1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3 
4 /* 82562G 10/100 Network Connection
5  * 82562G-2 10/100 Network Connection
6  * 82562GT 10/100 Network Connection
7  * 82562GT-2 10/100 Network Connection
8  * 82562V 10/100 Network Connection
9  * 82562V-2 10/100 Network Connection
10  * 82566DC-2 Gigabit Network Connection
11  * 82566DC Gigabit Network Connection
12  * 82566DM-2 Gigabit Network Connection
13  * 82566DM Gigabit Network Connection
14  * 82566MC Gigabit Network Connection
15  * 82566MM Gigabit Network Connection
16  * 82567LM Gigabit Network Connection
17  * 82567LF Gigabit Network Connection
18  * 82567V Gigabit Network Connection
19  * 82567LM-2 Gigabit Network Connection
20  * 82567LF-2 Gigabit Network Connection
21  * 82567V-2 Gigabit Network Connection
22  * 82567LF-3 Gigabit Network Connection
23  * 82567LM-3 Gigabit Network Connection
24  * 82567LM-4 Gigabit Network Connection
25  * 82577LM Gigabit Network Connection
26  * 82577LC Gigabit Network Connection
27  * 82578DM Gigabit Network Connection
28  * 82578DC Gigabit Network Connection
29  * 82579LM Gigabit Network Connection
30  * 82579V Gigabit Network Connection
31  * Ethernet Connection I217-LM
32  * Ethernet Connection I217-V
33  * Ethernet Connection I218-V
34  * Ethernet Connection I218-LM
35  * Ethernet Connection (2) I218-LM
36  * Ethernet Connection (2) I218-V
37  * Ethernet Connection (3) I218-LM
38  * Ethernet Connection (3) I218-V
39  */
40 
41 #include "e1000.h"
42 
43 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
44 /* Offset 04h HSFSTS */
45 union ich8_hws_flash_status {
46 	struct ich8_hsfsts {
47 		u16 flcdone:1;	/* bit 0 Flash Cycle Done */
48 		u16 flcerr:1;	/* bit 1 Flash Cycle Error */
49 		u16 dael:1;	/* bit 2 Direct Access error Log */
50 		u16 berasesz:2;	/* bit 4:3 Sector Erase Size */
51 		u16 flcinprog:1;	/* bit 5 flash cycle in Progress */
52 		u16 reserved1:2;	/* bit 13:6 Reserved */
53 		u16 reserved2:6;	/* bit 13:6 Reserved */
54 		u16 fldesvalid:1;	/* bit 14 Flash Descriptor Valid */
55 		u16 flockdn:1;	/* bit 15 Flash Config Lock-Down */
56 	} hsf_status;
57 	u16 regval;
58 };
59 
60 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
61 /* Offset 06h FLCTL */
62 union ich8_hws_flash_ctrl {
63 	struct ich8_hsflctl {
64 		u16 flcgo:1;	/* 0 Flash Cycle Go */
65 		u16 flcycle:2;	/* 2:1 Flash Cycle */
66 		u16 reserved:5;	/* 7:3 Reserved  */
67 		u16 fldbcount:2;	/* 9:8 Flash Data Byte Count */
68 		u16 flockdn:6;	/* 15:10 Reserved */
69 	} hsf_ctrl;
70 	u16 regval;
71 };
72 
73 /* ICH Flash Region Access Permissions */
74 union ich8_hws_flash_regacc {
75 	struct ich8_flracc {
76 		u32 grra:8;	/* 0:7 GbE region Read Access */
77 		u32 grwa:8;	/* 8:15 GbE region Write Access */
78 		u32 gmrag:8;	/* 23:16 GbE Master Read Access Grant */
79 		u32 gmwag:8;	/* 31:24 GbE Master Write Access Grant */
80 	} hsf_flregacc;
81 	u16 regval;
82 };
83 
84 /* ICH Flash Protected Region */
85 union ich8_flash_protected_range {
86 	struct ich8_pr {
87 		u32 base:13;	/* 0:12 Protected Range Base */
88 		u32 reserved1:2;	/* 13:14 Reserved */
89 		u32 rpe:1;	/* 15 Read Protection Enable */
90 		u32 limit:13;	/* 16:28 Protected Range Limit */
91 		u32 reserved2:2;	/* 29:30 Reserved */
92 		u32 wpe:1;	/* 31 Write Protection Enable */
93 	} range;
94 	u32 regval;
95 };
96 
97 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
98 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
99 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
100 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
101 						u32 offset, u8 byte);
102 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
103 					 u8 *data);
104 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
105 					 u16 *data);
106 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
107 					 u8 size, u16 *data);
108 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
109 					   u32 *data);
110 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
111 					  u32 offset, u32 *data);
112 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
113 					    u32 offset, u32 data);
114 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
115 						 u32 offset, u32 dword);
116 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
117 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
118 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
119 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
120 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
121 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
122 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
123 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
124 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
125 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
126 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
127 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
128 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
129 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
130 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
131 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
132 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
133 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
134 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw);
135 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
136 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
137 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
138 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
139 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
140 
141 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
142 {
143 	return readw(hw->flash_address + reg);
144 }
145 
146 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
147 {
148 	return readl(hw->flash_address + reg);
149 }
150 
151 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
152 {
153 	writew(val, hw->flash_address + reg);
154 }
155 
156 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
157 {
158 	writel(val, hw->flash_address + reg);
159 }
160 
161 #define er16flash(reg)		__er16flash(hw, (reg))
162 #define er32flash(reg)		__er32flash(hw, (reg))
163 #define ew16flash(reg, val)	__ew16flash(hw, (reg), (val))
164 #define ew32flash(reg, val)	__ew32flash(hw, (reg), (val))
165 
166 /**
167  *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
168  *  @hw: pointer to the HW structure
169  *
170  *  Test access to the PHY registers by reading the PHY ID registers.  If
171  *  the PHY ID is already known (e.g. resume path) compare it with known ID,
172  *  otherwise assume the read PHY ID is correct if it is valid.
173  *
174  *  Assumes the sw/fw/hw semaphore is already acquired.
175  **/
176 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
177 {
178 	u16 phy_reg = 0;
179 	u32 phy_id = 0;
180 	s32 ret_val = 0;
181 	u16 retry_count;
182 	u32 mac_reg = 0;
183 
184 	for (retry_count = 0; retry_count < 2; retry_count++) {
185 		ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
186 		if (ret_val || (phy_reg == 0xFFFF))
187 			continue;
188 		phy_id = (u32)(phy_reg << 16);
189 
190 		ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
191 		if (ret_val || (phy_reg == 0xFFFF)) {
192 			phy_id = 0;
193 			continue;
194 		}
195 		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
196 		break;
197 	}
198 
199 	if (hw->phy.id) {
200 		if (hw->phy.id == phy_id)
201 			goto out;
202 	} else if (phy_id) {
203 		hw->phy.id = phy_id;
204 		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
205 		goto out;
206 	}
207 
208 	/* In case the PHY needs to be in mdio slow mode,
209 	 * set slow mode and try to get the PHY id again.
210 	 */
211 	if (hw->mac.type < e1000_pch_lpt) {
212 		hw->phy.ops.release(hw);
213 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
214 		if (!ret_val)
215 			ret_val = e1000e_get_phy_id(hw);
216 		hw->phy.ops.acquire(hw);
217 	}
218 
219 	if (ret_val)
220 		return false;
221 out:
222 	if (hw->mac.type >= e1000_pch_lpt) {
223 		/* Only unforce SMBus if ME is not active */
224 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
225 			/* Unforce SMBus mode in PHY */
226 			e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
227 			phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
228 			e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
229 
230 			/* Unforce SMBus mode in MAC */
231 			mac_reg = er32(CTRL_EXT);
232 			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
233 			ew32(CTRL_EXT, mac_reg);
234 		}
235 	}
236 
237 	return true;
238 }
239 
240 /**
241  *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
242  *  @hw: pointer to the HW structure
243  *
244  *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
245  *  used to reset the PHY to a quiescent state when necessary.
246  **/
247 static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
248 {
249 	u32 mac_reg;
250 
251 	/* Set Phy Config Counter to 50msec */
252 	mac_reg = er32(FEXTNVM3);
253 	mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
254 	mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
255 	ew32(FEXTNVM3, mac_reg);
256 
257 	/* Toggle LANPHYPC Value bit */
258 	mac_reg = er32(CTRL);
259 	mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
260 	mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
261 	ew32(CTRL, mac_reg);
262 	e1e_flush();
263 	usleep_range(10, 20);
264 	mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
265 	ew32(CTRL, mac_reg);
266 	e1e_flush();
267 
268 	if (hw->mac.type < e1000_pch_lpt) {
269 		msleep(50);
270 	} else {
271 		u16 count = 20;
272 
273 		do {
274 			usleep_range(5000, 6000);
275 		} while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
276 
277 		msleep(30);
278 	}
279 }
280 
281 /**
282  *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
283  *  @hw: pointer to the HW structure
284  *
285  *  Workarounds/flow necessary for PHY initialization during driver load
286  *  and resume paths.
287  **/
288 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
289 {
290 	struct e1000_adapter *adapter = hw->adapter;
291 	u32 mac_reg, fwsm = er32(FWSM);
292 	s32 ret_val;
293 
294 	/* Gate automatic PHY configuration by hardware on managed and
295 	 * non-managed 82579 and newer adapters.
296 	 */
297 	e1000_gate_hw_phy_config_ich8lan(hw, true);
298 
299 	/* It is not possible to be certain of the current state of ULP
300 	 * so forcibly disable it.
301 	 */
302 	hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
303 	e1000_disable_ulp_lpt_lp(hw, true);
304 
305 	ret_val = hw->phy.ops.acquire(hw);
306 	if (ret_val) {
307 		e_dbg("Failed to initialize PHY flow\n");
308 		goto out;
309 	}
310 
311 	/* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
312 	 * inaccessible and resetting the PHY is not blocked, toggle the
313 	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
314 	 */
315 	switch (hw->mac.type) {
316 	case e1000_pch_lpt:
317 	case e1000_pch_spt:
318 	case e1000_pch_cnp:
319 	case e1000_pch_tgp:
320 		if (e1000_phy_is_accessible_pchlan(hw))
321 			break;
322 
323 		/* Before toggling LANPHYPC, see if PHY is accessible by
324 		 * forcing MAC to SMBus mode first.
325 		 */
326 		mac_reg = er32(CTRL_EXT);
327 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
328 		ew32(CTRL_EXT, mac_reg);
329 
330 		/* Wait 50 milliseconds for MAC to finish any retries
331 		 * that it might be trying to perform from previous
332 		 * attempts to acknowledge any phy read requests.
333 		 */
334 		msleep(50);
335 
336 		/* fall-through */
337 	case e1000_pch2lan:
338 		if (e1000_phy_is_accessible_pchlan(hw))
339 			break;
340 
341 		/* fall-through */
342 	case e1000_pchlan:
343 		if ((hw->mac.type == e1000_pchlan) &&
344 		    (fwsm & E1000_ICH_FWSM_FW_VALID))
345 			break;
346 
347 		if (hw->phy.ops.check_reset_block(hw)) {
348 			e_dbg("Required LANPHYPC toggle blocked by ME\n");
349 			ret_val = -E1000_ERR_PHY;
350 			break;
351 		}
352 
353 		/* Toggle LANPHYPC Value bit */
354 		e1000_toggle_lanphypc_pch_lpt(hw);
355 		if (hw->mac.type >= e1000_pch_lpt) {
356 			if (e1000_phy_is_accessible_pchlan(hw))
357 				break;
358 
359 			/* Toggling LANPHYPC brings the PHY out of SMBus mode
360 			 * so ensure that the MAC is also out of SMBus mode
361 			 */
362 			mac_reg = er32(CTRL_EXT);
363 			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
364 			ew32(CTRL_EXT, mac_reg);
365 
366 			if (e1000_phy_is_accessible_pchlan(hw))
367 				break;
368 
369 			ret_val = -E1000_ERR_PHY;
370 		}
371 		break;
372 	default:
373 		break;
374 	}
375 
376 	hw->phy.ops.release(hw);
377 	if (!ret_val) {
378 
379 		/* Check to see if able to reset PHY.  Print error if not */
380 		if (hw->phy.ops.check_reset_block(hw)) {
381 			e_err("Reset blocked by ME\n");
382 			goto out;
383 		}
384 
385 		/* Reset the PHY before any access to it.  Doing so, ensures
386 		 * that the PHY is in a known good state before we read/write
387 		 * PHY registers.  The generic reset is sufficient here,
388 		 * because we haven't determined the PHY type yet.
389 		 */
390 		ret_val = e1000e_phy_hw_reset_generic(hw);
391 		if (ret_val)
392 			goto out;
393 
394 		/* On a successful reset, possibly need to wait for the PHY
395 		 * to quiesce to an accessible state before returning control
396 		 * to the calling function.  If the PHY does not quiesce, then
397 		 * return E1000E_BLK_PHY_RESET, as this is the condition that
398 		 *  the PHY is in.
399 		 */
400 		ret_val = hw->phy.ops.check_reset_block(hw);
401 		if (ret_val)
402 			e_err("ME blocked access to PHY after reset\n");
403 	}
404 
405 out:
406 	/* Ungate automatic PHY configuration on non-managed 82579 */
407 	if ((hw->mac.type == e1000_pch2lan) &&
408 	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
409 		usleep_range(10000, 11000);
410 		e1000_gate_hw_phy_config_ich8lan(hw, false);
411 	}
412 
413 	return ret_val;
414 }
415 
416 /**
417  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
418  *  @hw: pointer to the HW structure
419  *
420  *  Initialize family-specific PHY parameters and function pointers.
421  **/
422 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
423 {
424 	struct e1000_phy_info *phy = &hw->phy;
425 	s32 ret_val;
426 
427 	phy->addr = 1;
428 	phy->reset_delay_us = 100;
429 
430 	phy->ops.set_page = e1000_set_page_igp;
431 	phy->ops.read_reg = e1000_read_phy_reg_hv;
432 	phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
433 	phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
434 	phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
435 	phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
436 	phy->ops.write_reg = e1000_write_phy_reg_hv;
437 	phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
438 	phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
439 	phy->ops.power_up = e1000_power_up_phy_copper;
440 	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
441 	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
442 
443 	phy->id = e1000_phy_unknown;
444 
445 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
446 	if (ret_val)
447 		return ret_val;
448 
449 	if (phy->id == e1000_phy_unknown)
450 		switch (hw->mac.type) {
451 		default:
452 			ret_val = e1000e_get_phy_id(hw);
453 			if (ret_val)
454 				return ret_val;
455 			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
456 				break;
457 			/* fall-through */
458 		case e1000_pch2lan:
459 		case e1000_pch_lpt:
460 		case e1000_pch_spt:
461 		case e1000_pch_cnp:
462 		case e1000_pch_tgp:
463 			/* In case the PHY needs to be in mdio slow mode,
464 			 * set slow mode and try to get the PHY id again.
465 			 */
466 			ret_val = e1000_set_mdio_slow_mode_hv(hw);
467 			if (ret_val)
468 				return ret_val;
469 			ret_val = e1000e_get_phy_id(hw);
470 			if (ret_val)
471 				return ret_val;
472 			break;
473 		}
474 	phy->type = e1000e_get_phy_type_from_id(phy->id);
475 
476 	switch (phy->type) {
477 	case e1000_phy_82577:
478 	case e1000_phy_82579:
479 	case e1000_phy_i217:
480 		phy->ops.check_polarity = e1000_check_polarity_82577;
481 		phy->ops.force_speed_duplex =
482 		    e1000_phy_force_speed_duplex_82577;
483 		phy->ops.get_cable_length = e1000_get_cable_length_82577;
484 		phy->ops.get_info = e1000_get_phy_info_82577;
485 		phy->ops.commit = e1000e_phy_sw_reset;
486 		break;
487 	case e1000_phy_82578:
488 		phy->ops.check_polarity = e1000_check_polarity_m88;
489 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
490 		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
491 		phy->ops.get_info = e1000e_get_phy_info_m88;
492 		break;
493 	default:
494 		ret_val = -E1000_ERR_PHY;
495 		break;
496 	}
497 
498 	return ret_val;
499 }
500 
501 /**
502  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
503  *  @hw: pointer to the HW structure
504  *
505  *  Initialize family-specific PHY parameters and function pointers.
506  **/
507 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
508 {
509 	struct e1000_phy_info *phy = &hw->phy;
510 	s32 ret_val;
511 	u16 i = 0;
512 
513 	phy->addr = 1;
514 	phy->reset_delay_us = 100;
515 
516 	phy->ops.power_up = e1000_power_up_phy_copper;
517 	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
518 
519 	/* We may need to do this twice - once for IGP and if that fails,
520 	 * we'll set BM func pointers and try again
521 	 */
522 	ret_val = e1000e_determine_phy_address(hw);
523 	if (ret_val) {
524 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
525 		phy->ops.read_reg = e1000e_read_phy_reg_bm;
526 		ret_val = e1000e_determine_phy_address(hw);
527 		if (ret_val) {
528 			e_dbg("Cannot determine PHY addr. Erroring out\n");
529 			return ret_val;
530 		}
531 	}
532 
533 	phy->id = 0;
534 	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
535 	       (i++ < 100)) {
536 		usleep_range(1000, 1100);
537 		ret_val = e1000e_get_phy_id(hw);
538 		if (ret_val)
539 			return ret_val;
540 	}
541 
542 	/* Verify phy id */
543 	switch (phy->id) {
544 	case IGP03E1000_E_PHY_ID:
545 		phy->type = e1000_phy_igp_3;
546 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
547 		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
548 		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
549 		phy->ops.get_info = e1000e_get_phy_info_igp;
550 		phy->ops.check_polarity = e1000_check_polarity_igp;
551 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
552 		break;
553 	case IFE_E_PHY_ID:
554 	case IFE_PLUS_E_PHY_ID:
555 	case IFE_C_E_PHY_ID:
556 		phy->type = e1000_phy_ife;
557 		phy->autoneg_mask = E1000_ALL_NOT_GIG;
558 		phy->ops.get_info = e1000_get_phy_info_ife;
559 		phy->ops.check_polarity = e1000_check_polarity_ife;
560 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
561 		break;
562 	case BME1000_E_PHY_ID:
563 		phy->type = e1000_phy_bm;
564 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
565 		phy->ops.read_reg = e1000e_read_phy_reg_bm;
566 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
567 		phy->ops.commit = e1000e_phy_sw_reset;
568 		phy->ops.get_info = e1000e_get_phy_info_m88;
569 		phy->ops.check_polarity = e1000_check_polarity_m88;
570 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
571 		break;
572 	default:
573 		return -E1000_ERR_PHY;
574 	}
575 
576 	return 0;
577 }
578 
579 /**
580  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
581  *  @hw: pointer to the HW structure
582  *
583  *  Initialize family-specific NVM parameters and function
584  *  pointers.
585  **/
586 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
587 {
588 	struct e1000_nvm_info *nvm = &hw->nvm;
589 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
590 	u32 gfpreg, sector_base_addr, sector_end_addr;
591 	u16 i;
592 	u32 nvm_size;
593 
594 	nvm->type = e1000_nvm_flash_sw;
595 
596 	if (hw->mac.type >= e1000_pch_spt) {
597 		/* in SPT, gfpreg doesn't exist. NVM size is taken from the
598 		 * STRAP register. This is because in SPT the GbE Flash region
599 		 * is no longer accessed through the flash registers. Instead,
600 		 * the mechanism has changed, and the Flash region access
601 		 * registers are now implemented in GbE memory space.
602 		 */
603 		nvm->flash_base_addr = 0;
604 		nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1)
605 		    * NVM_SIZE_MULTIPLIER;
606 		nvm->flash_bank_size = nvm_size / 2;
607 		/* Adjust to word count */
608 		nvm->flash_bank_size /= sizeof(u16);
609 		/* Set the base address for flash register access */
610 		hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
611 	} else {
612 		/* Can't read flash registers if register set isn't mapped. */
613 		if (!hw->flash_address) {
614 			e_dbg("ERROR: Flash registers not mapped\n");
615 			return -E1000_ERR_CONFIG;
616 		}
617 
618 		gfpreg = er32flash(ICH_FLASH_GFPREG);
619 
620 		/* sector_X_addr is a "sector"-aligned address (4096 bytes)
621 		 * Add 1 to sector_end_addr since this sector is included in
622 		 * the overall size.
623 		 */
624 		sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
625 		sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
626 
627 		/* flash_base_addr is byte-aligned */
628 		nvm->flash_base_addr = sector_base_addr
629 		    << FLASH_SECTOR_ADDR_SHIFT;
630 
631 		/* find total size of the NVM, then cut in half since the total
632 		 * size represents two separate NVM banks.
633 		 */
634 		nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
635 					<< FLASH_SECTOR_ADDR_SHIFT);
636 		nvm->flash_bank_size /= 2;
637 		/* Adjust to word count */
638 		nvm->flash_bank_size /= sizeof(u16);
639 	}
640 
641 	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
642 
643 	/* Clear shadow ram */
644 	for (i = 0; i < nvm->word_size; i++) {
645 		dev_spec->shadow_ram[i].modified = false;
646 		dev_spec->shadow_ram[i].value = 0xFFFF;
647 	}
648 
649 	return 0;
650 }
651 
652 /**
653  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
654  *  @hw: pointer to the HW structure
655  *
656  *  Initialize family-specific MAC parameters and function
657  *  pointers.
658  **/
659 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
660 {
661 	struct e1000_mac_info *mac = &hw->mac;
662 
663 	/* Set media type function pointer */
664 	hw->phy.media_type = e1000_media_type_copper;
665 
666 	/* Set mta register count */
667 	mac->mta_reg_count = 32;
668 	/* Set rar entry count */
669 	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
670 	if (mac->type == e1000_ich8lan)
671 		mac->rar_entry_count--;
672 	/* FWSM register */
673 	mac->has_fwsm = true;
674 	/* ARC subsystem not supported */
675 	mac->arc_subsystem_valid = false;
676 	/* Adaptive IFS supported */
677 	mac->adaptive_ifs = true;
678 
679 	/* LED and other operations */
680 	switch (mac->type) {
681 	case e1000_ich8lan:
682 	case e1000_ich9lan:
683 	case e1000_ich10lan:
684 		/* check management mode */
685 		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
686 		/* ID LED init */
687 		mac->ops.id_led_init = e1000e_id_led_init_generic;
688 		/* blink LED */
689 		mac->ops.blink_led = e1000e_blink_led_generic;
690 		/* setup LED */
691 		mac->ops.setup_led = e1000e_setup_led_generic;
692 		/* cleanup LED */
693 		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
694 		/* turn on/off LED */
695 		mac->ops.led_on = e1000_led_on_ich8lan;
696 		mac->ops.led_off = e1000_led_off_ich8lan;
697 		break;
698 	case e1000_pch2lan:
699 		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
700 		mac->ops.rar_set = e1000_rar_set_pch2lan;
701 		/* fall-through */
702 	case e1000_pch_lpt:
703 	case e1000_pch_spt:
704 	case e1000_pch_cnp:
705 	case e1000_pch_tgp:
706 	case e1000_pchlan:
707 		/* check management mode */
708 		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
709 		/* ID LED init */
710 		mac->ops.id_led_init = e1000_id_led_init_pchlan;
711 		/* setup LED */
712 		mac->ops.setup_led = e1000_setup_led_pchlan;
713 		/* cleanup LED */
714 		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
715 		/* turn on/off LED */
716 		mac->ops.led_on = e1000_led_on_pchlan;
717 		mac->ops.led_off = e1000_led_off_pchlan;
718 		break;
719 	default:
720 		break;
721 	}
722 
723 	if (mac->type >= e1000_pch_lpt) {
724 		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
725 		mac->ops.rar_set = e1000_rar_set_pch_lpt;
726 		mac->ops.setup_physical_interface =
727 		    e1000_setup_copper_link_pch_lpt;
728 		mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt;
729 	}
730 
731 	/* Enable PCS Lock-loss workaround for ICH8 */
732 	if (mac->type == e1000_ich8lan)
733 		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
734 
735 	return 0;
736 }
737 
738 /**
739  *  __e1000_access_emi_reg_locked - Read/write EMI register
740  *  @hw: pointer to the HW structure
741  *  @addr: EMI address to program
742  *  @data: pointer to value to read/write from/to the EMI address
743  *  @read: boolean flag to indicate read or write
744  *
745  *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
746  **/
747 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
748 					 u16 *data, bool read)
749 {
750 	s32 ret_val;
751 
752 	ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
753 	if (ret_val)
754 		return ret_val;
755 
756 	if (read)
757 		ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
758 	else
759 		ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
760 
761 	return ret_val;
762 }
763 
764 /**
765  *  e1000_read_emi_reg_locked - Read Extended Management Interface register
766  *  @hw: pointer to the HW structure
767  *  @addr: EMI address to program
768  *  @data: value to be read from the EMI address
769  *
770  *  Assumes the SW/FW/HW Semaphore is already acquired.
771  **/
772 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
773 {
774 	return __e1000_access_emi_reg_locked(hw, addr, data, true);
775 }
776 
777 /**
778  *  e1000_write_emi_reg_locked - Write Extended Management Interface register
779  *  @hw: pointer to the HW structure
780  *  @addr: EMI address to program
781  *  @data: value to be written to the EMI address
782  *
783  *  Assumes the SW/FW/HW Semaphore is already acquired.
784  **/
785 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
786 {
787 	return __e1000_access_emi_reg_locked(hw, addr, &data, false);
788 }
789 
790 /**
791  *  e1000_set_eee_pchlan - Enable/disable EEE support
792  *  @hw: pointer to the HW structure
793  *
794  *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
795  *  the link and the EEE capabilities of the link partner.  The LPI Control
796  *  register bits will remain set only if/when link is up.
797  *
798  *  EEE LPI must not be asserted earlier than one second after link is up.
799  *  On 82579, EEE LPI should not be enabled until such time otherwise there
800  *  can be link issues with some switches.  Other devices can have EEE LPI
801  *  enabled immediately upon link up since they have a timer in hardware which
802  *  prevents LPI from being asserted too early.
803  **/
804 s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
805 {
806 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
807 	s32 ret_val;
808 	u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
809 
810 	switch (hw->phy.type) {
811 	case e1000_phy_82579:
812 		lpa = I82579_EEE_LP_ABILITY;
813 		pcs_status = I82579_EEE_PCS_STATUS;
814 		adv_addr = I82579_EEE_ADVERTISEMENT;
815 		break;
816 	case e1000_phy_i217:
817 		lpa = I217_EEE_LP_ABILITY;
818 		pcs_status = I217_EEE_PCS_STATUS;
819 		adv_addr = I217_EEE_ADVERTISEMENT;
820 		break;
821 	default:
822 		return 0;
823 	}
824 
825 	ret_val = hw->phy.ops.acquire(hw);
826 	if (ret_val)
827 		return ret_val;
828 
829 	ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
830 	if (ret_val)
831 		goto release;
832 
833 	/* Clear bits that enable EEE in various speeds */
834 	lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
835 
836 	/* Enable EEE if not disabled by user */
837 	if (!dev_spec->eee_disable) {
838 		/* Save off link partner's EEE ability */
839 		ret_val = e1000_read_emi_reg_locked(hw, lpa,
840 						    &dev_spec->eee_lp_ability);
841 		if (ret_val)
842 			goto release;
843 
844 		/* Read EEE advertisement */
845 		ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
846 		if (ret_val)
847 			goto release;
848 
849 		/* Enable EEE only for speeds in which the link partner is
850 		 * EEE capable and for which we advertise EEE.
851 		 */
852 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
853 			lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
854 
855 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
856 			e1e_rphy_locked(hw, MII_LPA, &data);
857 			if (data & LPA_100FULL)
858 				lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
859 			else
860 				/* EEE is not supported in 100Half, so ignore
861 				 * partner's EEE in 100 ability if full-duplex
862 				 * is not advertised.
863 				 */
864 				dev_spec->eee_lp_ability &=
865 				    ~I82579_EEE_100_SUPPORTED;
866 		}
867 	}
868 
869 	if (hw->phy.type == e1000_phy_82579) {
870 		ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
871 						    &data);
872 		if (ret_val)
873 			goto release;
874 
875 		data &= ~I82579_LPI_100_PLL_SHUT;
876 		ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
877 						     data);
878 	}
879 
880 	/* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
881 	ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
882 	if (ret_val)
883 		goto release;
884 
885 	ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
886 release:
887 	hw->phy.ops.release(hw);
888 
889 	return ret_val;
890 }
891 
892 /**
893  *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
894  *  @hw:   pointer to the HW structure
895  *  @link: link up bool flag
896  *
897  *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
898  *  preventing further DMA write requests.  Workaround the issue by disabling
899  *  the de-assertion of the clock request when in 1Gpbs mode.
900  *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
901  *  speeds in order to avoid Tx hangs.
902  **/
903 static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
904 {
905 	u32 fextnvm6 = er32(FEXTNVM6);
906 	u32 status = er32(STATUS);
907 	s32 ret_val = 0;
908 	u16 reg;
909 
910 	if (link && (status & E1000_STATUS_SPEED_1000)) {
911 		ret_val = hw->phy.ops.acquire(hw);
912 		if (ret_val)
913 			return ret_val;
914 
915 		ret_val =
916 		    e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
917 						&reg);
918 		if (ret_val)
919 			goto release;
920 
921 		ret_val =
922 		    e1000e_write_kmrn_reg_locked(hw,
923 						 E1000_KMRNCTRLSTA_K1_CONFIG,
924 						 reg &
925 						 ~E1000_KMRNCTRLSTA_K1_ENABLE);
926 		if (ret_val)
927 			goto release;
928 
929 		usleep_range(10, 20);
930 
931 		ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
932 
933 		ret_val =
934 		    e1000e_write_kmrn_reg_locked(hw,
935 						 E1000_KMRNCTRLSTA_K1_CONFIG,
936 						 reg);
937 release:
938 		hw->phy.ops.release(hw);
939 	} else {
940 		/* clear FEXTNVM6 bit 8 on link down or 10/100 */
941 		fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
942 
943 		if ((hw->phy.revision > 5) || !link ||
944 		    ((status & E1000_STATUS_SPEED_100) &&
945 		     (status & E1000_STATUS_FD)))
946 			goto update_fextnvm6;
947 
948 		ret_val = e1e_rphy(hw, I217_INBAND_CTRL, &reg);
949 		if (ret_val)
950 			return ret_val;
951 
952 		/* Clear link status transmit timeout */
953 		reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
954 
955 		if (status & E1000_STATUS_SPEED_100) {
956 			/* Set inband Tx timeout to 5x10us for 100Half */
957 			reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
958 
959 			/* Do not extend the K1 entry latency for 100Half */
960 			fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
961 		} else {
962 			/* Set inband Tx timeout to 50x10us for 10Full/Half */
963 			reg |= 50 <<
964 			    I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
965 
966 			/* Extend the K1 entry latency for 10 Mbps */
967 			fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
968 		}
969 
970 		ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
971 		if (ret_val)
972 			return ret_val;
973 
974 update_fextnvm6:
975 		ew32(FEXTNVM6, fextnvm6);
976 	}
977 
978 	return ret_val;
979 }
980 
981 /**
982  *  e1000_platform_pm_pch_lpt - Set platform power management values
983  *  @hw: pointer to the HW structure
984  *  @link: bool indicating link status
985  *
986  *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
987  *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
988  *  when link is up (which must not exceed the maximum latency supported
989  *  by the platform), otherwise specify there is no LTR requirement.
990  *  Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
991  *  latencies in the LTR Extended Capability Structure in the PCIe Extended
992  *  Capability register set, on this device LTR is set by writing the
993  *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
994  *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
995  *  message to the PMC.
996  **/
997 static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
998 {
999 	u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1000 	    link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1001 	u16 lat_enc = 0;	/* latency encoded */
1002 
1003 	if (link) {
1004 		u16 speed, duplex, scale = 0;
1005 		u16 max_snoop, max_nosnoop;
1006 		u16 max_ltr_enc;	/* max LTR latency encoded */
1007 		u64 value;
1008 		u32 rxa;
1009 
1010 		if (!hw->adapter->max_frame_size) {
1011 			e_dbg("max_frame_size not set.\n");
1012 			return -E1000_ERR_CONFIG;
1013 		}
1014 
1015 		hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1016 		if (!speed) {
1017 			e_dbg("Speed not set.\n");
1018 			return -E1000_ERR_CONFIG;
1019 		}
1020 
1021 		/* Rx Packet Buffer Allocation size (KB) */
1022 		rxa = er32(PBA) & E1000_PBA_RXA_MASK;
1023 
1024 		/* Determine the maximum latency tolerated by the device.
1025 		 *
1026 		 * Per the PCIe spec, the tolerated latencies are encoded as
1027 		 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1028 		 * a 10-bit value (0-1023) to provide a range from 1 ns to
1029 		 * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1030 		 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1031 		 */
1032 		rxa *= 512;
1033 		value = (rxa > hw->adapter->max_frame_size) ?
1034 			(rxa - hw->adapter->max_frame_size) * (16000 / speed) :
1035 			0;
1036 
1037 		while (value > PCI_LTR_VALUE_MASK) {
1038 			scale++;
1039 			value = DIV_ROUND_UP(value, BIT(5));
1040 		}
1041 		if (scale > E1000_LTRV_SCALE_MAX) {
1042 			e_dbg("Invalid LTR latency scale %d\n", scale);
1043 			return -E1000_ERR_CONFIG;
1044 		}
1045 		lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1046 
1047 		/* Determine the maximum latency tolerated by the platform */
1048 		pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1049 				     &max_snoop);
1050 		pci_read_config_word(hw->adapter->pdev,
1051 				     E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1052 		max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1053 
1054 		if (lat_enc > max_ltr_enc)
1055 			lat_enc = max_ltr_enc;
1056 	}
1057 
1058 	/* Set Snoop and No-Snoop latencies the same */
1059 	reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1060 	ew32(LTRV, reg);
1061 
1062 	return 0;
1063 }
1064 
1065 /**
1066  *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1067  *  @hw: pointer to the HW structure
1068  *  @to_sx: boolean indicating a system power state transition to Sx
1069  *
1070  *  When link is down, configure ULP mode to significantly reduce the power
1071  *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1072  *  ME firmware to start the ULP configuration.  If not on an ME enabled
1073  *  system, configure the ULP mode by software.
1074  */
1075 s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1076 {
1077 	u32 mac_reg;
1078 	s32 ret_val = 0;
1079 	u16 phy_reg;
1080 	u16 oem_reg = 0;
1081 
1082 	if ((hw->mac.type < e1000_pch_lpt) ||
1083 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1084 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1085 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1086 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1087 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1088 		return 0;
1089 
1090 	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1091 		/* Request ME configure ULP mode in the PHY */
1092 		mac_reg = er32(H2ME);
1093 		mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1094 		ew32(H2ME, mac_reg);
1095 
1096 		goto out;
1097 	}
1098 
1099 	if (!to_sx) {
1100 		int i = 0;
1101 
1102 		/* Poll up to 5 seconds for Cable Disconnected indication */
1103 		while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1104 			/* Bail if link is re-acquired */
1105 			if (er32(STATUS) & E1000_STATUS_LU)
1106 				return -E1000_ERR_PHY;
1107 
1108 			if (i++ == 100)
1109 				break;
1110 
1111 			msleep(50);
1112 		}
1113 		e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1114 		      (er32(FEXT) &
1115 		       E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1116 	}
1117 
1118 	ret_val = hw->phy.ops.acquire(hw);
1119 	if (ret_val)
1120 		goto out;
1121 
1122 	/* Force SMBus mode in PHY */
1123 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1124 	if (ret_val)
1125 		goto release;
1126 	phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1127 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1128 
1129 	/* Force SMBus mode in MAC */
1130 	mac_reg = er32(CTRL_EXT);
1131 	mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1132 	ew32(CTRL_EXT, mac_reg);
1133 
1134 	/* Si workaround for ULP entry flow on i127/rev6 h/w.  Enable
1135 	 * LPLU and disable Gig speed when entering ULP
1136 	 */
1137 	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1138 		ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1139 						       &oem_reg);
1140 		if (ret_val)
1141 			goto release;
1142 
1143 		phy_reg = oem_reg;
1144 		phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1145 
1146 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1147 							phy_reg);
1148 
1149 		if (ret_val)
1150 			goto release;
1151 	}
1152 
1153 	/* Set Inband ULP Exit, Reset to SMBus mode and
1154 	 * Disable SMBus Release on PERST# in PHY
1155 	 */
1156 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1157 	if (ret_val)
1158 		goto release;
1159 	phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1160 		    I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1161 	if (to_sx) {
1162 		if (er32(WUFC) & E1000_WUFC_LNKC)
1163 			phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1164 		else
1165 			phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1166 
1167 		phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1168 		phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1169 	} else {
1170 		phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1171 		phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1172 		phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1173 	}
1174 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1175 
1176 	/* Set Disable SMBus Release on PERST# in MAC */
1177 	mac_reg = er32(FEXTNVM7);
1178 	mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1179 	ew32(FEXTNVM7, mac_reg);
1180 
1181 	/* Commit ULP changes in PHY by starting auto ULP configuration */
1182 	phy_reg |= I218_ULP_CONFIG1_START;
1183 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1184 
1185 	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1186 	    to_sx && (er32(STATUS) & E1000_STATUS_LU)) {
1187 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1188 							oem_reg);
1189 		if (ret_val)
1190 			goto release;
1191 	}
1192 
1193 release:
1194 	hw->phy.ops.release(hw);
1195 out:
1196 	if (ret_val)
1197 		e_dbg("Error in ULP enable flow: %d\n", ret_val);
1198 	else
1199 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1200 
1201 	return ret_val;
1202 }
1203 
1204 /**
1205  *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1206  *  @hw: pointer to the HW structure
1207  *  @force: boolean indicating whether or not to force disabling ULP
1208  *
1209  *  Un-configure ULP mode when link is up, the system is transitioned from
1210  *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1211  *  system, poll for an indication from ME that ULP has been un-configured.
1212  *  If not on an ME enabled system, un-configure the ULP mode by software.
1213  *
1214  *  During nominal operation, this function is called when link is acquired
1215  *  to disable ULP mode (force=false); otherwise, for example when unloading
1216  *  the driver or during Sx->S0 transitions, this is called with force=true
1217  *  to forcibly disable ULP.
1218  */
1219 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1220 {
1221 	s32 ret_val = 0;
1222 	u32 mac_reg;
1223 	u16 phy_reg;
1224 	int i = 0;
1225 
1226 	if ((hw->mac.type < e1000_pch_lpt) ||
1227 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1228 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1229 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1230 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1231 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1232 		return 0;
1233 
1234 	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1235 		if (force) {
1236 			/* Request ME un-configure ULP mode in the PHY */
1237 			mac_reg = er32(H2ME);
1238 			mac_reg &= ~E1000_H2ME_ULP;
1239 			mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1240 			ew32(H2ME, mac_reg);
1241 		}
1242 
1243 		/* Poll up to 300msec for ME to clear ULP_CFG_DONE. */
1244 		while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1245 			if (i++ == 30) {
1246 				ret_val = -E1000_ERR_PHY;
1247 				goto out;
1248 			}
1249 
1250 			usleep_range(10000, 11000);
1251 		}
1252 		e_dbg("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10);
1253 
1254 		if (force) {
1255 			mac_reg = er32(H2ME);
1256 			mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1257 			ew32(H2ME, mac_reg);
1258 		} else {
1259 			/* Clear H2ME.ULP after ME ULP configuration */
1260 			mac_reg = er32(H2ME);
1261 			mac_reg &= ~E1000_H2ME_ULP;
1262 			ew32(H2ME, mac_reg);
1263 		}
1264 
1265 		goto out;
1266 	}
1267 
1268 	ret_val = hw->phy.ops.acquire(hw);
1269 	if (ret_val)
1270 		goto out;
1271 
1272 	if (force)
1273 		/* Toggle LANPHYPC Value bit */
1274 		e1000_toggle_lanphypc_pch_lpt(hw);
1275 
1276 	/* Unforce SMBus mode in PHY */
1277 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1278 	if (ret_val) {
1279 		/* The MAC might be in PCIe mode, so temporarily force to
1280 		 * SMBus mode in order to access the PHY.
1281 		 */
1282 		mac_reg = er32(CTRL_EXT);
1283 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1284 		ew32(CTRL_EXT, mac_reg);
1285 
1286 		msleep(50);
1287 
1288 		ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1289 						       &phy_reg);
1290 		if (ret_val)
1291 			goto release;
1292 	}
1293 	phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1294 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1295 
1296 	/* Unforce SMBus mode in MAC */
1297 	mac_reg = er32(CTRL_EXT);
1298 	mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1299 	ew32(CTRL_EXT, mac_reg);
1300 
1301 	/* When ULP mode was previously entered, K1 was disabled by the
1302 	 * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1303 	 */
1304 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1305 	if (ret_val)
1306 		goto release;
1307 	phy_reg |= HV_PM_CTRL_K1_ENABLE;
1308 	e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1309 
1310 	/* Clear ULP enabled configuration */
1311 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1312 	if (ret_val)
1313 		goto release;
1314 	phy_reg &= ~(I218_ULP_CONFIG1_IND |
1315 		     I218_ULP_CONFIG1_STICKY_ULP |
1316 		     I218_ULP_CONFIG1_RESET_TO_SMBUS |
1317 		     I218_ULP_CONFIG1_WOL_HOST |
1318 		     I218_ULP_CONFIG1_INBAND_EXIT |
1319 		     I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
1320 		     I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
1321 		     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1322 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1323 
1324 	/* Commit ULP changes by starting auto ULP configuration */
1325 	phy_reg |= I218_ULP_CONFIG1_START;
1326 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1327 
1328 	/* Clear Disable SMBus Release on PERST# in MAC */
1329 	mac_reg = er32(FEXTNVM7);
1330 	mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1331 	ew32(FEXTNVM7, mac_reg);
1332 
1333 release:
1334 	hw->phy.ops.release(hw);
1335 	if (force) {
1336 		e1000_phy_hw_reset(hw);
1337 		msleep(50);
1338 	}
1339 out:
1340 	if (ret_val)
1341 		e_dbg("Error in ULP disable flow: %d\n", ret_val);
1342 	else
1343 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1344 
1345 	return ret_val;
1346 }
1347 
1348 /**
1349  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1350  *  @hw: pointer to the HW structure
1351  *
1352  *  Checks to see of the link status of the hardware has changed.  If a
1353  *  change in link status has been detected, then we read the PHY registers
1354  *  to get the current speed/duplex if link exists.
1355  **/
1356 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1357 {
1358 	struct e1000_mac_info *mac = &hw->mac;
1359 	s32 ret_val, tipg_reg = 0;
1360 	u16 emi_addr, emi_val = 0;
1361 	bool link;
1362 	u16 phy_reg;
1363 
1364 	/* We only want to go out to the PHY registers to see if Auto-Neg
1365 	 * has completed and/or if our link status has changed.  The
1366 	 * get_link_status flag is set upon receiving a Link Status
1367 	 * Change or Rx Sequence Error interrupt.
1368 	 */
1369 	if (!mac->get_link_status)
1370 		return 0;
1371 	mac->get_link_status = false;
1372 
1373 	/* First we want to see if the MII Status Register reports
1374 	 * link.  If so, then we want to get the current speed/duplex
1375 	 * of the PHY.
1376 	 */
1377 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1378 	if (ret_val)
1379 		goto out;
1380 
1381 	if (hw->mac.type == e1000_pchlan) {
1382 		ret_val = e1000_k1_gig_workaround_hv(hw, link);
1383 		if (ret_val)
1384 			goto out;
1385 	}
1386 
1387 	/* When connected at 10Mbps half-duplex, some parts are excessively
1388 	 * aggressive resulting in many collisions. To avoid this, increase
1389 	 * the IPG and reduce Rx latency in the PHY.
1390 	 */
1391 	if ((hw->mac.type >= e1000_pch2lan) && link) {
1392 		u16 speed, duplex;
1393 
1394 		e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex);
1395 		tipg_reg = er32(TIPG);
1396 		tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1397 
1398 		if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1399 			tipg_reg |= 0xFF;
1400 			/* Reduce Rx latency in analog PHY */
1401 			emi_val = 0;
1402 		} else if (hw->mac.type >= e1000_pch_spt &&
1403 			   duplex == FULL_DUPLEX && speed != SPEED_1000) {
1404 			tipg_reg |= 0xC;
1405 			emi_val = 1;
1406 		} else {
1407 
1408 			/* Roll back the default values */
1409 			tipg_reg |= 0x08;
1410 			emi_val = 1;
1411 		}
1412 
1413 		ew32(TIPG, tipg_reg);
1414 
1415 		ret_val = hw->phy.ops.acquire(hw);
1416 		if (ret_val)
1417 			goto out;
1418 
1419 		if (hw->mac.type == e1000_pch2lan)
1420 			emi_addr = I82579_RX_CONFIG;
1421 		else
1422 			emi_addr = I217_RX_CONFIG;
1423 		ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1424 
1425 		if (hw->mac.type >= e1000_pch_lpt) {
1426 			u16 phy_reg;
1427 
1428 			e1e_rphy_locked(hw, I217_PLL_CLOCK_GATE_REG, &phy_reg);
1429 			phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
1430 			if (speed == SPEED_100 || speed == SPEED_10)
1431 				phy_reg |= 0x3E8;
1432 			else
1433 				phy_reg |= 0xFA;
1434 			e1e_wphy_locked(hw, I217_PLL_CLOCK_GATE_REG, phy_reg);
1435 
1436 			if (speed == SPEED_1000) {
1437 				hw->phy.ops.read_reg_locked(hw, HV_PM_CTRL,
1438 							    &phy_reg);
1439 
1440 				phy_reg |= HV_PM_CTRL_K1_CLK_REQ;
1441 
1442 				hw->phy.ops.write_reg_locked(hw, HV_PM_CTRL,
1443 							     phy_reg);
1444 			}
1445 		}
1446 		hw->phy.ops.release(hw);
1447 
1448 		if (ret_val)
1449 			goto out;
1450 
1451 		if (hw->mac.type >= e1000_pch_spt) {
1452 			u16 data;
1453 			u16 ptr_gap;
1454 
1455 			if (speed == SPEED_1000) {
1456 				ret_val = hw->phy.ops.acquire(hw);
1457 				if (ret_val)
1458 					goto out;
1459 
1460 				ret_val = e1e_rphy_locked(hw,
1461 							  PHY_REG(776, 20),
1462 							  &data);
1463 				if (ret_val) {
1464 					hw->phy.ops.release(hw);
1465 					goto out;
1466 				}
1467 
1468 				ptr_gap = (data & (0x3FF << 2)) >> 2;
1469 				if (ptr_gap < 0x18) {
1470 					data &= ~(0x3FF << 2);
1471 					data |= (0x18 << 2);
1472 					ret_val =
1473 					    e1e_wphy_locked(hw,
1474 							    PHY_REG(776, 20),
1475 							    data);
1476 				}
1477 				hw->phy.ops.release(hw);
1478 				if (ret_val)
1479 					goto out;
1480 			} else {
1481 				ret_val = hw->phy.ops.acquire(hw);
1482 				if (ret_val)
1483 					goto out;
1484 
1485 				ret_val = e1e_wphy_locked(hw,
1486 							  PHY_REG(776, 20),
1487 							  0xC023);
1488 				hw->phy.ops.release(hw);
1489 				if (ret_val)
1490 					goto out;
1491 
1492 			}
1493 		}
1494 	}
1495 
1496 	/* I217 Packet Loss issue:
1497 	 * ensure that FEXTNVM4 Beacon Duration is set correctly
1498 	 * on power up.
1499 	 * Set the Beacon Duration for I217 to 8 usec
1500 	 */
1501 	if (hw->mac.type >= e1000_pch_lpt) {
1502 		u32 mac_reg;
1503 
1504 		mac_reg = er32(FEXTNVM4);
1505 		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1506 		mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1507 		ew32(FEXTNVM4, mac_reg);
1508 	}
1509 
1510 	/* Work-around I218 hang issue */
1511 	if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1512 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1513 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1514 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
1515 		ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1516 		if (ret_val)
1517 			goto out;
1518 	}
1519 	if (hw->mac.type >= e1000_pch_lpt) {
1520 		/* Set platform power management values for
1521 		 * Latency Tolerance Reporting (LTR)
1522 		 */
1523 		ret_val = e1000_platform_pm_pch_lpt(hw, link);
1524 		if (ret_val)
1525 			goto out;
1526 	}
1527 
1528 	/* Clear link partner's EEE ability */
1529 	hw->dev_spec.ich8lan.eee_lp_ability = 0;
1530 
1531 	if (hw->mac.type >= e1000_pch_lpt) {
1532 		u32 fextnvm6 = er32(FEXTNVM6);
1533 
1534 		if (hw->mac.type == e1000_pch_spt) {
1535 			/* FEXTNVM6 K1-off workaround - for SPT only */
1536 			u32 pcieanacfg = er32(PCIEANACFG);
1537 
1538 			if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1539 				fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1540 			else
1541 				fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1542 		}
1543 
1544 		ew32(FEXTNVM6, fextnvm6);
1545 	}
1546 
1547 	if (!link)
1548 		goto out;
1549 
1550 	switch (hw->mac.type) {
1551 	case e1000_pch2lan:
1552 		ret_val = e1000_k1_workaround_lv(hw);
1553 		if (ret_val)
1554 			return ret_val;
1555 		/* fall-thru */
1556 	case e1000_pchlan:
1557 		if (hw->phy.type == e1000_phy_82578) {
1558 			ret_val = e1000_link_stall_workaround_hv(hw);
1559 			if (ret_val)
1560 				return ret_val;
1561 		}
1562 
1563 		/* Workaround for PCHx parts in half-duplex:
1564 		 * Set the number of preambles removed from the packet
1565 		 * when it is passed from the PHY to the MAC to prevent
1566 		 * the MAC from misinterpreting the packet type.
1567 		 */
1568 		e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1569 		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1570 
1571 		if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1572 			phy_reg |= BIT(HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1573 
1574 		e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1575 		break;
1576 	default:
1577 		break;
1578 	}
1579 
1580 	/* Check if there was DownShift, must be checked
1581 	 * immediately after link-up
1582 	 */
1583 	e1000e_check_downshift(hw);
1584 
1585 	/* Enable/Disable EEE after link up */
1586 	if (hw->phy.type > e1000_phy_82579) {
1587 		ret_val = e1000_set_eee_pchlan(hw);
1588 		if (ret_val)
1589 			return ret_val;
1590 	}
1591 
1592 	/* If we are forcing speed/duplex, then we simply return since
1593 	 * we have already determined whether we have link or not.
1594 	 */
1595 	if (!mac->autoneg)
1596 		return -E1000_ERR_CONFIG;
1597 
1598 	/* Auto-Neg is enabled.  Auto Speed Detection takes care
1599 	 * of MAC speed/duplex configuration.  So we only need to
1600 	 * configure Collision Distance in the MAC.
1601 	 */
1602 	mac->ops.config_collision_dist(hw);
1603 
1604 	/* Configure Flow Control now that Auto-Neg has completed.
1605 	 * First, we need to restore the desired flow control
1606 	 * settings because we may have had to re-autoneg with a
1607 	 * different link partner.
1608 	 */
1609 	ret_val = e1000e_config_fc_after_link_up(hw);
1610 	if (ret_val)
1611 		e_dbg("Error configuring flow control\n");
1612 
1613 	return ret_val;
1614 
1615 out:
1616 	mac->get_link_status = true;
1617 	return ret_val;
1618 }
1619 
1620 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1621 {
1622 	struct e1000_hw *hw = &adapter->hw;
1623 	s32 rc;
1624 
1625 	rc = e1000_init_mac_params_ich8lan(hw);
1626 	if (rc)
1627 		return rc;
1628 
1629 	rc = e1000_init_nvm_params_ich8lan(hw);
1630 	if (rc)
1631 		return rc;
1632 
1633 	switch (hw->mac.type) {
1634 	case e1000_ich8lan:
1635 	case e1000_ich9lan:
1636 	case e1000_ich10lan:
1637 		rc = e1000_init_phy_params_ich8lan(hw);
1638 		break;
1639 	case e1000_pchlan:
1640 	case e1000_pch2lan:
1641 	case e1000_pch_lpt:
1642 	case e1000_pch_spt:
1643 	case e1000_pch_cnp:
1644 	case e1000_pch_tgp:
1645 		rc = e1000_init_phy_params_pchlan(hw);
1646 		break;
1647 	default:
1648 		break;
1649 	}
1650 	if (rc)
1651 		return rc;
1652 
1653 	/* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1654 	 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1655 	 */
1656 	if ((adapter->hw.phy.type == e1000_phy_ife) ||
1657 	    ((adapter->hw.mac.type >= e1000_pch2lan) &&
1658 	     (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1659 		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1660 		adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
1661 
1662 		hw->mac.ops.blink_led = NULL;
1663 	}
1664 
1665 	if ((adapter->hw.mac.type == e1000_ich8lan) &&
1666 	    (adapter->hw.phy.type != e1000_phy_ife))
1667 		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1668 
1669 	/* Enable workaround for 82579 w/ ME enabled */
1670 	if ((adapter->hw.mac.type == e1000_pch2lan) &&
1671 	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1672 		adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1673 
1674 	return 0;
1675 }
1676 
1677 static DEFINE_MUTEX(nvm_mutex);
1678 
1679 /**
1680  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1681  *  @hw: pointer to the HW structure
1682  *
1683  *  Acquires the mutex for performing NVM operations.
1684  **/
1685 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1686 {
1687 	mutex_lock(&nvm_mutex);
1688 
1689 	return 0;
1690 }
1691 
1692 /**
1693  *  e1000_release_nvm_ich8lan - Release NVM mutex
1694  *  @hw: pointer to the HW structure
1695  *
1696  *  Releases the mutex used while performing NVM operations.
1697  **/
1698 static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1699 {
1700 	mutex_unlock(&nvm_mutex);
1701 }
1702 
1703 /**
1704  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1705  *  @hw: pointer to the HW structure
1706  *
1707  *  Acquires the software control flag for performing PHY and select
1708  *  MAC CSR accesses.
1709  **/
1710 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1711 {
1712 	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1713 	s32 ret_val = 0;
1714 
1715 	if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1716 			     &hw->adapter->state)) {
1717 		e_dbg("contention for Phy access\n");
1718 		return -E1000_ERR_PHY;
1719 	}
1720 
1721 	while (timeout) {
1722 		extcnf_ctrl = er32(EXTCNF_CTRL);
1723 		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1724 			break;
1725 
1726 		mdelay(1);
1727 		timeout--;
1728 	}
1729 
1730 	if (!timeout) {
1731 		e_dbg("SW has already locked the resource.\n");
1732 		ret_val = -E1000_ERR_CONFIG;
1733 		goto out;
1734 	}
1735 
1736 	timeout = SW_FLAG_TIMEOUT;
1737 
1738 	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1739 	ew32(EXTCNF_CTRL, extcnf_ctrl);
1740 
1741 	while (timeout) {
1742 		extcnf_ctrl = er32(EXTCNF_CTRL);
1743 		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1744 			break;
1745 
1746 		mdelay(1);
1747 		timeout--;
1748 	}
1749 
1750 	if (!timeout) {
1751 		e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1752 		      er32(FWSM), extcnf_ctrl);
1753 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1754 		ew32(EXTCNF_CTRL, extcnf_ctrl);
1755 		ret_val = -E1000_ERR_CONFIG;
1756 		goto out;
1757 	}
1758 
1759 out:
1760 	if (ret_val)
1761 		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1762 
1763 	return ret_val;
1764 }
1765 
1766 /**
1767  *  e1000_release_swflag_ich8lan - Release software control flag
1768  *  @hw: pointer to the HW structure
1769  *
1770  *  Releases the software control flag for performing PHY and select
1771  *  MAC CSR accesses.
1772  **/
1773 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1774 {
1775 	u32 extcnf_ctrl;
1776 
1777 	extcnf_ctrl = er32(EXTCNF_CTRL);
1778 
1779 	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1780 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1781 		ew32(EXTCNF_CTRL, extcnf_ctrl);
1782 	} else {
1783 		e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1784 	}
1785 
1786 	clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1787 }
1788 
1789 /**
1790  *  e1000_check_mng_mode_ich8lan - Checks management mode
1791  *  @hw: pointer to the HW structure
1792  *
1793  *  This checks if the adapter has any manageability enabled.
1794  *  This is a function pointer entry point only called by read/write
1795  *  routines for the PHY and NVM parts.
1796  **/
1797 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1798 {
1799 	u32 fwsm;
1800 
1801 	fwsm = er32(FWSM);
1802 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1803 		((fwsm & E1000_FWSM_MODE_MASK) ==
1804 		 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1805 }
1806 
1807 /**
1808  *  e1000_check_mng_mode_pchlan - Checks management mode
1809  *  @hw: pointer to the HW structure
1810  *
1811  *  This checks if the adapter has iAMT enabled.
1812  *  This is a function pointer entry point only called by read/write
1813  *  routines for the PHY and NVM parts.
1814  **/
1815 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1816 {
1817 	u32 fwsm;
1818 
1819 	fwsm = er32(FWSM);
1820 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1821 	    (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1822 }
1823 
1824 /**
1825  *  e1000_rar_set_pch2lan - Set receive address register
1826  *  @hw: pointer to the HW structure
1827  *  @addr: pointer to the receive address
1828  *  @index: receive address array register
1829  *
1830  *  Sets the receive address array register at index to the address passed
1831  *  in by addr.  For 82579, RAR[0] is the base address register that is to
1832  *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1833  *  Use SHRA[0-3] in place of those reserved for ME.
1834  **/
1835 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1836 {
1837 	u32 rar_low, rar_high;
1838 
1839 	/* HW expects these in little endian so we reverse the byte order
1840 	 * from network order (big endian) to little endian
1841 	 */
1842 	rar_low = ((u32)addr[0] |
1843 		   ((u32)addr[1] << 8) |
1844 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1845 
1846 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1847 
1848 	/* If MAC address zero, no need to set the AV bit */
1849 	if (rar_low || rar_high)
1850 		rar_high |= E1000_RAH_AV;
1851 
1852 	if (index == 0) {
1853 		ew32(RAL(index), rar_low);
1854 		e1e_flush();
1855 		ew32(RAH(index), rar_high);
1856 		e1e_flush();
1857 		return 0;
1858 	}
1859 
1860 	/* RAR[1-6] are owned by manageability.  Skip those and program the
1861 	 * next address into the SHRA register array.
1862 	 */
1863 	if (index < (u32)(hw->mac.rar_entry_count)) {
1864 		s32 ret_val;
1865 
1866 		ret_val = e1000_acquire_swflag_ich8lan(hw);
1867 		if (ret_val)
1868 			goto out;
1869 
1870 		ew32(SHRAL(index - 1), rar_low);
1871 		e1e_flush();
1872 		ew32(SHRAH(index - 1), rar_high);
1873 		e1e_flush();
1874 
1875 		e1000_release_swflag_ich8lan(hw);
1876 
1877 		/* verify the register updates */
1878 		if ((er32(SHRAL(index - 1)) == rar_low) &&
1879 		    (er32(SHRAH(index - 1)) == rar_high))
1880 			return 0;
1881 
1882 		e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1883 		      (index - 1), er32(FWSM));
1884 	}
1885 
1886 out:
1887 	e_dbg("Failed to write receive address at index %d\n", index);
1888 	return -E1000_ERR_CONFIG;
1889 }
1890 
1891 /**
1892  *  e1000_rar_get_count_pch_lpt - Get the number of available SHRA
1893  *  @hw: pointer to the HW structure
1894  *
1895  *  Get the number of available receive registers that the Host can
1896  *  program. SHRA[0-10] are the shared receive address registers
1897  *  that are shared between the Host and manageability engine (ME).
1898  *  ME can reserve any number of addresses and the host needs to be
1899  *  able to tell how many available registers it has access to.
1900  **/
1901 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw)
1902 {
1903 	u32 wlock_mac;
1904 	u32 num_entries;
1905 
1906 	wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1907 	wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1908 
1909 	switch (wlock_mac) {
1910 	case 0:
1911 		/* All SHRA[0..10] and RAR[0] available */
1912 		num_entries = hw->mac.rar_entry_count;
1913 		break;
1914 	case 1:
1915 		/* Only RAR[0] available */
1916 		num_entries = 1;
1917 		break;
1918 	default:
1919 		/* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
1920 		num_entries = wlock_mac + 1;
1921 		break;
1922 	}
1923 
1924 	return num_entries;
1925 }
1926 
1927 /**
1928  *  e1000_rar_set_pch_lpt - Set receive address registers
1929  *  @hw: pointer to the HW structure
1930  *  @addr: pointer to the receive address
1931  *  @index: receive address array register
1932  *
1933  *  Sets the receive address register array at index to the address passed
1934  *  in by addr. For LPT, RAR[0] is the base address register that is to
1935  *  contain the MAC address. SHRA[0-10] are the shared receive address
1936  *  registers that are shared between the Host and manageability engine (ME).
1937  **/
1938 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1939 {
1940 	u32 rar_low, rar_high;
1941 	u32 wlock_mac;
1942 
1943 	/* HW expects these in little endian so we reverse the byte order
1944 	 * from network order (big endian) to little endian
1945 	 */
1946 	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1947 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1948 
1949 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1950 
1951 	/* If MAC address zero, no need to set the AV bit */
1952 	if (rar_low || rar_high)
1953 		rar_high |= E1000_RAH_AV;
1954 
1955 	if (index == 0) {
1956 		ew32(RAL(index), rar_low);
1957 		e1e_flush();
1958 		ew32(RAH(index), rar_high);
1959 		e1e_flush();
1960 		return 0;
1961 	}
1962 
1963 	/* The manageability engine (ME) can lock certain SHRAR registers that
1964 	 * it is using - those registers are unavailable for use.
1965 	 */
1966 	if (index < hw->mac.rar_entry_count) {
1967 		wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1968 		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1969 
1970 		/* Check if all SHRAR registers are locked */
1971 		if (wlock_mac == 1)
1972 			goto out;
1973 
1974 		if ((wlock_mac == 0) || (index <= wlock_mac)) {
1975 			s32 ret_val;
1976 
1977 			ret_val = e1000_acquire_swflag_ich8lan(hw);
1978 
1979 			if (ret_val)
1980 				goto out;
1981 
1982 			ew32(SHRAL_PCH_LPT(index - 1), rar_low);
1983 			e1e_flush();
1984 			ew32(SHRAH_PCH_LPT(index - 1), rar_high);
1985 			e1e_flush();
1986 
1987 			e1000_release_swflag_ich8lan(hw);
1988 
1989 			/* verify the register updates */
1990 			if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
1991 			    (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
1992 				return 0;
1993 		}
1994 	}
1995 
1996 out:
1997 	e_dbg("Failed to write receive address at index %d\n", index);
1998 	return -E1000_ERR_CONFIG;
1999 }
2000 
2001 /**
2002  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2003  *  @hw: pointer to the HW structure
2004  *
2005  *  Checks if firmware is blocking the reset of the PHY.
2006  *  This is a function pointer entry point only called by
2007  *  reset routines.
2008  **/
2009 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2010 {
2011 	bool blocked = false;
2012 	int i = 0;
2013 
2014 	while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
2015 	       (i++ < 30))
2016 		usleep_range(10000, 11000);
2017 	return blocked ? E1000_BLK_PHY_RESET : 0;
2018 }
2019 
2020 /**
2021  *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2022  *  @hw: pointer to the HW structure
2023  *
2024  *  Assumes semaphore already acquired.
2025  *
2026  **/
2027 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2028 {
2029 	u16 phy_data;
2030 	u32 strap = er32(STRAP);
2031 	u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
2032 	    E1000_STRAP_SMT_FREQ_SHIFT;
2033 	s32 ret_val;
2034 
2035 	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2036 
2037 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2038 	if (ret_val)
2039 		return ret_val;
2040 
2041 	phy_data &= ~HV_SMB_ADDR_MASK;
2042 	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2043 	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2044 
2045 	if (hw->phy.type == e1000_phy_i217) {
2046 		/* Restore SMBus frequency */
2047 		if (freq--) {
2048 			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2049 			phy_data |= (freq & BIT(0)) <<
2050 			    HV_SMB_ADDR_FREQ_LOW_SHIFT;
2051 			phy_data |= (freq & BIT(1)) <<
2052 			    (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2053 		} else {
2054 			e_dbg("Unsupported SMB frequency in PHY\n");
2055 		}
2056 	}
2057 
2058 	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2059 }
2060 
2061 /**
2062  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2063  *  @hw:   pointer to the HW structure
2064  *
2065  *  SW should configure the LCD from the NVM extended configuration region
2066  *  as a workaround for certain parts.
2067  **/
2068 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2069 {
2070 	struct e1000_phy_info *phy = &hw->phy;
2071 	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2072 	s32 ret_val = 0;
2073 	u16 word_addr, reg_data, reg_addr, phy_page = 0;
2074 
2075 	/* Initialize the PHY from the NVM on ICH platforms.  This
2076 	 * is needed due to an issue where the NVM configuration is
2077 	 * not properly autoloaded after power transitions.
2078 	 * Therefore, after each PHY reset, we will load the
2079 	 * configuration data out of the NVM manually.
2080 	 */
2081 	switch (hw->mac.type) {
2082 	case e1000_ich8lan:
2083 		if (phy->type != e1000_phy_igp_3)
2084 			return ret_val;
2085 
2086 		if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
2087 		    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
2088 			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2089 			break;
2090 		}
2091 		/* Fall-thru */
2092 	case e1000_pchlan:
2093 	case e1000_pch2lan:
2094 	case e1000_pch_lpt:
2095 	case e1000_pch_spt:
2096 	case e1000_pch_cnp:
2097 	case e1000_pch_tgp:
2098 		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2099 		break;
2100 	default:
2101 		return ret_val;
2102 	}
2103 
2104 	ret_val = hw->phy.ops.acquire(hw);
2105 	if (ret_val)
2106 		return ret_val;
2107 
2108 	data = er32(FEXTNVM);
2109 	if (!(data & sw_cfg_mask))
2110 		goto release;
2111 
2112 	/* Make sure HW does not configure LCD from PHY
2113 	 * extended configuration before SW configuration
2114 	 */
2115 	data = er32(EXTCNF_CTRL);
2116 	if ((hw->mac.type < e1000_pch2lan) &&
2117 	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2118 		goto release;
2119 
2120 	cnf_size = er32(EXTCNF_SIZE);
2121 	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2122 	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2123 	if (!cnf_size)
2124 		goto release;
2125 
2126 	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2127 	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2128 
2129 	if (((hw->mac.type == e1000_pchlan) &&
2130 	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2131 	    (hw->mac.type > e1000_pchlan)) {
2132 		/* HW configures the SMBus address and LEDs when the
2133 		 * OEM and LCD Write Enable bits are set in the NVM.
2134 		 * When both NVM bits are cleared, SW will configure
2135 		 * them instead.
2136 		 */
2137 		ret_val = e1000_write_smbus_addr(hw);
2138 		if (ret_val)
2139 			goto release;
2140 
2141 		data = er32(LEDCTL);
2142 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2143 							(u16)data);
2144 		if (ret_val)
2145 			goto release;
2146 	}
2147 
2148 	/* Configure LCD from extended configuration region. */
2149 
2150 	/* cnf_base_addr is in DWORD */
2151 	word_addr = (u16)(cnf_base_addr << 1);
2152 
2153 	for (i = 0; i < cnf_size; i++) {
2154 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, &reg_data);
2155 		if (ret_val)
2156 			goto release;
2157 
2158 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
2159 					 1, &reg_addr);
2160 		if (ret_val)
2161 			goto release;
2162 
2163 		/* Save off the PHY page for future writes. */
2164 		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2165 			phy_page = reg_data;
2166 			continue;
2167 		}
2168 
2169 		reg_addr &= PHY_REG_MASK;
2170 		reg_addr |= phy_page;
2171 
2172 		ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
2173 		if (ret_val)
2174 			goto release;
2175 	}
2176 
2177 release:
2178 	hw->phy.ops.release(hw);
2179 	return ret_val;
2180 }
2181 
2182 /**
2183  *  e1000_k1_gig_workaround_hv - K1 Si workaround
2184  *  @hw:   pointer to the HW structure
2185  *  @link: link up bool flag
2186  *
2187  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2188  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2189  *  If link is down, the function will restore the default K1 setting located
2190  *  in the NVM.
2191  **/
2192 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2193 {
2194 	s32 ret_val = 0;
2195 	u16 status_reg = 0;
2196 	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2197 
2198 	if (hw->mac.type != e1000_pchlan)
2199 		return 0;
2200 
2201 	/* Wrap the whole flow with the sw flag */
2202 	ret_val = hw->phy.ops.acquire(hw);
2203 	if (ret_val)
2204 		return ret_val;
2205 
2206 	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2207 	if (link) {
2208 		if (hw->phy.type == e1000_phy_82578) {
2209 			ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
2210 						  &status_reg);
2211 			if (ret_val)
2212 				goto release;
2213 
2214 			status_reg &= (BM_CS_STATUS_LINK_UP |
2215 				       BM_CS_STATUS_RESOLVED |
2216 				       BM_CS_STATUS_SPEED_MASK);
2217 
2218 			if (status_reg == (BM_CS_STATUS_LINK_UP |
2219 					   BM_CS_STATUS_RESOLVED |
2220 					   BM_CS_STATUS_SPEED_1000))
2221 				k1_enable = false;
2222 		}
2223 
2224 		if (hw->phy.type == e1000_phy_82577) {
2225 			ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2226 			if (ret_val)
2227 				goto release;
2228 
2229 			status_reg &= (HV_M_STATUS_LINK_UP |
2230 				       HV_M_STATUS_AUTONEG_COMPLETE |
2231 				       HV_M_STATUS_SPEED_MASK);
2232 
2233 			if (status_reg == (HV_M_STATUS_LINK_UP |
2234 					   HV_M_STATUS_AUTONEG_COMPLETE |
2235 					   HV_M_STATUS_SPEED_1000))
2236 				k1_enable = false;
2237 		}
2238 
2239 		/* Link stall fix for link up */
2240 		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2241 		if (ret_val)
2242 			goto release;
2243 
2244 	} else {
2245 		/* Link stall fix for link down */
2246 		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2247 		if (ret_val)
2248 			goto release;
2249 	}
2250 
2251 	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2252 
2253 release:
2254 	hw->phy.ops.release(hw);
2255 
2256 	return ret_val;
2257 }
2258 
2259 /**
2260  *  e1000_configure_k1_ich8lan - Configure K1 power state
2261  *  @hw: pointer to the HW structure
2262  *  @enable: K1 state to configure
2263  *
2264  *  Configure the K1 power state based on the provided parameter.
2265  *  Assumes semaphore already acquired.
2266  *
2267  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2268  **/
2269 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2270 {
2271 	s32 ret_val;
2272 	u32 ctrl_reg = 0;
2273 	u32 ctrl_ext = 0;
2274 	u32 reg = 0;
2275 	u16 kmrn_reg = 0;
2276 
2277 	ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2278 					      &kmrn_reg);
2279 	if (ret_val)
2280 		return ret_val;
2281 
2282 	if (k1_enable)
2283 		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2284 	else
2285 		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2286 
2287 	ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2288 					       kmrn_reg);
2289 	if (ret_val)
2290 		return ret_val;
2291 
2292 	usleep_range(20, 40);
2293 	ctrl_ext = er32(CTRL_EXT);
2294 	ctrl_reg = er32(CTRL);
2295 
2296 	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2297 	reg |= E1000_CTRL_FRCSPD;
2298 	ew32(CTRL, reg);
2299 
2300 	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2301 	e1e_flush();
2302 	usleep_range(20, 40);
2303 	ew32(CTRL, ctrl_reg);
2304 	ew32(CTRL_EXT, ctrl_ext);
2305 	e1e_flush();
2306 	usleep_range(20, 40);
2307 
2308 	return 0;
2309 }
2310 
2311 /**
2312  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2313  *  @hw:       pointer to the HW structure
2314  *  @d0_state: boolean if entering d0 or d3 device state
2315  *
2316  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2317  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2318  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2319  **/
2320 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2321 {
2322 	s32 ret_val = 0;
2323 	u32 mac_reg;
2324 	u16 oem_reg;
2325 
2326 	if (hw->mac.type < e1000_pchlan)
2327 		return ret_val;
2328 
2329 	ret_val = hw->phy.ops.acquire(hw);
2330 	if (ret_val)
2331 		return ret_val;
2332 
2333 	if (hw->mac.type == e1000_pchlan) {
2334 		mac_reg = er32(EXTCNF_CTRL);
2335 		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2336 			goto release;
2337 	}
2338 
2339 	mac_reg = er32(FEXTNVM);
2340 	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2341 		goto release;
2342 
2343 	mac_reg = er32(PHY_CTRL);
2344 
2345 	ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2346 	if (ret_val)
2347 		goto release;
2348 
2349 	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2350 
2351 	if (d0_state) {
2352 		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2353 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2354 
2355 		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2356 			oem_reg |= HV_OEM_BITS_LPLU;
2357 	} else {
2358 		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2359 			       E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2360 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2361 
2362 		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2363 			       E1000_PHY_CTRL_NOND0A_LPLU))
2364 			oem_reg |= HV_OEM_BITS_LPLU;
2365 	}
2366 
2367 	/* Set Restart auto-neg to activate the bits */
2368 	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2369 	    !hw->phy.ops.check_reset_block(hw))
2370 		oem_reg |= HV_OEM_BITS_RESTART_AN;
2371 
2372 	ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2373 
2374 release:
2375 	hw->phy.ops.release(hw);
2376 
2377 	return ret_val;
2378 }
2379 
2380 /**
2381  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2382  *  @hw:   pointer to the HW structure
2383  **/
2384 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2385 {
2386 	s32 ret_val;
2387 	u16 data;
2388 
2389 	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2390 	if (ret_val)
2391 		return ret_val;
2392 
2393 	data |= HV_KMRN_MDIO_SLOW;
2394 
2395 	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2396 
2397 	return ret_val;
2398 }
2399 
2400 /**
2401  *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2402  *  done after every PHY reset.
2403  **/
2404 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2405 {
2406 	s32 ret_val = 0;
2407 	u16 phy_data;
2408 
2409 	if (hw->mac.type != e1000_pchlan)
2410 		return 0;
2411 
2412 	/* Set MDIO slow mode before any other MDIO access */
2413 	if (hw->phy.type == e1000_phy_82577) {
2414 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
2415 		if (ret_val)
2416 			return ret_val;
2417 	}
2418 
2419 	if (((hw->phy.type == e1000_phy_82577) &&
2420 	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2421 	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2422 		/* Disable generation of early preamble */
2423 		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2424 		if (ret_val)
2425 			return ret_val;
2426 
2427 		/* Preamble tuning for SSC */
2428 		ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2429 		if (ret_val)
2430 			return ret_val;
2431 	}
2432 
2433 	if (hw->phy.type == e1000_phy_82578) {
2434 		/* Return registers to default by doing a soft reset then
2435 		 * writing 0x3140 to the control register.
2436 		 */
2437 		if (hw->phy.revision < 2) {
2438 			e1000e_phy_sw_reset(hw);
2439 			ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
2440 			if (ret_val)
2441 				return ret_val;
2442 		}
2443 	}
2444 
2445 	/* Select page 0 */
2446 	ret_val = hw->phy.ops.acquire(hw);
2447 	if (ret_val)
2448 		return ret_val;
2449 
2450 	hw->phy.addr = 1;
2451 	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2452 	hw->phy.ops.release(hw);
2453 	if (ret_val)
2454 		return ret_val;
2455 
2456 	/* Configure the K1 Si workaround during phy reset assuming there is
2457 	 * link so that it disables K1 if link is in 1Gbps.
2458 	 */
2459 	ret_val = e1000_k1_gig_workaround_hv(hw, true);
2460 	if (ret_val)
2461 		return ret_val;
2462 
2463 	/* Workaround for link disconnects on a busy hub in half duplex */
2464 	ret_val = hw->phy.ops.acquire(hw);
2465 	if (ret_val)
2466 		return ret_val;
2467 	ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2468 	if (ret_val)
2469 		goto release;
2470 	ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2471 	if (ret_val)
2472 		goto release;
2473 
2474 	/* set MSE higher to enable link to stay up when noise is high */
2475 	ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2476 release:
2477 	hw->phy.ops.release(hw);
2478 
2479 	return ret_val;
2480 }
2481 
2482 /**
2483  *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2484  *  @hw:   pointer to the HW structure
2485  **/
2486 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2487 {
2488 	u32 mac_reg;
2489 	u16 i, phy_reg = 0;
2490 	s32 ret_val;
2491 
2492 	ret_val = hw->phy.ops.acquire(hw);
2493 	if (ret_val)
2494 		return;
2495 	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2496 	if (ret_val)
2497 		goto release;
2498 
2499 	/* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2500 	for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2501 		mac_reg = er32(RAL(i));
2502 		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2503 					   (u16)(mac_reg & 0xFFFF));
2504 		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2505 					   (u16)((mac_reg >> 16) & 0xFFFF));
2506 
2507 		mac_reg = er32(RAH(i));
2508 		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2509 					   (u16)(mac_reg & 0xFFFF));
2510 		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2511 					   (u16)((mac_reg & E1000_RAH_AV)
2512 						 >> 16));
2513 	}
2514 
2515 	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2516 
2517 release:
2518 	hw->phy.ops.release(hw);
2519 }
2520 
2521 /**
2522  *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2523  *  with 82579 PHY
2524  *  @hw: pointer to the HW structure
2525  *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2526  **/
2527 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2528 {
2529 	s32 ret_val = 0;
2530 	u16 phy_reg, data;
2531 	u32 mac_reg;
2532 	u16 i;
2533 
2534 	if (hw->mac.type < e1000_pch2lan)
2535 		return 0;
2536 
2537 	/* disable Rx path while enabling/disabling workaround */
2538 	e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2539 	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | BIT(14));
2540 	if (ret_val)
2541 		return ret_val;
2542 
2543 	if (enable) {
2544 		/* Write Rx addresses (rar_entry_count for RAL/H, and
2545 		 * SHRAL/H) and initial CRC values to the MAC
2546 		 */
2547 		for (i = 0; i < hw->mac.rar_entry_count; i++) {
2548 			u8 mac_addr[ETH_ALEN] = { 0 };
2549 			u32 addr_high, addr_low;
2550 
2551 			addr_high = er32(RAH(i));
2552 			if (!(addr_high & E1000_RAH_AV))
2553 				continue;
2554 			addr_low = er32(RAL(i));
2555 			mac_addr[0] = (addr_low & 0xFF);
2556 			mac_addr[1] = ((addr_low >> 8) & 0xFF);
2557 			mac_addr[2] = ((addr_low >> 16) & 0xFF);
2558 			mac_addr[3] = ((addr_low >> 24) & 0xFF);
2559 			mac_addr[4] = (addr_high & 0xFF);
2560 			mac_addr[5] = ((addr_high >> 8) & 0xFF);
2561 
2562 			ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2563 		}
2564 
2565 		/* Write Rx addresses to the PHY */
2566 		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2567 
2568 		/* Enable jumbo frame workaround in the MAC */
2569 		mac_reg = er32(FFLT_DBG);
2570 		mac_reg &= ~BIT(14);
2571 		mac_reg |= (7 << 15);
2572 		ew32(FFLT_DBG, mac_reg);
2573 
2574 		mac_reg = er32(RCTL);
2575 		mac_reg |= E1000_RCTL_SECRC;
2576 		ew32(RCTL, mac_reg);
2577 
2578 		ret_val = e1000e_read_kmrn_reg(hw,
2579 					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2580 					       &data);
2581 		if (ret_val)
2582 			return ret_val;
2583 		ret_val = e1000e_write_kmrn_reg(hw,
2584 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2585 						data | BIT(0));
2586 		if (ret_val)
2587 			return ret_val;
2588 		ret_val = e1000e_read_kmrn_reg(hw,
2589 					       E1000_KMRNCTRLSTA_HD_CTRL,
2590 					       &data);
2591 		if (ret_val)
2592 			return ret_val;
2593 		data &= ~(0xF << 8);
2594 		data |= (0xB << 8);
2595 		ret_val = e1000e_write_kmrn_reg(hw,
2596 						E1000_KMRNCTRLSTA_HD_CTRL,
2597 						data);
2598 		if (ret_val)
2599 			return ret_val;
2600 
2601 		/* Enable jumbo frame workaround in the PHY */
2602 		e1e_rphy(hw, PHY_REG(769, 23), &data);
2603 		data &= ~(0x7F << 5);
2604 		data |= (0x37 << 5);
2605 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2606 		if (ret_val)
2607 			return ret_val;
2608 		e1e_rphy(hw, PHY_REG(769, 16), &data);
2609 		data &= ~BIT(13);
2610 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2611 		if (ret_val)
2612 			return ret_val;
2613 		e1e_rphy(hw, PHY_REG(776, 20), &data);
2614 		data &= ~(0x3FF << 2);
2615 		data |= (E1000_TX_PTR_GAP << 2);
2616 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2617 		if (ret_val)
2618 			return ret_val;
2619 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2620 		if (ret_val)
2621 			return ret_val;
2622 		e1e_rphy(hw, HV_PM_CTRL, &data);
2623 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data | BIT(10));
2624 		if (ret_val)
2625 			return ret_val;
2626 	} else {
2627 		/* Write MAC register values back to h/w defaults */
2628 		mac_reg = er32(FFLT_DBG);
2629 		mac_reg &= ~(0xF << 14);
2630 		ew32(FFLT_DBG, mac_reg);
2631 
2632 		mac_reg = er32(RCTL);
2633 		mac_reg &= ~E1000_RCTL_SECRC;
2634 		ew32(RCTL, mac_reg);
2635 
2636 		ret_val = e1000e_read_kmrn_reg(hw,
2637 					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2638 					       &data);
2639 		if (ret_val)
2640 			return ret_val;
2641 		ret_val = e1000e_write_kmrn_reg(hw,
2642 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2643 						data & ~BIT(0));
2644 		if (ret_val)
2645 			return ret_val;
2646 		ret_val = e1000e_read_kmrn_reg(hw,
2647 					       E1000_KMRNCTRLSTA_HD_CTRL,
2648 					       &data);
2649 		if (ret_val)
2650 			return ret_val;
2651 		data &= ~(0xF << 8);
2652 		data |= (0xB << 8);
2653 		ret_val = e1000e_write_kmrn_reg(hw,
2654 						E1000_KMRNCTRLSTA_HD_CTRL,
2655 						data);
2656 		if (ret_val)
2657 			return ret_val;
2658 
2659 		/* Write PHY register values back to h/w defaults */
2660 		e1e_rphy(hw, PHY_REG(769, 23), &data);
2661 		data &= ~(0x7F << 5);
2662 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2663 		if (ret_val)
2664 			return ret_val;
2665 		e1e_rphy(hw, PHY_REG(769, 16), &data);
2666 		data |= BIT(13);
2667 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2668 		if (ret_val)
2669 			return ret_val;
2670 		e1e_rphy(hw, PHY_REG(776, 20), &data);
2671 		data &= ~(0x3FF << 2);
2672 		data |= (0x8 << 2);
2673 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2674 		if (ret_val)
2675 			return ret_val;
2676 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2677 		if (ret_val)
2678 			return ret_val;
2679 		e1e_rphy(hw, HV_PM_CTRL, &data);
2680 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~BIT(10));
2681 		if (ret_val)
2682 			return ret_val;
2683 	}
2684 
2685 	/* re-enable Rx path after enabling/disabling workaround */
2686 	return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~BIT(14));
2687 }
2688 
2689 /**
2690  *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2691  *  done after every PHY reset.
2692  **/
2693 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2694 {
2695 	s32 ret_val = 0;
2696 
2697 	if (hw->mac.type != e1000_pch2lan)
2698 		return 0;
2699 
2700 	/* Set MDIO slow mode before any other MDIO access */
2701 	ret_val = e1000_set_mdio_slow_mode_hv(hw);
2702 	if (ret_val)
2703 		return ret_val;
2704 
2705 	ret_val = hw->phy.ops.acquire(hw);
2706 	if (ret_val)
2707 		return ret_val;
2708 	/* set MSE higher to enable link to stay up when noise is high */
2709 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2710 	if (ret_val)
2711 		goto release;
2712 	/* drop link after 5 times MSE threshold was reached */
2713 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2714 release:
2715 	hw->phy.ops.release(hw);
2716 
2717 	return ret_val;
2718 }
2719 
2720 /**
2721  *  e1000_k1_gig_workaround_lv - K1 Si workaround
2722  *  @hw:   pointer to the HW structure
2723  *
2724  *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2725  *  Disable K1 in 1000Mbps and 100Mbps
2726  **/
2727 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2728 {
2729 	s32 ret_val = 0;
2730 	u16 status_reg = 0;
2731 
2732 	if (hw->mac.type != e1000_pch2lan)
2733 		return 0;
2734 
2735 	/* Set K1 beacon duration based on 10Mbs speed */
2736 	ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2737 	if (ret_val)
2738 		return ret_val;
2739 
2740 	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2741 	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2742 		if (status_reg &
2743 		    (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2744 			u16 pm_phy_reg;
2745 
2746 			/* LV 1G/100 Packet drop issue wa  */
2747 			ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2748 			if (ret_val)
2749 				return ret_val;
2750 			pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2751 			ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2752 			if (ret_val)
2753 				return ret_val;
2754 		} else {
2755 			u32 mac_reg;
2756 
2757 			mac_reg = er32(FEXTNVM4);
2758 			mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2759 			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2760 			ew32(FEXTNVM4, mac_reg);
2761 		}
2762 	}
2763 
2764 	return ret_val;
2765 }
2766 
2767 /**
2768  *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2769  *  @hw:   pointer to the HW structure
2770  *  @gate: boolean set to true to gate, false to ungate
2771  *
2772  *  Gate/ungate the automatic PHY configuration via hardware; perform
2773  *  the configuration via software instead.
2774  **/
2775 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2776 {
2777 	u32 extcnf_ctrl;
2778 
2779 	if (hw->mac.type < e1000_pch2lan)
2780 		return;
2781 
2782 	extcnf_ctrl = er32(EXTCNF_CTRL);
2783 
2784 	if (gate)
2785 		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2786 	else
2787 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2788 
2789 	ew32(EXTCNF_CTRL, extcnf_ctrl);
2790 }
2791 
2792 /**
2793  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2794  *  @hw: pointer to the HW structure
2795  *
2796  *  Check the appropriate indication the MAC has finished configuring the
2797  *  PHY after a software reset.
2798  **/
2799 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2800 {
2801 	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2802 
2803 	/* Wait for basic configuration completes before proceeding */
2804 	do {
2805 		data = er32(STATUS);
2806 		data &= E1000_STATUS_LAN_INIT_DONE;
2807 		usleep_range(100, 200);
2808 	} while ((!data) && --loop);
2809 
2810 	/* If basic configuration is incomplete before the above loop
2811 	 * count reaches 0, loading the configuration from NVM will
2812 	 * leave the PHY in a bad state possibly resulting in no link.
2813 	 */
2814 	if (loop == 0)
2815 		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2816 
2817 	/* Clear the Init Done bit for the next init event */
2818 	data = er32(STATUS);
2819 	data &= ~E1000_STATUS_LAN_INIT_DONE;
2820 	ew32(STATUS, data);
2821 }
2822 
2823 /**
2824  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2825  *  @hw: pointer to the HW structure
2826  **/
2827 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2828 {
2829 	s32 ret_val = 0;
2830 	u16 reg;
2831 
2832 	if (hw->phy.ops.check_reset_block(hw))
2833 		return 0;
2834 
2835 	/* Allow time for h/w to get to quiescent state after reset */
2836 	usleep_range(10000, 11000);
2837 
2838 	/* Perform any necessary post-reset workarounds */
2839 	switch (hw->mac.type) {
2840 	case e1000_pchlan:
2841 		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2842 		if (ret_val)
2843 			return ret_val;
2844 		break;
2845 	case e1000_pch2lan:
2846 		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2847 		if (ret_val)
2848 			return ret_val;
2849 		break;
2850 	default:
2851 		break;
2852 	}
2853 
2854 	/* Clear the host wakeup bit after lcd reset */
2855 	if (hw->mac.type >= e1000_pchlan) {
2856 		e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2857 		reg &= ~BM_WUC_HOST_WU_BIT;
2858 		e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2859 	}
2860 
2861 	/* Configure the LCD with the extended configuration region in NVM */
2862 	ret_val = e1000_sw_lcd_config_ich8lan(hw);
2863 	if (ret_val)
2864 		return ret_val;
2865 
2866 	/* Configure the LCD with the OEM bits in NVM */
2867 	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2868 
2869 	if (hw->mac.type == e1000_pch2lan) {
2870 		/* Ungate automatic PHY configuration on non-managed 82579 */
2871 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2872 			usleep_range(10000, 11000);
2873 			e1000_gate_hw_phy_config_ich8lan(hw, false);
2874 		}
2875 
2876 		/* Set EEE LPI Update Timer to 200usec */
2877 		ret_val = hw->phy.ops.acquire(hw);
2878 		if (ret_val)
2879 			return ret_val;
2880 		ret_val = e1000_write_emi_reg_locked(hw,
2881 						     I82579_LPI_UPDATE_TIMER,
2882 						     0x1387);
2883 		hw->phy.ops.release(hw);
2884 	}
2885 
2886 	return ret_val;
2887 }
2888 
2889 /**
2890  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2891  *  @hw: pointer to the HW structure
2892  *
2893  *  Resets the PHY
2894  *  This is a function pointer entry point called by drivers
2895  *  or other shared routines.
2896  **/
2897 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2898 {
2899 	s32 ret_val = 0;
2900 
2901 	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
2902 	if ((hw->mac.type == e1000_pch2lan) &&
2903 	    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2904 		e1000_gate_hw_phy_config_ich8lan(hw, true);
2905 
2906 	ret_val = e1000e_phy_hw_reset_generic(hw);
2907 	if (ret_val)
2908 		return ret_val;
2909 
2910 	return e1000_post_phy_reset_ich8lan(hw);
2911 }
2912 
2913 /**
2914  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2915  *  @hw: pointer to the HW structure
2916  *  @active: true to enable LPLU, false to disable
2917  *
2918  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
2919  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2920  *  the phy speed. This function will manually set the LPLU bit and restart
2921  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
2922  *  since it configures the same bit.
2923  **/
2924 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2925 {
2926 	s32 ret_val;
2927 	u16 oem_reg;
2928 
2929 	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2930 	if (ret_val)
2931 		return ret_val;
2932 
2933 	if (active)
2934 		oem_reg |= HV_OEM_BITS_LPLU;
2935 	else
2936 		oem_reg &= ~HV_OEM_BITS_LPLU;
2937 
2938 	if (!hw->phy.ops.check_reset_block(hw))
2939 		oem_reg |= HV_OEM_BITS_RESTART_AN;
2940 
2941 	return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2942 }
2943 
2944 /**
2945  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2946  *  @hw: pointer to the HW structure
2947  *  @active: true to enable LPLU, false to disable
2948  *
2949  *  Sets the LPLU D0 state according to the active flag.  When
2950  *  activating LPLU this function also disables smart speed
2951  *  and vice versa.  LPLU will not be activated unless the
2952  *  device autonegotiation advertisement meets standards of
2953  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2954  *  This is a function pointer entry point only called by
2955  *  PHY setup routines.
2956  **/
2957 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2958 {
2959 	struct e1000_phy_info *phy = &hw->phy;
2960 	u32 phy_ctrl;
2961 	s32 ret_val = 0;
2962 	u16 data;
2963 
2964 	if (phy->type == e1000_phy_ife)
2965 		return 0;
2966 
2967 	phy_ctrl = er32(PHY_CTRL);
2968 
2969 	if (active) {
2970 		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2971 		ew32(PHY_CTRL, phy_ctrl);
2972 
2973 		if (phy->type != e1000_phy_igp_3)
2974 			return 0;
2975 
2976 		/* Call gig speed drop workaround on LPLU before accessing
2977 		 * any PHY registers
2978 		 */
2979 		if (hw->mac.type == e1000_ich8lan)
2980 			e1000e_gig_downshift_workaround_ich8lan(hw);
2981 
2982 		/* When LPLU is enabled, we should disable SmartSpeed */
2983 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2984 		if (ret_val)
2985 			return ret_val;
2986 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2987 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2988 		if (ret_val)
2989 			return ret_val;
2990 	} else {
2991 		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2992 		ew32(PHY_CTRL, phy_ctrl);
2993 
2994 		if (phy->type != e1000_phy_igp_3)
2995 			return 0;
2996 
2997 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2998 		 * during Dx states where the power conservation is most
2999 		 * important.  During driver activity we should enable
3000 		 * SmartSpeed, so performance is maintained.
3001 		 */
3002 		if (phy->smart_speed == e1000_smart_speed_on) {
3003 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3004 					   &data);
3005 			if (ret_val)
3006 				return ret_val;
3007 
3008 			data |= IGP01E1000_PSCFR_SMART_SPEED;
3009 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3010 					   data);
3011 			if (ret_val)
3012 				return ret_val;
3013 		} else if (phy->smart_speed == e1000_smart_speed_off) {
3014 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3015 					   &data);
3016 			if (ret_val)
3017 				return ret_val;
3018 
3019 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3020 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3021 					   data);
3022 			if (ret_val)
3023 				return ret_val;
3024 		}
3025 	}
3026 
3027 	return 0;
3028 }
3029 
3030 /**
3031  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3032  *  @hw: pointer to the HW structure
3033  *  @active: true to enable LPLU, false to disable
3034  *
3035  *  Sets the LPLU D3 state according to the active flag.  When
3036  *  activating LPLU this function also disables smart speed
3037  *  and vice versa.  LPLU will not be activated unless the
3038  *  device autonegotiation advertisement meets standards of
3039  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3040  *  This is a function pointer entry point only called by
3041  *  PHY setup routines.
3042  **/
3043 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3044 {
3045 	struct e1000_phy_info *phy = &hw->phy;
3046 	u32 phy_ctrl;
3047 	s32 ret_val = 0;
3048 	u16 data;
3049 
3050 	phy_ctrl = er32(PHY_CTRL);
3051 
3052 	if (!active) {
3053 		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3054 		ew32(PHY_CTRL, phy_ctrl);
3055 
3056 		if (phy->type != e1000_phy_igp_3)
3057 			return 0;
3058 
3059 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3060 		 * during Dx states where the power conservation is most
3061 		 * important.  During driver activity we should enable
3062 		 * SmartSpeed, so performance is maintained.
3063 		 */
3064 		if (phy->smart_speed == e1000_smart_speed_on) {
3065 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3066 					   &data);
3067 			if (ret_val)
3068 				return ret_val;
3069 
3070 			data |= IGP01E1000_PSCFR_SMART_SPEED;
3071 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3072 					   data);
3073 			if (ret_val)
3074 				return ret_val;
3075 		} else if (phy->smart_speed == e1000_smart_speed_off) {
3076 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3077 					   &data);
3078 			if (ret_val)
3079 				return ret_val;
3080 
3081 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3082 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3083 					   data);
3084 			if (ret_val)
3085 				return ret_val;
3086 		}
3087 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3088 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3089 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3090 		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3091 		ew32(PHY_CTRL, phy_ctrl);
3092 
3093 		if (phy->type != e1000_phy_igp_3)
3094 			return 0;
3095 
3096 		/* Call gig speed drop workaround on LPLU before accessing
3097 		 * any PHY registers
3098 		 */
3099 		if (hw->mac.type == e1000_ich8lan)
3100 			e1000e_gig_downshift_workaround_ich8lan(hw);
3101 
3102 		/* When LPLU is enabled, we should disable SmartSpeed */
3103 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3104 		if (ret_val)
3105 			return ret_val;
3106 
3107 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3108 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3109 	}
3110 
3111 	return ret_val;
3112 }
3113 
3114 /**
3115  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3116  *  @hw: pointer to the HW structure
3117  *  @bank:  pointer to the variable that returns the active bank
3118  *
3119  *  Reads signature byte from the NVM using the flash access registers.
3120  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3121  **/
3122 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3123 {
3124 	u32 eecd;
3125 	struct e1000_nvm_info *nvm = &hw->nvm;
3126 	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3127 	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3128 	u32 nvm_dword = 0;
3129 	u8 sig_byte = 0;
3130 	s32 ret_val;
3131 
3132 	switch (hw->mac.type) {
3133 	case e1000_pch_spt:
3134 	case e1000_pch_cnp:
3135 	case e1000_pch_tgp:
3136 		bank1_offset = nvm->flash_bank_size;
3137 		act_offset = E1000_ICH_NVM_SIG_WORD;
3138 
3139 		/* set bank to 0 in case flash read fails */
3140 		*bank = 0;
3141 
3142 		/* Check bank 0 */
3143 		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
3144 							 &nvm_dword);
3145 		if (ret_val)
3146 			return ret_val;
3147 		sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3148 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3149 		    E1000_ICH_NVM_SIG_VALUE) {
3150 			*bank = 0;
3151 			return 0;
3152 		}
3153 
3154 		/* Check bank 1 */
3155 		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
3156 							 bank1_offset,
3157 							 &nvm_dword);
3158 		if (ret_val)
3159 			return ret_val;
3160 		sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3161 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3162 		    E1000_ICH_NVM_SIG_VALUE) {
3163 			*bank = 1;
3164 			return 0;
3165 		}
3166 
3167 		e_dbg("ERROR: No valid NVM bank present\n");
3168 		return -E1000_ERR_NVM;
3169 	case e1000_ich8lan:
3170 	case e1000_ich9lan:
3171 		eecd = er32(EECD);
3172 		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3173 		    E1000_EECD_SEC1VAL_VALID_MASK) {
3174 			if (eecd & E1000_EECD_SEC1VAL)
3175 				*bank = 1;
3176 			else
3177 				*bank = 0;
3178 
3179 			return 0;
3180 		}
3181 		e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3182 		/* fall-thru */
3183 	default:
3184 		/* set bank to 0 in case flash read fails */
3185 		*bank = 0;
3186 
3187 		/* Check bank 0 */
3188 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3189 							&sig_byte);
3190 		if (ret_val)
3191 			return ret_val;
3192 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3193 		    E1000_ICH_NVM_SIG_VALUE) {
3194 			*bank = 0;
3195 			return 0;
3196 		}
3197 
3198 		/* Check bank 1 */
3199 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3200 							bank1_offset,
3201 							&sig_byte);
3202 		if (ret_val)
3203 			return ret_val;
3204 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3205 		    E1000_ICH_NVM_SIG_VALUE) {
3206 			*bank = 1;
3207 			return 0;
3208 		}
3209 
3210 		e_dbg("ERROR: No valid NVM bank present\n");
3211 		return -E1000_ERR_NVM;
3212 	}
3213 }
3214 
3215 /**
3216  *  e1000_read_nvm_spt - NVM access for SPT
3217  *  @hw: pointer to the HW structure
3218  *  @offset: The offset (in bytes) of the word(s) to read.
3219  *  @words: Size of data to read in words.
3220  *  @data: pointer to the word(s) to read at offset.
3221  *
3222  *  Reads a word(s) from the NVM
3223  **/
3224 static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3225 			      u16 *data)
3226 {
3227 	struct e1000_nvm_info *nvm = &hw->nvm;
3228 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3229 	u32 act_offset;
3230 	s32 ret_val = 0;
3231 	u32 bank = 0;
3232 	u32 dword = 0;
3233 	u16 offset_to_read;
3234 	u16 i;
3235 
3236 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3237 	    (words == 0)) {
3238 		e_dbg("nvm parameter(s) out of bounds\n");
3239 		ret_val = -E1000_ERR_NVM;
3240 		goto out;
3241 	}
3242 
3243 	nvm->ops.acquire(hw);
3244 
3245 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3246 	if (ret_val) {
3247 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3248 		bank = 0;
3249 	}
3250 
3251 	act_offset = (bank) ? nvm->flash_bank_size : 0;
3252 	act_offset += offset;
3253 
3254 	ret_val = 0;
3255 
3256 	for (i = 0; i < words; i += 2) {
3257 		if (words - i == 1) {
3258 			if (dev_spec->shadow_ram[offset + i].modified) {
3259 				data[i] =
3260 				    dev_spec->shadow_ram[offset + i].value;
3261 			} else {
3262 				offset_to_read = act_offset + i -
3263 				    ((act_offset + i) % 2);
3264 				ret_val =
3265 				  e1000_read_flash_dword_ich8lan(hw,
3266 								 offset_to_read,
3267 								 &dword);
3268 				if (ret_val)
3269 					break;
3270 				if ((act_offset + i) % 2 == 0)
3271 					data[i] = (u16)(dword & 0xFFFF);
3272 				else
3273 					data[i] = (u16)((dword >> 16) & 0xFFFF);
3274 			}
3275 		} else {
3276 			offset_to_read = act_offset + i;
3277 			if (!(dev_spec->shadow_ram[offset + i].modified) ||
3278 			    !(dev_spec->shadow_ram[offset + i + 1].modified)) {
3279 				ret_val =
3280 				  e1000_read_flash_dword_ich8lan(hw,
3281 								 offset_to_read,
3282 								 &dword);
3283 				if (ret_val)
3284 					break;
3285 			}
3286 			if (dev_spec->shadow_ram[offset + i].modified)
3287 				data[i] =
3288 				    dev_spec->shadow_ram[offset + i].value;
3289 			else
3290 				data[i] = (u16)(dword & 0xFFFF);
3291 			if (dev_spec->shadow_ram[offset + i].modified)
3292 				data[i + 1] =
3293 				    dev_spec->shadow_ram[offset + i + 1].value;
3294 			else
3295 				data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
3296 		}
3297 	}
3298 
3299 	nvm->ops.release(hw);
3300 
3301 out:
3302 	if (ret_val)
3303 		e_dbg("NVM read error: %d\n", ret_val);
3304 
3305 	return ret_val;
3306 }
3307 
3308 /**
3309  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3310  *  @hw: pointer to the HW structure
3311  *  @offset: The offset (in bytes) of the word(s) to read.
3312  *  @words: Size of data to read in words
3313  *  @data: Pointer to the word(s) to read at offset.
3314  *
3315  *  Reads a word(s) from the NVM using the flash access registers.
3316  **/
3317 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3318 				  u16 *data)
3319 {
3320 	struct e1000_nvm_info *nvm = &hw->nvm;
3321 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3322 	u32 act_offset;
3323 	s32 ret_val = 0;
3324 	u32 bank = 0;
3325 	u16 i, word;
3326 
3327 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3328 	    (words == 0)) {
3329 		e_dbg("nvm parameter(s) out of bounds\n");
3330 		ret_val = -E1000_ERR_NVM;
3331 		goto out;
3332 	}
3333 
3334 	nvm->ops.acquire(hw);
3335 
3336 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3337 	if (ret_val) {
3338 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3339 		bank = 0;
3340 	}
3341 
3342 	act_offset = (bank) ? nvm->flash_bank_size : 0;
3343 	act_offset += offset;
3344 
3345 	ret_val = 0;
3346 	for (i = 0; i < words; i++) {
3347 		if (dev_spec->shadow_ram[offset + i].modified) {
3348 			data[i] = dev_spec->shadow_ram[offset + i].value;
3349 		} else {
3350 			ret_val = e1000_read_flash_word_ich8lan(hw,
3351 								act_offset + i,
3352 								&word);
3353 			if (ret_val)
3354 				break;
3355 			data[i] = word;
3356 		}
3357 	}
3358 
3359 	nvm->ops.release(hw);
3360 
3361 out:
3362 	if (ret_val)
3363 		e_dbg("NVM read error: %d\n", ret_val);
3364 
3365 	return ret_val;
3366 }
3367 
3368 /**
3369  *  e1000_flash_cycle_init_ich8lan - Initialize flash
3370  *  @hw: pointer to the HW structure
3371  *
3372  *  This function does initial flash setup so that a new read/write/erase cycle
3373  *  can be started.
3374  **/
3375 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3376 {
3377 	union ich8_hws_flash_status hsfsts;
3378 	s32 ret_val = -E1000_ERR_NVM;
3379 
3380 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3381 
3382 	/* Check if the flash descriptor is valid */
3383 	if (!hsfsts.hsf_status.fldesvalid) {
3384 		e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
3385 		return -E1000_ERR_NVM;
3386 	}
3387 
3388 	/* Clear FCERR and DAEL in hw status by writing 1 */
3389 	hsfsts.hsf_status.flcerr = 1;
3390 	hsfsts.hsf_status.dael = 1;
3391 	if (hw->mac.type >= e1000_pch_spt)
3392 		ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3393 	else
3394 		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3395 
3396 	/* Either we should have a hardware SPI cycle in progress
3397 	 * bit to check against, in order to start a new cycle or
3398 	 * FDONE bit should be changed in the hardware so that it
3399 	 * is 1 after hardware reset, which can then be used as an
3400 	 * indication whether a cycle is in progress or has been
3401 	 * completed.
3402 	 */
3403 
3404 	if (!hsfsts.hsf_status.flcinprog) {
3405 		/* There is no cycle running at present,
3406 		 * so we can start a cycle.
3407 		 * Begin by setting Flash Cycle Done.
3408 		 */
3409 		hsfsts.hsf_status.flcdone = 1;
3410 		if (hw->mac.type >= e1000_pch_spt)
3411 			ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3412 		else
3413 			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3414 		ret_val = 0;
3415 	} else {
3416 		s32 i;
3417 
3418 		/* Otherwise poll for sometime so the current
3419 		 * cycle has a chance to end before giving up.
3420 		 */
3421 		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3422 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3423 			if (!hsfsts.hsf_status.flcinprog) {
3424 				ret_val = 0;
3425 				break;
3426 			}
3427 			udelay(1);
3428 		}
3429 		if (!ret_val) {
3430 			/* Successful in waiting for previous cycle to timeout,
3431 			 * now set the Flash Cycle Done.
3432 			 */
3433 			hsfsts.hsf_status.flcdone = 1;
3434 			if (hw->mac.type >= e1000_pch_spt)
3435 				ew32flash(ICH_FLASH_HSFSTS,
3436 					  hsfsts.regval & 0xFFFF);
3437 			else
3438 				ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3439 		} else {
3440 			e_dbg("Flash controller busy, cannot get access\n");
3441 		}
3442 	}
3443 
3444 	return ret_val;
3445 }
3446 
3447 /**
3448  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3449  *  @hw: pointer to the HW structure
3450  *  @timeout: maximum time to wait for completion
3451  *
3452  *  This function starts a flash cycle and waits for its completion.
3453  **/
3454 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3455 {
3456 	union ich8_hws_flash_ctrl hsflctl;
3457 	union ich8_hws_flash_status hsfsts;
3458 	u32 i = 0;
3459 
3460 	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3461 	if (hw->mac.type >= e1000_pch_spt)
3462 		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3463 	else
3464 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3465 	hsflctl.hsf_ctrl.flcgo = 1;
3466 
3467 	if (hw->mac.type >= e1000_pch_spt)
3468 		ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
3469 	else
3470 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3471 
3472 	/* wait till FDONE bit is set to 1 */
3473 	do {
3474 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3475 		if (hsfsts.hsf_status.flcdone)
3476 			break;
3477 		udelay(1);
3478 	} while (i++ < timeout);
3479 
3480 	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3481 		return 0;
3482 
3483 	return -E1000_ERR_NVM;
3484 }
3485 
3486 /**
3487  *  e1000_read_flash_dword_ich8lan - Read dword from flash
3488  *  @hw: pointer to the HW structure
3489  *  @offset: offset to data location
3490  *  @data: pointer to the location for storing the data
3491  *
3492  *  Reads the flash dword at offset into data.  Offset is converted
3493  *  to bytes before read.
3494  **/
3495 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3496 					  u32 *data)
3497 {
3498 	/* Must convert word offset into bytes. */
3499 	offset <<= 1;
3500 	return e1000_read_flash_data32_ich8lan(hw, offset, data);
3501 }
3502 
3503 /**
3504  *  e1000_read_flash_word_ich8lan - Read word from flash
3505  *  @hw: pointer to the HW structure
3506  *  @offset: offset to data location
3507  *  @data: pointer to the location for storing the data
3508  *
3509  *  Reads the flash word at offset into data.  Offset is converted
3510  *  to bytes before read.
3511  **/
3512 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3513 					 u16 *data)
3514 {
3515 	/* Must convert offset into bytes. */
3516 	offset <<= 1;
3517 
3518 	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3519 }
3520 
3521 /**
3522  *  e1000_read_flash_byte_ich8lan - Read byte from flash
3523  *  @hw: pointer to the HW structure
3524  *  @offset: The offset of the byte to read.
3525  *  @data: Pointer to a byte to store the value read.
3526  *
3527  *  Reads a single byte from the NVM using the flash access registers.
3528  **/
3529 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3530 					 u8 *data)
3531 {
3532 	s32 ret_val;
3533 	u16 word = 0;
3534 
3535 	/* In SPT, only 32 bits access is supported,
3536 	 * so this function should not be called.
3537 	 */
3538 	if (hw->mac.type >= e1000_pch_spt)
3539 		return -E1000_ERR_NVM;
3540 	else
3541 		ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3542 
3543 	if (ret_val)
3544 		return ret_val;
3545 
3546 	*data = (u8)word;
3547 
3548 	return 0;
3549 }
3550 
3551 /**
3552  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3553  *  @hw: pointer to the HW structure
3554  *  @offset: The offset (in bytes) of the byte or word to read.
3555  *  @size: Size of data to read, 1=byte 2=word
3556  *  @data: Pointer to the word to store the value read.
3557  *
3558  *  Reads a byte or word from the NVM using the flash access registers.
3559  **/
3560 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3561 					 u8 size, u16 *data)
3562 {
3563 	union ich8_hws_flash_status hsfsts;
3564 	union ich8_hws_flash_ctrl hsflctl;
3565 	u32 flash_linear_addr;
3566 	u32 flash_data = 0;
3567 	s32 ret_val = -E1000_ERR_NVM;
3568 	u8 count = 0;
3569 
3570 	if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3571 		return -E1000_ERR_NVM;
3572 
3573 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3574 			     hw->nvm.flash_base_addr);
3575 
3576 	do {
3577 		udelay(1);
3578 		/* Steps */
3579 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3580 		if (ret_val)
3581 			break;
3582 
3583 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3584 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3585 		hsflctl.hsf_ctrl.fldbcount = size - 1;
3586 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3587 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3588 
3589 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3590 
3591 		ret_val =
3592 		    e1000_flash_cycle_ich8lan(hw,
3593 					      ICH_FLASH_READ_COMMAND_TIMEOUT);
3594 
3595 		/* Check if FCERR is set to 1, if set to 1, clear it
3596 		 * and try the whole sequence a few more times, else
3597 		 * read in (shift in) the Flash Data0, the order is
3598 		 * least significant byte first msb to lsb
3599 		 */
3600 		if (!ret_val) {
3601 			flash_data = er32flash(ICH_FLASH_FDATA0);
3602 			if (size == 1)
3603 				*data = (u8)(flash_data & 0x000000FF);
3604 			else if (size == 2)
3605 				*data = (u16)(flash_data & 0x0000FFFF);
3606 			break;
3607 		} else {
3608 			/* If we've gotten here, then things are probably
3609 			 * completely hosed, but if the error condition is
3610 			 * detected, it won't hurt to give it another try...
3611 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3612 			 */
3613 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3614 			if (hsfsts.hsf_status.flcerr) {
3615 				/* Repeat for some time before giving up. */
3616 				continue;
3617 			} else if (!hsfsts.hsf_status.flcdone) {
3618 				e_dbg("Timeout error - flash cycle did not complete.\n");
3619 				break;
3620 			}
3621 		}
3622 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3623 
3624 	return ret_val;
3625 }
3626 
3627 /**
3628  *  e1000_read_flash_data32_ich8lan - Read dword from NVM
3629  *  @hw: pointer to the HW structure
3630  *  @offset: The offset (in bytes) of the dword to read.
3631  *  @data: Pointer to the dword to store the value read.
3632  *
3633  *  Reads a byte or word from the NVM using the flash access registers.
3634  **/
3635 
3636 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3637 					   u32 *data)
3638 {
3639 	union ich8_hws_flash_status hsfsts;
3640 	union ich8_hws_flash_ctrl hsflctl;
3641 	u32 flash_linear_addr;
3642 	s32 ret_val = -E1000_ERR_NVM;
3643 	u8 count = 0;
3644 
3645 	if (offset > ICH_FLASH_LINEAR_ADDR_MASK || hw->mac.type < e1000_pch_spt)
3646 		return -E1000_ERR_NVM;
3647 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3648 			     hw->nvm.flash_base_addr);
3649 
3650 	do {
3651 		udelay(1);
3652 		/* Steps */
3653 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3654 		if (ret_val)
3655 			break;
3656 		/* In SPT, This register is in Lan memory space, not flash.
3657 		 * Therefore, only 32 bit access is supported
3658 		 */
3659 		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3660 
3661 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3662 		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3663 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3664 		/* In SPT, This register is in Lan memory space, not flash.
3665 		 * Therefore, only 32 bit access is supported
3666 		 */
3667 		ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16);
3668 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3669 
3670 		ret_val =
3671 		   e1000_flash_cycle_ich8lan(hw,
3672 					     ICH_FLASH_READ_COMMAND_TIMEOUT);
3673 
3674 		/* Check if FCERR is set to 1, if set to 1, clear it
3675 		 * and try the whole sequence a few more times, else
3676 		 * read in (shift in) the Flash Data0, the order is
3677 		 * least significant byte first msb to lsb
3678 		 */
3679 		if (!ret_val) {
3680 			*data = er32flash(ICH_FLASH_FDATA0);
3681 			break;
3682 		} else {
3683 			/* If we've gotten here, then things are probably
3684 			 * completely hosed, but if the error condition is
3685 			 * detected, it won't hurt to give it another try...
3686 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3687 			 */
3688 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3689 			if (hsfsts.hsf_status.flcerr) {
3690 				/* Repeat for some time before giving up. */
3691 				continue;
3692 			} else if (!hsfsts.hsf_status.flcdone) {
3693 				e_dbg("Timeout error - flash cycle did not complete.\n");
3694 				break;
3695 			}
3696 		}
3697 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3698 
3699 	return ret_val;
3700 }
3701 
3702 /**
3703  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
3704  *  @hw: pointer to the HW structure
3705  *  @offset: The offset (in bytes) of the word(s) to write.
3706  *  @words: Size of data to write in words
3707  *  @data: Pointer to the word(s) to write at offset.
3708  *
3709  *  Writes a byte or word to the NVM using the flash access registers.
3710  **/
3711 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3712 				   u16 *data)
3713 {
3714 	struct e1000_nvm_info *nvm = &hw->nvm;
3715 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3716 	u16 i;
3717 
3718 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3719 	    (words == 0)) {
3720 		e_dbg("nvm parameter(s) out of bounds\n");
3721 		return -E1000_ERR_NVM;
3722 	}
3723 
3724 	nvm->ops.acquire(hw);
3725 
3726 	for (i = 0; i < words; i++) {
3727 		dev_spec->shadow_ram[offset + i].modified = true;
3728 		dev_spec->shadow_ram[offset + i].value = data[i];
3729 	}
3730 
3731 	nvm->ops.release(hw);
3732 
3733 	return 0;
3734 }
3735 
3736 /**
3737  *  e1000_update_nvm_checksum_spt - Update the checksum for NVM
3738  *  @hw: pointer to the HW structure
3739  *
3740  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3741  *  which writes the checksum to the shadow ram.  The changes in the shadow
3742  *  ram are then committed to the EEPROM by processing each bank at a time
3743  *  checking for the modified bit and writing only the pending changes.
3744  *  After a successful commit, the shadow ram is cleared and is ready for
3745  *  future writes.
3746  **/
3747 static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
3748 {
3749 	struct e1000_nvm_info *nvm = &hw->nvm;
3750 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3751 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3752 	s32 ret_val;
3753 	u32 dword = 0;
3754 
3755 	ret_val = e1000e_update_nvm_checksum_generic(hw);
3756 	if (ret_val)
3757 		goto out;
3758 
3759 	if (nvm->type != e1000_nvm_flash_sw)
3760 		goto out;
3761 
3762 	nvm->ops.acquire(hw);
3763 
3764 	/* We're writing to the opposite bank so if we're on bank 1,
3765 	 * write to bank 0 etc.  We also need to erase the segment that
3766 	 * is going to be written
3767 	 */
3768 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3769 	if (ret_val) {
3770 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3771 		bank = 0;
3772 	}
3773 
3774 	if (bank == 0) {
3775 		new_bank_offset = nvm->flash_bank_size;
3776 		old_bank_offset = 0;
3777 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3778 		if (ret_val)
3779 			goto release;
3780 	} else {
3781 		old_bank_offset = nvm->flash_bank_size;
3782 		new_bank_offset = 0;
3783 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3784 		if (ret_val)
3785 			goto release;
3786 	}
3787 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) {
3788 		/* Determine whether to write the value stored
3789 		 * in the other NVM bank or a modified value stored
3790 		 * in the shadow RAM
3791 		 */
3792 		ret_val = e1000_read_flash_dword_ich8lan(hw,
3793 							 i + old_bank_offset,
3794 							 &dword);
3795 
3796 		if (dev_spec->shadow_ram[i].modified) {
3797 			dword &= 0xffff0000;
3798 			dword |= (dev_spec->shadow_ram[i].value & 0xffff);
3799 		}
3800 		if (dev_spec->shadow_ram[i + 1].modified) {
3801 			dword &= 0x0000ffff;
3802 			dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
3803 				  << 16);
3804 		}
3805 		if (ret_val)
3806 			break;
3807 
3808 		/* If the word is 0x13, then make sure the signature bits
3809 		 * (15:14) are 11b until the commit has completed.
3810 		 * This will allow us to write 10b which indicates the
3811 		 * signature is valid.  We want to do this after the write
3812 		 * has completed so that we don't mark the segment valid
3813 		 * while the write is still in progress
3814 		 */
3815 		if (i == E1000_ICH_NVM_SIG_WORD - 1)
3816 			dword |= E1000_ICH_NVM_SIG_MASK << 16;
3817 
3818 		/* Convert offset to bytes. */
3819 		act_offset = (i + new_bank_offset) << 1;
3820 
3821 		usleep_range(100, 200);
3822 
3823 		/* Write the data to the new bank. Offset in words */
3824 		act_offset = i + new_bank_offset;
3825 		ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
3826 								dword);
3827 		if (ret_val)
3828 			break;
3829 	}
3830 
3831 	/* Don't bother writing the segment valid bits if sector
3832 	 * programming failed.
3833 	 */
3834 	if (ret_val) {
3835 		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3836 		e_dbg("Flash commit failed.\n");
3837 		goto release;
3838 	}
3839 
3840 	/* Finally validate the new segment by setting bit 15:14
3841 	 * to 10b in word 0x13 , this can be done without an
3842 	 * erase as well since these bits are 11 to start with
3843 	 * and we need to change bit 14 to 0b
3844 	 */
3845 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3846 
3847 	/*offset in words but we read dword */
3848 	--act_offset;
3849 	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3850 
3851 	if (ret_val)
3852 		goto release;
3853 
3854 	dword &= 0xBFFFFFFF;
3855 	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3856 
3857 	if (ret_val)
3858 		goto release;
3859 
3860 	/* And invalidate the previously valid segment by setting
3861 	 * its signature word (0x13) high_byte to 0b. This can be
3862 	 * done without an erase because flash erase sets all bits
3863 	 * to 1's. We can write 1's to 0's without an erase
3864 	 */
3865 	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
3866 
3867 	/* offset in words but we read dword */
3868 	act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
3869 	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3870 
3871 	if (ret_val)
3872 		goto release;
3873 
3874 	dword &= 0x00FFFFFF;
3875 	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3876 
3877 	if (ret_val)
3878 		goto release;
3879 
3880 	/* Great!  Everything worked, we can now clear the cached entries. */
3881 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3882 		dev_spec->shadow_ram[i].modified = false;
3883 		dev_spec->shadow_ram[i].value = 0xFFFF;
3884 	}
3885 
3886 release:
3887 	nvm->ops.release(hw);
3888 
3889 	/* Reload the EEPROM, or else modifications will not appear
3890 	 * until after the next adapter reset.
3891 	 */
3892 	if (!ret_val) {
3893 		nvm->ops.reload(hw);
3894 		usleep_range(10000, 11000);
3895 	}
3896 
3897 out:
3898 	if (ret_val)
3899 		e_dbg("NVM update error: %d\n", ret_val);
3900 
3901 	return ret_val;
3902 }
3903 
3904 /**
3905  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3906  *  @hw: pointer to the HW structure
3907  *
3908  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3909  *  which writes the checksum to the shadow ram.  The changes in the shadow
3910  *  ram are then committed to the EEPROM by processing each bank at a time
3911  *  checking for the modified bit and writing only the pending changes.
3912  *  After a successful commit, the shadow ram is cleared and is ready for
3913  *  future writes.
3914  **/
3915 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
3916 {
3917 	struct e1000_nvm_info *nvm = &hw->nvm;
3918 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3919 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3920 	s32 ret_val;
3921 	u16 data = 0;
3922 
3923 	ret_val = e1000e_update_nvm_checksum_generic(hw);
3924 	if (ret_val)
3925 		goto out;
3926 
3927 	if (nvm->type != e1000_nvm_flash_sw)
3928 		goto out;
3929 
3930 	nvm->ops.acquire(hw);
3931 
3932 	/* We're writing to the opposite bank so if we're on bank 1,
3933 	 * write to bank 0 etc.  We also need to erase the segment that
3934 	 * is going to be written
3935 	 */
3936 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3937 	if (ret_val) {
3938 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3939 		bank = 0;
3940 	}
3941 
3942 	if (bank == 0) {
3943 		new_bank_offset = nvm->flash_bank_size;
3944 		old_bank_offset = 0;
3945 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3946 		if (ret_val)
3947 			goto release;
3948 	} else {
3949 		old_bank_offset = nvm->flash_bank_size;
3950 		new_bank_offset = 0;
3951 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3952 		if (ret_val)
3953 			goto release;
3954 	}
3955 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3956 		if (dev_spec->shadow_ram[i].modified) {
3957 			data = dev_spec->shadow_ram[i].value;
3958 		} else {
3959 			ret_val = e1000_read_flash_word_ich8lan(hw, i +
3960 								old_bank_offset,
3961 								&data);
3962 			if (ret_val)
3963 				break;
3964 		}
3965 
3966 		/* If the word is 0x13, then make sure the signature bits
3967 		 * (15:14) are 11b until the commit has completed.
3968 		 * This will allow us to write 10b which indicates the
3969 		 * signature is valid.  We want to do this after the write
3970 		 * has completed so that we don't mark the segment valid
3971 		 * while the write is still in progress
3972 		 */
3973 		if (i == E1000_ICH_NVM_SIG_WORD)
3974 			data |= E1000_ICH_NVM_SIG_MASK;
3975 
3976 		/* Convert offset to bytes. */
3977 		act_offset = (i + new_bank_offset) << 1;
3978 
3979 		usleep_range(100, 200);
3980 		/* Write the bytes to the new bank. */
3981 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3982 							       act_offset,
3983 							       (u8)data);
3984 		if (ret_val)
3985 			break;
3986 
3987 		usleep_range(100, 200);
3988 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3989 							       act_offset + 1,
3990 							       (u8)(data >> 8));
3991 		if (ret_val)
3992 			break;
3993 	}
3994 
3995 	/* Don't bother writing the segment valid bits if sector
3996 	 * programming failed.
3997 	 */
3998 	if (ret_val) {
3999 		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
4000 		e_dbg("Flash commit failed.\n");
4001 		goto release;
4002 	}
4003 
4004 	/* Finally validate the new segment by setting bit 15:14
4005 	 * to 10b in word 0x13 , this can be done without an
4006 	 * erase as well since these bits are 11 to start with
4007 	 * and we need to change bit 14 to 0b
4008 	 */
4009 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4010 	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
4011 	if (ret_val)
4012 		goto release;
4013 
4014 	data &= 0xBFFF;
4015 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4016 						       act_offset * 2 + 1,
4017 						       (u8)(data >> 8));
4018 	if (ret_val)
4019 		goto release;
4020 
4021 	/* And invalidate the previously valid segment by setting
4022 	 * its signature word (0x13) high_byte to 0b. This can be
4023 	 * done without an erase because flash erase sets all bits
4024 	 * to 1's. We can write 1's to 0's without an erase
4025 	 */
4026 	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4027 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
4028 	if (ret_val)
4029 		goto release;
4030 
4031 	/* Great!  Everything worked, we can now clear the cached entries. */
4032 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4033 		dev_spec->shadow_ram[i].modified = false;
4034 		dev_spec->shadow_ram[i].value = 0xFFFF;
4035 	}
4036 
4037 release:
4038 	nvm->ops.release(hw);
4039 
4040 	/* Reload the EEPROM, or else modifications will not appear
4041 	 * until after the next adapter reset.
4042 	 */
4043 	if (!ret_val) {
4044 		nvm->ops.reload(hw);
4045 		usleep_range(10000, 11000);
4046 	}
4047 
4048 out:
4049 	if (ret_val)
4050 		e_dbg("NVM update error: %d\n", ret_val);
4051 
4052 	return ret_val;
4053 }
4054 
4055 /**
4056  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4057  *  @hw: pointer to the HW structure
4058  *
4059  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4060  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
4061  *  calculated, in which case we need to calculate the checksum and set bit 6.
4062  **/
4063 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4064 {
4065 	s32 ret_val;
4066 	u16 data;
4067 	u16 word;
4068 	u16 valid_csum_mask;
4069 
4070 	/* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
4071 	 * the checksum needs to be fixed.  This bit is an indication that
4072 	 * the NVM was prepared by OEM software and did not calculate
4073 	 * the checksum...a likely scenario.
4074 	 */
4075 	switch (hw->mac.type) {
4076 	case e1000_pch_lpt:
4077 	case e1000_pch_spt:
4078 	case e1000_pch_cnp:
4079 	case e1000_pch_tgp:
4080 		word = NVM_COMPAT;
4081 		valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4082 		break;
4083 	default:
4084 		word = NVM_FUTURE_INIT_WORD1;
4085 		valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4086 		break;
4087 	}
4088 
4089 	ret_val = e1000_read_nvm(hw, word, 1, &data);
4090 	if (ret_val)
4091 		return ret_val;
4092 
4093 	if (!(data & valid_csum_mask)) {
4094 		data |= valid_csum_mask;
4095 		ret_val = e1000_write_nvm(hw, word, 1, &data);
4096 		if (ret_val)
4097 			return ret_val;
4098 		ret_val = e1000e_update_nvm_checksum(hw);
4099 		if (ret_val)
4100 			return ret_val;
4101 	}
4102 
4103 	return e1000e_validate_nvm_checksum_generic(hw);
4104 }
4105 
4106 /**
4107  *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
4108  *  @hw: pointer to the HW structure
4109  *
4110  *  To prevent malicious write/erase of the NVM, set it to be read-only
4111  *  so that the hardware ignores all write/erase cycles of the NVM via
4112  *  the flash control registers.  The shadow-ram copy of the NVM will
4113  *  still be updated, however any updates to this copy will not stick
4114  *  across driver reloads.
4115  **/
4116 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
4117 {
4118 	struct e1000_nvm_info *nvm = &hw->nvm;
4119 	union ich8_flash_protected_range pr0;
4120 	union ich8_hws_flash_status hsfsts;
4121 	u32 gfpreg;
4122 
4123 	nvm->ops.acquire(hw);
4124 
4125 	gfpreg = er32flash(ICH_FLASH_GFPREG);
4126 
4127 	/* Write-protect GbE Sector of NVM */
4128 	pr0.regval = er32flash(ICH_FLASH_PR0);
4129 	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
4130 	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
4131 	pr0.range.wpe = true;
4132 	ew32flash(ICH_FLASH_PR0, pr0.regval);
4133 
4134 	/* Lock down a subset of GbE Flash Control Registers, e.g.
4135 	 * PR0 to prevent the write-protection from being lifted.
4136 	 * Once FLOCKDN is set, the registers protected by it cannot
4137 	 * be written until FLOCKDN is cleared by a hardware reset.
4138 	 */
4139 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4140 	hsfsts.hsf_status.flockdn = true;
4141 	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
4142 
4143 	nvm->ops.release(hw);
4144 }
4145 
4146 /**
4147  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4148  *  @hw: pointer to the HW structure
4149  *  @offset: The offset (in bytes) of the byte/word to read.
4150  *  @size: Size of data to read, 1=byte 2=word
4151  *  @data: The byte(s) to write to the NVM.
4152  *
4153  *  Writes one/two bytes to the NVM using the flash access registers.
4154  **/
4155 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4156 					  u8 size, u16 data)
4157 {
4158 	union ich8_hws_flash_status hsfsts;
4159 	union ich8_hws_flash_ctrl hsflctl;
4160 	u32 flash_linear_addr;
4161 	u32 flash_data = 0;
4162 	s32 ret_val;
4163 	u8 count = 0;
4164 
4165 	if (hw->mac.type >= e1000_pch_spt) {
4166 		if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4167 			return -E1000_ERR_NVM;
4168 	} else {
4169 		if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4170 			return -E1000_ERR_NVM;
4171 	}
4172 
4173 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4174 			     hw->nvm.flash_base_addr);
4175 
4176 	do {
4177 		udelay(1);
4178 		/* Steps */
4179 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4180 		if (ret_val)
4181 			break;
4182 		/* In SPT, This register is in Lan memory space, not
4183 		 * flash.  Therefore, only 32 bit access is supported
4184 		 */
4185 		if (hw->mac.type >= e1000_pch_spt)
4186 			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
4187 		else
4188 			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4189 
4190 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4191 		hsflctl.hsf_ctrl.fldbcount = size - 1;
4192 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4193 		/* In SPT, This register is in Lan memory space,
4194 		 * not flash.  Therefore, only 32 bit access is
4195 		 * supported
4196 		 */
4197 		if (hw->mac.type >= e1000_pch_spt)
4198 			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4199 		else
4200 			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4201 
4202 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4203 
4204 		if (size == 1)
4205 			flash_data = (u32)data & 0x00FF;
4206 		else
4207 			flash_data = (u32)data;
4208 
4209 		ew32flash(ICH_FLASH_FDATA0, flash_data);
4210 
4211 		/* check if FCERR is set to 1 , if set to 1, clear it
4212 		 * and try the whole sequence a few more times else done
4213 		 */
4214 		ret_val =
4215 		    e1000_flash_cycle_ich8lan(hw,
4216 					      ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4217 		if (!ret_val)
4218 			break;
4219 
4220 		/* If we're here, then things are most likely
4221 		 * completely hosed, but if the error condition
4222 		 * is detected, it won't hurt to give it another
4223 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4224 		 */
4225 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4226 		if (hsfsts.hsf_status.flcerr)
4227 			/* Repeat for some time before giving up. */
4228 			continue;
4229 		if (!hsfsts.hsf_status.flcdone) {
4230 			e_dbg("Timeout error - flash cycle did not complete.\n");
4231 			break;
4232 		}
4233 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4234 
4235 	return ret_val;
4236 }
4237 
4238 /**
4239 *  e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4240 *  @hw: pointer to the HW structure
4241 *  @offset: The offset (in bytes) of the dwords to read.
4242 *  @data: The 4 bytes to write to the NVM.
4243 *
4244 *  Writes one/two/four bytes to the NVM using the flash access registers.
4245 **/
4246 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4247 					    u32 data)
4248 {
4249 	union ich8_hws_flash_status hsfsts;
4250 	union ich8_hws_flash_ctrl hsflctl;
4251 	u32 flash_linear_addr;
4252 	s32 ret_val;
4253 	u8 count = 0;
4254 
4255 	if (hw->mac.type >= e1000_pch_spt) {
4256 		if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4257 			return -E1000_ERR_NVM;
4258 	}
4259 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4260 			     hw->nvm.flash_base_addr);
4261 	do {
4262 		udelay(1);
4263 		/* Steps */
4264 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4265 		if (ret_val)
4266 			break;
4267 
4268 		/* In SPT, This register is in Lan memory space, not
4269 		 * flash.  Therefore, only 32 bit access is supported
4270 		 */
4271 		if (hw->mac.type >= e1000_pch_spt)
4272 			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS)
4273 			    >> 16;
4274 		else
4275 			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4276 
4277 		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4278 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4279 
4280 		/* In SPT, This register is in Lan memory space,
4281 		 * not flash.  Therefore, only 32 bit access is
4282 		 * supported
4283 		 */
4284 		if (hw->mac.type >= e1000_pch_spt)
4285 			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4286 		else
4287 			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4288 
4289 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4290 
4291 		ew32flash(ICH_FLASH_FDATA0, data);
4292 
4293 		/* check if FCERR is set to 1 , if set to 1, clear it
4294 		 * and try the whole sequence a few more times else done
4295 		 */
4296 		ret_val =
4297 		   e1000_flash_cycle_ich8lan(hw,
4298 					     ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4299 
4300 		if (!ret_val)
4301 			break;
4302 
4303 		/* If we're here, then things are most likely
4304 		 * completely hosed, but if the error condition
4305 		 * is detected, it won't hurt to give it another
4306 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4307 		 */
4308 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4309 
4310 		if (hsfsts.hsf_status.flcerr)
4311 			/* Repeat for some time before giving up. */
4312 			continue;
4313 		if (!hsfsts.hsf_status.flcdone) {
4314 			e_dbg("Timeout error - flash cycle did not complete.\n");
4315 			break;
4316 		}
4317 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4318 
4319 	return ret_val;
4320 }
4321 
4322 /**
4323  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4324  *  @hw: pointer to the HW structure
4325  *  @offset: The index of the byte to read.
4326  *  @data: The byte to write to the NVM.
4327  *
4328  *  Writes a single byte to the NVM using the flash access registers.
4329  **/
4330 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4331 					  u8 data)
4332 {
4333 	u16 word = (u16)data;
4334 
4335 	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4336 }
4337 
4338 /**
4339 *  e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4340 *  @hw: pointer to the HW structure
4341 *  @offset: The offset of the word to write.
4342 *  @dword: The dword to write to the NVM.
4343 *
4344 *  Writes a single dword to the NVM using the flash access registers.
4345 *  Goes through a retry algorithm before giving up.
4346 **/
4347 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4348 						 u32 offset, u32 dword)
4349 {
4350 	s32 ret_val;
4351 	u16 program_retries;
4352 
4353 	/* Must convert word offset into bytes. */
4354 	offset <<= 1;
4355 	ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4356 
4357 	if (!ret_val)
4358 		return ret_val;
4359 	for (program_retries = 0; program_retries < 100; program_retries++) {
4360 		e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset);
4361 		usleep_range(100, 200);
4362 		ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4363 		if (!ret_val)
4364 			break;
4365 	}
4366 	if (program_retries == 100)
4367 		return -E1000_ERR_NVM;
4368 
4369 	return 0;
4370 }
4371 
4372 /**
4373  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4374  *  @hw: pointer to the HW structure
4375  *  @offset: The offset of the byte to write.
4376  *  @byte: The byte to write to the NVM.
4377  *
4378  *  Writes a single byte to the NVM using the flash access registers.
4379  *  Goes through a retry algorithm before giving up.
4380  **/
4381 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4382 						u32 offset, u8 byte)
4383 {
4384 	s32 ret_val;
4385 	u16 program_retries;
4386 
4387 	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4388 	if (!ret_val)
4389 		return ret_val;
4390 
4391 	for (program_retries = 0; program_retries < 100; program_retries++) {
4392 		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
4393 		usleep_range(100, 200);
4394 		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4395 		if (!ret_val)
4396 			break;
4397 	}
4398 	if (program_retries == 100)
4399 		return -E1000_ERR_NVM;
4400 
4401 	return 0;
4402 }
4403 
4404 /**
4405  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4406  *  @hw: pointer to the HW structure
4407  *  @bank: 0 for first bank, 1 for second bank, etc.
4408  *
4409  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4410  *  bank N is 4096 * N + flash_reg_addr.
4411  **/
4412 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4413 {
4414 	struct e1000_nvm_info *nvm = &hw->nvm;
4415 	union ich8_hws_flash_status hsfsts;
4416 	union ich8_hws_flash_ctrl hsflctl;
4417 	u32 flash_linear_addr;
4418 	/* bank size is in 16bit words - adjust to bytes */
4419 	u32 flash_bank_size = nvm->flash_bank_size * 2;
4420 	s32 ret_val;
4421 	s32 count = 0;
4422 	s32 j, iteration, sector_size;
4423 
4424 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4425 
4426 	/* Determine HW Sector size: Read BERASE bits of hw flash status
4427 	 * register
4428 	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
4429 	 *     consecutive sectors.  The start index for the nth Hw sector
4430 	 *     can be calculated as = bank * 4096 + n * 256
4431 	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4432 	 *     The start index for the nth Hw sector can be calculated
4433 	 *     as = bank * 4096
4434 	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4435 	 *     (ich9 only, otherwise error condition)
4436 	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4437 	 */
4438 	switch (hsfsts.hsf_status.berasesz) {
4439 	case 0:
4440 		/* Hw sector size 256 */
4441 		sector_size = ICH_FLASH_SEG_SIZE_256;
4442 		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4443 		break;
4444 	case 1:
4445 		sector_size = ICH_FLASH_SEG_SIZE_4K;
4446 		iteration = 1;
4447 		break;
4448 	case 2:
4449 		sector_size = ICH_FLASH_SEG_SIZE_8K;
4450 		iteration = 1;
4451 		break;
4452 	case 3:
4453 		sector_size = ICH_FLASH_SEG_SIZE_64K;
4454 		iteration = 1;
4455 		break;
4456 	default:
4457 		return -E1000_ERR_NVM;
4458 	}
4459 
4460 	/* Start with the base address, then add the sector offset. */
4461 	flash_linear_addr = hw->nvm.flash_base_addr;
4462 	flash_linear_addr += (bank) ? flash_bank_size : 0;
4463 
4464 	for (j = 0; j < iteration; j++) {
4465 		do {
4466 			u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4467 
4468 			/* Steps */
4469 			ret_val = e1000_flash_cycle_init_ich8lan(hw);
4470 			if (ret_val)
4471 				return ret_val;
4472 
4473 			/* Write a value 11 (block Erase) in Flash
4474 			 * Cycle field in hw flash control
4475 			 */
4476 			if (hw->mac.type >= e1000_pch_spt)
4477 				hsflctl.regval =
4478 				    er32flash(ICH_FLASH_HSFSTS) >> 16;
4479 			else
4480 				hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4481 
4482 			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4483 			if (hw->mac.type >= e1000_pch_spt)
4484 				ew32flash(ICH_FLASH_HSFSTS,
4485 					  hsflctl.regval << 16);
4486 			else
4487 				ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4488 
4489 			/* Write the last 24 bits of an index within the
4490 			 * block into Flash Linear address field in Flash
4491 			 * Address.
4492 			 */
4493 			flash_linear_addr += (j * sector_size);
4494 			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4495 
4496 			ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4497 			if (!ret_val)
4498 				break;
4499 
4500 			/* Check if FCERR is set to 1.  If 1,
4501 			 * clear it and try the whole sequence
4502 			 * a few more times else Done
4503 			 */
4504 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4505 			if (hsfsts.hsf_status.flcerr)
4506 				/* repeat for some time before giving up */
4507 				continue;
4508 			else if (!hsfsts.hsf_status.flcdone)
4509 				return ret_val;
4510 		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4511 	}
4512 
4513 	return 0;
4514 }
4515 
4516 /**
4517  *  e1000_valid_led_default_ich8lan - Set the default LED settings
4518  *  @hw: pointer to the HW structure
4519  *  @data: Pointer to the LED settings
4520  *
4521  *  Reads the LED default settings from the NVM to data.  If the NVM LED
4522  *  settings is all 0's or F's, set the LED default to a valid LED default
4523  *  setting.
4524  **/
4525 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4526 {
4527 	s32 ret_val;
4528 
4529 	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
4530 	if (ret_val) {
4531 		e_dbg("NVM Read Error\n");
4532 		return ret_val;
4533 	}
4534 
4535 	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4536 		*data = ID_LED_DEFAULT_ICH8LAN;
4537 
4538 	return 0;
4539 }
4540 
4541 /**
4542  *  e1000_id_led_init_pchlan - store LED configurations
4543  *  @hw: pointer to the HW structure
4544  *
4545  *  PCH does not control LEDs via the LEDCTL register, rather it uses
4546  *  the PHY LED configuration register.
4547  *
4548  *  PCH also does not have an "always on" or "always off" mode which
4549  *  complicates the ID feature.  Instead of using the "on" mode to indicate
4550  *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
4551  *  use "link_up" mode.  The LEDs will still ID on request if there is no
4552  *  link based on logic in e1000_led_[on|off]_pchlan().
4553  **/
4554 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4555 {
4556 	struct e1000_mac_info *mac = &hw->mac;
4557 	s32 ret_val;
4558 	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4559 	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4560 	u16 data, i, temp, shift;
4561 
4562 	/* Get default ID LED modes */
4563 	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4564 	if (ret_val)
4565 		return ret_val;
4566 
4567 	mac->ledctl_default = er32(LEDCTL);
4568 	mac->ledctl_mode1 = mac->ledctl_default;
4569 	mac->ledctl_mode2 = mac->ledctl_default;
4570 
4571 	for (i = 0; i < 4; i++) {
4572 		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4573 		shift = (i * 5);
4574 		switch (temp) {
4575 		case ID_LED_ON1_DEF2:
4576 		case ID_LED_ON1_ON2:
4577 		case ID_LED_ON1_OFF2:
4578 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4579 			mac->ledctl_mode1 |= (ledctl_on << shift);
4580 			break;
4581 		case ID_LED_OFF1_DEF2:
4582 		case ID_LED_OFF1_ON2:
4583 		case ID_LED_OFF1_OFF2:
4584 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4585 			mac->ledctl_mode1 |= (ledctl_off << shift);
4586 			break;
4587 		default:
4588 			/* Do nothing */
4589 			break;
4590 		}
4591 		switch (temp) {
4592 		case ID_LED_DEF1_ON2:
4593 		case ID_LED_ON1_ON2:
4594 		case ID_LED_OFF1_ON2:
4595 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4596 			mac->ledctl_mode2 |= (ledctl_on << shift);
4597 			break;
4598 		case ID_LED_DEF1_OFF2:
4599 		case ID_LED_ON1_OFF2:
4600 		case ID_LED_OFF1_OFF2:
4601 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4602 			mac->ledctl_mode2 |= (ledctl_off << shift);
4603 			break;
4604 		default:
4605 			/* Do nothing */
4606 			break;
4607 		}
4608 	}
4609 
4610 	return 0;
4611 }
4612 
4613 /**
4614  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4615  *  @hw: pointer to the HW structure
4616  *
4617  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4618  *  register, so the the bus width is hard coded.
4619  **/
4620 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4621 {
4622 	struct e1000_bus_info *bus = &hw->bus;
4623 	s32 ret_val;
4624 
4625 	ret_val = e1000e_get_bus_info_pcie(hw);
4626 
4627 	/* ICH devices are "PCI Express"-ish.  They have
4628 	 * a configuration space, but do not contain
4629 	 * PCI Express Capability registers, so bus width
4630 	 * must be hardcoded.
4631 	 */
4632 	if (bus->width == e1000_bus_width_unknown)
4633 		bus->width = e1000_bus_width_pcie_x1;
4634 
4635 	return ret_val;
4636 }
4637 
4638 /**
4639  *  e1000_reset_hw_ich8lan - Reset the hardware
4640  *  @hw: pointer to the HW structure
4641  *
4642  *  Does a full reset of the hardware which includes a reset of the PHY and
4643  *  MAC.
4644  **/
4645 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4646 {
4647 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4648 	u16 kum_cfg;
4649 	u32 ctrl, reg;
4650 	s32 ret_val;
4651 
4652 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
4653 	 * on the last TLP read/write transaction when MAC is reset.
4654 	 */
4655 	ret_val = e1000e_disable_pcie_master(hw);
4656 	if (ret_val)
4657 		e_dbg("PCI-E Master disable polling has failed.\n");
4658 
4659 	e_dbg("Masking off all interrupts\n");
4660 	ew32(IMC, 0xffffffff);
4661 
4662 	/* Disable the Transmit and Receive units.  Then delay to allow
4663 	 * any pending transactions to complete before we hit the MAC
4664 	 * with the global reset.
4665 	 */
4666 	ew32(RCTL, 0);
4667 	ew32(TCTL, E1000_TCTL_PSP);
4668 	e1e_flush();
4669 
4670 	usleep_range(10000, 11000);
4671 
4672 	/* Workaround for ICH8 bit corruption issue in FIFO memory */
4673 	if (hw->mac.type == e1000_ich8lan) {
4674 		/* Set Tx and Rx buffer allocation to 8k apiece. */
4675 		ew32(PBA, E1000_PBA_8K);
4676 		/* Set Packet Buffer Size to 16k. */
4677 		ew32(PBS, E1000_PBS_16K);
4678 	}
4679 
4680 	if (hw->mac.type == e1000_pchlan) {
4681 		/* Save the NVM K1 bit setting */
4682 		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4683 		if (ret_val)
4684 			return ret_val;
4685 
4686 		if (kum_cfg & E1000_NVM_K1_ENABLE)
4687 			dev_spec->nvm_k1_enabled = true;
4688 		else
4689 			dev_spec->nvm_k1_enabled = false;
4690 	}
4691 
4692 	ctrl = er32(CTRL);
4693 
4694 	if (!hw->phy.ops.check_reset_block(hw)) {
4695 		/* Full-chip reset requires MAC and PHY reset at the same
4696 		 * time to make sure the interface between MAC and the
4697 		 * external PHY is reset.
4698 		 */
4699 		ctrl |= E1000_CTRL_PHY_RST;
4700 
4701 		/* Gate automatic PHY configuration by hardware on
4702 		 * non-managed 82579
4703 		 */
4704 		if ((hw->mac.type == e1000_pch2lan) &&
4705 		    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
4706 			e1000_gate_hw_phy_config_ich8lan(hw, true);
4707 	}
4708 	ret_val = e1000_acquire_swflag_ich8lan(hw);
4709 	e_dbg("Issuing a global reset to ich8lan\n");
4710 	ew32(CTRL, (ctrl | E1000_CTRL_RST));
4711 	/* cannot issue a flush here because it hangs the hardware */
4712 	msleep(20);
4713 
4714 	/* Set Phy Config Counter to 50msec */
4715 	if (hw->mac.type == e1000_pch2lan) {
4716 		reg = er32(FEXTNVM3);
4717 		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4718 		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4719 		ew32(FEXTNVM3, reg);
4720 	}
4721 
4722 	if (!ret_val)
4723 		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
4724 
4725 	if (ctrl & E1000_CTRL_PHY_RST) {
4726 		ret_val = hw->phy.ops.get_cfg_done(hw);
4727 		if (ret_val)
4728 			return ret_val;
4729 
4730 		ret_val = e1000_post_phy_reset_ich8lan(hw);
4731 		if (ret_val)
4732 			return ret_val;
4733 	}
4734 
4735 	/* For PCH, this write will make sure that any noise
4736 	 * will be detected as a CRC error and be dropped rather than show up
4737 	 * as a bad packet to the DMA engine.
4738 	 */
4739 	if (hw->mac.type == e1000_pchlan)
4740 		ew32(CRC_OFFSET, 0x65656565);
4741 
4742 	ew32(IMC, 0xffffffff);
4743 	er32(ICR);
4744 
4745 	reg = er32(KABGTXD);
4746 	reg |= E1000_KABGTXD_BGSQLBIAS;
4747 	ew32(KABGTXD, reg);
4748 
4749 	return 0;
4750 }
4751 
4752 /**
4753  *  e1000_init_hw_ich8lan - Initialize the hardware
4754  *  @hw: pointer to the HW structure
4755  *
4756  *  Prepares the hardware for transmit and receive by doing the following:
4757  *   - initialize hardware bits
4758  *   - initialize LED identification
4759  *   - setup receive address registers
4760  *   - setup flow control
4761  *   - setup transmit descriptors
4762  *   - clear statistics
4763  **/
4764 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4765 {
4766 	struct e1000_mac_info *mac = &hw->mac;
4767 	u32 ctrl_ext, txdctl, snoop;
4768 	s32 ret_val;
4769 	u16 i;
4770 
4771 	e1000_initialize_hw_bits_ich8lan(hw);
4772 
4773 	/* Initialize identification LED */
4774 	ret_val = mac->ops.id_led_init(hw);
4775 	/* An error is not fatal and we should not stop init due to this */
4776 	if (ret_val)
4777 		e_dbg("Error initializing identification LED\n");
4778 
4779 	/* Setup the receive address. */
4780 	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
4781 
4782 	/* Zero out the Multicast HASH table */
4783 	e_dbg("Zeroing the MTA\n");
4784 	for (i = 0; i < mac->mta_reg_count; i++)
4785 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4786 
4787 	/* The 82578 Rx buffer will stall if wakeup is enabled in host and
4788 	 * the ME.  Disable wakeup by clearing the host wakeup bit.
4789 	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
4790 	 */
4791 	if (hw->phy.type == e1000_phy_82578) {
4792 		e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4793 		i &= ~BM_WUC_HOST_WU_BIT;
4794 		e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4795 		ret_val = e1000_phy_hw_reset_ich8lan(hw);
4796 		if (ret_val)
4797 			return ret_val;
4798 	}
4799 
4800 	/* Setup link and flow control */
4801 	ret_val = mac->ops.setup_link(hw);
4802 
4803 	/* Set the transmit descriptor write-back policy for both queues */
4804 	txdctl = er32(TXDCTL(0));
4805 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4806 		  E1000_TXDCTL_FULL_TX_DESC_WB);
4807 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4808 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4809 	ew32(TXDCTL(0), txdctl);
4810 	txdctl = er32(TXDCTL(1));
4811 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4812 		  E1000_TXDCTL_FULL_TX_DESC_WB);
4813 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4814 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4815 	ew32(TXDCTL(1), txdctl);
4816 
4817 	/* ICH8 has opposite polarity of no_snoop bits.
4818 	 * By default, we should use snoop behavior.
4819 	 */
4820 	if (mac->type == e1000_ich8lan)
4821 		snoop = PCIE_ICH8_SNOOP_ALL;
4822 	else
4823 		snoop = (u32)~(PCIE_NO_SNOOP_ALL);
4824 	e1000e_set_pcie_no_snoop(hw, snoop);
4825 
4826 	ctrl_ext = er32(CTRL_EXT);
4827 	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4828 	ew32(CTRL_EXT, ctrl_ext);
4829 
4830 	/* Clear all of the statistics registers (clear on read).  It is
4831 	 * important that we do this after we have tried to establish link
4832 	 * because the symbol error count will increment wildly if there
4833 	 * is no link.
4834 	 */
4835 	e1000_clear_hw_cntrs_ich8lan(hw);
4836 
4837 	return ret_val;
4838 }
4839 
4840 /**
4841  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4842  *  @hw: pointer to the HW structure
4843  *
4844  *  Sets/Clears required hardware bits necessary for correctly setting up the
4845  *  hardware for transmit and receive.
4846  **/
4847 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4848 {
4849 	u32 reg;
4850 
4851 	/* Extended Device Control */
4852 	reg = er32(CTRL_EXT);
4853 	reg |= BIT(22);
4854 	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
4855 	if (hw->mac.type >= e1000_pchlan)
4856 		reg |= E1000_CTRL_EXT_PHYPDEN;
4857 	ew32(CTRL_EXT, reg);
4858 
4859 	/* Transmit Descriptor Control 0 */
4860 	reg = er32(TXDCTL(0));
4861 	reg |= BIT(22);
4862 	ew32(TXDCTL(0), reg);
4863 
4864 	/* Transmit Descriptor Control 1 */
4865 	reg = er32(TXDCTL(1));
4866 	reg |= BIT(22);
4867 	ew32(TXDCTL(1), reg);
4868 
4869 	/* Transmit Arbitration Control 0 */
4870 	reg = er32(TARC(0));
4871 	if (hw->mac.type == e1000_ich8lan)
4872 		reg |= BIT(28) | BIT(29);
4873 	reg |= BIT(23) | BIT(24) | BIT(26) | BIT(27);
4874 	ew32(TARC(0), reg);
4875 
4876 	/* Transmit Arbitration Control 1 */
4877 	reg = er32(TARC(1));
4878 	if (er32(TCTL) & E1000_TCTL_MULR)
4879 		reg &= ~BIT(28);
4880 	else
4881 		reg |= BIT(28);
4882 	reg |= BIT(24) | BIT(26) | BIT(30);
4883 	ew32(TARC(1), reg);
4884 
4885 	/* Device Status */
4886 	if (hw->mac.type == e1000_ich8lan) {
4887 		reg = er32(STATUS);
4888 		reg &= ~BIT(31);
4889 		ew32(STATUS, reg);
4890 	}
4891 
4892 	/* work-around descriptor data corruption issue during nfs v2 udp
4893 	 * traffic, just disable the nfs filtering capability
4894 	 */
4895 	reg = er32(RFCTL);
4896 	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
4897 
4898 	/* Disable IPv6 extension header parsing because some malformed
4899 	 * IPv6 headers can hang the Rx.
4900 	 */
4901 	if (hw->mac.type == e1000_ich8lan)
4902 		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
4903 	ew32(RFCTL, reg);
4904 
4905 	/* Enable ECC on Lynxpoint */
4906 	if (hw->mac.type >= e1000_pch_lpt) {
4907 		reg = er32(PBECCSTS);
4908 		reg |= E1000_PBECCSTS_ECC_ENABLE;
4909 		ew32(PBECCSTS, reg);
4910 
4911 		reg = er32(CTRL);
4912 		reg |= E1000_CTRL_MEHE;
4913 		ew32(CTRL, reg);
4914 	}
4915 }
4916 
4917 /**
4918  *  e1000_setup_link_ich8lan - Setup flow control and link settings
4919  *  @hw: pointer to the HW structure
4920  *
4921  *  Determines which flow control settings to use, then configures flow
4922  *  control.  Calls the appropriate media-specific link configuration
4923  *  function.  Assuming the adapter has a valid link partner, a valid link
4924  *  should be established.  Assumes the hardware has previously been reset
4925  *  and the transmitter and receiver are not enabled.
4926  **/
4927 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
4928 {
4929 	s32 ret_val;
4930 
4931 	if (hw->phy.ops.check_reset_block(hw))
4932 		return 0;
4933 
4934 	/* ICH parts do not have a word in the NVM to determine
4935 	 * the default flow control setting, so we explicitly
4936 	 * set it to full.
4937 	 */
4938 	if (hw->fc.requested_mode == e1000_fc_default) {
4939 		/* Workaround h/w hang when Tx flow control enabled */
4940 		if (hw->mac.type == e1000_pchlan)
4941 			hw->fc.requested_mode = e1000_fc_rx_pause;
4942 		else
4943 			hw->fc.requested_mode = e1000_fc_full;
4944 	}
4945 
4946 	/* Save off the requested flow control mode for use later.  Depending
4947 	 * on the link partner's capabilities, we may or may not use this mode.
4948 	 */
4949 	hw->fc.current_mode = hw->fc.requested_mode;
4950 
4951 	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
4952 
4953 	/* Continue to configure the copper link. */
4954 	ret_val = hw->mac.ops.setup_physical_interface(hw);
4955 	if (ret_val)
4956 		return ret_val;
4957 
4958 	ew32(FCTTV, hw->fc.pause_time);
4959 	if ((hw->phy.type == e1000_phy_82578) ||
4960 	    (hw->phy.type == e1000_phy_82579) ||
4961 	    (hw->phy.type == e1000_phy_i217) ||
4962 	    (hw->phy.type == e1000_phy_82577)) {
4963 		ew32(FCRTV_PCH, hw->fc.refresh_time);
4964 
4965 		ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
4966 				   hw->fc.pause_time);
4967 		if (ret_val)
4968 			return ret_val;
4969 	}
4970 
4971 	return e1000e_set_fc_watermarks(hw);
4972 }
4973 
4974 /**
4975  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
4976  *  @hw: pointer to the HW structure
4977  *
4978  *  Configures the kumeran interface to the PHY to wait the appropriate time
4979  *  when polling the PHY, then call the generic setup_copper_link to finish
4980  *  configuring the copper link.
4981  **/
4982 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
4983 {
4984 	u32 ctrl;
4985 	s32 ret_val;
4986 	u16 reg_data;
4987 
4988 	ctrl = er32(CTRL);
4989 	ctrl |= E1000_CTRL_SLU;
4990 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
4991 	ew32(CTRL, ctrl);
4992 
4993 	/* Set the mac to wait the maximum time between each iteration
4994 	 * and increase the max iterations when polling the phy;
4995 	 * this fixes erroneous timeouts at 10Mbps.
4996 	 */
4997 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
4998 	if (ret_val)
4999 		return ret_val;
5000 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5001 				       &reg_data);
5002 	if (ret_val)
5003 		return ret_val;
5004 	reg_data |= 0x3F;
5005 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5006 					reg_data);
5007 	if (ret_val)
5008 		return ret_val;
5009 
5010 	switch (hw->phy.type) {
5011 	case e1000_phy_igp_3:
5012 		ret_val = e1000e_copper_link_setup_igp(hw);
5013 		if (ret_val)
5014 			return ret_val;
5015 		break;
5016 	case e1000_phy_bm:
5017 	case e1000_phy_82578:
5018 		ret_val = e1000e_copper_link_setup_m88(hw);
5019 		if (ret_val)
5020 			return ret_val;
5021 		break;
5022 	case e1000_phy_82577:
5023 	case e1000_phy_82579:
5024 		ret_val = e1000_copper_link_setup_82577(hw);
5025 		if (ret_val)
5026 			return ret_val;
5027 		break;
5028 	case e1000_phy_ife:
5029 		ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
5030 		if (ret_val)
5031 			return ret_val;
5032 
5033 		reg_data &= ~IFE_PMC_AUTO_MDIX;
5034 
5035 		switch (hw->phy.mdix) {
5036 		case 1:
5037 			reg_data &= ~IFE_PMC_FORCE_MDIX;
5038 			break;
5039 		case 2:
5040 			reg_data |= IFE_PMC_FORCE_MDIX;
5041 			break;
5042 		case 0:
5043 		default:
5044 			reg_data |= IFE_PMC_AUTO_MDIX;
5045 			break;
5046 		}
5047 		ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
5048 		if (ret_val)
5049 			return ret_val;
5050 		break;
5051 	default:
5052 		break;
5053 	}
5054 
5055 	return e1000e_setup_copper_link(hw);
5056 }
5057 
5058 /**
5059  *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5060  *  @hw: pointer to the HW structure
5061  *
5062  *  Calls the PHY specific link setup function and then calls the
5063  *  generic setup_copper_link to finish configuring the link for
5064  *  Lynxpoint PCH devices
5065  **/
5066 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5067 {
5068 	u32 ctrl;
5069 	s32 ret_val;
5070 
5071 	ctrl = er32(CTRL);
5072 	ctrl |= E1000_CTRL_SLU;
5073 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5074 	ew32(CTRL, ctrl);
5075 
5076 	ret_val = e1000_copper_link_setup_82577(hw);
5077 	if (ret_val)
5078 		return ret_val;
5079 
5080 	return e1000e_setup_copper_link(hw);
5081 }
5082 
5083 /**
5084  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5085  *  @hw: pointer to the HW structure
5086  *  @speed: pointer to store current link speed
5087  *  @duplex: pointer to store the current link duplex
5088  *
5089  *  Calls the generic get_speed_and_duplex to retrieve the current link
5090  *  information and then calls the Kumeran lock loss workaround for links at
5091  *  gigabit speeds.
5092  **/
5093 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5094 					  u16 *duplex)
5095 {
5096 	s32 ret_val;
5097 
5098 	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
5099 	if (ret_val)
5100 		return ret_val;
5101 
5102 	if ((hw->mac.type == e1000_ich8lan) &&
5103 	    (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
5104 		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5105 	}
5106 
5107 	return ret_val;
5108 }
5109 
5110 /**
5111  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5112  *  @hw: pointer to the HW structure
5113  *
5114  *  Work-around for 82566 Kumeran PCS lock loss:
5115  *  On link status change (i.e. PCI reset, speed change) and link is up and
5116  *  speed is gigabit-
5117  *    0) if workaround is optionally disabled do nothing
5118  *    1) wait 1ms for Kumeran link to come up
5119  *    2) check Kumeran Diagnostic register PCS lock loss bit
5120  *    3) if not set the link is locked (all is good), otherwise...
5121  *    4) reset the PHY
5122  *    5) repeat up to 10 times
5123  *  Note: this is only called for IGP3 copper when speed is 1gb.
5124  **/
5125 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5126 {
5127 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5128 	u32 phy_ctrl;
5129 	s32 ret_val;
5130 	u16 i, data;
5131 	bool link;
5132 
5133 	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5134 		return 0;
5135 
5136 	/* Make sure link is up before proceeding.  If not just return.
5137 	 * Attempting this while link is negotiating fouled up link
5138 	 * stability
5139 	 */
5140 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
5141 	if (!link)
5142 		return 0;
5143 
5144 	for (i = 0; i < 10; i++) {
5145 		/* read once to clear */
5146 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5147 		if (ret_val)
5148 			return ret_val;
5149 		/* and again to get new status */
5150 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5151 		if (ret_val)
5152 			return ret_val;
5153 
5154 		/* check for PCS lock */
5155 		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5156 			return 0;
5157 
5158 		/* Issue PHY reset */
5159 		e1000_phy_hw_reset(hw);
5160 		mdelay(5);
5161 	}
5162 	/* Disable GigE link negotiation */
5163 	phy_ctrl = er32(PHY_CTRL);
5164 	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5165 		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5166 	ew32(PHY_CTRL, phy_ctrl);
5167 
5168 	/* Call gig speed drop workaround on Gig disable before accessing
5169 	 * any PHY registers
5170 	 */
5171 	e1000e_gig_downshift_workaround_ich8lan(hw);
5172 
5173 	/* unable to acquire PCS lock */
5174 	return -E1000_ERR_PHY;
5175 }
5176 
5177 /**
5178  *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5179  *  @hw: pointer to the HW structure
5180  *  @state: boolean value used to set the current Kumeran workaround state
5181  *
5182  *  If ICH8, set the current Kumeran workaround state (enabled - true
5183  *  /disabled - false).
5184  **/
5185 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5186 						  bool state)
5187 {
5188 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5189 
5190 	if (hw->mac.type != e1000_ich8lan) {
5191 		e_dbg("Workaround applies to ICH8 only.\n");
5192 		return;
5193 	}
5194 
5195 	dev_spec->kmrn_lock_loss_workaround_enabled = state;
5196 }
5197 
5198 /**
5199  *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5200  *  @hw: pointer to the HW structure
5201  *
5202  *  Workaround for 82566 power-down on D3 entry:
5203  *    1) disable gigabit link
5204  *    2) write VR power-down enable
5205  *    3) read it back
5206  *  Continue if successful, else issue LCD reset and repeat
5207  **/
5208 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5209 {
5210 	u32 reg;
5211 	u16 data;
5212 	u8 retry = 0;
5213 
5214 	if (hw->phy.type != e1000_phy_igp_3)
5215 		return;
5216 
5217 	/* Try the workaround twice (if needed) */
5218 	do {
5219 		/* Disable link */
5220 		reg = er32(PHY_CTRL);
5221 		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5222 			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5223 		ew32(PHY_CTRL, reg);
5224 
5225 		/* Call gig speed drop workaround on Gig disable before
5226 		 * accessing any PHY registers
5227 		 */
5228 		if (hw->mac.type == e1000_ich8lan)
5229 			e1000e_gig_downshift_workaround_ich8lan(hw);
5230 
5231 		/* Write VR power-down enable */
5232 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5233 		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5234 		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5235 
5236 		/* Read it back and test */
5237 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5238 		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5239 		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5240 			break;
5241 
5242 		/* Issue PHY reset and repeat at most one more time */
5243 		reg = er32(CTRL);
5244 		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
5245 		retry++;
5246 	} while (retry);
5247 }
5248 
5249 /**
5250  *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5251  *  @hw: pointer to the HW structure
5252  *
5253  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5254  *  LPLU, Gig disable, MDIC PHY reset):
5255  *    1) Set Kumeran Near-end loopback
5256  *    2) Clear Kumeran Near-end loopback
5257  *  Should only be called for ICH8[m] devices with any 1G Phy.
5258  **/
5259 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5260 {
5261 	s32 ret_val;
5262 	u16 reg_data;
5263 
5264 	if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
5265 		return;
5266 
5267 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5268 				       &reg_data);
5269 	if (ret_val)
5270 		return;
5271 	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5272 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5273 					reg_data);
5274 	if (ret_val)
5275 		return;
5276 	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5277 	e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
5278 }
5279 
5280 /**
5281  *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5282  *  @hw: pointer to the HW structure
5283  *
5284  *  During S0 to Sx transition, it is possible the link remains at gig
5285  *  instead of negotiating to a lower speed.  Before going to Sx, set
5286  *  'Gig Disable' to force link speed negotiation to a lower speed based on
5287  *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
5288  *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5289  *  needs to be written.
5290  *  Parts that support (and are linked to a partner which support) EEE in
5291  *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5292  *  than 10Mbps w/o EEE.
5293  **/
5294 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5295 {
5296 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5297 	u32 phy_ctrl;
5298 	s32 ret_val;
5299 
5300 	phy_ctrl = er32(PHY_CTRL);
5301 	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5302 
5303 	if (hw->phy.type == e1000_phy_i217) {
5304 		u16 phy_reg, device_id = hw->adapter->pdev->device;
5305 
5306 		if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5307 		    (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5308 		    (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5309 		    (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5310 		    (hw->mac.type >= e1000_pch_spt)) {
5311 			u32 fextnvm6 = er32(FEXTNVM6);
5312 
5313 			ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5314 		}
5315 
5316 		ret_val = hw->phy.ops.acquire(hw);
5317 		if (ret_val)
5318 			goto out;
5319 
5320 		if (!dev_spec->eee_disable) {
5321 			u16 eee_advert;
5322 
5323 			ret_val =
5324 			    e1000_read_emi_reg_locked(hw,
5325 						      I217_EEE_ADVERTISEMENT,
5326 						      &eee_advert);
5327 			if (ret_val)
5328 				goto release;
5329 
5330 			/* Disable LPLU if both link partners support 100BaseT
5331 			 * EEE and 100Full is advertised on both ends of the
5332 			 * link, and enable Auto Enable LPI since there will
5333 			 * be no driver to enable LPI while in Sx.
5334 			 */
5335 			if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5336 			    (dev_spec->eee_lp_ability &
5337 			     I82579_EEE_100_SUPPORTED) &&
5338 			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5339 				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5340 					      E1000_PHY_CTRL_NOND0A_LPLU);
5341 
5342 				/* Set Auto Enable LPI after link up */
5343 				e1e_rphy_locked(hw,
5344 						I217_LPI_GPIO_CTRL, &phy_reg);
5345 				phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5346 				e1e_wphy_locked(hw,
5347 						I217_LPI_GPIO_CTRL, phy_reg);
5348 			}
5349 		}
5350 
5351 		/* For i217 Intel Rapid Start Technology support,
5352 		 * when the system is going into Sx and no manageability engine
5353 		 * is present, the driver must configure proxy to reset only on
5354 		 * power good.  LPI (Low Power Idle) state must also reset only
5355 		 * on power good, as well as the MTA (Multicast table array).
5356 		 * The SMBus release must also be disabled on LCD reset.
5357 		 */
5358 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5359 			/* Enable proxy to reset only on power good. */
5360 			e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
5361 			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5362 			e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
5363 
5364 			/* Set bit enable LPI (EEE) to reset only on
5365 			 * power good.
5366 			 */
5367 			e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
5368 			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5369 			e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
5370 
5371 			/* Disable the SMB release on LCD reset. */
5372 			e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5373 			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5374 			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5375 		}
5376 
5377 		/* Enable MTA to reset for Intel Rapid Start Technology
5378 		 * Support
5379 		 */
5380 		e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5381 		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5382 		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5383 
5384 release:
5385 		hw->phy.ops.release(hw);
5386 	}
5387 out:
5388 	ew32(PHY_CTRL, phy_ctrl);
5389 
5390 	if (hw->mac.type == e1000_ich8lan)
5391 		e1000e_gig_downshift_workaround_ich8lan(hw);
5392 
5393 	if (hw->mac.type >= e1000_pchlan) {
5394 		e1000_oem_bits_config_ich8lan(hw, false);
5395 
5396 		/* Reset PHY to activate OEM bits on 82577/8 */
5397 		if (hw->mac.type == e1000_pchlan)
5398 			e1000e_phy_hw_reset_generic(hw);
5399 
5400 		ret_val = hw->phy.ops.acquire(hw);
5401 		if (ret_val)
5402 			return;
5403 		e1000_write_smbus_addr(hw);
5404 		hw->phy.ops.release(hw);
5405 	}
5406 }
5407 
5408 /**
5409  *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5410  *  @hw: pointer to the HW structure
5411  *
5412  *  During Sx to S0 transitions on non-managed devices or managed devices
5413  *  on which PHY resets are not blocked, if the PHY registers cannot be
5414  *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
5415  *  the PHY.
5416  *  On i217, setup Intel Rapid Start Technology.
5417  **/
5418 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5419 {
5420 	s32 ret_val;
5421 
5422 	if (hw->mac.type < e1000_pch2lan)
5423 		return;
5424 
5425 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
5426 	if (ret_val) {
5427 		e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
5428 		return;
5429 	}
5430 
5431 	/* For i217 Intel Rapid Start Technology support when the system
5432 	 * is transitioning from Sx and no manageability engine is present
5433 	 * configure SMBus to restore on reset, disable proxy, and enable
5434 	 * the reset on MTA (Multicast table array).
5435 	 */
5436 	if (hw->phy.type == e1000_phy_i217) {
5437 		u16 phy_reg;
5438 
5439 		ret_val = hw->phy.ops.acquire(hw);
5440 		if (ret_val) {
5441 			e_dbg("Failed to setup iRST\n");
5442 			return;
5443 		}
5444 
5445 		/* Clear Auto Enable LPI after link up */
5446 		e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5447 		phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5448 		e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5449 
5450 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5451 			/* Restore clear on SMB if no manageability engine
5452 			 * is present
5453 			 */
5454 			ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5455 			if (ret_val)
5456 				goto release;
5457 			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5458 			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5459 
5460 			/* Disable Proxy */
5461 			e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
5462 		}
5463 		/* Enable reset on MTA */
5464 		ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5465 		if (ret_val)
5466 			goto release;
5467 		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5468 		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5469 release:
5470 		if (ret_val)
5471 			e_dbg("Error %d in resume workarounds\n", ret_val);
5472 		hw->phy.ops.release(hw);
5473 	}
5474 }
5475 
5476 /**
5477  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
5478  *  @hw: pointer to the HW structure
5479  *
5480  *  Return the LED back to the default configuration.
5481  **/
5482 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5483 {
5484 	if (hw->phy.type == e1000_phy_ife)
5485 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
5486 
5487 	ew32(LEDCTL, hw->mac.ledctl_default);
5488 	return 0;
5489 }
5490 
5491 /**
5492  *  e1000_led_on_ich8lan - Turn LEDs on
5493  *  @hw: pointer to the HW structure
5494  *
5495  *  Turn on the LEDs.
5496  **/
5497 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5498 {
5499 	if (hw->phy.type == e1000_phy_ife)
5500 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5501 				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5502 
5503 	ew32(LEDCTL, hw->mac.ledctl_mode2);
5504 	return 0;
5505 }
5506 
5507 /**
5508  *  e1000_led_off_ich8lan - Turn LEDs off
5509  *  @hw: pointer to the HW structure
5510  *
5511  *  Turn off the LEDs.
5512  **/
5513 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5514 {
5515 	if (hw->phy.type == e1000_phy_ife)
5516 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5517 				(IFE_PSCL_PROBE_MODE |
5518 				 IFE_PSCL_PROBE_LEDS_OFF));
5519 
5520 	ew32(LEDCTL, hw->mac.ledctl_mode1);
5521 	return 0;
5522 }
5523 
5524 /**
5525  *  e1000_setup_led_pchlan - Configures SW controllable LED
5526  *  @hw: pointer to the HW structure
5527  *
5528  *  This prepares the SW controllable LED for use.
5529  **/
5530 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5531 {
5532 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
5533 }
5534 
5535 /**
5536  *  e1000_cleanup_led_pchlan - Restore the default LED operation
5537  *  @hw: pointer to the HW structure
5538  *
5539  *  Return the LED back to the default configuration.
5540  **/
5541 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5542 {
5543 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
5544 }
5545 
5546 /**
5547  *  e1000_led_on_pchlan - Turn LEDs on
5548  *  @hw: pointer to the HW structure
5549  *
5550  *  Turn on the LEDs.
5551  **/
5552 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5553 {
5554 	u16 data = (u16)hw->mac.ledctl_mode2;
5555 	u32 i, led;
5556 
5557 	/* If no link, then turn LED on by setting the invert bit
5558 	 * for each LED that's mode is "link_up" in ledctl_mode2.
5559 	 */
5560 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5561 		for (i = 0; i < 3; i++) {
5562 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5563 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5564 			    E1000_LEDCTL_MODE_LINK_UP)
5565 				continue;
5566 			if (led & E1000_PHY_LED0_IVRT)
5567 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5568 			else
5569 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5570 		}
5571 	}
5572 
5573 	return e1e_wphy(hw, HV_LED_CONFIG, data);
5574 }
5575 
5576 /**
5577  *  e1000_led_off_pchlan - Turn LEDs off
5578  *  @hw: pointer to the HW structure
5579  *
5580  *  Turn off the LEDs.
5581  **/
5582 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5583 {
5584 	u16 data = (u16)hw->mac.ledctl_mode1;
5585 	u32 i, led;
5586 
5587 	/* If no link, then turn LED off by clearing the invert bit
5588 	 * for each LED that's mode is "link_up" in ledctl_mode1.
5589 	 */
5590 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5591 		for (i = 0; i < 3; i++) {
5592 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5593 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5594 			    E1000_LEDCTL_MODE_LINK_UP)
5595 				continue;
5596 			if (led & E1000_PHY_LED0_IVRT)
5597 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5598 			else
5599 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5600 		}
5601 	}
5602 
5603 	return e1e_wphy(hw, HV_LED_CONFIG, data);
5604 }
5605 
5606 /**
5607  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5608  *  @hw: pointer to the HW structure
5609  *
5610  *  Read appropriate register for the config done bit for completion status
5611  *  and configure the PHY through s/w for EEPROM-less parts.
5612  *
5613  *  NOTE: some silicon which is EEPROM-less will fail trying to read the
5614  *  config done bit, so only an error is logged and continues.  If we were
5615  *  to return with error, EEPROM-less silicon would not be able to be reset
5616  *  or change link.
5617  **/
5618 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5619 {
5620 	s32 ret_val = 0;
5621 	u32 bank = 0;
5622 	u32 status;
5623 
5624 	e1000e_get_cfg_done_generic(hw);
5625 
5626 	/* Wait for indication from h/w that it has completed basic config */
5627 	if (hw->mac.type >= e1000_ich10lan) {
5628 		e1000_lan_init_done_ich8lan(hw);
5629 	} else {
5630 		ret_val = e1000e_get_auto_rd_done(hw);
5631 		if (ret_val) {
5632 			/* When auto config read does not complete, do not
5633 			 * return with an error. This can happen in situations
5634 			 * where there is no eeprom and prevents getting link.
5635 			 */
5636 			e_dbg("Auto Read Done did not complete\n");
5637 			ret_val = 0;
5638 		}
5639 	}
5640 
5641 	/* Clear PHY Reset Asserted bit */
5642 	status = er32(STATUS);
5643 	if (status & E1000_STATUS_PHYRA)
5644 		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
5645 	else
5646 		e_dbg("PHY Reset Asserted not set - needs delay\n");
5647 
5648 	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
5649 	if (hw->mac.type <= e1000_ich9lan) {
5650 		if (!(er32(EECD) & E1000_EECD_PRES) &&
5651 		    (hw->phy.type == e1000_phy_igp_3)) {
5652 			e1000e_phy_init_script_igp3(hw);
5653 		}
5654 	} else {
5655 		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5656 			/* Maybe we should do a basic PHY config */
5657 			e_dbg("EEPROM not present\n");
5658 			ret_val = -E1000_ERR_CONFIG;
5659 		}
5660 	}
5661 
5662 	return ret_val;
5663 }
5664 
5665 /**
5666  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5667  * @hw: pointer to the HW structure
5668  *
5669  * In the case of a PHY power down to save power, or to turn off link during a
5670  * driver unload, or wake on lan is not enabled, remove the link.
5671  **/
5672 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5673 {
5674 	/* If the management interface is not enabled, then power down */
5675 	if (!(hw->mac.ops.check_mng_mode(hw) ||
5676 	      hw->phy.ops.check_reset_block(hw)))
5677 		e1000_power_down_phy_copper(hw);
5678 }
5679 
5680 /**
5681  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5682  *  @hw: pointer to the HW structure
5683  *
5684  *  Clears hardware counters specific to the silicon family and calls
5685  *  clear_hw_cntrs_generic to clear all general purpose counters.
5686  **/
5687 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5688 {
5689 	u16 phy_data;
5690 	s32 ret_val;
5691 
5692 	e1000e_clear_hw_cntrs_base(hw);
5693 
5694 	er32(ALGNERRC);
5695 	er32(RXERRC);
5696 	er32(TNCRS);
5697 	er32(CEXTERR);
5698 	er32(TSCTC);
5699 	er32(TSCTFC);
5700 
5701 	er32(MGTPRC);
5702 	er32(MGTPDC);
5703 	er32(MGTPTC);
5704 
5705 	er32(IAC);
5706 	er32(ICRXOC);
5707 
5708 	/* Clear PHY statistics registers */
5709 	if ((hw->phy.type == e1000_phy_82578) ||
5710 	    (hw->phy.type == e1000_phy_82579) ||
5711 	    (hw->phy.type == e1000_phy_i217) ||
5712 	    (hw->phy.type == e1000_phy_82577)) {
5713 		ret_val = hw->phy.ops.acquire(hw);
5714 		if (ret_val)
5715 			return;
5716 		ret_val = hw->phy.ops.set_page(hw,
5717 					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
5718 		if (ret_val)
5719 			goto release;
5720 		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5721 		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5722 		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5723 		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5724 		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5725 		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5726 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5727 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5728 		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5729 		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5730 		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5731 		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5732 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5733 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5734 release:
5735 		hw->phy.ops.release(hw);
5736 	}
5737 }
5738 
5739 static const struct e1000_mac_operations ich8_mac_ops = {
5740 	/* check_mng_mode dependent on mac type */
5741 	.check_for_link		= e1000_check_for_copper_link_ich8lan,
5742 	/* cleanup_led dependent on mac type */
5743 	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
5744 	.get_bus_info		= e1000_get_bus_info_ich8lan,
5745 	.set_lan_id		= e1000_set_lan_id_single_port,
5746 	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
5747 	/* led_on dependent on mac type */
5748 	/* led_off dependent on mac type */
5749 	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
5750 	.reset_hw		= e1000_reset_hw_ich8lan,
5751 	.init_hw		= e1000_init_hw_ich8lan,
5752 	.setup_link		= e1000_setup_link_ich8lan,
5753 	.setup_physical_interface = e1000_setup_copper_link_ich8lan,
5754 	/* id_led_init dependent on mac type */
5755 	.config_collision_dist	= e1000e_config_collision_dist_generic,
5756 	.rar_set		= e1000e_rar_set_generic,
5757 	.rar_get_count		= e1000e_rar_get_count_generic,
5758 };
5759 
5760 static const struct e1000_phy_operations ich8_phy_ops = {
5761 	.acquire		= e1000_acquire_swflag_ich8lan,
5762 	.check_reset_block	= e1000_check_reset_block_ich8lan,
5763 	.commit			= NULL,
5764 	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
5765 	.get_cable_length	= e1000e_get_cable_length_igp_2,
5766 	.read_reg		= e1000e_read_phy_reg_igp,
5767 	.release		= e1000_release_swflag_ich8lan,
5768 	.reset			= e1000_phy_hw_reset_ich8lan,
5769 	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
5770 	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
5771 	.write_reg		= e1000e_write_phy_reg_igp,
5772 };
5773 
5774 static const struct e1000_nvm_operations ich8_nvm_ops = {
5775 	.acquire		= e1000_acquire_nvm_ich8lan,
5776 	.read			= e1000_read_nvm_ich8lan,
5777 	.release		= e1000_release_nvm_ich8lan,
5778 	.reload			= e1000e_reload_nvm_generic,
5779 	.update			= e1000_update_nvm_checksum_ich8lan,
5780 	.valid_led_default	= e1000_valid_led_default_ich8lan,
5781 	.validate		= e1000_validate_nvm_checksum_ich8lan,
5782 	.write			= e1000_write_nvm_ich8lan,
5783 };
5784 
5785 static const struct e1000_nvm_operations spt_nvm_ops = {
5786 	.acquire		= e1000_acquire_nvm_ich8lan,
5787 	.release		= e1000_release_nvm_ich8lan,
5788 	.read			= e1000_read_nvm_spt,
5789 	.update			= e1000_update_nvm_checksum_spt,
5790 	.reload			= e1000e_reload_nvm_generic,
5791 	.valid_led_default	= e1000_valid_led_default_ich8lan,
5792 	.validate		= e1000_validate_nvm_checksum_ich8lan,
5793 	.write			= e1000_write_nvm_ich8lan,
5794 };
5795 
5796 const struct e1000_info e1000_ich8_info = {
5797 	.mac			= e1000_ich8lan,
5798 	.flags			= FLAG_HAS_WOL
5799 				  | FLAG_IS_ICH
5800 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5801 				  | FLAG_HAS_AMT
5802 				  | FLAG_HAS_FLASH
5803 				  | FLAG_APME_IN_WUC,
5804 	.pba			= 8,
5805 	.max_hw_frame_size	= VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
5806 	.get_variants		= e1000_get_variants_ich8lan,
5807 	.mac_ops		= &ich8_mac_ops,
5808 	.phy_ops		= &ich8_phy_ops,
5809 	.nvm_ops		= &ich8_nvm_ops,
5810 };
5811 
5812 const struct e1000_info e1000_ich9_info = {
5813 	.mac			= e1000_ich9lan,
5814 	.flags			= FLAG_HAS_JUMBO_FRAMES
5815 				  | FLAG_IS_ICH
5816 				  | FLAG_HAS_WOL
5817 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5818 				  | FLAG_HAS_AMT
5819 				  | FLAG_HAS_FLASH
5820 				  | FLAG_APME_IN_WUC,
5821 	.pba			= 18,
5822 	.max_hw_frame_size	= DEFAULT_JUMBO,
5823 	.get_variants		= e1000_get_variants_ich8lan,
5824 	.mac_ops		= &ich8_mac_ops,
5825 	.phy_ops		= &ich8_phy_ops,
5826 	.nvm_ops		= &ich8_nvm_ops,
5827 };
5828 
5829 const struct e1000_info e1000_ich10_info = {
5830 	.mac			= e1000_ich10lan,
5831 	.flags			= FLAG_HAS_JUMBO_FRAMES
5832 				  | FLAG_IS_ICH
5833 				  | FLAG_HAS_WOL
5834 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5835 				  | FLAG_HAS_AMT
5836 				  | FLAG_HAS_FLASH
5837 				  | FLAG_APME_IN_WUC,
5838 	.pba			= 18,
5839 	.max_hw_frame_size	= DEFAULT_JUMBO,
5840 	.get_variants		= e1000_get_variants_ich8lan,
5841 	.mac_ops		= &ich8_mac_ops,
5842 	.phy_ops		= &ich8_phy_ops,
5843 	.nvm_ops		= &ich8_nvm_ops,
5844 };
5845 
5846 const struct e1000_info e1000_pch_info = {
5847 	.mac			= e1000_pchlan,
5848 	.flags			= FLAG_IS_ICH
5849 				  | FLAG_HAS_WOL
5850 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5851 				  | FLAG_HAS_AMT
5852 				  | FLAG_HAS_FLASH
5853 				  | FLAG_HAS_JUMBO_FRAMES
5854 				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
5855 				  | FLAG_APME_IN_WUC,
5856 	.flags2			= FLAG2_HAS_PHY_STATS,
5857 	.pba			= 26,
5858 	.max_hw_frame_size	= 4096,
5859 	.get_variants		= e1000_get_variants_ich8lan,
5860 	.mac_ops		= &ich8_mac_ops,
5861 	.phy_ops		= &ich8_phy_ops,
5862 	.nvm_ops		= &ich8_nvm_ops,
5863 };
5864 
5865 const struct e1000_info e1000_pch2_info = {
5866 	.mac			= e1000_pch2lan,
5867 	.flags			= FLAG_IS_ICH
5868 				  | FLAG_HAS_WOL
5869 				  | FLAG_HAS_HW_TIMESTAMP
5870 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5871 				  | FLAG_HAS_AMT
5872 				  | FLAG_HAS_FLASH
5873 				  | FLAG_HAS_JUMBO_FRAMES
5874 				  | FLAG_APME_IN_WUC,
5875 	.flags2			= FLAG2_HAS_PHY_STATS
5876 				  | FLAG2_HAS_EEE
5877 				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
5878 	.pba			= 26,
5879 	.max_hw_frame_size	= 9022,
5880 	.get_variants		= e1000_get_variants_ich8lan,
5881 	.mac_ops		= &ich8_mac_ops,
5882 	.phy_ops		= &ich8_phy_ops,
5883 	.nvm_ops		= &ich8_nvm_ops,
5884 };
5885 
5886 const struct e1000_info e1000_pch_lpt_info = {
5887 	.mac			= e1000_pch_lpt,
5888 	.flags			= FLAG_IS_ICH
5889 				  | FLAG_HAS_WOL
5890 				  | FLAG_HAS_HW_TIMESTAMP
5891 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5892 				  | FLAG_HAS_AMT
5893 				  | FLAG_HAS_FLASH
5894 				  | FLAG_HAS_JUMBO_FRAMES
5895 				  | FLAG_APME_IN_WUC,
5896 	.flags2			= FLAG2_HAS_PHY_STATS
5897 				  | FLAG2_HAS_EEE
5898 				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
5899 	.pba			= 26,
5900 	.max_hw_frame_size	= 9022,
5901 	.get_variants		= e1000_get_variants_ich8lan,
5902 	.mac_ops		= &ich8_mac_ops,
5903 	.phy_ops		= &ich8_phy_ops,
5904 	.nvm_ops		= &ich8_nvm_ops,
5905 };
5906 
5907 const struct e1000_info e1000_pch_spt_info = {
5908 	.mac			= e1000_pch_spt,
5909 	.flags			= FLAG_IS_ICH
5910 				  | FLAG_HAS_WOL
5911 				  | FLAG_HAS_HW_TIMESTAMP
5912 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5913 				  | FLAG_HAS_AMT
5914 				  | FLAG_HAS_FLASH
5915 				  | FLAG_HAS_JUMBO_FRAMES
5916 				  | FLAG_APME_IN_WUC,
5917 	.flags2			= FLAG2_HAS_PHY_STATS
5918 				  | FLAG2_HAS_EEE,
5919 	.pba			= 26,
5920 	.max_hw_frame_size	= 9022,
5921 	.get_variants		= e1000_get_variants_ich8lan,
5922 	.mac_ops		= &ich8_mac_ops,
5923 	.phy_ops		= &ich8_phy_ops,
5924 	.nvm_ops		= &spt_nvm_ops,
5925 };
5926 
5927 const struct e1000_info e1000_pch_cnp_info = {
5928 	.mac			= e1000_pch_cnp,
5929 	.flags			= FLAG_IS_ICH
5930 				  | FLAG_HAS_WOL
5931 				  | FLAG_HAS_HW_TIMESTAMP
5932 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5933 				  | FLAG_HAS_AMT
5934 				  | FLAG_HAS_FLASH
5935 				  | FLAG_HAS_JUMBO_FRAMES
5936 				  | FLAG_APME_IN_WUC,
5937 	.flags2			= FLAG2_HAS_PHY_STATS
5938 				  | FLAG2_HAS_EEE,
5939 	.pba			= 26,
5940 	.max_hw_frame_size	= 9022,
5941 	.get_variants		= e1000_get_variants_ich8lan,
5942 	.mac_ops		= &ich8_mac_ops,
5943 	.phy_ops		= &ich8_phy_ops,
5944 	.nvm_ops		= &spt_nvm_ops,
5945 };
5946