1 /* Intel PRO/1000 Linux driver
2  * Copyright(c) 1999 - 2015 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * The full GNU General Public License is included in this distribution in
14  * the file called "COPYING".
15  *
16  * Contact Information:
17  * Linux NICS <linux.nics@intel.com>
18  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
20  */
21 
22 /* 82562G 10/100 Network Connection
23  * 82562G-2 10/100 Network Connection
24  * 82562GT 10/100 Network Connection
25  * 82562GT-2 10/100 Network Connection
26  * 82562V 10/100 Network Connection
27  * 82562V-2 10/100 Network Connection
28  * 82566DC-2 Gigabit Network Connection
29  * 82566DC Gigabit Network Connection
30  * 82566DM-2 Gigabit Network Connection
31  * 82566DM Gigabit Network Connection
32  * 82566MC Gigabit Network Connection
33  * 82566MM Gigabit Network Connection
34  * 82567LM Gigabit Network Connection
35  * 82567LF Gigabit Network Connection
36  * 82567V Gigabit Network Connection
37  * 82567LM-2 Gigabit Network Connection
38  * 82567LF-2 Gigabit Network Connection
39  * 82567V-2 Gigabit Network Connection
40  * 82567LF-3 Gigabit Network Connection
41  * 82567LM-3 Gigabit Network Connection
42  * 82567LM-4 Gigabit Network Connection
43  * 82577LM Gigabit Network Connection
44  * 82577LC Gigabit Network Connection
45  * 82578DM Gigabit Network Connection
46  * 82578DC Gigabit Network Connection
47  * 82579LM Gigabit Network Connection
48  * 82579V Gigabit Network Connection
49  * Ethernet Connection I217-LM
50  * Ethernet Connection I217-V
51  * Ethernet Connection I218-V
52  * Ethernet Connection I218-LM
53  * Ethernet Connection (2) I218-LM
54  * Ethernet Connection (2) I218-V
55  * Ethernet Connection (3) I218-LM
56  * Ethernet Connection (3) I218-V
57  */
58 
59 #include "e1000.h"
60 
61 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
62 /* Offset 04h HSFSTS */
63 union ich8_hws_flash_status {
64 	struct ich8_hsfsts {
65 		u16 flcdone:1;	/* bit 0 Flash Cycle Done */
66 		u16 flcerr:1;	/* bit 1 Flash Cycle Error */
67 		u16 dael:1;	/* bit 2 Direct Access error Log */
68 		u16 berasesz:2;	/* bit 4:3 Sector Erase Size */
69 		u16 flcinprog:1;	/* bit 5 flash cycle in Progress */
70 		u16 reserved1:2;	/* bit 13:6 Reserved */
71 		u16 reserved2:6;	/* bit 13:6 Reserved */
72 		u16 fldesvalid:1;	/* bit 14 Flash Descriptor Valid */
73 		u16 flockdn:1;	/* bit 15 Flash Config Lock-Down */
74 	} hsf_status;
75 	u16 regval;
76 };
77 
78 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
79 /* Offset 06h FLCTL */
80 union ich8_hws_flash_ctrl {
81 	struct ich8_hsflctl {
82 		u16 flcgo:1;	/* 0 Flash Cycle Go */
83 		u16 flcycle:2;	/* 2:1 Flash Cycle */
84 		u16 reserved:5;	/* 7:3 Reserved  */
85 		u16 fldbcount:2;	/* 9:8 Flash Data Byte Count */
86 		u16 flockdn:6;	/* 15:10 Reserved */
87 	} hsf_ctrl;
88 	u16 regval;
89 };
90 
91 /* ICH Flash Region Access Permissions */
92 union ich8_hws_flash_regacc {
93 	struct ich8_flracc {
94 		u32 grra:8;	/* 0:7 GbE region Read Access */
95 		u32 grwa:8;	/* 8:15 GbE region Write Access */
96 		u32 gmrag:8;	/* 23:16 GbE Master Read Access Grant */
97 		u32 gmwag:8;	/* 31:24 GbE Master Write Access Grant */
98 	} hsf_flregacc;
99 	u16 regval;
100 };
101 
102 /* ICH Flash Protected Region */
103 union ich8_flash_protected_range {
104 	struct ich8_pr {
105 		u32 base:13;	/* 0:12 Protected Range Base */
106 		u32 reserved1:2;	/* 13:14 Reserved */
107 		u32 rpe:1;	/* 15 Read Protection Enable */
108 		u32 limit:13;	/* 16:28 Protected Range Limit */
109 		u32 reserved2:2;	/* 29:30 Reserved */
110 		u32 wpe:1;	/* 31 Write Protection Enable */
111 	} range;
112 	u32 regval;
113 };
114 
115 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
116 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
117 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
118 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
119 						u32 offset, u8 byte);
120 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
121 					 u8 *data);
122 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
123 					 u16 *data);
124 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
125 					 u8 size, u16 *data);
126 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
127 					   u32 *data);
128 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
129 					  u32 offset, u32 *data);
130 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
131 					    u32 offset, u32 data);
132 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
133 						 u32 offset, u32 dword);
134 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
135 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
136 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
137 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
138 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
139 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
140 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
141 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
142 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
143 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
144 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
145 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
146 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
147 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
148 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
149 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
150 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
151 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
152 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw);
153 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
154 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
155 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
156 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
157 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
158 
159 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
160 {
161 	return readw(hw->flash_address + reg);
162 }
163 
164 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
165 {
166 	return readl(hw->flash_address + reg);
167 }
168 
169 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
170 {
171 	writew(val, hw->flash_address + reg);
172 }
173 
174 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
175 {
176 	writel(val, hw->flash_address + reg);
177 }
178 
179 #define er16flash(reg)		__er16flash(hw, (reg))
180 #define er32flash(reg)		__er32flash(hw, (reg))
181 #define ew16flash(reg, val)	__ew16flash(hw, (reg), (val))
182 #define ew32flash(reg, val)	__ew32flash(hw, (reg), (val))
183 
184 /**
185  *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
186  *  @hw: pointer to the HW structure
187  *
188  *  Test access to the PHY registers by reading the PHY ID registers.  If
189  *  the PHY ID is already known (e.g. resume path) compare it with known ID,
190  *  otherwise assume the read PHY ID is correct if it is valid.
191  *
192  *  Assumes the sw/fw/hw semaphore is already acquired.
193  **/
194 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
195 {
196 	u16 phy_reg = 0;
197 	u32 phy_id = 0;
198 	s32 ret_val = 0;
199 	u16 retry_count;
200 	u32 mac_reg = 0;
201 
202 	for (retry_count = 0; retry_count < 2; retry_count++) {
203 		ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
204 		if (ret_val || (phy_reg == 0xFFFF))
205 			continue;
206 		phy_id = (u32)(phy_reg << 16);
207 
208 		ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
209 		if (ret_val || (phy_reg == 0xFFFF)) {
210 			phy_id = 0;
211 			continue;
212 		}
213 		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
214 		break;
215 	}
216 
217 	if (hw->phy.id) {
218 		if (hw->phy.id == phy_id)
219 			goto out;
220 	} else if (phy_id) {
221 		hw->phy.id = phy_id;
222 		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
223 		goto out;
224 	}
225 
226 	/* In case the PHY needs to be in mdio slow mode,
227 	 * set slow mode and try to get the PHY id again.
228 	 */
229 	if (hw->mac.type < e1000_pch_lpt) {
230 		hw->phy.ops.release(hw);
231 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
232 		if (!ret_val)
233 			ret_val = e1000e_get_phy_id(hw);
234 		hw->phy.ops.acquire(hw);
235 	}
236 
237 	if (ret_val)
238 		return false;
239 out:
240 	if ((hw->mac.type == e1000_pch_lpt) || (hw->mac.type == e1000_pch_spt)) {
241 		/* Only unforce SMBus if ME is not active */
242 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
243 			/* Unforce SMBus mode in PHY */
244 			e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
245 			phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
246 			e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
247 
248 			/* Unforce SMBus mode in MAC */
249 			mac_reg = er32(CTRL_EXT);
250 			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
251 			ew32(CTRL_EXT, mac_reg);
252 		}
253 	}
254 
255 	return true;
256 }
257 
258 /**
259  *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
260  *  @hw: pointer to the HW structure
261  *
262  *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
263  *  used to reset the PHY to a quiescent state when necessary.
264  **/
265 static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
266 {
267 	u32 mac_reg;
268 
269 	/* Set Phy Config Counter to 50msec */
270 	mac_reg = er32(FEXTNVM3);
271 	mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
272 	mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
273 	ew32(FEXTNVM3, mac_reg);
274 
275 	/* Toggle LANPHYPC Value bit */
276 	mac_reg = er32(CTRL);
277 	mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
278 	mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
279 	ew32(CTRL, mac_reg);
280 	e1e_flush();
281 	usleep_range(10, 20);
282 	mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
283 	ew32(CTRL, mac_reg);
284 	e1e_flush();
285 
286 	if (hw->mac.type < e1000_pch_lpt) {
287 		msleep(50);
288 	} else {
289 		u16 count = 20;
290 
291 		do {
292 			usleep_range(5000, 10000);
293 		} while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
294 
295 		msleep(30);
296 	}
297 }
298 
299 /**
300  *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
301  *  @hw: pointer to the HW structure
302  *
303  *  Workarounds/flow necessary for PHY initialization during driver load
304  *  and resume paths.
305  **/
306 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
307 {
308 	struct e1000_adapter *adapter = hw->adapter;
309 	u32 mac_reg, fwsm = er32(FWSM);
310 	s32 ret_val;
311 
312 	/* Gate automatic PHY configuration by hardware on managed and
313 	 * non-managed 82579 and newer adapters.
314 	 */
315 	e1000_gate_hw_phy_config_ich8lan(hw, true);
316 
317 	/* It is not possible to be certain of the current state of ULP
318 	 * so forcibly disable it.
319 	 */
320 	hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
321 	e1000_disable_ulp_lpt_lp(hw, true);
322 
323 	ret_val = hw->phy.ops.acquire(hw);
324 	if (ret_val) {
325 		e_dbg("Failed to initialize PHY flow\n");
326 		goto out;
327 	}
328 
329 	/* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
330 	 * inaccessible and resetting the PHY is not blocked, toggle the
331 	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
332 	 */
333 	switch (hw->mac.type) {
334 	case e1000_pch_lpt:
335 	case e1000_pch_spt:
336 		if (e1000_phy_is_accessible_pchlan(hw))
337 			break;
338 
339 		/* Before toggling LANPHYPC, see if PHY is accessible by
340 		 * forcing MAC to SMBus mode first.
341 		 */
342 		mac_reg = er32(CTRL_EXT);
343 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
344 		ew32(CTRL_EXT, mac_reg);
345 
346 		/* Wait 50 milliseconds for MAC to finish any retries
347 		 * that it might be trying to perform from previous
348 		 * attempts to acknowledge any phy read requests.
349 		 */
350 		msleep(50);
351 
352 		/* fall-through */
353 	case e1000_pch2lan:
354 		if (e1000_phy_is_accessible_pchlan(hw))
355 			break;
356 
357 		/* fall-through */
358 	case e1000_pchlan:
359 		if ((hw->mac.type == e1000_pchlan) &&
360 		    (fwsm & E1000_ICH_FWSM_FW_VALID))
361 			break;
362 
363 		if (hw->phy.ops.check_reset_block(hw)) {
364 			e_dbg("Required LANPHYPC toggle blocked by ME\n");
365 			ret_val = -E1000_ERR_PHY;
366 			break;
367 		}
368 
369 		/* Toggle LANPHYPC Value bit */
370 		e1000_toggle_lanphypc_pch_lpt(hw);
371 		if (hw->mac.type >= e1000_pch_lpt) {
372 			if (e1000_phy_is_accessible_pchlan(hw))
373 				break;
374 
375 			/* Toggling LANPHYPC brings the PHY out of SMBus mode
376 			 * so ensure that the MAC is also out of SMBus mode
377 			 */
378 			mac_reg = er32(CTRL_EXT);
379 			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
380 			ew32(CTRL_EXT, mac_reg);
381 
382 			if (e1000_phy_is_accessible_pchlan(hw))
383 				break;
384 
385 			ret_val = -E1000_ERR_PHY;
386 		}
387 		break;
388 	default:
389 		break;
390 	}
391 
392 	hw->phy.ops.release(hw);
393 	if (!ret_val) {
394 
395 		/* Check to see if able to reset PHY.  Print error if not */
396 		if (hw->phy.ops.check_reset_block(hw)) {
397 			e_err("Reset blocked by ME\n");
398 			goto out;
399 		}
400 
401 		/* Reset the PHY before any access to it.  Doing so, ensures
402 		 * that the PHY is in a known good state before we read/write
403 		 * PHY registers.  The generic reset is sufficient here,
404 		 * because we haven't determined the PHY type yet.
405 		 */
406 		ret_val = e1000e_phy_hw_reset_generic(hw);
407 		if (ret_val)
408 			goto out;
409 
410 		/* On a successful reset, possibly need to wait for the PHY
411 		 * to quiesce to an accessible state before returning control
412 		 * to the calling function.  If the PHY does not quiesce, then
413 		 * return E1000E_BLK_PHY_RESET, as this is the condition that
414 		 *  the PHY is in.
415 		 */
416 		ret_val = hw->phy.ops.check_reset_block(hw);
417 		if (ret_val)
418 			e_err("ME blocked access to PHY after reset\n");
419 	}
420 
421 out:
422 	/* Ungate automatic PHY configuration on non-managed 82579 */
423 	if ((hw->mac.type == e1000_pch2lan) &&
424 	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
425 		usleep_range(10000, 20000);
426 		e1000_gate_hw_phy_config_ich8lan(hw, false);
427 	}
428 
429 	return ret_val;
430 }
431 
432 /**
433  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
434  *  @hw: pointer to the HW structure
435  *
436  *  Initialize family-specific PHY parameters and function pointers.
437  **/
438 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
439 {
440 	struct e1000_phy_info *phy = &hw->phy;
441 	s32 ret_val;
442 
443 	phy->addr = 1;
444 	phy->reset_delay_us = 100;
445 
446 	phy->ops.set_page = e1000_set_page_igp;
447 	phy->ops.read_reg = e1000_read_phy_reg_hv;
448 	phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
449 	phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
450 	phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
451 	phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
452 	phy->ops.write_reg = e1000_write_phy_reg_hv;
453 	phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
454 	phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
455 	phy->ops.power_up = e1000_power_up_phy_copper;
456 	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
457 	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
458 
459 	phy->id = e1000_phy_unknown;
460 
461 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
462 	if (ret_val)
463 		return ret_val;
464 
465 	if (phy->id == e1000_phy_unknown)
466 		switch (hw->mac.type) {
467 		default:
468 			ret_val = e1000e_get_phy_id(hw);
469 			if (ret_val)
470 				return ret_val;
471 			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
472 				break;
473 			/* fall-through */
474 		case e1000_pch2lan:
475 		case e1000_pch_lpt:
476 		case e1000_pch_spt:
477 			/* In case the PHY needs to be in mdio slow mode,
478 			 * set slow mode and try to get the PHY id again.
479 			 */
480 			ret_val = e1000_set_mdio_slow_mode_hv(hw);
481 			if (ret_val)
482 				return ret_val;
483 			ret_val = e1000e_get_phy_id(hw);
484 			if (ret_val)
485 				return ret_val;
486 			break;
487 		}
488 	phy->type = e1000e_get_phy_type_from_id(phy->id);
489 
490 	switch (phy->type) {
491 	case e1000_phy_82577:
492 	case e1000_phy_82579:
493 	case e1000_phy_i217:
494 		phy->ops.check_polarity = e1000_check_polarity_82577;
495 		phy->ops.force_speed_duplex =
496 		    e1000_phy_force_speed_duplex_82577;
497 		phy->ops.get_cable_length = e1000_get_cable_length_82577;
498 		phy->ops.get_info = e1000_get_phy_info_82577;
499 		phy->ops.commit = e1000e_phy_sw_reset;
500 		break;
501 	case e1000_phy_82578:
502 		phy->ops.check_polarity = e1000_check_polarity_m88;
503 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
504 		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
505 		phy->ops.get_info = e1000e_get_phy_info_m88;
506 		break;
507 	default:
508 		ret_val = -E1000_ERR_PHY;
509 		break;
510 	}
511 
512 	return ret_val;
513 }
514 
515 /**
516  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
517  *  @hw: pointer to the HW structure
518  *
519  *  Initialize family-specific PHY parameters and function pointers.
520  **/
521 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
522 {
523 	struct e1000_phy_info *phy = &hw->phy;
524 	s32 ret_val;
525 	u16 i = 0;
526 
527 	phy->addr = 1;
528 	phy->reset_delay_us = 100;
529 
530 	phy->ops.power_up = e1000_power_up_phy_copper;
531 	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
532 
533 	/* We may need to do this twice - once for IGP and if that fails,
534 	 * we'll set BM func pointers and try again
535 	 */
536 	ret_val = e1000e_determine_phy_address(hw);
537 	if (ret_val) {
538 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
539 		phy->ops.read_reg = e1000e_read_phy_reg_bm;
540 		ret_val = e1000e_determine_phy_address(hw);
541 		if (ret_val) {
542 			e_dbg("Cannot determine PHY addr. Erroring out\n");
543 			return ret_val;
544 		}
545 	}
546 
547 	phy->id = 0;
548 	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
549 	       (i++ < 100)) {
550 		usleep_range(1000, 2000);
551 		ret_val = e1000e_get_phy_id(hw);
552 		if (ret_val)
553 			return ret_val;
554 	}
555 
556 	/* Verify phy id */
557 	switch (phy->id) {
558 	case IGP03E1000_E_PHY_ID:
559 		phy->type = e1000_phy_igp_3;
560 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
561 		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
562 		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
563 		phy->ops.get_info = e1000e_get_phy_info_igp;
564 		phy->ops.check_polarity = e1000_check_polarity_igp;
565 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
566 		break;
567 	case IFE_E_PHY_ID:
568 	case IFE_PLUS_E_PHY_ID:
569 	case IFE_C_E_PHY_ID:
570 		phy->type = e1000_phy_ife;
571 		phy->autoneg_mask = E1000_ALL_NOT_GIG;
572 		phy->ops.get_info = e1000_get_phy_info_ife;
573 		phy->ops.check_polarity = e1000_check_polarity_ife;
574 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
575 		break;
576 	case BME1000_E_PHY_ID:
577 		phy->type = e1000_phy_bm;
578 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
579 		phy->ops.read_reg = e1000e_read_phy_reg_bm;
580 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
581 		phy->ops.commit = e1000e_phy_sw_reset;
582 		phy->ops.get_info = e1000e_get_phy_info_m88;
583 		phy->ops.check_polarity = e1000_check_polarity_m88;
584 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
585 		break;
586 	default:
587 		return -E1000_ERR_PHY;
588 	}
589 
590 	return 0;
591 }
592 
593 /**
594  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
595  *  @hw: pointer to the HW structure
596  *
597  *  Initialize family-specific NVM parameters and function
598  *  pointers.
599  **/
600 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
601 {
602 	struct e1000_nvm_info *nvm = &hw->nvm;
603 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
604 	u32 gfpreg, sector_base_addr, sector_end_addr;
605 	u16 i;
606 	u32 nvm_size;
607 
608 	nvm->type = e1000_nvm_flash_sw;
609 
610 	if (hw->mac.type == e1000_pch_spt) {
611 		/* in SPT, gfpreg doesn't exist. NVM size is taken from the
612 		 * STRAP register. This is because in SPT the GbE Flash region
613 		 * is no longer accessed through the flash registers. Instead,
614 		 * the mechanism has changed, and the Flash region access
615 		 * registers are now implemented in GbE memory space.
616 		 */
617 		nvm->flash_base_addr = 0;
618 		nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1)
619 		    * NVM_SIZE_MULTIPLIER;
620 		nvm->flash_bank_size = nvm_size / 2;
621 		/* Adjust to word count */
622 		nvm->flash_bank_size /= sizeof(u16);
623 		/* Set the base address for flash register access */
624 		hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
625 	} else {
626 		/* Can't read flash registers if register set isn't mapped. */
627 		if (!hw->flash_address) {
628 			e_dbg("ERROR: Flash registers not mapped\n");
629 			return -E1000_ERR_CONFIG;
630 		}
631 
632 		gfpreg = er32flash(ICH_FLASH_GFPREG);
633 
634 		/* sector_X_addr is a "sector"-aligned address (4096 bytes)
635 		 * Add 1 to sector_end_addr since this sector is included in
636 		 * the overall size.
637 		 */
638 		sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
639 		sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
640 
641 		/* flash_base_addr is byte-aligned */
642 		nvm->flash_base_addr = sector_base_addr
643 		    << FLASH_SECTOR_ADDR_SHIFT;
644 
645 		/* find total size of the NVM, then cut in half since the total
646 		 * size represents two separate NVM banks.
647 		 */
648 		nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
649 					<< FLASH_SECTOR_ADDR_SHIFT);
650 		nvm->flash_bank_size /= 2;
651 		/* Adjust to word count */
652 		nvm->flash_bank_size /= sizeof(u16);
653 	}
654 
655 	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
656 
657 	/* Clear shadow ram */
658 	for (i = 0; i < nvm->word_size; i++) {
659 		dev_spec->shadow_ram[i].modified = false;
660 		dev_spec->shadow_ram[i].value = 0xFFFF;
661 	}
662 
663 	return 0;
664 }
665 
666 /**
667  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
668  *  @hw: pointer to the HW structure
669  *
670  *  Initialize family-specific MAC parameters and function
671  *  pointers.
672  **/
673 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
674 {
675 	struct e1000_mac_info *mac = &hw->mac;
676 
677 	/* Set media type function pointer */
678 	hw->phy.media_type = e1000_media_type_copper;
679 
680 	/* Set mta register count */
681 	mac->mta_reg_count = 32;
682 	/* Set rar entry count */
683 	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
684 	if (mac->type == e1000_ich8lan)
685 		mac->rar_entry_count--;
686 	/* FWSM register */
687 	mac->has_fwsm = true;
688 	/* ARC subsystem not supported */
689 	mac->arc_subsystem_valid = false;
690 	/* Adaptive IFS supported */
691 	mac->adaptive_ifs = true;
692 
693 	/* LED and other operations */
694 	switch (mac->type) {
695 	case e1000_ich8lan:
696 	case e1000_ich9lan:
697 	case e1000_ich10lan:
698 		/* check management mode */
699 		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
700 		/* ID LED init */
701 		mac->ops.id_led_init = e1000e_id_led_init_generic;
702 		/* blink LED */
703 		mac->ops.blink_led = e1000e_blink_led_generic;
704 		/* setup LED */
705 		mac->ops.setup_led = e1000e_setup_led_generic;
706 		/* cleanup LED */
707 		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
708 		/* turn on/off LED */
709 		mac->ops.led_on = e1000_led_on_ich8lan;
710 		mac->ops.led_off = e1000_led_off_ich8lan;
711 		break;
712 	case e1000_pch2lan:
713 		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
714 		mac->ops.rar_set = e1000_rar_set_pch2lan;
715 		/* fall-through */
716 	case e1000_pch_lpt:
717 	case e1000_pch_spt:
718 	case e1000_pchlan:
719 		/* check management mode */
720 		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
721 		/* ID LED init */
722 		mac->ops.id_led_init = e1000_id_led_init_pchlan;
723 		/* setup LED */
724 		mac->ops.setup_led = e1000_setup_led_pchlan;
725 		/* cleanup LED */
726 		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
727 		/* turn on/off LED */
728 		mac->ops.led_on = e1000_led_on_pchlan;
729 		mac->ops.led_off = e1000_led_off_pchlan;
730 		break;
731 	default:
732 		break;
733 	}
734 
735 	if ((mac->type == e1000_pch_lpt) || (mac->type == e1000_pch_spt)) {
736 		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
737 		mac->ops.rar_set = e1000_rar_set_pch_lpt;
738 		mac->ops.setup_physical_interface =
739 		    e1000_setup_copper_link_pch_lpt;
740 		mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt;
741 	}
742 
743 	/* Enable PCS Lock-loss workaround for ICH8 */
744 	if (mac->type == e1000_ich8lan)
745 		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
746 
747 	return 0;
748 }
749 
750 /**
751  *  __e1000_access_emi_reg_locked - Read/write EMI register
752  *  @hw: pointer to the HW structure
753  *  @addr: EMI address to program
754  *  @data: pointer to value to read/write from/to the EMI address
755  *  @read: boolean flag to indicate read or write
756  *
757  *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
758  **/
759 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
760 					 u16 *data, bool read)
761 {
762 	s32 ret_val;
763 
764 	ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
765 	if (ret_val)
766 		return ret_val;
767 
768 	if (read)
769 		ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
770 	else
771 		ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
772 
773 	return ret_val;
774 }
775 
776 /**
777  *  e1000_read_emi_reg_locked - Read Extended Management Interface register
778  *  @hw: pointer to the HW structure
779  *  @addr: EMI address to program
780  *  @data: value to be read from the EMI address
781  *
782  *  Assumes the SW/FW/HW Semaphore is already acquired.
783  **/
784 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
785 {
786 	return __e1000_access_emi_reg_locked(hw, addr, data, true);
787 }
788 
789 /**
790  *  e1000_write_emi_reg_locked - Write Extended Management Interface register
791  *  @hw: pointer to the HW structure
792  *  @addr: EMI address to program
793  *  @data: value to be written to the EMI address
794  *
795  *  Assumes the SW/FW/HW Semaphore is already acquired.
796  **/
797 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
798 {
799 	return __e1000_access_emi_reg_locked(hw, addr, &data, false);
800 }
801 
802 /**
803  *  e1000_set_eee_pchlan - Enable/disable EEE support
804  *  @hw: pointer to the HW structure
805  *
806  *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
807  *  the link and the EEE capabilities of the link partner.  The LPI Control
808  *  register bits will remain set only if/when link is up.
809  *
810  *  EEE LPI must not be asserted earlier than one second after link is up.
811  *  On 82579, EEE LPI should not be enabled until such time otherwise there
812  *  can be link issues with some switches.  Other devices can have EEE LPI
813  *  enabled immediately upon link up since they have a timer in hardware which
814  *  prevents LPI from being asserted too early.
815  **/
816 s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
817 {
818 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
819 	s32 ret_val;
820 	u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
821 
822 	switch (hw->phy.type) {
823 	case e1000_phy_82579:
824 		lpa = I82579_EEE_LP_ABILITY;
825 		pcs_status = I82579_EEE_PCS_STATUS;
826 		adv_addr = I82579_EEE_ADVERTISEMENT;
827 		break;
828 	case e1000_phy_i217:
829 		lpa = I217_EEE_LP_ABILITY;
830 		pcs_status = I217_EEE_PCS_STATUS;
831 		adv_addr = I217_EEE_ADVERTISEMENT;
832 		break;
833 	default:
834 		return 0;
835 	}
836 
837 	ret_val = hw->phy.ops.acquire(hw);
838 	if (ret_val)
839 		return ret_val;
840 
841 	ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
842 	if (ret_val)
843 		goto release;
844 
845 	/* Clear bits that enable EEE in various speeds */
846 	lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
847 
848 	/* Enable EEE if not disabled by user */
849 	if (!dev_spec->eee_disable) {
850 		/* Save off link partner's EEE ability */
851 		ret_val = e1000_read_emi_reg_locked(hw, lpa,
852 						    &dev_spec->eee_lp_ability);
853 		if (ret_val)
854 			goto release;
855 
856 		/* Read EEE advertisement */
857 		ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
858 		if (ret_val)
859 			goto release;
860 
861 		/* Enable EEE only for speeds in which the link partner is
862 		 * EEE capable and for which we advertise EEE.
863 		 */
864 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
865 			lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
866 
867 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
868 			e1e_rphy_locked(hw, MII_LPA, &data);
869 			if (data & LPA_100FULL)
870 				lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
871 			else
872 				/* EEE is not supported in 100Half, so ignore
873 				 * partner's EEE in 100 ability if full-duplex
874 				 * is not advertised.
875 				 */
876 				dev_spec->eee_lp_ability &=
877 				    ~I82579_EEE_100_SUPPORTED;
878 		}
879 	}
880 
881 	if (hw->phy.type == e1000_phy_82579) {
882 		ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
883 						    &data);
884 		if (ret_val)
885 			goto release;
886 
887 		data &= ~I82579_LPI_100_PLL_SHUT;
888 		ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
889 						     data);
890 	}
891 
892 	/* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
893 	ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
894 	if (ret_val)
895 		goto release;
896 
897 	ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
898 release:
899 	hw->phy.ops.release(hw);
900 
901 	return ret_val;
902 }
903 
904 /**
905  *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
906  *  @hw:   pointer to the HW structure
907  *  @link: link up bool flag
908  *
909  *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
910  *  preventing further DMA write requests.  Workaround the issue by disabling
911  *  the de-assertion of the clock request when in 1Gpbs mode.
912  *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
913  *  speeds in order to avoid Tx hangs.
914  **/
915 static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
916 {
917 	u32 fextnvm6 = er32(FEXTNVM6);
918 	u32 status = er32(STATUS);
919 	s32 ret_val = 0;
920 	u16 reg;
921 
922 	if (link && (status & E1000_STATUS_SPEED_1000)) {
923 		ret_val = hw->phy.ops.acquire(hw);
924 		if (ret_val)
925 			return ret_val;
926 
927 		ret_val =
928 		    e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
929 						&reg);
930 		if (ret_val)
931 			goto release;
932 
933 		ret_val =
934 		    e1000e_write_kmrn_reg_locked(hw,
935 						 E1000_KMRNCTRLSTA_K1_CONFIG,
936 						 reg &
937 						 ~E1000_KMRNCTRLSTA_K1_ENABLE);
938 		if (ret_val)
939 			goto release;
940 
941 		usleep_range(10, 20);
942 
943 		ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
944 
945 		ret_val =
946 		    e1000e_write_kmrn_reg_locked(hw,
947 						 E1000_KMRNCTRLSTA_K1_CONFIG,
948 						 reg);
949 release:
950 		hw->phy.ops.release(hw);
951 	} else {
952 		/* clear FEXTNVM6 bit 8 on link down or 10/100 */
953 		fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
954 
955 		if ((hw->phy.revision > 5) || !link ||
956 		    ((status & E1000_STATUS_SPEED_100) &&
957 		     (status & E1000_STATUS_FD)))
958 			goto update_fextnvm6;
959 
960 		ret_val = e1e_rphy(hw, I217_INBAND_CTRL, &reg);
961 		if (ret_val)
962 			return ret_val;
963 
964 		/* Clear link status transmit timeout */
965 		reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
966 
967 		if (status & E1000_STATUS_SPEED_100) {
968 			/* Set inband Tx timeout to 5x10us for 100Half */
969 			reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
970 
971 			/* Do not extend the K1 entry latency for 100Half */
972 			fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
973 		} else {
974 			/* Set inband Tx timeout to 50x10us for 10Full/Half */
975 			reg |= 50 <<
976 			    I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
977 
978 			/* Extend the K1 entry latency for 10 Mbps */
979 			fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
980 		}
981 
982 		ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
983 		if (ret_val)
984 			return ret_val;
985 
986 update_fextnvm6:
987 		ew32(FEXTNVM6, fextnvm6);
988 	}
989 
990 	return ret_val;
991 }
992 
993 /**
994  *  e1000_platform_pm_pch_lpt - Set platform power management values
995  *  @hw: pointer to the HW structure
996  *  @link: bool indicating link status
997  *
998  *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
999  *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
1000  *  when link is up (which must not exceed the maximum latency supported
1001  *  by the platform), otherwise specify there is no LTR requirement.
1002  *  Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
1003  *  latencies in the LTR Extended Capability Structure in the PCIe Extended
1004  *  Capability register set, on this device LTR is set by writing the
1005  *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1006  *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1007  *  message to the PMC.
1008  **/
1009 static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1010 {
1011 	u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1012 	    link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1013 	u16 lat_enc = 0;	/* latency encoded */
1014 
1015 	if (link) {
1016 		u16 speed, duplex, scale = 0;
1017 		u16 max_snoop, max_nosnoop;
1018 		u16 max_ltr_enc;	/* max LTR latency encoded */
1019 		u64 value;
1020 		u32 rxa;
1021 
1022 		if (!hw->adapter->max_frame_size) {
1023 			e_dbg("max_frame_size not set.\n");
1024 			return -E1000_ERR_CONFIG;
1025 		}
1026 
1027 		hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1028 		if (!speed) {
1029 			e_dbg("Speed not set.\n");
1030 			return -E1000_ERR_CONFIG;
1031 		}
1032 
1033 		/* Rx Packet Buffer Allocation size (KB) */
1034 		rxa = er32(PBA) & E1000_PBA_RXA_MASK;
1035 
1036 		/* Determine the maximum latency tolerated by the device.
1037 		 *
1038 		 * Per the PCIe spec, the tolerated latencies are encoded as
1039 		 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1040 		 * a 10-bit value (0-1023) to provide a range from 1 ns to
1041 		 * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1042 		 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1043 		 */
1044 		rxa *= 512;
1045 		value = (rxa > hw->adapter->max_frame_size) ?
1046 			(rxa - hw->adapter->max_frame_size) * (16000 / speed) :
1047 			0;
1048 
1049 		while (value > PCI_LTR_VALUE_MASK) {
1050 			scale++;
1051 			value = DIV_ROUND_UP(value, BIT(5));
1052 		}
1053 		if (scale > E1000_LTRV_SCALE_MAX) {
1054 			e_dbg("Invalid LTR latency scale %d\n", scale);
1055 			return -E1000_ERR_CONFIG;
1056 		}
1057 		lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1058 
1059 		/* Determine the maximum latency tolerated by the platform */
1060 		pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1061 				     &max_snoop);
1062 		pci_read_config_word(hw->adapter->pdev,
1063 				     E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1064 		max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1065 
1066 		if (lat_enc > max_ltr_enc)
1067 			lat_enc = max_ltr_enc;
1068 	}
1069 
1070 	/* Set Snoop and No-Snoop latencies the same */
1071 	reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1072 	ew32(LTRV, reg);
1073 
1074 	return 0;
1075 }
1076 
1077 /**
1078  *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1079  *  @hw: pointer to the HW structure
1080  *  @to_sx: boolean indicating a system power state transition to Sx
1081  *
1082  *  When link is down, configure ULP mode to significantly reduce the power
1083  *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1084  *  ME firmware to start the ULP configuration.  If not on an ME enabled
1085  *  system, configure the ULP mode by software.
1086  */
1087 s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1088 {
1089 	u32 mac_reg;
1090 	s32 ret_val = 0;
1091 	u16 phy_reg;
1092 	u16 oem_reg = 0;
1093 
1094 	if ((hw->mac.type < e1000_pch_lpt) ||
1095 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1096 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1097 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1098 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1099 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1100 		return 0;
1101 
1102 	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1103 		/* Request ME configure ULP mode in the PHY */
1104 		mac_reg = er32(H2ME);
1105 		mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1106 		ew32(H2ME, mac_reg);
1107 
1108 		goto out;
1109 	}
1110 
1111 	if (!to_sx) {
1112 		int i = 0;
1113 
1114 		/* Poll up to 5 seconds for Cable Disconnected indication */
1115 		while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1116 			/* Bail if link is re-acquired */
1117 			if (er32(STATUS) & E1000_STATUS_LU)
1118 				return -E1000_ERR_PHY;
1119 
1120 			if (i++ == 100)
1121 				break;
1122 
1123 			msleep(50);
1124 		}
1125 		e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1126 		      (er32(FEXT) &
1127 		       E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1128 	}
1129 
1130 	ret_val = hw->phy.ops.acquire(hw);
1131 	if (ret_val)
1132 		goto out;
1133 
1134 	/* Force SMBus mode in PHY */
1135 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1136 	if (ret_val)
1137 		goto release;
1138 	phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1139 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1140 
1141 	/* Force SMBus mode in MAC */
1142 	mac_reg = er32(CTRL_EXT);
1143 	mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1144 	ew32(CTRL_EXT, mac_reg);
1145 
1146 	/* Si workaround for ULP entry flow on i127/rev6 h/w.  Enable
1147 	 * LPLU and disable Gig speed when entering ULP
1148 	 */
1149 	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1150 		ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1151 						       &oem_reg);
1152 		if (ret_val)
1153 			goto release;
1154 
1155 		phy_reg = oem_reg;
1156 		phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1157 
1158 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1159 							phy_reg);
1160 
1161 		if (ret_val)
1162 			goto release;
1163 	}
1164 
1165 	/* Set Inband ULP Exit, Reset to SMBus mode and
1166 	 * Disable SMBus Release on PERST# in PHY
1167 	 */
1168 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1169 	if (ret_val)
1170 		goto release;
1171 	phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1172 		    I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1173 	if (to_sx) {
1174 		if (er32(WUFC) & E1000_WUFC_LNKC)
1175 			phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1176 		else
1177 			phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1178 
1179 		phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1180 		phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1181 	} else {
1182 		phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1183 		phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1184 		phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1185 	}
1186 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1187 
1188 	/* Set Disable SMBus Release on PERST# in MAC */
1189 	mac_reg = er32(FEXTNVM7);
1190 	mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1191 	ew32(FEXTNVM7, mac_reg);
1192 
1193 	/* Commit ULP changes in PHY by starting auto ULP configuration */
1194 	phy_reg |= I218_ULP_CONFIG1_START;
1195 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1196 
1197 	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1198 	    to_sx && (er32(STATUS) & E1000_STATUS_LU)) {
1199 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1200 							oem_reg);
1201 		if (ret_val)
1202 			goto release;
1203 	}
1204 
1205 release:
1206 	hw->phy.ops.release(hw);
1207 out:
1208 	if (ret_val)
1209 		e_dbg("Error in ULP enable flow: %d\n", ret_val);
1210 	else
1211 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1212 
1213 	return ret_val;
1214 }
1215 
1216 /**
1217  *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1218  *  @hw: pointer to the HW structure
1219  *  @force: boolean indicating whether or not to force disabling ULP
1220  *
1221  *  Un-configure ULP mode when link is up, the system is transitioned from
1222  *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1223  *  system, poll for an indication from ME that ULP has been un-configured.
1224  *  If not on an ME enabled system, un-configure the ULP mode by software.
1225  *
1226  *  During nominal operation, this function is called when link is acquired
1227  *  to disable ULP mode (force=false); otherwise, for example when unloading
1228  *  the driver or during Sx->S0 transitions, this is called with force=true
1229  *  to forcibly disable ULP.
1230  */
1231 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1232 {
1233 	s32 ret_val = 0;
1234 	u32 mac_reg;
1235 	u16 phy_reg;
1236 	int i = 0;
1237 
1238 	if ((hw->mac.type < e1000_pch_lpt) ||
1239 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1240 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1241 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1242 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1243 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1244 		return 0;
1245 
1246 	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1247 		if (force) {
1248 			/* Request ME un-configure ULP mode in the PHY */
1249 			mac_reg = er32(H2ME);
1250 			mac_reg &= ~E1000_H2ME_ULP;
1251 			mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1252 			ew32(H2ME, mac_reg);
1253 		}
1254 
1255 		/* Poll up to 300msec for ME to clear ULP_CFG_DONE. */
1256 		while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1257 			if (i++ == 30) {
1258 				ret_val = -E1000_ERR_PHY;
1259 				goto out;
1260 			}
1261 
1262 			usleep_range(10000, 20000);
1263 		}
1264 		e_dbg("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10);
1265 
1266 		if (force) {
1267 			mac_reg = er32(H2ME);
1268 			mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1269 			ew32(H2ME, mac_reg);
1270 		} else {
1271 			/* Clear H2ME.ULP after ME ULP configuration */
1272 			mac_reg = er32(H2ME);
1273 			mac_reg &= ~E1000_H2ME_ULP;
1274 			ew32(H2ME, mac_reg);
1275 		}
1276 
1277 		goto out;
1278 	}
1279 
1280 	ret_val = hw->phy.ops.acquire(hw);
1281 	if (ret_val)
1282 		goto out;
1283 
1284 	if (force)
1285 		/* Toggle LANPHYPC Value bit */
1286 		e1000_toggle_lanphypc_pch_lpt(hw);
1287 
1288 	/* Unforce SMBus mode in PHY */
1289 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1290 	if (ret_val) {
1291 		/* The MAC might be in PCIe mode, so temporarily force to
1292 		 * SMBus mode in order to access the PHY.
1293 		 */
1294 		mac_reg = er32(CTRL_EXT);
1295 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1296 		ew32(CTRL_EXT, mac_reg);
1297 
1298 		msleep(50);
1299 
1300 		ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1301 						       &phy_reg);
1302 		if (ret_val)
1303 			goto release;
1304 	}
1305 	phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1306 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1307 
1308 	/* Unforce SMBus mode in MAC */
1309 	mac_reg = er32(CTRL_EXT);
1310 	mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1311 	ew32(CTRL_EXT, mac_reg);
1312 
1313 	/* When ULP mode was previously entered, K1 was disabled by the
1314 	 * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1315 	 */
1316 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1317 	if (ret_val)
1318 		goto release;
1319 	phy_reg |= HV_PM_CTRL_K1_ENABLE;
1320 	e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1321 
1322 	/* Clear ULP enabled configuration */
1323 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1324 	if (ret_val)
1325 		goto release;
1326 	phy_reg &= ~(I218_ULP_CONFIG1_IND |
1327 		     I218_ULP_CONFIG1_STICKY_ULP |
1328 		     I218_ULP_CONFIG1_RESET_TO_SMBUS |
1329 		     I218_ULP_CONFIG1_WOL_HOST |
1330 		     I218_ULP_CONFIG1_INBAND_EXIT |
1331 		     I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
1332 		     I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
1333 		     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1334 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1335 
1336 	/* Commit ULP changes by starting auto ULP configuration */
1337 	phy_reg |= I218_ULP_CONFIG1_START;
1338 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1339 
1340 	/* Clear Disable SMBus Release on PERST# in MAC */
1341 	mac_reg = er32(FEXTNVM7);
1342 	mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1343 	ew32(FEXTNVM7, mac_reg);
1344 
1345 release:
1346 	hw->phy.ops.release(hw);
1347 	if (force) {
1348 		e1000_phy_hw_reset(hw);
1349 		msleep(50);
1350 	}
1351 out:
1352 	if (ret_val)
1353 		e_dbg("Error in ULP disable flow: %d\n", ret_val);
1354 	else
1355 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1356 
1357 	return ret_val;
1358 }
1359 
1360 /**
1361  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1362  *  @hw: pointer to the HW structure
1363  *
1364  *  Checks to see of the link status of the hardware has changed.  If a
1365  *  change in link status has been detected, then we read the PHY registers
1366  *  to get the current speed/duplex if link exists.
1367  **/
1368 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1369 {
1370 	struct e1000_mac_info *mac = &hw->mac;
1371 	s32 ret_val, tipg_reg = 0;
1372 	u16 emi_addr, emi_val = 0;
1373 	bool link;
1374 	u16 phy_reg;
1375 
1376 	/* We only want to go out to the PHY registers to see if Auto-Neg
1377 	 * has completed and/or if our link status has changed.  The
1378 	 * get_link_status flag is set upon receiving a Link Status
1379 	 * Change or Rx Sequence Error interrupt.
1380 	 */
1381 	if (!mac->get_link_status)
1382 		return 0;
1383 
1384 	/* First we want to see if the MII Status Register reports
1385 	 * link.  If so, then we want to get the current speed/duplex
1386 	 * of the PHY.
1387 	 */
1388 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1389 	if (ret_val)
1390 		return ret_val;
1391 
1392 	if (hw->mac.type == e1000_pchlan) {
1393 		ret_val = e1000_k1_gig_workaround_hv(hw, link);
1394 		if (ret_val)
1395 			return ret_val;
1396 	}
1397 
1398 	/* When connected at 10Mbps half-duplex, some parts are excessively
1399 	 * aggressive resulting in many collisions. To avoid this, increase
1400 	 * the IPG and reduce Rx latency in the PHY.
1401 	 */
1402 	if (((hw->mac.type == e1000_pch2lan) ||
1403 	     (hw->mac.type == e1000_pch_lpt) ||
1404 	     (hw->mac.type == e1000_pch_spt)) && link) {
1405 		u16 speed, duplex;
1406 
1407 		e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex);
1408 		tipg_reg = er32(TIPG);
1409 		tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1410 
1411 		if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1412 			tipg_reg |= 0xFF;
1413 			/* Reduce Rx latency in analog PHY */
1414 			emi_val = 0;
1415 		} else if (hw->mac.type == e1000_pch_spt &&
1416 			   duplex == FULL_DUPLEX && speed != SPEED_1000) {
1417 			tipg_reg |= 0xC;
1418 			emi_val = 1;
1419 		} else {
1420 
1421 			/* Roll back the default values */
1422 			tipg_reg |= 0x08;
1423 			emi_val = 1;
1424 		}
1425 
1426 		ew32(TIPG, tipg_reg);
1427 
1428 		ret_val = hw->phy.ops.acquire(hw);
1429 		if (ret_val)
1430 			return ret_val;
1431 
1432 		if (hw->mac.type == e1000_pch2lan)
1433 			emi_addr = I82579_RX_CONFIG;
1434 		else
1435 			emi_addr = I217_RX_CONFIG;
1436 		ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1437 
1438 		if (hw->mac.type == e1000_pch_lpt ||
1439 		    hw->mac.type == e1000_pch_spt) {
1440 			u16 phy_reg;
1441 
1442 			e1e_rphy_locked(hw, I217_PLL_CLOCK_GATE_REG, &phy_reg);
1443 			phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
1444 			if (speed == SPEED_100 || speed == SPEED_10)
1445 				phy_reg |= 0x3E8;
1446 			else
1447 				phy_reg |= 0xFA;
1448 			e1e_wphy_locked(hw, I217_PLL_CLOCK_GATE_REG, phy_reg);
1449 		}
1450 		hw->phy.ops.release(hw);
1451 
1452 		if (ret_val)
1453 			return ret_val;
1454 
1455 		if (hw->mac.type == e1000_pch_spt) {
1456 			u16 data;
1457 			u16 ptr_gap;
1458 
1459 			if (speed == SPEED_1000) {
1460 				ret_val = hw->phy.ops.acquire(hw);
1461 				if (ret_val)
1462 					return ret_val;
1463 
1464 				ret_val = e1e_rphy_locked(hw,
1465 							  PHY_REG(776, 20),
1466 							  &data);
1467 				if (ret_val) {
1468 					hw->phy.ops.release(hw);
1469 					return ret_val;
1470 				}
1471 
1472 				ptr_gap = (data & (0x3FF << 2)) >> 2;
1473 				if (ptr_gap < 0x18) {
1474 					data &= ~(0x3FF << 2);
1475 					data |= (0x18 << 2);
1476 					ret_val =
1477 					    e1e_wphy_locked(hw,
1478 							    PHY_REG(776, 20),
1479 							    data);
1480 				}
1481 				hw->phy.ops.release(hw);
1482 				if (ret_val)
1483 					return ret_val;
1484 			} else {
1485 				ret_val = hw->phy.ops.acquire(hw);
1486 				if (ret_val)
1487 					return ret_val;
1488 
1489 				ret_val = e1e_wphy_locked(hw,
1490 							  PHY_REG(776, 20),
1491 							  0xC023);
1492 				hw->phy.ops.release(hw);
1493 				if (ret_val)
1494 					return ret_val;
1495 
1496 			}
1497 		}
1498 	}
1499 
1500 	/* I217 Packet Loss issue:
1501 	 * ensure that FEXTNVM4 Beacon Duration is set correctly
1502 	 * on power up.
1503 	 * Set the Beacon Duration for I217 to 8 usec
1504 	 */
1505 	if ((hw->mac.type == e1000_pch_lpt) || (hw->mac.type == e1000_pch_spt)) {
1506 		u32 mac_reg;
1507 
1508 		mac_reg = er32(FEXTNVM4);
1509 		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1510 		mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1511 		ew32(FEXTNVM4, mac_reg);
1512 	}
1513 
1514 	/* Work-around I218 hang issue */
1515 	if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1516 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1517 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1518 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
1519 		ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1520 		if (ret_val)
1521 			return ret_val;
1522 	}
1523 	if ((hw->mac.type == e1000_pch_lpt) ||
1524 	    (hw->mac.type == e1000_pch_spt)) {
1525 		/* Set platform power management values for
1526 		 * Latency Tolerance Reporting (LTR)
1527 		 */
1528 		ret_val = e1000_platform_pm_pch_lpt(hw, link);
1529 		if (ret_val)
1530 			return ret_val;
1531 	}
1532 
1533 	/* Clear link partner's EEE ability */
1534 	hw->dev_spec.ich8lan.eee_lp_ability = 0;
1535 
1536 	/* FEXTNVM6 K1-off workaround */
1537 	if (hw->mac.type == e1000_pch_spt) {
1538 		u32 pcieanacfg = er32(PCIEANACFG);
1539 		u32 fextnvm6 = er32(FEXTNVM6);
1540 
1541 		if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1542 			fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1543 		else
1544 			fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1545 
1546 		ew32(FEXTNVM6, fextnvm6);
1547 	}
1548 
1549 	if (!link)
1550 		return 0;	/* No link detected */
1551 
1552 	mac->get_link_status = false;
1553 
1554 	switch (hw->mac.type) {
1555 	case e1000_pch2lan:
1556 		ret_val = e1000_k1_workaround_lv(hw);
1557 		if (ret_val)
1558 			return ret_val;
1559 		/* fall-thru */
1560 	case e1000_pchlan:
1561 		if (hw->phy.type == e1000_phy_82578) {
1562 			ret_val = e1000_link_stall_workaround_hv(hw);
1563 			if (ret_val)
1564 				return ret_val;
1565 		}
1566 
1567 		/* Workaround for PCHx parts in half-duplex:
1568 		 * Set the number of preambles removed from the packet
1569 		 * when it is passed from the PHY to the MAC to prevent
1570 		 * the MAC from misinterpreting the packet type.
1571 		 */
1572 		e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1573 		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1574 
1575 		if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1576 			phy_reg |= BIT(HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1577 
1578 		e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1579 		break;
1580 	default:
1581 		break;
1582 	}
1583 
1584 	/* Check if there was DownShift, must be checked
1585 	 * immediately after link-up
1586 	 */
1587 	e1000e_check_downshift(hw);
1588 
1589 	/* Enable/Disable EEE after link up */
1590 	if (hw->phy.type > e1000_phy_82579) {
1591 		ret_val = e1000_set_eee_pchlan(hw);
1592 		if (ret_val)
1593 			return ret_val;
1594 	}
1595 
1596 	/* If we are forcing speed/duplex, then we simply return since
1597 	 * we have already determined whether we have link or not.
1598 	 */
1599 	if (!mac->autoneg)
1600 		return -E1000_ERR_CONFIG;
1601 
1602 	/* Auto-Neg is enabled.  Auto Speed Detection takes care
1603 	 * of MAC speed/duplex configuration.  So we only need to
1604 	 * configure Collision Distance in the MAC.
1605 	 */
1606 	mac->ops.config_collision_dist(hw);
1607 
1608 	/* Configure Flow Control now that Auto-Neg has completed.
1609 	 * First, we need to restore the desired flow control
1610 	 * settings because we may have had to re-autoneg with a
1611 	 * different link partner.
1612 	 */
1613 	ret_val = e1000e_config_fc_after_link_up(hw);
1614 	if (ret_val)
1615 		e_dbg("Error configuring flow control\n");
1616 
1617 	return ret_val;
1618 }
1619 
1620 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1621 {
1622 	struct e1000_hw *hw = &adapter->hw;
1623 	s32 rc;
1624 
1625 	rc = e1000_init_mac_params_ich8lan(hw);
1626 	if (rc)
1627 		return rc;
1628 
1629 	rc = e1000_init_nvm_params_ich8lan(hw);
1630 	if (rc)
1631 		return rc;
1632 
1633 	switch (hw->mac.type) {
1634 	case e1000_ich8lan:
1635 	case e1000_ich9lan:
1636 	case e1000_ich10lan:
1637 		rc = e1000_init_phy_params_ich8lan(hw);
1638 		break;
1639 	case e1000_pchlan:
1640 	case e1000_pch2lan:
1641 	case e1000_pch_lpt:
1642 	case e1000_pch_spt:
1643 		rc = e1000_init_phy_params_pchlan(hw);
1644 		break;
1645 	default:
1646 		break;
1647 	}
1648 	if (rc)
1649 		return rc;
1650 
1651 	/* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1652 	 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1653 	 */
1654 	if ((adapter->hw.phy.type == e1000_phy_ife) ||
1655 	    ((adapter->hw.mac.type >= e1000_pch2lan) &&
1656 	     (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1657 		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1658 		adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
1659 
1660 		hw->mac.ops.blink_led = NULL;
1661 	}
1662 
1663 	if ((adapter->hw.mac.type == e1000_ich8lan) &&
1664 	    (adapter->hw.phy.type != e1000_phy_ife))
1665 		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1666 
1667 	/* Enable workaround for 82579 w/ ME enabled */
1668 	if ((adapter->hw.mac.type == e1000_pch2lan) &&
1669 	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1670 		adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1671 
1672 	return 0;
1673 }
1674 
1675 static DEFINE_MUTEX(nvm_mutex);
1676 
1677 /**
1678  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1679  *  @hw: pointer to the HW structure
1680  *
1681  *  Acquires the mutex for performing NVM operations.
1682  **/
1683 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1684 {
1685 	mutex_lock(&nvm_mutex);
1686 
1687 	return 0;
1688 }
1689 
1690 /**
1691  *  e1000_release_nvm_ich8lan - Release NVM mutex
1692  *  @hw: pointer to the HW structure
1693  *
1694  *  Releases the mutex used while performing NVM operations.
1695  **/
1696 static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1697 {
1698 	mutex_unlock(&nvm_mutex);
1699 }
1700 
1701 /**
1702  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1703  *  @hw: pointer to the HW structure
1704  *
1705  *  Acquires the software control flag for performing PHY and select
1706  *  MAC CSR accesses.
1707  **/
1708 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1709 {
1710 	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1711 	s32 ret_val = 0;
1712 
1713 	if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1714 			     &hw->adapter->state)) {
1715 		e_dbg("contention for Phy access\n");
1716 		return -E1000_ERR_PHY;
1717 	}
1718 
1719 	while (timeout) {
1720 		extcnf_ctrl = er32(EXTCNF_CTRL);
1721 		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1722 			break;
1723 
1724 		mdelay(1);
1725 		timeout--;
1726 	}
1727 
1728 	if (!timeout) {
1729 		e_dbg("SW has already locked the resource.\n");
1730 		ret_val = -E1000_ERR_CONFIG;
1731 		goto out;
1732 	}
1733 
1734 	timeout = SW_FLAG_TIMEOUT;
1735 
1736 	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1737 	ew32(EXTCNF_CTRL, extcnf_ctrl);
1738 
1739 	while (timeout) {
1740 		extcnf_ctrl = er32(EXTCNF_CTRL);
1741 		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1742 			break;
1743 
1744 		mdelay(1);
1745 		timeout--;
1746 	}
1747 
1748 	if (!timeout) {
1749 		e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1750 		      er32(FWSM), extcnf_ctrl);
1751 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1752 		ew32(EXTCNF_CTRL, extcnf_ctrl);
1753 		ret_val = -E1000_ERR_CONFIG;
1754 		goto out;
1755 	}
1756 
1757 out:
1758 	if (ret_val)
1759 		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1760 
1761 	return ret_val;
1762 }
1763 
1764 /**
1765  *  e1000_release_swflag_ich8lan - Release software control flag
1766  *  @hw: pointer to the HW structure
1767  *
1768  *  Releases the software control flag for performing PHY and select
1769  *  MAC CSR accesses.
1770  **/
1771 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1772 {
1773 	u32 extcnf_ctrl;
1774 
1775 	extcnf_ctrl = er32(EXTCNF_CTRL);
1776 
1777 	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1778 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1779 		ew32(EXTCNF_CTRL, extcnf_ctrl);
1780 	} else {
1781 		e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1782 	}
1783 
1784 	clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1785 }
1786 
1787 /**
1788  *  e1000_check_mng_mode_ich8lan - Checks management mode
1789  *  @hw: pointer to the HW structure
1790  *
1791  *  This checks if the adapter has any manageability enabled.
1792  *  This is a function pointer entry point only called by read/write
1793  *  routines for the PHY and NVM parts.
1794  **/
1795 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1796 {
1797 	u32 fwsm;
1798 
1799 	fwsm = er32(FWSM);
1800 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1801 		((fwsm & E1000_FWSM_MODE_MASK) ==
1802 		 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1803 }
1804 
1805 /**
1806  *  e1000_check_mng_mode_pchlan - Checks management mode
1807  *  @hw: pointer to the HW structure
1808  *
1809  *  This checks if the adapter has iAMT enabled.
1810  *  This is a function pointer entry point only called by read/write
1811  *  routines for the PHY and NVM parts.
1812  **/
1813 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1814 {
1815 	u32 fwsm;
1816 
1817 	fwsm = er32(FWSM);
1818 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1819 	    (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1820 }
1821 
1822 /**
1823  *  e1000_rar_set_pch2lan - Set receive address register
1824  *  @hw: pointer to the HW structure
1825  *  @addr: pointer to the receive address
1826  *  @index: receive address array register
1827  *
1828  *  Sets the receive address array register at index to the address passed
1829  *  in by addr.  For 82579, RAR[0] is the base address register that is to
1830  *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1831  *  Use SHRA[0-3] in place of those reserved for ME.
1832  **/
1833 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1834 {
1835 	u32 rar_low, rar_high;
1836 
1837 	/* HW expects these in little endian so we reverse the byte order
1838 	 * from network order (big endian) to little endian
1839 	 */
1840 	rar_low = ((u32)addr[0] |
1841 		   ((u32)addr[1] << 8) |
1842 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1843 
1844 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1845 
1846 	/* If MAC address zero, no need to set the AV bit */
1847 	if (rar_low || rar_high)
1848 		rar_high |= E1000_RAH_AV;
1849 
1850 	if (index == 0) {
1851 		ew32(RAL(index), rar_low);
1852 		e1e_flush();
1853 		ew32(RAH(index), rar_high);
1854 		e1e_flush();
1855 		return 0;
1856 	}
1857 
1858 	/* RAR[1-6] are owned by manageability.  Skip those and program the
1859 	 * next address into the SHRA register array.
1860 	 */
1861 	if (index < (u32)(hw->mac.rar_entry_count)) {
1862 		s32 ret_val;
1863 
1864 		ret_val = e1000_acquire_swflag_ich8lan(hw);
1865 		if (ret_val)
1866 			goto out;
1867 
1868 		ew32(SHRAL(index - 1), rar_low);
1869 		e1e_flush();
1870 		ew32(SHRAH(index - 1), rar_high);
1871 		e1e_flush();
1872 
1873 		e1000_release_swflag_ich8lan(hw);
1874 
1875 		/* verify the register updates */
1876 		if ((er32(SHRAL(index - 1)) == rar_low) &&
1877 		    (er32(SHRAH(index - 1)) == rar_high))
1878 			return 0;
1879 
1880 		e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1881 		      (index - 1), er32(FWSM));
1882 	}
1883 
1884 out:
1885 	e_dbg("Failed to write receive address at index %d\n", index);
1886 	return -E1000_ERR_CONFIG;
1887 }
1888 
1889 /**
1890  *  e1000_rar_get_count_pch_lpt - Get the number of available SHRA
1891  *  @hw: pointer to the HW structure
1892  *
1893  *  Get the number of available receive registers that the Host can
1894  *  program. SHRA[0-10] are the shared receive address registers
1895  *  that are shared between the Host and manageability engine (ME).
1896  *  ME can reserve any number of addresses and the host needs to be
1897  *  able to tell how many available registers it has access to.
1898  **/
1899 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw)
1900 {
1901 	u32 wlock_mac;
1902 	u32 num_entries;
1903 
1904 	wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1905 	wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1906 
1907 	switch (wlock_mac) {
1908 	case 0:
1909 		/* All SHRA[0..10] and RAR[0] available */
1910 		num_entries = hw->mac.rar_entry_count;
1911 		break;
1912 	case 1:
1913 		/* Only RAR[0] available */
1914 		num_entries = 1;
1915 		break;
1916 	default:
1917 		/* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
1918 		num_entries = wlock_mac + 1;
1919 		break;
1920 	}
1921 
1922 	return num_entries;
1923 }
1924 
1925 /**
1926  *  e1000_rar_set_pch_lpt - Set receive address registers
1927  *  @hw: pointer to the HW structure
1928  *  @addr: pointer to the receive address
1929  *  @index: receive address array register
1930  *
1931  *  Sets the receive address register array at index to the address passed
1932  *  in by addr. For LPT, RAR[0] is the base address register that is to
1933  *  contain the MAC address. SHRA[0-10] are the shared receive address
1934  *  registers that are shared between the Host and manageability engine (ME).
1935  **/
1936 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1937 {
1938 	u32 rar_low, rar_high;
1939 	u32 wlock_mac;
1940 
1941 	/* HW expects these in little endian so we reverse the byte order
1942 	 * from network order (big endian) to little endian
1943 	 */
1944 	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1945 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1946 
1947 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1948 
1949 	/* If MAC address zero, no need to set the AV bit */
1950 	if (rar_low || rar_high)
1951 		rar_high |= E1000_RAH_AV;
1952 
1953 	if (index == 0) {
1954 		ew32(RAL(index), rar_low);
1955 		e1e_flush();
1956 		ew32(RAH(index), rar_high);
1957 		e1e_flush();
1958 		return 0;
1959 	}
1960 
1961 	/* The manageability engine (ME) can lock certain SHRAR registers that
1962 	 * it is using - those registers are unavailable for use.
1963 	 */
1964 	if (index < hw->mac.rar_entry_count) {
1965 		wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1966 		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1967 
1968 		/* Check if all SHRAR registers are locked */
1969 		if (wlock_mac == 1)
1970 			goto out;
1971 
1972 		if ((wlock_mac == 0) || (index <= wlock_mac)) {
1973 			s32 ret_val;
1974 
1975 			ret_val = e1000_acquire_swflag_ich8lan(hw);
1976 
1977 			if (ret_val)
1978 				goto out;
1979 
1980 			ew32(SHRAL_PCH_LPT(index - 1), rar_low);
1981 			e1e_flush();
1982 			ew32(SHRAH_PCH_LPT(index - 1), rar_high);
1983 			e1e_flush();
1984 
1985 			e1000_release_swflag_ich8lan(hw);
1986 
1987 			/* verify the register updates */
1988 			if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
1989 			    (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
1990 				return 0;
1991 		}
1992 	}
1993 
1994 out:
1995 	e_dbg("Failed to write receive address at index %d\n", index);
1996 	return -E1000_ERR_CONFIG;
1997 }
1998 
1999 /**
2000  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2001  *  @hw: pointer to the HW structure
2002  *
2003  *  Checks if firmware is blocking the reset of the PHY.
2004  *  This is a function pointer entry point only called by
2005  *  reset routines.
2006  **/
2007 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2008 {
2009 	bool blocked = false;
2010 	int i = 0;
2011 
2012 	while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
2013 	       (i++ < 30))
2014 		usleep_range(10000, 20000);
2015 	return blocked ? E1000_BLK_PHY_RESET : 0;
2016 }
2017 
2018 /**
2019  *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2020  *  @hw: pointer to the HW structure
2021  *
2022  *  Assumes semaphore already acquired.
2023  *
2024  **/
2025 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2026 {
2027 	u16 phy_data;
2028 	u32 strap = er32(STRAP);
2029 	u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
2030 	    E1000_STRAP_SMT_FREQ_SHIFT;
2031 	s32 ret_val;
2032 
2033 	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2034 
2035 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2036 	if (ret_val)
2037 		return ret_val;
2038 
2039 	phy_data &= ~HV_SMB_ADDR_MASK;
2040 	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2041 	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2042 
2043 	if (hw->phy.type == e1000_phy_i217) {
2044 		/* Restore SMBus frequency */
2045 		if (freq--) {
2046 			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2047 			phy_data |= (freq & BIT(0)) <<
2048 			    HV_SMB_ADDR_FREQ_LOW_SHIFT;
2049 			phy_data |= (freq & BIT(1)) <<
2050 			    (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2051 		} else {
2052 			e_dbg("Unsupported SMB frequency in PHY\n");
2053 		}
2054 	}
2055 
2056 	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2057 }
2058 
2059 /**
2060  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2061  *  @hw:   pointer to the HW structure
2062  *
2063  *  SW should configure the LCD from the NVM extended configuration region
2064  *  as a workaround for certain parts.
2065  **/
2066 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2067 {
2068 	struct e1000_phy_info *phy = &hw->phy;
2069 	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2070 	s32 ret_val = 0;
2071 	u16 word_addr, reg_data, reg_addr, phy_page = 0;
2072 
2073 	/* Initialize the PHY from the NVM on ICH platforms.  This
2074 	 * is needed due to an issue where the NVM configuration is
2075 	 * not properly autoloaded after power transitions.
2076 	 * Therefore, after each PHY reset, we will load the
2077 	 * configuration data out of the NVM manually.
2078 	 */
2079 	switch (hw->mac.type) {
2080 	case e1000_ich8lan:
2081 		if (phy->type != e1000_phy_igp_3)
2082 			return ret_val;
2083 
2084 		if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
2085 		    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
2086 			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2087 			break;
2088 		}
2089 		/* Fall-thru */
2090 	case e1000_pchlan:
2091 	case e1000_pch2lan:
2092 	case e1000_pch_lpt:
2093 	case e1000_pch_spt:
2094 		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2095 		break;
2096 	default:
2097 		return ret_val;
2098 	}
2099 
2100 	ret_val = hw->phy.ops.acquire(hw);
2101 	if (ret_val)
2102 		return ret_val;
2103 
2104 	data = er32(FEXTNVM);
2105 	if (!(data & sw_cfg_mask))
2106 		goto release;
2107 
2108 	/* Make sure HW does not configure LCD from PHY
2109 	 * extended configuration before SW configuration
2110 	 */
2111 	data = er32(EXTCNF_CTRL);
2112 	if ((hw->mac.type < e1000_pch2lan) &&
2113 	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2114 		goto release;
2115 
2116 	cnf_size = er32(EXTCNF_SIZE);
2117 	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2118 	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2119 	if (!cnf_size)
2120 		goto release;
2121 
2122 	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2123 	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2124 
2125 	if (((hw->mac.type == e1000_pchlan) &&
2126 	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2127 	    (hw->mac.type > e1000_pchlan)) {
2128 		/* HW configures the SMBus address and LEDs when the
2129 		 * OEM and LCD Write Enable bits are set in the NVM.
2130 		 * When both NVM bits are cleared, SW will configure
2131 		 * them instead.
2132 		 */
2133 		ret_val = e1000_write_smbus_addr(hw);
2134 		if (ret_val)
2135 			goto release;
2136 
2137 		data = er32(LEDCTL);
2138 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2139 							(u16)data);
2140 		if (ret_val)
2141 			goto release;
2142 	}
2143 
2144 	/* Configure LCD from extended configuration region. */
2145 
2146 	/* cnf_base_addr is in DWORD */
2147 	word_addr = (u16)(cnf_base_addr << 1);
2148 
2149 	for (i = 0; i < cnf_size; i++) {
2150 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, &reg_data);
2151 		if (ret_val)
2152 			goto release;
2153 
2154 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
2155 					 1, &reg_addr);
2156 		if (ret_val)
2157 			goto release;
2158 
2159 		/* Save off the PHY page for future writes. */
2160 		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2161 			phy_page = reg_data;
2162 			continue;
2163 		}
2164 
2165 		reg_addr &= PHY_REG_MASK;
2166 		reg_addr |= phy_page;
2167 
2168 		ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
2169 		if (ret_val)
2170 			goto release;
2171 	}
2172 
2173 release:
2174 	hw->phy.ops.release(hw);
2175 	return ret_val;
2176 }
2177 
2178 /**
2179  *  e1000_k1_gig_workaround_hv - K1 Si workaround
2180  *  @hw:   pointer to the HW structure
2181  *  @link: link up bool flag
2182  *
2183  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2184  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2185  *  If link is down, the function will restore the default K1 setting located
2186  *  in the NVM.
2187  **/
2188 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2189 {
2190 	s32 ret_val = 0;
2191 	u16 status_reg = 0;
2192 	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2193 
2194 	if (hw->mac.type != e1000_pchlan)
2195 		return 0;
2196 
2197 	/* Wrap the whole flow with the sw flag */
2198 	ret_val = hw->phy.ops.acquire(hw);
2199 	if (ret_val)
2200 		return ret_val;
2201 
2202 	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2203 	if (link) {
2204 		if (hw->phy.type == e1000_phy_82578) {
2205 			ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
2206 						  &status_reg);
2207 			if (ret_val)
2208 				goto release;
2209 
2210 			status_reg &= (BM_CS_STATUS_LINK_UP |
2211 				       BM_CS_STATUS_RESOLVED |
2212 				       BM_CS_STATUS_SPEED_MASK);
2213 
2214 			if (status_reg == (BM_CS_STATUS_LINK_UP |
2215 					   BM_CS_STATUS_RESOLVED |
2216 					   BM_CS_STATUS_SPEED_1000))
2217 				k1_enable = false;
2218 		}
2219 
2220 		if (hw->phy.type == e1000_phy_82577) {
2221 			ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2222 			if (ret_val)
2223 				goto release;
2224 
2225 			status_reg &= (HV_M_STATUS_LINK_UP |
2226 				       HV_M_STATUS_AUTONEG_COMPLETE |
2227 				       HV_M_STATUS_SPEED_MASK);
2228 
2229 			if (status_reg == (HV_M_STATUS_LINK_UP |
2230 					   HV_M_STATUS_AUTONEG_COMPLETE |
2231 					   HV_M_STATUS_SPEED_1000))
2232 				k1_enable = false;
2233 		}
2234 
2235 		/* Link stall fix for link up */
2236 		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2237 		if (ret_val)
2238 			goto release;
2239 
2240 	} else {
2241 		/* Link stall fix for link down */
2242 		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2243 		if (ret_val)
2244 			goto release;
2245 	}
2246 
2247 	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2248 
2249 release:
2250 	hw->phy.ops.release(hw);
2251 
2252 	return ret_val;
2253 }
2254 
2255 /**
2256  *  e1000_configure_k1_ich8lan - Configure K1 power state
2257  *  @hw: pointer to the HW structure
2258  *  @enable: K1 state to configure
2259  *
2260  *  Configure the K1 power state based on the provided parameter.
2261  *  Assumes semaphore already acquired.
2262  *
2263  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2264  **/
2265 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2266 {
2267 	s32 ret_val;
2268 	u32 ctrl_reg = 0;
2269 	u32 ctrl_ext = 0;
2270 	u32 reg = 0;
2271 	u16 kmrn_reg = 0;
2272 
2273 	ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2274 					      &kmrn_reg);
2275 	if (ret_val)
2276 		return ret_val;
2277 
2278 	if (k1_enable)
2279 		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2280 	else
2281 		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2282 
2283 	ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2284 					       kmrn_reg);
2285 	if (ret_val)
2286 		return ret_val;
2287 
2288 	usleep_range(20, 40);
2289 	ctrl_ext = er32(CTRL_EXT);
2290 	ctrl_reg = er32(CTRL);
2291 
2292 	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2293 	reg |= E1000_CTRL_FRCSPD;
2294 	ew32(CTRL, reg);
2295 
2296 	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2297 	e1e_flush();
2298 	usleep_range(20, 40);
2299 	ew32(CTRL, ctrl_reg);
2300 	ew32(CTRL_EXT, ctrl_ext);
2301 	e1e_flush();
2302 	usleep_range(20, 40);
2303 
2304 	return 0;
2305 }
2306 
2307 /**
2308  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2309  *  @hw:       pointer to the HW structure
2310  *  @d0_state: boolean if entering d0 or d3 device state
2311  *
2312  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2313  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2314  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2315  **/
2316 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2317 {
2318 	s32 ret_val = 0;
2319 	u32 mac_reg;
2320 	u16 oem_reg;
2321 
2322 	if (hw->mac.type < e1000_pchlan)
2323 		return ret_val;
2324 
2325 	ret_val = hw->phy.ops.acquire(hw);
2326 	if (ret_val)
2327 		return ret_val;
2328 
2329 	if (hw->mac.type == e1000_pchlan) {
2330 		mac_reg = er32(EXTCNF_CTRL);
2331 		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2332 			goto release;
2333 	}
2334 
2335 	mac_reg = er32(FEXTNVM);
2336 	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2337 		goto release;
2338 
2339 	mac_reg = er32(PHY_CTRL);
2340 
2341 	ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2342 	if (ret_val)
2343 		goto release;
2344 
2345 	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2346 
2347 	if (d0_state) {
2348 		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2349 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2350 
2351 		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2352 			oem_reg |= HV_OEM_BITS_LPLU;
2353 	} else {
2354 		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2355 			       E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2356 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2357 
2358 		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2359 			       E1000_PHY_CTRL_NOND0A_LPLU))
2360 			oem_reg |= HV_OEM_BITS_LPLU;
2361 	}
2362 
2363 	/* Set Restart auto-neg to activate the bits */
2364 	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2365 	    !hw->phy.ops.check_reset_block(hw))
2366 		oem_reg |= HV_OEM_BITS_RESTART_AN;
2367 
2368 	ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2369 
2370 release:
2371 	hw->phy.ops.release(hw);
2372 
2373 	return ret_val;
2374 }
2375 
2376 /**
2377  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2378  *  @hw:   pointer to the HW structure
2379  **/
2380 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2381 {
2382 	s32 ret_val;
2383 	u16 data;
2384 
2385 	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2386 	if (ret_val)
2387 		return ret_val;
2388 
2389 	data |= HV_KMRN_MDIO_SLOW;
2390 
2391 	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2392 
2393 	return ret_val;
2394 }
2395 
2396 /**
2397  *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2398  *  done after every PHY reset.
2399  **/
2400 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2401 {
2402 	s32 ret_val = 0;
2403 	u16 phy_data;
2404 
2405 	if (hw->mac.type != e1000_pchlan)
2406 		return 0;
2407 
2408 	/* Set MDIO slow mode before any other MDIO access */
2409 	if (hw->phy.type == e1000_phy_82577) {
2410 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
2411 		if (ret_val)
2412 			return ret_val;
2413 	}
2414 
2415 	if (((hw->phy.type == e1000_phy_82577) &&
2416 	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2417 	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2418 		/* Disable generation of early preamble */
2419 		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2420 		if (ret_val)
2421 			return ret_val;
2422 
2423 		/* Preamble tuning for SSC */
2424 		ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2425 		if (ret_val)
2426 			return ret_val;
2427 	}
2428 
2429 	if (hw->phy.type == e1000_phy_82578) {
2430 		/* Return registers to default by doing a soft reset then
2431 		 * writing 0x3140 to the control register.
2432 		 */
2433 		if (hw->phy.revision < 2) {
2434 			e1000e_phy_sw_reset(hw);
2435 			ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
2436 		}
2437 	}
2438 
2439 	/* Select page 0 */
2440 	ret_val = hw->phy.ops.acquire(hw);
2441 	if (ret_val)
2442 		return ret_val;
2443 
2444 	hw->phy.addr = 1;
2445 	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2446 	hw->phy.ops.release(hw);
2447 	if (ret_val)
2448 		return ret_val;
2449 
2450 	/* Configure the K1 Si workaround during phy reset assuming there is
2451 	 * link so that it disables K1 if link is in 1Gbps.
2452 	 */
2453 	ret_val = e1000_k1_gig_workaround_hv(hw, true);
2454 	if (ret_val)
2455 		return ret_val;
2456 
2457 	/* Workaround for link disconnects on a busy hub in half duplex */
2458 	ret_val = hw->phy.ops.acquire(hw);
2459 	if (ret_val)
2460 		return ret_val;
2461 	ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2462 	if (ret_val)
2463 		goto release;
2464 	ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2465 	if (ret_val)
2466 		goto release;
2467 
2468 	/* set MSE higher to enable link to stay up when noise is high */
2469 	ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2470 release:
2471 	hw->phy.ops.release(hw);
2472 
2473 	return ret_val;
2474 }
2475 
2476 /**
2477  *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2478  *  @hw:   pointer to the HW structure
2479  **/
2480 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2481 {
2482 	u32 mac_reg;
2483 	u16 i, phy_reg = 0;
2484 	s32 ret_val;
2485 
2486 	ret_val = hw->phy.ops.acquire(hw);
2487 	if (ret_val)
2488 		return;
2489 	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2490 	if (ret_val)
2491 		goto release;
2492 
2493 	/* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2494 	for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2495 		mac_reg = er32(RAL(i));
2496 		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2497 					   (u16)(mac_reg & 0xFFFF));
2498 		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2499 					   (u16)((mac_reg >> 16) & 0xFFFF));
2500 
2501 		mac_reg = er32(RAH(i));
2502 		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2503 					   (u16)(mac_reg & 0xFFFF));
2504 		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2505 					   (u16)((mac_reg & E1000_RAH_AV)
2506 						 >> 16));
2507 	}
2508 
2509 	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2510 
2511 release:
2512 	hw->phy.ops.release(hw);
2513 }
2514 
2515 /**
2516  *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2517  *  with 82579 PHY
2518  *  @hw: pointer to the HW structure
2519  *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2520  **/
2521 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2522 {
2523 	s32 ret_val = 0;
2524 	u16 phy_reg, data;
2525 	u32 mac_reg;
2526 	u16 i;
2527 
2528 	if (hw->mac.type < e1000_pch2lan)
2529 		return 0;
2530 
2531 	/* disable Rx path while enabling/disabling workaround */
2532 	e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2533 	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | BIT(14));
2534 	if (ret_val)
2535 		return ret_val;
2536 
2537 	if (enable) {
2538 		/* Write Rx addresses (rar_entry_count for RAL/H, and
2539 		 * SHRAL/H) and initial CRC values to the MAC
2540 		 */
2541 		for (i = 0; i < hw->mac.rar_entry_count; i++) {
2542 			u8 mac_addr[ETH_ALEN] = { 0 };
2543 			u32 addr_high, addr_low;
2544 
2545 			addr_high = er32(RAH(i));
2546 			if (!(addr_high & E1000_RAH_AV))
2547 				continue;
2548 			addr_low = er32(RAL(i));
2549 			mac_addr[0] = (addr_low & 0xFF);
2550 			mac_addr[1] = ((addr_low >> 8) & 0xFF);
2551 			mac_addr[2] = ((addr_low >> 16) & 0xFF);
2552 			mac_addr[3] = ((addr_low >> 24) & 0xFF);
2553 			mac_addr[4] = (addr_high & 0xFF);
2554 			mac_addr[5] = ((addr_high >> 8) & 0xFF);
2555 
2556 			ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2557 		}
2558 
2559 		/* Write Rx addresses to the PHY */
2560 		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2561 
2562 		/* Enable jumbo frame workaround in the MAC */
2563 		mac_reg = er32(FFLT_DBG);
2564 		mac_reg &= ~BIT(14);
2565 		mac_reg |= (7 << 15);
2566 		ew32(FFLT_DBG, mac_reg);
2567 
2568 		mac_reg = er32(RCTL);
2569 		mac_reg |= E1000_RCTL_SECRC;
2570 		ew32(RCTL, mac_reg);
2571 
2572 		ret_val = e1000e_read_kmrn_reg(hw,
2573 					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2574 					       &data);
2575 		if (ret_val)
2576 			return ret_val;
2577 		ret_val = e1000e_write_kmrn_reg(hw,
2578 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2579 						data | BIT(0));
2580 		if (ret_val)
2581 			return ret_val;
2582 		ret_val = e1000e_read_kmrn_reg(hw,
2583 					       E1000_KMRNCTRLSTA_HD_CTRL,
2584 					       &data);
2585 		if (ret_val)
2586 			return ret_val;
2587 		data &= ~(0xF << 8);
2588 		data |= (0xB << 8);
2589 		ret_val = e1000e_write_kmrn_reg(hw,
2590 						E1000_KMRNCTRLSTA_HD_CTRL,
2591 						data);
2592 		if (ret_val)
2593 			return ret_val;
2594 
2595 		/* Enable jumbo frame workaround in the PHY */
2596 		e1e_rphy(hw, PHY_REG(769, 23), &data);
2597 		data &= ~(0x7F << 5);
2598 		data |= (0x37 << 5);
2599 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2600 		if (ret_val)
2601 			return ret_val;
2602 		e1e_rphy(hw, PHY_REG(769, 16), &data);
2603 		data &= ~BIT(13);
2604 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2605 		if (ret_val)
2606 			return ret_val;
2607 		e1e_rphy(hw, PHY_REG(776, 20), &data);
2608 		data &= ~(0x3FF << 2);
2609 		data |= (E1000_TX_PTR_GAP << 2);
2610 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2611 		if (ret_val)
2612 			return ret_val;
2613 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2614 		if (ret_val)
2615 			return ret_val;
2616 		e1e_rphy(hw, HV_PM_CTRL, &data);
2617 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data | BIT(10));
2618 		if (ret_val)
2619 			return ret_val;
2620 	} else {
2621 		/* Write MAC register values back to h/w defaults */
2622 		mac_reg = er32(FFLT_DBG);
2623 		mac_reg &= ~(0xF << 14);
2624 		ew32(FFLT_DBG, mac_reg);
2625 
2626 		mac_reg = er32(RCTL);
2627 		mac_reg &= ~E1000_RCTL_SECRC;
2628 		ew32(RCTL, mac_reg);
2629 
2630 		ret_val = e1000e_read_kmrn_reg(hw,
2631 					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2632 					       &data);
2633 		if (ret_val)
2634 			return ret_val;
2635 		ret_val = e1000e_write_kmrn_reg(hw,
2636 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2637 						data & ~BIT(0));
2638 		if (ret_val)
2639 			return ret_val;
2640 		ret_val = e1000e_read_kmrn_reg(hw,
2641 					       E1000_KMRNCTRLSTA_HD_CTRL,
2642 					       &data);
2643 		if (ret_val)
2644 			return ret_val;
2645 		data &= ~(0xF << 8);
2646 		data |= (0xB << 8);
2647 		ret_val = e1000e_write_kmrn_reg(hw,
2648 						E1000_KMRNCTRLSTA_HD_CTRL,
2649 						data);
2650 		if (ret_val)
2651 			return ret_val;
2652 
2653 		/* Write PHY register values back to h/w defaults */
2654 		e1e_rphy(hw, PHY_REG(769, 23), &data);
2655 		data &= ~(0x7F << 5);
2656 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2657 		if (ret_val)
2658 			return ret_val;
2659 		e1e_rphy(hw, PHY_REG(769, 16), &data);
2660 		data |= BIT(13);
2661 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2662 		if (ret_val)
2663 			return ret_val;
2664 		e1e_rphy(hw, PHY_REG(776, 20), &data);
2665 		data &= ~(0x3FF << 2);
2666 		data |= (0x8 << 2);
2667 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2668 		if (ret_val)
2669 			return ret_val;
2670 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2671 		if (ret_val)
2672 			return ret_val;
2673 		e1e_rphy(hw, HV_PM_CTRL, &data);
2674 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~BIT(10));
2675 		if (ret_val)
2676 			return ret_val;
2677 	}
2678 
2679 	/* re-enable Rx path after enabling/disabling workaround */
2680 	return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~BIT(14));
2681 }
2682 
2683 /**
2684  *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2685  *  done after every PHY reset.
2686  **/
2687 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2688 {
2689 	s32 ret_val = 0;
2690 
2691 	if (hw->mac.type != e1000_pch2lan)
2692 		return 0;
2693 
2694 	/* Set MDIO slow mode before any other MDIO access */
2695 	ret_val = e1000_set_mdio_slow_mode_hv(hw);
2696 	if (ret_val)
2697 		return ret_val;
2698 
2699 	ret_val = hw->phy.ops.acquire(hw);
2700 	if (ret_val)
2701 		return ret_val;
2702 	/* set MSE higher to enable link to stay up when noise is high */
2703 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2704 	if (ret_val)
2705 		goto release;
2706 	/* drop link after 5 times MSE threshold was reached */
2707 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2708 release:
2709 	hw->phy.ops.release(hw);
2710 
2711 	return ret_val;
2712 }
2713 
2714 /**
2715  *  e1000_k1_gig_workaround_lv - K1 Si workaround
2716  *  @hw:   pointer to the HW structure
2717  *
2718  *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2719  *  Disable K1 in 1000Mbps and 100Mbps
2720  **/
2721 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2722 {
2723 	s32 ret_val = 0;
2724 	u16 status_reg = 0;
2725 
2726 	if (hw->mac.type != e1000_pch2lan)
2727 		return 0;
2728 
2729 	/* Set K1 beacon duration based on 10Mbs speed */
2730 	ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2731 	if (ret_val)
2732 		return ret_val;
2733 
2734 	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2735 	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2736 		if (status_reg &
2737 		    (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2738 			u16 pm_phy_reg;
2739 
2740 			/* LV 1G/100 Packet drop issue wa  */
2741 			ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2742 			if (ret_val)
2743 				return ret_val;
2744 			pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2745 			ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2746 			if (ret_val)
2747 				return ret_val;
2748 		} else {
2749 			u32 mac_reg;
2750 
2751 			mac_reg = er32(FEXTNVM4);
2752 			mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2753 			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2754 			ew32(FEXTNVM4, mac_reg);
2755 		}
2756 	}
2757 
2758 	return ret_val;
2759 }
2760 
2761 /**
2762  *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2763  *  @hw:   pointer to the HW structure
2764  *  @gate: boolean set to true to gate, false to ungate
2765  *
2766  *  Gate/ungate the automatic PHY configuration via hardware; perform
2767  *  the configuration via software instead.
2768  **/
2769 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2770 {
2771 	u32 extcnf_ctrl;
2772 
2773 	if (hw->mac.type < e1000_pch2lan)
2774 		return;
2775 
2776 	extcnf_ctrl = er32(EXTCNF_CTRL);
2777 
2778 	if (gate)
2779 		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2780 	else
2781 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2782 
2783 	ew32(EXTCNF_CTRL, extcnf_ctrl);
2784 }
2785 
2786 /**
2787  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2788  *  @hw: pointer to the HW structure
2789  *
2790  *  Check the appropriate indication the MAC has finished configuring the
2791  *  PHY after a software reset.
2792  **/
2793 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2794 {
2795 	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2796 
2797 	/* Wait for basic configuration completes before proceeding */
2798 	do {
2799 		data = er32(STATUS);
2800 		data &= E1000_STATUS_LAN_INIT_DONE;
2801 		usleep_range(100, 200);
2802 	} while ((!data) && --loop);
2803 
2804 	/* If basic configuration is incomplete before the above loop
2805 	 * count reaches 0, loading the configuration from NVM will
2806 	 * leave the PHY in a bad state possibly resulting in no link.
2807 	 */
2808 	if (loop == 0)
2809 		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2810 
2811 	/* Clear the Init Done bit for the next init event */
2812 	data = er32(STATUS);
2813 	data &= ~E1000_STATUS_LAN_INIT_DONE;
2814 	ew32(STATUS, data);
2815 }
2816 
2817 /**
2818  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2819  *  @hw: pointer to the HW structure
2820  **/
2821 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2822 {
2823 	s32 ret_val = 0;
2824 	u16 reg;
2825 
2826 	if (hw->phy.ops.check_reset_block(hw))
2827 		return 0;
2828 
2829 	/* Allow time for h/w to get to quiescent state after reset */
2830 	usleep_range(10000, 20000);
2831 
2832 	/* Perform any necessary post-reset workarounds */
2833 	switch (hw->mac.type) {
2834 	case e1000_pchlan:
2835 		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2836 		if (ret_val)
2837 			return ret_val;
2838 		break;
2839 	case e1000_pch2lan:
2840 		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2841 		if (ret_val)
2842 			return ret_val;
2843 		break;
2844 	default:
2845 		break;
2846 	}
2847 
2848 	/* Clear the host wakeup bit after lcd reset */
2849 	if (hw->mac.type >= e1000_pchlan) {
2850 		e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2851 		reg &= ~BM_WUC_HOST_WU_BIT;
2852 		e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2853 	}
2854 
2855 	/* Configure the LCD with the extended configuration region in NVM */
2856 	ret_val = e1000_sw_lcd_config_ich8lan(hw);
2857 	if (ret_val)
2858 		return ret_val;
2859 
2860 	/* Configure the LCD with the OEM bits in NVM */
2861 	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2862 
2863 	if (hw->mac.type == e1000_pch2lan) {
2864 		/* Ungate automatic PHY configuration on non-managed 82579 */
2865 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2866 			usleep_range(10000, 20000);
2867 			e1000_gate_hw_phy_config_ich8lan(hw, false);
2868 		}
2869 
2870 		/* Set EEE LPI Update Timer to 200usec */
2871 		ret_val = hw->phy.ops.acquire(hw);
2872 		if (ret_val)
2873 			return ret_val;
2874 		ret_val = e1000_write_emi_reg_locked(hw,
2875 						     I82579_LPI_UPDATE_TIMER,
2876 						     0x1387);
2877 		hw->phy.ops.release(hw);
2878 	}
2879 
2880 	return ret_val;
2881 }
2882 
2883 /**
2884  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2885  *  @hw: pointer to the HW structure
2886  *
2887  *  Resets the PHY
2888  *  This is a function pointer entry point called by drivers
2889  *  or other shared routines.
2890  **/
2891 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2892 {
2893 	s32 ret_val = 0;
2894 
2895 	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
2896 	if ((hw->mac.type == e1000_pch2lan) &&
2897 	    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2898 		e1000_gate_hw_phy_config_ich8lan(hw, true);
2899 
2900 	ret_val = e1000e_phy_hw_reset_generic(hw);
2901 	if (ret_val)
2902 		return ret_val;
2903 
2904 	return e1000_post_phy_reset_ich8lan(hw);
2905 }
2906 
2907 /**
2908  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2909  *  @hw: pointer to the HW structure
2910  *  @active: true to enable LPLU, false to disable
2911  *
2912  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
2913  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2914  *  the phy speed. This function will manually set the LPLU bit and restart
2915  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
2916  *  since it configures the same bit.
2917  **/
2918 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2919 {
2920 	s32 ret_val;
2921 	u16 oem_reg;
2922 
2923 	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2924 	if (ret_val)
2925 		return ret_val;
2926 
2927 	if (active)
2928 		oem_reg |= HV_OEM_BITS_LPLU;
2929 	else
2930 		oem_reg &= ~HV_OEM_BITS_LPLU;
2931 
2932 	if (!hw->phy.ops.check_reset_block(hw))
2933 		oem_reg |= HV_OEM_BITS_RESTART_AN;
2934 
2935 	return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2936 }
2937 
2938 /**
2939  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2940  *  @hw: pointer to the HW structure
2941  *  @active: true to enable LPLU, false to disable
2942  *
2943  *  Sets the LPLU D0 state according to the active flag.  When
2944  *  activating LPLU this function also disables smart speed
2945  *  and vice versa.  LPLU will not be activated unless the
2946  *  device autonegotiation advertisement meets standards of
2947  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2948  *  This is a function pointer entry point only called by
2949  *  PHY setup routines.
2950  **/
2951 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2952 {
2953 	struct e1000_phy_info *phy = &hw->phy;
2954 	u32 phy_ctrl;
2955 	s32 ret_val = 0;
2956 	u16 data;
2957 
2958 	if (phy->type == e1000_phy_ife)
2959 		return 0;
2960 
2961 	phy_ctrl = er32(PHY_CTRL);
2962 
2963 	if (active) {
2964 		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2965 		ew32(PHY_CTRL, phy_ctrl);
2966 
2967 		if (phy->type != e1000_phy_igp_3)
2968 			return 0;
2969 
2970 		/* Call gig speed drop workaround on LPLU before accessing
2971 		 * any PHY registers
2972 		 */
2973 		if (hw->mac.type == e1000_ich8lan)
2974 			e1000e_gig_downshift_workaround_ich8lan(hw);
2975 
2976 		/* When LPLU is enabled, we should disable SmartSpeed */
2977 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2978 		if (ret_val)
2979 			return ret_val;
2980 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2981 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2982 		if (ret_val)
2983 			return ret_val;
2984 	} else {
2985 		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2986 		ew32(PHY_CTRL, phy_ctrl);
2987 
2988 		if (phy->type != e1000_phy_igp_3)
2989 			return 0;
2990 
2991 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2992 		 * during Dx states where the power conservation is most
2993 		 * important.  During driver activity we should enable
2994 		 * SmartSpeed, so performance is maintained.
2995 		 */
2996 		if (phy->smart_speed == e1000_smart_speed_on) {
2997 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2998 					   &data);
2999 			if (ret_val)
3000 				return ret_val;
3001 
3002 			data |= IGP01E1000_PSCFR_SMART_SPEED;
3003 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3004 					   data);
3005 			if (ret_val)
3006 				return ret_val;
3007 		} else if (phy->smart_speed == e1000_smart_speed_off) {
3008 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3009 					   &data);
3010 			if (ret_val)
3011 				return ret_val;
3012 
3013 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3014 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3015 					   data);
3016 			if (ret_val)
3017 				return ret_val;
3018 		}
3019 	}
3020 
3021 	return 0;
3022 }
3023 
3024 /**
3025  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3026  *  @hw: pointer to the HW structure
3027  *  @active: true to enable LPLU, false to disable
3028  *
3029  *  Sets the LPLU D3 state according to the active flag.  When
3030  *  activating LPLU this function also disables smart speed
3031  *  and vice versa.  LPLU will not be activated unless the
3032  *  device autonegotiation advertisement meets standards of
3033  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3034  *  This is a function pointer entry point only called by
3035  *  PHY setup routines.
3036  **/
3037 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3038 {
3039 	struct e1000_phy_info *phy = &hw->phy;
3040 	u32 phy_ctrl;
3041 	s32 ret_val = 0;
3042 	u16 data;
3043 
3044 	phy_ctrl = er32(PHY_CTRL);
3045 
3046 	if (!active) {
3047 		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3048 		ew32(PHY_CTRL, phy_ctrl);
3049 
3050 		if (phy->type != e1000_phy_igp_3)
3051 			return 0;
3052 
3053 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3054 		 * during Dx states where the power conservation is most
3055 		 * important.  During driver activity we should enable
3056 		 * SmartSpeed, so performance is maintained.
3057 		 */
3058 		if (phy->smart_speed == e1000_smart_speed_on) {
3059 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3060 					   &data);
3061 			if (ret_val)
3062 				return ret_val;
3063 
3064 			data |= IGP01E1000_PSCFR_SMART_SPEED;
3065 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3066 					   data);
3067 			if (ret_val)
3068 				return ret_val;
3069 		} else if (phy->smart_speed == e1000_smart_speed_off) {
3070 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3071 					   &data);
3072 			if (ret_val)
3073 				return ret_val;
3074 
3075 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3076 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3077 					   data);
3078 			if (ret_val)
3079 				return ret_val;
3080 		}
3081 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3082 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3083 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3084 		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3085 		ew32(PHY_CTRL, phy_ctrl);
3086 
3087 		if (phy->type != e1000_phy_igp_3)
3088 			return 0;
3089 
3090 		/* Call gig speed drop workaround on LPLU before accessing
3091 		 * any PHY registers
3092 		 */
3093 		if (hw->mac.type == e1000_ich8lan)
3094 			e1000e_gig_downshift_workaround_ich8lan(hw);
3095 
3096 		/* When LPLU is enabled, we should disable SmartSpeed */
3097 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3098 		if (ret_val)
3099 			return ret_val;
3100 
3101 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3102 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3103 	}
3104 
3105 	return ret_val;
3106 }
3107 
3108 /**
3109  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3110  *  @hw: pointer to the HW structure
3111  *  @bank:  pointer to the variable that returns the active bank
3112  *
3113  *  Reads signature byte from the NVM using the flash access registers.
3114  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3115  **/
3116 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3117 {
3118 	u32 eecd;
3119 	struct e1000_nvm_info *nvm = &hw->nvm;
3120 	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3121 	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3122 	u32 nvm_dword = 0;
3123 	u8 sig_byte = 0;
3124 	s32 ret_val;
3125 
3126 	switch (hw->mac.type) {
3127 	case e1000_pch_spt:
3128 		bank1_offset = nvm->flash_bank_size;
3129 		act_offset = E1000_ICH_NVM_SIG_WORD;
3130 
3131 		/* set bank to 0 in case flash read fails */
3132 		*bank = 0;
3133 
3134 		/* Check bank 0 */
3135 		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
3136 							 &nvm_dword);
3137 		if (ret_val)
3138 			return ret_val;
3139 		sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3140 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3141 		    E1000_ICH_NVM_SIG_VALUE) {
3142 			*bank = 0;
3143 			return 0;
3144 		}
3145 
3146 		/* Check bank 1 */
3147 		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
3148 							 bank1_offset,
3149 							 &nvm_dword);
3150 		if (ret_val)
3151 			return ret_val;
3152 		sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3153 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3154 		    E1000_ICH_NVM_SIG_VALUE) {
3155 			*bank = 1;
3156 			return 0;
3157 		}
3158 
3159 		e_dbg("ERROR: No valid NVM bank present\n");
3160 		return -E1000_ERR_NVM;
3161 	case e1000_ich8lan:
3162 	case e1000_ich9lan:
3163 		eecd = er32(EECD);
3164 		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3165 		    E1000_EECD_SEC1VAL_VALID_MASK) {
3166 			if (eecd & E1000_EECD_SEC1VAL)
3167 				*bank = 1;
3168 			else
3169 				*bank = 0;
3170 
3171 			return 0;
3172 		}
3173 		e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3174 		/* fall-thru */
3175 	default:
3176 		/* set bank to 0 in case flash read fails */
3177 		*bank = 0;
3178 
3179 		/* Check bank 0 */
3180 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3181 							&sig_byte);
3182 		if (ret_val)
3183 			return ret_val;
3184 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3185 		    E1000_ICH_NVM_SIG_VALUE) {
3186 			*bank = 0;
3187 			return 0;
3188 		}
3189 
3190 		/* Check bank 1 */
3191 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3192 							bank1_offset,
3193 							&sig_byte);
3194 		if (ret_val)
3195 			return ret_val;
3196 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3197 		    E1000_ICH_NVM_SIG_VALUE) {
3198 			*bank = 1;
3199 			return 0;
3200 		}
3201 
3202 		e_dbg("ERROR: No valid NVM bank present\n");
3203 		return -E1000_ERR_NVM;
3204 	}
3205 }
3206 
3207 /**
3208  *  e1000_read_nvm_spt - NVM access for SPT
3209  *  @hw: pointer to the HW structure
3210  *  @offset: The offset (in bytes) of the word(s) to read.
3211  *  @words: Size of data to read in words.
3212  *  @data: pointer to the word(s) to read at offset.
3213  *
3214  *  Reads a word(s) from the NVM
3215  **/
3216 static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3217 			      u16 *data)
3218 {
3219 	struct e1000_nvm_info *nvm = &hw->nvm;
3220 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3221 	u32 act_offset;
3222 	s32 ret_val = 0;
3223 	u32 bank = 0;
3224 	u32 dword = 0;
3225 	u16 offset_to_read;
3226 	u16 i;
3227 
3228 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3229 	    (words == 0)) {
3230 		e_dbg("nvm parameter(s) out of bounds\n");
3231 		ret_val = -E1000_ERR_NVM;
3232 		goto out;
3233 	}
3234 
3235 	nvm->ops.acquire(hw);
3236 
3237 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3238 	if (ret_val) {
3239 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3240 		bank = 0;
3241 	}
3242 
3243 	act_offset = (bank) ? nvm->flash_bank_size : 0;
3244 	act_offset += offset;
3245 
3246 	ret_val = 0;
3247 
3248 	for (i = 0; i < words; i += 2) {
3249 		if (words - i == 1) {
3250 			if (dev_spec->shadow_ram[offset + i].modified) {
3251 				data[i] =
3252 				    dev_spec->shadow_ram[offset + i].value;
3253 			} else {
3254 				offset_to_read = act_offset + i -
3255 				    ((act_offset + i) % 2);
3256 				ret_val =
3257 				  e1000_read_flash_dword_ich8lan(hw,
3258 								 offset_to_read,
3259 								 &dword);
3260 				if (ret_val)
3261 					break;
3262 				if ((act_offset + i) % 2 == 0)
3263 					data[i] = (u16)(dword & 0xFFFF);
3264 				else
3265 					data[i] = (u16)((dword >> 16) & 0xFFFF);
3266 			}
3267 		} else {
3268 			offset_to_read = act_offset + i;
3269 			if (!(dev_spec->shadow_ram[offset + i].modified) ||
3270 			    !(dev_spec->shadow_ram[offset + i + 1].modified)) {
3271 				ret_val =
3272 				  e1000_read_flash_dword_ich8lan(hw,
3273 								 offset_to_read,
3274 								 &dword);
3275 				if (ret_val)
3276 					break;
3277 			}
3278 			if (dev_spec->shadow_ram[offset + i].modified)
3279 				data[i] =
3280 				    dev_spec->shadow_ram[offset + i].value;
3281 			else
3282 				data[i] = (u16)(dword & 0xFFFF);
3283 			if (dev_spec->shadow_ram[offset + i].modified)
3284 				data[i + 1] =
3285 				    dev_spec->shadow_ram[offset + i + 1].value;
3286 			else
3287 				data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
3288 		}
3289 	}
3290 
3291 	nvm->ops.release(hw);
3292 
3293 out:
3294 	if (ret_val)
3295 		e_dbg("NVM read error: %d\n", ret_val);
3296 
3297 	return ret_val;
3298 }
3299 
3300 /**
3301  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3302  *  @hw: pointer to the HW structure
3303  *  @offset: The offset (in bytes) of the word(s) to read.
3304  *  @words: Size of data to read in words
3305  *  @data: Pointer to the word(s) to read at offset.
3306  *
3307  *  Reads a word(s) from the NVM using the flash access registers.
3308  **/
3309 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3310 				  u16 *data)
3311 {
3312 	struct e1000_nvm_info *nvm = &hw->nvm;
3313 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3314 	u32 act_offset;
3315 	s32 ret_val = 0;
3316 	u32 bank = 0;
3317 	u16 i, word;
3318 
3319 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3320 	    (words == 0)) {
3321 		e_dbg("nvm parameter(s) out of bounds\n");
3322 		ret_val = -E1000_ERR_NVM;
3323 		goto out;
3324 	}
3325 
3326 	nvm->ops.acquire(hw);
3327 
3328 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3329 	if (ret_val) {
3330 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3331 		bank = 0;
3332 	}
3333 
3334 	act_offset = (bank) ? nvm->flash_bank_size : 0;
3335 	act_offset += offset;
3336 
3337 	ret_val = 0;
3338 	for (i = 0; i < words; i++) {
3339 		if (dev_spec->shadow_ram[offset + i].modified) {
3340 			data[i] = dev_spec->shadow_ram[offset + i].value;
3341 		} else {
3342 			ret_val = e1000_read_flash_word_ich8lan(hw,
3343 								act_offset + i,
3344 								&word);
3345 			if (ret_val)
3346 				break;
3347 			data[i] = word;
3348 		}
3349 	}
3350 
3351 	nvm->ops.release(hw);
3352 
3353 out:
3354 	if (ret_val)
3355 		e_dbg("NVM read error: %d\n", ret_val);
3356 
3357 	return ret_val;
3358 }
3359 
3360 /**
3361  *  e1000_flash_cycle_init_ich8lan - Initialize flash
3362  *  @hw: pointer to the HW structure
3363  *
3364  *  This function does initial flash setup so that a new read/write/erase cycle
3365  *  can be started.
3366  **/
3367 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3368 {
3369 	union ich8_hws_flash_status hsfsts;
3370 	s32 ret_val = -E1000_ERR_NVM;
3371 
3372 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3373 
3374 	/* Check if the flash descriptor is valid */
3375 	if (!hsfsts.hsf_status.fldesvalid) {
3376 		e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
3377 		return -E1000_ERR_NVM;
3378 	}
3379 
3380 	/* Clear FCERR and DAEL in hw status by writing 1 */
3381 	hsfsts.hsf_status.flcerr = 1;
3382 	hsfsts.hsf_status.dael = 1;
3383 	if (hw->mac.type == e1000_pch_spt)
3384 		ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3385 	else
3386 		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3387 
3388 	/* Either we should have a hardware SPI cycle in progress
3389 	 * bit to check against, in order to start a new cycle or
3390 	 * FDONE bit should be changed in the hardware so that it
3391 	 * is 1 after hardware reset, which can then be used as an
3392 	 * indication whether a cycle is in progress or has been
3393 	 * completed.
3394 	 */
3395 
3396 	if (!hsfsts.hsf_status.flcinprog) {
3397 		/* There is no cycle running at present,
3398 		 * so we can start a cycle.
3399 		 * Begin by setting Flash Cycle Done.
3400 		 */
3401 		hsfsts.hsf_status.flcdone = 1;
3402 		if (hw->mac.type == e1000_pch_spt)
3403 			ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3404 		else
3405 			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3406 		ret_val = 0;
3407 	} else {
3408 		s32 i;
3409 
3410 		/* Otherwise poll for sometime so the current
3411 		 * cycle has a chance to end before giving up.
3412 		 */
3413 		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3414 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3415 			if (!hsfsts.hsf_status.flcinprog) {
3416 				ret_val = 0;
3417 				break;
3418 			}
3419 			udelay(1);
3420 		}
3421 		if (!ret_val) {
3422 			/* Successful in waiting for previous cycle to timeout,
3423 			 * now set the Flash Cycle Done.
3424 			 */
3425 			hsfsts.hsf_status.flcdone = 1;
3426 			if (hw->mac.type == e1000_pch_spt)
3427 				ew32flash(ICH_FLASH_HSFSTS,
3428 					  hsfsts.regval & 0xFFFF);
3429 			else
3430 				ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3431 		} else {
3432 			e_dbg("Flash controller busy, cannot get access\n");
3433 		}
3434 	}
3435 
3436 	return ret_val;
3437 }
3438 
3439 /**
3440  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3441  *  @hw: pointer to the HW structure
3442  *  @timeout: maximum time to wait for completion
3443  *
3444  *  This function starts a flash cycle and waits for its completion.
3445  **/
3446 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3447 {
3448 	union ich8_hws_flash_ctrl hsflctl;
3449 	union ich8_hws_flash_status hsfsts;
3450 	u32 i = 0;
3451 
3452 	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3453 	if (hw->mac.type == e1000_pch_spt)
3454 		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3455 	else
3456 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3457 	hsflctl.hsf_ctrl.flcgo = 1;
3458 
3459 	if (hw->mac.type == e1000_pch_spt)
3460 		ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
3461 	else
3462 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3463 
3464 	/* wait till FDONE bit is set to 1 */
3465 	do {
3466 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3467 		if (hsfsts.hsf_status.flcdone)
3468 			break;
3469 		udelay(1);
3470 	} while (i++ < timeout);
3471 
3472 	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3473 		return 0;
3474 
3475 	return -E1000_ERR_NVM;
3476 }
3477 
3478 /**
3479  *  e1000_read_flash_dword_ich8lan - Read dword from flash
3480  *  @hw: pointer to the HW structure
3481  *  @offset: offset to data location
3482  *  @data: pointer to the location for storing the data
3483  *
3484  *  Reads the flash dword at offset into data.  Offset is converted
3485  *  to bytes before read.
3486  **/
3487 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3488 					  u32 *data)
3489 {
3490 	/* Must convert word offset into bytes. */
3491 	offset <<= 1;
3492 	return e1000_read_flash_data32_ich8lan(hw, offset, data);
3493 }
3494 
3495 /**
3496  *  e1000_read_flash_word_ich8lan - Read word from flash
3497  *  @hw: pointer to the HW structure
3498  *  @offset: offset to data location
3499  *  @data: pointer to the location for storing the data
3500  *
3501  *  Reads the flash word at offset into data.  Offset is converted
3502  *  to bytes before read.
3503  **/
3504 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3505 					 u16 *data)
3506 {
3507 	/* Must convert offset into bytes. */
3508 	offset <<= 1;
3509 
3510 	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3511 }
3512 
3513 /**
3514  *  e1000_read_flash_byte_ich8lan - Read byte from flash
3515  *  @hw: pointer to the HW structure
3516  *  @offset: The offset of the byte to read.
3517  *  @data: Pointer to a byte to store the value read.
3518  *
3519  *  Reads a single byte from the NVM using the flash access registers.
3520  **/
3521 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3522 					 u8 *data)
3523 {
3524 	s32 ret_val;
3525 	u16 word = 0;
3526 
3527 	/* In SPT, only 32 bits access is supported,
3528 	 * so this function should not be called.
3529 	 */
3530 	if (hw->mac.type == e1000_pch_spt)
3531 		return -E1000_ERR_NVM;
3532 	else
3533 		ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3534 
3535 	if (ret_val)
3536 		return ret_val;
3537 
3538 	*data = (u8)word;
3539 
3540 	return 0;
3541 }
3542 
3543 /**
3544  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3545  *  @hw: pointer to the HW structure
3546  *  @offset: The offset (in bytes) of the byte or word to read.
3547  *  @size: Size of data to read, 1=byte 2=word
3548  *  @data: Pointer to the word to store the value read.
3549  *
3550  *  Reads a byte or word from the NVM using the flash access registers.
3551  **/
3552 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3553 					 u8 size, u16 *data)
3554 {
3555 	union ich8_hws_flash_status hsfsts;
3556 	union ich8_hws_flash_ctrl hsflctl;
3557 	u32 flash_linear_addr;
3558 	u32 flash_data = 0;
3559 	s32 ret_val = -E1000_ERR_NVM;
3560 	u8 count = 0;
3561 
3562 	if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3563 		return -E1000_ERR_NVM;
3564 
3565 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3566 			     hw->nvm.flash_base_addr);
3567 
3568 	do {
3569 		udelay(1);
3570 		/* Steps */
3571 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3572 		if (ret_val)
3573 			break;
3574 
3575 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3576 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3577 		hsflctl.hsf_ctrl.fldbcount = size - 1;
3578 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3579 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3580 
3581 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3582 
3583 		ret_val =
3584 		    e1000_flash_cycle_ich8lan(hw,
3585 					      ICH_FLASH_READ_COMMAND_TIMEOUT);
3586 
3587 		/* Check if FCERR is set to 1, if set to 1, clear it
3588 		 * and try the whole sequence a few more times, else
3589 		 * read in (shift in) the Flash Data0, the order is
3590 		 * least significant byte first msb to lsb
3591 		 */
3592 		if (!ret_val) {
3593 			flash_data = er32flash(ICH_FLASH_FDATA0);
3594 			if (size == 1)
3595 				*data = (u8)(flash_data & 0x000000FF);
3596 			else if (size == 2)
3597 				*data = (u16)(flash_data & 0x0000FFFF);
3598 			break;
3599 		} else {
3600 			/* If we've gotten here, then things are probably
3601 			 * completely hosed, but if the error condition is
3602 			 * detected, it won't hurt to give it another try...
3603 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3604 			 */
3605 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3606 			if (hsfsts.hsf_status.flcerr) {
3607 				/* Repeat for some time before giving up. */
3608 				continue;
3609 			} else if (!hsfsts.hsf_status.flcdone) {
3610 				e_dbg("Timeout error - flash cycle did not complete.\n");
3611 				break;
3612 			}
3613 		}
3614 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3615 
3616 	return ret_val;
3617 }
3618 
3619 /**
3620  *  e1000_read_flash_data32_ich8lan - Read dword from NVM
3621  *  @hw: pointer to the HW structure
3622  *  @offset: The offset (in bytes) of the dword to read.
3623  *  @data: Pointer to the dword to store the value read.
3624  *
3625  *  Reads a byte or word from the NVM using the flash access registers.
3626  **/
3627 
3628 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3629 					   u32 *data)
3630 {
3631 	union ich8_hws_flash_status hsfsts;
3632 	union ich8_hws_flash_ctrl hsflctl;
3633 	u32 flash_linear_addr;
3634 	s32 ret_val = -E1000_ERR_NVM;
3635 	u8 count = 0;
3636 
3637 	if (offset > ICH_FLASH_LINEAR_ADDR_MASK ||
3638 	    hw->mac.type != e1000_pch_spt)
3639 		return -E1000_ERR_NVM;
3640 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3641 			     hw->nvm.flash_base_addr);
3642 
3643 	do {
3644 		udelay(1);
3645 		/* Steps */
3646 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3647 		if (ret_val)
3648 			break;
3649 		/* In SPT, This register is in Lan memory space, not flash.
3650 		 * Therefore, only 32 bit access is supported
3651 		 */
3652 		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3653 
3654 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3655 		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3656 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3657 		/* In SPT, This register is in Lan memory space, not flash.
3658 		 * Therefore, only 32 bit access is supported
3659 		 */
3660 		ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16);
3661 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3662 
3663 		ret_val =
3664 		   e1000_flash_cycle_ich8lan(hw,
3665 					     ICH_FLASH_READ_COMMAND_TIMEOUT);
3666 
3667 		/* Check if FCERR is set to 1, if set to 1, clear it
3668 		 * and try the whole sequence a few more times, else
3669 		 * read in (shift in) the Flash Data0, the order is
3670 		 * least significant byte first msb to lsb
3671 		 */
3672 		if (!ret_val) {
3673 			*data = er32flash(ICH_FLASH_FDATA0);
3674 			break;
3675 		} else {
3676 			/* If we've gotten here, then things are probably
3677 			 * completely hosed, but if the error condition is
3678 			 * detected, it won't hurt to give it another try...
3679 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3680 			 */
3681 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3682 			if (hsfsts.hsf_status.flcerr) {
3683 				/* Repeat for some time before giving up. */
3684 				continue;
3685 			} else if (!hsfsts.hsf_status.flcdone) {
3686 				e_dbg("Timeout error - flash cycle did not complete.\n");
3687 				break;
3688 			}
3689 		}
3690 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3691 
3692 	return ret_val;
3693 }
3694 
3695 /**
3696  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
3697  *  @hw: pointer to the HW structure
3698  *  @offset: The offset (in bytes) of the word(s) to write.
3699  *  @words: Size of data to write in words
3700  *  @data: Pointer to the word(s) to write at offset.
3701  *
3702  *  Writes a byte or word to the NVM using the flash access registers.
3703  **/
3704 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3705 				   u16 *data)
3706 {
3707 	struct e1000_nvm_info *nvm = &hw->nvm;
3708 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3709 	u16 i;
3710 
3711 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3712 	    (words == 0)) {
3713 		e_dbg("nvm parameter(s) out of bounds\n");
3714 		return -E1000_ERR_NVM;
3715 	}
3716 
3717 	nvm->ops.acquire(hw);
3718 
3719 	for (i = 0; i < words; i++) {
3720 		dev_spec->shadow_ram[offset + i].modified = true;
3721 		dev_spec->shadow_ram[offset + i].value = data[i];
3722 	}
3723 
3724 	nvm->ops.release(hw);
3725 
3726 	return 0;
3727 }
3728 
3729 /**
3730  *  e1000_update_nvm_checksum_spt - Update the checksum for NVM
3731  *  @hw: pointer to the HW structure
3732  *
3733  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3734  *  which writes the checksum to the shadow ram.  The changes in the shadow
3735  *  ram are then committed to the EEPROM by processing each bank at a time
3736  *  checking for the modified bit and writing only the pending changes.
3737  *  After a successful commit, the shadow ram is cleared and is ready for
3738  *  future writes.
3739  **/
3740 static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
3741 {
3742 	struct e1000_nvm_info *nvm = &hw->nvm;
3743 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3744 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3745 	s32 ret_val;
3746 	u32 dword = 0;
3747 
3748 	ret_val = e1000e_update_nvm_checksum_generic(hw);
3749 	if (ret_val)
3750 		goto out;
3751 
3752 	if (nvm->type != e1000_nvm_flash_sw)
3753 		goto out;
3754 
3755 	nvm->ops.acquire(hw);
3756 
3757 	/* We're writing to the opposite bank so if we're on bank 1,
3758 	 * write to bank 0 etc.  We also need to erase the segment that
3759 	 * is going to be written
3760 	 */
3761 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3762 	if (ret_val) {
3763 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3764 		bank = 0;
3765 	}
3766 
3767 	if (bank == 0) {
3768 		new_bank_offset = nvm->flash_bank_size;
3769 		old_bank_offset = 0;
3770 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3771 		if (ret_val)
3772 			goto release;
3773 	} else {
3774 		old_bank_offset = nvm->flash_bank_size;
3775 		new_bank_offset = 0;
3776 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3777 		if (ret_val)
3778 			goto release;
3779 	}
3780 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) {
3781 		/* Determine whether to write the value stored
3782 		 * in the other NVM bank or a modified value stored
3783 		 * in the shadow RAM
3784 		 */
3785 		ret_val = e1000_read_flash_dword_ich8lan(hw,
3786 							 i + old_bank_offset,
3787 							 &dword);
3788 
3789 		if (dev_spec->shadow_ram[i].modified) {
3790 			dword &= 0xffff0000;
3791 			dword |= (dev_spec->shadow_ram[i].value & 0xffff);
3792 		}
3793 		if (dev_spec->shadow_ram[i + 1].modified) {
3794 			dword &= 0x0000ffff;
3795 			dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
3796 				  << 16);
3797 		}
3798 		if (ret_val)
3799 			break;
3800 
3801 		/* If the word is 0x13, then make sure the signature bits
3802 		 * (15:14) are 11b until the commit has completed.
3803 		 * This will allow us to write 10b which indicates the
3804 		 * signature is valid.  We want to do this after the write
3805 		 * has completed so that we don't mark the segment valid
3806 		 * while the write is still in progress
3807 		 */
3808 		if (i == E1000_ICH_NVM_SIG_WORD - 1)
3809 			dword |= E1000_ICH_NVM_SIG_MASK << 16;
3810 
3811 		/* Convert offset to bytes. */
3812 		act_offset = (i + new_bank_offset) << 1;
3813 
3814 		usleep_range(100, 200);
3815 
3816 		/* Write the data to the new bank. Offset in words */
3817 		act_offset = i + new_bank_offset;
3818 		ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
3819 								dword);
3820 		if (ret_val)
3821 			break;
3822 	}
3823 
3824 	/* Don't bother writing the segment valid bits if sector
3825 	 * programming failed.
3826 	 */
3827 	if (ret_val) {
3828 		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3829 		e_dbg("Flash commit failed.\n");
3830 		goto release;
3831 	}
3832 
3833 	/* Finally validate the new segment by setting bit 15:14
3834 	 * to 10b in word 0x13 , this can be done without an
3835 	 * erase as well since these bits are 11 to start with
3836 	 * and we need to change bit 14 to 0b
3837 	 */
3838 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3839 
3840 	/*offset in words but we read dword */
3841 	--act_offset;
3842 	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3843 
3844 	if (ret_val)
3845 		goto release;
3846 
3847 	dword &= 0xBFFFFFFF;
3848 	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3849 
3850 	if (ret_val)
3851 		goto release;
3852 
3853 	/* And invalidate the previously valid segment by setting
3854 	 * its signature word (0x13) high_byte to 0b. This can be
3855 	 * done without an erase because flash erase sets all bits
3856 	 * to 1's. We can write 1's to 0's without an erase
3857 	 */
3858 	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
3859 
3860 	/* offset in words but we read dword */
3861 	act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
3862 	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3863 
3864 	if (ret_val)
3865 		goto release;
3866 
3867 	dword &= 0x00FFFFFF;
3868 	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3869 
3870 	if (ret_val)
3871 		goto release;
3872 
3873 	/* Great!  Everything worked, we can now clear the cached entries. */
3874 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3875 		dev_spec->shadow_ram[i].modified = false;
3876 		dev_spec->shadow_ram[i].value = 0xFFFF;
3877 	}
3878 
3879 release:
3880 	nvm->ops.release(hw);
3881 
3882 	/* Reload the EEPROM, or else modifications will not appear
3883 	 * until after the next adapter reset.
3884 	 */
3885 	if (!ret_val) {
3886 		nvm->ops.reload(hw);
3887 		usleep_range(10000, 20000);
3888 	}
3889 
3890 out:
3891 	if (ret_val)
3892 		e_dbg("NVM update error: %d\n", ret_val);
3893 
3894 	return ret_val;
3895 }
3896 
3897 /**
3898  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3899  *  @hw: pointer to the HW structure
3900  *
3901  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3902  *  which writes the checksum to the shadow ram.  The changes in the shadow
3903  *  ram are then committed to the EEPROM by processing each bank at a time
3904  *  checking for the modified bit and writing only the pending changes.
3905  *  After a successful commit, the shadow ram is cleared and is ready for
3906  *  future writes.
3907  **/
3908 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
3909 {
3910 	struct e1000_nvm_info *nvm = &hw->nvm;
3911 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3912 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3913 	s32 ret_val;
3914 	u16 data = 0;
3915 
3916 	ret_val = e1000e_update_nvm_checksum_generic(hw);
3917 	if (ret_val)
3918 		goto out;
3919 
3920 	if (nvm->type != e1000_nvm_flash_sw)
3921 		goto out;
3922 
3923 	nvm->ops.acquire(hw);
3924 
3925 	/* We're writing to the opposite bank so if we're on bank 1,
3926 	 * write to bank 0 etc.  We also need to erase the segment that
3927 	 * is going to be written
3928 	 */
3929 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3930 	if (ret_val) {
3931 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3932 		bank = 0;
3933 	}
3934 
3935 	if (bank == 0) {
3936 		new_bank_offset = nvm->flash_bank_size;
3937 		old_bank_offset = 0;
3938 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3939 		if (ret_val)
3940 			goto release;
3941 	} else {
3942 		old_bank_offset = nvm->flash_bank_size;
3943 		new_bank_offset = 0;
3944 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3945 		if (ret_val)
3946 			goto release;
3947 	}
3948 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3949 		if (dev_spec->shadow_ram[i].modified) {
3950 			data = dev_spec->shadow_ram[i].value;
3951 		} else {
3952 			ret_val = e1000_read_flash_word_ich8lan(hw, i +
3953 								old_bank_offset,
3954 								&data);
3955 			if (ret_val)
3956 				break;
3957 		}
3958 
3959 		/* If the word is 0x13, then make sure the signature bits
3960 		 * (15:14) are 11b until the commit has completed.
3961 		 * This will allow us to write 10b which indicates the
3962 		 * signature is valid.  We want to do this after the write
3963 		 * has completed so that we don't mark the segment valid
3964 		 * while the write is still in progress
3965 		 */
3966 		if (i == E1000_ICH_NVM_SIG_WORD)
3967 			data |= E1000_ICH_NVM_SIG_MASK;
3968 
3969 		/* Convert offset to bytes. */
3970 		act_offset = (i + new_bank_offset) << 1;
3971 
3972 		usleep_range(100, 200);
3973 		/* Write the bytes to the new bank. */
3974 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3975 							       act_offset,
3976 							       (u8)data);
3977 		if (ret_val)
3978 			break;
3979 
3980 		usleep_range(100, 200);
3981 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3982 							       act_offset + 1,
3983 							       (u8)(data >> 8));
3984 		if (ret_val)
3985 			break;
3986 	}
3987 
3988 	/* Don't bother writing the segment valid bits if sector
3989 	 * programming failed.
3990 	 */
3991 	if (ret_val) {
3992 		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3993 		e_dbg("Flash commit failed.\n");
3994 		goto release;
3995 	}
3996 
3997 	/* Finally validate the new segment by setting bit 15:14
3998 	 * to 10b in word 0x13 , this can be done without an
3999 	 * erase as well since these bits are 11 to start with
4000 	 * and we need to change bit 14 to 0b
4001 	 */
4002 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4003 	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
4004 	if (ret_val)
4005 		goto release;
4006 
4007 	data &= 0xBFFF;
4008 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4009 						       act_offset * 2 + 1,
4010 						       (u8)(data >> 8));
4011 	if (ret_val)
4012 		goto release;
4013 
4014 	/* And invalidate the previously valid segment by setting
4015 	 * its signature word (0x13) high_byte to 0b. This can be
4016 	 * done without an erase because flash erase sets all bits
4017 	 * to 1's. We can write 1's to 0's without an erase
4018 	 */
4019 	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4020 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
4021 	if (ret_val)
4022 		goto release;
4023 
4024 	/* Great!  Everything worked, we can now clear the cached entries. */
4025 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4026 		dev_spec->shadow_ram[i].modified = false;
4027 		dev_spec->shadow_ram[i].value = 0xFFFF;
4028 	}
4029 
4030 release:
4031 	nvm->ops.release(hw);
4032 
4033 	/* Reload the EEPROM, or else modifications will not appear
4034 	 * until after the next adapter reset.
4035 	 */
4036 	if (!ret_val) {
4037 		nvm->ops.reload(hw);
4038 		usleep_range(10000, 20000);
4039 	}
4040 
4041 out:
4042 	if (ret_val)
4043 		e_dbg("NVM update error: %d\n", ret_val);
4044 
4045 	return ret_val;
4046 }
4047 
4048 /**
4049  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4050  *  @hw: pointer to the HW structure
4051  *
4052  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4053  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
4054  *  calculated, in which case we need to calculate the checksum and set bit 6.
4055  **/
4056 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4057 {
4058 	s32 ret_val;
4059 	u16 data;
4060 	u16 word;
4061 	u16 valid_csum_mask;
4062 
4063 	/* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
4064 	 * the checksum needs to be fixed.  This bit is an indication that
4065 	 * the NVM was prepared by OEM software and did not calculate
4066 	 * the checksum...a likely scenario.
4067 	 */
4068 	switch (hw->mac.type) {
4069 	case e1000_pch_lpt:
4070 	case e1000_pch_spt:
4071 		word = NVM_COMPAT;
4072 		valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4073 		break;
4074 	default:
4075 		word = NVM_FUTURE_INIT_WORD1;
4076 		valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4077 		break;
4078 	}
4079 
4080 	ret_val = e1000_read_nvm(hw, word, 1, &data);
4081 	if (ret_val)
4082 		return ret_val;
4083 
4084 	if (!(data & valid_csum_mask)) {
4085 		data |= valid_csum_mask;
4086 		ret_val = e1000_write_nvm(hw, word, 1, &data);
4087 		if (ret_val)
4088 			return ret_val;
4089 		ret_val = e1000e_update_nvm_checksum(hw);
4090 		if (ret_val)
4091 			return ret_val;
4092 	}
4093 
4094 	return e1000e_validate_nvm_checksum_generic(hw);
4095 }
4096 
4097 /**
4098  *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
4099  *  @hw: pointer to the HW structure
4100  *
4101  *  To prevent malicious write/erase of the NVM, set it to be read-only
4102  *  so that the hardware ignores all write/erase cycles of the NVM via
4103  *  the flash control registers.  The shadow-ram copy of the NVM will
4104  *  still be updated, however any updates to this copy will not stick
4105  *  across driver reloads.
4106  **/
4107 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
4108 {
4109 	struct e1000_nvm_info *nvm = &hw->nvm;
4110 	union ich8_flash_protected_range pr0;
4111 	union ich8_hws_flash_status hsfsts;
4112 	u32 gfpreg;
4113 
4114 	nvm->ops.acquire(hw);
4115 
4116 	gfpreg = er32flash(ICH_FLASH_GFPREG);
4117 
4118 	/* Write-protect GbE Sector of NVM */
4119 	pr0.regval = er32flash(ICH_FLASH_PR0);
4120 	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
4121 	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
4122 	pr0.range.wpe = true;
4123 	ew32flash(ICH_FLASH_PR0, pr0.regval);
4124 
4125 	/* Lock down a subset of GbE Flash Control Registers, e.g.
4126 	 * PR0 to prevent the write-protection from being lifted.
4127 	 * Once FLOCKDN is set, the registers protected by it cannot
4128 	 * be written until FLOCKDN is cleared by a hardware reset.
4129 	 */
4130 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4131 	hsfsts.hsf_status.flockdn = true;
4132 	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
4133 
4134 	nvm->ops.release(hw);
4135 }
4136 
4137 /**
4138  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4139  *  @hw: pointer to the HW structure
4140  *  @offset: The offset (in bytes) of the byte/word to read.
4141  *  @size: Size of data to read, 1=byte 2=word
4142  *  @data: The byte(s) to write to the NVM.
4143  *
4144  *  Writes one/two bytes to the NVM using the flash access registers.
4145  **/
4146 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4147 					  u8 size, u16 data)
4148 {
4149 	union ich8_hws_flash_status hsfsts;
4150 	union ich8_hws_flash_ctrl hsflctl;
4151 	u32 flash_linear_addr;
4152 	u32 flash_data = 0;
4153 	s32 ret_val;
4154 	u8 count = 0;
4155 
4156 	if (hw->mac.type == e1000_pch_spt) {
4157 		if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4158 			return -E1000_ERR_NVM;
4159 	} else {
4160 		if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4161 			return -E1000_ERR_NVM;
4162 	}
4163 
4164 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4165 			     hw->nvm.flash_base_addr);
4166 
4167 	do {
4168 		udelay(1);
4169 		/* Steps */
4170 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4171 		if (ret_val)
4172 			break;
4173 		/* In SPT, This register is in Lan memory space, not
4174 		 * flash.  Therefore, only 32 bit access is supported
4175 		 */
4176 		if (hw->mac.type == e1000_pch_spt)
4177 			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
4178 		else
4179 			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4180 
4181 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4182 		hsflctl.hsf_ctrl.fldbcount = size - 1;
4183 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4184 		/* In SPT, This register is in Lan memory space,
4185 		 * not flash.  Therefore, only 32 bit access is
4186 		 * supported
4187 		 */
4188 		if (hw->mac.type == e1000_pch_spt)
4189 			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4190 		else
4191 			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4192 
4193 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4194 
4195 		if (size == 1)
4196 			flash_data = (u32)data & 0x00FF;
4197 		else
4198 			flash_data = (u32)data;
4199 
4200 		ew32flash(ICH_FLASH_FDATA0, flash_data);
4201 
4202 		/* check if FCERR is set to 1 , if set to 1, clear it
4203 		 * and try the whole sequence a few more times else done
4204 		 */
4205 		ret_val =
4206 		    e1000_flash_cycle_ich8lan(hw,
4207 					      ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4208 		if (!ret_val)
4209 			break;
4210 
4211 		/* If we're here, then things are most likely
4212 		 * completely hosed, but if the error condition
4213 		 * is detected, it won't hurt to give it another
4214 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4215 		 */
4216 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4217 		if (hsfsts.hsf_status.flcerr)
4218 			/* Repeat for some time before giving up. */
4219 			continue;
4220 		if (!hsfsts.hsf_status.flcdone) {
4221 			e_dbg("Timeout error - flash cycle did not complete.\n");
4222 			break;
4223 		}
4224 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4225 
4226 	return ret_val;
4227 }
4228 
4229 /**
4230 *  e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4231 *  @hw: pointer to the HW structure
4232 *  @offset: The offset (in bytes) of the dwords to read.
4233 *  @data: The 4 bytes to write to the NVM.
4234 *
4235 *  Writes one/two/four bytes to the NVM using the flash access registers.
4236 **/
4237 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4238 					    u32 data)
4239 {
4240 	union ich8_hws_flash_status hsfsts;
4241 	union ich8_hws_flash_ctrl hsflctl;
4242 	u32 flash_linear_addr;
4243 	s32 ret_val;
4244 	u8 count = 0;
4245 
4246 	if (hw->mac.type == e1000_pch_spt) {
4247 		if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4248 			return -E1000_ERR_NVM;
4249 	}
4250 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4251 			     hw->nvm.flash_base_addr);
4252 	do {
4253 		udelay(1);
4254 		/* Steps */
4255 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4256 		if (ret_val)
4257 			break;
4258 
4259 		/* In SPT, This register is in Lan memory space, not
4260 		 * flash.  Therefore, only 32 bit access is supported
4261 		 */
4262 		if (hw->mac.type == e1000_pch_spt)
4263 			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS)
4264 			    >> 16;
4265 		else
4266 			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4267 
4268 		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4269 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4270 
4271 		/* In SPT, This register is in Lan memory space,
4272 		 * not flash.  Therefore, only 32 bit access is
4273 		 * supported
4274 		 */
4275 		if (hw->mac.type == e1000_pch_spt)
4276 			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4277 		else
4278 			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4279 
4280 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4281 
4282 		ew32flash(ICH_FLASH_FDATA0, data);
4283 
4284 		/* check if FCERR is set to 1 , if set to 1, clear it
4285 		 * and try the whole sequence a few more times else done
4286 		 */
4287 		ret_val =
4288 		   e1000_flash_cycle_ich8lan(hw,
4289 					     ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4290 
4291 		if (!ret_val)
4292 			break;
4293 
4294 		/* If we're here, then things are most likely
4295 		 * completely hosed, but if the error condition
4296 		 * is detected, it won't hurt to give it another
4297 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4298 		 */
4299 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4300 
4301 		if (hsfsts.hsf_status.flcerr)
4302 			/* Repeat for some time before giving up. */
4303 			continue;
4304 		if (!hsfsts.hsf_status.flcdone) {
4305 			e_dbg("Timeout error - flash cycle did not complete.\n");
4306 			break;
4307 		}
4308 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4309 
4310 	return ret_val;
4311 }
4312 
4313 /**
4314  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4315  *  @hw: pointer to the HW structure
4316  *  @offset: The index of the byte to read.
4317  *  @data: The byte to write to the NVM.
4318  *
4319  *  Writes a single byte to the NVM using the flash access registers.
4320  **/
4321 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4322 					  u8 data)
4323 {
4324 	u16 word = (u16)data;
4325 
4326 	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4327 }
4328 
4329 /**
4330 *  e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4331 *  @hw: pointer to the HW structure
4332 *  @offset: The offset of the word to write.
4333 *  @dword: The dword to write to the NVM.
4334 *
4335 *  Writes a single dword to the NVM using the flash access registers.
4336 *  Goes through a retry algorithm before giving up.
4337 **/
4338 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4339 						 u32 offset, u32 dword)
4340 {
4341 	s32 ret_val;
4342 	u16 program_retries;
4343 
4344 	/* Must convert word offset into bytes. */
4345 	offset <<= 1;
4346 	ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4347 
4348 	if (!ret_val)
4349 		return ret_val;
4350 	for (program_retries = 0; program_retries < 100; program_retries++) {
4351 		e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset);
4352 		usleep_range(100, 200);
4353 		ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4354 		if (!ret_val)
4355 			break;
4356 	}
4357 	if (program_retries == 100)
4358 		return -E1000_ERR_NVM;
4359 
4360 	return 0;
4361 }
4362 
4363 /**
4364  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4365  *  @hw: pointer to the HW structure
4366  *  @offset: The offset of the byte to write.
4367  *  @byte: The byte to write to the NVM.
4368  *
4369  *  Writes a single byte to the NVM using the flash access registers.
4370  *  Goes through a retry algorithm before giving up.
4371  **/
4372 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4373 						u32 offset, u8 byte)
4374 {
4375 	s32 ret_val;
4376 	u16 program_retries;
4377 
4378 	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4379 	if (!ret_val)
4380 		return ret_val;
4381 
4382 	for (program_retries = 0; program_retries < 100; program_retries++) {
4383 		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
4384 		usleep_range(100, 200);
4385 		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4386 		if (!ret_val)
4387 			break;
4388 	}
4389 	if (program_retries == 100)
4390 		return -E1000_ERR_NVM;
4391 
4392 	return 0;
4393 }
4394 
4395 /**
4396  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4397  *  @hw: pointer to the HW structure
4398  *  @bank: 0 for first bank, 1 for second bank, etc.
4399  *
4400  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4401  *  bank N is 4096 * N + flash_reg_addr.
4402  **/
4403 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4404 {
4405 	struct e1000_nvm_info *nvm = &hw->nvm;
4406 	union ich8_hws_flash_status hsfsts;
4407 	union ich8_hws_flash_ctrl hsflctl;
4408 	u32 flash_linear_addr;
4409 	/* bank size is in 16bit words - adjust to bytes */
4410 	u32 flash_bank_size = nvm->flash_bank_size * 2;
4411 	s32 ret_val;
4412 	s32 count = 0;
4413 	s32 j, iteration, sector_size;
4414 
4415 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4416 
4417 	/* Determine HW Sector size: Read BERASE bits of hw flash status
4418 	 * register
4419 	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
4420 	 *     consecutive sectors.  The start index for the nth Hw sector
4421 	 *     can be calculated as = bank * 4096 + n * 256
4422 	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4423 	 *     The start index for the nth Hw sector can be calculated
4424 	 *     as = bank * 4096
4425 	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4426 	 *     (ich9 only, otherwise error condition)
4427 	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4428 	 */
4429 	switch (hsfsts.hsf_status.berasesz) {
4430 	case 0:
4431 		/* Hw sector size 256 */
4432 		sector_size = ICH_FLASH_SEG_SIZE_256;
4433 		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4434 		break;
4435 	case 1:
4436 		sector_size = ICH_FLASH_SEG_SIZE_4K;
4437 		iteration = 1;
4438 		break;
4439 	case 2:
4440 		sector_size = ICH_FLASH_SEG_SIZE_8K;
4441 		iteration = 1;
4442 		break;
4443 	case 3:
4444 		sector_size = ICH_FLASH_SEG_SIZE_64K;
4445 		iteration = 1;
4446 		break;
4447 	default:
4448 		return -E1000_ERR_NVM;
4449 	}
4450 
4451 	/* Start with the base address, then add the sector offset. */
4452 	flash_linear_addr = hw->nvm.flash_base_addr;
4453 	flash_linear_addr += (bank) ? flash_bank_size : 0;
4454 
4455 	for (j = 0; j < iteration; j++) {
4456 		do {
4457 			u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4458 
4459 			/* Steps */
4460 			ret_val = e1000_flash_cycle_init_ich8lan(hw);
4461 			if (ret_val)
4462 				return ret_val;
4463 
4464 			/* Write a value 11 (block Erase) in Flash
4465 			 * Cycle field in hw flash control
4466 			 */
4467 			if (hw->mac.type == e1000_pch_spt)
4468 				hsflctl.regval =
4469 				    er32flash(ICH_FLASH_HSFSTS) >> 16;
4470 			else
4471 				hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4472 
4473 			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4474 			if (hw->mac.type == e1000_pch_spt)
4475 				ew32flash(ICH_FLASH_HSFSTS,
4476 					  hsflctl.regval << 16);
4477 			else
4478 				ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4479 
4480 			/* Write the last 24 bits of an index within the
4481 			 * block into Flash Linear address field in Flash
4482 			 * Address.
4483 			 */
4484 			flash_linear_addr += (j * sector_size);
4485 			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4486 
4487 			ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4488 			if (!ret_val)
4489 				break;
4490 
4491 			/* Check if FCERR is set to 1.  If 1,
4492 			 * clear it and try the whole sequence
4493 			 * a few more times else Done
4494 			 */
4495 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4496 			if (hsfsts.hsf_status.flcerr)
4497 				/* repeat for some time before giving up */
4498 				continue;
4499 			else if (!hsfsts.hsf_status.flcdone)
4500 				return ret_val;
4501 		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4502 	}
4503 
4504 	return 0;
4505 }
4506 
4507 /**
4508  *  e1000_valid_led_default_ich8lan - Set the default LED settings
4509  *  @hw: pointer to the HW structure
4510  *  @data: Pointer to the LED settings
4511  *
4512  *  Reads the LED default settings from the NVM to data.  If the NVM LED
4513  *  settings is all 0's or F's, set the LED default to a valid LED default
4514  *  setting.
4515  **/
4516 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4517 {
4518 	s32 ret_val;
4519 
4520 	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
4521 	if (ret_val) {
4522 		e_dbg("NVM Read Error\n");
4523 		return ret_val;
4524 	}
4525 
4526 	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4527 		*data = ID_LED_DEFAULT_ICH8LAN;
4528 
4529 	return 0;
4530 }
4531 
4532 /**
4533  *  e1000_id_led_init_pchlan - store LED configurations
4534  *  @hw: pointer to the HW structure
4535  *
4536  *  PCH does not control LEDs via the LEDCTL register, rather it uses
4537  *  the PHY LED configuration register.
4538  *
4539  *  PCH also does not have an "always on" or "always off" mode which
4540  *  complicates the ID feature.  Instead of using the "on" mode to indicate
4541  *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
4542  *  use "link_up" mode.  The LEDs will still ID on request if there is no
4543  *  link based on logic in e1000_led_[on|off]_pchlan().
4544  **/
4545 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4546 {
4547 	struct e1000_mac_info *mac = &hw->mac;
4548 	s32 ret_val;
4549 	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4550 	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4551 	u16 data, i, temp, shift;
4552 
4553 	/* Get default ID LED modes */
4554 	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4555 	if (ret_val)
4556 		return ret_val;
4557 
4558 	mac->ledctl_default = er32(LEDCTL);
4559 	mac->ledctl_mode1 = mac->ledctl_default;
4560 	mac->ledctl_mode2 = mac->ledctl_default;
4561 
4562 	for (i = 0; i < 4; i++) {
4563 		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4564 		shift = (i * 5);
4565 		switch (temp) {
4566 		case ID_LED_ON1_DEF2:
4567 		case ID_LED_ON1_ON2:
4568 		case ID_LED_ON1_OFF2:
4569 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4570 			mac->ledctl_mode1 |= (ledctl_on << shift);
4571 			break;
4572 		case ID_LED_OFF1_DEF2:
4573 		case ID_LED_OFF1_ON2:
4574 		case ID_LED_OFF1_OFF2:
4575 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4576 			mac->ledctl_mode1 |= (ledctl_off << shift);
4577 			break;
4578 		default:
4579 			/* Do nothing */
4580 			break;
4581 		}
4582 		switch (temp) {
4583 		case ID_LED_DEF1_ON2:
4584 		case ID_LED_ON1_ON2:
4585 		case ID_LED_OFF1_ON2:
4586 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4587 			mac->ledctl_mode2 |= (ledctl_on << shift);
4588 			break;
4589 		case ID_LED_DEF1_OFF2:
4590 		case ID_LED_ON1_OFF2:
4591 		case ID_LED_OFF1_OFF2:
4592 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4593 			mac->ledctl_mode2 |= (ledctl_off << shift);
4594 			break;
4595 		default:
4596 			/* Do nothing */
4597 			break;
4598 		}
4599 	}
4600 
4601 	return 0;
4602 }
4603 
4604 /**
4605  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4606  *  @hw: pointer to the HW structure
4607  *
4608  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4609  *  register, so the the bus width is hard coded.
4610  **/
4611 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4612 {
4613 	struct e1000_bus_info *bus = &hw->bus;
4614 	s32 ret_val;
4615 
4616 	ret_val = e1000e_get_bus_info_pcie(hw);
4617 
4618 	/* ICH devices are "PCI Express"-ish.  They have
4619 	 * a configuration space, but do not contain
4620 	 * PCI Express Capability registers, so bus width
4621 	 * must be hardcoded.
4622 	 */
4623 	if (bus->width == e1000_bus_width_unknown)
4624 		bus->width = e1000_bus_width_pcie_x1;
4625 
4626 	return ret_val;
4627 }
4628 
4629 /**
4630  *  e1000_reset_hw_ich8lan - Reset the hardware
4631  *  @hw: pointer to the HW structure
4632  *
4633  *  Does a full reset of the hardware which includes a reset of the PHY and
4634  *  MAC.
4635  **/
4636 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4637 {
4638 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4639 	u16 kum_cfg;
4640 	u32 ctrl, reg;
4641 	s32 ret_val;
4642 
4643 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
4644 	 * on the last TLP read/write transaction when MAC is reset.
4645 	 */
4646 	ret_val = e1000e_disable_pcie_master(hw);
4647 	if (ret_val)
4648 		e_dbg("PCI-E Master disable polling has failed.\n");
4649 
4650 	e_dbg("Masking off all interrupts\n");
4651 	ew32(IMC, 0xffffffff);
4652 
4653 	/* Disable the Transmit and Receive units.  Then delay to allow
4654 	 * any pending transactions to complete before we hit the MAC
4655 	 * with the global reset.
4656 	 */
4657 	ew32(RCTL, 0);
4658 	ew32(TCTL, E1000_TCTL_PSP);
4659 	e1e_flush();
4660 
4661 	usleep_range(10000, 20000);
4662 
4663 	/* Workaround for ICH8 bit corruption issue in FIFO memory */
4664 	if (hw->mac.type == e1000_ich8lan) {
4665 		/* Set Tx and Rx buffer allocation to 8k apiece. */
4666 		ew32(PBA, E1000_PBA_8K);
4667 		/* Set Packet Buffer Size to 16k. */
4668 		ew32(PBS, E1000_PBS_16K);
4669 	}
4670 
4671 	if (hw->mac.type == e1000_pchlan) {
4672 		/* Save the NVM K1 bit setting */
4673 		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4674 		if (ret_val)
4675 			return ret_val;
4676 
4677 		if (kum_cfg & E1000_NVM_K1_ENABLE)
4678 			dev_spec->nvm_k1_enabled = true;
4679 		else
4680 			dev_spec->nvm_k1_enabled = false;
4681 	}
4682 
4683 	ctrl = er32(CTRL);
4684 
4685 	if (!hw->phy.ops.check_reset_block(hw)) {
4686 		/* Full-chip reset requires MAC and PHY reset at the same
4687 		 * time to make sure the interface between MAC and the
4688 		 * external PHY is reset.
4689 		 */
4690 		ctrl |= E1000_CTRL_PHY_RST;
4691 
4692 		/* Gate automatic PHY configuration by hardware on
4693 		 * non-managed 82579
4694 		 */
4695 		if ((hw->mac.type == e1000_pch2lan) &&
4696 		    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
4697 			e1000_gate_hw_phy_config_ich8lan(hw, true);
4698 	}
4699 	ret_val = e1000_acquire_swflag_ich8lan(hw);
4700 	e_dbg("Issuing a global reset to ich8lan\n");
4701 	ew32(CTRL, (ctrl | E1000_CTRL_RST));
4702 	/* cannot issue a flush here because it hangs the hardware */
4703 	msleep(20);
4704 
4705 	/* Set Phy Config Counter to 50msec */
4706 	if (hw->mac.type == e1000_pch2lan) {
4707 		reg = er32(FEXTNVM3);
4708 		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4709 		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4710 		ew32(FEXTNVM3, reg);
4711 	}
4712 
4713 	if (!ret_val)
4714 		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
4715 
4716 	if (ctrl & E1000_CTRL_PHY_RST) {
4717 		ret_val = hw->phy.ops.get_cfg_done(hw);
4718 		if (ret_val)
4719 			return ret_val;
4720 
4721 		ret_val = e1000_post_phy_reset_ich8lan(hw);
4722 		if (ret_val)
4723 			return ret_val;
4724 	}
4725 
4726 	/* For PCH, this write will make sure that any noise
4727 	 * will be detected as a CRC error and be dropped rather than show up
4728 	 * as a bad packet to the DMA engine.
4729 	 */
4730 	if (hw->mac.type == e1000_pchlan)
4731 		ew32(CRC_OFFSET, 0x65656565);
4732 
4733 	ew32(IMC, 0xffffffff);
4734 	er32(ICR);
4735 
4736 	reg = er32(KABGTXD);
4737 	reg |= E1000_KABGTXD_BGSQLBIAS;
4738 	ew32(KABGTXD, reg);
4739 
4740 	return 0;
4741 }
4742 
4743 /**
4744  *  e1000_init_hw_ich8lan - Initialize the hardware
4745  *  @hw: pointer to the HW structure
4746  *
4747  *  Prepares the hardware for transmit and receive by doing the following:
4748  *   - initialize hardware bits
4749  *   - initialize LED identification
4750  *   - setup receive address registers
4751  *   - setup flow control
4752  *   - setup transmit descriptors
4753  *   - clear statistics
4754  **/
4755 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4756 {
4757 	struct e1000_mac_info *mac = &hw->mac;
4758 	u32 ctrl_ext, txdctl, snoop;
4759 	s32 ret_val;
4760 	u16 i;
4761 
4762 	e1000_initialize_hw_bits_ich8lan(hw);
4763 
4764 	/* Initialize identification LED */
4765 	ret_val = mac->ops.id_led_init(hw);
4766 	/* An error is not fatal and we should not stop init due to this */
4767 	if (ret_val)
4768 		e_dbg("Error initializing identification LED\n");
4769 
4770 	/* Setup the receive address. */
4771 	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
4772 
4773 	/* Zero out the Multicast HASH table */
4774 	e_dbg("Zeroing the MTA\n");
4775 	for (i = 0; i < mac->mta_reg_count; i++)
4776 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4777 
4778 	/* The 82578 Rx buffer will stall if wakeup is enabled in host and
4779 	 * the ME.  Disable wakeup by clearing the host wakeup bit.
4780 	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
4781 	 */
4782 	if (hw->phy.type == e1000_phy_82578) {
4783 		e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4784 		i &= ~BM_WUC_HOST_WU_BIT;
4785 		e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4786 		ret_val = e1000_phy_hw_reset_ich8lan(hw);
4787 		if (ret_val)
4788 			return ret_val;
4789 	}
4790 
4791 	/* Setup link and flow control */
4792 	ret_val = mac->ops.setup_link(hw);
4793 
4794 	/* Set the transmit descriptor write-back policy for both queues */
4795 	txdctl = er32(TXDCTL(0));
4796 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4797 		  E1000_TXDCTL_FULL_TX_DESC_WB);
4798 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4799 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4800 	ew32(TXDCTL(0), txdctl);
4801 	txdctl = er32(TXDCTL(1));
4802 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4803 		  E1000_TXDCTL_FULL_TX_DESC_WB);
4804 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4805 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4806 	ew32(TXDCTL(1), txdctl);
4807 
4808 	/* ICH8 has opposite polarity of no_snoop bits.
4809 	 * By default, we should use snoop behavior.
4810 	 */
4811 	if (mac->type == e1000_ich8lan)
4812 		snoop = PCIE_ICH8_SNOOP_ALL;
4813 	else
4814 		snoop = (u32)~(PCIE_NO_SNOOP_ALL);
4815 	e1000e_set_pcie_no_snoop(hw, snoop);
4816 
4817 	ctrl_ext = er32(CTRL_EXT);
4818 	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4819 	ew32(CTRL_EXT, ctrl_ext);
4820 
4821 	/* Clear all of the statistics registers (clear on read).  It is
4822 	 * important that we do this after we have tried to establish link
4823 	 * because the symbol error count will increment wildly if there
4824 	 * is no link.
4825 	 */
4826 	e1000_clear_hw_cntrs_ich8lan(hw);
4827 
4828 	return ret_val;
4829 }
4830 
4831 /**
4832  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4833  *  @hw: pointer to the HW structure
4834  *
4835  *  Sets/Clears required hardware bits necessary for correctly setting up the
4836  *  hardware for transmit and receive.
4837  **/
4838 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4839 {
4840 	u32 reg;
4841 
4842 	/* Extended Device Control */
4843 	reg = er32(CTRL_EXT);
4844 	reg |= BIT(22);
4845 	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
4846 	if (hw->mac.type >= e1000_pchlan)
4847 		reg |= E1000_CTRL_EXT_PHYPDEN;
4848 	ew32(CTRL_EXT, reg);
4849 
4850 	/* Transmit Descriptor Control 0 */
4851 	reg = er32(TXDCTL(0));
4852 	reg |= BIT(22);
4853 	ew32(TXDCTL(0), reg);
4854 
4855 	/* Transmit Descriptor Control 1 */
4856 	reg = er32(TXDCTL(1));
4857 	reg |= BIT(22);
4858 	ew32(TXDCTL(1), reg);
4859 
4860 	/* Transmit Arbitration Control 0 */
4861 	reg = er32(TARC(0));
4862 	if (hw->mac.type == e1000_ich8lan)
4863 		reg |= BIT(28) | BIT(29);
4864 	reg |= BIT(23) | BIT(24) | BIT(26) | BIT(27);
4865 	ew32(TARC(0), reg);
4866 
4867 	/* Transmit Arbitration Control 1 */
4868 	reg = er32(TARC(1));
4869 	if (er32(TCTL) & E1000_TCTL_MULR)
4870 		reg &= ~BIT(28);
4871 	else
4872 		reg |= BIT(28);
4873 	reg |= BIT(24) | BIT(26) | BIT(30);
4874 	ew32(TARC(1), reg);
4875 
4876 	/* Device Status */
4877 	if (hw->mac.type == e1000_ich8lan) {
4878 		reg = er32(STATUS);
4879 		reg &= ~BIT(31);
4880 		ew32(STATUS, reg);
4881 	}
4882 
4883 	/* work-around descriptor data corruption issue during nfs v2 udp
4884 	 * traffic, just disable the nfs filtering capability
4885 	 */
4886 	reg = er32(RFCTL);
4887 	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
4888 
4889 	/* Disable IPv6 extension header parsing because some malformed
4890 	 * IPv6 headers can hang the Rx.
4891 	 */
4892 	if (hw->mac.type == e1000_ich8lan)
4893 		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
4894 	ew32(RFCTL, reg);
4895 
4896 	/* Enable ECC on Lynxpoint */
4897 	if ((hw->mac.type == e1000_pch_lpt) ||
4898 	    (hw->mac.type == e1000_pch_spt)) {
4899 		reg = er32(PBECCSTS);
4900 		reg |= E1000_PBECCSTS_ECC_ENABLE;
4901 		ew32(PBECCSTS, reg);
4902 
4903 		reg = er32(CTRL);
4904 		reg |= E1000_CTRL_MEHE;
4905 		ew32(CTRL, reg);
4906 	}
4907 }
4908 
4909 /**
4910  *  e1000_setup_link_ich8lan - Setup flow control and link settings
4911  *  @hw: pointer to the HW structure
4912  *
4913  *  Determines which flow control settings to use, then configures flow
4914  *  control.  Calls the appropriate media-specific link configuration
4915  *  function.  Assuming the adapter has a valid link partner, a valid link
4916  *  should be established.  Assumes the hardware has previously been reset
4917  *  and the transmitter and receiver are not enabled.
4918  **/
4919 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
4920 {
4921 	s32 ret_val;
4922 
4923 	if (hw->phy.ops.check_reset_block(hw))
4924 		return 0;
4925 
4926 	/* ICH parts do not have a word in the NVM to determine
4927 	 * the default flow control setting, so we explicitly
4928 	 * set it to full.
4929 	 */
4930 	if (hw->fc.requested_mode == e1000_fc_default) {
4931 		/* Workaround h/w hang when Tx flow control enabled */
4932 		if (hw->mac.type == e1000_pchlan)
4933 			hw->fc.requested_mode = e1000_fc_rx_pause;
4934 		else
4935 			hw->fc.requested_mode = e1000_fc_full;
4936 	}
4937 
4938 	/* Save off the requested flow control mode for use later.  Depending
4939 	 * on the link partner's capabilities, we may or may not use this mode.
4940 	 */
4941 	hw->fc.current_mode = hw->fc.requested_mode;
4942 
4943 	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
4944 
4945 	/* Continue to configure the copper link. */
4946 	ret_val = hw->mac.ops.setup_physical_interface(hw);
4947 	if (ret_val)
4948 		return ret_val;
4949 
4950 	ew32(FCTTV, hw->fc.pause_time);
4951 	if ((hw->phy.type == e1000_phy_82578) ||
4952 	    (hw->phy.type == e1000_phy_82579) ||
4953 	    (hw->phy.type == e1000_phy_i217) ||
4954 	    (hw->phy.type == e1000_phy_82577)) {
4955 		ew32(FCRTV_PCH, hw->fc.refresh_time);
4956 
4957 		ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
4958 				   hw->fc.pause_time);
4959 		if (ret_val)
4960 			return ret_val;
4961 	}
4962 
4963 	return e1000e_set_fc_watermarks(hw);
4964 }
4965 
4966 /**
4967  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
4968  *  @hw: pointer to the HW structure
4969  *
4970  *  Configures the kumeran interface to the PHY to wait the appropriate time
4971  *  when polling the PHY, then call the generic setup_copper_link to finish
4972  *  configuring the copper link.
4973  **/
4974 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
4975 {
4976 	u32 ctrl;
4977 	s32 ret_val;
4978 	u16 reg_data;
4979 
4980 	ctrl = er32(CTRL);
4981 	ctrl |= E1000_CTRL_SLU;
4982 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
4983 	ew32(CTRL, ctrl);
4984 
4985 	/* Set the mac to wait the maximum time between each iteration
4986 	 * and increase the max iterations when polling the phy;
4987 	 * this fixes erroneous timeouts at 10Mbps.
4988 	 */
4989 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
4990 	if (ret_val)
4991 		return ret_val;
4992 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
4993 				       &reg_data);
4994 	if (ret_val)
4995 		return ret_val;
4996 	reg_data |= 0x3F;
4997 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
4998 					reg_data);
4999 	if (ret_val)
5000 		return ret_val;
5001 
5002 	switch (hw->phy.type) {
5003 	case e1000_phy_igp_3:
5004 		ret_val = e1000e_copper_link_setup_igp(hw);
5005 		if (ret_val)
5006 			return ret_val;
5007 		break;
5008 	case e1000_phy_bm:
5009 	case e1000_phy_82578:
5010 		ret_val = e1000e_copper_link_setup_m88(hw);
5011 		if (ret_val)
5012 			return ret_val;
5013 		break;
5014 	case e1000_phy_82577:
5015 	case e1000_phy_82579:
5016 		ret_val = e1000_copper_link_setup_82577(hw);
5017 		if (ret_val)
5018 			return ret_val;
5019 		break;
5020 	case e1000_phy_ife:
5021 		ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
5022 		if (ret_val)
5023 			return ret_val;
5024 
5025 		reg_data &= ~IFE_PMC_AUTO_MDIX;
5026 
5027 		switch (hw->phy.mdix) {
5028 		case 1:
5029 			reg_data &= ~IFE_PMC_FORCE_MDIX;
5030 			break;
5031 		case 2:
5032 			reg_data |= IFE_PMC_FORCE_MDIX;
5033 			break;
5034 		case 0:
5035 		default:
5036 			reg_data |= IFE_PMC_AUTO_MDIX;
5037 			break;
5038 		}
5039 		ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
5040 		if (ret_val)
5041 			return ret_val;
5042 		break;
5043 	default:
5044 		break;
5045 	}
5046 
5047 	return e1000e_setup_copper_link(hw);
5048 }
5049 
5050 /**
5051  *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5052  *  @hw: pointer to the HW structure
5053  *
5054  *  Calls the PHY specific link setup function and then calls the
5055  *  generic setup_copper_link to finish configuring the link for
5056  *  Lynxpoint PCH devices
5057  **/
5058 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5059 {
5060 	u32 ctrl;
5061 	s32 ret_val;
5062 
5063 	ctrl = er32(CTRL);
5064 	ctrl |= E1000_CTRL_SLU;
5065 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5066 	ew32(CTRL, ctrl);
5067 
5068 	ret_val = e1000_copper_link_setup_82577(hw);
5069 	if (ret_val)
5070 		return ret_val;
5071 
5072 	return e1000e_setup_copper_link(hw);
5073 }
5074 
5075 /**
5076  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5077  *  @hw: pointer to the HW structure
5078  *  @speed: pointer to store current link speed
5079  *  @duplex: pointer to store the current link duplex
5080  *
5081  *  Calls the generic get_speed_and_duplex to retrieve the current link
5082  *  information and then calls the Kumeran lock loss workaround for links at
5083  *  gigabit speeds.
5084  **/
5085 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5086 					  u16 *duplex)
5087 {
5088 	s32 ret_val;
5089 
5090 	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
5091 	if (ret_val)
5092 		return ret_val;
5093 
5094 	if ((hw->mac.type == e1000_ich8lan) &&
5095 	    (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
5096 		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5097 	}
5098 
5099 	return ret_val;
5100 }
5101 
5102 /**
5103  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5104  *  @hw: pointer to the HW structure
5105  *
5106  *  Work-around for 82566 Kumeran PCS lock loss:
5107  *  On link status change (i.e. PCI reset, speed change) and link is up and
5108  *  speed is gigabit-
5109  *    0) if workaround is optionally disabled do nothing
5110  *    1) wait 1ms for Kumeran link to come up
5111  *    2) check Kumeran Diagnostic register PCS lock loss bit
5112  *    3) if not set the link is locked (all is good), otherwise...
5113  *    4) reset the PHY
5114  *    5) repeat up to 10 times
5115  *  Note: this is only called for IGP3 copper when speed is 1gb.
5116  **/
5117 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5118 {
5119 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5120 	u32 phy_ctrl;
5121 	s32 ret_val;
5122 	u16 i, data;
5123 	bool link;
5124 
5125 	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5126 		return 0;
5127 
5128 	/* Make sure link is up before proceeding.  If not just return.
5129 	 * Attempting this while link is negotiating fouled up link
5130 	 * stability
5131 	 */
5132 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
5133 	if (!link)
5134 		return 0;
5135 
5136 	for (i = 0; i < 10; i++) {
5137 		/* read once to clear */
5138 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5139 		if (ret_val)
5140 			return ret_val;
5141 		/* and again to get new status */
5142 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5143 		if (ret_val)
5144 			return ret_val;
5145 
5146 		/* check for PCS lock */
5147 		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5148 			return 0;
5149 
5150 		/* Issue PHY reset */
5151 		e1000_phy_hw_reset(hw);
5152 		mdelay(5);
5153 	}
5154 	/* Disable GigE link negotiation */
5155 	phy_ctrl = er32(PHY_CTRL);
5156 	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5157 		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5158 	ew32(PHY_CTRL, phy_ctrl);
5159 
5160 	/* Call gig speed drop workaround on Gig disable before accessing
5161 	 * any PHY registers
5162 	 */
5163 	e1000e_gig_downshift_workaround_ich8lan(hw);
5164 
5165 	/* unable to acquire PCS lock */
5166 	return -E1000_ERR_PHY;
5167 }
5168 
5169 /**
5170  *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5171  *  @hw: pointer to the HW structure
5172  *  @state: boolean value used to set the current Kumeran workaround state
5173  *
5174  *  If ICH8, set the current Kumeran workaround state (enabled - true
5175  *  /disabled - false).
5176  **/
5177 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5178 						  bool state)
5179 {
5180 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5181 
5182 	if (hw->mac.type != e1000_ich8lan) {
5183 		e_dbg("Workaround applies to ICH8 only.\n");
5184 		return;
5185 	}
5186 
5187 	dev_spec->kmrn_lock_loss_workaround_enabled = state;
5188 }
5189 
5190 /**
5191  *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5192  *  @hw: pointer to the HW structure
5193  *
5194  *  Workaround for 82566 power-down on D3 entry:
5195  *    1) disable gigabit link
5196  *    2) write VR power-down enable
5197  *    3) read it back
5198  *  Continue if successful, else issue LCD reset and repeat
5199  **/
5200 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5201 {
5202 	u32 reg;
5203 	u16 data;
5204 	u8 retry = 0;
5205 
5206 	if (hw->phy.type != e1000_phy_igp_3)
5207 		return;
5208 
5209 	/* Try the workaround twice (if needed) */
5210 	do {
5211 		/* Disable link */
5212 		reg = er32(PHY_CTRL);
5213 		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5214 			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5215 		ew32(PHY_CTRL, reg);
5216 
5217 		/* Call gig speed drop workaround on Gig disable before
5218 		 * accessing any PHY registers
5219 		 */
5220 		if (hw->mac.type == e1000_ich8lan)
5221 			e1000e_gig_downshift_workaround_ich8lan(hw);
5222 
5223 		/* Write VR power-down enable */
5224 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5225 		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5226 		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5227 
5228 		/* Read it back and test */
5229 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5230 		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5231 		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5232 			break;
5233 
5234 		/* Issue PHY reset and repeat at most one more time */
5235 		reg = er32(CTRL);
5236 		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
5237 		retry++;
5238 	} while (retry);
5239 }
5240 
5241 /**
5242  *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5243  *  @hw: pointer to the HW structure
5244  *
5245  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5246  *  LPLU, Gig disable, MDIC PHY reset):
5247  *    1) Set Kumeran Near-end loopback
5248  *    2) Clear Kumeran Near-end loopback
5249  *  Should only be called for ICH8[m] devices with any 1G Phy.
5250  **/
5251 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5252 {
5253 	s32 ret_val;
5254 	u16 reg_data;
5255 
5256 	if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
5257 		return;
5258 
5259 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5260 				       &reg_data);
5261 	if (ret_val)
5262 		return;
5263 	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5264 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5265 					reg_data);
5266 	if (ret_val)
5267 		return;
5268 	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5269 	e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
5270 }
5271 
5272 /**
5273  *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5274  *  @hw: pointer to the HW structure
5275  *
5276  *  During S0 to Sx transition, it is possible the link remains at gig
5277  *  instead of negotiating to a lower speed.  Before going to Sx, set
5278  *  'Gig Disable' to force link speed negotiation to a lower speed based on
5279  *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
5280  *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5281  *  needs to be written.
5282  *  Parts that support (and are linked to a partner which support) EEE in
5283  *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5284  *  than 10Mbps w/o EEE.
5285  **/
5286 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5287 {
5288 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5289 	u32 phy_ctrl;
5290 	s32 ret_val;
5291 
5292 	phy_ctrl = er32(PHY_CTRL);
5293 	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5294 
5295 	if (hw->phy.type == e1000_phy_i217) {
5296 		u16 phy_reg, device_id = hw->adapter->pdev->device;
5297 
5298 		if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5299 		    (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5300 		    (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5301 		    (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5302 		    (hw->mac.type == e1000_pch_spt)) {
5303 			u32 fextnvm6 = er32(FEXTNVM6);
5304 
5305 			ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5306 		}
5307 
5308 		ret_val = hw->phy.ops.acquire(hw);
5309 		if (ret_val)
5310 			goto out;
5311 
5312 		if (!dev_spec->eee_disable) {
5313 			u16 eee_advert;
5314 
5315 			ret_val =
5316 			    e1000_read_emi_reg_locked(hw,
5317 						      I217_EEE_ADVERTISEMENT,
5318 						      &eee_advert);
5319 			if (ret_val)
5320 				goto release;
5321 
5322 			/* Disable LPLU if both link partners support 100BaseT
5323 			 * EEE and 100Full is advertised on both ends of the
5324 			 * link, and enable Auto Enable LPI since there will
5325 			 * be no driver to enable LPI while in Sx.
5326 			 */
5327 			if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5328 			    (dev_spec->eee_lp_ability &
5329 			     I82579_EEE_100_SUPPORTED) &&
5330 			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5331 				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5332 					      E1000_PHY_CTRL_NOND0A_LPLU);
5333 
5334 				/* Set Auto Enable LPI after link up */
5335 				e1e_rphy_locked(hw,
5336 						I217_LPI_GPIO_CTRL, &phy_reg);
5337 				phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5338 				e1e_wphy_locked(hw,
5339 						I217_LPI_GPIO_CTRL, phy_reg);
5340 			}
5341 		}
5342 
5343 		/* For i217 Intel Rapid Start Technology support,
5344 		 * when the system is going into Sx and no manageability engine
5345 		 * is present, the driver must configure proxy to reset only on
5346 		 * power good.  LPI (Low Power Idle) state must also reset only
5347 		 * on power good, as well as the MTA (Multicast table array).
5348 		 * The SMBus release must also be disabled on LCD reset.
5349 		 */
5350 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5351 			/* Enable proxy to reset only on power good. */
5352 			e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
5353 			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5354 			e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
5355 
5356 			/* Set bit enable LPI (EEE) to reset only on
5357 			 * power good.
5358 			 */
5359 			e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
5360 			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5361 			e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
5362 
5363 			/* Disable the SMB release on LCD reset. */
5364 			e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5365 			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5366 			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5367 		}
5368 
5369 		/* Enable MTA to reset for Intel Rapid Start Technology
5370 		 * Support
5371 		 */
5372 		e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5373 		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5374 		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5375 
5376 release:
5377 		hw->phy.ops.release(hw);
5378 	}
5379 out:
5380 	ew32(PHY_CTRL, phy_ctrl);
5381 
5382 	if (hw->mac.type == e1000_ich8lan)
5383 		e1000e_gig_downshift_workaround_ich8lan(hw);
5384 
5385 	if (hw->mac.type >= e1000_pchlan) {
5386 		e1000_oem_bits_config_ich8lan(hw, false);
5387 
5388 		/* Reset PHY to activate OEM bits on 82577/8 */
5389 		if (hw->mac.type == e1000_pchlan)
5390 			e1000e_phy_hw_reset_generic(hw);
5391 
5392 		ret_val = hw->phy.ops.acquire(hw);
5393 		if (ret_val)
5394 			return;
5395 		e1000_write_smbus_addr(hw);
5396 		hw->phy.ops.release(hw);
5397 	}
5398 }
5399 
5400 /**
5401  *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5402  *  @hw: pointer to the HW structure
5403  *
5404  *  During Sx to S0 transitions on non-managed devices or managed devices
5405  *  on which PHY resets are not blocked, if the PHY registers cannot be
5406  *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
5407  *  the PHY.
5408  *  On i217, setup Intel Rapid Start Technology.
5409  **/
5410 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5411 {
5412 	s32 ret_val;
5413 
5414 	if (hw->mac.type < e1000_pch2lan)
5415 		return;
5416 
5417 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
5418 	if (ret_val) {
5419 		e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
5420 		return;
5421 	}
5422 
5423 	/* For i217 Intel Rapid Start Technology support when the system
5424 	 * is transitioning from Sx and no manageability engine is present
5425 	 * configure SMBus to restore on reset, disable proxy, and enable
5426 	 * the reset on MTA (Multicast table array).
5427 	 */
5428 	if (hw->phy.type == e1000_phy_i217) {
5429 		u16 phy_reg;
5430 
5431 		ret_val = hw->phy.ops.acquire(hw);
5432 		if (ret_val) {
5433 			e_dbg("Failed to setup iRST\n");
5434 			return;
5435 		}
5436 
5437 		/* Clear Auto Enable LPI after link up */
5438 		e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5439 		phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5440 		e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5441 
5442 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5443 			/* Restore clear on SMB if no manageability engine
5444 			 * is present
5445 			 */
5446 			ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5447 			if (ret_val)
5448 				goto release;
5449 			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5450 			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5451 
5452 			/* Disable Proxy */
5453 			e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
5454 		}
5455 		/* Enable reset on MTA */
5456 		ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5457 		if (ret_val)
5458 			goto release;
5459 		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5460 		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5461 release:
5462 		if (ret_val)
5463 			e_dbg("Error %d in resume workarounds\n", ret_val);
5464 		hw->phy.ops.release(hw);
5465 	}
5466 }
5467 
5468 /**
5469  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
5470  *  @hw: pointer to the HW structure
5471  *
5472  *  Return the LED back to the default configuration.
5473  **/
5474 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5475 {
5476 	if (hw->phy.type == e1000_phy_ife)
5477 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
5478 
5479 	ew32(LEDCTL, hw->mac.ledctl_default);
5480 	return 0;
5481 }
5482 
5483 /**
5484  *  e1000_led_on_ich8lan - Turn LEDs on
5485  *  @hw: pointer to the HW structure
5486  *
5487  *  Turn on the LEDs.
5488  **/
5489 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5490 {
5491 	if (hw->phy.type == e1000_phy_ife)
5492 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5493 				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5494 
5495 	ew32(LEDCTL, hw->mac.ledctl_mode2);
5496 	return 0;
5497 }
5498 
5499 /**
5500  *  e1000_led_off_ich8lan - Turn LEDs off
5501  *  @hw: pointer to the HW structure
5502  *
5503  *  Turn off the LEDs.
5504  **/
5505 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5506 {
5507 	if (hw->phy.type == e1000_phy_ife)
5508 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5509 				(IFE_PSCL_PROBE_MODE |
5510 				 IFE_PSCL_PROBE_LEDS_OFF));
5511 
5512 	ew32(LEDCTL, hw->mac.ledctl_mode1);
5513 	return 0;
5514 }
5515 
5516 /**
5517  *  e1000_setup_led_pchlan - Configures SW controllable LED
5518  *  @hw: pointer to the HW structure
5519  *
5520  *  This prepares the SW controllable LED for use.
5521  **/
5522 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5523 {
5524 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
5525 }
5526 
5527 /**
5528  *  e1000_cleanup_led_pchlan - Restore the default LED operation
5529  *  @hw: pointer to the HW structure
5530  *
5531  *  Return the LED back to the default configuration.
5532  **/
5533 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5534 {
5535 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
5536 }
5537 
5538 /**
5539  *  e1000_led_on_pchlan - Turn LEDs on
5540  *  @hw: pointer to the HW structure
5541  *
5542  *  Turn on the LEDs.
5543  **/
5544 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5545 {
5546 	u16 data = (u16)hw->mac.ledctl_mode2;
5547 	u32 i, led;
5548 
5549 	/* If no link, then turn LED on by setting the invert bit
5550 	 * for each LED that's mode is "link_up" in ledctl_mode2.
5551 	 */
5552 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5553 		for (i = 0; i < 3; i++) {
5554 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5555 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5556 			    E1000_LEDCTL_MODE_LINK_UP)
5557 				continue;
5558 			if (led & E1000_PHY_LED0_IVRT)
5559 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5560 			else
5561 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5562 		}
5563 	}
5564 
5565 	return e1e_wphy(hw, HV_LED_CONFIG, data);
5566 }
5567 
5568 /**
5569  *  e1000_led_off_pchlan - Turn LEDs off
5570  *  @hw: pointer to the HW structure
5571  *
5572  *  Turn off the LEDs.
5573  **/
5574 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5575 {
5576 	u16 data = (u16)hw->mac.ledctl_mode1;
5577 	u32 i, led;
5578 
5579 	/* If no link, then turn LED off by clearing the invert bit
5580 	 * for each LED that's mode is "link_up" in ledctl_mode1.
5581 	 */
5582 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5583 		for (i = 0; i < 3; i++) {
5584 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5585 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5586 			    E1000_LEDCTL_MODE_LINK_UP)
5587 				continue;
5588 			if (led & E1000_PHY_LED0_IVRT)
5589 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5590 			else
5591 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5592 		}
5593 	}
5594 
5595 	return e1e_wphy(hw, HV_LED_CONFIG, data);
5596 }
5597 
5598 /**
5599  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5600  *  @hw: pointer to the HW structure
5601  *
5602  *  Read appropriate register for the config done bit for completion status
5603  *  and configure the PHY through s/w for EEPROM-less parts.
5604  *
5605  *  NOTE: some silicon which is EEPROM-less will fail trying to read the
5606  *  config done bit, so only an error is logged and continues.  If we were
5607  *  to return with error, EEPROM-less silicon would not be able to be reset
5608  *  or change link.
5609  **/
5610 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5611 {
5612 	s32 ret_val = 0;
5613 	u32 bank = 0;
5614 	u32 status;
5615 
5616 	e1000e_get_cfg_done_generic(hw);
5617 
5618 	/* Wait for indication from h/w that it has completed basic config */
5619 	if (hw->mac.type >= e1000_ich10lan) {
5620 		e1000_lan_init_done_ich8lan(hw);
5621 	} else {
5622 		ret_val = e1000e_get_auto_rd_done(hw);
5623 		if (ret_val) {
5624 			/* When auto config read does not complete, do not
5625 			 * return with an error. This can happen in situations
5626 			 * where there is no eeprom and prevents getting link.
5627 			 */
5628 			e_dbg("Auto Read Done did not complete\n");
5629 			ret_val = 0;
5630 		}
5631 	}
5632 
5633 	/* Clear PHY Reset Asserted bit */
5634 	status = er32(STATUS);
5635 	if (status & E1000_STATUS_PHYRA)
5636 		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
5637 	else
5638 		e_dbg("PHY Reset Asserted not set - needs delay\n");
5639 
5640 	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
5641 	if (hw->mac.type <= e1000_ich9lan) {
5642 		if (!(er32(EECD) & E1000_EECD_PRES) &&
5643 		    (hw->phy.type == e1000_phy_igp_3)) {
5644 			e1000e_phy_init_script_igp3(hw);
5645 		}
5646 	} else {
5647 		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5648 			/* Maybe we should do a basic PHY config */
5649 			e_dbg("EEPROM not present\n");
5650 			ret_val = -E1000_ERR_CONFIG;
5651 		}
5652 	}
5653 
5654 	return ret_val;
5655 }
5656 
5657 /**
5658  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5659  * @hw: pointer to the HW structure
5660  *
5661  * In the case of a PHY power down to save power, or to turn off link during a
5662  * driver unload, or wake on lan is not enabled, remove the link.
5663  **/
5664 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5665 {
5666 	/* If the management interface is not enabled, then power down */
5667 	if (!(hw->mac.ops.check_mng_mode(hw) ||
5668 	      hw->phy.ops.check_reset_block(hw)))
5669 		e1000_power_down_phy_copper(hw);
5670 }
5671 
5672 /**
5673  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5674  *  @hw: pointer to the HW structure
5675  *
5676  *  Clears hardware counters specific to the silicon family and calls
5677  *  clear_hw_cntrs_generic to clear all general purpose counters.
5678  **/
5679 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5680 {
5681 	u16 phy_data;
5682 	s32 ret_val;
5683 
5684 	e1000e_clear_hw_cntrs_base(hw);
5685 
5686 	er32(ALGNERRC);
5687 	er32(RXERRC);
5688 	er32(TNCRS);
5689 	er32(CEXTERR);
5690 	er32(TSCTC);
5691 	er32(TSCTFC);
5692 
5693 	er32(MGTPRC);
5694 	er32(MGTPDC);
5695 	er32(MGTPTC);
5696 
5697 	er32(IAC);
5698 	er32(ICRXOC);
5699 
5700 	/* Clear PHY statistics registers */
5701 	if ((hw->phy.type == e1000_phy_82578) ||
5702 	    (hw->phy.type == e1000_phy_82579) ||
5703 	    (hw->phy.type == e1000_phy_i217) ||
5704 	    (hw->phy.type == e1000_phy_82577)) {
5705 		ret_val = hw->phy.ops.acquire(hw);
5706 		if (ret_val)
5707 			return;
5708 		ret_val = hw->phy.ops.set_page(hw,
5709 					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
5710 		if (ret_val)
5711 			goto release;
5712 		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5713 		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5714 		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5715 		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5716 		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5717 		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5718 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5719 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5720 		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5721 		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5722 		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5723 		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5724 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5725 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5726 release:
5727 		hw->phy.ops.release(hw);
5728 	}
5729 }
5730 
5731 static const struct e1000_mac_operations ich8_mac_ops = {
5732 	/* check_mng_mode dependent on mac type */
5733 	.check_for_link		= e1000_check_for_copper_link_ich8lan,
5734 	/* cleanup_led dependent on mac type */
5735 	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
5736 	.get_bus_info		= e1000_get_bus_info_ich8lan,
5737 	.set_lan_id		= e1000_set_lan_id_single_port,
5738 	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
5739 	/* led_on dependent on mac type */
5740 	/* led_off dependent on mac type */
5741 	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
5742 	.reset_hw		= e1000_reset_hw_ich8lan,
5743 	.init_hw		= e1000_init_hw_ich8lan,
5744 	.setup_link		= e1000_setup_link_ich8lan,
5745 	.setup_physical_interface = e1000_setup_copper_link_ich8lan,
5746 	/* id_led_init dependent on mac type */
5747 	.config_collision_dist	= e1000e_config_collision_dist_generic,
5748 	.rar_set		= e1000e_rar_set_generic,
5749 	.rar_get_count		= e1000e_rar_get_count_generic,
5750 };
5751 
5752 static const struct e1000_phy_operations ich8_phy_ops = {
5753 	.acquire		= e1000_acquire_swflag_ich8lan,
5754 	.check_reset_block	= e1000_check_reset_block_ich8lan,
5755 	.commit			= NULL,
5756 	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
5757 	.get_cable_length	= e1000e_get_cable_length_igp_2,
5758 	.read_reg		= e1000e_read_phy_reg_igp,
5759 	.release		= e1000_release_swflag_ich8lan,
5760 	.reset			= e1000_phy_hw_reset_ich8lan,
5761 	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
5762 	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
5763 	.write_reg		= e1000e_write_phy_reg_igp,
5764 };
5765 
5766 static const struct e1000_nvm_operations ich8_nvm_ops = {
5767 	.acquire		= e1000_acquire_nvm_ich8lan,
5768 	.read			= e1000_read_nvm_ich8lan,
5769 	.release		= e1000_release_nvm_ich8lan,
5770 	.reload			= e1000e_reload_nvm_generic,
5771 	.update			= e1000_update_nvm_checksum_ich8lan,
5772 	.valid_led_default	= e1000_valid_led_default_ich8lan,
5773 	.validate		= e1000_validate_nvm_checksum_ich8lan,
5774 	.write			= e1000_write_nvm_ich8lan,
5775 };
5776 
5777 static const struct e1000_nvm_operations spt_nvm_ops = {
5778 	.acquire		= e1000_acquire_nvm_ich8lan,
5779 	.release		= e1000_release_nvm_ich8lan,
5780 	.read			= e1000_read_nvm_spt,
5781 	.update			= e1000_update_nvm_checksum_spt,
5782 	.reload			= e1000e_reload_nvm_generic,
5783 	.valid_led_default	= e1000_valid_led_default_ich8lan,
5784 	.validate		= e1000_validate_nvm_checksum_ich8lan,
5785 	.write			= e1000_write_nvm_ich8lan,
5786 };
5787 
5788 const struct e1000_info e1000_ich8_info = {
5789 	.mac			= e1000_ich8lan,
5790 	.flags			= FLAG_HAS_WOL
5791 				  | FLAG_IS_ICH
5792 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5793 				  | FLAG_HAS_AMT
5794 				  | FLAG_HAS_FLASH
5795 				  | FLAG_APME_IN_WUC,
5796 	.pba			= 8,
5797 	.max_hw_frame_size	= VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
5798 	.get_variants		= e1000_get_variants_ich8lan,
5799 	.mac_ops		= &ich8_mac_ops,
5800 	.phy_ops		= &ich8_phy_ops,
5801 	.nvm_ops		= &ich8_nvm_ops,
5802 };
5803 
5804 const struct e1000_info e1000_ich9_info = {
5805 	.mac			= e1000_ich9lan,
5806 	.flags			= FLAG_HAS_JUMBO_FRAMES
5807 				  | FLAG_IS_ICH
5808 				  | FLAG_HAS_WOL
5809 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5810 				  | FLAG_HAS_AMT
5811 				  | FLAG_HAS_FLASH
5812 				  | FLAG_APME_IN_WUC,
5813 	.pba			= 18,
5814 	.max_hw_frame_size	= DEFAULT_JUMBO,
5815 	.get_variants		= e1000_get_variants_ich8lan,
5816 	.mac_ops		= &ich8_mac_ops,
5817 	.phy_ops		= &ich8_phy_ops,
5818 	.nvm_ops		= &ich8_nvm_ops,
5819 };
5820 
5821 const struct e1000_info e1000_ich10_info = {
5822 	.mac			= e1000_ich10lan,
5823 	.flags			= FLAG_HAS_JUMBO_FRAMES
5824 				  | FLAG_IS_ICH
5825 				  | FLAG_HAS_WOL
5826 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5827 				  | FLAG_HAS_AMT
5828 				  | FLAG_HAS_FLASH
5829 				  | FLAG_APME_IN_WUC,
5830 	.pba			= 18,
5831 	.max_hw_frame_size	= DEFAULT_JUMBO,
5832 	.get_variants		= e1000_get_variants_ich8lan,
5833 	.mac_ops		= &ich8_mac_ops,
5834 	.phy_ops		= &ich8_phy_ops,
5835 	.nvm_ops		= &ich8_nvm_ops,
5836 };
5837 
5838 const struct e1000_info e1000_pch_info = {
5839 	.mac			= e1000_pchlan,
5840 	.flags			= FLAG_IS_ICH
5841 				  | FLAG_HAS_WOL
5842 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5843 				  | FLAG_HAS_AMT
5844 				  | FLAG_HAS_FLASH
5845 				  | FLAG_HAS_JUMBO_FRAMES
5846 				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
5847 				  | FLAG_APME_IN_WUC,
5848 	.flags2			= FLAG2_HAS_PHY_STATS,
5849 	.pba			= 26,
5850 	.max_hw_frame_size	= 4096,
5851 	.get_variants		= e1000_get_variants_ich8lan,
5852 	.mac_ops		= &ich8_mac_ops,
5853 	.phy_ops		= &ich8_phy_ops,
5854 	.nvm_ops		= &ich8_nvm_ops,
5855 };
5856 
5857 const struct e1000_info e1000_pch2_info = {
5858 	.mac			= e1000_pch2lan,
5859 	.flags			= FLAG_IS_ICH
5860 				  | FLAG_HAS_WOL
5861 				  | FLAG_HAS_HW_TIMESTAMP
5862 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5863 				  | FLAG_HAS_AMT
5864 				  | FLAG_HAS_FLASH
5865 				  | FLAG_HAS_JUMBO_FRAMES
5866 				  | FLAG_APME_IN_WUC,
5867 	.flags2			= FLAG2_HAS_PHY_STATS
5868 				  | FLAG2_HAS_EEE,
5869 	.pba			= 26,
5870 	.max_hw_frame_size	= 9022,
5871 	.get_variants		= e1000_get_variants_ich8lan,
5872 	.mac_ops		= &ich8_mac_ops,
5873 	.phy_ops		= &ich8_phy_ops,
5874 	.nvm_ops		= &ich8_nvm_ops,
5875 };
5876 
5877 const struct e1000_info e1000_pch_lpt_info = {
5878 	.mac			= e1000_pch_lpt,
5879 	.flags			= FLAG_IS_ICH
5880 				  | FLAG_HAS_WOL
5881 				  | FLAG_HAS_HW_TIMESTAMP
5882 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5883 				  | FLAG_HAS_AMT
5884 				  | FLAG_HAS_FLASH
5885 				  | FLAG_HAS_JUMBO_FRAMES
5886 				  | FLAG_APME_IN_WUC,
5887 	.flags2			= FLAG2_HAS_PHY_STATS
5888 				  | FLAG2_HAS_EEE
5889 				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
5890 	.pba			= 26,
5891 	.max_hw_frame_size	= 9022,
5892 	.get_variants		= e1000_get_variants_ich8lan,
5893 	.mac_ops		= &ich8_mac_ops,
5894 	.phy_ops		= &ich8_phy_ops,
5895 	.nvm_ops		= &ich8_nvm_ops,
5896 };
5897 
5898 const struct e1000_info e1000_pch_spt_info = {
5899 	.mac			= e1000_pch_spt,
5900 	.flags			= FLAG_IS_ICH
5901 				  | FLAG_HAS_WOL
5902 				  | FLAG_HAS_HW_TIMESTAMP
5903 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5904 				  | FLAG_HAS_AMT
5905 				  | FLAG_HAS_FLASH
5906 				  | FLAG_HAS_JUMBO_FRAMES
5907 				  | FLAG_APME_IN_WUC,
5908 	.flags2			= FLAG2_HAS_PHY_STATS
5909 				  | FLAG2_HAS_EEE,
5910 	.pba			= 26,
5911 	.max_hw_frame_size	= 9022,
5912 	.get_variants		= e1000_get_variants_ich8lan,
5913 	.mac_ops		= &ich8_mac_ops,
5914 	.phy_ops		= &ich8_phy_ops,
5915 	.nvm_ops		= &spt_nvm_ops,
5916 };
5917