1 /* Intel PRO/1000 Linux driver
2  * Copyright(c) 1999 - 2014 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * The full GNU General Public License is included in this distribution in
14  * the file called "COPYING".
15  *
16  * Contact Information:
17  * Linux NICS <linux.nics@intel.com>
18  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
20  */
21 
22 /* 82562G 10/100 Network Connection
23  * 82562G-2 10/100 Network Connection
24  * 82562GT 10/100 Network Connection
25  * 82562GT-2 10/100 Network Connection
26  * 82562V 10/100 Network Connection
27  * 82562V-2 10/100 Network Connection
28  * 82566DC-2 Gigabit Network Connection
29  * 82566DC Gigabit Network Connection
30  * 82566DM-2 Gigabit Network Connection
31  * 82566DM Gigabit Network Connection
32  * 82566MC Gigabit Network Connection
33  * 82566MM Gigabit Network Connection
34  * 82567LM Gigabit Network Connection
35  * 82567LF Gigabit Network Connection
36  * 82567V Gigabit Network Connection
37  * 82567LM-2 Gigabit Network Connection
38  * 82567LF-2 Gigabit Network Connection
39  * 82567V-2 Gigabit Network Connection
40  * 82567LF-3 Gigabit Network Connection
41  * 82567LM-3 Gigabit Network Connection
42  * 82567LM-4 Gigabit Network Connection
43  * 82577LM Gigabit Network Connection
44  * 82577LC Gigabit Network Connection
45  * 82578DM Gigabit Network Connection
46  * 82578DC Gigabit Network Connection
47  * 82579LM Gigabit Network Connection
48  * 82579V Gigabit Network Connection
49  * Ethernet Connection I217-LM
50  * Ethernet Connection I217-V
51  * Ethernet Connection I218-V
52  * Ethernet Connection I218-LM
53  * Ethernet Connection (2) I218-LM
54  * Ethernet Connection (2) I218-V
55  * Ethernet Connection (3) I218-LM
56  * Ethernet Connection (3) I218-V
57  */
58 
59 #include "e1000.h"
60 
61 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
62 /* Offset 04h HSFSTS */
63 union ich8_hws_flash_status {
64 	struct ich8_hsfsts {
65 		u16 flcdone:1;	/* bit 0 Flash Cycle Done */
66 		u16 flcerr:1;	/* bit 1 Flash Cycle Error */
67 		u16 dael:1;	/* bit 2 Direct Access error Log */
68 		u16 berasesz:2;	/* bit 4:3 Sector Erase Size */
69 		u16 flcinprog:1;	/* bit 5 flash cycle in Progress */
70 		u16 reserved1:2;	/* bit 13:6 Reserved */
71 		u16 reserved2:6;	/* bit 13:6 Reserved */
72 		u16 fldesvalid:1;	/* bit 14 Flash Descriptor Valid */
73 		u16 flockdn:1;	/* bit 15 Flash Config Lock-Down */
74 	} hsf_status;
75 	u16 regval;
76 };
77 
78 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
79 /* Offset 06h FLCTL */
80 union ich8_hws_flash_ctrl {
81 	struct ich8_hsflctl {
82 		u16 flcgo:1;	/* 0 Flash Cycle Go */
83 		u16 flcycle:2;	/* 2:1 Flash Cycle */
84 		u16 reserved:5;	/* 7:3 Reserved  */
85 		u16 fldbcount:2;	/* 9:8 Flash Data Byte Count */
86 		u16 flockdn:6;	/* 15:10 Reserved */
87 	} hsf_ctrl;
88 	u16 regval;
89 };
90 
91 /* ICH Flash Region Access Permissions */
92 union ich8_hws_flash_regacc {
93 	struct ich8_flracc {
94 		u32 grra:8;	/* 0:7 GbE region Read Access */
95 		u32 grwa:8;	/* 8:15 GbE region Write Access */
96 		u32 gmrag:8;	/* 23:16 GbE Master Read Access Grant */
97 		u32 gmwag:8;	/* 31:24 GbE Master Write Access Grant */
98 	} hsf_flregacc;
99 	u16 regval;
100 };
101 
102 /* ICH Flash Protected Region */
103 union ich8_flash_protected_range {
104 	struct ich8_pr {
105 		u32 base:13;	/* 0:12 Protected Range Base */
106 		u32 reserved1:2;	/* 13:14 Reserved */
107 		u32 rpe:1;	/* 15 Read Protection Enable */
108 		u32 limit:13;	/* 16:28 Protected Range Limit */
109 		u32 reserved2:2;	/* 29:30 Reserved */
110 		u32 wpe:1;	/* 31 Write Protection Enable */
111 	} range;
112 	u32 regval;
113 };
114 
115 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
116 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
117 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
118 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
119 						u32 offset, u8 byte);
120 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
121 					 u8 *data);
122 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
123 					 u16 *data);
124 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
125 					 u8 size, u16 *data);
126 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
127 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
128 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
129 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
130 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
131 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
132 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
133 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
134 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
135 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
136 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
137 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
138 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
139 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
140 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
141 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
142 static void e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
143 static void e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
144 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
145 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
146 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
147 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
148 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
149 
150 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
151 {
152 	return readw(hw->flash_address + reg);
153 }
154 
155 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
156 {
157 	return readl(hw->flash_address + reg);
158 }
159 
160 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
161 {
162 	writew(val, hw->flash_address + reg);
163 }
164 
165 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
166 {
167 	writel(val, hw->flash_address + reg);
168 }
169 
170 #define er16flash(reg)		__er16flash(hw, (reg))
171 #define er32flash(reg)		__er32flash(hw, (reg))
172 #define ew16flash(reg, val)	__ew16flash(hw, (reg), (val))
173 #define ew32flash(reg, val)	__ew32flash(hw, (reg), (val))
174 
175 /**
176  *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
177  *  @hw: pointer to the HW structure
178  *
179  *  Test access to the PHY registers by reading the PHY ID registers.  If
180  *  the PHY ID is already known (e.g. resume path) compare it with known ID,
181  *  otherwise assume the read PHY ID is correct if it is valid.
182  *
183  *  Assumes the sw/fw/hw semaphore is already acquired.
184  **/
185 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
186 {
187 	u16 phy_reg = 0;
188 	u32 phy_id = 0;
189 	s32 ret_val;
190 	u16 retry_count;
191 	u32 mac_reg = 0;
192 
193 	for (retry_count = 0; retry_count < 2; retry_count++) {
194 		ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
195 		if (ret_val || (phy_reg == 0xFFFF))
196 			continue;
197 		phy_id = (u32)(phy_reg << 16);
198 
199 		ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
200 		if (ret_val || (phy_reg == 0xFFFF)) {
201 			phy_id = 0;
202 			continue;
203 		}
204 		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
205 		break;
206 	}
207 
208 	if (hw->phy.id) {
209 		if (hw->phy.id == phy_id)
210 			goto out;
211 	} else if (phy_id) {
212 		hw->phy.id = phy_id;
213 		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
214 		goto out;
215 	}
216 
217 	/* In case the PHY needs to be in mdio slow mode,
218 	 * set slow mode and try to get the PHY id again.
219 	 */
220 	hw->phy.ops.release(hw);
221 	ret_val = e1000_set_mdio_slow_mode_hv(hw);
222 	if (!ret_val)
223 		ret_val = e1000e_get_phy_id(hw);
224 	hw->phy.ops.acquire(hw);
225 
226 	if (ret_val)
227 		return false;
228 out:
229 	if (hw->mac.type == e1000_pch_lpt) {
230 		/* Unforce SMBus mode in PHY */
231 		e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
232 		phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
233 		e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
234 
235 		/* Unforce SMBus mode in MAC */
236 		mac_reg = er32(CTRL_EXT);
237 		mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
238 		ew32(CTRL_EXT, mac_reg);
239 	}
240 
241 	return true;
242 }
243 
244 /**
245  *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
246  *  @hw: pointer to the HW structure
247  *
248  *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
249  *  used to reset the PHY to a quiescent state when necessary.
250  **/
251 static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
252 {
253 	u32 mac_reg;
254 
255 	/* Set Phy Config Counter to 50msec */
256 	mac_reg = er32(FEXTNVM3);
257 	mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
258 	mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
259 	ew32(FEXTNVM3, mac_reg);
260 
261 	/* Toggle LANPHYPC Value bit */
262 	mac_reg = er32(CTRL);
263 	mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
264 	mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
265 	ew32(CTRL, mac_reg);
266 	e1e_flush();
267 	usleep_range(10, 20);
268 	mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
269 	ew32(CTRL, mac_reg);
270 	e1e_flush();
271 
272 	if (hw->mac.type < e1000_pch_lpt) {
273 		msleep(50);
274 	} else {
275 		u16 count = 20;
276 
277 		do {
278 			usleep_range(5000, 10000);
279 		} while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
280 
281 		msleep(30);
282 	}
283 }
284 
285 /**
286  *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
287  *  @hw: pointer to the HW structure
288  *
289  *  Workarounds/flow necessary for PHY initialization during driver load
290  *  and resume paths.
291  **/
292 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
293 {
294 	struct e1000_adapter *adapter = hw->adapter;
295 	u32 mac_reg, fwsm = er32(FWSM);
296 	s32 ret_val;
297 
298 	/* Gate automatic PHY configuration by hardware on managed and
299 	 * non-managed 82579 and newer adapters.
300 	 */
301 	e1000_gate_hw_phy_config_ich8lan(hw, true);
302 
303 	/* It is not possible to be certain of the current state of ULP
304 	 * so forcibly disable it.
305 	 */
306 	hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
307 	e1000_disable_ulp_lpt_lp(hw, true);
308 
309 	ret_val = hw->phy.ops.acquire(hw);
310 	if (ret_val) {
311 		e_dbg("Failed to initialize PHY flow\n");
312 		goto out;
313 	}
314 
315 	/* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
316 	 * inaccessible and resetting the PHY is not blocked, toggle the
317 	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
318 	 */
319 	switch (hw->mac.type) {
320 	case e1000_pch_lpt:
321 		if (e1000_phy_is_accessible_pchlan(hw))
322 			break;
323 
324 		/* Before toggling LANPHYPC, see if PHY is accessible by
325 		 * forcing MAC to SMBus mode first.
326 		 */
327 		mac_reg = er32(CTRL_EXT);
328 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
329 		ew32(CTRL_EXT, mac_reg);
330 
331 		/* Wait 50 milliseconds for MAC to finish any retries
332 		 * that it might be trying to perform from previous
333 		 * attempts to acknowledge any phy read requests.
334 		 */
335 		msleep(50);
336 
337 		/* fall-through */
338 	case e1000_pch2lan:
339 		if (e1000_phy_is_accessible_pchlan(hw))
340 			break;
341 
342 		/* fall-through */
343 	case e1000_pchlan:
344 		if ((hw->mac.type == e1000_pchlan) &&
345 		    (fwsm & E1000_ICH_FWSM_FW_VALID))
346 			break;
347 
348 		if (hw->phy.ops.check_reset_block(hw)) {
349 			e_dbg("Required LANPHYPC toggle blocked by ME\n");
350 			ret_val = -E1000_ERR_PHY;
351 			break;
352 		}
353 
354 		/* Toggle LANPHYPC Value bit */
355 		e1000_toggle_lanphypc_pch_lpt(hw);
356 		if (hw->mac.type >= e1000_pch_lpt) {
357 			if (e1000_phy_is_accessible_pchlan(hw))
358 				break;
359 
360 			/* Toggling LANPHYPC brings the PHY out of SMBus mode
361 			 * so ensure that the MAC is also out of SMBus mode
362 			 */
363 			mac_reg = er32(CTRL_EXT);
364 			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
365 			ew32(CTRL_EXT, mac_reg);
366 
367 			if (e1000_phy_is_accessible_pchlan(hw))
368 				break;
369 
370 			ret_val = -E1000_ERR_PHY;
371 		}
372 		break;
373 	default:
374 		break;
375 	}
376 
377 	hw->phy.ops.release(hw);
378 	if (!ret_val) {
379 
380 		/* Check to see if able to reset PHY.  Print error if not */
381 		if (hw->phy.ops.check_reset_block(hw)) {
382 			e_err("Reset blocked by ME\n");
383 			goto out;
384 		}
385 
386 		/* Reset the PHY before any access to it.  Doing so, ensures
387 		 * that the PHY is in a known good state before we read/write
388 		 * PHY registers.  The generic reset is sufficient here,
389 		 * because we haven't determined the PHY type yet.
390 		 */
391 		ret_val = e1000e_phy_hw_reset_generic(hw);
392 		if (ret_val)
393 			goto out;
394 
395 		/* On a successful reset, possibly need to wait for the PHY
396 		 * to quiesce to an accessible state before returning control
397 		 * to the calling function.  If the PHY does not quiesce, then
398 		 * return E1000E_BLK_PHY_RESET, as this is the condition that
399 		 *  the PHY is in.
400 		 */
401 		ret_val = hw->phy.ops.check_reset_block(hw);
402 		if (ret_val)
403 			e_err("ME blocked access to PHY after reset\n");
404 	}
405 
406 out:
407 	/* Ungate automatic PHY configuration on non-managed 82579 */
408 	if ((hw->mac.type == e1000_pch2lan) &&
409 	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
410 		usleep_range(10000, 20000);
411 		e1000_gate_hw_phy_config_ich8lan(hw, false);
412 	}
413 
414 	return ret_val;
415 }
416 
417 /**
418  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
419  *  @hw: pointer to the HW structure
420  *
421  *  Initialize family-specific PHY parameters and function pointers.
422  **/
423 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
424 {
425 	struct e1000_phy_info *phy = &hw->phy;
426 	s32 ret_val;
427 
428 	phy->addr = 1;
429 	phy->reset_delay_us = 100;
430 
431 	phy->ops.set_page = e1000_set_page_igp;
432 	phy->ops.read_reg = e1000_read_phy_reg_hv;
433 	phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
434 	phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
435 	phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
436 	phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
437 	phy->ops.write_reg = e1000_write_phy_reg_hv;
438 	phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
439 	phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
440 	phy->ops.power_up = e1000_power_up_phy_copper;
441 	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
442 	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
443 
444 	phy->id = e1000_phy_unknown;
445 
446 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
447 	if (ret_val)
448 		return ret_val;
449 
450 	if (phy->id == e1000_phy_unknown)
451 		switch (hw->mac.type) {
452 		default:
453 			ret_val = e1000e_get_phy_id(hw);
454 			if (ret_val)
455 				return ret_val;
456 			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
457 				break;
458 			/* fall-through */
459 		case e1000_pch2lan:
460 		case e1000_pch_lpt:
461 			/* In case the PHY needs to be in mdio slow mode,
462 			 * set slow mode and try to get the PHY id again.
463 			 */
464 			ret_val = e1000_set_mdio_slow_mode_hv(hw);
465 			if (ret_val)
466 				return ret_val;
467 			ret_val = e1000e_get_phy_id(hw);
468 			if (ret_val)
469 				return ret_val;
470 			break;
471 		}
472 	phy->type = e1000e_get_phy_type_from_id(phy->id);
473 
474 	switch (phy->type) {
475 	case e1000_phy_82577:
476 	case e1000_phy_82579:
477 	case e1000_phy_i217:
478 		phy->ops.check_polarity = e1000_check_polarity_82577;
479 		phy->ops.force_speed_duplex =
480 		    e1000_phy_force_speed_duplex_82577;
481 		phy->ops.get_cable_length = e1000_get_cable_length_82577;
482 		phy->ops.get_info = e1000_get_phy_info_82577;
483 		phy->ops.commit = e1000e_phy_sw_reset;
484 		break;
485 	case e1000_phy_82578:
486 		phy->ops.check_polarity = e1000_check_polarity_m88;
487 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
488 		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
489 		phy->ops.get_info = e1000e_get_phy_info_m88;
490 		break;
491 	default:
492 		ret_val = -E1000_ERR_PHY;
493 		break;
494 	}
495 
496 	return ret_val;
497 }
498 
499 /**
500  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
501  *  @hw: pointer to the HW structure
502  *
503  *  Initialize family-specific PHY parameters and function pointers.
504  **/
505 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
506 {
507 	struct e1000_phy_info *phy = &hw->phy;
508 	s32 ret_val;
509 	u16 i = 0;
510 
511 	phy->addr = 1;
512 	phy->reset_delay_us = 100;
513 
514 	phy->ops.power_up = e1000_power_up_phy_copper;
515 	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
516 
517 	/* We may need to do this twice - once for IGP and if that fails,
518 	 * we'll set BM func pointers and try again
519 	 */
520 	ret_val = e1000e_determine_phy_address(hw);
521 	if (ret_val) {
522 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
523 		phy->ops.read_reg = e1000e_read_phy_reg_bm;
524 		ret_val = e1000e_determine_phy_address(hw);
525 		if (ret_val) {
526 			e_dbg("Cannot determine PHY addr. Erroring out\n");
527 			return ret_val;
528 		}
529 	}
530 
531 	phy->id = 0;
532 	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
533 	       (i++ < 100)) {
534 		usleep_range(1000, 2000);
535 		ret_val = e1000e_get_phy_id(hw);
536 		if (ret_val)
537 			return ret_val;
538 	}
539 
540 	/* Verify phy id */
541 	switch (phy->id) {
542 	case IGP03E1000_E_PHY_ID:
543 		phy->type = e1000_phy_igp_3;
544 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
545 		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
546 		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
547 		phy->ops.get_info = e1000e_get_phy_info_igp;
548 		phy->ops.check_polarity = e1000_check_polarity_igp;
549 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
550 		break;
551 	case IFE_E_PHY_ID:
552 	case IFE_PLUS_E_PHY_ID:
553 	case IFE_C_E_PHY_ID:
554 		phy->type = e1000_phy_ife;
555 		phy->autoneg_mask = E1000_ALL_NOT_GIG;
556 		phy->ops.get_info = e1000_get_phy_info_ife;
557 		phy->ops.check_polarity = e1000_check_polarity_ife;
558 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
559 		break;
560 	case BME1000_E_PHY_ID:
561 		phy->type = e1000_phy_bm;
562 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
563 		phy->ops.read_reg = e1000e_read_phy_reg_bm;
564 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
565 		phy->ops.commit = e1000e_phy_sw_reset;
566 		phy->ops.get_info = e1000e_get_phy_info_m88;
567 		phy->ops.check_polarity = e1000_check_polarity_m88;
568 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
569 		break;
570 	default:
571 		return -E1000_ERR_PHY;
572 		break;
573 	}
574 
575 	return 0;
576 }
577 
578 /**
579  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
580  *  @hw: pointer to the HW structure
581  *
582  *  Initialize family-specific NVM parameters and function
583  *  pointers.
584  **/
585 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
586 {
587 	struct e1000_nvm_info *nvm = &hw->nvm;
588 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
589 	u32 gfpreg, sector_base_addr, sector_end_addr;
590 	u16 i;
591 
592 	/* Can't read flash registers if the register set isn't mapped. */
593 	if (!hw->flash_address) {
594 		e_dbg("ERROR: Flash registers not mapped\n");
595 		return -E1000_ERR_CONFIG;
596 	}
597 
598 	nvm->type = e1000_nvm_flash_sw;
599 
600 	gfpreg = er32flash(ICH_FLASH_GFPREG);
601 
602 	/* sector_X_addr is a "sector"-aligned address (4096 bytes)
603 	 * Add 1 to sector_end_addr since this sector is included in
604 	 * the overall size.
605 	 */
606 	sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
607 	sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
608 
609 	/* flash_base_addr is byte-aligned */
610 	nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
611 
612 	/* find total size of the NVM, then cut in half since the total
613 	 * size represents two separate NVM banks.
614 	 */
615 	nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
616 				<< FLASH_SECTOR_ADDR_SHIFT);
617 	nvm->flash_bank_size /= 2;
618 	/* Adjust to word count */
619 	nvm->flash_bank_size /= sizeof(u16);
620 
621 	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
622 
623 	/* Clear shadow ram */
624 	for (i = 0; i < nvm->word_size; i++) {
625 		dev_spec->shadow_ram[i].modified = false;
626 		dev_spec->shadow_ram[i].value = 0xFFFF;
627 	}
628 
629 	return 0;
630 }
631 
632 /**
633  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
634  *  @hw: pointer to the HW structure
635  *
636  *  Initialize family-specific MAC parameters and function
637  *  pointers.
638  **/
639 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
640 {
641 	struct e1000_mac_info *mac = &hw->mac;
642 
643 	/* Set media type function pointer */
644 	hw->phy.media_type = e1000_media_type_copper;
645 
646 	/* Set mta register count */
647 	mac->mta_reg_count = 32;
648 	/* Set rar entry count */
649 	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
650 	if (mac->type == e1000_ich8lan)
651 		mac->rar_entry_count--;
652 	/* FWSM register */
653 	mac->has_fwsm = true;
654 	/* ARC subsystem not supported */
655 	mac->arc_subsystem_valid = false;
656 	/* Adaptive IFS supported */
657 	mac->adaptive_ifs = true;
658 
659 	/* LED and other operations */
660 	switch (mac->type) {
661 	case e1000_ich8lan:
662 	case e1000_ich9lan:
663 	case e1000_ich10lan:
664 		/* check management mode */
665 		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
666 		/* ID LED init */
667 		mac->ops.id_led_init = e1000e_id_led_init_generic;
668 		/* blink LED */
669 		mac->ops.blink_led = e1000e_blink_led_generic;
670 		/* setup LED */
671 		mac->ops.setup_led = e1000e_setup_led_generic;
672 		/* cleanup LED */
673 		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
674 		/* turn on/off LED */
675 		mac->ops.led_on = e1000_led_on_ich8lan;
676 		mac->ops.led_off = e1000_led_off_ich8lan;
677 		break;
678 	case e1000_pch2lan:
679 		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
680 		mac->ops.rar_set = e1000_rar_set_pch2lan;
681 		/* fall-through */
682 	case e1000_pch_lpt:
683 	case e1000_pchlan:
684 		/* check management mode */
685 		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
686 		/* ID LED init */
687 		mac->ops.id_led_init = e1000_id_led_init_pchlan;
688 		/* setup LED */
689 		mac->ops.setup_led = e1000_setup_led_pchlan;
690 		/* cleanup LED */
691 		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
692 		/* turn on/off LED */
693 		mac->ops.led_on = e1000_led_on_pchlan;
694 		mac->ops.led_off = e1000_led_off_pchlan;
695 		break;
696 	default:
697 		break;
698 	}
699 
700 	if (mac->type == e1000_pch_lpt) {
701 		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
702 		mac->ops.rar_set = e1000_rar_set_pch_lpt;
703 		mac->ops.setup_physical_interface =
704 		    e1000_setup_copper_link_pch_lpt;
705 	}
706 
707 	/* Enable PCS Lock-loss workaround for ICH8 */
708 	if (mac->type == e1000_ich8lan)
709 		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
710 
711 	return 0;
712 }
713 
714 /**
715  *  __e1000_access_emi_reg_locked - Read/write EMI register
716  *  @hw: pointer to the HW structure
717  *  @addr: EMI address to program
718  *  @data: pointer to value to read/write from/to the EMI address
719  *  @read: boolean flag to indicate read or write
720  *
721  *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
722  **/
723 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
724 					 u16 *data, bool read)
725 {
726 	s32 ret_val;
727 
728 	ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
729 	if (ret_val)
730 		return ret_val;
731 
732 	if (read)
733 		ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
734 	else
735 		ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
736 
737 	return ret_val;
738 }
739 
740 /**
741  *  e1000_read_emi_reg_locked - Read Extended Management Interface register
742  *  @hw: pointer to the HW structure
743  *  @addr: EMI address to program
744  *  @data: value to be read from the EMI address
745  *
746  *  Assumes the SW/FW/HW Semaphore is already acquired.
747  **/
748 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
749 {
750 	return __e1000_access_emi_reg_locked(hw, addr, data, true);
751 }
752 
753 /**
754  *  e1000_write_emi_reg_locked - Write Extended Management Interface register
755  *  @hw: pointer to the HW structure
756  *  @addr: EMI address to program
757  *  @data: value to be written to the EMI address
758  *
759  *  Assumes the SW/FW/HW Semaphore is already acquired.
760  **/
761 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
762 {
763 	return __e1000_access_emi_reg_locked(hw, addr, &data, false);
764 }
765 
766 /**
767  *  e1000_set_eee_pchlan - Enable/disable EEE support
768  *  @hw: pointer to the HW structure
769  *
770  *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
771  *  the link and the EEE capabilities of the link partner.  The LPI Control
772  *  register bits will remain set only if/when link is up.
773  *
774  *  EEE LPI must not be asserted earlier than one second after link is up.
775  *  On 82579, EEE LPI should not be enabled until such time otherwise there
776  *  can be link issues with some switches.  Other devices can have EEE LPI
777  *  enabled immediately upon link up since they have a timer in hardware which
778  *  prevents LPI from being asserted too early.
779  **/
780 s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
781 {
782 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
783 	s32 ret_val;
784 	u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
785 
786 	switch (hw->phy.type) {
787 	case e1000_phy_82579:
788 		lpa = I82579_EEE_LP_ABILITY;
789 		pcs_status = I82579_EEE_PCS_STATUS;
790 		adv_addr = I82579_EEE_ADVERTISEMENT;
791 		break;
792 	case e1000_phy_i217:
793 		lpa = I217_EEE_LP_ABILITY;
794 		pcs_status = I217_EEE_PCS_STATUS;
795 		adv_addr = I217_EEE_ADVERTISEMENT;
796 		break;
797 	default:
798 		return 0;
799 	}
800 
801 	ret_val = hw->phy.ops.acquire(hw);
802 	if (ret_val)
803 		return ret_val;
804 
805 	ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
806 	if (ret_val)
807 		goto release;
808 
809 	/* Clear bits that enable EEE in various speeds */
810 	lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
811 
812 	/* Enable EEE if not disabled by user */
813 	if (!dev_spec->eee_disable) {
814 		/* Save off link partner's EEE ability */
815 		ret_val = e1000_read_emi_reg_locked(hw, lpa,
816 						    &dev_spec->eee_lp_ability);
817 		if (ret_val)
818 			goto release;
819 
820 		/* Read EEE advertisement */
821 		ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
822 		if (ret_val)
823 			goto release;
824 
825 		/* Enable EEE only for speeds in which the link partner is
826 		 * EEE capable and for which we advertise EEE.
827 		 */
828 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
829 			lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
830 
831 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
832 			e1e_rphy_locked(hw, MII_LPA, &data);
833 			if (data & LPA_100FULL)
834 				lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
835 			else
836 				/* EEE is not supported in 100Half, so ignore
837 				 * partner's EEE in 100 ability if full-duplex
838 				 * is not advertised.
839 				 */
840 				dev_spec->eee_lp_ability &=
841 				    ~I82579_EEE_100_SUPPORTED;
842 		}
843 	}
844 
845 	/* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
846 	ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
847 	if (ret_val)
848 		goto release;
849 
850 	ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
851 release:
852 	hw->phy.ops.release(hw);
853 
854 	return ret_val;
855 }
856 
857 /**
858  *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
859  *  @hw:   pointer to the HW structure
860  *  @link: link up bool flag
861  *
862  *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
863  *  preventing further DMA write requests.  Workaround the issue by disabling
864  *  the de-assertion of the clock request when in 1Gpbs mode.
865  *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
866  *  speeds in order to avoid Tx hangs.
867  **/
868 static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
869 {
870 	u32 fextnvm6 = er32(FEXTNVM6);
871 	u32 status = er32(STATUS);
872 	s32 ret_val = 0;
873 	u16 reg;
874 
875 	if (link && (status & E1000_STATUS_SPEED_1000)) {
876 		ret_val = hw->phy.ops.acquire(hw);
877 		if (ret_val)
878 			return ret_val;
879 
880 		ret_val =
881 		    e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
882 						&reg);
883 		if (ret_val)
884 			goto release;
885 
886 		ret_val =
887 		    e1000e_write_kmrn_reg_locked(hw,
888 						 E1000_KMRNCTRLSTA_K1_CONFIG,
889 						 reg &
890 						 ~E1000_KMRNCTRLSTA_K1_ENABLE);
891 		if (ret_val)
892 			goto release;
893 
894 		usleep_range(10, 20);
895 
896 		ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
897 
898 		ret_val =
899 		    e1000e_write_kmrn_reg_locked(hw,
900 						 E1000_KMRNCTRLSTA_K1_CONFIG,
901 						 reg);
902 release:
903 		hw->phy.ops.release(hw);
904 	} else {
905 		/* clear FEXTNVM6 bit 8 on link down or 10/100 */
906 		fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
907 
908 		if (!link || ((status & E1000_STATUS_SPEED_100) &&
909 			      (status & E1000_STATUS_FD)))
910 			goto update_fextnvm6;
911 
912 		ret_val = e1e_rphy(hw, I217_INBAND_CTRL, &reg);
913 		if (ret_val)
914 			return ret_val;
915 
916 		/* Clear link status transmit timeout */
917 		reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
918 
919 		if (status & E1000_STATUS_SPEED_100) {
920 			/* Set inband Tx timeout to 5x10us for 100Half */
921 			reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
922 
923 			/* Do not extend the K1 entry latency for 100Half */
924 			fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
925 		} else {
926 			/* Set inband Tx timeout to 50x10us for 10Full/Half */
927 			reg |= 50 <<
928 			    I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
929 
930 			/* Extend the K1 entry latency for 10 Mbps */
931 			fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
932 		}
933 
934 		ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
935 		if (ret_val)
936 			return ret_val;
937 
938 update_fextnvm6:
939 		ew32(FEXTNVM6, fextnvm6);
940 	}
941 
942 	return ret_val;
943 }
944 
945 /**
946  *  e1000_platform_pm_pch_lpt - Set platform power management values
947  *  @hw: pointer to the HW structure
948  *  @link: bool indicating link status
949  *
950  *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
951  *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
952  *  when link is up (which must not exceed the maximum latency supported
953  *  by the platform), otherwise specify there is no LTR requirement.
954  *  Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
955  *  latencies in the LTR Extended Capability Structure in the PCIe Extended
956  *  Capability register set, on this device LTR is set by writing the
957  *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
958  *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
959  *  message to the PMC.
960  **/
961 static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
962 {
963 	u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
964 	    link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
965 	u16 lat_enc = 0;	/* latency encoded */
966 
967 	if (link) {
968 		u16 speed, duplex, scale = 0;
969 		u16 max_snoop, max_nosnoop;
970 		u16 max_ltr_enc;	/* max LTR latency encoded */
971 		s64 lat_ns;	/* latency (ns) */
972 		s64 value;
973 		u32 rxa;
974 
975 		if (!hw->adapter->max_frame_size) {
976 			e_dbg("max_frame_size not set.\n");
977 			return -E1000_ERR_CONFIG;
978 		}
979 
980 		hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
981 		if (!speed) {
982 			e_dbg("Speed not set.\n");
983 			return -E1000_ERR_CONFIG;
984 		}
985 
986 		/* Rx Packet Buffer Allocation size (KB) */
987 		rxa = er32(PBA) & E1000_PBA_RXA_MASK;
988 
989 		/* Determine the maximum latency tolerated by the device.
990 		 *
991 		 * Per the PCIe spec, the tolerated latencies are encoded as
992 		 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
993 		 * a 10-bit value (0-1023) to provide a range from 1 ns to
994 		 * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
995 		 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
996 		 */
997 		lat_ns = ((s64)rxa * 1024 -
998 			  (2 * (s64)hw->adapter->max_frame_size)) * 8 * 1000;
999 		if (lat_ns < 0)
1000 			lat_ns = 0;
1001 		else
1002 			do_div(lat_ns, speed);
1003 
1004 		value = lat_ns;
1005 		while (value > PCI_LTR_VALUE_MASK) {
1006 			scale++;
1007 			value = DIV_ROUND_UP(value, (1 << 5));
1008 		}
1009 		if (scale > E1000_LTRV_SCALE_MAX) {
1010 			e_dbg("Invalid LTR latency scale %d\n", scale);
1011 			return -E1000_ERR_CONFIG;
1012 		}
1013 		lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1014 
1015 		/* Determine the maximum latency tolerated by the platform */
1016 		pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1017 				     &max_snoop);
1018 		pci_read_config_word(hw->adapter->pdev,
1019 				     E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1020 		max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1021 
1022 		if (lat_enc > max_ltr_enc)
1023 			lat_enc = max_ltr_enc;
1024 	}
1025 
1026 	/* Set Snoop and No-Snoop latencies the same */
1027 	reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1028 	ew32(LTRV, reg);
1029 
1030 	return 0;
1031 }
1032 
1033 /**
1034  *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1035  *  @hw: pointer to the HW structure
1036  *  @to_sx: boolean indicating a system power state transition to Sx
1037  *
1038  *  When link is down, configure ULP mode to significantly reduce the power
1039  *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1040  *  ME firmware to start the ULP configuration.  If not on an ME enabled
1041  *  system, configure the ULP mode by software.
1042  */
1043 s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1044 {
1045 	u32 mac_reg;
1046 	s32 ret_val = 0;
1047 	u16 phy_reg;
1048 
1049 	if ((hw->mac.type < e1000_pch_lpt) ||
1050 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1051 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1052 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1053 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1054 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1055 		return 0;
1056 
1057 	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1058 		/* Request ME configure ULP mode in the PHY */
1059 		mac_reg = er32(H2ME);
1060 		mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1061 		ew32(H2ME, mac_reg);
1062 
1063 		goto out;
1064 	}
1065 
1066 	if (!to_sx) {
1067 		int i = 0;
1068 
1069 		/* Poll up to 5 seconds for Cable Disconnected indication */
1070 		while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1071 			/* Bail if link is re-acquired */
1072 			if (er32(STATUS) & E1000_STATUS_LU)
1073 				return -E1000_ERR_PHY;
1074 
1075 			if (i++ == 100)
1076 				break;
1077 
1078 			msleep(50);
1079 		}
1080 		e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1081 		      (er32(FEXT) &
1082 		       E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1083 	}
1084 
1085 	ret_val = hw->phy.ops.acquire(hw);
1086 	if (ret_val)
1087 		goto out;
1088 
1089 	/* Force SMBus mode in PHY */
1090 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1091 	if (ret_val)
1092 		goto release;
1093 	phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1094 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1095 
1096 	/* Force SMBus mode in MAC */
1097 	mac_reg = er32(CTRL_EXT);
1098 	mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1099 	ew32(CTRL_EXT, mac_reg);
1100 
1101 	/* Set Inband ULP Exit, Reset to SMBus mode and
1102 	 * Disable SMBus Release on PERST# in PHY
1103 	 */
1104 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1105 	if (ret_val)
1106 		goto release;
1107 	phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1108 		    I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1109 	if (to_sx) {
1110 		if (er32(WUFC) & E1000_WUFC_LNKC)
1111 			phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1112 
1113 		phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1114 	} else {
1115 		phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1116 	}
1117 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1118 
1119 	/* Set Disable SMBus Release on PERST# in MAC */
1120 	mac_reg = er32(FEXTNVM7);
1121 	mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1122 	ew32(FEXTNVM7, mac_reg);
1123 
1124 	/* Commit ULP changes in PHY by starting auto ULP configuration */
1125 	phy_reg |= I218_ULP_CONFIG1_START;
1126 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1127 release:
1128 	hw->phy.ops.release(hw);
1129 out:
1130 	if (ret_val)
1131 		e_dbg("Error in ULP enable flow: %d\n", ret_val);
1132 	else
1133 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1134 
1135 	return ret_val;
1136 }
1137 
1138 /**
1139  *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1140  *  @hw: pointer to the HW structure
1141  *  @force: boolean indicating whether or not to force disabling ULP
1142  *
1143  *  Un-configure ULP mode when link is up, the system is transitioned from
1144  *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1145  *  system, poll for an indication from ME that ULP has been un-configured.
1146  *  If not on an ME enabled system, un-configure the ULP mode by software.
1147  *
1148  *  During nominal operation, this function is called when link is acquired
1149  *  to disable ULP mode (force=false); otherwise, for example when unloading
1150  *  the driver or during Sx->S0 transitions, this is called with force=true
1151  *  to forcibly disable ULP.
1152  */
1153 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1154 {
1155 	s32 ret_val = 0;
1156 	u32 mac_reg;
1157 	u16 phy_reg;
1158 	int i = 0;
1159 
1160 	if ((hw->mac.type < e1000_pch_lpt) ||
1161 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1162 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1163 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1164 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1165 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1166 		return 0;
1167 
1168 	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1169 		if (force) {
1170 			/* Request ME un-configure ULP mode in the PHY */
1171 			mac_reg = er32(H2ME);
1172 			mac_reg &= ~E1000_H2ME_ULP;
1173 			mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1174 			ew32(H2ME, mac_reg);
1175 		}
1176 
1177 		/* Poll up to 100msec for ME to clear ULP_CFG_DONE */
1178 		while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1179 			if (i++ == 10) {
1180 				ret_val = -E1000_ERR_PHY;
1181 				goto out;
1182 			}
1183 
1184 			usleep_range(10000, 20000);
1185 		}
1186 		e_dbg("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10);
1187 
1188 		if (force) {
1189 			mac_reg = er32(H2ME);
1190 			mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1191 			ew32(H2ME, mac_reg);
1192 		} else {
1193 			/* Clear H2ME.ULP after ME ULP configuration */
1194 			mac_reg = er32(H2ME);
1195 			mac_reg &= ~E1000_H2ME_ULP;
1196 			ew32(H2ME, mac_reg);
1197 		}
1198 
1199 		goto out;
1200 	}
1201 
1202 	ret_val = hw->phy.ops.acquire(hw);
1203 	if (ret_val)
1204 		goto out;
1205 
1206 	if (force)
1207 		/* Toggle LANPHYPC Value bit */
1208 		e1000_toggle_lanphypc_pch_lpt(hw);
1209 
1210 	/* Unforce SMBus mode in PHY */
1211 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1212 	if (ret_val) {
1213 		/* The MAC might be in PCIe mode, so temporarily force to
1214 		 * SMBus mode in order to access the PHY.
1215 		 */
1216 		mac_reg = er32(CTRL_EXT);
1217 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1218 		ew32(CTRL_EXT, mac_reg);
1219 
1220 		msleep(50);
1221 
1222 		ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1223 						       &phy_reg);
1224 		if (ret_val)
1225 			goto release;
1226 	}
1227 	phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1228 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1229 
1230 	/* Unforce SMBus mode in MAC */
1231 	mac_reg = er32(CTRL_EXT);
1232 	mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1233 	ew32(CTRL_EXT, mac_reg);
1234 
1235 	/* When ULP mode was previously entered, K1 was disabled by the
1236 	 * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1237 	 */
1238 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1239 	if (ret_val)
1240 		goto release;
1241 	phy_reg |= HV_PM_CTRL_K1_ENABLE;
1242 	e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1243 
1244 	/* Clear ULP enabled configuration */
1245 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1246 	if (ret_val)
1247 		goto release;
1248 	phy_reg &= ~(I218_ULP_CONFIG1_IND |
1249 		     I218_ULP_CONFIG1_STICKY_ULP |
1250 		     I218_ULP_CONFIG1_RESET_TO_SMBUS |
1251 		     I218_ULP_CONFIG1_WOL_HOST |
1252 		     I218_ULP_CONFIG1_INBAND_EXIT |
1253 		     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1254 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1255 
1256 	/* Commit ULP changes by starting auto ULP configuration */
1257 	phy_reg |= I218_ULP_CONFIG1_START;
1258 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1259 
1260 	/* Clear Disable SMBus Release on PERST# in MAC */
1261 	mac_reg = er32(FEXTNVM7);
1262 	mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1263 	ew32(FEXTNVM7, mac_reg);
1264 
1265 release:
1266 	hw->phy.ops.release(hw);
1267 	if (force) {
1268 		e1000_phy_hw_reset(hw);
1269 		msleep(50);
1270 	}
1271 out:
1272 	if (ret_val)
1273 		e_dbg("Error in ULP disable flow: %d\n", ret_val);
1274 	else
1275 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1276 
1277 	return ret_val;
1278 }
1279 
1280 /**
1281  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1282  *  @hw: pointer to the HW structure
1283  *
1284  *  Checks to see of the link status of the hardware has changed.  If a
1285  *  change in link status has been detected, then we read the PHY registers
1286  *  to get the current speed/duplex if link exists.
1287  **/
1288 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1289 {
1290 	struct e1000_mac_info *mac = &hw->mac;
1291 	s32 ret_val;
1292 	bool link;
1293 	u16 phy_reg;
1294 
1295 	/* We only want to go out to the PHY registers to see if Auto-Neg
1296 	 * has completed and/or if our link status has changed.  The
1297 	 * get_link_status flag is set upon receiving a Link Status
1298 	 * Change or Rx Sequence Error interrupt.
1299 	 */
1300 	if (!mac->get_link_status)
1301 		return 0;
1302 
1303 	/* First we want to see if the MII Status Register reports
1304 	 * link.  If so, then we want to get the current speed/duplex
1305 	 * of the PHY.
1306 	 */
1307 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1308 	if (ret_val)
1309 		return ret_val;
1310 
1311 	if (hw->mac.type == e1000_pchlan) {
1312 		ret_val = e1000_k1_gig_workaround_hv(hw, link);
1313 		if (ret_val)
1314 			return ret_val;
1315 	}
1316 
1317 	/* When connected at 10Mbps half-duplex, 82579 parts are excessively
1318 	 * aggressive resulting in many collisions. To avoid this, increase
1319 	 * the IPG and reduce Rx latency in the PHY.
1320 	 */
1321 	if ((hw->mac.type == e1000_pch2lan) && link) {
1322 		u32 reg;
1323 		reg = er32(STATUS);
1324 		if (!(reg & (E1000_STATUS_FD | E1000_STATUS_SPEED_MASK))) {
1325 			reg = er32(TIPG);
1326 			reg &= ~E1000_TIPG_IPGT_MASK;
1327 			reg |= 0xFF;
1328 			ew32(TIPG, reg);
1329 
1330 			/* Reduce Rx latency in analog PHY */
1331 			ret_val = hw->phy.ops.acquire(hw);
1332 			if (ret_val)
1333 				return ret_val;
1334 
1335 			ret_val =
1336 			    e1000_write_emi_reg_locked(hw, I82579_RX_CONFIG, 0);
1337 
1338 			hw->phy.ops.release(hw);
1339 
1340 			if (ret_val)
1341 				return ret_val;
1342 		}
1343 	}
1344 
1345 	/* Work-around I218 hang issue */
1346 	if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1347 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1348 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1349 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
1350 		ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1351 		if (ret_val)
1352 			return ret_val;
1353 	}
1354 
1355 	if (hw->mac.type == e1000_pch_lpt) {
1356 		/* Set platform power management values for
1357 		 * Latency Tolerance Reporting (LTR)
1358 		 */
1359 		ret_val = e1000_platform_pm_pch_lpt(hw, link);
1360 		if (ret_val)
1361 			return ret_val;
1362 	}
1363 
1364 	/* Clear link partner's EEE ability */
1365 	hw->dev_spec.ich8lan.eee_lp_ability = 0;
1366 
1367 	if (!link)
1368 		return 0;	/* No link detected */
1369 
1370 	mac->get_link_status = false;
1371 
1372 	switch (hw->mac.type) {
1373 	case e1000_pch2lan:
1374 		ret_val = e1000_k1_workaround_lv(hw);
1375 		if (ret_val)
1376 			return ret_val;
1377 		/* fall-thru */
1378 	case e1000_pchlan:
1379 		if (hw->phy.type == e1000_phy_82578) {
1380 			ret_val = e1000_link_stall_workaround_hv(hw);
1381 			if (ret_val)
1382 				return ret_val;
1383 		}
1384 
1385 		/* Workaround for PCHx parts in half-duplex:
1386 		 * Set the number of preambles removed from the packet
1387 		 * when it is passed from the PHY to the MAC to prevent
1388 		 * the MAC from misinterpreting the packet type.
1389 		 */
1390 		e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1391 		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1392 
1393 		if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1394 			phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1395 
1396 		e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1397 		break;
1398 	default:
1399 		break;
1400 	}
1401 
1402 	/* Check if there was DownShift, must be checked
1403 	 * immediately after link-up
1404 	 */
1405 	e1000e_check_downshift(hw);
1406 
1407 	/* Enable/Disable EEE after link up */
1408 	if (hw->phy.type > e1000_phy_82579) {
1409 		ret_val = e1000_set_eee_pchlan(hw);
1410 		if (ret_val)
1411 			return ret_val;
1412 	}
1413 
1414 	/* If we are forcing speed/duplex, then we simply return since
1415 	 * we have already determined whether we have link or not.
1416 	 */
1417 	if (!mac->autoneg)
1418 		return -E1000_ERR_CONFIG;
1419 
1420 	/* Auto-Neg is enabled.  Auto Speed Detection takes care
1421 	 * of MAC speed/duplex configuration.  So we only need to
1422 	 * configure Collision Distance in the MAC.
1423 	 */
1424 	mac->ops.config_collision_dist(hw);
1425 
1426 	/* Configure Flow Control now that Auto-Neg has completed.
1427 	 * First, we need to restore the desired flow control
1428 	 * settings because we may have had to re-autoneg with a
1429 	 * different link partner.
1430 	 */
1431 	ret_val = e1000e_config_fc_after_link_up(hw);
1432 	if (ret_val)
1433 		e_dbg("Error configuring flow control\n");
1434 
1435 	return ret_val;
1436 }
1437 
1438 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1439 {
1440 	struct e1000_hw *hw = &adapter->hw;
1441 	s32 rc;
1442 
1443 	rc = e1000_init_mac_params_ich8lan(hw);
1444 	if (rc)
1445 		return rc;
1446 
1447 	rc = e1000_init_nvm_params_ich8lan(hw);
1448 	if (rc)
1449 		return rc;
1450 
1451 	switch (hw->mac.type) {
1452 	case e1000_ich8lan:
1453 	case e1000_ich9lan:
1454 	case e1000_ich10lan:
1455 		rc = e1000_init_phy_params_ich8lan(hw);
1456 		break;
1457 	case e1000_pchlan:
1458 	case e1000_pch2lan:
1459 	case e1000_pch_lpt:
1460 		rc = e1000_init_phy_params_pchlan(hw);
1461 		break;
1462 	default:
1463 		break;
1464 	}
1465 	if (rc)
1466 		return rc;
1467 
1468 	/* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1469 	 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1470 	 */
1471 	if ((adapter->hw.phy.type == e1000_phy_ife) ||
1472 	    ((adapter->hw.mac.type >= e1000_pch2lan) &&
1473 	     (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1474 		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1475 		adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
1476 
1477 		hw->mac.ops.blink_led = NULL;
1478 	}
1479 
1480 	if ((adapter->hw.mac.type == e1000_ich8lan) &&
1481 	    (adapter->hw.phy.type != e1000_phy_ife))
1482 		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1483 
1484 	/* Enable workaround for 82579 w/ ME enabled */
1485 	if ((adapter->hw.mac.type == e1000_pch2lan) &&
1486 	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1487 		adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1488 
1489 	return 0;
1490 }
1491 
1492 static DEFINE_MUTEX(nvm_mutex);
1493 
1494 /**
1495  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1496  *  @hw: pointer to the HW structure
1497  *
1498  *  Acquires the mutex for performing NVM operations.
1499  **/
1500 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1501 {
1502 	mutex_lock(&nvm_mutex);
1503 
1504 	return 0;
1505 }
1506 
1507 /**
1508  *  e1000_release_nvm_ich8lan - Release NVM mutex
1509  *  @hw: pointer to the HW structure
1510  *
1511  *  Releases the mutex used while performing NVM operations.
1512  **/
1513 static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1514 {
1515 	mutex_unlock(&nvm_mutex);
1516 }
1517 
1518 /**
1519  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1520  *  @hw: pointer to the HW structure
1521  *
1522  *  Acquires the software control flag for performing PHY and select
1523  *  MAC CSR accesses.
1524  **/
1525 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1526 {
1527 	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1528 	s32 ret_val = 0;
1529 
1530 	if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1531 			     &hw->adapter->state)) {
1532 		e_dbg("contention for Phy access\n");
1533 		return -E1000_ERR_PHY;
1534 	}
1535 
1536 	while (timeout) {
1537 		extcnf_ctrl = er32(EXTCNF_CTRL);
1538 		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1539 			break;
1540 
1541 		mdelay(1);
1542 		timeout--;
1543 	}
1544 
1545 	if (!timeout) {
1546 		e_dbg("SW has already locked the resource.\n");
1547 		ret_val = -E1000_ERR_CONFIG;
1548 		goto out;
1549 	}
1550 
1551 	timeout = SW_FLAG_TIMEOUT;
1552 
1553 	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1554 	ew32(EXTCNF_CTRL, extcnf_ctrl);
1555 
1556 	while (timeout) {
1557 		extcnf_ctrl = er32(EXTCNF_CTRL);
1558 		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1559 			break;
1560 
1561 		mdelay(1);
1562 		timeout--;
1563 	}
1564 
1565 	if (!timeout) {
1566 		e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1567 		      er32(FWSM), extcnf_ctrl);
1568 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1569 		ew32(EXTCNF_CTRL, extcnf_ctrl);
1570 		ret_val = -E1000_ERR_CONFIG;
1571 		goto out;
1572 	}
1573 
1574 out:
1575 	if (ret_val)
1576 		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1577 
1578 	return ret_val;
1579 }
1580 
1581 /**
1582  *  e1000_release_swflag_ich8lan - Release software control flag
1583  *  @hw: pointer to the HW structure
1584  *
1585  *  Releases the software control flag for performing PHY and select
1586  *  MAC CSR accesses.
1587  **/
1588 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1589 {
1590 	u32 extcnf_ctrl;
1591 
1592 	extcnf_ctrl = er32(EXTCNF_CTRL);
1593 
1594 	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1595 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1596 		ew32(EXTCNF_CTRL, extcnf_ctrl);
1597 	} else {
1598 		e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1599 	}
1600 
1601 	clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1602 }
1603 
1604 /**
1605  *  e1000_check_mng_mode_ich8lan - Checks management mode
1606  *  @hw: pointer to the HW structure
1607  *
1608  *  This checks if the adapter has any manageability enabled.
1609  *  This is a function pointer entry point only called by read/write
1610  *  routines for the PHY and NVM parts.
1611  **/
1612 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1613 {
1614 	u32 fwsm;
1615 
1616 	fwsm = er32(FWSM);
1617 	return ((fwsm & E1000_ICH_FWSM_FW_VALID) &&
1618 		((fwsm & E1000_FWSM_MODE_MASK) ==
1619 		 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)));
1620 }
1621 
1622 /**
1623  *  e1000_check_mng_mode_pchlan - Checks management mode
1624  *  @hw: pointer to the HW structure
1625  *
1626  *  This checks if the adapter has iAMT enabled.
1627  *  This is a function pointer entry point only called by read/write
1628  *  routines for the PHY and NVM parts.
1629  **/
1630 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1631 {
1632 	u32 fwsm;
1633 
1634 	fwsm = er32(FWSM);
1635 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1636 	    (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1637 }
1638 
1639 /**
1640  *  e1000_rar_set_pch2lan - Set receive address register
1641  *  @hw: pointer to the HW structure
1642  *  @addr: pointer to the receive address
1643  *  @index: receive address array register
1644  *
1645  *  Sets the receive address array register at index to the address passed
1646  *  in by addr.  For 82579, RAR[0] is the base address register that is to
1647  *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1648  *  Use SHRA[0-3] in place of those reserved for ME.
1649  **/
1650 static void e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1651 {
1652 	u32 rar_low, rar_high;
1653 
1654 	/* HW expects these in little endian so we reverse the byte order
1655 	 * from network order (big endian) to little endian
1656 	 */
1657 	rar_low = ((u32)addr[0] |
1658 		   ((u32)addr[1] << 8) |
1659 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1660 
1661 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1662 
1663 	/* If MAC address zero, no need to set the AV bit */
1664 	if (rar_low || rar_high)
1665 		rar_high |= E1000_RAH_AV;
1666 
1667 	if (index == 0) {
1668 		ew32(RAL(index), rar_low);
1669 		e1e_flush();
1670 		ew32(RAH(index), rar_high);
1671 		e1e_flush();
1672 		return;
1673 	}
1674 
1675 	/* RAR[1-6] are owned by manageability.  Skip those and program the
1676 	 * next address into the SHRA register array.
1677 	 */
1678 	if (index < (u32)(hw->mac.rar_entry_count)) {
1679 		s32 ret_val;
1680 
1681 		ret_val = e1000_acquire_swflag_ich8lan(hw);
1682 		if (ret_val)
1683 			goto out;
1684 
1685 		ew32(SHRAL(index - 1), rar_low);
1686 		e1e_flush();
1687 		ew32(SHRAH(index - 1), rar_high);
1688 		e1e_flush();
1689 
1690 		e1000_release_swflag_ich8lan(hw);
1691 
1692 		/* verify the register updates */
1693 		if ((er32(SHRAL(index - 1)) == rar_low) &&
1694 		    (er32(SHRAH(index - 1)) == rar_high))
1695 			return;
1696 
1697 		e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1698 		      (index - 1), er32(FWSM));
1699 	}
1700 
1701 out:
1702 	e_dbg("Failed to write receive address at index %d\n", index);
1703 }
1704 
1705 /**
1706  *  e1000_rar_set_pch_lpt - Set receive address registers
1707  *  @hw: pointer to the HW structure
1708  *  @addr: pointer to the receive address
1709  *  @index: receive address array register
1710  *
1711  *  Sets the receive address register array at index to the address passed
1712  *  in by addr. For LPT, RAR[0] is the base address register that is to
1713  *  contain the MAC address. SHRA[0-10] are the shared receive address
1714  *  registers that are shared between the Host and manageability engine (ME).
1715  **/
1716 static void e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1717 {
1718 	u32 rar_low, rar_high;
1719 	u32 wlock_mac;
1720 
1721 	/* HW expects these in little endian so we reverse the byte order
1722 	 * from network order (big endian) to little endian
1723 	 */
1724 	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1725 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1726 
1727 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1728 
1729 	/* If MAC address zero, no need to set the AV bit */
1730 	if (rar_low || rar_high)
1731 		rar_high |= E1000_RAH_AV;
1732 
1733 	if (index == 0) {
1734 		ew32(RAL(index), rar_low);
1735 		e1e_flush();
1736 		ew32(RAH(index), rar_high);
1737 		e1e_flush();
1738 		return;
1739 	}
1740 
1741 	/* The manageability engine (ME) can lock certain SHRAR registers that
1742 	 * it is using - those registers are unavailable for use.
1743 	 */
1744 	if (index < hw->mac.rar_entry_count) {
1745 		wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1746 		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1747 
1748 		/* Check if all SHRAR registers are locked */
1749 		if (wlock_mac == 1)
1750 			goto out;
1751 
1752 		if ((wlock_mac == 0) || (index <= wlock_mac)) {
1753 			s32 ret_val;
1754 
1755 			ret_val = e1000_acquire_swflag_ich8lan(hw);
1756 
1757 			if (ret_val)
1758 				goto out;
1759 
1760 			ew32(SHRAL_PCH_LPT(index - 1), rar_low);
1761 			e1e_flush();
1762 			ew32(SHRAH_PCH_LPT(index - 1), rar_high);
1763 			e1e_flush();
1764 
1765 			e1000_release_swflag_ich8lan(hw);
1766 
1767 			/* verify the register updates */
1768 			if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
1769 			    (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
1770 				return;
1771 		}
1772 	}
1773 
1774 out:
1775 	e_dbg("Failed to write receive address at index %d\n", index);
1776 }
1777 
1778 /**
1779  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
1780  *  @hw: pointer to the HW structure
1781  *
1782  *  Checks if firmware is blocking the reset of the PHY.
1783  *  This is a function pointer entry point only called by
1784  *  reset routines.
1785  **/
1786 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
1787 {
1788 	bool blocked = false;
1789 	int i = 0;
1790 
1791 	while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
1792 	       (i++ < 10))
1793 		usleep_range(10000, 20000);
1794 	return blocked ? E1000_BLK_PHY_RESET : 0;
1795 }
1796 
1797 /**
1798  *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
1799  *  @hw: pointer to the HW structure
1800  *
1801  *  Assumes semaphore already acquired.
1802  *
1803  **/
1804 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
1805 {
1806 	u16 phy_data;
1807 	u32 strap = er32(STRAP);
1808 	u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
1809 	    E1000_STRAP_SMT_FREQ_SHIFT;
1810 	s32 ret_val;
1811 
1812 	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
1813 
1814 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
1815 	if (ret_val)
1816 		return ret_val;
1817 
1818 	phy_data &= ~HV_SMB_ADDR_MASK;
1819 	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
1820 	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
1821 
1822 	if (hw->phy.type == e1000_phy_i217) {
1823 		/* Restore SMBus frequency */
1824 		if (freq--) {
1825 			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
1826 			phy_data |= (freq & (1 << 0)) <<
1827 			    HV_SMB_ADDR_FREQ_LOW_SHIFT;
1828 			phy_data |= (freq & (1 << 1)) <<
1829 			    (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
1830 		} else {
1831 			e_dbg("Unsupported SMB frequency in PHY\n");
1832 		}
1833 	}
1834 
1835 	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
1836 }
1837 
1838 /**
1839  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
1840  *  @hw:   pointer to the HW structure
1841  *
1842  *  SW should configure the LCD from the NVM extended configuration region
1843  *  as a workaround for certain parts.
1844  **/
1845 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
1846 {
1847 	struct e1000_phy_info *phy = &hw->phy;
1848 	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
1849 	s32 ret_val = 0;
1850 	u16 word_addr, reg_data, reg_addr, phy_page = 0;
1851 
1852 	/* Initialize the PHY from the NVM on ICH platforms.  This
1853 	 * is needed due to an issue where the NVM configuration is
1854 	 * not properly autoloaded after power transitions.
1855 	 * Therefore, after each PHY reset, we will load the
1856 	 * configuration data out of the NVM manually.
1857 	 */
1858 	switch (hw->mac.type) {
1859 	case e1000_ich8lan:
1860 		if (phy->type != e1000_phy_igp_3)
1861 			return ret_val;
1862 
1863 		if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
1864 		    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
1865 			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
1866 			break;
1867 		}
1868 		/* Fall-thru */
1869 	case e1000_pchlan:
1870 	case e1000_pch2lan:
1871 	case e1000_pch_lpt:
1872 		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
1873 		break;
1874 	default:
1875 		return ret_val;
1876 	}
1877 
1878 	ret_val = hw->phy.ops.acquire(hw);
1879 	if (ret_val)
1880 		return ret_val;
1881 
1882 	data = er32(FEXTNVM);
1883 	if (!(data & sw_cfg_mask))
1884 		goto release;
1885 
1886 	/* Make sure HW does not configure LCD from PHY
1887 	 * extended configuration before SW configuration
1888 	 */
1889 	data = er32(EXTCNF_CTRL);
1890 	if ((hw->mac.type < e1000_pch2lan) &&
1891 	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
1892 		goto release;
1893 
1894 	cnf_size = er32(EXTCNF_SIZE);
1895 	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
1896 	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
1897 	if (!cnf_size)
1898 		goto release;
1899 
1900 	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
1901 	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
1902 
1903 	if (((hw->mac.type == e1000_pchlan) &&
1904 	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
1905 	    (hw->mac.type > e1000_pchlan)) {
1906 		/* HW configures the SMBus address and LEDs when the
1907 		 * OEM and LCD Write Enable bits are set in the NVM.
1908 		 * When both NVM bits are cleared, SW will configure
1909 		 * them instead.
1910 		 */
1911 		ret_val = e1000_write_smbus_addr(hw);
1912 		if (ret_val)
1913 			goto release;
1914 
1915 		data = er32(LEDCTL);
1916 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
1917 							(u16)data);
1918 		if (ret_val)
1919 			goto release;
1920 	}
1921 
1922 	/* Configure LCD from extended configuration region. */
1923 
1924 	/* cnf_base_addr is in DWORD */
1925 	word_addr = (u16)(cnf_base_addr << 1);
1926 
1927 	for (i = 0; i < cnf_size; i++) {
1928 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, &reg_data);
1929 		if (ret_val)
1930 			goto release;
1931 
1932 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
1933 					 1, &reg_addr);
1934 		if (ret_val)
1935 			goto release;
1936 
1937 		/* Save off the PHY page for future writes. */
1938 		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
1939 			phy_page = reg_data;
1940 			continue;
1941 		}
1942 
1943 		reg_addr &= PHY_REG_MASK;
1944 		reg_addr |= phy_page;
1945 
1946 		ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
1947 		if (ret_val)
1948 			goto release;
1949 	}
1950 
1951 release:
1952 	hw->phy.ops.release(hw);
1953 	return ret_val;
1954 }
1955 
1956 /**
1957  *  e1000_k1_gig_workaround_hv - K1 Si workaround
1958  *  @hw:   pointer to the HW structure
1959  *  @link: link up bool flag
1960  *
1961  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
1962  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
1963  *  If link is down, the function will restore the default K1 setting located
1964  *  in the NVM.
1965  **/
1966 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
1967 {
1968 	s32 ret_val = 0;
1969 	u16 status_reg = 0;
1970 	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
1971 
1972 	if (hw->mac.type != e1000_pchlan)
1973 		return 0;
1974 
1975 	/* Wrap the whole flow with the sw flag */
1976 	ret_val = hw->phy.ops.acquire(hw);
1977 	if (ret_val)
1978 		return ret_val;
1979 
1980 	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
1981 	if (link) {
1982 		if (hw->phy.type == e1000_phy_82578) {
1983 			ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
1984 						  &status_reg);
1985 			if (ret_val)
1986 				goto release;
1987 
1988 			status_reg &= (BM_CS_STATUS_LINK_UP |
1989 				       BM_CS_STATUS_RESOLVED |
1990 				       BM_CS_STATUS_SPEED_MASK);
1991 
1992 			if (status_reg == (BM_CS_STATUS_LINK_UP |
1993 					   BM_CS_STATUS_RESOLVED |
1994 					   BM_CS_STATUS_SPEED_1000))
1995 				k1_enable = false;
1996 		}
1997 
1998 		if (hw->phy.type == e1000_phy_82577) {
1999 			ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2000 			if (ret_val)
2001 				goto release;
2002 
2003 			status_reg &= (HV_M_STATUS_LINK_UP |
2004 				       HV_M_STATUS_AUTONEG_COMPLETE |
2005 				       HV_M_STATUS_SPEED_MASK);
2006 
2007 			if (status_reg == (HV_M_STATUS_LINK_UP |
2008 					   HV_M_STATUS_AUTONEG_COMPLETE |
2009 					   HV_M_STATUS_SPEED_1000))
2010 				k1_enable = false;
2011 		}
2012 
2013 		/* Link stall fix for link up */
2014 		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2015 		if (ret_val)
2016 			goto release;
2017 
2018 	} else {
2019 		/* Link stall fix for link down */
2020 		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2021 		if (ret_val)
2022 			goto release;
2023 	}
2024 
2025 	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2026 
2027 release:
2028 	hw->phy.ops.release(hw);
2029 
2030 	return ret_val;
2031 }
2032 
2033 /**
2034  *  e1000_configure_k1_ich8lan - Configure K1 power state
2035  *  @hw: pointer to the HW structure
2036  *  @enable: K1 state to configure
2037  *
2038  *  Configure the K1 power state based on the provided parameter.
2039  *  Assumes semaphore already acquired.
2040  *
2041  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2042  **/
2043 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2044 {
2045 	s32 ret_val;
2046 	u32 ctrl_reg = 0;
2047 	u32 ctrl_ext = 0;
2048 	u32 reg = 0;
2049 	u16 kmrn_reg = 0;
2050 
2051 	ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2052 					      &kmrn_reg);
2053 	if (ret_val)
2054 		return ret_val;
2055 
2056 	if (k1_enable)
2057 		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2058 	else
2059 		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2060 
2061 	ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2062 					       kmrn_reg);
2063 	if (ret_val)
2064 		return ret_val;
2065 
2066 	usleep_range(20, 40);
2067 	ctrl_ext = er32(CTRL_EXT);
2068 	ctrl_reg = er32(CTRL);
2069 
2070 	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2071 	reg |= E1000_CTRL_FRCSPD;
2072 	ew32(CTRL, reg);
2073 
2074 	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2075 	e1e_flush();
2076 	usleep_range(20, 40);
2077 	ew32(CTRL, ctrl_reg);
2078 	ew32(CTRL_EXT, ctrl_ext);
2079 	e1e_flush();
2080 	usleep_range(20, 40);
2081 
2082 	return 0;
2083 }
2084 
2085 /**
2086  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2087  *  @hw:       pointer to the HW structure
2088  *  @d0_state: boolean if entering d0 or d3 device state
2089  *
2090  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2091  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2092  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2093  **/
2094 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2095 {
2096 	s32 ret_val = 0;
2097 	u32 mac_reg;
2098 	u16 oem_reg;
2099 
2100 	if (hw->mac.type < e1000_pchlan)
2101 		return ret_val;
2102 
2103 	ret_val = hw->phy.ops.acquire(hw);
2104 	if (ret_val)
2105 		return ret_val;
2106 
2107 	if (hw->mac.type == e1000_pchlan) {
2108 		mac_reg = er32(EXTCNF_CTRL);
2109 		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2110 			goto release;
2111 	}
2112 
2113 	mac_reg = er32(FEXTNVM);
2114 	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2115 		goto release;
2116 
2117 	mac_reg = er32(PHY_CTRL);
2118 
2119 	ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2120 	if (ret_val)
2121 		goto release;
2122 
2123 	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2124 
2125 	if (d0_state) {
2126 		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2127 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2128 
2129 		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2130 			oem_reg |= HV_OEM_BITS_LPLU;
2131 	} else {
2132 		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2133 			       E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2134 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2135 
2136 		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2137 			       E1000_PHY_CTRL_NOND0A_LPLU))
2138 			oem_reg |= HV_OEM_BITS_LPLU;
2139 	}
2140 
2141 	/* Set Restart auto-neg to activate the bits */
2142 	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2143 	    !hw->phy.ops.check_reset_block(hw))
2144 		oem_reg |= HV_OEM_BITS_RESTART_AN;
2145 
2146 	ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2147 
2148 release:
2149 	hw->phy.ops.release(hw);
2150 
2151 	return ret_val;
2152 }
2153 
2154 /**
2155  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2156  *  @hw:   pointer to the HW structure
2157  **/
2158 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2159 {
2160 	s32 ret_val;
2161 	u16 data;
2162 
2163 	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2164 	if (ret_val)
2165 		return ret_val;
2166 
2167 	data |= HV_KMRN_MDIO_SLOW;
2168 
2169 	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2170 
2171 	return ret_val;
2172 }
2173 
2174 /**
2175  *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2176  *  done after every PHY reset.
2177  **/
2178 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2179 {
2180 	s32 ret_val = 0;
2181 	u16 phy_data;
2182 
2183 	if (hw->mac.type != e1000_pchlan)
2184 		return 0;
2185 
2186 	/* Set MDIO slow mode before any other MDIO access */
2187 	if (hw->phy.type == e1000_phy_82577) {
2188 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
2189 		if (ret_val)
2190 			return ret_val;
2191 	}
2192 
2193 	if (((hw->phy.type == e1000_phy_82577) &&
2194 	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2195 	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2196 		/* Disable generation of early preamble */
2197 		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2198 		if (ret_val)
2199 			return ret_val;
2200 
2201 		/* Preamble tuning for SSC */
2202 		ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2203 		if (ret_val)
2204 			return ret_val;
2205 	}
2206 
2207 	if (hw->phy.type == e1000_phy_82578) {
2208 		/* Return registers to default by doing a soft reset then
2209 		 * writing 0x3140 to the control register.
2210 		 */
2211 		if (hw->phy.revision < 2) {
2212 			e1000e_phy_sw_reset(hw);
2213 			ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
2214 		}
2215 	}
2216 
2217 	/* Select page 0 */
2218 	ret_val = hw->phy.ops.acquire(hw);
2219 	if (ret_val)
2220 		return ret_val;
2221 
2222 	hw->phy.addr = 1;
2223 	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2224 	hw->phy.ops.release(hw);
2225 	if (ret_val)
2226 		return ret_val;
2227 
2228 	/* Configure the K1 Si workaround during phy reset assuming there is
2229 	 * link so that it disables K1 if link is in 1Gbps.
2230 	 */
2231 	ret_val = e1000_k1_gig_workaround_hv(hw, true);
2232 	if (ret_val)
2233 		return ret_val;
2234 
2235 	/* Workaround for link disconnects on a busy hub in half duplex */
2236 	ret_val = hw->phy.ops.acquire(hw);
2237 	if (ret_val)
2238 		return ret_val;
2239 	ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2240 	if (ret_val)
2241 		goto release;
2242 	ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2243 	if (ret_val)
2244 		goto release;
2245 
2246 	/* set MSE higher to enable link to stay up when noise is high */
2247 	ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2248 release:
2249 	hw->phy.ops.release(hw);
2250 
2251 	return ret_val;
2252 }
2253 
2254 /**
2255  *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2256  *  @hw:   pointer to the HW structure
2257  **/
2258 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2259 {
2260 	u32 mac_reg;
2261 	u16 i, phy_reg = 0;
2262 	s32 ret_val;
2263 
2264 	ret_val = hw->phy.ops.acquire(hw);
2265 	if (ret_val)
2266 		return;
2267 	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2268 	if (ret_val)
2269 		goto release;
2270 
2271 	/* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2272 	for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2273 		mac_reg = er32(RAL(i));
2274 		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2275 					   (u16)(mac_reg & 0xFFFF));
2276 		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2277 					   (u16)((mac_reg >> 16) & 0xFFFF));
2278 
2279 		mac_reg = er32(RAH(i));
2280 		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2281 					   (u16)(mac_reg & 0xFFFF));
2282 		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2283 					   (u16)((mac_reg & E1000_RAH_AV)
2284 						 >> 16));
2285 	}
2286 
2287 	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2288 
2289 release:
2290 	hw->phy.ops.release(hw);
2291 }
2292 
2293 /**
2294  *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2295  *  with 82579 PHY
2296  *  @hw: pointer to the HW structure
2297  *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2298  **/
2299 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2300 {
2301 	s32 ret_val = 0;
2302 	u16 phy_reg, data;
2303 	u32 mac_reg;
2304 	u16 i;
2305 
2306 	if (hw->mac.type < e1000_pch2lan)
2307 		return 0;
2308 
2309 	/* disable Rx path while enabling/disabling workaround */
2310 	e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2311 	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14));
2312 	if (ret_val)
2313 		return ret_val;
2314 
2315 	if (enable) {
2316 		/* Write Rx addresses (rar_entry_count for RAL/H, and
2317 		 * SHRAL/H) and initial CRC values to the MAC
2318 		 */
2319 		for (i = 0; i < hw->mac.rar_entry_count; i++) {
2320 			u8 mac_addr[ETH_ALEN] = { 0 };
2321 			u32 addr_high, addr_low;
2322 
2323 			addr_high = er32(RAH(i));
2324 			if (!(addr_high & E1000_RAH_AV))
2325 				continue;
2326 			addr_low = er32(RAL(i));
2327 			mac_addr[0] = (addr_low & 0xFF);
2328 			mac_addr[1] = ((addr_low >> 8) & 0xFF);
2329 			mac_addr[2] = ((addr_low >> 16) & 0xFF);
2330 			mac_addr[3] = ((addr_low >> 24) & 0xFF);
2331 			mac_addr[4] = (addr_high & 0xFF);
2332 			mac_addr[5] = ((addr_high >> 8) & 0xFF);
2333 
2334 			ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2335 		}
2336 
2337 		/* Write Rx addresses to the PHY */
2338 		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2339 
2340 		/* Enable jumbo frame workaround in the MAC */
2341 		mac_reg = er32(FFLT_DBG);
2342 		mac_reg &= ~(1 << 14);
2343 		mac_reg |= (7 << 15);
2344 		ew32(FFLT_DBG, mac_reg);
2345 
2346 		mac_reg = er32(RCTL);
2347 		mac_reg |= E1000_RCTL_SECRC;
2348 		ew32(RCTL, mac_reg);
2349 
2350 		ret_val = e1000e_read_kmrn_reg(hw,
2351 					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2352 					       &data);
2353 		if (ret_val)
2354 			return ret_val;
2355 		ret_val = e1000e_write_kmrn_reg(hw,
2356 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2357 						data | (1 << 0));
2358 		if (ret_val)
2359 			return ret_val;
2360 		ret_val = e1000e_read_kmrn_reg(hw,
2361 					       E1000_KMRNCTRLSTA_HD_CTRL,
2362 					       &data);
2363 		if (ret_val)
2364 			return ret_val;
2365 		data &= ~(0xF << 8);
2366 		data |= (0xB << 8);
2367 		ret_val = e1000e_write_kmrn_reg(hw,
2368 						E1000_KMRNCTRLSTA_HD_CTRL,
2369 						data);
2370 		if (ret_val)
2371 			return ret_val;
2372 
2373 		/* Enable jumbo frame workaround in the PHY */
2374 		e1e_rphy(hw, PHY_REG(769, 23), &data);
2375 		data &= ~(0x7F << 5);
2376 		data |= (0x37 << 5);
2377 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2378 		if (ret_val)
2379 			return ret_val;
2380 		e1e_rphy(hw, PHY_REG(769, 16), &data);
2381 		data &= ~(1 << 13);
2382 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2383 		if (ret_val)
2384 			return ret_val;
2385 		e1e_rphy(hw, PHY_REG(776, 20), &data);
2386 		data &= ~(0x3FF << 2);
2387 		data |= (0x1A << 2);
2388 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2389 		if (ret_val)
2390 			return ret_val;
2391 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2392 		if (ret_val)
2393 			return ret_val;
2394 		e1e_rphy(hw, HV_PM_CTRL, &data);
2395 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10));
2396 		if (ret_val)
2397 			return ret_val;
2398 	} else {
2399 		/* Write MAC register values back to h/w defaults */
2400 		mac_reg = er32(FFLT_DBG);
2401 		mac_reg &= ~(0xF << 14);
2402 		ew32(FFLT_DBG, mac_reg);
2403 
2404 		mac_reg = er32(RCTL);
2405 		mac_reg &= ~E1000_RCTL_SECRC;
2406 		ew32(RCTL, mac_reg);
2407 
2408 		ret_val = e1000e_read_kmrn_reg(hw,
2409 					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2410 					       &data);
2411 		if (ret_val)
2412 			return ret_val;
2413 		ret_val = e1000e_write_kmrn_reg(hw,
2414 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2415 						data & ~(1 << 0));
2416 		if (ret_val)
2417 			return ret_val;
2418 		ret_val = e1000e_read_kmrn_reg(hw,
2419 					       E1000_KMRNCTRLSTA_HD_CTRL,
2420 					       &data);
2421 		if (ret_val)
2422 			return ret_val;
2423 		data &= ~(0xF << 8);
2424 		data |= (0xB << 8);
2425 		ret_val = e1000e_write_kmrn_reg(hw,
2426 						E1000_KMRNCTRLSTA_HD_CTRL,
2427 						data);
2428 		if (ret_val)
2429 			return ret_val;
2430 
2431 		/* Write PHY register values back to h/w defaults */
2432 		e1e_rphy(hw, PHY_REG(769, 23), &data);
2433 		data &= ~(0x7F << 5);
2434 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2435 		if (ret_val)
2436 			return ret_val;
2437 		e1e_rphy(hw, PHY_REG(769, 16), &data);
2438 		data |= (1 << 13);
2439 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2440 		if (ret_val)
2441 			return ret_val;
2442 		e1e_rphy(hw, PHY_REG(776, 20), &data);
2443 		data &= ~(0x3FF << 2);
2444 		data |= (0x8 << 2);
2445 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2446 		if (ret_val)
2447 			return ret_val;
2448 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2449 		if (ret_val)
2450 			return ret_val;
2451 		e1e_rphy(hw, HV_PM_CTRL, &data);
2452 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10));
2453 		if (ret_val)
2454 			return ret_val;
2455 	}
2456 
2457 	/* re-enable Rx path after enabling/disabling workaround */
2458 	return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14));
2459 }
2460 
2461 /**
2462  *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2463  *  done after every PHY reset.
2464  **/
2465 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2466 {
2467 	s32 ret_val = 0;
2468 
2469 	if (hw->mac.type != e1000_pch2lan)
2470 		return 0;
2471 
2472 	/* Set MDIO slow mode before any other MDIO access */
2473 	ret_val = e1000_set_mdio_slow_mode_hv(hw);
2474 	if (ret_val)
2475 		return ret_val;
2476 
2477 	ret_val = hw->phy.ops.acquire(hw);
2478 	if (ret_val)
2479 		return ret_val;
2480 	/* set MSE higher to enable link to stay up when noise is high */
2481 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2482 	if (ret_val)
2483 		goto release;
2484 	/* drop link after 5 times MSE threshold was reached */
2485 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2486 release:
2487 	hw->phy.ops.release(hw);
2488 
2489 	return ret_val;
2490 }
2491 
2492 /**
2493  *  e1000_k1_gig_workaround_lv - K1 Si workaround
2494  *  @hw:   pointer to the HW structure
2495  *
2496  *  Workaround to set the K1 beacon duration for 82579 parts
2497  **/
2498 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2499 {
2500 	s32 ret_val = 0;
2501 	u16 status_reg = 0;
2502 	u32 mac_reg;
2503 	u16 phy_reg;
2504 
2505 	if (hw->mac.type != e1000_pch2lan)
2506 		return 0;
2507 
2508 	/* Set K1 beacon duration based on 1Gbps speed or otherwise */
2509 	ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2510 	if (ret_val)
2511 		return ret_val;
2512 
2513 	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2514 	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2515 		mac_reg = er32(FEXTNVM4);
2516 		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2517 
2518 		ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
2519 		if (ret_val)
2520 			return ret_val;
2521 
2522 		if (status_reg & HV_M_STATUS_SPEED_1000) {
2523 			u16 pm_phy_reg;
2524 
2525 			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
2526 			phy_reg &= ~I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
2527 			/* LV 1G Packet drop issue wa  */
2528 			ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2529 			if (ret_val)
2530 				return ret_val;
2531 			pm_phy_reg &= ~HV_PM_CTRL_PLL_STOP_IN_K1_GIGA;
2532 			ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2533 			if (ret_val)
2534 				return ret_val;
2535 		} else {
2536 			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2537 			phy_reg |= I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
2538 		}
2539 		ew32(FEXTNVM4, mac_reg);
2540 		ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
2541 	}
2542 
2543 	return ret_val;
2544 }
2545 
2546 /**
2547  *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2548  *  @hw:   pointer to the HW structure
2549  *  @gate: boolean set to true to gate, false to ungate
2550  *
2551  *  Gate/ungate the automatic PHY configuration via hardware; perform
2552  *  the configuration via software instead.
2553  **/
2554 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2555 {
2556 	u32 extcnf_ctrl;
2557 
2558 	if (hw->mac.type < e1000_pch2lan)
2559 		return;
2560 
2561 	extcnf_ctrl = er32(EXTCNF_CTRL);
2562 
2563 	if (gate)
2564 		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2565 	else
2566 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2567 
2568 	ew32(EXTCNF_CTRL, extcnf_ctrl);
2569 }
2570 
2571 /**
2572  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2573  *  @hw: pointer to the HW structure
2574  *
2575  *  Check the appropriate indication the MAC has finished configuring the
2576  *  PHY after a software reset.
2577  **/
2578 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2579 {
2580 	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2581 
2582 	/* Wait for basic configuration completes before proceeding */
2583 	do {
2584 		data = er32(STATUS);
2585 		data &= E1000_STATUS_LAN_INIT_DONE;
2586 		usleep_range(100, 200);
2587 	} while ((!data) && --loop);
2588 
2589 	/* If basic configuration is incomplete before the above loop
2590 	 * count reaches 0, loading the configuration from NVM will
2591 	 * leave the PHY in a bad state possibly resulting in no link.
2592 	 */
2593 	if (loop == 0)
2594 		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2595 
2596 	/* Clear the Init Done bit for the next init event */
2597 	data = er32(STATUS);
2598 	data &= ~E1000_STATUS_LAN_INIT_DONE;
2599 	ew32(STATUS, data);
2600 }
2601 
2602 /**
2603  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2604  *  @hw: pointer to the HW structure
2605  **/
2606 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2607 {
2608 	s32 ret_val = 0;
2609 	u16 reg;
2610 
2611 	if (hw->phy.ops.check_reset_block(hw))
2612 		return 0;
2613 
2614 	/* Allow time for h/w to get to quiescent state after reset */
2615 	usleep_range(10000, 20000);
2616 
2617 	/* Perform any necessary post-reset workarounds */
2618 	switch (hw->mac.type) {
2619 	case e1000_pchlan:
2620 		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2621 		if (ret_val)
2622 			return ret_val;
2623 		break;
2624 	case e1000_pch2lan:
2625 		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2626 		if (ret_val)
2627 			return ret_val;
2628 		break;
2629 	default:
2630 		break;
2631 	}
2632 
2633 	/* Clear the host wakeup bit after lcd reset */
2634 	if (hw->mac.type >= e1000_pchlan) {
2635 		e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2636 		reg &= ~BM_WUC_HOST_WU_BIT;
2637 		e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2638 	}
2639 
2640 	/* Configure the LCD with the extended configuration region in NVM */
2641 	ret_val = e1000_sw_lcd_config_ich8lan(hw);
2642 	if (ret_val)
2643 		return ret_val;
2644 
2645 	/* Configure the LCD with the OEM bits in NVM */
2646 	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2647 
2648 	if (hw->mac.type == e1000_pch2lan) {
2649 		/* Ungate automatic PHY configuration on non-managed 82579 */
2650 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2651 			usleep_range(10000, 20000);
2652 			e1000_gate_hw_phy_config_ich8lan(hw, false);
2653 		}
2654 
2655 		/* Set EEE LPI Update Timer to 200usec */
2656 		ret_val = hw->phy.ops.acquire(hw);
2657 		if (ret_val)
2658 			return ret_val;
2659 		ret_val = e1000_write_emi_reg_locked(hw,
2660 						     I82579_LPI_UPDATE_TIMER,
2661 						     0x1387);
2662 		hw->phy.ops.release(hw);
2663 	}
2664 
2665 	return ret_val;
2666 }
2667 
2668 /**
2669  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2670  *  @hw: pointer to the HW structure
2671  *
2672  *  Resets the PHY
2673  *  This is a function pointer entry point called by drivers
2674  *  or other shared routines.
2675  **/
2676 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2677 {
2678 	s32 ret_val = 0;
2679 
2680 	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
2681 	if ((hw->mac.type == e1000_pch2lan) &&
2682 	    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2683 		e1000_gate_hw_phy_config_ich8lan(hw, true);
2684 
2685 	ret_val = e1000e_phy_hw_reset_generic(hw);
2686 	if (ret_val)
2687 		return ret_val;
2688 
2689 	return e1000_post_phy_reset_ich8lan(hw);
2690 }
2691 
2692 /**
2693  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2694  *  @hw: pointer to the HW structure
2695  *  @active: true to enable LPLU, false to disable
2696  *
2697  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
2698  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2699  *  the phy speed. This function will manually set the LPLU bit and restart
2700  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
2701  *  since it configures the same bit.
2702  **/
2703 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2704 {
2705 	s32 ret_val;
2706 	u16 oem_reg;
2707 
2708 	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2709 	if (ret_val)
2710 		return ret_val;
2711 
2712 	if (active)
2713 		oem_reg |= HV_OEM_BITS_LPLU;
2714 	else
2715 		oem_reg &= ~HV_OEM_BITS_LPLU;
2716 
2717 	if (!hw->phy.ops.check_reset_block(hw))
2718 		oem_reg |= HV_OEM_BITS_RESTART_AN;
2719 
2720 	return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2721 }
2722 
2723 /**
2724  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2725  *  @hw: pointer to the HW structure
2726  *  @active: true to enable LPLU, false to disable
2727  *
2728  *  Sets the LPLU D0 state according to the active flag.  When
2729  *  activating LPLU this function also disables smart speed
2730  *  and vice versa.  LPLU will not be activated unless the
2731  *  device autonegotiation advertisement meets standards of
2732  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2733  *  This is a function pointer entry point only called by
2734  *  PHY setup routines.
2735  **/
2736 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2737 {
2738 	struct e1000_phy_info *phy = &hw->phy;
2739 	u32 phy_ctrl;
2740 	s32 ret_val = 0;
2741 	u16 data;
2742 
2743 	if (phy->type == e1000_phy_ife)
2744 		return 0;
2745 
2746 	phy_ctrl = er32(PHY_CTRL);
2747 
2748 	if (active) {
2749 		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2750 		ew32(PHY_CTRL, phy_ctrl);
2751 
2752 		if (phy->type != e1000_phy_igp_3)
2753 			return 0;
2754 
2755 		/* Call gig speed drop workaround on LPLU before accessing
2756 		 * any PHY registers
2757 		 */
2758 		if (hw->mac.type == e1000_ich8lan)
2759 			e1000e_gig_downshift_workaround_ich8lan(hw);
2760 
2761 		/* When LPLU is enabled, we should disable SmartSpeed */
2762 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2763 		if (ret_val)
2764 			return ret_val;
2765 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2766 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2767 		if (ret_val)
2768 			return ret_val;
2769 	} else {
2770 		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2771 		ew32(PHY_CTRL, phy_ctrl);
2772 
2773 		if (phy->type != e1000_phy_igp_3)
2774 			return 0;
2775 
2776 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2777 		 * during Dx states where the power conservation is most
2778 		 * important.  During driver activity we should enable
2779 		 * SmartSpeed, so performance is maintained.
2780 		 */
2781 		if (phy->smart_speed == e1000_smart_speed_on) {
2782 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2783 					   &data);
2784 			if (ret_val)
2785 				return ret_val;
2786 
2787 			data |= IGP01E1000_PSCFR_SMART_SPEED;
2788 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2789 					   data);
2790 			if (ret_val)
2791 				return ret_val;
2792 		} else if (phy->smart_speed == e1000_smart_speed_off) {
2793 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2794 					   &data);
2795 			if (ret_val)
2796 				return ret_val;
2797 
2798 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2799 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2800 					   data);
2801 			if (ret_val)
2802 				return ret_val;
2803 		}
2804 	}
2805 
2806 	return 0;
2807 }
2808 
2809 /**
2810  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
2811  *  @hw: pointer to the HW structure
2812  *  @active: true to enable LPLU, false to disable
2813  *
2814  *  Sets the LPLU D3 state according to the active flag.  When
2815  *  activating LPLU this function also disables smart speed
2816  *  and vice versa.  LPLU will not be activated unless the
2817  *  device autonegotiation advertisement meets standards of
2818  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2819  *  This is a function pointer entry point only called by
2820  *  PHY setup routines.
2821  **/
2822 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2823 {
2824 	struct e1000_phy_info *phy = &hw->phy;
2825 	u32 phy_ctrl;
2826 	s32 ret_val = 0;
2827 	u16 data;
2828 
2829 	phy_ctrl = er32(PHY_CTRL);
2830 
2831 	if (!active) {
2832 		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2833 		ew32(PHY_CTRL, phy_ctrl);
2834 
2835 		if (phy->type != e1000_phy_igp_3)
2836 			return 0;
2837 
2838 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2839 		 * during Dx states where the power conservation is most
2840 		 * important.  During driver activity we should enable
2841 		 * SmartSpeed, so performance is maintained.
2842 		 */
2843 		if (phy->smart_speed == e1000_smart_speed_on) {
2844 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2845 					   &data);
2846 			if (ret_val)
2847 				return ret_val;
2848 
2849 			data |= IGP01E1000_PSCFR_SMART_SPEED;
2850 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2851 					   data);
2852 			if (ret_val)
2853 				return ret_val;
2854 		} else if (phy->smart_speed == e1000_smart_speed_off) {
2855 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2856 					   &data);
2857 			if (ret_val)
2858 				return ret_val;
2859 
2860 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2861 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2862 					   data);
2863 			if (ret_val)
2864 				return ret_val;
2865 		}
2866 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
2867 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
2868 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
2869 		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2870 		ew32(PHY_CTRL, phy_ctrl);
2871 
2872 		if (phy->type != e1000_phy_igp_3)
2873 			return 0;
2874 
2875 		/* Call gig speed drop workaround on LPLU before accessing
2876 		 * any PHY registers
2877 		 */
2878 		if (hw->mac.type == e1000_ich8lan)
2879 			e1000e_gig_downshift_workaround_ich8lan(hw);
2880 
2881 		/* When LPLU is enabled, we should disable SmartSpeed */
2882 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2883 		if (ret_val)
2884 			return ret_val;
2885 
2886 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2887 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2888 	}
2889 
2890 	return ret_val;
2891 }
2892 
2893 /**
2894  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
2895  *  @hw: pointer to the HW structure
2896  *  @bank:  pointer to the variable that returns the active bank
2897  *
2898  *  Reads signature byte from the NVM using the flash access registers.
2899  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
2900  **/
2901 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
2902 {
2903 	u32 eecd;
2904 	struct e1000_nvm_info *nvm = &hw->nvm;
2905 	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
2906 	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
2907 	u8 sig_byte = 0;
2908 	s32 ret_val;
2909 
2910 	switch (hw->mac.type) {
2911 	case e1000_ich8lan:
2912 	case e1000_ich9lan:
2913 		eecd = er32(EECD);
2914 		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
2915 		    E1000_EECD_SEC1VAL_VALID_MASK) {
2916 			if (eecd & E1000_EECD_SEC1VAL)
2917 				*bank = 1;
2918 			else
2919 				*bank = 0;
2920 
2921 			return 0;
2922 		}
2923 		e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
2924 		/* fall-thru */
2925 	default:
2926 		/* set bank to 0 in case flash read fails */
2927 		*bank = 0;
2928 
2929 		/* Check bank 0 */
2930 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
2931 							&sig_byte);
2932 		if (ret_val)
2933 			return ret_val;
2934 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2935 		    E1000_ICH_NVM_SIG_VALUE) {
2936 			*bank = 0;
2937 			return 0;
2938 		}
2939 
2940 		/* Check bank 1 */
2941 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
2942 							bank1_offset,
2943 							&sig_byte);
2944 		if (ret_val)
2945 			return ret_val;
2946 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2947 		    E1000_ICH_NVM_SIG_VALUE) {
2948 			*bank = 1;
2949 			return 0;
2950 		}
2951 
2952 		e_dbg("ERROR: No valid NVM bank present\n");
2953 		return -E1000_ERR_NVM;
2954 	}
2955 }
2956 
2957 /**
2958  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
2959  *  @hw: pointer to the HW structure
2960  *  @offset: The offset (in bytes) of the word(s) to read.
2961  *  @words: Size of data to read in words
2962  *  @data: Pointer to the word(s) to read at offset.
2963  *
2964  *  Reads a word(s) from the NVM using the flash access registers.
2965  **/
2966 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2967 				  u16 *data)
2968 {
2969 	struct e1000_nvm_info *nvm = &hw->nvm;
2970 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2971 	u32 act_offset;
2972 	s32 ret_val = 0;
2973 	u32 bank = 0;
2974 	u16 i, word;
2975 
2976 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2977 	    (words == 0)) {
2978 		e_dbg("nvm parameter(s) out of bounds\n");
2979 		ret_val = -E1000_ERR_NVM;
2980 		goto out;
2981 	}
2982 
2983 	nvm->ops.acquire(hw);
2984 
2985 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2986 	if (ret_val) {
2987 		e_dbg("Could not detect valid bank, assuming bank 0\n");
2988 		bank = 0;
2989 	}
2990 
2991 	act_offset = (bank) ? nvm->flash_bank_size : 0;
2992 	act_offset += offset;
2993 
2994 	ret_val = 0;
2995 	for (i = 0; i < words; i++) {
2996 		if (dev_spec->shadow_ram[offset + i].modified) {
2997 			data[i] = dev_spec->shadow_ram[offset + i].value;
2998 		} else {
2999 			ret_val = e1000_read_flash_word_ich8lan(hw,
3000 								act_offset + i,
3001 								&word);
3002 			if (ret_val)
3003 				break;
3004 			data[i] = word;
3005 		}
3006 	}
3007 
3008 	nvm->ops.release(hw);
3009 
3010 out:
3011 	if (ret_val)
3012 		e_dbg("NVM read error: %d\n", ret_val);
3013 
3014 	return ret_val;
3015 }
3016 
3017 /**
3018  *  e1000_flash_cycle_init_ich8lan - Initialize flash
3019  *  @hw: pointer to the HW structure
3020  *
3021  *  This function does initial flash setup so that a new read/write/erase cycle
3022  *  can be started.
3023  **/
3024 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3025 {
3026 	union ich8_hws_flash_status hsfsts;
3027 	s32 ret_val = -E1000_ERR_NVM;
3028 
3029 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3030 
3031 	/* Check if the flash descriptor is valid */
3032 	if (!hsfsts.hsf_status.fldesvalid) {
3033 		e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
3034 		return -E1000_ERR_NVM;
3035 	}
3036 
3037 	/* Clear FCERR and DAEL in hw status by writing 1 */
3038 	hsfsts.hsf_status.flcerr = 1;
3039 	hsfsts.hsf_status.dael = 1;
3040 
3041 	ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3042 
3043 	/* Either we should have a hardware SPI cycle in progress
3044 	 * bit to check against, in order to start a new cycle or
3045 	 * FDONE bit should be changed in the hardware so that it
3046 	 * is 1 after hardware reset, which can then be used as an
3047 	 * indication whether a cycle is in progress or has been
3048 	 * completed.
3049 	 */
3050 
3051 	if (!hsfsts.hsf_status.flcinprog) {
3052 		/* There is no cycle running at present,
3053 		 * so we can start a cycle.
3054 		 * Begin by setting Flash Cycle Done.
3055 		 */
3056 		hsfsts.hsf_status.flcdone = 1;
3057 		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3058 		ret_val = 0;
3059 	} else {
3060 		s32 i;
3061 
3062 		/* Otherwise poll for sometime so the current
3063 		 * cycle has a chance to end before giving up.
3064 		 */
3065 		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3066 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3067 			if (!hsfsts.hsf_status.flcinprog) {
3068 				ret_val = 0;
3069 				break;
3070 			}
3071 			udelay(1);
3072 		}
3073 		if (!ret_val) {
3074 			/* Successful in waiting for previous cycle to timeout,
3075 			 * now set the Flash Cycle Done.
3076 			 */
3077 			hsfsts.hsf_status.flcdone = 1;
3078 			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3079 		} else {
3080 			e_dbg("Flash controller busy, cannot get access\n");
3081 		}
3082 	}
3083 
3084 	return ret_val;
3085 }
3086 
3087 /**
3088  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3089  *  @hw: pointer to the HW structure
3090  *  @timeout: maximum time to wait for completion
3091  *
3092  *  This function starts a flash cycle and waits for its completion.
3093  **/
3094 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3095 {
3096 	union ich8_hws_flash_ctrl hsflctl;
3097 	union ich8_hws_flash_status hsfsts;
3098 	u32 i = 0;
3099 
3100 	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3101 	hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3102 	hsflctl.hsf_ctrl.flcgo = 1;
3103 	ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3104 
3105 	/* wait till FDONE bit is set to 1 */
3106 	do {
3107 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3108 		if (hsfsts.hsf_status.flcdone)
3109 			break;
3110 		udelay(1);
3111 	} while (i++ < timeout);
3112 
3113 	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3114 		return 0;
3115 
3116 	return -E1000_ERR_NVM;
3117 }
3118 
3119 /**
3120  *  e1000_read_flash_word_ich8lan - Read word from flash
3121  *  @hw: pointer to the HW structure
3122  *  @offset: offset to data location
3123  *  @data: pointer to the location for storing the data
3124  *
3125  *  Reads the flash word at offset into data.  Offset is converted
3126  *  to bytes before read.
3127  **/
3128 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3129 					 u16 *data)
3130 {
3131 	/* Must convert offset into bytes. */
3132 	offset <<= 1;
3133 
3134 	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3135 }
3136 
3137 /**
3138  *  e1000_read_flash_byte_ich8lan - Read byte from flash
3139  *  @hw: pointer to the HW structure
3140  *  @offset: The offset of the byte to read.
3141  *  @data: Pointer to a byte to store the value read.
3142  *
3143  *  Reads a single byte from the NVM using the flash access registers.
3144  **/
3145 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3146 					 u8 *data)
3147 {
3148 	s32 ret_val;
3149 	u16 word = 0;
3150 
3151 	ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3152 	if (ret_val)
3153 		return ret_val;
3154 
3155 	*data = (u8)word;
3156 
3157 	return 0;
3158 }
3159 
3160 /**
3161  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3162  *  @hw: pointer to the HW structure
3163  *  @offset: The offset (in bytes) of the byte or word to read.
3164  *  @size: Size of data to read, 1=byte 2=word
3165  *  @data: Pointer to the word to store the value read.
3166  *
3167  *  Reads a byte or word from the NVM using the flash access registers.
3168  **/
3169 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3170 					 u8 size, u16 *data)
3171 {
3172 	union ich8_hws_flash_status hsfsts;
3173 	union ich8_hws_flash_ctrl hsflctl;
3174 	u32 flash_linear_addr;
3175 	u32 flash_data = 0;
3176 	s32 ret_val = -E1000_ERR_NVM;
3177 	u8 count = 0;
3178 
3179 	if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3180 		return -E1000_ERR_NVM;
3181 
3182 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3183 			     hw->nvm.flash_base_addr);
3184 
3185 	do {
3186 		udelay(1);
3187 		/* Steps */
3188 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3189 		if (ret_val)
3190 			break;
3191 
3192 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3193 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3194 		hsflctl.hsf_ctrl.fldbcount = size - 1;
3195 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3196 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3197 
3198 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3199 
3200 		ret_val =
3201 		    e1000_flash_cycle_ich8lan(hw,
3202 					      ICH_FLASH_READ_COMMAND_TIMEOUT);
3203 
3204 		/* Check if FCERR is set to 1, if set to 1, clear it
3205 		 * and try the whole sequence a few more times, else
3206 		 * read in (shift in) the Flash Data0, the order is
3207 		 * least significant byte first msb to lsb
3208 		 */
3209 		if (!ret_val) {
3210 			flash_data = er32flash(ICH_FLASH_FDATA0);
3211 			if (size == 1)
3212 				*data = (u8)(flash_data & 0x000000FF);
3213 			else if (size == 2)
3214 				*data = (u16)(flash_data & 0x0000FFFF);
3215 			break;
3216 		} else {
3217 			/* If we've gotten here, then things are probably
3218 			 * completely hosed, but if the error condition is
3219 			 * detected, it won't hurt to give it another try...
3220 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3221 			 */
3222 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3223 			if (hsfsts.hsf_status.flcerr) {
3224 				/* Repeat for some time before giving up. */
3225 				continue;
3226 			} else if (!hsfsts.hsf_status.flcdone) {
3227 				e_dbg("Timeout error - flash cycle did not complete.\n");
3228 				break;
3229 			}
3230 		}
3231 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3232 
3233 	return ret_val;
3234 }
3235 
3236 /**
3237  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
3238  *  @hw: pointer to the HW structure
3239  *  @offset: The offset (in bytes) of the word(s) to write.
3240  *  @words: Size of data to write in words
3241  *  @data: Pointer to the word(s) to write at offset.
3242  *
3243  *  Writes a byte or word to the NVM using the flash access registers.
3244  **/
3245 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3246 				   u16 *data)
3247 {
3248 	struct e1000_nvm_info *nvm = &hw->nvm;
3249 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3250 	u16 i;
3251 
3252 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3253 	    (words == 0)) {
3254 		e_dbg("nvm parameter(s) out of bounds\n");
3255 		return -E1000_ERR_NVM;
3256 	}
3257 
3258 	nvm->ops.acquire(hw);
3259 
3260 	for (i = 0; i < words; i++) {
3261 		dev_spec->shadow_ram[offset + i].modified = true;
3262 		dev_spec->shadow_ram[offset + i].value = data[i];
3263 	}
3264 
3265 	nvm->ops.release(hw);
3266 
3267 	return 0;
3268 }
3269 
3270 /**
3271  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3272  *  @hw: pointer to the HW structure
3273  *
3274  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3275  *  which writes the checksum to the shadow ram.  The changes in the shadow
3276  *  ram are then committed to the EEPROM by processing each bank at a time
3277  *  checking for the modified bit and writing only the pending changes.
3278  *  After a successful commit, the shadow ram is cleared and is ready for
3279  *  future writes.
3280  **/
3281 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
3282 {
3283 	struct e1000_nvm_info *nvm = &hw->nvm;
3284 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3285 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3286 	s32 ret_val;
3287 	u16 data;
3288 
3289 	ret_val = e1000e_update_nvm_checksum_generic(hw);
3290 	if (ret_val)
3291 		goto out;
3292 
3293 	if (nvm->type != e1000_nvm_flash_sw)
3294 		goto out;
3295 
3296 	nvm->ops.acquire(hw);
3297 
3298 	/* We're writing to the opposite bank so if we're on bank 1,
3299 	 * write to bank 0 etc.  We also need to erase the segment that
3300 	 * is going to be written
3301 	 */
3302 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3303 	if (ret_val) {
3304 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3305 		bank = 0;
3306 	}
3307 
3308 	if (bank == 0) {
3309 		new_bank_offset = nvm->flash_bank_size;
3310 		old_bank_offset = 0;
3311 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3312 		if (ret_val)
3313 			goto release;
3314 	} else {
3315 		old_bank_offset = nvm->flash_bank_size;
3316 		new_bank_offset = 0;
3317 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3318 		if (ret_val)
3319 			goto release;
3320 	}
3321 
3322 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3323 		/* Determine whether to write the value stored
3324 		 * in the other NVM bank or a modified value stored
3325 		 * in the shadow RAM
3326 		 */
3327 		if (dev_spec->shadow_ram[i].modified) {
3328 			data = dev_spec->shadow_ram[i].value;
3329 		} else {
3330 			ret_val = e1000_read_flash_word_ich8lan(hw, i +
3331 								old_bank_offset,
3332 								&data);
3333 			if (ret_val)
3334 				break;
3335 		}
3336 
3337 		/* If the word is 0x13, then make sure the signature bits
3338 		 * (15:14) are 11b until the commit has completed.
3339 		 * This will allow us to write 10b which indicates the
3340 		 * signature is valid.  We want to do this after the write
3341 		 * has completed so that we don't mark the segment valid
3342 		 * while the write is still in progress
3343 		 */
3344 		if (i == E1000_ICH_NVM_SIG_WORD)
3345 			data |= E1000_ICH_NVM_SIG_MASK;
3346 
3347 		/* Convert offset to bytes. */
3348 		act_offset = (i + new_bank_offset) << 1;
3349 
3350 		usleep_range(100, 200);
3351 		/* Write the bytes to the new bank. */
3352 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3353 							       act_offset,
3354 							       (u8)data);
3355 		if (ret_val)
3356 			break;
3357 
3358 		usleep_range(100, 200);
3359 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3360 							       act_offset + 1,
3361 							       (u8)(data >> 8));
3362 		if (ret_val)
3363 			break;
3364 	}
3365 
3366 	/* Don't bother writing the segment valid bits if sector
3367 	 * programming failed.
3368 	 */
3369 	if (ret_val) {
3370 		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3371 		e_dbg("Flash commit failed.\n");
3372 		goto release;
3373 	}
3374 
3375 	/* Finally validate the new segment by setting bit 15:14
3376 	 * to 10b in word 0x13 , this can be done without an
3377 	 * erase as well since these bits are 11 to start with
3378 	 * and we need to change bit 14 to 0b
3379 	 */
3380 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3381 	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
3382 	if (ret_val)
3383 		goto release;
3384 
3385 	data &= 0xBFFF;
3386 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3387 						       act_offset * 2 + 1,
3388 						       (u8)(data >> 8));
3389 	if (ret_val)
3390 		goto release;
3391 
3392 	/* And invalidate the previously valid segment by setting
3393 	 * its signature word (0x13) high_byte to 0b. This can be
3394 	 * done without an erase because flash erase sets all bits
3395 	 * to 1's. We can write 1's to 0's without an erase
3396 	 */
3397 	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
3398 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
3399 	if (ret_val)
3400 		goto release;
3401 
3402 	/* Great!  Everything worked, we can now clear the cached entries. */
3403 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3404 		dev_spec->shadow_ram[i].modified = false;
3405 		dev_spec->shadow_ram[i].value = 0xFFFF;
3406 	}
3407 
3408 release:
3409 	nvm->ops.release(hw);
3410 
3411 	/* Reload the EEPROM, or else modifications will not appear
3412 	 * until after the next adapter reset.
3413 	 */
3414 	if (!ret_val) {
3415 		nvm->ops.reload(hw);
3416 		usleep_range(10000, 20000);
3417 	}
3418 
3419 out:
3420 	if (ret_val)
3421 		e_dbg("NVM update error: %d\n", ret_val);
3422 
3423 	return ret_val;
3424 }
3425 
3426 /**
3427  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
3428  *  @hw: pointer to the HW structure
3429  *
3430  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
3431  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
3432  *  calculated, in which case we need to calculate the checksum and set bit 6.
3433  **/
3434 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
3435 {
3436 	s32 ret_val;
3437 	u16 data;
3438 	u16 word;
3439 	u16 valid_csum_mask;
3440 
3441 	/* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
3442 	 * the checksum needs to be fixed.  This bit is an indication that
3443 	 * the NVM was prepared by OEM software and did not calculate
3444 	 * the checksum...a likely scenario.
3445 	 */
3446 	switch (hw->mac.type) {
3447 	case e1000_pch_lpt:
3448 		word = NVM_COMPAT;
3449 		valid_csum_mask = NVM_COMPAT_VALID_CSUM;
3450 		break;
3451 	default:
3452 		word = NVM_FUTURE_INIT_WORD1;
3453 		valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
3454 		break;
3455 	}
3456 
3457 	ret_val = e1000_read_nvm(hw, word, 1, &data);
3458 	if (ret_val)
3459 		return ret_val;
3460 
3461 	if (!(data & valid_csum_mask)) {
3462 		data |= valid_csum_mask;
3463 		ret_val = e1000_write_nvm(hw, word, 1, &data);
3464 		if (ret_val)
3465 			return ret_val;
3466 		ret_val = e1000e_update_nvm_checksum(hw);
3467 		if (ret_val)
3468 			return ret_val;
3469 	}
3470 
3471 	return e1000e_validate_nvm_checksum_generic(hw);
3472 }
3473 
3474 /**
3475  *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
3476  *  @hw: pointer to the HW structure
3477  *
3478  *  To prevent malicious write/erase of the NVM, set it to be read-only
3479  *  so that the hardware ignores all write/erase cycles of the NVM via
3480  *  the flash control registers.  The shadow-ram copy of the NVM will
3481  *  still be updated, however any updates to this copy will not stick
3482  *  across driver reloads.
3483  **/
3484 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
3485 {
3486 	struct e1000_nvm_info *nvm = &hw->nvm;
3487 	union ich8_flash_protected_range pr0;
3488 	union ich8_hws_flash_status hsfsts;
3489 	u32 gfpreg;
3490 
3491 	nvm->ops.acquire(hw);
3492 
3493 	gfpreg = er32flash(ICH_FLASH_GFPREG);
3494 
3495 	/* Write-protect GbE Sector of NVM */
3496 	pr0.regval = er32flash(ICH_FLASH_PR0);
3497 	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
3498 	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
3499 	pr0.range.wpe = true;
3500 	ew32flash(ICH_FLASH_PR0, pr0.regval);
3501 
3502 	/* Lock down a subset of GbE Flash Control Registers, e.g.
3503 	 * PR0 to prevent the write-protection from being lifted.
3504 	 * Once FLOCKDN is set, the registers protected by it cannot
3505 	 * be written until FLOCKDN is cleared by a hardware reset.
3506 	 */
3507 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3508 	hsfsts.hsf_status.flockdn = true;
3509 	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3510 
3511 	nvm->ops.release(hw);
3512 }
3513 
3514 /**
3515  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
3516  *  @hw: pointer to the HW structure
3517  *  @offset: The offset (in bytes) of the byte/word to read.
3518  *  @size: Size of data to read, 1=byte 2=word
3519  *  @data: The byte(s) to write to the NVM.
3520  *
3521  *  Writes one/two bytes to the NVM using the flash access registers.
3522  **/
3523 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3524 					  u8 size, u16 data)
3525 {
3526 	union ich8_hws_flash_status hsfsts;
3527 	union ich8_hws_flash_ctrl hsflctl;
3528 	u32 flash_linear_addr;
3529 	u32 flash_data = 0;
3530 	s32 ret_val;
3531 	u8 count = 0;
3532 
3533 	if (size < 1 || size > 2 || data > size * 0xff ||
3534 	    offset > ICH_FLASH_LINEAR_ADDR_MASK)
3535 		return -E1000_ERR_NVM;
3536 
3537 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3538 			     hw->nvm.flash_base_addr);
3539 
3540 	do {
3541 		udelay(1);
3542 		/* Steps */
3543 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3544 		if (ret_val)
3545 			break;
3546 
3547 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3548 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3549 		hsflctl.hsf_ctrl.fldbcount = size - 1;
3550 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
3551 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3552 
3553 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3554 
3555 		if (size == 1)
3556 			flash_data = (u32)data & 0x00FF;
3557 		else
3558 			flash_data = (u32)data;
3559 
3560 		ew32flash(ICH_FLASH_FDATA0, flash_data);
3561 
3562 		/* check if FCERR is set to 1 , if set to 1, clear it
3563 		 * and try the whole sequence a few more times else done
3564 		 */
3565 		ret_val =
3566 		    e1000_flash_cycle_ich8lan(hw,
3567 					      ICH_FLASH_WRITE_COMMAND_TIMEOUT);
3568 		if (!ret_val)
3569 			break;
3570 
3571 		/* If we're here, then things are most likely
3572 		 * completely hosed, but if the error condition
3573 		 * is detected, it won't hurt to give it another
3574 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
3575 		 */
3576 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3577 		if (hsfsts.hsf_status.flcerr)
3578 			/* Repeat for some time before giving up. */
3579 			continue;
3580 		if (!hsfsts.hsf_status.flcdone) {
3581 			e_dbg("Timeout error - flash cycle did not complete.\n");
3582 			break;
3583 		}
3584 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3585 
3586 	return ret_val;
3587 }
3588 
3589 /**
3590  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
3591  *  @hw: pointer to the HW structure
3592  *  @offset: The index of the byte to read.
3593  *  @data: The byte to write to the NVM.
3594  *
3595  *  Writes a single byte to the NVM using the flash access registers.
3596  **/
3597 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3598 					  u8 data)
3599 {
3600 	u16 word = (u16)data;
3601 
3602 	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
3603 }
3604 
3605 /**
3606  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
3607  *  @hw: pointer to the HW structure
3608  *  @offset: The offset of the byte to write.
3609  *  @byte: The byte to write to the NVM.
3610  *
3611  *  Writes a single byte to the NVM using the flash access registers.
3612  *  Goes through a retry algorithm before giving up.
3613  **/
3614 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
3615 						u32 offset, u8 byte)
3616 {
3617 	s32 ret_val;
3618 	u16 program_retries;
3619 
3620 	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
3621 	if (!ret_val)
3622 		return ret_val;
3623 
3624 	for (program_retries = 0; program_retries < 100; program_retries++) {
3625 		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
3626 		usleep_range(100, 200);
3627 		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
3628 		if (!ret_val)
3629 			break;
3630 	}
3631 	if (program_retries == 100)
3632 		return -E1000_ERR_NVM;
3633 
3634 	return 0;
3635 }
3636 
3637 /**
3638  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
3639  *  @hw: pointer to the HW structure
3640  *  @bank: 0 for first bank, 1 for second bank, etc.
3641  *
3642  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
3643  *  bank N is 4096 * N + flash_reg_addr.
3644  **/
3645 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
3646 {
3647 	struct e1000_nvm_info *nvm = &hw->nvm;
3648 	union ich8_hws_flash_status hsfsts;
3649 	union ich8_hws_flash_ctrl hsflctl;
3650 	u32 flash_linear_addr;
3651 	/* bank size is in 16bit words - adjust to bytes */
3652 	u32 flash_bank_size = nvm->flash_bank_size * 2;
3653 	s32 ret_val;
3654 	s32 count = 0;
3655 	s32 j, iteration, sector_size;
3656 
3657 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3658 
3659 	/* Determine HW Sector size: Read BERASE bits of hw flash status
3660 	 * register
3661 	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
3662 	 *     consecutive sectors.  The start index for the nth Hw sector
3663 	 *     can be calculated as = bank * 4096 + n * 256
3664 	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
3665 	 *     The start index for the nth Hw sector can be calculated
3666 	 *     as = bank * 4096
3667 	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
3668 	 *     (ich9 only, otherwise error condition)
3669 	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
3670 	 */
3671 	switch (hsfsts.hsf_status.berasesz) {
3672 	case 0:
3673 		/* Hw sector size 256 */
3674 		sector_size = ICH_FLASH_SEG_SIZE_256;
3675 		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
3676 		break;
3677 	case 1:
3678 		sector_size = ICH_FLASH_SEG_SIZE_4K;
3679 		iteration = 1;
3680 		break;
3681 	case 2:
3682 		sector_size = ICH_FLASH_SEG_SIZE_8K;
3683 		iteration = 1;
3684 		break;
3685 	case 3:
3686 		sector_size = ICH_FLASH_SEG_SIZE_64K;
3687 		iteration = 1;
3688 		break;
3689 	default:
3690 		return -E1000_ERR_NVM;
3691 	}
3692 
3693 	/* Start with the base address, then add the sector offset. */
3694 	flash_linear_addr = hw->nvm.flash_base_addr;
3695 	flash_linear_addr += (bank) ? flash_bank_size : 0;
3696 
3697 	for (j = 0; j < iteration; j++) {
3698 		do {
3699 			u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
3700 
3701 			/* Steps */
3702 			ret_val = e1000_flash_cycle_init_ich8lan(hw);
3703 			if (ret_val)
3704 				return ret_val;
3705 
3706 			/* Write a value 11 (block Erase) in Flash
3707 			 * Cycle field in hw flash control
3708 			 */
3709 			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3710 			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
3711 			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3712 
3713 			/* Write the last 24 bits of an index within the
3714 			 * block into Flash Linear address field in Flash
3715 			 * Address.
3716 			 */
3717 			flash_linear_addr += (j * sector_size);
3718 			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3719 
3720 			ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
3721 			if (!ret_val)
3722 				break;
3723 
3724 			/* Check if FCERR is set to 1.  If 1,
3725 			 * clear it and try the whole sequence
3726 			 * a few more times else Done
3727 			 */
3728 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3729 			if (hsfsts.hsf_status.flcerr)
3730 				/* repeat for some time before giving up */
3731 				continue;
3732 			else if (!hsfsts.hsf_status.flcdone)
3733 				return ret_val;
3734 		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
3735 	}
3736 
3737 	return 0;
3738 }
3739 
3740 /**
3741  *  e1000_valid_led_default_ich8lan - Set the default LED settings
3742  *  @hw: pointer to the HW structure
3743  *  @data: Pointer to the LED settings
3744  *
3745  *  Reads the LED default settings from the NVM to data.  If the NVM LED
3746  *  settings is all 0's or F's, set the LED default to a valid LED default
3747  *  setting.
3748  **/
3749 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
3750 {
3751 	s32 ret_val;
3752 
3753 	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
3754 	if (ret_val) {
3755 		e_dbg("NVM Read Error\n");
3756 		return ret_val;
3757 	}
3758 
3759 	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
3760 		*data = ID_LED_DEFAULT_ICH8LAN;
3761 
3762 	return 0;
3763 }
3764 
3765 /**
3766  *  e1000_id_led_init_pchlan - store LED configurations
3767  *  @hw: pointer to the HW structure
3768  *
3769  *  PCH does not control LEDs via the LEDCTL register, rather it uses
3770  *  the PHY LED configuration register.
3771  *
3772  *  PCH also does not have an "always on" or "always off" mode which
3773  *  complicates the ID feature.  Instead of using the "on" mode to indicate
3774  *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
3775  *  use "link_up" mode.  The LEDs will still ID on request if there is no
3776  *  link based on logic in e1000_led_[on|off]_pchlan().
3777  **/
3778 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
3779 {
3780 	struct e1000_mac_info *mac = &hw->mac;
3781 	s32 ret_val;
3782 	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
3783 	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
3784 	u16 data, i, temp, shift;
3785 
3786 	/* Get default ID LED modes */
3787 	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
3788 	if (ret_val)
3789 		return ret_val;
3790 
3791 	mac->ledctl_default = er32(LEDCTL);
3792 	mac->ledctl_mode1 = mac->ledctl_default;
3793 	mac->ledctl_mode2 = mac->ledctl_default;
3794 
3795 	for (i = 0; i < 4; i++) {
3796 		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
3797 		shift = (i * 5);
3798 		switch (temp) {
3799 		case ID_LED_ON1_DEF2:
3800 		case ID_LED_ON1_ON2:
3801 		case ID_LED_ON1_OFF2:
3802 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
3803 			mac->ledctl_mode1 |= (ledctl_on << shift);
3804 			break;
3805 		case ID_LED_OFF1_DEF2:
3806 		case ID_LED_OFF1_ON2:
3807 		case ID_LED_OFF1_OFF2:
3808 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
3809 			mac->ledctl_mode1 |= (ledctl_off << shift);
3810 			break;
3811 		default:
3812 			/* Do nothing */
3813 			break;
3814 		}
3815 		switch (temp) {
3816 		case ID_LED_DEF1_ON2:
3817 		case ID_LED_ON1_ON2:
3818 		case ID_LED_OFF1_ON2:
3819 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3820 			mac->ledctl_mode2 |= (ledctl_on << shift);
3821 			break;
3822 		case ID_LED_DEF1_OFF2:
3823 		case ID_LED_ON1_OFF2:
3824 		case ID_LED_OFF1_OFF2:
3825 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3826 			mac->ledctl_mode2 |= (ledctl_off << shift);
3827 			break;
3828 		default:
3829 			/* Do nothing */
3830 			break;
3831 		}
3832 	}
3833 
3834 	return 0;
3835 }
3836 
3837 /**
3838  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
3839  *  @hw: pointer to the HW structure
3840  *
3841  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
3842  *  register, so the the bus width is hard coded.
3843  **/
3844 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
3845 {
3846 	struct e1000_bus_info *bus = &hw->bus;
3847 	s32 ret_val;
3848 
3849 	ret_val = e1000e_get_bus_info_pcie(hw);
3850 
3851 	/* ICH devices are "PCI Express"-ish.  They have
3852 	 * a configuration space, but do not contain
3853 	 * PCI Express Capability registers, so bus width
3854 	 * must be hardcoded.
3855 	 */
3856 	if (bus->width == e1000_bus_width_unknown)
3857 		bus->width = e1000_bus_width_pcie_x1;
3858 
3859 	return ret_val;
3860 }
3861 
3862 /**
3863  *  e1000_reset_hw_ich8lan - Reset the hardware
3864  *  @hw: pointer to the HW structure
3865  *
3866  *  Does a full reset of the hardware which includes a reset of the PHY and
3867  *  MAC.
3868  **/
3869 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
3870 {
3871 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3872 	u16 kum_cfg;
3873 	u32 ctrl, reg;
3874 	s32 ret_val;
3875 
3876 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
3877 	 * on the last TLP read/write transaction when MAC is reset.
3878 	 */
3879 	ret_val = e1000e_disable_pcie_master(hw);
3880 	if (ret_val)
3881 		e_dbg("PCI-E Master disable polling has failed.\n");
3882 
3883 	e_dbg("Masking off all interrupts\n");
3884 	ew32(IMC, 0xffffffff);
3885 
3886 	/* Disable the Transmit and Receive units.  Then delay to allow
3887 	 * any pending transactions to complete before we hit the MAC
3888 	 * with the global reset.
3889 	 */
3890 	ew32(RCTL, 0);
3891 	ew32(TCTL, E1000_TCTL_PSP);
3892 	e1e_flush();
3893 
3894 	usleep_range(10000, 20000);
3895 
3896 	/* Workaround for ICH8 bit corruption issue in FIFO memory */
3897 	if (hw->mac.type == e1000_ich8lan) {
3898 		/* Set Tx and Rx buffer allocation to 8k apiece. */
3899 		ew32(PBA, E1000_PBA_8K);
3900 		/* Set Packet Buffer Size to 16k. */
3901 		ew32(PBS, E1000_PBS_16K);
3902 	}
3903 
3904 	if (hw->mac.type == e1000_pchlan) {
3905 		/* Save the NVM K1 bit setting */
3906 		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
3907 		if (ret_val)
3908 			return ret_val;
3909 
3910 		if (kum_cfg & E1000_NVM_K1_ENABLE)
3911 			dev_spec->nvm_k1_enabled = true;
3912 		else
3913 			dev_spec->nvm_k1_enabled = false;
3914 	}
3915 
3916 	ctrl = er32(CTRL);
3917 
3918 	if (!hw->phy.ops.check_reset_block(hw)) {
3919 		/* Full-chip reset requires MAC and PHY reset at the same
3920 		 * time to make sure the interface between MAC and the
3921 		 * external PHY is reset.
3922 		 */
3923 		ctrl |= E1000_CTRL_PHY_RST;
3924 
3925 		/* Gate automatic PHY configuration by hardware on
3926 		 * non-managed 82579
3927 		 */
3928 		if ((hw->mac.type == e1000_pch2lan) &&
3929 		    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
3930 			e1000_gate_hw_phy_config_ich8lan(hw, true);
3931 	}
3932 	ret_val = e1000_acquire_swflag_ich8lan(hw);
3933 	e_dbg("Issuing a global reset to ich8lan\n");
3934 	ew32(CTRL, (ctrl | E1000_CTRL_RST));
3935 	/* cannot issue a flush here because it hangs the hardware */
3936 	msleep(20);
3937 
3938 	/* Set Phy Config Counter to 50msec */
3939 	if (hw->mac.type == e1000_pch2lan) {
3940 		reg = er32(FEXTNVM3);
3941 		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
3942 		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
3943 		ew32(FEXTNVM3, reg);
3944 	}
3945 
3946 	if (!ret_val)
3947 		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
3948 
3949 	if (ctrl & E1000_CTRL_PHY_RST) {
3950 		ret_val = hw->phy.ops.get_cfg_done(hw);
3951 		if (ret_val)
3952 			return ret_val;
3953 
3954 		ret_val = e1000_post_phy_reset_ich8lan(hw);
3955 		if (ret_val)
3956 			return ret_val;
3957 	}
3958 
3959 	/* For PCH, this write will make sure that any noise
3960 	 * will be detected as a CRC error and be dropped rather than show up
3961 	 * as a bad packet to the DMA engine.
3962 	 */
3963 	if (hw->mac.type == e1000_pchlan)
3964 		ew32(CRC_OFFSET, 0x65656565);
3965 
3966 	ew32(IMC, 0xffffffff);
3967 	er32(ICR);
3968 
3969 	reg = er32(KABGTXD);
3970 	reg |= E1000_KABGTXD_BGSQLBIAS;
3971 	ew32(KABGTXD, reg);
3972 
3973 	return 0;
3974 }
3975 
3976 /**
3977  *  e1000_init_hw_ich8lan - Initialize the hardware
3978  *  @hw: pointer to the HW structure
3979  *
3980  *  Prepares the hardware for transmit and receive by doing the following:
3981  *   - initialize hardware bits
3982  *   - initialize LED identification
3983  *   - setup receive address registers
3984  *   - setup flow control
3985  *   - setup transmit descriptors
3986  *   - clear statistics
3987  **/
3988 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
3989 {
3990 	struct e1000_mac_info *mac = &hw->mac;
3991 	u32 ctrl_ext, txdctl, snoop;
3992 	s32 ret_val;
3993 	u16 i;
3994 
3995 	e1000_initialize_hw_bits_ich8lan(hw);
3996 
3997 	/* Initialize identification LED */
3998 	ret_val = mac->ops.id_led_init(hw);
3999 	/* An error is not fatal and we should not stop init due to this */
4000 	if (ret_val)
4001 		e_dbg("Error initializing identification LED\n");
4002 
4003 	/* Setup the receive address. */
4004 	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
4005 
4006 	/* Zero out the Multicast HASH table */
4007 	e_dbg("Zeroing the MTA\n");
4008 	for (i = 0; i < mac->mta_reg_count; i++)
4009 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4010 
4011 	/* The 82578 Rx buffer will stall if wakeup is enabled in host and
4012 	 * the ME.  Disable wakeup by clearing the host wakeup bit.
4013 	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
4014 	 */
4015 	if (hw->phy.type == e1000_phy_82578) {
4016 		e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4017 		i &= ~BM_WUC_HOST_WU_BIT;
4018 		e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4019 		ret_val = e1000_phy_hw_reset_ich8lan(hw);
4020 		if (ret_val)
4021 			return ret_val;
4022 	}
4023 
4024 	/* Setup link and flow control */
4025 	ret_val = mac->ops.setup_link(hw);
4026 
4027 	/* Set the transmit descriptor write-back policy for both queues */
4028 	txdctl = er32(TXDCTL(0));
4029 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4030 		  E1000_TXDCTL_FULL_TX_DESC_WB);
4031 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4032 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4033 	ew32(TXDCTL(0), txdctl);
4034 	txdctl = er32(TXDCTL(1));
4035 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4036 		  E1000_TXDCTL_FULL_TX_DESC_WB);
4037 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4038 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4039 	ew32(TXDCTL(1), txdctl);
4040 
4041 	/* ICH8 has opposite polarity of no_snoop bits.
4042 	 * By default, we should use snoop behavior.
4043 	 */
4044 	if (mac->type == e1000_ich8lan)
4045 		snoop = PCIE_ICH8_SNOOP_ALL;
4046 	else
4047 		snoop = (u32)~(PCIE_NO_SNOOP_ALL);
4048 	e1000e_set_pcie_no_snoop(hw, snoop);
4049 
4050 	ctrl_ext = er32(CTRL_EXT);
4051 	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4052 	ew32(CTRL_EXT, ctrl_ext);
4053 
4054 	/* Clear all of the statistics registers (clear on read).  It is
4055 	 * important that we do this after we have tried to establish link
4056 	 * because the symbol error count will increment wildly if there
4057 	 * is no link.
4058 	 */
4059 	e1000_clear_hw_cntrs_ich8lan(hw);
4060 
4061 	return ret_val;
4062 }
4063 
4064 /**
4065  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4066  *  @hw: pointer to the HW structure
4067  *
4068  *  Sets/Clears required hardware bits necessary for correctly setting up the
4069  *  hardware for transmit and receive.
4070  **/
4071 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4072 {
4073 	u32 reg;
4074 
4075 	/* Extended Device Control */
4076 	reg = er32(CTRL_EXT);
4077 	reg |= (1 << 22);
4078 	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
4079 	if (hw->mac.type >= e1000_pchlan)
4080 		reg |= E1000_CTRL_EXT_PHYPDEN;
4081 	ew32(CTRL_EXT, reg);
4082 
4083 	/* Transmit Descriptor Control 0 */
4084 	reg = er32(TXDCTL(0));
4085 	reg |= (1 << 22);
4086 	ew32(TXDCTL(0), reg);
4087 
4088 	/* Transmit Descriptor Control 1 */
4089 	reg = er32(TXDCTL(1));
4090 	reg |= (1 << 22);
4091 	ew32(TXDCTL(1), reg);
4092 
4093 	/* Transmit Arbitration Control 0 */
4094 	reg = er32(TARC(0));
4095 	if (hw->mac.type == e1000_ich8lan)
4096 		reg |= (1 << 28) | (1 << 29);
4097 	reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
4098 	ew32(TARC(0), reg);
4099 
4100 	/* Transmit Arbitration Control 1 */
4101 	reg = er32(TARC(1));
4102 	if (er32(TCTL) & E1000_TCTL_MULR)
4103 		reg &= ~(1 << 28);
4104 	else
4105 		reg |= (1 << 28);
4106 	reg |= (1 << 24) | (1 << 26) | (1 << 30);
4107 	ew32(TARC(1), reg);
4108 
4109 	/* Device Status */
4110 	if (hw->mac.type == e1000_ich8lan) {
4111 		reg = er32(STATUS);
4112 		reg &= ~(1 << 31);
4113 		ew32(STATUS, reg);
4114 	}
4115 
4116 	/* work-around descriptor data corruption issue during nfs v2 udp
4117 	 * traffic, just disable the nfs filtering capability
4118 	 */
4119 	reg = er32(RFCTL);
4120 	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
4121 
4122 	/* Disable IPv6 extension header parsing because some malformed
4123 	 * IPv6 headers can hang the Rx.
4124 	 */
4125 	if (hw->mac.type == e1000_ich8lan)
4126 		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
4127 	ew32(RFCTL, reg);
4128 
4129 	/* Enable ECC on Lynxpoint */
4130 	if (hw->mac.type == e1000_pch_lpt) {
4131 		reg = er32(PBECCSTS);
4132 		reg |= E1000_PBECCSTS_ECC_ENABLE;
4133 		ew32(PBECCSTS, reg);
4134 
4135 		reg = er32(CTRL);
4136 		reg |= E1000_CTRL_MEHE;
4137 		ew32(CTRL, reg);
4138 	}
4139 }
4140 
4141 /**
4142  *  e1000_setup_link_ich8lan - Setup flow control and link settings
4143  *  @hw: pointer to the HW structure
4144  *
4145  *  Determines which flow control settings to use, then configures flow
4146  *  control.  Calls the appropriate media-specific link configuration
4147  *  function.  Assuming the adapter has a valid link partner, a valid link
4148  *  should be established.  Assumes the hardware has previously been reset
4149  *  and the transmitter and receiver are not enabled.
4150  **/
4151 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
4152 {
4153 	s32 ret_val;
4154 
4155 	if (hw->phy.ops.check_reset_block(hw))
4156 		return 0;
4157 
4158 	/* ICH parts do not have a word in the NVM to determine
4159 	 * the default flow control setting, so we explicitly
4160 	 * set it to full.
4161 	 */
4162 	if (hw->fc.requested_mode == e1000_fc_default) {
4163 		/* Workaround h/w hang when Tx flow control enabled */
4164 		if (hw->mac.type == e1000_pchlan)
4165 			hw->fc.requested_mode = e1000_fc_rx_pause;
4166 		else
4167 			hw->fc.requested_mode = e1000_fc_full;
4168 	}
4169 
4170 	/* Save off the requested flow control mode for use later.  Depending
4171 	 * on the link partner's capabilities, we may or may not use this mode.
4172 	 */
4173 	hw->fc.current_mode = hw->fc.requested_mode;
4174 
4175 	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
4176 
4177 	/* Continue to configure the copper link. */
4178 	ret_val = hw->mac.ops.setup_physical_interface(hw);
4179 	if (ret_val)
4180 		return ret_val;
4181 
4182 	ew32(FCTTV, hw->fc.pause_time);
4183 	if ((hw->phy.type == e1000_phy_82578) ||
4184 	    (hw->phy.type == e1000_phy_82579) ||
4185 	    (hw->phy.type == e1000_phy_i217) ||
4186 	    (hw->phy.type == e1000_phy_82577)) {
4187 		ew32(FCRTV_PCH, hw->fc.refresh_time);
4188 
4189 		ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
4190 				   hw->fc.pause_time);
4191 		if (ret_val)
4192 			return ret_val;
4193 	}
4194 
4195 	return e1000e_set_fc_watermarks(hw);
4196 }
4197 
4198 /**
4199  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
4200  *  @hw: pointer to the HW structure
4201  *
4202  *  Configures the kumeran interface to the PHY to wait the appropriate time
4203  *  when polling the PHY, then call the generic setup_copper_link to finish
4204  *  configuring the copper link.
4205  **/
4206 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
4207 {
4208 	u32 ctrl;
4209 	s32 ret_val;
4210 	u16 reg_data;
4211 
4212 	ctrl = er32(CTRL);
4213 	ctrl |= E1000_CTRL_SLU;
4214 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
4215 	ew32(CTRL, ctrl);
4216 
4217 	/* Set the mac to wait the maximum time between each iteration
4218 	 * and increase the max iterations when polling the phy;
4219 	 * this fixes erroneous timeouts at 10Mbps.
4220 	 */
4221 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
4222 	if (ret_val)
4223 		return ret_val;
4224 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
4225 				       &reg_data);
4226 	if (ret_val)
4227 		return ret_val;
4228 	reg_data |= 0x3F;
4229 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
4230 					reg_data);
4231 	if (ret_val)
4232 		return ret_val;
4233 
4234 	switch (hw->phy.type) {
4235 	case e1000_phy_igp_3:
4236 		ret_val = e1000e_copper_link_setup_igp(hw);
4237 		if (ret_val)
4238 			return ret_val;
4239 		break;
4240 	case e1000_phy_bm:
4241 	case e1000_phy_82578:
4242 		ret_val = e1000e_copper_link_setup_m88(hw);
4243 		if (ret_val)
4244 			return ret_val;
4245 		break;
4246 	case e1000_phy_82577:
4247 	case e1000_phy_82579:
4248 		ret_val = e1000_copper_link_setup_82577(hw);
4249 		if (ret_val)
4250 			return ret_val;
4251 		break;
4252 	case e1000_phy_ife:
4253 		ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
4254 		if (ret_val)
4255 			return ret_val;
4256 
4257 		reg_data &= ~IFE_PMC_AUTO_MDIX;
4258 
4259 		switch (hw->phy.mdix) {
4260 		case 1:
4261 			reg_data &= ~IFE_PMC_FORCE_MDIX;
4262 			break;
4263 		case 2:
4264 			reg_data |= IFE_PMC_FORCE_MDIX;
4265 			break;
4266 		case 0:
4267 		default:
4268 			reg_data |= IFE_PMC_AUTO_MDIX;
4269 			break;
4270 		}
4271 		ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
4272 		if (ret_val)
4273 			return ret_val;
4274 		break;
4275 	default:
4276 		break;
4277 	}
4278 
4279 	return e1000e_setup_copper_link(hw);
4280 }
4281 
4282 /**
4283  *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
4284  *  @hw: pointer to the HW structure
4285  *
4286  *  Calls the PHY specific link setup function and then calls the
4287  *  generic setup_copper_link to finish configuring the link for
4288  *  Lynxpoint PCH devices
4289  **/
4290 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
4291 {
4292 	u32 ctrl;
4293 	s32 ret_val;
4294 
4295 	ctrl = er32(CTRL);
4296 	ctrl |= E1000_CTRL_SLU;
4297 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
4298 	ew32(CTRL, ctrl);
4299 
4300 	ret_val = e1000_copper_link_setup_82577(hw);
4301 	if (ret_val)
4302 		return ret_val;
4303 
4304 	return e1000e_setup_copper_link(hw);
4305 }
4306 
4307 /**
4308  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
4309  *  @hw: pointer to the HW structure
4310  *  @speed: pointer to store current link speed
4311  *  @duplex: pointer to store the current link duplex
4312  *
4313  *  Calls the generic get_speed_and_duplex to retrieve the current link
4314  *  information and then calls the Kumeran lock loss workaround for links at
4315  *  gigabit speeds.
4316  **/
4317 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
4318 					  u16 *duplex)
4319 {
4320 	s32 ret_val;
4321 
4322 	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
4323 	if (ret_val)
4324 		return ret_val;
4325 
4326 	if ((hw->mac.type == e1000_ich8lan) &&
4327 	    (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
4328 		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
4329 	}
4330 
4331 	return ret_val;
4332 }
4333 
4334 /**
4335  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
4336  *  @hw: pointer to the HW structure
4337  *
4338  *  Work-around for 82566 Kumeran PCS lock loss:
4339  *  On link status change (i.e. PCI reset, speed change) and link is up and
4340  *  speed is gigabit-
4341  *    0) if workaround is optionally disabled do nothing
4342  *    1) wait 1ms for Kumeran link to come up
4343  *    2) check Kumeran Diagnostic register PCS lock loss bit
4344  *    3) if not set the link is locked (all is good), otherwise...
4345  *    4) reset the PHY
4346  *    5) repeat up to 10 times
4347  *  Note: this is only called for IGP3 copper when speed is 1gb.
4348  **/
4349 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
4350 {
4351 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4352 	u32 phy_ctrl;
4353 	s32 ret_val;
4354 	u16 i, data;
4355 	bool link;
4356 
4357 	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
4358 		return 0;
4359 
4360 	/* Make sure link is up before proceeding.  If not just return.
4361 	 * Attempting this while link is negotiating fouled up link
4362 	 * stability
4363 	 */
4364 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
4365 	if (!link)
4366 		return 0;
4367 
4368 	for (i = 0; i < 10; i++) {
4369 		/* read once to clear */
4370 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
4371 		if (ret_val)
4372 			return ret_val;
4373 		/* and again to get new status */
4374 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
4375 		if (ret_val)
4376 			return ret_val;
4377 
4378 		/* check for PCS lock */
4379 		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
4380 			return 0;
4381 
4382 		/* Issue PHY reset */
4383 		e1000_phy_hw_reset(hw);
4384 		mdelay(5);
4385 	}
4386 	/* Disable GigE link negotiation */
4387 	phy_ctrl = er32(PHY_CTRL);
4388 	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
4389 		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
4390 	ew32(PHY_CTRL, phy_ctrl);
4391 
4392 	/* Call gig speed drop workaround on Gig disable before accessing
4393 	 * any PHY registers
4394 	 */
4395 	e1000e_gig_downshift_workaround_ich8lan(hw);
4396 
4397 	/* unable to acquire PCS lock */
4398 	return -E1000_ERR_PHY;
4399 }
4400 
4401 /**
4402  *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
4403  *  @hw: pointer to the HW structure
4404  *  @state: boolean value used to set the current Kumeran workaround state
4405  *
4406  *  If ICH8, set the current Kumeran workaround state (enabled - true
4407  *  /disabled - false).
4408  **/
4409 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
4410 						  bool state)
4411 {
4412 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4413 
4414 	if (hw->mac.type != e1000_ich8lan) {
4415 		e_dbg("Workaround applies to ICH8 only.\n");
4416 		return;
4417 	}
4418 
4419 	dev_spec->kmrn_lock_loss_workaround_enabled = state;
4420 }
4421 
4422 /**
4423  *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
4424  *  @hw: pointer to the HW structure
4425  *
4426  *  Workaround for 82566 power-down on D3 entry:
4427  *    1) disable gigabit link
4428  *    2) write VR power-down enable
4429  *    3) read it back
4430  *  Continue if successful, else issue LCD reset and repeat
4431  **/
4432 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
4433 {
4434 	u32 reg;
4435 	u16 data;
4436 	u8 retry = 0;
4437 
4438 	if (hw->phy.type != e1000_phy_igp_3)
4439 		return;
4440 
4441 	/* Try the workaround twice (if needed) */
4442 	do {
4443 		/* Disable link */
4444 		reg = er32(PHY_CTRL);
4445 		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
4446 			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
4447 		ew32(PHY_CTRL, reg);
4448 
4449 		/* Call gig speed drop workaround on Gig disable before
4450 		 * accessing any PHY registers
4451 		 */
4452 		if (hw->mac.type == e1000_ich8lan)
4453 			e1000e_gig_downshift_workaround_ich8lan(hw);
4454 
4455 		/* Write VR power-down enable */
4456 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
4457 		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
4458 		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
4459 
4460 		/* Read it back and test */
4461 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
4462 		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
4463 		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
4464 			break;
4465 
4466 		/* Issue PHY reset and repeat at most one more time */
4467 		reg = er32(CTRL);
4468 		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
4469 		retry++;
4470 	} while (retry);
4471 }
4472 
4473 /**
4474  *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
4475  *  @hw: pointer to the HW structure
4476  *
4477  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
4478  *  LPLU, Gig disable, MDIC PHY reset):
4479  *    1) Set Kumeran Near-end loopback
4480  *    2) Clear Kumeran Near-end loopback
4481  *  Should only be called for ICH8[m] devices with any 1G Phy.
4482  **/
4483 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
4484 {
4485 	s32 ret_val;
4486 	u16 reg_data;
4487 
4488 	if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
4489 		return;
4490 
4491 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
4492 				       &reg_data);
4493 	if (ret_val)
4494 		return;
4495 	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
4496 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
4497 					reg_data);
4498 	if (ret_val)
4499 		return;
4500 	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
4501 	e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
4502 }
4503 
4504 /**
4505  *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
4506  *  @hw: pointer to the HW structure
4507  *
4508  *  During S0 to Sx transition, it is possible the link remains at gig
4509  *  instead of negotiating to a lower speed.  Before going to Sx, set
4510  *  'Gig Disable' to force link speed negotiation to a lower speed based on
4511  *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
4512  *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
4513  *  needs to be written.
4514  *  Parts that support (and are linked to a partner which support) EEE in
4515  *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
4516  *  than 10Mbps w/o EEE.
4517  **/
4518 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
4519 {
4520 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4521 	u32 phy_ctrl;
4522 	s32 ret_val;
4523 
4524 	phy_ctrl = er32(PHY_CTRL);
4525 	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
4526 
4527 	if (hw->phy.type == e1000_phy_i217) {
4528 		u16 phy_reg, device_id = hw->adapter->pdev->device;
4529 
4530 		if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
4531 		    (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
4532 		    (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
4533 		    (device_id == E1000_DEV_ID_PCH_I218_V3)) {
4534 			u32 fextnvm6 = er32(FEXTNVM6);
4535 
4536 			ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
4537 		}
4538 
4539 		ret_val = hw->phy.ops.acquire(hw);
4540 		if (ret_val)
4541 			goto out;
4542 
4543 		if (!dev_spec->eee_disable) {
4544 			u16 eee_advert;
4545 
4546 			ret_val =
4547 			    e1000_read_emi_reg_locked(hw,
4548 						      I217_EEE_ADVERTISEMENT,
4549 						      &eee_advert);
4550 			if (ret_val)
4551 				goto release;
4552 
4553 			/* Disable LPLU if both link partners support 100BaseT
4554 			 * EEE and 100Full is advertised on both ends of the
4555 			 * link.
4556 			 */
4557 			if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
4558 			    (dev_spec->eee_lp_ability &
4559 			     I82579_EEE_100_SUPPORTED) &&
4560 			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL))
4561 				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
4562 					      E1000_PHY_CTRL_NOND0A_LPLU);
4563 		}
4564 
4565 		/* For i217 Intel Rapid Start Technology support,
4566 		 * when the system is going into Sx and no manageability engine
4567 		 * is present, the driver must configure proxy to reset only on
4568 		 * power good.  LPI (Low Power Idle) state must also reset only
4569 		 * on power good, as well as the MTA (Multicast table array).
4570 		 * The SMBus release must also be disabled on LCD reset.
4571 		 */
4572 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
4573 			/* Enable proxy to reset only on power good. */
4574 			e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
4575 			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
4576 			e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
4577 
4578 			/* Set bit enable LPI (EEE) to reset only on
4579 			 * power good.
4580 			 */
4581 			e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
4582 			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
4583 			e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
4584 
4585 			/* Disable the SMB release on LCD reset. */
4586 			e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
4587 			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
4588 			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
4589 		}
4590 
4591 		/* Enable MTA to reset for Intel Rapid Start Technology
4592 		 * Support
4593 		 */
4594 		e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
4595 		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
4596 		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
4597 
4598 release:
4599 		hw->phy.ops.release(hw);
4600 	}
4601 out:
4602 	ew32(PHY_CTRL, phy_ctrl);
4603 
4604 	if (hw->mac.type == e1000_ich8lan)
4605 		e1000e_gig_downshift_workaround_ich8lan(hw);
4606 
4607 	if (hw->mac.type >= e1000_pchlan) {
4608 		e1000_oem_bits_config_ich8lan(hw, false);
4609 
4610 		/* Reset PHY to activate OEM bits on 82577/8 */
4611 		if (hw->mac.type == e1000_pchlan)
4612 			e1000e_phy_hw_reset_generic(hw);
4613 
4614 		ret_val = hw->phy.ops.acquire(hw);
4615 		if (ret_val)
4616 			return;
4617 		e1000_write_smbus_addr(hw);
4618 		hw->phy.ops.release(hw);
4619 	}
4620 }
4621 
4622 /**
4623  *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
4624  *  @hw: pointer to the HW structure
4625  *
4626  *  During Sx to S0 transitions on non-managed devices or managed devices
4627  *  on which PHY resets are not blocked, if the PHY registers cannot be
4628  *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
4629  *  the PHY.
4630  *  On i217, setup Intel Rapid Start Technology.
4631  **/
4632 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
4633 {
4634 	s32 ret_val;
4635 
4636 	if (hw->mac.type < e1000_pch2lan)
4637 		return;
4638 
4639 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
4640 	if (ret_val) {
4641 		e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
4642 		return;
4643 	}
4644 
4645 	/* For i217 Intel Rapid Start Technology support when the system
4646 	 * is transitioning from Sx and no manageability engine is present
4647 	 * configure SMBus to restore on reset, disable proxy, and enable
4648 	 * the reset on MTA (Multicast table array).
4649 	 */
4650 	if (hw->phy.type == e1000_phy_i217) {
4651 		u16 phy_reg;
4652 
4653 		ret_val = hw->phy.ops.acquire(hw);
4654 		if (ret_val) {
4655 			e_dbg("Failed to setup iRST\n");
4656 			return;
4657 		}
4658 
4659 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
4660 			/* Restore clear on SMB if no manageability engine
4661 			 * is present
4662 			 */
4663 			ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
4664 			if (ret_val)
4665 				goto release;
4666 			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
4667 			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
4668 
4669 			/* Disable Proxy */
4670 			e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
4671 		}
4672 		/* Enable reset on MTA */
4673 		ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
4674 		if (ret_val)
4675 			goto release;
4676 		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
4677 		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
4678 release:
4679 		if (ret_val)
4680 			e_dbg("Error %d in resume workarounds\n", ret_val);
4681 		hw->phy.ops.release(hw);
4682 	}
4683 }
4684 
4685 /**
4686  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
4687  *  @hw: pointer to the HW structure
4688  *
4689  *  Return the LED back to the default configuration.
4690  **/
4691 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
4692 {
4693 	if (hw->phy.type == e1000_phy_ife)
4694 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
4695 
4696 	ew32(LEDCTL, hw->mac.ledctl_default);
4697 	return 0;
4698 }
4699 
4700 /**
4701  *  e1000_led_on_ich8lan - Turn LEDs on
4702  *  @hw: pointer to the HW structure
4703  *
4704  *  Turn on the LEDs.
4705  **/
4706 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
4707 {
4708 	if (hw->phy.type == e1000_phy_ife)
4709 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
4710 				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
4711 
4712 	ew32(LEDCTL, hw->mac.ledctl_mode2);
4713 	return 0;
4714 }
4715 
4716 /**
4717  *  e1000_led_off_ich8lan - Turn LEDs off
4718  *  @hw: pointer to the HW structure
4719  *
4720  *  Turn off the LEDs.
4721  **/
4722 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
4723 {
4724 	if (hw->phy.type == e1000_phy_ife)
4725 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
4726 				(IFE_PSCL_PROBE_MODE |
4727 				 IFE_PSCL_PROBE_LEDS_OFF));
4728 
4729 	ew32(LEDCTL, hw->mac.ledctl_mode1);
4730 	return 0;
4731 }
4732 
4733 /**
4734  *  e1000_setup_led_pchlan - Configures SW controllable LED
4735  *  @hw: pointer to the HW structure
4736  *
4737  *  This prepares the SW controllable LED for use.
4738  **/
4739 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
4740 {
4741 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
4742 }
4743 
4744 /**
4745  *  e1000_cleanup_led_pchlan - Restore the default LED operation
4746  *  @hw: pointer to the HW structure
4747  *
4748  *  Return the LED back to the default configuration.
4749  **/
4750 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
4751 {
4752 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
4753 }
4754 
4755 /**
4756  *  e1000_led_on_pchlan - Turn LEDs on
4757  *  @hw: pointer to the HW structure
4758  *
4759  *  Turn on the LEDs.
4760  **/
4761 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
4762 {
4763 	u16 data = (u16)hw->mac.ledctl_mode2;
4764 	u32 i, led;
4765 
4766 	/* If no link, then turn LED on by setting the invert bit
4767 	 * for each LED that's mode is "link_up" in ledctl_mode2.
4768 	 */
4769 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
4770 		for (i = 0; i < 3; i++) {
4771 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
4772 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
4773 			    E1000_LEDCTL_MODE_LINK_UP)
4774 				continue;
4775 			if (led & E1000_PHY_LED0_IVRT)
4776 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
4777 			else
4778 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
4779 		}
4780 	}
4781 
4782 	return e1e_wphy(hw, HV_LED_CONFIG, data);
4783 }
4784 
4785 /**
4786  *  e1000_led_off_pchlan - Turn LEDs off
4787  *  @hw: pointer to the HW structure
4788  *
4789  *  Turn off the LEDs.
4790  **/
4791 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
4792 {
4793 	u16 data = (u16)hw->mac.ledctl_mode1;
4794 	u32 i, led;
4795 
4796 	/* If no link, then turn LED off by clearing the invert bit
4797 	 * for each LED that's mode is "link_up" in ledctl_mode1.
4798 	 */
4799 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
4800 		for (i = 0; i < 3; i++) {
4801 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
4802 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
4803 			    E1000_LEDCTL_MODE_LINK_UP)
4804 				continue;
4805 			if (led & E1000_PHY_LED0_IVRT)
4806 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
4807 			else
4808 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
4809 		}
4810 	}
4811 
4812 	return e1e_wphy(hw, HV_LED_CONFIG, data);
4813 }
4814 
4815 /**
4816  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
4817  *  @hw: pointer to the HW structure
4818  *
4819  *  Read appropriate register for the config done bit for completion status
4820  *  and configure the PHY through s/w for EEPROM-less parts.
4821  *
4822  *  NOTE: some silicon which is EEPROM-less will fail trying to read the
4823  *  config done bit, so only an error is logged and continues.  If we were
4824  *  to return with error, EEPROM-less silicon would not be able to be reset
4825  *  or change link.
4826  **/
4827 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
4828 {
4829 	s32 ret_val = 0;
4830 	u32 bank = 0;
4831 	u32 status;
4832 
4833 	e1000e_get_cfg_done_generic(hw);
4834 
4835 	/* Wait for indication from h/w that it has completed basic config */
4836 	if (hw->mac.type >= e1000_ich10lan) {
4837 		e1000_lan_init_done_ich8lan(hw);
4838 	} else {
4839 		ret_val = e1000e_get_auto_rd_done(hw);
4840 		if (ret_val) {
4841 			/* When auto config read does not complete, do not
4842 			 * return with an error. This can happen in situations
4843 			 * where there is no eeprom and prevents getting link.
4844 			 */
4845 			e_dbg("Auto Read Done did not complete\n");
4846 			ret_val = 0;
4847 		}
4848 	}
4849 
4850 	/* Clear PHY Reset Asserted bit */
4851 	status = er32(STATUS);
4852 	if (status & E1000_STATUS_PHYRA)
4853 		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
4854 	else
4855 		e_dbg("PHY Reset Asserted not set - needs delay\n");
4856 
4857 	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
4858 	if (hw->mac.type <= e1000_ich9lan) {
4859 		if (!(er32(EECD) & E1000_EECD_PRES) &&
4860 		    (hw->phy.type == e1000_phy_igp_3)) {
4861 			e1000e_phy_init_script_igp3(hw);
4862 		}
4863 	} else {
4864 		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
4865 			/* Maybe we should do a basic PHY config */
4866 			e_dbg("EEPROM not present\n");
4867 			ret_val = -E1000_ERR_CONFIG;
4868 		}
4869 	}
4870 
4871 	return ret_val;
4872 }
4873 
4874 /**
4875  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
4876  * @hw: pointer to the HW structure
4877  *
4878  * In the case of a PHY power down to save power, or to turn off link during a
4879  * driver unload, or wake on lan is not enabled, remove the link.
4880  **/
4881 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
4882 {
4883 	/* If the management interface is not enabled, then power down */
4884 	if (!(hw->mac.ops.check_mng_mode(hw) ||
4885 	      hw->phy.ops.check_reset_block(hw)))
4886 		e1000_power_down_phy_copper(hw);
4887 }
4888 
4889 /**
4890  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
4891  *  @hw: pointer to the HW structure
4892  *
4893  *  Clears hardware counters specific to the silicon family and calls
4894  *  clear_hw_cntrs_generic to clear all general purpose counters.
4895  **/
4896 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
4897 {
4898 	u16 phy_data;
4899 	s32 ret_val;
4900 
4901 	e1000e_clear_hw_cntrs_base(hw);
4902 
4903 	er32(ALGNERRC);
4904 	er32(RXERRC);
4905 	er32(TNCRS);
4906 	er32(CEXTERR);
4907 	er32(TSCTC);
4908 	er32(TSCTFC);
4909 
4910 	er32(MGTPRC);
4911 	er32(MGTPDC);
4912 	er32(MGTPTC);
4913 
4914 	er32(IAC);
4915 	er32(ICRXOC);
4916 
4917 	/* Clear PHY statistics registers */
4918 	if ((hw->phy.type == e1000_phy_82578) ||
4919 	    (hw->phy.type == e1000_phy_82579) ||
4920 	    (hw->phy.type == e1000_phy_i217) ||
4921 	    (hw->phy.type == e1000_phy_82577)) {
4922 		ret_val = hw->phy.ops.acquire(hw);
4923 		if (ret_val)
4924 			return;
4925 		ret_val = hw->phy.ops.set_page(hw,
4926 					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
4927 		if (ret_val)
4928 			goto release;
4929 		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4930 		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4931 		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4932 		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4933 		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4934 		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4935 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4936 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4937 		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4938 		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4939 		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4940 		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4941 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4942 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4943 release:
4944 		hw->phy.ops.release(hw);
4945 	}
4946 }
4947 
4948 static const struct e1000_mac_operations ich8_mac_ops = {
4949 	/* check_mng_mode dependent on mac type */
4950 	.check_for_link		= e1000_check_for_copper_link_ich8lan,
4951 	/* cleanup_led dependent on mac type */
4952 	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
4953 	.get_bus_info		= e1000_get_bus_info_ich8lan,
4954 	.set_lan_id		= e1000_set_lan_id_single_port,
4955 	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
4956 	/* led_on dependent on mac type */
4957 	/* led_off dependent on mac type */
4958 	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
4959 	.reset_hw		= e1000_reset_hw_ich8lan,
4960 	.init_hw		= e1000_init_hw_ich8lan,
4961 	.setup_link		= e1000_setup_link_ich8lan,
4962 	.setup_physical_interface = e1000_setup_copper_link_ich8lan,
4963 	/* id_led_init dependent on mac type */
4964 	.config_collision_dist	= e1000e_config_collision_dist_generic,
4965 	.rar_set		= e1000e_rar_set_generic,
4966 };
4967 
4968 static const struct e1000_phy_operations ich8_phy_ops = {
4969 	.acquire		= e1000_acquire_swflag_ich8lan,
4970 	.check_reset_block	= e1000_check_reset_block_ich8lan,
4971 	.commit			= NULL,
4972 	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
4973 	.get_cable_length	= e1000e_get_cable_length_igp_2,
4974 	.read_reg		= e1000e_read_phy_reg_igp,
4975 	.release		= e1000_release_swflag_ich8lan,
4976 	.reset			= e1000_phy_hw_reset_ich8lan,
4977 	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
4978 	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
4979 	.write_reg		= e1000e_write_phy_reg_igp,
4980 };
4981 
4982 static const struct e1000_nvm_operations ich8_nvm_ops = {
4983 	.acquire		= e1000_acquire_nvm_ich8lan,
4984 	.read			= e1000_read_nvm_ich8lan,
4985 	.release		= e1000_release_nvm_ich8lan,
4986 	.reload			= e1000e_reload_nvm_generic,
4987 	.update			= e1000_update_nvm_checksum_ich8lan,
4988 	.valid_led_default	= e1000_valid_led_default_ich8lan,
4989 	.validate		= e1000_validate_nvm_checksum_ich8lan,
4990 	.write			= e1000_write_nvm_ich8lan,
4991 };
4992 
4993 const struct e1000_info e1000_ich8_info = {
4994 	.mac			= e1000_ich8lan,
4995 	.flags			= FLAG_HAS_WOL
4996 				  | FLAG_IS_ICH
4997 				  | FLAG_HAS_CTRLEXT_ON_LOAD
4998 				  | FLAG_HAS_AMT
4999 				  | FLAG_HAS_FLASH
5000 				  | FLAG_APME_IN_WUC,
5001 	.pba			= 8,
5002 	.max_hw_frame_size	= ETH_FRAME_LEN + ETH_FCS_LEN,
5003 	.get_variants		= e1000_get_variants_ich8lan,
5004 	.mac_ops		= &ich8_mac_ops,
5005 	.phy_ops		= &ich8_phy_ops,
5006 	.nvm_ops		= &ich8_nvm_ops,
5007 };
5008 
5009 const struct e1000_info e1000_ich9_info = {
5010 	.mac			= e1000_ich9lan,
5011 	.flags			= FLAG_HAS_JUMBO_FRAMES
5012 				  | FLAG_IS_ICH
5013 				  | FLAG_HAS_WOL
5014 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5015 				  | FLAG_HAS_AMT
5016 				  | FLAG_HAS_FLASH
5017 				  | FLAG_APME_IN_WUC,
5018 	.pba			= 18,
5019 	.max_hw_frame_size	= DEFAULT_JUMBO,
5020 	.get_variants		= e1000_get_variants_ich8lan,
5021 	.mac_ops		= &ich8_mac_ops,
5022 	.phy_ops		= &ich8_phy_ops,
5023 	.nvm_ops		= &ich8_nvm_ops,
5024 };
5025 
5026 const struct e1000_info e1000_ich10_info = {
5027 	.mac			= e1000_ich10lan,
5028 	.flags			= FLAG_HAS_JUMBO_FRAMES
5029 				  | FLAG_IS_ICH
5030 				  | FLAG_HAS_WOL
5031 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5032 				  | FLAG_HAS_AMT
5033 				  | FLAG_HAS_FLASH
5034 				  | FLAG_APME_IN_WUC,
5035 	.pba			= 18,
5036 	.max_hw_frame_size	= DEFAULT_JUMBO,
5037 	.get_variants		= e1000_get_variants_ich8lan,
5038 	.mac_ops		= &ich8_mac_ops,
5039 	.phy_ops		= &ich8_phy_ops,
5040 	.nvm_ops		= &ich8_nvm_ops,
5041 };
5042 
5043 const struct e1000_info e1000_pch_info = {
5044 	.mac			= e1000_pchlan,
5045 	.flags			= FLAG_IS_ICH
5046 				  | FLAG_HAS_WOL
5047 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5048 				  | FLAG_HAS_AMT
5049 				  | FLAG_HAS_FLASH
5050 				  | FLAG_HAS_JUMBO_FRAMES
5051 				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
5052 				  | FLAG_APME_IN_WUC,
5053 	.flags2			= FLAG2_HAS_PHY_STATS,
5054 	.pba			= 26,
5055 	.max_hw_frame_size	= 4096,
5056 	.get_variants		= e1000_get_variants_ich8lan,
5057 	.mac_ops		= &ich8_mac_ops,
5058 	.phy_ops		= &ich8_phy_ops,
5059 	.nvm_ops		= &ich8_nvm_ops,
5060 };
5061 
5062 const struct e1000_info e1000_pch2_info = {
5063 	.mac			= e1000_pch2lan,
5064 	.flags			= FLAG_IS_ICH
5065 				  | FLAG_HAS_WOL
5066 				  | FLAG_HAS_HW_TIMESTAMP
5067 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5068 				  | FLAG_HAS_AMT
5069 				  | FLAG_HAS_FLASH
5070 				  | FLAG_HAS_JUMBO_FRAMES
5071 				  | FLAG_APME_IN_WUC,
5072 	.flags2			= FLAG2_HAS_PHY_STATS
5073 				  | FLAG2_HAS_EEE,
5074 	.pba			= 26,
5075 	.max_hw_frame_size	= 9018,
5076 	.get_variants		= e1000_get_variants_ich8lan,
5077 	.mac_ops		= &ich8_mac_ops,
5078 	.phy_ops		= &ich8_phy_ops,
5079 	.nvm_ops		= &ich8_nvm_ops,
5080 };
5081 
5082 const struct e1000_info e1000_pch_lpt_info = {
5083 	.mac			= e1000_pch_lpt,
5084 	.flags			= FLAG_IS_ICH
5085 				  | FLAG_HAS_WOL
5086 				  | FLAG_HAS_HW_TIMESTAMP
5087 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5088 				  | FLAG_HAS_AMT
5089 				  | FLAG_HAS_FLASH
5090 				  | FLAG_HAS_JUMBO_FRAMES
5091 				  | FLAG_APME_IN_WUC,
5092 	.flags2			= FLAG2_HAS_PHY_STATS
5093 				  | FLAG2_HAS_EEE,
5094 	.pba			= 26,
5095 	.max_hw_frame_size	= 9018,
5096 	.get_variants		= e1000_get_variants_ich8lan,
5097 	.mac_ops		= &ich8_mac_ops,
5098 	.phy_ops		= &ich8_phy_ops,
5099 	.nvm_ops		= &ich8_nvm_ops,
5100 };
5101