reg_data; 5321 5322 if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife)) 5323 return; 5324 5325 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, 5326 ®_data); 5327 if (ret_val) 5328 return; 5329 reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK; 5330 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, 5331 reg_data); 5332 if (ret_val) 5333 return; 5334 reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK; 5335 e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data); 5336 } 5337 5338 /** 5339 * e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx 5340 * @hw: pointer to the HW structure 5341 * 5342 * During S0 to Sx transition, it is possible the link remains at gig 5343 * instead of negotiating to a lower speed. Before going to Sx, set 5344 * 'Gig Disable' to force link speed negotiation to a lower speed based on 5345 * the LPLU setting in the NVM or custom setting. For PCH and newer parts, 5346 * the OEM bits PHY register (LED, GbE disable and LPLU configurations) also 5347 * needs to be written. 5348 * Parts that support (and are linked to a partner which support) EEE in 5349 * 100Mbps should disable LPLU since 100Mbps w/ EEE requires less power 5350 * than 10Mbps w/o EEE. 5351 **/ 5352 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw) 5353 { 5354 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 5355 u32 phy_ctrl; 5356 s32 ret_val; 5357 5358 phy_ctrl = er32(PHY_CTRL); 5359 phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE; 5360 5361 if (hw->phy.type == e1000_phy_i217) { 5362 u16 phy_reg, device_id = hw->adapter->pdev->device; 5363 5364 if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) || 5365 (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) || 5366 (device_id == E1000_DEV_ID_PCH_I218_LM3) || 5367 (device_id == E1000_DEV_ID_PCH_I218_V3) || 5368 (hw->mac.type >= e1000_pch_spt)) { 5369 u32 fextnvm6 = er32(FEXTNVM6); 5370 5371 ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK); 5372 } 5373 5374 ret_val = hw->phy.ops.acquire(hw); 5375 if (ret_val) 5376 goto out; 5377 5378 if (!dev_spec->eee_disable) { 5379 u16 eee_advert; 5380 5381 ret_val = 5382 e1000_read_emi_reg_locked(hw, 5383 I217_EEE_ADVERTISEMENT, 5384 &eee_advert); 5385 if (ret_val) 5386 goto release; 5387 5388 /* Disable LPLU if both link partners support 100BaseT 5389 * EEE and 100Full is advertised on both ends of the 5390 * link, and enable Auto Enable LPI since there will 5391 * be no driver to enable LPI while in Sx. 5392 */ 5393 if ((eee_advert & I82579_EEE_100_SUPPORTED) && 5394 (dev_spec->eee_lp_ability & 5395 I82579_EEE_100_SUPPORTED) && 5396 (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) { 5397 phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU | 5398 E1000_PHY_CTRL_NOND0A_LPLU); 5399 5400 /* Set Auto Enable LPI after link up */ 5401 e1e_rphy_locked(hw, 5402 I217_LPI_GPIO_CTRL, &phy_reg); 5403 phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI; 5404 e1e_wphy_locked(hw, 5405 I217_LPI_GPIO_CTRL, phy_reg); 5406 } 5407 } 5408 5409 /* For i217 Intel Rapid Start Technology support, 5410 * when the system is going into Sx and no manageability engine 5411 * is present, the driver must configure proxy to reset only on 5412 * power good. LPI (Low Power Idle) state must also reset only 5413 * on power good, as well as the MTA (Multicast table array). 5414 * The SMBus release must also be disabled on LCD reset. 5415 */ 5416 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) { 5417 /* Enable proxy to reset only on power good. */ 5418 e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg); 5419 phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE; 5420 e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg); 5421 5422 /* Set bit enable LPI (EEE) to reset only on 5423 * power good. 5424 */ 5425 e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg); 5426 phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET; 5427 e1e_wphy_locked(hw, I217_SxCTRL, phy_reg); 5428 5429 /* Disable the SMB release on LCD reset. */ 5430 e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg); 5431 phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE; 5432 e1e_wphy_locked(hw, I217_MEMPWR, phy_reg); 5433 } 5434 5435 /* Enable MTA to reset for Intel Rapid Start Technology 5436 * Support 5437 */ 5438 e1e_rphy_locked(hw, I217_CGFREG, &phy_reg); 5439 phy_reg |= I217_CGFREG_ENABLE_MTA_RESET; 5440 e1e_wphy_locked(hw, I217_CGFREG, phy_reg); 5441 5442 release: 5443 hw->phy.ops.release(hw); 5444 } 5445 out: 5446 ew32(PHY_CTRL, phy_ctrl); 5447 5448 if (hw->mac.type == e1000_ich8lan) 5449 e1000e_gig_downshift_workaround_ich8lan(hw); 5450 5451 if (hw->mac.type >= e1000_pchlan) { 5452 e1000_oem_bits_config_ich8lan(hw, false); 5453 5454 /* Reset PHY to activate OEM bits on 82577/8 */ 5455 if (hw->mac.type == e1000_pchlan) 5456 e1000e_phy_hw_reset_generic(hw); 5457 5458 ret_val = hw->phy.ops.acquire(hw); 5459 if (ret_val) 5460 return; 5461 e1000_write_smbus_addr(hw); 5462 hw->phy.ops.release(hw); 5463 } 5464 } 5465 5466 /** 5467 * e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0 5468 * @hw: pointer to the HW structure 5469 * 5470 * During Sx to S0 transitions on non-managed devices or managed devices 5471 * on which PHY resets are not blocked, if the PHY registers cannot be 5472 * accessed properly by the s/w toggle the LANPHYPC value to power cycle 5473 * the PHY. 5474 * On i217, setup Intel Rapid Start Technology. 5475 **/ 5476 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw) 5477 { 5478 s32 ret_val; 5479 5480 if (hw->mac.type < e1000_pch2lan) 5481 return; 5482 5483 ret_val = e1000_init_phy_workarounds_pchlan(hw); 5484 if (ret_val) { 5485 e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val); 5486 return; 5487 } 5488 5489 /* For i217 Intel Rapid Start Technology support when the system 5490 * is transitioning from Sx and no manageability engine is present 5491 * configure SMBus to restore on reset, disable proxy, and enable 5492 * the reset on MTA (Multicast table array). 5493 */ 5494 if (hw->phy.type == e1000_phy_i217) { 5495 u16 phy_reg; 5496 5497 ret_val = hw->phy.ops.acquire(hw); 5498 if (ret_val) { 5499 e_dbg("Failed to setup iRST\n"); 5500 return; 5501 } 5502 5503 /* Clear Auto Enable LPI after link up */ 5504 e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg); 5505 phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI; 5506 e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg); 5507 5508 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) { 5509 /* Restore clear on SMB if no manageability engine 5510 * is present 5511 */ 5512 ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg); 5513 if (ret_val) 5514 goto release; 5515 phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE; 5516 e1e_wphy_locked(hw, I217_MEMPWR, phy_reg); 5517 5518 /* Disable Proxy */ 5519 e1e_wphy_locked(hw, I217_PROXY_CTRL, 0); 5520 } 5521 /* Enable reset on MTA */ 5522 ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg); 5523 if (ret_val) 5524 goto release; 5525 phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET; 5526 e1e_wphy_locked(hw, I217_CGFREG, phy_reg); 5527 release: 5528 if (ret_val) 5529 e_dbg("Error %d in resume workarounds\n", ret_val); 5530 hw->phy.ops.release(hw); 5531 } 5532 } 5533 5534 /** 5535 * e1000_cleanup_led_ich8lan - Restore the default LED operation 5536 * @hw: pointer to the HW structure 5537 * 5538 * Return the LED back to the default configuration. 5539 **/ 5540 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw) 5541 { 5542 if (hw->phy.type == e1000_phy_ife) 5543 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0); 5544 5545 ew32(LEDCTL, hw->mac.ledctl_default); 5546 return 0; 5547 } 5548 5549 /** 5550 * e1000_led_on_ich8lan - Turn LEDs on 5551 * @hw: pointer to the HW structure 5552 * 5553 * Turn on the LEDs. 5554 **/ 5555 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw) 5556 { 5557 if (hw->phy.type == e1000_phy_ife) 5558 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 5559 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON)); 5560 5561 ew32(LEDCTL, hw->mac.ledctl_mode2); 5562 return 0; 5563 } 5564 5565 /** 5566 * e1000_led_off_ich8lan - Turn LEDs off 5567 * @hw: pointer to the HW structure 5568 * 5569 * Turn off the LEDs. 5570 **/ 5571 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw) 5572 { 5573 if (hw->phy.type == e1000_phy_ife) 5574 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 5575 (IFE_PSCL_PROBE_MODE | 5576 IFE_PSCL_PROBE_LEDS_OFF)); 5577 5578 ew32(LEDCTL, hw->mac.ledctl_mode1); 5579 return 0; 5580 } 5581 5582 /** 5583 * e1000_setup_led_pchlan - Configures SW controllable LED 5584 * @hw: pointer to the HW structure 5585 * 5586 * This prepares the SW controllable LED for use. 5587 **/ 5588 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw) 5589 { 5590 return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1); 5591 } 5592 5593 /** 5594 * e1000_cleanup_led_pchlan - Restore the default LED operation 5595 * @hw: pointer to the HW structure 5596 * 5597 * Return the LED back to the default configuration. 5598 **/ 5599 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw) 5600 { 5601 return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default); 5602 } 5603 5604 /** 5605 * e1000_led_on_pchlan - Turn LEDs on 5606 * @hw: pointer to the HW structure 5607 * 5608 * Turn on the LEDs. 5609 **/ 5610 static s32 e1000_led_on_pchlan(struct e1000_hw *hw) 5611 { 5612 u16 data = (u16)hw->mac.ledctl_mode2; 5613 u32 i, led; 5614 5615 /* If no link, then turn LED on by setting the invert bit 5616 * for each LED that's mode is "link_up" in ledctl_mode2. 5617 */ 5618 if (!(er32(STATUS) & E1000_STATUS_LU)) { 5619 for (i = 0; i < 3; i++) { 5620 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK; 5621 if ((led & E1000_PHY_LED0_MODE_MASK) != 5622 E1000_LEDCTL_MODE_LINK_UP) 5623 continue; 5624 if (led & E1000_PHY_LED0_IVRT) 5625 data &= ~(E1000_PHY_LED0_IVRT << (i * 5)); 5626 else 5627 data |= (E1000_PHY_LED0_IVRT << (i * 5)); 5628 } 5629 } 5630 5631 return e1e_wphy(hw, HV_LED_CONFIG, data); 5632 } 5633 5634 /** 5635 * e1000_led_off_pchlan - Turn LEDs off 5636 * @hw: pointer to the HW structure 5637 * 5638 * Turn off the LEDs. 5639 **/ 5640 static s32 e1000_led_off_pchlan(struct e1000_hw *hw) 5641 { 5642 u16 data = (u16)hw->mac.ledctl_mode1; 5643 u32 i, led; 5644 5645 /* If no link, then turn LED off by clearing the invert bit 5646 * for each LED that's mode is "link_up" in ledctl_mode1. 5647 */ 5648 if (!(er32(STATUS) & E1000_STATUS_LU)) { 5649 for (i = 0; i < 3; i++) { 5650 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK; 5651 if ((led & E1000_PHY_LED0_MODE_MASK) != 5652 E1000_LEDCTL_MODE_LINK_UP) 5653 continue; 5654 if (led & E1000_PHY_LED0_IVRT) 5655 data &= ~(E1000_PHY_LED0_IVRT << (i * 5)); 5656 else 5657 data |= (E1000_PHY_LED0_IVRT << (i * 5)); 5658 } 5659 } 5660 5661 return e1e_wphy(hw, HV_LED_CONFIG, data); 5662 } 5663 5664 /** 5665 * e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset 5666 * @hw: pointer to the HW structure 5667 * 5668 * Read appropriate register for the config done bit for completion status 5669 * and configure the PHY through s/w for EEPROM-less parts. 5670 * 5671 * NOTE: some silicon which is EEPROM-less will fail trying to read the 5672 * config done bit, so only an error is logged and continues. If we were 5673 * to return with error, EEPROM-less silicon would not be able to be reset 5674 * or change link. 5675 **/ 5676 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw) 5677 { 5678 s32 ret_val = 0; 5679 u32 bank = 0; 5680 u32 status; 5681 5682 e1000e_get_cfg_done_generic(hw); 5683 5684 /* Wait for indication from h/w that it has completed basic config */ 5685 if (hw->mac.type >= e1000_ich10lan) { 5686 e1000_lan_init_done_ich8lan(hw); 5687 } else { 5688 ret_val = e1000e_get_auto_rd_done(hw); 5689 if (ret_val) { 5690 /* When auto config read does not complete, do not 5691 * return with an error. This can happen in situations 5692 * where there is no eeprom and prevents getting link. 5693 */ 5694 e_dbg("Auto Read Done did not complete\n"); 5695 ret_val = 0; 5696 } 5697 } 5698 5699 /* Clear PHY Reset Asserted bit */ 5700 status = er32(STATUS); 5701 if (status & E1000_STATUS_PHYRA) 5702 ew32(STATUS, status & ~E1000_STATUS_PHYRA); 5703 else 5704 e_dbg("PHY Reset Asserted not set - needs delay\n"); 5705 5706 /* If EEPROM is not marked present, init the IGP 3 PHY manually */ 5707 if (hw->mac.type <= e1000_ich9lan) { 5708 if (!(er32(EECD) & E1000_EECD_PRES) && 5709 (hw->phy.type == e1000_phy_igp_3)) { 5710 e1000e_phy_init_script_igp3(hw); 5711 } 5712 } else { 5713 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) { 5714 /* Maybe we should do a basic PHY config */ 5715 e_dbg("EEPROM not present\n"); 5716 ret_val = -E1000_ERR_CONFIG; 5717 } 5718 } 5719 5720 return ret_val; 5721 } 5722 5723 /** 5724 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down 5725 * @hw: pointer to the HW structure 5726 * 5727 * In the case of a PHY power down to save power, or to turn off link during a 5728 * driver unload, or wake on lan is not enabled, remove the link. 5729 **/ 5730 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw) 5731 { 5732 /* If the management interface is not enabled, then power down */ 5733 if (!(hw->mac.ops.check_mng_mode(hw) || 5734 hw->phy.ops.check_reset_block(hw))) 5735 e1000_power_down_phy_copper(hw); 5736 } 5737 5738 /** 5739 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters 5740 * @hw: pointer to the HW structure 5741 * 5742 * Clears hardware counters specific to the silicon family and calls 5743 * clear_hw_cntrs_generic to clear all general purpose counters. 5744 **/ 5745 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw) 5746 { 5747 u16 phy_data; 5748 s32 ret_val; 5749 5750 e1000e_clear_hw_cntrs_base(hw); 5751 5752 er32(ALGNERRC); 5753 er32(RXERRC); 5754 er32(TNCRS); 5755 er32(CEXTERR); 5756 er32(TSCTC); 5757 er32(TSCTFC); 5758 5759 er32(MGTPRC); 5760 er32(MGTPDC); 5761 er32(MGTPTC); 5762 5763 er32(IAC); 5764 er32(ICRXOC); 5765 5766 /* Clear PHY statistics registers */ 5767 if ((hw->phy.type == e1000_phy_82578) || 5768 (hw->phy.type == e1000_phy_82579) || 5769 (hw->phy.type == e1000_phy_i217) || 5770 (hw->phy.type == e1000_phy_82577)) { 5771 ret_val = hw->phy.ops.acquire(hw); 5772 if (ret_val) 5773 return; 5774 ret_val = hw->phy.ops.set_page(hw, 5775 HV_STATS_PAGE << IGP_PAGE_SHIFT); 5776 if (ret_val) 5777 goto release; 5778 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data); 5779 hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data); 5780 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data); 5781 hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data); 5782 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data); 5783 hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data); 5784 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data); 5785 hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data); 5786 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data); 5787 hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data); 5788 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data); 5789 hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data); 5790 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data); 5791 hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data); 5792 release: 5793 hw->phy.ops.release(hw); 5794 } 5795 } 5796 5797 static const struct e1000_mac_operations ich8_mac_ops = { 5798 /* check_mng_mode dependent on mac type */ 5799 .check_for_link = e1000_check_for_copper_link_ich8lan, 5800 /* cleanup_led dependent on mac type */ 5801 .clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan, 5802 .get_bus_info = e1000_get_bus_info_ich8lan, 5803 .set_lan_id = e1000_set_lan_id_single_port, 5804 .get_link_up_info = e1000_get_link_up_info_ich8lan, 5805 /* led_on dependent on mac type */ 5806 /* led_off dependent on mac type */ 5807 .update_mc_addr_list = e1000e_update_mc_addr_list_generic, 5808 .reset_hw = e1000_reset_hw_ich8lan, 5809 .init_hw = e1000_init_hw_ich8lan, 5810 .setup_link = e1000_setup_link_ich8lan, 5811 .setup_physical_interface = e1000_setup_copper_link_ich8lan, 5812 /* id_led_init dependent on mac type */ 5813 .config_collision_dist = e1000e_config_collision_dist_generic, 5814 .rar_set = e1000e_rar_set_generic, 5815 .rar_get_count = e1000e_rar_get_count_generic, 5816 }; 5817 5818 static const struct e1000_phy_operations ich8_phy_ops = { 5819 .acquire = e1000_acquire_swflag_ich8lan, 5820 .check_reset_block = e1000_check_reset_block_ich8lan, 5821 .commit = NULL, 5822 .get_cfg_done = e1000_get_cfg_done_ich8lan, 5823 .get_cable_length = e1000e_get_cable_length_igp_2, 5824 .read_reg = e1000e_read_phy_reg_igp, 5825 .release = e1000_release_swflag_ich8lan, 5826 .reset = e1000_phy_hw_reset_ich8lan, 5827 .set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan, 5828 .set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan, 5829 .write_reg = e1000e_write_phy_reg_igp, 5830 }; 5831 5832 static const struct e1000_nvm_operations ich8_nvm_ops = { 5833 .acquire = e1000_acquire_nvm_ich8lan, 5834 .read = e1000_read_nvm_ich8lan, 5835 .release = e1000_release_nvm_ich8lan, 5836 .reload = e1000e_reload_nvm_generic, 5837 .update = e1000_update_nvm_checksum_ich8lan, 5838 .valid_led_default = e1000_valid_led_default_ich8lan, 5839 .validate = e1000_validate_nvm_checksum_ich8lan, 5840 .write = e1000_write_nvm_ich8lan, 5841 }; 5842 5843 static const struct e1000_nvm_operations spt_nvm_ops = { 5844 .acquire = e1000_acquire_nvm_ich8lan, 5845 .release = e1000_release_nvm_ich8lan, 5846 .read = e1000_read_nvm_spt, 5847 .update = e1000_update_nvm_checksum_spt, 5848 .reload = e1000e_reload_nvm_generic, 5849 .valid_led_default = e1000_valid_led_default_ich8lan, 5850 .validate = e1000_validate_nvm_checksum_ich8lan, 5851 .write = e1000_write_nvm_ich8lan, 5852 }; 5853 5854 const struct e1000_info e1000_ich8_info = { 5855 .mac = e1000_ich8lan, 5856 .flags = FLAG_HAS_WOL 5857 | FLAG_IS_ICH 5858 | FLAG_HAS_CTRLEXT_ON_LOAD 5859 | FLAG_HAS_AMT 5860 | FLAG_HAS_FLASH 5861 | FLAG_APME_IN_WUC, 5862 .pba = 8, 5863 .max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN, 5864 .get_variants = e1000_get_variants_ich8lan, 5865 .mac_ops = &ich8_mac_ops, 5866 .phy_ops = &ich8_phy_ops, 5867 .nvm_ops = &ich8_nvm_ops, 5868 }; 5869 5870 const struct e1000_info e1000_ich9_info = { 5871 .mac = e1000_ich9lan, 5872 .flags = FLAG_HAS_JUMBO_FRAMES 5873 | FLAG_IS_ICH 5874 | FLAG_HAS_WOL 5875 | FLAG_HAS_CTRLEXT_ON_LOAD 5876 | FLAG_HAS_AMT 5877 | FLAG_HAS_FLASH 5878 | FLAG_APME_IN_WUC, 5879 .pba = 18, 5880 .max_hw_frame_size = DEFAULT_JUMBO, 5881 .get_variants = e1000_get_variants_ich8lan, 5882 .mac_ops = &ich8_mac_ops, 5883 .phy_ops = &ich8_phy_ops, 5884 .nvm_ops = &ich8_nvm_ops, 5885 }; 5886 5887 const struct e1000_info e1000_ich10_info = { 5888 .mac = e1000_ich10lan, 5889 .flags = FLAG_HAS_JUMBO_FRAMES 5890 | FLAG_IS_ICH 5891 | FLAG_HAS_WOL 5892 | FLAG_HAS_CTRLEXT_ON_LOAD 5893 | FLAG_HAS_AMT 5894 | FLAG_HAS_FLASH 5895 | FLAG_APME_IN_WUC, 5896 .pba = 18, 5897 .max_hw_frame_size = DEFAULT_JUMBO, 5898 .get_variants = e1000_get_variants_ich8lan, 5899 .mac_ops = &ich8_mac_ops, 5900 .phy_ops = &ich8_phy_ops, 5901 .nvm_ops = &ich8_nvm_ops, 5902 }; 5903 5904 const struct e1000_info e1000_pch_info = { 5905 .mac = e1000_pchlan, 5906 .flags = FLAG_IS_ICH 5907 | FLAG_HAS_WOL 5908 | FLAG_HAS_CTRLEXT_ON_LOAD 5909 | FLAG_HAS_AMT 5910 | FLAG_HAS_FLASH 5911 | FLAG_HAS_JUMBO_FRAMES 5912 | FLAG_DISABLE_FC_PAUSE_TIME /* errata */ 5913 | FLAG_APME_IN_WUC, 5914 .flags2 = FLAG2_HAS_PHY_STATS, 5915 .pba = 26, 5916 .max_hw_frame_size = 4096, 5917 .get_variants = e1000_get_variants_ich8lan, 5918 .mac_ops = &ich8_mac_ops, 5919 .phy_ops = &ich8_phy_ops, 5920 .nvm_ops = &ich8_nvm_ops, 5921 }; 5922 5923 const struct e1000_info e1000_pch2_info = { 5924 .mac = e1000_pch2lan, 5925 .flags = FLAG_IS_ICH 5926 | FLAG_HAS_WOL 5927 | FLAG_HAS_HW_TIMESTAMP 5928 | FLAG_HAS_CTRLEXT_ON_LOAD 5929 | FLAG_HAS_AMT 5930 | FLAG_HAS_FLASH 5931 | FLAG_HAS_JUMBO_FRAMES 5932 | FLAG_APME_IN_WUC, 5933 .flags2 = FLAG2_HAS_PHY_STATS 5934 | FLAG2_HAS_EEE 5935 | FLAG2_CHECK_SYSTIM_OVERFLOW, 5936 .pba = 26, 5937 .max_hw_frame_size = 9022, 5938 .get_variants = e1000_get_variants_ich8lan, 5939 .mac_ops = &ich8_mac_ops, 5940 .phy_ops = &ich8_phy_ops, 5941 .nvm_ops = &ich8_nvm_ops, 5942 }; 5943 5944 const struct e1000_info e1000_pch_lpt_info = { 5945 .mac = e1000_pch_lpt, 5946 .flags = FLAG_IS_ICH 5947 | FLAG_HAS_WOL 5948 | FLAG_HAS_HW_TIMESTAMP 5949 | FLAG_HAS_CTRLEXT_ON_LOAD 5950 | FLAG_HAS_AMT 5951 | FLAG_HAS_FLASH 5952 | FLAG_HAS_JUMBO_FRAMES 5953 | FLAG_APME_IN_WUC, 5954 .flags2 = FLAG2_HAS_PHY_STATS 5955 | FLAG2_HAS_EEE 5956 | FLAG2_CHECK_SYSTIM_OVERFLOW, 5957 .pba = 26, 5958 .max_hw_frame_size = 9022, 5959 .get_variants = e1000_get_variants_ich8lan, 5960 .mac_ops = &ich8_mac_ops, 5961 .phy_ops = &ich8_phy_ops, 5962 .nvm_ops = &ich8_nvm_ops, 5963 }; 5964 5965 const struct e1000_info e1000_pch_spt_info = { 5966 .mac = e1000_pch_spt, 5967 .flags = FLAG_IS_ICH 5968 | FLAG_HAS_WOL 5969 | FLAG_HAS_HW_TIMESTAMP 5970 | FLAG_HAS_CTRLEXT_ON_LOAD 5971 | FLAG_HAS_AMT 5972 | FLAG_HAS_FLASH 5973 | FLAG_HAS_JUMBO_FRAMES 5974 | FLAG_APME_IN_WUC, 5975 .flags2 = FLAG2_HAS_PHY_STATS 5976 | FLAG2_HAS_EEE, 5977 .pba = 26, 5978 .max_hw_frame_size = 9022, 5979 .get_variants = e1000_get_variants_ich8lan, 5980 .mac_ops = &ich8_mac_ops, 5981 .phy_ops = &ich8_phy_ops, 5982 .nvm_ops = &spt_nvm_ops, 5983 }; 5984 5985 const struct e1000_info e1000_pch_cnp_info = { 5986 .mac = e1000_pch_cnp, 5987 .flags = FLAG_IS_ICH 5988 | FLAG_HAS_WOL 5989 | FLAG_HAS_HW_TIMESTAMP 5990 | FLAG_HAS_CTRLEXT_ON_LOAD 5991 | FLAG_HAS_AMT 5992 | FLAG_HAS_FLASH 5993 | FLAG_HAS_JUMBO_FRAMES 5994 | FLAG_APME_IN_WUC, 5995 .flags2 = FLAG2_HAS_PHY_STATS 5996 | FLAG2_HAS_EEE, 5997 .pba = 26, 5998 .max_hw_frame_size = 9022, 5999 .get_variants = e1000_get_variants_ich8lan, 6000 .mac_ops = &ich8_mac_ops, 6001 .phy_ops = &ich8_phy_ops, 6002 .nvm_ops = &spt_nvm_ops, 6003 }; 6004 6005 const struct e1000_info e1000_pch_tgp_info = { 6006 .mac = e1000_pch_tgp, 6007 .flags = FLAG_IS_ICH 6008 | FLAG_HAS_WOL 6009 | FLAG_HAS_HW_TIMESTAMP 6010 | FLAG_HAS_CTRLEXT_ON_LOAD 6011 | FLAG_HAS_AMT 6012 | FLAG_HAS_FLASH 6013 | FLAG_HAS_JUMBO_FRAMES 6014 | FLAG_APME_IN_WUC, 6015 .flags2 = FLAG2_HAS_PHY_STATS 6016 | FLAG2_HAS_EEE, 6017 .pba = 26, 6018 .max_hw_frame_size = 9022, 6019 .get_variants = e1000_get_variants_ich8lan, 6020 .mac_ops = &ich8_mac_ops, 6021 .phy_ops = &ich8_phy_ops, 6022 .nvm_ops = &spt_nvm_ops, 6023 }; 6024