1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3 
4 /* 82562G 10/100 Network Connection
5  * 82562G-2 10/100 Network Connection
6  * 82562GT 10/100 Network Connection
7  * 82562GT-2 10/100 Network Connection
8  * 82562V 10/100 Network Connection
9  * 82562V-2 10/100 Network Connection
10  * 82566DC-2 Gigabit Network Connection
11  * 82566DC Gigabit Network Connection
12  * 82566DM-2 Gigabit Network Connection
13  * 82566DM Gigabit Network Connection
14  * 82566MC Gigabit Network Connection
15  * 82566MM Gigabit Network Connection
16  * 82567LM Gigabit Network Connection
17  * 82567LF Gigabit Network Connection
18  * 82567V Gigabit Network Connection
19  * 82567LM-2 Gigabit Network Connection
20  * 82567LF-2 Gigabit Network Connection
21  * 82567V-2 Gigabit Network Connection
22  * 82567LF-3 Gigabit Network Connection
23  * 82567LM-3 Gigabit Network Connection
24  * 82567LM-4 Gigabit Network Connection
25  * 82577LM Gigabit Network Connection
26  * 82577LC Gigabit Network Connection
27  * 82578DM Gigabit Network Connection
28  * 82578DC Gigabit Network Connection
29  * 82579LM Gigabit Network Connection
30  * 82579V Gigabit Network Connection
31  * Ethernet Connection I217-LM
32  * Ethernet Connection I217-V
33  * Ethernet Connection I218-V
34  * Ethernet Connection I218-LM
35  * Ethernet Connection (2) I218-LM
36  * Ethernet Connection (2) I218-V
37  * Ethernet Connection (3) I218-LM
38  * Ethernet Connection (3) I218-V
39  */
40 
41 #include "e1000.h"
42 
43 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
44 /* Offset 04h HSFSTS */
45 union ich8_hws_flash_status {
46 	struct ich8_hsfsts {
47 		u16 flcdone:1;	/* bit 0 Flash Cycle Done */
48 		u16 flcerr:1;	/* bit 1 Flash Cycle Error */
49 		u16 dael:1;	/* bit 2 Direct Access error Log */
50 		u16 berasesz:2;	/* bit 4:3 Sector Erase Size */
51 		u16 flcinprog:1;	/* bit 5 flash cycle in Progress */
52 		u16 reserved1:2;	/* bit 13:6 Reserved */
53 		u16 reserved2:6;	/* bit 13:6 Reserved */
54 		u16 fldesvalid:1;	/* bit 14 Flash Descriptor Valid */
55 		u16 flockdn:1;	/* bit 15 Flash Config Lock-Down */
56 	} hsf_status;
57 	u16 regval;
58 };
59 
60 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
61 /* Offset 06h FLCTL */
62 union ich8_hws_flash_ctrl {
63 	struct ich8_hsflctl {
64 		u16 flcgo:1;	/* 0 Flash Cycle Go */
65 		u16 flcycle:2;	/* 2:1 Flash Cycle */
66 		u16 reserved:5;	/* 7:3 Reserved  */
67 		u16 fldbcount:2;	/* 9:8 Flash Data Byte Count */
68 		u16 flockdn:6;	/* 15:10 Reserved */
69 	} hsf_ctrl;
70 	u16 regval;
71 };
72 
73 /* ICH Flash Region Access Permissions */
74 union ich8_hws_flash_regacc {
75 	struct ich8_flracc {
76 		u32 grra:8;	/* 0:7 GbE region Read Access */
77 		u32 grwa:8;	/* 8:15 GbE region Write Access */
78 		u32 gmrag:8;	/* 23:16 GbE Master Read Access Grant */
79 		u32 gmwag:8;	/* 31:24 GbE Master Write Access Grant */
80 	} hsf_flregacc;
81 	u16 regval;
82 };
83 
84 /* ICH Flash Protected Region */
85 union ich8_flash_protected_range {
86 	struct ich8_pr {
87 		u32 base:13;	/* 0:12 Protected Range Base */
88 		u32 reserved1:2;	/* 13:14 Reserved */
89 		u32 rpe:1;	/* 15 Read Protection Enable */
90 		u32 limit:13;	/* 16:28 Protected Range Limit */
91 		u32 reserved2:2;	/* 29:30 Reserved */
92 		u32 wpe:1;	/* 31 Write Protection Enable */
93 	} range;
94 	u32 regval;
95 };
96 
97 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
98 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
99 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
100 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
101 						u32 offset, u8 byte);
102 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
103 					 u8 *data);
104 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
105 					 u16 *data);
106 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
107 					 u8 size, u16 *data);
108 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
109 					   u32 *data);
110 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
111 					  u32 offset, u32 *data);
112 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
113 					    u32 offset, u32 data);
114 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
115 						 u32 offset, u32 dword);
116 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
117 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
118 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
119 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
120 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
121 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
122 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
123 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
124 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
125 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
126 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
127 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
128 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
129 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
130 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
131 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
132 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
133 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
134 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw);
135 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
136 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
137 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
138 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
139 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
140 
141 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
142 {
143 	return readw(hw->flash_address + reg);
144 }
145 
146 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
147 {
148 	return readl(hw->flash_address + reg);
149 }
150 
151 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
152 {
153 	writew(val, hw->flash_address + reg);
154 }
155 
156 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
157 {
158 	writel(val, hw->flash_address + reg);
159 }
160 
161 #define er16flash(reg)		__er16flash(hw, (reg))
162 #define er32flash(reg)		__er32flash(hw, (reg))
163 #define ew16flash(reg, val)	__ew16flash(hw, (reg), (val))
164 #define ew32flash(reg, val)	__ew32flash(hw, (reg), (val))
165 
166 /**
167  *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
168  *  @hw: pointer to the HW structure
169  *
170  *  Test access to the PHY registers by reading the PHY ID registers.  If
171  *  the PHY ID is already known (e.g. resume path) compare it with known ID,
172  *  otherwise assume the read PHY ID is correct if it is valid.
173  *
174  *  Assumes the sw/fw/hw semaphore is already acquired.
175  **/
176 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
177 {
178 	u16 phy_reg = 0;
179 	u32 phy_id = 0;
180 	s32 ret_val = 0;
181 	u16 retry_count;
182 	u32 mac_reg = 0;
183 
184 	for (retry_count = 0; retry_count < 2; retry_count++) {
185 		ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
186 		if (ret_val || (phy_reg == 0xFFFF))
187 			continue;
188 		phy_id = (u32)(phy_reg << 16);
189 
190 		ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
191 		if (ret_val || (phy_reg == 0xFFFF)) {
192 			phy_id = 0;
193 			continue;
194 		}
195 		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
196 		break;
197 	}
198 
199 	if (hw->phy.id) {
200 		if (hw->phy.id == phy_id)
201 			goto out;
202 	} else if (phy_id) {
203 		hw->phy.id = phy_id;
204 		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
205 		goto out;
206 	}
207 
208 	/* In case the PHY needs to be in mdio slow mode,
209 	 * set slow mode and try to get the PHY id again.
210 	 */
211 	if (hw->mac.type < e1000_pch_lpt) {
212 		hw->phy.ops.release(hw);
213 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
214 		if (!ret_val)
215 			ret_val = e1000e_get_phy_id(hw);
216 		hw->phy.ops.acquire(hw);
217 	}
218 
219 	if (ret_val)
220 		return false;
221 out:
222 	if (hw->mac.type >= e1000_pch_lpt) {
223 		/* Only unforce SMBus if ME is not active */
224 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
225 			/* Unforce SMBus mode in PHY */
226 			e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
227 			phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
228 			e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
229 
230 			/* Unforce SMBus mode in MAC */
231 			mac_reg = er32(CTRL_EXT);
232 			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
233 			ew32(CTRL_EXT, mac_reg);
234 		}
235 	}
236 
237 	return true;
238 }
239 
240 /**
241  *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
242  *  @hw: pointer to the HW structure
243  *
244  *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
245  *  used to reset the PHY to a quiescent state when necessary.
246  **/
247 static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
248 {
249 	u32 mac_reg;
250 
251 	/* Set Phy Config Counter to 50msec */
252 	mac_reg = er32(FEXTNVM3);
253 	mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
254 	mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
255 	ew32(FEXTNVM3, mac_reg);
256 
257 	/* Toggle LANPHYPC Value bit */
258 	mac_reg = er32(CTRL);
259 	mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
260 	mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
261 	ew32(CTRL, mac_reg);
262 	e1e_flush();
263 	usleep_range(10, 20);
264 	mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
265 	ew32(CTRL, mac_reg);
266 	e1e_flush();
267 
268 	if (hw->mac.type < e1000_pch_lpt) {
269 		msleep(50);
270 	} else {
271 		u16 count = 20;
272 
273 		do {
274 			usleep_range(5000, 6000);
275 		} while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
276 
277 		msleep(30);
278 	}
279 }
280 
281 /**
282  *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
283  *  @hw: pointer to the HW structure
284  *
285  *  Workarounds/flow necessary for PHY initialization during driver load
286  *  and resume paths.
287  **/
288 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
289 {
290 	struct e1000_adapter *adapter = hw->adapter;
291 	u32 mac_reg, fwsm = er32(FWSM);
292 	s32 ret_val;
293 
294 	/* Gate automatic PHY configuration by hardware on managed and
295 	 * non-managed 82579 and newer adapters.
296 	 */
297 	e1000_gate_hw_phy_config_ich8lan(hw, true);
298 
299 	/* It is not possible to be certain of the current state of ULP
300 	 * so forcibly disable it.
301 	 */
302 	hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
303 	e1000_disable_ulp_lpt_lp(hw, true);
304 
305 	ret_val = hw->phy.ops.acquire(hw);
306 	if (ret_val) {
307 		e_dbg("Failed to initialize PHY flow\n");
308 		goto out;
309 	}
310 
311 	/* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
312 	 * inaccessible and resetting the PHY is not blocked, toggle the
313 	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
314 	 */
315 	switch (hw->mac.type) {
316 	case e1000_pch_lpt:
317 	case e1000_pch_spt:
318 	case e1000_pch_cnp:
319 		if (e1000_phy_is_accessible_pchlan(hw))
320 			break;
321 
322 		/* Before toggling LANPHYPC, see if PHY is accessible by
323 		 * forcing MAC to SMBus mode first.
324 		 */
325 		mac_reg = er32(CTRL_EXT);
326 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
327 		ew32(CTRL_EXT, mac_reg);
328 
329 		/* Wait 50 milliseconds for MAC to finish any retries
330 		 * that it might be trying to perform from previous
331 		 * attempts to acknowledge any phy read requests.
332 		 */
333 		msleep(50);
334 
335 		/* fall-through */
336 	case e1000_pch2lan:
337 		if (e1000_phy_is_accessible_pchlan(hw))
338 			break;
339 
340 		/* fall-through */
341 	case e1000_pchlan:
342 		if ((hw->mac.type == e1000_pchlan) &&
343 		    (fwsm & E1000_ICH_FWSM_FW_VALID))
344 			break;
345 
346 		if (hw->phy.ops.check_reset_block(hw)) {
347 			e_dbg("Required LANPHYPC toggle blocked by ME\n");
348 			ret_val = -E1000_ERR_PHY;
349 			break;
350 		}
351 
352 		/* Toggle LANPHYPC Value bit */
353 		e1000_toggle_lanphypc_pch_lpt(hw);
354 		if (hw->mac.type >= e1000_pch_lpt) {
355 			if (e1000_phy_is_accessible_pchlan(hw))
356 				break;
357 
358 			/* Toggling LANPHYPC brings the PHY out of SMBus mode
359 			 * so ensure that the MAC is also out of SMBus mode
360 			 */
361 			mac_reg = er32(CTRL_EXT);
362 			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
363 			ew32(CTRL_EXT, mac_reg);
364 
365 			if (e1000_phy_is_accessible_pchlan(hw))
366 				break;
367 
368 			ret_val = -E1000_ERR_PHY;
369 		}
370 		break;
371 	default:
372 		break;
373 	}
374 
375 	hw->phy.ops.release(hw);
376 	if (!ret_val) {
377 
378 		/* Check to see if able to reset PHY.  Print error if not */
379 		if (hw->phy.ops.check_reset_block(hw)) {
380 			e_err("Reset blocked by ME\n");
381 			goto out;
382 		}
383 
384 		/* Reset the PHY before any access to it.  Doing so, ensures
385 		 * that the PHY is in a known good state before we read/write
386 		 * PHY registers.  The generic reset is sufficient here,
387 		 * because we haven't determined the PHY type yet.
388 		 */
389 		ret_val = e1000e_phy_hw_reset_generic(hw);
390 		if (ret_val)
391 			goto out;
392 
393 		/* On a successful reset, possibly need to wait for the PHY
394 		 * to quiesce to an accessible state before returning control
395 		 * to the calling function.  If the PHY does not quiesce, then
396 		 * return E1000E_BLK_PHY_RESET, as this is the condition that
397 		 *  the PHY is in.
398 		 */
399 		ret_val = hw->phy.ops.check_reset_block(hw);
400 		if (ret_val)
401 			e_err("ME blocked access to PHY after reset\n");
402 	}
403 
404 out:
405 	/* Ungate automatic PHY configuration on non-managed 82579 */
406 	if ((hw->mac.type == e1000_pch2lan) &&
407 	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
408 		usleep_range(10000, 11000);
409 		e1000_gate_hw_phy_config_ich8lan(hw, false);
410 	}
411 
412 	return ret_val;
413 }
414 
415 /**
416  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
417  *  @hw: pointer to the HW structure
418  *
419  *  Initialize family-specific PHY parameters and function pointers.
420  **/
421 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
422 {
423 	struct e1000_phy_info *phy = &hw->phy;
424 	s32 ret_val;
425 
426 	phy->addr = 1;
427 	phy->reset_delay_us = 100;
428 
429 	phy->ops.set_page = e1000_set_page_igp;
430 	phy->ops.read_reg = e1000_read_phy_reg_hv;
431 	phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
432 	phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
433 	phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
434 	phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
435 	phy->ops.write_reg = e1000_write_phy_reg_hv;
436 	phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
437 	phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
438 	phy->ops.power_up = e1000_power_up_phy_copper;
439 	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
440 	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
441 
442 	phy->id = e1000_phy_unknown;
443 
444 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
445 	if (ret_val)
446 		return ret_val;
447 
448 	if (phy->id == e1000_phy_unknown)
449 		switch (hw->mac.type) {
450 		default:
451 			ret_val = e1000e_get_phy_id(hw);
452 			if (ret_val)
453 				return ret_val;
454 			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
455 				break;
456 			/* fall-through */
457 		case e1000_pch2lan:
458 		case e1000_pch_lpt:
459 		case e1000_pch_spt:
460 		case e1000_pch_cnp:
461 			/* In case the PHY needs to be in mdio slow mode,
462 			 * set slow mode and try to get the PHY id again.
463 			 */
464 			ret_val = e1000_set_mdio_slow_mode_hv(hw);
465 			if (ret_val)
466 				return ret_val;
467 			ret_val = e1000e_get_phy_id(hw);
468 			if (ret_val)
469 				return ret_val;
470 			break;
471 		}
472 	phy->type = e1000e_get_phy_type_from_id(phy->id);
473 
474 	switch (phy->type) {
475 	case e1000_phy_82577:
476 	case e1000_phy_82579:
477 	case e1000_phy_i217:
478 		phy->ops.check_polarity = e1000_check_polarity_82577;
479 		phy->ops.force_speed_duplex =
480 		    e1000_phy_force_speed_duplex_82577;
481 		phy->ops.get_cable_length = e1000_get_cable_length_82577;
482 		phy->ops.get_info = e1000_get_phy_info_82577;
483 		phy->ops.commit = e1000e_phy_sw_reset;
484 		break;
485 	case e1000_phy_82578:
486 		phy->ops.check_polarity = e1000_check_polarity_m88;
487 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
488 		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
489 		phy->ops.get_info = e1000e_get_phy_info_m88;
490 		break;
491 	default:
492 		ret_val = -E1000_ERR_PHY;
493 		break;
494 	}
495 
496 	return ret_val;
497 }
498 
499 /**
500  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
501  *  @hw: pointer to the HW structure
502  *
503  *  Initialize family-specific PHY parameters and function pointers.
504  **/
505 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
506 {
507 	struct e1000_phy_info *phy = &hw->phy;
508 	s32 ret_val;
509 	u16 i = 0;
510 
511 	phy->addr = 1;
512 	phy->reset_delay_us = 100;
513 
514 	phy->ops.power_up = e1000_power_up_phy_copper;
515 	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
516 
517 	/* We may need to do this twice - once for IGP and if that fails,
518 	 * we'll set BM func pointers and try again
519 	 */
520 	ret_val = e1000e_determine_phy_address(hw);
521 	if (ret_val) {
522 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
523 		phy->ops.read_reg = e1000e_read_phy_reg_bm;
524 		ret_val = e1000e_determine_phy_address(hw);
525 		if (ret_val) {
526 			e_dbg("Cannot determine PHY addr. Erroring out\n");
527 			return ret_val;
528 		}
529 	}
530 
531 	phy->id = 0;
532 	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
533 	       (i++ < 100)) {
534 		usleep_range(1000, 1100);
535 		ret_val = e1000e_get_phy_id(hw);
536 		if (ret_val)
537 			return ret_val;
538 	}
539 
540 	/* Verify phy id */
541 	switch (phy->id) {
542 	case IGP03E1000_E_PHY_ID:
543 		phy->type = e1000_phy_igp_3;
544 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
545 		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
546 		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
547 		phy->ops.get_info = e1000e_get_phy_info_igp;
548 		phy->ops.check_polarity = e1000_check_polarity_igp;
549 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
550 		break;
551 	case IFE_E_PHY_ID:
552 	case IFE_PLUS_E_PHY_ID:
553 	case IFE_C_E_PHY_ID:
554 		phy->type = e1000_phy_ife;
555 		phy->autoneg_mask = E1000_ALL_NOT_GIG;
556 		phy->ops.get_info = e1000_get_phy_info_ife;
557 		phy->ops.check_polarity = e1000_check_polarity_ife;
558 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
559 		break;
560 	case BME1000_E_PHY_ID:
561 		phy->type = e1000_phy_bm;
562 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
563 		phy->ops.read_reg = e1000e_read_phy_reg_bm;
564 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
565 		phy->ops.commit = e1000e_phy_sw_reset;
566 		phy->ops.get_info = e1000e_get_phy_info_m88;
567 		phy->ops.check_polarity = e1000_check_polarity_m88;
568 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
569 		break;
570 	default:
571 		return -E1000_ERR_PHY;
572 	}
573 
574 	return 0;
575 }
576 
577 /**
578  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
579  *  @hw: pointer to the HW structure
580  *
581  *  Initialize family-specific NVM parameters and function
582  *  pointers.
583  **/
584 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
585 {
586 	struct e1000_nvm_info *nvm = &hw->nvm;
587 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
588 	u32 gfpreg, sector_base_addr, sector_end_addr;
589 	u16 i;
590 	u32 nvm_size;
591 
592 	nvm->type = e1000_nvm_flash_sw;
593 
594 	if (hw->mac.type >= e1000_pch_spt) {
595 		/* in SPT, gfpreg doesn't exist. NVM size is taken from the
596 		 * STRAP register. This is because in SPT the GbE Flash region
597 		 * is no longer accessed through the flash registers. Instead,
598 		 * the mechanism has changed, and the Flash region access
599 		 * registers are now implemented in GbE memory space.
600 		 */
601 		nvm->flash_base_addr = 0;
602 		nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1)
603 		    * NVM_SIZE_MULTIPLIER;
604 		nvm->flash_bank_size = nvm_size / 2;
605 		/* Adjust to word count */
606 		nvm->flash_bank_size /= sizeof(u16);
607 		/* Set the base address for flash register access */
608 		hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
609 	} else {
610 		/* Can't read flash registers if register set isn't mapped. */
611 		if (!hw->flash_address) {
612 			e_dbg("ERROR: Flash registers not mapped\n");
613 			return -E1000_ERR_CONFIG;
614 		}
615 
616 		gfpreg = er32flash(ICH_FLASH_GFPREG);
617 
618 		/* sector_X_addr is a "sector"-aligned address (4096 bytes)
619 		 * Add 1 to sector_end_addr since this sector is included in
620 		 * the overall size.
621 		 */
622 		sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
623 		sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
624 
625 		/* flash_base_addr is byte-aligned */
626 		nvm->flash_base_addr = sector_base_addr
627 		    << FLASH_SECTOR_ADDR_SHIFT;
628 
629 		/* find total size of the NVM, then cut in half since the total
630 		 * size represents two separate NVM banks.
631 		 */
632 		nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
633 					<< FLASH_SECTOR_ADDR_SHIFT);
634 		nvm->flash_bank_size /= 2;
635 		/* Adjust to word count */
636 		nvm->flash_bank_size /= sizeof(u16);
637 	}
638 
639 	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
640 
641 	/* Clear shadow ram */
642 	for (i = 0; i < nvm->word_size; i++) {
643 		dev_spec->shadow_ram[i].modified = false;
644 		dev_spec->shadow_ram[i].value = 0xFFFF;
645 	}
646 
647 	return 0;
648 }
649 
650 /**
651  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
652  *  @hw: pointer to the HW structure
653  *
654  *  Initialize family-specific MAC parameters and function
655  *  pointers.
656  **/
657 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
658 {
659 	struct e1000_mac_info *mac = &hw->mac;
660 
661 	/* Set media type function pointer */
662 	hw->phy.media_type = e1000_media_type_copper;
663 
664 	/* Set mta register count */
665 	mac->mta_reg_count = 32;
666 	/* Set rar entry count */
667 	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
668 	if (mac->type == e1000_ich8lan)
669 		mac->rar_entry_count--;
670 	/* FWSM register */
671 	mac->has_fwsm = true;
672 	/* ARC subsystem not supported */
673 	mac->arc_subsystem_valid = false;
674 	/* Adaptive IFS supported */
675 	mac->adaptive_ifs = true;
676 
677 	/* LED and other operations */
678 	switch (mac->type) {
679 	case e1000_ich8lan:
680 	case e1000_ich9lan:
681 	case e1000_ich10lan:
682 		/* check management mode */
683 		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
684 		/* ID LED init */
685 		mac->ops.id_led_init = e1000e_id_led_init_generic;
686 		/* blink LED */
687 		mac->ops.blink_led = e1000e_blink_led_generic;
688 		/* setup LED */
689 		mac->ops.setup_led = e1000e_setup_led_generic;
690 		/* cleanup LED */
691 		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
692 		/* turn on/off LED */
693 		mac->ops.led_on = e1000_led_on_ich8lan;
694 		mac->ops.led_off = e1000_led_off_ich8lan;
695 		break;
696 	case e1000_pch2lan:
697 		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
698 		mac->ops.rar_set = e1000_rar_set_pch2lan;
699 		/* fall-through */
700 	case e1000_pch_lpt:
701 	case e1000_pch_spt:
702 	case e1000_pch_cnp:
703 	case e1000_pchlan:
704 		/* check management mode */
705 		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
706 		/* ID LED init */
707 		mac->ops.id_led_init = e1000_id_led_init_pchlan;
708 		/* setup LED */
709 		mac->ops.setup_led = e1000_setup_led_pchlan;
710 		/* cleanup LED */
711 		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
712 		/* turn on/off LED */
713 		mac->ops.led_on = e1000_led_on_pchlan;
714 		mac->ops.led_off = e1000_led_off_pchlan;
715 		break;
716 	default:
717 		break;
718 	}
719 
720 	if (mac->type >= e1000_pch_lpt) {
721 		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
722 		mac->ops.rar_set = e1000_rar_set_pch_lpt;
723 		mac->ops.setup_physical_interface =
724 		    e1000_setup_copper_link_pch_lpt;
725 		mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt;
726 	}
727 
728 	/* Enable PCS Lock-loss workaround for ICH8 */
729 	if (mac->type == e1000_ich8lan)
730 		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
731 
732 	return 0;
733 }
734 
735 /**
736  *  __e1000_access_emi_reg_locked - Read/write EMI register
737  *  @hw: pointer to the HW structure
738  *  @addr: EMI address to program
739  *  @data: pointer to value to read/write from/to the EMI address
740  *  @read: boolean flag to indicate read or write
741  *
742  *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
743  **/
744 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
745 					 u16 *data, bool read)
746 {
747 	s32 ret_val;
748 
749 	ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
750 	if (ret_val)
751 		return ret_val;
752 
753 	if (read)
754 		ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
755 	else
756 		ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
757 
758 	return ret_val;
759 }
760 
761 /**
762  *  e1000_read_emi_reg_locked - Read Extended Management Interface register
763  *  @hw: pointer to the HW structure
764  *  @addr: EMI address to program
765  *  @data: value to be read from the EMI address
766  *
767  *  Assumes the SW/FW/HW Semaphore is already acquired.
768  **/
769 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
770 {
771 	return __e1000_access_emi_reg_locked(hw, addr, data, true);
772 }
773 
774 /**
775  *  e1000_write_emi_reg_locked - Write Extended Management Interface register
776  *  @hw: pointer to the HW structure
777  *  @addr: EMI address to program
778  *  @data: value to be written to the EMI address
779  *
780  *  Assumes the SW/FW/HW Semaphore is already acquired.
781  **/
782 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
783 {
784 	return __e1000_access_emi_reg_locked(hw, addr, &data, false);
785 }
786 
787 /**
788  *  e1000_set_eee_pchlan - Enable/disable EEE support
789  *  @hw: pointer to the HW structure
790  *
791  *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
792  *  the link and the EEE capabilities of the link partner.  The LPI Control
793  *  register bits will remain set only if/when link is up.
794  *
795  *  EEE LPI must not be asserted earlier than one second after link is up.
796  *  On 82579, EEE LPI should not be enabled until such time otherwise there
797  *  can be link issues with some switches.  Other devices can have EEE LPI
798  *  enabled immediately upon link up since they have a timer in hardware which
799  *  prevents LPI from being asserted too early.
800  **/
801 s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
802 {
803 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
804 	s32 ret_val;
805 	u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
806 
807 	switch (hw->phy.type) {
808 	case e1000_phy_82579:
809 		lpa = I82579_EEE_LP_ABILITY;
810 		pcs_status = I82579_EEE_PCS_STATUS;
811 		adv_addr = I82579_EEE_ADVERTISEMENT;
812 		break;
813 	case e1000_phy_i217:
814 		lpa = I217_EEE_LP_ABILITY;
815 		pcs_status = I217_EEE_PCS_STATUS;
816 		adv_addr = I217_EEE_ADVERTISEMENT;
817 		break;
818 	default:
819 		return 0;
820 	}
821 
822 	ret_val = hw->phy.ops.acquire(hw);
823 	if (ret_val)
824 		return ret_val;
825 
826 	ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
827 	if (ret_val)
828 		goto release;
829 
830 	/* Clear bits that enable EEE in various speeds */
831 	lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
832 
833 	/* Enable EEE if not disabled by user */
834 	if (!dev_spec->eee_disable) {
835 		/* Save off link partner's EEE ability */
836 		ret_val = e1000_read_emi_reg_locked(hw, lpa,
837 						    &dev_spec->eee_lp_ability);
838 		if (ret_val)
839 			goto release;
840 
841 		/* Read EEE advertisement */
842 		ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
843 		if (ret_val)
844 			goto release;
845 
846 		/* Enable EEE only for speeds in which the link partner is
847 		 * EEE capable and for which we advertise EEE.
848 		 */
849 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
850 			lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
851 
852 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
853 			e1e_rphy_locked(hw, MII_LPA, &data);
854 			if (data & LPA_100FULL)
855 				lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
856 			else
857 				/* EEE is not supported in 100Half, so ignore
858 				 * partner's EEE in 100 ability if full-duplex
859 				 * is not advertised.
860 				 */
861 				dev_spec->eee_lp_ability &=
862 				    ~I82579_EEE_100_SUPPORTED;
863 		}
864 	}
865 
866 	if (hw->phy.type == e1000_phy_82579) {
867 		ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
868 						    &data);
869 		if (ret_val)
870 			goto release;
871 
872 		data &= ~I82579_LPI_100_PLL_SHUT;
873 		ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
874 						     data);
875 	}
876 
877 	/* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
878 	ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
879 	if (ret_val)
880 		goto release;
881 
882 	ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
883 release:
884 	hw->phy.ops.release(hw);
885 
886 	return ret_val;
887 }
888 
889 /**
890  *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
891  *  @hw:   pointer to the HW structure
892  *  @link: link up bool flag
893  *
894  *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
895  *  preventing further DMA write requests.  Workaround the issue by disabling
896  *  the de-assertion of the clock request when in 1Gpbs mode.
897  *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
898  *  speeds in order to avoid Tx hangs.
899  **/
900 static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
901 {
902 	u32 fextnvm6 = er32(FEXTNVM6);
903 	u32 status = er32(STATUS);
904 	s32 ret_val = 0;
905 	u16 reg;
906 
907 	if (link && (status & E1000_STATUS_SPEED_1000)) {
908 		ret_val = hw->phy.ops.acquire(hw);
909 		if (ret_val)
910 			return ret_val;
911 
912 		ret_val =
913 		    e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
914 						&reg);
915 		if (ret_val)
916 			goto release;
917 
918 		ret_val =
919 		    e1000e_write_kmrn_reg_locked(hw,
920 						 E1000_KMRNCTRLSTA_K1_CONFIG,
921 						 reg &
922 						 ~E1000_KMRNCTRLSTA_K1_ENABLE);
923 		if (ret_val)
924 			goto release;
925 
926 		usleep_range(10, 20);
927 
928 		ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
929 
930 		ret_val =
931 		    e1000e_write_kmrn_reg_locked(hw,
932 						 E1000_KMRNCTRLSTA_K1_CONFIG,
933 						 reg);
934 release:
935 		hw->phy.ops.release(hw);
936 	} else {
937 		/* clear FEXTNVM6 bit 8 on link down or 10/100 */
938 		fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
939 
940 		if ((hw->phy.revision > 5) || !link ||
941 		    ((status & E1000_STATUS_SPEED_100) &&
942 		     (status & E1000_STATUS_FD)))
943 			goto update_fextnvm6;
944 
945 		ret_val = e1e_rphy(hw, I217_INBAND_CTRL, &reg);
946 		if (ret_val)
947 			return ret_val;
948 
949 		/* Clear link status transmit timeout */
950 		reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
951 
952 		if (status & E1000_STATUS_SPEED_100) {
953 			/* Set inband Tx timeout to 5x10us for 100Half */
954 			reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
955 
956 			/* Do not extend the K1 entry latency for 100Half */
957 			fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
958 		} else {
959 			/* Set inband Tx timeout to 50x10us for 10Full/Half */
960 			reg |= 50 <<
961 			    I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
962 
963 			/* Extend the K1 entry latency for 10 Mbps */
964 			fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
965 		}
966 
967 		ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
968 		if (ret_val)
969 			return ret_val;
970 
971 update_fextnvm6:
972 		ew32(FEXTNVM6, fextnvm6);
973 	}
974 
975 	return ret_val;
976 }
977 
978 /**
979  *  e1000_platform_pm_pch_lpt - Set platform power management values
980  *  @hw: pointer to the HW structure
981  *  @link: bool indicating link status
982  *
983  *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
984  *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
985  *  when link is up (which must not exceed the maximum latency supported
986  *  by the platform), otherwise specify there is no LTR requirement.
987  *  Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
988  *  latencies in the LTR Extended Capability Structure in the PCIe Extended
989  *  Capability register set, on this device LTR is set by writing the
990  *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
991  *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
992  *  message to the PMC.
993  **/
994 static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
995 {
996 	u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
997 	    link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
998 	u16 lat_enc = 0;	/* latency encoded */
999 
1000 	if (link) {
1001 		u16 speed, duplex, scale = 0;
1002 		u16 max_snoop, max_nosnoop;
1003 		u16 max_ltr_enc;	/* max LTR latency encoded */
1004 		u64 value;
1005 		u32 rxa;
1006 
1007 		if (!hw->adapter->max_frame_size) {
1008 			e_dbg("max_frame_size not set.\n");
1009 			return -E1000_ERR_CONFIG;
1010 		}
1011 
1012 		hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1013 		if (!speed) {
1014 			e_dbg("Speed not set.\n");
1015 			return -E1000_ERR_CONFIG;
1016 		}
1017 
1018 		/* Rx Packet Buffer Allocation size (KB) */
1019 		rxa = er32(PBA) & E1000_PBA_RXA_MASK;
1020 
1021 		/* Determine the maximum latency tolerated by the device.
1022 		 *
1023 		 * Per the PCIe spec, the tolerated latencies are encoded as
1024 		 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1025 		 * a 10-bit value (0-1023) to provide a range from 1 ns to
1026 		 * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1027 		 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1028 		 */
1029 		rxa *= 512;
1030 		value = (rxa > hw->adapter->max_frame_size) ?
1031 			(rxa - hw->adapter->max_frame_size) * (16000 / speed) :
1032 			0;
1033 
1034 		while (value > PCI_LTR_VALUE_MASK) {
1035 			scale++;
1036 			value = DIV_ROUND_UP(value, BIT(5));
1037 		}
1038 		if (scale > E1000_LTRV_SCALE_MAX) {
1039 			e_dbg("Invalid LTR latency scale %d\n", scale);
1040 			return -E1000_ERR_CONFIG;
1041 		}
1042 		lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1043 
1044 		/* Determine the maximum latency tolerated by the platform */
1045 		pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1046 				     &max_snoop);
1047 		pci_read_config_word(hw->adapter->pdev,
1048 				     E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1049 		max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1050 
1051 		if (lat_enc > max_ltr_enc)
1052 			lat_enc = max_ltr_enc;
1053 	}
1054 
1055 	/* Set Snoop and No-Snoop latencies the same */
1056 	reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1057 	ew32(LTRV, reg);
1058 
1059 	return 0;
1060 }
1061 
1062 /**
1063  *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1064  *  @hw: pointer to the HW structure
1065  *  @to_sx: boolean indicating a system power state transition to Sx
1066  *
1067  *  When link is down, configure ULP mode to significantly reduce the power
1068  *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1069  *  ME firmware to start the ULP configuration.  If not on an ME enabled
1070  *  system, configure the ULP mode by software.
1071  */
1072 s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1073 {
1074 	u32 mac_reg;
1075 	s32 ret_val = 0;
1076 	u16 phy_reg;
1077 	u16 oem_reg = 0;
1078 
1079 	if ((hw->mac.type < e1000_pch_lpt) ||
1080 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1081 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1082 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1083 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1084 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1085 		return 0;
1086 
1087 	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1088 		/* Request ME configure ULP mode in the PHY */
1089 		mac_reg = er32(H2ME);
1090 		mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1091 		ew32(H2ME, mac_reg);
1092 
1093 		goto out;
1094 	}
1095 
1096 	if (!to_sx) {
1097 		int i = 0;
1098 
1099 		/* Poll up to 5 seconds for Cable Disconnected indication */
1100 		while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1101 			/* Bail if link is re-acquired */
1102 			if (er32(STATUS) & E1000_STATUS_LU)
1103 				return -E1000_ERR_PHY;
1104 
1105 			if (i++ == 100)
1106 				break;
1107 
1108 			msleep(50);
1109 		}
1110 		e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1111 		      (er32(FEXT) &
1112 		       E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1113 	}
1114 
1115 	ret_val = hw->phy.ops.acquire(hw);
1116 	if (ret_val)
1117 		goto out;
1118 
1119 	/* Force SMBus mode in PHY */
1120 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1121 	if (ret_val)
1122 		goto release;
1123 	phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1124 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1125 
1126 	/* Force SMBus mode in MAC */
1127 	mac_reg = er32(CTRL_EXT);
1128 	mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1129 	ew32(CTRL_EXT, mac_reg);
1130 
1131 	/* Si workaround for ULP entry flow on i127/rev6 h/w.  Enable
1132 	 * LPLU and disable Gig speed when entering ULP
1133 	 */
1134 	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1135 		ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1136 						       &oem_reg);
1137 		if (ret_val)
1138 			goto release;
1139 
1140 		phy_reg = oem_reg;
1141 		phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1142 
1143 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1144 							phy_reg);
1145 
1146 		if (ret_val)
1147 			goto release;
1148 	}
1149 
1150 	/* Set Inband ULP Exit, Reset to SMBus mode and
1151 	 * Disable SMBus Release on PERST# in PHY
1152 	 */
1153 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1154 	if (ret_val)
1155 		goto release;
1156 	phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1157 		    I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1158 	if (to_sx) {
1159 		if (er32(WUFC) & E1000_WUFC_LNKC)
1160 			phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1161 		else
1162 			phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1163 
1164 		phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1165 		phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1166 	} else {
1167 		phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1168 		phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1169 		phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1170 	}
1171 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1172 
1173 	/* Set Disable SMBus Release on PERST# in MAC */
1174 	mac_reg = er32(FEXTNVM7);
1175 	mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1176 	ew32(FEXTNVM7, mac_reg);
1177 
1178 	/* Commit ULP changes in PHY by starting auto ULP configuration */
1179 	phy_reg |= I218_ULP_CONFIG1_START;
1180 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1181 
1182 	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1183 	    to_sx && (er32(STATUS) & E1000_STATUS_LU)) {
1184 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1185 							oem_reg);
1186 		if (ret_val)
1187 			goto release;
1188 	}
1189 
1190 release:
1191 	hw->phy.ops.release(hw);
1192 out:
1193 	if (ret_val)
1194 		e_dbg("Error in ULP enable flow: %d\n", ret_val);
1195 	else
1196 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1197 
1198 	return ret_val;
1199 }
1200 
1201 /**
1202  *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1203  *  @hw: pointer to the HW structure
1204  *  @force: boolean indicating whether or not to force disabling ULP
1205  *
1206  *  Un-configure ULP mode when link is up, the system is transitioned from
1207  *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1208  *  system, poll for an indication from ME that ULP has been un-configured.
1209  *  If not on an ME enabled system, un-configure the ULP mode by software.
1210  *
1211  *  During nominal operation, this function is called when link is acquired
1212  *  to disable ULP mode (force=false); otherwise, for example when unloading
1213  *  the driver or during Sx->S0 transitions, this is called with force=true
1214  *  to forcibly disable ULP.
1215  */
1216 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1217 {
1218 	s32 ret_val = 0;
1219 	u32 mac_reg;
1220 	u16 phy_reg;
1221 	int i = 0;
1222 
1223 	if ((hw->mac.type < e1000_pch_lpt) ||
1224 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1225 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1226 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1227 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1228 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1229 		return 0;
1230 
1231 	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1232 		if (force) {
1233 			/* Request ME un-configure ULP mode in the PHY */
1234 			mac_reg = er32(H2ME);
1235 			mac_reg &= ~E1000_H2ME_ULP;
1236 			mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1237 			ew32(H2ME, mac_reg);
1238 		}
1239 
1240 		/* Poll up to 300msec for ME to clear ULP_CFG_DONE. */
1241 		while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1242 			if (i++ == 30) {
1243 				ret_val = -E1000_ERR_PHY;
1244 				goto out;
1245 			}
1246 
1247 			usleep_range(10000, 11000);
1248 		}
1249 		e_dbg("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10);
1250 
1251 		if (force) {
1252 			mac_reg = er32(H2ME);
1253 			mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1254 			ew32(H2ME, mac_reg);
1255 		} else {
1256 			/* Clear H2ME.ULP after ME ULP configuration */
1257 			mac_reg = er32(H2ME);
1258 			mac_reg &= ~E1000_H2ME_ULP;
1259 			ew32(H2ME, mac_reg);
1260 		}
1261 
1262 		goto out;
1263 	}
1264 
1265 	ret_val = hw->phy.ops.acquire(hw);
1266 	if (ret_val)
1267 		goto out;
1268 
1269 	if (force)
1270 		/* Toggle LANPHYPC Value bit */
1271 		e1000_toggle_lanphypc_pch_lpt(hw);
1272 
1273 	/* Unforce SMBus mode in PHY */
1274 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1275 	if (ret_val) {
1276 		/* The MAC might be in PCIe mode, so temporarily force to
1277 		 * SMBus mode in order to access the PHY.
1278 		 */
1279 		mac_reg = er32(CTRL_EXT);
1280 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1281 		ew32(CTRL_EXT, mac_reg);
1282 
1283 		msleep(50);
1284 
1285 		ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1286 						       &phy_reg);
1287 		if (ret_val)
1288 			goto release;
1289 	}
1290 	phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1291 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1292 
1293 	/* Unforce SMBus mode in MAC */
1294 	mac_reg = er32(CTRL_EXT);
1295 	mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1296 	ew32(CTRL_EXT, mac_reg);
1297 
1298 	/* When ULP mode was previously entered, K1 was disabled by the
1299 	 * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1300 	 */
1301 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1302 	if (ret_val)
1303 		goto release;
1304 	phy_reg |= HV_PM_CTRL_K1_ENABLE;
1305 	e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1306 
1307 	/* Clear ULP enabled configuration */
1308 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1309 	if (ret_val)
1310 		goto release;
1311 	phy_reg &= ~(I218_ULP_CONFIG1_IND |
1312 		     I218_ULP_CONFIG1_STICKY_ULP |
1313 		     I218_ULP_CONFIG1_RESET_TO_SMBUS |
1314 		     I218_ULP_CONFIG1_WOL_HOST |
1315 		     I218_ULP_CONFIG1_INBAND_EXIT |
1316 		     I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
1317 		     I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
1318 		     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1319 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1320 
1321 	/* Commit ULP changes by starting auto ULP configuration */
1322 	phy_reg |= I218_ULP_CONFIG1_START;
1323 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1324 
1325 	/* Clear Disable SMBus Release on PERST# in MAC */
1326 	mac_reg = er32(FEXTNVM7);
1327 	mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1328 	ew32(FEXTNVM7, mac_reg);
1329 
1330 release:
1331 	hw->phy.ops.release(hw);
1332 	if (force) {
1333 		e1000_phy_hw_reset(hw);
1334 		msleep(50);
1335 	}
1336 out:
1337 	if (ret_val)
1338 		e_dbg("Error in ULP disable flow: %d\n", ret_val);
1339 	else
1340 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1341 
1342 	return ret_val;
1343 }
1344 
1345 /**
1346  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1347  *  @hw: pointer to the HW structure
1348  *
1349  *  Checks to see of the link status of the hardware has changed.  If a
1350  *  change in link status has been detected, then we read the PHY registers
1351  *  to get the current speed/duplex if link exists.
1352  **/
1353 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1354 {
1355 	struct e1000_mac_info *mac = &hw->mac;
1356 	s32 ret_val, tipg_reg = 0;
1357 	u16 emi_addr, emi_val = 0;
1358 	bool link;
1359 	u16 phy_reg;
1360 
1361 	/* We only want to go out to the PHY registers to see if Auto-Neg
1362 	 * has completed and/or if our link status has changed.  The
1363 	 * get_link_status flag is set upon receiving a Link Status
1364 	 * Change or Rx Sequence Error interrupt.
1365 	 */
1366 	if (!mac->get_link_status)
1367 		return 0;
1368 	mac->get_link_status = false;
1369 
1370 	/* First we want to see if the MII Status Register reports
1371 	 * link.  If so, then we want to get the current speed/duplex
1372 	 * of the PHY.
1373 	 */
1374 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1375 	if (ret_val)
1376 		goto out;
1377 
1378 	if (hw->mac.type == e1000_pchlan) {
1379 		ret_val = e1000_k1_gig_workaround_hv(hw, link);
1380 		if (ret_val)
1381 			goto out;
1382 	}
1383 
1384 	/* When connected at 10Mbps half-duplex, some parts are excessively
1385 	 * aggressive resulting in many collisions. To avoid this, increase
1386 	 * the IPG and reduce Rx latency in the PHY.
1387 	 */
1388 	if ((hw->mac.type >= e1000_pch2lan) && link) {
1389 		u16 speed, duplex;
1390 
1391 		e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex);
1392 		tipg_reg = er32(TIPG);
1393 		tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1394 
1395 		if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1396 			tipg_reg |= 0xFF;
1397 			/* Reduce Rx latency in analog PHY */
1398 			emi_val = 0;
1399 		} else if (hw->mac.type >= e1000_pch_spt &&
1400 			   duplex == FULL_DUPLEX && speed != SPEED_1000) {
1401 			tipg_reg |= 0xC;
1402 			emi_val = 1;
1403 		} else {
1404 
1405 			/* Roll back the default values */
1406 			tipg_reg |= 0x08;
1407 			emi_val = 1;
1408 		}
1409 
1410 		ew32(TIPG, tipg_reg);
1411 
1412 		ret_val = hw->phy.ops.acquire(hw);
1413 		if (ret_val)
1414 			goto out;
1415 
1416 		if (hw->mac.type == e1000_pch2lan)
1417 			emi_addr = I82579_RX_CONFIG;
1418 		else
1419 			emi_addr = I217_RX_CONFIG;
1420 		ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1421 
1422 		if (hw->mac.type >= e1000_pch_lpt) {
1423 			u16 phy_reg;
1424 
1425 			e1e_rphy_locked(hw, I217_PLL_CLOCK_GATE_REG, &phy_reg);
1426 			phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
1427 			if (speed == SPEED_100 || speed == SPEED_10)
1428 				phy_reg |= 0x3E8;
1429 			else
1430 				phy_reg |= 0xFA;
1431 			e1e_wphy_locked(hw, I217_PLL_CLOCK_GATE_REG, phy_reg);
1432 
1433 			if (speed == SPEED_1000) {
1434 				hw->phy.ops.read_reg_locked(hw, HV_PM_CTRL,
1435 							    &phy_reg);
1436 
1437 				phy_reg |= HV_PM_CTRL_K1_CLK_REQ;
1438 
1439 				hw->phy.ops.write_reg_locked(hw, HV_PM_CTRL,
1440 							     phy_reg);
1441 			}
1442 		}
1443 		hw->phy.ops.release(hw);
1444 
1445 		if (ret_val)
1446 			goto out;
1447 
1448 		if (hw->mac.type >= e1000_pch_spt) {
1449 			u16 data;
1450 			u16 ptr_gap;
1451 
1452 			if (speed == SPEED_1000) {
1453 				ret_val = hw->phy.ops.acquire(hw);
1454 				if (ret_val)
1455 					goto out;
1456 
1457 				ret_val = e1e_rphy_locked(hw,
1458 							  PHY_REG(776, 20),
1459 							  &data);
1460 				if (ret_val) {
1461 					hw->phy.ops.release(hw);
1462 					goto out;
1463 				}
1464 
1465 				ptr_gap = (data & (0x3FF << 2)) >> 2;
1466 				if (ptr_gap < 0x18) {
1467 					data &= ~(0x3FF << 2);
1468 					data |= (0x18 << 2);
1469 					ret_val =
1470 					    e1e_wphy_locked(hw,
1471 							    PHY_REG(776, 20),
1472 							    data);
1473 				}
1474 				hw->phy.ops.release(hw);
1475 				if (ret_val)
1476 					goto out;
1477 			} else {
1478 				ret_val = hw->phy.ops.acquire(hw);
1479 				if (ret_val)
1480 					goto out;
1481 
1482 				ret_val = e1e_wphy_locked(hw,
1483 							  PHY_REG(776, 20),
1484 							  0xC023);
1485 				hw->phy.ops.release(hw);
1486 				if (ret_val)
1487 					goto out;
1488 
1489 			}
1490 		}
1491 	}
1492 
1493 	/* I217 Packet Loss issue:
1494 	 * ensure that FEXTNVM4 Beacon Duration is set correctly
1495 	 * on power up.
1496 	 * Set the Beacon Duration for I217 to 8 usec
1497 	 */
1498 	if (hw->mac.type >= e1000_pch_lpt) {
1499 		u32 mac_reg;
1500 
1501 		mac_reg = er32(FEXTNVM4);
1502 		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1503 		mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1504 		ew32(FEXTNVM4, mac_reg);
1505 	}
1506 
1507 	/* Work-around I218 hang issue */
1508 	if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1509 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1510 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1511 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
1512 		ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1513 		if (ret_val)
1514 			goto out;
1515 	}
1516 	if (hw->mac.type >= e1000_pch_lpt) {
1517 		/* Set platform power management values for
1518 		 * Latency Tolerance Reporting (LTR)
1519 		 */
1520 		ret_val = e1000_platform_pm_pch_lpt(hw, link);
1521 		if (ret_val)
1522 			goto out;
1523 	}
1524 
1525 	/* Clear link partner's EEE ability */
1526 	hw->dev_spec.ich8lan.eee_lp_ability = 0;
1527 
1528 	if (hw->mac.type >= e1000_pch_lpt) {
1529 		u32 fextnvm6 = er32(FEXTNVM6);
1530 
1531 		if (hw->mac.type == e1000_pch_spt) {
1532 			/* FEXTNVM6 K1-off workaround - for SPT only */
1533 			u32 pcieanacfg = er32(PCIEANACFG);
1534 
1535 			if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1536 				fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1537 			else
1538 				fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1539 		}
1540 
1541 		ew32(FEXTNVM6, fextnvm6);
1542 	}
1543 
1544 	if (!link)
1545 		goto out;
1546 
1547 	switch (hw->mac.type) {
1548 	case e1000_pch2lan:
1549 		ret_val = e1000_k1_workaround_lv(hw);
1550 		if (ret_val)
1551 			return ret_val;
1552 		/* fall-thru */
1553 	case e1000_pchlan:
1554 		if (hw->phy.type == e1000_phy_82578) {
1555 			ret_val = e1000_link_stall_workaround_hv(hw);
1556 			if (ret_val)
1557 				return ret_val;
1558 		}
1559 
1560 		/* Workaround for PCHx parts in half-duplex:
1561 		 * Set the number of preambles removed from the packet
1562 		 * when it is passed from the PHY to the MAC to prevent
1563 		 * the MAC from misinterpreting the packet type.
1564 		 */
1565 		e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1566 		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1567 
1568 		if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1569 			phy_reg |= BIT(HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1570 
1571 		e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1572 		break;
1573 	default:
1574 		break;
1575 	}
1576 
1577 	/* Check if there was DownShift, must be checked
1578 	 * immediately after link-up
1579 	 */
1580 	e1000e_check_downshift(hw);
1581 
1582 	/* Enable/Disable EEE after link up */
1583 	if (hw->phy.type > e1000_phy_82579) {
1584 		ret_val = e1000_set_eee_pchlan(hw);
1585 		if (ret_val)
1586 			return ret_val;
1587 	}
1588 
1589 	/* If we are forcing speed/duplex, then we simply return since
1590 	 * we have already determined whether we have link or not.
1591 	 */
1592 	if (!mac->autoneg)
1593 		return -E1000_ERR_CONFIG;
1594 
1595 	/* Auto-Neg is enabled.  Auto Speed Detection takes care
1596 	 * of MAC speed/duplex configuration.  So we only need to
1597 	 * configure Collision Distance in the MAC.
1598 	 */
1599 	mac->ops.config_collision_dist(hw);
1600 
1601 	/* Configure Flow Control now that Auto-Neg has completed.
1602 	 * First, we need to restore the desired flow control
1603 	 * settings because we may have had to re-autoneg with a
1604 	 * different link partner.
1605 	 */
1606 	ret_val = e1000e_config_fc_after_link_up(hw);
1607 	if (ret_val)
1608 		e_dbg("Error configuring flow control\n");
1609 
1610 	return ret_val;
1611 
1612 out:
1613 	mac->get_link_status = true;
1614 	return ret_val;
1615 }
1616 
1617 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1618 {
1619 	struct e1000_hw *hw = &adapter->hw;
1620 	s32 rc;
1621 
1622 	rc = e1000_init_mac_params_ich8lan(hw);
1623 	if (rc)
1624 		return rc;
1625 
1626 	rc = e1000_init_nvm_params_ich8lan(hw);
1627 	if (rc)
1628 		return rc;
1629 
1630 	switch (hw->mac.type) {
1631 	case e1000_ich8lan:
1632 	case e1000_ich9lan:
1633 	case e1000_ich10lan:
1634 		rc = e1000_init_phy_params_ich8lan(hw);
1635 		break;
1636 	case e1000_pchlan:
1637 	case e1000_pch2lan:
1638 	case e1000_pch_lpt:
1639 	case e1000_pch_spt:
1640 	case e1000_pch_cnp:
1641 		rc = e1000_init_phy_params_pchlan(hw);
1642 		break;
1643 	default:
1644 		break;
1645 	}
1646 	if (rc)
1647 		return rc;
1648 
1649 	/* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1650 	 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1651 	 */
1652 	if ((adapter->hw.phy.type == e1000_phy_ife) ||
1653 	    ((adapter->hw.mac.type >= e1000_pch2lan) &&
1654 	     (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1655 		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1656 		adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
1657 
1658 		hw->mac.ops.blink_led = NULL;
1659 	}
1660 
1661 	if ((adapter->hw.mac.type == e1000_ich8lan) &&
1662 	    (adapter->hw.phy.type != e1000_phy_ife))
1663 		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1664 
1665 	/* Enable workaround for 82579 w/ ME enabled */
1666 	if ((adapter->hw.mac.type == e1000_pch2lan) &&
1667 	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1668 		adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1669 
1670 	return 0;
1671 }
1672 
1673 static DEFINE_MUTEX(nvm_mutex);
1674 
1675 /**
1676  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1677  *  @hw: pointer to the HW structure
1678  *
1679  *  Acquires the mutex for performing NVM operations.
1680  **/
1681 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1682 {
1683 	mutex_lock(&nvm_mutex);
1684 
1685 	return 0;
1686 }
1687 
1688 /**
1689  *  e1000_release_nvm_ich8lan - Release NVM mutex
1690  *  @hw: pointer to the HW structure
1691  *
1692  *  Releases the mutex used while performing NVM operations.
1693  **/
1694 static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1695 {
1696 	mutex_unlock(&nvm_mutex);
1697 }
1698 
1699 /**
1700  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1701  *  @hw: pointer to the HW structure
1702  *
1703  *  Acquires the software control flag for performing PHY and select
1704  *  MAC CSR accesses.
1705  **/
1706 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1707 {
1708 	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1709 	s32 ret_val = 0;
1710 
1711 	if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1712 			     &hw->adapter->state)) {
1713 		e_dbg("contention for Phy access\n");
1714 		return -E1000_ERR_PHY;
1715 	}
1716 
1717 	while (timeout) {
1718 		extcnf_ctrl = er32(EXTCNF_CTRL);
1719 		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1720 			break;
1721 
1722 		mdelay(1);
1723 		timeout--;
1724 	}
1725 
1726 	if (!timeout) {
1727 		e_dbg("SW has already locked the resource.\n");
1728 		ret_val = -E1000_ERR_CONFIG;
1729 		goto out;
1730 	}
1731 
1732 	timeout = SW_FLAG_TIMEOUT;
1733 
1734 	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1735 	ew32(EXTCNF_CTRL, extcnf_ctrl);
1736 
1737 	while (timeout) {
1738 		extcnf_ctrl = er32(EXTCNF_CTRL);
1739 		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1740 			break;
1741 
1742 		mdelay(1);
1743 		timeout--;
1744 	}
1745 
1746 	if (!timeout) {
1747 		e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1748 		      er32(FWSM), extcnf_ctrl);
1749 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1750 		ew32(EXTCNF_CTRL, extcnf_ctrl);
1751 		ret_val = -E1000_ERR_CONFIG;
1752 		goto out;
1753 	}
1754 
1755 out:
1756 	if (ret_val)
1757 		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1758 
1759 	return ret_val;
1760 }
1761 
1762 /**
1763  *  e1000_release_swflag_ich8lan - Release software control flag
1764  *  @hw: pointer to the HW structure
1765  *
1766  *  Releases the software control flag for performing PHY and select
1767  *  MAC CSR accesses.
1768  **/
1769 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1770 {
1771 	u32 extcnf_ctrl;
1772 
1773 	extcnf_ctrl = er32(EXTCNF_CTRL);
1774 
1775 	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1776 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1777 		ew32(EXTCNF_CTRL, extcnf_ctrl);
1778 	} else {
1779 		e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1780 	}
1781 
1782 	clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1783 }
1784 
1785 /**
1786  *  e1000_check_mng_mode_ich8lan - Checks management mode
1787  *  @hw: pointer to the HW structure
1788  *
1789  *  This checks if the adapter has any manageability enabled.
1790  *  This is a function pointer entry point only called by read/write
1791  *  routines for the PHY and NVM parts.
1792  **/
1793 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1794 {
1795 	u32 fwsm;
1796 
1797 	fwsm = er32(FWSM);
1798 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1799 		((fwsm & E1000_FWSM_MODE_MASK) ==
1800 		 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1801 }
1802 
1803 /**
1804  *  e1000_check_mng_mode_pchlan - Checks management mode
1805  *  @hw: pointer to the HW structure
1806  *
1807  *  This checks if the adapter has iAMT enabled.
1808  *  This is a function pointer entry point only called by read/write
1809  *  routines for the PHY and NVM parts.
1810  **/
1811 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1812 {
1813 	u32 fwsm;
1814 
1815 	fwsm = er32(FWSM);
1816 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1817 	    (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1818 }
1819 
1820 /**
1821  *  e1000_rar_set_pch2lan - Set receive address register
1822  *  @hw: pointer to the HW structure
1823  *  @addr: pointer to the receive address
1824  *  @index: receive address array register
1825  *
1826  *  Sets the receive address array register at index to the address passed
1827  *  in by addr.  For 82579, RAR[0] is the base address register that is to
1828  *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1829  *  Use SHRA[0-3] in place of those reserved for ME.
1830  **/
1831 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1832 {
1833 	u32 rar_low, rar_high;
1834 
1835 	/* HW expects these in little endian so we reverse the byte order
1836 	 * from network order (big endian) to little endian
1837 	 */
1838 	rar_low = ((u32)addr[0] |
1839 		   ((u32)addr[1] << 8) |
1840 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1841 
1842 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1843 
1844 	/* If MAC address zero, no need to set the AV bit */
1845 	if (rar_low || rar_high)
1846 		rar_high |= E1000_RAH_AV;
1847 
1848 	if (index == 0) {
1849 		ew32(RAL(index), rar_low);
1850 		e1e_flush();
1851 		ew32(RAH(index), rar_high);
1852 		e1e_flush();
1853 		return 0;
1854 	}
1855 
1856 	/* RAR[1-6] are owned by manageability.  Skip those and program the
1857 	 * next address into the SHRA register array.
1858 	 */
1859 	if (index < (u32)(hw->mac.rar_entry_count)) {
1860 		s32 ret_val;
1861 
1862 		ret_val = e1000_acquire_swflag_ich8lan(hw);
1863 		if (ret_val)
1864 			goto out;
1865 
1866 		ew32(SHRAL(index - 1), rar_low);
1867 		e1e_flush();
1868 		ew32(SHRAH(index - 1), rar_high);
1869 		e1e_flush();
1870 
1871 		e1000_release_swflag_ich8lan(hw);
1872 
1873 		/* verify the register updates */
1874 		if ((er32(SHRAL(index - 1)) == rar_low) &&
1875 		    (er32(SHRAH(index - 1)) == rar_high))
1876 			return 0;
1877 
1878 		e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1879 		      (index - 1), er32(FWSM));
1880 	}
1881 
1882 out:
1883 	e_dbg("Failed to write receive address at index %d\n", index);
1884 	return -E1000_ERR_CONFIG;
1885 }
1886 
1887 /**
1888  *  e1000_rar_get_count_pch_lpt - Get the number of available SHRA
1889  *  @hw: pointer to the HW structure
1890  *
1891  *  Get the number of available receive registers that the Host can
1892  *  program. SHRA[0-10] are the shared receive address registers
1893  *  that are shared between the Host and manageability engine (ME).
1894  *  ME can reserve any number of addresses and the host needs to be
1895  *  able to tell how many available registers it has access to.
1896  **/
1897 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw)
1898 {
1899 	u32 wlock_mac;
1900 	u32 num_entries;
1901 
1902 	wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1903 	wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1904 
1905 	switch (wlock_mac) {
1906 	case 0:
1907 		/* All SHRA[0..10] and RAR[0] available */
1908 		num_entries = hw->mac.rar_entry_count;
1909 		break;
1910 	case 1:
1911 		/* Only RAR[0] available */
1912 		num_entries = 1;
1913 		break;
1914 	default:
1915 		/* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
1916 		num_entries = wlock_mac + 1;
1917 		break;
1918 	}
1919 
1920 	return num_entries;
1921 }
1922 
1923 /**
1924  *  e1000_rar_set_pch_lpt - Set receive address registers
1925  *  @hw: pointer to the HW structure
1926  *  @addr: pointer to the receive address
1927  *  @index: receive address array register
1928  *
1929  *  Sets the receive address register array at index to the address passed
1930  *  in by addr. For LPT, RAR[0] is the base address register that is to
1931  *  contain the MAC address. SHRA[0-10] are the shared receive address
1932  *  registers that are shared between the Host and manageability engine (ME).
1933  **/
1934 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1935 {
1936 	u32 rar_low, rar_high;
1937 	u32 wlock_mac;
1938 
1939 	/* HW expects these in little endian so we reverse the byte order
1940 	 * from network order (big endian) to little endian
1941 	 */
1942 	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1943 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1944 
1945 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1946 
1947 	/* If MAC address zero, no need to set the AV bit */
1948 	if (rar_low || rar_high)
1949 		rar_high |= E1000_RAH_AV;
1950 
1951 	if (index == 0) {
1952 		ew32(RAL(index), rar_low);
1953 		e1e_flush();
1954 		ew32(RAH(index), rar_high);
1955 		e1e_flush();
1956 		return 0;
1957 	}
1958 
1959 	/* The manageability engine (ME) can lock certain SHRAR registers that
1960 	 * it is using - those registers are unavailable for use.
1961 	 */
1962 	if (index < hw->mac.rar_entry_count) {
1963 		wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1964 		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1965 
1966 		/* Check if all SHRAR registers are locked */
1967 		if (wlock_mac == 1)
1968 			goto out;
1969 
1970 		if ((wlock_mac == 0) || (index <= wlock_mac)) {
1971 			s32 ret_val;
1972 
1973 			ret_val = e1000_acquire_swflag_ich8lan(hw);
1974 
1975 			if (ret_val)
1976 				goto out;
1977 
1978 			ew32(SHRAL_PCH_LPT(index - 1), rar_low);
1979 			e1e_flush();
1980 			ew32(SHRAH_PCH_LPT(index - 1), rar_high);
1981 			e1e_flush();
1982 
1983 			e1000_release_swflag_ich8lan(hw);
1984 
1985 			/* verify the register updates */
1986 			if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
1987 			    (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
1988 				return 0;
1989 		}
1990 	}
1991 
1992 out:
1993 	e_dbg("Failed to write receive address at index %d\n", index);
1994 	return -E1000_ERR_CONFIG;
1995 }
1996 
1997 /**
1998  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
1999  *  @hw: pointer to the HW structure
2000  *
2001  *  Checks if firmware is blocking the reset of the PHY.
2002  *  This is a function pointer entry point only called by
2003  *  reset routines.
2004  **/
2005 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2006 {
2007 	bool blocked = false;
2008 	int i = 0;
2009 
2010 	while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
2011 	       (i++ < 30))
2012 		usleep_range(10000, 11000);
2013 	return blocked ? E1000_BLK_PHY_RESET : 0;
2014 }
2015 
2016 /**
2017  *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2018  *  @hw: pointer to the HW structure
2019  *
2020  *  Assumes semaphore already acquired.
2021  *
2022  **/
2023 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2024 {
2025 	u16 phy_data;
2026 	u32 strap = er32(STRAP);
2027 	u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
2028 	    E1000_STRAP_SMT_FREQ_SHIFT;
2029 	s32 ret_val;
2030 
2031 	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2032 
2033 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2034 	if (ret_val)
2035 		return ret_val;
2036 
2037 	phy_data &= ~HV_SMB_ADDR_MASK;
2038 	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2039 	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2040 
2041 	if (hw->phy.type == e1000_phy_i217) {
2042 		/* Restore SMBus frequency */
2043 		if (freq--) {
2044 			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2045 			phy_data |= (freq & BIT(0)) <<
2046 			    HV_SMB_ADDR_FREQ_LOW_SHIFT;
2047 			phy_data |= (freq & BIT(1)) <<
2048 			    (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2049 		} else {
2050 			e_dbg("Unsupported SMB frequency in PHY\n");
2051 		}
2052 	}
2053 
2054 	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2055 }
2056 
2057 /**
2058  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2059  *  @hw:   pointer to the HW structure
2060  *
2061  *  SW should configure the LCD from the NVM extended configuration region
2062  *  as a workaround for certain parts.
2063  **/
2064 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2065 {
2066 	struct e1000_phy_info *phy = &hw->phy;
2067 	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2068 	s32 ret_val = 0;
2069 	u16 word_addr, reg_data, reg_addr, phy_page = 0;
2070 
2071 	/* Initialize the PHY from the NVM on ICH platforms.  This
2072 	 * is needed due to an issue where the NVM configuration is
2073 	 * not properly autoloaded after power transitions.
2074 	 * Therefore, after each PHY reset, we will load the
2075 	 * configuration data out of the NVM manually.
2076 	 */
2077 	switch (hw->mac.type) {
2078 	case e1000_ich8lan:
2079 		if (phy->type != e1000_phy_igp_3)
2080 			return ret_val;
2081 
2082 		if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
2083 		    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
2084 			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2085 			break;
2086 		}
2087 		/* Fall-thru */
2088 	case e1000_pchlan:
2089 	case e1000_pch2lan:
2090 	case e1000_pch_lpt:
2091 	case e1000_pch_spt:
2092 	case e1000_pch_cnp:
2093 		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2094 		break;
2095 	default:
2096 		return ret_val;
2097 	}
2098 
2099 	ret_val = hw->phy.ops.acquire(hw);
2100 	if (ret_val)
2101 		return ret_val;
2102 
2103 	data = er32(FEXTNVM);
2104 	if (!(data & sw_cfg_mask))
2105 		goto release;
2106 
2107 	/* Make sure HW does not configure LCD from PHY
2108 	 * extended configuration before SW configuration
2109 	 */
2110 	data = er32(EXTCNF_CTRL);
2111 	if ((hw->mac.type < e1000_pch2lan) &&
2112 	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2113 		goto release;
2114 
2115 	cnf_size = er32(EXTCNF_SIZE);
2116 	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2117 	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2118 	if (!cnf_size)
2119 		goto release;
2120 
2121 	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2122 	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2123 
2124 	if (((hw->mac.type == e1000_pchlan) &&
2125 	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2126 	    (hw->mac.type > e1000_pchlan)) {
2127 		/* HW configures the SMBus address and LEDs when the
2128 		 * OEM and LCD Write Enable bits are set in the NVM.
2129 		 * When both NVM bits are cleared, SW will configure
2130 		 * them instead.
2131 		 */
2132 		ret_val = e1000_write_smbus_addr(hw);
2133 		if (ret_val)
2134 			goto release;
2135 
2136 		data = er32(LEDCTL);
2137 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2138 							(u16)data);
2139 		if (ret_val)
2140 			goto release;
2141 	}
2142 
2143 	/* Configure LCD from extended configuration region. */
2144 
2145 	/* cnf_base_addr is in DWORD */
2146 	word_addr = (u16)(cnf_base_addr << 1);
2147 
2148 	for (i = 0; i < cnf_size; i++) {
2149 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, &reg_data);
2150 		if (ret_val)
2151 			goto release;
2152 
2153 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
2154 					 1, &reg_addr);
2155 		if (ret_val)
2156 			goto release;
2157 
2158 		/* Save off the PHY page for future writes. */
2159 		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2160 			phy_page = reg_data;
2161 			continue;
2162 		}
2163 
2164 		reg_addr &= PHY_REG_MASK;
2165 		reg_addr |= phy_page;
2166 
2167 		ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
2168 		if (ret_val)
2169 			goto release;
2170 	}
2171 
2172 release:
2173 	hw->phy.ops.release(hw);
2174 	return ret_val;
2175 }
2176 
2177 /**
2178  *  e1000_k1_gig_workaround_hv - K1 Si workaround
2179  *  @hw:   pointer to the HW structure
2180  *  @link: link up bool flag
2181  *
2182  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2183  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2184  *  If link is down, the function will restore the default K1 setting located
2185  *  in the NVM.
2186  **/
2187 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2188 {
2189 	s32 ret_val = 0;
2190 	u16 status_reg = 0;
2191 	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2192 
2193 	if (hw->mac.type != e1000_pchlan)
2194 		return 0;
2195 
2196 	/* Wrap the whole flow with the sw flag */
2197 	ret_val = hw->phy.ops.acquire(hw);
2198 	if (ret_val)
2199 		return ret_val;
2200 
2201 	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2202 	if (link) {
2203 		if (hw->phy.type == e1000_phy_82578) {
2204 			ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
2205 						  &status_reg);
2206 			if (ret_val)
2207 				goto release;
2208 
2209 			status_reg &= (BM_CS_STATUS_LINK_UP |
2210 				       BM_CS_STATUS_RESOLVED |
2211 				       BM_CS_STATUS_SPEED_MASK);
2212 
2213 			if (status_reg == (BM_CS_STATUS_LINK_UP |
2214 					   BM_CS_STATUS_RESOLVED |
2215 					   BM_CS_STATUS_SPEED_1000))
2216 				k1_enable = false;
2217 		}
2218 
2219 		if (hw->phy.type == e1000_phy_82577) {
2220 			ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2221 			if (ret_val)
2222 				goto release;
2223 
2224 			status_reg &= (HV_M_STATUS_LINK_UP |
2225 				       HV_M_STATUS_AUTONEG_COMPLETE |
2226 				       HV_M_STATUS_SPEED_MASK);
2227 
2228 			if (status_reg == (HV_M_STATUS_LINK_UP |
2229 					   HV_M_STATUS_AUTONEG_COMPLETE |
2230 					   HV_M_STATUS_SPEED_1000))
2231 				k1_enable = false;
2232 		}
2233 
2234 		/* Link stall fix for link up */
2235 		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2236 		if (ret_val)
2237 			goto release;
2238 
2239 	} else {
2240 		/* Link stall fix for link down */
2241 		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2242 		if (ret_val)
2243 			goto release;
2244 	}
2245 
2246 	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2247 
2248 release:
2249 	hw->phy.ops.release(hw);
2250 
2251 	return ret_val;
2252 }
2253 
2254 /**
2255  *  e1000_configure_k1_ich8lan - Configure K1 power state
2256  *  @hw: pointer to the HW structure
2257  *  @enable: K1 state to configure
2258  *
2259  *  Configure the K1 power state based on the provided parameter.
2260  *  Assumes semaphore already acquired.
2261  *
2262  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2263  **/
2264 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2265 {
2266 	s32 ret_val;
2267 	u32 ctrl_reg = 0;
2268 	u32 ctrl_ext = 0;
2269 	u32 reg = 0;
2270 	u16 kmrn_reg = 0;
2271 
2272 	ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2273 					      &kmrn_reg);
2274 	if (ret_val)
2275 		return ret_val;
2276 
2277 	if (k1_enable)
2278 		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2279 	else
2280 		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2281 
2282 	ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2283 					       kmrn_reg);
2284 	if (ret_val)
2285 		return ret_val;
2286 
2287 	usleep_range(20, 40);
2288 	ctrl_ext = er32(CTRL_EXT);
2289 	ctrl_reg = er32(CTRL);
2290 
2291 	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2292 	reg |= E1000_CTRL_FRCSPD;
2293 	ew32(CTRL, reg);
2294 
2295 	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2296 	e1e_flush();
2297 	usleep_range(20, 40);
2298 	ew32(CTRL, ctrl_reg);
2299 	ew32(CTRL_EXT, ctrl_ext);
2300 	e1e_flush();
2301 	usleep_range(20, 40);
2302 
2303 	return 0;
2304 }
2305 
2306 /**
2307  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2308  *  @hw:       pointer to the HW structure
2309  *  @d0_state: boolean if entering d0 or d3 device state
2310  *
2311  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2312  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2313  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2314  **/
2315 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2316 {
2317 	s32 ret_val = 0;
2318 	u32 mac_reg;
2319 	u16 oem_reg;
2320 
2321 	if (hw->mac.type < e1000_pchlan)
2322 		return ret_val;
2323 
2324 	ret_val = hw->phy.ops.acquire(hw);
2325 	if (ret_val)
2326 		return ret_val;
2327 
2328 	if (hw->mac.type == e1000_pchlan) {
2329 		mac_reg = er32(EXTCNF_CTRL);
2330 		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2331 			goto release;
2332 	}
2333 
2334 	mac_reg = er32(FEXTNVM);
2335 	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2336 		goto release;
2337 
2338 	mac_reg = er32(PHY_CTRL);
2339 
2340 	ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2341 	if (ret_val)
2342 		goto release;
2343 
2344 	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2345 
2346 	if (d0_state) {
2347 		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2348 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2349 
2350 		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2351 			oem_reg |= HV_OEM_BITS_LPLU;
2352 	} else {
2353 		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2354 			       E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2355 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2356 
2357 		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2358 			       E1000_PHY_CTRL_NOND0A_LPLU))
2359 			oem_reg |= HV_OEM_BITS_LPLU;
2360 	}
2361 
2362 	/* Set Restart auto-neg to activate the bits */
2363 	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2364 	    !hw->phy.ops.check_reset_block(hw))
2365 		oem_reg |= HV_OEM_BITS_RESTART_AN;
2366 
2367 	ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2368 
2369 release:
2370 	hw->phy.ops.release(hw);
2371 
2372 	return ret_val;
2373 }
2374 
2375 /**
2376  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2377  *  @hw:   pointer to the HW structure
2378  **/
2379 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2380 {
2381 	s32 ret_val;
2382 	u16 data;
2383 
2384 	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2385 	if (ret_val)
2386 		return ret_val;
2387 
2388 	data |= HV_KMRN_MDIO_SLOW;
2389 
2390 	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2391 
2392 	return ret_val;
2393 }
2394 
2395 /**
2396  *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2397  *  done after every PHY reset.
2398  **/
2399 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2400 {
2401 	s32 ret_val = 0;
2402 	u16 phy_data;
2403 
2404 	if (hw->mac.type != e1000_pchlan)
2405 		return 0;
2406 
2407 	/* Set MDIO slow mode before any other MDIO access */
2408 	if (hw->phy.type == e1000_phy_82577) {
2409 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
2410 		if (ret_val)
2411 			return ret_val;
2412 	}
2413 
2414 	if (((hw->phy.type == e1000_phy_82577) &&
2415 	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2416 	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2417 		/* Disable generation of early preamble */
2418 		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2419 		if (ret_val)
2420 			return ret_val;
2421 
2422 		/* Preamble tuning for SSC */
2423 		ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2424 		if (ret_val)
2425 			return ret_val;
2426 	}
2427 
2428 	if (hw->phy.type == e1000_phy_82578) {
2429 		/* Return registers to default by doing a soft reset then
2430 		 * writing 0x3140 to the control register.
2431 		 */
2432 		if (hw->phy.revision < 2) {
2433 			e1000e_phy_sw_reset(hw);
2434 			ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
2435 			if (ret_val)
2436 				return ret_val;
2437 		}
2438 	}
2439 
2440 	/* Select page 0 */
2441 	ret_val = hw->phy.ops.acquire(hw);
2442 	if (ret_val)
2443 		return ret_val;
2444 
2445 	hw->phy.addr = 1;
2446 	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2447 	hw->phy.ops.release(hw);
2448 	if (ret_val)
2449 		return ret_val;
2450 
2451 	/* Configure the K1 Si workaround during phy reset assuming there is
2452 	 * link so that it disables K1 if link is in 1Gbps.
2453 	 */
2454 	ret_val = e1000_k1_gig_workaround_hv(hw, true);
2455 	if (ret_val)
2456 		return ret_val;
2457 
2458 	/* Workaround for link disconnects on a busy hub in half duplex */
2459 	ret_val = hw->phy.ops.acquire(hw);
2460 	if (ret_val)
2461 		return ret_val;
2462 	ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2463 	if (ret_val)
2464 		goto release;
2465 	ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2466 	if (ret_val)
2467 		goto release;
2468 
2469 	/* set MSE higher to enable link to stay up when noise is high */
2470 	ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2471 release:
2472 	hw->phy.ops.release(hw);
2473 
2474 	return ret_val;
2475 }
2476 
2477 /**
2478  *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2479  *  @hw:   pointer to the HW structure
2480  **/
2481 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2482 {
2483 	u32 mac_reg;
2484 	u16 i, phy_reg = 0;
2485 	s32 ret_val;
2486 
2487 	ret_val = hw->phy.ops.acquire(hw);
2488 	if (ret_val)
2489 		return;
2490 	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2491 	if (ret_val)
2492 		goto release;
2493 
2494 	/* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2495 	for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2496 		mac_reg = er32(RAL(i));
2497 		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2498 					   (u16)(mac_reg & 0xFFFF));
2499 		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2500 					   (u16)((mac_reg >> 16) & 0xFFFF));
2501 
2502 		mac_reg = er32(RAH(i));
2503 		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2504 					   (u16)(mac_reg & 0xFFFF));
2505 		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2506 					   (u16)((mac_reg & E1000_RAH_AV)
2507 						 >> 16));
2508 	}
2509 
2510 	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2511 
2512 release:
2513 	hw->phy.ops.release(hw);
2514 }
2515 
2516 /**
2517  *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2518  *  with 82579 PHY
2519  *  @hw: pointer to the HW structure
2520  *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2521  **/
2522 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2523 {
2524 	s32 ret_val = 0;
2525 	u16 phy_reg, data;
2526 	u32 mac_reg;
2527 	u16 i;
2528 
2529 	if (hw->mac.type < e1000_pch2lan)
2530 		return 0;
2531 
2532 	/* disable Rx path while enabling/disabling workaround */
2533 	e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2534 	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | BIT(14));
2535 	if (ret_val)
2536 		return ret_val;
2537 
2538 	if (enable) {
2539 		/* Write Rx addresses (rar_entry_count for RAL/H, and
2540 		 * SHRAL/H) and initial CRC values to the MAC
2541 		 */
2542 		for (i = 0; i < hw->mac.rar_entry_count; i++) {
2543 			u8 mac_addr[ETH_ALEN] = { 0 };
2544 			u32 addr_high, addr_low;
2545 
2546 			addr_high = er32(RAH(i));
2547 			if (!(addr_high & E1000_RAH_AV))
2548 				continue;
2549 			addr_low = er32(RAL(i));
2550 			mac_addr[0] = (addr_low & 0xFF);
2551 			mac_addr[1] = ((addr_low >> 8) & 0xFF);
2552 			mac_addr[2] = ((addr_low >> 16) & 0xFF);
2553 			mac_addr[3] = ((addr_low >> 24) & 0xFF);
2554 			mac_addr[4] = (addr_high & 0xFF);
2555 			mac_addr[5] = ((addr_high >> 8) & 0xFF);
2556 
2557 			ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2558 		}
2559 
2560 		/* Write Rx addresses to the PHY */
2561 		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2562 
2563 		/* Enable jumbo frame workaround in the MAC */
2564 		mac_reg = er32(FFLT_DBG);
2565 		mac_reg &= ~BIT(14);
2566 		mac_reg |= (7 << 15);
2567 		ew32(FFLT_DBG, mac_reg);
2568 
2569 		mac_reg = er32(RCTL);
2570 		mac_reg |= E1000_RCTL_SECRC;
2571 		ew32(RCTL, mac_reg);
2572 
2573 		ret_val = e1000e_read_kmrn_reg(hw,
2574 					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2575 					       &data);
2576 		if (ret_val)
2577 			return ret_val;
2578 		ret_val = e1000e_write_kmrn_reg(hw,
2579 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2580 						data | BIT(0));
2581 		if (ret_val)
2582 			return ret_val;
2583 		ret_val = e1000e_read_kmrn_reg(hw,
2584 					       E1000_KMRNCTRLSTA_HD_CTRL,
2585 					       &data);
2586 		if (ret_val)
2587 			return ret_val;
2588 		data &= ~(0xF << 8);
2589 		data |= (0xB << 8);
2590 		ret_val = e1000e_write_kmrn_reg(hw,
2591 						E1000_KMRNCTRLSTA_HD_CTRL,
2592 						data);
2593 		if (ret_val)
2594 			return ret_val;
2595 
2596 		/* Enable jumbo frame workaround in the PHY */
2597 		e1e_rphy(hw, PHY_REG(769, 23), &data);
2598 		data &= ~(0x7F << 5);
2599 		data |= (0x37 << 5);
2600 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2601 		if (ret_val)
2602 			return ret_val;
2603 		e1e_rphy(hw, PHY_REG(769, 16), &data);
2604 		data &= ~BIT(13);
2605 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2606 		if (ret_val)
2607 			return ret_val;
2608 		e1e_rphy(hw, PHY_REG(776, 20), &data);
2609 		data &= ~(0x3FF << 2);
2610 		data |= (E1000_TX_PTR_GAP << 2);
2611 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2612 		if (ret_val)
2613 			return ret_val;
2614 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2615 		if (ret_val)
2616 			return ret_val;
2617 		e1e_rphy(hw, HV_PM_CTRL, &data);
2618 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data | BIT(10));
2619 		if (ret_val)
2620 			return ret_val;
2621 	} else {
2622 		/* Write MAC register values back to h/w defaults */
2623 		mac_reg = er32(FFLT_DBG);
2624 		mac_reg &= ~(0xF << 14);
2625 		ew32(FFLT_DBG, mac_reg);
2626 
2627 		mac_reg = er32(RCTL);
2628 		mac_reg &= ~E1000_RCTL_SECRC;
2629 		ew32(RCTL, mac_reg);
2630 
2631 		ret_val = e1000e_read_kmrn_reg(hw,
2632 					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2633 					       &data);
2634 		if (ret_val)
2635 			return ret_val;
2636 		ret_val = e1000e_write_kmrn_reg(hw,
2637 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2638 						data & ~BIT(0));
2639 		if (ret_val)
2640 			return ret_val;
2641 		ret_val = e1000e_read_kmrn_reg(hw,
2642 					       E1000_KMRNCTRLSTA_HD_CTRL,
2643 					       &data);
2644 		if (ret_val)
2645 			return ret_val;
2646 		data &= ~(0xF << 8);
2647 		data |= (0xB << 8);
2648 		ret_val = e1000e_write_kmrn_reg(hw,
2649 						E1000_KMRNCTRLSTA_HD_CTRL,
2650 						data);
2651 		if (ret_val)
2652 			return ret_val;
2653 
2654 		/* Write PHY register values back to h/w defaults */
2655 		e1e_rphy(hw, PHY_REG(769, 23), &data);
2656 		data &= ~(0x7F << 5);
2657 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2658 		if (ret_val)
2659 			return ret_val;
2660 		e1e_rphy(hw, PHY_REG(769, 16), &data);
2661 		data |= BIT(13);
2662 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2663 		if (ret_val)
2664 			return ret_val;
2665 		e1e_rphy(hw, PHY_REG(776, 20), &data);
2666 		data &= ~(0x3FF << 2);
2667 		data |= (0x8 << 2);
2668 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2669 		if (ret_val)
2670 			return ret_val;
2671 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2672 		if (ret_val)
2673 			return ret_val;
2674 		e1e_rphy(hw, HV_PM_CTRL, &data);
2675 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~BIT(10));
2676 		if (ret_val)
2677 			return ret_val;
2678 	}
2679 
2680 	/* re-enable Rx path after enabling/disabling workaround */
2681 	return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~BIT(14));
2682 }
2683 
2684 /**
2685  *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2686  *  done after every PHY reset.
2687  **/
2688 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2689 {
2690 	s32 ret_val = 0;
2691 
2692 	if (hw->mac.type != e1000_pch2lan)
2693 		return 0;
2694 
2695 	/* Set MDIO slow mode before any other MDIO access */
2696 	ret_val = e1000_set_mdio_slow_mode_hv(hw);
2697 	if (ret_val)
2698 		return ret_val;
2699 
2700 	ret_val = hw->phy.ops.acquire(hw);
2701 	if (ret_val)
2702 		return ret_val;
2703 	/* set MSE higher to enable link to stay up when noise is high */
2704 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2705 	if (ret_val)
2706 		goto release;
2707 	/* drop link after 5 times MSE threshold was reached */
2708 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2709 release:
2710 	hw->phy.ops.release(hw);
2711 
2712 	return ret_val;
2713 }
2714 
2715 /**
2716  *  e1000_k1_gig_workaround_lv - K1 Si workaround
2717  *  @hw:   pointer to the HW structure
2718  *
2719  *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2720  *  Disable K1 in 1000Mbps and 100Mbps
2721  **/
2722 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2723 {
2724 	s32 ret_val = 0;
2725 	u16 status_reg = 0;
2726 
2727 	if (hw->mac.type != e1000_pch2lan)
2728 		return 0;
2729 
2730 	/* Set K1 beacon duration based on 10Mbs speed */
2731 	ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2732 	if (ret_val)
2733 		return ret_val;
2734 
2735 	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2736 	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2737 		if (status_reg &
2738 		    (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2739 			u16 pm_phy_reg;
2740 
2741 			/* LV 1G/100 Packet drop issue wa  */
2742 			ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2743 			if (ret_val)
2744 				return ret_val;
2745 			pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2746 			ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2747 			if (ret_val)
2748 				return ret_val;
2749 		} else {
2750 			u32 mac_reg;
2751 
2752 			mac_reg = er32(FEXTNVM4);
2753 			mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2754 			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2755 			ew32(FEXTNVM4, mac_reg);
2756 		}
2757 	}
2758 
2759 	return ret_val;
2760 }
2761 
2762 /**
2763  *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2764  *  @hw:   pointer to the HW structure
2765  *  @gate: boolean set to true to gate, false to ungate
2766  *
2767  *  Gate/ungate the automatic PHY configuration via hardware; perform
2768  *  the configuration via software instead.
2769  **/
2770 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2771 {
2772 	u32 extcnf_ctrl;
2773 
2774 	if (hw->mac.type < e1000_pch2lan)
2775 		return;
2776 
2777 	extcnf_ctrl = er32(EXTCNF_CTRL);
2778 
2779 	if (gate)
2780 		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2781 	else
2782 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2783 
2784 	ew32(EXTCNF_CTRL, extcnf_ctrl);
2785 }
2786 
2787 /**
2788  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2789  *  @hw: pointer to the HW structure
2790  *
2791  *  Check the appropriate indication the MAC has finished configuring the
2792  *  PHY after a software reset.
2793  **/
2794 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2795 {
2796 	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2797 
2798 	/* Wait for basic configuration completes before proceeding */
2799 	do {
2800 		data = er32(STATUS);
2801 		data &= E1000_STATUS_LAN_INIT_DONE;
2802 		usleep_range(100, 200);
2803 	} while ((!data) && --loop);
2804 
2805 	/* If basic configuration is incomplete before the above loop
2806 	 * count reaches 0, loading the configuration from NVM will
2807 	 * leave the PHY in a bad state possibly resulting in no link.
2808 	 */
2809 	if (loop == 0)
2810 		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2811 
2812 	/* Clear the Init Done bit for the next init event */
2813 	data = er32(STATUS);
2814 	data &= ~E1000_STATUS_LAN_INIT_DONE;
2815 	ew32(STATUS, data);
2816 }
2817 
2818 /**
2819  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2820  *  @hw: pointer to the HW structure
2821  **/
2822 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2823 {
2824 	s32 ret_val = 0;
2825 	u16 reg;
2826 
2827 	if (hw->phy.ops.check_reset_block(hw))
2828 		return 0;
2829 
2830 	/* Allow time for h/w to get to quiescent state after reset */
2831 	usleep_range(10000, 11000);
2832 
2833 	/* Perform any necessary post-reset workarounds */
2834 	switch (hw->mac.type) {
2835 	case e1000_pchlan:
2836 		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2837 		if (ret_val)
2838 			return ret_val;
2839 		break;
2840 	case e1000_pch2lan:
2841 		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2842 		if (ret_val)
2843 			return ret_val;
2844 		break;
2845 	default:
2846 		break;
2847 	}
2848 
2849 	/* Clear the host wakeup bit after lcd reset */
2850 	if (hw->mac.type >= e1000_pchlan) {
2851 		e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2852 		reg &= ~BM_WUC_HOST_WU_BIT;
2853 		e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2854 	}
2855 
2856 	/* Configure the LCD with the extended configuration region in NVM */
2857 	ret_val = e1000_sw_lcd_config_ich8lan(hw);
2858 	if (ret_val)
2859 		return ret_val;
2860 
2861 	/* Configure the LCD with the OEM bits in NVM */
2862 	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2863 
2864 	if (hw->mac.type == e1000_pch2lan) {
2865 		/* Ungate automatic PHY configuration on non-managed 82579 */
2866 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2867 			usleep_range(10000, 11000);
2868 			e1000_gate_hw_phy_config_ich8lan(hw, false);
2869 		}
2870 
2871 		/* Set EEE LPI Update Timer to 200usec */
2872 		ret_val = hw->phy.ops.acquire(hw);
2873 		if (ret_val)
2874 			return ret_val;
2875 		ret_val = e1000_write_emi_reg_locked(hw,
2876 						     I82579_LPI_UPDATE_TIMER,
2877 						     0x1387);
2878 		hw->phy.ops.release(hw);
2879 	}
2880 
2881 	return ret_val;
2882 }
2883 
2884 /**
2885  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2886  *  @hw: pointer to the HW structure
2887  *
2888  *  Resets the PHY
2889  *  This is a function pointer entry point called by drivers
2890  *  or other shared routines.
2891  **/
2892 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2893 {
2894 	s32 ret_val = 0;
2895 
2896 	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
2897 	if ((hw->mac.type == e1000_pch2lan) &&
2898 	    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2899 		e1000_gate_hw_phy_config_ich8lan(hw, true);
2900 
2901 	ret_val = e1000e_phy_hw_reset_generic(hw);
2902 	if (ret_val)
2903 		return ret_val;
2904 
2905 	return e1000_post_phy_reset_ich8lan(hw);
2906 }
2907 
2908 /**
2909  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2910  *  @hw: pointer to the HW structure
2911  *  @active: true to enable LPLU, false to disable
2912  *
2913  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
2914  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2915  *  the phy speed. This function will manually set the LPLU bit and restart
2916  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
2917  *  since it configures the same bit.
2918  **/
2919 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2920 {
2921 	s32 ret_val;
2922 	u16 oem_reg;
2923 
2924 	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2925 	if (ret_val)
2926 		return ret_val;
2927 
2928 	if (active)
2929 		oem_reg |= HV_OEM_BITS_LPLU;
2930 	else
2931 		oem_reg &= ~HV_OEM_BITS_LPLU;
2932 
2933 	if (!hw->phy.ops.check_reset_block(hw))
2934 		oem_reg |= HV_OEM_BITS_RESTART_AN;
2935 
2936 	return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2937 }
2938 
2939 /**
2940  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2941  *  @hw: pointer to the HW structure
2942  *  @active: true to enable LPLU, false to disable
2943  *
2944  *  Sets the LPLU D0 state according to the active flag.  When
2945  *  activating LPLU this function also disables smart speed
2946  *  and vice versa.  LPLU will not be activated unless the
2947  *  device autonegotiation advertisement meets standards of
2948  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2949  *  This is a function pointer entry point only called by
2950  *  PHY setup routines.
2951  **/
2952 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2953 {
2954 	struct e1000_phy_info *phy = &hw->phy;
2955 	u32 phy_ctrl;
2956 	s32 ret_val = 0;
2957 	u16 data;
2958 
2959 	if (phy->type == e1000_phy_ife)
2960 		return 0;
2961 
2962 	phy_ctrl = er32(PHY_CTRL);
2963 
2964 	if (active) {
2965 		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2966 		ew32(PHY_CTRL, phy_ctrl);
2967 
2968 		if (phy->type != e1000_phy_igp_3)
2969 			return 0;
2970 
2971 		/* Call gig speed drop workaround on LPLU before accessing
2972 		 * any PHY registers
2973 		 */
2974 		if (hw->mac.type == e1000_ich8lan)
2975 			e1000e_gig_downshift_workaround_ich8lan(hw);
2976 
2977 		/* When LPLU is enabled, we should disable SmartSpeed */
2978 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2979 		if (ret_val)
2980 			return ret_val;
2981 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2982 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2983 		if (ret_val)
2984 			return ret_val;
2985 	} else {
2986 		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2987 		ew32(PHY_CTRL, phy_ctrl);
2988 
2989 		if (phy->type != e1000_phy_igp_3)
2990 			return 0;
2991 
2992 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2993 		 * during Dx states where the power conservation is most
2994 		 * important.  During driver activity we should enable
2995 		 * SmartSpeed, so performance is maintained.
2996 		 */
2997 		if (phy->smart_speed == e1000_smart_speed_on) {
2998 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2999 					   &data);
3000 			if (ret_val)
3001 				return ret_val;
3002 
3003 			data |= IGP01E1000_PSCFR_SMART_SPEED;
3004 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3005 					   data);
3006 			if (ret_val)
3007 				return ret_val;
3008 		} else if (phy->smart_speed == e1000_smart_speed_off) {
3009 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3010 					   &data);
3011 			if (ret_val)
3012 				return ret_val;
3013 
3014 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3015 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3016 					   data);
3017 			if (ret_val)
3018 				return ret_val;
3019 		}
3020 	}
3021 
3022 	return 0;
3023 }
3024 
3025 /**
3026  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3027  *  @hw: pointer to the HW structure
3028  *  @active: true to enable LPLU, false to disable
3029  *
3030  *  Sets the LPLU D3 state according to the active flag.  When
3031  *  activating LPLU this function also disables smart speed
3032  *  and vice versa.  LPLU will not be activated unless the
3033  *  device autonegotiation advertisement meets standards of
3034  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3035  *  This is a function pointer entry point only called by
3036  *  PHY setup routines.
3037  **/
3038 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3039 {
3040 	struct e1000_phy_info *phy = &hw->phy;
3041 	u32 phy_ctrl;
3042 	s32 ret_val = 0;
3043 	u16 data;
3044 
3045 	phy_ctrl = er32(PHY_CTRL);
3046 
3047 	if (!active) {
3048 		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3049 		ew32(PHY_CTRL, phy_ctrl);
3050 
3051 		if (phy->type != e1000_phy_igp_3)
3052 			return 0;
3053 
3054 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3055 		 * during Dx states where the power conservation is most
3056 		 * important.  During driver activity we should enable
3057 		 * SmartSpeed, so performance is maintained.
3058 		 */
3059 		if (phy->smart_speed == e1000_smart_speed_on) {
3060 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3061 					   &data);
3062 			if (ret_val)
3063 				return ret_val;
3064 
3065 			data |= IGP01E1000_PSCFR_SMART_SPEED;
3066 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3067 					   data);
3068 			if (ret_val)
3069 				return ret_val;
3070 		} else if (phy->smart_speed == e1000_smart_speed_off) {
3071 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3072 					   &data);
3073 			if (ret_val)
3074 				return ret_val;
3075 
3076 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3077 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3078 					   data);
3079 			if (ret_val)
3080 				return ret_val;
3081 		}
3082 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3083 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3084 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3085 		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3086 		ew32(PHY_CTRL, phy_ctrl);
3087 
3088 		if (phy->type != e1000_phy_igp_3)
3089 			return 0;
3090 
3091 		/* Call gig speed drop workaround on LPLU before accessing
3092 		 * any PHY registers
3093 		 */
3094 		if (hw->mac.type == e1000_ich8lan)
3095 			e1000e_gig_downshift_workaround_ich8lan(hw);
3096 
3097 		/* When LPLU is enabled, we should disable SmartSpeed */
3098 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3099 		if (ret_val)
3100 			return ret_val;
3101 
3102 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3103 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3104 	}
3105 
3106 	return ret_val;
3107 }
3108 
3109 /**
3110  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3111  *  @hw: pointer to the HW structure
3112  *  @bank:  pointer to the variable that returns the active bank
3113  *
3114  *  Reads signature byte from the NVM using the flash access registers.
3115  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3116  **/
3117 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3118 {
3119 	u32 eecd;
3120 	struct e1000_nvm_info *nvm = &hw->nvm;
3121 	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3122 	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3123 	u32 nvm_dword = 0;
3124 	u8 sig_byte = 0;
3125 	s32 ret_val;
3126 
3127 	switch (hw->mac.type) {
3128 	case e1000_pch_spt:
3129 	case e1000_pch_cnp:
3130 		bank1_offset = nvm->flash_bank_size;
3131 		act_offset = E1000_ICH_NVM_SIG_WORD;
3132 
3133 		/* set bank to 0 in case flash read fails */
3134 		*bank = 0;
3135 
3136 		/* Check bank 0 */
3137 		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
3138 							 &nvm_dword);
3139 		if (ret_val)
3140 			return ret_val;
3141 		sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3142 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3143 		    E1000_ICH_NVM_SIG_VALUE) {
3144 			*bank = 0;
3145 			return 0;
3146 		}
3147 
3148 		/* Check bank 1 */
3149 		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
3150 							 bank1_offset,
3151 							 &nvm_dword);
3152 		if (ret_val)
3153 			return ret_val;
3154 		sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3155 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3156 		    E1000_ICH_NVM_SIG_VALUE) {
3157 			*bank = 1;
3158 			return 0;
3159 		}
3160 
3161 		e_dbg("ERROR: No valid NVM bank present\n");
3162 		return -E1000_ERR_NVM;
3163 	case e1000_ich8lan:
3164 	case e1000_ich9lan:
3165 		eecd = er32(EECD);
3166 		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3167 		    E1000_EECD_SEC1VAL_VALID_MASK) {
3168 			if (eecd & E1000_EECD_SEC1VAL)
3169 				*bank = 1;
3170 			else
3171 				*bank = 0;
3172 
3173 			return 0;
3174 		}
3175 		e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3176 		/* fall-thru */
3177 	default:
3178 		/* set bank to 0 in case flash read fails */
3179 		*bank = 0;
3180 
3181 		/* Check bank 0 */
3182 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3183 							&sig_byte);
3184 		if (ret_val)
3185 			return ret_val;
3186 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3187 		    E1000_ICH_NVM_SIG_VALUE) {
3188 			*bank = 0;
3189 			return 0;
3190 		}
3191 
3192 		/* Check bank 1 */
3193 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3194 							bank1_offset,
3195 							&sig_byte);
3196 		if (ret_val)
3197 			return ret_val;
3198 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3199 		    E1000_ICH_NVM_SIG_VALUE) {
3200 			*bank = 1;
3201 			return 0;
3202 		}
3203 
3204 		e_dbg("ERROR: No valid NVM bank present\n");
3205 		return -E1000_ERR_NVM;
3206 	}
3207 }
3208 
3209 /**
3210  *  e1000_read_nvm_spt - NVM access for SPT
3211  *  @hw: pointer to the HW structure
3212  *  @offset: The offset (in bytes) of the word(s) to read.
3213  *  @words: Size of data to read in words.
3214  *  @data: pointer to the word(s) to read at offset.
3215  *
3216  *  Reads a word(s) from the NVM
3217  **/
3218 static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3219 			      u16 *data)
3220 {
3221 	struct e1000_nvm_info *nvm = &hw->nvm;
3222 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3223 	u32 act_offset;
3224 	s32 ret_val = 0;
3225 	u32 bank = 0;
3226 	u32 dword = 0;
3227 	u16 offset_to_read;
3228 	u16 i;
3229 
3230 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3231 	    (words == 0)) {
3232 		e_dbg("nvm parameter(s) out of bounds\n");
3233 		ret_val = -E1000_ERR_NVM;
3234 		goto out;
3235 	}
3236 
3237 	nvm->ops.acquire(hw);
3238 
3239 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3240 	if (ret_val) {
3241 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3242 		bank = 0;
3243 	}
3244 
3245 	act_offset = (bank) ? nvm->flash_bank_size : 0;
3246 	act_offset += offset;
3247 
3248 	ret_val = 0;
3249 
3250 	for (i = 0; i < words; i += 2) {
3251 		if (words - i == 1) {
3252 			if (dev_spec->shadow_ram[offset + i].modified) {
3253 				data[i] =
3254 				    dev_spec->shadow_ram[offset + i].value;
3255 			} else {
3256 				offset_to_read = act_offset + i -
3257 				    ((act_offset + i) % 2);
3258 				ret_val =
3259 				  e1000_read_flash_dword_ich8lan(hw,
3260 								 offset_to_read,
3261 								 &dword);
3262 				if (ret_val)
3263 					break;
3264 				if ((act_offset + i) % 2 == 0)
3265 					data[i] = (u16)(dword & 0xFFFF);
3266 				else
3267 					data[i] = (u16)((dword >> 16) & 0xFFFF);
3268 			}
3269 		} else {
3270 			offset_to_read = act_offset + i;
3271 			if (!(dev_spec->shadow_ram[offset + i].modified) ||
3272 			    !(dev_spec->shadow_ram[offset + i + 1].modified)) {
3273 				ret_val =
3274 				  e1000_read_flash_dword_ich8lan(hw,
3275 								 offset_to_read,
3276 								 &dword);
3277 				if (ret_val)
3278 					break;
3279 			}
3280 			if (dev_spec->shadow_ram[offset + i].modified)
3281 				data[i] =
3282 				    dev_spec->shadow_ram[offset + i].value;
3283 			else
3284 				data[i] = (u16)(dword & 0xFFFF);
3285 			if (dev_spec->shadow_ram[offset + i].modified)
3286 				data[i + 1] =
3287 				    dev_spec->shadow_ram[offset + i + 1].value;
3288 			else
3289 				data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
3290 		}
3291 	}
3292 
3293 	nvm->ops.release(hw);
3294 
3295 out:
3296 	if (ret_val)
3297 		e_dbg("NVM read error: %d\n", ret_val);
3298 
3299 	return ret_val;
3300 }
3301 
3302 /**
3303  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3304  *  @hw: pointer to the HW structure
3305  *  @offset: The offset (in bytes) of the word(s) to read.
3306  *  @words: Size of data to read in words
3307  *  @data: Pointer to the word(s) to read at offset.
3308  *
3309  *  Reads a word(s) from the NVM using the flash access registers.
3310  **/
3311 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3312 				  u16 *data)
3313 {
3314 	struct e1000_nvm_info *nvm = &hw->nvm;
3315 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3316 	u32 act_offset;
3317 	s32 ret_val = 0;
3318 	u32 bank = 0;
3319 	u16 i, word;
3320 
3321 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3322 	    (words == 0)) {
3323 		e_dbg("nvm parameter(s) out of bounds\n");
3324 		ret_val = -E1000_ERR_NVM;
3325 		goto out;
3326 	}
3327 
3328 	nvm->ops.acquire(hw);
3329 
3330 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3331 	if (ret_val) {
3332 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3333 		bank = 0;
3334 	}
3335 
3336 	act_offset = (bank) ? nvm->flash_bank_size : 0;
3337 	act_offset += offset;
3338 
3339 	ret_val = 0;
3340 	for (i = 0; i < words; i++) {
3341 		if (dev_spec->shadow_ram[offset + i].modified) {
3342 			data[i] = dev_spec->shadow_ram[offset + i].value;
3343 		} else {
3344 			ret_val = e1000_read_flash_word_ich8lan(hw,
3345 								act_offset + i,
3346 								&word);
3347 			if (ret_val)
3348 				break;
3349 			data[i] = word;
3350 		}
3351 	}
3352 
3353 	nvm->ops.release(hw);
3354 
3355 out:
3356 	if (ret_val)
3357 		e_dbg("NVM read error: %d\n", ret_val);
3358 
3359 	return ret_val;
3360 }
3361 
3362 /**
3363  *  e1000_flash_cycle_init_ich8lan - Initialize flash
3364  *  @hw: pointer to the HW structure
3365  *
3366  *  This function does initial flash setup so that a new read/write/erase cycle
3367  *  can be started.
3368  **/
3369 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3370 {
3371 	union ich8_hws_flash_status hsfsts;
3372 	s32 ret_val = -E1000_ERR_NVM;
3373 
3374 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3375 
3376 	/* Check if the flash descriptor is valid */
3377 	if (!hsfsts.hsf_status.fldesvalid) {
3378 		e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
3379 		return -E1000_ERR_NVM;
3380 	}
3381 
3382 	/* Clear FCERR and DAEL in hw status by writing 1 */
3383 	hsfsts.hsf_status.flcerr = 1;
3384 	hsfsts.hsf_status.dael = 1;
3385 	if (hw->mac.type >= e1000_pch_spt)
3386 		ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3387 	else
3388 		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3389 
3390 	/* Either we should have a hardware SPI cycle in progress
3391 	 * bit to check against, in order to start a new cycle or
3392 	 * FDONE bit should be changed in the hardware so that it
3393 	 * is 1 after hardware reset, which can then be used as an
3394 	 * indication whether a cycle is in progress or has been
3395 	 * completed.
3396 	 */
3397 
3398 	if (!hsfsts.hsf_status.flcinprog) {
3399 		/* There is no cycle running at present,
3400 		 * so we can start a cycle.
3401 		 * Begin by setting Flash Cycle Done.
3402 		 */
3403 		hsfsts.hsf_status.flcdone = 1;
3404 		if (hw->mac.type >= e1000_pch_spt)
3405 			ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3406 		else
3407 			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3408 		ret_val = 0;
3409 	} else {
3410 		s32 i;
3411 
3412 		/* Otherwise poll for sometime so the current
3413 		 * cycle has a chance to end before giving up.
3414 		 */
3415 		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3416 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3417 			if (!hsfsts.hsf_status.flcinprog) {
3418 				ret_val = 0;
3419 				break;
3420 			}
3421 			udelay(1);
3422 		}
3423 		if (!ret_val) {
3424 			/* Successful in waiting for previous cycle to timeout,
3425 			 * now set the Flash Cycle Done.
3426 			 */
3427 			hsfsts.hsf_status.flcdone = 1;
3428 			if (hw->mac.type >= e1000_pch_spt)
3429 				ew32flash(ICH_FLASH_HSFSTS,
3430 					  hsfsts.regval & 0xFFFF);
3431 			else
3432 				ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3433 		} else {
3434 			e_dbg("Flash controller busy, cannot get access\n");
3435 		}
3436 	}
3437 
3438 	return ret_val;
3439 }
3440 
3441 /**
3442  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3443  *  @hw: pointer to the HW structure
3444  *  @timeout: maximum time to wait for completion
3445  *
3446  *  This function starts a flash cycle and waits for its completion.
3447  **/
3448 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3449 {
3450 	union ich8_hws_flash_ctrl hsflctl;
3451 	union ich8_hws_flash_status hsfsts;
3452 	u32 i = 0;
3453 
3454 	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3455 	if (hw->mac.type >= e1000_pch_spt)
3456 		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3457 	else
3458 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3459 	hsflctl.hsf_ctrl.flcgo = 1;
3460 
3461 	if (hw->mac.type >= e1000_pch_spt)
3462 		ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
3463 	else
3464 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3465 
3466 	/* wait till FDONE bit is set to 1 */
3467 	do {
3468 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3469 		if (hsfsts.hsf_status.flcdone)
3470 			break;
3471 		udelay(1);
3472 	} while (i++ < timeout);
3473 
3474 	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3475 		return 0;
3476 
3477 	return -E1000_ERR_NVM;
3478 }
3479 
3480 /**
3481  *  e1000_read_flash_dword_ich8lan - Read dword from flash
3482  *  @hw: pointer to the HW structure
3483  *  @offset: offset to data location
3484  *  @data: pointer to the location for storing the data
3485  *
3486  *  Reads the flash dword at offset into data.  Offset is converted
3487  *  to bytes before read.
3488  **/
3489 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3490 					  u32 *data)
3491 {
3492 	/* Must convert word offset into bytes. */
3493 	offset <<= 1;
3494 	return e1000_read_flash_data32_ich8lan(hw, offset, data);
3495 }
3496 
3497 /**
3498  *  e1000_read_flash_word_ich8lan - Read word from flash
3499  *  @hw: pointer to the HW structure
3500  *  @offset: offset to data location
3501  *  @data: pointer to the location for storing the data
3502  *
3503  *  Reads the flash word at offset into data.  Offset is converted
3504  *  to bytes before read.
3505  **/
3506 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3507 					 u16 *data)
3508 {
3509 	/* Must convert offset into bytes. */
3510 	offset <<= 1;
3511 
3512 	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3513 }
3514 
3515 /**
3516  *  e1000_read_flash_byte_ich8lan - Read byte from flash
3517  *  @hw: pointer to the HW structure
3518  *  @offset: The offset of the byte to read.
3519  *  @data: Pointer to a byte to store the value read.
3520  *
3521  *  Reads a single byte from the NVM using the flash access registers.
3522  **/
3523 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3524 					 u8 *data)
3525 {
3526 	s32 ret_val;
3527 	u16 word = 0;
3528 
3529 	/* In SPT, only 32 bits access is supported,
3530 	 * so this function should not be called.
3531 	 */
3532 	if (hw->mac.type >= e1000_pch_spt)
3533 		return -E1000_ERR_NVM;
3534 	else
3535 		ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3536 
3537 	if (ret_val)
3538 		return ret_val;
3539 
3540 	*data = (u8)word;
3541 
3542 	return 0;
3543 }
3544 
3545 /**
3546  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3547  *  @hw: pointer to the HW structure
3548  *  @offset: The offset (in bytes) of the byte or word to read.
3549  *  @size: Size of data to read, 1=byte 2=word
3550  *  @data: Pointer to the word to store the value read.
3551  *
3552  *  Reads a byte or word from the NVM using the flash access registers.
3553  **/
3554 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3555 					 u8 size, u16 *data)
3556 {
3557 	union ich8_hws_flash_status hsfsts;
3558 	union ich8_hws_flash_ctrl hsflctl;
3559 	u32 flash_linear_addr;
3560 	u32 flash_data = 0;
3561 	s32 ret_val = -E1000_ERR_NVM;
3562 	u8 count = 0;
3563 
3564 	if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3565 		return -E1000_ERR_NVM;
3566 
3567 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3568 			     hw->nvm.flash_base_addr);
3569 
3570 	do {
3571 		udelay(1);
3572 		/* Steps */
3573 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3574 		if (ret_val)
3575 			break;
3576 
3577 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3578 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3579 		hsflctl.hsf_ctrl.fldbcount = size - 1;
3580 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3581 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3582 
3583 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3584 
3585 		ret_val =
3586 		    e1000_flash_cycle_ich8lan(hw,
3587 					      ICH_FLASH_READ_COMMAND_TIMEOUT);
3588 
3589 		/* Check if FCERR is set to 1, if set to 1, clear it
3590 		 * and try the whole sequence a few more times, else
3591 		 * read in (shift in) the Flash Data0, the order is
3592 		 * least significant byte first msb to lsb
3593 		 */
3594 		if (!ret_val) {
3595 			flash_data = er32flash(ICH_FLASH_FDATA0);
3596 			if (size == 1)
3597 				*data = (u8)(flash_data & 0x000000FF);
3598 			else if (size == 2)
3599 				*data = (u16)(flash_data & 0x0000FFFF);
3600 			break;
3601 		} else {
3602 			/* If we've gotten here, then things are probably
3603 			 * completely hosed, but if the error condition is
3604 			 * detected, it won't hurt to give it another try...
3605 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3606 			 */
3607 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3608 			if (hsfsts.hsf_status.flcerr) {
3609 				/* Repeat for some time before giving up. */
3610 				continue;
3611 			} else if (!hsfsts.hsf_status.flcdone) {
3612 				e_dbg("Timeout error - flash cycle did not complete.\n");
3613 				break;
3614 			}
3615 		}
3616 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3617 
3618 	return ret_val;
3619 }
3620 
3621 /**
3622  *  e1000_read_flash_data32_ich8lan - Read dword from NVM
3623  *  @hw: pointer to the HW structure
3624  *  @offset: The offset (in bytes) of the dword to read.
3625  *  @data: Pointer to the dword to store the value read.
3626  *
3627  *  Reads a byte or word from the NVM using the flash access registers.
3628  **/
3629 
3630 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3631 					   u32 *data)
3632 {
3633 	union ich8_hws_flash_status hsfsts;
3634 	union ich8_hws_flash_ctrl hsflctl;
3635 	u32 flash_linear_addr;
3636 	s32 ret_val = -E1000_ERR_NVM;
3637 	u8 count = 0;
3638 
3639 	if (offset > ICH_FLASH_LINEAR_ADDR_MASK || hw->mac.type < e1000_pch_spt)
3640 		return -E1000_ERR_NVM;
3641 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3642 			     hw->nvm.flash_base_addr);
3643 
3644 	do {
3645 		udelay(1);
3646 		/* Steps */
3647 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3648 		if (ret_val)
3649 			break;
3650 		/* In SPT, This register is in Lan memory space, not flash.
3651 		 * Therefore, only 32 bit access is supported
3652 		 */
3653 		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3654 
3655 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3656 		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3657 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3658 		/* In SPT, This register is in Lan memory space, not flash.
3659 		 * Therefore, only 32 bit access is supported
3660 		 */
3661 		ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16);
3662 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3663 
3664 		ret_val =
3665 		   e1000_flash_cycle_ich8lan(hw,
3666 					     ICH_FLASH_READ_COMMAND_TIMEOUT);
3667 
3668 		/* Check if FCERR is set to 1, if set to 1, clear it
3669 		 * and try the whole sequence a few more times, else
3670 		 * read in (shift in) the Flash Data0, the order is
3671 		 * least significant byte first msb to lsb
3672 		 */
3673 		if (!ret_val) {
3674 			*data = er32flash(ICH_FLASH_FDATA0);
3675 			break;
3676 		} else {
3677 			/* If we've gotten here, then things are probably
3678 			 * completely hosed, but if the error condition is
3679 			 * detected, it won't hurt to give it another try...
3680 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3681 			 */
3682 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3683 			if (hsfsts.hsf_status.flcerr) {
3684 				/* Repeat for some time before giving up. */
3685 				continue;
3686 			} else if (!hsfsts.hsf_status.flcdone) {
3687 				e_dbg("Timeout error - flash cycle did not complete.\n");
3688 				break;
3689 			}
3690 		}
3691 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3692 
3693 	return ret_val;
3694 }
3695 
3696 /**
3697  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
3698  *  @hw: pointer to the HW structure
3699  *  @offset: The offset (in bytes) of the word(s) to write.
3700  *  @words: Size of data to write in words
3701  *  @data: Pointer to the word(s) to write at offset.
3702  *
3703  *  Writes a byte or word to the NVM using the flash access registers.
3704  **/
3705 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3706 				   u16 *data)
3707 {
3708 	struct e1000_nvm_info *nvm = &hw->nvm;
3709 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3710 	u16 i;
3711 
3712 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3713 	    (words == 0)) {
3714 		e_dbg("nvm parameter(s) out of bounds\n");
3715 		return -E1000_ERR_NVM;
3716 	}
3717 
3718 	nvm->ops.acquire(hw);
3719 
3720 	for (i = 0; i < words; i++) {
3721 		dev_spec->shadow_ram[offset + i].modified = true;
3722 		dev_spec->shadow_ram[offset + i].value = data[i];
3723 	}
3724 
3725 	nvm->ops.release(hw);
3726 
3727 	return 0;
3728 }
3729 
3730 /**
3731  *  e1000_update_nvm_checksum_spt - Update the checksum for NVM
3732  *  @hw: pointer to the HW structure
3733  *
3734  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3735  *  which writes the checksum to the shadow ram.  The changes in the shadow
3736  *  ram are then committed to the EEPROM by processing each bank at a time
3737  *  checking for the modified bit and writing only the pending changes.
3738  *  After a successful commit, the shadow ram is cleared and is ready for
3739  *  future writes.
3740  **/
3741 static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
3742 {
3743 	struct e1000_nvm_info *nvm = &hw->nvm;
3744 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3745 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3746 	s32 ret_val;
3747 	u32 dword = 0;
3748 
3749 	ret_val = e1000e_update_nvm_checksum_generic(hw);
3750 	if (ret_val)
3751 		goto out;
3752 
3753 	if (nvm->type != e1000_nvm_flash_sw)
3754 		goto out;
3755 
3756 	nvm->ops.acquire(hw);
3757 
3758 	/* We're writing to the opposite bank so if we're on bank 1,
3759 	 * write to bank 0 etc.  We also need to erase the segment that
3760 	 * is going to be written
3761 	 */
3762 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3763 	if (ret_val) {
3764 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3765 		bank = 0;
3766 	}
3767 
3768 	if (bank == 0) {
3769 		new_bank_offset = nvm->flash_bank_size;
3770 		old_bank_offset = 0;
3771 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3772 		if (ret_val)
3773 			goto release;
3774 	} else {
3775 		old_bank_offset = nvm->flash_bank_size;
3776 		new_bank_offset = 0;
3777 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3778 		if (ret_val)
3779 			goto release;
3780 	}
3781 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) {
3782 		/* Determine whether to write the value stored
3783 		 * in the other NVM bank or a modified value stored
3784 		 * in the shadow RAM
3785 		 */
3786 		ret_val = e1000_read_flash_dword_ich8lan(hw,
3787 							 i + old_bank_offset,
3788 							 &dword);
3789 
3790 		if (dev_spec->shadow_ram[i].modified) {
3791 			dword &= 0xffff0000;
3792 			dword |= (dev_spec->shadow_ram[i].value & 0xffff);
3793 		}
3794 		if (dev_spec->shadow_ram[i + 1].modified) {
3795 			dword &= 0x0000ffff;
3796 			dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
3797 				  << 16);
3798 		}
3799 		if (ret_val)
3800 			break;
3801 
3802 		/* If the word is 0x13, then make sure the signature bits
3803 		 * (15:14) are 11b until the commit has completed.
3804 		 * This will allow us to write 10b which indicates the
3805 		 * signature is valid.  We want to do this after the write
3806 		 * has completed so that we don't mark the segment valid
3807 		 * while the write is still in progress
3808 		 */
3809 		if (i == E1000_ICH_NVM_SIG_WORD - 1)
3810 			dword |= E1000_ICH_NVM_SIG_MASK << 16;
3811 
3812 		/* Convert offset to bytes. */
3813 		act_offset = (i + new_bank_offset) << 1;
3814 
3815 		usleep_range(100, 200);
3816 
3817 		/* Write the data to the new bank. Offset in words */
3818 		act_offset = i + new_bank_offset;
3819 		ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
3820 								dword);
3821 		if (ret_val)
3822 			break;
3823 	}
3824 
3825 	/* Don't bother writing the segment valid bits if sector
3826 	 * programming failed.
3827 	 */
3828 	if (ret_val) {
3829 		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3830 		e_dbg("Flash commit failed.\n");
3831 		goto release;
3832 	}
3833 
3834 	/* Finally validate the new segment by setting bit 15:14
3835 	 * to 10b in word 0x13 , this can be done without an
3836 	 * erase as well since these bits are 11 to start with
3837 	 * and we need to change bit 14 to 0b
3838 	 */
3839 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3840 
3841 	/*offset in words but we read dword */
3842 	--act_offset;
3843 	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3844 
3845 	if (ret_val)
3846 		goto release;
3847 
3848 	dword &= 0xBFFFFFFF;
3849 	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3850 
3851 	if (ret_val)
3852 		goto release;
3853 
3854 	/* And invalidate the previously valid segment by setting
3855 	 * its signature word (0x13) high_byte to 0b. This can be
3856 	 * done without an erase because flash erase sets all bits
3857 	 * to 1's. We can write 1's to 0's without an erase
3858 	 */
3859 	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
3860 
3861 	/* offset in words but we read dword */
3862 	act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
3863 	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3864 
3865 	if (ret_val)
3866 		goto release;
3867 
3868 	dword &= 0x00FFFFFF;
3869 	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3870 
3871 	if (ret_val)
3872 		goto release;
3873 
3874 	/* Great!  Everything worked, we can now clear the cached entries. */
3875 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3876 		dev_spec->shadow_ram[i].modified = false;
3877 		dev_spec->shadow_ram[i].value = 0xFFFF;
3878 	}
3879 
3880 release:
3881 	nvm->ops.release(hw);
3882 
3883 	/* Reload the EEPROM, or else modifications will not appear
3884 	 * until after the next adapter reset.
3885 	 */
3886 	if (!ret_val) {
3887 		nvm->ops.reload(hw);
3888 		usleep_range(10000, 11000);
3889 	}
3890 
3891 out:
3892 	if (ret_val)
3893 		e_dbg("NVM update error: %d\n", ret_val);
3894 
3895 	return ret_val;
3896 }
3897 
3898 /**
3899  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3900  *  @hw: pointer to the HW structure
3901  *
3902  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3903  *  which writes the checksum to the shadow ram.  The changes in the shadow
3904  *  ram are then committed to the EEPROM by processing each bank at a time
3905  *  checking for the modified bit and writing only the pending changes.
3906  *  After a successful commit, the shadow ram is cleared and is ready for
3907  *  future writes.
3908  **/
3909 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
3910 {
3911 	struct e1000_nvm_info *nvm = &hw->nvm;
3912 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3913 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3914 	s32 ret_val;
3915 	u16 data = 0;
3916 
3917 	ret_val = e1000e_update_nvm_checksum_generic(hw);
3918 	if (ret_val)
3919 		goto out;
3920 
3921 	if (nvm->type != e1000_nvm_flash_sw)
3922 		goto out;
3923 
3924 	nvm->ops.acquire(hw);
3925 
3926 	/* We're writing to the opposite bank so if we're on bank 1,
3927 	 * write to bank 0 etc.  We also need to erase the segment that
3928 	 * is going to be written
3929 	 */
3930 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3931 	if (ret_val) {
3932 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3933 		bank = 0;
3934 	}
3935 
3936 	if (bank == 0) {
3937 		new_bank_offset = nvm->flash_bank_size;
3938 		old_bank_offset = 0;
3939 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3940 		if (ret_val)
3941 			goto release;
3942 	} else {
3943 		old_bank_offset = nvm->flash_bank_size;
3944 		new_bank_offset = 0;
3945 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3946 		if (ret_val)
3947 			goto release;
3948 	}
3949 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3950 		if (dev_spec->shadow_ram[i].modified) {
3951 			data = dev_spec->shadow_ram[i].value;
3952 		} else {
3953 			ret_val = e1000_read_flash_word_ich8lan(hw, i +
3954 								old_bank_offset,
3955 								&data);
3956 			if (ret_val)
3957 				break;
3958 		}
3959 
3960 		/* If the word is 0x13, then make sure the signature bits
3961 		 * (15:14) are 11b until the commit has completed.
3962 		 * This will allow us to write 10b which indicates the
3963 		 * signature is valid.  We want to do this after the write
3964 		 * has completed so that we don't mark the segment valid
3965 		 * while the write is still in progress
3966 		 */
3967 		if (i == E1000_ICH_NVM_SIG_WORD)
3968 			data |= E1000_ICH_NVM_SIG_MASK;
3969 
3970 		/* Convert offset to bytes. */
3971 		act_offset = (i + new_bank_offset) << 1;
3972 
3973 		usleep_range(100, 200);
3974 		/* Write the bytes to the new bank. */
3975 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3976 							       act_offset,
3977 							       (u8)data);
3978 		if (ret_val)
3979 			break;
3980 
3981 		usleep_range(100, 200);
3982 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3983 							       act_offset + 1,
3984 							       (u8)(data >> 8));
3985 		if (ret_val)
3986 			break;
3987 	}
3988 
3989 	/* Don't bother writing the segment valid bits if sector
3990 	 * programming failed.
3991 	 */
3992 	if (ret_val) {
3993 		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3994 		e_dbg("Flash commit failed.\n");
3995 		goto release;
3996 	}
3997 
3998 	/* Finally validate the new segment by setting bit 15:14
3999 	 * to 10b in word 0x13 , this can be done without an
4000 	 * erase as well since these bits are 11 to start with
4001 	 * and we need to change bit 14 to 0b
4002 	 */
4003 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4004 	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
4005 	if (ret_val)
4006 		goto release;
4007 
4008 	data &= 0xBFFF;
4009 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4010 						       act_offset * 2 + 1,
4011 						       (u8)(data >> 8));
4012 	if (ret_val)
4013 		goto release;
4014 
4015 	/* And invalidate the previously valid segment by setting
4016 	 * its signature word (0x13) high_byte to 0b. This can be
4017 	 * done without an erase because flash erase sets all bits
4018 	 * to 1's. We can write 1's to 0's without an erase
4019 	 */
4020 	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4021 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
4022 	if (ret_val)
4023 		goto release;
4024 
4025 	/* Great!  Everything worked, we can now clear the cached entries. */
4026 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4027 		dev_spec->shadow_ram[i].modified = false;
4028 		dev_spec->shadow_ram[i].value = 0xFFFF;
4029 	}
4030 
4031 release:
4032 	nvm->ops.release(hw);
4033 
4034 	/* Reload the EEPROM, or else modifications will not appear
4035 	 * until after the next adapter reset.
4036 	 */
4037 	if (!ret_val) {
4038 		nvm->ops.reload(hw);
4039 		usleep_range(10000, 11000);
4040 	}
4041 
4042 out:
4043 	if (ret_val)
4044 		e_dbg("NVM update error: %d\n", ret_val);
4045 
4046 	return ret_val;
4047 }
4048 
4049 /**
4050  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4051  *  @hw: pointer to the HW structure
4052  *
4053  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4054  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
4055  *  calculated, in which case we need to calculate the checksum and set bit 6.
4056  **/
4057 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4058 {
4059 	s32 ret_val;
4060 	u16 data;
4061 	u16 word;
4062 	u16 valid_csum_mask;
4063 
4064 	/* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
4065 	 * the checksum needs to be fixed.  This bit is an indication that
4066 	 * the NVM was prepared by OEM software and did not calculate
4067 	 * the checksum...a likely scenario.
4068 	 */
4069 	switch (hw->mac.type) {
4070 	case e1000_pch_lpt:
4071 	case e1000_pch_spt:
4072 	case e1000_pch_cnp:
4073 		word = NVM_COMPAT;
4074 		valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4075 		break;
4076 	default:
4077 		word = NVM_FUTURE_INIT_WORD1;
4078 		valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4079 		break;
4080 	}
4081 
4082 	ret_val = e1000_read_nvm(hw, word, 1, &data);
4083 	if (ret_val)
4084 		return ret_val;
4085 
4086 	if (!(data & valid_csum_mask)) {
4087 		data |= valid_csum_mask;
4088 		ret_val = e1000_write_nvm(hw, word, 1, &data);
4089 		if (ret_val)
4090 			return ret_val;
4091 		ret_val = e1000e_update_nvm_checksum(hw);
4092 		if (ret_val)
4093 			return ret_val;
4094 	}
4095 
4096 	return e1000e_validate_nvm_checksum_generic(hw);
4097 }
4098 
4099 /**
4100  *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
4101  *  @hw: pointer to the HW structure
4102  *
4103  *  To prevent malicious write/erase of the NVM, set it to be read-only
4104  *  so that the hardware ignores all write/erase cycles of the NVM via
4105  *  the flash control registers.  The shadow-ram copy of the NVM will
4106  *  still be updated, however any updates to this copy will not stick
4107  *  across driver reloads.
4108  **/
4109 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
4110 {
4111 	struct e1000_nvm_info *nvm = &hw->nvm;
4112 	union ich8_flash_protected_range pr0;
4113 	union ich8_hws_flash_status hsfsts;
4114 	u32 gfpreg;
4115 
4116 	nvm->ops.acquire(hw);
4117 
4118 	gfpreg = er32flash(ICH_FLASH_GFPREG);
4119 
4120 	/* Write-protect GbE Sector of NVM */
4121 	pr0.regval = er32flash(ICH_FLASH_PR0);
4122 	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
4123 	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
4124 	pr0.range.wpe = true;
4125 	ew32flash(ICH_FLASH_PR0, pr0.regval);
4126 
4127 	/* Lock down a subset of GbE Flash Control Registers, e.g.
4128 	 * PR0 to prevent the write-protection from being lifted.
4129 	 * Once FLOCKDN is set, the registers protected by it cannot
4130 	 * be written until FLOCKDN is cleared by a hardware reset.
4131 	 */
4132 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4133 	hsfsts.hsf_status.flockdn = true;
4134 	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
4135 
4136 	nvm->ops.release(hw);
4137 }
4138 
4139 /**
4140  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4141  *  @hw: pointer to the HW structure
4142  *  @offset: The offset (in bytes) of the byte/word to read.
4143  *  @size: Size of data to read, 1=byte 2=word
4144  *  @data: The byte(s) to write to the NVM.
4145  *
4146  *  Writes one/two bytes to the NVM using the flash access registers.
4147  **/
4148 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4149 					  u8 size, u16 data)
4150 {
4151 	union ich8_hws_flash_status hsfsts;
4152 	union ich8_hws_flash_ctrl hsflctl;
4153 	u32 flash_linear_addr;
4154 	u32 flash_data = 0;
4155 	s32 ret_val;
4156 	u8 count = 0;
4157 
4158 	if (hw->mac.type >= e1000_pch_spt) {
4159 		if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4160 			return -E1000_ERR_NVM;
4161 	} else {
4162 		if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4163 			return -E1000_ERR_NVM;
4164 	}
4165 
4166 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4167 			     hw->nvm.flash_base_addr);
4168 
4169 	do {
4170 		udelay(1);
4171 		/* Steps */
4172 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4173 		if (ret_val)
4174 			break;
4175 		/* In SPT, This register is in Lan memory space, not
4176 		 * flash.  Therefore, only 32 bit access is supported
4177 		 */
4178 		if (hw->mac.type >= e1000_pch_spt)
4179 			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
4180 		else
4181 			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4182 
4183 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4184 		hsflctl.hsf_ctrl.fldbcount = size - 1;
4185 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4186 		/* In SPT, This register is in Lan memory space,
4187 		 * not flash.  Therefore, only 32 bit access is
4188 		 * supported
4189 		 */
4190 		if (hw->mac.type >= e1000_pch_spt)
4191 			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4192 		else
4193 			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4194 
4195 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4196 
4197 		if (size == 1)
4198 			flash_data = (u32)data & 0x00FF;
4199 		else
4200 			flash_data = (u32)data;
4201 
4202 		ew32flash(ICH_FLASH_FDATA0, flash_data);
4203 
4204 		/* check if FCERR is set to 1 , if set to 1, clear it
4205 		 * and try the whole sequence a few more times else done
4206 		 */
4207 		ret_val =
4208 		    e1000_flash_cycle_ich8lan(hw,
4209 					      ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4210 		if (!ret_val)
4211 			break;
4212 
4213 		/* If we're here, then things are most likely
4214 		 * completely hosed, but if the error condition
4215 		 * is detected, it won't hurt to give it another
4216 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4217 		 */
4218 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4219 		if (hsfsts.hsf_status.flcerr)
4220 			/* Repeat for some time before giving up. */
4221 			continue;
4222 		if (!hsfsts.hsf_status.flcdone) {
4223 			e_dbg("Timeout error - flash cycle did not complete.\n");
4224 			break;
4225 		}
4226 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4227 
4228 	return ret_val;
4229 }
4230 
4231 /**
4232 *  e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4233 *  @hw: pointer to the HW structure
4234 *  @offset: The offset (in bytes) of the dwords to read.
4235 *  @data: The 4 bytes to write to the NVM.
4236 *
4237 *  Writes one/two/four bytes to the NVM using the flash access registers.
4238 **/
4239 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4240 					    u32 data)
4241 {
4242 	union ich8_hws_flash_status hsfsts;
4243 	union ich8_hws_flash_ctrl hsflctl;
4244 	u32 flash_linear_addr;
4245 	s32 ret_val;
4246 	u8 count = 0;
4247 
4248 	if (hw->mac.type >= e1000_pch_spt) {
4249 		if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4250 			return -E1000_ERR_NVM;
4251 	}
4252 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4253 			     hw->nvm.flash_base_addr);
4254 	do {
4255 		udelay(1);
4256 		/* Steps */
4257 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4258 		if (ret_val)
4259 			break;
4260 
4261 		/* In SPT, This register is in Lan memory space, not
4262 		 * flash.  Therefore, only 32 bit access is supported
4263 		 */
4264 		if (hw->mac.type >= e1000_pch_spt)
4265 			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS)
4266 			    >> 16;
4267 		else
4268 			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4269 
4270 		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4271 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4272 
4273 		/* In SPT, This register is in Lan memory space,
4274 		 * not flash.  Therefore, only 32 bit access is
4275 		 * supported
4276 		 */
4277 		if (hw->mac.type >= e1000_pch_spt)
4278 			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4279 		else
4280 			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4281 
4282 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4283 
4284 		ew32flash(ICH_FLASH_FDATA0, data);
4285 
4286 		/* check if FCERR is set to 1 , if set to 1, clear it
4287 		 * and try the whole sequence a few more times else done
4288 		 */
4289 		ret_val =
4290 		   e1000_flash_cycle_ich8lan(hw,
4291 					     ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4292 
4293 		if (!ret_val)
4294 			break;
4295 
4296 		/* If we're here, then things are most likely
4297 		 * completely hosed, but if the error condition
4298 		 * is detected, it won't hurt to give it another
4299 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4300 		 */
4301 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4302 
4303 		if (hsfsts.hsf_status.flcerr)
4304 			/* Repeat for some time before giving up. */
4305 			continue;
4306 		if (!hsfsts.hsf_status.flcdone) {
4307 			e_dbg("Timeout error - flash cycle did not complete.\n");
4308 			break;
4309 		}
4310 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4311 
4312 	return ret_val;
4313 }
4314 
4315 /**
4316  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4317  *  @hw: pointer to the HW structure
4318  *  @offset: The index of the byte to read.
4319  *  @data: The byte to write to the NVM.
4320  *
4321  *  Writes a single byte to the NVM using the flash access registers.
4322  **/
4323 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4324 					  u8 data)
4325 {
4326 	u16 word = (u16)data;
4327 
4328 	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4329 }
4330 
4331 /**
4332 *  e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4333 *  @hw: pointer to the HW structure
4334 *  @offset: The offset of the word to write.
4335 *  @dword: The dword to write to the NVM.
4336 *
4337 *  Writes a single dword to the NVM using the flash access registers.
4338 *  Goes through a retry algorithm before giving up.
4339 **/
4340 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4341 						 u32 offset, u32 dword)
4342 {
4343 	s32 ret_val;
4344 	u16 program_retries;
4345 
4346 	/* Must convert word offset into bytes. */
4347 	offset <<= 1;
4348 	ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4349 
4350 	if (!ret_val)
4351 		return ret_val;
4352 	for (program_retries = 0; program_retries < 100; program_retries++) {
4353 		e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset);
4354 		usleep_range(100, 200);
4355 		ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4356 		if (!ret_val)
4357 			break;
4358 	}
4359 	if (program_retries == 100)
4360 		return -E1000_ERR_NVM;
4361 
4362 	return 0;
4363 }
4364 
4365 /**
4366  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4367  *  @hw: pointer to the HW structure
4368  *  @offset: The offset of the byte to write.
4369  *  @byte: The byte to write to the NVM.
4370  *
4371  *  Writes a single byte to the NVM using the flash access registers.
4372  *  Goes through a retry algorithm before giving up.
4373  **/
4374 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4375 						u32 offset, u8 byte)
4376 {
4377 	s32 ret_val;
4378 	u16 program_retries;
4379 
4380 	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4381 	if (!ret_val)
4382 		return ret_val;
4383 
4384 	for (program_retries = 0; program_retries < 100; program_retries++) {
4385 		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
4386 		usleep_range(100, 200);
4387 		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4388 		if (!ret_val)
4389 			break;
4390 	}
4391 	if (program_retries == 100)
4392 		return -E1000_ERR_NVM;
4393 
4394 	return 0;
4395 }
4396 
4397 /**
4398  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4399  *  @hw: pointer to the HW structure
4400  *  @bank: 0 for first bank, 1 for second bank, etc.
4401  *
4402  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4403  *  bank N is 4096 * N + flash_reg_addr.
4404  **/
4405 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4406 {
4407 	struct e1000_nvm_info *nvm = &hw->nvm;
4408 	union ich8_hws_flash_status hsfsts;
4409 	union ich8_hws_flash_ctrl hsflctl;
4410 	u32 flash_linear_addr;
4411 	/* bank size is in 16bit words - adjust to bytes */
4412 	u32 flash_bank_size = nvm->flash_bank_size * 2;
4413 	s32 ret_val;
4414 	s32 count = 0;
4415 	s32 j, iteration, sector_size;
4416 
4417 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4418 
4419 	/* Determine HW Sector size: Read BERASE bits of hw flash status
4420 	 * register
4421 	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
4422 	 *     consecutive sectors.  The start index for the nth Hw sector
4423 	 *     can be calculated as = bank * 4096 + n * 256
4424 	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4425 	 *     The start index for the nth Hw sector can be calculated
4426 	 *     as = bank * 4096
4427 	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4428 	 *     (ich9 only, otherwise error condition)
4429 	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4430 	 */
4431 	switch (hsfsts.hsf_status.berasesz) {
4432 	case 0:
4433 		/* Hw sector size 256 */
4434 		sector_size = ICH_FLASH_SEG_SIZE_256;
4435 		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4436 		break;
4437 	case 1:
4438 		sector_size = ICH_FLASH_SEG_SIZE_4K;
4439 		iteration = 1;
4440 		break;
4441 	case 2:
4442 		sector_size = ICH_FLASH_SEG_SIZE_8K;
4443 		iteration = 1;
4444 		break;
4445 	case 3:
4446 		sector_size = ICH_FLASH_SEG_SIZE_64K;
4447 		iteration = 1;
4448 		break;
4449 	default:
4450 		return -E1000_ERR_NVM;
4451 	}
4452 
4453 	/* Start with the base address, then add the sector offset. */
4454 	flash_linear_addr = hw->nvm.flash_base_addr;
4455 	flash_linear_addr += (bank) ? flash_bank_size : 0;
4456 
4457 	for (j = 0; j < iteration; j++) {
4458 		do {
4459 			u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4460 
4461 			/* Steps */
4462 			ret_val = e1000_flash_cycle_init_ich8lan(hw);
4463 			if (ret_val)
4464 				return ret_val;
4465 
4466 			/* Write a value 11 (block Erase) in Flash
4467 			 * Cycle field in hw flash control
4468 			 */
4469 			if (hw->mac.type >= e1000_pch_spt)
4470 				hsflctl.regval =
4471 				    er32flash(ICH_FLASH_HSFSTS) >> 16;
4472 			else
4473 				hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4474 
4475 			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4476 			if (hw->mac.type >= e1000_pch_spt)
4477 				ew32flash(ICH_FLASH_HSFSTS,
4478 					  hsflctl.regval << 16);
4479 			else
4480 				ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4481 
4482 			/* Write the last 24 bits of an index within the
4483 			 * block into Flash Linear address field in Flash
4484 			 * Address.
4485 			 */
4486 			flash_linear_addr += (j * sector_size);
4487 			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4488 
4489 			ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4490 			if (!ret_val)
4491 				break;
4492 
4493 			/* Check if FCERR is set to 1.  If 1,
4494 			 * clear it and try the whole sequence
4495 			 * a few more times else Done
4496 			 */
4497 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4498 			if (hsfsts.hsf_status.flcerr)
4499 				/* repeat for some time before giving up */
4500 				continue;
4501 			else if (!hsfsts.hsf_status.flcdone)
4502 				return ret_val;
4503 		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4504 	}
4505 
4506 	return 0;
4507 }
4508 
4509 /**
4510  *  e1000_valid_led_default_ich8lan - Set the default LED settings
4511  *  @hw: pointer to the HW structure
4512  *  @data: Pointer to the LED settings
4513  *
4514  *  Reads the LED default settings from the NVM to data.  If the NVM LED
4515  *  settings is all 0's or F's, set the LED default to a valid LED default
4516  *  setting.
4517  **/
4518 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4519 {
4520 	s32 ret_val;
4521 
4522 	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
4523 	if (ret_val) {
4524 		e_dbg("NVM Read Error\n");
4525 		return ret_val;
4526 	}
4527 
4528 	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4529 		*data = ID_LED_DEFAULT_ICH8LAN;
4530 
4531 	return 0;
4532 }
4533 
4534 /**
4535  *  e1000_id_led_init_pchlan - store LED configurations
4536  *  @hw: pointer to the HW structure
4537  *
4538  *  PCH does not control LEDs via the LEDCTL register, rather it uses
4539  *  the PHY LED configuration register.
4540  *
4541  *  PCH also does not have an "always on" or "always off" mode which
4542  *  complicates the ID feature.  Instead of using the "on" mode to indicate
4543  *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
4544  *  use "link_up" mode.  The LEDs will still ID on request if there is no
4545  *  link based on logic in e1000_led_[on|off]_pchlan().
4546  **/
4547 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4548 {
4549 	struct e1000_mac_info *mac = &hw->mac;
4550 	s32 ret_val;
4551 	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4552 	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4553 	u16 data, i, temp, shift;
4554 
4555 	/* Get default ID LED modes */
4556 	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4557 	if (ret_val)
4558 		return ret_val;
4559 
4560 	mac->ledctl_default = er32(LEDCTL);
4561 	mac->ledctl_mode1 = mac->ledctl_default;
4562 	mac->ledctl_mode2 = mac->ledctl_default;
4563 
4564 	for (i = 0; i < 4; i++) {
4565 		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4566 		shift = (i * 5);
4567 		switch (temp) {
4568 		case ID_LED_ON1_DEF2:
4569 		case ID_LED_ON1_ON2:
4570 		case ID_LED_ON1_OFF2:
4571 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4572 			mac->ledctl_mode1 |= (ledctl_on << shift);
4573 			break;
4574 		case ID_LED_OFF1_DEF2:
4575 		case ID_LED_OFF1_ON2:
4576 		case ID_LED_OFF1_OFF2:
4577 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4578 			mac->ledctl_mode1 |= (ledctl_off << shift);
4579 			break;
4580 		default:
4581 			/* Do nothing */
4582 			break;
4583 		}
4584 		switch (temp) {
4585 		case ID_LED_DEF1_ON2:
4586 		case ID_LED_ON1_ON2:
4587 		case ID_LED_OFF1_ON2:
4588 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4589 			mac->ledctl_mode2 |= (ledctl_on << shift);
4590 			break;
4591 		case ID_LED_DEF1_OFF2:
4592 		case ID_LED_ON1_OFF2:
4593 		case ID_LED_OFF1_OFF2:
4594 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4595 			mac->ledctl_mode2 |= (ledctl_off << shift);
4596 			break;
4597 		default:
4598 			/* Do nothing */
4599 			break;
4600 		}
4601 	}
4602 
4603 	return 0;
4604 }
4605 
4606 /**
4607  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4608  *  @hw: pointer to the HW structure
4609  *
4610  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4611  *  register, so the the bus width is hard coded.
4612  **/
4613 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4614 {
4615 	struct e1000_bus_info *bus = &hw->bus;
4616 	s32 ret_val;
4617 
4618 	ret_val = e1000e_get_bus_info_pcie(hw);
4619 
4620 	/* ICH devices are "PCI Express"-ish.  They have
4621 	 * a configuration space, but do not contain
4622 	 * PCI Express Capability registers, so bus width
4623 	 * must be hardcoded.
4624 	 */
4625 	if (bus->width == e1000_bus_width_unknown)
4626 		bus->width = e1000_bus_width_pcie_x1;
4627 
4628 	return ret_val;
4629 }
4630 
4631 /**
4632  *  e1000_reset_hw_ich8lan - Reset the hardware
4633  *  @hw: pointer to the HW structure
4634  *
4635  *  Does a full reset of the hardware which includes a reset of the PHY and
4636  *  MAC.
4637  **/
4638 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4639 {
4640 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4641 	u16 kum_cfg;
4642 	u32 ctrl, reg;
4643 	s32 ret_val;
4644 
4645 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
4646 	 * on the last TLP read/write transaction when MAC is reset.
4647 	 */
4648 	ret_val = e1000e_disable_pcie_master(hw);
4649 	if (ret_val)
4650 		e_dbg("PCI-E Master disable polling has failed.\n");
4651 
4652 	e_dbg("Masking off all interrupts\n");
4653 	ew32(IMC, 0xffffffff);
4654 
4655 	/* Disable the Transmit and Receive units.  Then delay to allow
4656 	 * any pending transactions to complete before we hit the MAC
4657 	 * with the global reset.
4658 	 */
4659 	ew32(RCTL, 0);
4660 	ew32(TCTL, E1000_TCTL_PSP);
4661 	e1e_flush();
4662 
4663 	usleep_range(10000, 11000);
4664 
4665 	/* Workaround for ICH8 bit corruption issue in FIFO memory */
4666 	if (hw->mac.type == e1000_ich8lan) {
4667 		/* Set Tx and Rx buffer allocation to 8k apiece. */
4668 		ew32(PBA, E1000_PBA_8K);
4669 		/* Set Packet Buffer Size to 16k. */
4670 		ew32(PBS, E1000_PBS_16K);
4671 	}
4672 
4673 	if (hw->mac.type == e1000_pchlan) {
4674 		/* Save the NVM K1 bit setting */
4675 		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4676 		if (ret_val)
4677 			return ret_val;
4678 
4679 		if (kum_cfg & E1000_NVM_K1_ENABLE)
4680 			dev_spec->nvm_k1_enabled = true;
4681 		else
4682 			dev_spec->nvm_k1_enabled = false;
4683 	}
4684 
4685 	ctrl = er32(CTRL);
4686 
4687 	if (!hw->phy.ops.check_reset_block(hw)) {
4688 		/* Full-chip reset requires MAC and PHY reset at the same
4689 		 * time to make sure the interface between MAC and the
4690 		 * external PHY is reset.
4691 		 */
4692 		ctrl |= E1000_CTRL_PHY_RST;
4693 
4694 		/* Gate automatic PHY configuration by hardware on
4695 		 * non-managed 82579
4696 		 */
4697 		if ((hw->mac.type == e1000_pch2lan) &&
4698 		    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
4699 			e1000_gate_hw_phy_config_ich8lan(hw, true);
4700 	}
4701 	ret_val = e1000_acquire_swflag_ich8lan(hw);
4702 	e_dbg("Issuing a global reset to ich8lan\n");
4703 	ew32(CTRL, (ctrl | E1000_CTRL_RST));
4704 	/* cannot issue a flush here because it hangs the hardware */
4705 	msleep(20);
4706 
4707 	/* Set Phy Config Counter to 50msec */
4708 	if (hw->mac.type == e1000_pch2lan) {
4709 		reg = er32(FEXTNVM3);
4710 		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4711 		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4712 		ew32(FEXTNVM3, reg);
4713 	}
4714 
4715 	if (!ret_val)
4716 		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
4717 
4718 	if (ctrl & E1000_CTRL_PHY_RST) {
4719 		ret_val = hw->phy.ops.get_cfg_done(hw);
4720 		if (ret_val)
4721 			return ret_val;
4722 
4723 		ret_val = e1000_post_phy_reset_ich8lan(hw);
4724 		if (ret_val)
4725 			return ret_val;
4726 	}
4727 
4728 	/* For PCH, this write will make sure that any noise
4729 	 * will be detected as a CRC error and be dropped rather than show up
4730 	 * as a bad packet to the DMA engine.
4731 	 */
4732 	if (hw->mac.type == e1000_pchlan)
4733 		ew32(CRC_OFFSET, 0x65656565);
4734 
4735 	ew32(IMC, 0xffffffff);
4736 	er32(ICR);
4737 
4738 	reg = er32(KABGTXD);
4739 	reg |= E1000_KABGTXD_BGSQLBIAS;
4740 	ew32(KABGTXD, reg);
4741 
4742 	return 0;
4743 }
4744 
4745 /**
4746  *  e1000_init_hw_ich8lan - Initialize the hardware
4747  *  @hw: pointer to the HW structure
4748  *
4749  *  Prepares the hardware for transmit and receive by doing the following:
4750  *   - initialize hardware bits
4751  *   - initialize LED identification
4752  *   - setup receive address registers
4753  *   - setup flow control
4754  *   - setup transmit descriptors
4755  *   - clear statistics
4756  **/
4757 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4758 {
4759 	struct e1000_mac_info *mac = &hw->mac;
4760 	u32 ctrl_ext, txdctl, snoop;
4761 	s32 ret_val;
4762 	u16 i;
4763 
4764 	e1000_initialize_hw_bits_ich8lan(hw);
4765 
4766 	/* Initialize identification LED */
4767 	ret_val = mac->ops.id_led_init(hw);
4768 	/* An error is not fatal and we should not stop init due to this */
4769 	if (ret_val)
4770 		e_dbg("Error initializing identification LED\n");
4771 
4772 	/* Setup the receive address. */
4773 	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
4774 
4775 	/* Zero out the Multicast HASH table */
4776 	e_dbg("Zeroing the MTA\n");
4777 	for (i = 0; i < mac->mta_reg_count; i++)
4778 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4779 
4780 	/* The 82578 Rx buffer will stall if wakeup is enabled in host and
4781 	 * the ME.  Disable wakeup by clearing the host wakeup bit.
4782 	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
4783 	 */
4784 	if (hw->phy.type == e1000_phy_82578) {
4785 		e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4786 		i &= ~BM_WUC_HOST_WU_BIT;
4787 		e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4788 		ret_val = e1000_phy_hw_reset_ich8lan(hw);
4789 		if (ret_val)
4790 			return ret_val;
4791 	}
4792 
4793 	/* Setup link and flow control */
4794 	ret_val = mac->ops.setup_link(hw);
4795 
4796 	/* Set the transmit descriptor write-back policy for both queues */
4797 	txdctl = er32(TXDCTL(0));
4798 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4799 		  E1000_TXDCTL_FULL_TX_DESC_WB);
4800 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4801 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4802 	ew32(TXDCTL(0), txdctl);
4803 	txdctl = er32(TXDCTL(1));
4804 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4805 		  E1000_TXDCTL_FULL_TX_DESC_WB);
4806 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4807 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4808 	ew32(TXDCTL(1), txdctl);
4809 
4810 	/* ICH8 has opposite polarity of no_snoop bits.
4811 	 * By default, we should use snoop behavior.
4812 	 */
4813 	if (mac->type == e1000_ich8lan)
4814 		snoop = PCIE_ICH8_SNOOP_ALL;
4815 	else
4816 		snoop = (u32)~(PCIE_NO_SNOOP_ALL);
4817 	e1000e_set_pcie_no_snoop(hw, snoop);
4818 
4819 	ctrl_ext = er32(CTRL_EXT);
4820 	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4821 	ew32(CTRL_EXT, ctrl_ext);
4822 
4823 	/* Clear all of the statistics registers (clear on read).  It is
4824 	 * important that we do this after we have tried to establish link
4825 	 * because the symbol error count will increment wildly if there
4826 	 * is no link.
4827 	 */
4828 	e1000_clear_hw_cntrs_ich8lan(hw);
4829 
4830 	return ret_val;
4831 }
4832 
4833 /**
4834  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4835  *  @hw: pointer to the HW structure
4836  *
4837  *  Sets/Clears required hardware bits necessary for correctly setting up the
4838  *  hardware for transmit and receive.
4839  **/
4840 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4841 {
4842 	u32 reg;
4843 
4844 	/* Extended Device Control */
4845 	reg = er32(CTRL_EXT);
4846 	reg |= BIT(22);
4847 	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
4848 	if (hw->mac.type >= e1000_pchlan)
4849 		reg |= E1000_CTRL_EXT_PHYPDEN;
4850 	ew32(CTRL_EXT, reg);
4851 
4852 	/* Transmit Descriptor Control 0 */
4853 	reg = er32(TXDCTL(0));
4854 	reg |= BIT(22);
4855 	ew32(TXDCTL(0), reg);
4856 
4857 	/* Transmit Descriptor Control 1 */
4858 	reg = er32(TXDCTL(1));
4859 	reg |= BIT(22);
4860 	ew32(TXDCTL(1), reg);
4861 
4862 	/* Transmit Arbitration Control 0 */
4863 	reg = er32(TARC(0));
4864 	if (hw->mac.type == e1000_ich8lan)
4865 		reg |= BIT(28) | BIT(29);
4866 	reg |= BIT(23) | BIT(24) | BIT(26) | BIT(27);
4867 	ew32(TARC(0), reg);
4868 
4869 	/* Transmit Arbitration Control 1 */
4870 	reg = er32(TARC(1));
4871 	if (er32(TCTL) & E1000_TCTL_MULR)
4872 		reg &= ~BIT(28);
4873 	else
4874 		reg |= BIT(28);
4875 	reg |= BIT(24) | BIT(26) | BIT(30);
4876 	ew32(TARC(1), reg);
4877 
4878 	/* Device Status */
4879 	if (hw->mac.type == e1000_ich8lan) {
4880 		reg = er32(STATUS);
4881 		reg &= ~BIT(31);
4882 		ew32(STATUS, reg);
4883 	}
4884 
4885 	/* work-around descriptor data corruption issue during nfs v2 udp
4886 	 * traffic, just disable the nfs filtering capability
4887 	 */
4888 	reg = er32(RFCTL);
4889 	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
4890 
4891 	/* Disable IPv6 extension header parsing because some malformed
4892 	 * IPv6 headers can hang the Rx.
4893 	 */
4894 	if (hw->mac.type == e1000_ich8lan)
4895 		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
4896 	ew32(RFCTL, reg);
4897 
4898 	/* Enable ECC on Lynxpoint */
4899 	if (hw->mac.type >= e1000_pch_lpt) {
4900 		reg = er32(PBECCSTS);
4901 		reg |= E1000_PBECCSTS_ECC_ENABLE;
4902 		ew32(PBECCSTS, reg);
4903 
4904 		reg = er32(CTRL);
4905 		reg |= E1000_CTRL_MEHE;
4906 		ew32(CTRL, reg);
4907 	}
4908 }
4909 
4910 /**
4911  *  e1000_setup_link_ich8lan - Setup flow control and link settings
4912  *  @hw: pointer to the HW structure
4913  *
4914  *  Determines which flow control settings to use, then configures flow
4915  *  control.  Calls the appropriate media-specific link configuration
4916  *  function.  Assuming the adapter has a valid link partner, a valid link
4917  *  should be established.  Assumes the hardware has previously been reset
4918  *  and the transmitter and receiver are not enabled.
4919  **/
4920 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
4921 {
4922 	s32 ret_val;
4923 
4924 	if (hw->phy.ops.check_reset_block(hw))
4925 		return 0;
4926 
4927 	/* ICH parts do not have a word in the NVM to determine
4928 	 * the default flow control setting, so we explicitly
4929 	 * set it to full.
4930 	 */
4931 	if (hw->fc.requested_mode == e1000_fc_default) {
4932 		/* Workaround h/w hang when Tx flow control enabled */
4933 		if (hw->mac.type == e1000_pchlan)
4934 			hw->fc.requested_mode = e1000_fc_rx_pause;
4935 		else
4936 			hw->fc.requested_mode = e1000_fc_full;
4937 	}
4938 
4939 	/* Save off the requested flow control mode for use later.  Depending
4940 	 * on the link partner's capabilities, we may or may not use this mode.
4941 	 */
4942 	hw->fc.current_mode = hw->fc.requested_mode;
4943 
4944 	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
4945 
4946 	/* Continue to configure the copper link. */
4947 	ret_val = hw->mac.ops.setup_physical_interface(hw);
4948 	if (ret_val)
4949 		return ret_val;
4950 
4951 	ew32(FCTTV, hw->fc.pause_time);
4952 	if ((hw->phy.type == e1000_phy_82578) ||
4953 	    (hw->phy.type == e1000_phy_82579) ||
4954 	    (hw->phy.type == e1000_phy_i217) ||
4955 	    (hw->phy.type == e1000_phy_82577)) {
4956 		ew32(FCRTV_PCH, hw->fc.refresh_time);
4957 
4958 		ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
4959 				   hw->fc.pause_time);
4960 		if (ret_val)
4961 			return ret_val;
4962 	}
4963 
4964 	return e1000e_set_fc_watermarks(hw);
4965 }
4966 
4967 /**
4968  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
4969  *  @hw: pointer to the HW structure
4970  *
4971  *  Configures the kumeran interface to the PHY to wait the appropriate time
4972  *  when polling the PHY, then call the generic setup_copper_link to finish
4973  *  configuring the copper link.
4974  **/
4975 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
4976 {
4977 	u32 ctrl;
4978 	s32 ret_val;
4979 	u16 reg_data;
4980 
4981 	ctrl = er32(CTRL);
4982 	ctrl |= E1000_CTRL_SLU;
4983 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
4984 	ew32(CTRL, ctrl);
4985 
4986 	/* Set the mac to wait the maximum time between each iteration
4987 	 * and increase the max iterations when polling the phy;
4988 	 * this fixes erroneous timeouts at 10Mbps.
4989 	 */
4990 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
4991 	if (ret_val)
4992 		return ret_val;
4993 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
4994 				       &reg_data);
4995 	if (ret_val)
4996 		return ret_val;
4997 	reg_data |= 0x3F;
4998 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
4999 					reg_data);
5000 	if (ret_val)
5001 		return ret_val;
5002 
5003 	switch (hw->phy.type) {
5004 	case e1000_phy_igp_3:
5005 		ret_val = e1000e_copper_link_setup_igp(hw);
5006 		if (ret_val)
5007 			return ret_val;
5008 		break;
5009 	case e1000_phy_bm:
5010 	case e1000_phy_82578:
5011 		ret_val = e1000e_copper_link_setup_m88(hw);
5012 		if (ret_val)
5013 			return ret_val;
5014 		break;
5015 	case e1000_phy_82577:
5016 	case e1000_phy_82579:
5017 		ret_val = e1000_copper_link_setup_82577(hw);
5018 		if (ret_val)
5019 			return ret_val;
5020 		break;
5021 	case e1000_phy_ife:
5022 		ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
5023 		if (ret_val)
5024 			return ret_val;
5025 
5026 		reg_data &= ~IFE_PMC_AUTO_MDIX;
5027 
5028 		switch (hw->phy.mdix) {
5029 		case 1:
5030 			reg_data &= ~IFE_PMC_FORCE_MDIX;
5031 			break;
5032 		case 2:
5033 			reg_data |= IFE_PMC_FORCE_MDIX;
5034 			break;
5035 		case 0:
5036 		default:
5037 			reg_data |= IFE_PMC_AUTO_MDIX;
5038 			break;
5039 		}
5040 		ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
5041 		if (ret_val)
5042 			return ret_val;
5043 		break;
5044 	default:
5045 		break;
5046 	}
5047 
5048 	return e1000e_setup_copper_link(hw);
5049 }
5050 
5051 /**
5052  *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5053  *  @hw: pointer to the HW structure
5054  *
5055  *  Calls the PHY specific link setup function and then calls the
5056  *  generic setup_copper_link to finish configuring the link for
5057  *  Lynxpoint PCH devices
5058  **/
5059 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5060 {
5061 	u32 ctrl;
5062 	s32 ret_val;
5063 
5064 	ctrl = er32(CTRL);
5065 	ctrl |= E1000_CTRL_SLU;
5066 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5067 	ew32(CTRL, ctrl);
5068 
5069 	ret_val = e1000_copper_link_setup_82577(hw);
5070 	if (ret_val)
5071 		return ret_val;
5072 
5073 	return e1000e_setup_copper_link(hw);
5074 }
5075 
5076 /**
5077  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5078  *  @hw: pointer to the HW structure
5079  *  @speed: pointer to store current link speed
5080  *  @duplex: pointer to store the current link duplex
5081  *
5082  *  Calls the generic get_speed_and_duplex to retrieve the current link
5083  *  information and then calls the Kumeran lock loss workaround for links at
5084  *  gigabit speeds.
5085  **/
5086 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5087 					  u16 *duplex)
5088 {
5089 	s32 ret_val;
5090 
5091 	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
5092 	if (ret_val)
5093 		return ret_val;
5094 
5095 	if ((hw->mac.type == e1000_ich8lan) &&
5096 	    (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
5097 		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5098 	}
5099 
5100 	return ret_val;
5101 }
5102 
5103 /**
5104  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5105  *  @hw: pointer to the HW structure
5106  *
5107  *  Work-around for 82566 Kumeran PCS lock loss:
5108  *  On link status change (i.e. PCI reset, speed change) and link is up and
5109  *  speed is gigabit-
5110  *    0) if workaround is optionally disabled do nothing
5111  *    1) wait 1ms for Kumeran link to come up
5112  *    2) check Kumeran Diagnostic register PCS lock loss bit
5113  *    3) if not set the link is locked (all is good), otherwise...
5114  *    4) reset the PHY
5115  *    5) repeat up to 10 times
5116  *  Note: this is only called for IGP3 copper when speed is 1gb.
5117  **/
5118 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5119 {
5120 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5121 	u32 phy_ctrl;
5122 	s32 ret_val;
5123 	u16 i, data;
5124 	bool link;
5125 
5126 	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5127 		return 0;
5128 
5129 	/* Make sure link is up before proceeding.  If not just return.
5130 	 * Attempting this while link is negotiating fouled up link
5131 	 * stability
5132 	 */
5133 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
5134 	if (!link)
5135 		return 0;
5136 
5137 	for (i = 0; i < 10; i++) {
5138 		/* read once to clear */
5139 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5140 		if (ret_val)
5141 			return ret_val;
5142 		/* and again to get new status */
5143 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5144 		if (ret_val)
5145 			return ret_val;
5146 
5147 		/* check for PCS lock */
5148 		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5149 			return 0;
5150 
5151 		/* Issue PHY reset */
5152 		e1000_phy_hw_reset(hw);
5153 		mdelay(5);
5154 	}
5155 	/* Disable GigE link negotiation */
5156 	phy_ctrl = er32(PHY_CTRL);
5157 	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5158 		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5159 	ew32(PHY_CTRL, phy_ctrl);
5160 
5161 	/* Call gig speed drop workaround on Gig disable before accessing
5162 	 * any PHY registers
5163 	 */
5164 	e1000e_gig_downshift_workaround_ich8lan(hw);
5165 
5166 	/* unable to acquire PCS lock */
5167 	return -E1000_ERR_PHY;
5168 }
5169 
5170 /**
5171  *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5172  *  @hw: pointer to the HW structure
5173  *  @state: boolean value used to set the current Kumeran workaround state
5174  *
5175  *  If ICH8, set the current Kumeran workaround state (enabled - true
5176  *  /disabled - false).
5177  **/
5178 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5179 						  bool state)
5180 {
5181 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5182 
5183 	if (hw->mac.type != e1000_ich8lan) {
5184 		e_dbg("Workaround applies to ICH8 only.\n");
5185 		return;
5186 	}
5187 
5188 	dev_spec->kmrn_lock_loss_workaround_enabled = state;
5189 }
5190 
5191 /**
5192  *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5193  *  @hw: pointer to the HW structure
5194  *
5195  *  Workaround for 82566 power-down on D3 entry:
5196  *    1) disable gigabit link
5197  *    2) write VR power-down enable
5198  *    3) read it back
5199  *  Continue if successful, else issue LCD reset and repeat
5200  **/
5201 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5202 {
5203 	u32 reg;
5204 	u16 data;
5205 	u8 retry = 0;
5206 
5207 	if (hw->phy.type != e1000_phy_igp_3)
5208 		return;
5209 
5210 	/* Try the workaround twice (if needed) */
5211 	do {
5212 		/* Disable link */
5213 		reg = er32(PHY_CTRL);
5214 		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5215 			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5216 		ew32(PHY_CTRL, reg);
5217 
5218 		/* Call gig speed drop workaround on Gig disable before
5219 		 * accessing any PHY registers
5220 		 */
5221 		if (hw->mac.type == e1000_ich8lan)
5222 			e1000e_gig_downshift_workaround_ich8lan(hw);
5223 
5224 		/* Write VR power-down enable */
5225 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5226 		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5227 		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5228 
5229 		/* Read it back and test */
5230 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5231 		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5232 		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5233 			break;
5234 
5235 		/* Issue PHY reset and repeat at most one more time */
5236 		reg = er32(CTRL);
5237 		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
5238 		retry++;
5239 	} while (retry);
5240 }
5241 
5242 /**
5243  *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5244  *  @hw: pointer to the HW structure
5245  *
5246  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5247  *  LPLU, Gig disable, MDIC PHY reset):
5248  *    1) Set Kumeran Near-end loopback
5249  *    2) Clear Kumeran Near-end loopback
5250  *  Should only be called for ICH8[m] devices with any 1G Phy.
5251  **/
5252 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5253 {
5254 	s32 ret_val;
5255 	u16 reg_data;
5256 
5257 	if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
5258 		return;
5259 
5260 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5261 				       &reg_data);
5262 	if (ret_val)
5263 		return;
5264 	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5265 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5266 					reg_data);
5267 	if (ret_val)
5268 		return;
5269 	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5270 	e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
5271 }
5272 
5273 /**
5274  *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5275  *  @hw: pointer to the HW structure
5276  *
5277  *  During S0 to Sx transition, it is possible the link remains at gig
5278  *  instead of negotiating to a lower speed.  Before going to Sx, set
5279  *  'Gig Disable' to force link speed negotiation to a lower speed based on
5280  *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
5281  *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5282  *  needs to be written.
5283  *  Parts that support (and are linked to a partner which support) EEE in
5284  *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5285  *  than 10Mbps w/o EEE.
5286  **/
5287 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5288 {
5289 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5290 	u32 phy_ctrl;
5291 	s32 ret_val;
5292 
5293 	phy_ctrl = er32(PHY_CTRL);
5294 	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5295 
5296 	if (hw->phy.type == e1000_phy_i217) {
5297 		u16 phy_reg, device_id = hw->adapter->pdev->device;
5298 
5299 		if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5300 		    (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5301 		    (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5302 		    (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5303 		    (hw->mac.type >= e1000_pch_spt)) {
5304 			u32 fextnvm6 = er32(FEXTNVM6);
5305 
5306 			ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5307 		}
5308 
5309 		ret_val = hw->phy.ops.acquire(hw);
5310 		if (ret_val)
5311 			goto out;
5312 
5313 		if (!dev_spec->eee_disable) {
5314 			u16 eee_advert;
5315 
5316 			ret_val =
5317 			    e1000_read_emi_reg_locked(hw,
5318 						      I217_EEE_ADVERTISEMENT,
5319 						      &eee_advert);
5320 			if (ret_val)
5321 				goto release;
5322 
5323 			/* Disable LPLU if both link partners support 100BaseT
5324 			 * EEE and 100Full is advertised on both ends of the
5325 			 * link, and enable Auto Enable LPI since there will
5326 			 * be no driver to enable LPI while in Sx.
5327 			 */
5328 			if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5329 			    (dev_spec->eee_lp_ability &
5330 			     I82579_EEE_100_SUPPORTED) &&
5331 			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5332 				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5333 					      E1000_PHY_CTRL_NOND0A_LPLU);
5334 
5335 				/* Set Auto Enable LPI after link up */
5336 				e1e_rphy_locked(hw,
5337 						I217_LPI_GPIO_CTRL, &phy_reg);
5338 				phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5339 				e1e_wphy_locked(hw,
5340 						I217_LPI_GPIO_CTRL, phy_reg);
5341 			}
5342 		}
5343 
5344 		/* For i217 Intel Rapid Start Technology support,
5345 		 * when the system is going into Sx and no manageability engine
5346 		 * is present, the driver must configure proxy to reset only on
5347 		 * power good.  LPI (Low Power Idle) state must also reset only
5348 		 * on power good, as well as the MTA (Multicast table array).
5349 		 * The SMBus release must also be disabled on LCD reset.
5350 		 */
5351 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5352 			/* Enable proxy to reset only on power good. */
5353 			e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
5354 			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5355 			e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
5356 
5357 			/* Set bit enable LPI (EEE) to reset only on
5358 			 * power good.
5359 			 */
5360 			e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
5361 			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5362 			e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
5363 
5364 			/* Disable the SMB release on LCD reset. */
5365 			e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5366 			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5367 			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5368 		}
5369 
5370 		/* Enable MTA to reset for Intel Rapid Start Technology
5371 		 * Support
5372 		 */
5373 		e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5374 		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5375 		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5376 
5377 release:
5378 		hw->phy.ops.release(hw);
5379 	}
5380 out:
5381 	ew32(PHY_CTRL, phy_ctrl);
5382 
5383 	if (hw->mac.type == e1000_ich8lan)
5384 		e1000e_gig_downshift_workaround_ich8lan(hw);
5385 
5386 	if (hw->mac.type >= e1000_pchlan) {
5387 		e1000_oem_bits_config_ich8lan(hw, false);
5388 
5389 		/* Reset PHY to activate OEM bits on 82577/8 */
5390 		if (hw->mac.type == e1000_pchlan)
5391 			e1000e_phy_hw_reset_generic(hw);
5392 
5393 		ret_val = hw->phy.ops.acquire(hw);
5394 		if (ret_val)
5395 			return;
5396 		e1000_write_smbus_addr(hw);
5397 		hw->phy.ops.release(hw);
5398 	}
5399 }
5400 
5401 /**
5402  *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5403  *  @hw: pointer to the HW structure
5404  *
5405  *  During Sx to S0 transitions on non-managed devices or managed devices
5406  *  on which PHY resets are not blocked, if the PHY registers cannot be
5407  *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
5408  *  the PHY.
5409  *  On i217, setup Intel Rapid Start Technology.
5410  **/
5411 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5412 {
5413 	s32 ret_val;
5414 
5415 	if (hw->mac.type < e1000_pch2lan)
5416 		return;
5417 
5418 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
5419 	if (ret_val) {
5420 		e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
5421 		return;
5422 	}
5423 
5424 	/* For i217 Intel Rapid Start Technology support when the system
5425 	 * is transitioning from Sx and no manageability engine is present
5426 	 * configure SMBus to restore on reset, disable proxy, and enable
5427 	 * the reset on MTA (Multicast table array).
5428 	 */
5429 	if (hw->phy.type == e1000_phy_i217) {
5430 		u16 phy_reg;
5431 
5432 		ret_val = hw->phy.ops.acquire(hw);
5433 		if (ret_val) {
5434 			e_dbg("Failed to setup iRST\n");
5435 			return;
5436 		}
5437 
5438 		/* Clear Auto Enable LPI after link up */
5439 		e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5440 		phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5441 		e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5442 
5443 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5444 			/* Restore clear on SMB if no manageability engine
5445 			 * is present
5446 			 */
5447 			ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5448 			if (ret_val)
5449 				goto release;
5450 			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5451 			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5452 
5453 			/* Disable Proxy */
5454 			e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
5455 		}
5456 		/* Enable reset on MTA */
5457 		ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5458 		if (ret_val)
5459 			goto release;
5460 		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5461 		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5462 release:
5463 		if (ret_val)
5464 			e_dbg("Error %d in resume workarounds\n", ret_val);
5465 		hw->phy.ops.release(hw);
5466 	}
5467 }
5468 
5469 /**
5470  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
5471  *  @hw: pointer to the HW structure
5472  *
5473  *  Return the LED back to the default configuration.
5474  **/
5475 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5476 {
5477 	if (hw->phy.type == e1000_phy_ife)
5478 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
5479 
5480 	ew32(LEDCTL, hw->mac.ledctl_default);
5481 	return 0;
5482 }
5483 
5484 /**
5485  *  e1000_led_on_ich8lan - Turn LEDs on
5486  *  @hw: pointer to the HW structure
5487  *
5488  *  Turn on the LEDs.
5489  **/
5490 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5491 {
5492 	if (hw->phy.type == e1000_phy_ife)
5493 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5494 				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5495 
5496 	ew32(LEDCTL, hw->mac.ledctl_mode2);
5497 	return 0;
5498 }
5499 
5500 /**
5501  *  e1000_led_off_ich8lan - Turn LEDs off
5502  *  @hw: pointer to the HW structure
5503  *
5504  *  Turn off the LEDs.
5505  **/
5506 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5507 {
5508 	if (hw->phy.type == e1000_phy_ife)
5509 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5510 				(IFE_PSCL_PROBE_MODE |
5511 				 IFE_PSCL_PROBE_LEDS_OFF));
5512 
5513 	ew32(LEDCTL, hw->mac.ledctl_mode1);
5514 	return 0;
5515 }
5516 
5517 /**
5518  *  e1000_setup_led_pchlan - Configures SW controllable LED
5519  *  @hw: pointer to the HW structure
5520  *
5521  *  This prepares the SW controllable LED for use.
5522  **/
5523 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5524 {
5525 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
5526 }
5527 
5528 /**
5529  *  e1000_cleanup_led_pchlan - Restore the default LED operation
5530  *  @hw: pointer to the HW structure
5531  *
5532  *  Return the LED back to the default configuration.
5533  **/
5534 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5535 {
5536 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
5537 }
5538 
5539 /**
5540  *  e1000_led_on_pchlan - Turn LEDs on
5541  *  @hw: pointer to the HW structure
5542  *
5543  *  Turn on the LEDs.
5544  **/
5545 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5546 {
5547 	u16 data = (u16)hw->mac.ledctl_mode2;
5548 	u32 i, led;
5549 
5550 	/* If no link, then turn LED on by setting the invert bit
5551 	 * for each LED that's mode is "link_up" in ledctl_mode2.
5552 	 */
5553 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5554 		for (i = 0; i < 3; i++) {
5555 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5556 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5557 			    E1000_LEDCTL_MODE_LINK_UP)
5558 				continue;
5559 			if (led & E1000_PHY_LED0_IVRT)
5560 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5561 			else
5562 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5563 		}
5564 	}
5565 
5566 	return e1e_wphy(hw, HV_LED_CONFIG, data);
5567 }
5568 
5569 /**
5570  *  e1000_led_off_pchlan - Turn LEDs off
5571  *  @hw: pointer to the HW structure
5572  *
5573  *  Turn off the LEDs.
5574  **/
5575 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5576 {
5577 	u16 data = (u16)hw->mac.ledctl_mode1;
5578 	u32 i, led;
5579 
5580 	/* If no link, then turn LED off by clearing the invert bit
5581 	 * for each LED that's mode is "link_up" in ledctl_mode1.
5582 	 */
5583 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5584 		for (i = 0; i < 3; i++) {
5585 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5586 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5587 			    E1000_LEDCTL_MODE_LINK_UP)
5588 				continue;
5589 			if (led & E1000_PHY_LED0_IVRT)
5590 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5591 			else
5592 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5593 		}
5594 	}
5595 
5596 	return e1e_wphy(hw, HV_LED_CONFIG, data);
5597 }
5598 
5599 /**
5600  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5601  *  @hw: pointer to the HW structure
5602  *
5603  *  Read appropriate register for the config done bit for completion status
5604  *  and configure the PHY through s/w for EEPROM-less parts.
5605  *
5606  *  NOTE: some silicon which is EEPROM-less will fail trying to read the
5607  *  config done bit, so only an error is logged and continues.  If we were
5608  *  to return with error, EEPROM-less silicon would not be able to be reset
5609  *  or change link.
5610  **/
5611 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5612 {
5613 	s32 ret_val = 0;
5614 	u32 bank = 0;
5615 	u32 status;
5616 
5617 	e1000e_get_cfg_done_generic(hw);
5618 
5619 	/* Wait for indication from h/w that it has completed basic config */
5620 	if (hw->mac.type >= e1000_ich10lan) {
5621 		e1000_lan_init_done_ich8lan(hw);
5622 	} else {
5623 		ret_val = e1000e_get_auto_rd_done(hw);
5624 		if (ret_val) {
5625 			/* When auto config read does not complete, do not
5626 			 * return with an error. This can happen in situations
5627 			 * where there is no eeprom and prevents getting link.
5628 			 */
5629 			e_dbg("Auto Read Done did not complete\n");
5630 			ret_val = 0;
5631 		}
5632 	}
5633 
5634 	/* Clear PHY Reset Asserted bit */
5635 	status = er32(STATUS);
5636 	if (status & E1000_STATUS_PHYRA)
5637 		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
5638 	else
5639 		e_dbg("PHY Reset Asserted not set - needs delay\n");
5640 
5641 	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
5642 	if (hw->mac.type <= e1000_ich9lan) {
5643 		if (!(er32(EECD) & E1000_EECD_PRES) &&
5644 		    (hw->phy.type == e1000_phy_igp_3)) {
5645 			e1000e_phy_init_script_igp3(hw);
5646 		}
5647 	} else {
5648 		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5649 			/* Maybe we should do a basic PHY config */
5650 			e_dbg("EEPROM not present\n");
5651 			ret_val = -E1000_ERR_CONFIG;
5652 		}
5653 	}
5654 
5655 	return ret_val;
5656 }
5657 
5658 /**
5659  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5660  * @hw: pointer to the HW structure
5661  *
5662  * In the case of a PHY power down to save power, or to turn off link during a
5663  * driver unload, or wake on lan is not enabled, remove the link.
5664  **/
5665 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5666 {
5667 	/* If the management interface is not enabled, then power down */
5668 	if (!(hw->mac.ops.check_mng_mode(hw) ||
5669 	      hw->phy.ops.check_reset_block(hw)))
5670 		e1000_power_down_phy_copper(hw);
5671 }
5672 
5673 /**
5674  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5675  *  @hw: pointer to the HW structure
5676  *
5677  *  Clears hardware counters specific to the silicon family and calls
5678  *  clear_hw_cntrs_generic to clear all general purpose counters.
5679  **/
5680 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5681 {
5682 	u16 phy_data;
5683 	s32 ret_val;
5684 
5685 	e1000e_clear_hw_cntrs_base(hw);
5686 
5687 	er32(ALGNERRC);
5688 	er32(RXERRC);
5689 	er32(TNCRS);
5690 	er32(CEXTERR);
5691 	er32(TSCTC);
5692 	er32(TSCTFC);
5693 
5694 	er32(MGTPRC);
5695 	er32(MGTPDC);
5696 	er32(MGTPTC);
5697 
5698 	er32(IAC);
5699 	er32(ICRXOC);
5700 
5701 	/* Clear PHY statistics registers */
5702 	if ((hw->phy.type == e1000_phy_82578) ||
5703 	    (hw->phy.type == e1000_phy_82579) ||
5704 	    (hw->phy.type == e1000_phy_i217) ||
5705 	    (hw->phy.type == e1000_phy_82577)) {
5706 		ret_val = hw->phy.ops.acquire(hw);
5707 		if (ret_val)
5708 			return;
5709 		ret_val = hw->phy.ops.set_page(hw,
5710 					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
5711 		if (ret_val)
5712 			goto release;
5713 		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5714 		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5715 		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5716 		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5717 		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5718 		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5719 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5720 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5721 		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5722 		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5723 		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5724 		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5725 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5726 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5727 release:
5728 		hw->phy.ops.release(hw);
5729 	}
5730 }
5731 
5732 static const struct e1000_mac_operations ich8_mac_ops = {
5733 	/* check_mng_mode dependent on mac type */
5734 	.check_for_link		= e1000_check_for_copper_link_ich8lan,
5735 	/* cleanup_led dependent on mac type */
5736 	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
5737 	.get_bus_info		= e1000_get_bus_info_ich8lan,
5738 	.set_lan_id		= e1000_set_lan_id_single_port,
5739 	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
5740 	/* led_on dependent on mac type */
5741 	/* led_off dependent on mac type */
5742 	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
5743 	.reset_hw		= e1000_reset_hw_ich8lan,
5744 	.init_hw		= e1000_init_hw_ich8lan,
5745 	.setup_link		= e1000_setup_link_ich8lan,
5746 	.setup_physical_interface = e1000_setup_copper_link_ich8lan,
5747 	/* id_led_init dependent on mac type */
5748 	.config_collision_dist	= e1000e_config_collision_dist_generic,
5749 	.rar_set		= e1000e_rar_set_generic,
5750 	.rar_get_count		= e1000e_rar_get_count_generic,
5751 };
5752 
5753 static const struct e1000_phy_operations ich8_phy_ops = {
5754 	.acquire		= e1000_acquire_swflag_ich8lan,
5755 	.check_reset_block	= e1000_check_reset_block_ich8lan,
5756 	.commit			= NULL,
5757 	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
5758 	.get_cable_length	= e1000e_get_cable_length_igp_2,
5759 	.read_reg		= e1000e_read_phy_reg_igp,
5760 	.release		= e1000_release_swflag_ich8lan,
5761 	.reset			= e1000_phy_hw_reset_ich8lan,
5762 	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
5763 	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
5764 	.write_reg		= e1000e_write_phy_reg_igp,
5765 };
5766 
5767 static const struct e1000_nvm_operations ich8_nvm_ops = {
5768 	.acquire		= e1000_acquire_nvm_ich8lan,
5769 	.read			= e1000_read_nvm_ich8lan,
5770 	.release		= e1000_release_nvm_ich8lan,
5771 	.reload			= e1000e_reload_nvm_generic,
5772 	.update			= e1000_update_nvm_checksum_ich8lan,
5773 	.valid_led_default	= e1000_valid_led_default_ich8lan,
5774 	.validate		= e1000_validate_nvm_checksum_ich8lan,
5775 	.write			= e1000_write_nvm_ich8lan,
5776 };
5777 
5778 static const struct e1000_nvm_operations spt_nvm_ops = {
5779 	.acquire		= e1000_acquire_nvm_ich8lan,
5780 	.release		= e1000_release_nvm_ich8lan,
5781 	.read			= e1000_read_nvm_spt,
5782 	.update			= e1000_update_nvm_checksum_spt,
5783 	.reload			= e1000e_reload_nvm_generic,
5784 	.valid_led_default	= e1000_valid_led_default_ich8lan,
5785 	.validate		= e1000_validate_nvm_checksum_ich8lan,
5786 	.write			= e1000_write_nvm_ich8lan,
5787 };
5788 
5789 const struct e1000_info e1000_ich8_info = {
5790 	.mac			= e1000_ich8lan,
5791 	.flags			= FLAG_HAS_WOL
5792 				  | FLAG_IS_ICH
5793 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5794 				  | FLAG_HAS_AMT
5795 				  | FLAG_HAS_FLASH
5796 				  | FLAG_APME_IN_WUC,
5797 	.pba			= 8,
5798 	.max_hw_frame_size	= VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
5799 	.get_variants		= e1000_get_variants_ich8lan,
5800 	.mac_ops		= &ich8_mac_ops,
5801 	.phy_ops		= &ich8_phy_ops,
5802 	.nvm_ops		= &ich8_nvm_ops,
5803 };
5804 
5805 const struct e1000_info e1000_ich9_info = {
5806 	.mac			= e1000_ich9lan,
5807 	.flags			= FLAG_HAS_JUMBO_FRAMES
5808 				  | FLAG_IS_ICH
5809 				  | FLAG_HAS_WOL
5810 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5811 				  | FLAG_HAS_AMT
5812 				  | FLAG_HAS_FLASH
5813 				  | FLAG_APME_IN_WUC,
5814 	.pba			= 18,
5815 	.max_hw_frame_size	= DEFAULT_JUMBO,
5816 	.get_variants		= e1000_get_variants_ich8lan,
5817 	.mac_ops		= &ich8_mac_ops,
5818 	.phy_ops		= &ich8_phy_ops,
5819 	.nvm_ops		= &ich8_nvm_ops,
5820 };
5821 
5822 const struct e1000_info e1000_ich10_info = {
5823 	.mac			= e1000_ich10lan,
5824 	.flags			= FLAG_HAS_JUMBO_FRAMES
5825 				  | FLAG_IS_ICH
5826 				  | FLAG_HAS_WOL
5827 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5828 				  | FLAG_HAS_AMT
5829 				  | FLAG_HAS_FLASH
5830 				  | FLAG_APME_IN_WUC,
5831 	.pba			= 18,
5832 	.max_hw_frame_size	= DEFAULT_JUMBO,
5833 	.get_variants		= e1000_get_variants_ich8lan,
5834 	.mac_ops		= &ich8_mac_ops,
5835 	.phy_ops		= &ich8_phy_ops,
5836 	.nvm_ops		= &ich8_nvm_ops,
5837 };
5838 
5839 const struct e1000_info e1000_pch_info = {
5840 	.mac			= e1000_pchlan,
5841 	.flags			= FLAG_IS_ICH
5842 				  | FLAG_HAS_WOL
5843 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5844 				  | FLAG_HAS_AMT
5845 				  | FLAG_HAS_FLASH
5846 				  | FLAG_HAS_JUMBO_FRAMES
5847 				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
5848 				  | FLAG_APME_IN_WUC,
5849 	.flags2			= FLAG2_HAS_PHY_STATS,
5850 	.pba			= 26,
5851 	.max_hw_frame_size	= 4096,
5852 	.get_variants		= e1000_get_variants_ich8lan,
5853 	.mac_ops		= &ich8_mac_ops,
5854 	.phy_ops		= &ich8_phy_ops,
5855 	.nvm_ops		= &ich8_nvm_ops,
5856 };
5857 
5858 const struct e1000_info e1000_pch2_info = {
5859 	.mac			= e1000_pch2lan,
5860 	.flags			= FLAG_IS_ICH
5861 				  | FLAG_HAS_WOL
5862 				  | FLAG_HAS_HW_TIMESTAMP
5863 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5864 				  | FLAG_HAS_AMT
5865 				  | FLAG_HAS_FLASH
5866 				  | FLAG_HAS_JUMBO_FRAMES
5867 				  | FLAG_APME_IN_WUC,
5868 	.flags2			= FLAG2_HAS_PHY_STATS
5869 				  | FLAG2_HAS_EEE
5870 				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
5871 	.pba			= 26,
5872 	.max_hw_frame_size	= 9022,
5873 	.get_variants		= e1000_get_variants_ich8lan,
5874 	.mac_ops		= &ich8_mac_ops,
5875 	.phy_ops		= &ich8_phy_ops,
5876 	.nvm_ops		= &ich8_nvm_ops,
5877 };
5878 
5879 const struct e1000_info e1000_pch_lpt_info = {
5880 	.mac			= e1000_pch_lpt,
5881 	.flags			= FLAG_IS_ICH
5882 				  | FLAG_HAS_WOL
5883 				  | FLAG_HAS_HW_TIMESTAMP
5884 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5885 				  | FLAG_HAS_AMT
5886 				  | FLAG_HAS_FLASH
5887 				  | FLAG_HAS_JUMBO_FRAMES
5888 				  | FLAG_APME_IN_WUC,
5889 	.flags2			= FLAG2_HAS_PHY_STATS
5890 				  | FLAG2_HAS_EEE
5891 				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
5892 	.pba			= 26,
5893 	.max_hw_frame_size	= 9022,
5894 	.get_variants		= e1000_get_variants_ich8lan,
5895 	.mac_ops		= &ich8_mac_ops,
5896 	.phy_ops		= &ich8_phy_ops,
5897 	.nvm_ops		= &ich8_nvm_ops,
5898 };
5899 
5900 const struct e1000_info e1000_pch_spt_info = {
5901 	.mac			= e1000_pch_spt,
5902 	.flags			= FLAG_IS_ICH
5903 				  | FLAG_HAS_WOL
5904 				  | FLAG_HAS_HW_TIMESTAMP
5905 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5906 				  | FLAG_HAS_AMT
5907 				  | FLAG_HAS_FLASH
5908 				  | FLAG_HAS_JUMBO_FRAMES
5909 				  | FLAG_APME_IN_WUC,
5910 	.flags2			= FLAG2_HAS_PHY_STATS
5911 				  | FLAG2_HAS_EEE,
5912 	.pba			= 26,
5913 	.max_hw_frame_size	= 9022,
5914 	.get_variants		= e1000_get_variants_ich8lan,
5915 	.mac_ops		= &ich8_mac_ops,
5916 	.phy_ops		= &ich8_phy_ops,
5917 	.nvm_ops		= &spt_nvm_ops,
5918 };
5919 
5920 const struct e1000_info e1000_pch_cnp_info = {
5921 	.mac			= e1000_pch_cnp,
5922 	.flags			= FLAG_IS_ICH
5923 				  | FLAG_HAS_WOL
5924 				  | FLAG_HAS_HW_TIMESTAMP
5925 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5926 				  | FLAG_HAS_AMT
5927 				  | FLAG_HAS_FLASH
5928 				  | FLAG_HAS_JUMBO_FRAMES
5929 				  | FLAG_APME_IN_WUC,
5930 	.flags2			= FLAG2_HAS_PHY_STATS
5931 				  | FLAG2_HAS_EEE,
5932 	.pba			= 26,
5933 	.max_hw_frame_size	= 9022,
5934 	.get_variants		= e1000_get_variants_ich8lan,
5935 	.mac_ops		= &ich8_mac_ops,
5936 	.phy_ops		= &ich8_phy_ops,
5937 	.nvm_ops		= &spt_nvm_ops,
5938 };
5939