1 /* Intel PRO/1000 Linux driver
2  * Copyright(c) 1999 - 2014 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * The full GNU General Public License is included in this distribution in
14  * the file called "COPYING".
15  *
16  * Contact Information:
17  * Linux NICS <linux.nics@intel.com>
18  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
20  */
21 
22 /* 82562G 10/100 Network Connection
23  * 82562G-2 10/100 Network Connection
24  * 82562GT 10/100 Network Connection
25  * 82562GT-2 10/100 Network Connection
26  * 82562V 10/100 Network Connection
27  * 82562V-2 10/100 Network Connection
28  * 82566DC-2 Gigabit Network Connection
29  * 82566DC Gigabit Network Connection
30  * 82566DM-2 Gigabit Network Connection
31  * 82566DM Gigabit Network Connection
32  * 82566MC Gigabit Network Connection
33  * 82566MM Gigabit Network Connection
34  * 82567LM Gigabit Network Connection
35  * 82567LF Gigabit Network Connection
36  * 82567V Gigabit Network Connection
37  * 82567LM-2 Gigabit Network Connection
38  * 82567LF-2 Gigabit Network Connection
39  * 82567V-2 Gigabit Network Connection
40  * 82567LF-3 Gigabit Network Connection
41  * 82567LM-3 Gigabit Network Connection
42  * 82567LM-4 Gigabit Network Connection
43  * 82577LM Gigabit Network Connection
44  * 82577LC Gigabit Network Connection
45  * 82578DM Gigabit Network Connection
46  * 82578DC Gigabit Network Connection
47  * 82579LM Gigabit Network Connection
48  * 82579V Gigabit Network Connection
49  * Ethernet Connection I217-LM
50  * Ethernet Connection I217-V
51  * Ethernet Connection I218-V
52  * Ethernet Connection I218-LM
53  * Ethernet Connection (2) I218-LM
54  * Ethernet Connection (2) I218-V
55  * Ethernet Connection (3) I218-LM
56  * Ethernet Connection (3) I218-V
57  */
58 
59 #include "e1000.h"
60 
61 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
62 /* Offset 04h HSFSTS */
63 union ich8_hws_flash_status {
64 	struct ich8_hsfsts {
65 		u16 flcdone:1;	/* bit 0 Flash Cycle Done */
66 		u16 flcerr:1;	/* bit 1 Flash Cycle Error */
67 		u16 dael:1;	/* bit 2 Direct Access error Log */
68 		u16 berasesz:2;	/* bit 4:3 Sector Erase Size */
69 		u16 flcinprog:1;	/* bit 5 flash cycle in Progress */
70 		u16 reserved1:2;	/* bit 13:6 Reserved */
71 		u16 reserved2:6;	/* bit 13:6 Reserved */
72 		u16 fldesvalid:1;	/* bit 14 Flash Descriptor Valid */
73 		u16 flockdn:1;	/* bit 15 Flash Config Lock-Down */
74 	} hsf_status;
75 	u16 regval;
76 };
77 
78 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
79 /* Offset 06h FLCTL */
80 union ich8_hws_flash_ctrl {
81 	struct ich8_hsflctl {
82 		u16 flcgo:1;	/* 0 Flash Cycle Go */
83 		u16 flcycle:2;	/* 2:1 Flash Cycle */
84 		u16 reserved:5;	/* 7:3 Reserved  */
85 		u16 fldbcount:2;	/* 9:8 Flash Data Byte Count */
86 		u16 flockdn:6;	/* 15:10 Reserved */
87 	} hsf_ctrl;
88 	u16 regval;
89 };
90 
91 /* ICH Flash Region Access Permissions */
92 union ich8_hws_flash_regacc {
93 	struct ich8_flracc {
94 		u32 grra:8;	/* 0:7 GbE region Read Access */
95 		u32 grwa:8;	/* 8:15 GbE region Write Access */
96 		u32 gmrag:8;	/* 23:16 GbE Master Read Access Grant */
97 		u32 gmwag:8;	/* 31:24 GbE Master Write Access Grant */
98 	} hsf_flregacc;
99 	u16 regval;
100 };
101 
102 /* ICH Flash Protected Region */
103 union ich8_flash_protected_range {
104 	struct ich8_pr {
105 		u32 base:13;	/* 0:12 Protected Range Base */
106 		u32 reserved1:2;	/* 13:14 Reserved */
107 		u32 rpe:1;	/* 15 Read Protection Enable */
108 		u32 limit:13;	/* 16:28 Protected Range Limit */
109 		u32 reserved2:2;	/* 29:30 Reserved */
110 		u32 wpe:1;	/* 31 Write Protection Enable */
111 	} range;
112 	u32 regval;
113 };
114 
115 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
116 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
117 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
118 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
119 						u32 offset, u8 byte);
120 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
121 					 u8 *data);
122 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
123 					 u16 *data);
124 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
125 					 u8 size, u16 *data);
126 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
127 					   u32 *data);
128 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
129 					  u32 offset, u32 *data);
130 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
131 					    u32 offset, u32 data);
132 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
133 						 u32 offset, u32 dword);
134 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
135 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
136 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
137 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
138 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
139 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
140 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
141 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
142 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
143 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
144 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
145 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
146 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
147 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
148 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
149 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
150 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
151 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
152 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw);
153 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
154 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
155 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
156 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
157 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
158 
159 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
160 {
161 	return readw(hw->flash_address + reg);
162 }
163 
164 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
165 {
166 	return readl(hw->flash_address + reg);
167 }
168 
169 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
170 {
171 	writew(val, hw->flash_address + reg);
172 }
173 
174 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
175 {
176 	writel(val, hw->flash_address + reg);
177 }
178 
179 #define er16flash(reg)		__er16flash(hw, (reg))
180 #define er32flash(reg)		__er32flash(hw, (reg))
181 #define ew16flash(reg, val)	__ew16flash(hw, (reg), (val))
182 #define ew32flash(reg, val)	__ew32flash(hw, (reg), (val))
183 
184 /**
185  *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
186  *  @hw: pointer to the HW structure
187  *
188  *  Test access to the PHY registers by reading the PHY ID registers.  If
189  *  the PHY ID is already known (e.g. resume path) compare it with known ID,
190  *  otherwise assume the read PHY ID is correct if it is valid.
191  *
192  *  Assumes the sw/fw/hw semaphore is already acquired.
193  **/
194 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
195 {
196 	u16 phy_reg = 0;
197 	u32 phy_id = 0;
198 	s32 ret_val = 0;
199 	u16 retry_count;
200 	u32 mac_reg = 0;
201 
202 	for (retry_count = 0; retry_count < 2; retry_count++) {
203 		ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
204 		if (ret_val || (phy_reg == 0xFFFF))
205 			continue;
206 		phy_id = (u32)(phy_reg << 16);
207 
208 		ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
209 		if (ret_val || (phy_reg == 0xFFFF)) {
210 			phy_id = 0;
211 			continue;
212 		}
213 		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
214 		break;
215 	}
216 
217 	if (hw->phy.id) {
218 		if (hw->phy.id == phy_id)
219 			goto out;
220 	} else if (phy_id) {
221 		hw->phy.id = phy_id;
222 		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
223 		goto out;
224 	}
225 
226 	/* In case the PHY needs to be in mdio slow mode,
227 	 * set slow mode and try to get the PHY id again.
228 	 */
229 	if (hw->mac.type < e1000_pch_lpt) {
230 		hw->phy.ops.release(hw);
231 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
232 		if (!ret_val)
233 			ret_val = e1000e_get_phy_id(hw);
234 		hw->phy.ops.acquire(hw);
235 	}
236 
237 	if (ret_val)
238 		return false;
239 out:
240 	if ((hw->mac.type == e1000_pch_lpt) ||
241 	    (hw->mac.type == e1000_pch_spt)) {
242 		/* Unforce SMBus mode in PHY */
243 		e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
244 		phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
245 		e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
246 
247 		/* Unforce SMBus mode in MAC */
248 		mac_reg = er32(CTRL_EXT);
249 		mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
250 		ew32(CTRL_EXT, mac_reg);
251 	}
252 
253 	return true;
254 }
255 
256 /**
257  *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
258  *  @hw: pointer to the HW structure
259  *
260  *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
261  *  used to reset the PHY to a quiescent state when necessary.
262  **/
263 static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
264 {
265 	u32 mac_reg;
266 
267 	/* Set Phy Config Counter to 50msec */
268 	mac_reg = er32(FEXTNVM3);
269 	mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
270 	mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
271 	ew32(FEXTNVM3, mac_reg);
272 
273 	/* Toggle LANPHYPC Value bit */
274 	mac_reg = er32(CTRL);
275 	mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
276 	mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
277 	ew32(CTRL, mac_reg);
278 	e1e_flush();
279 	usleep_range(10, 20);
280 	mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
281 	ew32(CTRL, mac_reg);
282 	e1e_flush();
283 
284 	if (hw->mac.type < e1000_pch_lpt) {
285 		msleep(50);
286 	} else {
287 		u16 count = 20;
288 
289 		do {
290 			usleep_range(5000, 10000);
291 		} while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
292 
293 		msleep(30);
294 	}
295 }
296 
297 /**
298  *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
299  *  @hw: pointer to the HW structure
300  *
301  *  Workarounds/flow necessary for PHY initialization during driver load
302  *  and resume paths.
303  **/
304 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
305 {
306 	struct e1000_adapter *adapter = hw->adapter;
307 	u32 mac_reg, fwsm = er32(FWSM);
308 	s32 ret_val;
309 
310 	/* Gate automatic PHY configuration by hardware on managed and
311 	 * non-managed 82579 and newer adapters.
312 	 */
313 	e1000_gate_hw_phy_config_ich8lan(hw, true);
314 
315 	/* It is not possible to be certain of the current state of ULP
316 	 * so forcibly disable it.
317 	 */
318 	hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
319 	e1000_disable_ulp_lpt_lp(hw, true);
320 
321 	ret_val = hw->phy.ops.acquire(hw);
322 	if (ret_val) {
323 		e_dbg("Failed to initialize PHY flow\n");
324 		goto out;
325 	}
326 
327 	/* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
328 	 * inaccessible and resetting the PHY is not blocked, toggle the
329 	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
330 	 */
331 	switch (hw->mac.type) {
332 	case e1000_pch_lpt:
333 	case e1000_pch_spt:
334 		if (e1000_phy_is_accessible_pchlan(hw))
335 			break;
336 
337 		/* Before toggling LANPHYPC, see if PHY is accessible by
338 		 * forcing MAC to SMBus mode first.
339 		 */
340 		mac_reg = er32(CTRL_EXT);
341 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
342 		ew32(CTRL_EXT, mac_reg);
343 
344 		/* Wait 50 milliseconds for MAC to finish any retries
345 		 * that it might be trying to perform from previous
346 		 * attempts to acknowledge any phy read requests.
347 		 */
348 		msleep(50);
349 
350 		/* fall-through */
351 	case e1000_pch2lan:
352 		if (e1000_phy_is_accessible_pchlan(hw))
353 			break;
354 
355 		/* fall-through */
356 	case e1000_pchlan:
357 		if ((hw->mac.type == e1000_pchlan) &&
358 		    (fwsm & E1000_ICH_FWSM_FW_VALID))
359 			break;
360 
361 		if (hw->phy.ops.check_reset_block(hw)) {
362 			e_dbg("Required LANPHYPC toggle blocked by ME\n");
363 			ret_val = -E1000_ERR_PHY;
364 			break;
365 		}
366 
367 		/* Toggle LANPHYPC Value bit */
368 		e1000_toggle_lanphypc_pch_lpt(hw);
369 		if (hw->mac.type >= e1000_pch_lpt) {
370 			if (e1000_phy_is_accessible_pchlan(hw))
371 				break;
372 
373 			/* Toggling LANPHYPC brings the PHY out of SMBus mode
374 			 * so ensure that the MAC is also out of SMBus mode
375 			 */
376 			mac_reg = er32(CTRL_EXT);
377 			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
378 			ew32(CTRL_EXT, mac_reg);
379 
380 			if (e1000_phy_is_accessible_pchlan(hw))
381 				break;
382 
383 			ret_val = -E1000_ERR_PHY;
384 		}
385 		break;
386 	default:
387 		break;
388 	}
389 
390 	hw->phy.ops.release(hw);
391 	if (!ret_val) {
392 
393 		/* Check to see if able to reset PHY.  Print error if not */
394 		if (hw->phy.ops.check_reset_block(hw)) {
395 			e_err("Reset blocked by ME\n");
396 			goto out;
397 		}
398 
399 		/* Reset the PHY before any access to it.  Doing so, ensures
400 		 * that the PHY is in a known good state before we read/write
401 		 * PHY registers.  The generic reset is sufficient here,
402 		 * because we haven't determined the PHY type yet.
403 		 */
404 		ret_val = e1000e_phy_hw_reset_generic(hw);
405 		if (ret_val)
406 			goto out;
407 
408 		/* On a successful reset, possibly need to wait for the PHY
409 		 * to quiesce to an accessible state before returning control
410 		 * to the calling function.  If the PHY does not quiesce, then
411 		 * return E1000E_BLK_PHY_RESET, as this is the condition that
412 		 *  the PHY is in.
413 		 */
414 		ret_val = hw->phy.ops.check_reset_block(hw);
415 		if (ret_val)
416 			e_err("ME blocked access to PHY after reset\n");
417 	}
418 
419 out:
420 	/* Ungate automatic PHY configuration on non-managed 82579 */
421 	if ((hw->mac.type == e1000_pch2lan) &&
422 	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
423 		usleep_range(10000, 20000);
424 		e1000_gate_hw_phy_config_ich8lan(hw, false);
425 	}
426 
427 	return ret_val;
428 }
429 
430 /**
431  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
432  *  @hw: pointer to the HW structure
433  *
434  *  Initialize family-specific PHY parameters and function pointers.
435  **/
436 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
437 {
438 	struct e1000_phy_info *phy = &hw->phy;
439 	s32 ret_val;
440 
441 	phy->addr = 1;
442 	phy->reset_delay_us = 100;
443 
444 	phy->ops.set_page = e1000_set_page_igp;
445 	phy->ops.read_reg = e1000_read_phy_reg_hv;
446 	phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
447 	phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
448 	phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
449 	phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
450 	phy->ops.write_reg = e1000_write_phy_reg_hv;
451 	phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
452 	phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
453 	phy->ops.power_up = e1000_power_up_phy_copper;
454 	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
455 	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
456 
457 	phy->id = e1000_phy_unknown;
458 
459 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
460 	if (ret_val)
461 		return ret_val;
462 
463 	if (phy->id == e1000_phy_unknown)
464 		switch (hw->mac.type) {
465 		default:
466 			ret_val = e1000e_get_phy_id(hw);
467 			if (ret_val)
468 				return ret_val;
469 			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
470 				break;
471 			/* fall-through */
472 		case e1000_pch2lan:
473 		case e1000_pch_lpt:
474 		case e1000_pch_spt:
475 			/* In case the PHY needs to be in mdio slow mode,
476 			 * set slow mode and try to get the PHY id again.
477 			 */
478 			ret_val = e1000_set_mdio_slow_mode_hv(hw);
479 			if (ret_val)
480 				return ret_val;
481 			ret_val = e1000e_get_phy_id(hw);
482 			if (ret_val)
483 				return ret_val;
484 			break;
485 		}
486 	phy->type = e1000e_get_phy_type_from_id(phy->id);
487 
488 	switch (phy->type) {
489 	case e1000_phy_82577:
490 	case e1000_phy_82579:
491 	case e1000_phy_i217:
492 		phy->ops.check_polarity = e1000_check_polarity_82577;
493 		phy->ops.force_speed_duplex =
494 		    e1000_phy_force_speed_duplex_82577;
495 		phy->ops.get_cable_length = e1000_get_cable_length_82577;
496 		phy->ops.get_info = e1000_get_phy_info_82577;
497 		phy->ops.commit = e1000e_phy_sw_reset;
498 		break;
499 	case e1000_phy_82578:
500 		phy->ops.check_polarity = e1000_check_polarity_m88;
501 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
502 		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
503 		phy->ops.get_info = e1000e_get_phy_info_m88;
504 		break;
505 	default:
506 		ret_val = -E1000_ERR_PHY;
507 		break;
508 	}
509 
510 	return ret_val;
511 }
512 
513 /**
514  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
515  *  @hw: pointer to the HW structure
516  *
517  *  Initialize family-specific PHY parameters and function pointers.
518  **/
519 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
520 {
521 	struct e1000_phy_info *phy = &hw->phy;
522 	s32 ret_val;
523 	u16 i = 0;
524 
525 	phy->addr = 1;
526 	phy->reset_delay_us = 100;
527 
528 	phy->ops.power_up = e1000_power_up_phy_copper;
529 	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
530 
531 	/* We may need to do this twice - once for IGP and if that fails,
532 	 * we'll set BM func pointers and try again
533 	 */
534 	ret_val = e1000e_determine_phy_address(hw);
535 	if (ret_val) {
536 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
537 		phy->ops.read_reg = e1000e_read_phy_reg_bm;
538 		ret_val = e1000e_determine_phy_address(hw);
539 		if (ret_val) {
540 			e_dbg("Cannot determine PHY addr. Erroring out\n");
541 			return ret_val;
542 		}
543 	}
544 
545 	phy->id = 0;
546 	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
547 	       (i++ < 100)) {
548 		usleep_range(1000, 2000);
549 		ret_val = e1000e_get_phy_id(hw);
550 		if (ret_val)
551 			return ret_val;
552 	}
553 
554 	/* Verify phy id */
555 	switch (phy->id) {
556 	case IGP03E1000_E_PHY_ID:
557 		phy->type = e1000_phy_igp_3;
558 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
559 		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
560 		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
561 		phy->ops.get_info = e1000e_get_phy_info_igp;
562 		phy->ops.check_polarity = e1000_check_polarity_igp;
563 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
564 		break;
565 	case IFE_E_PHY_ID:
566 	case IFE_PLUS_E_PHY_ID:
567 	case IFE_C_E_PHY_ID:
568 		phy->type = e1000_phy_ife;
569 		phy->autoneg_mask = E1000_ALL_NOT_GIG;
570 		phy->ops.get_info = e1000_get_phy_info_ife;
571 		phy->ops.check_polarity = e1000_check_polarity_ife;
572 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
573 		break;
574 	case BME1000_E_PHY_ID:
575 		phy->type = e1000_phy_bm;
576 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
577 		phy->ops.read_reg = e1000e_read_phy_reg_bm;
578 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
579 		phy->ops.commit = e1000e_phy_sw_reset;
580 		phy->ops.get_info = e1000e_get_phy_info_m88;
581 		phy->ops.check_polarity = e1000_check_polarity_m88;
582 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
583 		break;
584 	default:
585 		return -E1000_ERR_PHY;
586 	}
587 
588 	return 0;
589 }
590 
591 /**
592  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
593  *  @hw: pointer to the HW structure
594  *
595  *  Initialize family-specific NVM parameters and function
596  *  pointers.
597  **/
598 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
599 {
600 	struct e1000_nvm_info *nvm = &hw->nvm;
601 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
602 	u32 gfpreg, sector_base_addr, sector_end_addr;
603 	u16 i;
604 	u32 nvm_size;
605 
606 	nvm->type = e1000_nvm_flash_sw;
607 
608 	if (hw->mac.type == e1000_pch_spt) {
609 		/* in SPT, gfpreg doesn't exist. NVM size is taken from the
610 		 * STRAP register. This is because in SPT the GbE Flash region
611 		 * is no longer accessed through the flash registers. Instead,
612 		 * the mechanism has changed, and the Flash region access
613 		 * registers are now implemented in GbE memory space.
614 		 */
615 		nvm->flash_base_addr = 0;
616 		nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1)
617 		    * NVM_SIZE_MULTIPLIER;
618 		nvm->flash_bank_size = nvm_size / 2;
619 		/* Adjust to word count */
620 		nvm->flash_bank_size /= sizeof(u16);
621 		/* Set the base address for flash register access */
622 		hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
623 	} else {
624 		/* Can't read flash registers if register set isn't mapped. */
625 		if (!hw->flash_address) {
626 			e_dbg("ERROR: Flash registers not mapped\n");
627 			return -E1000_ERR_CONFIG;
628 		}
629 
630 		gfpreg = er32flash(ICH_FLASH_GFPREG);
631 
632 		/* sector_X_addr is a "sector"-aligned address (4096 bytes)
633 		 * Add 1 to sector_end_addr since this sector is included in
634 		 * the overall size.
635 		 */
636 		sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
637 		sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
638 
639 		/* flash_base_addr is byte-aligned */
640 		nvm->flash_base_addr = sector_base_addr
641 		    << FLASH_SECTOR_ADDR_SHIFT;
642 
643 		/* find total size of the NVM, then cut in half since the total
644 		 * size represents two separate NVM banks.
645 		 */
646 		nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
647 					<< FLASH_SECTOR_ADDR_SHIFT);
648 		nvm->flash_bank_size /= 2;
649 		/* Adjust to word count */
650 		nvm->flash_bank_size /= sizeof(u16);
651 	}
652 
653 	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
654 
655 	/* Clear shadow ram */
656 	for (i = 0; i < nvm->word_size; i++) {
657 		dev_spec->shadow_ram[i].modified = false;
658 		dev_spec->shadow_ram[i].value = 0xFFFF;
659 	}
660 
661 	return 0;
662 }
663 
664 /**
665  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
666  *  @hw: pointer to the HW structure
667  *
668  *  Initialize family-specific MAC parameters and function
669  *  pointers.
670  **/
671 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
672 {
673 	struct e1000_mac_info *mac = &hw->mac;
674 
675 	/* Set media type function pointer */
676 	hw->phy.media_type = e1000_media_type_copper;
677 
678 	/* Set mta register count */
679 	mac->mta_reg_count = 32;
680 	/* Set rar entry count */
681 	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
682 	if (mac->type == e1000_ich8lan)
683 		mac->rar_entry_count--;
684 	/* FWSM register */
685 	mac->has_fwsm = true;
686 	/* ARC subsystem not supported */
687 	mac->arc_subsystem_valid = false;
688 	/* Adaptive IFS supported */
689 	mac->adaptive_ifs = true;
690 
691 	/* LED and other operations */
692 	switch (mac->type) {
693 	case e1000_ich8lan:
694 	case e1000_ich9lan:
695 	case e1000_ich10lan:
696 		/* check management mode */
697 		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
698 		/* ID LED init */
699 		mac->ops.id_led_init = e1000e_id_led_init_generic;
700 		/* blink LED */
701 		mac->ops.blink_led = e1000e_blink_led_generic;
702 		/* setup LED */
703 		mac->ops.setup_led = e1000e_setup_led_generic;
704 		/* cleanup LED */
705 		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
706 		/* turn on/off LED */
707 		mac->ops.led_on = e1000_led_on_ich8lan;
708 		mac->ops.led_off = e1000_led_off_ich8lan;
709 		break;
710 	case e1000_pch2lan:
711 		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
712 		mac->ops.rar_set = e1000_rar_set_pch2lan;
713 		/* fall-through */
714 	case e1000_pch_lpt:
715 	case e1000_pch_spt:
716 	case e1000_pchlan:
717 		/* check management mode */
718 		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
719 		/* ID LED init */
720 		mac->ops.id_led_init = e1000_id_led_init_pchlan;
721 		/* setup LED */
722 		mac->ops.setup_led = e1000_setup_led_pchlan;
723 		/* cleanup LED */
724 		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
725 		/* turn on/off LED */
726 		mac->ops.led_on = e1000_led_on_pchlan;
727 		mac->ops.led_off = e1000_led_off_pchlan;
728 		break;
729 	default:
730 		break;
731 	}
732 
733 	if ((mac->type == e1000_pch_lpt) || (mac->type == e1000_pch_spt)) {
734 		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
735 		mac->ops.rar_set = e1000_rar_set_pch_lpt;
736 		mac->ops.setup_physical_interface =
737 		    e1000_setup_copper_link_pch_lpt;
738 		mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt;
739 	}
740 
741 	/* Enable PCS Lock-loss workaround for ICH8 */
742 	if (mac->type == e1000_ich8lan)
743 		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
744 
745 	return 0;
746 }
747 
748 /**
749  *  __e1000_access_emi_reg_locked - Read/write EMI register
750  *  @hw: pointer to the HW structure
751  *  @addr: EMI address to program
752  *  @data: pointer to value to read/write from/to the EMI address
753  *  @read: boolean flag to indicate read or write
754  *
755  *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
756  **/
757 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
758 					 u16 *data, bool read)
759 {
760 	s32 ret_val;
761 
762 	ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
763 	if (ret_val)
764 		return ret_val;
765 
766 	if (read)
767 		ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
768 	else
769 		ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
770 
771 	return ret_val;
772 }
773 
774 /**
775  *  e1000_read_emi_reg_locked - Read Extended Management Interface register
776  *  @hw: pointer to the HW structure
777  *  @addr: EMI address to program
778  *  @data: value to be read from the EMI address
779  *
780  *  Assumes the SW/FW/HW Semaphore is already acquired.
781  **/
782 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
783 {
784 	return __e1000_access_emi_reg_locked(hw, addr, data, true);
785 }
786 
787 /**
788  *  e1000_write_emi_reg_locked - Write Extended Management Interface register
789  *  @hw: pointer to the HW structure
790  *  @addr: EMI address to program
791  *  @data: value to be written to the EMI address
792  *
793  *  Assumes the SW/FW/HW Semaphore is already acquired.
794  **/
795 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
796 {
797 	return __e1000_access_emi_reg_locked(hw, addr, &data, false);
798 }
799 
800 /**
801  *  e1000_set_eee_pchlan - Enable/disable EEE support
802  *  @hw: pointer to the HW structure
803  *
804  *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
805  *  the link and the EEE capabilities of the link partner.  The LPI Control
806  *  register bits will remain set only if/when link is up.
807  *
808  *  EEE LPI must not be asserted earlier than one second after link is up.
809  *  On 82579, EEE LPI should not be enabled until such time otherwise there
810  *  can be link issues with some switches.  Other devices can have EEE LPI
811  *  enabled immediately upon link up since they have a timer in hardware which
812  *  prevents LPI from being asserted too early.
813  **/
814 s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
815 {
816 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
817 	s32 ret_val;
818 	u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
819 
820 	switch (hw->phy.type) {
821 	case e1000_phy_82579:
822 		lpa = I82579_EEE_LP_ABILITY;
823 		pcs_status = I82579_EEE_PCS_STATUS;
824 		adv_addr = I82579_EEE_ADVERTISEMENT;
825 		break;
826 	case e1000_phy_i217:
827 		lpa = I217_EEE_LP_ABILITY;
828 		pcs_status = I217_EEE_PCS_STATUS;
829 		adv_addr = I217_EEE_ADVERTISEMENT;
830 		break;
831 	default:
832 		return 0;
833 	}
834 
835 	ret_val = hw->phy.ops.acquire(hw);
836 	if (ret_val)
837 		return ret_val;
838 
839 	ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
840 	if (ret_val)
841 		goto release;
842 
843 	/* Clear bits that enable EEE in various speeds */
844 	lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
845 
846 	/* Enable EEE if not disabled by user */
847 	if (!dev_spec->eee_disable) {
848 		/* Save off link partner's EEE ability */
849 		ret_val = e1000_read_emi_reg_locked(hw, lpa,
850 						    &dev_spec->eee_lp_ability);
851 		if (ret_val)
852 			goto release;
853 
854 		/* Read EEE advertisement */
855 		ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
856 		if (ret_val)
857 			goto release;
858 
859 		/* Enable EEE only for speeds in which the link partner is
860 		 * EEE capable and for which we advertise EEE.
861 		 */
862 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
863 			lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
864 
865 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
866 			e1e_rphy_locked(hw, MII_LPA, &data);
867 			if (data & LPA_100FULL)
868 				lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
869 			else
870 				/* EEE is not supported in 100Half, so ignore
871 				 * partner's EEE in 100 ability if full-duplex
872 				 * is not advertised.
873 				 */
874 				dev_spec->eee_lp_ability &=
875 				    ~I82579_EEE_100_SUPPORTED;
876 		}
877 	}
878 
879 	if (hw->phy.type == e1000_phy_82579) {
880 		ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
881 						    &data);
882 		if (ret_val)
883 			goto release;
884 
885 		data &= ~I82579_LPI_100_PLL_SHUT;
886 		ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
887 						     data);
888 	}
889 
890 	/* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
891 	ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
892 	if (ret_val)
893 		goto release;
894 
895 	ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
896 release:
897 	hw->phy.ops.release(hw);
898 
899 	return ret_val;
900 }
901 
902 /**
903  *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
904  *  @hw:   pointer to the HW structure
905  *  @link: link up bool flag
906  *
907  *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
908  *  preventing further DMA write requests.  Workaround the issue by disabling
909  *  the de-assertion of the clock request when in 1Gpbs mode.
910  *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
911  *  speeds in order to avoid Tx hangs.
912  **/
913 static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
914 {
915 	u32 fextnvm6 = er32(FEXTNVM6);
916 	u32 status = er32(STATUS);
917 	s32 ret_val = 0;
918 	u16 reg;
919 
920 	if (link && (status & E1000_STATUS_SPEED_1000)) {
921 		ret_val = hw->phy.ops.acquire(hw);
922 		if (ret_val)
923 			return ret_val;
924 
925 		ret_val =
926 		    e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
927 						&reg);
928 		if (ret_val)
929 			goto release;
930 
931 		ret_val =
932 		    e1000e_write_kmrn_reg_locked(hw,
933 						 E1000_KMRNCTRLSTA_K1_CONFIG,
934 						 reg &
935 						 ~E1000_KMRNCTRLSTA_K1_ENABLE);
936 		if (ret_val)
937 			goto release;
938 
939 		usleep_range(10, 20);
940 
941 		ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
942 
943 		ret_val =
944 		    e1000e_write_kmrn_reg_locked(hw,
945 						 E1000_KMRNCTRLSTA_K1_CONFIG,
946 						 reg);
947 release:
948 		hw->phy.ops.release(hw);
949 	} else {
950 		/* clear FEXTNVM6 bit 8 on link down or 10/100 */
951 		fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
952 
953 		if ((hw->phy.revision > 5) || !link ||
954 		    ((status & E1000_STATUS_SPEED_100) &&
955 		     (status & E1000_STATUS_FD)))
956 			goto update_fextnvm6;
957 
958 		ret_val = e1e_rphy(hw, I217_INBAND_CTRL, &reg);
959 		if (ret_val)
960 			return ret_val;
961 
962 		/* Clear link status transmit timeout */
963 		reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
964 
965 		if (status & E1000_STATUS_SPEED_100) {
966 			/* Set inband Tx timeout to 5x10us for 100Half */
967 			reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
968 
969 			/* Do not extend the K1 entry latency for 100Half */
970 			fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
971 		} else {
972 			/* Set inband Tx timeout to 50x10us for 10Full/Half */
973 			reg |= 50 <<
974 			    I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
975 
976 			/* Extend the K1 entry latency for 10 Mbps */
977 			fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
978 		}
979 
980 		ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
981 		if (ret_val)
982 			return ret_val;
983 
984 update_fextnvm6:
985 		ew32(FEXTNVM6, fextnvm6);
986 	}
987 
988 	return ret_val;
989 }
990 
991 /**
992  *  e1000_platform_pm_pch_lpt - Set platform power management values
993  *  @hw: pointer to the HW structure
994  *  @link: bool indicating link status
995  *
996  *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
997  *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
998  *  when link is up (which must not exceed the maximum latency supported
999  *  by the platform), otherwise specify there is no LTR requirement.
1000  *  Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
1001  *  latencies in the LTR Extended Capability Structure in the PCIe Extended
1002  *  Capability register set, on this device LTR is set by writing the
1003  *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1004  *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1005  *  message to the PMC.
1006  **/
1007 static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1008 {
1009 	u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1010 	    link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1011 	u16 lat_enc = 0;	/* latency encoded */
1012 
1013 	if (link) {
1014 		u16 speed, duplex, scale = 0;
1015 		u16 max_snoop, max_nosnoop;
1016 		u16 max_ltr_enc;	/* max LTR latency encoded */
1017 		s64 lat_ns;	/* latency (ns) */
1018 		s64 value;
1019 		u32 rxa;
1020 
1021 		if (!hw->adapter->max_frame_size) {
1022 			e_dbg("max_frame_size not set.\n");
1023 			return -E1000_ERR_CONFIG;
1024 		}
1025 
1026 		hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1027 		if (!speed) {
1028 			e_dbg("Speed not set.\n");
1029 			return -E1000_ERR_CONFIG;
1030 		}
1031 
1032 		/* Rx Packet Buffer Allocation size (KB) */
1033 		rxa = er32(PBA) & E1000_PBA_RXA_MASK;
1034 
1035 		/* Determine the maximum latency tolerated by the device.
1036 		 *
1037 		 * Per the PCIe spec, the tolerated latencies are encoded as
1038 		 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1039 		 * a 10-bit value (0-1023) to provide a range from 1 ns to
1040 		 * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1041 		 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1042 		 */
1043 		lat_ns = ((s64)rxa * 1024 -
1044 			  (2 * (s64)hw->adapter->max_frame_size)) * 8 * 1000;
1045 		if (lat_ns < 0)
1046 			lat_ns = 0;
1047 		else
1048 			do_div(lat_ns, speed);
1049 
1050 		value = lat_ns;
1051 		while (value > PCI_LTR_VALUE_MASK) {
1052 			scale++;
1053 			value = DIV_ROUND_UP(value, (1 << 5));
1054 		}
1055 		if (scale > E1000_LTRV_SCALE_MAX) {
1056 			e_dbg("Invalid LTR latency scale %d\n", scale);
1057 			return -E1000_ERR_CONFIG;
1058 		}
1059 		lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1060 
1061 		/* Determine the maximum latency tolerated by the platform */
1062 		pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1063 				     &max_snoop);
1064 		pci_read_config_word(hw->adapter->pdev,
1065 				     E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1066 		max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1067 
1068 		if (lat_enc > max_ltr_enc)
1069 			lat_enc = max_ltr_enc;
1070 	}
1071 
1072 	/* Set Snoop and No-Snoop latencies the same */
1073 	reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1074 	ew32(LTRV, reg);
1075 
1076 	return 0;
1077 }
1078 
1079 /**
1080  *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1081  *  @hw: pointer to the HW structure
1082  *  @to_sx: boolean indicating a system power state transition to Sx
1083  *
1084  *  When link is down, configure ULP mode to significantly reduce the power
1085  *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1086  *  ME firmware to start the ULP configuration.  If not on an ME enabled
1087  *  system, configure the ULP mode by software.
1088  */
1089 s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1090 {
1091 	u32 mac_reg;
1092 	s32 ret_val = 0;
1093 	u16 phy_reg;
1094 
1095 	if ((hw->mac.type < e1000_pch_lpt) ||
1096 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1097 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1098 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1099 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1100 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1101 		return 0;
1102 
1103 	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1104 		/* Request ME configure ULP mode in the PHY */
1105 		mac_reg = er32(H2ME);
1106 		mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1107 		ew32(H2ME, mac_reg);
1108 
1109 		goto out;
1110 	}
1111 
1112 	if (!to_sx) {
1113 		int i = 0;
1114 
1115 		/* Poll up to 5 seconds for Cable Disconnected indication */
1116 		while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1117 			/* Bail if link is re-acquired */
1118 			if (er32(STATUS) & E1000_STATUS_LU)
1119 				return -E1000_ERR_PHY;
1120 
1121 			if (i++ == 100)
1122 				break;
1123 
1124 			msleep(50);
1125 		}
1126 		e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1127 		      (er32(FEXT) &
1128 		       E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1129 	}
1130 
1131 	ret_val = hw->phy.ops.acquire(hw);
1132 	if (ret_val)
1133 		goto out;
1134 
1135 	/* Si workaround for ULP entry flow on i127/rev6 h/w.  Enable
1136 	 * LPLU and disable Gig speed when entering ULP
1137 	 */
1138 	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1139 		ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1140 						       &phy_reg);
1141 		if (ret_val)
1142 			goto release;
1143 		phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1144 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1145 							phy_reg);
1146 		if (ret_val)
1147 			goto release;
1148 	}
1149 
1150 	/* Force SMBus mode in PHY */
1151 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1152 	if (ret_val)
1153 		goto release;
1154 	phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1155 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1156 
1157 	/* Force SMBus mode in MAC */
1158 	mac_reg = er32(CTRL_EXT);
1159 	mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1160 	ew32(CTRL_EXT, mac_reg);
1161 
1162 	/* Set Inband ULP Exit, Reset to SMBus mode and
1163 	 * Disable SMBus Release on PERST# in PHY
1164 	 */
1165 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1166 	if (ret_val)
1167 		goto release;
1168 	phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1169 		    I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1170 	if (to_sx) {
1171 		if (er32(WUFC) & E1000_WUFC_LNKC)
1172 			phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1173 
1174 		phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1175 	} else {
1176 		phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1177 	}
1178 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1179 
1180 	/* Set Disable SMBus Release on PERST# in MAC */
1181 	mac_reg = er32(FEXTNVM7);
1182 	mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1183 	ew32(FEXTNVM7, mac_reg);
1184 
1185 	/* Commit ULP changes in PHY by starting auto ULP configuration */
1186 	phy_reg |= I218_ULP_CONFIG1_START;
1187 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1188 release:
1189 	hw->phy.ops.release(hw);
1190 out:
1191 	if (ret_val)
1192 		e_dbg("Error in ULP enable flow: %d\n", ret_val);
1193 	else
1194 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1195 
1196 	return ret_val;
1197 }
1198 
1199 /**
1200  *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1201  *  @hw: pointer to the HW structure
1202  *  @force: boolean indicating whether or not to force disabling ULP
1203  *
1204  *  Un-configure ULP mode when link is up, the system is transitioned from
1205  *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1206  *  system, poll for an indication from ME that ULP has been un-configured.
1207  *  If not on an ME enabled system, un-configure the ULP mode by software.
1208  *
1209  *  During nominal operation, this function is called when link is acquired
1210  *  to disable ULP mode (force=false); otherwise, for example when unloading
1211  *  the driver or during Sx->S0 transitions, this is called with force=true
1212  *  to forcibly disable ULP.
1213  */
1214 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1215 {
1216 	s32 ret_val = 0;
1217 	u32 mac_reg;
1218 	u16 phy_reg;
1219 	int i = 0;
1220 
1221 	if ((hw->mac.type < e1000_pch_lpt) ||
1222 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1223 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1224 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1225 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1226 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1227 		return 0;
1228 
1229 	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1230 		if (force) {
1231 			/* Request ME un-configure ULP mode in the PHY */
1232 			mac_reg = er32(H2ME);
1233 			mac_reg &= ~E1000_H2ME_ULP;
1234 			mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1235 			ew32(H2ME, mac_reg);
1236 		}
1237 
1238 		/* Poll up to 100msec for ME to clear ULP_CFG_DONE */
1239 		while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1240 			if (i++ == 10) {
1241 				ret_val = -E1000_ERR_PHY;
1242 				goto out;
1243 			}
1244 
1245 			usleep_range(10000, 20000);
1246 		}
1247 		e_dbg("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10);
1248 
1249 		if (force) {
1250 			mac_reg = er32(H2ME);
1251 			mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1252 			ew32(H2ME, mac_reg);
1253 		} else {
1254 			/* Clear H2ME.ULP after ME ULP configuration */
1255 			mac_reg = er32(H2ME);
1256 			mac_reg &= ~E1000_H2ME_ULP;
1257 			ew32(H2ME, mac_reg);
1258 		}
1259 
1260 		goto out;
1261 	}
1262 
1263 	ret_val = hw->phy.ops.acquire(hw);
1264 	if (ret_val)
1265 		goto out;
1266 
1267 	if (force)
1268 		/* Toggle LANPHYPC Value bit */
1269 		e1000_toggle_lanphypc_pch_lpt(hw);
1270 
1271 	/* Unforce SMBus mode in PHY */
1272 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1273 	if (ret_val) {
1274 		/* The MAC might be in PCIe mode, so temporarily force to
1275 		 * SMBus mode in order to access the PHY.
1276 		 */
1277 		mac_reg = er32(CTRL_EXT);
1278 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1279 		ew32(CTRL_EXT, mac_reg);
1280 
1281 		msleep(50);
1282 
1283 		ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1284 						       &phy_reg);
1285 		if (ret_val)
1286 			goto release;
1287 	}
1288 	phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1289 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1290 
1291 	/* Unforce SMBus mode in MAC */
1292 	mac_reg = er32(CTRL_EXT);
1293 	mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1294 	ew32(CTRL_EXT, mac_reg);
1295 
1296 	/* When ULP mode was previously entered, K1 was disabled by the
1297 	 * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1298 	 */
1299 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1300 	if (ret_val)
1301 		goto release;
1302 	phy_reg |= HV_PM_CTRL_K1_ENABLE;
1303 	e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1304 
1305 	/* Clear ULP enabled configuration */
1306 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1307 	if (ret_val)
1308 		goto release;
1309 	phy_reg &= ~(I218_ULP_CONFIG1_IND |
1310 		     I218_ULP_CONFIG1_STICKY_ULP |
1311 		     I218_ULP_CONFIG1_RESET_TO_SMBUS |
1312 		     I218_ULP_CONFIG1_WOL_HOST |
1313 		     I218_ULP_CONFIG1_INBAND_EXIT |
1314 		     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1315 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1316 
1317 	/* Commit ULP changes by starting auto ULP configuration */
1318 	phy_reg |= I218_ULP_CONFIG1_START;
1319 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1320 
1321 	/* Clear Disable SMBus Release on PERST# in MAC */
1322 	mac_reg = er32(FEXTNVM7);
1323 	mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1324 	ew32(FEXTNVM7, mac_reg);
1325 
1326 release:
1327 	hw->phy.ops.release(hw);
1328 	if (force) {
1329 		e1000_phy_hw_reset(hw);
1330 		msleep(50);
1331 	}
1332 out:
1333 	if (ret_val)
1334 		e_dbg("Error in ULP disable flow: %d\n", ret_val);
1335 	else
1336 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1337 
1338 	return ret_val;
1339 }
1340 
1341 /**
1342  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1343  *  @hw: pointer to the HW structure
1344  *
1345  *  Checks to see of the link status of the hardware has changed.  If a
1346  *  change in link status has been detected, then we read the PHY registers
1347  *  to get the current speed/duplex if link exists.
1348  **/
1349 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1350 {
1351 	struct e1000_mac_info *mac = &hw->mac;
1352 	s32 ret_val, tipg_reg = 0;
1353 	u16 emi_addr, emi_val = 0;
1354 	bool link;
1355 	u16 phy_reg;
1356 
1357 	/* We only want to go out to the PHY registers to see if Auto-Neg
1358 	 * has completed and/or if our link status has changed.  The
1359 	 * get_link_status flag is set upon receiving a Link Status
1360 	 * Change or Rx Sequence Error interrupt.
1361 	 */
1362 	if (!mac->get_link_status)
1363 		return 0;
1364 
1365 	/* First we want to see if the MII Status Register reports
1366 	 * link.  If so, then we want to get the current speed/duplex
1367 	 * of the PHY.
1368 	 */
1369 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1370 	if (ret_val)
1371 		return ret_val;
1372 
1373 	if (hw->mac.type == e1000_pchlan) {
1374 		ret_val = e1000_k1_gig_workaround_hv(hw, link);
1375 		if (ret_val)
1376 			return ret_val;
1377 	}
1378 
1379 	/* When connected at 10Mbps half-duplex, some parts are excessively
1380 	 * aggressive resulting in many collisions. To avoid this, increase
1381 	 * the IPG and reduce Rx latency in the PHY.
1382 	 */
1383 	if (((hw->mac.type == e1000_pch2lan) ||
1384 	     (hw->mac.type == e1000_pch_lpt) ||
1385 	     (hw->mac.type == e1000_pch_spt)) && link) {
1386 		u32 reg;
1387 
1388 		reg = er32(STATUS);
1389 		tipg_reg = er32(TIPG);
1390 		tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1391 
1392 		if (!(reg & (E1000_STATUS_FD | E1000_STATUS_SPEED_MASK))) {
1393 			tipg_reg |= 0xFF;
1394 			/* Reduce Rx latency in analog PHY */
1395 			emi_val = 0;
1396 		} else {
1397 
1398 			/* Roll back the default values */
1399 			tipg_reg |= 0x08;
1400 			emi_val = 1;
1401 		}
1402 
1403 		ew32(TIPG, tipg_reg);
1404 
1405 		ret_val = hw->phy.ops.acquire(hw);
1406 		if (ret_val)
1407 			return ret_val;
1408 
1409 		if (hw->mac.type == e1000_pch2lan)
1410 			emi_addr = I82579_RX_CONFIG;
1411 		else
1412 			emi_addr = I217_RX_CONFIG;
1413 		ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1414 
1415 		hw->phy.ops.release(hw);
1416 
1417 		if (ret_val)
1418 			return ret_val;
1419 	}
1420 
1421 	/* Work-around I218 hang issue */
1422 	if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1423 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1424 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1425 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3) ||
1426 	    (hw->mac.type == e1000_pch_spt)) {
1427 		ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1428 		if (ret_val)
1429 			return ret_val;
1430 	}
1431 	if ((hw->mac.type == e1000_pch_lpt) ||
1432 	    (hw->mac.type == e1000_pch_spt)) {
1433 		/* Set platform power management values for
1434 		 * Latency Tolerance Reporting (LTR)
1435 		 */
1436 		ret_val = e1000_platform_pm_pch_lpt(hw, link);
1437 		if (ret_val)
1438 			return ret_val;
1439 	}
1440 
1441 	/* Clear link partner's EEE ability */
1442 	hw->dev_spec.ich8lan.eee_lp_ability = 0;
1443 
1444 	/* FEXTNVM6 K1-off workaround */
1445 	if (hw->mac.type == e1000_pch_spt) {
1446 		u32 pcieanacfg = er32(PCIEANACFG);
1447 		u32 fextnvm6 = er32(FEXTNVM6);
1448 
1449 		if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1450 			fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1451 		else
1452 			fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1453 
1454 		ew32(FEXTNVM6, fextnvm6);
1455 	}
1456 
1457 	if (!link)
1458 		return 0;	/* No link detected */
1459 
1460 	mac->get_link_status = false;
1461 
1462 	switch (hw->mac.type) {
1463 	case e1000_pch2lan:
1464 		ret_val = e1000_k1_workaround_lv(hw);
1465 		if (ret_val)
1466 			return ret_val;
1467 		/* fall-thru */
1468 	case e1000_pchlan:
1469 		if (hw->phy.type == e1000_phy_82578) {
1470 			ret_val = e1000_link_stall_workaround_hv(hw);
1471 			if (ret_val)
1472 				return ret_val;
1473 		}
1474 
1475 		/* Workaround for PCHx parts in half-duplex:
1476 		 * Set the number of preambles removed from the packet
1477 		 * when it is passed from the PHY to the MAC to prevent
1478 		 * the MAC from misinterpreting the packet type.
1479 		 */
1480 		e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1481 		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1482 
1483 		if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1484 			phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1485 
1486 		e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1487 		break;
1488 	default:
1489 		break;
1490 	}
1491 
1492 	/* Check if there was DownShift, must be checked
1493 	 * immediately after link-up
1494 	 */
1495 	e1000e_check_downshift(hw);
1496 
1497 	/* Enable/Disable EEE after link up */
1498 	if (hw->phy.type > e1000_phy_82579) {
1499 		ret_val = e1000_set_eee_pchlan(hw);
1500 		if (ret_val)
1501 			return ret_val;
1502 	}
1503 
1504 	/* If we are forcing speed/duplex, then we simply return since
1505 	 * we have already determined whether we have link or not.
1506 	 */
1507 	if (!mac->autoneg)
1508 		return -E1000_ERR_CONFIG;
1509 
1510 	/* Auto-Neg is enabled.  Auto Speed Detection takes care
1511 	 * of MAC speed/duplex configuration.  So we only need to
1512 	 * configure Collision Distance in the MAC.
1513 	 */
1514 	mac->ops.config_collision_dist(hw);
1515 
1516 	/* Configure Flow Control now that Auto-Neg has completed.
1517 	 * First, we need to restore the desired flow control
1518 	 * settings because we may have had to re-autoneg with a
1519 	 * different link partner.
1520 	 */
1521 	ret_val = e1000e_config_fc_after_link_up(hw);
1522 	if (ret_val)
1523 		e_dbg("Error configuring flow control\n");
1524 
1525 	return ret_val;
1526 }
1527 
1528 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1529 {
1530 	struct e1000_hw *hw = &adapter->hw;
1531 	s32 rc;
1532 
1533 	rc = e1000_init_mac_params_ich8lan(hw);
1534 	if (rc)
1535 		return rc;
1536 
1537 	rc = e1000_init_nvm_params_ich8lan(hw);
1538 	if (rc)
1539 		return rc;
1540 
1541 	switch (hw->mac.type) {
1542 	case e1000_ich8lan:
1543 	case e1000_ich9lan:
1544 	case e1000_ich10lan:
1545 		rc = e1000_init_phy_params_ich8lan(hw);
1546 		break;
1547 	case e1000_pchlan:
1548 	case e1000_pch2lan:
1549 	case e1000_pch_lpt:
1550 	case e1000_pch_spt:
1551 		rc = e1000_init_phy_params_pchlan(hw);
1552 		break;
1553 	default:
1554 		break;
1555 	}
1556 	if (rc)
1557 		return rc;
1558 
1559 	/* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1560 	 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1561 	 */
1562 	if ((adapter->hw.phy.type == e1000_phy_ife) ||
1563 	    ((adapter->hw.mac.type >= e1000_pch2lan) &&
1564 	     (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1565 		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1566 		adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
1567 
1568 		hw->mac.ops.blink_led = NULL;
1569 	}
1570 
1571 	if ((adapter->hw.mac.type == e1000_ich8lan) &&
1572 	    (adapter->hw.phy.type != e1000_phy_ife))
1573 		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1574 
1575 	/* Enable workaround for 82579 w/ ME enabled */
1576 	if ((adapter->hw.mac.type == e1000_pch2lan) &&
1577 	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1578 		adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1579 
1580 	return 0;
1581 }
1582 
1583 static DEFINE_MUTEX(nvm_mutex);
1584 
1585 /**
1586  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1587  *  @hw: pointer to the HW structure
1588  *
1589  *  Acquires the mutex for performing NVM operations.
1590  **/
1591 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1592 {
1593 	mutex_lock(&nvm_mutex);
1594 
1595 	return 0;
1596 }
1597 
1598 /**
1599  *  e1000_release_nvm_ich8lan - Release NVM mutex
1600  *  @hw: pointer to the HW structure
1601  *
1602  *  Releases the mutex used while performing NVM operations.
1603  **/
1604 static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1605 {
1606 	mutex_unlock(&nvm_mutex);
1607 }
1608 
1609 /**
1610  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1611  *  @hw: pointer to the HW structure
1612  *
1613  *  Acquires the software control flag for performing PHY and select
1614  *  MAC CSR accesses.
1615  **/
1616 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1617 {
1618 	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1619 	s32 ret_val = 0;
1620 
1621 	if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1622 			     &hw->adapter->state)) {
1623 		e_dbg("contention for Phy access\n");
1624 		return -E1000_ERR_PHY;
1625 	}
1626 
1627 	while (timeout) {
1628 		extcnf_ctrl = er32(EXTCNF_CTRL);
1629 		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1630 			break;
1631 
1632 		mdelay(1);
1633 		timeout--;
1634 	}
1635 
1636 	if (!timeout) {
1637 		e_dbg("SW has already locked the resource.\n");
1638 		ret_val = -E1000_ERR_CONFIG;
1639 		goto out;
1640 	}
1641 
1642 	timeout = SW_FLAG_TIMEOUT;
1643 
1644 	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1645 	ew32(EXTCNF_CTRL, extcnf_ctrl);
1646 
1647 	while (timeout) {
1648 		extcnf_ctrl = er32(EXTCNF_CTRL);
1649 		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1650 			break;
1651 
1652 		mdelay(1);
1653 		timeout--;
1654 	}
1655 
1656 	if (!timeout) {
1657 		e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1658 		      er32(FWSM), extcnf_ctrl);
1659 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1660 		ew32(EXTCNF_CTRL, extcnf_ctrl);
1661 		ret_val = -E1000_ERR_CONFIG;
1662 		goto out;
1663 	}
1664 
1665 out:
1666 	if (ret_val)
1667 		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1668 
1669 	return ret_val;
1670 }
1671 
1672 /**
1673  *  e1000_release_swflag_ich8lan - Release software control flag
1674  *  @hw: pointer to the HW structure
1675  *
1676  *  Releases the software control flag for performing PHY and select
1677  *  MAC CSR accesses.
1678  **/
1679 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1680 {
1681 	u32 extcnf_ctrl;
1682 
1683 	extcnf_ctrl = er32(EXTCNF_CTRL);
1684 
1685 	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1686 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1687 		ew32(EXTCNF_CTRL, extcnf_ctrl);
1688 	} else {
1689 		e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1690 	}
1691 
1692 	clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1693 }
1694 
1695 /**
1696  *  e1000_check_mng_mode_ich8lan - Checks management mode
1697  *  @hw: pointer to the HW structure
1698  *
1699  *  This checks if the adapter has any manageability enabled.
1700  *  This is a function pointer entry point only called by read/write
1701  *  routines for the PHY and NVM parts.
1702  **/
1703 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1704 {
1705 	u32 fwsm;
1706 
1707 	fwsm = er32(FWSM);
1708 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1709 		((fwsm & E1000_FWSM_MODE_MASK) ==
1710 		 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1711 }
1712 
1713 /**
1714  *  e1000_check_mng_mode_pchlan - Checks management mode
1715  *  @hw: pointer to the HW structure
1716  *
1717  *  This checks if the adapter has iAMT enabled.
1718  *  This is a function pointer entry point only called by read/write
1719  *  routines for the PHY and NVM parts.
1720  **/
1721 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1722 {
1723 	u32 fwsm;
1724 
1725 	fwsm = er32(FWSM);
1726 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1727 	    (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1728 }
1729 
1730 /**
1731  *  e1000_rar_set_pch2lan - Set receive address register
1732  *  @hw: pointer to the HW structure
1733  *  @addr: pointer to the receive address
1734  *  @index: receive address array register
1735  *
1736  *  Sets the receive address array register at index to the address passed
1737  *  in by addr.  For 82579, RAR[0] is the base address register that is to
1738  *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1739  *  Use SHRA[0-3] in place of those reserved for ME.
1740  **/
1741 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1742 {
1743 	u32 rar_low, rar_high;
1744 
1745 	/* HW expects these in little endian so we reverse the byte order
1746 	 * from network order (big endian) to little endian
1747 	 */
1748 	rar_low = ((u32)addr[0] |
1749 		   ((u32)addr[1] << 8) |
1750 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1751 
1752 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1753 
1754 	/* If MAC address zero, no need to set the AV bit */
1755 	if (rar_low || rar_high)
1756 		rar_high |= E1000_RAH_AV;
1757 
1758 	if (index == 0) {
1759 		ew32(RAL(index), rar_low);
1760 		e1e_flush();
1761 		ew32(RAH(index), rar_high);
1762 		e1e_flush();
1763 		return 0;
1764 	}
1765 
1766 	/* RAR[1-6] are owned by manageability.  Skip those and program the
1767 	 * next address into the SHRA register array.
1768 	 */
1769 	if (index < (u32)(hw->mac.rar_entry_count)) {
1770 		s32 ret_val;
1771 
1772 		ret_val = e1000_acquire_swflag_ich8lan(hw);
1773 		if (ret_val)
1774 			goto out;
1775 
1776 		ew32(SHRAL(index - 1), rar_low);
1777 		e1e_flush();
1778 		ew32(SHRAH(index - 1), rar_high);
1779 		e1e_flush();
1780 
1781 		e1000_release_swflag_ich8lan(hw);
1782 
1783 		/* verify the register updates */
1784 		if ((er32(SHRAL(index - 1)) == rar_low) &&
1785 		    (er32(SHRAH(index - 1)) == rar_high))
1786 			return 0;
1787 
1788 		e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1789 		      (index - 1), er32(FWSM));
1790 	}
1791 
1792 out:
1793 	e_dbg("Failed to write receive address at index %d\n", index);
1794 	return -E1000_ERR_CONFIG;
1795 }
1796 
1797 /**
1798  *  e1000_rar_get_count_pch_lpt - Get the number of available SHRA
1799  *  @hw: pointer to the HW structure
1800  *
1801  *  Get the number of available receive registers that the Host can
1802  *  program. SHRA[0-10] are the shared receive address registers
1803  *  that are shared between the Host and manageability engine (ME).
1804  *  ME can reserve any number of addresses and the host needs to be
1805  *  able to tell how many available registers it has access to.
1806  **/
1807 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw)
1808 {
1809 	u32 wlock_mac;
1810 	u32 num_entries;
1811 
1812 	wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1813 	wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1814 
1815 	switch (wlock_mac) {
1816 	case 0:
1817 		/* All SHRA[0..10] and RAR[0] available */
1818 		num_entries = hw->mac.rar_entry_count;
1819 		break;
1820 	case 1:
1821 		/* Only RAR[0] available */
1822 		num_entries = 1;
1823 		break;
1824 	default:
1825 		/* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
1826 		num_entries = wlock_mac + 1;
1827 		break;
1828 	}
1829 
1830 	return num_entries;
1831 }
1832 
1833 /**
1834  *  e1000_rar_set_pch_lpt - Set receive address registers
1835  *  @hw: pointer to the HW structure
1836  *  @addr: pointer to the receive address
1837  *  @index: receive address array register
1838  *
1839  *  Sets the receive address register array at index to the address passed
1840  *  in by addr. For LPT, RAR[0] is the base address register that is to
1841  *  contain the MAC address. SHRA[0-10] are the shared receive address
1842  *  registers that are shared between the Host and manageability engine (ME).
1843  **/
1844 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1845 {
1846 	u32 rar_low, rar_high;
1847 	u32 wlock_mac;
1848 
1849 	/* HW expects these in little endian so we reverse the byte order
1850 	 * from network order (big endian) to little endian
1851 	 */
1852 	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1853 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1854 
1855 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1856 
1857 	/* If MAC address zero, no need to set the AV bit */
1858 	if (rar_low || rar_high)
1859 		rar_high |= E1000_RAH_AV;
1860 
1861 	if (index == 0) {
1862 		ew32(RAL(index), rar_low);
1863 		e1e_flush();
1864 		ew32(RAH(index), rar_high);
1865 		e1e_flush();
1866 		return 0;
1867 	}
1868 
1869 	/* The manageability engine (ME) can lock certain SHRAR registers that
1870 	 * it is using - those registers are unavailable for use.
1871 	 */
1872 	if (index < hw->mac.rar_entry_count) {
1873 		wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1874 		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1875 
1876 		/* Check if all SHRAR registers are locked */
1877 		if (wlock_mac == 1)
1878 			goto out;
1879 
1880 		if ((wlock_mac == 0) || (index <= wlock_mac)) {
1881 			s32 ret_val;
1882 
1883 			ret_val = e1000_acquire_swflag_ich8lan(hw);
1884 
1885 			if (ret_val)
1886 				goto out;
1887 
1888 			ew32(SHRAL_PCH_LPT(index - 1), rar_low);
1889 			e1e_flush();
1890 			ew32(SHRAH_PCH_LPT(index - 1), rar_high);
1891 			e1e_flush();
1892 
1893 			e1000_release_swflag_ich8lan(hw);
1894 
1895 			/* verify the register updates */
1896 			if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
1897 			    (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
1898 				return 0;
1899 		}
1900 	}
1901 
1902 out:
1903 	e_dbg("Failed to write receive address at index %d\n", index);
1904 	return -E1000_ERR_CONFIG;
1905 }
1906 
1907 /**
1908  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
1909  *  @hw: pointer to the HW structure
1910  *
1911  *  Checks if firmware is blocking the reset of the PHY.
1912  *  This is a function pointer entry point only called by
1913  *  reset routines.
1914  **/
1915 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
1916 {
1917 	bool blocked = false;
1918 	int i = 0;
1919 
1920 	while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
1921 	       (i++ < 10))
1922 		usleep_range(10000, 20000);
1923 	return blocked ? E1000_BLK_PHY_RESET : 0;
1924 }
1925 
1926 /**
1927  *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
1928  *  @hw: pointer to the HW structure
1929  *
1930  *  Assumes semaphore already acquired.
1931  *
1932  **/
1933 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
1934 {
1935 	u16 phy_data;
1936 	u32 strap = er32(STRAP);
1937 	u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
1938 	    E1000_STRAP_SMT_FREQ_SHIFT;
1939 	s32 ret_val;
1940 
1941 	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
1942 
1943 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
1944 	if (ret_val)
1945 		return ret_val;
1946 
1947 	phy_data &= ~HV_SMB_ADDR_MASK;
1948 	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
1949 	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
1950 
1951 	if (hw->phy.type == e1000_phy_i217) {
1952 		/* Restore SMBus frequency */
1953 		if (freq--) {
1954 			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
1955 			phy_data |= (freq & (1 << 0)) <<
1956 			    HV_SMB_ADDR_FREQ_LOW_SHIFT;
1957 			phy_data |= (freq & (1 << 1)) <<
1958 			    (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
1959 		} else {
1960 			e_dbg("Unsupported SMB frequency in PHY\n");
1961 		}
1962 	}
1963 
1964 	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
1965 }
1966 
1967 /**
1968  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
1969  *  @hw:   pointer to the HW structure
1970  *
1971  *  SW should configure the LCD from the NVM extended configuration region
1972  *  as a workaround for certain parts.
1973  **/
1974 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
1975 {
1976 	struct e1000_phy_info *phy = &hw->phy;
1977 	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
1978 	s32 ret_val = 0;
1979 	u16 word_addr, reg_data, reg_addr, phy_page = 0;
1980 
1981 	/* Initialize the PHY from the NVM on ICH platforms.  This
1982 	 * is needed due to an issue where the NVM configuration is
1983 	 * not properly autoloaded after power transitions.
1984 	 * Therefore, after each PHY reset, we will load the
1985 	 * configuration data out of the NVM manually.
1986 	 */
1987 	switch (hw->mac.type) {
1988 	case e1000_ich8lan:
1989 		if (phy->type != e1000_phy_igp_3)
1990 			return ret_val;
1991 
1992 		if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
1993 		    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
1994 			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
1995 			break;
1996 		}
1997 		/* Fall-thru */
1998 	case e1000_pchlan:
1999 	case e1000_pch2lan:
2000 	case e1000_pch_lpt:
2001 	case e1000_pch_spt:
2002 		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2003 		break;
2004 	default:
2005 		return ret_val;
2006 	}
2007 
2008 	ret_val = hw->phy.ops.acquire(hw);
2009 	if (ret_val)
2010 		return ret_val;
2011 
2012 	data = er32(FEXTNVM);
2013 	if (!(data & sw_cfg_mask))
2014 		goto release;
2015 
2016 	/* Make sure HW does not configure LCD from PHY
2017 	 * extended configuration before SW configuration
2018 	 */
2019 	data = er32(EXTCNF_CTRL);
2020 	if ((hw->mac.type < e1000_pch2lan) &&
2021 	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2022 		goto release;
2023 
2024 	cnf_size = er32(EXTCNF_SIZE);
2025 	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2026 	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2027 	if (!cnf_size)
2028 		goto release;
2029 
2030 	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2031 	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2032 
2033 	if (((hw->mac.type == e1000_pchlan) &&
2034 	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2035 	    (hw->mac.type > e1000_pchlan)) {
2036 		/* HW configures the SMBus address and LEDs when the
2037 		 * OEM and LCD Write Enable bits are set in the NVM.
2038 		 * When both NVM bits are cleared, SW will configure
2039 		 * them instead.
2040 		 */
2041 		ret_val = e1000_write_smbus_addr(hw);
2042 		if (ret_val)
2043 			goto release;
2044 
2045 		data = er32(LEDCTL);
2046 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2047 							(u16)data);
2048 		if (ret_val)
2049 			goto release;
2050 	}
2051 
2052 	/* Configure LCD from extended configuration region. */
2053 
2054 	/* cnf_base_addr is in DWORD */
2055 	word_addr = (u16)(cnf_base_addr << 1);
2056 
2057 	for (i = 0; i < cnf_size; i++) {
2058 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, &reg_data);
2059 		if (ret_val)
2060 			goto release;
2061 
2062 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
2063 					 1, &reg_addr);
2064 		if (ret_val)
2065 			goto release;
2066 
2067 		/* Save off the PHY page for future writes. */
2068 		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2069 			phy_page = reg_data;
2070 			continue;
2071 		}
2072 
2073 		reg_addr &= PHY_REG_MASK;
2074 		reg_addr |= phy_page;
2075 
2076 		ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
2077 		if (ret_val)
2078 			goto release;
2079 	}
2080 
2081 release:
2082 	hw->phy.ops.release(hw);
2083 	return ret_val;
2084 }
2085 
2086 /**
2087  *  e1000_k1_gig_workaround_hv - K1 Si workaround
2088  *  @hw:   pointer to the HW structure
2089  *  @link: link up bool flag
2090  *
2091  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2092  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2093  *  If link is down, the function will restore the default K1 setting located
2094  *  in the NVM.
2095  **/
2096 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2097 {
2098 	s32 ret_val = 0;
2099 	u16 status_reg = 0;
2100 	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2101 
2102 	if (hw->mac.type != e1000_pchlan)
2103 		return 0;
2104 
2105 	/* Wrap the whole flow with the sw flag */
2106 	ret_val = hw->phy.ops.acquire(hw);
2107 	if (ret_val)
2108 		return ret_val;
2109 
2110 	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2111 	if (link) {
2112 		if (hw->phy.type == e1000_phy_82578) {
2113 			ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
2114 						  &status_reg);
2115 			if (ret_val)
2116 				goto release;
2117 
2118 			status_reg &= (BM_CS_STATUS_LINK_UP |
2119 				       BM_CS_STATUS_RESOLVED |
2120 				       BM_CS_STATUS_SPEED_MASK);
2121 
2122 			if (status_reg == (BM_CS_STATUS_LINK_UP |
2123 					   BM_CS_STATUS_RESOLVED |
2124 					   BM_CS_STATUS_SPEED_1000))
2125 				k1_enable = false;
2126 		}
2127 
2128 		if (hw->phy.type == e1000_phy_82577) {
2129 			ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2130 			if (ret_val)
2131 				goto release;
2132 
2133 			status_reg &= (HV_M_STATUS_LINK_UP |
2134 				       HV_M_STATUS_AUTONEG_COMPLETE |
2135 				       HV_M_STATUS_SPEED_MASK);
2136 
2137 			if (status_reg == (HV_M_STATUS_LINK_UP |
2138 					   HV_M_STATUS_AUTONEG_COMPLETE |
2139 					   HV_M_STATUS_SPEED_1000))
2140 				k1_enable = false;
2141 		}
2142 
2143 		/* Link stall fix for link up */
2144 		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2145 		if (ret_val)
2146 			goto release;
2147 
2148 	} else {
2149 		/* Link stall fix for link down */
2150 		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2151 		if (ret_val)
2152 			goto release;
2153 	}
2154 
2155 	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2156 
2157 release:
2158 	hw->phy.ops.release(hw);
2159 
2160 	return ret_val;
2161 }
2162 
2163 /**
2164  *  e1000_configure_k1_ich8lan - Configure K1 power state
2165  *  @hw: pointer to the HW structure
2166  *  @enable: K1 state to configure
2167  *
2168  *  Configure the K1 power state based on the provided parameter.
2169  *  Assumes semaphore already acquired.
2170  *
2171  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2172  **/
2173 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2174 {
2175 	s32 ret_val;
2176 	u32 ctrl_reg = 0;
2177 	u32 ctrl_ext = 0;
2178 	u32 reg = 0;
2179 	u16 kmrn_reg = 0;
2180 
2181 	ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2182 					      &kmrn_reg);
2183 	if (ret_val)
2184 		return ret_val;
2185 
2186 	if (k1_enable)
2187 		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2188 	else
2189 		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2190 
2191 	ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2192 					       kmrn_reg);
2193 	if (ret_val)
2194 		return ret_val;
2195 
2196 	usleep_range(20, 40);
2197 	ctrl_ext = er32(CTRL_EXT);
2198 	ctrl_reg = er32(CTRL);
2199 
2200 	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2201 	reg |= E1000_CTRL_FRCSPD;
2202 	ew32(CTRL, reg);
2203 
2204 	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2205 	e1e_flush();
2206 	usleep_range(20, 40);
2207 	ew32(CTRL, ctrl_reg);
2208 	ew32(CTRL_EXT, ctrl_ext);
2209 	e1e_flush();
2210 	usleep_range(20, 40);
2211 
2212 	return 0;
2213 }
2214 
2215 /**
2216  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2217  *  @hw:       pointer to the HW structure
2218  *  @d0_state: boolean if entering d0 or d3 device state
2219  *
2220  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2221  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2222  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2223  **/
2224 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2225 {
2226 	s32 ret_val = 0;
2227 	u32 mac_reg;
2228 	u16 oem_reg;
2229 
2230 	if (hw->mac.type < e1000_pchlan)
2231 		return ret_val;
2232 
2233 	ret_val = hw->phy.ops.acquire(hw);
2234 	if (ret_val)
2235 		return ret_val;
2236 
2237 	if (hw->mac.type == e1000_pchlan) {
2238 		mac_reg = er32(EXTCNF_CTRL);
2239 		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2240 			goto release;
2241 	}
2242 
2243 	mac_reg = er32(FEXTNVM);
2244 	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2245 		goto release;
2246 
2247 	mac_reg = er32(PHY_CTRL);
2248 
2249 	ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2250 	if (ret_val)
2251 		goto release;
2252 
2253 	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2254 
2255 	if (d0_state) {
2256 		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2257 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2258 
2259 		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2260 			oem_reg |= HV_OEM_BITS_LPLU;
2261 	} else {
2262 		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2263 			       E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2264 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2265 
2266 		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2267 			       E1000_PHY_CTRL_NOND0A_LPLU))
2268 			oem_reg |= HV_OEM_BITS_LPLU;
2269 	}
2270 
2271 	/* Set Restart auto-neg to activate the bits */
2272 	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2273 	    !hw->phy.ops.check_reset_block(hw))
2274 		oem_reg |= HV_OEM_BITS_RESTART_AN;
2275 
2276 	ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2277 
2278 release:
2279 	hw->phy.ops.release(hw);
2280 
2281 	return ret_val;
2282 }
2283 
2284 /**
2285  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2286  *  @hw:   pointer to the HW structure
2287  **/
2288 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2289 {
2290 	s32 ret_val;
2291 	u16 data;
2292 
2293 	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2294 	if (ret_val)
2295 		return ret_val;
2296 
2297 	data |= HV_KMRN_MDIO_SLOW;
2298 
2299 	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2300 
2301 	return ret_val;
2302 }
2303 
2304 /**
2305  *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2306  *  done after every PHY reset.
2307  **/
2308 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2309 {
2310 	s32 ret_val = 0;
2311 	u16 phy_data;
2312 
2313 	if (hw->mac.type != e1000_pchlan)
2314 		return 0;
2315 
2316 	/* Set MDIO slow mode before any other MDIO access */
2317 	if (hw->phy.type == e1000_phy_82577) {
2318 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
2319 		if (ret_val)
2320 			return ret_val;
2321 	}
2322 
2323 	if (((hw->phy.type == e1000_phy_82577) &&
2324 	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2325 	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2326 		/* Disable generation of early preamble */
2327 		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2328 		if (ret_val)
2329 			return ret_val;
2330 
2331 		/* Preamble tuning for SSC */
2332 		ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2333 		if (ret_val)
2334 			return ret_val;
2335 	}
2336 
2337 	if (hw->phy.type == e1000_phy_82578) {
2338 		/* Return registers to default by doing a soft reset then
2339 		 * writing 0x3140 to the control register.
2340 		 */
2341 		if (hw->phy.revision < 2) {
2342 			e1000e_phy_sw_reset(hw);
2343 			ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
2344 		}
2345 	}
2346 
2347 	/* Select page 0 */
2348 	ret_val = hw->phy.ops.acquire(hw);
2349 	if (ret_val)
2350 		return ret_val;
2351 
2352 	hw->phy.addr = 1;
2353 	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2354 	hw->phy.ops.release(hw);
2355 	if (ret_val)
2356 		return ret_val;
2357 
2358 	/* Configure the K1 Si workaround during phy reset assuming there is
2359 	 * link so that it disables K1 if link is in 1Gbps.
2360 	 */
2361 	ret_val = e1000_k1_gig_workaround_hv(hw, true);
2362 	if (ret_val)
2363 		return ret_val;
2364 
2365 	/* Workaround for link disconnects on a busy hub in half duplex */
2366 	ret_val = hw->phy.ops.acquire(hw);
2367 	if (ret_val)
2368 		return ret_val;
2369 	ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2370 	if (ret_val)
2371 		goto release;
2372 	ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2373 	if (ret_val)
2374 		goto release;
2375 
2376 	/* set MSE higher to enable link to stay up when noise is high */
2377 	ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2378 release:
2379 	hw->phy.ops.release(hw);
2380 
2381 	return ret_val;
2382 }
2383 
2384 /**
2385  *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2386  *  @hw:   pointer to the HW structure
2387  **/
2388 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2389 {
2390 	u32 mac_reg;
2391 	u16 i, phy_reg = 0;
2392 	s32 ret_val;
2393 
2394 	ret_val = hw->phy.ops.acquire(hw);
2395 	if (ret_val)
2396 		return;
2397 	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2398 	if (ret_val)
2399 		goto release;
2400 
2401 	/* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2402 	for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2403 		mac_reg = er32(RAL(i));
2404 		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2405 					   (u16)(mac_reg & 0xFFFF));
2406 		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2407 					   (u16)((mac_reg >> 16) & 0xFFFF));
2408 
2409 		mac_reg = er32(RAH(i));
2410 		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2411 					   (u16)(mac_reg & 0xFFFF));
2412 		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2413 					   (u16)((mac_reg & E1000_RAH_AV)
2414 						 >> 16));
2415 	}
2416 
2417 	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2418 
2419 release:
2420 	hw->phy.ops.release(hw);
2421 }
2422 
2423 /**
2424  *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2425  *  with 82579 PHY
2426  *  @hw: pointer to the HW structure
2427  *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2428  **/
2429 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2430 {
2431 	s32 ret_val = 0;
2432 	u16 phy_reg, data;
2433 	u32 mac_reg;
2434 	u16 i;
2435 
2436 	if (hw->mac.type < e1000_pch2lan)
2437 		return 0;
2438 
2439 	/* disable Rx path while enabling/disabling workaround */
2440 	e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2441 	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14));
2442 	if (ret_val)
2443 		return ret_val;
2444 
2445 	if (enable) {
2446 		/* Write Rx addresses (rar_entry_count for RAL/H, and
2447 		 * SHRAL/H) and initial CRC values to the MAC
2448 		 */
2449 		for (i = 0; i < hw->mac.rar_entry_count; i++) {
2450 			u8 mac_addr[ETH_ALEN] = { 0 };
2451 			u32 addr_high, addr_low;
2452 
2453 			addr_high = er32(RAH(i));
2454 			if (!(addr_high & E1000_RAH_AV))
2455 				continue;
2456 			addr_low = er32(RAL(i));
2457 			mac_addr[0] = (addr_low & 0xFF);
2458 			mac_addr[1] = ((addr_low >> 8) & 0xFF);
2459 			mac_addr[2] = ((addr_low >> 16) & 0xFF);
2460 			mac_addr[3] = ((addr_low >> 24) & 0xFF);
2461 			mac_addr[4] = (addr_high & 0xFF);
2462 			mac_addr[5] = ((addr_high >> 8) & 0xFF);
2463 
2464 			ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2465 		}
2466 
2467 		/* Write Rx addresses to the PHY */
2468 		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2469 
2470 		/* Enable jumbo frame workaround in the MAC */
2471 		mac_reg = er32(FFLT_DBG);
2472 		mac_reg &= ~(1 << 14);
2473 		mac_reg |= (7 << 15);
2474 		ew32(FFLT_DBG, mac_reg);
2475 
2476 		mac_reg = er32(RCTL);
2477 		mac_reg |= E1000_RCTL_SECRC;
2478 		ew32(RCTL, mac_reg);
2479 
2480 		ret_val = e1000e_read_kmrn_reg(hw,
2481 					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2482 					       &data);
2483 		if (ret_val)
2484 			return ret_val;
2485 		ret_val = e1000e_write_kmrn_reg(hw,
2486 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2487 						data | (1 << 0));
2488 		if (ret_val)
2489 			return ret_val;
2490 		ret_val = e1000e_read_kmrn_reg(hw,
2491 					       E1000_KMRNCTRLSTA_HD_CTRL,
2492 					       &data);
2493 		if (ret_val)
2494 			return ret_val;
2495 		data &= ~(0xF << 8);
2496 		data |= (0xB << 8);
2497 		ret_val = e1000e_write_kmrn_reg(hw,
2498 						E1000_KMRNCTRLSTA_HD_CTRL,
2499 						data);
2500 		if (ret_val)
2501 			return ret_val;
2502 
2503 		/* Enable jumbo frame workaround in the PHY */
2504 		e1e_rphy(hw, PHY_REG(769, 23), &data);
2505 		data &= ~(0x7F << 5);
2506 		data |= (0x37 << 5);
2507 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2508 		if (ret_val)
2509 			return ret_val;
2510 		e1e_rphy(hw, PHY_REG(769, 16), &data);
2511 		data &= ~(1 << 13);
2512 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2513 		if (ret_val)
2514 			return ret_val;
2515 		e1e_rphy(hw, PHY_REG(776, 20), &data);
2516 		data &= ~(0x3FF << 2);
2517 		data |= (E1000_TX_PTR_GAP << 2);
2518 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2519 		if (ret_val)
2520 			return ret_val;
2521 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2522 		if (ret_val)
2523 			return ret_val;
2524 		e1e_rphy(hw, HV_PM_CTRL, &data);
2525 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10));
2526 		if (ret_val)
2527 			return ret_val;
2528 	} else {
2529 		/* Write MAC register values back to h/w defaults */
2530 		mac_reg = er32(FFLT_DBG);
2531 		mac_reg &= ~(0xF << 14);
2532 		ew32(FFLT_DBG, mac_reg);
2533 
2534 		mac_reg = er32(RCTL);
2535 		mac_reg &= ~E1000_RCTL_SECRC;
2536 		ew32(RCTL, mac_reg);
2537 
2538 		ret_val = e1000e_read_kmrn_reg(hw,
2539 					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2540 					       &data);
2541 		if (ret_val)
2542 			return ret_val;
2543 		ret_val = e1000e_write_kmrn_reg(hw,
2544 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2545 						data & ~(1 << 0));
2546 		if (ret_val)
2547 			return ret_val;
2548 		ret_val = e1000e_read_kmrn_reg(hw,
2549 					       E1000_KMRNCTRLSTA_HD_CTRL,
2550 					       &data);
2551 		if (ret_val)
2552 			return ret_val;
2553 		data &= ~(0xF << 8);
2554 		data |= (0xB << 8);
2555 		ret_val = e1000e_write_kmrn_reg(hw,
2556 						E1000_KMRNCTRLSTA_HD_CTRL,
2557 						data);
2558 		if (ret_val)
2559 			return ret_val;
2560 
2561 		/* Write PHY register values back to h/w defaults */
2562 		e1e_rphy(hw, PHY_REG(769, 23), &data);
2563 		data &= ~(0x7F << 5);
2564 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2565 		if (ret_val)
2566 			return ret_val;
2567 		e1e_rphy(hw, PHY_REG(769, 16), &data);
2568 		data |= (1 << 13);
2569 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2570 		if (ret_val)
2571 			return ret_val;
2572 		e1e_rphy(hw, PHY_REG(776, 20), &data);
2573 		data &= ~(0x3FF << 2);
2574 		data |= (0x8 << 2);
2575 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2576 		if (ret_val)
2577 			return ret_val;
2578 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2579 		if (ret_val)
2580 			return ret_val;
2581 		e1e_rphy(hw, HV_PM_CTRL, &data);
2582 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10));
2583 		if (ret_val)
2584 			return ret_val;
2585 	}
2586 
2587 	/* re-enable Rx path after enabling/disabling workaround */
2588 	return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14));
2589 }
2590 
2591 /**
2592  *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2593  *  done after every PHY reset.
2594  **/
2595 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2596 {
2597 	s32 ret_val = 0;
2598 
2599 	if (hw->mac.type != e1000_pch2lan)
2600 		return 0;
2601 
2602 	/* Set MDIO slow mode before any other MDIO access */
2603 	ret_val = e1000_set_mdio_slow_mode_hv(hw);
2604 	if (ret_val)
2605 		return ret_val;
2606 
2607 	ret_val = hw->phy.ops.acquire(hw);
2608 	if (ret_val)
2609 		return ret_val;
2610 	/* set MSE higher to enable link to stay up when noise is high */
2611 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2612 	if (ret_val)
2613 		goto release;
2614 	/* drop link after 5 times MSE threshold was reached */
2615 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2616 release:
2617 	hw->phy.ops.release(hw);
2618 
2619 	return ret_val;
2620 }
2621 
2622 /**
2623  *  e1000_k1_gig_workaround_lv - K1 Si workaround
2624  *  @hw:   pointer to the HW structure
2625  *
2626  *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2627  *  Disable K1 in 1000Mbps and 100Mbps
2628  **/
2629 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2630 {
2631 	s32 ret_val = 0;
2632 	u16 status_reg = 0;
2633 
2634 	if (hw->mac.type != e1000_pch2lan)
2635 		return 0;
2636 
2637 	/* Set K1 beacon duration based on 10Mbs speed */
2638 	ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2639 	if (ret_val)
2640 		return ret_val;
2641 
2642 	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2643 	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2644 		if (status_reg &
2645 		    (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2646 			u16 pm_phy_reg;
2647 
2648 			/* LV 1G/100 Packet drop issue wa  */
2649 			ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2650 			if (ret_val)
2651 				return ret_val;
2652 			pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2653 			ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2654 			if (ret_val)
2655 				return ret_val;
2656 		} else {
2657 			u32 mac_reg;
2658 
2659 			mac_reg = er32(FEXTNVM4);
2660 			mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2661 			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2662 			ew32(FEXTNVM4, mac_reg);
2663 		}
2664 	}
2665 
2666 	return ret_val;
2667 }
2668 
2669 /**
2670  *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2671  *  @hw:   pointer to the HW structure
2672  *  @gate: boolean set to true to gate, false to ungate
2673  *
2674  *  Gate/ungate the automatic PHY configuration via hardware; perform
2675  *  the configuration via software instead.
2676  **/
2677 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2678 {
2679 	u32 extcnf_ctrl;
2680 
2681 	if (hw->mac.type < e1000_pch2lan)
2682 		return;
2683 
2684 	extcnf_ctrl = er32(EXTCNF_CTRL);
2685 
2686 	if (gate)
2687 		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2688 	else
2689 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2690 
2691 	ew32(EXTCNF_CTRL, extcnf_ctrl);
2692 }
2693 
2694 /**
2695  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2696  *  @hw: pointer to the HW structure
2697  *
2698  *  Check the appropriate indication the MAC has finished configuring the
2699  *  PHY after a software reset.
2700  **/
2701 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2702 {
2703 	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2704 
2705 	/* Wait for basic configuration completes before proceeding */
2706 	do {
2707 		data = er32(STATUS);
2708 		data &= E1000_STATUS_LAN_INIT_DONE;
2709 		usleep_range(100, 200);
2710 	} while ((!data) && --loop);
2711 
2712 	/* If basic configuration is incomplete before the above loop
2713 	 * count reaches 0, loading the configuration from NVM will
2714 	 * leave the PHY in a bad state possibly resulting in no link.
2715 	 */
2716 	if (loop == 0)
2717 		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2718 
2719 	/* Clear the Init Done bit for the next init event */
2720 	data = er32(STATUS);
2721 	data &= ~E1000_STATUS_LAN_INIT_DONE;
2722 	ew32(STATUS, data);
2723 }
2724 
2725 /**
2726  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2727  *  @hw: pointer to the HW structure
2728  **/
2729 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2730 {
2731 	s32 ret_val = 0;
2732 	u16 reg;
2733 
2734 	if (hw->phy.ops.check_reset_block(hw))
2735 		return 0;
2736 
2737 	/* Allow time for h/w to get to quiescent state after reset */
2738 	usleep_range(10000, 20000);
2739 
2740 	/* Perform any necessary post-reset workarounds */
2741 	switch (hw->mac.type) {
2742 	case e1000_pchlan:
2743 		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2744 		if (ret_val)
2745 			return ret_val;
2746 		break;
2747 	case e1000_pch2lan:
2748 		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2749 		if (ret_val)
2750 			return ret_val;
2751 		break;
2752 	default:
2753 		break;
2754 	}
2755 
2756 	/* Clear the host wakeup bit after lcd reset */
2757 	if (hw->mac.type >= e1000_pchlan) {
2758 		e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2759 		reg &= ~BM_WUC_HOST_WU_BIT;
2760 		e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2761 	}
2762 
2763 	/* Configure the LCD with the extended configuration region in NVM */
2764 	ret_val = e1000_sw_lcd_config_ich8lan(hw);
2765 	if (ret_val)
2766 		return ret_val;
2767 
2768 	/* Configure the LCD with the OEM bits in NVM */
2769 	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2770 
2771 	if (hw->mac.type == e1000_pch2lan) {
2772 		/* Ungate automatic PHY configuration on non-managed 82579 */
2773 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2774 			usleep_range(10000, 20000);
2775 			e1000_gate_hw_phy_config_ich8lan(hw, false);
2776 		}
2777 
2778 		/* Set EEE LPI Update Timer to 200usec */
2779 		ret_val = hw->phy.ops.acquire(hw);
2780 		if (ret_val)
2781 			return ret_val;
2782 		ret_val = e1000_write_emi_reg_locked(hw,
2783 						     I82579_LPI_UPDATE_TIMER,
2784 						     0x1387);
2785 		hw->phy.ops.release(hw);
2786 	}
2787 
2788 	return ret_val;
2789 }
2790 
2791 /**
2792  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2793  *  @hw: pointer to the HW structure
2794  *
2795  *  Resets the PHY
2796  *  This is a function pointer entry point called by drivers
2797  *  or other shared routines.
2798  **/
2799 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2800 {
2801 	s32 ret_val = 0;
2802 
2803 	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
2804 	if ((hw->mac.type == e1000_pch2lan) &&
2805 	    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2806 		e1000_gate_hw_phy_config_ich8lan(hw, true);
2807 
2808 	ret_val = e1000e_phy_hw_reset_generic(hw);
2809 	if (ret_val)
2810 		return ret_val;
2811 
2812 	return e1000_post_phy_reset_ich8lan(hw);
2813 }
2814 
2815 /**
2816  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2817  *  @hw: pointer to the HW structure
2818  *  @active: true to enable LPLU, false to disable
2819  *
2820  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
2821  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2822  *  the phy speed. This function will manually set the LPLU bit and restart
2823  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
2824  *  since it configures the same bit.
2825  **/
2826 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2827 {
2828 	s32 ret_val;
2829 	u16 oem_reg;
2830 
2831 	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2832 	if (ret_val)
2833 		return ret_val;
2834 
2835 	if (active)
2836 		oem_reg |= HV_OEM_BITS_LPLU;
2837 	else
2838 		oem_reg &= ~HV_OEM_BITS_LPLU;
2839 
2840 	if (!hw->phy.ops.check_reset_block(hw))
2841 		oem_reg |= HV_OEM_BITS_RESTART_AN;
2842 
2843 	return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2844 }
2845 
2846 /**
2847  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2848  *  @hw: pointer to the HW structure
2849  *  @active: true to enable LPLU, false to disable
2850  *
2851  *  Sets the LPLU D0 state according to the active flag.  When
2852  *  activating LPLU this function also disables smart speed
2853  *  and vice versa.  LPLU will not be activated unless the
2854  *  device autonegotiation advertisement meets standards of
2855  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2856  *  This is a function pointer entry point only called by
2857  *  PHY setup routines.
2858  **/
2859 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2860 {
2861 	struct e1000_phy_info *phy = &hw->phy;
2862 	u32 phy_ctrl;
2863 	s32 ret_val = 0;
2864 	u16 data;
2865 
2866 	if (phy->type == e1000_phy_ife)
2867 		return 0;
2868 
2869 	phy_ctrl = er32(PHY_CTRL);
2870 
2871 	if (active) {
2872 		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2873 		ew32(PHY_CTRL, phy_ctrl);
2874 
2875 		if (phy->type != e1000_phy_igp_3)
2876 			return 0;
2877 
2878 		/* Call gig speed drop workaround on LPLU before accessing
2879 		 * any PHY registers
2880 		 */
2881 		if (hw->mac.type == e1000_ich8lan)
2882 			e1000e_gig_downshift_workaround_ich8lan(hw);
2883 
2884 		/* When LPLU is enabled, we should disable SmartSpeed */
2885 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2886 		if (ret_val)
2887 			return ret_val;
2888 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2889 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2890 		if (ret_val)
2891 			return ret_val;
2892 	} else {
2893 		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2894 		ew32(PHY_CTRL, phy_ctrl);
2895 
2896 		if (phy->type != e1000_phy_igp_3)
2897 			return 0;
2898 
2899 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2900 		 * during Dx states where the power conservation is most
2901 		 * important.  During driver activity we should enable
2902 		 * SmartSpeed, so performance is maintained.
2903 		 */
2904 		if (phy->smart_speed == e1000_smart_speed_on) {
2905 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2906 					   &data);
2907 			if (ret_val)
2908 				return ret_val;
2909 
2910 			data |= IGP01E1000_PSCFR_SMART_SPEED;
2911 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2912 					   data);
2913 			if (ret_val)
2914 				return ret_val;
2915 		} else if (phy->smart_speed == e1000_smart_speed_off) {
2916 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2917 					   &data);
2918 			if (ret_val)
2919 				return ret_val;
2920 
2921 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2922 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2923 					   data);
2924 			if (ret_val)
2925 				return ret_val;
2926 		}
2927 	}
2928 
2929 	return 0;
2930 }
2931 
2932 /**
2933  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
2934  *  @hw: pointer to the HW structure
2935  *  @active: true to enable LPLU, false to disable
2936  *
2937  *  Sets the LPLU D3 state according to the active flag.  When
2938  *  activating LPLU this function also disables smart speed
2939  *  and vice versa.  LPLU will not be activated unless the
2940  *  device autonegotiation advertisement meets standards of
2941  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2942  *  This is a function pointer entry point only called by
2943  *  PHY setup routines.
2944  **/
2945 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2946 {
2947 	struct e1000_phy_info *phy = &hw->phy;
2948 	u32 phy_ctrl;
2949 	s32 ret_val = 0;
2950 	u16 data;
2951 
2952 	phy_ctrl = er32(PHY_CTRL);
2953 
2954 	if (!active) {
2955 		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2956 		ew32(PHY_CTRL, phy_ctrl);
2957 
2958 		if (phy->type != e1000_phy_igp_3)
2959 			return 0;
2960 
2961 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2962 		 * during Dx states where the power conservation is most
2963 		 * important.  During driver activity we should enable
2964 		 * SmartSpeed, so performance is maintained.
2965 		 */
2966 		if (phy->smart_speed == e1000_smart_speed_on) {
2967 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2968 					   &data);
2969 			if (ret_val)
2970 				return ret_val;
2971 
2972 			data |= IGP01E1000_PSCFR_SMART_SPEED;
2973 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2974 					   data);
2975 			if (ret_val)
2976 				return ret_val;
2977 		} else if (phy->smart_speed == e1000_smart_speed_off) {
2978 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2979 					   &data);
2980 			if (ret_val)
2981 				return ret_val;
2982 
2983 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2984 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2985 					   data);
2986 			if (ret_val)
2987 				return ret_val;
2988 		}
2989 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
2990 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
2991 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
2992 		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2993 		ew32(PHY_CTRL, phy_ctrl);
2994 
2995 		if (phy->type != e1000_phy_igp_3)
2996 			return 0;
2997 
2998 		/* Call gig speed drop workaround on LPLU before accessing
2999 		 * any PHY registers
3000 		 */
3001 		if (hw->mac.type == e1000_ich8lan)
3002 			e1000e_gig_downshift_workaround_ich8lan(hw);
3003 
3004 		/* When LPLU is enabled, we should disable SmartSpeed */
3005 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3006 		if (ret_val)
3007 			return ret_val;
3008 
3009 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3010 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3011 	}
3012 
3013 	return ret_val;
3014 }
3015 
3016 /**
3017  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3018  *  @hw: pointer to the HW structure
3019  *  @bank:  pointer to the variable that returns the active bank
3020  *
3021  *  Reads signature byte from the NVM using the flash access registers.
3022  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3023  **/
3024 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3025 {
3026 	u32 eecd;
3027 	struct e1000_nvm_info *nvm = &hw->nvm;
3028 	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3029 	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3030 	u8 sig_byte = 0;
3031 	s32 ret_val;
3032 
3033 	switch (hw->mac.type) {
3034 		/* In SPT, read from the CTRL_EXT reg instead of
3035 		 * accessing the sector valid bits from the nvm
3036 		 */
3037 	case e1000_pch_spt:
3038 		*bank = er32(CTRL_EXT)
3039 		    & E1000_CTRL_EXT_NVMVS;
3040 		if ((*bank == 0) || (*bank == 1)) {
3041 			e_dbg("ERROR: No valid NVM bank present\n");
3042 			return -E1000_ERR_NVM;
3043 		} else {
3044 			*bank = *bank - 2;
3045 			return 0;
3046 		}
3047 		break;
3048 	case e1000_ich8lan:
3049 	case e1000_ich9lan:
3050 		eecd = er32(EECD);
3051 		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3052 		    E1000_EECD_SEC1VAL_VALID_MASK) {
3053 			if (eecd & E1000_EECD_SEC1VAL)
3054 				*bank = 1;
3055 			else
3056 				*bank = 0;
3057 
3058 			return 0;
3059 		}
3060 		e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3061 		/* fall-thru */
3062 	default:
3063 		/* set bank to 0 in case flash read fails */
3064 		*bank = 0;
3065 
3066 		/* Check bank 0 */
3067 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3068 							&sig_byte);
3069 		if (ret_val)
3070 			return ret_val;
3071 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3072 		    E1000_ICH_NVM_SIG_VALUE) {
3073 			*bank = 0;
3074 			return 0;
3075 		}
3076 
3077 		/* Check bank 1 */
3078 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3079 							bank1_offset,
3080 							&sig_byte);
3081 		if (ret_val)
3082 			return ret_val;
3083 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3084 		    E1000_ICH_NVM_SIG_VALUE) {
3085 			*bank = 1;
3086 			return 0;
3087 		}
3088 
3089 		e_dbg("ERROR: No valid NVM bank present\n");
3090 		return -E1000_ERR_NVM;
3091 	}
3092 }
3093 
3094 /**
3095  *  e1000_read_nvm_spt - NVM access for SPT
3096  *  @hw: pointer to the HW structure
3097  *  @offset: The offset (in bytes) of the word(s) to read.
3098  *  @words: Size of data to read in words.
3099  *  @data: pointer to the word(s) to read at offset.
3100  *
3101  *  Reads a word(s) from the NVM
3102  **/
3103 static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3104 			      u16 *data)
3105 {
3106 	struct e1000_nvm_info *nvm = &hw->nvm;
3107 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3108 	u32 act_offset;
3109 	s32 ret_val = 0;
3110 	u32 bank = 0;
3111 	u32 dword = 0;
3112 	u16 offset_to_read;
3113 	u16 i;
3114 
3115 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3116 	    (words == 0)) {
3117 		e_dbg("nvm parameter(s) out of bounds\n");
3118 		ret_val = -E1000_ERR_NVM;
3119 		goto out;
3120 	}
3121 
3122 	nvm->ops.acquire(hw);
3123 
3124 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3125 	if (ret_val) {
3126 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3127 		bank = 0;
3128 	}
3129 
3130 	act_offset = (bank) ? nvm->flash_bank_size : 0;
3131 	act_offset += offset;
3132 
3133 	ret_val = 0;
3134 
3135 	for (i = 0; i < words; i += 2) {
3136 		if (words - i == 1) {
3137 			if (dev_spec->shadow_ram[offset + i].modified) {
3138 				data[i] =
3139 				    dev_spec->shadow_ram[offset + i].value;
3140 			} else {
3141 				offset_to_read = act_offset + i -
3142 				    ((act_offset + i) % 2);
3143 				ret_val =
3144 				  e1000_read_flash_dword_ich8lan(hw,
3145 								 offset_to_read,
3146 								 &dword);
3147 				if (ret_val)
3148 					break;
3149 				if ((act_offset + i) % 2 == 0)
3150 					data[i] = (u16)(dword & 0xFFFF);
3151 				else
3152 					data[i] = (u16)((dword >> 16) & 0xFFFF);
3153 			}
3154 		} else {
3155 			offset_to_read = act_offset + i;
3156 			if (!(dev_spec->shadow_ram[offset + i].modified) ||
3157 			    !(dev_spec->shadow_ram[offset + i + 1].modified)) {
3158 				ret_val =
3159 				  e1000_read_flash_dword_ich8lan(hw,
3160 								 offset_to_read,
3161 								 &dword);
3162 				if (ret_val)
3163 					break;
3164 			}
3165 			if (dev_spec->shadow_ram[offset + i].modified)
3166 				data[i] =
3167 				    dev_spec->shadow_ram[offset + i].value;
3168 			else
3169 				data[i] = (u16)(dword & 0xFFFF);
3170 			if (dev_spec->shadow_ram[offset + i].modified)
3171 				data[i + 1] =
3172 				    dev_spec->shadow_ram[offset + i + 1].value;
3173 			else
3174 				data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
3175 		}
3176 	}
3177 
3178 	nvm->ops.release(hw);
3179 
3180 out:
3181 	if (ret_val)
3182 		e_dbg("NVM read error: %d\n", ret_val);
3183 
3184 	return ret_val;
3185 }
3186 
3187 /**
3188  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3189  *  @hw: pointer to the HW structure
3190  *  @offset: The offset (in bytes) of the word(s) to read.
3191  *  @words: Size of data to read in words
3192  *  @data: Pointer to the word(s) to read at offset.
3193  *
3194  *  Reads a word(s) from the NVM using the flash access registers.
3195  **/
3196 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3197 				  u16 *data)
3198 {
3199 	struct e1000_nvm_info *nvm = &hw->nvm;
3200 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3201 	u32 act_offset;
3202 	s32 ret_val = 0;
3203 	u32 bank = 0;
3204 	u16 i, word;
3205 
3206 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3207 	    (words == 0)) {
3208 		e_dbg("nvm parameter(s) out of bounds\n");
3209 		ret_val = -E1000_ERR_NVM;
3210 		goto out;
3211 	}
3212 
3213 	nvm->ops.acquire(hw);
3214 
3215 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3216 	if (ret_val) {
3217 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3218 		bank = 0;
3219 	}
3220 
3221 	act_offset = (bank) ? nvm->flash_bank_size : 0;
3222 	act_offset += offset;
3223 
3224 	ret_val = 0;
3225 	for (i = 0; i < words; i++) {
3226 		if (dev_spec->shadow_ram[offset + i].modified) {
3227 			data[i] = dev_spec->shadow_ram[offset + i].value;
3228 		} else {
3229 			ret_val = e1000_read_flash_word_ich8lan(hw,
3230 								act_offset + i,
3231 								&word);
3232 			if (ret_val)
3233 				break;
3234 			data[i] = word;
3235 		}
3236 	}
3237 
3238 	nvm->ops.release(hw);
3239 
3240 out:
3241 	if (ret_val)
3242 		e_dbg("NVM read error: %d\n", ret_val);
3243 
3244 	return ret_val;
3245 }
3246 
3247 /**
3248  *  e1000_flash_cycle_init_ich8lan - Initialize flash
3249  *  @hw: pointer to the HW structure
3250  *
3251  *  This function does initial flash setup so that a new read/write/erase cycle
3252  *  can be started.
3253  **/
3254 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3255 {
3256 	union ich8_hws_flash_status hsfsts;
3257 	s32 ret_val = -E1000_ERR_NVM;
3258 
3259 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3260 
3261 	/* Check if the flash descriptor is valid */
3262 	if (!hsfsts.hsf_status.fldesvalid) {
3263 		e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
3264 		return -E1000_ERR_NVM;
3265 	}
3266 
3267 	/* Clear FCERR and DAEL in hw status by writing 1 */
3268 	hsfsts.hsf_status.flcerr = 1;
3269 	hsfsts.hsf_status.dael = 1;
3270 	if (hw->mac.type == e1000_pch_spt)
3271 		ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3272 	else
3273 		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3274 
3275 	/* Either we should have a hardware SPI cycle in progress
3276 	 * bit to check against, in order to start a new cycle or
3277 	 * FDONE bit should be changed in the hardware so that it
3278 	 * is 1 after hardware reset, which can then be used as an
3279 	 * indication whether a cycle is in progress or has been
3280 	 * completed.
3281 	 */
3282 
3283 	if (!hsfsts.hsf_status.flcinprog) {
3284 		/* There is no cycle running at present,
3285 		 * so we can start a cycle.
3286 		 * Begin by setting Flash Cycle Done.
3287 		 */
3288 		hsfsts.hsf_status.flcdone = 1;
3289 		if (hw->mac.type == e1000_pch_spt)
3290 			ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3291 		else
3292 			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3293 		ret_val = 0;
3294 	} else {
3295 		s32 i;
3296 
3297 		/* Otherwise poll for sometime so the current
3298 		 * cycle has a chance to end before giving up.
3299 		 */
3300 		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3301 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3302 			if (!hsfsts.hsf_status.flcinprog) {
3303 				ret_val = 0;
3304 				break;
3305 			}
3306 			udelay(1);
3307 		}
3308 		if (!ret_val) {
3309 			/* Successful in waiting for previous cycle to timeout,
3310 			 * now set the Flash Cycle Done.
3311 			 */
3312 			hsfsts.hsf_status.flcdone = 1;
3313 			if (hw->mac.type == e1000_pch_spt)
3314 				ew32flash(ICH_FLASH_HSFSTS,
3315 					  hsfsts.regval & 0xFFFF);
3316 			else
3317 				ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3318 		} else {
3319 			e_dbg("Flash controller busy, cannot get access\n");
3320 		}
3321 	}
3322 
3323 	return ret_val;
3324 }
3325 
3326 /**
3327  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3328  *  @hw: pointer to the HW structure
3329  *  @timeout: maximum time to wait for completion
3330  *
3331  *  This function starts a flash cycle and waits for its completion.
3332  **/
3333 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3334 {
3335 	union ich8_hws_flash_ctrl hsflctl;
3336 	union ich8_hws_flash_status hsfsts;
3337 	u32 i = 0;
3338 
3339 	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3340 	if (hw->mac.type == e1000_pch_spt)
3341 		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3342 	else
3343 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3344 	hsflctl.hsf_ctrl.flcgo = 1;
3345 
3346 	if (hw->mac.type == e1000_pch_spt)
3347 		ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
3348 	else
3349 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3350 
3351 	/* wait till FDONE bit is set to 1 */
3352 	do {
3353 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3354 		if (hsfsts.hsf_status.flcdone)
3355 			break;
3356 		udelay(1);
3357 	} while (i++ < timeout);
3358 
3359 	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3360 		return 0;
3361 
3362 	return -E1000_ERR_NVM;
3363 }
3364 
3365 /**
3366  *  e1000_read_flash_dword_ich8lan - Read dword from flash
3367  *  @hw: pointer to the HW structure
3368  *  @offset: offset to data location
3369  *  @data: pointer to the location for storing the data
3370  *
3371  *  Reads the flash dword at offset into data.  Offset is converted
3372  *  to bytes before read.
3373  **/
3374 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3375 					  u32 *data)
3376 {
3377 	/* Must convert word offset into bytes. */
3378 	offset <<= 1;
3379 	return e1000_read_flash_data32_ich8lan(hw, offset, data);
3380 }
3381 
3382 /**
3383  *  e1000_read_flash_word_ich8lan - Read word from flash
3384  *  @hw: pointer to the HW structure
3385  *  @offset: offset to data location
3386  *  @data: pointer to the location for storing the data
3387  *
3388  *  Reads the flash word at offset into data.  Offset is converted
3389  *  to bytes before read.
3390  **/
3391 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3392 					 u16 *data)
3393 {
3394 	/* Must convert offset into bytes. */
3395 	offset <<= 1;
3396 
3397 	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3398 }
3399 
3400 /**
3401  *  e1000_read_flash_byte_ich8lan - Read byte from flash
3402  *  @hw: pointer to the HW structure
3403  *  @offset: The offset of the byte to read.
3404  *  @data: Pointer to a byte to store the value read.
3405  *
3406  *  Reads a single byte from the NVM using the flash access registers.
3407  **/
3408 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3409 					 u8 *data)
3410 {
3411 	s32 ret_val;
3412 	u16 word = 0;
3413 
3414 	/* In SPT, only 32 bits access is supported,
3415 	 * so this function should not be called.
3416 	 */
3417 	if (hw->mac.type == e1000_pch_spt)
3418 		return -E1000_ERR_NVM;
3419 	else
3420 		ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3421 
3422 	if (ret_val)
3423 		return ret_val;
3424 
3425 	*data = (u8)word;
3426 
3427 	return 0;
3428 }
3429 
3430 /**
3431  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3432  *  @hw: pointer to the HW structure
3433  *  @offset: The offset (in bytes) of the byte or word to read.
3434  *  @size: Size of data to read, 1=byte 2=word
3435  *  @data: Pointer to the word to store the value read.
3436  *
3437  *  Reads a byte or word from the NVM using the flash access registers.
3438  **/
3439 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3440 					 u8 size, u16 *data)
3441 {
3442 	union ich8_hws_flash_status hsfsts;
3443 	union ich8_hws_flash_ctrl hsflctl;
3444 	u32 flash_linear_addr;
3445 	u32 flash_data = 0;
3446 	s32 ret_val = -E1000_ERR_NVM;
3447 	u8 count = 0;
3448 
3449 	if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3450 		return -E1000_ERR_NVM;
3451 
3452 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3453 			     hw->nvm.flash_base_addr);
3454 
3455 	do {
3456 		udelay(1);
3457 		/* Steps */
3458 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3459 		if (ret_val)
3460 			break;
3461 
3462 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3463 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3464 		hsflctl.hsf_ctrl.fldbcount = size - 1;
3465 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3466 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3467 
3468 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3469 
3470 		ret_val =
3471 		    e1000_flash_cycle_ich8lan(hw,
3472 					      ICH_FLASH_READ_COMMAND_TIMEOUT);
3473 
3474 		/* Check if FCERR is set to 1, if set to 1, clear it
3475 		 * and try the whole sequence a few more times, else
3476 		 * read in (shift in) the Flash Data0, the order is
3477 		 * least significant byte first msb to lsb
3478 		 */
3479 		if (!ret_val) {
3480 			flash_data = er32flash(ICH_FLASH_FDATA0);
3481 			if (size == 1)
3482 				*data = (u8)(flash_data & 0x000000FF);
3483 			else if (size == 2)
3484 				*data = (u16)(flash_data & 0x0000FFFF);
3485 			break;
3486 		} else {
3487 			/* If we've gotten here, then things are probably
3488 			 * completely hosed, but if the error condition is
3489 			 * detected, it won't hurt to give it another try...
3490 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3491 			 */
3492 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3493 			if (hsfsts.hsf_status.flcerr) {
3494 				/* Repeat for some time before giving up. */
3495 				continue;
3496 			} else if (!hsfsts.hsf_status.flcdone) {
3497 				e_dbg("Timeout error - flash cycle did not complete.\n");
3498 				break;
3499 			}
3500 		}
3501 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3502 
3503 	return ret_val;
3504 }
3505 
3506 /**
3507  *  e1000_read_flash_data32_ich8lan - Read dword from NVM
3508  *  @hw: pointer to the HW structure
3509  *  @offset: The offset (in bytes) of the dword to read.
3510  *  @data: Pointer to the dword to store the value read.
3511  *
3512  *  Reads a byte or word from the NVM using the flash access registers.
3513  **/
3514 
3515 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3516 					   u32 *data)
3517 {
3518 	union ich8_hws_flash_status hsfsts;
3519 	union ich8_hws_flash_ctrl hsflctl;
3520 	u32 flash_linear_addr;
3521 	s32 ret_val = -E1000_ERR_NVM;
3522 	u8 count = 0;
3523 
3524 	if (offset > ICH_FLASH_LINEAR_ADDR_MASK ||
3525 	    hw->mac.type != e1000_pch_spt)
3526 		return -E1000_ERR_NVM;
3527 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3528 			     hw->nvm.flash_base_addr);
3529 
3530 	do {
3531 		udelay(1);
3532 		/* Steps */
3533 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3534 		if (ret_val)
3535 			break;
3536 		/* In SPT, This register is in Lan memory space, not flash.
3537 		 * Therefore, only 32 bit access is supported
3538 		 */
3539 		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3540 
3541 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3542 		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3543 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3544 		/* In SPT, This register is in Lan memory space, not flash.
3545 		 * Therefore, only 32 bit access is supported
3546 		 */
3547 		ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16);
3548 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3549 
3550 		ret_val =
3551 		   e1000_flash_cycle_ich8lan(hw,
3552 					     ICH_FLASH_READ_COMMAND_TIMEOUT);
3553 
3554 		/* Check if FCERR is set to 1, if set to 1, clear it
3555 		 * and try the whole sequence a few more times, else
3556 		 * read in (shift in) the Flash Data0, the order is
3557 		 * least significant byte first msb to lsb
3558 		 */
3559 		if (!ret_val) {
3560 			*data = er32flash(ICH_FLASH_FDATA0);
3561 			break;
3562 		} else {
3563 			/* If we've gotten here, then things are probably
3564 			 * completely hosed, but if the error condition is
3565 			 * detected, it won't hurt to give it another try...
3566 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3567 			 */
3568 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3569 			if (hsfsts.hsf_status.flcerr) {
3570 				/* Repeat for some time before giving up. */
3571 				continue;
3572 			} else if (!hsfsts.hsf_status.flcdone) {
3573 				e_dbg("Timeout error - flash cycle did not complete.\n");
3574 				break;
3575 			}
3576 		}
3577 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3578 
3579 	return ret_val;
3580 }
3581 
3582 /**
3583  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
3584  *  @hw: pointer to the HW structure
3585  *  @offset: The offset (in bytes) of the word(s) to write.
3586  *  @words: Size of data to write in words
3587  *  @data: Pointer to the word(s) to write at offset.
3588  *
3589  *  Writes a byte or word to the NVM using the flash access registers.
3590  **/
3591 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3592 				   u16 *data)
3593 {
3594 	struct e1000_nvm_info *nvm = &hw->nvm;
3595 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3596 	u16 i;
3597 
3598 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3599 	    (words == 0)) {
3600 		e_dbg("nvm parameter(s) out of bounds\n");
3601 		return -E1000_ERR_NVM;
3602 	}
3603 
3604 	nvm->ops.acquire(hw);
3605 
3606 	for (i = 0; i < words; i++) {
3607 		dev_spec->shadow_ram[offset + i].modified = true;
3608 		dev_spec->shadow_ram[offset + i].value = data[i];
3609 	}
3610 
3611 	nvm->ops.release(hw);
3612 
3613 	return 0;
3614 }
3615 
3616 /**
3617  *  e1000_update_nvm_checksum_spt - Update the checksum for NVM
3618  *  @hw: pointer to the HW structure
3619  *
3620  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3621  *  which writes the checksum to the shadow ram.  The changes in the shadow
3622  *  ram are then committed to the EEPROM by processing each bank at a time
3623  *  checking for the modified bit and writing only the pending changes.
3624  *  After a successful commit, the shadow ram is cleared and is ready for
3625  *  future writes.
3626  **/
3627 static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
3628 {
3629 	struct e1000_nvm_info *nvm = &hw->nvm;
3630 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3631 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3632 	s32 ret_val;
3633 	u32 dword = 0;
3634 
3635 	ret_val = e1000e_update_nvm_checksum_generic(hw);
3636 	if (ret_val)
3637 		goto out;
3638 
3639 	if (nvm->type != e1000_nvm_flash_sw)
3640 		goto out;
3641 
3642 	nvm->ops.acquire(hw);
3643 
3644 	/* We're writing to the opposite bank so if we're on bank 1,
3645 	 * write to bank 0 etc.  We also need to erase the segment that
3646 	 * is going to be written
3647 	 */
3648 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3649 	if (ret_val) {
3650 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3651 		bank = 0;
3652 	}
3653 
3654 	if (bank == 0) {
3655 		new_bank_offset = nvm->flash_bank_size;
3656 		old_bank_offset = 0;
3657 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3658 		if (ret_val)
3659 			goto release;
3660 	} else {
3661 		old_bank_offset = nvm->flash_bank_size;
3662 		new_bank_offset = 0;
3663 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3664 		if (ret_val)
3665 			goto release;
3666 	}
3667 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) {
3668 		/* Determine whether to write the value stored
3669 		 * in the other NVM bank or a modified value stored
3670 		 * in the shadow RAM
3671 		 */
3672 		ret_val = e1000_read_flash_dword_ich8lan(hw,
3673 							 i + old_bank_offset,
3674 							 &dword);
3675 
3676 		if (dev_spec->shadow_ram[i].modified) {
3677 			dword &= 0xffff0000;
3678 			dword |= (dev_spec->shadow_ram[i].value & 0xffff);
3679 		}
3680 		if (dev_spec->shadow_ram[i + 1].modified) {
3681 			dword &= 0x0000ffff;
3682 			dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
3683 				  << 16);
3684 		}
3685 		if (ret_val)
3686 			break;
3687 
3688 		/* If the word is 0x13, then make sure the signature bits
3689 		 * (15:14) are 11b until the commit has completed.
3690 		 * This will allow us to write 10b which indicates the
3691 		 * signature is valid.  We want to do this after the write
3692 		 * has completed so that we don't mark the segment valid
3693 		 * while the write is still in progress
3694 		 */
3695 		if (i == E1000_ICH_NVM_SIG_WORD - 1)
3696 			dword |= E1000_ICH_NVM_SIG_MASK << 16;
3697 
3698 		/* Convert offset to bytes. */
3699 		act_offset = (i + new_bank_offset) << 1;
3700 
3701 		usleep_range(100, 200);
3702 
3703 		/* Write the data to the new bank. Offset in words */
3704 		act_offset = i + new_bank_offset;
3705 		ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
3706 								dword);
3707 		if (ret_val)
3708 			break;
3709 	}
3710 
3711 	/* Don't bother writing the segment valid bits if sector
3712 	 * programming failed.
3713 	 */
3714 	if (ret_val) {
3715 		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3716 		e_dbg("Flash commit failed.\n");
3717 		goto release;
3718 	}
3719 
3720 	/* Finally validate the new segment by setting bit 15:14
3721 	 * to 10b in word 0x13 , this can be done without an
3722 	 * erase as well since these bits are 11 to start with
3723 	 * and we need to change bit 14 to 0b
3724 	 */
3725 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3726 
3727 	/*offset in words but we read dword */
3728 	--act_offset;
3729 	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3730 
3731 	if (ret_val)
3732 		goto release;
3733 
3734 	dword &= 0xBFFFFFFF;
3735 	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3736 
3737 	if (ret_val)
3738 		goto release;
3739 
3740 	/* And invalidate the previously valid segment by setting
3741 	 * its signature word (0x13) high_byte to 0b. This can be
3742 	 * done without an erase because flash erase sets all bits
3743 	 * to 1's. We can write 1's to 0's without an erase
3744 	 */
3745 	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
3746 
3747 	/* offset in words but we read dword */
3748 	act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
3749 	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3750 
3751 	if (ret_val)
3752 		goto release;
3753 
3754 	dword &= 0x00FFFFFF;
3755 	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3756 
3757 	if (ret_val)
3758 		goto release;
3759 
3760 	/* Great!  Everything worked, we can now clear the cached entries. */
3761 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3762 		dev_spec->shadow_ram[i].modified = false;
3763 		dev_spec->shadow_ram[i].value = 0xFFFF;
3764 	}
3765 
3766 release:
3767 	nvm->ops.release(hw);
3768 
3769 	/* Reload the EEPROM, or else modifications will not appear
3770 	 * until after the next adapter reset.
3771 	 */
3772 	if (!ret_val) {
3773 		nvm->ops.reload(hw);
3774 		usleep_range(10000, 20000);
3775 	}
3776 
3777 out:
3778 	if (ret_val)
3779 		e_dbg("NVM update error: %d\n", ret_val);
3780 
3781 	return ret_val;
3782 }
3783 
3784 /**
3785  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3786  *  @hw: pointer to the HW structure
3787  *
3788  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3789  *  which writes the checksum to the shadow ram.  The changes in the shadow
3790  *  ram are then committed to the EEPROM by processing each bank at a time
3791  *  checking for the modified bit and writing only the pending changes.
3792  *  After a successful commit, the shadow ram is cleared and is ready for
3793  *  future writes.
3794  **/
3795 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
3796 {
3797 	struct e1000_nvm_info *nvm = &hw->nvm;
3798 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3799 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3800 	s32 ret_val;
3801 	u16 data = 0;
3802 
3803 	ret_val = e1000e_update_nvm_checksum_generic(hw);
3804 	if (ret_val)
3805 		goto out;
3806 
3807 	if (nvm->type != e1000_nvm_flash_sw)
3808 		goto out;
3809 
3810 	nvm->ops.acquire(hw);
3811 
3812 	/* We're writing to the opposite bank so if we're on bank 1,
3813 	 * write to bank 0 etc.  We also need to erase the segment that
3814 	 * is going to be written
3815 	 */
3816 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3817 	if (ret_val) {
3818 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3819 		bank = 0;
3820 	}
3821 
3822 	if (bank == 0) {
3823 		new_bank_offset = nvm->flash_bank_size;
3824 		old_bank_offset = 0;
3825 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3826 		if (ret_val)
3827 			goto release;
3828 	} else {
3829 		old_bank_offset = nvm->flash_bank_size;
3830 		new_bank_offset = 0;
3831 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3832 		if (ret_val)
3833 			goto release;
3834 	}
3835 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3836 		if (dev_spec->shadow_ram[i].modified) {
3837 			data = dev_spec->shadow_ram[i].value;
3838 		} else {
3839 			ret_val = e1000_read_flash_word_ich8lan(hw, i +
3840 								old_bank_offset,
3841 								&data);
3842 			if (ret_val)
3843 				break;
3844 		}
3845 
3846 		/* If the word is 0x13, then make sure the signature bits
3847 		 * (15:14) are 11b until the commit has completed.
3848 		 * This will allow us to write 10b which indicates the
3849 		 * signature is valid.  We want to do this after the write
3850 		 * has completed so that we don't mark the segment valid
3851 		 * while the write is still in progress
3852 		 */
3853 		if (i == E1000_ICH_NVM_SIG_WORD)
3854 			data |= E1000_ICH_NVM_SIG_MASK;
3855 
3856 		/* Convert offset to bytes. */
3857 		act_offset = (i + new_bank_offset) << 1;
3858 
3859 		usleep_range(100, 200);
3860 		/* Write the bytes to the new bank. */
3861 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3862 							       act_offset,
3863 							       (u8)data);
3864 		if (ret_val)
3865 			break;
3866 
3867 		usleep_range(100, 200);
3868 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3869 							       act_offset + 1,
3870 							       (u8)(data >> 8));
3871 		if (ret_val)
3872 			break;
3873 	}
3874 
3875 	/* Don't bother writing the segment valid bits if sector
3876 	 * programming failed.
3877 	 */
3878 	if (ret_val) {
3879 		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3880 		e_dbg("Flash commit failed.\n");
3881 		goto release;
3882 	}
3883 
3884 	/* Finally validate the new segment by setting bit 15:14
3885 	 * to 10b in word 0x13 , this can be done without an
3886 	 * erase as well since these bits are 11 to start with
3887 	 * and we need to change bit 14 to 0b
3888 	 */
3889 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3890 	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
3891 	if (ret_val)
3892 		goto release;
3893 
3894 	data &= 0xBFFF;
3895 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3896 						       act_offset * 2 + 1,
3897 						       (u8)(data >> 8));
3898 	if (ret_val)
3899 		goto release;
3900 
3901 	/* And invalidate the previously valid segment by setting
3902 	 * its signature word (0x13) high_byte to 0b. This can be
3903 	 * done without an erase because flash erase sets all bits
3904 	 * to 1's. We can write 1's to 0's without an erase
3905 	 */
3906 	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
3907 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
3908 	if (ret_val)
3909 		goto release;
3910 
3911 	/* Great!  Everything worked, we can now clear the cached entries. */
3912 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3913 		dev_spec->shadow_ram[i].modified = false;
3914 		dev_spec->shadow_ram[i].value = 0xFFFF;
3915 	}
3916 
3917 release:
3918 	nvm->ops.release(hw);
3919 
3920 	/* Reload the EEPROM, or else modifications will not appear
3921 	 * until after the next adapter reset.
3922 	 */
3923 	if (!ret_val) {
3924 		nvm->ops.reload(hw);
3925 		usleep_range(10000, 20000);
3926 	}
3927 
3928 out:
3929 	if (ret_val)
3930 		e_dbg("NVM update error: %d\n", ret_val);
3931 
3932 	return ret_val;
3933 }
3934 
3935 /**
3936  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
3937  *  @hw: pointer to the HW structure
3938  *
3939  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
3940  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
3941  *  calculated, in which case we need to calculate the checksum and set bit 6.
3942  **/
3943 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
3944 {
3945 	s32 ret_val;
3946 	u16 data;
3947 	u16 word;
3948 	u16 valid_csum_mask;
3949 
3950 	/* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
3951 	 * the checksum needs to be fixed.  This bit is an indication that
3952 	 * the NVM was prepared by OEM software and did not calculate
3953 	 * the checksum...a likely scenario.
3954 	 */
3955 	switch (hw->mac.type) {
3956 	case e1000_pch_lpt:
3957 	case e1000_pch_spt:
3958 		word = NVM_COMPAT;
3959 		valid_csum_mask = NVM_COMPAT_VALID_CSUM;
3960 		break;
3961 	default:
3962 		word = NVM_FUTURE_INIT_WORD1;
3963 		valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
3964 		break;
3965 	}
3966 
3967 	ret_val = e1000_read_nvm(hw, word, 1, &data);
3968 	if (ret_val)
3969 		return ret_val;
3970 
3971 	if (!(data & valid_csum_mask)) {
3972 		data |= valid_csum_mask;
3973 		ret_val = e1000_write_nvm(hw, word, 1, &data);
3974 		if (ret_val)
3975 			return ret_val;
3976 		ret_val = e1000e_update_nvm_checksum(hw);
3977 		if (ret_val)
3978 			return ret_val;
3979 	}
3980 
3981 	return e1000e_validate_nvm_checksum_generic(hw);
3982 }
3983 
3984 /**
3985  *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
3986  *  @hw: pointer to the HW structure
3987  *
3988  *  To prevent malicious write/erase of the NVM, set it to be read-only
3989  *  so that the hardware ignores all write/erase cycles of the NVM via
3990  *  the flash control registers.  The shadow-ram copy of the NVM will
3991  *  still be updated, however any updates to this copy will not stick
3992  *  across driver reloads.
3993  **/
3994 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
3995 {
3996 	struct e1000_nvm_info *nvm = &hw->nvm;
3997 	union ich8_flash_protected_range pr0;
3998 	union ich8_hws_flash_status hsfsts;
3999 	u32 gfpreg;
4000 
4001 	nvm->ops.acquire(hw);
4002 
4003 	gfpreg = er32flash(ICH_FLASH_GFPREG);
4004 
4005 	/* Write-protect GbE Sector of NVM */
4006 	pr0.regval = er32flash(ICH_FLASH_PR0);
4007 	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
4008 	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
4009 	pr0.range.wpe = true;
4010 	ew32flash(ICH_FLASH_PR0, pr0.regval);
4011 
4012 	/* Lock down a subset of GbE Flash Control Registers, e.g.
4013 	 * PR0 to prevent the write-protection from being lifted.
4014 	 * Once FLOCKDN is set, the registers protected by it cannot
4015 	 * be written until FLOCKDN is cleared by a hardware reset.
4016 	 */
4017 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4018 	hsfsts.hsf_status.flockdn = true;
4019 	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
4020 
4021 	nvm->ops.release(hw);
4022 }
4023 
4024 /**
4025  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4026  *  @hw: pointer to the HW structure
4027  *  @offset: The offset (in bytes) of the byte/word to read.
4028  *  @size: Size of data to read, 1=byte 2=word
4029  *  @data: The byte(s) to write to the NVM.
4030  *
4031  *  Writes one/two bytes to the NVM using the flash access registers.
4032  **/
4033 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4034 					  u8 size, u16 data)
4035 {
4036 	union ich8_hws_flash_status hsfsts;
4037 	union ich8_hws_flash_ctrl hsflctl;
4038 	u32 flash_linear_addr;
4039 	u32 flash_data = 0;
4040 	s32 ret_val;
4041 	u8 count = 0;
4042 
4043 	if (hw->mac.type == e1000_pch_spt) {
4044 		if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4045 			return -E1000_ERR_NVM;
4046 	} else {
4047 		if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4048 			return -E1000_ERR_NVM;
4049 	}
4050 
4051 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4052 			     hw->nvm.flash_base_addr);
4053 
4054 	do {
4055 		udelay(1);
4056 		/* Steps */
4057 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4058 		if (ret_val)
4059 			break;
4060 		/* In SPT, This register is in Lan memory space, not
4061 		 * flash.  Therefore, only 32 bit access is supported
4062 		 */
4063 		if (hw->mac.type == e1000_pch_spt)
4064 			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
4065 		else
4066 			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4067 
4068 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4069 		hsflctl.hsf_ctrl.fldbcount = size - 1;
4070 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4071 		/* In SPT, This register is in Lan memory space,
4072 		 * not flash.  Therefore, only 32 bit access is
4073 		 * supported
4074 		 */
4075 		if (hw->mac.type == e1000_pch_spt)
4076 			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4077 		else
4078 			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4079 
4080 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4081 
4082 		if (size == 1)
4083 			flash_data = (u32)data & 0x00FF;
4084 		else
4085 			flash_data = (u32)data;
4086 
4087 		ew32flash(ICH_FLASH_FDATA0, flash_data);
4088 
4089 		/* check if FCERR is set to 1 , if set to 1, clear it
4090 		 * and try the whole sequence a few more times else done
4091 		 */
4092 		ret_val =
4093 		    e1000_flash_cycle_ich8lan(hw,
4094 					      ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4095 		if (!ret_val)
4096 			break;
4097 
4098 		/* If we're here, then things are most likely
4099 		 * completely hosed, but if the error condition
4100 		 * is detected, it won't hurt to give it another
4101 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4102 		 */
4103 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4104 		if (hsfsts.hsf_status.flcerr)
4105 			/* Repeat for some time before giving up. */
4106 			continue;
4107 		if (!hsfsts.hsf_status.flcdone) {
4108 			e_dbg("Timeout error - flash cycle did not complete.\n");
4109 			break;
4110 		}
4111 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4112 
4113 	return ret_val;
4114 }
4115 
4116 /**
4117 *  e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4118 *  @hw: pointer to the HW structure
4119 *  @offset: The offset (in bytes) of the dwords to read.
4120 *  @data: The 4 bytes to write to the NVM.
4121 *
4122 *  Writes one/two/four bytes to the NVM using the flash access registers.
4123 **/
4124 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4125 					    u32 data)
4126 {
4127 	union ich8_hws_flash_status hsfsts;
4128 	union ich8_hws_flash_ctrl hsflctl;
4129 	u32 flash_linear_addr;
4130 	s32 ret_val;
4131 	u8 count = 0;
4132 
4133 	if (hw->mac.type == e1000_pch_spt) {
4134 		if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4135 			return -E1000_ERR_NVM;
4136 	}
4137 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4138 			     hw->nvm.flash_base_addr);
4139 	do {
4140 		udelay(1);
4141 		/* Steps */
4142 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4143 		if (ret_val)
4144 			break;
4145 
4146 		/* In SPT, This register is in Lan memory space, not
4147 		 * flash.  Therefore, only 32 bit access is supported
4148 		 */
4149 		if (hw->mac.type == e1000_pch_spt)
4150 			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS)
4151 			    >> 16;
4152 		else
4153 			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4154 
4155 		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4156 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4157 
4158 		/* In SPT, This register is in Lan memory space,
4159 		 * not flash.  Therefore, only 32 bit access is
4160 		 * supported
4161 		 */
4162 		if (hw->mac.type == e1000_pch_spt)
4163 			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4164 		else
4165 			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4166 
4167 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4168 
4169 		ew32flash(ICH_FLASH_FDATA0, data);
4170 
4171 		/* check if FCERR is set to 1 , if set to 1, clear it
4172 		 * and try the whole sequence a few more times else done
4173 		 */
4174 		ret_val =
4175 		   e1000_flash_cycle_ich8lan(hw,
4176 					     ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4177 
4178 		if (!ret_val)
4179 			break;
4180 
4181 		/* If we're here, then things are most likely
4182 		 * completely hosed, but if the error condition
4183 		 * is detected, it won't hurt to give it another
4184 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4185 		 */
4186 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4187 
4188 		if (hsfsts.hsf_status.flcerr)
4189 			/* Repeat for some time before giving up. */
4190 			continue;
4191 		if (!hsfsts.hsf_status.flcdone) {
4192 			e_dbg("Timeout error - flash cycle did not complete.\n");
4193 			break;
4194 		}
4195 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4196 
4197 	return ret_val;
4198 }
4199 
4200 /**
4201  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4202  *  @hw: pointer to the HW structure
4203  *  @offset: The index of the byte to read.
4204  *  @data: The byte to write to the NVM.
4205  *
4206  *  Writes a single byte to the NVM using the flash access registers.
4207  **/
4208 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4209 					  u8 data)
4210 {
4211 	u16 word = (u16)data;
4212 
4213 	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4214 }
4215 
4216 /**
4217 *  e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4218 *  @hw: pointer to the HW structure
4219 *  @offset: The offset of the word to write.
4220 *  @dword: The dword to write to the NVM.
4221 *
4222 *  Writes a single dword to the NVM using the flash access registers.
4223 *  Goes through a retry algorithm before giving up.
4224 **/
4225 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4226 						 u32 offset, u32 dword)
4227 {
4228 	s32 ret_val;
4229 	u16 program_retries;
4230 
4231 	/* Must convert word offset into bytes. */
4232 	offset <<= 1;
4233 	ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4234 
4235 	if (!ret_val)
4236 		return ret_val;
4237 	for (program_retries = 0; program_retries < 100; program_retries++) {
4238 		e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset);
4239 		usleep_range(100, 200);
4240 		ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4241 		if (!ret_val)
4242 			break;
4243 	}
4244 	if (program_retries == 100)
4245 		return -E1000_ERR_NVM;
4246 
4247 	return 0;
4248 }
4249 
4250 /**
4251  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4252  *  @hw: pointer to the HW structure
4253  *  @offset: The offset of the byte to write.
4254  *  @byte: The byte to write to the NVM.
4255  *
4256  *  Writes a single byte to the NVM using the flash access registers.
4257  *  Goes through a retry algorithm before giving up.
4258  **/
4259 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4260 						u32 offset, u8 byte)
4261 {
4262 	s32 ret_val;
4263 	u16 program_retries;
4264 
4265 	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4266 	if (!ret_val)
4267 		return ret_val;
4268 
4269 	for (program_retries = 0; program_retries < 100; program_retries++) {
4270 		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
4271 		usleep_range(100, 200);
4272 		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4273 		if (!ret_val)
4274 			break;
4275 	}
4276 	if (program_retries == 100)
4277 		return -E1000_ERR_NVM;
4278 
4279 	return 0;
4280 }
4281 
4282 /**
4283  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4284  *  @hw: pointer to the HW structure
4285  *  @bank: 0 for first bank, 1 for second bank, etc.
4286  *
4287  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4288  *  bank N is 4096 * N + flash_reg_addr.
4289  **/
4290 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4291 {
4292 	struct e1000_nvm_info *nvm = &hw->nvm;
4293 	union ich8_hws_flash_status hsfsts;
4294 	union ich8_hws_flash_ctrl hsflctl;
4295 	u32 flash_linear_addr;
4296 	/* bank size is in 16bit words - adjust to bytes */
4297 	u32 flash_bank_size = nvm->flash_bank_size * 2;
4298 	s32 ret_val;
4299 	s32 count = 0;
4300 	s32 j, iteration, sector_size;
4301 
4302 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4303 
4304 	/* Determine HW Sector size: Read BERASE bits of hw flash status
4305 	 * register
4306 	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
4307 	 *     consecutive sectors.  The start index for the nth Hw sector
4308 	 *     can be calculated as = bank * 4096 + n * 256
4309 	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4310 	 *     The start index for the nth Hw sector can be calculated
4311 	 *     as = bank * 4096
4312 	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4313 	 *     (ich9 only, otherwise error condition)
4314 	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4315 	 */
4316 	switch (hsfsts.hsf_status.berasesz) {
4317 	case 0:
4318 		/* Hw sector size 256 */
4319 		sector_size = ICH_FLASH_SEG_SIZE_256;
4320 		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4321 		break;
4322 	case 1:
4323 		sector_size = ICH_FLASH_SEG_SIZE_4K;
4324 		iteration = 1;
4325 		break;
4326 	case 2:
4327 		sector_size = ICH_FLASH_SEG_SIZE_8K;
4328 		iteration = 1;
4329 		break;
4330 	case 3:
4331 		sector_size = ICH_FLASH_SEG_SIZE_64K;
4332 		iteration = 1;
4333 		break;
4334 	default:
4335 		return -E1000_ERR_NVM;
4336 	}
4337 
4338 	/* Start with the base address, then add the sector offset. */
4339 	flash_linear_addr = hw->nvm.flash_base_addr;
4340 	flash_linear_addr += (bank) ? flash_bank_size : 0;
4341 
4342 	for (j = 0; j < iteration; j++) {
4343 		do {
4344 			u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4345 
4346 			/* Steps */
4347 			ret_val = e1000_flash_cycle_init_ich8lan(hw);
4348 			if (ret_val)
4349 				return ret_val;
4350 
4351 			/* Write a value 11 (block Erase) in Flash
4352 			 * Cycle field in hw flash control
4353 			 */
4354 			if (hw->mac.type == e1000_pch_spt)
4355 				hsflctl.regval =
4356 				    er32flash(ICH_FLASH_HSFSTS) >> 16;
4357 			else
4358 				hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4359 
4360 			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4361 			if (hw->mac.type == e1000_pch_spt)
4362 				ew32flash(ICH_FLASH_HSFSTS,
4363 					  hsflctl.regval << 16);
4364 			else
4365 				ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4366 
4367 			/* Write the last 24 bits of an index within the
4368 			 * block into Flash Linear address field in Flash
4369 			 * Address.
4370 			 */
4371 			flash_linear_addr += (j * sector_size);
4372 			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4373 
4374 			ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4375 			if (!ret_val)
4376 				break;
4377 
4378 			/* Check if FCERR is set to 1.  If 1,
4379 			 * clear it and try the whole sequence
4380 			 * a few more times else Done
4381 			 */
4382 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4383 			if (hsfsts.hsf_status.flcerr)
4384 				/* repeat for some time before giving up */
4385 				continue;
4386 			else if (!hsfsts.hsf_status.flcdone)
4387 				return ret_val;
4388 		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4389 	}
4390 
4391 	return 0;
4392 }
4393 
4394 /**
4395  *  e1000_valid_led_default_ich8lan - Set the default LED settings
4396  *  @hw: pointer to the HW structure
4397  *  @data: Pointer to the LED settings
4398  *
4399  *  Reads the LED default settings from the NVM to data.  If the NVM LED
4400  *  settings is all 0's or F's, set the LED default to a valid LED default
4401  *  setting.
4402  **/
4403 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4404 {
4405 	s32 ret_val;
4406 
4407 	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
4408 	if (ret_val) {
4409 		e_dbg("NVM Read Error\n");
4410 		return ret_val;
4411 	}
4412 
4413 	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4414 		*data = ID_LED_DEFAULT_ICH8LAN;
4415 
4416 	return 0;
4417 }
4418 
4419 /**
4420  *  e1000_id_led_init_pchlan - store LED configurations
4421  *  @hw: pointer to the HW structure
4422  *
4423  *  PCH does not control LEDs via the LEDCTL register, rather it uses
4424  *  the PHY LED configuration register.
4425  *
4426  *  PCH also does not have an "always on" or "always off" mode which
4427  *  complicates the ID feature.  Instead of using the "on" mode to indicate
4428  *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
4429  *  use "link_up" mode.  The LEDs will still ID on request if there is no
4430  *  link based on logic in e1000_led_[on|off]_pchlan().
4431  **/
4432 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4433 {
4434 	struct e1000_mac_info *mac = &hw->mac;
4435 	s32 ret_val;
4436 	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4437 	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4438 	u16 data, i, temp, shift;
4439 
4440 	/* Get default ID LED modes */
4441 	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4442 	if (ret_val)
4443 		return ret_val;
4444 
4445 	mac->ledctl_default = er32(LEDCTL);
4446 	mac->ledctl_mode1 = mac->ledctl_default;
4447 	mac->ledctl_mode2 = mac->ledctl_default;
4448 
4449 	for (i = 0; i < 4; i++) {
4450 		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4451 		shift = (i * 5);
4452 		switch (temp) {
4453 		case ID_LED_ON1_DEF2:
4454 		case ID_LED_ON1_ON2:
4455 		case ID_LED_ON1_OFF2:
4456 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4457 			mac->ledctl_mode1 |= (ledctl_on << shift);
4458 			break;
4459 		case ID_LED_OFF1_DEF2:
4460 		case ID_LED_OFF1_ON2:
4461 		case ID_LED_OFF1_OFF2:
4462 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4463 			mac->ledctl_mode1 |= (ledctl_off << shift);
4464 			break;
4465 		default:
4466 			/* Do nothing */
4467 			break;
4468 		}
4469 		switch (temp) {
4470 		case ID_LED_DEF1_ON2:
4471 		case ID_LED_ON1_ON2:
4472 		case ID_LED_OFF1_ON2:
4473 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4474 			mac->ledctl_mode2 |= (ledctl_on << shift);
4475 			break;
4476 		case ID_LED_DEF1_OFF2:
4477 		case ID_LED_ON1_OFF2:
4478 		case ID_LED_OFF1_OFF2:
4479 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4480 			mac->ledctl_mode2 |= (ledctl_off << shift);
4481 			break;
4482 		default:
4483 			/* Do nothing */
4484 			break;
4485 		}
4486 	}
4487 
4488 	return 0;
4489 }
4490 
4491 /**
4492  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4493  *  @hw: pointer to the HW structure
4494  *
4495  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4496  *  register, so the the bus width is hard coded.
4497  **/
4498 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4499 {
4500 	struct e1000_bus_info *bus = &hw->bus;
4501 	s32 ret_val;
4502 
4503 	ret_val = e1000e_get_bus_info_pcie(hw);
4504 
4505 	/* ICH devices are "PCI Express"-ish.  They have
4506 	 * a configuration space, but do not contain
4507 	 * PCI Express Capability registers, so bus width
4508 	 * must be hardcoded.
4509 	 */
4510 	if (bus->width == e1000_bus_width_unknown)
4511 		bus->width = e1000_bus_width_pcie_x1;
4512 
4513 	return ret_val;
4514 }
4515 
4516 /**
4517  *  e1000_reset_hw_ich8lan - Reset the hardware
4518  *  @hw: pointer to the HW structure
4519  *
4520  *  Does a full reset of the hardware which includes a reset of the PHY and
4521  *  MAC.
4522  **/
4523 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4524 {
4525 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4526 	u16 kum_cfg;
4527 	u32 ctrl, reg;
4528 	s32 ret_val;
4529 
4530 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
4531 	 * on the last TLP read/write transaction when MAC is reset.
4532 	 */
4533 	ret_val = e1000e_disable_pcie_master(hw);
4534 	if (ret_val)
4535 		e_dbg("PCI-E Master disable polling has failed.\n");
4536 
4537 	e_dbg("Masking off all interrupts\n");
4538 	ew32(IMC, 0xffffffff);
4539 
4540 	/* Disable the Transmit and Receive units.  Then delay to allow
4541 	 * any pending transactions to complete before we hit the MAC
4542 	 * with the global reset.
4543 	 */
4544 	ew32(RCTL, 0);
4545 	ew32(TCTL, E1000_TCTL_PSP);
4546 	e1e_flush();
4547 
4548 	usleep_range(10000, 20000);
4549 
4550 	/* Workaround for ICH8 bit corruption issue in FIFO memory */
4551 	if (hw->mac.type == e1000_ich8lan) {
4552 		/* Set Tx and Rx buffer allocation to 8k apiece. */
4553 		ew32(PBA, E1000_PBA_8K);
4554 		/* Set Packet Buffer Size to 16k. */
4555 		ew32(PBS, E1000_PBS_16K);
4556 	}
4557 
4558 	if (hw->mac.type == e1000_pchlan) {
4559 		/* Save the NVM K1 bit setting */
4560 		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4561 		if (ret_val)
4562 			return ret_val;
4563 
4564 		if (kum_cfg & E1000_NVM_K1_ENABLE)
4565 			dev_spec->nvm_k1_enabled = true;
4566 		else
4567 			dev_spec->nvm_k1_enabled = false;
4568 	}
4569 
4570 	ctrl = er32(CTRL);
4571 
4572 	if (!hw->phy.ops.check_reset_block(hw)) {
4573 		/* Full-chip reset requires MAC and PHY reset at the same
4574 		 * time to make sure the interface between MAC and the
4575 		 * external PHY is reset.
4576 		 */
4577 		ctrl |= E1000_CTRL_PHY_RST;
4578 
4579 		/* Gate automatic PHY configuration by hardware on
4580 		 * non-managed 82579
4581 		 */
4582 		if ((hw->mac.type == e1000_pch2lan) &&
4583 		    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
4584 			e1000_gate_hw_phy_config_ich8lan(hw, true);
4585 	}
4586 	ret_val = e1000_acquire_swflag_ich8lan(hw);
4587 	e_dbg("Issuing a global reset to ich8lan\n");
4588 	ew32(CTRL, (ctrl | E1000_CTRL_RST));
4589 	/* cannot issue a flush here because it hangs the hardware */
4590 	msleep(20);
4591 
4592 	/* Set Phy Config Counter to 50msec */
4593 	if (hw->mac.type == e1000_pch2lan) {
4594 		reg = er32(FEXTNVM3);
4595 		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4596 		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4597 		ew32(FEXTNVM3, reg);
4598 	}
4599 
4600 	if (!ret_val)
4601 		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
4602 
4603 	if (ctrl & E1000_CTRL_PHY_RST) {
4604 		ret_val = hw->phy.ops.get_cfg_done(hw);
4605 		if (ret_val)
4606 			return ret_val;
4607 
4608 		ret_val = e1000_post_phy_reset_ich8lan(hw);
4609 		if (ret_val)
4610 			return ret_val;
4611 	}
4612 
4613 	/* For PCH, this write will make sure that any noise
4614 	 * will be detected as a CRC error and be dropped rather than show up
4615 	 * as a bad packet to the DMA engine.
4616 	 */
4617 	if (hw->mac.type == e1000_pchlan)
4618 		ew32(CRC_OFFSET, 0x65656565);
4619 
4620 	ew32(IMC, 0xffffffff);
4621 	er32(ICR);
4622 
4623 	reg = er32(KABGTXD);
4624 	reg |= E1000_KABGTXD_BGSQLBIAS;
4625 	ew32(KABGTXD, reg);
4626 
4627 	return 0;
4628 }
4629 
4630 /**
4631  *  e1000_init_hw_ich8lan - Initialize the hardware
4632  *  @hw: pointer to the HW structure
4633  *
4634  *  Prepares the hardware for transmit and receive by doing the following:
4635  *   - initialize hardware bits
4636  *   - initialize LED identification
4637  *   - setup receive address registers
4638  *   - setup flow control
4639  *   - setup transmit descriptors
4640  *   - clear statistics
4641  **/
4642 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4643 {
4644 	struct e1000_mac_info *mac = &hw->mac;
4645 	u32 ctrl_ext, txdctl, snoop;
4646 	s32 ret_val;
4647 	u16 i;
4648 
4649 	e1000_initialize_hw_bits_ich8lan(hw);
4650 
4651 	/* Initialize identification LED */
4652 	ret_val = mac->ops.id_led_init(hw);
4653 	/* An error is not fatal and we should not stop init due to this */
4654 	if (ret_val)
4655 		e_dbg("Error initializing identification LED\n");
4656 
4657 	/* Setup the receive address. */
4658 	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
4659 
4660 	/* Zero out the Multicast HASH table */
4661 	e_dbg("Zeroing the MTA\n");
4662 	for (i = 0; i < mac->mta_reg_count; i++)
4663 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4664 
4665 	/* The 82578 Rx buffer will stall if wakeup is enabled in host and
4666 	 * the ME.  Disable wakeup by clearing the host wakeup bit.
4667 	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
4668 	 */
4669 	if (hw->phy.type == e1000_phy_82578) {
4670 		e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4671 		i &= ~BM_WUC_HOST_WU_BIT;
4672 		e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4673 		ret_val = e1000_phy_hw_reset_ich8lan(hw);
4674 		if (ret_val)
4675 			return ret_val;
4676 	}
4677 
4678 	/* Setup link and flow control */
4679 	ret_val = mac->ops.setup_link(hw);
4680 
4681 	/* Set the transmit descriptor write-back policy for both queues */
4682 	txdctl = er32(TXDCTL(0));
4683 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4684 		  E1000_TXDCTL_FULL_TX_DESC_WB);
4685 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4686 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4687 	ew32(TXDCTL(0), txdctl);
4688 	txdctl = er32(TXDCTL(1));
4689 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4690 		  E1000_TXDCTL_FULL_TX_DESC_WB);
4691 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4692 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4693 	ew32(TXDCTL(1), txdctl);
4694 
4695 	/* ICH8 has opposite polarity of no_snoop bits.
4696 	 * By default, we should use snoop behavior.
4697 	 */
4698 	if (mac->type == e1000_ich8lan)
4699 		snoop = PCIE_ICH8_SNOOP_ALL;
4700 	else
4701 		snoop = (u32)~(PCIE_NO_SNOOP_ALL);
4702 	e1000e_set_pcie_no_snoop(hw, snoop);
4703 
4704 	ctrl_ext = er32(CTRL_EXT);
4705 	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4706 	ew32(CTRL_EXT, ctrl_ext);
4707 
4708 	/* Clear all of the statistics registers (clear on read).  It is
4709 	 * important that we do this after we have tried to establish link
4710 	 * because the symbol error count will increment wildly if there
4711 	 * is no link.
4712 	 */
4713 	e1000_clear_hw_cntrs_ich8lan(hw);
4714 
4715 	return ret_val;
4716 }
4717 
4718 /**
4719  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4720  *  @hw: pointer to the HW structure
4721  *
4722  *  Sets/Clears required hardware bits necessary for correctly setting up the
4723  *  hardware for transmit and receive.
4724  **/
4725 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4726 {
4727 	u32 reg;
4728 
4729 	/* Extended Device Control */
4730 	reg = er32(CTRL_EXT);
4731 	reg |= (1 << 22);
4732 	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
4733 	if (hw->mac.type >= e1000_pchlan)
4734 		reg |= E1000_CTRL_EXT_PHYPDEN;
4735 	ew32(CTRL_EXT, reg);
4736 
4737 	/* Transmit Descriptor Control 0 */
4738 	reg = er32(TXDCTL(0));
4739 	reg |= (1 << 22);
4740 	ew32(TXDCTL(0), reg);
4741 
4742 	/* Transmit Descriptor Control 1 */
4743 	reg = er32(TXDCTL(1));
4744 	reg |= (1 << 22);
4745 	ew32(TXDCTL(1), reg);
4746 
4747 	/* Transmit Arbitration Control 0 */
4748 	reg = er32(TARC(0));
4749 	if (hw->mac.type == e1000_ich8lan)
4750 		reg |= (1 << 28) | (1 << 29);
4751 	reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
4752 	ew32(TARC(0), reg);
4753 
4754 	/* Transmit Arbitration Control 1 */
4755 	reg = er32(TARC(1));
4756 	if (er32(TCTL) & E1000_TCTL_MULR)
4757 		reg &= ~(1 << 28);
4758 	else
4759 		reg |= (1 << 28);
4760 	reg |= (1 << 24) | (1 << 26) | (1 << 30);
4761 	ew32(TARC(1), reg);
4762 
4763 	/* Device Status */
4764 	if (hw->mac.type == e1000_ich8lan) {
4765 		reg = er32(STATUS);
4766 		reg &= ~(1 << 31);
4767 		ew32(STATUS, reg);
4768 	}
4769 
4770 	/* work-around descriptor data corruption issue during nfs v2 udp
4771 	 * traffic, just disable the nfs filtering capability
4772 	 */
4773 	reg = er32(RFCTL);
4774 	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
4775 
4776 	/* Disable IPv6 extension header parsing because some malformed
4777 	 * IPv6 headers can hang the Rx.
4778 	 */
4779 	if (hw->mac.type == e1000_ich8lan)
4780 		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
4781 	ew32(RFCTL, reg);
4782 
4783 	/* Enable ECC on Lynxpoint */
4784 	if ((hw->mac.type == e1000_pch_lpt) ||
4785 	    (hw->mac.type == e1000_pch_spt)) {
4786 		reg = er32(PBECCSTS);
4787 		reg |= E1000_PBECCSTS_ECC_ENABLE;
4788 		ew32(PBECCSTS, reg);
4789 
4790 		reg = er32(CTRL);
4791 		reg |= E1000_CTRL_MEHE;
4792 		ew32(CTRL, reg);
4793 	}
4794 }
4795 
4796 /**
4797  *  e1000_setup_link_ich8lan - Setup flow control and link settings
4798  *  @hw: pointer to the HW structure
4799  *
4800  *  Determines which flow control settings to use, then configures flow
4801  *  control.  Calls the appropriate media-specific link configuration
4802  *  function.  Assuming the adapter has a valid link partner, a valid link
4803  *  should be established.  Assumes the hardware has previously been reset
4804  *  and the transmitter and receiver are not enabled.
4805  **/
4806 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
4807 {
4808 	s32 ret_val;
4809 
4810 	if (hw->phy.ops.check_reset_block(hw))
4811 		return 0;
4812 
4813 	/* ICH parts do not have a word in the NVM to determine
4814 	 * the default flow control setting, so we explicitly
4815 	 * set it to full.
4816 	 */
4817 	if (hw->fc.requested_mode == e1000_fc_default) {
4818 		/* Workaround h/w hang when Tx flow control enabled */
4819 		if (hw->mac.type == e1000_pchlan)
4820 			hw->fc.requested_mode = e1000_fc_rx_pause;
4821 		else
4822 			hw->fc.requested_mode = e1000_fc_full;
4823 	}
4824 
4825 	/* Save off the requested flow control mode for use later.  Depending
4826 	 * on the link partner's capabilities, we may or may not use this mode.
4827 	 */
4828 	hw->fc.current_mode = hw->fc.requested_mode;
4829 
4830 	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
4831 
4832 	/* Continue to configure the copper link. */
4833 	ret_val = hw->mac.ops.setup_physical_interface(hw);
4834 	if (ret_val)
4835 		return ret_val;
4836 
4837 	ew32(FCTTV, hw->fc.pause_time);
4838 	if ((hw->phy.type == e1000_phy_82578) ||
4839 	    (hw->phy.type == e1000_phy_82579) ||
4840 	    (hw->phy.type == e1000_phy_i217) ||
4841 	    (hw->phy.type == e1000_phy_82577)) {
4842 		ew32(FCRTV_PCH, hw->fc.refresh_time);
4843 
4844 		ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
4845 				   hw->fc.pause_time);
4846 		if (ret_val)
4847 			return ret_val;
4848 	}
4849 
4850 	return e1000e_set_fc_watermarks(hw);
4851 }
4852 
4853 /**
4854  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
4855  *  @hw: pointer to the HW structure
4856  *
4857  *  Configures the kumeran interface to the PHY to wait the appropriate time
4858  *  when polling the PHY, then call the generic setup_copper_link to finish
4859  *  configuring the copper link.
4860  **/
4861 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
4862 {
4863 	u32 ctrl;
4864 	s32 ret_val;
4865 	u16 reg_data;
4866 
4867 	ctrl = er32(CTRL);
4868 	ctrl |= E1000_CTRL_SLU;
4869 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
4870 	ew32(CTRL, ctrl);
4871 
4872 	/* Set the mac to wait the maximum time between each iteration
4873 	 * and increase the max iterations when polling the phy;
4874 	 * this fixes erroneous timeouts at 10Mbps.
4875 	 */
4876 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
4877 	if (ret_val)
4878 		return ret_val;
4879 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
4880 				       &reg_data);
4881 	if (ret_val)
4882 		return ret_val;
4883 	reg_data |= 0x3F;
4884 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
4885 					reg_data);
4886 	if (ret_val)
4887 		return ret_val;
4888 
4889 	switch (hw->phy.type) {
4890 	case e1000_phy_igp_3:
4891 		ret_val = e1000e_copper_link_setup_igp(hw);
4892 		if (ret_val)
4893 			return ret_val;
4894 		break;
4895 	case e1000_phy_bm:
4896 	case e1000_phy_82578:
4897 		ret_val = e1000e_copper_link_setup_m88(hw);
4898 		if (ret_val)
4899 			return ret_val;
4900 		break;
4901 	case e1000_phy_82577:
4902 	case e1000_phy_82579:
4903 		ret_val = e1000_copper_link_setup_82577(hw);
4904 		if (ret_val)
4905 			return ret_val;
4906 		break;
4907 	case e1000_phy_ife:
4908 		ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
4909 		if (ret_val)
4910 			return ret_val;
4911 
4912 		reg_data &= ~IFE_PMC_AUTO_MDIX;
4913 
4914 		switch (hw->phy.mdix) {
4915 		case 1:
4916 			reg_data &= ~IFE_PMC_FORCE_MDIX;
4917 			break;
4918 		case 2:
4919 			reg_data |= IFE_PMC_FORCE_MDIX;
4920 			break;
4921 		case 0:
4922 		default:
4923 			reg_data |= IFE_PMC_AUTO_MDIX;
4924 			break;
4925 		}
4926 		ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
4927 		if (ret_val)
4928 			return ret_val;
4929 		break;
4930 	default:
4931 		break;
4932 	}
4933 
4934 	return e1000e_setup_copper_link(hw);
4935 }
4936 
4937 /**
4938  *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
4939  *  @hw: pointer to the HW structure
4940  *
4941  *  Calls the PHY specific link setup function and then calls the
4942  *  generic setup_copper_link to finish configuring the link for
4943  *  Lynxpoint PCH devices
4944  **/
4945 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
4946 {
4947 	u32 ctrl;
4948 	s32 ret_val;
4949 
4950 	ctrl = er32(CTRL);
4951 	ctrl |= E1000_CTRL_SLU;
4952 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
4953 	ew32(CTRL, ctrl);
4954 
4955 	ret_val = e1000_copper_link_setup_82577(hw);
4956 	if (ret_val)
4957 		return ret_val;
4958 
4959 	return e1000e_setup_copper_link(hw);
4960 }
4961 
4962 /**
4963  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
4964  *  @hw: pointer to the HW structure
4965  *  @speed: pointer to store current link speed
4966  *  @duplex: pointer to store the current link duplex
4967  *
4968  *  Calls the generic get_speed_and_duplex to retrieve the current link
4969  *  information and then calls the Kumeran lock loss workaround for links at
4970  *  gigabit speeds.
4971  **/
4972 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
4973 					  u16 *duplex)
4974 {
4975 	s32 ret_val;
4976 
4977 	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
4978 	if (ret_val)
4979 		return ret_val;
4980 
4981 	if ((hw->mac.type == e1000_ich8lan) &&
4982 	    (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
4983 		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
4984 	}
4985 
4986 	return ret_val;
4987 }
4988 
4989 /**
4990  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
4991  *  @hw: pointer to the HW structure
4992  *
4993  *  Work-around for 82566 Kumeran PCS lock loss:
4994  *  On link status change (i.e. PCI reset, speed change) and link is up and
4995  *  speed is gigabit-
4996  *    0) if workaround is optionally disabled do nothing
4997  *    1) wait 1ms for Kumeran link to come up
4998  *    2) check Kumeran Diagnostic register PCS lock loss bit
4999  *    3) if not set the link is locked (all is good), otherwise...
5000  *    4) reset the PHY
5001  *    5) repeat up to 10 times
5002  *  Note: this is only called for IGP3 copper when speed is 1gb.
5003  **/
5004 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5005 {
5006 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5007 	u32 phy_ctrl;
5008 	s32 ret_val;
5009 	u16 i, data;
5010 	bool link;
5011 
5012 	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5013 		return 0;
5014 
5015 	/* Make sure link is up before proceeding.  If not just return.
5016 	 * Attempting this while link is negotiating fouled up link
5017 	 * stability
5018 	 */
5019 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
5020 	if (!link)
5021 		return 0;
5022 
5023 	for (i = 0; i < 10; i++) {
5024 		/* read once to clear */
5025 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5026 		if (ret_val)
5027 			return ret_val;
5028 		/* and again to get new status */
5029 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5030 		if (ret_val)
5031 			return ret_val;
5032 
5033 		/* check for PCS lock */
5034 		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5035 			return 0;
5036 
5037 		/* Issue PHY reset */
5038 		e1000_phy_hw_reset(hw);
5039 		mdelay(5);
5040 	}
5041 	/* Disable GigE link negotiation */
5042 	phy_ctrl = er32(PHY_CTRL);
5043 	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5044 		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5045 	ew32(PHY_CTRL, phy_ctrl);
5046 
5047 	/* Call gig speed drop workaround on Gig disable before accessing
5048 	 * any PHY registers
5049 	 */
5050 	e1000e_gig_downshift_workaround_ich8lan(hw);
5051 
5052 	/* unable to acquire PCS lock */
5053 	return -E1000_ERR_PHY;
5054 }
5055 
5056 /**
5057  *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5058  *  @hw: pointer to the HW structure
5059  *  @state: boolean value used to set the current Kumeran workaround state
5060  *
5061  *  If ICH8, set the current Kumeran workaround state (enabled - true
5062  *  /disabled - false).
5063  **/
5064 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5065 						  bool state)
5066 {
5067 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5068 
5069 	if (hw->mac.type != e1000_ich8lan) {
5070 		e_dbg("Workaround applies to ICH8 only.\n");
5071 		return;
5072 	}
5073 
5074 	dev_spec->kmrn_lock_loss_workaround_enabled = state;
5075 }
5076 
5077 /**
5078  *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5079  *  @hw: pointer to the HW structure
5080  *
5081  *  Workaround for 82566 power-down on D3 entry:
5082  *    1) disable gigabit link
5083  *    2) write VR power-down enable
5084  *    3) read it back
5085  *  Continue if successful, else issue LCD reset and repeat
5086  **/
5087 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5088 {
5089 	u32 reg;
5090 	u16 data;
5091 	u8 retry = 0;
5092 
5093 	if (hw->phy.type != e1000_phy_igp_3)
5094 		return;
5095 
5096 	/* Try the workaround twice (if needed) */
5097 	do {
5098 		/* Disable link */
5099 		reg = er32(PHY_CTRL);
5100 		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5101 			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5102 		ew32(PHY_CTRL, reg);
5103 
5104 		/* Call gig speed drop workaround on Gig disable before
5105 		 * accessing any PHY registers
5106 		 */
5107 		if (hw->mac.type == e1000_ich8lan)
5108 			e1000e_gig_downshift_workaround_ich8lan(hw);
5109 
5110 		/* Write VR power-down enable */
5111 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5112 		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5113 		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5114 
5115 		/* Read it back and test */
5116 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5117 		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5118 		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5119 			break;
5120 
5121 		/* Issue PHY reset and repeat at most one more time */
5122 		reg = er32(CTRL);
5123 		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
5124 		retry++;
5125 	} while (retry);
5126 }
5127 
5128 /**
5129  *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5130  *  @hw: pointer to the HW structure
5131  *
5132  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5133  *  LPLU, Gig disable, MDIC PHY reset):
5134  *    1) Set Kumeran Near-end loopback
5135  *    2) Clear Kumeran Near-end loopback
5136  *  Should only be called for ICH8[m] devices with any 1G Phy.
5137  **/
5138 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5139 {
5140 	s32 ret_val;
5141 	u16 reg_data;
5142 
5143 	if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
5144 		return;
5145 
5146 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5147 				       &reg_data);
5148 	if (ret_val)
5149 		return;
5150 	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5151 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5152 					reg_data);
5153 	if (ret_val)
5154 		return;
5155 	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5156 	e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
5157 }
5158 
5159 /**
5160  *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5161  *  @hw: pointer to the HW structure
5162  *
5163  *  During S0 to Sx transition, it is possible the link remains at gig
5164  *  instead of negotiating to a lower speed.  Before going to Sx, set
5165  *  'Gig Disable' to force link speed negotiation to a lower speed based on
5166  *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
5167  *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5168  *  needs to be written.
5169  *  Parts that support (and are linked to a partner which support) EEE in
5170  *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5171  *  than 10Mbps w/o EEE.
5172  **/
5173 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5174 {
5175 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5176 	u32 phy_ctrl;
5177 	s32 ret_val;
5178 
5179 	phy_ctrl = er32(PHY_CTRL);
5180 	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5181 
5182 	if (hw->phy.type == e1000_phy_i217) {
5183 		u16 phy_reg, device_id = hw->adapter->pdev->device;
5184 
5185 		if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5186 		    (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5187 		    (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5188 		    (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5189 		    (hw->mac.type == e1000_pch_spt)) {
5190 			u32 fextnvm6 = er32(FEXTNVM6);
5191 
5192 			ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5193 		}
5194 
5195 		ret_val = hw->phy.ops.acquire(hw);
5196 		if (ret_val)
5197 			goto out;
5198 
5199 		if (!dev_spec->eee_disable) {
5200 			u16 eee_advert;
5201 
5202 			ret_val =
5203 			    e1000_read_emi_reg_locked(hw,
5204 						      I217_EEE_ADVERTISEMENT,
5205 						      &eee_advert);
5206 			if (ret_val)
5207 				goto release;
5208 
5209 			/* Disable LPLU if both link partners support 100BaseT
5210 			 * EEE and 100Full is advertised on both ends of the
5211 			 * link, and enable Auto Enable LPI since there will
5212 			 * be no driver to enable LPI while in Sx.
5213 			 */
5214 			if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5215 			    (dev_spec->eee_lp_ability &
5216 			     I82579_EEE_100_SUPPORTED) &&
5217 			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5218 				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5219 					      E1000_PHY_CTRL_NOND0A_LPLU);
5220 
5221 				/* Set Auto Enable LPI after link up */
5222 				e1e_rphy_locked(hw,
5223 						I217_LPI_GPIO_CTRL, &phy_reg);
5224 				phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5225 				e1e_wphy_locked(hw,
5226 						I217_LPI_GPIO_CTRL, phy_reg);
5227 			}
5228 		}
5229 
5230 		/* For i217 Intel Rapid Start Technology support,
5231 		 * when the system is going into Sx and no manageability engine
5232 		 * is present, the driver must configure proxy to reset only on
5233 		 * power good.  LPI (Low Power Idle) state must also reset only
5234 		 * on power good, as well as the MTA (Multicast table array).
5235 		 * The SMBus release must also be disabled on LCD reset.
5236 		 */
5237 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5238 			/* Enable proxy to reset only on power good. */
5239 			e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
5240 			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5241 			e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
5242 
5243 			/* Set bit enable LPI (EEE) to reset only on
5244 			 * power good.
5245 			 */
5246 			e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
5247 			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5248 			e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
5249 
5250 			/* Disable the SMB release on LCD reset. */
5251 			e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5252 			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5253 			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5254 		}
5255 
5256 		/* Enable MTA to reset for Intel Rapid Start Technology
5257 		 * Support
5258 		 */
5259 		e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5260 		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5261 		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5262 
5263 release:
5264 		hw->phy.ops.release(hw);
5265 	}
5266 out:
5267 	ew32(PHY_CTRL, phy_ctrl);
5268 
5269 	if (hw->mac.type == e1000_ich8lan)
5270 		e1000e_gig_downshift_workaround_ich8lan(hw);
5271 
5272 	if (hw->mac.type >= e1000_pchlan) {
5273 		e1000_oem_bits_config_ich8lan(hw, false);
5274 
5275 		/* Reset PHY to activate OEM bits on 82577/8 */
5276 		if (hw->mac.type == e1000_pchlan)
5277 			e1000e_phy_hw_reset_generic(hw);
5278 
5279 		ret_val = hw->phy.ops.acquire(hw);
5280 		if (ret_val)
5281 			return;
5282 		e1000_write_smbus_addr(hw);
5283 		hw->phy.ops.release(hw);
5284 	}
5285 }
5286 
5287 /**
5288  *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5289  *  @hw: pointer to the HW structure
5290  *
5291  *  During Sx to S0 transitions on non-managed devices or managed devices
5292  *  on which PHY resets are not blocked, if the PHY registers cannot be
5293  *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
5294  *  the PHY.
5295  *  On i217, setup Intel Rapid Start Technology.
5296  **/
5297 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5298 {
5299 	s32 ret_val;
5300 
5301 	if (hw->mac.type < e1000_pch2lan)
5302 		return;
5303 
5304 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
5305 	if (ret_val) {
5306 		e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
5307 		return;
5308 	}
5309 
5310 	/* For i217 Intel Rapid Start Technology support when the system
5311 	 * is transitioning from Sx and no manageability engine is present
5312 	 * configure SMBus to restore on reset, disable proxy, and enable
5313 	 * the reset on MTA (Multicast table array).
5314 	 */
5315 	if (hw->phy.type == e1000_phy_i217) {
5316 		u16 phy_reg;
5317 
5318 		ret_val = hw->phy.ops.acquire(hw);
5319 		if (ret_val) {
5320 			e_dbg("Failed to setup iRST\n");
5321 			return;
5322 		}
5323 
5324 		/* Clear Auto Enable LPI after link up */
5325 		e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5326 		phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5327 		e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5328 
5329 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5330 			/* Restore clear on SMB if no manageability engine
5331 			 * is present
5332 			 */
5333 			ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5334 			if (ret_val)
5335 				goto release;
5336 			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5337 			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5338 
5339 			/* Disable Proxy */
5340 			e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
5341 		}
5342 		/* Enable reset on MTA */
5343 		ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5344 		if (ret_val)
5345 			goto release;
5346 		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5347 		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5348 release:
5349 		if (ret_val)
5350 			e_dbg("Error %d in resume workarounds\n", ret_val);
5351 		hw->phy.ops.release(hw);
5352 	}
5353 }
5354 
5355 /**
5356  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
5357  *  @hw: pointer to the HW structure
5358  *
5359  *  Return the LED back to the default configuration.
5360  **/
5361 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5362 {
5363 	if (hw->phy.type == e1000_phy_ife)
5364 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
5365 
5366 	ew32(LEDCTL, hw->mac.ledctl_default);
5367 	return 0;
5368 }
5369 
5370 /**
5371  *  e1000_led_on_ich8lan - Turn LEDs on
5372  *  @hw: pointer to the HW structure
5373  *
5374  *  Turn on the LEDs.
5375  **/
5376 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5377 {
5378 	if (hw->phy.type == e1000_phy_ife)
5379 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5380 				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5381 
5382 	ew32(LEDCTL, hw->mac.ledctl_mode2);
5383 	return 0;
5384 }
5385 
5386 /**
5387  *  e1000_led_off_ich8lan - Turn LEDs off
5388  *  @hw: pointer to the HW structure
5389  *
5390  *  Turn off the LEDs.
5391  **/
5392 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5393 {
5394 	if (hw->phy.type == e1000_phy_ife)
5395 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5396 				(IFE_PSCL_PROBE_MODE |
5397 				 IFE_PSCL_PROBE_LEDS_OFF));
5398 
5399 	ew32(LEDCTL, hw->mac.ledctl_mode1);
5400 	return 0;
5401 }
5402 
5403 /**
5404  *  e1000_setup_led_pchlan - Configures SW controllable LED
5405  *  @hw: pointer to the HW structure
5406  *
5407  *  This prepares the SW controllable LED for use.
5408  **/
5409 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5410 {
5411 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
5412 }
5413 
5414 /**
5415  *  e1000_cleanup_led_pchlan - Restore the default LED operation
5416  *  @hw: pointer to the HW structure
5417  *
5418  *  Return the LED back to the default configuration.
5419  **/
5420 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5421 {
5422 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
5423 }
5424 
5425 /**
5426  *  e1000_led_on_pchlan - Turn LEDs on
5427  *  @hw: pointer to the HW structure
5428  *
5429  *  Turn on the LEDs.
5430  **/
5431 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5432 {
5433 	u16 data = (u16)hw->mac.ledctl_mode2;
5434 	u32 i, led;
5435 
5436 	/* If no link, then turn LED on by setting the invert bit
5437 	 * for each LED that's mode is "link_up" in ledctl_mode2.
5438 	 */
5439 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5440 		for (i = 0; i < 3; i++) {
5441 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5442 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5443 			    E1000_LEDCTL_MODE_LINK_UP)
5444 				continue;
5445 			if (led & E1000_PHY_LED0_IVRT)
5446 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5447 			else
5448 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5449 		}
5450 	}
5451 
5452 	return e1e_wphy(hw, HV_LED_CONFIG, data);
5453 }
5454 
5455 /**
5456  *  e1000_led_off_pchlan - Turn LEDs off
5457  *  @hw: pointer to the HW structure
5458  *
5459  *  Turn off the LEDs.
5460  **/
5461 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5462 {
5463 	u16 data = (u16)hw->mac.ledctl_mode1;
5464 	u32 i, led;
5465 
5466 	/* If no link, then turn LED off by clearing the invert bit
5467 	 * for each LED that's mode is "link_up" in ledctl_mode1.
5468 	 */
5469 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5470 		for (i = 0; i < 3; i++) {
5471 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5472 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5473 			    E1000_LEDCTL_MODE_LINK_UP)
5474 				continue;
5475 			if (led & E1000_PHY_LED0_IVRT)
5476 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5477 			else
5478 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5479 		}
5480 	}
5481 
5482 	return e1e_wphy(hw, HV_LED_CONFIG, data);
5483 }
5484 
5485 /**
5486  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5487  *  @hw: pointer to the HW structure
5488  *
5489  *  Read appropriate register for the config done bit for completion status
5490  *  and configure the PHY through s/w for EEPROM-less parts.
5491  *
5492  *  NOTE: some silicon which is EEPROM-less will fail trying to read the
5493  *  config done bit, so only an error is logged and continues.  If we were
5494  *  to return with error, EEPROM-less silicon would not be able to be reset
5495  *  or change link.
5496  **/
5497 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5498 {
5499 	s32 ret_val = 0;
5500 	u32 bank = 0;
5501 	u32 status;
5502 
5503 	e1000e_get_cfg_done_generic(hw);
5504 
5505 	/* Wait for indication from h/w that it has completed basic config */
5506 	if (hw->mac.type >= e1000_ich10lan) {
5507 		e1000_lan_init_done_ich8lan(hw);
5508 	} else {
5509 		ret_val = e1000e_get_auto_rd_done(hw);
5510 		if (ret_val) {
5511 			/* When auto config read does not complete, do not
5512 			 * return with an error. This can happen in situations
5513 			 * where there is no eeprom and prevents getting link.
5514 			 */
5515 			e_dbg("Auto Read Done did not complete\n");
5516 			ret_val = 0;
5517 		}
5518 	}
5519 
5520 	/* Clear PHY Reset Asserted bit */
5521 	status = er32(STATUS);
5522 	if (status & E1000_STATUS_PHYRA)
5523 		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
5524 	else
5525 		e_dbg("PHY Reset Asserted not set - needs delay\n");
5526 
5527 	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
5528 	if (hw->mac.type <= e1000_ich9lan) {
5529 		if (!(er32(EECD) & E1000_EECD_PRES) &&
5530 		    (hw->phy.type == e1000_phy_igp_3)) {
5531 			e1000e_phy_init_script_igp3(hw);
5532 		}
5533 	} else {
5534 		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5535 			/* Maybe we should do a basic PHY config */
5536 			e_dbg("EEPROM not present\n");
5537 			ret_val = -E1000_ERR_CONFIG;
5538 		}
5539 	}
5540 
5541 	return ret_val;
5542 }
5543 
5544 /**
5545  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5546  * @hw: pointer to the HW structure
5547  *
5548  * In the case of a PHY power down to save power, or to turn off link during a
5549  * driver unload, or wake on lan is not enabled, remove the link.
5550  **/
5551 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5552 {
5553 	/* If the management interface is not enabled, then power down */
5554 	if (!(hw->mac.ops.check_mng_mode(hw) ||
5555 	      hw->phy.ops.check_reset_block(hw)))
5556 		e1000_power_down_phy_copper(hw);
5557 }
5558 
5559 /**
5560  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5561  *  @hw: pointer to the HW structure
5562  *
5563  *  Clears hardware counters specific to the silicon family and calls
5564  *  clear_hw_cntrs_generic to clear all general purpose counters.
5565  **/
5566 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5567 {
5568 	u16 phy_data;
5569 	s32 ret_val;
5570 
5571 	e1000e_clear_hw_cntrs_base(hw);
5572 
5573 	er32(ALGNERRC);
5574 	er32(RXERRC);
5575 	er32(TNCRS);
5576 	er32(CEXTERR);
5577 	er32(TSCTC);
5578 	er32(TSCTFC);
5579 
5580 	er32(MGTPRC);
5581 	er32(MGTPDC);
5582 	er32(MGTPTC);
5583 
5584 	er32(IAC);
5585 	er32(ICRXOC);
5586 
5587 	/* Clear PHY statistics registers */
5588 	if ((hw->phy.type == e1000_phy_82578) ||
5589 	    (hw->phy.type == e1000_phy_82579) ||
5590 	    (hw->phy.type == e1000_phy_i217) ||
5591 	    (hw->phy.type == e1000_phy_82577)) {
5592 		ret_val = hw->phy.ops.acquire(hw);
5593 		if (ret_val)
5594 			return;
5595 		ret_val = hw->phy.ops.set_page(hw,
5596 					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
5597 		if (ret_val)
5598 			goto release;
5599 		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5600 		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5601 		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5602 		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5603 		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5604 		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5605 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5606 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5607 		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5608 		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5609 		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5610 		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5611 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5612 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5613 release:
5614 		hw->phy.ops.release(hw);
5615 	}
5616 }
5617 
5618 static const struct e1000_mac_operations ich8_mac_ops = {
5619 	/* check_mng_mode dependent on mac type */
5620 	.check_for_link		= e1000_check_for_copper_link_ich8lan,
5621 	/* cleanup_led dependent on mac type */
5622 	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
5623 	.get_bus_info		= e1000_get_bus_info_ich8lan,
5624 	.set_lan_id		= e1000_set_lan_id_single_port,
5625 	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
5626 	/* led_on dependent on mac type */
5627 	/* led_off dependent on mac type */
5628 	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
5629 	.reset_hw		= e1000_reset_hw_ich8lan,
5630 	.init_hw		= e1000_init_hw_ich8lan,
5631 	.setup_link		= e1000_setup_link_ich8lan,
5632 	.setup_physical_interface = e1000_setup_copper_link_ich8lan,
5633 	/* id_led_init dependent on mac type */
5634 	.config_collision_dist	= e1000e_config_collision_dist_generic,
5635 	.rar_set		= e1000e_rar_set_generic,
5636 	.rar_get_count		= e1000e_rar_get_count_generic,
5637 };
5638 
5639 static const struct e1000_phy_operations ich8_phy_ops = {
5640 	.acquire		= e1000_acquire_swflag_ich8lan,
5641 	.check_reset_block	= e1000_check_reset_block_ich8lan,
5642 	.commit			= NULL,
5643 	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
5644 	.get_cable_length	= e1000e_get_cable_length_igp_2,
5645 	.read_reg		= e1000e_read_phy_reg_igp,
5646 	.release		= e1000_release_swflag_ich8lan,
5647 	.reset			= e1000_phy_hw_reset_ich8lan,
5648 	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
5649 	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
5650 	.write_reg		= e1000e_write_phy_reg_igp,
5651 };
5652 
5653 static const struct e1000_nvm_operations ich8_nvm_ops = {
5654 	.acquire		= e1000_acquire_nvm_ich8lan,
5655 	.read			= e1000_read_nvm_ich8lan,
5656 	.release		= e1000_release_nvm_ich8lan,
5657 	.reload			= e1000e_reload_nvm_generic,
5658 	.update			= e1000_update_nvm_checksum_ich8lan,
5659 	.valid_led_default	= e1000_valid_led_default_ich8lan,
5660 	.validate		= e1000_validate_nvm_checksum_ich8lan,
5661 	.write			= e1000_write_nvm_ich8lan,
5662 };
5663 
5664 static const struct e1000_nvm_operations spt_nvm_ops = {
5665 	.acquire		= e1000_acquire_nvm_ich8lan,
5666 	.release		= e1000_release_nvm_ich8lan,
5667 	.read			= e1000_read_nvm_spt,
5668 	.update			= e1000_update_nvm_checksum_spt,
5669 	.reload			= e1000e_reload_nvm_generic,
5670 	.valid_led_default	= e1000_valid_led_default_ich8lan,
5671 	.validate		= e1000_validate_nvm_checksum_ich8lan,
5672 	.write			= e1000_write_nvm_ich8lan,
5673 };
5674 
5675 const struct e1000_info e1000_ich8_info = {
5676 	.mac			= e1000_ich8lan,
5677 	.flags			= FLAG_HAS_WOL
5678 				  | FLAG_IS_ICH
5679 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5680 				  | FLAG_HAS_AMT
5681 				  | FLAG_HAS_FLASH
5682 				  | FLAG_APME_IN_WUC,
5683 	.pba			= 8,
5684 	.max_hw_frame_size	= ETH_FRAME_LEN + ETH_FCS_LEN,
5685 	.get_variants		= e1000_get_variants_ich8lan,
5686 	.mac_ops		= &ich8_mac_ops,
5687 	.phy_ops		= &ich8_phy_ops,
5688 	.nvm_ops		= &ich8_nvm_ops,
5689 };
5690 
5691 const struct e1000_info e1000_ich9_info = {
5692 	.mac			= e1000_ich9lan,
5693 	.flags			= FLAG_HAS_JUMBO_FRAMES
5694 				  | FLAG_IS_ICH
5695 				  | FLAG_HAS_WOL
5696 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5697 				  | FLAG_HAS_AMT
5698 				  | FLAG_HAS_FLASH
5699 				  | FLAG_APME_IN_WUC,
5700 	.pba			= 18,
5701 	.max_hw_frame_size	= DEFAULT_JUMBO,
5702 	.get_variants		= e1000_get_variants_ich8lan,
5703 	.mac_ops		= &ich8_mac_ops,
5704 	.phy_ops		= &ich8_phy_ops,
5705 	.nvm_ops		= &ich8_nvm_ops,
5706 };
5707 
5708 const struct e1000_info e1000_ich10_info = {
5709 	.mac			= e1000_ich10lan,
5710 	.flags			= FLAG_HAS_JUMBO_FRAMES
5711 				  | FLAG_IS_ICH
5712 				  | FLAG_HAS_WOL
5713 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5714 				  | FLAG_HAS_AMT
5715 				  | FLAG_HAS_FLASH
5716 				  | FLAG_APME_IN_WUC,
5717 	.pba			= 18,
5718 	.max_hw_frame_size	= DEFAULT_JUMBO,
5719 	.get_variants		= e1000_get_variants_ich8lan,
5720 	.mac_ops		= &ich8_mac_ops,
5721 	.phy_ops		= &ich8_phy_ops,
5722 	.nvm_ops		= &ich8_nvm_ops,
5723 };
5724 
5725 const struct e1000_info e1000_pch_info = {
5726 	.mac			= e1000_pchlan,
5727 	.flags			= FLAG_IS_ICH
5728 				  | FLAG_HAS_WOL
5729 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5730 				  | FLAG_HAS_AMT
5731 				  | FLAG_HAS_FLASH
5732 				  | FLAG_HAS_JUMBO_FRAMES
5733 				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
5734 				  | FLAG_APME_IN_WUC,
5735 	.flags2			= FLAG2_HAS_PHY_STATS,
5736 	.pba			= 26,
5737 	.max_hw_frame_size	= 4096,
5738 	.get_variants		= e1000_get_variants_ich8lan,
5739 	.mac_ops		= &ich8_mac_ops,
5740 	.phy_ops		= &ich8_phy_ops,
5741 	.nvm_ops		= &ich8_nvm_ops,
5742 };
5743 
5744 const struct e1000_info e1000_pch2_info = {
5745 	.mac			= e1000_pch2lan,
5746 	.flags			= FLAG_IS_ICH
5747 				  | FLAG_HAS_WOL
5748 				  | FLAG_HAS_HW_TIMESTAMP
5749 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5750 				  | FLAG_HAS_AMT
5751 				  | FLAG_HAS_FLASH
5752 				  | FLAG_HAS_JUMBO_FRAMES
5753 				  | FLAG_APME_IN_WUC,
5754 	.flags2			= FLAG2_HAS_PHY_STATS
5755 				  | FLAG2_HAS_EEE,
5756 	.pba			= 26,
5757 	.max_hw_frame_size	= 9018,
5758 	.get_variants		= e1000_get_variants_ich8lan,
5759 	.mac_ops		= &ich8_mac_ops,
5760 	.phy_ops		= &ich8_phy_ops,
5761 	.nvm_ops		= &ich8_nvm_ops,
5762 };
5763 
5764 const struct e1000_info e1000_pch_lpt_info = {
5765 	.mac			= e1000_pch_lpt,
5766 	.flags			= FLAG_IS_ICH
5767 				  | FLAG_HAS_WOL
5768 				  | FLAG_HAS_HW_TIMESTAMP
5769 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5770 				  | FLAG_HAS_AMT
5771 				  | FLAG_HAS_FLASH
5772 				  | FLAG_HAS_JUMBO_FRAMES
5773 				  | FLAG_APME_IN_WUC,
5774 	.flags2			= FLAG2_HAS_PHY_STATS
5775 				  | FLAG2_HAS_EEE,
5776 	.pba			= 26,
5777 	.max_hw_frame_size	= 9018,
5778 	.get_variants		= e1000_get_variants_ich8lan,
5779 	.mac_ops		= &ich8_mac_ops,
5780 	.phy_ops		= &ich8_phy_ops,
5781 	.nvm_ops		= &ich8_nvm_ops,
5782 };
5783 
5784 const struct e1000_info e1000_pch_spt_info = {
5785 	.mac			= e1000_pch_spt,
5786 	.flags			= FLAG_IS_ICH
5787 				  | FLAG_HAS_WOL
5788 				  | FLAG_HAS_HW_TIMESTAMP
5789 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5790 				  | FLAG_HAS_AMT
5791 				  | FLAG_HAS_FLASH
5792 				  | FLAG_HAS_JUMBO_FRAMES
5793 				  | FLAG_APME_IN_WUC,
5794 	.flags2			= FLAG2_HAS_PHY_STATS
5795 				  | FLAG2_HAS_EEE,
5796 	.pba			= 26,
5797 	.max_hw_frame_size	= 9018,
5798 	.get_variants		= e1000_get_variants_ich8lan,
5799 	.mac_ops		= &ich8_mac_ops,
5800 	.phy_ops		= &ich8_phy_ops,
5801 	.nvm_ops		= &spt_nvm_ops,
5802 };
5803