1 /*******************************************************************************
2 
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2012 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 
27 *******************************************************************************/
28 
29 /* 82562G 10/100 Network Connection
30  * 82562G-2 10/100 Network Connection
31  * 82562GT 10/100 Network Connection
32  * 82562GT-2 10/100 Network Connection
33  * 82562V 10/100 Network Connection
34  * 82562V-2 10/100 Network Connection
35  * 82566DC-2 Gigabit Network Connection
36  * 82566DC Gigabit Network Connection
37  * 82566DM-2 Gigabit Network Connection
38  * 82566DM Gigabit Network Connection
39  * 82566MC Gigabit Network Connection
40  * 82566MM Gigabit Network Connection
41  * 82567LM Gigabit Network Connection
42  * 82567LF Gigabit Network Connection
43  * 82567V Gigabit Network Connection
44  * 82567LM-2 Gigabit Network Connection
45  * 82567LF-2 Gigabit Network Connection
46  * 82567V-2 Gigabit Network Connection
47  * 82567LF-3 Gigabit Network Connection
48  * 82567LM-3 Gigabit Network Connection
49  * 82567LM-4 Gigabit Network Connection
50  * 82577LM Gigabit Network Connection
51  * 82577LC Gigabit Network Connection
52  * 82578DM Gigabit Network Connection
53  * 82578DC Gigabit Network Connection
54  * 82579LM Gigabit Network Connection
55  * 82579V Gigabit Network Connection
56  */
57 
58 #include "e1000.h"
59 
60 #define ICH_FLASH_GFPREG		0x0000
61 #define ICH_FLASH_HSFSTS		0x0004
62 #define ICH_FLASH_HSFCTL		0x0006
63 #define ICH_FLASH_FADDR			0x0008
64 #define ICH_FLASH_FDATA0		0x0010
65 #define ICH_FLASH_PR0			0x0074
66 
67 #define ICH_FLASH_READ_COMMAND_TIMEOUT	500
68 #define ICH_FLASH_WRITE_COMMAND_TIMEOUT	500
69 #define ICH_FLASH_ERASE_COMMAND_TIMEOUT	3000000
70 #define ICH_FLASH_LINEAR_ADDR_MASK	0x00FFFFFF
71 #define ICH_FLASH_CYCLE_REPEAT_COUNT	10
72 
73 #define ICH_CYCLE_READ			0
74 #define ICH_CYCLE_WRITE			2
75 #define ICH_CYCLE_ERASE			3
76 
77 #define FLASH_GFPREG_BASE_MASK		0x1FFF
78 #define FLASH_SECTOR_ADDR_SHIFT		12
79 
80 #define ICH_FLASH_SEG_SIZE_256		256
81 #define ICH_FLASH_SEG_SIZE_4K		4096
82 #define ICH_FLASH_SEG_SIZE_8K		8192
83 #define ICH_FLASH_SEG_SIZE_64K		65536
84 
85 
86 #define E1000_ICH_FWSM_RSPCIPHY	0x00000040 /* Reset PHY on PCI Reset */
87 /* FW established a valid mode */
88 #define E1000_ICH_FWSM_FW_VALID		0x00008000
89 
90 #define E1000_ICH_MNG_IAMT_MODE		0x2
91 
92 #define ID_LED_DEFAULT_ICH8LAN  ((ID_LED_DEF1_DEF2 << 12) | \
93 				 (ID_LED_DEF1_OFF2 <<  8) | \
94 				 (ID_LED_DEF1_ON2  <<  4) | \
95 				 (ID_LED_DEF1_DEF2))
96 
97 #define E1000_ICH_NVM_SIG_WORD		0x13
98 #define E1000_ICH_NVM_SIG_MASK		0xC000
99 #define E1000_ICH_NVM_VALID_SIG_MASK    0xC0
100 #define E1000_ICH_NVM_SIG_VALUE         0x80
101 
102 #define E1000_ICH8_LAN_INIT_TIMEOUT	1500
103 
104 #define E1000_FEXTNVM_SW_CONFIG		1
105 #define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
106 
107 #define E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK    0x0C000000
108 #define E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC  0x08000000
109 
110 #define E1000_FEXTNVM4_BEACON_DURATION_MASK    0x7
111 #define E1000_FEXTNVM4_BEACON_DURATION_8USEC   0x7
112 #define E1000_FEXTNVM4_BEACON_DURATION_16USEC  0x3
113 
114 #define PCIE_ICH8_SNOOP_ALL		PCIE_NO_SNOOP_ALL
115 
116 #define E1000_ICH_RAR_ENTRIES		7
117 #define E1000_PCH2_RAR_ENTRIES		5 /* RAR[0], SHRA[0-3] */
118 #define E1000_PCH_LPT_RAR_ENTRIES	12 /* RAR[0], SHRA[0-10] */
119 
120 #define PHY_PAGE_SHIFT 5
121 #define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
122 			   ((reg) & MAX_PHY_REG_ADDRESS))
123 #define IGP3_KMRN_DIAG  PHY_REG(770, 19) /* KMRN Diagnostic */
124 #define IGP3_VR_CTRL    PHY_REG(776, 18) /* Voltage Regulator Control */
125 
126 #define IGP3_KMRN_DIAG_PCS_LOCK_LOSS	0x0002
127 #define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
128 #define IGP3_VR_CTRL_MODE_SHUTDOWN	0x0200
129 
130 #define HV_LED_CONFIG		PHY_REG(768, 30) /* LED Configuration */
131 
132 #define SW_FLAG_TIMEOUT    1000 /* SW Semaphore flag timeout in milliseconds */
133 
134 /* SMBus Control Phy Register */
135 #define CV_SMB_CTRL		PHY_REG(769, 23)
136 #define CV_SMB_CTRL_FORCE_SMBUS	0x0001
137 
138 /* SMBus Address Phy Register */
139 #define HV_SMB_ADDR            PHY_REG(768, 26)
140 #define HV_SMB_ADDR_MASK       0x007F
141 #define HV_SMB_ADDR_PEC_EN     0x0200
142 #define HV_SMB_ADDR_VALID      0x0080
143 #define HV_SMB_ADDR_FREQ_MASK           0x1100
144 #define HV_SMB_ADDR_FREQ_LOW_SHIFT      8
145 #define HV_SMB_ADDR_FREQ_HIGH_SHIFT     12
146 
147 /* PHY Power Management Control */
148 #define HV_PM_CTRL		PHY_REG(770, 17)
149 #define HV_PM_CTRL_PLL_STOP_IN_K1_GIGA	0x100
150 
151 /* PHY Low Power Idle Control */
152 #define I82579_LPI_CTRL				PHY_REG(772, 20)
153 #define I82579_LPI_CTRL_ENABLE_MASK		0x6000
154 #define I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT	0x80
155 
156 /* EMI Registers */
157 #define I82579_EMI_ADDR         0x10
158 #define I82579_EMI_DATA         0x11
159 #define I82579_LPI_UPDATE_TIMER 0x4805	/* in 40ns units + 40 ns base value */
160 #define I82579_MSE_THRESHOLD    0x084F	/* Mean Square Error Threshold */
161 #define I82579_MSE_LINK_DOWN    0x2411	/* MSE count before dropping link */
162 #define I217_EEE_ADVERTISEMENT  0x8001	/* IEEE MMD Register 7.60 */
163 #define I217_EEE_LP_ABILITY     0x8002	/* IEEE MMD Register 7.61 */
164 #define I217_EEE_100_SUPPORTED  (1 << 1)	/* 100BaseTx EEE supported */
165 
166 /* Intel Rapid Start Technology Support */
167 #define I217_PROXY_CTRL                 BM_PHY_REG(BM_WUC_PAGE, 70)
168 #define I217_PROXY_CTRL_AUTO_DISABLE    0x0080
169 #define I217_SxCTRL                     PHY_REG(BM_PORT_CTRL_PAGE, 28)
170 #define I217_SxCTRL_ENABLE_LPI_RESET    0x1000
171 #define I217_CGFREG                     PHY_REG(772, 29)
172 #define I217_CGFREG_ENABLE_MTA_RESET    0x0002
173 #define I217_MEMPWR                     PHY_REG(772, 26)
174 #define I217_MEMPWR_DISABLE_SMB_RELEASE 0x0010
175 
176 /* Strapping Option Register - RO */
177 #define E1000_STRAP                     0x0000C
178 #define E1000_STRAP_SMBUS_ADDRESS_MASK  0x00FE0000
179 #define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17
180 #define E1000_STRAP_SMT_FREQ_MASK       0x00003000
181 #define E1000_STRAP_SMT_FREQ_SHIFT      12
182 
183 /* OEM Bits Phy Register */
184 #define HV_OEM_BITS            PHY_REG(768, 25)
185 #define HV_OEM_BITS_LPLU       0x0004 /* Low Power Link Up */
186 #define HV_OEM_BITS_GBE_DIS    0x0040 /* Gigabit Disable */
187 #define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */
188 
189 #define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */
190 #define E1000_NVM_K1_ENABLE 0x1  /* NVM Enable K1 bit */
191 
192 /* KMRN Mode Control */
193 #define HV_KMRN_MODE_CTRL      PHY_REG(769, 16)
194 #define HV_KMRN_MDIO_SLOW      0x0400
195 
196 /* KMRN FIFO Control and Status */
197 #define HV_KMRN_FIFO_CTRLSTA                  PHY_REG(770, 16)
198 #define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK    0x7000
199 #define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT   12
200 
201 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
202 /* Offset 04h HSFSTS */
203 union ich8_hws_flash_status {
204 	struct ich8_hsfsts {
205 		u16 flcdone    :1; /* bit 0 Flash Cycle Done */
206 		u16 flcerr     :1; /* bit 1 Flash Cycle Error */
207 		u16 dael       :1; /* bit 2 Direct Access error Log */
208 		u16 berasesz   :2; /* bit 4:3 Sector Erase Size */
209 		u16 flcinprog  :1; /* bit 5 flash cycle in Progress */
210 		u16 reserved1  :2; /* bit 13:6 Reserved */
211 		u16 reserved2  :6; /* bit 13:6 Reserved */
212 		u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
213 		u16 flockdn    :1; /* bit 15 Flash Config Lock-Down */
214 	} hsf_status;
215 	u16 regval;
216 };
217 
218 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
219 /* Offset 06h FLCTL */
220 union ich8_hws_flash_ctrl {
221 	struct ich8_hsflctl {
222 		u16 flcgo      :1;   /* 0 Flash Cycle Go */
223 		u16 flcycle    :2;   /* 2:1 Flash Cycle */
224 		u16 reserved   :5;   /* 7:3 Reserved  */
225 		u16 fldbcount  :2;   /* 9:8 Flash Data Byte Count */
226 		u16 flockdn    :6;   /* 15:10 Reserved */
227 	} hsf_ctrl;
228 	u16 regval;
229 };
230 
231 /* ICH Flash Region Access Permissions */
232 union ich8_hws_flash_regacc {
233 	struct ich8_flracc {
234 		u32 grra      :8; /* 0:7 GbE region Read Access */
235 		u32 grwa      :8; /* 8:15 GbE region Write Access */
236 		u32 gmrag     :8; /* 23:16 GbE Master Read Access Grant */
237 		u32 gmwag     :8; /* 31:24 GbE Master Write Access Grant */
238 	} hsf_flregacc;
239 	u16 regval;
240 };
241 
242 /* ICH Flash Protected Region */
243 union ich8_flash_protected_range {
244 	struct ich8_pr {
245 		u32 base:13;     /* 0:12 Protected Range Base */
246 		u32 reserved1:2; /* 13:14 Reserved */
247 		u32 rpe:1;       /* 15 Read Protection Enable */
248 		u32 limit:13;    /* 16:28 Protected Range Limit */
249 		u32 reserved2:2; /* 29:30 Reserved */
250 		u32 wpe:1;       /* 31 Write Protection Enable */
251 	} range;
252 	u32 regval;
253 };
254 
255 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
256 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
257 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
258 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
259 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
260 						u32 offset, u8 byte);
261 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
262 					 u8 *data);
263 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
264 					 u16 *data);
265 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
266 					 u8 size, u16 *data);
267 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
268 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
269 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
270 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
271 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
272 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
273 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
274 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
275 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
276 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
277 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
278 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
279 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
280 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
281 static s32  e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
282 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
283 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
284 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
285 static void e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
286 static void e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
287 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
288 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
289 
290 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
291 {
292 	return readw(hw->flash_address + reg);
293 }
294 
295 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
296 {
297 	return readl(hw->flash_address + reg);
298 }
299 
300 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
301 {
302 	writew(val, hw->flash_address + reg);
303 }
304 
305 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
306 {
307 	writel(val, hw->flash_address + reg);
308 }
309 
310 #define er16flash(reg)		__er16flash(hw, (reg))
311 #define er32flash(reg)		__er32flash(hw, (reg))
312 #define ew16flash(reg, val)	__ew16flash(hw, (reg), (val))
313 #define ew32flash(reg, val)	__ew32flash(hw, (reg), (val))
314 
315 /**
316  *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
317  *  @hw: pointer to the HW structure
318  *
319  *  Test access to the PHY registers by reading the PHY ID registers.  If
320  *  the PHY ID is already known (e.g. resume path) compare it with known ID,
321  *  otherwise assume the read PHY ID is correct if it is valid.
322  *
323  *  Assumes the sw/fw/hw semaphore is already acquired.
324  **/
325 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
326 {
327 	u16 phy_reg = 0;
328 	u32 phy_id = 0;
329 	s32 ret_val;
330 	u16 retry_count;
331 
332 	for (retry_count = 0; retry_count < 2; retry_count++) {
333 		ret_val = e1e_rphy_locked(hw, PHY_ID1, &phy_reg);
334 		if (ret_val || (phy_reg == 0xFFFF))
335 			continue;
336 		phy_id = (u32)(phy_reg << 16);
337 
338 		ret_val = e1e_rphy_locked(hw, PHY_ID2, &phy_reg);
339 		if (ret_val || (phy_reg == 0xFFFF)) {
340 			phy_id = 0;
341 			continue;
342 		}
343 		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
344 		break;
345 	}
346 
347 	if (hw->phy.id) {
348 		if (hw->phy.id == phy_id)
349 			return true;
350 	} else if (phy_id) {
351 		hw->phy.id = phy_id;
352 		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
353 		return true;
354 	}
355 
356 	/* In case the PHY needs to be in mdio slow mode,
357 	 * set slow mode and try to get the PHY id again.
358 	 */
359 	hw->phy.ops.release(hw);
360 	ret_val = e1000_set_mdio_slow_mode_hv(hw);
361 	if (!ret_val)
362 		ret_val = e1000e_get_phy_id(hw);
363 	hw->phy.ops.acquire(hw);
364 
365 	return !ret_val;
366 }
367 
368 /**
369  *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
370  *  @hw: pointer to the HW structure
371  *
372  *  Workarounds/flow necessary for PHY initialization during driver load
373  *  and resume paths.
374  **/
375 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
376 {
377 	u32 mac_reg, fwsm = er32(FWSM);
378 	s32 ret_val;
379 	u16 phy_reg;
380 
381 	ret_val = hw->phy.ops.acquire(hw);
382 	if (ret_val) {
383 		e_dbg("Failed to initialize PHY flow\n");
384 		return ret_val;
385 	}
386 
387 	/* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
388 	 * inaccessible and resetting the PHY is not blocked, toggle the
389 	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
390 	 */
391 	switch (hw->mac.type) {
392 	case e1000_pch_lpt:
393 		if (e1000_phy_is_accessible_pchlan(hw))
394 			break;
395 
396 		/* Before toggling LANPHYPC, see if PHY is accessible by
397 		 * forcing MAC to SMBus mode first.
398 		 */
399 		mac_reg = er32(CTRL_EXT);
400 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
401 		ew32(CTRL_EXT, mac_reg);
402 
403 		/* fall-through */
404 	case e1000_pch2lan:
405 		/* Gate automatic PHY configuration by hardware on
406 		 * non-managed 82579
407 		 */
408 		if ((hw->mac.type == e1000_pch2lan) &&
409 		    !(fwsm & E1000_ICH_FWSM_FW_VALID))
410 			e1000_gate_hw_phy_config_ich8lan(hw, true);
411 
412 		if (e1000_phy_is_accessible_pchlan(hw)) {
413 			if (hw->mac.type == e1000_pch_lpt) {
414 				/* Unforce SMBus mode in PHY */
415 				e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
416 				phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
417 				e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
418 
419 				/* Unforce SMBus mode in MAC */
420 				mac_reg = er32(CTRL_EXT);
421 				mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
422 				ew32(CTRL_EXT, mac_reg);
423 			}
424 			break;
425 		}
426 
427 		/* fall-through */
428 	case e1000_pchlan:
429 		if ((hw->mac.type == e1000_pchlan) &&
430 		    (fwsm & E1000_ICH_FWSM_FW_VALID))
431 			break;
432 
433 		if (hw->phy.ops.check_reset_block(hw)) {
434 			e_dbg("Required LANPHYPC toggle blocked by ME\n");
435 			break;
436 		}
437 
438 		e_dbg("Toggling LANPHYPC\n");
439 
440 		/* Set Phy Config Counter to 50msec */
441 		mac_reg = er32(FEXTNVM3);
442 		mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
443 		mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
444 		ew32(FEXTNVM3, mac_reg);
445 
446 		/* Toggle LANPHYPC Value bit */
447 		mac_reg = er32(CTRL);
448 		mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
449 		mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
450 		ew32(CTRL, mac_reg);
451 		e1e_flush();
452 		udelay(10);
453 		mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
454 		ew32(CTRL, mac_reg);
455 		e1e_flush();
456 		if (hw->mac.type < e1000_pch_lpt) {
457 			msleep(50);
458 		} else {
459 			u16 count = 20;
460 			do {
461 				usleep_range(5000, 10000);
462 			} while (!(er32(CTRL_EXT) &
463 				   E1000_CTRL_EXT_LPCD) && count--);
464 		}
465 		break;
466 	default:
467 		break;
468 	}
469 
470 	hw->phy.ops.release(hw);
471 
472 	/* Reset the PHY before any access to it.  Doing so, ensures
473 	 * that the PHY is in a known good state before we read/write
474 	 * PHY registers.  The generic reset is sufficient here,
475 	 * because we haven't determined the PHY type yet.
476 	 */
477 	ret_val = e1000e_phy_hw_reset_generic(hw);
478 
479 	/* Ungate automatic PHY configuration on non-managed 82579 */
480 	if ((hw->mac.type == e1000_pch2lan) &&
481 	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
482 		usleep_range(10000, 20000);
483 		e1000_gate_hw_phy_config_ich8lan(hw, false);
484 	}
485 
486 	return ret_val;
487 }
488 
489 /**
490  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
491  *  @hw: pointer to the HW structure
492  *
493  *  Initialize family-specific PHY parameters and function pointers.
494  **/
495 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
496 {
497 	struct e1000_phy_info *phy = &hw->phy;
498 	s32 ret_val = 0;
499 
500 	phy->addr                     = 1;
501 	phy->reset_delay_us           = 100;
502 
503 	phy->ops.set_page             = e1000_set_page_igp;
504 	phy->ops.read_reg             = e1000_read_phy_reg_hv;
505 	phy->ops.read_reg_locked      = e1000_read_phy_reg_hv_locked;
506 	phy->ops.read_reg_page        = e1000_read_phy_reg_page_hv;
507 	phy->ops.set_d0_lplu_state    = e1000_set_lplu_state_pchlan;
508 	phy->ops.set_d3_lplu_state    = e1000_set_lplu_state_pchlan;
509 	phy->ops.write_reg            = e1000_write_phy_reg_hv;
510 	phy->ops.write_reg_locked     = e1000_write_phy_reg_hv_locked;
511 	phy->ops.write_reg_page       = e1000_write_phy_reg_page_hv;
512 	phy->ops.power_up             = e1000_power_up_phy_copper;
513 	phy->ops.power_down           = e1000_power_down_phy_copper_ich8lan;
514 	phy->autoneg_mask             = AUTONEG_ADVERTISE_SPEED_DEFAULT;
515 
516 	phy->id = e1000_phy_unknown;
517 
518 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
519 	if (ret_val)
520 		return ret_val;
521 
522 	if (phy->id == e1000_phy_unknown)
523 		switch (hw->mac.type) {
524 		default:
525 			ret_val = e1000e_get_phy_id(hw);
526 			if (ret_val)
527 				return ret_val;
528 			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
529 				break;
530 			/* fall-through */
531 		case e1000_pch2lan:
532 		case e1000_pch_lpt:
533 			/* In case the PHY needs to be in mdio slow mode,
534 			 * set slow mode and try to get the PHY id again.
535 			 */
536 			ret_val = e1000_set_mdio_slow_mode_hv(hw);
537 			if (ret_val)
538 				return ret_val;
539 			ret_val = e1000e_get_phy_id(hw);
540 			if (ret_val)
541 				return ret_val;
542 			break;
543 		}
544 	phy->type = e1000e_get_phy_type_from_id(phy->id);
545 
546 	switch (phy->type) {
547 	case e1000_phy_82577:
548 	case e1000_phy_82579:
549 	case e1000_phy_i217:
550 		phy->ops.check_polarity = e1000_check_polarity_82577;
551 		phy->ops.force_speed_duplex =
552 		    e1000_phy_force_speed_duplex_82577;
553 		phy->ops.get_cable_length = e1000_get_cable_length_82577;
554 		phy->ops.get_info = e1000_get_phy_info_82577;
555 		phy->ops.commit = e1000e_phy_sw_reset;
556 		break;
557 	case e1000_phy_82578:
558 		phy->ops.check_polarity = e1000_check_polarity_m88;
559 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
560 		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
561 		phy->ops.get_info = e1000e_get_phy_info_m88;
562 		break;
563 	default:
564 		ret_val = -E1000_ERR_PHY;
565 		break;
566 	}
567 
568 	return ret_val;
569 }
570 
571 /**
572  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
573  *  @hw: pointer to the HW structure
574  *
575  *  Initialize family-specific PHY parameters and function pointers.
576  **/
577 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
578 {
579 	struct e1000_phy_info *phy = &hw->phy;
580 	s32 ret_val;
581 	u16 i = 0;
582 
583 	phy->addr			= 1;
584 	phy->reset_delay_us		= 100;
585 
586 	phy->ops.power_up               = e1000_power_up_phy_copper;
587 	phy->ops.power_down             = e1000_power_down_phy_copper_ich8lan;
588 
589 	/* We may need to do this twice - once for IGP and if that fails,
590 	 * we'll set BM func pointers and try again
591 	 */
592 	ret_val = e1000e_determine_phy_address(hw);
593 	if (ret_val) {
594 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
595 		phy->ops.read_reg  = e1000e_read_phy_reg_bm;
596 		ret_val = e1000e_determine_phy_address(hw);
597 		if (ret_val) {
598 			e_dbg("Cannot determine PHY addr. Erroring out\n");
599 			return ret_val;
600 		}
601 	}
602 
603 	phy->id = 0;
604 	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
605 	       (i++ < 100)) {
606 		usleep_range(1000, 2000);
607 		ret_val = e1000e_get_phy_id(hw);
608 		if (ret_val)
609 			return ret_val;
610 	}
611 
612 	/* Verify phy id */
613 	switch (phy->id) {
614 	case IGP03E1000_E_PHY_ID:
615 		phy->type = e1000_phy_igp_3;
616 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
617 		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
618 		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
619 		phy->ops.get_info = e1000e_get_phy_info_igp;
620 		phy->ops.check_polarity = e1000_check_polarity_igp;
621 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
622 		break;
623 	case IFE_E_PHY_ID:
624 	case IFE_PLUS_E_PHY_ID:
625 	case IFE_C_E_PHY_ID:
626 		phy->type = e1000_phy_ife;
627 		phy->autoneg_mask = E1000_ALL_NOT_GIG;
628 		phy->ops.get_info = e1000_get_phy_info_ife;
629 		phy->ops.check_polarity = e1000_check_polarity_ife;
630 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
631 		break;
632 	case BME1000_E_PHY_ID:
633 		phy->type = e1000_phy_bm;
634 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
635 		phy->ops.read_reg = e1000e_read_phy_reg_bm;
636 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
637 		phy->ops.commit = e1000e_phy_sw_reset;
638 		phy->ops.get_info = e1000e_get_phy_info_m88;
639 		phy->ops.check_polarity = e1000_check_polarity_m88;
640 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
641 		break;
642 	default:
643 		return -E1000_ERR_PHY;
644 		break;
645 	}
646 
647 	return 0;
648 }
649 
650 /**
651  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
652  *  @hw: pointer to the HW structure
653  *
654  *  Initialize family-specific NVM parameters and function
655  *  pointers.
656  **/
657 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
658 {
659 	struct e1000_nvm_info *nvm = &hw->nvm;
660 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
661 	u32 gfpreg, sector_base_addr, sector_end_addr;
662 	u16 i;
663 
664 	/* Can't read flash registers if the register set isn't mapped. */
665 	if (!hw->flash_address) {
666 		e_dbg("ERROR: Flash registers not mapped\n");
667 		return -E1000_ERR_CONFIG;
668 	}
669 
670 	nvm->type = e1000_nvm_flash_sw;
671 
672 	gfpreg = er32flash(ICH_FLASH_GFPREG);
673 
674 	/* sector_X_addr is a "sector"-aligned address (4096 bytes)
675 	 * Add 1 to sector_end_addr since this sector is included in
676 	 * the overall size.
677 	 */
678 	sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
679 	sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
680 
681 	/* flash_base_addr is byte-aligned */
682 	nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
683 
684 	/* find total size of the NVM, then cut in half since the total
685 	 * size represents two separate NVM banks.
686 	 */
687 	nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
688 				<< FLASH_SECTOR_ADDR_SHIFT;
689 	nvm->flash_bank_size /= 2;
690 	/* Adjust to word count */
691 	nvm->flash_bank_size /= sizeof(u16);
692 
693 	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
694 
695 	/* Clear shadow ram */
696 	for (i = 0; i < nvm->word_size; i++) {
697 		dev_spec->shadow_ram[i].modified = false;
698 		dev_spec->shadow_ram[i].value    = 0xFFFF;
699 	}
700 
701 	return 0;
702 }
703 
704 /**
705  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
706  *  @hw: pointer to the HW structure
707  *
708  *  Initialize family-specific MAC parameters and function
709  *  pointers.
710  **/
711 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
712 {
713 	struct e1000_mac_info *mac = &hw->mac;
714 
715 	/* Set media type function pointer */
716 	hw->phy.media_type = e1000_media_type_copper;
717 
718 	/* Set mta register count */
719 	mac->mta_reg_count = 32;
720 	/* Set rar entry count */
721 	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
722 	if (mac->type == e1000_ich8lan)
723 		mac->rar_entry_count--;
724 	/* FWSM register */
725 	mac->has_fwsm = true;
726 	/* ARC subsystem not supported */
727 	mac->arc_subsystem_valid = false;
728 	/* Adaptive IFS supported */
729 	mac->adaptive_ifs = true;
730 
731 	/* LED and other operations */
732 	switch (mac->type) {
733 	case e1000_ich8lan:
734 	case e1000_ich9lan:
735 	case e1000_ich10lan:
736 		/* check management mode */
737 		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
738 		/* ID LED init */
739 		mac->ops.id_led_init = e1000e_id_led_init_generic;
740 		/* blink LED */
741 		mac->ops.blink_led = e1000e_blink_led_generic;
742 		/* setup LED */
743 		mac->ops.setup_led = e1000e_setup_led_generic;
744 		/* cleanup LED */
745 		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
746 		/* turn on/off LED */
747 		mac->ops.led_on = e1000_led_on_ich8lan;
748 		mac->ops.led_off = e1000_led_off_ich8lan;
749 		break;
750 	case e1000_pch2lan:
751 		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
752 		mac->ops.rar_set = e1000_rar_set_pch2lan;
753 		/* fall-through */
754 	case e1000_pch_lpt:
755 	case e1000_pchlan:
756 		/* check management mode */
757 		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
758 		/* ID LED init */
759 		mac->ops.id_led_init = e1000_id_led_init_pchlan;
760 		/* setup LED */
761 		mac->ops.setup_led = e1000_setup_led_pchlan;
762 		/* cleanup LED */
763 		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
764 		/* turn on/off LED */
765 		mac->ops.led_on = e1000_led_on_pchlan;
766 		mac->ops.led_off = e1000_led_off_pchlan;
767 		break;
768 	default:
769 		break;
770 	}
771 
772 	if (mac->type == e1000_pch_lpt) {
773 		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
774 		mac->ops.rar_set = e1000_rar_set_pch_lpt;
775 	}
776 
777 	/* Enable PCS Lock-loss workaround for ICH8 */
778 	if (mac->type == e1000_ich8lan)
779 		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
780 
781 	/* Gate automatic PHY configuration by hardware on managed
782 	 * 82579 and i217
783 	 */
784 	if ((mac->type == e1000_pch2lan || mac->type == e1000_pch_lpt) &&
785 	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
786 		e1000_gate_hw_phy_config_ich8lan(hw, true);
787 
788 	return 0;
789 }
790 
791 /**
792  *  e1000_set_eee_pchlan - Enable/disable EEE support
793  *  @hw: pointer to the HW structure
794  *
795  *  Enable/disable EEE based on setting in dev_spec structure.  The bits in
796  *  the LPI Control register will remain set only if/when link is up.
797  **/
798 static s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
799 {
800 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
801 	s32 ret_val = 0;
802 	u16 phy_reg;
803 
804 	if ((hw->phy.type != e1000_phy_82579) &&
805 	    (hw->phy.type != e1000_phy_i217))
806 		return 0;
807 
808 	ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
809 	if (ret_val)
810 		return ret_val;
811 
812 	if (dev_spec->eee_disable)
813 		phy_reg &= ~I82579_LPI_CTRL_ENABLE_MASK;
814 	else
815 		phy_reg |= I82579_LPI_CTRL_ENABLE_MASK;
816 
817 	ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
818 	if (ret_val)
819 		return ret_val;
820 
821 	if ((hw->phy.type == e1000_phy_i217) && !dev_spec->eee_disable) {
822 		/* Save off link partner's EEE ability */
823 		ret_val = hw->phy.ops.acquire(hw);
824 		if (ret_val)
825 			return ret_val;
826 		ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR,
827 					  I217_EEE_LP_ABILITY);
828 		if (ret_val)
829 			goto release;
830 		e1e_rphy_locked(hw, I82579_EMI_DATA, &dev_spec->eee_lp_ability);
831 
832 		/* EEE is not supported in 100Half, so ignore partner's EEE
833 		 * in 100 ability if full-duplex is not advertised.
834 		 */
835 		e1e_rphy_locked(hw, PHY_LP_ABILITY, &phy_reg);
836 		if (!(phy_reg & NWAY_LPAR_100TX_FD_CAPS))
837 			dev_spec->eee_lp_ability &= ~I217_EEE_100_SUPPORTED;
838 release:
839 		hw->phy.ops.release(hw);
840 	}
841 
842 	return 0;
843 }
844 
845 /**
846  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
847  *  @hw: pointer to the HW structure
848  *
849  *  Checks to see of the link status of the hardware has changed.  If a
850  *  change in link status has been detected, then we read the PHY registers
851  *  to get the current speed/duplex if link exists.
852  **/
853 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
854 {
855 	struct e1000_mac_info *mac = &hw->mac;
856 	s32 ret_val;
857 	bool link;
858 	u16 phy_reg;
859 
860 	/* We only want to go out to the PHY registers to see if Auto-Neg
861 	 * has completed and/or if our link status has changed.  The
862 	 * get_link_status flag is set upon receiving a Link Status
863 	 * Change or Rx Sequence Error interrupt.
864 	 */
865 	if (!mac->get_link_status)
866 		return 0;
867 
868 	/* First we want to see if the MII Status Register reports
869 	 * link.  If so, then we want to get the current speed/duplex
870 	 * of the PHY.
871 	 */
872 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
873 	if (ret_val)
874 		return ret_val;
875 
876 	if (hw->mac.type == e1000_pchlan) {
877 		ret_val = e1000_k1_gig_workaround_hv(hw, link);
878 		if (ret_val)
879 			return ret_val;
880 	}
881 
882 	/* Clear link partner's EEE ability */
883 	hw->dev_spec.ich8lan.eee_lp_ability = 0;
884 
885 	if (!link)
886 		return 0; /* No link detected */
887 
888 	mac->get_link_status = false;
889 
890 	switch (hw->mac.type) {
891 	case e1000_pch2lan:
892 		ret_val = e1000_k1_workaround_lv(hw);
893 		if (ret_val)
894 			return ret_val;
895 		/* fall-thru */
896 	case e1000_pchlan:
897 		if (hw->phy.type == e1000_phy_82578) {
898 			ret_val = e1000_link_stall_workaround_hv(hw);
899 			if (ret_val)
900 				return ret_val;
901 		}
902 
903 		/* Workaround for PCHx parts in half-duplex:
904 		 * Set the number of preambles removed from the packet
905 		 * when it is passed from the PHY to the MAC to prevent
906 		 * the MAC from misinterpreting the packet type.
907 		 */
908 		e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
909 		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
910 
911 		if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
912 			phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
913 
914 		e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
915 		break;
916 	default:
917 		break;
918 	}
919 
920 	/* Check if there was DownShift, must be checked
921 	 * immediately after link-up
922 	 */
923 	e1000e_check_downshift(hw);
924 
925 	/* Enable/Disable EEE after link up */
926 	ret_val = e1000_set_eee_pchlan(hw);
927 	if (ret_val)
928 		return ret_val;
929 
930 	/* If we are forcing speed/duplex, then we simply return since
931 	 * we have already determined whether we have link or not.
932 	 */
933 	if (!mac->autoneg)
934 		return -E1000_ERR_CONFIG;
935 
936 	/* Auto-Neg is enabled.  Auto Speed Detection takes care
937 	 * of MAC speed/duplex configuration.  So we only need to
938 	 * configure Collision Distance in the MAC.
939 	 */
940 	mac->ops.config_collision_dist(hw);
941 
942 	/* Configure Flow Control now that Auto-Neg has completed.
943 	 * First, we need to restore the desired flow control
944 	 * settings because we may have had to re-autoneg with a
945 	 * different link partner.
946 	 */
947 	ret_val = e1000e_config_fc_after_link_up(hw);
948 	if (ret_val)
949 		e_dbg("Error configuring flow control\n");
950 
951 	return ret_val;
952 }
953 
954 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
955 {
956 	struct e1000_hw *hw = &adapter->hw;
957 	s32 rc;
958 
959 	rc = e1000_init_mac_params_ich8lan(hw);
960 	if (rc)
961 		return rc;
962 
963 	rc = e1000_init_nvm_params_ich8lan(hw);
964 	if (rc)
965 		return rc;
966 
967 	switch (hw->mac.type) {
968 	case e1000_ich8lan:
969 	case e1000_ich9lan:
970 	case e1000_ich10lan:
971 		rc = e1000_init_phy_params_ich8lan(hw);
972 		break;
973 	case e1000_pchlan:
974 	case e1000_pch2lan:
975 	case e1000_pch_lpt:
976 		rc = e1000_init_phy_params_pchlan(hw);
977 		break;
978 	default:
979 		break;
980 	}
981 	if (rc)
982 		return rc;
983 
984 	/* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
985 	 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
986 	 */
987 	if ((adapter->hw.phy.type == e1000_phy_ife) ||
988 	    ((adapter->hw.mac.type >= e1000_pch2lan) &&
989 	     (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
990 		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
991 		adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
992 
993 		hw->mac.ops.blink_led = NULL;
994 	}
995 
996 	if ((adapter->hw.mac.type == e1000_ich8lan) &&
997 	    (adapter->hw.phy.type != e1000_phy_ife))
998 		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
999 
1000 	/* Enable workaround for 82579 w/ ME enabled */
1001 	if ((adapter->hw.mac.type == e1000_pch2lan) &&
1002 	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1003 		adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1004 
1005 	/* Disable EEE by default until IEEE802.3az spec is finalized */
1006 	if (adapter->flags2 & FLAG2_HAS_EEE)
1007 		adapter->hw.dev_spec.ich8lan.eee_disable = true;
1008 
1009 	return 0;
1010 }
1011 
1012 static DEFINE_MUTEX(nvm_mutex);
1013 
1014 /**
1015  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1016  *  @hw: pointer to the HW structure
1017  *
1018  *  Acquires the mutex for performing NVM operations.
1019  **/
1020 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
1021 {
1022 	mutex_lock(&nvm_mutex);
1023 
1024 	return 0;
1025 }
1026 
1027 /**
1028  *  e1000_release_nvm_ich8lan - Release NVM mutex
1029  *  @hw: pointer to the HW structure
1030  *
1031  *  Releases the mutex used while performing NVM operations.
1032  **/
1033 static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
1034 {
1035 	mutex_unlock(&nvm_mutex);
1036 }
1037 
1038 /**
1039  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1040  *  @hw: pointer to the HW structure
1041  *
1042  *  Acquires the software control flag for performing PHY and select
1043  *  MAC CSR accesses.
1044  **/
1045 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1046 {
1047 	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1048 	s32 ret_val = 0;
1049 
1050 	if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1051 			     &hw->adapter->state)) {
1052 		e_dbg("contention for Phy access\n");
1053 		return -E1000_ERR_PHY;
1054 	}
1055 
1056 	while (timeout) {
1057 		extcnf_ctrl = er32(EXTCNF_CTRL);
1058 		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1059 			break;
1060 
1061 		mdelay(1);
1062 		timeout--;
1063 	}
1064 
1065 	if (!timeout) {
1066 		e_dbg("SW has already locked the resource.\n");
1067 		ret_val = -E1000_ERR_CONFIG;
1068 		goto out;
1069 	}
1070 
1071 	timeout = SW_FLAG_TIMEOUT;
1072 
1073 	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1074 	ew32(EXTCNF_CTRL, extcnf_ctrl);
1075 
1076 	while (timeout) {
1077 		extcnf_ctrl = er32(EXTCNF_CTRL);
1078 		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1079 			break;
1080 
1081 		mdelay(1);
1082 		timeout--;
1083 	}
1084 
1085 	if (!timeout) {
1086 		e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1087 		      er32(FWSM), extcnf_ctrl);
1088 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1089 		ew32(EXTCNF_CTRL, extcnf_ctrl);
1090 		ret_val = -E1000_ERR_CONFIG;
1091 		goto out;
1092 	}
1093 
1094 out:
1095 	if (ret_val)
1096 		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1097 
1098 	return ret_val;
1099 }
1100 
1101 /**
1102  *  e1000_release_swflag_ich8lan - Release software control flag
1103  *  @hw: pointer to the HW structure
1104  *
1105  *  Releases the software control flag for performing PHY and select
1106  *  MAC CSR accesses.
1107  **/
1108 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1109 {
1110 	u32 extcnf_ctrl;
1111 
1112 	extcnf_ctrl = er32(EXTCNF_CTRL);
1113 
1114 	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1115 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1116 		ew32(EXTCNF_CTRL, extcnf_ctrl);
1117 	} else {
1118 		e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1119 	}
1120 
1121 	clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1122 }
1123 
1124 /**
1125  *  e1000_check_mng_mode_ich8lan - Checks management mode
1126  *  @hw: pointer to the HW structure
1127  *
1128  *  This checks if the adapter has any manageability enabled.
1129  *  This is a function pointer entry point only called by read/write
1130  *  routines for the PHY and NVM parts.
1131  **/
1132 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1133 {
1134 	u32 fwsm;
1135 
1136 	fwsm = er32(FWSM);
1137 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1138 	       ((fwsm & E1000_FWSM_MODE_MASK) ==
1139 		(E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1140 }
1141 
1142 /**
1143  *  e1000_check_mng_mode_pchlan - Checks management mode
1144  *  @hw: pointer to the HW structure
1145  *
1146  *  This checks if the adapter has iAMT enabled.
1147  *  This is a function pointer entry point only called by read/write
1148  *  routines for the PHY and NVM parts.
1149  **/
1150 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1151 {
1152 	u32 fwsm;
1153 
1154 	fwsm = er32(FWSM);
1155 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1156 	       (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1157 }
1158 
1159 /**
1160  *  e1000_rar_set_pch2lan - Set receive address register
1161  *  @hw: pointer to the HW structure
1162  *  @addr: pointer to the receive address
1163  *  @index: receive address array register
1164  *
1165  *  Sets the receive address array register at index to the address passed
1166  *  in by addr.  For 82579, RAR[0] is the base address register that is to
1167  *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1168  *  Use SHRA[0-3] in place of those reserved for ME.
1169  **/
1170 static void e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1171 {
1172 	u32 rar_low, rar_high;
1173 
1174 	/* HW expects these in little endian so we reverse the byte order
1175 	 * from network order (big endian) to little endian
1176 	 */
1177 	rar_low = ((u32)addr[0] |
1178 		   ((u32)addr[1] << 8) |
1179 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1180 
1181 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1182 
1183 	/* If MAC address zero, no need to set the AV bit */
1184 	if (rar_low || rar_high)
1185 		rar_high |= E1000_RAH_AV;
1186 
1187 	if (index == 0) {
1188 		ew32(RAL(index), rar_low);
1189 		e1e_flush();
1190 		ew32(RAH(index), rar_high);
1191 		e1e_flush();
1192 		return;
1193 	}
1194 
1195 	if (index < hw->mac.rar_entry_count) {
1196 		s32 ret_val;
1197 
1198 		ret_val = e1000_acquire_swflag_ich8lan(hw);
1199 		if (ret_val)
1200 			goto out;
1201 
1202 		ew32(SHRAL(index - 1), rar_low);
1203 		e1e_flush();
1204 		ew32(SHRAH(index - 1), rar_high);
1205 		e1e_flush();
1206 
1207 		e1000_release_swflag_ich8lan(hw);
1208 
1209 		/* verify the register updates */
1210 		if ((er32(SHRAL(index - 1)) == rar_low) &&
1211 		    (er32(SHRAH(index - 1)) == rar_high))
1212 			return;
1213 
1214 		e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1215 		      (index - 1), er32(FWSM));
1216 	}
1217 
1218 out:
1219 	e_dbg("Failed to write receive address at index %d\n", index);
1220 }
1221 
1222 /**
1223  *  e1000_rar_set_pch_lpt - Set receive address registers
1224  *  @hw: pointer to the HW structure
1225  *  @addr: pointer to the receive address
1226  *  @index: receive address array register
1227  *
1228  *  Sets the receive address register array at index to the address passed
1229  *  in by addr. For LPT, RAR[0] is the base address register that is to
1230  *  contain the MAC address. SHRA[0-10] are the shared receive address
1231  *  registers that are shared between the Host and manageability engine (ME).
1232  **/
1233 static void e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1234 {
1235 	u32 rar_low, rar_high;
1236 	u32 wlock_mac;
1237 
1238 	/* HW expects these in little endian so we reverse the byte order
1239 	 * from network order (big endian) to little endian
1240 	 */
1241 	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1242 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1243 
1244 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1245 
1246 	/* If MAC address zero, no need to set the AV bit */
1247 	if (rar_low || rar_high)
1248 		rar_high |= E1000_RAH_AV;
1249 
1250 	if (index == 0) {
1251 		ew32(RAL(index), rar_low);
1252 		e1e_flush();
1253 		ew32(RAH(index), rar_high);
1254 		e1e_flush();
1255 		return;
1256 	}
1257 
1258 	/* The manageability engine (ME) can lock certain SHRAR registers that
1259 	 * it is using - those registers are unavailable for use.
1260 	 */
1261 	if (index < hw->mac.rar_entry_count) {
1262 		wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1263 		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1264 
1265 		/* Check if all SHRAR registers are locked */
1266 		if (wlock_mac == 1)
1267 			goto out;
1268 
1269 		if ((wlock_mac == 0) || (index <= wlock_mac)) {
1270 			s32 ret_val;
1271 
1272 			ret_val = e1000_acquire_swflag_ich8lan(hw);
1273 
1274 			if (ret_val)
1275 				goto out;
1276 
1277 			ew32(SHRAL_PCH_LPT(index - 1), rar_low);
1278 			e1e_flush();
1279 			ew32(SHRAH_PCH_LPT(index - 1), rar_high);
1280 			e1e_flush();
1281 
1282 			e1000_release_swflag_ich8lan(hw);
1283 
1284 			/* verify the register updates */
1285 			if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
1286 			    (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
1287 				return;
1288 		}
1289 	}
1290 
1291 out:
1292 	e_dbg("Failed to write receive address at index %d\n", index);
1293 }
1294 
1295 /**
1296  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
1297  *  @hw: pointer to the HW structure
1298  *
1299  *  Checks if firmware is blocking the reset of the PHY.
1300  *  This is a function pointer entry point only called by
1301  *  reset routines.
1302  **/
1303 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
1304 {
1305 	u32 fwsm;
1306 
1307 	fwsm = er32(FWSM);
1308 
1309 	return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
1310 }
1311 
1312 /**
1313  *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
1314  *  @hw: pointer to the HW structure
1315  *
1316  *  Assumes semaphore already acquired.
1317  *
1318  **/
1319 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
1320 {
1321 	u16 phy_data;
1322 	u32 strap = er32(STRAP);
1323 	u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
1324 	    E1000_STRAP_SMT_FREQ_SHIFT;
1325 	s32 ret_val = 0;
1326 
1327 	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
1328 
1329 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
1330 	if (ret_val)
1331 		return ret_val;
1332 
1333 	phy_data &= ~HV_SMB_ADDR_MASK;
1334 	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
1335 	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
1336 
1337 	if (hw->phy.type == e1000_phy_i217) {
1338 		/* Restore SMBus frequency */
1339 		if (freq--) {
1340 			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
1341 			phy_data |= (freq & (1 << 0)) <<
1342 			    HV_SMB_ADDR_FREQ_LOW_SHIFT;
1343 			phy_data |= (freq & (1 << 1)) <<
1344 			    (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
1345 		} else {
1346 			e_dbg("Unsupported SMB frequency in PHY\n");
1347 		}
1348 	}
1349 
1350 	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
1351 }
1352 
1353 /**
1354  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
1355  *  @hw:   pointer to the HW structure
1356  *
1357  *  SW should configure the LCD from the NVM extended configuration region
1358  *  as a workaround for certain parts.
1359  **/
1360 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
1361 {
1362 	struct e1000_phy_info *phy = &hw->phy;
1363 	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
1364 	s32 ret_val = 0;
1365 	u16 word_addr, reg_data, reg_addr, phy_page = 0;
1366 
1367 	/* Initialize the PHY from the NVM on ICH platforms.  This
1368 	 * is needed due to an issue where the NVM configuration is
1369 	 * not properly autoloaded after power transitions.
1370 	 * Therefore, after each PHY reset, we will load the
1371 	 * configuration data out of the NVM manually.
1372 	 */
1373 	switch (hw->mac.type) {
1374 	case e1000_ich8lan:
1375 		if (phy->type != e1000_phy_igp_3)
1376 			return ret_val;
1377 
1378 		if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
1379 		    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
1380 			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
1381 			break;
1382 		}
1383 		/* Fall-thru */
1384 	case e1000_pchlan:
1385 	case e1000_pch2lan:
1386 	case e1000_pch_lpt:
1387 		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
1388 		break;
1389 	default:
1390 		return ret_val;
1391 	}
1392 
1393 	ret_val = hw->phy.ops.acquire(hw);
1394 	if (ret_val)
1395 		return ret_val;
1396 
1397 	data = er32(FEXTNVM);
1398 	if (!(data & sw_cfg_mask))
1399 		goto release;
1400 
1401 	/* Make sure HW does not configure LCD from PHY
1402 	 * extended configuration before SW configuration
1403 	 */
1404 	data = er32(EXTCNF_CTRL);
1405 	if ((hw->mac.type < e1000_pch2lan) &&
1406 	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
1407 		goto release;
1408 
1409 	cnf_size = er32(EXTCNF_SIZE);
1410 	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
1411 	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
1412 	if (!cnf_size)
1413 		goto release;
1414 
1415 	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
1416 	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
1417 
1418 	if (((hw->mac.type == e1000_pchlan) &&
1419 	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
1420 	    (hw->mac.type > e1000_pchlan)) {
1421 		/* HW configures the SMBus address and LEDs when the
1422 		 * OEM and LCD Write Enable bits are set in the NVM.
1423 		 * When both NVM bits are cleared, SW will configure
1424 		 * them instead.
1425 		 */
1426 		ret_val = e1000_write_smbus_addr(hw);
1427 		if (ret_val)
1428 			goto release;
1429 
1430 		data = er32(LEDCTL);
1431 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
1432 							(u16)data);
1433 		if (ret_val)
1434 			goto release;
1435 	}
1436 
1437 	/* Configure LCD from extended configuration region. */
1438 
1439 	/* cnf_base_addr is in DWORD */
1440 	word_addr = (u16)(cnf_base_addr << 1);
1441 
1442 	for (i = 0; i < cnf_size; i++) {
1443 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1,
1444 					 &reg_data);
1445 		if (ret_val)
1446 			goto release;
1447 
1448 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
1449 					 1, &reg_addr);
1450 		if (ret_val)
1451 			goto release;
1452 
1453 		/* Save off the PHY page for future writes. */
1454 		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
1455 			phy_page = reg_data;
1456 			continue;
1457 		}
1458 
1459 		reg_addr &= PHY_REG_MASK;
1460 		reg_addr |= phy_page;
1461 
1462 		ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
1463 		if (ret_val)
1464 			goto release;
1465 	}
1466 
1467 release:
1468 	hw->phy.ops.release(hw);
1469 	return ret_val;
1470 }
1471 
1472 /**
1473  *  e1000_k1_gig_workaround_hv - K1 Si workaround
1474  *  @hw:   pointer to the HW structure
1475  *  @link: link up bool flag
1476  *
1477  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
1478  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
1479  *  If link is down, the function will restore the default K1 setting located
1480  *  in the NVM.
1481  **/
1482 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
1483 {
1484 	s32 ret_val = 0;
1485 	u16 status_reg = 0;
1486 	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
1487 
1488 	if (hw->mac.type != e1000_pchlan)
1489 		return 0;
1490 
1491 	/* Wrap the whole flow with the sw flag */
1492 	ret_val = hw->phy.ops.acquire(hw);
1493 	if (ret_val)
1494 		return ret_val;
1495 
1496 	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
1497 	if (link) {
1498 		if (hw->phy.type == e1000_phy_82578) {
1499 			ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
1500 						  &status_reg);
1501 			if (ret_val)
1502 				goto release;
1503 
1504 			status_reg &= BM_CS_STATUS_LINK_UP |
1505 			              BM_CS_STATUS_RESOLVED |
1506 			              BM_CS_STATUS_SPEED_MASK;
1507 
1508 			if (status_reg == (BM_CS_STATUS_LINK_UP |
1509 			                   BM_CS_STATUS_RESOLVED |
1510 			                   BM_CS_STATUS_SPEED_1000))
1511 				k1_enable = false;
1512 		}
1513 
1514 		if (hw->phy.type == e1000_phy_82577) {
1515 			ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
1516 			if (ret_val)
1517 				goto release;
1518 
1519 			status_reg &= HV_M_STATUS_LINK_UP |
1520 			              HV_M_STATUS_AUTONEG_COMPLETE |
1521 			              HV_M_STATUS_SPEED_MASK;
1522 
1523 			if (status_reg == (HV_M_STATUS_LINK_UP |
1524 			                   HV_M_STATUS_AUTONEG_COMPLETE |
1525 			                   HV_M_STATUS_SPEED_1000))
1526 				k1_enable = false;
1527 		}
1528 
1529 		/* Link stall fix for link up */
1530 		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
1531 		if (ret_val)
1532 			goto release;
1533 
1534 	} else {
1535 		/* Link stall fix for link down */
1536 		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
1537 		if (ret_val)
1538 			goto release;
1539 	}
1540 
1541 	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
1542 
1543 release:
1544 	hw->phy.ops.release(hw);
1545 
1546 	return ret_val;
1547 }
1548 
1549 /**
1550  *  e1000_configure_k1_ich8lan - Configure K1 power state
1551  *  @hw: pointer to the HW structure
1552  *  @enable: K1 state to configure
1553  *
1554  *  Configure the K1 power state based on the provided parameter.
1555  *  Assumes semaphore already acquired.
1556  *
1557  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1558  **/
1559 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
1560 {
1561 	s32 ret_val = 0;
1562 	u32 ctrl_reg = 0;
1563 	u32 ctrl_ext = 0;
1564 	u32 reg = 0;
1565 	u16 kmrn_reg = 0;
1566 
1567 	ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
1568 					      &kmrn_reg);
1569 	if (ret_val)
1570 		return ret_val;
1571 
1572 	if (k1_enable)
1573 		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
1574 	else
1575 		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
1576 
1577 	ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
1578 					       kmrn_reg);
1579 	if (ret_val)
1580 		return ret_val;
1581 
1582 	udelay(20);
1583 	ctrl_ext = er32(CTRL_EXT);
1584 	ctrl_reg = er32(CTRL);
1585 
1586 	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1587 	reg |= E1000_CTRL_FRCSPD;
1588 	ew32(CTRL, reg);
1589 
1590 	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
1591 	e1e_flush();
1592 	udelay(20);
1593 	ew32(CTRL, ctrl_reg);
1594 	ew32(CTRL_EXT, ctrl_ext);
1595 	e1e_flush();
1596 	udelay(20);
1597 
1598 	return 0;
1599 }
1600 
1601 /**
1602  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
1603  *  @hw:       pointer to the HW structure
1604  *  @d0_state: boolean if entering d0 or d3 device state
1605  *
1606  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
1607  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
1608  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
1609  **/
1610 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
1611 {
1612 	s32 ret_val = 0;
1613 	u32 mac_reg;
1614 	u16 oem_reg;
1615 
1616 	if (hw->mac.type < e1000_pchlan)
1617 		return ret_val;
1618 
1619 	ret_val = hw->phy.ops.acquire(hw);
1620 	if (ret_val)
1621 		return ret_val;
1622 
1623 	if (hw->mac.type == e1000_pchlan) {
1624 		mac_reg = er32(EXTCNF_CTRL);
1625 		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
1626 			goto release;
1627 	}
1628 
1629 	mac_reg = er32(FEXTNVM);
1630 	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
1631 		goto release;
1632 
1633 	mac_reg = er32(PHY_CTRL);
1634 
1635 	ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
1636 	if (ret_val)
1637 		goto release;
1638 
1639 	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
1640 
1641 	if (d0_state) {
1642 		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
1643 			oem_reg |= HV_OEM_BITS_GBE_DIS;
1644 
1645 		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
1646 			oem_reg |= HV_OEM_BITS_LPLU;
1647 	} else {
1648 		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
1649 			       E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
1650 			oem_reg |= HV_OEM_BITS_GBE_DIS;
1651 
1652 		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
1653 			       E1000_PHY_CTRL_NOND0A_LPLU))
1654 			oem_reg |= HV_OEM_BITS_LPLU;
1655 	}
1656 
1657 	/* Set Restart auto-neg to activate the bits */
1658 	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
1659 	    !hw->phy.ops.check_reset_block(hw))
1660 		oem_reg |= HV_OEM_BITS_RESTART_AN;
1661 
1662 	ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
1663 
1664 release:
1665 	hw->phy.ops.release(hw);
1666 
1667 	return ret_val;
1668 }
1669 
1670 
1671 /**
1672  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
1673  *  @hw:   pointer to the HW structure
1674  **/
1675 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
1676 {
1677 	s32 ret_val;
1678 	u16 data;
1679 
1680 	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
1681 	if (ret_val)
1682 		return ret_val;
1683 
1684 	data |= HV_KMRN_MDIO_SLOW;
1685 
1686 	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
1687 
1688 	return ret_val;
1689 }
1690 
1691 /**
1692  *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1693  *  done after every PHY reset.
1694  **/
1695 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1696 {
1697 	s32 ret_val = 0;
1698 	u16 phy_data;
1699 
1700 	if (hw->mac.type != e1000_pchlan)
1701 		return 0;
1702 
1703 	/* Set MDIO slow mode before any other MDIO access */
1704 	if (hw->phy.type == e1000_phy_82577) {
1705 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
1706 		if (ret_val)
1707 			return ret_val;
1708 	}
1709 
1710 	if (((hw->phy.type == e1000_phy_82577) &&
1711 	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
1712 	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
1713 		/* Disable generation of early preamble */
1714 		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
1715 		if (ret_val)
1716 			return ret_val;
1717 
1718 		/* Preamble tuning for SSC */
1719 		ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
1720 		if (ret_val)
1721 			return ret_val;
1722 	}
1723 
1724 	if (hw->phy.type == e1000_phy_82578) {
1725 		/* Return registers to default by doing a soft reset then
1726 		 * writing 0x3140 to the control register.
1727 		 */
1728 		if (hw->phy.revision < 2) {
1729 			e1000e_phy_sw_reset(hw);
1730 			ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140);
1731 		}
1732 	}
1733 
1734 	/* Select page 0 */
1735 	ret_val = hw->phy.ops.acquire(hw);
1736 	if (ret_val)
1737 		return ret_val;
1738 
1739 	hw->phy.addr = 1;
1740 	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
1741 	hw->phy.ops.release(hw);
1742 	if (ret_val)
1743 		return ret_val;
1744 
1745 	/* Configure the K1 Si workaround during phy reset assuming there is
1746 	 * link so that it disables K1 if link is in 1Gbps.
1747 	 */
1748 	ret_val = e1000_k1_gig_workaround_hv(hw, true);
1749 	if (ret_val)
1750 		return ret_val;
1751 
1752 	/* Workaround for link disconnects on a busy hub in half duplex */
1753 	ret_val = hw->phy.ops.acquire(hw);
1754 	if (ret_val)
1755 		return ret_val;
1756 	ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
1757 	if (ret_val)
1758 		goto release;
1759 	ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
1760 release:
1761 	hw->phy.ops.release(hw);
1762 
1763 	return ret_val;
1764 }
1765 
1766 /**
1767  *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
1768  *  @hw:   pointer to the HW structure
1769  **/
1770 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
1771 {
1772 	u32 mac_reg;
1773 	u16 i, phy_reg = 0;
1774 	s32 ret_val;
1775 
1776 	ret_val = hw->phy.ops.acquire(hw);
1777 	if (ret_val)
1778 		return;
1779 	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
1780 	if (ret_val)
1781 		goto release;
1782 
1783 	/* Copy both RAL/H (rar_entry_count) and SHRAL/H (+4) to PHY */
1784 	for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
1785 		mac_reg = er32(RAL(i));
1786 		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
1787 					   (u16)(mac_reg & 0xFFFF));
1788 		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
1789 					   (u16)((mac_reg >> 16) & 0xFFFF));
1790 
1791 		mac_reg = er32(RAH(i));
1792 		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
1793 					   (u16)(mac_reg & 0xFFFF));
1794 		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
1795 					   (u16)((mac_reg & E1000_RAH_AV)
1796 						 >> 16));
1797 	}
1798 
1799 	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
1800 
1801 release:
1802 	hw->phy.ops.release(hw);
1803 }
1804 
1805 /**
1806  *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
1807  *  with 82579 PHY
1808  *  @hw: pointer to the HW structure
1809  *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
1810  **/
1811 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
1812 {
1813 	s32 ret_val = 0;
1814 	u16 phy_reg, data;
1815 	u32 mac_reg;
1816 	u16 i;
1817 
1818 	if (hw->mac.type < e1000_pch2lan)
1819 		return 0;
1820 
1821 	/* disable Rx path while enabling/disabling workaround */
1822 	e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1823 	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14));
1824 	if (ret_val)
1825 		return ret_val;
1826 
1827 	if (enable) {
1828 		/* Write Rx addresses (rar_entry_count for RAL/H, +4 for
1829 		 * SHRAL/H) and initial CRC values to the MAC
1830 		 */
1831 		for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
1832 			u8 mac_addr[ETH_ALEN] = {0};
1833 			u32 addr_high, addr_low;
1834 
1835 			addr_high = er32(RAH(i));
1836 			if (!(addr_high & E1000_RAH_AV))
1837 				continue;
1838 			addr_low = er32(RAL(i));
1839 			mac_addr[0] = (addr_low & 0xFF);
1840 			mac_addr[1] = ((addr_low >> 8) & 0xFF);
1841 			mac_addr[2] = ((addr_low >> 16) & 0xFF);
1842 			mac_addr[3] = ((addr_low >> 24) & 0xFF);
1843 			mac_addr[4] = (addr_high & 0xFF);
1844 			mac_addr[5] = ((addr_high >> 8) & 0xFF);
1845 
1846 			ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
1847 		}
1848 
1849 		/* Write Rx addresses to the PHY */
1850 		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
1851 
1852 		/* Enable jumbo frame workaround in the MAC */
1853 		mac_reg = er32(FFLT_DBG);
1854 		mac_reg &= ~(1 << 14);
1855 		mac_reg |= (7 << 15);
1856 		ew32(FFLT_DBG, mac_reg);
1857 
1858 		mac_reg = er32(RCTL);
1859 		mac_reg |= E1000_RCTL_SECRC;
1860 		ew32(RCTL, mac_reg);
1861 
1862 		ret_val = e1000e_read_kmrn_reg(hw,
1863 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
1864 						&data);
1865 		if (ret_val)
1866 			return ret_val;
1867 		ret_val = e1000e_write_kmrn_reg(hw,
1868 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
1869 						data | (1 << 0));
1870 		if (ret_val)
1871 			return ret_val;
1872 		ret_val = e1000e_read_kmrn_reg(hw,
1873 						E1000_KMRNCTRLSTA_HD_CTRL,
1874 						&data);
1875 		if (ret_val)
1876 			return ret_val;
1877 		data &= ~(0xF << 8);
1878 		data |= (0xB << 8);
1879 		ret_val = e1000e_write_kmrn_reg(hw,
1880 						E1000_KMRNCTRLSTA_HD_CTRL,
1881 						data);
1882 		if (ret_val)
1883 			return ret_val;
1884 
1885 		/* Enable jumbo frame workaround in the PHY */
1886 		e1e_rphy(hw, PHY_REG(769, 23), &data);
1887 		data &= ~(0x7F << 5);
1888 		data |= (0x37 << 5);
1889 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
1890 		if (ret_val)
1891 			return ret_val;
1892 		e1e_rphy(hw, PHY_REG(769, 16), &data);
1893 		data &= ~(1 << 13);
1894 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
1895 		if (ret_val)
1896 			return ret_val;
1897 		e1e_rphy(hw, PHY_REG(776, 20), &data);
1898 		data &= ~(0x3FF << 2);
1899 		data |= (0x1A << 2);
1900 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
1901 		if (ret_val)
1902 			return ret_val;
1903 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
1904 		if (ret_val)
1905 			return ret_val;
1906 		e1e_rphy(hw, HV_PM_CTRL, &data);
1907 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10));
1908 		if (ret_val)
1909 			return ret_val;
1910 	} else {
1911 		/* Write MAC register values back to h/w defaults */
1912 		mac_reg = er32(FFLT_DBG);
1913 		mac_reg &= ~(0xF << 14);
1914 		ew32(FFLT_DBG, mac_reg);
1915 
1916 		mac_reg = er32(RCTL);
1917 		mac_reg &= ~E1000_RCTL_SECRC;
1918 		ew32(RCTL, mac_reg);
1919 
1920 		ret_val = e1000e_read_kmrn_reg(hw,
1921 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
1922 						&data);
1923 		if (ret_val)
1924 			return ret_val;
1925 		ret_val = e1000e_write_kmrn_reg(hw,
1926 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
1927 						data & ~(1 << 0));
1928 		if (ret_val)
1929 			return ret_val;
1930 		ret_val = e1000e_read_kmrn_reg(hw,
1931 						E1000_KMRNCTRLSTA_HD_CTRL,
1932 						&data);
1933 		if (ret_val)
1934 			return ret_val;
1935 		data &= ~(0xF << 8);
1936 		data |= (0xB << 8);
1937 		ret_val = e1000e_write_kmrn_reg(hw,
1938 						E1000_KMRNCTRLSTA_HD_CTRL,
1939 						data);
1940 		if (ret_val)
1941 			return ret_val;
1942 
1943 		/* Write PHY register values back to h/w defaults */
1944 		e1e_rphy(hw, PHY_REG(769, 23), &data);
1945 		data &= ~(0x7F << 5);
1946 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
1947 		if (ret_val)
1948 			return ret_val;
1949 		e1e_rphy(hw, PHY_REG(769, 16), &data);
1950 		data |= (1 << 13);
1951 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
1952 		if (ret_val)
1953 			return ret_val;
1954 		e1e_rphy(hw, PHY_REG(776, 20), &data);
1955 		data &= ~(0x3FF << 2);
1956 		data |= (0x8 << 2);
1957 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
1958 		if (ret_val)
1959 			return ret_val;
1960 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
1961 		if (ret_val)
1962 			return ret_val;
1963 		e1e_rphy(hw, HV_PM_CTRL, &data);
1964 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10));
1965 		if (ret_val)
1966 			return ret_val;
1967 	}
1968 
1969 	/* re-enable Rx path after enabling/disabling workaround */
1970 	return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14));
1971 }
1972 
1973 /**
1974  *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1975  *  done after every PHY reset.
1976  **/
1977 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1978 {
1979 	s32 ret_val = 0;
1980 
1981 	if (hw->mac.type != e1000_pch2lan)
1982 		return 0;
1983 
1984 	/* Set MDIO slow mode before any other MDIO access */
1985 	ret_val = e1000_set_mdio_slow_mode_hv(hw);
1986 
1987 	ret_val = hw->phy.ops.acquire(hw);
1988 	if (ret_val)
1989 		return ret_val;
1990 	ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, I82579_MSE_THRESHOLD);
1991 	if (ret_val)
1992 		goto release;
1993 	/* set MSE higher to enable link to stay up when noise is high */
1994 	ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, 0x0034);
1995 	if (ret_val)
1996 		goto release;
1997 	ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, I82579_MSE_LINK_DOWN);
1998 	if (ret_val)
1999 		goto release;
2000 	/* drop link after 5 times MSE threshold was reached */
2001 	ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, 0x0005);
2002 release:
2003 	hw->phy.ops.release(hw);
2004 
2005 	return ret_val;
2006 }
2007 
2008 /**
2009  *  e1000_k1_gig_workaround_lv - K1 Si workaround
2010  *  @hw:   pointer to the HW structure
2011  *
2012  *  Workaround to set the K1 beacon duration for 82579 parts
2013  **/
2014 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2015 {
2016 	s32 ret_val = 0;
2017 	u16 status_reg = 0;
2018 	u32 mac_reg;
2019 	u16 phy_reg;
2020 
2021 	if (hw->mac.type != e1000_pch2lan)
2022 		return 0;
2023 
2024 	/* Set K1 beacon duration based on 1Gbps speed or otherwise */
2025 	ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2026 	if (ret_val)
2027 		return ret_val;
2028 
2029 	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2030 	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2031 		mac_reg = er32(FEXTNVM4);
2032 		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2033 
2034 		ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
2035 		if (ret_val)
2036 			return ret_val;
2037 
2038 		if (status_reg & HV_M_STATUS_SPEED_1000) {
2039 			u16 pm_phy_reg;
2040 
2041 			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
2042 			phy_reg &= ~I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
2043 			/* LV 1G Packet drop issue wa  */
2044 			ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2045 			if (ret_val)
2046 				return ret_val;
2047 			pm_phy_reg &= ~HV_PM_CTRL_PLL_STOP_IN_K1_GIGA;
2048 			ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2049 			if (ret_val)
2050 				return ret_val;
2051 		} else {
2052 			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2053 			phy_reg |= I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
2054 		}
2055 		ew32(FEXTNVM4, mac_reg);
2056 		ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
2057 	}
2058 
2059 	return ret_val;
2060 }
2061 
2062 /**
2063  *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2064  *  @hw:   pointer to the HW structure
2065  *  @gate: boolean set to true to gate, false to ungate
2066  *
2067  *  Gate/ungate the automatic PHY configuration via hardware; perform
2068  *  the configuration via software instead.
2069  **/
2070 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2071 {
2072 	u32 extcnf_ctrl;
2073 
2074 	if (hw->mac.type < e1000_pch2lan)
2075 		return;
2076 
2077 	extcnf_ctrl = er32(EXTCNF_CTRL);
2078 
2079 	if (gate)
2080 		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2081 	else
2082 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2083 
2084 	ew32(EXTCNF_CTRL, extcnf_ctrl);
2085 }
2086 
2087 /**
2088  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2089  *  @hw: pointer to the HW structure
2090  *
2091  *  Check the appropriate indication the MAC has finished configuring the
2092  *  PHY after a software reset.
2093  **/
2094 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2095 {
2096 	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2097 
2098 	/* Wait for basic configuration completes before proceeding */
2099 	do {
2100 		data = er32(STATUS);
2101 		data &= E1000_STATUS_LAN_INIT_DONE;
2102 		udelay(100);
2103 	} while ((!data) && --loop);
2104 
2105 	/* If basic configuration is incomplete before the above loop
2106 	 * count reaches 0, loading the configuration from NVM will
2107 	 * leave the PHY in a bad state possibly resulting in no link.
2108 	 */
2109 	if (loop == 0)
2110 		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2111 
2112 	/* Clear the Init Done bit for the next init event */
2113 	data = er32(STATUS);
2114 	data &= ~E1000_STATUS_LAN_INIT_DONE;
2115 	ew32(STATUS, data);
2116 }
2117 
2118 /**
2119  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2120  *  @hw: pointer to the HW structure
2121  **/
2122 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2123 {
2124 	s32 ret_val = 0;
2125 	u16 reg;
2126 
2127 	if (hw->phy.ops.check_reset_block(hw))
2128 		return 0;
2129 
2130 	/* Allow time for h/w to get to quiescent state after reset */
2131 	usleep_range(10000, 20000);
2132 
2133 	/* Perform any necessary post-reset workarounds */
2134 	switch (hw->mac.type) {
2135 	case e1000_pchlan:
2136 		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2137 		if (ret_val)
2138 			return ret_val;
2139 		break;
2140 	case e1000_pch2lan:
2141 		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2142 		if (ret_val)
2143 			return ret_val;
2144 		break;
2145 	default:
2146 		break;
2147 	}
2148 
2149 	/* Clear the host wakeup bit after lcd reset */
2150 	if (hw->mac.type >= e1000_pchlan) {
2151 		e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2152 		reg &= ~BM_WUC_HOST_WU_BIT;
2153 		e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2154 	}
2155 
2156 	/* Configure the LCD with the extended configuration region in NVM */
2157 	ret_val = e1000_sw_lcd_config_ich8lan(hw);
2158 	if (ret_val)
2159 		return ret_val;
2160 
2161 	/* Configure the LCD with the OEM bits in NVM */
2162 	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2163 
2164 	if (hw->mac.type == e1000_pch2lan) {
2165 		/* Ungate automatic PHY configuration on non-managed 82579 */
2166 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2167 			usleep_range(10000, 20000);
2168 			e1000_gate_hw_phy_config_ich8lan(hw, false);
2169 		}
2170 
2171 		/* Set EEE LPI Update Timer to 200usec */
2172 		ret_val = hw->phy.ops.acquire(hw);
2173 		if (ret_val)
2174 			return ret_val;
2175 		ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR,
2176 					  I82579_LPI_UPDATE_TIMER);
2177 		if (!ret_val)
2178 			ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, 0x1387);
2179 		hw->phy.ops.release(hw);
2180 	}
2181 
2182 	return ret_val;
2183 }
2184 
2185 /**
2186  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2187  *  @hw: pointer to the HW structure
2188  *
2189  *  Resets the PHY
2190  *  This is a function pointer entry point called by drivers
2191  *  or other shared routines.
2192  **/
2193 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2194 {
2195 	s32 ret_val = 0;
2196 
2197 	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
2198 	if ((hw->mac.type == e1000_pch2lan) &&
2199 	    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2200 		e1000_gate_hw_phy_config_ich8lan(hw, true);
2201 
2202 	ret_val = e1000e_phy_hw_reset_generic(hw);
2203 	if (ret_val)
2204 		return ret_val;
2205 
2206 	return e1000_post_phy_reset_ich8lan(hw);
2207 }
2208 
2209 /**
2210  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2211  *  @hw: pointer to the HW structure
2212  *  @active: true to enable LPLU, false to disable
2213  *
2214  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
2215  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2216  *  the phy speed. This function will manually set the LPLU bit and restart
2217  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
2218  *  since it configures the same bit.
2219  **/
2220 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2221 {
2222 	s32 ret_val = 0;
2223 	u16 oem_reg;
2224 
2225 	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2226 	if (ret_val)
2227 		return ret_val;
2228 
2229 	if (active)
2230 		oem_reg |= HV_OEM_BITS_LPLU;
2231 	else
2232 		oem_reg &= ~HV_OEM_BITS_LPLU;
2233 
2234 	if (!hw->phy.ops.check_reset_block(hw))
2235 		oem_reg |= HV_OEM_BITS_RESTART_AN;
2236 
2237 	return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2238 }
2239 
2240 /**
2241  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2242  *  @hw: pointer to the HW structure
2243  *  @active: true to enable LPLU, false to disable
2244  *
2245  *  Sets the LPLU D0 state according to the active flag.  When
2246  *  activating LPLU this function also disables smart speed
2247  *  and vice versa.  LPLU will not be activated unless the
2248  *  device autonegotiation advertisement meets standards of
2249  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2250  *  This is a function pointer entry point only called by
2251  *  PHY setup routines.
2252  **/
2253 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2254 {
2255 	struct e1000_phy_info *phy = &hw->phy;
2256 	u32 phy_ctrl;
2257 	s32 ret_val = 0;
2258 	u16 data;
2259 
2260 	if (phy->type == e1000_phy_ife)
2261 		return 0;
2262 
2263 	phy_ctrl = er32(PHY_CTRL);
2264 
2265 	if (active) {
2266 		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2267 		ew32(PHY_CTRL, phy_ctrl);
2268 
2269 		if (phy->type != e1000_phy_igp_3)
2270 			return 0;
2271 
2272 		/* Call gig speed drop workaround on LPLU before accessing
2273 		 * any PHY registers
2274 		 */
2275 		if (hw->mac.type == e1000_ich8lan)
2276 			e1000e_gig_downshift_workaround_ich8lan(hw);
2277 
2278 		/* When LPLU is enabled, we should disable SmartSpeed */
2279 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2280 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2281 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2282 		if (ret_val)
2283 			return ret_val;
2284 	} else {
2285 		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2286 		ew32(PHY_CTRL, phy_ctrl);
2287 
2288 		if (phy->type != e1000_phy_igp_3)
2289 			return 0;
2290 
2291 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2292 		 * during Dx states where the power conservation is most
2293 		 * important.  During driver activity we should enable
2294 		 * SmartSpeed, so performance is maintained.
2295 		 */
2296 		if (phy->smart_speed == e1000_smart_speed_on) {
2297 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2298 					   &data);
2299 			if (ret_val)
2300 				return ret_val;
2301 
2302 			data |= IGP01E1000_PSCFR_SMART_SPEED;
2303 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2304 					   data);
2305 			if (ret_val)
2306 				return ret_val;
2307 		} else if (phy->smart_speed == e1000_smart_speed_off) {
2308 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2309 					   &data);
2310 			if (ret_val)
2311 				return ret_val;
2312 
2313 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2314 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2315 					   data);
2316 			if (ret_val)
2317 				return ret_val;
2318 		}
2319 	}
2320 
2321 	return 0;
2322 }
2323 
2324 /**
2325  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
2326  *  @hw: pointer to the HW structure
2327  *  @active: true to enable LPLU, false to disable
2328  *
2329  *  Sets the LPLU D3 state according to the active flag.  When
2330  *  activating LPLU this function also disables smart speed
2331  *  and vice versa.  LPLU will not be activated unless the
2332  *  device autonegotiation advertisement meets standards of
2333  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2334  *  This is a function pointer entry point only called by
2335  *  PHY setup routines.
2336  **/
2337 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2338 {
2339 	struct e1000_phy_info *phy = &hw->phy;
2340 	u32 phy_ctrl;
2341 	s32 ret_val = 0;
2342 	u16 data;
2343 
2344 	phy_ctrl = er32(PHY_CTRL);
2345 
2346 	if (!active) {
2347 		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2348 		ew32(PHY_CTRL, phy_ctrl);
2349 
2350 		if (phy->type != e1000_phy_igp_3)
2351 			return 0;
2352 
2353 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2354 		 * during Dx states where the power conservation is most
2355 		 * important.  During driver activity we should enable
2356 		 * SmartSpeed, so performance is maintained.
2357 		 */
2358 		if (phy->smart_speed == e1000_smart_speed_on) {
2359 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2360 					   &data);
2361 			if (ret_val)
2362 				return ret_val;
2363 
2364 			data |= IGP01E1000_PSCFR_SMART_SPEED;
2365 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2366 					   data);
2367 			if (ret_val)
2368 				return ret_val;
2369 		} else if (phy->smart_speed == e1000_smart_speed_off) {
2370 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2371 					   &data);
2372 			if (ret_val)
2373 				return ret_val;
2374 
2375 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2376 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2377 					   data);
2378 			if (ret_val)
2379 				return ret_val;
2380 		}
2381 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
2382 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
2383 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
2384 		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2385 		ew32(PHY_CTRL, phy_ctrl);
2386 
2387 		if (phy->type != e1000_phy_igp_3)
2388 			return 0;
2389 
2390 		/* Call gig speed drop workaround on LPLU before accessing
2391 		 * any PHY registers
2392 		 */
2393 		if (hw->mac.type == e1000_ich8lan)
2394 			e1000e_gig_downshift_workaround_ich8lan(hw);
2395 
2396 		/* When LPLU is enabled, we should disable SmartSpeed */
2397 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2398 		if (ret_val)
2399 			return ret_val;
2400 
2401 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2402 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2403 	}
2404 
2405 	return ret_val;
2406 }
2407 
2408 /**
2409  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
2410  *  @hw: pointer to the HW structure
2411  *  @bank:  pointer to the variable that returns the active bank
2412  *
2413  *  Reads signature byte from the NVM using the flash access registers.
2414  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
2415  **/
2416 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
2417 {
2418 	u32 eecd;
2419 	struct e1000_nvm_info *nvm = &hw->nvm;
2420 	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
2421 	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
2422 	u8 sig_byte = 0;
2423 	s32 ret_val;
2424 
2425 	switch (hw->mac.type) {
2426 	case e1000_ich8lan:
2427 	case e1000_ich9lan:
2428 		eecd = er32(EECD);
2429 		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
2430 		    E1000_EECD_SEC1VAL_VALID_MASK) {
2431 			if (eecd & E1000_EECD_SEC1VAL)
2432 				*bank = 1;
2433 			else
2434 				*bank = 0;
2435 
2436 			return 0;
2437 		}
2438 		e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
2439 		/* fall-thru */
2440 	default:
2441 		/* set bank to 0 in case flash read fails */
2442 		*bank = 0;
2443 
2444 		/* Check bank 0 */
2445 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
2446 		                                        &sig_byte);
2447 		if (ret_val)
2448 			return ret_val;
2449 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2450 		    E1000_ICH_NVM_SIG_VALUE) {
2451 			*bank = 0;
2452 			return 0;
2453 		}
2454 
2455 		/* Check bank 1 */
2456 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
2457 		                                        bank1_offset,
2458 		                                        &sig_byte);
2459 		if (ret_val)
2460 			return ret_val;
2461 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2462 		    E1000_ICH_NVM_SIG_VALUE) {
2463 			*bank = 1;
2464 			return 0;
2465 		}
2466 
2467 		e_dbg("ERROR: No valid NVM bank present\n");
2468 		return -E1000_ERR_NVM;
2469 	}
2470 }
2471 
2472 /**
2473  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
2474  *  @hw: pointer to the HW structure
2475  *  @offset: The offset (in bytes) of the word(s) to read.
2476  *  @words: Size of data to read in words
2477  *  @data: Pointer to the word(s) to read at offset.
2478  *
2479  *  Reads a word(s) from the NVM using the flash access registers.
2480  **/
2481 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2482 				  u16 *data)
2483 {
2484 	struct e1000_nvm_info *nvm = &hw->nvm;
2485 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2486 	u32 act_offset;
2487 	s32 ret_val = 0;
2488 	u32 bank = 0;
2489 	u16 i, word;
2490 
2491 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2492 	    (words == 0)) {
2493 		e_dbg("nvm parameter(s) out of bounds\n");
2494 		ret_val = -E1000_ERR_NVM;
2495 		goto out;
2496 	}
2497 
2498 	nvm->ops.acquire(hw);
2499 
2500 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2501 	if (ret_val) {
2502 		e_dbg("Could not detect valid bank, assuming bank 0\n");
2503 		bank = 0;
2504 	}
2505 
2506 	act_offset = (bank) ? nvm->flash_bank_size : 0;
2507 	act_offset += offset;
2508 
2509 	ret_val = 0;
2510 	for (i = 0; i < words; i++) {
2511 		if (dev_spec->shadow_ram[offset+i].modified) {
2512 			data[i] = dev_spec->shadow_ram[offset+i].value;
2513 		} else {
2514 			ret_val = e1000_read_flash_word_ich8lan(hw,
2515 								act_offset + i,
2516 								&word);
2517 			if (ret_val)
2518 				break;
2519 			data[i] = word;
2520 		}
2521 	}
2522 
2523 	nvm->ops.release(hw);
2524 
2525 out:
2526 	if (ret_val)
2527 		e_dbg("NVM read error: %d\n", ret_val);
2528 
2529 	return ret_val;
2530 }
2531 
2532 /**
2533  *  e1000_flash_cycle_init_ich8lan - Initialize flash
2534  *  @hw: pointer to the HW structure
2535  *
2536  *  This function does initial flash setup so that a new read/write/erase cycle
2537  *  can be started.
2538  **/
2539 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
2540 {
2541 	union ich8_hws_flash_status hsfsts;
2542 	s32 ret_val = -E1000_ERR_NVM;
2543 
2544 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2545 
2546 	/* Check if the flash descriptor is valid */
2547 	if (!hsfsts.hsf_status.fldesvalid) {
2548 		e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
2549 		return -E1000_ERR_NVM;
2550 	}
2551 
2552 	/* Clear FCERR and DAEL in hw status by writing 1 */
2553 	hsfsts.hsf_status.flcerr = 1;
2554 	hsfsts.hsf_status.dael = 1;
2555 
2556 	ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2557 
2558 	/* Either we should have a hardware SPI cycle in progress
2559 	 * bit to check against, in order to start a new cycle or
2560 	 * FDONE bit should be changed in the hardware so that it
2561 	 * is 1 after hardware reset, which can then be used as an
2562 	 * indication whether a cycle is in progress or has been
2563 	 * completed.
2564 	 */
2565 
2566 	if (!hsfsts.hsf_status.flcinprog) {
2567 		/* There is no cycle running at present,
2568 		 * so we can start a cycle.
2569 		 * Begin by setting Flash Cycle Done.
2570 		 */
2571 		hsfsts.hsf_status.flcdone = 1;
2572 		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2573 		ret_val = 0;
2574 	} else {
2575 		s32 i;
2576 
2577 		/* Otherwise poll for sometime so the current
2578 		 * cycle has a chance to end before giving up.
2579 		 */
2580 		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
2581 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2582 			if (!hsfsts.hsf_status.flcinprog) {
2583 				ret_val = 0;
2584 				break;
2585 			}
2586 			udelay(1);
2587 		}
2588 		if (!ret_val) {
2589 			/* Successful in waiting for previous cycle to timeout,
2590 			 * now set the Flash Cycle Done.
2591 			 */
2592 			hsfsts.hsf_status.flcdone = 1;
2593 			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2594 		} else {
2595 			e_dbg("Flash controller busy, cannot get access\n");
2596 		}
2597 	}
2598 
2599 	return ret_val;
2600 }
2601 
2602 /**
2603  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
2604  *  @hw: pointer to the HW structure
2605  *  @timeout: maximum time to wait for completion
2606  *
2607  *  This function starts a flash cycle and waits for its completion.
2608  **/
2609 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
2610 {
2611 	union ich8_hws_flash_ctrl hsflctl;
2612 	union ich8_hws_flash_status hsfsts;
2613 	u32 i = 0;
2614 
2615 	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
2616 	hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2617 	hsflctl.hsf_ctrl.flcgo = 1;
2618 	ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2619 
2620 	/* wait till FDONE bit is set to 1 */
2621 	do {
2622 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2623 		if (hsfsts.hsf_status.flcdone)
2624 			break;
2625 		udelay(1);
2626 	} while (i++ < timeout);
2627 
2628 	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
2629 		return 0;
2630 
2631 	return -E1000_ERR_NVM;
2632 }
2633 
2634 /**
2635  *  e1000_read_flash_word_ich8lan - Read word from flash
2636  *  @hw: pointer to the HW structure
2637  *  @offset: offset to data location
2638  *  @data: pointer to the location for storing the data
2639  *
2640  *  Reads the flash word at offset into data.  Offset is converted
2641  *  to bytes before read.
2642  **/
2643 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
2644 					 u16 *data)
2645 {
2646 	/* Must convert offset into bytes. */
2647 	offset <<= 1;
2648 
2649 	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
2650 }
2651 
2652 /**
2653  *  e1000_read_flash_byte_ich8lan - Read byte from flash
2654  *  @hw: pointer to the HW structure
2655  *  @offset: The offset of the byte to read.
2656  *  @data: Pointer to a byte to store the value read.
2657  *
2658  *  Reads a single byte from the NVM using the flash access registers.
2659  **/
2660 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
2661 					 u8 *data)
2662 {
2663 	s32 ret_val;
2664 	u16 word = 0;
2665 
2666 	ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
2667 	if (ret_val)
2668 		return ret_val;
2669 
2670 	*data = (u8)word;
2671 
2672 	return 0;
2673 }
2674 
2675 /**
2676  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
2677  *  @hw: pointer to the HW structure
2678  *  @offset: The offset (in bytes) of the byte or word to read.
2679  *  @size: Size of data to read, 1=byte 2=word
2680  *  @data: Pointer to the word to store the value read.
2681  *
2682  *  Reads a byte or word from the NVM using the flash access registers.
2683  **/
2684 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
2685 					 u8 size, u16 *data)
2686 {
2687 	union ich8_hws_flash_status hsfsts;
2688 	union ich8_hws_flash_ctrl hsflctl;
2689 	u32 flash_linear_addr;
2690 	u32 flash_data = 0;
2691 	s32 ret_val = -E1000_ERR_NVM;
2692 	u8 count = 0;
2693 
2694 	if (size < 1  || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
2695 		return -E1000_ERR_NVM;
2696 
2697 	flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
2698 			    hw->nvm.flash_base_addr;
2699 
2700 	do {
2701 		udelay(1);
2702 		/* Steps */
2703 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
2704 		if (ret_val)
2705 			break;
2706 
2707 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2708 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2709 		hsflctl.hsf_ctrl.fldbcount = size - 1;
2710 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
2711 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2712 
2713 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2714 
2715 		ret_val = e1000_flash_cycle_ich8lan(hw,
2716 						ICH_FLASH_READ_COMMAND_TIMEOUT);
2717 
2718 		/* Check if FCERR is set to 1, if set to 1, clear it
2719 		 * and try the whole sequence a few more times, else
2720 		 * read in (shift in) the Flash Data0, the order is
2721 		 * least significant byte first msb to lsb
2722 		 */
2723 		if (!ret_val) {
2724 			flash_data = er32flash(ICH_FLASH_FDATA0);
2725 			if (size == 1)
2726 				*data = (u8)(flash_data & 0x000000FF);
2727 			else if (size == 2)
2728 				*data = (u16)(flash_data & 0x0000FFFF);
2729 			break;
2730 		} else {
2731 			/* If we've gotten here, then things are probably
2732 			 * completely hosed, but if the error condition is
2733 			 * detected, it won't hurt to give it another try...
2734 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
2735 			 */
2736 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2737 			if (hsfsts.hsf_status.flcerr) {
2738 				/* Repeat for some time before giving up. */
2739 				continue;
2740 			} else if (!hsfsts.hsf_status.flcdone) {
2741 				e_dbg("Timeout error - flash cycle did not complete.\n");
2742 				break;
2743 			}
2744 		}
2745 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
2746 
2747 	return ret_val;
2748 }
2749 
2750 /**
2751  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
2752  *  @hw: pointer to the HW structure
2753  *  @offset: The offset (in bytes) of the word(s) to write.
2754  *  @words: Size of data to write in words
2755  *  @data: Pointer to the word(s) to write at offset.
2756  *
2757  *  Writes a byte or word to the NVM using the flash access registers.
2758  **/
2759 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2760 				   u16 *data)
2761 {
2762 	struct e1000_nvm_info *nvm = &hw->nvm;
2763 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2764 	u16 i;
2765 
2766 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2767 	    (words == 0)) {
2768 		e_dbg("nvm parameter(s) out of bounds\n");
2769 		return -E1000_ERR_NVM;
2770 	}
2771 
2772 	nvm->ops.acquire(hw);
2773 
2774 	for (i = 0; i < words; i++) {
2775 		dev_spec->shadow_ram[offset+i].modified = true;
2776 		dev_spec->shadow_ram[offset+i].value = data[i];
2777 	}
2778 
2779 	nvm->ops.release(hw);
2780 
2781 	return 0;
2782 }
2783 
2784 /**
2785  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
2786  *  @hw: pointer to the HW structure
2787  *
2788  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
2789  *  which writes the checksum to the shadow ram.  The changes in the shadow
2790  *  ram are then committed to the EEPROM by processing each bank at a time
2791  *  checking for the modified bit and writing only the pending changes.
2792  *  After a successful commit, the shadow ram is cleared and is ready for
2793  *  future writes.
2794  **/
2795 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
2796 {
2797 	struct e1000_nvm_info *nvm = &hw->nvm;
2798 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2799 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
2800 	s32 ret_val;
2801 	u16 data;
2802 
2803 	ret_val = e1000e_update_nvm_checksum_generic(hw);
2804 	if (ret_val)
2805 		goto out;
2806 
2807 	if (nvm->type != e1000_nvm_flash_sw)
2808 		goto out;
2809 
2810 	nvm->ops.acquire(hw);
2811 
2812 	/* We're writing to the opposite bank so if we're on bank 1,
2813 	 * write to bank 0 etc.  We also need to erase the segment that
2814 	 * is going to be written
2815 	 */
2816 	ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2817 	if (ret_val) {
2818 		e_dbg("Could not detect valid bank, assuming bank 0\n");
2819 		bank = 0;
2820 	}
2821 
2822 	if (bank == 0) {
2823 		new_bank_offset = nvm->flash_bank_size;
2824 		old_bank_offset = 0;
2825 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
2826 		if (ret_val)
2827 			goto release;
2828 	} else {
2829 		old_bank_offset = nvm->flash_bank_size;
2830 		new_bank_offset = 0;
2831 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
2832 		if (ret_val)
2833 			goto release;
2834 	}
2835 
2836 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2837 		/* Determine whether to write the value stored
2838 		 * in the other NVM bank or a modified value stored
2839 		 * in the shadow RAM
2840 		 */
2841 		if (dev_spec->shadow_ram[i].modified) {
2842 			data = dev_spec->shadow_ram[i].value;
2843 		} else {
2844 			ret_val = e1000_read_flash_word_ich8lan(hw, i +
2845 			                                        old_bank_offset,
2846 			                                        &data);
2847 			if (ret_val)
2848 				break;
2849 		}
2850 
2851 		/* If the word is 0x13, then make sure the signature bits
2852 		 * (15:14) are 11b until the commit has completed.
2853 		 * This will allow us to write 10b which indicates the
2854 		 * signature is valid.  We want to do this after the write
2855 		 * has completed so that we don't mark the segment valid
2856 		 * while the write is still in progress
2857 		 */
2858 		if (i == E1000_ICH_NVM_SIG_WORD)
2859 			data |= E1000_ICH_NVM_SIG_MASK;
2860 
2861 		/* Convert offset to bytes. */
2862 		act_offset = (i + new_bank_offset) << 1;
2863 
2864 		udelay(100);
2865 		/* Write the bytes to the new bank. */
2866 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2867 							       act_offset,
2868 							       (u8)data);
2869 		if (ret_val)
2870 			break;
2871 
2872 		udelay(100);
2873 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2874 							  act_offset + 1,
2875 							  (u8)(data >> 8));
2876 		if (ret_val)
2877 			break;
2878 	}
2879 
2880 	/* Don't bother writing the segment valid bits if sector
2881 	 * programming failed.
2882 	 */
2883 	if (ret_val) {
2884 		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
2885 		e_dbg("Flash commit failed.\n");
2886 		goto release;
2887 	}
2888 
2889 	/* Finally validate the new segment by setting bit 15:14
2890 	 * to 10b in word 0x13 , this can be done without an
2891 	 * erase as well since these bits are 11 to start with
2892 	 * and we need to change bit 14 to 0b
2893 	 */
2894 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
2895 	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
2896 	if (ret_val)
2897 		goto release;
2898 
2899 	data &= 0xBFFF;
2900 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2901 						       act_offset * 2 + 1,
2902 						       (u8)(data >> 8));
2903 	if (ret_val)
2904 		goto release;
2905 
2906 	/* And invalidate the previously valid segment by setting
2907 	 * its signature word (0x13) high_byte to 0b. This can be
2908 	 * done without an erase because flash erase sets all bits
2909 	 * to 1's. We can write 1's to 0's without an erase
2910 	 */
2911 	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
2912 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
2913 	if (ret_val)
2914 		goto release;
2915 
2916 	/* Great!  Everything worked, we can now clear the cached entries. */
2917 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2918 		dev_spec->shadow_ram[i].modified = false;
2919 		dev_spec->shadow_ram[i].value = 0xFFFF;
2920 	}
2921 
2922 release:
2923 	nvm->ops.release(hw);
2924 
2925 	/* Reload the EEPROM, or else modifications will not appear
2926 	 * until after the next adapter reset.
2927 	 */
2928 	if (!ret_val) {
2929 		nvm->ops.reload(hw);
2930 		usleep_range(10000, 20000);
2931 	}
2932 
2933 out:
2934 	if (ret_val)
2935 		e_dbg("NVM update error: %d\n", ret_val);
2936 
2937 	return ret_val;
2938 }
2939 
2940 /**
2941  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
2942  *  @hw: pointer to the HW structure
2943  *
2944  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
2945  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
2946  *  calculated, in which case we need to calculate the checksum and set bit 6.
2947  **/
2948 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
2949 {
2950 	s32 ret_val;
2951 	u16 data;
2952 
2953 	/* Read 0x19 and check bit 6.  If this bit is 0, the checksum
2954 	 * needs to be fixed.  This bit is an indication that the NVM
2955 	 * was prepared by OEM software and did not calculate the
2956 	 * checksum...a likely scenario.
2957 	 */
2958 	ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
2959 	if (ret_val)
2960 		return ret_val;
2961 
2962 	if (!(data & 0x40)) {
2963 		data |= 0x40;
2964 		ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
2965 		if (ret_val)
2966 			return ret_val;
2967 		ret_val = e1000e_update_nvm_checksum(hw);
2968 		if (ret_val)
2969 			return ret_val;
2970 	}
2971 
2972 	return e1000e_validate_nvm_checksum_generic(hw);
2973 }
2974 
2975 /**
2976  *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
2977  *  @hw: pointer to the HW structure
2978  *
2979  *  To prevent malicious write/erase of the NVM, set it to be read-only
2980  *  so that the hardware ignores all write/erase cycles of the NVM via
2981  *  the flash control registers.  The shadow-ram copy of the NVM will
2982  *  still be updated, however any updates to this copy will not stick
2983  *  across driver reloads.
2984  **/
2985 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
2986 {
2987 	struct e1000_nvm_info *nvm = &hw->nvm;
2988 	union ich8_flash_protected_range pr0;
2989 	union ich8_hws_flash_status hsfsts;
2990 	u32 gfpreg;
2991 
2992 	nvm->ops.acquire(hw);
2993 
2994 	gfpreg = er32flash(ICH_FLASH_GFPREG);
2995 
2996 	/* Write-protect GbE Sector of NVM */
2997 	pr0.regval = er32flash(ICH_FLASH_PR0);
2998 	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
2999 	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
3000 	pr0.range.wpe = true;
3001 	ew32flash(ICH_FLASH_PR0, pr0.regval);
3002 
3003 	/* Lock down a subset of GbE Flash Control Registers, e.g.
3004 	 * PR0 to prevent the write-protection from being lifted.
3005 	 * Once FLOCKDN is set, the registers protected by it cannot
3006 	 * be written until FLOCKDN is cleared by a hardware reset.
3007 	 */
3008 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3009 	hsfsts.hsf_status.flockdn = true;
3010 	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3011 
3012 	nvm->ops.release(hw);
3013 }
3014 
3015 /**
3016  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
3017  *  @hw: pointer to the HW structure
3018  *  @offset: The offset (in bytes) of the byte/word to read.
3019  *  @size: Size of data to read, 1=byte 2=word
3020  *  @data: The byte(s) to write to the NVM.
3021  *
3022  *  Writes one/two bytes to the NVM using the flash access registers.
3023  **/
3024 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3025 					  u8 size, u16 data)
3026 {
3027 	union ich8_hws_flash_status hsfsts;
3028 	union ich8_hws_flash_ctrl hsflctl;
3029 	u32 flash_linear_addr;
3030 	u32 flash_data = 0;
3031 	s32 ret_val;
3032 	u8 count = 0;
3033 
3034 	if (size < 1 || size > 2 || data > size * 0xff ||
3035 	    offset > ICH_FLASH_LINEAR_ADDR_MASK)
3036 		return -E1000_ERR_NVM;
3037 
3038 	flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3039 			    hw->nvm.flash_base_addr;
3040 
3041 	do {
3042 		udelay(1);
3043 		/* Steps */
3044 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3045 		if (ret_val)
3046 			break;
3047 
3048 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3049 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3050 		hsflctl.hsf_ctrl.fldbcount = size -1;
3051 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
3052 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3053 
3054 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3055 
3056 		if (size == 1)
3057 			flash_data = (u32)data & 0x00FF;
3058 		else
3059 			flash_data = (u32)data;
3060 
3061 		ew32flash(ICH_FLASH_FDATA0, flash_data);
3062 
3063 		/* check if FCERR is set to 1 , if set to 1, clear it
3064 		 * and try the whole sequence a few more times else done
3065 		 */
3066 		ret_val = e1000_flash_cycle_ich8lan(hw,
3067 					       ICH_FLASH_WRITE_COMMAND_TIMEOUT);
3068 		if (!ret_val)
3069 			break;
3070 
3071 		/* If we're here, then things are most likely
3072 		 * completely hosed, but if the error condition
3073 		 * is detected, it won't hurt to give it another
3074 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
3075 		 */
3076 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3077 		if (hsfsts.hsf_status.flcerr)
3078 			/* Repeat for some time before giving up. */
3079 			continue;
3080 		if (!hsfsts.hsf_status.flcdone) {
3081 			e_dbg("Timeout error - flash cycle did not complete.\n");
3082 			break;
3083 		}
3084 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3085 
3086 	return ret_val;
3087 }
3088 
3089 /**
3090  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
3091  *  @hw: pointer to the HW structure
3092  *  @offset: The index of the byte to read.
3093  *  @data: The byte to write to the NVM.
3094  *
3095  *  Writes a single byte to the NVM using the flash access registers.
3096  **/
3097 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3098 					  u8 data)
3099 {
3100 	u16 word = (u16)data;
3101 
3102 	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
3103 }
3104 
3105 /**
3106  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
3107  *  @hw: pointer to the HW structure
3108  *  @offset: The offset of the byte to write.
3109  *  @byte: The byte to write to the NVM.
3110  *
3111  *  Writes a single byte to the NVM using the flash access registers.
3112  *  Goes through a retry algorithm before giving up.
3113  **/
3114 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
3115 						u32 offset, u8 byte)
3116 {
3117 	s32 ret_val;
3118 	u16 program_retries;
3119 
3120 	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
3121 	if (!ret_val)
3122 		return ret_val;
3123 
3124 	for (program_retries = 0; program_retries < 100; program_retries++) {
3125 		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
3126 		udelay(100);
3127 		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
3128 		if (!ret_val)
3129 			break;
3130 	}
3131 	if (program_retries == 100)
3132 		return -E1000_ERR_NVM;
3133 
3134 	return 0;
3135 }
3136 
3137 /**
3138  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
3139  *  @hw: pointer to the HW structure
3140  *  @bank: 0 for first bank, 1 for second bank, etc.
3141  *
3142  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
3143  *  bank N is 4096 * N + flash_reg_addr.
3144  **/
3145 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
3146 {
3147 	struct e1000_nvm_info *nvm = &hw->nvm;
3148 	union ich8_hws_flash_status hsfsts;
3149 	union ich8_hws_flash_ctrl hsflctl;
3150 	u32 flash_linear_addr;
3151 	/* bank size is in 16bit words - adjust to bytes */
3152 	u32 flash_bank_size = nvm->flash_bank_size * 2;
3153 	s32 ret_val;
3154 	s32 count = 0;
3155 	s32 j, iteration, sector_size;
3156 
3157 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3158 
3159 	/* Determine HW Sector size: Read BERASE bits of hw flash status
3160 	 * register
3161 	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
3162 	 *     consecutive sectors.  The start index for the nth Hw sector
3163 	 *     can be calculated as = bank * 4096 + n * 256
3164 	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
3165 	 *     The start index for the nth Hw sector can be calculated
3166 	 *     as = bank * 4096
3167 	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
3168 	 *     (ich9 only, otherwise error condition)
3169 	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
3170 	 */
3171 	switch (hsfsts.hsf_status.berasesz) {
3172 	case 0:
3173 		/* Hw sector size 256 */
3174 		sector_size = ICH_FLASH_SEG_SIZE_256;
3175 		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
3176 		break;
3177 	case 1:
3178 		sector_size = ICH_FLASH_SEG_SIZE_4K;
3179 		iteration = 1;
3180 		break;
3181 	case 2:
3182 		sector_size = ICH_FLASH_SEG_SIZE_8K;
3183 		iteration = 1;
3184 		break;
3185 	case 3:
3186 		sector_size = ICH_FLASH_SEG_SIZE_64K;
3187 		iteration = 1;
3188 		break;
3189 	default:
3190 		return -E1000_ERR_NVM;
3191 	}
3192 
3193 	/* Start with the base address, then add the sector offset. */
3194 	flash_linear_addr = hw->nvm.flash_base_addr;
3195 	flash_linear_addr += (bank) ? flash_bank_size : 0;
3196 
3197 	for (j = 0; j < iteration ; j++) {
3198 		do {
3199 			/* Steps */
3200 			ret_val = e1000_flash_cycle_init_ich8lan(hw);
3201 			if (ret_val)
3202 				return ret_val;
3203 
3204 			/* Write a value 11 (block Erase) in Flash
3205 			 * Cycle field in hw flash control
3206 			 */
3207 			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3208 			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
3209 			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3210 
3211 			/* Write the last 24 bits of an index within the
3212 			 * block into Flash Linear address field in Flash
3213 			 * Address.
3214 			 */
3215 			flash_linear_addr += (j * sector_size);
3216 			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3217 
3218 			ret_val = e1000_flash_cycle_ich8lan(hw,
3219 					       ICH_FLASH_ERASE_COMMAND_TIMEOUT);
3220 			if (!ret_val)
3221 				break;
3222 
3223 			/* Check if FCERR is set to 1.  If 1,
3224 			 * clear it and try the whole sequence
3225 			 * a few more times else Done
3226 			 */
3227 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3228 			if (hsfsts.hsf_status.flcerr)
3229 				/* repeat for some time before giving up */
3230 				continue;
3231 			else if (!hsfsts.hsf_status.flcdone)
3232 				return ret_val;
3233 		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
3234 	}
3235 
3236 	return 0;
3237 }
3238 
3239 /**
3240  *  e1000_valid_led_default_ich8lan - Set the default LED settings
3241  *  @hw: pointer to the HW structure
3242  *  @data: Pointer to the LED settings
3243  *
3244  *  Reads the LED default settings from the NVM to data.  If the NVM LED
3245  *  settings is all 0's or F's, set the LED default to a valid LED default
3246  *  setting.
3247  **/
3248 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
3249 {
3250 	s32 ret_val;
3251 
3252 	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
3253 	if (ret_val) {
3254 		e_dbg("NVM Read Error\n");
3255 		return ret_val;
3256 	}
3257 
3258 	if (*data == ID_LED_RESERVED_0000 ||
3259 	    *data == ID_LED_RESERVED_FFFF)
3260 		*data = ID_LED_DEFAULT_ICH8LAN;
3261 
3262 	return 0;
3263 }
3264 
3265 /**
3266  *  e1000_id_led_init_pchlan - store LED configurations
3267  *  @hw: pointer to the HW structure
3268  *
3269  *  PCH does not control LEDs via the LEDCTL register, rather it uses
3270  *  the PHY LED configuration register.
3271  *
3272  *  PCH also does not have an "always on" or "always off" mode which
3273  *  complicates the ID feature.  Instead of using the "on" mode to indicate
3274  *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
3275  *  use "link_up" mode.  The LEDs will still ID on request if there is no
3276  *  link based on logic in e1000_led_[on|off]_pchlan().
3277  **/
3278 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
3279 {
3280 	struct e1000_mac_info *mac = &hw->mac;
3281 	s32 ret_val;
3282 	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
3283 	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
3284 	u16 data, i, temp, shift;
3285 
3286 	/* Get default ID LED modes */
3287 	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
3288 	if (ret_val)
3289 		return ret_val;
3290 
3291 	mac->ledctl_default = er32(LEDCTL);
3292 	mac->ledctl_mode1 = mac->ledctl_default;
3293 	mac->ledctl_mode2 = mac->ledctl_default;
3294 
3295 	for (i = 0; i < 4; i++) {
3296 		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
3297 		shift = (i * 5);
3298 		switch (temp) {
3299 		case ID_LED_ON1_DEF2:
3300 		case ID_LED_ON1_ON2:
3301 		case ID_LED_ON1_OFF2:
3302 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
3303 			mac->ledctl_mode1 |= (ledctl_on << shift);
3304 			break;
3305 		case ID_LED_OFF1_DEF2:
3306 		case ID_LED_OFF1_ON2:
3307 		case ID_LED_OFF1_OFF2:
3308 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
3309 			mac->ledctl_mode1 |= (ledctl_off << shift);
3310 			break;
3311 		default:
3312 			/* Do nothing */
3313 			break;
3314 		}
3315 		switch (temp) {
3316 		case ID_LED_DEF1_ON2:
3317 		case ID_LED_ON1_ON2:
3318 		case ID_LED_OFF1_ON2:
3319 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3320 			mac->ledctl_mode2 |= (ledctl_on << shift);
3321 			break;
3322 		case ID_LED_DEF1_OFF2:
3323 		case ID_LED_ON1_OFF2:
3324 		case ID_LED_OFF1_OFF2:
3325 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3326 			mac->ledctl_mode2 |= (ledctl_off << shift);
3327 			break;
3328 		default:
3329 			/* Do nothing */
3330 			break;
3331 		}
3332 	}
3333 
3334 	return 0;
3335 }
3336 
3337 /**
3338  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
3339  *  @hw: pointer to the HW structure
3340  *
3341  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
3342  *  register, so the the bus width is hard coded.
3343  **/
3344 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
3345 {
3346 	struct e1000_bus_info *bus = &hw->bus;
3347 	s32 ret_val;
3348 
3349 	ret_val = e1000e_get_bus_info_pcie(hw);
3350 
3351 	/* ICH devices are "PCI Express"-ish.  They have
3352 	 * a configuration space, but do not contain
3353 	 * PCI Express Capability registers, so bus width
3354 	 * must be hardcoded.
3355 	 */
3356 	if (bus->width == e1000_bus_width_unknown)
3357 		bus->width = e1000_bus_width_pcie_x1;
3358 
3359 	return ret_val;
3360 }
3361 
3362 /**
3363  *  e1000_reset_hw_ich8lan - Reset the hardware
3364  *  @hw: pointer to the HW structure
3365  *
3366  *  Does a full reset of the hardware which includes a reset of the PHY and
3367  *  MAC.
3368  **/
3369 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
3370 {
3371 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3372 	u16 kum_cfg;
3373 	u32 ctrl, reg;
3374 	s32 ret_val;
3375 
3376 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
3377 	 * on the last TLP read/write transaction when MAC is reset.
3378 	 */
3379 	ret_val = e1000e_disable_pcie_master(hw);
3380 	if (ret_val)
3381 		e_dbg("PCI-E Master disable polling has failed.\n");
3382 
3383 	e_dbg("Masking off all interrupts\n");
3384 	ew32(IMC, 0xffffffff);
3385 
3386 	/* Disable the Transmit and Receive units.  Then delay to allow
3387 	 * any pending transactions to complete before we hit the MAC
3388 	 * with the global reset.
3389 	 */
3390 	ew32(RCTL, 0);
3391 	ew32(TCTL, E1000_TCTL_PSP);
3392 	e1e_flush();
3393 
3394 	usleep_range(10000, 20000);
3395 
3396 	/* Workaround for ICH8 bit corruption issue in FIFO memory */
3397 	if (hw->mac.type == e1000_ich8lan) {
3398 		/* Set Tx and Rx buffer allocation to 8k apiece. */
3399 		ew32(PBA, E1000_PBA_8K);
3400 		/* Set Packet Buffer Size to 16k. */
3401 		ew32(PBS, E1000_PBS_16K);
3402 	}
3403 
3404 	if (hw->mac.type == e1000_pchlan) {
3405 		/* Save the NVM K1 bit setting */
3406 		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
3407 		if (ret_val)
3408 			return ret_val;
3409 
3410 		if (kum_cfg & E1000_NVM_K1_ENABLE)
3411 			dev_spec->nvm_k1_enabled = true;
3412 		else
3413 			dev_spec->nvm_k1_enabled = false;
3414 	}
3415 
3416 	ctrl = er32(CTRL);
3417 
3418 	if (!hw->phy.ops.check_reset_block(hw)) {
3419 		/* Full-chip reset requires MAC and PHY reset at the same
3420 		 * time to make sure the interface between MAC and the
3421 		 * external PHY is reset.
3422 		 */
3423 		ctrl |= E1000_CTRL_PHY_RST;
3424 
3425 		/* Gate automatic PHY configuration by hardware on
3426 		 * non-managed 82579
3427 		 */
3428 		if ((hw->mac.type == e1000_pch2lan) &&
3429 		    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
3430 			e1000_gate_hw_phy_config_ich8lan(hw, true);
3431 	}
3432 	ret_val = e1000_acquire_swflag_ich8lan(hw);
3433 	e_dbg("Issuing a global reset to ich8lan\n");
3434 	ew32(CTRL, (ctrl | E1000_CTRL_RST));
3435 	/* cannot issue a flush here because it hangs the hardware */
3436 	msleep(20);
3437 
3438 	/* Set Phy Config Counter to 50msec */
3439 	if (hw->mac.type == e1000_pch2lan) {
3440 		reg = er32(FEXTNVM3);
3441 		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
3442 		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
3443 		ew32(FEXTNVM3, reg);
3444 	}
3445 
3446 	if (!ret_val)
3447 		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
3448 
3449 	if (ctrl & E1000_CTRL_PHY_RST) {
3450 		ret_val = hw->phy.ops.get_cfg_done(hw);
3451 		if (ret_val)
3452 			return ret_val;
3453 
3454 		ret_val = e1000_post_phy_reset_ich8lan(hw);
3455 		if (ret_val)
3456 			return ret_val;
3457 	}
3458 
3459 	/* For PCH, this write will make sure that any noise
3460 	 * will be detected as a CRC error and be dropped rather than show up
3461 	 * as a bad packet to the DMA engine.
3462 	 */
3463 	if (hw->mac.type == e1000_pchlan)
3464 		ew32(CRC_OFFSET, 0x65656565);
3465 
3466 	ew32(IMC, 0xffffffff);
3467 	er32(ICR);
3468 
3469 	reg = er32(KABGTXD);
3470 	reg |= E1000_KABGTXD_BGSQLBIAS;
3471 	ew32(KABGTXD, reg);
3472 
3473 	return 0;
3474 }
3475 
3476 /**
3477  *  e1000_init_hw_ich8lan - Initialize the hardware
3478  *  @hw: pointer to the HW structure
3479  *
3480  *  Prepares the hardware for transmit and receive by doing the following:
3481  *   - initialize hardware bits
3482  *   - initialize LED identification
3483  *   - setup receive address registers
3484  *   - setup flow control
3485  *   - setup transmit descriptors
3486  *   - clear statistics
3487  **/
3488 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
3489 {
3490 	struct e1000_mac_info *mac = &hw->mac;
3491 	u32 ctrl_ext, txdctl, snoop;
3492 	s32 ret_val;
3493 	u16 i;
3494 
3495 	e1000_initialize_hw_bits_ich8lan(hw);
3496 
3497 	/* Initialize identification LED */
3498 	ret_val = mac->ops.id_led_init(hw);
3499 	if (ret_val)
3500 		e_dbg("Error initializing identification LED\n");
3501 		/* This is not fatal and we should not stop init due to this */
3502 
3503 	/* Setup the receive address. */
3504 	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
3505 
3506 	/* Zero out the Multicast HASH table */
3507 	e_dbg("Zeroing the MTA\n");
3508 	for (i = 0; i < mac->mta_reg_count; i++)
3509 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
3510 
3511 	/* The 82578 Rx buffer will stall if wakeup is enabled in host and
3512 	 * the ME.  Disable wakeup by clearing the host wakeup bit.
3513 	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
3514 	 */
3515 	if (hw->phy.type == e1000_phy_82578) {
3516 		e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
3517 		i &= ~BM_WUC_HOST_WU_BIT;
3518 		e1e_wphy(hw, BM_PORT_GEN_CFG, i);
3519 		ret_val = e1000_phy_hw_reset_ich8lan(hw);
3520 		if (ret_val)
3521 			return ret_val;
3522 	}
3523 
3524 	/* Setup link and flow control */
3525 	ret_val = mac->ops.setup_link(hw);
3526 
3527 	/* Set the transmit descriptor write-back policy for both queues */
3528 	txdctl = er32(TXDCTL(0));
3529 	txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
3530 		 E1000_TXDCTL_FULL_TX_DESC_WB;
3531 	txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
3532 		 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
3533 	ew32(TXDCTL(0), txdctl);
3534 	txdctl = er32(TXDCTL(1));
3535 	txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
3536 		 E1000_TXDCTL_FULL_TX_DESC_WB;
3537 	txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
3538 		 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
3539 	ew32(TXDCTL(1), txdctl);
3540 
3541 	/* ICH8 has opposite polarity of no_snoop bits.
3542 	 * By default, we should use snoop behavior.
3543 	 */
3544 	if (mac->type == e1000_ich8lan)
3545 		snoop = PCIE_ICH8_SNOOP_ALL;
3546 	else
3547 		snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
3548 	e1000e_set_pcie_no_snoop(hw, snoop);
3549 
3550 	ctrl_ext = er32(CTRL_EXT);
3551 	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
3552 	ew32(CTRL_EXT, ctrl_ext);
3553 
3554 	/* Clear all of the statistics registers (clear on read).  It is
3555 	 * important that we do this after we have tried to establish link
3556 	 * because the symbol error count will increment wildly if there
3557 	 * is no link.
3558 	 */
3559 	e1000_clear_hw_cntrs_ich8lan(hw);
3560 
3561 	return ret_val;
3562 }
3563 /**
3564  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
3565  *  @hw: pointer to the HW structure
3566  *
3567  *  Sets/Clears required hardware bits necessary for correctly setting up the
3568  *  hardware for transmit and receive.
3569  **/
3570 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
3571 {
3572 	u32 reg;
3573 
3574 	/* Extended Device Control */
3575 	reg = er32(CTRL_EXT);
3576 	reg |= (1 << 22);
3577 	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
3578 	if (hw->mac.type >= e1000_pchlan)
3579 		reg |= E1000_CTRL_EXT_PHYPDEN;
3580 	ew32(CTRL_EXT, reg);
3581 
3582 	/* Transmit Descriptor Control 0 */
3583 	reg = er32(TXDCTL(0));
3584 	reg |= (1 << 22);
3585 	ew32(TXDCTL(0), reg);
3586 
3587 	/* Transmit Descriptor Control 1 */
3588 	reg = er32(TXDCTL(1));
3589 	reg |= (1 << 22);
3590 	ew32(TXDCTL(1), reg);
3591 
3592 	/* Transmit Arbitration Control 0 */
3593 	reg = er32(TARC(0));
3594 	if (hw->mac.type == e1000_ich8lan)
3595 		reg |= (1 << 28) | (1 << 29);
3596 	reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
3597 	ew32(TARC(0), reg);
3598 
3599 	/* Transmit Arbitration Control 1 */
3600 	reg = er32(TARC(1));
3601 	if (er32(TCTL) & E1000_TCTL_MULR)
3602 		reg &= ~(1 << 28);
3603 	else
3604 		reg |= (1 << 28);
3605 	reg |= (1 << 24) | (1 << 26) | (1 << 30);
3606 	ew32(TARC(1), reg);
3607 
3608 	/* Device Status */
3609 	if (hw->mac.type == e1000_ich8lan) {
3610 		reg = er32(STATUS);
3611 		reg &= ~(1 << 31);
3612 		ew32(STATUS, reg);
3613 	}
3614 
3615 	/* work-around descriptor data corruption issue during nfs v2 udp
3616 	 * traffic, just disable the nfs filtering capability
3617 	 */
3618 	reg = er32(RFCTL);
3619 	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
3620 
3621 	/* Disable IPv6 extension header parsing because some malformed
3622 	 * IPv6 headers can hang the Rx.
3623 	 */
3624 	if (hw->mac.type == e1000_ich8lan)
3625 		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
3626 	ew32(RFCTL, reg);
3627 
3628 	/* Enable ECC on Lynxpoint */
3629 	if (hw->mac.type == e1000_pch_lpt) {
3630 		reg = er32(PBECCSTS);
3631 		reg |= E1000_PBECCSTS_ECC_ENABLE;
3632 		ew32(PBECCSTS, reg);
3633 
3634 		reg = er32(CTRL);
3635 		reg |= E1000_CTRL_MEHE;
3636 		ew32(CTRL, reg);
3637 	}
3638 }
3639 
3640 /**
3641  *  e1000_setup_link_ich8lan - Setup flow control and link settings
3642  *  @hw: pointer to the HW structure
3643  *
3644  *  Determines which flow control settings to use, then configures flow
3645  *  control.  Calls the appropriate media-specific link configuration
3646  *  function.  Assuming the adapter has a valid link partner, a valid link
3647  *  should be established.  Assumes the hardware has previously been reset
3648  *  and the transmitter and receiver are not enabled.
3649  **/
3650 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
3651 {
3652 	s32 ret_val;
3653 
3654 	if (hw->phy.ops.check_reset_block(hw))
3655 		return 0;
3656 
3657 	/* ICH parts do not have a word in the NVM to determine
3658 	 * the default flow control setting, so we explicitly
3659 	 * set it to full.
3660 	 */
3661 	if (hw->fc.requested_mode == e1000_fc_default) {
3662 		/* Workaround h/w hang when Tx flow control enabled */
3663 		if (hw->mac.type == e1000_pchlan)
3664 			hw->fc.requested_mode = e1000_fc_rx_pause;
3665 		else
3666 			hw->fc.requested_mode = e1000_fc_full;
3667 	}
3668 
3669 	/* Save off the requested flow control mode for use later.  Depending
3670 	 * on the link partner's capabilities, we may or may not use this mode.
3671 	 */
3672 	hw->fc.current_mode = hw->fc.requested_mode;
3673 
3674 	e_dbg("After fix-ups FlowControl is now = %x\n",
3675 		hw->fc.current_mode);
3676 
3677 	/* Continue to configure the copper link. */
3678 	ret_val = hw->mac.ops.setup_physical_interface(hw);
3679 	if (ret_val)
3680 		return ret_val;
3681 
3682 	ew32(FCTTV, hw->fc.pause_time);
3683 	if ((hw->phy.type == e1000_phy_82578) ||
3684 	    (hw->phy.type == e1000_phy_82579) ||
3685 	    (hw->phy.type == e1000_phy_i217) ||
3686 	    (hw->phy.type == e1000_phy_82577)) {
3687 		ew32(FCRTV_PCH, hw->fc.refresh_time);
3688 
3689 		ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
3690 				   hw->fc.pause_time);
3691 		if (ret_val)
3692 			return ret_val;
3693 	}
3694 
3695 	return e1000e_set_fc_watermarks(hw);
3696 }
3697 
3698 /**
3699  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
3700  *  @hw: pointer to the HW structure
3701  *
3702  *  Configures the kumeran interface to the PHY to wait the appropriate time
3703  *  when polling the PHY, then call the generic setup_copper_link to finish
3704  *  configuring the copper link.
3705  **/
3706 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
3707 {
3708 	u32 ctrl;
3709 	s32 ret_val;
3710 	u16 reg_data;
3711 
3712 	ctrl = er32(CTRL);
3713 	ctrl |= E1000_CTRL_SLU;
3714 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
3715 	ew32(CTRL, ctrl);
3716 
3717 	/* Set the mac to wait the maximum time between each iteration
3718 	 * and increase the max iterations when polling the phy;
3719 	 * this fixes erroneous timeouts at 10Mbps.
3720 	 */
3721 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
3722 	if (ret_val)
3723 		return ret_val;
3724 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
3725 	                               &reg_data);
3726 	if (ret_val)
3727 		return ret_val;
3728 	reg_data |= 0x3F;
3729 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
3730 	                                reg_data);
3731 	if (ret_val)
3732 		return ret_val;
3733 
3734 	switch (hw->phy.type) {
3735 	case e1000_phy_igp_3:
3736 		ret_val = e1000e_copper_link_setup_igp(hw);
3737 		if (ret_val)
3738 			return ret_val;
3739 		break;
3740 	case e1000_phy_bm:
3741 	case e1000_phy_82578:
3742 		ret_val = e1000e_copper_link_setup_m88(hw);
3743 		if (ret_val)
3744 			return ret_val;
3745 		break;
3746 	case e1000_phy_82577:
3747 	case e1000_phy_82579:
3748 	case e1000_phy_i217:
3749 		ret_val = e1000_copper_link_setup_82577(hw);
3750 		if (ret_val)
3751 			return ret_val;
3752 		break;
3753 	case e1000_phy_ife:
3754 		ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
3755 		if (ret_val)
3756 			return ret_val;
3757 
3758 		reg_data &= ~IFE_PMC_AUTO_MDIX;
3759 
3760 		switch (hw->phy.mdix) {
3761 		case 1:
3762 			reg_data &= ~IFE_PMC_FORCE_MDIX;
3763 			break;
3764 		case 2:
3765 			reg_data |= IFE_PMC_FORCE_MDIX;
3766 			break;
3767 		case 0:
3768 		default:
3769 			reg_data |= IFE_PMC_AUTO_MDIX;
3770 			break;
3771 		}
3772 		ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
3773 		if (ret_val)
3774 			return ret_val;
3775 		break;
3776 	default:
3777 		break;
3778 	}
3779 
3780 	return e1000e_setup_copper_link(hw);
3781 }
3782 
3783 /**
3784  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
3785  *  @hw: pointer to the HW structure
3786  *  @speed: pointer to store current link speed
3787  *  @duplex: pointer to store the current link duplex
3788  *
3789  *  Calls the generic get_speed_and_duplex to retrieve the current link
3790  *  information and then calls the Kumeran lock loss workaround for links at
3791  *  gigabit speeds.
3792  **/
3793 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
3794 					  u16 *duplex)
3795 {
3796 	s32 ret_val;
3797 
3798 	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
3799 	if (ret_val)
3800 		return ret_val;
3801 
3802 	if ((hw->mac.type == e1000_ich8lan) &&
3803 	    (hw->phy.type == e1000_phy_igp_3) &&
3804 	    (*speed == SPEED_1000)) {
3805 		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
3806 	}
3807 
3808 	return ret_val;
3809 }
3810 
3811 /**
3812  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
3813  *  @hw: pointer to the HW structure
3814  *
3815  *  Work-around for 82566 Kumeran PCS lock loss:
3816  *  On link status change (i.e. PCI reset, speed change) and link is up and
3817  *  speed is gigabit-
3818  *    0) if workaround is optionally disabled do nothing
3819  *    1) wait 1ms for Kumeran link to come up
3820  *    2) check Kumeran Diagnostic register PCS lock loss bit
3821  *    3) if not set the link is locked (all is good), otherwise...
3822  *    4) reset the PHY
3823  *    5) repeat up to 10 times
3824  *  Note: this is only called for IGP3 copper when speed is 1gb.
3825  **/
3826 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
3827 {
3828 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3829 	u32 phy_ctrl;
3830 	s32 ret_val;
3831 	u16 i, data;
3832 	bool link;
3833 
3834 	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
3835 		return 0;
3836 
3837 	/* Make sure link is up before proceeding.  If not just return.
3838 	 * Attempting this while link is negotiating fouled up link
3839 	 * stability
3840 	 */
3841 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3842 	if (!link)
3843 		return 0;
3844 
3845 	for (i = 0; i < 10; i++) {
3846 		/* read once to clear */
3847 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3848 		if (ret_val)
3849 			return ret_val;
3850 		/* and again to get new status */
3851 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3852 		if (ret_val)
3853 			return ret_val;
3854 
3855 		/* check for PCS lock */
3856 		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
3857 			return 0;
3858 
3859 		/* Issue PHY reset */
3860 		e1000_phy_hw_reset(hw);
3861 		mdelay(5);
3862 	}
3863 	/* Disable GigE link negotiation */
3864 	phy_ctrl = er32(PHY_CTRL);
3865 	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
3866 		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3867 	ew32(PHY_CTRL, phy_ctrl);
3868 
3869 	/* Call gig speed drop workaround on Gig disable before accessing
3870 	 * any PHY registers
3871 	 */
3872 	e1000e_gig_downshift_workaround_ich8lan(hw);
3873 
3874 	/* unable to acquire PCS lock */
3875 	return -E1000_ERR_PHY;
3876 }
3877 
3878 /**
3879  *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
3880  *  @hw: pointer to the HW structure
3881  *  @state: boolean value used to set the current Kumeran workaround state
3882  *
3883  *  If ICH8, set the current Kumeran workaround state (enabled - true
3884  *  /disabled - false).
3885  **/
3886 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
3887 						 bool state)
3888 {
3889 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3890 
3891 	if (hw->mac.type != e1000_ich8lan) {
3892 		e_dbg("Workaround applies to ICH8 only.\n");
3893 		return;
3894 	}
3895 
3896 	dev_spec->kmrn_lock_loss_workaround_enabled = state;
3897 }
3898 
3899 /**
3900  *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
3901  *  @hw: pointer to the HW structure
3902  *
3903  *  Workaround for 82566 power-down on D3 entry:
3904  *    1) disable gigabit link
3905  *    2) write VR power-down enable
3906  *    3) read it back
3907  *  Continue if successful, else issue LCD reset and repeat
3908  **/
3909 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
3910 {
3911 	u32 reg;
3912 	u16 data;
3913 	u8  retry = 0;
3914 
3915 	if (hw->phy.type != e1000_phy_igp_3)
3916 		return;
3917 
3918 	/* Try the workaround twice (if needed) */
3919 	do {
3920 		/* Disable link */
3921 		reg = er32(PHY_CTRL);
3922 		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
3923 			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3924 		ew32(PHY_CTRL, reg);
3925 
3926 		/* Call gig speed drop workaround on Gig disable before
3927 		 * accessing any PHY registers
3928 		 */
3929 		if (hw->mac.type == e1000_ich8lan)
3930 			e1000e_gig_downshift_workaround_ich8lan(hw);
3931 
3932 		/* Write VR power-down enable */
3933 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
3934 		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3935 		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
3936 
3937 		/* Read it back and test */
3938 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
3939 		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3940 		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
3941 			break;
3942 
3943 		/* Issue PHY reset and repeat at most one more time */
3944 		reg = er32(CTRL);
3945 		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
3946 		retry++;
3947 	} while (retry);
3948 }
3949 
3950 /**
3951  *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
3952  *  @hw: pointer to the HW structure
3953  *
3954  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
3955  *  LPLU, Gig disable, MDIC PHY reset):
3956  *    1) Set Kumeran Near-end loopback
3957  *    2) Clear Kumeran Near-end loopback
3958  *  Should only be called for ICH8[m] devices with any 1G Phy.
3959  **/
3960 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
3961 {
3962 	s32 ret_val;
3963 	u16 reg_data;
3964 
3965 	if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
3966 		return;
3967 
3968 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3969 				      &reg_data);
3970 	if (ret_val)
3971 		return;
3972 	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
3973 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3974 				       reg_data);
3975 	if (ret_val)
3976 		return;
3977 	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
3978 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3979 				       reg_data);
3980 }
3981 
3982 /**
3983  *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
3984  *  @hw: pointer to the HW structure
3985  *
3986  *  During S0 to Sx transition, it is possible the link remains at gig
3987  *  instead of negotiating to a lower speed.  Before going to Sx, set
3988  *  'Gig Disable' to force link speed negotiation to a lower speed based on
3989  *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
3990  *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
3991  *  needs to be written.
3992  *  Parts that support (and are linked to a partner which support) EEE in
3993  *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
3994  *  than 10Mbps w/o EEE.
3995  **/
3996 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
3997 {
3998 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3999 	u32 phy_ctrl;
4000 	s32 ret_val;
4001 
4002 	phy_ctrl = er32(PHY_CTRL);
4003 	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
4004 	if (hw->phy.type == e1000_phy_i217) {
4005 		u16 phy_reg;
4006 
4007 		ret_val = hw->phy.ops.acquire(hw);
4008 		if (ret_val)
4009 			goto out;
4010 
4011 		if (!dev_spec->eee_disable) {
4012 			u16 eee_advert;
4013 
4014 			ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR,
4015 						  I217_EEE_ADVERTISEMENT);
4016 			if (ret_val)
4017 				goto release;
4018 			e1e_rphy_locked(hw, I82579_EMI_DATA, &eee_advert);
4019 
4020 			/* Disable LPLU if both link partners support 100BaseT
4021 			 * EEE and 100Full is advertised on both ends of the
4022 			 * link.
4023 			 */
4024 			if ((eee_advert & I217_EEE_100_SUPPORTED) &&
4025 			    (dev_spec->eee_lp_ability &
4026 			     I217_EEE_100_SUPPORTED) &&
4027 			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL))
4028 				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
4029 					      E1000_PHY_CTRL_NOND0A_LPLU);
4030 		}
4031 
4032 		/* For i217 Intel Rapid Start Technology support,
4033 		 * when the system is going into Sx and no manageability engine
4034 		 * is present, the driver must configure proxy to reset only on
4035 		 * power good.  LPI (Low Power Idle) state must also reset only
4036 		 * on power good, as well as the MTA (Multicast table array).
4037 		 * The SMBus release must also be disabled on LCD reset.
4038 		 */
4039 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
4040 
4041 			/* Enable proxy to reset only on power good. */
4042 			e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
4043 			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
4044 			e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
4045 
4046 			/* Set bit enable LPI (EEE) to reset only on
4047 			 * power good.
4048 			 */
4049 			e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
4050 			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
4051 			e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
4052 
4053 			/* Disable the SMB release on LCD reset. */
4054 			e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
4055 			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
4056 			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
4057 		}
4058 
4059 		/* Enable MTA to reset for Intel Rapid Start Technology
4060 		 * Support
4061 		 */
4062 		e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
4063 		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
4064 		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
4065 
4066 release:
4067 		hw->phy.ops.release(hw);
4068 	}
4069 out:
4070 	ew32(PHY_CTRL, phy_ctrl);
4071 
4072 	if (hw->mac.type == e1000_ich8lan)
4073 		e1000e_gig_downshift_workaround_ich8lan(hw);
4074 
4075 	if (hw->mac.type >= e1000_pchlan) {
4076 		e1000_oem_bits_config_ich8lan(hw, false);
4077 
4078 		/* Reset PHY to activate OEM bits on 82577/8 */
4079 		if (hw->mac.type == e1000_pchlan)
4080 			e1000e_phy_hw_reset_generic(hw);
4081 
4082 		ret_val = hw->phy.ops.acquire(hw);
4083 		if (ret_val)
4084 			return;
4085 		e1000_write_smbus_addr(hw);
4086 		hw->phy.ops.release(hw);
4087 	}
4088 }
4089 
4090 /**
4091  *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
4092  *  @hw: pointer to the HW structure
4093  *
4094  *  During Sx to S0 transitions on non-managed devices or managed devices
4095  *  on which PHY resets are not blocked, if the PHY registers cannot be
4096  *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
4097  *  the PHY.
4098  *  On i217, setup Intel Rapid Start Technology.
4099  **/
4100 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
4101 {
4102 	s32 ret_val;
4103 
4104 	if (hw->mac.type < e1000_pch2lan)
4105 		return;
4106 
4107 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
4108 	if (ret_val) {
4109 		e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
4110 		return;
4111 	}
4112 
4113 	/* For i217 Intel Rapid Start Technology support when the system
4114 	 * is transitioning from Sx and no manageability engine is present
4115 	 * configure SMBus to restore on reset, disable proxy, and enable
4116 	 * the reset on MTA (Multicast table array).
4117 	 */
4118 	if (hw->phy.type == e1000_phy_i217) {
4119 		u16 phy_reg;
4120 
4121 		ret_val = hw->phy.ops.acquire(hw);
4122 		if (ret_val) {
4123 			e_dbg("Failed to setup iRST\n");
4124 			return;
4125 		}
4126 
4127 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
4128 			/* Restore clear on SMB if no manageability engine
4129 			 * is present
4130 			 */
4131 			ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
4132 			if (ret_val)
4133 				goto release;
4134 			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
4135 			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
4136 
4137 			/* Disable Proxy */
4138 			e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
4139 		}
4140 		/* Enable reset on MTA */
4141 		ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
4142 		if (ret_val)
4143 			goto release;
4144 		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
4145 		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
4146 release:
4147 		if (ret_val)
4148 			e_dbg("Error %d in resume workarounds\n", ret_val);
4149 		hw->phy.ops.release(hw);
4150 	}
4151 }
4152 
4153 /**
4154  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
4155  *  @hw: pointer to the HW structure
4156  *
4157  *  Return the LED back to the default configuration.
4158  **/
4159 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
4160 {
4161 	if (hw->phy.type == e1000_phy_ife)
4162 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
4163 
4164 	ew32(LEDCTL, hw->mac.ledctl_default);
4165 	return 0;
4166 }
4167 
4168 /**
4169  *  e1000_led_on_ich8lan - Turn LEDs on
4170  *  @hw: pointer to the HW structure
4171  *
4172  *  Turn on the LEDs.
4173  **/
4174 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
4175 {
4176 	if (hw->phy.type == e1000_phy_ife)
4177 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
4178 				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
4179 
4180 	ew32(LEDCTL, hw->mac.ledctl_mode2);
4181 	return 0;
4182 }
4183 
4184 /**
4185  *  e1000_led_off_ich8lan - Turn LEDs off
4186  *  @hw: pointer to the HW structure
4187  *
4188  *  Turn off the LEDs.
4189  **/
4190 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
4191 {
4192 	if (hw->phy.type == e1000_phy_ife)
4193 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
4194 				(IFE_PSCL_PROBE_MODE |
4195 				 IFE_PSCL_PROBE_LEDS_OFF));
4196 
4197 	ew32(LEDCTL, hw->mac.ledctl_mode1);
4198 	return 0;
4199 }
4200 
4201 /**
4202  *  e1000_setup_led_pchlan - Configures SW controllable LED
4203  *  @hw: pointer to the HW structure
4204  *
4205  *  This prepares the SW controllable LED for use.
4206  **/
4207 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
4208 {
4209 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
4210 }
4211 
4212 /**
4213  *  e1000_cleanup_led_pchlan - Restore the default LED operation
4214  *  @hw: pointer to the HW structure
4215  *
4216  *  Return the LED back to the default configuration.
4217  **/
4218 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
4219 {
4220 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
4221 }
4222 
4223 /**
4224  *  e1000_led_on_pchlan - Turn LEDs on
4225  *  @hw: pointer to the HW structure
4226  *
4227  *  Turn on the LEDs.
4228  **/
4229 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
4230 {
4231 	u16 data = (u16)hw->mac.ledctl_mode2;
4232 	u32 i, led;
4233 
4234 	/* If no link, then turn LED on by setting the invert bit
4235 	 * for each LED that's mode is "link_up" in ledctl_mode2.
4236 	 */
4237 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
4238 		for (i = 0; i < 3; i++) {
4239 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
4240 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
4241 			    E1000_LEDCTL_MODE_LINK_UP)
4242 				continue;
4243 			if (led & E1000_PHY_LED0_IVRT)
4244 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
4245 			else
4246 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
4247 		}
4248 	}
4249 
4250 	return e1e_wphy(hw, HV_LED_CONFIG, data);
4251 }
4252 
4253 /**
4254  *  e1000_led_off_pchlan - Turn LEDs off
4255  *  @hw: pointer to the HW structure
4256  *
4257  *  Turn off the LEDs.
4258  **/
4259 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
4260 {
4261 	u16 data = (u16)hw->mac.ledctl_mode1;
4262 	u32 i, led;
4263 
4264 	/* If no link, then turn LED off by clearing the invert bit
4265 	 * for each LED that's mode is "link_up" in ledctl_mode1.
4266 	 */
4267 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
4268 		for (i = 0; i < 3; i++) {
4269 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
4270 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
4271 			    E1000_LEDCTL_MODE_LINK_UP)
4272 				continue;
4273 			if (led & E1000_PHY_LED0_IVRT)
4274 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
4275 			else
4276 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
4277 		}
4278 	}
4279 
4280 	return e1e_wphy(hw, HV_LED_CONFIG, data);
4281 }
4282 
4283 /**
4284  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
4285  *  @hw: pointer to the HW structure
4286  *
4287  *  Read appropriate register for the config done bit for completion status
4288  *  and configure the PHY through s/w for EEPROM-less parts.
4289  *
4290  *  NOTE: some silicon which is EEPROM-less will fail trying to read the
4291  *  config done bit, so only an error is logged and continues.  If we were
4292  *  to return with error, EEPROM-less silicon would not be able to be reset
4293  *  or change link.
4294  **/
4295 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
4296 {
4297 	s32 ret_val = 0;
4298 	u32 bank = 0;
4299 	u32 status;
4300 
4301 	e1000e_get_cfg_done(hw);
4302 
4303 	/* Wait for indication from h/w that it has completed basic config */
4304 	if (hw->mac.type >= e1000_ich10lan) {
4305 		e1000_lan_init_done_ich8lan(hw);
4306 	} else {
4307 		ret_val = e1000e_get_auto_rd_done(hw);
4308 		if (ret_val) {
4309 			/* When auto config read does not complete, do not
4310 			 * return with an error. This can happen in situations
4311 			 * where there is no eeprom and prevents getting link.
4312 			 */
4313 			e_dbg("Auto Read Done did not complete\n");
4314 			ret_val = 0;
4315 		}
4316 	}
4317 
4318 	/* Clear PHY Reset Asserted bit */
4319 	status = er32(STATUS);
4320 	if (status & E1000_STATUS_PHYRA)
4321 		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
4322 	else
4323 		e_dbg("PHY Reset Asserted not set - needs delay\n");
4324 
4325 	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
4326 	if (hw->mac.type <= e1000_ich9lan) {
4327 		if (!(er32(EECD) & E1000_EECD_PRES) &&
4328 		    (hw->phy.type == e1000_phy_igp_3)) {
4329 			e1000e_phy_init_script_igp3(hw);
4330 		}
4331 	} else {
4332 		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
4333 			/* Maybe we should do a basic PHY config */
4334 			e_dbg("EEPROM not present\n");
4335 			ret_val = -E1000_ERR_CONFIG;
4336 		}
4337 	}
4338 
4339 	return ret_val;
4340 }
4341 
4342 /**
4343  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
4344  * @hw: pointer to the HW structure
4345  *
4346  * In the case of a PHY power down to save power, or to turn off link during a
4347  * driver unload, or wake on lan is not enabled, remove the link.
4348  **/
4349 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
4350 {
4351 	/* If the management interface is not enabled, then power down */
4352 	if (!(hw->mac.ops.check_mng_mode(hw) ||
4353 	      hw->phy.ops.check_reset_block(hw)))
4354 		e1000_power_down_phy_copper(hw);
4355 }
4356 
4357 /**
4358  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
4359  *  @hw: pointer to the HW structure
4360  *
4361  *  Clears hardware counters specific to the silicon family and calls
4362  *  clear_hw_cntrs_generic to clear all general purpose counters.
4363  **/
4364 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
4365 {
4366 	u16 phy_data;
4367 	s32 ret_val;
4368 
4369 	e1000e_clear_hw_cntrs_base(hw);
4370 
4371 	er32(ALGNERRC);
4372 	er32(RXERRC);
4373 	er32(TNCRS);
4374 	er32(CEXTERR);
4375 	er32(TSCTC);
4376 	er32(TSCTFC);
4377 
4378 	er32(MGTPRC);
4379 	er32(MGTPDC);
4380 	er32(MGTPTC);
4381 
4382 	er32(IAC);
4383 	er32(ICRXOC);
4384 
4385 	/* Clear PHY statistics registers */
4386 	if ((hw->phy.type == e1000_phy_82578) ||
4387 	    (hw->phy.type == e1000_phy_82579) ||
4388 	    (hw->phy.type == e1000_phy_i217) ||
4389 	    (hw->phy.type == e1000_phy_82577)) {
4390 		ret_val = hw->phy.ops.acquire(hw);
4391 		if (ret_val)
4392 			return;
4393 		ret_val = hw->phy.ops.set_page(hw,
4394 					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
4395 		if (ret_val)
4396 			goto release;
4397 		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4398 		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4399 		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4400 		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4401 		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4402 		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4403 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4404 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4405 		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4406 		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4407 		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4408 		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4409 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4410 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4411 release:
4412 		hw->phy.ops.release(hw);
4413 	}
4414 }
4415 
4416 static const struct e1000_mac_operations ich8_mac_ops = {
4417 	/* check_mng_mode dependent on mac type */
4418 	.check_for_link		= e1000_check_for_copper_link_ich8lan,
4419 	/* cleanup_led dependent on mac type */
4420 	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
4421 	.get_bus_info		= e1000_get_bus_info_ich8lan,
4422 	.set_lan_id		= e1000_set_lan_id_single_port,
4423 	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
4424 	/* led_on dependent on mac type */
4425 	/* led_off dependent on mac type */
4426 	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
4427 	.reset_hw		= e1000_reset_hw_ich8lan,
4428 	.init_hw		= e1000_init_hw_ich8lan,
4429 	.setup_link		= e1000_setup_link_ich8lan,
4430 	.setup_physical_interface= e1000_setup_copper_link_ich8lan,
4431 	/* id_led_init dependent on mac type */
4432 	.config_collision_dist	= e1000e_config_collision_dist_generic,
4433 	.rar_set		= e1000e_rar_set_generic,
4434 };
4435 
4436 static const struct e1000_phy_operations ich8_phy_ops = {
4437 	.acquire		= e1000_acquire_swflag_ich8lan,
4438 	.check_reset_block	= e1000_check_reset_block_ich8lan,
4439 	.commit			= NULL,
4440 	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
4441 	.get_cable_length	= e1000e_get_cable_length_igp_2,
4442 	.read_reg		= e1000e_read_phy_reg_igp,
4443 	.release		= e1000_release_swflag_ich8lan,
4444 	.reset			= e1000_phy_hw_reset_ich8lan,
4445 	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
4446 	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
4447 	.write_reg		= e1000e_write_phy_reg_igp,
4448 };
4449 
4450 static const struct e1000_nvm_operations ich8_nvm_ops = {
4451 	.acquire		= e1000_acquire_nvm_ich8lan,
4452 	.read		 	= e1000_read_nvm_ich8lan,
4453 	.release		= e1000_release_nvm_ich8lan,
4454 	.reload			= e1000e_reload_nvm_generic,
4455 	.update			= e1000_update_nvm_checksum_ich8lan,
4456 	.valid_led_default	= e1000_valid_led_default_ich8lan,
4457 	.validate		= e1000_validate_nvm_checksum_ich8lan,
4458 	.write			= e1000_write_nvm_ich8lan,
4459 };
4460 
4461 const struct e1000_info e1000_ich8_info = {
4462 	.mac			= e1000_ich8lan,
4463 	.flags			= FLAG_HAS_WOL
4464 				  | FLAG_IS_ICH
4465 				  | FLAG_HAS_CTRLEXT_ON_LOAD
4466 				  | FLAG_HAS_AMT
4467 				  | FLAG_HAS_FLASH
4468 				  | FLAG_APME_IN_WUC,
4469 	.pba			= 8,
4470 	.max_hw_frame_size	= ETH_FRAME_LEN + ETH_FCS_LEN,
4471 	.get_variants		= e1000_get_variants_ich8lan,
4472 	.mac_ops		= &ich8_mac_ops,
4473 	.phy_ops		= &ich8_phy_ops,
4474 	.nvm_ops		= &ich8_nvm_ops,
4475 };
4476 
4477 const struct e1000_info e1000_ich9_info = {
4478 	.mac			= e1000_ich9lan,
4479 	.flags			= FLAG_HAS_JUMBO_FRAMES
4480 				  | FLAG_IS_ICH
4481 				  | FLAG_HAS_WOL
4482 				  | FLAG_HAS_CTRLEXT_ON_LOAD
4483 				  | FLAG_HAS_AMT
4484 				  | FLAG_HAS_FLASH
4485 				  | FLAG_APME_IN_WUC,
4486 	.pba			= 18,
4487 	.max_hw_frame_size	= DEFAULT_JUMBO,
4488 	.get_variants		= e1000_get_variants_ich8lan,
4489 	.mac_ops		= &ich8_mac_ops,
4490 	.phy_ops		= &ich8_phy_ops,
4491 	.nvm_ops		= &ich8_nvm_ops,
4492 };
4493 
4494 const struct e1000_info e1000_ich10_info = {
4495 	.mac			= e1000_ich10lan,
4496 	.flags			= FLAG_HAS_JUMBO_FRAMES
4497 				  | FLAG_IS_ICH
4498 				  | FLAG_HAS_WOL
4499 				  | FLAG_HAS_CTRLEXT_ON_LOAD
4500 				  | FLAG_HAS_AMT
4501 				  | FLAG_HAS_FLASH
4502 				  | FLAG_APME_IN_WUC,
4503 	.pba			= 18,
4504 	.max_hw_frame_size	= DEFAULT_JUMBO,
4505 	.get_variants		= e1000_get_variants_ich8lan,
4506 	.mac_ops		= &ich8_mac_ops,
4507 	.phy_ops		= &ich8_phy_ops,
4508 	.nvm_ops		= &ich8_nvm_ops,
4509 };
4510 
4511 const struct e1000_info e1000_pch_info = {
4512 	.mac			= e1000_pchlan,
4513 	.flags			= FLAG_IS_ICH
4514 				  | FLAG_HAS_WOL
4515 				  | FLAG_HAS_CTRLEXT_ON_LOAD
4516 				  | FLAG_HAS_AMT
4517 				  | FLAG_HAS_FLASH
4518 				  | FLAG_HAS_JUMBO_FRAMES
4519 				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
4520 				  | FLAG_APME_IN_WUC,
4521 	.flags2			= FLAG2_HAS_PHY_STATS,
4522 	.pba			= 26,
4523 	.max_hw_frame_size	= 4096,
4524 	.get_variants		= e1000_get_variants_ich8lan,
4525 	.mac_ops		= &ich8_mac_ops,
4526 	.phy_ops		= &ich8_phy_ops,
4527 	.nvm_ops		= &ich8_nvm_ops,
4528 };
4529 
4530 const struct e1000_info e1000_pch2_info = {
4531 	.mac			= e1000_pch2lan,
4532 	.flags			= FLAG_IS_ICH
4533 				  | FLAG_HAS_WOL
4534 				  | FLAG_HAS_CTRLEXT_ON_LOAD
4535 				  | FLAG_HAS_AMT
4536 				  | FLAG_HAS_FLASH
4537 				  | FLAG_HAS_JUMBO_FRAMES
4538 				  | FLAG_APME_IN_WUC,
4539 	.flags2			= FLAG2_HAS_PHY_STATS
4540 				  | FLAG2_HAS_EEE,
4541 	.pba			= 26,
4542 	.max_hw_frame_size	= DEFAULT_JUMBO,
4543 	.get_variants		= e1000_get_variants_ich8lan,
4544 	.mac_ops		= &ich8_mac_ops,
4545 	.phy_ops		= &ich8_phy_ops,
4546 	.nvm_ops		= &ich8_nvm_ops,
4547 };
4548 
4549 const struct e1000_info e1000_pch_lpt_info = {
4550 	.mac			= e1000_pch_lpt,
4551 	.flags			= FLAG_IS_ICH
4552 				  | FLAG_HAS_WOL
4553 				  | FLAG_HAS_CTRLEXT_ON_LOAD
4554 				  | FLAG_HAS_AMT
4555 				  | FLAG_HAS_FLASH
4556 				  | FLAG_HAS_JUMBO_FRAMES
4557 				  | FLAG_APME_IN_WUC,
4558 	.flags2			= FLAG2_HAS_PHY_STATS
4559 				  | FLAG2_HAS_EEE,
4560 	.pba			= 26,
4561 	.max_hw_frame_size	= DEFAULT_JUMBO,
4562 	.get_variants		= e1000_get_variants_ich8lan,
4563 	.mac_ops		= &ich8_mac_ops,
4564 	.phy_ops		= &ich8_phy_ops,
4565 	.nvm_ops		= &ich8_nvm_ops,
4566 };
4567