1 /* Intel PRO/1000 Linux driver
2  * Copyright(c) 1999 - 2015 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * The full GNU General Public License is included in this distribution in
14  * the file called "COPYING".
15  *
16  * Contact Information:
17  * Linux NICS <linux.nics@intel.com>
18  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
20  */
21 
22 /* 82562G 10/100 Network Connection
23  * 82562G-2 10/100 Network Connection
24  * 82562GT 10/100 Network Connection
25  * 82562GT-2 10/100 Network Connection
26  * 82562V 10/100 Network Connection
27  * 82562V-2 10/100 Network Connection
28  * 82566DC-2 Gigabit Network Connection
29  * 82566DC Gigabit Network Connection
30  * 82566DM-2 Gigabit Network Connection
31  * 82566DM Gigabit Network Connection
32  * 82566MC Gigabit Network Connection
33  * 82566MM Gigabit Network Connection
34  * 82567LM Gigabit Network Connection
35  * 82567LF Gigabit Network Connection
36  * 82567V Gigabit Network Connection
37  * 82567LM-2 Gigabit Network Connection
38  * 82567LF-2 Gigabit Network Connection
39  * 82567V-2 Gigabit Network Connection
40  * 82567LF-3 Gigabit Network Connection
41  * 82567LM-3 Gigabit Network Connection
42  * 82567LM-4 Gigabit Network Connection
43  * 82577LM Gigabit Network Connection
44  * 82577LC Gigabit Network Connection
45  * 82578DM Gigabit Network Connection
46  * 82578DC Gigabit Network Connection
47  * 82579LM Gigabit Network Connection
48  * 82579V Gigabit Network Connection
49  * Ethernet Connection I217-LM
50  * Ethernet Connection I217-V
51  * Ethernet Connection I218-V
52  * Ethernet Connection I218-LM
53  * Ethernet Connection (2) I218-LM
54  * Ethernet Connection (2) I218-V
55  * Ethernet Connection (3) I218-LM
56  * Ethernet Connection (3) I218-V
57  */
58 
59 #include "e1000.h"
60 
61 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
62 /* Offset 04h HSFSTS */
63 union ich8_hws_flash_status {
64 	struct ich8_hsfsts {
65 		u16 flcdone:1;	/* bit 0 Flash Cycle Done */
66 		u16 flcerr:1;	/* bit 1 Flash Cycle Error */
67 		u16 dael:1;	/* bit 2 Direct Access error Log */
68 		u16 berasesz:2;	/* bit 4:3 Sector Erase Size */
69 		u16 flcinprog:1;	/* bit 5 flash cycle in Progress */
70 		u16 reserved1:2;	/* bit 13:6 Reserved */
71 		u16 reserved2:6;	/* bit 13:6 Reserved */
72 		u16 fldesvalid:1;	/* bit 14 Flash Descriptor Valid */
73 		u16 flockdn:1;	/* bit 15 Flash Config Lock-Down */
74 	} hsf_status;
75 	u16 regval;
76 };
77 
78 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
79 /* Offset 06h FLCTL */
80 union ich8_hws_flash_ctrl {
81 	struct ich8_hsflctl {
82 		u16 flcgo:1;	/* 0 Flash Cycle Go */
83 		u16 flcycle:2;	/* 2:1 Flash Cycle */
84 		u16 reserved:5;	/* 7:3 Reserved  */
85 		u16 fldbcount:2;	/* 9:8 Flash Data Byte Count */
86 		u16 flockdn:6;	/* 15:10 Reserved */
87 	} hsf_ctrl;
88 	u16 regval;
89 };
90 
91 /* ICH Flash Region Access Permissions */
92 union ich8_hws_flash_regacc {
93 	struct ich8_flracc {
94 		u32 grra:8;	/* 0:7 GbE region Read Access */
95 		u32 grwa:8;	/* 8:15 GbE region Write Access */
96 		u32 gmrag:8;	/* 23:16 GbE Master Read Access Grant */
97 		u32 gmwag:8;	/* 31:24 GbE Master Write Access Grant */
98 	} hsf_flregacc;
99 	u16 regval;
100 };
101 
102 /* ICH Flash Protected Region */
103 union ich8_flash_protected_range {
104 	struct ich8_pr {
105 		u32 base:13;	/* 0:12 Protected Range Base */
106 		u32 reserved1:2;	/* 13:14 Reserved */
107 		u32 rpe:1;	/* 15 Read Protection Enable */
108 		u32 limit:13;	/* 16:28 Protected Range Limit */
109 		u32 reserved2:2;	/* 29:30 Reserved */
110 		u32 wpe:1;	/* 31 Write Protection Enable */
111 	} range;
112 	u32 regval;
113 };
114 
115 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
116 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
117 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
118 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
119 						u32 offset, u8 byte);
120 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
121 					 u8 *data);
122 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
123 					 u16 *data);
124 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
125 					 u8 size, u16 *data);
126 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
127 					   u32 *data);
128 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
129 					  u32 offset, u32 *data);
130 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
131 					    u32 offset, u32 data);
132 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
133 						 u32 offset, u32 dword);
134 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
135 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
136 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
137 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
138 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
139 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
140 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
141 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
142 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
143 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
144 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
145 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
146 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
147 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
148 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
149 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
150 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
151 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
152 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw);
153 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
154 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
155 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
156 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
157 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
158 
159 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
160 {
161 	return readw(hw->flash_address + reg);
162 }
163 
164 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
165 {
166 	return readl(hw->flash_address + reg);
167 }
168 
169 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
170 {
171 	writew(val, hw->flash_address + reg);
172 }
173 
174 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
175 {
176 	writel(val, hw->flash_address + reg);
177 }
178 
179 #define er16flash(reg)		__er16flash(hw, (reg))
180 #define er32flash(reg)		__er32flash(hw, (reg))
181 #define ew16flash(reg, val)	__ew16flash(hw, (reg), (val))
182 #define ew32flash(reg, val)	__ew32flash(hw, (reg), (val))
183 
184 /**
185  *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
186  *  @hw: pointer to the HW structure
187  *
188  *  Test access to the PHY registers by reading the PHY ID registers.  If
189  *  the PHY ID is already known (e.g. resume path) compare it with known ID,
190  *  otherwise assume the read PHY ID is correct if it is valid.
191  *
192  *  Assumes the sw/fw/hw semaphore is already acquired.
193  **/
194 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
195 {
196 	u16 phy_reg = 0;
197 	u32 phy_id = 0;
198 	s32 ret_val = 0;
199 	u16 retry_count;
200 	u32 mac_reg = 0;
201 
202 	for (retry_count = 0; retry_count < 2; retry_count++) {
203 		ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
204 		if (ret_val || (phy_reg == 0xFFFF))
205 			continue;
206 		phy_id = (u32)(phy_reg << 16);
207 
208 		ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
209 		if (ret_val || (phy_reg == 0xFFFF)) {
210 			phy_id = 0;
211 			continue;
212 		}
213 		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
214 		break;
215 	}
216 
217 	if (hw->phy.id) {
218 		if (hw->phy.id == phy_id)
219 			goto out;
220 	} else if (phy_id) {
221 		hw->phy.id = phy_id;
222 		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
223 		goto out;
224 	}
225 
226 	/* In case the PHY needs to be in mdio slow mode,
227 	 * set slow mode and try to get the PHY id again.
228 	 */
229 	if (hw->mac.type < e1000_pch_lpt) {
230 		hw->phy.ops.release(hw);
231 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
232 		if (!ret_val)
233 			ret_val = e1000e_get_phy_id(hw);
234 		hw->phy.ops.acquire(hw);
235 	}
236 
237 	if (ret_val)
238 		return false;
239 out:
240 	if ((hw->mac.type == e1000_pch_lpt) || (hw->mac.type == e1000_pch_spt)) {
241 		/* Only unforce SMBus if ME is not active */
242 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
243 			/* Unforce SMBus mode in PHY */
244 			e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
245 			phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
246 			e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
247 
248 			/* Unforce SMBus mode in MAC */
249 			mac_reg = er32(CTRL_EXT);
250 			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
251 			ew32(CTRL_EXT, mac_reg);
252 		}
253 	}
254 
255 	return true;
256 }
257 
258 /**
259  *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
260  *  @hw: pointer to the HW structure
261  *
262  *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
263  *  used to reset the PHY to a quiescent state when necessary.
264  **/
265 static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
266 {
267 	u32 mac_reg;
268 
269 	/* Set Phy Config Counter to 50msec */
270 	mac_reg = er32(FEXTNVM3);
271 	mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
272 	mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
273 	ew32(FEXTNVM3, mac_reg);
274 
275 	/* Toggle LANPHYPC Value bit */
276 	mac_reg = er32(CTRL);
277 	mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
278 	mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
279 	ew32(CTRL, mac_reg);
280 	e1e_flush();
281 	usleep_range(10, 20);
282 	mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
283 	ew32(CTRL, mac_reg);
284 	e1e_flush();
285 
286 	if (hw->mac.type < e1000_pch_lpt) {
287 		msleep(50);
288 	} else {
289 		u16 count = 20;
290 
291 		do {
292 			usleep_range(5000, 10000);
293 		} while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
294 
295 		msleep(30);
296 	}
297 }
298 
299 /**
300  *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
301  *  @hw: pointer to the HW structure
302  *
303  *  Workarounds/flow necessary for PHY initialization during driver load
304  *  and resume paths.
305  **/
306 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
307 {
308 	struct e1000_adapter *adapter = hw->adapter;
309 	u32 mac_reg, fwsm = er32(FWSM);
310 	s32 ret_val;
311 
312 	/* Gate automatic PHY configuration by hardware on managed and
313 	 * non-managed 82579 and newer adapters.
314 	 */
315 	e1000_gate_hw_phy_config_ich8lan(hw, true);
316 
317 	/* It is not possible to be certain of the current state of ULP
318 	 * so forcibly disable it.
319 	 */
320 	hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
321 	e1000_disable_ulp_lpt_lp(hw, true);
322 
323 	ret_val = hw->phy.ops.acquire(hw);
324 	if (ret_val) {
325 		e_dbg("Failed to initialize PHY flow\n");
326 		goto out;
327 	}
328 
329 	/* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
330 	 * inaccessible and resetting the PHY is not blocked, toggle the
331 	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
332 	 */
333 	switch (hw->mac.type) {
334 	case e1000_pch_lpt:
335 	case e1000_pch_spt:
336 		if (e1000_phy_is_accessible_pchlan(hw))
337 			break;
338 
339 		/* Before toggling LANPHYPC, see if PHY is accessible by
340 		 * forcing MAC to SMBus mode first.
341 		 */
342 		mac_reg = er32(CTRL_EXT);
343 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
344 		ew32(CTRL_EXT, mac_reg);
345 
346 		/* Wait 50 milliseconds for MAC to finish any retries
347 		 * that it might be trying to perform from previous
348 		 * attempts to acknowledge any phy read requests.
349 		 */
350 		msleep(50);
351 
352 		/* fall-through */
353 	case e1000_pch2lan:
354 		if (e1000_phy_is_accessible_pchlan(hw))
355 			break;
356 
357 		/* fall-through */
358 	case e1000_pchlan:
359 		if ((hw->mac.type == e1000_pchlan) &&
360 		    (fwsm & E1000_ICH_FWSM_FW_VALID))
361 			break;
362 
363 		if (hw->phy.ops.check_reset_block(hw)) {
364 			e_dbg("Required LANPHYPC toggle blocked by ME\n");
365 			ret_val = -E1000_ERR_PHY;
366 			break;
367 		}
368 
369 		/* Toggle LANPHYPC Value bit */
370 		e1000_toggle_lanphypc_pch_lpt(hw);
371 		if (hw->mac.type >= e1000_pch_lpt) {
372 			if (e1000_phy_is_accessible_pchlan(hw))
373 				break;
374 
375 			/* Toggling LANPHYPC brings the PHY out of SMBus mode
376 			 * so ensure that the MAC is also out of SMBus mode
377 			 */
378 			mac_reg = er32(CTRL_EXT);
379 			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
380 			ew32(CTRL_EXT, mac_reg);
381 
382 			if (e1000_phy_is_accessible_pchlan(hw))
383 				break;
384 
385 			ret_val = -E1000_ERR_PHY;
386 		}
387 		break;
388 	default:
389 		break;
390 	}
391 
392 	hw->phy.ops.release(hw);
393 	if (!ret_val) {
394 
395 		/* Check to see if able to reset PHY.  Print error if not */
396 		if (hw->phy.ops.check_reset_block(hw)) {
397 			e_err("Reset blocked by ME\n");
398 			goto out;
399 		}
400 
401 		/* Reset the PHY before any access to it.  Doing so, ensures
402 		 * that the PHY is in a known good state before we read/write
403 		 * PHY registers.  The generic reset is sufficient here,
404 		 * because we haven't determined the PHY type yet.
405 		 */
406 		ret_val = e1000e_phy_hw_reset_generic(hw);
407 		if (ret_val)
408 			goto out;
409 
410 		/* On a successful reset, possibly need to wait for the PHY
411 		 * to quiesce to an accessible state before returning control
412 		 * to the calling function.  If the PHY does not quiesce, then
413 		 * return E1000E_BLK_PHY_RESET, as this is the condition that
414 		 *  the PHY is in.
415 		 */
416 		ret_val = hw->phy.ops.check_reset_block(hw);
417 		if (ret_val)
418 			e_err("ME blocked access to PHY after reset\n");
419 	}
420 
421 out:
422 	/* Ungate automatic PHY configuration on non-managed 82579 */
423 	if ((hw->mac.type == e1000_pch2lan) &&
424 	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
425 		usleep_range(10000, 20000);
426 		e1000_gate_hw_phy_config_ich8lan(hw, false);
427 	}
428 
429 	return ret_val;
430 }
431 
432 /**
433  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
434  *  @hw: pointer to the HW structure
435  *
436  *  Initialize family-specific PHY parameters and function pointers.
437  **/
438 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
439 {
440 	struct e1000_phy_info *phy = &hw->phy;
441 	s32 ret_val;
442 
443 	phy->addr = 1;
444 	phy->reset_delay_us = 100;
445 
446 	phy->ops.set_page = e1000_set_page_igp;
447 	phy->ops.read_reg = e1000_read_phy_reg_hv;
448 	phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
449 	phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
450 	phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
451 	phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
452 	phy->ops.write_reg = e1000_write_phy_reg_hv;
453 	phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
454 	phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
455 	phy->ops.power_up = e1000_power_up_phy_copper;
456 	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
457 	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
458 
459 	phy->id = e1000_phy_unknown;
460 
461 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
462 	if (ret_val)
463 		return ret_val;
464 
465 	if (phy->id == e1000_phy_unknown)
466 		switch (hw->mac.type) {
467 		default:
468 			ret_val = e1000e_get_phy_id(hw);
469 			if (ret_val)
470 				return ret_val;
471 			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
472 				break;
473 			/* fall-through */
474 		case e1000_pch2lan:
475 		case e1000_pch_lpt:
476 		case e1000_pch_spt:
477 			/* In case the PHY needs to be in mdio slow mode,
478 			 * set slow mode and try to get the PHY id again.
479 			 */
480 			ret_val = e1000_set_mdio_slow_mode_hv(hw);
481 			if (ret_val)
482 				return ret_val;
483 			ret_val = e1000e_get_phy_id(hw);
484 			if (ret_val)
485 				return ret_val;
486 			break;
487 		}
488 	phy->type = e1000e_get_phy_type_from_id(phy->id);
489 
490 	switch (phy->type) {
491 	case e1000_phy_82577:
492 	case e1000_phy_82579:
493 	case e1000_phy_i217:
494 		phy->ops.check_polarity = e1000_check_polarity_82577;
495 		phy->ops.force_speed_duplex =
496 		    e1000_phy_force_speed_duplex_82577;
497 		phy->ops.get_cable_length = e1000_get_cable_length_82577;
498 		phy->ops.get_info = e1000_get_phy_info_82577;
499 		phy->ops.commit = e1000e_phy_sw_reset;
500 		break;
501 	case e1000_phy_82578:
502 		phy->ops.check_polarity = e1000_check_polarity_m88;
503 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
504 		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
505 		phy->ops.get_info = e1000e_get_phy_info_m88;
506 		break;
507 	default:
508 		ret_val = -E1000_ERR_PHY;
509 		break;
510 	}
511 
512 	return ret_val;
513 }
514 
515 /**
516  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
517  *  @hw: pointer to the HW structure
518  *
519  *  Initialize family-specific PHY parameters and function pointers.
520  **/
521 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
522 {
523 	struct e1000_phy_info *phy = &hw->phy;
524 	s32 ret_val;
525 	u16 i = 0;
526 
527 	phy->addr = 1;
528 	phy->reset_delay_us = 100;
529 
530 	phy->ops.power_up = e1000_power_up_phy_copper;
531 	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
532 
533 	/* We may need to do this twice - once for IGP and if that fails,
534 	 * we'll set BM func pointers and try again
535 	 */
536 	ret_val = e1000e_determine_phy_address(hw);
537 	if (ret_val) {
538 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
539 		phy->ops.read_reg = e1000e_read_phy_reg_bm;
540 		ret_val = e1000e_determine_phy_address(hw);
541 		if (ret_val) {
542 			e_dbg("Cannot determine PHY addr. Erroring out\n");
543 			return ret_val;
544 		}
545 	}
546 
547 	phy->id = 0;
548 	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
549 	       (i++ < 100)) {
550 		usleep_range(1000, 2000);
551 		ret_val = e1000e_get_phy_id(hw);
552 		if (ret_val)
553 			return ret_val;
554 	}
555 
556 	/* Verify phy id */
557 	switch (phy->id) {
558 	case IGP03E1000_E_PHY_ID:
559 		phy->type = e1000_phy_igp_3;
560 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
561 		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
562 		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
563 		phy->ops.get_info = e1000e_get_phy_info_igp;
564 		phy->ops.check_polarity = e1000_check_polarity_igp;
565 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
566 		break;
567 	case IFE_E_PHY_ID:
568 	case IFE_PLUS_E_PHY_ID:
569 	case IFE_C_E_PHY_ID:
570 		phy->type = e1000_phy_ife;
571 		phy->autoneg_mask = E1000_ALL_NOT_GIG;
572 		phy->ops.get_info = e1000_get_phy_info_ife;
573 		phy->ops.check_polarity = e1000_check_polarity_ife;
574 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
575 		break;
576 	case BME1000_E_PHY_ID:
577 		phy->type = e1000_phy_bm;
578 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
579 		phy->ops.read_reg = e1000e_read_phy_reg_bm;
580 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
581 		phy->ops.commit = e1000e_phy_sw_reset;
582 		phy->ops.get_info = e1000e_get_phy_info_m88;
583 		phy->ops.check_polarity = e1000_check_polarity_m88;
584 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
585 		break;
586 	default:
587 		return -E1000_ERR_PHY;
588 	}
589 
590 	return 0;
591 }
592 
593 /**
594  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
595  *  @hw: pointer to the HW structure
596  *
597  *  Initialize family-specific NVM parameters and function
598  *  pointers.
599  **/
600 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
601 {
602 	struct e1000_nvm_info *nvm = &hw->nvm;
603 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
604 	u32 gfpreg, sector_base_addr, sector_end_addr;
605 	u16 i;
606 	u32 nvm_size;
607 
608 	nvm->type = e1000_nvm_flash_sw;
609 
610 	if (hw->mac.type == e1000_pch_spt) {
611 		/* in SPT, gfpreg doesn't exist. NVM size is taken from the
612 		 * STRAP register. This is because in SPT the GbE Flash region
613 		 * is no longer accessed through the flash registers. Instead,
614 		 * the mechanism has changed, and the Flash region access
615 		 * registers are now implemented in GbE memory space.
616 		 */
617 		nvm->flash_base_addr = 0;
618 		nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1)
619 		    * NVM_SIZE_MULTIPLIER;
620 		nvm->flash_bank_size = nvm_size / 2;
621 		/* Adjust to word count */
622 		nvm->flash_bank_size /= sizeof(u16);
623 		/* Set the base address for flash register access */
624 		hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
625 	} else {
626 		/* Can't read flash registers if register set isn't mapped. */
627 		if (!hw->flash_address) {
628 			e_dbg("ERROR: Flash registers not mapped\n");
629 			return -E1000_ERR_CONFIG;
630 		}
631 
632 		gfpreg = er32flash(ICH_FLASH_GFPREG);
633 
634 		/* sector_X_addr is a "sector"-aligned address (4096 bytes)
635 		 * Add 1 to sector_end_addr since this sector is included in
636 		 * the overall size.
637 		 */
638 		sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
639 		sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
640 
641 		/* flash_base_addr is byte-aligned */
642 		nvm->flash_base_addr = sector_base_addr
643 		    << FLASH_SECTOR_ADDR_SHIFT;
644 
645 		/* find total size of the NVM, then cut in half since the total
646 		 * size represents two separate NVM banks.
647 		 */
648 		nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
649 					<< FLASH_SECTOR_ADDR_SHIFT);
650 		nvm->flash_bank_size /= 2;
651 		/* Adjust to word count */
652 		nvm->flash_bank_size /= sizeof(u16);
653 	}
654 
655 	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
656 
657 	/* Clear shadow ram */
658 	for (i = 0; i < nvm->word_size; i++) {
659 		dev_spec->shadow_ram[i].modified = false;
660 		dev_spec->shadow_ram[i].value = 0xFFFF;
661 	}
662 
663 	return 0;
664 }
665 
666 /**
667  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
668  *  @hw: pointer to the HW structure
669  *
670  *  Initialize family-specific MAC parameters and function
671  *  pointers.
672  **/
673 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
674 {
675 	struct e1000_mac_info *mac = &hw->mac;
676 
677 	/* Set media type function pointer */
678 	hw->phy.media_type = e1000_media_type_copper;
679 
680 	/* Set mta register count */
681 	mac->mta_reg_count = 32;
682 	/* Set rar entry count */
683 	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
684 	if (mac->type == e1000_ich8lan)
685 		mac->rar_entry_count--;
686 	/* FWSM register */
687 	mac->has_fwsm = true;
688 	/* ARC subsystem not supported */
689 	mac->arc_subsystem_valid = false;
690 	/* Adaptive IFS supported */
691 	mac->adaptive_ifs = true;
692 
693 	/* LED and other operations */
694 	switch (mac->type) {
695 	case e1000_ich8lan:
696 	case e1000_ich9lan:
697 	case e1000_ich10lan:
698 		/* check management mode */
699 		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
700 		/* ID LED init */
701 		mac->ops.id_led_init = e1000e_id_led_init_generic;
702 		/* blink LED */
703 		mac->ops.blink_led = e1000e_blink_led_generic;
704 		/* setup LED */
705 		mac->ops.setup_led = e1000e_setup_led_generic;
706 		/* cleanup LED */
707 		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
708 		/* turn on/off LED */
709 		mac->ops.led_on = e1000_led_on_ich8lan;
710 		mac->ops.led_off = e1000_led_off_ich8lan;
711 		break;
712 	case e1000_pch2lan:
713 		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
714 		mac->ops.rar_set = e1000_rar_set_pch2lan;
715 		/* fall-through */
716 	case e1000_pch_lpt:
717 	case e1000_pch_spt:
718 	case e1000_pchlan:
719 		/* check management mode */
720 		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
721 		/* ID LED init */
722 		mac->ops.id_led_init = e1000_id_led_init_pchlan;
723 		/* setup LED */
724 		mac->ops.setup_led = e1000_setup_led_pchlan;
725 		/* cleanup LED */
726 		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
727 		/* turn on/off LED */
728 		mac->ops.led_on = e1000_led_on_pchlan;
729 		mac->ops.led_off = e1000_led_off_pchlan;
730 		break;
731 	default:
732 		break;
733 	}
734 
735 	if ((mac->type == e1000_pch_lpt) || (mac->type == e1000_pch_spt)) {
736 		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
737 		mac->ops.rar_set = e1000_rar_set_pch_lpt;
738 		mac->ops.setup_physical_interface =
739 		    e1000_setup_copper_link_pch_lpt;
740 		mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt;
741 	}
742 
743 	/* Enable PCS Lock-loss workaround for ICH8 */
744 	if (mac->type == e1000_ich8lan)
745 		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
746 
747 	return 0;
748 }
749 
750 /**
751  *  __e1000_access_emi_reg_locked - Read/write EMI register
752  *  @hw: pointer to the HW structure
753  *  @addr: EMI address to program
754  *  @data: pointer to value to read/write from/to the EMI address
755  *  @read: boolean flag to indicate read or write
756  *
757  *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
758  **/
759 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
760 					 u16 *data, bool read)
761 {
762 	s32 ret_val;
763 
764 	ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
765 	if (ret_val)
766 		return ret_val;
767 
768 	if (read)
769 		ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
770 	else
771 		ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
772 
773 	return ret_val;
774 }
775 
776 /**
777  *  e1000_read_emi_reg_locked - Read Extended Management Interface register
778  *  @hw: pointer to the HW structure
779  *  @addr: EMI address to program
780  *  @data: value to be read from the EMI address
781  *
782  *  Assumes the SW/FW/HW Semaphore is already acquired.
783  **/
784 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
785 {
786 	return __e1000_access_emi_reg_locked(hw, addr, data, true);
787 }
788 
789 /**
790  *  e1000_write_emi_reg_locked - Write Extended Management Interface register
791  *  @hw: pointer to the HW structure
792  *  @addr: EMI address to program
793  *  @data: value to be written to the EMI address
794  *
795  *  Assumes the SW/FW/HW Semaphore is already acquired.
796  **/
797 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
798 {
799 	return __e1000_access_emi_reg_locked(hw, addr, &data, false);
800 }
801 
802 /**
803  *  e1000_set_eee_pchlan - Enable/disable EEE support
804  *  @hw: pointer to the HW structure
805  *
806  *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
807  *  the link and the EEE capabilities of the link partner.  The LPI Control
808  *  register bits will remain set only if/when link is up.
809  *
810  *  EEE LPI must not be asserted earlier than one second after link is up.
811  *  On 82579, EEE LPI should not be enabled until such time otherwise there
812  *  can be link issues with some switches.  Other devices can have EEE LPI
813  *  enabled immediately upon link up since they have a timer in hardware which
814  *  prevents LPI from being asserted too early.
815  **/
816 s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
817 {
818 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
819 	s32 ret_val;
820 	u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
821 
822 	switch (hw->phy.type) {
823 	case e1000_phy_82579:
824 		lpa = I82579_EEE_LP_ABILITY;
825 		pcs_status = I82579_EEE_PCS_STATUS;
826 		adv_addr = I82579_EEE_ADVERTISEMENT;
827 		break;
828 	case e1000_phy_i217:
829 		lpa = I217_EEE_LP_ABILITY;
830 		pcs_status = I217_EEE_PCS_STATUS;
831 		adv_addr = I217_EEE_ADVERTISEMENT;
832 		break;
833 	default:
834 		return 0;
835 	}
836 
837 	ret_val = hw->phy.ops.acquire(hw);
838 	if (ret_val)
839 		return ret_val;
840 
841 	ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
842 	if (ret_val)
843 		goto release;
844 
845 	/* Clear bits that enable EEE in various speeds */
846 	lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
847 
848 	/* Enable EEE if not disabled by user */
849 	if (!dev_spec->eee_disable) {
850 		/* Save off link partner's EEE ability */
851 		ret_val = e1000_read_emi_reg_locked(hw, lpa,
852 						    &dev_spec->eee_lp_ability);
853 		if (ret_val)
854 			goto release;
855 
856 		/* Read EEE advertisement */
857 		ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
858 		if (ret_val)
859 			goto release;
860 
861 		/* Enable EEE only for speeds in which the link partner is
862 		 * EEE capable and for which we advertise EEE.
863 		 */
864 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
865 			lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
866 
867 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
868 			e1e_rphy_locked(hw, MII_LPA, &data);
869 			if (data & LPA_100FULL)
870 				lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
871 			else
872 				/* EEE is not supported in 100Half, so ignore
873 				 * partner's EEE in 100 ability if full-duplex
874 				 * is not advertised.
875 				 */
876 				dev_spec->eee_lp_ability &=
877 				    ~I82579_EEE_100_SUPPORTED;
878 		}
879 	}
880 
881 	if (hw->phy.type == e1000_phy_82579) {
882 		ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
883 						    &data);
884 		if (ret_val)
885 			goto release;
886 
887 		data &= ~I82579_LPI_100_PLL_SHUT;
888 		ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
889 						     data);
890 	}
891 
892 	/* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
893 	ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
894 	if (ret_val)
895 		goto release;
896 
897 	ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
898 release:
899 	hw->phy.ops.release(hw);
900 
901 	return ret_val;
902 }
903 
904 /**
905  *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
906  *  @hw:   pointer to the HW structure
907  *  @link: link up bool flag
908  *
909  *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
910  *  preventing further DMA write requests.  Workaround the issue by disabling
911  *  the de-assertion of the clock request when in 1Gpbs mode.
912  *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
913  *  speeds in order to avoid Tx hangs.
914  **/
915 static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
916 {
917 	u32 fextnvm6 = er32(FEXTNVM6);
918 	u32 status = er32(STATUS);
919 	s32 ret_val = 0;
920 	u16 reg;
921 
922 	if (link && (status & E1000_STATUS_SPEED_1000)) {
923 		ret_val = hw->phy.ops.acquire(hw);
924 		if (ret_val)
925 			return ret_val;
926 
927 		ret_val =
928 		    e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
929 						&reg);
930 		if (ret_val)
931 			goto release;
932 
933 		ret_val =
934 		    e1000e_write_kmrn_reg_locked(hw,
935 						 E1000_KMRNCTRLSTA_K1_CONFIG,
936 						 reg &
937 						 ~E1000_KMRNCTRLSTA_K1_ENABLE);
938 		if (ret_val)
939 			goto release;
940 
941 		usleep_range(10, 20);
942 
943 		ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
944 
945 		ret_val =
946 		    e1000e_write_kmrn_reg_locked(hw,
947 						 E1000_KMRNCTRLSTA_K1_CONFIG,
948 						 reg);
949 release:
950 		hw->phy.ops.release(hw);
951 	} else {
952 		/* clear FEXTNVM6 bit 8 on link down or 10/100 */
953 		fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
954 
955 		if ((hw->phy.revision > 5) || !link ||
956 		    ((status & E1000_STATUS_SPEED_100) &&
957 		     (status & E1000_STATUS_FD)))
958 			goto update_fextnvm6;
959 
960 		ret_val = e1e_rphy(hw, I217_INBAND_CTRL, &reg);
961 		if (ret_val)
962 			return ret_val;
963 
964 		/* Clear link status transmit timeout */
965 		reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
966 
967 		if (status & E1000_STATUS_SPEED_100) {
968 			/* Set inband Tx timeout to 5x10us for 100Half */
969 			reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
970 
971 			/* Do not extend the K1 entry latency for 100Half */
972 			fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
973 		} else {
974 			/* Set inband Tx timeout to 50x10us for 10Full/Half */
975 			reg |= 50 <<
976 			    I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
977 
978 			/* Extend the K1 entry latency for 10 Mbps */
979 			fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
980 		}
981 
982 		ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
983 		if (ret_val)
984 			return ret_val;
985 
986 update_fextnvm6:
987 		ew32(FEXTNVM6, fextnvm6);
988 	}
989 
990 	return ret_val;
991 }
992 
993 /**
994  *  e1000_platform_pm_pch_lpt - Set platform power management values
995  *  @hw: pointer to the HW structure
996  *  @link: bool indicating link status
997  *
998  *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
999  *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
1000  *  when link is up (which must not exceed the maximum latency supported
1001  *  by the platform), otherwise specify there is no LTR requirement.
1002  *  Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
1003  *  latencies in the LTR Extended Capability Structure in the PCIe Extended
1004  *  Capability register set, on this device LTR is set by writing the
1005  *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1006  *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1007  *  message to the PMC.
1008  **/
1009 static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1010 {
1011 	u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1012 	    link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1013 	u16 lat_enc = 0;	/* latency encoded */
1014 
1015 	if (link) {
1016 		u16 speed, duplex, scale = 0;
1017 		u16 max_snoop, max_nosnoop;
1018 		u16 max_ltr_enc;	/* max LTR latency encoded */
1019 		u64 value;
1020 		u32 rxa;
1021 
1022 		if (!hw->adapter->max_frame_size) {
1023 			e_dbg("max_frame_size not set.\n");
1024 			return -E1000_ERR_CONFIG;
1025 		}
1026 
1027 		hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1028 		if (!speed) {
1029 			e_dbg("Speed not set.\n");
1030 			return -E1000_ERR_CONFIG;
1031 		}
1032 
1033 		/* Rx Packet Buffer Allocation size (KB) */
1034 		rxa = er32(PBA) & E1000_PBA_RXA_MASK;
1035 
1036 		/* Determine the maximum latency tolerated by the device.
1037 		 *
1038 		 * Per the PCIe spec, the tolerated latencies are encoded as
1039 		 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1040 		 * a 10-bit value (0-1023) to provide a range from 1 ns to
1041 		 * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1042 		 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1043 		 */
1044 		rxa *= 512;
1045 		value = (rxa > hw->adapter->max_frame_size) ?
1046 			(rxa - hw->adapter->max_frame_size) * (16000 / speed) :
1047 			0;
1048 
1049 		while (value > PCI_LTR_VALUE_MASK) {
1050 			scale++;
1051 			value = DIV_ROUND_UP(value, (1 << 5));
1052 		}
1053 		if (scale > E1000_LTRV_SCALE_MAX) {
1054 			e_dbg("Invalid LTR latency scale %d\n", scale);
1055 			return -E1000_ERR_CONFIG;
1056 		}
1057 		lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1058 
1059 		/* Determine the maximum latency tolerated by the platform */
1060 		pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1061 				     &max_snoop);
1062 		pci_read_config_word(hw->adapter->pdev,
1063 				     E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1064 		max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1065 
1066 		if (lat_enc > max_ltr_enc)
1067 			lat_enc = max_ltr_enc;
1068 	}
1069 
1070 	/* Set Snoop and No-Snoop latencies the same */
1071 	reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1072 	ew32(LTRV, reg);
1073 
1074 	return 0;
1075 }
1076 
1077 /**
1078  *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1079  *  @hw: pointer to the HW structure
1080  *  @to_sx: boolean indicating a system power state transition to Sx
1081  *
1082  *  When link is down, configure ULP mode to significantly reduce the power
1083  *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1084  *  ME firmware to start the ULP configuration.  If not on an ME enabled
1085  *  system, configure the ULP mode by software.
1086  */
1087 s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1088 {
1089 	u32 mac_reg;
1090 	s32 ret_val = 0;
1091 	u16 phy_reg;
1092 	u16 oem_reg = 0;
1093 
1094 	if ((hw->mac.type < e1000_pch_lpt) ||
1095 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1096 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1097 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1098 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1099 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1100 		return 0;
1101 
1102 	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1103 		/* Request ME configure ULP mode in the PHY */
1104 		mac_reg = er32(H2ME);
1105 		mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1106 		ew32(H2ME, mac_reg);
1107 
1108 		goto out;
1109 	}
1110 
1111 	if (!to_sx) {
1112 		int i = 0;
1113 
1114 		/* Poll up to 5 seconds for Cable Disconnected indication */
1115 		while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1116 			/* Bail if link is re-acquired */
1117 			if (er32(STATUS) & E1000_STATUS_LU)
1118 				return -E1000_ERR_PHY;
1119 
1120 			if (i++ == 100)
1121 				break;
1122 
1123 			msleep(50);
1124 		}
1125 		e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1126 		      (er32(FEXT) &
1127 		       E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1128 	}
1129 
1130 	ret_val = hw->phy.ops.acquire(hw);
1131 	if (ret_val)
1132 		goto out;
1133 
1134 	/* Force SMBus mode in PHY */
1135 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1136 	if (ret_val)
1137 		goto release;
1138 	phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1139 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1140 
1141 	/* Force SMBus mode in MAC */
1142 	mac_reg = er32(CTRL_EXT);
1143 	mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1144 	ew32(CTRL_EXT, mac_reg);
1145 
1146 	/* Si workaround for ULP entry flow on i127/rev6 h/w.  Enable
1147 	 * LPLU and disable Gig speed when entering ULP
1148 	 */
1149 	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1150 		ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1151 						       &oem_reg);
1152 		if (ret_val)
1153 			goto release;
1154 
1155 		phy_reg = oem_reg;
1156 		phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1157 
1158 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1159 							phy_reg);
1160 
1161 		if (ret_val)
1162 			goto release;
1163 	}
1164 
1165 	/* Set Inband ULP Exit, Reset to SMBus mode and
1166 	 * Disable SMBus Release on PERST# in PHY
1167 	 */
1168 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1169 	if (ret_val)
1170 		goto release;
1171 	phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1172 		    I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1173 	if (to_sx) {
1174 		if (er32(WUFC) & E1000_WUFC_LNKC)
1175 			phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1176 		else
1177 			phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1178 
1179 		phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1180 		phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1181 	} else {
1182 		phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1183 		phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1184 		phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1185 	}
1186 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1187 
1188 	/* Set Disable SMBus Release on PERST# in MAC */
1189 	mac_reg = er32(FEXTNVM7);
1190 	mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1191 	ew32(FEXTNVM7, mac_reg);
1192 
1193 	/* Commit ULP changes in PHY by starting auto ULP configuration */
1194 	phy_reg |= I218_ULP_CONFIG1_START;
1195 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1196 
1197 	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1198 	    to_sx && (er32(STATUS) & E1000_STATUS_LU)) {
1199 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1200 							oem_reg);
1201 		if (ret_val)
1202 			goto release;
1203 	}
1204 
1205 release:
1206 	hw->phy.ops.release(hw);
1207 out:
1208 	if (ret_val)
1209 		e_dbg("Error in ULP enable flow: %d\n", ret_val);
1210 	else
1211 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1212 
1213 	return ret_val;
1214 }
1215 
1216 /**
1217  *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1218  *  @hw: pointer to the HW structure
1219  *  @force: boolean indicating whether or not to force disabling ULP
1220  *
1221  *  Un-configure ULP mode when link is up, the system is transitioned from
1222  *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1223  *  system, poll for an indication from ME that ULP has been un-configured.
1224  *  If not on an ME enabled system, un-configure the ULP mode by software.
1225  *
1226  *  During nominal operation, this function is called when link is acquired
1227  *  to disable ULP mode (force=false); otherwise, for example when unloading
1228  *  the driver or during Sx->S0 transitions, this is called with force=true
1229  *  to forcibly disable ULP.
1230  */
1231 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1232 {
1233 	s32 ret_val = 0;
1234 	u32 mac_reg;
1235 	u16 phy_reg;
1236 	int i = 0;
1237 
1238 	if ((hw->mac.type < e1000_pch_lpt) ||
1239 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1240 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1241 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1242 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1243 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1244 		return 0;
1245 
1246 	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1247 		if (force) {
1248 			/* Request ME un-configure ULP mode in the PHY */
1249 			mac_reg = er32(H2ME);
1250 			mac_reg &= ~E1000_H2ME_ULP;
1251 			mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1252 			ew32(H2ME, mac_reg);
1253 		}
1254 
1255 		/* Poll up to 100msec for ME to clear ULP_CFG_DONE */
1256 		while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1257 			if (i++ == 10) {
1258 				ret_val = -E1000_ERR_PHY;
1259 				goto out;
1260 			}
1261 
1262 			usleep_range(10000, 20000);
1263 		}
1264 		e_dbg("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10);
1265 
1266 		if (force) {
1267 			mac_reg = er32(H2ME);
1268 			mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1269 			ew32(H2ME, mac_reg);
1270 		} else {
1271 			/* Clear H2ME.ULP after ME ULP configuration */
1272 			mac_reg = er32(H2ME);
1273 			mac_reg &= ~E1000_H2ME_ULP;
1274 			ew32(H2ME, mac_reg);
1275 		}
1276 
1277 		goto out;
1278 	}
1279 
1280 	ret_val = hw->phy.ops.acquire(hw);
1281 	if (ret_val)
1282 		goto out;
1283 
1284 	if (force)
1285 		/* Toggle LANPHYPC Value bit */
1286 		e1000_toggle_lanphypc_pch_lpt(hw);
1287 
1288 	/* Unforce SMBus mode in PHY */
1289 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1290 	if (ret_val) {
1291 		/* The MAC might be in PCIe mode, so temporarily force to
1292 		 * SMBus mode in order to access the PHY.
1293 		 */
1294 		mac_reg = er32(CTRL_EXT);
1295 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1296 		ew32(CTRL_EXT, mac_reg);
1297 
1298 		msleep(50);
1299 
1300 		ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1301 						       &phy_reg);
1302 		if (ret_val)
1303 			goto release;
1304 	}
1305 	phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1306 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1307 
1308 	/* Unforce SMBus mode in MAC */
1309 	mac_reg = er32(CTRL_EXT);
1310 	mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1311 	ew32(CTRL_EXT, mac_reg);
1312 
1313 	/* When ULP mode was previously entered, K1 was disabled by the
1314 	 * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1315 	 */
1316 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1317 	if (ret_val)
1318 		goto release;
1319 	phy_reg |= HV_PM_CTRL_K1_ENABLE;
1320 	e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1321 
1322 	/* Clear ULP enabled configuration */
1323 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1324 	if (ret_val)
1325 		goto release;
1326 	phy_reg &= ~(I218_ULP_CONFIG1_IND |
1327 		     I218_ULP_CONFIG1_STICKY_ULP |
1328 		     I218_ULP_CONFIG1_RESET_TO_SMBUS |
1329 		     I218_ULP_CONFIG1_WOL_HOST |
1330 		     I218_ULP_CONFIG1_INBAND_EXIT |
1331 		     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1332 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1333 
1334 	/* Commit ULP changes by starting auto ULP configuration */
1335 	phy_reg |= I218_ULP_CONFIG1_START;
1336 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1337 
1338 	/* Clear Disable SMBus Release on PERST# in MAC */
1339 	mac_reg = er32(FEXTNVM7);
1340 	mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1341 	ew32(FEXTNVM7, mac_reg);
1342 
1343 release:
1344 	hw->phy.ops.release(hw);
1345 	if (force) {
1346 		e1000_phy_hw_reset(hw);
1347 		msleep(50);
1348 	}
1349 out:
1350 	if (ret_val)
1351 		e_dbg("Error in ULP disable flow: %d\n", ret_val);
1352 	else
1353 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1354 
1355 	return ret_val;
1356 }
1357 
1358 /**
1359  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1360  *  @hw: pointer to the HW structure
1361  *
1362  *  Checks to see of the link status of the hardware has changed.  If a
1363  *  change in link status has been detected, then we read the PHY registers
1364  *  to get the current speed/duplex if link exists.
1365  **/
1366 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1367 {
1368 	struct e1000_mac_info *mac = &hw->mac;
1369 	s32 ret_val, tipg_reg = 0;
1370 	u16 emi_addr, emi_val = 0;
1371 	bool link;
1372 	u16 phy_reg;
1373 
1374 	/* We only want to go out to the PHY registers to see if Auto-Neg
1375 	 * has completed and/or if our link status has changed.  The
1376 	 * get_link_status flag is set upon receiving a Link Status
1377 	 * Change or Rx Sequence Error interrupt.
1378 	 */
1379 	if (!mac->get_link_status)
1380 		return 0;
1381 
1382 	/* First we want to see if the MII Status Register reports
1383 	 * link.  If so, then we want to get the current speed/duplex
1384 	 * of the PHY.
1385 	 */
1386 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1387 	if (ret_val)
1388 		return ret_val;
1389 
1390 	if (hw->mac.type == e1000_pchlan) {
1391 		ret_val = e1000_k1_gig_workaround_hv(hw, link);
1392 		if (ret_val)
1393 			return ret_val;
1394 	}
1395 
1396 	/* When connected at 10Mbps half-duplex, some parts are excessively
1397 	 * aggressive resulting in many collisions. To avoid this, increase
1398 	 * the IPG and reduce Rx latency in the PHY.
1399 	 */
1400 	if (((hw->mac.type == e1000_pch2lan) ||
1401 	     (hw->mac.type == e1000_pch_lpt) ||
1402 	     (hw->mac.type == e1000_pch_spt)) && link) {
1403 		u16 speed, duplex;
1404 
1405 		e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex);
1406 		tipg_reg = er32(TIPG);
1407 		tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1408 
1409 		if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1410 			tipg_reg |= 0xFF;
1411 			/* Reduce Rx latency in analog PHY */
1412 			emi_val = 0;
1413 		} else if (hw->mac.type == e1000_pch_spt &&
1414 			   duplex == FULL_DUPLEX && speed != SPEED_1000) {
1415 			tipg_reg |= 0xC;
1416 			emi_val = 1;
1417 		} else {
1418 
1419 			/* Roll back the default values */
1420 			tipg_reg |= 0x08;
1421 			emi_val = 1;
1422 		}
1423 
1424 		ew32(TIPG, tipg_reg);
1425 
1426 		ret_val = hw->phy.ops.acquire(hw);
1427 		if (ret_val)
1428 			return ret_val;
1429 
1430 		if (hw->mac.type == e1000_pch2lan)
1431 			emi_addr = I82579_RX_CONFIG;
1432 		else
1433 			emi_addr = I217_RX_CONFIG;
1434 		ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1435 
1436 		hw->phy.ops.release(hw);
1437 
1438 		if (ret_val)
1439 			return ret_val;
1440 
1441 		if (hw->mac.type == e1000_pch_spt) {
1442 			u16 data;
1443 			u16 ptr_gap;
1444 
1445 			if (speed == SPEED_1000) {
1446 				ret_val = hw->phy.ops.acquire(hw);
1447 				if (ret_val)
1448 					return ret_val;
1449 
1450 				ret_val = e1e_rphy_locked(hw,
1451 							  PHY_REG(776, 20),
1452 							  &data);
1453 				if (ret_val) {
1454 					hw->phy.ops.release(hw);
1455 					return ret_val;
1456 				}
1457 
1458 				ptr_gap = (data & (0x3FF << 2)) >> 2;
1459 				if (ptr_gap < 0x18) {
1460 					data &= ~(0x3FF << 2);
1461 					data |= (0x18 << 2);
1462 					ret_val =
1463 					    e1e_wphy_locked(hw,
1464 							    PHY_REG(776, 20),
1465 							    data);
1466 				}
1467 				hw->phy.ops.release(hw);
1468 				if (ret_val)
1469 					return ret_val;
1470 			}
1471 		}
1472 	}
1473 
1474 	/* I217 Packet Loss issue:
1475 	 * ensure that FEXTNVM4 Beacon Duration is set correctly
1476 	 * on power up.
1477 	 * Set the Beacon Duration for I217 to 8 usec
1478 	 */
1479 	if ((hw->mac.type == e1000_pch_lpt) || (hw->mac.type == e1000_pch_spt)) {
1480 		u32 mac_reg;
1481 
1482 		mac_reg = er32(FEXTNVM4);
1483 		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1484 		mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1485 		ew32(FEXTNVM4, mac_reg);
1486 	}
1487 
1488 	/* Work-around I218 hang issue */
1489 	if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1490 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1491 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1492 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
1493 		ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1494 		if (ret_val)
1495 			return ret_val;
1496 	}
1497 	if ((hw->mac.type == e1000_pch_lpt) ||
1498 	    (hw->mac.type == e1000_pch_spt)) {
1499 		/* Set platform power management values for
1500 		 * Latency Tolerance Reporting (LTR)
1501 		 */
1502 		ret_val = e1000_platform_pm_pch_lpt(hw, link);
1503 		if (ret_val)
1504 			return ret_val;
1505 	}
1506 
1507 	/* Clear link partner's EEE ability */
1508 	hw->dev_spec.ich8lan.eee_lp_ability = 0;
1509 
1510 	/* FEXTNVM6 K1-off workaround */
1511 	if (hw->mac.type == e1000_pch_spt) {
1512 		u32 pcieanacfg = er32(PCIEANACFG);
1513 		u32 fextnvm6 = er32(FEXTNVM6);
1514 
1515 		if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1516 			fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1517 		else
1518 			fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1519 
1520 		ew32(FEXTNVM6, fextnvm6);
1521 	}
1522 
1523 	if (!link)
1524 		return 0;	/* No link detected */
1525 
1526 	mac->get_link_status = false;
1527 
1528 	switch (hw->mac.type) {
1529 	case e1000_pch2lan:
1530 		ret_val = e1000_k1_workaround_lv(hw);
1531 		if (ret_val)
1532 			return ret_val;
1533 		/* fall-thru */
1534 	case e1000_pchlan:
1535 		if (hw->phy.type == e1000_phy_82578) {
1536 			ret_val = e1000_link_stall_workaround_hv(hw);
1537 			if (ret_val)
1538 				return ret_val;
1539 		}
1540 
1541 		/* Workaround for PCHx parts in half-duplex:
1542 		 * Set the number of preambles removed from the packet
1543 		 * when it is passed from the PHY to the MAC to prevent
1544 		 * the MAC from misinterpreting the packet type.
1545 		 */
1546 		e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1547 		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1548 
1549 		if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1550 			phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1551 
1552 		e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1553 		break;
1554 	default:
1555 		break;
1556 	}
1557 
1558 	/* Check if there was DownShift, must be checked
1559 	 * immediately after link-up
1560 	 */
1561 	e1000e_check_downshift(hw);
1562 
1563 	/* Enable/Disable EEE after link up */
1564 	if (hw->phy.type > e1000_phy_82579) {
1565 		ret_val = e1000_set_eee_pchlan(hw);
1566 		if (ret_val)
1567 			return ret_val;
1568 	}
1569 
1570 	/* If we are forcing speed/duplex, then we simply return since
1571 	 * we have already determined whether we have link or not.
1572 	 */
1573 	if (!mac->autoneg)
1574 		return -E1000_ERR_CONFIG;
1575 
1576 	/* Auto-Neg is enabled.  Auto Speed Detection takes care
1577 	 * of MAC speed/duplex configuration.  So we only need to
1578 	 * configure Collision Distance in the MAC.
1579 	 */
1580 	mac->ops.config_collision_dist(hw);
1581 
1582 	/* Configure Flow Control now that Auto-Neg has completed.
1583 	 * First, we need to restore the desired flow control
1584 	 * settings because we may have had to re-autoneg with a
1585 	 * different link partner.
1586 	 */
1587 	ret_val = e1000e_config_fc_after_link_up(hw);
1588 	if (ret_val)
1589 		e_dbg("Error configuring flow control\n");
1590 
1591 	return ret_val;
1592 }
1593 
1594 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1595 {
1596 	struct e1000_hw *hw = &adapter->hw;
1597 	s32 rc;
1598 
1599 	rc = e1000_init_mac_params_ich8lan(hw);
1600 	if (rc)
1601 		return rc;
1602 
1603 	rc = e1000_init_nvm_params_ich8lan(hw);
1604 	if (rc)
1605 		return rc;
1606 
1607 	switch (hw->mac.type) {
1608 	case e1000_ich8lan:
1609 	case e1000_ich9lan:
1610 	case e1000_ich10lan:
1611 		rc = e1000_init_phy_params_ich8lan(hw);
1612 		break;
1613 	case e1000_pchlan:
1614 	case e1000_pch2lan:
1615 	case e1000_pch_lpt:
1616 	case e1000_pch_spt:
1617 		rc = e1000_init_phy_params_pchlan(hw);
1618 		break;
1619 	default:
1620 		break;
1621 	}
1622 	if (rc)
1623 		return rc;
1624 
1625 	/* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1626 	 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1627 	 */
1628 	if ((adapter->hw.phy.type == e1000_phy_ife) ||
1629 	    ((adapter->hw.mac.type >= e1000_pch2lan) &&
1630 	     (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1631 		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1632 		adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
1633 
1634 		hw->mac.ops.blink_led = NULL;
1635 	}
1636 
1637 	if ((adapter->hw.mac.type == e1000_ich8lan) &&
1638 	    (adapter->hw.phy.type != e1000_phy_ife))
1639 		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1640 
1641 	/* Enable workaround for 82579 w/ ME enabled */
1642 	if ((adapter->hw.mac.type == e1000_pch2lan) &&
1643 	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1644 		adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1645 
1646 	return 0;
1647 }
1648 
1649 static DEFINE_MUTEX(nvm_mutex);
1650 
1651 /**
1652  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1653  *  @hw: pointer to the HW structure
1654  *
1655  *  Acquires the mutex for performing NVM operations.
1656  **/
1657 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1658 {
1659 	mutex_lock(&nvm_mutex);
1660 
1661 	return 0;
1662 }
1663 
1664 /**
1665  *  e1000_release_nvm_ich8lan - Release NVM mutex
1666  *  @hw: pointer to the HW structure
1667  *
1668  *  Releases the mutex used while performing NVM operations.
1669  **/
1670 static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1671 {
1672 	mutex_unlock(&nvm_mutex);
1673 }
1674 
1675 /**
1676  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1677  *  @hw: pointer to the HW structure
1678  *
1679  *  Acquires the software control flag for performing PHY and select
1680  *  MAC CSR accesses.
1681  **/
1682 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1683 {
1684 	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1685 	s32 ret_val = 0;
1686 
1687 	if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1688 			     &hw->adapter->state)) {
1689 		e_dbg("contention for Phy access\n");
1690 		return -E1000_ERR_PHY;
1691 	}
1692 
1693 	while (timeout) {
1694 		extcnf_ctrl = er32(EXTCNF_CTRL);
1695 		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1696 			break;
1697 
1698 		mdelay(1);
1699 		timeout--;
1700 	}
1701 
1702 	if (!timeout) {
1703 		e_dbg("SW has already locked the resource.\n");
1704 		ret_val = -E1000_ERR_CONFIG;
1705 		goto out;
1706 	}
1707 
1708 	timeout = SW_FLAG_TIMEOUT;
1709 
1710 	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1711 	ew32(EXTCNF_CTRL, extcnf_ctrl);
1712 
1713 	while (timeout) {
1714 		extcnf_ctrl = er32(EXTCNF_CTRL);
1715 		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1716 			break;
1717 
1718 		mdelay(1);
1719 		timeout--;
1720 	}
1721 
1722 	if (!timeout) {
1723 		e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1724 		      er32(FWSM), extcnf_ctrl);
1725 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1726 		ew32(EXTCNF_CTRL, extcnf_ctrl);
1727 		ret_val = -E1000_ERR_CONFIG;
1728 		goto out;
1729 	}
1730 
1731 out:
1732 	if (ret_val)
1733 		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1734 
1735 	return ret_val;
1736 }
1737 
1738 /**
1739  *  e1000_release_swflag_ich8lan - Release software control flag
1740  *  @hw: pointer to the HW structure
1741  *
1742  *  Releases the software control flag for performing PHY and select
1743  *  MAC CSR accesses.
1744  **/
1745 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1746 {
1747 	u32 extcnf_ctrl;
1748 
1749 	extcnf_ctrl = er32(EXTCNF_CTRL);
1750 
1751 	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1752 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1753 		ew32(EXTCNF_CTRL, extcnf_ctrl);
1754 	} else {
1755 		e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1756 	}
1757 
1758 	clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1759 }
1760 
1761 /**
1762  *  e1000_check_mng_mode_ich8lan - Checks management mode
1763  *  @hw: pointer to the HW structure
1764  *
1765  *  This checks if the adapter has any manageability enabled.
1766  *  This is a function pointer entry point only called by read/write
1767  *  routines for the PHY and NVM parts.
1768  **/
1769 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1770 {
1771 	u32 fwsm;
1772 
1773 	fwsm = er32(FWSM);
1774 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1775 		((fwsm & E1000_FWSM_MODE_MASK) ==
1776 		 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1777 }
1778 
1779 /**
1780  *  e1000_check_mng_mode_pchlan - Checks management mode
1781  *  @hw: pointer to the HW structure
1782  *
1783  *  This checks if the adapter has iAMT enabled.
1784  *  This is a function pointer entry point only called by read/write
1785  *  routines for the PHY and NVM parts.
1786  **/
1787 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1788 {
1789 	u32 fwsm;
1790 
1791 	fwsm = er32(FWSM);
1792 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1793 	    (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1794 }
1795 
1796 /**
1797  *  e1000_rar_set_pch2lan - Set receive address register
1798  *  @hw: pointer to the HW structure
1799  *  @addr: pointer to the receive address
1800  *  @index: receive address array register
1801  *
1802  *  Sets the receive address array register at index to the address passed
1803  *  in by addr.  For 82579, RAR[0] is the base address register that is to
1804  *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1805  *  Use SHRA[0-3] in place of those reserved for ME.
1806  **/
1807 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1808 {
1809 	u32 rar_low, rar_high;
1810 
1811 	/* HW expects these in little endian so we reverse the byte order
1812 	 * from network order (big endian) to little endian
1813 	 */
1814 	rar_low = ((u32)addr[0] |
1815 		   ((u32)addr[1] << 8) |
1816 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1817 
1818 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1819 
1820 	/* If MAC address zero, no need to set the AV bit */
1821 	if (rar_low || rar_high)
1822 		rar_high |= E1000_RAH_AV;
1823 
1824 	if (index == 0) {
1825 		ew32(RAL(index), rar_low);
1826 		e1e_flush();
1827 		ew32(RAH(index), rar_high);
1828 		e1e_flush();
1829 		return 0;
1830 	}
1831 
1832 	/* RAR[1-6] are owned by manageability.  Skip those and program the
1833 	 * next address into the SHRA register array.
1834 	 */
1835 	if (index < (u32)(hw->mac.rar_entry_count)) {
1836 		s32 ret_val;
1837 
1838 		ret_val = e1000_acquire_swflag_ich8lan(hw);
1839 		if (ret_val)
1840 			goto out;
1841 
1842 		ew32(SHRAL(index - 1), rar_low);
1843 		e1e_flush();
1844 		ew32(SHRAH(index - 1), rar_high);
1845 		e1e_flush();
1846 
1847 		e1000_release_swflag_ich8lan(hw);
1848 
1849 		/* verify the register updates */
1850 		if ((er32(SHRAL(index - 1)) == rar_low) &&
1851 		    (er32(SHRAH(index - 1)) == rar_high))
1852 			return 0;
1853 
1854 		e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1855 		      (index - 1), er32(FWSM));
1856 	}
1857 
1858 out:
1859 	e_dbg("Failed to write receive address at index %d\n", index);
1860 	return -E1000_ERR_CONFIG;
1861 }
1862 
1863 /**
1864  *  e1000_rar_get_count_pch_lpt - Get the number of available SHRA
1865  *  @hw: pointer to the HW structure
1866  *
1867  *  Get the number of available receive registers that the Host can
1868  *  program. SHRA[0-10] are the shared receive address registers
1869  *  that are shared between the Host and manageability engine (ME).
1870  *  ME can reserve any number of addresses and the host needs to be
1871  *  able to tell how many available registers it has access to.
1872  **/
1873 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw)
1874 {
1875 	u32 wlock_mac;
1876 	u32 num_entries;
1877 
1878 	wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1879 	wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1880 
1881 	switch (wlock_mac) {
1882 	case 0:
1883 		/* All SHRA[0..10] and RAR[0] available */
1884 		num_entries = hw->mac.rar_entry_count;
1885 		break;
1886 	case 1:
1887 		/* Only RAR[0] available */
1888 		num_entries = 1;
1889 		break;
1890 	default:
1891 		/* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
1892 		num_entries = wlock_mac + 1;
1893 		break;
1894 	}
1895 
1896 	return num_entries;
1897 }
1898 
1899 /**
1900  *  e1000_rar_set_pch_lpt - Set receive address registers
1901  *  @hw: pointer to the HW structure
1902  *  @addr: pointer to the receive address
1903  *  @index: receive address array register
1904  *
1905  *  Sets the receive address register array at index to the address passed
1906  *  in by addr. For LPT, RAR[0] is the base address register that is to
1907  *  contain the MAC address. SHRA[0-10] are the shared receive address
1908  *  registers that are shared between the Host and manageability engine (ME).
1909  **/
1910 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1911 {
1912 	u32 rar_low, rar_high;
1913 	u32 wlock_mac;
1914 
1915 	/* HW expects these in little endian so we reverse the byte order
1916 	 * from network order (big endian) to little endian
1917 	 */
1918 	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1919 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1920 
1921 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1922 
1923 	/* If MAC address zero, no need to set the AV bit */
1924 	if (rar_low || rar_high)
1925 		rar_high |= E1000_RAH_AV;
1926 
1927 	if (index == 0) {
1928 		ew32(RAL(index), rar_low);
1929 		e1e_flush();
1930 		ew32(RAH(index), rar_high);
1931 		e1e_flush();
1932 		return 0;
1933 	}
1934 
1935 	/* The manageability engine (ME) can lock certain SHRAR registers that
1936 	 * it is using - those registers are unavailable for use.
1937 	 */
1938 	if (index < hw->mac.rar_entry_count) {
1939 		wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1940 		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1941 
1942 		/* Check if all SHRAR registers are locked */
1943 		if (wlock_mac == 1)
1944 			goto out;
1945 
1946 		if ((wlock_mac == 0) || (index <= wlock_mac)) {
1947 			s32 ret_val;
1948 
1949 			ret_val = e1000_acquire_swflag_ich8lan(hw);
1950 
1951 			if (ret_val)
1952 				goto out;
1953 
1954 			ew32(SHRAL_PCH_LPT(index - 1), rar_low);
1955 			e1e_flush();
1956 			ew32(SHRAH_PCH_LPT(index - 1), rar_high);
1957 			e1e_flush();
1958 
1959 			e1000_release_swflag_ich8lan(hw);
1960 
1961 			/* verify the register updates */
1962 			if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
1963 			    (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
1964 				return 0;
1965 		}
1966 	}
1967 
1968 out:
1969 	e_dbg("Failed to write receive address at index %d\n", index);
1970 	return -E1000_ERR_CONFIG;
1971 }
1972 
1973 /**
1974  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
1975  *  @hw: pointer to the HW structure
1976  *
1977  *  Checks if firmware is blocking the reset of the PHY.
1978  *  This is a function pointer entry point only called by
1979  *  reset routines.
1980  **/
1981 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
1982 {
1983 	bool blocked = false;
1984 	int i = 0;
1985 
1986 	while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
1987 	       (i++ < 30))
1988 		usleep_range(10000, 20000);
1989 	return blocked ? E1000_BLK_PHY_RESET : 0;
1990 }
1991 
1992 /**
1993  *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
1994  *  @hw: pointer to the HW structure
1995  *
1996  *  Assumes semaphore already acquired.
1997  *
1998  **/
1999 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2000 {
2001 	u16 phy_data;
2002 	u32 strap = er32(STRAP);
2003 	u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
2004 	    E1000_STRAP_SMT_FREQ_SHIFT;
2005 	s32 ret_val;
2006 
2007 	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2008 
2009 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2010 	if (ret_val)
2011 		return ret_val;
2012 
2013 	phy_data &= ~HV_SMB_ADDR_MASK;
2014 	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2015 	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2016 
2017 	if (hw->phy.type == e1000_phy_i217) {
2018 		/* Restore SMBus frequency */
2019 		if (freq--) {
2020 			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2021 			phy_data |= (freq & (1 << 0)) <<
2022 			    HV_SMB_ADDR_FREQ_LOW_SHIFT;
2023 			phy_data |= (freq & (1 << 1)) <<
2024 			    (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2025 		} else {
2026 			e_dbg("Unsupported SMB frequency in PHY\n");
2027 		}
2028 	}
2029 
2030 	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2031 }
2032 
2033 /**
2034  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2035  *  @hw:   pointer to the HW structure
2036  *
2037  *  SW should configure the LCD from the NVM extended configuration region
2038  *  as a workaround for certain parts.
2039  **/
2040 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2041 {
2042 	struct e1000_phy_info *phy = &hw->phy;
2043 	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2044 	s32 ret_val = 0;
2045 	u16 word_addr, reg_data, reg_addr, phy_page = 0;
2046 
2047 	/* Initialize the PHY from the NVM on ICH platforms.  This
2048 	 * is needed due to an issue where the NVM configuration is
2049 	 * not properly autoloaded after power transitions.
2050 	 * Therefore, after each PHY reset, we will load the
2051 	 * configuration data out of the NVM manually.
2052 	 */
2053 	switch (hw->mac.type) {
2054 	case e1000_ich8lan:
2055 		if (phy->type != e1000_phy_igp_3)
2056 			return ret_val;
2057 
2058 		if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
2059 		    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
2060 			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2061 			break;
2062 		}
2063 		/* Fall-thru */
2064 	case e1000_pchlan:
2065 	case e1000_pch2lan:
2066 	case e1000_pch_lpt:
2067 	case e1000_pch_spt:
2068 		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2069 		break;
2070 	default:
2071 		return ret_val;
2072 	}
2073 
2074 	ret_val = hw->phy.ops.acquire(hw);
2075 	if (ret_val)
2076 		return ret_val;
2077 
2078 	data = er32(FEXTNVM);
2079 	if (!(data & sw_cfg_mask))
2080 		goto release;
2081 
2082 	/* Make sure HW does not configure LCD from PHY
2083 	 * extended configuration before SW configuration
2084 	 */
2085 	data = er32(EXTCNF_CTRL);
2086 	if ((hw->mac.type < e1000_pch2lan) &&
2087 	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2088 		goto release;
2089 
2090 	cnf_size = er32(EXTCNF_SIZE);
2091 	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2092 	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2093 	if (!cnf_size)
2094 		goto release;
2095 
2096 	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2097 	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2098 
2099 	if (((hw->mac.type == e1000_pchlan) &&
2100 	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2101 	    (hw->mac.type > e1000_pchlan)) {
2102 		/* HW configures the SMBus address and LEDs when the
2103 		 * OEM and LCD Write Enable bits are set in the NVM.
2104 		 * When both NVM bits are cleared, SW will configure
2105 		 * them instead.
2106 		 */
2107 		ret_val = e1000_write_smbus_addr(hw);
2108 		if (ret_val)
2109 			goto release;
2110 
2111 		data = er32(LEDCTL);
2112 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2113 							(u16)data);
2114 		if (ret_val)
2115 			goto release;
2116 	}
2117 
2118 	/* Configure LCD from extended configuration region. */
2119 
2120 	/* cnf_base_addr is in DWORD */
2121 	word_addr = (u16)(cnf_base_addr << 1);
2122 
2123 	for (i = 0; i < cnf_size; i++) {
2124 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, &reg_data);
2125 		if (ret_val)
2126 			goto release;
2127 
2128 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
2129 					 1, &reg_addr);
2130 		if (ret_val)
2131 			goto release;
2132 
2133 		/* Save off the PHY page for future writes. */
2134 		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2135 			phy_page = reg_data;
2136 			continue;
2137 		}
2138 
2139 		reg_addr &= PHY_REG_MASK;
2140 		reg_addr |= phy_page;
2141 
2142 		ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
2143 		if (ret_val)
2144 			goto release;
2145 	}
2146 
2147 release:
2148 	hw->phy.ops.release(hw);
2149 	return ret_val;
2150 }
2151 
2152 /**
2153  *  e1000_k1_gig_workaround_hv - K1 Si workaround
2154  *  @hw:   pointer to the HW structure
2155  *  @link: link up bool flag
2156  *
2157  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2158  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2159  *  If link is down, the function will restore the default K1 setting located
2160  *  in the NVM.
2161  **/
2162 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2163 {
2164 	s32 ret_val = 0;
2165 	u16 status_reg = 0;
2166 	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2167 
2168 	if (hw->mac.type != e1000_pchlan)
2169 		return 0;
2170 
2171 	/* Wrap the whole flow with the sw flag */
2172 	ret_val = hw->phy.ops.acquire(hw);
2173 	if (ret_val)
2174 		return ret_val;
2175 
2176 	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2177 	if (link) {
2178 		if (hw->phy.type == e1000_phy_82578) {
2179 			ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
2180 						  &status_reg);
2181 			if (ret_val)
2182 				goto release;
2183 
2184 			status_reg &= (BM_CS_STATUS_LINK_UP |
2185 				       BM_CS_STATUS_RESOLVED |
2186 				       BM_CS_STATUS_SPEED_MASK);
2187 
2188 			if (status_reg == (BM_CS_STATUS_LINK_UP |
2189 					   BM_CS_STATUS_RESOLVED |
2190 					   BM_CS_STATUS_SPEED_1000))
2191 				k1_enable = false;
2192 		}
2193 
2194 		if (hw->phy.type == e1000_phy_82577) {
2195 			ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2196 			if (ret_val)
2197 				goto release;
2198 
2199 			status_reg &= (HV_M_STATUS_LINK_UP |
2200 				       HV_M_STATUS_AUTONEG_COMPLETE |
2201 				       HV_M_STATUS_SPEED_MASK);
2202 
2203 			if (status_reg == (HV_M_STATUS_LINK_UP |
2204 					   HV_M_STATUS_AUTONEG_COMPLETE |
2205 					   HV_M_STATUS_SPEED_1000))
2206 				k1_enable = false;
2207 		}
2208 
2209 		/* Link stall fix for link up */
2210 		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2211 		if (ret_val)
2212 			goto release;
2213 
2214 	} else {
2215 		/* Link stall fix for link down */
2216 		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2217 		if (ret_val)
2218 			goto release;
2219 	}
2220 
2221 	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2222 
2223 release:
2224 	hw->phy.ops.release(hw);
2225 
2226 	return ret_val;
2227 }
2228 
2229 /**
2230  *  e1000_configure_k1_ich8lan - Configure K1 power state
2231  *  @hw: pointer to the HW structure
2232  *  @enable: K1 state to configure
2233  *
2234  *  Configure the K1 power state based on the provided parameter.
2235  *  Assumes semaphore already acquired.
2236  *
2237  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2238  **/
2239 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2240 {
2241 	s32 ret_val;
2242 	u32 ctrl_reg = 0;
2243 	u32 ctrl_ext = 0;
2244 	u32 reg = 0;
2245 	u16 kmrn_reg = 0;
2246 
2247 	ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2248 					      &kmrn_reg);
2249 	if (ret_val)
2250 		return ret_val;
2251 
2252 	if (k1_enable)
2253 		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2254 	else
2255 		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2256 
2257 	ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2258 					       kmrn_reg);
2259 	if (ret_val)
2260 		return ret_val;
2261 
2262 	usleep_range(20, 40);
2263 	ctrl_ext = er32(CTRL_EXT);
2264 	ctrl_reg = er32(CTRL);
2265 
2266 	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2267 	reg |= E1000_CTRL_FRCSPD;
2268 	ew32(CTRL, reg);
2269 
2270 	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2271 	e1e_flush();
2272 	usleep_range(20, 40);
2273 	ew32(CTRL, ctrl_reg);
2274 	ew32(CTRL_EXT, ctrl_ext);
2275 	e1e_flush();
2276 	usleep_range(20, 40);
2277 
2278 	return 0;
2279 }
2280 
2281 /**
2282  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2283  *  @hw:       pointer to the HW structure
2284  *  @d0_state: boolean if entering d0 or d3 device state
2285  *
2286  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2287  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2288  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2289  **/
2290 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2291 {
2292 	s32 ret_val = 0;
2293 	u32 mac_reg;
2294 	u16 oem_reg;
2295 
2296 	if (hw->mac.type < e1000_pchlan)
2297 		return ret_val;
2298 
2299 	ret_val = hw->phy.ops.acquire(hw);
2300 	if (ret_val)
2301 		return ret_val;
2302 
2303 	if (hw->mac.type == e1000_pchlan) {
2304 		mac_reg = er32(EXTCNF_CTRL);
2305 		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2306 			goto release;
2307 	}
2308 
2309 	mac_reg = er32(FEXTNVM);
2310 	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2311 		goto release;
2312 
2313 	mac_reg = er32(PHY_CTRL);
2314 
2315 	ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2316 	if (ret_val)
2317 		goto release;
2318 
2319 	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2320 
2321 	if (d0_state) {
2322 		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2323 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2324 
2325 		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2326 			oem_reg |= HV_OEM_BITS_LPLU;
2327 	} else {
2328 		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2329 			       E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2330 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2331 
2332 		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2333 			       E1000_PHY_CTRL_NOND0A_LPLU))
2334 			oem_reg |= HV_OEM_BITS_LPLU;
2335 	}
2336 
2337 	/* Set Restart auto-neg to activate the bits */
2338 	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2339 	    !hw->phy.ops.check_reset_block(hw))
2340 		oem_reg |= HV_OEM_BITS_RESTART_AN;
2341 
2342 	ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2343 
2344 release:
2345 	hw->phy.ops.release(hw);
2346 
2347 	return ret_val;
2348 }
2349 
2350 /**
2351  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2352  *  @hw:   pointer to the HW structure
2353  **/
2354 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2355 {
2356 	s32 ret_val;
2357 	u16 data;
2358 
2359 	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2360 	if (ret_val)
2361 		return ret_val;
2362 
2363 	data |= HV_KMRN_MDIO_SLOW;
2364 
2365 	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2366 
2367 	return ret_val;
2368 }
2369 
2370 /**
2371  *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2372  *  done after every PHY reset.
2373  **/
2374 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2375 {
2376 	s32 ret_val = 0;
2377 	u16 phy_data;
2378 
2379 	if (hw->mac.type != e1000_pchlan)
2380 		return 0;
2381 
2382 	/* Set MDIO slow mode before any other MDIO access */
2383 	if (hw->phy.type == e1000_phy_82577) {
2384 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
2385 		if (ret_val)
2386 			return ret_val;
2387 	}
2388 
2389 	if (((hw->phy.type == e1000_phy_82577) &&
2390 	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2391 	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2392 		/* Disable generation of early preamble */
2393 		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2394 		if (ret_val)
2395 			return ret_val;
2396 
2397 		/* Preamble tuning for SSC */
2398 		ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2399 		if (ret_val)
2400 			return ret_val;
2401 	}
2402 
2403 	if (hw->phy.type == e1000_phy_82578) {
2404 		/* Return registers to default by doing a soft reset then
2405 		 * writing 0x3140 to the control register.
2406 		 */
2407 		if (hw->phy.revision < 2) {
2408 			e1000e_phy_sw_reset(hw);
2409 			ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
2410 		}
2411 	}
2412 
2413 	/* Select page 0 */
2414 	ret_val = hw->phy.ops.acquire(hw);
2415 	if (ret_val)
2416 		return ret_val;
2417 
2418 	hw->phy.addr = 1;
2419 	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2420 	hw->phy.ops.release(hw);
2421 	if (ret_val)
2422 		return ret_val;
2423 
2424 	/* Configure the K1 Si workaround during phy reset assuming there is
2425 	 * link so that it disables K1 if link is in 1Gbps.
2426 	 */
2427 	ret_val = e1000_k1_gig_workaround_hv(hw, true);
2428 	if (ret_val)
2429 		return ret_val;
2430 
2431 	/* Workaround for link disconnects on a busy hub in half duplex */
2432 	ret_val = hw->phy.ops.acquire(hw);
2433 	if (ret_val)
2434 		return ret_val;
2435 	ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2436 	if (ret_val)
2437 		goto release;
2438 	ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2439 	if (ret_val)
2440 		goto release;
2441 
2442 	/* set MSE higher to enable link to stay up when noise is high */
2443 	ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2444 release:
2445 	hw->phy.ops.release(hw);
2446 
2447 	return ret_val;
2448 }
2449 
2450 /**
2451  *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2452  *  @hw:   pointer to the HW structure
2453  **/
2454 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2455 {
2456 	u32 mac_reg;
2457 	u16 i, phy_reg = 0;
2458 	s32 ret_val;
2459 
2460 	ret_val = hw->phy.ops.acquire(hw);
2461 	if (ret_val)
2462 		return;
2463 	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2464 	if (ret_val)
2465 		goto release;
2466 
2467 	/* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2468 	for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2469 		mac_reg = er32(RAL(i));
2470 		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2471 					   (u16)(mac_reg & 0xFFFF));
2472 		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2473 					   (u16)((mac_reg >> 16) & 0xFFFF));
2474 
2475 		mac_reg = er32(RAH(i));
2476 		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2477 					   (u16)(mac_reg & 0xFFFF));
2478 		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2479 					   (u16)((mac_reg & E1000_RAH_AV)
2480 						 >> 16));
2481 	}
2482 
2483 	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2484 
2485 release:
2486 	hw->phy.ops.release(hw);
2487 }
2488 
2489 /**
2490  *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2491  *  with 82579 PHY
2492  *  @hw: pointer to the HW structure
2493  *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2494  **/
2495 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2496 {
2497 	s32 ret_val = 0;
2498 	u16 phy_reg, data;
2499 	u32 mac_reg;
2500 	u16 i;
2501 
2502 	if (hw->mac.type < e1000_pch2lan)
2503 		return 0;
2504 
2505 	/* disable Rx path while enabling/disabling workaround */
2506 	e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2507 	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14));
2508 	if (ret_val)
2509 		return ret_val;
2510 
2511 	if (enable) {
2512 		/* Write Rx addresses (rar_entry_count for RAL/H, and
2513 		 * SHRAL/H) and initial CRC values to the MAC
2514 		 */
2515 		for (i = 0; i < hw->mac.rar_entry_count; i++) {
2516 			u8 mac_addr[ETH_ALEN] = { 0 };
2517 			u32 addr_high, addr_low;
2518 
2519 			addr_high = er32(RAH(i));
2520 			if (!(addr_high & E1000_RAH_AV))
2521 				continue;
2522 			addr_low = er32(RAL(i));
2523 			mac_addr[0] = (addr_low & 0xFF);
2524 			mac_addr[1] = ((addr_low >> 8) & 0xFF);
2525 			mac_addr[2] = ((addr_low >> 16) & 0xFF);
2526 			mac_addr[3] = ((addr_low >> 24) & 0xFF);
2527 			mac_addr[4] = (addr_high & 0xFF);
2528 			mac_addr[5] = ((addr_high >> 8) & 0xFF);
2529 
2530 			ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2531 		}
2532 
2533 		/* Write Rx addresses to the PHY */
2534 		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2535 
2536 		/* Enable jumbo frame workaround in the MAC */
2537 		mac_reg = er32(FFLT_DBG);
2538 		mac_reg &= ~(1 << 14);
2539 		mac_reg |= (7 << 15);
2540 		ew32(FFLT_DBG, mac_reg);
2541 
2542 		mac_reg = er32(RCTL);
2543 		mac_reg |= E1000_RCTL_SECRC;
2544 		ew32(RCTL, mac_reg);
2545 
2546 		ret_val = e1000e_read_kmrn_reg(hw,
2547 					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2548 					       &data);
2549 		if (ret_val)
2550 			return ret_val;
2551 		ret_val = e1000e_write_kmrn_reg(hw,
2552 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2553 						data | (1 << 0));
2554 		if (ret_val)
2555 			return ret_val;
2556 		ret_val = e1000e_read_kmrn_reg(hw,
2557 					       E1000_KMRNCTRLSTA_HD_CTRL,
2558 					       &data);
2559 		if (ret_val)
2560 			return ret_val;
2561 		data &= ~(0xF << 8);
2562 		data |= (0xB << 8);
2563 		ret_val = e1000e_write_kmrn_reg(hw,
2564 						E1000_KMRNCTRLSTA_HD_CTRL,
2565 						data);
2566 		if (ret_val)
2567 			return ret_val;
2568 
2569 		/* Enable jumbo frame workaround in the PHY */
2570 		e1e_rphy(hw, PHY_REG(769, 23), &data);
2571 		data &= ~(0x7F << 5);
2572 		data |= (0x37 << 5);
2573 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2574 		if (ret_val)
2575 			return ret_val;
2576 		e1e_rphy(hw, PHY_REG(769, 16), &data);
2577 		data &= ~(1 << 13);
2578 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2579 		if (ret_val)
2580 			return ret_val;
2581 		e1e_rphy(hw, PHY_REG(776, 20), &data);
2582 		data &= ~(0x3FF << 2);
2583 		data |= (E1000_TX_PTR_GAP << 2);
2584 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2585 		if (ret_val)
2586 			return ret_val;
2587 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2588 		if (ret_val)
2589 			return ret_val;
2590 		e1e_rphy(hw, HV_PM_CTRL, &data);
2591 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10));
2592 		if (ret_val)
2593 			return ret_val;
2594 	} else {
2595 		/* Write MAC register values back to h/w defaults */
2596 		mac_reg = er32(FFLT_DBG);
2597 		mac_reg &= ~(0xF << 14);
2598 		ew32(FFLT_DBG, mac_reg);
2599 
2600 		mac_reg = er32(RCTL);
2601 		mac_reg &= ~E1000_RCTL_SECRC;
2602 		ew32(RCTL, mac_reg);
2603 
2604 		ret_val = e1000e_read_kmrn_reg(hw,
2605 					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2606 					       &data);
2607 		if (ret_val)
2608 			return ret_val;
2609 		ret_val = e1000e_write_kmrn_reg(hw,
2610 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2611 						data & ~(1 << 0));
2612 		if (ret_val)
2613 			return ret_val;
2614 		ret_val = e1000e_read_kmrn_reg(hw,
2615 					       E1000_KMRNCTRLSTA_HD_CTRL,
2616 					       &data);
2617 		if (ret_val)
2618 			return ret_val;
2619 		data &= ~(0xF << 8);
2620 		data |= (0xB << 8);
2621 		ret_val = e1000e_write_kmrn_reg(hw,
2622 						E1000_KMRNCTRLSTA_HD_CTRL,
2623 						data);
2624 		if (ret_val)
2625 			return ret_val;
2626 
2627 		/* Write PHY register values back to h/w defaults */
2628 		e1e_rphy(hw, PHY_REG(769, 23), &data);
2629 		data &= ~(0x7F << 5);
2630 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2631 		if (ret_val)
2632 			return ret_val;
2633 		e1e_rphy(hw, PHY_REG(769, 16), &data);
2634 		data |= (1 << 13);
2635 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2636 		if (ret_val)
2637 			return ret_val;
2638 		e1e_rphy(hw, PHY_REG(776, 20), &data);
2639 		data &= ~(0x3FF << 2);
2640 		data |= (0x8 << 2);
2641 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2642 		if (ret_val)
2643 			return ret_val;
2644 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2645 		if (ret_val)
2646 			return ret_val;
2647 		e1e_rphy(hw, HV_PM_CTRL, &data);
2648 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10));
2649 		if (ret_val)
2650 			return ret_val;
2651 	}
2652 
2653 	/* re-enable Rx path after enabling/disabling workaround */
2654 	return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14));
2655 }
2656 
2657 /**
2658  *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2659  *  done after every PHY reset.
2660  **/
2661 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2662 {
2663 	s32 ret_val = 0;
2664 
2665 	if (hw->mac.type != e1000_pch2lan)
2666 		return 0;
2667 
2668 	/* Set MDIO slow mode before any other MDIO access */
2669 	ret_val = e1000_set_mdio_slow_mode_hv(hw);
2670 	if (ret_val)
2671 		return ret_val;
2672 
2673 	ret_val = hw->phy.ops.acquire(hw);
2674 	if (ret_val)
2675 		return ret_val;
2676 	/* set MSE higher to enable link to stay up when noise is high */
2677 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2678 	if (ret_val)
2679 		goto release;
2680 	/* drop link after 5 times MSE threshold was reached */
2681 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2682 release:
2683 	hw->phy.ops.release(hw);
2684 
2685 	return ret_val;
2686 }
2687 
2688 /**
2689  *  e1000_k1_gig_workaround_lv - K1 Si workaround
2690  *  @hw:   pointer to the HW structure
2691  *
2692  *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2693  *  Disable K1 in 1000Mbps and 100Mbps
2694  **/
2695 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2696 {
2697 	s32 ret_val = 0;
2698 	u16 status_reg = 0;
2699 
2700 	if (hw->mac.type != e1000_pch2lan)
2701 		return 0;
2702 
2703 	/* Set K1 beacon duration based on 10Mbs speed */
2704 	ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2705 	if (ret_val)
2706 		return ret_val;
2707 
2708 	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2709 	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2710 		if (status_reg &
2711 		    (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2712 			u16 pm_phy_reg;
2713 
2714 			/* LV 1G/100 Packet drop issue wa  */
2715 			ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2716 			if (ret_val)
2717 				return ret_val;
2718 			pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2719 			ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2720 			if (ret_val)
2721 				return ret_val;
2722 		} else {
2723 			u32 mac_reg;
2724 
2725 			mac_reg = er32(FEXTNVM4);
2726 			mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2727 			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2728 			ew32(FEXTNVM4, mac_reg);
2729 		}
2730 	}
2731 
2732 	return ret_val;
2733 }
2734 
2735 /**
2736  *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2737  *  @hw:   pointer to the HW structure
2738  *  @gate: boolean set to true to gate, false to ungate
2739  *
2740  *  Gate/ungate the automatic PHY configuration via hardware; perform
2741  *  the configuration via software instead.
2742  **/
2743 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2744 {
2745 	u32 extcnf_ctrl;
2746 
2747 	if (hw->mac.type < e1000_pch2lan)
2748 		return;
2749 
2750 	extcnf_ctrl = er32(EXTCNF_CTRL);
2751 
2752 	if (gate)
2753 		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2754 	else
2755 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2756 
2757 	ew32(EXTCNF_CTRL, extcnf_ctrl);
2758 }
2759 
2760 /**
2761  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2762  *  @hw: pointer to the HW structure
2763  *
2764  *  Check the appropriate indication the MAC has finished configuring the
2765  *  PHY after a software reset.
2766  **/
2767 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2768 {
2769 	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2770 
2771 	/* Wait for basic configuration completes before proceeding */
2772 	do {
2773 		data = er32(STATUS);
2774 		data &= E1000_STATUS_LAN_INIT_DONE;
2775 		usleep_range(100, 200);
2776 	} while ((!data) && --loop);
2777 
2778 	/* If basic configuration is incomplete before the above loop
2779 	 * count reaches 0, loading the configuration from NVM will
2780 	 * leave the PHY in a bad state possibly resulting in no link.
2781 	 */
2782 	if (loop == 0)
2783 		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2784 
2785 	/* Clear the Init Done bit for the next init event */
2786 	data = er32(STATUS);
2787 	data &= ~E1000_STATUS_LAN_INIT_DONE;
2788 	ew32(STATUS, data);
2789 }
2790 
2791 /**
2792  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2793  *  @hw: pointer to the HW structure
2794  **/
2795 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2796 {
2797 	s32 ret_val = 0;
2798 	u16 reg;
2799 
2800 	if (hw->phy.ops.check_reset_block(hw))
2801 		return 0;
2802 
2803 	/* Allow time for h/w to get to quiescent state after reset */
2804 	usleep_range(10000, 20000);
2805 
2806 	/* Perform any necessary post-reset workarounds */
2807 	switch (hw->mac.type) {
2808 	case e1000_pchlan:
2809 		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2810 		if (ret_val)
2811 			return ret_val;
2812 		break;
2813 	case e1000_pch2lan:
2814 		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2815 		if (ret_val)
2816 			return ret_val;
2817 		break;
2818 	default:
2819 		break;
2820 	}
2821 
2822 	/* Clear the host wakeup bit after lcd reset */
2823 	if (hw->mac.type >= e1000_pchlan) {
2824 		e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2825 		reg &= ~BM_WUC_HOST_WU_BIT;
2826 		e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2827 	}
2828 
2829 	/* Configure the LCD with the extended configuration region in NVM */
2830 	ret_val = e1000_sw_lcd_config_ich8lan(hw);
2831 	if (ret_val)
2832 		return ret_val;
2833 
2834 	/* Configure the LCD with the OEM bits in NVM */
2835 	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2836 
2837 	if (hw->mac.type == e1000_pch2lan) {
2838 		/* Ungate automatic PHY configuration on non-managed 82579 */
2839 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2840 			usleep_range(10000, 20000);
2841 			e1000_gate_hw_phy_config_ich8lan(hw, false);
2842 		}
2843 
2844 		/* Set EEE LPI Update Timer to 200usec */
2845 		ret_val = hw->phy.ops.acquire(hw);
2846 		if (ret_val)
2847 			return ret_val;
2848 		ret_val = e1000_write_emi_reg_locked(hw,
2849 						     I82579_LPI_UPDATE_TIMER,
2850 						     0x1387);
2851 		hw->phy.ops.release(hw);
2852 	}
2853 
2854 	return ret_val;
2855 }
2856 
2857 /**
2858  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2859  *  @hw: pointer to the HW structure
2860  *
2861  *  Resets the PHY
2862  *  This is a function pointer entry point called by drivers
2863  *  or other shared routines.
2864  **/
2865 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2866 {
2867 	s32 ret_val = 0;
2868 
2869 	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
2870 	if ((hw->mac.type == e1000_pch2lan) &&
2871 	    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2872 		e1000_gate_hw_phy_config_ich8lan(hw, true);
2873 
2874 	ret_val = e1000e_phy_hw_reset_generic(hw);
2875 	if (ret_val)
2876 		return ret_val;
2877 
2878 	return e1000_post_phy_reset_ich8lan(hw);
2879 }
2880 
2881 /**
2882  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2883  *  @hw: pointer to the HW structure
2884  *  @active: true to enable LPLU, false to disable
2885  *
2886  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
2887  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2888  *  the phy speed. This function will manually set the LPLU bit and restart
2889  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
2890  *  since it configures the same bit.
2891  **/
2892 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2893 {
2894 	s32 ret_val;
2895 	u16 oem_reg;
2896 
2897 	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2898 	if (ret_val)
2899 		return ret_val;
2900 
2901 	if (active)
2902 		oem_reg |= HV_OEM_BITS_LPLU;
2903 	else
2904 		oem_reg &= ~HV_OEM_BITS_LPLU;
2905 
2906 	if (!hw->phy.ops.check_reset_block(hw))
2907 		oem_reg |= HV_OEM_BITS_RESTART_AN;
2908 
2909 	return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2910 }
2911 
2912 /**
2913  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2914  *  @hw: pointer to the HW structure
2915  *  @active: true to enable LPLU, false to disable
2916  *
2917  *  Sets the LPLU D0 state according to the active flag.  When
2918  *  activating LPLU this function also disables smart speed
2919  *  and vice versa.  LPLU will not be activated unless the
2920  *  device autonegotiation advertisement meets standards of
2921  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2922  *  This is a function pointer entry point only called by
2923  *  PHY setup routines.
2924  **/
2925 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2926 {
2927 	struct e1000_phy_info *phy = &hw->phy;
2928 	u32 phy_ctrl;
2929 	s32 ret_val = 0;
2930 	u16 data;
2931 
2932 	if (phy->type == e1000_phy_ife)
2933 		return 0;
2934 
2935 	phy_ctrl = er32(PHY_CTRL);
2936 
2937 	if (active) {
2938 		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2939 		ew32(PHY_CTRL, phy_ctrl);
2940 
2941 		if (phy->type != e1000_phy_igp_3)
2942 			return 0;
2943 
2944 		/* Call gig speed drop workaround on LPLU before accessing
2945 		 * any PHY registers
2946 		 */
2947 		if (hw->mac.type == e1000_ich8lan)
2948 			e1000e_gig_downshift_workaround_ich8lan(hw);
2949 
2950 		/* When LPLU is enabled, we should disable SmartSpeed */
2951 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2952 		if (ret_val)
2953 			return ret_val;
2954 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2955 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2956 		if (ret_val)
2957 			return ret_val;
2958 	} else {
2959 		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2960 		ew32(PHY_CTRL, phy_ctrl);
2961 
2962 		if (phy->type != e1000_phy_igp_3)
2963 			return 0;
2964 
2965 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2966 		 * during Dx states where the power conservation is most
2967 		 * important.  During driver activity we should enable
2968 		 * SmartSpeed, so performance is maintained.
2969 		 */
2970 		if (phy->smart_speed == e1000_smart_speed_on) {
2971 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2972 					   &data);
2973 			if (ret_val)
2974 				return ret_val;
2975 
2976 			data |= IGP01E1000_PSCFR_SMART_SPEED;
2977 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2978 					   data);
2979 			if (ret_val)
2980 				return ret_val;
2981 		} else if (phy->smart_speed == e1000_smart_speed_off) {
2982 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2983 					   &data);
2984 			if (ret_val)
2985 				return ret_val;
2986 
2987 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2988 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2989 					   data);
2990 			if (ret_val)
2991 				return ret_val;
2992 		}
2993 	}
2994 
2995 	return 0;
2996 }
2997 
2998 /**
2999  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3000  *  @hw: pointer to the HW structure
3001  *  @active: true to enable LPLU, false to disable
3002  *
3003  *  Sets the LPLU D3 state according to the active flag.  When
3004  *  activating LPLU this function also disables smart speed
3005  *  and vice versa.  LPLU will not be activated unless the
3006  *  device autonegotiation advertisement meets standards of
3007  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3008  *  This is a function pointer entry point only called by
3009  *  PHY setup routines.
3010  **/
3011 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3012 {
3013 	struct e1000_phy_info *phy = &hw->phy;
3014 	u32 phy_ctrl;
3015 	s32 ret_val = 0;
3016 	u16 data;
3017 
3018 	phy_ctrl = er32(PHY_CTRL);
3019 
3020 	if (!active) {
3021 		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3022 		ew32(PHY_CTRL, phy_ctrl);
3023 
3024 		if (phy->type != e1000_phy_igp_3)
3025 			return 0;
3026 
3027 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3028 		 * during Dx states where the power conservation is most
3029 		 * important.  During driver activity we should enable
3030 		 * SmartSpeed, so performance is maintained.
3031 		 */
3032 		if (phy->smart_speed == e1000_smart_speed_on) {
3033 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3034 					   &data);
3035 			if (ret_val)
3036 				return ret_val;
3037 
3038 			data |= IGP01E1000_PSCFR_SMART_SPEED;
3039 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3040 					   data);
3041 			if (ret_val)
3042 				return ret_val;
3043 		} else if (phy->smart_speed == e1000_smart_speed_off) {
3044 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3045 					   &data);
3046 			if (ret_val)
3047 				return ret_val;
3048 
3049 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3050 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3051 					   data);
3052 			if (ret_val)
3053 				return ret_val;
3054 		}
3055 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3056 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3057 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3058 		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3059 		ew32(PHY_CTRL, phy_ctrl);
3060 
3061 		if (phy->type != e1000_phy_igp_3)
3062 			return 0;
3063 
3064 		/* Call gig speed drop workaround on LPLU before accessing
3065 		 * any PHY registers
3066 		 */
3067 		if (hw->mac.type == e1000_ich8lan)
3068 			e1000e_gig_downshift_workaround_ich8lan(hw);
3069 
3070 		/* When LPLU is enabled, we should disable SmartSpeed */
3071 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3072 		if (ret_val)
3073 			return ret_val;
3074 
3075 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3076 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3077 	}
3078 
3079 	return ret_val;
3080 }
3081 
3082 /**
3083  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3084  *  @hw: pointer to the HW structure
3085  *  @bank:  pointer to the variable that returns the active bank
3086  *
3087  *  Reads signature byte from the NVM using the flash access registers.
3088  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3089  **/
3090 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3091 {
3092 	u32 eecd;
3093 	struct e1000_nvm_info *nvm = &hw->nvm;
3094 	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3095 	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3096 	u32 nvm_dword = 0;
3097 	u8 sig_byte = 0;
3098 	s32 ret_val;
3099 
3100 	switch (hw->mac.type) {
3101 	case e1000_pch_spt:
3102 		bank1_offset = nvm->flash_bank_size;
3103 		act_offset = E1000_ICH_NVM_SIG_WORD;
3104 
3105 		/* set bank to 0 in case flash read fails */
3106 		*bank = 0;
3107 
3108 		/* Check bank 0 */
3109 		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
3110 							 &nvm_dword);
3111 		if (ret_val)
3112 			return ret_val;
3113 		sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3114 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3115 		    E1000_ICH_NVM_SIG_VALUE) {
3116 			*bank = 0;
3117 			return 0;
3118 		}
3119 
3120 		/* Check bank 1 */
3121 		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
3122 							 bank1_offset,
3123 							 &nvm_dword);
3124 		if (ret_val)
3125 			return ret_val;
3126 		sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3127 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3128 		    E1000_ICH_NVM_SIG_VALUE) {
3129 			*bank = 1;
3130 			return 0;
3131 		}
3132 
3133 		e_dbg("ERROR: No valid NVM bank present\n");
3134 		return -E1000_ERR_NVM;
3135 	case e1000_ich8lan:
3136 	case e1000_ich9lan:
3137 		eecd = er32(EECD);
3138 		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3139 		    E1000_EECD_SEC1VAL_VALID_MASK) {
3140 			if (eecd & E1000_EECD_SEC1VAL)
3141 				*bank = 1;
3142 			else
3143 				*bank = 0;
3144 
3145 			return 0;
3146 		}
3147 		e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3148 		/* fall-thru */
3149 	default:
3150 		/* set bank to 0 in case flash read fails */
3151 		*bank = 0;
3152 
3153 		/* Check bank 0 */
3154 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3155 							&sig_byte);
3156 		if (ret_val)
3157 			return ret_val;
3158 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3159 		    E1000_ICH_NVM_SIG_VALUE) {
3160 			*bank = 0;
3161 			return 0;
3162 		}
3163 
3164 		/* Check bank 1 */
3165 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3166 							bank1_offset,
3167 							&sig_byte);
3168 		if (ret_val)
3169 			return ret_val;
3170 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3171 		    E1000_ICH_NVM_SIG_VALUE) {
3172 			*bank = 1;
3173 			return 0;
3174 		}
3175 
3176 		e_dbg("ERROR: No valid NVM bank present\n");
3177 		return -E1000_ERR_NVM;
3178 	}
3179 }
3180 
3181 /**
3182  *  e1000_read_nvm_spt - NVM access for SPT
3183  *  @hw: pointer to the HW structure
3184  *  @offset: The offset (in bytes) of the word(s) to read.
3185  *  @words: Size of data to read in words.
3186  *  @data: pointer to the word(s) to read at offset.
3187  *
3188  *  Reads a word(s) from the NVM
3189  **/
3190 static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3191 			      u16 *data)
3192 {
3193 	struct e1000_nvm_info *nvm = &hw->nvm;
3194 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3195 	u32 act_offset;
3196 	s32 ret_val = 0;
3197 	u32 bank = 0;
3198 	u32 dword = 0;
3199 	u16 offset_to_read;
3200 	u16 i;
3201 
3202 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3203 	    (words == 0)) {
3204 		e_dbg("nvm parameter(s) out of bounds\n");
3205 		ret_val = -E1000_ERR_NVM;
3206 		goto out;
3207 	}
3208 
3209 	nvm->ops.acquire(hw);
3210 
3211 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3212 	if (ret_val) {
3213 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3214 		bank = 0;
3215 	}
3216 
3217 	act_offset = (bank) ? nvm->flash_bank_size : 0;
3218 	act_offset += offset;
3219 
3220 	ret_val = 0;
3221 
3222 	for (i = 0; i < words; i += 2) {
3223 		if (words - i == 1) {
3224 			if (dev_spec->shadow_ram[offset + i].modified) {
3225 				data[i] =
3226 				    dev_spec->shadow_ram[offset + i].value;
3227 			} else {
3228 				offset_to_read = act_offset + i -
3229 				    ((act_offset + i) % 2);
3230 				ret_val =
3231 				  e1000_read_flash_dword_ich8lan(hw,
3232 								 offset_to_read,
3233 								 &dword);
3234 				if (ret_val)
3235 					break;
3236 				if ((act_offset + i) % 2 == 0)
3237 					data[i] = (u16)(dword & 0xFFFF);
3238 				else
3239 					data[i] = (u16)((dword >> 16) & 0xFFFF);
3240 			}
3241 		} else {
3242 			offset_to_read = act_offset + i;
3243 			if (!(dev_spec->shadow_ram[offset + i].modified) ||
3244 			    !(dev_spec->shadow_ram[offset + i + 1].modified)) {
3245 				ret_val =
3246 				  e1000_read_flash_dword_ich8lan(hw,
3247 								 offset_to_read,
3248 								 &dword);
3249 				if (ret_val)
3250 					break;
3251 			}
3252 			if (dev_spec->shadow_ram[offset + i].modified)
3253 				data[i] =
3254 				    dev_spec->shadow_ram[offset + i].value;
3255 			else
3256 				data[i] = (u16)(dword & 0xFFFF);
3257 			if (dev_spec->shadow_ram[offset + i].modified)
3258 				data[i + 1] =
3259 				    dev_spec->shadow_ram[offset + i + 1].value;
3260 			else
3261 				data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
3262 		}
3263 	}
3264 
3265 	nvm->ops.release(hw);
3266 
3267 out:
3268 	if (ret_val)
3269 		e_dbg("NVM read error: %d\n", ret_val);
3270 
3271 	return ret_val;
3272 }
3273 
3274 /**
3275  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3276  *  @hw: pointer to the HW structure
3277  *  @offset: The offset (in bytes) of the word(s) to read.
3278  *  @words: Size of data to read in words
3279  *  @data: Pointer to the word(s) to read at offset.
3280  *
3281  *  Reads a word(s) from the NVM using the flash access registers.
3282  **/
3283 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3284 				  u16 *data)
3285 {
3286 	struct e1000_nvm_info *nvm = &hw->nvm;
3287 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3288 	u32 act_offset;
3289 	s32 ret_val = 0;
3290 	u32 bank = 0;
3291 	u16 i, word;
3292 
3293 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3294 	    (words == 0)) {
3295 		e_dbg("nvm parameter(s) out of bounds\n");
3296 		ret_val = -E1000_ERR_NVM;
3297 		goto out;
3298 	}
3299 
3300 	nvm->ops.acquire(hw);
3301 
3302 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3303 	if (ret_val) {
3304 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3305 		bank = 0;
3306 	}
3307 
3308 	act_offset = (bank) ? nvm->flash_bank_size : 0;
3309 	act_offset += offset;
3310 
3311 	ret_val = 0;
3312 	for (i = 0; i < words; i++) {
3313 		if (dev_spec->shadow_ram[offset + i].modified) {
3314 			data[i] = dev_spec->shadow_ram[offset + i].value;
3315 		} else {
3316 			ret_val = e1000_read_flash_word_ich8lan(hw,
3317 								act_offset + i,
3318 								&word);
3319 			if (ret_val)
3320 				break;
3321 			data[i] = word;
3322 		}
3323 	}
3324 
3325 	nvm->ops.release(hw);
3326 
3327 out:
3328 	if (ret_val)
3329 		e_dbg("NVM read error: %d\n", ret_val);
3330 
3331 	return ret_val;
3332 }
3333 
3334 /**
3335  *  e1000_flash_cycle_init_ich8lan - Initialize flash
3336  *  @hw: pointer to the HW structure
3337  *
3338  *  This function does initial flash setup so that a new read/write/erase cycle
3339  *  can be started.
3340  **/
3341 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3342 {
3343 	union ich8_hws_flash_status hsfsts;
3344 	s32 ret_val = -E1000_ERR_NVM;
3345 
3346 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3347 
3348 	/* Check if the flash descriptor is valid */
3349 	if (!hsfsts.hsf_status.fldesvalid) {
3350 		e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
3351 		return -E1000_ERR_NVM;
3352 	}
3353 
3354 	/* Clear FCERR and DAEL in hw status by writing 1 */
3355 	hsfsts.hsf_status.flcerr = 1;
3356 	hsfsts.hsf_status.dael = 1;
3357 	if (hw->mac.type == e1000_pch_spt)
3358 		ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3359 	else
3360 		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3361 
3362 	/* Either we should have a hardware SPI cycle in progress
3363 	 * bit to check against, in order to start a new cycle or
3364 	 * FDONE bit should be changed in the hardware so that it
3365 	 * is 1 after hardware reset, which can then be used as an
3366 	 * indication whether a cycle is in progress or has been
3367 	 * completed.
3368 	 */
3369 
3370 	if (!hsfsts.hsf_status.flcinprog) {
3371 		/* There is no cycle running at present,
3372 		 * so we can start a cycle.
3373 		 * Begin by setting Flash Cycle Done.
3374 		 */
3375 		hsfsts.hsf_status.flcdone = 1;
3376 		if (hw->mac.type == e1000_pch_spt)
3377 			ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3378 		else
3379 			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3380 		ret_val = 0;
3381 	} else {
3382 		s32 i;
3383 
3384 		/* Otherwise poll for sometime so the current
3385 		 * cycle has a chance to end before giving up.
3386 		 */
3387 		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3388 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3389 			if (!hsfsts.hsf_status.flcinprog) {
3390 				ret_val = 0;
3391 				break;
3392 			}
3393 			udelay(1);
3394 		}
3395 		if (!ret_val) {
3396 			/* Successful in waiting for previous cycle to timeout,
3397 			 * now set the Flash Cycle Done.
3398 			 */
3399 			hsfsts.hsf_status.flcdone = 1;
3400 			if (hw->mac.type == e1000_pch_spt)
3401 				ew32flash(ICH_FLASH_HSFSTS,
3402 					  hsfsts.regval & 0xFFFF);
3403 			else
3404 				ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3405 		} else {
3406 			e_dbg("Flash controller busy, cannot get access\n");
3407 		}
3408 	}
3409 
3410 	return ret_val;
3411 }
3412 
3413 /**
3414  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3415  *  @hw: pointer to the HW structure
3416  *  @timeout: maximum time to wait for completion
3417  *
3418  *  This function starts a flash cycle and waits for its completion.
3419  **/
3420 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3421 {
3422 	union ich8_hws_flash_ctrl hsflctl;
3423 	union ich8_hws_flash_status hsfsts;
3424 	u32 i = 0;
3425 
3426 	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3427 	if (hw->mac.type == e1000_pch_spt)
3428 		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3429 	else
3430 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3431 	hsflctl.hsf_ctrl.flcgo = 1;
3432 
3433 	if (hw->mac.type == e1000_pch_spt)
3434 		ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
3435 	else
3436 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3437 
3438 	/* wait till FDONE bit is set to 1 */
3439 	do {
3440 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3441 		if (hsfsts.hsf_status.flcdone)
3442 			break;
3443 		udelay(1);
3444 	} while (i++ < timeout);
3445 
3446 	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3447 		return 0;
3448 
3449 	return -E1000_ERR_NVM;
3450 }
3451 
3452 /**
3453  *  e1000_read_flash_dword_ich8lan - Read dword from flash
3454  *  @hw: pointer to the HW structure
3455  *  @offset: offset to data location
3456  *  @data: pointer to the location for storing the data
3457  *
3458  *  Reads the flash dword at offset into data.  Offset is converted
3459  *  to bytes before read.
3460  **/
3461 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3462 					  u32 *data)
3463 {
3464 	/* Must convert word offset into bytes. */
3465 	offset <<= 1;
3466 	return e1000_read_flash_data32_ich8lan(hw, offset, data);
3467 }
3468 
3469 /**
3470  *  e1000_read_flash_word_ich8lan - Read word from flash
3471  *  @hw: pointer to the HW structure
3472  *  @offset: offset to data location
3473  *  @data: pointer to the location for storing the data
3474  *
3475  *  Reads the flash word at offset into data.  Offset is converted
3476  *  to bytes before read.
3477  **/
3478 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3479 					 u16 *data)
3480 {
3481 	/* Must convert offset into bytes. */
3482 	offset <<= 1;
3483 
3484 	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3485 }
3486 
3487 /**
3488  *  e1000_read_flash_byte_ich8lan - Read byte from flash
3489  *  @hw: pointer to the HW structure
3490  *  @offset: The offset of the byte to read.
3491  *  @data: Pointer to a byte to store the value read.
3492  *
3493  *  Reads a single byte from the NVM using the flash access registers.
3494  **/
3495 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3496 					 u8 *data)
3497 {
3498 	s32 ret_val;
3499 	u16 word = 0;
3500 
3501 	/* In SPT, only 32 bits access is supported,
3502 	 * so this function should not be called.
3503 	 */
3504 	if (hw->mac.type == e1000_pch_spt)
3505 		return -E1000_ERR_NVM;
3506 	else
3507 		ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3508 
3509 	if (ret_val)
3510 		return ret_val;
3511 
3512 	*data = (u8)word;
3513 
3514 	return 0;
3515 }
3516 
3517 /**
3518  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3519  *  @hw: pointer to the HW structure
3520  *  @offset: The offset (in bytes) of the byte or word to read.
3521  *  @size: Size of data to read, 1=byte 2=word
3522  *  @data: Pointer to the word to store the value read.
3523  *
3524  *  Reads a byte or word from the NVM using the flash access registers.
3525  **/
3526 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3527 					 u8 size, u16 *data)
3528 {
3529 	union ich8_hws_flash_status hsfsts;
3530 	union ich8_hws_flash_ctrl hsflctl;
3531 	u32 flash_linear_addr;
3532 	u32 flash_data = 0;
3533 	s32 ret_val = -E1000_ERR_NVM;
3534 	u8 count = 0;
3535 
3536 	if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3537 		return -E1000_ERR_NVM;
3538 
3539 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3540 			     hw->nvm.flash_base_addr);
3541 
3542 	do {
3543 		udelay(1);
3544 		/* Steps */
3545 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3546 		if (ret_val)
3547 			break;
3548 
3549 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3550 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3551 		hsflctl.hsf_ctrl.fldbcount = size - 1;
3552 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3553 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3554 
3555 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3556 
3557 		ret_val =
3558 		    e1000_flash_cycle_ich8lan(hw,
3559 					      ICH_FLASH_READ_COMMAND_TIMEOUT);
3560 
3561 		/* Check if FCERR is set to 1, if set to 1, clear it
3562 		 * and try the whole sequence a few more times, else
3563 		 * read in (shift in) the Flash Data0, the order is
3564 		 * least significant byte first msb to lsb
3565 		 */
3566 		if (!ret_val) {
3567 			flash_data = er32flash(ICH_FLASH_FDATA0);
3568 			if (size == 1)
3569 				*data = (u8)(flash_data & 0x000000FF);
3570 			else if (size == 2)
3571 				*data = (u16)(flash_data & 0x0000FFFF);
3572 			break;
3573 		} else {
3574 			/* If we've gotten here, then things are probably
3575 			 * completely hosed, but if the error condition is
3576 			 * detected, it won't hurt to give it another try...
3577 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3578 			 */
3579 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3580 			if (hsfsts.hsf_status.flcerr) {
3581 				/* Repeat for some time before giving up. */
3582 				continue;
3583 			} else if (!hsfsts.hsf_status.flcdone) {
3584 				e_dbg("Timeout error - flash cycle did not complete.\n");
3585 				break;
3586 			}
3587 		}
3588 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3589 
3590 	return ret_val;
3591 }
3592 
3593 /**
3594  *  e1000_read_flash_data32_ich8lan - Read dword from NVM
3595  *  @hw: pointer to the HW structure
3596  *  @offset: The offset (in bytes) of the dword to read.
3597  *  @data: Pointer to the dword to store the value read.
3598  *
3599  *  Reads a byte or word from the NVM using the flash access registers.
3600  **/
3601 
3602 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3603 					   u32 *data)
3604 {
3605 	union ich8_hws_flash_status hsfsts;
3606 	union ich8_hws_flash_ctrl hsflctl;
3607 	u32 flash_linear_addr;
3608 	s32 ret_val = -E1000_ERR_NVM;
3609 	u8 count = 0;
3610 
3611 	if (offset > ICH_FLASH_LINEAR_ADDR_MASK ||
3612 	    hw->mac.type != e1000_pch_spt)
3613 		return -E1000_ERR_NVM;
3614 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3615 			     hw->nvm.flash_base_addr);
3616 
3617 	do {
3618 		udelay(1);
3619 		/* Steps */
3620 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3621 		if (ret_val)
3622 			break;
3623 		/* In SPT, This register is in Lan memory space, not flash.
3624 		 * Therefore, only 32 bit access is supported
3625 		 */
3626 		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3627 
3628 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3629 		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3630 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3631 		/* In SPT, This register is in Lan memory space, not flash.
3632 		 * Therefore, only 32 bit access is supported
3633 		 */
3634 		ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16);
3635 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3636 
3637 		ret_val =
3638 		   e1000_flash_cycle_ich8lan(hw,
3639 					     ICH_FLASH_READ_COMMAND_TIMEOUT);
3640 
3641 		/* Check if FCERR is set to 1, if set to 1, clear it
3642 		 * and try the whole sequence a few more times, else
3643 		 * read in (shift in) the Flash Data0, the order is
3644 		 * least significant byte first msb to lsb
3645 		 */
3646 		if (!ret_val) {
3647 			*data = er32flash(ICH_FLASH_FDATA0);
3648 			break;
3649 		} else {
3650 			/* If we've gotten here, then things are probably
3651 			 * completely hosed, but if the error condition is
3652 			 * detected, it won't hurt to give it another try...
3653 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3654 			 */
3655 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3656 			if (hsfsts.hsf_status.flcerr) {
3657 				/* Repeat for some time before giving up. */
3658 				continue;
3659 			} else if (!hsfsts.hsf_status.flcdone) {
3660 				e_dbg("Timeout error - flash cycle did not complete.\n");
3661 				break;
3662 			}
3663 		}
3664 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3665 
3666 	return ret_val;
3667 }
3668 
3669 /**
3670  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
3671  *  @hw: pointer to the HW structure
3672  *  @offset: The offset (in bytes) of the word(s) to write.
3673  *  @words: Size of data to write in words
3674  *  @data: Pointer to the word(s) to write at offset.
3675  *
3676  *  Writes a byte or word to the NVM using the flash access registers.
3677  **/
3678 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3679 				   u16 *data)
3680 {
3681 	struct e1000_nvm_info *nvm = &hw->nvm;
3682 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3683 	u16 i;
3684 
3685 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3686 	    (words == 0)) {
3687 		e_dbg("nvm parameter(s) out of bounds\n");
3688 		return -E1000_ERR_NVM;
3689 	}
3690 
3691 	nvm->ops.acquire(hw);
3692 
3693 	for (i = 0; i < words; i++) {
3694 		dev_spec->shadow_ram[offset + i].modified = true;
3695 		dev_spec->shadow_ram[offset + i].value = data[i];
3696 	}
3697 
3698 	nvm->ops.release(hw);
3699 
3700 	return 0;
3701 }
3702 
3703 /**
3704  *  e1000_update_nvm_checksum_spt - Update the checksum for NVM
3705  *  @hw: pointer to the HW structure
3706  *
3707  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3708  *  which writes the checksum to the shadow ram.  The changes in the shadow
3709  *  ram are then committed to the EEPROM by processing each bank at a time
3710  *  checking for the modified bit and writing only the pending changes.
3711  *  After a successful commit, the shadow ram is cleared and is ready for
3712  *  future writes.
3713  **/
3714 static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
3715 {
3716 	struct e1000_nvm_info *nvm = &hw->nvm;
3717 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3718 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3719 	s32 ret_val;
3720 	u32 dword = 0;
3721 
3722 	ret_val = e1000e_update_nvm_checksum_generic(hw);
3723 	if (ret_val)
3724 		goto out;
3725 
3726 	if (nvm->type != e1000_nvm_flash_sw)
3727 		goto out;
3728 
3729 	nvm->ops.acquire(hw);
3730 
3731 	/* We're writing to the opposite bank so if we're on bank 1,
3732 	 * write to bank 0 etc.  We also need to erase the segment that
3733 	 * is going to be written
3734 	 */
3735 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3736 	if (ret_val) {
3737 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3738 		bank = 0;
3739 	}
3740 
3741 	if (bank == 0) {
3742 		new_bank_offset = nvm->flash_bank_size;
3743 		old_bank_offset = 0;
3744 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3745 		if (ret_val)
3746 			goto release;
3747 	} else {
3748 		old_bank_offset = nvm->flash_bank_size;
3749 		new_bank_offset = 0;
3750 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3751 		if (ret_val)
3752 			goto release;
3753 	}
3754 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) {
3755 		/* Determine whether to write the value stored
3756 		 * in the other NVM bank or a modified value stored
3757 		 * in the shadow RAM
3758 		 */
3759 		ret_val = e1000_read_flash_dword_ich8lan(hw,
3760 							 i + old_bank_offset,
3761 							 &dword);
3762 
3763 		if (dev_spec->shadow_ram[i].modified) {
3764 			dword &= 0xffff0000;
3765 			dword |= (dev_spec->shadow_ram[i].value & 0xffff);
3766 		}
3767 		if (dev_spec->shadow_ram[i + 1].modified) {
3768 			dword &= 0x0000ffff;
3769 			dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
3770 				  << 16);
3771 		}
3772 		if (ret_val)
3773 			break;
3774 
3775 		/* If the word is 0x13, then make sure the signature bits
3776 		 * (15:14) are 11b until the commit has completed.
3777 		 * This will allow us to write 10b which indicates the
3778 		 * signature is valid.  We want to do this after the write
3779 		 * has completed so that we don't mark the segment valid
3780 		 * while the write is still in progress
3781 		 */
3782 		if (i == E1000_ICH_NVM_SIG_WORD - 1)
3783 			dword |= E1000_ICH_NVM_SIG_MASK << 16;
3784 
3785 		/* Convert offset to bytes. */
3786 		act_offset = (i + new_bank_offset) << 1;
3787 
3788 		usleep_range(100, 200);
3789 
3790 		/* Write the data to the new bank. Offset in words */
3791 		act_offset = i + new_bank_offset;
3792 		ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
3793 								dword);
3794 		if (ret_val)
3795 			break;
3796 	}
3797 
3798 	/* Don't bother writing the segment valid bits if sector
3799 	 * programming failed.
3800 	 */
3801 	if (ret_val) {
3802 		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3803 		e_dbg("Flash commit failed.\n");
3804 		goto release;
3805 	}
3806 
3807 	/* Finally validate the new segment by setting bit 15:14
3808 	 * to 10b in word 0x13 , this can be done without an
3809 	 * erase as well since these bits are 11 to start with
3810 	 * and we need to change bit 14 to 0b
3811 	 */
3812 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3813 
3814 	/*offset in words but we read dword */
3815 	--act_offset;
3816 	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3817 
3818 	if (ret_val)
3819 		goto release;
3820 
3821 	dword &= 0xBFFFFFFF;
3822 	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3823 
3824 	if (ret_val)
3825 		goto release;
3826 
3827 	/* And invalidate the previously valid segment by setting
3828 	 * its signature word (0x13) high_byte to 0b. This can be
3829 	 * done without an erase because flash erase sets all bits
3830 	 * to 1's. We can write 1's to 0's without an erase
3831 	 */
3832 	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
3833 
3834 	/* offset in words but we read dword */
3835 	act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
3836 	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3837 
3838 	if (ret_val)
3839 		goto release;
3840 
3841 	dword &= 0x00FFFFFF;
3842 	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3843 
3844 	if (ret_val)
3845 		goto release;
3846 
3847 	/* Great!  Everything worked, we can now clear the cached entries. */
3848 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3849 		dev_spec->shadow_ram[i].modified = false;
3850 		dev_spec->shadow_ram[i].value = 0xFFFF;
3851 	}
3852 
3853 release:
3854 	nvm->ops.release(hw);
3855 
3856 	/* Reload the EEPROM, or else modifications will not appear
3857 	 * until after the next adapter reset.
3858 	 */
3859 	if (!ret_val) {
3860 		nvm->ops.reload(hw);
3861 		usleep_range(10000, 20000);
3862 	}
3863 
3864 out:
3865 	if (ret_val)
3866 		e_dbg("NVM update error: %d\n", ret_val);
3867 
3868 	return ret_val;
3869 }
3870 
3871 /**
3872  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3873  *  @hw: pointer to the HW structure
3874  *
3875  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3876  *  which writes the checksum to the shadow ram.  The changes in the shadow
3877  *  ram are then committed to the EEPROM by processing each bank at a time
3878  *  checking for the modified bit and writing only the pending changes.
3879  *  After a successful commit, the shadow ram is cleared and is ready for
3880  *  future writes.
3881  **/
3882 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
3883 {
3884 	struct e1000_nvm_info *nvm = &hw->nvm;
3885 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3886 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3887 	s32 ret_val;
3888 	u16 data = 0;
3889 
3890 	ret_val = e1000e_update_nvm_checksum_generic(hw);
3891 	if (ret_val)
3892 		goto out;
3893 
3894 	if (nvm->type != e1000_nvm_flash_sw)
3895 		goto out;
3896 
3897 	nvm->ops.acquire(hw);
3898 
3899 	/* We're writing to the opposite bank so if we're on bank 1,
3900 	 * write to bank 0 etc.  We also need to erase the segment that
3901 	 * is going to be written
3902 	 */
3903 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3904 	if (ret_val) {
3905 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3906 		bank = 0;
3907 	}
3908 
3909 	if (bank == 0) {
3910 		new_bank_offset = nvm->flash_bank_size;
3911 		old_bank_offset = 0;
3912 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3913 		if (ret_val)
3914 			goto release;
3915 	} else {
3916 		old_bank_offset = nvm->flash_bank_size;
3917 		new_bank_offset = 0;
3918 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3919 		if (ret_val)
3920 			goto release;
3921 	}
3922 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3923 		if (dev_spec->shadow_ram[i].modified) {
3924 			data = dev_spec->shadow_ram[i].value;
3925 		} else {
3926 			ret_val = e1000_read_flash_word_ich8lan(hw, i +
3927 								old_bank_offset,
3928 								&data);
3929 			if (ret_val)
3930 				break;
3931 		}
3932 
3933 		/* If the word is 0x13, then make sure the signature bits
3934 		 * (15:14) are 11b until the commit has completed.
3935 		 * This will allow us to write 10b which indicates the
3936 		 * signature is valid.  We want to do this after the write
3937 		 * has completed so that we don't mark the segment valid
3938 		 * while the write is still in progress
3939 		 */
3940 		if (i == E1000_ICH_NVM_SIG_WORD)
3941 			data |= E1000_ICH_NVM_SIG_MASK;
3942 
3943 		/* Convert offset to bytes. */
3944 		act_offset = (i + new_bank_offset) << 1;
3945 
3946 		usleep_range(100, 200);
3947 		/* Write the bytes to the new bank. */
3948 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3949 							       act_offset,
3950 							       (u8)data);
3951 		if (ret_val)
3952 			break;
3953 
3954 		usleep_range(100, 200);
3955 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3956 							       act_offset + 1,
3957 							       (u8)(data >> 8));
3958 		if (ret_val)
3959 			break;
3960 	}
3961 
3962 	/* Don't bother writing the segment valid bits if sector
3963 	 * programming failed.
3964 	 */
3965 	if (ret_val) {
3966 		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3967 		e_dbg("Flash commit failed.\n");
3968 		goto release;
3969 	}
3970 
3971 	/* Finally validate the new segment by setting bit 15:14
3972 	 * to 10b in word 0x13 , this can be done without an
3973 	 * erase as well since these bits are 11 to start with
3974 	 * and we need to change bit 14 to 0b
3975 	 */
3976 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3977 	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
3978 	if (ret_val)
3979 		goto release;
3980 
3981 	data &= 0xBFFF;
3982 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3983 						       act_offset * 2 + 1,
3984 						       (u8)(data >> 8));
3985 	if (ret_val)
3986 		goto release;
3987 
3988 	/* And invalidate the previously valid segment by setting
3989 	 * its signature word (0x13) high_byte to 0b. This can be
3990 	 * done without an erase because flash erase sets all bits
3991 	 * to 1's. We can write 1's to 0's without an erase
3992 	 */
3993 	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
3994 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
3995 	if (ret_val)
3996 		goto release;
3997 
3998 	/* Great!  Everything worked, we can now clear the cached entries. */
3999 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4000 		dev_spec->shadow_ram[i].modified = false;
4001 		dev_spec->shadow_ram[i].value = 0xFFFF;
4002 	}
4003 
4004 release:
4005 	nvm->ops.release(hw);
4006 
4007 	/* Reload the EEPROM, or else modifications will not appear
4008 	 * until after the next adapter reset.
4009 	 */
4010 	if (!ret_val) {
4011 		nvm->ops.reload(hw);
4012 		usleep_range(10000, 20000);
4013 	}
4014 
4015 out:
4016 	if (ret_val)
4017 		e_dbg("NVM update error: %d\n", ret_val);
4018 
4019 	return ret_val;
4020 }
4021 
4022 /**
4023  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4024  *  @hw: pointer to the HW structure
4025  *
4026  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4027  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
4028  *  calculated, in which case we need to calculate the checksum and set bit 6.
4029  **/
4030 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4031 {
4032 	s32 ret_val;
4033 	u16 data;
4034 	u16 word;
4035 	u16 valid_csum_mask;
4036 
4037 	/* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
4038 	 * the checksum needs to be fixed.  This bit is an indication that
4039 	 * the NVM was prepared by OEM software and did not calculate
4040 	 * the checksum...a likely scenario.
4041 	 */
4042 	switch (hw->mac.type) {
4043 	case e1000_pch_lpt:
4044 	case e1000_pch_spt:
4045 		word = NVM_COMPAT;
4046 		valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4047 		break;
4048 	default:
4049 		word = NVM_FUTURE_INIT_WORD1;
4050 		valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4051 		break;
4052 	}
4053 
4054 	ret_val = e1000_read_nvm(hw, word, 1, &data);
4055 	if (ret_val)
4056 		return ret_val;
4057 
4058 	if (!(data & valid_csum_mask)) {
4059 		data |= valid_csum_mask;
4060 		ret_val = e1000_write_nvm(hw, word, 1, &data);
4061 		if (ret_val)
4062 			return ret_val;
4063 		ret_val = e1000e_update_nvm_checksum(hw);
4064 		if (ret_val)
4065 			return ret_val;
4066 	}
4067 
4068 	return e1000e_validate_nvm_checksum_generic(hw);
4069 }
4070 
4071 /**
4072  *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
4073  *  @hw: pointer to the HW structure
4074  *
4075  *  To prevent malicious write/erase of the NVM, set it to be read-only
4076  *  so that the hardware ignores all write/erase cycles of the NVM via
4077  *  the flash control registers.  The shadow-ram copy of the NVM will
4078  *  still be updated, however any updates to this copy will not stick
4079  *  across driver reloads.
4080  **/
4081 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
4082 {
4083 	struct e1000_nvm_info *nvm = &hw->nvm;
4084 	union ich8_flash_protected_range pr0;
4085 	union ich8_hws_flash_status hsfsts;
4086 	u32 gfpreg;
4087 
4088 	nvm->ops.acquire(hw);
4089 
4090 	gfpreg = er32flash(ICH_FLASH_GFPREG);
4091 
4092 	/* Write-protect GbE Sector of NVM */
4093 	pr0.regval = er32flash(ICH_FLASH_PR0);
4094 	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
4095 	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
4096 	pr0.range.wpe = true;
4097 	ew32flash(ICH_FLASH_PR0, pr0.regval);
4098 
4099 	/* Lock down a subset of GbE Flash Control Registers, e.g.
4100 	 * PR0 to prevent the write-protection from being lifted.
4101 	 * Once FLOCKDN is set, the registers protected by it cannot
4102 	 * be written until FLOCKDN is cleared by a hardware reset.
4103 	 */
4104 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4105 	hsfsts.hsf_status.flockdn = true;
4106 	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
4107 
4108 	nvm->ops.release(hw);
4109 }
4110 
4111 /**
4112  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4113  *  @hw: pointer to the HW structure
4114  *  @offset: The offset (in bytes) of the byte/word to read.
4115  *  @size: Size of data to read, 1=byte 2=word
4116  *  @data: The byte(s) to write to the NVM.
4117  *
4118  *  Writes one/two bytes to the NVM using the flash access registers.
4119  **/
4120 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4121 					  u8 size, u16 data)
4122 {
4123 	union ich8_hws_flash_status hsfsts;
4124 	union ich8_hws_flash_ctrl hsflctl;
4125 	u32 flash_linear_addr;
4126 	u32 flash_data = 0;
4127 	s32 ret_val;
4128 	u8 count = 0;
4129 
4130 	if (hw->mac.type == e1000_pch_spt) {
4131 		if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4132 			return -E1000_ERR_NVM;
4133 	} else {
4134 		if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4135 			return -E1000_ERR_NVM;
4136 	}
4137 
4138 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4139 			     hw->nvm.flash_base_addr);
4140 
4141 	do {
4142 		udelay(1);
4143 		/* Steps */
4144 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4145 		if (ret_val)
4146 			break;
4147 		/* In SPT, This register is in Lan memory space, not
4148 		 * flash.  Therefore, only 32 bit access is supported
4149 		 */
4150 		if (hw->mac.type == e1000_pch_spt)
4151 			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
4152 		else
4153 			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4154 
4155 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4156 		hsflctl.hsf_ctrl.fldbcount = size - 1;
4157 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4158 		/* In SPT, This register is in Lan memory space,
4159 		 * not flash.  Therefore, only 32 bit access is
4160 		 * supported
4161 		 */
4162 		if (hw->mac.type == e1000_pch_spt)
4163 			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4164 		else
4165 			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4166 
4167 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4168 
4169 		if (size == 1)
4170 			flash_data = (u32)data & 0x00FF;
4171 		else
4172 			flash_data = (u32)data;
4173 
4174 		ew32flash(ICH_FLASH_FDATA0, flash_data);
4175 
4176 		/* check if FCERR is set to 1 , if set to 1, clear it
4177 		 * and try the whole sequence a few more times else done
4178 		 */
4179 		ret_val =
4180 		    e1000_flash_cycle_ich8lan(hw,
4181 					      ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4182 		if (!ret_val)
4183 			break;
4184 
4185 		/* If we're here, then things are most likely
4186 		 * completely hosed, but if the error condition
4187 		 * is detected, it won't hurt to give it another
4188 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4189 		 */
4190 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4191 		if (hsfsts.hsf_status.flcerr)
4192 			/* Repeat for some time before giving up. */
4193 			continue;
4194 		if (!hsfsts.hsf_status.flcdone) {
4195 			e_dbg("Timeout error - flash cycle did not complete.\n");
4196 			break;
4197 		}
4198 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4199 
4200 	return ret_val;
4201 }
4202 
4203 /**
4204 *  e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4205 *  @hw: pointer to the HW structure
4206 *  @offset: The offset (in bytes) of the dwords to read.
4207 *  @data: The 4 bytes to write to the NVM.
4208 *
4209 *  Writes one/two/four bytes to the NVM using the flash access registers.
4210 **/
4211 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4212 					    u32 data)
4213 {
4214 	union ich8_hws_flash_status hsfsts;
4215 	union ich8_hws_flash_ctrl hsflctl;
4216 	u32 flash_linear_addr;
4217 	s32 ret_val;
4218 	u8 count = 0;
4219 
4220 	if (hw->mac.type == e1000_pch_spt) {
4221 		if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4222 			return -E1000_ERR_NVM;
4223 	}
4224 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4225 			     hw->nvm.flash_base_addr);
4226 	do {
4227 		udelay(1);
4228 		/* Steps */
4229 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4230 		if (ret_val)
4231 			break;
4232 
4233 		/* In SPT, This register is in Lan memory space, not
4234 		 * flash.  Therefore, only 32 bit access is supported
4235 		 */
4236 		if (hw->mac.type == e1000_pch_spt)
4237 			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS)
4238 			    >> 16;
4239 		else
4240 			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4241 
4242 		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4243 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4244 
4245 		/* In SPT, This register is in Lan memory space,
4246 		 * not flash.  Therefore, only 32 bit access is
4247 		 * supported
4248 		 */
4249 		if (hw->mac.type == e1000_pch_spt)
4250 			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4251 		else
4252 			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4253 
4254 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4255 
4256 		ew32flash(ICH_FLASH_FDATA0, data);
4257 
4258 		/* check if FCERR is set to 1 , if set to 1, clear it
4259 		 * and try the whole sequence a few more times else done
4260 		 */
4261 		ret_val =
4262 		   e1000_flash_cycle_ich8lan(hw,
4263 					     ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4264 
4265 		if (!ret_val)
4266 			break;
4267 
4268 		/* If we're here, then things are most likely
4269 		 * completely hosed, but if the error condition
4270 		 * is detected, it won't hurt to give it another
4271 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4272 		 */
4273 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4274 
4275 		if (hsfsts.hsf_status.flcerr)
4276 			/* Repeat for some time before giving up. */
4277 			continue;
4278 		if (!hsfsts.hsf_status.flcdone) {
4279 			e_dbg("Timeout error - flash cycle did not complete.\n");
4280 			break;
4281 		}
4282 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4283 
4284 	return ret_val;
4285 }
4286 
4287 /**
4288  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4289  *  @hw: pointer to the HW structure
4290  *  @offset: The index of the byte to read.
4291  *  @data: The byte to write to the NVM.
4292  *
4293  *  Writes a single byte to the NVM using the flash access registers.
4294  **/
4295 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4296 					  u8 data)
4297 {
4298 	u16 word = (u16)data;
4299 
4300 	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4301 }
4302 
4303 /**
4304 *  e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4305 *  @hw: pointer to the HW structure
4306 *  @offset: The offset of the word to write.
4307 *  @dword: The dword to write to the NVM.
4308 *
4309 *  Writes a single dword to the NVM using the flash access registers.
4310 *  Goes through a retry algorithm before giving up.
4311 **/
4312 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4313 						 u32 offset, u32 dword)
4314 {
4315 	s32 ret_val;
4316 	u16 program_retries;
4317 
4318 	/* Must convert word offset into bytes. */
4319 	offset <<= 1;
4320 	ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4321 
4322 	if (!ret_val)
4323 		return ret_val;
4324 	for (program_retries = 0; program_retries < 100; program_retries++) {
4325 		e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset);
4326 		usleep_range(100, 200);
4327 		ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4328 		if (!ret_val)
4329 			break;
4330 	}
4331 	if (program_retries == 100)
4332 		return -E1000_ERR_NVM;
4333 
4334 	return 0;
4335 }
4336 
4337 /**
4338  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4339  *  @hw: pointer to the HW structure
4340  *  @offset: The offset of the byte to write.
4341  *  @byte: The byte to write to the NVM.
4342  *
4343  *  Writes a single byte to the NVM using the flash access registers.
4344  *  Goes through a retry algorithm before giving up.
4345  **/
4346 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4347 						u32 offset, u8 byte)
4348 {
4349 	s32 ret_val;
4350 	u16 program_retries;
4351 
4352 	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4353 	if (!ret_val)
4354 		return ret_val;
4355 
4356 	for (program_retries = 0; program_retries < 100; program_retries++) {
4357 		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
4358 		usleep_range(100, 200);
4359 		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4360 		if (!ret_val)
4361 			break;
4362 	}
4363 	if (program_retries == 100)
4364 		return -E1000_ERR_NVM;
4365 
4366 	return 0;
4367 }
4368 
4369 /**
4370  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4371  *  @hw: pointer to the HW structure
4372  *  @bank: 0 for first bank, 1 for second bank, etc.
4373  *
4374  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4375  *  bank N is 4096 * N + flash_reg_addr.
4376  **/
4377 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4378 {
4379 	struct e1000_nvm_info *nvm = &hw->nvm;
4380 	union ich8_hws_flash_status hsfsts;
4381 	union ich8_hws_flash_ctrl hsflctl;
4382 	u32 flash_linear_addr;
4383 	/* bank size is in 16bit words - adjust to bytes */
4384 	u32 flash_bank_size = nvm->flash_bank_size * 2;
4385 	s32 ret_val;
4386 	s32 count = 0;
4387 	s32 j, iteration, sector_size;
4388 
4389 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4390 
4391 	/* Determine HW Sector size: Read BERASE bits of hw flash status
4392 	 * register
4393 	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
4394 	 *     consecutive sectors.  The start index for the nth Hw sector
4395 	 *     can be calculated as = bank * 4096 + n * 256
4396 	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4397 	 *     The start index for the nth Hw sector can be calculated
4398 	 *     as = bank * 4096
4399 	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4400 	 *     (ich9 only, otherwise error condition)
4401 	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4402 	 */
4403 	switch (hsfsts.hsf_status.berasesz) {
4404 	case 0:
4405 		/* Hw sector size 256 */
4406 		sector_size = ICH_FLASH_SEG_SIZE_256;
4407 		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4408 		break;
4409 	case 1:
4410 		sector_size = ICH_FLASH_SEG_SIZE_4K;
4411 		iteration = 1;
4412 		break;
4413 	case 2:
4414 		sector_size = ICH_FLASH_SEG_SIZE_8K;
4415 		iteration = 1;
4416 		break;
4417 	case 3:
4418 		sector_size = ICH_FLASH_SEG_SIZE_64K;
4419 		iteration = 1;
4420 		break;
4421 	default:
4422 		return -E1000_ERR_NVM;
4423 	}
4424 
4425 	/* Start with the base address, then add the sector offset. */
4426 	flash_linear_addr = hw->nvm.flash_base_addr;
4427 	flash_linear_addr += (bank) ? flash_bank_size : 0;
4428 
4429 	for (j = 0; j < iteration; j++) {
4430 		do {
4431 			u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4432 
4433 			/* Steps */
4434 			ret_val = e1000_flash_cycle_init_ich8lan(hw);
4435 			if (ret_val)
4436 				return ret_val;
4437 
4438 			/* Write a value 11 (block Erase) in Flash
4439 			 * Cycle field in hw flash control
4440 			 */
4441 			if (hw->mac.type == e1000_pch_spt)
4442 				hsflctl.regval =
4443 				    er32flash(ICH_FLASH_HSFSTS) >> 16;
4444 			else
4445 				hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4446 
4447 			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4448 			if (hw->mac.type == e1000_pch_spt)
4449 				ew32flash(ICH_FLASH_HSFSTS,
4450 					  hsflctl.regval << 16);
4451 			else
4452 				ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4453 
4454 			/* Write the last 24 bits of an index within the
4455 			 * block into Flash Linear address field in Flash
4456 			 * Address.
4457 			 */
4458 			flash_linear_addr += (j * sector_size);
4459 			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4460 
4461 			ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4462 			if (!ret_val)
4463 				break;
4464 
4465 			/* Check if FCERR is set to 1.  If 1,
4466 			 * clear it and try the whole sequence
4467 			 * a few more times else Done
4468 			 */
4469 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4470 			if (hsfsts.hsf_status.flcerr)
4471 				/* repeat for some time before giving up */
4472 				continue;
4473 			else if (!hsfsts.hsf_status.flcdone)
4474 				return ret_val;
4475 		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4476 	}
4477 
4478 	return 0;
4479 }
4480 
4481 /**
4482  *  e1000_valid_led_default_ich8lan - Set the default LED settings
4483  *  @hw: pointer to the HW structure
4484  *  @data: Pointer to the LED settings
4485  *
4486  *  Reads the LED default settings from the NVM to data.  If the NVM LED
4487  *  settings is all 0's or F's, set the LED default to a valid LED default
4488  *  setting.
4489  **/
4490 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4491 {
4492 	s32 ret_val;
4493 
4494 	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
4495 	if (ret_val) {
4496 		e_dbg("NVM Read Error\n");
4497 		return ret_val;
4498 	}
4499 
4500 	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4501 		*data = ID_LED_DEFAULT_ICH8LAN;
4502 
4503 	return 0;
4504 }
4505 
4506 /**
4507  *  e1000_id_led_init_pchlan - store LED configurations
4508  *  @hw: pointer to the HW structure
4509  *
4510  *  PCH does not control LEDs via the LEDCTL register, rather it uses
4511  *  the PHY LED configuration register.
4512  *
4513  *  PCH also does not have an "always on" or "always off" mode which
4514  *  complicates the ID feature.  Instead of using the "on" mode to indicate
4515  *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
4516  *  use "link_up" mode.  The LEDs will still ID on request if there is no
4517  *  link based on logic in e1000_led_[on|off]_pchlan().
4518  **/
4519 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4520 {
4521 	struct e1000_mac_info *mac = &hw->mac;
4522 	s32 ret_val;
4523 	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4524 	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4525 	u16 data, i, temp, shift;
4526 
4527 	/* Get default ID LED modes */
4528 	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4529 	if (ret_val)
4530 		return ret_val;
4531 
4532 	mac->ledctl_default = er32(LEDCTL);
4533 	mac->ledctl_mode1 = mac->ledctl_default;
4534 	mac->ledctl_mode2 = mac->ledctl_default;
4535 
4536 	for (i = 0; i < 4; i++) {
4537 		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4538 		shift = (i * 5);
4539 		switch (temp) {
4540 		case ID_LED_ON1_DEF2:
4541 		case ID_LED_ON1_ON2:
4542 		case ID_LED_ON1_OFF2:
4543 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4544 			mac->ledctl_mode1 |= (ledctl_on << shift);
4545 			break;
4546 		case ID_LED_OFF1_DEF2:
4547 		case ID_LED_OFF1_ON2:
4548 		case ID_LED_OFF1_OFF2:
4549 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4550 			mac->ledctl_mode1 |= (ledctl_off << shift);
4551 			break;
4552 		default:
4553 			/* Do nothing */
4554 			break;
4555 		}
4556 		switch (temp) {
4557 		case ID_LED_DEF1_ON2:
4558 		case ID_LED_ON1_ON2:
4559 		case ID_LED_OFF1_ON2:
4560 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4561 			mac->ledctl_mode2 |= (ledctl_on << shift);
4562 			break;
4563 		case ID_LED_DEF1_OFF2:
4564 		case ID_LED_ON1_OFF2:
4565 		case ID_LED_OFF1_OFF2:
4566 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4567 			mac->ledctl_mode2 |= (ledctl_off << shift);
4568 			break;
4569 		default:
4570 			/* Do nothing */
4571 			break;
4572 		}
4573 	}
4574 
4575 	return 0;
4576 }
4577 
4578 /**
4579  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4580  *  @hw: pointer to the HW structure
4581  *
4582  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4583  *  register, so the the bus width is hard coded.
4584  **/
4585 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4586 {
4587 	struct e1000_bus_info *bus = &hw->bus;
4588 	s32 ret_val;
4589 
4590 	ret_val = e1000e_get_bus_info_pcie(hw);
4591 
4592 	/* ICH devices are "PCI Express"-ish.  They have
4593 	 * a configuration space, but do not contain
4594 	 * PCI Express Capability registers, so bus width
4595 	 * must be hardcoded.
4596 	 */
4597 	if (bus->width == e1000_bus_width_unknown)
4598 		bus->width = e1000_bus_width_pcie_x1;
4599 
4600 	return ret_val;
4601 }
4602 
4603 /**
4604  *  e1000_reset_hw_ich8lan - Reset the hardware
4605  *  @hw: pointer to the HW structure
4606  *
4607  *  Does a full reset of the hardware which includes a reset of the PHY and
4608  *  MAC.
4609  **/
4610 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4611 {
4612 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4613 	u16 kum_cfg;
4614 	u32 ctrl, reg;
4615 	s32 ret_val;
4616 
4617 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
4618 	 * on the last TLP read/write transaction when MAC is reset.
4619 	 */
4620 	ret_val = e1000e_disable_pcie_master(hw);
4621 	if (ret_val)
4622 		e_dbg("PCI-E Master disable polling has failed.\n");
4623 
4624 	e_dbg("Masking off all interrupts\n");
4625 	ew32(IMC, 0xffffffff);
4626 
4627 	/* Disable the Transmit and Receive units.  Then delay to allow
4628 	 * any pending transactions to complete before we hit the MAC
4629 	 * with the global reset.
4630 	 */
4631 	ew32(RCTL, 0);
4632 	ew32(TCTL, E1000_TCTL_PSP);
4633 	e1e_flush();
4634 
4635 	usleep_range(10000, 20000);
4636 
4637 	/* Workaround for ICH8 bit corruption issue in FIFO memory */
4638 	if (hw->mac.type == e1000_ich8lan) {
4639 		/* Set Tx and Rx buffer allocation to 8k apiece. */
4640 		ew32(PBA, E1000_PBA_8K);
4641 		/* Set Packet Buffer Size to 16k. */
4642 		ew32(PBS, E1000_PBS_16K);
4643 	}
4644 
4645 	if (hw->mac.type == e1000_pchlan) {
4646 		/* Save the NVM K1 bit setting */
4647 		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4648 		if (ret_val)
4649 			return ret_val;
4650 
4651 		if (kum_cfg & E1000_NVM_K1_ENABLE)
4652 			dev_spec->nvm_k1_enabled = true;
4653 		else
4654 			dev_spec->nvm_k1_enabled = false;
4655 	}
4656 
4657 	ctrl = er32(CTRL);
4658 
4659 	if (!hw->phy.ops.check_reset_block(hw)) {
4660 		/* Full-chip reset requires MAC and PHY reset at the same
4661 		 * time to make sure the interface between MAC and the
4662 		 * external PHY is reset.
4663 		 */
4664 		ctrl |= E1000_CTRL_PHY_RST;
4665 
4666 		/* Gate automatic PHY configuration by hardware on
4667 		 * non-managed 82579
4668 		 */
4669 		if ((hw->mac.type == e1000_pch2lan) &&
4670 		    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
4671 			e1000_gate_hw_phy_config_ich8lan(hw, true);
4672 	}
4673 	ret_val = e1000_acquire_swflag_ich8lan(hw);
4674 	e_dbg("Issuing a global reset to ich8lan\n");
4675 	ew32(CTRL, (ctrl | E1000_CTRL_RST));
4676 	/* cannot issue a flush here because it hangs the hardware */
4677 	msleep(20);
4678 
4679 	/* Set Phy Config Counter to 50msec */
4680 	if (hw->mac.type == e1000_pch2lan) {
4681 		reg = er32(FEXTNVM3);
4682 		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4683 		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4684 		ew32(FEXTNVM3, reg);
4685 	}
4686 
4687 	if (!ret_val)
4688 		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
4689 
4690 	if (ctrl & E1000_CTRL_PHY_RST) {
4691 		ret_val = hw->phy.ops.get_cfg_done(hw);
4692 		if (ret_val)
4693 			return ret_val;
4694 
4695 		ret_val = e1000_post_phy_reset_ich8lan(hw);
4696 		if (ret_val)
4697 			return ret_val;
4698 	}
4699 
4700 	/* For PCH, this write will make sure that any noise
4701 	 * will be detected as a CRC error and be dropped rather than show up
4702 	 * as a bad packet to the DMA engine.
4703 	 */
4704 	if (hw->mac.type == e1000_pchlan)
4705 		ew32(CRC_OFFSET, 0x65656565);
4706 
4707 	ew32(IMC, 0xffffffff);
4708 	er32(ICR);
4709 
4710 	reg = er32(KABGTXD);
4711 	reg |= E1000_KABGTXD_BGSQLBIAS;
4712 	ew32(KABGTXD, reg);
4713 
4714 	return 0;
4715 }
4716 
4717 /**
4718  *  e1000_init_hw_ich8lan - Initialize the hardware
4719  *  @hw: pointer to the HW structure
4720  *
4721  *  Prepares the hardware for transmit and receive by doing the following:
4722  *   - initialize hardware bits
4723  *   - initialize LED identification
4724  *   - setup receive address registers
4725  *   - setup flow control
4726  *   - setup transmit descriptors
4727  *   - clear statistics
4728  **/
4729 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4730 {
4731 	struct e1000_mac_info *mac = &hw->mac;
4732 	u32 ctrl_ext, txdctl, snoop;
4733 	s32 ret_val;
4734 	u16 i;
4735 
4736 	e1000_initialize_hw_bits_ich8lan(hw);
4737 
4738 	/* Initialize identification LED */
4739 	ret_val = mac->ops.id_led_init(hw);
4740 	/* An error is not fatal and we should not stop init due to this */
4741 	if (ret_val)
4742 		e_dbg("Error initializing identification LED\n");
4743 
4744 	/* Setup the receive address. */
4745 	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
4746 
4747 	/* Zero out the Multicast HASH table */
4748 	e_dbg("Zeroing the MTA\n");
4749 	for (i = 0; i < mac->mta_reg_count; i++)
4750 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4751 
4752 	/* The 82578 Rx buffer will stall if wakeup is enabled in host and
4753 	 * the ME.  Disable wakeup by clearing the host wakeup bit.
4754 	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
4755 	 */
4756 	if (hw->phy.type == e1000_phy_82578) {
4757 		e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4758 		i &= ~BM_WUC_HOST_WU_BIT;
4759 		e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4760 		ret_val = e1000_phy_hw_reset_ich8lan(hw);
4761 		if (ret_val)
4762 			return ret_val;
4763 	}
4764 
4765 	/* Setup link and flow control */
4766 	ret_val = mac->ops.setup_link(hw);
4767 
4768 	/* Set the transmit descriptor write-back policy for both queues */
4769 	txdctl = er32(TXDCTL(0));
4770 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4771 		  E1000_TXDCTL_FULL_TX_DESC_WB);
4772 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4773 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4774 	ew32(TXDCTL(0), txdctl);
4775 	txdctl = er32(TXDCTL(1));
4776 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4777 		  E1000_TXDCTL_FULL_TX_DESC_WB);
4778 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4779 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4780 	ew32(TXDCTL(1), txdctl);
4781 
4782 	/* ICH8 has opposite polarity of no_snoop bits.
4783 	 * By default, we should use snoop behavior.
4784 	 */
4785 	if (mac->type == e1000_ich8lan)
4786 		snoop = PCIE_ICH8_SNOOP_ALL;
4787 	else
4788 		snoop = (u32)~(PCIE_NO_SNOOP_ALL);
4789 	e1000e_set_pcie_no_snoop(hw, snoop);
4790 
4791 	ctrl_ext = er32(CTRL_EXT);
4792 	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4793 	ew32(CTRL_EXT, ctrl_ext);
4794 
4795 	/* Clear all of the statistics registers (clear on read).  It is
4796 	 * important that we do this after we have tried to establish link
4797 	 * because the symbol error count will increment wildly if there
4798 	 * is no link.
4799 	 */
4800 	e1000_clear_hw_cntrs_ich8lan(hw);
4801 
4802 	return ret_val;
4803 }
4804 
4805 /**
4806  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4807  *  @hw: pointer to the HW structure
4808  *
4809  *  Sets/Clears required hardware bits necessary for correctly setting up the
4810  *  hardware for transmit and receive.
4811  **/
4812 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4813 {
4814 	u32 reg;
4815 
4816 	/* Extended Device Control */
4817 	reg = er32(CTRL_EXT);
4818 	reg |= (1 << 22);
4819 	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
4820 	if (hw->mac.type >= e1000_pchlan)
4821 		reg |= E1000_CTRL_EXT_PHYPDEN;
4822 	ew32(CTRL_EXT, reg);
4823 
4824 	/* Transmit Descriptor Control 0 */
4825 	reg = er32(TXDCTL(0));
4826 	reg |= (1 << 22);
4827 	ew32(TXDCTL(0), reg);
4828 
4829 	/* Transmit Descriptor Control 1 */
4830 	reg = er32(TXDCTL(1));
4831 	reg |= (1 << 22);
4832 	ew32(TXDCTL(1), reg);
4833 
4834 	/* Transmit Arbitration Control 0 */
4835 	reg = er32(TARC(0));
4836 	if (hw->mac.type == e1000_ich8lan)
4837 		reg |= (1 << 28) | (1 << 29);
4838 	reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
4839 	ew32(TARC(0), reg);
4840 
4841 	/* Transmit Arbitration Control 1 */
4842 	reg = er32(TARC(1));
4843 	if (er32(TCTL) & E1000_TCTL_MULR)
4844 		reg &= ~(1 << 28);
4845 	else
4846 		reg |= (1 << 28);
4847 	reg |= (1 << 24) | (1 << 26) | (1 << 30);
4848 	ew32(TARC(1), reg);
4849 
4850 	/* Device Status */
4851 	if (hw->mac.type == e1000_ich8lan) {
4852 		reg = er32(STATUS);
4853 		reg &= ~(1 << 31);
4854 		ew32(STATUS, reg);
4855 	}
4856 
4857 	/* work-around descriptor data corruption issue during nfs v2 udp
4858 	 * traffic, just disable the nfs filtering capability
4859 	 */
4860 	reg = er32(RFCTL);
4861 	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
4862 
4863 	/* Disable IPv6 extension header parsing because some malformed
4864 	 * IPv6 headers can hang the Rx.
4865 	 */
4866 	if (hw->mac.type == e1000_ich8lan)
4867 		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
4868 	ew32(RFCTL, reg);
4869 
4870 	/* Enable ECC on Lynxpoint */
4871 	if ((hw->mac.type == e1000_pch_lpt) ||
4872 	    (hw->mac.type == e1000_pch_spt)) {
4873 		reg = er32(PBECCSTS);
4874 		reg |= E1000_PBECCSTS_ECC_ENABLE;
4875 		ew32(PBECCSTS, reg);
4876 
4877 		reg = er32(CTRL);
4878 		reg |= E1000_CTRL_MEHE;
4879 		ew32(CTRL, reg);
4880 	}
4881 }
4882 
4883 /**
4884  *  e1000_setup_link_ich8lan - Setup flow control and link settings
4885  *  @hw: pointer to the HW structure
4886  *
4887  *  Determines which flow control settings to use, then configures flow
4888  *  control.  Calls the appropriate media-specific link configuration
4889  *  function.  Assuming the adapter has a valid link partner, a valid link
4890  *  should be established.  Assumes the hardware has previously been reset
4891  *  and the transmitter and receiver are not enabled.
4892  **/
4893 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
4894 {
4895 	s32 ret_val;
4896 
4897 	if (hw->phy.ops.check_reset_block(hw))
4898 		return 0;
4899 
4900 	/* ICH parts do not have a word in the NVM to determine
4901 	 * the default flow control setting, so we explicitly
4902 	 * set it to full.
4903 	 */
4904 	if (hw->fc.requested_mode == e1000_fc_default) {
4905 		/* Workaround h/w hang when Tx flow control enabled */
4906 		if (hw->mac.type == e1000_pchlan)
4907 			hw->fc.requested_mode = e1000_fc_rx_pause;
4908 		else
4909 			hw->fc.requested_mode = e1000_fc_full;
4910 	}
4911 
4912 	/* Save off the requested flow control mode for use later.  Depending
4913 	 * on the link partner's capabilities, we may or may not use this mode.
4914 	 */
4915 	hw->fc.current_mode = hw->fc.requested_mode;
4916 
4917 	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
4918 
4919 	/* Continue to configure the copper link. */
4920 	ret_val = hw->mac.ops.setup_physical_interface(hw);
4921 	if (ret_val)
4922 		return ret_val;
4923 
4924 	ew32(FCTTV, hw->fc.pause_time);
4925 	if ((hw->phy.type == e1000_phy_82578) ||
4926 	    (hw->phy.type == e1000_phy_82579) ||
4927 	    (hw->phy.type == e1000_phy_i217) ||
4928 	    (hw->phy.type == e1000_phy_82577)) {
4929 		ew32(FCRTV_PCH, hw->fc.refresh_time);
4930 
4931 		ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
4932 				   hw->fc.pause_time);
4933 		if (ret_val)
4934 			return ret_val;
4935 	}
4936 
4937 	return e1000e_set_fc_watermarks(hw);
4938 }
4939 
4940 /**
4941  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
4942  *  @hw: pointer to the HW structure
4943  *
4944  *  Configures the kumeran interface to the PHY to wait the appropriate time
4945  *  when polling the PHY, then call the generic setup_copper_link to finish
4946  *  configuring the copper link.
4947  **/
4948 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
4949 {
4950 	u32 ctrl;
4951 	s32 ret_val;
4952 	u16 reg_data;
4953 
4954 	ctrl = er32(CTRL);
4955 	ctrl |= E1000_CTRL_SLU;
4956 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
4957 	ew32(CTRL, ctrl);
4958 
4959 	/* Set the mac to wait the maximum time between each iteration
4960 	 * and increase the max iterations when polling the phy;
4961 	 * this fixes erroneous timeouts at 10Mbps.
4962 	 */
4963 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
4964 	if (ret_val)
4965 		return ret_val;
4966 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
4967 				       &reg_data);
4968 	if (ret_val)
4969 		return ret_val;
4970 	reg_data |= 0x3F;
4971 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
4972 					reg_data);
4973 	if (ret_val)
4974 		return ret_val;
4975 
4976 	switch (hw->phy.type) {
4977 	case e1000_phy_igp_3:
4978 		ret_val = e1000e_copper_link_setup_igp(hw);
4979 		if (ret_val)
4980 			return ret_val;
4981 		break;
4982 	case e1000_phy_bm:
4983 	case e1000_phy_82578:
4984 		ret_val = e1000e_copper_link_setup_m88(hw);
4985 		if (ret_val)
4986 			return ret_val;
4987 		break;
4988 	case e1000_phy_82577:
4989 	case e1000_phy_82579:
4990 		ret_val = e1000_copper_link_setup_82577(hw);
4991 		if (ret_val)
4992 			return ret_val;
4993 		break;
4994 	case e1000_phy_ife:
4995 		ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
4996 		if (ret_val)
4997 			return ret_val;
4998 
4999 		reg_data &= ~IFE_PMC_AUTO_MDIX;
5000 
5001 		switch (hw->phy.mdix) {
5002 		case 1:
5003 			reg_data &= ~IFE_PMC_FORCE_MDIX;
5004 			break;
5005 		case 2:
5006 			reg_data |= IFE_PMC_FORCE_MDIX;
5007 			break;
5008 		case 0:
5009 		default:
5010 			reg_data |= IFE_PMC_AUTO_MDIX;
5011 			break;
5012 		}
5013 		ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
5014 		if (ret_val)
5015 			return ret_val;
5016 		break;
5017 	default:
5018 		break;
5019 	}
5020 
5021 	return e1000e_setup_copper_link(hw);
5022 }
5023 
5024 /**
5025  *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5026  *  @hw: pointer to the HW structure
5027  *
5028  *  Calls the PHY specific link setup function and then calls the
5029  *  generic setup_copper_link to finish configuring the link for
5030  *  Lynxpoint PCH devices
5031  **/
5032 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5033 {
5034 	u32 ctrl;
5035 	s32 ret_val;
5036 
5037 	ctrl = er32(CTRL);
5038 	ctrl |= E1000_CTRL_SLU;
5039 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5040 	ew32(CTRL, ctrl);
5041 
5042 	ret_val = e1000_copper_link_setup_82577(hw);
5043 	if (ret_val)
5044 		return ret_val;
5045 
5046 	return e1000e_setup_copper_link(hw);
5047 }
5048 
5049 /**
5050  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5051  *  @hw: pointer to the HW structure
5052  *  @speed: pointer to store current link speed
5053  *  @duplex: pointer to store the current link duplex
5054  *
5055  *  Calls the generic get_speed_and_duplex to retrieve the current link
5056  *  information and then calls the Kumeran lock loss workaround for links at
5057  *  gigabit speeds.
5058  **/
5059 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5060 					  u16 *duplex)
5061 {
5062 	s32 ret_val;
5063 
5064 	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
5065 	if (ret_val)
5066 		return ret_val;
5067 
5068 	if ((hw->mac.type == e1000_ich8lan) &&
5069 	    (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
5070 		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5071 	}
5072 
5073 	return ret_val;
5074 }
5075 
5076 /**
5077  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5078  *  @hw: pointer to the HW structure
5079  *
5080  *  Work-around for 82566 Kumeran PCS lock loss:
5081  *  On link status change (i.e. PCI reset, speed change) and link is up and
5082  *  speed is gigabit-
5083  *    0) if workaround is optionally disabled do nothing
5084  *    1) wait 1ms for Kumeran link to come up
5085  *    2) check Kumeran Diagnostic register PCS lock loss bit
5086  *    3) if not set the link is locked (all is good), otherwise...
5087  *    4) reset the PHY
5088  *    5) repeat up to 10 times
5089  *  Note: this is only called for IGP3 copper when speed is 1gb.
5090  **/
5091 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5092 {
5093 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5094 	u32 phy_ctrl;
5095 	s32 ret_val;
5096 	u16 i, data;
5097 	bool link;
5098 
5099 	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5100 		return 0;
5101 
5102 	/* Make sure link is up before proceeding.  If not just return.
5103 	 * Attempting this while link is negotiating fouled up link
5104 	 * stability
5105 	 */
5106 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
5107 	if (!link)
5108 		return 0;
5109 
5110 	for (i = 0; i < 10; i++) {
5111 		/* read once to clear */
5112 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5113 		if (ret_val)
5114 			return ret_val;
5115 		/* and again to get new status */
5116 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5117 		if (ret_val)
5118 			return ret_val;
5119 
5120 		/* check for PCS lock */
5121 		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5122 			return 0;
5123 
5124 		/* Issue PHY reset */
5125 		e1000_phy_hw_reset(hw);
5126 		mdelay(5);
5127 	}
5128 	/* Disable GigE link negotiation */
5129 	phy_ctrl = er32(PHY_CTRL);
5130 	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5131 		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5132 	ew32(PHY_CTRL, phy_ctrl);
5133 
5134 	/* Call gig speed drop workaround on Gig disable before accessing
5135 	 * any PHY registers
5136 	 */
5137 	e1000e_gig_downshift_workaround_ich8lan(hw);
5138 
5139 	/* unable to acquire PCS lock */
5140 	return -E1000_ERR_PHY;
5141 }
5142 
5143 /**
5144  *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5145  *  @hw: pointer to the HW structure
5146  *  @state: boolean value used to set the current Kumeran workaround state
5147  *
5148  *  If ICH8, set the current Kumeran workaround state (enabled - true
5149  *  /disabled - false).
5150  **/
5151 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5152 						  bool state)
5153 {
5154 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5155 
5156 	if (hw->mac.type != e1000_ich8lan) {
5157 		e_dbg("Workaround applies to ICH8 only.\n");
5158 		return;
5159 	}
5160 
5161 	dev_spec->kmrn_lock_loss_workaround_enabled = state;
5162 }
5163 
5164 /**
5165  *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5166  *  @hw: pointer to the HW structure
5167  *
5168  *  Workaround for 82566 power-down on D3 entry:
5169  *    1) disable gigabit link
5170  *    2) write VR power-down enable
5171  *    3) read it back
5172  *  Continue if successful, else issue LCD reset and repeat
5173  **/
5174 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5175 {
5176 	u32 reg;
5177 	u16 data;
5178 	u8 retry = 0;
5179 
5180 	if (hw->phy.type != e1000_phy_igp_3)
5181 		return;
5182 
5183 	/* Try the workaround twice (if needed) */
5184 	do {
5185 		/* Disable link */
5186 		reg = er32(PHY_CTRL);
5187 		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5188 			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5189 		ew32(PHY_CTRL, reg);
5190 
5191 		/* Call gig speed drop workaround on Gig disable before
5192 		 * accessing any PHY registers
5193 		 */
5194 		if (hw->mac.type == e1000_ich8lan)
5195 			e1000e_gig_downshift_workaround_ich8lan(hw);
5196 
5197 		/* Write VR power-down enable */
5198 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5199 		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5200 		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5201 
5202 		/* Read it back and test */
5203 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5204 		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5205 		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5206 			break;
5207 
5208 		/* Issue PHY reset and repeat at most one more time */
5209 		reg = er32(CTRL);
5210 		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
5211 		retry++;
5212 	} while (retry);
5213 }
5214 
5215 /**
5216  *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5217  *  @hw: pointer to the HW structure
5218  *
5219  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5220  *  LPLU, Gig disable, MDIC PHY reset):
5221  *    1) Set Kumeran Near-end loopback
5222  *    2) Clear Kumeran Near-end loopback
5223  *  Should only be called for ICH8[m] devices with any 1G Phy.
5224  **/
5225 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5226 {
5227 	s32 ret_val;
5228 	u16 reg_data;
5229 
5230 	if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
5231 		return;
5232 
5233 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5234 				       &reg_data);
5235 	if (ret_val)
5236 		return;
5237 	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5238 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5239 					reg_data);
5240 	if (ret_val)
5241 		return;
5242 	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5243 	e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
5244 }
5245 
5246 /**
5247  *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5248  *  @hw: pointer to the HW structure
5249  *
5250  *  During S0 to Sx transition, it is possible the link remains at gig
5251  *  instead of negotiating to a lower speed.  Before going to Sx, set
5252  *  'Gig Disable' to force link speed negotiation to a lower speed based on
5253  *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
5254  *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5255  *  needs to be written.
5256  *  Parts that support (and are linked to a partner which support) EEE in
5257  *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5258  *  than 10Mbps w/o EEE.
5259  **/
5260 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5261 {
5262 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5263 	u32 phy_ctrl;
5264 	s32 ret_val;
5265 
5266 	phy_ctrl = er32(PHY_CTRL);
5267 	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5268 
5269 	if (hw->phy.type == e1000_phy_i217) {
5270 		u16 phy_reg, device_id = hw->adapter->pdev->device;
5271 
5272 		if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5273 		    (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5274 		    (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5275 		    (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5276 		    (hw->mac.type == e1000_pch_spt)) {
5277 			u32 fextnvm6 = er32(FEXTNVM6);
5278 
5279 			ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5280 		}
5281 
5282 		ret_val = hw->phy.ops.acquire(hw);
5283 		if (ret_val)
5284 			goto out;
5285 
5286 		if (!dev_spec->eee_disable) {
5287 			u16 eee_advert;
5288 
5289 			ret_val =
5290 			    e1000_read_emi_reg_locked(hw,
5291 						      I217_EEE_ADVERTISEMENT,
5292 						      &eee_advert);
5293 			if (ret_val)
5294 				goto release;
5295 
5296 			/* Disable LPLU if both link partners support 100BaseT
5297 			 * EEE and 100Full is advertised on both ends of the
5298 			 * link, and enable Auto Enable LPI since there will
5299 			 * be no driver to enable LPI while in Sx.
5300 			 */
5301 			if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5302 			    (dev_spec->eee_lp_ability &
5303 			     I82579_EEE_100_SUPPORTED) &&
5304 			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5305 				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5306 					      E1000_PHY_CTRL_NOND0A_LPLU);
5307 
5308 				/* Set Auto Enable LPI after link up */
5309 				e1e_rphy_locked(hw,
5310 						I217_LPI_GPIO_CTRL, &phy_reg);
5311 				phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5312 				e1e_wphy_locked(hw,
5313 						I217_LPI_GPIO_CTRL, phy_reg);
5314 			}
5315 		}
5316 
5317 		/* For i217 Intel Rapid Start Technology support,
5318 		 * when the system is going into Sx and no manageability engine
5319 		 * is present, the driver must configure proxy to reset only on
5320 		 * power good.  LPI (Low Power Idle) state must also reset only
5321 		 * on power good, as well as the MTA (Multicast table array).
5322 		 * The SMBus release must also be disabled on LCD reset.
5323 		 */
5324 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5325 			/* Enable proxy to reset only on power good. */
5326 			e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
5327 			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5328 			e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
5329 
5330 			/* Set bit enable LPI (EEE) to reset only on
5331 			 * power good.
5332 			 */
5333 			e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
5334 			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5335 			e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
5336 
5337 			/* Disable the SMB release on LCD reset. */
5338 			e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5339 			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5340 			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5341 		}
5342 
5343 		/* Enable MTA to reset for Intel Rapid Start Technology
5344 		 * Support
5345 		 */
5346 		e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5347 		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5348 		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5349 
5350 release:
5351 		hw->phy.ops.release(hw);
5352 	}
5353 out:
5354 	ew32(PHY_CTRL, phy_ctrl);
5355 
5356 	if (hw->mac.type == e1000_ich8lan)
5357 		e1000e_gig_downshift_workaround_ich8lan(hw);
5358 
5359 	if (hw->mac.type >= e1000_pchlan) {
5360 		e1000_oem_bits_config_ich8lan(hw, false);
5361 
5362 		/* Reset PHY to activate OEM bits on 82577/8 */
5363 		if (hw->mac.type == e1000_pchlan)
5364 			e1000e_phy_hw_reset_generic(hw);
5365 
5366 		ret_val = hw->phy.ops.acquire(hw);
5367 		if (ret_val)
5368 			return;
5369 		e1000_write_smbus_addr(hw);
5370 		hw->phy.ops.release(hw);
5371 	}
5372 }
5373 
5374 /**
5375  *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5376  *  @hw: pointer to the HW structure
5377  *
5378  *  During Sx to S0 transitions on non-managed devices or managed devices
5379  *  on which PHY resets are not blocked, if the PHY registers cannot be
5380  *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
5381  *  the PHY.
5382  *  On i217, setup Intel Rapid Start Technology.
5383  **/
5384 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5385 {
5386 	s32 ret_val;
5387 
5388 	if (hw->mac.type < e1000_pch2lan)
5389 		return;
5390 
5391 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
5392 	if (ret_val) {
5393 		e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
5394 		return;
5395 	}
5396 
5397 	/* For i217 Intel Rapid Start Technology support when the system
5398 	 * is transitioning from Sx and no manageability engine is present
5399 	 * configure SMBus to restore on reset, disable proxy, and enable
5400 	 * the reset on MTA (Multicast table array).
5401 	 */
5402 	if (hw->phy.type == e1000_phy_i217) {
5403 		u16 phy_reg;
5404 
5405 		ret_val = hw->phy.ops.acquire(hw);
5406 		if (ret_val) {
5407 			e_dbg("Failed to setup iRST\n");
5408 			return;
5409 		}
5410 
5411 		/* Clear Auto Enable LPI after link up */
5412 		e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5413 		phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5414 		e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5415 
5416 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5417 			/* Restore clear on SMB if no manageability engine
5418 			 * is present
5419 			 */
5420 			ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5421 			if (ret_val)
5422 				goto release;
5423 			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5424 			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5425 
5426 			/* Disable Proxy */
5427 			e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
5428 		}
5429 		/* Enable reset on MTA */
5430 		ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5431 		if (ret_val)
5432 			goto release;
5433 		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5434 		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5435 release:
5436 		if (ret_val)
5437 			e_dbg("Error %d in resume workarounds\n", ret_val);
5438 		hw->phy.ops.release(hw);
5439 	}
5440 }
5441 
5442 /**
5443  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
5444  *  @hw: pointer to the HW structure
5445  *
5446  *  Return the LED back to the default configuration.
5447  **/
5448 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5449 {
5450 	if (hw->phy.type == e1000_phy_ife)
5451 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
5452 
5453 	ew32(LEDCTL, hw->mac.ledctl_default);
5454 	return 0;
5455 }
5456 
5457 /**
5458  *  e1000_led_on_ich8lan - Turn LEDs on
5459  *  @hw: pointer to the HW structure
5460  *
5461  *  Turn on the LEDs.
5462  **/
5463 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5464 {
5465 	if (hw->phy.type == e1000_phy_ife)
5466 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5467 				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5468 
5469 	ew32(LEDCTL, hw->mac.ledctl_mode2);
5470 	return 0;
5471 }
5472 
5473 /**
5474  *  e1000_led_off_ich8lan - Turn LEDs off
5475  *  @hw: pointer to the HW structure
5476  *
5477  *  Turn off the LEDs.
5478  **/
5479 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5480 {
5481 	if (hw->phy.type == e1000_phy_ife)
5482 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5483 				(IFE_PSCL_PROBE_MODE |
5484 				 IFE_PSCL_PROBE_LEDS_OFF));
5485 
5486 	ew32(LEDCTL, hw->mac.ledctl_mode1);
5487 	return 0;
5488 }
5489 
5490 /**
5491  *  e1000_setup_led_pchlan - Configures SW controllable LED
5492  *  @hw: pointer to the HW structure
5493  *
5494  *  This prepares the SW controllable LED for use.
5495  **/
5496 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5497 {
5498 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
5499 }
5500 
5501 /**
5502  *  e1000_cleanup_led_pchlan - Restore the default LED operation
5503  *  @hw: pointer to the HW structure
5504  *
5505  *  Return the LED back to the default configuration.
5506  **/
5507 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5508 {
5509 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
5510 }
5511 
5512 /**
5513  *  e1000_led_on_pchlan - Turn LEDs on
5514  *  @hw: pointer to the HW structure
5515  *
5516  *  Turn on the LEDs.
5517  **/
5518 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5519 {
5520 	u16 data = (u16)hw->mac.ledctl_mode2;
5521 	u32 i, led;
5522 
5523 	/* If no link, then turn LED on by setting the invert bit
5524 	 * for each LED that's mode is "link_up" in ledctl_mode2.
5525 	 */
5526 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5527 		for (i = 0; i < 3; i++) {
5528 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5529 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5530 			    E1000_LEDCTL_MODE_LINK_UP)
5531 				continue;
5532 			if (led & E1000_PHY_LED0_IVRT)
5533 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5534 			else
5535 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5536 		}
5537 	}
5538 
5539 	return e1e_wphy(hw, HV_LED_CONFIG, data);
5540 }
5541 
5542 /**
5543  *  e1000_led_off_pchlan - Turn LEDs off
5544  *  @hw: pointer to the HW structure
5545  *
5546  *  Turn off the LEDs.
5547  **/
5548 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5549 {
5550 	u16 data = (u16)hw->mac.ledctl_mode1;
5551 	u32 i, led;
5552 
5553 	/* If no link, then turn LED off by clearing the invert bit
5554 	 * for each LED that's mode is "link_up" in ledctl_mode1.
5555 	 */
5556 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5557 		for (i = 0; i < 3; i++) {
5558 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5559 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5560 			    E1000_LEDCTL_MODE_LINK_UP)
5561 				continue;
5562 			if (led & E1000_PHY_LED0_IVRT)
5563 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5564 			else
5565 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5566 		}
5567 	}
5568 
5569 	return e1e_wphy(hw, HV_LED_CONFIG, data);
5570 }
5571 
5572 /**
5573  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5574  *  @hw: pointer to the HW structure
5575  *
5576  *  Read appropriate register for the config done bit for completion status
5577  *  and configure the PHY through s/w for EEPROM-less parts.
5578  *
5579  *  NOTE: some silicon which is EEPROM-less will fail trying to read the
5580  *  config done bit, so only an error is logged and continues.  If we were
5581  *  to return with error, EEPROM-less silicon would not be able to be reset
5582  *  or change link.
5583  **/
5584 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5585 {
5586 	s32 ret_val = 0;
5587 	u32 bank = 0;
5588 	u32 status;
5589 
5590 	e1000e_get_cfg_done_generic(hw);
5591 
5592 	/* Wait for indication from h/w that it has completed basic config */
5593 	if (hw->mac.type >= e1000_ich10lan) {
5594 		e1000_lan_init_done_ich8lan(hw);
5595 	} else {
5596 		ret_val = e1000e_get_auto_rd_done(hw);
5597 		if (ret_val) {
5598 			/* When auto config read does not complete, do not
5599 			 * return with an error. This can happen in situations
5600 			 * where there is no eeprom and prevents getting link.
5601 			 */
5602 			e_dbg("Auto Read Done did not complete\n");
5603 			ret_val = 0;
5604 		}
5605 	}
5606 
5607 	/* Clear PHY Reset Asserted bit */
5608 	status = er32(STATUS);
5609 	if (status & E1000_STATUS_PHYRA)
5610 		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
5611 	else
5612 		e_dbg("PHY Reset Asserted not set - needs delay\n");
5613 
5614 	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
5615 	if (hw->mac.type <= e1000_ich9lan) {
5616 		if (!(er32(EECD) & E1000_EECD_PRES) &&
5617 		    (hw->phy.type == e1000_phy_igp_3)) {
5618 			e1000e_phy_init_script_igp3(hw);
5619 		}
5620 	} else {
5621 		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5622 			/* Maybe we should do a basic PHY config */
5623 			e_dbg("EEPROM not present\n");
5624 			ret_val = -E1000_ERR_CONFIG;
5625 		}
5626 	}
5627 
5628 	return ret_val;
5629 }
5630 
5631 /**
5632  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5633  * @hw: pointer to the HW structure
5634  *
5635  * In the case of a PHY power down to save power, or to turn off link during a
5636  * driver unload, or wake on lan is not enabled, remove the link.
5637  **/
5638 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5639 {
5640 	/* If the management interface is not enabled, then power down */
5641 	if (!(hw->mac.ops.check_mng_mode(hw) ||
5642 	      hw->phy.ops.check_reset_block(hw)))
5643 		e1000_power_down_phy_copper(hw);
5644 }
5645 
5646 /**
5647  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5648  *  @hw: pointer to the HW structure
5649  *
5650  *  Clears hardware counters specific to the silicon family and calls
5651  *  clear_hw_cntrs_generic to clear all general purpose counters.
5652  **/
5653 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5654 {
5655 	u16 phy_data;
5656 	s32 ret_val;
5657 
5658 	e1000e_clear_hw_cntrs_base(hw);
5659 
5660 	er32(ALGNERRC);
5661 	er32(RXERRC);
5662 	er32(TNCRS);
5663 	er32(CEXTERR);
5664 	er32(TSCTC);
5665 	er32(TSCTFC);
5666 
5667 	er32(MGTPRC);
5668 	er32(MGTPDC);
5669 	er32(MGTPTC);
5670 
5671 	er32(IAC);
5672 	er32(ICRXOC);
5673 
5674 	/* Clear PHY statistics registers */
5675 	if ((hw->phy.type == e1000_phy_82578) ||
5676 	    (hw->phy.type == e1000_phy_82579) ||
5677 	    (hw->phy.type == e1000_phy_i217) ||
5678 	    (hw->phy.type == e1000_phy_82577)) {
5679 		ret_val = hw->phy.ops.acquire(hw);
5680 		if (ret_val)
5681 			return;
5682 		ret_val = hw->phy.ops.set_page(hw,
5683 					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
5684 		if (ret_val)
5685 			goto release;
5686 		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5687 		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5688 		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5689 		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5690 		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5691 		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5692 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5693 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5694 		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5695 		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5696 		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5697 		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5698 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5699 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5700 release:
5701 		hw->phy.ops.release(hw);
5702 	}
5703 }
5704 
5705 static const struct e1000_mac_operations ich8_mac_ops = {
5706 	/* check_mng_mode dependent on mac type */
5707 	.check_for_link		= e1000_check_for_copper_link_ich8lan,
5708 	/* cleanup_led dependent on mac type */
5709 	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
5710 	.get_bus_info		= e1000_get_bus_info_ich8lan,
5711 	.set_lan_id		= e1000_set_lan_id_single_port,
5712 	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
5713 	/* led_on dependent on mac type */
5714 	/* led_off dependent on mac type */
5715 	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
5716 	.reset_hw		= e1000_reset_hw_ich8lan,
5717 	.init_hw		= e1000_init_hw_ich8lan,
5718 	.setup_link		= e1000_setup_link_ich8lan,
5719 	.setup_physical_interface = e1000_setup_copper_link_ich8lan,
5720 	/* id_led_init dependent on mac type */
5721 	.config_collision_dist	= e1000e_config_collision_dist_generic,
5722 	.rar_set		= e1000e_rar_set_generic,
5723 	.rar_get_count		= e1000e_rar_get_count_generic,
5724 };
5725 
5726 static const struct e1000_phy_operations ich8_phy_ops = {
5727 	.acquire		= e1000_acquire_swflag_ich8lan,
5728 	.check_reset_block	= e1000_check_reset_block_ich8lan,
5729 	.commit			= NULL,
5730 	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
5731 	.get_cable_length	= e1000e_get_cable_length_igp_2,
5732 	.read_reg		= e1000e_read_phy_reg_igp,
5733 	.release		= e1000_release_swflag_ich8lan,
5734 	.reset			= e1000_phy_hw_reset_ich8lan,
5735 	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
5736 	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
5737 	.write_reg		= e1000e_write_phy_reg_igp,
5738 };
5739 
5740 static const struct e1000_nvm_operations ich8_nvm_ops = {
5741 	.acquire		= e1000_acquire_nvm_ich8lan,
5742 	.read			= e1000_read_nvm_ich8lan,
5743 	.release		= e1000_release_nvm_ich8lan,
5744 	.reload			= e1000e_reload_nvm_generic,
5745 	.update			= e1000_update_nvm_checksum_ich8lan,
5746 	.valid_led_default	= e1000_valid_led_default_ich8lan,
5747 	.validate		= e1000_validate_nvm_checksum_ich8lan,
5748 	.write			= e1000_write_nvm_ich8lan,
5749 };
5750 
5751 static const struct e1000_nvm_operations spt_nvm_ops = {
5752 	.acquire		= e1000_acquire_nvm_ich8lan,
5753 	.release		= e1000_release_nvm_ich8lan,
5754 	.read			= e1000_read_nvm_spt,
5755 	.update			= e1000_update_nvm_checksum_spt,
5756 	.reload			= e1000e_reload_nvm_generic,
5757 	.valid_led_default	= e1000_valid_led_default_ich8lan,
5758 	.validate		= e1000_validate_nvm_checksum_ich8lan,
5759 	.write			= e1000_write_nvm_ich8lan,
5760 };
5761 
5762 const struct e1000_info e1000_ich8_info = {
5763 	.mac			= e1000_ich8lan,
5764 	.flags			= FLAG_HAS_WOL
5765 				  | FLAG_IS_ICH
5766 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5767 				  | FLAG_HAS_AMT
5768 				  | FLAG_HAS_FLASH
5769 				  | FLAG_APME_IN_WUC,
5770 	.pba			= 8,
5771 	.max_hw_frame_size	= VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
5772 	.get_variants		= e1000_get_variants_ich8lan,
5773 	.mac_ops		= &ich8_mac_ops,
5774 	.phy_ops		= &ich8_phy_ops,
5775 	.nvm_ops		= &ich8_nvm_ops,
5776 };
5777 
5778 const struct e1000_info e1000_ich9_info = {
5779 	.mac			= e1000_ich9lan,
5780 	.flags			= FLAG_HAS_JUMBO_FRAMES
5781 				  | FLAG_IS_ICH
5782 				  | FLAG_HAS_WOL
5783 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5784 				  | FLAG_HAS_AMT
5785 				  | FLAG_HAS_FLASH
5786 				  | FLAG_APME_IN_WUC,
5787 	.pba			= 18,
5788 	.max_hw_frame_size	= DEFAULT_JUMBO,
5789 	.get_variants		= e1000_get_variants_ich8lan,
5790 	.mac_ops		= &ich8_mac_ops,
5791 	.phy_ops		= &ich8_phy_ops,
5792 	.nvm_ops		= &ich8_nvm_ops,
5793 };
5794 
5795 const struct e1000_info e1000_ich10_info = {
5796 	.mac			= e1000_ich10lan,
5797 	.flags			= FLAG_HAS_JUMBO_FRAMES
5798 				  | FLAG_IS_ICH
5799 				  | FLAG_HAS_WOL
5800 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5801 				  | FLAG_HAS_AMT
5802 				  | FLAG_HAS_FLASH
5803 				  | FLAG_APME_IN_WUC,
5804 	.pba			= 18,
5805 	.max_hw_frame_size	= DEFAULT_JUMBO,
5806 	.get_variants		= e1000_get_variants_ich8lan,
5807 	.mac_ops		= &ich8_mac_ops,
5808 	.phy_ops		= &ich8_phy_ops,
5809 	.nvm_ops		= &ich8_nvm_ops,
5810 };
5811 
5812 const struct e1000_info e1000_pch_info = {
5813 	.mac			= e1000_pchlan,
5814 	.flags			= FLAG_IS_ICH
5815 				  | FLAG_HAS_WOL
5816 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5817 				  | FLAG_HAS_AMT
5818 				  | FLAG_HAS_FLASH
5819 				  | FLAG_HAS_JUMBO_FRAMES
5820 				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
5821 				  | FLAG_APME_IN_WUC,
5822 	.flags2			= FLAG2_HAS_PHY_STATS,
5823 	.pba			= 26,
5824 	.max_hw_frame_size	= 4096,
5825 	.get_variants		= e1000_get_variants_ich8lan,
5826 	.mac_ops		= &ich8_mac_ops,
5827 	.phy_ops		= &ich8_phy_ops,
5828 	.nvm_ops		= &ich8_nvm_ops,
5829 };
5830 
5831 const struct e1000_info e1000_pch2_info = {
5832 	.mac			= e1000_pch2lan,
5833 	.flags			= FLAG_IS_ICH
5834 				  | FLAG_HAS_WOL
5835 				  | FLAG_HAS_HW_TIMESTAMP
5836 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5837 				  | FLAG_HAS_AMT
5838 				  | FLAG_HAS_FLASH
5839 				  | FLAG_HAS_JUMBO_FRAMES
5840 				  | FLAG_APME_IN_WUC,
5841 	.flags2			= FLAG2_HAS_PHY_STATS
5842 				  | FLAG2_HAS_EEE,
5843 	.pba			= 26,
5844 	.max_hw_frame_size	= 9022,
5845 	.get_variants		= e1000_get_variants_ich8lan,
5846 	.mac_ops		= &ich8_mac_ops,
5847 	.phy_ops		= &ich8_phy_ops,
5848 	.nvm_ops		= &ich8_nvm_ops,
5849 };
5850 
5851 const struct e1000_info e1000_pch_lpt_info = {
5852 	.mac			= e1000_pch_lpt,
5853 	.flags			= FLAG_IS_ICH
5854 				  | FLAG_HAS_WOL
5855 				  | FLAG_HAS_HW_TIMESTAMP
5856 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5857 				  | FLAG_HAS_AMT
5858 				  | FLAG_HAS_FLASH
5859 				  | FLAG_HAS_JUMBO_FRAMES
5860 				  | FLAG_APME_IN_WUC,
5861 	.flags2			= FLAG2_HAS_PHY_STATS
5862 				  | FLAG2_HAS_EEE,
5863 	.pba			= 26,
5864 	.max_hw_frame_size	= 9022,
5865 	.get_variants		= e1000_get_variants_ich8lan,
5866 	.mac_ops		= &ich8_mac_ops,
5867 	.phy_ops		= &ich8_phy_ops,
5868 	.nvm_ops		= &ich8_nvm_ops,
5869 };
5870 
5871 const struct e1000_info e1000_pch_spt_info = {
5872 	.mac			= e1000_pch_spt,
5873 	.flags			= FLAG_IS_ICH
5874 				  | FLAG_HAS_WOL
5875 				  | FLAG_HAS_HW_TIMESTAMP
5876 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5877 				  | FLAG_HAS_AMT
5878 				  | FLAG_HAS_FLASH
5879 				  | FLAG_HAS_JUMBO_FRAMES
5880 				  | FLAG_APME_IN_WUC,
5881 	.flags2			= FLAG2_HAS_PHY_STATS
5882 				  | FLAG2_HAS_EEE,
5883 	.pba			= 26,
5884 	.max_hw_frame_size	= 9022,
5885 	.get_variants		= e1000_get_variants_ich8lan,
5886 	.mac_ops		= &ich8_mac_ops,
5887 	.phy_ops		= &ich8_phy_ops,
5888 	.nvm_ops		= &spt_nvm_ops,
5889 };
5890