1 /*******************************************************************************
2 
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2012 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 
27 *******************************************************************************/
28 
29 /*
30  * 82562G 10/100 Network Connection
31  * 82562G-2 10/100 Network Connection
32  * 82562GT 10/100 Network Connection
33  * 82562GT-2 10/100 Network Connection
34  * 82562V 10/100 Network Connection
35  * 82562V-2 10/100 Network Connection
36  * 82566DC-2 Gigabit Network Connection
37  * 82566DC Gigabit Network Connection
38  * 82566DM-2 Gigabit Network Connection
39  * 82566DM Gigabit Network Connection
40  * 82566MC Gigabit Network Connection
41  * 82566MM Gigabit Network Connection
42  * 82567LM Gigabit Network Connection
43  * 82567LF Gigabit Network Connection
44  * 82567V Gigabit Network Connection
45  * 82567LM-2 Gigabit Network Connection
46  * 82567LF-2 Gigabit Network Connection
47  * 82567V-2 Gigabit Network Connection
48  * 82567LF-3 Gigabit Network Connection
49  * 82567LM-3 Gigabit Network Connection
50  * 82567LM-4 Gigabit Network Connection
51  * 82577LM Gigabit Network Connection
52  * 82577LC Gigabit Network Connection
53  * 82578DM Gigabit Network Connection
54  * 82578DC Gigabit Network Connection
55  * 82579LM Gigabit Network Connection
56  * 82579V Gigabit Network Connection
57  */
58 
59 #include "e1000.h"
60 
61 #define ICH_FLASH_GFPREG		0x0000
62 #define ICH_FLASH_HSFSTS		0x0004
63 #define ICH_FLASH_HSFCTL		0x0006
64 #define ICH_FLASH_FADDR			0x0008
65 #define ICH_FLASH_FDATA0		0x0010
66 #define ICH_FLASH_PR0			0x0074
67 
68 #define ICH_FLASH_READ_COMMAND_TIMEOUT	500
69 #define ICH_FLASH_WRITE_COMMAND_TIMEOUT	500
70 #define ICH_FLASH_ERASE_COMMAND_TIMEOUT	3000000
71 #define ICH_FLASH_LINEAR_ADDR_MASK	0x00FFFFFF
72 #define ICH_FLASH_CYCLE_REPEAT_COUNT	10
73 
74 #define ICH_CYCLE_READ			0
75 #define ICH_CYCLE_WRITE			2
76 #define ICH_CYCLE_ERASE			3
77 
78 #define FLASH_GFPREG_BASE_MASK		0x1FFF
79 #define FLASH_SECTOR_ADDR_SHIFT		12
80 
81 #define ICH_FLASH_SEG_SIZE_256		256
82 #define ICH_FLASH_SEG_SIZE_4K		4096
83 #define ICH_FLASH_SEG_SIZE_8K		8192
84 #define ICH_FLASH_SEG_SIZE_64K		65536
85 
86 
87 #define E1000_ICH_FWSM_RSPCIPHY	0x00000040 /* Reset PHY on PCI Reset */
88 /* FW established a valid mode */
89 #define E1000_ICH_FWSM_FW_VALID		0x00008000
90 
91 #define E1000_ICH_MNG_IAMT_MODE		0x2
92 
93 #define ID_LED_DEFAULT_ICH8LAN  ((ID_LED_DEF1_DEF2 << 12) | \
94 				 (ID_LED_DEF1_OFF2 <<  8) | \
95 				 (ID_LED_DEF1_ON2  <<  4) | \
96 				 (ID_LED_DEF1_DEF2))
97 
98 #define E1000_ICH_NVM_SIG_WORD		0x13
99 #define E1000_ICH_NVM_SIG_MASK		0xC000
100 #define E1000_ICH_NVM_VALID_SIG_MASK    0xC0
101 #define E1000_ICH_NVM_SIG_VALUE         0x80
102 
103 #define E1000_ICH8_LAN_INIT_TIMEOUT	1500
104 
105 #define E1000_FEXTNVM_SW_CONFIG		1
106 #define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
107 
108 #define E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK    0x0C000000
109 #define E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC  0x08000000
110 
111 #define E1000_FEXTNVM4_BEACON_DURATION_MASK    0x7
112 #define E1000_FEXTNVM4_BEACON_DURATION_8USEC   0x7
113 #define E1000_FEXTNVM4_BEACON_DURATION_16USEC  0x3
114 
115 #define PCIE_ICH8_SNOOP_ALL		PCIE_NO_SNOOP_ALL
116 
117 #define E1000_ICH_RAR_ENTRIES		7
118 #define E1000_PCH2_RAR_ENTRIES		5 /* RAR[0], SHRA[0-3] */
119 #define E1000_PCH_LPT_RAR_ENTRIES	12 /* RAR[0], SHRA[0-10] */
120 
121 #define PHY_PAGE_SHIFT 5
122 #define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
123 			   ((reg) & MAX_PHY_REG_ADDRESS))
124 #define IGP3_KMRN_DIAG  PHY_REG(770, 19) /* KMRN Diagnostic */
125 #define IGP3_VR_CTRL    PHY_REG(776, 18) /* Voltage Regulator Control */
126 
127 #define IGP3_KMRN_DIAG_PCS_LOCK_LOSS	0x0002
128 #define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
129 #define IGP3_VR_CTRL_MODE_SHUTDOWN	0x0200
130 
131 #define HV_LED_CONFIG		PHY_REG(768, 30) /* LED Configuration */
132 
133 #define SW_FLAG_TIMEOUT    1000 /* SW Semaphore flag timeout in milliseconds */
134 
135 /* SMBus Control Phy Register */
136 #define CV_SMB_CTRL		PHY_REG(769, 23)
137 #define CV_SMB_CTRL_FORCE_SMBUS	0x0001
138 
139 /* SMBus Address Phy Register */
140 #define HV_SMB_ADDR            PHY_REG(768, 26)
141 #define HV_SMB_ADDR_MASK       0x007F
142 #define HV_SMB_ADDR_PEC_EN     0x0200
143 #define HV_SMB_ADDR_VALID      0x0080
144 #define HV_SMB_ADDR_FREQ_MASK           0x1100
145 #define HV_SMB_ADDR_FREQ_LOW_SHIFT      8
146 #define HV_SMB_ADDR_FREQ_HIGH_SHIFT     12
147 
148 /* PHY Power Management Control */
149 #define HV_PM_CTRL		PHY_REG(770, 17)
150 #define HV_PM_CTRL_PLL_STOP_IN_K1_GIGA	0x100
151 
152 /* PHY Low Power Idle Control */
153 #define I82579_LPI_CTRL				PHY_REG(772, 20)
154 #define I82579_LPI_CTRL_ENABLE_MASK		0x6000
155 #define I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT	0x80
156 
157 /* EMI Registers */
158 #define I82579_EMI_ADDR         0x10
159 #define I82579_EMI_DATA         0x11
160 #define I82579_LPI_UPDATE_TIMER 0x4805	/* in 40ns units + 40 ns base value */
161 #define I82579_MSE_THRESHOLD    0x084F	/* Mean Square Error Threshold */
162 #define I82579_MSE_LINK_DOWN    0x2411	/* MSE count before dropping link */
163 #define I217_EEE_ADVERTISEMENT  0x8001	/* IEEE MMD Register 7.60 */
164 #define I217_EEE_LP_ABILITY     0x8002	/* IEEE MMD Register 7.61 */
165 #define I217_EEE_100_SUPPORTED  (1 << 1)	/* 100BaseTx EEE supported */
166 
167 /* Intel Rapid Start Technology Support */
168 #define I217_PROXY_CTRL                 BM_PHY_REG(BM_WUC_PAGE, 70)
169 #define I217_PROXY_CTRL_AUTO_DISABLE    0x0080
170 #define I217_SxCTRL                     PHY_REG(BM_PORT_CTRL_PAGE, 28)
171 #define I217_SxCTRL_ENABLE_LPI_RESET    0x1000
172 #define I217_CGFREG                     PHY_REG(772, 29)
173 #define I217_CGFREG_ENABLE_MTA_RESET    0x0002
174 #define I217_MEMPWR                     PHY_REG(772, 26)
175 #define I217_MEMPWR_DISABLE_SMB_RELEASE 0x0010
176 
177 /* Strapping Option Register - RO */
178 #define E1000_STRAP                     0x0000C
179 #define E1000_STRAP_SMBUS_ADDRESS_MASK  0x00FE0000
180 #define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17
181 #define E1000_STRAP_SMT_FREQ_MASK       0x00003000
182 #define E1000_STRAP_SMT_FREQ_SHIFT      12
183 
184 /* OEM Bits Phy Register */
185 #define HV_OEM_BITS            PHY_REG(768, 25)
186 #define HV_OEM_BITS_LPLU       0x0004 /* Low Power Link Up */
187 #define HV_OEM_BITS_GBE_DIS    0x0040 /* Gigabit Disable */
188 #define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */
189 
190 #define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */
191 #define E1000_NVM_K1_ENABLE 0x1  /* NVM Enable K1 bit */
192 
193 /* KMRN Mode Control */
194 #define HV_KMRN_MODE_CTRL      PHY_REG(769, 16)
195 #define HV_KMRN_MDIO_SLOW      0x0400
196 
197 /* KMRN FIFO Control and Status */
198 #define HV_KMRN_FIFO_CTRLSTA                  PHY_REG(770, 16)
199 #define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK    0x7000
200 #define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT   12
201 
202 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
203 /* Offset 04h HSFSTS */
204 union ich8_hws_flash_status {
205 	struct ich8_hsfsts {
206 		u16 flcdone    :1; /* bit 0 Flash Cycle Done */
207 		u16 flcerr     :1; /* bit 1 Flash Cycle Error */
208 		u16 dael       :1; /* bit 2 Direct Access error Log */
209 		u16 berasesz   :2; /* bit 4:3 Sector Erase Size */
210 		u16 flcinprog  :1; /* bit 5 flash cycle in Progress */
211 		u16 reserved1  :2; /* bit 13:6 Reserved */
212 		u16 reserved2  :6; /* bit 13:6 Reserved */
213 		u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
214 		u16 flockdn    :1; /* bit 15 Flash Config Lock-Down */
215 	} hsf_status;
216 	u16 regval;
217 };
218 
219 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
220 /* Offset 06h FLCTL */
221 union ich8_hws_flash_ctrl {
222 	struct ich8_hsflctl {
223 		u16 flcgo      :1;   /* 0 Flash Cycle Go */
224 		u16 flcycle    :2;   /* 2:1 Flash Cycle */
225 		u16 reserved   :5;   /* 7:3 Reserved  */
226 		u16 fldbcount  :2;   /* 9:8 Flash Data Byte Count */
227 		u16 flockdn    :6;   /* 15:10 Reserved */
228 	} hsf_ctrl;
229 	u16 regval;
230 };
231 
232 /* ICH Flash Region Access Permissions */
233 union ich8_hws_flash_regacc {
234 	struct ich8_flracc {
235 		u32 grra      :8; /* 0:7 GbE region Read Access */
236 		u32 grwa      :8; /* 8:15 GbE region Write Access */
237 		u32 gmrag     :8; /* 23:16 GbE Master Read Access Grant */
238 		u32 gmwag     :8; /* 31:24 GbE Master Write Access Grant */
239 	} hsf_flregacc;
240 	u16 regval;
241 };
242 
243 /* ICH Flash Protected Region */
244 union ich8_flash_protected_range {
245 	struct ich8_pr {
246 		u32 base:13;     /* 0:12 Protected Range Base */
247 		u32 reserved1:2; /* 13:14 Reserved */
248 		u32 rpe:1;       /* 15 Read Protection Enable */
249 		u32 limit:13;    /* 16:28 Protected Range Limit */
250 		u32 reserved2:2; /* 29:30 Reserved */
251 		u32 wpe:1;       /* 31 Write Protection Enable */
252 	} range;
253 	u32 regval;
254 };
255 
256 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
257 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
258 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
259 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
260 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
261 						u32 offset, u8 byte);
262 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
263 					 u8 *data);
264 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
265 					 u16 *data);
266 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
267 					 u8 size, u16 *data);
268 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
269 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
270 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
271 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
272 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
273 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
274 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
275 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
276 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
277 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
278 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
279 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
280 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
281 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
282 static s32  e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
283 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
284 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
285 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
286 static void e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
287 static void e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
288 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
289 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
290 
291 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
292 {
293 	return readw(hw->flash_address + reg);
294 }
295 
296 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
297 {
298 	return readl(hw->flash_address + reg);
299 }
300 
301 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
302 {
303 	writew(val, hw->flash_address + reg);
304 }
305 
306 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
307 {
308 	writel(val, hw->flash_address + reg);
309 }
310 
311 #define er16flash(reg)		__er16flash(hw, (reg))
312 #define er32flash(reg)		__er32flash(hw, (reg))
313 #define ew16flash(reg, val)	__ew16flash(hw, (reg), (val))
314 #define ew32flash(reg, val)	__ew32flash(hw, (reg), (val))
315 
316 /**
317  *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
318  *  @hw: pointer to the HW structure
319  *
320  *  Test access to the PHY registers by reading the PHY ID registers.  If
321  *  the PHY ID is already known (e.g. resume path) compare it with known ID,
322  *  otherwise assume the read PHY ID is correct if it is valid.
323  *
324  *  Assumes the sw/fw/hw semaphore is already acquired.
325  **/
326 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
327 {
328 	u16 phy_reg = 0;
329 	u32 phy_id = 0;
330 	s32 ret_val;
331 	u16 retry_count;
332 
333 	for (retry_count = 0; retry_count < 2; retry_count++) {
334 		ret_val = e1e_rphy_locked(hw, PHY_ID1, &phy_reg);
335 		if (ret_val || (phy_reg == 0xFFFF))
336 			continue;
337 		phy_id = (u32)(phy_reg << 16);
338 
339 		ret_val = e1e_rphy_locked(hw, PHY_ID2, &phy_reg);
340 		if (ret_val || (phy_reg == 0xFFFF)) {
341 			phy_id = 0;
342 			continue;
343 		}
344 		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
345 		break;
346 	}
347 
348 	if (hw->phy.id) {
349 		if (hw->phy.id == phy_id)
350 			return true;
351 	} else if (phy_id) {
352 		hw->phy.id = phy_id;
353 		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
354 		return true;
355 	}
356 
357 	/*
358 	 * In case the PHY needs to be in mdio slow mode,
359 	 * set slow mode and try to get the PHY id again.
360 	 */
361 	hw->phy.ops.release(hw);
362 	ret_val = e1000_set_mdio_slow_mode_hv(hw);
363 	if (!ret_val)
364 		ret_val = e1000e_get_phy_id(hw);
365 	hw->phy.ops.acquire(hw);
366 
367 	return !ret_val;
368 }
369 
370 /**
371  *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
372  *  @hw: pointer to the HW structure
373  *
374  *  Workarounds/flow necessary for PHY initialization during driver load
375  *  and resume paths.
376  **/
377 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
378 {
379 	u32 mac_reg, fwsm = er32(FWSM);
380 	s32 ret_val;
381 	u16 phy_reg;
382 
383 	ret_val = hw->phy.ops.acquire(hw);
384 	if (ret_val) {
385 		e_dbg("Failed to initialize PHY flow\n");
386 		return ret_val;
387 	}
388 
389 	/*
390 	 * The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
391 	 * inaccessible and resetting the PHY is not blocked, toggle the
392 	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
393 	 */
394 	switch (hw->mac.type) {
395 	case e1000_pch_lpt:
396 		if (e1000_phy_is_accessible_pchlan(hw))
397 			break;
398 
399 		/*
400 		 * Before toggling LANPHYPC, see if PHY is accessible by
401 		 * forcing MAC to SMBus mode first.
402 		 */
403 		mac_reg = er32(CTRL_EXT);
404 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
405 		ew32(CTRL_EXT, mac_reg);
406 
407 		/* fall-through */
408 	case e1000_pch2lan:
409 		/*
410 		 * Gate automatic PHY configuration by hardware on
411 		 * non-managed 82579
412 		 */
413 		if ((hw->mac.type == e1000_pch2lan) &&
414 		    !(fwsm & E1000_ICH_FWSM_FW_VALID))
415 			e1000_gate_hw_phy_config_ich8lan(hw, true);
416 
417 		if (e1000_phy_is_accessible_pchlan(hw)) {
418 			if (hw->mac.type == e1000_pch_lpt) {
419 				/* Unforce SMBus mode in PHY */
420 				e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
421 				phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
422 				e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
423 
424 				/* Unforce SMBus mode in MAC */
425 				mac_reg = er32(CTRL_EXT);
426 				mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
427 				ew32(CTRL_EXT, mac_reg);
428 			}
429 			break;
430 		}
431 
432 		/* fall-through */
433 	case e1000_pchlan:
434 		if ((hw->mac.type == e1000_pchlan) &&
435 		    (fwsm & E1000_ICH_FWSM_FW_VALID))
436 			break;
437 
438 		if (hw->phy.ops.check_reset_block(hw)) {
439 			e_dbg("Required LANPHYPC toggle blocked by ME\n");
440 			break;
441 		}
442 
443 		e_dbg("Toggling LANPHYPC\n");
444 
445 		/* Set Phy Config Counter to 50msec */
446 		mac_reg = er32(FEXTNVM3);
447 		mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
448 		mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
449 		ew32(FEXTNVM3, mac_reg);
450 
451 		/* Toggle LANPHYPC Value bit */
452 		mac_reg = er32(CTRL);
453 		mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
454 		mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
455 		ew32(CTRL, mac_reg);
456 		e1e_flush();
457 		udelay(10);
458 		mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
459 		ew32(CTRL, mac_reg);
460 		e1e_flush();
461 		if (hw->mac.type < e1000_pch_lpt) {
462 			msleep(50);
463 		} else {
464 			u16 count = 20;
465 			do {
466 				usleep_range(5000, 10000);
467 			} while (!(er32(CTRL_EXT) &
468 				   E1000_CTRL_EXT_LPCD) && count--);
469 		}
470 		break;
471 	default:
472 		break;
473 	}
474 
475 	hw->phy.ops.release(hw);
476 
477 	/*
478 	 * Reset the PHY before any access to it.  Doing so, ensures
479 	 * that the PHY is in a known good state before we read/write
480 	 * PHY registers.  The generic reset is sufficient here,
481 	 * because we haven't determined the PHY type yet.
482 	 */
483 	ret_val = e1000e_phy_hw_reset_generic(hw);
484 
485 	/* Ungate automatic PHY configuration on non-managed 82579 */
486 	if ((hw->mac.type == e1000_pch2lan) &&
487 	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
488 		usleep_range(10000, 20000);
489 		e1000_gate_hw_phy_config_ich8lan(hw, false);
490 	}
491 
492 	return ret_val;
493 }
494 
495 /**
496  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
497  *  @hw: pointer to the HW structure
498  *
499  *  Initialize family-specific PHY parameters and function pointers.
500  **/
501 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
502 {
503 	struct e1000_phy_info *phy = &hw->phy;
504 	s32 ret_val = 0;
505 
506 	phy->addr                     = 1;
507 	phy->reset_delay_us           = 100;
508 
509 	phy->ops.set_page             = e1000_set_page_igp;
510 	phy->ops.read_reg             = e1000_read_phy_reg_hv;
511 	phy->ops.read_reg_locked      = e1000_read_phy_reg_hv_locked;
512 	phy->ops.read_reg_page        = e1000_read_phy_reg_page_hv;
513 	phy->ops.set_d0_lplu_state    = e1000_set_lplu_state_pchlan;
514 	phy->ops.set_d3_lplu_state    = e1000_set_lplu_state_pchlan;
515 	phy->ops.write_reg            = e1000_write_phy_reg_hv;
516 	phy->ops.write_reg_locked     = e1000_write_phy_reg_hv_locked;
517 	phy->ops.write_reg_page       = e1000_write_phy_reg_page_hv;
518 	phy->ops.power_up             = e1000_power_up_phy_copper;
519 	phy->ops.power_down           = e1000_power_down_phy_copper_ich8lan;
520 	phy->autoneg_mask             = AUTONEG_ADVERTISE_SPEED_DEFAULT;
521 
522 	phy->id = e1000_phy_unknown;
523 
524 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
525 	if (ret_val)
526 		return ret_val;
527 
528 	if (phy->id == e1000_phy_unknown)
529 		switch (hw->mac.type) {
530 		default:
531 			ret_val = e1000e_get_phy_id(hw);
532 			if (ret_val)
533 				return ret_val;
534 			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
535 				break;
536 			/* fall-through */
537 		case e1000_pch2lan:
538 		case e1000_pch_lpt:
539 			/*
540 			 * In case the PHY needs to be in mdio slow mode,
541 			 * set slow mode and try to get the PHY id again.
542 			 */
543 			ret_val = e1000_set_mdio_slow_mode_hv(hw);
544 			if (ret_val)
545 				return ret_val;
546 			ret_val = e1000e_get_phy_id(hw);
547 			if (ret_val)
548 				return ret_val;
549 			break;
550 		}
551 	phy->type = e1000e_get_phy_type_from_id(phy->id);
552 
553 	switch (phy->type) {
554 	case e1000_phy_82577:
555 	case e1000_phy_82579:
556 	case e1000_phy_i217:
557 		phy->ops.check_polarity = e1000_check_polarity_82577;
558 		phy->ops.force_speed_duplex =
559 		    e1000_phy_force_speed_duplex_82577;
560 		phy->ops.get_cable_length = e1000_get_cable_length_82577;
561 		phy->ops.get_info = e1000_get_phy_info_82577;
562 		phy->ops.commit = e1000e_phy_sw_reset;
563 		break;
564 	case e1000_phy_82578:
565 		phy->ops.check_polarity = e1000_check_polarity_m88;
566 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
567 		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
568 		phy->ops.get_info = e1000e_get_phy_info_m88;
569 		break;
570 	default:
571 		ret_val = -E1000_ERR_PHY;
572 		break;
573 	}
574 
575 	return ret_val;
576 }
577 
578 /**
579  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
580  *  @hw: pointer to the HW structure
581  *
582  *  Initialize family-specific PHY parameters and function pointers.
583  **/
584 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
585 {
586 	struct e1000_phy_info *phy = &hw->phy;
587 	s32 ret_val;
588 	u16 i = 0;
589 
590 	phy->addr			= 1;
591 	phy->reset_delay_us		= 100;
592 
593 	phy->ops.power_up               = e1000_power_up_phy_copper;
594 	phy->ops.power_down             = e1000_power_down_phy_copper_ich8lan;
595 
596 	/*
597 	 * We may need to do this twice - once for IGP and if that fails,
598 	 * we'll set BM func pointers and try again
599 	 */
600 	ret_val = e1000e_determine_phy_address(hw);
601 	if (ret_val) {
602 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
603 		phy->ops.read_reg  = e1000e_read_phy_reg_bm;
604 		ret_val = e1000e_determine_phy_address(hw);
605 		if (ret_val) {
606 			e_dbg("Cannot determine PHY addr. Erroring out\n");
607 			return ret_val;
608 		}
609 	}
610 
611 	phy->id = 0;
612 	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
613 	       (i++ < 100)) {
614 		usleep_range(1000, 2000);
615 		ret_val = e1000e_get_phy_id(hw);
616 		if (ret_val)
617 			return ret_val;
618 	}
619 
620 	/* Verify phy id */
621 	switch (phy->id) {
622 	case IGP03E1000_E_PHY_ID:
623 		phy->type = e1000_phy_igp_3;
624 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
625 		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
626 		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
627 		phy->ops.get_info = e1000e_get_phy_info_igp;
628 		phy->ops.check_polarity = e1000_check_polarity_igp;
629 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
630 		break;
631 	case IFE_E_PHY_ID:
632 	case IFE_PLUS_E_PHY_ID:
633 	case IFE_C_E_PHY_ID:
634 		phy->type = e1000_phy_ife;
635 		phy->autoneg_mask = E1000_ALL_NOT_GIG;
636 		phy->ops.get_info = e1000_get_phy_info_ife;
637 		phy->ops.check_polarity = e1000_check_polarity_ife;
638 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
639 		break;
640 	case BME1000_E_PHY_ID:
641 		phy->type = e1000_phy_bm;
642 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
643 		phy->ops.read_reg = e1000e_read_phy_reg_bm;
644 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
645 		phy->ops.commit = e1000e_phy_sw_reset;
646 		phy->ops.get_info = e1000e_get_phy_info_m88;
647 		phy->ops.check_polarity = e1000_check_polarity_m88;
648 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
649 		break;
650 	default:
651 		return -E1000_ERR_PHY;
652 		break;
653 	}
654 
655 	return 0;
656 }
657 
658 /**
659  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
660  *  @hw: pointer to the HW structure
661  *
662  *  Initialize family-specific NVM parameters and function
663  *  pointers.
664  **/
665 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
666 {
667 	struct e1000_nvm_info *nvm = &hw->nvm;
668 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
669 	u32 gfpreg, sector_base_addr, sector_end_addr;
670 	u16 i;
671 
672 	/* Can't read flash registers if the register set isn't mapped. */
673 	if (!hw->flash_address) {
674 		e_dbg("ERROR: Flash registers not mapped\n");
675 		return -E1000_ERR_CONFIG;
676 	}
677 
678 	nvm->type = e1000_nvm_flash_sw;
679 
680 	gfpreg = er32flash(ICH_FLASH_GFPREG);
681 
682 	/*
683 	 * sector_X_addr is a "sector"-aligned address (4096 bytes)
684 	 * Add 1 to sector_end_addr since this sector is included in
685 	 * the overall size.
686 	 */
687 	sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
688 	sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
689 
690 	/* flash_base_addr is byte-aligned */
691 	nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
692 
693 	/*
694 	 * find total size of the NVM, then cut in half since the total
695 	 * size represents two separate NVM banks.
696 	 */
697 	nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
698 				<< FLASH_SECTOR_ADDR_SHIFT;
699 	nvm->flash_bank_size /= 2;
700 	/* Adjust to word count */
701 	nvm->flash_bank_size /= sizeof(u16);
702 
703 	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
704 
705 	/* Clear shadow ram */
706 	for (i = 0; i < nvm->word_size; i++) {
707 		dev_spec->shadow_ram[i].modified = false;
708 		dev_spec->shadow_ram[i].value    = 0xFFFF;
709 	}
710 
711 	return 0;
712 }
713 
714 /**
715  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
716  *  @hw: pointer to the HW structure
717  *
718  *  Initialize family-specific MAC parameters and function
719  *  pointers.
720  **/
721 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
722 {
723 	struct e1000_mac_info *mac = &hw->mac;
724 
725 	/* Set media type function pointer */
726 	hw->phy.media_type = e1000_media_type_copper;
727 
728 	/* Set mta register count */
729 	mac->mta_reg_count = 32;
730 	/* Set rar entry count */
731 	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
732 	if (mac->type == e1000_ich8lan)
733 		mac->rar_entry_count--;
734 	/* FWSM register */
735 	mac->has_fwsm = true;
736 	/* ARC subsystem not supported */
737 	mac->arc_subsystem_valid = false;
738 	/* Adaptive IFS supported */
739 	mac->adaptive_ifs = true;
740 
741 	/* LED and other operations */
742 	switch (mac->type) {
743 	case e1000_ich8lan:
744 	case e1000_ich9lan:
745 	case e1000_ich10lan:
746 		/* check management mode */
747 		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
748 		/* ID LED init */
749 		mac->ops.id_led_init = e1000e_id_led_init_generic;
750 		/* blink LED */
751 		mac->ops.blink_led = e1000e_blink_led_generic;
752 		/* setup LED */
753 		mac->ops.setup_led = e1000e_setup_led_generic;
754 		/* cleanup LED */
755 		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
756 		/* turn on/off LED */
757 		mac->ops.led_on = e1000_led_on_ich8lan;
758 		mac->ops.led_off = e1000_led_off_ich8lan;
759 		break;
760 	case e1000_pch2lan:
761 		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
762 		mac->ops.rar_set = e1000_rar_set_pch2lan;
763 		/* fall-through */
764 	case e1000_pch_lpt:
765 	case e1000_pchlan:
766 		/* check management mode */
767 		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
768 		/* ID LED init */
769 		mac->ops.id_led_init = e1000_id_led_init_pchlan;
770 		/* setup LED */
771 		mac->ops.setup_led = e1000_setup_led_pchlan;
772 		/* cleanup LED */
773 		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
774 		/* turn on/off LED */
775 		mac->ops.led_on = e1000_led_on_pchlan;
776 		mac->ops.led_off = e1000_led_off_pchlan;
777 		break;
778 	default:
779 		break;
780 	}
781 
782 	if (mac->type == e1000_pch_lpt) {
783 		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
784 		mac->ops.rar_set = e1000_rar_set_pch_lpt;
785 	}
786 
787 	/* Enable PCS Lock-loss workaround for ICH8 */
788 	if (mac->type == e1000_ich8lan)
789 		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
790 
791 	/*
792 	 * Gate automatic PHY configuration by hardware on managed
793 	 * 82579 and i217
794 	 */
795 	if ((mac->type == e1000_pch2lan || mac->type == e1000_pch_lpt) &&
796 	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
797 		e1000_gate_hw_phy_config_ich8lan(hw, true);
798 
799 	return 0;
800 }
801 
802 /**
803  *  e1000_set_eee_pchlan - Enable/disable EEE support
804  *  @hw: pointer to the HW structure
805  *
806  *  Enable/disable EEE based on setting in dev_spec structure.  The bits in
807  *  the LPI Control register will remain set only if/when link is up.
808  **/
809 static s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
810 {
811 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
812 	s32 ret_val = 0;
813 	u16 phy_reg;
814 
815 	if ((hw->phy.type != e1000_phy_82579) &&
816 	    (hw->phy.type != e1000_phy_i217))
817 		return 0;
818 
819 	ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
820 	if (ret_val)
821 		return ret_val;
822 
823 	if (dev_spec->eee_disable)
824 		phy_reg &= ~I82579_LPI_CTRL_ENABLE_MASK;
825 	else
826 		phy_reg |= I82579_LPI_CTRL_ENABLE_MASK;
827 
828 	ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
829 	if (ret_val)
830 		return ret_val;
831 
832 	if ((hw->phy.type == e1000_phy_i217) && !dev_spec->eee_disable) {
833 		/* Save off link partner's EEE ability */
834 		ret_val = hw->phy.ops.acquire(hw);
835 		if (ret_val)
836 			return ret_val;
837 		ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR,
838 					  I217_EEE_LP_ABILITY);
839 		if (ret_val)
840 			goto release;
841 		e1e_rphy_locked(hw, I82579_EMI_DATA, &dev_spec->eee_lp_ability);
842 
843 		/*
844 		 * EEE is not supported in 100Half, so ignore partner's EEE
845 		 * in 100 ability if full-duplex is not advertised.
846 		 */
847 		e1e_rphy_locked(hw, PHY_LP_ABILITY, &phy_reg);
848 		if (!(phy_reg & NWAY_LPAR_100TX_FD_CAPS))
849 			dev_spec->eee_lp_ability &= ~I217_EEE_100_SUPPORTED;
850 release:
851 		hw->phy.ops.release(hw);
852 	}
853 
854 	return 0;
855 }
856 
857 /**
858  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
859  *  @hw: pointer to the HW structure
860  *
861  *  Checks to see of the link status of the hardware has changed.  If a
862  *  change in link status has been detected, then we read the PHY registers
863  *  to get the current speed/duplex if link exists.
864  **/
865 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
866 {
867 	struct e1000_mac_info *mac = &hw->mac;
868 	s32 ret_val;
869 	bool link;
870 	u16 phy_reg;
871 
872 	/*
873 	 * We only want to go out to the PHY registers to see if Auto-Neg
874 	 * has completed and/or if our link status has changed.  The
875 	 * get_link_status flag is set upon receiving a Link Status
876 	 * Change or Rx Sequence Error interrupt.
877 	 */
878 	if (!mac->get_link_status)
879 		return 0;
880 
881 	/*
882 	 * First we want to see if the MII Status Register reports
883 	 * link.  If so, then we want to get the current speed/duplex
884 	 * of the PHY.
885 	 */
886 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
887 	if (ret_val)
888 		return ret_val;
889 
890 	if (hw->mac.type == e1000_pchlan) {
891 		ret_val = e1000_k1_gig_workaround_hv(hw, link);
892 		if (ret_val)
893 			return ret_val;
894 	}
895 
896 	/* Clear link partner's EEE ability */
897 	hw->dev_spec.ich8lan.eee_lp_ability = 0;
898 
899 	if (!link)
900 		return 0; /* No link detected */
901 
902 	mac->get_link_status = false;
903 
904 	switch (hw->mac.type) {
905 	case e1000_pch2lan:
906 		ret_val = e1000_k1_workaround_lv(hw);
907 		if (ret_val)
908 			return ret_val;
909 		/* fall-thru */
910 	case e1000_pchlan:
911 		if (hw->phy.type == e1000_phy_82578) {
912 			ret_val = e1000_link_stall_workaround_hv(hw);
913 			if (ret_val)
914 				return ret_val;
915 		}
916 
917 		/*
918 		 * Workaround for PCHx parts in half-duplex:
919 		 * Set the number of preambles removed from the packet
920 		 * when it is passed from the PHY to the MAC to prevent
921 		 * the MAC from misinterpreting the packet type.
922 		 */
923 		e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
924 		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
925 
926 		if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
927 			phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
928 
929 		e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
930 		break;
931 	default:
932 		break;
933 	}
934 
935 	/*
936 	 * Check if there was DownShift, must be checked
937 	 * immediately after link-up
938 	 */
939 	e1000e_check_downshift(hw);
940 
941 	/* Enable/Disable EEE after link up */
942 	ret_val = e1000_set_eee_pchlan(hw);
943 	if (ret_val)
944 		return ret_val;
945 
946 	/*
947 	 * If we are forcing speed/duplex, then we simply return since
948 	 * we have already determined whether we have link or not.
949 	 */
950 	if (!mac->autoneg)
951 		return -E1000_ERR_CONFIG;
952 
953 	/*
954 	 * Auto-Neg is enabled.  Auto Speed Detection takes care
955 	 * of MAC speed/duplex configuration.  So we only need to
956 	 * configure Collision Distance in the MAC.
957 	 */
958 	mac->ops.config_collision_dist(hw);
959 
960 	/*
961 	 * Configure Flow Control now that Auto-Neg has completed.
962 	 * First, we need to restore the desired flow control
963 	 * settings because we may have had to re-autoneg with a
964 	 * different link partner.
965 	 */
966 	ret_val = e1000e_config_fc_after_link_up(hw);
967 	if (ret_val)
968 		e_dbg("Error configuring flow control\n");
969 
970 	return ret_val;
971 }
972 
973 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
974 {
975 	struct e1000_hw *hw = &adapter->hw;
976 	s32 rc;
977 
978 	rc = e1000_init_mac_params_ich8lan(hw);
979 	if (rc)
980 		return rc;
981 
982 	rc = e1000_init_nvm_params_ich8lan(hw);
983 	if (rc)
984 		return rc;
985 
986 	switch (hw->mac.type) {
987 	case e1000_ich8lan:
988 	case e1000_ich9lan:
989 	case e1000_ich10lan:
990 		rc = e1000_init_phy_params_ich8lan(hw);
991 		break;
992 	case e1000_pchlan:
993 	case e1000_pch2lan:
994 	case e1000_pch_lpt:
995 		rc = e1000_init_phy_params_pchlan(hw);
996 		break;
997 	default:
998 		break;
999 	}
1000 	if (rc)
1001 		return rc;
1002 
1003 	/*
1004 	 * Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1005 	 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1006 	 */
1007 	if ((adapter->hw.phy.type == e1000_phy_ife) ||
1008 	    ((adapter->hw.mac.type >= e1000_pch2lan) &&
1009 	     (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1010 		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1011 		adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
1012 
1013 		hw->mac.ops.blink_led = NULL;
1014 	}
1015 
1016 	if ((adapter->hw.mac.type == e1000_ich8lan) &&
1017 	    (adapter->hw.phy.type != e1000_phy_ife))
1018 		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1019 
1020 	/* Enable workaround for 82579 w/ ME enabled */
1021 	if ((adapter->hw.mac.type == e1000_pch2lan) &&
1022 	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1023 		adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1024 
1025 	/* Disable EEE by default until IEEE802.3az spec is finalized */
1026 	if (adapter->flags2 & FLAG2_HAS_EEE)
1027 		adapter->hw.dev_spec.ich8lan.eee_disable = true;
1028 
1029 	return 0;
1030 }
1031 
1032 static DEFINE_MUTEX(nvm_mutex);
1033 
1034 /**
1035  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1036  *  @hw: pointer to the HW structure
1037  *
1038  *  Acquires the mutex for performing NVM operations.
1039  **/
1040 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
1041 {
1042 	mutex_lock(&nvm_mutex);
1043 
1044 	return 0;
1045 }
1046 
1047 /**
1048  *  e1000_release_nvm_ich8lan - Release NVM mutex
1049  *  @hw: pointer to the HW structure
1050  *
1051  *  Releases the mutex used while performing NVM operations.
1052  **/
1053 static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
1054 {
1055 	mutex_unlock(&nvm_mutex);
1056 }
1057 
1058 /**
1059  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1060  *  @hw: pointer to the HW structure
1061  *
1062  *  Acquires the software control flag for performing PHY and select
1063  *  MAC CSR accesses.
1064  **/
1065 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1066 {
1067 	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1068 	s32 ret_val = 0;
1069 
1070 	if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1071 			     &hw->adapter->state)) {
1072 		e_dbg("contention for Phy access\n");
1073 		return -E1000_ERR_PHY;
1074 	}
1075 
1076 	while (timeout) {
1077 		extcnf_ctrl = er32(EXTCNF_CTRL);
1078 		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1079 			break;
1080 
1081 		mdelay(1);
1082 		timeout--;
1083 	}
1084 
1085 	if (!timeout) {
1086 		e_dbg("SW has already locked the resource.\n");
1087 		ret_val = -E1000_ERR_CONFIG;
1088 		goto out;
1089 	}
1090 
1091 	timeout = SW_FLAG_TIMEOUT;
1092 
1093 	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1094 	ew32(EXTCNF_CTRL, extcnf_ctrl);
1095 
1096 	while (timeout) {
1097 		extcnf_ctrl = er32(EXTCNF_CTRL);
1098 		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1099 			break;
1100 
1101 		mdelay(1);
1102 		timeout--;
1103 	}
1104 
1105 	if (!timeout) {
1106 		e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1107 		      er32(FWSM), extcnf_ctrl);
1108 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1109 		ew32(EXTCNF_CTRL, extcnf_ctrl);
1110 		ret_val = -E1000_ERR_CONFIG;
1111 		goto out;
1112 	}
1113 
1114 out:
1115 	if (ret_val)
1116 		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1117 
1118 	return ret_val;
1119 }
1120 
1121 /**
1122  *  e1000_release_swflag_ich8lan - Release software control flag
1123  *  @hw: pointer to the HW structure
1124  *
1125  *  Releases the software control flag for performing PHY and select
1126  *  MAC CSR accesses.
1127  **/
1128 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1129 {
1130 	u32 extcnf_ctrl;
1131 
1132 	extcnf_ctrl = er32(EXTCNF_CTRL);
1133 
1134 	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1135 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1136 		ew32(EXTCNF_CTRL, extcnf_ctrl);
1137 	} else {
1138 		e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1139 	}
1140 
1141 	clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1142 }
1143 
1144 /**
1145  *  e1000_check_mng_mode_ich8lan - Checks management mode
1146  *  @hw: pointer to the HW structure
1147  *
1148  *  This checks if the adapter has any manageability enabled.
1149  *  This is a function pointer entry point only called by read/write
1150  *  routines for the PHY and NVM parts.
1151  **/
1152 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1153 {
1154 	u32 fwsm;
1155 
1156 	fwsm = er32(FWSM);
1157 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1158 	       ((fwsm & E1000_FWSM_MODE_MASK) ==
1159 		(E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1160 }
1161 
1162 /**
1163  *  e1000_check_mng_mode_pchlan - Checks management mode
1164  *  @hw: pointer to the HW structure
1165  *
1166  *  This checks if the adapter has iAMT enabled.
1167  *  This is a function pointer entry point only called by read/write
1168  *  routines for the PHY and NVM parts.
1169  **/
1170 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1171 {
1172 	u32 fwsm;
1173 
1174 	fwsm = er32(FWSM);
1175 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1176 	       (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1177 }
1178 
1179 /**
1180  *  e1000_rar_set_pch2lan - Set receive address register
1181  *  @hw: pointer to the HW structure
1182  *  @addr: pointer to the receive address
1183  *  @index: receive address array register
1184  *
1185  *  Sets the receive address array register at index to the address passed
1186  *  in by addr.  For 82579, RAR[0] is the base address register that is to
1187  *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1188  *  Use SHRA[0-3] in place of those reserved for ME.
1189  **/
1190 static void e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1191 {
1192 	u32 rar_low, rar_high;
1193 
1194 	/*
1195 	 * HW expects these in little endian so we reverse the byte order
1196 	 * from network order (big endian) to little endian
1197 	 */
1198 	rar_low = ((u32)addr[0] |
1199 		   ((u32)addr[1] << 8) |
1200 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1201 
1202 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1203 
1204 	/* If MAC address zero, no need to set the AV bit */
1205 	if (rar_low || rar_high)
1206 		rar_high |= E1000_RAH_AV;
1207 
1208 	if (index == 0) {
1209 		ew32(RAL(index), rar_low);
1210 		e1e_flush();
1211 		ew32(RAH(index), rar_high);
1212 		e1e_flush();
1213 		return;
1214 	}
1215 
1216 	if (index < hw->mac.rar_entry_count) {
1217 		s32 ret_val;
1218 
1219 		ret_val = e1000_acquire_swflag_ich8lan(hw);
1220 		if (ret_val)
1221 			goto out;
1222 
1223 		ew32(SHRAL(index - 1), rar_low);
1224 		e1e_flush();
1225 		ew32(SHRAH(index - 1), rar_high);
1226 		e1e_flush();
1227 
1228 		e1000_release_swflag_ich8lan(hw);
1229 
1230 		/* verify the register updates */
1231 		if ((er32(SHRAL(index - 1)) == rar_low) &&
1232 		    (er32(SHRAH(index - 1)) == rar_high))
1233 			return;
1234 
1235 		e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1236 		      (index - 1), er32(FWSM));
1237 	}
1238 
1239 out:
1240 	e_dbg("Failed to write receive address at index %d\n", index);
1241 }
1242 
1243 /**
1244  *  e1000_rar_set_pch_lpt - Set receive address registers
1245  *  @hw: pointer to the HW structure
1246  *  @addr: pointer to the receive address
1247  *  @index: receive address array register
1248  *
1249  *  Sets the receive address register array at index to the address passed
1250  *  in by addr. For LPT, RAR[0] is the base address register that is to
1251  *  contain the MAC address. SHRA[0-10] are the shared receive address
1252  *  registers that are shared between the Host and manageability engine (ME).
1253  **/
1254 static void e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1255 {
1256 	u32 rar_low, rar_high;
1257 	u32 wlock_mac;
1258 
1259 	/*
1260 	 * HW expects these in little endian so we reverse the byte order
1261 	 * from network order (big endian) to little endian
1262 	 */
1263 	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1264 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1265 
1266 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1267 
1268 	/* If MAC address zero, no need to set the AV bit */
1269 	if (rar_low || rar_high)
1270 		rar_high |= E1000_RAH_AV;
1271 
1272 	if (index == 0) {
1273 		ew32(RAL(index), rar_low);
1274 		e1e_flush();
1275 		ew32(RAH(index), rar_high);
1276 		e1e_flush();
1277 		return;
1278 	}
1279 
1280 	/*
1281 	 * The manageability engine (ME) can lock certain SHRAR registers that
1282 	 * it is using - those registers are unavailable for use.
1283 	 */
1284 	if (index < hw->mac.rar_entry_count) {
1285 		wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1286 		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1287 
1288 		/* Check if all SHRAR registers are locked */
1289 		if (wlock_mac == 1)
1290 			goto out;
1291 
1292 		if ((wlock_mac == 0) || (index <= wlock_mac)) {
1293 			s32 ret_val;
1294 
1295 			ret_val = e1000_acquire_swflag_ich8lan(hw);
1296 
1297 			if (ret_val)
1298 				goto out;
1299 
1300 			ew32(SHRAL_PCH_LPT(index - 1), rar_low);
1301 			e1e_flush();
1302 			ew32(SHRAH_PCH_LPT(index - 1), rar_high);
1303 			e1e_flush();
1304 
1305 			e1000_release_swflag_ich8lan(hw);
1306 
1307 			/* verify the register updates */
1308 			if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
1309 			    (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
1310 				return;
1311 		}
1312 	}
1313 
1314 out:
1315 	e_dbg("Failed to write receive address at index %d\n", index);
1316 }
1317 
1318 /**
1319  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
1320  *  @hw: pointer to the HW structure
1321  *
1322  *  Checks if firmware is blocking the reset of the PHY.
1323  *  This is a function pointer entry point only called by
1324  *  reset routines.
1325  **/
1326 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
1327 {
1328 	u32 fwsm;
1329 
1330 	fwsm = er32(FWSM);
1331 
1332 	return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
1333 }
1334 
1335 /**
1336  *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
1337  *  @hw: pointer to the HW structure
1338  *
1339  *  Assumes semaphore already acquired.
1340  *
1341  **/
1342 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
1343 {
1344 	u16 phy_data;
1345 	u32 strap = er32(STRAP);
1346 	u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
1347 	    E1000_STRAP_SMT_FREQ_SHIFT;
1348 	s32 ret_val = 0;
1349 
1350 	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
1351 
1352 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
1353 	if (ret_val)
1354 		return ret_val;
1355 
1356 	phy_data &= ~HV_SMB_ADDR_MASK;
1357 	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
1358 	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
1359 
1360 	if (hw->phy.type == e1000_phy_i217) {
1361 		/* Restore SMBus frequency */
1362 		if (freq--) {
1363 			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
1364 			phy_data |= (freq & (1 << 0)) <<
1365 			    HV_SMB_ADDR_FREQ_LOW_SHIFT;
1366 			phy_data |= (freq & (1 << 1)) <<
1367 			    (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
1368 		} else {
1369 			e_dbg("Unsupported SMB frequency in PHY\n");
1370 		}
1371 	}
1372 
1373 	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
1374 }
1375 
1376 /**
1377  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
1378  *  @hw:   pointer to the HW structure
1379  *
1380  *  SW should configure the LCD from the NVM extended configuration region
1381  *  as a workaround for certain parts.
1382  **/
1383 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
1384 {
1385 	struct e1000_phy_info *phy = &hw->phy;
1386 	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
1387 	s32 ret_val = 0;
1388 	u16 word_addr, reg_data, reg_addr, phy_page = 0;
1389 
1390 	/*
1391 	 * Initialize the PHY from the NVM on ICH platforms.  This
1392 	 * is needed due to an issue where the NVM configuration is
1393 	 * not properly autoloaded after power transitions.
1394 	 * Therefore, after each PHY reset, we will load the
1395 	 * configuration data out of the NVM manually.
1396 	 */
1397 	switch (hw->mac.type) {
1398 	case e1000_ich8lan:
1399 		if (phy->type != e1000_phy_igp_3)
1400 			return ret_val;
1401 
1402 		if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
1403 		    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
1404 			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
1405 			break;
1406 		}
1407 		/* Fall-thru */
1408 	case e1000_pchlan:
1409 	case e1000_pch2lan:
1410 	case e1000_pch_lpt:
1411 		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
1412 		break;
1413 	default:
1414 		return ret_val;
1415 	}
1416 
1417 	ret_val = hw->phy.ops.acquire(hw);
1418 	if (ret_val)
1419 		return ret_val;
1420 
1421 	data = er32(FEXTNVM);
1422 	if (!(data & sw_cfg_mask))
1423 		goto release;
1424 
1425 	/*
1426 	 * Make sure HW does not configure LCD from PHY
1427 	 * extended configuration before SW configuration
1428 	 */
1429 	data = er32(EXTCNF_CTRL);
1430 	if ((hw->mac.type < e1000_pch2lan) &&
1431 	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
1432 		goto release;
1433 
1434 	cnf_size = er32(EXTCNF_SIZE);
1435 	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
1436 	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
1437 	if (!cnf_size)
1438 		goto release;
1439 
1440 	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
1441 	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
1442 
1443 	if (((hw->mac.type == e1000_pchlan) &&
1444 	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
1445 	    (hw->mac.type > e1000_pchlan)) {
1446 		/*
1447 		 * HW configures the SMBus address and LEDs when the
1448 		 * OEM and LCD Write Enable bits are set in the NVM.
1449 		 * When both NVM bits are cleared, SW will configure
1450 		 * them instead.
1451 		 */
1452 		ret_val = e1000_write_smbus_addr(hw);
1453 		if (ret_val)
1454 			goto release;
1455 
1456 		data = er32(LEDCTL);
1457 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
1458 							(u16)data);
1459 		if (ret_val)
1460 			goto release;
1461 	}
1462 
1463 	/* Configure LCD from extended configuration region. */
1464 
1465 	/* cnf_base_addr is in DWORD */
1466 	word_addr = (u16)(cnf_base_addr << 1);
1467 
1468 	for (i = 0; i < cnf_size; i++) {
1469 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1,
1470 					 &reg_data);
1471 		if (ret_val)
1472 			goto release;
1473 
1474 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
1475 					 1, &reg_addr);
1476 		if (ret_val)
1477 			goto release;
1478 
1479 		/* Save off the PHY page for future writes. */
1480 		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
1481 			phy_page = reg_data;
1482 			continue;
1483 		}
1484 
1485 		reg_addr &= PHY_REG_MASK;
1486 		reg_addr |= phy_page;
1487 
1488 		ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
1489 		if (ret_val)
1490 			goto release;
1491 	}
1492 
1493 release:
1494 	hw->phy.ops.release(hw);
1495 	return ret_val;
1496 }
1497 
1498 /**
1499  *  e1000_k1_gig_workaround_hv - K1 Si workaround
1500  *  @hw:   pointer to the HW structure
1501  *  @link: link up bool flag
1502  *
1503  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
1504  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
1505  *  If link is down, the function will restore the default K1 setting located
1506  *  in the NVM.
1507  **/
1508 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
1509 {
1510 	s32 ret_val = 0;
1511 	u16 status_reg = 0;
1512 	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
1513 
1514 	if (hw->mac.type != e1000_pchlan)
1515 		return 0;
1516 
1517 	/* Wrap the whole flow with the sw flag */
1518 	ret_val = hw->phy.ops.acquire(hw);
1519 	if (ret_val)
1520 		return ret_val;
1521 
1522 	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
1523 	if (link) {
1524 		if (hw->phy.type == e1000_phy_82578) {
1525 			ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
1526 						  &status_reg);
1527 			if (ret_val)
1528 				goto release;
1529 
1530 			status_reg &= BM_CS_STATUS_LINK_UP |
1531 			              BM_CS_STATUS_RESOLVED |
1532 			              BM_CS_STATUS_SPEED_MASK;
1533 
1534 			if (status_reg == (BM_CS_STATUS_LINK_UP |
1535 			                   BM_CS_STATUS_RESOLVED |
1536 			                   BM_CS_STATUS_SPEED_1000))
1537 				k1_enable = false;
1538 		}
1539 
1540 		if (hw->phy.type == e1000_phy_82577) {
1541 			ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
1542 			if (ret_val)
1543 				goto release;
1544 
1545 			status_reg &= HV_M_STATUS_LINK_UP |
1546 			              HV_M_STATUS_AUTONEG_COMPLETE |
1547 			              HV_M_STATUS_SPEED_MASK;
1548 
1549 			if (status_reg == (HV_M_STATUS_LINK_UP |
1550 			                   HV_M_STATUS_AUTONEG_COMPLETE |
1551 			                   HV_M_STATUS_SPEED_1000))
1552 				k1_enable = false;
1553 		}
1554 
1555 		/* Link stall fix for link up */
1556 		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
1557 		if (ret_val)
1558 			goto release;
1559 
1560 	} else {
1561 		/* Link stall fix for link down */
1562 		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
1563 		if (ret_val)
1564 			goto release;
1565 	}
1566 
1567 	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
1568 
1569 release:
1570 	hw->phy.ops.release(hw);
1571 
1572 	return ret_val;
1573 }
1574 
1575 /**
1576  *  e1000_configure_k1_ich8lan - Configure K1 power state
1577  *  @hw: pointer to the HW structure
1578  *  @enable: K1 state to configure
1579  *
1580  *  Configure the K1 power state based on the provided parameter.
1581  *  Assumes semaphore already acquired.
1582  *
1583  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1584  **/
1585 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
1586 {
1587 	s32 ret_val = 0;
1588 	u32 ctrl_reg = 0;
1589 	u32 ctrl_ext = 0;
1590 	u32 reg = 0;
1591 	u16 kmrn_reg = 0;
1592 
1593 	ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
1594 					      &kmrn_reg);
1595 	if (ret_val)
1596 		return ret_val;
1597 
1598 	if (k1_enable)
1599 		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
1600 	else
1601 		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
1602 
1603 	ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
1604 					       kmrn_reg);
1605 	if (ret_val)
1606 		return ret_val;
1607 
1608 	udelay(20);
1609 	ctrl_ext = er32(CTRL_EXT);
1610 	ctrl_reg = er32(CTRL);
1611 
1612 	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1613 	reg |= E1000_CTRL_FRCSPD;
1614 	ew32(CTRL, reg);
1615 
1616 	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
1617 	e1e_flush();
1618 	udelay(20);
1619 	ew32(CTRL, ctrl_reg);
1620 	ew32(CTRL_EXT, ctrl_ext);
1621 	e1e_flush();
1622 	udelay(20);
1623 
1624 	return 0;
1625 }
1626 
1627 /**
1628  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
1629  *  @hw:       pointer to the HW structure
1630  *  @d0_state: boolean if entering d0 or d3 device state
1631  *
1632  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
1633  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
1634  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
1635  **/
1636 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
1637 {
1638 	s32 ret_val = 0;
1639 	u32 mac_reg;
1640 	u16 oem_reg;
1641 
1642 	if (hw->mac.type < e1000_pchlan)
1643 		return ret_val;
1644 
1645 	ret_val = hw->phy.ops.acquire(hw);
1646 	if (ret_val)
1647 		return ret_val;
1648 
1649 	if (hw->mac.type == e1000_pchlan) {
1650 		mac_reg = er32(EXTCNF_CTRL);
1651 		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
1652 			goto release;
1653 	}
1654 
1655 	mac_reg = er32(FEXTNVM);
1656 	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
1657 		goto release;
1658 
1659 	mac_reg = er32(PHY_CTRL);
1660 
1661 	ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
1662 	if (ret_val)
1663 		goto release;
1664 
1665 	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
1666 
1667 	if (d0_state) {
1668 		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
1669 			oem_reg |= HV_OEM_BITS_GBE_DIS;
1670 
1671 		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
1672 			oem_reg |= HV_OEM_BITS_LPLU;
1673 	} else {
1674 		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
1675 			       E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
1676 			oem_reg |= HV_OEM_BITS_GBE_DIS;
1677 
1678 		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
1679 			       E1000_PHY_CTRL_NOND0A_LPLU))
1680 			oem_reg |= HV_OEM_BITS_LPLU;
1681 	}
1682 
1683 	/* Set Restart auto-neg to activate the bits */
1684 	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
1685 	    !hw->phy.ops.check_reset_block(hw))
1686 		oem_reg |= HV_OEM_BITS_RESTART_AN;
1687 
1688 	ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
1689 
1690 release:
1691 	hw->phy.ops.release(hw);
1692 
1693 	return ret_val;
1694 }
1695 
1696 
1697 /**
1698  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
1699  *  @hw:   pointer to the HW structure
1700  **/
1701 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
1702 {
1703 	s32 ret_val;
1704 	u16 data;
1705 
1706 	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
1707 	if (ret_val)
1708 		return ret_val;
1709 
1710 	data |= HV_KMRN_MDIO_SLOW;
1711 
1712 	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
1713 
1714 	return ret_val;
1715 }
1716 
1717 /**
1718  *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1719  *  done after every PHY reset.
1720  **/
1721 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1722 {
1723 	s32 ret_val = 0;
1724 	u16 phy_data;
1725 
1726 	if (hw->mac.type != e1000_pchlan)
1727 		return 0;
1728 
1729 	/* Set MDIO slow mode before any other MDIO access */
1730 	if (hw->phy.type == e1000_phy_82577) {
1731 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
1732 		if (ret_val)
1733 			return ret_val;
1734 	}
1735 
1736 	if (((hw->phy.type == e1000_phy_82577) &&
1737 	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
1738 	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
1739 		/* Disable generation of early preamble */
1740 		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
1741 		if (ret_val)
1742 			return ret_val;
1743 
1744 		/* Preamble tuning for SSC */
1745 		ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
1746 		if (ret_val)
1747 			return ret_val;
1748 	}
1749 
1750 	if (hw->phy.type == e1000_phy_82578) {
1751 		/*
1752 		 * Return registers to default by doing a soft reset then
1753 		 * writing 0x3140 to the control register.
1754 		 */
1755 		if (hw->phy.revision < 2) {
1756 			e1000e_phy_sw_reset(hw);
1757 			ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140);
1758 		}
1759 	}
1760 
1761 	/* Select page 0 */
1762 	ret_val = hw->phy.ops.acquire(hw);
1763 	if (ret_val)
1764 		return ret_val;
1765 
1766 	hw->phy.addr = 1;
1767 	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
1768 	hw->phy.ops.release(hw);
1769 	if (ret_val)
1770 		return ret_val;
1771 
1772 	/*
1773 	 * Configure the K1 Si workaround during phy reset assuming there is
1774 	 * link so that it disables K1 if link is in 1Gbps.
1775 	 */
1776 	ret_val = e1000_k1_gig_workaround_hv(hw, true);
1777 	if (ret_val)
1778 		return ret_val;
1779 
1780 	/* Workaround for link disconnects on a busy hub in half duplex */
1781 	ret_val = hw->phy.ops.acquire(hw);
1782 	if (ret_val)
1783 		return ret_val;
1784 	ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
1785 	if (ret_val)
1786 		goto release;
1787 	ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
1788 release:
1789 	hw->phy.ops.release(hw);
1790 
1791 	return ret_val;
1792 }
1793 
1794 /**
1795  *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
1796  *  @hw:   pointer to the HW structure
1797  **/
1798 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
1799 {
1800 	u32 mac_reg;
1801 	u16 i, phy_reg = 0;
1802 	s32 ret_val;
1803 
1804 	ret_val = hw->phy.ops.acquire(hw);
1805 	if (ret_val)
1806 		return;
1807 	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
1808 	if (ret_val)
1809 		goto release;
1810 
1811 	/* Copy both RAL/H (rar_entry_count) and SHRAL/H (+4) to PHY */
1812 	for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
1813 		mac_reg = er32(RAL(i));
1814 		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
1815 					   (u16)(mac_reg & 0xFFFF));
1816 		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
1817 					   (u16)((mac_reg >> 16) & 0xFFFF));
1818 
1819 		mac_reg = er32(RAH(i));
1820 		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
1821 					   (u16)(mac_reg & 0xFFFF));
1822 		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
1823 					   (u16)((mac_reg & E1000_RAH_AV)
1824 						 >> 16));
1825 	}
1826 
1827 	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
1828 
1829 release:
1830 	hw->phy.ops.release(hw);
1831 }
1832 
1833 /**
1834  *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
1835  *  with 82579 PHY
1836  *  @hw: pointer to the HW structure
1837  *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
1838  **/
1839 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
1840 {
1841 	s32 ret_val = 0;
1842 	u16 phy_reg, data;
1843 	u32 mac_reg;
1844 	u16 i;
1845 
1846 	if (hw->mac.type < e1000_pch2lan)
1847 		return 0;
1848 
1849 	/* disable Rx path while enabling/disabling workaround */
1850 	e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1851 	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14));
1852 	if (ret_val)
1853 		return ret_val;
1854 
1855 	if (enable) {
1856 		/*
1857 		 * Write Rx addresses (rar_entry_count for RAL/H, +4 for
1858 		 * SHRAL/H) and initial CRC values to the MAC
1859 		 */
1860 		for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
1861 			u8 mac_addr[ETH_ALEN] = {0};
1862 			u32 addr_high, addr_low;
1863 
1864 			addr_high = er32(RAH(i));
1865 			if (!(addr_high & E1000_RAH_AV))
1866 				continue;
1867 			addr_low = er32(RAL(i));
1868 			mac_addr[0] = (addr_low & 0xFF);
1869 			mac_addr[1] = ((addr_low >> 8) & 0xFF);
1870 			mac_addr[2] = ((addr_low >> 16) & 0xFF);
1871 			mac_addr[3] = ((addr_low >> 24) & 0xFF);
1872 			mac_addr[4] = (addr_high & 0xFF);
1873 			mac_addr[5] = ((addr_high >> 8) & 0xFF);
1874 
1875 			ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
1876 		}
1877 
1878 		/* Write Rx addresses to the PHY */
1879 		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
1880 
1881 		/* Enable jumbo frame workaround in the MAC */
1882 		mac_reg = er32(FFLT_DBG);
1883 		mac_reg &= ~(1 << 14);
1884 		mac_reg |= (7 << 15);
1885 		ew32(FFLT_DBG, mac_reg);
1886 
1887 		mac_reg = er32(RCTL);
1888 		mac_reg |= E1000_RCTL_SECRC;
1889 		ew32(RCTL, mac_reg);
1890 
1891 		ret_val = e1000e_read_kmrn_reg(hw,
1892 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
1893 						&data);
1894 		if (ret_val)
1895 			return ret_val;
1896 		ret_val = e1000e_write_kmrn_reg(hw,
1897 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
1898 						data | (1 << 0));
1899 		if (ret_val)
1900 			return ret_val;
1901 		ret_val = e1000e_read_kmrn_reg(hw,
1902 						E1000_KMRNCTRLSTA_HD_CTRL,
1903 						&data);
1904 		if (ret_val)
1905 			return ret_val;
1906 		data &= ~(0xF << 8);
1907 		data |= (0xB << 8);
1908 		ret_val = e1000e_write_kmrn_reg(hw,
1909 						E1000_KMRNCTRLSTA_HD_CTRL,
1910 						data);
1911 		if (ret_val)
1912 			return ret_val;
1913 
1914 		/* Enable jumbo frame workaround in the PHY */
1915 		e1e_rphy(hw, PHY_REG(769, 23), &data);
1916 		data &= ~(0x7F << 5);
1917 		data |= (0x37 << 5);
1918 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
1919 		if (ret_val)
1920 			return ret_val;
1921 		e1e_rphy(hw, PHY_REG(769, 16), &data);
1922 		data &= ~(1 << 13);
1923 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
1924 		if (ret_val)
1925 			return ret_val;
1926 		e1e_rphy(hw, PHY_REG(776, 20), &data);
1927 		data &= ~(0x3FF << 2);
1928 		data |= (0x1A << 2);
1929 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
1930 		if (ret_val)
1931 			return ret_val;
1932 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
1933 		if (ret_val)
1934 			return ret_val;
1935 		e1e_rphy(hw, HV_PM_CTRL, &data);
1936 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10));
1937 		if (ret_val)
1938 			return ret_val;
1939 	} else {
1940 		/* Write MAC register values back to h/w defaults */
1941 		mac_reg = er32(FFLT_DBG);
1942 		mac_reg &= ~(0xF << 14);
1943 		ew32(FFLT_DBG, mac_reg);
1944 
1945 		mac_reg = er32(RCTL);
1946 		mac_reg &= ~E1000_RCTL_SECRC;
1947 		ew32(RCTL, mac_reg);
1948 
1949 		ret_val = e1000e_read_kmrn_reg(hw,
1950 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
1951 						&data);
1952 		if (ret_val)
1953 			return ret_val;
1954 		ret_val = e1000e_write_kmrn_reg(hw,
1955 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
1956 						data & ~(1 << 0));
1957 		if (ret_val)
1958 			return ret_val;
1959 		ret_val = e1000e_read_kmrn_reg(hw,
1960 						E1000_KMRNCTRLSTA_HD_CTRL,
1961 						&data);
1962 		if (ret_val)
1963 			return ret_val;
1964 		data &= ~(0xF << 8);
1965 		data |= (0xB << 8);
1966 		ret_val = e1000e_write_kmrn_reg(hw,
1967 						E1000_KMRNCTRLSTA_HD_CTRL,
1968 						data);
1969 		if (ret_val)
1970 			return ret_val;
1971 
1972 		/* Write PHY register values back to h/w defaults */
1973 		e1e_rphy(hw, PHY_REG(769, 23), &data);
1974 		data &= ~(0x7F << 5);
1975 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
1976 		if (ret_val)
1977 			return ret_val;
1978 		e1e_rphy(hw, PHY_REG(769, 16), &data);
1979 		data |= (1 << 13);
1980 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
1981 		if (ret_val)
1982 			return ret_val;
1983 		e1e_rphy(hw, PHY_REG(776, 20), &data);
1984 		data &= ~(0x3FF << 2);
1985 		data |= (0x8 << 2);
1986 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
1987 		if (ret_val)
1988 			return ret_val;
1989 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
1990 		if (ret_val)
1991 			return ret_val;
1992 		e1e_rphy(hw, HV_PM_CTRL, &data);
1993 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10));
1994 		if (ret_val)
1995 			return ret_val;
1996 	}
1997 
1998 	/* re-enable Rx path after enabling/disabling workaround */
1999 	return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14));
2000 }
2001 
2002 /**
2003  *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2004  *  done after every PHY reset.
2005  **/
2006 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2007 {
2008 	s32 ret_val = 0;
2009 
2010 	if (hw->mac.type != e1000_pch2lan)
2011 		return 0;
2012 
2013 	/* Set MDIO slow mode before any other MDIO access */
2014 	ret_val = e1000_set_mdio_slow_mode_hv(hw);
2015 
2016 	ret_val = hw->phy.ops.acquire(hw);
2017 	if (ret_val)
2018 		return ret_val;
2019 	ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, I82579_MSE_THRESHOLD);
2020 	if (ret_val)
2021 		goto release;
2022 	/* set MSE higher to enable link to stay up when noise is high */
2023 	ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, 0x0034);
2024 	if (ret_val)
2025 		goto release;
2026 	ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, I82579_MSE_LINK_DOWN);
2027 	if (ret_val)
2028 		goto release;
2029 	/* drop link after 5 times MSE threshold was reached */
2030 	ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, 0x0005);
2031 release:
2032 	hw->phy.ops.release(hw);
2033 
2034 	return ret_val;
2035 }
2036 
2037 /**
2038  *  e1000_k1_gig_workaround_lv - K1 Si workaround
2039  *  @hw:   pointer to the HW structure
2040  *
2041  *  Workaround to set the K1 beacon duration for 82579 parts
2042  **/
2043 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2044 {
2045 	s32 ret_val = 0;
2046 	u16 status_reg = 0;
2047 	u32 mac_reg;
2048 	u16 phy_reg;
2049 
2050 	if (hw->mac.type != e1000_pch2lan)
2051 		return 0;
2052 
2053 	/* Set K1 beacon duration based on 1Gbps speed or otherwise */
2054 	ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2055 	if (ret_val)
2056 		return ret_val;
2057 
2058 	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2059 	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2060 		mac_reg = er32(FEXTNVM4);
2061 		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2062 
2063 		ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
2064 		if (ret_val)
2065 			return ret_val;
2066 
2067 		if (status_reg & HV_M_STATUS_SPEED_1000) {
2068 			u16 pm_phy_reg;
2069 
2070 			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
2071 			phy_reg &= ~I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
2072 			/* LV 1G Packet drop issue wa  */
2073 			ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2074 			if (ret_val)
2075 				return ret_val;
2076 			pm_phy_reg &= ~HV_PM_CTRL_PLL_STOP_IN_K1_GIGA;
2077 			ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2078 			if (ret_val)
2079 				return ret_val;
2080 		} else {
2081 			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2082 			phy_reg |= I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
2083 		}
2084 		ew32(FEXTNVM4, mac_reg);
2085 		ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
2086 	}
2087 
2088 	return ret_val;
2089 }
2090 
2091 /**
2092  *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2093  *  @hw:   pointer to the HW structure
2094  *  @gate: boolean set to true to gate, false to ungate
2095  *
2096  *  Gate/ungate the automatic PHY configuration via hardware; perform
2097  *  the configuration via software instead.
2098  **/
2099 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2100 {
2101 	u32 extcnf_ctrl;
2102 
2103 	if (hw->mac.type < e1000_pch2lan)
2104 		return;
2105 
2106 	extcnf_ctrl = er32(EXTCNF_CTRL);
2107 
2108 	if (gate)
2109 		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2110 	else
2111 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2112 
2113 	ew32(EXTCNF_CTRL, extcnf_ctrl);
2114 }
2115 
2116 /**
2117  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2118  *  @hw: pointer to the HW structure
2119  *
2120  *  Check the appropriate indication the MAC has finished configuring the
2121  *  PHY after a software reset.
2122  **/
2123 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2124 {
2125 	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2126 
2127 	/* Wait for basic configuration completes before proceeding */
2128 	do {
2129 		data = er32(STATUS);
2130 		data &= E1000_STATUS_LAN_INIT_DONE;
2131 		udelay(100);
2132 	} while ((!data) && --loop);
2133 
2134 	/*
2135 	 * If basic configuration is incomplete before the above loop
2136 	 * count reaches 0, loading the configuration from NVM will
2137 	 * leave the PHY in a bad state possibly resulting in no link.
2138 	 */
2139 	if (loop == 0)
2140 		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2141 
2142 	/* Clear the Init Done bit for the next init event */
2143 	data = er32(STATUS);
2144 	data &= ~E1000_STATUS_LAN_INIT_DONE;
2145 	ew32(STATUS, data);
2146 }
2147 
2148 /**
2149  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2150  *  @hw: pointer to the HW structure
2151  **/
2152 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2153 {
2154 	s32 ret_val = 0;
2155 	u16 reg;
2156 
2157 	if (hw->phy.ops.check_reset_block(hw))
2158 		return 0;
2159 
2160 	/* Allow time for h/w to get to quiescent state after reset */
2161 	usleep_range(10000, 20000);
2162 
2163 	/* Perform any necessary post-reset workarounds */
2164 	switch (hw->mac.type) {
2165 	case e1000_pchlan:
2166 		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2167 		if (ret_val)
2168 			return ret_val;
2169 		break;
2170 	case e1000_pch2lan:
2171 		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2172 		if (ret_val)
2173 			return ret_val;
2174 		break;
2175 	default:
2176 		break;
2177 	}
2178 
2179 	/* Clear the host wakeup bit after lcd reset */
2180 	if (hw->mac.type >= e1000_pchlan) {
2181 		e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2182 		reg &= ~BM_WUC_HOST_WU_BIT;
2183 		e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2184 	}
2185 
2186 	/* Configure the LCD with the extended configuration region in NVM */
2187 	ret_val = e1000_sw_lcd_config_ich8lan(hw);
2188 	if (ret_val)
2189 		return ret_val;
2190 
2191 	/* Configure the LCD with the OEM bits in NVM */
2192 	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2193 
2194 	if (hw->mac.type == e1000_pch2lan) {
2195 		/* Ungate automatic PHY configuration on non-managed 82579 */
2196 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2197 			usleep_range(10000, 20000);
2198 			e1000_gate_hw_phy_config_ich8lan(hw, false);
2199 		}
2200 
2201 		/* Set EEE LPI Update Timer to 200usec */
2202 		ret_val = hw->phy.ops.acquire(hw);
2203 		if (ret_val)
2204 			return ret_val;
2205 		ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR,
2206 					  I82579_LPI_UPDATE_TIMER);
2207 		if (!ret_val)
2208 			ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, 0x1387);
2209 		hw->phy.ops.release(hw);
2210 	}
2211 
2212 	return ret_val;
2213 }
2214 
2215 /**
2216  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2217  *  @hw: pointer to the HW structure
2218  *
2219  *  Resets the PHY
2220  *  This is a function pointer entry point called by drivers
2221  *  or other shared routines.
2222  **/
2223 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2224 {
2225 	s32 ret_val = 0;
2226 
2227 	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
2228 	if ((hw->mac.type == e1000_pch2lan) &&
2229 	    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2230 		e1000_gate_hw_phy_config_ich8lan(hw, true);
2231 
2232 	ret_val = e1000e_phy_hw_reset_generic(hw);
2233 	if (ret_val)
2234 		return ret_val;
2235 
2236 	return e1000_post_phy_reset_ich8lan(hw);
2237 }
2238 
2239 /**
2240  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2241  *  @hw: pointer to the HW structure
2242  *  @active: true to enable LPLU, false to disable
2243  *
2244  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
2245  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2246  *  the phy speed. This function will manually set the LPLU bit and restart
2247  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
2248  *  since it configures the same bit.
2249  **/
2250 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2251 {
2252 	s32 ret_val = 0;
2253 	u16 oem_reg;
2254 
2255 	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2256 	if (ret_val)
2257 		return ret_val;
2258 
2259 	if (active)
2260 		oem_reg |= HV_OEM_BITS_LPLU;
2261 	else
2262 		oem_reg &= ~HV_OEM_BITS_LPLU;
2263 
2264 	if (!hw->phy.ops.check_reset_block(hw))
2265 		oem_reg |= HV_OEM_BITS_RESTART_AN;
2266 
2267 	return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2268 }
2269 
2270 /**
2271  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2272  *  @hw: pointer to the HW structure
2273  *  @active: true to enable LPLU, false to disable
2274  *
2275  *  Sets the LPLU D0 state according to the active flag.  When
2276  *  activating LPLU this function also disables smart speed
2277  *  and vice versa.  LPLU will not be activated unless the
2278  *  device autonegotiation advertisement meets standards of
2279  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2280  *  This is a function pointer entry point only called by
2281  *  PHY setup routines.
2282  **/
2283 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2284 {
2285 	struct e1000_phy_info *phy = &hw->phy;
2286 	u32 phy_ctrl;
2287 	s32 ret_val = 0;
2288 	u16 data;
2289 
2290 	if (phy->type == e1000_phy_ife)
2291 		return 0;
2292 
2293 	phy_ctrl = er32(PHY_CTRL);
2294 
2295 	if (active) {
2296 		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2297 		ew32(PHY_CTRL, phy_ctrl);
2298 
2299 		if (phy->type != e1000_phy_igp_3)
2300 			return 0;
2301 
2302 		/*
2303 		 * Call gig speed drop workaround on LPLU before accessing
2304 		 * any PHY registers
2305 		 */
2306 		if (hw->mac.type == e1000_ich8lan)
2307 			e1000e_gig_downshift_workaround_ich8lan(hw);
2308 
2309 		/* When LPLU is enabled, we should disable SmartSpeed */
2310 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2311 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2312 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2313 		if (ret_val)
2314 			return ret_val;
2315 	} else {
2316 		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2317 		ew32(PHY_CTRL, phy_ctrl);
2318 
2319 		if (phy->type != e1000_phy_igp_3)
2320 			return 0;
2321 
2322 		/*
2323 		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2324 		 * during Dx states where the power conservation is most
2325 		 * important.  During driver activity we should enable
2326 		 * SmartSpeed, so performance is maintained.
2327 		 */
2328 		if (phy->smart_speed == e1000_smart_speed_on) {
2329 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2330 					   &data);
2331 			if (ret_val)
2332 				return ret_val;
2333 
2334 			data |= IGP01E1000_PSCFR_SMART_SPEED;
2335 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2336 					   data);
2337 			if (ret_val)
2338 				return ret_val;
2339 		} else if (phy->smart_speed == e1000_smart_speed_off) {
2340 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2341 					   &data);
2342 			if (ret_val)
2343 				return ret_val;
2344 
2345 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2346 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2347 					   data);
2348 			if (ret_val)
2349 				return ret_val;
2350 		}
2351 	}
2352 
2353 	return 0;
2354 }
2355 
2356 /**
2357  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
2358  *  @hw: pointer to the HW structure
2359  *  @active: true to enable LPLU, false to disable
2360  *
2361  *  Sets the LPLU D3 state according to the active flag.  When
2362  *  activating LPLU this function also disables smart speed
2363  *  and vice versa.  LPLU will not be activated unless the
2364  *  device autonegotiation advertisement meets standards of
2365  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2366  *  This is a function pointer entry point only called by
2367  *  PHY setup routines.
2368  **/
2369 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2370 {
2371 	struct e1000_phy_info *phy = &hw->phy;
2372 	u32 phy_ctrl;
2373 	s32 ret_val = 0;
2374 	u16 data;
2375 
2376 	phy_ctrl = er32(PHY_CTRL);
2377 
2378 	if (!active) {
2379 		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2380 		ew32(PHY_CTRL, phy_ctrl);
2381 
2382 		if (phy->type != e1000_phy_igp_3)
2383 			return 0;
2384 
2385 		/*
2386 		 * LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2387 		 * during Dx states where the power conservation is most
2388 		 * important.  During driver activity we should enable
2389 		 * SmartSpeed, so performance is maintained.
2390 		 */
2391 		if (phy->smart_speed == e1000_smart_speed_on) {
2392 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2393 					   &data);
2394 			if (ret_val)
2395 				return ret_val;
2396 
2397 			data |= IGP01E1000_PSCFR_SMART_SPEED;
2398 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2399 					   data);
2400 			if (ret_val)
2401 				return ret_val;
2402 		} else if (phy->smart_speed == e1000_smart_speed_off) {
2403 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2404 					   &data);
2405 			if (ret_val)
2406 				return ret_val;
2407 
2408 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2409 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2410 					   data);
2411 			if (ret_val)
2412 				return ret_val;
2413 		}
2414 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
2415 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
2416 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
2417 		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2418 		ew32(PHY_CTRL, phy_ctrl);
2419 
2420 		if (phy->type != e1000_phy_igp_3)
2421 			return 0;
2422 
2423 		/*
2424 		 * Call gig speed drop workaround on LPLU before accessing
2425 		 * any PHY registers
2426 		 */
2427 		if (hw->mac.type == e1000_ich8lan)
2428 			e1000e_gig_downshift_workaround_ich8lan(hw);
2429 
2430 		/* When LPLU is enabled, we should disable SmartSpeed */
2431 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2432 		if (ret_val)
2433 			return ret_val;
2434 
2435 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2436 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2437 	}
2438 
2439 	return ret_val;
2440 }
2441 
2442 /**
2443  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
2444  *  @hw: pointer to the HW structure
2445  *  @bank:  pointer to the variable that returns the active bank
2446  *
2447  *  Reads signature byte from the NVM using the flash access registers.
2448  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
2449  **/
2450 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
2451 {
2452 	u32 eecd;
2453 	struct e1000_nvm_info *nvm = &hw->nvm;
2454 	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
2455 	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
2456 	u8 sig_byte = 0;
2457 	s32 ret_val;
2458 
2459 	switch (hw->mac.type) {
2460 	case e1000_ich8lan:
2461 	case e1000_ich9lan:
2462 		eecd = er32(EECD);
2463 		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
2464 		    E1000_EECD_SEC1VAL_VALID_MASK) {
2465 			if (eecd & E1000_EECD_SEC1VAL)
2466 				*bank = 1;
2467 			else
2468 				*bank = 0;
2469 
2470 			return 0;
2471 		}
2472 		e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
2473 		/* fall-thru */
2474 	default:
2475 		/* set bank to 0 in case flash read fails */
2476 		*bank = 0;
2477 
2478 		/* Check bank 0 */
2479 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
2480 		                                        &sig_byte);
2481 		if (ret_val)
2482 			return ret_val;
2483 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2484 		    E1000_ICH_NVM_SIG_VALUE) {
2485 			*bank = 0;
2486 			return 0;
2487 		}
2488 
2489 		/* Check bank 1 */
2490 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
2491 		                                        bank1_offset,
2492 		                                        &sig_byte);
2493 		if (ret_val)
2494 			return ret_val;
2495 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2496 		    E1000_ICH_NVM_SIG_VALUE) {
2497 			*bank = 1;
2498 			return 0;
2499 		}
2500 
2501 		e_dbg("ERROR: No valid NVM bank present\n");
2502 		return -E1000_ERR_NVM;
2503 	}
2504 }
2505 
2506 /**
2507  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
2508  *  @hw: pointer to the HW structure
2509  *  @offset: The offset (in bytes) of the word(s) to read.
2510  *  @words: Size of data to read in words
2511  *  @data: Pointer to the word(s) to read at offset.
2512  *
2513  *  Reads a word(s) from the NVM using the flash access registers.
2514  **/
2515 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2516 				  u16 *data)
2517 {
2518 	struct e1000_nvm_info *nvm = &hw->nvm;
2519 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2520 	u32 act_offset;
2521 	s32 ret_val = 0;
2522 	u32 bank = 0;
2523 	u16 i, word;
2524 
2525 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2526 	    (words == 0)) {
2527 		e_dbg("nvm parameter(s) out of bounds\n");
2528 		ret_val = -E1000_ERR_NVM;
2529 		goto out;
2530 	}
2531 
2532 	nvm->ops.acquire(hw);
2533 
2534 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2535 	if (ret_val) {
2536 		e_dbg("Could not detect valid bank, assuming bank 0\n");
2537 		bank = 0;
2538 	}
2539 
2540 	act_offset = (bank) ? nvm->flash_bank_size : 0;
2541 	act_offset += offset;
2542 
2543 	ret_val = 0;
2544 	for (i = 0; i < words; i++) {
2545 		if (dev_spec->shadow_ram[offset+i].modified) {
2546 			data[i] = dev_spec->shadow_ram[offset+i].value;
2547 		} else {
2548 			ret_val = e1000_read_flash_word_ich8lan(hw,
2549 								act_offset + i,
2550 								&word);
2551 			if (ret_val)
2552 				break;
2553 			data[i] = word;
2554 		}
2555 	}
2556 
2557 	nvm->ops.release(hw);
2558 
2559 out:
2560 	if (ret_val)
2561 		e_dbg("NVM read error: %d\n", ret_val);
2562 
2563 	return ret_val;
2564 }
2565 
2566 /**
2567  *  e1000_flash_cycle_init_ich8lan - Initialize flash
2568  *  @hw: pointer to the HW structure
2569  *
2570  *  This function does initial flash setup so that a new read/write/erase cycle
2571  *  can be started.
2572  **/
2573 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
2574 {
2575 	union ich8_hws_flash_status hsfsts;
2576 	s32 ret_val = -E1000_ERR_NVM;
2577 
2578 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2579 
2580 	/* Check if the flash descriptor is valid */
2581 	if (!hsfsts.hsf_status.fldesvalid) {
2582 		e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
2583 		return -E1000_ERR_NVM;
2584 	}
2585 
2586 	/* Clear FCERR and DAEL in hw status by writing 1 */
2587 	hsfsts.hsf_status.flcerr = 1;
2588 	hsfsts.hsf_status.dael = 1;
2589 
2590 	ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2591 
2592 	/*
2593 	 * Either we should have a hardware SPI cycle in progress
2594 	 * bit to check against, in order to start a new cycle or
2595 	 * FDONE bit should be changed in the hardware so that it
2596 	 * is 1 after hardware reset, which can then be used as an
2597 	 * indication whether a cycle is in progress or has been
2598 	 * completed.
2599 	 */
2600 
2601 	if (!hsfsts.hsf_status.flcinprog) {
2602 		/*
2603 		 * There is no cycle running at present,
2604 		 * so we can start a cycle.
2605 		 * Begin by setting Flash Cycle Done.
2606 		 */
2607 		hsfsts.hsf_status.flcdone = 1;
2608 		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2609 		ret_val = 0;
2610 	} else {
2611 		s32 i;
2612 
2613 		/*
2614 		 * Otherwise poll for sometime so the current
2615 		 * cycle has a chance to end before giving up.
2616 		 */
2617 		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
2618 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2619 			if (!hsfsts.hsf_status.flcinprog) {
2620 				ret_val = 0;
2621 				break;
2622 			}
2623 			udelay(1);
2624 		}
2625 		if (!ret_val) {
2626 			/*
2627 			 * Successful in waiting for previous cycle to timeout,
2628 			 * now set the Flash Cycle Done.
2629 			 */
2630 			hsfsts.hsf_status.flcdone = 1;
2631 			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2632 		} else {
2633 			e_dbg("Flash controller busy, cannot get access\n");
2634 		}
2635 	}
2636 
2637 	return ret_val;
2638 }
2639 
2640 /**
2641  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
2642  *  @hw: pointer to the HW structure
2643  *  @timeout: maximum time to wait for completion
2644  *
2645  *  This function starts a flash cycle and waits for its completion.
2646  **/
2647 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
2648 {
2649 	union ich8_hws_flash_ctrl hsflctl;
2650 	union ich8_hws_flash_status hsfsts;
2651 	u32 i = 0;
2652 
2653 	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
2654 	hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2655 	hsflctl.hsf_ctrl.flcgo = 1;
2656 	ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2657 
2658 	/* wait till FDONE bit is set to 1 */
2659 	do {
2660 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2661 		if (hsfsts.hsf_status.flcdone)
2662 			break;
2663 		udelay(1);
2664 	} while (i++ < timeout);
2665 
2666 	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
2667 		return 0;
2668 
2669 	return -E1000_ERR_NVM;
2670 }
2671 
2672 /**
2673  *  e1000_read_flash_word_ich8lan - Read word from flash
2674  *  @hw: pointer to the HW structure
2675  *  @offset: offset to data location
2676  *  @data: pointer to the location for storing the data
2677  *
2678  *  Reads the flash word at offset into data.  Offset is converted
2679  *  to bytes before read.
2680  **/
2681 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
2682 					 u16 *data)
2683 {
2684 	/* Must convert offset into bytes. */
2685 	offset <<= 1;
2686 
2687 	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
2688 }
2689 
2690 /**
2691  *  e1000_read_flash_byte_ich8lan - Read byte from flash
2692  *  @hw: pointer to the HW structure
2693  *  @offset: The offset of the byte to read.
2694  *  @data: Pointer to a byte to store the value read.
2695  *
2696  *  Reads a single byte from the NVM using the flash access registers.
2697  **/
2698 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
2699 					 u8 *data)
2700 {
2701 	s32 ret_val;
2702 	u16 word = 0;
2703 
2704 	ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
2705 	if (ret_val)
2706 		return ret_val;
2707 
2708 	*data = (u8)word;
2709 
2710 	return 0;
2711 }
2712 
2713 /**
2714  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
2715  *  @hw: pointer to the HW structure
2716  *  @offset: The offset (in bytes) of the byte or word to read.
2717  *  @size: Size of data to read, 1=byte 2=word
2718  *  @data: Pointer to the word to store the value read.
2719  *
2720  *  Reads a byte or word from the NVM using the flash access registers.
2721  **/
2722 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
2723 					 u8 size, u16 *data)
2724 {
2725 	union ich8_hws_flash_status hsfsts;
2726 	union ich8_hws_flash_ctrl hsflctl;
2727 	u32 flash_linear_addr;
2728 	u32 flash_data = 0;
2729 	s32 ret_val = -E1000_ERR_NVM;
2730 	u8 count = 0;
2731 
2732 	if (size < 1  || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
2733 		return -E1000_ERR_NVM;
2734 
2735 	flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
2736 			    hw->nvm.flash_base_addr;
2737 
2738 	do {
2739 		udelay(1);
2740 		/* Steps */
2741 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
2742 		if (ret_val)
2743 			break;
2744 
2745 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2746 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2747 		hsflctl.hsf_ctrl.fldbcount = size - 1;
2748 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
2749 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2750 
2751 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2752 
2753 		ret_val = e1000_flash_cycle_ich8lan(hw,
2754 						ICH_FLASH_READ_COMMAND_TIMEOUT);
2755 
2756 		/*
2757 		 * Check if FCERR is set to 1, if set to 1, clear it
2758 		 * and try the whole sequence a few more times, else
2759 		 * read in (shift in) the Flash Data0, the order is
2760 		 * least significant byte first msb to lsb
2761 		 */
2762 		if (!ret_val) {
2763 			flash_data = er32flash(ICH_FLASH_FDATA0);
2764 			if (size == 1)
2765 				*data = (u8)(flash_data & 0x000000FF);
2766 			else if (size == 2)
2767 				*data = (u16)(flash_data & 0x0000FFFF);
2768 			break;
2769 		} else {
2770 			/*
2771 			 * If we've gotten here, then things are probably
2772 			 * completely hosed, but if the error condition is
2773 			 * detected, it won't hurt to give it another try...
2774 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
2775 			 */
2776 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2777 			if (hsfsts.hsf_status.flcerr) {
2778 				/* Repeat for some time before giving up. */
2779 				continue;
2780 			} else if (!hsfsts.hsf_status.flcdone) {
2781 				e_dbg("Timeout error - flash cycle did not complete.\n");
2782 				break;
2783 			}
2784 		}
2785 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
2786 
2787 	return ret_val;
2788 }
2789 
2790 /**
2791  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
2792  *  @hw: pointer to the HW structure
2793  *  @offset: The offset (in bytes) of the word(s) to write.
2794  *  @words: Size of data to write in words
2795  *  @data: Pointer to the word(s) to write at offset.
2796  *
2797  *  Writes a byte or word to the NVM using the flash access registers.
2798  **/
2799 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2800 				   u16 *data)
2801 {
2802 	struct e1000_nvm_info *nvm = &hw->nvm;
2803 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2804 	u16 i;
2805 
2806 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2807 	    (words == 0)) {
2808 		e_dbg("nvm parameter(s) out of bounds\n");
2809 		return -E1000_ERR_NVM;
2810 	}
2811 
2812 	nvm->ops.acquire(hw);
2813 
2814 	for (i = 0; i < words; i++) {
2815 		dev_spec->shadow_ram[offset+i].modified = true;
2816 		dev_spec->shadow_ram[offset+i].value = data[i];
2817 	}
2818 
2819 	nvm->ops.release(hw);
2820 
2821 	return 0;
2822 }
2823 
2824 /**
2825  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
2826  *  @hw: pointer to the HW structure
2827  *
2828  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
2829  *  which writes the checksum to the shadow ram.  The changes in the shadow
2830  *  ram are then committed to the EEPROM by processing each bank at a time
2831  *  checking for the modified bit and writing only the pending changes.
2832  *  After a successful commit, the shadow ram is cleared and is ready for
2833  *  future writes.
2834  **/
2835 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
2836 {
2837 	struct e1000_nvm_info *nvm = &hw->nvm;
2838 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2839 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
2840 	s32 ret_val;
2841 	u16 data;
2842 
2843 	ret_val = e1000e_update_nvm_checksum_generic(hw);
2844 	if (ret_val)
2845 		goto out;
2846 
2847 	if (nvm->type != e1000_nvm_flash_sw)
2848 		goto out;
2849 
2850 	nvm->ops.acquire(hw);
2851 
2852 	/*
2853 	 * We're writing to the opposite bank so if we're on bank 1,
2854 	 * write to bank 0 etc.  We also need to erase the segment that
2855 	 * is going to be written
2856 	 */
2857 	ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2858 	if (ret_val) {
2859 		e_dbg("Could not detect valid bank, assuming bank 0\n");
2860 		bank = 0;
2861 	}
2862 
2863 	if (bank == 0) {
2864 		new_bank_offset = nvm->flash_bank_size;
2865 		old_bank_offset = 0;
2866 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
2867 		if (ret_val)
2868 			goto release;
2869 	} else {
2870 		old_bank_offset = nvm->flash_bank_size;
2871 		new_bank_offset = 0;
2872 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
2873 		if (ret_val)
2874 			goto release;
2875 	}
2876 
2877 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2878 		/*
2879 		 * Determine whether to write the value stored
2880 		 * in the other NVM bank or a modified value stored
2881 		 * in the shadow RAM
2882 		 */
2883 		if (dev_spec->shadow_ram[i].modified) {
2884 			data = dev_spec->shadow_ram[i].value;
2885 		} else {
2886 			ret_val = e1000_read_flash_word_ich8lan(hw, i +
2887 			                                        old_bank_offset,
2888 			                                        &data);
2889 			if (ret_val)
2890 				break;
2891 		}
2892 
2893 		/*
2894 		 * If the word is 0x13, then make sure the signature bits
2895 		 * (15:14) are 11b until the commit has completed.
2896 		 * This will allow us to write 10b which indicates the
2897 		 * signature is valid.  We want to do this after the write
2898 		 * has completed so that we don't mark the segment valid
2899 		 * while the write is still in progress
2900 		 */
2901 		if (i == E1000_ICH_NVM_SIG_WORD)
2902 			data |= E1000_ICH_NVM_SIG_MASK;
2903 
2904 		/* Convert offset to bytes. */
2905 		act_offset = (i + new_bank_offset) << 1;
2906 
2907 		udelay(100);
2908 		/* Write the bytes to the new bank. */
2909 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2910 							       act_offset,
2911 							       (u8)data);
2912 		if (ret_val)
2913 			break;
2914 
2915 		udelay(100);
2916 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2917 							  act_offset + 1,
2918 							  (u8)(data >> 8));
2919 		if (ret_val)
2920 			break;
2921 	}
2922 
2923 	/*
2924 	 * Don't bother writing the segment valid bits if sector
2925 	 * programming failed.
2926 	 */
2927 	if (ret_val) {
2928 		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
2929 		e_dbg("Flash commit failed.\n");
2930 		goto release;
2931 	}
2932 
2933 	/*
2934 	 * Finally validate the new segment by setting bit 15:14
2935 	 * to 10b in word 0x13 , this can be done without an
2936 	 * erase as well since these bits are 11 to start with
2937 	 * and we need to change bit 14 to 0b
2938 	 */
2939 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
2940 	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
2941 	if (ret_val)
2942 		goto release;
2943 
2944 	data &= 0xBFFF;
2945 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2946 						       act_offset * 2 + 1,
2947 						       (u8)(data >> 8));
2948 	if (ret_val)
2949 		goto release;
2950 
2951 	/*
2952 	 * And invalidate the previously valid segment by setting
2953 	 * its signature word (0x13) high_byte to 0b. This can be
2954 	 * done without an erase because flash erase sets all bits
2955 	 * to 1's. We can write 1's to 0's without an erase
2956 	 */
2957 	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
2958 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
2959 	if (ret_val)
2960 		goto release;
2961 
2962 	/* Great!  Everything worked, we can now clear the cached entries. */
2963 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2964 		dev_spec->shadow_ram[i].modified = false;
2965 		dev_spec->shadow_ram[i].value = 0xFFFF;
2966 	}
2967 
2968 release:
2969 	nvm->ops.release(hw);
2970 
2971 	/*
2972 	 * Reload the EEPROM, or else modifications will not appear
2973 	 * until after the next adapter reset.
2974 	 */
2975 	if (!ret_val) {
2976 		nvm->ops.reload(hw);
2977 		usleep_range(10000, 20000);
2978 	}
2979 
2980 out:
2981 	if (ret_val)
2982 		e_dbg("NVM update error: %d\n", ret_val);
2983 
2984 	return ret_val;
2985 }
2986 
2987 /**
2988  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
2989  *  @hw: pointer to the HW structure
2990  *
2991  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
2992  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
2993  *  calculated, in which case we need to calculate the checksum and set bit 6.
2994  **/
2995 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
2996 {
2997 	s32 ret_val;
2998 	u16 data;
2999 
3000 	/*
3001 	 * Read 0x19 and check bit 6.  If this bit is 0, the checksum
3002 	 * needs to be fixed.  This bit is an indication that the NVM
3003 	 * was prepared by OEM software and did not calculate the
3004 	 * checksum...a likely scenario.
3005 	 */
3006 	ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
3007 	if (ret_val)
3008 		return ret_val;
3009 
3010 	if (!(data & 0x40)) {
3011 		data |= 0x40;
3012 		ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
3013 		if (ret_val)
3014 			return ret_val;
3015 		ret_val = e1000e_update_nvm_checksum(hw);
3016 		if (ret_val)
3017 			return ret_val;
3018 	}
3019 
3020 	return e1000e_validate_nvm_checksum_generic(hw);
3021 }
3022 
3023 /**
3024  *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
3025  *  @hw: pointer to the HW structure
3026  *
3027  *  To prevent malicious write/erase of the NVM, set it to be read-only
3028  *  so that the hardware ignores all write/erase cycles of the NVM via
3029  *  the flash control registers.  The shadow-ram copy of the NVM will
3030  *  still be updated, however any updates to this copy will not stick
3031  *  across driver reloads.
3032  **/
3033 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
3034 {
3035 	struct e1000_nvm_info *nvm = &hw->nvm;
3036 	union ich8_flash_protected_range pr0;
3037 	union ich8_hws_flash_status hsfsts;
3038 	u32 gfpreg;
3039 
3040 	nvm->ops.acquire(hw);
3041 
3042 	gfpreg = er32flash(ICH_FLASH_GFPREG);
3043 
3044 	/* Write-protect GbE Sector of NVM */
3045 	pr0.regval = er32flash(ICH_FLASH_PR0);
3046 	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
3047 	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
3048 	pr0.range.wpe = true;
3049 	ew32flash(ICH_FLASH_PR0, pr0.regval);
3050 
3051 	/*
3052 	 * Lock down a subset of GbE Flash Control Registers, e.g.
3053 	 * PR0 to prevent the write-protection from being lifted.
3054 	 * Once FLOCKDN is set, the registers protected by it cannot
3055 	 * be written until FLOCKDN is cleared by a hardware reset.
3056 	 */
3057 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3058 	hsfsts.hsf_status.flockdn = true;
3059 	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3060 
3061 	nvm->ops.release(hw);
3062 }
3063 
3064 /**
3065  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
3066  *  @hw: pointer to the HW structure
3067  *  @offset: The offset (in bytes) of the byte/word to read.
3068  *  @size: Size of data to read, 1=byte 2=word
3069  *  @data: The byte(s) to write to the NVM.
3070  *
3071  *  Writes one/two bytes to the NVM using the flash access registers.
3072  **/
3073 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3074 					  u8 size, u16 data)
3075 {
3076 	union ich8_hws_flash_status hsfsts;
3077 	union ich8_hws_flash_ctrl hsflctl;
3078 	u32 flash_linear_addr;
3079 	u32 flash_data = 0;
3080 	s32 ret_val;
3081 	u8 count = 0;
3082 
3083 	if (size < 1 || size > 2 || data > size * 0xff ||
3084 	    offset > ICH_FLASH_LINEAR_ADDR_MASK)
3085 		return -E1000_ERR_NVM;
3086 
3087 	flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3088 			    hw->nvm.flash_base_addr;
3089 
3090 	do {
3091 		udelay(1);
3092 		/* Steps */
3093 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3094 		if (ret_val)
3095 			break;
3096 
3097 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3098 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3099 		hsflctl.hsf_ctrl.fldbcount = size -1;
3100 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
3101 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3102 
3103 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3104 
3105 		if (size == 1)
3106 			flash_data = (u32)data & 0x00FF;
3107 		else
3108 			flash_data = (u32)data;
3109 
3110 		ew32flash(ICH_FLASH_FDATA0, flash_data);
3111 
3112 		/*
3113 		 * check if FCERR is set to 1 , if set to 1, clear it
3114 		 * and try the whole sequence a few more times else done
3115 		 */
3116 		ret_val = e1000_flash_cycle_ich8lan(hw,
3117 					       ICH_FLASH_WRITE_COMMAND_TIMEOUT);
3118 		if (!ret_val)
3119 			break;
3120 
3121 		/*
3122 		 * If we're here, then things are most likely
3123 		 * completely hosed, but if the error condition
3124 		 * is detected, it won't hurt to give it another
3125 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
3126 		 */
3127 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3128 		if (hsfsts.hsf_status.flcerr)
3129 			/* Repeat for some time before giving up. */
3130 			continue;
3131 		if (!hsfsts.hsf_status.flcdone) {
3132 			e_dbg("Timeout error - flash cycle did not complete.\n");
3133 			break;
3134 		}
3135 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3136 
3137 	return ret_val;
3138 }
3139 
3140 /**
3141  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
3142  *  @hw: pointer to the HW structure
3143  *  @offset: The index of the byte to read.
3144  *  @data: The byte to write to the NVM.
3145  *
3146  *  Writes a single byte to the NVM using the flash access registers.
3147  **/
3148 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3149 					  u8 data)
3150 {
3151 	u16 word = (u16)data;
3152 
3153 	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
3154 }
3155 
3156 /**
3157  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
3158  *  @hw: pointer to the HW structure
3159  *  @offset: The offset of the byte to write.
3160  *  @byte: The byte to write to the NVM.
3161  *
3162  *  Writes a single byte to the NVM using the flash access registers.
3163  *  Goes through a retry algorithm before giving up.
3164  **/
3165 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
3166 						u32 offset, u8 byte)
3167 {
3168 	s32 ret_val;
3169 	u16 program_retries;
3170 
3171 	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
3172 	if (!ret_val)
3173 		return ret_val;
3174 
3175 	for (program_retries = 0; program_retries < 100; program_retries++) {
3176 		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
3177 		udelay(100);
3178 		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
3179 		if (!ret_val)
3180 			break;
3181 	}
3182 	if (program_retries == 100)
3183 		return -E1000_ERR_NVM;
3184 
3185 	return 0;
3186 }
3187 
3188 /**
3189  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
3190  *  @hw: pointer to the HW structure
3191  *  @bank: 0 for first bank, 1 for second bank, etc.
3192  *
3193  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
3194  *  bank N is 4096 * N + flash_reg_addr.
3195  **/
3196 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
3197 {
3198 	struct e1000_nvm_info *nvm = &hw->nvm;
3199 	union ich8_hws_flash_status hsfsts;
3200 	union ich8_hws_flash_ctrl hsflctl;
3201 	u32 flash_linear_addr;
3202 	/* bank size is in 16bit words - adjust to bytes */
3203 	u32 flash_bank_size = nvm->flash_bank_size * 2;
3204 	s32 ret_val;
3205 	s32 count = 0;
3206 	s32 j, iteration, sector_size;
3207 
3208 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3209 
3210 	/*
3211 	 * Determine HW Sector size: Read BERASE bits of hw flash status
3212 	 * register
3213 	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
3214 	 *     consecutive sectors.  The start index for the nth Hw sector
3215 	 *     can be calculated as = bank * 4096 + n * 256
3216 	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
3217 	 *     The start index for the nth Hw sector can be calculated
3218 	 *     as = bank * 4096
3219 	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
3220 	 *     (ich9 only, otherwise error condition)
3221 	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
3222 	 */
3223 	switch (hsfsts.hsf_status.berasesz) {
3224 	case 0:
3225 		/* Hw sector size 256 */
3226 		sector_size = ICH_FLASH_SEG_SIZE_256;
3227 		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
3228 		break;
3229 	case 1:
3230 		sector_size = ICH_FLASH_SEG_SIZE_4K;
3231 		iteration = 1;
3232 		break;
3233 	case 2:
3234 		sector_size = ICH_FLASH_SEG_SIZE_8K;
3235 		iteration = 1;
3236 		break;
3237 	case 3:
3238 		sector_size = ICH_FLASH_SEG_SIZE_64K;
3239 		iteration = 1;
3240 		break;
3241 	default:
3242 		return -E1000_ERR_NVM;
3243 	}
3244 
3245 	/* Start with the base address, then add the sector offset. */
3246 	flash_linear_addr = hw->nvm.flash_base_addr;
3247 	flash_linear_addr += (bank) ? flash_bank_size : 0;
3248 
3249 	for (j = 0; j < iteration ; j++) {
3250 		do {
3251 			/* Steps */
3252 			ret_val = e1000_flash_cycle_init_ich8lan(hw);
3253 			if (ret_val)
3254 				return ret_val;
3255 
3256 			/*
3257 			 * Write a value 11 (block Erase) in Flash
3258 			 * Cycle field in hw flash control
3259 			 */
3260 			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3261 			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
3262 			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3263 
3264 			/*
3265 			 * Write the last 24 bits of an index within the
3266 			 * block into Flash Linear address field in Flash
3267 			 * Address.
3268 			 */
3269 			flash_linear_addr += (j * sector_size);
3270 			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3271 
3272 			ret_val = e1000_flash_cycle_ich8lan(hw,
3273 					       ICH_FLASH_ERASE_COMMAND_TIMEOUT);
3274 			if (!ret_val)
3275 				break;
3276 
3277 			/*
3278 			 * Check if FCERR is set to 1.  If 1,
3279 			 * clear it and try the whole sequence
3280 			 * a few more times else Done
3281 			 */
3282 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3283 			if (hsfsts.hsf_status.flcerr)
3284 				/* repeat for some time before giving up */
3285 				continue;
3286 			else if (!hsfsts.hsf_status.flcdone)
3287 				return ret_val;
3288 		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
3289 	}
3290 
3291 	return 0;
3292 }
3293 
3294 /**
3295  *  e1000_valid_led_default_ich8lan - Set the default LED settings
3296  *  @hw: pointer to the HW structure
3297  *  @data: Pointer to the LED settings
3298  *
3299  *  Reads the LED default settings from the NVM to data.  If the NVM LED
3300  *  settings is all 0's or F's, set the LED default to a valid LED default
3301  *  setting.
3302  **/
3303 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
3304 {
3305 	s32 ret_val;
3306 
3307 	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
3308 	if (ret_val) {
3309 		e_dbg("NVM Read Error\n");
3310 		return ret_val;
3311 	}
3312 
3313 	if (*data == ID_LED_RESERVED_0000 ||
3314 	    *data == ID_LED_RESERVED_FFFF)
3315 		*data = ID_LED_DEFAULT_ICH8LAN;
3316 
3317 	return 0;
3318 }
3319 
3320 /**
3321  *  e1000_id_led_init_pchlan - store LED configurations
3322  *  @hw: pointer to the HW structure
3323  *
3324  *  PCH does not control LEDs via the LEDCTL register, rather it uses
3325  *  the PHY LED configuration register.
3326  *
3327  *  PCH also does not have an "always on" or "always off" mode which
3328  *  complicates the ID feature.  Instead of using the "on" mode to indicate
3329  *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
3330  *  use "link_up" mode.  The LEDs will still ID on request if there is no
3331  *  link based on logic in e1000_led_[on|off]_pchlan().
3332  **/
3333 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
3334 {
3335 	struct e1000_mac_info *mac = &hw->mac;
3336 	s32 ret_val;
3337 	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
3338 	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
3339 	u16 data, i, temp, shift;
3340 
3341 	/* Get default ID LED modes */
3342 	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
3343 	if (ret_val)
3344 		return ret_val;
3345 
3346 	mac->ledctl_default = er32(LEDCTL);
3347 	mac->ledctl_mode1 = mac->ledctl_default;
3348 	mac->ledctl_mode2 = mac->ledctl_default;
3349 
3350 	for (i = 0; i < 4; i++) {
3351 		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
3352 		shift = (i * 5);
3353 		switch (temp) {
3354 		case ID_LED_ON1_DEF2:
3355 		case ID_LED_ON1_ON2:
3356 		case ID_LED_ON1_OFF2:
3357 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
3358 			mac->ledctl_mode1 |= (ledctl_on << shift);
3359 			break;
3360 		case ID_LED_OFF1_DEF2:
3361 		case ID_LED_OFF1_ON2:
3362 		case ID_LED_OFF1_OFF2:
3363 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
3364 			mac->ledctl_mode1 |= (ledctl_off << shift);
3365 			break;
3366 		default:
3367 			/* Do nothing */
3368 			break;
3369 		}
3370 		switch (temp) {
3371 		case ID_LED_DEF1_ON2:
3372 		case ID_LED_ON1_ON2:
3373 		case ID_LED_OFF1_ON2:
3374 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3375 			mac->ledctl_mode2 |= (ledctl_on << shift);
3376 			break;
3377 		case ID_LED_DEF1_OFF2:
3378 		case ID_LED_ON1_OFF2:
3379 		case ID_LED_OFF1_OFF2:
3380 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3381 			mac->ledctl_mode2 |= (ledctl_off << shift);
3382 			break;
3383 		default:
3384 			/* Do nothing */
3385 			break;
3386 		}
3387 	}
3388 
3389 	return 0;
3390 }
3391 
3392 /**
3393  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
3394  *  @hw: pointer to the HW structure
3395  *
3396  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
3397  *  register, so the the bus width is hard coded.
3398  **/
3399 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
3400 {
3401 	struct e1000_bus_info *bus = &hw->bus;
3402 	s32 ret_val;
3403 
3404 	ret_val = e1000e_get_bus_info_pcie(hw);
3405 
3406 	/*
3407 	 * ICH devices are "PCI Express"-ish.  They have
3408 	 * a configuration space, but do not contain
3409 	 * PCI Express Capability registers, so bus width
3410 	 * must be hardcoded.
3411 	 */
3412 	if (bus->width == e1000_bus_width_unknown)
3413 		bus->width = e1000_bus_width_pcie_x1;
3414 
3415 	return ret_val;
3416 }
3417 
3418 /**
3419  *  e1000_reset_hw_ich8lan - Reset the hardware
3420  *  @hw: pointer to the HW structure
3421  *
3422  *  Does a full reset of the hardware which includes a reset of the PHY and
3423  *  MAC.
3424  **/
3425 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
3426 {
3427 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3428 	u16 kum_cfg;
3429 	u32 ctrl, reg;
3430 	s32 ret_val;
3431 
3432 	/*
3433 	 * Prevent the PCI-E bus from sticking if there is no TLP connection
3434 	 * on the last TLP read/write transaction when MAC is reset.
3435 	 */
3436 	ret_val = e1000e_disable_pcie_master(hw);
3437 	if (ret_val)
3438 		e_dbg("PCI-E Master disable polling has failed.\n");
3439 
3440 	e_dbg("Masking off all interrupts\n");
3441 	ew32(IMC, 0xffffffff);
3442 
3443 	/*
3444 	 * Disable the Transmit and Receive units.  Then delay to allow
3445 	 * any pending transactions to complete before we hit the MAC
3446 	 * with the global reset.
3447 	 */
3448 	ew32(RCTL, 0);
3449 	ew32(TCTL, E1000_TCTL_PSP);
3450 	e1e_flush();
3451 
3452 	usleep_range(10000, 20000);
3453 
3454 	/* Workaround for ICH8 bit corruption issue in FIFO memory */
3455 	if (hw->mac.type == e1000_ich8lan) {
3456 		/* Set Tx and Rx buffer allocation to 8k apiece. */
3457 		ew32(PBA, E1000_PBA_8K);
3458 		/* Set Packet Buffer Size to 16k. */
3459 		ew32(PBS, E1000_PBS_16K);
3460 	}
3461 
3462 	if (hw->mac.type == e1000_pchlan) {
3463 		/* Save the NVM K1 bit setting */
3464 		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
3465 		if (ret_val)
3466 			return ret_val;
3467 
3468 		if (kum_cfg & E1000_NVM_K1_ENABLE)
3469 			dev_spec->nvm_k1_enabled = true;
3470 		else
3471 			dev_spec->nvm_k1_enabled = false;
3472 	}
3473 
3474 	ctrl = er32(CTRL);
3475 
3476 	if (!hw->phy.ops.check_reset_block(hw)) {
3477 		/*
3478 		 * Full-chip reset requires MAC and PHY reset at the same
3479 		 * time to make sure the interface between MAC and the
3480 		 * external PHY is reset.
3481 		 */
3482 		ctrl |= E1000_CTRL_PHY_RST;
3483 
3484 		/*
3485 		 * Gate automatic PHY configuration by hardware on
3486 		 * non-managed 82579
3487 		 */
3488 		if ((hw->mac.type == e1000_pch2lan) &&
3489 		    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
3490 			e1000_gate_hw_phy_config_ich8lan(hw, true);
3491 	}
3492 	ret_val = e1000_acquire_swflag_ich8lan(hw);
3493 	e_dbg("Issuing a global reset to ich8lan\n");
3494 	ew32(CTRL, (ctrl | E1000_CTRL_RST));
3495 	/* cannot issue a flush here because it hangs the hardware */
3496 	msleep(20);
3497 
3498 	/* Set Phy Config Counter to 50msec */
3499 	if (hw->mac.type == e1000_pch2lan) {
3500 		reg = er32(FEXTNVM3);
3501 		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
3502 		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
3503 		ew32(FEXTNVM3, reg);
3504 	}
3505 
3506 	if (!ret_val)
3507 		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
3508 
3509 	if (ctrl & E1000_CTRL_PHY_RST) {
3510 		ret_val = hw->phy.ops.get_cfg_done(hw);
3511 		if (ret_val)
3512 			return ret_val;
3513 
3514 		ret_val = e1000_post_phy_reset_ich8lan(hw);
3515 		if (ret_val)
3516 			return ret_val;
3517 	}
3518 
3519 	/*
3520 	 * For PCH, this write will make sure that any noise
3521 	 * will be detected as a CRC error and be dropped rather than show up
3522 	 * as a bad packet to the DMA engine.
3523 	 */
3524 	if (hw->mac.type == e1000_pchlan)
3525 		ew32(CRC_OFFSET, 0x65656565);
3526 
3527 	ew32(IMC, 0xffffffff);
3528 	er32(ICR);
3529 
3530 	reg = er32(KABGTXD);
3531 	reg |= E1000_KABGTXD_BGSQLBIAS;
3532 	ew32(KABGTXD, reg);
3533 
3534 	return 0;
3535 }
3536 
3537 /**
3538  *  e1000_init_hw_ich8lan - Initialize the hardware
3539  *  @hw: pointer to the HW structure
3540  *
3541  *  Prepares the hardware for transmit and receive by doing the following:
3542  *   - initialize hardware bits
3543  *   - initialize LED identification
3544  *   - setup receive address registers
3545  *   - setup flow control
3546  *   - setup transmit descriptors
3547  *   - clear statistics
3548  **/
3549 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
3550 {
3551 	struct e1000_mac_info *mac = &hw->mac;
3552 	u32 ctrl_ext, txdctl, snoop;
3553 	s32 ret_val;
3554 	u16 i;
3555 
3556 	e1000_initialize_hw_bits_ich8lan(hw);
3557 
3558 	/* Initialize identification LED */
3559 	ret_val = mac->ops.id_led_init(hw);
3560 	if (ret_val)
3561 		e_dbg("Error initializing identification LED\n");
3562 		/* This is not fatal and we should not stop init due to this */
3563 
3564 	/* Setup the receive address. */
3565 	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
3566 
3567 	/* Zero out the Multicast HASH table */
3568 	e_dbg("Zeroing the MTA\n");
3569 	for (i = 0; i < mac->mta_reg_count; i++)
3570 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
3571 
3572 	/*
3573 	 * The 82578 Rx buffer will stall if wakeup is enabled in host and
3574 	 * the ME.  Disable wakeup by clearing the host wakeup bit.
3575 	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
3576 	 */
3577 	if (hw->phy.type == e1000_phy_82578) {
3578 		e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
3579 		i &= ~BM_WUC_HOST_WU_BIT;
3580 		e1e_wphy(hw, BM_PORT_GEN_CFG, i);
3581 		ret_val = e1000_phy_hw_reset_ich8lan(hw);
3582 		if (ret_val)
3583 			return ret_val;
3584 	}
3585 
3586 	/* Setup link and flow control */
3587 	ret_val = mac->ops.setup_link(hw);
3588 
3589 	/* Set the transmit descriptor write-back policy for both queues */
3590 	txdctl = er32(TXDCTL(0));
3591 	txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
3592 		 E1000_TXDCTL_FULL_TX_DESC_WB;
3593 	txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
3594 		 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
3595 	ew32(TXDCTL(0), txdctl);
3596 	txdctl = er32(TXDCTL(1));
3597 	txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
3598 		 E1000_TXDCTL_FULL_TX_DESC_WB;
3599 	txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
3600 		 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
3601 	ew32(TXDCTL(1), txdctl);
3602 
3603 	/*
3604 	 * ICH8 has opposite polarity of no_snoop bits.
3605 	 * By default, we should use snoop behavior.
3606 	 */
3607 	if (mac->type == e1000_ich8lan)
3608 		snoop = PCIE_ICH8_SNOOP_ALL;
3609 	else
3610 		snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
3611 	e1000e_set_pcie_no_snoop(hw, snoop);
3612 
3613 	ctrl_ext = er32(CTRL_EXT);
3614 	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
3615 	ew32(CTRL_EXT, ctrl_ext);
3616 
3617 	/*
3618 	 * Clear all of the statistics registers (clear on read).  It is
3619 	 * important that we do this after we have tried to establish link
3620 	 * because the symbol error count will increment wildly if there
3621 	 * is no link.
3622 	 */
3623 	e1000_clear_hw_cntrs_ich8lan(hw);
3624 
3625 	return ret_val;
3626 }
3627 /**
3628  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
3629  *  @hw: pointer to the HW structure
3630  *
3631  *  Sets/Clears required hardware bits necessary for correctly setting up the
3632  *  hardware for transmit and receive.
3633  **/
3634 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
3635 {
3636 	u32 reg;
3637 
3638 	/* Extended Device Control */
3639 	reg = er32(CTRL_EXT);
3640 	reg |= (1 << 22);
3641 	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
3642 	if (hw->mac.type >= e1000_pchlan)
3643 		reg |= E1000_CTRL_EXT_PHYPDEN;
3644 	ew32(CTRL_EXT, reg);
3645 
3646 	/* Transmit Descriptor Control 0 */
3647 	reg = er32(TXDCTL(0));
3648 	reg |= (1 << 22);
3649 	ew32(TXDCTL(0), reg);
3650 
3651 	/* Transmit Descriptor Control 1 */
3652 	reg = er32(TXDCTL(1));
3653 	reg |= (1 << 22);
3654 	ew32(TXDCTL(1), reg);
3655 
3656 	/* Transmit Arbitration Control 0 */
3657 	reg = er32(TARC(0));
3658 	if (hw->mac.type == e1000_ich8lan)
3659 		reg |= (1 << 28) | (1 << 29);
3660 	reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
3661 	ew32(TARC(0), reg);
3662 
3663 	/* Transmit Arbitration Control 1 */
3664 	reg = er32(TARC(1));
3665 	if (er32(TCTL) & E1000_TCTL_MULR)
3666 		reg &= ~(1 << 28);
3667 	else
3668 		reg |= (1 << 28);
3669 	reg |= (1 << 24) | (1 << 26) | (1 << 30);
3670 	ew32(TARC(1), reg);
3671 
3672 	/* Device Status */
3673 	if (hw->mac.type == e1000_ich8lan) {
3674 		reg = er32(STATUS);
3675 		reg &= ~(1 << 31);
3676 		ew32(STATUS, reg);
3677 	}
3678 
3679 	/*
3680 	 * work-around descriptor data corruption issue during nfs v2 udp
3681 	 * traffic, just disable the nfs filtering capability
3682 	 */
3683 	reg = er32(RFCTL);
3684 	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
3685 
3686 	/*
3687 	 * Disable IPv6 extension header parsing because some malformed
3688 	 * IPv6 headers can hang the Rx.
3689 	 */
3690 	if (hw->mac.type == e1000_ich8lan)
3691 		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
3692 	ew32(RFCTL, reg);
3693 }
3694 
3695 /**
3696  *  e1000_setup_link_ich8lan - Setup flow control and link settings
3697  *  @hw: pointer to the HW structure
3698  *
3699  *  Determines which flow control settings to use, then configures flow
3700  *  control.  Calls the appropriate media-specific link configuration
3701  *  function.  Assuming the adapter has a valid link partner, a valid link
3702  *  should be established.  Assumes the hardware has previously been reset
3703  *  and the transmitter and receiver are not enabled.
3704  **/
3705 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
3706 {
3707 	s32 ret_val;
3708 
3709 	if (hw->phy.ops.check_reset_block(hw))
3710 		return 0;
3711 
3712 	/*
3713 	 * ICH parts do not have a word in the NVM to determine
3714 	 * the default flow control setting, so we explicitly
3715 	 * set it to full.
3716 	 */
3717 	if (hw->fc.requested_mode == e1000_fc_default) {
3718 		/* Workaround h/w hang when Tx flow control enabled */
3719 		if (hw->mac.type == e1000_pchlan)
3720 			hw->fc.requested_mode = e1000_fc_rx_pause;
3721 		else
3722 			hw->fc.requested_mode = e1000_fc_full;
3723 	}
3724 
3725 	/*
3726 	 * Save off the requested flow control mode for use later.  Depending
3727 	 * on the link partner's capabilities, we may or may not use this mode.
3728 	 */
3729 	hw->fc.current_mode = hw->fc.requested_mode;
3730 
3731 	e_dbg("After fix-ups FlowControl is now = %x\n",
3732 		hw->fc.current_mode);
3733 
3734 	/* Continue to configure the copper link. */
3735 	ret_val = hw->mac.ops.setup_physical_interface(hw);
3736 	if (ret_val)
3737 		return ret_val;
3738 
3739 	ew32(FCTTV, hw->fc.pause_time);
3740 	if ((hw->phy.type == e1000_phy_82578) ||
3741 	    (hw->phy.type == e1000_phy_82579) ||
3742 	    (hw->phy.type == e1000_phy_i217) ||
3743 	    (hw->phy.type == e1000_phy_82577)) {
3744 		ew32(FCRTV_PCH, hw->fc.refresh_time);
3745 
3746 		ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
3747 				   hw->fc.pause_time);
3748 		if (ret_val)
3749 			return ret_val;
3750 	}
3751 
3752 	return e1000e_set_fc_watermarks(hw);
3753 }
3754 
3755 /**
3756  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
3757  *  @hw: pointer to the HW structure
3758  *
3759  *  Configures the kumeran interface to the PHY to wait the appropriate time
3760  *  when polling the PHY, then call the generic setup_copper_link to finish
3761  *  configuring the copper link.
3762  **/
3763 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
3764 {
3765 	u32 ctrl;
3766 	s32 ret_val;
3767 	u16 reg_data;
3768 
3769 	ctrl = er32(CTRL);
3770 	ctrl |= E1000_CTRL_SLU;
3771 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
3772 	ew32(CTRL, ctrl);
3773 
3774 	/*
3775 	 * Set the mac to wait the maximum time between each iteration
3776 	 * and increase the max iterations when polling the phy;
3777 	 * this fixes erroneous timeouts at 10Mbps.
3778 	 */
3779 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
3780 	if (ret_val)
3781 		return ret_val;
3782 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
3783 	                               &reg_data);
3784 	if (ret_val)
3785 		return ret_val;
3786 	reg_data |= 0x3F;
3787 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
3788 	                                reg_data);
3789 	if (ret_val)
3790 		return ret_val;
3791 
3792 	switch (hw->phy.type) {
3793 	case e1000_phy_igp_3:
3794 		ret_val = e1000e_copper_link_setup_igp(hw);
3795 		if (ret_val)
3796 			return ret_val;
3797 		break;
3798 	case e1000_phy_bm:
3799 	case e1000_phy_82578:
3800 		ret_val = e1000e_copper_link_setup_m88(hw);
3801 		if (ret_val)
3802 			return ret_val;
3803 		break;
3804 	case e1000_phy_82577:
3805 	case e1000_phy_82579:
3806 	case e1000_phy_i217:
3807 		ret_val = e1000_copper_link_setup_82577(hw);
3808 		if (ret_val)
3809 			return ret_val;
3810 		break;
3811 	case e1000_phy_ife:
3812 		ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
3813 		if (ret_val)
3814 			return ret_val;
3815 
3816 		reg_data &= ~IFE_PMC_AUTO_MDIX;
3817 
3818 		switch (hw->phy.mdix) {
3819 		case 1:
3820 			reg_data &= ~IFE_PMC_FORCE_MDIX;
3821 			break;
3822 		case 2:
3823 			reg_data |= IFE_PMC_FORCE_MDIX;
3824 			break;
3825 		case 0:
3826 		default:
3827 			reg_data |= IFE_PMC_AUTO_MDIX;
3828 			break;
3829 		}
3830 		ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
3831 		if (ret_val)
3832 			return ret_val;
3833 		break;
3834 	default:
3835 		break;
3836 	}
3837 
3838 	return e1000e_setup_copper_link(hw);
3839 }
3840 
3841 /**
3842  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
3843  *  @hw: pointer to the HW structure
3844  *  @speed: pointer to store current link speed
3845  *  @duplex: pointer to store the current link duplex
3846  *
3847  *  Calls the generic get_speed_and_duplex to retrieve the current link
3848  *  information and then calls the Kumeran lock loss workaround for links at
3849  *  gigabit speeds.
3850  **/
3851 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
3852 					  u16 *duplex)
3853 {
3854 	s32 ret_val;
3855 
3856 	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
3857 	if (ret_val)
3858 		return ret_val;
3859 
3860 	if ((hw->mac.type == e1000_ich8lan) &&
3861 	    (hw->phy.type == e1000_phy_igp_3) &&
3862 	    (*speed == SPEED_1000)) {
3863 		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
3864 	}
3865 
3866 	return ret_val;
3867 }
3868 
3869 /**
3870  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
3871  *  @hw: pointer to the HW structure
3872  *
3873  *  Work-around for 82566 Kumeran PCS lock loss:
3874  *  On link status change (i.e. PCI reset, speed change) and link is up and
3875  *  speed is gigabit-
3876  *    0) if workaround is optionally disabled do nothing
3877  *    1) wait 1ms for Kumeran link to come up
3878  *    2) check Kumeran Diagnostic register PCS lock loss bit
3879  *    3) if not set the link is locked (all is good), otherwise...
3880  *    4) reset the PHY
3881  *    5) repeat up to 10 times
3882  *  Note: this is only called for IGP3 copper when speed is 1gb.
3883  **/
3884 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
3885 {
3886 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3887 	u32 phy_ctrl;
3888 	s32 ret_val;
3889 	u16 i, data;
3890 	bool link;
3891 
3892 	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
3893 		return 0;
3894 
3895 	/*
3896 	 * Make sure link is up before proceeding.  If not just return.
3897 	 * Attempting this while link is negotiating fouled up link
3898 	 * stability
3899 	 */
3900 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3901 	if (!link)
3902 		return 0;
3903 
3904 	for (i = 0; i < 10; i++) {
3905 		/* read once to clear */
3906 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3907 		if (ret_val)
3908 			return ret_val;
3909 		/* and again to get new status */
3910 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3911 		if (ret_val)
3912 			return ret_val;
3913 
3914 		/* check for PCS lock */
3915 		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
3916 			return 0;
3917 
3918 		/* Issue PHY reset */
3919 		e1000_phy_hw_reset(hw);
3920 		mdelay(5);
3921 	}
3922 	/* Disable GigE link negotiation */
3923 	phy_ctrl = er32(PHY_CTRL);
3924 	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
3925 		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3926 	ew32(PHY_CTRL, phy_ctrl);
3927 
3928 	/*
3929 	 * Call gig speed drop workaround on Gig disable before accessing
3930 	 * any PHY registers
3931 	 */
3932 	e1000e_gig_downshift_workaround_ich8lan(hw);
3933 
3934 	/* unable to acquire PCS lock */
3935 	return -E1000_ERR_PHY;
3936 }
3937 
3938 /**
3939  *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
3940  *  @hw: pointer to the HW structure
3941  *  @state: boolean value used to set the current Kumeran workaround state
3942  *
3943  *  If ICH8, set the current Kumeran workaround state (enabled - true
3944  *  /disabled - false).
3945  **/
3946 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
3947 						 bool state)
3948 {
3949 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3950 
3951 	if (hw->mac.type != e1000_ich8lan) {
3952 		e_dbg("Workaround applies to ICH8 only.\n");
3953 		return;
3954 	}
3955 
3956 	dev_spec->kmrn_lock_loss_workaround_enabled = state;
3957 }
3958 
3959 /**
3960  *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
3961  *  @hw: pointer to the HW structure
3962  *
3963  *  Workaround for 82566 power-down on D3 entry:
3964  *    1) disable gigabit link
3965  *    2) write VR power-down enable
3966  *    3) read it back
3967  *  Continue if successful, else issue LCD reset and repeat
3968  **/
3969 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
3970 {
3971 	u32 reg;
3972 	u16 data;
3973 	u8  retry = 0;
3974 
3975 	if (hw->phy.type != e1000_phy_igp_3)
3976 		return;
3977 
3978 	/* Try the workaround twice (if needed) */
3979 	do {
3980 		/* Disable link */
3981 		reg = er32(PHY_CTRL);
3982 		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
3983 			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3984 		ew32(PHY_CTRL, reg);
3985 
3986 		/*
3987 		 * Call gig speed drop workaround on Gig disable before
3988 		 * accessing any PHY registers
3989 		 */
3990 		if (hw->mac.type == e1000_ich8lan)
3991 			e1000e_gig_downshift_workaround_ich8lan(hw);
3992 
3993 		/* Write VR power-down enable */
3994 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
3995 		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3996 		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
3997 
3998 		/* Read it back and test */
3999 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
4000 		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
4001 		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
4002 			break;
4003 
4004 		/* Issue PHY reset and repeat at most one more time */
4005 		reg = er32(CTRL);
4006 		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
4007 		retry++;
4008 	} while (retry);
4009 }
4010 
4011 /**
4012  *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
4013  *  @hw: pointer to the HW structure
4014  *
4015  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
4016  *  LPLU, Gig disable, MDIC PHY reset):
4017  *    1) Set Kumeran Near-end loopback
4018  *    2) Clear Kumeran Near-end loopback
4019  *  Should only be called for ICH8[m] devices with any 1G Phy.
4020  **/
4021 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
4022 {
4023 	s32 ret_val;
4024 	u16 reg_data;
4025 
4026 	if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
4027 		return;
4028 
4029 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
4030 				      &reg_data);
4031 	if (ret_val)
4032 		return;
4033 	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
4034 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
4035 				       reg_data);
4036 	if (ret_val)
4037 		return;
4038 	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
4039 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
4040 				       reg_data);
4041 }
4042 
4043 /**
4044  *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
4045  *  @hw: pointer to the HW structure
4046  *
4047  *  During S0 to Sx transition, it is possible the link remains at gig
4048  *  instead of negotiating to a lower speed.  Before going to Sx, set
4049  *  'Gig Disable' to force link speed negotiation to a lower speed based on
4050  *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
4051  *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
4052  *  needs to be written.
4053  *  Parts that support (and are linked to a partner which support) EEE in
4054  *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
4055  *  than 10Mbps w/o EEE.
4056  **/
4057 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
4058 {
4059 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4060 	u32 phy_ctrl;
4061 	s32 ret_val;
4062 
4063 	phy_ctrl = er32(PHY_CTRL);
4064 	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
4065 	if (hw->phy.type == e1000_phy_i217) {
4066 		u16 phy_reg;
4067 
4068 		ret_val = hw->phy.ops.acquire(hw);
4069 		if (ret_val)
4070 			goto out;
4071 
4072 		if (!dev_spec->eee_disable) {
4073 			u16 eee_advert;
4074 
4075 			ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR,
4076 						  I217_EEE_ADVERTISEMENT);
4077 			if (ret_val)
4078 				goto release;
4079 			e1e_rphy_locked(hw, I82579_EMI_DATA, &eee_advert);
4080 
4081 			/*
4082 			 * Disable LPLU if both link partners support 100BaseT
4083 			 * EEE and 100Full is advertised on both ends of the
4084 			 * link.
4085 			 */
4086 			if ((eee_advert & I217_EEE_100_SUPPORTED) &&
4087 			    (dev_spec->eee_lp_ability &
4088 			     I217_EEE_100_SUPPORTED) &&
4089 			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL))
4090 				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
4091 					      E1000_PHY_CTRL_NOND0A_LPLU);
4092 		}
4093 
4094 		/*
4095 		 * For i217 Intel Rapid Start Technology support,
4096 		 * when the system is going into Sx and no manageability engine
4097 		 * is present, the driver must configure proxy to reset only on
4098 		 * power good.  LPI (Low Power Idle) state must also reset only
4099 		 * on power good, as well as the MTA (Multicast table array).
4100 		 * The SMBus release must also be disabled on LCD reset.
4101 		 */
4102 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
4103 
4104 			/* Enable proxy to reset only on power good. */
4105 			e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
4106 			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
4107 			e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
4108 
4109 			/*
4110 			 * Set bit enable LPI (EEE) to reset only on
4111 			 * power good.
4112 			 */
4113 			e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
4114 			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
4115 			e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
4116 
4117 			/* Disable the SMB release on LCD reset. */
4118 			e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
4119 			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
4120 			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
4121 		}
4122 
4123 		/*
4124 		 * Enable MTA to reset for Intel Rapid Start Technology
4125 		 * Support
4126 		 */
4127 		e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
4128 		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
4129 		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
4130 
4131 release:
4132 		hw->phy.ops.release(hw);
4133 	}
4134 out:
4135 	ew32(PHY_CTRL, phy_ctrl);
4136 
4137 	if (hw->mac.type == e1000_ich8lan)
4138 		e1000e_gig_downshift_workaround_ich8lan(hw);
4139 
4140 	if (hw->mac.type >= e1000_pchlan) {
4141 		e1000_oem_bits_config_ich8lan(hw, false);
4142 
4143 		/* Reset PHY to activate OEM bits on 82577/8 */
4144 		if (hw->mac.type == e1000_pchlan)
4145 			e1000e_phy_hw_reset_generic(hw);
4146 
4147 		ret_val = hw->phy.ops.acquire(hw);
4148 		if (ret_val)
4149 			return;
4150 		e1000_write_smbus_addr(hw);
4151 		hw->phy.ops.release(hw);
4152 	}
4153 }
4154 
4155 /**
4156  *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
4157  *  @hw: pointer to the HW structure
4158  *
4159  *  During Sx to S0 transitions on non-managed devices or managed devices
4160  *  on which PHY resets are not blocked, if the PHY registers cannot be
4161  *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
4162  *  the PHY.
4163  *  On i217, setup Intel Rapid Start Technology.
4164  **/
4165 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
4166 {
4167 	s32 ret_val;
4168 
4169 	if (hw->mac.type < e1000_pch2lan)
4170 		return;
4171 
4172 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
4173 	if (ret_val) {
4174 		e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
4175 		return;
4176 	}
4177 
4178 	/*
4179 	 * For i217 Intel Rapid Start Technology support when the system
4180 	 * is transitioning from Sx and no manageability engine is present
4181 	 * configure SMBus to restore on reset, disable proxy, and enable
4182 	 * the reset on MTA (Multicast table array).
4183 	 */
4184 	if (hw->phy.type == e1000_phy_i217) {
4185 		u16 phy_reg;
4186 
4187 		ret_val = hw->phy.ops.acquire(hw);
4188 		if (ret_val) {
4189 			e_dbg("Failed to setup iRST\n");
4190 			return;
4191 		}
4192 
4193 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
4194 			/*
4195 			 * Restore clear on SMB if no manageability engine
4196 			 * is present
4197 			 */
4198 			ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
4199 			if (ret_val)
4200 				goto release;
4201 			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
4202 			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
4203 
4204 			/* Disable Proxy */
4205 			e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
4206 		}
4207 		/* Enable reset on MTA */
4208 		ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
4209 		if (ret_val)
4210 			goto release;
4211 		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
4212 		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
4213 release:
4214 		if (ret_val)
4215 			e_dbg("Error %d in resume workarounds\n", ret_val);
4216 		hw->phy.ops.release(hw);
4217 	}
4218 }
4219 
4220 /**
4221  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
4222  *  @hw: pointer to the HW structure
4223  *
4224  *  Return the LED back to the default configuration.
4225  **/
4226 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
4227 {
4228 	if (hw->phy.type == e1000_phy_ife)
4229 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
4230 
4231 	ew32(LEDCTL, hw->mac.ledctl_default);
4232 	return 0;
4233 }
4234 
4235 /**
4236  *  e1000_led_on_ich8lan - Turn LEDs on
4237  *  @hw: pointer to the HW structure
4238  *
4239  *  Turn on the LEDs.
4240  **/
4241 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
4242 {
4243 	if (hw->phy.type == e1000_phy_ife)
4244 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
4245 				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
4246 
4247 	ew32(LEDCTL, hw->mac.ledctl_mode2);
4248 	return 0;
4249 }
4250 
4251 /**
4252  *  e1000_led_off_ich8lan - Turn LEDs off
4253  *  @hw: pointer to the HW structure
4254  *
4255  *  Turn off the LEDs.
4256  **/
4257 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
4258 {
4259 	if (hw->phy.type == e1000_phy_ife)
4260 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
4261 				(IFE_PSCL_PROBE_MODE |
4262 				 IFE_PSCL_PROBE_LEDS_OFF));
4263 
4264 	ew32(LEDCTL, hw->mac.ledctl_mode1);
4265 	return 0;
4266 }
4267 
4268 /**
4269  *  e1000_setup_led_pchlan - Configures SW controllable LED
4270  *  @hw: pointer to the HW structure
4271  *
4272  *  This prepares the SW controllable LED for use.
4273  **/
4274 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
4275 {
4276 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
4277 }
4278 
4279 /**
4280  *  e1000_cleanup_led_pchlan - Restore the default LED operation
4281  *  @hw: pointer to the HW structure
4282  *
4283  *  Return the LED back to the default configuration.
4284  **/
4285 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
4286 {
4287 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
4288 }
4289 
4290 /**
4291  *  e1000_led_on_pchlan - Turn LEDs on
4292  *  @hw: pointer to the HW structure
4293  *
4294  *  Turn on the LEDs.
4295  **/
4296 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
4297 {
4298 	u16 data = (u16)hw->mac.ledctl_mode2;
4299 	u32 i, led;
4300 
4301 	/*
4302 	 * If no link, then turn LED on by setting the invert bit
4303 	 * for each LED that's mode is "link_up" in ledctl_mode2.
4304 	 */
4305 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
4306 		for (i = 0; i < 3; i++) {
4307 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
4308 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
4309 			    E1000_LEDCTL_MODE_LINK_UP)
4310 				continue;
4311 			if (led & E1000_PHY_LED0_IVRT)
4312 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
4313 			else
4314 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
4315 		}
4316 	}
4317 
4318 	return e1e_wphy(hw, HV_LED_CONFIG, data);
4319 }
4320 
4321 /**
4322  *  e1000_led_off_pchlan - Turn LEDs off
4323  *  @hw: pointer to the HW structure
4324  *
4325  *  Turn off the LEDs.
4326  **/
4327 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
4328 {
4329 	u16 data = (u16)hw->mac.ledctl_mode1;
4330 	u32 i, led;
4331 
4332 	/*
4333 	 * If no link, then turn LED off by clearing the invert bit
4334 	 * for each LED that's mode is "link_up" in ledctl_mode1.
4335 	 */
4336 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
4337 		for (i = 0; i < 3; i++) {
4338 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
4339 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
4340 			    E1000_LEDCTL_MODE_LINK_UP)
4341 				continue;
4342 			if (led & E1000_PHY_LED0_IVRT)
4343 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
4344 			else
4345 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
4346 		}
4347 	}
4348 
4349 	return e1e_wphy(hw, HV_LED_CONFIG, data);
4350 }
4351 
4352 /**
4353  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
4354  *  @hw: pointer to the HW structure
4355  *
4356  *  Read appropriate register for the config done bit for completion status
4357  *  and configure the PHY through s/w for EEPROM-less parts.
4358  *
4359  *  NOTE: some silicon which is EEPROM-less will fail trying to read the
4360  *  config done bit, so only an error is logged and continues.  If we were
4361  *  to return with error, EEPROM-less silicon would not be able to be reset
4362  *  or change link.
4363  **/
4364 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
4365 {
4366 	s32 ret_val = 0;
4367 	u32 bank = 0;
4368 	u32 status;
4369 
4370 	e1000e_get_cfg_done(hw);
4371 
4372 	/* Wait for indication from h/w that it has completed basic config */
4373 	if (hw->mac.type >= e1000_ich10lan) {
4374 		e1000_lan_init_done_ich8lan(hw);
4375 	} else {
4376 		ret_val = e1000e_get_auto_rd_done(hw);
4377 		if (ret_val) {
4378 			/*
4379 			 * When auto config read does not complete, do not
4380 			 * return with an error. This can happen in situations
4381 			 * where there is no eeprom and prevents getting link.
4382 			 */
4383 			e_dbg("Auto Read Done did not complete\n");
4384 			ret_val = 0;
4385 		}
4386 	}
4387 
4388 	/* Clear PHY Reset Asserted bit */
4389 	status = er32(STATUS);
4390 	if (status & E1000_STATUS_PHYRA)
4391 		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
4392 	else
4393 		e_dbg("PHY Reset Asserted not set - needs delay\n");
4394 
4395 	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
4396 	if (hw->mac.type <= e1000_ich9lan) {
4397 		if (!(er32(EECD) & E1000_EECD_PRES) &&
4398 		    (hw->phy.type == e1000_phy_igp_3)) {
4399 			e1000e_phy_init_script_igp3(hw);
4400 		}
4401 	} else {
4402 		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
4403 			/* Maybe we should do a basic PHY config */
4404 			e_dbg("EEPROM not present\n");
4405 			ret_val = -E1000_ERR_CONFIG;
4406 		}
4407 	}
4408 
4409 	return ret_val;
4410 }
4411 
4412 /**
4413  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
4414  * @hw: pointer to the HW structure
4415  *
4416  * In the case of a PHY power down to save power, or to turn off link during a
4417  * driver unload, or wake on lan is not enabled, remove the link.
4418  **/
4419 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
4420 {
4421 	/* If the management interface is not enabled, then power down */
4422 	if (!(hw->mac.ops.check_mng_mode(hw) ||
4423 	      hw->phy.ops.check_reset_block(hw)))
4424 		e1000_power_down_phy_copper(hw);
4425 }
4426 
4427 /**
4428  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
4429  *  @hw: pointer to the HW structure
4430  *
4431  *  Clears hardware counters specific to the silicon family and calls
4432  *  clear_hw_cntrs_generic to clear all general purpose counters.
4433  **/
4434 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
4435 {
4436 	u16 phy_data;
4437 	s32 ret_val;
4438 
4439 	e1000e_clear_hw_cntrs_base(hw);
4440 
4441 	er32(ALGNERRC);
4442 	er32(RXERRC);
4443 	er32(TNCRS);
4444 	er32(CEXTERR);
4445 	er32(TSCTC);
4446 	er32(TSCTFC);
4447 
4448 	er32(MGTPRC);
4449 	er32(MGTPDC);
4450 	er32(MGTPTC);
4451 
4452 	er32(IAC);
4453 	er32(ICRXOC);
4454 
4455 	/* Clear PHY statistics registers */
4456 	if ((hw->phy.type == e1000_phy_82578) ||
4457 	    (hw->phy.type == e1000_phy_82579) ||
4458 	    (hw->phy.type == e1000_phy_i217) ||
4459 	    (hw->phy.type == e1000_phy_82577)) {
4460 		ret_val = hw->phy.ops.acquire(hw);
4461 		if (ret_val)
4462 			return;
4463 		ret_val = hw->phy.ops.set_page(hw,
4464 					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
4465 		if (ret_val)
4466 			goto release;
4467 		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4468 		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4469 		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4470 		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4471 		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4472 		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4473 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4474 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4475 		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4476 		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4477 		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4478 		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4479 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4480 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4481 release:
4482 		hw->phy.ops.release(hw);
4483 	}
4484 }
4485 
4486 static const struct e1000_mac_operations ich8_mac_ops = {
4487 	/* check_mng_mode dependent on mac type */
4488 	.check_for_link		= e1000_check_for_copper_link_ich8lan,
4489 	/* cleanup_led dependent on mac type */
4490 	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
4491 	.get_bus_info		= e1000_get_bus_info_ich8lan,
4492 	.set_lan_id		= e1000_set_lan_id_single_port,
4493 	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
4494 	/* led_on dependent on mac type */
4495 	/* led_off dependent on mac type */
4496 	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
4497 	.reset_hw		= e1000_reset_hw_ich8lan,
4498 	.init_hw		= e1000_init_hw_ich8lan,
4499 	.setup_link		= e1000_setup_link_ich8lan,
4500 	.setup_physical_interface= e1000_setup_copper_link_ich8lan,
4501 	/* id_led_init dependent on mac type */
4502 	.config_collision_dist	= e1000e_config_collision_dist_generic,
4503 	.rar_set		= e1000e_rar_set_generic,
4504 };
4505 
4506 static const struct e1000_phy_operations ich8_phy_ops = {
4507 	.acquire		= e1000_acquire_swflag_ich8lan,
4508 	.check_reset_block	= e1000_check_reset_block_ich8lan,
4509 	.commit			= NULL,
4510 	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
4511 	.get_cable_length	= e1000e_get_cable_length_igp_2,
4512 	.read_reg		= e1000e_read_phy_reg_igp,
4513 	.release		= e1000_release_swflag_ich8lan,
4514 	.reset			= e1000_phy_hw_reset_ich8lan,
4515 	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
4516 	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
4517 	.write_reg		= e1000e_write_phy_reg_igp,
4518 };
4519 
4520 static const struct e1000_nvm_operations ich8_nvm_ops = {
4521 	.acquire		= e1000_acquire_nvm_ich8lan,
4522 	.read		 	= e1000_read_nvm_ich8lan,
4523 	.release		= e1000_release_nvm_ich8lan,
4524 	.reload			= e1000e_reload_nvm_generic,
4525 	.update			= e1000_update_nvm_checksum_ich8lan,
4526 	.valid_led_default	= e1000_valid_led_default_ich8lan,
4527 	.validate		= e1000_validate_nvm_checksum_ich8lan,
4528 	.write			= e1000_write_nvm_ich8lan,
4529 };
4530 
4531 const struct e1000_info e1000_ich8_info = {
4532 	.mac			= e1000_ich8lan,
4533 	.flags			= FLAG_HAS_WOL
4534 				  | FLAG_IS_ICH
4535 				  | FLAG_HAS_CTRLEXT_ON_LOAD
4536 				  | FLAG_HAS_AMT
4537 				  | FLAG_HAS_FLASH
4538 				  | FLAG_APME_IN_WUC,
4539 	.pba			= 8,
4540 	.max_hw_frame_size	= ETH_FRAME_LEN + ETH_FCS_LEN,
4541 	.get_variants		= e1000_get_variants_ich8lan,
4542 	.mac_ops		= &ich8_mac_ops,
4543 	.phy_ops		= &ich8_phy_ops,
4544 	.nvm_ops		= &ich8_nvm_ops,
4545 };
4546 
4547 const struct e1000_info e1000_ich9_info = {
4548 	.mac			= e1000_ich9lan,
4549 	.flags			= FLAG_HAS_JUMBO_FRAMES
4550 				  | FLAG_IS_ICH
4551 				  | FLAG_HAS_WOL
4552 				  | FLAG_HAS_CTRLEXT_ON_LOAD
4553 				  | FLAG_HAS_AMT
4554 				  | FLAG_HAS_FLASH
4555 				  | FLAG_APME_IN_WUC,
4556 	.pba			= 18,
4557 	.max_hw_frame_size	= DEFAULT_JUMBO,
4558 	.get_variants		= e1000_get_variants_ich8lan,
4559 	.mac_ops		= &ich8_mac_ops,
4560 	.phy_ops		= &ich8_phy_ops,
4561 	.nvm_ops		= &ich8_nvm_ops,
4562 };
4563 
4564 const struct e1000_info e1000_ich10_info = {
4565 	.mac			= e1000_ich10lan,
4566 	.flags			= FLAG_HAS_JUMBO_FRAMES
4567 				  | FLAG_IS_ICH
4568 				  | FLAG_HAS_WOL
4569 				  | FLAG_HAS_CTRLEXT_ON_LOAD
4570 				  | FLAG_HAS_AMT
4571 				  | FLAG_HAS_FLASH
4572 				  | FLAG_APME_IN_WUC,
4573 	.pba			= 18,
4574 	.max_hw_frame_size	= DEFAULT_JUMBO,
4575 	.get_variants		= e1000_get_variants_ich8lan,
4576 	.mac_ops		= &ich8_mac_ops,
4577 	.phy_ops		= &ich8_phy_ops,
4578 	.nvm_ops		= &ich8_nvm_ops,
4579 };
4580 
4581 const struct e1000_info e1000_pch_info = {
4582 	.mac			= e1000_pchlan,
4583 	.flags			= FLAG_IS_ICH
4584 				  | FLAG_HAS_WOL
4585 				  | FLAG_HAS_CTRLEXT_ON_LOAD
4586 				  | FLAG_HAS_AMT
4587 				  | FLAG_HAS_FLASH
4588 				  | FLAG_HAS_JUMBO_FRAMES
4589 				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
4590 				  | FLAG_APME_IN_WUC,
4591 	.flags2			= FLAG2_HAS_PHY_STATS,
4592 	.pba			= 26,
4593 	.max_hw_frame_size	= 4096,
4594 	.get_variants		= e1000_get_variants_ich8lan,
4595 	.mac_ops		= &ich8_mac_ops,
4596 	.phy_ops		= &ich8_phy_ops,
4597 	.nvm_ops		= &ich8_nvm_ops,
4598 };
4599 
4600 const struct e1000_info e1000_pch2_info = {
4601 	.mac			= e1000_pch2lan,
4602 	.flags			= FLAG_IS_ICH
4603 				  | FLAG_HAS_WOL
4604 				  | FLAG_HAS_CTRLEXT_ON_LOAD
4605 				  | FLAG_HAS_AMT
4606 				  | FLAG_HAS_FLASH
4607 				  | FLAG_HAS_JUMBO_FRAMES
4608 				  | FLAG_APME_IN_WUC,
4609 	.flags2			= FLAG2_HAS_PHY_STATS
4610 				  | FLAG2_HAS_EEE,
4611 	.pba			= 26,
4612 	.max_hw_frame_size	= DEFAULT_JUMBO,
4613 	.get_variants		= e1000_get_variants_ich8lan,
4614 	.mac_ops		= &ich8_mac_ops,
4615 	.phy_ops		= &ich8_phy_ops,
4616 	.nvm_ops		= &ich8_nvm_ops,
4617 };
4618 
4619 const struct e1000_info e1000_pch_lpt_info = {
4620 	.mac			= e1000_pch_lpt,
4621 	.flags			= FLAG_IS_ICH
4622 				  | FLAG_HAS_WOL
4623 				  | FLAG_HAS_CTRLEXT_ON_LOAD
4624 				  | FLAG_HAS_AMT
4625 				  | FLAG_HAS_FLASH
4626 				  | FLAG_HAS_JUMBO_FRAMES
4627 				  | FLAG_APME_IN_WUC,
4628 	.flags2			= FLAG2_HAS_PHY_STATS
4629 				  | FLAG2_HAS_EEE,
4630 	.pba			= 26,
4631 	.max_hw_frame_size	= DEFAULT_JUMBO,
4632 	.get_variants		= e1000_get_variants_ich8lan,
4633 	.mac_ops		= &ich8_mac_ops,
4634 	.phy_ops		= &ich8_phy_ops,
4635 	.nvm_ops		= &ich8_nvm_ops,
4636 };
4637