1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3 
4 /* 82562G 10/100 Network Connection
5  * 82562G-2 10/100 Network Connection
6  * 82562GT 10/100 Network Connection
7  * 82562GT-2 10/100 Network Connection
8  * 82562V 10/100 Network Connection
9  * 82562V-2 10/100 Network Connection
10  * 82566DC-2 Gigabit Network Connection
11  * 82566DC Gigabit Network Connection
12  * 82566DM-2 Gigabit Network Connection
13  * 82566DM Gigabit Network Connection
14  * 82566MC Gigabit Network Connection
15  * 82566MM Gigabit Network Connection
16  * 82567LM Gigabit Network Connection
17  * 82567LF Gigabit Network Connection
18  * 82567V Gigabit Network Connection
19  * 82567LM-2 Gigabit Network Connection
20  * 82567LF-2 Gigabit Network Connection
21  * 82567V-2 Gigabit Network Connection
22  * 82567LF-3 Gigabit Network Connection
23  * 82567LM-3 Gigabit Network Connection
24  * 82567LM-4 Gigabit Network Connection
25  * 82577LM Gigabit Network Connection
26  * 82577LC Gigabit Network Connection
27  * 82578DM Gigabit Network Connection
28  * 82578DC Gigabit Network Connection
29  * 82579LM Gigabit Network Connection
30  * 82579V Gigabit Network Connection
31  * Ethernet Connection I217-LM
32  * Ethernet Connection I217-V
33  * Ethernet Connection I218-V
34  * Ethernet Connection I218-LM
35  * Ethernet Connection (2) I218-LM
36  * Ethernet Connection (2) I218-V
37  * Ethernet Connection (3) I218-LM
38  * Ethernet Connection (3) I218-V
39  */
40 
41 #include "e1000.h"
42 
43 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
44 /* Offset 04h HSFSTS */
45 union ich8_hws_flash_status {
46 	struct ich8_hsfsts {
47 		u16 flcdone:1;	/* bit 0 Flash Cycle Done */
48 		u16 flcerr:1;	/* bit 1 Flash Cycle Error */
49 		u16 dael:1;	/* bit 2 Direct Access error Log */
50 		u16 berasesz:2;	/* bit 4:3 Sector Erase Size */
51 		u16 flcinprog:1;	/* bit 5 flash cycle in Progress */
52 		u16 reserved1:2;	/* bit 13:6 Reserved */
53 		u16 reserved2:6;	/* bit 13:6 Reserved */
54 		u16 fldesvalid:1;	/* bit 14 Flash Descriptor Valid */
55 		u16 flockdn:1;	/* bit 15 Flash Config Lock-Down */
56 	} hsf_status;
57 	u16 regval;
58 };
59 
60 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
61 /* Offset 06h FLCTL */
62 union ich8_hws_flash_ctrl {
63 	struct ich8_hsflctl {
64 		u16 flcgo:1;	/* 0 Flash Cycle Go */
65 		u16 flcycle:2;	/* 2:1 Flash Cycle */
66 		u16 reserved:5;	/* 7:3 Reserved  */
67 		u16 fldbcount:2;	/* 9:8 Flash Data Byte Count */
68 		u16 flockdn:6;	/* 15:10 Reserved */
69 	} hsf_ctrl;
70 	u16 regval;
71 };
72 
73 /* ICH Flash Region Access Permissions */
74 union ich8_hws_flash_regacc {
75 	struct ich8_flracc {
76 		u32 grra:8;	/* 0:7 GbE region Read Access */
77 		u32 grwa:8;	/* 8:15 GbE region Write Access */
78 		u32 gmrag:8;	/* 23:16 GbE Master Read Access Grant */
79 		u32 gmwag:8;	/* 31:24 GbE Master Write Access Grant */
80 	} hsf_flregacc;
81 	u16 regval;
82 };
83 
84 /* ICH Flash Protected Region */
85 union ich8_flash_protected_range {
86 	struct ich8_pr {
87 		u32 base:13;	/* 0:12 Protected Range Base */
88 		u32 reserved1:2;	/* 13:14 Reserved */
89 		u32 rpe:1;	/* 15 Read Protection Enable */
90 		u32 limit:13;	/* 16:28 Protected Range Limit */
91 		u32 reserved2:2;	/* 29:30 Reserved */
92 		u32 wpe:1;	/* 31 Write Protection Enable */
93 	} range;
94 	u32 regval;
95 };
96 
97 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
98 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
99 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
100 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
101 						u32 offset, u8 byte);
102 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
103 					 u8 *data);
104 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
105 					 u16 *data);
106 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
107 					 u8 size, u16 *data);
108 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
109 					   u32 *data);
110 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
111 					  u32 offset, u32 *data);
112 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
113 					    u32 offset, u32 data);
114 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
115 						 u32 offset, u32 dword);
116 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
117 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
118 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
119 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
120 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
121 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
122 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
123 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
124 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
125 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
126 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
127 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
128 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
129 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
130 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
131 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
132 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
133 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
134 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw);
135 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
136 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
137 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
138 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
139 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
140 
141 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
142 {
143 	return readw(hw->flash_address + reg);
144 }
145 
146 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
147 {
148 	return readl(hw->flash_address + reg);
149 }
150 
151 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
152 {
153 	writew(val, hw->flash_address + reg);
154 }
155 
156 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
157 {
158 	writel(val, hw->flash_address + reg);
159 }
160 
161 #define er16flash(reg)		__er16flash(hw, (reg))
162 #define er32flash(reg)		__er32flash(hw, (reg))
163 #define ew16flash(reg, val)	__ew16flash(hw, (reg), (val))
164 #define ew32flash(reg, val)	__ew32flash(hw, (reg), (val))
165 
166 /**
167  *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
168  *  @hw: pointer to the HW structure
169  *
170  *  Test access to the PHY registers by reading the PHY ID registers.  If
171  *  the PHY ID is already known (e.g. resume path) compare it with known ID,
172  *  otherwise assume the read PHY ID is correct if it is valid.
173  *
174  *  Assumes the sw/fw/hw semaphore is already acquired.
175  **/
176 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
177 {
178 	u16 phy_reg = 0;
179 	u32 phy_id = 0;
180 	s32 ret_val = 0;
181 	u16 retry_count;
182 	u32 mac_reg = 0;
183 
184 	for (retry_count = 0; retry_count < 2; retry_count++) {
185 		ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
186 		if (ret_val || (phy_reg == 0xFFFF))
187 			continue;
188 		phy_id = (u32)(phy_reg << 16);
189 
190 		ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
191 		if (ret_val || (phy_reg == 0xFFFF)) {
192 			phy_id = 0;
193 			continue;
194 		}
195 		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
196 		break;
197 	}
198 
199 	if (hw->phy.id) {
200 		if (hw->phy.id == phy_id)
201 			goto out;
202 	} else if (phy_id) {
203 		hw->phy.id = phy_id;
204 		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
205 		goto out;
206 	}
207 
208 	/* In case the PHY needs to be in mdio slow mode,
209 	 * set slow mode and try to get the PHY id again.
210 	 */
211 	if (hw->mac.type < e1000_pch_lpt) {
212 		hw->phy.ops.release(hw);
213 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
214 		if (!ret_val)
215 			ret_val = e1000e_get_phy_id(hw);
216 		hw->phy.ops.acquire(hw);
217 	}
218 
219 	if (ret_val)
220 		return false;
221 out:
222 	if (hw->mac.type >= e1000_pch_lpt) {
223 		/* Only unforce SMBus if ME is not active */
224 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
225 			/* Unforce SMBus mode in PHY */
226 			e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
227 			phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
228 			e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
229 
230 			/* Unforce SMBus mode in MAC */
231 			mac_reg = er32(CTRL_EXT);
232 			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
233 			ew32(CTRL_EXT, mac_reg);
234 		}
235 	}
236 
237 	return true;
238 }
239 
240 /**
241  *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
242  *  @hw: pointer to the HW structure
243  *
244  *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
245  *  used to reset the PHY to a quiescent state when necessary.
246  **/
247 static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
248 {
249 	u32 mac_reg;
250 
251 	/* Set Phy Config Counter to 50msec */
252 	mac_reg = er32(FEXTNVM3);
253 	mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
254 	mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
255 	ew32(FEXTNVM3, mac_reg);
256 
257 	/* Toggle LANPHYPC Value bit */
258 	mac_reg = er32(CTRL);
259 	mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
260 	mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
261 	ew32(CTRL, mac_reg);
262 	e1e_flush();
263 	usleep_range(10, 20);
264 	mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
265 	ew32(CTRL, mac_reg);
266 	e1e_flush();
267 
268 	if (hw->mac.type < e1000_pch_lpt) {
269 		msleep(50);
270 	} else {
271 		u16 count = 20;
272 
273 		do {
274 			usleep_range(5000, 6000);
275 		} while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
276 
277 		msleep(30);
278 	}
279 }
280 
281 /**
282  *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
283  *  @hw: pointer to the HW structure
284  *
285  *  Workarounds/flow necessary for PHY initialization during driver load
286  *  and resume paths.
287  **/
288 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
289 {
290 	struct e1000_adapter *adapter = hw->adapter;
291 	u32 mac_reg, fwsm = er32(FWSM);
292 	s32 ret_val;
293 
294 	/* Gate automatic PHY configuration by hardware on managed and
295 	 * non-managed 82579 and newer adapters.
296 	 */
297 	e1000_gate_hw_phy_config_ich8lan(hw, true);
298 
299 	/* It is not possible to be certain of the current state of ULP
300 	 * so forcibly disable it.
301 	 */
302 	hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
303 	e1000_disable_ulp_lpt_lp(hw, true);
304 
305 	ret_val = hw->phy.ops.acquire(hw);
306 	if (ret_val) {
307 		e_dbg("Failed to initialize PHY flow\n");
308 		goto out;
309 	}
310 
311 	/* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
312 	 * inaccessible and resetting the PHY is not blocked, toggle the
313 	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
314 	 */
315 	switch (hw->mac.type) {
316 	case e1000_pch_lpt:
317 	case e1000_pch_spt:
318 	case e1000_pch_cnp:
319 		if (e1000_phy_is_accessible_pchlan(hw))
320 			break;
321 
322 		/* Before toggling LANPHYPC, see if PHY is accessible by
323 		 * forcing MAC to SMBus mode first.
324 		 */
325 		mac_reg = er32(CTRL_EXT);
326 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
327 		ew32(CTRL_EXT, mac_reg);
328 
329 		/* Wait 50 milliseconds for MAC to finish any retries
330 		 * that it might be trying to perform from previous
331 		 * attempts to acknowledge any phy read requests.
332 		 */
333 		msleep(50);
334 
335 		/* fall-through */
336 	case e1000_pch2lan:
337 		if (e1000_phy_is_accessible_pchlan(hw))
338 			break;
339 
340 		/* fall-through */
341 	case e1000_pchlan:
342 		if ((hw->mac.type == e1000_pchlan) &&
343 		    (fwsm & E1000_ICH_FWSM_FW_VALID))
344 			break;
345 
346 		if (hw->phy.ops.check_reset_block(hw)) {
347 			e_dbg("Required LANPHYPC toggle blocked by ME\n");
348 			ret_val = -E1000_ERR_PHY;
349 			break;
350 		}
351 
352 		/* Toggle LANPHYPC Value bit */
353 		e1000_toggle_lanphypc_pch_lpt(hw);
354 		if (hw->mac.type >= e1000_pch_lpt) {
355 			if (e1000_phy_is_accessible_pchlan(hw))
356 				break;
357 
358 			/* Toggling LANPHYPC brings the PHY out of SMBus mode
359 			 * so ensure that the MAC is also out of SMBus mode
360 			 */
361 			mac_reg = er32(CTRL_EXT);
362 			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
363 			ew32(CTRL_EXT, mac_reg);
364 
365 			if (e1000_phy_is_accessible_pchlan(hw))
366 				break;
367 
368 			ret_val = -E1000_ERR_PHY;
369 		}
370 		break;
371 	default:
372 		break;
373 	}
374 
375 	hw->phy.ops.release(hw);
376 	if (!ret_val) {
377 
378 		/* Check to see if able to reset PHY.  Print error if not */
379 		if (hw->phy.ops.check_reset_block(hw)) {
380 			e_err("Reset blocked by ME\n");
381 			goto out;
382 		}
383 
384 		/* Reset the PHY before any access to it.  Doing so, ensures
385 		 * that the PHY is in a known good state before we read/write
386 		 * PHY registers.  The generic reset is sufficient here,
387 		 * because we haven't determined the PHY type yet.
388 		 */
389 		ret_val = e1000e_phy_hw_reset_generic(hw);
390 		if (ret_val)
391 			goto out;
392 
393 		/* On a successful reset, possibly need to wait for the PHY
394 		 * to quiesce to an accessible state before returning control
395 		 * to the calling function.  If the PHY does not quiesce, then
396 		 * return E1000E_BLK_PHY_RESET, as this is the condition that
397 		 *  the PHY is in.
398 		 */
399 		ret_val = hw->phy.ops.check_reset_block(hw);
400 		if (ret_val)
401 			e_err("ME blocked access to PHY after reset\n");
402 	}
403 
404 out:
405 	/* Ungate automatic PHY configuration on non-managed 82579 */
406 	if ((hw->mac.type == e1000_pch2lan) &&
407 	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
408 		usleep_range(10000, 11000);
409 		e1000_gate_hw_phy_config_ich8lan(hw, false);
410 	}
411 
412 	return ret_val;
413 }
414 
415 /**
416  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
417  *  @hw: pointer to the HW structure
418  *
419  *  Initialize family-specific PHY parameters and function pointers.
420  **/
421 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
422 {
423 	struct e1000_phy_info *phy = &hw->phy;
424 	s32 ret_val;
425 
426 	phy->addr = 1;
427 	phy->reset_delay_us = 100;
428 
429 	phy->ops.set_page = e1000_set_page_igp;
430 	phy->ops.read_reg = e1000_read_phy_reg_hv;
431 	phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
432 	phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
433 	phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
434 	phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
435 	phy->ops.write_reg = e1000_write_phy_reg_hv;
436 	phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
437 	phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
438 	phy->ops.power_up = e1000_power_up_phy_copper;
439 	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
440 	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
441 
442 	phy->id = e1000_phy_unknown;
443 
444 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
445 	if (ret_val)
446 		return ret_val;
447 
448 	if (phy->id == e1000_phy_unknown)
449 		switch (hw->mac.type) {
450 		default:
451 			ret_val = e1000e_get_phy_id(hw);
452 			if (ret_val)
453 				return ret_val;
454 			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
455 				break;
456 			/* fall-through */
457 		case e1000_pch2lan:
458 		case e1000_pch_lpt:
459 		case e1000_pch_spt:
460 		case e1000_pch_cnp:
461 			/* In case the PHY needs to be in mdio slow mode,
462 			 * set slow mode and try to get the PHY id again.
463 			 */
464 			ret_val = e1000_set_mdio_slow_mode_hv(hw);
465 			if (ret_val)
466 				return ret_val;
467 			ret_val = e1000e_get_phy_id(hw);
468 			if (ret_val)
469 				return ret_val;
470 			break;
471 		}
472 	phy->type = e1000e_get_phy_type_from_id(phy->id);
473 
474 	switch (phy->type) {
475 	case e1000_phy_82577:
476 	case e1000_phy_82579:
477 	case e1000_phy_i217:
478 		phy->ops.check_polarity = e1000_check_polarity_82577;
479 		phy->ops.force_speed_duplex =
480 		    e1000_phy_force_speed_duplex_82577;
481 		phy->ops.get_cable_length = e1000_get_cable_length_82577;
482 		phy->ops.get_info = e1000_get_phy_info_82577;
483 		phy->ops.commit = e1000e_phy_sw_reset;
484 		break;
485 	case e1000_phy_82578:
486 		phy->ops.check_polarity = e1000_check_polarity_m88;
487 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
488 		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
489 		phy->ops.get_info = e1000e_get_phy_info_m88;
490 		break;
491 	default:
492 		ret_val = -E1000_ERR_PHY;
493 		break;
494 	}
495 
496 	return ret_val;
497 }
498 
499 /**
500  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
501  *  @hw: pointer to the HW structure
502  *
503  *  Initialize family-specific PHY parameters and function pointers.
504  **/
505 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
506 {
507 	struct e1000_phy_info *phy = &hw->phy;
508 	s32 ret_val;
509 	u16 i = 0;
510 
511 	phy->addr = 1;
512 	phy->reset_delay_us = 100;
513 
514 	phy->ops.power_up = e1000_power_up_phy_copper;
515 	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
516 
517 	/* We may need to do this twice - once for IGP and if that fails,
518 	 * we'll set BM func pointers and try again
519 	 */
520 	ret_val = e1000e_determine_phy_address(hw);
521 	if (ret_val) {
522 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
523 		phy->ops.read_reg = e1000e_read_phy_reg_bm;
524 		ret_val = e1000e_determine_phy_address(hw);
525 		if (ret_val) {
526 			e_dbg("Cannot determine PHY addr. Erroring out\n");
527 			return ret_val;
528 		}
529 	}
530 
531 	phy->id = 0;
532 	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
533 	       (i++ < 100)) {
534 		usleep_range(1000, 1100);
535 		ret_val = e1000e_get_phy_id(hw);
536 		if (ret_val)
537 			return ret_val;
538 	}
539 
540 	/* Verify phy id */
541 	switch (phy->id) {
542 	case IGP03E1000_E_PHY_ID:
543 		phy->type = e1000_phy_igp_3;
544 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
545 		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
546 		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
547 		phy->ops.get_info = e1000e_get_phy_info_igp;
548 		phy->ops.check_polarity = e1000_check_polarity_igp;
549 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
550 		break;
551 	case IFE_E_PHY_ID:
552 	case IFE_PLUS_E_PHY_ID:
553 	case IFE_C_E_PHY_ID:
554 		phy->type = e1000_phy_ife;
555 		phy->autoneg_mask = E1000_ALL_NOT_GIG;
556 		phy->ops.get_info = e1000_get_phy_info_ife;
557 		phy->ops.check_polarity = e1000_check_polarity_ife;
558 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
559 		break;
560 	case BME1000_E_PHY_ID:
561 		phy->type = e1000_phy_bm;
562 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
563 		phy->ops.read_reg = e1000e_read_phy_reg_bm;
564 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
565 		phy->ops.commit = e1000e_phy_sw_reset;
566 		phy->ops.get_info = e1000e_get_phy_info_m88;
567 		phy->ops.check_polarity = e1000_check_polarity_m88;
568 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
569 		break;
570 	default:
571 		return -E1000_ERR_PHY;
572 	}
573 
574 	return 0;
575 }
576 
577 /**
578  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
579  *  @hw: pointer to the HW structure
580  *
581  *  Initialize family-specific NVM parameters and function
582  *  pointers.
583  **/
584 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
585 {
586 	struct e1000_nvm_info *nvm = &hw->nvm;
587 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
588 	u32 gfpreg, sector_base_addr, sector_end_addr;
589 	u16 i;
590 	u32 nvm_size;
591 
592 	nvm->type = e1000_nvm_flash_sw;
593 
594 	if (hw->mac.type >= e1000_pch_spt) {
595 		/* in SPT, gfpreg doesn't exist. NVM size is taken from the
596 		 * STRAP register. This is because in SPT the GbE Flash region
597 		 * is no longer accessed through the flash registers. Instead,
598 		 * the mechanism has changed, and the Flash region access
599 		 * registers are now implemented in GbE memory space.
600 		 */
601 		nvm->flash_base_addr = 0;
602 		nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1)
603 		    * NVM_SIZE_MULTIPLIER;
604 		nvm->flash_bank_size = nvm_size / 2;
605 		/* Adjust to word count */
606 		nvm->flash_bank_size /= sizeof(u16);
607 		/* Set the base address for flash register access */
608 		hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
609 	} else {
610 		/* Can't read flash registers if register set isn't mapped. */
611 		if (!hw->flash_address) {
612 			e_dbg("ERROR: Flash registers not mapped\n");
613 			return -E1000_ERR_CONFIG;
614 		}
615 
616 		gfpreg = er32flash(ICH_FLASH_GFPREG);
617 
618 		/* sector_X_addr is a "sector"-aligned address (4096 bytes)
619 		 * Add 1 to sector_end_addr since this sector is included in
620 		 * the overall size.
621 		 */
622 		sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
623 		sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
624 
625 		/* flash_base_addr is byte-aligned */
626 		nvm->flash_base_addr = sector_base_addr
627 		    << FLASH_SECTOR_ADDR_SHIFT;
628 
629 		/* find total size of the NVM, then cut in half since the total
630 		 * size represents two separate NVM banks.
631 		 */
632 		nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
633 					<< FLASH_SECTOR_ADDR_SHIFT);
634 		nvm->flash_bank_size /= 2;
635 		/* Adjust to word count */
636 		nvm->flash_bank_size /= sizeof(u16);
637 	}
638 
639 	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
640 
641 	/* Clear shadow ram */
642 	for (i = 0; i < nvm->word_size; i++) {
643 		dev_spec->shadow_ram[i].modified = false;
644 		dev_spec->shadow_ram[i].value = 0xFFFF;
645 	}
646 
647 	return 0;
648 }
649 
650 /**
651  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
652  *  @hw: pointer to the HW structure
653  *
654  *  Initialize family-specific MAC parameters and function
655  *  pointers.
656  **/
657 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
658 {
659 	struct e1000_mac_info *mac = &hw->mac;
660 
661 	/* Set media type function pointer */
662 	hw->phy.media_type = e1000_media_type_copper;
663 
664 	/* Set mta register count */
665 	mac->mta_reg_count = 32;
666 	/* Set rar entry count */
667 	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
668 	if (mac->type == e1000_ich8lan)
669 		mac->rar_entry_count--;
670 	/* FWSM register */
671 	mac->has_fwsm = true;
672 	/* ARC subsystem not supported */
673 	mac->arc_subsystem_valid = false;
674 	/* Adaptive IFS supported */
675 	mac->adaptive_ifs = true;
676 
677 	/* LED and other operations */
678 	switch (mac->type) {
679 	case e1000_ich8lan:
680 	case e1000_ich9lan:
681 	case e1000_ich10lan:
682 		/* check management mode */
683 		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
684 		/* ID LED init */
685 		mac->ops.id_led_init = e1000e_id_led_init_generic;
686 		/* blink LED */
687 		mac->ops.blink_led = e1000e_blink_led_generic;
688 		/* setup LED */
689 		mac->ops.setup_led = e1000e_setup_led_generic;
690 		/* cleanup LED */
691 		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
692 		/* turn on/off LED */
693 		mac->ops.led_on = e1000_led_on_ich8lan;
694 		mac->ops.led_off = e1000_led_off_ich8lan;
695 		break;
696 	case e1000_pch2lan:
697 		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
698 		mac->ops.rar_set = e1000_rar_set_pch2lan;
699 		/* fall-through */
700 	case e1000_pch_lpt:
701 	case e1000_pch_spt:
702 	case e1000_pch_cnp:
703 	case e1000_pchlan:
704 		/* check management mode */
705 		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
706 		/* ID LED init */
707 		mac->ops.id_led_init = e1000_id_led_init_pchlan;
708 		/* setup LED */
709 		mac->ops.setup_led = e1000_setup_led_pchlan;
710 		/* cleanup LED */
711 		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
712 		/* turn on/off LED */
713 		mac->ops.led_on = e1000_led_on_pchlan;
714 		mac->ops.led_off = e1000_led_off_pchlan;
715 		break;
716 	default:
717 		break;
718 	}
719 
720 	if (mac->type >= e1000_pch_lpt) {
721 		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
722 		mac->ops.rar_set = e1000_rar_set_pch_lpt;
723 		mac->ops.setup_physical_interface =
724 		    e1000_setup_copper_link_pch_lpt;
725 		mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt;
726 	}
727 
728 	/* Enable PCS Lock-loss workaround for ICH8 */
729 	if (mac->type == e1000_ich8lan)
730 		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
731 
732 	return 0;
733 }
734 
735 /**
736  *  __e1000_access_emi_reg_locked - Read/write EMI register
737  *  @hw: pointer to the HW structure
738  *  @addr: EMI address to program
739  *  @data: pointer to value to read/write from/to the EMI address
740  *  @read: boolean flag to indicate read or write
741  *
742  *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
743  **/
744 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
745 					 u16 *data, bool read)
746 {
747 	s32 ret_val;
748 
749 	ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
750 	if (ret_val)
751 		return ret_val;
752 
753 	if (read)
754 		ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
755 	else
756 		ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
757 
758 	return ret_val;
759 }
760 
761 /**
762  *  e1000_read_emi_reg_locked - Read Extended Management Interface register
763  *  @hw: pointer to the HW structure
764  *  @addr: EMI address to program
765  *  @data: value to be read from the EMI address
766  *
767  *  Assumes the SW/FW/HW Semaphore is already acquired.
768  **/
769 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
770 {
771 	return __e1000_access_emi_reg_locked(hw, addr, data, true);
772 }
773 
774 /**
775  *  e1000_write_emi_reg_locked - Write Extended Management Interface register
776  *  @hw: pointer to the HW structure
777  *  @addr: EMI address to program
778  *  @data: value to be written to the EMI address
779  *
780  *  Assumes the SW/FW/HW Semaphore is already acquired.
781  **/
782 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
783 {
784 	return __e1000_access_emi_reg_locked(hw, addr, &data, false);
785 }
786 
787 /**
788  *  e1000_set_eee_pchlan - Enable/disable EEE support
789  *  @hw: pointer to the HW structure
790  *
791  *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
792  *  the link and the EEE capabilities of the link partner.  The LPI Control
793  *  register bits will remain set only if/when link is up.
794  *
795  *  EEE LPI must not be asserted earlier than one second after link is up.
796  *  On 82579, EEE LPI should not be enabled until such time otherwise there
797  *  can be link issues with some switches.  Other devices can have EEE LPI
798  *  enabled immediately upon link up since they have a timer in hardware which
799  *  prevents LPI from being asserted too early.
800  **/
801 s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
802 {
803 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
804 	s32 ret_val;
805 	u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
806 
807 	switch (hw->phy.type) {
808 	case e1000_phy_82579:
809 		lpa = I82579_EEE_LP_ABILITY;
810 		pcs_status = I82579_EEE_PCS_STATUS;
811 		adv_addr = I82579_EEE_ADVERTISEMENT;
812 		break;
813 	case e1000_phy_i217:
814 		lpa = I217_EEE_LP_ABILITY;
815 		pcs_status = I217_EEE_PCS_STATUS;
816 		adv_addr = I217_EEE_ADVERTISEMENT;
817 		break;
818 	default:
819 		return 0;
820 	}
821 
822 	ret_val = hw->phy.ops.acquire(hw);
823 	if (ret_val)
824 		return ret_val;
825 
826 	ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
827 	if (ret_val)
828 		goto release;
829 
830 	/* Clear bits that enable EEE in various speeds */
831 	lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
832 
833 	/* Enable EEE if not disabled by user */
834 	if (!dev_spec->eee_disable) {
835 		/* Save off link partner's EEE ability */
836 		ret_val = e1000_read_emi_reg_locked(hw, lpa,
837 						    &dev_spec->eee_lp_ability);
838 		if (ret_val)
839 			goto release;
840 
841 		/* Read EEE advertisement */
842 		ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
843 		if (ret_val)
844 			goto release;
845 
846 		/* Enable EEE only for speeds in which the link partner is
847 		 * EEE capable and for which we advertise EEE.
848 		 */
849 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
850 			lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
851 
852 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
853 			e1e_rphy_locked(hw, MII_LPA, &data);
854 			if (data & LPA_100FULL)
855 				lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
856 			else
857 				/* EEE is not supported in 100Half, so ignore
858 				 * partner's EEE in 100 ability if full-duplex
859 				 * is not advertised.
860 				 */
861 				dev_spec->eee_lp_ability &=
862 				    ~I82579_EEE_100_SUPPORTED;
863 		}
864 	}
865 
866 	if (hw->phy.type == e1000_phy_82579) {
867 		ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
868 						    &data);
869 		if (ret_val)
870 			goto release;
871 
872 		data &= ~I82579_LPI_100_PLL_SHUT;
873 		ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
874 						     data);
875 	}
876 
877 	/* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
878 	ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
879 	if (ret_val)
880 		goto release;
881 
882 	ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
883 release:
884 	hw->phy.ops.release(hw);
885 
886 	return ret_val;
887 }
888 
889 /**
890  *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
891  *  @hw:   pointer to the HW structure
892  *  @link: link up bool flag
893  *
894  *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
895  *  preventing further DMA write requests.  Workaround the issue by disabling
896  *  the de-assertion of the clock request when in 1Gpbs mode.
897  *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
898  *  speeds in order to avoid Tx hangs.
899  **/
900 static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
901 {
902 	u32 fextnvm6 = er32(FEXTNVM6);
903 	u32 status = er32(STATUS);
904 	s32 ret_val = 0;
905 	u16 reg;
906 
907 	if (link && (status & E1000_STATUS_SPEED_1000)) {
908 		ret_val = hw->phy.ops.acquire(hw);
909 		if (ret_val)
910 			return ret_val;
911 
912 		ret_val =
913 		    e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
914 						&reg);
915 		if (ret_val)
916 			goto release;
917 
918 		ret_val =
919 		    e1000e_write_kmrn_reg_locked(hw,
920 						 E1000_KMRNCTRLSTA_K1_CONFIG,
921 						 reg &
922 						 ~E1000_KMRNCTRLSTA_K1_ENABLE);
923 		if (ret_val)
924 			goto release;
925 
926 		usleep_range(10, 20);
927 
928 		ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
929 
930 		ret_val =
931 		    e1000e_write_kmrn_reg_locked(hw,
932 						 E1000_KMRNCTRLSTA_K1_CONFIG,
933 						 reg);
934 release:
935 		hw->phy.ops.release(hw);
936 	} else {
937 		/* clear FEXTNVM6 bit 8 on link down or 10/100 */
938 		fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
939 
940 		if ((hw->phy.revision > 5) || !link ||
941 		    ((status & E1000_STATUS_SPEED_100) &&
942 		     (status & E1000_STATUS_FD)))
943 			goto update_fextnvm6;
944 
945 		ret_val = e1e_rphy(hw, I217_INBAND_CTRL, &reg);
946 		if (ret_val)
947 			return ret_val;
948 
949 		/* Clear link status transmit timeout */
950 		reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
951 
952 		if (status & E1000_STATUS_SPEED_100) {
953 			/* Set inband Tx timeout to 5x10us for 100Half */
954 			reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
955 
956 			/* Do not extend the K1 entry latency for 100Half */
957 			fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
958 		} else {
959 			/* Set inband Tx timeout to 50x10us for 10Full/Half */
960 			reg |= 50 <<
961 			    I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
962 
963 			/* Extend the K1 entry latency for 10 Mbps */
964 			fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
965 		}
966 
967 		ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
968 		if (ret_val)
969 			return ret_val;
970 
971 update_fextnvm6:
972 		ew32(FEXTNVM6, fextnvm6);
973 	}
974 
975 	return ret_val;
976 }
977 
978 /**
979  *  e1000_platform_pm_pch_lpt - Set platform power management values
980  *  @hw: pointer to the HW structure
981  *  @link: bool indicating link status
982  *
983  *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
984  *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
985  *  when link is up (which must not exceed the maximum latency supported
986  *  by the platform), otherwise specify there is no LTR requirement.
987  *  Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
988  *  latencies in the LTR Extended Capability Structure in the PCIe Extended
989  *  Capability register set, on this device LTR is set by writing the
990  *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
991  *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
992  *  message to the PMC.
993  **/
994 static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
995 {
996 	u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
997 	    link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
998 	u16 lat_enc = 0;	/* latency encoded */
999 
1000 	if (link) {
1001 		u16 speed, duplex, scale = 0;
1002 		u16 max_snoop, max_nosnoop;
1003 		u16 max_ltr_enc;	/* max LTR latency encoded */
1004 		u64 value;
1005 		u32 rxa;
1006 
1007 		if (!hw->adapter->max_frame_size) {
1008 			e_dbg("max_frame_size not set.\n");
1009 			return -E1000_ERR_CONFIG;
1010 		}
1011 
1012 		hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1013 		if (!speed) {
1014 			e_dbg("Speed not set.\n");
1015 			return -E1000_ERR_CONFIG;
1016 		}
1017 
1018 		/* Rx Packet Buffer Allocation size (KB) */
1019 		rxa = er32(PBA) & E1000_PBA_RXA_MASK;
1020 
1021 		/* Determine the maximum latency tolerated by the device.
1022 		 *
1023 		 * Per the PCIe spec, the tolerated latencies are encoded as
1024 		 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1025 		 * a 10-bit value (0-1023) to provide a range from 1 ns to
1026 		 * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1027 		 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1028 		 */
1029 		rxa *= 512;
1030 		value = (rxa > hw->adapter->max_frame_size) ?
1031 			(rxa - hw->adapter->max_frame_size) * (16000 / speed) :
1032 			0;
1033 
1034 		while (value > PCI_LTR_VALUE_MASK) {
1035 			scale++;
1036 			value = DIV_ROUND_UP(value, BIT(5));
1037 		}
1038 		if (scale > E1000_LTRV_SCALE_MAX) {
1039 			e_dbg("Invalid LTR latency scale %d\n", scale);
1040 			return -E1000_ERR_CONFIG;
1041 		}
1042 		lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1043 
1044 		/* Determine the maximum latency tolerated by the platform */
1045 		pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1046 				     &max_snoop);
1047 		pci_read_config_word(hw->adapter->pdev,
1048 				     E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1049 		max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1050 
1051 		if (lat_enc > max_ltr_enc)
1052 			lat_enc = max_ltr_enc;
1053 	}
1054 
1055 	/* Set Snoop and No-Snoop latencies the same */
1056 	reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1057 	ew32(LTRV, reg);
1058 
1059 	return 0;
1060 }
1061 
1062 /**
1063  *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1064  *  @hw: pointer to the HW structure
1065  *  @to_sx: boolean indicating a system power state transition to Sx
1066  *
1067  *  When link is down, configure ULP mode to significantly reduce the power
1068  *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1069  *  ME firmware to start the ULP configuration.  If not on an ME enabled
1070  *  system, configure the ULP mode by software.
1071  */
1072 s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1073 {
1074 	u32 mac_reg;
1075 	s32 ret_val = 0;
1076 	u16 phy_reg;
1077 	u16 oem_reg = 0;
1078 
1079 	if ((hw->mac.type < e1000_pch_lpt) ||
1080 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1081 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1082 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1083 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1084 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1085 		return 0;
1086 
1087 	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1088 		/* Request ME configure ULP mode in the PHY */
1089 		mac_reg = er32(H2ME);
1090 		mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1091 		ew32(H2ME, mac_reg);
1092 
1093 		goto out;
1094 	}
1095 
1096 	if (!to_sx) {
1097 		int i = 0;
1098 
1099 		/* Poll up to 5 seconds for Cable Disconnected indication */
1100 		while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1101 			/* Bail if link is re-acquired */
1102 			if (er32(STATUS) & E1000_STATUS_LU)
1103 				return -E1000_ERR_PHY;
1104 
1105 			if (i++ == 100)
1106 				break;
1107 
1108 			msleep(50);
1109 		}
1110 		e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1111 		      (er32(FEXT) &
1112 		       E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1113 	}
1114 
1115 	ret_val = hw->phy.ops.acquire(hw);
1116 	if (ret_val)
1117 		goto out;
1118 
1119 	/* Force SMBus mode in PHY */
1120 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1121 	if (ret_val)
1122 		goto release;
1123 	phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1124 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1125 
1126 	/* Force SMBus mode in MAC */
1127 	mac_reg = er32(CTRL_EXT);
1128 	mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1129 	ew32(CTRL_EXT, mac_reg);
1130 
1131 	/* Si workaround for ULP entry flow on i127/rev6 h/w.  Enable
1132 	 * LPLU and disable Gig speed when entering ULP
1133 	 */
1134 	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1135 		ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1136 						       &oem_reg);
1137 		if (ret_val)
1138 			goto release;
1139 
1140 		phy_reg = oem_reg;
1141 		phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1142 
1143 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1144 							phy_reg);
1145 
1146 		if (ret_val)
1147 			goto release;
1148 	}
1149 
1150 	/* Set Inband ULP Exit, Reset to SMBus mode and
1151 	 * Disable SMBus Release on PERST# in PHY
1152 	 */
1153 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1154 	if (ret_val)
1155 		goto release;
1156 	phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1157 		    I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1158 	if (to_sx) {
1159 		if (er32(WUFC) & E1000_WUFC_LNKC)
1160 			phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1161 		else
1162 			phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1163 
1164 		phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1165 		phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1166 	} else {
1167 		phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1168 		phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1169 		phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1170 	}
1171 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1172 
1173 	/* Set Disable SMBus Release on PERST# in MAC */
1174 	mac_reg = er32(FEXTNVM7);
1175 	mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1176 	ew32(FEXTNVM7, mac_reg);
1177 
1178 	/* Commit ULP changes in PHY by starting auto ULP configuration */
1179 	phy_reg |= I218_ULP_CONFIG1_START;
1180 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1181 
1182 	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1183 	    to_sx && (er32(STATUS) & E1000_STATUS_LU)) {
1184 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1185 							oem_reg);
1186 		if (ret_val)
1187 			goto release;
1188 	}
1189 
1190 release:
1191 	hw->phy.ops.release(hw);
1192 out:
1193 	if (ret_val)
1194 		e_dbg("Error in ULP enable flow: %d\n", ret_val);
1195 	else
1196 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1197 
1198 	return ret_val;
1199 }
1200 
1201 /**
1202  *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1203  *  @hw: pointer to the HW structure
1204  *  @force: boolean indicating whether or not to force disabling ULP
1205  *
1206  *  Un-configure ULP mode when link is up, the system is transitioned from
1207  *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1208  *  system, poll for an indication from ME that ULP has been un-configured.
1209  *  If not on an ME enabled system, un-configure the ULP mode by software.
1210  *
1211  *  During nominal operation, this function is called when link is acquired
1212  *  to disable ULP mode (force=false); otherwise, for example when unloading
1213  *  the driver or during Sx->S0 transitions, this is called with force=true
1214  *  to forcibly disable ULP.
1215  */
1216 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1217 {
1218 	s32 ret_val = 0;
1219 	u32 mac_reg;
1220 	u16 phy_reg;
1221 	int i = 0;
1222 
1223 	if ((hw->mac.type < e1000_pch_lpt) ||
1224 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1225 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1226 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1227 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1228 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1229 		return 0;
1230 
1231 	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1232 		if (force) {
1233 			/* Request ME un-configure ULP mode in the PHY */
1234 			mac_reg = er32(H2ME);
1235 			mac_reg &= ~E1000_H2ME_ULP;
1236 			mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1237 			ew32(H2ME, mac_reg);
1238 		}
1239 
1240 		/* Poll up to 300msec for ME to clear ULP_CFG_DONE. */
1241 		while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1242 			if (i++ == 30) {
1243 				ret_val = -E1000_ERR_PHY;
1244 				goto out;
1245 			}
1246 
1247 			usleep_range(10000, 11000);
1248 		}
1249 		e_dbg("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10);
1250 
1251 		if (force) {
1252 			mac_reg = er32(H2ME);
1253 			mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1254 			ew32(H2ME, mac_reg);
1255 		} else {
1256 			/* Clear H2ME.ULP after ME ULP configuration */
1257 			mac_reg = er32(H2ME);
1258 			mac_reg &= ~E1000_H2ME_ULP;
1259 			ew32(H2ME, mac_reg);
1260 		}
1261 
1262 		goto out;
1263 	}
1264 
1265 	ret_val = hw->phy.ops.acquire(hw);
1266 	if (ret_val)
1267 		goto out;
1268 
1269 	if (force)
1270 		/* Toggle LANPHYPC Value bit */
1271 		e1000_toggle_lanphypc_pch_lpt(hw);
1272 
1273 	/* Unforce SMBus mode in PHY */
1274 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1275 	if (ret_val) {
1276 		/* The MAC might be in PCIe mode, so temporarily force to
1277 		 * SMBus mode in order to access the PHY.
1278 		 */
1279 		mac_reg = er32(CTRL_EXT);
1280 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1281 		ew32(CTRL_EXT, mac_reg);
1282 
1283 		msleep(50);
1284 
1285 		ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1286 						       &phy_reg);
1287 		if (ret_val)
1288 			goto release;
1289 	}
1290 	phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1291 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1292 
1293 	/* Unforce SMBus mode in MAC */
1294 	mac_reg = er32(CTRL_EXT);
1295 	mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1296 	ew32(CTRL_EXT, mac_reg);
1297 
1298 	/* When ULP mode was previously entered, K1 was disabled by the
1299 	 * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1300 	 */
1301 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1302 	if (ret_val)
1303 		goto release;
1304 	phy_reg |= HV_PM_CTRL_K1_ENABLE;
1305 	e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1306 
1307 	/* Clear ULP enabled configuration */
1308 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1309 	if (ret_val)
1310 		goto release;
1311 	phy_reg &= ~(I218_ULP_CONFIG1_IND |
1312 		     I218_ULP_CONFIG1_STICKY_ULP |
1313 		     I218_ULP_CONFIG1_RESET_TO_SMBUS |
1314 		     I218_ULP_CONFIG1_WOL_HOST |
1315 		     I218_ULP_CONFIG1_INBAND_EXIT |
1316 		     I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
1317 		     I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
1318 		     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1319 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1320 
1321 	/* Commit ULP changes by starting auto ULP configuration */
1322 	phy_reg |= I218_ULP_CONFIG1_START;
1323 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1324 
1325 	/* Clear Disable SMBus Release on PERST# in MAC */
1326 	mac_reg = er32(FEXTNVM7);
1327 	mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1328 	ew32(FEXTNVM7, mac_reg);
1329 
1330 release:
1331 	hw->phy.ops.release(hw);
1332 	if (force) {
1333 		e1000_phy_hw_reset(hw);
1334 		msleep(50);
1335 	}
1336 out:
1337 	if (ret_val)
1338 		e_dbg("Error in ULP disable flow: %d\n", ret_val);
1339 	else
1340 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1341 
1342 	return ret_val;
1343 }
1344 
1345 /**
1346  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1347  *  @hw: pointer to the HW structure
1348  *
1349  *  Checks to see of the link status of the hardware has changed.  If a
1350  *  change in link status has been detected, then we read the PHY registers
1351  *  to get the current speed/duplex if link exists.
1352  **/
1353 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1354 {
1355 	struct e1000_mac_info *mac = &hw->mac;
1356 	s32 ret_val, tipg_reg = 0;
1357 	u16 emi_addr, emi_val = 0;
1358 	bool link;
1359 	u16 phy_reg;
1360 
1361 	/* We only want to go out to the PHY registers to see if Auto-Neg
1362 	 * has completed and/or if our link status has changed.  The
1363 	 * get_link_status flag is set upon receiving a Link Status
1364 	 * Change or Rx Sequence Error interrupt.
1365 	 */
1366 	if (!mac->get_link_status)
1367 		return 0;
1368 	mac->get_link_status = false;
1369 
1370 	/* First we want to see if the MII Status Register reports
1371 	 * link.  If so, then we want to get the current speed/duplex
1372 	 * of the PHY.
1373 	 */
1374 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1375 	if (ret_val)
1376 		goto out;
1377 
1378 	if (hw->mac.type == e1000_pchlan) {
1379 		ret_val = e1000_k1_gig_workaround_hv(hw, link);
1380 		if (ret_val)
1381 			goto out;
1382 	}
1383 
1384 	/* When connected at 10Mbps half-duplex, some parts are excessively
1385 	 * aggressive resulting in many collisions. To avoid this, increase
1386 	 * the IPG and reduce Rx latency in the PHY.
1387 	 */
1388 	if ((hw->mac.type >= e1000_pch2lan) && link) {
1389 		u16 speed, duplex;
1390 
1391 		e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex);
1392 		tipg_reg = er32(TIPG);
1393 		tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1394 
1395 		if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1396 			tipg_reg |= 0xFF;
1397 			/* Reduce Rx latency in analog PHY */
1398 			emi_val = 0;
1399 		} else if (hw->mac.type >= e1000_pch_spt &&
1400 			   duplex == FULL_DUPLEX && speed != SPEED_1000) {
1401 			tipg_reg |= 0xC;
1402 			emi_val = 1;
1403 		} else {
1404 
1405 			/* Roll back the default values */
1406 			tipg_reg |= 0x08;
1407 			emi_val = 1;
1408 		}
1409 
1410 		ew32(TIPG, tipg_reg);
1411 
1412 		ret_val = hw->phy.ops.acquire(hw);
1413 		if (ret_val)
1414 			goto out;
1415 
1416 		if (hw->mac.type == e1000_pch2lan)
1417 			emi_addr = I82579_RX_CONFIG;
1418 		else
1419 			emi_addr = I217_RX_CONFIG;
1420 		ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1421 
1422 		if (hw->mac.type >= e1000_pch_lpt) {
1423 			u16 phy_reg;
1424 
1425 			e1e_rphy_locked(hw, I217_PLL_CLOCK_GATE_REG, &phy_reg);
1426 			phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
1427 			if (speed == SPEED_100 || speed == SPEED_10)
1428 				phy_reg |= 0x3E8;
1429 			else
1430 				phy_reg |= 0xFA;
1431 			e1e_wphy_locked(hw, I217_PLL_CLOCK_GATE_REG, phy_reg);
1432 		}
1433 		hw->phy.ops.release(hw);
1434 
1435 		if (ret_val)
1436 			goto out;
1437 
1438 		if (hw->mac.type >= e1000_pch_spt) {
1439 			u16 data;
1440 			u16 ptr_gap;
1441 
1442 			if (speed == SPEED_1000) {
1443 				ret_val = hw->phy.ops.acquire(hw);
1444 				if (ret_val)
1445 					goto out;
1446 
1447 				ret_val = e1e_rphy_locked(hw,
1448 							  PHY_REG(776, 20),
1449 							  &data);
1450 				if (ret_val) {
1451 					hw->phy.ops.release(hw);
1452 					goto out;
1453 				}
1454 
1455 				ptr_gap = (data & (0x3FF << 2)) >> 2;
1456 				if (ptr_gap < 0x18) {
1457 					data &= ~(0x3FF << 2);
1458 					data |= (0x18 << 2);
1459 					ret_val =
1460 					    e1e_wphy_locked(hw,
1461 							    PHY_REG(776, 20),
1462 							    data);
1463 				}
1464 				hw->phy.ops.release(hw);
1465 				if (ret_val)
1466 					goto out;
1467 			} else {
1468 				ret_val = hw->phy.ops.acquire(hw);
1469 				if (ret_val)
1470 					goto out;
1471 
1472 				ret_val = e1e_wphy_locked(hw,
1473 							  PHY_REG(776, 20),
1474 							  0xC023);
1475 				hw->phy.ops.release(hw);
1476 				if (ret_val)
1477 					goto out;
1478 
1479 			}
1480 		}
1481 	}
1482 
1483 	/* I217 Packet Loss issue:
1484 	 * ensure that FEXTNVM4 Beacon Duration is set correctly
1485 	 * on power up.
1486 	 * Set the Beacon Duration for I217 to 8 usec
1487 	 */
1488 	if (hw->mac.type >= e1000_pch_lpt) {
1489 		u32 mac_reg;
1490 
1491 		mac_reg = er32(FEXTNVM4);
1492 		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1493 		mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1494 		ew32(FEXTNVM4, mac_reg);
1495 	}
1496 
1497 	/* Work-around I218 hang issue */
1498 	if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1499 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1500 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1501 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
1502 		ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1503 		if (ret_val)
1504 			goto out;
1505 	}
1506 	if (hw->mac.type >= e1000_pch_lpt) {
1507 		/* Set platform power management values for
1508 		 * Latency Tolerance Reporting (LTR)
1509 		 */
1510 		ret_val = e1000_platform_pm_pch_lpt(hw, link);
1511 		if (ret_val)
1512 			goto out;
1513 	}
1514 
1515 	/* Clear link partner's EEE ability */
1516 	hw->dev_spec.ich8lan.eee_lp_ability = 0;
1517 
1518 	if (hw->mac.type >= e1000_pch_lpt) {
1519 		u32 fextnvm6 = er32(FEXTNVM6);
1520 
1521 		if (hw->mac.type == e1000_pch_spt) {
1522 			/* FEXTNVM6 K1-off workaround - for SPT only */
1523 			u32 pcieanacfg = er32(PCIEANACFG);
1524 
1525 			if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1526 				fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1527 			else
1528 				fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1529 		}
1530 
1531 		ew32(FEXTNVM6, fextnvm6);
1532 	}
1533 
1534 	if (!link)
1535 		goto out;
1536 
1537 	switch (hw->mac.type) {
1538 	case e1000_pch2lan:
1539 		ret_val = e1000_k1_workaround_lv(hw);
1540 		if (ret_val)
1541 			return ret_val;
1542 		/* fall-thru */
1543 	case e1000_pchlan:
1544 		if (hw->phy.type == e1000_phy_82578) {
1545 			ret_val = e1000_link_stall_workaround_hv(hw);
1546 			if (ret_val)
1547 				return ret_val;
1548 		}
1549 
1550 		/* Workaround for PCHx parts in half-duplex:
1551 		 * Set the number of preambles removed from the packet
1552 		 * when it is passed from the PHY to the MAC to prevent
1553 		 * the MAC from misinterpreting the packet type.
1554 		 */
1555 		e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1556 		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1557 
1558 		if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1559 			phy_reg |= BIT(HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1560 
1561 		e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1562 		break;
1563 	default:
1564 		break;
1565 	}
1566 
1567 	/* Check if there was DownShift, must be checked
1568 	 * immediately after link-up
1569 	 */
1570 	e1000e_check_downshift(hw);
1571 
1572 	/* Enable/Disable EEE after link up */
1573 	if (hw->phy.type > e1000_phy_82579) {
1574 		ret_val = e1000_set_eee_pchlan(hw);
1575 		if (ret_val)
1576 			return ret_val;
1577 	}
1578 
1579 	/* If we are forcing speed/duplex, then we simply return since
1580 	 * we have already determined whether we have link or not.
1581 	 */
1582 	if (!mac->autoneg)
1583 		return -E1000_ERR_CONFIG;
1584 
1585 	/* Auto-Neg is enabled.  Auto Speed Detection takes care
1586 	 * of MAC speed/duplex configuration.  So we only need to
1587 	 * configure Collision Distance in the MAC.
1588 	 */
1589 	mac->ops.config_collision_dist(hw);
1590 
1591 	/* Configure Flow Control now that Auto-Neg has completed.
1592 	 * First, we need to restore the desired flow control
1593 	 * settings because we may have had to re-autoneg with a
1594 	 * different link partner.
1595 	 */
1596 	ret_val = e1000e_config_fc_after_link_up(hw);
1597 	if (ret_val)
1598 		e_dbg("Error configuring flow control\n");
1599 
1600 	return ret_val;
1601 
1602 out:
1603 	mac->get_link_status = true;
1604 	return ret_val;
1605 }
1606 
1607 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1608 {
1609 	struct e1000_hw *hw = &adapter->hw;
1610 	s32 rc;
1611 
1612 	rc = e1000_init_mac_params_ich8lan(hw);
1613 	if (rc)
1614 		return rc;
1615 
1616 	rc = e1000_init_nvm_params_ich8lan(hw);
1617 	if (rc)
1618 		return rc;
1619 
1620 	switch (hw->mac.type) {
1621 	case e1000_ich8lan:
1622 	case e1000_ich9lan:
1623 	case e1000_ich10lan:
1624 		rc = e1000_init_phy_params_ich8lan(hw);
1625 		break;
1626 	case e1000_pchlan:
1627 	case e1000_pch2lan:
1628 	case e1000_pch_lpt:
1629 	case e1000_pch_spt:
1630 	case e1000_pch_cnp:
1631 		rc = e1000_init_phy_params_pchlan(hw);
1632 		break;
1633 	default:
1634 		break;
1635 	}
1636 	if (rc)
1637 		return rc;
1638 
1639 	/* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1640 	 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1641 	 */
1642 	if ((adapter->hw.phy.type == e1000_phy_ife) ||
1643 	    ((adapter->hw.mac.type >= e1000_pch2lan) &&
1644 	     (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1645 		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1646 		adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
1647 
1648 		hw->mac.ops.blink_led = NULL;
1649 	}
1650 
1651 	if ((adapter->hw.mac.type == e1000_ich8lan) &&
1652 	    (adapter->hw.phy.type != e1000_phy_ife))
1653 		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1654 
1655 	/* Enable workaround for 82579 w/ ME enabled */
1656 	if ((adapter->hw.mac.type == e1000_pch2lan) &&
1657 	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1658 		adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1659 
1660 	return 0;
1661 }
1662 
1663 static DEFINE_MUTEX(nvm_mutex);
1664 
1665 /**
1666  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1667  *  @hw: pointer to the HW structure
1668  *
1669  *  Acquires the mutex for performing NVM operations.
1670  **/
1671 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1672 {
1673 	mutex_lock(&nvm_mutex);
1674 
1675 	return 0;
1676 }
1677 
1678 /**
1679  *  e1000_release_nvm_ich8lan - Release NVM mutex
1680  *  @hw: pointer to the HW structure
1681  *
1682  *  Releases the mutex used while performing NVM operations.
1683  **/
1684 static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1685 {
1686 	mutex_unlock(&nvm_mutex);
1687 }
1688 
1689 /**
1690  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1691  *  @hw: pointer to the HW structure
1692  *
1693  *  Acquires the software control flag for performing PHY and select
1694  *  MAC CSR accesses.
1695  **/
1696 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1697 {
1698 	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1699 	s32 ret_val = 0;
1700 
1701 	if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1702 			     &hw->adapter->state)) {
1703 		e_dbg("contention for Phy access\n");
1704 		return -E1000_ERR_PHY;
1705 	}
1706 
1707 	while (timeout) {
1708 		extcnf_ctrl = er32(EXTCNF_CTRL);
1709 		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1710 			break;
1711 
1712 		mdelay(1);
1713 		timeout--;
1714 	}
1715 
1716 	if (!timeout) {
1717 		e_dbg("SW has already locked the resource.\n");
1718 		ret_val = -E1000_ERR_CONFIG;
1719 		goto out;
1720 	}
1721 
1722 	timeout = SW_FLAG_TIMEOUT;
1723 
1724 	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1725 	ew32(EXTCNF_CTRL, extcnf_ctrl);
1726 
1727 	while (timeout) {
1728 		extcnf_ctrl = er32(EXTCNF_CTRL);
1729 		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1730 			break;
1731 
1732 		mdelay(1);
1733 		timeout--;
1734 	}
1735 
1736 	if (!timeout) {
1737 		e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1738 		      er32(FWSM), extcnf_ctrl);
1739 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1740 		ew32(EXTCNF_CTRL, extcnf_ctrl);
1741 		ret_val = -E1000_ERR_CONFIG;
1742 		goto out;
1743 	}
1744 
1745 out:
1746 	if (ret_val)
1747 		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1748 
1749 	return ret_val;
1750 }
1751 
1752 /**
1753  *  e1000_release_swflag_ich8lan - Release software control flag
1754  *  @hw: pointer to the HW structure
1755  *
1756  *  Releases the software control flag for performing PHY and select
1757  *  MAC CSR accesses.
1758  **/
1759 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1760 {
1761 	u32 extcnf_ctrl;
1762 
1763 	extcnf_ctrl = er32(EXTCNF_CTRL);
1764 
1765 	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1766 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1767 		ew32(EXTCNF_CTRL, extcnf_ctrl);
1768 	} else {
1769 		e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1770 	}
1771 
1772 	clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1773 }
1774 
1775 /**
1776  *  e1000_check_mng_mode_ich8lan - Checks management mode
1777  *  @hw: pointer to the HW structure
1778  *
1779  *  This checks if the adapter has any manageability enabled.
1780  *  This is a function pointer entry point only called by read/write
1781  *  routines for the PHY and NVM parts.
1782  **/
1783 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1784 {
1785 	u32 fwsm;
1786 
1787 	fwsm = er32(FWSM);
1788 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1789 		((fwsm & E1000_FWSM_MODE_MASK) ==
1790 		 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1791 }
1792 
1793 /**
1794  *  e1000_check_mng_mode_pchlan - Checks management mode
1795  *  @hw: pointer to the HW structure
1796  *
1797  *  This checks if the adapter has iAMT enabled.
1798  *  This is a function pointer entry point only called by read/write
1799  *  routines for the PHY and NVM parts.
1800  **/
1801 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1802 {
1803 	u32 fwsm;
1804 
1805 	fwsm = er32(FWSM);
1806 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1807 	    (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1808 }
1809 
1810 /**
1811  *  e1000_rar_set_pch2lan - Set receive address register
1812  *  @hw: pointer to the HW structure
1813  *  @addr: pointer to the receive address
1814  *  @index: receive address array register
1815  *
1816  *  Sets the receive address array register at index to the address passed
1817  *  in by addr.  For 82579, RAR[0] is the base address register that is to
1818  *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1819  *  Use SHRA[0-3] in place of those reserved for ME.
1820  **/
1821 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1822 {
1823 	u32 rar_low, rar_high;
1824 
1825 	/* HW expects these in little endian so we reverse the byte order
1826 	 * from network order (big endian) to little endian
1827 	 */
1828 	rar_low = ((u32)addr[0] |
1829 		   ((u32)addr[1] << 8) |
1830 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1831 
1832 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1833 
1834 	/* If MAC address zero, no need to set the AV bit */
1835 	if (rar_low || rar_high)
1836 		rar_high |= E1000_RAH_AV;
1837 
1838 	if (index == 0) {
1839 		ew32(RAL(index), rar_low);
1840 		e1e_flush();
1841 		ew32(RAH(index), rar_high);
1842 		e1e_flush();
1843 		return 0;
1844 	}
1845 
1846 	/* RAR[1-6] are owned by manageability.  Skip those and program the
1847 	 * next address into the SHRA register array.
1848 	 */
1849 	if (index < (u32)(hw->mac.rar_entry_count)) {
1850 		s32 ret_val;
1851 
1852 		ret_val = e1000_acquire_swflag_ich8lan(hw);
1853 		if (ret_val)
1854 			goto out;
1855 
1856 		ew32(SHRAL(index - 1), rar_low);
1857 		e1e_flush();
1858 		ew32(SHRAH(index - 1), rar_high);
1859 		e1e_flush();
1860 
1861 		e1000_release_swflag_ich8lan(hw);
1862 
1863 		/* verify the register updates */
1864 		if ((er32(SHRAL(index - 1)) == rar_low) &&
1865 		    (er32(SHRAH(index - 1)) == rar_high))
1866 			return 0;
1867 
1868 		e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1869 		      (index - 1), er32(FWSM));
1870 	}
1871 
1872 out:
1873 	e_dbg("Failed to write receive address at index %d\n", index);
1874 	return -E1000_ERR_CONFIG;
1875 }
1876 
1877 /**
1878  *  e1000_rar_get_count_pch_lpt - Get the number of available SHRA
1879  *  @hw: pointer to the HW structure
1880  *
1881  *  Get the number of available receive registers that the Host can
1882  *  program. SHRA[0-10] are the shared receive address registers
1883  *  that are shared between the Host and manageability engine (ME).
1884  *  ME can reserve any number of addresses and the host needs to be
1885  *  able to tell how many available registers it has access to.
1886  **/
1887 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw)
1888 {
1889 	u32 wlock_mac;
1890 	u32 num_entries;
1891 
1892 	wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1893 	wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1894 
1895 	switch (wlock_mac) {
1896 	case 0:
1897 		/* All SHRA[0..10] and RAR[0] available */
1898 		num_entries = hw->mac.rar_entry_count;
1899 		break;
1900 	case 1:
1901 		/* Only RAR[0] available */
1902 		num_entries = 1;
1903 		break;
1904 	default:
1905 		/* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
1906 		num_entries = wlock_mac + 1;
1907 		break;
1908 	}
1909 
1910 	return num_entries;
1911 }
1912 
1913 /**
1914  *  e1000_rar_set_pch_lpt - Set receive address registers
1915  *  @hw: pointer to the HW structure
1916  *  @addr: pointer to the receive address
1917  *  @index: receive address array register
1918  *
1919  *  Sets the receive address register array at index to the address passed
1920  *  in by addr. For LPT, RAR[0] is the base address register that is to
1921  *  contain the MAC address. SHRA[0-10] are the shared receive address
1922  *  registers that are shared between the Host and manageability engine (ME).
1923  **/
1924 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1925 {
1926 	u32 rar_low, rar_high;
1927 	u32 wlock_mac;
1928 
1929 	/* HW expects these in little endian so we reverse the byte order
1930 	 * from network order (big endian) to little endian
1931 	 */
1932 	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1933 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1934 
1935 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1936 
1937 	/* If MAC address zero, no need to set the AV bit */
1938 	if (rar_low || rar_high)
1939 		rar_high |= E1000_RAH_AV;
1940 
1941 	if (index == 0) {
1942 		ew32(RAL(index), rar_low);
1943 		e1e_flush();
1944 		ew32(RAH(index), rar_high);
1945 		e1e_flush();
1946 		return 0;
1947 	}
1948 
1949 	/* The manageability engine (ME) can lock certain SHRAR registers that
1950 	 * it is using - those registers are unavailable for use.
1951 	 */
1952 	if (index < hw->mac.rar_entry_count) {
1953 		wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1954 		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1955 
1956 		/* Check if all SHRAR registers are locked */
1957 		if (wlock_mac == 1)
1958 			goto out;
1959 
1960 		if ((wlock_mac == 0) || (index <= wlock_mac)) {
1961 			s32 ret_val;
1962 
1963 			ret_val = e1000_acquire_swflag_ich8lan(hw);
1964 
1965 			if (ret_val)
1966 				goto out;
1967 
1968 			ew32(SHRAL_PCH_LPT(index - 1), rar_low);
1969 			e1e_flush();
1970 			ew32(SHRAH_PCH_LPT(index - 1), rar_high);
1971 			e1e_flush();
1972 
1973 			e1000_release_swflag_ich8lan(hw);
1974 
1975 			/* verify the register updates */
1976 			if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
1977 			    (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
1978 				return 0;
1979 		}
1980 	}
1981 
1982 out:
1983 	e_dbg("Failed to write receive address at index %d\n", index);
1984 	return -E1000_ERR_CONFIG;
1985 }
1986 
1987 /**
1988  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
1989  *  @hw: pointer to the HW structure
1990  *
1991  *  Checks if firmware is blocking the reset of the PHY.
1992  *  This is a function pointer entry point only called by
1993  *  reset routines.
1994  **/
1995 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
1996 {
1997 	bool blocked = false;
1998 	int i = 0;
1999 
2000 	while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
2001 	       (i++ < 30))
2002 		usleep_range(10000, 11000);
2003 	return blocked ? E1000_BLK_PHY_RESET : 0;
2004 }
2005 
2006 /**
2007  *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2008  *  @hw: pointer to the HW structure
2009  *
2010  *  Assumes semaphore already acquired.
2011  *
2012  **/
2013 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2014 {
2015 	u16 phy_data;
2016 	u32 strap = er32(STRAP);
2017 	u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
2018 	    E1000_STRAP_SMT_FREQ_SHIFT;
2019 	s32 ret_val;
2020 
2021 	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2022 
2023 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2024 	if (ret_val)
2025 		return ret_val;
2026 
2027 	phy_data &= ~HV_SMB_ADDR_MASK;
2028 	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2029 	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2030 
2031 	if (hw->phy.type == e1000_phy_i217) {
2032 		/* Restore SMBus frequency */
2033 		if (freq--) {
2034 			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2035 			phy_data |= (freq & BIT(0)) <<
2036 			    HV_SMB_ADDR_FREQ_LOW_SHIFT;
2037 			phy_data |= (freq & BIT(1)) <<
2038 			    (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2039 		} else {
2040 			e_dbg("Unsupported SMB frequency in PHY\n");
2041 		}
2042 	}
2043 
2044 	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2045 }
2046 
2047 /**
2048  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2049  *  @hw:   pointer to the HW structure
2050  *
2051  *  SW should configure the LCD from the NVM extended configuration region
2052  *  as a workaround for certain parts.
2053  **/
2054 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2055 {
2056 	struct e1000_phy_info *phy = &hw->phy;
2057 	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2058 	s32 ret_val = 0;
2059 	u16 word_addr, reg_data, reg_addr, phy_page = 0;
2060 
2061 	/* Initialize the PHY from the NVM on ICH platforms.  This
2062 	 * is needed due to an issue where the NVM configuration is
2063 	 * not properly autoloaded after power transitions.
2064 	 * Therefore, after each PHY reset, we will load the
2065 	 * configuration data out of the NVM manually.
2066 	 */
2067 	switch (hw->mac.type) {
2068 	case e1000_ich8lan:
2069 		if (phy->type != e1000_phy_igp_3)
2070 			return ret_val;
2071 
2072 		if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
2073 		    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
2074 			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2075 			break;
2076 		}
2077 		/* Fall-thru */
2078 	case e1000_pchlan:
2079 	case e1000_pch2lan:
2080 	case e1000_pch_lpt:
2081 	case e1000_pch_spt:
2082 	case e1000_pch_cnp:
2083 		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2084 		break;
2085 	default:
2086 		return ret_val;
2087 	}
2088 
2089 	ret_val = hw->phy.ops.acquire(hw);
2090 	if (ret_val)
2091 		return ret_val;
2092 
2093 	data = er32(FEXTNVM);
2094 	if (!(data & sw_cfg_mask))
2095 		goto release;
2096 
2097 	/* Make sure HW does not configure LCD from PHY
2098 	 * extended configuration before SW configuration
2099 	 */
2100 	data = er32(EXTCNF_CTRL);
2101 	if ((hw->mac.type < e1000_pch2lan) &&
2102 	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2103 		goto release;
2104 
2105 	cnf_size = er32(EXTCNF_SIZE);
2106 	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2107 	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2108 	if (!cnf_size)
2109 		goto release;
2110 
2111 	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2112 	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2113 
2114 	if (((hw->mac.type == e1000_pchlan) &&
2115 	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2116 	    (hw->mac.type > e1000_pchlan)) {
2117 		/* HW configures the SMBus address and LEDs when the
2118 		 * OEM and LCD Write Enable bits are set in the NVM.
2119 		 * When both NVM bits are cleared, SW will configure
2120 		 * them instead.
2121 		 */
2122 		ret_val = e1000_write_smbus_addr(hw);
2123 		if (ret_val)
2124 			goto release;
2125 
2126 		data = er32(LEDCTL);
2127 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2128 							(u16)data);
2129 		if (ret_val)
2130 			goto release;
2131 	}
2132 
2133 	/* Configure LCD from extended configuration region. */
2134 
2135 	/* cnf_base_addr is in DWORD */
2136 	word_addr = (u16)(cnf_base_addr << 1);
2137 
2138 	for (i = 0; i < cnf_size; i++) {
2139 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, &reg_data);
2140 		if (ret_val)
2141 			goto release;
2142 
2143 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
2144 					 1, &reg_addr);
2145 		if (ret_val)
2146 			goto release;
2147 
2148 		/* Save off the PHY page for future writes. */
2149 		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2150 			phy_page = reg_data;
2151 			continue;
2152 		}
2153 
2154 		reg_addr &= PHY_REG_MASK;
2155 		reg_addr |= phy_page;
2156 
2157 		ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
2158 		if (ret_val)
2159 			goto release;
2160 	}
2161 
2162 release:
2163 	hw->phy.ops.release(hw);
2164 	return ret_val;
2165 }
2166 
2167 /**
2168  *  e1000_k1_gig_workaround_hv - K1 Si workaround
2169  *  @hw:   pointer to the HW structure
2170  *  @link: link up bool flag
2171  *
2172  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2173  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2174  *  If link is down, the function will restore the default K1 setting located
2175  *  in the NVM.
2176  **/
2177 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2178 {
2179 	s32 ret_val = 0;
2180 	u16 status_reg = 0;
2181 	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2182 
2183 	if (hw->mac.type != e1000_pchlan)
2184 		return 0;
2185 
2186 	/* Wrap the whole flow with the sw flag */
2187 	ret_val = hw->phy.ops.acquire(hw);
2188 	if (ret_val)
2189 		return ret_val;
2190 
2191 	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2192 	if (link) {
2193 		if (hw->phy.type == e1000_phy_82578) {
2194 			ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
2195 						  &status_reg);
2196 			if (ret_val)
2197 				goto release;
2198 
2199 			status_reg &= (BM_CS_STATUS_LINK_UP |
2200 				       BM_CS_STATUS_RESOLVED |
2201 				       BM_CS_STATUS_SPEED_MASK);
2202 
2203 			if (status_reg == (BM_CS_STATUS_LINK_UP |
2204 					   BM_CS_STATUS_RESOLVED |
2205 					   BM_CS_STATUS_SPEED_1000))
2206 				k1_enable = false;
2207 		}
2208 
2209 		if (hw->phy.type == e1000_phy_82577) {
2210 			ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2211 			if (ret_val)
2212 				goto release;
2213 
2214 			status_reg &= (HV_M_STATUS_LINK_UP |
2215 				       HV_M_STATUS_AUTONEG_COMPLETE |
2216 				       HV_M_STATUS_SPEED_MASK);
2217 
2218 			if (status_reg == (HV_M_STATUS_LINK_UP |
2219 					   HV_M_STATUS_AUTONEG_COMPLETE |
2220 					   HV_M_STATUS_SPEED_1000))
2221 				k1_enable = false;
2222 		}
2223 
2224 		/* Link stall fix for link up */
2225 		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2226 		if (ret_val)
2227 			goto release;
2228 
2229 	} else {
2230 		/* Link stall fix for link down */
2231 		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2232 		if (ret_val)
2233 			goto release;
2234 	}
2235 
2236 	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2237 
2238 release:
2239 	hw->phy.ops.release(hw);
2240 
2241 	return ret_val;
2242 }
2243 
2244 /**
2245  *  e1000_configure_k1_ich8lan - Configure K1 power state
2246  *  @hw: pointer to the HW structure
2247  *  @enable: K1 state to configure
2248  *
2249  *  Configure the K1 power state based on the provided parameter.
2250  *  Assumes semaphore already acquired.
2251  *
2252  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2253  **/
2254 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2255 {
2256 	s32 ret_val;
2257 	u32 ctrl_reg = 0;
2258 	u32 ctrl_ext = 0;
2259 	u32 reg = 0;
2260 	u16 kmrn_reg = 0;
2261 
2262 	ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2263 					      &kmrn_reg);
2264 	if (ret_val)
2265 		return ret_val;
2266 
2267 	if (k1_enable)
2268 		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2269 	else
2270 		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2271 
2272 	ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2273 					       kmrn_reg);
2274 	if (ret_val)
2275 		return ret_val;
2276 
2277 	usleep_range(20, 40);
2278 	ctrl_ext = er32(CTRL_EXT);
2279 	ctrl_reg = er32(CTRL);
2280 
2281 	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2282 	reg |= E1000_CTRL_FRCSPD;
2283 	ew32(CTRL, reg);
2284 
2285 	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2286 	e1e_flush();
2287 	usleep_range(20, 40);
2288 	ew32(CTRL, ctrl_reg);
2289 	ew32(CTRL_EXT, ctrl_ext);
2290 	e1e_flush();
2291 	usleep_range(20, 40);
2292 
2293 	return 0;
2294 }
2295 
2296 /**
2297  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2298  *  @hw:       pointer to the HW structure
2299  *  @d0_state: boolean if entering d0 or d3 device state
2300  *
2301  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2302  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2303  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2304  **/
2305 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2306 {
2307 	s32 ret_val = 0;
2308 	u32 mac_reg;
2309 	u16 oem_reg;
2310 
2311 	if (hw->mac.type < e1000_pchlan)
2312 		return ret_val;
2313 
2314 	ret_val = hw->phy.ops.acquire(hw);
2315 	if (ret_val)
2316 		return ret_val;
2317 
2318 	if (hw->mac.type == e1000_pchlan) {
2319 		mac_reg = er32(EXTCNF_CTRL);
2320 		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2321 			goto release;
2322 	}
2323 
2324 	mac_reg = er32(FEXTNVM);
2325 	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2326 		goto release;
2327 
2328 	mac_reg = er32(PHY_CTRL);
2329 
2330 	ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2331 	if (ret_val)
2332 		goto release;
2333 
2334 	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2335 
2336 	if (d0_state) {
2337 		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2338 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2339 
2340 		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2341 			oem_reg |= HV_OEM_BITS_LPLU;
2342 	} else {
2343 		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2344 			       E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2345 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2346 
2347 		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2348 			       E1000_PHY_CTRL_NOND0A_LPLU))
2349 			oem_reg |= HV_OEM_BITS_LPLU;
2350 	}
2351 
2352 	/* Set Restart auto-neg to activate the bits */
2353 	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2354 	    !hw->phy.ops.check_reset_block(hw))
2355 		oem_reg |= HV_OEM_BITS_RESTART_AN;
2356 
2357 	ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2358 
2359 release:
2360 	hw->phy.ops.release(hw);
2361 
2362 	return ret_val;
2363 }
2364 
2365 /**
2366  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2367  *  @hw:   pointer to the HW structure
2368  **/
2369 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2370 {
2371 	s32 ret_val;
2372 	u16 data;
2373 
2374 	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2375 	if (ret_val)
2376 		return ret_val;
2377 
2378 	data |= HV_KMRN_MDIO_SLOW;
2379 
2380 	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2381 
2382 	return ret_val;
2383 }
2384 
2385 /**
2386  *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2387  *  done after every PHY reset.
2388  **/
2389 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2390 {
2391 	s32 ret_val = 0;
2392 	u16 phy_data;
2393 
2394 	if (hw->mac.type != e1000_pchlan)
2395 		return 0;
2396 
2397 	/* Set MDIO slow mode before any other MDIO access */
2398 	if (hw->phy.type == e1000_phy_82577) {
2399 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
2400 		if (ret_val)
2401 			return ret_val;
2402 	}
2403 
2404 	if (((hw->phy.type == e1000_phy_82577) &&
2405 	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2406 	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2407 		/* Disable generation of early preamble */
2408 		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2409 		if (ret_val)
2410 			return ret_val;
2411 
2412 		/* Preamble tuning for SSC */
2413 		ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2414 		if (ret_val)
2415 			return ret_val;
2416 	}
2417 
2418 	if (hw->phy.type == e1000_phy_82578) {
2419 		/* Return registers to default by doing a soft reset then
2420 		 * writing 0x3140 to the control register.
2421 		 */
2422 		if (hw->phy.revision < 2) {
2423 			e1000e_phy_sw_reset(hw);
2424 			ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
2425 			if (ret_val)
2426 				return ret_val;
2427 		}
2428 	}
2429 
2430 	/* Select page 0 */
2431 	ret_val = hw->phy.ops.acquire(hw);
2432 	if (ret_val)
2433 		return ret_val;
2434 
2435 	hw->phy.addr = 1;
2436 	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2437 	hw->phy.ops.release(hw);
2438 	if (ret_val)
2439 		return ret_val;
2440 
2441 	/* Configure the K1 Si workaround during phy reset assuming there is
2442 	 * link so that it disables K1 if link is in 1Gbps.
2443 	 */
2444 	ret_val = e1000_k1_gig_workaround_hv(hw, true);
2445 	if (ret_val)
2446 		return ret_val;
2447 
2448 	/* Workaround for link disconnects on a busy hub in half duplex */
2449 	ret_val = hw->phy.ops.acquire(hw);
2450 	if (ret_val)
2451 		return ret_val;
2452 	ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2453 	if (ret_val)
2454 		goto release;
2455 	ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2456 	if (ret_val)
2457 		goto release;
2458 
2459 	/* set MSE higher to enable link to stay up when noise is high */
2460 	ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2461 release:
2462 	hw->phy.ops.release(hw);
2463 
2464 	return ret_val;
2465 }
2466 
2467 /**
2468  *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2469  *  @hw:   pointer to the HW structure
2470  **/
2471 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2472 {
2473 	u32 mac_reg;
2474 	u16 i, phy_reg = 0;
2475 	s32 ret_val;
2476 
2477 	ret_val = hw->phy.ops.acquire(hw);
2478 	if (ret_val)
2479 		return;
2480 	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2481 	if (ret_val)
2482 		goto release;
2483 
2484 	/* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2485 	for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2486 		mac_reg = er32(RAL(i));
2487 		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2488 					   (u16)(mac_reg & 0xFFFF));
2489 		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2490 					   (u16)((mac_reg >> 16) & 0xFFFF));
2491 
2492 		mac_reg = er32(RAH(i));
2493 		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2494 					   (u16)(mac_reg & 0xFFFF));
2495 		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2496 					   (u16)((mac_reg & E1000_RAH_AV)
2497 						 >> 16));
2498 	}
2499 
2500 	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2501 
2502 release:
2503 	hw->phy.ops.release(hw);
2504 }
2505 
2506 /**
2507  *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2508  *  with 82579 PHY
2509  *  @hw: pointer to the HW structure
2510  *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2511  **/
2512 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2513 {
2514 	s32 ret_val = 0;
2515 	u16 phy_reg, data;
2516 	u32 mac_reg;
2517 	u16 i;
2518 
2519 	if (hw->mac.type < e1000_pch2lan)
2520 		return 0;
2521 
2522 	/* disable Rx path while enabling/disabling workaround */
2523 	e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2524 	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | BIT(14));
2525 	if (ret_val)
2526 		return ret_val;
2527 
2528 	if (enable) {
2529 		/* Write Rx addresses (rar_entry_count for RAL/H, and
2530 		 * SHRAL/H) and initial CRC values to the MAC
2531 		 */
2532 		for (i = 0; i < hw->mac.rar_entry_count; i++) {
2533 			u8 mac_addr[ETH_ALEN] = { 0 };
2534 			u32 addr_high, addr_low;
2535 
2536 			addr_high = er32(RAH(i));
2537 			if (!(addr_high & E1000_RAH_AV))
2538 				continue;
2539 			addr_low = er32(RAL(i));
2540 			mac_addr[0] = (addr_low & 0xFF);
2541 			mac_addr[1] = ((addr_low >> 8) & 0xFF);
2542 			mac_addr[2] = ((addr_low >> 16) & 0xFF);
2543 			mac_addr[3] = ((addr_low >> 24) & 0xFF);
2544 			mac_addr[4] = (addr_high & 0xFF);
2545 			mac_addr[5] = ((addr_high >> 8) & 0xFF);
2546 
2547 			ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2548 		}
2549 
2550 		/* Write Rx addresses to the PHY */
2551 		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2552 
2553 		/* Enable jumbo frame workaround in the MAC */
2554 		mac_reg = er32(FFLT_DBG);
2555 		mac_reg &= ~BIT(14);
2556 		mac_reg |= (7 << 15);
2557 		ew32(FFLT_DBG, mac_reg);
2558 
2559 		mac_reg = er32(RCTL);
2560 		mac_reg |= E1000_RCTL_SECRC;
2561 		ew32(RCTL, mac_reg);
2562 
2563 		ret_val = e1000e_read_kmrn_reg(hw,
2564 					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2565 					       &data);
2566 		if (ret_val)
2567 			return ret_val;
2568 		ret_val = e1000e_write_kmrn_reg(hw,
2569 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2570 						data | BIT(0));
2571 		if (ret_val)
2572 			return ret_val;
2573 		ret_val = e1000e_read_kmrn_reg(hw,
2574 					       E1000_KMRNCTRLSTA_HD_CTRL,
2575 					       &data);
2576 		if (ret_val)
2577 			return ret_val;
2578 		data &= ~(0xF << 8);
2579 		data |= (0xB << 8);
2580 		ret_val = e1000e_write_kmrn_reg(hw,
2581 						E1000_KMRNCTRLSTA_HD_CTRL,
2582 						data);
2583 		if (ret_val)
2584 			return ret_val;
2585 
2586 		/* Enable jumbo frame workaround in the PHY */
2587 		e1e_rphy(hw, PHY_REG(769, 23), &data);
2588 		data &= ~(0x7F << 5);
2589 		data |= (0x37 << 5);
2590 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2591 		if (ret_val)
2592 			return ret_val;
2593 		e1e_rphy(hw, PHY_REG(769, 16), &data);
2594 		data &= ~BIT(13);
2595 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2596 		if (ret_val)
2597 			return ret_val;
2598 		e1e_rphy(hw, PHY_REG(776, 20), &data);
2599 		data &= ~(0x3FF << 2);
2600 		data |= (E1000_TX_PTR_GAP << 2);
2601 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2602 		if (ret_val)
2603 			return ret_val;
2604 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2605 		if (ret_val)
2606 			return ret_val;
2607 		e1e_rphy(hw, HV_PM_CTRL, &data);
2608 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data | BIT(10));
2609 		if (ret_val)
2610 			return ret_val;
2611 	} else {
2612 		/* Write MAC register values back to h/w defaults */
2613 		mac_reg = er32(FFLT_DBG);
2614 		mac_reg &= ~(0xF << 14);
2615 		ew32(FFLT_DBG, mac_reg);
2616 
2617 		mac_reg = er32(RCTL);
2618 		mac_reg &= ~E1000_RCTL_SECRC;
2619 		ew32(RCTL, mac_reg);
2620 
2621 		ret_val = e1000e_read_kmrn_reg(hw,
2622 					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2623 					       &data);
2624 		if (ret_val)
2625 			return ret_val;
2626 		ret_val = e1000e_write_kmrn_reg(hw,
2627 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2628 						data & ~BIT(0));
2629 		if (ret_val)
2630 			return ret_val;
2631 		ret_val = e1000e_read_kmrn_reg(hw,
2632 					       E1000_KMRNCTRLSTA_HD_CTRL,
2633 					       &data);
2634 		if (ret_val)
2635 			return ret_val;
2636 		data &= ~(0xF << 8);
2637 		data |= (0xB << 8);
2638 		ret_val = e1000e_write_kmrn_reg(hw,
2639 						E1000_KMRNCTRLSTA_HD_CTRL,
2640 						data);
2641 		if (ret_val)
2642 			return ret_val;
2643 
2644 		/* Write PHY register values back to h/w defaults */
2645 		e1e_rphy(hw, PHY_REG(769, 23), &data);
2646 		data &= ~(0x7F << 5);
2647 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2648 		if (ret_val)
2649 			return ret_val;
2650 		e1e_rphy(hw, PHY_REG(769, 16), &data);
2651 		data |= BIT(13);
2652 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2653 		if (ret_val)
2654 			return ret_val;
2655 		e1e_rphy(hw, PHY_REG(776, 20), &data);
2656 		data &= ~(0x3FF << 2);
2657 		data |= (0x8 << 2);
2658 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2659 		if (ret_val)
2660 			return ret_val;
2661 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2662 		if (ret_val)
2663 			return ret_val;
2664 		e1e_rphy(hw, HV_PM_CTRL, &data);
2665 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~BIT(10));
2666 		if (ret_val)
2667 			return ret_val;
2668 	}
2669 
2670 	/* re-enable Rx path after enabling/disabling workaround */
2671 	return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~BIT(14));
2672 }
2673 
2674 /**
2675  *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2676  *  done after every PHY reset.
2677  **/
2678 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2679 {
2680 	s32 ret_val = 0;
2681 
2682 	if (hw->mac.type != e1000_pch2lan)
2683 		return 0;
2684 
2685 	/* Set MDIO slow mode before any other MDIO access */
2686 	ret_val = e1000_set_mdio_slow_mode_hv(hw);
2687 	if (ret_val)
2688 		return ret_val;
2689 
2690 	ret_val = hw->phy.ops.acquire(hw);
2691 	if (ret_val)
2692 		return ret_val;
2693 	/* set MSE higher to enable link to stay up when noise is high */
2694 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2695 	if (ret_val)
2696 		goto release;
2697 	/* drop link after 5 times MSE threshold was reached */
2698 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2699 release:
2700 	hw->phy.ops.release(hw);
2701 
2702 	return ret_val;
2703 }
2704 
2705 /**
2706  *  e1000_k1_gig_workaround_lv - K1 Si workaround
2707  *  @hw:   pointer to the HW structure
2708  *
2709  *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2710  *  Disable K1 in 1000Mbps and 100Mbps
2711  **/
2712 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2713 {
2714 	s32 ret_val = 0;
2715 	u16 status_reg = 0;
2716 
2717 	if (hw->mac.type != e1000_pch2lan)
2718 		return 0;
2719 
2720 	/* Set K1 beacon duration based on 10Mbs speed */
2721 	ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2722 	if (ret_val)
2723 		return ret_val;
2724 
2725 	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2726 	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2727 		if (status_reg &
2728 		    (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2729 			u16 pm_phy_reg;
2730 
2731 			/* LV 1G/100 Packet drop issue wa  */
2732 			ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2733 			if (ret_val)
2734 				return ret_val;
2735 			pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2736 			ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2737 			if (ret_val)
2738 				return ret_val;
2739 		} else {
2740 			u32 mac_reg;
2741 
2742 			mac_reg = er32(FEXTNVM4);
2743 			mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2744 			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2745 			ew32(FEXTNVM4, mac_reg);
2746 		}
2747 	}
2748 
2749 	return ret_val;
2750 }
2751 
2752 /**
2753  *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2754  *  @hw:   pointer to the HW structure
2755  *  @gate: boolean set to true to gate, false to ungate
2756  *
2757  *  Gate/ungate the automatic PHY configuration via hardware; perform
2758  *  the configuration via software instead.
2759  **/
2760 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2761 {
2762 	u32 extcnf_ctrl;
2763 
2764 	if (hw->mac.type < e1000_pch2lan)
2765 		return;
2766 
2767 	extcnf_ctrl = er32(EXTCNF_CTRL);
2768 
2769 	if (gate)
2770 		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2771 	else
2772 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2773 
2774 	ew32(EXTCNF_CTRL, extcnf_ctrl);
2775 }
2776 
2777 /**
2778  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2779  *  @hw: pointer to the HW structure
2780  *
2781  *  Check the appropriate indication the MAC has finished configuring the
2782  *  PHY after a software reset.
2783  **/
2784 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2785 {
2786 	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2787 
2788 	/* Wait for basic configuration completes before proceeding */
2789 	do {
2790 		data = er32(STATUS);
2791 		data &= E1000_STATUS_LAN_INIT_DONE;
2792 		usleep_range(100, 200);
2793 	} while ((!data) && --loop);
2794 
2795 	/* If basic configuration is incomplete before the above loop
2796 	 * count reaches 0, loading the configuration from NVM will
2797 	 * leave the PHY in a bad state possibly resulting in no link.
2798 	 */
2799 	if (loop == 0)
2800 		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2801 
2802 	/* Clear the Init Done bit for the next init event */
2803 	data = er32(STATUS);
2804 	data &= ~E1000_STATUS_LAN_INIT_DONE;
2805 	ew32(STATUS, data);
2806 }
2807 
2808 /**
2809  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2810  *  @hw: pointer to the HW structure
2811  **/
2812 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2813 {
2814 	s32 ret_val = 0;
2815 	u16 reg;
2816 
2817 	if (hw->phy.ops.check_reset_block(hw))
2818 		return 0;
2819 
2820 	/* Allow time for h/w to get to quiescent state after reset */
2821 	usleep_range(10000, 11000);
2822 
2823 	/* Perform any necessary post-reset workarounds */
2824 	switch (hw->mac.type) {
2825 	case e1000_pchlan:
2826 		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2827 		if (ret_val)
2828 			return ret_val;
2829 		break;
2830 	case e1000_pch2lan:
2831 		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2832 		if (ret_val)
2833 			return ret_val;
2834 		break;
2835 	default:
2836 		break;
2837 	}
2838 
2839 	/* Clear the host wakeup bit after lcd reset */
2840 	if (hw->mac.type >= e1000_pchlan) {
2841 		e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2842 		reg &= ~BM_WUC_HOST_WU_BIT;
2843 		e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2844 	}
2845 
2846 	/* Configure the LCD with the extended configuration region in NVM */
2847 	ret_val = e1000_sw_lcd_config_ich8lan(hw);
2848 	if (ret_val)
2849 		return ret_val;
2850 
2851 	/* Configure the LCD with the OEM bits in NVM */
2852 	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2853 
2854 	if (hw->mac.type == e1000_pch2lan) {
2855 		/* Ungate automatic PHY configuration on non-managed 82579 */
2856 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2857 			usleep_range(10000, 11000);
2858 			e1000_gate_hw_phy_config_ich8lan(hw, false);
2859 		}
2860 
2861 		/* Set EEE LPI Update Timer to 200usec */
2862 		ret_val = hw->phy.ops.acquire(hw);
2863 		if (ret_val)
2864 			return ret_val;
2865 		ret_val = e1000_write_emi_reg_locked(hw,
2866 						     I82579_LPI_UPDATE_TIMER,
2867 						     0x1387);
2868 		hw->phy.ops.release(hw);
2869 	}
2870 
2871 	return ret_val;
2872 }
2873 
2874 /**
2875  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2876  *  @hw: pointer to the HW structure
2877  *
2878  *  Resets the PHY
2879  *  This is a function pointer entry point called by drivers
2880  *  or other shared routines.
2881  **/
2882 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2883 {
2884 	s32 ret_val = 0;
2885 
2886 	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
2887 	if ((hw->mac.type == e1000_pch2lan) &&
2888 	    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2889 		e1000_gate_hw_phy_config_ich8lan(hw, true);
2890 
2891 	ret_val = e1000e_phy_hw_reset_generic(hw);
2892 	if (ret_val)
2893 		return ret_val;
2894 
2895 	return e1000_post_phy_reset_ich8lan(hw);
2896 }
2897 
2898 /**
2899  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2900  *  @hw: pointer to the HW structure
2901  *  @active: true to enable LPLU, false to disable
2902  *
2903  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
2904  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2905  *  the phy speed. This function will manually set the LPLU bit and restart
2906  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
2907  *  since it configures the same bit.
2908  **/
2909 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2910 {
2911 	s32 ret_val;
2912 	u16 oem_reg;
2913 
2914 	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2915 	if (ret_val)
2916 		return ret_val;
2917 
2918 	if (active)
2919 		oem_reg |= HV_OEM_BITS_LPLU;
2920 	else
2921 		oem_reg &= ~HV_OEM_BITS_LPLU;
2922 
2923 	if (!hw->phy.ops.check_reset_block(hw))
2924 		oem_reg |= HV_OEM_BITS_RESTART_AN;
2925 
2926 	return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2927 }
2928 
2929 /**
2930  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2931  *  @hw: pointer to the HW structure
2932  *  @active: true to enable LPLU, false to disable
2933  *
2934  *  Sets the LPLU D0 state according to the active flag.  When
2935  *  activating LPLU this function also disables smart speed
2936  *  and vice versa.  LPLU will not be activated unless the
2937  *  device autonegotiation advertisement meets standards of
2938  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2939  *  This is a function pointer entry point only called by
2940  *  PHY setup routines.
2941  **/
2942 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2943 {
2944 	struct e1000_phy_info *phy = &hw->phy;
2945 	u32 phy_ctrl;
2946 	s32 ret_val = 0;
2947 	u16 data;
2948 
2949 	if (phy->type == e1000_phy_ife)
2950 		return 0;
2951 
2952 	phy_ctrl = er32(PHY_CTRL);
2953 
2954 	if (active) {
2955 		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2956 		ew32(PHY_CTRL, phy_ctrl);
2957 
2958 		if (phy->type != e1000_phy_igp_3)
2959 			return 0;
2960 
2961 		/* Call gig speed drop workaround on LPLU before accessing
2962 		 * any PHY registers
2963 		 */
2964 		if (hw->mac.type == e1000_ich8lan)
2965 			e1000e_gig_downshift_workaround_ich8lan(hw);
2966 
2967 		/* When LPLU is enabled, we should disable SmartSpeed */
2968 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2969 		if (ret_val)
2970 			return ret_val;
2971 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2972 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2973 		if (ret_val)
2974 			return ret_val;
2975 	} else {
2976 		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2977 		ew32(PHY_CTRL, phy_ctrl);
2978 
2979 		if (phy->type != e1000_phy_igp_3)
2980 			return 0;
2981 
2982 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2983 		 * during Dx states where the power conservation is most
2984 		 * important.  During driver activity we should enable
2985 		 * SmartSpeed, so performance is maintained.
2986 		 */
2987 		if (phy->smart_speed == e1000_smart_speed_on) {
2988 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2989 					   &data);
2990 			if (ret_val)
2991 				return ret_val;
2992 
2993 			data |= IGP01E1000_PSCFR_SMART_SPEED;
2994 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2995 					   data);
2996 			if (ret_val)
2997 				return ret_val;
2998 		} else if (phy->smart_speed == e1000_smart_speed_off) {
2999 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3000 					   &data);
3001 			if (ret_val)
3002 				return ret_val;
3003 
3004 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3005 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3006 					   data);
3007 			if (ret_val)
3008 				return ret_val;
3009 		}
3010 	}
3011 
3012 	return 0;
3013 }
3014 
3015 /**
3016  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3017  *  @hw: pointer to the HW structure
3018  *  @active: true to enable LPLU, false to disable
3019  *
3020  *  Sets the LPLU D3 state according to the active flag.  When
3021  *  activating LPLU this function also disables smart speed
3022  *  and vice versa.  LPLU will not be activated unless the
3023  *  device autonegotiation advertisement meets standards of
3024  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3025  *  This is a function pointer entry point only called by
3026  *  PHY setup routines.
3027  **/
3028 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3029 {
3030 	struct e1000_phy_info *phy = &hw->phy;
3031 	u32 phy_ctrl;
3032 	s32 ret_val = 0;
3033 	u16 data;
3034 
3035 	phy_ctrl = er32(PHY_CTRL);
3036 
3037 	if (!active) {
3038 		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3039 		ew32(PHY_CTRL, phy_ctrl);
3040 
3041 		if (phy->type != e1000_phy_igp_3)
3042 			return 0;
3043 
3044 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3045 		 * during Dx states where the power conservation is most
3046 		 * important.  During driver activity we should enable
3047 		 * SmartSpeed, so performance is maintained.
3048 		 */
3049 		if (phy->smart_speed == e1000_smart_speed_on) {
3050 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3051 					   &data);
3052 			if (ret_val)
3053 				return ret_val;
3054 
3055 			data |= IGP01E1000_PSCFR_SMART_SPEED;
3056 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3057 					   data);
3058 			if (ret_val)
3059 				return ret_val;
3060 		} else if (phy->smart_speed == e1000_smart_speed_off) {
3061 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3062 					   &data);
3063 			if (ret_val)
3064 				return ret_val;
3065 
3066 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3067 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3068 					   data);
3069 			if (ret_val)
3070 				return ret_val;
3071 		}
3072 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3073 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3074 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3075 		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3076 		ew32(PHY_CTRL, phy_ctrl);
3077 
3078 		if (phy->type != e1000_phy_igp_3)
3079 			return 0;
3080 
3081 		/* Call gig speed drop workaround on LPLU before accessing
3082 		 * any PHY registers
3083 		 */
3084 		if (hw->mac.type == e1000_ich8lan)
3085 			e1000e_gig_downshift_workaround_ich8lan(hw);
3086 
3087 		/* When LPLU is enabled, we should disable SmartSpeed */
3088 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3089 		if (ret_val)
3090 			return ret_val;
3091 
3092 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3093 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3094 	}
3095 
3096 	return ret_val;
3097 }
3098 
3099 /**
3100  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3101  *  @hw: pointer to the HW structure
3102  *  @bank:  pointer to the variable that returns the active bank
3103  *
3104  *  Reads signature byte from the NVM using the flash access registers.
3105  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3106  **/
3107 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3108 {
3109 	u32 eecd;
3110 	struct e1000_nvm_info *nvm = &hw->nvm;
3111 	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3112 	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3113 	u32 nvm_dword = 0;
3114 	u8 sig_byte = 0;
3115 	s32 ret_val;
3116 
3117 	switch (hw->mac.type) {
3118 	case e1000_pch_spt:
3119 	case e1000_pch_cnp:
3120 		bank1_offset = nvm->flash_bank_size;
3121 		act_offset = E1000_ICH_NVM_SIG_WORD;
3122 
3123 		/* set bank to 0 in case flash read fails */
3124 		*bank = 0;
3125 
3126 		/* Check bank 0 */
3127 		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
3128 							 &nvm_dword);
3129 		if (ret_val)
3130 			return ret_val;
3131 		sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3132 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3133 		    E1000_ICH_NVM_SIG_VALUE) {
3134 			*bank = 0;
3135 			return 0;
3136 		}
3137 
3138 		/* Check bank 1 */
3139 		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
3140 							 bank1_offset,
3141 							 &nvm_dword);
3142 		if (ret_val)
3143 			return ret_val;
3144 		sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3145 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3146 		    E1000_ICH_NVM_SIG_VALUE) {
3147 			*bank = 1;
3148 			return 0;
3149 		}
3150 
3151 		e_dbg("ERROR: No valid NVM bank present\n");
3152 		return -E1000_ERR_NVM;
3153 	case e1000_ich8lan:
3154 	case e1000_ich9lan:
3155 		eecd = er32(EECD);
3156 		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3157 		    E1000_EECD_SEC1VAL_VALID_MASK) {
3158 			if (eecd & E1000_EECD_SEC1VAL)
3159 				*bank = 1;
3160 			else
3161 				*bank = 0;
3162 
3163 			return 0;
3164 		}
3165 		e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3166 		/* fall-thru */
3167 	default:
3168 		/* set bank to 0 in case flash read fails */
3169 		*bank = 0;
3170 
3171 		/* Check bank 0 */
3172 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3173 							&sig_byte);
3174 		if (ret_val)
3175 			return ret_val;
3176 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3177 		    E1000_ICH_NVM_SIG_VALUE) {
3178 			*bank = 0;
3179 			return 0;
3180 		}
3181 
3182 		/* Check bank 1 */
3183 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3184 							bank1_offset,
3185 							&sig_byte);
3186 		if (ret_val)
3187 			return ret_val;
3188 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3189 		    E1000_ICH_NVM_SIG_VALUE) {
3190 			*bank = 1;
3191 			return 0;
3192 		}
3193 
3194 		e_dbg("ERROR: No valid NVM bank present\n");
3195 		return -E1000_ERR_NVM;
3196 	}
3197 }
3198 
3199 /**
3200  *  e1000_read_nvm_spt - NVM access for SPT
3201  *  @hw: pointer to the HW structure
3202  *  @offset: The offset (in bytes) of the word(s) to read.
3203  *  @words: Size of data to read in words.
3204  *  @data: pointer to the word(s) to read at offset.
3205  *
3206  *  Reads a word(s) from the NVM
3207  **/
3208 static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3209 			      u16 *data)
3210 {
3211 	struct e1000_nvm_info *nvm = &hw->nvm;
3212 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3213 	u32 act_offset;
3214 	s32 ret_val = 0;
3215 	u32 bank = 0;
3216 	u32 dword = 0;
3217 	u16 offset_to_read;
3218 	u16 i;
3219 
3220 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3221 	    (words == 0)) {
3222 		e_dbg("nvm parameter(s) out of bounds\n");
3223 		ret_val = -E1000_ERR_NVM;
3224 		goto out;
3225 	}
3226 
3227 	nvm->ops.acquire(hw);
3228 
3229 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3230 	if (ret_val) {
3231 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3232 		bank = 0;
3233 	}
3234 
3235 	act_offset = (bank) ? nvm->flash_bank_size : 0;
3236 	act_offset += offset;
3237 
3238 	ret_val = 0;
3239 
3240 	for (i = 0; i < words; i += 2) {
3241 		if (words - i == 1) {
3242 			if (dev_spec->shadow_ram[offset + i].modified) {
3243 				data[i] =
3244 				    dev_spec->shadow_ram[offset + i].value;
3245 			} else {
3246 				offset_to_read = act_offset + i -
3247 				    ((act_offset + i) % 2);
3248 				ret_val =
3249 				  e1000_read_flash_dword_ich8lan(hw,
3250 								 offset_to_read,
3251 								 &dword);
3252 				if (ret_val)
3253 					break;
3254 				if ((act_offset + i) % 2 == 0)
3255 					data[i] = (u16)(dword & 0xFFFF);
3256 				else
3257 					data[i] = (u16)((dword >> 16) & 0xFFFF);
3258 			}
3259 		} else {
3260 			offset_to_read = act_offset + i;
3261 			if (!(dev_spec->shadow_ram[offset + i].modified) ||
3262 			    !(dev_spec->shadow_ram[offset + i + 1].modified)) {
3263 				ret_val =
3264 				  e1000_read_flash_dword_ich8lan(hw,
3265 								 offset_to_read,
3266 								 &dword);
3267 				if (ret_val)
3268 					break;
3269 			}
3270 			if (dev_spec->shadow_ram[offset + i].modified)
3271 				data[i] =
3272 				    dev_spec->shadow_ram[offset + i].value;
3273 			else
3274 				data[i] = (u16)(dword & 0xFFFF);
3275 			if (dev_spec->shadow_ram[offset + i].modified)
3276 				data[i + 1] =
3277 				    dev_spec->shadow_ram[offset + i + 1].value;
3278 			else
3279 				data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
3280 		}
3281 	}
3282 
3283 	nvm->ops.release(hw);
3284 
3285 out:
3286 	if (ret_val)
3287 		e_dbg("NVM read error: %d\n", ret_val);
3288 
3289 	return ret_val;
3290 }
3291 
3292 /**
3293  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3294  *  @hw: pointer to the HW structure
3295  *  @offset: The offset (in bytes) of the word(s) to read.
3296  *  @words: Size of data to read in words
3297  *  @data: Pointer to the word(s) to read at offset.
3298  *
3299  *  Reads a word(s) from the NVM using the flash access registers.
3300  **/
3301 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3302 				  u16 *data)
3303 {
3304 	struct e1000_nvm_info *nvm = &hw->nvm;
3305 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3306 	u32 act_offset;
3307 	s32 ret_val = 0;
3308 	u32 bank = 0;
3309 	u16 i, word;
3310 
3311 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3312 	    (words == 0)) {
3313 		e_dbg("nvm parameter(s) out of bounds\n");
3314 		ret_val = -E1000_ERR_NVM;
3315 		goto out;
3316 	}
3317 
3318 	nvm->ops.acquire(hw);
3319 
3320 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3321 	if (ret_val) {
3322 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3323 		bank = 0;
3324 	}
3325 
3326 	act_offset = (bank) ? nvm->flash_bank_size : 0;
3327 	act_offset += offset;
3328 
3329 	ret_val = 0;
3330 	for (i = 0; i < words; i++) {
3331 		if (dev_spec->shadow_ram[offset + i].modified) {
3332 			data[i] = dev_spec->shadow_ram[offset + i].value;
3333 		} else {
3334 			ret_val = e1000_read_flash_word_ich8lan(hw,
3335 								act_offset + i,
3336 								&word);
3337 			if (ret_val)
3338 				break;
3339 			data[i] = word;
3340 		}
3341 	}
3342 
3343 	nvm->ops.release(hw);
3344 
3345 out:
3346 	if (ret_val)
3347 		e_dbg("NVM read error: %d\n", ret_val);
3348 
3349 	return ret_val;
3350 }
3351 
3352 /**
3353  *  e1000_flash_cycle_init_ich8lan - Initialize flash
3354  *  @hw: pointer to the HW structure
3355  *
3356  *  This function does initial flash setup so that a new read/write/erase cycle
3357  *  can be started.
3358  **/
3359 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3360 {
3361 	union ich8_hws_flash_status hsfsts;
3362 	s32 ret_val = -E1000_ERR_NVM;
3363 
3364 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3365 
3366 	/* Check if the flash descriptor is valid */
3367 	if (!hsfsts.hsf_status.fldesvalid) {
3368 		e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
3369 		return -E1000_ERR_NVM;
3370 	}
3371 
3372 	/* Clear FCERR and DAEL in hw status by writing 1 */
3373 	hsfsts.hsf_status.flcerr = 1;
3374 	hsfsts.hsf_status.dael = 1;
3375 	if (hw->mac.type >= e1000_pch_spt)
3376 		ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3377 	else
3378 		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3379 
3380 	/* Either we should have a hardware SPI cycle in progress
3381 	 * bit to check against, in order to start a new cycle or
3382 	 * FDONE bit should be changed in the hardware so that it
3383 	 * is 1 after hardware reset, which can then be used as an
3384 	 * indication whether a cycle is in progress or has been
3385 	 * completed.
3386 	 */
3387 
3388 	if (!hsfsts.hsf_status.flcinprog) {
3389 		/* There is no cycle running at present,
3390 		 * so we can start a cycle.
3391 		 * Begin by setting Flash Cycle Done.
3392 		 */
3393 		hsfsts.hsf_status.flcdone = 1;
3394 		if (hw->mac.type >= e1000_pch_spt)
3395 			ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3396 		else
3397 			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3398 		ret_val = 0;
3399 	} else {
3400 		s32 i;
3401 
3402 		/* Otherwise poll for sometime so the current
3403 		 * cycle has a chance to end before giving up.
3404 		 */
3405 		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3406 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3407 			if (!hsfsts.hsf_status.flcinprog) {
3408 				ret_val = 0;
3409 				break;
3410 			}
3411 			udelay(1);
3412 		}
3413 		if (!ret_val) {
3414 			/* Successful in waiting for previous cycle to timeout,
3415 			 * now set the Flash Cycle Done.
3416 			 */
3417 			hsfsts.hsf_status.flcdone = 1;
3418 			if (hw->mac.type >= e1000_pch_spt)
3419 				ew32flash(ICH_FLASH_HSFSTS,
3420 					  hsfsts.regval & 0xFFFF);
3421 			else
3422 				ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3423 		} else {
3424 			e_dbg("Flash controller busy, cannot get access\n");
3425 		}
3426 	}
3427 
3428 	return ret_val;
3429 }
3430 
3431 /**
3432  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3433  *  @hw: pointer to the HW structure
3434  *  @timeout: maximum time to wait for completion
3435  *
3436  *  This function starts a flash cycle and waits for its completion.
3437  **/
3438 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3439 {
3440 	union ich8_hws_flash_ctrl hsflctl;
3441 	union ich8_hws_flash_status hsfsts;
3442 	u32 i = 0;
3443 
3444 	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3445 	if (hw->mac.type >= e1000_pch_spt)
3446 		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3447 	else
3448 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3449 	hsflctl.hsf_ctrl.flcgo = 1;
3450 
3451 	if (hw->mac.type >= e1000_pch_spt)
3452 		ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
3453 	else
3454 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3455 
3456 	/* wait till FDONE bit is set to 1 */
3457 	do {
3458 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3459 		if (hsfsts.hsf_status.flcdone)
3460 			break;
3461 		udelay(1);
3462 	} while (i++ < timeout);
3463 
3464 	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3465 		return 0;
3466 
3467 	return -E1000_ERR_NVM;
3468 }
3469 
3470 /**
3471  *  e1000_read_flash_dword_ich8lan - Read dword from flash
3472  *  @hw: pointer to the HW structure
3473  *  @offset: offset to data location
3474  *  @data: pointer to the location for storing the data
3475  *
3476  *  Reads the flash dword at offset into data.  Offset is converted
3477  *  to bytes before read.
3478  **/
3479 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3480 					  u32 *data)
3481 {
3482 	/* Must convert word offset into bytes. */
3483 	offset <<= 1;
3484 	return e1000_read_flash_data32_ich8lan(hw, offset, data);
3485 }
3486 
3487 /**
3488  *  e1000_read_flash_word_ich8lan - Read word from flash
3489  *  @hw: pointer to the HW structure
3490  *  @offset: offset to data location
3491  *  @data: pointer to the location for storing the data
3492  *
3493  *  Reads the flash word at offset into data.  Offset is converted
3494  *  to bytes before read.
3495  **/
3496 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3497 					 u16 *data)
3498 {
3499 	/* Must convert offset into bytes. */
3500 	offset <<= 1;
3501 
3502 	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3503 }
3504 
3505 /**
3506  *  e1000_read_flash_byte_ich8lan - Read byte from flash
3507  *  @hw: pointer to the HW structure
3508  *  @offset: The offset of the byte to read.
3509  *  @data: Pointer to a byte to store the value read.
3510  *
3511  *  Reads a single byte from the NVM using the flash access registers.
3512  **/
3513 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3514 					 u8 *data)
3515 {
3516 	s32 ret_val;
3517 	u16 word = 0;
3518 
3519 	/* In SPT, only 32 bits access is supported,
3520 	 * so this function should not be called.
3521 	 */
3522 	if (hw->mac.type >= e1000_pch_spt)
3523 		return -E1000_ERR_NVM;
3524 	else
3525 		ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3526 
3527 	if (ret_val)
3528 		return ret_val;
3529 
3530 	*data = (u8)word;
3531 
3532 	return 0;
3533 }
3534 
3535 /**
3536  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3537  *  @hw: pointer to the HW structure
3538  *  @offset: The offset (in bytes) of the byte or word to read.
3539  *  @size: Size of data to read, 1=byte 2=word
3540  *  @data: Pointer to the word to store the value read.
3541  *
3542  *  Reads a byte or word from the NVM using the flash access registers.
3543  **/
3544 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3545 					 u8 size, u16 *data)
3546 {
3547 	union ich8_hws_flash_status hsfsts;
3548 	union ich8_hws_flash_ctrl hsflctl;
3549 	u32 flash_linear_addr;
3550 	u32 flash_data = 0;
3551 	s32 ret_val = -E1000_ERR_NVM;
3552 	u8 count = 0;
3553 
3554 	if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3555 		return -E1000_ERR_NVM;
3556 
3557 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3558 			     hw->nvm.flash_base_addr);
3559 
3560 	do {
3561 		udelay(1);
3562 		/* Steps */
3563 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3564 		if (ret_val)
3565 			break;
3566 
3567 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3568 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3569 		hsflctl.hsf_ctrl.fldbcount = size - 1;
3570 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3571 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3572 
3573 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3574 
3575 		ret_val =
3576 		    e1000_flash_cycle_ich8lan(hw,
3577 					      ICH_FLASH_READ_COMMAND_TIMEOUT);
3578 
3579 		/* Check if FCERR is set to 1, if set to 1, clear it
3580 		 * and try the whole sequence a few more times, else
3581 		 * read in (shift in) the Flash Data0, the order is
3582 		 * least significant byte first msb to lsb
3583 		 */
3584 		if (!ret_val) {
3585 			flash_data = er32flash(ICH_FLASH_FDATA0);
3586 			if (size == 1)
3587 				*data = (u8)(flash_data & 0x000000FF);
3588 			else if (size == 2)
3589 				*data = (u16)(flash_data & 0x0000FFFF);
3590 			break;
3591 		} else {
3592 			/* If we've gotten here, then things are probably
3593 			 * completely hosed, but if the error condition is
3594 			 * detected, it won't hurt to give it another try...
3595 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3596 			 */
3597 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3598 			if (hsfsts.hsf_status.flcerr) {
3599 				/* Repeat for some time before giving up. */
3600 				continue;
3601 			} else if (!hsfsts.hsf_status.flcdone) {
3602 				e_dbg("Timeout error - flash cycle did not complete.\n");
3603 				break;
3604 			}
3605 		}
3606 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3607 
3608 	return ret_val;
3609 }
3610 
3611 /**
3612  *  e1000_read_flash_data32_ich8lan - Read dword from NVM
3613  *  @hw: pointer to the HW structure
3614  *  @offset: The offset (in bytes) of the dword to read.
3615  *  @data: Pointer to the dword to store the value read.
3616  *
3617  *  Reads a byte or word from the NVM using the flash access registers.
3618  **/
3619 
3620 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3621 					   u32 *data)
3622 {
3623 	union ich8_hws_flash_status hsfsts;
3624 	union ich8_hws_flash_ctrl hsflctl;
3625 	u32 flash_linear_addr;
3626 	s32 ret_val = -E1000_ERR_NVM;
3627 	u8 count = 0;
3628 
3629 	if (offset > ICH_FLASH_LINEAR_ADDR_MASK || hw->mac.type < e1000_pch_spt)
3630 		return -E1000_ERR_NVM;
3631 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3632 			     hw->nvm.flash_base_addr);
3633 
3634 	do {
3635 		udelay(1);
3636 		/* Steps */
3637 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3638 		if (ret_val)
3639 			break;
3640 		/* In SPT, This register is in Lan memory space, not flash.
3641 		 * Therefore, only 32 bit access is supported
3642 		 */
3643 		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3644 
3645 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3646 		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3647 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3648 		/* In SPT, This register is in Lan memory space, not flash.
3649 		 * Therefore, only 32 bit access is supported
3650 		 */
3651 		ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16);
3652 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3653 
3654 		ret_val =
3655 		   e1000_flash_cycle_ich8lan(hw,
3656 					     ICH_FLASH_READ_COMMAND_TIMEOUT);
3657 
3658 		/* Check if FCERR is set to 1, if set to 1, clear it
3659 		 * and try the whole sequence a few more times, else
3660 		 * read in (shift in) the Flash Data0, the order is
3661 		 * least significant byte first msb to lsb
3662 		 */
3663 		if (!ret_val) {
3664 			*data = er32flash(ICH_FLASH_FDATA0);
3665 			break;
3666 		} else {
3667 			/* If we've gotten here, then things are probably
3668 			 * completely hosed, but if the error condition is
3669 			 * detected, it won't hurt to give it another try...
3670 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3671 			 */
3672 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3673 			if (hsfsts.hsf_status.flcerr) {
3674 				/* Repeat for some time before giving up. */
3675 				continue;
3676 			} else if (!hsfsts.hsf_status.flcdone) {
3677 				e_dbg("Timeout error - flash cycle did not complete.\n");
3678 				break;
3679 			}
3680 		}
3681 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3682 
3683 	return ret_val;
3684 }
3685 
3686 /**
3687  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
3688  *  @hw: pointer to the HW structure
3689  *  @offset: The offset (in bytes) of the word(s) to write.
3690  *  @words: Size of data to write in words
3691  *  @data: Pointer to the word(s) to write at offset.
3692  *
3693  *  Writes a byte or word to the NVM using the flash access registers.
3694  **/
3695 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3696 				   u16 *data)
3697 {
3698 	struct e1000_nvm_info *nvm = &hw->nvm;
3699 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3700 	u16 i;
3701 
3702 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3703 	    (words == 0)) {
3704 		e_dbg("nvm parameter(s) out of bounds\n");
3705 		return -E1000_ERR_NVM;
3706 	}
3707 
3708 	nvm->ops.acquire(hw);
3709 
3710 	for (i = 0; i < words; i++) {
3711 		dev_spec->shadow_ram[offset + i].modified = true;
3712 		dev_spec->shadow_ram[offset + i].value = data[i];
3713 	}
3714 
3715 	nvm->ops.release(hw);
3716 
3717 	return 0;
3718 }
3719 
3720 /**
3721  *  e1000_update_nvm_checksum_spt - Update the checksum for NVM
3722  *  @hw: pointer to the HW structure
3723  *
3724  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3725  *  which writes the checksum to the shadow ram.  The changes in the shadow
3726  *  ram are then committed to the EEPROM by processing each bank at a time
3727  *  checking for the modified bit and writing only the pending changes.
3728  *  After a successful commit, the shadow ram is cleared and is ready for
3729  *  future writes.
3730  **/
3731 static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
3732 {
3733 	struct e1000_nvm_info *nvm = &hw->nvm;
3734 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3735 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3736 	s32 ret_val;
3737 	u32 dword = 0;
3738 
3739 	ret_val = e1000e_update_nvm_checksum_generic(hw);
3740 	if (ret_val)
3741 		goto out;
3742 
3743 	if (nvm->type != e1000_nvm_flash_sw)
3744 		goto out;
3745 
3746 	nvm->ops.acquire(hw);
3747 
3748 	/* We're writing to the opposite bank so if we're on bank 1,
3749 	 * write to bank 0 etc.  We also need to erase the segment that
3750 	 * is going to be written
3751 	 */
3752 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3753 	if (ret_val) {
3754 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3755 		bank = 0;
3756 	}
3757 
3758 	if (bank == 0) {
3759 		new_bank_offset = nvm->flash_bank_size;
3760 		old_bank_offset = 0;
3761 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3762 		if (ret_val)
3763 			goto release;
3764 	} else {
3765 		old_bank_offset = nvm->flash_bank_size;
3766 		new_bank_offset = 0;
3767 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3768 		if (ret_val)
3769 			goto release;
3770 	}
3771 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) {
3772 		/* Determine whether to write the value stored
3773 		 * in the other NVM bank or a modified value stored
3774 		 * in the shadow RAM
3775 		 */
3776 		ret_val = e1000_read_flash_dword_ich8lan(hw,
3777 							 i + old_bank_offset,
3778 							 &dword);
3779 
3780 		if (dev_spec->shadow_ram[i].modified) {
3781 			dword &= 0xffff0000;
3782 			dword |= (dev_spec->shadow_ram[i].value & 0xffff);
3783 		}
3784 		if (dev_spec->shadow_ram[i + 1].modified) {
3785 			dword &= 0x0000ffff;
3786 			dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
3787 				  << 16);
3788 		}
3789 		if (ret_val)
3790 			break;
3791 
3792 		/* If the word is 0x13, then make sure the signature bits
3793 		 * (15:14) are 11b until the commit has completed.
3794 		 * This will allow us to write 10b which indicates the
3795 		 * signature is valid.  We want to do this after the write
3796 		 * has completed so that we don't mark the segment valid
3797 		 * while the write is still in progress
3798 		 */
3799 		if (i == E1000_ICH_NVM_SIG_WORD - 1)
3800 			dword |= E1000_ICH_NVM_SIG_MASK << 16;
3801 
3802 		/* Convert offset to bytes. */
3803 		act_offset = (i + new_bank_offset) << 1;
3804 
3805 		usleep_range(100, 200);
3806 
3807 		/* Write the data to the new bank. Offset in words */
3808 		act_offset = i + new_bank_offset;
3809 		ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
3810 								dword);
3811 		if (ret_val)
3812 			break;
3813 	}
3814 
3815 	/* Don't bother writing the segment valid bits if sector
3816 	 * programming failed.
3817 	 */
3818 	if (ret_val) {
3819 		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3820 		e_dbg("Flash commit failed.\n");
3821 		goto release;
3822 	}
3823 
3824 	/* Finally validate the new segment by setting bit 15:14
3825 	 * to 10b in word 0x13 , this can be done without an
3826 	 * erase as well since these bits are 11 to start with
3827 	 * and we need to change bit 14 to 0b
3828 	 */
3829 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3830 
3831 	/*offset in words but we read dword */
3832 	--act_offset;
3833 	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3834 
3835 	if (ret_val)
3836 		goto release;
3837 
3838 	dword &= 0xBFFFFFFF;
3839 	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3840 
3841 	if (ret_val)
3842 		goto release;
3843 
3844 	/* And invalidate the previously valid segment by setting
3845 	 * its signature word (0x13) high_byte to 0b. This can be
3846 	 * done without an erase because flash erase sets all bits
3847 	 * to 1's. We can write 1's to 0's without an erase
3848 	 */
3849 	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
3850 
3851 	/* offset in words but we read dword */
3852 	act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
3853 	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3854 
3855 	if (ret_val)
3856 		goto release;
3857 
3858 	dword &= 0x00FFFFFF;
3859 	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3860 
3861 	if (ret_val)
3862 		goto release;
3863 
3864 	/* Great!  Everything worked, we can now clear the cached entries. */
3865 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3866 		dev_spec->shadow_ram[i].modified = false;
3867 		dev_spec->shadow_ram[i].value = 0xFFFF;
3868 	}
3869 
3870 release:
3871 	nvm->ops.release(hw);
3872 
3873 	/* Reload the EEPROM, or else modifications will not appear
3874 	 * until after the next adapter reset.
3875 	 */
3876 	if (!ret_val) {
3877 		nvm->ops.reload(hw);
3878 		usleep_range(10000, 11000);
3879 	}
3880 
3881 out:
3882 	if (ret_val)
3883 		e_dbg("NVM update error: %d\n", ret_val);
3884 
3885 	return ret_val;
3886 }
3887 
3888 /**
3889  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3890  *  @hw: pointer to the HW structure
3891  *
3892  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3893  *  which writes the checksum to the shadow ram.  The changes in the shadow
3894  *  ram are then committed to the EEPROM by processing each bank at a time
3895  *  checking for the modified bit and writing only the pending changes.
3896  *  After a successful commit, the shadow ram is cleared and is ready for
3897  *  future writes.
3898  **/
3899 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
3900 {
3901 	struct e1000_nvm_info *nvm = &hw->nvm;
3902 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3903 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3904 	s32 ret_val;
3905 	u16 data = 0;
3906 
3907 	ret_val = e1000e_update_nvm_checksum_generic(hw);
3908 	if (ret_val)
3909 		goto out;
3910 
3911 	if (nvm->type != e1000_nvm_flash_sw)
3912 		goto out;
3913 
3914 	nvm->ops.acquire(hw);
3915 
3916 	/* We're writing to the opposite bank so if we're on bank 1,
3917 	 * write to bank 0 etc.  We also need to erase the segment that
3918 	 * is going to be written
3919 	 */
3920 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3921 	if (ret_val) {
3922 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3923 		bank = 0;
3924 	}
3925 
3926 	if (bank == 0) {
3927 		new_bank_offset = nvm->flash_bank_size;
3928 		old_bank_offset = 0;
3929 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3930 		if (ret_val)
3931 			goto release;
3932 	} else {
3933 		old_bank_offset = nvm->flash_bank_size;
3934 		new_bank_offset = 0;
3935 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3936 		if (ret_val)
3937 			goto release;
3938 	}
3939 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3940 		if (dev_spec->shadow_ram[i].modified) {
3941 			data = dev_spec->shadow_ram[i].value;
3942 		} else {
3943 			ret_val = e1000_read_flash_word_ich8lan(hw, i +
3944 								old_bank_offset,
3945 								&data);
3946 			if (ret_val)
3947 				break;
3948 		}
3949 
3950 		/* If the word is 0x13, then make sure the signature bits
3951 		 * (15:14) are 11b until the commit has completed.
3952 		 * This will allow us to write 10b which indicates the
3953 		 * signature is valid.  We want to do this after the write
3954 		 * has completed so that we don't mark the segment valid
3955 		 * while the write is still in progress
3956 		 */
3957 		if (i == E1000_ICH_NVM_SIG_WORD)
3958 			data |= E1000_ICH_NVM_SIG_MASK;
3959 
3960 		/* Convert offset to bytes. */
3961 		act_offset = (i + new_bank_offset) << 1;
3962 
3963 		usleep_range(100, 200);
3964 		/* Write the bytes to the new bank. */
3965 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3966 							       act_offset,
3967 							       (u8)data);
3968 		if (ret_val)
3969 			break;
3970 
3971 		usleep_range(100, 200);
3972 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3973 							       act_offset + 1,
3974 							       (u8)(data >> 8));
3975 		if (ret_val)
3976 			break;
3977 	}
3978 
3979 	/* Don't bother writing the segment valid bits if sector
3980 	 * programming failed.
3981 	 */
3982 	if (ret_val) {
3983 		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3984 		e_dbg("Flash commit failed.\n");
3985 		goto release;
3986 	}
3987 
3988 	/* Finally validate the new segment by setting bit 15:14
3989 	 * to 10b in word 0x13 , this can be done without an
3990 	 * erase as well since these bits are 11 to start with
3991 	 * and we need to change bit 14 to 0b
3992 	 */
3993 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3994 	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
3995 	if (ret_val)
3996 		goto release;
3997 
3998 	data &= 0xBFFF;
3999 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4000 						       act_offset * 2 + 1,
4001 						       (u8)(data >> 8));
4002 	if (ret_val)
4003 		goto release;
4004 
4005 	/* And invalidate the previously valid segment by setting
4006 	 * its signature word (0x13) high_byte to 0b. This can be
4007 	 * done without an erase because flash erase sets all bits
4008 	 * to 1's. We can write 1's to 0's without an erase
4009 	 */
4010 	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4011 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
4012 	if (ret_val)
4013 		goto release;
4014 
4015 	/* Great!  Everything worked, we can now clear the cached entries. */
4016 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4017 		dev_spec->shadow_ram[i].modified = false;
4018 		dev_spec->shadow_ram[i].value = 0xFFFF;
4019 	}
4020 
4021 release:
4022 	nvm->ops.release(hw);
4023 
4024 	/* Reload the EEPROM, or else modifications will not appear
4025 	 * until after the next adapter reset.
4026 	 */
4027 	if (!ret_val) {
4028 		nvm->ops.reload(hw);
4029 		usleep_range(10000, 11000);
4030 	}
4031 
4032 out:
4033 	if (ret_val)
4034 		e_dbg("NVM update error: %d\n", ret_val);
4035 
4036 	return ret_val;
4037 }
4038 
4039 /**
4040  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4041  *  @hw: pointer to the HW structure
4042  *
4043  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4044  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
4045  *  calculated, in which case we need to calculate the checksum and set bit 6.
4046  **/
4047 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4048 {
4049 	s32 ret_val;
4050 	u16 data;
4051 	u16 word;
4052 	u16 valid_csum_mask;
4053 
4054 	/* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
4055 	 * the checksum needs to be fixed.  This bit is an indication that
4056 	 * the NVM was prepared by OEM software and did not calculate
4057 	 * the checksum...a likely scenario.
4058 	 */
4059 	switch (hw->mac.type) {
4060 	case e1000_pch_lpt:
4061 	case e1000_pch_spt:
4062 	case e1000_pch_cnp:
4063 		word = NVM_COMPAT;
4064 		valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4065 		break;
4066 	default:
4067 		word = NVM_FUTURE_INIT_WORD1;
4068 		valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4069 		break;
4070 	}
4071 
4072 	ret_val = e1000_read_nvm(hw, word, 1, &data);
4073 	if (ret_val)
4074 		return ret_val;
4075 
4076 	if (!(data & valid_csum_mask)) {
4077 		data |= valid_csum_mask;
4078 		ret_val = e1000_write_nvm(hw, word, 1, &data);
4079 		if (ret_val)
4080 			return ret_val;
4081 		ret_val = e1000e_update_nvm_checksum(hw);
4082 		if (ret_val)
4083 			return ret_val;
4084 	}
4085 
4086 	return e1000e_validate_nvm_checksum_generic(hw);
4087 }
4088 
4089 /**
4090  *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
4091  *  @hw: pointer to the HW structure
4092  *
4093  *  To prevent malicious write/erase of the NVM, set it to be read-only
4094  *  so that the hardware ignores all write/erase cycles of the NVM via
4095  *  the flash control registers.  The shadow-ram copy of the NVM will
4096  *  still be updated, however any updates to this copy will not stick
4097  *  across driver reloads.
4098  **/
4099 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
4100 {
4101 	struct e1000_nvm_info *nvm = &hw->nvm;
4102 	union ich8_flash_protected_range pr0;
4103 	union ich8_hws_flash_status hsfsts;
4104 	u32 gfpreg;
4105 
4106 	nvm->ops.acquire(hw);
4107 
4108 	gfpreg = er32flash(ICH_FLASH_GFPREG);
4109 
4110 	/* Write-protect GbE Sector of NVM */
4111 	pr0.regval = er32flash(ICH_FLASH_PR0);
4112 	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
4113 	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
4114 	pr0.range.wpe = true;
4115 	ew32flash(ICH_FLASH_PR0, pr0.regval);
4116 
4117 	/* Lock down a subset of GbE Flash Control Registers, e.g.
4118 	 * PR0 to prevent the write-protection from being lifted.
4119 	 * Once FLOCKDN is set, the registers protected by it cannot
4120 	 * be written until FLOCKDN is cleared by a hardware reset.
4121 	 */
4122 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4123 	hsfsts.hsf_status.flockdn = true;
4124 	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
4125 
4126 	nvm->ops.release(hw);
4127 }
4128 
4129 /**
4130  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4131  *  @hw: pointer to the HW structure
4132  *  @offset: The offset (in bytes) of the byte/word to read.
4133  *  @size: Size of data to read, 1=byte 2=word
4134  *  @data: The byte(s) to write to the NVM.
4135  *
4136  *  Writes one/two bytes to the NVM using the flash access registers.
4137  **/
4138 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4139 					  u8 size, u16 data)
4140 {
4141 	union ich8_hws_flash_status hsfsts;
4142 	union ich8_hws_flash_ctrl hsflctl;
4143 	u32 flash_linear_addr;
4144 	u32 flash_data = 0;
4145 	s32 ret_val;
4146 	u8 count = 0;
4147 
4148 	if (hw->mac.type >= e1000_pch_spt) {
4149 		if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4150 			return -E1000_ERR_NVM;
4151 	} else {
4152 		if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4153 			return -E1000_ERR_NVM;
4154 	}
4155 
4156 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4157 			     hw->nvm.flash_base_addr);
4158 
4159 	do {
4160 		udelay(1);
4161 		/* Steps */
4162 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4163 		if (ret_val)
4164 			break;
4165 		/* In SPT, This register is in Lan memory space, not
4166 		 * flash.  Therefore, only 32 bit access is supported
4167 		 */
4168 		if (hw->mac.type >= e1000_pch_spt)
4169 			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
4170 		else
4171 			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4172 
4173 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4174 		hsflctl.hsf_ctrl.fldbcount = size - 1;
4175 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4176 		/* In SPT, This register is in Lan memory space,
4177 		 * not flash.  Therefore, only 32 bit access is
4178 		 * supported
4179 		 */
4180 		if (hw->mac.type >= e1000_pch_spt)
4181 			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4182 		else
4183 			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4184 
4185 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4186 
4187 		if (size == 1)
4188 			flash_data = (u32)data & 0x00FF;
4189 		else
4190 			flash_data = (u32)data;
4191 
4192 		ew32flash(ICH_FLASH_FDATA0, flash_data);
4193 
4194 		/* check if FCERR is set to 1 , if set to 1, clear it
4195 		 * and try the whole sequence a few more times else done
4196 		 */
4197 		ret_val =
4198 		    e1000_flash_cycle_ich8lan(hw,
4199 					      ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4200 		if (!ret_val)
4201 			break;
4202 
4203 		/* If we're here, then things are most likely
4204 		 * completely hosed, but if the error condition
4205 		 * is detected, it won't hurt to give it another
4206 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4207 		 */
4208 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4209 		if (hsfsts.hsf_status.flcerr)
4210 			/* Repeat for some time before giving up. */
4211 			continue;
4212 		if (!hsfsts.hsf_status.flcdone) {
4213 			e_dbg("Timeout error - flash cycle did not complete.\n");
4214 			break;
4215 		}
4216 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4217 
4218 	return ret_val;
4219 }
4220 
4221 /**
4222 *  e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4223 *  @hw: pointer to the HW structure
4224 *  @offset: The offset (in bytes) of the dwords to read.
4225 *  @data: The 4 bytes to write to the NVM.
4226 *
4227 *  Writes one/two/four bytes to the NVM using the flash access registers.
4228 **/
4229 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4230 					    u32 data)
4231 {
4232 	union ich8_hws_flash_status hsfsts;
4233 	union ich8_hws_flash_ctrl hsflctl;
4234 	u32 flash_linear_addr;
4235 	s32 ret_val;
4236 	u8 count = 0;
4237 
4238 	if (hw->mac.type >= e1000_pch_spt) {
4239 		if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4240 			return -E1000_ERR_NVM;
4241 	}
4242 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4243 			     hw->nvm.flash_base_addr);
4244 	do {
4245 		udelay(1);
4246 		/* Steps */
4247 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4248 		if (ret_val)
4249 			break;
4250 
4251 		/* In SPT, This register is in Lan memory space, not
4252 		 * flash.  Therefore, only 32 bit access is supported
4253 		 */
4254 		if (hw->mac.type >= e1000_pch_spt)
4255 			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS)
4256 			    >> 16;
4257 		else
4258 			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4259 
4260 		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4261 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4262 
4263 		/* In SPT, This register is in Lan memory space,
4264 		 * not flash.  Therefore, only 32 bit access is
4265 		 * supported
4266 		 */
4267 		if (hw->mac.type >= e1000_pch_spt)
4268 			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4269 		else
4270 			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4271 
4272 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4273 
4274 		ew32flash(ICH_FLASH_FDATA0, data);
4275 
4276 		/* check if FCERR is set to 1 , if set to 1, clear it
4277 		 * and try the whole sequence a few more times else done
4278 		 */
4279 		ret_val =
4280 		   e1000_flash_cycle_ich8lan(hw,
4281 					     ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4282 
4283 		if (!ret_val)
4284 			break;
4285 
4286 		/* If we're here, then things are most likely
4287 		 * completely hosed, but if the error condition
4288 		 * is detected, it won't hurt to give it another
4289 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4290 		 */
4291 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4292 
4293 		if (hsfsts.hsf_status.flcerr)
4294 			/* Repeat for some time before giving up. */
4295 			continue;
4296 		if (!hsfsts.hsf_status.flcdone) {
4297 			e_dbg("Timeout error - flash cycle did not complete.\n");
4298 			break;
4299 		}
4300 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4301 
4302 	return ret_val;
4303 }
4304 
4305 /**
4306  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4307  *  @hw: pointer to the HW structure
4308  *  @offset: The index of the byte to read.
4309  *  @data: The byte to write to the NVM.
4310  *
4311  *  Writes a single byte to the NVM using the flash access registers.
4312  **/
4313 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4314 					  u8 data)
4315 {
4316 	u16 word = (u16)data;
4317 
4318 	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4319 }
4320 
4321 /**
4322 *  e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4323 *  @hw: pointer to the HW structure
4324 *  @offset: The offset of the word to write.
4325 *  @dword: The dword to write to the NVM.
4326 *
4327 *  Writes a single dword to the NVM using the flash access registers.
4328 *  Goes through a retry algorithm before giving up.
4329 **/
4330 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4331 						 u32 offset, u32 dword)
4332 {
4333 	s32 ret_val;
4334 	u16 program_retries;
4335 
4336 	/* Must convert word offset into bytes. */
4337 	offset <<= 1;
4338 	ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4339 
4340 	if (!ret_val)
4341 		return ret_val;
4342 	for (program_retries = 0; program_retries < 100; program_retries++) {
4343 		e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset);
4344 		usleep_range(100, 200);
4345 		ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4346 		if (!ret_val)
4347 			break;
4348 	}
4349 	if (program_retries == 100)
4350 		return -E1000_ERR_NVM;
4351 
4352 	return 0;
4353 }
4354 
4355 /**
4356  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4357  *  @hw: pointer to the HW structure
4358  *  @offset: The offset of the byte to write.
4359  *  @byte: The byte to write to the NVM.
4360  *
4361  *  Writes a single byte to the NVM using the flash access registers.
4362  *  Goes through a retry algorithm before giving up.
4363  **/
4364 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4365 						u32 offset, u8 byte)
4366 {
4367 	s32 ret_val;
4368 	u16 program_retries;
4369 
4370 	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4371 	if (!ret_val)
4372 		return ret_val;
4373 
4374 	for (program_retries = 0; program_retries < 100; program_retries++) {
4375 		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
4376 		usleep_range(100, 200);
4377 		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4378 		if (!ret_val)
4379 			break;
4380 	}
4381 	if (program_retries == 100)
4382 		return -E1000_ERR_NVM;
4383 
4384 	return 0;
4385 }
4386 
4387 /**
4388  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4389  *  @hw: pointer to the HW structure
4390  *  @bank: 0 for first bank, 1 for second bank, etc.
4391  *
4392  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4393  *  bank N is 4096 * N + flash_reg_addr.
4394  **/
4395 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4396 {
4397 	struct e1000_nvm_info *nvm = &hw->nvm;
4398 	union ich8_hws_flash_status hsfsts;
4399 	union ich8_hws_flash_ctrl hsflctl;
4400 	u32 flash_linear_addr;
4401 	/* bank size is in 16bit words - adjust to bytes */
4402 	u32 flash_bank_size = nvm->flash_bank_size * 2;
4403 	s32 ret_val;
4404 	s32 count = 0;
4405 	s32 j, iteration, sector_size;
4406 
4407 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4408 
4409 	/* Determine HW Sector size: Read BERASE bits of hw flash status
4410 	 * register
4411 	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
4412 	 *     consecutive sectors.  The start index for the nth Hw sector
4413 	 *     can be calculated as = bank * 4096 + n * 256
4414 	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4415 	 *     The start index for the nth Hw sector can be calculated
4416 	 *     as = bank * 4096
4417 	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4418 	 *     (ich9 only, otherwise error condition)
4419 	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4420 	 */
4421 	switch (hsfsts.hsf_status.berasesz) {
4422 	case 0:
4423 		/* Hw sector size 256 */
4424 		sector_size = ICH_FLASH_SEG_SIZE_256;
4425 		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4426 		break;
4427 	case 1:
4428 		sector_size = ICH_FLASH_SEG_SIZE_4K;
4429 		iteration = 1;
4430 		break;
4431 	case 2:
4432 		sector_size = ICH_FLASH_SEG_SIZE_8K;
4433 		iteration = 1;
4434 		break;
4435 	case 3:
4436 		sector_size = ICH_FLASH_SEG_SIZE_64K;
4437 		iteration = 1;
4438 		break;
4439 	default:
4440 		return -E1000_ERR_NVM;
4441 	}
4442 
4443 	/* Start with the base address, then add the sector offset. */
4444 	flash_linear_addr = hw->nvm.flash_base_addr;
4445 	flash_linear_addr += (bank) ? flash_bank_size : 0;
4446 
4447 	for (j = 0; j < iteration; j++) {
4448 		do {
4449 			u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4450 
4451 			/* Steps */
4452 			ret_val = e1000_flash_cycle_init_ich8lan(hw);
4453 			if (ret_val)
4454 				return ret_val;
4455 
4456 			/* Write a value 11 (block Erase) in Flash
4457 			 * Cycle field in hw flash control
4458 			 */
4459 			if (hw->mac.type >= e1000_pch_spt)
4460 				hsflctl.regval =
4461 				    er32flash(ICH_FLASH_HSFSTS) >> 16;
4462 			else
4463 				hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4464 
4465 			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4466 			if (hw->mac.type >= e1000_pch_spt)
4467 				ew32flash(ICH_FLASH_HSFSTS,
4468 					  hsflctl.regval << 16);
4469 			else
4470 				ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4471 
4472 			/* Write the last 24 bits of an index within the
4473 			 * block into Flash Linear address field in Flash
4474 			 * Address.
4475 			 */
4476 			flash_linear_addr += (j * sector_size);
4477 			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4478 
4479 			ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4480 			if (!ret_val)
4481 				break;
4482 
4483 			/* Check if FCERR is set to 1.  If 1,
4484 			 * clear it and try the whole sequence
4485 			 * a few more times else Done
4486 			 */
4487 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4488 			if (hsfsts.hsf_status.flcerr)
4489 				/* repeat for some time before giving up */
4490 				continue;
4491 			else if (!hsfsts.hsf_status.flcdone)
4492 				return ret_val;
4493 		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4494 	}
4495 
4496 	return 0;
4497 }
4498 
4499 /**
4500  *  e1000_valid_led_default_ich8lan - Set the default LED settings
4501  *  @hw: pointer to the HW structure
4502  *  @data: Pointer to the LED settings
4503  *
4504  *  Reads the LED default settings from the NVM to data.  If the NVM LED
4505  *  settings is all 0's or F's, set the LED default to a valid LED default
4506  *  setting.
4507  **/
4508 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4509 {
4510 	s32 ret_val;
4511 
4512 	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
4513 	if (ret_val) {
4514 		e_dbg("NVM Read Error\n");
4515 		return ret_val;
4516 	}
4517 
4518 	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4519 		*data = ID_LED_DEFAULT_ICH8LAN;
4520 
4521 	return 0;
4522 }
4523 
4524 /**
4525  *  e1000_id_led_init_pchlan - store LED configurations
4526  *  @hw: pointer to the HW structure
4527  *
4528  *  PCH does not control LEDs via the LEDCTL register, rather it uses
4529  *  the PHY LED configuration register.
4530  *
4531  *  PCH also does not have an "always on" or "always off" mode which
4532  *  complicates the ID feature.  Instead of using the "on" mode to indicate
4533  *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
4534  *  use "link_up" mode.  The LEDs will still ID on request if there is no
4535  *  link based on logic in e1000_led_[on|off]_pchlan().
4536  **/
4537 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4538 {
4539 	struct e1000_mac_info *mac = &hw->mac;
4540 	s32 ret_val;
4541 	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4542 	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4543 	u16 data, i, temp, shift;
4544 
4545 	/* Get default ID LED modes */
4546 	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4547 	if (ret_val)
4548 		return ret_val;
4549 
4550 	mac->ledctl_default = er32(LEDCTL);
4551 	mac->ledctl_mode1 = mac->ledctl_default;
4552 	mac->ledctl_mode2 = mac->ledctl_default;
4553 
4554 	for (i = 0; i < 4; i++) {
4555 		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4556 		shift = (i * 5);
4557 		switch (temp) {
4558 		case ID_LED_ON1_DEF2:
4559 		case ID_LED_ON1_ON2:
4560 		case ID_LED_ON1_OFF2:
4561 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4562 			mac->ledctl_mode1 |= (ledctl_on << shift);
4563 			break;
4564 		case ID_LED_OFF1_DEF2:
4565 		case ID_LED_OFF1_ON2:
4566 		case ID_LED_OFF1_OFF2:
4567 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4568 			mac->ledctl_mode1 |= (ledctl_off << shift);
4569 			break;
4570 		default:
4571 			/* Do nothing */
4572 			break;
4573 		}
4574 		switch (temp) {
4575 		case ID_LED_DEF1_ON2:
4576 		case ID_LED_ON1_ON2:
4577 		case ID_LED_OFF1_ON2:
4578 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4579 			mac->ledctl_mode2 |= (ledctl_on << shift);
4580 			break;
4581 		case ID_LED_DEF1_OFF2:
4582 		case ID_LED_ON1_OFF2:
4583 		case ID_LED_OFF1_OFF2:
4584 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4585 			mac->ledctl_mode2 |= (ledctl_off << shift);
4586 			break;
4587 		default:
4588 			/* Do nothing */
4589 			break;
4590 		}
4591 	}
4592 
4593 	return 0;
4594 }
4595 
4596 /**
4597  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4598  *  @hw: pointer to the HW structure
4599  *
4600  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4601  *  register, so the the bus width is hard coded.
4602  **/
4603 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4604 {
4605 	struct e1000_bus_info *bus = &hw->bus;
4606 	s32 ret_val;
4607 
4608 	ret_val = e1000e_get_bus_info_pcie(hw);
4609 
4610 	/* ICH devices are "PCI Express"-ish.  They have
4611 	 * a configuration space, but do not contain
4612 	 * PCI Express Capability registers, so bus width
4613 	 * must be hardcoded.
4614 	 */
4615 	if (bus->width == e1000_bus_width_unknown)
4616 		bus->width = e1000_bus_width_pcie_x1;
4617 
4618 	return ret_val;
4619 }
4620 
4621 /**
4622  *  e1000_reset_hw_ich8lan - Reset the hardware
4623  *  @hw: pointer to the HW structure
4624  *
4625  *  Does a full reset of the hardware which includes a reset of the PHY and
4626  *  MAC.
4627  **/
4628 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4629 {
4630 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4631 	u16 kum_cfg;
4632 	u32 ctrl, reg;
4633 	s32 ret_val;
4634 
4635 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
4636 	 * on the last TLP read/write transaction when MAC is reset.
4637 	 */
4638 	ret_val = e1000e_disable_pcie_master(hw);
4639 	if (ret_val)
4640 		e_dbg("PCI-E Master disable polling has failed.\n");
4641 
4642 	e_dbg("Masking off all interrupts\n");
4643 	ew32(IMC, 0xffffffff);
4644 
4645 	/* Disable the Transmit and Receive units.  Then delay to allow
4646 	 * any pending transactions to complete before we hit the MAC
4647 	 * with the global reset.
4648 	 */
4649 	ew32(RCTL, 0);
4650 	ew32(TCTL, E1000_TCTL_PSP);
4651 	e1e_flush();
4652 
4653 	usleep_range(10000, 11000);
4654 
4655 	/* Workaround for ICH8 bit corruption issue in FIFO memory */
4656 	if (hw->mac.type == e1000_ich8lan) {
4657 		/* Set Tx and Rx buffer allocation to 8k apiece. */
4658 		ew32(PBA, E1000_PBA_8K);
4659 		/* Set Packet Buffer Size to 16k. */
4660 		ew32(PBS, E1000_PBS_16K);
4661 	}
4662 
4663 	if (hw->mac.type == e1000_pchlan) {
4664 		/* Save the NVM K1 bit setting */
4665 		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4666 		if (ret_val)
4667 			return ret_val;
4668 
4669 		if (kum_cfg & E1000_NVM_K1_ENABLE)
4670 			dev_spec->nvm_k1_enabled = true;
4671 		else
4672 			dev_spec->nvm_k1_enabled = false;
4673 	}
4674 
4675 	ctrl = er32(CTRL);
4676 
4677 	if (!hw->phy.ops.check_reset_block(hw)) {
4678 		/* Full-chip reset requires MAC and PHY reset at the same
4679 		 * time to make sure the interface between MAC and the
4680 		 * external PHY is reset.
4681 		 */
4682 		ctrl |= E1000_CTRL_PHY_RST;
4683 
4684 		/* Gate automatic PHY configuration by hardware on
4685 		 * non-managed 82579
4686 		 */
4687 		if ((hw->mac.type == e1000_pch2lan) &&
4688 		    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
4689 			e1000_gate_hw_phy_config_ich8lan(hw, true);
4690 	}
4691 	ret_val = e1000_acquire_swflag_ich8lan(hw);
4692 	e_dbg("Issuing a global reset to ich8lan\n");
4693 	ew32(CTRL, (ctrl | E1000_CTRL_RST));
4694 	/* cannot issue a flush here because it hangs the hardware */
4695 	msleep(20);
4696 
4697 	/* Set Phy Config Counter to 50msec */
4698 	if (hw->mac.type == e1000_pch2lan) {
4699 		reg = er32(FEXTNVM3);
4700 		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4701 		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4702 		ew32(FEXTNVM3, reg);
4703 	}
4704 
4705 	if (!ret_val)
4706 		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
4707 
4708 	if (ctrl & E1000_CTRL_PHY_RST) {
4709 		ret_val = hw->phy.ops.get_cfg_done(hw);
4710 		if (ret_val)
4711 			return ret_val;
4712 
4713 		ret_val = e1000_post_phy_reset_ich8lan(hw);
4714 		if (ret_val)
4715 			return ret_val;
4716 	}
4717 
4718 	/* For PCH, this write will make sure that any noise
4719 	 * will be detected as a CRC error and be dropped rather than show up
4720 	 * as a bad packet to the DMA engine.
4721 	 */
4722 	if (hw->mac.type == e1000_pchlan)
4723 		ew32(CRC_OFFSET, 0x65656565);
4724 
4725 	ew32(IMC, 0xffffffff);
4726 	er32(ICR);
4727 
4728 	reg = er32(KABGTXD);
4729 	reg |= E1000_KABGTXD_BGSQLBIAS;
4730 	ew32(KABGTXD, reg);
4731 
4732 	return 0;
4733 }
4734 
4735 /**
4736  *  e1000_init_hw_ich8lan - Initialize the hardware
4737  *  @hw: pointer to the HW structure
4738  *
4739  *  Prepares the hardware for transmit and receive by doing the following:
4740  *   - initialize hardware bits
4741  *   - initialize LED identification
4742  *   - setup receive address registers
4743  *   - setup flow control
4744  *   - setup transmit descriptors
4745  *   - clear statistics
4746  **/
4747 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4748 {
4749 	struct e1000_mac_info *mac = &hw->mac;
4750 	u32 ctrl_ext, txdctl, snoop;
4751 	s32 ret_val;
4752 	u16 i;
4753 
4754 	e1000_initialize_hw_bits_ich8lan(hw);
4755 
4756 	/* Initialize identification LED */
4757 	ret_val = mac->ops.id_led_init(hw);
4758 	/* An error is not fatal and we should not stop init due to this */
4759 	if (ret_val)
4760 		e_dbg("Error initializing identification LED\n");
4761 
4762 	/* Setup the receive address. */
4763 	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
4764 
4765 	/* Zero out the Multicast HASH table */
4766 	e_dbg("Zeroing the MTA\n");
4767 	for (i = 0; i < mac->mta_reg_count; i++)
4768 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4769 
4770 	/* The 82578 Rx buffer will stall if wakeup is enabled in host and
4771 	 * the ME.  Disable wakeup by clearing the host wakeup bit.
4772 	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
4773 	 */
4774 	if (hw->phy.type == e1000_phy_82578) {
4775 		e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4776 		i &= ~BM_WUC_HOST_WU_BIT;
4777 		e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4778 		ret_val = e1000_phy_hw_reset_ich8lan(hw);
4779 		if (ret_val)
4780 			return ret_val;
4781 	}
4782 
4783 	/* Setup link and flow control */
4784 	ret_val = mac->ops.setup_link(hw);
4785 
4786 	/* Set the transmit descriptor write-back policy for both queues */
4787 	txdctl = er32(TXDCTL(0));
4788 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4789 		  E1000_TXDCTL_FULL_TX_DESC_WB);
4790 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4791 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4792 	ew32(TXDCTL(0), txdctl);
4793 	txdctl = er32(TXDCTL(1));
4794 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4795 		  E1000_TXDCTL_FULL_TX_DESC_WB);
4796 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4797 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4798 	ew32(TXDCTL(1), txdctl);
4799 
4800 	/* ICH8 has opposite polarity of no_snoop bits.
4801 	 * By default, we should use snoop behavior.
4802 	 */
4803 	if (mac->type == e1000_ich8lan)
4804 		snoop = PCIE_ICH8_SNOOP_ALL;
4805 	else
4806 		snoop = (u32)~(PCIE_NO_SNOOP_ALL);
4807 	e1000e_set_pcie_no_snoop(hw, snoop);
4808 
4809 	ctrl_ext = er32(CTRL_EXT);
4810 	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4811 	ew32(CTRL_EXT, ctrl_ext);
4812 
4813 	/* Clear all of the statistics registers (clear on read).  It is
4814 	 * important that we do this after we have tried to establish link
4815 	 * because the symbol error count will increment wildly if there
4816 	 * is no link.
4817 	 */
4818 	e1000_clear_hw_cntrs_ich8lan(hw);
4819 
4820 	return ret_val;
4821 }
4822 
4823 /**
4824  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4825  *  @hw: pointer to the HW structure
4826  *
4827  *  Sets/Clears required hardware bits necessary for correctly setting up the
4828  *  hardware for transmit and receive.
4829  **/
4830 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4831 {
4832 	u32 reg;
4833 
4834 	/* Extended Device Control */
4835 	reg = er32(CTRL_EXT);
4836 	reg |= BIT(22);
4837 	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
4838 	if (hw->mac.type >= e1000_pchlan)
4839 		reg |= E1000_CTRL_EXT_PHYPDEN;
4840 	ew32(CTRL_EXT, reg);
4841 
4842 	/* Transmit Descriptor Control 0 */
4843 	reg = er32(TXDCTL(0));
4844 	reg |= BIT(22);
4845 	ew32(TXDCTL(0), reg);
4846 
4847 	/* Transmit Descriptor Control 1 */
4848 	reg = er32(TXDCTL(1));
4849 	reg |= BIT(22);
4850 	ew32(TXDCTL(1), reg);
4851 
4852 	/* Transmit Arbitration Control 0 */
4853 	reg = er32(TARC(0));
4854 	if (hw->mac.type == e1000_ich8lan)
4855 		reg |= BIT(28) | BIT(29);
4856 	reg |= BIT(23) | BIT(24) | BIT(26) | BIT(27);
4857 	ew32(TARC(0), reg);
4858 
4859 	/* Transmit Arbitration Control 1 */
4860 	reg = er32(TARC(1));
4861 	if (er32(TCTL) & E1000_TCTL_MULR)
4862 		reg &= ~BIT(28);
4863 	else
4864 		reg |= BIT(28);
4865 	reg |= BIT(24) | BIT(26) | BIT(30);
4866 	ew32(TARC(1), reg);
4867 
4868 	/* Device Status */
4869 	if (hw->mac.type == e1000_ich8lan) {
4870 		reg = er32(STATUS);
4871 		reg &= ~BIT(31);
4872 		ew32(STATUS, reg);
4873 	}
4874 
4875 	/* work-around descriptor data corruption issue during nfs v2 udp
4876 	 * traffic, just disable the nfs filtering capability
4877 	 */
4878 	reg = er32(RFCTL);
4879 	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
4880 
4881 	/* Disable IPv6 extension header parsing because some malformed
4882 	 * IPv6 headers can hang the Rx.
4883 	 */
4884 	if (hw->mac.type == e1000_ich8lan)
4885 		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
4886 	ew32(RFCTL, reg);
4887 
4888 	/* Enable ECC on Lynxpoint */
4889 	if (hw->mac.type >= e1000_pch_lpt) {
4890 		reg = er32(PBECCSTS);
4891 		reg |= E1000_PBECCSTS_ECC_ENABLE;
4892 		ew32(PBECCSTS, reg);
4893 
4894 		reg = er32(CTRL);
4895 		reg |= E1000_CTRL_MEHE;
4896 		ew32(CTRL, reg);
4897 	}
4898 }
4899 
4900 /**
4901  *  e1000_setup_link_ich8lan - Setup flow control and link settings
4902  *  @hw: pointer to the HW structure
4903  *
4904  *  Determines which flow control settings to use, then configures flow
4905  *  control.  Calls the appropriate media-specific link configuration
4906  *  function.  Assuming the adapter has a valid link partner, a valid link
4907  *  should be established.  Assumes the hardware has previously been reset
4908  *  and the transmitter and receiver are not enabled.
4909  **/
4910 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
4911 {
4912 	s32 ret_val;
4913 
4914 	if (hw->phy.ops.check_reset_block(hw))
4915 		return 0;
4916 
4917 	/* ICH parts do not have a word in the NVM to determine
4918 	 * the default flow control setting, so we explicitly
4919 	 * set it to full.
4920 	 */
4921 	if (hw->fc.requested_mode == e1000_fc_default) {
4922 		/* Workaround h/w hang when Tx flow control enabled */
4923 		if (hw->mac.type == e1000_pchlan)
4924 			hw->fc.requested_mode = e1000_fc_rx_pause;
4925 		else
4926 			hw->fc.requested_mode = e1000_fc_full;
4927 	}
4928 
4929 	/* Save off the requested flow control mode for use later.  Depending
4930 	 * on the link partner's capabilities, we may or may not use this mode.
4931 	 */
4932 	hw->fc.current_mode = hw->fc.requested_mode;
4933 
4934 	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
4935 
4936 	/* Continue to configure the copper link. */
4937 	ret_val = hw->mac.ops.setup_physical_interface(hw);
4938 	if (ret_val)
4939 		return ret_val;
4940 
4941 	ew32(FCTTV, hw->fc.pause_time);
4942 	if ((hw->phy.type == e1000_phy_82578) ||
4943 	    (hw->phy.type == e1000_phy_82579) ||
4944 	    (hw->phy.type == e1000_phy_i217) ||
4945 	    (hw->phy.type == e1000_phy_82577)) {
4946 		ew32(FCRTV_PCH, hw->fc.refresh_time);
4947 
4948 		ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
4949 				   hw->fc.pause_time);
4950 		if (ret_val)
4951 			return ret_val;
4952 	}
4953 
4954 	return e1000e_set_fc_watermarks(hw);
4955 }
4956 
4957 /**
4958  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
4959  *  @hw: pointer to the HW structure
4960  *
4961  *  Configures the kumeran interface to the PHY to wait the appropriate time
4962  *  when polling the PHY, then call the generic setup_copper_link to finish
4963  *  configuring the copper link.
4964  **/
4965 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
4966 {
4967 	u32 ctrl;
4968 	s32 ret_val;
4969 	u16 reg_data;
4970 
4971 	ctrl = er32(CTRL);
4972 	ctrl |= E1000_CTRL_SLU;
4973 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
4974 	ew32(CTRL, ctrl);
4975 
4976 	/* Set the mac to wait the maximum time between each iteration
4977 	 * and increase the max iterations when polling the phy;
4978 	 * this fixes erroneous timeouts at 10Mbps.
4979 	 */
4980 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
4981 	if (ret_val)
4982 		return ret_val;
4983 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
4984 				       &reg_data);
4985 	if (ret_val)
4986 		return ret_val;
4987 	reg_data |= 0x3F;
4988 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
4989 					reg_data);
4990 	if (ret_val)
4991 		return ret_val;
4992 
4993 	switch (hw->phy.type) {
4994 	case e1000_phy_igp_3:
4995 		ret_val = e1000e_copper_link_setup_igp(hw);
4996 		if (ret_val)
4997 			return ret_val;
4998 		break;
4999 	case e1000_phy_bm:
5000 	case e1000_phy_82578:
5001 		ret_val = e1000e_copper_link_setup_m88(hw);
5002 		if (ret_val)
5003 			return ret_val;
5004 		break;
5005 	case e1000_phy_82577:
5006 	case e1000_phy_82579:
5007 		ret_val = e1000_copper_link_setup_82577(hw);
5008 		if (ret_val)
5009 			return ret_val;
5010 		break;
5011 	case e1000_phy_ife:
5012 		ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
5013 		if (ret_val)
5014 			return ret_val;
5015 
5016 		reg_data &= ~IFE_PMC_AUTO_MDIX;
5017 
5018 		switch (hw->phy.mdix) {
5019 		case 1:
5020 			reg_data &= ~IFE_PMC_FORCE_MDIX;
5021 			break;
5022 		case 2:
5023 			reg_data |= IFE_PMC_FORCE_MDIX;
5024 			break;
5025 		case 0:
5026 		default:
5027 			reg_data |= IFE_PMC_AUTO_MDIX;
5028 			break;
5029 		}
5030 		ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
5031 		if (ret_val)
5032 			return ret_val;
5033 		break;
5034 	default:
5035 		break;
5036 	}
5037 
5038 	return e1000e_setup_copper_link(hw);
5039 }
5040 
5041 /**
5042  *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5043  *  @hw: pointer to the HW structure
5044  *
5045  *  Calls the PHY specific link setup function and then calls the
5046  *  generic setup_copper_link to finish configuring the link for
5047  *  Lynxpoint PCH devices
5048  **/
5049 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5050 {
5051 	u32 ctrl;
5052 	s32 ret_val;
5053 
5054 	ctrl = er32(CTRL);
5055 	ctrl |= E1000_CTRL_SLU;
5056 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5057 	ew32(CTRL, ctrl);
5058 
5059 	ret_val = e1000_copper_link_setup_82577(hw);
5060 	if (ret_val)
5061 		return ret_val;
5062 
5063 	return e1000e_setup_copper_link(hw);
5064 }
5065 
5066 /**
5067  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5068  *  @hw: pointer to the HW structure
5069  *  @speed: pointer to store current link speed
5070  *  @duplex: pointer to store the current link duplex
5071  *
5072  *  Calls the generic get_speed_and_duplex to retrieve the current link
5073  *  information and then calls the Kumeran lock loss workaround for links at
5074  *  gigabit speeds.
5075  **/
5076 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5077 					  u16 *duplex)
5078 {
5079 	s32 ret_val;
5080 
5081 	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
5082 	if (ret_val)
5083 		return ret_val;
5084 
5085 	if ((hw->mac.type == e1000_ich8lan) &&
5086 	    (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
5087 		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5088 	}
5089 
5090 	return ret_val;
5091 }
5092 
5093 /**
5094  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5095  *  @hw: pointer to the HW structure
5096  *
5097  *  Work-around for 82566 Kumeran PCS lock loss:
5098  *  On link status change (i.e. PCI reset, speed change) and link is up and
5099  *  speed is gigabit-
5100  *    0) if workaround is optionally disabled do nothing
5101  *    1) wait 1ms for Kumeran link to come up
5102  *    2) check Kumeran Diagnostic register PCS lock loss bit
5103  *    3) if not set the link is locked (all is good), otherwise...
5104  *    4) reset the PHY
5105  *    5) repeat up to 10 times
5106  *  Note: this is only called for IGP3 copper when speed is 1gb.
5107  **/
5108 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5109 {
5110 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5111 	u32 phy_ctrl;
5112 	s32 ret_val;
5113 	u16 i, data;
5114 	bool link;
5115 
5116 	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5117 		return 0;
5118 
5119 	/* Make sure link is up before proceeding.  If not just return.
5120 	 * Attempting this while link is negotiating fouled up link
5121 	 * stability
5122 	 */
5123 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
5124 	if (!link)
5125 		return 0;
5126 
5127 	for (i = 0; i < 10; i++) {
5128 		/* read once to clear */
5129 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5130 		if (ret_val)
5131 			return ret_val;
5132 		/* and again to get new status */
5133 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5134 		if (ret_val)
5135 			return ret_val;
5136 
5137 		/* check for PCS lock */
5138 		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5139 			return 0;
5140 
5141 		/* Issue PHY reset */
5142 		e1000_phy_hw_reset(hw);
5143 		mdelay(5);
5144 	}
5145 	/* Disable GigE link negotiation */
5146 	phy_ctrl = er32(PHY_CTRL);
5147 	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5148 		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5149 	ew32(PHY_CTRL, phy_ctrl);
5150 
5151 	/* Call gig speed drop workaround on Gig disable before accessing
5152 	 * any PHY registers
5153 	 */
5154 	e1000e_gig_downshift_workaround_ich8lan(hw);
5155 
5156 	/* unable to acquire PCS lock */
5157 	return -E1000_ERR_PHY;
5158 }
5159 
5160 /**
5161  *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5162  *  @hw: pointer to the HW structure
5163  *  @state: boolean value used to set the current Kumeran workaround state
5164  *
5165  *  If ICH8, set the current Kumeran workaround state (enabled - true
5166  *  /disabled - false).
5167  **/
5168 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5169 						  bool state)
5170 {
5171 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5172 
5173 	if (hw->mac.type != e1000_ich8lan) {
5174 		e_dbg("Workaround applies to ICH8 only.\n");
5175 		return;
5176 	}
5177 
5178 	dev_spec->kmrn_lock_loss_workaround_enabled = state;
5179 }
5180 
5181 /**
5182  *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5183  *  @hw: pointer to the HW structure
5184  *
5185  *  Workaround for 82566 power-down on D3 entry:
5186  *    1) disable gigabit link
5187  *    2) write VR power-down enable
5188  *    3) read it back
5189  *  Continue if successful, else issue LCD reset and repeat
5190  **/
5191 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5192 {
5193 	u32 reg;
5194 	u16 data;
5195 	u8 retry = 0;
5196 
5197 	if (hw->phy.type != e1000_phy_igp_3)
5198 		return;
5199 
5200 	/* Try the workaround twice (if needed) */
5201 	do {
5202 		/* Disable link */
5203 		reg = er32(PHY_CTRL);
5204 		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5205 			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5206 		ew32(PHY_CTRL, reg);
5207 
5208 		/* Call gig speed drop workaround on Gig disable before
5209 		 * accessing any PHY registers
5210 		 */
5211 		if (hw->mac.type == e1000_ich8lan)
5212 			e1000e_gig_downshift_workaround_ich8lan(hw);
5213 
5214 		/* Write VR power-down enable */
5215 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5216 		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5217 		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5218 
5219 		/* Read it back and test */
5220 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5221 		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5222 		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5223 			break;
5224 
5225 		/* Issue PHY reset and repeat at most one more time */
5226 		reg = er32(CTRL);
5227 		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
5228 		retry++;
5229 	} while (retry);
5230 }
5231 
5232 /**
5233  *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5234  *  @hw: pointer to the HW structure
5235  *
5236  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5237  *  LPLU, Gig disable, MDIC PHY reset):
5238  *    1) Set Kumeran Near-end loopback
5239  *    2) Clear Kumeran Near-end loopback
5240  *  Should only be called for ICH8[m] devices with any 1G Phy.
5241  **/
5242 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5243 {
5244 	s32 ret_val;
5245 	u16 reg_data;
5246 
5247 	if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
5248 		return;
5249 
5250 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5251 				       &reg_data);
5252 	if (ret_val)
5253 		return;
5254 	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5255 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5256 					reg_data);
5257 	if (ret_val)
5258 		return;
5259 	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5260 	e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
5261 }
5262 
5263 /**
5264  *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5265  *  @hw: pointer to the HW structure
5266  *
5267  *  During S0 to Sx transition, it is possible the link remains at gig
5268  *  instead of negotiating to a lower speed.  Before going to Sx, set
5269  *  'Gig Disable' to force link speed negotiation to a lower speed based on
5270  *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
5271  *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5272  *  needs to be written.
5273  *  Parts that support (and are linked to a partner which support) EEE in
5274  *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5275  *  than 10Mbps w/o EEE.
5276  **/
5277 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5278 {
5279 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5280 	u32 phy_ctrl;
5281 	s32 ret_val;
5282 
5283 	phy_ctrl = er32(PHY_CTRL);
5284 	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5285 
5286 	if (hw->phy.type == e1000_phy_i217) {
5287 		u16 phy_reg, device_id = hw->adapter->pdev->device;
5288 
5289 		if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5290 		    (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5291 		    (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5292 		    (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5293 		    (hw->mac.type >= e1000_pch_spt)) {
5294 			u32 fextnvm6 = er32(FEXTNVM6);
5295 
5296 			ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5297 		}
5298 
5299 		ret_val = hw->phy.ops.acquire(hw);
5300 		if (ret_val)
5301 			goto out;
5302 
5303 		if (!dev_spec->eee_disable) {
5304 			u16 eee_advert;
5305 
5306 			ret_val =
5307 			    e1000_read_emi_reg_locked(hw,
5308 						      I217_EEE_ADVERTISEMENT,
5309 						      &eee_advert);
5310 			if (ret_val)
5311 				goto release;
5312 
5313 			/* Disable LPLU if both link partners support 100BaseT
5314 			 * EEE and 100Full is advertised on both ends of the
5315 			 * link, and enable Auto Enable LPI since there will
5316 			 * be no driver to enable LPI while in Sx.
5317 			 */
5318 			if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5319 			    (dev_spec->eee_lp_ability &
5320 			     I82579_EEE_100_SUPPORTED) &&
5321 			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5322 				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5323 					      E1000_PHY_CTRL_NOND0A_LPLU);
5324 
5325 				/* Set Auto Enable LPI after link up */
5326 				e1e_rphy_locked(hw,
5327 						I217_LPI_GPIO_CTRL, &phy_reg);
5328 				phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5329 				e1e_wphy_locked(hw,
5330 						I217_LPI_GPIO_CTRL, phy_reg);
5331 			}
5332 		}
5333 
5334 		/* For i217 Intel Rapid Start Technology support,
5335 		 * when the system is going into Sx and no manageability engine
5336 		 * is present, the driver must configure proxy to reset only on
5337 		 * power good.  LPI (Low Power Idle) state must also reset only
5338 		 * on power good, as well as the MTA (Multicast table array).
5339 		 * The SMBus release must also be disabled on LCD reset.
5340 		 */
5341 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5342 			/* Enable proxy to reset only on power good. */
5343 			e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
5344 			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5345 			e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
5346 
5347 			/* Set bit enable LPI (EEE) to reset only on
5348 			 * power good.
5349 			 */
5350 			e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
5351 			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5352 			e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
5353 
5354 			/* Disable the SMB release on LCD reset. */
5355 			e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5356 			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5357 			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5358 		}
5359 
5360 		/* Enable MTA to reset for Intel Rapid Start Technology
5361 		 * Support
5362 		 */
5363 		e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5364 		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5365 		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5366 
5367 release:
5368 		hw->phy.ops.release(hw);
5369 	}
5370 out:
5371 	ew32(PHY_CTRL, phy_ctrl);
5372 
5373 	if (hw->mac.type == e1000_ich8lan)
5374 		e1000e_gig_downshift_workaround_ich8lan(hw);
5375 
5376 	if (hw->mac.type >= e1000_pchlan) {
5377 		e1000_oem_bits_config_ich8lan(hw, false);
5378 
5379 		/* Reset PHY to activate OEM bits on 82577/8 */
5380 		if (hw->mac.type == e1000_pchlan)
5381 			e1000e_phy_hw_reset_generic(hw);
5382 
5383 		ret_val = hw->phy.ops.acquire(hw);
5384 		if (ret_val)
5385 			return;
5386 		e1000_write_smbus_addr(hw);
5387 		hw->phy.ops.release(hw);
5388 	}
5389 }
5390 
5391 /**
5392  *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5393  *  @hw: pointer to the HW structure
5394  *
5395  *  During Sx to S0 transitions on non-managed devices or managed devices
5396  *  on which PHY resets are not blocked, if the PHY registers cannot be
5397  *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
5398  *  the PHY.
5399  *  On i217, setup Intel Rapid Start Technology.
5400  **/
5401 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5402 {
5403 	s32 ret_val;
5404 
5405 	if (hw->mac.type < e1000_pch2lan)
5406 		return;
5407 
5408 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
5409 	if (ret_val) {
5410 		e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
5411 		return;
5412 	}
5413 
5414 	/* For i217 Intel Rapid Start Technology support when the system
5415 	 * is transitioning from Sx and no manageability engine is present
5416 	 * configure SMBus to restore on reset, disable proxy, and enable
5417 	 * the reset on MTA (Multicast table array).
5418 	 */
5419 	if (hw->phy.type == e1000_phy_i217) {
5420 		u16 phy_reg;
5421 
5422 		ret_val = hw->phy.ops.acquire(hw);
5423 		if (ret_val) {
5424 			e_dbg("Failed to setup iRST\n");
5425 			return;
5426 		}
5427 
5428 		/* Clear Auto Enable LPI after link up */
5429 		e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5430 		phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5431 		e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5432 
5433 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5434 			/* Restore clear on SMB if no manageability engine
5435 			 * is present
5436 			 */
5437 			ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5438 			if (ret_val)
5439 				goto release;
5440 			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5441 			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5442 
5443 			/* Disable Proxy */
5444 			e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
5445 		}
5446 		/* Enable reset on MTA */
5447 		ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5448 		if (ret_val)
5449 			goto release;
5450 		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5451 		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5452 release:
5453 		if (ret_val)
5454 			e_dbg("Error %d in resume workarounds\n", ret_val);
5455 		hw->phy.ops.release(hw);
5456 	}
5457 }
5458 
5459 /**
5460  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
5461  *  @hw: pointer to the HW structure
5462  *
5463  *  Return the LED back to the default configuration.
5464  **/
5465 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5466 {
5467 	if (hw->phy.type == e1000_phy_ife)
5468 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
5469 
5470 	ew32(LEDCTL, hw->mac.ledctl_default);
5471 	return 0;
5472 }
5473 
5474 /**
5475  *  e1000_led_on_ich8lan - Turn LEDs on
5476  *  @hw: pointer to the HW structure
5477  *
5478  *  Turn on the LEDs.
5479  **/
5480 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5481 {
5482 	if (hw->phy.type == e1000_phy_ife)
5483 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5484 				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5485 
5486 	ew32(LEDCTL, hw->mac.ledctl_mode2);
5487 	return 0;
5488 }
5489 
5490 /**
5491  *  e1000_led_off_ich8lan - Turn LEDs off
5492  *  @hw: pointer to the HW structure
5493  *
5494  *  Turn off the LEDs.
5495  **/
5496 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5497 {
5498 	if (hw->phy.type == e1000_phy_ife)
5499 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5500 				(IFE_PSCL_PROBE_MODE |
5501 				 IFE_PSCL_PROBE_LEDS_OFF));
5502 
5503 	ew32(LEDCTL, hw->mac.ledctl_mode1);
5504 	return 0;
5505 }
5506 
5507 /**
5508  *  e1000_setup_led_pchlan - Configures SW controllable LED
5509  *  @hw: pointer to the HW structure
5510  *
5511  *  This prepares the SW controllable LED for use.
5512  **/
5513 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5514 {
5515 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
5516 }
5517 
5518 /**
5519  *  e1000_cleanup_led_pchlan - Restore the default LED operation
5520  *  @hw: pointer to the HW structure
5521  *
5522  *  Return the LED back to the default configuration.
5523  **/
5524 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5525 {
5526 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
5527 }
5528 
5529 /**
5530  *  e1000_led_on_pchlan - Turn LEDs on
5531  *  @hw: pointer to the HW structure
5532  *
5533  *  Turn on the LEDs.
5534  **/
5535 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5536 {
5537 	u16 data = (u16)hw->mac.ledctl_mode2;
5538 	u32 i, led;
5539 
5540 	/* If no link, then turn LED on by setting the invert bit
5541 	 * for each LED that's mode is "link_up" in ledctl_mode2.
5542 	 */
5543 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5544 		for (i = 0; i < 3; i++) {
5545 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5546 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5547 			    E1000_LEDCTL_MODE_LINK_UP)
5548 				continue;
5549 			if (led & E1000_PHY_LED0_IVRT)
5550 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5551 			else
5552 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5553 		}
5554 	}
5555 
5556 	return e1e_wphy(hw, HV_LED_CONFIG, data);
5557 }
5558 
5559 /**
5560  *  e1000_led_off_pchlan - Turn LEDs off
5561  *  @hw: pointer to the HW structure
5562  *
5563  *  Turn off the LEDs.
5564  **/
5565 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5566 {
5567 	u16 data = (u16)hw->mac.ledctl_mode1;
5568 	u32 i, led;
5569 
5570 	/* If no link, then turn LED off by clearing the invert bit
5571 	 * for each LED that's mode is "link_up" in ledctl_mode1.
5572 	 */
5573 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5574 		for (i = 0; i < 3; i++) {
5575 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5576 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5577 			    E1000_LEDCTL_MODE_LINK_UP)
5578 				continue;
5579 			if (led & E1000_PHY_LED0_IVRT)
5580 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5581 			else
5582 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5583 		}
5584 	}
5585 
5586 	return e1e_wphy(hw, HV_LED_CONFIG, data);
5587 }
5588 
5589 /**
5590  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5591  *  @hw: pointer to the HW structure
5592  *
5593  *  Read appropriate register for the config done bit for completion status
5594  *  and configure the PHY through s/w for EEPROM-less parts.
5595  *
5596  *  NOTE: some silicon which is EEPROM-less will fail trying to read the
5597  *  config done bit, so only an error is logged and continues.  If we were
5598  *  to return with error, EEPROM-less silicon would not be able to be reset
5599  *  or change link.
5600  **/
5601 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5602 {
5603 	s32 ret_val = 0;
5604 	u32 bank = 0;
5605 	u32 status;
5606 
5607 	e1000e_get_cfg_done_generic(hw);
5608 
5609 	/* Wait for indication from h/w that it has completed basic config */
5610 	if (hw->mac.type >= e1000_ich10lan) {
5611 		e1000_lan_init_done_ich8lan(hw);
5612 	} else {
5613 		ret_val = e1000e_get_auto_rd_done(hw);
5614 		if (ret_val) {
5615 			/* When auto config read does not complete, do not
5616 			 * return with an error. This can happen in situations
5617 			 * where there is no eeprom and prevents getting link.
5618 			 */
5619 			e_dbg("Auto Read Done did not complete\n");
5620 			ret_val = 0;
5621 		}
5622 	}
5623 
5624 	/* Clear PHY Reset Asserted bit */
5625 	status = er32(STATUS);
5626 	if (status & E1000_STATUS_PHYRA)
5627 		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
5628 	else
5629 		e_dbg("PHY Reset Asserted not set - needs delay\n");
5630 
5631 	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
5632 	if (hw->mac.type <= e1000_ich9lan) {
5633 		if (!(er32(EECD) & E1000_EECD_PRES) &&
5634 		    (hw->phy.type == e1000_phy_igp_3)) {
5635 			e1000e_phy_init_script_igp3(hw);
5636 		}
5637 	} else {
5638 		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5639 			/* Maybe we should do a basic PHY config */
5640 			e_dbg("EEPROM not present\n");
5641 			ret_val = -E1000_ERR_CONFIG;
5642 		}
5643 	}
5644 
5645 	return ret_val;
5646 }
5647 
5648 /**
5649  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5650  * @hw: pointer to the HW structure
5651  *
5652  * In the case of a PHY power down to save power, or to turn off link during a
5653  * driver unload, or wake on lan is not enabled, remove the link.
5654  **/
5655 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5656 {
5657 	/* If the management interface is not enabled, then power down */
5658 	if (!(hw->mac.ops.check_mng_mode(hw) ||
5659 	      hw->phy.ops.check_reset_block(hw)))
5660 		e1000_power_down_phy_copper(hw);
5661 }
5662 
5663 /**
5664  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5665  *  @hw: pointer to the HW structure
5666  *
5667  *  Clears hardware counters specific to the silicon family and calls
5668  *  clear_hw_cntrs_generic to clear all general purpose counters.
5669  **/
5670 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5671 {
5672 	u16 phy_data;
5673 	s32 ret_val;
5674 
5675 	e1000e_clear_hw_cntrs_base(hw);
5676 
5677 	er32(ALGNERRC);
5678 	er32(RXERRC);
5679 	er32(TNCRS);
5680 	er32(CEXTERR);
5681 	er32(TSCTC);
5682 	er32(TSCTFC);
5683 
5684 	er32(MGTPRC);
5685 	er32(MGTPDC);
5686 	er32(MGTPTC);
5687 
5688 	er32(IAC);
5689 	er32(ICRXOC);
5690 
5691 	/* Clear PHY statistics registers */
5692 	if ((hw->phy.type == e1000_phy_82578) ||
5693 	    (hw->phy.type == e1000_phy_82579) ||
5694 	    (hw->phy.type == e1000_phy_i217) ||
5695 	    (hw->phy.type == e1000_phy_82577)) {
5696 		ret_val = hw->phy.ops.acquire(hw);
5697 		if (ret_val)
5698 			return;
5699 		ret_val = hw->phy.ops.set_page(hw,
5700 					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
5701 		if (ret_val)
5702 			goto release;
5703 		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5704 		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5705 		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5706 		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5707 		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5708 		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5709 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5710 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5711 		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5712 		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5713 		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5714 		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5715 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5716 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5717 release:
5718 		hw->phy.ops.release(hw);
5719 	}
5720 }
5721 
5722 static const struct e1000_mac_operations ich8_mac_ops = {
5723 	/* check_mng_mode dependent on mac type */
5724 	.check_for_link		= e1000_check_for_copper_link_ich8lan,
5725 	/* cleanup_led dependent on mac type */
5726 	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
5727 	.get_bus_info		= e1000_get_bus_info_ich8lan,
5728 	.set_lan_id		= e1000_set_lan_id_single_port,
5729 	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
5730 	/* led_on dependent on mac type */
5731 	/* led_off dependent on mac type */
5732 	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
5733 	.reset_hw		= e1000_reset_hw_ich8lan,
5734 	.init_hw		= e1000_init_hw_ich8lan,
5735 	.setup_link		= e1000_setup_link_ich8lan,
5736 	.setup_physical_interface = e1000_setup_copper_link_ich8lan,
5737 	/* id_led_init dependent on mac type */
5738 	.config_collision_dist	= e1000e_config_collision_dist_generic,
5739 	.rar_set		= e1000e_rar_set_generic,
5740 	.rar_get_count		= e1000e_rar_get_count_generic,
5741 };
5742 
5743 static const struct e1000_phy_operations ich8_phy_ops = {
5744 	.acquire		= e1000_acquire_swflag_ich8lan,
5745 	.check_reset_block	= e1000_check_reset_block_ich8lan,
5746 	.commit			= NULL,
5747 	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
5748 	.get_cable_length	= e1000e_get_cable_length_igp_2,
5749 	.read_reg		= e1000e_read_phy_reg_igp,
5750 	.release		= e1000_release_swflag_ich8lan,
5751 	.reset			= e1000_phy_hw_reset_ich8lan,
5752 	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
5753 	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
5754 	.write_reg		= e1000e_write_phy_reg_igp,
5755 };
5756 
5757 static const struct e1000_nvm_operations ich8_nvm_ops = {
5758 	.acquire		= e1000_acquire_nvm_ich8lan,
5759 	.read			= e1000_read_nvm_ich8lan,
5760 	.release		= e1000_release_nvm_ich8lan,
5761 	.reload			= e1000e_reload_nvm_generic,
5762 	.update			= e1000_update_nvm_checksum_ich8lan,
5763 	.valid_led_default	= e1000_valid_led_default_ich8lan,
5764 	.validate		= e1000_validate_nvm_checksum_ich8lan,
5765 	.write			= e1000_write_nvm_ich8lan,
5766 };
5767 
5768 static const struct e1000_nvm_operations spt_nvm_ops = {
5769 	.acquire		= e1000_acquire_nvm_ich8lan,
5770 	.release		= e1000_release_nvm_ich8lan,
5771 	.read			= e1000_read_nvm_spt,
5772 	.update			= e1000_update_nvm_checksum_spt,
5773 	.reload			= e1000e_reload_nvm_generic,
5774 	.valid_led_default	= e1000_valid_led_default_ich8lan,
5775 	.validate		= e1000_validate_nvm_checksum_ich8lan,
5776 	.write			= e1000_write_nvm_ich8lan,
5777 };
5778 
5779 const struct e1000_info e1000_ich8_info = {
5780 	.mac			= e1000_ich8lan,
5781 	.flags			= FLAG_HAS_WOL
5782 				  | FLAG_IS_ICH
5783 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5784 				  | FLAG_HAS_AMT
5785 				  | FLAG_HAS_FLASH
5786 				  | FLAG_APME_IN_WUC,
5787 	.pba			= 8,
5788 	.max_hw_frame_size	= VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
5789 	.get_variants		= e1000_get_variants_ich8lan,
5790 	.mac_ops		= &ich8_mac_ops,
5791 	.phy_ops		= &ich8_phy_ops,
5792 	.nvm_ops		= &ich8_nvm_ops,
5793 };
5794 
5795 const struct e1000_info e1000_ich9_info = {
5796 	.mac			= e1000_ich9lan,
5797 	.flags			= FLAG_HAS_JUMBO_FRAMES
5798 				  | FLAG_IS_ICH
5799 				  | FLAG_HAS_WOL
5800 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5801 				  | FLAG_HAS_AMT
5802 				  | FLAG_HAS_FLASH
5803 				  | FLAG_APME_IN_WUC,
5804 	.pba			= 18,
5805 	.max_hw_frame_size	= DEFAULT_JUMBO,
5806 	.get_variants		= e1000_get_variants_ich8lan,
5807 	.mac_ops		= &ich8_mac_ops,
5808 	.phy_ops		= &ich8_phy_ops,
5809 	.nvm_ops		= &ich8_nvm_ops,
5810 };
5811 
5812 const struct e1000_info e1000_ich10_info = {
5813 	.mac			= e1000_ich10lan,
5814 	.flags			= FLAG_HAS_JUMBO_FRAMES
5815 				  | FLAG_IS_ICH
5816 				  | FLAG_HAS_WOL
5817 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5818 				  | FLAG_HAS_AMT
5819 				  | FLAG_HAS_FLASH
5820 				  | FLAG_APME_IN_WUC,
5821 	.pba			= 18,
5822 	.max_hw_frame_size	= DEFAULT_JUMBO,
5823 	.get_variants		= e1000_get_variants_ich8lan,
5824 	.mac_ops		= &ich8_mac_ops,
5825 	.phy_ops		= &ich8_phy_ops,
5826 	.nvm_ops		= &ich8_nvm_ops,
5827 };
5828 
5829 const struct e1000_info e1000_pch_info = {
5830 	.mac			= e1000_pchlan,
5831 	.flags			= FLAG_IS_ICH
5832 				  | FLAG_HAS_WOL
5833 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5834 				  | FLAG_HAS_AMT
5835 				  | FLAG_HAS_FLASH
5836 				  | FLAG_HAS_JUMBO_FRAMES
5837 				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
5838 				  | FLAG_APME_IN_WUC,
5839 	.flags2			= FLAG2_HAS_PHY_STATS,
5840 	.pba			= 26,
5841 	.max_hw_frame_size	= 4096,
5842 	.get_variants		= e1000_get_variants_ich8lan,
5843 	.mac_ops		= &ich8_mac_ops,
5844 	.phy_ops		= &ich8_phy_ops,
5845 	.nvm_ops		= &ich8_nvm_ops,
5846 };
5847 
5848 const struct e1000_info e1000_pch2_info = {
5849 	.mac			= e1000_pch2lan,
5850 	.flags			= FLAG_IS_ICH
5851 				  | FLAG_HAS_WOL
5852 				  | FLAG_HAS_HW_TIMESTAMP
5853 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5854 				  | FLAG_HAS_AMT
5855 				  | FLAG_HAS_FLASH
5856 				  | FLAG_HAS_JUMBO_FRAMES
5857 				  | FLAG_APME_IN_WUC,
5858 	.flags2			= FLAG2_HAS_PHY_STATS
5859 				  | FLAG2_HAS_EEE
5860 				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
5861 	.pba			= 26,
5862 	.max_hw_frame_size	= 9022,
5863 	.get_variants		= e1000_get_variants_ich8lan,
5864 	.mac_ops		= &ich8_mac_ops,
5865 	.phy_ops		= &ich8_phy_ops,
5866 	.nvm_ops		= &ich8_nvm_ops,
5867 };
5868 
5869 const struct e1000_info e1000_pch_lpt_info = {
5870 	.mac			= e1000_pch_lpt,
5871 	.flags			= FLAG_IS_ICH
5872 				  | FLAG_HAS_WOL
5873 				  | FLAG_HAS_HW_TIMESTAMP
5874 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5875 				  | FLAG_HAS_AMT
5876 				  | FLAG_HAS_FLASH
5877 				  | FLAG_HAS_JUMBO_FRAMES
5878 				  | FLAG_APME_IN_WUC,
5879 	.flags2			= FLAG2_HAS_PHY_STATS
5880 				  | FLAG2_HAS_EEE
5881 				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
5882 	.pba			= 26,
5883 	.max_hw_frame_size	= 9022,
5884 	.get_variants		= e1000_get_variants_ich8lan,
5885 	.mac_ops		= &ich8_mac_ops,
5886 	.phy_ops		= &ich8_phy_ops,
5887 	.nvm_ops		= &ich8_nvm_ops,
5888 };
5889 
5890 const struct e1000_info e1000_pch_spt_info = {
5891 	.mac			= e1000_pch_spt,
5892 	.flags			= FLAG_IS_ICH
5893 				  | FLAG_HAS_WOL
5894 				  | FLAG_HAS_HW_TIMESTAMP
5895 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5896 				  | FLAG_HAS_AMT
5897 				  | FLAG_HAS_FLASH
5898 				  | FLAG_HAS_JUMBO_FRAMES
5899 				  | FLAG_APME_IN_WUC,
5900 	.flags2			= FLAG2_HAS_PHY_STATS
5901 				  | FLAG2_HAS_EEE,
5902 	.pba			= 26,
5903 	.max_hw_frame_size	= 9022,
5904 	.get_variants		= e1000_get_variants_ich8lan,
5905 	.mac_ops		= &ich8_mac_ops,
5906 	.phy_ops		= &ich8_phy_ops,
5907 	.nvm_ops		= &spt_nvm_ops,
5908 };
5909 
5910 const struct e1000_info e1000_pch_cnp_info = {
5911 	.mac			= e1000_pch_cnp,
5912 	.flags			= FLAG_IS_ICH
5913 				  | FLAG_HAS_WOL
5914 				  | FLAG_HAS_HW_TIMESTAMP
5915 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5916 				  | FLAG_HAS_AMT
5917 				  | FLAG_HAS_FLASH
5918 				  | FLAG_HAS_JUMBO_FRAMES
5919 				  | FLAG_APME_IN_WUC,
5920 	.flags2			= FLAG2_HAS_PHY_STATS
5921 				  | FLAG2_HAS_EEE,
5922 	.pba			= 26,
5923 	.max_hw_frame_size	= 9022,
5924 	.get_variants		= e1000_get_variants_ich8lan,
5925 	.mac_ops		= &ich8_mac_ops,
5926 	.phy_ops		= &ich8_phy_ops,
5927 	.nvm_ops		= &spt_nvm_ops,
5928 };
5929