1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 1999 - 2018 Intel Corporation. */ 3 4 /* 82562G 10/100 Network Connection 5 * 82562G-2 10/100 Network Connection 6 * 82562GT 10/100 Network Connection 7 * 82562GT-2 10/100 Network Connection 8 * 82562V 10/100 Network Connection 9 * 82562V-2 10/100 Network Connection 10 * 82566DC-2 Gigabit Network Connection 11 * 82566DC Gigabit Network Connection 12 * 82566DM-2 Gigabit Network Connection 13 * 82566DM Gigabit Network Connection 14 * 82566MC Gigabit Network Connection 15 * 82566MM Gigabit Network Connection 16 * 82567LM Gigabit Network Connection 17 * 82567LF Gigabit Network Connection 18 * 82567V Gigabit Network Connection 19 * 82567LM-2 Gigabit Network Connection 20 * 82567LF-2 Gigabit Network Connection 21 * 82567V-2 Gigabit Network Connection 22 * 82567LF-3 Gigabit Network Connection 23 * 82567LM-3 Gigabit Network Connection 24 * 82567LM-4 Gigabit Network Connection 25 * 82577LM Gigabit Network Connection 26 * 82577LC Gigabit Network Connection 27 * 82578DM Gigabit Network Connection 28 * 82578DC Gigabit Network Connection 29 * 82579LM Gigabit Network Connection 30 * 82579V Gigabit Network Connection 31 * Ethernet Connection I217-LM 32 * Ethernet Connection I217-V 33 * Ethernet Connection I218-V 34 * Ethernet Connection I218-LM 35 * Ethernet Connection (2) I218-LM 36 * Ethernet Connection (2) I218-V 37 * Ethernet Connection (3) I218-LM 38 * Ethernet Connection (3) I218-V 39 */ 40 41 #include "e1000.h" 42 43 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */ 44 /* Offset 04h HSFSTS */ 45 union ich8_hws_flash_status { 46 struct ich8_hsfsts { 47 u16 flcdone:1; /* bit 0 Flash Cycle Done */ 48 u16 flcerr:1; /* bit 1 Flash Cycle Error */ 49 u16 dael:1; /* bit 2 Direct Access error Log */ 50 u16 berasesz:2; /* bit 4:3 Sector Erase Size */ 51 u16 flcinprog:1; /* bit 5 flash cycle in Progress */ 52 u16 reserved1:2; /* bit 13:6 Reserved */ 53 u16 reserved2:6; /* bit 13:6 Reserved */ 54 u16 fldesvalid:1; /* bit 14 Flash Descriptor Valid */ 55 u16 flockdn:1; /* bit 15 Flash Config Lock-Down */ 56 } hsf_status; 57 u16 regval; 58 }; 59 60 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */ 61 /* Offset 06h FLCTL */ 62 union ich8_hws_flash_ctrl { 63 struct ich8_hsflctl { 64 u16 flcgo:1; /* 0 Flash Cycle Go */ 65 u16 flcycle:2; /* 2:1 Flash Cycle */ 66 u16 reserved:5; /* 7:3 Reserved */ 67 u16 fldbcount:2; /* 9:8 Flash Data Byte Count */ 68 u16 flockdn:6; /* 15:10 Reserved */ 69 } hsf_ctrl; 70 u16 regval; 71 }; 72 73 /* ICH Flash Region Access Permissions */ 74 union ich8_hws_flash_regacc { 75 struct ich8_flracc { 76 u32 grra:8; /* 0:7 GbE region Read Access */ 77 u32 grwa:8; /* 8:15 GbE region Write Access */ 78 u32 gmrag:8; /* 23:16 GbE Master Read Access Grant */ 79 u32 gmwag:8; /* 31:24 GbE Master Write Access Grant */ 80 } hsf_flregacc; 81 u16 regval; 82 }; 83 84 /* ICH Flash Protected Region */ 85 union ich8_flash_protected_range { 86 struct ich8_pr { 87 u32 base:13; /* 0:12 Protected Range Base */ 88 u32 reserved1:2; /* 13:14 Reserved */ 89 u32 rpe:1; /* 15 Read Protection Enable */ 90 u32 limit:13; /* 16:28 Protected Range Limit */ 91 u32 reserved2:2; /* 29:30 Reserved */ 92 u32 wpe:1; /* 31 Write Protection Enable */ 93 } range; 94 u32 regval; 95 }; 96 97 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw); 98 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw); 99 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank); 100 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw, 101 u32 offset, u8 byte); 102 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, 103 u8 *data); 104 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset, 105 u16 *data); 106 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, 107 u8 size, u16 *data); 108 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset, 109 u32 *data); 110 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, 111 u32 offset, u32 *data); 112 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, 113 u32 offset, u32 data); 114 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw, 115 u32 offset, u32 dword); 116 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw); 117 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw); 118 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw); 119 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw); 120 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw); 121 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw); 122 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw); 123 static s32 e1000_led_on_pchlan(struct e1000_hw *hw); 124 static s32 e1000_led_off_pchlan(struct e1000_hw *hw); 125 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active); 126 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw); 127 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw); 128 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link); 129 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw); 130 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw); 131 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw); 132 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index); 133 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index); 134 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw); 135 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw); 136 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate); 137 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force); 138 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw); 139 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state); 140 141 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg) 142 { 143 return readw(hw->flash_address + reg); 144 } 145 146 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg) 147 { 148 return readl(hw->flash_address + reg); 149 } 150 151 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val) 152 { 153 writew(val, hw->flash_address + reg); 154 } 155 156 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val) 157 { 158 writel(val, hw->flash_address + reg); 159 } 160 161 #define er16flash(reg) __er16flash(hw, (reg)) 162 #define er32flash(reg) __er32flash(hw, (reg)) 163 #define ew16flash(reg, val) __ew16flash(hw, (reg), (val)) 164 #define ew32flash(reg, val) __ew32flash(hw, (reg), (val)) 165 166 /** 167 * e1000_phy_is_accessible_pchlan - Check if able to access PHY registers 168 * @hw: pointer to the HW structure 169 * 170 * Test access to the PHY registers by reading the PHY ID registers. If 171 * the PHY ID is already known (e.g. resume path) compare it with known ID, 172 * otherwise assume the read PHY ID is correct if it is valid. 173 * 174 * Assumes the sw/fw/hw semaphore is already acquired. 175 **/ 176 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw) 177 { 178 u16 phy_reg = 0; 179 u32 phy_id = 0; 180 s32 ret_val = 0; 181 u16 retry_count; 182 u32 mac_reg = 0; 183 184 for (retry_count = 0; retry_count < 2; retry_count++) { 185 ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg); 186 if (ret_val || (phy_reg == 0xFFFF)) 187 continue; 188 phy_id = (u32)(phy_reg << 16); 189 190 ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg); 191 if (ret_val || (phy_reg == 0xFFFF)) { 192 phy_id = 0; 193 continue; 194 } 195 phy_id |= (u32)(phy_reg & PHY_REVISION_MASK); 196 break; 197 } 198 199 if (hw->phy.id) { 200 if (hw->phy.id == phy_id) 201 goto out; 202 } else if (phy_id) { 203 hw->phy.id = phy_id; 204 hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK); 205 goto out; 206 } 207 208 /* In case the PHY needs to be in mdio slow mode, 209 * set slow mode and try to get the PHY id again. 210 */ 211 if (hw->mac.type < e1000_pch_lpt) { 212 hw->phy.ops.release(hw); 213 ret_val = e1000_set_mdio_slow_mode_hv(hw); 214 if (!ret_val) 215 ret_val = e1000e_get_phy_id(hw); 216 hw->phy.ops.acquire(hw); 217 } 218 219 if (ret_val) 220 return false; 221 out: 222 if (hw->mac.type >= e1000_pch_lpt) { 223 /* Only unforce SMBus if ME is not active */ 224 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) { 225 /* Unforce SMBus mode in PHY */ 226 e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg); 227 phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS; 228 e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg); 229 230 /* Unforce SMBus mode in MAC */ 231 mac_reg = er32(CTRL_EXT); 232 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS; 233 ew32(CTRL_EXT, mac_reg); 234 } 235 } 236 237 return true; 238 } 239 240 /** 241 * e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value 242 * @hw: pointer to the HW structure 243 * 244 * Toggling the LANPHYPC pin value fully power-cycles the PHY and is 245 * used to reset the PHY to a quiescent state when necessary. 246 **/ 247 static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw) 248 { 249 u32 mac_reg; 250 251 /* Set Phy Config Counter to 50msec */ 252 mac_reg = er32(FEXTNVM3); 253 mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK; 254 mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC; 255 ew32(FEXTNVM3, mac_reg); 256 257 /* Toggle LANPHYPC Value bit */ 258 mac_reg = er32(CTRL); 259 mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE; 260 mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE; 261 ew32(CTRL, mac_reg); 262 e1e_flush(); 263 usleep_range(10, 20); 264 mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE; 265 ew32(CTRL, mac_reg); 266 e1e_flush(); 267 268 if (hw->mac.type < e1000_pch_lpt) { 269 msleep(50); 270 } else { 271 u16 count = 20; 272 273 do { 274 usleep_range(5000, 6000); 275 } while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--); 276 277 msleep(30); 278 } 279 } 280 281 /** 282 * e1000_init_phy_workarounds_pchlan - PHY initialization workarounds 283 * @hw: pointer to the HW structure 284 * 285 * Workarounds/flow necessary for PHY initialization during driver load 286 * and resume paths. 287 **/ 288 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw) 289 { 290 struct e1000_adapter *adapter = hw->adapter; 291 u32 mac_reg, fwsm = er32(FWSM); 292 s32 ret_val; 293 294 /* Gate automatic PHY configuration by hardware on managed and 295 * non-managed 82579 and newer adapters. 296 */ 297 e1000_gate_hw_phy_config_ich8lan(hw, true); 298 299 /* It is not possible to be certain of the current state of ULP 300 * so forcibly disable it. 301 */ 302 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown; 303 e1000_disable_ulp_lpt_lp(hw, true); 304 305 ret_val = hw->phy.ops.acquire(hw); 306 if (ret_val) { 307 e_dbg("Failed to initialize PHY flow\n"); 308 goto out; 309 } 310 311 /* The MAC-PHY interconnect may be in SMBus mode. If the PHY is 312 * inaccessible and resetting the PHY is not blocked, toggle the 313 * LANPHYPC Value bit to force the interconnect to PCIe mode. 314 */ 315 switch (hw->mac.type) { 316 case e1000_pch_lpt: 317 case e1000_pch_spt: 318 case e1000_pch_cnp: 319 if (e1000_phy_is_accessible_pchlan(hw)) 320 break; 321 322 /* Before toggling LANPHYPC, see if PHY is accessible by 323 * forcing MAC to SMBus mode first. 324 */ 325 mac_reg = er32(CTRL_EXT); 326 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS; 327 ew32(CTRL_EXT, mac_reg); 328 329 /* Wait 50 milliseconds for MAC to finish any retries 330 * that it might be trying to perform from previous 331 * attempts to acknowledge any phy read requests. 332 */ 333 msleep(50); 334 335 /* fall-through */ 336 case e1000_pch2lan: 337 if (e1000_phy_is_accessible_pchlan(hw)) 338 break; 339 340 /* fall-through */ 341 case e1000_pchlan: 342 if ((hw->mac.type == e1000_pchlan) && 343 (fwsm & E1000_ICH_FWSM_FW_VALID)) 344 break; 345 346 if (hw->phy.ops.check_reset_block(hw)) { 347 e_dbg("Required LANPHYPC toggle blocked by ME\n"); 348 ret_val = -E1000_ERR_PHY; 349 break; 350 } 351 352 /* Toggle LANPHYPC Value bit */ 353 e1000_toggle_lanphypc_pch_lpt(hw); 354 if (hw->mac.type >= e1000_pch_lpt) { 355 if (e1000_phy_is_accessible_pchlan(hw)) 356 break; 357 358 /* Toggling LANPHYPC brings the PHY out of SMBus mode 359 * so ensure that the MAC is also out of SMBus mode 360 */ 361 mac_reg = er32(CTRL_EXT); 362 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS; 363 ew32(CTRL_EXT, mac_reg); 364 365 if (e1000_phy_is_accessible_pchlan(hw)) 366 break; 367 368 ret_val = -E1000_ERR_PHY; 369 } 370 break; 371 default: 372 break; 373 } 374 375 hw->phy.ops.release(hw); 376 if (!ret_val) { 377 378 /* Check to see if able to reset PHY. Print error if not */ 379 if (hw->phy.ops.check_reset_block(hw)) { 380 e_err("Reset blocked by ME\n"); 381 goto out; 382 } 383 384 /* Reset the PHY before any access to it. Doing so, ensures 385 * that the PHY is in a known good state before we read/write 386 * PHY registers. The generic reset is sufficient here, 387 * because we haven't determined the PHY type yet. 388 */ 389 ret_val = e1000e_phy_hw_reset_generic(hw); 390 if (ret_val) 391 goto out; 392 393 /* On a successful reset, possibly need to wait for the PHY 394 * to quiesce to an accessible state before returning control 395 * to the calling function. If the PHY does not quiesce, then 396 * return E1000E_BLK_PHY_RESET, as this is the condition that 397 * the PHY is in. 398 */ 399 ret_val = hw->phy.ops.check_reset_block(hw); 400 if (ret_val) 401 e_err("ME blocked access to PHY after reset\n"); 402 } 403 404 out: 405 /* Ungate automatic PHY configuration on non-managed 82579 */ 406 if ((hw->mac.type == e1000_pch2lan) && 407 !(fwsm & E1000_ICH_FWSM_FW_VALID)) { 408 usleep_range(10000, 11000); 409 e1000_gate_hw_phy_config_ich8lan(hw, false); 410 } 411 412 return ret_val; 413 } 414 415 /** 416 * e1000_init_phy_params_pchlan - Initialize PHY function pointers 417 * @hw: pointer to the HW structure 418 * 419 * Initialize family-specific PHY parameters and function pointers. 420 **/ 421 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw) 422 { 423 struct e1000_phy_info *phy = &hw->phy; 424 s32 ret_val; 425 426 phy->addr = 1; 427 phy->reset_delay_us = 100; 428 429 phy->ops.set_page = e1000_set_page_igp; 430 phy->ops.read_reg = e1000_read_phy_reg_hv; 431 phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked; 432 phy->ops.read_reg_page = e1000_read_phy_reg_page_hv; 433 phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan; 434 phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan; 435 phy->ops.write_reg = e1000_write_phy_reg_hv; 436 phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked; 437 phy->ops.write_reg_page = e1000_write_phy_reg_page_hv; 438 phy->ops.power_up = e1000_power_up_phy_copper; 439 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan; 440 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; 441 442 phy->id = e1000_phy_unknown; 443 444 ret_val = e1000_init_phy_workarounds_pchlan(hw); 445 if (ret_val) 446 return ret_val; 447 448 if (phy->id == e1000_phy_unknown) 449 switch (hw->mac.type) { 450 default: 451 ret_val = e1000e_get_phy_id(hw); 452 if (ret_val) 453 return ret_val; 454 if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK)) 455 break; 456 /* fall-through */ 457 case e1000_pch2lan: 458 case e1000_pch_lpt: 459 case e1000_pch_spt: 460 case e1000_pch_cnp: 461 /* In case the PHY needs to be in mdio slow mode, 462 * set slow mode and try to get the PHY id again. 463 */ 464 ret_val = e1000_set_mdio_slow_mode_hv(hw); 465 if (ret_val) 466 return ret_val; 467 ret_val = e1000e_get_phy_id(hw); 468 if (ret_val) 469 return ret_val; 470 break; 471 } 472 phy->type = e1000e_get_phy_type_from_id(phy->id); 473 474 switch (phy->type) { 475 case e1000_phy_82577: 476 case e1000_phy_82579: 477 case e1000_phy_i217: 478 phy->ops.check_polarity = e1000_check_polarity_82577; 479 phy->ops.force_speed_duplex = 480 e1000_phy_force_speed_duplex_82577; 481 phy->ops.get_cable_length = e1000_get_cable_length_82577; 482 phy->ops.get_info = e1000_get_phy_info_82577; 483 phy->ops.commit = e1000e_phy_sw_reset; 484 break; 485 case e1000_phy_82578: 486 phy->ops.check_polarity = e1000_check_polarity_m88; 487 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88; 488 phy->ops.get_cable_length = e1000e_get_cable_length_m88; 489 phy->ops.get_info = e1000e_get_phy_info_m88; 490 break; 491 default: 492 ret_val = -E1000_ERR_PHY; 493 break; 494 } 495 496 return ret_val; 497 } 498 499 /** 500 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers 501 * @hw: pointer to the HW structure 502 * 503 * Initialize family-specific PHY parameters and function pointers. 504 **/ 505 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw) 506 { 507 struct e1000_phy_info *phy = &hw->phy; 508 s32 ret_val; 509 u16 i = 0; 510 511 phy->addr = 1; 512 phy->reset_delay_us = 100; 513 514 phy->ops.power_up = e1000_power_up_phy_copper; 515 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan; 516 517 /* We may need to do this twice - once for IGP and if that fails, 518 * we'll set BM func pointers and try again 519 */ 520 ret_val = e1000e_determine_phy_address(hw); 521 if (ret_val) { 522 phy->ops.write_reg = e1000e_write_phy_reg_bm; 523 phy->ops.read_reg = e1000e_read_phy_reg_bm; 524 ret_val = e1000e_determine_phy_address(hw); 525 if (ret_val) { 526 e_dbg("Cannot determine PHY addr. Erroring out\n"); 527 return ret_val; 528 } 529 } 530 531 phy->id = 0; 532 while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) && 533 (i++ < 100)) { 534 usleep_range(1000, 1100); 535 ret_val = e1000e_get_phy_id(hw); 536 if (ret_val) 537 return ret_val; 538 } 539 540 /* Verify phy id */ 541 switch (phy->id) { 542 case IGP03E1000_E_PHY_ID: 543 phy->type = e1000_phy_igp_3; 544 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; 545 phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked; 546 phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked; 547 phy->ops.get_info = e1000e_get_phy_info_igp; 548 phy->ops.check_polarity = e1000_check_polarity_igp; 549 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp; 550 break; 551 case IFE_E_PHY_ID: 552 case IFE_PLUS_E_PHY_ID: 553 case IFE_C_E_PHY_ID: 554 phy->type = e1000_phy_ife; 555 phy->autoneg_mask = E1000_ALL_NOT_GIG; 556 phy->ops.get_info = e1000_get_phy_info_ife; 557 phy->ops.check_polarity = e1000_check_polarity_ife; 558 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife; 559 break; 560 case BME1000_E_PHY_ID: 561 phy->type = e1000_phy_bm; 562 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; 563 phy->ops.read_reg = e1000e_read_phy_reg_bm; 564 phy->ops.write_reg = e1000e_write_phy_reg_bm; 565 phy->ops.commit = e1000e_phy_sw_reset; 566 phy->ops.get_info = e1000e_get_phy_info_m88; 567 phy->ops.check_polarity = e1000_check_polarity_m88; 568 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88; 569 break; 570 default: 571 return -E1000_ERR_PHY; 572 } 573 574 return 0; 575 } 576 577 /** 578 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers 579 * @hw: pointer to the HW structure 580 * 581 * Initialize family-specific NVM parameters and function 582 * pointers. 583 **/ 584 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw) 585 { 586 struct e1000_nvm_info *nvm = &hw->nvm; 587 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 588 u32 gfpreg, sector_base_addr, sector_end_addr; 589 u16 i; 590 u32 nvm_size; 591 592 nvm->type = e1000_nvm_flash_sw; 593 594 if (hw->mac.type >= e1000_pch_spt) { 595 /* in SPT, gfpreg doesn't exist. NVM size is taken from the 596 * STRAP register. This is because in SPT the GbE Flash region 597 * is no longer accessed through the flash registers. Instead, 598 * the mechanism has changed, and the Flash region access 599 * registers are now implemented in GbE memory space. 600 */ 601 nvm->flash_base_addr = 0; 602 nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1) 603 * NVM_SIZE_MULTIPLIER; 604 nvm->flash_bank_size = nvm_size / 2; 605 /* Adjust to word count */ 606 nvm->flash_bank_size /= sizeof(u16); 607 /* Set the base address for flash register access */ 608 hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR; 609 } else { 610 /* Can't read flash registers if register set isn't mapped. */ 611 if (!hw->flash_address) { 612 e_dbg("ERROR: Flash registers not mapped\n"); 613 return -E1000_ERR_CONFIG; 614 } 615 616 gfpreg = er32flash(ICH_FLASH_GFPREG); 617 618 /* sector_X_addr is a "sector"-aligned address (4096 bytes) 619 * Add 1 to sector_end_addr since this sector is included in 620 * the overall size. 621 */ 622 sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK; 623 sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1; 624 625 /* flash_base_addr is byte-aligned */ 626 nvm->flash_base_addr = sector_base_addr 627 << FLASH_SECTOR_ADDR_SHIFT; 628 629 /* find total size of the NVM, then cut in half since the total 630 * size represents two separate NVM banks. 631 */ 632 nvm->flash_bank_size = ((sector_end_addr - sector_base_addr) 633 << FLASH_SECTOR_ADDR_SHIFT); 634 nvm->flash_bank_size /= 2; 635 /* Adjust to word count */ 636 nvm->flash_bank_size /= sizeof(u16); 637 } 638 639 nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS; 640 641 /* Clear shadow ram */ 642 for (i = 0; i < nvm->word_size; i++) { 643 dev_spec->shadow_ram[i].modified = false; 644 dev_spec->shadow_ram[i].value = 0xFFFF; 645 } 646 647 return 0; 648 } 649 650 /** 651 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers 652 * @hw: pointer to the HW structure 653 * 654 * Initialize family-specific MAC parameters and function 655 * pointers. 656 **/ 657 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw) 658 { 659 struct e1000_mac_info *mac = &hw->mac; 660 661 /* Set media type function pointer */ 662 hw->phy.media_type = e1000_media_type_copper; 663 664 /* Set mta register count */ 665 mac->mta_reg_count = 32; 666 /* Set rar entry count */ 667 mac->rar_entry_count = E1000_ICH_RAR_ENTRIES; 668 if (mac->type == e1000_ich8lan) 669 mac->rar_entry_count--; 670 /* FWSM register */ 671 mac->has_fwsm = true; 672 /* ARC subsystem not supported */ 673 mac->arc_subsystem_valid = false; 674 /* Adaptive IFS supported */ 675 mac->adaptive_ifs = true; 676 677 /* LED and other operations */ 678 switch (mac->type) { 679 case e1000_ich8lan: 680 case e1000_ich9lan: 681 case e1000_ich10lan: 682 /* check management mode */ 683 mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan; 684 /* ID LED init */ 685 mac->ops.id_led_init = e1000e_id_led_init_generic; 686 /* blink LED */ 687 mac->ops.blink_led = e1000e_blink_led_generic; 688 /* setup LED */ 689 mac->ops.setup_led = e1000e_setup_led_generic; 690 /* cleanup LED */ 691 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan; 692 /* turn on/off LED */ 693 mac->ops.led_on = e1000_led_on_ich8lan; 694 mac->ops.led_off = e1000_led_off_ich8lan; 695 break; 696 case e1000_pch2lan: 697 mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES; 698 mac->ops.rar_set = e1000_rar_set_pch2lan; 699 /* fall-through */ 700 case e1000_pch_lpt: 701 case e1000_pch_spt: 702 case e1000_pch_cnp: 703 case e1000_pchlan: 704 /* check management mode */ 705 mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan; 706 /* ID LED init */ 707 mac->ops.id_led_init = e1000_id_led_init_pchlan; 708 /* setup LED */ 709 mac->ops.setup_led = e1000_setup_led_pchlan; 710 /* cleanup LED */ 711 mac->ops.cleanup_led = e1000_cleanup_led_pchlan; 712 /* turn on/off LED */ 713 mac->ops.led_on = e1000_led_on_pchlan; 714 mac->ops.led_off = e1000_led_off_pchlan; 715 break; 716 default: 717 break; 718 } 719 720 if (mac->type >= e1000_pch_lpt) { 721 mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES; 722 mac->ops.rar_set = e1000_rar_set_pch_lpt; 723 mac->ops.setup_physical_interface = 724 e1000_setup_copper_link_pch_lpt; 725 mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt; 726 } 727 728 /* Enable PCS Lock-loss workaround for ICH8 */ 729 if (mac->type == e1000_ich8lan) 730 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true); 731 732 return 0; 733 } 734 735 /** 736 * __e1000_access_emi_reg_locked - Read/write EMI register 737 * @hw: pointer to the HW structure 738 * @addr: EMI address to program 739 * @data: pointer to value to read/write from/to the EMI address 740 * @read: boolean flag to indicate read or write 741 * 742 * This helper function assumes the SW/FW/HW Semaphore is already acquired. 743 **/ 744 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address, 745 u16 *data, bool read) 746 { 747 s32 ret_val; 748 749 ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address); 750 if (ret_val) 751 return ret_val; 752 753 if (read) 754 ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data); 755 else 756 ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data); 757 758 return ret_val; 759 } 760 761 /** 762 * e1000_read_emi_reg_locked - Read Extended Management Interface register 763 * @hw: pointer to the HW structure 764 * @addr: EMI address to program 765 * @data: value to be read from the EMI address 766 * 767 * Assumes the SW/FW/HW Semaphore is already acquired. 768 **/ 769 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data) 770 { 771 return __e1000_access_emi_reg_locked(hw, addr, data, true); 772 } 773 774 /** 775 * e1000_write_emi_reg_locked - Write Extended Management Interface register 776 * @hw: pointer to the HW structure 777 * @addr: EMI address to program 778 * @data: value to be written to the EMI address 779 * 780 * Assumes the SW/FW/HW Semaphore is already acquired. 781 **/ 782 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data) 783 { 784 return __e1000_access_emi_reg_locked(hw, addr, &data, false); 785 } 786 787 /** 788 * e1000_set_eee_pchlan - Enable/disable EEE support 789 * @hw: pointer to the HW structure 790 * 791 * Enable/disable EEE based on setting in dev_spec structure, the duplex of 792 * the link and the EEE capabilities of the link partner. The LPI Control 793 * register bits will remain set only if/when link is up. 794 * 795 * EEE LPI must not be asserted earlier than one second after link is up. 796 * On 82579, EEE LPI should not be enabled until such time otherwise there 797 * can be link issues with some switches. Other devices can have EEE LPI 798 * enabled immediately upon link up since they have a timer in hardware which 799 * prevents LPI from being asserted too early. 800 **/ 801 s32 e1000_set_eee_pchlan(struct e1000_hw *hw) 802 { 803 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 804 s32 ret_val; 805 u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data; 806 807 switch (hw->phy.type) { 808 case e1000_phy_82579: 809 lpa = I82579_EEE_LP_ABILITY; 810 pcs_status = I82579_EEE_PCS_STATUS; 811 adv_addr = I82579_EEE_ADVERTISEMENT; 812 break; 813 case e1000_phy_i217: 814 lpa = I217_EEE_LP_ABILITY; 815 pcs_status = I217_EEE_PCS_STATUS; 816 adv_addr = I217_EEE_ADVERTISEMENT; 817 break; 818 default: 819 return 0; 820 } 821 822 ret_val = hw->phy.ops.acquire(hw); 823 if (ret_val) 824 return ret_val; 825 826 ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl); 827 if (ret_val) 828 goto release; 829 830 /* Clear bits that enable EEE in various speeds */ 831 lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK; 832 833 /* Enable EEE if not disabled by user */ 834 if (!dev_spec->eee_disable) { 835 /* Save off link partner's EEE ability */ 836 ret_val = e1000_read_emi_reg_locked(hw, lpa, 837 &dev_spec->eee_lp_ability); 838 if (ret_val) 839 goto release; 840 841 /* Read EEE advertisement */ 842 ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv); 843 if (ret_val) 844 goto release; 845 846 /* Enable EEE only for speeds in which the link partner is 847 * EEE capable and for which we advertise EEE. 848 */ 849 if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED) 850 lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE; 851 852 if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) { 853 e1e_rphy_locked(hw, MII_LPA, &data); 854 if (data & LPA_100FULL) 855 lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE; 856 else 857 /* EEE is not supported in 100Half, so ignore 858 * partner's EEE in 100 ability if full-duplex 859 * is not advertised. 860 */ 861 dev_spec->eee_lp_ability &= 862 ~I82579_EEE_100_SUPPORTED; 863 } 864 } 865 866 if (hw->phy.type == e1000_phy_82579) { 867 ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT, 868 &data); 869 if (ret_val) 870 goto release; 871 872 data &= ~I82579_LPI_100_PLL_SHUT; 873 ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT, 874 data); 875 } 876 877 /* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */ 878 ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data); 879 if (ret_val) 880 goto release; 881 882 ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl); 883 release: 884 hw->phy.ops.release(hw); 885 886 return ret_val; 887 } 888 889 /** 890 * e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP 891 * @hw: pointer to the HW structure 892 * @link: link up bool flag 893 * 894 * When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications 895 * preventing further DMA write requests. Workaround the issue by disabling 896 * the de-assertion of the clock request when in 1Gpbs mode. 897 * Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link 898 * speeds in order to avoid Tx hangs. 899 **/ 900 static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link) 901 { 902 u32 fextnvm6 = er32(FEXTNVM6); 903 u32 status = er32(STATUS); 904 s32 ret_val = 0; 905 u16 reg; 906 907 if (link && (status & E1000_STATUS_SPEED_1000)) { 908 ret_val = hw->phy.ops.acquire(hw); 909 if (ret_val) 910 return ret_val; 911 912 ret_val = 913 e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG, 914 ®); 915 if (ret_val) 916 goto release; 917 918 ret_val = 919 e1000e_write_kmrn_reg_locked(hw, 920 E1000_KMRNCTRLSTA_K1_CONFIG, 921 reg & 922 ~E1000_KMRNCTRLSTA_K1_ENABLE); 923 if (ret_val) 924 goto release; 925 926 usleep_range(10, 20); 927 928 ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK); 929 930 ret_val = 931 e1000e_write_kmrn_reg_locked(hw, 932 E1000_KMRNCTRLSTA_K1_CONFIG, 933 reg); 934 release: 935 hw->phy.ops.release(hw); 936 } else { 937 /* clear FEXTNVM6 bit 8 on link down or 10/100 */ 938 fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK; 939 940 if ((hw->phy.revision > 5) || !link || 941 ((status & E1000_STATUS_SPEED_100) && 942 (status & E1000_STATUS_FD))) 943 goto update_fextnvm6; 944 945 ret_val = e1e_rphy(hw, I217_INBAND_CTRL, ®); 946 if (ret_val) 947 return ret_val; 948 949 /* Clear link status transmit timeout */ 950 reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK; 951 952 if (status & E1000_STATUS_SPEED_100) { 953 /* Set inband Tx timeout to 5x10us for 100Half */ 954 reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT; 955 956 /* Do not extend the K1 entry latency for 100Half */ 957 fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION; 958 } else { 959 /* Set inband Tx timeout to 50x10us for 10Full/Half */ 960 reg |= 50 << 961 I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT; 962 963 /* Extend the K1 entry latency for 10 Mbps */ 964 fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION; 965 } 966 967 ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg); 968 if (ret_val) 969 return ret_val; 970 971 update_fextnvm6: 972 ew32(FEXTNVM6, fextnvm6); 973 } 974 975 return ret_val; 976 } 977 978 /** 979 * e1000_platform_pm_pch_lpt - Set platform power management values 980 * @hw: pointer to the HW structure 981 * @link: bool indicating link status 982 * 983 * Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like" 984 * GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed 985 * when link is up (which must not exceed the maximum latency supported 986 * by the platform), otherwise specify there is no LTR requirement. 987 * Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop 988 * latencies in the LTR Extended Capability Structure in the PCIe Extended 989 * Capability register set, on this device LTR is set by writing the 990 * equivalent snoop/no-snoop latencies in the LTRV register in the MAC and 991 * set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB) 992 * message to the PMC. 993 **/ 994 static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link) 995 { 996 u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) | 997 link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND; 998 u16 lat_enc = 0; /* latency encoded */ 999 1000 if (link) { 1001 u16 speed, duplex, scale = 0; 1002 u16 max_snoop, max_nosnoop; 1003 u16 max_ltr_enc; /* max LTR latency encoded */ 1004 u64 value; 1005 u32 rxa; 1006 1007 if (!hw->adapter->max_frame_size) { 1008 e_dbg("max_frame_size not set.\n"); 1009 return -E1000_ERR_CONFIG; 1010 } 1011 1012 hw->mac.ops.get_link_up_info(hw, &speed, &duplex); 1013 if (!speed) { 1014 e_dbg("Speed not set.\n"); 1015 return -E1000_ERR_CONFIG; 1016 } 1017 1018 /* Rx Packet Buffer Allocation size (KB) */ 1019 rxa = er32(PBA) & E1000_PBA_RXA_MASK; 1020 1021 /* Determine the maximum latency tolerated by the device. 1022 * 1023 * Per the PCIe spec, the tolerated latencies are encoded as 1024 * a 3-bit encoded scale (only 0-5 are valid) multiplied by 1025 * a 10-bit value (0-1023) to provide a range from 1 ns to 1026 * 2^25*(2^10-1) ns. The scale is encoded as 0=2^0ns, 1027 * 1=2^5ns, 2=2^10ns,...5=2^25ns. 1028 */ 1029 rxa *= 512; 1030 value = (rxa > hw->adapter->max_frame_size) ? 1031 (rxa - hw->adapter->max_frame_size) * (16000 / speed) : 1032 0; 1033 1034 while (value > PCI_LTR_VALUE_MASK) { 1035 scale++; 1036 value = DIV_ROUND_UP(value, BIT(5)); 1037 } 1038 if (scale > E1000_LTRV_SCALE_MAX) { 1039 e_dbg("Invalid LTR latency scale %d\n", scale); 1040 return -E1000_ERR_CONFIG; 1041 } 1042 lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value); 1043 1044 /* Determine the maximum latency tolerated by the platform */ 1045 pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT, 1046 &max_snoop); 1047 pci_read_config_word(hw->adapter->pdev, 1048 E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop); 1049 max_ltr_enc = max_t(u16, max_snoop, max_nosnoop); 1050 1051 if (lat_enc > max_ltr_enc) 1052 lat_enc = max_ltr_enc; 1053 } 1054 1055 /* Set Snoop and No-Snoop latencies the same */ 1056 reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT); 1057 ew32(LTRV, reg); 1058 1059 return 0; 1060 } 1061 1062 /** 1063 * e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP 1064 * @hw: pointer to the HW structure 1065 * @to_sx: boolean indicating a system power state transition to Sx 1066 * 1067 * When link is down, configure ULP mode to significantly reduce the power 1068 * to the PHY. If on a Manageability Engine (ME) enabled system, tell the 1069 * ME firmware to start the ULP configuration. If not on an ME enabled 1070 * system, configure the ULP mode by software. 1071 */ 1072 s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx) 1073 { 1074 u32 mac_reg; 1075 s32 ret_val = 0; 1076 u16 phy_reg; 1077 u16 oem_reg = 0; 1078 1079 if ((hw->mac.type < e1000_pch_lpt) || 1080 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) || 1081 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) || 1082 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) || 1083 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) || 1084 (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on)) 1085 return 0; 1086 1087 if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) { 1088 /* Request ME configure ULP mode in the PHY */ 1089 mac_reg = er32(H2ME); 1090 mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS; 1091 ew32(H2ME, mac_reg); 1092 1093 goto out; 1094 } 1095 1096 if (!to_sx) { 1097 int i = 0; 1098 1099 /* Poll up to 5 seconds for Cable Disconnected indication */ 1100 while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) { 1101 /* Bail if link is re-acquired */ 1102 if (er32(STATUS) & E1000_STATUS_LU) 1103 return -E1000_ERR_PHY; 1104 1105 if (i++ == 100) 1106 break; 1107 1108 msleep(50); 1109 } 1110 e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n", 1111 (er32(FEXT) & 1112 E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50); 1113 } 1114 1115 ret_val = hw->phy.ops.acquire(hw); 1116 if (ret_val) 1117 goto out; 1118 1119 /* Force SMBus mode in PHY */ 1120 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg); 1121 if (ret_val) 1122 goto release; 1123 phy_reg |= CV_SMB_CTRL_FORCE_SMBUS; 1124 e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg); 1125 1126 /* Force SMBus mode in MAC */ 1127 mac_reg = er32(CTRL_EXT); 1128 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS; 1129 ew32(CTRL_EXT, mac_reg); 1130 1131 /* Si workaround for ULP entry flow on i127/rev6 h/w. Enable 1132 * LPLU and disable Gig speed when entering ULP 1133 */ 1134 if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) { 1135 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS, 1136 &oem_reg); 1137 if (ret_val) 1138 goto release; 1139 1140 phy_reg = oem_reg; 1141 phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS; 1142 1143 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS, 1144 phy_reg); 1145 1146 if (ret_val) 1147 goto release; 1148 } 1149 1150 /* Set Inband ULP Exit, Reset to SMBus mode and 1151 * Disable SMBus Release on PERST# in PHY 1152 */ 1153 ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg); 1154 if (ret_val) 1155 goto release; 1156 phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS | 1157 I218_ULP_CONFIG1_DISABLE_SMB_PERST); 1158 if (to_sx) { 1159 if (er32(WUFC) & E1000_WUFC_LNKC) 1160 phy_reg |= I218_ULP_CONFIG1_WOL_HOST; 1161 else 1162 phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST; 1163 1164 phy_reg |= I218_ULP_CONFIG1_STICKY_ULP; 1165 phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT; 1166 } else { 1167 phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT; 1168 phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP; 1169 phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST; 1170 } 1171 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg); 1172 1173 /* Set Disable SMBus Release on PERST# in MAC */ 1174 mac_reg = er32(FEXTNVM7); 1175 mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST; 1176 ew32(FEXTNVM7, mac_reg); 1177 1178 /* Commit ULP changes in PHY by starting auto ULP configuration */ 1179 phy_reg |= I218_ULP_CONFIG1_START; 1180 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg); 1181 1182 if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) && 1183 to_sx && (er32(STATUS) & E1000_STATUS_LU)) { 1184 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS, 1185 oem_reg); 1186 if (ret_val) 1187 goto release; 1188 } 1189 1190 release: 1191 hw->phy.ops.release(hw); 1192 out: 1193 if (ret_val) 1194 e_dbg("Error in ULP enable flow: %d\n", ret_val); 1195 else 1196 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on; 1197 1198 return ret_val; 1199 } 1200 1201 /** 1202 * e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP 1203 * @hw: pointer to the HW structure 1204 * @force: boolean indicating whether or not to force disabling ULP 1205 * 1206 * Un-configure ULP mode when link is up, the system is transitioned from 1207 * Sx or the driver is unloaded. If on a Manageability Engine (ME) enabled 1208 * system, poll for an indication from ME that ULP has been un-configured. 1209 * If not on an ME enabled system, un-configure the ULP mode by software. 1210 * 1211 * During nominal operation, this function is called when link is acquired 1212 * to disable ULP mode (force=false); otherwise, for example when unloading 1213 * the driver or during Sx->S0 transitions, this is called with force=true 1214 * to forcibly disable ULP. 1215 */ 1216 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force) 1217 { 1218 s32 ret_val = 0; 1219 u32 mac_reg; 1220 u16 phy_reg; 1221 int i = 0; 1222 1223 if ((hw->mac.type < e1000_pch_lpt) || 1224 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) || 1225 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) || 1226 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) || 1227 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) || 1228 (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off)) 1229 return 0; 1230 1231 if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) { 1232 if (force) { 1233 /* Request ME un-configure ULP mode in the PHY */ 1234 mac_reg = er32(H2ME); 1235 mac_reg &= ~E1000_H2ME_ULP; 1236 mac_reg |= E1000_H2ME_ENFORCE_SETTINGS; 1237 ew32(H2ME, mac_reg); 1238 } 1239 1240 /* Poll up to 300msec for ME to clear ULP_CFG_DONE. */ 1241 while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) { 1242 if (i++ == 30) { 1243 ret_val = -E1000_ERR_PHY; 1244 goto out; 1245 } 1246 1247 usleep_range(10000, 11000); 1248 } 1249 e_dbg("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10); 1250 1251 if (force) { 1252 mac_reg = er32(H2ME); 1253 mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS; 1254 ew32(H2ME, mac_reg); 1255 } else { 1256 /* Clear H2ME.ULP after ME ULP configuration */ 1257 mac_reg = er32(H2ME); 1258 mac_reg &= ~E1000_H2ME_ULP; 1259 ew32(H2ME, mac_reg); 1260 } 1261 1262 goto out; 1263 } 1264 1265 ret_val = hw->phy.ops.acquire(hw); 1266 if (ret_val) 1267 goto out; 1268 1269 if (force) 1270 /* Toggle LANPHYPC Value bit */ 1271 e1000_toggle_lanphypc_pch_lpt(hw); 1272 1273 /* Unforce SMBus mode in PHY */ 1274 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg); 1275 if (ret_val) { 1276 /* The MAC might be in PCIe mode, so temporarily force to 1277 * SMBus mode in order to access the PHY. 1278 */ 1279 mac_reg = er32(CTRL_EXT); 1280 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS; 1281 ew32(CTRL_EXT, mac_reg); 1282 1283 msleep(50); 1284 1285 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, 1286 &phy_reg); 1287 if (ret_val) 1288 goto release; 1289 } 1290 phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS; 1291 e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg); 1292 1293 /* Unforce SMBus mode in MAC */ 1294 mac_reg = er32(CTRL_EXT); 1295 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS; 1296 ew32(CTRL_EXT, mac_reg); 1297 1298 /* When ULP mode was previously entered, K1 was disabled by the 1299 * hardware. Re-Enable K1 in the PHY when exiting ULP. 1300 */ 1301 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg); 1302 if (ret_val) 1303 goto release; 1304 phy_reg |= HV_PM_CTRL_K1_ENABLE; 1305 e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg); 1306 1307 /* Clear ULP enabled configuration */ 1308 ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg); 1309 if (ret_val) 1310 goto release; 1311 phy_reg &= ~(I218_ULP_CONFIG1_IND | 1312 I218_ULP_CONFIG1_STICKY_ULP | 1313 I218_ULP_CONFIG1_RESET_TO_SMBUS | 1314 I218_ULP_CONFIG1_WOL_HOST | 1315 I218_ULP_CONFIG1_INBAND_EXIT | 1316 I218_ULP_CONFIG1_EN_ULP_LANPHYPC | 1317 I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST | 1318 I218_ULP_CONFIG1_DISABLE_SMB_PERST); 1319 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg); 1320 1321 /* Commit ULP changes by starting auto ULP configuration */ 1322 phy_reg |= I218_ULP_CONFIG1_START; 1323 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg); 1324 1325 /* Clear Disable SMBus Release on PERST# in MAC */ 1326 mac_reg = er32(FEXTNVM7); 1327 mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST; 1328 ew32(FEXTNVM7, mac_reg); 1329 1330 release: 1331 hw->phy.ops.release(hw); 1332 if (force) { 1333 e1000_phy_hw_reset(hw); 1334 msleep(50); 1335 } 1336 out: 1337 if (ret_val) 1338 e_dbg("Error in ULP disable flow: %d\n", ret_val); 1339 else 1340 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off; 1341 1342 return ret_val; 1343 } 1344 1345 /** 1346 * e1000_check_for_copper_link_ich8lan - Check for link (Copper) 1347 * @hw: pointer to the HW structure 1348 * 1349 * Checks to see of the link status of the hardware has changed. If a 1350 * change in link status has been detected, then we read the PHY registers 1351 * to get the current speed/duplex if link exists. 1352 **/ 1353 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw) 1354 { 1355 struct e1000_mac_info *mac = &hw->mac; 1356 s32 ret_val, tipg_reg = 0; 1357 u16 emi_addr, emi_val = 0; 1358 bool link; 1359 u16 phy_reg; 1360 1361 /* We only want to go out to the PHY registers to see if Auto-Neg 1362 * has completed and/or if our link status has changed. The 1363 * get_link_status flag is set upon receiving a Link Status 1364 * Change or Rx Sequence Error interrupt. 1365 */ 1366 if (!mac->get_link_status) 1367 return 0; 1368 mac->get_link_status = false; 1369 1370 /* First we want to see if the MII Status Register reports 1371 * link. If so, then we want to get the current speed/duplex 1372 * of the PHY. 1373 */ 1374 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); 1375 if (ret_val) 1376 goto out; 1377 1378 if (hw->mac.type == e1000_pchlan) { 1379 ret_val = e1000_k1_gig_workaround_hv(hw, link); 1380 if (ret_val) 1381 goto out; 1382 } 1383 1384 /* When connected at 10Mbps half-duplex, some parts are excessively 1385 * aggressive resulting in many collisions. To avoid this, increase 1386 * the IPG and reduce Rx latency in the PHY. 1387 */ 1388 if ((hw->mac.type >= e1000_pch2lan) && link) { 1389 u16 speed, duplex; 1390 1391 e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex); 1392 tipg_reg = er32(TIPG); 1393 tipg_reg &= ~E1000_TIPG_IPGT_MASK; 1394 1395 if (duplex == HALF_DUPLEX && speed == SPEED_10) { 1396 tipg_reg |= 0xFF; 1397 /* Reduce Rx latency in analog PHY */ 1398 emi_val = 0; 1399 } else if (hw->mac.type >= e1000_pch_spt && 1400 duplex == FULL_DUPLEX && speed != SPEED_1000) { 1401 tipg_reg |= 0xC; 1402 emi_val = 1; 1403 } else { 1404 1405 /* Roll back the default values */ 1406 tipg_reg |= 0x08; 1407 emi_val = 1; 1408 } 1409 1410 ew32(TIPG, tipg_reg); 1411 1412 ret_val = hw->phy.ops.acquire(hw); 1413 if (ret_val) 1414 goto out; 1415 1416 if (hw->mac.type == e1000_pch2lan) 1417 emi_addr = I82579_RX_CONFIG; 1418 else 1419 emi_addr = I217_RX_CONFIG; 1420 ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val); 1421 1422 if (hw->mac.type >= e1000_pch_lpt) { 1423 u16 phy_reg; 1424 1425 e1e_rphy_locked(hw, I217_PLL_CLOCK_GATE_REG, &phy_reg); 1426 phy_reg &= ~I217_PLL_CLOCK_GATE_MASK; 1427 if (speed == SPEED_100 || speed == SPEED_10) 1428 phy_reg |= 0x3E8; 1429 else 1430 phy_reg |= 0xFA; 1431 e1e_wphy_locked(hw, I217_PLL_CLOCK_GATE_REG, phy_reg); 1432 } 1433 hw->phy.ops.release(hw); 1434 1435 if (ret_val) 1436 goto out; 1437 1438 if (hw->mac.type >= e1000_pch_spt) { 1439 u16 data; 1440 u16 ptr_gap; 1441 1442 if (speed == SPEED_1000) { 1443 ret_val = hw->phy.ops.acquire(hw); 1444 if (ret_val) 1445 goto out; 1446 1447 ret_val = e1e_rphy_locked(hw, 1448 PHY_REG(776, 20), 1449 &data); 1450 if (ret_val) { 1451 hw->phy.ops.release(hw); 1452 goto out; 1453 } 1454 1455 ptr_gap = (data & (0x3FF << 2)) >> 2; 1456 if (ptr_gap < 0x18) { 1457 data &= ~(0x3FF << 2); 1458 data |= (0x18 << 2); 1459 ret_val = 1460 e1e_wphy_locked(hw, 1461 PHY_REG(776, 20), 1462 data); 1463 } 1464 hw->phy.ops.release(hw); 1465 if (ret_val) 1466 goto out; 1467 } else { 1468 ret_val = hw->phy.ops.acquire(hw); 1469 if (ret_val) 1470 goto out; 1471 1472 ret_val = e1e_wphy_locked(hw, 1473 PHY_REG(776, 20), 1474 0xC023); 1475 hw->phy.ops.release(hw); 1476 if (ret_val) 1477 goto out; 1478 1479 } 1480 } 1481 } 1482 1483 /* I217 Packet Loss issue: 1484 * ensure that FEXTNVM4 Beacon Duration is set correctly 1485 * on power up. 1486 * Set the Beacon Duration for I217 to 8 usec 1487 */ 1488 if (hw->mac.type >= e1000_pch_lpt) { 1489 u32 mac_reg; 1490 1491 mac_reg = er32(FEXTNVM4); 1492 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK; 1493 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC; 1494 ew32(FEXTNVM4, mac_reg); 1495 } 1496 1497 /* Work-around I218 hang issue */ 1498 if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) || 1499 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) || 1500 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) || 1501 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) { 1502 ret_val = e1000_k1_workaround_lpt_lp(hw, link); 1503 if (ret_val) 1504 goto out; 1505 } 1506 if (hw->mac.type >= e1000_pch_lpt) { 1507 /* Set platform power management values for 1508 * Latency Tolerance Reporting (LTR) 1509 */ 1510 ret_val = e1000_platform_pm_pch_lpt(hw, link); 1511 if (ret_val) 1512 goto out; 1513 } 1514 1515 /* Clear link partner's EEE ability */ 1516 hw->dev_spec.ich8lan.eee_lp_ability = 0; 1517 1518 if (hw->mac.type >= e1000_pch_lpt) { 1519 u32 fextnvm6 = er32(FEXTNVM6); 1520 1521 if (hw->mac.type == e1000_pch_spt) { 1522 /* FEXTNVM6 K1-off workaround - for SPT only */ 1523 u32 pcieanacfg = er32(PCIEANACFG); 1524 1525 if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE) 1526 fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE; 1527 else 1528 fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE; 1529 } 1530 1531 ew32(FEXTNVM6, fextnvm6); 1532 } 1533 1534 if (!link) 1535 goto out; 1536 1537 switch (hw->mac.type) { 1538 case e1000_pch2lan: 1539 ret_val = e1000_k1_workaround_lv(hw); 1540 if (ret_val) 1541 return ret_val; 1542 /* fall-thru */ 1543 case e1000_pchlan: 1544 if (hw->phy.type == e1000_phy_82578) { 1545 ret_val = e1000_link_stall_workaround_hv(hw); 1546 if (ret_val) 1547 return ret_val; 1548 } 1549 1550 /* Workaround for PCHx parts in half-duplex: 1551 * Set the number of preambles removed from the packet 1552 * when it is passed from the PHY to the MAC to prevent 1553 * the MAC from misinterpreting the packet type. 1554 */ 1555 e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg); 1556 phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK; 1557 1558 if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD) 1559 phy_reg |= BIT(HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT); 1560 1561 e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg); 1562 break; 1563 default: 1564 break; 1565 } 1566 1567 /* Check if there was DownShift, must be checked 1568 * immediately after link-up 1569 */ 1570 e1000e_check_downshift(hw); 1571 1572 /* Enable/Disable EEE after link up */ 1573 if (hw->phy.type > e1000_phy_82579) { 1574 ret_val = e1000_set_eee_pchlan(hw); 1575 if (ret_val) 1576 return ret_val; 1577 } 1578 1579 /* If we are forcing speed/duplex, then we simply return since 1580 * we have already determined whether we have link or not. 1581 */ 1582 if (!mac->autoneg) 1583 return -E1000_ERR_CONFIG; 1584 1585 /* Auto-Neg is enabled. Auto Speed Detection takes care 1586 * of MAC speed/duplex configuration. So we only need to 1587 * configure Collision Distance in the MAC. 1588 */ 1589 mac->ops.config_collision_dist(hw); 1590 1591 /* Configure Flow Control now that Auto-Neg has completed. 1592 * First, we need to restore the desired flow control 1593 * settings because we may have had to re-autoneg with a 1594 * different link partner. 1595 */ 1596 ret_val = e1000e_config_fc_after_link_up(hw); 1597 if (ret_val) 1598 e_dbg("Error configuring flow control\n"); 1599 1600 return ret_val; 1601 1602 out: 1603 mac->get_link_status = true; 1604 return ret_val; 1605 } 1606 1607 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter) 1608 { 1609 struct e1000_hw *hw = &adapter->hw; 1610 s32 rc; 1611 1612 rc = e1000_init_mac_params_ich8lan(hw); 1613 if (rc) 1614 return rc; 1615 1616 rc = e1000_init_nvm_params_ich8lan(hw); 1617 if (rc) 1618 return rc; 1619 1620 switch (hw->mac.type) { 1621 case e1000_ich8lan: 1622 case e1000_ich9lan: 1623 case e1000_ich10lan: 1624 rc = e1000_init_phy_params_ich8lan(hw); 1625 break; 1626 case e1000_pchlan: 1627 case e1000_pch2lan: 1628 case e1000_pch_lpt: 1629 case e1000_pch_spt: 1630 case e1000_pch_cnp: 1631 rc = e1000_init_phy_params_pchlan(hw); 1632 break; 1633 default: 1634 break; 1635 } 1636 if (rc) 1637 return rc; 1638 1639 /* Disable Jumbo Frame support on parts with Intel 10/100 PHY or 1640 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT). 1641 */ 1642 if ((adapter->hw.phy.type == e1000_phy_ife) || 1643 ((adapter->hw.mac.type >= e1000_pch2lan) && 1644 (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) { 1645 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES; 1646 adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN; 1647 1648 hw->mac.ops.blink_led = NULL; 1649 } 1650 1651 if ((adapter->hw.mac.type == e1000_ich8lan) && 1652 (adapter->hw.phy.type != e1000_phy_ife)) 1653 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP; 1654 1655 /* Enable workaround for 82579 w/ ME enabled */ 1656 if ((adapter->hw.mac.type == e1000_pch2lan) && 1657 (er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) 1658 adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA; 1659 1660 return 0; 1661 } 1662 1663 static DEFINE_MUTEX(nvm_mutex); 1664 1665 /** 1666 * e1000_acquire_nvm_ich8lan - Acquire NVM mutex 1667 * @hw: pointer to the HW structure 1668 * 1669 * Acquires the mutex for performing NVM operations. 1670 **/ 1671 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw) 1672 { 1673 mutex_lock(&nvm_mutex); 1674 1675 return 0; 1676 } 1677 1678 /** 1679 * e1000_release_nvm_ich8lan - Release NVM mutex 1680 * @hw: pointer to the HW structure 1681 * 1682 * Releases the mutex used while performing NVM operations. 1683 **/ 1684 static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw) 1685 { 1686 mutex_unlock(&nvm_mutex); 1687 } 1688 1689 /** 1690 * e1000_acquire_swflag_ich8lan - Acquire software control flag 1691 * @hw: pointer to the HW structure 1692 * 1693 * Acquires the software control flag for performing PHY and select 1694 * MAC CSR accesses. 1695 **/ 1696 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw) 1697 { 1698 u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT; 1699 s32 ret_val = 0; 1700 1701 if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE, 1702 &hw->adapter->state)) { 1703 e_dbg("contention for Phy access\n"); 1704 return -E1000_ERR_PHY; 1705 } 1706 1707 while (timeout) { 1708 extcnf_ctrl = er32(EXTCNF_CTRL); 1709 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)) 1710 break; 1711 1712 mdelay(1); 1713 timeout--; 1714 } 1715 1716 if (!timeout) { 1717 e_dbg("SW has already locked the resource.\n"); 1718 ret_val = -E1000_ERR_CONFIG; 1719 goto out; 1720 } 1721 1722 timeout = SW_FLAG_TIMEOUT; 1723 1724 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG; 1725 ew32(EXTCNF_CTRL, extcnf_ctrl); 1726 1727 while (timeout) { 1728 extcnf_ctrl = er32(EXTCNF_CTRL); 1729 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) 1730 break; 1731 1732 mdelay(1); 1733 timeout--; 1734 } 1735 1736 if (!timeout) { 1737 e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n", 1738 er32(FWSM), extcnf_ctrl); 1739 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG; 1740 ew32(EXTCNF_CTRL, extcnf_ctrl); 1741 ret_val = -E1000_ERR_CONFIG; 1742 goto out; 1743 } 1744 1745 out: 1746 if (ret_val) 1747 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state); 1748 1749 return ret_val; 1750 } 1751 1752 /** 1753 * e1000_release_swflag_ich8lan - Release software control flag 1754 * @hw: pointer to the HW structure 1755 * 1756 * Releases the software control flag for performing PHY and select 1757 * MAC CSR accesses. 1758 **/ 1759 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw) 1760 { 1761 u32 extcnf_ctrl; 1762 1763 extcnf_ctrl = er32(EXTCNF_CTRL); 1764 1765 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) { 1766 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG; 1767 ew32(EXTCNF_CTRL, extcnf_ctrl); 1768 } else { 1769 e_dbg("Semaphore unexpectedly released by sw/fw/hw\n"); 1770 } 1771 1772 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state); 1773 } 1774 1775 /** 1776 * e1000_check_mng_mode_ich8lan - Checks management mode 1777 * @hw: pointer to the HW structure 1778 * 1779 * This checks if the adapter has any manageability enabled. 1780 * This is a function pointer entry point only called by read/write 1781 * routines for the PHY and NVM parts. 1782 **/ 1783 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw) 1784 { 1785 u32 fwsm; 1786 1787 fwsm = er32(FWSM); 1788 return (fwsm & E1000_ICH_FWSM_FW_VALID) && 1789 ((fwsm & E1000_FWSM_MODE_MASK) == 1790 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)); 1791 } 1792 1793 /** 1794 * e1000_check_mng_mode_pchlan - Checks management mode 1795 * @hw: pointer to the HW structure 1796 * 1797 * This checks if the adapter has iAMT enabled. 1798 * This is a function pointer entry point only called by read/write 1799 * routines for the PHY and NVM parts. 1800 **/ 1801 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw) 1802 { 1803 u32 fwsm; 1804 1805 fwsm = er32(FWSM); 1806 return (fwsm & E1000_ICH_FWSM_FW_VALID) && 1807 (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)); 1808 } 1809 1810 /** 1811 * e1000_rar_set_pch2lan - Set receive address register 1812 * @hw: pointer to the HW structure 1813 * @addr: pointer to the receive address 1814 * @index: receive address array register 1815 * 1816 * Sets the receive address array register at index to the address passed 1817 * in by addr. For 82579, RAR[0] is the base address register that is to 1818 * contain the MAC address but RAR[1-6] are reserved for manageability (ME). 1819 * Use SHRA[0-3] in place of those reserved for ME. 1820 **/ 1821 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index) 1822 { 1823 u32 rar_low, rar_high; 1824 1825 /* HW expects these in little endian so we reverse the byte order 1826 * from network order (big endian) to little endian 1827 */ 1828 rar_low = ((u32)addr[0] | 1829 ((u32)addr[1] << 8) | 1830 ((u32)addr[2] << 16) | ((u32)addr[3] << 24)); 1831 1832 rar_high = ((u32)addr[4] | ((u32)addr[5] << 8)); 1833 1834 /* If MAC address zero, no need to set the AV bit */ 1835 if (rar_low || rar_high) 1836 rar_high |= E1000_RAH_AV; 1837 1838 if (index == 0) { 1839 ew32(RAL(index), rar_low); 1840 e1e_flush(); 1841 ew32(RAH(index), rar_high); 1842 e1e_flush(); 1843 return 0; 1844 } 1845 1846 /* RAR[1-6] are owned by manageability. Skip those and program the 1847 * next address into the SHRA register array. 1848 */ 1849 if (index < (u32)(hw->mac.rar_entry_count)) { 1850 s32 ret_val; 1851 1852 ret_val = e1000_acquire_swflag_ich8lan(hw); 1853 if (ret_val) 1854 goto out; 1855 1856 ew32(SHRAL(index - 1), rar_low); 1857 e1e_flush(); 1858 ew32(SHRAH(index - 1), rar_high); 1859 e1e_flush(); 1860 1861 e1000_release_swflag_ich8lan(hw); 1862 1863 /* verify the register updates */ 1864 if ((er32(SHRAL(index - 1)) == rar_low) && 1865 (er32(SHRAH(index - 1)) == rar_high)) 1866 return 0; 1867 1868 e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n", 1869 (index - 1), er32(FWSM)); 1870 } 1871 1872 out: 1873 e_dbg("Failed to write receive address at index %d\n", index); 1874 return -E1000_ERR_CONFIG; 1875 } 1876 1877 /** 1878 * e1000_rar_get_count_pch_lpt - Get the number of available SHRA 1879 * @hw: pointer to the HW structure 1880 * 1881 * Get the number of available receive registers that the Host can 1882 * program. SHRA[0-10] are the shared receive address registers 1883 * that are shared between the Host and manageability engine (ME). 1884 * ME can reserve any number of addresses and the host needs to be 1885 * able to tell how many available registers it has access to. 1886 **/ 1887 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw) 1888 { 1889 u32 wlock_mac; 1890 u32 num_entries; 1891 1892 wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK; 1893 wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT; 1894 1895 switch (wlock_mac) { 1896 case 0: 1897 /* All SHRA[0..10] and RAR[0] available */ 1898 num_entries = hw->mac.rar_entry_count; 1899 break; 1900 case 1: 1901 /* Only RAR[0] available */ 1902 num_entries = 1; 1903 break; 1904 default: 1905 /* SHRA[0..(wlock_mac - 1)] available + RAR[0] */ 1906 num_entries = wlock_mac + 1; 1907 break; 1908 } 1909 1910 return num_entries; 1911 } 1912 1913 /** 1914 * e1000_rar_set_pch_lpt - Set receive address registers 1915 * @hw: pointer to the HW structure 1916 * @addr: pointer to the receive address 1917 * @index: receive address array register 1918 * 1919 * Sets the receive address register array at index to the address passed 1920 * in by addr. For LPT, RAR[0] is the base address register that is to 1921 * contain the MAC address. SHRA[0-10] are the shared receive address 1922 * registers that are shared between the Host and manageability engine (ME). 1923 **/ 1924 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index) 1925 { 1926 u32 rar_low, rar_high; 1927 u32 wlock_mac; 1928 1929 /* HW expects these in little endian so we reverse the byte order 1930 * from network order (big endian) to little endian 1931 */ 1932 rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) | 1933 ((u32)addr[2] << 16) | ((u32)addr[3] << 24)); 1934 1935 rar_high = ((u32)addr[4] | ((u32)addr[5] << 8)); 1936 1937 /* If MAC address zero, no need to set the AV bit */ 1938 if (rar_low || rar_high) 1939 rar_high |= E1000_RAH_AV; 1940 1941 if (index == 0) { 1942 ew32(RAL(index), rar_low); 1943 e1e_flush(); 1944 ew32(RAH(index), rar_high); 1945 e1e_flush(); 1946 return 0; 1947 } 1948 1949 /* The manageability engine (ME) can lock certain SHRAR registers that 1950 * it is using - those registers are unavailable for use. 1951 */ 1952 if (index < hw->mac.rar_entry_count) { 1953 wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK; 1954 wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT; 1955 1956 /* Check if all SHRAR registers are locked */ 1957 if (wlock_mac == 1) 1958 goto out; 1959 1960 if ((wlock_mac == 0) || (index <= wlock_mac)) { 1961 s32 ret_val; 1962 1963 ret_val = e1000_acquire_swflag_ich8lan(hw); 1964 1965 if (ret_val) 1966 goto out; 1967 1968 ew32(SHRAL_PCH_LPT(index - 1), rar_low); 1969 e1e_flush(); 1970 ew32(SHRAH_PCH_LPT(index - 1), rar_high); 1971 e1e_flush(); 1972 1973 e1000_release_swflag_ich8lan(hw); 1974 1975 /* verify the register updates */ 1976 if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) && 1977 (er32(SHRAH_PCH_LPT(index - 1)) == rar_high)) 1978 return 0; 1979 } 1980 } 1981 1982 out: 1983 e_dbg("Failed to write receive address at index %d\n", index); 1984 return -E1000_ERR_CONFIG; 1985 } 1986 1987 /** 1988 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked 1989 * @hw: pointer to the HW structure 1990 * 1991 * Checks if firmware is blocking the reset of the PHY. 1992 * This is a function pointer entry point only called by 1993 * reset routines. 1994 **/ 1995 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw) 1996 { 1997 bool blocked = false; 1998 int i = 0; 1999 2000 while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) && 2001 (i++ < 30)) 2002 usleep_range(10000, 11000); 2003 return blocked ? E1000_BLK_PHY_RESET : 0; 2004 } 2005 2006 /** 2007 * e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states 2008 * @hw: pointer to the HW structure 2009 * 2010 * Assumes semaphore already acquired. 2011 * 2012 **/ 2013 static s32 e1000_write_smbus_addr(struct e1000_hw *hw) 2014 { 2015 u16 phy_data; 2016 u32 strap = er32(STRAP); 2017 u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >> 2018 E1000_STRAP_SMT_FREQ_SHIFT; 2019 s32 ret_val; 2020 2021 strap &= E1000_STRAP_SMBUS_ADDRESS_MASK; 2022 2023 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data); 2024 if (ret_val) 2025 return ret_val; 2026 2027 phy_data &= ~HV_SMB_ADDR_MASK; 2028 phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT); 2029 phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID; 2030 2031 if (hw->phy.type == e1000_phy_i217) { 2032 /* Restore SMBus frequency */ 2033 if (freq--) { 2034 phy_data &= ~HV_SMB_ADDR_FREQ_MASK; 2035 phy_data |= (freq & BIT(0)) << 2036 HV_SMB_ADDR_FREQ_LOW_SHIFT; 2037 phy_data |= (freq & BIT(1)) << 2038 (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1); 2039 } else { 2040 e_dbg("Unsupported SMB frequency in PHY\n"); 2041 } 2042 } 2043 2044 return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data); 2045 } 2046 2047 /** 2048 * e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration 2049 * @hw: pointer to the HW structure 2050 * 2051 * SW should configure the LCD from the NVM extended configuration region 2052 * as a workaround for certain parts. 2053 **/ 2054 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw) 2055 { 2056 struct e1000_phy_info *phy = &hw->phy; 2057 u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask; 2058 s32 ret_val = 0; 2059 u16 word_addr, reg_data, reg_addr, phy_page = 0; 2060 2061 /* Initialize the PHY from the NVM on ICH platforms. This 2062 * is needed due to an issue where the NVM configuration is 2063 * not properly autoloaded after power transitions. 2064 * Therefore, after each PHY reset, we will load the 2065 * configuration data out of the NVM manually. 2066 */ 2067 switch (hw->mac.type) { 2068 case e1000_ich8lan: 2069 if (phy->type != e1000_phy_igp_3) 2070 return ret_val; 2071 2072 if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) || 2073 (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) { 2074 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG; 2075 break; 2076 } 2077 /* Fall-thru */ 2078 case e1000_pchlan: 2079 case e1000_pch2lan: 2080 case e1000_pch_lpt: 2081 case e1000_pch_spt: 2082 case e1000_pch_cnp: 2083 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M; 2084 break; 2085 default: 2086 return ret_val; 2087 } 2088 2089 ret_val = hw->phy.ops.acquire(hw); 2090 if (ret_val) 2091 return ret_val; 2092 2093 data = er32(FEXTNVM); 2094 if (!(data & sw_cfg_mask)) 2095 goto release; 2096 2097 /* Make sure HW does not configure LCD from PHY 2098 * extended configuration before SW configuration 2099 */ 2100 data = er32(EXTCNF_CTRL); 2101 if ((hw->mac.type < e1000_pch2lan) && 2102 (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)) 2103 goto release; 2104 2105 cnf_size = er32(EXTCNF_SIZE); 2106 cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK; 2107 cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT; 2108 if (!cnf_size) 2109 goto release; 2110 2111 cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK; 2112 cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT; 2113 2114 if (((hw->mac.type == e1000_pchlan) && 2115 !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) || 2116 (hw->mac.type > e1000_pchlan)) { 2117 /* HW configures the SMBus address and LEDs when the 2118 * OEM and LCD Write Enable bits are set in the NVM. 2119 * When both NVM bits are cleared, SW will configure 2120 * them instead. 2121 */ 2122 ret_val = e1000_write_smbus_addr(hw); 2123 if (ret_val) 2124 goto release; 2125 2126 data = er32(LEDCTL); 2127 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG, 2128 (u16)data); 2129 if (ret_val) 2130 goto release; 2131 } 2132 2133 /* Configure LCD from extended configuration region. */ 2134 2135 /* cnf_base_addr is in DWORD */ 2136 word_addr = (u16)(cnf_base_addr << 1); 2137 2138 for (i = 0; i < cnf_size; i++) { 2139 ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, ®_data); 2140 if (ret_val) 2141 goto release; 2142 2143 ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1), 2144 1, ®_addr); 2145 if (ret_val) 2146 goto release; 2147 2148 /* Save off the PHY page for future writes. */ 2149 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) { 2150 phy_page = reg_data; 2151 continue; 2152 } 2153 2154 reg_addr &= PHY_REG_MASK; 2155 reg_addr |= phy_page; 2156 2157 ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data); 2158 if (ret_val) 2159 goto release; 2160 } 2161 2162 release: 2163 hw->phy.ops.release(hw); 2164 return ret_val; 2165 } 2166 2167 /** 2168 * e1000_k1_gig_workaround_hv - K1 Si workaround 2169 * @hw: pointer to the HW structure 2170 * @link: link up bool flag 2171 * 2172 * If K1 is enabled for 1Gbps, the MAC might stall when transitioning 2173 * from a lower speed. This workaround disables K1 whenever link is at 1Gig 2174 * If link is down, the function will restore the default K1 setting located 2175 * in the NVM. 2176 **/ 2177 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link) 2178 { 2179 s32 ret_val = 0; 2180 u16 status_reg = 0; 2181 bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled; 2182 2183 if (hw->mac.type != e1000_pchlan) 2184 return 0; 2185 2186 /* Wrap the whole flow with the sw flag */ 2187 ret_val = hw->phy.ops.acquire(hw); 2188 if (ret_val) 2189 return ret_val; 2190 2191 /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */ 2192 if (link) { 2193 if (hw->phy.type == e1000_phy_82578) { 2194 ret_val = e1e_rphy_locked(hw, BM_CS_STATUS, 2195 &status_reg); 2196 if (ret_val) 2197 goto release; 2198 2199 status_reg &= (BM_CS_STATUS_LINK_UP | 2200 BM_CS_STATUS_RESOLVED | 2201 BM_CS_STATUS_SPEED_MASK); 2202 2203 if (status_reg == (BM_CS_STATUS_LINK_UP | 2204 BM_CS_STATUS_RESOLVED | 2205 BM_CS_STATUS_SPEED_1000)) 2206 k1_enable = false; 2207 } 2208 2209 if (hw->phy.type == e1000_phy_82577) { 2210 ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg); 2211 if (ret_val) 2212 goto release; 2213 2214 status_reg &= (HV_M_STATUS_LINK_UP | 2215 HV_M_STATUS_AUTONEG_COMPLETE | 2216 HV_M_STATUS_SPEED_MASK); 2217 2218 if (status_reg == (HV_M_STATUS_LINK_UP | 2219 HV_M_STATUS_AUTONEG_COMPLETE | 2220 HV_M_STATUS_SPEED_1000)) 2221 k1_enable = false; 2222 } 2223 2224 /* Link stall fix for link up */ 2225 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100); 2226 if (ret_val) 2227 goto release; 2228 2229 } else { 2230 /* Link stall fix for link down */ 2231 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100); 2232 if (ret_val) 2233 goto release; 2234 } 2235 2236 ret_val = e1000_configure_k1_ich8lan(hw, k1_enable); 2237 2238 release: 2239 hw->phy.ops.release(hw); 2240 2241 return ret_val; 2242 } 2243 2244 /** 2245 * e1000_configure_k1_ich8lan - Configure K1 power state 2246 * @hw: pointer to the HW structure 2247 * @enable: K1 state to configure 2248 * 2249 * Configure the K1 power state based on the provided parameter. 2250 * Assumes semaphore already acquired. 2251 * 2252 * Success returns 0, Failure returns -E1000_ERR_PHY (-2) 2253 **/ 2254 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable) 2255 { 2256 s32 ret_val; 2257 u32 ctrl_reg = 0; 2258 u32 ctrl_ext = 0; 2259 u32 reg = 0; 2260 u16 kmrn_reg = 0; 2261 2262 ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG, 2263 &kmrn_reg); 2264 if (ret_val) 2265 return ret_val; 2266 2267 if (k1_enable) 2268 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE; 2269 else 2270 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE; 2271 2272 ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG, 2273 kmrn_reg); 2274 if (ret_val) 2275 return ret_val; 2276 2277 usleep_range(20, 40); 2278 ctrl_ext = er32(CTRL_EXT); 2279 ctrl_reg = er32(CTRL); 2280 2281 reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); 2282 reg |= E1000_CTRL_FRCSPD; 2283 ew32(CTRL, reg); 2284 2285 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS); 2286 e1e_flush(); 2287 usleep_range(20, 40); 2288 ew32(CTRL, ctrl_reg); 2289 ew32(CTRL_EXT, ctrl_ext); 2290 e1e_flush(); 2291 usleep_range(20, 40); 2292 2293 return 0; 2294 } 2295 2296 /** 2297 * e1000_oem_bits_config_ich8lan - SW-based LCD Configuration 2298 * @hw: pointer to the HW structure 2299 * @d0_state: boolean if entering d0 or d3 device state 2300 * 2301 * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are 2302 * collectively called OEM bits. The OEM Write Enable bit and SW Config bit 2303 * in NVM determines whether HW should configure LPLU and Gbe Disable. 2304 **/ 2305 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state) 2306 { 2307 s32 ret_val = 0; 2308 u32 mac_reg; 2309 u16 oem_reg; 2310 2311 if (hw->mac.type < e1000_pchlan) 2312 return ret_val; 2313 2314 ret_val = hw->phy.ops.acquire(hw); 2315 if (ret_val) 2316 return ret_val; 2317 2318 if (hw->mac.type == e1000_pchlan) { 2319 mac_reg = er32(EXTCNF_CTRL); 2320 if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) 2321 goto release; 2322 } 2323 2324 mac_reg = er32(FEXTNVM); 2325 if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M)) 2326 goto release; 2327 2328 mac_reg = er32(PHY_CTRL); 2329 2330 ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg); 2331 if (ret_val) 2332 goto release; 2333 2334 oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU); 2335 2336 if (d0_state) { 2337 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE) 2338 oem_reg |= HV_OEM_BITS_GBE_DIS; 2339 2340 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU) 2341 oem_reg |= HV_OEM_BITS_LPLU; 2342 } else { 2343 if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE | 2344 E1000_PHY_CTRL_NOND0A_GBE_DISABLE)) 2345 oem_reg |= HV_OEM_BITS_GBE_DIS; 2346 2347 if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU | 2348 E1000_PHY_CTRL_NOND0A_LPLU)) 2349 oem_reg |= HV_OEM_BITS_LPLU; 2350 } 2351 2352 /* Set Restart auto-neg to activate the bits */ 2353 if ((d0_state || (hw->mac.type != e1000_pchlan)) && 2354 !hw->phy.ops.check_reset_block(hw)) 2355 oem_reg |= HV_OEM_BITS_RESTART_AN; 2356 2357 ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg); 2358 2359 release: 2360 hw->phy.ops.release(hw); 2361 2362 return ret_val; 2363 } 2364 2365 /** 2366 * e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode 2367 * @hw: pointer to the HW structure 2368 **/ 2369 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw) 2370 { 2371 s32 ret_val; 2372 u16 data; 2373 2374 ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data); 2375 if (ret_val) 2376 return ret_val; 2377 2378 data |= HV_KMRN_MDIO_SLOW; 2379 2380 ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data); 2381 2382 return ret_val; 2383 } 2384 2385 /** 2386 * e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be 2387 * done after every PHY reset. 2388 **/ 2389 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw) 2390 { 2391 s32 ret_val = 0; 2392 u16 phy_data; 2393 2394 if (hw->mac.type != e1000_pchlan) 2395 return 0; 2396 2397 /* Set MDIO slow mode before any other MDIO access */ 2398 if (hw->phy.type == e1000_phy_82577) { 2399 ret_val = e1000_set_mdio_slow_mode_hv(hw); 2400 if (ret_val) 2401 return ret_val; 2402 } 2403 2404 if (((hw->phy.type == e1000_phy_82577) && 2405 ((hw->phy.revision == 1) || (hw->phy.revision == 2))) || 2406 ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) { 2407 /* Disable generation of early preamble */ 2408 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431); 2409 if (ret_val) 2410 return ret_val; 2411 2412 /* Preamble tuning for SSC */ 2413 ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204); 2414 if (ret_val) 2415 return ret_val; 2416 } 2417 2418 if (hw->phy.type == e1000_phy_82578) { 2419 /* Return registers to default by doing a soft reset then 2420 * writing 0x3140 to the control register. 2421 */ 2422 if (hw->phy.revision < 2) { 2423 e1000e_phy_sw_reset(hw); 2424 ret_val = e1e_wphy(hw, MII_BMCR, 0x3140); 2425 if (ret_val) 2426 return ret_val; 2427 } 2428 } 2429 2430 /* Select page 0 */ 2431 ret_val = hw->phy.ops.acquire(hw); 2432 if (ret_val) 2433 return ret_val; 2434 2435 hw->phy.addr = 1; 2436 ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0); 2437 hw->phy.ops.release(hw); 2438 if (ret_val) 2439 return ret_val; 2440 2441 /* Configure the K1 Si workaround during phy reset assuming there is 2442 * link so that it disables K1 if link is in 1Gbps. 2443 */ 2444 ret_val = e1000_k1_gig_workaround_hv(hw, true); 2445 if (ret_val) 2446 return ret_val; 2447 2448 /* Workaround for link disconnects on a busy hub in half duplex */ 2449 ret_val = hw->phy.ops.acquire(hw); 2450 if (ret_val) 2451 return ret_val; 2452 ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data); 2453 if (ret_val) 2454 goto release; 2455 ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF); 2456 if (ret_val) 2457 goto release; 2458 2459 /* set MSE higher to enable link to stay up when noise is high */ 2460 ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034); 2461 release: 2462 hw->phy.ops.release(hw); 2463 2464 return ret_val; 2465 } 2466 2467 /** 2468 * e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY 2469 * @hw: pointer to the HW structure 2470 **/ 2471 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw) 2472 { 2473 u32 mac_reg; 2474 u16 i, phy_reg = 0; 2475 s32 ret_val; 2476 2477 ret_val = hw->phy.ops.acquire(hw); 2478 if (ret_val) 2479 return; 2480 ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg); 2481 if (ret_val) 2482 goto release; 2483 2484 /* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */ 2485 for (i = 0; i < (hw->mac.rar_entry_count); i++) { 2486 mac_reg = er32(RAL(i)); 2487 hw->phy.ops.write_reg_page(hw, BM_RAR_L(i), 2488 (u16)(mac_reg & 0xFFFF)); 2489 hw->phy.ops.write_reg_page(hw, BM_RAR_M(i), 2490 (u16)((mac_reg >> 16) & 0xFFFF)); 2491 2492 mac_reg = er32(RAH(i)); 2493 hw->phy.ops.write_reg_page(hw, BM_RAR_H(i), 2494 (u16)(mac_reg & 0xFFFF)); 2495 hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i), 2496 (u16)((mac_reg & E1000_RAH_AV) 2497 >> 16)); 2498 } 2499 2500 e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg); 2501 2502 release: 2503 hw->phy.ops.release(hw); 2504 } 2505 2506 /** 2507 * e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation 2508 * with 82579 PHY 2509 * @hw: pointer to the HW structure 2510 * @enable: flag to enable/disable workaround when enabling/disabling jumbos 2511 **/ 2512 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable) 2513 { 2514 s32 ret_val = 0; 2515 u16 phy_reg, data; 2516 u32 mac_reg; 2517 u16 i; 2518 2519 if (hw->mac.type < e1000_pch2lan) 2520 return 0; 2521 2522 /* disable Rx path while enabling/disabling workaround */ 2523 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg); 2524 ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | BIT(14)); 2525 if (ret_val) 2526 return ret_val; 2527 2528 if (enable) { 2529 /* Write Rx addresses (rar_entry_count for RAL/H, and 2530 * SHRAL/H) and initial CRC values to the MAC 2531 */ 2532 for (i = 0; i < hw->mac.rar_entry_count; i++) { 2533 u8 mac_addr[ETH_ALEN] = { 0 }; 2534 u32 addr_high, addr_low; 2535 2536 addr_high = er32(RAH(i)); 2537 if (!(addr_high & E1000_RAH_AV)) 2538 continue; 2539 addr_low = er32(RAL(i)); 2540 mac_addr[0] = (addr_low & 0xFF); 2541 mac_addr[1] = ((addr_low >> 8) & 0xFF); 2542 mac_addr[2] = ((addr_low >> 16) & 0xFF); 2543 mac_addr[3] = ((addr_low >> 24) & 0xFF); 2544 mac_addr[4] = (addr_high & 0xFF); 2545 mac_addr[5] = ((addr_high >> 8) & 0xFF); 2546 2547 ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr)); 2548 } 2549 2550 /* Write Rx addresses to the PHY */ 2551 e1000_copy_rx_addrs_to_phy_ich8lan(hw); 2552 2553 /* Enable jumbo frame workaround in the MAC */ 2554 mac_reg = er32(FFLT_DBG); 2555 mac_reg &= ~BIT(14); 2556 mac_reg |= (7 << 15); 2557 ew32(FFLT_DBG, mac_reg); 2558 2559 mac_reg = er32(RCTL); 2560 mac_reg |= E1000_RCTL_SECRC; 2561 ew32(RCTL, mac_reg); 2562 2563 ret_val = e1000e_read_kmrn_reg(hw, 2564 E1000_KMRNCTRLSTA_CTRL_OFFSET, 2565 &data); 2566 if (ret_val) 2567 return ret_val; 2568 ret_val = e1000e_write_kmrn_reg(hw, 2569 E1000_KMRNCTRLSTA_CTRL_OFFSET, 2570 data | BIT(0)); 2571 if (ret_val) 2572 return ret_val; 2573 ret_val = e1000e_read_kmrn_reg(hw, 2574 E1000_KMRNCTRLSTA_HD_CTRL, 2575 &data); 2576 if (ret_val) 2577 return ret_val; 2578 data &= ~(0xF << 8); 2579 data |= (0xB << 8); 2580 ret_val = e1000e_write_kmrn_reg(hw, 2581 E1000_KMRNCTRLSTA_HD_CTRL, 2582 data); 2583 if (ret_val) 2584 return ret_val; 2585 2586 /* Enable jumbo frame workaround in the PHY */ 2587 e1e_rphy(hw, PHY_REG(769, 23), &data); 2588 data &= ~(0x7F << 5); 2589 data |= (0x37 << 5); 2590 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data); 2591 if (ret_val) 2592 return ret_val; 2593 e1e_rphy(hw, PHY_REG(769, 16), &data); 2594 data &= ~BIT(13); 2595 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data); 2596 if (ret_val) 2597 return ret_val; 2598 e1e_rphy(hw, PHY_REG(776, 20), &data); 2599 data &= ~(0x3FF << 2); 2600 data |= (E1000_TX_PTR_GAP << 2); 2601 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data); 2602 if (ret_val) 2603 return ret_val; 2604 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100); 2605 if (ret_val) 2606 return ret_val; 2607 e1e_rphy(hw, HV_PM_CTRL, &data); 2608 ret_val = e1e_wphy(hw, HV_PM_CTRL, data | BIT(10)); 2609 if (ret_val) 2610 return ret_val; 2611 } else { 2612 /* Write MAC register values back to h/w defaults */ 2613 mac_reg = er32(FFLT_DBG); 2614 mac_reg &= ~(0xF << 14); 2615 ew32(FFLT_DBG, mac_reg); 2616 2617 mac_reg = er32(RCTL); 2618 mac_reg &= ~E1000_RCTL_SECRC; 2619 ew32(RCTL, mac_reg); 2620 2621 ret_val = e1000e_read_kmrn_reg(hw, 2622 E1000_KMRNCTRLSTA_CTRL_OFFSET, 2623 &data); 2624 if (ret_val) 2625 return ret_val; 2626 ret_val = e1000e_write_kmrn_reg(hw, 2627 E1000_KMRNCTRLSTA_CTRL_OFFSET, 2628 data & ~BIT(0)); 2629 if (ret_val) 2630 return ret_val; 2631 ret_val = e1000e_read_kmrn_reg(hw, 2632 E1000_KMRNCTRLSTA_HD_CTRL, 2633 &data); 2634 if (ret_val) 2635 return ret_val; 2636 data &= ~(0xF << 8); 2637 data |= (0xB << 8); 2638 ret_val = e1000e_write_kmrn_reg(hw, 2639 E1000_KMRNCTRLSTA_HD_CTRL, 2640 data); 2641 if (ret_val) 2642 return ret_val; 2643 2644 /* Write PHY register values back to h/w defaults */ 2645 e1e_rphy(hw, PHY_REG(769, 23), &data); 2646 data &= ~(0x7F << 5); 2647 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data); 2648 if (ret_val) 2649 return ret_val; 2650 e1e_rphy(hw, PHY_REG(769, 16), &data); 2651 data |= BIT(13); 2652 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data); 2653 if (ret_val) 2654 return ret_val; 2655 e1e_rphy(hw, PHY_REG(776, 20), &data); 2656 data &= ~(0x3FF << 2); 2657 data |= (0x8 << 2); 2658 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data); 2659 if (ret_val) 2660 return ret_val; 2661 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00); 2662 if (ret_val) 2663 return ret_val; 2664 e1e_rphy(hw, HV_PM_CTRL, &data); 2665 ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~BIT(10)); 2666 if (ret_val) 2667 return ret_val; 2668 } 2669 2670 /* re-enable Rx path after enabling/disabling workaround */ 2671 return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~BIT(14)); 2672 } 2673 2674 /** 2675 * e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be 2676 * done after every PHY reset. 2677 **/ 2678 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw) 2679 { 2680 s32 ret_val = 0; 2681 2682 if (hw->mac.type != e1000_pch2lan) 2683 return 0; 2684 2685 /* Set MDIO slow mode before any other MDIO access */ 2686 ret_val = e1000_set_mdio_slow_mode_hv(hw); 2687 if (ret_val) 2688 return ret_val; 2689 2690 ret_val = hw->phy.ops.acquire(hw); 2691 if (ret_val) 2692 return ret_val; 2693 /* set MSE higher to enable link to stay up when noise is high */ 2694 ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034); 2695 if (ret_val) 2696 goto release; 2697 /* drop link after 5 times MSE threshold was reached */ 2698 ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005); 2699 release: 2700 hw->phy.ops.release(hw); 2701 2702 return ret_val; 2703 } 2704 2705 /** 2706 * e1000_k1_gig_workaround_lv - K1 Si workaround 2707 * @hw: pointer to the HW structure 2708 * 2709 * Workaround to set the K1 beacon duration for 82579 parts in 10Mbps 2710 * Disable K1 in 1000Mbps and 100Mbps 2711 **/ 2712 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw) 2713 { 2714 s32 ret_val = 0; 2715 u16 status_reg = 0; 2716 2717 if (hw->mac.type != e1000_pch2lan) 2718 return 0; 2719 2720 /* Set K1 beacon duration based on 10Mbs speed */ 2721 ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg); 2722 if (ret_val) 2723 return ret_val; 2724 2725 if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) 2726 == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) { 2727 if (status_reg & 2728 (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) { 2729 u16 pm_phy_reg; 2730 2731 /* LV 1G/100 Packet drop issue wa */ 2732 ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg); 2733 if (ret_val) 2734 return ret_val; 2735 pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE; 2736 ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg); 2737 if (ret_val) 2738 return ret_val; 2739 } else { 2740 u32 mac_reg; 2741 2742 mac_reg = er32(FEXTNVM4); 2743 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK; 2744 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC; 2745 ew32(FEXTNVM4, mac_reg); 2746 } 2747 } 2748 2749 return ret_val; 2750 } 2751 2752 /** 2753 * e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware 2754 * @hw: pointer to the HW structure 2755 * @gate: boolean set to true to gate, false to ungate 2756 * 2757 * Gate/ungate the automatic PHY configuration via hardware; perform 2758 * the configuration via software instead. 2759 **/ 2760 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate) 2761 { 2762 u32 extcnf_ctrl; 2763 2764 if (hw->mac.type < e1000_pch2lan) 2765 return; 2766 2767 extcnf_ctrl = er32(EXTCNF_CTRL); 2768 2769 if (gate) 2770 extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG; 2771 else 2772 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG; 2773 2774 ew32(EXTCNF_CTRL, extcnf_ctrl); 2775 } 2776 2777 /** 2778 * e1000_lan_init_done_ich8lan - Check for PHY config completion 2779 * @hw: pointer to the HW structure 2780 * 2781 * Check the appropriate indication the MAC has finished configuring the 2782 * PHY after a software reset. 2783 **/ 2784 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw) 2785 { 2786 u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT; 2787 2788 /* Wait for basic configuration completes before proceeding */ 2789 do { 2790 data = er32(STATUS); 2791 data &= E1000_STATUS_LAN_INIT_DONE; 2792 usleep_range(100, 200); 2793 } while ((!data) && --loop); 2794 2795 /* If basic configuration is incomplete before the above loop 2796 * count reaches 0, loading the configuration from NVM will 2797 * leave the PHY in a bad state possibly resulting in no link. 2798 */ 2799 if (loop == 0) 2800 e_dbg("LAN_INIT_DONE not set, increase timeout\n"); 2801 2802 /* Clear the Init Done bit for the next init event */ 2803 data = er32(STATUS); 2804 data &= ~E1000_STATUS_LAN_INIT_DONE; 2805 ew32(STATUS, data); 2806 } 2807 2808 /** 2809 * e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset 2810 * @hw: pointer to the HW structure 2811 **/ 2812 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw) 2813 { 2814 s32 ret_val = 0; 2815 u16 reg; 2816 2817 if (hw->phy.ops.check_reset_block(hw)) 2818 return 0; 2819 2820 /* Allow time for h/w to get to quiescent state after reset */ 2821 usleep_range(10000, 11000); 2822 2823 /* Perform any necessary post-reset workarounds */ 2824 switch (hw->mac.type) { 2825 case e1000_pchlan: 2826 ret_val = e1000_hv_phy_workarounds_ich8lan(hw); 2827 if (ret_val) 2828 return ret_val; 2829 break; 2830 case e1000_pch2lan: 2831 ret_val = e1000_lv_phy_workarounds_ich8lan(hw); 2832 if (ret_val) 2833 return ret_val; 2834 break; 2835 default: 2836 break; 2837 } 2838 2839 /* Clear the host wakeup bit after lcd reset */ 2840 if (hw->mac.type >= e1000_pchlan) { 2841 e1e_rphy(hw, BM_PORT_GEN_CFG, ®); 2842 reg &= ~BM_WUC_HOST_WU_BIT; 2843 e1e_wphy(hw, BM_PORT_GEN_CFG, reg); 2844 } 2845 2846 /* Configure the LCD with the extended configuration region in NVM */ 2847 ret_val = e1000_sw_lcd_config_ich8lan(hw); 2848 if (ret_val) 2849 return ret_val; 2850 2851 /* Configure the LCD with the OEM bits in NVM */ 2852 ret_val = e1000_oem_bits_config_ich8lan(hw, true); 2853 2854 if (hw->mac.type == e1000_pch2lan) { 2855 /* Ungate automatic PHY configuration on non-managed 82579 */ 2856 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) { 2857 usleep_range(10000, 11000); 2858 e1000_gate_hw_phy_config_ich8lan(hw, false); 2859 } 2860 2861 /* Set EEE LPI Update Timer to 200usec */ 2862 ret_val = hw->phy.ops.acquire(hw); 2863 if (ret_val) 2864 return ret_val; 2865 ret_val = e1000_write_emi_reg_locked(hw, 2866 I82579_LPI_UPDATE_TIMER, 2867 0x1387); 2868 hw->phy.ops.release(hw); 2869 } 2870 2871 return ret_val; 2872 } 2873 2874 /** 2875 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset 2876 * @hw: pointer to the HW structure 2877 * 2878 * Resets the PHY 2879 * This is a function pointer entry point called by drivers 2880 * or other shared routines. 2881 **/ 2882 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw) 2883 { 2884 s32 ret_val = 0; 2885 2886 /* Gate automatic PHY configuration by hardware on non-managed 82579 */ 2887 if ((hw->mac.type == e1000_pch2lan) && 2888 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) 2889 e1000_gate_hw_phy_config_ich8lan(hw, true); 2890 2891 ret_val = e1000e_phy_hw_reset_generic(hw); 2892 if (ret_val) 2893 return ret_val; 2894 2895 return e1000_post_phy_reset_ich8lan(hw); 2896 } 2897 2898 /** 2899 * e1000_set_lplu_state_pchlan - Set Low Power Link Up state 2900 * @hw: pointer to the HW structure 2901 * @active: true to enable LPLU, false to disable 2902 * 2903 * Sets the LPLU state according to the active flag. For PCH, if OEM write 2904 * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set 2905 * the phy speed. This function will manually set the LPLU bit and restart 2906 * auto-neg as hw would do. D3 and D0 LPLU will call the same function 2907 * since it configures the same bit. 2908 **/ 2909 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active) 2910 { 2911 s32 ret_val; 2912 u16 oem_reg; 2913 2914 ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg); 2915 if (ret_val) 2916 return ret_val; 2917 2918 if (active) 2919 oem_reg |= HV_OEM_BITS_LPLU; 2920 else 2921 oem_reg &= ~HV_OEM_BITS_LPLU; 2922 2923 if (!hw->phy.ops.check_reset_block(hw)) 2924 oem_reg |= HV_OEM_BITS_RESTART_AN; 2925 2926 return e1e_wphy(hw, HV_OEM_BITS, oem_reg); 2927 } 2928 2929 /** 2930 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state 2931 * @hw: pointer to the HW structure 2932 * @active: true to enable LPLU, false to disable 2933 * 2934 * Sets the LPLU D0 state according to the active flag. When 2935 * activating LPLU this function also disables smart speed 2936 * and vice versa. LPLU will not be activated unless the 2937 * device autonegotiation advertisement meets standards of 2938 * either 10 or 10/100 or 10/100/1000 at all duplexes. 2939 * This is a function pointer entry point only called by 2940 * PHY setup routines. 2941 **/ 2942 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active) 2943 { 2944 struct e1000_phy_info *phy = &hw->phy; 2945 u32 phy_ctrl; 2946 s32 ret_val = 0; 2947 u16 data; 2948 2949 if (phy->type == e1000_phy_ife) 2950 return 0; 2951 2952 phy_ctrl = er32(PHY_CTRL); 2953 2954 if (active) { 2955 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU; 2956 ew32(PHY_CTRL, phy_ctrl); 2957 2958 if (phy->type != e1000_phy_igp_3) 2959 return 0; 2960 2961 /* Call gig speed drop workaround on LPLU before accessing 2962 * any PHY registers 2963 */ 2964 if (hw->mac.type == e1000_ich8lan) 2965 e1000e_gig_downshift_workaround_ich8lan(hw); 2966 2967 /* When LPLU is enabled, we should disable SmartSpeed */ 2968 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data); 2969 if (ret_val) 2970 return ret_val; 2971 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 2972 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data); 2973 if (ret_val) 2974 return ret_val; 2975 } else { 2976 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU; 2977 ew32(PHY_CTRL, phy_ctrl); 2978 2979 if (phy->type != e1000_phy_igp_3) 2980 return 0; 2981 2982 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used 2983 * during Dx states where the power conservation is most 2984 * important. During driver activity we should enable 2985 * SmartSpeed, so performance is maintained. 2986 */ 2987 if (phy->smart_speed == e1000_smart_speed_on) { 2988 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, 2989 &data); 2990 if (ret_val) 2991 return ret_val; 2992 2993 data |= IGP01E1000_PSCFR_SMART_SPEED; 2994 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, 2995 data); 2996 if (ret_val) 2997 return ret_val; 2998 } else if (phy->smart_speed == e1000_smart_speed_off) { 2999 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, 3000 &data); 3001 if (ret_val) 3002 return ret_val; 3003 3004 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 3005 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, 3006 data); 3007 if (ret_val) 3008 return ret_val; 3009 } 3010 } 3011 3012 return 0; 3013 } 3014 3015 /** 3016 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state 3017 * @hw: pointer to the HW structure 3018 * @active: true to enable LPLU, false to disable 3019 * 3020 * Sets the LPLU D3 state according to the active flag. When 3021 * activating LPLU this function also disables smart speed 3022 * and vice versa. LPLU will not be activated unless the 3023 * device autonegotiation advertisement meets standards of 3024 * either 10 or 10/100 or 10/100/1000 at all duplexes. 3025 * This is a function pointer entry point only called by 3026 * PHY setup routines. 3027 **/ 3028 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active) 3029 { 3030 struct e1000_phy_info *phy = &hw->phy; 3031 u32 phy_ctrl; 3032 s32 ret_val = 0; 3033 u16 data; 3034 3035 phy_ctrl = er32(PHY_CTRL); 3036 3037 if (!active) { 3038 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU; 3039 ew32(PHY_CTRL, phy_ctrl); 3040 3041 if (phy->type != e1000_phy_igp_3) 3042 return 0; 3043 3044 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used 3045 * during Dx states where the power conservation is most 3046 * important. During driver activity we should enable 3047 * SmartSpeed, so performance is maintained. 3048 */ 3049 if (phy->smart_speed == e1000_smart_speed_on) { 3050 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, 3051 &data); 3052 if (ret_val) 3053 return ret_val; 3054 3055 data |= IGP01E1000_PSCFR_SMART_SPEED; 3056 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, 3057 data); 3058 if (ret_val) 3059 return ret_val; 3060 } else if (phy->smart_speed == e1000_smart_speed_off) { 3061 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, 3062 &data); 3063 if (ret_val) 3064 return ret_val; 3065 3066 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 3067 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, 3068 data); 3069 if (ret_val) 3070 return ret_val; 3071 } 3072 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || 3073 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || 3074 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { 3075 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU; 3076 ew32(PHY_CTRL, phy_ctrl); 3077 3078 if (phy->type != e1000_phy_igp_3) 3079 return 0; 3080 3081 /* Call gig speed drop workaround on LPLU before accessing 3082 * any PHY registers 3083 */ 3084 if (hw->mac.type == e1000_ich8lan) 3085 e1000e_gig_downshift_workaround_ich8lan(hw); 3086 3087 /* When LPLU is enabled, we should disable SmartSpeed */ 3088 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data); 3089 if (ret_val) 3090 return ret_val; 3091 3092 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 3093 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data); 3094 } 3095 3096 return ret_val; 3097 } 3098 3099 /** 3100 * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1 3101 * @hw: pointer to the HW structure 3102 * @bank: pointer to the variable that returns the active bank 3103 * 3104 * Reads signature byte from the NVM using the flash access registers. 3105 * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank. 3106 **/ 3107 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank) 3108 { 3109 u32 eecd; 3110 struct e1000_nvm_info *nvm = &hw->nvm; 3111 u32 bank1_offset = nvm->flash_bank_size * sizeof(u16); 3112 u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1; 3113 u32 nvm_dword = 0; 3114 u8 sig_byte = 0; 3115 s32 ret_val; 3116 3117 switch (hw->mac.type) { 3118 case e1000_pch_spt: 3119 case e1000_pch_cnp: 3120 bank1_offset = nvm->flash_bank_size; 3121 act_offset = E1000_ICH_NVM_SIG_WORD; 3122 3123 /* set bank to 0 in case flash read fails */ 3124 *bank = 0; 3125 3126 /* Check bank 0 */ 3127 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, 3128 &nvm_dword); 3129 if (ret_val) 3130 return ret_val; 3131 sig_byte = (u8)((nvm_dword & 0xFF00) >> 8); 3132 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == 3133 E1000_ICH_NVM_SIG_VALUE) { 3134 *bank = 0; 3135 return 0; 3136 } 3137 3138 /* Check bank 1 */ 3139 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset + 3140 bank1_offset, 3141 &nvm_dword); 3142 if (ret_val) 3143 return ret_val; 3144 sig_byte = (u8)((nvm_dword & 0xFF00) >> 8); 3145 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == 3146 E1000_ICH_NVM_SIG_VALUE) { 3147 *bank = 1; 3148 return 0; 3149 } 3150 3151 e_dbg("ERROR: No valid NVM bank present\n"); 3152 return -E1000_ERR_NVM; 3153 case e1000_ich8lan: 3154 case e1000_ich9lan: 3155 eecd = er32(EECD); 3156 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) == 3157 E1000_EECD_SEC1VAL_VALID_MASK) { 3158 if (eecd & E1000_EECD_SEC1VAL) 3159 *bank = 1; 3160 else 3161 *bank = 0; 3162 3163 return 0; 3164 } 3165 e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n"); 3166 /* fall-thru */ 3167 default: 3168 /* set bank to 0 in case flash read fails */ 3169 *bank = 0; 3170 3171 /* Check bank 0 */ 3172 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset, 3173 &sig_byte); 3174 if (ret_val) 3175 return ret_val; 3176 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == 3177 E1000_ICH_NVM_SIG_VALUE) { 3178 *bank = 0; 3179 return 0; 3180 } 3181 3182 /* Check bank 1 */ 3183 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset + 3184 bank1_offset, 3185 &sig_byte); 3186 if (ret_val) 3187 return ret_val; 3188 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == 3189 E1000_ICH_NVM_SIG_VALUE) { 3190 *bank = 1; 3191 return 0; 3192 } 3193 3194 e_dbg("ERROR: No valid NVM bank present\n"); 3195 return -E1000_ERR_NVM; 3196 } 3197 } 3198 3199 /** 3200 * e1000_read_nvm_spt - NVM access for SPT 3201 * @hw: pointer to the HW structure 3202 * @offset: The offset (in bytes) of the word(s) to read. 3203 * @words: Size of data to read in words. 3204 * @data: pointer to the word(s) to read at offset. 3205 * 3206 * Reads a word(s) from the NVM 3207 **/ 3208 static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words, 3209 u16 *data) 3210 { 3211 struct e1000_nvm_info *nvm = &hw->nvm; 3212 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 3213 u32 act_offset; 3214 s32 ret_val = 0; 3215 u32 bank = 0; 3216 u32 dword = 0; 3217 u16 offset_to_read; 3218 u16 i; 3219 3220 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) || 3221 (words == 0)) { 3222 e_dbg("nvm parameter(s) out of bounds\n"); 3223 ret_val = -E1000_ERR_NVM; 3224 goto out; 3225 } 3226 3227 nvm->ops.acquire(hw); 3228 3229 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); 3230 if (ret_val) { 3231 e_dbg("Could not detect valid bank, assuming bank 0\n"); 3232 bank = 0; 3233 } 3234 3235 act_offset = (bank) ? nvm->flash_bank_size : 0; 3236 act_offset += offset; 3237 3238 ret_val = 0; 3239 3240 for (i = 0; i < words; i += 2) { 3241 if (words - i == 1) { 3242 if (dev_spec->shadow_ram[offset + i].modified) { 3243 data[i] = 3244 dev_spec->shadow_ram[offset + i].value; 3245 } else { 3246 offset_to_read = act_offset + i - 3247 ((act_offset + i) % 2); 3248 ret_val = 3249 e1000_read_flash_dword_ich8lan(hw, 3250 offset_to_read, 3251 &dword); 3252 if (ret_val) 3253 break; 3254 if ((act_offset + i) % 2 == 0) 3255 data[i] = (u16)(dword & 0xFFFF); 3256 else 3257 data[i] = (u16)((dword >> 16) & 0xFFFF); 3258 } 3259 } else { 3260 offset_to_read = act_offset + i; 3261 if (!(dev_spec->shadow_ram[offset + i].modified) || 3262 !(dev_spec->shadow_ram[offset + i + 1].modified)) { 3263 ret_val = 3264 e1000_read_flash_dword_ich8lan(hw, 3265 offset_to_read, 3266 &dword); 3267 if (ret_val) 3268 break; 3269 } 3270 if (dev_spec->shadow_ram[offset + i].modified) 3271 data[i] = 3272 dev_spec->shadow_ram[offset + i].value; 3273 else 3274 data[i] = (u16)(dword & 0xFFFF); 3275 if (dev_spec->shadow_ram[offset + i].modified) 3276 data[i + 1] = 3277 dev_spec->shadow_ram[offset + i + 1].value; 3278 else 3279 data[i + 1] = (u16)(dword >> 16 & 0xFFFF); 3280 } 3281 } 3282 3283 nvm->ops.release(hw); 3284 3285 out: 3286 if (ret_val) 3287 e_dbg("NVM read error: %d\n", ret_val); 3288 3289 return ret_val; 3290 } 3291 3292 /** 3293 * e1000_read_nvm_ich8lan - Read word(s) from the NVM 3294 * @hw: pointer to the HW structure 3295 * @offset: The offset (in bytes) of the word(s) to read. 3296 * @words: Size of data to read in words 3297 * @data: Pointer to the word(s) to read at offset. 3298 * 3299 * Reads a word(s) from the NVM using the flash access registers. 3300 **/ 3301 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words, 3302 u16 *data) 3303 { 3304 struct e1000_nvm_info *nvm = &hw->nvm; 3305 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 3306 u32 act_offset; 3307 s32 ret_val = 0; 3308 u32 bank = 0; 3309 u16 i, word; 3310 3311 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) || 3312 (words == 0)) { 3313 e_dbg("nvm parameter(s) out of bounds\n"); 3314 ret_val = -E1000_ERR_NVM; 3315 goto out; 3316 } 3317 3318 nvm->ops.acquire(hw); 3319 3320 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); 3321 if (ret_val) { 3322 e_dbg("Could not detect valid bank, assuming bank 0\n"); 3323 bank = 0; 3324 } 3325 3326 act_offset = (bank) ? nvm->flash_bank_size : 0; 3327 act_offset += offset; 3328 3329 ret_val = 0; 3330 for (i = 0; i < words; i++) { 3331 if (dev_spec->shadow_ram[offset + i].modified) { 3332 data[i] = dev_spec->shadow_ram[offset + i].value; 3333 } else { 3334 ret_val = e1000_read_flash_word_ich8lan(hw, 3335 act_offset + i, 3336 &word); 3337 if (ret_val) 3338 break; 3339 data[i] = word; 3340 } 3341 } 3342 3343 nvm->ops.release(hw); 3344 3345 out: 3346 if (ret_val) 3347 e_dbg("NVM read error: %d\n", ret_val); 3348 3349 return ret_val; 3350 } 3351 3352 /** 3353 * e1000_flash_cycle_init_ich8lan - Initialize flash 3354 * @hw: pointer to the HW structure 3355 * 3356 * This function does initial flash setup so that a new read/write/erase cycle 3357 * can be started. 3358 **/ 3359 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw) 3360 { 3361 union ich8_hws_flash_status hsfsts; 3362 s32 ret_val = -E1000_ERR_NVM; 3363 3364 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 3365 3366 /* Check if the flash descriptor is valid */ 3367 if (!hsfsts.hsf_status.fldesvalid) { 3368 e_dbg("Flash descriptor invalid. SW Sequencing must be used.\n"); 3369 return -E1000_ERR_NVM; 3370 } 3371 3372 /* Clear FCERR and DAEL in hw status by writing 1 */ 3373 hsfsts.hsf_status.flcerr = 1; 3374 hsfsts.hsf_status.dael = 1; 3375 if (hw->mac.type >= e1000_pch_spt) 3376 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF); 3377 else 3378 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval); 3379 3380 /* Either we should have a hardware SPI cycle in progress 3381 * bit to check against, in order to start a new cycle or 3382 * FDONE bit should be changed in the hardware so that it 3383 * is 1 after hardware reset, which can then be used as an 3384 * indication whether a cycle is in progress or has been 3385 * completed. 3386 */ 3387 3388 if (!hsfsts.hsf_status.flcinprog) { 3389 /* There is no cycle running at present, 3390 * so we can start a cycle. 3391 * Begin by setting Flash Cycle Done. 3392 */ 3393 hsfsts.hsf_status.flcdone = 1; 3394 if (hw->mac.type >= e1000_pch_spt) 3395 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF); 3396 else 3397 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval); 3398 ret_val = 0; 3399 } else { 3400 s32 i; 3401 3402 /* Otherwise poll for sometime so the current 3403 * cycle has a chance to end before giving up. 3404 */ 3405 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) { 3406 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 3407 if (!hsfsts.hsf_status.flcinprog) { 3408 ret_val = 0; 3409 break; 3410 } 3411 udelay(1); 3412 } 3413 if (!ret_val) { 3414 /* Successful in waiting for previous cycle to timeout, 3415 * now set the Flash Cycle Done. 3416 */ 3417 hsfsts.hsf_status.flcdone = 1; 3418 if (hw->mac.type >= e1000_pch_spt) 3419 ew32flash(ICH_FLASH_HSFSTS, 3420 hsfsts.regval & 0xFFFF); 3421 else 3422 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval); 3423 } else { 3424 e_dbg("Flash controller busy, cannot get access\n"); 3425 } 3426 } 3427 3428 return ret_val; 3429 } 3430 3431 /** 3432 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase) 3433 * @hw: pointer to the HW structure 3434 * @timeout: maximum time to wait for completion 3435 * 3436 * This function starts a flash cycle and waits for its completion. 3437 **/ 3438 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout) 3439 { 3440 union ich8_hws_flash_ctrl hsflctl; 3441 union ich8_hws_flash_status hsfsts; 3442 u32 i = 0; 3443 3444 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */ 3445 if (hw->mac.type >= e1000_pch_spt) 3446 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16; 3447 else 3448 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); 3449 hsflctl.hsf_ctrl.flcgo = 1; 3450 3451 if (hw->mac.type >= e1000_pch_spt) 3452 ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16); 3453 else 3454 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); 3455 3456 /* wait till FDONE bit is set to 1 */ 3457 do { 3458 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 3459 if (hsfsts.hsf_status.flcdone) 3460 break; 3461 udelay(1); 3462 } while (i++ < timeout); 3463 3464 if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr) 3465 return 0; 3466 3467 return -E1000_ERR_NVM; 3468 } 3469 3470 /** 3471 * e1000_read_flash_dword_ich8lan - Read dword from flash 3472 * @hw: pointer to the HW structure 3473 * @offset: offset to data location 3474 * @data: pointer to the location for storing the data 3475 * 3476 * Reads the flash dword at offset into data. Offset is converted 3477 * to bytes before read. 3478 **/ 3479 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset, 3480 u32 *data) 3481 { 3482 /* Must convert word offset into bytes. */ 3483 offset <<= 1; 3484 return e1000_read_flash_data32_ich8lan(hw, offset, data); 3485 } 3486 3487 /** 3488 * e1000_read_flash_word_ich8lan - Read word from flash 3489 * @hw: pointer to the HW structure 3490 * @offset: offset to data location 3491 * @data: pointer to the location for storing the data 3492 * 3493 * Reads the flash word at offset into data. Offset is converted 3494 * to bytes before read. 3495 **/ 3496 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset, 3497 u16 *data) 3498 { 3499 /* Must convert offset into bytes. */ 3500 offset <<= 1; 3501 3502 return e1000_read_flash_data_ich8lan(hw, offset, 2, data); 3503 } 3504 3505 /** 3506 * e1000_read_flash_byte_ich8lan - Read byte from flash 3507 * @hw: pointer to the HW structure 3508 * @offset: The offset of the byte to read. 3509 * @data: Pointer to a byte to store the value read. 3510 * 3511 * Reads a single byte from the NVM using the flash access registers. 3512 **/ 3513 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, 3514 u8 *data) 3515 { 3516 s32 ret_val; 3517 u16 word = 0; 3518 3519 /* In SPT, only 32 bits access is supported, 3520 * so this function should not be called. 3521 */ 3522 if (hw->mac.type >= e1000_pch_spt) 3523 return -E1000_ERR_NVM; 3524 else 3525 ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word); 3526 3527 if (ret_val) 3528 return ret_val; 3529 3530 *data = (u8)word; 3531 3532 return 0; 3533 } 3534 3535 /** 3536 * e1000_read_flash_data_ich8lan - Read byte or word from NVM 3537 * @hw: pointer to the HW structure 3538 * @offset: The offset (in bytes) of the byte or word to read. 3539 * @size: Size of data to read, 1=byte 2=word 3540 * @data: Pointer to the word to store the value read. 3541 * 3542 * Reads a byte or word from the NVM using the flash access registers. 3543 **/ 3544 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, 3545 u8 size, u16 *data) 3546 { 3547 union ich8_hws_flash_status hsfsts; 3548 union ich8_hws_flash_ctrl hsflctl; 3549 u32 flash_linear_addr; 3550 u32 flash_data = 0; 3551 s32 ret_val = -E1000_ERR_NVM; 3552 u8 count = 0; 3553 3554 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK) 3555 return -E1000_ERR_NVM; 3556 3557 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) + 3558 hw->nvm.flash_base_addr); 3559 3560 do { 3561 udelay(1); 3562 /* Steps */ 3563 ret_val = e1000_flash_cycle_init_ich8lan(hw); 3564 if (ret_val) 3565 break; 3566 3567 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); 3568 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ 3569 hsflctl.hsf_ctrl.fldbcount = size - 1; 3570 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ; 3571 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); 3572 3573 ew32flash(ICH_FLASH_FADDR, flash_linear_addr); 3574 3575 ret_val = 3576 e1000_flash_cycle_ich8lan(hw, 3577 ICH_FLASH_READ_COMMAND_TIMEOUT); 3578 3579 /* Check if FCERR is set to 1, if set to 1, clear it 3580 * and try the whole sequence a few more times, else 3581 * read in (shift in) the Flash Data0, the order is 3582 * least significant byte first msb to lsb 3583 */ 3584 if (!ret_val) { 3585 flash_data = er32flash(ICH_FLASH_FDATA0); 3586 if (size == 1) 3587 *data = (u8)(flash_data & 0x000000FF); 3588 else if (size == 2) 3589 *data = (u16)(flash_data & 0x0000FFFF); 3590 break; 3591 } else { 3592 /* If we've gotten here, then things are probably 3593 * completely hosed, but if the error condition is 3594 * detected, it won't hurt to give it another try... 3595 * ICH_FLASH_CYCLE_REPEAT_COUNT times. 3596 */ 3597 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 3598 if (hsfsts.hsf_status.flcerr) { 3599 /* Repeat for some time before giving up. */ 3600 continue; 3601 } else if (!hsfsts.hsf_status.flcdone) { 3602 e_dbg("Timeout error - flash cycle did not complete.\n"); 3603 break; 3604 } 3605 } 3606 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); 3607 3608 return ret_val; 3609 } 3610 3611 /** 3612 * e1000_read_flash_data32_ich8lan - Read dword from NVM 3613 * @hw: pointer to the HW structure 3614 * @offset: The offset (in bytes) of the dword to read. 3615 * @data: Pointer to the dword to store the value read. 3616 * 3617 * Reads a byte or word from the NVM using the flash access registers. 3618 **/ 3619 3620 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset, 3621 u32 *data) 3622 { 3623 union ich8_hws_flash_status hsfsts; 3624 union ich8_hws_flash_ctrl hsflctl; 3625 u32 flash_linear_addr; 3626 s32 ret_val = -E1000_ERR_NVM; 3627 u8 count = 0; 3628 3629 if (offset > ICH_FLASH_LINEAR_ADDR_MASK || hw->mac.type < e1000_pch_spt) 3630 return -E1000_ERR_NVM; 3631 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) + 3632 hw->nvm.flash_base_addr); 3633 3634 do { 3635 udelay(1); 3636 /* Steps */ 3637 ret_val = e1000_flash_cycle_init_ich8lan(hw); 3638 if (ret_val) 3639 break; 3640 /* In SPT, This register is in Lan memory space, not flash. 3641 * Therefore, only 32 bit access is supported 3642 */ 3643 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16; 3644 3645 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ 3646 hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1; 3647 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ; 3648 /* In SPT, This register is in Lan memory space, not flash. 3649 * Therefore, only 32 bit access is supported 3650 */ 3651 ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16); 3652 ew32flash(ICH_FLASH_FADDR, flash_linear_addr); 3653 3654 ret_val = 3655 e1000_flash_cycle_ich8lan(hw, 3656 ICH_FLASH_READ_COMMAND_TIMEOUT); 3657 3658 /* Check if FCERR is set to 1, if set to 1, clear it 3659 * and try the whole sequence a few more times, else 3660 * read in (shift in) the Flash Data0, the order is 3661 * least significant byte first msb to lsb 3662 */ 3663 if (!ret_val) { 3664 *data = er32flash(ICH_FLASH_FDATA0); 3665 break; 3666 } else { 3667 /* If we've gotten here, then things are probably 3668 * completely hosed, but if the error condition is 3669 * detected, it won't hurt to give it another try... 3670 * ICH_FLASH_CYCLE_REPEAT_COUNT times. 3671 */ 3672 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 3673 if (hsfsts.hsf_status.flcerr) { 3674 /* Repeat for some time before giving up. */ 3675 continue; 3676 } else if (!hsfsts.hsf_status.flcdone) { 3677 e_dbg("Timeout error - flash cycle did not complete.\n"); 3678 break; 3679 } 3680 } 3681 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); 3682 3683 return ret_val; 3684 } 3685 3686 /** 3687 * e1000_write_nvm_ich8lan - Write word(s) to the NVM 3688 * @hw: pointer to the HW structure 3689 * @offset: The offset (in bytes) of the word(s) to write. 3690 * @words: Size of data to write in words 3691 * @data: Pointer to the word(s) to write at offset. 3692 * 3693 * Writes a byte or word to the NVM using the flash access registers. 3694 **/ 3695 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words, 3696 u16 *data) 3697 { 3698 struct e1000_nvm_info *nvm = &hw->nvm; 3699 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 3700 u16 i; 3701 3702 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) || 3703 (words == 0)) { 3704 e_dbg("nvm parameter(s) out of bounds\n"); 3705 return -E1000_ERR_NVM; 3706 } 3707 3708 nvm->ops.acquire(hw); 3709 3710 for (i = 0; i < words; i++) { 3711 dev_spec->shadow_ram[offset + i].modified = true; 3712 dev_spec->shadow_ram[offset + i].value = data[i]; 3713 } 3714 3715 nvm->ops.release(hw); 3716 3717 return 0; 3718 } 3719 3720 /** 3721 * e1000_update_nvm_checksum_spt - Update the checksum for NVM 3722 * @hw: pointer to the HW structure 3723 * 3724 * The NVM checksum is updated by calling the generic update_nvm_checksum, 3725 * which writes the checksum to the shadow ram. The changes in the shadow 3726 * ram are then committed to the EEPROM by processing each bank at a time 3727 * checking for the modified bit and writing only the pending changes. 3728 * After a successful commit, the shadow ram is cleared and is ready for 3729 * future writes. 3730 **/ 3731 static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw) 3732 { 3733 struct e1000_nvm_info *nvm = &hw->nvm; 3734 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 3735 u32 i, act_offset, new_bank_offset, old_bank_offset, bank; 3736 s32 ret_val; 3737 u32 dword = 0; 3738 3739 ret_val = e1000e_update_nvm_checksum_generic(hw); 3740 if (ret_val) 3741 goto out; 3742 3743 if (nvm->type != e1000_nvm_flash_sw) 3744 goto out; 3745 3746 nvm->ops.acquire(hw); 3747 3748 /* We're writing to the opposite bank so if we're on bank 1, 3749 * write to bank 0 etc. We also need to erase the segment that 3750 * is going to be written 3751 */ 3752 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); 3753 if (ret_val) { 3754 e_dbg("Could not detect valid bank, assuming bank 0\n"); 3755 bank = 0; 3756 } 3757 3758 if (bank == 0) { 3759 new_bank_offset = nvm->flash_bank_size; 3760 old_bank_offset = 0; 3761 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1); 3762 if (ret_val) 3763 goto release; 3764 } else { 3765 old_bank_offset = nvm->flash_bank_size; 3766 new_bank_offset = 0; 3767 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0); 3768 if (ret_val) 3769 goto release; 3770 } 3771 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) { 3772 /* Determine whether to write the value stored 3773 * in the other NVM bank or a modified value stored 3774 * in the shadow RAM 3775 */ 3776 ret_val = e1000_read_flash_dword_ich8lan(hw, 3777 i + old_bank_offset, 3778 &dword); 3779 3780 if (dev_spec->shadow_ram[i].modified) { 3781 dword &= 0xffff0000; 3782 dword |= (dev_spec->shadow_ram[i].value & 0xffff); 3783 } 3784 if (dev_spec->shadow_ram[i + 1].modified) { 3785 dword &= 0x0000ffff; 3786 dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff) 3787 << 16); 3788 } 3789 if (ret_val) 3790 break; 3791 3792 /* If the word is 0x13, then make sure the signature bits 3793 * (15:14) are 11b until the commit has completed. 3794 * This will allow us to write 10b which indicates the 3795 * signature is valid. We want to do this after the write 3796 * has completed so that we don't mark the segment valid 3797 * while the write is still in progress 3798 */ 3799 if (i == E1000_ICH_NVM_SIG_WORD - 1) 3800 dword |= E1000_ICH_NVM_SIG_MASK << 16; 3801 3802 /* Convert offset to bytes. */ 3803 act_offset = (i + new_bank_offset) << 1; 3804 3805 usleep_range(100, 200); 3806 3807 /* Write the data to the new bank. Offset in words */ 3808 act_offset = i + new_bank_offset; 3809 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, 3810 dword); 3811 if (ret_val) 3812 break; 3813 } 3814 3815 /* Don't bother writing the segment valid bits if sector 3816 * programming failed. 3817 */ 3818 if (ret_val) { 3819 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */ 3820 e_dbg("Flash commit failed.\n"); 3821 goto release; 3822 } 3823 3824 /* Finally validate the new segment by setting bit 15:14 3825 * to 10b in word 0x13 , this can be done without an 3826 * erase as well since these bits are 11 to start with 3827 * and we need to change bit 14 to 0b 3828 */ 3829 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD; 3830 3831 /*offset in words but we read dword */ 3832 --act_offset; 3833 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword); 3834 3835 if (ret_val) 3836 goto release; 3837 3838 dword &= 0xBFFFFFFF; 3839 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword); 3840 3841 if (ret_val) 3842 goto release; 3843 3844 /* And invalidate the previously valid segment by setting 3845 * its signature word (0x13) high_byte to 0b. This can be 3846 * done without an erase because flash erase sets all bits 3847 * to 1's. We can write 1's to 0's without an erase 3848 */ 3849 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1; 3850 3851 /* offset in words but we read dword */ 3852 act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1; 3853 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword); 3854 3855 if (ret_val) 3856 goto release; 3857 3858 dword &= 0x00FFFFFF; 3859 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword); 3860 3861 if (ret_val) 3862 goto release; 3863 3864 /* Great! Everything worked, we can now clear the cached entries. */ 3865 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) { 3866 dev_spec->shadow_ram[i].modified = false; 3867 dev_spec->shadow_ram[i].value = 0xFFFF; 3868 } 3869 3870 release: 3871 nvm->ops.release(hw); 3872 3873 /* Reload the EEPROM, or else modifications will not appear 3874 * until after the next adapter reset. 3875 */ 3876 if (!ret_val) { 3877 nvm->ops.reload(hw); 3878 usleep_range(10000, 11000); 3879 } 3880 3881 out: 3882 if (ret_val) 3883 e_dbg("NVM update error: %d\n", ret_val); 3884 3885 return ret_val; 3886 } 3887 3888 /** 3889 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM 3890 * @hw: pointer to the HW structure 3891 * 3892 * The NVM checksum is updated by calling the generic update_nvm_checksum, 3893 * which writes the checksum to the shadow ram. The changes in the shadow 3894 * ram are then committed to the EEPROM by processing each bank at a time 3895 * checking for the modified bit and writing only the pending changes. 3896 * After a successful commit, the shadow ram is cleared and is ready for 3897 * future writes. 3898 **/ 3899 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw) 3900 { 3901 struct e1000_nvm_info *nvm = &hw->nvm; 3902 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 3903 u32 i, act_offset, new_bank_offset, old_bank_offset, bank; 3904 s32 ret_val; 3905 u16 data = 0; 3906 3907 ret_val = e1000e_update_nvm_checksum_generic(hw); 3908 if (ret_val) 3909 goto out; 3910 3911 if (nvm->type != e1000_nvm_flash_sw) 3912 goto out; 3913 3914 nvm->ops.acquire(hw); 3915 3916 /* We're writing to the opposite bank so if we're on bank 1, 3917 * write to bank 0 etc. We also need to erase the segment that 3918 * is going to be written 3919 */ 3920 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); 3921 if (ret_val) { 3922 e_dbg("Could not detect valid bank, assuming bank 0\n"); 3923 bank = 0; 3924 } 3925 3926 if (bank == 0) { 3927 new_bank_offset = nvm->flash_bank_size; 3928 old_bank_offset = 0; 3929 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1); 3930 if (ret_val) 3931 goto release; 3932 } else { 3933 old_bank_offset = nvm->flash_bank_size; 3934 new_bank_offset = 0; 3935 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0); 3936 if (ret_val) 3937 goto release; 3938 } 3939 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) { 3940 if (dev_spec->shadow_ram[i].modified) { 3941 data = dev_spec->shadow_ram[i].value; 3942 } else { 3943 ret_val = e1000_read_flash_word_ich8lan(hw, i + 3944 old_bank_offset, 3945 &data); 3946 if (ret_val) 3947 break; 3948 } 3949 3950 /* If the word is 0x13, then make sure the signature bits 3951 * (15:14) are 11b until the commit has completed. 3952 * This will allow us to write 10b which indicates the 3953 * signature is valid. We want to do this after the write 3954 * has completed so that we don't mark the segment valid 3955 * while the write is still in progress 3956 */ 3957 if (i == E1000_ICH_NVM_SIG_WORD) 3958 data |= E1000_ICH_NVM_SIG_MASK; 3959 3960 /* Convert offset to bytes. */ 3961 act_offset = (i + new_bank_offset) << 1; 3962 3963 usleep_range(100, 200); 3964 /* Write the bytes to the new bank. */ 3965 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, 3966 act_offset, 3967 (u8)data); 3968 if (ret_val) 3969 break; 3970 3971 usleep_range(100, 200); 3972 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, 3973 act_offset + 1, 3974 (u8)(data >> 8)); 3975 if (ret_val) 3976 break; 3977 } 3978 3979 /* Don't bother writing the segment valid bits if sector 3980 * programming failed. 3981 */ 3982 if (ret_val) { 3983 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */ 3984 e_dbg("Flash commit failed.\n"); 3985 goto release; 3986 } 3987 3988 /* Finally validate the new segment by setting bit 15:14 3989 * to 10b in word 0x13 , this can be done without an 3990 * erase as well since these bits are 11 to start with 3991 * and we need to change bit 14 to 0b 3992 */ 3993 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD; 3994 ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data); 3995 if (ret_val) 3996 goto release; 3997 3998 data &= 0xBFFF; 3999 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, 4000 act_offset * 2 + 1, 4001 (u8)(data >> 8)); 4002 if (ret_val) 4003 goto release; 4004 4005 /* And invalidate the previously valid segment by setting 4006 * its signature word (0x13) high_byte to 0b. This can be 4007 * done without an erase because flash erase sets all bits 4008 * to 1's. We can write 1's to 0's without an erase 4009 */ 4010 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1; 4011 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0); 4012 if (ret_val) 4013 goto release; 4014 4015 /* Great! Everything worked, we can now clear the cached entries. */ 4016 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) { 4017 dev_spec->shadow_ram[i].modified = false; 4018 dev_spec->shadow_ram[i].value = 0xFFFF; 4019 } 4020 4021 release: 4022 nvm->ops.release(hw); 4023 4024 /* Reload the EEPROM, or else modifications will not appear 4025 * until after the next adapter reset. 4026 */ 4027 if (!ret_val) { 4028 nvm->ops.reload(hw); 4029 usleep_range(10000, 11000); 4030 } 4031 4032 out: 4033 if (ret_val) 4034 e_dbg("NVM update error: %d\n", ret_val); 4035 4036 return ret_val; 4037 } 4038 4039 /** 4040 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum 4041 * @hw: pointer to the HW structure 4042 * 4043 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19. 4044 * If the bit is 0, that the EEPROM had been modified, but the checksum was not 4045 * calculated, in which case we need to calculate the checksum and set bit 6. 4046 **/ 4047 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw) 4048 { 4049 s32 ret_val; 4050 u16 data; 4051 u16 word; 4052 u16 valid_csum_mask; 4053 4054 /* Read NVM and check Invalid Image CSUM bit. If this bit is 0, 4055 * the checksum needs to be fixed. This bit is an indication that 4056 * the NVM was prepared by OEM software and did not calculate 4057 * the checksum...a likely scenario. 4058 */ 4059 switch (hw->mac.type) { 4060 case e1000_pch_lpt: 4061 case e1000_pch_spt: 4062 case e1000_pch_cnp: 4063 word = NVM_COMPAT; 4064 valid_csum_mask = NVM_COMPAT_VALID_CSUM; 4065 break; 4066 default: 4067 word = NVM_FUTURE_INIT_WORD1; 4068 valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM; 4069 break; 4070 } 4071 4072 ret_val = e1000_read_nvm(hw, word, 1, &data); 4073 if (ret_val) 4074 return ret_val; 4075 4076 if (!(data & valid_csum_mask)) { 4077 data |= valid_csum_mask; 4078 ret_val = e1000_write_nvm(hw, word, 1, &data); 4079 if (ret_val) 4080 return ret_val; 4081 ret_val = e1000e_update_nvm_checksum(hw); 4082 if (ret_val) 4083 return ret_val; 4084 } 4085 4086 return e1000e_validate_nvm_checksum_generic(hw); 4087 } 4088 4089 /** 4090 * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only 4091 * @hw: pointer to the HW structure 4092 * 4093 * To prevent malicious write/erase of the NVM, set it to be read-only 4094 * so that the hardware ignores all write/erase cycles of the NVM via 4095 * the flash control registers. The shadow-ram copy of the NVM will 4096 * still be updated, however any updates to this copy will not stick 4097 * across driver reloads. 4098 **/ 4099 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw) 4100 { 4101 struct e1000_nvm_info *nvm = &hw->nvm; 4102 union ich8_flash_protected_range pr0; 4103 union ich8_hws_flash_status hsfsts; 4104 u32 gfpreg; 4105 4106 nvm->ops.acquire(hw); 4107 4108 gfpreg = er32flash(ICH_FLASH_GFPREG); 4109 4110 /* Write-protect GbE Sector of NVM */ 4111 pr0.regval = er32flash(ICH_FLASH_PR0); 4112 pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK; 4113 pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK); 4114 pr0.range.wpe = true; 4115 ew32flash(ICH_FLASH_PR0, pr0.regval); 4116 4117 /* Lock down a subset of GbE Flash Control Registers, e.g. 4118 * PR0 to prevent the write-protection from being lifted. 4119 * Once FLOCKDN is set, the registers protected by it cannot 4120 * be written until FLOCKDN is cleared by a hardware reset. 4121 */ 4122 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 4123 hsfsts.hsf_status.flockdn = true; 4124 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval); 4125 4126 nvm->ops.release(hw); 4127 } 4128 4129 /** 4130 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM 4131 * @hw: pointer to the HW structure 4132 * @offset: The offset (in bytes) of the byte/word to read. 4133 * @size: Size of data to read, 1=byte 2=word 4134 * @data: The byte(s) to write to the NVM. 4135 * 4136 * Writes one/two bytes to the NVM using the flash access registers. 4137 **/ 4138 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, 4139 u8 size, u16 data) 4140 { 4141 union ich8_hws_flash_status hsfsts; 4142 union ich8_hws_flash_ctrl hsflctl; 4143 u32 flash_linear_addr; 4144 u32 flash_data = 0; 4145 s32 ret_val; 4146 u8 count = 0; 4147 4148 if (hw->mac.type >= e1000_pch_spt) { 4149 if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK) 4150 return -E1000_ERR_NVM; 4151 } else { 4152 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK) 4153 return -E1000_ERR_NVM; 4154 } 4155 4156 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) + 4157 hw->nvm.flash_base_addr); 4158 4159 do { 4160 udelay(1); 4161 /* Steps */ 4162 ret_val = e1000_flash_cycle_init_ich8lan(hw); 4163 if (ret_val) 4164 break; 4165 /* In SPT, This register is in Lan memory space, not 4166 * flash. Therefore, only 32 bit access is supported 4167 */ 4168 if (hw->mac.type >= e1000_pch_spt) 4169 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16; 4170 else 4171 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); 4172 4173 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ 4174 hsflctl.hsf_ctrl.fldbcount = size - 1; 4175 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE; 4176 /* In SPT, This register is in Lan memory space, 4177 * not flash. Therefore, only 32 bit access is 4178 * supported 4179 */ 4180 if (hw->mac.type >= e1000_pch_spt) 4181 ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16); 4182 else 4183 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); 4184 4185 ew32flash(ICH_FLASH_FADDR, flash_linear_addr); 4186 4187 if (size == 1) 4188 flash_data = (u32)data & 0x00FF; 4189 else 4190 flash_data = (u32)data; 4191 4192 ew32flash(ICH_FLASH_FDATA0, flash_data); 4193 4194 /* check if FCERR is set to 1 , if set to 1, clear it 4195 * and try the whole sequence a few more times else done 4196 */ 4197 ret_val = 4198 e1000_flash_cycle_ich8lan(hw, 4199 ICH_FLASH_WRITE_COMMAND_TIMEOUT); 4200 if (!ret_val) 4201 break; 4202 4203 /* If we're here, then things are most likely 4204 * completely hosed, but if the error condition 4205 * is detected, it won't hurt to give it another 4206 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times. 4207 */ 4208 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 4209 if (hsfsts.hsf_status.flcerr) 4210 /* Repeat for some time before giving up. */ 4211 continue; 4212 if (!hsfsts.hsf_status.flcdone) { 4213 e_dbg("Timeout error - flash cycle did not complete.\n"); 4214 break; 4215 } 4216 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); 4217 4218 return ret_val; 4219 } 4220 4221 /** 4222 * e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM 4223 * @hw: pointer to the HW structure 4224 * @offset: The offset (in bytes) of the dwords to read. 4225 * @data: The 4 bytes to write to the NVM. 4226 * 4227 * Writes one/two/four bytes to the NVM using the flash access registers. 4228 **/ 4229 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset, 4230 u32 data) 4231 { 4232 union ich8_hws_flash_status hsfsts; 4233 union ich8_hws_flash_ctrl hsflctl; 4234 u32 flash_linear_addr; 4235 s32 ret_val; 4236 u8 count = 0; 4237 4238 if (hw->mac.type >= e1000_pch_spt) { 4239 if (offset > ICH_FLASH_LINEAR_ADDR_MASK) 4240 return -E1000_ERR_NVM; 4241 } 4242 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) + 4243 hw->nvm.flash_base_addr); 4244 do { 4245 udelay(1); 4246 /* Steps */ 4247 ret_val = e1000_flash_cycle_init_ich8lan(hw); 4248 if (ret_val) 4249 break; 4250 4251 /* In SPT, This register is in Lan memory space, not 4252 * flash. Therefore, only 32 bit access is supported 4253 */ 4254 if (hw->mac.type >= e1000_pch_spt) 4255 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) 4256 >> 16; 4257 else 4258 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); 4259 4260 hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1; 4261 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE; 4262 4263 /* In SPT, This register is in Lan memory space, 4264 * not flash. Therefore, only 32 bit access is 4265 * supported 4266 */ 4267 if (hw->mac.type >= e1000_pch_spt) 4268 ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16); 4269 else 4270 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); 4271 4272 ew32flash(ICH_FLASH_FADDR, flash_linear_addr); 4273 4274 ew32flash(ICH_FLASH_FDATA0, data); 4275 4276 /* check if FCERR is set to 1 , if set to 1, clear it 4277 * and try the whole sequence a few more times else done 4278 */ 4279 ret_val = 4280 e1000_flash_cycle_ich8lan(hw, 4281 ICH_FLASH_WRITE_COMMAND_TIMEOUT); 4282 4283 if (!ret_val) 4284 break; 4285 4286 /* If we're here, then things are most likely 4287 * completely hosed, but if the error condition 4288 * is detected, it won't hurt to give it another 4289 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times. 4290 */ 4291 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 4292 4293 if (hsfsts.hsf_status.flcerr) 4294 /* Repeat for some time before giving up. */ 4295 continue; 4296 if (!hsfsts.hsf_status.flcdone) { 4297 e_dbg("Timeout error - flash cycle did not complete.\n"); 4298 break; 4299 } 4300 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); 4301 4302 return ret_val; 4303 } 4304 4305 /** 4306 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM 4307 * @hw: pointer to the HW structure 4308 * @offset: The index of the byte to read. 4309 * @data: The byte to write to the NVM. 4310 * 4311 * Writes a single byte to the NVM using the flash access registers. 4312 **/ 4313 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, 4314 u8 data) 4315 { 4316 u16 word = (u16)data; 4317 4318 return e1000_write_flash_data_ich8lan(hw, offset, 1, word); 4319 } 4320 4321 /** 4322 * e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM 4323 * @hw: pointer to the HW structure 4324 * @offset: The offset of the word to write. 4325 * @dword: The dword to write to the NVM. 4326 * 4327 * Writes a single dword to the NVM using the flash access registers. 4328 * Goes through a retry algorithm before giving up. 4329 **/ 4330 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw, 4331 u32 offset, u32 dword) 4332 { 4333 s32 ret_val; 4334 u16 program_retries; 4335 4336 /* Must convert word offset into bytes. */ 4337 offset <<= 1; 4338 ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword); 4339 4340 if (!ret_val) 4341 return ret_val; 4342 for (program_retries = 0; program_retries < 100; program_retries++) { 4343 e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset); 4344 usleep_range(100, 200); 4345 ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword); 4346 if (!ret_val) 4347 break; 4348 } 4349 if (program_retries == 100) 4350 return -E1000_ERR_NVM; 4351 4352 return 0; 4353 } 4354 4355 /** 4356 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM 4357 * @hw: pointer to the HW structure 4358 * @offset: The offset of the byte to write. 4359 * @byte: The byte to write to the NVM. 4360 * 4361 * Writes a single byte to the NVM using the flash access registers. 4362 * Goes through a retry algorithm before giving up. 4363 **/ 4364 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw, 4365 u32 offset, u8 byte) 4366 { 4367 s32 ret_val; 4368 u16 program_retries; 4369 4370 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte); 4371 if (!ret_val) 4372 return ret_val; 4373 4374 for (program_retries = 0; program_retries < 100; program_retries++) { 4375 e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset); 4376 usleep_range(100, 200); 4377 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte); 4378 if (!ret_val) 4379 break; 4380 } 4381 if (program_retries == 100) 4382 return -E1000_ERR_NVM; 4383 4384 return 0; 4385 } 4386 4387 /** 4388 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM 4389 * @hw: pointer to the HW structure 4390 * @bank: 0 for first bank, 1 for second bank, etc. 4391 * 4392 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based. 4393 * bank N is 4096 * N + flash_reg_addr. 4394 **/ 4395 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank) 4396 { 4397 struct e1000_nvm_info *nvm = &hw->nvm; 4398 union ich8_hws_flash_status hsfsts; 4399 union ich8_hws_flash_ctrl hsflctl; 4400 u32 flash_linear_addr; 4401 /* bank size is in 16bit words - adjust to bytes */ 4402 u32 flash_bank_size = nvm->flash_bank_size * 2; 4403 s32 ret_val; 4404 s32 count = 0; 4405 s32 j, iteration, sector_size; 4406 4407 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 4408 4409 /* Determine HW Sector size: Read BERASE bits of hw flash status 4410 * register 4411 * 00: The Hw sector is 256 bytes, hence we need to erase 16 4412 * consecutive sectors. The start index for the nth Hw sector 4413 * can be calculated as = bank * 4096 + n * 256 4414 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector. 4415 * The start index for the nth Hw sector can be calculated 4416 * as = bank * 4096 4417 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192 4418 * (ich9 only, otherwise error condition) 4419 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536 4420 */ 4421 switch (hsfsts.hsf_status.berasesz) { 4422 case 0: 4423 /* Hw sector size 256 */ 4424 sector_size = ICH_FLASH_SEG_SIZE_256; 4425 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256; 4426 break; 4427 case 1: 4428 sector_size = ICH_FLASH_SEG_SIZE_4K; 4429 iteration = 1; 4430 break; 4431 case 2: 4432 sector_size = ICH_FLASH_SEG_SIZE_8K; 4433 iteration = 1; 4434 break; 4435 case 3: 4436 sector_size = ICH_FLASH_SEG_SIZE_64K; 4437 iteration = 1; 4438 break; 4439 default: 4440 return -E1000_ERR_NVM; 4441 } 4442 4443 /* Start with the base address, then add the sector offset. */ 4444 flash_linear_addr = hw->nvm.flash_base_addr; 4445 flash_linear_addr += (bank) ? flash_bank_size : 0; 4446 4447 for (j = 0; j < iteration; j++) { 4448 do { 4449 u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT; 4450 4451 /* Steps */ 4452 ret_val = e1000_flash_cycle_init_ich8lan(hw); 4453 if (ret_val) 4454 return ret_val; 4455 4456 /* Write a value 11 (block Erase) in Flash 4457 * Cycle field in hw flash control 4458 */ 4459 if (hw->mac.type >= e1000_pch_spt) 4460 hsflctl.regval = 4461 er32flash(ICH_FLASH_HSFSTS) >> 16; 4462 else 4463 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); 4464 4465 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE; 4466 if (hw->mac.type >= e1000_pch_spt) 4467 ew32flash(ICH_FLASH_HSFSTS, 4468 hsflctl.regval << 16); 4469 else 4470 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); 4471 4472 /* Write the last 24 bits of an index within the 4473 * block into Flash Linear address field in Flash 4474 * Address. 4475 */ 4476 flash_linear_addr += (j * sector_size); 4477 ew32flash(ICH_FLASH_FADDR, flash_linear_addr); 4478 4479 ret_val = e1000_flash_cycle_ich8lan(hw, timeout); 4480 if (!ret_val) 4481 break; 4482 4483 /* Check if FCERR is set to 1. If 1, 4484 * clear it and try the whole sequence 4485 * a few more times else Done 4486 */ 4487 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 4488 if (hsfsts.hsf_status.flcerr) 4489 /* repeat for some time before giving up */ 4490 continue; 4491 else if (!hsfsts.hsf_status.flcdone) 4492 return ret_val; 4493 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT); 4494 } 4495 4496 return 0; 4497 } 4498 4499 /** 4500 * e1000_valid_led_default_ich8lan - Set the default LED settings 4501 * @hw: pointer to the HW structure 4502 * @data: Pointer to the LED settings 4503 * 4504 * Reads the LED default settings from the NVM to data. If the NVM LED 4505 * settings is all 0's or F's, set the LED default to a valid LED default 4506 * setting. 4507 **/ 4508 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data) 4509 { 4510 s32 ret_val; 4511 4512 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data); 4513 if (ret_val) { 4514 e_dbg("NVM Read Error\n"); 4515 return ret_val; 4516 } 4517 4518 if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) 4519 *data = ID_LED_DEFAULT_ICH8LAN; 4520 4521 return 0; 4522 } 4523 4524 /** 4525 * e1000_id_led_init_pchlan - store LED configurations 4526 * @hw: pointer to the HW structure 4527 * 4528 * PCH does not control LEDs via the LEDCTL register, rather it uses 4529 * the PHY LED configuration register. 4530 * 4531 * PCH also does not have an "always on" or "always off" mode which 4532 * complicates the ID feature. Instead of using the "on" mode to indicate 4533 * in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()), 4534 * use "link_up" mode. The LEDs will still ID on request if there is no 4535 * link based on logic in e1000_led_[on|off]_pchlan(). 4536 **/ 4537 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw) 4538 { 4539 struct e1000_mac_info *mac = &hw->mac; 4540 s32 ret_val; 4541 const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP; 4542 const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT; 4543 u16 data, i, temp, shift; 4544 4545 /* Get default ID LED modes */ 4546 ret_val = hw->nvm.ops.valid_led_default(hw, &data); 4547 if (ret_val) 4548 return ret_val; 4549 4550 mac->ledctl_default = er32(LEDCTL); 4551 mac->ledctl_mode1 = mac->ledctl_default; 4552 mac->ledctl_mode2 = mac->ledctl_default; 4553 4554 for (i = 0; i < 4; i++) { 4555 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK; 4556 shift = (i * 5); 4557 switch (temp) { 4558 case ID_LED_ON1_DEF2: 4559 case ID_LED_ON1_ON2: 4560 case ID_LED_ON1_OFF2: 4561 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift); 4562 mac->ledctl_mode1 |= (ledctl_on << shift); 4563 break; 4564 case ID_LED_OFF1_DEF2: 4565 case ID_LED_OFF1_ON2: 4566 case ID_LED_OFF1_OFF2: 4567 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift); 4568 mac->ledctl_mode1 |= (ledctl_off << shift); 4569 break; 4570 default: 4571 /* Do nothing */ 4572 break; 4573 } 4574 switch (temp) { 4575 case ID_LED_DEF1_ON2: 4576 case ID_LED_ON1_ON2: 4577 case ID_LED_OFF1_ON2: 4578 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift); 4579 mac->ledctl_mode2 |= (ledctl_on << shift); 4580 break; 4581 case ID_LED_DEF1_OFF2: 4582 case ID_LED_ON1_OFF2: 4583 case ID_LED_OFF1_OFF2: 4584 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift); 4585 mac->ledctl_mode2 |= (ledctl_off << shift); 4586 break; 4587 default: 4588 /* Do nothing */ 4589 break; 4590 } 4591 } 4592 4593 return 0; 4594 } 4595 4596 /** 4597 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width 4598 * @hw: pointer to the HW structure 4599 * 4600 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability 4601 * register, so the the bus width is hard coded. 4602 **/ 4603 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw) 4604 { 4605 struct e1000_bus_info *bus = &hw->bus; 4606 s32 ret_val; 4607 4608 ret_val = e1000e_get_bus_info_pcie(hw); 4609 4610 /* ICH devices are "PCI Express"-ish. They have 4611 * a configuration space, but do not contain 4612 * PCI Express Capability registers, so bus width 4613 * must be hardcoded. 4614 */ 4615 if (bus->width == e1000_bus_width_unknown) 4616 bus->width = e1000_bus_width_pcie_x1; 4617 4618 return ret_val; 4619 } 4620 4621 /** 4622 * e1000_reset_hw_ich8lan - Reset the hardware 4623 * @hw: pointer to the HW structure 4624 * 4625 * Does a full reset of the hardware which includes a reset of the PHY and 4626 * MAC. 4627 **/ 4628 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw) 4629 { 4630 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 4631 u16 kum_cfg; 4632 u32 ctrl, reg; 4633 s32 ret_val; 4634 4635 /* Prevent the PCI-E bus from sticking if there is no TLP connection 4636 * on the last TLP read/write transaction when MAC is reset. 4637 */ 4638 ret_val = e1000e_disable_pcie_master(hw); 4639 if (ret_val) 4640 e_dbg("PCI-E Master disable polling has failed.\n"); 4641 4642 e_dbg("Masking off all interrupts\n"); 4643 ew32(IMC, 0xffffffff); 4644 4645 /* Disable the Transmit and Receive units. Then delay to allow 4646 * any pending transactions to complete before we hit the MAC 4647 * with the global reset. 4648 */ 4649 ew32(RCTL, 0); 4650 ew32(TCTL, E1000_TCTL_PSP); 4651 e1e_flush(); 4652 4653 usleep_range(10000, 11000); 4654 4655 /* Workaround for ICH8 bit corruption issue in FIFO memory */ 4656 if (hw->mac.type == e1000_ich8lan) { 4657 /* Set Tx and Rx buffer allocation to 8k apiece. */ 4658 ew32(PBA, E1000_PBA_8K); 4659 /* Set Packet Buffer Size to 16k. */ 4660 ew32(PBS, E1000_PBS_16K); 4661 } 4662 4663 if (hw->mac.type == e1000_pchlan) { 4664 /* Save the NVM K1 bit setting */ 4665 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg); 4666 if (ret_val) 4667 return ret_val; 4668 4669 if (kum_cfg & E1000_NVM_K1_ENABLE) 4670 dev_spec->nvm_k1_enabled = true; 4671 else 4672 dev_spec->nvm_k1_enabled = false; 4673 } 4674 4675 ctrl = er32(CTRL); 4676 4677 if (!hw->phy.ops.check_reset_block(hw)) { 4678 /* Full-chip reset requires MAC and PHY reset at the same 4679 * time to make sure the interface between MAC and the 4680 * external PHY is reset. 4681 */ 4682 ctrl |= E1000_CTRL_PHY_RST; 4683 4684 /* Gate automatic PHY configuration by hardware on 4685 * non-managed 82579 4686 */ 4687 if ((hw->mac.type == e1000_pch2lan) && 4688 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) 4689 e1000_gate_hw_phy_config_ich8lan(hw, true); 4690 } 4691 ret_val = e1000_acquire_swflag_ich8lan(hw); 4692 e_dbg("Issuing a global reset to ich8lan\n"); 4693 ew32(CTRL, (ctrl | E1000_CTRL_RST)); 4694 /* cannot issue a flush here because it hangs the hardware */ 4695 msleep(20); 4696 4697 /* Set Phy Config Counter to 50msec */ 4698 if (hw->mac.type == e1000_pch2lan) { 4699 reg = er32(FEXTNVM3); 4700 reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK; 4701 reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC; 4702 ew32(FEXTNVM3, reg); 4703 } 4704 4705 if (!ret_val) 4706 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state); 4707 4708 if (ctrl & E1000_CTRL_PHY_RST) { 4709 ret_val = hw->phy.ops.get_cfg_done(hw); 4710 if (ret_val) 4711 return ret_val; 4712 4713 ret_val = e1000_post_phy_reset_ich8lan(hw); 4714 if (ret_val) 4715 return ret_val; 4716 } 4717 4718 /* For PCH, this write will make sure that any noise 4719 * will be detected as a CRC error and be dropped rather than show up 4720 * as a bad packet to the DMA engine. 4721 */ 4722 if (hw->mac.type == e1000_pchlan) 4723 ew32(CRC_OFFSET, 0x65656565); 4724 4725 ew32(IMC, 0xffffffff); 4726 er32(ICR); 4727 4728 reg = er32(KABGTXD); 4729 reg |= E1000_KABGTXD_BGSQLBIAS; 4730 ew32(KABGTXD, reg); 4731 4732 return 0; 4733 } 4734 4735 /** 4736 * e1000_init_hw_ich8lan - Initialize the hardware 4737 * @hw: pointer to the HW structure 4738 * 4739 * Prepares the hardware for transmit and receive by doing the following: 4740 * - initialize hardware bits 4741 * - initialize LED identification 4742 * - setup receive address registers 4743 * - setup flow control 4744 * - setup transmit descriptors 4745 * - clear statistics 4746 **/ 4747 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw) 4748 { 4749 struct e1000_mac_info *mac = &hw->mac; 4750 u32 ctrl_ext, txdctl, snoop; 4751 s32 ret_val; 4752 u16 i; 4753 4754 e1000_initialize_hw_bits_ich8lan(hw); 4755 4756 /* Initialize identification LED */ 4757 ret_val = mac->ops.id_led_init(hw); 4758 /* An error is not fatal and we should not stop init due to this */ 4759 if (ret_val) 4760 e_dbg("Error initializing identification LED\n"); 4761 4762 /* Setup the receive address. */ 4763 e1000e_init_rx_addrs(hw, mac->rar_entry_count); 4764 4765 /* Zero out the Multicast HASH table */ 4766 e_dbg("Zeroing the MTA\n"); 4767 for (i = 0; i < mac->mta_reg_count; i++) 4768 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); 4769 4770 /* The 82578 Rx buffer will stall if wakeup is enabled in host and 4771 * the ME. Disable wakeup by clearing the host wakeup bit. 4772 * Reset the phy after disabling host wakeup to reset the Rx buffer. 4773 */ 4774 if (hw->phy.type == e1000_phy_82578) { 4775 e1e_rphy(hw, BM_PORT_GEN_CFG, &i); 4776 i &= ~BM_WUC_HOST_WU_BIT; 4777 e1e_wphy(hw, BM_PORT_GEN_CFG, i); 4778 ret_val = e1000_phy_hw_reset_ich8lan(hw); 4779 if (ret_val) 4780 return ret_val; 4781 } 4782 4783 /* Setup link and flow control */ 4784 ret_val = mac->ops.setup_link(hw); 4785 4786 /* Set the transmit descriptor write-back policy for both queues */ 4787 txdctl = er32(TXDCTL(0)); 4788 txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) | 4789 E1000_TXDCTL_FULL_TX_DESC_WB); 4790 txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) | 4791 E1000_TXDCTL_MAX_TX_DESC_PREFETCH); 4792 ew32(TXDCTL(0), txdctl); 4793 txdctl = er32(TXDCTL(1)); 4794 txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) | 4795 E1000_TXDCTL_FULL_TX_DESC_WB); 4796 txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) | 4797 E1000_TXDCTL_MAX_TX_DESC_PREFETCH); 4798 ew32(TXDCTL(1), txdctl); 4799 4800 /* ICH8 has opposite polarity of no_snoop bits. 4801 * By default, we should use snoop behavior. 4802 */ 4803 if (mac->type == e1000_ich8lan) 4804 snoop = PCIE_ICH8_SNOOP_ALL; 4805 else 4806 snoop = (u32)~(PCIE_NO_SNOOP_ALL); 4807 e1000e_set_pcie_no_snoop(hw, snoop); 4808 4809 ctrl_ext = er32(CTRL_EXT); 4810 ctrl_ext |= E1000_CTRL_EXT_RO_DIS; 4811 ew32(CTRL_EXT, ctrl_ext); 4812 4813 /* Clear all of the statistics registers (clear on read). It is 4814 * important that we do this after we have tried to establish link 4815 * because the symbol error count will increment wildly if there 4816 * is no link. 4817 */ 4818 e1000_clear_hw_cntrs_ich8lan(hw); 4819 4820 return ret_val; 4821 } 4822 4823 /** 4824 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits 4825 * @hw: pointer to the HW structure 4826 * 4827 * Sets/Clears required hardware bits necessary for correctly setting up the 4828 * hardware for transmit and receive. 4829 **/ 4830 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw) 4831 { 4832 u32 reg; 4833 4834 /* Extended Device Control */ 4835 reg = er32(CTRL_EXT); 4836 reg |= BIT(22); 4837 /* Enable PHY low-power state when MAC is at D3 w/o WoL */ 4838 if (hw->mac.type >= e1000_pchlan) 4839 reg |= E1000_CTRL_EXT_PHYPDEN; 4840 ew32(CTRL_EXT, reg); 4841 4842 /* Transmit Descriptor Control 0 */ 4843 reg = er32(TXDCTL(0)); 4844 reg |= BIT(22); 4845 ew32(TXDCTL(0), reg); 4846 4847 /* Transmit Descriptor Control 1 */ 4848 reg = er32(TXDCTL(1)); 4849 reg |= BIT(22); 4850 ew32(TXDCTL(1), reg); 4851 4852 /* Transmit Arbitration Control 0 */ 4853 reg = er32(TARC(0)); 4854 if (hw->mac.type == e1000_ich8lan) 4855 reg |= BIT(28) | BIT(29); 4856 reg |= BIT(23) | BIT(24) | BIT(26) | BIT(27); 4857 ew32(TARC(0), reg); 4858 4859 /* Transmit Arbitration Control 1 */ 4860 reg = er32(TARC(1)); 4861 if (er32(TCTL) & E1000_TCTL_MULR) 4862 reg &= ~BIT(28); 4863 else 4864 reg |= BIT(28); 4865 reg |= BIT(24) | BIT(26) | BIT(30); 4866 ew32(TARC(1), reg); 4867 4868 /* Device Status */ 4869 if (hw->mac.type == e1000_ich8lan) { 4870 reg = er32(STATUS); 4871 reg &= ~BIT(31); 4872 ew32(STATUS, reg); 4873 } 4874 4875 /* work-around descriptor data corruption issue during nfs v2 udp 4876 * traffic, just disable the nfs filtering capability 4877 */ 4878 reg = er32(RFCTL); 4879 reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS); 4880 4881 /* Disable IPv6 extension header parsing because some malformed 4882 * IPv6 headers can hang the Rx. 4883 */ 4884 if (hw->mac.type == e1000_ich8lan) 4885 reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS); 4886 ew32(RFCTL, reg); 4887 4888 /* Enable ECC on Lynxpoint */ 4889 if (hw->mac.type >= e1000_pch_lpt) { 4890 reg = er32(PBECCSTS); 4891 reg |= E1000_PBECCSTS_ECC_ENABLE; 4892 ew32(PBECCSTS, reg); 4893 4894 reg = er32(CTRL); 4895 reg |= E1000_CTRL_MEHE; 4896 ew32(CTRL, reg); 4897 } 4898 } 4899 4900 /** 4901 * e1000_setup_link_ich8lan - Setup flow control and link settings 4902 * @hw: pointer to the HW structure 4903 * 4904 * Determines which flow control settings to use, then configures flow 4905 * control. Calls the appropriate media-specific link configuration 4906 * function. Assuming the adapter has a valid link partner, a valid link 4907 * should be established. Assumes the hardware has previously been reset 4908 * and the transmitter and receiver are not enabled. 4909 **/ 4910 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw) 4911 { 4912 s32 ret_val; 4913 4914 if (hw->phy.ops.check_reset_block(hw)) 4915 return 0; 4916 4917 /* ICH parts do not have a word in the NVM to determine 4918 * the default flow control setting, so we explicitly 4919 * set it to full. 4920 */ 4921 if (hw->fc.requested_mode == e1000_fc_default) { 4922 /* Workaround h/w hang when Tx flow control enabled */ 4923 if (hw->mac.type == e1000_pchlan) 4924 hw->fc.requested_mode = e1000_fc_rx_pause; 4925 else 4926 hw->fc.requested_mode = e1000_fc_full; 4927 } 4928 4929 /* Save off the requested flow control mode for use later. Depending 4930 * on the link partner's capabilities, we may or may not use this mode. 4931 */ 4932 hw->fc.current_mode = hw->fc.requested_mode; 4933 4934 e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode); 4935 4936 /* Continue to configure the copper link. */ 4937 ret_val = hw->mac.ops.setup_physical_interface(hw); 4938 if (ret_val) 4939 return ret_val; 4940 4941 ew32(FCTTV, hw->fc.pause_time); 4942 if ((hw->phy.type == e1000_phy_82578) || 4943 (hw->phy.type == e1000_phy_82579) || 4944 (hw->phy.type == e1000_phy_i217) || 4945 (hw->phy.type == e1000_phy_82577)) { 4946 ew32(FCRTV_PCH, hw->fc.refresh_time); 4947 4948 ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27), 4949 hw->fc.pause_time); 4950 if (ret_val) 4951 return ret_val; 4952 } 4953 4954 return e1000e_set_fc_watermarks(hw); 4955 } 4956 4957 /** 4958 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface 4959 * @hw: pointer to the HW structure 4960 * 4961 * Configures the kumeran interface to the PHY to wait the appropriate time 4962 * when polling the PHY, then call the generic setup_copper_link to finish 4963 * configuring the copper link. 4964 **/ 4965 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw) 4966 { 4967 u32 ctrl; 4968 s32 ret_val; 4969 u16 reg_data; 4970 4971 ctrl = er32(CTRL); 4972 ctrl |= E1000_CTRL_SLU; 4973 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); 4974 ew32(CTRL, ctrl); 4975 4976 /* Set the mac to wait the maximum time between each iteration 4977 * and increase the max iterations when polling the phy; 4978 * this fixes erroneous timeouts at 10Mbps. 4979 */ 4980 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF); 4981 if (ret_val) 4982 return ret_val; 4983 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM, 4984 ®_data); 4985 if (ret_val) 4986 return ret_val; 4987 reg_data |= 0x3F; 4988 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM, 4989 reg_data); 4990 if (ret_val) 4991 return ret_val; 4992 4993 switch (hw->phy.type) { 4994 case e1000_phy_igp_3: 4995 ret_val = e1000e_copper_link_setup_igp(hw); 4996 if (ret_val) 4997 return ret_val; 4998 break; 4999 case e1000_phy_bm: 5000 case e1000_phy_82578: 5001 ret_val = e1000e_copper_link_setup_m88(hw); 5002 if (ret_val) 5003 return ret_val; 5004 break; 5005 case e1000_phy_82577: 5006 case e1000_phy_82579: 5007 ret_val = e1000_copper_link_setup_82577(hw); 5008 if (ret_val) 5009 return ret_val; 5010 break; 5011 case e1000_phy_ife: 5012 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, ®_data); 5013 if (ret_val) 5014 return ret_val; 5015 5016 reg_data &= ~IFE_PMC_AUTO_MDIX; 5017 5018 switch (hw->phy.mdix) { 5019 case 1: 5020 reg_data &= ~IFE_PMC_FORCE_MDIX; 5021 break; 5022 case 2: 5023 reg_data |= IFE_PMC_FORCE_MDIX; 5024 break; 5025 case 0: 5026 default: 5027 reg_data |= IFE_PMC_AUTO_MDIX; 5028 break; 5029 } 5030 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data); 5031 if (ret_val) 5032 return ret_val; 5033 break; 5034 default: 5035 break; 5036 } 5037 5038 return e1000e_setup_copper_link(hw); 5039 } 5040 5041 /** 5042 * e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface 5043 * @hw: pointer to the HW structure 5044 * 5045 * Calls the PHY specific link setup function and then calls the 5046 * generic setup_copper_link to finish configuring the link for 5047 * Lynxpoint PCH devices 5048 **/ 5049 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw) 5050 { 5051 u32 ctrl; 5052 s32 ret_val; 5053 5054 ctrl = er32(CTRL); 5055 ctrl |= E1000_CTRL_SLU; 5056 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); 5057 ew32(CTRL, ctrl); 5058 5059 ret_val = e1000_copper_link_setup_82577(hw); 5060 if (ret_val) 5061 return ret_val; 5062 5063 return e1000e_setup_copper_link(hw); 5064 } 5065 5066 /** 5067 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex 5068 * @hw: pointer to the HW structure 5069 * @speed: pointer to store current link speed 5070 * @duplex: pointer to store the current link duplex 5071 * 5072 * Calls the generic get_speed_and_duplex to retrieve the current link 5073 * information and then calls the Kumeran lock loss workaround for links at 5074 * gigabit speeds. 5075 **/ 5076 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed, 5077 u16 *duplex) 5078 { 5079 s32 ret_val; 5080 5081 ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex); 5082 if (ret_val) 5083 return ret_val; 5084 5085 if ((hw->mac.type == e1000_ich8lan) && 5086 (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) { 5087 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw); 5088 } 5089 5090 return ret_val; 5091 } 5092 5093 /** 5094 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround 5095 * @hw: pointer to the HW structure 5096 * 5097 * Work-around for 82566 Kumeran PCS lock loss: 5098 * On link status change (i.e. PCI reset, speed change) and link is up and 5099 * speed is gigabit- 5100 * 0) if workaround is optionally disabled do nothing 5101 * 1) wait 1ms for Kumeran link to come up 5102 * 2) check Kumeran Diagnostic register PCS lock loss bit 5103 * 3) if not set the link is locked (all is good), otherwise... 5104 * 4) reset the PHY 5105 * 5) repeat up to 10 times 5106 * Note: this is only called for IGP3 copper when speed is 1gb. 5107 **/ 5108 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw) 5109 { 5110 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 5111 u32 phy_ctrl; 5112 s32 ret_val; 5113 u16 i, data; 5114 bool link; 5115 5116 if (!dev_spec->kmrn_lock_loss_workaround_enabled) 5117 return 0; 5118 5119 /* Make sure link is up before proceeding. If not just return. 5120 * Attempting this while link is negotiating fouled up link 5121 * stability 5122 */ 5123 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); 5124 if (!link) 5125 return 0; 5126 5127 for (i = 0; i < 10; i++) { 5128 /* read once to clear */ 5129 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data); 5130 if (ret_val) 5131 return ret_val; 5132 /* and again to get new status */ 5133 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data); 5134 if (ret_val) 5135 return ret_val; 5136 5137 /* check for PCS lock */ 5138 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS)) 5139 return 0; 5140 5141 /* Issue PHY reset */ 5142 e1000_phy_hw_reset(hw); 5143 mdelay(5); 5144 } 5145 /* Disable GigE link negotiation */ 5146 phy_ctrl = er32(PHY_CTRL); 5147 phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE | 5148 E1000_PHY_CTRL_NOND0A_GBE_DISABLE); 5149 ew32(PHY_CTRL, phy_ctrl); 5150 5151 /* Call gig speed drop workaround on Gig disable before accessing 5152 * any PHY registers 5153 */ 5154 e1000e_gig_downshift_workaround_ich8lan(hw); 5155 5156 /* unable to acquire PCS lock */ 5157 return -E1000_ERR_PHY; 5158 } 5159 5160 /** 5161 * e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state 5162 * @hw: pointer to the HW structure 5163 * @state: boolean value used to set the current Kumeran workaround state 5164 * 5165 * If ICH8, set the current Kumeran workaround state (enabled - true 5166 * /disabled - false). 5167 **/ 5168 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw, 5169 bool state) 5170 { 5171 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 5172 5173 if (hw->mac.type != e1000_ich8lan) { 5174 e_dbg("Workaround applies to ICH8 only.\n"); 5175 return; 5176 } 5177 5178 dev_spec->kmrn_lock_loss_workaround_enabled = state; 5179 } 5180 5181 /** 5182 * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3 5183 * @hw: pointer to the HW structure 5184 * 5185 * Workaround for 82566 power-down on D3 entry: 5186 * 1) disable gigabit link 5187 * 2) write VR power-down enable 5188 * 3) read it back 5189 * Continue if successful, else issue LCD reset and repeat 5190 **/ 5191 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw) 5192 { 5193 u32 reg; 5194 u16 data; 5195 u8 retry = 0; 5196 5197 if (hw->phy.type != e1000_phy_igp_3) 5198 return; 5199 5200 /* Try the workaround twice (if needed) */ 5201 do { 5202 /* Disable link */ 5203 reg = er32(PHY_CTRL); 5204 reg |= (E1000_PHY_CTRL_GBE_DISABLE | 5205 E1000_PHY_CTRL_NOND0A_GBE_DISABLE); 5206 ew32(PHY_CTRL, reg); 5207 5208 /* Call gig speed drop workaround on Gig disable before 5209 * accessing any PHY registers 5210 */ 5211 if (hw->mac.type == e1000_ich8lan) 5212 e1000e_gig_downshift_workaround_ich8lan(hw); 5213 5214 /* Write VR power-down enable */ 5215 e1e_rphy(hw, IGP3_VR_CTRL, &data); 5216 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK; 5217 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN); 5218 5219 /* Read it back and test */ 5220 e1e_rphy(hw, IGP3_VR_CTRL, &data); 5221 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK; 5222 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry) 5223 break; 5224 5225 /* Issue PHY reset and repeat at most one more time */ 5226 reg = er32(CTRL); 5227 ew32(CTRL, reg | E1000_CTRL_PHY_RST); 5228 retry++; 5229 } while (retry); 5230 } 5231 5232 /** 5233 * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working 5234 * @hw: pointer to the HW structure 5235 * 5236 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC), 5237 * LPLU, Gig disable, MDIC PHY reset): 5238 * 1) Set Kumeran Near-end loopback 5239 * 2) Clear Kumeran Near-end loopback 5240 * Should only be called for ICH8[m] devices with any 1G Phy. 5241 **/ 5242 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw) 5243 { 5244 s32 ret_val; 5245 u16 reg_data; 5246 5247 if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife)) 5248 return; 5249 5250 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, 5251 ®_data); 5252 if (ret_val) 5253 return; 5254 reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK; 5255 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, 5256 reg_data); 5257 if (ret_val) 5258 return; 5259 reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK; 5260 e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data); 5261 } 5262 5263 /** 5264 * e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx 5265 * @hw: pointer to the HW structure 5266 * 5267 * During S0 to Sx transition, it is possible the link remains at gig 5268 * instead of negotiating to a lower speed. Before going to Sx, set 5269 * 'Gig Disable' to force link speed negotiation to a lower speed based on 5270 * the LPLU setting in the NVM or custom setting. For PCH and newer parts, 5271 * the OEM bits PHY register (LED, GbE disable and LPLU configurations) also 5272 * needs to be written. 5273 * Parts that support (and are linked to a partner which support) EEE in 5274 * 100Mbps should disable LPLU since 100Mbps w/ EEE requires less power 5275 * than 10Mbps w/o EEE. 5276 **/ 5277 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw) 5278 { 5279 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 5280 u32 phy_ctrl; 5281 s32 ret_val; 5282 5283 phy_ctrl = er32(PHY_CTRL); 5284 phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE; 5285 5286 if (hw->phy.type == e1000_phy_i217) { 5287 u16 phy_reg, device_id = hw->adapter->pdev->device; 5288 5289 if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) || 5290 (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) || 5291 (device_id == E1000_DEV_ID_PCH_I218_LM3) || 5292 (device_id == E1000_DEV_ID_PCH_I218_V3) || 5293 (hw->mac.type >= e1000_pch_spt)) { 5294 u32 fextnvm6 = er32(FEXTNVM6); 5295 5296 ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK); 5297 } 5298 5299 ret_val = hw->phy.ops.acquire(hw); 5300 if (ret_val) 5301 goto out; 5302 5303 if (!dev_spec->eee_disable) { 5304 u16 eee_advert; 5305 5306 ret_val = 5307 e1000_read_emi_reg_locked(hw, 5308 I217_EEE_ADVERTISEMENT, 5309 &eee_advert); 5310 if (ret_val) 5311 goto release; 5312 5313 /* Disable LPLU if both link partners support 100BaseT 5314 * EEE and 100Full is advertised on both ends of the 5315 * link, and enable Auto Enable LPI since there will 5316 * be no driver to enable LPI while in Sx. 5317 */ 5318 if ((eee_advert & I82579_EEE_100_SUPPORTED) && 5319 (dev_spec->eee_lp_ability & 5320 I82579_EEE_100_SUPPORTED) && 5321 (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) { 5322 phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU | 5323 E1000_PHY_CTRL_NOND0A_LPLU); 5324 5325 /* Set Auto Enable LPI after link up */ 5326 e1e_rphy_locked(hw, 5327 I217_LPI_GPIO_CTRL, &phy_reg); 5328 phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI; 5329 e1e_wphy_locked(hw, 5330 I217_LPI_GPIO_CTRL, phy_reg); 5331 } 5332 } 5333 5334 /* For i217 Intel Rapid Start Technology support, 5335 * when the system is going into Sx and no manageability engine 5336 * is present, the driver must configure proxy to reset only on 5337 * power good. LPI (Low Power Idle) state must also reset only 5338 * on power good, as well as the MTA (Multicast table array). 5339 * The SMBus release must also be disabled on LCD reset. 5340 */ 5341 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) { 5342 /* Enable proxy to reset only on power good. */ 5343 e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg); 5344 phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE; 5345 e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg); 5346 5347 /* Set bit enable LPI (EEE) to reset only on 5348 * power good. 5349 */ 5350 e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg); 5351 phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET; 5352 e1e_wphy_locked(hw, I217_SxCTRL, phy_reg); 5353 5354 /* Disable the SMB release on LCD reset. */ 5355 e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg); 5356 phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE; 5357 e1e_wphy_locked(hw, I217_MEMPWR, phy_reg); 5358 } 5359 5360 /* Enable MTA to reset for Intel Rapid Start Technology 5361 * Support 5362 */ 5363 e1e_rphy_locked(hw, I217_CGFREG, &phy_reg); 5364 phy_reg |= I217_CGFREG_ENABLE_MTA_RESET; 5365 e1e_wphy_locked(hw, I217_CGFREG, phy_reg); 5366 5367 release: 5368 hw->phy.ops.release(hw); 5369 } 5370 out: 5371 ew32(PHY_CTRL, phy_ctrl); 5372 5373 if (hw->mac.type == e1000_ich8lan) 5374 e1000e_gig_downshift_workaround_ich8lan(hw); 5375 5376 if (hw->mac.type >= e1000_pchlan) { 5377 e1000_oem_bits_config_ich8lan(hw, false); 5378 5379 /* Reset PHY to activate OEM bits on 82577/8 */ 5380 if (hw->mac.type == e1000_pchlan) 5381 e1000e_phy_hw_reset_generic(hw); 5382 5383 ret_val = hw->phy.ops.acquire(hw); 5384 if (ret_val) 5385 return; 5386 e1000_write_smbus_addr(hw); 5387 hw->phy.ops.release(hw); 5388 } 5389 } 5390 5391 /** 5392 * e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0 5393 * @hw: pointer to the HW structure 5394 * 5395 * During Sx to S0 transitions on non-managed devices or managed devices 5396 * on which PHY resets are not blocked, if the PHY registers cannot be 5397 * accessed properly by the s/w toggle the LANPHYPC value to power cycle 5398 * the PHY. 5399 * On i217, setup Intel Rapid Start Technology. 5400 **/ 5401 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw) 5402 { 5403 s32 ret_val; 5404 5405 if (hw->mac.type < e1000_pch2lan) 5406 return; 5407 5408 ret_val = e1000_init_phy_workarounds_pchlan(hw); 5409 if (ret_val) { 5410 e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val); 5411 return; 5412 } 5413 5414 /* For i217 Intel Rapid Start Technology support when the system 5415 * is transitioning from Sx and no manageability engine is present 5416 * configure SMBus to restore on reset, disable proxy, and enable 5417 * the reset on MTA (Multicast table array). 5418 */ 5419 if (hw->phy.type == e1000_phy_i217) { 5420 u16 phy_reg; 5421 5422 ret_val = hw->phy.ops.acquire(hw); 5423 if (ret_val) { 5424 e_dbg("Failed to setup iRST\n"); 5425 return; 5426 } 5427 5428 /* Clear Auto Enable LPI after link up */ 5429 e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg); 5430 phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI; 5431 e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg); 5432 5433 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) { 5434 /* Restore clear on SMB if no manageability engine 5435 * is present 5436 */ 5437 ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg); 5438 if (ret_val) 5439 goto release; 5440 phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE; 5441 e1e_wphy_locked(hw, I217_MEMPWR, phy_reg); 5442 5443 /* Disable Proxy */ 5444 e1e_wphy_locked(hw, I217_PROXY_CTRL, 0); 5445 } 5446 /* Enable reset on MTA */ 5447 ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg); 5448 if (ret_val) 5449 goto release; 5450 phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET; 5451 e1e_wphy_locked(hw, I217_CGFREG, phy_reg); 5452 release: 5453 if (ret_val) 5454 e_dbg("Error %d in resume workarounds\n", ret_val); 5455 hw->phy.ops.release(hw); 5456 } 5457 } 5458 5459 /** 5460 * e1000_cleanup_led_ich8lan - Restore the default LED operation 5461 * @hw: pointer to the HW structure 5462 * 5463 * Return the LED back to the default configuration. 5464 **/ 5465 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw) 5466 { 5467 if (hw->phy.type == e1000_phy_ife) 5468 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0); 5469 5470 ew32(LEDCTL, hw->mac.ledctl_default); 5471 return 0; 5472 } 5473 5474 /** 5475 * e1000_led_on_ich8lan - Turn LEDs on 5476 * @hw: pointer to the HW structure 5477 * 5478 * Turn on the LEDs. 5479 **/ 5480 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw) 5481 { 5482 if (hw->phy.type == e1000_phy_ife) 5483 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 5484 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON)); 5485 5486 ew32(LEDCTL, hw->mac.ledctl_mode2); 5487 return 0; 5488 } 5489 5490 /** 5491 * e1000_led_off_ich8lan - Turn LEDs off 5492 * @hw: pointer to the HW structure 5493 * 5494 * Turn off the LEDs. 5495 **/ 5496 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw) 5497 { 5498 if (hw->phy.type == e1000_phy_ife) 5499 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 5500 (IFE_PSCL_PROBE_MODE | 5501 IFE_PSCL_PROBE_LEDS_OFF)); 5502 5503 ew32(LEDCTL, hw->mac.ledctl_mode1); 5504 return 0; 5505 } 5506 5507 /** 5508 * e1000_setup_led_pchlan - Configures SW controllable LED 5509 * @hw: pointer to the HW structure 5510 * 5511 * This prepares the SW controllable LED for use. 5512 **/ 5513 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw) 5514 { 5515 return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1); 5516 } 5517 5518 /** 5519 * e1000_cleanup_led_pchlan - Restore the default LED operation 5520 * @hw: pointer to the HW structure 5521 * 5522 * Return the LED back to the default configuration. 5523 **/ 5524 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw) 5525 { 5526 return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default); 5527 } 5528 5529 /** 5530 * e1000_led_on_pchlan - Turn LEDs on 5531 * @hw: pointer to the HW structure 5532 * 5533 * Turn on the LEDs. 5534 **/ 5535 static s32 e1000_led_on_pchlan(struct e1000_hw *hw) 5536 { 5537 u16 data = (u16)hw->mac.ledctl_mode2; 5538 u32 i, led; 5539 5540 /* If no link, then turn LED on by setting the invert bit 5541 * for each LED that's mode is "link_up" in ledctl_mode2. 5542 */ 5543 if (!(er32(STATUS) & E1000_STATUS_LU)) { 5544 for (i = 0; i < 3; i++) { 5545 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK; 5546 if ((led & E1000_PHY_LED0_MODE_MASK) != 5547 E1000_LEDCTL_MODE_LINK_UP) 5548 continue; 5549 if (led & E1000_PHY_LED0_IVRT) 5550 data &= ~(E1000_PHY_LED0_IVRT << (i * 5)); 5551 else 5552 data |= (E1000_PHY_LED0_IVRT << (i * 5)); 5553 } 5554 } 5555 5556 return e1e_wphy(hw, HV_LED_CONFIG, data); 5557 } 5558 5559 /** 5560 * e1000_led_off_pchlan - Turn LEDs off 5561 * @hw: pointer to the HW structure 5562 * 5563 * Turn off the LEDs. 5564 **/ 5565 static s32 e1000_led_off_pchlan(struct e1000_hw *hw) 5566 { 5567 u16 data = (u16)hw->mac.ledctl_mode1; 5568 u32 i, led; 5569 5570 /* If no link, then turn LED off by clearing the invert bit 5571 * for each LED that's mode is "link_up" in ledctl_mode1. 5572 */ 5573 if (!(er32(STATUS) & E1000_STATUS_LU)) { 5574 for (i = 0; i < 3; i++) { 5575 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK; 5576 if ((led & E1000_PHY_LED0_MODE_MASK) != 5577 E1000_LEDCTL_MODE_LINK_UP) 5578 continue; 5579 if (led & E1000_PHY_LED0_IVRT) 5580 data &= ~(E1000_PHY_LED0_IVRT << (i * 5)); 5581 else 5582 data |= (E1000_PHY_LED0_IVRT << (i * 5)); 5583 } 5584 } 5585 5586 return e1e_wphy(hw, HV_LED_CONFIG, data); 5587 } 5588 5589 /** 5590 * e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset 5591 * @hw: pointer to the HW structure 5592 * 5593 * Read appropriate register for the config done bit for completion status 5594 * and configure the PHY through s/w for EEPROM-less parts. 5595 * 5596 * NOTE: some silicon which is EEPROM-less will fail trying to read the 5597 * config done bit, so only an error is logged and continues. If we were 5598 * to return with error, EEPROM-less silicon would not be able to be reset 5599 * or change link. 5600 **/ 5601 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw) 5602 { 5603 s32 ret_val = 0; 5604 u32 bank = 0; 5605 u32 status; 5606 5607 e1000e_get_cfg_done_generic(hw); 5608 5609 /* Wait for indication from h/w that it has completed basic config */ 5610 if (hw->mac.type >= e1000_ich10lan) { 5611 e1000_lan_init_done_ich8lan(hw); 5612 } else { 5613 ret_val = e1000e_get_auto_rd_done(hw); 5614 if (ret_val) { 5615 /* When auto config read does not complete, do not 5616 * return with an error. This can happen in situations 5617 * where there is no eeprom and prevents getting link. 5618 */ 5619 e_dbg("Auto Read Done did not complete\n"); 5620 ret_val = 0; 5621 } 5622 } 5623 5624 /* Clear PHY Reset Asserted bit */ 5625 status = er32(STATUS); 5626 if (status & E1000_STATUS_PHYRA) 5627 ew32(STATUS, status & ~E1000_STATUS_PHYRA); 5628 else 5629 e_dbg("PHY Reset Asserted not set - needs delay\n"); 5630 5631 /* If EEPROM is not marked present, init the IGP 3 PHY manually */ 5632 if (hw->mac.type <= e1000_ich9lan) { 5633 if (!(er32(EECD) & E1000_EECD_PRES) && 5634 (hw->phy.type == e1000_phy_igp_3)) { 5635 e1000e_phy_init_script_igp3(hw); 5636 } 5637 } else { 5638 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) { 5639 /* Maybe we should do a basic PHY config */ 5640 e_dbg("EEPROM not present\n"); 5641 ret_val = -E1000_ERR_CONFIG; 5642 } 5643 } 5644 5645 return ret_val; 5646 } 5647 5648 /** 5649 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down 5650 * @hw: pointer to the HW structure 5651 * 5652 * In the case of a PHY power down to save power, or to turn off link during a 5653 * driver unload, or wake on lan is not enabled, remove the link. 5654 **/ 5655 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw) 5656 { 5657 /* If the management interface is not enabled, then power down */ 5658 if (!(hw->mac.ops.check_mng_mode(hw) || 5659 hw->phy.ops.check_reset_block(hw))) 5660 e1000_power_down_phy_copper(hw); 5661 } 5662 5663 /** 5664 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters 5665 * @hw: pointer to the HW structure 5666 * 5667 * Clears hardware counters specific to the silicon family and calls 5668 * clear_hw_cntrs_generic to clear all general purpose counters. 5669 **/ 5670 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw) 5671 { 5672 u16 phy_data; 5673 s32 ret_val; 5674 5675 e1000e_clear_hw_cntrs_base(hw); 5676 5677 er32(ALGNERRC); 5678 er32(RXERRC); 5679 er32(TNCRS); 5680 er32(CEXTERR); 5681 er32(TSCTC); 5682 er32(TSCTFC); 5683 5684 er32(MGTPRC); 5685 er32(MGTPDC); 5686 er32(MGTPTC); 5687 5688 er32(IAC); 5689 er32(ICRXOC); 5690 5691 /* Clear PHY statistics registers */ 5692 if ((hw->phy.type == e1000_phy_82578) || 5693 (hw->phy.type == e1000_phy_82579) || 5694 (hw->phy.type == e1000_phy_i217) || 5695 (hw->phy.type == e1000_phy_82577)) { 5696 ret_val = hw->phy.ops.acquire(hw); 5697 if (ret_val) 5698 return; 5699 ret_val = hw->phy.ops.set_page(hw, 5700 HV_STATS_PAGE << IGP_PAGE_SHIFT); 5701 if (ret_val) 5702 goto release; 5703 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data); 5704 hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data); 5705 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data); 5706 hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data); 5707 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data); 5708 hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data); 5709 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data); 5710 hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data); 5711 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data); 5712 hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data); 5713 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data); 5714 hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data); 5715 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data); 5716 hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data); 5717 release: 5718 hw->phy.ops.release(hw); 5719 } 5720 } 5721 5722 static const struct e1000_mac_operations ich8_mac_ops = { 5723 /* check_mng_mode dependent on mac type */ 5724 .check_for_link = e1000_check_for_copper_link_ich8lan, 5725 /* cleanup_led dependent on mac type */ 5726 .clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan, 5727 .get_bus_info = e1000_get_bus_info_ich8lan, 5728 .set_lan_id = e1000_set_lan_id_single_port, 5729 .get_link_up_info = e1000_get_link_up_info_ich8lan, 5730 /* led_on dependent on mac type */ 5731 /* led_off dependent on mac type */ 5732 .update_mc_addr_list = e1000e_update_mc_addr_list_generic, 5733 .reset_hw = e1000_reset_hw_ich8lan, 5734 .init_hw = e1000_init_hw_ich8lan, 5735 .setup_link = e1000_setup_link_ich8lan, 5736 .setup_physical_interface = e1000_setup_copper_link_ich8lan, 5737 /* id_led_init dependent on mac type */ 5738 .config_collision_dist = e1000e_config_collision_dist_generic, 5739 .rar_set = e1000e_rar_set_generic, 5740 .rar_get_count = e1000e_rar_get_count_generic, 5741 }; 5742 5743 static const struct e1000_phy_operations ich8_phy_ops = { 5744 .acquire = e1000_acquire_swflag_ich8lan, 5745 .check_reset_block = e1000_check_reset_block_ich8lan, 5746 .commit = NULL, 5747 .get_cfg_done = e1000_get_cfg_done_ich8lan, 5748 .get_cable_length = e1000e_get_cable_length_igp_2, 5749 .read_reg = e1000e_read_phy_reg_igp, 5750 .release = e1000_release_swflag_ich8lan, 5751 .reset = e1000_phy_hw_reset_ich8lan, 5752 .set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan, 5753 .set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan, 5754 .write_reg = e1000e_write_phy_reg_igp, 5755 }; 5756 5757 static const struct e1000_nvm_operations ich8_nvm_ops = { 5758 .acquire = e1000_acquire_nvm_ich8lan, 5759 .read = e1000_read_nvm_ich8lan, 5760 .release = e1000_release_nvm_ich8lan, 5761 .reload = e1000e_reload_nvm_generic, 5762 .update = e1000_update_nvm_checksum_ich8lan, 5763 .valid_led_default = e1000_valid_led_default_ich8lan, 5764 .validate = e1000_validate_nvm_checksum_ich8lan, 5765 .write = e1000_write_nvm_ich8lan, 5766 }; 5767 5768 static const struct e1000_nvm_operations spt_nvm_ops = { 5769 .acquire = e1000_acquire_nvm_ich8lan, 5770 .release = e1000_release_nvm_ich8lan, 5771 .read = e1000_read_nvm_spt, 5772 .update = e1000_update_nvm_checksum_spt, 5773 .reload = e1000e_reload_nvm_generic, 5774 .valid_led_default = e1000_valid_led_default_ich8lan, 5775 .validate = e1000_validate_nvm_checksum_ich8lan, 5776 .write = e1000_write_nvm_ich8lan, 5777 }; 5778 5779 const struct e1000_info e1000_ich8_info = { 5780 .mac = e1000_ich8lan, 5781 .flags = FLAG_HAS_WOL 5782 | FLAG_IS_ICH 5783 | FLAG_HAS_CTRLEXT_ON_LOAD 5784 | FLAG_HAS_AMT 5785 | FLAG_HAS_FLASH 5786 | FLAG_APME_IN_WUC, 5787 .pba = 8, 5788 .max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN, 5789 .get_variants = e1000_get_variants_ich8lan, 5790 .mac_ops = &ich8_mac_ops, 5791 .phy_ops = &ich8_phy_ops, 5792 .nvm_ops = &ich8_nvm_ops, 5793 }; 5794 5795 const struct e1000_info e1000_ich9_info = { 5796 .mac = e1000_ich9lan, 5797 .flags = FLAG_HAS_JUMBO_FRAMES 5798 | FLAG_IS_ICH 5799 | FLAG_HAS_WOL 5800 | FLAG_HAS_CTRLEXT_ON_LOAD 5801 | FLAG_HAS_AMT 5802 | FLAG_HAS_FLASH 5803 | FLAG_APME_IN_WUC, 5804 .pba = 18, 5805 .max_hw_frame_size = DEFAULT_JUMBO, 5806 .get_variants = e1000_get_variants_ich8lan, 5807 .mac_ops = &ich8_mac_ops, 5808 .phy_ops = &ich8_phy_ops, 5809 .nvm_ops = &ich8_nvm_ops, 5810 }; 5811 5812 const struct e1000_info e1000_ich10_info = { 5813 .mac = e1000_ich10lan, 5814 .flags = FLAG_HAS_JUMBO_FRAMES 5815 | FLAG_IS_ICH 5816 | FLAG_HAS_WOL 5817 | FLAG_HAS_CTRLEXT_ON_LOAD 5818 | FLAG_HAS_AMT 5819 | FLAG_HAS_FLASH 5820 | FLAG_APME_IN_WUC, 5821 .pba = 18, 5822 .max_hw_frame_size = DEFAULT_JUMBO, 5823 .get_variants = e1000_get_variants_ich8lan, 5824 .mac_ops = &ich8_mac_ops, 5825 .phy_ops = &ich8_phy_ops, 5826 .nvm_ops = &ich8_nvm_ops, 5827 }; 5828 5829 const struct e1000_info e1000_pch_info = { 5830 .mac = e1000_pchlan, 5831 .flags = FLAG_IS_ICH 5832 | FLAG_HAS_WOL 5833 | FLAG_HAS_CTRLEXT_ON_LOAD 5834 | FLAG_HAS_AMT 5835 | FLAG_HAS_FLASH 5836 | FLAG_HAS_JUMBO_FRAMES 5837 | FLAG_DISABLE_FC_PAUSE_TIME /* errata */ 5838 | FLAG_APME_IN_WUC, 5839 .flags2 = FLAG2_HAS_PHY_STATS, 5840 .pba = 26, 5841 .max_hw_frame_size = 4096, 5842 .get_variants = e1000_get_variants_ich8lan, 5843 .mac_ops = &ich8_mac_ops, 5844 .phy_ops = &ich8_phy_ops, 5845 .nvm_ops = &ich8_nvm_ops, 5846 }; 5847 5848 const struct e1000_info e1000_pch2_info = { 5849 .mac = e1000_pch2lan, 5850 .flags = FLAG_IS_ICH 5851 | FLAG_HAS_WOL 5852 | FLAG_HAS_HW_TIMESTAMP 5853 | FLAG_HAS_CTRLEXT_ON_LOAD 5854 | FLAG_HAS_AMT 5855 | FLAG_HAS_FLASH 5856 | FLAG_HAS_JUMBO_FRAMES 5857 | FLAG_APME_IN_WUC, 5858 .flags2 = FLAG2_HAS_PHY_STATS 5859 | FLAG2_HAS_EEE 5860 | FLAG2_CHECK_SYSTIM_OVERFLOW, 5861 .pba = 26, 5862 .max_hw_frame_size = 9022, 5863 .get_variants = e1000_get_variants_ich8lan, 5864 .mac_ops = &ich8_mac_ops, 5865 .phy_ops = &ich8_phy_ops, 5866 .nvm_ops = &ich8_nvm_ops, 5867 }; 5868 5869 const struct e1000_info e1000_pch_lpt_info = { 5870 .mac = e1000_pch_lpt, 5871 .flags = FLAG_IS_ICH 5872 | FLAG_HAS_WOL 5873 | FLAG_HAS_HW_TIMESTAMP 5874 | FLAG_HAS_CTRLEXT_ON_LOAD 5875 | FLAG_HAS_AMT 5876 | FLAG_HAS_FLASH 5877 | FLAG_HAS_JUMBO_FRAMES 5878 | FLAG_APME_IN_WUC, 5879 .flags2 = FLAG2_HAS_PHY_STATS 5880 | FLAG2_HAS_EEE 5881 | FLAG2_CHECK_SYSTIM_OVERFLOW, 5882 .pba = 26, 5883 .max_hw_frame_size = 9022, 5884 .get_variants = e1000_get_variants_ich8lan, 5885 .mac_ops = &ich8_mac_ops, 5886 .phy_ops = &ich8_phy_ops, 5887 .nvm_ops = &ich8_nvm_ops, 5888 }; 5889 5890 const struct e1000_info e1000_pch_spt_info = { 5891 .mac = e1000_pch_spt, 5892 .flags = FLAG_IS_ICH 5893 | FLAG_HAS_WOL 5894 | FLAG_HAS_HW_TIMESTAMP 5895 | FLAG_HAS_CTRLEXT_ON_LOAD 5896 | FLAG_HAS_AMT 5897 | FLAG_HAS_FLASH 5898 | FLAG_HAS_JUMBO_FRAMES 5899 | FLAG_APME_IN_WUC, 5900 .flags2 = FLAG2_HAS_PHY_STATS 5901 | FLAG2_HAS_EEE, 5902 .pba = 26, 5903 .max_hw_frame_size = 9022, 5904 .get_variants = e1000_get_variants_ich8lan, 5905 .mac_ops = &ich8_mac_ops, 5906 .phy_ops = &ich8_phy_ops, 5907 .nvm_ops = &spt_nvm_ops, 5908 }; 5909 5910 const struct e1000_info e1000_pch_cnp_info = { 5911 .mac = e1000_pch_cnp, 5912 .flags = FLAG_IS_ICH 5913 | FLAG_HAS_WOL 5914 | FLAG_HAS_HW_TIMESTAMP 5915 | FLAG_HAS_CTRLEXT_ON_LOAD 5916 | FLAG_HAS_AMT 5917 | FLAG_HAS_FLASH 5918 | FLAG_HAS_JUMBO_FRAMES 5919 | FLAG_APME_IN_WUC, 5920 .flags2 = FLAG2_HAS_PHY_STATS 5921 | FLAG2_HAS_EEE, 5922 .pba = 26, 5923 .max_hw_frame_size = 9022, 5924 .get_variants = e1000_get_variants_ich8lan, 5925 .mac_ops = &ich8_mac_ops, 5926 .phy_ops = &ich8_phy_ops, 5927 .nvm_ops = &spt_nvm_ops, 5928 }; 5929