1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright(c) 1999 - 2018 Intel Corporation. */ 3 4 /* 82562G 10/100 Network Connection 5 * 82562G-2 10/100 Network Connection 6 * 82562GT 10/100 Network Connection 7 * 82562GT-2 10/100 Network Connection 8 * 82562V 10/100 Network Connection 9 * 82562V-2 10/100 Network Connection 10 * 82566DC-2 Gigabit Network Connection 11 * 82566DC Gigabit Network Connection 12 * 82566DM-2 Gigabit Network Connection 13 * 82566DM Gigabit Network Connection 14 * 82566MC Gigabit Network Connection 15 * 82566MM Gigabit Network Connection 16 * 82567LM Gigabit Network Connection 17 * 82567LF Gigabit Network Connection 18 * 82567V Gigabit Network Connection 19 * 82567LM-2 Gigabit Network Connection 20 * 82567LF-2 Gigabit Network Connection 21 * 82567V-2 Gigabit Network Connection 22 * 82567LF-3 Gigabit Network Connection 23 * 82567LM-3 Gigabit Network Connection 24 * 82567LM-4 Gigabit Network Connection 25 * 82577LM Gigabit Network Connection 26 * 82577LC Gigabit Network Connection 27 * 82578DM Gigabit Network Connection 28 * 82578DC Gigabit Network Connection 29 * 82579LM Gigabit Network Connection 30 * 82579V Gigabit Network Connection 31 * Ethernet Connection I217-LM 32 * Ethernet Connection I217-V 33 * Ethernet Connection I218-V 34 * Ethernet Connection I218-LM 35 * Ethernet Connection (2) I218-LM 36 * Ethernet Connection (2) I218-V 37 * Ethernet Connection (3) I218-LM 38 * Ethernet Connection (3) I218-V 39 */ 40 41 #include "e1000.h" 42 43 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */ 44 /* Offset 04h HSFSTS */ 45 union ich8_hws_flash_status { 46 struct ich8_hsfsts { 47 u16 flcdone:1; /* bit 0 Flash Cycle Done */ 48 u16 flcerr:1; /* bit 1 Flash Cycle Error */ 49 u16 dael:1; /* bit 2 Direct Access error Log */ 50 u16 berasesz:2; /* bit 4:3 Sector Erase Size */ 51 u16 flcinprog:1; /* bit 5 flash cycle in Progress */ 52 u16 reserved1:2; /* bit 13:6 Reserved */ 53 u16 reserved2:6; /* bit 13:6 Reserved */ 54 u16 fldesvalid:1; /* bit 14 Flash Descriptor Valid */ 55 u16 flockdn:1; /* bit 15 Flash Config Lock-Down */ 56 } hsf_status; 57 u16 regval; 58 }; 59 60 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */ 61 /* Offset 06h FLCTL */ 62 union ich8_hws_flash_ctrl { 63 struct ich8_hsflctl { 64 u16 flcgo:1; /* 0 Flash Cycle Go */ 65 u16 flcycle:2; /* 2:1 Flash Cycle */ 66 u16 reserved:5; /* 7:3 Reserved */ 67 u16 fldbcount:2; /* 9:8 Flash Data Byte Count */ 68 u16 flockdn:6; /* 15:10 Reserved */ 69 } hsf_ctrl; 70 u16 regval; 71 }; 72 73 /* ICH Flash Region Access Permissions */ 74 union ich8_hws_flash_regacc { 75 struct ich8_flracc { 76 u32 grra:8; /* 0:7 GbE region Read Access */ 77 u32 grwa:8; /* 8:15 GbE region Write Access */ 78 u32 gmrag:8; /* 23:16 GbE Master Read Access Grant */ 79 u32 gmwag:8; /* 31:24 GbE Master Write Access Grant */ 80 } hsf_flregacc; 81 u16 regval; 82 }; 83 84 /* ICH Flash Protected Region */ 85 union ich8_flash_protected_range { 86 struct ich8_pr { 87 u32 base:13; /* 0:12 Protected Range Base */ 88 u32 reserved1:2; /* 13:14 Reserved */ 89 u32 rpe:1; /* 15 Read Protection Enable */ 90 u32 limit:13; /* 16:28 Protected Range Limit */ 91 u32 reserved2:2; /* 29:30 Reserved */ 92 u32 wpe:1; /* 31 Write Protection Enable */ 93 } range; 94 u32 regval; 95 }; 96 97 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw); 98 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw); 99 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank); 100 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw, 101 u32 offset, u8 byte); 102 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, 103 u8 *data); 104 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset, 105 u16 *data); 106 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, 107 u8 size, u16 *data); 108 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset, 109 u32 *data); 110 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, 111 u32 offset, u32 *data); 112 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, 113 u32 offset, u32 data); 114 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw, 115 u32 offset, u32 dword); 116 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw); 117 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw); 118 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw); 119 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw); 120 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw); 121 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw); 122 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw); 123 static s32 e1000_led_on_pchlan(struct e1000_hw *hw); 124 static s32 e1000_led_off_pchlan(struct e1000_hw *hw); 125 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active); 126 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw); 127 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw); 128 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link); 129 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw); 130 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw); 131 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw); 132 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index); 133 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index); 134 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw); 135 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw); 136 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate); 137 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force); 138 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw); 139 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state); 140 141 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg) 142 { 143 return readw(hw->flash_address + reg); 144 } 145 146 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg) 147 { 148 return readl(hw->flash_address + reg); 149 } 150 151 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val) 152 { 153 writew(val, hw->flash_address + reg); 154 } 155 156 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val) 157 { 158 writel(val, hw->flash_address + reg); 159 } 160 161 #define er16flash(reg) __er16flash(hw, (reg)) 162 #define er32flash(reg) __er32flash(hw, (reg)) 163 #define ew16flash(reg, val) __ew16flash(hw, (reg), (val)) 164 #define ew32flash(reg, val) __ew32flash(hw, (reg), (val)) 165 166 /** 167 * e1000_phy_is_accessible_pchlan - Check if able to access PHY registers 168 * @hw: pointer to the HW structure 169 * 170 * Test access to the PHY registers by reading the PHY ID registers. If 171 * the PHY ID is already known (e.g. resume path) compare it with known ID, 172 * otherwise assume the read PHY ID is correct if it is valid. 173 * 174 * Assumes the sw/fw/hw semaphore is already acquired. 175 **/ 176 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw) 177 { 178 u16 phy_reg = 0; 179 u32 phy_id = 0; 180 s32 ret_val = 0; 181 u16 retry_count; 182 u32 mac_reg = 0; 183 184 for (retry_count = 0; retry_count < 2; retry_count++) { 185 ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg); 186 if (ret_val || (phy_reg == 0xFFFF)) 187 continue; 188 phy_id = (u32)(phy_reg << 16); 189 190 ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg); 191 if (ret_val || (phy_reg == 0xFFFF)) { 192 phy_id = 0; 193 continue; 194 } 195 phy_id |= (u32)(phy_reg & PHY_REVISION_MASK); 196 break; 197 } 198 199 if (hw->phy.id) { 200 if (hw->phy.id == phy_id) 201 goto out; 202 } else if (phy_id) { 203 hw->phy.id = phy_id; 204 hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK); 205 goto out; 206 } 207 208 /* In case the PHY needs to be in mdio slow mode, 209 * set slow mode and try to get the PHY id again. 210 */ 211 if (hw->mac.type < e1000_pch_lpt) { 212 hw->phy.ops.release(hw); 213 ret_val = e1000_set_mdio_slow_mode_hv(hw); 214 if (!ret_val) 215 ret_val = e1000e_get_phy_id(hw); 216 hw->phy.ops.acquire(hw); 217 } 218 219 if (ret_val) 220 return false; 221 out: 222 if (hw->mac.type >= e1000_pch_lpt) { 223 /* Only unforce SMBus if ME is not active */ 224 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) { 225 /* Unforce SMBus mode in PHY */ 226 e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg); 227 phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS; 228 e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg); 229 230 /* Unforce SMBus mode in MAC */ 231 mac_reg = er32(CTRL_EXT); 232 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS; 233 ew32(CTRL_EXT, mac_reg); 234 } 235 } 236 237 return true; 238 } 239 240 /** 241 * e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value 242 * @hw: pointer to the HW structure 243 * 244 * Toggling the LANPHYPC pin value fully power-cycles the PHY and is 245 * used to reset the PHY to a quiescent state when necessary. 246 **/ 247 static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw) 248 { 249 u32 mac_reg; 250 251 /* Set Phy Config Counter to 50msec */ 252 mac_reg = er32(FEXTNVM3); 253 mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK; 254 mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC; 255 ew32(FEXTNVM3, mac_reg); 256 257 /* Toggle LANPHYPC Value bit */ 258 mac_reg = er32(CTRL); 259 mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE; 260 mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE; 261 ew32(CTRL, mac_reg); 262 e1e_flush(); 263 usleep_range(10, 20); 264 mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE; 265 ew32(CTRL, mac_reg); 266 e1e_flush(); 267 268 if (hw->mac.type < e1000_pch_lpt) { 269 msleep(50); 270 } else { 271 u16 count = 20; 272 273 do { 274 usleep_range(5000, 6000); 275 } while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--); 276 277 msleep(30); 278 } 279 } 280 281 /** 282 * e1000_init_phy_workarounds_pchlan - PHY initialization workarounds 283 * @hw: pointer to the HW structure 284 * 285 * Workarounds/flow necessary for PHY initialization during driver load 286 * and resume paths. 287 **/ 288 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw) 289 { 290 struct e1000_adapter *adapter = hw->adapter; 291 u32 mac_reg, fwsm = er32(FWSM); 292 s32 ret_val; 293 294 /* Gate automatic PHY configuration by hardware on managed and 295 * non-managed 82579 and newer adapters. 296 */ 297 e1000_gate_hw_phy_config_ich8lan(hw, true); 298 299 /* It is not possible to be certain of the current state of ULP 300 * so forcibly disable it. 301 */ 302 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown; 303 ret_val = e1000_disable_ulp_lpt_lp(hw, true); 304 if (ret_val) 305 e_warn("Failed to disable ULP\n"); 306 307 ret_val = hw->phy.ops.acquire(hw); 308 if (ret_val) { 309 e_dbg("Failed to initialize PHY flow\n"); 310 goto out; 311 } 312 313 /* The MAC-PHY interconnect may be in SMBus mode. If the PHY is 314 * inaccessible and resetting the PHY is not blocked, toggle the 315 * LANPHYPC Value bit to force the interconnect to PCIe mode. 316 */ 317 switch (hw->mac.type) { 318 case e1000_pch_lpt: 319 case e1000_pch_spt: 320 case e1000_pch_cnp: 321 case e1000_pch_tgp: 322 case e1000_pch_adp: 323 case e1000_pch_mtp: 324 if (e1000_phy_is_accessible_pchlan(hw)) 325 break; 326 327 /* Before toggling LANPHYPC, see if PHY is accessible by 328 * forcing MAC to SMBus mode first. 329 */ 330 mac_reg = er32(CTRL_EXT); 331 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS; 332 ew32(CTRL_EXT, mac_reg); 333 334 /* Wait 50 milliseconds for MAC to finish any retries 335 * that it might be trying to perform from previous 336 * attempts to acknowledge any phy read requests. 337 */ 338 msleep(50); 339 340 fallthrough; 341 case e1000_pch2lan: 342 if (e1000_phy_is_accessible_pchlan(hw)) 343 break; 344 345 fallthrough; 346 case e1000_pchlan: 347 if ((hw->mac.type == e1000_pchlan) && 348 (fwsm & E1000_ICH_FWSM_FW_VALID)) 349 break; 350 351 if (hw->phy.ops.check_reset_block(hw)) { 352 e_dbg("Required LANPHYPC toggle blocked by ME\n"); 353 ret_val = -E1000_ERR_PHY; 354 break; 355 } 356 357 /* Toggle LANPHYPC Value bit */ 358 e1000_toggle_lanphypc_pch_lpt(hw); 359 if (hw->mac.type >= e1000_pch_lpt) { 360 if (e1000_phy_is_accessible_pchlan(hw)) 361 break; 362 363 /* Toggling LANPHYPC brings the PHY out of SMBus mode 364 * so ensure that the MAC is also out of SMBus mode 365 */ 366 mac_reg = er32(CTRL_EXT); 367 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS; 368 ew32(CTRL_EXT, mac_reg); 369 370 if (e1000_phy_is_accessible_pchlan(hw)) 371 break; 372 373 ret_val = -E1000_ERR_PHY; 374 } 375 break; 376 default: 377 break; 378 } 379 380 hw->phy.ops.release(hw); 381 if (!ret_val) { 382 383 /* Check to see if able to reset PHY. Print error if not */ 384 if (hw->phy.ops.check_reset_block(hw)) { 385 e_err("Reset blocked by ME\n"); 386 goto out; 387 } 388 389 /* Reset the PHY before any access to it. Doing so, ensures 390 * that the PHY is in a known good state before we read/write 391 * PHY registers. The generic reset is sufficient here, 392 * because we haven't determined the PHY type yet. 393 */ 394 ret_val = e1000e_phy_hw_reset_generic(hw); 395 if (ret_val) 396 goto out; 397 398 /* On a successful reset, possibly need to wait for the PHY 399 * to quiesce to an accessible state before returning control 400 * to the calling function. If the PHY does not quiesce, then 401 * return E1000E_BLK_PHY_RESET, as this is the condition that 402 * the PHY is in. 403 */ 404 ret_val = hw->phy.ops.check_reset_block(hw); 405 if (ret_val) 406 e_err("ME blocked access to PHY after reset\n"); 407 } 408 409 out: 410 /* Ungate automatic PHY configuration on non-managed 82579 */ 411 if ((hw->mac.type == e1000_pch2lan) && 412 !(fwsm & E1000_ICH_FWSM_FW_VALID)) { 413 usleep_range(10000, 11000); 414 e1000_gate_hw_phy_config_ich8lan(hw, false); 415 } 416 417 return ret_val; 418 } 419 420 /** 421 * e1000_init_phy_params_pchlan - Initialize PHY function pointers 422 * @hw: pointer to the HW structure 423 * 424 * Initialize family-specific PHY parameters and function pointers. 425 **/ 426 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw) 427 { 428 struct e1000_phy_info *phy = &hw->phy; 429 s32 ret_val; 430 431 phy->addr = 1; 432 phy->reset_delay_us = 100; 433 434 phy->ops.set_page = e1000_set_page_igp; 435 phy->ops.read_reg = e1000_read_phy_reg_hv; 436 phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked; 437 phy->ops.read_reg_page = e1000_read_phy_reg_page_hv; 438 phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan; 439 phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan; 440 phy->ops.write_reg = e1000_write_phy_reg_hv; 441 phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked; 442 phy->ops.write_reg_page = e1000_write_phy_reg_page_hv; 443 phy->ops.power_up = e1000_power_up_phy_copper; 444 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan; 445 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; 446 447 phy->id = e1000_phy_unknown; 448 449 ret_val = e1000_init_phy_workarounds_pchlan(hw); 450 if (ret_val) 451 return ret_val; 452 453 if (phy->id == e1000_phy_unknown) 454 switch (hw->mac.type) { 455 default: 456 ret_val = e1000e_get_phy_id(hw); 457 if (ret_val) 458 return ret_val; 459 if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK)) 460 break; 461 fallthrough; 462 case e1000_pch2lan: 463 case e1000_pch_lpt: 464 case e1000_pch_spt: 465 case e1000_pch_cnp: 466 case e1000_pch_tgp: 467 case e1000_pch_adp: 468 case e1000_pch_mtp: 469 /* In case the PHY needs to be in mdio slow mode, 470 * set slow mode and try to get the PHY id again. 471 */ 472 ret_val = e1000_set_mdio_slow_mode_hv(hw); 473 if (ret_val) 474 return ret_val; 475 ret_val = e1000e_get_phy_id(hw); 476 if (ret_val) 477 return ret_val; 478 break; 479 } 480 phy->type = e1000e_get_phy_type_from_id(phy->id); 481 482 switch (phy->type) { 483 case e1000_phy_82577: 484 case e1000_phy_82579: 485 case e1000_phy_i217: 486 phy->ops.check_polarity = e1000_check_polarity_82577; 487 phy->ops.force_speed_duplex = 488 e1000_phy_force_speed_duplex_82577; 489 phy->ops.get_cable_length = e1000_get_cable_length_82577; 490 phy->ops.get_info = e1000_get_phy_info_82577; 491 phy->ops.commit = e1000e_phy_sw_reset; 492 break; 493 case e1000_phy_82578: 494 phy->ops.check_polarity = e1000_check_polarity_m88; 495 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88; 496 phy->ops.get_cable_length = e1000e_get_cable_length_m88; 497 phy->ops.get_info = e1000e_get_phy_info_m88; 498 break; 499 default: 500 ret_val = -E1000_ERR_PHY; 501 break; 502 } 503 504 return ret_val; 505 } 506 507 /** 508 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers 509 * @hw: pointer to the HW structure 510 * 511 * Initialize family-specific PHY parameters and function pointers. 512 **/ 513 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw) 514 { 515 struct e1000_phy_info *phy = &hw->phy; 516 s32 ret_val; 517 u16 i = 0; 518 519 phy->addr = 1; 520 phy->reset_delay_us = 100; 521 522 phy->ops.power_up = e1000_power_up_phy_copper; 523 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan; 524 525 /* We may need to do this twice - once for IGP and if that fails, 526 * we'll set BM func pointers and try again 527 */ 528 ret_val = e1000e_determine_phy_address(hw); 529 if (ret_val) { 530 phy->ops.write_reg = e1000e_write_phy_reg_bm; 531 phy->ops.read_reg = e1000e_read_phy_reg_bm; 532 ret_val = e1000e_determine_phy_address(hw); 533 if (ret_val) { 534 e_dbg("Cannot determine PHY addr. Erroring out\n"); 535 return ret_val; 536 } 537 } 538 539 phy->id = 0; 540 while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) && 541 (i++ < 100)) { 542 usleep_range(1000, 1100); 543 ret_val = e1000e_get_phy_id(hw); 544 if (ret_val) 545 return ret_val; 546 } 547 548 /* Verify phy id */ 549 switch (phy->id) { 550 case IGP03E1000_E_PHY_ID: 551 phy->type = e1000_phy_igp_3; 552 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; 553 phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked; 554 phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked; 555 phy->ops.get_info = e1000e_get_phy_info_igp; 556 phy->ops.check_polarity = e1000_check_polarity_igp; 557 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp; 558 break; 559 case IFE_E_PHY_ID: 560 case IFE_PLUS_E_PHY_ID: 561 case IFE_C_E_PHY_ID: 562 phy->type = e1000_phy_ife; 563 phy->autoneg_mask = E1000_ALL_NOT_GIG; 564 phy->ops.get_info = e1000_get_phy_info_ife; 565 phy->ops.check_polarity = e1000_check_polarity_ife; 566 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife; 567 break; 568 case BME1000_E_PHY_ID: 569 phy->type = e1000_phy_bm; 570 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; 571 phy->ops.read_reg = e1000e_read_phy_reg_bm; 572 phy->ops.write_reg = e1000e_write_phy_reg_bm; 573 phy->ops.commit = e1000e_phy_sw_reset; 574 phy->ops.get_info = e1000e_get_phy_info_m88; 575 phy->ops.check_polarity = e1000_check_polarity_m88; 576 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88; 577 break; 578 default: 579 return -E1000_ERR_PHY; 580 } 581 582 return 0; 583 } 584 585 /** 586 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers 587 * @hw: pointer to the HW structure 588 * 589 * Initialize family-specific NVM parameters and function 590 * pointers. 591 **/ 592 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw) 593 { 594 struct e1000_nvm_info *nvm = &hw->nvm; 595 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 596 u32 gfpreg, sector_base_addr, sector_end_addr; 597 u16 i; 598 u32 nvm_size; 599 600 nvm->type = e1000_nvm_flash_sw; 601 602 if (hw->mac.type >= e1000_pch_spt) { 603 /* in SPT, gfpreg doesn't exist. NVM size is taken from the 604 * STRAP register. This is because in SPT the GbE Flash region 605 * is no longer accessed through the flash registers. Instead, 606 * the mechanism has changed, and the Flash region access 607 * registers are now implemented in GbE memory space. 608 */ 609 nvm->flash_base_addr = 0; 610 nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1) 611 * NVM_SIZE_MULTIPLIER; 612 nvm->flash_bank_size = nvm_size / 2; 613 /* Adjust to word count */ 614 nvm->flash_bank_size /= sizeof(u16); 615 /* Set the base address for flash register access */ 616 hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR; 617 } else { 618 /* Can't read flash registers if register set isn't mapped. */ 619 if (!hw->flash_address) { 620 e_dbg("ERROR: Flash registers not mapped\n"); 621 return -E1000_ERR_CONFIG; 622 } 623 624 gfpreg = er32flash(ICH_FLASH_GFPREG); 625 626 /* sector_X_addr is a "sector"-aligned address (4096 bytes) 627 * Add 1 to sector_end_addr since this sector is included in 628 * the overall size. 629 */ 630 sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK; 631 sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1; 632 633 /* flash_base_addr is byte-aligned */ 634 nvm->flash_base_addr = sector_base_addr 635 << FLASH_SECTOR_ADDR_SHIFT; 636 637 /* find total size of the NVM, then cut in half since the total 638 * size represents two separate NVM banks. 639 */ 640 nvm->flash_bank_size = ((sector_end_addr - sector_base_addr) 641 << FLASH_SECTOR_ADDR_SHIFT); 642 nvm->flash_bank_size /= 2; 643 /* Adjust to word count */ 644 nvm->flash_bank_size /= sizeof(u16); 645 } 646 647 nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS; 648 649 /* Clear shadow ram */ 650 for (i = 0; i < nvm->word_size; i++) { 651 dev_spec->shadow_ram[i].modified = false; 652 dev_spec->shadow_ram[i].value = 0xFFFF; 653 } 654 655 return 0; 656 } 657 658 /** 659 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers 660 * @hw: pointer to the HW structure 661 * 662 * Initialize family-specific MAC parameters and function 663 * pointers. 664 **/ 665 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw) 666 { 667 struct e1000_mac_info *mac = &hw->mac; 668 669 /* Set media type function pointer */ 670 hw->phy.media_type = e1000_media_type_copper; 671 672 /* Set mta register count */ 673 mac->mta_reg_count = 32; 674 /* Set rar entry count */ 675 mac->rar_entry_count = E1000_ICH_RAR_ENTRIES; 676 if (mac->type == e1000_ich8lan) 677 mac->rar_entry_count--; 678 /* FWSM register */ 679 mac->has_fwsm = true; 680 /* ARC subsystem not supported */ 681 mac->arc_subsystem_valid = false; 682 /* Adaptive IFS supported */ 683 mac->adaptive_ifs = true; 684 685 /* LED and other operations */ 686 switch (mac->type) { 687 case e1000_ich8lan: 688 case e1000_ich9lan: 689 case e1000_ich10lan: 690 /* check management mode */ 691 mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan; 692 /* ID LED init */ 693 mac->ops.id_led_init = e1000e_id_led_init_generic; 694 /* blink LED */ 695 mac->ops.blink_led = e1000e_blink_led_generic; 696 /* setup LED */ 697 mac->ops.setup_led = e1000e_setup_led_generic; 698 /* cleanup LED */ 699 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan; 700 /* turn on/off LED */ 701 mac->ops.led_on = e1000_led_on_ich8lan; 702 mac->ops.led_off = e1000_led_off_ich8lan; 703 break; 704 case e1000_pch2lan: 705 mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES; 706 mac->ops.rar_set = e1000_rar_set_pch2lan; 707 fallthrough; 708 case e1000_pch_lpt: 709 case e1000_pch_spt: 710 case e1000_pch_cnp: 711 case e1000_pch_tgp: 712 case e1000_pch_adp: 713 case e1000_pch_mtp: 714 case e1000_pchlan: 715 /* check management mode */ 716 mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan; 717 /* ID LED init */ 718 mac->ops.id_led_init = e1000_id_led_init_pchlan; 719 /* setup LED */ 720 mac->ops.setup_led = e1000_setup_led_pchlan; 721 /* cleanup LED */ 722 mac->ops.cleanup_led = e1000_cleanup_led_pchlan; 723 /* turn on/off LED */ 724 mac->ops.led_on = e1000_led_on_pchlan; 725 mac->ops.led_off = e1000_led_off_pchlan; 726 break; 727 default: 728 break; 729 } 730 731 if (mac->type >= e1000_pch_lpt) { 732 mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES; 733 mac->ops.rar_set = e1000_rar_set_pch_lpt; 734 mac->ops.setup_physical_interface = 735 e1000_setup_copper_link_pch_lpt; 736 mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt; 737 } 738 739 /* Enable PCS Lock-loss workaround for ICH8 */ 740 if (mac->type == e1000_ich8lan) 741 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true); 742 743 return 0; 744 } 745 746 /** 747 * __e1000_access_emi_reg_locked - Read/write EMI register 748 * @hw: pointer to the HW structure 749 * @address: EMI address to program 750 * @data: pointer to value to read/write from/to the EMI address 751 * @read: boolean flag to indicate read or write 752 * 753 * This helper function assumes the SW/FW/HW Semaphore is already acquired. 754 **/ 755 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address, 756 u16 *data, bool read) 757 { 758 s32 ret_val; 759 760 ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address); 761 if (ret_val) 762 return ret_val; 763 764 if (read) 765 ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data); 766 else 767 ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data); 768 769 return ret_val; 770 } 771 772 /** 773 * e1000_read_emi_reg_locked - Read Extended Management Interface register 774 * @hw: pointer to the HW structure 775 * @addr: EMI address to program 776 * @data: value to be read from the EMI address 777 * 778 * Assumes the SW/FW/HW Semaphore is already acquired. 779 **/ 780 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data) 781 { 782 return __e1000_access_emi_reg_locked(hw, addr, data, true); 783 } 784 785 /** 786 * e1000_write_emi_reg_locked - Write Extended Management Interface register 787 * @hw: pointer to the HW structure 788 * @addr: EMI address to program 789 * @data: value to be written to the EMI address 790 * 791 * Assumes the SW/FW/HW Semaphore is already acquired. 792 **/ 793 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data) 794 { 795 return __e1000_access_emi_reg_locked(hw, addr, &data, false); 796 } 797 798 /** 799 * e1000_set_eee_pchlan - Enable/disable EEE support 800 * @hw: pointer to the HW structure 801 * 802 * Enable/disable EEE based on setting in dev_spec structure, the duplex of 803 * the link and the EEE capabilities of the link partner. The LPI Control 804 * register bits will remain set only if/when link is up. 805 * 806 * EEE LPI must not be asserted earlier than one second after link is up. 807 * On 82579, EEE LPI should not be enabled until such time otherwise there 808 * can be link issues with some switches. Other devices can have EEE LPI 809 * enabled immediately upon link up since they have a timer in hardware which 810 * prevents LPI from being asserted too early. 811 **/ 812 s32 e1000_set_eee_pchlan(struct e1000_hw *hw) 813 { 814 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 815 s32 ret_val; 816 u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data; 817 818 switch (hw->phy.type) { 819 case e1000_phy_82579: 820 lpa = I82579_EEE_LP_ABILITY; 821 pcs_status = I82579_EEE_PCS_STATUS; 822 adv_addr = I82579_EEE_ADVERTISEMENT; 823 break; 824 case e1000_phy_i217: 825 lpa = I217_EEE_LP_ABILITY; 826 pcs_status = I217_EEE_PCS_STATUS; 827 adv_addr = I217_EEE_ADVERTISEMENT; 828 break; 829 default: 830 return 0; 831 } 832 833 ret_val = hw->phy.ops.acquire(hw); 834 if (ret_val) 835 return ret_val; 836 837 ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl); 838 if (ret_val) 839 goto release; 840 841 /* Clear bits that enable EEE in various speeds */ 842 lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK; 843 844 /* Enable EEE if not disabled by user */ 845 if (!dev_spec->eee_disable) { 846 /* Save off link partner's EEE ability */ 847 ret_val = e1000_read_emi_reg_locked(hw, lpa, 848 &dev_spec->eee_lp_ability); 849 if (ret_val) 850 goto release; 851 852 /* Read EEE advertisement */ 853 ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv); 854 if (ret_val) 855 goto release; 856 857 /* Enable EEE only for speeds in which the link partner is 858 * EEE capable and for which we advertise EEE. 859 */ 860 if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED) 861 lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE; 862 863 if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) { 864 e1e_rphy_locked(hw, MII_LPA, &data); 865 if (data & LPA_100FULL) 866 lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE; 867 else 868 /* EEE is not supported in 100Half, so ignore 869 * partner's EEE in 100 ability if full-duplex 870 * is not advertised. 871 */ 872 dev_spec->eee_lp_ability &= 873 ~I82579_EEE_100_SUPPORTED; 874 } 875 } 876 877 if (hw->phy.type == e1000_phy_82579) { 878 ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT, 879 &data); 880 if (ret_val) 881 goto release; 882 883 data &= ~I82579_LPI_100_PLL_SHUT; 884 ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT, 885 data); 886 } 887 888 /* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */ 889 ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data); 890 if (ret_val) 891 goto release; 892 893 ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl); 894 release: 895 hw->phy.ops.release(hw); 896 897 return ret_val; 898 } 899 900 /** 901 * e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP 902 * @hw: pointer to the HW structure 903 * @link: link up bool flag 904 * 905 * When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications 906 * preventing further DMA write requests. Workaround the issue by disabling 907 * the de-assertion of the clock request when in 1Gpbs mode. 908 * Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link 909 * speeds in order to avoid Tx hangs. 910 **/ 911 static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link) 912 { 913 u32 fextnvm6 = er32(FEXTNVM6); 914 u32 status = er32(STATUS); 915 s32 ret_val = 0; 916 u16 reg; 917 918 if (link && (status & E1000_STATUS_SPEED_1000)) { 919 ret_val = hw->phy.ops.acquire(hw); 920 if (ret_val) 921 return ret_val; 922 923 ret_val = 924 e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG, 925 ®); 926 if (ret_val) 927 goto release; 928 929 ret_val = 930 e1000e_write_kmrn_reg_locked(hw, 931 E1000_KMRNCTRLSTA_K1_CONFIG, 932 reg & 933 ~E1000_KMRNCTRLSTA_K1_ENABLE); 934 if (ret_val) 935 goto release; 936 937 usleep_range(10, 20); 938 939 ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK); 940 941 ret_val = 942 e1000e_write_kmrn_reg_locked(hw, 943 E1000_KMRNCTRLSTA_K1_CONFIG, 944 reg); 945 release: 946 hw->phy.ops.release(hw); 947 } else { 948 /* clear FEXTNVM6 bit 8 on link down or 10/100 */ 949 fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK; 950 951 if ((hw->phy.revision > 5) || !link || 952 ((status & E1000_STATUS_SPEED_100) && 953 (status & E1000_STATUS_FD))) 954 goto update_fextnvm6; 955 956 ret_val = e1e_rphy(hw, I217_INBAND_CTRL, ®); 957 if (ret_val) 958 return ret_val; 959 960 /* Clear link status transmit timeout */ 961 reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK; 962 963 if (status & E1000_STATUS_SPEED_100) { 964 /* Set inband Tx timeout to 5x10us for 100Half */ 965 reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT; 966 967 /* Do not extend the K1 entry latency for 100Half */ 968 fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION; 969 } else { 970 /* Set inband Tx timeout to 50x10us for 10Full/Half */ 971 reg |= 50 << 972 I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT; 973 974 /* Extend the K1 entry latency for 10 Mbps */ 975 fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION; 976 } 977 978 ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg); 979 if (ret_val) 980 return ret_val; 981 982 update_fextnvm6: 983 ew32(FEXTNVM6, fextnvm6); 984 } 985 986 return ret_val; 987 } 988 989 /** 990 * e1000_platform_pm_pch_lpt - Set platform power management values 991 * @hw: pointer to the HW structure 992 * @link: bool indicating link status 993 * 994 * Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like" 995 * GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed 996 * when link is up (which must not exceed the maximum latency supported 997 * by the platform), otherwise specify there is no LTR requirement. 998 * Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop 999 * latencies in the LTR Extended Capability Structure in the PCIe Extended 1000 * Capability register set, on this device LTR is set by writing the 1001 * equivalent snoop/no-snoop latencies in the LTRV register in the MAC and 1002 * set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB) 1003 * message to the PMC. 1004 **/ 1005 static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link) 1006 { 1007 u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) | 1008 link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND; 1009 u16 max_ltr_enc_d = 0; /* maximum LTR decoded by platform */ 1010 u16 lat_enc_d = 0; /* latency decoded */ 1011 u16 lat_enc = 0; /* latency encoded */ 1012 1013 if (link) { 1014 u16 speed, duplex, scale = 0; 1015 u16 max_snoop, max_nosnoop; 1016 u16 max_ltr_enc; /* max LTR latency encoded */ 1017 u64 value; 1018 u32 rxa; 1019 1020 if (!hw->adapter->max_frame_size) { 1021 e_dbg("max_frame_size not set.\n"); 1022 return -E1000_ERR_CONFIG; 1023 } 1024 1025 hw->mac.ops.get_link_up_info(hw, &speed, &duplex); 1026 if (!speed) { 1027 e_dbg("Speed not set.\n"); 1028 return -E1000_ERR_CONFIG; 1029 } 1030 1031 /* Rx Packet Buffer Allocation size (KB) */ 1032 rxa = er32(PBA) & E1000_PBA_RXA_MASK; 1033 1034 /* Determine the maximum latency tolerated by the device. 1035 * 1036 * Per the PCIe spec, the tolerated latencies are encoded as 1037 * a 3-bit encoded scale (only 0-5 are valid) multiplied by 1038 * a 10-bit value (0-1023) to provide a range from 1 ns to 1039 * 2^25*(2^10-1) ns. The scale is encoded as 0=2^0ns, 1040 * 1=2^5ns, 2=2^10ns,...5=2^25ns. 1041 */ 1042 rxa *= 512; 1043 value = (rxa > hw->adapter->max_frame_size) ? 1044 (rxa - hw->adapter->max_frame_size) * (16000 / speed) : 1045 0; 1046 1047 while (value > PCI_LTR_VALUE_MASK) { 1048 scale++; 1049 value = DIV_ROUND_UP(value, BIT(5)); 1050 } 1051 if (scale > E1000_LTRV_SCALE_MAX) { 1052 e_dbg("Invalid LTR latency scale %d\n", scale); 1053 return -E1000_ERR_CONFIG; 1054 } 1055 lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value); 1056 1057 /* Determine the maximum latency tolerated by the platform */ 1058 pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT, 1059 &max_snoop); 1060 pci_read_config_word(hw->adapter->pdev, 1061 E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop); 1062 max_ltr_enc = max_t(u16, max_snoop, max_nosnoop); 1063 1064 lat_enc_d = (lat_enc & E1000_LTRV_VALUE_MASK) * 1065 (1U << (E1000_LTRV_SCALE_FACTOR * 1066 ((lat_enc & E1000_LTRV_SCALE_MASK) 1067 >> E1000_LTRV_SCALE_SHIFT))); 1068 1069 max_ltr_enc_d = (max_ltr_enc & E1000_LTRV_VALUE_MASK) * 1070 (1U << (E1000_LTRV_SCALE_FACTOR * 1071 ((max_ltr_enc & E1000_LTRV_SCALE_MASK) 1072 >> E1000_LTRV_SCALE_SHIFT))); 1073 1074 if (lat_enc_d > max_ltr_enc_d) 1075 lat_enc = max_ltr_enc; 1076 } 1077 1078 /* Set Snoop and No-Snoop latencies the same */ 1079 reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT); 1080 ew32(LTRV, reg); 1081 1082 return 0; 1083 } 1084 1085 /** 1086 * e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP 1087 * @hw: pointer to the HW structure 1088 * @to_sx: boolean indicating a system power state transition to Sx 1089 * 1090 * When link is down, configure ULP mode to significantly reduce the power 1091 * to the PHY. If on a Manageability Engine (ME) enabled system, tell the 1092 * ME firmware to start the ULP configuration. If not on an ME enabled 1093 * system, configure the ULP mode by software. 1094 */ 1095 s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx) 1096 { 1097 u32 mac_reg; 1098 s32 ret_val = 0; 1099 u16 phy_reg; 1100 u16 oem_reg = 0; 1101 1102 if ((hw->mac.type < e1000_pch_lpt) || 1103 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) || 1104 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) || 1105 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) || 1106 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) || 1107 (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on)) 1108 return 0; 1109 1110 if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) { 1111 /* Request ME configure ULP mode in the PHY */ 1112 mac_reg = er32(H2ME); 1113 mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS; 1114 ew32(H2ME, mac_reg); 1115 1116 goto out; 1117 } 1118 1119 if (!to_sx) { 1120 int i = 0; 1121 1122 /* Poll up to 5 seconds for Cable Disconnected indication */ 1123 while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) { 1124 /* Bail if link is re-acquired */ 1125 if (er32(STATUS) & E1000_STATUS_LU) 1126 return -E1000_ERR_PHY; 1127 1128 if (i++ == 100) 1129 break; 1130 1131 msleep(50); 1132 } 1133 e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n", 1134 (er32(FEXT) & 1135 E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50); 1136 } 1137 1138 ret_val = hw->phy.ops.acquire(hw); 1139 if (ret_val) 1140 goto out; 1141 1142 /* Force SMBus mode in PHY */ 1143 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg); 1144 if (ret_val) 1145 goto release; 1146 phy_reg |= CV_SMB_CTRL_FORCE_SMBUS; 1147 e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg); 1148 1149 /* Force SMBus mode in MAC */ 1150 mac_reg = er32(CTRL_EXT); 1151 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS; 1152 ew32(CTRL_EXT, mac_reg); 1153 1154 /* Si workaround for ULP entry flow on i127/rev6 h/w. Enable 1155 * LPLU and disable Gig speed when entering ULP 1156 */ 1157 if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) { 1158 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS, 1159 &oem_reg); 1160 if (ret_val) 1161 goto release; 1162 1163 phy_reg = oem_reg; 1164 phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS; 1165 1166 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS, 1167 phy_reg); 1168 1169 if (ret_val) 1170 goto release; 1171 } 1172 1173 /* Set Inband ULP Exit, Reset to SMBus mode and 1174 * Disable SMBus Release on PERST# in PHY 1175 */ 1176 ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg); 1177 if (ret_val) 1178 goto release; 1179 phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS | 1180 I218_ULP_CONFIG1_DISABLE_SMB_PERST); 1181 if (to_sx) { 1182 if (er32(WUFC) & E1000_WUFC_LNKC) 1183 phy_reg |= I218_ULP_CONFIG1_WOL_HOST; 1184 else 1185 phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST; 1186 1187 phy_reg |= I218_ULP_CONFIG1_STICKY_ULP; 1188 phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT; 1189 } else { 1190 phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT; 1191 phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP; 1192 phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST; 1193 } 1194 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg); 1195 1196 /* Set Disable SMBus Release on PERST# in MAC */ 1197 mac_reg = er32(FEXTNVM7); 1198 mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST; 1199 ew32(FEXTNVM7, mac_reg); 1200 1201 /* Commit ULP changes in PHY by starting auto ULP configuration */ 1202 phy_reg |= I218_ULP_CONFIG1_START; 1203 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg); 1204 1205 if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) && 1206 to_sx && (er32(STATUS) & E1000_STATUS_LU)) { 1207 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS, 1208 oem_reg); 1209 if (ret_val) 1210 goto release; 1211 } 1212 1213 release: 1214 hw->phy.ops.release(hw); 1215 out: 1216 if (ret_val) 1217 e_dbg("Error in ULP enable flow: %d\n", ret_val); 1218 else 1219 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on; 1220 1221 return ret_val; 1222 } 1223 1224 /** 1225 * e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP 1226 * @hw: pointer to the HW structure 1227 * @force: boolean indicating whether or not to force disabling ULP 1228 * 1229 * Un-configure ULP mode when link is up, the system is transitioned from 1230 * Sx or the driver is unloaded. If on a Manageability Engine (ME) enabled 1231 * system, poll for an indication from ME that ULP has been un-configured. 1232 * If not on an ME enabled system, un-configure the ULP mode by software. 1233 * 1234 * During nominal operation, this function is called when link is acquired 1235 * to disable ULP mode (force=false); otherwise, for example when unloading 1236 * the driver or during Sx->S0 transitions, this is called with force=true 1237 * to forcibly disable ULP. 1238 */ 1239 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force) 1240 { 1241 s32 ret_val = 0; 1242 u32 mac_reg; 1243 u16 phy_reg; 1244 int i = 0; 1245 1246 if ((hw->mac.type < e1000_pch_lpt) || 1247 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) || 1248 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) || 1249 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) || 1250 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) || 1251 (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off)) 1252 return 0; 1253 1254 if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) { 1255 struct e1000_adapter *adapter = hw->adapter; 1256 bool firmware_bug = false; 1257 1258 if (force) { 1259 /* Request ME un-configure ULP mode in the PHY */ 1260 mac_reg = er32(H2ME); 1261 mac_reg &= ~E1000_H2ME_ULP; 1262 mac_reg |= E1000_H2ME_ENFORCE_SETTINGS; 1263 ew32(H2ME, mac_reg); 1264 } 1265 1266 /* Poll up to 2.5 seconds for ME to clear ULP_CFG_DONE. 1267 * If this takes more than 1 second, show a warning indicating a 1268 * firmware bug 1269 */ 1270 while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) { 1271 if (i++ == 250) { 1272 ret_val = -E1000_ERR_PHY; 1273 goto out; 1274 } 1275 if (i > 100 && !firmware_bug) 1276 firmware_bug = true; 1277 1278 usleep_range(10000, 11000); 1279 } 1280 if (firmware_bug) 1281 e_warn("ULP_CONFIG_DONE took %dmsec. This is a firmware bug\n", i * 10); 1282 else 1283 e_dbg("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10); 1284 1285 if (force) { 1286 mac_reg = er32(H2ME); 1287 mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS; 1288 ew32(H2ME, mac_reg); 1289 } else { 1290 /* Clear H2ME.ULP after ME ULP configuration */ 1291 mac_reg = er32(H2ME); 1292 mac_reg &= ~E1000_H2ME_ULP; 1293 ew32(H2ME, mac_reg); 1294 } 1295 1296 goto out; 1297 } 1298 1299 ret_val = hw->phy.ops.acquire(hw); 1300 if (ret_val) 1301 goto out; 1302 1303 if (force) 1304 /* Toggle LANPHYPC Value bit */ 1305 e1000_toggle_lanphypc_pch_lpt(hw); 1306 1307 /* Unforce SMBus mode in PHY */ 1308 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg); 1309 if (ret_val) { 1310 /* The MAC might be in PCIe mode, so temporarily force to 1311 * SMBus mode in order to access the PHY. 1312 */ 1313 mac_reg = er32(CTRL_EXT); 1314 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS; 1315 ew32(CTRL_EXT, mac_reg); 1316 1317 msleep(50); 1318 1319 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, 1320 &phy_reg); 1321 if (ret_val) 1322 goto release; 1323 } 1324 phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS; 1325 e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg); 1326 1327 /* Unforce SMBus mode in MAC */ 1328 mac_reg = er32(CTRL_EXT); 1329 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS; 1330 ew32(CTRL_EXT, mac_reg); 1331 1332 /* When ULP mode was previously entered, K1 was disabled by the 1333 * hardware. Re-Enable K1 in the PHY when exiting ULP. 1334 */ 1335 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg); 1336 if (ret_val) 1337 goto release; 1338 phy_reg |= HV_PM_CTRL_K1_ENABLE; 1339 e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg); 1340 1341 /* Clear ULP enabled configuration */ 1342 ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg); 1343 if (ret_val) 1344 goto release; 1345 phy_reg &= ~(I218_ULP_CONFIG1_IND | 1346 I218_ULP_CONFIG1_STICKY_ULP | 1347 I218_ULP_CONFIG1_RESET_TO_SMBUS | 1348 I218_ULP_CONFIG1_WOL_HOST | 1349 I218_ULP_CONFIG1_INBAND_EXIT | 1350 I218_ULP_CONFIG1_EN_ULP_LANPHYPC | 1351 I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST | 1352 I218_ULP_CONFIG1_DISABLE_SMB_PERST); 1353 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg); 1354 1355 /* Commit ULP changes by starting auto ULP configuration */ 1356 phy_reg |= I218_ULP_CONFIG1_START; 1357 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg); 1358 1359 /* Clear Disable SMBus Release on PERST# in MAC */ 1360 mac_reg = er32(FEXTNVM7); 1361 mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST; 1362 ew32(FEXTNVM7, mac_reg); 1363 1364 release: 1365 hw->phy.ops.release(hw); 1366 if (force) { 1367 e1000_phy_hw_reset(hw); 1368 msleep(50); 1369 } 1370 out: 1371 if (ret_val) 1372 e_dbg("Error in ULP disable flow: %d\n", ret_val); 1373 else 1374 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off; 1375 1376 return ret_val; 1377 } 1378 1379 /** 1380 * e1000_check_for_copper_link_ich8lan - Check for link (Copper) 1381 * @hw: pointer to the HW structure 1382 * 1383 * Checks to see of the link status of the hardware has changed. If a 1384 * change in link status has been detected, then we read the PHY registers 1385 * to get the current speed/duplex if link exists. 1386 **/ 1387 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw) 1388 { 1389 struct e1000_mac_info *mac = &hw->mac; 1390 s32 ret_val, tipg_reg = 0; 1391 u16 emi_addr, emi_val = 0; 1392 bool link; 1393 u16 phy_reg; 1394 1395 /* We only want to go out to the PHY registers to see if Auto-Neg 1396 * has completed and/or if our link status has changed. The 1397 * get_link_status flag is set upon receiving a Link Status 1398 * Change or Rx Sequence Error interrupt. 1399 */ 1400 if (!mac->get_link_status) 1401 return 0; 1402 mac->get_link_status = false; 1403 1404 /* First we want to see if the MII Status Register reports 1405 * link. If so, then we want to get the current speed/duplex 1406 * of the PHY. 1407 */ 1408 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); 1409 if (ret_val) 1410 goto out; 1411 1412 if (hw->mac.type == e1000_pchlan) { 1413 ret_val = e1000_k1_gig_workaround_hv(hw, link); 1414 if (ret_val) 1415 goto out; 1416 } 1417 1418 /* When connected at 10Mbps half-duplex, some parts are excessively 1419 * aggressive resulting in many collisions. To avoid this, increase 1420 * the IPG and reduce Rx latency in the PHY. 1421 */ 1422 if ((hw->mac.type >= e1000_pch2lan) && link) { 1423 u16 speed, duplex; 1424 1425 e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex); 1426 tipg_reg = er32(TIPG); 1427 tipg_reg &= ~E1000_TIPG_IPGT_MASK; 1428 1429 if (duplex == HALF_DUPLEX && speed == SPEED_10) { 1430 tipg_reg |= 0xFF; 1431 /* Reduce Rx latency in analog PHY */ 1432 emi_val = 0; 1433 } else if (hw->mac.type >= e1000_pch_spt && 1434 duplex == FULL_DUPLEX && speed != SPEED_1000) { 1435 tipg_reg |= 0xC; 1436 emi_val = 1; 1437 } else { 1438 1439 /* Roll back the default values */ 1440 tipg_reg |= 0x08; 1441 emi_val = 1; 1442 } 1443 1444 ew32(TIPG, tipg_reg); 1445 1446 ret_val = hw->phy.ops.acquire(hw); 1447 if (ret_val) 1448 goto out; 1449 1450 if (hw->mac.type == e1000_pch2lan) 1451 emi_addr = I82579_RX_CONFIG; 1452 else 1453 emi_addr = I217_RX_CONFIG; 1454 ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val); 1455 1456 if (hw->mac.type >= e1000_pch_lpt) { 1457 u16 phy_reg; 1458 1459 e1e_rphy_locked(hw, I217_PLL_CLOCK_GATE_REG, &phy_reg); 1460 phy_reg &= ~I217_PLL_CLOCK_GATE_MASK; 1461 if (speed == SPEED_100 || speed == SPEED_10) 1462 phy_reg |= 0x3E8; 1463 else 1464 phy_reg |= 0xFA; 1465 e1e_wphy_locked(hw, I217_PLL_CLOCK_GATE_REG, phy_reg); 1466 1467 if (speed == SPEED_1000) { 1468 hw->phy.ops.read_reg_locked(hw, HV_PM_CTRL, 1469 &phy_reg); 1470 1471 phy_reg |= HV_PM_CTRL_K1_CLK_REQ; 1472 1473 hw->phy.ops.write_reg_locked(hw, HV_PM_CTRL, 1474 phy_reg); 1475 } 1476 } 1477 hw->phy.ops.release(hw); 1478 1479 if (ret_val) 1480 goto out; 1481 1482 if (hw->mac.type >= e1000_pch_spt) { 1483 u16 data; 1484 u16 ptr_gap; 1485 1486 if (speed == SPEED_1000) { 1487 ret_val = hw->phy.ops.acquire(hw); 1488 if (ret_val) 1489 goto out; 1490 1491 ret_val = e1e_rphy_locked(hw, 1492 PHY_REG(776, 20), 1493 &data); 1494 if (ret_val) { 1495 hw->phy.ops.release(hw); 1496 goto out; 1497 } 1498 1499 ptr_gap = (data & (0x3FF << 2)) >> 2; 1500 if (ptr_gap < 0x18) { 1501 data &= ~(0x3FF << 2); 1502 data |= (0x18 << 2); 1503 ret_val = 1504 e1e_wphy_locked(hw, 1505 PHY_REG(776, 20), 1506 data); 1507 } 1508 hw->phy.ops.release(hw); 1509 if (ret_val) 1510 goto out; 1511 } else { 1512 ret_val = hw->phy.ops.acquire(hw); 1513 if (ret_val) 1514 goto out; 1515 1516 ret_val = e1e_wphy_locked(hw, 1517 PHY_REG(776, 20), 1518 0xC023); 1519 hw->phy.ops.release(hw); 1520 if (ret_val) 1521 goto out; 1522 1523 } 1524 } 1525 } 1526 1527 /* I217 Packet Loss issue: 1528 * ensure that FEXTNVM4 Beacon Duration is set correctly 1529 * on power up. 1530 * Set the Beacon Duration for I217 to 8 usec 1531 */ 1532 if (hw->mac.type >= e1000_pch_lpt) { 1533 u32 mac_reg; 1534 1535 mac_reg = er32(FEXTNVM4); 1536 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK; 1537 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC; 1538 ew32(FEXTNVM4, mac_reg); 1539 } 1540 1541 /* Work-around I218 hang issue */ 1542 if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) || 1543 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) || 1544 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) || 1545 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) { 1546 ret_val = e1000_k1_workaround_lpt_lp(hw, link); 1547 if (ret_val) 1548 goto out; 1549 } 1550 if (hw->mac.type >= e1000_pch_lpt) { 1551 /* Set platform power management values for 1552 * Latency Tolerance Reporting (LTR) 1553 */ 1554 ret_val = e1000_platform_pm_pch_lpt(hw, link); 1555 if (ret_val) 1556 goto out; 1557 } 1558 1559 /* Clear link partner's EEE ability */ 1560 hw->dev_spec.ich8lan.eee_lp_ability = 0; 1561 1562 if (hw->mac.type >= e1000_pch_lpt) { 1563 u32 fextnvm6 = er32(FEXTNVM6); 1564 1565 if (hw->mac.type == e1000_pch_spt) { 1566 /* FEXTNVM6 K1-off workaround - for SPT only */ 1567 u32 pcieanacfg = er32(PCIEANACFG); 1568 1569 if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE) 1570 fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE; 1571 else 1572 fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE; 1573 } 1574 1575 ew32(FEXTNVM6, fextnvm6); 1576 } 1577 1578 if (!link) 1579 goto out; 1580 1581 switch (hw->mac.type) { 1582 case e1000_pch2lan: 1583 ret_val = e1000_k1_workaround_lv(hw); 1584 if (ret_val) 1585 return ret_val; 1586 fallthrough; 1587 case e1000_pchlan: 1588 if (hw->phy.type == e1000_phy_82578) { 1589 ret_val = e1000_link_stall_workaround_hv(hw); 1590 if (ret_val) 1591 return ret_val; 1592 } 1593 1594 /* Workaround for PCHx parts in half-duplex: 1595 * Set the number of preambles removed from the packet 1596 * when it is passed from the PHY to the MAC to prevent 1597 * the MAC from misinterpreting the packet type. 1598 */ 1599 e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg); 1600 phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK; 1601 1602 if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD) 1603 phy_reg |= BIT(HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT); 1604 1605 e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg); 1606 break; 1607 default: 1608 break; 1609 } 1610 1611 /* Check if there was DownShift, must be checked 1612 * immediately after link-up 1613 */ 1614 e1000e_check_downshift(hw); 1615 1616 /* Enable/Disable EEE after link up */ 1617 if (hw->phy.type > e1000_phy_82579) { 1618 ret_val = e1000_set_eee_pchlan(hw); 1619 if (ret_val) 1620 return ret_val; 1621 } 1622 1623 /* If we are forcing speed/duplex, then we simply return since 1624 * we have already determined whether we have link or not. 1625 */ 1626 if (!mac->autoneg) 1627 return -E1000_ERR_CONFIG; 1628 1629 /* Auto-Neg is enabled. Auto Speed Detection takes care 1630 * of MAC speed/duplex configuration. So we only need to 1631 * configure Collision Distance in the MAC. 1632 */ 1633 mac->ops.config_collision_dist(hw); 1634 1635 /* Configure Flow Control now that Auto-Neg has completed. 1636 * First, we need to restore the desired flow control 1637 * settings because we may have had to re-autoneg with a 1638 * different link partner. 1639 */ 1640 ret_val = e1000e_config_fc_after_link_up(hw); 1641 if (ret_val) 1642 e_dbg("Error configuring flow control\n"); 1643 1644 return ret_val; 1645 1646 out: 1647 mac->get_link_status = true; 1648 return ret_val; 1649 } 1650 1651 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter) 1652 { 1653 struct e1000_hw *hw = &adapter->hw; 1654 s32 rc; 1655 1656 rc = e1000_init_mac_params_ich8lan(hw); 1657 if (rc) 1658 return rc; 1659 1660 rc = e1000_init_nvm_params_ich8lan(hw); 1661 if (rc) 1662 return rc; 1663 1664 switch (hw->mac.type) { 1665 case e1000_ich8lan: 1666 case e1000_ich9lan: 1667 case e1000_ich10lan: 1668 rc = e1000_init_phy_params_ich8lan(hw); 1669 break; 1670 case e1000_pchlan: 1671 case e1000_pch2lan: 1672 case e1000_pch_lpt: 1673 case e1000_pch_spt: 1674 case e1000_pch_cnp: 1675 case e1000_pch_tgp: 1676 case e1000_pch_adp: 1677 case e1000_pch_mtp: 1678 rc = e1000_init_phy_params_pchlan(hw); 1679 break; 1680 default: 1681 break; 1682 } 1683 if (rc) 1684 return rc; 1685 1686 /* Disable Jumbo Frame support on parts with Intel 10/100 PHY or 1687 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT). 1688 */ 1689 if ((adapter->hw.phy.type == e1000_phy_ife) || 1690 ((adapter->hw.mac.type >= e1000_pch2lan) && 1691 (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) { 1692 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES; 1693 adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN; 1694 1695 hw->mac.ops.blink_led = NULL; 1696 } 1697 1698 if ((adapter->hw.mac.type == e1000_ich8lan) && 1699 (adapter->hw.phy.type != e1000_phy_ife)) 1700 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP; 1701 1702 /* Enable workaround for 82579 w/ ME enabled */ 1703 if ((adapter->hw.mac.type == e1000_pch2lan) && 1704 (er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) 1705 adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA; 1706 1707 return 0; 1708 } 1709 1710 static DEFINE_MUTEX(nvm_mutex); 1711 1712 /** 1713 * e1000_acquire_nvm_ich8lan - Acquire NVM mutex 1714 * @hw: pointer to the HW structure 1715 * 1716 * Acquires the mutex for performing NVM operations. 1717 **/ 1718 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw) 1719 { 1720 mutex_lock(&nvm_mutex); 1721 1722 return 0; 1723 } 1724 1725 /** 1726 * e1000_release_nvm_ich8lan - Release NVM mutex 1727 * @hw: pointer to the HW structure 1728 * 1729 * Releases the mutex used while performing NVM operations. 1730 **/ 1731 static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw) 1732 { 1733 mutex_unlock(&nvm_mutex); 1734 } 1735 1736 /** 1737 * e1000_acquire_swflag_ich8lan - Acquire software control flag 1738 * @hw: pointer to the HW structure 1739 * 1740 * Acquires the software control flag for performing PHY and select 1741 * MAC CSR accesses. 1742 **/ 1743 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw) 1744 { 1745 u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT; 1746 s32 ret_val = 0; 1747 1748 if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE, 1749 &hw->adapter->state)) { 1750 e_dbg("contention for Phy access\n"); 1751 return -E1000_ERR_PHY; 1752 } 1753 1754 while (timeout) { 1755 extcnf_ctrl = er32(EXTCNF_CTRL); 1756 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)) 1757 break; 1758 1759 mdelay(1); 1760 timeout--; 1761 } 1762 1763 if (!timeout) { 1764 e_dbg("SW has already locked the resource.\n"); 1765 ret_val = -E1000_ERR_CONFIG; 1766 goto out; 1767 } 1768 1769 timeout = SW_FLAG_TIMEOUT; 1770 1771 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG; 1772 ew32(EXTCNF_CTRL, extcnf_ctrl); 1773 1774 while (timeout) { 1775 extcnf_ctrl = er32(EXTCNF_CTRL); 1776 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) 1777 break; 1778 1779 mdelay(1); 1780 timeout--; 1781 } 1782 1783 if (!timeout) { 1784 e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n", 1785 er32(FWSM), extcnf_ctrl); 1786 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG; 1787 ew32(EXTCNF_CTRL, extcnf_ctrl); 1788 ret_val = -E1000_ERR_CONFIG; 1789 goto out; 1790 } 1791 1792 out: 1793 if (ret_val) 1794 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state); 1795 1796 return ret_val; 1797 } 1798 1799 /** 1800 * e1000_release_swflag_ich8lan - Release software control flag 1801 * @hw: pointer to the HW structure 1802 * 1803 * Releases the software control flag for performing PHY and select 1804 * MAC CSR accesses. 1805 **/ 1806 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw) 1807 { 1808 u32 extcnf_ctrl; 1809 1810 extcnf_ctrl = er32(EXTCNF_CTRL); 1811 1812 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) { 1813 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG; 1814 ew32(EXTCNF_CTRL, extcnf_ctrl); 1815 } else { 1816 e_dbg("Semaphore unexpectedly released by sw/fw/hw\n"); 1817 } 1818 1819 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state); 1820 } 1821 1822 /** 1823 * e1000_check_mng_mode_ich8lan - Checks management mode 1824 * @hw: pointer to the HW structure 1825 * 1826 * This checks if the adapter has any manageability enabled. 1827 * This is a function pointer entry point only called by read/write 1828 * routines for the PHY and NVM parts. 1829 **/ 1830 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw) 1831 { 1832 u32 fwsm; 1833 1834 fwsm = er32(FWSM); 1835 return (fwsm & E1000_ICH_FWSM_FW_VALID) && 1836 ((fwsm & E1000_FWSM_MODE_MASK) == 1837 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)); 1838 } 1839 1840 /** 1841 * e1000_check_mng_mode_pchlan - Checks management mode 1842 * @hw: pointer to the HW structure 1843 * 1844 * This checks if the adapter has iAMT enabled. 1845 * This is a function pointer entry point only called by read/write 1846 * routines for the PHY and NVM parts. 1847 **/ 1848 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw) 1849 { 1850 u32 fwsm; 1851 1852 fwsm = er32(FWSM); 1853 return (fwsm & E1000_ICH_FWSM_FW_VALID) && 1854 (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)); 1855 } 1856 1857 /** 1858 * e1000_rar_set_pch2lan - Set receive address register 1859 * @hw: pointer to the HW structure 1860 * @addr: pointer to the receive address 1861 * @index: receive address array register 1862 * 1863 * Sets the receive address array register at index to the address passed 1864 * in by addr. For 82579, RAR[0] is the base address register that is to 1865 * contain the MAC address but RAR[1-6] are reserved for manageability (ME). 1866 * Use SHRA[0-3] in place of those reserved for ME. 1867 **/ 1868 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index) 1869 { 1870 u32 rar_low, rar_high; 1871 1872 /* HW expects these in little endian so we reverse the byte order 1873 * from network order (big endian) to little endian 1874 */ 1875 rar_low = ((u32)addr[0] | 1876 ((u32)addr[1] << 8) | 1877 ((u32)addr[2] << 16) | ((u32)addr[3] << 24)); 1878 1879 rar_high = ((u32)addr[4] | ((u32)addr[5] << 8)); 1880 1881 /* If MAC address zero, no need to set the AV bit */ 1882 if (rar_low || rar_high) 1883 rar_high |= E1000_RAH_AV; 1884 1885 if (index == 0) { 1886 ew32(RAL(index), rar_low); 1887 e1e_flush(); 1888 ew32(RAH(index), rar_high); 1889 e1e_flush(); 1890 return 0; 1891 } 1892 1893 /* RAR[1-6] are owned by manageability. Skip those and program the 1894 * next address into the SHRA register array. 1895 */ 1896 if (index < (u32)(hw->mac.rar_entry_count)) { 1897 s32 ret_val; 1898 1899 ret_val = e1000_acquire_swflag_ich8lan(hw); 1900 if (ret_val) 1901 goto out; 1902 1903 ew32(SHRAL(index - 1), rar_low); 1904 e1e_flush(); 1905 ew32(SHRAH(index - 1), rar_high); 1906 e1e_flush(); 1907 1908 e1000_release_swflag_ich8lan(hw); 1909 1910 /* verify the register updates */ 1911 if ((er32(SHRAL(index - 1)) == rar_low) && 1912 (er32(SHRAH(index - 1)) == rar_high)) 1913 return 0; 1914 1915 e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n", 1916 (index - 1), er32(FWSM)); 1917 } 1918 1919 out: 1920 e_dbg("Failed to write receive address at index %d\n", index); 1921 return -E1000_ERR_CONFIG; 1922 } 1923 1924 /** 1925 * e1000_rar_get_count_pch_lpt - Get the number of available SHRA 1926 * @hw: pointer to the HW structure 1927 * 1928 * Get the number of available receive registers that the Host can 1929 * program. SHRA[0-10] are the shared receive address registers 1930 * that are shared between the Host and manageability engine (ME). 1931 * ME can reserve any number of addresses and the host needs to be 1932 * able to tell how many available registers it has access to. 1933 **/ 1934 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw) 1935 { 1936 u32 wlock_mac; 1937 u32 num_entries; 1938 1939 wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK; 1940 wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT; 1941 1942 switch (wlock_mac) { 1943 case 0: 1944 /* All SHRA[0..10] and RAR[0] available */ 1945 num_entries = hw->mac.rar_entry_count; 1946 break; 1947 case 1: 1948 /* Only RAR[0] available */ 1949 num_entries = 1; 1950 break; 1951 default: 1952 /* SHRA[0..(wlock_mac - 1)] available + RAR[0] */ 1953 num_entries = wlock_mac + 1; 1954 break; 1955 } 1956 1957 return num_entries; 1958 } 1959 1960 /** 1961 * e1000_rar_set_pch_lpt - Set receive address registers 1962 * @hw: pointer to the HW structure 1963 * @addr: pointer to the receive address 1964 * @index: receive address array register 1965 * 1966 * Sets the receive address register array at index to the address passed 1967 * in by addr. For LPT, RAR[0] is the base address register that is to 1968 * contain the MAC address. SHRA[0-10] are the shared receive address 1969 * registers that are shared between the Host and manageability engine (ME). 1970 **/ 1971 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index) 1972 { 1973 u32 rar_low, rar_high; 1974 u32 wlock_mac; 1975 1976 /* HW expects these in little endian so we reverse the byte order 1977 * from network order (big endian) to little endian 1978 */ 1979 rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) | 1980 ((u32)addr[2] << 16) | ((u32)addr[3] << 24)); 1981 1982 rar_high = ((u32)addr[4] | ((u32)addr[5] << 8)); 1983 1984 /* If MAC address zero, no need to set the AV bit */ 1985 if (rar_low || rar_high) 1986 rar_high |= E1000_RAH_AV; 1987 1988 if (index == 0) { 1989 ew32(RAL(index), rar_low); 1990 e1e_flush(); 1991 ew32(RAH(index), rar_high); 1992 e1e_flush(); 1993 return 0; 1994 } 1995 1996 /* The manageability engine (ME) can lock certain SHRAR registers that 1997 * it is using - those registers are unavailable for use. 1998 */ 1999 if (index < hw->mac.rar_entry_count) { 2000 wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK; 2001 wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT; 2002 2003 /* Check if all SHRAR registers are locked */ 2004 if (wlock_mac == 1) 2005 goto out; 2006 2007 if ((wlock_mac == 0) || (index <= wlock_mac)) { 2008 s32 ret_val; 2009 2010 ret_val = e1000_acquire_swflag_ich8lan(hw); 2011 2012 if (ret_val) 2013 goto out; 2014 2015 ew32(SHRAL_PCH_LPT(index - 1), rar_low); 2016 e1e_flush(); 2017 ew32(SHRAH_PCH_LPT(index - 1), rar_high); 2018 e1e_flush(); 2019 2020 e1000_release_swflag_ich8lan(hw); 2021 2022 /* verify the register updates */ 2023 if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) && 2024 (er32(SHRAH_PCH_LPT(index - 1)) == rar_high)) 2025 return 0; 2026 } 2027 } 2028 2029 out: 2030 e_dbg("Failed to write receive address at index %d\n", index); 2031 return -E1000_ERR_CONFIG; 2032 } 2033 2034 /** 2035 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked 2036 * @hw: pointer to the HW structure 2037 * 2038 * Checks if firmware is blocking the reset of the PHY. 2039 * This is a function pointer entry point only called by 2040 * reset routines. 2041 **/ 2042 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw) 2043 { 2044 bool blocked = false; 2045 int i = 0; 2046 2047 while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) && 2048 (i++ < 30)) 2049 usleep_range(10000, 11000); 2050 return blocked ? E1000_BLK_PHY_RESET : 0; 2051 } 2052 2053 /** 2054 * e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states 2055 * @hw: pointer to the HW structure 2056 * 2057 * Assumes semaphore already acquired. 2058 * 2059 **/ 2060 static s32 e1000_write_smbus_addr(struct e1000_hw *hw) 2061 { 2062 u16 phy_data; 2063 u32 strap = er32(STRAP); 2064 u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >> 2065 E1000_STRAP_SMT_FREQ_SHIFT; 2066 s32 ret_val; 2067 2068 strap &= E1000_STRAP_SMBUS_ADDRESS_MASK; 2069 2070 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data); 2071 if (ret_val) 2072 return ret_val; 2073 2074 phy_data &= ~HV_SMB_ADDR_MASK; 2075 phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT); 2076 phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID; 2077 2078 if (hw->phy.type == e1000_phy_i217) { 2079 /* Restore SMBus frequency */ 2080 if (freq--) { 2081 phy_data &= ~HV_SMB_ADDR_FREQ_MASK; 2082 phy_data |= (freq & BIT(0)) << 2083 HV_SMB_ADDR_FREQ_LOW_SHIFT; 2084 phy_data |= (freq & BIT(1)) << 2085 (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1); 2086 } else { 2087 e_dbg("Unsupported SMB frequency in PHY\n"); 2088 } 2089 } 2090 2091 return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data); 2092 } 2093 2094 /** 2095 * e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration 2096 * @hw: pointer to the HW structure 2097 * 2098 * SW should configure the LCD from the NVM extended configuration region 2099 * as a workaround for certain parts. 2100 **/ 2101 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw) 2102 { 2103 struct e1000_phy_info *phy = &hw->phy; 2104 u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask; 2105 s32 ret_val = 0; 2106 u16 word_addr, reg_data, reg_addr, phy_page = 0; 2107 2108 /* Initialize the PHY from the NVM on ICH platforms. This 2109 * is needed due to an issue where the NVM configuration is 2110 * not properly autoloaded after power transitions. 2111 * Therefore, after each PHY reset, we will load the 2112 * configuration data out of the NVM manually. 2113 */ 2114 switch (hw->mac.type) { 2115 case e1000_ich8lan: 2116 if (phy->type != e1000_phy_igp_3) 2117 return ret_val; 2118 2119 if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) || 2120 (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) { 2121 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG; 2122 break; 2123 } 2124 fallthrough; 2125 case e1000_pchlan: 2126 case e1000_pch2lan: 2127 case e1000_pch_lpt: 2128 case e1000_pch_spt: 2129 case e1000_pch_cnp: 2130 case e1000_pch_tgp: 2131 case e1000_pch_adp: 2132 case e1000_pch_mtp: 2133 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M; 2134 break; 2135 default: 2136 return ret_val; 2137 } 2138 2139 ret_val = hw->phy.ops.acquire(hw); 2140 if (ret_val) 2141 return ret_val; 2142 2143 data = er32(FEXTNVM); 2144 if (!(data & sw_cfg_mask)) 2145 goto release; 2146 2147 /* Make sure HW does not configure LCD from PHY 2148 * extended configuration before SW configuration 2149 */ 2150 data = er32(EXTCNF_CTRL); 2151 if ((hw->mac.type < e1000_pch2lan) && 2152 (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)) 2153 goto release; 2154 2155 cnf_size = er32(EXTCNF_SIZE); 2156 cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK; 2157 cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT; 2158 if (!cnf_size) 2159 goto release; 2160 2161 cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK; 2162 cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT; 2163 2164 if (((hw->mac.type == e1000_pchlan) && 2165 !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) || 2166 (hw->mac.type > e1000_pchlan)) { 2167 /* HW configures the SMBus address and LEDs when the 2168 * OEM and LCD Write Enable bits are set in the NVM. 2169 * When both NVM bits are cleared, SW will configure 2170 * them instead. 2171 */ 2172 ret_val = e1000_write_smbus_addr(hw); 2173 if (ret_val) 2174 goto release; 2175 2176 data = er32(LEDCTL); 2177 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG, 2178 (u16)data); 2179 if (ret_val) 2180 goto release; 2181 } 2182 2183 /* Configure LCD from extended configuration region. */ 2184 2185 /* cnf_base_addr is in DWORD */ 2186 word_addr = (u16)(cnf_base_addr << 1); 2187 2188 for (i = 0; i < cnf_size; i++) { 2189 ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, ®_data); 2190 if (ret_val) 2191 goto release; 2192 2193 ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1), 2194 1, ®_addr); 2195 if (ret_val) 2196 goto release; 2197 2198 /* Save off the PHY page for future writes. */ 2199 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) { 2200 phy_page = reg_data; 2201 continue; 2202 } 2203 2204 reg_addr &= PHY_REG_MASK; 2205 reg_addr |= phy_page; 2206 2207 ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data); 2208 if (ret_val) 2209 goto release; 2210 } 2211 2212 release: 2213 hw->phy.ops.release(hw); 2214 return ret_val; 2215 } 2216 2217 /** 2218 * e1000_k1_gig_workaround_hv - K1 Si workaround 2219 * @hw: pointer to the HW structure 2220 * @link: link up bool flag 2221 * 2222 * If K1 is enabled for 1Gbps, the MAC might stall when transitioning 2223 * from a lower speed. This workaround disables K1 whenever link is at 1Gig 2224 * If link is down, the function will restore the default K1 setting located 2225 * in the NVM. 2226 **/ 2227 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link) 2228 { 2229 s32 ret_val = 0; 2230 u16 status_reg = 0; 2231 bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled; 2232 2233 if (hw->mac.type != e1000_pchlan) 2234 return 0; 2235 2236 /* Wrap the whole flow with the sw flag */ 2237 ret_val = hw->phy.ops.acquire(hw); 2238 if (ret_val) 2239 return ret_val; 2240 2241 /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */ 2242 if (link) { 2243 if (hw->phy.type == e1000_phy_82578) { 2244 ret_val = e1e_rphy_locked(hw, BM_CS_STATUS, 2245 &status_reg); 2246 if (ret_val) 2247 goto release; 2248 2249 status_reg &= (BM_CS_STATUS_LINK_UP | 2250 BM_CS_STATUS_RESOLVED | 2251 BM_CS_STATUS_SPEED_MASK); 2252 2253 if (status_reg == (BM_CS_STATUS_LINK_UP | 2254 BM_CS_STATUS_RESOLVED | 2255 BM_CS_STATUS_SPEED_1000)) 2256 k1_enable = false; 2257 } 2258 2259 if (hw->phy.type == e1000_phy_82577) { 2260 ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg); 2261 if (ret_val) 2262 goto release; 2263 2264 status_reg &= (HV_M_STATUS_LINK_UP | 2265 HV_M_STATUS_AUTONEG_COMPLETE | 2266 HV_M_STATUS_SPEED_MASK); 2267 2268 if (status_reg == (HV_M_STATUS_LINK_UP | 2269 HV_M_STATUS_AUTONEG_COMPLETE | 2270 HV_M_STATUS_SPEED_1000)) 2271 k1_enable = false; 2272 } 2273 2274 /* Link stall fix for link up */ 2275 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100); 2276 if (ret_val) 2277 goto release; 2278 2279 } else { 2280 /* Link stall fix for link down */ 2281 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100); 2282 if (ret_val) 2283 goto release; 2284 } 2285 2286 ret_val = e1000_configure_k1_ich8lan(hw, k1_enable); 2287 2288 release: 2289 hw->phy.ops.release(hw); 2290 2291 return ret_val; 2292 } 2293 2294 /** 2295 * e1000_configure_k1_ich8lan - Configure K1 power state 2296 * @hw: pointer to the HW structure 2297 * @k1_enable: K1 state to configure 2298 * 2299 * Configure the K1 power state based on the provided parameter. 2300 * Assumes semaphore already acquired. 2301 * 2302 * Success returns 0, Failure returns -E1000_ERR_PHY (-2) 2303 **/ 2304 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable) 2305 { 2306 s32 ret_val; 2307 u32 ctrl_reg = 0; 2308 u32 ctrl_ext = 0; 2309 u32 reg = 0; 2310 u16 kmrn_reg = 0; 2311 2312 ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG, 2313 &kmrn_reg); 2314 if (ret_val) 2315 return ret_val; 2316 2317 if (k1_enable) 2318 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE; 2319 else 2320 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE; 2321 2322 ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG, 2323 kmrn_reg); 2324 if (ret_val) 2325 return ret_val; 2326 2327 usleep_range(20, 40); 2328 ctrl_ext = er32(CTRL_EXT); 2329 ctrl_reg = er32(CTRL); 2330 2331 reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); 2332 reg |= E1000_CTRL_FRCSPD; 2333 ew32(CTRL, reg); 2334 2335 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS); 2336 e1e_flush(); 2337 usleep_range(20, 40); 2338 ew32(CTRL, ctrl_reg); 2339 ew32(CTRL_EXT, ctrl_ext); 2340 e1e_flush(); 2341 usleep_range(20, 40); 2342 2343 return 0; 2344 } 2345 2346 /** 2347 * e1000_oem_bits_config_ich8lan - SW-based LCD Configuration 2348 * @hw: pointer to the HW structure 2349 * @d0_state: boolean if entering d0 or d3 device state 2350 * 2351 * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are 2352 * collectively called OEM bits. The OEM Write Enable bit and SW Config bit 2353 * in NVM determines whether HW should configure LPLU and Gbe Disable. 2354 **/ 2355 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state) 2356 { 2357 s32 ret_val = 0; 2358 u32 mac_reg; 2359 u16 oem_reg; 2360 2361 if (hw->mac.type < e1000_pchlan) 2362 return ret_val; 2363 2364 ret_val = hw->phy.ops.acquire(hw); 2365 if (ret_val) 2366 return ret_val; 2367 2368 if (hw->mac.type == e1000_pchlan) { 2369 mac_reg = er32(EXTCNF_CTRL); 2370 if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) 2371 goto release; 2372 } 2373 2374 mac_reg = er32(FEXTNVM); 2375 if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M)) 2376 goto release; 2377 2378 mac_reg = er32(PHY_CTRL); 2379 2380 ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg); 2381 if (ret_val) 2382 goto release; 2383 2384 oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU); 2385 2386 if (d0_state) { 2387 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE) 2388 oem_reg |= HV_OEM_BITS_GBE_DIS; 2389 2390 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU) 2391 oem_reg |= HV_OEM_BITS_LPLU; 2392 } else { 2393 if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE | 2394 E1000_PHY_CTRL_NOND0A_GBE_DISABLE)) 2395 oem_reg |= HV_OEM_BITS_GBE_DIS; 2396 2397 if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU | 2398 E1000_PHY_CTRL_NOND0A_LPLU)) 2399 oem_reg |= HV_OEM_BITS_LPLU; 2400 } 2401 2402 /* Set Restart auto-neg to activate the bits */ 2403 if ((d0_state || (hw->mac.type != e1000_pchlan)) && 2404 !hw->phy.ops.check_reset_block(hw)) 2405 oem_reg |= HV_OEM_BITS_RESTART_AN; 2406 2407 ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg); 2408 2409 release: 2410 hw->phy.ops.release(hw); 2411 2412 return ret_val; 2413 } 2414 2415 /** 2416 * e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode 2417 * @hw: pointer to the HW structure 2418 **/ 2419 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw) 2420 { 2421 s32 ret_val; 2422 u16 data; 2423 2424 ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data); 2425 if (ret_val) 2426 return ret_val; 2427 2428 data |= HV_KMRN_MDIO_SLOW; 2429 2430 ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data); 2431 2432 return ret_val; 2433 } 2434 2435 /** 2436 * e1000_hv_phy_workarounds_ich8lan - apply PHY workarounds 2437 * @hw: pointer to the HW structure 2438 * 2439 * A series of PHY workarounds to be done after every PHY reset. 2440 **/ 2441 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw) 2442 { 2443 s32 ret_val = 0; 2444 u16 phy_data; 2445 2446 if (hw->mac.type != e1000_pchlan) 2447 return 0; 2448 2449 /* Set MDIO slow mode before any other MDIO access */ 2450 if (hw->phy.type == e1000_phy_82577) { 2451 ret_val = e1000_set_mdio_slow_mode_hv(hw); 2452 if (ret_val) 2453 return ret_val; 2454 } 2455 2456 if (((hw->phy.type == e1000_phy_82577) && 2457 ((hw->phy.revision == 1) || (hw->phy.revision == 2))) || 2458 ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) { 2459 /* Disable generation of early preamble */ 2460 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431); 2461 if (ret_val) 2462 return ret_val; 2463 2464 /* Preamble tuning for SSC */ 2465 ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204); 2466 if (ret_val) 2467 return ret_val; 2468 } 2469 2470 if (hw->phy.type == e1000_phy_82578) { 2471 /* Return registers to default by doing a soft reset then 2472 * writing 0x3140 to the control register. 2473 */ 2474 if (hw->phy.revision < 2) { 2475 e1000e_phy_sw_reset(hw); 2476 ret_val = e1e_wphy(hw, MII_BMCR, 0x3140); 2477 if (ret_val) 2478 return ret_val; 2479 } 2480 } 2481 2482 /* Select page 0 */ 2483 ret_val = hw->phy.ops.acquire(hw); 2484 if (ret_val) 2485 return ret_val; 2486 2487 hw->phy.addr = 1; 2488 ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0); 2489 hw->phy.ops.release(hw); 2490 if (ret_val) 2491 return ret_val; 2492 2493 /* Configure the K1 Si workaround during phy reset assuming there is 2494 * link so that it disables K1 if link is in 1Gbps. 2495 */ 2496 ret_val = e1000_k1_gig_workaround_hv(hw, true); 2497 if (ret_val) 2498 return ret_val; 2499 2500 /* Workaround for link disconnects on a busy hub in half duplex */ 2501 ret_val = hw->phy.ops.acquire(hw); 2502 if (ret_val) 2503 return ret_val; 2504 ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data); 2505 if (ret_val) 2506 goto release; 2507 ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF); 2508 if (ret_val) 2509 goto release; 2510 2511 /* set MSE higher to enable link to stay up when noise is high */ 2512 ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034); 2513 release: 2514 hw->phy.ops.release(hw); 2515 2516 return ret_val; 2517 } 2518 2519 /** 2520 * e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY 2521 * @hw: pointer to the HW structure 2522 **/ 2523 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw) 2524 { 2525 u32 mac_reg; 2526 u16 i, phy_reg = 0; 2527 s32 ret_val; 2528 2529 ret_val = hw->phy.ops.acquire(hw); 2530 if (ret_val) 2531 return; 2532 ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg); 2533 if (ret_val) 2534 goto release; 2535 2536 /* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */ 2537 for (i = 0; i < (hw->mac.rar_entry_count); i++) { 2538 mac_reg = er32(RAL(i)); 2539 hw->phy.ops.write_reg_page(hw, BM_RAR_L(i), 2540 (u16)(mac_reg & 0xFFFF)); 2541 hw->phy.ops.write_reg_page(hw, BM_RAR_M(i), 2542 (u16)((mac_reg >> 16) & 0xFFFF)); 2543 2544 mac_reg = er32(RAH(i)); 2545 hw->phy.ops.write_reg_page(hw, BM_RAR_H(i), 2546 (u16)(mac_reg & 0xFFFF)); 2547 hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i), 2548 (u16)((mac_reg & E1000_RAH_AV) 2549 >> 16)); 2550 } 2551 2552 e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg); 2553 2554 release: 2555 hw->phy.ops.release(hw); 2556 } 2557 2558 /** 2559 * e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation 2560 * with 82579 PHY 2561 * @hw: pointer to the HW structure 2562 * @enable: flag to enable/disable workaround when enabling/disabling jumbos 2563 **/ 2564 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable) 2565 { 2566 s32 ret_val = 0; 2567 u16 phy_reg, data; 2568 u32 mac_reg; 2569 u16 i; 2570 2571 if (hw->mac.type < e1000_pch2lan) 2572 return 0; 2573 2574 /* disable Rx path while enabling/disabling workaround */ 2575 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg); 2576 ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | BIT(14)); 2577 if (ret_val) 2578 return ret_val; 2579 2580 if (enable) { 2581 /* Write Rx addresses (rar_entry_count for RAL/H, and 2582 * SHRAL/H) and initial CRC values to the MAC 2583 */ 2584 for (i = 0; i < hw->mac.rar_entry_count; i++) { 2585 u8 mac_addr[ETH_ALEN] = { 0 }; 2586 u32 addr_high, addr_low; 2587 2588 addr_high = er32(RAH(i)); 2589 if (!(addr_high & E1000_RAH_AV)) 2590 continue; 2591 addr_low = er32(RAL(i)); 2592 mac_addr[0] = (addr_low & 0xFF); 2593 mac_addr[1] = ((addr_low >> 8) & 0xFF); 2594 mac_addr[2] = ((addr_low >> 16) & 0xFF); 2595 mac_addr[3] = ((addr_low >> 24) & 0xFF); 2596 mac_addr[4] = (addr_high & 0xFF); 2597 mac_addr[5] = ((addr_high >> 8) & 0xFF); 2598 2599 ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr)); 2600 } 2601 2602 /* Write Rx addresses to the PHY */ 2603 e1000_copy_rx_addrs_to_phy_ich8lan(hw); 2604 2605 /* Enable jumbo frame workaround in the MAC */ 2606 mac_reg = er32(FFLT_DBG); 2607 mac_reg &= ~BIT(14); 2608 mac_reg |= (7 << 15); 2609 ew32(FFLT_DBG, mac_reg); 2610 2611 mac_reg = er32(RCTL); 2612 mac_reg |= E1000_RCTL_SECRC; 2613 ew32(RCTL, mac_reg); 2614 2615 ret_val = e1000e_read_kmrn_reg(hw, 2616 E1000_KMRNCTRLSTA_CTRL_OFFSET, 2617 &data); 2618 if (ret_val) 2619 return ret_val; 2620 ret_val = e1000e_write_kmrn_reg(hw, 2621 E1000_KMRNCTRLSTA_CTRL_OFFSET, 2622 data | BIT(0)); 2623 if (ret_val) 2624 return ret_val; 2625 ret_val = e1000e_read_kmrn_reg(hw, 2626 E1000_KMRNCTRLSTA_HD_CTRL, 2627 &data); 2628 if (ret_val) 2629 return ret_val; 2630 data &= ~(0xF << 8); 2631 data |= (0xB << 8); 2632 ret_val = e1000e_write_kmrn_reg(hw, 2633 E1000_KMRNCTRLSTA_HD_CTRL, 2634 data); 2635 if (ret_val) 2636 return ret_val; 2637 2638 /* Enable jumbo frame workaround in the PHY */ 2639 e1e_rphy(hw, PHY_REG(769, 23), &data); 2640 data &= ~(0x7F << 5); 2641 data |= (0x37 << 5); 2642 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data); 2643 if (ret_val) 2644 return ret_val; 2645 e1e_rphy(hw, PHY_REG(769, 16), &data); 2646 data &= ~BIT(13); 2647 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data); 2648 if (ret_val) 2649 return ret_val; 2650 e1e_rphy(hw, PHY_REG(776, 20), &data); 2651 data &= ~(0x3FF << 2); 2652 data |= (E1000_TX_PTR_GAP << 2); 2653 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data); 2654 if (ret_val) 2655 return ret_val; 2656 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100); 2657 if (ret_val) 2658 return ret_val; 2659 e1e_rphy(hw, HV_PM_CTRL, &data); 2660 ret_val = e1e_wphy(hw, HV_PM_CTRL, data | BIT(10)); 2661 if (ret_val) 2662 return ret_val; 2663 } else { 2664 /* Write MAC register values back to h/w defaults */ 2665 mac_reg = er32(FFLT_DBG); 2666 mac_reg &= ~(0xF << 14); 2667 ew32(FFLT_DBG, mac_reg); 2668 2669 mac_reg = er32(RCTL); 2670 mac_reg &= ~E1000_RCTL_SECRC; 2671 ew32(RCTL, mac_reg); 2672 2673 ret_val = e1000e_read_kmrn_reg(hw, 2674 E1000_KMRNCTRLSTA_CTRL_OFFSET, 2675 &data); 2676 if (ret_val) 2677 return ret_val; 2678 ret_val = e1000e_write_kmrn_reg(hw, 2679 E1000_KMRNCTRLSTA_CTRL_OFFSET, 2680 data & ~BIT(0)); 2681 if (ret_val) 2682 return ret_val; 2683 ret_val = e1000e_read_kmrn_reg(hw, 2684 E1000_KMRNCTRLSTA_HD_CTRL, 2685 &data); 2686 if (ret_val) 2687 return ret_val; 2688 data &= ~(0xF << 8); 2689 data |= (0xB << 8); 2690 ret_val = e1000e_write_kmrn_reg(hw, 2691 E1000_KMRNCTRLSTA_HD_CTRL, 2692 data); 2693 if (ret_val) 2694 return ret_val; 2695 2696 /* Write PHY register values back to h/w defaults */ 2697 e1e_rphy(hw, PHY_REG(769, 23), &data); 2698 data &= ~(0x7F << 5); 2699 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data); 2700 if (ret_val) 2701 return ret_val; 2702 e1e_rphy(hw, PHY_REG(769, 16), &data); 2703 data |= BIT(13); 2704 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data); 2705 if (ret_val) 2706 return ret_val; 2707 e1e_rphy(hw, PHY_REG(776, 20), &data); 2708 data &= ~(0x3FF << 2); 2709 data |= (0x8 << 2); 2710 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data); 2711 if (ret_val) 2712 return ret_val; 2713 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00); 2714 if (ret_val) 2715 return ret_val; 2716 e1e_rphy(hw, HV_PM_CTRL, &data); 2717 ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~BIT(10)); 2718 if (ret_val) 2719 return ret_val; 2720 } 2721 2722 /* re-enable Rx path after enabling/disabling workaround */ 2723 return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~BIT(14)); 2724 } 2725 2726 /** 2727 * e1000_lv_phy_workarounds_ich8lan - apply ich8 specific workarounds 2728 * @hw: pointer to the HW structure 2729 * 2730 * A series of PHY workarounds to be done after every PHY reset. 2731 **/ 2732 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw) 2733 { 2734 s32 ret_val = 0; 2735 2736 if (hw->mac.type != e1000_pch2lan) 2737 return 0; 2738 2739 /* Set MDIO slow mode before any other MDIO access */ 2740 ret_val = e1000_set_mdio_slow_mode_hv(hw); 2741 if (ret_val) 2742 return ret_val; 2743 2744 ret_val = hw->phy.ops.acquire(hw); 2745 if (ret_val) 2746 return ret_val; 2747 /* set MSE higher to enable link to stay up when noise is high */ 2748 ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034); 2749 if (ret_val) 2750 goto release; 2751 /* drop link after 5 times MSE threshold was reached */ 2752 ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005); 2753 release: 2754 hw->phy.ops.release(hw); 2755 2756 return ret_val; 2757 } 2758 2759 /** 2760 * e1000_k1_workaround_lv - K1 Si workaround 2761 * @hw: pointer to the HW structure 2762 * 2763 * Workaround to set the K1 beacon duration for 82579 parts in 10Mbps 2764 * Disable K1 in 1000Mbps and 100Mbps 2765 **/ 2766 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw) 2767 { 2768 s32 ret_val = 0; 2769 u16 status_reg = 0; 2770 2771 if (hw->mac.type != e1000_pch2lan) 2772 return 0; 2773 2774 /* Set K1 beacon duration based on 10Mbs speed */ 2775 ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg); 2776 if (ret_val) 2777 return ret_val; 2778 2779 if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) 2780 == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) { 2781 if (status_reg & 2782 (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) { 2783 u16 pm_phy_reg; 2784 2785 /* LV 1G/100 Packet drop issue wa */ 2786 ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg); 2787 if (ret_val) 2788 return ret_val; 2789 pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE; 2790 ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg); 2791 if (ret_val) 2792 return ret_val; 2793 } else { 2794 u32 mac_reg; 2795 2796 mac_reg = er32(FEXTNVM4); 2797 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK; 2798 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC; 2799 ew32(FEXTNVM4, mac_reg); 2800 } 2801 } 2802 2803 return ret_val; 2804 } 2805 2806 /** 2807 * e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware 2808 * @hw: pointer to the HW structure 2809 * @gate: boolean set to true to gate, false to ungate 2810 * 2811 * Gate/ungate the automatic PHY configuration via hardware; perform 2812 * the configuration via software instead. 2813 **/ 2814 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate) 2815 { 2816 u32 extcnf_ctrl; 2817 2818 if (hw->mac.type < e1000_pch2lan) 2819 return; 2820 2821 extcnf_ctrl = er32(EXTCNF_CTRL); 2822 2823 if (gate) 2824 extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG; 2825 else 2826 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG; 2827 2828 ew32(EXTCNF_CTRL, extcnf_ctrl); 2829 } 2830 2831 /** 2832 * e1000_lan_init_done_ich8lan - Check for PHY config completion 2833 * @hw: pointer to the HW structure 2834 * 2835 * Check the appropriate indication the MAC has finished configuring the 2836 * PHY after a software reset. 2837 **/ 2838 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw) 2839 { 2840 u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT; 2841 2842 /* Wait for basic configuration completes before proceeding */ 2843 do { 2844 data = er32(STATUS); 2845 data &= E1000_STATUS_LAN_INIT_DONE; 2846 usleep_range(100, 200); 2847 } while ((!data) && --loop); 2848 2849 /* If basic configuration is incomplete before the above loop 2850 * count reaches 0, loading the configuration from NVM will 2851 * leave the PHY in a bad state possibly resulting in no link. 2852 */ 2853 if (loop == 0) 2854 e_dbg("LAN_INIT_DONE not set, increase timeout\n"); 2855 2856 /* Clear the Init Done bit for the next init event */ 2857 data = er32(STATUS); 2858 data &= ~E1000_STATUS_LAN_INIT_DONE; 2859 ew32(STATUS, data); 2860 } 2861 2862 /** 2863 * e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset 2864 * @hw: pointer to the HW structure 2865 **/ 2866 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw) 2867 { 2868 s32 ret_val = 0; 2869 u16 reg; 2870 2871 if (hw->phy.ops.check_reset_block(hw)) 2872 return 0; 2873 2874 /* Allow time for h/w to get to quiescent state after reset */ 2875 usleep_range(10000, 11000); 2876 2877 /* Perform any necessary post-reset workarounds */ 2878 switch (hw->mac.type) { 2879 case e1000_pchlan: 2880 ret_val = e1000_hv_phy_workarounds_ich8lan(hw); 2881 if (ret_val) 2882 return ret_val; 2883 break; 2884 case e1000_pch2lan: 2885 ret_val = e1000_lv_phy_workarounds_ich8lan(hw); 2886 if (ret_val) 2887 return ret_val; 2888 break; 2889 default: 2890 break; 2891 } 2892 2893 /* Clear the host wakeup bit after lcd reset */ 2894 if (hw->mac.type >= e1000_pchlan) { 2895 e1e_rphy(hw, BM_PORT_GEN_CFG, ®); 2896 reg &= ~BM_WUC_HOST_WU_BIT; 2897 e1e_wphy(hw, BM_PORT_GEN_CFG, reg); 2898 } 2899 2900 /* Configure the LCD with the extended configuration region in NVM */ 2901 ret_val = e1000_sw_lcd_config_ich8lan(hw); 2902 if (ret_val) 2903 return ret_val; 2904 2905 /* Configure the LCD with the OEM bits in NVM */ 2906 ret_val = e1000_oem_bits_config_ich8lan(hw, true); 2907 2908 if (hw->mac.type == e1000_pch2lan) { 2909 /* Ungate automatic PHY configuration on non-managed 82579 */ 2910 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) { 2911 usleep_range(10000, 11000); 2912 e1000_gate_hw_phy_config_ich8lan(hw, false); 2913 } 2914 2915 /* Set EEE LPI Update Timer to 200usec */ 2916 ret_val = hw->phy.ops.acquire(hw); 2917 if (ret_val) 2918 return ret_val; 2919 ret_val = e1000_write_emi_reg_locked(hw, 2920 I82579_LPI_UPDATE_TIMER, 2921 0x1387); 2922 hw->phy.ops.release(hw); 2923 } 2924 2925 return ret_val; 2926 } 2927 2928 /** 2929 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset 2930 * @hw: pointer to the HW structure 2931 * 2932 * Resets the PHY 2933 * This is a function pointer entry point called by drivers 2934 * or other shared routines. 2935 **/ 2936 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw) 2937 { 2938 s32 ret_val = 0; 2939 2940 /* Gate automatic PHY configuration by hardware on non-managed 82579 */ 2941 if ((hw->mac.type == e1000_pch2lan) && 2942 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) 2943 e1000_gate_hw_phy_config_ich8lan(hw, true); 2944 2945 ret_val = e1000e_phy_hw_reset_generic(hw); 2946 if (ret_val) 2947 return ret_val; 2948 2949 return e1000_post_phy_reset_ich8lan(hw); 2950 } 2951 2952 /** 2953 * e1000_set_lplu_state_pchlan - Set Low Power Link Up state 2954 * @hw: pointer to the HW structure 2955 * @active: true to enable LPLU, false to disable 2956 * 2957 * Sets the LPLU state according to the active flag. For PCH, if OEM write 2958 * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set 2959 * the phy speed. This function will manually set the LPLU bit and restart 2960 * auto-neg as hw would do. D3 and D0 LPLU will call the same function 2961 * since it configures the same bit. 2962 **/ 2963 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active) 2964 { 2965 s32 ret_val; 2966 u16 oem_reg; 2967 2968 ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg); 2969 if (ret_val) 2970 return ret_val; 2971 2972 if (active) 2973 oem_reg |= HV_OEM_BITS_LPLU; 2974 else 2975 oem_reg &= ~HV_OEM_BITS_LPLU; 2976 2977 if (!hw->phy.ops.check_reset_block(hw)) 2978 oem_reg |= HV_OEM_BITS_RESTART_AN; 2979 2980 return e1e_wphy(hw, HV_OEM_BITS, oem_reg); 2981 } 2982 2983 /** 2984 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state 2985 * @hw: pointer to the HW structure 2986 * @active: true to enable LPLU, false to disable 2987 * 2988 * Sets the LPLU D0 state according to the active flag. When 2989 * activating LPLU this function also disables smart speed 2990 * and vice versa. LPLU will not be activated unless the 2991 * device autonegotiation advertisement meets standards of 2992 * either 10 or 10/100 or 10/100/1000 at all duplexes. 2993 * This is a function pointer entry point only called by 2994 * PHY setup routines. 2995 **/ 2996 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active) 2997 { 2998 struct e1000_phy_info *phy = &hw->phy; 2999 u32 phy_ctrl; 3000 s32 ret_val = 0; 3001 u16 data; 3002 3003 if (phy->type == e1000_phy_ife) 3004 return 0; 3005 3006 phy_ctrl = er32(PHY_CTRL); 3007 3008 if (active) { 3009 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU; 3010 ew32(PHY_CTRL, phy_ctrl); 3011 3012 if (phy->type != e1000_phy_igp_3) 3013 return 0; 3014 3015 /* Call gig speed drop workaround on LPLU before accessing 3016 * any PHY registers 3017 */ 3018 if (hw->mac.type == e1000_ich8lan) 3019 e1000e_gig_downshift_workaround_ich8lan(hw); 3020 3021 /* When LPLU is enabled, we should disable SmartSpeed */ 3022 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data); 3023 if (ret_val) 3024 return ret_val; 3025 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 3026 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data); 3027 if (ret_val) 3028 return ret_val; 3029 } else { 3030 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU; 3031 ew32(PHY_CTRL, phy_ctrl); 3032 3033 if (phy->type != e1000_phy_igp_3) 3034 return 0; 3035 3036 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used 3037 * during Dx states where the power conservation is most 3038 * important. During driver activity we should enable 3039 * SmartSpeed, so performance is maintained. 3040 */ 3041 if (phy->smart_speed == e1000_smart_speed_on) { 3042 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, 3043 &data); 3044 if (ret_val) 3045 return ret_val; 3046 3047 data |= IGP01E1000_PSCFR_SMART_SPEED; 3048 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, 3049 data); 3050 if (ret_val) 3051 return ret_val; 3052 } else if (phy->smart_speed == e1000_smart_speed_off) { 3053 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, 3054 &data); 3055 if (ret_val) 3056 return ret_val; 3057 3058 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 3059 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, 3060 data); 3061 if (ret_val) 3062 return ret_val; 3063 } 3064 } 3065 3066 return 0; 3067 } 3068 3069 /** 3070 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state 3071 * @hw: pointer to the HW structure 3072 * @active: true to enable LPLU, false to disable 3073 * 3074 * Sets the LPLU D3 state according to the active flag. When 3075 * activating LPLU this function also disables smart speed 3076 * and vice versa. LPLU will not be activated unless the 3077 * device autonegotiation advertisement meets standards of 3078 * either 10 or 10/100 or 10/100/1000 at all duplexes. 3079 * This is a function pointer entry point only called by 3080 * PHY setup routines. 3081 **/ 3082 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active) 3083 { 3084 struct e1000_phy_info *phy = &hw->phy; 3085 u32 phy_ctrl; 3086 s32 ret_val = 0; 3087 u16 data; 3088 3089 phy_ctrl = er32(PHY_CTRL); 3090 3091 if (!active) { 3092 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU; 3093 ew32(PHY_CTRL, phy_ctrl); 3094 3095 if (phy->type != e1000_phy_igp_3) 3096 return 0; 3097 3098 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used 3099 * during Dx states where the power conservation is most 3100 * important. During driver activity we should enable 3101 * SmartSpeed, so performance is maintained. 3102 */ 3103 if (phy->smart_speed == e1000_smart_speed_on) { 3104 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, 3105 &data); 3106 if (ret_val) 3107 return ret_val; 3108 3109 data |= IGP01E1000_PSCFR_SMART_SPEED; 3110 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, 3111 data); 3112 if (ret_val) 3113 return ret_val; 3114 } else if (phy->smart_speed == e1000_smart_speed_off) { 3115 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, 3116 &data); 3117 if (ret_val) 3118 return ret_val; 3119 3120 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 3121 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, 3122 data); 3123 if (ret_val) 3124 return ret_val; 3125 } 3126 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || 3127 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || 3128 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { 3129 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU; 3130 ew32(PHY_CTRL, phy_ctrl); 3131 3132 if (phy->type != e1000_phy_igp_3) 3133 return 0; 3134 3135 /* Call gig speed drop workaround on LPLU before accessing 3136 * any PHY registers 3137 */ 3138 if (hw->mac.type == e1000_ich8lan) 3139 e1000e_gig_downshift_workaround_ich8lan(hw); 3140 3141 /* When LPLU is enabled, we should disable SmartSpeed */ 3142 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data); 3143 if (ret_val) 3144 return ret_val; 3145 3146 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 3147 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data); 3148 } 3149 3150 return ret_val; 3151 } 3152 3153 /** 3154 * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1 3155 * @hw: pointer to the HW structure 3156 * @bank: pointer to the variable that returns the active bank 3157 * 3158 * Reads signature byte from the NVM using the flash access registers. 3159 * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank. 3160 **/ 3161 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank) 3162 { 3163 u32 eecd; 3164 struct e1000_nvm_info *nvm = &hw->nvm; 3165 u32 bank1_offset = nvm->flash_bank_size * sizeof(u16); 3166 u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1; 3167 u32 nvm_dword = 0; 3168 u8 sig_byte = 0; 3169 s32 ret_val; 3170 3171 switch (hw->mac.type) { 3172 case e1000_pch_spt: 3173 case e1000_pch_cnp: 3174 case e1000_pch_tgp: 3175 case e1000_pch_adp: 3176 case e1000_pch_mtp: 3177 bank1_offset = nvm->flash_bank_size; 3178 act_offset = E1000_ICH_NVM_SIG_WORD; 3179 3180 /* set bank to 0 in case flash read fails */ 3181 *bank = 0; 3182 3183 /* Check bank 0 */ 3184 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, 3185 &nvm_dword); 3186 if (ret_val) 3187 return ret_val; 3188 sig_byte = (u8)((nvm_dword & 0xFF00) >> 8); 3189 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == 3190 E1000_ICH_NVM_SIG_VALUE) { 3191 *bank = 0; 3192 return 0; 3193 } 3194 3195 /* Check bank 1 */ 3196 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset + 3197 bank1_offset, 3198 &nvm_dword); 3199 if (ret_val) 3200 return ret_val; 3201 sig_byte = (u8)((nvm_dword & 0xFF00) >> 8); 3202 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == 3203 E1000_ICH_NVM_SIG_VALUE) { 3204 *bank = 1; 3205 return 0; 3206 } 3207 3208 e_dbg("ERROR: No valid NVM bank present\n"); 3209 return -E1000_ERR_NVM; 3210 case e1000_ich8lan: 3211 case e1000_ich9lan: 3212 eecd = er32(EECD); 3213 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) == 3214 E1000_EECD_SEC1VAL_VALID_MASK) { 3215 if (eecd & E1000_EECD_SEC1VAL) 3216 *bank = 1; 3217 else 3218 *bank = 0; 3219 3220 return 0; 3221 } 3222 e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n"); 3223 fallthrough; 3224 default: 3225 /* set bank to 0 in case flash read fails */ 3226 *bank = 0; 3227 3228 /* Check bank 0 */ 3229 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset, 3230 &sig_byte); 3231 if (ret_val) 3232 return ret_val; 3233 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == 3234 E1000_ICH_NVM_SIG_VALUE) { 3235 *bank = 0; 3236 return 0; 3237 } 3238 3239 /* Check bank 1 */ 3240 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset + 3241 bank1_offset, 3242 &sig_byte); 3243 if (ret_val) 3244 return ret_val; 3245 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == 3246 E1000_ICH_NVM_SIG_VALUE) { 3247 *bank = 1; 3248 return 0; 3249 } 3250 3251 e_dbg("ERROR: No valid NVM bank present\n"); 3252 return -E1000_ERR_NVM; 3253 } 3254 } 3255 3256 /** 3257 * e1000_read_nvm_spt - NVM access for SPT 3258 * @hw: pointer to the HW structure 3259 * @offset: The offset (in bytes) of the word(s) to read. 3260 * @words: Size of data to read in words. 3261 * @data: pointer to the word(s) to read at offset. 3262 * 3263 * Reads a word(s) from the NVM 3264 **/ 3265 static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words, 3266 u16 *data) 3267 { 3268 struct e1000_nvm_info *nvm = &hw->nvm; 3269 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 3270 u32 act_offset; 3271 s32 ret_val = 0; 3272 u32 bank = 0; 3273 u32 dword = 0; 3274 u16 offset_to_read; 3275 u16 i; 3276 3277 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) || 3278 (words == 0)) { 3279 e_dbg("nvm parameter(s) out of bounds\n"); 3280 ret_val = -E1000_ERR_NVM; 3281 goto out; 3282 } 3283 3284 nvm->ops.acquire(hw); 3285 3286 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); 3287 if (ret_val) { 3288 e_dbg("Could not detect valid bank, assuming bank 0\n"); 3289 bank = 0; 3290 } 3291 3292 act_offset = (bank) ? nvm->flash_bank_size : 0; 3293 act_offset += offset; 3294 3295 ret_val = 0; 3296 3297 for (i = 0; i < words; i += 2) { 3298 if (words - i == 1) { 3299 if (dev_spec->shadow_ram[offset + i].modified) { 3300 data[i] = 3301 dev_spec->shadow_ram[offset + i].value; 3302 } else { 3303 offset_to_read = act_offset + i - 3304 ((act_offset + i) % 2); 3305 ret_val = 3306 e1000_read_flash_dword_ich8lan(hw, 3307 offset_to_read, 3308 &dword); 3309 if (ret_val) 3310 break; 3311 if ((act_offset + i) % 2 == 0) 3312 data[i] = (u16)(dword & 0xFFFF); 3313 else 3314 data[i] = (u16)((dword >> 16) & 0xFFFF); 3315 } 3316 } else { 3317 offset_to_read = act_offset + i; 3318 if (!(dev_spec->shadow_ram[offset + i].modified) || 3319 !(dev_spec->shadow_ram[offset + i + 1].modified)) { 3320 ret_val = 3321 e1000_read_flash_dword_ich8lan(hw, 3322 offset_to_read, 3323 &dword); 3324 if (ret_val) 3325 break; 3326 } 3327 if (dev_spec->shadow_ram[offset + i].modified) 3328 data[i] = 3329 dev_spec->shadow_ram[offset + i].value; 3330 else 3331 data[i] = (u16)(dword & 0xFFFF); 3332 if (dev_spec->shadow_ram[offset + i].modified) 3333 data[i + 1] = 3334 dev_spec->shadow_ram[offset + i + 1].value; 3335 else 3336 data[i + 1] = (u16)(dword >> 16 & 0xFFFF); 3337 } 3338 } 3339 3340 nvm->ops.release(hw); 3341 3342 out: 3343 if (ret_val) 3344 e_dbg("NVM read error: %d\n", ret_val); 3345 3346 return ret_val; 3347 } 3348 3349 /** 3350 * e1000_read_nvm_ich8lan - Read word(s) from the NVM 3351 * @hw: pointer to the HW structure 3352 * @offset: The offset (in bytes) of the word(s) to read. 3353 * @words: Size of data to read in words 3354 * @data: Pointer to the word(s) to read at offset. 3355 * 3356 * Reads a word(s) from the NVM using the flash access registers. 3357 **/ 3358 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words, 3359 u16 *data) 3360 { 3361 struct e1000_nvm_info *nvm = &hw->nvm; 3362 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 3363 u32 act_offset; 3364 s32 ret_val = 0; 3365 u32 bank = 0; 3366 u16 i, word; 3367 3368 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) || 3369 (words == 0)) { 3370 e_dbg("nvm parameter(s) out of bounds\n"); 3371 ret_val = -E1000_ERR_NVM; 3372 goto out; 3373 } 3374 3375 nvm->ops.acquire(hw); 3376 3377 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); 3378 if (ret_val) { 3379 e_dbg("Could not detect valid bank, assuming bank 0\n"); 3380 bank = 0; 3381 } 3382 3383 act_offset = (bank) ? nvm->flash_bank_size : 0; 3384 act_offset += offset; 3385 3386 ret_val = 0; 3387 for (i = 0; i < words; i++) { 3388 if (dev_spec->shadow_ram[offset + i].modified) { 3389 data[i] = dev_spec->shadow_ram[offset + i].value; 3390 } else { 3391 ret_val = e1000_read_flash_word_ich8lan(hw, 3392 act_offset + i, 3393 &word); 3394 if (ret_val) 3395 break; 3396 data[i] = word; 3397 } 3398 } 3399 3400 nvm->ops.release(hw); 3401 3402 out: 3403 if (ret_val) 3404 e_dbg("NVM read error: %d\n", ret_val); 3405 3406 return ret_val; 3407 } 3408 3409 /** 3410 * e1000_flash_cycle_init_ich8lan - Initialize flash 3411 * @hw: pointer to the HW structure 3412 * 3413 * This function does initial flash setup so that a new read/write/erase cycle 3414 * can be started. 3415 **/ 3416 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw) 3417 { 3418 union ich8_hws_flash_status hsfsts; 3419 s32 ret_val = -E1000_ERR_NVM; 3420 3421 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 3422 3423 /* Check if the flash descriptor is valid */ 3424 if (!hsfsts.hsf_status.fldesvalid) { 3425 e_dbg("Flash descriptor invalid. SW Sequencing must be used.\n"); 3426 return -E1000_ERR_NVM; 3427 } 3428 3429 /* Clear FCERR and DAEL in hw status by writing 1 */ 3430 hsfsts.hsf_status.flcerr = 1; 3431 hsfsts.hsf_status.dael = 1; 3432 if (hw->mac.type >= e1000_pch_spt) 3433 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF); 3434 else 3435 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval); 3436 3437 /* Either we should have a hardware SPI cycle in progress 3438 * bit to check against, in order to start a new cycle or 3439 * FDONE bit should be changed in the hardware so that it 3440 * is 1 after hardware reset, which can then be used as an 3441 * indication whether a cycle is in progress or has been 3442 * completed. 3443 */ 3444 3445 if (!hsfsts.hsf_status.flcinprog) { 3446 /* There is no cycle running at present, 3447 * so we can start a cycle. 3448 * Begin by setting Flash Cycle Done. 3449 */ 3450 hsfsts.hsf_status.flcdone = 1; 3451 if (hw->mac.type >= e1000_pch_spt) 3452 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF); 3453 else 3454 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval); 3455 ret_val = 0; 3456 } else { 3457 s32 i; 3458 3459 /* Otherwise poll for sometime so the current 3460 * cycle has a chance to end before giving up. 3461 */ 3462 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) { 3463 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 3464 if (!hsfsts.hsf_status.flcinprog) { 3465 ret_val = 0; 3466 break; 3467 } 3468 udelay(1); 3469 } 3470 if (!ret_val) { 3471 /* Successful in waiting for previous cycle to timeout, 3472 * now set the Flash Cycle Done. 3473 */ 3474 hsfsts.hsf_status.flcdone = 1; 3475 if (hw->mac.type >= e1000_pch_spt) 3476 ew32flash(ICH_FLASH_HSFSTS, 3477 hsfsts.regval & 0xFFFF); 3478 else 3479 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval); 3480 } else { 3481 e_dbg("Flash controller busy, cannot get access\n"); 3482 } 3483 } 3484 3485 return ret_val; 3486 } 3487 3488 /** 3489 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase) 3490 * @hw: pointer to the HW structure 3491 * @timeout: maximum time to wait for completion 3492 * 3493 * This function starts a flash cycle and waits for its completion. 3494 **/ 3495 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout) 3496 { 3497 union ich8_hws_flash_ctrl hsflctl; 3498 union ich8_hws_flash_status hsfsts; 3499 u32 i = 0; 3500 3501 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */ 3502 if (hw->mac.type >= e1000_pch_spt) 3503 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16; 3504 else 3505 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); 3506 hsflctl.hsf_ctrl.flcgo = 1; 3507 3508 if (hw->mac.type >= e1000_pch_spt) 3509 ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16); 3510 else 3511 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); 3512 3513 /* wait till FDONE bit is set to 1 */ 3514 do { 3515 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 3516 if (hsfsts.hsf_status.flcdone) 3517 break; 3518 udelay(1); 3519 } while (i++ < timeout); 3520 3521 if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr) 3522 return 0; 3523 3524 return -E1000_ERR_NVM; 3525 } 3526 3527 /** 3528 * e1000_read_flash_dword_ich8lan - Read dword from flash 3529 * @hw: pointer to the HW structure 3530 * @offset: offset to data location 3531 * @data: pointer to the location for storing the data 3532 * 3533 * Reads the flash dword at offset into data. Offset is converted 3534 * to bytes before read. 3535 **/ 3536 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset, 3537 u32 *data) 3538 { 3539 /* Must convert word offset into bytes. */ 3540 offset <<= 1; 3541 return e1000_read_flash_data32_ich8lan(hw, offset, data); 3542 } 3543 3544 /** 3545 * e1000_read_flash_word_ich8lan - Read word from flash 3546 * @hw: pointer to the HW structure 3547 * @offset: offset to data location 3548 * @data: pointer to the location for storing the data 3549 * 3550 * Reads the flash word at offset into data. Offset is converted 3551 * to bytes before read. 3552 **/ 3553 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset, 3554 u16 *data) 3555 { 3556 /* Must convert offset into bytes. */ 3557 offset <<= 1; 3558 3559 return e1000_read_flash_data_ich8lan(hw, offset, 2, data); 3560 } 3561 3562 /** 3563 * e1000_read_flash_byte_ich8lan - Read byte from flash 3564 * @hw: pointer to the HW structure 3565 * @offset: The offset of the byte to read. 3566 * @data: Pointer to a byte to store the value read. 3567 * 3568 * Reads a single byte from the NVM using the flash access registers. 3569 **/ 3570 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, 3571 u8 *data) 3572 { 3573 s32 ret_val; 3574 u16 word = 0; 3575 3576 /* In SPT, only 32 bits access is supported, 3577 * so this function should not be called. 3578 */ 3579 if (hw->mac.type >= e1000_pch_spt) 3580 return -E1000_ERR_NVM; 3581 else 3582 ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word); 3583 3584 if (ret_val) 3585 return ret_val; 3586 3587 *data = (u8)word; 3588 3589 return 0; 3590 } 3591 3592 /** 3593 * e1000_read_flash_data_ich8lan - Read byte or word from NVM 3594 * @hw: pointer to the HW structure 3595 * @offset: The offset (in bytes) of the byte or word to read. 3596 * @size: Size of data to read, 1=byte 2=word 3597 * @data: Pointer to the word to store the value read. 3598 * 3599 * Reads a byte or word from the NVM using the flash access registers. 3600 **/ 3601 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, 3602 u8 size, u16 *data) 3603 { 3604 union ich8_hws_flash_status hsfsts; 3605 union ich8_hws_flash_ctrl hsflctl; 3606 u32 flash_linear_addr; 3607 u32 flash_data = 0; 3608 s32 ret_val = -E1000_ERR_NVM; 3609 u8 count = 0; 3610 3611 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK) 3612 return -E1000_ERR_NVM; 3613 3614 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) + 3615 hw->nvm.flash_base_addr); 3616 3617 do { 3618 udelay(1); 3619 /* Steps */ 3620 ret_val = e1000_flash_cycle_init_ich8lan(hw); 3621 if (ret_val) 3622 break; 3623 3624 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); 3625 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ 3626 hsflctl.hsf_ctrl.fldbcount = size - 1; 3627 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ; 3628 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); 3629 3630 ew32flash(ICH_FLASH_FADDR, flash_linear_addr); 3631 3632 ret_val = 3633 e1000_flash_cycle_ich8lan(hw, 3634 ICH_FLASH_READ_COMMAND_TIMEOUT); 3635 3636 /* Check if FCERR is set to 1, if set to 1, clear it 3637 * and try the whole sequence a few more times, else 3638 * read in (shift in) the Flash Data0, the order is 3639 * least significant byte first msb to lsb 3640 */ 3641 if (!ret_val) { 3642 flash_data = er32flash(ICH_FLASH_FDATA0); 3643 if (size == 1) 3644 *data = (u8)(flash_data & 0x000000FF); 3645 else if (size == 2) 3646 *data = (u16)(flash_data & 0x0000FFFF); 3647 break; 3648 } else { 3649 /* If we've gotten here, then things are probably 3650 * completely hosed, but if the error condition is 3651 * detected, it won't hurt to give it another try... 3652 * ICH_FLASH_CYCLE_REPEAT_COUNT times. 3653 */ 3654 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 3655 if (hsfsts.hsf_status.flcerr) { 3656 /* Repeat for some time before giving up. */ 3657 continue; 3658 } else if (!hsfsts.hsf_status.flcdone) { 3659 e_dbg("Timeout error - flash cycle did not complete.\n"); 3660 break; 3661 } 3662 } 3663 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); 3664 3665 return ret_val; 3666 } 3667 3668 /** 3669 * e1000_read_flash_data32_ich8lan - Read dword from NVM 3670 * @hw: pointer to the HW structure 3671 * @offset: The offset (in bytes) of the dword to read. 3672 * @data: Pointer to the dword to store the value read. 3673 * 3674 * Reads a byte or word from the NVM using the flash access registers. 3675 **/ 3676 3677 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset, 3678 u32 *data) 3679 { 3680 union ich8_hws_flash_status hsfsts; 3681 union ich8_hws_flash_ctrl hsflctl; 3682 u32 flash_linear_addr; 3683 s32 ret_val = -E1000_ERR_NVM; 3684 u8 count = 0; 3685 3686 if (offset > ICH_FLASH_LINEAR_ADDR_MASK || hw->mac.type < e1000_pch_spt) 3687 return -E1000_ERR_NVM; 3688 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) + 3689 hw->nvm.flash_base_addr); 3690 3691 do { 3692 udelay(1); 3693 /* Steps */ 3694 ret_val = e1000_flash_cycle_init_ich8lan(hw); 3695 if (ret_val) 3696 break; 3697 /* In SPT, This register is in Lan memory space, not flash. 3698 * Therefore, only 32 bit access is supported 3699 */ 3700 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16; 3701 3702 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ 3703 hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1; 3704 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ; 3705 /* In SPT, This register is in Lan memory space, not flash. 3706 * Therefore, only 32 bit access is supported 3707 */ 3708 ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16); 3709 ew32flash(ICH_FLASH_FADDR, flash_linear_addr); 3710 3711 ret_val = 3712 e1000_flash_cycle_ich8lan(hw, 3713 ICH_FLASH_READ_COMMAND_TIMEOUT); 3714 3715 /* Check if FCERR is set to 1, if set to 1, clear it 3716 * and try the whole sequence a few more times, else 3717 * read in (shift in) the Flash Data0, the order is 3718 * least significant byte first msb to lsb 3719 */ 3720 if (!ret_val) { 3721 *data = er32flash(ICH_FLASH_FDATA0); 3722 break; 3723 } else { 3724 /* If we've gotten here, then things are probably 3725 * completely hosed, but if the error condition is 3726 * detected, it won't hurt to give it another try... 3727 * ICH_FLASH_CYCLE_REPEAT_COUNT times. 3728 */ 3729 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 3730 if (hsfsts.hsf_status.flcerr) { 3731 /* Repeat for some time before giving up. */ 3732 continue; 3733 } else if (!hsfsts.hsf_status.flcdone) { 3734 e_dbg("Timeout error - flash cycle did not complete.\n"); 3735 break; 3736 } 3737 } 3738 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); 3739 3740 return ret_val; 3741 } 3742 3743 /** 3744 * e1000_write_nvm_ich8lan - Write word(s) to the NVM 3745 * @hw: pointer to the HW structure 3746 * @offset: The offset (in bytes) of the word(s) to write. 3747 * @words: Size of data to write in words 3748 * @data: Pointer to the word(s) to write at offset. 3749 * 3750 * Writes a byte or word to the NVM using the flash access registers. 3751 **/ 3752 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words, 3753 u16 *data) 3754 { 3755 struct e1000_nvm_info *nvm = &hw->nvm; 3756 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 3757 u16 i; 3758 3759 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) || 3760 (words == 0)) { 3761 e_dbg("nvm parameter(s) out of bounds\n"); 3762 return -E1000_ERR_NVM; 3763 } 3764 3765 nvm->ops.acquire(hw); 3766 3767 for (i = 0; i < words; i++) { 3768 dev_spec->shadow_ram[offset + i].modified = true; 3769 dev_spec->shadow_ram[offset + i].value = data[i]; 3770 } 3771 3772 nvm->ops.release(hw); 3773 3774 return 0; 3775 } 3776 3777 /** 3778 * e1000_update_nvm_checksum_spt - Update the checksum for NVM 3779 * @hw: pointer to the HW structure 3780 * 3781 * The NVM checksum is updated by calling the generic update_nvm_checksum, 3782 * which writes the checksum to the shadow ram. The changes in the shadow 3783 * ram are then committed to the EEPROM by processing each bank at a time 3784 * checking for the modified bit and writing only the pending changes. 3785 * After a successful commit, the shadow ram is cleared and is ready for 3786 * future writes. 3787 **/ 3788 static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw) 3789 { 3790 struct e1000_nvm_info *nvm = &hw->nvm; 3791 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 3792 u32 i, act_offset, new_bank_offset, old_bank_offset, bank; 3793 s32 ret_val; 3794 u32 dword = 0; 3795 3796 ret_val = e1000e_update_nvm_checksum_generic(hw); 3797 if (ret_val) 3798 goto out; 3799 3800 if (nvm->type != e1000_nvm_flash_sw) 3801 goto out; 3802 3803 nvm->ops.acquire(hw); 3804 3805 /* We're writing to the opposite bank so if we're on bank 1, 3806 * write to bank 0 etc. We also need to erase the segment that 3807 * is going to be written 3808 */ 3809 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); 3810 if (ret_val) { 3811 e_dbg("Could not detect valid bank, assuming bank 0\n"); 3812 bank = 0; 3813 } 3814 3815 if (bank == 0) { 3816 new_bank_offset = nvm->flash_bank_size; 3817 old_bank_offset = 0; 3818 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1); 3819 if (ret_val) 3820 goto release; 3821 } else { 3822 old_bank_offset = nvm->flash_bank_size; 3823 new_bank_offset = 0; 3824 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0); 3825 if (ret_val) 3826 goto release; 3827 } 3828 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) { 3829 /* Determine whether to write the value stored 3830 * in the other NVM bank or a modified value stored 3831 * in the shadow RAM 3832 */ 3833 ret_val = e1000_read_flash_dword_ich8lan(hw, 3834 i + old_bank_offset, 3835 &dword); 3836 3837 if (dev_spec->shadow_ram[i].modified) { 3838 dword &= 0xffff0000; 3839 dword |= (dev_spec->shadow_ram[i].value & 0xffff); 3840 } 3841 if (dev_spec->shadow_ram[i + 1].modified) { 3842 dword &= 0x0000ffff; 3843 dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff) 3844 << 16); 3845 } 3846 if (ret_val) 3847 break; 3848 3849 /* If the word is 0x13, then make sure the signature bits 3850 * (15:14) are 11b until the commit has completed. 3851 * This will allow us to write 10b which indicates the 3852 * signature is valid. We want to do this after the write 3853 * has completed so that we don't mark the segment valid 3854 * while the write is still in progress 3855 */ 3856 if (i == E1000_ICH_NVM_SIG_WORD - 1) 3857 dword |= E1000_ICH_NVM_SIG_MASK << 16; 3858 3859 /* Convert offset to bytes. */ 3860 act_offset = (i + new_bank_offset) << 1; 3861 3862 usleep_range(100, 200); 3863 3864 /* Write the data to the new bank. Offset in words */ 3865 act_offset = i + new_bank_offset; 3866 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, 3867 dword); 3868 if (ret_val) 3869 break; 3870 } 3871 3872 /* Don't bother writing the segment valid bits if sector 3873 * programming failed. 3874 */ 3875 if (ret_val) { 3876 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */ 3877 e_dbg("Flash commit failed.\n"); 3878 goto release; 3879 } 3880 3881 /* Finally validate the new segment by setting bit 15:14 3882 * to 10b in word 0x13 , this can be done without an 3883 * erase as well since these bits are 11 to start with 3884 * and we need to change bit 14 to 0b 3885 */ 3886 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD; 3887 3888 /*offset in words but we read dword */ 3889 --act_offset; 3890 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword); 3891 3892 if (ret_val) 3893 goto release; 3894 3895 dword &= 0xBFFFFFFF; 3896 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword); 3897 3898 if (ret_val) 3899 goto release; 3900 3901 /* offset in words but we read dword */ 3902 act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1; 3903 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword); 3904 3905 if (ret_val) 3906 goto release; 3907 3908 dword &= 0x00FFFFFF; 3909 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword); 3910 3911 if (ret_val) 3912 goto release; 3913 3914 /* Great! Everything worked, we can now clear the cached entries. */ 3915 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) { 3916 dev_spec->shadow_ram[i].modified = false; 3917 dev_spec->shadow_ram[i].value = 0xFFFF; 3918 } 3919 3920 release: 3921 nvm->ops.release(hw); 3922 3923 /* Reload the EEPROM, or else modifications will not appear 3924 * until after the next adapter reset. 3925 */ 3926 if (!ret_val) { 3927 nvm->ops.reload(hw); 3928 usleep_range(10000, 11000); 3929 } 3930 3931 out: 3932 if (ret_val) 3933 e_dbg("NVM update error: %d\n", ret_val); 3934 3935 return ret_val; 3936 } 3937 3938 /** 3939 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM 3940 * @hw: pointer to the HW structure 3941 * 3942 * The NVM checksum is updated by calling the generic update_nvm_checksum, 3943 * which writes the checksum to the shadow ram. The changes in the shadow 3944 * ram are then committed to the EEPROM by processing each bank at a time 3945 * checking for the modified bit and writing only the pending changes. 3946 * After a successful commit, the shadow ram is cleared and is ready for 3947 * future writes. 3948 **/ 3949 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw) 3950 { 3951 struct e1000_nvm_info *nvm = &hw->nvm; 3952 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 3953 u32 i, act_offset, new_bank_offset, old_bank_offset, bank; 3954 s32 ret_val; 3955 u16 data = 0; 3956 3957 ret_val = e1000e_update_nvm_checksum_generic(hw); 3958 if (ret_val) 3959 goto out; 3960 3961 if (nvm->type != e1000_nvm_flash_sw) 3962 goto out; 3963 3964 nvm->ops.acquire(hw); 3965 3966 /* We're writing to the opposite bank so if we're on bank 1, 3967 * write to bank 0 etc. We also need to erase the segment that 3968 * is going to be written 3969 */ 3970 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); 3971 if (ret_val) { 3972 e_dbg("Could not detect valid bank, assuming bank 0\n"); 3973 bank = 0; 3974 } 3975 3976 if (bank == 0) { 3977 new_bank_offset = nvm->flash_bank_size; 3978 old_bank_offset = 0; 3979 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1); 3980 if (ret_val) 3981 goto release; 3982 } else { 3983 old_bank_offset = nvm->flash_bank_size; 3984 new_bank_offset = 0; 3985 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0); 3986 if (ret_val) 3987 goto release; 3988 } 3989 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) { 3990 if (dev_spec->shadow_ram[i].modified) { 3991 data = dev_spec->shadow_ram[i].value; 3992 } else { 3993 ret_val = e1000_read_flash_word_ich8lan(hw, i + 3994 old_bank_offset, 3995 &data); 3996 if (ret_val) 3997 break; 3998 } 3999 4000 /* If the word is 0x13, then make sure the signature bits 4001 * (15:14) are 11b until the commit has completed. 4002 * This will allow us to write 10b which indicates the 4003 * signature is valid. We want to do this after the write 4004 * has completed so that we don't mark the segment valid 4005 * while the write is still in progress 4006 */ 4007 if (i == E1000_ICH_NVM_SIG_WORD) 4008 data |= E1000_ICH_NVM_SIG_MASK; 4009 4010 /* Convert offset to bytes. */ 4011 act_offset = (i + new_bank_offset) << 1; 4012 4013 usleep_range(100, 200); 4014 /* Write the bytes to the new bank. */ 4015 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, 4016 act_offset, 4017 (u8)data); 4018 if (ret_val) 4019 break; 4020 4021 usleep_range(100, 200); 4022 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, 4023 act_offset + 1, 4024 (u8)(data >> 8)); 4025 if (ret_val) 4026 break; 4027 } 4028 4029 /* Don't bother writing the segment valid bits if sector 4030 * programming failed. 4031 */ 4032 if (ret_val) { 4033 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */ 4034 e_dbg("Flash commit failed.\n"); 4035 goto release; 4036 } 4037 4038 /* Finally validate the new segment by setting bit 15:14 4039 * to 10b in word 0x13 , this can be done without an 4040 * erase as well since these bits are 11 to start with 4041 * and we need to change bit 14 to 0b 4042 */ 4043 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD; 4044 ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data); 4045 if (ret_val) 4046 goto release; 4047 4048 data &= 0xBFFF; 4049 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, 4050 act_offset * 2 + 1, 4051 (u8)(data >> 8)); 4052 if (ret_val) 4053 goto release; 4054 4055 /* And invalidate the previously valid segment by setting 4056 * its signature word (0x13) high_byte to 0b. This can be 4057 * done without an erase because flash erase sets all bits 4058 * to 1's. We can write 1's to 0's without an erase 4059 */ 4060 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1; 4061 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0); 4062 if (ret_val) 4063 goto release; 4064 4065 /* Great! Everything worked, we can now clear the cached entries. */ 4066 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) { 4067 dev_spec->shadow_ram[i].modified = false; 4068 dev_spec->shadow_ram[i].value = 0xFFFF; 4069 } 4070 4071 release: 4072 nvm->ops.release(hw); 4073 4074 /* Reload the EEPROM, or else modifications will not appear 4075 * until after the next adapter reset. 4076 */ 4077 if (!ret_val) { 4078 nvm->ops.reload(hw); 4079 usleep_range(10000, 11000); 4080 } 4081 4082 out: 4083 if (ret_val) 4084 e_dbg("NVM update error: %d\n", ret_val); 4085 4086 return ret_val; 4087 } 4088 4089 /** 4090 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum 4091 * @hw: pointer to the HW structure 4092 * 4093 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19. 4094 * If the bit is 0, that the EEPROM had been modified, but the checksum was not 4095 * calculated, in which case we need to calculate the checksum and set bit 6. 4096 **/ 4097 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw) 4098 { 4099 s32 ret_val; 4100 u16 data; 4101 u16 word; 4102 u16 valid_csum_mask; 4103 4104 /* Read NVM and check Invalid Image CSUM bit. If this bit is 0, 4105 * the checksum needs to be fixed. This bit is an indication that 4106 * the NVM was prepared by OEM software and did not calculate 4107 * the checksum...a likely scenario. 4108 */ 4109 switch (hw->mac.type) { 4110 case e1000_pch_lpt: 4111 case e1000_pch_spt: 4112 case e1000_pch_cnp: 4113 case e1000_pch_tgp: 4114 case e1000_pch_adp: 4115 case e1000_pch_mtp: 4116 word = NVM_COMPAT; 4117 valid_csum_mask = NVM_COMPAT_VALID_CSUM; 4118 break; 4119 default: 4120 word = NVM_FUTURE_INIT_WORD1; 4121 valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM; 4122 break; 4123 } 4124 4125 ret_val = e1000_read_nvm(hw, word, 1, &data); 4126 if (ret_val) 4127 return ret_val; 4128 4129 if (!(data & valid_csum_mask)) { 4130 e_dbg("NVM Checksum Invalid\n"); 4131 4132 if (hw->mac.type < e1000_pch_cnp) { 4133 data |= valid_csum_mask; 4134 ret_val = e1000_write_nvm(hw, word, 1, &data); 4135 if (ret_val) 4136 return ret_val; 4137 ret_val = e1000e_update_nvm_checksum(hw); 4138 if (ret_val) 4139 return ret_val; 4140 } 4141 } 4142 4143 return e1000e_validate_nvm_checksum_generic(hw); 4144 } 4145 4146 /** 4147 * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only 4148 * @hw: pointer to the HW structure 4149 * 4150 * To prevent malicious write/erase of the NVM, set it to be read-only 4151 * so that the hardware ignores all write/erase cycles of the NVM via 4152 * the flash control registers. The shadow-ram copy of the NVM will 4153 * still be updated, however any updates to this copy will not stick 4154 * across driver reloads. 4155 **/ 4156 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw) 4157 { 4158 struct e1000_nvm_info *nvm = &hw->nvm; 4159 union ich8_flash_protected_range pr0; 4160 union ich8_hws_flash_status hsfsts; 4161 u32 gfpreg; 4162 4163 nvm->ops.acquire(hw); 4164 4165 gfpreg = er32flash(ICH_FLASH_GFPREG); 4166 4167 /* Write-protect GbE Sector of NVM */ 4168 pr0.regval = er32flash(ICH_FLASH_PR0); 4169 pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK; 4170 pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK); 4171 pr0.range.wpe = true; 4172 ew32flash(ICH_FLASH_PR0, pr0.regval); 4173 4174 /* Lock down a subset of GbE Flash Control Registers, e.g. 4175 * PR0 to prevent the write-protection from being lifted. 4176 * Once FLOCKDN is set, the registers protected by it cannot 4177 * be written until FLOCKDN is cleared by a hardware reset. 4178 */ 4179 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 4180 hsfsts.hsf_status.flockdn = true; 4181 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval); 4182 4183 nvm->ops.release(hw); 4184 } 4185 4186 /** 4187 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM 4188 * @hw: pointer to the HW structure 4189 * @offset: The offset (in bytes) of the byte/word to read. 4190 * @size: Size of data to read, 1=byte 2=word 4191 * @data: The byte(s) to write to the NVM. 4192 * 4193 * Writes one/two bytes to the NVM using the flash access registers. 4194 **/ 4195 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, 4196 u8 size, u16 data) 4197 { 4198 union ich8_hws_flash_status hsfsts; 4199 union ich8_hws_flash_ctrl hsflctl; 4200 u32 flash_linear_addr; 4201 u32 flash_data = 0; 4202 s32 ret_val; 4203 u8 count = 0; 4204 4205 if (hw->mac.type >= e1000_pch_spt) { 4206 if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK) 4207 return -E1000_ERR_NVM; 4208 } else { 4209 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK) 4210 return -E1000_ERR_NVM; 4211 } 4212 4213 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) + 4214 hw->nvm.flash_base_addr); 4215 4216 do { 4217 udelay(1); 4218 /* Steps */ 4219 ret_val = e1000_flash_cycle_init_ich8lan(hw); 4220 if (ret_val) 4221 break; 4222 /* In SPT, This register is in Lan memory space, not 4223 * flash. Therefore, only 32 bit access is supported 4224 */ 4225 if (hw->mac.type >= e1000_pch_spt) 4226 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16; 4227 else 4228 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); 4229 4230 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ 4231 hsflctl.hsf_ctrl.fldbcount = size - 1; 4232 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE; 4233 /* In SPT, This register is in Lan memory space, 4234 * not flash. Therefore, only 32 bit access is 4235 * supported 4236 */ 4237 if (hw->mac.type >= e1000_pch_spt) 4238 ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16); 4239 else 4240 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); 4241 4242 ew32flash(ICH_FLASH_FADDR, flash_linear_addr); 4243 4244 if (size == 1) 4245 flash_data = (u32)data & 0x00FF; 4246 else 4247 flash_data = (u32)data; 4248 4249 ew32flash(ICH_FLASH_FDATA0, flash_data); 4250 4251 /* check if FCERR is set to 1 , if set to 1, clear it 4252 * and try the whole sequence a few more times else done 4253 */ 4254 ret_val = 4255 e1000_flash_cycle_ich8lan(hw, 4256 ICH_FLASH_WRITE_COMMAND_TIMEOUT); 4257 if (!ret_val) 4258 break; 4259 4260 /* If we're here, then things are most likely 4261 * completely hosed, but if the error condition 4262 * is detected, it won't hurt to give it another 4263 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times. 4264 */ 4265 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 4266 if (hsfsts.hsf_status.flcerr) 4267 /* Repeat for some time before giving up. */ 4268 continue; 4269 if (!hsfsts.hsf_status.flcdone) { 4270 e_dbg("Timeout error - flash cycle did not complete.\n"); 4271 break; 4272 } 4273 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); 4274 4275 return ret_val; 4276 } 4277 4278 /** 4279 * e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM 4280 * @hw: pointer to the HW structure 4281 * @offset: The offset (in bytes) of the dwords to read. 4282 * @data: The 4 bytes to write to the NVM. 4283 * 4284 * Writes one/two/four bytes to the NVM using the flash access registers. 4285 **/ 4286 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset, 4287 u32 data) 4288 { 4289 union ich8_hws_flash_status hsfsts; 4290 union ich8_hws_flash_ctrl hsflctl; 4291 u32 flash_linear_addr; 4292 s32 ret_val; 4293 u8 count = 0; 4294 4295 if (hw->mac.type >= e1000_pch_spt) { 4296 if (offset > ICH_FLASH_LINEAR_ADDR_MASK) 4297 return -E1000_ERR_NVM; 4298 } 4299 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) + 4300 hw->nvm.flash_base_addr); 4301 do { 4302 udelay(1); 4303 /* Steps */ 4304 ret_val = e1000_flash_cycle_init_ich8lan(hw); 4305 if (ret_val) 4306 break; 4307 4308 /* In SPT, This register is in Lan memory space, not 4309 * flash. Therefore, only 32 bit access is supported 4310 */ 4311 if (hw->mac.type >= e1000_pch_spt) 4312 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) 4313 >> 16; 4314 else 4315 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); 4316 4317 hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1; 4318 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE; 4319 4320 /* In SPT, This register is in Lan memory space, 4321 * not flash. Therefore, only 32 bit access is 4322 * supported 4323 */ 4324 if (hw->mac.type >= e1000_pch_spt) 4325 ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16); 4326 else 4327 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); 4328 4329 ew32flash(ICH_FLASH_FADDR, flash_linear_addr); 4330 4331 ew32flash(ICH_FLASH_FDATA0, data); 4332 4333 /* check if FCERR is set to 1 , if set to 1, clear it 4334 * and try the whole sequence a few more times else done 4335 */ 4336 ret_val = 4337 e1000_flash_cycle_ich8lan(hw, 4338 ICH_FLASH_WRITE_COMMAND_TIMEOUT); 4339 4340 if (!ret_val) 4341 break; 4342 4343 /* If we're here, then things are most likely 4344 * completely hosed, but if the error condition 4345 * is detected, it won't hurt to give it another 4346 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times. 4347 */ 4348 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 4349 4350 if (hsfsts.hsf_status.flcerr) 4351 /* Repeat for some time before giving up. */ 4352 continue; 4353 if (!hsfsts.hsf_status.flcdone) { 4354 e_dbg("Timeout error - flash cycle did not complete.\n"); 4355 break; 4356 } 4357 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); 4358 4359 return ret_val; 4360 } 4361 4362 /** 4363 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM 4364 * @hw: pointer to the HW structure 4365 * @offset: The index of the byte to read. 4366 * @data: The byte to write to the NVM. 4367 * 4368 * Writes a single byte to the NVM using the flash access registers. 4369 **/ 4370 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, 4371 u8 data) 4372 { 4373 u16 word = (u16)data; 4374 4375 return e1000_write_flash_data_ich8lan(hw, offset, 1, word); 4376 } 4377 4378 /** 4379 * e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM 4380 * @hw: pointer to the HW structure 4381 * @offset: The offset of the word to write. 4382 * @dword: The dword to write to the NVM. 4383 * 4384 * Writes a single dword to the NVM using the flash access registers. 4385 * Goes through a retry algorithm before giving up. 4386 **/ 4387 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw, 4388 u32 offset, u32 dword) 4389 { 4390 s32 ret_val; 4391 u16 program_retries; 4392 4393 /* Must convert word offset into bytes. */ 4394 offset <<= 1; 4395 ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword); 4396 4397 if (!ret_val) 4398 return ret_val; 4399 for (program_retries = 0; program_retries < 100; program_retries++) { 4400 e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset); 4401 usleep_range(100, 200); 4402 ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword); 4403 if (!ret_val) 4404 break; 4405 } 4406 if (program_retries == 100) 4407 return -E1000_ERR_NVM; 4408 4409 return 0; 4410 } 4411 4412 /** 4413 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM 4414 * @hw: pointer to the HW structure 4415 * @offset: The offset of the byte to write. 4416 * @byte: The byte to write to the NVM. 4417 * 4418 * Writes a single byte to the NVM using the flash access registers. 4419 * Goes through a retry algorithm before giving up. 4420 **/ 4421 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw, 4422 u32 offset, u8 byte) 4423 { 4424 s32 ret_val; 4425 u16 program_retries; 4426 4427 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte); 4428 if (!ret_val) 4429 return ret_val; 4430 4431 for (program_retries = 0; program_retries < 100; program_retries++) { 4432 e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset); 4433 usleep_range(100, 200); 4434 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte); 4435 if (!ret_val) 4436 break; 4437 } 4438 if (program_retries == 100) 4439 return -E1000_ERR_NVM; 4440 4441 return 0; 4442 } 4443 4444 /** 4445 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM 4446 * @hw: pointer to the HW structure 4447 * @bank: 0 for first bank, 1 for second bank, etc. 4448 * 4449 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based. 4450 * bank N is 4096 * N + flash_reg_addr. 4451 **/ 4452 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank) 4453 { 4454 struct e1000_nvm_info *nvm = &hw->nvm; 4455 union ich8_hws_flash_status hsfsts; 4456 union ich8_hws_flash_ctrl hsflctl; 4457 u32 flash_linear_addr; 4458 /* bank size is in 16bit words - adjust to bytes */ 4459 u32 flash_bank_size = nvm->flash_bank_size * 2; 4460 s32 ret_val; 4461 s32 count = 0; 4462 s32 j, iteration, sector_size; 4463 4464 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 4465 4466 /* Determine HW Sector size: Read BERASE bits of hw flash status 4467 * register 4468 * 00: The Hw sector is 256 bytes, hence we need to erase 16 4469 * consecutive sectors. The start index for the nth Hw sector 4470 * can be calculated as = bank * 4096 + n * 256 4471 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector. 4472 * The start index for the nth Hw sector can be calculated 4473 * as = bank * 4096 4474 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192 4475 * (ich9 only, otherwise error condition) 4476 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536 4477 */ 4478 switch (hsfsts.hsf_status.berasesz) { 4479 case 0: 4480 /* Hw sector size 256 */ 4481 sector_size = ICH_FLASH_SEG_SIZE_256; 4482 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256; 4483 break; 4484 case 1: 4485 sector_size = ICH_FLASH_SEG_SIZE_4K; 4486 iteration = 1; 4487 break; 4488 case 2: 4489 sector_size = ICH_FLASH_SEG_SIZE_8K; 4490 iteration = 1; 4491 break; 4492 case 3: 4493 sector_size = ICH_FLASH_SEG_SIZE_64K; 4494 iteration = 1; 4495 break; 4496 default: 4497 return -E1000_ERR_NVM; 4498 } 4499 4500 /* Start with the base address, then add the sector offset. */ 4501 flash_linear_addr = hw->nvm.flash_base_addr; 4502 flash_linear_addr += (bank) ? flash_bank_size : 0; 4503 4504 for (j = 0; j < iteration; j++) { 4505 do { 4506 u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT; 4507 4508 /* Steps */ 4509 ret_val = e1000_flash_cycle_init_ich8lan(hw); 4510 if (ret_val) 4511 return ret_val; 4512 4513 /* Write a value 11 (block Erase) in Flash 4514 * Cycle field in hw flash control 4515 */ 4516 if (hw->mac.type >= e1000_pch_spt) 4517 hsflctl.regval = 4518 er32flash(ICH_FLASH_HSFSTS) >> 16; 4519 else 4520 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); 4521 4522 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE; 4523 if (hw->mac.type >= e1000_pch_spt) 4524 ew32flash(ICH_FLASH_HSFSTS, 4525 hsflctl.regval << 16); 4526 else 4527 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); 4528 4529 /* Write the last 24 bits of an index within the 4530 * block into Flash Linear address field in Flash 4531 * Address. 4532 */ 4533 flash_linear_addr += (j * sector_size); 4534 ew32flash(ICH_FLASH_FADDR, flash_linear_addr); 4535 4536 ret_val = e1000_flash_cycle_ich8lan(hw, timeout); 4537 if (!ret_val) 4538 break; 4539 4540 /* Check if FCERR is set to 1. If 1, 4541 * clear it and try the whole sequence 4542 * a few more times else Done 4543 */ 4544 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 4545 if (hsfsts.hsf_status.flcerr) 4546 /* repeat for some time before giving up */ 4547 continue; 4548 else if (!hsfsts.hsf_status.flcdone) 4549 return ret_val; 4550 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT); 4551 } 4552 4553 return 0; 4554 } 4555 4556 /** 4557 * e1000_valid_led_default_ich8lan - Set the default LED settings 4558 * @hw: pointer to the HW structure 4559 * @data: Pointer to the LED settings 4560 * 4561 * Reads the LED default settings from the NVM to data. If the NVM LED 4562 * settings is all 0's or F's, set the LED default to a valid LED default 4563 * setting. 4564 **/ 4565 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data) 4566 { 4567 s32 ret_val; 4568 4569 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data); 4570 if (ret_val) { 4571 e_dbg("NVM Read Error\n"); 4572 return ret_val; 4573 } 4574 4575 if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) 4576 *data = ID_LED_DEFAULT_ICH8LAN; 4577 4578 return 0; 4579 } 4580 4581 /** 4582 * e1000_id_led_init_pchlan - store LED configurations 4583 * @hw: pointer to the HW structure 4584 * 4585 * PCH does not control LEDs via the LEDCTL register, rather it uses 4586 * the PHY LED configuration register. 4587 * 4588 * PCH also does not have an "always on" or "always off" mode which 4589 * complicates the ID feature. Instead of using the "on" mode to indicate 4590 * in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()), 4591 * use "link_up" mode. The LEDs will still ID on request if there is no 4592 * link based on logic in e1000_led_[on|off]_pchlan(). 4593 **/ 4594 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw) 4595 { 4596 struct e1000_mac_info *mac = &hw->mac; 4597 s32 ret_val; 4598 const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP; 4599 const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT; 4600 u16 data, i, temp, shift; 4601 4602 /* Get default ID LED modes */ 4603 ret_val = hw->nvm.ops.valid_led_default(hw, &data); 4604 if (ret_val) 4605 return ret_val; 4606 4607 mac->ledctl_default = er32(LEDCTL); 4608 mac->ledctl_mode1 = mac->ledctl_default; 4609 mac->ledctl_mode2 = mac->ledctl_default; 4610 4611 for (i = 0; i < 4; i++) { 4612 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK; 4613 shift = (i * 5); 4614 switch (temp) { 4615 case ID_LED_ON1_DEF2: 4616 case ID_LED_ON1_ON2: 4617 case ID_LED_ON1_OFF2: 4618 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift); 4619 mac->ledctl_mode1 |= (ledctl_on << shift); 4620 break; 4621 case ID_LED_OFF1_DEF2: 4622 case ID_LED_OFF1_ON2: 4623 case ID_LED_OFF1_OFF2: 4624 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift); 4625 mac->ledctl_mode1 |= (ledctl_off << shift); 4626 break; 4627 default: 4628 /* Do nothing */ 4629 break; 4630 } 4631 switch (temp) { 4632 case ID_LED_DEF1_ON2: 4633 case ID_LED_ON1_ON2: 4634 case ID_LED_OFF1_ON2: 4635 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift); 4636 mac->ledctl_mode2 |= (ledctl_on << shift); 4637 break; 4638 case ID_LED_DEF1_OFF2: 4639 case ID_LED_ON1_OFF2: 4640 case ID_LED_OFF1_OFF2: 4641 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift); 4642 mac->ledctl_mode2 |= (ledctl_off << shift); 4643 break; 4644 default: 4645 /* Do nothing */ 4646 break; 4647 } 4648 } 4649 4650 return 0; 4651 } 4652 4653 /** 4654 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width 4655 * @hw: pointer to the HW structure 4656 * 4657 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability 4658 * register, so the bus width is hard coded. 4659 **/ 4660 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw) 4661 { 4662 struct e1000_bus_info *bus = &hw->bus; 4663 s32 ret_val; 4664 4665 ret_val = e1000e_get_bus_info_pcie(hw); 4666 4667 /* ICH devices are "PCI Express"-ish. They have 4668 * a configuration space, but do not contain 4669 * PCI Express Capability registers, so bus width 4670 * must be hardcoded. 4671 */ 4672 if (bus->width == e1000_bus_width_unknown) 4673 bus->width = e1000_bus_width_pcie_x1; 4674 4675 return ret_val; 4676 } 4677 4678 /** 4679 * e1000_reset_hw_ich8lan - Reset the hardware 4680 * @hw: pointer to the HW structure 4681 * 4682 * Does a full reset of the hardware which includes a reset of the PHY and 4683 * MAC. 4684 **/ 4685 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw) 4686 { 4687 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 4688 u16 kum_cfg; 4689 u32 ctrl, reg; 4690 s32 ret_val; 4691 4692 /* Prevent the PCI-E bus from sticking if there is no TLP connection 4693 * on the last TLP read/write transaction when MAC is reset. 4694 */ 4695 ret_val = e1000e_disable_pcie_master(hw); 4696 if (ret_val) 4697 e_dbg("PCI-E Master disable polling has failed.\n"); 4698 4699 e_dbg("Masking off all interrupts\n"); 4700 ew32(IMC, 0xffffffff); 4701 4702 /* Disable the Transmit and Receive units. Then delay to allow 4703 * any pending transactions to complete before we hit the MAC 4704 * with the global reset. 4705 */ 4706 ew32(RCTL, 0); 4707 ew32(TCTL, E1000_TCTL_PSP); 4708 e1e_flush(); 4709 4710 usleep_range(10000, 11000); 4711 4712 /* Workaround for ICH8 bit corruption issue in FIFO memory */ 4713 if (hw->mac.type == e1000_ich8lan) { 4714 /* Set Tx and Rx buffer allocation to 8k apiece. */ 4715 ew32(PBA, E1000_PBA_8K); 4716 /* Set Packet Buffer Size to 16k. */ 4717 ew32(PBS, E1000_PBS_16K); 4718 } 4719 4720 if (hw->mac.type == e1000_pchlan) { 4721 /* Save the NVM K1 bit setting */ 4722 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg); 4723 if (ret_val) 4724 return ret_val; 4725 4726 if (kum_cfg & E1000_NVM_K1_ENABLE) 4727 dev_spec->nvm_k1_enabled = true; 4728 else 4729 dev_spec->nvm_k1_enabled = false; 4730 } 4731 4732 ctrl = er32(CTRL); 4733 4734 if (!hw->phy.ops.check_reset_block(hw)) { 4735 /* Full-chip reset requires MAC and PHY reset at the same 4736 * time to make sure the interface between MAC and the 4737 * external PHY is reset. 4738 */ 4739 ctrl |= E1000_CTRL_PHY_RST; 4740 4741 /* Gate automatic PHY configuration by hardware on 4742 * non-managed 82579 4743 */ 4744 if ((hw->mac.type == e1000_pch2lan) && 4745 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) 4746 e1000_gate_hw_phy_config_ich8lan(hw, true); 4747 } 4748 ret_val = e1000_acquire_swflag_ich8lan(hw); 4749 e_dbg("Issuing a global reset to ich8lan\n"); 4750 ew32(CTRL, (ctrl | E1000_CTRL_RST)); 4751 /* cannot issue a flush here because it hangs the hardware */ 4752 msleep(20); 4753 4754 /* Set Phy Config Counter to 50msec */ 4755 if (hw->mac.type == e1000_pch2lan) { 4756 reg = er32(FEXTNVM3); 4757 reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK; 4758 reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC; 4759 ew32(FEXTNVM3, reg); 4760 } 4761 4762 if (!ret_val) 4763 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state); 4764 4765 if (ctrl & E1000_CTRL_PHY_RST) { 4766 ret_val = hw->phy.ops.get_cfg_done(hw); 4767 if (ret_val) 4768 return ret_val; 4769 4770 ret_val = e1000_post_phy_reset_ich8lan(hw); 4771 if (ret_val) 4772 return ret_val; 4773 } 4774 4775 /* For PCH, this write will make sure that any noise 4776 * will be detected as a CRC error and be dropped rather than show up 4777 * as a bad packet to the DMA engine. 4778 */ 4779 if (hw->mac.type == e1000_pchlan) 4780 ew32(CRC_OFFSET, 0x65656565); 4781 4782 ew32(IMC, 0xffffffff); 4783 er32(ICR); 4784 4785 reg = er32(KABGTXD); 4786 reg |= E1000_KABGTXD_BGSQLBIAS; 4787 ew32(KABGTXD, reg); 4788 4789 return 0; 4790 } 4791 4792 /** 4793 * e1000_init_hw_ich8lan - Initialize the hardware 4794 * @hw: pointer to the HW structure 4795 * 4796 * Prepares the hardware for transmit and receive by doing the following: 4797 * - initialize hardware bits 4798 * - initialize LED identification 4799 * - setup receive address registers 4800 * - setup flow control 4801 * - setup transmit descriptors 4802 * - clear statistics 4803 **/ 4804 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw) 4805 { 4806 struct e1000_mac_info *mac = &hw->mac; 4807 u32 ctrl_ext, txdctl, snoop; 4808 s32 ret_val; 4809 u16 i; 4810 4811 e1000_initialize_hw_bits_ich8lan(hw); 4812 4813 /* Initialize identification LED */ 4814 ret_val = mac->ops.id_led_init(hw); 4815 /* An error is not fatal and we should not stop init due to this */ 4816 if (ret_val) 4817 e_dbg("Error initializing identification LED\n"); 4818 4819 /* Setup the receive address. */ 4820 e1000e_init_rx_addrs(hw, mac->rar_entry_count); 4821 4822 /* Zero out the Multicast HASH table */ 4823 e_dbg("Zeroing the MTA\n"); 4824 for (i = 0; i < mac->mta_reg_count; i++) 4825 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); 4826 4827 /* The 82578 Rx buffer will stall if wakeup is enabled in host and 4828 * the ME. Disable wakeup by clearing the host wakeup bit. 4829 * Reset the phy after disabling host wakeup to reset the Rx buffer. 4830 */ 4831 if (hw->phy.type == e1000_phy_82578) { 4832 e1e_rphy(hw, BM_PORT_GEN_CFG, &i); 4833 i &= ~BM_WUC_HOST_WU_BIT; 4834 e1e_wphy(hw, BM_PORT_GEN_CFG, i); 4835 ret_val = e1000_phy_hw_reset_ich8lan(hw); 4836 if (ret_val) 4837 return ret_val; 4838 } 4839 4840 /* Setup link and flow control */ 4841 ret_val = mac->ops.setup_link(hw); 4842 4843 /* Set the transmit descriptor write-back policy for both queues */ 4844 txdctl = er32(TXDCTL(0)); 4845 txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) | 4846 E1000_TXDCTL_FULL_TX_DESC_WB); 4847 txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) | 4848 E1000_TXDCTL_MAX_TX_DESC_PREFETCH); 4849 ew32(TXDCTL(0), txdctl); 4850 txdctl = er32(TXDCTL(1)); 4851 txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) | 4852 E1000_TXDCTL_FULL_TX_DESC_WB); 4853 txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) | 4854 E1000_TXDCTL_MAX_TX_DESC_PREFETCH); 4855 ew32(TXDCTL(1), txdctl); 4856 4857 /* ICH8 has opposite polarity of no_snoop bits. 4858 * By default, we should use snoop behavior. 4859 */ 4860 if (mac->type == e1000_ich8lan) 4861 snoop = PCIE_ICH8_SNOOP_ALL; 4862 else 4863 snoop = (u32)~(PCIE_NO_SNOOP_ALL); 4864 e1000e_set_pcie_no_snoop(hw, snoop); 4865 4866 ctrl_ext = er32(CTRL_EXT); 4867 ctrl_ext |= E1000_CTRL_EXT_RO_DIS; 4868 ew32(CTRL_EXT, ctrl_ext); 4869 4870 /* Clear all of the statistics registers (clear on read). It is 4871 * important that we do this after we have tried to establish link 4872 * because the symbol error count will increment wildly if there 4873 * is no link. 4874 */ 4875 e1000_clear_hw_cntrs_ich8lan(hw); 4876 4877 return ret_val; 4878 } 4879 4880 /** 4881 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits 4882 * @hw: pointer to the HW structure 4883 * 4884 * Sets/Clears required hardware bits necessary for correctly setting up the 4885 * hardware for transmit and receive. 4886 **/ 4887 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw) 4888 { 4889 u32 reg; 4890 4891 /* Extended Device Control */ 4892 reg = er32(CTRL_EXT); 4893 reg |= BIT(22); 4894 /* Enable PHY low-power state when MAC is at D3 w/o WoL */ 4895 if (hw->mac.type >= e1000_pchlan) 4896 reg |= E1000_CTRL_EXT_PHYPDEN; 4897 ew32(CTRL_EXT, reg); 4898 4899 /* Transmit Descriptor Control 0 */ 4900 reg = er32(TXDCTL(0)); 4901 reg |= BIT(22); 4902 ew32(TXDCTL(0), reg); 4903 4904 /* Transmit Descriptor Control 1 */ 4905 reg = er32(TXDCTL(1)); 4906 reg |= BIT(22); 4907 ew32(TXDCTL(1), reg); 4908 4909 /* Transmit Arbitration Control 0 */ 4910 reg = er32(TARC(0)); 4911 if (hw->mac.type == e1000_ich8lan) 4912 reg |= BIT(28) | BIT(29); 4913 reg |= BIT(23) | BIT(24) | BIT(26) | BIT(27); 4914 ew32(TARC(0), reg); 4915 4916 /* Transmit Arbitration Control 1 */ 4917 reg = er32(TARC(1)); 4918 if (er32(TCTL) & E1000_TCTL_MULR) 4919 reg &= ~BIT(28); 4920 else 4921 reg |= BIT(28); 4922 reg |= BIT(24) | BIT(26) | BIT(30); 4923 ew32(TARC(1), reg); 4924 4925 /* Device Status */ 4926 if (hw->mac.type == e1000_ich8lan) { 4927 reg = er32(STATUS); 4928 reg &= ~BIT(31); 4929 ew32(STATUS, reg); 4930 } 4931 4932 /* work-around descriptor data corruption issue during nfs v2 udp 4933 * traffic, just disable the nfs filtering capability 4934 */ 4935 reg = er32(RFCTL); 4936 reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS); 4937 4938 /* Disable IPv6 extension header parsing because some malformed 4939 * IPv6 headers can hang the Rx. 4940 */ 4941 if (hw->mac.type == e1000_ich8lan) 4942 reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS); 4943 ew32(RFCTL, reg); 4944 4945 /* Enable ECC on Lynxpoint */ 4946 if (hw->mac.type >= e1000_pch_lpt) { 4947 reg = er32(PBECCSTS); 4948 reg |= E1000_PBECCSTS_ECC_ENABLE; 4949 ew32(PBECCSTS, reg); 4950 4951 reg = er32(CTRL); 4952 reg |= E1000_CTRL_MEHE; 4953 ew32(CTRL, reg); 4954 } 4955 } 4956 4957 /** 4958 * e1000_setup_link_ich8lan - Setup flow control and link settings 4959 * @hw: pointer to the HW structure 4960 * 4961 * Determines which flow control settings to use, then configures flow 4962 * control. Calls the appropriate media-specific link configuration 4963 * function. Assuming the adapter has a valid link partner, a valid link 4964 * should be established. Assumes the hardware has previously been reset 4965 * and the transmitter and receiver are not enabled. 4966 **/ 4967 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw) 4968 { 4969 s32 ret_val; 4970 4971 if (hw->phy.ops.check_reset_block(hw)) 4972 return 0; 4973 4974 /* ICH parts do not have a word in the NVM to determine 4975 * the default flow control setting, so we explicitly 4976 * set it to full. 4977 */ 4978 if (hw->fc.requested_mode == e1000_fc_default) { 4979 /* Workaround h/w hang when Tx flow control enabled */ 4980 if (hw->mac.type == e1000_pchlan) 4981 hw->fc.requested_mode = e1000_fc_rx_pause; 4982 else 4983 hw->fc.requested_mode = e1000_fc_full; 4984 } 4985 4986 /* Save off the requested flow control mode for use later. Depending 4987 * on the link partner's capabilities, we may or may not use this mode. 4988 */ 4989 hw->fc.current_mode = hw->fc.requested_mode; 4990 4991 e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode); 4992 4993 /* Continue to configure the copper link. */ 4994 ret_val = hw->mac.ops.setup_physical_interface(hw); 4995 if (ret_val) 4996 return ret_val; 4997 4998 ew32(FCTTV, hw->fc.pause_time); 4999 if ((hw->phy.type == e1000_phy_82578) || 5000 (hw->phy.type == e1000_phy_82579) || 5001 (hw->phy.type == e1000_phy_i217) || 5002 (hw->phy.type == e1000_phy_82577)) { 5003 ew32(FCRTV_PCH, hw->fc.refresh_time); 5004 5005 ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27), 5006 hw->fc.pause_time); 5007 if (ret_val) 5008 return ret_val; 5009 } 5010 5011 return e1000e_set_fc_watermarks(hw); 5012 } 5013 5014 /** 5015 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface 5016 * @hw: pointer to the HW structure 5017 * 5018 * Configures the kumeran interface to the PHY to wait the appropriate time 5019 * when polling the PHY, then call the generic setup_copper_link to finish 5020 * configuring the copper link. 5021 **/ 5022 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw) 5023 { 5024 u32 ctrl; 5025 s32 ret_val; 5026 u16 reg_data; 5027 5028 ctrl = er32(CTRL); 5029 ctrl |= E1000_CTRL_SLU; 5030 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); 5031 ew32(CTRL, ctrl); 5032 5033 /* Set the mac to wait the maximum time between each iteration 5034 * and increase the max iterations when polling the phy; 5035 * this fixes erroneous timeouts at 10Mbps. 5036 */ 5037 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF); 5038 if (ret_val) 5039 return ret_val; 5040 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM, 5041 ®_data); 5042 if (ret_val) 5043 return ret_val; 5044 reg_data |= 0x3F; 5045 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM, 5046 reg_data); 5047 if (ret_val) 5048 return ret_val; 5049 5050 switch (hw->phy.type) { 5051 case e1000_phy_igp_3: 5052 ret_val = e1000e_copper_link_setup_igp(hw); 5053 if (ret_val) 5054 return ret_val; 5055 break; 5056 case e1000_phy_bm: 5057 case e1000_phy_82578: 5058 ret_val = e1000e_copper_link_setup_m88(hw); 5059 if (ret_val) 5060 return ret_val; 5061 break; 5062 case e1000_phy_82577: 5063 case e1000_phy_82579: 5064 ret_val = e1000_copper_link_setup_82577(hw); 5065 if (ret_val) 5066 return ret_val; 5067 break; 5068 case e1000_phy_ife: 5069 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, ®_data); 5070 if (ret_val) 5071 return ret_val; 5072 5073 reg_data &= ~IFE_PMC_AUTO_MDIX; 5074 5075 switch (hw->phy.mdix) { 5076 case 1: 5077 reg_data &= ~IFE_PMC_FORCE_MDIX; 5078 break; 5079 case 2: 5080 reg_data |= IFE_PMC_FORCE_MDIX; 5081 break; 5082 case 0: 5083 default: 5084 reg_data |= IFE_PMC_AUTO_MDIX; 5085 break; 5086 } 5087 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data); 5088 if (ret_val) 5089 return ret_val; 5090 break; 5091 default: 5092 break; 5093 } 5094 5095 return e1000e_setup_copper_link(hw); 5096 } 5097 5098 /** 5099 * e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface 5100 * @hw: pointer to the HW structure 5101 * 5102 * Calls the PHY specific link setup function and then calls the 5103 * generic setup_copper_link to finish configuring the link for 5104 * Lynxpoint PCH devices 5105 **/ 5106 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw) 5107 { 5108 u32 ctrl; 5109 s32 ret_val; 5110 5111 ctrl = er32(CTRL); 5112 ctrl |= E1000_CTRL_SLU; 5113 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); 5114 ew32(CTRL, ctrl); 5115 5116 ret_val = e1000_copper_link_setup_82577(hw); 5117 if (ret_val) 5118 return ret_val; 5119 5120 return e1000e_setup_copper_link(hw); 5121 } 5122 5123 /** 5124 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex 5125 * @hw: pointer to the HW structure 5126 * @speed: pointer to store current link speed 5127 * @duplex: pointer to store the current link duplex 5128 * 5129 * Calls the generic get_speed_and_duplex to retrieve the current link 5130 * information and then calls the Kumeran lock loss workaround for links at 5131 * gigabit speeds. 5132 **/ 5133 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed, 5134 u16 *duplex) 5135 { 5136 s32 ret_val; 5137 5138 ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex); 5139 if (ret_val) 5140 return ret_val; 5141 5142 if ((hw->mac.type == e1000_ich8lan) && 5143 (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) { 5144 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw); 5145 } 5146 5147 return ret_val; 5148 } 5149 5150 /** 5151 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround 5152 * @hw: pointer to the HW structure 5153 * 5154 * Work-around for 82566 Kumeran PCS lock loss: 5155 * On link status change (i.e. PCI reset, speed change) and link is up and 5156 * speed is gigabit- 5157 * 0) if workaround is optionally disabled do nothing 5158 * 1) wait 1ms for Kumeran link to come up 5159 * 2) check Kumeran Diagnostic register PCS lock loss bit 5160 * 3) if not set the link is locked (all is good), otherwise... 5161 * 4) reset the PHY 5162 * 5) repeat up to 10 times 5163 * Note: this is only called for IGP3 copper when speed is 1gb. 5164 **/ 5165 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw) 5166 { 5167 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 5168 u32 phy_ctrl; 5169 s32 ret_val; 5170 u16 i, data; 5171 bool link; 5172 5173 if (!dev_spec->kmrn_lock_loss_workaround_enabled) 5174 return 0; 5175 5176 /* Make sure link is up before proceeding. If not just return. 5177 * Attempting this while link is negotiating fouled up link 5178 * stability 5179 */ 5180 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); 5181 if (!link) 5182 return 0; 5183 5184 for (i = 0; i < 10; i++) { 5185 /* read once to clear */ 5186 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data); 5187 if (ret_val) 5188 return ret_val; 5189 /* and again to get new status */ 5190 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data); 5191 if (ret_val) 5192 return ret_val; 5193 5194 /* check for PCS lock */ 5195 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS)) 5196 return 0; 5197 5198 /* Issue PHY reset */ 5199 e1000_phy_hw_reset(hw); 5200 mdelay(5); 5201 } 5202 /* Disable GigE link negotiation */ 5203 phy_ctrl = er32(PHY_CTRL); 5204 phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE | 5205 E1000_PHY_CTRL_NOND0A_GBE_DISABLE); 5206 ew32(PHY_CTRL, phy_ctrl); 5207 5208 /* Call gig speed drop workaround on Gig disable before accessing 5209 * any PHY registers 5210 */ 5211 e1000e_gig_downshift_workaround_ich8lan(hw); 5212 5213 /* unable to acquire PCS lock */ 5214 return -E1000_ERR_PHY; 5215 } 5216 5217 /** 5218 * e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state 5219 * @hw: pointer to the HW structure 5220 * @state: boolean value used to set the current Kumeran workaround state 5221 * 5222 * If ICH8, set the current Kumeran workaround state (enabled - true 5223 * /disabled - false). 5224 **/ 5225 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw, 5226 bool state) 5227 { 5228 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 5229 5230 if (hw->mac.type != e1000_ich8lan) { 5231 e_dbg("Workaround applies to ICH8 only.\n"); 5232 return; 5233 } 5234 5235 dev_spec->kmrn_lock_loss_workaround_enabled = state; 5236 } 5237 5238 /** 5239 * e1000e_igp3_phy_powerdown_workaround_ich8lan - Power down workaround on D3 5240 * @hw: pointer to the HW structure 5241 * 5242 * Workaround for 82566 power-down on D3 entry: 5243 * 1) disable gigabit link 5244 * 2) write VR power-down enable 5245 * 3) read it back 5246 * Continue if successful, else issue LCD reset and repeat 5247 **/ 5248 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw) 5249 { 5250 u32 reg; 5251 u16 data; 5252 u8 retry = 0; 5253 5254 if (hw->phy.type != e1000_phy_igp_3) 5255 return; 5256 5257 /* Try the workaround twice (if needed) */ 5258 do { 5259 /* Disable link */ 5260 reg = er32(PHY_CTRL); 5261 reg |= (E1000_PHY_CTRL_GBE_DISABLE | 5262 E1000_PHY_CTRL_NOND0A_GBE_DISABLE); 5263 ew32(PHY_CTRL, reg); 5264 5265 /* Call gig speed drop workaround on Gig disable before 5266 * accessing any PHY registers 5267 */ 5268 if (hw->mac.type == e1000_ich8lan) 5269 e1000e_gig_downshift_workaround_ich8lan(hw); 5270 5271 /* Write VR power-down enable */ 5272 e1e_rphy(hw, IGP3_VR_CTRL, &data); 5273 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK; 5274 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN); 5275 5276 /* Read it back and test */ 5277 e1e_rphy(hw, IGP3_VR_CTRL, &data); 5278 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK; 5279 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry) 5280 break; 5281 5282 /* Issue PHY reset and repeat at most one more time */ 5283 reg = er32(CTRL); 5284 ew32(CTRL, reg | E1000_CTRL_PHY_RST); 5285 retry++; 5286 } while (retry); 5287 } 5288 5289 /** 5290 * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working 5291 * @hw: pointer to the HW structure 5292 * 5293 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC), 5294 * LPLU, Gig disable, MDIC PHY reset): 5295 * 1) Set Kumeran Near-end loopback 5296 * 2) Clear Kumeran Near-end loopback 5297 * Should only be called for ICH8[m] devices with any 1G Phy. 5298 **/ 5299 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw) 5300 { 5301 s32 ret_val; 5302 u16 reg_data; 5303 5304 if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife)) 5305 return; 5306 5307 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, 5308 ®_data); 5309 if (ret_val) 5310 return; 5311 reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK; 5312 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, 5313 reg_data); 5314 if (ret_val) 5315 return; 5316 reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK; 5317 e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data); 5318 } 5319 5320 /** 5321 * e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx 5322 * @hw: pointer to the HW structure 5323 * 5324 * During S0 to Sx transition, it is possible the link remains at gig 5325 * instead of negotiating to a lower speed. Before going to Sx, set 5326 * 'Gig Disable' to force link speed negotiation to a lower speed based on 5327 * the LPLU setting in the NVM or custom setting. For PCH and newer parts, 5328 * the OEM bits PHY register (LED, GbE disable and LPLU configurations) also 5329 * needs to be written. 5330 * Parts that support (and are linked to a partner which support) EEE in 5331 * 100Mbps should disable LPLU since 100Mbps w/ EEE requires less power 5332 * than 10Mbps w/o EEE. 5333 **/ 5334 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw) 5335 { 5336 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 5337 u32 phy_ctrl; 5338 s32 ret_val; 5339 5340 phy_ctrl = er32(PHY_CTRL); 5341 phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE; 5342 5343 if (hw->phy.type == e1000_phy_i217) { 5344 u16 phy_reg, device_id = hw->adapter->pdev->device; 5345 5346 if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) || 5347 (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) || 5348 (device_id == E1000_DEV_ID_PCH_I218_LM3) || 5349 (device_id == E1000_DEV_ID_PCH_I218_V3) || 5350 (hw->mac.type >= e1000_pch_spt)) { 5351 u32 fextnvm6 = er32(FEXTNVM6); 5352 5353 ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK); 5354 } 5355 5356 ret_val = hw->phy.ops.acquire(hw); 5357 if (ret_val) 5358 goto out; 5359 5360 if (!dev_spec->eee_disable) { 5361 u16 eee_advert; 5362 5363 ret_val = 5364 e1000_read_emi_reg_locked(hw, 5365 I217_EEE_ADVERTISEMENT, 5366 &eee_advert); 5367 if (ret_val) 5368 goto release; 5369 5370 /* Disable LPLU if both link partners support 100BaseT 5371 * EEE and 100Full is advertised on both ends of the 5372 * link, and enable Auto Enable LPI since there will 5373 * be no driver to enable LPI while in Sx. 5374 */ 5375 if ((eee_advert & I82579_EEE_100_SUPPORTED) && 5376 (dev_spec->eee_lp_ability & 5377 I82579_EEE_100_SUPPORTED) && 5378 (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) { 5379 phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU | 5380 E1000_PHY_CTRL_NOND0A_LPLU); 5381 5382 /* Set Auto Enable LPI after link up */ 5383 e1e_rphy_locked(hw, 5384 I217_LPI_GPIO_CTRL, &phy_reg); 5385 phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI; 5386 e1e_wphy_locked(hw, 5387 I217_LPI_GPIO_CTRL, phy_reg); 5388 } 5389 } 5390 5391 /* For i217 Intel Rapid Start Technology support, 5392 * when the system is going into Sx and no manageability engine 5393 * is present, the driver must configure proxy to reset only on 5394 * power good. LPI (Low Power Idle) state must also reset only 5395 * on power good, as well as the MTA (Multicast table array). 5396 * The SMBus release must also be disabled on LCD reset. 5397 */ 5398 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) { 5399 /* Enable proxy to reset only on power good. */ 5400 e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg); 5401 phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE; 5402 e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg); 5403 5404 /* Set bit enable LPI (EEE) to reset only on 5405 * power good. 5406 */ 5407 e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg); 5408 phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET; 5409 e1e_wphy_locked(hw, I217_SxCTRL, phy_reg); 5410 5411 /* Disable the SMB release on LCD reset. */ 5412 e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg); 5413 phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE; 5414 e1e_wphy_locked(hw, I217_MEMPWR, phy_reg); 5415 } 5416 5417 /* Enable MTA to reset for Intel Rapid Start Technology 5418 * Support 5419 */ 5420 e1e_rphy_locked(hw, I217_CGFREG, &phy_reg); 5421 phy_reg |= I217_CGFREG_ENABLE_MTA_RESET; 5422 e1e_wphy_locked(hw, I217_CGFREG, phy_reg); 5423 5424 release: 5425 hw->phy.ops.release(hw); 5426 } 5427 out: 5428 ew32(PHY_CTRL, phy_ctrl); 5429 5430 if (hw->mac.type == e1000_ich8lan) 5431 e1000e_gig_downshift_workaround_ich8lan(hw); 5432 5433 if (hw->mac.type >= e1000_pchlan) { 5434 e1000_oem_bits_config_ich8lan(hw, false); 5435 5436 /* Reset PHY to activate OEM bits on 82577/8 */ 5437 if (hw->mac.type == e1000_pchlan) 5438 e1000e_phy_hw_reset_generic(hw); 5439 5440 ret_val = hw->phy.ops.acquire(hw); 5441 if (ret_val) 5442 return; 5443 e1000_write_smbus_addr(hw); 5444 hw->phy.ops.release(hw); 5445 } 5446 } 5447 5448 /** 5449 * e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0 5450 * @hw: pointer to the HW structure 5451 * 5452 * During Sx to S0 transitions on non-managed devices or managed devices 5453 * on which PHY resets are not blocked, if the PHY registers cannot be 5454 * accessed properly by the s/w toggle the LANPHYPC value to power cycle 5455 * the PHY. 5456 * On i217, setup Intel Rapid Start Technology. 5457 **/ 5458 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw) 5459 { 5460 s32 ret_val; 5461 5462 if (hw->mac.type < e1000_pch2lan) 5463 return; 5464 5465 ret_val = e1000_init_phy_workarounds_pchlan(hw); 5466 if (ret_val) { 5467 e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val); 5468 return; 5469 } 5470 5471 /* For i217 Intel Rapid Start Technology support when the system 5472 * is transitioning from Sx and no manageability engine is present 5473 * configure SMBus to restore on reset, disable proxy, and enable 5474 * the reset on MTA (Multicast table array). 5475 */ 5476 if (hw->phy.type == e1000_phy_i217) { 5477 u16 phy_reg; 5478 5479 ret_val = hw->phy.ops.acquire(hw); 5480 if (ret_val) { 5481 e_dbg("Failed to setup iRST\n"); 5482 return; 5483 } 5484 5485 /* Clear Auto Enable LPI after link up */ 5486 e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg); 5487 phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI; 5488 e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg); 5489 5490 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) { 5491 /* Restore clear on SMB if no manageability engine 5492 * is present 5493 */ 5494 ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg); 5495 if (ret_val) 5496 goto release; 5497 phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE; 5498 e1e_wphy_locked(hw, I217_MEMPWR, phy_reg); 5499 5500 /* Disable Proxy */ 5501 e1e_wphy_locked(hw, I217_PROXY_CTRL, 0); 5502 } 5503 /* Enable reset on MTA */ 5504 ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg); 5505 if (ret_val) 5506 goto release; 5507 phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET; 5508 e1e_wphy_locked(hw, I217_CGFREG, phy_reg); 5509 release: 5510 if (ret_val) 5511 e_dbg("Error %d in resume workarounds\n", ret_val); 5512 hw->phy.ops.release(hw); 5513 } 5514 } 5515 5516 /** 5517 * e1000_cleanup_led_ich8lan - Restore the default LED operation 5518 * @hw: pointer to the HW structure 5519 * 5520 * Return the LED back to the default configuration. 5521 **/ 5522 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw) 5523 { 5524 if (hw->phy.type == e1000_phy_ife) 5525 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0); 5526 5527 ew32(LEDCTL, hw->mac.ledctl_default); 5528 return 0; 5529 } 5530 5531 /** 5532 * e1000_led_on_ich8lan - Turn LEDs on 5533 * @hw: pointer to the HW structure 5534 * 5535 * Turn on the LEDs. 5536 **/ 5537 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw) 5538 { 5539 if (hw->phy.type == e1000_phy_ife) 5540 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 5541 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON)); 5542 5543 ew32(LEDCTL, hw->mac.ledctl_mode2); 5544 return 0; 5545 } 5546 5547 /** 5548 * e1000_led_off_ich8lan - Turn LEDs off 5549 * @hw: pointer to the HW structure 5550 * 5551 * Turn off the LEDs. 5552 **/ 5553 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw) 5554 { 5555 if (hw->phy.type == e1000_phy_ife) 5556 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 5557 (IFE_PSCL_PROBE_MODE | 5558 IFE_PSCL_PROBE_LEDS_OFF)); 5559 5560 ew32(LEDCTL, hw->mac.ledctl_mode1); 5561 return 0; 5562 } 5563 5564 /** 5565 * e1000_setup_led_pchlan - Configures SW controllable LED 5566 * @hw: pointer to the HW structure 5567 * 5568 * This prepares the SW controllable LED for use. 5569 **/ 5570 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw) 5571 { 5572 return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1); 5573 } 5574 5575 /** 5576 * e1000_cleanup_led_pchlan - Restore the default LED operation 5577 * @hw: pointer to the HW structure 5578 * 5579 * Return the LED back to the default configuration. 5580 **/ 5581 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw) 5582 { 5583 return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default); 5584 } 5585 5586 /** 5587 * e1000_led_on_pchlan - Turn LEDs on 5588 * @hw: pointer to the HW structure 5589 * 5590 * Turn on the LEDs. 5591 **/ 5592 static s32 e1000_led_on_pchlan(struct e1000_hw *hw) 5593 { 5594 u16 data = (u16)hw->mac.ledctl_mode2; 5595 u32 i, led; 5596 5597 /* If no link, then turn LED on by setting the invert bit 5598 * for each LED that's mode is "link_up" in ledctl_mode2. 5599 */ 5600 if (!(er32(STATUS) & E1000_STATUS_LU)) { 5601 for (i = 0; i < 3; i++) { 5602 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK; 5603 if ((led & E1000_PHY_LED0_MODE_MASK) != 5604 E1000_LEDCTL_MODE_LINK_UP) 5605 continue; 5606 if (led & E1000_PHY_LED0_IVRT) 5607 data &= ~(E1000_PHY_LED0_IVRT << (i * 5)); 5608 else 5609 data |= (E1000_PHY_LED0_IVRT << (i * 5)); 5610 } 5611 } 5612 5613 return e1e_wphy(hw, HV_LED_CONFIG, data); 5614 } 5615 5616 /** 5617 * e1000_led_off_pchlan - Turn LEDs off 5618 * @hw: pointer to the HW structure 5619 * 5620 * Turn off the LEDs. 5621 **/ 5622 static s32 e1000_led_off_pchlan(struct e1000_hw *hw) 5623 { 5624 u16 data = (u16)hw->mac.ledctl_mode1; 5625 u32 i, led; 5626 5627 /* If no link, then turn LED off by clearing the invert bit 5628 * for each LED that's mode is "link_up" in ledctl_mode1. 5629 */ 5630 if (!(er32(STATUS) & E1000_STATUS_LU)) { 5631 for (i = 0; i < 3; i++) { 5632 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK; 5633 if ((led & E1000_PHY_LED0_MODE_MASK) != 5634 E1000_LEDCTL_MODE_LINK_UP) 5635 continue; 5636 if (led & E1000_PHY_LED0_IVRT) 5637 data &= ~(E1000_PHY_LED0_IVRT << (i * 5)); 5638 else 5639 data |= (E1000_PHY_LED0_IVRT << (i * 5)); 5640 } 5641 } 5642 5643 return e1e_wphy(hw, HV_LED_CONFIG, data); 5644 } 5645 5646 /** 5647 * e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset 5648 * @hw: pointer to the HW structure 5649 * 5650 * Read appropriate register for the config done bit for completion status 5651 * and configure the PHY through s/w for EEPROM-less parts. 5652 * 5653 * NOTE: some silicon which is EEPROM-less will fail trying to read the 5654 * config done bit, so only an error is logged and continues. If we were 5655 * to return with error, EEPROM-less silicon would not be able to be reset 5656 * or change link. 5657 **/ 5658 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw) 5659 { 5660 s32 ret_val = 0; 5661 u32 bank = 0; 5662 u32 status; 5663 5664 e1000e_get_cfg_done_generic(hw); 5665 5666 /* Wait for indication from h/w that it has completed basic config */ 5667 if (hw->mac.type >= e1000_ich10lan) { 5668 e1000_lan_init_done_ich8lan(hw); 5669 } else { 5670 ret_val = e1000e_get_auto_rd_done(hw); 5671 if (ret_val) { 5672 /* When auto config read does not complete, do not 5673 * return with an error. This can happen in situations 5674 * where there is no eeprom and prevents getting link. 5675 */ 5676 e_dbg("Auto Read Done did not complete\n"); 5677 ret_val = 0; 5678 } 5679 } 5680 5681 /* Clear PHY Reset Asserted bit */ 5682 status = er32(STATUS); 5683 if (status & E1000_STATUS_PHYRA) 5684 ew32(STATUS, status & ~E1000_STATUS_PHYRA); 5685 else 5686 e_dbg("PHY Reset Asserted not set - needs delay\n"); 5687 5688 /* If EEPROM is not marked present, init the IGP 3 PHY manually */ 5689 if (hw->mac.type <= e1000_ich9lan) { 5690 if (!(er32(EECD) & E1000_EECD_PRES) && 5691 (hw->phy.type == e1000_phy_igp_3)) { 5692 e1000e_phy_init_script_igp3(hw); 5693 } 5694 } else { 5695 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) { 5696 /* Maybe we should do a basic PHY config */ 5697 e_dbg("EEPROM not present\n"); 5698 ret_val = -E1000_ERR_CONFIG; 5699 } 5700 } 5701 5702 return ret_val; 5703 } 5704 5705 /** 5706 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down 5707 * @hw: pointer to the HW structure 5708 * 5709 * In the case of a PHY power down to save power, or to turn off link during a 5710 * driver unload, or wake on lan is not enabled, remove the link. 5711 **/ 5712 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw) 5713 { 5714 /* If the management interface is not enabled, then power down */ 5715 if (!(hw->mac.ops.check_mng_mode(hw) || 5716 hw->phy.ops.check_reset_block(hw))) 5717 e1000_power_down_phy_copper(hw); 5718 } 5719 5720 /** 5721 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters 5722 * @hw: pointer to the HW structure 5723 * 5724 * Clears hardware counters specific to the silicon family and calls 5725 * clear_hw_cntrs_generic to clear all general purpose counters. 5726 **/ 5727 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw) 5728 { 5729 u16 phy_data; 5730 s32 ret_val; 5731 5732 e1000e_clear_hw_cntrs_base(hw); 5733 5734 er32(ALGNERRC); 5735 er32(RXERRC); 5736 er32(TNCRS); 5737 er32(CEXTERR); 5738 er32(TSCTC); 5739 er32(TSCTFC); 5740 5741 er32(MGTPRC); 5742 er32(MGTPDC); 5743 er32(MGTPTC); 5744 5745 er32(IAC); 5746 er32(ICRXOC); 5747 5748 /* Clear PHY statistics registers */ 5749 if ((hw->phy.type == e1000_phy_82578) || 5750 (hw->phy.type == e1000_phy_82579) || 5751 (hw->phy.type == e1000_phy_i217) || 5752 (hw->phy.type == e1000_phy_82577)) { 5753 ret_val = hw->phy.ops.acquire(hw); 5754 if (ret_val) 5755 return; 5756 ret_val = hw->phy.ops.set_page(hw, 5757 HV_STATS_PAGE << IGP_PAGE_SHIFT); 5758 if (ret_val) 5759 goto release; 5760 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data); 5761 hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data); 5762 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data); 5763 hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data); 5764 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data); 5765 hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data); 5766 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data); 5767 hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data); 5768 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data); 5769 hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data); 5770 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data); 5771 hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data); 5772 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data); 5773 hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data); 5774 release: 5775 hw->phy.ops.release(hw); 5776 } 5777 } 5778 5779 static const struct e1000_mac_operations ich8_mac_ops = { 5780 /* check_mng_mode dependent on mac type */ 5781 .check_for_link = e1000_check_for_copper_link_ich8lan, 5782 /* cleanup_led dependent on mac type */ 5783 .clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan, 5784 .get_bus_info = e1000_get_bus_info_ich8lan, 5785 .set_lan_id = e1000_set_lan_id_single_port, 5786 .get_link_up_info = e1000_get_link_up_info_ich8lan, 5787 /* led_on dependent on mac type */ 5788 /* led_off dependent on mac type */ 5789 .update_mc_addr_list = e1000e_update_mc_addr_list_generic, 5790 .reset_hw = e1000_reset_hw_ich8lan, 5791 .init_hw = e1000_init_hw_ich8lan, 5792 .setup_link = e1000_setup_link_ich8lan, 5793 .setup_physical_interface = e1000_setup_copper_link_ich8lan, 5794 /* id_led_init dependent on mac type */ 5795 .config_collision_dist = e1000e_config_collision_dist_generic, 5796 .rar_set = e1000e_rar_set_generic, 5797 .rar_get_count = e1000e_rar_get_count_generic, 5798 }; 5799 5800 static const struct e1000_phy_operations ich8_phy_ops = { 5801 .acquire = e1000_acquire_swflag_ich8lan, 5802 .check_reset_block = e1000_check_reset_block_ich8lan, 5803 .commit = NULL, 5804 .get_cfg_done = e1000_get_cfg_done_ich8lan, 5805 .get_cable_length = e1000e_get_cable_length_igp_2, 5806 .read_reg = e1000e_read_phy_reg_igp, 5807 .release = e1000_release_swflag_ich8lan, 5808 .reset = e1000_phy_hw_reset_ich8lan, 5809 .set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan, 5810 .set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan, 5811 .write_reg = e1000e_write_phy_reg_igp, 5812 }; 5813 5814 static const struct e1000_nvm_operations ich8_nvm_ops = { 5815 .acquire = e1000_acquire_nvm_ich8lan, 5816 .read = e1000_read_nvm_ich8lan, 5817 .release = e1000_release_nvm_ich8lan, 5818 .reload = e1000e_reload_nvm_generic, 5819 .update = e1000_update_nvm_checksum_ich8lan, 5820 .valid_led_default = e1000_valid_led_default_ich8lan, 5821 .validate = e1000_validate_nvm_checksum_ich8lan, 5822 .write = e1000_write_nvm_ich8lan, 5823 }; 5824 5825 static const struct e1000_nvm_operations spt_nvm_ops = { 5826 .acquire = e1000_acquire_nvm_ich8lan, 5827 .release = e1000_release_nvm_ich8lan, 5828 .read = e1000_read_nvm_spt, 5829 .update = e1000_update_nvm_checksum_spt, 5830 .reload = e1000e_reload_nvm_generic, 5831 .valid_led_default = e1000_valid_led_default_ich8lan, 5832 .validate = e1000_validate_nvm_checksum_ich8lan, 5833 .write = e1000_write_nvm_ich8lan, 5834 }; 5835 5836 const struct e1000_info e1000_ich8_info = { 5837 .mac = e1000_ich8lan, 5838 .flags = FLAG_HAS_WOL 5839 | FLAG_IS_ICH 5840 | FLAG_HAS_CTRLEXT_ON_LOAD 5841 | FLAG_HAS_AMT 5842 | FLAG_HAS_FLASH 5843 | FLAG_APME_IN_WUC, 5844 .pba = 8, 5845 .max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN, 5846 .get_variants = e1000_get_variants_ich8lan, 5847 .mac_ops = &ich8_mac_ops, 5848 .phy_ops = &ich8_phy_ops, 5849 .nvm_ops = &ich8_nvm_ops, 5850 }; 5851 5852 const struct e1000_info e1000_ich9_info = { 5853 .mac = e1000_ich9lan, 5854 .flags = FLAG_HAS_JUMBO_FRAMES 5855 | FLAG_IS_ICH 5856 | FLAG_HAS_WOL 5857 | FLAG_HAS_CTRLEXT_ON_LOAD 5858 | FLAG_HAS_AMT 5859 | FLAG_HAS_FLASH 5860 | FLAG_APME_IN_WUC, 5861 .pba = 18, 5862 .max_hw_frame_size = DEFAULT_JUMBO, 5863 .get_variants = e1000_get_variants_ich8lan, 5864 .mac_ops = &ich8_mac_ops, 5865 .phy_ops = &ich8_phy_ops, 5866 .nvm_ops = &ich8_nvm_ops, 5867 }; 5868 5869 const struct e1000_info e1000_ich10_info = { 5870 .mac = e1000_ich10lan, 5871 .flags = FLAG_HAS_JUMBO_FRAMES 5872 | FLAG_IS_ICH 5873 | FLAG_HAS_WOL 5874 | FLAG_HAS_CTRLEXT_ON_LOAD 5875 | FLAG_HAS_AMT 5876 | FLAG_HAS_FLASH 5877 | FLAG_APME_IN_WUC, 5878 .pba = 18, 5879 .max_hw_frame_size = DEFAULT_JUMBO, 5880 .get_variants = e1000_get_variants_ich8lan, 5881 .mac_ops = &ich8_mac_ops, 5882 .phy_ops = &ich8_phy_ops, 5883 .nvm_ops = &ich8_nvm_ops, 5884 }; 5885 5886 const struct e1000_info e1000_pch_info = { 5887 .mac = e1000_pchlan, 5888 .flags = FLAG_IS_ICH 5889 | FLAG_HAS_WOL 5890 | FLAG_HAS_CTRLEXT_ON_LOAD 5891 | FLAG_HAS_AMT 5892 | FLAG_HAS_FLASH 5893 | FLAG_HAS_JUMBO_FRAMES 5894 | FLAG_DISABLE_FC_PAUSE_TIME /* errata */ 5895 | FLAG_APME_IN_WUC, 5896 .flags2 = FLAG2_HAS_PHY_STATS, 5897 .pba = 26, 5898 .max_hw_frame_size = 4096, 5899 .get_variants = e1000_get_variants_ich8lan, 5900 .mac_ops = &ich8_mac_ops, 5901 .phy_ops = &ich8_phy_ops, 5902 .nvm_ops = &ich8_nvm_ops, 5903 }; 5904 5905 const struct e1000_info e1000_pch2_info = { 5906 .mac = e1000_pch2lan, 5907 .flags = FLAG_IS_ICH 5908 | FLAG_HAS_WOL 5909 | FLAG_HAS_HW_TIMESTAMP 5910 | FLAG_HAS_CTRLEXT_ON_LOAD 5911 | FLAG_HAS_AMT 5912 | FLAG_HAS_FLASH 5913 | FLAG_HAS_JUMBO_FRAMES 5914 | FLAG_APME_IN_WUC, 5915 .flags2 = FLAG2_HAS_PHY_STATS 5916 | FLAG2_HAS_EEE 5917 | FLAG2_CHECK_SYSTIM_OVERFLOW, 5918 .pba = 26, 5919 .max_hw_frame_size = 9022, 5920 .get_variants = e1000_get_variants_ich8lan, 5921 .mac_ops = &ich8_mac_ops, 5922 .phy_ops = &ich8_phy_ops, 5923 .nvm_ops = &ich8_nvm_ops, 5924 }; 5925 5926 const struct e1000_info e1000_pch_lpt_info = { 5927 .mac = e1000_pch_lpt, 5928 .flags = FLAG_IS_ICH 5929 | FLAG_HAS_WOL 5930 | FLAG_HAS_HW_TIMESTAMP 5931 | FLAG_HAS_CTRLEXT_ON_LOAD 5932 | FLAG_HAS_AMT 5933 | FLAG_HAS_FLASH 5934 | FLAG_HAS_JUMBO_FRAMES 5935 | FLAG_APME_IN_WUC, 5936 .flags2 = FLAG2_HAS_PHY_STATS 5937 | FLAG2_HAS_EEE 5938 | FLAG2_CHECK_SYSTIM_OVERFLOW, 5939 .pba = 26, 5940 .max_hw_frame_size = 9022, 5941 .get_variants = e1000_get_variants_ich8lan, 5942 .mac_ops = &ich8_mac_ops, 5943 .phy_ops = &ich8_phy_ops, 5944 .nvm_ops = &ich8_nvm_ops, 5945 }; 5946 5947 const struct e1000_info e1000_pch_spt_info = { 5948 .mac = e1000_pch_spt, 5949 .flags = FLAG_IS_ICH 5950 | FLAG_HAS_WOL 5951 | FLAG_HAS_HW_TIMESTAMP 5952 | FLAG_HAS_CTRLEXT_ON_LOAD 5953 | FLAG_HAS_AMT 5954 | FLAG_HAS_FLASH 5955 | FLAG_HAS_JUMBO_FRAMES 5956 | FLAG_APME_IN_WUC, 5957 .flags2 = FLAG2_HAS_PHY_STATS 5958 | FLAG2_HAS_EEE, 5959 .pba = 26, 5960 .max_hw_frame_size = 9022, 5961 .get_variants = e1000_get_variants_ich8lan, 5962 .mac_ops = &ich8_mac_ops, 5963 .phy_ops = &ich8_phy_ops, 5964 .nvm_ops = &spt_nvm_ops, 5965 }; 5966 5967 const struct e1000_info e1000_pch_cnp_info = { 5968 .mac = e1000_pch_cnp, 5969 .flags = FLAG_IS_ICH 5970 | FLAG_HAS_WOL 5971 | FLAG_HAS_HW_TIMESTAMP 5972 | FLAG_HAS_CTRLEXT_ON_LOAD 5973 | FLAG_HAS_AMT 5974 | FLAG_HAS_FLASH 5975 | FLAG_HAS_JUMBO_FRAMES 5976 | FLAG_APME_IN_WUC, 5977 .flags2 = FLAG2_HAS_PHY_STATS 5978 | FLAG2_HAS_EEE, 5979 .pba = 26, 5980 .max_hw_frame_size = 9022, 5981 .get_variants = e1000_get_variants_ich8lan, 5982 .mac_ops = &ich8_mac_ops, 5983 .phy_ops = &ich8_phy_ops, 5984 .nvm_ops = &spt_nvm_ops, 5985 }; 5986