1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3 
4 /* 82562G 10/100 Network Connection
5  * 82562G-2 10/100 Network Connection
6  * 82562GT 10/100 Network Connection
7  * 82562GT-2 10/100 Network Connection
8  * 82562V 10/100 Network Connection
9  * 82562V-2 10/100 Network Connection
10  * 82566DC-2 Gigabit Network Connection
11  * 82566DC Gigabit Network Connection
12  * 82566DM-2 Gigabit Network Connection
13  * 82566DM Gigabit Network Connection
14  * 82566MC Gigabit Network Connection
15  * 82566MM Gigabit Network Connection
16  * 82567LM Gigabit Network Connection
17  * 82567LF Gigabit Network Connection
18  * 82567V Gigabit Network Connection
19  * 82567LM-2 Gigabit Network Connection
20  * 82567LF-2 Gigabit Network Connection
21  * 82567V-2 Gigabit Network Connection
22  * 82567LF-3 Gigabit Network Connection
23  * 82567LM-3 Gigabit Network Connection
24  * 82567LM-4 Gigabit Network Connection
25  * 82577LM Gigabit Network Connection
26  * 82577LC Gigabit Network Connection
27  * 82578DM Gigabit Network Connection
28  * 82578DC Gigabit Network Connection
29  * 82579LM Gigabit Network Connection
30  * 82579V Gigabit Network Connection
31  * Ethernet Connection I217-LM
32  * Ethernet Connection I217-V
33  * Ethernet Connection I218-V
34  * Ethernet Connection I218-LM
35  * Ethernet Connection (2) I218-LM
36  * Ethernet Connection (2) I218-V
37  * Ethernet Connection (3) I218-LM
38  * Ethernet Connection (3) I218-V
39  */
40 
41 #include "e1000.h"
42 
43 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
44 /* Offset 04h HSFSTS */
45 union ich8_hws_flash_status {
46 	struct ich8_hsfsts {
47 		u16 flcdone:1;	/* bit 0 Flash Cycle Done */
48 		u16 flcerr:1;	/* bit 1 Flash Cycle Error */
49 		u16 dael:1;	/* bit 2 Direct Access error Log */
50 		u16 berasesz:2;	/* bit 4:3 Sector Erase Size */
51 		u16 flcinprog:1;	/* bit 5 flash cycle in Progress */
52 		u16 reserved1:2;	/* bit 13:6 Reserved */
53 		u16 reserved2:6;	/* bit 13:6 Reserved */
54 		u16 fldesvalid:1;	/* bit 14 Flash Descriptor Valid */
55 		u16 flockdn:1;	/* bit 15 Flash Config Lock-Down */
56 	} hsf_status;
57 	u16 regval;
58 };
59 
60 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
61 /* Offset 06h FLCTL */
62 union ich8_hws_flash_ctrl {
63 	struct ich8_hsflctl {
64 		u16 flcgo:1;	/* 0 Flash Cycle Go */
65 		u16 flcycle:2;	/* 2:1 Flash Cycle */
66 		u16 reserved:5;	/* 7:3 Reserved  */
67 		u16 fldbcount:2;	/* 9:8 Flash Data Byte Count */
68 		u16 flockdn:6;	/* 15:10 Reserved */
69 	} hsf_ctrl;
70 	u16 regval;
71 };
72 
73 /* ICH Flash Region Access Permissions */
74 union ich8_hws_flash_regacc {
75 	struct ich8_flracc {
76 		u32 grra:8;	/* 0:7 GbE region Read Access */
77 		u32 grwa:8;	/* 8:15 GbE region Write Access */
78 		u32 gmrag:8;	/* 23:16 GbE Master Read Access Grant */
79 		u32 gmwag:8;	/* 31:24 GbE Master Write Access Grant */
80 	} hsf_flregacc;
81 	u16 regval;
82 };
83 
84 /* ICH Flash Protected Region */
85 union ich8_flash_protected_range {
86 	struct ich8_pr {
87 		u32 base:13;	/* 0:12 Protected Range Base */
88 		u32 reserved1:2;	/* 13:14 Reserved */
89 		u32 rpe:1;	/* 15 Read Protection Enable */
90 		u32 limit:13;	/* 16:28 Protected Range Limit */
91 		u32 reserved2:2;	/* 29:30 Reserved */
92 		u32 wpe:1;	/* 31 Write Protection Enable */
93 	} range;
94 	u32 regval;
95 };
96 
97 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
98 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
99 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
100 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
101 						u32 offset, u8 byte);
102 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
103 					 u8 *data);
104 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
105 					 u16 *data);
106 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
107 					 u8 size, u16 *data);
108 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
109 					   u32 *data);
110 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
111 					  u32 offset, u32 *data);
112 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
113 					    u32 offset, u32 data);
114 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
115 						 u32 offset, u32 dword);
116 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
117 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
118 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
119 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
120 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
121 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
122 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
123 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
124 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
125 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
126 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
127 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
128 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
129 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
130 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
131 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
132 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
133 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
134 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw);
135 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
136 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
137 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
138 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
139 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
140 
141 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
142 {
143 	return readw(hw->flash_address + reg);
144 }
145 
146 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
147 {
148 	return readl(hw->flash_address + reg);
149 }
150 
151 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
152 {
153 	writew(val, hw->flash_address + reg);
154 }
155 
156 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
157 {
158 	writel(val, hw->flash_address + reg);
159 }
160 
161 #define er16flash(reg)		__er16flash(hw, (reg))
162 #define er32flash(reg)		__er32flash(hw, (reg))
163 #define ew16flash(reg, val)	__ew16flash(hw, (reg), (val))
164 #define ew32flash(reg, val)	__ew32flash(hw, (reg), (val))
165 
166 /**
167  *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
168  *  @hw: pointer to the HW structure
169  *
170  *  Test access to the PHY registers by reading the PHY ID registers.  If
171  *  the PHY ID is already known (e.g. resume path) compare it with known ID,
172  *  otherwise assume the read PHY ID is correct if it is valid.
173  *
174  *  Assumes the sw/fw/hw semaphore is already acquired.
175  **/
176 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
177 {
178 	u16 phy_reg = 0;
179 	u32 phy_id = 0;
180 	s32 ret_val = 0;
181 	u16 retry_count;
182 	u32 mac_reg = 0;
183 
184 	for (retry_count = 0; retry_count < 2; retry_count++) {
185 		ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
186 		if (ret_val || (phy_reg == 0xFFFF))
187 			continue;
188 		phy_id = (u32)(phy_reg << 16);
189 
190 		ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
191 		if (ret_val || (phy_reg == 0xFFFF)) {
192 			phy_id = 0;
193 			continue;
194 		}
195 		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
196 		break;
197 	}
198 
199 	if (hw->phy.id) {
200 		if (hw->phy.id == phy_id)
201 			goto out;
202 	} else if (phy_id) {
203 		hw->phy.id = phy_id;
204 		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
205 		goto out;
206 	}
207 
208 	/* In case the PHY needs to be in mdio slow mode,
209 	 * set slow mode and try to get the PHY id again.
210 	 */
211 	if (hw->mac.type < e1000_pch_lpt) {
212 		hw->phy.ops.release(hw);
213 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
214 		if (!ret_val)
215 			ret_val = e1000e_get_phy_id(hw);
216 		hw->phy.ops.acquire(hw);
217 	}
218 
219 	if (ret_val)
220 		return false;
221 out:
222 	if (hw->mac.type >= e1000_pch_lpt) {
223 		/* Only unforce SMBus if ME is not active */
224 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
225 			/* Unforce SMBus mode in PHY */
226 			e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
227 			phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
228 			e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
229 
230 			/* Unforce SMBus mode in MAC */
231 			mac_reg = er32(CTRL_EXT);
232 			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
233 			ew32(CTRL_EXT, mac_reg);
234 		}
235 	}
236 
237 	return true;
238 }
239 
240 /**
241  *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
242  *  @hw: pointer to the HW structure
243  *
244  *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
245  *  used to reset the PHY to a quiescent state when necessary.
246  **/
247 static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
248 {
249 	u32 mac_reg;
250 
251 	/* Set Phy Config Counter to 50msec */
252 	mac_reg = er32(FEXTNVM3);
253 	mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
254 	mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
255 	ew32(FEXTNVM3, mac_reg);
256 
257 	/* Toggle LANPHYPC Value bit */
258 	mac_reg = er32(CTRL);
259 	mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
260 	mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
261 	ew32(CTRL, mac_reg);
262 	e1e_flush();
263 	usleep_range(10, 20);
264 	mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
265 	ew32(CTRL, mac_reg);
266 	e1e_flush();
267 
268 	if (hw->mac.type < e1000_pch_lpt) {
269 		msleep(50);
270 	} else {
271 		u16 count = 20;
272 
273 		do {
274 			usleep_range(5000, 6000);
275 		} while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
276 
277 		msleep(30);
278 	}
279 }
280 
281 /**
282  *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
283  *  @hw: pointer to the HW structure
284  *
285  *  Workarounds/flow necessary for PHY initialization during driver load
286  *  and resume paths.
287  **/
288 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
289 {
290 	struct e1000_adapter *adapter = hw->adapter;
291 	u32 mac_reg, fwsm = er32(FWSM);
292 	s32 ret_val;
293 
294 	/* Gate automatic PHY configuration by hardware on managed and
295 	 * non-managed 82579 and newer adapters.
296 	 */
297 	e1000_gate_hw_phy_config_ich8lan(hw, true);
298 
299 	/* It is not possible to be certain of the current state of ULP
300 	 * so forcibly disable it.
301 	 */
302 	hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
303 	ret_val = e1000_disable_ulp_lpt_lp(hw, true);
304 	if (ret_val)
305 		e_warn("Failed to disable ULP\n");
306 
307 	ret_val = hw->phy.ops.acquire(hw);
308 	if (ret_val) {
309 		e_dbg("Failed to initialize PHY flow\n");
310 		goto out;
311 	}
312 
313 	/* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
314 	 * inaccessible and resetting the PHY is not blocked, toggle the
315 	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
316 	 */
317 	switch (hw->mac.type) {
318 	case e1000_pch_lpt:
319 	case e1000_pch_spt:
320 	case e1000_pch_cnp:
321 	case e1000_pch_tgp:
322 	case e1000_pch_adp:
323 	case e1000_pch_mtp:
324 		if (e1000_phy_is_accessible_pchlan(hw))
325 			break;
326 
327 		/* Before toggling LANPHYPC, see if PHY is accessible by
328 		 * forcing MAC to SMBus mode first.
329 		 */
330 		mac_reg = er32(CTRL_EXT);
331 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
332 		ew32(CTRL_EXT, mac_reg);
333 
334 		/* Wait 50 milliseconds for MAC to finish any retries
335 		 * that it might be trying to perform from previous
336 		 * attempts to acknowledge any phy read requests.
337 		 */
338 		msleep(50);
339 
340 		fallthrough;
341 	case e1000_pch2lan:
342 		if (e1000_phy_is_accessible_pchlan(hw))
343 			break;
344 
345 		fallthrough;
346 	case e1000_pchlan:
347 		if ((hw->mac.type == e1000_pchlan) &&
348 		    (fwsm & E1000_ICH_FWSM_FW_VALID))
349 			break;
350 
351 		if (hw->phy.ops.check_reset_block(hw)) {
352 			e_dbg("Required LANPHYPC toggle blocked by ME\n");
353 			ret_val = -E1000_ERR_PHY;
354 			break;
355 		}
356 
357 		/* Toggle LANPHYPC Value bit */
358 		e1000_toggle_lanphypc_pch_lpt(hw);
359 		if (hw->mac.type >= e1000_pch_lpt) {
360 			if (e1000_phy_is_accessible_pchlan(hw))
361 				break;
362 
363 			/* Toggling LANPHYPC brings the PHY out of SMBus mode
364 			 * so ensure that the MAC is also out of SMBus mode
365 			 */
366 			mac_reg = er32(CTRL_EXT);
367 			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
368 			ew32(CTRL_EXT, mac_reg);
369 
370 			if (e1000_phy_is_accessible_pchlan(hw))
371 				break;
372 
373 			ret_val = -E1000_ERR_PHY;
374 		}
375 		break;
376 	default:
377 		break;
378 	}
379 
380 	hw->phy.ops.release(hw);
381 	if (!ret_val) {
382 
383 		/* Check to see if able to reset PHY.  Print error if not */
384 		if (hw->phy.ops.check_reset_block(hw)) {
385 			e_err("Reset blocked by ME\n");
386 			goto out;
387 		}
388 
389 		/* Reset the PHY before any access to it.  Doing so, ensures
390 		 * that the PHY is in a known good state before we read/write
391 		 * PHY registers.  The generic reset is sufficient here,
392 		 * because we haven't determined the PHY type yet.
393 		 */
394 		ret_val = e1000e_phy_hw_reset_generic(hw);
395 		if (ret_val)
396 			goto out;
397 
398 		/* On a successful reset, possibly need to wait for the PHY
399 		 * to quiesce to an accessible state before returning control
400 		 * to the calling function.  If the PHY does not quiesce, then
401 		 * return E1000E_BLK_PHY_RESET, as this is the condition that
402 		 *  the PHY is in.
403 		 */
404 		ret_val = hw->phy.ops.check_reset_block(hw);
405 		if (ret_val)
406 			e_err("ME blocked access to PHY after reset\n");
407 	}
408 
409 out:
410 	/* Ungate automatic PHY configuration on non-managed 82579 */
411 	if ((hw->mac.type == e1000_pch2lan) &&
412 	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
413 		usleep_range(10000, 11000);
414 		e1000_gate_hw_phy_config_ich8lan(hw, false);
415 	}
416 
417 	return ret_val;
418 }
419 
420 /**
421  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
422  *  @hw: pointer to the HW structure
423  *
424  *  Initialize family-specific PHY parameters and function pointers.
425  **/
426 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
427 {
428 	struct e1000_phy_info *phy = &hw->phy;
429 	s32 ret_val;
430 
431 	phy->addr = 1;
432 	phy->reset_delay_us = 100;
433 
434 	phy->ops.set_page = e1000_set_page_igp;
435 	phy->ops.read_reg = e1000_read_phy_reg_hv;
436 	phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
437 	phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
438 	phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
439 	phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
440 	phy->ops.write_reg = e1000_write_phy_reg_hv;
441 	phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
442 	phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
443 	phy->ops.power_up = e1000_power_up_phy_copper;
444 	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
445 	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
446 
447 	phy->id = e1000_phy_unknown;
448 
449 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
450 	if (ret_val)
451 		return ret_val;
452 
453 	if (phy->id == e1000_phy_unknown)
454 		switch (hw->mac.type) {
455 		default:
456 			ret_val = e1000e_get_phy_id(hw);
457 			if (ret_val)
458 				return ret_val;
459 			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
460 				break;
461 			fallthrough;
462 		case e1000_pch2lan:
463 		case e1000_pch_lpt:
464 		case e1000_pch_spt:
465 		case e1000_pch_cnp:
466 		case e1000_pch_tgp:
467 		case e1000_pch_adp:
468 		case e1000_pch_mtp:
469 			/* In case the PHY needs to be in mdio slow mode,
470 			 * set slow mode and try to get the PHY id again.
471 			 */
472 			ret_val = e1000_set_mdio_slow_mode_hv(hw);
473 			if (ret_val)
474 				return ret_val;
475 			ret_val = e1000e_get_phy_id(hw);
476 			if (ret_val)
477 				return ret_val;
478 			break;
479 		}
480 	phy->type = e1000e_get_phy_type_from_id(phy->id);
481 
482 	switch (phy->type) {
483 	case e1000_phy_82577:
484 	case e1000_phy_82579:
485 	case e1000_phy_i217:
486 		phy->ops.check_polarity = e1000_check_polarity_82577;
487 		phy->ops.force_speed_duplex =
488 		    e1000_phy_force_speed_duplex_82577;
489 		phy->ops.get_cable_length = e1000_get_cable_length_82577;
490 		phy->ops.get_info = e1000_get_phy_info_82577;
491 		phy->ops.commit = e1000e_phy_sw_reset;
492 		break;
493 	case e1000_phy_82578:
494 		phy->ops.check_polarity = e1000_check_polarity_m88;
495 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
496 		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
497 		phy->ops.get_info = e1000e_get_phy_info_m88;
498 		break;
499 	default:
500 		ret_val = -E1000_ERR_PHY;
501 		break;
502 	}
503 
504 	return ret_val;
505 }
506 
507 /**
508  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
509  *  @hw: pointer to the HW structure
510  *
511  *  Initialize family-specific PHY parameters and function pointers.
512  **/
513 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
514 {
515 	struct e1000_phy_info *phy = &hw->phy;
516 	s32 ret_val;
517 	u16 i = 0;
518 
519 	phy->addr = 1;
520 	phy->reset_delay_us = 100;
521 
522 	phy->ops.power_up = e1000_power_up_phy_copper;
523 	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
524 
525 	/* We may need to do this twice - once for IGP and if that fails,
526 	 * we'll set BM func pointers and try again
527 	 */
528 	ret_val = e1000e_determine_phy_address(hw);
529 	if (ret_val) {
530 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
531 		phy->ops.read_reg = e1000e_read_phy_reg_bm;
532 		ret_val = e1000e_determine_phy_address(hw);
533 		if (ret_val) {
534 			e_dbg("Cannot determine PHY addr. Erroring out\n");
535 			return ret_val;
536 		}
537 	}
538 
539 	phy->id = 0;
540 	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
541 	       (i++ < 100)) {
542 		usleep_range(1000, 1100);
543 		ret_val = e1000e_get_phy_id(hw);
544 		if (ret_val)
545 			return ret_val;
546 	}
547 
548 	/* Verify phy id */
549 	switch (phy->id) {
550 	case IGP03E1000_E_PHY_ID:
551 		phy->type = e1000_phy_igp_3;
552 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
553 		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
554 		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
555 		phy->ops.get_info = e1000e_get_phy_info_igp;
556 		phy->ops.check_polarity = e1000_check_polarity_igp;
557 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
558 		break;
559 	case IFE_E_PHY_ID:
560 	case IFE_PLUS_E_PHY_ID:
561 	case IFE_C_E_PHY_ID:
562 		phy->type = e1000_phy_ife;
563 		phy->autoneg_mask = E1000_ALL_NOT_GIG;
564 		phy->ops.get_info = e1000_get_phy_info_ife;
565 		phy->ops.check_polarity = e1000_check_polarity_ife;
566 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
567 		break;
568 	case BME1000_E_PHY_ID:
569 		phy->type = e1000_phy_bm;
570 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
571 		phy->ops.read_reg = e1000e_read_phy_reg_bm;
572 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
573 		phy->ops.commit = e1000e_phy_sw_reset;
574 		phy->ops.get_info = e1000e_get_phy_info_m88;
575 		phy->ops.check_polarity = e1000_check_polarity_m88;
576 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
577 		break;
578 	default:
579 		return -E1000_ERR_PHY;
580 	}
581 
582 	return 0;
583 }
584 
585 /**
586  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
587  *  @hw: pointer to the HW structure
588  *
589  *  Initialize family-specific NVM parameters and function
590  *  pointers.
591  **/
592 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
593 {
594 	struct e1000_nvm_info *nvm = &hw->nvm;
595 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
596 	u32 gfpreg, sector_base_addr, sector_end_addr;
597 	u16 i;
598 	u32 nvm_size;
599 
600 	nvm->type = e1000_nvm_flash_sw;
601 
602 	if (hw->mac.type >= e1000_pch_spt) {
603 		/* in SPT, gfpreg doesn't exist. NVM size is taken from the
604 		 * STRAP register. This is because in SPT the GbE Flash region
605 		 * is no longer accessed through the flash registers. Instead,
606 		 * the mechanism has changed, and the Flash region access
607 		 * registers are now implemented in GbE memory space.
608 		 */
609 		nvm->flash_base_addr = 0;
610 		nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1)
611 		    * NVM_SIZE_MULTIPLIER;
612 		nvm->flash_bank_size = nvm_size / 2;
613 		/* Adjust to word count */
614 		nvm->flash_bank_size /= sizeof(u16);
615 		/* Set the base address for flash register access */
616 		hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
617 	} else {
618 		/* Can't read flash registers if register set isn't mapped. */
619 		if (!hw->flash_address) {
620 			e_dbg("ERROR: Flash registers not mapped\n");
621 			return -E1000_ERR_CONFIG;
622 		}
623 
624 		gfpreg = er32flash(ICH_FLASH_GFPREG);
625 
626 		/* sector_X_addr is a "sector"-aligned address (4096 bytes)
627 		 * Add 1 to sector_end_addr since this sector is included in
628 		 * the overall size.
629 		 */
630 		sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
631 		sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
632 
633 		/* flash_base_addr is byte-aligned */
634 		nvm->flash_base_addr = sector_base_addr
635 		    << FLASH_SECTOR_ADDR_SHIFT;
636 
637 		/* find total size of the NVM, then cut in half since the total
638 		 * size represents two separate NVM banks.
639 		 */
640 		nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
641 					<< FLASH_SECTOR_ADDR_SHIFT);
642 		nvm->flash_bank_size /= 2;
643 		/* Adjust to word count */
644 		nvm->flash_bank_size /= sizeof(u16);
645 	}
646 
647 	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
648 
649 	/* Clear shadow ram */
650 	for (i = 0; i < nvm->word_size; i++) {
651 		dev_spec->shadow_ram[i].modified = false;
652 		dev_spec->shadow_ram[i].value = 0xFFFF;
653 	}
654 
655 	return 0;
656 }
657 
658 /**
659  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
660  *  @hw: pointer to the HW structure
661  *
662  *  Initialize family-specific MAC parameters and function
663  *  pointers.
664  **/
665 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
666 {
667 	struct e1000_mac_info *mac = &hw->mac;
668 
669 	/* Set media type function pointer */
670 	hw->phy.media_type = e1000_media_type_copper;
671 
672 	/* Set mta register count */
673 	mac->mta_reg_count = 32;
674 	/* Set rar entry count */
675 	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
676 	if (mac->type == e1000_ich8lan)
677 		mac->rar_entry_count--;
678 	/* FWSM register */
679 	mac->has_fwsm = true;
680 	/* ARC subsystem not supported */
681 	mac->arc_subsystem_valid = false;
682 	/* Adaptive IFS supported */
683 	mac->adaptive_ifs = true;
684 
685 	/* LED and other operations */
686 	switch (mac->type) {
687 	case e1000_ich8lan:
688 	case e1000_ich9lan:
689 	case e1000_ich10lan:
690 		/* check management mode */
691 		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
692 		/* ID LED init */
693 		mac->ops.id_led_init = e1000e_id_led_init_generic;
694 		/* blink LED */
695 		mac->ops.blink_led = e1000e_blink_led_generic;
696 		/* setup LED */
697 		mac->ops.setup_led = e1000e_setup_led_generic;
698 		/* cleanup LED */
699 		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
700 		/* turn on/off LED */
701 		mac->ops.led_on = e1000_led_on_ich8lan;
702 		mac->ops.led_off = e1000_led_off_ich8lan;
703 		break;
704 	case e1000_pch2lan:
705 		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
706 		mac->ops.rar_set = e1000_rar_set_pch2lan;
707 		fallthrough;
708 	case e1000_pch_lpt:
709 	case e1000_pch_spt:
710 	case e1000_pch_cnp:
711 	case e1000_pch_tgp:
712 	case e1000_pch_adp:
713 	case e1000_pch_mtp:
714 	case e1000_pchlan:
715 		/* check management mode */
716 		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
717 		/* ID LED init */
718 		mac->ops.id_led_init = e1000_id_led_init_pchlan;
719 		/* setup LED */
720 		mac->ops.setup_led = e1000_setup_led_pchlan;
721 		/* cleanup LED */
722 		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
723 		/* turn on/off LED */
724 		mac->ops.led_on = e1000_led_on_pchlan;
725 		mac->ops.led_off = e1000_led_off_pchlan;
726 		break;
727 	default:
728 		break;
729 	}
730 
731 	if (mac->type >= e1000_pch_lpt) {
732 		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
733 		mac->ops.rar_set = e1000_rar_set_pch_lpt;
734 		mac->ops.setup_physical_interface =
735 		    e1000_setup_copper_link_pch_lpt;
736 		mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt;
737 	}
738 
739 	/* Enable PCS Lock-loss workaround for ICH8 */
740 	if (mac->type == e1000_ich8lan)
741 		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
742 
743 	return 0;
744 }
745 
746 /**
747  *  __e1000_access_emi_reg_locked - Read/write EMI register
748  *  @hw: pointer to the HW structure
749  *  @address: EMI address to program
750  *  @data: pointer to value to read/write from/to the EMI address
751  *  @read: boolean flag to indicate read or write
752  *
753  *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
754  **/
755 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
756 					 u16 *data, bool read)
757 {
758 	s32 ret_val;
759 
760 	ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
761 	if (ret_val)
762 		return ret_val;
763 
764 	if (read)
765 		ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
766 	else
767 		ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
768 
769 	return ret_val;
770 }
771 
772 /**
773  *  e1000_read_emi_reg_locked - Read Extended Management Interface register
774  *  @hw: pointer to the HW structure
775  *  @addr: EMI address to program
776  *  @data: value to be read from the EMI address
777  *
778  *  Assumes the SW/FW/HW Semaphore is already acquired.
779  **/
780 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
781 {
782 	return __e1000_access_emi_reg_locked(hw, addr, data, true);
783 }
784 
785 /**
786  *  e1000_write_emi_reg_locked - Write Extended Management Interface register
787  *  @hw: pointer to the HW structure
788  *  @addr: EMI address to program
789  *  @data: value to be written to the EMI address
790  *
791  *  Assumes the SW/FW/HW Semaphore is already acquired.
792  **/
793 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
794 {
795 	return __e1000_access_emi_reg_locked(hw, addr, &data, false);
796 }
797 
798 /**
799  *  e1000_set_eee_pchlan - Enable/disable EEE support
800  *  @hw: pointer to the HW structure
801  *
802  *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
803  *  the link and the EEE capabilities of the link partner.  The LPI Control
804  *  register bits will remain set only if/when link is up.
805  *
806  *  EEE LPI must not be asserted earlier than one second after link is up.
807  *  On 82579, EEE LPI should not be enabled until such time otherwise there
808  *  can be link issues with some switches.  Other devices can have EEE LPI
809  *  enabled immediately upon link up since they have a timer in hardware which
810  *  prevents LPI from being asserted too early.
811  **/
812 s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
813 {
814 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
815 	s32 ret_val;
816 	u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
817 
818 	switch (hw->phy.type) {
819 	case e1000_phy_82579:
820 		lpa = I82579_EEE_LP_ABILITY;
821 		pcs_status = I82579_EEE_PCS_STATUS;
822 		adv_addr = I82579_EEE_ADVERTISEMENT;
823 		break;
824 	case e1000_phy_i217:
825 		lpa = I217_EEE_LP_ABILITY;
826 		pcs_status = I217_EEE_PCS_STATUS;
827 		adv_addr = I217_EEE_ADVERTISEMENT;
828 		break;
829 	default:
830 		return 0;
831 	}
832 
833 	ret_val = hw->phy.ops.acquire(hw);
834 	if (ret_val)
835 		return ret_val;
836 
837 	ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
838 	if (ret_val)
839 		goto release;
840 
841 	/* Clear bits that enable EEE in various speeds */
842 	lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
843 
844 	/* Enable EEE if not disabled by user */
845 	if (!dev_spec->eee_disable) {
846 		/* Save off link partner's EEE ability */
847 		ret_val = e1000_read_emi_reg_locked(hw, lpa,
848 						    &dev_spec->eee_lp_ability);
849 		if (ret_val)
850 			goto release;
851 
852 		/* Read EEE advertisement */
853 		ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
854 		if (ret_val)
855 			goto release;
856 
857 		/* Enable EEE only for speeds in which the link partner is
858 		 * EEE capable and for which we advertise EEE.
859 		 */
860 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
861 			lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
862 
863 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
864 			e1e_rphy_locked(hw, MII_LPA, &data);
865 			if (data & LPA_100FULL)
866 				lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
867 			else
868 				/* EEE is not supported in 100Half, so ignore
869 				 * partner's EEE in 100 ability if full-duplex
870 				 * is not advertised.
871 				 */
872 				dev_spec->eee_lp_ability &=
873 				    ~I82579_EEE_100_SUPPORTED;
874 		}
875 	}
876 
877 	if (hw->phy.type == e1000_phy_82579) {
878 		ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
879 						    &data);
880 		if (ret_val)
881 			goto release;
882 
883 		data &= ~I82579_LPI_100_PLL_SHUT;
884 		ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
885 						     data);
886 	}
887 
888 	/* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
889 	ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
890 	if (ret_val)
891 		goto release;
892 
893 	ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
894 release:
895 	hw->phy.ops.release(hw);
896 
897 	return ret_val;
898 }
899 
900 /**
901  *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
902  *  @hw:   pointer to the HW structure
903  *  @link: link up bool flag
904  *
905  *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
906  *  preventing further DMA write requests.  Workaround the issue by disabling
907  *  the de-assertion of the clock request when in 1Gpbs mode.
908  *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
909  *  speeds in order to avoid Tx hangs.
910  **/
911 static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
912 {
913 	u32 fextnvm6 = er32(FEXTNVM6);
914 	u32 status = er32(STATUS);
915 	s32 ret_val = 0;
916 	u16 reg;
917 
918 	if (link && (status & E1000_STATUS_SPEED_1000)) {
919 		ret_val = hw->phy.ops.acquire(hw);
920 		if (ret_val)
921 			return ret_val;
922 
923 		ret_val =
924 		    e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
925 						&reg);
926 		if (ret_val)
927 			goto release;
928 
929 		ret_val =
930 		    e1000e_write_kmrn_reg_locked(hw,
931 						 E1000_KMRNCTRLSTA_K1_CONFIG,
932 						 reg &
933 						 ~E1000_KMRNCTRLSTA_K1_ENABLE);
934 		if (ret_val)
935 			goto release;
936 
937 		usleep_range(10, 20);
938 
939 		ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
940 
941 		ret_val =
942 		    e1000e_write_kmrn_reg_locked(hw,
943 						 E1000_KMRNCTRLSTA_K1_CONFIG,
944 						 reg);
945 release:
946 		hw->phy.ops.release(hw);
947 	} else {
948 		/* clear FEXTNVM6 bit 8 on link down or 10/100 */
949 		fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
950 
951 		if ((hw->phy.revision > 5) || !link ||
952 		    ((status & E1000_STATUS_SPEED_100) &&
953 		     (status & E1000_STATUS_FD)))
954 			goto update_fextnvm6;
955 
956 		ret_val = e1e_rphy(hw, I217_INBAND_CTRL, &reg);
957 		if (ret_val)
958 			return ret_val;
959 
960 		/* Clear link status transmit timeout */
961 		reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
962 
963 		if (status & E1000_STATUS_SPEED_100) {
964 			/* Set inband Tx timeout to 5x10us for 100Half */
965 			reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
966 
967 			/* Do not extend the K1 entry latency for 100Half */
968 			fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
969 		} else {
970 			/* Set inband Tx timeout to 50x10us for 10Full/Half */
971 			reg |= 50 <<
972 			    I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
973 
974 			/* Extend the K1 entry latency for 10 Mbps */
975 			fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
976 		}
977 
978 		ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
979 		if (ret_val)
980 			return ret_val;
981 
982 update_fextnvm6:
983 		ew32(FEXTNVM6, fextnvm6);
984 	}
985 
986 	return ret_val;
987 }
988 
989 /**
990  *  e1000_platform_pm_pch_lpt - Set platform power management values
991  *  @hw: pointer to the HW structure
992  *  @link: bool indicating link status
993  *
994  *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
995  *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
996  *  when link is up (which must not exceed the maximum latency supported
997  *  by the platform), otherwise specify there is no LTR requirement.
998  *  Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
999  *  latencies in the LTR Extended Capability Structure in the PCIe Extended
1000  *  Capability register set, on this device LTR is set by writing the
1001  *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1002  *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1003  *  message to the PMC.
1004  **/
1005 static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1006 {
1007 	u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1008 	    link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1009 	u16 max_ltr_enc_d = 0;	/* maximum LTR decoded by platform */
1010 	u16 lat_enc_d = 0;	/* latency decoded */
1011 	u16 lat_enc = 0;	/* latency encoded */
1012 
1013 	if (link) {
1014 		u16 speed, duplex, scale = 0;
1015 		u16 max_snoop, max_nosnoop;
1016 		u16 max_ltr_enc;	/* max LTR latency encoded */
1017 		u64 value;
1018 		u32 rxa;
1019 
1020 		if (!hw->adapter->max_frame_size) {
1021 			e_dbg("max_frame_size not set.\n");
1022 			return -E1000_ERR_CONFIG;
1023 		}
1024 
1025 		hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1026 		if (!speed) {
1027 			e_dbg("Speed not set.\n");
1028 			return -E1000_ERR_CONFIG;
1029 		}
1030 
1031 		/* Rx Packet Buffer Allocation size (KB) */
1032 		rxa = er32(PBA) & E1000_PBA_RXA_MASK;
1033 
1034 		/* Determine the maximum latency tolerated by the device.
1035 		 *
1036 		 * Per the PCIe spec, the tolerated latencies are encoded as
1037 		 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1038 		 * a 10-bit value (0-1023) to provide a range from 1 ns to
1039 		 * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1040 		 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1041 		 */
1042 		rxa *= 512;
1043 		value = (rxa > hw->adapter->max_frame_size) ?
1044 			(rxa - hw->adapter->max_frame_size) * (16000 / speed) :
1045 			0;
1046 
1047 		while (value > PCI_LTR_VALUE_MASK) {
1048 			scale++;
1049 			value = DIV_ROUND_UP(value, BIT(5));
1050 		}
1051 		if (scale > E1000_LTRV_SCALE_MAX) {
1052 			e_dbg("Invalid LTR latency scale %d\n", scale);
1053 			return -E1000_ERR_CONFIG;
1054 		}
1055 		lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1056 
1057 		/* Determine the maximum latency tolerated by the platform */
1058 		pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1059 				     &max_snoop);
1060 		pci_read_config_word(hw->adapter->pdev,
1061 				     E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1062 		max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1063 
1064 		lat_enc_d = (lat_enc & E1000_LTRV_VALUE_MASK) *
1065 			     (1U << (E1000_LTRV_SCALE_FACTOR *
1066 			     ((lat_enc & E1000_LTRV_SCALE_MASK)
1067 			     >> E1000_LTRV_SCALE_SHIFT)));
1068 
1069 		max_ltr_enc_d = (max_ltr_enc & E1000_LTRV_VALUE_MASK) *
1070 				 (1U << (E1000_LTRV_SCALE_FACTOR *
1071 				 ((max_ltr_enc & E1000_LTRV_SCALE_MASK)
1072 				 >> E1000_LTRV_SCALE_SHIFT)));
1073 
1074 		if (lat_enc_d > max_ltr_enc_d)
1075 			lat_enc = max_ltr_enc;
1076 	}
1077 
1078 	/* Set Snoop and No-Snoop latencies the same */
1079 	reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1080 	ew32(LTRV, reg);
1081 
1082 	return 0;
1083 }
1084 
1085 /**
1086  *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1087  *  @hw: pointer to the HW structure
1088  *  @to_sx: boolean indicating a system power state transition to Sx
1089  *
1090  *  When link is down, configure ULP mode to significantly reduce the power
1091  *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1092  *  ME firmware to start the ULP configuration.  If not on an ME enabled
1093  *  system, configure the ULP mode by software.
1094  */
1095 s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1096 {
1097 	u32 mac_reg;
1098 	s32 ret_val = 0;
1099 	u16 phy_reg;
1100 	u16 oem_reg = 0;
1101 
1102 	if ((hw->mac.type < e1000_pch_lpt) ||
1103 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1104 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1105 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1106 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1107 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1108 		return 0;
1109 
1110 	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1111 		/* Request ME configure ULP mode in the PHY */
1112 		mac_reg = er32(H2ME);
1113 		mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1114 		ew32(H2ME, mac_reg);
1115 
1116 		goto out;
1117 	}
1118 
1119 	if (!to_sx) {
1120 		int i = 0;
1121 
1122 		/* Poll up to 5 seconds for Cable Disconnected indication */
1123 		while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1124 			/* Bail if link is re-acquired */
1125 			if (er32(STATUS) & E1000_STATUS_LU)
1126 				return -E1000_ERR_PHY;
1127 
1128 			if (i++ == 100)
1129 				break;
1130 
1131 			msleep(50);
1132 		}
1133 		e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1134 		      (er32(FEXT) &
1135 		       E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1136 	}
1137 
1138 	ret_val = hw->phy.ops.acquire(hw);
1139 	if (ret_val)
1140 		goto out;
1141 
1142 	/* Force SMBus mode in PHY */
1143 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1144 	if (ret_val)
1145 		goto release;
1146 	phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1147 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1148 
1149 	/* Force SMBus mode in MAC */
1150 	mac_reg = er32(CTRL_EXT);
1151 	mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1152 	ew32(CTRL_EXT, mac_reg);
1153 
1154 	/* Si workaround for ULP entry flow on i127/rev6 h/w.  Enable
1155 	 * LPLU and disable Gig speed when entering ULP
1156 	 */
1157 	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1158 		ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1159 						       &oem_reg);
1160 		if (ret_val)
1161 			goto release;
1162 
1163 		phy_reg = oem_reg;
1164 		phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1165 
1166 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1167 							phy_reg);
1168 
1169 		if (ret_val)
1170 			goto release;
1171 	}
1172 
1173 	/* Set Inband ULP Exit, Reset to SMBus mode and
1174 	 * Disable SMBus Release on PERST# in PHY
1175 	 */
1176 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1177 	if (ret_val)
1178 		goto release;
1179 	phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1180 		    I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1181 	if (to_sx) {
1182 		if (er32(WUFC) & E1000_WUFC_LNKC)
1183 			phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1184 		else
1185 			phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1186 
1187 		phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1188 		phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1189 	} else {
1190 		phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1191 		phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1192 		phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1193 	}
1194 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1195 
1196 	/* Set Disable SMBus Release on PERST# in MAC */
1197 	mac_reg = er32(FEXTNVM7);
1198 	mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1199 	ew32(FEXTNVM7, mac_reg);
1200 
1201 	/* Commit ULP changes in PHY by starting auto ULP configuration */
1202 	phy_reg |= I218_ULP_CONFIG1_START;
1203 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1204 
1205 	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1206 	    to_sx && (er32(STATUS) & E1000_STATUS_LU)) {
1207 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1208 							oem_reg);
1209 		if (ret_val)
1210 			goto release;
1211 	}
1212 
1213 release:
1214 	hw->phy.ops.release(hw);
1215 out:
1216 	if (ret_val)
1217 		e_dbg("Error in ULP enable flow: %d\n", ret_val);
1218 	else
1219 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1220 
1221 	return ret_val;
1222 }
1223 
1224 /**
1225  *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1226  *  @hw: pointer to the HW structure
1227  *  @force: boolean indicating whether or not to force disabling ULP
1228  *
1229  *  Un-configure ULP mode when link is up, the system is transitioned from
1230  *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1231  *  system, poll for an indication from ME that ULP has been un-configured.
1232  *  If not on an ME enabled system, un-configure the ULP mode by software.
1233  *
1234  *  During nominal operation, this function is called when link is acquired
1235  *  to disable ULP mode (force=false); otherwise, for example when unloading
1236  *  the driver or during Sx->S0 transitions, this is called with force=true
1237  *  to forcibly disable ULP.
1238  */
1239 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1240 {
1241 	s32 ret_val = 0;
1242 	u32 mac_reg;
1243 	u16 phy_reg;
1244 	int i = 0;
1245 
1246 	if ((hw->mac.type < e1000_pch_lpt) ||
1247 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1248 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1249 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1250 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1251 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1252 		return 0;
1253 
1254 	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1255 		struct e1000_adapter *adapter = hw->adapter;
1256 		bool firmware_bug = false;
1257 
1258 		if (force) {
1259 			/* Request ME un-configure ULP mode in the PHY */
1260 			mac_reg = er32(H2ME);
1261 			mac_reg &= ~E1000_H2ME_ULP;
1262 			mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1263 			ew32(H2ME, mac_reg);
1264 		}
1265 
1266 		/* Poll up to 2.5 seconds for ME to clear ULP_CFG_DONE.
1267 		 * If this takes more than 1 second, show a warning indicating a
1268 		 * firmware bug
1269 		 */
1270 		while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1271 			if (i++ == 250) {
1272 				ret_val = -E1000_ERR_PHY;
1273 				goto out;
1274 			}
1275 			if (i > 100 && !firmware_bug)
1276 				firmware_bug = true;
1277 
1278 			usleep_range(10000, 11000);
1279 		}
1280 		if (firmware_bug)
1281 			e_warn("ULP_CONFIG_DONE took %dmsec.  This is a firmware bug\n", i * 10);
1282 		else
1283 			e_dbg("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10);
1284 
1285 		if (force) {
1286 			mac_reg = er32(H2ME);
1287 			mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1288 			ew32(H2ME, mac_reg);
1289 		} else {
1290 			/* Clear H2ME.ULP after ME ULP configuration */
1291 			mac_reg = er32(H2ME);
1292 			mac_reg &= ~E1000_H2ME_ULP;
1293 			ew32(H2ME, mac_reg);
1294 		}
1295 
1296 		goto out;
1297 	}
1298 
1299 	ret_val = hw->phy.ops.acquire(hw);
1300 	if (ret_val)
1301 		goto out;
1302 
1303 	if (force)
1304 		/* Toggle LANPHYPC Value bit */
1305 		e1000_toggle_lanphypc_pch_lpt(hw);
1306 
1307 	/* Unforce SMBus mode in PHY */
1308 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1309 	if (ret_val) {
1310 		/* The MAC might be in PCIe mode, so temporarily force to
1311 		 * SMBus mode in order to access the PHY.
1312 		 */
1313 		mac_reg = er32(CTRL_EXT);
1314 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1315 		ew32(CTRL_EXT, mac_reg);
1316 
1317 		msleep(50);
1318 
1319 		ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1320 						       &phy_reg);
1321 		if (ret_val)
1322 			goto release;
1323 	}
1324 	phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1325 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1326 
1327 	/* Unforce SMBus mode in MAC */
1328 	mac_reg = er32(CTRL_EXT);
1329 	mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1330 	ew32(CTRL_EXT, mac_reg);
1331 
1332 	/* When ULP mode was previously entered, K1 was disabled by the
1333 	 * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1334 	 */
1335 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1336 	if (ret_val)
1337 		goto release;
1338 	phy_reg |= HV_PM_CTRL_K1_ENABLE;
1339 	e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1340 
1341 	/* Clear ULP enabled configuration */
1342 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1343 	if (ret_val)
1344 		goto release;
1345 	phy_reg &= ~(I218_ULP_CONFIG1_IND |
1346 		     I218_ULP_CONFIG1_STICKY_ULP |
1347 		     I218_ULP_CONFIG1_RESET_TO_SMBUS |
1348 		     I218_ULP_CONFIG1_WOL_HOST |
1349 		     I218_ULP_CONFIG1_INBAND_EXIT |
1350 		     I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
1351 		     I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
1352 		     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1353 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1354 
1355 	/* Commit ULP changes by starting auto ULP configuration */
1356 	phy_reg |= I218_ULP_CONFIG1_START;
1357 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1358 
1359 	/* Clear Disable SMBus Release on PERST# in MAC */
1360 	mac_reg = er32(FEXTNVM7);
1361 	mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1362 	ew32(FEXTNVM7, mac_reg);
1363 
1364 release:
1365 	hw->phy.ops.release(hw);
1366 	if (force) {
1367 		e1000_phy_hw_reset(hw);
1368 		msleep(50);
1369 	}
1370 out:
1371 	if (ret_val)
1372 		e_dbg("Error in ULP disable flow: %d\n", ret_val);
1373 	else
1374 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1375 
1376 	return ret_val;
1377 }
1378 
1379 /**
1380  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1381  *  @hw: pointer to the HW structure
1382  *
1383  *  Checks to see of the link status of the hardware has changed.  If a
1384  *  change in link status has been detected, then we read the PHY registers
1385  *  to get the current speed/duplex if link exists.
1386  **/
1387 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1388 {
1389 	struct e1000_mac_info *mac = &hw->mac;
1390 	s32 ret_val, tipg_reg = 0;
1391 	u16 emi_addr, emi_val = 0;
1392 	bool link;
1393 	u16 phy_reg;
1394 
1395 	/* We only want to go out to the PHY registers to see if Auto-Neg
1396 	 * has completed and/or if our link status has changed.  The
1397 	 * get_link_status flag is set upon receiving a Link Status
1398 	 * Change or Rx Sequence Error interrupt.
1399 	 */
1400 	if (!mac->get_link_status)
1401 		return 0;
1402 	mac->get_link_status = false;
1403 
1404 	/* First we want to see if the MII Status Register reports
1405 	 * link.  If so, then we want to get the current speed/duplex
1406 	 * of the PHY.
1407 	 */
1408 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1409 	if (ret_val)
1410 		goto out;
1411 
1412 	if (hw->mac.type == e1000_pchlan) {
1413 		ret_val = e1000_k1_gig_workaround_hv(hw, link);
1414 		if (ret_val)
1415 			goto out;
1416 	}
1417 
1418 	/* When connected at 10Mbps half-duplex, some parts are excessively
1419 	 * aggressive resulting in many collisions. To avoid this, increase
1420 	 * the IPG and reduce Rx latency in the PHY.
1421 	 */
1422 	if ((hw->mac.type >= e1000_pch2lan) && link) {
1423 		u16 speed, duplex;
1424 
1425 		e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex);
1426 		tipg_reg = er32(TIPG);
1427 		tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1428 
1429 		if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1430 			tipg_reg |= 0xFF;
1431 			/* Reduce Rx latency in analog PHY */
1432 			emi_val = 0;
1433 		} else if (hw->mac.type >= e1000_pch_spt &&
1434 			   duplex == FULL_DUPLEX && speed != SPEED_1000) {
1435 			tipg_reg |= 0xC;
1436 			emi_val = 1;
1437 		} else {
1438 
1439 			/* Roll back the default values */
1440 			tipg_reg |= 0x08;
1441 			emi_val = 1;
1442 		}
1443 
1444 		ew32(TIPG, tipg_reg);
1445 
1446 		ret_val = hw->phy.ops.acquire(hw);
1447 		if (ret_val)
1448 			goto out;
1449 
1450 		if (hw->mac.type == e1000_pch2lan)
1451 			emi_addr = I82579_RX_CONFIG;
1452 		else
1453 			emi_addr = I217_RX_CONFIG;
1454 		ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1455 
1456 		if (hw->mac.type >= e1000_pch_lpt) {
1457 			u16 phy_reg;
1458 
1459 			e1e_rphy_locked(hw, I217_PLL_CLOCK_GATE_REG, &phy_reg);
1460 			phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
1461 			if (speed == SPEED_100 || speed == SPEED_10)
1462 				phy_reg |= 0x3E8;
1463 			else
1464 				phy_reg |= 0xFA;
1465 			e1e_wphy_locked(hw, I217_PLL_CLOCK_GATE_REG, phy_reg);
1466 
1467 			if (speed == SPEED_1000) {
1468 				hw->phy.ops.read_reg_locked(hw, HV_PM_CTRL,
1469 							    &phy_reg);
1470 
1471 				phy_reg |= HV_PM_CTRL_K1_CLK_REQ;
1472 
1473 				hw->phy.ops.write_reg_locked(hw, HV_PM_CTRL,
1474 							     phy_reg);
1475 			}
1476 		}
1477 		hw->phy.ops.release(hw);
1478 
1479 		if (ret_val)
1480 			goto out;
1481 
1482 		if (hw->mac.type >= e1000_pch_spt) {
1483 			u16 data;
1484 			u16 ptr_gap;
1485 
1486 			if (speed == SPEED_1000) {
1487 				ret_val = hw->phy.ops.acquire(hw);
1488 				if (ret_val)
1489 					goto out;
1490 
1491 				ret_val = e1e_rphy_locked(hw,
1492 							  PHY_REG(776, 20),
1493 							  &data);
1494 				if (ret_val) {
1495 					hw->phy.ops.release(hw);
1496 					goto out;
1497 				}
1498 
1499 				ptr_gap = (data & (0x3FF << 2)) >> 2;
1500 				if (ptr_gap < 0x18) {
1501 					data &= ~(0x3FF << 2);
1502 					data |= (0x18 << 2);
1503 					ret_val =
1504 					    e1e_wphy_locked(hw,
1505 							    PHY_REG(776, 20),
1506 							    data);
1507 				}
1508 				hw->phy.ops.release(hw);
1509 				if (ret_val)
1510 					goto out;
1511 			} else {
1512 				ret_val = hw->phy.ops.acquire(hw);
1513 				if (ret_val)
1514 					goto out;
1515 
1516 				ret_val = e1e_wphy_locked(hw,
1517 							  PHY_REG(776, 20),
1518 							  0xC023);
1519 				hw->phy.ops.release(hw);
1520 				if (ret_val)
1521 					goto out;
1522 
1523 			}
1524 		}
1525 	}
1526 
1527 	/* I217 Packet Loss issue:
1528 	 * ensure that FEXTNVM4 Beacon Duration is set correctly
1529 	 * on power up.
1530 	 * Set the Beacon Duration for I217 to 8 usec
1531 	 */
1532 	if (hw->mac.type >= e1000_pch_lpt) {
1533 		u32 mac_reg;
1534 
1535 		mac_reg = er32(FEXTNVM4);
1536 		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1537 		mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1538 		ew32(FEXTNVM4, mac_reg);
1539 	}
1540 
1541 	/* Work-around I218 hang issue */
1542 	if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1543 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1544 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1545 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
1546 		ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1547 		if (ret_val)
1548 			goto out;
1549 	}
1550 	if (hw->mac.type >= e1000_pch_lpt) {
1551 		/* Set platform power management values for
1552 		 * Latency Tolerance Reporting (LTR)
1553 		 */
1554 		ret_val = e1000_platform_pm_pch_lpt(hw, link);
1555 		if (ret_val)
1556 			goto out;
1557 	}
1558 
1559 	/* Clear link partner's EEE ability */
1560 	hw->dev_spec.ich8lan.eee_lp_ability = 0;
1561 
1562 	if (hw->mac.type >= e1000_pch_lpt) {
1563 		u32 fextnvm6 = er32(FEXTNVM6);
1564 
1565 		if (hw->mac.type == e1000_pch_spt) {
1566 			/* FEXTNVM6 K1-off workaround - for SPT only */
1567 			u32 pcieanacfg = er32(PCIEANACFG);
1568 
1569 			if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1570 				fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1571 			else
1572 				fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1573 		}
1574 
1575 		ew32(FEXTNVM6, fextnvm6);
1576 	}
1577 
1578 	if (!link)
1579 		goto out;
1580 
1581 	switch (hw->mac.type) {
1582 	case e1000_pch2lan:
1583 		ret_val = e1000_k1_workaround_lv(hw);
1584 		if (ret_val)
1585 			return ret_val;
1586 		fallthrough;
1587 	case e1000_pchlan:
1588 		if (hw->phy.type == e1000_phy_82578) {
1589 			ret_val = e1000_link_stall_workaround_hv(hw);
1590 			if (ret_val)
1591 				return ret_val;
1592 		}
1593 
1594 		/* Workaround for PCHx parts in half-duplex:
1595 		 * Set the number of preambles removed from the packet
1596 		 * when it is passed from the PHY to the MAC to prevent
1597 		 * the MAC from misinterpreting the packet type.
1598 		 */
1599 		e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1600 		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1601 
1602 		if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1603 			phy_reg |= BIT(HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1604 
1605 		e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1606 		break;
1607 	default:
1608 		break;
1609 	}
1610 
1611 	/* Check if there was DownShift, must be checked
1612 	 * immediately after link-up
1613 	 */
1614 	e1000e_check_downshift(hw);
1615 
1616 	/* Enable/Disable EEE after link up */
1617 	if (hw->phy.type > e1000_phy_82579) {
1618 		ret_val = e1000_set_eee_pchlan(hw);
1619 		if (ret_val)
1620 			return ret_val;
1621 	}
1622 
1623 	/* If we are forcing speed/duplex, then we simply return since
1624 	 * we have already determined whether we have link or not.
1625 	 */
1626 	if (!mac->autoneg)
1627 		return -E1000_ERR_CONFIG;
1628 
1629 	/* Auto-Neg is enabled.  Auto Speed Detection takes care
1630 	 * of MAC speed/duplex configuration.  So we only need to
1631 	 * configure Collision Distance in the MAC.
1632 	 */
1633 	mac->ops.config_collision_dist(hw);
1634 
1635 	/* Configure Flow Control now that Auto-Neg has completed.
1636 	 * First, we need to restore the desired flow control
1637 	 * settings because we may have had to re-autoneg with a
1638 	 * different link partner.
1639 	 */
1640 	ret_val = e1000e_config_fc_after_link_up(hw);
1641 	if (ret_val)
1642 		e_dbg("Error configuring flow control\n");
1643 
1644 	return ret_val;
1645 
1646 out:
1647 	mac->get_link_status = true;
1648 	return ret_val;
1649 }
1650 
1651 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1652 {
1653 	struct e1000_hw *hw = &adapter->hw;
1654 	s32 rc;
1655 
1656 	rc = e1000_init_mac_params_ich8lan(hw);
1657 	if (rc)
1658 		return rc;
1659 
1660 	rc = e1000_init_nvm_params_ich8lan(hw);
1661 	if (rc)
1662 		return rc;
1663 
1664 	switch (hw->mac.type) {
1665 	case e1000_ich8lan:
1666 	case e1000_ich9lan:
1667 	case e1000_ich10lan:
1668 		rc = e1000_init_phy_params_ich8lan(hw);
1669 		break;
1670 	case e1000_pchlan:
1671 	case e1000_pch2lan:
1672 	case e1000_pch_lpt:
1673 	case e1000_pch_spt:
1674 	case e1000_pch_cnp:
1675 	case e1000_pch_tgp:
1676 	case e1000_pch_adp:
1677 	case e1000_pch_mtp:
1678 		rc = e1000_init_phy_params_pchlan(hw);
1679 		break;
1680 	default:
1681 		break;
1682 	}
1683 	if (rc)
1684 		return rc;
1685 
1686 	/* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1687 	 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1688 	 */
1689 	if ((adapter->hw.phy.type == e1000_phy_ife) ||
1690 	    ((adapter->hw.mac.type >= e1000_pch2lan) &&
1691 	     (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1692 		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1693 		adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
1694 
1695 		hw->mac.ops.blink_led = NULL;
1696 	}
1697 
1698 	if ((adapter->hw.mac.type == e1000_ich8lan) &&
1699 	    (adapter->hw.phy.type != e1000_phy_ife))
1700 		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1701 
1702 	/* Enable workaround for 82579 w/ ME enabled */
1703 	if ((adapter->hw.mac.type == e1000_pch2lan) &&
1704 	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1705 		adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1706 
1707 	return 0;
1708 }
1709 
1710 static DEFINE_MUTEX(nvm_mutex);
1711 
1712 /**
1713  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1714  *  @hw: pointer to the HW structure
1715  *
1716  *  Acquires the mutex for performing NVM operations.
1717  **/
1718 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1719 {
1720 	mutex_lock(&nvm_mutex);
1721 
1722 	return 0;
1723 }
1724 
1725 /**
1726  *  e1000_release_nvm_ich8lan - Release NVM mutex
1727  *  @hw: pointer to the HW structure
1728  *
1729  *  Releases the mutex used while performing NVM operations.
1730  **/
1731 static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1732 {
1733 	mutex_unlock(&nvm_mutex);
1734 }
1735 
1736 /**
1737  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1738  *  @hw: pointer to the HW structure
1739  *
1740  *  Acquires the software control flag for performing PHY and select
1741  *  MAC CSR accesses.
1742  **/
1743 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1744 {
1745 	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1746 	s32 ret_val = 0;
1747 
1748 	if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1749 			     &hw->adapter->state)) {
1750 		e_dbg("contention for Phy access\n");
1751 		return -E1000_ERR_PHY;
1752 	}
1753 
1754 	while (timeout) {
1755 		extcnf_ctrl = er32(EXTCNF_CTRL);
1756 		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1757 			break;
1758 
1759 		mdelay(1);
1760 		timeout--;
1761 	}
1762 
1763 	if (!timeout) {
1764 		e_dbg("SW has already locked the resource.\n");
1765 		ret_val = -E1000_ERR_CONFIG;
1766 		goto out;
1767 	}
1768 
1769 	timeout = SW_FLAG_TIMEOUT;
1770 
1771 	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1772 	ew32(EXTCNF_CTRL, extcnf_ctrl);
1773 
1774 	while (timeout) {
1775 		extcnf_ctrl = er32(EXTCNF_CTRL);
1776 		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1777 			break;
1778 
1779 		mdelay(1);
1780 		timeout--;
1781 	}
1782 
1783 	if (!timeout) {
1784 		e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1785 		      er32(FWSM), extcnf_ctrl);
1786 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1787 		ew32(EXTCNF_CTRL, extcnf_ctrl);
1788 		ret_val = -E1000_ERR_CONFIG;
1789 		goto out;
1790 	}
1791 
1792 out:
1793 	if (ret_val)
1794 		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1795 
1796 	return ret_val;
1797 }
1798 
1799 /**
1800  *  e1000_release_swflag_ich8lan - Release software control flag
1801  *  @hw: pointer to the HW structure
1802  *
1803  *  Releases the software control flag for performing PHY and select
1804  *  MAC CSR accesses.
1805  **/
1806 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1807 {
1808 	u32 extcnf_ctrl;
1809 
1810 	extcnf_ctrl = er32(EXTCNF_CTRL);
1811 
1812 	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1813 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1814 		ew32(EXTCNF_CTRL, extcnf_ctrl);
1815 	} else {
1816 		e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1817 	}
1818 
1819 	clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1820 }
1821 
1822 /**
1823  *  e1000_check_mng_mode_ich8lan - Checks management mode
1824  *  @hw: pointer to the HW structure
1825  *
1826  *  This checks if the adapter has any manageability enabled.
1827  *  This is a function pointer entry point only called by read/write
1828  *  routines for the PHY and NVM parts.
1829  **/
1830 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1831 {
1832 	u32 fwsm;
1833 
1834 	fwsm = er32(FWSM);
1835 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1836 		((fwsm & E1000_FWSM_MODE_MASK) ==
1837 		 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1838 }
1839 
1840 /**
1841  *  e1000_check_mng_mode_pchlan - Checks management mode
1842  *  @hw: pointer to the HW structure
1843  *
1844  *  This checks if the adapter has iAMT enabled.
1845  *  This is a function pointer entry point only called by read/write
1846  *  routines for the PHY and NVM parts.
1847  **/
1848 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1849 {
1850 	u32 fwsm;
1851 
1852 	fwsm = er32(FWSM);
1853 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1854 	    (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1855 }
1856 
1857 /**
1858  *  e1000_rar_set_pch2lan - Set receive address register
1859  *  @hw: pointer to the HW structure
1860  *  @addr: pointer to the receive address
1861  *  @index: receive address array register
1862  *
1863  *  Sets the receive address array register at index to the address passed
1864  *  in by addr.  For 82579, RAR[0] is the base address register that is to
1865  *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1866  *  Use SHRA[0-3] in place of those reserved for ME.
1867  **/
1868 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1869 {
1870 	u32 rar_low, rar_high;
1871 
1872 	/* HW expects these in little endian so we reverse the byte order
1873 	 * from network order (big endian) to little endian
1874 	 */
1875 	rar_low = ((u32)addr[0] |
1876 		   ((u32)addr[1] << 8) |
1877 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1878 
1879 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1880 
1881 	/* If MAC address zero, no need to set the AV bit */
1882 	if (rar_low || rar_high)
1883 		rar_high |= E1000_RAH_AV;
1884 
1885 	if (index == 0) {
1886 		ew32(RAL(index), rar_low);
1887 		e1e_flush();
1888 		ew32(RAH(index), rar_high);
1889 		e1e_flush();
1890 		return 0;
1891 	}
1892 
1893 	/* RAR[1-6] are owned by manageability.  Skip those and program the
1894 	 * next address into the SHRA register array.
1895 	 */
1896 	if (index < (u32)(hw->mac.rar_entry_count)) {
1897 		s32 ret_val;
1898 
1899 		ret_val = e1000_acquire_swflag_ich8lan(hw);
1900 		if (ret_val)
1901 			goto out;
1902 
1903 		ew32(SHRAL(index - 1), rar_low);
1904 		e1e_flush();
1905 		ew32(SHRAH(index - 1), rar_high);
1906 		e1e_flush();
1907 
1908 		e1000_release_swflag_ich8lan(hw);
1909 
1910 		/* verify the register updates */
1911 		if ((er32(SHRAL(index - 1)) == rar_low) &&
1912 		    (er32(SHRAH(index - 1)) == rar_high))
1913 			return 0;
1914 
1915 		e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1916 		      (index - 1), er32(FWSM));
1917 	}
1918 
1919 out:
1920 	e_dbg("Failed to write receive address at index %d\n", index);
1921 	return -E1000_ERR_CONFIG;
1922 }
1923 
1924 /**
1925  *  e1000_rar_get_count_pch_lpt - Get the number of available SHRA
1926  *  @hw: pointer to the HW structure
1927  *
1928  *  Get the number of available receive registers that the Host can
1929  *  program. SHRA[0-10] are the shared receive address registers
1930  *  that are shared between the Host and manageability engine (ME).
1931  *  ME can reserve any number of addresses and the host needs to be
1932  *  able to tell how many available registers it has access to.
1933  **/
1934 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw)
1935 {
1936 	u32 wlock_mac;
1937 	u32 num_entries;
1938 
1939 	wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1940 	wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1941 
1942 	switch (wlock_mac) {
1943 	case 0:
1944 		/* All SHRA[0..10] and RAR[0] available */
1945 		num_entries = hw->mac.rar_entry_count;
1946 		break;
1947 	case 1:
1948 		/* Only RAR[0] available */
1949 		num_entries = 1;
1950 		break;
1951 	default:
1952 		/* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
1953 		num_entries = wlock_mac + 1;
1954 		break;
1955 	}
1956 
1957 	return num_entries;
1958 }
1959 
1960 /**
1961  *  e1000_rar_set_pch_lpt - Set receive address registers
1962  *  @hw: pointer to the HW structure
1963  *  @addr: pointer to the receive address
1964  *  @index: receive address array register
1965  *
1966  *  Sets the receive address register array at index to the address passed
1967  *  in by addr. For LPT, RAR[0] is the base address register that is to
1968  *  contain the MAC address. SHRA[0-10] are the shared receive address
1969  *  registers that are shared between the Host and manageability engine (ME).
1970  **/
1971 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1972 {
1973 	u32 rar_low, rar_high;
1974 	u32 wlock_mac;
1975 
1976 	/* HW expects these in little endian so we reverse the byte order
1977 	 * from network order (big endian) to little endian
1978 	 */
1979 	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1980 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1981 
1982 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1983 
1984 	/* If MAC address zero, no need to set the AV bit */
1985 	if (rar_low || rar_high)
1986 		rar_high |= E1000_RAH_AV;
1987 
1988 	if (index == 0) {
1989 		ew32(RAL(index), rar_low);
1990 		e1e_flush();
1991 		ew32(RAH(index), rar_high);
1992 		e1e_flush();
1993 		return 0;
1994 	}
1995 
1996 	/* The manageability engine (ME) can lock certain SHRAR registers that
1997 	 * it is using - those registers are unavailable for use.
1998 	 */
1999 	if (index < hw->mac.rar_entry_count) {
2000 		wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
2001 		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
2002 
2003 		/* Check if all SHRAR registers are locked */
2004 		if (wlock_mac == 1)
2005 			goto out;
2006 
2007 		if ((wlock_mac == 0) || (index <= wlock_mac)) {
2008 			s32 ret_val;
2009 
2010 			ret_val = e1000_acquire_swflag_ich8lan(hw);
2011 
2012 			if (ret_val)
2013 				goto out;
2014 
2015 			ew32(SHRAL_PCH_LPT(index - 1), rar_low);
2016 			e1e_flush();
2017 			ew32(SHRAH_PCH_LPT(index - 1), rar_high);
2018 			e1e_flush();
2019 
2020 			e1000_release_swflag_ich8lan(hw);
2021 
2022 			/* verify the register updates */
2023 			if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
2024 			    (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
2025 				return 0;
2026 		}
2027 	}
2028 
2029 out:
2030 	e_dbg("Failed to write receive address at index %d\n", index);
2031 	return -E1000_ERR_CONFIG;
2032 }
2033 
2034 /**
2035  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2036  *  @hw: pointer to the HW structure
2037  *
2038  *  Checks if firmware is blocking the reset of the PHY.
2039  *  This is a function pointer entry point only called by
2040  *  reset routines.
2041  **/
2042 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2043 {
2044 	bool blocked = false;
2045 	int i = 0;
2046 
2047 	while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
2048 	       (i++ < 30))
2049 		usleep_range(10000, 11000);
2050 	return blocked ? E1000_BLK_PHY_RESET : 0;
2051 }
2052 
2053 /**
2054  *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2055  *  @hw: pointer to the HW structure
2056  *
2057  *  Assumes semaphore already acquired.
2058  *
2059  **/
2060 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2061 {
2062 	u16 phy_data;
2063 	u32 strap = er32(STRAP);
2064 	u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
2065 	    E1000_STRAP_SMT_FREQ_SHIFT;
2066 	s32 ret_val;
2067 
2068 	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2069 
2070 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2071 	if (ret_val)
2072 		return ret_val;
2073 
2074 	phy_data &= ~HV_SMB_ADDR_MASK;
2075 	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2076 	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2077 
2078 	if (hw->phy.type == e1000_phy_i217) {
2079 		/* Restore SMBus frequency */
2080 		if (freq--) {
2081 			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2082 			phy_data |= (freq & BIT(0)) <<
2083 			    HV_SMB_ADDR_FREQ_LOW_SHIFT;
2084 			phy_data |= (freq & BIT(1)) <<
2085 			    (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2086 		} else {
2087 			e_dbg("Unsupported SMB frequency in PHY\n");
2088 		}
2089 	}
2090 
2091 	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2092 }
2093 
2094 /**
2095  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2096  *  @hw:   pointer to the HW structure
2097  *
2098  *  SW should configure the LCD from the NVM extended configuration region
2099  *  as a workaround for certain parts.
2100  **/
2101 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2102 {
2103 	struct e1000_phy_info *phy = &hw->phy;
2104 	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2105 	s32 ret_val = 0;
2106 	u16 word_addr, reg_data, reg_addr, phy_page = 0;
2107 
2108 	/* Initialize the PHY from the NVM on ICH platforms.  This
2109 	 * is needed due to an issue where the NVM configuration is
2110 	 * not properly autoloaded after power transitions.
2111 	 * Therefore, after each PHY reset, we will load the
2112 	 * configuration data out of the NVM manually.
2113 	 */
2114 	switch (hw->mac.type) {
2115 	case e1000_ich8lan:
2116 		if (phy->type != e1000_phy_igp_3)
2117 			return ret_val;
2118 
2119 		if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
2120 		    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
2121 			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2122 			break;
2123 		}
2124 		fallthrough;
2125 	case e1000_pchlan:
2126 	case e1000_pch2lan:
2127 	case e1000_pch_lpt:
2128 	case e1000_pch_spt:
2129 	case e1000_pch_cnp:
2130 	case e1000_pch_tgp:
2131 	case e1000_pch_adp:
2132 	case e1000_pch_mtp:
2133 		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2134 		break;
2135 	default:
2136 		return ret_val;
2137 	}
2138 
2139 	ret_val = hw->phy.ops.acquire(hw);
2140 	if (ret_val)
2141 		return ret_val;
2142 
2143 	data = er32(FEXTNVM);
2144 	if (!(data & sw_cfg_mask))
2145 		goto release;
2146 
2147 	/* Make sure HW does not configure LCD from PHY
2148 	 * extended configuration before SW configuration
2149 	 */
2150 	data = er32(EXTCNF_CTRL);
2151 	if ((hw->mac.type < e1000_pch2lan) &&
2152 	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2153 		goto release;
2154 
2155 	cnf_size = er32(EXTCNF_SIZE);
2156 	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2157 	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2158 	if (!cnf_size)
2159 		goto release;
2160 
2161 	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2162 	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2163 
2164 	if (((hw->mac.type == e1000_pchlan) &&
2165 	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2166 	    (hw->mac.type > e1000_pchlan)) {
2167 		/* HW configures the SMBus address and LEDs when the
2168 		 * OEM and LCD Write Enable bits are set in the NVM.
2169 		 * When both NVM bits are cleared, SW will configure
2170 		 * them instead.
2171 		 */
2172 		ret_val = e1000_write_smbus_addr(hw);
2173 		if (ret_val)
2174 			goto release;
2175 
2176 		data = er32(LEDCTL);
2177 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2178 							(u16)data);
2179 		if (ret_val)
2180 			goto release;
2181 	}
2182 
2183 	/* Configure LCD from extended configuration region. */
2184 
2185 	/* cnf_base_addr is in DWORD */
2186 	word_addr = (u16)(cnf_base_addr << 1);
2187 
2188 	for (i = 0; i < cnf_size; i++) {
2189 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, &reg_data);
2190 		if (ret_val)
2191 			goto release;
2192 
2193 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
2194 					 1, &reg_addr);
2195 		if (ret_val)
2196 			goto release;
2197 
2198 		/* Save off the PHY page for future writes. */
2199 		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2200 			phy_page = reg_data;
2201 			continue;
2202 		}
2203 
2204 		reg_addr &= PHY_REG_MASK;
2205 		reg_addr |= phy_page;
2206 
2207 		ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
2208 		if (ret_val)
2209 			goto release;
2210 	}
2211 
2212 release:
2213 	hw->phy.ops.release(hw);
2214 	return ret_val;
2215 }
2216 
2217 /**
2218  *  e1000_k1_gig_workaround_hv - K1 Si workaround
2219  *  @hw:   pointer to the HW structure
2220  *  @link: link up bool flag
2221  *
2222  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2223  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2224  *  If link is down, the function will restore the default K1 setting located
2225  *  in the NVM.
2226  **/
2227 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2228 {
2229 	s32 ret_val = 0;
2230 	u16 status_reg = 0;
2231 	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2232 
2233 	if (hw->mac.type != e1000_pchlan)
2234 		return 0;
2235 
2236 	/* Wrap the whole flow with the sw flag */
2237 	ret_val = hw->phy.ops.acquire(hw);
2238 	if (ret_val)
2239 		return ret_val;
2240 
2241 	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2242 	if (link) {
2243 		if (hw->phy.type == e1000_phy_82578) {
2244 			ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
2245 						  &status_reg);
2246 			if (ret_val)
2247 				goto release;
2248 
2249 			status_reg &= (BM_CS_STATUS_LINK_UP |
2250 				       BM_CS_STATUS_RESOLVED |
2251 				       BM_CS_STATUS_SPEED_MASK);
2252 
2253 			if (status_reg == (BM_CS_STATUS_LINK_UP |
2254 					   BM_CS_STATUS_RESOLVED |
2255 					   BM_CS_STATUS_SPEED_1000))
2256 				k1_enable = false;
2257 		}
2258 
2259 		if (hw->phy.type == e1000_phy_82577) {
2260 			ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2261 			if (ret_val)
2262 				goto release;
2263 
2264 			status_reg &= (HV_M_STATUS_LINK_UP |
2265 				       HV_M_STATUS_AUTONEG_COMPLETE |
2266 				       HV_M_STATUS_SPEED_MASK);
2267 
2268 			if (status_reg == (HV_M_STATUS_LINK_UP |
2269 					   HV_M_STATUS_AUTONEG_COMPLETE |
2270 					   HV_M_STATUS_SPEED_1000))
2271 				k1_enable = false;
2272 		}
2273 
2274 		/* Link stall fix for link up */
2275 		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2276 		if (ret_val)
2277 			goto release;
2278 
2279 	} else {
2280 		/* Link stall fix for link down */
2281 		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2282 		if (ret_val)
2283 			goto release;
2284 	}
2285 
2286 	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2287 
2288 release:
2289 	hw->phy.ops.release(hw);
2290 
2291 	return ret_val;
2292 }
2293 
2294 /**
2295  *  e1000_configure_k1_ich8lan - Configure K1 power state
2296  *  @hw: pointer to the HW structure
2297  *  @k1_enable: K1 state to configure
2298  *
2299  *  Configure the K1 power state based on the provided parameter.
2300  *  Assumes semaphore already acquired.
2301  *
2302  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2303  **/
2304 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2305 {
2306 	s32 ret_val;
2307 	u32 ctrl_reg = 0;
2308 	u32 ctrl_ext = 0;
2309 	u32 reg = 0;
2310 	u16 kmrn_reg = 0;
2311 
2312 	ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2313 					      &kmrn_reg);
2314 	if (ret_val)
2315 		return ret_val;
2316 
2317 	if (k1_enable)
2318 		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2319 	else
2320 		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2321 
2322 	ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2323 					       kmrn_reg);
2324 	if (ret_val)
2325 		return ret_val;
2326 
2327 	usleep_range(20, 40);
2328 	ctrl_ext = er32(CTRL_EXT);
2329 	ctrl_reg = er32(CTRL);
2330 
2331 	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2332 	reg |= E1000_CTRL_FRCSPD;
2333 	ew32(CTRL, reg);
2334 
2335 	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2336 	e1e_flush();
2337 	usleep_range(20, 40);
2338 	ew32(CTRL, ctrl_reg);
2339 	ew32(CTRL_EXT, ctrl_ext);
2340 	e1e_flush();
2341 	usleep_range(20, 40);
2342 
2343 	return 0;
2344 }
2345 
2346 /**
2347  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2348  *  @hw:       pointer to the HW structure
2349  *  @d0_state: boolean if entering d0 or d3 device state
2350  *
2351  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2352  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2353  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2354  **/
2355 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2356 {
2357 	s32 ret_val = 0;
2358 	u32 mac_reg;
2359 	u16 oem_reg;
2360 
2361 	if (hw->mac.type < e1000_pchlan)
2362 		return ret_val;
2363 
2364 	ret_val = hw->phy.ops.acquire(hw);
2365 	if (ret_val)
2366 		return ret_val;
2367 
2368 	if (hw->mac.type == e1000_pchlan) {
2369 		mac_reg = er32(EXTCNF_CTRL);
2370 		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2371 			goto release;
2372 	}
2373 
2374 	mac_reg = er32(FEXTNVM);
2375 	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2376 		goto release;
2377 
2378 	mac_reg = er32(PHY_CTRL);
2379 
2380 	ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2381 	if (ret_val)
2382 		goto release;
2383 
2384 	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2385 
2386 	if (d0_state) {
2387 		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2388 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2389 
2390 		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2391 			oem_reg |= HV_OEM_BITS_LPLU;
2392 	} else {
2393 		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2394 			       E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2395 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2396 
2397 		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2398 			       E1000_PHY_CTRL_NOND0A_LPLU))
2399 			oem_reg |= HV_OEM_BITS_LPLU;
2400 	}
2401 
2402 	/* Set Restart auto-neg to activate the bits */
2403 	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2404 	    !hw->phy.ops.check_reset_block(hw))
2405 		oem_reg |= HV_OEM_BITS_RESTART_AN;
2406 
2407 	ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2408 
2409 release:
2410 	hw->phy.ops.release(hw);
2411 
2412 	return ret_val;
2413 }
2414 
2415 /**
2416  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2417  *  @hw:   pointer to the HW structure
2418  **/
2419 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2420 {
2421 	s32 ret_val;
2422 	u16 data;
2423 
2424 	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2425 	if (ret_val)
2426 		return ret_val;
2427 
2428 	data |= HV_KMRN_MDIO_SLOW;
2429 
2430 	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2431 
2432 	return ret_val;
2433 }
2434 
2435 /**
2436  *  e1000_hv_phy_workarounds_ich8lan - apply PHY workarounds
2437  *  @hw: pointer to the HW structure
2438  *
2439  *  A series of PHY workarounds to be done after every PHY reset.
2440  **/
2441 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2442 {
2443 	s32 ret_val = 0;
2444 	u16 phy_data;
2445 
2446 	if (hw->mac.type != e1000_pchlan)
2447 		return 0;
2448 
2449 	/* Set MDIO slow mode before any other MDIO access */
2450 	if (hw->phy.type == e1000_phy_82577) {
2451 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
2452 		if (ret_val)
2453 			return ret_val;
2454 	}
2455 
2456 	if (((hw->phy.type == e1000_phy_82577) &&
2457 	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2458 	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2459 		/* Disable generation of early preamble */
2460 		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2461 		if (ret_val)
2462 			return ret_val;
2463 
2464 		/* Preamble tuning for SSC */
2465 		ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2466 		if (ret_val)
2467 			return ret_val;
2468 	}
2469 
2470 	if (hw->phy.type == e1000_phy_82578) {
2471 		/* Return registers to default by doing a soft reset then
2472 		 * writing 0x3140 to the control register.
2473 		 */
2474 		if (hw->phy.revision < 2) {
2475 			e1000e_phy_sw_reset(hw);
2476 			ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
2477 			if (ret_val)
2478 				return ret_val;
2479 		}
2480 	}
2481 
2482 	/* Select page 0 */
2483 	ret_val = hw->phy.ops.acquire(hw);
2484 	if (ret_val)
2485 		return ret_val;
2486 
2487 	hw->phy.addr = 1;
2488 	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2489 	hw->phy.ops.release(hw);
2490 	if (ret_val)
2491 		return ret_val;
2492 
2493 	/* Configure the K1 Si workaround during phy reset assuming there is
2494 	 * link so that it disables K1 if link is in 1Gbps.
2495 	 */
2496 	ret_val = e1000_k1_gig_workaround_hv(hw, true);
2497 	if (ret_val)
2498 		return ret_val;
2499 
2500 	/* Workaround for link disconnects on a busy hub in half duplex */
2501 	ret_val = hw->phy.ops.acquire(hw);
2502 	if (ret_val)
2503 		return ret_val;
2504 	ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2505 	if (ret_val)
2506 		goto release;
2507 	ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2508 	if (ret_val)
2509 		goto release;
2510 
2511 	/* set MSE higher to enable link to stay up when noise is high */
2512 	ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2513 release:
2514 	hw->phy.ops.release(hw);
2515 
2516 	return ret_val;
2517 }
2518 
2519 /**
2520  *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2521  *  @hw:   pointer to the HW structure
2522  **/
2523 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2524 {
2525 	u32 mac_reg;
2526 	u16 i, phy_reg = 0;
2527 	s32 ret_val;
2528 
2529 	ret_val = hw->phy.ops.acquire(hw);
2530 	if (ret_val)
2531 		return;
2532 	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2533 	if (ret_val)
2534 		goto release;
2535 
2536 	/* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2537 	for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2538 		mac_reg = er32(RAL(i));
2539 		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2540 					   (u16)(mac_reg & 0xFFFF));
2541 		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2542 					   (u16)((mac_reg >> 16) & 0xFFFF));
2543 
2544 		mac_reg = er32(RAH(i));
2545 		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2546 					   (u16)(mac_reg & 0xFFFF));
2547 		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2548 					   (u16)((mac_reg & E1000_RAH_AV)
2549 						 >> 16));
2550 	}
2551 
2552 	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2553 
2554 release:
2555 	hw->phy.ops.release(hw);
2556 }
2557 
2558 /**
2559  *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2560  *  with 82579 PHY
2561  *  @hw: pointer to the HW structure
2562  *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2563  **/
2564 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2565 {
2566 	s32 ret_val = 0;
2567 	u16 phy_reg, data;
2568 	u32 mac_reg;
2569 	u16 i;
2570 
2571 	if (hw->mac.type < e1000_pch2lan)
2572 		return 0;
2573 
2574 	/* disable Rx path while enabling/disabling workaround */
2575 	e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2576 	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | BIT(14));
2577 	if (ret_val)
2578 		return ret_val;
2579 
2580 	if (enable) {
2581 		/* Write Rx addresses (rar_entry_count for RAL/H, and
2582 		 * SHRAL/H) and initial CRC values to the MAC
2583 		 */
2584 		for (i = 0; i < hw->mac.rar_entry_count; i++) {
2585 			u8 mac_addr[ETH_ALEN] = { 0 };
2586 			u32 addr_high, addr_low;
2587 
2588 			addr_high = er32(RAH(i));
2589 			if (!(addr_high & E1000_RAH_AV))
2590 				continue;
2591 			addr_low = er32(RAL(i));
2592 			mac_addr[0] = (addr_low & 0xFF);
2593 			mac_addr[1] = ((addr_low >> 8) & 0xFF);
2594 			mac_addr[2] = ((addr_low >> 16) & 0xFF);
2595 			mac_addr[3] = ((addr_low >> 24) & 0xFF);
2596 			mac_addr[4] = (addr_high & 0xFF);
2597 			mac_addr[5] = ((addr_high >> 8) & 0xFF);
2598 
2599 			ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2600 		}
2601 
2602 		/* Write Rx addresses to the PHY */
2603 		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2604 
2605 		/* Enable jumbo frame workaround in the MAC */
2606 		mac_reg = er32(FFLT_DBG);
2607 		mac_reg &= ~BIT(14);
2608 		mac_reg |= (7 << 15);
2609 		ew32(FFLT_DBG, mac_reg);
2610 
2611 		mac_reg = er32(RCTL);
2612 		mac_reg |= E1000_RCTL_SECRC;
2613 		ew32(RCTL, mac_reg);
2614 
2615 		ret_val = e1000e_read_kmrn_reg(hw,
2616 					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2617 					       &data);
2618 		if (ret_val)
2619 			return ret_val;
2620 		ret_val = e1000e_write_kmrn_reg(hw,
2621 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2622 						data | BIT(0));
2623 		if (ret_val)
2624 			return ret_val;
2625 		ret_val = e1000e_read_kmrn_reg(hw,
2626 					       E1000_KMRNCTRLSTA_HD_CTRL,
2627 					       &data);
2628 		if (ret_val)
2629 			return ret_val;
2630 		data &= ~(0xF << 8);
2631 		data |= (0xB << 8);
2632 		ret_val = e1000e_write_kmrn_reg(hw,
2633 						E1000_KMRNCTRLSTA_HD_CTRL,
2634 						data);
2635 		if (ret_val)
2636 			return ret_val;
2637 
2638 		/* Enable jumbo frame workaround in the PHY */
2639 		e1e_rphy(hw, PHY_REG(769, 23), &data);
2640 		data &= ~(0x7F << 5);
2641 		data |= (0x37 << 5);
2642 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2643 		if (ret_val)
2644 			return ret_val;
2645 		e1e_rphy(hw, PHY_REG(769, 16), &data);
2646 		data &= ~BIT(13);
2647 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2648 		if (ret_val)
2649 			return ret_val;
2650 		e1e_rphy(hw, PHY_REG(776, 20), &data);
2651 		data &= ~(0x3FF << 2);
2652 		data |= (E1000_TX_PTR_GAP << 2);
2653 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2654 		if (ret_val)
2655 			return ret_val;
2656 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2657 		if (ret_val)
2658 			return ret_val;
2659 		e1e_rphy(hw, HV_PM_CTRL, &data);
2660 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data | BIT(10));
2661 		if (ret_val)
2662 			return ret_val;
2663 	} else {
2664 		/* Write MAC register values back to h/w defaults */
2665 		mac_reg = er32(FFLT_DBG);
2666 		mac_reg &= ~(0xF << 14);
2667 		ew32(FFLT_DBG, mac_reg);
2668 
2669 		mac_reg = er32(RCTL);
2670 		mac_reg &= ~E1000_RCTL_SECRC;
2671 		ew32(RCTL, mac_reg);
2672 
2673 		ret_val = e1000e_read_kmrn_reg(hw,
2674 					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2675 					       &data);
2676 		if (ret_val)
2677 			return ret_val;
2678 		ret_val = e1000e_write_kmrn_reg(hw,
2679 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2680 						data & ~BIT(0));
2681 		if (ret_val)
2682 			return ret_val;
2683 		ret_val = e1000e_read_kmrn_reg(hw,
2684 					       E1000_KMRNCTRLSTA_HD_CTRL,
2685 					       &data);
2686 		if (ret_val)
2687 			return ret_val;
2688 		data &= ~(0xF << 8);
2689 		data |= (0xB << 8);
2690 		ret_val = e1000e_write_kmrn_reg(hw,
2691 						E1000_KMRNCTRLSTA_HD_CTRL,
2692 						data);
2693 		if (ret_val)
2694 			return ret_val;
2695 
2696 		/* Write PHY register values back to h/w defaults */
2697 		e1e_rphy(hw, PHY_REG(769, 23), &data);
2698 		data &= ~(0x7F << 5);
2699 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2700 		if (ret_val)
2701 			return ret_val;
2702 		e1e_rphy(hw, PHY_REG(769, 16), &data);
2703 		data |= BIT(13);
2704 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2705 		if (ret_val)
2706 			return ret_val;
2707 		e1e_rphy(hw, PHY_REG(776, 20), &data);
2708 		data &= ~(0x3FF << 2);
2709 		data |= (0x8 << 2);
2710 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2711 		if (ret_val)
2712 			return ret_val;
2713 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2714 		if (ret_val)
2715 			return ret_val;
2716 		e1e_rphy(hw, HV_PM_CTRL, &data);
2717 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~BIT(10));
2718 		if (ret_val)
2719 			return ret_val;
2720 	}
2721 
2722 	/* re-enable Rx path after enabling/disabling workaround */
2723 	return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~BIT(14));
2724 }
2725 
2726 /**
2727  *  e1000_lv_phy_workarounds_ich8lan - apply ich8 specific workarounds
2728  *  @hw: pointer to the HW structure
2729  *
2730  *  A series of PHY workarounds to be done after every PHY reset.
2731  **/
2732 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2733 {
2734 	s32 ret_val = 0;
2735 
2736 	if (hw->mac.type != e1000_pch2lan)
2737 		return 0;
2738 
2739 	/* Set MDIO slow mode before any other MDIO access */
2740 	ret_val = e1000_set_mdio_slow_mode_hv(hw);
2741 	if (ret_val)
2742 		return ret_val;
2743 
2744 	ret_val = hw->phy.ops.acquire(hw);
2745 	if (ret_val)
2746 		return ret_val;
2747 	/* set MSE higher to enable link to stay up when noise is high */
2748 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2749 	if (ret_val)
2750 		goto release;
2751 	/* drop link after 5 times MSE threshold was reached */
2752 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2753 release:
2754 	hw->phy.ops.release(hw);
2755 
2756 	return ret_val;
2757 }
2758 
2759 /**
2760  *  e1000_k1_workaround_lv - K1 Si workaround
2761  *  @hw:   pointer to the HW structure
2762  *
2763  *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2764  *  Disable K1 in 1000Mbps and 100Mbps
2765  **/
2766 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2767 {
2768 	s32 ret_val = 0;
2769 	u16 status_reg = 0;
2770 
2771 	if (hw->mac.type != e1000_pch2lan)
2772 		return 0;
2773 
2774 	/* Set K1 beacon duration based on 10Mbs speed */
2775 	ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2776 	if (ret_val)
2777 		return ret_val;
2778 
2779 	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2780 	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2781 		if (status_reg &
2782 		    (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2783 			u16 pm_phy_reg;
2784 
2785 			/* LV 1G/100 Packet drop issue wa  */
2786 			ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2787 			if (ret_val)
2788 				return ret_val;
2789 			pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2790 			ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2791 			if (ret_val)
2792 				return ret_val;
2793 		} else {
2794 			u32 mac_reg;
2795 
2796 			mac_reg = er32(FEXTNVM4);
2797 			mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2798 			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2799 			ew32(FEXTNVM4, mac_reg);
2800 		}
2801 	}
2802 
2803 	return ret_val;
2804 }
2805 
2806 /**
2807  *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2808  *  @hw:   pointer to the HW structure
2809  *  @gate: boolean set to true to gate, false to ungate
2810  *
2811  *  Gate/ungate the automatic PHY configuration via hardware; perform
2812  *  the configuration via software instead.
2813  **/
2814 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2815 {
2816 	u32 extcnf_ctrl;
2817 
2818 	if (hw->mac.type < e1000_pch2lan)
2819 		return;
2820 
2821 	extcnf_ctrl = er32(EXTCNF_CTRL);
2822 
2823 	if (gate)
2824 		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2825 	else
2826 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2827 
2828 	ew32(EXTCNF_CTRL, extcnf_ctrl);
2829 }
2830 
2831 /**
2832  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2833  *  @hw: pointer to the HW structure
2834  *
2835  *  Check the appropriate indication the MAC has finished configuring the
2836  *  PHY after a software reset.
2837  **/
2838 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2839 {
2840 	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2841 
2842 	/* Wait for basic configuration completes before proceeding */
2843 	do {
2844 		data = er32(STATUS);
2845 		data &= E1000_STATUS_LAN_INIT_DONE;
2846 		usleep_range(100, 200);
2847 	} while ((!data) && --loop);
2848 
2849 	/* If basic configuration is incomplete before the above loop
2850 	 * count reaches 0, loading the configuration from NVM will
2851 	 * leave the PHY in a bad state possibly resulting in no link.
2852 	 */
2853 	if (loop == 0)
2854 		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2855 
2856 	/* Clear the Init Done bit for the next init event */
2857 	data = er32(STATUS);
2858 	data &= ~E1000_STATUS_LAN_INIT_DONE;
2859 	ew32(STATUS, data);
2860 }
2861 
2862 /**
2863  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2864  *  @hw: pointer to the HW structure
2865  **/
2866 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2867 {
2868 	s32 ret_val = 0;
2869 	u16 reg;
2870 
2871 	if (hw->phy.ops.check_reset_block(hw))
2872 		return 0;
2873 
2874 	/* Allow time for h/w to get to quiescent state after reset */
2875 	usleep_range(10000, 11000);
2876 
2877 	/* Perform any necessary post-reset workarounds */
2878 	switch (hw->mac.type) {
2879 	case e1000_pchlan:
2880 		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2881 		if (ret_val)
2882 			return ret_val;
2883 		break;
2884 	case e1000_pch2lan:
2885 		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2886 		if (ret_val)
2887 			return ret_val;
2888 		break;
2889 	default:
2890 		break;
2891 	}
2892 
2893 	/* Clear the host wakeup bit after lcd reset */
2894 	if (hw->mac.type >= e1000_pchlan) {
2895 		e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2896 		reg &= ~BM_WUC_HOST_WU_BIT;
2897 		e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2898 	}
2899 
2900 	/* Configure the LCD with the extended configuration region in NVM */
2901 	ret_val = e1000_sw_lcd_config_ich8lan(hw);
2902 	if (ret_val)
2903 		return ret_val;
2904 
2905 	/* Configure the LCD with the OEM bits in NVM */
2906 	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2907 
2908 	if (hw->mac.type == e1000_pch2lan) {
2909 		/* Ungate automatic PHY configuration on non-managed 82579 */
2910 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2911 			usleep_range(10000, 11000);
2912 			e1000_gate_hw_phy_config_ich8lan(hw, false);
2913 		}
2914 
2915 		/* Set EEE LPI Update Timer to 200usec */
2916 		ret_val = hw->phy.ops.acquire(hw);
2917 		if (ret_val)
2918 			return ret_val;
2919 		ret_val = e1000_write_emi_reg_locked(hw,
2920 						     I82579_LPI_UPDATE_TIMER,
2921 						     0x1387);
2922 		hw->phy.ops.release(hw);
2923 	}
2924 
2925 	return ret_val;
2926 }
2927 
2928 /**
2929  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2930  *  @hw: pointer to the HW structure
2931  *
2932  *  Resets the PHY
2933  *  This is a function pointer entry point called by drivers
2934  *  or other shared routines.
2935  **/
2936 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2937 {
2938 	s32 ret_val = 0;
2939 
2940 	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
2941 	if ((hw->mac.type == e1000_pch2lan) &&
2942 	    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2943 		e1000_gate_hw_phy_config_ich8lan(hw, true);
2944 
2945 	ret_val = e1000e_phy_hw_reset_generic(hw);
2946 	if (ret_val)
2947 		return ret_val;
2948 
2949 	return e1000_post_phy_reset_ich8lan(hw);
2950 }
2951 
2952 /**
2953  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2954  *  @hw: pointer to the HW structure
2955  *  @active: true to enable LPLU, false to disable
2956  *
2957  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
2958  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2959  *  the phy speed. This function will manually set the LPLU bit and restart
2960  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
2961  *  since it configures the same bit.
2962  **/
2963 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2964 {
2965 	s32 ret_val;
2966 	u16 oem_reg;
2967 
2968 	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2969 	if (ret_val)
2970 		return ret_val;
2971 
2972 	if (active)
2973 		oem_reg |= HV_OEM_BITS_LPLU;
2974 	else
2975 		oem_reg &= ~HV_OEM_BITS_LPLU;
2976 
2977 	if (!hw->phy.ops.check_reset_block(hw))
2978 		oem_reg |= HV_OEM_BITS_RESTART_AN;
2979 
2980 	return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2981 }
2982 
2983 /**
2984  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2985  *  @hw: pointer to the HW structure
2986  *  @active: true to enable LPLU, false to disable
2987  *
2988  *  Sets the LPLU D0 state according to the active flag.  When
2989  *  activating LPLU this function also disables smart speed
2990  *  and vice versa.  LPLU will not be activated unless the
2991  *  device autonegotiation advertisement meets standards of
2992  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2993  *  This is a function pointer entry point only called by
2994  *  PHY setup routines.
2995  **/
2996 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2997 {
2998 	struct e1000_phy_info *phy = &hw->phy;
2999 	u32 phy_ctrl;
3000 	s32 ret_val = 0;
3001 	u16 data;
3002 
3003 	if (phy->type == e1000_phy_ife)
3004 		return 0;
3005 
3006 	phy_ctrl = er32(PHY_CTRL);
3007 
3008 	if (active) {
3009 		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
3010 		ew32(PHY_CTRL, phy_ctrl);
3011 
3012 		if (phy->type != e1000_phy_igp_3)
3013 			return 0;
3014 
3015 		/* Call gig speed drop workaround on LPLU before accessing
3016 		 * any PHY registers
3017 		 */
3018 		if (hw->mac.type == e1000_ich8lan)
3019 			e1000e_gig_downshift_workaround_ich8lan(hw);
3020 
3021 		/* When LPLU is enabled, we should disable SmartSpeed */
3022 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3023 		if (ret_val)
3024 			return ret_val;
3025 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3026 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3027 		if (ret_val)
3028 			return ret_val;
3029 	} else {
3030 		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
3031 		ew32(PHY_CTRL, phy_ctrl);
3032 
3033 		if (phy->type != e1000_phy_igp_3)
3034 			return 0;
3035 
3036 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3037 		 * during Dx states where the power conservation is most
3038 		 * important.  During driver activity we should enable
3039 		 * SmartSpeed, so performance is maintained.
3040 		 */
3041 		if (phy->smart_speed == e1000_smart_speed_on) {
3042 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3043 					   &data);
3044 			if (ret_val)
3045 				return ret_val;
3046 
3047 			data |= IGP01E1000_PSCFR_SMART_SPEED;
3048 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3049 					   data);
3050 			if (ret_val)
3051 				return ret_val;
3052 		} else if (phy->smart_speed == e1000_smart_speed_off) {
3053 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3054 					   &data);
3055 			if (ret_val)
3056 				return ret_val;
3057 
3058 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3059 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3060 					   data);
3061 			if (ret_val)
3062 				return ret_val;
3063 		}
3064 	}
3065 
3066 	return 0;
3067 }
3068 
3069 /**
3070  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3071  *  @hw: pointer to the HW structure
3072  *  @active: true to enable LPLU, false to disable
3073  *
3074  *  Sets the LPLU D3 state according to the active flag.  When
3075  *  activating LPLU this function also disables smart speed
3076  *  and vice versa.  LPLU will not be activated unless the
3077  *  device autonegotiation advertisement meets standards of
3078  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3079  *  This is a function pointer entry point only called by
3080  *  PHY setup routines.
3081  **/
3082 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3083 {
3084 	struct e1000_phy_info *phy = &hw->phy;
3085 	u32 phy_ctrl;
3086 	s32 ret_val = 0;
3087 	u16 data;
3088 
3089 	phy_ctrl = er32(PHY_CTRL);
3090 
3091 	if (!active) {
3092 		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3093 		ew32(PHY_CTRL, phy_ctrl);
3094 
3095 		if (phy->type != e1000_phy_igp_3)
3096 			return 0;
3097 
3098 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3099 		 * during Dx states where the power conservation is most
3100 		 * important.  During driver activity we should enable
3101 		 * SmartSpeed, so performance is maintained.
3102 		 */
3103 		if (phy->smart_speed == e1000_smart_speed_on) {
3104 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3105 					   &data);
3106 			if (ret_val)
3107 				return ret_val;
3108 
3109 			data |= IGP01E1000_PSCFR_SMART_SPEED;
3110 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3111 					   data);
3112 			if (ret_val)
3113 				return ret_val;
3114 		} else if (phy->smart_speed == e1000_smart_speed_off) {
3115 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3116 					   &data);
3117 			if (ret_val)
3118 				return ret_val;
3119 
3120 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3121 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3122 					   data);
3123 			if (ret_val)
3124 				return ret_val;
3125 		}
3126 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3127 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3128 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3129 		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3130 		ew32(PHY_CTRL, phy_ctrl);
3131 
3132 		if (phy->type != e1000_phy_igp_3)
3133 			return 0;
3134 
3135 		/* Call gig speed drop workaround on LPLU before accessing
3136 		 * any PHY registers
3137 		 */
3138 		if (hw->mac.type == e1000_ich8lan)
3139 			e1000e_gig_downshift_workaround_ich8lan(hw);
3140 
3141 		/* When LPLU is enabled, we should disable SmartSpeed */
3142 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3143 		if (ret_val)
3144 			return ret_val;
3145 
3146 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3147 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3148 	}
3149 
3150 	return ret_val;
3151 }
3152 
3153 /**
3154  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3155  *  @hw: pointer to the HW structure
3156  *  @bank:  pointer to the variable that returns the active bank
3157  *
3158  *  Reads signature byte from the NVM using the flash access registers.
3159  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3160  **/
3161 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3162 {
3163 	u32 eecd;
3164 	struct e1000_nvm_info *nvm = &hw->nvm;
3165 	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3166 	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3167 	u32 nvm_dword = 0;
3168 	u8 sig_byte = 0;
3169 	s32 ret_val;
3170 
3171 	switch (hw->mac.type) {
3172 	case e1000_pch_spt:
3173 	case e1000_pch_cnp:
3174 	case e1000_pch_tgp:
3175 	case e1000_pch_adp:
3176 	case e1000_pch_mtp:
3177 		bank1_offset = nvm->flash_bank_size;
3178 		act_offset = E1000_ICH_NVM_SIG_WORD;
3179 
3180 		/* set bank to 0 in case flash read fails */
3181 		*bank = 0;
3182 
3183 		/* Check bank 0 */
3184 		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
3185 							 &nvm_dword);
3186 		if (ret_val)
3187 			return ret_val;
3188 		sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3189 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3190 		    E1000_ICH_NVM_SIG_VALUE) {
3191 			*bank = 0;
3192 			return 0;
3193 		}
3194 
3195 		/* Check bank 1 */
3196 		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
3197 							 bank1_offset,
3198 							 &nvm_dword);
3199 		if (ret_val)
3200 			return ret_val;
3201 		sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3202 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3203 		    E1000_ICH_NVM_SIG_VALUE) {
3204 			*bank = 1;
3205 			return 0;
3206 		}
3207 
3208 		e_dbg("ERROR: No valid NVM bank present\n");
3209 		return -E1000_ERR_NVM;
3210 	case e1000_ich8lan:
3211 	case e1000_ich9lan:
3212 		eecd = er32(EECD);
3213 		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3214 		    E1000_EECD_SEC1VAL_VALID_MASK) {
3215 			if (eecd & E1000_EECD_SEC1VAL)
3216 				*bank = 1;
3217 			else
3218 				*bank = 0;
3219 
3220 			return 0;
3221 		}
3222 		e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3223 		fallthrough;
3224 	default:
3225 		/* set bank to 0 in case flash read fails */
3226 		*bank = 0;
3227 
3228 		/* Check bank 0 */
3229 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3230 							&sig_byte);
3231 		if (ret_val)
3232 			return ret_val;
3233 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3234 		    E1000_ICH_NVM_SIG_VALUE) {
3235 			*bank = 0;
3236 			return 0;
3237 		}
3238 
3239 		/* Check bank 1 */
3240 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3241 							bank1_offset,
3242 							&sig_byte);
3243 		if (ret_val)
3244 			return ret_val;
3245 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3246 		    E1000_ICH_NVM_SIG_VALUE) {
3247 			*bank = 1;
3248 			return 0;
3249 		}
3250 
3251 		e_dbg("ERROR: No valid NVM bank present\n");
3252 		return -E1000_ERR_NVM;
3253 	}
3254 }
3255 
3256 /**
3257  *  e1000_read_nvm_spt - NVM access for SPT
3258  *  @hw: pointer to the HW structure
3259  *  @offset: The offset (in bytes) of the word(s) to read.
3260  *  @words: Size of data to read in words.
3261  *  @data: pointer to the word(s) to read at offset.
3262  *
3263  *  Reads a word(s) from the NVM
3264  **/
3265 static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3266 			      u16 *data)
3267 {
3268 	struct e1000_nvm_info *nvm = &hw->nvm;
3269 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3270 	u32 act_offset;
3271 	s32 ret_val = 0;
3272 	u32 bank = 0;
3273 	u32 dword = 0;
3274 	u16 offset_to_read;
3275 	u16 i;
3276 
3277 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3278 	    (words == 0)) {
3279 		e_dbg("nvm parameter(s) out of bounds\n");
3280 		ret_val = -E1000_ERR_NVM;
3281 		goto out;
3282 	}
3283 
3284 	nvm->ops.acquire(hw);
3285 
3286 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3287 	if (ret_val) {
3288 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3289 		bank = 0;
3290 	}
3291 
3292 	act_offset = (bank) ? nvm->flash_bank_size : 0;
3293 	act_offset += offset;
3294 
3295 	ret_val = 0;
3296 
3297 	for (i = 0; i < words; i += 2) {
3298 		if (words - i == 1) {
3299 			if (dev_spec->shadow_ram[offset + i].modified) {
3300 				data[i] =
3301 				    dev_spec->shadow_ram[offset + i].value;
3302 			} else {
3303 				offset_to_read = act_offset + i -
3304 				    ((act_offset + i) % 2);
3305 				ret_val =
3306 				  e1000_read_flash_dword_ich8lan(hw,
3307 								 offset_to_read,
3308 								 &dword);
3309 				if (ret_val)
3310 					break;
3311 				if ((act_offset + i) % 2 == 0)
3312 					data[i] = (u16)(dword & 0xFFFF);
3313 				else
3314 					data[i] = (u16)((dword >> 16) & 0xFFFF);
3315 			}
3316 		} else {
3317 			offset_to_read = act_offset + i;
3318 			if (!(dev_spec->shadow_ram[offset + i].modified) ||
3319 			    !(dev_spec->shadow_ram[offset + i + 1].modified)) {
3320 				ret_val =
3321 				  e1000_read_flash_dword_ich8lan(hw,
3322 								 offset_to_read,
3323 								 &dword);
3324 				if (ret_val)
3325 					break;
3326 			}
3327 			if (dev_spec->shadow_ram[offset + i].modified)
3328 				data[i] =
3329 				    dev_spec->shadow_ram[offset + i].value;
3330 			else
3331 				data[i] = (u16)(dword & 0xFFFF);
3332 			if (dev_spec->shadow_ram[offset + i].modified)
3333 				data[i + 1] =
3334 				    dev_spec->shadow_ram[offset + i + 1].value;
3335 			else
3336 				data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
3337 		}
3338 	}
3339 
3340 	nvm->ops.release(hw);
3341 
3342 out:
3343 	if (ret_val)
3344 		e_dbg("NVM read error: %d\n", ret_val);
3345 
3346 	return ret_val;
3347 }
3348 
3349 /**
3350  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3351  *  @hw: pointer to the HW structure
3352  *  @offset: The offset (in bytes) of the word(s) to read.
3353  *  @words: Size of data to read in words
3354  *  @data: Pointer to the word(s) to read at offset.
3355  *
3356  *  Reads a word(s) from the NVM using the flash access registers.
3357  **/
3358 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3359 				  u16 *data)
3360 {
3361 	struct e1000_nvm_info *nvm = &hw->nvm;
3362 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3363 	u32 act_offset;
3364 	s32 ret_val = 0;
3365 	u32 bank = 0;
3366 	u16 i, word;
3367 
3368 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3369 	    (words == 0)) {
3370 		e_dbg("nvm parameter(s) out of bounds\n");
3371 		ret_val = -E1000_ERR_NVM;
3372 		goto out;
3373 	}
3374 
3375 	nvm->ops.acquire(hw);
3376 
3377 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3378 	if (ret_val) {
3379 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3380 		bank = 0;
3381 	}
3382 
3383 	act_offset = (bank) ? nvm->flash_bank_size : 0;
3384 	act_offset += offset;
3385 
3386 	ret_val = 0;
3387 	for (i = 0; i < words; i++) {
3388 		if (dev_spec->shadow_ram[offset + i].modified) {
3389 			data[i] = dev_spec->shadow_ram[offset + i].value;
3390 		} else {
3391 			ret_val = e1000_read_flash_word_ich8lan(hw,
3392 								act_offset + i,
3393 								&word);
3394 			if (ret_val)
3395 				break;
3396 			data[i] = word;
3397 		}
3398 	}
3399 
3400 	nvm->ops.release(hw);
3401 
3402 out:
3403 	if (ret_val)
3404 		e_dbg("NVM read error: %d\n", ret_val);
3405 
3406 	return ret_val;
3407 }
3408 
3409 /**
3410  *  e1000_flash_cycle_init_ich8lan - Initialize flash
3411  *  @hw: pointer to the HW structure
3412  *
3413  *  This function does initial flash setup so that a new read/write/erase cycle
3414  *  can be started.
3415  **/
3416 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3417 {
3418 	union ich8_hws_flash_status hsfsts;
3419 	s32 ret_val = -E1000_ERR_NVM;
3420 
3421 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3422 
3423 	/* Check if the flash descriptor is valid */
3424 	if (!hsfsts.hsf_status.fldesvalid) {
3425 		e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
3426 		return -E1000_ERR_NVM;
3427 	}
3428 
3429 	/* Clear FCERR and DAEL in hw status by writing 1 */
3430 	hsfsts.hsf_status.flcerr = 1;
3431 	hsfsts.hsf_status.dael = 1;
3432 	if (hw->mac.type >= e1000_pch_spt)
3433 		ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3434 	else
3435 		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3436 
3437 	/* Either we should have a hardware SPI cycle in progress
3438 	 * bit to check against, in order to start a new cycle or
3439 	 * FDONE bit should be changed in the hardware so that it
3440 	 * is 1 after hardware reset, which can then be used as an
3441 	 * indication whether a cycle is in progress or has been
3442 	 * completed.
3443 	 */
3444 
3445 	if (!hsfsts.hsf_status.flcinprog) {
3446 		/* There is no cycle running at present,
3447 		 * so we can start a cycle.
3448 		 * Begin by setting Flash Cycle Done.
3449 		 */
3450 		hsfsts.hsf_status.flcdone = 1;
3451 		if (hw->mac.type >= e1000_pch_spt)
3452 			ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3453 		else
3454 			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3455 		ret_val = 0;
3456 	} else {
3457 		s32 i;
3458 
3459 		/* Otherwise poll for sometime so the current
3460 		 * cycle has a chance to end before giving up.
3461 		 */
3462 		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3463 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3464 			if (!hsfsts.hsf_status.flcinprog) {
3465 				ret_val = 0;
3466 				break;
3467 			}
3468 			udelay(1);
3469 		}
3470 		if (!ret_val) {
3471 			/* Successful in waiting for previous cycle to timeout,
3472 			 * now set the Flash Cycle Done.
3473 			 */
3474 			hsfsts.hsf_status.flcdone = 1;
3475 			if (hw->mac.type >= e1000_pch_spt)
3476 				ew32flash(ICH_FLASH_HSFSTS,
3477 					  hsfsts.regval & 0xFFFF);
3478 			else
3479 				ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3480 		} else {
3481 			e_dbg("Flash controller busy, cannot get access\n");
3482 		}
3483 	}
3484 
3485 	return ret_val;
3486 }
3487 
3488 /**
3489  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3490  *  @hw: pointer to the HW structure
3491  *  @timeout: maximum time to wait for completion
3492  *
3493  *  This function starts a flash cycle and waits for its completion.
3494  **/
3495 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3496 {
3497 	union ich8_hws_flash_ctrl hsflctl;
3498 	union ich8_hws_flash_status hsfsts;
3499 	u32 i = 0;
3500 
3501 	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3502 	if (hw->mac.type >= e1000_pch_spt)
3503 		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3504 	else
3505 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3506 	hsflctl.hsf_ctrl.flcgo = 1;
3507 
3508 	if (hw->mac.type >= e1000_pch_spt)
3509 		ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
3510 	else
3511 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3512 
3513 	/* wait till FDONE bit is set to 1 */
3514 	do {
3515 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3516 		if (hsfsts.hsf_status.flcdone)
3517 			break;
3518 		udelay(1);
3519 	} while (i++ < timeout);
3520 
3521 	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3522 		return 0;
3523 
3524 	return -E1000_ERR_NVM;
3525 }
3526 
3527 /**
3528  *  e1000_read_flash_dword_ich8lan - Read dword from flash
3529  *  @hw: pointer to the HW structure
3530  *  @offset: offset to data location
3531  *  @data: pointer to the location for storing the data
3532  *
3533  *  Reads the flash dword at offset into data.  Offset is converted
3534  *  to bytes before read.
3535  **/
3536 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3537 					  u32 *data)
3538 {
3539 	/* Must convert word offset into bytes. */
3540 	offset <<= 1;
3541 	return e1000_read_flash_data32_ich8lan(hw, offset, data);
3542 }
3543 
3544 /**
3545  *  e1000_read_flash_word_ich8lan - Read word from flash
3546  *  @hw: pointer to the HW structure
3547  *  @offset: offset to data location
3548  *  @data: pointer to the location for storing the data
3549  *
3550  *  Reads the flash word at offset into data.  Offset is converted
3551  *  to bytes before read.
3552  **/
3553 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3554 					 u16 *data)
3555 {
3556 	/* Must convert offset into bytes. */
3557 	offset <<= 1;
3558 
3559 	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3560 }
3561 
3562 /**
3563  *  e1000_read_flash_byte_ich8lan - Read byte from flash
3564  *  @hw: pointer to the HW structure
3565  *  @offset: The offset of the byte to read.
3566  *  @data: Pointer to a byte to store the value read.
3567  *
3568  *  Reads a single byte from the NVM using the flash access registers.
3569  **/
3570 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3571 					 u8 *data)
3572 {
3573 	s32 ret_val;
3574 	u16 word = 0;
3575 
3576 	/* In SPT, only 32 bits access is supported,
3577 	 * so this function should not be called.
3578 	 */
3579 	if (hw->mac.type >= e1000_pch_spt)
3580 		return -E1000_ERR_NVM;
3581 	else
3582 		ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3583 
3584 	if (ret_val)
3585 		return ret_val;
3586 
3587 	*data = (u8)word;
3588 
3589 	return 0;
3590 }
3591 
3592 /**
3593  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3594  *  @hw: pointer to the HW structure
3595  *  @offset: The offset (in bytes) of the byte or word to read.
3596  *  @size: Size of data to read, 1=byte 2=word
3597  *  @data: Pointer to the word to store the value read.
3598  *
3599  *  Reads a byte or word from the NVM using the flash access registers.
3600  **/
3601 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3602 					 u8 size, u16 *data)
3603 {
3604 	union ich8_hws_flash_status hsfsts;
3605 	union ich8_hws_flash_ctrl hsflctl;
3606 	u32 flash_linear_addr;
3607 	u32 flash_data = 0;
3608 	s32 ret_val = -E1000_ERR_NVM;
3609 	u8 count = 0;
3610 
3611 	if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3612 		return -E1000_ERR_NVM;
3613 
3614 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3615 			     hw->nvm.flash_base_addr);
3616 
3617 	do {
3618 		udelay(1);
3619 		/* Steps */
3620 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3621 		if (ret_val)
3622 			break;
3623 
3624 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3625 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3626 		hsflctl.hsf_ctrl.fldbcount = size - 1;
3627 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3628 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3629 
3630 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3631 
3632 		ret_val =
3633 		    e1000_flash_cycle_ich8lan(hw,
3634 					      ICH_FLASH_READ_COMMAND_TIMEOUT);
3635 
3636 		/* Check if FCERR is set to 1, if set to 1, clear it
3637 		 * and try the whole sequence a few more times, else
3638 		 * read in (shift in) the Flash Data0, the order is
3639 		 * least significant byte first msb to lsb
3640 		 */
3641 		if (!ret_val) {
3642 			flash_data = er32flash(ICH_FLASH_FDATA0);
3643 			if (size == 1)
3644 				*data = (u8)(flash_data & 0x000000FF);
3645 			else if (size == 2)
3646 				*data = (u16)(flash_data & 0x0000FFFF);
3647 			break;
3648 		} else {
3649 			/* If we've gotten here, then things are probably
3650 			 * completely hosed, but if the error condition is
3651 			 * detected, it won't hurt to give it another try...
3652 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3653 			 */
3654 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3655 			if (hsfsts.hsf_status.flcerr) {
3656 				/* Repeat for some time before giving up. */
3657 				continue;
3658 			} else if (!hsfsts.hsf_status.flcdone) {
3659 				e_dbg("Timeout error - flash cycle did not complete.\n");
3660 				break;
3661 			}
3662 		}
3663 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3664 
3665 	return ret_val;
3666 }
3667 
3668 /**
3669  *  e1000_read_flash_data32_ich8lan - Read dword from NVM
3670  *  @hw: pointer to the HW structure
3671  *  @offset: The offset (in bytes) of the dword to read.
3672  *  @data: Pointer to the dword to store the value read.
3673  *
3674  *  Reads a byte or word from the NVM using the flash access registers.
3675  **/
3676 
3677 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3678 					   u32 *data)
3679 {
3680 	union ich8_hws_flash_status hsfsts;
3681 	union ich8_hws_flash_ctrl hsflctl;
3682 	u32 flash_linear_addr;
3683 	s32 ret_val = -E1000_ERR_NVM;
3684 	u8 count = 0;
3685 
3686 	if (offset > ICH_FLASH_LINEAR_ADDR_MASK || hw->mac.type < e1000_pch_spt)
3687 		return -E1000_ERR_NVM;
3688 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3689 			     hw->nvm.flash_base_addr);
3690 
3691 	do {
3692 		udelay(1);
3693 		/* Steps */
3694 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3695 		if (ret_val)
3696 			break;
3697 		/* In SPT, This register is in Lan memory space, not flash.
3698 		 * Therefore, only 32 bit access is supported
3699 		 */
3700 		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3701 
3702 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3703 		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3704 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3705 		/* In SPT, This register is in Lan memory space, not flash.
3706 		 * Therefore, only 32 bit access is supported
3707 		 */
3708 		ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16);
3709 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3710 
3711 		ret_val =
3712 		   e1000_flash_cycle_ich8lan(hw,
3713 					     ICH_FLASH_READ_COMMAND_TIMEOUT);
3714 
3715 		/* Check if FCERR is set to 1, if set to 1, clear it
3716 		 * and try the whole sequence a few more times, else
3717 		 * read in (shift in) the Flash Data0, the order is
3718 		 * least significant byte first msb to lsb
3719 		 */
3720 		if (!ret_val) {
3721 			*data = er32flash(ICH_FLASH_FDATA0);
3722 			break;
3723 		} else {
3724 			/* If we've gotten here, then things are probably
3725 			 * completely hosed, but if the error condition is
3726 			 * detected, it won't hurt to give it another try...
3727 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3728 			 */
3729 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3730 			if (hsfsts.hsf_status.flcerr) {
3731 				/* Repeat for some time before giving up. */
3732 				continue;
3733 			} else if (!hsfsts.hsf_status.flcdone) {
3734 				e_dbg("Timeout error - flash cycle did not complete.\n");
3735 				break;
3736 			}
3737 		}
3738 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3739 
3740 	return ret_val;
3741 }
3742 
3743 /**
3744  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
3745  *  @hw: pointer to the HW structure
3746  *  @offset: The offset (in bytes) of the word(s) to write.
3747  *  @words: Size of data to write in words
3748  *  @data: Pointer to the word(s) to write at offset.
3749  *
3750  *  Writes a byte or word to the NVM using the flash access registers.
3751  **/
3752 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3753 				   u16 *data)
3754 {
3755 	struct e1000_nvm_info *nvm = &hw->nvm;
3756 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3757 	u16 i;
3758 
3759 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3760 	    (words == 0)) {
3761 		e_dbg("nvm parameter(s) out of bounds\n");
3762 		return -E1000_ERR_NVM;
3763 	}
3764 
3765 	nvm->ops.acquire(hw);
3766 
3767 	for (i = 0; i < words; i++) {
3768 		dev_spec->shadow_ram[offset + i].modified = true;
3769 		dev_spec->shadow_ram[offset + i].value = data[i];
3770 	}
3771 
3772 	nvm->ops.release(hw);
3773 
3774 	return 0;
3775 }
3776 
3777 /**
3778  *  e1000_update_nvm_checksum_spt - Update the checksum for NVM
3779  *  @hw: pointer to the HW structure
3780  *
3781  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3782  *  which writes the checksum to the shadow ram.  The changes in the shadow
3783  *  ram are then committed to the EEPROM by processing each bank at a time
3784  *  checking for the modified bit and writing only the pending changes.
3785  *  After a successful commit, the shadow ram is cleared and is ready for
3786  *  future writes.
3787  **/
3788 static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
3789 {
3790 	struct e1000_nvm_info *nvm = &hw->nvm;
3791 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3792 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3793 	s32 ret_val;
3794 	u32 dword = 0;
3795 
3796 	ret_val = e1000e_update_nvm_checksum_generic(hw);
3797 	if (ret_val)
3798 		goto out;
3799 
3800 	if (nvm->type != e1000_nvm_flash_sw)
3801 		goto out;
3802 
3803 	nvm->ops.acquire(hw);
3804 
3805 	/* We're writing to the opposite bank so if we're on bank 1,
3806 	 * write to bank 0 etc.  We also need to erase the segment that
3807 	 * is going to be written
3808 	 */
3809 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3810 	if (ret_val) {
3811 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3812 		bank = 0;
3813 	}
3814 
3815 	if (bank == 0) {
3816 		new_bank_offset = nvm->flash_bank_size;
3817 		old_bank_offset = 0;
3818 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3819 		if (ret_val)
3820 			goto release;
3821 	} else {
3822 		old_bank_offset = nvm->flash_bank_size;
3823 		new_bank_offset = 0;
3824 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3825 		if (ret_val)
3826 			goto release;
3827 	}
3828 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) {
3829 		/* Determine whether to write the value stored
3830 		 * in the other NVM bank or a modified value stored
3831 		 * in the shadow RAM
3832 		 */
3833 		ret_val = e1000_read_flash_dword_ich8lan(hw,
3834 							 i + old_bank_offset,
3835 							 &dword);
3836 
3837 		if (dev_spec->shadow_ram[i].modified) {
3838 			dword &= 0xffff0000;
3839 			dword |= (dev_spec->shadow_ram[i].value & 0xffff);
3840 		}
3841 		if (dev_spec->shadow_ram[i + 1].modified) {
3842 			dword &= 0x0000ffff;
3843 			dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
3844 				  << 16);
3845 		}
3846 		if (ret_val)
3847 			break;
3848 
3849 		/* If the word is 0x13, then make sure the signature bits
3850 		 * (15:14) are 11b until the commit has completed.
3851 		 * This will allow us to write 10b which indicates the
3852 		 * signature is valid.  We want to do this after the write
3853 		 * has completed so that we don't mark the segment valid
3854 		 * while the write is still in progress
3855 		 */
3856 		if (i == E1000_ICH_NVM_SIG_WORD - 1)
3857 			dword |= E1000_ICH_NVM_SIG_MASK << 16;
3858 
3859 		/* Convert offset to bytes. */
3860 		act_offset = (i + new_bank_offset) << 1;
3861 
3862 		usleep_range(100, 200);
3863 
3864 		/* Write the data to the new bank. Offset in words */
3865 		act_offset = i + new_bank_offset;
3866 		ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
3867 								dword);
3868 		if (ret_val)
3869 			break;
3870 	}
3871 
3872 	/* Don't bother writing the segment valid bits if sector
3873 	 * programming failed.
3874 	 */
3875 	if (ret_val) {
3876 		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3877 		e_dbg("Flash commit failed.\n");
3878 		goto release;
3879 	}
3880 
3881 	/* Finally validate the new segment by setting bit 15:14
3882 	 * to 10b in word 0x13 , this can be done without an
3883 	 * erase as well since these bits are 11 to start with
3884 	 * and we need to change bit 14 to 0b
3885 	 */
3886 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3887 
3888 	/*offset in words but we read dword */
3889 	--act_offset;
3890 	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3891 
3892 	if (ret_val)
3893 		goto release;
3894 
3895 	dword &= 0xBFFFFFFF;
3896 	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3897 
3898 	if (ret_val)
3899 		goto release;
3900 
3901 	/* offset in words but we read dword */
3902 	act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
3903 	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3904 
3905 	if (ret_val)
3906 		goto release;
3907 
3908 	dword &= 0x00FFFFFF;
3909 	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3910 
3911 	if (ret_val)
3912 		goto release;
3913 
3914 	/* Great!  Everything worked, we can now clear the cached entries. */
3915 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3916 		dev_spec->shadow_ram[i].modified = false;
3917 		dev_spec->shadow_ram[i].value = 0xFFFF;
3918 	}
3919 
3920 release:
3921 	nvm->ops.release(hw);
3922 
3923 	/* Reload the EEPROM, or else modifications will not appear
3924 	 * until after the next adapter reset.
3925 	 */
3926 	if (!ret_val) {
3927 		nvm->ops.reload(hw);
3928 		usleep_range(10000, 11000);
3929 	}
3930 
3931 out:
3932 	if (ret_val)
3933 		e_dbg("NVM update error: %d\n", ret_val);
3934 
3935 	return ret_val;
3936 }
3937 
3938 /**
3939  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3940  *  @hw: pointer to the HW structure
3941  *
3942  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3943  *  which writes the checksum to the shadow ram.  The changes in the shadow
3944  *  ram are then committed to the EEPROM by processing each bank at a time
3945  *  checking for the modified bit and writing only the pending changes.
3946  *  After a successful commit, the shadow ram is cleared and is ready for
3947  *  future writes.
3948  **/
3949 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
3950 {
3951 	struct e1000_nvm_info *nvm = &hw->nvm;
3952 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3953 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3954 	s32 ret_val;
3955 	u16 data = 0;
3956 
3957 	ret_val = e1000e_update_nvm_checksum_generic(hw);
3958 	if (ret_val)
3959 		goto out;
3960 
3961 	if (nvm->type != e1000_nvm_flash_sw)
3962 		goto out;
3963 
3964 	nvm->ops.acquire(hw);
3965 
3966 	/* We're writing to the opposite bank so if we're on bank 1,
3967 	 * write to bank 0 etc.  We also need to erase the segment that
3968 	 * is going to be written
3969 	 */
3970 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3971 	if (ret_val) {
3972 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3973 		bank = 0;
3974 	}
3975 
3976 	if (bank == 0) {
3977 		new_bank_offset = nvm->flash_bank_size;
3978 		old_bank_offset = 0;
3979 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3980 		if (ret_val)
3981 			goto release;
3982 	} else {
3983 		old_bank_offset = nvm->flash_bank_size;
3984 		new_bank_offset = 0;
3985 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3986 		if (ret_val)
3987 			goto release;
3988 	}
3989 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3990 		if (dev_spec->shadow_ram[i].modified) {
3991 			data = dev_spec->shadow_ram[i].value;
3992 		} else {
3993 			ret_val = e1000_read_flash_word_ich8lan(hw, i +
3994 								old_bank_offset,
3995 								&data);
3996 			if (ret_val)
3997 				break;
3998 		}
3999 
4000 		/* If the word is 0x13, then make sure the signature bits
4001 		 * (15:14) are 11b until the commit has completed.
4002 		 * This will allow us to write 10b which indicates the
4003 		 * signature is valid.  We want to do this after the write
4004 		 * has completed so that we don't mark the segment valid
4005 		 * while the write is still in progress
4006 		 */
4007 		if (i == E1000_ICH_NVM_SIG_WORD)
4008 			data |= E1000_ICH_NVM_SIG_MASK;
4009 
4010 		/* Convert offset to bytes. */
4011 		act_offset = (i + new_bank_offset) << 1;
4012 
4013 		usleep_range(100, 200);
4014 		/* Write the bytes to the new bank. */
4015 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4016 							       act_offset,
4017 							       (u8)data);
4018 		if (ret_val)
4019 			break;
4020 
4021 		usleep_range(100, 200);
4022 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4023 							       act_offset + 1,
4024 							       (u8)(data >> 8));
4025 		if (ret_val)
4026 			break;
4027 	}
4028 
4029 	/* Don't bother writing the segment valid bits if sector
4030 	 * programming failed.
4031 	 */
4032 	if (ret_val) {
4033 		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
4034 		e_dbg("Flash commit failed.\n");
4035 		goto release;
4036 	}
4037 
4038 	/* Finally validate the new segment by setting bit 15:14
4039 	 * to 10b in word 0x13 , this can be done without an
4040 	 * erase as well since these bits are 11 to start with
4041 	 * and we need to change bit 14 to 0b
4042 	 */
4043 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4044 	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
4045 	if (ret_val)
4046 		goto release;
4047 
4048 	data &= 0xBFFF;
4049 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4050 						       act_offset * 2 + 1,
4051 						       (u8)(data >> 8));
4052 	if (ret_val)
4053 		goto release;
4054 
4055 	/* And invalidate the previously valid segment by setting
4056 	 * its signature word (0x13) high_byte to 0b. This can be
4057 	 * done without an erase because flash erase sets all bits
4058 	 * to 1's. We can write 1's to 0's without an erase
4059 	 */
4060 	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4061 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
4062 	if (ret_val)
4063 		goto release;
4064 
4065 	/* Great!  Everything worked, we can now clear the cached entries. */
4066 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4067 		dev_spec->shadow_ram[i].modified = false;
4068 		dev_spec->shadow_ram[i].value = 0xFFFF;
4069 	}
4070 
4071 release:
4072 	nvm->ops.release(hw);
4073 
4074 	/* Reload the EEPROM, or else modifications will not appear
4075 	 * until after the next adapter reset.
4076 	 */
4077 	if (!ret_val) {
4078 		nvm->ops.reload(hw);
4079 		usleep_range(10000, 11000);
4080 	}
4081 
4082 out:
4083 	if (ret_val)
4084 		e_dbg("NVM update error: %d\n", ret_val);
4085 
4086 	return ret_val;
4087 }
4088 
4089 /**
4090  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4091  *  @hw: pointer to the HW structure
4092  *
4093  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4094  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
4095  *  calculated, in which case we need to calculate the checksum and set bit 6.
4096  **/
4097 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4098 {
4099 	s32 ret_val;
4100 	u16 data;
4101 	u16 word;
4102 	u16 valid_csum_mask;
4103 
4104 	/* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
4105 	 * the checksum needs to be fixed.  This bit is an indication that
4106 	 * the NVM was prepared by OEM software and did not calculate
4107 	 * the checksum...a likely scenario.
4108 	 */
4109 	switch (hw->mac.type) {
4110 	case e1000_pch_lpt:
4111 	case e1000_pch_spt:
4112 	case e1000_pch_cnp:
4113 	case e1000_pch_tgp:
4114 	case e1000_pch_adp:
4115 	case e1000_pch_mtp:
4116 		word = NVM_COMPAT;
4117 		valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4118 		break;
4119 	default:
4120 		word = NVM_FUTURE_INIT_WORD1;
4121 		valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4122 		break;
4123 	}
4124 
4125 	ret_val = e1000_read_nvm(hw, word, 1, &data);
4126 	if (ret_val)
4127 		return ret_val;
4128 
4129 	if (!(data & valid_csum_mask)) {
4130 		e_dbg("NVM Checksum Invalid\n");
4131 
4132 		if (hw->mac.type < e1000_pch_cnp) {
4133 			data |= valid_csum_mask;
4134 			ret_val = e1000_write_nvm(hw, word, 1, &data);
4135 			if (ret_val)
4136 				return ret_val;
4137 			ret_val = e1000e_update_nvm_checksum(hw);
4138 			if (ret_val)
4139 				return ret_val;
4140 		}
4141 	}
4142 
4143 	return e1000e_validate_nvm_checksum_generic(hw);
4144 }
4145 
4146 /**
4147  *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
4148  *  @hw: pointer to the HW structure
4149  *
4150  *  To prevent malicious write/erase of the NVM, set it to be read-only
4151  *  so that the hardware ignores all write/erase cycles of the NVM via
4152  *  the flash control registers.  The shadow-ram copy of the NVM will
4153  *  still be updated, however any updates to this copy will not stick
4154  *  across driver reloads.
4155  **/
4156 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
4157 {
4158 	struct e1000_nvm_info *nvm = &hw->nvm;
4159 	union ich8_flash_protected_range pr0;
4160 	union ich8_hws_flash_status hsfsts;
4161 	u32 gfpreg;
4162 
4163 	nvm->ops.acquire(hw);
4164 
4165 	gfpreg = er32flash(ICH_FLASH_GFPREG);
4166 
4167 	/* Write-protect GbE Sector of NVM */
4168 	pr0.regval = er32flash(ICH_FLASH_PR0);
4169 	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
4170 	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
4171 	pr0.range.wpe = true;
4172 	ew32flash(ICH_FLASH_PR0, pr0.regval);
4173 
4174 	/* Lock down a subset of GbE Flash Control Registers, e.g.
4175 	 * PR0 to prevent the write-protection from being lifted.
4176 	 * Once FLOCKDN is set, the registers protected by it cannot
4177 	 * be written until FLOCKDN is cleared by a hardware reset.
4178 	 */
4179 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4180 	hsfsts.hsf_status.flockdn = true;
4181 	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
4182 
4183 	nvm->ops.release(hw);
4184 }
4185 
4186 /**
4187  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4188  *  @hw: pointer to the HW structure
4189  *  @offset: The offset (in bytes) of the byte/word to read.
4190  *  @size: Size of data to read, 1=byte 2=word
4191  *  @data: The byte(s) to write to the NVM.
4192  *
4193  *  Writes one/two bytes to the NVM using the flash access registers.
4194  **/
4195 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4196 					  u8 size, u16 data)
4197 {
4198 	union ich8_hws_flash_status hsfsts;
4199 	union ich8_hws_flash_ctrl hsflctl;
4200 	u32 flash_linear_addr;
4201 	u32 flash_data = 0;
4202 	s32 ret_val;
4203 	u8 count = 0;
4204 
4205 	if (hw->mac.type >= e1000_pch_spt) {
4206 		if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4207 			return -E1000_ERR_NVM;
4208 	} else {
4209 		if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4210 			return -E1000_ERR_NVM;
4211 	}
4212 
4213 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4214 			     hw->nvm.flash_base_addr);
4215 
4216 	do {
4217 		udelay(1);
4218 		/* Steps */
4219 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4220 		if (ret_val)
4221 			break;
4222 		/* In SPT, This register is in Lan memory space, not
4223 		 * flash.  Therefore, only 32 bit access is supported
4224 		 */
4225 		if (hw->mac.type >= e1000_pch_spt)
4226 			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
4227 		else
4228 			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4229 
4230 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4231 		hsflctl.hsf_ctrl.fldbcount = size - 1;
4232 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4233 		/* In SPT, This register is in Lan memory space,
4234 		 * not flash.  Therefore, only 32 bit access is
4235 		 * supported
4236 		 */
4237 		if (hw->mac.type >= e1000_pch_spt)
4238 			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4239 		else
4240 			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4241 
4242 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4243 
4244 		if (size == 1)
4245 			flash_data = (u32)data & 0x00FF;
4246 		else
4247 			flash_data = (u32)data;
4248 
4249 		ew32flash(ICH_FLASH_FDATA0, flash_data);
4250 
4251 		/* check if FCERR is set to 1 , if set to 1, clear it
4252 		 * and try the whole sequence a few more times else done
4253 		 */
4254 		ret_val =
4255 		    e1000_flash_cycle_ich8lan(hw,
4256 					      ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4257 		if (!ret_val)
4258 			break;
4259 
4260 		/* If we're here, then things are most likely
4261 		 * completely hosed, but if the error condition
4262 		 * is detected, it won't hurt to give it another
4263 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4264 		 */
4265 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4266 		if (hsfsts.hsf_status.flcerr)
4267 			/* Repeat for some time before giving up. */
4268 			continue;
4269 		if (!hsfsts.hsf_status.flcdone) {
4270 			e_dbg("Timeout error - flash cycle did not complete.\n");
4271 			break;
4272 		}
4273 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4274 
4275 	return ret_val;
4276 }
4277 
4278 /**
4279 *  e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4280 *  @hw: pointer to the HW structure
4281 *  @offset: The offset (in bytes) of the dwords to read.
4282 *  @data: The 4 bytes to write to the NVM.
4283 *
4284 *  Writes one/two/four bytes to the NVM using the flash access registers.
4285 **/
4286 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4287 					    u32 data)
4288 {
4289 	union ich8_hws_flash_status hsfsts;
4290 	union ich8_hws_flash_ctrl hsflctl;
4291 	u32 flash_linear_addr;
4292 	s32 ret_val;
4293 	u8 count = 0;
4294 
4295 	if (hw->mac.type >= e1000_pch_spt) {
4296 		if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4297 			return -E1000_ERR_NVM;
4298 	}
4299 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4300 			     hw->nvm.flash_base_addr);
4301 	do {
4302 		udelay(1);
4303 		/* Steps */
4304 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4305 		if (ret_val)
4306 			break;
4307 
4308 		/* In SPT, This register is in Lan memory space, not
4309 		 * flash.  Therefore, only 32 bit access is supported
4310 		 */
4311 		if (hw->mac.type >= e1000_pch_spt)
4312 			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS)
4313 			    >> 16;
4314 		else
4315 			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4316 
4317 		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4318 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4319 
4320 		/* In SPT, This register is in Lan memory space,
4321 		 * not flash.  Therefore, only 32 bit access is
4322 		 * supported
4323 		 */
4324 		if (hw->mac.type >= e1000_pch_spt)
4325 			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4326 		else
4327 			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4328 
4329 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4330 
4331 		ew32flash(ICH_FLASH_FDATA0, data);
4332 
4333 		/* check if FCERR is set to 1 , if set to 1, clear it
4334 		 * and try the whole sequence a few more times else done
4335 		 */
4336 		ret_val =
4337 		   e1000_flash_cycle_ich8lan(hw,
4338 					     ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4339 
4340 		if (!ret_val)
4341 			break;
4342 
4343 		/* If we're here, then things are most likely
4344 		 * completely hosed, but if the error condition
4345 		 * is detected, it won't hurt to give it another
4346 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4347 		 */
4348 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4349 
4350 		if (hsfsts.hsf_status.flcerr)
4351 			/* Repeat for some time before giving up. */
4352 			continue;
4353 		if (!hsfsts.hsf_status.flcdone) {
4354 			e_dbg("Timeout error - flash cycle did not complete.\n");
4355 			break;
4356 		}
4357 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4358 
4359 	return ret_val;
4360 }
4361 
4362 /**
4363  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4364  *  @hw: pointer to the HW structure
4365  *  @offset: The index of the byte to read.
4366  *  @data: The byte to write to the NVM.
4367  *
4368  *  Writes a single byte to the NVM using the flash access registers.
4369  **/
4370 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4371 					  u8 data)
4372 {
4373 	u16 word = (u16)data;
4374 
4375 	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4376 }
4377 
4378 /**
4379 *  e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4380 *  @hw: pointer to the HW structure
4381 *  @offset: The offset of the word to write.
4382 *  @dword: The dword to write to the NVM.
4383 *
4384 *  Writes a single dword to the NVM using the flash access registers.
4385 *  Goes through a retry algorithm before giving up.
4386 **/
4387 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4388 						 u32 offset, u32 dword)
4389 {
4390 	s32 ret_val;
4391 	u16 program_retries;
4392 
4393 	/* Must convert word offset into bytes. */
4394 	offset <<= 1;
4395 	ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4396 
4397 	if (!ret_val)
4398 		return ret_val;
4399 	for (program_retries = 0; program_retries < 100; program_retries++) {
4400 		e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset);
4401 		usleep_range(100, 200);
4402 		ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4403 		if (!ret_val)
4404 			break;
4405 	}
4406 	if (program_retries == 100)
4407 		return -E1000_ERR_NVM;
4408 
4409 	return 0;
4410 }
4411 
4412 /**
4413  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4414  *  @hw: pointer to the HW structure
4415  *  @offset: The offset of the byte to write.
4416  *  @byte: The byte to write to the NVM.
4417  *
4418  *  Writes a single byte to the NVM using the flash access registers.
4419  *  Goes through a retry algorithm before giving up.
4420  **/
4421 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4422 						u32 offset, u8 byte)
4423 {
4424 	s32 ret_val;
4425 	u16 program_retries;
4426 
4427 	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4428 	if (!ret_val)
4429 		return ret_val;
4430 
4431 	for (program_retries = 0; program_retries < 100; program_retries++) {
4432 		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
4433 		usleep_range(100, 200);
4434 		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4435 		if (!ret_val)
4436 			break;
4437 	}
4438 	if (program_retries == 100)
4439 		return -E1000_ERR_NVM;
4440 
4441 	return 0;
4442 }
4443 
4444 /**
4445  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4446  *  @hw: pointer to the HW structure
4447  *  @bank: 0 for first bank, 1 for second bank, etc.
4448  *
4449  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4450  *  bank N is 4096 * N + flash_reg_addr.
4451  **/
4452 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4453 {
4454 	struct e1000_nvm_info *nvm = &hw->nvm;
4455 	union ich8_hws_flash_status hsfsts;
4456 	union ich8_hws_flash_ctrl hsflctl;
4457 	u32 flash_linear_addr;
4458 	/* bank size is in 16bit words - adjust to bytes */
4459 	u32 flash_bank_size = nvm->flash_bank_size * 2;
4460 	s32 ret_val;
4461 	s32 count = 0;
4462 	s32 j, iteration, sector_size;
4463 
4464 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4465 
4466 	/* Determine HW Sector size: Read BERASE bits of hw flash status
4467 	 * register
4468 	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
4469 	 *     consecutive sectors.  The start index for the nth Hw sector
4470 	 *     can be calculated as = bank * 4096 + n * 256
4471 	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4472 	 *     The start index for the nth Hw sector can be calculated
4473 	 *     as = bank * 4096
4474 	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4475 	 *     (ich9 only, otherwise error condition)
4476 	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4477 	 */
4478 	switch (hsfsts.hsf_status.berasesz) {
4479 	case 0:
4480 		/* Hw sector size 256 */
4481 		sector_size = ICH_FLASH_SEG_SIZE_256;
4482 		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4483 		break;
4484 	case 1:
4485 		sector_size = ICH_FLASH_SEG_SIZE_4K;
4486 		iteration = 1;
4487 		break;
4488 	case 2:
4489 		sector_size = ICH_FLASH_SEG_SIZE_8K;
4490 		iteration = 1;
4491 		break;
4492 	case 3:
4493 		sector_size = ICH_FLASH_SEG_SIZE_64K;
4494 		iteration = 1;
4495 		break;
4496 	default:
4497 		return -E1000_ERR_NVM;
4498 	}
4499 
4500 	/* Start with the base address, then add the sector offset. */
4501 	flash_linear_addr = hw->nvm.flash_base_addr;
4502 	flash_linear_addr += (bank) ? flash_bank_size : 0;
4503 
4504 	for (j = 0; j < iteration; j++) {
4505 		do {
4506 			u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4507 
4508 			/* Steps */
4509 			ret_val = e1000_flash_cycle_init_ich8lan(hw);
4510 			if (ret_val)
4511 				return ret_val;
4512 
4513 			/* Write a value 11 (block Erase) in Flash
4514 			 * Cycle field in hw flash control
4515 			 */
4516 			if (hw->mac.type >= e1000_pch_spt)
4517 				hsflctl.regval =
4518 				    er32flash(ICH_FLASH_HSFSTS) >> 16;
4519 			else
4520 				hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4521 
4522 			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4523 			if (hw->mac.type >= e1000_pch_spt)
4524 				ew32flash(ICH_FLASH_HSFSTS,
4525 					  hsflctl.regval << 16);
4526 			else
4527 				ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4528 
4529 			/* Write the last 24 bits of an index within the
4530 			 * block into Flash Linear address field in Flash
4531 			 * Address.
4532 			 */
4533 			flash_linear_addr += (j * sector_size);
4534 			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4535 
4536 			ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4537 			if (!ret_val)
4538 				break;
4539 
4540 			/* Check if FCERR is set to 1.  If 1,
4541 			 * clear it and try the whole sequence
4542 			 * a few more times else Done
4543 			 */
4544 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4545 			if (hsfsts.hsf_status.flcerr)
4546 				/* repeat for some time before giving up */
4547 				continue;
4548 			else if (!hsfsts.hsf_status.flcdone)
4549 				return ret_val;
4550 		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4551 	}
4552 
4553 	return 0;
4554 }
4555 
4556 /**
4557  *  e1000_valid_led_default_ich8lan - Set the default LED settings
4558  *  @hw: pointer to the HW structure
4559  *  @data: Pointer to the LED settings
4560  *
4561  *  Reads the LED default settings from the NVM to data.  If the NVM LED
4562  *  settings is all 0's or F's, set the LED default to a valid LED default
4563  *  setting.
4564  **/
4565 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4566 {
4567 	s32 ret_val;
4568 
4569 	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
4570 	if (ret_val) {
4571 		e_dbg("NVM Read Error\n");
4572 		return ret_val;
4573 	}
4574 
4575 	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4576 		*data = ID_LED_DEFAULT_ICH8LAN;
4577 
4578 	return 0;
4579 }
4580 
4581 /**
4582  *  e1000_id_led_init_pchlan - store LED configurations
4583  *  @hw: pointer to the HW structure
4584  *
4585  *  PCH does not control LEDs via the LEDCTL register, rather it uses
4586  *  the PHY LED configuration register.
4587  *
4588  *  PCH also does not have an "always on" or "always off" mode which
4589  *  complicates the ID feature.  Instead of using the "on" mode to indicate
4590  *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
4591  *  use "link_up" mode.  The LEDs will still ID on request if there is no
4592  *  link based on logic in e1000_led_[on|off]_pchlan().
4593  **/
4594 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4595 {
4596 	struct e1000_mac_info *mac = &hw->mac;
4597 	s32 ret_val;
4598 	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4599 	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4600 	u16 data, i, temp, shift;
4601 
4602 	/* Get default ID LED modes */
4603 	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4604 	if (ret_val)
4605 		return ret_val;
4606 
4607 	mac->ledctl_default = er32(LEDCTL);
4608 	mac->ledctl_mode1 = mac->ledctl_default;
4609 	mac->ledctl_mode2 = mac->ledctl_default;
4610 
4611 	for (i = 0; i < 4; i++) {
4612 		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4613 		shift = (i * 5);
4614 		switch (temp) {
4615 		case ID_LED_ON1_DEF2:
4616 		case ID_LED_ON1_ON2:
4617 		case ID_LED_ON1_OFF2:
4618 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4619 			mac->ledctl_mode1 |= (ledctl_on << shift);
4620 			break;
4621 		case ID_LED_OFF1_DEF2:
4622 		case ID_LED_OFF1_ON2:
4623 		case ID_LED_OFF1_OFF2:
4624 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4625 			mac->ledctl_mode1 |= (ledctl_off << shift);
4626 			break;
4627 		default:
4628 			/* Do nothing */
4629 			break;
4630 		}
4631 		switch (temp) {
4632 		case ID_LED_DEF1_ON2:
4633 		case ID_LED_ON1_ON2:
4634 		case ID_LED_OFF1_ON2:
4635 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4636 			mac->ledctl_mode2 |= (ledctl_on << shift);
4637 			break;
4638 		case ID_LED_DEF1_OFF2:
4639 		case ID_LED_ON1_OFF2:
4640 		case ID_LED_OFF1_OFF2:
4641 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4642 			mac->ledctl_mode2 |= (ledctl_off << shift);
4643 			break;
4644 		default:
4645 			/* Do nothing */
4646 			break;
4647 		}
4648 	}
4649 
4650 	return 0;
4651 }
4652 
4653 /**
4654  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4655  *  @hw: pointer to the HW structure
4656  *
4657  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4658  *  register, so the bus width is hard coded.
4659  **/
4660 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4661 {
4662 	struct e1000_bus_info *bus = &hw->bus;
4663 	s32 ret_val;
4664 
4665 	ret_val = e1000e_get_bus_info_pcie(hw);
4666 
4667 	/* ICH devices are "PCI Express"-ish.  They have
4668 	 * a configuration space, but do not contain
4669 	 * PCI Express Capability registers, so bus width
4670 	 * must be hardcoded.
4671 	 */
4672 	if (bus->width == e1000_bus_width_unknown)
4673 		bus->width = e1000_bus_width_pcie_x1;
4674 
4675 	return ret_val;
4676 }
4677 
4678 /**
4679  *  e1000_reset_hw_ich8lan - Reset the hardware
4680  *  @hw: pointer to the HW structure
4681  *
4682  *  Does a full reset of the hardware which includes a reset of the PHY and
4683  *  MAC.
4684  **/
4685 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4686 {
4687 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4688 	u16 kum_cfg;
4689 	u32 ctrl, reg;
4690 	s32 ret_val;
4691 
4692 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
4693 	 * on the last TLP read/write transaction when MAC is reset.
4694 	 */
4695 	ret_val = e1000e_disable_pcie_master(hw);
4696 	if (ret_val)
4697 		e_dbg("PCI-E Master disable polling has failed.\n");
4698 
4699 	e_dbg("Masking off all interrupts\n");
4700 	ew32(IMC, 0xffffffff);
4701 
4702 	/* Disable the Transmit and Receive units.  Then delay to allow
4703 	 * any pending transactions to complete before we hit the MAC
4704 	 * with the global reset.
4705 	 */
4706 	ew32(RCTL, 0);
4707 	ew32(TCTL, E1000_TCTL_PSP);
4708 	e1e_flush();
4709 
4710 	usleep_range(10000, 11000);
4711 
4712 	/* Workaround for ICH8 bit corruption issue in FIFO memory */
4713 	if (hw->mac.type == e1000_ich8lan) {
4714 		/* Set Tx and Rx buffer allocation to 8k apiece. */
4715 		ew32(PBA, E1000_PBA_8K);
4716 		/* Set Packet Buffer Size to 16k. */
4717 		ew32(PBS, E1000_PBS_16K);
4718 	}
4719 
4720 	if (hw->mac.type == e1000_pchlan) {
4721 		/* Save the NVM K1 bit setting */
4722 		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4723 		if (ret_val)
4724 			return ret_val;
4725 
4726 		if (kum_cfg & E1000_NVM_K1_ENABLE)
4727 			dev_spec->nvm_k1_enabled = true;
4728 		else
4729 			dev_spec->nvm_k1_enabled = false;
4730 	}
4731 
4732 	ctrl = er32(CTRL);
4733 
4734 	if (!hw->phy.ops.check_reset_block(hw)) {
4735 		/* Full-chip reset requires MAC and PHY reset at the same
4736 		 * time to make sure the interface between MAC and the
4737 		 * external PHY is reset.
4738 		 */
4739 		ctrl |= E1000_CTRL_PHY_RST;
4740 
4741 		/* Gate automatic PHY configuration by hardware on
4742 		 * non-managed 82579
4743 		 */
4744 		if ((hw->mac.type == e1000_pch2lan) &&
4745 		    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
4746 			e1000_gate_hw_phy_config_ich8lan(hw, true);
4747 	}
4748 	ret_val = e1000_acquire_swflag_ich8lan(hw);
4749 	e_dbg("Issuing a global reset to ich8lan\n");
4750 	ew32(CTRL, (ctrl | E1000_CTRL_RST));
4751 	/* cannot issue a flush here because it hangs the hardware */
4752 	msleep(20);
4753 
4754 	/* Set Phy Config Counter to 50msec */
4755 	if (hw->mac.type == e1000_pch2lan) {
4756 		reg = er32(FEXTNVM3);
4757 		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4758 		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4759 		ew32(FEXTNVM3, reg);
4760 	}
4761 
4762 	if (!ret_val)
4763 		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
4764 
4765 	if (ctrl & E1000_CTRL_PHY_RST) {
4766 		ret_val = hw->phy.ops.get_cfg_done(hw);
4767 		if (ret_val)
4768 			return ret_val;
4769 
4770 		ret_val = e1000_post_phy_reset_ich8lan(hw);
4771 		if (ret_val)
4772 			return ret_val;
4773 	}
4774 
4775 	/* For PCH, this write will make sure that any noise
4776 	 * will be detected as a CRC error and be dropped rather than show up
4777 	 * as a bad packet to the DMA engine.
4778 	 */
4779 	if (hw->mac.type == e1000_pchlan)
4780 		ew32(CRC_OFFSET, 0x65656565);
4781 
4782 	ew32(IMC, 0xffffffff);
4783 	er32(ICR);
4784 
4785 	reg = er32(KABGTXD);
4786 	reg |= E1000_KABGTXD_BGSQLBIAS;
4787 	ew32(KABGTXD, reg);
4788 
4789 	return 0;
4790 }
4791 
4792 /**
4793  *  e1000_init_hw_ich8lan - Initialize the hardware
4794  *  @hw: pointer to the HW structure
4795  *
4796  *  Prepares the hardware for transmit and receive by doing the following:
4797  *   - initialize hardware bits
4798  *   - initialize LED identification
4799  *   - setup receive address registers
4800  *   - setup flow control
4801  *   - setup transmit descriptors
4802  *   - clear statistics
4803  **/
4804 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4805 {
4806 	struct e1000_mac_info *mac = &hw->mac;
4807 	u32 ctrl_ext, txdctl, snoop;
4808 	s32 ret_val;
4809 	u16 i;
4810 
4811 	e1000_initialize_hw_bits_ich8lan(hw);
4812 
4813 	/* Initialize identification LED */
4814 	ret_val = mac->ops.id_led_init(hw);
4815 	/* An error is not fatal and we should not stop init due to this */
4816 	if (ret_val)
4817 		e_dbg("Error initializing identification LED\n");
4818 
4819 	/* Setup the receive address. */
4820 	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
4821 
4822 	/* Zero out the Multicast HASH table */
4823 	e_dbg("Zeroing the MTA\n");
4824 	for (i = 0; i < mac->mta_reg_count; i++)
4825 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4826 
4827 	/* The 82578 Rx buffer will stall if wakeup is enabled in host and
4828 	 * the ME.  Disable wakeup by clearing the host wakeup bit.
4829 	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
4830 	 */
4831 	if (hw->phy.type == e1000_phy_82578) {
4832 		e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4833 		i &= ~BM_WUC_HOST_WU_BIT;
4834 		e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4835 		ret_val = e1000_phy_hw_reset_ich8lan(hw);
4836 		if (ret_val)
4837 			return ret_val;
4838 	}
4839 
4840 	/* Setup link and flow control */
4841 	ret_val = mac->ops.setup_link(hw);
4842 
4843 	/* Set the transmit descriptor write-back policy for both queues */
4844 	txdctl = er32(TXDCTL(0));
4845 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4846 		  E1000_TXDCTL_FULL_TX_DESC_WB);
4847 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4848 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4849 	ew32(TXDCTL(0), txdctl);
4850 	txdctl = er32(TXDCTL(1));
4851 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4852 		  E1000_TXDCTL_FULL_TX_DESC_WB);
4853 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4854 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4855 	ew32(TXDCTL(1), txdctl);
4856 
4857 	/* ICH8 has opposite polarity of no_snoop bits.
4858 	 * By default, we should use snoop behavior.
4859 	 */
4860 	if (mac->type == e1000_ich8lan)
4861 		snoop = PCIE_ICH8_SNOOP_ALL;
4862 	else
4863 		snoop = (u32)~(PCIE_NO_SNOOP_ALL);
4864 	e1000e_set_pcie_no_snoop(hw, snoop);
4865 
4866 	ctrl_ext = er32(CTRL_EXT);
4867 	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4868 	ew32(CTRL_EXT, ctrl_ext);
4869 
4870 	/* Clear all of the statistics registers (clear on read).  It is
4871 	 * important that we do this after we have tried to establish link
4872 	 * because the symbol error count will increment wildly if there
4873 	 * is no link.
4874 	 */
4875 	e1000_clear_hw_cntrs_ich8lan(hw);
4876 
4877 	return ret_val;
4878 }
4879 
4880 /**
4881  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4882  *  @hw: pointer to the HW structure
4883  *
4884  *  Sets/Clears required hardware bits necessary for correctly setting up the
4885  *  hardware for transmit and receive.
4886  **/
4887 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4888 {
4889 	u32 reg;
4890 
4891 	/* Extended Device Control */
4892 	reg = er32(CTRL_EXT);
4893 	reg |= BIT(22);
4894 	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
4895 	if (hw->mac.type >= e1000_pchlan)
4896 		reg |= E1000_CTRL_EXT_PHYPDEN;
4897 	ew32(CTRL_EXT, reg);
4898 
4899 	/* Transmit Descriptor Control 0 */
4900 	reg = er32(TXDCTL(0));
4901 	reg |= BIT(22);
4902 	ew32(TXDCTL(0), reg);
4903 
4904 	/* Transmit Descriptor Control 1 */
4905 	reg = er32(TXDCTL(1));
4906 	reg |= BIT(22);
4907 	ew32(TXDCTL(1), reg);
4908 
4909 	/* Transmit Arbitration Control 0 */
4910 	reg = er32(TARC(0));
4911 	if (hw->mac.type == e1000_ich8lan)
4912 		reg |= BIT(28) | BIT(29);
4913 	reg |= BIT(23) | BIT(24) | BIT(26) | BIT(27);
4914 	ew32(TARC(0), reg);
4915 
4916 	/* Transmit Arbitration Control 1 */
4917 	reg = er32(TARC(1));
4918 	if (er32(TCTL) & E1000_TCTL_MULR)
4919 		reg &= ~BIT(28);
4920 	else
4921 		reg |= BIT(28);
4922 	reg |= BIT(24) | BIT(26) | BIT(30);
4923 	ew32(TARC(1), reg);
4924 
4925 	/* Device Status */
4926 	if (hw->mac.type == e1000_ich8lan) {
4927 		reg = er32(STATUS);
4928 		reg &= ~BIT(31);
4929 		ew32(STATUS, reg);
4930 	}
4931 
4932 	/* work-around descriptor data corruption issue during nfs v2 udp
4933 	 * traffic, just disable the nfs filtering capability
4934 	 */
4935 	reg = er32(RFCTL);
4936 	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
4937 
4938 	/* Disable IPv6 extension header parsing because some malformed
4939 	 * IPv6 headers can hang the Rx.
4940 	 */
4941 	if (hw->mac.type == e1000_ich8lan)
4942 		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
4943 	ew32(RFCTL, reg);
4944 
4945 	/* Enable ECC on Lynxpoint */
4946 	if (hw->mac.type >= e1000_pch_lpt) {
4947 		reg = er32(PBECCSTS);
4948 		reg |= E1000_PBECCSTS_ECC_ENABLE;
4949 		ew32(PBECCSTS, reg);
4950 
4951 		reg = er32(CTRL);
4952 		reg |= E1000_CTRL_MEHE;
4953 		ew32(CTRL, reg);
4954 	}
4955 }
4956 
4957 /**
4958  *  e1000_setup_link_ich8lan - Setup flow control and link settings
4959  *  @hw: pointer to the HW structure
4960  *
4961  *  Determines which flow control settings to use, then configures flow
4962  *  control.  Calls the appropriate media-specific link configuration
4963  *  function.  Assuming the adapter has a valid link partner, a valid link
4964  *  should be established.  Assumes the hardware has previously been reset
4965  *  and the transmitter and receiver are not enabled.
4966  **/
4967 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
4968 {
4969 	s32 ret_val;
4970 
4971 	if (hw->phy.ops.check_reset_block(hw))
4972 		return 0;
4973 
4974 	/* ICH parts do not have a word in the NVM to determine
4975 	 * the default flow control setting, so we explicitly
4976 	 * set it to full.
4977 	 */
4978 	if (hw->fc.requested_mode == e1000_fc_default) {
4979 		/* Workaround h/w hang when Tx flow control enabled */
4980 		if (hw->mac.type == e1000_pchlan)
4981 			hw->fc.requested_mode = e1000_fc_rx_pause;
4982 		else
4983 			hw->fc.requested_mode = e1000_fc_full;
4984 	}
4985 
4986 	/* Save off the requested flow control mode for use later.  Depending
4987 	 * on the link partner's capabilities, we may or may not use this mode.
4988 	 */
4989 	hw->fc.current_mode = hw->fc.requested_mode;
4990 
4991 	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
4992 
4993 	/* Continue to configure the copper link. */
4994 	ret_val = hw->mac.ops.setup_physical_interface(hw);
4995 	if (ret_val)
4996 		return ret_val;
4997 
4998 	ew32(FCTTV, hw->fc.pause_time);
4999 	if ((hw->phy.type == e1000_phy_82578) ||
5000 	    (hw->phy.type == e1000_phy_82579) ||
5001 	    (hw->phy.type == e1000_phy_i217) ||
5002 	    (hw->phy.type == e1000_phy_82577)) {
5003 		ew32(FCRTV_PCH, hw->fc.refresh_time);
5004 
5005 		ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
5006 				   hw->fc.pause_time);
5007 		if (ret_val)
5008 			return ret_val;
5009 	}
5010 
5011 	return e1000e_set_fc_watermarks(hw);
5012 }
5013 
5014 /**
5015  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
5016  *  @hw: pointer to the HW structure
5017  *
5018  *  Configures the kumeran interface to the PHY to wait the appropriate time
5019  *  when polling the PHY, then call the generic setup_copper_link to finish
5020  *  configuring the copper link.
5021  **/
5022 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
5023 {
5024 	u32 ctrl;
5025 	s32 ret_val;
5026 	u16 reg_data;
5027 
5028 	ctrl = er32(CTRL);
5029 	ctrl |= E1000_CTRL_SLU;
5030 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5031 	ew32(CTRL, ctrl);
5032 
5033 	/* Set the mac to wait the maximum time between each iteration
5034 	 * and increase the max iterations when polling the phy;
5035 	 * this fixes erroneous timeouts at 10Mbps.
5036 	 */
5037 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
5038 	if (ret_val)
5039 		return ret_val;
5040 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5041 				       &reg_data);
5042 	if (ret_val)
5043 		return ret_val;
5044 	reg_data |= 0x3F;
5045 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5046 					reg_data);
5047 	if (ret_val)
5048 		return ret_val;
5049 
5050 	switch (hw->phy.type) {
5051 	case e1000_phy_igp_3:
5052 		ret_val = e1000e_copper_link_setup_igp(hw);
5053 		if (ret_val)
5054 			return ret_val;
5055 		break;
5056 	case e1000_phy_bm:
5057 	case e1000_phy_82578:
5058 		ret_val = e1000e_copper_link_setup_m88(hw);
5059 		if (ret_val)
5060 			return ret_val;
5061 		break;
5062 	case e1000_phy_82577:
5063 	case e1000_phy_82579:
5064 		ret_val = e1000_copper_link_setup_82577(hw);
5065 		if (ret_val)
5066 			return ret_val;
5067 		break;
5068 	case e1000_phy_ife:
5069 		ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
5070 		if (ret_val)
5071 			return ret_val;
5072 
5073 		reg_data &= ~IFE_PMC_AUTO_MDIX;
5074 
5075 		switch (hw->phy.mdix) {
5076 		case 1:
5077 			reg_data &= ~IFE_PMC_FORCE_MDIX;
5078 			break;
5079 		case 2:
5080 			reg_data |= IFE_PMC_FORCE_MDIX;
5081 			break;
5082 		case 0:
5083 		default:
5084 			reg_data |= IFE_PMC_AUTO_MDIX;
5085 			break;
5086 		}
5087 		ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
5088 		if (ret_val)
5089 			return ret_val;
5090 		break;
5091 	default:
5092 		break;
5093 	}
5094 
5095 	return e1000e_setup_copper_link(hw);
5096 }
5097 
5098 /**
5099  *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5100  *  @hw: pointer to the HW structure
5101  *
5102  *  Calls the PHY specific link setup function and then calls the
5103  *  generic setup_copper_link to finish configuring the link for
5104  *  Lynxpoint PCH devices
5105  **/
5106 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5107 {
5108 	u32 ctrl;
5109 	s32 ret_val;
5110 
5111 	ctrl = er32(CTRL);
5112 	ctrl |= E1000_CTRL_SLU;
5113 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5114 	ew32(CTRL, ctrl);
5115 
5116 	ret_val = e1000_copper_link_setup_82577(hw);
5117 	if (ret_val)
5118 		return ret_val;
5119 
5120 	return e1000e_setup_copper_link(hw);
5121 }
5122 
5123 /**
5124  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5125  *  @hw: pointer to the HW structure
5126  *  @speed: pointer to store current link speed
5127  *  @duplex: pointer to store the current link duplex
5128  *
5129  *  Calls the generic get_speed_and_duplex to retrieve the current link
5130  *  information and then calls the Kumeran lock loss workaround for links at
5131  *  gigabit speeds.
5132  **/
5133 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5134 					  u16 *duplex)
5135 {
5136 	s32 ret_val;
5137 
5138 	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
5139 	if (ret_val)
5140 		return ret_val;
5141 
5142 	if ((hw->mac.type == e1000_ich8lan) &&
5143 	    (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
5144 		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5145 	}
5146 
5147 	return ret_val;
5148 }
5149 
5150 /**
5151  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5152  *  @hw: pointer to the HW structure
5153  *
5154  *  Work-around for 82566 Kumeran PCS lock loss:
5155  *  On link status change (i.e. PCI reset, speed change) and link is up and
5156  *  speed is gigabit-
5157  *    0) if workaround is optionally disabled do nothing
5158  *    1) wait 1ms for Kumeran link to come up
5159  *    2) check Kumeran Diagnostic register PCS lock loss bit
5160  *    3) if not set the link is locked (all is good), otherwise...
5161  *    4) reset the PHY
5162  *    5) repeat up to 10 times
5163  *  Note: this is only called for IGP3 copper when speed is 1gb.
5164  **/
5165 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5166 {
5167 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5168 	u32 phy_ctrl;
5169 	s32 ret_val;
5170 	u16 i, data;
5171 	bool link;
5172 
5173 	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5174 		return 0;
5175 
5176 	/* Make sure link is up before proceeding.  If not just return.
5177 	 * Attempting this while link is negotiating fouled up link
5178 	 * stability
5179 	 */
5180 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
5181 	if (!link)
5182 		return 0;
5183 
5184 	for (i = 0; i < 10; i++) {
5185 		/* read once to clear */
5186 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5187 		if (ret_val)
5188 			return ret_val;
5189 		/* and again to get new status */
5190 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5191 		if (ret_val)
5192 			return ret_val;
5193 
5194 		/* check for PCS lock */
5195 		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5196 			return 0;
5197 
5198 		/* Issue PHY reset */
5199 		e1000_phy_hw_reset(hw);
5200 		mdelay(5);
5201 	}
5202 	/* Disable GigE link negotiation */
5203 	phy_ctrl = er32(PHY_CTRL);
5204 	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5205 		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5206 	ew32(PHY_CTRL, phy_ctrl);
5207 
5208 	/* Call gig speed drop workaround on Gig disable before accessing
5209 	 * any PHY registers
5210 	 */
5211 	e1000e_gig_downshift_workaround_ich8lan(hw);
5212 
5213 	/* unable to acquire PCS lock */
5214 	return -E1000_ERR_PHY;
5215 }
5216 
5217 /**
5218  *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5219  *  @hw: pointer to the HW structure
5220  *  @state: boolean value used to set the current Kumeran workaround state
5221  *
5222  *  If ICH8, set the current Kumeran workaround state (enabled - true
5223  *  /disabled - false).
5224  **/
5225 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5226 						  bool state)
5227 {
5228 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5229 
5230 	if (hw->mac.type != e1000_ich8lan) {
5231 		e_dbg("Workaround applies to ICH8 only.\n");
5232 		return;
5233 	}
5234 
5235 	dev_spec->kmrn_lock_loss_workaround_enabled = state;
5236 }
5237 
5238 /**
5239  *  e1000e_igp3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5240  *  @hw: pointer to the HW structure
5241  *
5242  *  Workaround for 82566 power-down on D3 entry:
5243  *    1) disable gigabit link
5244  *    2) write VR power-down enable
5245  *    3) read it back
5246  *  Continue if successful, else issue LCD reset and repeat
5247  **/
5248 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5249 {
5250 	u32 reg;
5251 	u16 data;
5252 	u8 retry = 0;
5253 
5254 	if (hw->phy.type != e1000_phy_igp_3)
5255 		return;
5256 
5257 	/* Try the workaround twice (if needed) */
5258 	do {
5259 		/* Disable link */
5260 		reg = er32(PHY_CTRL);
5261 		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5262 			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5263 		ew32(PHY_CTRL, reg);
5264 
5265 		/* Call gig speed drop workaround on Gig disable before
5266 		 * accessing any PHY registers
5267 		 */
5268 		if (hw->mac.type == e1000_ich8lan)
5269 			e1000e_gig_downshift_workaround_ich8lan(hw);
5270 
5271 		/* Write VR power-down enable */
5272 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5273 		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5274 		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5275 
5276 		/* Read it back and test */
5277 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5278 		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5279 		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5280 			break;
5281 
5282 		/* Issue PHY reset and repeat at most one more time */
5283 		reg = er32(CTRL);
5284 		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
5285 		retry++;
5286 	} while (retry);
5287 }
5288 
5289 /**
5290  *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5291  *  @hw: pointer to the HW structure
5292  *
5293  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5294  *  LPLU, Gig disable, MDIC PHY reset):
5295  *    1) Set Kumeran Near-end loopback
5296  *    2) Clear Kumeran Near-end loopback
5297  *  Should only be called for ICH8[m] devices with any 1G Phy.
5298  **/
5299 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5300 {
5301 	s32 ret_val;
5302 	u16 reg_data;
5303 
5304 	if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
5305 		return;
5306 
5307 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5308 				       &reg_data);
5309 	if (ret_val)
5310 		return;
5311 	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5312 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5313 					reg_data);
5314 	if (ret_val)
5315 		return;
5316 	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5317 	e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
5318 }
5319 
5320 /**
5321  *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5322  *  @hw: pointer to the HW structure
5323  *
5324  *  During S0 to Sx transition, it is possible the link remains at gig
5325  *  instead of negotiating to a lower speed.  Before going to Sx, set
5326  *  'Gig Disable' to force link speed negotiation to a lower speed based on
5327  *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
5328  *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5329  *  needs to be written.
5330  *  Parts that support (and are linked to a partner which support) EEE in
5331  *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5332  *  than 10Mbps w/o EEE.
5333  **/
5334 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5335 {
5336 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5337 	u32 phy_ctrl;
5338 	s32 ret_val;
5339 
5340 	phy_ctrl = er32(PHY_CTRL);
5341 	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5342 
5343 	if (hw->phy.type == e1000_phy_i217) {
5344 		u16 phy_reg, device_id = hw->adapter->pdev->device;
5345 
5346 		if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5347 		    (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5348 		    (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5349 		    (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5350 		    (hw->mac.type >= e1000_pch_spt)) {
5351 			u32 fextnvm6 = er32(FEXTNVM6);
5352 
5353 			ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5354 		}
5355 
5356 		ret_val = hw->phy.ops.acquire(hw);
5357 		if (ret_val)
5358 			goto out;
5359 
5360 		if (!dev_spec->eee_disable) {
5361 			u16 eee_advert;
5362 
5363 			ret_val =
5364 			    e1000_read_emi_reg_locked(hw,
5365 						      I217_EEE_ADVERTISEMENT,
5366 						      &eee_advert);
5367 			if (ret_val)
5368 				goto release;
5369 
5370 			/* Disable LPLU if both link partners support 100BaseT
5371 			 * EEE and 100Full is advertised on both ends of the
5372 			 * link, and enable Auto Enable LPI since there will
5373 			 * be no driver to enable LPI while in Sx.
5374 			 */
5375 			if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5376 			    (dev_spec->eee_lp_ability &
5377 			     I82579_EEE_100_SUPPORTED) &&
5378 			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5379 				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5380 					      E1000_PHY_CTRL_NOND0A_LPLU);
5381 
5382 				/* Set Auto Enable LPI after link up */
5383 				e1e_rphy_locked(hw,
5384 						I217_LPI_GPIO_CTRL, &phy_reg);
5385 				phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5386 				e1e_wphy_locked(hw,
5387 						I217_LPI_GPIO_CTRL, phy_reg);
5388 			}
5389 		}
5390 
5391 		/* For i217 Intel Rapid Start Technology support,
5392 		 * when the system is going into Sx and no manageability engine
5393 		 * is present, the driver must configure proxy to reset only on
5394 		 * power good.  LPI (Low Power Idle) state must also reset only
5395 		 * on power good, as well as the MTA (Multicast table array).
5396 		 * The SMBus release must also be disabled on LCD reset.
5397 		 */
5398 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5399 			/* Enable proxy to reset only on power good. */
5400 			e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
5401 			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5402 			e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
5403 
5404 			/* Set bit enable LPI (EEE) to reset only on
5405 			 * power good.
5406 			 */
5407 			e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
5408 			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5409 			e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
5410 
5411 			/* Disable the SMB release on LCD reset. */
5412 			e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5413 			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5414 			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5415 		}
5416 
5417 		/* Enable MTA to reset for Intel Rapid Start Technology
5418 		 * Support
5419 		 */
5420 		e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5421 		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5422 		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5423 
5424 release:
5425 		hw->phy.ops.release(hw);
5426 	}
5427 out:
5428 	ew32(PHY_CTRL, phy_ctrl);
5429 
5430 	if (hw->mac.type == e1000_ich8lan)
5431 		e1000e_gig_downshift_workaround_ich8lan(hw);
5432 
5433 	if (hw->mac.type >= e1000_pchlan) {
5434 		e1000_oem_bits_config_ich8lan(hw, false);
5435 
5436 		/* Reset PHY to activate OEM bits on 82577/8 */
5437 		if (hw->mac.type == e1000_pchlan)
5438 			e1000e_phy_hw_reset_generic(hw);
5439 
5440 		ret_val = hw->phy.ops.acquire(hw);
5441 		if (ret_val)
5442 			return;
5443 		e1000_write_smbus_addr(hw);
5444 		hw->phy.ops.release(hw);
5445 	}
5446 }
5447 
5448 /**
5449  *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5450  *  @hw: pointer to the HW structure
5451  *
5452  *  During Sx to S0 transitions on non-managed devices or managed devices
5453  *  on which PHY resets are not blocked, if the PHY registers cannot be
5454  *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
5455  *  the PHY.
5456  *  On i217, setup Intel Rapid Start Technology.
5457  **/
5458 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5459 {
5460 	s32 ret_val;
5461 
5462 	if (hw->mac.type < e1000_pch2lan)
5463 		return;
5464 
5465 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
5466 	if (ret_val) {
5467 		e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
5468 		return;
5469 	}
5470 
5471 	/* For i217 Intel Rapid Start Technology support when the system
5472 	 * is transitioning from Sx and no manageability engine is present
5473 	 * configure SMBus to restore on reset, disable proxy, and enable
5474 	 * the reset on MTA (Multicast table array).
5475 	 */
5476 	if (hw->phy.type == e1000_phy_i217) {
5477 		u16 phy_reg;
5478 
5479 		ret_val = hw->phy.ops.acquire(hw);
5480 		if (ret_val) {
5481 			e_dbg("Failed to setup iRST\n");
5482 			return;
5483 		}
5484 
5485 		/* Clear Auto Enable LPI after link up */
5486 		e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5487 		phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5488 		e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5489 
5490 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5491 			/* Restore clear on SMB if no manageability engine
5492 			 * is present
5493 			 */
5494 			ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5495 			if (ret_val)
5496 				goto release;
5497 			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5498 			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5499 
5500 			/* Disable Proxy */
5501 			e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
5502 		}
5503 		/* Enable reset on MTA */
5504 		ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5505 		if (ret_val)
5506 			goto release;
5507 		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5508 		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5509 release:
5510 		if (ret_val)
5511 			e_dbg("Error %d in resume workarounds\n", ret_val);
5512 		hw->phy.ops.release(hw);
5513 	}
5514 }
5515 
5516 /**
5517  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
5518  *  @hw: pointer to the HW structure
5519  *
5520  *  Return the LED back to the default configuration.
5521  **/
5522 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5523 {
5524 	if (hw->phy.type == e1000_phy_ife)
5525 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
5526 
5527 	ew32(LEDCTL, hw->mac.ledctl_default);
5528 	return 0;
5529 }
5530 
5531 /**
5532  *  e1000_led_on_ich8lan - Turn LEDs on
5533  *  @hw: pointer to the HW structure
5534  *
5535  *  Turn on the LEDs.
5536  **/
5537 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5538 {
5539 	if (hw->phy.type == e1000_phy_ife)
5540 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5541 				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5542 
5543 	ew32(LEDCTL, hw->mac.ledctl_mode2);
5544 	return 0;
5545 }
5546 
5547 /**
5548  *  e1000_led_off_ich8lan - Turn LEDs off
5549  *  @hw: pointer to the HW structure
5550  *
5551  *  Turn off the LEDs.
5552  **/
5553 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5554 {
5555 	if (hw->phy.type == e1000_phy_ife)
5556 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5557 				(IFE_PSCL_PROBE_MODE |
5558 				 IFE_PSCL_PROBE_LEDS_OFF));
5559 
5560 	ew32(LEDCTL, hw->mac.ledctl_mode1);
5561 	return 0;
5562 }
5563 
5564 /**
5565  *  e1000_setup_led_pchlan - Configures SW controllable LED
5566  *  @hw: pointer to the HW structure
5567  *
5568  *  This prepares the SW controllable LED for use.
5569  **/
5570 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5571 {
5572 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
5573 }
5574 
5575 /**
5576  *  e1000_cleanup_led_pchlan - Restore the default LED operation
5577  *  @hw: pointer to the HW structure
5578  *
5579  *  Return the LED back to the default configuration.
5580  **/
5581 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5582 {
5583 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
5584 }
5585 
5586 /**
5587  *  e1000_led_on_pchlan - Turn LEDs on
5588  *  @hw: pointer to the HW structure
5589  *
5590  *  Turn on the LEDs.
5591  **/
5592 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5593 {
5594 	u16 data = (u16)hw->mac.ledctl_mode2;
5595 	u32 i, led;
5596 
5597 	/* If no link, then turn LED on by setting the invert bit
5598 	 * for each LED that's mode is "link_up" in ledctl_mode2.
5599 	 */
5600 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5601 		for (i = 0; i < 3; i++) {
5602 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5603 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5604 			    E1000_LEDCTL_MODE_LINK_UP)
5605 				continue;
5606 			if (led & E1000_PHY_LED0_IVRT)
5607 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5608 			else
5609 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5610 		}
5611 	}
5612 
5613 	return e1e_wphy(hw, HV_LED_CONFIG, data);
5614 }
5615 
5616 /**
5617  *  e1000_led_off_pchlan - Turn LEDs off
5618  *  @hw: pointer to the HW structure
5619  *
5620  *  Turn off the LEDs.
5621  **/
5622 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5623 {
5624 	u16 data = (u16)hw->mac.ledctl_mode1;
5625 	u32 i, led;
5626 
5627 	/* If no link, then turn LED off by clearing the invert bit
5628 	 * for each LED that's mode is "link_up" in ledctl_mode1.
5629 	 */
5630 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5631 		for (i = 0; i < 3; i++) {
5632 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5633 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5634 			    E1000_LEDCTL_MODE_LINK_UP)
5635 				continue;
5636 			if (led & E1000_PHY_LED0_IVRT)
5637 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5638 			else
5639 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5640 		}
5641 	}
5642 
5643 	return e1e_wphy(hw, HV_LED_CONFIG, data);
5644 }
5645 
5646 /**
5647  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5648  *  @hw: pointer to the HW structure
5649  *
5650  *  Read appropriate register for the config done bit for completion status
5651  *  and configure the PHY through s/w for EEPROM-less parts.
5652  *
5653  *  NOTE: some silicon which is EEPROM-less will fail trying to read the
5654  *  config done bit, so only an error is logged and continues.  If we were
5655  *  to return with error, EEPROM-less silicon would not be able to be reset
5656  *  or change link.
5657  **/
5658 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5659 {
5660 	s32 ret_val = 0;
5661 	u32 bank = 0;
5662 	u32 status;
5663 
5664 	e1000e_get_cfg_done_generic(hw);
5665 
5666 	/* Wait for indication from h/w that it has completed basic config */
5667 	if (hw->mac.type >= e1000_ich10lan) {
5668 		e1000_lan_init_done_ich8lan(hw);
5669 	} else {
5670 		ret_val = e1000e_get_auto_rd_done(hw);
5671 		if (ret_val) {
5672 			/* When auto config read does not complete, do not
5673 			 * return with an error. This can happen in situations
5674 			 * where there is no eeprom and prevents getting link.
5675 			 */
5676 			e_dbg("Auto Read Done did not complete\n");
5677 			ret_val = 0;
5678 		}
5679 	}
5680 
5681 	/* Clear PHY Reset Asserted bit */
5682 	status = er32(STATUS);
5683 	if (status & E1000_STATUS_PHYRA)
5684 		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
5685 	else
5686 		e_dbg("PHY Reset Asserted not set - needs delay\n");
5687 
5688 	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
5689 	if (hw->mac.type <= e1000_ich9lan) {
5690 		if (!(er32(EECD) & E1000_EECD_PRES) &&
5691 		    (hw->phy.type == e1000_phy_igp_3)) {
5692 			e1000e_phy_init_script_igp3(hw);
5693 		}
5694 	} else {
5695 		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5696 			/* Maybe we should do a basic PHY config */
5697 			e_dbg("EEPROM not present\n");
5698 			ret_val = -E1000_ERR_CONFIG;
5699 		}
5700 	}
5701 
5702 	return ret_val;
5703 }
5704 
5705 /**
5706  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5707  * @hw: pointer to the HW structure
5708  *
5709  * In the case of a PHY power down to save power, or to turn off link during a
5710  * driver unload, or wake on lan is not enabled, remove the link.
5711  **/
5712 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5713 {
5714 	/* If the management interface is not enabled, then power down */
5715 	if (!(hw->mac.ops.check_mng_mode(hw) ||
5716 	      hw->phy.ops.check_reset_block(hw)))
5717 		e1000_power_down_phy_copper(hw);
5718 }
5719 
5720 /**
5721  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5722  *  @hw: pointer to the HW structure
5723  *
5724  *  Clears hardware counters specific to the silicon family and calls
5725  *  clear_hw_cntrs_generic to clear all general purpose counters.
5726  **/
5727 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5728 {
5729 	u16 phy_data;
5730 	s32 ret_val;
5731 
5732 	e1000e_clear_hw_cntrs_base(hw);
5733 
5734 	er32(ALGNERRC);
5735 	er32(RXERRC);
5736 	er32(TNCRS);
5737 	er32(CEXTERR);
5738 	er32(TSCTC);
5739 	er32(TSCTFC);
5740 
5741 	er32(MGTPRC);
5742 	er32(MGTPDC);
5743 	er32(MGTPTC);
5744 
5745 	er32(IAC);
5746 	er32(ICRXOC);
5747 
5748 	/* Clear PHY statistics registers */
5749 	if ((hw->phy.type == e1000_phy_82578) ||
5750 	    (hw->phy.type == e1000_phy_82579) ||
5751 	    (hw->phy.type == e1000_phy_i217) ||
5752 	    (hw->phy.type == e1000_phy_82577)) {
5753 		ret_val = hw->phy.ops.acquire(hw);
5754 		if (ret_val)
5755 			return;
5756 		ret_val = hw->phy.ops.set_page(hw,
5757 					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
5758 		if (ret_val)
5759 			goto release;
5760 		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5761 		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5762 		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5763 		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5764 		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5765 		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5766 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5767 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5768 		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5769 		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5770 		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5771 		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5772 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5773 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5774 release:
5775 		hw->phy.ops.release(hw);
5776 	}
5777 }
5778 
5779 static const struct e1000_mac_operations ich8_mac_ops = {
5780 	/* check_mng_mode dependent on mac type */
5781 	.check_for_link		= e1000_check_for_copper_link_ich8lan,
5782 	/* cleanup_led dependent on mac type */
5783 	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
5784 	.get_bus_info		= e1000_get_bus_info_ich8lan,
5785 	.set_lan_id		= e1000_set_lan_id_single_port,
5786 	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
5787 	/* led_on dependent on mac type */
5788 	/* led_off dependent on mac type */
5789 	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
5790 	.reset_hw		= e1000_reset_hw_ich8lan,
5791 	.init_hw		= e1000_init_hw_ich8lan,
5792 	.setup_link		= e1000_setup_link_ich8lan,
5793 	.setup_physical_interface = e1000_setup_copper_link_ich8lan,
5794 	/* id_led_init dependent on mac type */
5795 	.config_collision_dist	= e1000e_config_collision_dist_generic,
5796 	.rar_set		= e1000e_rar_set_generic,
5797 	.rar_get_count		= e1000e_rar_get_count_generic,
5798 };
5799 
5800 static const struct e1000_phy_operations ich8_phy_ops = {
5801 	.acquire		= e1000_acquire_swflag_ich8lan,
5802 	.check_reset_block	= e1000_check_reset_block_ich8lan,
5803 	.commit			= NULL,
5804 	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
5805 	.get_cable_length	= e1000e_get_cable_length_igp_2,
5806 	.read_reg		= e1000e_read_phy_reg_igp,
5807 	.release		= e1000_release_swflag_ich8lan,
5808 	.reset			= e1000_phy_hw_reset_ich8lan,
5809 	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
5810 	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
5811 	.write_reg		= e1000e_write_phy_reg_igp,
5812 };
5813 
5814 static const struct e1000_nvm_operations ich8_nvm_ops = {
5815 	.acquire		= e1000_acquire_nvm_ich8lan,
5816 	.read			= e1000_read_nvm_ich8lan,
5817 	.release		= e1000_release_nvm_ich8lan,
5818 	.reload			= e1000e_reload_nvm_generic,
5819 	.update			= e1000_update_nvm_checksum_ich8lan,
5820 	.valid_led_default	= e1000_valid_led_default_ich8lan,
5821 	.validate		= e1000_validate_nvm_checksum_ich8lan,
5822 	.write			= e1000_write_nvm_ich8lan,
5823 };
5824 
5825 static const struct e1000_nvm_operations spt_nvm_ops = {
5826 	.acquire		= e1000_acquire_nvm_ich8lan,
5827 	.release		= e1000_release_nvm_ich8lan,
5828 	.read			= e1000_read_nvm_spt,
5829 	.update			= e1000_update_nvm_checksum_spt,
5830 	.reload			= e1000e_reload_nvm_generic,
5831 	.valid_led_default	= e1000_valid_led_default_ich8lan,
5832 	.validate		= e1000_validate_nvm_checksum_ich8lan,
5833 	.write			= e1000_write_nvm_ich8lan,
5834 };
5835 
5836 const struct e1000_info e1000_ich8_info = {
5837 	.mac			= e1000_ich8lan,
5838 	.flags			= FLAG_HAS_WOL
5839 				  | FLAG_IS_ICH
5840 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5841 				  | FLAG_HAS_AMT
5842 				  | FLAG_HAS_FLASH
5843 				  | FLAG_APME_IN_WUC,
5844 	.pba			= 8,
5845 	.max_hw_frame_size	= VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
5846 	.get_variants		= e1000_get_variants_ich8lan,
5847 	.mac_ops		= &ich8_mac_ops,
5848 	.phy_ops		= &ich8_phy_ops,
5849 	.nvm_ops		= &ich8_nvm_ops,
5850 };
5851 
5852 const struct e1000_info e1000_ich9_info = {
5853 	.mac			= e1000_ich9lan,
5854 	.flags			= FLAG_HAS_JUMBO_FRAMES
5855 				  | FLAG_IS_ICH
5856 				  | FLAG_HAS_WOL
5857 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5858 				  | FLAG_HAS_AMT
5859 				  | FLAG_HAS_FLASH
5860 				  | FLAG_APME_IN_WUC,
5861 	.pba			= 18,
5862 	.max_hw_frame_size	= DEFAULT_JUMBO,
5863 	.get_variants		= e1000_get_variants_ich8lan,
5864 	.mac_ops		= &ich8_mac_ops,
5865 	.phy_ops		= &ich8_phy_ops,
5866 	.nvm_ops		= &ich8_nvm_ops,
5867 };
5868 
5869 const struct e1000_info e1000_ich10_info = {
5870 	.mac			= e1000_ich10lan,
5871 	.flags			= FLAG_HAS_JUMBO_FRAMES
5872 				  | FLAG_IS_ICH
5873 				  | FLAG_HAS_WOL
5874 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5875 				  | FLAG_HAS_AMT
5876 				  | FLAG_HAS_FLASH
5877 				  | FLAG_APME_IN_WUC,
5878 	.pba			= 18,
5879 	.max_hw_frame_size	= DEFAULT_JUMBO,
5880 	.get_variants		= e1000_get_variants_ich8lan,
5881 	.mac_ops		= &ich8_mac_ops,
5882 	.phy_ops		= &ich8_phy_ops,
5883 	.nvm_ops		= &ich8_nvm_ops,
5884 };
5885 
5886 const struct e1000_info e1000_pch_info = {
5887 	.mac			= e1000_pchlan,
5888 	.flags			= FLAG_IS_ICH
5889 				  | FLAG_HAS_WOL
5890 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5891 				  | FLAG_HAS_AMT
5892 				  | FLAG_HAS_FLASH
5893 				  | FLAG_HAS_JUMBO_FRAMES
5894 				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
5895 				  | FLAG_APME_IN_WUC,
5896 	.flags2			= FLAG2_HAS_PHY_STATS,
5897 	.pba			= 26,
5898 	.max_hw_frame_size	= 4096,
5899 	.get_variants		= e1000_get_variants_ich8lan,
5900 	.mac_ops		= &ich8_mac_ops,
5901 	.phy_ops		= &ich8_phy_ops,
5902 	.nvm_ops		= &ich8_nvm_ops,
5903 };
5904 
5905 const struct e1000_info e1000_pch2_info = {
5906 	.mac			= e1000_pch2lan,
5907 	.flags			= FLAG_IS_ICH
5908 				  | FLAG_HAS_WOL
5909 				  | FLAG_HAS_HW_TIMESTAMP
5910 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5911 				  | FLAG_HAS_AMT
5912 				  | FLAG_HAS_FLASH
5913 				  | FLAG_HAS_JUMBO_FRAMES
5914 				  | FLAG_APME_IN_WUC,
5915 	.flags2			= FLAG2_HAS_PHY_STATS
5916 				  | FLAG2_HAS_EEE
5917 				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
5918 	.pba			= 26,
5919 	.max_hw_frame_size	= 9022,
5920 	.get_variants		= e1000_get_variants_ich8lan,
5921 	.mac_ops		= &ich8_mac_ops,
5922 	.phy_ops		= &ich8_phy_ops,
5923 	.nvm_ops		= &ich8_nvm_ops,
5924 };
5925 
5926 const struct e1000_info e1000_pch_lpt_info = {
5927 	.mac			= e1000_pch_lpt,
5928 	.flags			= FLAG_IS_ICH
5929 				  | FLAG_HAS_WOL
5930 				  | FLAG_HAS_HW_TIMESTAMP
5931 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5932 				  | FLAG_HAS_AMT
5933 				  | FLAG_HAS_FLASH
5934 				  | FLAG_HAS_JUMBO_FRAMES
5935 				  | FLAG_APME_IN_WUC,
5936 	.flags2			= FLAG2_HAS_PHY_STATS
5937 				  | FLAG2_HAS_EEE
5938 				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
5939 	.pba			= 26,
5940 	.max_hw_frame_size	= 9022,
5941 	.get_variants		= e1000_get_variants_ich8lan,
5942 	.mac_ops		= &ich8_mac_ops,
5943 	.phy_ops		= &ich8_phy_ops,
5944 	.nvm_ops		= &ich8_nvm_ops,
5945 };
5946 
5947 const struct e1000_info e1000_pch_spt_info = {
5948 	.mac			= e1000_pch_spt,
5949 	.flags			= FLAG_IS_ICH
5950 				  | FLAG_HAS_WOL
5951 				  | FLAG_HAS_HW_TIMESTAMP
5952 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5953 				  | FLAG_HAS_AMT
5954 				  | FLAG_HAS_FLASH
5955 				  | FLAG_HAS_JUMBO_FRAMES
5956 				  | FLAG_APME_IN_WUC,
5957 	.flags2			= FLAG2_HAS_PHY_STATS
5958 				  | FLAG2_HAS_EEE,
5959 	.pba			= 26,
5960 	.max_hw_frame_size	= 9022,
5961 	.get_variants		= e1000_get_variants_ich8lan,
5962 	.mac_ops		= &ich8_mac_ops,
5963 	.phy_ops		= &ich8_phy_ops,
5964 	.nvm_ops		= &spt_nvm_ops,
5965 };
5966 
5967 const struct e1000_info e1000_pch_cnp_info = {
5968 	.mac			= e1000_pch_cnp,
5969 	.flags			= FLAG_IS_ICH
5970 				  | FLAG_HAS_WOL
5971 				  | FLAG_HAS_HW_TIMESTAMP
5972 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5973 				  | FLAG_HAS_AMT
5974 				  | FLAG_HAS_FLASH
5975 				  | FLAG_HAS_JUMBO_FRAMES
5976 				  | FLAG_APME_IN_WUC,
5977 	.flags2			= FLAG2_HAS_PHY_STATS
5978 				  | FLAG2_HAS_EEE,
5979 	.pba			= 26,
5980 	.max_hw_frame_size	= 9022,
5981 	.get_variants		= e1000_get_variants_ich8lan,
5982 	.mac_ops		= &ich8_mac_ops,
5983 	.phy_ops		= &ich8_phy_ops,
5984 	.nvm_ops		= &spt_nvm_ops,
5985 };
5986