1 /*******************************************************************************
2 
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2013 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 
27 *******************************************************************************/
28 
29 /* 82562G 10/100 Network Connection
30  * 82562G-2 10/100 Network Connection
31  * 82562GT 10/100 Network Connection
32  * 82562GT-2 10/100 Network Connection
33  * 82562V 10/100 Network Connection
34  * 82562V-2 10/100 Network Connection
35  * 82566DC-2 Gigabit Network Connection
36  * 82566DC Gigabit Network Connection
37  * 82566DM-2 Gigabit Network Connection
38  * 82566DM Gigabit Network Connection
39  * 82566MC Gigabit Network Connection
40  * 82566MM Gigabit Network Connection
41  * 82567LM Gigabit Network Connection
42  * 82567LF Gigabit Network Connection
43  * 82567V Gigabit Network Connection
44  * 82567LM-2 Gigabit Network Connection
45  * 82567LF-2 Gigabit Network Connection
46  * 82567V-2 Gigabit Network Connection
47  * 82567LF-3 Gigabit Network Connection
48  * 82567LM-3 Gigabit Network Connection
49  * 82567LM-4 Gigabit Network Connection
50  * 82577LM Gigabit Network Connection
51  * 82577LC Gigabit Network Connection
52  * 82578DM Gigabit Network Connection
53  * 82578DC Gigabit Network Connection
54  * 82579LM Gigabit Network Connection
55  * 82579V Gigabit Network Connection
56  */
57 
58 #include "e1000.h"
59 
60 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
61 /* Offset 04h HSFSTS */
62 union ich8_hws_flash_status {
63 	struct ich8_hsfsts {
64 		u16 flcdone:1;	/* bit 0 Flash Cycle Done */
65 		u16 flcerr:1;	/* bit 1 Flash Cycle Error */
66 		u16 dael:1;	/* bit 2 Direct Access error Log */
67 		u16 berasesz:2;	/* bit 4:3 Sector Erase Size */
68 		u16 flcinprog:1;	/* bit 5 flash cycle in Progress */
69 		u16 reserved1:2;	/* bit 13:6 Reserved */
70 		u16 reserved2:6;	/* bit 13:6 Reserved */
71 		u16 fldesvalid:1;	/* bit 14 Flash Descriptor Valid */
72 		u16 flockdn:1;	/* bit 15 Flash Config Lock-Down */
73 	} hsf_status;
74 	u16 regval;
75 };
76 
77 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
78 /* Offset 06h FLCTL */
79 union ich8_hws_flash_ctrl {
80 	struct ich8_hsflctl {
81 		u16 flcgo:1;	/* 0 Flash Cycle Go */
82 		u16 flcycle:2;	/* 2:1 Flash Cycle */
83 		u16 reserved:5;	/* 7:3 Reserved  */
84 		u16 fldbcount:2;	/* 9:8 Flash Data Byte Count */
85 		u16 flockdn:6;	/* 15:10 Reserved */
86 	} hsf_ctrl;
87 	u16 regval;
88 };
89 
90 /* ICH Flash Region Access Permissions */
91 union ich8_hws_flash_regacc {
92 	struct ich8_flracc {
93 		u32 grra:8;	/* 0:7 GbE region Read Access */
94 		u32 grwa:8;	/* 8:15 GbE region Write Access */
95 		u32 gmrag:8;	/* 23:16 GbE Master Read Access Grant */
96 		u32 gmwag:8;	/* 31:24 GbE Master Write Access Grant */
97 	} hsf_flregacc;
98 	u16 regval;
99 };
100 
101 /* ICH Flash Protected Region */
102 union ich8_flash_protected_range {
103 	struct ich8_pr {
104 		u32 base:13;	/* 0:12 Protected Range Base */
105 		u32 reserved1:2;	/* 13:14 Reserved */
106 		u32 rpe:1;	/* 15 Read Protection Enable */
107 		u32 limit:13;	/* 16:28 Protected Range Limit */
108 		u32 reserved2:2;	/* 29:30 Reserved */
109 		u32 wpe:1;	/* 31 Write Protection Enable */
110 	} range;
111 	u32 regval;
112 };
113 
114 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
115 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
116 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
117 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
118 						u32 offset, u8 byte);
119 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
120 					 u8 *data);
121 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
122 					 u16 *data);
123 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
124 					 u8 size, u16 *data);
125 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
126 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
127 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
128 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
129 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
130 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
131 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
132 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
133 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
134 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
135 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
136 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
137 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
138 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
139 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
140 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
141 static void e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
142 static void e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
143 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
144 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
145 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
146 
147 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
148 {
149 	return readw(hw->flash_address + reg);
150 }
151 
152 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
153 {
154 	return readl(hw->flash_address + reg);
155 }
156 
157 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
158 {
159 	writew(val, hw->flash_address + reg);
160 }
161 
162 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
163 {
164 	writel(val, hw->flash_address + reg);
165 }
166 
167 #define er16flash(reg)		__er16flash(hw, (reg))
168 #define er32flash(reg)		__er32flash(hw, (reg))
169 #define ew16flash(reg, val)	__ew16flash(hw, (reg), (val))
170 #define ew32flash(reg, val)	__ew32flash(hw, (reg), (val))
171 
172 /**
173  *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
174  *  @hw: pointer to the HW structure
175  *
176  *  Test access to the PHY registers by reading the PHY ID registers.  If
177  *  the PHY ID is already known (e.g. resume path) compare it with known ID,
178  *  otherwise assume the read PHY ID is correct if it is valid.
179  *
180  *  Assumes the sw/fw/hw semaphore is already acquired.
181  **/
182 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
183 {
184 	u16 phy_reg = 0;
185 	u32 phy_id = 0;
186 	s32 ret_val;
187 	u16 retry_count;
188 	u32 mac_reg = 0;
189 
190 	for (retry_count = 0; retry_count < 2; retry_count++) {
191 		ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
192 		if (ret_val || (phy_reg == 0xFFFF))
193 			continue;
194 		phy_id = (u32)(phy_reg << 16);
195 
196 		ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
197 		if (ret_val || (phy_reg == 0xFFFF)) {
198 			phy_id = 0;
199 			continue;
200 		}
201 		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
202 		break;
203 	}
204 
205 	if (hw->phy.id) {
206 		if (hw->phy.id == phy_id)
207 			goto out;
208 	} else if (phy_id) {
209 		hw->phy.id = phy_id;
210 		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
211 		goto out;
212 	}
213 
214 	/* In case the PHY needs to be in mdio slow mode,
215 	 * set slow mode and try to get the PHY id again.
216 	 */
217 	hw->phy.ops.release(hw);
218 	ret_val = e1000_set_mdio_slow_mode_hv(hw);
219 	if (!ret_val)
220 		ret_val = e1000e_get_phy_id(hw);
221 	hw->phy.ops.acquire(hw);
222 
223 	if (ret_val)
224 		return false;
225 out:
226 	if (hw->mac.type == e1000_pch_lpt) {
227 		/* Unforce SMBus mode in PHY */
228 		e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
229 		phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
230 		e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
231 
232 		/* Unforce SMBus mode in MAC */
233 		mac_reg = er32(CTRL_EXT);
234 		mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
235 		ew32(CTRL_EXT, mac_reg);
236 	}
237 
238 	return true;
239 }
240 
241 /**
242  *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
243  *  @hw: pointer to the HW structure
244  *
245  *  Workarounds/flow necessary for PHY initialization during driver load
246  *  and resume paths.
247  **/
248 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
249 {
250 	u32 mac_reg, fwsm = er32(FWSM);
251 	s32 ret_val;
252 
253 	/* Gate automatic PHY configuration by hardware on managed and
254 	 * non-managed 82579 and newer adapters.
255 	 */
256 	e1000_gate_hw_phy_config_ich8lan(hw, true);
257 
258 	ret_val = hw->phy.ops.acquire(hw);
259 	if (ret_val) {
260 		e_dbg("Failed to initialize PHY flow\n");
261 		goto out;
262 	}
263 
264 	/* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
265 	 * inaccessible and resetting the PHY is not blocked, toggle the
266 	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
267 	 */
268 	switch (hw->mac.type) {
269 	case e1000_pch_lpt:
270 		if (e1000_phy_is_accessible_pchlan(hw))
271 			break;
272 
273 		/* Before toggling LANPHYPC, see if PHY is accessible by
274 		 * forcing MAC to SMBus mode first.
275 		 */
276 		mac_reg = er32(CTRL_EXT);
277 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
278 		ew32(CTRL_EXT, mac_reg);
279 
280 		/* Wait 50 milliseconds for MAC to finish any retries
281 		 * that it might be trying to perform from previous
282 		 * attempts to acknowledge any phy read requests.
283 		 */
284 		msleep(50);
285 
286 		/* fall-through */
287 	case e1000_pch2lan:
288 		if (e1000_phy_is_accessible_pchlan(hw))
289 			break;
290 
291 		/* fall-through */
292 	case e1000_pchlan:
293 		if ((hw->mac.type == e1000_pchlan) &&
294 		    (fwsm & E1000_ICH_FWSM_FW_VALID))
295 			break;
296 
297 		if (hw->phy.ops.check_reset_block(hw)) {
298 			e_dbg("Required LANPHYPC toggle blocked by ME\n");
299 			ret_val = -E1000_ERR_PHY;
300 			break;
301 		}
302 
303 		e_dbg("Toggling LANPHYPC\n");
304 
305 		/* Set Phy Config Counter to 50msec */
306 		mac_reg = er32(FEXTNVM3);
307 		mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
308 		mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
309 		ew32(FEXTNVM3, mac_reg);
310 
311 		/* Toggle LANPHYPC Value bit */
312 		mac_reg = er32(CTRL);
313 		mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
314 		mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
315 		ew32(CTRL, mac_reg);
316 		e1e_flush();
317 		usleep_range(10, 20);
318 		mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
319 		ew32(CTRL, mac_reg);
320 		e1e_flush();
321 		if (hw->mac.type < e1000_pch_lpt) {
322 			msleep(50);
323 		} else {
324 			u16 count = 20;
325 			do {
326 				usleep_range(5000, 10000);
327 			} while (!(er32(CTRL_EXT) &
328 				   E1000_CTRL_EXT_LPCD) && count--);
329 			usleep_range(30000, 60000);
330 			if (e1000_phy_is_accessible_pchlan(hw))
331 				break;
332 
333 			/* Toggling LANPHYPC brings the PHY out of SMBus mode
334 			 * so ensure that the MAC is also out of SMBus mode
335 			 */
336 			mac_reg = er32(CTRL_EXT);
337 			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
338 			ew32(CTRL_EXT, mac_reg);
339 
340 			if (e1000_phy_is_accessible_pchlan(hw))
341 				break;
342 
343 			ret_val = -E1000_ERR_PHY;
344 		}
345 		break;
346 	default:
347 		break;
348 	}
349 
350 	hw->phy.ops.release(hw);
351 	if (!ret_val) {
352 		/* Reset the PHY before any access to it.  Doing so, ensures
353 		 * that the PHY is in a known good state before we read/write
354 		 * PHY registers.  The generic reset is sufficient here,
355 		 * because we haven't determined the PHY type yet.
356 		 */
357 		ret_val = e1000e_phy_hw_reset_generic(hw);
358 	}
359 
360 out:
361 	/* Ungate automatic PHY configuration on non-managed 82579 */
362 	if ((hw->mac.type == e1000_pch2lan) &&
363 	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
364 		usleep_range(10000, 20000);
365 		e1000_gate_hw_phy_config_ich8lan(hw, false);
366 	}
367 
368 	return ret_val;
369 }
370 
371 /**
372  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
373  *  @hw: pointer to the HW structure
374  *
375  *  Initialize family-specific PHY parameters and function pointers.
376  **/
377 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
378 {
379 	struct e1000_phy_info *phy = &hw->phy;
380 	s32 ret_val;
381 
382 	phy->addr = 1;
383 	phy->reset_delay_us = 100;
384 
385 	phy->ops.set_page = e1000_set_page_igp;
386 	phy->ops.read_reg = e1000_read_phy_reg_hv;
387 	phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
388 	phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
389 	phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
390 	phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
391 	phy->ops.write_reg = e1000_write_phy_reg_hv;
392 	phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
393 	phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
394 	phy->ops.power_up = e1000_power_up_phy_copper;
395 	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
396 	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
397 
398 	phy->id = e1000_phy_unknown;
399 
400 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
401 	if (ret_val)
402 		return ret_val;
403 
404 	if (phy->id == e1000_phy_unknown)
405 		switch (hw->mac.type) {
406 		default:
407 			ret_val = e1000e_get_phy_id(hw);
408 			if (ret_val)
409 				return ret_val;
410 			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
411 				break;
412 			/* fall-through */
413 		case e1000_pch2lan:
414 		case e1000_pch_lpt:
415 			/* In case the PHY needs to be in mdio slow mode,
416 			 * set slow mode and try to get the PHY id again.
417 			 */
418 			ret_val = e1000_set_mdio_slow_mode_hv(hw);
419 			if (ret_val)
420 				return ret_val;
421 			ret_val = e1000e_get_phy_id(hw);
422 			if (ret_val)
423 				return ret_val;
424 			break;
425 		}
426 	phy->type = e1000e_get_phy_type_from_id(phy->id);
427 
428 	switch (phy->type) {
429 	case e1000_phy_82577:
430 	case e1000_phy_82579:
431 	case e1000_phy_i217:
432 		phy->ops.check_polarity = e1000_check_polarity_82577;
433 		phy->ops.force_speed_duplex =
434 		    e1000_phy_force_speed_duplex_82577;
435 		phy->ops.get_cable_length = e1000_get_cable_length_82577;
436 		phy->ops.get_info = e1000_get_phy_info_82577;
437 		phy->ops.commit = e1000e_phy_sw_reset;
438 		break;
439 	case e1000_phy_82578:
440 		phy->ops.check_polarity = e1000_check_polarity_m88;
441 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
442 		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
443 		phy->ops.get_info = e1000e_get_phy_info_m88;
444 		break;
445 	default:
446 		ret_val = -E1000_ERR_PHY;
447 		break;
448 	}
449 
450 	return ret_val;
451 }
452 
453 /**
454  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
455  *  @hw: pointer to the HW structure
456  *
457  *  Initialize family-specific PHY parameters and function pointers.
458  **/
459 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
460 {
461 	struct e1000_phy_info *phy = &hw->phy;
462 	s32 ret_val;
463 	u16 i = 0;
464 
465 	phy->addr = 1;
466 	phy->reset_delay_us = 100;
467 
468 	phy->ops.power_up = e1000_power_up_phy_copper;
469 	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
470 
471 	/* We may need to do this twice - once for IGP and if that fails,
472 	 * we'll set BM func pointers and try again
473 	 */
474 	ret_val = e1000e_determine_phy_address(hw);
475 	if (ret_val) {
476 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
477 		phy->ops.read_reg = e1000e_read_phy_reg_bm;
478 		ret_val = e1000e_determine_phy_address(hw);
479 		if (ret_val) {
480 			e_dbg("Cannot determine PHY addr. Erroring out\n");
481 			return ret_val;
482 		}
483 	}
484 
485 	phy->id = 0;
486 	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
487 	       (i++ < 100)) {
488 		usleep_range(1000, 2000);
489 		ret_val = e1000e_get_phy_id(hw);
490 		if (ret_val)
491 			return ret_val;
492 	}
493 
494 	/* Verify phy id */
495 	switch (phy->id) {
496 	case IGP03E1000_E_PHY_ID:
497 		phy->type = e1000_phy_igp_3;
498 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
499 		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
500 		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
501 		phy->ops.get_info = e1000e_get_phy_info_igp;
502 		phy->ops.check_polarity = e1000_check_polarity_igp;
503 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
504 		break;
505 	case IFE_E_PHY_ID:
506 	case IFE_PLUS_E_PHY_ID:
507 	case IFE_C_E_PHY_ID:
508 		phy->type = e1000_phy_ife;
509 		phy->autoneg_mask = E1000_ALL_NOT_GIG;
510 		phy->ops.get_info = e1000_get_phy_info_ife;
511 		phy->ops.check_polarity = e1000_check_polarity_ife;
512 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
513 		break;
514 	case BME1000_E_PHY_ID:
515 		phy->type = e1000_phy_bm;
516 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
517 		phy->ops.read_reg = e1000e_read_phy_reg_bm;
518 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
519 		phy->ops.commit = e1000e_phy_sw_reset;
520 		phy->ops.get_info = e1000e_get_phy_info_m88;
521 		phy->ops.check_polarity = e1000_check_polarity_m88;
522 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
523 		break;
524 	default:
525 		return -E1000_ERR_PHY;
526 		break;
527 	}
528 
529 	return 0;
530 }
531 
532 /**
533  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
534  *  @hw: pointer to the HW structure
535  *
536  *  Initialize family-specific NVM parameters and function
537  *  pointers.
538  **/
539 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
540 {
541 	struct e1000_nvm_info *nvm = &hw->nvm;
542 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
543 	u32 gfpreg, sector_base_addr, sector_end_addr;
544 	u16 i;
545 
546 	/* Can't read flash registers if the register set isn't mapped. */
547 	if (!hw->flash_address) {
548 		e_dbg("ERROR: Flash registers not mapped\n");
549 		return -E1000_ERR_CONFIG;
550 	}
551 
552 	nvm->type = e1000_nvm_flash_sw;
553 
554 	gfpreg = er32flash(ICH_FLASH_GFPREG);
555 
556 	/* sector_X_addr is a "sector"-aligned address (4096 bytes)
557 	 * Add 1 to sector_end_addr since this sector is included in
558 	 * the overall size.
559 	 */
560 	sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
561 	sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
562 
563 	/* flash_base_addr is byte-aligned */
564 	nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
565 
566 	/* find total size of the NVM, then cut in half since the total
567 	 * size represents two separate NVM banks.
568 	 */
569 	nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
570 				<< FLASH_SECTOR_ADDR_SHIFT);
571 	nvm->flash_bank_size /= 2;
572 	/* Adjust to word count */
573 	nvm->flash_bank_size /= sizeof(u16);
574 
575 	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
576 
577 	/* Clear shadow ram */
578 	for (i = 0; i < nvm->word_size; i++) {
579 		dev_spec->shadow_ram[i].modified = false;
580 		dev_spec->shadow_ram[i].value = 0xFFFF;
581 	}
582 
583 	return 0;
584 }
585 
586 /**
587  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
588  *  @hw: pointer to the HW structure
589  *
590  *  Initialize family-specific MAC parameters and function
591  *  pointers.
592  **/
593 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
594 {
595 	struct e1000_mac_info *mac = &hw->mac;
596 
597 	/* Set media type function pointer */
598 	hw->phy.media_type = e1000_media_type_copper;
599 
600 	/* Set mta register count */
601 	mac->mta_reg_count = 32;
602 	/* Set rar entry count */
603 	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
604 	if (mac->type == e1000_ich8lan)
605 		mac->rar_entry_count--;
606 	/* FWSM register */
607 	mac->has_fwsm = true;
608 	/* ARC subsystem not supported */
609 	mac->arc_subsystem_valid = false;
610 	/* Adaptive IFS supported */
611 	mac->adaptive_ifs = true;
612 
613 	/* LED and other operations */
614 	switch (mac->type) {
615 	case e1000_ich8lan:
616 	case e1000_ich9lan:
617 	case e1000_ich10lan:
618 		/* check management mode */
619 		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
620 		/* ID LED init */
621 		mac->ops.id_led_init = e1000e_id_led_init_generic;
622 		/* blink LED */
623 		mac->ops.blink_led = e1000e_blink_led_generic;
624 		/* setup LED */
625 		mac->ops.setup_led = e1000e_setup_led_generic;
626 		/* cleanup LED */
627 		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
628 		/* turn on/off LED */
629 		mac->ops.led_on = e1000_led_on_ich8lan;
630 		mac->ops.led_off = e1000_led_off_ich8lan;
631 		break;
632 	case e1000_pch2lan:
633 		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
634 		mac->ops.rar_set = e1000_rar_set_pch2lan;
635 		/* fall-through */
636 	case e1000_pch_lpt:
637 	case e1000_pchlan:
638 		/* check management mode */
639 		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
640 		/* ID LED init */
641 		mac->ops.id_led_init = e1000_id_led_init_pchlan;
642 		/* setup LED */
643 		mac->ops.setup_led = e1000_setup_led_pchlan;
644 		/* cleanup LED */
645 		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
646 		/* turn on/off LED */
647 		mac->ops.led_on = e1000_led_on_pchlan;
648 		mac->ops.led_off = e1000_led_off_pchlan;
649 		break;
650 	default:
651 		break;
652 	}
653 
654 	if (mac->type == e1000_pch_lpt) {
655 		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
656 		mac->ops.rar_set = e1000_rar_set_pch_lpt;
657 		mac->ops.setup_physical_interface =
658 		    e1000_setup_copper_link_pch_lpt;
659 	}
660 
661 	/* Enable PCS Lock-loss workaround for ICH8 */
662 	if (mac->type == e1000_ich8lan)
663 		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
664 
665 	return 0;
666 }
667 
668 /**
669  *  __e1000_access_emi_reg_locked - Read/write EMI register
670  *  @hw: pointer to the HW structure
671  *  @addr: EMI address to program
672  *  @data: pointer to value to read/write from/to the EMI address
673  *  @read: boolean flag to indicate read or write
674  *
675  *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
676  **/
677 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
678 					 u16 *data, bool read)
679 {
680 	s32 ret_val;
681 
682 	ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
683 	if (ret_val)
684 		return ret_val;
685 
686 	if (read)
687 		ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
688 	else
689 		ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
690 
691 	return ret_val;
692 }
693 
694 /**
695  *  e1000_read_emi_reg_locked - Read Extended Management Interface register
696  *  @hw: pointer to the HW structure
697  *  @addr: EMI address to program
698  *  @data: value to be read from the EMI address
699  *
700  *  Assumes the SW/FW/HW Semaphore is already acquired.
701  **/
702 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
703 {
704 	return __e1000_access_emi_reg_locked(hw, addr, data, true);
705 }
706 
707 /**
708  *  e1000_write_emi_reg_locked - Write Extended Management Interface register
709  *  @hw: pointer to the HW structure
710  *  @addr: EMI address to program
711  *  @data: value to be written to the EMI address
712  *
713  *  Assumes the SW/FW/HW Semaphore is already acquired.
714  **/
715 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
716 {
717 	return __e1000_access_emi_reg_locked(hw, addr, &data, false);
718 }
719 
720 /**
721  *  e1000_set_eee_pchlan - Enable/disable EEE support
722  *  @hw: pointer to the HW structure
723  *
724  *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
725  *  the link and the EEE capabilities of the link partner.  The LPI Control
726  *  register bits will remain set only if/when link is up.
727  **/
728 static s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
729 {
730 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
731 	s32 ret_val;
732 	u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
733 
734 	switch (hw->phy.type) {
735 	case e1000_phy_82579:
736 		lpa = I82579_EEE_LP_ABILITY;
737 		pcs_status = I82579_EEE_PCS_STATUS;
738 		adv_addr = I82579_EEE_ADVERTISEMENT;
739 		break;
740 	case e1000_phy_i217:
741 		lpa = I217_EEE_LP_ABILITY;
742 		pcs_status = I217_EEE_PCS_STATUS;
743 		adv_addr = I217_EEE_ADVERTISEMENT;
744 		break;
745 	default:
746 		return 0;
747 	}
748 
749 	ret_val = hw->phy.ops.acquire(hw);
750 	if (ret_val)
751 		return ret_val;
752 
753 	ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
754 	if (ret_val)
755 		goto release;
756 
757 	/* Clear bits that enable EEE in various speeds */
758 	lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
759 
760 	/* Enable EEE if not disabled by user */
761 	if (!dev_spec->eee_disable) {
762 		/* Save off link partner's EEE ability */
763 		ret_val = e1000_read_emi_reg_locked(hw, lpa,
764 						    &dev_spec->eee_lp_ability);
765 		if (ret_val)
766 			goto release;
767 
768 		/* Read EEE advertisement */
769 		ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
770 		if (ret_val)
771 			goto release;
772 
773 		/* Enable EEE only for speeds in which the link partner is
774 		 * EEE capable and for which we advertise EEE.
775 		 */
776 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
777 			lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
778 
779 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
780 			e1e_rphy_locked(hw, MII_LPA, &data);
781 			if (data & LPA_100FULL)
782 				lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
783 			else
784 				/* EEE is not supported in 100Half, so ignore
785 				 * partner's EEE in 100 ability if full-duplex
786 				 * is not advertised.
787 				 */
788 				dev_spec->eee_lp_ability &=
789 				    ~I82579_EEE_100_SUPPORTED;
790 		}
791 	}
792 
793 	/* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
794 	ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
795 	if (ret_val)
796 		goto release;
797 
798 	ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
799 release:
800 	hw->phy.ops.release(hw);
801 
802 	return ret_val;
803 }
804 
805 /**
806  *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
807  *  @hw:   pointer to the HW structure
808  *  @link: link up bool flag
809  *
810  *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
811  *  preventing further DMA write requests.  Workaround the issue by disabling
812  *  the de-assertion of the clock request when in 1Gpbs mode.
813  *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
814  *  speeds in order to avoid Tx hangs.
815  **/
816 static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
817 {
818 	u32 fextnvm6 = er32(FEXTNVM6);
819 	u32 status = er32(STATUS);
820 	s32 ret_val = 0;
821 	u16 reg;
822 
823 	if (link && (status & E1000_STATUS_SPEED_1000)) {
824 		ret_val = hw->phy.ops.acquire(hw);
825 		if (ret_val)
826 			return ret_val;
827 
828 		ret_val =
829 		    e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
830 						&reg);
831 		if (ret_val)
832 			goto release;
833 
834 		ret_val =
835 		    e1000e_write_kmrn_reg_locked(hw,
836 						 E1000_KMRNCTRLSTA_K1_CONFIG,
837 						 reg &
838 						 ~E1000_KMRNCTRLSTA_K1_ENABLE);
839 		if (ret_val)
840 			goto release;
841 
842 		usleep_range(10, 20);
843 
844 		ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
845 
846 		ret_val =
847 		    e1000e_write_kmrn_reg_locked(hw,
848 						 E1000_KMRNCTRLSTA_K1_CONFIG,
849 						 reg);
850 release:
851 		hw->phy.ops.release(hw);
852 	} else {
853 		/* clear FEXTNVM6 bit 8 on link down or 10/100 */
854 		fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
855 
856 		if (!link || ((status & E1000_STATUS_SPEED_100) &&
857 			      (status & E1000_STATUS_FD)))
858 			goto update_fextnvm6;
859 
860 		ret_val = e1e_rphy(hw, I217_INBAND_CTRL, &reg);
861 		if (ret_val)
862 			return ret_val;
863 
864 		/* Clear link status transmit timeout */
865 		reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
866 
867 		if (status & E1000_STATUS_SPEED_100) {
868 			/* Set inband Tx timeout to 5x10us for 100Half */
869 			reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
870 
871 			/* Do not extend the K1 entry latency for 100Half */
872 			fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
873 		} else {
874 			/* Set inband Tx timeout to 50x10us for 10Full/Half */
875 			reg |= 50 <<
876 			    I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
877 
878 			/* Extend the K1 entry latency for 10 Mbps */
879 			fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
880 		}
881 
882 		ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
883 		if (ret_val)
884 			return ret_val;
885 
886 update_fextnvm6:
887 		ew32(FEXTNVM6, fextnvm6);
888 	}
889 
890 	return ret_val;
891 }
892 
893 /**
894  *  e1000_platform_pm_pch_lpt - Set platform power management values
895  *  @hw: pointer to the HW structure
896  *  @link: bool indicating link status
897  *
898  *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
899  *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
900  *  when link is up (which must not exceed the maximum latency supported
901  *  by the platform), otherwise specify there is no LTR requirement.
902  *  Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
903  *  latencies in the LTR Extended Capability Structure in the PCIe Extended
904  *  Capability register set, on this device LTR is set by writing the
905  *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
906  *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
907  *  message to the PMC.
908  **/
909 static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
910 {
911 	u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
912 	    link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
913 	u16 lat_enc = 0;	/* latency encoded */
914 
915 	if (link) {
916 		u16 speed, duplex, scale = 0;
917 		u16 max_snoop, max_nosnoop;
918 		u16 max_ltr_enc;	/* max LTR latency encoded */
919 		s64 lat_ns;	/* latency (ns) */
920 		s64 value;
921 		u32 rxa;
922 
923 		if (!hw->adapter->max_frame_size) {
924 			e_dbg("max_frame_size not set.\n");
925 			return -E1000_ERR_CONFIG;
926 		}
927 
928 		hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
929 		if (!speed) {
930 			e_dbg("Speed not set.\n");
931 			return -E1000_ERR_CONFIG;
932 		}
933 
934 		/* Rx Packet Buffer Allocation size (KB) */
935 		rxa = er32(PBA) & E1000_PBA_RXA_MASK;
936 
937 		/* Determine the maximum latency tolerated by the device.
938 		 *
939 		 * Per the PCIe spec, the tolerated latencies are encoded as
940 		 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
941 		 * a 10-bit value (0-1023) to provide a range from 1 ns to
942 		 * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
943 		 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
944 		 */
945 		lat_ns = ((s64)rxa * 1024 -
946 			  (2 * (s64)hw->adapter->max_frame_size)) * 8 * 1000;
947 		if (lat_ns < 0)
948 			lat_ns = 0;
949 		else
950 			do_div(lat_ns, speed);
951 
952 		value = lat_ns;
953 		while (value > PCI_LTR_VALUE_MASK) {
954 			scale++;
955 			value = DIV_ROUND_UP(value, (1 << 5));
956 		}
957 		if (scale > E1000_LTRV_SCALE_MAX) {
958 			e_dbg("Invalid LTR latency scale %d\n", scale);
959 			return -E1000_ERR_CONFIG;
960 		}
961 		lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
962 
963 		/* Determine the maximum latency tolerated by the platform */
964 		pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
965 				     &max_snoop);
966 		pci_read_config_word(hw->adapter->pdev,
967 				     E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
968 		max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
969 
970 		if (lat_enc > max_ltr_enc)
971 			lat_enc = max_ltr_enc;
972 	}
973 
974 	/* Set Snoop and No-Snoop latencies the same */
975 	reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
976 	ew32(LTRV, reg);
977 
978 	return 0;
979 }
980 
981 /**
982  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
983  *  @hw: pointer to the HW structure
984  *
985  *  Checks to see of the link status of the hardware has changed.  If a
986  *  change in link status has been detected, then we read the PHY registers
987  *  to get the current speed/duplex if link exists.
988  **/
989 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
990 {
991 	struct e1000_mac_info *mac = &hw->mac;
992 	s32 ret_val;
993 	bool link;
994 	u16 phy_reg;
995 
996 	/* We only want to go out to the PHY registers to see if Auto-Neg
997 	 * has completed and/or if our link status has changed.  The
998 	 * get_link_status flag is set upon receiving a Link Status
999 	 * Change or Rx Sequence Error interrupt.
1000 	 */
1001 	if (!mac->get_link_status)
1002 		return 0;
1003 
1004 	/* First we want to see if the MII Status Register reports
1005 	 * link.  If so, then we want to get the current speed/duplex
1006 	 * of the PHY.
1007 	 */
1008 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1009 	if (ret_val)
1010 		return ret_val;
1011 
1012 	if (hw->mac.type == e1000_pchlan) {
1013 		ret_val = e1000_k1_gig_workaround_hv(hw, link);
1014 		if (ret_val)
1015 			return ret_val;
1016 	}
1017 
1018 	/* When connected at 10Mbps half-duplex, 82579 parts are excessively
1019 	 * aggressive resulting in many collisions. To avoid this, increase
1020 	 * the IPG and reduce Rx latency in the PHY.
1021 	 */
1022 	if ((hw->mac.type == e1000_pch2lan) && link) {
1023 		u32 reg;
1024 		reg = er32(STATUS);
1025 		if (!(reg & (E1000_STATUS_FD | E1000_STATUS_SPEED_MASK))) {
1026 			reg = er32(TIPG);
1027 			reg &= ~E1000_TIPG_IPGT_MASK;
1028 			reg |= 0xFF;
1029 			ew32(TIPG, reg);
1030 
1031 			/* Reduce Rx latency in analog PHY */
1032 			ret_val = hw->phy.ops.acquire(hw);
1033 			if (ret_val)
1034 				return ret_val;
1035 
1036 			ret_val =
1037 			    e1000_write_emi_reg_locked(hw, I82579_RX_CONFIG, 0);
1038 
1039 			hw->phy.ops.release(hw);
1040 
1041 			if (ret_val)
1042 				return ret_val;
1043 		}
1044 	}
1045 
1046 	/* Work-around I218 hang issue */
1047 	if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1048 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1049 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1050 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
1051 		ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1052 		if (ret_val)
1053 			return ret_val;
1054 	}
1055 
1056 	if (hw->mac.type == e1000_pch_lpt) {
1057 		/* Set platform power management values for
1058 		 * Latency Tolerance Reporting (LTR)
1059 		 */
1060 		ret_val = e1000_platform_pm_pch_lpt(hw, link);
1061 		if (ret_val)
1062 			return ret_val;
1063 	}
1064 
1065 	/* Clear link partner's EEE ability */
1066 	hw->dev_spec.ich8lan.eee_lp_ability = 0;
1067 
1068 	if (!link)
1069 		return 0;	/* No link detected */
1070 
1071 	mac->get_link_status = false;
1072 
1073 	switch (hw->mac.type) {
1074 	case e1000_pch2lan:
1075 		ret_val = e1000_k1_workaround_lv(hw);
1076 		if (ret_val)
1077 			return ret_val;
1078 		/* fall-thru */
1079 	case e1000_pchlan:
1080 		if (hw->phy.type == e1000_phy_82578) {
1081 			ret_val = e1000_link_stall_workaround_hv(hw);
1082 			if (ret_val)
1083 				return ret_val;
1084 		}
1085 
1086 		/* Workaround for PCHx parts in half-duplex:
1087 		 * Set the number of preambles removed from the packet
1088 		 * when it is passed from the PHY to the MAC to prevent
1089 		 * the MAC from misinterpreting the packet type.
1090 		 */
1091 		e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1092 		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1093 
1094 		if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1095 			phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1096 
1097 		e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1098 		break;
1099 	default:
1100 		break;
1101 	}
1102 
1103 	/* Check if there was DownShift, must be checked
1104 	 * immediately after link-up
1105 	 */
1106 	e1000e_check_downshift(hw);
1107 
1108 	/* Enable/Disable EEE after link up */
1109 	ret_val = e1000_set_eee_pchlan(hw);
1110 	if (ret_val)
1111 		return ret_val;
1112 
1113 	/* If we are forcing speed/duplex, then we simply return since
1114 	 * we have already determined whether we have link or not.
1115 	 */
1116 	if (!mac->autoneg)
1117 		return -E1000_ERR_CONFIG;
1118 
1119 	/* Auto-Neg is enabled.  Auto Speed Detection takes care
1120 	 * of MAC speed/duplex configuration.  So we only need to
1121 	 * configure Collision Distance in the MAC.
1122 	 */
1123 	mac->ops.config_collision_dist(hw);
1124 
1125 	/* Configure Flow Control now that Auto-Neg has completed.
1126 	 * First, we need to restore the desired flow control
1127 	 * settings because we may have had to re-autoneg with a
1128 	 * different link partner.
1129 	 */
1130 	ret_val = e1000e_config_fc_after_link_up(hw);
1131 	if (ret_val)
1132 		e_dbg("Error configuring flow control\n");
1133 
1134 	return ret_val;
1135 }
1136 
1137 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1138 {
1139 	struct e1000_hw *hw = &adapter->hw;
1140 	s32 rc;
1141 
1142 	rc = e1000_init_mac_params_ich8lan(hw);
1143 	if (rc)
1144 		return rc;
1145 
1146 	rc = e1000_init_nvm_params_ich8lan(hw);
1147 	if (rc)
1148 		return rc;
1149 
1150 	switch (hw->mac.type) {
1151 	case e1000_ich8lan:
1152 	case e1000_ich9lan:
1153 	case e1000_ich10lan:
1154 		rc = e1000_init_phy_params_ich8lan(hw);
1155 		break;
1156 	case e1000_pchlan:
1157 	case e1000_pch2lan:
1158 	case e1000_pch_lpt:
1159 		rc = e1000_init_phy_params_pchlan(hw);
1160 		break;
1161 	default:
1162 		break;
1163 	}
1164 	if (rc)
1165 		return rc;
1166 
1167 	/* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1168 	 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1169 	 */
1170 	if ((adapter->hw.phy.type == e1000_phy_ife) ||
1171 	    ((adapter->hw.mac.type >= e1000_pch2lan) &&
1172 	     (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1173 		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1174 		adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
1175 
1176 		hw->mac.ops.blink_led = NULL;
1177 	}
1178 
1179 	if ((adapter->hw.mac.type == e1000_ich8lan) &&
1180 	    (adapter->hw.phy.type != e1000_phy_ife))
1181 		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1182 
1183 	/* Enable workaround for 82579 w/ ME enabled */
1184 	if ((adapter->hw.mac.type == e1000_pch2lan) &&
1185 	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1186 		adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1187 
1188 	return 0;
1189 }
1190 
1191 static DEFINE_MUTEX(nvm_mutex);
1192 
1193 /**
1194  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1195  *  @hw: pointer to the HW structure
1196  *
1197  *  Acquires the mutex for performing NVM operations.
1198  **/
1199 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1200 {
1201 	mutex_lock(&nvm_mutex);
1202 
1203 	return 0;
1204 }
1205 
1206 /**
1207  *  e1000_release_nvm_ich8lan - Release NVM mutex
1208  *  @hw: pointer to the HW structure
1209  *
1210  *  Releases the mutex used while performing NVM operations.
1211  **/
1212 static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1213 {
1214 	mutex_unlock(&nvm_mutex);
1215 }
1216 
1217 /**
1218  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1219  *  @hw: pointer to the HW structure
1220  *
1221  *  Acquires the software control flag for performing PHY and select
1222  *  MAC CSR accesses.
1223  **/
1224 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1225 {
1226 	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1227 	s32 ret_val = 0;
1228 
1229 	if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1230 			     &hw->adapter->state)) {
1231 		e_dbg("contention for Phy access\n");
1232 		return -E1000_ERR_PHY;
1233 	}
1234 
1235 	while (timeout) {
1236 		extcnf_ctrl = er32(EXTCNF_CTRL);
1237 		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1238 			break;
1239 
1240 		mdelay(1);
1241 		timeout--;
1242 	}
1243 
1244 	if (!timeout) {
1245 		e_dbg("SW has already locked the resource.\n");
1246 		ret_val = -E1000_ERR_CONFIG;
1247 		goto out;
1248 	}
1249 
1250 	timeout = SW_FLAG_TIMEOUT;
1251 
1252 	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1253 	ew32(EXTCNF_CTRL, extcnf_ctrl);
1254 
1255 	while (timeout) {
1256 		extcnf_ctrl = er32(EXTCNF_CTRL);
1257 		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1258 			break;
1259 
1260 		mdelay(1);
1261 		timeout--;
1262 	}
1263 
1264 	if (!timeout) {
1265 		e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1266 		      er32(FWSM), extcnf_ctrl);
1267 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1268 		ew32(EXTCNF_CTRL, extcnf_ctrl);
1269 		ret_val = -E1000_ERR_CONFIG;
1270 		goto out;
1271 	}
1272 
1273 out:
1274 	if (ret_val)
1275 		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1276 
1277 	return ret_val;
1278 }
1279 
1280 /**
1281  *  e1000_release_swflag_ich8lan - Release software control flag
1282  *  @hw: pointer to the HW structure
1283  *
1284  *  Releases the software control flag for performing PHY and select
1285  *  MAC CSR accesses.
1286  **/
1287 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1288 {
1289 	u32 extcnf_ctrl;
1290 
1291 	extcnf_ctrl = er32(EXTCNF_CTRL);
1292 
1293 	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1294 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1295 		ew32(EXTCNF_CTRL, extcnf_ctrl);
1296 	} else {
1297 		e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1298 	}
1299 
1300 	clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1301 }
1302 
1303 /**
1304  *  e1000_check_mng_mode_ich8lan - Checks management mode
1305  *  @hw: pointer to the HW structure
1306  *
1307  *  This checks if the adapter has any manageability enabled.
1308  *  This is a function pointer entry point only called by read/write
1309  *  routines for the PHY and NVM parts.
1310  **/
1311 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1312 {
1313 	u32 fwsm;
1314 
1315 	fwsm = er32(FWSM);
1316 	return ((fwsm & E1000_ICH_FWSM_FW_VALID) &&
1317 		((fwsm & E1000_FWSM_MODE_MASK) ==
1318 		 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)));
1319 }
1320 
1321 /**
1322  *  e1000_check_mng_mode_pchlan - Checks management mode
1323  *  @hw: pointer to the HW structure
1324  *
1325  *  This checks if the adapter has iAMT enabled.
1326  *  This is a function pointer entry point only called by read/write
1327  *  routines for the PHY and NVM parts.
1328  **/
1329 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1330 {
1331 	u32 fwsm;
1332 
1333 	fwsm = er32(FWSM);
1334 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1335 	    (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1336 }
1337 
1338 /**
1339  *  e1000_rar_set_pch2lan - Set receive address register
1340  *  @hw: pointer to the HW structure
1341  *  @addr: pointer to the receive address
1342  *  @index: receive address array register
1343  *
1344  *  Sets the receive address array register at index to the address passed
1345  *  in by addr.  For 82579, RAR[0] is the base address register that is to
1346  *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1347  *  Use SHRA[0-3] in place of those reserved for ME.
1348  **/
1349 static void e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1350 {
1351 	u32 rar_low, rar_high;
1352 
1353 	/* HW expects these in little endian so we reverse the byte order
1354 	 * from network order (big endian) to little endian
1355 	 */
1356 	rar_low = ((u32)addr[0] |
1357 		   ((u32)addr[1] << 8) |
1358 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1359 
1360 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1361 
1362 	/* If MAC address zero, no need to set the AV bit */
1363 	if (rar_low || rar_high)
1364 		rar_high |= E1000_RAH_AV;
1365 
1366 	if (index == 0) {
1367 		ew32(RAL(index), rar_low);
1368 		e1e_flush();
1369 		ew32(RAH(index), rar_high);
1370 		e1e_flush();
1371 		return;
1372 	}
1373 
1374 	/* RAR[1-6] are owned by manageability.  Skip those and program the
1375 	 * next address into the SHRA register array.
1376 	 */
1377 	if (index < (u32)(hw->mac.rar_entry_count - 6)) {
1378 		s32 ret_val;
1379 
1380 		ret_val = e1000_acquire_swflag_ich8lan(hw);
1381 		if (ret_val)
1382 			goto out;
1383 
1384 		ew32(SHRAL(index - 1), rar_low);
1385 		e1e_flush();
1386 		ew32(SHRAH(index - 1), rar_high);
1387 		e1e_flush();
1388 
1389 		e1000_release_swflag_ich8lan(hw);
1390 
1391 		/* verify the register updates */
1392 		if ((er32(SHRAL(index - 1)) == rar_low) &&
1393 		    (er32(SHRAH(index - 1)) == rar_high))
1394 			return;
1395 
1396 		e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1397 		      (index - 1), er32(FWSM));
1398 	}
1399 
1400 out:
1401 	e_dbg("Failed to write receive address at index %d\n", index);
1402 }
1403 
1404 /**
1405  *  e1000_rar_set_pch_lpt - Set receive address registers
1406  *  @hw: pointer to the HW structure
1407  *  @addr: pointer to the receive address
1408  *  @index: receive address array register
1409  *
1410  *  Sets the receive address register array at index to the address passed
1411  *  in by addr. For LPT, RAR[0] is the base address register that is to
1412  *  contain the MAC address. SHRA[0-10] are the shared receive address
1413  *  registers that are shared between the Host and manageability engine (ME).
1414  **/
1415 static void e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1416 {
1417 	u32 rar_low, rar_high;
1418 	u32 wlock_mac;
1419 
1420 	/* HW expects these in little endian so we reverse the byte order
1421 	 * from network order (big endian) to little endian
1422 	 */
1423 	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1424 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1425 
1426 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1427 
1428 	/* If MAC address zero, no need to set the AV bit */
1429 	if (rar_low || rar_high)
1430 		rar_high |= E1000_RAH_AV;
1431 
1432 	if (index == 0) {
1433 		ew32(RAL(index), rar_low);
1434 		e1e_flush();
1435 		ew32(RAH(index), rar_high);
1436 		e1e_flush();
1437 		return;
1438 	}
1439 
1440 	/* The manageability engine (ME) can lock certain SHRAR registers that
1441 	 * it is using - those registers are unavailable for use.
1442 	 */
1443 	if (index < hw->mac.rar_entry_count) {
1444 		wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1445 		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1446 
1447 		/* Check if all SHRAR registers are locked */
1448 		if (wlock_mac == 1)
1449 			goto out;
1450 
1451 		if ((wlock_mac == 0) || (index <= wlock_mac)) {
1452 			s32 ret_val;
1453 
1454 			ret_val = e1000_acquire_swflag_ich8lan(hw);
1455 
1456 			if (ret_val)
1457 				goto out;
1458 
1459 			ew32(SHRAL_PCH_LPT(index - 1), rar_low);
1460 			e1e_flush();
1461 			ew32(SHRAH_PCH_LPT(index - 1), rar_high);
1462 			e1e_flush();
1463 
1464 			e1000_release_swflag_ich8lan(hw);
1465 
1466 			/* verify the register updates */
1467 			if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
1468 			    (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
1469 				return;
1470 		}
1471 	}
1472 
1473 out:
1474 	e_dbg("Failed to write receive address at index %d\n", index);
1475 }
1476 
1477 /**
1478  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
1479  *  @hw: pointer to the HW structure
1480  *
1481  *  Checks if firmware is blocking the reset of the PHY.
1482  *  This is a function pointer entry point only called by
1483  *  reset routines.
1484  **/
1485 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
1486 {
1487 	u32 fwsm;
1488 
1489 	fwsm = er32(FWSM);
1490 
1491 	return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
1492 }
1493 
1494 /**
1495  *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
1496  *  @hw: pointer to the HW structure
1497  *
1498  *  Assumes semaphore already acquired.
1499  *
1500  **/
1501 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
1502 {
1503 	u16 phy_data;
1504 	u32 strap = er32(STRAP);
1505 	u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
1506 	    E1000_STRAP_SMT_FREQ_SHIFT;
1507 	s32 ret_val;
1508 
1509 	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
1510 
1511 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
1512 	if (ret_val)
1513 		return ret_val;
1514 
1515 	phy_data &= ~HV_SMB_ADDR_MASK;
1516 	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
1517 	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
1518 
1519 	if (hw->phy.type == e1000_phy_i217) {
1520 		/* Restore SMBus frequency */
1521 		if (freq--) {
1522 			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
1523 			phy_data |= (freq & (1 << 0)) <<
1524 			    HV_SMB_ADDR_FREQ_LOW_SHIFT;
1525 			phy_data |= (freq & (1 << 1)) <<
1526 			    (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
1527 		} else {
1528 			e_dbg("Unsupported SMB frequency in PHY\n");
1529 		}
1530 	}
1531 
1532 	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
1533 }
1534 
1535 /**
1536  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
1537  *  @hw:   pointer to the HW structure
1538  *
1539  *  SW should configure the LCD from the NVM extended configuration region
1540  *  as a workaround for certain parts.
1541  **/
1542 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
1543 {
1544 	struct e1000_phy_info *phy = &hw->phy;
1545 	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
1546 	s32 ret_val = 0;
1547 	u16 word_addr, reg_data, reg_addr, phy_page = 0;
1548 
1549 	/* Initialize the PHY from the NVM on ICH platforms.  This
1550 	 * is needed due to an issue where the NVM configuration is
1551 	 * not properly autoloaded after power transitions.
1552 	 * Therefore, after each PHY reset, we will load the
1553 	 * configuration data out of the NVM manually.
1554 	 */
1555 	switch (hw->mac.type) {
1556 	case e1000_ich8lan:
1557 		if (phy->type != e1000_phy_igp_3)
1558 			return ret_val;
1559 
1560 		if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
1561 		    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
1562 			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
1563 			break;
1564 		}
1565 		/* Fall-thru */
1566 	case e1000_pchlan:
1567 	case e1000_pch2lan:
1568 	case e1000_pch_lpt:
1569 		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
1570 		break;
1571 	default:
1572 		return ret_val;
1573 	}
1574 
1575 	ret_val = hw->phy.ops.acquire(hw);
1576 	if (ret_val)
1577 		return ret_val;
1578 
1579 	data = er32(FEXTNVM);
1580 	if (!(data & sw_cfg_mask))
1581 		goto release;
1582 
1583 	/* Make sure HW does not configure LCD from PHY
1584 	 * extended configuration before SW configuration
1585 	 */
1586 	data = er32(EXTCNF_CTRL);
1587 	if ((hw->mac.type < e1000_pch2lan) &&
1588 	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
1589 		goto release;
1590 
1591 	cnf_size = er32(EXTCNF_SIZE);
1592 	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
1593 	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
1594 	if (!cnf_size)
1595 		goto release;
1596 
1597 	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
1598 	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
1599 
1600 	if (((hw->mac.type == e1000_pchlan) &&
1601 	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
1602 	    (hw->mac.type > e1000_pchlan)) {
1603 		/* HW configures the SMBus address and LEDs when the
1604 		 * OEM and LCD Write Enable bits are set in the NVM.
1605 		 * When both NVM bits are cleared, SW will configure
1606 		 * them instead.
1607 		 */
1608 		ret_val = e1000_write_smbus_addr(hw);
1609 		if (ret_val)
1610 			goto release;
1611 
1612 		data = er32(LEDCTL);
1613 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
1614 							(u16)data);
1615 		if (ret_val)
1616 			goto release;
1617 	}
1618 
1619 	/* Configure LCD from extended configuration region. */
1620 
1621 	/* cnf_base_addr is in DWORD */
1622 	word_addr = (u16)(cnf_base_addr << 1);
1623 
1624 	for (i = 0; i < cnf_size; i++) {
1625 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, &reg_data);
1626 		if (ret_val)
1627 			goto release;
1628 
1629 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
1630 					 1, &reg_addr);
1631 		if (ret_val)
1632 			goto release;
1633 
1634 		/* Save off the PHY page for future writes. */
1635 		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
1636 			phy_page = reg_data;
1637 			continue;
1638 		}
1639 
1640 		reg_addr &= PHY_REG_MASK;
1641 		reg_addr |= phy_page;
1642 
1643 		ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
1644 		if (ret_val)
1645 			goto release;
1646 	}
1647 
1648 release:
1649 	hw->phy.ops.release(hw);
1650 	return ret_val;
1651 }
1652 
1653 /**
1654  *  e1000_k1_gig_workaround_hv - K1 Si workaround
1655  *  @hw:   pointer to the HW structure
1656  *  @link: link up bool flag
1657  *
1658  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
1659  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
1660  *  If link is down, the function will restore the default K1 setting located
1661  *  in the NVM.
1662  **/
1663 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
1664 {
1665 	s32 ret_val = 0;
1666 	u16 status_reg = 0;
1667 	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
1668 
1669 	if (hw->mac.type != e1000_pchlan)
1670 		return 0;
1671 
1672 	/* Wrap the whole flow with the sw flag */
1673 	ret_val = hw->phy.ops.acquire(hw);
1674 	if (ret_val)
1675 		return ret_val;
1676 
1677 	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
1678 	if (link) {
1679 		if (hw->phy.type == e1000_phy_82578) {
1680 			ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
1681 						  &status_reg);
1682 			if (ret_val)
1683 				goto release;
1684 
1685 			status_reg &= (BM_CS_STATUS_LINK_UP |
1686 				       BM_CS_STATUS_RESOLVED |
1687 				       BM_CS_STATUS_SPEED_MASK);
1688 
1689 			if (status_reg == (BM_CS_STATUS_LINK_UP |
1690 					   BM_CS_STATUS_RESOLVED |
1691 					   BM_CS_STATUS_SPEED_1000))
1692 				k1_enable = false;
1693 		}
1694 
1695 		if (hw->phy.type == e1000_phy_82577) {
1696 			ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
1697 			if (ret_val)
1698 				goto release;
1699 
1700 			status_reg &= (HV_M_STATUS_LINK_UP |
1701 				       HV_M_STATUS_AUTONEG_COMPLETE |
1702 				       HV_M_STATUS_SPEED_MASK);
1703 
1704 			if (status_reg == (HV_M_STATUS_LINK_UP |
1705 					   HV_M_STATUS_AUTONEG_COMPLETE |
1706 					   HV_M_STATUS_SPEED_1000))
1707 				k1_enable = false;
1708 		}
1709 
1710 		/* Link stall fix for link up */
1711 		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
1712 		if (ret_val)
1713 			goto release;
1714 
1715 	} else {
1716 		/* Link stall fix for link down */
1717 		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
1718 		if (ret_val)
1719 			goto release;
1720 	}
1721 
1722 	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
1723 
1724 release:
1725 	hw->phy.ops.release(hw);
1726 
1727 	return ret_val;
1728 }
1729 
1730 /**
1731  *  e1000_configure_k1_ich8lan - Configure K1 power state
1732  *  @hw: pointer to the HW structure
1733  *  @enable: K1 state to configure
1734  *
1735  *  Configure the K1 power state based on the provided parameter.
1736  *  Assumes semaphore already acquired.
1737  *
1738  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1739  **/
1740 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
1741 {
1742 	s32 ret_val;
1743 	u32 ctrl_reg = 0;
1744 	u32 ctrl_ext = 0;
1745 	u32 reg = 0;
1746 	u16 kmrn_reg = 0;
1747 
1748 	ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
1749 					      &kmrn_reg);
1750 	if (ret_val)
1751 		return ret_val;
1752 
1753 	if (k1_enable)
1754 		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
1755 	else
1756 		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
1757 
1758 	ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
1759 					       kmrn_reg);
1760 	if (ret_val)
1761 		return ret_val;
1762 
1763 	usleep_range(20, 40);
1764 	ctrl_ext = er32(CTRL_EXT);
1765 	ctrl_reg = er32(CTRL);
1766 
1767 	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1768 	reg |= E1000_CTRL_FRCSPD;
1769 	ew32(CTRL, reg);
1770 
1771 	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
1772 	e1e_flush();
1773 	usleep_range(20, 40);
1774 	ew32(CTRL, ctrl_reg);
1775 	ew32(CTRL_EXT, ctrl_ext);
1776 	e1e_flush();
1777 	usleep_range(20, 40);
1778 
1779 	return 0;
1780 }
1781 
1782 /**
1783  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
1784  *  @hw:       pointer to the HW structure
1785  *  @d0_state: boolean if entering d0 or d3 device state
1786  *
1787  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
1788  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
1789  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
1790  **/
1791 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
1792 {
1793 	s32 ret_val = 0;
1794 	u32 mac_reg;
1795 	u16 oem_reg;
1796 
1797 	if (hw->mac.type < e1000_pchlan)
1798 		return ret_val;
1799 
1800 	ret_val = hw->phy.ops.acquire(hw);
1801 	if (ret_val)
1802 		return ret_val;
1803 
1804 	if (hw->mac.type == e1000_pchlan) {
1805 		mac_reg = er32(EXTCNF_CTRL);
1806 		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
1807 			goto release;
1808 	}
1809 
1810 	mac_reg = er32(FEXTNVM);
1811 	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
1812 		goto release;
1813 
1814 	mac_reg = er32(PHY_CTRL);
1815 
1816 	ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
1817 	if (ret_val)
1818 		goto release;
1819 
1820 	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
1821 
1822 	if (d0_state) {
1823 		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
1824 			oem_reg |= HV_OEM_BITS_GBE_DIS;
1825 
1826 		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
1827 			oem_reg |= HV_OEM_BITS_LPLU;
1828 	} else {
1829 		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
1830 			       E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
1831 			oem_reg |= HV_OEM_BITS_GBE_DIS;
1832 
1833 		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
1834 			       E1000_PHY_CTRL_NOND0A_LPLU))
1835 			oem_reg |= HV_OEM_BITS_LPLU;
1836 	}
1837 
1838 	/* Set Restart auto-neg to activate the bits */
1839 	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
1840 	    !hw->phy.ops.check_reset_block(hw))
1841 		oem_reg |= HV_OEM_BITS_RESTART_AN;
1842 
1843 	ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
1844 
1845 release:
1846 	hw->phy.ops.release(hw);
1847 
1848 	return ret_val;
1849 }
1850 
1851 /**
1852  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
1853  *  @hw:   pointer to the HW structure
1854  **/
1855 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
1856 {
1857 	s32 ret_val;
1858 	u16 data;
1859 
1860 	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
1861 	if (ret_val)
1862 		return ret_val;
1863 
1864 	data |= HV_KMRN_MDIO_SLOW;
1865 
1866 	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
1867 
1868 	return ret_val;
1869 }
1870 
1871 /**
1872  *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1873  *  done after every PHY reset.
1874  **/
1875 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1876 {
1877 	s32 ret_val = 0;
1878 	u16 phy_data;
1879 
1880 	if (hw->mac.type != e1000_pchlan)
1881 		return 0;
1882 
1883 	/* Set MDIO slow mode before any other MDIO access */
1884 	if (hw->phy.type == e1000_phy_82577) {
1885 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
1886 		if (ret_val)
1887 			return ret_val;
1888 	}
1889 
1890 	if (((hw->phy.type == e1000_phy_82577) &&
1891 	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
1892 	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
1893 		/* Disable generation of early preamble */
1894 		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
1895 		if (ret_val)
1896 			return ret_val;
1897 
1898 		/* Preamble tuning for SSC */
1899 		ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
1900 		if (ret_val)
1901 			return ret_val;
1902 	}
1903 
1904 	if (hw->phy.type == e1000_phy_82578) {
1905 		/* Return registers to default by doing a soft reset then
1906 		 * writing 0x3140 to the control register.
1907 		 */
1908 		if (hw->phy.revision < 2) {
1909 			e1000e_phy_sw_reset(hw);
1910 			ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
1911 		}
1912 	}
1913 
1914 	/* Select page 0 */
1915 	ret_val = hw->phy.ops.acquire(hw);
1916 	if (ret_val)
1917 		return ret_val;
1918 
1919 	hw->phy.addr = 1;
1920 	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
1921 	hw->phy.ops.release(hw);
1922 	if (ret_val)
1923 		return ret_val;
1924 
1925 	/* Configure the K1 Si workaround during phy reset assuming there is
1926 	 * link so that it disables K1 if link is in 1Gbps.
1927 	 */
1928 	ret_val = e1000_k1_gig_workaround_hv(hw, true);
1929 	if (ret_val)
1930 		return ret_val;
1931 
1932 	/* Workaround for link disconnects on a busy hub in half duplex */
1933 	ret_val = hw->phy.ops.acquire(hw);
1934 	if (ret_val)
1935 		return ret_val;
1936 	ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
1937 	if (ret_val)
1938 		goto release;
1939 	ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
1940 	if (ret_val)
1941 		goto release;
1942 
1943 	/* set MSE higher to enable link to stay up when noise is high */
1944 	ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
1945 release:
1946 	hw->phy.ops.release(hw);
1947 
1948 	return ret_val;
1949 }
1950 
1951 /**
1952  *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
1953  *  @hw:   pointer to the HW structure
1954  **/
1955 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
1956 {
1957 	u32 mac_reg;
1958 	u16 i, phy_reg = 0;
1959 	s32 ret_val;
1960 
1961 	ret_val = hw->phy.ops.acquire(hw);
1962 	if (ret_val)
1963 		return;
1964 	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
1965 	if (ret_val)
1966 		goto release;
1967 
1968 	/* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
1969 	for (i = 0; i < (hw->mac.rar_entry_count); i++) {
1970 		mac_reg = er32(RAL(i));
1971 		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
1972 					   (u16)(mac_reg & 0xFFFF));
1973 		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
1974 					   (u16)((mac_reg >> 16) & 0xFFFF));
1975 
1976 		mac_reg = er32(RAH(i));
1977 		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
1978 					   (u16)(mac_reg & 0xFFFF));
1979 		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
1980 					   (u16)((mac_reg & E1000_RAH_AV)
1981 						 >> 16));
1982 	}
1983 
1984 	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
1985 
1986 release:
1987 	hw->phy.ops.release(hw);
1988 }
1989 
1990 /**
1991  *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
1992  *  with 82579 PHY
1993  *  @hw: pointer to the HW structure
1994  *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
1995  **/
1996 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
1997 {
1998 	s32 ret_val = 0;
1999 	u16 phy_reg, data;
2000 	u32 mac_reg;
2001 	u16 i;
2002 
2003 	if (hw->mac.type < e1000_pch2lan)
2004 		return 0;
2005 
2006 	/* disable Rx path while enabling/disabling workaround */
2007 	e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2008 	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14));
2009 	if (ret_val)
2010 		return ret_val;
2011 
2012 	if (enable) {
2013 		/* Write Rx addresses (rar_entry_count for RAL/H, and
2014 		 * SHRAL/H) and initial CRC values to the MAC
2015 		 */
2016 		for (i = 0; i < hw->mac.rar_entry_count; i++) {
2017 			u8 mac_addr[ETH_ALEN] = { 0 };
2018 			u32 addr_high, addr_low;
2019 
2020 			addr_high = er32(RAH(i));
2021 			if (!(addr_high & E1000_RAH_AV))
2022 				continue;
2023 			addr_low = er32(RAL(i));
2024 			mac_addr[0] = (addr_low & 0xFF);
2025 			mac_addr[1] = ((addr_low >> 8) & 0xFF);
2026 			mac_addr[2] = ((addr_low >> 16) & 0xFF);
2027 			mac_addr[3] = ((addr_low >> 24) & 0xFF);
2028 			mac_addr[4] = (addr_high & 0xFF);
2029 			mac_addr[5] = ((addr_high >> 8) & 0xFF);
2030 
2031 			ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2032 		}
2033 
2034 		/* Write Rx addresses to the PHY */
2035 		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2036 
2037 		/* Enable jumbo frame workaround in the MAC */
2038 		mac_reg = er32(FFLT_DBG);
2039 		mac_reg &= ~(1 << 14);
2040 		mac_reg |= (7 << 15);
2041 		ew32(FFLT_DBG, mac_reg);
2042 
2043 		mac_reg = er32(RCTL);
2044 		mac_reg |= E1000_RCTL_SECRC;
2045 		ew32(RCTL, mac_reg);
2046 
2047 		ret_val = e1000e_read_kmrn_reg(hw,
2048 					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2049 					       &data);
2050 		if (ret_val)
2051 			return ret_val;
2052 		ret_val = e1000e_write_kmrn_reg(hw,
2053 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2054 						data | (1 << 0));
2055 		if (ret_val)
2056 			return ret_val;
2057 		ret_val = e1000e_read_kmrn_reg(hw,
2058 					       E1000_KMRNCTRLSTA_HD_CTRL,
2059 					       &data);
2060 		if (ret_val)
2061 			return ret_val;
2062 		data &= ~(0xF << 8);
2063 		data |= (0xB << 8);
2064 		ret_val = e1000e_write_kmrn_reg(hw,
2065 						E1000_KMRNCTRLSTA_HD_CTRL,
2066 						data);
2067 		if (ret_val)
2068 			return ret_val;
2069 
2070 		/* Enable jumbo frame workaround in the PHY */
2071 		e1e_rphy(hw, PHY_REG(769, 23), &data);
2072 		data &= ~(0x7F << 5);
2073 		data |= (0x37 << 5);
2074 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2075 		if (ret_val)
2076 			return ret_val;
2077 		e1e_rphy(hw, PHY_REG(769, 16), &data);
2078 		data &= ~(1 << 13);
2079 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2080 		if (ret_val)
2081 			return ret_val;
2082 		e1e_rphy(hw, PHY_REG(776, 20), &data);
2083 		data &= ~(0x3FF << 2);
2084 		data |= (0x1A << 2);
2085 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2086 		if (ret_val)
2087 			return ret_val;
2088 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2089 		if (ret_val)
2090 			return ret_val;
2091 		e1e_rphy(hw, HV_PM_CTRL, &data);
2092 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10));
2093 		if (ret_val)
2094 			return ret_val;
2095 	} else {
2096 		/* Write MAC register values back to h/w defaults */
2097 		mac_reg = er32(FFLT_DBG);
2098 		mac_reg &= ~(0xF << 14);
2099 		ew32(FFLT_DBG, mac_reg);
2100 
2101 		mac_reg = er32(RCTL);
2102 		mac_reg &= ~E1000_RCTL_SECRC;
2103 		ew32(RCTL, mac_reg);
2104 
2105 		ret_val = e1000e_read_kmrn_reg(hw,
2106 					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2107 					       &data);
2108 		if (ret_val)
2109 			return ret_val;
2110 		ret_val = e1000e_write_kmrn_reg(hw,
2111 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2112 						data & ~(1 << 0));
2113 		if (ret_val)
2114 			return ret_val;
2115 		ret_val = e1000e_read_kmrn_reg(hw,
2116 					       E1000_KMRNCTRLSTA_HD_CTRL,
2117 					       &data);
2118 		if (ret_val)
2119 			return ret_val;
2120 		data &= ~(0xF << 8);
2121 		data |= (0xB << 8);
2122 		ret_val = e1000e_write_kmrn_reg(hw,
2123 						E1000_KMRNCTRLSTA_HD_CTRL,
2124 						data);
2125 		if (ret_val)
2126 			return ret_val;
2127 
2128 		/* Write PHY register values back to h/w defaults */
2129 		e1e_rphy(hw, PHY_REG(769, 23), &data);
2130 		data &= ~(0x7F << 5);
2131 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2132 		if (ret_val)
2133 			return ret_val;
2134 		e1e_rphy(hw, PHY_REG(769, 16), &data);
2135 		data |= (1 << 13);
2136 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2137 		if (ret_val)
2138 			return ret_val;
2139 		e1e_rphy(hw, PHY_REG(776, 20), &data);
2140 		data &= ~(0x3FF << 2);
2141 		data |= (0x8 << 2);
2142 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2143 		if (ret_val)
2144 			return ret_val;
2145 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2146 		if (ret_val)
2147 			return ret_val;
2148 		e1e_rphy(hw, HV_PM_CTRL, &data);
2149 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10));
2150 		if (ret_val)
2151 			return ret_val;
2152 	}
2153 
2154 	/* re-enable Rx path after enabling/disabling workaround */
2155 	return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14));
2156 }
2157 
2158 /**
2159  *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2160  *  done after every PHY reset.
2161  **/
2162 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2163 {
2164 	s32 ret_val = 0;
2165 
2166 	if (hw->mac.type != e1000_pch2lan)
2167 		return 0;
2168 
2169 	/* Set MDIO slow mode before any other MDIO access */
2170 	ret_val = e1000_set_mdio_slow_mode_hv(hw);
2171 	if (ret_val)
2172 		return ret_val;
2173 
2174 	ret_val = hw->phy.ops.acquire(hw);
2175 	if (ret_val)
2176 		return ret_val;
2177 	/* set MSE higher to enable link to stay up when noise is high */
2178 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2179 	if (ret_val)
2180 		goto release;
2181 	/* drop link after 5 times MSE threshold was reached */
2182 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2183 release:
2184 	hw->phy.ops.release(hw);
2185 
2186 	return ret_val;
2187 }
2188 
2189 /**
2190  *  e1000_k1_gig_workaround_lv - K1 Si workaround
2191  *  @hw:   pointer to the HW structure
2192  *
2193  *  Workaround to set the K1 beacon duration for 82579 parts
2194  **/
2195 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2196 {
2197 	s32 ret_val = 0;
2198 	u16 status_reg = 0;
2199 	u32 mac_reg;
2200 	u16 phy_reg;
2201 
2202 	if (hw->mac.type != e1000_pch2lan)
2203 		return 0;
2204 
2205 	/* Set K1 beacon duration based on 1Gbps speed or otherwise */
2206 	ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2207 	if (ret_val)
2208 		return ret_val;
2209 
2210 	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2211 	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2212 		mac_reg = er32(FEXTNVM4);
2213 		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2214 
2215 		ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
2216 		if (ret_val)
2217 			return ret_val;
2218 
2219 		if (status_reg & HV_M_STATUS_SPEED_1000) {
2220 			u16 pm_phy_reg;
2221 
2222 			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
2223 			phy_reg &= ~I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
2224 			/* LV 1G Packet drop issue wa  */
2225 			ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2226 			if (ret_val)
2227 				return ret_val;
2228 			pm_phy_reg &= ~HV_PM_CTRL_PLL_STOP_IN_K1_GIGA;
2229 			ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2230 			if (ret_val)
2231 				return ret_val;
2232 		} else {
2233 			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2234 			phy_reg |= I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
2235 		}
2236 		ew32(FEXTNVM4, mac_reg);
2237 		ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
2238 	}
2239 
2240 	return ret_val;
2241 }
2242 
2243 /**
2244  *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2245  *  @hw:   pointer to the HW structure
2246  *  @gate: boolean set to true to gate, false to ungate
2247  *
2248  *  Gate/ungate the automatic PHY configuration via hardware; perform
2249  *  the configuration via software instead.
2250  **/
2251 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2252 {
2253 	u32 extcnf_ctrl;
2254 
2255 	if (hw->mac.type < e1000_pch2lan)
2256 		return;
2257 
2258 	extcnf_ctrl = er32(EXTCNF_CTRL);
2259 
2260 	if (gate)
2261 		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2262 	else
2263 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2264 
2265 	ew32(EXTCNF_CTRL, extcnf_ctrl);
2266 }
2267 
2268 /**
2269  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2270  *  @hw: pointer to the HW structure
2271  *
2272  *  Check the appropriate indication the MAC has finished configuring the
2273  *  PHY after a software reset.
2274  **/
2275 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2276 {
2277 	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2278 
2279 	/* Wait for basic configuration completes before proceeding */
2280 	do {
2281 		data = er32(STATUS);
2282 		data &= E1000_STATUS_LAN_INIT_DONE;
2283 		usleep_range(100, 200);
2284 	} while ((!data) && --loop);
2285 
2286 	/* If basic configuration is incomplete before the above loop
2287 	 * count reaches 0, loading the configuration from NVM will
2288 	 * leave the PHY in a bad state possibly resulting in no link.
2289 	 */
2290 	if (loop == 0)
2291 		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2292 
2293 	/* Clear the Init Done bit for the next init event */
2294 	data = er32(STATUS);
2295 	data &= ~E1000_STATUS_LAN_INIT_DONE;
2296 	ew32(STATUS, data);
2297 }
2298 
2299 /**
2300  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2301  *  @hw: pointer to the HW structure
2302  **/
2303 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2304 {
2305 	s32 ret_val = 0;
2306 	u16 reg;
2307 
2308 	if (hw->phy.ops.check_reset_block(hw))
2309 		return 0;
2310 
2311 	/* Allow time for h/w to get to quiescent state after reset */
2312 	usleep_range(10000, 20000);
2313 
2314 	/* Perform any necessary post-reset workarounds */
2315 	switch (hw->mac.type) {
2316 	case e1000_pchlan:
2317 		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2318 		if (ret_val)
2319 			return ret_val;
2320 		break;
2321 	case e1000_pch2lan:
2322 		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2323 		if (ret_val)
2324 			return ret_val;
2325 		break;
2326 	default:
2327 		break;
2328 	}
2329 
2330 	/* Clear the host wakeup bit after lcd reset */
2331 	if (hw->mac.type >= e1000_pchlan) {
2332 		e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2333 		reg &= ~BM_WUC_HOST_WU_BIT;
2334 		e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2335 	}
2336 
2337 	/* Configure the LCD with the extended configuration region in NVM */
2338 	ret_val = e1000_sw_lcd_config_ich8lan(hw);
2339 	if (ret_val)
2340 		return ret_val;
2341 
2342 	/* Configure the LCD with the OEM bits in NVM */
2343 	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2344 
2345 	if (hw->mac.type == e1000_pch2lan) {
2346 		/* Ungate automatic PHY configuration on non-managed 82579 */
2347 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2348 			usleep_range(10000, 20000);
2349 			e1000_gate_hw_phy_config_ich8lan(hw, false);
2350 		}
2351 
2352 		/* Set EEE LPI Update Timer to 200usec */
2353 		ret_val = hw->phy.ops.acquire(hw);
2354 		if (ret_val)
2355 			return ret_val;
2356 		ret_val = e1000_write_emi_reg_locked(hw,
2357 						     I82579_LPI_UPDATE_TIMER,
2358 						     0x1387);
2359 		hw->phy.ops.release(hw);
2360 	}
2361 
2362 	return ret_val;
2363 }
2364 
2365 /**
2366  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2367  *  @hw: pointer to the HW structure
2368  *
2369  *  Resets the PHY
2370  *  This is a function pointer entry point called by drivers
2371  *  or other shared routines.
2372  **/
2373 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2374 {
2375 	s32 ret_val = 0;
2376 
2377 	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
2378 	if ((hw->mac.type == e1000_pch2lan) &&
2379 	    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2380 		e1000_gate_hw_phy_config_ich8lan(hw, true);
2381 
2382 	ret_val = e1000e_phy_hw_reset_generic(hw);
2383 	if (ret_val)
2384 		return ret_val;
2385 
2386 	return e1000_post_phy_reset_ich8lan(hw);
2387 }
2388 
2389 /**
2390  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2391  *  @hw: pointer to the HW structure
2392  *  @active: true to enable LPLU, false to disable
2393  *
2394  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
2395  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2396  *  the phy speed. This function will manually set the LPLU bit and restart
2397  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
2398  *  since it configures the same bit.
2399  **/
2400 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2401 {
2402 	s32 ret_val;
2403 	u16 oem_reg;
2404 
2405 	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2406 	if (ret_val)
2407 		return ret_val;
2408 
2409 	if (active)
2410 		oem_reg |= HV_OEM_BITS_LPLU;
2411 	else
2412 		oem_reg &= ~HV_OEM_BITS_LPLU;
2413 
2414 	if (!hw->phy.ops.check_reset_block(hw))
2415 		oem_reg |= HV_OEM_BITS_RESTART_AN;
2416 
2417 	return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2418 }
2419 
2420 /**
2421  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2422  *  @hw: pointer to the HW structure
2423  *  @active: true to enable LPLU, false to disable
2424  *
2425  *  Sets the LPLU D0 state according to the active flag.  When
2426  *  activating LPLU this function also disables smart speed
2427  *  and vice versa.  LPLU will not be activated unless the
2428  *  device autonegotiation advertisement meets standards of
2429  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2430  *  This is a function pointer entry point only called by
2431  *  PHY setup routines.
2432  **/
2433 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2434 {
2435 	struct e1000_phy_info *phy = &hw->phy;
2436 	u32 phy_ctrl;
2437 	s32 ret_val = 0;
2438 	u16 data;
2439 
2440 	if (phy->type == e1000_phy_ife)
2441 		return 0;
2442 
2443 	phy_ctrl = er32(PHY_CTRL);
2444 
2445 	if (active) {
2446 		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2447 		ew32(PHY_CTRL, phy_ctrl);
2448 
2449 		if (phy->type != e1000_phy_igp_3)
2450 			return 0;
2451 
2452 		/* Call gig speed drop workaround on LPLU before accessing
2453 		 * any PHY registers
2454 		 */
2455 		if (hw->mac.type == e1000_ich8lan)
2456 			e1000e_gig_downshift_workaround_ich8lan(hw);
2457 
2458 		/* When LPLU is enabled, we should disable SmartSpeed */
2459 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2460 		if (ret_val)
2461 			return ret_val;
2462 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2463 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2464 		if (ret_val)
2465 			return ret_val;
2466 	} else {
2467 		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2468 		ew32(PHY_CTRL, phy_ctrl);
2469 
2470 		if (phy->type != e1000_phy_igp_3)
2471 			return 0;
2472 
2473 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2474 		 * during Dx states where the power conservation is most
2475 		 * important.  During driver activity we should enable
2476 		 * SmartSpeed, so performance is maintained.
2477 		 */
2478 		if (phy->smart_speed == e1000_smart_speed_on) {
2479 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2480 					   &data);
2481 			if (ret_val)
2482 				return ret_val;
2483 
2484 			data |= IGP01E1000_PSCFR_SMART_SPEED;
2485 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2486 					   data);
2487 			if (ret_val)
2488 				return ret_val;
2489 		} else if (phy->smart_speed == e1000_smart_speed_off) {
2490 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2491 					   &data);
2492 			if (ret_val)
2493 				return ret_val;
2494 
2495 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2496 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2497 					   data);
2498 			if (ret_val)
2499 				return ret_val;
2500 		}
2501 	}
2502 
2503 	return 0;
2504 }
2505 
2506 /**
2507  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
2508  *  @hw: pointer to the HW structure
2509  *  @active: true to enable LPLU, false to disable
2510  *
2511  *  Sets the LPLU D3 state according to the active flag.  When
2512  *  activating LPLU this function also disables smart speed
2513  *  and vice versa.  LPLU will not be activated unless the
2514  *  device autonegotiation advertisement meets standards of
2515  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2516  *  This is a function pointer entry point only called by
2517  *  PHY setup routines.
2518  **/
2519 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2520 {
2521 	struct e1000_phy_info *phy = &hw->phy;
2522 	u32 phy_ctrl;
2523 	s32 ret_val = 0;
2524 	u16 data;
2525 
2526 	phy_ctrl = er32(PHY_CTRL);
2527 
2528 	if (!active) {
2529 		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2530 		ew32(PHY_CTRL, phy_ctrl);
2531 
2532 		if (phy->type != e1000_phy_igp_3)
2533 			return 0;
2534 
2535 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2536 		 * during Dx states where the power conservation is most
2537 		 * important.  During driver activity we should enable
2538 		 * SmartSpeed, so performance is maintained.
2539 		 */
2540 		if (phy->smart_speed == e1000_smart_speed_on) {
2541 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2542 					   &data);
2543 			if (ret_val)
2544 				return ret_val;
2545 
2546 			data |= IGP01E1000_PSCFR_SMART_SPEED;
2547 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2548 					   data);
2549 			if (ret_val)
2550 				return ret_val;
2551 		} else if (phy->smart_speed == e1000_smart_speed_off) {
2552 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2553 					   &data);
2554 			if (ret_val)
2555 				return ret_val;
2556 
2557 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2558 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2559 					   data);
2560 			if (ret_val)
2561 				return ret_val;
2562 		}
2563 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
2564 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
2565 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
2566 		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2567 		ew32(PHY_CTRL, phy_ctrl);
2568 
2569 		if (phy->type != e1000_phy_igp_3)
2570 			return 0;
2571 
2572 		/* Call gig speed drop workaround on LPLU before accessing
2573 		 * any PHY registers
2574 		 */
2575 		if (hw->mac.type == e1000_ich8lan)
2576 			e1000e_gig_downshift_workaround_ich8lan(hw);
2577 
2578 		/* When LPLU is enabled, we should disable SmartSpeed */
2579 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2580 		if (ret_val)
2581 			return ret_val;
2582 
2583 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2584 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2585 	}
2586 
2587 	return ret_val;
2588 }
2589 
2590 /**
2591  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
2592  *  @hw: pointer to the HW structure
2593  *  @bank:  pointer to the variable that returns the active bank
2594  *
2595  *  Reads signature byte from the NVM using the flash access registers.
2596  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
2597  **/
2598 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
2599 {
2600 	u32 eecd;
2601 	struct e1000_nvm_info *nvm = &hw->nvm;
2602 	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
2603 	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
2604 	u8 sig_byte = 0;
2605 	s32 ret_val;
2606 
2607 	switch (hw->mac.type) {
2608 	case e1000_ich8lan:
2609 	case e1000_ich9lan:
2610 		eecd = er32(EECD);
2611 		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
2612 		    E1000_EECD_SEC1VAL_VALID_MASK) {
2613 			if (eecd & E1000_EECD_SEC1VAL)
2614 				*bank = 1;
2615 			else
2616 				*bank = 0;
2617 
2618 			return 0;
2619 		}
2620 		e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
2621 		/* fall-thru */
2622 	default:
2623 		/* set bank to 0 in case flash read fails */
2624 		*bank = 0;
2625 
2626 		/* Check bank 0 */
2627 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
2628 							&sig_byte);
2629 		if (ret_val)
2630 			return ret_val;
2631 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2632 		    E1000_ICH_NVM_SIG_VALUE) {
2633 			*bank = 0;
2634 			return 0;
2635 		}
2636 
2637 		/* Check bank 1 */
2638 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
2639 							bank1_offset,
2640 							&sig_byte);
2641 		if (ret_val)
2642 			return ret_val;
2643 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2644 		    E1000_ICH_NVM_SIG_VALUE) {
2645 			*bank = 1;
2646 			return 0;
2647 		}
2648 
2649 		e_dbg("ERROR: No valid NVM bank present\n");
2650 		return -E1000_ERR_NVM;
2651 	}
2652 }
2653 
2654 /**
2655  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
2656  *  @hw: pointer to the HW structure
2657  *  @offset: The offset (in bytes) of the word(s) to read.
2658  *  @words: Size of data to read in words
2659  *  @data: Pointer to the word(s) to read at offset.
2660  *
2661  *  Reads a word(s) from the NVM using the flash access registers.
2662  **/
2663 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2664 				  u16 *data)
2665 {
2666 	struct e1000_nvm_info *nvm = &hw->nvm;
2667 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2668 	u32 act_offset;
2669 	s32 ret_val = 0;
2670 	u32 bank = 0;
2671 	u16 i, word;
2672 
2673 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2674 	    (words == 0)) {
2675 		e_dbg("nvm parameter(s) out of bounds\n");
2676 		ret_val = -E1000_ERR_NVM;
2677 		goto out;
2678 	}
2679 
2680 	nvm->ops.acquire(hw);
2681 
2682 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2683 	if (ret_val) {
2684 		e_dbg("Could not detect valid bank, assuming bank 0\n");
2685 		bank = 0;
2686 	}
2687 
2688 	act_offset = (bank) ? nvm->flash_bank_size : 0;
2689 	act_offset += offset;
2690 
2691 	ret_val = 0;
2692 	for (i = 0; i < words; i++) {
2693 		if (dev_spec->shadow_ram[offset + i].modified) {
2694 			data[i] = dev_spec->shadow_ram[offset + i].value;
2695 		} else {
2696 			ret_val = e1000_read_flash_word_ich8lan(hw,
2697 								act_offset + i,
2698 								&word);
2699 			if (ret_val)
2700 				break;
2701 			data[i] = word;
2702 		}
2703 	}
2704 
2705 	nvm->ops.release(hw);
2706 
2707 out:
2708 	if (ret_val)
2709 		e_dbg("NVM read error: %d\n", ret_val);
2710 
2711 	return ret_val;
2712 }
2713 
2714 /**
2715  *  e1000_flash_cycle_init_ich8lan - Initialize flash
2716  *  @hw: pointer to the HW structure
2717  *
2718  *  This function does initial flash setup so that a new read/write/erase cycle
2719  *  can be started.
2720  **/
2721 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
2722 {
2723 	union ich8_hws_flash_status hsfsts;
2724 	s32 ret_val = -E1000_ERR_NVM;
2725 
2726 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2727 
2728 	/* Check if the flash descriptor is valid */
2729 	if (!hsfsts.hsf_status.fldesvalid) {
2730 		e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
2731 		return -E1000_ERR_NVM;
2732 	}
2733 
2734 	/* Clear FCERR and DAEL in hw status by writing 1 */
2735 	hsfsts.hsf_status.flcerr = 1;
2736 	hsfsts.hsf_status.dael = 1;
2737 
2738 	ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2739 
2740 	/* Either we should have a hardware SPI cycle in progress
2741 	 * bit to check against, in order to start a new cycle or
2742 	 * FDONE bit should be changed in the hardware so that it
2743 	 * is 1 after hardware reset, which can then be used as an
2744 	 * indication whether a cycle is in progress or has been
2745 	 * completed.
2746 	 */
2747 
2748 	if (!hsfsts.hsf_status.flcinprog) {
2749 		/* There is no cycle running at present,
2750 		 * so we can start a cycle.
2751 		 * Begin by setting Flash Cycle Done.
2752 		 */
2753 		hsfsts.hsf_status.flcdone = 1;
2754 		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2755 		ret_val = 0;
2756 	} else {
2757 		s32 i;
2758 
2759 		/* Otherwise poll for sometime so the current
2760 		 * cycle has a chance to end before giving up.
2761 		 */
2762 		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
2763 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2764 			if (!hsfsts.hsf_status.flcinprog) {
2765 				ret_val = 0;
2766 				break;
2767 			}
2768 			udelay(1);
2769 		}
2770 		if (!ret_val) {
2771 			/* Successful in waiting for previous cycle to timeout,
2772 			 * now set the Flash Cycle Done.
2773 			 */
2774 			hsfsts.hsf_status.flcdone = 1;
2775 			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2776 		} else {
2777 			e_dbg("Flash controller busy, cannot get access\n");
2778 		}
2779 	}
2780 
2781 	return ret_val;
2782 }
2783 
2784 /**
2785  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
2786  *  @hw: pointer to the HW structure
2787  *  @timeout: maximum time to wait for completion
2788  *
2789  *  This function starts a flash cycle and waits for its completion.
2790  **/
2791 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
2792 {
2793 	union ich8_hws_flash_ctrl hsflctl;
2794 	union ich8_hws_flash_status hsfsts;
2795 	u32 i = 0;
2796 
2797 	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
2798 	hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2799 	hsflctl.hsf_ctrl.flcgo = 1;
2800 	ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2801 
2802 	/* wait till FDONE bit is set to 1 */
2803 	do {
2804 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2805 		if (hsfsts.hsf_status.flcdone)
2806 			break;
2807 		udelay(1);
2808 	} while (i++ < timeout);
2809 
2810 	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
2811 		return 0;
2812 
2813 	return -E1000_ERR_NVM;
2814 }
2815 
2816 /**
2817  *  e1000_read_flash_word_ich8lan - Read word from flash
2818  *  @hw: pointer to the HW structure
2819  *  @offset: offset to data location
2820  *  @data: pointer to the location for storing the data
2821  *
2822  *  Reads the flash word at offset into data.  Offset is converted
2823  *  to bytes before read.
2824  **/
2825 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
2826 					 u16 *data)
2827 {
2828 	/* Must convert offset into bytes. */
2829 	offset <<= 1;
2830 
2831 	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
2832 }
2833 
2834 /**
2835  *  e1000_read_flash_byte_ich8lan - Read byte from flash
2836  *  @hw: pointer to the HW structure
2837  *  @offset: The offset of the byte to read.
2838  *  @data: Pointer to a byte to store the value read.
2839  *
2840  *  Reads a single byte from the NVM using the flash access registers.
2841  **/
2842 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
2843 					 u8 *data)
2844 {
2845 	s32 ret_val;
2846 	u16 word = 0;
2847 
2848 	ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
2849 	if (ret_val)
2850 		return ret_val;
2851 
2852 	*data = (u8)word;
2853 
2854 	return 0;
2855 }
2856 
2857 /**
2858  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
2859  *  @hw: pointer to the HW structure
2860  *  @offset: The offset (in bytes) of the byte or word to read.
2861  *  @size: Size of data to read, 1=byte 2=word
2862  *  @data: Pointer to the word to store the value read.
2863  *
2864  *  Reads a byte or word from the NVM using the flash access registers.
2865  **/
2866 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
2867 					 u8 size, u16 *data)
2868 {
2869 	union ich8_hws_flash_status hsfsts;
2870 	union ich8_hws_flash_ctrl hsflctl;
2871 	u32 flash_linear_addr;
2872 	u32 flash_data = 0;
2873 	s32 ret_val = -E1000_ERR_NVM;
2874 	u8 count = 0;
2875 
2876 	if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
2877 		return -E1000_ERR_NVM;
2878 
2879 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
2880 			     hw->nvm.flash_base_addr);
2881 
2882 	do {
2883 		udelay(1);
2884 		/* Steps */
2885 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
2886 		if (ret_val)
2887 			break;
2888 
2889 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2890 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2891 		hsflctl.hsf_ctrl.fldbcount = size - 1;
2892 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
2893 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2894 
2895 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2896 
2897 		ret_val =
2898 		    e1000_flash_cycle_ich8lan(hw,
2899 					      ICH_FLASH_READ_COMMAND_TIMEOUT);
2900 
2901 		/* Check if FCERR is set to 1, if set to 1, clear it
2902 		 * and try the whole sequence a few more times, else
2903 		 * read in (shift in) the Flash Data0, the order is
2904 		 * least significant byte first msb to lsb
2905 		 */
2906 		if (!ret_val) {
2907 			flash_data = er32flash(ICH_FLASH_FDATA0);
2908 			if (size == 1)
2909 				*data = (u8)(flash_data & 0x000000FF);
2910 			else if (size == 2)
2911 				*data = (u16)(flash_data & 0x0000FFFF);
2912 			break;
2913 		} else {
2914 			/* If we've gotten here, then things are probably
2915 			 * completely hosed, but if the error condition is
2916 			 * detected, it won't hurt to give it another try...
2917 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
2918 			 */
2919 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2920 			if (hsfsts.hsf_status.flcerr) {
2921 				/* Repeat for some time before giving up. */
2922 				continue;
2923 			} else if (!hsfsts.hsf_status.flcdone) {
2924 				e_dbg("Timeout error - flash cycle did not complete.\n");
2925 				break;
2926 			}
2927 		}
2928 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
2929 
2930 	return ret_val;
2931 }
2932 
2933 /**
2934  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
2935  *  @hw: pointer to the HW structure
2936  *  @offset: The offset (in bytes) of the word(s) to write.
2937  *  @words: Size of data to write in words
2938  *  @data: Pointer to the word(s) to write at offset.
2939  *
2940  *  Writes a byte or word to the NVM using the flash access registers.
2941  **/
2942 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2943 				   u16 *data)
2944 {
2945 	struct e1000_nvm_info *nvm = &hw->nvm;
2946 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2947 	u16 i;
2948 
2949 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2950 	    (words == 0)) {
2951 		e_dbg("nvm parameter(s) out of bounds\n");
2952 		return -E1000_ERR_NVM;
2953 	}
2954 
2955 	nvm->ops.acquire(hw);
2956 
2957 	for (i = 0; i < words; i++) {
2958 		dev_spec->shadow_ram[offset + i].modified = true;
2959 		dev_spec->shadow_ram[offset + i].value = data[i];
2960 	}
2961 
2962 	nvm->ops.release(hw);
2963 
2964 	return 0;
2965 }
2966 
2967 /**
2968  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
2969  *  @hw: pointer to the HW structure
2970  *
2971  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
2972  *  which writes the checksum to the shadow ram.  The changes in the shadow
2973  *  ram are then committed to the EEPROM by processing each bank at a time
2974  *  checking for the modified bit and writing only the pending changes.
2975  *  After a successful commit, the shadow ram is cleared and is ready for
2976  *  future writes.
2977  **/
2978 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
2979 {
2980 	struct e1000_nvm_info *nvm = &hw->nvm;
2981 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2982 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
2983 	s32 ret_val;
2984 	u16 data;
2985 
2986 	ret_val = e1000e_update_nvm_checksum_generic(hw);
2987 	if (ret_val)
2988 		goto out;
2989 
2990 	if (nvm->type != e1000_nvm_flash_sw)
2991 		goto out;
2992 
2993 	nvm->ops.acquire(hw);
2994 
2995 	/* We're writing to the opposite bank so if we're on bank 1,
2996 	 * write to bank 0 etc.  We also need to erase the segment that
2997 	 * is going to be written
2998 	 */
2999 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3000 	if (ret_val) {
3001 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3002 		bank = 0;
3003 	}
3004 
3005 	if (bank == 0) {
3006 		new_bank_offset = nvm->flash_bank_size;
3007 		old_bank_offset = 0;
3008 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3009 		if (ret_val)
3010 			goto release;
3011 	} else {
3012 		old_bank_offset = nvm->flash_bank_size;
3013 		new_bank_offset = 0;
3014 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3015 		if (ret_val)
3016 			goto release;
3017 	}
3018 
3019 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3020 		/* Determine whether to write the value stored
3021 		 * in the other NVM bank or a modified value stored
3022 		 * in the shadow RAM
3023 		 */
3024 		if (dev_spec->shadow_ram[i].modified) {
3025 			data = dev_spec->shadow_ram[i].value;
3026 		} else {
3027 			ret_val = e1000_read_flash_word_ich8lan(hw, i +
3028 								old_bank_offset,
3029 								&data);
3030 			if (ret_val)
3031 				break;
3032 		}
3033 
3034 		/* If the word is 0x13, then make sure the signature bits
3035 		 * (15:14) are 11b until the commit has completed.
3036 		 * This will allow us to write 10b which indicates the
3037 		 * signature is valid.  We want to do this after the write
3038 		 * has completed so that we don't mark the segment valid
3039 		 * while the write is still in progress
3040 		 */
3041 		if (i == E1000_ICH_NVM_SIG_WORD)
3042 			data |= E1000_ICH_NVM_SIG_MASK;
3043 
3044 		/* Convert offset to bytes. */
3045 		act_offset = (i + new_bank_offset) << 1;
3046 
3047 		usleep_range(100, 200);
3048 		/* Write the bytes to the new bank. */
3049 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3050 							       act_offset,
3051 							       (u8)data);
3052 		if (ret_val)
3053 			break;
3054 
3055 		usleep_range(100, 200);
3056 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3057 							       act_offset + 1,
3058 							       (u8)(data >> 8));
3059 		if (ret_val)
3060 			break;
3061 	}
3062 
3063 	/* Don't bother writing the segment valid bits if sector
3064 	 * programming failed.
3065 	 */
3066 	if (ret_val) {
3067 		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3068 		e_dbg("Flash commit failed.\n");
3069 		goto release;
3070 	}
3071 
3072 	/* Finally validate the new segment by setting bit 15:14
3073 	 * to 10b in word 0x13 , this can be done without an
3074 	 * erase as well since these bits are 11 to start with
3075 	 * and we need to change bit 14 to 0b
3076 	 */
3077 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3078 	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
3079 	if (ret_val)
3080 		goto release;
3081 
3082 	data &= 0xBFFF;
3083 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3084 						       act_offset * 2 + 1,
3085 						       (u8)(data >> 8));
3086 	if (ret_val)
3087 		goto release;
3088 
3089 	/* And invalidate the previously valid segment by setting
3090 	 * its signature word (0x13) high_byte to 0b. This can be
3091 	 * done without an erase because flash erase sets all bits
3092 	 * to 1's. We can write 1's to 0's without an erase
3093 	 */
3094 	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
3095 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
3096 	if (ret_val)
3097 		goto release;
3098 
3099 	/* Great!  Everything worked, we can now clear the cached entries. */
3100 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3101 		dev_spec->shadow_ram[i].modified = false;
3102 		dev_spec->shadow_ram[i].value = 0xFFFF;
3103 	}
3104 
3105 release:
3106 	nvm->ops.release(hw);
3107 
3108 	/* Reload the EEPROM, or else modifications will not appear
3109 	 * until after the next adapter reset.
3110 	 */
3111 	if (!ret_val) {
3112 		nvm->ops.reload(hw);
3113 		usleep_range(10000, 20000);
3114 	}
3115 
3116 out:
3117 	if (ret_val)
3118 		e_dbg("NVM update error: %d\n", ret_val);
3119 
3120 	return ret_val;
3121 }
3122 
3123 /**
3124  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
3125  *  @hw: pointer to the HW structure
3126  *
3127  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
3128  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
3129  *  calculated, in which case we need to calculate the checksum and set bit 6.
3130  **/
3131 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
3132 {
3133 	s32 ret_val;
3134 	u16 data;
3135 	u16 word;
3136 	u16 valid_csum_mask;
3137 
3138 	/* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
3139 	 * the checksum needs to be fixed.  This bit is an indication that
3140 	 * the NVM was prepared by OEM software and did not calculate
3141 	 * the checksum...a likely scenario.
3142 	 */
3143 	switch (hw->mac.type) {
3144 	case e1000_pch_lpt:
3145 		word = NVM_COMPAT;
3146 		valid_csum_mask = NVM_COMPAT_VALID_CSUM;
3147 		break;
3148 	default:
3149 		word = NVM_FUTURE_INIT_WORD1;
3150 		valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
3151 		break;
3152 	}
3153 
3154 	ret_val = e1000_read_nvm(hw, word, 1, &data);
3155 	if (ret_val)
3156 		return ret_val;
3157 
3158 	if (!(data & valid_csum_mask)) {
3159 		data |= valid_csum_mask;
3160 		ret_val = e1000_write_nvm(hw, word, 1, &data);
3161 		if (ret_val)
3162 			return ret_val;
3163 		ret_val = e1000e_update_nvm_checksum(hw);
3164 		if (ret_val)
3165 			return ret_val;
3166 	}
3167 
3168 	return e1000e_validate_nvm_checksum_generic(hw);
3169 }
3170 
3171 /**
3172  *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
3173  *  @hw: pointer to the HW structure
3174  *
3175  *  To prevent malicious write/erase of the NVM, set it to be read-only
3176  *  so that the hardware ignores all write/erase cycles of the NVM via
3177  *  the flash control registers.  The shadow-ram copy of the NVM will
3178  *  still be updated, however any updates to this copy will not stick
3179  *  across driver reloads.
3180  **/
3181 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
3182 {
3183 	struct e1000_nvm_info *nvm = &hw->nvm;
3184 	union ich8_flash_protected_range pr0;
3185 	union ich8_hws_flash_status hsfsts;
3186 	u32 gfpreg;
3187 
3188 	nvm->ops.acquire(hw);
3189 
3190 	gfpreg = er32flash(ICH_FLASH_GFPREG);
3191 
3192 	/* Write-protect GbE Sector of NVM */
3193 	pr0.regval = er32flash(ICH_FLASH_PR0);
3194 	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
3195 	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
3196 	pr0.range.wpe = true;
3197 	ew32flash(ICH_FLASH_PR0, pr0.regval);
3198 
3199 	/* Lock down a subset of GbE Flash Control Registers, e.g.
3200 	 * PR0 to prevent the write-protection from being lifted.
3201 	 * Once FLOCKDN is set, the registers protected by it cannot
3202 	 * be written until FLOCKDN is cleared by a hardware reset.
3203 	 */
3204 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3205 	hsfsts.hsf_status.flockdn = true;
3206 	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3207 
3208 	nvm->ops.release(hw);
3209 }
3210 
3211 /**
3212  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
3213  *  @hw: pointer to the HW structure
3214  *  @offset: The offset (in bytes) of the byte/word to read.
3215  *  @size: Size of data to read, 1=byte 2=word
3216  *  @data: The byte(s) to write to the NVM.
3217  *
3218  *  Writes one/two bytes to the NVM using the flash access registers.
3219  **/
3220 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3221 					  u8 size, u16 data)
3222 {
3223 	union ich8_hws_flash_status hsfsts;
3224 	union ich8_hws_flash_ctrl hsflctl;
3225 	u32 flash_linear_addr;
3226 	u32 flash_data = 0;
3227 	s32 ret_val;
3228 	u8 count = 0;
3229 
3230 	if (size < 1 || size > 2 || data > size * 0xff ||
3231 	    offset > ICH_FLASH_LINEAR_ADDR_MASK)
3232 		return -E1000_ERR_NVM;
3233 
3234 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3235 			     hw->nvm.flash_base_addr);
3236 
3237 	do {
3238 		udelay(1);
3239 		/* Steps */
3240 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3241 		if (ret_val)
3242 			break;
3243 
3244 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3245 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3246 		hsflctl.hsf_ctrl.fldbcount = size - 1;
3247 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
3248 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3249 
3250 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3251 
3252 		if (size == 1)
3253 			flash_data = (u32)data & 0x00FF;
3254 		else
3255 			flash_data = (u32)data;
3256 
3257 		ew32flash(ICH_FLASH_FDATA0, flash_data);
3258 
3259 		/* check if FCERR is set to 1 , if set to 1, clear it
3260 		 * and try the whole sequence a few more times else done
3261 		 */
3262 		ret_val =
3263 		    e1000_flash_cycle_ich8lan(hw,
3264 					      ICH_FLASH_WRITE_COMMAND_TIMEOUT);
3265 		if (!ret_val)
3266 			break;
3267 
3268 		/* If we're here, then things are most likely
3269 		 * completely hosed, but if the error condition
3270 		 * is detected, it won't hurt to give it another
3271 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
3272 		 */
3273 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3274 		if (hsfsts.hsf_status.flcerr)
3275 			/* Repeat for some time before giving up. */
3276 			continue;
3277 		if (!hsfsts.hsf_status.flcdone) {
3278 			e_dbg("Timeout error - flash cycle did not complete.\n");
3279 			break;
3280 		}
3281 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3282 
3283 	return ret_val;
3284 }
3285 
3286 /**
3287  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
3288  *  @hw: pointer to the HW structure
3289  *  @offset: The index of the byte to read.
3290  *  @data: The byte to write to the NVM.
3291  *
3292  *  Writes a single byte to the NVM using the flash access registers.
3293  **/
3294 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3295 					  u8 data)
3296 {
3297 	u16 word = (u16)data;
3298 
3299 	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
3300 }
3301 
3302 /**
3303  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
3304  *  @hw: pointer to the HW structure
3305  *  @offset: The offset of the byte to write.
3306  *  @byte: The byte to write to the NVM.
3307  *
3308  *  Writes a single byte to the NVM using the flash access registers.
3309  *  Goes through a retry algorithm before giving up.
3310  **/
3311 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
3312 						u32 offset, u8 byte)
3313 {
3314 	s32 ret_val;
3315 	u16 program_retries;
3316 
3317 	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
3318 	if (!ret_val)
3319 		return ret_val;
3320 
3321 	for (program_retries = 0; program_retries < 100; program_retries++) {
3322 		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
3323 		usleep_range(100, 200);
3324 		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
3325 		if (!ret_val)
3326 			break;
3327 	}
3328 	if (program_retries == 100)
3329 		return -E1000_ERR_NVM;
3330 
3331 	return 0;
3332 }
3333 
3334 /**
3335  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
3336  *  @hw: pointer to the HW structure
3337  *  @bank: 0 for first bank, 1 for second bank, etc.
3338  *
3339  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
3340  *  bank N is 4096 * N + flash_reg_addr.
3341  **/
3342 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
3343 {
3344 	struct e1000_nvm_info *nvm = &hw->nvm;
3345 	union ich8_hws_flash_status hsfsts;
3346 	union ich8_hws_flash_ctrl hsflctl;
3347 	u32 flash_linear_addr;
3348 	/* bank size is in 16bit words - adjust to bytes */
3349 	u32 flash_bank_size = nvm->flash_bank_size * 2;
3350 	s32 ret_val;
3351 	s32 count = 0;
3352 	s32 j, iteration, sector_size;
3353 
3354 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3355 
3356 	/* Determine HW Sector size: Read BERASE bits of hw flash status
3357 	 * register
3358 	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
3359 	 *     consecutive sectors.  The start index for the nth Hw sector
3360 	 *     can be calculated as = bank * 4096 + n * 256
3361 	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
3362 	 *     The start index for the nth Hw sector can be calculated
3363 	 *     as = bank * 4096
3364 	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
3365 	 *     (ich9 only, otherwise error condition)
3366 	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
3367 	 */
3368 	switch (hsfsts.hsf_status.berasesz) {
3369 	case 0:
3370 		/* Hw sector size 256 */
3371 		sector_size = ICH_FLASH_SEG_SIZE_256;
3372 		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
3373 		break;
3374 	case 1:
3375 		sector_size = ICH_FLASH_SEG_SIZE_4K;
3376 		iteration = 1;
3377 		break;
3378 	case 2:
3379 		sector_size = ICH_FLASH_SEG_SIZE_8K;
3380 		iteration = 1;
3381 		break;
3382 	case 3:
3383 		sector_size = ICH_FLASH_SEG_SIZE_64K;
3384 		iteration = 1;
3385 		break;
3386 	default:
3387 		return -E1000_ERR_NVM;
3388 	}
3389 
3390 	/* Start with the base address, then add the sector offset. */
3391 	flash_linear_addr = hw->nvm.flash_base_addr;
3392 	flash_linear_addr += (bank) ? flash_bank_size : 0;
3393 
3394 	for (j = 0; j < iteration; j++) {
3395 		do {
3396 			u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
3397 
3398 			/* Steps */
3399 			ret_val = e1000_flash_cycle_init_ich8lan(hw);
3400 			if (ret_val)
3401 				return ret_val;
3402 
3403 			/* Write a value 11 (block Erase) in Flash
3404 			 * Cycle field in hw flash control
3405 			 */
3406 			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3407 			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
3408 			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3409 
3410 			/* Write the last 24 bits of an index within the
3411 			 * block into Flash Linear address field in Flash
3412 			 * Address.
3413 			 */
3414 			flash_linear_addr += (j * sector_size);
3415 			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3416 
3417 			ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
3418 			if (!ret_val)
3419 				break;
3420 
3421 			/* Check if FCERR is set to 1.  If 1,
3422 			 * clear it and try the whole sequence
3423 			 * a few more times else Done
3424 			 */
3425 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3426 			if (hsfsts.hsf_status.flcerr)
3427 				/* repeat for some time before giving up */
3428 				continue;
3429 			else if (!hsfsts.hsf_status.flcdone)
3430 				return ret_val;
3431 		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
3432 	}
3433 
3434 	return 0;
3435 }
3436 
3437 /**
3438  *  e1000_valid_led_default_ich8lan - Set the default LED settings
3439  *  @hw: pointer to the HW structure
3440  *  @data: Pointer to the LED settings
3441  *
3442  *  Reads the LED default settings from the NVM to data.  If the NVM LED
3443  *  settings is all 0's or F's, set the LED default to a valid LED default
3444  *  setting.
3445  **/
3446 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
3447 {
3448 	s32 ret_val;
3449 
3450 	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
3451 	if (ret_val) {
3452 		e_dbg("NVM Read Error\n");
3453 		return ret_val;
3454 	}
3455 
3456 	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
3457 		*data = ID_LED_DEFAULT_ICH8LAN;
3458 
3459 	return 0;
3460 }
3461 
3462 /**
3463  *  e1000_id_led_init_pchlan - store LED configurations
3464  *  @hw: pointer to the HW structure
3465  *
3466  *  PCH does not control LEDs via the LEDCTL register, rather it uses
3467  *  the PHY LED configuration register.
3468  *
3469  *  PCH also does not have an "always on" or "always off" mode which
3470  *  complicates the ID feature.  Instead of using the "on" mode to indicate
3471  *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
3472  *  use "link_up" mode.  The LEDs will still ID on request if there is no
3473  *  link based on logic in e1000_led_[on|off]_pchlan().
3474  **/
3475 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
3476 {
3477 	struct e1000_mac_info *mac = &hw->mac;
3478 	s32 ret_val;
3479 	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
3480 	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
3481 	u16 data, i, temp, shift;
3482 
3483 	/* Get default ID LED modes */
3484 	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
3485 	if (ret_val)
3486 		return ret_val;
3487 
3488 	mac->ledctl_default = er32(LEDCTL);
3489 	mac->ledctl_mode1 = mac->ledctl_default;
3490 	mac->ledctl_mode2 = mac->ledctl_default;
3491 
3492 	for (i = 0; i < 4; i++) {
3493 		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
3494 		shift = (i * 5);
3495 		switch (temp) {
3496 		case ID_LED_ON1_DEF2:
3497 		case ID_LED_ON1_ON2:
3498 		case ID_LED_ON1_OFF2:
3499 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
3500 			mac->ledctl_mode1 |= (ledctl_on << shift);
3501 			break;
3502 		case ID_LED_OFF1_DEF2:
3503 		case ID_LED_OFF1_ON2:
3504 		case ID_LED_OFF1_OFF2:
3505 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
3506 			mac->ledctl_mode1 |= (ledctl_off << shift);
3507 			break;
3508 		default:
3509 			/* Do nothing */
3510 			break;
3511 		}
3512 		switch (temp) {
3513 		case ID_LED_DEF1_ON2:
3514 		case ID_LED_ON1_ON2:
3515 		case ID_LED_OFF1_ON2:
3516 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3517 			mac->ledctl_mode2 |= (ledctl_on << shift);
3518 			break;
3519 		case ID_LED_DEF1_OFF2:
3520 		case ID_LED_ON1_OFF2:
3521 		case ID_LED_OFF1_OFF2:
3522 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3523 			mac->ledctl_mode2 |= (ledctl_off << shift);
3524 			break;
3525 		default:
3526 			/* Do nothing */
3527 			break;
3528 		}
3529 	}
3530 
3531 	return 0;
3532 }
3533 
3534 /**
3535  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
3536  *  @hw: pointer to the HW structure
3537  *
3538  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
3539  *  register, so the the bus width is hard coded.
3540  **/
3541 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
3542 {
3543 	struct e1000_bus_info *bus = &hw->bus;
3544 	s32 ret_val;
3545 
3546 	ret_val = e1000e_get_bus_info_pcie(hw);
3547 
3548 	/* ICH devices are "PCI Express"-ish.  They have
3549 	 * a configuration space, but do not contain
3550 	 * PCI Express Capability registers, so bus width
3551 	 * must be hardcoded.
3552 	 */
3553 	if (bus->width == e1000_bus_width_unknown)
3554 		bus->width = e1000_bus_width_pcie_x1;
3555 
3556 	return ret_val;
3557 }
3558 
3559 /**
3560  *  e1000_reset_hw_ich8lan - Reset the hardware
3561  *  @hw: pointer to the HW structure
3562  *
3563  *  Does a full reset of the hardware which includes a reset of the PHY and
3564  *  MAC.
3565  **/
3566 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
3567 {
3568 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3569 	u16 kum_cfg;
3570 	u32 ctrl, reg;
3571 	s32 ret_val;
3572 
3573 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
3574 	 * on the last TLP read/write transaction when MAC is reset.
3575 	 */
3576 	ret_val = e1000e_disable_pcie_master(hw);
3577 	if (ret_val)
3578 		e_dbg("PCI-E Master disable polling has failed.\n");
3579 
3580 	e_dbg("Masking off all interrupts\n");
3581 	ew32(IMC, 0xffffffff);
3582 
3583 	/* Disable the Transmit and Receive units.  Then delay to allow
3584 	 * any pending transactions to complete before we hit the MAC
3585 	 * with the global reset.
3586 	 */
3587 	ew32(RCTL, 0);
3588 	ew32(TCTL, E1000_TCTL_PSP);
3589 	e1e_flush();
3590 
3591 	usleep_range(10000, 20000);
3592 
3593 	/* Workaround for ICH8 bit corruption issue in FIFO memory */
3594 	if (hw->mac.type == e1000_ich8lan) {
3595 		/* Set Tx and Rx buffer allocation to 8k apiece. */
3596 		ew32(PBA, E1000_PBA_8K);
3597 		/* Set Packet Buffer Size to 16k. */
3598 		ew32(PBS, E1000_PBS_16K);
3599 	}
3600 
3601 	if (hw->mac.type == e1000_pchlan) {
3602 		/* Save the NVM K1 bit setting */
3603 		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
3604 		if (ret_val)
3605 			return ret_val;
3606 
3607 		if (kum_cfg & E1000_NVM_K1_ENABLE)
3608 			dev_spec->nvm_k1_enabled = true;
3609 		else
3610 			dev_spec->nvm_k1_enabled = false;
3611 	}
3612 
3613 	ctrl = er32(CTRL);
3614 
3615 	if (!hw->phy.ops.check_reset_block(hw)) {
3616 		/* Full-chip reset requires MAC and PHY reset at the same
3617 		 * time to make sure the interface between MAC and the
3618 		 * external PHY is reset.
3619 		 */
3620 		ctrl |= E1000_CTRL_PHY_RST;
3621 
3622 		/* Gate automatic PHY configuration by hardware on
3623 		 * non-managed 82579
3624 		 */
3625 		if ((hw->mac.type == e1000_pch2lan) &&
3626 		    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
3627 			e1000_gate_hw_phy_config_ich8lan(hw, true);
3628 	}
3629 	ret_val = e1000_acquire_swflag_ich8lan(hw);
3630 	e_dbg("Issuing a global reset to ich8lan\n");
3631 	ew32(CTRL, (ctrl | E1000_CTRL_RST));
3632 	/* cannot issue a flush here because it hangs the hardware */
3633 	msleep(20);
3634 
3635 	/* Set Phy Config Counter to 50msec */
3636 	if (hw->mac.type == e1000_pch2lan) {
3637 		reg = er32(FEXTNVM3);
3638 		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
3639 		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
3640 		ew32(FEXTNVM3, reg);
3641 	}
3642 
3643 	if (!ret_val)
3644 		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
3645 
3646 	if (ctrl & E1000_CTRL_PHY_RST) {
3647 		ret_val = hw->phy.ops.get_cfg_done(hw);
3648 		if (ret_val)
3649 			return ret_val;
3650 
3651 		ret_val = e1000_post_phy_reset_ich8lan(hw);
3652 		if (ret_val)
3653 			return ret_val;
3654 	}
3655 
3656 	/* For PCH, this write will make sure that any noise
3657 	 * will be detected as a CRC error and be dropped rather than show up
3658 	 * as a bad packet to the DMA engine.
3659 	 */
3660 	if (hw->mac.type == e1000_pchlan)
3661 		ew32(CRC_OFFSET, 0x65656565);
3662 
3663 	ew32(IMC, 0xffffffff);
3664 	er32(ICR);
3665 
3666 	reg = er32(KABGTXD);
3667 	reg |= E1000_KABGTXD_BGSQLBIAS;
3668 	ew32(KABGTXD, reg);
3669 
3670 	return 0;
3671 }
3672 
3673 /**
3674  *  e1000_init_hw_ich8lan - Initialize the hardware
3675  *  @hw: pointer to the HW structure
3676  *
3677  *  Prepares the hardware for transmit and receive by doing the following:
3678  *   - initialize hardware bits
3679  *   - initialize LED identification
3680  *   - setup receive address registers
3681  *   - setup flow control
3682  *   - setup transmit descriptors
3683  *   - clear statistics
3684  **/
3685 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
3686 {
3687 	struct e1000_mac_info *mac = &hw->mac;
3688 	u32 ctrl_ext, txdctl, snoop;
3689 	s32 ret_val;
3690 	u16 i;
3691 
3692 	e1000_initialize_hw_bits_ich8lan(hw);
3693 
3694 	/* Initialize identification LED */
3695 	ret_val = mac->ops.id_led_init(hw);
3696 	/* An error is not fatal and we should not stop init due to this */
3697 	if (ret_val)
3698 		e_dbg("Error initializing identification LED\n");
3699 
3700 	/* Setup the receive address. */
3701 	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
3702 
3703 	/* Zero out the Multicast HASH table */
3704 	e_dbg("Zeroing the MTA\n");
3705 	for (i = 0; i < mac->mta_reg_count; i++)
3706 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
3707 
3708 	/* The 82578 Rx buffer will stall if wakeup is enabled in host and
3709 	 * the ME.  Disable wakeup by clearing the host wakeup bit.
3710 	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
3711 	 */
3712 	if (hw->phy.type == e1000_phy_82578) {
3713 		e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
3714 		i &= ~BM_WUC_HOST_WU_BIT;
3715 		e1e_wphy(hw, BM_PORT_GEN_CFG, i);
3716 		ret_val = e1000_phy_hw_reset_ich8lan(hw);
3717 		if (ret_val)
3718 			return ret_val;
3719 	}
3720 
3721 	/* Setup link and flow control */
3722 	ret_val = mac->ops.setup_link(hw);
3723 
3724 	/* Set the transmit descriptor write-back policy for both queues */
3725 	txdctl = er32(TXDCTL(0));
3726 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
3727 		  E1000_TXDCTL_FULL_TX_DESC_WB);
3728 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
3729 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
3730 	ew32(TXDCTL(0), txdctl);
3731 	txdctl = er32(TXDCTL(1));
3732 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
3733 		  E1000_TXDCTL_FULL_TX_DESC_WB);
3734 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
3735 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
3736 	ew32(TXDCTL(1), txdctl);
3737 
3738 	/* ICH8 has opposite polarity of no_snoop bits.
3739 	 * By default, we should use snoop behavior.
3740 	 */
3741 	if (mac->type == e1000_ich8lan)
3742 		snoop = PCIE_ICH8_SNOOP_ALL;
3743 	else
3744 		snoop = (u32)~(PCIE_NO_SNOOP_ALL);
3745 	e1000e_set_pcie_no_snoop(hw, snoop);
3746 
3747 	ctrl_ext = er32(CTRL_EXT);
3748 	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
3749 	ew32(CTRL_EXT, ctrl_ext);
3750 
3751 	/* Clear all of the statistics registers (clear on read).  It is
3752 	 * important that we do this after we have tried to establish link
3753 	 * because the symbol error count will increment wildly if there
3754 	 * is no link.
3755 	 */
3756 	e1000_clear_hw_cntrs_ich8lan(hw);
3757 
3758 	return ret_val;
3759 }
3760 
3761 /**
3762  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
3763  *  @hw: pointer to the HW structure
3764  *
3765  *  Sets/Clears required hardware bits necessary for correctly setting up the
3766  *  hardware for transmit and receive.
3767  **/
3768 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
3769 {
3770 	u32 reg;
3771 
3772 	/* Extended Device Control */
3773 	reg = er32(CTRL_EXT);
3774 	reg |= (1 << 22);
3775 	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
3776 	if (hw->mac.type >= e1000_pchlan)
3777 		reg |= E1000_CTRL_EXT_PHYPDEN;
3778 	ew32(CTRL_EXT, reg);
3779 
3780 	/* Transmit Descriptor Control 0 */
3781 	reg = er32(TXDCTL(0));
3782 	reg |= (1 << 22);
3783 	ew32(TXDCTL(0), reg);
3784 
3785 	/* Transmit Descriptor Control 1 */
3786 	reg = er32(TXDCTL(1));
3787 	reg |= (1 << 22);
3788 	ew32(TXDCTL(1), reg);
3789 
3790 	/* Transmit Arbitration Control 0 */
3791 	reg = er32(TARC(0));
3792 	if (hw->mac.type == e1000_ich8lan)
3793 		reg |= (1 << 28) | (1 << 29);
3794 	reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
3795 	ew32(TARC(0), reg);
3796 
3797 	/* Transmit Arbitration Control 1 */
3798 	reg = er32(TARC(1));
3799 	if (er32(TCTL) & E1000_TCTL_MULR)
3800 		reg &= ~(1 << 28);
3801 	else
3802 		reg |= (1 << 28);
3803 	reg |= (1 << 24) | (1 << 26) | (1 << 30);
3804 	ew32(TARC(1), reg);
3805 
3806 	/* Device Status */
3807 	if (hw->mac.type == e1000_ich8lan) {
3808 		reg = er32(STATUS);
3809 		reg &= ~(1 << 31);
3810 		ew32(STATUS, reg);
3811 	}
3812 
3813 	/* work-around descriptor data corruption issue during nfs v2 udp
3814 	 * traffic, just disable the nfs filtering capability
3815 	 */
3816 	reg = er32(RFCTL);
3817 	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
3818 
3819 	/* Disable IPv6 extension header parsing because some malformed
3820 	 * IPv6 headers can hang the Rx.
3821 	 */
3822 	if (hw->mac.type == e1000_ich8lan)
3823 		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
3824 	ew32(RFCTL, reg);
3825 
3826 	/* Enable ECC on Lynxpoint */
3827 	if (hw->mac.type == e1000_pch_lpt) {
3828 		reg = er32(PBECCSTS);
3829 		reg |= E1000_PBECCSTS_ECC_ENABLE;
3830 		ew32(PBECCSTS, reg);
3831 
3832 		reg = er32(CTRL);
3833 		reg |= E1000_CTRL_MEHE;
3834 		ew32(CTRL, reg);
3835 	}
3836 }
3837 
3838 /**
3839  *  e1000_setup_link_ich8lan - Setup flow control and link settings
3840  *  @hw: pointer to the HW structure
3841  *
3842  *  Determines which flow control settings to use, then configures flow
3843  *  control.  Calls the appropriate media-specific link configuration
3844  *  function.  Assuming the adapter has a valid link partner, a valid link
3845  *  should be established.  Assumes the hardware has previously been reset
3846  *  and the transmitter and receiver are not enabled.
3847  **/
3848 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
3849 {
3850 	s32 ret_val;
3851 
3852 	if (hw->phy.ops.check_reset_block(hw))
3853 		return 0;
3854 
3855 	/* ICH parts do not have a word in the NVM to determine
3856 	 * the default flow control setting, so we explicitly
3857 	 * set it to full.
3858 	 */
3859 	if (hw->fc.requested_mode == e1000_fc_default) {
3860 		/* Workaround h/w hang when Tx flow control enabled */
3861 		if (hw->mac.type == e1000_pchlan)
3862 			hw->fc.requested_mode = e1000_fc_rx_pause;
3863 		else
3864 			hw->fc.requested_mode = e1000_fc_full;
3865 	}
3866 
3867 	/* Save off the requested flow control mode for use later.  Depending
3868 	 * on the link partner's capabilities, we may or may not use this mode.
3869 	 */
3870 	hw->fc.current_mode = hw->fc.requested_mode;
3871 
3872 	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
3873 
3874 	/* Continue to configure the copper link. */
3875 	ret_val = hw->mac.ops.setup_physical_interface(hw);
3876 	if (ret_val)
3877 		return ret_val;
3878 
3879 	ew32(FCTTV, hw->fc.pause_time);
3880 	if ((hw->phy.type == e1000_phy_82578) ||
3881 	    (hw->phy.type == e1000_phy_82579) ||
3882 	    (hw->phy.type == e1000_phy_i217) ||
3883 	    (hw->phy.type == e1000_phy_82577)) {
3884 		ew32(FCRTV_PCH, hw->fc.refresh_time);
3885 
3886 		ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
3887 				   hw->fc.pause_time);
3888 		if (ret_val)
3889 			return ret_val;
3890 	}
3891 
3892 	return e1000e_set_fc_watermarks(hw);
3893 }
3894 
3895 /**
3896  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
3897  *  @hw: pointer to the HW structure
3898  *
3899  *  Configures the kumeran interface to the PHY to wait the appropriate time
3900  *  when polling the PHY, then call the generic setup_copper_link to finish
3901  *  configuring the copper link.
3902  **/
3903 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
3904 {
3905 	u32 ctrl;
3906 	s32 ret_val;
3907 	u16 reg_data;
3908 
3909 	ctrl = er32(CTRL);
3910 	ctrl |= E1000_CTRL_SLU;
3911 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
3912 	ew32(CTRL, ctrl);
3913 
3914 	/* Set the mac to wait the maximum time between each iteration
3915 	 * and increase the max iterations when polling the phy;
3916 	 * this fixes erroneous timeouts at 10Mbps.
3917 	 */
3918 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
3919 	if (ret_val)
3920 		return ret_val;
3921 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
3922 				       &reg_data);
3923 	if (ret_val)
3924 		return ret_val;
3925 	reg_data |= 0x3F;
3926 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
3927 					reg_data);
3928 	if (ret_val)
3929 		return ret_val;
3930 
3931 	switch (hw->phy.type) {
3932 	case e1000_phy_igp_3:
3933 		ret_val = e1000e_copper_link_setup_igp(hw);
3934 		if (ret_val)
3935 			return ret_val;
3936 		break;
3937 	case e1000_phy_bm:
3938 	case e1000_phy_82578:
3939 		ret_val = e1000e_copper_link_setup_m88(hw);
3940 		if (ret_val)
3941 			return ret_val;
3942 		break;
3943 	case e1000_phy_82577:
3944 	case e1000_phy_82579:
3945 		ret_val = e1000_copper_link_setup_82577(hw);
3946 		if (ret_val)
3947 			return ret_val;
3948 		break;
3949 	case e1000_phy_ife:
3950 		ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
3951 		if (ret_val)
3952 			return ret_val;
3953 
3954 		reg_data &= ~IFE_PMC_AUTO_MDIX;
3955 
3956 		switch (hw->phy.mdix) {
3957 		case 1:
3958 			reg_data &= ~IFE_PMC_FORCE_MDIX;
3959 			break;
3960 		case 2:
3961 			reg_data |= IFE_PMC_FORCE_MDIX;
3962 			break;
3963 		case 0:
3964 		default:
3965 			reg_data |= IFE_PMC_AUTO_MDIX;
3966 			break;
3967 		}
3968 		ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
3969 		if (ret_val)
3970 			return ret_val;
3971 		break;
3972 	default:
3973 		break;
3974 	}
3975 
3976 	return e1000e_setup_copper_link(hw);
3977 }
3978 
3979 /**
3980  *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
3981  *  @hw: pointer to the HW structure
3982  *
3983  *  Calls the PHY specific link setup function and then calls the
3984  *  generic setup_copper_link to finish configuring the link for
3985  *  Lynxpoint PCH devices
3986  **/
3987 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
3988 {
3989 	u32 ctrl;
3990 	s32 ret_val;
3991 
3992 	ctrl = er32(CTRL);
3993 	ctrl |= E1000_CTRL_SLU;
3994 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
3995 	ew32(CTRL, ctrl);
3996 
3997 	ret_val = e1000_copper_link_setup_82577(hw);
3998 	if (ret_val)
3999 		return ret_val;
4000 
4001 	return e1000e_setup_copper_link(hw);
4002 }
4003 
4004 /**
4005  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
4006  *  @hw: pointer to the HW structure
4007  *  @speed: pointer to store current link speed
4008  *  @duplex: pointer to store the current link duplex
4009  *
4010  *  Calls the generic get_speed_and_duplex to retrieve the current link
4011  *  information and then calls the Kumeran lock loss workaround for links at
4012  *  gigabit speeds.
4013  **/
4014 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
4015 					  u16 *duplex)
4016 {
4017 	s32 ret_val;
4018 
4019 	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
4020 	if (ret_val)
4021 		return ret_val;
4022 
4023 	if ((hw->mac.type == e1000_ich8lan) &&
4024 	    (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
4025 		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
4026 	}
4027 
4028 	return ret_val;
4029 }
4030 
4031 /**
4032  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
4033  *  @hw: pointer to the HW structure
4034  *
4035  *  Work-around for 82566 Kumeran PCS lock loss:
4036  *  On link status change (i.e. PCI reset, speed change) and link is up and
4037  *  speed is gigabit-
4038  *    0) if workaround is optionally disabled do nothing
4039  *    1) wait 1ms for Kumeran link to come up
4040  *    2) check Kumeran Diagnostic register PCS lock loss bit
4041  *    3) if not set the link is locked (all is good), otherwise...
4042  *    4) reset the PHY
4043  *    5) repeat up to 10 times
4044  *  Note: this is only called for IGP3 copper when speed is 1gb.
4045  **/
4046 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
4047 {
4048 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4049 	u32 phy_ctrl;
4050 	s32 ret_val;
4051 	u16 i, data;
4052 	bool link;
4053 
4054 	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
4055 		return 0;
4056 
4057 	/* Make sure link is up before proceeding.  If not just return.
4058 	 * Attempting this while link is negotiating fouled up link
4059 	 * stability
4060 	 */
4061 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
4062 	if (!link)
4063 		return 0;
4064 
4065 	for (i = 0; i < 10; i++) {
4066 		/* read once to clear */
4067 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
4068 		if (ret_val)
4069 			return ret_val;
4070 		/* and again to get new status */
4071 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
4072 		if (ret_val)
4073 			return ret_val;
4074 
4075 		/* check for PCS lock */
4076 		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
4077 			return 0;
4078 
4079 		/* Issue PHY reset */
4080 		e1000_phy_hw_reset(hw);
4081 		mdelay(5);
4082 	}
4083 	/* Disable GigE link negotiation */
4084 	phy_ctrl = er32(PHY_CTRL);
4085 	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
4086 		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
4087 	ew32(PHY_CTRL, phy_ctrl);
4088 
4089 	/* Call gig speed drop workaround on Gig disable before accessing
4090 	 * any PHY registers
4091 	 */
4092 	e1000e_gig_downshift_workaround_ich8lan(hw);
4093 
4094 	/* unable to acquire PCS lock */
4095 	return -E1000_ERR_PHY;
4096 }
4097 
4098 /**
4099  *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
4100  *  @hw: pointer to the HW structure
4101  *  @state: boolean value used to set the current Kumeran workaround state
4102  *
4103  *  If ICH8, set the current Kumeran workaround state (enabled - true
4104  *  /disabled - false).
4105  **/
4106 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
4107 						  bool state)
4108 {
4109 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4110 
4111 	if (hw->mac.type != e1000_ich8lan) {
4112 		e_dbg("Workaround applies to ICH8 only.\n");
4113 		return;
4114 	}
4115 
4116 	dev_spec->kmrn_lock_loss_workaround_enabled = state;
4117 }
4118 
4119 /**
4120  *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
4121  *  @hw: pointer to the HW structure
4122  *
4123  *  Workaround for 82566 power-down on D3 entry:
4124  *    1) disable gigabit link
4125  *    2) write VR power-down enable
4126  *    3) read it back
4127  *  Continue if successful, else issue LCD reset and repeat
4128  **/
4129 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
4130 {
4131 	u32 reg;
4132 	u16 data;
4133 	u8 retry = 0;
4134 
4135 	if (hw->phy.type != e1000_phy_igp_3)
4136 		return;
4137 
4138 	/* Try the workaround twice (if needed) */
4139 	do {
4140 		/* Disable link */
4141 		reg = er32(PHY_CTRL);
4142 		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
4143 			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
4144 		ew32(PHY_CTRL, reg);
4145 
4146 		/* Call gig speed drop workaround on Gig disable before
4147 		 * accessing any PHY registers
4148 		 */
4149 		if (hw->mac.type == e1000_ich8lan)
4150 			e1000e_gig_downshift_workaround_ich8lan(hw);
4151 
4152 		/* Write VR power-down enable */
4153 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
4154 		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
4155 		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
4156 
4157 		/* Read it back and test */
4158 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
4159 		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
4160 		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
4161 			break;
4162 
4163 		/* Issue PHY reset and repeat at most one more time */
4164 		reg = er32(CTRL);
4165 		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
4166 		retry++;
4167 	} while (retry);
4168 }
4169 
4170 /**
4171  *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
4172  *  @hw: pointer to the HW structure
4173  *
4174  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
4175  *  LPLU, Gig disable, MDIC PHY reset):
4176  *    1) Set Kumeran Near-end loopback
4177  *    2) Clear Kumeran Near-end loopback
4178  *  Should only be called for ICH8[m] devices with any 1G Phy.
4179  **/
4180 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
4181 {
4182 	s32 ret_val;
4183 	u16 reg_data;
4184 
4185 	if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
4186 		return;
4187 
4188 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
4189 				       &reg_data);
4190 	if (ret_val)
4191 		return;
4192 	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
4193 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
4194 					reg_data);
4195 	if (ret_val)
4196 		return;
4197 	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
4198 	e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
4199 }
4200 
4201 /**
4202  *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
4203  *  @hw: pointer to the HW structure
4204  *
4205  *  During S0 to Sx transition, it is possible the link remains at gig
4206  *  instead of negotiating to a lower speed.  Before going to Sx, set
4207  *  'Gig Disable' to force link speed negotiation to a lower speed based on
4208  *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
4209  *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
4210  *  needs to be written.
4211  *  Parts that support (and are linked to a partner which support) EEE in
4212  *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
4213  *  than 10Mbps w/o EEE.
4214  **/
4215 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
4216 {
4217 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4218 	u32 phy_ctrl;
4219 	s32 ret_val;
4220 
4221 	phy_ctrl = er32(PHY_CTRL);
4222 	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
4223 
4224 	if (hw->phy.type == e1000_phy_i217) {
4225 		u16 phy_reg, device_id = hw->adapter->pdev->device;
4226 
4227 		if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
4228 		    (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
4229 		    (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
4230 		    (device_id == E1000_DEV_ID_PCH_I218_V3)) {
4231 			u32 fextnvm6 = er32(FEXTNVM6);
4232 
4233 			ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
4234 		}
4235 
4236 		ret_val = hw->phy.ops.acquire(hw);
4237 		if (ret_val)
4238 			goto out;
4239 
4240 		if (!dev_spec->eee_disable) {
4241 			u16 eee_advert;
4242 
4243 			ret_val =
4244 			    e1000_read_emi_reg_locked(hw,
4245 						      I217_EEE_ADVERTISEMENT,
4246 						      &eee_advert);
4247 			if (ret_val)
4248 				goto release;
4249 
4250 			/* Disable LPLU if both link partners support 100BaseT
4251 			 * EEE and 100Full is advertised on both ends of the
4252 			 * link.
4253 			 */
4254 			if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
4255 			    (dev_spec->eee_lp_ability &
4256 			     I82579_EEE_100_SUPPORTED) &&
4257 			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL))
4258 				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
4259 					      E1000_PHY_CTRL_NOND0A_LPLU);
4260 		}
4261 
4262 		/* For i217 Intel Rapid Start Technology support,
4263 		 * when the system is going into Sx and no manageability engine
4264 		 * is present, the driver must configure proxy to reset only on
4265 		 * power good.  LPI (Low Power Idle) state must also reset only
4266 		 * on power good, as well as the MTA (Multicast table array).
4267 		 * The SMBus release must also be disabled on LCD reset.
4268 		 */
4269 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
4270 			/* Enable proxy to reset only on power good. */
4271 			e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
4272 			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
4273 			e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
4274 
4275 			/* Set bit enable LPI (EEE) to reset only on
4276 			 * power good.
4277 			 */
4278 			e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
4279 			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
4280 			e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
4281 
4282 			/* Disable the SMB release on LCD reset. */
4283 			e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
4284 			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
4285 			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
4286 		}
4287 
4288 		/* Enable MTA to reset for Intel Rapid Start Technology
4289 		 * Support
4290 		 */
4291 		e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
4292 		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
4293 		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
4294 
4295 release:
4296 		hw->phy.ops.release(hw);
4297 	}
4298 out:
4299 	ew32(PHY_CTRL, phy_ctrl);
4300 
4301 	if (hw->mac.type == e1000_ich8lan)
4302 		e1000e_gig_downshift_workaround_ich8lan(hw);
4303 
4304 	if (hw->mac.type >= e1000_pchlan) {
4305 		e1000_oem_bits_config_ich8lan(hw, false);
4306 
4307 		/* Reset PHY to activate OEM bits on 82577/8 */
4308 		if (hw->mac.type == e1000_pchlan)
4309 			e1000e_phy_hw_reset_generic(hw);
4310 
4311 		ret_val = hw->phy.ops.acquire(hw);
4312 		if (ret_val)
4313 			return;
4314 		e1000_write_smbus_addr(hw);
4315 		hw->phy.ops.release(hw);
4316 	}
4317 }
4318 
4319 /**
4320  *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
4321  *  @hw: pointer to the HW structure
4322  *
4323  *  During Sx to S0 transitions on non-managed devices or managed devices
4324  *  on which PHY resets are not blocked, if the PHY registers cannot be
4325  *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
4326  *  the PHY.
4327  *  On i217, setup Intel Rapid Start Technology.
4328  **/
4329 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
4330 {
4331 	s32 ret_val;
4332 
4333 	if (hw->mac.type < e1000_pch2lan)
4334 		return;
4335 
4336 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
4337 	if (ret_val) {
4338 		e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
4339 		return;
4340 	}
4341 
4342 	/* For i217 Intel Rapid Start Technology support when the system
4343 	 * is transitioning from Sx and no manageability engine is present
4344 	 * configure SMBus to restore on reset, disable proxy, and enable
4345 	 * the reset on MTA (Multicast table array).
4346 	 */
4347 	if (hw->phy.type == e1000_phy_i217) {
4348 		u16 phy_reg;
4349 
4350 		ret_val = hw->phy.ops.acquire(hw);
4351 		if (ret_val) {
4352 			e_dbg("Failed to setup iRST\n");
4353 			return;
4354 		}
4355 
4356 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
4357 			/* Restore clear on SMB if no manageability engine
4358 			 * is present
4359 			 */
4360 			ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
4361 			if (ret_val)
4362 				goto release;
4363 			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
4364 			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
4365 
4366 			/* Disable Proxy */
4367 			e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
4368 		}
4369 		/* Enable reset on MTA */
4370 		ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
4371 		if (ret_val)
4372 			goto release;
4373 		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
4374 		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
4375 release:
4376 		if (ret_val)
4377 			e_dbg("Error %d in resume workarounds\n", ret_val);
4378 		hw->phy.ops.release(hw);
4379 	}
4380 }
4381 
4382 /**
4383  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
4384  *  @hw: pointer to the HW structure
4385  *
4386  *  Return the LED back to the default configuration.
4387  **/
4388 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
4389 {
4390 	if (hw->phy.type == e1000_phy_ife)
4391 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
4392 
4393 	ew32(LEDCTL, hw->mac.ledctl_default);
4394 	return 0;
4395 }
4396 
4397 /**
4398  *  e1000_led_on_ich8lan - Turn LEDs on
4399  *  @hw: pointer to the HW structure
4400  *
4401  *  Turn on the LEDs.
4402  **/
4403 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
4404 {
4405 	if (hw->phy.type == e1000_phy_ife)
4406 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
4407 				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
4408 
4409 	ew32(LEDCTL, hw->mac.ledctl_mode2);
4410 	return 0;
4411 }
4412 
4413 /**
4414  *  e1000_led_off_ich8lan - Turn LEDs off
4415  *  @hw: pointer to the HW structure
4416  *
4417  *  Turn off the LEDs.
4418  **/
4419 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
4420 {
4421 	if (hw->phy.type == e1000_phy_ife)
4422 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
4423 				(IFE_PSCL_PROBE_MODE |
4424 				 IFE_PSCL_PROBE_LEDS_OFF));
4425 
4426 	ew32(LEDCTL, hw->mac.ledctl_mode1);
4427 	return 0;
4428 }
4429 
4430 /**
4431  *  e1000_setup_led_pchlan - Configures SW controllable LED
4432  *  @hw: pointer to the HW structure
4433  *
4434  *  This prepares the SW controllable LED for use.
4435  **/
4436 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
4437 {
4438 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
4439 }
4440 
4441 /**
4442  *  e1000_cleanup_led_pchlan - Restore the default LED operation
4443  *  @hw: pointer to the HW structure
4444  *
4445  *  Return the LED back to the default configuration.
4446  **/
4447 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
4448 {
4449 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
4450 }
4451 
4452 /**
4453  *  e1000_led_on_pchlan - Turn LEDs on
4454  *  @hw: pointer to the HW structure
4455  *
4456  *  Turn on the LEDs.
4457  **/
4458 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
4459 {
4460 	u16 data = (u16)hw->mac.ledctl_mode2;
4461 	u32 i, led;
4462 
4463 	/* If no link, then turn LED on by setting the invert bit
4464 	 * for each LED that's mode is "link_up" in ledctl_mode2.
4465 	 */
4466 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
4467 		for (i = 0; i < 3; i++) {
4468 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
4469 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
4470 			    E1000_LEDCTL_MODE_LINK_UP)
4471 				continue;
4472 			if (led & E1000_PHY_LED0_IVRT)
4473 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
4474 			else
4475 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
4476 		}
4477 	}
4478 
4479 	return e1e_wphy(hw, HV_LED_CONFIG, data);
4480 }
4481 
4482 /**
4483  *  e1000_led_off_pchlan - Turn LEDs off
4484  *  @hw: pointer to the HW structure
4485  *
4486  *  Turn off the LEDs.
4487  **/
4488 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
4489 {
4490 	u16 data = (u16)hw->mac.ledctl_mode1;
4491 	u32 i, led;
4492 
4493 	/* If no link, then turn LED off by clearing the invert bit
4494 	 * for each LED that's mode is "link_up" in ledctl_mode1.
4495 	 */
4496 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
4497 		for (i = 0; i < 3; i++) {
4498 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
4499 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
4500 			    E1000_LEDCTL_MODE_LINK_UP)
4501 				continue;
4502 			if (led & E1000_PHY_LED0_IVRT)
4503 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
4504 			else
4505 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
4506 		}
4507 	}
4508 
4509 	return e1e_wphy(hw, HV_LED_CONFIG, data);
4510 }
4511 
4512 /**
4513  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
4514  *  @hw: pointer to the HW structure
4515  *
4516  *  Read appropriate register for the config done bit for completion status
4517  *  and configure the PHY through s/w for EEPROM-less parts.
4518  *
4519  *  NOTE: some silicon which is EEPROM-less will fail trying to read the
4520  *  config done bit, so only an error is logged and continues.  If we were
4521  *  to return with error, EEPROM-less silicon would not be able to be reset
4522  *  or change link.
4523  **/
4524 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
4525 {
4526 	s32 ret_val = 0;
4527 	u32 bank = 0;
4528 	u32 status;
4529 
4530 	e1000e_get_cfg_done_generic(hw);
4531 
4532 	/* Wait for indication from h/w that it has completed basic config */
4533 	if (hw->mac.type >= e1000_ich10lan) {
4534 		e1000_lan_init_done_ich8lan(hw);
4535 	} else {
4536 		ret_val = e1000e_get_auto_rd_done(hw);
4537 		if (ret_val) {
4538 			/* When auto config read does not complete, do not
4539 			 * return with an error. This can happen in situations
4540 			 * where there is no eeprom and prevents getting link.
4541 			 */
4542 			e_dbg("Auto Read Done did not complete\n");
4543 			ret_val = 0;
4544 		}
4545 	}
4546 
4547 	/* Clear PHY Reset Asserted bit */
4548 	status = er32(STATUS);
4549 	if (status & E1000_STATUS_PHYRA)
4550 		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
4551 	else
4552 		e_dbg("PHY Reset Asserted not set - needs delay\n");
4553 
4554 	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
4555 	if (hw->mac.type <= e1000_ich9lan) {
4556 		if (!(er32(EECD) & E1000_EECD_PRES) &&
4557 		    (hw->phy.type == e1000_phy_igp_3)) {
4558 			e1000e_phy_init_script_igp3(hw);
4559 		}
4560 	} else {
4561 		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
4562 			/* Maybe we should do a basic PHY config */
4563 			e_dbg("EEPROM not present\n");
4564 			ret_val = -E1000_ERR_CONFIG;
4565 		}
4566 	}
4567 
4568 	return ret_val;
4569 }
4570 
4571 /**
4572  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
4573  * @hw: pointer to the HW structure
4574  *
4575  * In the case of a PHY power down to save power, or to turn off link during a
4576  * driver unload, or wake on lan is not enabled, remove the link.
4577  **/
4578 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
4579 {
4580 	/* If the management interface is not enabled, then power down */
4581 	if (!(hw->mac.ops.check_mng_mode(hw) ||
4582 	      hw->phy.ops.check_reset_block(hw)))
4583 		e1000_power_down_phy_copper(hw);
4584 }
4585 
4586 /**
4587  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
4588  *  @hw: pointer to the HW structure
4589  *
4590  *  Clears hardware counters specific to the silicon family and calls
4591  *  clear_hw_cntrs_generic to clear all general purpose counters.
4592  **/
4593 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
4594 {
4595 	u16 phy_data;
4596 	s32 ret_val;
4597 
4598 	e1000e_clear_hw_cntrs_base(hw);
4599 
4600 	er32(ALGNERRC);
4601 	er32(RXERRC);
4602 	er32(TNCRS);
4603 	er32(CEXTERR);
4604 	er32(TSCTC);
4605 	er32(TSCTFC);
4606 
4607 	er32(MGTPRC);
4608 	er32(MGTPDC);
4609 	er32(MGTPTC);
4610 
4611 	er32(IAC);
4612 	er32(ICRXOC);
4613 
4614 	/* Clear PHY statistics registers */
4615 	if ((hw->phy.type == e1000_phy_82578) ||
4616 	    (hw->phy.type == e1000_phy_82579) ||
4617 	    (hw->phy.type == e1000_phy_i217) ||
4618 	    (hw->phy.type == e1000_phy_82577)) {
4619 		ret_val = hw->phy.ops.acquire(hw);
4620 		if (ret_val)
4621 			return;
4622 		ret_val = hw->phy.ops.set_page(hw,
4623 					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
4624 		if (ret_val)
4625 			goto release;
4626 		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4627 		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4628 		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4629 		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4630 		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4631 		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4632 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4633 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4634 		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4635 		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4636 		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4637 		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4638 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4639 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4640 release:
4641 		hw->phy.ops.release(hw);
4642 	}
4643 }
4644 
4645 static const struct e1000_mac_operations ich8_mac_ops = {
4646 	/* check_mng_mode dependent on mac type */
4647 	.check_for_link		= e1000_check_for_copper_link_ich8lan,
4648 	/* cleanup_led dependent on mac type */
4649 	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
4650 	.get_bus_info		= e1000_get_bus_info_ich8lan,
4651 	.set_lan_id		= e1000_set_lan_id_single_port,
4652 	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
4653 	/* led_on dependent on mac type */
4654 	/* led_off dependent on mac type */
4655 	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
4656 	.reset_hw		= e1000_reset_hw_ich8lan,
4657 	.init_hw		= e1000_init_hw_ich8lan,
4658 	.setup_link		= e1000_setup_link_ich8lan,
4659 	.setup_physical_interface = e1000_setup_copper_link_ich8lan,
4660 	/* id_led_init dependent on mac type */
4661 	.config_collision_dist	= e1000e_config_collision_dist_generic,
4662 	.rar_set		= e1000e_rar_set_generic,
4663 };
4664 
4665 static const struct e1000_phy_operations ich8_phy_ops = {
4666 	.acquire		= e1000_acquire_swflag_ich8lan,
4667 	.check_reset_block	= e1000_check_reset_block_ich8lan,
4668 	.commit			= NULL,
4669 	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
4670 	.get_cable_length	= e1000e_get_cable_length_igp_2,
4671 	.read_reg		= e1000e_read_phy_reg_igp,
4672 	.release		= e1000_release_swflag_ich8lan,
4673 	.reset			= e1000_phy_hw_reset_ich8lan,
4674 	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
4675 	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
4676 	.write_reg		= e1000e_write_phy_reg_igp,
4677 };
4678 
4679 static const struct e1000_nvm_operations ich8_nvm_ops = {
4680 	.acquire		= e1000_acquire_nvm_ich8lan,
4681 	.read			= e1000_read_nvm_ich8lan,
4682 	.release		= e1000_release_nvm_ich8lan,
4683 	.reload			= e1000e_reload_nvm_generic,
4684 	.update			= e1000_update_nvm_checksum_ich8lan,
4685 	.valid_led_default	= e1000_valid_led_default_ich8lan,
4686 	.validate		= e1000_validate_nvm_checksum_ich8lan,
4687 	.write			= e1000_write_nvm_ich8lan,
4688 };
4689 
4690 const struct e1000_info e1000_ich8_info = {
4691 	.mac			= e1000_ich8lan,
4692 	.flags			= FLAG_HAS_WOL
4693 				  | FLAG_IS_ICH
4694 				  | FLAG_HAS_CTRLEXT_ON_LOAD
4695 				  | FLAG_HAS_AMT
4696 				  | FLAG_HAS_FLASH
4697 				  | FLAG_APME_IN_WUC,
4698 	.pba			= 8,
4699 	.max_hw_frame_size	= ETH_FRAME_LEN + ETH_FCS_LEN,
4700 	.get_variants		= e1000_get_variants_ich8lan,
4701 	.mac_ops		= &ich8_mac_ops,
4702 	.phy_ops		= &ich8_phy_ops,
4703 	.nvm_ops		= &ich8_nvm_ops,
4704 };
4705 
4706 const struct e1000_info e1000_ich9_info = {
4707 	.mac			= e1000_ich9lan,
4708 	.flags			= FLAG_HAS_JUMBO_FRAMES
4709 				  | FLAG_IS_ICH
4710 				  | FLAG_HAS_WOL
4711 				  | FLAG_HAS_CTRLEXT_ON_LOAD
4712 				  | FLAG_HAS_AMT
4713 				  | FLAG_HAS_FLASH
4714 				  | FLAG_APME_IN_WUC,
4715 	.pba			= 18,
4716 	.max_hw_frame_size	= DEFAULT_JUMBO,
4717 	.get_variants		= e1000_get_variants_ich8lan,
4718 	.mac_ops		= &ich8_mac_ops,
4719 	.phy_ops		= &ich8_phy_ops,
4720 	.nvm_ops		= &ich8_nvm_ops,
4721 };
4722 
4723 const struct e1000_info e1000_ich10_info = {
4724 	.mac			= e1000_ich10lan,
4725 	.flags			= FLAG_HAS_JUMBO_FRAMES
4726 				  | FLAG_IS_ICH
4727 				  | FLAG_HAS_WOL
4728 				  | FLAG_HAS_CTRLEXT_ON_LOAD
4729 				  | FLAG_HAS_AMT
4730 				  | FLAG_HAS_FLASH
4731 				  | FLAG_APME_IN_WUC,
4732 	.pba			= 18,
4733 	.max_hw_frame_size	= DEFAULT_JUMBO,
4734 	.get_variants		= e1000_get_variants_ich8lan,
4735 	.mac_ops		= &ich8_mac_ops,
4736 	.phy_ops		= &ich8_phy_ops,
4737 	.nvm_ops		= &ich8_nvm_ops,
4738 };
4739 
4740 const struct e1000_info e1000_pch_info = {
4741 	.mac			= e1000_pchlan,
4742 	.flags			= FLAG_IS_ICH
4743 				  | FLAG_HAS_WOL
4744 				  | FLAG_HAS_CTRLEXT_ON_LOAD
4745 				  | FLAG_HAS_AMT
4746 				  | FLAG_HAS_FLASH
4747 				  | FLAG_HAS_JUMBO_FRAMES
4748 				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
4749 				  | FLAG_APME_IN_WUC,
4750 	.flags2			= FLAG2_HAS_PHY_STATS,
4751 	.pba			= 26,
4752 	.max_hw_frame_size	= 4096,
4753 	.get_variants		= e1000_get_variants_ich8lan,
4754 	.mac_ops		= &ich8_mac_ops,
4755 	.phy_ops		= &ich8_phy_ops,
4756 	.nvm_ops		= &ich8_nvm_ops,
4757 };
4758 
4759 const struct e1000_info e1000_pch2_info = {
4760 	.mac			= e1000_pch2lan,
4761 	.flags			= FLAG_IS_ICH
4762 				  | FLAG_HAS_WOL
4763 				  | FLAG_HAS_HW_TIMESTAMP
4764 				  | FLAG_HAS_CTRLEXT_ON_LOAD
4765 				  | FLAG_HAS_AMT
4766 				  | FLAG_HAS_FLASH
4767 				  | FLAG_HAS_JUMBO_FRAMES
4768 				  | FLAG_APME_IN_WUC,
4769 	.flags2			= FLAG2_HAS_PHY_STATS
4770 				  | FLAG2_HAS_EEE,
4771 	.pba			= 26,
4772 	.max_hw_frame_size	= 9018,
4773 	.get_variants		= e1000_get_variants_ich8lan,
4774 	.mac_ops		= &ich8_mac_ops,
4775 	.phy_ops		= &ich8_phy_ops,
4776 	.nvm_ops		= &ich8_nvm_ops,
4777 };
4778 
4779 const struct e1000_info e1000_pch_lpt_info = {
4780 	.mac			= e1000_pch_lpt,
4781 	.flags			= FLAG_IS_ICH
4782 				  | FLAG_HAS_WOL
4783 				  | FLAG_HAS_HW_TIMESTAMP
4784 				  | FLAG_HAS_CTRLEXT_ON_LOAD
4785 				  | FLAG_HAS_AMT
4786 				  | FLAG_HAS_FLASH
4787 				  | FLAG_HAS_JUMBO_FRAMES
4788 				  | FLAG_APME_IN_WUC,
4789 	.flags2			= FLAG2_HAS_PHY_STATS
4790 				  | FLAG2_HAS_EEE,
4791 	.pba			= 26,
4792 	.max_hw_frame_size	= 9018,
4793 	.get_variants		= e1000_get_variants_ich8lan,
4794 	.mac_ops		= &ich8_mac_ops,
4795 	.phy_ops		= &ich8_phy_ops,
4796 	.nvm_ops		= &ich8_nvm_ops,
4797 };
4798