1 /* Intel PRO/1000 Linux driver 2 * Copyright(c) 1999 - 2015 Intel Corporation. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms and conditions of the GNU General Public License, 6 * version 2, as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope it will be useful, but WITHOUT 9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 11 * more details. 12 * 13 * The full GNU General Public License is included in this distribution in 14 * the file called "COPYING". 15 * 16 * Contact Information: 17 * Linux NICS <linux.nics@intel.com> 18 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 19 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 20 */ 21 22 /* 82562G 10/100 Network Connection 23 * 82562G-2 10/100 Network Connection 24 * 82562GT 10/100 Network Connection 25 * 82562GT-2 10/100 Network Connection 26 * 82562V 10/100 Network Connection 27 * 82562V-2 10/100 Network Connection 28 * 82566DC-2 Gigabit Network Connection 29 * 82566DC Gigabit Network Connection 30 * 82566DM-2 Gigabit Network Connection 31 * 82566DM Gigabit Network Connection 32 * 82566MC Gigabit Network Connection 33 * 82566MM Gigabit Network Connection 34 * 82567LM Gigabit Network Connection 35 * 82567LF Gigabit Network Connection 36 * 82567V Gigabit Network Connection 37 * 82567LM-2 Gigabit Network Connection 38 * 82567LF-2 Gigabit Network Connection 39 * 82567V-2 Gigabit Network Connection 40 * 82567LF-3 Gigabit Network Connection 41 * 82567LM-3 Gigabit Network Connection 42 * 82567LM-4 Gigabit Network Connection 43 * 82577LM Gigabit Network Connection 44 * 82577LC Gigabit Network Connection 45 * 82578DM Gigabit Network Connection 46 * 82578DC Gigabit Network Connection 47 * 82579LM Gigabit Network Connection 48 * 82579V Gigabit Network Connection 49 * Ethernet Connection I217-LM 50 * Ethernet Connection I217-V 51 * Ethernet Connection I218-V 52 * Ethernet Connection I218-LM 53 * Ethernet Connection (2) I218-LM 54 * Ethernet Connection (2) I218-V 55 * Ethernet Connection (3) I218-LM 56 * Ethernet Connection (3) I218-V 57 */ 58 59 #include "e1000.h" 60 61 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */ 62 /* Offset 04h HSFSTS */ 63 union ich8_hws_flash_status { 64 struct ich8_hsfsts { 65 u16 flcdone:1; /* bit 0 Flash Cycle Done */ 66 u16 flcerr:1; /* bit 1 Flash Cycle Error */ 67 u16 dael:1; /* bit 2 Direct Access error Log */ 68 u16 berasesz:2; /* bit 4:3 Sector Erase Size */ 69 u16 flcinprog:1; /* bit 5 flash cycle in Progress */ 70 u16 reserved1:2; /* bit 13:6 Reserved */ 71 u16 reserved2:6; /* bit 13:6 Reserved */ 72 u16 fldesvalid:1; /* bit 14 Flash Descriptor Valid */ 73 u16 flockdn:1; /* bit 15 Flash Config Lock-Down */ 74 } hsf_status; 75 u16 regval; 76 }; 77 78 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */ 79 /* Offset 06h FLCTL */ 80 union ich8_hws_flash_ctrl { 81 struct ich8_hsflctl { 82 u16 flcgo:1; /* 0 Flash Cycle Go */ 83 u16 flcycle:2; /* 2:1 Flash Cycle */ 84 u16 reserved:5; /* 7:3 Reserved */ 85 u16 fldbcount:2; /* 9:8 Flash Data Byte Count */ 86 u16 flockdn:6; /* 15:10 Reserved */ 87 } hsf_ctrl; 88 u16 regval; 89 }; 90 91 /* ICH Flash Region Access Permissions */ 92 union ich8_hws_flash_regacc { 93 struct ich8_flracc { 94 u32 grra:8; /* 0:7 GbE region Read Access */ 95 u32 grwa:8; /* 8:15 GbE region Write Access */ 96 u32 gmrag:8; /* 23:16 GbE Master Read Access Grant */ 97 u32 gmwag:8; /* 31:24 GbE Master Write Access Grant */ 98 } hsf_flregacc; 99 u16 regval; 100 }; 101 102 /* ICH Flash Protected Region */ 103 union ich8_flash_protected_range { 104 struct ich8_pr { 105 u32 base:13; /* 0:12 Protected Range Base */ 106 u32 reserved1:2; /* 13:14 Reserved */ 107 u32 rpe:1; /* 15 Read Protection Enable */ 108 u32 limit:13; /* 16:28 Protected Range Limit */ 109 u32 reserved2:2; /* 29:30 Reserved */ 110 u32 wpe:1; /* 31 Write Protection Enable */ 111 } range; 112 u32 regval; 113 }; 114 115 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw); 116 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw); 117 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank); 118 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw, 119 u32 offset, u8 byte); 120 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, 121 u8 *data); 122 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset, 123 u16 *data); 124 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, 125 u8 size, u16 *data); 126 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset, 127 u32 *data); 128 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, 129 u32 offset, u32 *data); 130 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, 131 u32 offset, u32 data); 132 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw, 133 u32 offset, u32 dword); 134 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw); 135 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw); 136 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw); 137 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw); 138 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw); 139 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw); 140 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw); 141 static s32 e1000_led_on_pchlan(struct e1000_hw *hw); 142 static s32 e1000_led_off_pchlan(struct e1000_hw *hw); 143 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active); 144 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw); 145 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw); 146 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link); 147 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw); 148 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw); 149 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw); 150 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index); 151 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index); 152 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw); 153 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw); 154 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate); 155 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force); 156 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw); 157 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state); 158 159 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg) 160 { 161 return readw(hw->flash_address + reg); 162 } 163 164 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg) 165 { 166 return readl(hw->flash_address + reg); 167 } 168 169 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val) 170 { 171 writew(val, hw->flash_address + reg); 172 } 173 174 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val) 175 { 176 writel(val, hw->flash_address + reg); 177 } 178 179 #define er16flash(reg) __er16flash(hw, (reg)) 180 #define er32flash(reg) __er32flash(hw, (reg)) 181 #define ew16flash(reg, val) __ew16flash(hw, (reg), (val)) 182 #define ew32flash(reg, val) __ew32flash(hw, (reg), (val)) 183 184 /** 185 * e1000_phy_is_accessible_pchlan - Check if able to access PHY registers 186 * @hw: pointer to the HW structure 187 * 188 * Test access to the PHY registers by reading the PHY ID registers. If 189 * the PHY ID is already known (e.g. resume path) compare it with known ID, 190 * otherwise assume the read PHY ID is correct if it is valid. 191 * 192 * Assumes the sw/fw/hw semaphore is already acquired. 193 **/ 194 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw) 195 { 196 u16 phy_reg = 0; 197 u32 phy_id = 0; 198 s32 ret_val = 0; 199 u16 retry_count; 200 u32 mac_reg = 0; 201 202 for (retry_count = 0; retry_count < 2; retry_count++) { 203 ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg); 204 if (ret_val || (phy_reg == 0xFFFF)) 205 continue; 206 phy_id = (u32)(phy_reg << 16); 207 208 ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg); 209 if (ret_val || (phy_reg == 0xFFFF)) { 210 phy_id = 0; 211 continue; 212 } 213 phy_id |= (u32)(phy_reg & PHY_REVISION_MASK); 214 break; 215 } 216 217 if (hw->phy.id) { 218 if (hw->phy.id == phy_id) 219 goto out; 220 } else if (phy_id) { 221 hw->phy.id = phy_id; 222 hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK); 223 goto out; 224 } 225 226 /* In case the PHY needs to be in mdio slow mode, 227 * set slow mode and try to get the PHY id again. 228 */ 229 if (hw->mac.type < e1000_pch_lpt) { 230 hw->phy.ops.release(hw); 231 ret_val = e1000_set_mdio_slow_mode_hv(hw); 232 if (!ret_val) 233 ret_val = e1000e_get_phy_id(hw); 234 hw->phy.ops.acquire(hw); 235 } 236 237 if (ret_val) 238 return false; 239 out: 240 if ((hw->mac.type == e1000_pch_lpt) || (hw->mac.type == e1000_pch_spt)) { 241 /* Only unforce SMBus if ME is not active */ 242 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) { 243 /* Unforce SMBus mode in PHY */ 244 e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg); 245 phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS; 246 e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg); 247 248 /* Unforce SMBus mode in MAC */ 249 mac_reg = er32(CTRL_EXT); 250 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS; 251 ew32(CTRL_EXT, mac_reg); 252 } 253 } 254 255 return true; 256 } 257 258 /** 259 * e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value 260 * @hw: pointer to the HW structure 261 * 262 * Toggling the LANPHYPC pin value fully power-cycles the PHY and is 263 * used to reset the PHY to a quiescent state when necessary. 264 **/ 265 static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw) 266 { 267 u32 mac_reg; 268 269 /* Set Phy Config Counter to 50msec */ 270 mac_reg = er32(FEXTNVM3); 271 mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK; 272 mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC; 273 ew32(FEXTNVM3, mac_reg); 274 275 /* Toggle LANPHYPC Value bit */ 276 mac_reg = er32(CTRL); 277 mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE; 278 mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE; 279 ew32(CTRL, mac_reg); 280 e1e_flush(); 281 usleep_range(10, 20); 282 mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE; 283 ew32(CTRL, mac_reg); 284 e1e_flush(); 285 286 if (hw->mac.type < e1000_pch_lpt) { 287 msleep(50); 288 } else { 289 u16 count = 20; 290 291 do { 292 usleep_range(5000, 10000); 293 } while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--); 294 295 msleep(30); 296 } 297 } 298 299 /** 300 * e1000_init_phy_workarounds_pchlan - PHY initialization workarounds 301 * @hw: pointer to the HW structure 302 * 303 * Workarounds/flow necessary for PHY initialization during driver load 304 * and resume paths. 305 **/ 306 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw) 307 { 308 struct e1000_adapter *adapter = hw->adapter; 309 u32 mac_reg, fwsm = er32(FWSM); 310 s32 ret_val; 311 312 /* Gate automatic PHY configuration by hardware on managed and 313 * non-managed 82579 and newer adapters. 314 */ 315 e1000_gate_hw_phy_config_ich8lan(hw, true); 316 317 /* It is not possible to be certain of the current state of ULP 318 * so forcibly disable it. 319 */ 320 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown; 321 e1000_disable_ulp_lpt_lp(hw, true); 322 323 ret_val = hw->phy.ops.acquire(hw); 324 if (ret_val) { 325 e_dbg("Failed to initialize PHY flow\n"); 326 goto out; 327 } 328 329 /* The MAC-PHY interconnect may be in SMBus mode. If the PHY is 330 * inaccessible and resetting the PHY is not blocked, toggle the 331 * LANPHYPC Value bit to force the interconnect to PCIe mode. 332 */ 333 switch (hw->mac.type) { 334 case e1000_pch_lpt: 335 case e1000_pch_spt: 336 if (e1000_phy_is_accessible_pchlan(hw)) 337 break; 338 339 /* Before toggling LANPHYPC, see if PHY is accessible by 340 * forcing MAC to SMBus mode first. 341 */ 342 mac_reg = er32(CTRL_EXT); 343 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS; 344 ew32(CTRL_EXT, mac_reg); 345 346 /* Wait 50 milliseconds for MAC to finish any retries 347 * that it might be trying to perform from previous 348 * attempts to acknowledge any phy read requests. 349 */ 350 msleep(50); 351 352 /* fall-through */ 353 case e1000_pch2lan: 354 if (e1000_phy_is_accessible_pchlan(hw)) 355 break; 356 357 /* fall-through */ 358 case e1000_pchlan: 359 if ((hw->mac.type == e1000_pchlan) && 360 (fwsm & E1000_ICH_FWSM_FW_VALID)) 361 break; 362 363 if (hw->phy.ops.check_reset_block(hw)) { 364 e_dbg("Required LANPHYPC toggle blocked by ME\n"); 365 ret_val = -E1000_ERR_PHY; 366 break; 367 } 368 369 /* Toggle LANPHYPC Value bit */ 370 e1000_toggle_lanphypc_pch_lpt(hw); 371 if (hw->mac.type >= e1000_pch_lpt) { 372 if (e1000_phy_is_accessible_pchlan(hw)) 373 break; 374 375 /* Toggling LANPHYPC brings the PHY out of SMBus mode 376 * so ensure that the MAC is also out of SMBus mode 377 */ 378 mac_reg = er32(CTRL_EXT); 379 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS; 380 ew32(CTRL_EXT, mac_reg); 381 382 if (e1000_phy_is_accessible_pchlan(hw)) 383 break; 384 385 ret_val = -E1000_ERR_PHY; 386 } 387 break; 388 default: 389 break; 390 } 391 392 hw->phy.ops.release(hw); 393 if (!ret_val) { 394 395 /* Check to see if able to reset PHY. Print error if not */ 396 if (hw->phy.ops.check_reset_block(hw)) { 397 e_err("Reset blocked by ME\n"); 398 goto out; 399 } 400 401 /* Reset the PHY before any access to it. Doing so, ensures 402 * that the PHY is in a known good state before we read/write 403 * PHY registers. The generic reset is sufficient here, 404 * because we haven't determined the PHY type yet. 405 */ 406 ret_val = e1000e_phy_hw_reset_generic(hw); 407 if (ret_val) 408 goto out; 409 410 /* On a successful reset, possibly need to wait for the PHY 411 * to quiesce to an accessible state before returning control 412 * to the calling function. If the PHY does not quiesce, then 413 * return E1000E_BLK_PHY_RESET, as this is the condition that 414 * the PHY is in. 415 */ 416 ret_val = hw->phy.ops.check_reset_block(hw); 417 if (ret_val) 418 e_err("ME blocked access to PHY after reset\n"); 419 } 420 421 out: 422 /* Ungate automatic PHY configuration on non-managed 82579 */ 423 if ((hw->mac.type == e1000_pch2lan) && 424 !(fwsm & E1000_ICH_FWSM_FW_VALID)) { 425 usleep_range(10000, 20000); 426 e1000_gate_hw_phy_config_ich8lan(hw, false); 427 } 428 429 return ret_val; 430 } 431 432 /** 433 * e1000_init_phy_params_pchlan - Initialize PHY function pointers 434 * @hw: pointer to the HW structure 435 * 436 * Initialize family-specific PHY parameters and function pointers. 437 **/ 438 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw) 439 { 440 struct e1000_phy_info *phy = &hw->phy; 441 s32 ret_val; 442 443 phy->addr = 1; 444 phy->reset_delay_us = 100; 445 446 phy->ops.set_page = e1000_set_page_igp; 447 phy->ops.read_reg = e1000_read_phy_reg_hv; 448 phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked; 449 phy->ops.read_reg_page = e1000_read_phy_reg_page_hv; 450 phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan; 451 phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan; 452 phy->ops.write_reg = e1000_write_phy_reg_hv; 453 phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked; 454 phy->ops.write_reg_page = e1000_write_phy_reg_page_hv; 455 phy->ops.power_up = e1000_power_up_phy_copper; 456 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan; 457 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; 458 459 phy->id = e1000_phy_unknown; 460 461 ret_val = e1000_init_phy_workarounds_pchlan(hw); 462 if (ret_val) 463 return ret_val; 464 465 if (phy->id == e1000_phy_unknown) 466 switch (hw->mac.type) { 467 default: 468 ret_val = e1000e_get_phy_id(hw); 469 if (ret_val) 470 return ret_val; 471 if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK)) 472 break; 473 /* fall-through */ 474 case e1000_pch2lan: 475 case e1000_pch_lpt: 476 case e1000_pch_spt: 477 /* In case the PHY needs to be in mdio slow mode, 478 * set slow mode and try to get the PHY id again. 479 */ 480 ret_val = e1000_set_mdio_slow_mode_hv(hw); 481 if (ret_val) 482 return ret_val; 483 ret_val = e1000e_get_phy_id(hw); 484 if (ret_val) 485 return ret_val; 486 break; 487 } 488 phy->type = e1000e_get_phy_type_from_id(phy->id); 489 490 switch (phy->type) { 491 case e1000_phy_82577: 492 case e1000_phy_82579: 493 case e1000_phy_i217: 494 phy->ops.check_polarity = e1000_check_polarity_82577; 495 phy->ops.force_speed_duplex = 496 e1000_phy_force_speed_duplex_82577; 497 phy->ops.get_cable_length = e1000_get_cable_length_82577; 498 phy->ops.get_info = e1000_get_phy_info_82577; 499 phy->ops.commit = e1000e_phy_sw_reset; 500 break; 501 case e1000_phy_82578: 502 phy->ops.check_polarity = e1000_check_polarity_m88; 503 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88; 504 phy->ops.get_cable_length = e1000e_get_cable_length_m88; 505 phy->ops.get_info = e1000e_get_phy_info_m88; 506 break; 507 default: 508 ret_val = -E1000_ERR_PHY; 509 break; 510 } 511 512 return ret_val; 513 } 514 515 /** 516 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers 517 * @hw: pointer to the HW structure 518 * 519 * Initialize family-specific PHY parameters and function pointers. 520 **/ 521 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw) 522 { 523 struct e1000_phy_info *phy = &hw->phy; 524 s32 ret_val; 525 u16 i = 0; 526 527 phy->addr = 1; 528 phy->reset_delay_us = 100; 529 530 phy->ops.power_up = e1000_power_up_phy_copper; 531 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan; 532 533 /* We may need to do this twice - once for IGP and if that fails, 534 * we'll set BM func pointers and try again 535 */ 536 ret_val = e1000e_determine_phy_address(hw); 537 if (ret_val) { 538 phy->ops.write_reg = e1000e_write_phy_reg_bm; 539 phy->ops.read_reg = e1000e_read_phy_reg_bm; 540 ret_val = e1000e_determine_phy_address(hw); 541 if (ret_val) { 542 e_dbg("Cannot determine PHY addr. Erroring out\n"); 543 return ret_val; 544 } 545 } 546 547 phy->id = 0; 548 while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) && 549 (i++ < 100)) { 550 usleep_range(1000, 2000); 551 ret_val = e1000e_get_phy_id(hw); 552 if (ret_val) 553 return ret_val; 554 } 555 556 /* Verify phy id */ 557 switch (phy->id) { 558 case IGP03E1000_E_PHY_ID: 559 phy->type = e1000_phy_igp_3; 560 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; 561 phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked; 562 phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked; 563 phy->ops.get_info = e1000e_get_phy_info_igp; 564 phy->ops.check_polarity = e1000_check_polarity_igp; 565 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp; 566 break; 567 case IFE_E_PHY_ID: 568 case IFE_PLUS_E_PHY_ID: 569 case IFE_C_E_PHY_ID: 570 phy->type = e1000_phy_ife; 571 phy->autoneg_mask = E1000_ALL_NOT_GIG; 572 phy->ops.get_info = e1000_get_phy_info_ife; 573 phy->ops.check_polarity = e1000_check_polarity_ife; 574 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife; 575 break; 576 case BME1000_E_PHY_ID: 577 phy->type = e1000_phy_bm; 578 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; 579 phy->ops.read_reg = e1000e_read_phy_reg_bm; 580 phy->ops.write_reg = e1000e_write_phy_reg_bm; 581 phy->ops.commit = e1000e_phy_sw_reset; 582 phy->ops.get_info = e1000e_get_phy_info_m88; 583 phy->ops.check_polarity = e1000_check_polarity_m88; 584 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88; 585 break; 586 default: 587 return -E1000_ERR_PHY; 588 } 589 590 return 0; 591 } 592 593 /** 594 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers 595 * @hw: pointer to the HW structure 596 * 597 * Initialize family-specific NVM parameters and function 598 * pointers. 599 **/ 600 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw) 601 { 602 struct e1000_nvm_info *nvm = &hw->nvm; 603 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 604 u32 gfpreg, sector_base_addr, sector_end_addr; 605 u16 i; 606 u32 nvm_size; 607 608 nvm->type = e1000_nvm_flash_sw; 609 610 if (hw->mac.type == e1000_pch_spt) { 611 /* in SPT, gfpreg doesn't exist. NVM size is taken from the 612 * STRAP register. This is because in SPT the GbE Flash region 613 * is no longer accessed through the flash registers. Instead, 614 * the mechanism has changed, and the Flash region access 615 * registers are now implemented in GbE memory space. 616 */ 617 nvm->flash_base_addr = 0; 618 nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1) 619 * NVM_SIZE_MULTIPLIER; 620 nvm->flash_bank_size = nvm_size / 2; 621 /* Adjust to word count */ 622 nvm->flash_bank_size /= sizeof(u16); 623 /* Set the base address for flash register access */ 624 hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR; 625 } else { 626 /* Can't read flash registers if register set isn't mapped. */ 627 if (!hw->flash_address) { 628 e_dbg("ERROR: Flash registers not mapped\n"); 629 return -E1000_ERR_CONFIG; 630 } 631 632 gfpreg = er32flash(ICH_FLASH_GFPREG); 633 634 /* sector_X_addr is a "sector"-aligned address (4096 bytes) 635 * Add 1 to sector_end_addr since this sector is included in 636 * the overall size. 637 */ 638 sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK; 639 sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1; 640 641 /* flash_base_addr is byte-aligned */ 642 nvm->flash_base_addr = sector_base_addr 643 << FLASH_SECTOR_ADDR_SHIFT; 644 645 /* find total size of the NVM, then cut in half since the total 646 * size represents two separate NVM banks. 647 */ 648 nvm->flash_bank_size = ((sector_end_addr - sector_base_addr) 649 << FLASH_SECTOR_ADDR_SHIFT); 650 nvm->flash_bank_size /= 2; 651 /* Adjust to word count */ 652 nvm->flash_bank_size /= sizeof(u16); 653 } 654 655 nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS; 656 657 /* Clear shadow ram */ 658 for (i = 0; i < nvm->word_size; i++) { 659 dev_spec->shadow_ram[i].modified = false; 660 dev_spec->shadow_ram[i].value = 0xFFFF; 661 } 662 663 return 0; 664 } 665 666 /** 667 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers 668 * @hw: pointer to the HW structure 669 * 670 * Initialize family-specific MAC parameters and function 671 * pointers. 672 **/ 673 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw) 674 { 675 struct e1000_mac_info *mac = &hw->mac; 676 677 /* Set media type function pointer */ 678 hw->phy.media_type = e1000_media_type_copper; 679 680 /* Set mta register count */ 681 mac->mta_reg_count = 32; 682 /* Set rar entry count */ 683 mac->rar_entry_count = E1000_ICH_RAR_ENTRIES; 684 if (mac->type == e1000_ich8lan) 685 mac->rar_entry_count--; 686 /* FWSM register */ 687 mac->has_fwsm = true; 688 /* ARC subsystem not supported */ 689 mac->arc_subsystem_valid = false; 690 /* Adaptive IFS supported */ 691 mac->adaptive_ifs = true; 692 693 /* LED and other operations */ 694 switch (mac->type) { 695 case e1000_ich8lan: 696 case e1000_ich9lan: 697 case e1000_ich10lan: 698 /* check management mode */ 699 mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan; 700 /* ID LED init */ 701 mac->ops.id_led_init = e1000e_id_led_init_generic; 702 /* blink LED */ 703 mac->ops.blink_led = e1000e_blink_led_generic; 704 /* setup LED */ 705 mac->ops.setup_led = e1000e_setup_led_generic; 706 /* cleanup LED */ 707 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan; 708 /* turn on/off LED */ 709 mac->ops.led_on = e1000_led_on_ich8lan; 710 mac->ops.led_off = e1000_led_off_ich8lan; 711 break; 712 case e1000_pch2lan: 713 mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES; 714 mac->ops.rar_set = e1000_rar_set_pch2lan; 715 /* fall-through */ 716 case e1000_pch_lpt: 717 case e1000_pch_spt: 718 case e1000_pchlan: 719 /* check management mode */ 720 mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan; 721 /* ID LED init */ 722 mac->ops.id_led_init = e1000_id_led_init_pchlan; 723 /* setup LED */ 724 mac->ops.setup_led = e1000_setup_led_pchlan; 725 /* cleanup LED */ 726 mac->ops.cleanup_led = e1000_cleanup_led_pchlan; 727 /* turn on/off LED */ 728 mac->ops.led_on = e1000_led_on_pchlan; 729 mac->ops.led_off = e1000_led_off_pchlan; 730 break; 731 default: 732 break; 733 } 734 735 if ((mac->type == e1000_pch_lpt) || (mac->type == e1000_pch_spt)) { 736 mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES; 737 mac->ops.rar_set = e1000_rar_set_pch_lpt; 738 mac->ops.setup_physical_interface = 739 e1000_setup_copper_link_pch_lpt; 740 mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt; 741 } 742 743 /* Enable PCS Lock-loss workaround for ICH8 */ 744 if (mac->type == e1000_ich8lan) 745 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true); 746 747 return 0; 748 } 749 750 /** 751 * __e1000_access_emi_reg_locked - Read/write EMI register 752 * @hw: pointer to the HW structure 753 * @addr: EMI address to program 754 * @data: pointer to value to read/write from/to the EMI address 755 * @read: boolean flag to indicate read or write 756 * 757 * This helper function assumes the SW/FW/HW Semaphore is already acquired. 758 **/ 759 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address, 760 u16 *data, bool read) 761 { 762 s32 ret_val; 763 764 ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address); 765 if (ret_val) 766 return ret_val; 767 768 if (read) 769 ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data); 770 else 771 ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data); 772 773 return ret_val; 774 } 775 776 /** 777 * e1000_read_emi_reg_locked - Read Extended Management Interface register 778 * @hw: pointer to the HW structure 779 * @addr: EMI address to program 780 * @data: value to be read from the EMI address 781 * 782 * Assumes the SW/FW/HW Semaphore is already acquired. 783 **/ 784 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data) 785 { 786 return __e1000_access_emi_reg_locked(hw, addr, data, true); 787 } 788 789 /** 790 * e1000_write_emi_reg_locked - Write Extended Management Interface register 791 * @hw: pointer to the HW structure 792 * @addr: EMI address to program 793 * @data: value to be written to the EMI address 794 * 795 * Assumes the SW/FW/HW Semaphore is already acquired. 796 **/ 797 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data) 798 { 799 return __e1000_access_emi_reg_locked(hw, addr, &data, false); 800 } 801 802 /** 803 * e1000_set_eee_pchlan - Enable/disable EEE support 804 * @hw: pointer to the HW structure 805 * 806 * Enable/disable EEE based on setting in dev_spec structure, the duplex of 807 * the link and the EEE capabilities of the link partner. The LPI Control 808 * register bits will remain set only if/when link is up. 809 * 810 * EEE LPI must not be asserted earlier than one second after link is up. 811 * On 82579, EEE LPI should not be enabled until such time otherwise there 812 * can be link issues with some switches. Other devices can have EEE LPI 813 * enabled immediately upon link up since they have a timer in hardware which 814 * prevents LPI from being asserted too early. 815 **/ 816 s32 e1000_set_eee_pchlan(struct e1000_hw *hw) 817 { 818 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 819 s32 ret_val; 820 u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data; 821 822 switch (hw->phy.type) { 823 case e1000_phy_82579: 824 lpa = I82579_EEE_LP_ABILITY; 825 pcs_status = I82579_EEE_PCS_STATUS; 826 adv_addr = I82579_EEE_ADVERTISEMENT; 827 break; 828 case e1000_phy_i217: 829 lpa = I217_EEE_LP_ABILITY; 830 pcs_status = I217_EEE_PCS_STATUS; 831 adv_addr = I217_EEE_ADVERTISEMENT; 832 break; 833 default: 834 return 0; 835 } 836 837 ret_val = hw->phy.ops.acquire(hw); 838 if (ret_val) 839 return ret_val; 840 841 ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl); 842 if (ret_val) 843 goto release; 844 845 /* Clear bits that enable EEE in various speeds */ 846 lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK; 847 848 /* Enable EEE if not disabled by user */ 849 if (!dev_spec->eee_disable) { 850 /* Save off link partner's EEE ability */ 851 ret_val = e1000_read_emi_reg_locked(hw, lpa, 852 &dev_spec->eee_lp_ability); 853 if (ret_val) 854 goto release; 855 856 /* Read EEE advertisement */ 857 ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv); 858 if (ret_val) 859 goto release; 860 861 /* Enable EEE only for speeds in which the link partner is 862 * EEE capable and for which we advertise EEE. 863 */ 864 if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED) 865 lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE; 866 867 if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) { 868 e1e_rphy_locked(hw, MII_LPA, &data); 869 if (data & LPA_100FULL) 870 lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE; 871 else 872 /* EEE is not supported in 100Half, so ignore 873 * partner's EEE in 100 ability if full-duplex 874 * is not advertised. 875 */ 876 dev_spec->eee_lp_ability &= 877 ~I82579_EEE_100_SUPPORTED; 878 } 879 } 880 881 if (hw->phy.type == e1000_phy_82579) { 882 ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT, 883 &data); 884 if (ret_val) 885 goto release; 886 887 data &= ~I82579_LPI_100_PLL_SHUT; 888 ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT, 889 data); 890 } 891 892 /* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */ 893 ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data); 894 if (ret_val) 895 goto release; 896 897 ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl); 898 release: 899 hw->phy.ops.release(hw); 900 901 return ret_val; 902 } 903 904 /** 905 * e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP 906 * @hw: pointer to the HW structure 907 * @link: link up bool flag 908 * 909 * When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications 910 * preventing further DMA write requests. Workaround the issue by disabling 911 * the de-assertion of the clock request when in 1Gpbs mode. 912 * Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link 913 * speeds in order to avoid Tx hangs. 914 **/ 915 static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link) 916 { 917 u32 fextnvm6 = er32(FEXTNVM6); 918 u32 status = er32(STATUS); 919 s32 ret_val = 0; 920 u16 reg; 921 922 if (link && (status & E1000_STATUS_SPEED_1000)) { 923 ret_val = hw->phy.ops.acquire(hw); 924 if (ret_val) 925 return ret_val; 926 927 ret_val = 928 e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG, 929 ®); 930 if (ret_val) 931 goto release; 932 933 ret_val = 934 e1000e_write_kmrn_reg_locked(hw, 935 E1000_KMRNCTRLSTA_K1_CONFIG, 936 reg & 937 ~E1000_KMRNCTRLSTA_K1_ENABLE); 938 if (ret_val) 939 goto release; 940 941 usleep_range(10, 20); 942 943 ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK); 944 945 ret_val = 946 e1000e_write_kmrn_reg_locked(hw, 947 E1000_KMRNCTRLSTA_K1_CONFIG, 948 reg); 949 release: 950 hw->phy.ops.release(hw); 951 } else { 952 /* clear FEXTNVM6 bit 8 on link down or 10/100 */ 953 fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK; 954 955 if ((hw->phy.revision > 5) || !link || 956 ((status & E1000_STATUS_SPEED_100) && 957 (status & E1000_STATUS_FD))) 958 goto update_fextnvm6; 959 960 ret_val = e1e_rphy(hw, I217_INBAND_CTRL, ®); 961 if (ret_val) 962 return ret_val; 963 964 /* Clear link status transmit timeout */ 965 reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK; 966 967 if (status & E1000_STATUS_SPEED_100) { 968 /* Set inband Tx timeout to 5x10us for 100Half */ 969 reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT; 970 971 /* Do not extend the K1 entry latency for 100Half */ 972 fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION; 973 } else { 974 /* Set inband Tx timeout to 50x10us for 10Full/Half */ 975 reg |= 50 << 976 I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT; 977 978 /* Extend the K1 entry latency for 10 Mbps */ 979 fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION; 980 } 981 982 ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg); 983 if (ret_val) 984 return ret_val; 985 986 update_fextnvm6: 987 ew32(FEXTNVM6, fextnvm6); 988 } 989 990 return ret_val; 991 } 992 993 /** 994 * e1000_platform_pm_pch_lpt - Set platform power management values 995 * @hw: pointer to the HW structure 996 * @link: bool indicating link status 997 * 998 * Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like" 999 * GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed 1000 * when link is up (which must not exceed the maximum latency supported 1001 * by the platform), otherwise specify there is no LTR requirement. 1002 * Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop 1003 * latencies in the LTR Extended Capability Structure in the PCIe Extended 1004 * Capability register set, on this device LTR is set by writing the 1005 * equivalent snoop/no-snoop latencies in the LTRV register in the MAC and 1006 * set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB) 1007 * message to the PMC. 1008 **/ 1009 static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link) 1010 { 1011 u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) | 1012 link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND; 1013 u16 lat_enc = 0; /* latency encoded */ 1014 1015 if (link) { 1016 u16 speed, duplex, scale = 0; 1017 u16 max_snoop, max_nosnoop; 1018 u16 max_ltr_enc; /* max LTR latency encoded */ 1019 u64 value; 1020 u32 rxa; 1021 1022 if (!hw->adapter->max_frame_size) { 1023 e_dbg("max_frame_size not set.\n"); 1024 return -E1000_ERR_CONFIG; 1025 } 1026 1027 hw->mac.ops.get_link_up_info(hw, &speed, &duplex); 1028 if (!speed) { 1029 e_dbg("Speed not set.\n"); 1030 return -E1000_ERR_CONFIG; 1031 } 1032 1033 /* Rx Packet Buffer Allocation size (KB) */ 1034 rxa = er32(PBA) & E1000_PBA_RXA_MASK; 1035 1036 /* Determine the maximum latency tolerated by the device. 1037 * 1038 * Per the PCIe spec, the tolerated latencies are encoded as 1039 * a 3-bit encoded scale (only 0-5 are valid) multiplied by 1040 * a 10-bit value (0-1023) to provide a range from 1 ns to 1041 * 2^25*(2^10-1) ns. The scale is encoded as 0=2^0ns, 1042 * 1=2^5ns, 2=2^10ns,...5=2^25ns. 1043 */ 1044 rxa *= 512; 1045 value = (rxa > hw->adapter->max_frame_size) ? 1046 (rxa - hw->adapter->max_frame_size) * (16000 / speed) : 1047 0; 1048 1049 while (value > PCI_LTR_VALUE_MASK) { 1050 scale++; 1051 value = DIV_ROUND_UP(value, (1 << 5)); 1052 } 1053 if (scale > E1000_LTRV_SCALE_MAX) { 1054 e_dbg("Invalid LTR latency scale %d\n", scale); 1055 return -E1000_ERR_CONFIG; 1056 } 1057 lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value); 1058 1059 /* Determine the maximum latency tolerated by the platform */ 1060 pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT, 1061 &max_snoop); 1062 pci_read_config_word(hw->adapter->pdev, 1063 E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop); 1064 max_ltr_enc = max_t(u16, max_snoop, max_nosnoop); 1065 1066 if (lat_enc > max_ltr_enc) 1067 lat_enc = max_ltr_enc; 1068 } 1069 1070 /* Set Snoop and No-Snoop latencies the same */ 1071 reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT); 1072 ew32(LTRV, reg); 1073 1074 return 0; 1075 } 1076 1077 /** 1078 * e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP 1079 * @hw: pointer to the HW structure 1080 * @to_sx: boolean indicating a system power state transition to Sx 1081 * 1082 * When link is down, configure ULP mode to significantly reduce the power 1083 * to the PHY. If on a Manageability Engine (ME) enabled system, tell the 1084 * ME firmware to start the ULP configuration. If not on an ME enabled 1085 * system, configure the ULP mode by software. 1086 */ 1087 s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx) 1088 { 1089 u32 mac_reg; 1090 s32 ret_val = 0; 1091 u16 phy_reg; 1092 u16 oem_reg = 0; 1093 1094 if ((hw->mac.type < e1000_pch_lpt) || 1095 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) || 1096 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) || 1097 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) || 1098 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) || 1099 (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on)) 1100 return 0; 1101 1102 if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) { 1103 /* Request ME configure ULP mode in the PHY */ 1104 mac_reg = er32(H2ME); 1105 mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS; 1106 ew32(H2ME, mac_reg); 1107 1108 goto out; 1109 } 1110 1111 if (!to_sx) { 1112 int i = 0; 1113 1114 /* Poll up to 5 seconds for Cable Disconnected indication */ 1115 while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) { 1116 /* Bail if link is re-acquired */ 1117 if (er32(STATUS) & E1000_STATUS_LU) 1118 return -E1000_ERR_PHY; 1119 1120 if (i++ == 100) 1121 break; 1122 1123 msleep(50); 1124 } 1125 e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n", 1126 (er32(FEXT) & 1127 E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50); 1128 } 1129 1130 ret_val = hw->phy.ops.acquire(hw); 1131 if (ret_val) 1132 goto out; 1133 1134 /* Force SMBus mode in PHY */ 1135 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg); 1136 if (ret_val) 1137 goto release; 1138 phy_reg |= CV_SMB_CTRL_FORCE_SMBUS; 1139 e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg); 1140 1141 /* Force SMBus mode in MAC */ 1142 mac_reg = er32(CTRL_EXT); 1143 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS; 1144 ew32(CTRL_EXT, mac_reg); 1145 1146 /* Si workaround for ULP entry flow on i127/rev6 h/w. Enable 1147 * LPLU and disable Gig speed when entering ULP 1148 */ 1149 if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) { 1150 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS, 1151 &oem_reg); 1152 if (ret_val) 1153 goto release; 1154 1155 phy_reg = oem_reg; 1156 phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS; 1157 1158 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS, 1159 phy_reg); 1160 1161 if (ret_val) 1162 goto release; 1163 } 1164 1165 /* Set Inband ULP Exit, Reset to SMBus mode and 1166 * Disable SMBus Release on PERST# in PHY 1167 */ 1168 ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg); 1169 if (ret_val) 1170 goto release; 1171 phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS | 1172 I218_ULP_CONFIG1_DISABLE_SMB_PERST); 1173 if (to_sx) { 1174 if (er32(WUFC) & E1000_WUFC_LNKC) 1175 phy_reg |= I218_ULP_CONFIG1_WOL_HOST; 1176 else 1177 phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST; 1178 1179 phy_reg |= I218_ULP_CONFIG1_STICKY_ULP; 1180 phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT; 1181 } else { 1182 phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT; 1183 phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP; 1184 phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST; 1185 } 1186 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg); 1187 1188 /* Set Disable SMBus Release on PERST# in MAC */ 1189 mac_reg = er32(FEXTNVM7); 1190 mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST; 1191 ew32(FEXTNVM7, mac_reg); 1192 1193 /* Commit ULP changes in PHY by starting auto ULP configuration */ 1194 phy_reg |= I218_ULP_CONFIG1_START; 1195 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg); 1196 1197 if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) && 1198 to_sx && (er32(STATUS) & E1000_STATUS_LU)) { 1199 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS, 1200 oem_reg); 1201 if (ret_val) 1202 goto release; 1203 } 1204 1205 release: 1206 hw->phy.ops.release(hw); 1207 out: 1208 if (ret_val) 1209 e_dbg("Error in ULP enable flow: %d\n", ret_val); 1210 else 1211 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on; 1212 1213 return ret_val; 1214 } 1215 1216 /** 1217 * e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP 1218 * @hw: pointer to the HW structure 1219 * @force: boolean indicating whether or not to force disabling ULP 1220 * 1221 * Un-configure ULP mode when link is up, the system is transitioned from 1222 * Sx or the driver is unloaded. If on a Manageability Engine (ME) enabled 1223 * system, poll for an indication from ME that ULP has been un-configured. 1224 * If not on an ME enabled system, un-configure the ULP mode by software. 1225 * 1226 * During nominal operation, this function is called when link is acquired 1227 * to disable ULP mode (force=false); otherwise, for example when unloading 1228 * the driver or during Sx->S0 transitions, this is called with force=true 1229 * to forcibly disable ULP. 1230 */ 1231 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force) 1232 { 1233 s32 ret_val = 0; 1234 u32 mac_reg; 1235 u16 phy_reg; 1236 int i = 0; 1237 1238 if ((hw->mac.type < e1000_pch_lpt) || 1239 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) || 1240 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) || 1241 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) || 1242 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) || 1243 (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off)) 1244 return 0; 1245 1246 if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) { 1247 if (force) { 1248 /* Request ME un-configure ULP mode in the PHY */ 1249 mac_reg = er32(H2ME); 1250 mac_reg &= ~E1000_H2ME_ULP; 1251 mac_reg |= E1000_H2ME_ENFORCE_SETTINGS; 1252 ew32(H2ME, mac_reg); 1253 } 1254 1255 /* Poll up to 100msec for ME to clear ULP_CFG_DONE */ 1256 while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) { 1257 if (i++ == 10) { 1258 ret_val = -E1000_ERR_PHY; 1259 goto out; 1260 } 1261 1262 usleep_range(10000, 20000); 1263 } 1264 e_dbg("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10); 1265 1266 if (force) { 1267 mac_reg = er32(H2ME); 1268 mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS; 1269 ew32(H2ME, mac_reg); 1270 } else { 1271 /* Clear H2ME.ULP after ME ULP configuration */ 1272 mac_reg = er32(H2ME); 1273 mac_reg &= ~E1000_H2ME_ULP; 1274 ew32(H2ME, mac_reg); 1275 } 1276 1277 goto out; 1278 } 1279 1280 ret_val = hw->phy.ops.acquire(hw); 1281 if (ret_val) 1282 goto out; 1283 1284 if (force) 1285 /* Toggle LANPHYPC Value bit */ 1286 e1000_toggle_lanphypc_pch_lpt(hw); 1287 1288 /* Unforce SMBus mode in PHY */ 1289 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg); 1290 if (ret_val) { 1291 /* The MAC might be in PCIe mode, so temporarily force to 1292 * SMBus mode in order to access the PHY. 1293 */ 1294 mac_reg = er32(CTRL_EXT); 1295 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS; 1296 ew32(CTRL_EXT, mac_reg); 1297 1298 msleep(50); 1299 1300 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, 1301 &phy_reg); 1302 if (ret_val) 1303 goto release; 1304 } 1305 phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS; 1306 e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg); 1307 1308 /* Unforce SMBus mode in MAC */ 1309 mac_reg = er32(CTRL_EXT); 1310 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS; 1311 ew32(CTRL_EXT, mac_reg); 1312 1313 /* When ULP mode was previously entered, K1 was disabled by the 1314 * hardware. Re-Enable K1 in the PHY when exiting ULP. 1315 */ 1316 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg); 1317 if (ret_val) 1318 goto release; 1319 phy_reg |= HV_PM_CTRL_K1_ENABLE; 1320 e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg); 1321 1322 /* Clear ULP enabled configuration */ 1323 ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg); 1324 if (ret_val) 1325 goto release; 1326 phy_reg &= ~(I218_ULP_CONFIG1_IND | 1327 I218_ULP_CONFIG1_STICKY_ULP | 1328 I218_ULP_CONFIG1_RESET_TO_SMBUS | 1329 I218_ULP_CONFIG1_WOL_HOST | 1330 I218_ULP_CONFIG1_INBAND_EXIT | 1331 I218_ULP_CONFIG1_DISABLE_SMB_PERST); 1332 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg); 1333 1334 /* Commit ULP changes by starting auto ULP configuration */ 1335 phy_reg |= I218_ULP_CONFIG1_START; 1336 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg); 1337 1338 /* Clear Disable SMBus Release on PERST# in MAC */ 1339 mac_reg = er32(FEXTNVM7); 1340 mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST; 1341 ew32(FEXTNVM7, mac_reg); 1342 1343 release: 1344 hw->phy.ops.release(hw); 1345 if (force) { 1346 e1000_phy_hw_reset(hw); 1347 msleep(50); 1348 } 1349 out: 1350 if (ret_val) 1351 e_dbg("Error in ULP disable flow: %d\n", ret_val); 1352 else 1353 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off; 1354 1355 return ret_val; 1356 } 1357 1358 /** 1359 * e1000_check_for_copper_link_ich8lan - Check for link (Copper) 1360 * @hw: pointer to the HW structure 1361 * 1362 * Checks to see of the link status of the hardware has changed. If a 1363 * change in link status has been detected, then we read the PHY registers 1364 * to get the current speed/duplex if link exists. 1365 **/ 1366 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw) 1367 { 1368 struct e1000_mac_info *mac = &hw->mac; 1369 s32 ret_val, tipg_reg = 0; 1370 u16 emi_addr, emi_val = 0; 1371 bool link; 1372 u16 phy_reg; 1373 1374 /* We only want to go out to the PHY registers to see if Auto-Neg 1375 * has completed and/or if our link status has changed. The 1376 * get_link_status flag is set upon receiving a Link Status 1377 * Change or Rx Sequence Error interrupt. 1378 */ 1379 if (!mac->get_link_status) 1380 return 0; 1381 1382 /* First we want to see if the MII Status Register reports 1383 * link. If so, then we want to get the current speed/duplex 1384 * of the PHY. 1385 */ 1386 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); 1387 if (ret_val) 1388 return ret_val; 1389 1390 if (hw->mac.type == e1000_pchlan) { 1391 ret_val = e1000_k1_gig_workaround_hv(hw, link); 1392 if (ret_val) 1393 return ret_val; 1394 } 1395 1396 /* When connected at 10Mbps half-duplex, some parts are excessively 1397 * aggressive resulting in many collisions. To avoid this, increase 1398 * the IPG and reduce Rx latency in the PHY. 1399 */ 1400 if (((hw->mac.type == e1000_pch2lan) || 1401 (hw->mac.type == e1000_pch_lpt) || 1402 (hw->mac.type == e1000_pch_spt)) && link) { 1403 u16 speed, duplex; 1404 1405 e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex); 1406 tipg_reg = er32(TIPG); 1407 tipg_reg &= ~E1000_TIPG_IPGT_MASK; 1408 1409 if (duplex == HALF_DUPLEX && speed == SPEED_10) { 1410 tipg_reg |= 0xFF; 1411 /* Reduce Rx latency in analog PHY */ 1412 emi_val = 0; 1413 } else if (hw->mac.type == e1000_pch_spt && 1414 duplex == FULL_DUPLEX && speed != SPEED_1000) { 1415 tipg_reg |= 0xC; 1416 emi_val = 1; 1417 } else { 1418 1419 /* Roll back the default values */ 1420 tipg_reg |= 0x08; 1421 emi_val = 1; 1422 } 1423 1424 ew32(TIPG, tipg_reg); 1425 1426 ret_val = hw->phy.ops.acquire(hw); 1427 if (ret_val) 1428 return ret_val; 1429 1430 if (hw->mac.type == e1000_pch2lan) 1431 emi_addr = I82579_RX_CONFIG; 1432 else 1433 emi_addr = I217_RX_CONFIG; 1434 ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val); 1435 1436 hw->phy.ops.release(hw); 1437 1438 if (ret_val) 1439 return ret_val; 1440 1441 if (hw->mac.type == e1000_pch_spt) { 1442 u16 data; 1443 u16 ptr_gap; 1444 1445 if (speed == SPEED_1000) { 1446 ret_val = hw->phy.ops.acquire(hw); 1447 if (ret_val) 1448 return ret_val; 1449 1450 ret_val = e1e_rphy_locked(hw, 1451 PHY_REG(776, 20), 1452 &data); 1453 if (ret_val) { 1454 hw->phy.ops.release(hw); 1455 return ret_val; 1456 } 1457 1458 ptr_gap = (data & (0x3FF << 2)) >> 2; 1459 if (ptr_gap < 0x18) { 1460 data &= ~(0x3FF << 2); 1461 data |= (0x18 << 2); 1462 ret_val = 1463 e1e_wphy_locked(hw, 1464 PHY_REG(776, 20), 1465 data); 1466 } 1467 hw->phy.ops.release(hw); 1468 if (ret_val) 1469 return ret_val; 1470 } 1471 } 1472 } 1473 1474 /* I217 Packet Loss issue: 1475 * ensure that FEXTNVM4 Beacon Duration is set correctly 1476 * on power up. 1477 * Set the Beacon Duration for I217 to 8 usec 1478 */ 1479 if ((hw->mac.type == e1000_pch_lpt) || (hw->mac.type == e1000_pch_spt)) { 1480 u32 mac_reg; 1481 1482 mac_reg = er32(FEXTNVM4); 1483 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK; 1484 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC; 1485 ew32(FEXTNVM4, mac_reg); 1486 } 1487 1488 /* Work-around I218 hang issue */ 1489 if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) || 1490 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) || 1491 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) || 1492 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) { 1493 ret_val = e1000_k1_workaround_lpt_lp(hw, link); 1494 if (ret_val) 1495 return ret_val; 1496 } 1497 if ((hw->mac.type == e1000_pch_lpt) || 1498 (hw->mac.type == e1000_pch_spt)) { 1499 /* Set platform power management values for 1500 * Latency Tolerance Reporting (LTR) 1501 */ 1502 ret_val = e1000_platform_pm_pch_lpt(hw, link); 1503 if (ret_val) 1504 return ret_val; 1505 } 1506 1507 /* Clear link partner's EEE ability */ 1508 hw->dev_spec.ich8lan.eee_lp_ability = 0; 1509 1510 /* FEXTNVM6 K1-off workaround */ 1511 if (hw->mac.type == e1000_pch_spt) { 1512 u32 pcieanacfg = er32(PCIEANACFG); 1513 u32 fextnvm6 = er32(FEXTNVM6); 1514 1515 if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE) 1516 fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE; 1517 else 1518 fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE; 1519 1520 ew32(FEXTNVM6, fextnvm6); 1521 } 1522 1523 if (!link) 1524 return 0; /* No link detected */ 1525 1526 mac->get_link_status = false; 1527 1528 switch (hw->mac.type) { 1529 case e1000_pch2lan: 1530 ret_val = e1000_k1_workaround_lv(hw); 1531 if (ret_val) 1532 return ret_val; 1533 /* fall-thru */ 1534 case e1000_pchlan: 1535 if (hw->phy.type == e1000_phy_82578) { 1536 ret_val = e1000_link_stall_workaround_hv(hw); 1537 if (ret_val) 1538 return ret_val; 1539 } 1540 1541 /* Workaround for PCHx parts in half-duplex: 1542 * Set the number of preambles removed from the packet 1543 * when it is passed from the PHY to the MAC to prevent 1544 * the MAC from misinterpreting the packet type. 1545 */ 1546 e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg); 1547 phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK; 1548 1549 if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD) 1550 phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT); 1551 1552 e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg); 1553 break; 1554 default: 1555 break; 1556 } 1557 1558 /* Check if there was DownShift, must be checked 1559 * immediately after link-up 1560 */ 1561 e1000e_check_downshift(hw); 1562 1563 /* Enable/Disable EEE after link up */ 1564 if (hw->phy.type > e1000_phy_82579) { 1565 ret_val = e1000_set_eee_pchlan(hw); 1566 if (ret_val) 1567 return ret_val; 1568 } 1569 1570 /* If we are forcing speed/duplex, then we simply return since 1571 * we have already determined whether we have link or not. 1572 */ 1573 if (!mac->autoneg) 1574 return -E1000_ERR_CONFIG; 1575 1576 /* Auto-Neg is enabled. Auto Speed Detection takes care 1577 * of MAC speed/duplex configuration. So we only need to 1578 * configure Collision Distance in the MAC. 1579 */ 1580 mac->ops.config_collision_dist(hw); 1581 1582 /* Configure Flow Control now that Auto-Neg has completed. 1583 * First, we need to restore the desired flow control 1584 * settings because we may have had to re-autoneg with a 1585 * different link partner. 1586 */ 1587 ret_val = e1000e_config_fc_after_link_up(hw); 1588 if (ret_val) 1589 e_dbg("Error configuring flow control\n"); 1590 1591 return ret_val; 1592 } 1593 1594 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter) 1595 { 1596 struct e1000_hw *hw = &adapter->hw; 1597 s32 rc; 1598 1599 rc = e1000_init_mac_params_ich8lan(hw); 1600 if (rc) 1601 return rc; 1602 1603 rc = e1000_init_nvm_params_ich8lan(hw); 1604 if (rc) 1605 return rc; 1606 1607 switch (hw->mac.type) { 1608 case e1000_ich8lan: 1609 case e1000_ich9lan: 1610 case e1000_ich10lan: 1611 rc = e1000_init_phy_params_ich8lan(hw); 1612 break; 1613 case e1000_pchlan: 1614 case e1000_pch2lan: 1615 case e1000_pch_lpt: 1616 case e1000_pch_spt: 1617 rc = e1000_init_phy_params_pchlan(hw); 1618 break; 1619 default: 1620 break; 1621 } 1622 if (rc) 1623 return rc; 1624 1625 /* Disable Jumbo Frame support on parts with Intel 10/100 PHY or 1626 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT). 1627 */ 1628 if ((adapter->hw.phy.type == e1000_phy_ife) || 1629 ((adapter->hw.mac.type >= e1000_pch2lan) && 1630 (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) { 1631 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES; 1632 adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN; 1633 1634 hw->mac.ops.blink_led = NULL; 1635 } 1636 1637 if ((adapter->hw.mac.type == e1000_ich8lan) && 1638 (adapter->hw.phy.type != e1000_phy_ife)) 1639 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP; 1640 1641 /* Enable workaround for 82579 w/ ME enabled */ 1642 if ((adapter->hw.mac.type == e1000_pch2lan) && 1643 (er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) 1644 adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA; 1645 1646 return 0; 1647 } 1648 1649 static DEFINE_MUTEX(nvm_mutex); 1650 1651 /** 1652 * e1000_acquire_nvm_ich8lan - Acquire NVM mutex 1653 * @hw: pointer to the HW structure 1654 * 1655 * Acquires the mutex for performing NVM operations. 1656 **/ 1657 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw) 1658 { 1659 mutex_lock(&nvm_mutex); 1660 1661 return 0; 1662 } 1663 1664 /** 1665 * e1000_release_nvm_ich8lan - Release NVM mutex 1666 * @hw: pointer to the HW structure 1667 * 1668 * Releases the mutex used while performing NVM operations. 1669 **/ 1670 static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw) 1671 { 1672 mutex_unlock(&nvm_mutex); 1673 } 1674 1675 /** 1676 * e1000_acquire_swflag_ich8lan - Acquire software control flag 1677 * @hw: pointer to the HW structure 1678 * 1679 * Acquires the software control flag for performing PHY and select 1680 * MAC CSR accesses. 1681 **/ 1682 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw) 1683 { 1684 u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT; 1685 s32 ret_val = 0; 1686 1687 if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE, 1688 &hw->adapter->state)) { 1689 e_dbg("contention for Phy access\n"); 1690 return -E1000_ERR_PHY; 1691 } 1692 1693 while (timeout) { 1694 extcnf_ctrl = er32(EXTCNF_CTRL); 1695 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)) 1696 break; 1697 1698 mdelay(1); 1699 timeout--; 1700 } 1701 1702 if (!timeout) { 1703 e_dbg("SW has already locked the resource.\n"); 1704 ret_val = -E1000_ERR_CONFIG; 1705 goto out; 1706 } 1707 1708 timeout = SW_FLAG_TIMEOUT; 1709 1710 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG; 1711 ew32(EXTCNF_CTRL, extcnf_ctrl); 1712 1713 while (timeout) { 1714 extcnf_ctrl = er32(EXTCNF_CTRL); 1715 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) 1716 break; 1717 1718 mdelay(1); 1719 timeout--; 1720 } 1721 1722 if (!timeout) { 1723 e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n", 1724 er32(FWSM), extcnf_ctrl); 1725 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG; 1726 ew32(EXTCNF_CTRL, extcnf_ctrl); 1727 ret_val = -E1000_ERR_CONFIG; 1728 goto out; 1729 } 1730 1731 out: 1732 if (ret_val) 1733 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state); 1734 1735 return ret_val; 1736 } 1737 1738 /** 1739 * e1000_release_swflag_ich8lan - Release software control flag 1740 * @hw: pointer to the HW structure 1741 * 1742 * Releases the software control flag for performing PHY and select 1743 * MAC CSR accesses. 1744 **/ 1745 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw) 1746 { 1747 u32 extcnf_ctrl; 1748 1749 extcnf_ctrl = er32(EXTCNF_CTRL); 1750 1751 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) { 1752 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG; 1753 ew32(EXTCNF_CTRL, extcnf_ctrl); 1754 } else { 1755 e_dbg("Semaphore unexpectedly released by sw/fw/hw\n"); 1756 } 1757 1758 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state); 1759 } 1760 1761 /** 1762 * e1000_check_mng_mode_ich8lan - Checks management mode 1763 * @hw: pointer to the HW structure 1764 * 1765 * This checks if the adapter has any manageability enabled. 1766 * This is a function pointer entry point only called by read/write 1767 * routines for the PHY and NVM parts. 1768 **/ 1769 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw) 1770 { 1771 u32 fwsm; 1772 1773 fwsm = er32(FWSM); 1774 return (fwsm & E1000_ICH_FWSM_FW_VALID) && 1775 ((fwsm & E1000_FWSM_MODE_MASK) == 1776 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)); 1777 } 1778 1779 /** 1780 * e1000_check_mng_mode_pchlan - Checks management mode 1781 * @hw: pointer to the HW structure 1782 * 1783 * This checks if the adapter has iAMT enabled. 1784 * This is a function pointer entry point only called by read/write 1785 * routines for the PHY and NVM parts. 1786 **/ 1787 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw) 1788 { 1789 u32 fwsm; 1790 1791 fwsm = er32(FWSM); 1792 return (fwsm & E1000_ICH_FWSM_FW_VALID) && 1793 (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)); 1794 } 1795 1796 /** 1797 * e1000_rar_set_pch2lan - Set receive address register 1798 * @hw: pointer to the HW structure 1799 * @addr: pointer to the receive address 1800 * @index: receive address array register 1801 * 1802 * Sets the receive address array register at index to the address passed 1803 * in by addr. For 82579, RAR[0] is the base address register that is to 1804 * contain the MAC address but RAR[1-6] are reserved for manageability (ME). 1805 * Use SHRA[0-3] in place of those reserved for ME. 1806 **/ 1807 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index) 1808 { 1809 u32 rar_low, rar_high; 1810 1811 /* HW expects these in little endian so we reverse the byte order 1812 * from network order (big endian) to little endian 1813 */ 1814 rar_low = ((u32)addr[0] | 1815 ((u32)addr[1] << 8) | 1816 ((u32)addr[2] << 16) | ((u32)addr[3] << 24)); 1817 1818 rar_high = ((u32)addr[4] | ((u32)addr[5] << 8)); 1819 1820 /* If MAC address zero, no need to set the AV bit */ 1821 if (rar_low || rar_high) 1822 rar_high |= E1000_RAH_AV; 1823 1824 if (index == 0) { 1825 ew32(RAL(index), rar_low); 1826 e1e_flush(); 1827 ew32(RAH(index), rar_high); 1828 e1e_flush(); 1829 return 0; 1830 } 1831 1832 /* RAR[1-6] are owned by manageability. Skip those and program the 1833 * next address into the SHRA register array. 1834 */ 1835 if (index < (u32)(hw->mac.rar_entry_count)) { 1836 s32 ret_val; 1837 1838 ret_val = e1000_acquire_swflag_ich8lan(hw); 1839 if (ret_val) 1840 goto out; 1841 1842 ew32(SHRAL(index - 1), rar_low); 1843 e1e_flush(); 1844 ew32(SHRAH(index - 1), rar_high); 1845 e1e_flush(); 1846 1847 e1000_release_swflag_ich8lan(hw); 1848 1849 /* verify the register updates */ 1850 if ((er32(SHRAL(index - 1)) == rar_low) && 1851 (er32(SHRAH(index - 1)) == rar_high)) 1852 return 0; 1853 1854 e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n", 1855 (index - 1), er32(FWSM)); 1856 } 1857 1858 out: 1859 e_dbg("Failed to write receive address at index %d\n", index); 1860 return -E1000_ERR_CONFIG; 1861 } 1862 1863 /** 1864 * e1000_rar_get_count_pch_lpt - Get the number of available SHRA 1865 * @hw: pointer to the HW structure 1866 * 1867 * Get the number of available receive registers that the Host can 1868 * program. SHRA[0-10] are the shared receive address registers 1869 * that are shared between the Host and manageability engine (ME). 1870 * ME can reserve any number of addresses and the host needs to be 1871 * able to tell how many available registers it has access to. 1872 **/ 1873 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw) 1874 { 1875 u32 wlock_mac; 1876 u32 num_entries; 1877 1878 wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK; 1879 wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT; 1880 1881 switch (wlock_mac) { 1882 case 0: 1883 /* All SHRA[0..10] and RAR[0] available */ 1884 num_entries = hw->mac.rar_entry_count; 1885 break; 1886 case 1: 1887 /* Only RAR[0] available */ 1888 num_entries = 1; 1889 break; 1890 default: 1891 /* SHRA[0..(wlock_mac - 1)] available + RAR[0] */ 1892 num_entries = wlock_mac + 1; 1893 break; 1894 } 1895 1896 return num_entries; 1897 } 1898 1899 /** 1900 * e1000_rar_set_pch_lpt - Set receive address registers 1901 * @hw: pointer to the HW structure 1902 * @addr: pointer to the receive address 1903 * @index: receive address array register 1904 * 1905 * Sets the receive address register array at index to the address passed 1906 * in by addr. For LPT, RAR[0] is the base address register that is to 1907 * contain the MAC address. SHRA[0-10] are the shared receive address 1908 * registers that are shared between the Host and manageability engine (ME). 1909 **/ 1910 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index) 1911 { 1912 u32 rar_low, rar_high; 1913 u32 wlock_mac; 1914 1915 /* HW expects these in little endian so we reverse the byte order 1916 * from network order (big endian) to little endian 1917 */ 1918 rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) | 1919 ((u32)addr[2] << 16) | ((u32)addr[3] << 24)); 1920 1921 rar_high = ((u32)addr[4] | ((u32)addr[5] << 8)); 1922 1923 /* If MAC address zero, no need to set the AV bit */ 1924 if (rar_low || rar_high) 1925 rar_high |= E1000_RAH_AV; 1926 1927 if (index == 0) { 1928 ew32(RAL(index), rar_low); 1929 e1e_flush(); 1930 ew32(RAH(index), rar_high); 1931 e1e_flush(); 1932 return 0; 1933 } 1934 1935 /* The manageability engine (ME) can lock certain SHRAR registers that 1936 * it is using - those registers are unavailable for use. 1937 */ 1938 if (index < hw->mac.rar_entry_count) { 1939 wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK; 1940 wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT; 1941 1942 /* Check if all SHRAR registers are locked */ 1943 if (wlock_mac == 1) 1944 goto out; 1945 1946 if ((wlock_mac == 0) || (index <= wlock_mac)) { 1947 s32 ret_val; 1948 1949 ret_val = e1000_acquire_swflag_ich8lan(hw); 1950 1951 if (ret_val) 1952 goto out; 1953 1954 ew32(SHRAL_PCH_LPT(index - 1), rar_low); 1955 e1e_flush(); 1956 ew32(SHRAH_PCH_LPT(index - 1), rar_high); 1957 e1e_flush(); 1958 1959 e1000_release_swflag_ich8lan(hw); 1960 1961 /* verify the register updates */ 1962 if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) && 1963 (er32(SHRAH_PCH_LPT(index - 1)) == rar_high)) 1964 return 0; 1965 } 1966 } 1967 1968 out: 1969 e_dbg("Failed to write receive address at index %d\n", index); 1970 return -E1000_ERR_CONFIG; 1971 } 1972 1973 /** 1974 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked 1975 * @hw: pointer to the HW structure 1976 * 1977 * Checks if firmware is blocking the reset of the PHY. 1978 * This is a function pointer entry point only called by 1979 * reset routines. 1980 **/ 1981 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw) 1982 { 1983 bool blocked = false; 1984 int i = 0; 1985 1986 while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) && 1987 (i++ < 10)) 1988 usleep_range(10000, 20000); 1989 return blocked ? E1000_BLK_PHY_RESET : 0; 1990 } 1991 1992 /** 1993 * e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states 1994 * @hw: pointer to the HW structure 1995 * 1996 * Assumes semaphore already acquired. 1997 * 1998 **/ 1999 static s32 e1000_write_smbus_addr(struct e1000_hw *hw) 2000 { 2001 u16 phy_data; 2002 u32 strap = er32(STRAP); 2003 u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >> 2004 E1000_STRAP_SMT_FREQ_SHIFT; 2005 s32 ret_val; 2006 2007 strap &= E1000_STRAP_SMBUS_ADDRESS_MASK; 2008 2009 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data); 2010 if (ret_val) 2011 return ret_val; 2012 2013 phy_data &= ~HV_SMB_ADDR_MASK; 2014 phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT); 2015 phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID; 2016 2017 if (hw->phy.type == e1000_phy_i217) { 2018 /* Restore SMBus frequency */ 2019 if (freq--) { 2020 phy_data &= ~HV_SMB_ADDR_FREQ_MASK; 2021 phy_data |= (freq & (1 << 0)) << 2022 HV_SMB_ADDR_FREQ_LOW_SHIFT; 2023 phy_data |= (freq & (1 << 1)) << 2024 (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1); 2025 } else { 2026 e_dbg("Unsupported SMB frequency in PHY\n"); 2027 } 2028 } 2029 2030 return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data); 2031 } 2032 2033 /** 2034 * e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration 2035 * @hw: pointer to the HW structure 2036 * 2037 * SW should configure the LCD from the NVM extended configuration region 2038 * as a workaround for certain parts. 2039 **/ 2040 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw) 2041 { 2042 struct e1000_phy_info *phy = &hw->phy; 2043 u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask; 2044 s32 ret_val = 0; 2045 u16 word_addr, reg_data, reg_addr, phy_page = 0; 2046 2047 /* Initialize the PHY from the NVM on ICH platforms. This 2048 * is needed due to an issue where the NVM configuration is 2049 * not properly autoloaded after power transitions. 2050 * Therefore, after each PHY reset, we will load the 2051 * configuration data out of the NVM manually. 2052 */ 2053 switch (hw->mac.type) { 2054 case e1000_ich8lan: 2055 if (phy->type != e1000_phy_igp_3) 2056 return ret_val; 2057 2058 if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) || 2059 (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) { 2060 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG; 2061 break; 2062 } 2063 /* Fall-thru */ 2064 case e1000_pchlan: 2065 case e1000_pch2lan: 2066 case e1000_pch_lpt: 2067 case e1000_pch_spt: 2068 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M; 2069 break; 2070 default: 2071 return ret_val; 2072 } 2073 2074 ret_val = hw->phy.ops.acquire(hw); 2075 if (ret_val) 2076 return ret_val; 2077 2078 data = er32(FEXTNVM); 2079 if (!(data & sw_cfg_mask)) 2080 goto release; 2081 2082 /* Make sure HW does not configure LCD from PHY 2083 * extended configuration before SW configuration 2084 */ 2085 data = er32(EXTCNF_CTRL); 2086 if ((hw->mac.type < e1000_pch2lan) && 2087 (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)) 2088 goto release; 2089 2090 cnf_size = er32(EXTCNF_SIZE); 2091 cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK; 2092 cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT; 2093 if (!cnf_size) 2094 goto release; 2095 2096 cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK; 2097 cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT; 2098 2099 if (((hw->mac.type == e1000_pchlan) && 2100 !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) || 2101 (hw->mac.type > e1000_pchlan)) { 2102 /* HW configures the SMBus address and LEDs when the 2103 * OEM and LCD Write Enable bits are set in the NVM. 2104 * When both NVM bits are cleared, SW will configure 2105 * them instead. 2106 */ 2107 ret_val = e1000_write_smbus_addr(hw); 2108 if (ret_val) 2109 goto release; 2110 2111 data = er32(LEDCTL); 2112 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG, 2113 (u16)data); 2114 if (ret_val) 2115 goto release; 2116 } 2117 2118 /* Configure LCD from extended configuration region. */ 2119 2120 /* cnf_base_addr is in DWORD */ 2121 word_addr = (u16)(cnf_base_addr << 1); 2122 2123 for (i = 0; i < cnf_size; i++) { 2124 ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, ®_data); 2125 if (ret_val) 2126 goto release; 2127 2128 ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1), 2129 1, ®_addr); 2130 if (ret_val) 2131 goto release; 2132 2133 /* Save off the PHY page for future writes. */ 2134 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) { 2135 phy_page = reg_data; 2136 continue; 2137 } 2138 2139 reg_addr &= PHY_REG_MASK; 2140 reg_addr |= phy_page; 2141 2142 ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data); 2143 if (ret_val) 2144 goto release; 2145 } 2146 2147 release: 2148 hw->phy.ops.release(hw); 2149 return ret_val; 2150 } 2151 2152 /** 2153 * e1000_k1_gig_workaround_hv - K1 Si workaround 2154 * @hw: pointer to the HW structure 2155 * @link: link up bool flag 2156 * 2157 * If K1 is enabled for 1Gbps, the MAC might stall when transitioning 2158 * from a lower speed. This workaround disables K1 whenever link is at 1Gig 2159 * If link is down, the function will restore the default K1 setting located 2160 * in the NVM. 2161 **/ 2162 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link) 2163 { 2164 s32 ret_val = 0; 2165 u16 status_reg = 0; 2166 bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled; 2167 2168 if (hw->mac.type != e1000_pchlan) 2169 return 0; 2170 2171 /* Wrap the whole flow with the sw flag */ 2172 ret_val = hw->phy.ops.acquire(hw); 2173 if (ret_val) 2174 return ret_val; 2175 2176 /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */ 2177 if (link) { 2178 if (hw->phy.type == e1000_phy_82578) { 2179 ret_val = e1e_rphy_locked(hw, BM_CS_STATUS, 2180 &status_reg); 2181 if (ret_val) 2182 goto release; 2183 2184 status_reg &= (BM_CS_STATUS_LINK_UP | 2185 BM_CS_STATUS_RESOLVED | 2186 BM_CS_STATUS_SPEED_MASK); 2187 2188 if (status_reg == (BM_CS_STATUS_LINK_UP | 2189 BM_CS_STATUS_RESOLVED | 2190 BM_CS_STATUS_SPEED_1000)) 2191 k1_enable = false; 2192 } 2193 2194 if (hw->phy.type == e1000_phy_82577) { 2195 ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg); 2196 if (ret_val) 2197 goto release; 2198 2199 status_reg &= (HV_M_STATUS_LINK_UP | 2200 HV_M_STATUS_AUTONEG_COMPLETE | 2201 HV_M_STATUS_SPEED_MASK); 2202 2203 if (status_reg == (HV_M_STATUS_LINK_UP | 2204 HV_M_STATUS_AUTONEG_COMPLETE | 2205 HV_M_STATUS_SPEED_1000)) 2206 k1_enable = false; 2207 } 2208 2209 /* Link stall fix for link up */ 2210 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100); 2211 if (ret_val) 2212 goto release; 2213 2214 } else { 2215 /* Link stall fix for link down */ 2216 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100); 2217 if (ret_val) 2218 goto release; 2219 } 2220 2221 ret_val = e1000_configure_k1_ich8lan(hw, k1_enable); 2222 2223 release: 2224 hw->phy.ops.release(hw); 2225 2226 return ret_val; 2227 } 2228 2229 /** 2230 * e1000_configure_k1_ich8lan - Configure K1 power state 2231 * @hw: pointer to the HW structure 2232 * @enable: K1 state to configure 2233 * 2234 * Configure the K1 power state based on the provided parameter. 2235 * Assumes semaphore already acquired. 2236 * 2237 * Success returns 0, Failure returns -E1000_ERR_PHY (-2) 2238 **/ 2239 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable) 2240 { 2241 s32 ret_val; 2242 u32 ctrl_reg = 0; 2243 u32 ctrl_ext = 0; 2244 u32 reg = 0; 2245 u16 kmrn_reg = 0; 2246 2247 ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG, 2248 &kmrn_reg); 2249 if (ret_val) 2250 return ret_val; 2251 2252 if (k1_enable) 2253 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE; 2254 else 2255 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE; 2256 2257 ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG, 2258 kmrn_reg); 2259 if (ret_val) 2260 return ret_val; 2261 2262 usleep_range(20, 40); 2263 ctrl_ext = er32(CTRL_EXT); 2264 ctrl_reg = er32(CTRL); 2265 2266 reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); 2267 reg |= E1000_CTRL_FRCSPD; 2268 ew32(CTRL, reg); 2269 2270 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS); 2271 e1e_flush(); 2272 usleep_range(20, 40); 2273 ew32(CTRL, ctrl_reg); 2274 ew32(CTRL_EXT, ctrl_ext); 2275 e1e_flush(); 2276 usleep_range(20, 40); 2277 2278 return 0; 2279 } 2280 2281 /** 2282 * e1000_oem_bits_config_ich8lan - SW-based LCD Configuration 2283 * @hw: pointer to the HW structure 2284 * @d0_state: boolean if entering d0 or d3 device state 2285 * 2286 * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are 2287 * collectively called OEM bits. The OEM Write Enable bit and SW Config bit 2288 * in NVM determines whether HW should configure LPLU and Gbe Disable. 2289 **/ 2290 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state) 2291 { 2292 s32 ret_val = 0; 2293 u32 mac_reg; 2294 u16 oem_reg; 2295 2296 if (hw->mac.type < e1000_pchlan) 2297 return ret_val; 2298 2299 ret_val = hw->phy.ops.acquire(hw); 2300 if (ret_val) 2301 return ret_val; 2302 2303 if (hw->mac.type == e1000_pchlan) { 2304 mac_reg = er32(EXTCNF_CTRL); 2305 if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) 2306 goto release; 2307 } 2308 2309 mac_reg = er32(FEXTNVM); 2310 if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M)) 2311 goto release; 2312 2313 mac_reg = er32(PHY_CTRL); 2314 2315 ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg); 2316 if (ret_val) 2317 goto release; 2318 2319 oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU); 2320 2321 if (d0_state) { 2322 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE) 2323 oem_reg |= HV_OEM_BITS_GBE_DIS; 2324 2325 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU) 2326 oem_reg |= HV_OEM_BITS_LPLU; 2327 } else { 2328 if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE | 2329 E1000_PHY_CTRL_NOND0A_GBE_DISABLE)) 2330 oem_reg |= HV_OEM_BITS_GBE_DIS; 2331 2332 if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU | 2333 E1000_PHY_CTRL_NOND0A_LPLU)) 2334 oem_reg |= HV_OEM_BITS_LPLU; 2335 } 2336 2337 /* Set Restart auto-neg to activate the bits */ 2338 if ((d0_state || (hw->mac.type != e1000_pchlan)) && 2339 !hw->phy.ops.check_reset_block(hw)) 2340 oem_reg |= HV_OEM_BITS_RESTART_AN; 2341 2342 ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg); 2343 2344 release: 2345 hw->phy.ops.release(hw); 2346 2347 return ret_val; 2348 } 2349 2350 /** 2351 * e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode 2352 * @hw: pointer to the HW structure 2353 **/ 2354 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw) 2355 { 2356 s32 ret_val; 2357 u16 data; 2358 2359 ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data); 2360 if (ret_val) 2361 return ret_val; 2362 2363 data |= HV_KMRN_MDIO_SLOW; 2364 2365 ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data); 2366 2367 return ret_val; 2368 } 2369 2370 /** 2371 * e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be 2372 * done after every PHY reset. 2373 **/ 2374 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw) 2375 { 2376 s32 ret_val = 0; 2377 u16 phy_data; 2378 2379 if (hw->mac.type != e1000_pchlan) 2380 return 0; 2381 2382 /* Set MDIO slow mode before any other MDIO access */ 2383 if (hw->phy.type == e1000_phy_82577) { 2384 ret_val = e1000_set_mdio_slow_mode_hv(hw); 2385 if (ret_val) 2386 return ret_val; 2387 } 2388 2389 if (((hw->phy.type == e1000_phy_82577) && 2390 ((hw->phy.revision == 1) || (hw->phy.revision == 2))) || 2391 ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) { 2392 /* Disable generation of early preamble */ 2393 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431); 2394 if (ret_val) 2395 return ret_val; 2396 2397 /* Preamble tuning for SSC */ 2398 ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204); 2399 if (ret_val) 2400 return ret_val; 2401 } 2402 2403 if (hw->phy.type == e1000_phy_82578) { 2404 /* Return registers to default by doing a soft reset then 2405 * writing 0x3140 to the control register. 2406 */ 2407 if (hw->phy.revision < 2) { 2408 e1000e_phy_sw_reset(hw); 2409 ret_val = e1e_wphy(hw, MII_BMCR, 0x3140); 2410 } 2411 } 2412 2413 /* Select page 0 */ 2414 ret_val = hw->phy.ops.acquire(hw); 2415 if (ret_val) 2416 return ret_val; 2417 2418 hw->phy.addr = 1; 2419 ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0); 2420 hw->phy.ops.release(hw); 2421 if (ret_val) 2422 return ret_val; 2423 2424 /* Configure the K1 Si workaround during phy reset assuming there is 2425 * link so that it disables K1 if link is in 1Gbps. 2426 */ 2427 ret_val = e1000_k1_gig_workaround_hv(hw, true); 2428 if (ret_val) 2429 return ret_val; 2430 2431 /* Workaround for link disconnects on a busy hub in half duplex */ 2432 ret_val = hw->phy.ops.acquire(hw); 2433 if (ret_val) 2434 return ret_val; 2435 ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data); 2436 if (ret_val) 2437 goto release; 2438 ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF); 2439 if (ret_val) 2440 goto release; 2441 2442 /* set MSE higher to enable link to stay up when noise is high */ 2443 ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034); 2444 release: 2445 hw->phy.ops.release(hw); 2446 2447 return ret_val; 2448 } 2449 2450 /** 2451 * e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY 2452 * @hw: pointer to the HW structure 2453 **/ 2454 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw) 2455 { 2456 u32 mac_reg; 2457 u16 i, phy_reg = 0; 2458 s32 ret_val; 2459 2460 ret_val = hw->phy.ops.acquire(hw); 2461 if (ret_val) 2462 return; 2463 ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg); 2464 if (ret_val) 2465 goto release; 2466 2467 /* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */ 2468 for (i = 0; i < (hw->mac.rar_entry_count); i++) { 2469 mac_reg = er32(RAL(i)); 2470 hw->phy.ops.write_reg_page(hw, BM_RAR_L(i), 2471 (u16)(mac_reg & 0xFFFF)); 2472 hw->phy.ops.write_reg_page(hw, BM_RAR_M(i), 2473 (u16)((mac_reg >> 16) & 0xFFFF)); 2474 2475 mac_reg = er32(RAH(i)); 2476 hw->phy.ops.write_reg_page(hw, BM_RAR_H(i), 2477 (u16)(mac_reg & 0xFFFF)); 2478 hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i), 2479 (u16)((mac_reg & E1000_RAH_AV) 2480 >> 16)); 2481 } 2482 2483 e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg); 2484 2485 release: 2486 hw->phy.ops.release(hw); 2487 } 2488 2489 /** 2490 * e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation 2491 * with 82579 PHY 2492 * @hw: pointer to the HW structure 2493 * @enable: flag to enable/disable workaround when enabling/disabling jumbos 2494 **/ 2495 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable) 2496 { 2497 s32 ret_val = 0; 2498 u16 phy_reg, data; 2499 u32 mac_reg; 2500 u16 i; 2501 2502 if (hw->mac.type < e1000_pch2lan) 2503 return 0; 2504 2505 /* disable Rx path while enabling/disabling workaround */ 2506 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg); 2507 ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14)); 2508 if (ret_val) 2509 return ret_val; 2510 2511 if (enable) { 2512 /* Write Rx addresses (rar_entry_count for RAL/H, and 2513 * SHRAL/H) and initial CRC values to the MAC 2514 */ 2515 for (i = 0; i < hw->mac.rar_entry_count; i++) { 2516 u8 mac_addr[ETH_ALEN] = { 0 }; 2517 u32 addr_high, addr_low; 2518 2519 addr_high = er32(RAH(i)); 2520 if (!(addr_high & E1000_RAH_AV)) 2521 continue; 2522 addr_low = er32(RAL(i)); 2523 mac_addr[0] = (addr_low & 0xFF); 2524 mac_addr[1] = ((addr_low >> 8) & 0xFF); 2525 mac_addr[2] = ((addr_low >> 16) & 0xFF); 2526 mac_addr[3] = ((addr_low >> 24) & 0xFF); 2527 mac_addr[4] = (addr_high & 0xFF); 2528 mac_addr[5] = ((addr_high >> 8) & 0xFF); 2529 2530 ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr)); 2531 } 2532 2533 /* Write Rx addresses to the PHY */ 2534 e1000_copy_rx_addrs_to_phy_ich8lan(hw); 2535 2536 /* Enable jumbo frame workaround in the MAC */ 2537 mac_reg = er32(FFLT_DBG); 2538 mac_reg &= ~(1 << 14); 2539 mac_reg |= (7 << 15); 2540 ew32(FFLT_DBG, mac_reg); 2541 2542 mac_reg = er32(RCTL); 2543 mac_reg |= E1000_RCTL_SECRC; 2544 ew32(RCTL, mac_reg); 2545 2546 ret_val = e1000e_read_kmrn_reg(hw, 2547 E1000_KMRNCTRLSTA_CTRL_OFFSET, 2548 &data); 2549 if (ret_val) 2550 return ret_val; 2551 ret_val = e1000e_write_kmrn_reg(hw, 2552 E1000_KMRNCTRLSTA_CTRL_OFFSET, 2553 data | (1 << 0)); 2554 if (ret_val) 2555 return ret_val; 2556 ret_val = e1000e_read_kmrn_reg(hw, 2557 E1000_KMRNCTRLSTA_HD_CTRL, 2558 &data); 2559 if (ret_val) 2560 return ret_val; 2561 data &= ~(0xF << 8); 2562 data |= (0xB << 8); 2563 ret_val = e1000e_write_kmrn_reg(hw, 2564 E1000_KMRNCTRLSTA_HD_CTRL, 2565 data); 2566 if (ret_val) 2567 return ret_val; 2568 2569 /* Enable jumbo frame workaround in the PHY */ 2570 e1e_rphy(hw, PHY_REG(769, 23), &data); 2571 data &= ~(0x7F << 5); 2572 data |= (0x37 << 5); 2573 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data); 2574 if (ret_val) 2575 return ret_val; 2576 e1e_rphy(hw, PHY_REG(769, 16), &data); 2577 data &= ~(1 << 13); 2578 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data); 2579 if (ret_val) 2580 return ret_val; 2581 e1e_rphy(hw, PHY_REG(776, 20), &data); 2582 data &= ~(0x3FF << 2); 2583 data |= (E1000_TX_PTR_GAP << 2); 2584 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data); 2585 if (ret_val) 2586 return ret_val; 2587 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100); 2588 if (ret_val) 2589 return ret_val; 2590 e1e_rphy(hw, HV_PM_CTRL, &data); 2591 ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10)); 2592 if (ret_val) 2593 return ret_val; 2594 } else { 2595 /* Write MAC register values back to h/w defaults */ 2596 mac_reg = er32(FFLT_DBG); 2597 mac_reg &= ~(0xF << 14); 2598 ew32(FFLT_DBG, mac_reg); 2599 2600 mac_reg = er32(RCTL); 2601 mac_reg &= ~E1000_RCTL_SECRC; 2602 ew32(RCTL, mac_reg); 2603 2604 ret_val = e1000e_read_kmrn_reg(hw, 2605 E1000_KMRNCTRLSTA_CTRL_OFFSET, 2606 &data); 2607 if (ret_val) 2608 return ret_val; 2609 ret_val = e1000e_write_kmrn_reg(hw, 2610 E1000_KMRNCTRLSTA_CTRL_OFFSET, 2611 data & ~(1 << 0)); 2612 if (ret_val) 2613 return ret_val; 2614 ret_val = e1000e_read_kmrn_reg(hw, 2615 E1000_KMRNCTRLSTA_HD_CTRL, 2616 &data); 2617 if (ret_val) 2618 return ret_val; 2619 data &= ~(0xF << 8); 2620 data |= (0xB << 8); 2621 ret_val = e1000e_write_kmrn_reg(hw, 2622 E1000_KMRNCTRLSTA_HD_CTRL, 2623 data); 2624 if (ret_val) 2625 return ret_val; 2626 2627 /* Write PHY register values back to h/w defaults */ 2628 e1e_rphy(hw, PHY_REG(769, 23), &data); 2629 data &= ~(0x7F << 5); 2630 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data); 2631 if (ret_val) 2632 return ret_val; 2633 e1e_rphy(hw, PHY_REG(769, 16), &data); 2634 data |= (1 << 13); 2635 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data); 2636 if (ret_val) 2637 return ret_val; 2638 e1e_rphy(hw, PHY_REG(776, 20), &data); 2639 data &= ~(0x3FF << 2); 2640 data |= (0x8 << 2); 2641 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data); 2642 if (ret_val) 2643 return ret_val; 2644 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00); 2645 if (ret_val) 2646 return ret_val; 2647 e1e_rphy(hw, HV_PM_CTRL, &data); 2648 ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10)); 2649 if (ret_val) 2650 return ret_val; 2651 } 2652 2653 /* re-enable Rx path after enabling/disabling workaround */ 2654 return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14)); 2655 } 2656 2657 /** 2658 * e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be 2659 * done after every PHY reset. 2660 **/ 2661 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw) 2662 { 2663 s32 ret_val = 0; 2664 2665 if (hw->mac.type != e1000_pch2lan) 2666 return 0; 2667 2668 /* Set MDIO slow mode before any other MDIO access */ 2669 ret_val = e1000_set_mdio_slow_mode_hv(hw); 2670 if (ret_val) 2671 return ret_val; 2672 2673 ret_val = hw->phy.ops.acquire(hw); 2674 if (ret_val) 2675 return ret_val; 2676 /* set MSE higher to enable link to stay up when noise is high */ 2677 ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034); 2678 if (ret_val) 2679 goto release; 2680 /* drop link after 5 times MSE threshold was reached */ 2681 ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005); 2682 release: 2683 hw->phy.ops.release(hw); 2684 2685 return ret_val; 2686 } 2687 2688 /** 2689 * e1000_k1_gig_workaround_lv - K1 Si workaround 2690 * @hw: pointer to the HW structure 2691 * 2692 * Workaround to set the K1 beacon duration for 82579 parts in 10Mbps 2693 * Disable K1 in 1000Mbps and 100Mbps 2694 **/ 2695 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw) 2696 { 2697 s32 ret_val = 0; 2698 u16 status_reg = 0; 2699 2700 if (hw->mac.type != e1000_pch2lan) 2701 return 0; 2702 2703 /* Set K1 beacon duration based on 10Mbs speed */ 2704 ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg); 2705 if (ret_val) 2706 return ret_val; 2707 2708 if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) 2709 == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) { 2710 if (status_reg & 2711 (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) { 2712 u16 pm_phy_reg; 2713 2714 /* LV 1G/100 Packet drop issue wa */ 2715 ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg); 2716 if (ret_val) 2717 return ret_val; 2718 pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE; 2719 ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg); 2720 if (ret_val) 2721 return ret_val; 2722 } else { 2723 u32 mac_reg; 2724 2725 mac_reg = er32(FEXTNVM4); 2726 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK; 2727 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC; 2728 ew32(FEXTNVM4, mac_reg); 2729 } 2730 } 2731 2732 return ret_val; 2733 } 2734 2735 /** 2736 * e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware 2737 * @hw: pointer to the HW structure 2738 * @gate: boolean set to true to gate, false to ungate 2739 * 2740 * Gate/ungate the automatic PHY configuration via hardware; perform 2741 * the configuration via software instead. 2742 **/ 2743 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate) 2744 { 2745 u32 extcnf_ctrl; 2746 2747 if (hw->mac.type < e1000_pch2lan) 2748 return; 2749 2750 extcnf_ctrl = er32(EXTCNF_CTRL); 2751 2752 if (gate) 2753 extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG; 2754 else 2755 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG; 2756 2757 ew32(EXTCNF_CTRL, extcnf_ctrl); 2758 } 2759 2760 /** 2761 * e1000_lan_init_done_ich8lan - Check for PHY config completion 2762 * @hw: pointer to the HW structure 2763 * 2764 * Check the appropriate indication the MAC has finished configuring the 2765 * PHY after a software reset. 2766 **/ 2767 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw) 2768 { 2769 u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT; 2770 2771 /* Wait for basic configuration completes before proceeding */ 2772 do { 2773 data = er32(STATUS); 2774 data &= E1000_STATUS_LAN_INIT_DONE; 2775 usleep_range(100, 200); 2776 } while ((!data) && --loop); 2777 2778 /* If basic configuration is incomplete before the above loop 2779 * count reaches 0, loading the configuration from NVM will 2780 * leave the PHY in a bad state possibly resulting in no link. 2781 */ 2782 if (loop == 0) 2783 e_dbg("LAN_INIT_DONE not set, increase timeout\n"); 2784 2785 /* Clear the Init Done bit for the next init event */ 2786 data = er32(STATUS); 2787 data &= ~E1000_STATUS_LAN_INIT_DONE; 2788 ew32(STATUS, data); 2789 } 2790 2791 /** 2792 * e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset 2793 * @hw: pointer to the HW structure 2794 **/ 2795 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw) 2796 { 2797 s32 ret_val = 0; 2798 u16 reg; 2799 2800 if (hw->phy.ops.check_reset_block(hw)) 2801 return 0; 2802 2803 /* Allow time for h/w to get to quiescent state after reset */ 2804 usleep_range(10000, 20000); 2805 2806 /* Perform any necessary post-reset workarounds */ 2807 switch (hw->mac.type) { 2808 case e1000_pchlan: 2809 ret_val = e1000_hv_phy_workarounds_ich8lan(hw); 2810 if (ret_val) 2811 return ret_val; 2812 break; 2813 case e1000_pch2lan: 2814 ret_val = e1000_lv_phy_workarounds_ich8lan(hw); 2815 if (ret_val) 2816 return ret_val; 2817 break; 2818 default: 2819 break; 2820 } 2821 2822 /* Clear the host wakeup bit after lcd reset */ 2823 if (hw->mac.type >= e1000_pchlan) { 2824 e1e_rphy(hw, BM_PORT_GEN_CFG, ®); 2825 reg &= ~BM_WUC_HOST_WU_BIT; 2826 e1e_wphy(hw, BM_PORT_GEN_CFG, reg); 2827 } 2828 2829 /* Configure the LCD with the extended configuration region in NVM */ 2830 ret_val = e1000_sw_lcd_config_ich8lan(hw); 2831 if (ret_val) 2832 return ret_val; 2833 2834 /* Configure the LCD with the OEM bits in NVM */ 2835 ret_val = e1000_oem_bits_config_ich8lan(hw, true); 2836 2837 if (hw->mac.type == e1000_pch2lan) { 2838 /* Ungate automatic PHY configuration on non-managed 82579 */ 2839 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) { 2840 usleep_range(10000, 20000); 2841 e1000_gate_hw_phy_config_ich8lan(hw, false); 2842 } 2843 2844 /* Set EEE LPI Update Timer to 200usec */ 2845 ret_val = hw->phy.ops.acquire(hw); 2846 if (ret_val) 2847 return ret_val; 2848 ret_val = e1000_write_emi_reg_locked(hw, 2849 I82579_LPI_UPDATE_TIMER, 2850 0x1387); 2851 hw->phy.ops.release(hw); 2852 } 2853 2854 return ret_val; 2855 } 2856 2857 /** 2858 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset 2859 * @hw: pointer to the HW structure 2860 * 2861 * Resets the PHY 2862 * This is a function pointer entry point called by drivers 2863 * or other shared routines. 2864 **/ 2865 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw) 2866 { 2867 s32 ret_val = 0; 2868 2869 /* Gate automatic PHY configuration by hardware on non-managed 82579 */ 2870 if ((hw->mac.type == e1000_pch2lan) && 2871 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) 2872 e1000_gate_hw_phy_config_ich8lan(hw, true); 2873 2874 ret_val = e1000e_phy_hw_reset_generic(hw); 2875 if (ret_val) 2876 return ret_val; 2877 2878 return e1000_post_phy_reset_ich8lan(hw); 2879 } 2880 2881 /** 2882 * e1000_set_lplu_state_pchlan - Set Low Power Link Up state 2883 * @hw: pointer to the HW structure 2884 * @active: true to enable LPLU, false to disable 2885 * 2886 * Sets the LPLU state according to the active flag. For PCH, if OEM write 2887 * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set 2888 * the phy speed. This function will manually set the LPLU bit and restart 2889 * auto-neg as hw would do. D3 and D0 LPLU will call the same function 2890 * since it configures the same bit. 2891 **/ 2892 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active) 2893 { 2894 s32 ret_val; 2895 u16 oem_reg; 2896 2897 ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg); 2898 if (ret_val) 2899 return ret_val; 2900 2901 if (active) 2902 oem_reg |= HV_OEM_BITS_LPLU; 2903 else 2904 oem_reg &= ~HV_OEM_BITS_LPLU; 2905 2906 if (!hw->phy.ops.check_reset_block(hw)) 2907 oem_reg |= HV_OEM_BITS_RESTART_AN; 2908 2909 return e1e_wphy(hw, HV_OEM_BITS, oem_reg); 2910 } 2911 2912 /** 2913 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state 2914 * @hw: pointer to the HW structure 2915 * @active: true to enable LPLU, false to disable 2916 * 2917 * Sets the LPLU D0 state according to the active flag. When 2918 * activating LPLU this function also disables smart speed 2919 * and vice versa. LPLU will not be activated unless the 2920 * device autonegotiation advertisement meets standards of 2921 * either 10 or 10/100 or 10/100/1000 at all duplexes. 2922 * This is a function pointer entry point only called by 2923 * PHY setup routines. 2924 **/ 2925 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active) 2926 { 2927 struct e1000_phy_info *phy = &hw->phy; 2928 u32 phy_ctrl; 2929 s32 ret_val = 0; 2930 u16 data; 2931 2932 if (phy->type == e1000_phy_ife) 2933 return 0; 2934 2935 phy_ctrl = er32(PHY_CTRL); 2936 2937 if (active) { 2938 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU; 2939 ew32(PHY_CTRL, phy_ctrl); 2940 2941 if (phy->type != e1000_phy_igp_3) 2942 return 0; 2943 2944 /* Call gig speed drop workaround on LPLU before accessing 2945 * any PHY registers 2946 */ 2947 if (hw->mac.type == e1000_ich8lan) 2948 e1000e_gig_downshift_workaround_ich8lan(hw); 2949 2950 /* When LPLU is enabled, we should disable SmartSpeed */ 2951 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data); 2952 if (ret_val) 2953 return ret_val; 2954 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 2955 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data); 2956 if (ret_val) 2957 return ret_val; 2958 } else { 2959 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU; 2960 ew32(PHY_CTRL, phy_ctrl); 2961 2962 if (phy->type != e1000_phy_igp_3) 2963 return 0; 2964 2965 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used 2966 * during Dx states where the power conservation is most 2967 * important. During driver activity we should enable 2968 * SmartSpeed, so performance is maintained. 2969 */ 2970 if (phy->smart_speed == e1000_smart_speed_on) { 2971 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, 2972 &data); 2973 if (ret_val) 2974 return ret_val; 2975 2976 data |= IGP01E1000_PSCFR_SMART_SPEED; 2977 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, 2978 data); 2979 if (ret_val) 2980 return ret_val; 2981 } else if (phy->smart_speed == e1000_smart_speed_off) { 2982 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, 2983 &data); 2984 if (ret_val) 2985 return ret_val; 2986 2987 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 2988 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, 2989 data); 2990 if (ret_val) 2991 return ret_val; 2992 } 2993 } 2994 2995 return 0; 2996 } 2997 2998 /** 2999 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state 3000 * @hw: pointer to the HW structure 3001 * @active: true to enable LPLU, false to disable 3002 * 3003 * Sets the LPLU D3 state according to the active flag. When 3004 * activating LPLU this function also disables smart speed 3005 * and vice versa. LPLU will not be activated unless the 3006 * device autonegotiation advertisement meets standards of 3007 * either 10 or 10/100 or 10/100/1000 at all duplexes. 3008 * This is a function pointer entry point only called by 3009 * PHY setup routines. 3010 **/ 3011 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active) 3012 { 3013 struct e1000_phy_info *phy = &hw->phy; 3014 u32 phy_ctrl; 3015 s32 ret_val = 0; 3016 u16 data; 3017 3018 phy_ctrl = er32(PHY_CTRL); 3019 3020 if (!active) { 3021 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU; 3022 ew32(PHY_CTRL, phy_ctrl); 3023 3024 if (phy->type != e1000_phy_igp_3) 3025 return 0; 3026 3027 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used 3028 * during Dx states where the power conservation is most 3029 * important. During driver activity we should enable 3030 * SmartSpeed, so performance is maintained. 3031 */ 3032 if (phy->smart_speed == e1000_smart_speed_on) { 3033 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, 3034 &data); 3035 if (ret_val) 3036 return ret_val; 3037 3038 data |= IGP01E1000_PSCFR_SMART_SPEED; 3039 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, 3040 data); 3041 if (ret_val) 3042 return ret_val; 3043 } else if (phy->smart_speed == e1000_smart_speed_off) { 3044 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, 3045 &data); 3046 if (ret_val) 3047 return ret_val; 3048 3049 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 3050 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, 3051 data); 3052 if (ret_val) 3053 return ret_val; 3054 } 3055 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || 3056 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || 3057 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { 3058 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU; 3059 ew32(PHY_CTRL, phy_ctrl); 3060 3061 if (phy->type != e1000_phy_igp_3) 3062 return 0; 3063 3064 /* Call gig speed drop workaround on LPLU before accessing 3065 * any PHY registers 3066 */ 3067 if (hw->mac.type == e1000_ich8lan) 3068 e1000e_gig_downshift_workaround_ich8lan(hw); 3069 3070 /* When LPLU is enabled, we should disable SmartSpeed */ 3071 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data); 3072 if (ret_val) 3073 return ret_val; 3074 3075 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 3076 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data); 3077 } 3078 3079 return ret_val; 3080 } 3081 3082 /** 3083 * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1 3084 * @hw: pointer to the HW structure 3085 * @bank: pointer to the variable that returns the active bank 3086 * 3087 * Reads signature byte from the NVM using the flash access registers. 3088 * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank. 3089 **/ 3090 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank) 3091 { 3092 u32 eecd; 3093 struct e1000_nvm_info *nvm = &hw->nvm; 3094 u32 bank1_offset = nvm->flash_bank_size * sizeof(u16); 3095 u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1; 3096 u8 sig_byte = 0; 3097 s32 ret_val; 3098 3099 switch (hw->mac.type) { 3100 /* In SPT, read from the CTRL_EXT reg instead of 3101 * accessing the sector valid bits from the nvm 3102 */ 3103 case e1000_pch_spt: 3104 *bank = er32(CTRL_EXT) 3105 & E1000_CTRL_EXT_NVMVS; 3106 if ((*bank == 0) || (*bank == 1)) { 3107 e_dbg("ERROR: No valid NVM bank present\n"); 3108 return -E1000_ERR_NVM; 3109 } else { 3110 *bank = *bank - 2; 3111 return 0; 3112 } 3113 break; 3114 case e1000_ich8lan: 3115 case e1000_ich9lan: 3116 eecd = er32(EECD); 3117 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) == 3118 E1000_EECD_SEC1VAL_VALID_MASK) { 3119 if (eecd & E1000_EECD_SEC1VAL) 3120 *bank = 1; 3121 else 3122 *bank = 0; 3123 3124 return 0; 3125 } 3126 e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n"); 3127 /* fall-thru */ 3128 default: 3129 /* set bank to 0 in case flash read fails */ 3130 *bank = 0; 3131 3132 /* Check bank 0 */ 3133 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset, 3134 &sig_byte); 3135 if (ret_val) 3136 return ret_val; 3137 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == 3138 E1000_ICH_NVM_SIG_VALUE) { 3139 *bank = 0; 3140 return 0; 3141 } 3142 3143 /* Check bank 1 */ 3144 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset + 3145 bank1_offset, 3146 &sig_byte); 3147 if (ret_val) 3148 return ret_val; 3149 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == 3150 E1000_ICH_NVM_SIG_VALUE) { 3151 *bank = 1; 3152 return 0; 3153 } 3154 3155 e_dbg("ERROR: No valid NVM bank present\n"); 3156 return -E1000_ERR_NVM; 3157 } 3158 } 3159 3160 /** 3161 * e1000_read_nvm_spt - NVM access for SPT 3162 * @hw: pointer to the HW structure 3163 * @offset: The offset (in bytes) of the word(s) to read. 3164 * @words: Size of data to read in words. 3165 * @data: pointer to the word(s) to read at offset. 3166 * 3167 * Reads a word(s) from the NVM 3168 **/ 3169 static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words, 3170 u16 *data) 3171 { 3172 struct e1000_nvm_info *nvm = &hw->nvm; 3173 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 3174 u32 act_offset; 3175 s32 ret_val = 0; 3176 u32 bank = 0; 3177 u32 dword = 0; 3178 u16 offset_to_read; 3179 u16 i; 3180 3181 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) || 3182 (words == 0)) { 3183 e_dbg("nvm parameter(s) out of bounds\n"); 3184 ret_val = -E1000_ERR_NVM; 3185 goto out; 3186 } 3187 3188 nvm->ops.acquire(hw); 3189 3190 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); 3191 if (ret_val) { 3192 e_dbg("Could not detect valid bank, assuming bank 0\n"); 3193 bank = 0; 3194 } 3195 3196 act_offset = (bank) ? nvm->flash_bank_size : 0; 3197 act_offset += offset; 3198 3199 ret_val = 0; 3200 3201 for (i = 0; i < words; i += 2) { 3202 if (words - i == 1) { 3203 if (dev_spec->shadow_ram[offset + i].modified) { 3204 data[i] = 3205 dev_spec->shadow_ram[offset + i].value; 3206 } else { 3207 offset_to_read = act_offset + i - 3208 ((act_offset + i) % 2); 3209 ret_val = 3210 e1000_read_flash_dword_ich8lan(hw, 3211 offset_to_read, 3212 &dword); 3213 if (ret_val) 3214 break; 3215 if ((act_offset + i) % 2 == 0) 3216 data[i] = (u16)(dword & 0xFFFF); 3217 else 3218 data[i] = (u16)((dword >> 16) & 0xFFFF); 3219 } 3220 } else { 3221 offset_to_read = act_offset + i; 3222 if (!(dev_spec->shadow_ram[offset + i].modified) || 3223 !(dev_spec->shadow_ram[offset + i + 1].modified)) { 3224 ret_val = 3225 e1000_read_flash_dword_ich8lan(hw, 3226 offset_to_read, 3227 &dword); 3228 if (ret_val) 3229 break; 3230 } 3231 if (dev_spec->shadow_ram[offset + i].modified) 3232 data[i] = 3233 dev_spec->shadow_ram[offset + i].value; 3234 else 3235 data[i] = (u16)(dword & 0xFFFF); 3236 if (dev_spec->shadow_ram[offset + i].modified) 3237 data[i + 1] = 3238 dev_spec->shadow_ram[offset + i + 1].value; 3239 else 3240 data[i + 1] = (u16)(dword >> 16 & 0xFFFF); 3241 } 3242 } 3243 3244 nvm->ops.release(hw); 3245 3246 out: 3247 if (ret_val) 3248 e_dbg("NVM read error: %d\n", ret_val); 3249 3250 return ret_val; 3251 } 3252 3253 /** 3254 * e1000_read_nvm_ich8lan - Read word(s) from the NVM 3255 * @hw: pointer to the HW structure 3256 * @offset: The offset (in bytes) of the word(s) to read. 3257 * @words: Size of data to read in words 3258 * @data: Pointer to the word(s) to read at offset. 3259 * 3260 * Reads a word(s) from the NVM using the flash access registers. 3261 **/ 3262 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words, 3263 u16 *data) 3264 { 3265 struct e1000_nvm_info *nvm = &hw->nvm; 3266 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 3267 u32 act_offset; 3268 s32 ret_val = 0; 3269 u32 bank = 0; 3270 u16 i, word; 3271 3272 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) || 3273 (words == 0)) { 3274 e_dbg("nvm parameter(s) out of bounds\n"); 3275 ret_val = -E1000_ERR_NVM; 3276 goto out; 3277 } 3278 3279 nvm->ops.acquire(hw); 3280 3281 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); 3282 if (ret_val) { 3283 e_dbg("Could not detect valid bank, assuming bank 0\n"); 3284 bank = 0; 3285 } 3286 3287 act_offset = (bank) ? nvm->flash_bank_size : 0; 3288 act_offset += offset; 3289 3290 ret_val = 0; 3291 for (i = 0; i < words; i++) { 3292 if (dev_spec->shadow_ram[offset + i].modified) { 3293 data[i] = dev_spec->shadow_ram[offset + i].value; 3294 } else { 3295 ret_val = e1000_read_flash_word_ich8lan(hw, 3296 act_offset + i, 3297 &word); 3298 if (ret_val) 3299 break; 3300 data[i] = word; 3301 } 3302 } 3303 3304 nvm->ops.release(hw); 3305 3306 out: 3307 if (ret_val) 3308 e_dbg("NVM read error: %d\n", ret_val); 3309 3310 return ret_val; 3311 } 3312 3313 /** 3314 * e1000_flash_cycle_init_ich8lan - Initialize flash 3315 * @hw: pointer to the HW structure 3316 * 3317 * This function does initial flash setup so that a new read/write/erase cycle 3318 * can be started. 3319 **/ 3320 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw) 3321 { 3322 union ich8_hws_flash_status hsfsts; 3323 s32 ret_val = -E1000_ERR_NVM; 3324 3325 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 3326 3327 /* Check if the flash descriptor is valid */ 3328 if (!hsfsts.hsf_status.fldesvalid) { 3329 e_dbg("Flash descriptor invalid. SW Sequencing must be used.\n"); 3330 return -E1000_ERR_NVM; 3331 } 3332 3333 /* Clear FCERR and DAEL in hw status by writing 1 */ 3334 hsfsts.hsf_status.flcerr = 1; 3335 hsfsts.hsf_status.dael = 1; 3336 if (hw->mac.type == e1000_pch_spt) 3337 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF); 3338 else 3339 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval); 3340 3341 /* Either we should have a hardware SPI cycle in progress 3342 * bit to check against, in order to start a new cycle or 3343 * FDONE bit should be changed in the hardware so that it 3344 * is 1 after hardware reset, which can then be used as an 3345 * indication whether a cycle is in progress or has been 3346 * completed. 3347 */ 3348 3349 if (!hsfsts.hsf_status.flcinprog) { 3350 /* There is no cycle running at present, 3351 * so we can start a cycle. 3352 * Begin by setting Flash Cycle Done. 3353 */ 3354 hsfsts.hsf_status.flcdone = 1; 3355 if (hw->mac.type == e1000_pch_spt) 3356 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF); 3357 else 3358 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval); 3359 ret_val = 0; 3360 } else { 3361 s32 i; 3362 3363 /* Otherwise poll for sometime so the current 3364 * cycle has a chance to end before giving up. 3365 */ 3366 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) { 3367 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 3368 if (!hsfsts.hsf_status.flcinprog) { 3369 ret_val = 0; 3370 break; 3371 } 3372 udelay(1); 3373 } 3374 if (!ret_val) { 3375 /* Successful in waiting for previous cycle to timeout, 3376 * now set the Flash Cycle Done. 3377 */ 3378 hsfsts.hsf_status.flcdone = 1; 3379 if (hw->mac.type == e1000_pch_spt) 3380 ew32flash(ICH_FLASH_HSFSTS, 3381 hsfsts.regval & 0xFFFF); 3382 else 3383 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval); 3384 } else { 3385 e_dbg("Flash controller busy, cannot get access\n"); 3386 } 3387 } 3388 3389 return ret_val; 3390 } 3391 3392 /** 3393 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase) 3394 * @hw: pointer to the HW structure 3395 * @timeout: maximum time to wait for completion 3396 * 3397 * This function starts a flash cycle and waits for its completion. 3398 **/ 3399 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout) 3400 { 3401 union ich8_hws_flash_ctrl hsflctl; 3402 union ich8_hws_flash_status hsfsts; 3403 u32 i = 0; 3404 3405 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */ 3406 if (hw->mac.type == e1000_pch_spt) 3407 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16; 3408 else 3409 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); 3410 hsflctl.hsf_ctrl.flcgo = 1; 3411 3412 if (hw->mac.type == e1000_pch_spt) 3413 ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16); 3414 else 3415 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); 3416 3417 /* wait till FDONE bit is set to 1 */ 3418 do { 3419 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 3420 if (hsfsts.hsf_status.flcdone) 3421 break; 3422 udelay(1); 3423 } while (i++ < timeout); 3424 3425 if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr) 3426 return 0; 3427 3428 return -E1000_ERR_NVM; 3429 } 3430 3431 /** 3432 * e1000_read_flash_dword_ich8lan - Read dword from flash 3433 * @hw: pointer to the HW structure 3434 * @offset: offset to data location 3435 * @data: pointer to the location for storing the data 3436 * 3437 * Reads the flash dword at offset into data. Offset is converted 3438 * to bytes before read. 3439 **/ 3440 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset, 3441 u32 *data) 3442 { 3443 /* Must convert word offset into bytes. */ 3444 offset <<= 1; 3445 return e1000_read_flash_data32_ich8lan(hw, offset, data); 3446 } 3447 3448 /** 3449 * e1000_read_flash_word_ich8lan - Read word from flash 3450 * @hw: pointer to the HW structure 3451 * @offset: offset to data location 3452 * @data: pointer to the location for storing the data 3453 * 3454 * Reads the flash word at offset into data. Offset is converted 3455 * to bytes before read. 3456 **/ 3457 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset, 3458 u16 *data) 3459 { 3460 /* Must convert offset into bytes. */ 3461 offset <<= 1; 3462 3463 return e1000_read_flash_data_ich8lan(hw, offset, 2, data); 3464 } 3465 3466 /** 3467 * e1000_read_flash_byte_ich8lan - Read byte from flash 3468 * @hw: pointer to the HW structure 3469 * @offset: The offset of the byte to read. 3470 * @data: Pointer to a byte to store the value read. 3471 * 3472 * Reads a single byte from the NVM using the flash access registers. 3473 **/ 3474 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, 3475 u8 *data) 3476 { 3477 s32 ret_val; 3478 u16 word = 0; 3479 3480 /* In SPT, only 32 bits access is supported, 3481 * so this function should not be called. 3482 */ 3483 if (hw->mac.type == e1000_pch_spt) 3484 return -E1000_ERR_NVM; 3485 else 3486 ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word); 3487 3488 if (ret_val) 3489 return ret_val; 3490 3491 *data = (u8)word; 3492 3493 return 0; 3494 } 3495 3496 /** 3497 * e1000_read_flash_data_ich8lan - Read byte or word from NVM 3498 * @hw: pointer to the HW structure 3499 * @offset: The offset (in bytes) of the byte or word to read. 3500 * @size: Size of data to read, 1=byte 2=word 3501 * @data: Pointer to the word to store the value read. 3502 * 3503 * Reads a byte or word from the NVM using the flash access registers. 3504 **/ 3505 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, 3506 u8 size, u16 *data) 3507 { 3508 union ich8_hws_flash_status hsfsts; 3509 union ich8_hws_flash_ctrl hsflctl; 3510 u32 flash_linear_addr; 3511 u32 flash_data = 0; 3512 s32 ret_val = -E1000_ERR_NVM; 3513 u8 count = 0; 3514 3515 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK) 3516 return -E1000_ERR_NVM; 3517 3518 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) + 3519 hw->nvm.flash_base_addr); 3520 3521 do { 3522 udelay(1); 3523 /* Steps */ 3524 ret_val = e1000_flash_cycle_init_ich8lan(hw); 3525 if (ret_val) 3526 break; 3527 3528 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); 3529 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ 3530 hsflctl.hsf_ctrl.fldbcount = size - 1; 3531 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ; 3532 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); 3533 3534 ew32flash(ICH_FLASH_FADDR, flash_linear_addr); 3535 3536 ret_val = 3537 e1000_flash_cycle_ich8lan(hw, 3538 ICH_FLASH_READ_COMMAND_TIMEOUT); 3539 3540 /* Check if FCERR is set to 1, if set to 1, clear it 3541 * and try the whole sequence a few more times, else 3542 * read in (shift in) the Flash Data0, the order is 3543 * least significant byte first msb to lsb 3544 */ 3545 if (!ret_val) { 3546 flash_data = er32flash(ICH_FLASH_FDATA0); 3547 if (size == 1) 3548 *data = (u8)(flash_data & 0x000000FF); 3549 else if (size == 2) 3550 *data = (u16)(flash_data & 0x0000FFFF); 3551 break; 3552 } else { 3553 /* If we've gotten here, then things are probably 3554 * completely hosed, but if the error condition is 3555 * detected, it won't hurt to give it another try... 3556 * ICH_FLASH_CYCLE_REPEAT_COUNT times. 3557 */ 3558 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 3559 if (hsfsts.hsf_status.flcerr) { 3560 /* Repeat for some time before giving up. */ 3561 continue; 3562 } else if (!hsfsts.hsf_status.flcdone) { 3563 e_dbg("Timeout error - flash cycle did not complete.\n"); 3564 break; 3565 } 3566 } 3567 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); 3568 3569 return ret_val; 3570 } 3571 3572 /** 3573 * e1000_read_flash_data32_ich8lan - Read dword from NVM 3574 * @hw: pointer to the HW structure 3575 * @offset: The offset (in bytes) of the dword to read. 3576 * @data: Pointer to the dword to store the value read. 3577 * 3578 * Reads a byte or word from the NVM using the flash access registers. 3579 **/ 3580 3581 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset, 3582 u32 *data) 3583 { 3584 union ich8_hws_flash_status hsfsts; 3585 union ich8_hws_flash_ctrl hsflctl; 3586 u32 flash_linear_addr; 3587 s32 ret_val = -E1000_ERR_NVM; 3588 u8 count = 0; 3589 3590 if (offset > ICH_FLASH_LINEAR_ADDR_MASK || 3591 hw->mac.type != e1000_pch_spt) 3592 return -E1000_ERR_NVM; 3593 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) + 3594 hw->nvm.flash_base_addr); 3595 3596 do { 3597 udelay(1); 3598 /* Steps */ 3599 ret_val = e1000_flash_cycle_init_ich8lan(hw); 3600 if (ret_val) 3601 break; 3602 /* In SPT, This register is in Lan memory space, not flash. 3603 * Therefore, only 32 bit access is supported 3604 */ 3605 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16; 3606 3607 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ 3608 hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1; 3609 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ; 3610 /* In SPT, This register is in Lan memory space, not flash. 3611 * Therefore, only 32 bit access is supported 3612 */ 3613 ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16); 3614 ew32flash(ICH_FLASH_FADDR, flash_linear_addr); 3615 3616 ret_val = 3617 e1000_flash_cycle_ich8lan(hw, 3618 ICH_FLASH_READ_COMMAND_TIMEOUT); 3619 3620 /* Check if FCERR is set to 1, if set to 1, clear it 3621 * and try the whole sequence a few more times, else 3622 * read in (shift in) the Flash Data0, the order is 3623 * least significant byte first msb to lsb 3624 */ 3625 if (!ret_val) { 3626 *data = er32flash(ICH_FLASH_FDATA0); 3627 break; 3628 } else { 3629 /* If we've gotten here, then things are probably 3630 * completely hosed, but if the error condition is 3631 * detected, it won't hurt to give it another try... 3632 * ICH_FLASH_CYCLE_REPEAT_COUNT times. 3633 */ 3634 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 3635 if (hsfsts.hsf_status.flcerr) { 3636 /* Repeat for some time before giving up. */ 3637 continue; 3638 } else if (!hsfsts.hsf_status.flcdone) { 3639 e_dbg("Timeout error - flash cycle did not complete.\n"); 3640 break; 3641 } 3642 } 3643 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); 3644 3645 return ret_val; 3646 } 3647 3648 /** 3649 * e1000_write_nvm_ich8lan - Write word(s) to the NVM 3650 * @hw: pointer to the HW structure 3651 * @offset: The offset (in bytes) of the word(s) to write. 3652 * @words: Size of data to write in words 3653 * @data: Pointer to the word(s) to write at offset. 3654 * 3655 * Writes a byte or word to the NVM using the flash access registers. 3656 **/ 3657 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words, 3658 u16 *data) 3659 { 3660 struct e1000_nvm_info *nvm = &hw->nvm; 3661 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 3662 u16 i; 3663 3664 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) || 3665 (words == 0)) { 3666 e_dbg("nvm parameter(s) out of bounds\n"); 3667 return -E1000_ERR_NVM; 3668 } 3669 3670 nvm->ops.acquire(hw); 3671 3672 for (i = 0; i < words; i++) { 3673 dev_spec->shadow_ram[offset + i].modified = true; 3674 dev_spec->shadow_ram[offset + i].value = data[i]; 3675 } 3676 3677 nvm->ops.release(hw); 3678 3679 return 0; 3680 } 3681 3682 /** 3683 * e1000_update_nvm_checksum_spt - Update the checksum for NVM 3684 * @hw: pointer to the HW structure 3685 * 3686 * The NVM checksum is updated by calling the generic update_nvm_checksum, 3687 * which writes the checksum to the shadow ram. The changes in the shadow 3688 * ram are then committed to the EEPROM by processing each bank at a time 3689 * checking for the modified bit and writing only the pending changes. 3690 * After a successful commit, the shadow ram is cleared and is ready for 3691 * future writes. 3692 **/ 3693 static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw) 3694 { 3695 struct e1000_nvm_info *nvm = &hw->nvm; 3696 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 3697 u32 i, act_offset, new_bank_offset, old_bank_offset, bank; 3698 s32 ret_val; 3699 u32 dword = 0; 3700 3701 ret_val = e1000e_update_nvm_checksum_generic(hw); 3702 if (ret_val) 3703 goto out; 3704 3705 if (nvm->type != e1000_nvm_flash_sw) 3706 goto out; 3707 3708 nvm->ops.acquire(hw); 3709 3710 /* We're writing to the opposite bank so if we're on bank 1, 3711 * write to bank 0 etc. We also need to erase the segment that 3712 * is going to be written 3713 */ 3714 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); 3715 if (ret_val) { 3716 e_dbg("Could not detect valid bank, assuming bank 0\n"); 3717 bank = 0; 3718 } 3719 3720 if (bank == 0) { 3721 new_bank_offset = nvm->flash_bank_size; 3722 old_bank_offset = 0; 3723 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1); 3724 if (ret_val) 3725 goto release; 3726 } else { 3727 old_bank_offset = nvm->flash_bank_size; 3728 new_bank_offset = 0; 3729 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0); 3730 if (ret_val) 3731 goto release; 3732 } 3733 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) { 3734 /* Determine whether to write the value stored 3735 * in the other NVM bank or a modified value stored 3736 * in the shadow RAM 3737 */ 3738 ret_val = e1000_read_flash_dword_ich8lan(hw, 3739 i + old_bank_offset, 3740 &dword); 3741 3742 if (dev_spec->shadow_ram[i].modified) { 3743 dword &= 0xffff0000; 3744 dword |= (dev_spec->shadow_ram[i].value & 0xffff); 3745 } 3746 if (dev_spec->shadow_ram[i + 1].modified) { 3747 dword &= 0x0000ffff; 3748 dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff) 3749 << 16); 3750 } 3751 if (ret_val) 3752 break; 3753 3754 /* If the word is 0x13, then make sure the signature bits 3755 * (15:14) are 11b until the commit has completed. 3756 * This will allow us to write 10b which indicates the 3757 * signature is valid. We want to do this after the write 3758 * has completed so that we don't mark the segment valid 3759 * while the write is still in progress 3760 */ 3761 if (i == E1000_ICH_NVM_SIG_WORD - 1) 3762 dword |= E1000_ICH_NVM_SIG_MASK << 16; 3763 3764 /* Convert offset to bytes. */ 3765 act_offset = (i + new_bank_offset) << 1; 3766 3767 usleep_range(100, 200); 3768 3769 /* Write the data to the new bank. Offset in words */ 3770 act_offset = i + new_bank_offset; 3771 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, 3772 dword); 3773 if (ret_val) 3774 break; 3775 } 3776 3777 /* Don't bother writing the segment valid bits if sector 3778 * programming failed. 3779 */ 3780 if (ret_val) { 3781 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */ 3782 e_dbg("Flash commit failed.\n"); 3783 goto release; 3784 } 3785 3786 /* Finally validate the new segment by setting bit 15:14 3787 * to 10b in word 0x13 , this can be done without an 3788 * erase as well since these bits are 11 to start with 3789 * and we need to change bit 14 to 0b 3790 */ 3791 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD; 3792 3793 /*offset in words but we read dword */ 3794 --act_offset; 3795 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword); 3796 3797 if (ret_val) 3798 goto release; 3799 3800 dword &= 0xBFFFFFFF; 3801 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword); 3802 3803 if (ret_val) 3804 goto release; 3805 3806 /* And invalidate the previously valid segment by setting 3807 * its signature word (0x13) high_byte to 0b. This can be 3808 * done without an erase because flash erase sets all bits 3809 * to 1's. We can write 1's to 0's without an erase 3810 */ 3811 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1; 3812 3813 /* offset in words but we read dword */ 3814 act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1; 3815 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword); 3816 3817 if (ret_val) 3818 goto release; 3819 3820 dword &= 0x00FFFFFF; 3821 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword); 3822 3823 if (ret_val) 3824 goto release; 3825 3826 /* Great! Everything worked, we can now clear the cached entries. */ 3827 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) { 3828 dev_spec->shadow_ram[i].modified = false; 3829 dev_spec->shadow_ram[i].value = 0xFFFF; 3830 } 3831 3832 release: 3833 nvm->ops.release(hw); 3834 3835 /* Reload the EEPROM, or else modifications will not appear 3836 * until after the next adapter reset. 3837 */ 3838 if (!ret_val) { 3839 nvm->ops.reload(hw); 3840 usleep_range(10000, 20000); 3841 } 3842 3843 out: 3844 if (ret_val) 3845 e_dbg("NVM update error: %d\n", ret_val); 3846 3847 return ret_val; 3848 } 3849 3850 /** 3851 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM 3852 * @hw: pointer to the HW structure 3853 * 3854 * The NVM checksum is updated by calling the generic update_nvm_checksum, 3855 * which writes the checksum to the shadow ram. The changes in the shadow 3856 * ram are then committed to the EEPROM by processing each bank at a time 3857 * checking for the modified bit and writing only the pending changes. 3858 * After a successful commit, the shadow ram is cleared and is ready for 3859 * future writes. 3860 **/ 3861 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw) 3862 { 3863 struct e1000_nvm_info *nvm = &hw->nvm; 3864 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 3865 u32 i, act_offset, new_bank_offset, old_bank_offset, bank; 3866 s32 ret_val; 3867 u16 data = 0; 3868 3869 ret_val = e1000e_update_nvm_checksum_generic(hw); 3870 if (ret_val) 3871 goto out; 3872 3873 if (nvm->type != e1000_nvm_flash_sw) 3874 goto out; 3875 3876 nvm->ops.acquire(hw); 3877 3878 /* We're writing to the opposite bank so if we're on bank 1, 3879 * write to bank 0 etc. We also need to erase the segment that 3880 * is going to be written 3881 */ 3882 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); 3883 if (ret_val) { 3884 e_dbg("Could not detect valid bank, assuming bank 0\n"); 3885 bank = 0; 3886 } 3887 3888 if (bank == 0) { 3889 new_bank_offset = nvm->flash_bank_size; 3890 old_bank_offset = 0; 3891 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1); 3892 if (ret_val) 3893 goto release; 3894 } else { 3895 old_bank_offset = nvm->flash_bank_size; 3896 new_bank_offset = 0; 3897 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0); 3898 if (ret_val) 3899 goto release; 3900 } 3901 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) { 3902 if (dev_spec->shadow_ram[i].modified) { 3903 data = dev_spec->shadow_ram[i].value; 3904 } else { 3905 ret_val = e1000_read_flash_word_ich8lan(hw, i + 3906 old_bank_offset, 3907 &data); 3908 if (ret_val) 3909 break; 3910 } 3911 3912 /* If the word is 0x13, then make sure the signature bits 3913 * (15:14) are 11b until the commit has completed. 3914 * This will allow us to write 10b which indicates the 3915 * signature is valid. We want to do this after the write 3916 * has completed so that we don't mark the segment valid 3917 * while the write is still in progress 3918 */ 3919 if (i == E1000_ICH_NVM_SIG_WORD) 3920 data |= E1000_ICH_NVM_SIG_MASK; 3921 3922 /* Convert offset to bytes. */ 3923 act_offset = (i + new_bank_offset) << 1; 3924 3925 usleep_range(100, 200); 3926 /* Write the bytes to the new bank. */ 3927 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, 3928 act_offset, 3929 (u8)data); 3930 if (ret_val) 3931 break; 3932 3933 usleep_range(100, 200); 3934 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, 3935 act_offset + 1, 3936 (u8)(data >> 8)); 3937 if (ret_val) 3938 break; 3939 } 3940 3941 /* Don't bother writing the segment valid bits if sector 3942 * programming failed. 3943 */ 3944 if (ret_val) { 3945 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */ 3946 e_dbg("Flash commit failed.\n"); 3947 goto release; 3948 } 3949 3950 /* Finally validate the new segment by setting bit 15:14 3951 * to 10b in word 0x13 , this can be done without an 3952 * erase as well since these bits are 11 to start with 3953 * and we need to change bit 14 to 0b 3954 */ 3955 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD; 3956 ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data); 3957 if (ret_val) 3958 goto release; 3959 3960 data &= 0xBFFF; 3961 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, 3962 act_offset * 2 + 1, 3963 (u8)(data >> 8)); 3964 if (ret_val) 3965 goto release; 3966 3967 /* And invalidate the previously valid segment by setting 3968 * its signature word (0x13) high_byte to 0b. This can be 3969 * done without an erase because flash erase sets all bits 3970 * to 1's. We can write 1's to 0's without an erase 3971 */ 3972 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1; 3973 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0); 3974 if (ret_val) 3975 goto release; 3976 3977 /* Great! Everything worked, we can now clear the cached entries. */ 3978 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) { 3979 dev_spec->shadow_ram[i].modified = false; 3980 dev_spec->shadow_ram[i].value = 0xFFFF; 3981 } 3982 3983 release: 3984 nvm->ops.release(hw); 3985 3986 /* Reload the EEPROM, or else modifications will not appear 3987 * until after the next adapter reset. 3988 */ 3989 if (!ret_val) { 3990 nvm->ops.reload(hw); 3991 usleep_range(10000, 20000); 3992 } 3993 3994 out: 3995 if (ret_val) 3996 e_dbg("NVM update error: %d\n", ret_val); 3997 3998 return ret_val; 3999 } 4000 4001 /** 4002 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum 4003 * @hw: pointer to the HW structure 4004 * 4005 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19. 4006 * If the bit is 0, that the EEPROM had been modified, but the checksum was not 4007 * calculated, in which case we need to calculate the checksum and set bit 6. 4008 **/ 4009 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw) 4010 { 4011 s32 ret_val; 4012 u16 data; 4013 u16 word; 4014 u16 valid_csum_mask; 4015 4016 /* Read NVM and check Invalid Image CSUM bit. If this bit is 0, 4017 * the checksum needs to be fixed. This bit is an indication that 4018 * the NVM was prepared by OEM software and did not calculate 4019 * the checksum...a likely scenario. 4020 */ 4021 switch (hw->mac.type) { 4022 case e1000_pch_lpt: 4023 case e1000_pch_spt: 4024 word = NVM_COMPAT; 4025 valid_csum_mask = NVM_COMPAT_VALID_CSUM; 4026 break; 4027 default: 4028 word = NVM_FUTURE_INIT_WORD1; 4029 valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM; 4030 break; 4031 } 4032 4033 ret_val = e1000_read_nvm(hw, word, 1, &data); 4034 if (ret_val) 4035 return ret_val; 4036 4037 if (!(data & valid_csum_mask)) { 4038 data |= valid_csum_mask; 4039 ret_val = e1000_write_nvm(hw, word, 1, &data); 4040 if (ret_val) 4041 return ret_val; 4042 ret_val = e1000e_update_nvm_checksum(hw); 4043 if (ret_val) 4044 return ret_val; 4045 } 4046 4047 return e1000e_validate_nvm_checksum_generic(hw); 4048 } 4049 4050 /** 4051 * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only 4052 * @hw: pointer to the HW structure 4053 * 4054 * To prevent malicious write/erase of the NVM, set it to be read-only 4055 * so that the hardware ignores all write/erase cycles of the NVM via 4056 * the flash control registers. The shadow-ram copy of the NVM will 4057 * still be updated, however any updates to this copy will not stick 4058 * across driver reloads. 4059 **/ 4060 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw) 4061 { 4062 struct e1000_nvm_info *nvm = &hw->nvm; 4063 union ich8_flash_protected_range pr0; 4064 union ich8_hws_flash_status hsfsts; 4065 u32 gfpreg; 4066 4067 nvm->ops.acquire(hw); 4068 4069 gfpreg = er32flash(ICH_FLASH_GFPREG); 4070 4071 /* Write-protect GbE Sector of NVM */ 4072 pr0.regval = er32flash(ICH_FLASH_PR0); 4073 pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK; 4074 pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK); 4075 pr0.range.wpe = true; 4076 ew32flash(ICH_FLASH_PR0, pr0.regval); 4077 4078 /* Lock down a subset of GbE Flash Control Registers, e.g. 4079 * PR0 to prevent the write-protection from being lifted. 4080 * Once FLOCKDN is set, the registers protected by it cannot 4081 * be written until FLOCKDN is cleared by a hardware reset. 4082 */ 4083 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 4084 hsfsts.hsf_status.flockdn = true; 4085 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval); 4086 4087 nvm->ops.release(hw); 4088 } 4089 4090 /** 4091 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM 4092 * @hw: pointer to the HW structure 4093 * @offset: The offset (in bytes) of the byte/word to read. 4094 * @size: Size of data to read, 1=byte 2=word 4095 * @data: The byte(s) to write to the NVM. 4096 * 4097 * Writes one/two bytes to the NVM using the flash access registers. 4098 **/ 4099 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, 4100 u8 size, u16 data) 4101 { 4102 union ich8_hws_flash_status hsfsts; 4103 union ich8_hws_flash_ctrl hsflctl; 4104 u32 flash_linear_addr; 4105 u32 flash_data = 0; 4106 s32 ret_val; 4107 u8 count = 0; 4108 4109 if (hw->mac.type == e1000_pch_spt) { 4110 if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK) 4111 return -E1000_ERR_NVM; 4112 } else { 4113 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK) 4114 return -E1000_ERR_NVM; 4115 } 4116 4117 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) + 4118 hw->nvm.flash_base_addr); 4119 4120 do { 4121 udelay(1); 4122 /* Steps */ 4123 ret_val = e1000_flash_cycle_init_ich8lan(hw); 4124 if (ret_val) 4125 break; 4126 /* In SPT, This register is in Lan memory space, not 4127 * flash. Therefore, only 32 bit access is supported 4128 */ 4129 if (hw->mac.type == e1000_pch_spt) 4130 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16; 4131 else 4132 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); 4133 4134 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ 4135 hsflctl.hsf_ctrl.fldbcount = size - 1; 4136 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE; 4137 /* In SPT, This register is in Lan memory space, 4138 * not flash. Therefore, only 32 bit access is 4139 * supported 4140 */ 4141 if (hw->mac.type == e1000_pch_spt) 4142 ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16); 4143 else 4144 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); 4145 4146 ew32flash(ICH_FLASH_FADDR, flash_linear_addr); 4147 4148 if (size == 1) 4149 flash_data = (u32)data & 0x00FF; 4150 else 4151 flash_data = (u32)data; 4152 4153 ew32flash(ICH_FLASH_FDATA0, flash_data); 4154 4155 /* check if FCERR is set to 1 , if set to 1, clear it 4156 * and try the whole sequence a few more times else done 4157 */ 4158 ret_val = 4159 e1000_flash_cycle_ich8lan(hw, 4160 ICH_FLASH_WRITE_COMMAND_TIMEOUT); 4161 if (!ret_val) 4162 break; 4163 4164 /* If we're here, then things are most likely 4165 * completely hosed, but if the error condition 4166 * is detected, it won't hurt to give it another 4167 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times. 4168 */ 4169 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 4170 if (hsfsts.hsf_status.flcerr) 4171 /* Repeat for some time before giving up. */ 4172 continue; 4173 if (!hsfsts.hsf_status.flcdone) { 4174 e_dbg("Timeout error - flash cycle did not complete.\n"); 4175 break; 4176 } 4177 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); 4178 4179 return ret_val; 4180 } 4181 4182 /** 4183 * e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM 4184 * @hw: pointer to the HW structure 4185 * @offset: The offset (in bytes) of the dwords to read. 4186 * @data: The 4 bytes to write to the NVM. 4187 * 4188 * Writes one/two/four bytes to the NVM using the flash access registers. 4189 **/ 4190 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset, 4191 u32 data) 4192 { 4193 union ich8_hws_flash_status hsfsts; 4194 union ich8_hws_flash_ctrl hsflctl; 4195 u32 flash_linear_addr; 4196 s32 ret_val; 4197 u8 count = 0; 4198 4199 if (hw->mac.type == e1000_pch_spt) { 4200 if (offset > ICH_FLASH_LINEAR_ADDR_MASK) 4201 return -E1000_ERR_NVM; 4202 } 4203 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) + 4204 hw->nvm.flash_base_addr); 4205 do { 4206 udelay(1); 4207 /* Steps */ 4208 ret_val = e1000_flash_cycle_init_ich8lan(hw); 4209 if (ret_val) 4210 break; 4211 4212 /* In SPT, This register is in Lan memory space, not 4213 * flash. Therefore, only 32 bit access is supported 4214 */ 4215 if (hw->mac.type == e1000_pch_spt) 4216 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) 4217 >> 16; 4218 else 4219 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); 4220 4221 hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1; 4222 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE; 4223 4224 /* In SPT, This register is in Lan memory space, 4225 * not flash. Therefore, only 32 bit access is 4226 * supported 4227 */ 4228 if (hw->mac.type == e1000_pch_spt) 4229 ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16); 4230 else 4231 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); 4232 4233 ew32flash(ICH_FLASH_FADDR, flash_linear_addr); 4234 4235 ew32flash(ICH_FLASH_FDATA0, data); 4236 4237 /* check if FCERR is set to 1 , if set to 1, clear it 4238 * and try the whole sequence a few more times else done 4239 */ 4240 ret_val = 4241 e1000_flash_cycle_ich8lan(hw, 4242 ICH_FLASH_WRITE_COMMAND_TIMEOUT); 4243 4244 if (!ret_val) 4245 break; 4246 4247 /* If we're here, then things are most likely 4248 * completely hosed, but if the error condition 4249 * is detected, it won't hurt to give it another 4250 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times. 4251 */ 4252 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 4253 4254 if (hsfsts.hsf_status.flcerr) 4255 /* Repeat for some time before giving up. */ 4256 continue; 4257 if (!hsfsts.hsf_status.flcdone) { 4258 e_dbg("Timeout error - flash cycle did not complete.\n"); 4259 break; 4260 } 4261 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); 4262 4263 return ret_val; 4264 } 4265 4266 /** 4267 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM 4268 * @hw: pointer to the HW structure 4269 * @offset: The index of the byte to read. 4270 * @data: The byte to write to the NVM. 4271 * 4272 * Writes a single byte to the NVM using the flash access registers. 4273 **/ 4274 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, 4275 u8 data) 4276 { 4277 u16 word = (u16)data; 4278 4279 return e1000_write_flash_data_ich8lan(hw, offset, 1, word); 4280 } 4281 4282 /** 4283 * e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM 4284 * @hw: pointer to the HW structure 4285 * @offset: The offset of the word to write. 4286 * @dword: The dword to write to the NVM. 4287 * 4288 * Writes a single dword to the NVM using the flash access registers. 4289 * Goes through a retry algorithm before giving up. 4290 **/ 4291 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw, 4292 u32 offset, u32 dword) 4293 { 4294 s32 ret_val; 4295 u16 program_retries; 4296 4297 /* Must convert word offset into bytes. */ 4298 offset <<= 1; 4299 ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword); 4300 4301 if (!ret_val) 4302 return ret_val; 4303 for (program_retries = 0; program_retries < 100; program_retries++) { 4304 e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset); 4305 usleep_range(100, 200); 4306 ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword); 4307 if (!ret_val) 4308 break; 4309 } 4310 if (program_retries == 100) 4311 return -E1000_ERR_NVM; 4312 4313 return 0; 4314 } 4315 4316 /** 4317 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM 4318 * @hw: pointer to the HW structure 4319 * @offset: The offset of the byte to write. 4320 * @byte: The byte to write to the NVM. 4321 * 4322 * Writes a single byte to the NVM using the flash access registers. 4323 * Goes through a retry algorithm before giving up. 4324 **/ 4325 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw, 4326 u32 offset, u8 byte) 4327 { 4328 s32 ret_val; 4329 u16 program_retries; 4330 4331 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte); 4332 if (!ret_val) 4333 return ret_val; 4334 4335 for (program_retries = 0; program_retries < 100; program_retries++) { 4336 e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset); 4337 usleep_range(100, 200); 4338 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte); 4339 if (!ret_val) 4340 break; 4341 } 4342 if (program_retries == 100) 4343 return -E1000_ERR_NVM; 4344 4345 return 0; 4346 } 4347 4348 /** 4349 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM 4350 * @hw: pointer to the HW structure 4351 * @bank: 0 for first bank, 1 for second bank, etc. 4352 * 4353 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based. 4354 * bank N is 4096 * N + flash_reg_addr. 4355 **/ 4356 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank) 4357 { 4358 struct e1000_nvm_info *nvm = &hw->nvm; 4359 union ich8_hws_flash_status hsfsts; 4360 union ich8_hws_flash_ctrl hsflctl; 4361 u32 flash_linear_addr; 4362 /* bank size is in 16bit words - adjust to bytes */ 4363 u32 flash_bank_size = nvm->flash_bank_size * 2; 4364 s32 ret_val; 4365 s32 count = 0; 4366 s32 j, iteration, sector_size; 4367 4368 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 4369 4370 /* Determine HW Sector size: Read BERASE bits of hw flash status 4371 * register 4372 * 00: The Hw sector is 256 bytes, hence we need to erase 16 4373 * consecutive sectors. The start index for the nth Hw sector 4374 * can be calculated as = bank * 4096 + n * 256 4375 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector. 4376 * The start index for the nth Hw sector can be calculated 4377 * as = bank * 4096 4378 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192 4379 * (ich9 only, otherwise error condition) 4380 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536 4381 */ 4382 switch (hsfsts.hsf_status.berasesz) { 4383 case 0: 4384 /* Hw sector size 256 */ 4385 sector_size = ICH_FLASH_SEG_SIZE_256; 4386 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256; 4387 break; 4388 case 1: 4389 sector_size = ICH_FLASH_SEG_SIZE_4K; 4390 iteration = 1; 4391 break; 4392 case 2: 4393 sector_size = ICH_FLASH_SEG_SIZE_8K; 4394 iteration = 1; 4395 break; 4396 case 3: 4397 sector_size = ICH_FLASH_SEG_SIZE_64K; 4398 iteration = 1; 4399 break; 4400 default: 4401 return -E1000_ERR_NVM; 4402 } 4403 4404 /* Start with the base address, then add the sector offset. */ 4405 flash_linear_addr = hw->nvm.flash_base_addr; 4406 flash_linear_addr += (bank) ? flash_bank_size : 0; 4407 4408 for (j = 0; j < iteration; j++) { 4409 do { 4410 u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT; 4411 4412 /* Steps */ 4413 ret_val = e1000_flash_cycle_init_ich8lan(hw); 4414 if (ret_val) 4415 return ret_val; 4416 4417 /* Write a value 11 (block Erase) in Flash 4418 * Cycle field in hw flash control 4419 */ 4420 if (hw->mac.type == e1000_pch_spt) 4421 hsflctl.regval = 4422 er32flash(ICH_FLASH_HSFSTS) >> 16; 4423 else 4424 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); 4425 4426 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE; 4427 if (hw->mac.type == e1000_pch_spt) 4428 ew32flash(ICH_FLASH_HSFSTS, 4429 hsflctl.regval << 16); 4430 else 4431 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); 4432 4433 /* Write the last 24 bits of an index within the 4434 * block into Flash Linear address field in Flash 4435 * Address. 4436 */ 4437 flash_linear_addr += (j * sector_size); 4438 ew32flash(ICH_FLASH_FADDR, flash_linear_addr); 4439 4440 ret_val = e1000_flash_cycle_ich8lan(hw, timeout); 4441 if (!ret_val) 4442 break; 4443 4444 /* Check if FCERR is set to 1. If 1, 4445 * clear it and try the whole sequence 4446 * a few more times else Done 4447 */ 4448 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 4449 if (hsfsts.hsf_status.flcerr) 4450 /* repeat for some time before giving up */ 4451 continue; 4452 else if (!hsfsts.hsf_status.flcdone) 4453 return ret_val; 4454 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT); 4455 } 4456 4457 return 0; 4458 } 4459 4460 /** 4461 * e1000_valid_led_default_ich8lan - Set the default LED settings 4462 * @hw: pointer to the HW structure 4463 * @data: Pointer to the LED settings 4464 * 4465 * Reads the LED default settings from the NVM to data. If the NVM LED 4466 * settings is all 0's or F's, set the LED default to a valid LED default 4467 * setting. 4468 **/ 4469 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data) 4470 { 4471 s32 ret_val; 4472 4473 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data); 4474 if (ret_val) { 4475 e_dbg("NVM Read Error\n"); 4476 return ret_val; 4477 } 4478 4479 if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) 4480 *data = ID_LED_DEFAULT_ICH8LAN; 4481 4482 return 0; 4483 } 4484 4485 /** 4486 * e1000_id_led_init_pchlan - store LED configurations 4487 * @hw: pointer to the HW structure 4488 * 4489 * PCH does not control LEDs via the LEDCTL register, rather it uses 4490 * the PHY LED configuration register. 4491 * 4492 * PCH also does not have an "always on" or "always off" mode which 4493 * complicates the ID feature. Instead of using the "on" mode to indicate 4494 * in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()), 4495 * use "link_up" mode. The LEDs will still ID on request if there is no 4496 * link based on logic in e1000_led_[on|off]_pchlan(). 4497 **/ 4498 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw) 4499 { 4500 struct e1000_mac_info *mac = &hw->mac; 4501 s32 ret_val; 4502 const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP; 4503 const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT; 4504 u16 data, i, temp, shift; 4505 4506 /* Get default ID LED modes */ 4507 ret_val = hw->nvm.ops.valid_led_default(hw, &data); 4508 if (ret_val) 4509 return ret_val; 4510 4511 mac->ledctl_default = er32(LEDCTL); 4512 mac->ledctl_mode1 = mac->ledctl_default; 4513 mac->ledctl_mode2 = mac->ledctl_default; 4514 4515 for (i = 0; i < 4; i++) { 4516 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK; 4517 shift = (i * 5); 4518 switch (temp) { 4519 case ID_LED_ON1_DEF2: 4520 case ID_LED_ON1_ON2: 4521 case ID_LED_ON1_OFF2: 4522 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift); 4523 mac->ledctl_mode1 |= (ledctl_on << shift); 4524 break; 4525 case ID_LED_OFF1_DEF2: 4526 case ID_LED_OFF1_ON2: 4527 case ID_LED_OFF1_OFF2: 4528 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift); 4529 mac->ledctl_mode1 |= (ledctl_off << shift); 4530 break; 4531 default: 4532 /* Do nothing */ 4533 break; 4534 } 4535 switch (temp) { 4536 case ID_LED_DEF1_ON2: 4537 case ID_LED_ON1_ON2: 4538 case ID_LED_OFF1_ON2: 4539 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift); 4540 mac->ledctl_mode2 |= (ledctl_on << shift); 4541 break; 4542 case ID_LED_DEF1_OFF2: 4543 case ID_LED_ON1_OFF2: 4544 case ID_LED_OFF1_OFF2: 4545 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift); 4546 mac->ledctl_mode2 |= (ledctl_off << shift); 4547 break; 4548 default: 4549 /* Do nothing */ 4550 break; 4551 } 4552 } 4553 4554 return 0; 4555 } 4556 4557 /** 4558 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width 4559 * @hw: pointer to the HW structure 4560 * 4561 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability 4562 * register, so the the bus width is hard coded. 4563 **/ 4564 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw) 4565 { 4566 struct e1000_bus_info *bus = &hw->bus; 4567 s32 ret_val; 4568 4569 ret_val = e1000e_get_bus_info_pcie(hw); 4570 4571 /* ICH devices are "PCI Express"-ish. They have 4572 * a configuration space, but do not contain 4573 * PCI Express Capability registers, so bus width 4574 * must be hardcoded. 4575 */ 4576 if (bus->width == e1000_bus_width_unknown) 4577 bus->width = e1000_bus_width_pcie_x1; 4578 4579 return ret_val; 4580 } 4581 4582 /** 4583 * e1000_reset_hw_ich8lan - Reset the hardware 4584 * @hw: pointer to the HW structure 4585 * 4586 * Does a full reset of the hardware which includes a reset of the PHY and 4587 * MAC. 4588 **/ 4589 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw) 4590 { 4591 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 4592 u16 kum_cfg; 4593 u32 ctrl, reg; 4594 s32 ret_val; 4595 4596 /* Prevent the PCI-E bus from sticking if there is no TLP connection 4597 * on the last TLP read/write transaction when MAC is reset. 4598 */ 4599 ret_val = e1000e_disable_pcie_master(hw); 4600 if (ret_val) 4601 e_dbg("PCI-E Master disable polling has failed.\n"); 4602 4603 e_dbg("Masking off all interrupts\n"); 4604 ew32(IMC, 0xffffffff); 4605 4606 /* Disable the Transmit and Receive units. Then delay to allow 4607 * any pending transactions to complete before we hit the MAC 4608 * with the global reset. 4609 */ 4610 ew32(RCTL, 0); 4611 ew32(TCTL, E1000_TCTL_PSP); 4612 e1e_flush(); 4613 4614 usleep_range(10000, 20000); 4615 4616 /* Workaround for ICH8 bit corruption issue in FIFO memory */ 4617 if (hw->mac.type == e1000_ich8lan) { 4618 /* Set Tx and Rx buffer allocation to 8k apiece. */ 4619 ew32(PBA, E1000_PBA_8K); 4620 /* Set Packet Buffer Size to 16k. */ 4621 ew32(PBS, E1000_PBS_16K); 4622 } 4623 4624 if (hw->mac.type == e1000_pchlan) { 4625 /* Save the NVM K1 bit setting */ 4626 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg); 4627 if (ret_val) 4628 return ret_val; 4629 4630 if (kum_cfg & E1000_NVM_K1_ENABLE) 4631 dev_spec->nvm_k1_enabled = true; 4632 else 4633 dev_spec->nvm_k1_enabled = false; 4634 } 4635 4636 ctrl = er32(CTRL); 4637 4638 if (!hw->phy.ops.check_reset_block(hw)) { 4639 /* Full-chip reset requires MAC and PHY reset at the same 4640 * time to make sure the interface between MAC and the 4641 * external PHY is reset. 4642 */ 4643 ctrl |= E1000_CTRL_PHY_RST; 4644 4645 /* Gate automatic PHY configuration by hardware on 4646 * non-managed 82579 4647 */ 4648 if ((hw->mac.type == e1000_pch2lan) && 4649 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) 4650 e1000_gate_hw_phy_config_ich8lan(hw, true); 4651 } 4652 ret_val = e1000_acquire_swflag_ich8lan(hw); 4653 e_dbg("Issuing a global reset to ich8lan\n"); 4654 ew32(CTRL, (ctrl | E1000_CTRL_RST)); 4655 /* cannot issue a flush here because it hangs the hardware */ 4656 msleep(20); 4657 4658 /* Set Phy Config Counter to 50msec */ 4659 if (hw->mac.type == e1000_pch2lan) { 4660 reg = er32(FEXTNVM3); 4661 reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK; 4662 reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC; 4663 ew32(FEXTNVM3, reg); 4664 } 4665 4666 if (!ret_val) 4667 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state); 4668 4669 if (ctrl & E1000_CTRL_PHY_RST) { 4670 ret_val = hw->phy.ops.get_cfg_done(hw); 4671 if (ret_val) 4672 return ret_val; 4673 4674 ret_val = e1000_post_phy_reset_ich8lan(hw); 4675 if (ret_val) 4676 return ret_val; 4677 } 4678 4679 /* For PCH, this write will make sure that any noise 4680 * will be detected as a CRC error and be dropped rather than show up 4681 * as a bad packet to the DMA engine. 4682 */ 4683 if (hw->mac.type == e1000_pchlan) 4684 ew32(CRC_OFFSET, 0x65656565); 4685 4686 ew32(IMC, 0xffffffff); 4687 er32(ICR); 4688 4689 reg = er32(KABGTXD); 4690 reg |= E1000_KABGTXD_BGSQLBIAS; 4691 ew32(KABGTXD, reg); 4692 4693 return 0; 4694 } 4695 4696 /** 4697 * e1000_init_hw_ich8lan - Initialize the hardware 4698 * @hw: pointer to the HW structure 4699 * 4700 * Prepares the hardware for transmit and receive by doing the following: 4701 * - initialize hardware bits 4702 * - initialize LED identification 4703 * - setup receive address registers 4704 * - setup flow control 4705 * - setup transmit descriptors 4706 * - clear statistics 4707 **/ 4708 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw) 4709 { 4710 struct e1000_mac_info *mac = &hw->mac; 4711 u32 ctrl_ext, txdctl, snoop; 4712 s32 ret_val; 4713 u16 i; 4714 4715 e1000_initialize_hw_bits_ich8lan(hw); 4716 4717 /* Initialize identification LED */ 4718 ret_val = mac->ops.id_led_init(hw); 4719 /* An error is not fatal and we should not stop init due to this */ 4720 if (ret_val) 4721 e_dbg("Error initializing identification LED\n"); 4722 4723 /* Setup the receive address. */ 4724 e1000e_init_rx_addrs(hw, mac->rar_entry_count); 4725 4726 /* Zero out the Multicast HASH table */ 4727 e_dbg("Zeroing the MTA\n"); 4728 for (i = 0; i < mac->mta_reg_count; i++) 4729 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); 4730 4731 /* The 82578 Rx buffer will stall if wakeup is enabled in host and 4732 * the ME. Disable wakeup by clearing the host wakeup bit. 4733 * Reset the phy after disabling host wakeup to reset the Rx buffer. 4734 */ 4735 if (hw->phy.type == e1000_phy_82578) { 4736 e1e_rphy(hw, BM_PORT_GEN_CFG, &i); 4737 i &= ~BM_WUC_HOST_WU_BIT; 4738 e1e_wphy(hw, BM_PORT_GEN_CFG, i); 4739 ret_val = e1000_phy_hw_reset_ich8lan(hw); 4740 if (ret_val) 4741 return ret_val; 4742 } 4743 4744 /* Setup link and flow control */ 4745 ret_val = mac->ops.setup_link(hw); 4746 4747 /* Set the transmit descriptor write-back policy for both queues */ 4748 txdctl = er32(TXDCTL(0)); 4749 txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) | 4750 E1000_TXDCTL_FULL_TX_DESC_WB); 4751 txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) | 4752 E1000_TXDCTL_MAX_TX_DESC_PREFETCH); 4753 ew32(TXDCTL(0), txdctl); 4754 txdctl = er32(TXDCTL(1)); 4755 txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) | 4756 E1000_TXDCTL_FULL_TX_DESC_WB); 4757 txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) | 4758 E1000_TXDCTL_MAX_TX_DESC_PREFETCH); 4759 ew32(TXDCTL(1), txdctl); 4760 4761 /* ICH8 has opposite polarity of no_snoop bits. 4762 * By default, we should use snoop behavior. 4763 */ 4764 if (mac->type == e1000_ich8lan) 4765 snoop = PCIE_ICH8_SNOOP_ALL; 4766 else 4767 snoop = (u32)~(PCIE_NO_SNOOP_ALL); 4768 e1000e_set_pcie_no_snoop(hw, snoop); 4769 4770 ctrl_ext = er32(CTRL_EXT); 4771 ctrl_ext |= E1000_CTRL_EXT_RO_DIS; 4772 ew32(CTRL_EXT, ctrl_ext); 4773 4774 /* Clear all of the statistics registers (clear on read). It is 4775 * important that we do this after we have tried to establish link 4776 * because the symbol error count will increment wildly if there 4777 * is no link. 4778 */ 4779 e1000_clear_hw_cntrs_ich8lan(hw); 4780 4781 return ret_val; 4782 } 4783 4784 /** 4785 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits 4786 * @hw: pointer to the HW structure 4787 * 4788 * Sets/Clears required hardware bits necessary for correctly setting up the 4789 * hardware for transmit and receive. 4790 **/ 4791 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw) 4792 { 4793 u32 reg; 4794 4795 /* Extended Device Control */ 4796 reg = er32(CTRL_EXT); 4797 reg |= (1 << 22); 4798 /* Enable PHY low-power state when MAC is at D3 w/o WoL */ 4799 if (hw->mac.type >= e1000_pchlan) 4800 reg |= E1000_CTRL_EXT_PHYPDEN; 4801 ew32(CTRL_EXT, reg); 4802 4803 /* Transmit Descriptor Control 0 */ 4804 reg = er32(TXDCTL(0)); 4805 reg |= (1 << 22); 4806 ew32(TXDCTL(0), reg); 4807 4808 /* Transmit Descriptor Control 1 */ 4809 reg = er32(TXDCTL(1)); 4810 reg |= (1 << 22); 4811 ew32(TXDCTL(1), reg); 4812 4813 /* Transmit Arbitration Control 0 */ 4814 reg = er32(TARC(0)); 4815 if (hw->mac.type == e1000_ich8lan) 4816 reg |= (1 << 28) | (1 << 29); 4817 reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27); 4818 ew32(TARC(0), reg); 4819 4820 /* Transmit Arbitration Control 1 */ 4821 reg = er32(TARC(1)); 4822 if (er32(TCTL) & E1000_TCTL_MULR) 4823 reg &= ~(1 << 28); 4824 else 4825 reg |= (1 << 28); 4826 reg |= (1 << 24) | (1 << 26) | (1 << 30); 4827 ew32(TARC(1), reg); 4828 4829 /* Device Status */ 4830 if (hw->mac.type == e1000_ich8lan) { 4831 reg = er32(STATUS); 4832 reg &= ~(1 << 31); 4833 ew32(STATUS, reg); 4834 } 4835 4836 /* work-around descriptor data corruption issue during nfs v2 udp 4837 * traffic, just disable the nfs filtering capability 4838 */ 4839 reg = er32(RFCTL); 4840 reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS); 4841 4842 /* Disable IPv6 extension header parsing because some malformed 4843 * IPv6 headers can hang the Rx. 4844 */ 4845 if (hw->mac.type == e1000_ich8lan) 4846 reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS); 4847 ew32(RFCTL, reg); 4848 4849 /* Enable ECC on Lynxpoint */ 4850 if ((hw->mac.type == e1000_pch_lpt) || 4851 (hw->mac.type == e1000_pch_spt)) { 4852 reg = er32(PBECCSTS); 4853 reg |= E1000_PBECCSTS_ECC_ENABLE; 4854 ew32(PBECCSTS, reg); 4855 4856 reg = er32(CTRL); 4857 reg |= E1000_CTRL_MEHE; 4858 ew32(CTRL, reg); 4859 } 4860 } 4861 4862 /** 4863 * e1000_setup_link_ich8lan - Setup flow control and link settings 4864 * @hw: pointer to the HW structure 4865 * 4866 * Determines which flow control settings to use, then configures flow 4867 * control. Calls the appropriate media-specific link configuration 4868 * function. Assuming the adapter has a valid link partner, a valid link 4869 * should be established. Assumes the hardware has previously been reset 4870 * and the transmitter and receiver are not enabled. 4871 **/ 4872 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw) 4873 { 4874 s32 ret_val; 4875 4876 if (hw->phy.ops.check_reset_block(hw)) 4877 return 0; 4878 4879 /* ICH parts do not have a word in the NVM to determine 4880 * the default flow control setting, so we explicitly 4881 * set it to full. 4882 */ 4883 if (hw->fc.requested_mode == e1000_fc_default) { 4884 /* Workaround h/w hang when Tx flow control enabled */ 4885 if (hw->mac.type == e1000_pchlan) 4886 hw->fc.requested_mode = e1000_fc_rx_pause; 4887 else 4888 hw->fc.requested_mode = e1000_fc_full; 4889 } 4890 4891 /* Save off the requested flow control mode for use later. Depending 4892 * on the link partner's capabilities, we may or may not use this mode. 4893 */ 4894 hw->fc.current_mode = hw->fc.requested_mode; 4895 4896 e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode); 4897 4898 /* Continue to configure the copper link. */ 4899 ret_val = hw->mac.ops.setup_physical_interface(hw); 4900 if (ret_val) 4901 return ret_val; 4902 4903 ew32(FCTTV, hw->fc.pause_time); 4904 if ((hw->phy.type == e1000_phy_82578) || 4905 (hw->phy.type == e1000_phy_82579) || 4906 (hw->phy.type == e1000_phy_i217) || 4907 (hw->phy.type == e1000_phy_82577)) { 4908 ew32(FCRTV_PCH, hw->fc.refresh_time); 4909 4910 ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27), 4911 hw->fc.pause_time); 4912 if (ret_val) 4913 return ret_val; 4914 } 4915 4916 return e1000e_set_fc_watermarks(hw); 4917 } 4918 4919 /** 4920 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface 4921 * @hw: pointer to the HW structure 4922 * 4923 * Configures the kumeran interface to the PHY to wait the appropriate time 4924 * when polling the PHY, then call the generic setup_copper_link to finish 4925 * configuring the copper link. 4926 **/ 4927 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw) 4928 { 4929 u32 ctrl; 4930 s32 ret_val; 4931 u16 reg_data; 4932 4933 ctrl = er32(CTRL); 4934 ctrl |= E1000_CTRL_SLU; 4935 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); 4936 ew32(CTRL, ctrl); 4937 4938 /* Set the mac to wait the maximum time between each iteration 4939 * and increase the max iterations when polling the phy; 4940 * this fixes erroneous timeouts at 10Mbps. 4941 */ 4942 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF); 4943 if (ret_val) 4944 return ret_val; 4945 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM, 4946 ®_data); 4947 if (ret_val) 4948 return ret_val; 4949 reg_data |= 0x3F; 4950 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM, 4951 reg_data); 4952 if (ret_val) 4953 return ret_val; 4954 4955 switch (hw->phy.type) { 4956 case e1000_phy_igp_3: 4957 ret_val = e1000e_copper_link_setup_igp(hw); 4958 if (ret_val) 4959 return ret_val; 4960 break; 4961 case e1000_phy_bm: 4962 case e1000_phy_82578: 4963 ret_val = e1000e_copper_link_setup_m88(hw); 4964 if (ret_val) 4965 return ret_val; 4966 break; 4967 case e1000_phy_82577: 4968 case e1000_phy_82579: 4969 ret_val = e1000_copper_link_setup_82577(hw); 4970 if (ret_val) 4971 return ret_val; 4972 break; 4973 case e1000_phy_ife: 4974 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, ®_data); 4975 if (ret_val) 4976 return ret_val; 4977 4978 reg_data &= ~IFE_PMC_AUTO_MDIX; 4979 4980 switch (hw->phy.mdix) { 4981 case 1: 4982 reg_data &= ~IFE_PMC_FORCE_MDIX; 4983 break; 4984 case 2: 4985 reg_data |= IFE_PMC_FORCE_MDIX; 4986 break; 4987 case 0: 4988 default: 4989 reg_data |= IFE_PMC_AUTO_MDIX; 4990 break; 4991 } 4992 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data); 4993 if (ret_val) 4994 return ret_val; 4995 break; 4996 default: 4997 break; 4998 } 4999 5000 return e1000e_setup_copper_link(hw); 5001 } 5002 5003 /** 5004 * e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface 5005 * @hw: pointer to the HW structure 5006 * 5007 * Calls the PHY specific link setup function and then calls the 5008 * generic setup_copper_link to finish configuring the link for 5009 * Lynxpoint PCH devices 5010 **/ 5011 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw) 5012 { 5013 u32 ctrl; 5014 s32 ret_val; 5015 5016 ctrl = er32(CTRL); 5017 ctrl |= E1000_CTRL_SLU; 5018 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); 5019 ew32(CTRL, ctrl); 5020 5021 ret_val = e1000_copper_link_setup_82577(hw); 5022 if (ret_val) 5023 return ret_val; 5024 5025 return e1000e_setup_copper_link(hw); 5026 } 5027 5028 /** 5029 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex 5030 * @hw: pointer to the HW structure 5031 * @speed: pointer to store current link speed 5032 * @duplex: pointer to store the current link duplex 5033 * 5034 * Calls the generic get_speed_and_duplex to retrieve the current link 5035 * information and then calls the Kumeran lock loss workaround for links at 5036 * gigabit speeds. 5037 **/ 5038 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed, 5039 u16 *duplex) 5040 { 5041 s32 ret_val; 5042 5043 ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex); 5044 if (ret_val) 5045 return ret_val; 5046 5047 if ((hw->mac.type == e1000_ich8lan) && 5048 (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) { 5049 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw); 5050 } 5051 5052 return ret_val; 5053 } 5054 5055 /** 5056 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround 5057 * @hw: pointer to the HW structure 5058 * 5059 * Work-around for 82566 Kumeran PCS lock loss: 5060 * On link status change (i.e. PCI reset, speed change) and link is up and 5061 * speed is gigabit- 5062 * 0) if workaround is optionally disabled do nothing 5063 * 1) wait 1ms for Kumeran link to come up 5064 * 2) check Kumeran Diagnostic register PCS lock loss bit 5065 * 3) if not set the link is locked (all is good), otherwise... 5066 * 4) reset the PHY 5067 * 5) repeat up to 10 times 5068 * Note: this is only called for IGP3 copper when speed is 1gb. 5069 **/ 5070 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw) 5071 { 5072 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 5073 u32 phy_ctrl; 5074 s32 ret_val; 5075 u16 i, data; 5076 bool link; 5077 5078 if (!dev_spec->kmrn_lock_loss_workaround_enabled) 5079 return 0; 5080 5081 /* Make sure link is up before proceeding. If not just return. 5082 * Attempting this while link is negotiating fouled up link 5083 * stability 5084 */ 5085 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); 5086 if (!link) 5087 return 0; 5088 5089 for (i = 0; i < 10; i++) { 5090 /* read once to clear */ 5091 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data); 5092 if (ret_val) 5093 return ret_val; 5094 /* and again to get new status */ 5095 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data); 5096 if (ret_val) 5097 return ret_val; 5098 5099 /* check for PCS lock */ 5100 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS)) 5101 return 0; 5102 5103 /* Issue PHY reset */ 5104 e1000_phy_hw_reset(hw); 5105 mdelay(5); 5106 } 5107 /* Disable GigE link negotiation */ 5108 phy_ctrl = er32(PHY_CTRL); 5109 phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE | 5110 E1000_PHY_CTRL_NOND0A_GBE_DISABLE); 5111 ew32(PHY_CTRL, phy_ctrl); 5112 5113 /* Call gig speed drop workaround on Gig disable before accessing 5114 * any PHY registers 5115 */ 5116 e1000e_gig_downshift_workaround_ich8lan(hw); 5117 5118 /* unable to acquire PCS lock */ 5119 return -E1000_ERR_PHY; 5120 } 5121 5122 /** 5123 * e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state 5124 * @hw: pointer to the HW structure 5125 * @state: boolean value used to set the current Kumeran workaround state 5126 * 5127 * If ICH8, set the current Kumeran workaround state (enabled - true 5128 * /disabled - false). 5129 **/ 5130 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw, 5131 bool state) 5132 { 5133 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 5134 5135 if (hw->mac.type != e1000_ich8lan) { 5136 e_dbg("Workaround applies to ICH8 only.\n"); 5137 return; 5138 } 5139 5140 dev_spec->kmrn_lock_loss_workaround_enabled = state; 5141 } 5142 5143 /** 5144 * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3 5145 * @hw: pointer to the HW structure 5146 * 5147 * Workaround for 82566 power-down on D3 entry: 5148 * 1) disable gigabit link 5149 * 2) write VR power-down enable 5150 * 3) read it back 5151 * Continue if successful, else issue LCD reset and repeat 5152 **/ 5153 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw) 5154 { 5155 u32 reg; 5156 u16 data; 5157 u8 retry = 0; 5158 5159 if (hw->phy.type != e1000_phy_igp_3) 5160 return; 5161 5162 /* Try the workaround twice (if needed) */ 5163 do { 5164 /* Disable link */ 5165 reg = er32(PHY_CTRL); 5166 reg |= (E1000_PHY_CTRL_GBE_DISABLE | 5167 E1000_PHY_CTRL_NOND0A_GBE_DISABLE); 5168 ew32(PHY_CTRL, reg); 5169 5170 /* Call gig speed drop workaround on Gig disable before 5171 * accessing any PHY registers 5172 */ 5173 if (hw->mac.type == e1000_ich8lan) 5174 e1000e_gig_downshift_workaround_ich8lan(hw); 5175 5176 /* Write VR power-down enable */ 5177 e1e_rphy(hw, IGP3_VR_CTRL, &data); 5178 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK; 5179 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN); 5180 5181 /* Read it back and test */ 5182 e1e_rphy(hw, IGP3_VR_CTRL, &data); 5183 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK; 5184 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry) 5185 break; 5186 5187 /* Issue PHY reset and repeat at most one more time */ 5188 reg = er32(CTRL); 5189 ew32(CTRL, reg | E1000_CTRL_PHY_RST); 5190 retry++; 5191 } while (retry); 5192 } 5193 5194 /** 5195 * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working 5196 * @hw: pointer to the HW structure 5197 * 5198 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC), 5199 * LPLU, Gig disable, MDIC PHY reset): 5200 * 1) Set Kumeran Near-end loopback 5201 * 2) Clear Kumeran Near-end loopback 5202 * Should only be called for ICH8[m] devices with any 1G Phy. 5203 **/ 5204 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw) 5205 { 5206 s32 ret_val; 5207 u16 reg_data; 5208 5209 if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife)) 5210 return; 5211 5212 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, 5213 ®_data); 5214 if (ret_val) 5215 return; 5216 reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK; 5217 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, 5218 reg_data); 5219 if (ret_val) 5220 return; 5221 reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK; 5222 e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data); 5223 } 5224 5225 /** 5226 * e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx 5227 * @hw: pointer to the HW structure 5228 * 5229 * During S0 to Sx transition, it is possible the link remains at gig 5230 * instead of negotiating to a lower speed. Before going to Sx, set 5231 * 'Gig Disable' to force link speed negotiation to a lower speed based on 5232 * the LPLU setting in the NVM or custom setting. For PCH and newer parts, 5233 * the OEM bits PHY register (LED, GbE disable and LPLU configurations) also 5234 * needs to be written. 5235 * Parts that support (and are linked to a partner which support) EEE in 5236 * 100Mbps should disable LPLU since 100Mbps w/ EEE requires less power 5237 * than 10Mbps w/o EEE. 5238 **/ 5239 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw) 5240 { 5241 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 5242 u32 phy_ctrl; 5243 s32 ret_val; 5244 5245 phy_ctrl = er32(PHY_CTRL); 5246 phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE; 5247 5248 if (hw->phy.type == e1000_phy_i217) { 5249 u16 phy_reg, device_id = hw->adapter->pdev->device; 5250 5251 if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) || 5252 (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) || 5253 (device_id == E1000_DEV_ID_PCH_I218_LM3) || 5254 (device_id == E1000_DEV_ID_PCH_I218_V3) || 5255 (hw->mac.type == e1000_pch_spt)) { 5256 u32 fextnvm6 = er32(FEXTNVM6); 5257 5258 ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK); 5259 } 5260 5261 ret_val = hw->phy.ops.acquire(hw); 5262 if (ret_val) 5263 goto out; 5264 5265 if (!dev_spec->eee_disable) { 5266 u16 eee_advert; 5267 5268 ret_val = 5269 e1000_read_emi_reg_locked(hw, 5270 I217_EEE_ADVERTISEMENT, 5271 &eee_advert); 5272 if (ret_val) 5273 goto release; 5274 5275 /* Disable LPLU if both link partners support 100BaseT 5276 * EEE and 100Full is advertised on both ends of the 5277 * link, and enable Auto Enable LPI since there will 5278 * be no driver to enable LPI while in Sx. 5279 */ 5280 if ((eee_advert & I82579_EEE_100_SUPPORTED) && 5281 (dev_spec->eee_lp_ability & 5282 I82579_EEE_100_SUPPORTED) && 5283 (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) { 5284 phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU | 5285 E1000_PHY_CTRL_NOND0A_LPLU); 5286 5287 /* Set Auto Enable LPI after link up */ 5288 e1e_rphy_locked(hw, 5289 I217_LPI_GPIO_CTRL, &phy_reg); 5290 phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI; 5291 e1e_wphy_locked(hw, 5292 I217_LPI_GPIO_CTRL, phy_reg); 5293 } 5294 } 5295 5296 /* For i217 Intel Rapid Start Technology support, 5297 * when the system is going into Sx and no manageability engine 5298 * is present, the driver must configure proxy to reset only on 5299 * power good. LPI (Low Power Idle) state must also reset only 5300 * on power good, as well as the MTA (Multicast table array). 5301 * The SMBus release must also be disabled on LCD reset. 5302 */ 5303 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) { 5304 /* Enable proxy to reset only on power good. */ 5305 e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg); 5306 phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE; 5307 e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg); 5308 5309 /* Set bit enable LPI (EEE) to reset only on 5310 * power good. 5311 */ 5312 e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg); 5313 phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET; 5314 e1e_wphy_locked(hw, I217_SxCTRL, phy_reg); 5315 5316 /* Disable the SMB release on LCD reset. */ 5317 e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg); 5318 phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE; 5319 e1e_wphy_locked(hw, I217_MEMPWR, phy_reg); 5320 } 5321 5322 /* Enable MTA to reset for Intel Rapid Start Technology 5323 * Support 5324 */ 5325 e1e_rphy_locked(hw, I217_CGFREG, &phy_reg); 5326 phy_reg |= I217_CGFREG_ENABLE_MTA_RESET; 5327 e1e_wphy_locked(hw, I217_CGFREG, phy_reg); 5328 5329 release: 5330 hw->phy.ops.release(hw); 5331 } 5332 out: 5333 ew32(PHY_CTRL, phy_ctrl); 5334 5335 if (hw->mac.type == e1000_ich8lan) 5336 e1000e_gig_downshift_workaround_ich8lan(hw); 5337 5338 if (hw->mac.type >= e1000_pchlan) { 5339 e1000_oem_bits_config_ich8lan(hw, false); 5340 5341 /* Reset PHY to activate OEM bits on 82577/8 */ 5342 if (hw->mac.type == e1000_pchlan) 5343 e1000e_phy_hw_reset_generic(hw); 5344 5345 ret_val = hw->phy.ops.acquire(hw); 5346 if (ret_val) 5347 return; 5348 e1000_write_smbus_addr(hw); 5349 hw->phy.ops.release(hw); 5350 } 5351 } 5352 5353 /** 5354 * e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0 5355 * @hw: pointer to the HW structure 5356 * 5357 * During Sx to S0 transitions on non-managed devices or managed devices 5358 * on which PHY resets are not blocked, if the PHY registers cannot be 5359 * accessed properly by the s/w toggle the LANPHYPC value to power cycle 5360 * the PHY. 5361 * On i217, setup Intel Rapid Start Technology. 5362 **/ 5363 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw) 5364 { 5365 s32 ret_val; 5366 5367 if (hw->mac.type < e1000_pch2lan) 5368 return; 5369 5370 ret_val = e1000_init_phy_workarounds_pchlan(hw); 5371 if (ret_val) { 5372 e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val); 5373 return; 5374 } 5375 5376 /* For i217 Intel Rapid Start Technology support when the system 5377 * is transitioning from Sx and no manageability engine is present 5378 * configure SMBus to restore on reset, disable proxy, and enable 5379 * the reset on MTA (Multicast table array). 5380 */ 5381 if (hw->phy.type == e1000_phy_i217) { 5382 u16 phy_reg; 5383 5384 ret_val = hw->phy.ops.acquire(hw); 5385 if (ret_val) { 5386 e_dbg("Failed to setup iRST\n"); 5387 return; 5388 } 5389 5390 /* Clear Auto Enable LPI after link up */ 5391 e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg); 5392 phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI; 5393 e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg); 5394 5395 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) { 5396 /* Restore clear on SMB if no manageability engine 5397 * is present 5398 */ 5399 ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg); 5400 if (ret_val) 5401 goto release; 5402 phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE; 5403 e1e_wphy_locked(hw, I217_MEMPWR, phy_reg); 5404 5405 /* Disable Proxy */ 5406 e1e_wphy_locked(hw, I217_PROXY_CTRL, 0); 5407 } 5408 /* Enable reset on MTA */ 5409 ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg); 5410 if (ret_val) 5411 goto release; 5412 phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET; 5413 e1e_wphy_locked(hw, I217_CGFREG, phy_reg); 5414 release: 5415 if (ret_val) 5416 e_dbg("Error %d in resume workarounds\n", ret_val); 5417 hw->phy.ops.release(hw); 5418 } 5419 } 5420 5421 /** 5422 * e1000_cleanup_led_ich8lan - Restore the default LED operation 5423 * @hw: pointer to the HW structure 5424 * 5425 * Return the LED back to the default configuration. 5426 **/ 5427 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw) 5428 { 5429 if (hw->phy.type == e1000_phy_ife) 5430 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0); 5431 5432 ew32(LEDCTL, hw->mac.ledctl_default); 5433 return 0; 5434 } 5435 5436 /** 5437 * e1000_led_on_ich8lan - Turn LEDs on 5438 * @hw: pointer to the HW structure 5439 * 5440 * Turn on the LEDs. 5441 **/ 5442 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw) 5443 { 5444 if (hw->phy.type == e1000_phy_ife) 5445 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 5446 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON)); 5447 5448 ew32(LEDCTL, hw->mac.ledctl_mode2); 5449 return 0; 5450 } 5451 5452 /** 5453 * e1000_led_off_ich8lan - Turn LEDs off 5454 * @hw: pointer to the HW structure 5455 * 5456 * Turn off the LEDs. 5457 **/ 5458 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw) 5459 { 5460 if (hw->phy.type == e1000_phy_ife) 5461 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 5462 (IFE_PSCL_PROBE_MODE | 5463 IFE_PSCL_PROBE_LEDS_OFF)); 5464 5465 ew32(LEDCTL, hw->mac.ledctl_mode1); 5466 return 0; 5467 } 5468 5469 /** 5470 * e1000_setup_led_pchlan - Configures SW controllable LED 5471 * @hw: pointer to the HW structure 5472 * 5473 * This prepares the SW controllable LED for use. 5474 **/ 5475 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw) 5476 { 5477 return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1); 5478 } 5479 5480 /** 5481 * e1000_cleanup_led_pchlan - Restore the default LED operation 5482 * @hw: pointer to the HW structure 5483 * 5484 * Return the LED back to the default configuration. 5485 **/ 5486 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw) 5487 { 5488 return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default); 5489 } 5490 5491 /** 5492 * e1000_led_on_pchlan - Turn LEDs on 5493 * @hw: pointer to the HW structure 5494 * 5495 * Turn on the LEDs. 5496 **/ 5497 static s32 e1000_led_on_pchlan(struct e1000_hw *hw) 5498 { 5499 u16 data = (u16)hw->mac.ledctl_mode2; 5500 u32 i, led; 5501 5502 /* If no link, then turn LED on by setting the invert bit 5503 * for each LED that's mode is "link_up" in ledctl_mode2. 5504 */ 5505 if (!(er32(STATUS) & E1000_STATUS_LU)) { 5506 for (i = 0; i < 3; i++) { 5507 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK; 5508 if ((led & E1000_PHY_LED0_MODE_MASK) != 5509 E1000_LEDCTL_MODE_LINK_UP) 5510 continue; 5511 if (led & E1000_PHY_LED0_IVRT) 5512 data &= ~(E1000_PHY_LED0_IVRT << (i * 5)); 5513 else 5514 data |= (E1000_PHY_LED0_IVRT << (i * 5)); 5515 } 5516 } 5517 5518 return e1e_wphy(hw, HV_LED_CONFIG, data); 5519 } 5520 5521 /** 5522 * e1000_led_off_pchlan - Turn LEDs off 5523 * @hw: pointer to the HW structure 5524 * 5525 * Turn off the LEDs. 5526 **/ 5527 static s32 e1000_led_off_pchlan(struct e1000_hw *hw) 5528 { 5529 u16 data = (u16)hw->mac.ledctl_mode1; 5530 u32 i, led; 5531 5532 /* If no link, then turn LED off by clearing the invert bit 5533 * for each LED that's mode is "link_up" in ledctl_mode1. 5534 */ 5535 if (!(er32(STATUS) & E1000_STATUS_LU)) { 5536 for (i = 0; i < 3; i++) { 5537 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK; 5538 if ((led & E1000_PHY_LED0_MODE_MASK) != 5539 E1000_LEDCTL_MODE_LINK_UP) 5540 continue; 5541 if (led & E1000_PHY_LED0_IVRT) 5542 data &= ~(E1000_PHY_LED0_IVRT << (i * 5)); 5543 else 5544 data |= (E1000_PHY_LED0_IVRT << (i * 5)); 5545 } 5546 } 5547 5548 return e1e_wphy(hw, HV_LED_CONFIG, data); 5549 } 5550 5551 /** 5552 * e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset 5553 * @hw: pointer to the HW structure 5554 * 5555 * Read appropriate register for the config done bit for completion status 5556 * and configure the PHY through s/w for EEPROM-less parts. 5557 * 5558 * NOTE: some silicon which is EEPROM-less will fail trying to read the 5559 * config done bit, so only an error is logged and continues. If we were 5560 * to return with error, EEPROM-less silicon would not be able to be reset 5561 * or change link. 5562 **/ 5563 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw) 5564 { 5565 s32 ret_val = 0; 5566 u32 bank = 0; 5567 u32 status; 5568 5569 e1000e_get_cfg_done_generic(hw); 5570 5571 /* Wait for indication from h/w that it has completed basic config */ 5572 if (hw->mac.type >= e1000_ich10lan) { 5573 e1000_lan_init_done_ich8lan(hw); 5574 } else { 5575 ret_val = e1000e_get_auto_rd_done(hw); 5576 if (ret_val) { 5577 /* When auto config read does not complete, do not 5578 * return with an error. This can happen in situations 5579 * where there is no eeprom and prevents getting link. 5580 */ 5581 e_dbg("Auto Read Done did not complete\n"); 5582 ret_val = 0; 5583 } 5584 } 5585 5586 /* Clear PHY Reset Asserted bit */ 5587 status = er32(STATUS); 5588 if (status & E1000_STATUS_PHYRA) 5589 ew32(STATUS, status & ~E1000_STATUS_PHYRA); 5590 else 5591 e_dbg("PHY Reset Asserted not set - needs delay\n"); 5592 5593 /* If EEPROM is not marked present, init the IGP 3 PHY manually */ 5594 if (hw->mac.type <= e1000_ich9lan) { 5595 if (!(er32(EECD) & E1000_EECD_PRES) && 5596 (hw->phy.type == e1000_phy_igp_3)) { 5597 e1000e_phy_init_script_igp3(hw); 5598 } 5599 } else { 5600 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) { 5601 /* Maybe we should do a basic PHY config */ 5602 e_dbg("EEPROM not present\n"); 5603 ret_val = -E1000_ERR_CONFIG; 5604 } 5605 } 5606 5607 return ret_val; 5608 } 5609 5610 /** 5611 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down 5612 * @hw: pointer to the HW structure 5613 * 5614 * In the case of a PHY power down to save power, or to turn off link during a 5615 * driver unload, or wake on lan is not enabled, remove the link. 5616 **/ 5617 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw) 5618 { 5619 /* If the management interface is not enabled, then power down */ 5620 if (!(hw->mac.ops.check_mng_mode(hw) || 5621 hw->phy.ops.check_reset_block(hw))) 5622 e1000_power_down_phy_copper(hw); 5623 } 5624 5625 /** 5626 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters 5627 * @hw: pointer to the HW structure 5628 * 5629 * Clears hardware counters specific to the silicon family and calls 5630 * clear_hw_cntrs_generic to clear all general purpose counters. 5631 **/ 5632 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw) 5633 { 5634 u16 phy_data; 5635 s32 ret_val; 5636 5637 e1000e_clear_hw_cntrs_base(hw); 5638 5639 er32(ALGNERRC); 5640 er32(RXERRC); 5641 er32(TNCRS); 5642 er32(CEXTERR); 5643 er32(TSCTC); 5644 er32(TSCTFC); 5645 5646 er32(MGTPRC); 5647 er32(MGTPDC); 5648 er32(MGTPTC); 5649 5650 er32(IAC); 5651 er32(ICRXOC); 5652 5653 /* Clear PHY statistics registers */ 5654 if ((hw->phy.type == e1000_phy_82578) || 5655 (hw->phy.type == e1000_phy_82579) || 5656 (hw->phy.type == e1000_phy_i217) || 5657 (hw->phy.type == e1000_phy_82577)) { 5658 ret_val = hw->phy.ops.acquire(hw); 5659 if (ret_val) 5660 return; 5661 ret_val = hw->phy.ops.set_page(hw, 5662 HV_STATS_PAGE << IGP_PAGE_SHIFT); 5663 if (ret_val) 5664 goto release; 5665 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data); 5666 hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data); 5667 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data); 5668 hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data); 5669 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data); 5670 hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data); 5671 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data); 5672 hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data); 5673 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data); 5674 hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data); 5675 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data); 5676 hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data); 5677 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data); 5678 hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data); 5679 release: 5680 hw->phy.ops.release(hw); 5681 } 5682 } 5683 5684 static const struct e1000_mac_operations ich8_mac_ops = { 5685 /* check_mng_mode dependent on mac type */ 5686 .check_for_link = e1000_check_for_copper_link_ich8lan, 5687 /* cleanup_led dependent on mac type */ 5688 .clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan, 5689 .get_bus_info = e1000_get_bus_info_ich8lan, 5690 .set_lan_id = e1000_set_lan_id_single_port, 5691 .get_link_up_info = e1000_get_link_up_info_ich8lan, 5692 /* led_on dependent on mac type */ 5693 /* led_off dependent on mac type */ 5694 .update_mc_addr_list = e1000e_update_mc_addr_list_generic, 5695 .reset_hw = e1000_reset_hw_ich8lan, 5696 .init_hw = e1000_init_hw_ich8lan, 5697 .setup_link = e1000_setup_link_ich8lan, 5698 .setup_physical_interface = e1000_setup_copper_link_ich8lan, 5699 /* id_led_init dependent on mac type */ 5700 .config_collision_dist = e1000e_config_collision_dist_generic, 5701 .rar_set = e1000e_rar_set_generic, 5702 .rar_get_count = e1000e_rar_get_count_generic, 5703 }; 5704 5705 static const struct e1000_phy_operations ich8_phy_ops = { 5706 .acquire = e1000_acquire_swflag_ich8lan, 5707 .check_reset_block = e1000_check_reset_block_ich8lan, 5708 .commit = NULL, 5709 .get_cfg_done = e1000_get_cfg_done_ich8lan, 5710 .get_cable_length = e1000e_get_cable_length_igp_2, 5711 .read_reg = e1000e_read_phy_reg_igp, 5712 .release = e1000_release_swflag_ich8lan, 5713 .reset = e1000_phy_hw_reset_ich8lan, 5714 .set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan, 5715 .set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan, 5716 .write_reg = e1000e_write_phy_reg_igp, 5717 }; 5718 5719 static const struct e1000_nvm_operations ich8_nvm_ops = { 5720 .acquire = e1000_acquire_nvm_ich8lan, 5721 .read = e1000_read_nvm_ich8lan, 5722 .release = e1000_release_nvm_ich8lan, 5723 .reload = e1000e_reload_nvm_generic, 5724 .update = e1000_update_nvm_checksum_ich8lan, 5725 .valid_led_default = e1000_valid_led_default_ich8lan, 5726 .validate = e1000_validate_nvm_checksum_ich8lan, 5727 .write = e1000_write_nvm_ich8lan, 5728 }; 5729 5730 static const struct e1000_nvm_operations spt_nvm_ops = { 5731 .acquire = e1000_acquire_nvm_ich8lan, 5732 .release = e1000_release_nvm_ich8lan, 5733 .read = e1000_read_nvm_spt, 5734 .update = e1000_update_nvm_checksum_spt, 5735 .reload = e1000e_reload_nvm_generic, 5736 .valid_led_default = e1000_valid_led_default_ich8lan, 5737 .validate = e1000_validate_nvm_checksum_ich8lan, 5738 .write = e1000_write_nvm_ich8lan, 5739 }; 5740 5741 const struct e1000_info e1000_ich8_info = { 5742 .mac = e1000_ich8lan, 5743 .flags = FLAG_HAS_WOL 5744 | FLAG_IS_ICH 5745 | FLAG_HAS_CTRLEXT_ON_LOAD 5746 | FLAG_HAS_AMT 5747 | FLAG_HAS_FLASH 5748 | FLAG_APME_IN_WUC, 5749 .pba = 8, 5750 .max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN, 5751 .get_variants = e1000_get_variants_ich8lan, 5752 .mac_ops = &ich8_mac_ops, 5753 .phy_ops = &ich8_phy_ops, 5754 .nvm_ops = &ich8_nvm_ops, 5755 }; 5756 5757 const struct e1000_info e1000_ich9_info = { 5758 .mac = e1000_ich9lan, 5759 .flags = FLAG_HAS_JUMBO_FRAMES 5760 | FLAG_IS_ICH 5761 | FLAG_HAS_WOL 5762 | FLAG_HAS_CTRLEXT_ON_LOAD 5763 | FLAG_HAS_AMT 5764 | FLAG_HAS_FLASH 5765 | FLAG_APME_IN_WUC, 5766 .pba = 18, 5767 .max_hw_frame_size = DEFAULT_JUMBO, 5768 .get_variants = e1000_get_variants_ich8lan, 5769 .mac_ops = &ich8_mac_ops, 5770 .phy_ops = &ich8_phy_ops, 5771 .nvm_ops = &ich8_nvm_ops, 5772 }; 5773 5774 const struct e1000_info e1000_ich10_info = { 5775 .mac = e1000_ich10lan, 5776 .flags = FLAG_HAS_JUMBO_FRAMES 5777 | FLAG_IS_ICH 5778 | FLAG_HAS_WOL 5779 | FLAG_HAS_CTRLEXT_ON_LOAD 5780 | FLAG_HAS_AMT 5781 | FLAG_HAS_FLASH 5782 | FLAG_APME_IN_WUC, 5783 .pba = 18, 5784 .max_hw_frame_size = DEFAULT_JUMBO, 5785 .get_variants = e1000_get_variants_ich8lan, 5786 .mac_ops = &ich8_mac_ops, 5787 .phy_ops = &ich8_phy_ops, 5788 .nvm_ops = &ich8_nvm_ops, 5789 }; 5790 5791 const struct e1000_info e1000_pch_info = { 5792 .mac = e1000_pchlan, 5793 .flags = FLAG_IS_ICH 5794 | FLAG_HAS_WOL 5795 | FLAG_HAS_CTRLEXT_ON_LOAD 5796 | FLAG_HAS_AMT 5797 | FLAG_HAS_FLASH 5798 | FLAG_HAS_JUMBO_FRAMES 5799 | FLAG_DISABLE_FC_PAUSE_TIME /* errata */ 5800 | FLAG_APME_IN_WUC, 5801 .flags2 = FLAG2_HAS_PHY_STATS, 5802 .pba = 26, 5803 .max_hw_frame_size = 4096, 5804 .get_variants = e1000_get_variants_ich8lan, 5805 .mac_ops = &ich8_mac_ops, 5806 .phy_ops = &ich8_phy_ops, 5807 .nvm_ops = &ich8_nvm_ops, 5808 }; 5809 5810 const struct e1000_info e1000_pch2_info = { 5811 .mac = e1000_pch2lan, 5812 .flags = FLAG_IS_ICH 5813 | FLAG_HAS_WOL 5814 | FLAG_HAS_HW_TIMESTAMP 5815 | FLAG_HAS_CTRLEXT_ON_LOAD 5816 | FLAG_HAS_AMT 5817 | FLAG_HAS_FLASH 5818 | FLAG_HAS_JUMBO_FRAMES 5819 | FLAG_APME_IN_WUC, 5820 .flags2 = FLAG2_HAS_PHY_STATS 5821 | FLAG2_HAS_EEE, 5822 .pba = 26, 5823 .max_hw_frame_size = 9022, 5824 .get_variants = e1000_get_variants_ich8lan, 5825 .mac_ops = &ich8_mac_ops, 5826 .phy_ops = &ich8_phy_ops, 5827 .nvm_ops = &ich8_nvm_ops, 5828 }; 5829 5830 const struct e1000_info e1000_pch_lpt_info = { 5831 .mac = e1000_pch_lpt, 5832 .flags = FLAG_IS_ICH 5833 | FLAG_HAS_WOL 5834 | FLAG_HAS_HW_TIMESTAMP 5835 | FLAG_HAS_CTRLEXT_ON_LOAD 5836 | FLAG_HAS_AMT 5837 | FLAG_HAS_FLASH 5838 | FLAG_HAS_JUMBO_FRAMES 5839 | FLAG_APME_IN_WUC, 5840 .flags2 = FLAG2_HAS_PHY_STATS 5841 | FLAG2_HAS_EEE, 5842 .pba = 26, 5843 .max_hw_frame_size = 9022, 5844 .get_variants = e1000_get_variants_ich8lan, 5845 .mac_ops = &ich8_mac_ops, 5846 .phy_ops = &ich8_phy_ops, 5847 .nvm_ops = &ich8_nvm_ops, 5848 }; 5849 5850 const struct e1000_info e1000_pch_spt_info = { 5851 .mac = e1000_pch_spt, 5852 .flags = FLAG_IS_ICH 5853 | FLAG_HAS_WOL 5854 | FLAG_HAS_HW_TIMESTAMP 5855 | FLAG_HAS_CTRLEXT_ON_LOAD 5856 | FLAG_HAS_AMT 5857 | FLAG_HAS_FLASH 5858 | FLAG_HAS_JUMBO_FRAMES 5859 | FLAG_APME_IN_WUC, 5860 .flags2 = FLAG2_HAS_PHY_STATS 5861 | FLAG2_HAS_EEE, 5862 .pba = 26, 5863 .max_hw_frame_size = 9022, 5864 .get_variants = e1000_get_variants_ich8lan, 5865 .mac_ops = &ich8_mac_ops, 5866 .phy_ops = &ich8_phy_ops, 5867 .nvm_ops = &spt_nvm_ops, 5868 }; 5869