1 // SPDX-License-Identifier: GPL-2.0
2 /* Intel PRO/1000 Linux driver
3  * Copyright(c) 1999 - 2015 Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * The full GNU General Public License is included in this distribution in
15  * the file called "COPYING".
16  *
17  * Contact Information:
18  * Linux NICS <linux.nics@intel.com>
19  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
20  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
21  */
22 
23 /* 82562G 10/100 Network Connection
24  * 82562G-2 10/100 Network Connection
25  * 82562GT 10/100 Network Connection
26  * 82562GT-2 10/100 Network Connection
27  * 82562V 10/100 Network Connection
28  * 82562V-2 10/100 Network Connection
29  * 82566DC-2 Gigabit Network Connection
30  * 82566DC Gigabit Network Connection
31  * 82566DM-2 Gigabit Network Connection
32  * 82566DM Gigabit Network Connection
33  * 82566MC Gigabit Network Connection
34  * 82566MM Gigabit Network Connection
35  * 82567LM Gigabit Network Connection
36  * 82567LF Gigabit Network Connection
37  * 82567V Gigabit Network Connection
38  * 82567LM-2 Gigabit Network Connection
39  * 82567LF-2 Gigabit Network Connection
40  * 82567V-2 Gigabit Network Connection
41  * 82567LF-3 Gigabit Network Connection
42  * 82567LM-3 Gigabit Network Connection
43  * 82567LM-4 Gigabit Network Connection
44  * 82577LM Gigabit Network Connection
45  * 82577LC Gigabit Network Connection
46  * 82578DM Gigabit Network Connection
47  * 82578DC Gigabit Network Connection
48  * 82579LM Gigabit Network Connection
49  * 82579V Gigabit Network Connection
50  * Ethernet Connection I217-LM
51  * Ethernet Connection I217-V
52  * Ethernet Connection I218-V
53  * Ethernet Connection I218-LM
54  * Ethernet Connection (2) I218-LM
55  * Ethernet Connection (2) I218-V
56  * Ethernet Connection (3) I218-LM
57  * Ethernet Connection (3) I218-V
58  */
59 
60 #include "e1000.h"
61 
62 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
63 /* Offset 04h HSFSTS */
64 union ich8_hws_flash_status {
65 	struct ich8_hsfsts {
66 		u16 flcdone:1;	/* bit 0 Flash Cycle Done */
67 		u16 flcerr:1;	/* bit 1 Flash Cycle Error */
68 		u16 dael:1;	/* bit 2 Direct Access error Log */
69 		u16 berasesz:2;	/* bit 4:3 Sector Erase Size */
70 		u16 flcinprog:1;	/* bit 5 flash cycle in Progress */
71 		u16 reserved1:2;	/* bit 13:6 Reserved */
72 		u16 reserved2:6;	/* bit 13:6 Reserved */
73 		u16 fldesvalid:1;	/* bit 14 Flash Descriptor Valid */
74 		u16 flockdn:1;	/* bit 15 Flash Config Lock-Down */
75 	} hsf_status;
76 	u16 regval;
77 };
78 
79 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
80 /* Offset 06h FLCTL */
81 union ich8_hws_flash_ctrl {
82 	struct ich8_hsflctl {
83 		u16 flcgo:1;	/* 0 Flash Cycle Go */
84 		u16 flcycle:2;	/* 2:1 Flash Cycle */
85 		u16 reserved:5;	/* 7:3 Reserved  */
86 		u16 fldbcount:2;	/* 9:8 Flash Data Byte Count */
87 		u16 flockdn:6;	/* 15:10 Reserved */
88 	} hsf_ctrl;
89 	u16 regval;
90 };
91 
92 /* ICH Flash Region Access Permissions */
93 union ich8_hws_flash_regacc {
94 	struct ich8_flracc {
95 		u32 grra:8;	/* 0:7 GbE region Read Access */
96 		u32 grwa:8;	/* 8:15 GbE region Write Access */
97 		u32 gmrag:8;	/* 23:16 GbE Master Read Access Grant */
98 		u32 gmwag:8;	/* 31:24 GbE Master Write Access Grant */
99 	} hsf_flregacc;
100 	u16 regval;
101 };
102 
103 /* ICH Flash Protected Region */
104 union ich8_flash_protected_range {
105 	struct ich8_pr {
106 		u32 base:13;	/* 0:12 Protected Range Base */
107 		u32 reserved1:2;	/* 13:14 Reserved */
108 		u32 rpe:1;	/* 15 Read Protection Enable */
109 		u32 limit:13;	/* 16:28 Protected Range Limit */
110 		u32 reserved2:2;	/* 29:30 Reserved */
111 		u32 wpe:1;	/* 31 Write Protection Enable */
112 	} range;
113 	u32 regval;
114 };
115 
116 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
117 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
118 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
119 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
120 						u32 offset, u8 byte);
121 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
122 					 u8 *data);
123 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
124 					 u16 *data);
125 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
126 					 u8 size, u16 *data);
127 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
128 					   u32 *data);
129 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
130 					  u32 offset, u32 *data);
131 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
132 					    u32 offset, u32 data);
133 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
134 						 u32 offset, u32 dword);
135 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
136 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
137 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
138 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
139 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
140 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
141 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
142 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
143 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
144 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
145 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
146 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
147 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
148 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
149 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
150 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
151 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
152 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
153 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw);
154 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
155 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
156 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
157 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
158 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
159 
160 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
161 {
162 	return readw(hw->flash_address + reg);
163 }
164 
165 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
166 {
167 	return readl(hw->flash_address + reg);
168 }
169 
170 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
171 {
172 	writew(val, hw->flash_address + reg);
173 }
174 
175 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
176 {
177 	writel(val, hw->flash_address + reg);
178 }
179 
180 #define er16flash(reg)		__er16flash(hw, (reg))
181 #define er32flash(reg)		__er32flash(hw, (reg))
182 #define ew16flash(reg, val)	__ew16flash(hw, (reg), (val))
183 #define ew32flash(reg, val)	__ew32flash(hw, (reg), (val))
184 
185 /**
186  *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
187  *  @hw: pointer to the HW structure
188  *
189  *  Test access to the PHY registers by reading the PHY ID registers.  If
190  *  the PHY ID is already known (e.g. resume path) compare it with known ID,
191  *  otherwise assume the read PHY ID is correct if it is valid.
192  *
193  *  Assumes the sw/fw/hw semaphore is already acquired.
194  **/
195 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
196 {
197 	u16 phy_reg = 0;
198 	u32 phy_id = 0;
199 	s32 ret_val = 0;
200 	u16 retry_count;
201 	u32 mac_reg = 0;
202 
203 	for (retry_count = 0; retry_count < 2; retry_count++) {
204 		ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
205 		if (ret_val || (phy_reg == 0xFFFF))
206 			continue;
207 		phy_id = (u32)(phy_reg << 16);
208 
209 		ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
210 		if (ret_val || (phy_reg == 0xFFFF)) {
211 			phy_id = 0;
212 			continue;
213 		}
214 		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
215 		break;
216 	}
217 
218 	if (hw->phy.id) {
219 		if (hw->phy.id == phy_id)
220 			goto out;
221 	} else if (phy_id) {
222 		hw->phy.id = phy_id;
223 		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
224 		goto out;
225 	}
226 
227 	/* In case the PHY needs to be in mdio slow mode,
228 	 * set slow mode and try to get the PHY id again.
229 	 */
230 	if (hw->mac.type < e1000_pch_lpt) {
231 		hw->phy.ops.release(hw);
232 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
233 		if (!ret_val)
234 			ret_val = e1000e_get_phy_id(hw);
235 		hw->phy.ops.acquire(hw);
236 	}
237 
238 	if (ret_val)
239 		return false;
240 out:
241 	if (hw->mac.type >= e1000_pch_lpt) {
242 		/* Only unforce SMBus if ME is not active */
243 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
244 			/* Unforce SMBus mode in PHY */
245 			e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
246 			phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
247 			e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
248 
249 			/* Unforce SMBus mode in MAC */
250 			mac_reg = er32(CTRL_EXT);
251 			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
252 			ew32(CTRL_EXT, mac_reg);
253 		}
254 	}
255 
256 	return true;
257 }
258 
259 /**
260  *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
261  *  @hw: pointer to the HW structure
262  *
263  *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
264  *  used to reset the PHY to a quiescent state when necessary.
265  **/
266 static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
267 {
268 	u32 mac_reg;
269 
270 	/* Set Phy Config Counter to 50msec */
271 	mac_reg = er32(FEXTNVM3);
272 	mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
273 	mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
274 	ew32(FEXTNVM3, mac_reg);
275 
276 	/* Toggle LANPHYPC Value bit */
277 	mac_reg = er32(CTRL);
278 	mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
279 	mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
280 	ew32(CTRL, mac_reg);
281 	e1e_flush();
282 	usleep_range(10, 20);
283 	mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
284 	ew32(CTRL, mac_reg);
285 	e1e_flush();
286 
287 	if (hw->mac.type < e1000_pch_lpt) {
288 		msleep(50);
289 	} else {
290 		u16 count = 20;
291 
292 		do {
293 			usleep_range(5000, 10000);
294 		} while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
295 
296 		msleep(30);
297 	}
298 }
299 
300 /**
301  *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
302  *  @hw: pointer to the HW structure
303  *
304  *  Workarounds/flow necessary for PHY initialization during driver load
305  *  and resume paths.
306  **/
307 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
308 {
309 	struct e1000_adapter *adapter = hw->adapter;
310 	u32 mac_reg, fwsm = er32(FWSM);
311 	s32 ret_val;
312 
313 	/* Gate automatic PHY configuration by hardware on managed and
314 	 * non-managed 82579 and newer adapters.
315 	 */
316 	e1000_gate_hw_phy_config_ich8lan(hw, true);
317 
318 	/* It is not possible to be certain of the current state of ULP
319 	 * so forcibly disable it.
320 	 */
321 	hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
322 	e1000_disable_ulp_lpt_lp(hw, true);
323 
324 	ret_val = hw->phy.ops.acquire(hw);
325 	if (ret_val) {
326 		e_dbg("Failed to initialize PHY flow\n");
327 		goto out;
328 	}
329 
330 	/* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
331 	 * inaccessible and resetting the PHY is not blocked, toggle the
332 	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
333 	 */
334 	switch (hw->mac.type) {
335 	case e1000_pch_lpt:
336 	case e1000_pch_spt:
337 	case e1000_pch_cnp:
338 		if (e1000_phy_is_accessible_pchlan(hw))
339 			break;
340 
341 		/* Before toggling LANPHYPC, see if PHY is accessible by
342 		 * forcing MAC to SMBus mode first.
343 		 */
344 		mac_reg = er32(CTRL_EXT);
345 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
346 		ew32(CTRL_EXT, mac_reg);
347 
348 		/* Wait 50 milliseconds for MAC to finish any retries
349 		 * that it might be trying to perform from previous
350 		 * attempts to acknowledge any phy read requests.
351 		 */
352 		msleep(50);
353 
354 		/* fall-through */
355 	case e1000_pch2lan:
356 		if (e1000_phy_is_accessible_pchlan(hw))
357 			break;
358 
359 		/* fall-through */
360 	case e1000_pchlan:
361 		if ((hw->mac.type == e1000_pchlan) &&
362 		    (fwsm & E1000_ICH_FWSM_FW_VALID))
363 			break;
364 
365 		if (hw->phy.ops.check_reset_block(hw)) {
366 			e_dbg("Required LANPHYPC toggle blocked by ME\n");
367 			ret_val = -E1000_ERR_PHY;
368 			break;
369 		}
370 
371 		/* Toggle LANPHYPC Value bit */
372 		e1000_toggle_lanphypc_pch_lpt(hw);
373 		if (hw->mac.type >= e1000_pch_lpt) {
374 			if (e1000_phy_is_accessible_pchlan(hw))
375 				break;
376 
377 			/* Toggling LANPHYPC brings the PHY out of SMBus mode
378 			 * so ensure that the MAC is also out of SMBus mode
379 			 */
380 			mac_reg = er32(CTRL_EXT);
381 			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
382 			ew32(CTRL_EXT, mac_reg);
383 
384 			if (e1000_phy_is_accessible_pchlan(hw))
385 				break;
386 
387 			ret_val = -E1000_ERR_PHY;
388 		}
389 		break;
390 	default:
391 		break;
392 	}
393 
394 	hw->phy.ops.release(hw);
395 	if (!ret_val) {
396 
397 		/* Check to see if able to reset PHY.  Print error if not */
398 		if (hw->phy.ops.check_reset_block(hw)) {
399 			e_err("Reset blocked by ME\n");
400 			goto out;
401 		}
402 
403 		/* Reset the PHY before any access to it.  Doing so, ensures
404 		 * that the PHY is in a known good state before we read/write
405 		 * PHY registers.  The generic reset is sufficient here,
406 		 * because we haven't determined the PHY type yet.
407 		 */
408 		ret_val = e1000e_phy_hw_reset_generic(hw);
409 		if (ret_val)
410 			goto out;
411 
412 		/* On a successful reset, possibly need to wait for the PHY
413 		 * to quiesce to an accessible state before returning control
414 		 * to the calling function.  If the PHY does not quiesce, then
415 		 * return E1000E_BLK_PHY_RESET, as this is the condition that
416 		 *  the PHY is in.
417 		 */
418 		ret_val = hw->phy.ops.check_reset_block(hw);
419 		if (ret_val)
420 			e_err("ME blocked access to PHY after reset\n");
421 	}
422 
423 out:
424 	/* Ungate automatic PHY configuration on non-managed 82579 */
425 	if ((hw->mac.type == e1000_pch2lan) &&
426 	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
427 		usleep_range(10000, 20000);
428 		e1000_gate_hw_phy_config_ich8lan(hw, false);
429 	}
430 
431 	return ret_val;
432 }
433 
434 /**
435  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
436  *  @hw: pointer to the HW structure
437  *
438  *  Initialize family-specific PHY parameters and function pointers.
439  **/
440 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
441 {
442 	struct e1000_phy_info *phy = &hw->phy;
443 	s32 ret_val;
444 
445 	phy->addr = 1;
446 	phy->reset_delay_us = 100;
447 
448 	phy->ops.set_page = e1000_set_page_igp;
449 	phy->ops.read_reg = e1000_read_phy_reg_hv;
450 	phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
451 	phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
452 	phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
453 	phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
454 	phy->ops.write_reg = e1000_write_phy_reg_hv;
455 	phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
456 	phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
457 	phy->ops.power_up = e1000_power_up_phy_copper;
458 	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
459 	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
460 
461 	phy->id = e1000_phy_unknown;
462 
463 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
464 	if (ret_val)
465 		return ret_val;
466 
467 	if (phy->id == e1000_phy_unknown)
468 		switch (hw->mac.type) {
469 		default:
470 			ret_val = e1000e_get_phy_id(hw);
471 			if (ret_val)
472 				return ret_val;
473 			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
474 				break;
475 			/* fall-through */
476 		case e1000_pch2lan:
477 		case e1000_pch_lpt:
478 		case e1000_pch_spt:
479 		case e1000_pch_cnp:
480 			/* In case the PHY needs to be in mdio slow mode,
481 			 * set slow mode and try to get the PHY id again.
482 			 */
483 			ret_val = e1000_set_mdio_slow_mode_hv(hw);
484 			if (ret_val)
485 				return ret_val;
486 			ret_val = e1000e_get_phy_id(hw);
487 			if (ret_val)
488 				return ret_val;
489 			break;
490 		}
491 	phy->type = e1000e_get_phy_type_from_id(phy->id);
492 
493 	switch (phy->type) {
494 	case e1000_phy_82577:
495 	case e1000_phy_82579:
496 	case e1000_phy_i217:
497 		phy->ops.check_polarity = e1000_check_polarity_82577;
498 		phy->ops.force_speed_duplex =
499 		    e1000_phy_force_speed_duplex_82577;
500 		phy->ops.get_cable_length = e1000_get_cable_length_82577;
501 		phy->ops.get_info = e1000_get_phy_info_82577;
502 		phy->ops.commit = e1000e_phy_sw_reset;
503 		break;
504 	case e1000_phy_82578:
505 		phy->ops.check_polarity = e1000_check_polarity_m88;
506 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
507 		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
508 		phy->ops.get_info = e1000e_get_phy_info_m88;
509 		break;
510 	default:
511 		ret_val = -E1000_ERR_PHY;
512 		break;
513 	}
514 
515 	return ret_val;
516 }
517 
518 /**
519  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
520  *  @hw: pointer to the HW structure
521  *
522  *  Initialize family-specific PHY parameters and function pointers.
523  **/
524 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
525 {
526 	struct e1000_phy_info *phy = &hw->phy;
527 	s32 ret_val;
528 	u16 i = 0;
529 
530 	phy->addr = 1;
531 	phy->reset_delay_us = 100;
532 
533 	phy->ops.power_up = e1000_power_up_phy_copper;
534 	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
535 
536 	/* We may need to do this twice - once for IGP and if that fails,
537 	 * we'll set BM func pointers and try again
538 	 */
539 	ret_val = e1000e_determine_phy_address(hw);
540 	if (ret_val) {
541 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
542 		phy->ops.read_reg = e1000e_read_phy_reg_bm;
543 		ret_val = e1000e_determine_phy_address(hw);
544 		if (ret_val) {
545 			e_dbg("Cannot determine PHY addr. Erroring out\n");
546 			return ret_val;
547 		}
548 	}
549 
550 	phy->id = 0;
551 	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
552 	       (i++ < 100)) {
553 		usleep_range(1000, 2000);
554 		ret_val = e1000e_get_phy_id(hw);
555 		if (ret_val)
556 			return ret_val;
557 	}
558 
559 	/* Verify phy id */
560 	switch (phy->id) {
561 	case IGP03E1000_E_PHY_ID:
562 		phy->type = e1000_phy_igp_3;
563 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
564 		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
565 		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
566 		phy->ops.get_info = e1000e_get_phy_info_igp;
567 		phy->ops.check_polarity = e1000_check_polarity_igp;
568 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
569 		break;
570 	case IFE_E_PHY_ID:
571 	case IFE_PLUS_E_PHY_ID:
572 	case IFE_C_E_PHY_ID:
573 		phy->type = e1000_phy_ife;
574 		phy->autoneg_mask = E1000_ALL_NOT_GIG;
575 		phy->ops.get_info = e1000_get_phy_info_ife;
576 		phy->ops.check_polarity = e1000_check_polarity_ife;
577 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
578 		break;
579 	case BME1000_E_PHY_ID:
580 		phy->type = e1000_phy_bm;
581 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
582 		phy->ops.read_reg = e1000e_read_phy_reg_bm;
583 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
584 		phy->ops.commit = e1000e_phy_sw_reset;
585 		phy->ops.get_info = e1000e_get_phy_info_m88;
586 		phy->ops.check_polarity = e1000_check_polarity_m88;
587 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
588 		break;
589 	default:
590 		return -E1000_ERR_PHY;
591 	}
592 
593 	return 0;
594 }
595 
596 /**
597  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
598  *  @hw: pointer to the HW structure
599  *
600  *  Initialize family-specific NVM parameters and function
601  *  pointers.
602  **/
603 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
604 {
605 	struct e1000_nvm_info *nvm = &hw->nvm;
606 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
607 	u32 gfpreg, sector_base_addr, sector_end_addr;
608 	u16 i;
609 	u32 nvm_size;
610 
611 	nvm->type = e1000_nvm_flash_sw;
612 
613 	if (hw->mac.type >= e1000_pch_spt) {
614 		/* in SPT, gfpreg doesn't exist. NVM size is taken from the
615 		 * STRAP register. This is because in SPT the GbE Flash region
616 		 * is no longer accessed through the flash registers. Instead,
617 		 * the mechanism has changed, and the Flash region access
618 		 * registers are now implemented in GbE memory space.
619 		 */
620 		nvm->flash_base_addr = 0;
621 		nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1)
622 		    * NVM_SIZE_MULTIPLIER;
623 		nvm->flash_bank_size = nvm_size / 2;
624 		/* Adjust to word count */
625 		nvm->flash_bank_size /= sizeof(u16);
626 		/* Set the base address for flash register access */
627 		hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
628 	} else {
629 		/* Can't read flash registers if register set isn't mapped. */
630 		if (!hw->flash_address) {
631 			e_dbg("ERROR: Flash registers not mapped\n");
632 			return -E1000_ERR_CONFIG;
633 		}
634 
635 		gfpreg = er32flash(ICH_FLASH_GFPREG);
636 
637 		/* sector_X_addr is a "sector"-aligned address (4096 bytes)
638 		 * Add 1 to sector_end_addr since this sector is included in
639 		 * the overall size.
640 		 */
641 		sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
642 		sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
643 
644 		/* flash_base_addr is byte-aligned */
645 		nvm->flash_base_addr = sector_base_addr
646 		    << FLASH_SECTOR_ADDR_SHIFT;
647 
648 		/* find total size of the NVM, then cut in half since the total
649 		 * size represents two separate NVM banks.
650 		 */
651 		nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
652 					<< FLASH_SECTOR_ADDR_SHIFT);
653 		nvm->flash_bank_size /= 2;
654 		/* Adjust to word count */
655 		nvm->flash_bank_size /= sizeof(u16);
656 	}
657 
658 	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
659 
660 	/* Clear shadow ram */
661 	for (i = 0; i < nvm->word_size; i++) {
662 		dev_spec->shadow_ram[i].modified = false;
663 		dev_spec->shadow_ram[i].value = 0xFFFF;
664 	}
665 
666 	return 0;
667 }
668 
669 /**
670  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
671  *  @hw: pointer to the HW structure
672  *
673  *  Initialize family-specific MAC parameters and function
674  *  pointers.
675  **/
676 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
677 {
678 	struct e1000_mac_info *mac = &hw->mac;
679 
680 	/* Set media type function pointer */
681 	hw->phy.media_type = e1000_media_type_copper;
682 
683 	/* Set mta register count */
684 	mac->mta_reg_count = 32;
685 	/* Set rar entry count */
686 	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
687 	if (mac->type == e1000_ich8lan)
688 		mac->rar_entry_count--;
689 	/* FWSM register */
690 	mac->has_fwsm = true;
691 	/* ARC subsystem not supported */
692 	mac->arc_subsystem_valid = false;
693 	/* Adaptive IFS supported */
694 	mac->adaptive_ifs = true;
695 
696 	/* LED and other operations */
697 	switch (mac->type) {
698 	case e1000_ich8lan:
699 	case e1000_ich9lan:
700 	case e1000_ich10lan:
701 		/* check management mode */
702 		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
703 		/* ID LED init */
704 		mac->ops.id_led_init = e1000e_id_led_init_generic;
705 		/* blink LED */
706 		mac->ops.blink_led = e1000e_blink_led_generic;
707 		/* setup LED */
708 		mac->ops.setup_led = e1000e_setup_led_generic;
709 		/* cleanup LED */
710 		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
711 		/* turn on/off LED */
712 		mac->ops.led_on = e1000_led_on_ich8lan;
713 		mac->ops.led_off = e1000_led_off_ich8lan;
714 		break;
715 	case e1000_pch2lan:
716 		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
717 		mac->ops.rar_set = e1000_rar_set_pch2lan;
718 		/* fall-through */
719 	case e1000_pch_lpt:
720 	case e1000_pch_spt:
721 	case e1000_pch_cnp:
722 	case e1000_pchlan:
723 		/* check management mode */
724 		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
725 		/* ID LED init */
726 		mac->ops.id_led_init = e1000_id_led_init_pchlan;
727 		/* setup LED */
728 		mac->ops.setup_led = e1000_setup_led_pchlan;
729 		/* cleanup LED */
730 		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
731 		/* turn on/off LED */
732 		mac->ops.led_on = e1000_led_on_pchlan;
733 		mac->ops.led_off = e1000_led_off_pchlan;
734 		break;
735 	default:
736 		break;
737 	}
738 
739 	if (mac->type >= e1000_pch_lpt) {
740 		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
741 		mac->ops.rar_set = e1000_rar_set_pch_lpt;
742 		mac->ops.setup_physical_interface =
743 		    e1000_setup_copper_link_pch_lpt;
744 		mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt;
745 	}
746 
747 	/* Enable PCS Lock-loss workaround for ICH8 */
748 	if (mac->type == e1000_ich8lan)
749 		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
750 
751 	return 0;
752 }
753 
754 /**
755  *  __e1000_access_emi_reg_locked - Read/write EMI register
756  *  @hw: pointer to the HW structure
757  *  @addr: EMI address to program
758  *  @data: pointer to value to read/write from/to the EMI address
759  *  @read: boolean flag to indicate read or write
760  *
761  *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
762  **/
763 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
764 					 u16 *data, bool read)
765 {
766 	s32 ret_val;
767 
768 	ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
769 	if (ret_val)
770 		return ret_val;
771 
772 	if (read)
773 		ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
774 	else
775 		ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
776 
777 	return ret_val;
778 }
779 
780 /**
781  *  e1000_read_emi_reg_locked - Read Extended Management Interface register
782  *  @hw: pointer to the HW structure
783  *  @addr: EMI address to program
784  *  @data: value to be read from the EMI address
785  *
786  *  Assumes the SW/FW/HW Semaphore is already acquired.
787  **/
788 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
789 {
790 	return __e1000_access_emi_reg_locked(hw, addr, data, true);
791 }
792 
793 /**
794  *  e1000_write_emi_reg_locked - Write Extended Management Interface register
795  *  @hw: pointer to the HW structure
796  *  @addr: EMI address to program
797  *  @data: value to be written to the EMI address
798  *
799  *  Assumes the SW/FW/HW Semaphore is already acquired.
800  **/
801 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
802 {
803 	return __e1000_access_emi_reg_locked(hw, addr, &data, false);
804 }
805 
806 /**
807  *  e1000_set_eee_pchlan - Enable/disable EEE support
808  *  @hw: pointer to the HW structure
809  *
810  *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
811  *  the link and the EEE capabilities of the link partner.  The LPI Control
812  *  register bits will remain set only if/when link is up.
813  *
814  *  EEE LPI must not be asserted earlier than one second after link is up.
815  *  On 82579, EEE LPI should not be enabled until such time otherwise there
816  *  can be link issues with some switches.  Other devices can have EEE LPI
817  *  enabled immediately upon link up since they have a timer in hardware which
818  *  prevents LPI from being asserted too early.
819  **/
820 s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
821 {
822 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
823 	s32 ret_val;
824 	u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
825 
826 	switch (hw->phy.type) {
827 	case e1000_phy_82579:
828 		lpa = I82579_EEE_LP_ABILITY;
829 		pcs_status = I82579_EEE_PCS_STATUS;
830 		adv_addr = I82579_EEE_ADVERTISEMENT;
831 		break;
832 	case e1000_phy_i217:
833 		lpa = I217_EEE_LP_ABILITY;
834 		pcs_status = I217_EEE_PCS_STATUS;
835 		adv_addr = I217_EEE_ADVERTISEMENT;
836 		break;
837 	default:
838 		return 0;
839 	}
840 
841 	ret_val = hw->phy.ops.acquire(hw);
842 	if (ret_val)
843 		return ret_val;
844 
845 	ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
846 	if (ret_val)
847 		goto release;
848 
849 	/* Clear bits that enable EEE in various speeds */
850 	lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
851 
852 	/* Enable EEE if not disabled by user */
853 	if (!dev_spec->eee_disable) {
854 		/* Save off link partner's EEE ability */
855 		ret_val = e1000_read_emi_reg_locked(hw, lpa,
856 						    &dev_spec->eee_lp_ability);
857 		if (ret_val)
858 			goto release;
859 
860 		/* Read EEE advertisement */
861 		ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
862 		if (ret_val)
863 			goto release;
864 
865 		/* Enable EEE only for speeds in which the link partner is
866 		 * EEE capable and for which we advertise EEE.
867 		 */
868 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
869 			lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
870 
871 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
872 			e1e_rphy_locked(hw, MII_LPA, &data);
873 			if (data & LPA_100FULL)
874 				lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
875 			else
876 				/* EEE is not supported in 100Half, so ignore
877 				 * partner's EEE in 100 ability if full-duplex
878 				 * is not advertised.
879 				 */
880 				dev_spec->eee_lp_ability &=
881 				    ~I82579_EEE_100_SUPPORTED;
882 		}
883 	}
884 
885 	if (hw->phy.type == e1000_phy_82579) {
886 		ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
887 						    &data);
888 		if (ret_val)
889 			goto release;
890 
891 		data &= ~I82579_LPI_100_PLL_SHUT;
892 		ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
893 						     data);
894 	}
895 
896 	/* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
897 	ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
898 	if (ret_val)
899 		goto release;
900 
901 	ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
902 release:
903 	hw->phy.ops.release(hw);
904 
905 	return ret_val;
906 }
907 
908 /**
909  *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
910  *  @hw:   pointer to the HW structure
911  *  @link: link up bool flag
912  *
913  *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
914  *  preventing further DMA write requests.  Workaround the issue by disabling
915  *  the de-assertion of the clock request when in 1Gpbs mode.
916  *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
917  *  speeds in order to avoid Tx hangs.
918  **/
919 static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
920 {
921 	u32 fextnvm6 = er32(FEXTNVM6);
922 	u32 status = er32(STATUS);
923 	s32 ret_val = 0;
924 	u16 reg;
925 
926 	if (link && (status & E1000_STATUS_SPEED_1000)) {
927 		ret_val = hw->phy.ops.acquire(hw);
928 		if (ret_val)
929 			return ret_val;
930 
931 		ret_val =
932 		    e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
933 						&reg);
934 		if (ret_val)
935 			goto release;
936 
937 		ret_val =
938 		    e1000e_write_kmrn_reg_locked(hw,
939 						 E1000_KMRNCTRLSTA_K1_CONFIG,
940 						 reg &
941 						 ~E1000_KMRNCTRLSTA_K1_ENABLE);
942 		if (ret_val)
943 			goto release;
944 
945 		usleep_range(10, 20);
946 
947 		ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
948 
949 		ret_val =
950 		    e1000e_write_kmrn_reg_locked(hw,
951 						 E1000_KMRNCTRLSTA_K1_CONFIG,
952 						 reg);
953 release:
954 		hw->phy.ops.release(hw);
955 	} else {
956 		/* clear FEXTNVM6 bit 8 on link down or 10/100 */
957 		fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
958 
959 		if ((hw->phy.revision > 5) || !link ||
960 		    ((status & E1000_STATUS_SPEED_100) &&
961 		     (status & E1000_STATUS_FD)))
962 			goto update_fextnvm6;
963 
964 		ret_val = e1e_rphy(hw, I217_INBAND_CTRL, &reg);
965 		if (ret_val)
966 			return ret_val;
967 
968 		/* Clear link status transmit timeout */
969 		reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
970 
971 		if (status & E1000_STATUS_SPEED_100) {
972 			/* Set inband Tx timeout to 5x10us for 100Half */
973 			reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
974 
975 			/* Do not extend the K1 entry latency for 100Half */
976 			fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
977 		} else {
978 			/* Set inband Tx timeout to 50x10us for 10Full/Half */
979 			reg |= 50 <<
980 			    I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
981 
982 			/* Extend the K1 entry latency for 10 Mbps */
983 			fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
984 		}
985 
986 		ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
987 		if (ret_val)
988 			return ret_val;
989 
990 update_fextnvm6:
991 		ew32(FEXTNVM6, fextnvm6);
992 	}
993 
994 	return ret_val;
995 }
996 
997 /**
998  *  e1000_platform_pm_pch_lpt - Set platform power management values
999  *  @hw: pointer to the HW structure
1000  *  @link: bool indicating link status
1001  *
1002  *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
1003  *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
1004  *  when link is up (which must not exceed the maximum latency supported
1005  *  by the platform), otherwise specify there is no LTR requirement.
1006  *  Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
1007  *  latencies in the LTR Extended Capability Structure in the PCIe Extended
1008  *  Capability register set, on this device LTR is set by writing the
1009  *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1010  *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1011  *  message to the PMC.
1012  **/
1013 static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1014 {
1015 	u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1016 	    link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1017 	u16 lat_enc = 0;	/* latency encoded */
1018 
1019 	if (link) {
1020 		u16 speed, duplex, scale = 0;
1021 		u16 max_snoop, max_nosnoop;
1022 		u16 max_ltr_enc;	/* max LTR latency encoded */
1023 		u64 value;
1024 		u32 rxa;
1025 
1026 		if (!hw->adapter->max_frame_size) {
1027 			e_dbg("max_frame_size not set.\n");
1028 			return -E1000_ERR_CONFIG;
1029 		}
1030 
1031 		hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1032 		if (!speed) {
1033 			e_dbg("Speed not set.\n");
1034 			return -E1000_ERR_CONFIG;
1035 		}
1036 
1037 		/* Rx Packet Buffer Allocation size (KB) */
1038 		rxa = er32(PBA) & E1000_PBA_RXA_MASK;
1039 
1040 		/* Determine the maximum latency tolerated by the device.
1041 		 *
1042 		 * Per the PCIe spec, the tolerated latencies are encoded as
1043 		 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1044 		 * a 10-bit value (0-1023) to provide a range from 1 ns to
1045 		 * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1046 		 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1047 		 */
1048 		rxa *= 512;
1049 		value = (rxa > hw->adapter->max_frame_size) ?
1050 			(rxa - hw->adapter->max_frame_size) * (16000 / speed) :
1051 			0;
1052 
1053 		while (value > PCI_LTR_VALUE_MASK) {
1054 			scale++;
1055 			value = DIV_ROUND_UP(value, BIT(5));
1056 		}
1057 		if (scale > E1000_LTRV_SCALE_MAX) {
1058 			e_dbg("Invalid LTR latency scale %d\n", scale);
1059 			return -E1000_ERR_CONFIG;
1060 		}
1061 		lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1062 
1063 		/* Determine the maximum latency tolerated by the platform */
1064 		pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1065 				     &max_snoop);
1066 		pci_read_config_word(hw->adapter->pdev,
1067 				     E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1068 		max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1069 
1070 		if (lat_enc > max_ltr_enc)
1071 			lat_enc = max_ltr_enc;
1072 	}
1073 
1074 	/* Set Snoop and No-Snoop latencies the same */
1075 	reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1076 	ew32(LTRV, reg);
1077 
1078 	return 0;
1079 }
1080 
1081 /**
1082  *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1083  *  @hw: pointer to the HW structure
1084  *  @to_sx: boolean indicating a system power state transition to Sx
1085  *
1086  *  When link is down, configure ULP mode to significantly reduce the power
1087  *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1088  *  ME firmware to start the ULP configuration.  If not on an ME enabled
1089  *  system, configure the ULP mode by software.
1090  */
1091 s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1092 {
1093 	u32 mac_reg;
1094 	s32 ret_val = 0;
1095 	u16 phy_reg;
1096 	u16 oem_reg = 0;
1097 
1098 	if ((hw->mac.type < e1000_pch_lpt) ||
1099 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1100 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1101 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1102 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1103 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1104 		return 0;
1105 
1106 	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1107 		/* Request ME configure ULP mode in the PHY */
1108 		mac_reg = er32(H2ME);
1109 		mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1110 		ew32(H2ME, mac_reg);
1111 
1112 		goto out;
1113 	}
1114 
1115 	if (!to_sx) {
1116 		int i = 0;
1117 
1118 		/* Poll up to 5 seconds for Cable Disconnected indication */
1119 		while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1120 			/* Bail if link is re-acquired */
1121 			if (er32(STATUS) & E1000_STATUS_LU)
1122 				return -E1000_ERR_PHY;
1123 
1124 			if (i++ == 100)
1125 				break;
1126 
1127 			msleep(50);
1128 		}
1129 		e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1130 		      (er32(FEXT) &
1131 		       E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1132 	}
1133 
1134 	ret_val = hw->phy.ops.acquire(hw);
1135 	if (ret_val)
1136 		goto out;
1137 
1138 	/* Force SMBus mode in PHY */
1139 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1140 	if (ret_val)
1141 		goto release;
1142 	phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1143 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1144 
1145 	/* Force SMBus mode in MAC */
1146 	mac_reg = er32(CTRL_EXT);
1147 	mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1148 	ew32(CTRL_EXT, mac_reg);
1149 
1150 	/* Si workaround for ULP entry flow on i127/rev6 h/w.  Enable
1151 	 * LPLU and disable Gig speed when entering ULP
1152 	 */
1153 	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1154 		ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1155 						       &oem_reg);
1156 		if (ret_val)
1157 			goto release;
1158 
1159 		phy_reg = oem_reg;
1160 		phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1161 
1162 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1163 							phy_reg);
1164 
1165 		if (ret_val)
1166 			goto release;
1167 	}
1168 
1169 	/* Set Inband ULP Exit, Reset to SMBus mode and
1170 	 * Disable SMBus Release on PERST# in PHY
1171 	 */
1172 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1173 	if (ret_val)
1174 		goto release;
1175 	phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1176 		    I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1177 	if (to_sx) {
1178 		if (er32(WUFC) & E1000_WUFC_LNKC)
1179 			phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1180 		else
1181 			phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1182 
1183 		phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1184 		phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1185 	} else {
1186 		phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1187 		phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1188 		phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1189 	}
1190 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1191 
1192 	/* Set Disable SMBus Release on PERST# in MAC */
1193 	mac_reg = er32(FEXTNVM7);
1194 	mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1195 	ew32(FEXTNVM7, mac_reg);
1196 
1197 	/* Commit ULP changes in PHY by starting auto ULP configuration */
1198 	phy_reg |= I218_ULP_CONFIG1_START;
1199 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1200 
1201 	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1202 	    to_sx && (er32(STATUS) & E1000_STATUS_LU)) {
1203 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1204 							oem_reg);
1205 		if (ret_val)
1206 			goto release;
1207 	}
1208 
1209 release:
1210 	hw->phy.ops.release(hw);
1211 out:
1212 	if (ret_val)
1213 		e_dbg("Error in ULP enable flow: %d\n", ret_val);
1214 	else
1215 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1216 
1217 	return ret_val;
1218 }
1219 
1220 /**
1221  *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1222  *  @hw: pointer to the HW structure
1223  *  @force: boolean indicating whether or not to force disabling ULP
1224  *
1225  *  Un-configure ULP mode when link is up, the system is transitioned from
1226  *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1227  *  system, poll for an indication from ME that ULP has been un-configured.
1228  *  If not on an ME enabled system, un-configure the ULP mode by software.
1229  *
1230  *  During nominal operation, this function is called when link is acquired
1231  *  to disable ULP mode (force=false); otherwise, for example when unloading
1232  *  the driver or during Sx->S0 transitions, this is called with force=true
1233  *  to forcibly disable ULP.
1234  */
1235 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1236 {
1237 	s32 ret_val = 0;
1238 	u32 mac_reg;
1239 	u16 phy_reg;
1240 	int i = 0;
1241 
1242 	if ((hw->mac.type < e1000_pch_lpt) ||
1243 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1244 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1245 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1246 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1247 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1248 		return 0;
1249 
1250 	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1251 		if (force) {
1252 			/* Request ME un-configure ULP mode in the PHY */
1253 			mac_reg = er32(H2ME);
1254 			mac_reg &= ~E1000_H2ME_ULP;
1255 			mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1256 			ew32(H2ME, mac_reg);
1257 		}
1258 
1259 		/* Poll up to 300msec for ME to clear ULP_CFG_DONE. */
1260 		while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1261 			if (i++ == 30) {
1262 				ret_val = -E1000_ERR_PHY;
1263 				goto out;
1264 			}
1265 
1266 			usleep_range(10000, 20000);
1267 		}
1268 		e_dbg("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10);
1269 
1270 		if (force) {
1271 			mac_reg = er32(H2ME);
1272 			mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1273 			ew32(H2ME, mac_reg);
1274 		} else {
1275 			/* Clear H2ME.ULP after ME ULP configuration */
1276 			mac_reg = er32(H2ME);
1277 			mac_reg &= ~E1000_H2ME_ULP;
1278 			ew32(H2ME, mac_reg);
1279 		}
1280 
1281 		goto out;
1282 	}
1283 
1284 	ret_val = hw->phy.ops.acquire(hw);
1285 	if (ret_val)
1286 		goto out;
1287 
1288 	if (force)
1289 		/* Toggle LANPHYPC Value bit */
1290 		e1000_toggle_lanphypc_pch_lpt(hw);
1291 
1292 	/* Unforce SMBus mode in PHY */
1293 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1294 	if (ret_val) {
1295 		/* The MAC might be in PCIe mode, so temporarily force to
1296 		 * SMBus mode in order to access the PHY.
1297 		 */
1298 		mac_reg = er32(CTRL_EXT);
1299 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1300 		ew32(CTRL_EXT, mac_reg);
1301 
1302 		msleep(50);
1303 
1304 		ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1305 						       &phy_reg);
1306 		if (ret_val)
1307 			goto release;
1308 	}
1309 	phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1310 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1311 
1312 	/* Unforce SMBus mode in MAC */
1313 	mac_reg = er32(CTRL_EXT);
1314 	mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1315 	ew32(CTRL_EXT, mac_reg);
1316 
1317 	/* When ULP mode was previously entered, K1 was disabled by the
1318 	 * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1319 	 */
1320 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1321 	if (ret_val)
1322 		goto release;
1323 	phy_reg |= HV_PM_CTRL_K1_ENABLE;
1324 	e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1325 
1326 	/* Clear ULP enabled configuration */
1327 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1328 	if (ret_val)
1329 		goto release;
1330 	phy_reg &= ~(I218_ULP_CONFIG1_IND |
1331 		     I218_ULP_CONFIG1_STICKY_ULP |
1332 		     I218_ULP_CONFIG1_RESET_TO_SMBUS |
1333 		     I218_ULP_CONFIG1_WOL_HOST |
1334 		     I218_ULP_CONFIG1_INBAND_EXIT |
1335 		     I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
1336 		     I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
1337 		     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1338 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1339 
1340 	/* Commit ULP changes by starting auto ULP configuration */
1341 	phy_reg |= I218_ULP_CONFIG1_START;
1342 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1343 
1344 	/* Clear Disable SMBus Release on PERST# in MAC */
1345 	mac_reg = er32(FEXTNVM7);
1346 	mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1347 	ew32(FEXTNVM7, mac_reg);
1348 
1349 release:
1350 	hw->phy.ops.release(hw);
1351 	if (force) {
1352 		e1000_phy_hw_reset(hw);
1353 		msleep(50);
1354 	}
1355 out:
1356 	if (ret_val)
1357 		e_dbg("Error in ULP disable flow: %d\n", ret_val);
1358 	else
1359 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1360 
1361 	return ret_val;
1362 }
1363 
1364 /**
1365  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1366  *  @hw: pointer to the HW structure
1367  *
1368  *  Checks to see of the link status of the hardware has changed.  If a
1369  *  change in link status has been detected, then we read the PHY registers
1370  *  to get the current speed/duplex if link exists.
1371  **/
1372 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1373 {
1374 	struct e1000_mac_info *mac = &hw->mac;
1375 	s32 ret_val, tipg_reg = 0;
1376 	u16 emi_addr, emi_val = 0;
1377 	bool link;
1378 	u16 phy_reg;
1379 
1380 	/* We only want to go out to the PHY registers to see if Auto-Neg
1381 	 * has completed and/or if our link status has changed.  The
1382 	 * get_link_status flag is set upon receiving a Link Status
1383 	 * Change or Rx Sequence Error interrupt.
1384 	 */
1385 	if (!mac->get_link_status)
1386 		return 0;
1387 	mac->get_link_status = false;
1388 
1389 	/* First we want to see if the MII Status Register reports
1390 	 * link.  If so, then we want to get the current speed/duplex
1391 	 * of the PHY.
1392 	 */
1393 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1394 	if (ret_val)
1395 		goto out;
1396 
1397 	if (hw->mac.type == e1000_pchlan) {
1398 		ret_val = e1000_k1_gig_workaround_hv(hw, link);
1399 		if (ret_val)
1400 			goto out;
1401 	}
1402 
1403 	/* When connected at 10Mbps half-duplex, some parts are excessively
1404 	 * aggressive resulting in many collisions. To avoid this, increase
1405 	 * the IPG and reduce Rx latency in the PHY.
1406 	 */
1407 	if ((hw->mac.type >= e1000_pch2lan) && link) {
1408 		u16 speed, duplex;
1409 
1410 		e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex);
1411 		tipg_reg = er32(TIPG);
1412 		tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1413 
1414 		if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1415 			tipg_reg |= 0xFF;
1416 			/* Reduce Rx latency in analog PHY */
1417 			emi_val = 0;
1418 		} else if (hw->mac.type >= e1000_pch_spt &&
1419 			   duplex == FULL_DUPLEX && speed != SPEED_1000) {
1420 			tipg_reg |= 0xC;
1421 			emi_val = 1;
1422 		} else {
1423 
1424 			/* Roll back the default values */
1425 			tipg_reg |= 0x08;
1426 			emi_val = 1;
1427 		}
1428 
1429 		ew32(TIPG, tipg_reg);
1430 
1431 		ret_val = hw->phy.ops.acquire(hw);
1432 		if (ret_val)
1433 			goto out;
1434 
1435 		if (hw->mac.type == e1000_pch2lan)
1436 			emi_addr = I82579_RX_CONFIG;
1437 		else
1438 			emi_addr = I217_RX_CONFIG;
1439 		ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1440 
1441 		if (hw->mac.type >= e1000_pch_lpt) {
1442 			u16 phy_reg;
1443 
1444 			e1e_rphy_locked(hw, I217_PLL_CLOCK_GATE_REG, &phy_reg);
1445 			phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
1446 			if (speed == SPEED_100 || speed == SPEED_10)
1447 				phy_reg |= 0x3E8;
1448 			else
1449 				phy_reg |= 0xFA;
1450 			e1e_wphy_locked(hw, I217_PLL_CLOCK_GATE_REG, phy_reg);
1451 		}
1452 		hw->phy.ops.release(hw);
1453 
1454 		if (ret_val)
1455 			goto out;
1456 
1457 		if (hw->mac.type >= e1000_pch_spt) {
1458 			u16 data;
1459 			u16 ptr_gap;
1460 
1461 			if (speed == SPEED_1000) {
1462 				ret_val = hw->phy.ops.acquire(hw);
1463 				if (ret_val)
1464 					goto out;
1465 
1466 				ret_val = e1e_rphy_locked(hw,
1467 							  PHY_REG(776, 20),
1468 							  &data);
1469 				if (ret_val) {
1470 					hw->phy.ops.release(hw);
1471 					goto out;
1472 				}
1473 
1474 				ptr_gap = (data & (0x3FF << 2)) >> 2;
1475 				if (ptr_gap < 0x18) {
1476 					data &= ~(0x3FF << 2);
1477 					data |= (0x18 << 2);
1478 					ret_val =
1479 					    e1e_wphy_locked(hw,
1480 							    PHY_REG(776, 20),
1481 							    data);
1482 				}
1483 				hw->phy.ops.release(hw);
1484 				if (ret_val)
1485 					goto out;
1486 			} else {
1487 				ret_val = hw->phy.ops.acquire(hw);
1488 				if (ret_val)
1489 					goto out;
1490 
1491 				ret_val = e1e_wphy_locked(hw,
1492 							  PHY_REG(776, 20),
1493 							  0xC023);
1494 				hw->phy.ops.release(hw);
1495 				if (ret_val)
1496 					goto out;
1497 
1498 			}
1499 		}
1500 	}
1501 
1502 	/* I217 Packet Loss issue:
1503 	 * ensure that FEXTNVM4 Beacon Duration is set correctly
1504 	 * on power up.
1505 	 * Set the Beacon Duration for I217 to 8 usec
1506 	 */
1507 	if (hw->mac.type >= e1000_pch_lpt) {
1508 		u32 mac_reg;
1509 
1510 		mac_reg = er32(FEXTNVM4);
1511 		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1512 		mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1513 		ew32(FEXTNVM4, mac_reg);
1514 	}
1515 
1516 	/* Work-around I218 hang issue */
1517 	if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1518 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1519 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1520 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
1521 		ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1522 		if (ret_val)
1523 			goto out;
1524 	}
1525 	if (hw->mac.type >= e1000_pch_lpt) {
1526 		/* Set platform power management values for
1527 		 * Latency Tolerance Reporting (LTR)
1528 		 */
1529 		ret_val = e1000_platform_pm_pch_lpt(hw, link);
1530 		if (ret_val)
1531 			goto out;
1532 	}
1533 
1534 	/* Clear link partner's EEE ability */
1535 	hw->dev_spec.ich8lan.eee_lp_ability = 0;
1536 
1537 	if (hw->mac.type >= e1000_pch_lpt) {
1538 		u32 fextnvm6 = er32(FEXTNVM6);
1539 
1540 		if (hw->mac.type == e1000_pch_spt) {
1541 			/* FEXTNVM6 K1-off workaround - for SPT only */
1542 			u32 pcieanacfg = er32(PCIEANACFG);
1543 
1544 			if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1545 				fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1546 			else
1547 				fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1548 		}
1549 
1550 		ew32(FEXTNVM6, fextnvm6);
1551 	}
1552 
1553 	if (!link)
1554 		goto out;
1555 
1556 	switch (hw->mac.type) {
1557 	case e1000_pch2lan:
1558 		ret_val = e1000_k1_workaround_lv(hw);
1559 		if (ret_val)
1560 			return ret_val;
1561 		/* fall-thru */
1562 	case e1000_pchlan:
1563 		if (hw->phy.type == e1000_phy_82578) {
1564 			ret_val = e1000_link_stall_workaround_hv(hw);
1565 			if (ret_val)
1566 				return ret_val;
1567 		}
1568 
1569 		/* Workaround for PCHx parts in half-duplex:
1570 		 * Set the number of preambles removed from the packet
1571 		 * when it is passed from the PHY to the MAC to prevent
1572 		 * the MAC from misinterpreting the packet type.
1573 		 */
1574 		e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1575 		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1576 
1577 		if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1578 			phy_reg |= BIT(HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1579 
1580 		e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1581 		break;
1582 	default:
1583 		break;
1584 	}
1585 
1586 	/* Check if there was DownShift, must be checked
1587 	 * immediately after link-up
1588 	 */
1589 	e1000e_check_downshift(hw);
1590 
1591 	/* Enable/Disable EEE after link up */
1592 	if (hw->phy.type > e1000_phy_82579) {
1593 		ret_val = e1000_set_eee_pchlan(hw);
1594 		if (ret_val)
1595 			return ret_val;
1596 	}
1597 
1598 	/* If we are forcing speed/duplex, then we simply return since
1599 	 * we have already determined whether we have link or not.
1600 	 */
1601 	if (!mac->autoneg)
1602 		return -E1000_ERR_CONFIG;
1603 
1604 	/* Auto-Neg is enabled.  Auto Speed Detection takes care
1605 	 * of MAC speed/duplex configuration.  So we only need to
1606 	 * configure Collision Distance in the MAC.
1607 	 */
1608 	mac->ops.config_collision_dist(hw);
1609 
1610 	/* Configure Flow Control now that Auto-Neg has completed.
1611 	 * First, we need to restore the desired flow control
1612 	 * settings because we may have had to re-autoneg with a
1613 	 * different link partner.
1614 	 */
1615 	ret_val = e1000e_config_fc_after_link_up(hw);
1616 	if (ret_val)
1617 		e_dbg("Error configuring flow control\n");
1618 
1619 	return ret_val;
1620 
1621 out:
1622 	mac->get_link_status = true;
1623 	return ret_val;
1624 }
1625 
1626 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1627 {
1628 	struct e1000_hw *hw = &adapter->hw;
1629 	s32 rc;
1630 
1631 	rc = e1000_init_mac_params_ich8lan(hw);
1632 	if (rc)
1633 		return rc;
1634 
1635 	rc = e1000_init_nvm_params_ich8lan(hw);
1636 	if (rc)
1637 		return rc;
1638 
1639 	switch (hw->mac.type) {
1640 	case e1000_ich8lan:
1641 	case e1000_ich9lan:
1642 	case e1000_ich10lan:
1643 		rc = e1000_init_phy_params_ich8lan(hw);
1644 		break;
1645 	case e1000_pchlan:
1646 	case e1000_pch2lan:
1647 	case e1000_pch_lpt:
1648 	case e1000_pch_spt:
1649 	case e1000_pch_cnp:
1650 		rc = e1000_init_phy_params_pchlan(hw);
1651 		break;
1652 	default:
1653 		break;
1654 	}
1655 	if (rc)
1656 		return rc;
1657 
1658 	/* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1659 	 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1660 	 */
1661 	if ((adapter->hw.phy.type == e1000_phy_ife) ||
1662 	    ((adapter->hw.mac.type >= e1000_pch2lan) &&
1663 	     (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1664 		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1665 		adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
1666 
1667 		hw->mac.ops.blink_led = NULL;
1668 	}
1669 
1670 	if ((adapter->hw.mac.type == e1000_ich8lan) &&
1671 	    (adapter->hw.phy.type != e1000_phy_ife))
1672 		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1673 
1674 	/* Enable workaround for 82579 w/ ME enabled */
1675 	if ((adapter->hw.mac.type == e1000_pch2lan) &&
1676 	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1677 		adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1678 
1679 	return 0;
1680 }
1681 
1682 static DEFINE_MUTEX(nvm_mutex);
1683 
1684 /**
1685  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1686  *  @hw: pointer to the HW structure
1687  *
1688  *  Acquires the mutex for performing NVM operations.
1689  **/
1690 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1691 {
1692 	mutex_lock(&nvm_mutex);
1693 
1694 	return 0;
1695 }
1696 
1697 /**
1698  *  e1000_release_nvm_ich8lan - Release NVM mutex
1699  *  @hw: pointer to the HW structure
1700  *
1701  *  Releases the mutex used while performing NVM operations.
1702  **/
1703 static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1704 {
1705 	mutex_unlock(&nvm_mutex);
1706 }
1707 
1708 /**
1709  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1710  *  @hw: pointer to the HW structure
1711  *
1712  *  Acquires the software control flag for performing PHY and select
1713  *  MAC CSR accesses.
1714  **/
1715 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1716 {
1717 	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1718 	s32 ret_val = 0;
1719 
1720 	if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1721 			     &hw->adapter->state)) {
1722 		e_dbg("contention for Phy access\n");
1723 		return -E1000_ERR_PHY;
1724 	}
1725 
1726 	while (timeout) {
1727 		extcnf_ctrl = er32(EXTCNF_CTRL);
1728 		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1729 			break;
1730 
1731 		mdelay(1);
1732 		timeout--;
1733 	}
1734 
1735 	if (!timeout) {
1736 		e_dbg("SW has already locked the resource.\n");
1737 		ret_val = -E1000_ERR_CONFIG;
1738 		goto out;
1739 	}
1740 
1741 	timeout = SW_FLAG_TIMEOUT;
1742 
1743 	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1744 	ew32(EXTCNF_CTRL, extcnf_ctrl);
1745 
1746 	while (timeout) {
1747 		extcnf_ctrl = er32(EXTCNF_CTRL);
1748 		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1749 			break;
1750 
1751 		mdelay(1);
1752 		timeout--;
1753 	}
1754 
1755 	if (!timeout) {
1756 		e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1757 		      er32(FWSM), extcnf_ctrl);
1758 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1759 		ew32(EXTCNF_CTRL, extcnf_ctrl);
1760 		ret_val = -E1000_ERR_CONFIG;
1761 		goto out;
1762 	}
1763 
1764 out:
1765 	if (ret_val)
1766 		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1767 
1768 	return ret_val;
1769 }
1770 
1771 /**
1772  *  e1000_release_swflag_ich8lan - Release software control flag
1773  *  @hw: pointer to the HW structure
1774  *
1775  *  Releases the software control flag for performing PHY and select
1776  *  MAC CSR accesses.
1777  **/
1778 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1779 {
1780 	u32 extcnf_ctrl;
1781 
1782 	extcnf_ctrl = er32(EXTCNF_CTRL);
1783 
1784 	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1785 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1786 		ew32(EXTCNF_CTRL, extcnf_ctrl);
1787 	} else {
1788 		e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1789 	}
1790 
1791 	clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1792 }
1793 
1794 /**
1795  *  e1000_check_mng_mode_ich8lan - Checks management mode
1796  *  @hw: pointer to the HW structure
1797  *
1798  *  This checks if the adapter has any manageability enabled.
1799  *  This is a function pointer entry point only called by read/write
1800  *  routines for the PHY and NVM parts.
1801  **/
1802 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1803 {
1804 	u32 fwsm;
1805 
1806 	fwsm = er32(FWSM);
1807 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1808 		((fwsm & E1000_FWSM_MODE_MASK) ==
1809 		 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1810 }
1811 
1812 /**
1813  *  e1000_check_mng_mode_pchlan - Checks management mode
1814  *  @hw: pointer to the HW structure
1815  *
1816  *  This checks if the adapter has iAMT enabled.
1817  *  This is a function pointer entry point only called by read/write
1818  *  routines for the PHY and NVM parts.
1819  **/
1820 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1821 {
1822 	u32 fwsm;
1823 
1824 	fwsm = er32(FWSM);
1825 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1826 	    (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1827 }
1828 
1829 /**
1830  *  e1000_rar_set_pch2lan - Set receive address register
1831  *  @hw: pointer to the HW structure
1832  *  @addr: pointer to the receive address
1833  *  @index: receive address array register
1834  *
1835  *  Sets the receive address array register at index to the address passed
1836  *  in by addr.  For 82579, RAR[0] is the base address register that is to
1837  *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1838  *  Use SHRA[0-3] in place of those reserved for ME.
1839  **/
1840 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1841 {
1842 	u32 rar_low, rar_high;
1843 
1844 	/* HW expects these in little endian so we reverse the byte order
1845 	 * from network order (big endian) to little endian
1846 	 */
1847 	rar_low = ((u32)addr[0] |
1848 		   ((u32)addr[1] << 8) |
1849 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1850 
1851 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1852 
1853 	/* If MAC address zero, no need to set the AV bit */
1854 	if (rar_low || rar_high)
1855 		rar_high |= E1000_RAH_AV;
1856 
1857 	if (index == 0) {
1858 		ew32(RAL(index), rar_low);
1859 		e1e_flush();
1860 		ew32(RAH(index), rar_high);
1861 		e1e_flush();
1862 		return 0;
1863 	}
1864 
1865 	/* RAR[1-6] are owned by manageability.  Skip those and program the
1866 	 * next address into the SHRA register array.
1867 	 */
1868 	if (index < (u32)(hw->mac.rar_entry_count)) {
1869 		s32 ret_val;
1870 
1871 		ret_val = e1000_acquire_swflag_ich8lan(hw);
1872 		if (ret_val)
1873 			goto out;
1874 
1875 		ew32(SHRAL(index - 1), rar_low);
1876 		e1e_flush();
1877 		ew32(SHRAH(index - 1), rar_high);
1878 		e1e_flush();
1879 
1880 		e1000_release_swflag_ich8lan(hw);
1881 
1882 		/* verify the register updates */
1883 		if ((er32(SHRAL(index - 1)) == rar_low) &&
1884 		    (er32(SHRAH(index - 1)) == rar_high))
1885 			return 0;
1886 
1887 		e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1888 		      (index - 1), er32(FWSM));
1889 	}
1890 
1891 out:
1892 	e_dbg("Failed to write receive address at index %d\n", index);
1893 	return -E1000_ERR_CONFIG;
1894 }
1895 
1896 /**
1897  *  e1000_rar_get_count_pch_lpt - Get the number of available SHRA
1898  *  @hw: pointer to the HW structure
1899  *
1900  *  Get the number of available receive registers that the Host can
1901  *  program. SHRA[0-10] are the shared receive address registers
1902  *  that are shared between the Host and manageability engine (ME).
1903  *  ME can reserve any number of addresses and the host needs to be
1904  *  able to tell how many available registers it has access to.
1905  **/
1906 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw)
1907 {
1908 	u32 wlock_mac;
1909 	u32 num_entries;
1910 
1911 	wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1912 	wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1913 
1914 	switch (wlock_mac) {
1915 	case 0:
1916 		/* All SHRA[0..10] and RAR[0] available */
1917 		num_entries = hw->mac.rar_entry_count;
1918 		break;
1919 	case 1:
1920 		/* Only RAR[0] available */
1921 		num_entries = 1;
1922 		break;
1923 	default:
1924 		/* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
1925 		num_entries = wlock_mac + 1;
1926 		break;
1927 	}
1928 
1929 	return num_entries;
1930 }
1931 
1932 /**
1933  *  e1000_rar_set_pch_lpt - Set receive address registers
1934  *  @hw: pointer to the HW structure
1935  *  @addr: pointer to the receive address
1936  *  @index: receive address array register
1937  *
1938  *  Sets the receive address register array at index to the address passed
1939  *  in by addr. For LPT, RAR[0] is the base address register that is to
1940  *  contain the MAC address. SHRA[0-10] are the shared receive address
1941  *  registers that are shared between the Host and manageability engine (ME).
1942  **/
1943 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1944 {
1945 	u32 rar_low, rar_high;
1946 	u32 wlock_mac;
1947 
1948 	/* HW expects these in little endian so we reverse the byte order
1949 	 * from network order (big endian) to little endian
1950 	 */
1951 	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1952 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1953 
1954 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1955 
1956 	/* If MAC address zero, no need to set the AV bit */
1957 	if (rar_low || rar_high)
1958 		rar_high |= E1000_RAH_AV;
1959 
1960 	if (index == 0) {
1961 		ew32(RAL(index), rar_low);
1962 		e1e_flush();
1963 		ew32(RAH(index), rar_high);
1964 		e1e_flush();
1965 		return 0;
1966 	}
1967 
1968 	/* The manageability engine (ME) can lock certain SHRAR registers that
1969 	 * it is using - those registers are unavailable for use.
1970 	 */
1971 	if (index < hw->mac.rar_entry_count) {
1972 		wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1973 		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1974 
1975 		/* Check if all SHRAR registers are locked */
1976 		if (wlock_mac == 1)
1977 			goto out;
1978 
1979 		if ((wlock_mac == 0) || (index <= wlock_mac)) {
1980 			s32 ret_val;
1981 
1982 			ret_val = e1000_acquire_swflag_ich8lan(hw);
1983 
1984 			if (ret_val)
1985 				goto out;
1986 
1987 			ew32(SHRAL_PCH_LPT(index - 1), rar_low);
1988 			e1e_flush();
1989 			ew32(SHRAH_PCH_LPT(index - 1), rar_high);
1990 			e1e_flush();
1991 
1992 			e1000_release_swflag_ich8lan(hw);
1993 
1994 			/* verify the register updates */
1995 			if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
1996 			    (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
1997 				return 0;
1998 		}
1999 	}
2000 
2001 out:
2002 	e_dbg("Failed to write receive address at index %d\n", index);
2003 	return -E1000_ERR_CONFIG;
2004 }
2005 
2006 /**
2007  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2008  *  @hw: pointer to the HW structure
2009  *
2010  *  Checks if firmware is blocking the reset of the PHY.
2011  *  This is a function pointer entry point only called by
2012  *  reset routines.
2013  **/
2014 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2015 {
2016 	bool blocked = false;
2017 	int i = 0;
2018 
2019 	while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
2020 	       (i++ < 30))
2021 		usleep_range(10000, 20000);
2022 	return blocked ? E1000_BLK_PHY_RESET : 0;
2023 }
2024 
2025 /**
2026  *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2027  *  @hw: pointer to the HW structure
2028  *
2029  *  Assumes semaphore already acquired.
2030  *
2031  **/
2032 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2033 {
2034 	u16 phy_data;
2035 	u32 strap = er32(STRAP);
2036 	u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
2037 	    E1000_STRAP_SMT_FREQ_SHIFT;
2038 	s32 ret_val;
2039 
2040 	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2041 
2042 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2043 	if (ret_val)
2044 		return ret_val;
2045 
2046 	phy_data &= ~HV_SMB_ADDR_MASK;
2047 	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2048 	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2049 
2050 	if (hw->phy.type == e1000_phy_i217) {
2051 		/* Restore SMBus frequency */
2052 		if (freq--) {
2053 			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2054 			phy_data |= (freq & BIT(0)) <<
2055 			    HV_SMB_ADDR_FREQ_LOW_SHIFT;
2056 			phy_data |= (freq & BIT(1)) <<
2057 			    (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2058 		} else {
2059 			e_dbg("Unsupported SMB frequency in PHY\n");
2060 		}
2061 	}
2062 
2063 	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2064 }
2065 
2066 /**
2067  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2068  *  @hw:   pointer to the HW structure
2069  *
2070  *  SW should configure the LCD from the NVM extended configuration region
2071  *  as a workaround for certain parts.
2072  **/
2073 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2074 {
2075 	struct e1000_phy_info *phy = &hw->phy;
2076 	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2077 	s32 ret_val = 0;
2078 	u16 word_addr, reg_data, reg_addr, phy_page = 0;
2079 
2080 	/* Initialize the PHY from the NVM on ICH platforms.  This
2081 	 * is needed due to an issue where the NVM configuration is
2082 	 * not properly autoloaded after power transitions.
2083 	 * Therefore, after each PHY reset, we will load the
2084 	 * configuration data out of the NVM manually.
2085 	 */
2086 	switch (hw->mac.type) {
2087 	case e1000_ich8lan:
2088 		if (phy->type != e1000_phy_igp_3)
2089 			return ret_val;
2090 
2091 		if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
2092 		    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
2093 			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2094 			break;
2095 		}
2096 		/* Fall-thru */
2097 	case e1000_pchlan:
2098 	case e1000_pch2lan:
2099 	case e1000_pch_lpt:
2100 	case e1000_pch_spt:
2101 	case e1000_pch_cnp:
2102 		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2103 		break;
2104 	default:
2105 		return ret_val;
2106 	}
2107 
2108 	ret_val = hw->phy.ops.acquire(hw);
2109 	if (ret_val)
2110 		return ret_val;
2111 
2112 	data = er32(FEXTNVM);
2113 	if (!(data & sw_cfg_mask))
2114 		goto release;
2115 
2116 	/* Make sure HW does not configure LCD from PHY
2117 	 * extended configuration before SW configuration
2118 	 */
2119 	data = er32(EXTCNF_CTRL);
2120 	if ((hw->mac.type < e1000_pch2lan) &&
2121 	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2122 		goto release;
2123 
2124 	cnf_size = er32(EXTCNF_SIZE);
2125 	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2126 	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2127 	if (!cnf_size)
2128 		goto release;
2129 
2130 	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2131 	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2132 
2133 	if (((hw->mac.type == e1000_pchlan) &&
2134 	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2135 	    (hw->mac.type > e1000_pchlan)) {
2136 		/* HW configures the SMBus address and LEDs when the
2137 		 * OEM and LCD Write Enable bits are set in the NVM.
2138 		 * When both NVM bits are cleared, SW will configure
2139 		 * them instead.
2140 		 */
2141 		ret_val = e1000_write_smbus_addr(hw);
2142 		if (ret_val)
2143 			goto release;
2144 
2145 		data = er32(LEDCTL);
2146 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2147 							(u16)data);
2148 		if (ret_val)
2149 			goto release;
2150 	}
2151 
2152 	/* Configure LCD from extended configuration region. */
2153 
2154 	/* cnf_base_addr is in DWORD */
2155 	word_addr = (u16)(cnf_base_addr << 1);
2156 
2157 	for (i = 0; i < cnf_size; i++) {
2158 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, &reg_data);
2159 		if (ret_val)
2160 			goto release;
2161 
2162 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
2163 					 1, &reg_addr);
2164 		if (ret_val)
2165 			goto release;
2166 
2167 		/* Save off the PHY page for future writes. */
2168 		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2169 			phy_page = reg_data;
2170 			continue;
2171 		}
2172 
2173 		reg_addr &= PHY_REG_MASK;
2174 		reg_addr |= phy_page;
2175 
2176 		ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
2177 		if (ret_val)
2178 			goto release;
2179 	}
2180 
2181 release:
2182 	hw->phy.ops.release(hw);
2183 	return ret_val;
2184 }
2185 
2186 /**
2187  *  e1000_k1_gig_workaround_hv - K1 Si workaround
2188  *  @hw:   pointer to the HW structure
2189  *  @link: link up bool flag
2190  *
2191  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2192  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2193  *  If link is down, the function will restore the default K1 setting located
2194  *  in the NVM.
2195  **/
2196 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2197 {
2198 	s32 ret_val = 0;
2199 	u16 status_reg = 0;
2200 	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2201 
2202 	if (hw->mac.type != e1000_pchlan)
2203 		return 0;
2204 
2205 	/* Wrap the whole flow with the sw flag */
2206 	ret_val = hw->phy.ops.acquire(hw);
2207 	if (ret_val)
2208 		return ret_val;
2209 
2210 	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2211 	if (link) {
2212 		if (hw->phy.type == e1000_phy_82578) {
2213 			ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
2214 						  &status_reg);
2215 			if (ret_val)
2216 				goto release;
2217 
2218 			status_reg &= (BM_CS_STATUS_LINK_UP |
2219 				       BM_CS_STATUS_RESOLVED |
2220 				       BM_CS_STATUS_SPEED_MASK);
2221 
2222 			if (status_reg == (BM_CS_STATUS_LINK_UP |
2223 					   BM_CS_STATUS_RESOLVED |
2224 					   BM_CS_STATUS_SPEED_1000))
2225 				k1_enable = false;
2226 		}
2227 
2228 		if (hw->phy.type == e1000_phy_82577) {
2229 			ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2230 			if (ret_val)
2231 				goto release;
2232 
2233 			status_reg &= (HV_M_STATUS_LINK_UP |
2234 				       HV_M_STATUS_AUTONEG_COMPLETE |
2235 				       HV_M_STATUS_SPEED_MASK);
2236 
2237 			if (status_reg == (HV_M_STATUS_LINK_UP |
2238 					   HV_M_STATUS_AUTONEG_COMPLETE |
2239 					   HV_M_STATUS_SPEED_1000))
2240 				k1_enable = false;
2241 		}
2242 
2243 		/* Link stall fix for link up */
2244 		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2245 		if (ret_val)
2246 			goto release;
2247 
2248 	} else {
2249 		/* Link stall fix for link down */
2250 		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2251 		if (ret_val)
2252 			goto release;
2253 	}
2254 
2255 	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2256 
2257 release:
2258 	hw->phy.ops.release(hw);
2259 
2260 	return ret_val;
2261 }
2262 
2263 /**
2264  *  e1000_configure_k1_ich8lan - Configure K1 power state
2265  *  @hw: pointer to the HW structure
2266  *  @enable: K1 state to configure
2267  *
2268  *  Configure the K1 power state based on the provided parameter.
2269  *  Assumes semaphore already acquired.
2270  *
2271  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2272  **/
2273 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2274 {
2275 	s32 ret_val;
2276 	u32 ctrl_reg = 0;
2277 	u32 ctrl_ext = 0;
2278 	u32 reg = 0;
2279 	u16 kmrn_reg = 0;
2280 
2281 	ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2282 					      &kmrn_reg);
2283 	if (ret_val)
2284 		return ret_val;
2285 
2286 	if (k1_enable)
2287 		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2288 	else
2289 		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2290 
2291 	ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2292 					       kmrn_reg);
2293 	if (ret_val)
2294 		return ret_val;
2295 
2296 	usleep_range(20, 40);
2297 	ctrl_ext = er32(CTRL_EXT);
2298 	ctrl_reg = er32(CTRL);
2299 
2300 	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2301 	reg |= E1000_CTRL_FRCSPD;
2302 	ew32(CTRL, reg);
2303 
2304 	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2305 	e1e_flush();
2306 	usleep_range(20, 40);
2307 	ew32(CTRL, ctrl_reg);
2308 	ew32(CTRL_EXT, ctrl_ext);
2309 	e1e_flush();
2310 	usleep_range(20, 40);
2311 
2312 	return 0;
2313 }
2314 
2315 /**
2316  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2317  *  @hw:       pointer to the HW structure
2318  *  @d0_state: boolean if entering d0 or d3 device state
2319  *
2320  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2321  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2322  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2323  **/
2324 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2325 {
2326 	s32 ret_val = 0;
2327 	u32 mac_reg;
2328 	u16 oem_reg;
2329 
2330 	if (hw->mac.type < e1000_pchlan)
2331 		return ret_val;
2332 
2333 	ret_val = hw->phy.ops.acquire(hw);
2334 	if (ret_val)
2335 		return ret_val;
2336 
2337 	if (hw->mac.type == e1000_pchlan) {
2338 		mac_reg = er32(EXTCNF_CTRL);
2339 		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2340 			goto release;
2341 	}
2342 
2343 	mac_reg = er32(FEXTNVM);
2344 	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2345 		goto release;
2346 
2347 	mac_reg = er32(PHY_CTRL);
2348 
2349 	ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2350 	if (ret_val)
2351 		goto release;
2352 
2353 	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2354 
2355 	if (d0_state) {
2356 		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2357 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2358 
2359 		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2360 			oem_reg |= HV_OEM_BITS_LPLU;
2361 	} else {
2362 		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2363 			       E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2364 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2365 
2366 		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2367 			       E1000_PHY_CTRL_NOND0A_LPLU))
2368 			oem_reg |= HV_OEM_BITS_LPLU;
2369 	}
2370 
2371 	/* Set Restart auto-neg to activate the bits */
2372 	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2373 	    !hw->phy.ops.check_reset_block(hw))
2374 		oem_reg |= HV_OEM_BITS_RESTART_AN;
2375 
2376 	ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2377 
2378 release:
2379 	hw->phy.ops.release(hw);
2380 
2381 	return ret_val;
2382 }
2383 
2384 /**
2385  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2386  *  @hw:   pointer to the HW structure
2387  **/
2388 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2389 {
2390 	s32 ret_val;
2391 	u16 data;
2392 
2393 	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2394 	if (ret_val)
2395 		return ret_val;
2396 
2397 	data |= HV_KMRN_MDIO_SLOW;
2398 
2399 	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2400 
2401 	return ret_val;
2402 }
2403 
2404 /**
2405  *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2406  *  done after every PHY reset.
2407  **/
2408 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2409 {
2410 	s32 ret_val = 0;
2411 	u16 phy_data;
2412 
2413 	if (hw->mac.type != e1000_pchlan)
2414 		return 0;
2415 
2416 	/* Set MDIO slow mode before any other MDIO access */
2417 	if (hw->phy.type == e1000_phy_82577) {
2418 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
2419 		if (ret_val)
2420 			return ret_val;
2421 	}
2422 
2423 	if (((hw->phy.type == e1000_phy_82577) &&
2424 	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2425 	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2426 		/* Disable generation of early preamble */
2427 		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2428 		if (ret_val)
2429 			return ret_val;
2430 
2431 		/* Preamble tuning for SSC */
2432 		ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2433 		if (ret_val)
2434 			return ret_val;
2435 	}
2436 
2437 	if (hw->phy.type == e1000_phy_82578) {
2438 		/* Return registers to default by doing a soft reset then
2439 		 * writing 0x3140 to the control register.
2440 		 */
2441 		if (hw->phy.revision < 2) {
2442 			e1000e_phy_sw_reset(hw);
2443 			ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
2444 			if (ret_val)
2445 				return ret_val;
2446 		}
2447 	}
2448 
2449 	/* Select page 0 */
2450 	ret_val = hw->phy.ops.acquire(hw);
2451 	if (ret_val)
2452 		return ret_val;
2453 
2454 	hw->phy.addr = 1;
2455 	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2456 	hw->phy.ops.release(hw);
2457 	if (ret_val)
2458 		return ret_val;
2459 
2460 	/* Configure the K1 Si workaround during phy reset assuming there is
2461 	 * link so that it disables K1 if link is in 1Gbps.
2462 	 */
2463 	ret_val = e1000_k1_gig_workaround_hv(hw, true);
2464 	if (ret_val)
2465 		return ret_val;
2466 
2467 	/* Workaround for link disconnects on a busy hub in half duplex */
2468 	ret_val = hw->phy.ops.acquire(hw);
2469 	if (ret_val)
2470 		return ret_val;
2471 	ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2472 	if (ret_val)
2473 		goto release;
2474 	ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2475 	if (ret_val)
2476 		goto release;
2477 
2478 	/* set MSE higher to enable link to stay up when noise is high */
2479 	ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2480 release:
2481 	hw->phy.ops.release(hw);
2482 
2483 	return ret_val;
2484 }
2485 
2486 /**
2487  *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2488  *  @hw:   pointer to the HW structure
2489  **/
2490 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2491 {
2492 	u32 mac_reg;
2493 	u16 i, phy_reg = 0;
2494 	s32 ret_val;
2495 
2496 	ret_val = hw->phy.ops.acquire(hw);
2497 	if (ret_val)
2498 		return;
2499 	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2500 	if (ret_val)
2501 		goto release;
2502 
2503 	/* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2504 	for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2505 		mac_reg = er32(RAL(i));
2506 		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2507 					   (u16)(mac_reg & 0xFFFF));
2508 		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2509 					   (u16)((mac_reg >> 16) & 0xFFFF));
2510 
2511 		mac_reg = er32(RAH(i));
2512 		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2513 					   (u16)(mac_reg & 0xFFFF));
2514 		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2515 					   (u16)((mac_reg & E1000_RAH_AV)
2516 						 >> 16));
2517 	}
2518 
2519 	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2520 
2521 release:
2522 	hw->phy.ops.release(hw);
2523 }
2524 
2525 /**
2526  *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2527  *  with 82579 PHY
2528  *  @hw: pointer to the HW structure
2529  *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2530  **/
2531 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2532 {
2533 	s32 ret_val = 0;
2534 	u16 phy_reg, data;
2535 	u32 mac_reg;
2536 	u16 i;
2537 
2538 	if (hw->mac.type < e1000_pch2lan)
2539 		return 0;
2540 
2541 	/* disable Rx path while enabling/disabling workaround */
2542 	e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2543 	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | BIT(14));
2544 	if (ret_val)
2545 		return ret_val;
2546 
2547 	if (enable) {
2548 		/* Write Rx addresses (rar_entry_count for RAL/H, and
2549 		 * SHRAL/H) and initial CRC values to the MAC
2550 		 */
2551 		for (i = 0; i < hw->mac.rar_entry_count; i++) {
2552 			u8 mac_addr[ETH_ALEN] = { 0 };
2553 			u32 addr_high, addr_low;
2554 
2555 			addr_high = er32(RAH(i));
2556 			if (!(addr_high & E1000_RAH_AV))
2557 				continue;
2558 			addr_low = er32(RAL(i));
2559 			mac_addr[0] = (addr_low & 0xFF);
2560 			mac_addr[1] = ((addr_low >> 8) & 0xFF);
2561 			mac_addr[2] = ((addr_low >> 16) & 0xFF);
2562 			mac_addr[3] = ((addr_low >> 24) & 0xFF);
2563 			mac_addr[4] = (addr_high & 0xFF);
2564 			mac_addr[5] = ((addr_high >> 8) & 0xFF);
2565 
2566 			ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2567 		}
2568 
2569 		/* Write Rx addresses to the PHY */
2570 		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2571 
2572 		/* Enable jumbo frame workaround in the MAC */
2573 		mac_reg = er32(FFLT_DBG);
2574 		mac_reg &= ~BIT(14);
2575 		mac_reg |= (7 << 15);
2576 		ew32(FFLT_DBG, mac_reg);
2577 
2578 		mac_reg = er32(RCTL);
2579 		mac_reg |= E1000_RCTL_SECRC;
2580 		ew32(RCTL, mac_reg);
2581 
2582 		ret_val = e1000e_read_kmrn_reg(hw,
2583 					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2584 					       &data);
2585 		if (ret_val)
2586 			return ret_val;
2587 		ret_val = e1000e_write_kmrn_reg(hw,
2588 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2589 						data | BIT(0));
2590 		if (ret_val)
2591 			return ret_val;
2592 		ret_val = e1000e_read_kmrn_reg(hw,
2593 					       E1000_KMRNCTRLSTA_HD_CTRL,
2594 					       &data);
2595 		if (ret_val)
2596 			return ret_val;
2597 		data &= ~(0xF << 8);
2598 		data |= (0xB << 8);
2599 		ret_val = e1000e_write_kmrn_reg(hw,
2600 						E1000_KMRNCTRLSTA_HD_CTRL,
2601 						data);
2602 		if (ret_val)
2603 			return ret_val;
2604 
2605 		/* Enable jumbo frame workaround in the PHY */
2606 		e1e_rphy(hw, PHY_REG(769, 23), &data);
2607 		data &= ~(0x7F << 5);
2608 		data |= (0x37 << 5);
2609 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2610 		if (ret_val)
2611 			return ret_val;
2612 		e1e_rphy(hw, PHY_REG(769, 16), &data);
2613 		data &= ~BIT(13);
2614 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2615 		if (ret_val)
2616 			return ret_val;
2617 		e1e_rphy(hw, PHY_REG(776, 20), &data);
2618 		data &= ~(0x3FF << 2);
2619 		data |= (E1000_TX_PTR_GAP << 2);
2620 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2621 		if (ret_val)
2622 			return ret_val;
2623 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2624 		if (ret_val)
2625 			return ret_val;
2626 		e1e_rphy(hw, HV_PM_CTRL, &data);
2627 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data | BIT(10));
2628 		if (ret_val)
2629 			return ret_val;
2630 	} else {
2631 		/* Write MAC register values back to h/w defaults */
2632 		mac_reg = er32(FFLT_DBG);
2633 		mac_reg &= ~(0xF << 14);
2634 		ew32(FFLT_DBG, mac_reg);
2635 
2636 		mac_reg = er32(RCTL);
2637 		mac_reg &= ~E1000_RCTL_SECRC;
2638 		ew32(RCTL, mac_reg);
2639 
2640 		ret_val = e1000e_read_kmrn_reg(hw,
2641 					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2642 					       &data);
2643 		if (ret_val)
2644 			return ret_val;
2645 		ret_val = e1000e_write_kmrn_reg(hw,
2646 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2647 						data & ~BIT(0));
2648 		if (ret_val)
2649 			return ret_val;
2650 		ret_val = e1000e_read_kmrn_reg(hw,
2651 					       E1000_KMRNCTRLSTA_HD_CTRL,
2652 					       &data);
2653 		if (ret_val)
2654 			return ret_val;
2655 		data &= ~(0xF << 8);
2656 		data |= (0xB << 8);
2657 		ret_val = e1000e_write_kmrn_reg(hw,
2658 						E1000_KMRNCTRLSTA_HD_CTRL,
2659 						data);
2660 		if (ret_val)
2661 			return ret_val;
2662 
2663 		/* Write PHY register values back to h/w defaults */
2664 		e1e_rphy(hw, PHY_REG(769, 23), &data);
2665 		data &= ~(0x7F << 5);
2666 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2667 		if (ret_val)
2668 			return ret_val;
2669 		e1e_rphy(hw, PHY_REG(769, 16), &data);
2670 		data |= BIT(13);
2671 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2672 		if (ret_val)
2673 			return ret_val;
2674 		e1e_rphy(hw, PHY_REG(776, 20), &data);
2675 		data &= ~(0x3FF << 2);
2676 		data |= (0x8 << 2);
2677 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2678 		if (ret_val)
2679 			return ret_val;
2680 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2681 		if (ret_val)
2682 			return ret_val;
2683 		e1e_rphy(hw, HV_PM_CTRL, &data);
2684 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~BIT(10));
2685 		if (ret_val)
2686 			return ret_val;
2687 	}
2688 
2689 	/* re-enable Rx path after enabling/disabling workaround */
2690 	return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~BIT(14));
2691 }
2692 
2693 /**
2694  *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2695  *  done after every PHY reset.
2696  **/
2697 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2698 {
2699 	s32 ret_val = 0;
2700 
2701 	if (hw->mac.type != e1000_pch2lan)
2702 		return 0;
2703 
2704 	/* Set MDIO slow mode before any other MDIO access */
2705 	ret_val = e1000_set_mdio_slow_mode_hv(hw);
2706 	if (ret_val)
2707 		return ret_val;
2708 
2709 	ret_val = hw->phy.ops.acquire(hw);
2710 	if (ret_val)
2711 		return ret_val;
2712 	/* set MSE higher to enable link to stay up when noise is high */
2713 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2714 	if (ret_val)
2715 		goto release;
2716 	/* drop link after 5 times MSE threshold was reached */
2717 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2718 release:
2719 	hw->phy.ops.release(hw);
2720 
2721 	return ret_val;
2722 }
2723 
2724 /**
2725  *  e1000_k1_gig_workaround_lv - K1 Si workaround
2726  *  @hw:   pointer to the HW structure
2727  *
2728  *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2729  *  Disable K1 in 1000Mbps and 100Mbps
2730  **/
2731 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2732 {
2733 	s32 ret_val = 0;
2734 	u16 status_reg = 0;
2735 
2736 	if (hw->mac.type != e1000_pch2lan)
2737 		return 0;
2738 
2739 	/* Set K1 beacon duration based on 10Mbs speed */
2740 	ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2741 	if (ret_val)
2742 		return ret_val;
2743 
2744 	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2745 	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2746 		if (status_reg &
2747 		    (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2748 			u16 pm_phy_reg;
2749 
2750 			/* LV 1G/100 Packet drop issue wa  */
2751 			ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2752 			if (ret_val)
2753 				return ret_val;
2754 			pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2755 			ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2756 			if (ret_val)
2757 				return ret_val;
2758 		} else {
2759 			u32 mac_reg;
2760 
2761 			mac_reg = er32(FEXTNVM4);
2762 			mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2763 			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2764 			ew32(FEXTNVM4, mac_reg);
2765 		}
2766 	}
2767 
2768 	return ret_val;
2769 }
2770 
2771 /**
2772  *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2773  *  @hw:   pointer to the HW structure
2774  *  @gate: boolean set to true to gate, false to ungate
2775  *
2776  *  Gate/ungate the automatic PHY configuration via hardware; perform
2777  *  the configuration via software instead.
2778  **/
2779 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2780 {
2781 	u32 extcnf_ctrl;
2782 
2783 	if (hw->mac.type < e1000_pch2lan)
2784 		return;
2785 
2786 	extcnf_ctrl = er32(EXTCNF_CTRL);
2787 
2788 	if (gate)
2789 		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2790 	else
2791 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2792 
2793 	ew32(EXTCNF_CTRL, extcnf_ctrl);
2794 }
2795 
2796 /**
2797  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2798  *  @hw: pointer to the HW structure
2799  *
2800  *  Check the appropriate indication the MAC has finished configuring the
2801  *  PHY after a software reset.
2802  **/
2803 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2804 {
2805 	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2806 
2807 	/* Wait for basic configuration completes before proceeding */
2808 	do {
2809 		data = er32(STATUS);
2810 		data &= E1000_STATUS_LAN_INIT_DONE;
2811 		usleep_range(100, 200);
2812 	} while ((!data) && --loop);
2813 
2814 	/* If basic configuration is incomplete before the above loop
2815 	 * count reaches 0, loading the configuration from NVM will
2816 	 * leave the PHY in a bad state possibly resulting in no link.
2817 	 */
2818 	if (loop == 0)
2819 		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2820 
2821 	/* Clear the Init Done bit for the next init event */
2822 	data = er32(STATUS);
2823 	data &= ~E1000_STATUS_LAN_INIT_DONE;
2824 	ew32(STATUS, data);
2825 }
2826 
2827 /**
2828  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2829  *  @hw: pointer to the HW structure
2830  **/
2831 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2832 {
2833 	s32 ret_val = 0;
2834 	u16 reg;
2835 
2836 	if (hw->phy.ops.check_reset_block(hw))
2837 		return 0;
2838 
2839 	/* Allow time for h/w to get to quiescent state after reset */
2840 	usleep_range(10000, 20000);
2841 
2842 	/* Perform any necessary post-reset workarounds */
2843 	switch (hw->mac.type) {
2844 	case e1000_pchlan:
2845 		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2846 		if (ret_val)
2847 			return ret_val;
2848 		break;
2849 	case e1000_pch2lan:
2850 		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2851 		if (ret_val)
2852 			return ret_val;
2853 		break;
2854 	default:
2855 		break;
2856 	}
2857 
2858 	/* Clear the host wakeup bit after lcd reset */
2859 	if (hw->mac.type >= e1000_pchlan) {
2860 		e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2861 		reg &= ~BM_WUC_HOST_WU_BIT;
2862 		e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2863 	}
2864 
2865 	/* Configure the LCD with the extended configuration region in NVM */
2866 	ret_val = e1000_sw_lcd_config_ich8lan(hw);
2867 	if (ret_val)
2868 		return ret_val;
2869 
2870 	/* Configure the LCD with the OEM bits in NVM */
2871 	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2872 
2873 	if (hw->mac.type == e1000_pch2lan) {
2874 		/* Ungate automatic PHY configuration on non-managed 82579 */
2875 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2876 			usleep_range(10000, 20000);
2877 			e1000_gate_hw_phy_config_ich8lan(hw, false);
2878 		}
2879 
2880 		/* Set EEE LPI Update Timer to 200usec */
2881 		ret_val = hw->phy.ops.acquire(hw);
2882 		if (ret_val)
2883 			return ret_val;
2884 		ret_val = e1000_write_emi_reg_locked(hw,
2885 						     I82579_LPI_UPDATE_TIMER,
2886 						     0x1387);
2887 		hw->phy.ops.release(hw);
2888 	}
2889 
2890 	return ret_val;
2891 }
2892 
2893 /**
2894  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2895  *  @hw: pointer to the HW structure
2896  *
2897  *  Resets the PHY
2898  *  This is a function pointer entry point called by drivers
2899  *  or other shared routines.
2900  **/
2901 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2902 {
2903 	s32 ret_val = 0;
2904 
2905 	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
2906 	if ((hw->mac.type == e1000_pch2lan) &&
2907 	    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2908 		e1000_gate_hw_phy_config_ich8lan(hw, true);
2909 
2910 	ret_val = e1000e_phy_hw_reset_generic(hw);
2911 	if (ret_val)
2912 		return ret_val;
2913 
2914 	return e1000_post_phy_reset_ich8lan(hw);
2915 }
2916 
2917 /**
2918  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2919  *  @hw: pointer to the HW structure
2920  *  @active: true to enable LPLU, false to disable
2921  *
2922  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
2923  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2924  *  the phy speed. This function will manually set the LPLU bit and restart
2925  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
2926  *  since it configures the same bit.
2927  **/
2928 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2929 {
2930 	s32 ret_val;
2931 	u16 oem_reg;
2932 
2933 	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2934 	if (ret_val)
2935 		return ret_val;
2936 
2937 	if (active)
2938 		oem_reg |= HV_OEM_BITS_LPLU;
2939 	else
2940 		oem_reg &= ~HV_OEM_BITS_LPLU;
2941 
2942 	if (!hw->phy.ops.check_reset_block(hw))
2943 		oem_reg |= HV_OEM_BITS_RESTART_AN;
2944 
2945 	return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2946 }
2947 
2948 /**
2949  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2950  *  @hw: pointer to the HW structure
2951  *  @active: true to enable LPLU, false to disable
2952  *
2953  *  Sets the LPLU D0 state according to the active flag.  When
2954  *  activating LPLU this function also disables smart speed
2955  *  and vice versa.  LPLU will not be activated unless the
2956  *  device autonegotiation advertisement meets standards of
2957  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2958  *  This is a function pointer entry point only called by
2959  *  PHY setup routines.
2960  **/
2961 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2962 {
2963 	struct e1000_phy_info *phy = &hw->phy;
2964 	u32 phy_ctrl;
2965 	s32 ret_val = 0;
2966 	u16 data;
2967 
2968 	if (phy->type == e1000_phy_ife)
2969 		return 0;
2970 
2971 	phy_ctrl = er32(PHY_CTRL);
2972 
2973 	if (active) {
2974 		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2975 		ew32(PHY_CTRL, phy_ctrl);
2976 
2977 		if (phy->type != e1000_phy_igp_3)
2978 			return 0;
2979 
2980 		/* Call gig speed drop workaround on LPLU before accessing
2981 		 * any PHY registers
2982 		 */
2983 		if (hw->mac.type == e1000_ich8lan)
2984 			e1000e_gig_downshift_workaround_ich8lan(hw);
2985 
2986 		/* When LPLU is enabled, we should disable SmartSpeed */
2987 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2988 		if (ret_val)
2989 			return ret_val;
2990 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2991 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2992 		if (ret_val)
2993 			return ret_val;
2994 	} else {
2995 		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2996 		ew32(PHY_CTRL, phy_ctrl);
2997 
2998 		if (phy->type != e1000_phy_igp_3)
2999 			return 0;
3000 
3001 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3002 		 * during Dx states where the power conservation is most
3003 		 * important.  During driver activity we should enable
3004 		 * SmartSpeed, so performance is maintained.
3005 		 */
3006 		if (phy->smart_speed == e1000_smart_speed_on) {
3007 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3008 					   &data);
3009 			if (ret_val)
3010 				return ret_val;
3011 
3012 			data |= IGP01E1000_PSCFR_SMART_SPEED;
3013 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3014 					   data);
3015 			if (ret_val)
3016 				return ret_val;
3017 		} else if (phy->smart_speed == e1000_smart_speed_off) {
3018 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3019 					   &data);
3020 			if (ret_val)
3021 				return ret_val;
3022 
3023 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3024 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3025 					   data);
3026 			if (ret_val)
3027 				return ret_val;
3028 		}
3029 	}
3030 
3031 	return 0;
3032 }
3033 
3034 /**
3035  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3036  *  @hw: pointer to the HW structure
3037  *  @active: true to enable LPLU, false to disable
3038  *
3039  *  Sets the LPLU D3 state according to the active flag.  When
3040  *  activating LPLU this function also disables smart speed
3041  *  and vice versa.  LPLU will not be activated unless the
3042  *  device autonegotiation advertisement meets standards of
3043  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3044  *  This is a function pointer entry point only called by
3045  *  PHY setup routines.
3046  **/
3047 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3048 {
3049 	struct e1000_phy_info *phy = &hw->phy;
3050 	u32 phy_ctrl;
3051 	s32 ret_val = 0;
3052 	u16 data;
3053 
3054 	phy_ctrl = er32(PHY_CTRL);
3055 
3056 	if (!active) {
3057 		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3058 		ew32(PHY_CTRL, phy_ctrl);
3059 
3060 		if (phy->type != e1000_phy_igp_3)
3061 			return 0;
3062 
3063 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3064 		 * during Dx states where the power conservation is most
3065 		 * important.  During driver activity we should enable
3066 		 * SmartSpeed, so performance is maintained.
3067 		 */
3068 		if (phy->smart_speed == e1000_smart_speed_on) {
3069 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3070 					   &data);
3071 			if (ret_val)
3072 				return ret_val;
3073 
3074 			data |= IGP01E1000_PSCFR_SMART_SPEED;
3075 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3076 					   data);
3077 			if (ret_val)
3078 				return ret_val;
3079 		} else if (phy->smart_speed == e1000_smart_speed_off) {
3080 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3081 					   &data);
3082 			if (ret_val)
3083 				return ret_val;
3084 
3085 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3086 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3087 					   data);
3088 			if (ret_val)
3089 				return ret_val;
3090 		}
3091 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3092 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3093 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3094 		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3095 		ew32(PHY_CTRL, phy_ctrl);
3096 
3097 		if (phy->type != e1000_phy_igp_3)
3098 			return 0;
3099 
3100 		/* Call gig speed drop workaround on LPLU before accessing
3101 		 * any PHY registers
3102 		 */
3103 		if (hw->mac.type == e1000_ich8lan)
3104 			e1000e_gig_downshift_workaround_ich8lan(hw);
3105 
3106 		/* When LPLU is enabled, we should disable SmartSpeed */
3107 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3108 		if (ret_val)
3109 			return ret_val;
3110 
3111 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3112 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3113 	}
3114 
3115 	return ret_val;
3116 }
3117 
3118 /**
3119  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3120  *  @hw: pointer to the HW structure
3121  *  @bank:  pointer to the variable that returns the active bank
3122  *
3123  *  Reads signature byte from the NVM using the flash access registers.
3124  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3125  **/
3126 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3127 {
3128 	u32 eecd;
3129 	struct e1000_nvm_info *nvm = &hw->nvm;
3130 	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3131 	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3132 	u32 nvm_dword = 0;
3133 	u8 sig_byte = 0;
3134 	s32 ret_val;
3135 
3136 	switch (hw->mac.type) {
3137 	case e1000_pch_spt:
3138 	case e1000_pch_cnp:
3139 		bank1_offset = nvm->flash_bank_size;
3140 		act_offset = E1000_ICH_NVM_SIG_WORD;
3141 
3142 		/* set bank to 0 in case flash read fails */
3143 		*bank = 0;
3144 
3145 		/* Check bank 0 */
3146 		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
3147 							 &nvm_dword);
3148 		if (ret_val)
3149 			return ret_val;
3150 		sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3151 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3152 		    E1000_ICH_NVM_SIG_VALUE) {
3153 			*bank = 0;
3154 			return 0;
3155 		}
3156 
3157 		/* Check bank 1 */
3158 		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
3159 							 bank1_offset,
3160 							 &nvm_dword);
3161 		if (ret_val)
3162 			return ret_val;
3163 		sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3164 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3165 		    E1000_ICH_NVM_SIG_VALUE) {
3166 			*bank = 1;
3167 			return 0;
3168 		}
3169 
3170 		e_dbg("ERROR: No valid NVM bank present\n");
3171 		return -E1000_ERR_NVM;
3172 	case e1000_ich8lan:
3173 	case e1000_ich9lan:
3174 		eecd = er32(EECD);
3175 		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3176 		    E1000_EECD_SEC1VAL_VALID_MASK) {
3177 			if (eecd & E1000_EECD_SEC1VAL)
3178 				*bank = 1;
3179 			else
3180 				*bank = 0;
3181 
3182 			return 0;
3183 		}
3184 		e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3185 		/* fall-thru */
3186 	default:
3187 		/* set bank to 0 in case flash read fails */
3188 		*bank = 0;
3189 
3190 		/* Check bank 0 */
3191 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3192 							&sig_byte);
3193 		if (ret_val)
3194 			return ret_val;
3195 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3196 		    E1000_ICH_NVM_SIG_VALUE) {
3197 			*bank = 0;
3198 			return 0;
3199 		}
3200 
3201 		/* Check bank 1 */
3202 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3203 							bank1_offset,
3204 							&sig_byte);
3205 		if (ret_val)
3206 			return ret_val;
3207 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3208 		    E1000_ICH_NVM_SIG_VALUE) {
3209 			*bank = 1;
3210 			return 0;
3211 		}
3212 
3213 		e_dbg("ERROR: No valid NVM bank present\n");
3214 		return -E1000_ERR_NVM;
3215 	}
3216 }
3217 
3218 /**
3219  *  e1000_read_nvm_spt - NVM access for SPT
3220  *  @hw: pointer to the HW structure
3221  *  @offset: The offset (in bytes) of the word(s) to read.
3222  *  @words: Size of data to read in words.
3223  *  @data: pointer to the word(s) to read at offset.
3224  *
3225  *  Reads a word(s) from the NVM
3226  **/
3227 static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3228 			      u16 *data)
3229 {
3230 	struct e1000_nvm_info *nvm = &hw->nvm;
3231 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3232 	u32 act_offset;
3233 	s32 ret_val = 0;
3234 	u32 bank = 0;
3235 	u32 dword = 0;
3236 	u16 offset_to_read;
3237 	u16 i;
3238 
3239 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3240 	    (words == 0)) {
3241 		e_dbg("nvm parameter(s) out of bounds\n");
3242 		ret_val = -E1000_ERR_NVM;
3243 		goto out;
3244 	}
3245 
3246 	nvm->ops.acquire(hw);
3247 
3248 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3249 	if (ret_val) {
3250 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3251 		bank = 0;
3252 	}
3253 
3254 	act_offset = (bank) ? nvm->flash_bank_size : 0;
3255 	act_offset += offset;
3256 
3257 	ret_val = 0;
3258 
3259 	for (i = 0; i < words; i += 2) {
3260 		if (words - i == 1) {
3261 			if (dev_spec->shadow_ram[offset + i].modified) {
3262 				data[i] =
3263 				    dev_spec->shadow_ram[offset + i].value;
3264 			} else {
3265 				offset_to_read = act_offset + i -
3266 				    ((act_offset + i) % 2);
3267 				ret_val =
3268 				  e1000_read_flash_dword_ich8lan(hw,
3269 								 offset_to_read,
3270 								 &dword);
3271 				if (ret_val)
3272 					break;
3273 				if ((act_offset + i) % 2 == 0)
3274 					data[i] = (u16)(dword & 0xFFFF);
3275 				else
3276 					data[i] = (u16)((dword >> 16) & 0xFFFF);
3277 			}
3278 		} else {
3279 			offset_to_read = act_offset + i;
3280 			if (!(dev_spec->shadow_ram[offset + i].modified) ||
3281 			    !(dev_spec->shadow_ram[offset + i + 1].modified)) {
3282 				ret_val =
3283 				  e1000_read_flash_dword_ich8lan(hw,
3284 								 offset_to_read,
3285 								 &dword);
3286 				if (ret_val)
3287 					break;
3288 			}
3289 			if (dev_spec->shadow_ram[offset + i].modified)
3290 				data[i] =
3291 				    dev_spec->shadow_ram[offset + i].value;
3292 			else
3293 				data[i] = (u16)(dword & 0xFFFF);
3294 			if (dev_spec->shadow_ram[offset + i].modified)
3295 				data[i + 1] =
3296 				    dev_spec->shadow_ram[offset + i + 1].value;
3297 			else
3298 				data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
3299 		}
3300 	}
3301 
3302 	nvm->ops.release(hw);
3303 
3304 out:
3305 	if (ret_val)
3306 		e_dbg("NVM read error: %d\n", ret_val);
3307 
3308 	return ret_val;
3309 }
3310 
3311 /**
3312  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3313  *  @hw: pointer to the HW structure
3314  *  @offset: The offset (in bytes) of the word(s) to read.
3315  *  @words: Size of data to read in words
3316  *  @data: Pointer to the word(s) to read at offset.
3317  *
3318  *  Reads a word(s) from the NVM using the flash access registers.
3319  **/
3320 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3321 				  u16 *data)
3322 {
3323 	struct e1000_nvm_info *nvm = &hw->nvm;
3324 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3325 	u32 act_offset;
3326 	s32 ret_val = 0;
3327 	u32 bank = 0;
3328 	u16 i, word;
3329 
3330 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3331 	    (words == 0)) {
3332 		e_dbg("nvm parameter(s) out of bounds\n");
3333 		ret_val = -E1000_ERR_NVM;
3334 		goto out;
3335 	}
3336 
3337 	nvm->ops.acquire(hw);
3338 
3339 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3340 	if (ret_val) {
3341 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3342 		bank = 0;
3343 	}
3344 
3345 	act_offset = (bank) ? nvm->flash_bank_size : 0;
3346 	act_offset += offset;
3347 
3348 	ret_val = 0;
3349 	for (i = 0; i < words; i++) {
3350 		if (dev_spec->shadow_ram[offset + i].modified) {
3351 			data[i] = dev_spec->shadow_ram[offset + i].value;
3352 		} else {
3353 			ret_val = e1000_read_flash_word_ich8lan(hw,
3354 								act_offset + i,
3355 								&word);
3356 			if (ret_val)
3357 				break;
3358 			data[i] = word;
3359 		}
3360 	}
3361 
3362 	nvm->ops.release(hw);
3363 
3364 out:
3365 	if (ret_val)
3366 		e_dbg("NVM read error: %d\n", ret_val);
3367 
3368 	return ret_val;
3369 }
3370 
3371 /**
3372  *  e1000_flash_cycle_init_ich8lan - Initialize flash
3373  *  @hw: pointer to the HW structure
3374  *
3375  *  This function does initial flash setup so that a new read/write/erase cycle
3376  *  can be started.
3377  **/
3378 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3379 {
3380 	union ich8_hws_flash_status hsfsts;
3381 	s32 ret_val = -E1000_ERR_NVM;
3382 
3383 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3384 
3385 	/* Check if the flash descriptor is valid */
3386 	if (!hsfsts.hsf_status.fldesvalid) {
3387 		e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
3388 		return -E1000_ERR_NVM;
3389 	}
3390 
3391 	/* Clear FCERR and DAEL in hw status by writing 1 */
3392 	hsfsts.hsf_status.flcerr = 1;
3393 	hsfsts.hsf_status.dael = 1;
3394 	if (hw->mac.type >= e1000_pch_spt)
3395 		ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3396 	else
3397 		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3398 
3399 	/* Either we should have a hardware SPI cycle in progress
3400 	 * bit to check against, in order to start a new cycle or
3401 	 * FDONE bit should be changed in the hardware so that it
3402 	 * is 1 after hardware reset, which can then be used as an
3403 	 * indication whether a cycle is in progress or has been
3404 	 * completed.
3405 	 */
3406 
3407 	if (!hsfsts.hsf_status.flcinprog) {
3408 		/* There is no cycle running at present,
3409 		 * so we can start a cycle.
3410 		 * Begin by setting Flash Cycle Done.
3411 		 */
3412 		hsfsts.hsf_status.flcdone = 1;
3413 		if (hw->mac.type >= e1000_pch_spt)
3414 			ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3415 		else
3416 			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3417 		ret_val = 0;
3418 	} else {
3419 		s32 i;
3420 
3421 		/* Otherwise poll for sometime so the current
3422 		 * cycle has a chance to end before giving up.
3423 		 */
3424 		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3425 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3426 			if (!hsfsts.hsf_status.flcinprog) {
3427 				ret_val = 0;
3428 				break;
3429 			}
3430 			udelay(1);
3431 		}
3432 		if (!ret_val) {
3433 			/* Successful in waiting for previous cycle to timeout,
3434 			 * now set the Flash Cycle Done.
3435 			 */
3436 			hsfsts.hsf_status.flcdone = 1;
3437 			if (hw->mac.type >= e1000_pch_spt)
3438 				ew32flash(ICH_FLASH_HSFSTS,
3439 					  hsfsts.regval & 0xFFFF);
3440 			else
3441 				ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3442 		} else {
3443 			e_dbg("Flash controller busy, cannot get access\n");
3444 		}
3445 	}
3446 
3447 	return ret_val;
3448 }
3449 
3450 /**
3451  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3452  *  @hw: pointer to the HW structure
3453  *  @timeout: maximum time to wait for completion
3454  *
3455  *  This function starts a flash cycle and waits for its completion.
3456  **/
3457 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3458 {
3459 	union ich8_hws_flash_ctrl hsflctl;
3460 	union ich8_hws_flash_status hsfsts;
3461 	u32 i = 0;
3462 
3463 	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3464 	if (hw->mac.type >= e1000_pch_spt)
3465 		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3466 	else
3467 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3468 	hsflctl.hsf_ctrl.flcgo = 1;
3469 
3470 	if (hw->mac.type >= e1000_pch_spt)
3471 		ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
3472 	else
3473 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3474 
3475 	/* wait till FDONE bit is set to 1 */
3476 	do {
3477 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3478 		if (hsfsts.hsf_status.flcdone)
3479 			break;
3480 		udelay(1);
3481 	} while (i++ < timeout);
3482 
3483 	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3484 		return 0;
3485 
3486 	return -E1000_ERR_NVM;
3487 }
3488 
3489 /**
3490  *  e1000_read_flash_dword_ich8lan - Read dword from flash
3491  *  @hw: pointer to the HW structure
3492  *  @offset: offset to data location
3493  *  @data: pointer to the location for storing the data
3494  *
3495  *  Reads the flash dword at offset into data.  Offset is converted
3496  *  to bytes before read.
3497  **/
3498 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3499 					  u32 *data)
3500 {
3501 	/* Must convert word offset into bytes. */
3502 	offset <<= 1;
3503 	return e1000_read_flash_data32_ich8lan(hw, offset, data);
3504 }
3505 
3506 /**
3507  *  e1000_read_flash_word_ich8lan - Read word from flash
3508  *  @hw: pointer to the HW structure
3509  *  @offset: offset to data location
3510  *  @data: pointer to the location for storing the data
3511  *
3512  *  Reads the flash word at offset into data.  Offset is converted
3513  *  to bytes before read.
3514  **/
3515 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3516 					 u16 *data)
3517 {
3518 	/* Must convert offset into bytes. */
3519 	offset <<= 1;
3520 
3521 	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3522 }
3523 
3524 /**
3525  *  e1000_read_flash_byte_ich8lan - Read byte from flash
3526  *  @hw: pointer to the HW structure
3527  *  @offset: The offset of the byte to read.
3528  *  @data: Pointer to a byte to store the value read.
3529  *
3530  *  Reads a single byte from the NVM using the flash access registers.
3531  **/
3532 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3533 					 u8 *data)
3534 {
3535 	s32 ret_val;
3536 	u16 word = 0;
3537 
3538 	/* In SPT, only 32 bits access is supported,
3539 	 * so this function should not be called.
3540 	 */
3541 	if (hw->mac.type >= e1000_pch_spt)
3542 		return -E1000_ERR_NVM;
3543 	else
3544 		ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3545 
3546 	if (ret_val)
3547 		return ret_val;
3548 
3549 	*data = (u8)word;
3550 
3551 	return 0;
3552 }
3553 
3554 /**
3555  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3556  *  @hw: pointer to the HW structure
3557  *  @offset: The offset (in bytes) of the byte or word to read.
3558  *  @size: Size of data to read, 1=byte 2=word
3559  *  @data: Pointer to the word to store the value read.
3560  *
3561  *  Reads a byte or word from the NVM using the flash access registers.
3562  **/
3563 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3564 					 u8 size, u16 *data)
3565 {
3566 	union ich8_hws_flash_status hsfsts;
3567 	union ich8_hws_flash_ctrl hsflctl;
3568 	u32 flash_linear_addr;
3569 	u32 flash_data = 0;
3570 	s32 ret_val = -E1000_ERR_NVM;
3571 	u8 count = 0;
3572 
3573 	if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3574 		return -E1000_ERR_NVM;
3575 
3576 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3577 			     hw->nvm.flash_base_addr);
3578 
3579 	do {
3580 		udelay(1);
3581 		/* Steps */
3582 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3583 		if (ret_val)
3584 			break;
3585 
3586 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3587 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3588 		hsflctl.hsf_ctrl.fldbcount = size - 1;
3589 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3590 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3591 
3592 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3593 
3594 		ret_val =
3595 		    e1000_flash_cycle_ich8lan(hw,
3596 					      ICH_FLASH_READ_COMMAND_TIMEOUT);
3597 
3598 		/* Check if FCERR is set to 1, if set to 1, clear it
3599 		 * and try the whole sequence a few more times, else
3600 		 * read in (shift in) the Flash Data0, the order is
3601 		 * least significant byte first msb to lsb
3602 		 */
3603 		if (!ret_val) {
3604 			flash_data = er32flash(ICH_FLASH_FDATA0);
3605 			if (size == 1)
3606 				*data = (u8)(flash_data & 0x000000FF);
3607 			else if (size == 2)
3608 				*data = (u16)(flash_data & 0x0000FFFF);
3609 			break;
3610 		} else {
3611 			/* If we've gotten here, then things are probably
3612 			 * completely hosed, but if the error condition is
3613 			 * detected, it won't hurt to give it another try...
3614 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3615 			 */
3616 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3617 			if (hsfsts.hsf_status.flcerr) {
3618 				/* Repeat for some time before giving up. */
3619 				continue;
3620 			} else if (!hsfsts.hsf_status.flcdone) {
3621 				e_dbg("Timeout error - flash cycle did not complete.\n");
3622 				break;
3623 			}
3624 		}
3625 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3626 
3627 	return ret_val;
3628 }
3629 
3630 /**
3631  *  e1000_read_flash_data32_ich8lan - Read dword from NVM
3632  *  @hw: pointer to the HW structure
3633  *  @offset: The offset (in bytes) of the dword to read.
3634  *  @data: Pointer to the dword to store the value read.
3635  *
3636  *  Reads a byte or word from the NVM using the flash access registers.
3637  **/
3638 
3639 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3640 					   u32 *data)
3641 {
3642 	union ich8_hws_flash_status hsfsts;
3643 	union ich8_hws_flash_ctrl hsflctl;
3644 	u32 flash_linear_addr;
3645 	s32 ret_val = -E1000_ERR_NVM;
3646 	u8 count = 0;
3647 
3648 	if (offset > ICH_FLASH_LINEAR_ADDR_MASK || hw->mac.type < e1000_pch_spt)
3649 		return -E1000_ERR_NVM;
3650 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3651 			     hw->nvm.flash_base_addr);
3652 
3653 	do {
3654 		udelay(1);
3655 		/* Steps */
3656 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3657 		if (ret_val)
3658 			break;
3659 		/* In SPT, This register is in Lan memory space, not flash.
3660 		 * Therefore, only 32 bit access is supported
3661 		 */
3662 		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3663 
3664 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3665 		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3666 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3667 		/* In SPT, This register is in Lan memory space, not flash.
3668 		 * Therefore, only 32 bit access is supported
3669 		 */
3670 		ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16);
3671 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3672 
3673 		ret_val =
3674 		   e1000_flash_cycle_ich8lan(hw,
3675 					     ICH_FLASH_READ_COMMAND_TIMEOUT);
3676 
3677 		/* Check if FCERR is set to 1, if set to 1, clear it
3678 		 * and try the whole sequence a few more times, else
3679 		 * read in (shift in) the Flash Data0, the order is
3680 		 * least significant byte first msb to lsb
3681 		 */
3682 		if (!ret_val) {
3683 			*data = er32flash(ICH_FLASH_FDATA0);
3684 			break;
3685 		} else {
3686 			/* If we've gotten here, then things are probably
3687 			 * completely hosed, but if the error condition is
3688 			 * detected, it won't hurt to give it another try...
3689 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3690 			 */
3691 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3692 			if (hsfsts.hsf_status.flcerr) {
3693 				/* Repeat for some time before giving up. */
3694 				continue;
3695 			} else if (!hsfsts.hsf_status.flcdone) {
3696 				e_dbg("Timeout error - flash cycle did not complete.\n");
3697 				break;
3698 			}
3699 		}
3700 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3701 
3702 	return ret_val;
3703 }
3704 
3705 /**
3706  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
3707  *  @hw: pointer to the HW structure
3708  *  @offset: The offset (in bytes) of the word(s) to write.
3709  *  @words: Size of data to write in words
3710  *  @data: Pointer to the word(s) to write at offset.
3711  *
3712  *  Writes a byte or word to the NVM using the flash access registers.
3713  **/
3714 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3715 				   u16 *data)
3716 {
3717 	struct e1000_nvm_info *nvm = &hw->nvm;
3718 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3719 	u16 i;
3720 
3721 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3722 	    (words == 0)) {
3723 		e_dbg("nvm parameter(s) out of bounds\n");
3724 		return -E1000_ERR_NVM;
3725 	}
3726 
3727 	nvm->ops.acquire(hw);
3728 
3729 	for (i = 0; i < words; i++) {
3730 		dev_spec->shadow_ram[offset + i].modified = true;
3731 		dev_spec->shadow_ram[offset + i].value = data[i];
3732 	}
3733 
3734 	nvm->ops.release(hw);
3735 
3736 	return 0;
3737 }
3738 
3739 /**
3740  *  e1000_update_nvm_checksum_spt - Update the checksum for NVM
3741  *  @hw: pointer to the HW structure
3742  *
3743  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3744  *  which writes the checksum to the shadow ram.  The changes in the shadow
3745  *  ram are then committed to the EEPROM by processing each bank at a time
3746  *  checking for the modified bit and writing only the pending changes.
3747  *  After a successful commit, the shadow ram is cleared and is ready for
3748  *  future writes.
3749  **/
3750 static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
3751 {
3752 	struct e1000_nvm_info *nvm = &hw->nvm;
3753 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3754 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3755 	s32 ret_val;
3756 	u32 dword = 0;
3757 
3758 	ret_val = e1000e_update_nvm_checksum_generic(hw);
3759 	if (ret_val)
3760 		goto out;
3761 
3762 	if (nvm->type != e1000_nvm_flash_sw)
3763 		goto out;
3764 
3765 	nvm->ops.acquire(hw);
3766 
3767 	/* We're writing to the opposite bank so if we're on bank 1,
3768 	 * write to bank 0 etc.  We also need to erase the segment that
3769 	 * is going to be written
3770 	 */
3771 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3772 	if (ret_val) {
3773 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3774 		bank = 0;
3775 	}
3776 
3777 	if (bank == 0) {
3778 		new_bank_offset = nvm->flash_bank_size;
3779 		old_bank_offset = 0;
3780 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3781 		if (ret_val)
3782 			goto release;
3783 	} else {
3784 		old_bank_offset = nvm->flash_bank_size;
3785 		new_bank_offset = 0;
3786 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3787 		if (ret_val)
3788 			goto release;
3789 	}
3790 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) {
3791 		/* Determine whether to write the value stored
3792 		 * in the other NVM bank or a modified value stored
3793 		 * in the shadow RAM
3794 		 */
3795 		ret_val = e1000_read_flash_dword_ich8lan(hw,
3796 							 i + old_bank_offset,
3797 							 &dword);
3798 
3799 		if (dev_spec->shadow_ram[i].modified) {
3800 			dword &= 0xffff0000;
3801 			dword |= (dev_spec->shadow_ram[i].value & 0xffff);
3802 		}
3803 		if (dev_spec->shadow_ram[i + 1].modified) {
3804 			dword &= 0x0000ffff;
3805 			dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
3806 				  << 16);
3807 		}
3808 		if (ret_val)
3809 			break;
3810 
3811 		/* If the word is 0x13, then make sure the signature bits
3812 		 * (15:14) are 11b until the commit has completed.
3813 		 * This will allow us to write 10b which indicates the
3814 		 * signature is valid.  We want to do this after the write
3815 		 * has completed so that we don't mark the segment valid
3816 		 * while the write is still in progress
3817 		 */
3818 		if (i == E1000_ICH_NVM_SIG_WORD - 1)
3819 			dword |= E1000_ICH_NVM_SIG_MASK << 16;
3820 
3821 		/* Convert offset to bytes. */
3822 		act_offset = (i + new_bank_offset) << 1;
3823 
3824 		usleep_range(100, 200);
3825 
3826 		/* Write the data to the new bank. Offset in words */
3827 		act_offset = i + new_bank_offset;
3828 		ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
3829 								dword);
3830 		if (ret_val)
3831 			break;
3832 	}
3833 
3834 	/* Don't bother writing the segment valid bits if sector
3835 	 * programming failed.
3836 	 */
3837 	if (ret_val) {
3838 		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3839 		e_dbg("Flash commit failed.\n");
3840 		goto release;
3841 	}
3842 
3843 	/* Finally validate the new segment by setting bit 15:14
3844 	 * to 10b in word 0x13 , this can be done without an
3845 	 * erase as well since these bits are 11 to start with
3846 	 * and we need to change bit 14 to 0b
3847 	 */
3848 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3849 
3850 	/*offset in words but we read dword */
3851 	--act_offset;
3852 	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3853 
3854 	if (ret_val)
3855 		goto release;
3856 
3857 	dword &= 0xBFFFFFFF;
3858 	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3859 
3860 	if (ret_val)
3861 		goto release;
3862 
3863 	/* And invalidate the previously valid segment by setting
3864 	 * its signature word (0x13) high_byte to 0b. This can be
3865 	 * done without an erase because flash erase sets all bits
3866 	 * to 1's. We can write 1's to 0's without an erase
3867 	 */
3868 	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
3869 
3870 	/* offset in words but we read dword */
3871 	act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
3872 	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3873 
3874 	if (ret_val)
3875 		goto release;
3876 
3877 	dword &= 0x00FFFFFF;
3878 	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3879 
3880 	if (ret_val)
3881 		goto release;
3882 
3883 	/* Great!  Everything worked, we can now clear the cached entries. */
3884 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3885 		dev_spec->shadow_ram[i].modified = false;
3886 		dev_spec->shadow_ram[i].value = 0xFFFF;
3887 	}
3888 
3889 release:
3890 	nvm->ops.release(hw);
3891 
3892 	/* Reload the EEPROM, or else modifications will not appear
3893 	 * until after the next adapter reset.
3894 	 */
3895 	if (!ret_val) {
3896 		nvm->ops.reload(hw);
3897 		usleep_range(10000, 20000);
3898 	}
3899 
3900 out:
3901 	if (ret_val)
3902 		e_dbg("NVM update error: %d\n", ret_val);
3903 
3904 	return ret_val;
3905 }
3906 
3907 /**
3908  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3909  *  @hw: pointer to the HW structure
3910  *
3911  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3912  *  which writes the checksum to the shadow ram.  The changes in the shadow
3913  *  ram are then committed to the EEPROM by processing each bank at a time
3914  *  checking for the modified bit and writing only the pending changes.
3915  *  After a successful commit, the shadow ram is cleared and is ready for
3916  *  future writes.
3917  **/
3918 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
3919 {
3920 	struct e1000_nvm_info *nvm = &hw->nvm;
3921 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3922 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3923 	s32 ret_val;
3924 	u16 data = 0;
3925 
3926 	ret_val = e1000e_update_nvm_checksum_generic(hw);
3927 	if (ret_val)
3928 		goto out;
3929 
3930 	if (nvm->type != e1000_nvm_flash_sw)
3931 		goto out;
3932 
3933 	nvm->ops.acquire(hw);
3934 
3935 	/* We're writing to the opposite bank so if we're on bank 1,
3936 	 * write to bank 0 etc.  We also need to erase the segment that
3937 	 * is going to be written
3938 	 */
3939 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3940 	if (ret_val) {
3941 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3942 		bank = 0;
3943 	}
3944 
3945 	if (bank == 0) {
3946 		new_bank_offset = nvm->flash_bank_size;
3947 		old_bank_offset = 0;
3948 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3949 		if (ret_val)
3950 			goto release;
3951 	} else {
3952 		old_bank_offset = nvm->flash_bank_size;
3953 		new_bank_offset = 0;
3954 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3955 		if (ret_val)
3956 			goto release;
3957 	}
3958 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3959 		if (dev_spec->shadow_ram[i].modified) {
3960 			data = dev_spec->shadow_ram[i].value;
3961 		} else {
3962 			ret_val = e1000_read_flash_word_ich8lan(hw, i +
3963 								old_bank_offset,
3964 								&data);
3965 			if (ret_val)
3966 				break;
3967 		}
3968 
3969 		/* If the word is 0x13, then make sure the signature bits
3970 		 * (15:14) are 11b until the commit has completed.
3971 		 * This will allow us to write 10b which indicates the
3972 		 * signature is valid.  We want to do this after the write
3973 		 * has completed so that we don't mark the segment valid
3974 		 * while the write is still in progress
3975 		 */
3976 		if (i == E1000_ICH_NVM_SIG_WORD)
3977 			data |= E1000_ICH_NVM_SIG_MASK;
3978 
3979 		/* Convert offset to bytes. */
3980 		act_offset = (i + new_bank_offset) << 1;
3981 
3982 		usleep_range(100, 200);
3983 		/* Write the bytes to the new bank. */
3984 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3985 							       act_offset,
3986 							       (u8)data);
3987 		if (ret_val)
3988 			break;
3989 
3990 		usleep_range(100, 200);
3991 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3992 							       act_offset + 1,
3993 							       (u8)(data >> 8));
3994 		if (ret_val)
3995 			break;
3996 	}
3997 
3998 	/* Don't bother writing the segment valid bits if sector
3999 	 * programming failed.
4000 	 */
4001 	if (ret_val) {
4002 		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
4003 		e_dbg("Flash commit failed.\n");
4004 		goto release;
4005 	}
4006 
4007 	/* Finally validate the new segment by setting bit 15:14
4008 	 * to 10b in word 0x13 , this can be done without an
4009 	 * erase as well since these bits are 11 to start with
4010 	 * and we need to change bit 14 to 0b
4011 	 */
4012 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4013 	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
4014 	if (ret_val)
4015 		goto release;
4016 
4017 	data &= 0xBFFF;
4018 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4019 						       act_offset * 2 + 1,
4020 						       (u8)(data >> 8));
4021 	if (ret_val)
4022 		goto release;
4023 
4024 	/* And invalidate the previously valid segment by setting
4025 	 * its signature word (0x13) high_byte to 0b. This can be
4026 	 * done without an erase because flash erase sets all bits
4027 	 * to 1's. We can write 1's to 0's without an erase
4028 	 */
4029 	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4030 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
4031 	if (ret_val)
4032 		goto release;
4033 
4034 	/* Great!  Everything worked, we can now clear the cached entries. */
4035 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4036 		dev_spec->shadow_ram[i].modified = false;
4037 		dev_spec->shadow_ram[i].value = 0xFFFF;
4038 	}
4039 
4040 release:
4041 	nvm->ops.release(hw);
4042 
4043 	/* Reload the EEPROM, or else modifications will not appear
4044 	 * until after the next adapter reset.
4045 	 */
4046 	if (!ret_val) {
4047 		nvm->ops.reload(hw);
4048 		usleep_range(10000, 20000);
4049 	}
4050 
4051 out:
4052 	if (ret_val)
4053 		e_dbg("NVM update error: %d\n", ret_val);
4054 
4055 	return ret_val;
4056 }
4057 
4058 /**
4059  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4060  *  @hw: pointer to the HW structure
4061  *
4062  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4063  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
4064  *  calculated, in which case we need to calculate the checksum and set bit 6.
4065  **/
4066 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4067 {
4068 	s32 ret_val;
4069 	u16 data;
4070 	u16 word;
4071 	u16 valid_csum_mask;
4072 
4073 	/* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
4074 	 * the checksum needs to be fixed.  This bit is an indication that
4075 	 * the NVM was prepared by OEM software and did not calculate
4076 	 * the checksum...a likely scenario.
4077 	 */
4078 	switch (hw->mac.type) {
4079 	case e1000_pch_lpt:
4080 	case e1000_pch_spt:
4081 	case e1000_pch_cnp:
4082 		word = NVM_COMPAT;
4083 		valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4084 		break;
4085 	default:
4086 		word = NVM_FUTURE_INIT_WORD1;
4087 		valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4088 		break;
4089 	}
4090 
4091 	ret_val = e1000_read_nvm(hw, word, 1, &data);
4092 	if (ret_val)
4093 		return ret_val;
4094 
4095 	if (!(data & valid_csum_mask)) {
4096 		data |= valid_csum_mask;
4097 		ret_val = e1000_write_nvm(hw, word, 1, &data);
4098 		if (ret_val)
4099 			return ret_val;
4100 		ret_val = e1000e_update_nvm_checksum(hw);
4101 		if (ret_val)
4102 			return ret_val;
4103 	}
4104 
4105 	return e1000e_validate_nvm_checksum_generic(hw);
4106 }
4107 
4108 /**
4109  *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
4110  *  @hw: pointer to the HW structure
4111  *
4112  *  To prevent malicious write/erase of the NVM, set it to be read-only
4113  *  so that the hardware ignores all write/erase cycles of the NVM via
4114  *  the flash control registers.  The shadow-ram copy of the NVM will
4115  *  still be updated, however any updates to this copy will not stick
4116  *  across driver reloads.
4117  **/
4118 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
4119 {
4120 	struct e1000_nvm_info *nvm = &hw->nvm;
4121 	union ich8_flash_protected_range pr0;
4122 	union ich8_hws_flash_status hsfsts;
4123 	u32 gfpreg;
4124 
4125 	nvm->ops.acquire(hw);
4126 
4127 	gfpreg = er32flash(ICH_FLASH_GFPREG);
4128 
4129 	/* Write-protect GbE Sector of NVM */
4130 	pr0.regval = er32flash(ICH_FLASH_PR0);
4131 	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
4132 	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
4133 	pr0.range.wpe = true;
4134 	ew32flash(ICH_FLASH_PR0, pr0.regval);
4135 
4136 	/* Lock down a subset of GbE Flash Control Registers, e.g.
4137 	 * PR0 to prevent the write-protection from being lifted.
4138 	 * Once FLOCKDN is set, the registers protected by it cannot
4139 	 * be written until FLOCKDN is cleared by a hardware reset.
4140 	 */
4141 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4142 	hsfsts.hsf_status.flockdn = true;
4143 	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
4144 
4145 	nvm->ops.release(hw);
4146 }
4147 
4148 /**
4149  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4150  *  @hw: pointer to the HW structure
4151  *  @offset: The offset (in bytes) of the byte/word to read.
4152  *  @size: Size of data to read, 1=byte 2=word
4153  *  @data: The byte(s) to write to the NVM.
4154  *
4155  *  Writes one/two bytes to the NVM using the flash access registers.
4156  **/
4157 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4158 					  u8 size, u16 data)
4159 {
4160 	union ich8_hws_flash_status hsfsts;
4161 	union ich8_hws_flash_ctrl hsflctl;
4162 	u32 flash_linear_addr;
4163 	u32 flash_data = 0;
4164 	s32 ret_val;
4165 	u8 count = 0;
4166 
4167 	if (hw->mac.type >= e1000_pch_spt) {
4168 		if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4169 			return -E1000_ERR_NVM;
4170 	} else {
4171 		if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4172 			return -E1000_ERR_NVM;
4173 	}
4174 
4175 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4176 			     hw->nvm.flash_base_addr);
4177 
4178 	do {
4179 		udelay(1);
4180 		/* Steps */
4181 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4182 		if (ret_val)
4183 			break;
4184 		/* In SPT, This register is in Lan memory space, not
4185 		 * flash.  Therefore, only 32 bit access is supported
4186 		 */
4187 		if (hw->mac.type >= e1000_pch_spt)
4188 			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
4189 		else
4190 			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4191 
4192 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4193 		hsflctl.hsf_ctrl.fldbcount = size - 1;
4194 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4195 		/* In SPT, This register is in Lan memory space,
4196 		 * not flash.  Therefore, only 32 bit access is
4197 		 * supported
4198 		 */
4199 		if (hw->mac.type >= e1000_pch_spt)
4200 			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4201 		else
4202 			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4203 
4204 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4205 
4206 		if (size == 1)
4207 			flash_data = (u32)data & 0x00FF;
4208 		else
4209 			flash_data = (u32)data;
4210 
4211 		ew32flash(ICH_FLASH_FDATA0, flash_data);
4212 
4213 		/* check if FCERR is set to 1 , if set to 1, clear it
4214 		 * and try the whole sequence a few more times else done
4215 		 */
4216 		ret_val =
4217 		    e1000_flash_cycle_ich8lan(hw,
4218 					      ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4219 		if (!ret_val)
4220 			break;
4221 
4222 		/* If we're here, then things are most likely
4223 		 * completely hosed, but if the error condition
4224 		 * is detected, it won't hurt to give it another
4225 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4226 		 */
4227 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4228 		if (hsfsts.hsf_status.flcerr)
4229 			/* Repeat for some time before giving up. */
4230 			continue;
4231 		if (!hsfsts.hsf_status.flcdone) {
4232 			e_dbg("Timeout error - flash cycle did not complete.\n");
4233 			break;
4234 		}
4235 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4236 
4237 	return ret_val;
4238 }
4239 
4240 /**
4241 *  e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4242 *  @hw: pointer to the HW structure
4243 *  @offset: The offset (in bytes) of the dwords to read.
4244 *  @data: The 4 bytes to write to the NVM.
4245 *
4246 *  Writes one/two/four bytes to the NVM using the flash access registers.
4247 **/
4248 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4249 					    u32 data)
4250 {
4251 	union ich8_hws_flash_status hsfsts;
4252 	union ich8_hws_flash_ctrl hsflctl;
4253 	u32 flash_linear_addr;
4254 	s32 ret_val;
4255 	u8 count = 0;
4256 
4257 	if (hw->mac.type >= e1000_pch_spt) {
4258 		if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4259 			return -E1000_ERR_NVM;
4260 	}
4261 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4262 			     hw->nvm.flash_base_addr);
4263 	do {
4264 		udelay(1);
4265 		/* Steps */
4266 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4267 		if (ret_val)
4268 			break;
4269 
4270 		/* In SPT, This register is in Lan memory space, not
4271 		 * flash.  Therefore, only 32 bit access is supported
4272 		 */
4273 		if (hw->mac.type >= e1000_pch_spt)
4274 			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS)
4275 			    >> 16;
4276 		else
4277 			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4278 
4279 		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4280 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4281 
4282 		/* In SPT, This register is in Lan memory space,
4283 		 * not flash.  Therefore, only 32 bit access is
4284 		 * supported
4285 		 */
4286 		if (hw->mac.type >= e1000_pch_spt)
4287 			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4288 		else
4289 			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4290 
4291 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4292 
4293 		ew32flash(ICH_FLASH_FDATA0, data);
4294 
4295 		/* check if FCERR is set to 1 , if set to 1, clear it
4296 		 * and try the whole sequence a few more times else done
4297 		 */
4298 		ret_val =
4299 		   e1000_flash_cycle_ich8lan(hw,
4300 					     ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4301 
4302 		if (!ret_val)
4303 			break;
4304 
4305 		/* If we're here, then things are most likely
4306 		 * completely hosed, but if the error condition
4307 		 * is detected, it won't hurt to give it another
4308 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4309 		 */
4310 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4311 
4312 		if (hsfsts.hsf_status.flcerr)
4313 			/* Repeat for some time before giving up. */
4314 			continue;
4315 		if (!hsfsts.hsf_status.flcdone) {
4316 			e_dbg("Timeout error - flash cycle did not complete.\n");
4317 			break;
4318 		}
4319 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4320 
4321 	return ret_val;
4322 }
4323 
4324 /**
4325  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4326  *  @hw: pointer to the HW structure
4327  *  @offset: The index of the byte to read.
4328  *  @data: The byte to write to the NVM.
4329  *
4330  *  Writes a single byte to the NVM using the flash access registers.
4331  **/
4332 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4333 					  u8 data)
4334 {
4335 	u16 word = (u16)data;
4336 
4337 	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4338 }
4339 
4340 /**
4341 *  e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4342 *  @hw: pointer to the HW structure
4343 *  @offset: The offset of the word to write.
4344 *  @dword: The dword to write to the NVM.
4345 *
4346 *  Writes a single dword to the NVM using the flash access registers.
4347 *  Goes through a retry algorithm before giving up.
4348 **/
4349 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4350 						 u32 offset, u32 dword)
4351 {
4352 	s32 ret_val;
4353 	u16 program_retries;
4354 
4355 	/* Must convert word offset into bytes. */
4356 	offset <<= 1;
4357 	ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4358 
4359 	if (!ret_val)
4360 		return ret_val;
4361 	for (program_retries = 0; program_retries < 100; program_retries++) {
4362 		e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset);
4363 		usleep_range(100, 200);
4364 		ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4365 		if (!ret_val)
4366 			break;
4367 	}
4368 	if (program_retries == 100)
4369 		return -E1000_ERR_NVM;
4370 
4371 	return 0;
4372 }
4373 
4374 /**
4375  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4376  *  @hw: pointer to the HW structure
4377  *  @offset: The offset of the byte to write.
4378  *  @byte: The byte to write to the NVM.
4379  *
4380  *  Writes a single byte to the NVM using the flash access registers.
4381  *  Goes through a retry algorithm before giving up.
4382  **/
4383 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4384 						u32 offset, u8 byte)
4385 {
4386 	s32 ret_val;
4387 	u16 program_retries;
4388 
4389 	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4390 	if (!ret_val)
4391 		return ret_val;
4392 
4393 	for (program_retries = 0; program_retries < 100; program_retries++) {
4394 		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
4395 		usleep_range(100, 200);
4396 		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4397 		if (!ret_val)
4398 			break;
4399 	}
4400 	if (program_retries == 100)
4401 		return -E1000_ERR_NVM;
4402 
4403 	return 0;
4404 }
4405 
4406 /**
4407  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4408  *  @hw: pointer to the HW structure
4409  *  @bank: 0 for first bank, 1 for second bank, etc.
4410  *
4411  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4412  *  bank N is 4096 * N + flash_reg_addr.
4413  **/
4414 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4415 {
4416 	struct e1000_nvm_info *nvm = &hw->nvm;
4417 	union ich8_hws_flash_status hsfsts;
4418 	union ich8_hws_flash_ctrl hsflctl;
4419 	u32 flash_linear_addr;
4420 	/* bank size is in 16bit words - adjust to bytes */
4421 	u32 flash_bank_size = nvm->flash_bank_size * 2;
4422 	s32 ret_val;
4423 	s32 count = 0;
4424 	s32 j, iteration, sector_size;
4425 
4426 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4427 
4428 	/* Determine HW Sector size: Read BERASE bits of hw flash status
4429 	 * register
4430 	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
4431 	 *     consecutive sectors.  The start index for the nth Hw sector
4432 	 *     can be calculated as = bank * 4096 + n * 256
4433 	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4434 	 *     The start index for the nth Hw sector can be calculated
4435 	 *     as = bank * 4096
4436 	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4437 	 *     (ich9 only, otherwise error condition)
4438 	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4439 	 */
4440 	switch (hsfsts.hsf_status.berasesz) {
4441 	case 0:
4442 		/* Hw sector size 256 */
4443 		sector_size = ICH_FLASH_SEG_SIZE_256;
4444 		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4445 		break;
4446 	case 1:
4447 		sector_size = ICH_FLASH_SEG_SIZE_4K;
4448 		iteration = 1;
4449 		break;
4450 	case 2:
4451 		sector_size = ICH_FLASH_SEG_SIZE_8K;
4452 		iteration = 1;
4453 		break;
4454 	case 3:
4455 		sector_size = ICH_FLASH_SEG_SIZE_64K;
4456 		iteration = 1;
4457 		break;
4458 	default:
4459 		return -E1000_ERR_NVM;
4460 	}
4461 
4462 	/* Start with the base address, then add the sector offset. */
4463 	flash_linear_addr = hw->nvm.flash_base_addr;
4464 	flash_linear_addr += (bank) ? flash_bank_size : 0;
4465 
4466 	for (j = 0; j < iteration; j++) {
4467 		do {
4468 			u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4469 
4470 			/* Steps */
4471 			ret_val = e1000_flash_cycle_init_ich8lan(hw);
4472 			if (ret_val)
4473 				return ret_val;
4474 
4475 			/* Write a value 11 (block Erase) in Flash
4476 			 * Cycle field in hw flash control
4477 			 */
4478 			if (hw->mac.type >= e1000_pch_spt)
4479 				hsflctl.regval =
4480 				    er32flash(ICH_FLASH_HSFSTS) >> 16;
4481 			else
4482 				hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4483 
4484 			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4485 			if (hw->mac.type >= e1000_pch_spt)
4486 				ew32flash(ICH_FLASH_HSFSTS,
4487 					  hsflctl.regval << 16);
4488 			else
4489 				ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4490 
4491 			/* Write the last 24 bits of an index within the
4492 			 * block into Flash Linear address field in Flash
4493 			 * Address.
4494 			 */
4495 			flash_linear_addr += (j * sector_size);
4496 			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4497 
4498 			ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4499 			if (!ret_val)
4500 				break;
4501 
4502 			/* Check if FCERR is set to 1.  If 1,
4503 			 * clear it and try the whole sequence
4504 			 * a few more times else Done
4505 			 */
4506 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4507 			if (hsfsts.hsf_status.flcerr)
4508 				/* repeat for some time before giving up */
4509 				continue;
4510 			else if (!hsfsts.hsf_status.flcdone)
4511 				return ret_val;
4512 		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4513 	}
4514 
4515 	return 0;
4516 }
4517 
4518 /**
4519  *  e1000_valid_led_default_ich8lan - Set the default LED settings
4520  *  @hw: pointer to the HW structure
4521  *  @data: Pointer to the LED settings
4522  *
4523  *  Reads the LED default settings from the NVM to data.  If the NVM LED
4524  *  settings is all 0's or F's, set the LED default to a valid LED default
4525  *  setting.
4526  **/
4527 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4528 {
4529 	s32 ret_val;
4530 
4531 	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
4532 	if (ret_val) {
4533 		e_dbg("NVM Read Error\n");
4534 		return ret_val;
4535 	}
4536 
4537 	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4538 		*data = ID_LED_DEFAULT_ICH8LAN;
4539 
4540 	return 0;
4541 }
4542 
4543 /**
4544  *  e1000_id_led_init_pchlan - store LED configurations
4545  *  @hw: pointer to the HW structure
4546  *
4547  *  PCH does not control LEDs via the LEDCTL register, rather it uses
4548  *  the PHY LED configuration register.
4549  *
4550  *  PCH also does not have an "always on" or "always off" mode which
4551  *  complicates the ID feature.  Instead of using the "on" mode to indicate
4552  *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
4553  *  use "link_up" mode.  The LEDs will still ID on request if there is no
4554  *  link based on logic in e1000_led_[on|off]_pchlan().
4555  **/
4556 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4557 {
4558 	struct e1000_mac_info *mac = &hw->mac;
4559 	s32 ret_val;
4560 	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4561 	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4562 	u16 data, i, temp, shift;
4563 
4564 	/* Get default ID LED modes */
4565 	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4566 	if (ret_val)
4567 		return ret_val;
4568 
4569 	mac->ledctl_default = er32(LEDCTL);
4570 	mac->ledctl_mode1 = mac->ledctl_default;
4571 	mac->ledctl_mode2 = mac->ledctl_default;
4572 
4573 	for (i = 0; i < 4; i++) {
4574 		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4575 		shift = (i * 5);
4576 		switch (temp) {
4577 		case ID_LED_ON1_DEF2:
4578 		case ID_LED_ON1_ON2:
4579 		case ID_LED_ON1_OFF2:
4580 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4581 			mac->ledctl_mode1 |= (ledctl_on << shift);
4582 			break;
4583 		case ID_LED_OFF1_DEF2:
4584 		case ID_LED_OFF1_ON2:
4585 		case ID_LED_OFF1_OFF2:
4586 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4587 			mac->ledctl_mode1 |= (ledctl_off << shift);
4588 			break;
4589 		default:
4590 			/* Do nothing */
4591 			break;
4592 		}
4593 		switch (temp) {
4594 		case ID_LED_DEF1_ON2:
4595 		case ID_LED_ON1_ON2:
4596 		case ID_LED_OFF1_ON2:
4597 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4598 			mac->ledctl_mode2 |= (ledctl_on << shift);
4599 			break;
4600 		case ID_LED_DEF1_OFF2:
4601 		case ID_LED_ON1_OFF2:
4602 		case ID_LED_OFF1_OFF2:
4603 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4604 			mac->ledctl_mode2 |= (ledctl_off << shift);
4605 			break;
4606 		default:
4607 			/* Do nothing */
4608 			break;
4609 		}
4610 	}
4611 
4612 	return 0;
4613 }
4614 
4615 /**
4616  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4617  *  @hw: pointer to the HW structure
4618  *
4619  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4620  *  register, so the the bus width is hard coded.
4621  **/
4622 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4623 {
4624 	struct e1000_bus_info *bus = &hw->bus;
4625 	s32 ret_val;
4626 
4627 	ret_val = e1000e_get_bus_info_pcie(hw);
4628 
4629 	/* ICH devices are "PCI Express"-ish.  They have
4630 	 * a configuration space, but do not contain
4631 	 * PCI Express Capability registers, so bus width
4632 	 * must be hardcoded.
4633 	 */
4634 	if (bus->width == e1000_bus_width_unknown)
4635 		bus->width = e1000_bus_width_pcie_x1;
4636 
4637 	return ret_val;
4638 }
4639 
4640 /**
4641  *  e1000_reset_hw_ich8lan - Reset the hardware
4642  *  @hw: pointer to the HW structure
4643  *
4644  *  Does a full reset of the hardware which includes a reset of the PHY and
4645  *  MAC.
4646  **/
4647 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4648 {
4649 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4650 	u16 kum_cfg;
4651 	u32 ctrl, reg;
4652 	s32 ret_val;
4653 
4654 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
4655 	 * on the last TLP read/write transaction when MAC is reset.
4656 	 */
4657 	ret_val = e1000e_disable_pcie_master(hw);
4658 	if (ret_val)
4659 		e_dbg("PCI-E Master disable polling has failed.\n");
4660 
4661 	e_dbg("Masking off all interrupts\n");
4662 	ew32(IMC, 0xffffffff);
4663 
4664 	/* Disable the Transmit and Receive units.  Then delay to allow
4665 	 * any pending transactions to complete before we hit the MAC
4666 	 * with the global reset.
4667 	 */
4668 	ew32(RCTL, 0);
4669 	ew32(TCTL, E1000_TCTL_PSP);
4670 	e1e_flush();
4671 
4672 	usleep_range(10000, 20000);
4673 
4674 	/* Workaround for ICH8 bit corruption issue in FIFO memory */
4675 	if (hw->mac.type == e1000_ich8lan) {
4676 		/* Set Tx and Rx buffer allocation to 8k apiece. */
4677 		ew32(PBA, E1000_PBA_8K);
4678 		/* Set Packet Buffer Size to 16k. */
4679 		ew32(PBS, E1000_PBS_16K);
4680 	}
4681 
4682 	if (hw->mac.type == e1000_pchlan) {
4683 		/* Save the NVM K1 bit setting */
4684 		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4685 		if (ret_val)
4686 			return ret_val;
4687 
4688 		if (kum_cfg & E1000_NVM_K1_ENABLE)
4689 			dev_spec->nvm_k1_enabled = true;
4690 		else
4691 			dev_spec->nvm_k1_enabled = false;
4692 	}
4693 
4694 	ctrl = er32(CTRL);
4695 
4696 	if (!hw->phy.ops.check_reset_block(hw)) {
4697 		/* Full-chip reset requires MAC and PHY reset at the same
4698 		 * time to make sure the interface between MAC and the
4699 		 * external PHY is reset.
4700 		 */
4701 		ctrl |= E1000_CTRL_PHY_RST;
4702 
4703 		/* Gate automatic PHY configuration by hardware on
4704 		 * non-managed 82579
4705 		 */
4706 		if ((hw->mac.type == e1000_pch2lan) &&
4707 		    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
4708 			e1000_gate_hw_phy_config_ich8lan(hw, true);
4709 	}
4710 	ret_val = e1000_acquire_swflag_ich8lan(hw);
4711 	e_dbg("Issuing a global reset to ich8lan\n");
4712 	ew32(CTRL, (ctrl | E1000_CTRL_RST));
4713 	/* cannot issue a flush here because it hangs the hardware */
4714 	msleep(20);
4715 
4716 	/* Set Phy Config Counter to 50msec */
4717 	if (hw->mac.type == e1000_pch2lan) {
4718 		reg = er32(FEXTNVM3);
4719 		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4720 		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4721 		ew32(FEXTNVM3, reg);
4722 	}
4723 
4724 	if (!ret_val)
4725 		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
4726 
4727 	if (ctrl & E1000_CTRL_PHY_RST) {
4728 		ret_val = hw->phy.ops.get_cfg_done(hw);
4729 		if (ret_val)
4730 			return ret_val;
4731 
4732 		ret_val = e1000_post_phy_reset_ich8lan(hw);
4733 		if (ret_val)
4734 			return ret_val;
4735 	}
4736 
4737 	/* For PCH, this write will make sure that any noise
4738 	 * will be detected as a CRC error and be dropped rather than show up
4739 	 * as a bad packet to the DMA engine.
4740 	 */
4741 	if (hw->mac.type == e1000_pchlan)
4742 		ew32(CRC_OFFSET, 0x65656565);
4743 
4744 	ew32(IMC, 0xffffffff);
4745 	er32(ICR);
4746 
4747 	reg = er32(KABGTXD);
4748 	reg |= E1000_KABGTXD_BGSQLBIAS;
4749 	ew32(KABGTXD, reg);
4750 
4751 	return 0;
4752 }
4753 
4754 /**
4755  *  e1000_init_hw_ich8lan - Initialize the hardware
4756  *  @hw: pointer to the HW structure
4757  *
4758  *  Prepares the hardware for transmit and receive by doing the following:
4759  *   - initialize hardware bits
4760  *   - initialize LED identification
4761  *   - setup receive address registers
4762  *   - setup flow control
4763  *   - setup transmit descriptors
4764  *   - clear statistics
4765  **/
4766 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4767 {
4768 	struct e1000_mac_info *mac = &hw->mac;
4769 	u32 ctrl_ext, txdctl, snoop;
4770 	s32 ret_val;
4771 	u16 i;
4772 
4773 	e1000_initialize_hw_bits_ich8lan(hw);
4774 
4775 	/* Initialize identification LED */
4776 	ret_val = mac->ops.id_led_init(hw);
4777 	/* An error is not fatal and we should not stop init due to this */
4778 	if (ret_val)
4779 		e_dbg("Error initializing identification LED\n");
4780 
4781 	/* Setup the receive address. */
4782 	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
4783 
4784 	/* Zero out the Multicast HASH table */
4785 	e_dbg("Zeroing the MTA\n");
4786 	for (i = 0; i < mac->mta_reg_count; i++)
4787 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4788 
4789 	/* The 82578 Rx buffer will stall if wakeup is enabled in host and
4790 	 * the ME.  Disable wakeup by clearing the host wakeup bit.
4791 	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
4792 	 */
4793 	if (hw->phy.type == e1000_phy_82578) {
4794 		e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4795 		i &= ~BM_WUC_HOST_WU_BIT;
4796 		e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4797 		ret_val = e1000_phy_hw_reset_ich8lan(hw);
4798 		if (ret_val)
4799 			return ret_val;
4800 	}
4801 
4802 	/* Setup link and flow control */
4803 	ret_val = mac->ops.setup_link(hw);
4804 
4805 	/* Set the transmit descriptor write-back policy for both queues */
4806 	txdctl = er32(TXDCTL(0));
4807 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4808 		  E1000_TXDCTL_FULL_TX_DESC_WB);
4809 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4810 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4811 	ew32(TXDCTL(0), txdctl);
4812 	txdctl = er32(TXDCTL(1));
4813 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4814 		  E1000_TXDCTL_FULL_TX_DESC_WB);
4815 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4816 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4817 	ew32(TXDCTL(1), txdctl);
4818 
4819 	/* ICH8 has opposite polarity of no_snoop bits.
4820 	 * By default, we should use snoop behavior.
4821 	 */
4822 	if (mac->type == e1000_ich8lan)
4823 		snoop = PCIE_ICH8_SNOOP_ALL;
4824 	else
4825 		snoop = (u32)~(PCIE_NO_SNOOP_ALL);
4826 	e1000e_set_pcie_no_snoop(hw, snoop);
4827 
4828 	ctrl_ext = er32(CTRL_EXT);
4829 	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4830 	ew32(CTRL_EXT, ctrl_ext);
4831 
4832 	/* Clear all of the statistics registers (clear on read).  It is
4833 	 * important that we do this after we have tried to establish link
4834 	 * because the symbol error count will increment wildly if there
4835 	 * is no link.
4836 	 */
4837 	e1000_clear_hw_cntrs_ich8lan(hw);
4838 
4839 	return ret_val;
4840 }
4841 
4842 /**
4843  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4844  *  @hw: pointer to the HW structure
4845  *
4846  *  Sets/Clears required hardware bits necessary for correctly setting up the
4847  *  hardware for transmit and receive.
4848  **/
4849 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4850 {
4851 	u32 reg;
4852 
4853 	/* Extended Device Control */
4854 	reg = er32(CTRL_EXT);
4855 	reg |= BIT(22);
4856 	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
4857 	if (hw->mac.type >= e1000_pchlan)
4858 		reg |= E1000_CTRL_EXT_PHYPDEN;
4859 	ew32(CTRL_EXT, reg);
4860 
4861 	/* Transmit Descriptor Control 0 */
4862 	reg = er32(TXDCTL(0));
4863 	reg |= BIT(22);
4864 	ew32(TXDCTL(0), reg);
4865 
4866 	/* Transmit Descriptor Control 1 */
4867 	reg = er32(TXDCTL(1));
4868 	reg |= BIT(22);
4869 	ew32(TXDCTL(1), reg);
4870 
4871 	/* Transmit Arbitration Control 0 */
4872 	reg = er32(TARC(0));
4873 	if (hw->mac.type == e1000_ich8lan)
4874 		reg |= BIT(28) | BIT(29);
4875 	reg |= BIT(23) | BIT(24) | BIT(26) | BIT(27);
4876 	ew32(TARC(0), reg);
4877 
4878 	/* Transmit Arbitration Control 1 */
4879 	reg = er32(TARC(1));
4880 	if (er32(TCTL) & E1000_TCTL_MULR)
4881 		reg &= ~BIT(28);
4882 	else
4883 		reg |= BIT(28);
4884 	reg |= BIT(24) | BIT(26) | BIT(30);
4885 	ew32(TARC(1), reg);
4886 
4887 	/* Device Status */
4888 	if (hw->mac.type == e1000_ich8lan) {
4889 		reg = er32(STATUS);
4890 		reg &= ~BIT(31);
4891 		ew32(STATUS, reg);
4892 	}
4893 
4894 	/* work-around descriptor data corruption issue during nfs v2 udp
4895 	 * traffic, just disable the nfs filtering capability
4896 	 */
4897 	reg = er32(RFCTL);
4898 	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
4899 
4900 	/* Disable IPv6 extension header parsing because some malformed
4901 	 * IPv6 headers can hang the Rx.
4902 	 */
4903 	if (hw->mac.type == e1000_ich8lan)
4904 		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
4905 	ew32(RFCTL, reg);
4906 
4907 	/* Enable ECC on Lynxpoint */
4908 	if (hw->mac.type >= e1000_pch_lpt) {
4909 		reg = er32(PBECCSTS);
4910 		reg |= E1000_PBECCSTS_ECC_ENABLE;
4911 		ew32(PBECCSTS, reg);
4912 
4913 		reg = er32(CTRL);
4914 		reg |= E1000_CTRL_MEHE;
4915 		ew32(CTRL, reg);
4916 	}
4917 }
4918 
4919 /**
4920  *  e1000_setup_link_ich8lan - Setup flow control and link settings
4921  *  @hw: pointer to the HW structure
4922  *
4923  *  Determines which flow control settings to use, then configures flow
4924  *  control.  Calls the appropriate media-specific link configuration
4925  *  function.  Assuming the adapter has a valid link partner, a valid link
4926  *  should be established.  Assumes the hardware has previously been reset
4927  *  and the transmitter and receiver are not enabled.
4928  **/
4929 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
4930 {
4931 	s32 ret_val;
4932 
4933 	if (hw->phy.ops.check_reset_block(hw))
4934 		return 0;
4935 
4936 	/* ICH parts do not have a word in the NVM to determine
4937 	 * the default flow control setting, so we explicitly
4938 	 * set it to full.
4939 	 */
4940 	if (hw->fc.requested_mode == e1000_fc_default) {
4941 		/* Workaround h/w hang when Tx flow control enabled */
4942 		if (hw->mac.type == e1000_pchlan)
4943 			hw->fc.requested_mode = e1000_fc_rx_pause;
4944 		else
4945 			hw->fc.requested_mode = e1000_fc_full;
4946 	}
4947 
4948 	/* Save off the requested flow control mode for use later.  Depending
4949 	 * on the link partner's capabilities, we may or may not use this mode.
4950 	 */
4951 	hw->fc.current_mode = hw->fc.requested_mode;
4952 
4953 	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
4954 
4955 	/* Continue to configure the copper link. */
4956 	ret_val = hw->mac.ops.setup_physical_interface(hw);
4957 	if (ret_val)
4958 		return ret_val;
4959 
4960 	ew32(FCTTV, hw->fc.pause_time);
4961 	if ((hw->phy.type == e1000_phy_82578) ||
4962 	    (hw->phy.type == e1000_phy_82579) ||
4963 	    (hw->phy.type == e1000_phy_i217) ||
4964 	    (hw->phy.type == e1000_phy_82577)) {
4965 		ew32(FCRTV_PCH, hw->fc.refresh_time);
4966 
4967 		ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
4968 				   hw->fc.pause_time);
4969 		if (ret_val)
4970 			return ret_val;
4971 	}
4972 
4973 	return e1000e_set_fc_watermarks(hw);
4974 }
4975 
4976 /**
4977  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
4978  *  @hw: pointer to the HW structure
4979  *
4980  *  Configures the kumeran interface to the PHY to wait the appropriate time
4981  *  when polling the PHY, then call the generic setup_copper_link to finish
4982  *  configuring the copper link.
4983  **/
4984 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
4985 {
4986 	u32 ctrl;
4987 	s32 ret_val;
4988 	u16 reg_data;
4989 
4990 	ctrl = er32(CTRL);
4991 	ctrl |= E1000_CTRL_SLU;
4992 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
4993 	ew32(CTRL, ctrl);
4994 
4995 	/* Set the mac to wait the maximum time between each iteration
4996 	 * and increase the max iterations when polling the phy;
4997 	 * this fixes erroneous timeouts at 10Mbps.
4998 	 */
4999 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
5000 	if (ret_val)
5001 		return ret_val;
5002 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5003 				       &reg_data);
5004 	if (ret_val)
5005 		return ret_val;
5006 	reg_data |= 0x3F;
5007 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5008 					reg_data);
5009 	if (ret_val)
5010 		return ret_val;
5011 
5012 	switch (hw->phy.type) {
5013 	case e1000_phy_igp_3:
5014 		ret_val = e1000e_copper_link_setup_igp(hw);
5015 		if (ret_val)
5016 			return ret_val;
5017 		break;
5018 	case e1000_phy_bm:
5019 	case e1000_phy_82578:
5020 		ret_val = e1000e_copper_link_setup_m88(hw);
5021 		if (ret_val)
5022 			return ret_val;
5023 		break;
5024 	case e1000_phy_82577:
5025 	case e1000_phy_82579:
5026 		ret_val = e1000_copper_link_setup_82577(hw);
5027 		if (ret_val)
5028 			return ret_val;
5029 		break;
5030 	case e1000_phy_ife:
5031 		ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
5032 		if (ret_val)
5033 			return ret_val;
5034 
5035 		reg_data &= ~IFE_PMC_AUTO_MDIX;
5036 
5037 		switch (hw->phy.mdix) {
5038 		case 1:
5039 			reg_data &= ~IFE_PMC_FORCE_MDIX;
5040 			break;
5041 		case 2:
5042 			reg_data |= IFE_PMC_FORCE_MDIX;
5043 			break;
5044 		case 0:
5045 		default:
5046 			reg_data |= IFE_PMC_AUTO_MDIX;
5047 			break;
5048 		}
5049 		ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
5050 		if (ret_val)
5051 			return ret_val;
5052 		break;
5053 	default:
5054 		break;
5055 	}
5056 
5057 	return e1000e_setup_copper_link(hw);
5058 }
5059 
5060 /**
5061  *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5062  *  @hw: pointer to the HW structure
5063  *
5064  *  Calls the PHY specific link setup function and then calls the
5065  *  generic setup_copper_link to finish configuring the link for
5066  *  Lynxpoint PCH devices
5067  **/
5068 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5069 {
5070 	u32 ctrl;
5071 	s32 ret_val;
5072 
5073 	ctrl = er32(CTRL);
5074 	ctrl |= E1000_CTRL_SLU;
5075 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5076 	ew32(CTRL, ctrl);
5077 
5078 	ret_val = e1000_copper_link_setup_82577(hw);
5079 	if (ret_val)
5080 		return ret_val;
5081 
5082 	return e1000e_setup_copper_link(hw);
5083 }
5084 
5085 /**
5086  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5087  *  @hw: pointer to the HW structure
5088  *  @speed: pointer to store current link speed
5089  *  @duplex: pointer to store the current link duplex
5090  *
5091  *  Calls the generic get_speed_and_duplex to retrieve the current link
5092  *  information and then calls the Kumeran lock loss workaround for links at
5093  *  gigabit speeds.
5094  **/
5095 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5096 					  u16 *duplex)
5097 {
5098 	s32 ret_val;
5099 
5100 	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
5101 	if (ret_val)
5102 		return ret_val;
5103 
5104 	if ((hw->mac.type == e1000_ich8lan) &&
5105 	    (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
5106 		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5107 	}
5108 
5109 	return ret_val;
5110 }
5111 
5112 /**
5113  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5114  *  @hw: pointer to the HW structure
5115  *
5116  *  Work-around for 82566 Kumeran PCS lock loss:
5117  *  On link status change (i.e. PCI reset, speed change) and link is up and
5118  *  speed is gigabit-
5119  *    0) if workaround is optionally disabled do nothing
5120  *    1) wait 1ms for Kumeran link to come up
5121  *    2) check Kumeran Diagnostic register PCS lock loss bit
5122  *    3) if not set the link is locked (all is good), otherwise...
5123  *    4) reset the PHY
5124  *    5) repeat up to 10 times
5125  *  Note: this is only called for IGP3 copper when speed is 1gb.
5126  **/
5127 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5128 {
5129 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5130 	u32 phy_ctrl;
5131 	s32 ret_val;
5132 	u16 i, data;
5133 	bool link;
5134 
5135 	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5136 		return 0;
5137 
5138 	/* Make sure link is up before proceeding.  If not just return.
5139 	 * Attempting this while link is negotiating fouled up link
5140 	 * stability
5141 	 */
5142 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
5143 	if (!link)
5144 		return 0;
5145 
5146 	for (i = 0; i < 10; i++) {
5147 		/* read once to clear */
5148 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5149 		if (ret_val)
5150 			return ret_val;
5151 		/* and again to get new status */
5152 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5153 		if (ret_val)
5154 			return ret_val;
5155 
5156 		/* check for PCS lock */
5157 		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5158 			return 0;
5159 
5160 		/* Issue PHY reset */
5161 		e1000_phy_hw_reset(hw);
5162 		mdelay(5);
5163 	}
5164 	/* Disable GigE link negotiation */
5165 	phy_ctrl = er32(PHY_CTRL);
5166 	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5167 		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5168 	ew32(PHY_CTRL, phy_ctrl);
5169 
5170 	/* Call gig speed drop workaround on Gig disable before accessing
5171 	 * any PHY registers
5172 	 */
5173 	e1000e_gig_downshift_workaround_ich8lan(hw);
5174 
5175 	/* unable to acquire PCS lock */
5176 	return -E1000_ERR_PHY;
5177 }
5178 
5179 /**
5180  *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5181  *  @hw: pointer to the HW structure
5182  *  @state: boolean value used to set the current Kumeran workaround state
5183  *
5184  *  If ICH8, set the current Kumeran workaround state (enabled - true
5185  *  /disabled - false).
5186  **/
5187 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5188 						  bool state)
5189 {
5190 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5191 
5192 	if (hw->mac.type != e1000_ich8lan) {
5193 		e_dbg("Workaround applies to ICH8 only.\n");
5194 		return;
5195 	}
5196 
5197 	dev_spec->kmrn_lock_loss_workaround_enabled = state;
5198 }
5199 
5200 /**
5201  *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5202  *  @hw: pointer to the HW structure
5203  *
5204  *  Workaround for 82566 power-down on D3 entry:
5205  *    1) disable gigabit link
5206  *    2) write VR power-down enable
5207  *    3) read it back
5208  *  Continue if successful, else issue LCD reset and repeat
5209  **/
5210 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5211 {
5212 	u32 reg;
5213 	u16 data;
5214 	u8 retry = 0;
5215 
5216 	if (hw->phy.type != e1000_phy_igp_3)
5217 		return;
5218 
5219 	/* Try the workaround twice (if needed) */
5220 	do {
5221 		/* Disable link */
5222 		reg = er32(PHY_CTRL);
5223 		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5224 			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5225 		ew32(PHY_CTRL, reg);
5226 
5227 		/* Call gig speed drop workaround on Gig disable before
5228 		 * accessing any PHY registers
5229 		 */
5230 		if (hw->mac.type == e1000_ich8lan)
5231 			e1000e_gig_downshift_workaround_ich8lan(hw);
5232 
5233 		/* Write VR power-down enable */
5234 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5235 		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5236 		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5237 
5238 		/* Read it back and test */
5239 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5240 		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5241 		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5242 			break;
5243 
5244 		/* Issue PHY reset and repeat at most one more time */
5245 		reg = er32(CTRL);
5246 		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
5247 		retry++;
5248 	} while (retry);
5249 }
5250 
5251 /**
5252  *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5253  *  @hw: pointer to the HW structure
5254  *
5255  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5256  *  LPLU, Gig disable, MDIC PHY reset):
5257  *    1) Set Kumeran Near-end loopback
5258  *    2) Clear Kumeran Near-end loopback
5259  *  Should only be called for ICH8[m] devices with any 1G Phy.
5260  **/
5261 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5262 {
5263 	s32 ret_val;
5264 	u16 reg_data;
5265 
5266 	if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
5267 		return;
5268 
5269 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5270 				       &reg_data);
5271 	if (ret_val)
5272 		return;
5273 	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5274 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5275 					reg_data);
5276 	if (ret_val)
5277 		return;
5278 	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5279 	e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
5280 }
5281 
5282 /**
5283  *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5284  *  @hw: pointer to the HW structure
5285  *
5286  *  During S0 to Sx transition, it is possible the link remains at gig
5287  *  instead of negotiating to a lower speed.  Before going to Sx, set
5288  *  'Gig Disable' to force link speed negotiation to a lower speed based on
5289  *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
5290  *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5291  *  needs to be written.
5292  *  Parts that support (and are linked to a partner which support) EEE in
5293  *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5294  *  than 10Mbps w/o EEE.
5295  **/
5296 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5297 {
5298 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5299 	u32 phy_ctrl;
5300 	s32 ret_val;
5301 
5302 	phy_ctrl = er32(PHY_CTRL);
5303 	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5304 
5305 	if (hw->phy.type == e1000_phy_i217) {
5306 		u16 phy_reg, device_id = hw->adapter->pdev->device;
5307 
5308 		if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5309 		    (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5310 		    (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5311 		    (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5312 		    (hw->mac.type >= e1000_pch_spt)) {
5313 			u32 fextnvm6 = er32(FEXTNVM6);
5314 
5315 			ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5316 		}
5317 
5318 		ret_val = hw->phy.ops.acquire(hw);
5319 		if (ret_val)
5320 			goto out;
5321 
5322 		if (!dev_spec->eee_disable) {
5323 			u16 eee_advert;
5324 
5325 			ret_val =
5326 			    e1000_read_emi_reg_locked(hw,
5327 						      I217_EEE_ADVERTISEMENT,
5328 						      &eee_advert);
5329 			if (ret_val)
5330 				goto release;
5331 
5332 			/* Disable LPLU if both link partners support 100BaseT
5333 			 * EEE and 100Full is advertised on both ends of the
5334 			 * link, and enable Auto Enable LPI since there will
5335 			 * be no driver to enable LPI while in Sx.
5336 			 */
5337 			if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5338 			    (dev_spec->eee_lp_ability &
5339 			     I82579_EEE_100_SUPPORTED) &&
5340 			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5341 				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5342 					      E1000_PHY_CTRL_NOND0A_LPLU);
5343 
5344 				/* Set Auto Enable LPI after link up */
5345 				e1e_rphy_locked(hw,
5346 						I217_LPI_GPIO_CTRL, &phy_reg);
5347 				phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5348 				e1e_wphy_locked(hw,
5349 						I217_LPI_GPIO_CTRL, phy_reg);
5350 			}
5351 		}
5352 
5353 		/* For i217 Intel Rapid Start Technology support,
5354 		 * when the system is going into Sx and no manageability engine
5355 		 * is present, the driver must configure proxy to reset only on
5356 		 * power good.  LPI (Low Power Idle) state must also reset only
5357 		 * on power good, as well as the MTA (Multicast table array).
5358 		 * The SMBus release must also be disabled on LCD reset.
5359 		 */
5360 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5361 			/* Enable proxy to reset only on power good. */
5362 			e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
5363 			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5364 			e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
5365 
5366 			/* Set bit enable LPI (EEE) to reset only on
5367 			 * power good.
5368 			 */
5369 			e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
5370 			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5371 			e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
5372 
5373 			/* Disable the SMB release on LCD reset. */
5374 			e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5375 			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5376 			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5377 		}
5378 
5379 		/* Enable MTA to reset for Intel Rapid Start Technology
5380 		 * Support
5381 		 */
5382 		e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5383 		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5384 		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5385 
5386 release:
5387 		hw->phy.ops.release(hw);
5388 	}
5389 out:
5390 	ew32(PHY_CTRL, phy_ctrl);
5391 
5392 	if (hw->mac.type == e1000_ich8lan)
5393 		e1000e_gig_downshift_workaround_ich8lan(hw);
5394 
5395 	if (hw->mac.type >= e1000_pchlan) {
5396 		e1000_oem_bits_config_ich8lan(hw, false);
5397 
5398 		/* Reset PHY to activate OEM bits on 82577/8 */
5399 		if (hw->mac.type == e1000_pchlan)
5400 			e1000e_phy_hw_reset_generic(hw);
5401 
5402 		ret_val = hw->phy.ops.acquire(hw);
5403 		if (ret_val)
5404 			return;
5405 		e1000_write_smbus_addr(hw);
5406 		hw->phy.ops.release(hw);
5407 	}
5408 }
5409 
5410 /**
5411  *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5412  *  @hw: pointer to the HW structure
5413  *
5414  *  During Sx to S0 transitions on non-managed devices or managed devices
5415  *  on which PHY resets are not blocked, if the PHY registers cannot be
5416  *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
5417  *  the PHY.
5418  *  On i217, setup Intel Rapid Start Technology.
5419  **/
5420 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5421 {
5422 	s32 ret_val;
5423 
5424 	if (hw->mac.type < e1000_pch2lan)
5425 		return;
5426 
5427 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
5428 	if (ret_val) {
5429 		e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
5430 		return;
5431 	}
5432 
5433 	/* For i217 Intel Rapid Start Technology support when the system
5434 	 * is transitioning from Sx and no manageability engine is present
5435 	 * configure SMBus to restore on reset, disable proxy, and enable
5436 	 * the reset on MTA (Multicast table array).
5437 	 */
5438 	if (hw->phy.type == e1000_phy_i217) {
5439 		u16 phy_reg;
5440 
5441 		ret_val = hw->phy.ops.acquire(hw);
5442 		if (ret_val) {
5443 			e_dbg("Failed to setup iRST\n");
5444 			return;
5445 		}
5446 
5447 		/* Clear Auto Enable LPI after link up */
5448 		e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5449 		phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5450 		e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5451 
5452 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5453 			/* Restore clear on SMB if no manageability engine
5454 			 * is present
5455 			 */
5456 			ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5457 			if (ret_val)
5458 				goto release;
5459 			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5460 			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5461 
5462 			/* Disable Proxy */
5463 			e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
5464 		}
5465 		/* Enable reset on MTA */
5466 		ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5467 		if (ret_val)
5468 			goto release;
5469 		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5470 		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5471 release:
5472 		if (ret_val)
5473 			e_dbg("Error %d in resume workarounds\n", ret_val);
5474 		hw->phy.ops.release(hw);
5475 	}
5476 }
5477 
5478 /**
5479  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
5480  *  @hw: pointer to the HW structure
5481  *
5482  *  Return the LED back to the default configuration.
5483  **/
5484 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5485 {
5486 	if (hw->phy.type == e1000_phy_ife)
5487 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
5488 
5489 	ew32(LEDCTL, hw->mac.ledctl_default);
5490 	return 0;
5491 }
5492 
5493 /**
5494  *  e1000_led_on_ich8lan - Turn LEDs on
5495  *  @hw: pointer to the HW structure
5496  *
5497  *  Turn on the LEDs.
5498  **/
5499 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5500 {
5501 	if (hw->phy.type == e1000_phy_ife)
5502 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5503 				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5504 
5505 	ew32(LEDCTL, hw->mac.ledctl_mode2);
5506 	return 0;
5507 }
5508 
5509 /**
5510  *  e1000_led_off_ich8lan - Turn LEDs off
5511  *  @hw: pointer to the HW structure
5512  *
5513  *  Turn off the LEDs.
5514  **/
5515 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5516 {
5517 	if (hw->phy.type == e1000_phy_ife)
5518 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5519 				(IFE_PSCL_PROBE_MODE |
5520 				 IFE_PSCL_PROBE_LEDS_OFF));
5521 
5522 	ew32(LEDCTL, hw->mac.ledctl_mode1);
5523 	return 0;
5524 }
5525 
5526 /**
5527  *  e1000_setup_led_pchlan - Configures SW controllable LED
5528  *  @hw: pointer to the HW structure
5529  *
5530  *  This prepares the SW controllable LED for use.
5531  **/
5532 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5533 {
5534 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
5535 }
5536 
5537 /**
5538  *  e1000_cleanup_led_pchlan - Restore the default LED operation
5539  *  @hw: pointer to the HW structure
5540  *
5541  *  Return the LED back to the default configuration.
5542  **/
5543 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5544 {
5545 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
5546 }
5547 
5548 /**
5549  *  e1000_led_on_pchlan - Turn LEDs on
5550  *  @hw: pointer to the HW structure
5551  *
5552  *  Turn on the LEDs.
5553  **/
5554 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5555 {
5556 	u16 data = (u16)hw->mac.ledctl_mode2;
5557 	u32 i, led;
5558 
5559 	/* If no link, then turn LED on by setting the invert bit
5560 	 * for each LED that's mode is "link_up" in ledctl_mode2.
5561 	 */
5562 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5563 		for (i = 0; i < 3; i++) {
5564 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5565 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5566 			    E1000_LEDCTL_MODE_LINK_UP)
5567 				continue;
5568 			if (led & E1000_PHY_LED0_IVRT)
5569 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5570 			else
5571 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5572 		}
5573 	}
5574 
5575 	return e1e_wphy(hw, HV_LED_CONFIG, data);
5576 }
5577 
5578 /**
5579  *  e1000_led_off_pchlan - Turn LEDs off
5580  *  @hw: pointer to the HW structure
5581  *
5582  *  Turn off the LEDs.
5583  **/
5584 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5585 {
5586 	u16 data = (u16)hw->mac.ledctl_mode1;
5587 	u32 i, led;
5588 
5589 	/* If no link, then turn LED off by clearing the invert bit
5590 	 * for each LED that's mode is "link_up" in ledctl_mode1.
5591 	 */
5592 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5593 		for (i = 0; i < 3; i++) {
5594 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5595 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5596 			    E1000_LEDCTL_MODE_LINK_UP)
5597 				continue;
5598 			if (led & E1000_PHY_LED0_IVRT)
5599 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5600 			else
5601 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5602 		}
5603 	}
5604 
5605 	return e1e_wphy(hw, HV_LED_CONFIG, data);
5606 }
5607 
5608 /**
5609  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5610  *  @hw: pointer to the HW structure
5611  *
5612  *  Read appropriate register for the config done bit for completion status
5613  *  and configure the PHY through s/w for EEPROM-less parts.
5614  *
5615  *  NOTE: some silicon which is EEPROM-less will fail trying to read the
5616  *  config done bit, so only an error is logged and continues.  If we were
5617  *  to return with error, EEPROM-less silicon would not be able to be reset
5618  *  or change link.
5619  **/
5620 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5621 {
5622 	s32 ret_val = 0;
5623 	u32 bank = 0;
5624 	u32 status;
5625 
5626 	e1000e_get_cfg_done_generic(hw);
5627 
5628 	/* Wait for indication from h/w that it has completed basic config */
5629 	if (hw->mac.type >= e1000_ich10lan) {
5630 		e1000_lan_init_done_ich8lan(hw);
5631 	} else {
5632 		ret_val = e1000e_get_auto_rd_done(hw);
5633 		if (ret_val) {
5634 			/* When auto config read does not complete, do not
5635 			 * return with an error. This can happen in situations
5636 			 * where there is no eeprom and prevents getting link.
5637 			 */
5638 			e_dbg("Auto Read Done did not complete\n");
5639 			ret_val = 0;
5640 		}
5641 	}
5642 
5643 	/* Clear PHY Reset Asserted bit */
5644 	status = er32(STATUS);
5645 	if (status & E1000_STATUS_PHYRA)
5646 		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
5647 	else
5648 		e_dbg("PHY Reset Asserted not set - needs delay\n");
5649 
5650 	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
5651 	if (hw->mac.type <= e1000_ich9lan) {
5652 		if (!(er32(EECD) & E1000_EECD_PRES) &&
5653 		    (hw->phy.type == e1000_phy_igp_3)) {
5654 			e1000e_phy_init_script_igp3(hw);
5655 		}
5656 	} else {
5657 		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5658 			/* Maybe we should do a basic PHY config */
5659 			e_dbg("EEPROM not present\n");
5660 			ret_val = -E1000_ERR_CONFIG;
5661 		}
5662 	}
5663 
5664 	return ret_val;
5665 }
5666 
5667 /**
5668  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5669  * @hw: pointer to the HW structure
5670  *
5671  * In the case of a PHY power down to save power, or to turn off link during a
5672  * driver unload, or wake on lan is not enabled, remove the link.
5673  **/
5674 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5675 {
5676 	/* If the management interface is not enabled, then power down */
5677 	if (!(hw->mac.ops.check_mng_mode(hw) ||
5678 	      hw->phy.ops.check_reset_block(hw)))
5679 		e1000_power_down_phy_copper(hw);
5680 }
5681 
5682 /**
5683  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5684  *  @hw: pointer to the HW structure
5685  *
5686  *  Clears hardware counters specific to the silicon family and calls
5687  *  clear_hw_cntrs_generic to clear all general purpose counters.
5688  **/
5689 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5690 {
5691 	u16 phy_data;
5692 	s32 ret_val;
5693 
5694 	e1000e_clear_hw_cntrs_base(hw);
5695 
5696 	er32(ALGNERRC);
5697 	er32(RXERRC);
5698 	er32(TNCRS);
5699 	er32(CEXTERR);
5700 	er32(TSCTC);
5701 	er32(TSCTFC);
5702 
5703 	er32(MGTPRC);
5704 	er32(MGTPDC);
5705 	er32(MGTPTC);
5706 
5707 	er32(IAC);
5708 	er32(ICRXOC);
5709 
5710 	/* Clear PHY statistics registers */
5711 	if ((hw->phy.type == e1000_phy_82578) ||
5712 	    (hw->phy.type == e1000_phy_82579) ||
5713 	    (hw->phy.type == e1000_phy_i217) ||
5714 	    (hw->phy.type == e1000_phy_82577)) {
5715 		ret_val = hw->phy.ops.acquire(hw);
5716 		if (ret_val)
5717 			return;
5718 		ret_val = hw->phy.ops.set_page(hw,
5719 					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
5720 		if (ret_val)
5721 			goto release;
5722 		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5723 		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5724 		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5725 		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5726 		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5727 		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5728 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5729 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5730 		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5731 		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5732 		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5733 		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5734 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5735 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5736 release:
5737 		hw->phy.ops.release(hw);
5738 	}
5739 }
5740 
5741 static const struct e1000_mac_operations ich8_mac_ops = {
5742 	/* check_mng_mode dependent on mac type */
5743 	.check_for_link		= e1000_check_for_copper_link_ich8lan,
5744 	/* cleanup_led dependent on mac type */
5745 	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
5746 	.get_bus_info		= e1000_get_bus_info_ich8lan,
5747 	.set_lan_id		= e1000_set_lan_id_single_port,
5748 	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
5749 	/* led_on dependent on mac type */
5750 	/* led_off dependent on mac type */
5751 	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
5752 	.reset_hw		= e1000_reset_hw_ich8lan,
5753 	.init_hw		= e1000_init_hw_ich8lan,
5754 	.setup_link		= e1000_setup_link_ich8lan,
5755 	.setup_physical_interface = e1000_setup_copper_link_ich8lan,
5756 	/* id_led_init dependent on mac type */
5757 	.config_collision_dist	= e1000e_config_collision_dist_generic,
5758 	.rar_set		= e1000e_rar_set_generic,
5759 	.rar_get_count		= e1000e_rar_get_count_generic,
5760 };
5761 
5762 static const struct e1000_phy_operations ich8_phy_ops = {
5763 	.acquire		= e1000_acquire_swflag_ich8lan,
5764 	.check_reset_block	= e1000_check_reset_block_ich8lan,
5765 	.commit			= NULL,
5766 	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
5767 	.get_cable_length	= e1000e_get_cable_length_igp_2,
5768 	.read_reg		= e1000e_read_phy_reg_igp,
5769 	.release		= e1000_release_swflag_ich8lan,
5770 	.reset			= e1000_phy_hw_reset_ich8lan,
5771 	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
5772 	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
5773 	.write_reg		= e1000e_write_phy_reg_igp,
5774 };
5775 
5776 static const struct e1000_nvm_operations ich8_nvm_ops = {
5777 	.acquire		= e1000_acquire_nvm_ich8lan,
5778 	.read			= e1000_read_nvm_ich8lan,
5779 	.release		= e1000_release_nvm_ich8lan,
5780 	.reload			= e1000e_reload_nvm_generic,
5781 	.update			= e1000_update_nvm_checksum_ich8lan,
5782 	.valid_led_default	= e1000_valid_led_default_ich8lan,
5783 	.validate		= e1000_validate_nvm_checksum_ich8lan,
5784 	.write			= e1000_write_nvm_ich8lan,
5785 };
5786 
5787 static const struct e1000_nvm_operations spt_nvm_ops = {
5788 	.acquire		= e1000_acquire_nvm_ich8lan,
5789 	.release		= e1000_release_nvm_ich8lan,
5790 	.read			= e1000_read_nvm_spt,
5791 	.update			= e1000_update_nvm_checksum_spt,
5792 	.reload			= e1000e_reload_nvm_generic,
5793 	.valid_led_default	= e1000_valid_led_default_ich8lan,
5794 	.validate		= e1000_validate_nvm_checksum_ich8lan,
5795 	.write			= e1000_write_nvm_ich8lan,
5796 };
5797 
5798 const struct e1000_info e1000_ich8_info = {
5799 	.mac			= e1000_ich8lan,
5800 	.flags			= FLAG_HAS_WOL
5801 				  | FLAG_IS_ICH
5802 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5803 				  | FLAG_HAS_AMT
5804 				  | FLAG_HAS_FLASH
5805 				  | FLAG_APME_IN_WUC,
5806 	.pba			= 8,
5807 	.max_hw_frame_size	= VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
5808 	.get_variants		= e1000_get_variants_ich8lan,
5809 	.mac_ops		= &ich8_mac_ops,
5810 	.phy_ops		= &ich8_phy_ops,
5811 	.nvm_ops		= &ich8_nvm_ops,
5812 };
5813 
5814 const struct e1000_info e1000_ich9_info = {
5815 	.mac			= e1000_ich9lan,
5816 	.flags			= FLAG_HAS_JUMBO_FRAMES
5817 				  | FLAG_IS_ICH
5818 				  | FLAG_HAS_WOL
5819 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5820 				  | FLAG_HAS_AMT
5821 				  | FLAG_HAS_FLASH
5822 				  | FLAG_APME_IN_WUC,
5823 	.pba			= 18,
5824 	.max_hw_frame_size	= DEFAULT_JUMBO,
5825 	.get_variants		= e1000_get_variants_ich8lan,
5826 	.mac_ops		= &ich8_mac_ops,
5827 	.phy_ops		= &ich8_phy_ops,
5828 	.nvm_ops		= &ich8_nvm_ops,
5829 };
5830 
5831 const struct e1000_info e1000_ich10_info = {
5832 	.mac			= e1000_ich10lan,
5833 	.flags			= FLAG_HAS_JUMBO_FRAMES
5834 				  | FLAG_IS_ICH
5835 				  | FLAG_HAS_WOL
5836 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5837 				  | FLAG_HAS_AMT
5838 				  | FLAG_HAS_FLASH
5839 				  | FLAG_APME_IN_WUC,
5840 	.pba			= 18,
5841 	.max_hw_frame_size	= DEFAULT_JUMBO,
5842 	.get_variants		= e1000_get_variants_ich8lan,
5843 	.mac_ops		= &ich8_mac_ops,
5844 	.phy_ops		= &ich8_phy_ops,
5845 	.nvm_ops		= &ich8_nvm_ops,
5846 };
5847 
5848 const struct e1000_info e1000_pch_info = {
5849 	.mac			= e1000_pchlan,
5850 	.flags			= FLAG_IS_ICH
5851 				  | FLAG_HAS_WOL
5852 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5853 				  | FLAG_HAS_AMT
5854 				  | FLAG_HAS_FLASH
5855 				  | FLAG_HAS_JUMBO_FRAMES
5856 				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
5857 				  | FLAG_APME_IN_WUC,
5858 	.flags2			= FLAG2_HAS_PHY_STATS,
5859 	.pba			= 26,
5860 	.max_hw_frame_size	= 4096,
5861 	.get_variants		= e1000_get_variants_ich8lan,
5862 	.mac_ops		= &ich8_mac_ops,
5863 	.phy_ops		= &ich8_phy_ops,
5864 	.nvm_ops		= &ich8_nvm_ops,
5865 };
5866 
5867 const struct e1000_info e1000_pch2_info = {
5868 	.mac			= e1000_pch2lan,
5869 	.flags			= FLAG_IS_ICH
5870 				  | FLAG_HAS_WOL
5871 				  | FLAG_HAS_HW_TIMESTAMP
5872 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5873 				  | FLAG_HAS_AMT
5874 				  | FLAG_HAS_FLASH
5875 				  | FLAG_HAS_JUMBO_FRAMES
5876 				  | FLAG_APME_IN_WUC,
5877 	.flags2			= FLAG2_HAS_PHY_STATS
5878 				  | FLAG2_HAS_EEE
5879 				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
5880 	.pba			= 26,
5881 	.max_hw_frame_size	= 9022,
5882 	.get_variants		= e1000_get_variants_ich8lan,
5883 	.mac_ops		= &ich8_mac_ops,
5884 	.phy_ops		= &ich8_phy_ops,
5885 	.nvm_ops		= &ich8_nvm_ops,
5886 };
5887 
5888 const struct e1000_info e1000_pch_lpt_info = {
5889 	.mac			= e1000_pch_lpt,
5890 	.flags			= FLAG_IS_ICH
5891 				  | FLAG_HAS_WOL
5892 				  | FLAG_HAS_HW_TIMESTAMP
5893 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5894 				  | FLAG_HAS_AMT
5895 				  | FLAG_HAS_FLASH
5896 				  | FLAG_HAS_JUMBO_FRAMES
5897 				  | FLAG_APME_IN_WUC,
5898 	.flags2			= FLAG2_HAS_PHY_STATS
5899 				  | FLAG2_HAS_EEE
5900 				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
5901 	.pba			= 26,
5902 	.max_hw_frame_size	= 9022,
5903 	.get_variants		= e1000_get_variants_ich8lan,
5904 	.mac_ops		= &ich8_mac_ops,
5905 	.phy_ops		= &ich8_phy_ops,
5906 	.nvm_ops		= &ich8_nvm_ops,
5907 };
5908 
5909 const struct e1000_info e1000_pch_spt_info = {
5910 	.mac			= e1000_pch_spt,
5911 	.flags			= FLAG_IS_ICH
5912 				  | FLAG_HAS_WOL
5913 				  | FLAG_HAS_HW_TIMESTAMP
5914 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5915 				  | FLAG_HAS_AMT
5916 				  | FLAG_HAS_FLASH
5917 				  | FLAG_HAS_JUMBO_FRAMES
5918 				  | FLAG_APME_IN_WUC,
5919 	.flags2			= FLAG2_HAS_PHY_STATS
5920 				  | FLAG2_HAS_EEE,
5921 	.pba			= 26,
5922 	.max_hw_frame_size	= 9022,
5923 	.get_variants		= e1000_get_variants_ich8lan,
5924 	.mac_ops		= &ich8_mac_ops,
5925 	.phy_ops		= &ich8_phy_ops,
5926 	.nvm_ops		= &spt_nvm_ops,
5927 };
5928 
5929 const struct e1000_info e1000_pch_cnp_info = {
5930 	.mac			= e1000_pch_cnp,
5931 	.flags			= FLAG_IS_ICH
5932 				  | FLAG_HAS_WOL
5933 				  | FLAG_HAS_HW_TIMESTAMP
5934 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5935 				  | FLAG_HAS_AMT
5936 				  | FLAG_HAS_FLASH
5937 				  | FLAG_HAS_JUMBO_FRAMES
5938 				  | FLAG_APME_IN_WUC,
5939 	.flags2			= FLAG2_HAS_PHY_STATS
5940 				  | FLAG2_HAS_EEE,
5941 	.pba			= 26,
5942 	.max_hw_frame_size	= 9022,
5943 	.get_variants		= e1000_get_variants_ich8lan,
5944 	.mac_ops		= &ich8_mac_ops,
5945 	.phy_ops		= &ich8_phy_ops,
5946 	.nvm_ops		= &spt_nvm_ops,
5947 };
5948