1 /* Intel PRO/1000 Linux driver
2  * Copyright(c) 1999 - 2014 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * The full GNU General Public License is included in this distribution in
14  * the file called "COPYING".
15  *
16  * Contact Information:
17  * Linux NICS <linux.nics@intel.com>
18  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
20  */
21 
22 /* 82562G 10/100 Network Connection
23  * 82562G-2 10/100 Network Connection
24  * 82562GT 10/100 Network Connection
25  * 82562GT-2 10/100 Network Connection
26  * 82562V 10/100 Network Connection
27  * 82562V-2 10/100 Network Connection
28  * 82566DC-2 Gigabit Network Connection
29  * 82566DC Gigabit Network Connection
30  * 82566DM-2 Gigabit Network Connection
31  * 82566DM Gigabit Network Connection
32  * 82566MC Gigabit Network Connection
33  * 82566MM Gigabit Network Connection
34  * 82567LM Gigabit Network Connection
35  * 82567LF Gigabit Network Connection
36  * 82567V Gigabit Network Connection
37  * 82567LM-2 Gigabit Network Connection
38  * 82567LF-2 Gigabit Network Connection
39  * 82567V-2 Gigabit Network Connection
40  * 82567LF-3 Gigabit Network Connection
41  * 82567LM-3 Gigabit Network Connection
42  * 82567LM-4 Gigabit Network Connection
43  * 82577LM Gigabit Network Connection
44  * 82577LC Gigabit Network Connection
45  * 82578DM Gigabit Network Connection
46  * 82578DC Gigabit Network Connection
47  * 82579LM Gigabit Network Connection
48  * 82579V Gigabit Network Connection
49  * Ethernet Connection I217-LM
50  * Ethernet Connection I217-V
51  * Ethernet Connection I218-V
52  * Ethernet Connection I218-LM
53  * Ethernet Connection (2) I218-LM
54  * Ethernet Connection (2) I218-V
55  * Ethernet Connection (3) I218-LM
56  * Ethernet Connection (3) I218-V
57  */
58 
59 #include "e1000.h"
60 
61 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
62 /* Offset 04h HSFSTS */
63 union ich8_hws_flash_status {
64 	struct ich8_hsfsts {
65 		u16 flcdone:1;	/* bit 0 Flash Cycle Done */
66 		u16 flcerr:1;	/* bit 1 Flash Cycle Error */
67 		u16 dael:1;	/* bit 2 Direct Access error Log */
68 		u16 berasesz:2;	/* bit 4:3 Sector Erase Size */
69 		u16 flcinprog:1;	/* bit 5 flash cycle in Progress */
70 		u16 reserved1:2;	/* bit 13:6 Reserved */
71 		u16 reserved2:6;	/* bit 13:6 Reserved */
72 		u16 fldesvalid:1;	/* bit 14 Flash Descriptor Valid */
73 		u16 flockdn:1;	/* bit 15 Flash Config Lock-Down */
74 	} hsf_status;
75 	u16 regval;
76 };
77 
78 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
79 /* Offset 06h FLCTL */
80 union ich8_hws_flash_ctrl {
81 	struct ich8_hsflctl {
82 		u16 flcgo:1;	/* 0 Flash Cycle Go */
83 		u16 flcycle:2;	/* 2:1 Flash Cycle */
84 		u16 reserved:5;	/* 7:3 Reserved  */
85 		u16 fldbcount:2;	/* 9:8 Flash Data Byte Count */
86 		u16 flockdn:6;	/* 15:10 Reserved */
87 	} hsf_ctrl;
88 	u16 regval;
89 };
90 
91 /* ICH Flash Region Access Permissions */
92 union ich8_hws_flash_regacc {
93 	struct ich8_flracc {
94 		u32 grra:8;	/* 0:7 GbE region Read Access */
95 		u32 grwa:8;	/* 8:15 GbE region Write Access */
96 		u32 gmrag:8;	/* 23:16 GbE Master Read Access Grant */
97 		u32 gmwag:8;	/* 31:24 GbE Master Write Access Grant */
98 	} hsf_flregacc;
99 	u16 regval;
100 };
101 
102 /* ICH Flash Protected Region */
103 union ich8_flash_protected_range {
104 	struct ich8_pr {
105 		u32 base:13;	/* 0:12 Protected Range Base */
106 		u32 reserved1:2;	/* 13:14 Reserved */
107 		u32 rpe:1;	/* 15 Read Protection Enable */
108 		u32 limit:13;	/* 16:28 Protected Range Limit */
109 		u32 reserved2:2;	/* 29:30 Reserved */
110 		u32 wpe:1;	/* 31 Write Protection Enable */
111 	} range;
112 	u32 regval;
113 };
114 
115 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
116 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
117 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
118 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
119 						u32 offset, u8 byte);
120 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
121 					 u8 *data);
122 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
123 					 u16 *data);
124 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
125 					 u8 size, u16 *data);
126 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
127 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
128 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
129 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
130 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
131 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
132 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
133 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
134 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
135 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
136 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
137 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
138 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
139 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
140 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
141 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
142 static void e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
143 static void e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
144 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
145 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
146 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
147 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
148 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
149 
150 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
151 {
152 	return readw(hw->flash_address + reg);
153 }
154 
155 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
156 {
157 	return readl(hw->flash_address + reg);
158 }
159 
160 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
161 {
162 	writew(val, hw->flash_address + reg);
163 }
164 
165 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
166 {
167 	writel(val, hw->flash_address + reg);
168 }
169 
170 #define er16flash(reg)		__er16flash(hw, (reg))
171 #define er32flash(reg)		__er32flash(hw, (reg))
172 #define ew16flash(reg, val)	__ew16flash(hw, (reg), (val))
173 #define ew32flash(reg, val)	__ew32flash(hw, (reg), (val))
174 
175 /**
176  *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
177  *  @hw: pointer to the HW structure
178  *
179  *  Test access to the PHY registers by reading the PHY ID registers.  If
180  *  the PHY ID is already known (e.g. resume path) compare it with known ID,
181  *  otherwise assume the read PHY ID is correct if it is valid.
182  *
183  *  Assumes the sw/fw/hw semaphore is already acquired.
184  **/
185 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
186 {
187 	u16 phy_reg = 0;
188 	u32 phy_id = 0;
189 	s32 ret_val = 0;
190 	u16 retry_count;
191 	u32 mac_reg = 0;
192 
193 	for (retry_count = 0; retry_count < 2; retry_count++) {
194 		ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
195 		if (ret_val || (phy_reg == 0xFFFF))
196 			continue;
197 		phy_id = (u32)(phy_reg << 16);
198 
199 		ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
200 		if (ret_val || (phy_reg == 0xFFFF)) {
201 			phy_id = 0;
202 			continue;
203 		}
204 		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
205 		break;
206 	}
207 
208 	if (hw->phy.id) {
209 		if (hw->phy.id == phy_id)
210 			goto out;
211 	} else if (phy_id) {
212 		hw->phy.id = phy_id;
213 		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
214 		goto out;
215 	}
216 
217 	/* In case the PHY needs to be in mdio slow mode,
218 	 * set slow mode and try to get the PHY id again.
219 	 */
220 	if (hw->mac.type < e1000_pch_lpt) {
221 		hw->phy.ops.release(hw);
222 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
223 		if (!ret_val)
224 			ret_val = e1000e_get_phy_id(hw);
225 		hw->phy.ops.acquire(hw);
226 	}
227 
228 	if (ret_val)
229 		return false;
230 out:
231 	if (hw->mac.type == e1000_pch_lpt) {
232 		/* Unforce SMBus mode in PHY */
233 		e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
234 		phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
235 		e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
236 
237 		/* Unforce SMBus mode in MAC */
238 		mac_reg = er32(CTRL_EXT);
239 		mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
240 		ew32(CTRL_EXT, mac_reg);
241 	}
242 
243 	return true;
244 }
245 
246 /**
247  *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
248  *  @hw: pointer to the HW structure
249  *
250  *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
251  *  used to reset the PHY to a quiescent state when necessary.
252  **/
253 static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
254 {
255 	u32 mac_reg;
256 
257 	/* Set Phy Config Counter to 50msec */
258 	mac_reg = er32(FEXTNVM3);
259 	mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
260 	mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
261 	ew32(FEXTNVM3, mac_reg);
262 
263 	/* Toggle LANPHYPC Value bit */
264 	mac_reg = er32(CTRL);
265 	mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
266 	mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
267 	ew32(CTRL, mac_reg);
268 	e1e_flush();
269 	usleep_range(10, 20);
270 	mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
271 	ew32(CTRL, mac_reg);
272 	e1e_flush();
273 
274 	if (hw->mac.type < e1000_pch_lpt) {
275 		msleep(50);
276 	} else {
277 		u16 count = 20;
278 
279 		do {
280 			usleep_range(5000, 10000);
281 		} while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
282 
283 		msleep(30);
284 	}
285 }
286 
287 /**
288  *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
289  *  @hw: pointer to the HW structure
290  *
291  *  Workarounds/flow necessary for PHY initialization during driver load
292  *  and resume paths.
293  **/
294 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
295 {
296 	struct e1000_adapter *adapter = hw->adapter;
297 	u32 mac_reg, fwsm = er32(FWSM);
298 	s32 ret_val;
299 
300 	/* Gate automatic PHY configuration by hardware on managed and
301 	 * non-managed 82579 and newer adapters.
302 	 */
303 	e1000_gate_hw_phy_config_ich8lan(hw, true);
304 
305 	/* It is not possible to be certain of the current state of ULP
306 	 * so forcibly disable it.
307 	 */
308 	hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
309 	e1000_disable_ulp_lpt_lp(hw, true);
310 
311 	ret_val = hw->phy.ops.acquire(hw);
312 	if (ret_val) {
313 		e_dbg("Failed to initialize PHY flow\n");
314 		goto out;
315 	}
316 
317 	/* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
318 	 * inaccessible and resetting the PHY is not blocked, toggle the
319 	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
320 	 */
321 	switch (hw->mac.type) {
322 	case e1000_pch_lpt:
323 		if (e1000_phy_is_accessible_pchlan(hw))
324 			break;
325 
326 		/* Before toggling LANPHYPC, see if PHY is accessible by
327 		 * forcing MAC to SMBus mode first.
328 		 */
329 		mac_reg = er32(CTRL_EXT);
330 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
331 		ew32(CTRL_EXT, mac_reg);
332 
333 		/* Wait 50 milliseconds for MAC to finish any retries
334 		 * that it might be trying to perform from previous
335 		 * attempts to acknowledge any phy read requests.
336 		 */
337 		msleep(50);
338 
339 		/* fall-through */
340 	case e1000_pch2lan:
341 		if (e1000_phy_is_accessible_pchlan(hw))
342 			break;
343 
344 		/* fall-through */
345 	case e1000_pchlan:
346 		if ((hw->mac.type == e1000_pchlan) &&
347 		    (fwsm & E1000_ICH_FWSM_FW_VALID))
348 			break;
349 
350 		if (hw->phy.ops.check_reset_block(hw)) {
351 			e_dbg("Required LANPHYPC toggle blocked by ME\n");
352 			ret_val = -E1000_ERR_PHY;
353 			break;
354 		}
355 
356 		/* Toggle LANPHYPC Value bit */
357 		e1000_toggle_lanphypc_pch_lpt(hw);
358 		if (hw->mac.type >= e1000_pch_lpt) {
359 			if (e1000_phy_is_accessible_pchlan(hw))
360 				break;
361 
362 			/* Toggling LANPHYPC brings the PHY out of SMBus mode
363 			 * so ensure that the MAC is also out of SMBus mode
364 			 */
365 			mac_reg = er32(CTRL_EXT);
366 			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
367 			ew32(CTRL_EXT, mac_reg);
368 
369 			if (e1000_phy_is_accessible_pchlan(hw))
370 				break;
371 
372 			ret_val = -E1000_ERR_PHY;
373 		}
374 		break;
375 	default:
376 		break;
377 	}
378 
379 	hw->phy.ops.release(hw);
380 	if (!ret_val) {
381 
382 		/* Check to see if able to reset PHY.  Print error if not */
383 		if (hw->phy.ops.check_reset_block(hw)) {
384 			e_err("Reset blocked by ME\n");
385 			goto out;
386 		}
387 
388 		/* Reset the PHY before any access to it.  Doing so, ensures
389 		 * that the PHY is in a known good state before we read/write
390 		 * PHY registers.  The generic reset is sufficient here,
391 		 * because we haven't determined the PHY type yet.
392 		 */
393 		ret_val = e1000e_phy_hw_reset_generic(hw);
394 		if (ret_val)
395 			goto out;
396 
397 		/* On a successful reset, possibly need to wait for the PHY
398 		 * to quiesce to an accessible state before returning control
399 		 * to the calling function.  If the PHY does not quiesce, then
400 		 * return E1000E_BLK_PHY_RESET, as this is the condition that
401 		 *  the PHY is in.
402 		 */
403 		ret_val = hw->phy.ops.check_reset_block(hw);
404 		if (ret_val)
405 			e_err("ME blocked access to PHY after reset\n");
406 	}
407 
408 out:
409 	/* Ungate automatic PHY configuration on non-managed 82579 */
410 	if ((hw->mac.type == e1000_pch2lan) &&
411 	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
412 		usleep_range(10000, 20000);
413 		e1000_gate_hw_phy_config_ich8lan(hw, false);
414 	}
415 
416 	return ret_val;
417 }
418 
419 /**
420  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
421  *  @hw: pointer to the HW structure
422  *
423  *  Initialize family-specific PHY parameters and function pointers.
424  **/
425 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
426 {
427 	struct e1000_phy_info *phy = &hw->phy;
428 	s32 ret_val;
429 
430 	phy->addr = 1;
431 	phy->reset_delay_us = 100;
432 
433 	phy->ops.set_page = e1000_set_page_igp;
434 	phy->ops.read_reg = e1000_read_phy_reg_hv;
435 	phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
436 	phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
437 	phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
438 	phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
439 	phy->ops.write_reg = e1000_write_phy_reg_hv;
440 	phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
441 	phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
442 	phy->ops.power_up = e1000_power_up_phy_copper;
443 	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
444 	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
445 
446 	phy->id = e1000_phy_unknown;
447 
448 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
449 	if (ret_val)
450 		return ret_val;
451 
452 	if (phy->id == e1000_phy_unknown)
453 		switch (hw->mac.type) {
454 		default:
455 			ret_val = e1000e_get_phy_id(hw);
456 			if (ret_val)
457 				return ret_val;
458 			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
459 				break;
460 			/* fall-through */
461 		case e1000_pch2lan:
462 		case e1000_pch_lpt:
463 			/* In case the PHY needs to be in mdio slow mode,
464 			 * set slow mode and try to get the PHY id again.
465 			 */
466 			ret_val = e1000_set_mdio_slow_mode_hv(hw);
467 			if (ret_val)
468 				return ret_val;
469 			ret_val = e1000e_get_phy_id(hw);
470 			if (ret_val)
471 				return ret_val;
472 			break;
473 		}
474 	phy->type = e1000e_get_phy_type_from_id(phy->id);
475 
476 	switch (phy->type) {
477 	case e1000_phy_82577:
478 	case e1000_phy_82579:
479 	case e1000_phy_i217:
480 		phy->ops.check_polarity = e1000_check_polarity_82577;
481 		phy->ops.force_speed_duplex =
482 		    e1000_phy_force_speed_duplex_82577;
483 		phy->ops.get_cable_length = e1000_get_cable_length_82577;
484 		phy->ops.get_info = e1000_get_phy_info_82577;
485 		phy->ops.commit = e1000e_phy_sw_reset;
486 		break;
487 	case e1000_phy_82578:
488 		phy->ops.check_polarity = e1000_check_polarity_m88;
489 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
490 		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
491 		phy->ops.get_info = e1000e_get_phy_info_m88;
492 		break;
493 	default:
494 		ret_val = -E1000_ERR_PHY;
495 		break;
496 	}
497 
498 	return ret_val;
499 }
500 
501 /**
502  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
503  *  @hw: pointer to the HW structure
504  *
505  *  Initialize family-specific PHY parameters and function pointers.
506  **/
507 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
508 {
509 	struct e1000_phy_info *phy = &hw->phy;
510 	s32 ret_val;
511 	u16 i = 0;
512 
513 	phy->addr = 1;
514 	phy->reset_delay_us = 100;
515 
516 	phy->ops.power_up = e1000_power_up_phy_copper;
517 	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
518 
519 	/* We may need to do this twice - once for IGP and if that fails,
520 	 * we'll set BM func pointers and try again
521 	 */
522 	ret_val = e1000e_determine_phy_address(hw);
523 	if (ret_val) {
524 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
525 		phy->ops.read_reg = e1000e_read_phy_reg_bm;
526 		ret_val = e1000e_determine_phy_address(hw);
527 		if (ret_val) {
528 			e_dbg("Cannot determine PHY addr. Erroring out\n");
529 			return ret_val;
530 		}
531 	}
532 
533 	phy->id = 0;
534 	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
535 	       (i++ < 100)) {
536 		usleep_range(1000, 2000);
537 		ret_val = e1000e_get_phy_id(hw);
538 		if (ret_val)
539 			return ret_val;
540 	}
541 
542 	/* Verify phy id */
543 	switch (phy->id) {
544 	case IGP03E1000_E_PHY_ID:
545 		phy->type = e1000_phy_igp_3;
546 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
547 		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
548 		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
549 		phy->ops.get_info = e1000e_get_phy_info_igp;
550 		phy->ops.check_polarity = e1000_check_polarity_igp;
551 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
552 		break;
553 	case IFE_E_PHY_ID:
554 	case IFE_PLUS_E_PHY_ID:
555 	case IFE_C_E_PHY_ID:
556 		phy->type = e1000_phy_ife;
557 		phy->autoneg_mask = E1000_ALL_NOT_GIG;
558 		phy->ops.get_info = e1000_get_phy_info_ife;
559 		phy->ops.check_polarity = e1000_check_polarity_ife;
560 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
561 		break;
562 	case BME1000_E_PHY_ID:
563 		phy->type = e1000_phy_bm;
564 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
565 		phy->ops.read_reg = e1000e_read_phy_reg_bm;
566 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
567 		phy->ops.commit = e1000e_phy_sw_reset;
568 		phy->ops.get_info = e1000e_get_phy_info_m88;
569 		phy->ops.check_polarity = e1000_check_polarity_m88;
570 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
571 		break;
572 	default:
573 		return -E1000_ERR_PHY;
574 		break;
575 	}
576 
577 	return 0;
578 }
579 
580 /**
581  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
582  *  @hw: pointer to the HW structure
583  *
584  *  Initialize family-specific NVM parameters and function
585  *  pointers.
586  **/
587 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
588 {
589 	struct e1000_nvm_info *nvm = &hw->nvm;
590 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
591 	u32 gfpreg, sector_base_addr, sector_end_addr;
592 	u16 i;
593 
594 	/* Can't read flash registers if the register set isn't mapped. */
595 	if (!hw->flash_address) {
596 		e_dbg("ERROR: Flash registers not mapped\n");
597 		return -E1000_ERR_CONFIG;
598 	}
599 
600 	nvm->type = e1000_nvm_flash_sw;
601 
602 	gfpreg = er32flash(ICH_FLASH_GFPREG);
603 
604 	/* sector_X_addr is a "sector"-aligned address (4096 bytes)
605 	 * Add 1 to sector_end_addr since this sector is included in
606 	 * the overall size.
607 	 */
608 	sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
609 	sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
610 
611 	/* flash_base_addr is byte-aligned */
612 	nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
613 
614 	/* find total size of the NVM, then cut in half since the total
615 	 * size represents two separate NVM banks.
616 	 */
617 	nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
618 				<< FLASH_SECTOR_ADDR_SHIFT);
619 	nvm->flash_bank_size /= 2;
620 	/* Adjust to word count */
621 	nvm->flash_bank_size /= sizeof(u16);
622 
623 	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
624 
625 	/* Clear shadow ram */
626 	for (i = 0; i < nvm->word_size; i++) {
627 		dev_spec->shadow_ram[i].modified = false;
628 		dev_spec->shadow_ram[i].value = 0xFFFF;
629 	}
630 
631 	return 0;
632 }
633 
634 /**
635  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
636  *  @hw: pointer to the HW structure
637  *
638  *  Initialize family-specific MAC parameters and function
639  *  pointers.
640  **/
641 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
642 {
643 	struct e1000_mac_info *mac = &hw->mac;
644 
645 	/* Set media type function pointer */
646 	hw->phy.media_type = e1000_media_type_copper;
647 
648 	/* Set mta register count */
649 	mac->mta_reg_count = 32;
650 	/* Set rar entry count */
651 	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
652 	if (mac->type == e1000_ich8lan)
653 		mac->rar_entry_count--;
654 	/* FWSM register */
655 	mac->has_fwsm = true;
656 	/* ARC subsystem not supported */
657 	mac->arc_subsystem_valid = false;
658 	/* Adaptive IFS supported */
659 	mac->adaptive_ifs = true;
660 
661 	/* LED and other operations */
662 	switch (mac->type) {
663 	case e1000_ich8lan:
664 	case e1000_ich9lan:
665 	case e1000_ich10lan:
666 		/* check management mode */
667 		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
668 		/* ID LED init */
669 		mac->ops.id_led_init = e1000e_id_led_init_generic;
670 		/* blink LED */
671 		mac->ops.blink_led = e1000e_blink_led_generic;
672 		/* setup LED */
673 		mac->ops.setup_led = e1000e_setup_led_generic;
674 		/* cleanup LED */
675 		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
676 		/* turn on/off LED */
677 		mac->ops.led_on = e1000_led_on_ich8lan;
678 		mac->ops.led_off = e1000_led_off_ich8lan;
679 		break;
680 	case e1000_pch2lan:
681 		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
682 		mac->ops.rar_set = e1000_rar_set_pch2lan;
683 		/* fall-through */
684 	case e1000_pch_lpt:
685 	case e1000_pchlan:
686 		/* check management mode */
687 		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
688 		/* ID LED init */
689 		mac->ops.id_led_init = e1000_id_led_init_pchlan;
690 		/* setup LED */
691 		mac->ops.setup_led = e1000_setup_led_pchlan;
692 		/* cleanup LED */
693 		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
694 		/* turn on/off LED */
695 		mac->ops.led_on = e1000_led_on_pchlan;
696 		mac->ops.led_off = e1000_led_off_pchlan;
697 		break;
698 	default:
699 		break;
700 	}
701 
702 	if (mac->type == e1000_pch_lpt) {
703 		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
704 		mac->ops.rar_set = e1000_rar_set_pch_lpt;
705 		mac->ops.setup_physical_interface =
706 		    e1000_setup_copper_link_pch_lpt;
707 	}
708 
709 	/* Enable PCS Lock-loss workaround for ICH8 */
710 	if (mac->type == e1000_ich8lan)
711 		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
712 
713 	return 0;
714 }
715 
716 /**
717  *  __e1000_access_emi_reg_locked - Read/write EMI register
718  *  @hw: pointer to the HW structure
719  *  @addr: EMI address to program
720  *  @data: pointer to value to read/write from/to the EMI address
721  *  @read: boolean flag to indicate read or write
722  *
723  *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
724  **/
725 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
726 					 u16 *data, bool read)
727 {
728 	s32 ret_val;
729 
730 	ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
731 	if (ret_val)
732 		return ret_val;
733 
734 	if (read)
735 		ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
736 	else
737 		ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
738 
739 	return ret_val;
740 }
741 
742 /**
743  *  e1000_read_emi_reg_locked - Read Extended Management Interface register
744  *  @hw: pointer to the HW structure
745  *  @addr: EMI address to program
746  *  @data: value to be read from the EMI address
747  *
748  *  Assumes the SW/FW/HW Semaphore is already acquired.
749  **/
750 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
751 {
752 	return __e1000_access_emi_reg_locked(hw, addr, data, true);
753 }
754 
755 /**
756  *  e1000_write_emi_reg_locked - Write Extended Management Interface register
757  *  @hw: pointer to the HW structure
758  *  @addr: EMI address to program
759  *  @data: value to be written to the EMI address
760  *
761  *  Assumes the SW/FW/HW Semaphore is already acquired.
762  **/
763 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
764 {
765 	return __e1000_access_emi_reg_locked(hw, addr, &data, false);
766 }
767 
768 /**
769  *  e1000_set_eee_pchlan - Enable/disable EEE support
770  *  @hw: pointer to the HW structure
771  *
772  *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
773  *  the link and the EEE capabilities of the link partner.  The LPI Control
774  *  register bits will remain set only if/when link is up.
775  *
776  *  EEE LPI must not be asserted earlier than one second after link is up.
777  *  On 82579, EEE LPI should not be enabled until such time otherwise there
778  *  can be link issues with some switches.  Other devices can have EEE LPI
779  *  enabled immediately upon link up since they have a timer in hardware which
780  *  prevents LPI from being asserted too early.
781  **/
782 s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
783 {
784 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
785 	s32 ret_val;
786 	u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
787 
788 	switch (hw->phy.type) {
789 	case e1000_phy_82579:
790 		lpa = I82579_EEE_LP_ABILITY;
791 		pcs_status = I82579_EEE_PCS_STATUS;
792 		adv_addr = I82579_EEE_ADVERTISEMENT;
793 		break;
794 	case e1000_phy_i217:
795 		lpa = I217_EEE_LP_ABILITY;
796 		pcs_status = I217_EEE_PCS_STATUS;
797 		adv_addr = I217_EEE_ADVERTISEMENT;
798 		break;
799 	default:
800 		return 0;
801 	}
802 
803 	ret_val = hw->phy.ops.acquire(hw);
804 	if (ret_val)
805 		return ret_val;
806 
807 	ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
808 	if (ret_val)
809 		goto release;
810 
811 	/* Clear bits that enable EEE in various speeds */
812 	lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
813 
814 	/* Enable EEE if not disabled by user */
815 	if (!dev_spec->eee_disable) {
816 		/* Save off link partner's EEE ability */
817 		ret_val = e1000_read_emi_reg_locked(hw, lpa,
818 						    &dev_spec->eee_lp_ability);
819 		if (ret_val)
820 			goto release;
821 
822 		/* Read EEE advertisement */
823 		ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
824 		if (ret_val)
825 			goto release;
826 
827 		/* Enable EEE only for speeds in which the link partner is
828 		 * EEE capable and for which we advertise EEE.
829 		 */
830 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
831 			lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
832 
833 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
834 			e1e_rphy_locked(hw, MII_LPA, &data);
835 			if (data & LPA_100FULL)
836 				lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
837 			else
838 				/* EEE is not supported in 100Half, so ignore
839 				 * partner's EEE in 100 ability if full-duplex
840 				 * is not advertised.
841 				 */
842 				dev_spec->eee_lp_ability &=
843 				    ~I82579_EEE_100_SUPPORTED;
844 		}
845 	}
846 
847 	if (hw->phy.type == e1000_phy_82579) {
848 		ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
849 						    &data);
850 		if (ret_val)
851 			goto release;
852 
853 		data &= ~I82579_LPI_100_PLL_SHUT;
854 		ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
855 						     data);
856 	}
857 
858 	/* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
859 	ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
860 	if (ret_val)
861 		goto release;
862 
863 	ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
864 release:
865 	hw->phy.ops.release(hw);
866 
867 	return ret_val;
868 }
869 
870 /**
871  *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
872  *  @hw:   pointer to the HW structure
873  *  @link: link up bool flag
874  *
875  *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
876  *  preventing further DMA write requests.  Workaround the issue by disabling
877  *  the de-assertion of the clock request when in 1Gpbs mode.
878  *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
879  *  speeds in order to avoid Tx hangs.
880  **/
881 static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
882 {
883 	u32 fextnvm6 = er32(FEXTNVM6);
884 	u32 status = er32(STATUS);
885 	s32 ret_val = 0;
886 	u16 reg;
887 
888 	if (link && (status & E1000_STATUS_SPEED_1000)) {
889 		ret_val = hw->phy.ops.acquire(hw);
890 		if (ret_val)
891 			return ret_val;
892 
893 		ret_val =
894 		    e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
895 						&reg);
896 		if (ret_val)
897 			goto release;
898 
899 		ret_val =
900 		    e1000e_write_kmrn_reg_locked(hw,
901 						 E1000_KMRNCTRLSTA_K1_CONFIG,
902 						 reg &
903 						 ~E1000_KMRNCTRLSTA_K1_ENABLE);
904 		if (ret_val)
905 			goto release;
906 
907 		usleep_range(10, 20);
908 
909 		ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
910 
911 		ret_val =
912 		    e1000e_write_kmrn_reg_locked(hw,
913 						 E1000_KMRNCTRLSTA_K1_CONFIG,
914 						 reg);
915 release:
916 		hw->phy.ops.release(hw);
917 	} else {
918 		/* clear FEXTNVM6 bit 8 on link down or 10/100 */
919 		fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
920 
921 		if (!link || ((status & E1000_STATUS_SPEED_100) &&
922 			      (status & E1000_STATUS_FD)))
923 			goto update_fextnvm6;
924 
925 		ret_val = e1e_rphy(hw, I217_INBAND_CTRL, &reg);
926 		if (ret_val)
927 			return ret_val;
928 
929 		/* Clear link status transmit timeout */
930 		reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
931 
932 		if (status & E1000_STATUS_SPEED_100) {
933 			/* Set inband Tx timeout to 5x10us for 100Half */
934 			reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
935 
936 			/* Do not extend the K1 entry latency for 100Half */
937 			fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
938 		} else {
939 			/* Set inband Tx timeout to 50x10us for 10Full/Half */
940 			reg |= 50 <<
941 			    I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
942 
943 			/* Extend the K1 entry latency for 10 Mbps */
944 			fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
945 		}
946 
947 		ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
948 		if (ret_val)
949 			return ret_val;
950 
951 update_fextnvm6:
952 		ew32(FEXTNVM6, fextnvm6);
953 	}
954 
955 	return ret_val;
956 }
957 
958 /**
959  *  e1000_platform_pm_pch_lpt - Set platform power management values
960  *  @hw: pointer to the HW structure
961  *  @link: bool indicating link status
962  *
963  *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
964  *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
965  *  when link is up (which must not exceed the maximum latency supported
966  *  by the platform), otherwise specify there is no LTR requirement.
967  *  Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
968  *  latencies in the LTR Extended Capability Structure in the PCIe Extended
969  *  Capability register set, on this device LTR is set by writing the
970  *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
971  *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
972  *  message to the PMC.
973  **/
974 static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
975 {
976 	u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
977 	    link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
978 	u16 lat_enc = 0;	/* latency encoded */
979 
980 	if (link) {
981 		u16 speed, duplex, scale = 0;
982 		u16 max_snoop, max_nosnoop;
983 		u16 max_ltr_enc;	/* max LTR latency encoded */
984 		s64 lat_ns;	/* latency (ns) */
985 		s64 value;
986 		u32 rxa;
987 
988 		if (!hw->adapter->max_frame_size) {
989 			e_dbg("max_frame_size not set.\n");
990 			return -E1000_ERR_CONFIG;
991 		}
992 
993 		hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
994 		if (!speed) {
995 			e_dbg("Speed not set.\n");
996 			return -E1000_ERR_CONFIG;
997 		}
998 
999 		/* Rx Packet Buffer Allocation size (KB) */
1000 		rxa = er32(PBA) & E1000_PBA_RXA_MASK;
1001 
1002 		/* Determine the maximum latency tolerated by the device.
1003 		 *
1004 		 * Per the PCIe spec, the tolerated latencies are encoded as
1005 		 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1006 		 * a 10-bit value (0-1023) to provide a range from 1 ns to
1007 		 * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1008 		 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1009 		 */
1010 		lat_ns = ((s64)rxa * 1024 -
1011 			  (2 * (s64)hw->adapter->max_frame_size)) * 8 * 1000;
1012 		if (lat_ns < 0)
1013 			lat_ns = 0;
1014 		else
1015 			do_div(lat_ns, speed);
1016 
1017 		value = lat_ns;
1018 		while (value > PCI_LTR_VALUE_MASK) {
1019 			scale++;
1020 			value = DIV_ROUND_UP(value, (1 << 5));
1021 		}
1022 		if (scale > E1000_LTRV_SCALE_MAX) {
1023 			e_dbg("Invalid LTR latency scale %d\n", scale);
1024 			return -E1000_ERR_CONFIG;
1025 		}
1026 		lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1027 
1028 		/* Determine the maximum latency tolerated by the platform */
1029 		pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1030 				     &max_snoop);
1031 		pci_read_config_word(hw->adapter->pdev,
1032 				     E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1033 		max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1034 
1035 		if (lat_enc > max_ltr_enc)
1036 			lat_enc = max_ltr_enc;
1037 	}
1038 
1039 	/* Set Snoop and No-Snoop latencies the same */
1040 	reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1041 	ew32(LTRV, reg);
1042 
1043 	return 0;
1044 }
1045 
1046 /**
1047  *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1048  *  @hw: pointer to the HW structure
1049  *  @to_sx: boolean indicating a system power state transition to Sx
1050  *
1051  *  When link is down, configure ULP mode to significantly reduce the power
1052  *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1053  *  ME firmware to start the ULP configuration.  If not on an ME enabled
1054  *  system, configure the ULP mode by software.
1055  */
1056 s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1057 {
1058 	u32 mac_reg;
1059 	s32 ret_val = 0;
1060 	u16 phy_reg;
1061 
1062 	if ((hw->mac.type < e1000_pch_lpt) ||
1063 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1064 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1065 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1066 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1067 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1068 		return 0;
1069 
1070 	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1071 		/* Request ME configure ULP mode in the PHY */
1072 		mac_reg = er32(H2ME);
1073 		mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1074 		ew32(H2ME, mac_reg);
1075 
1076 		goto out;
1077 	}
1078 
1079 	if (!to_sx) {
1080 		int i = 0;
1081 
1082 		/* Poll up to 5 seconds for Cable Disconnected indication */
1083 		while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1084 			/* Bail if link is re-acquired */
1085 			if (er32(STATUS) & E1000_STATUS_LU)
1086 				return -E1000_ERR_PHY;
1087 
1088 			if (i++ == 100)
1089 				break;
1090 
1091 			msleep(50);
1092 		}
1093 		e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1094 		      (er32(FEXT) &
1095 		       E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1096 	}
1097 
1098 	ret_val = hw->phy.ops.acquire(hw);
1099 	if (ret_val)
1100 		goto out;
1101 
1102 	/* Force SMBus mode in PHY */
1103 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1104 	if (ret_val)
1105 		goto release;
1106 	phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1107 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1108 
1109 	/* Force SMBus mode in MAC */
1110 	mac_reg = er32(CTRL_EXT);
1111 	mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1112 	ew32(CTRL_EXT, mac_reg);
1113 
1114 	/* Set Inband ULP Exit, Reset to SMBus mode and
1115 	 * Disable SMBus Release on PERST# in PHY
1116 	 */
1117 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1118 	if (ret_val)
1119 		goto release;
1120 	phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1121 		    I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1122 	if (to_sx) {
1123 		if (er32(WUFC) & E1000_WUFC_LNKC)
1124 			phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1125 
1126 		phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1127 	} else {
1128 		phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1129 	}
1130 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1131 
1132 	/* Set Disable SMBus Release on PERST# in MAC */
1133 	mac_reg = er32(FEXTNVM7);
1134 	mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1135 	ew32(FEXTNVM7, mac_reg);
1136 
1137 	/* Commit ULP changes in PHY by starting auto ULP configuration */
1138 	phy_reg |= I218_ULP_CONFIG1_START;
1139 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1140 release:
1141 	hw->phy.ops.release(hw);
1142 out:
1143 	if (ret_val)
1144 		e_dbg("Error in ULP enable flow: %d\n", ret_val);
1145 	else
1146 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1147 
1148 	return ret_val;
1149 }
1150 
1151 /**
1152  *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1153  *  @hw: pointer to the HW structure
1154  *  @force: boolean indicating whether or not to force disabling ULP
1155  *
1156  *  Un-configure ULP mode when link is up, the system is transitioned from
1157  *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1158  *  system, poll for an indication from ME that ULP has been un-configured.
1159  *  If not on an ME enabled system, un-configure the ULP mode by software.
1160  *
1161  *  During nominal operation, this function is called when link is acquired
1162  *  to disable ULP mode (force=false); otherwise, for example when unloading
1163  *  the driver or during Sx->S0 transitions, this is called with force=true
1164  *  to forcibly disable ULP.
1165  */
1166 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1167 {
1168 	s32 ret_val = 0;
1169 	u32 mac_reg;
1170 	u16 phy_reg;
1171 	int i = 0;
1172 
1173 	if ((hw->mac.type < e1000_pch_lpt) ||
1174 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1175 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1176 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1177 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1178 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1179 		return 0;
1180 
1181 	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1182 		if (force) {
1183 			/* Request ME un-configure ULP mode in the PHY */
1184 			mac_reg = er32(H2ME);
1185 			mac_reg &= ~E1000_H2ME_ULP;
1186 			mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1187 			ew32(H2ME, mac_reg);
1188 		}
1189 
1190 		/* Poll up to 100msec for ME to clear ULP_CFG_DONE */
1191 		while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1192 			if (i++ == 10) {
1193 				ret_val = -E1000_ERR_PHY;
1194 				goto out;
1195 			}
1196 
1197 			usleep_range(10000, 20000);
1198 		}
1199 		e_dbg("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10);
1200 
1201 		if (force) {
1202 			mac_reg = er32(H2ME);
1203 			mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1204 			ew32(H2ME, mac_reg);
1205 		} else {
1206 			/* Clear H2ME.ULP after ME ULP configuration */
1207 			mac_reg = er32(H2ME);
1208 			mac_reg &= ~E1000_H2ME_ULP;
1209 			ew32(H2ME, mac_reg);
1210 		}
1211 
1212 		goto out;
1213 	}
1214 
1215 	ret_val = hw->phy.ops.acquire(hw);
1216 	if (ret_val)
1217 		goto out;
1218 
1219 	if (force)
1220 		/* Toggle LANPHYPC Value bit */
1221 		e1000_toggle_lanphypc_pch_lpt(hw);
1222 
1223 	/* Unforce SMBus mode in PHY */
1224 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1225 	if (ret_val) {
1226 		/* The MAC might be in PCIe mode, so temporarily force to
1227 		 * SMBus mode in order to access the PHY.
1228 		 */
1229 		mac_reg = er32(CTRL_EXT);
1230 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1231 		ew32(CTRL_EXT, mac_reg);
1232 
1233 		msleep(50);
1234 
1235 		ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1236 						       &phy_reg);
1237 		if (ret_val)
1238 			goto release;
1239 	}
1240 	phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1241 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1242 
1243 	/* Unforce SMBus mode in MAC */
1244 	mac_reg = er32(CTRL_EXT);
1245 	mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1246 	ew32(CTRL_EXT, mac_reg);
1247 
1248 	/* When ULP mode was previously entered, K1 was disabled by the
1249 	 * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1250 	 */
1251 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1252 	if (ret_val)
1253 		goto release;
1254 	phy_reg |= HV_PM_CTRL_K1_ENABLE;
1255 	e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1256 
1257 	/* Clear ULP enabled configuration */
1258 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1259 	if (ret_val)
1260 		goto release;
1261 	phy_reg &= ~(I218_ULP_CONFIG1_IND |
1262 		     I218_ULP_CONFIG1_STICKY_ULP |
1263 		     I218_ULP_CONFIG1_RESET_TO_SMBUS |
1264 		     I218_ULP_CONFIG1_WOL_HOST |
1265 		     I218_ULP_CONFIG1_INBAND_EXIT |
1266 		     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1267 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1268 
1269 	/* Commit ULP changes by starting auto ULP configuration */
1270 	phy_reg |= I218_ULP_CONFIG1_START;
1271 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1272 
1273 	/* Clear Disable SMBus Release on PERST# in MAC */
1274 	mac_reg = er32(FEXTNVM7);
1275 	mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1276 	ew32(FEXTNVM7, mac_reg);
1277 
1278 release:
1279 	hw->phy.ops.release(hw);
1280 	if (force) {
1281 		e1000_phy_hw_reset(hw);
1282 		msleep(50);
1283 	}
1284 out:
1285 	if (ret_val)
1286 		e_dbg("Error in ULP disable flow: %d\n", ret_val);
1287 	else
1288 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1289 
1290 	return ret_val;
1291 }
1292 
1293 /**
1294  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1295  *  @hw: pointer to the HW structure
1296  *
1297  *  Checks to see of the link status of the hardware has changed.  If a
1298  *  change in link status has been detected, then we read the PHY registers
1299  *  to get the current speed/duplex if link exists.
1300  **/
1301 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1302 {
1303 	struct e1000_mac_info *mac = &hw->mac;
1304 	s32 ret_val;
1305 	bool link;
1306 	u16 phy_reg;
1307 
1308 	/* We only want to go out to the PHY registers to see if Auto-Neg
1309 	 * has completed and/or if our link status has changed.  The
1310 	 * get_link_status flag is set upon receiving a Link Status
1311 	 * Change or Rx Sequence Error interrupt.
1312 	 */
1313 	if (!mac->get_link_status)
1314 		return 0;
1315 
1316 	/* First we want to see if the MII Status Register reports
1317 	 * link.  If so, then we want to get the current speed/duplex
1318 	 * of the PHY.
1319 	 */
1320 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1321 	if (ret_val)
1322 		return ret_val;
1323 
1324 	if (hw->mac.type == e1000_pchlan) {
1325 		ret_val = e1000_k1_gig_workaround_hv(hw, link);
1326 		if (ret_val)
1327 			return ret_val;
1328 	}
1329 
1330 	/* When connected at 10Mbps half-duplex, some parts are excessively
1331 	 * aggressive resulting in many collisions. To avoid this, increase
1332 	 * the IPG and reduce Rx latency in the PHY.
1333 	 */
1334 	if (((hw->mac.type == e1000_pch2lan) ||
1335 	     (hw->mac.type == e1000_pch_lpt)) && link) {
1336 		u32 reg;
1337 		reg = er32(STATUS);
1338 		if (!(reg & (E1000_STATUS_FD | E1000_STATUS_SPEED_MASK))) {
1339 			u16 emi_addr;
1340 
1341 			reg = er32(TIPG);
1342 			reg &= ~E1000_TIPG_IPGT_MASK;
1343 			reg |= 0xFF;
1344 			ew32(TIPG, reg);
1345 
1346 			/* Reduce Rx latency in analog PHY */
1347 			ret_val = hw->phy.ops.acquire(hw);
1348 			if (ret_val)
1349 				return ret_val;
1350 
1351 			if (hw->mac.type == e1000_pch2lan)
1352 				emi_addr = I82579_RX_CONFIG;
1353 			else
1354 				emi_addr = I217_RX_CONFIG;
1355 
1356 			ret_val = e1000_write_emi_reg_locked(hw, emi_addr, 0);
1357 
1358 			hw->phy.ops.release(hw);
1359 
1360 			if (ret_val)
1361 				return ret_val;
1362 		}
1363 	}
1364 
1365 	/* Work-around I218 hang issue */
1366 	if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1367 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1368 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1369 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
1370 		ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1371 		if (ret_val)
1372 			return ret_val;
1373 	}
1374 
1375 	if (hw->mac.type == e1000_pch_lpt) {
1376 		/* Set platform power management values for
1377 		 * Latency Tolerance Reporting (LTR)
1378 		 */
1379 		ret_val = e1000_platform_pm_pch_lpt(hw, link);
1380 		if (ret_val)
1381 			return ret_val;
1382 	}
1383 
1384 	/* Clear link partner's EEE ability */
1385 	hw->dev_spec.ich8lan.eee_lp_ability = 0;
1386 
1387 	if (!link)
1388 		return 0;	/* No link detected */
1389 
1390 	mac->get_link_status = false;
1391 
1392 	switch (hw->mac.type) {
1393 	case e1000_pch2lan:
1394 		ret_val = e1000_k1_workaround_lv(hw);
1395 		if (ret_val)
1396 			return ret_val;
1397 		/* fall-thru */
1398 	case e1000_pchlan:
1399 		if (hw->phy.type == e1000_phy_82578) {
1400 			ret_val = e1000_link_stall_workaround_hv(hw);
1401 			if (ret_val)
1402 				return ret_val;
1403 		}
1404 
1405 		/* Workaround for PCHx parts in half-duplex:
1406 		 * Set the number of preambles removed from the packet
1407 		 * when it is passed from the PHY to the MAC to prevent
1408 		 * the MAC from misinterpreting the packet type.
1409 		 */
1410 		e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1411 		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1412 
1413 		if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1414 			phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1415 
1416 		e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1417 		break;
1418 	default:
1419 		break;
1420 	}
1421 
1422 	/* Check if there was DownShift, must be checked
1423 	 * immediately after link-up
1424 	 */
1425 	e1000e_check_downshift(hw);
1426 
1427 	/* Enable/Disable EEE after link up */
1428 	if (hw->phy.type > e1000_phy_82579) {
1429 		ret_val = e1000_set_eee_pchlan(hw);
1430 		if (ret_val)
1431 			return ret_val;
1432 	}
1433 
1434 	/* If we are forcing speed/duplex, then we simply return since
1435 	 * we have already determined whether we have link or not.
1436 	 */
1437 	if (!mac->autoneg)
1438 		return -E1000_ERR_CONFIG;
1439 
1440 	/* Auto-Neg is enabled.  Auto Speed Detection takes care
1441 	 * of MAC speed/duplex configuration.  So we only need to
1442 	 * configure Collision Distance in the MAC.
1443 	 */
1444 	mac->ops.config_collision_dist(hw);
1445 
1446 	/* Configure Flow Control now that Auto-Neg has completed.
1447 	 * First, we need to restore the desired flow control
1448 	 * settings because we may have had to re-autoneg with a
1449 	 * different link partner.
1450 	 */
1451 	ret_val = e1000e_config_fc_after_link_up(hw);
1452 	if (ret_val)
1453 		e_dbg("Error configuring flow control\n");
1454 
1455 	return ret_val;
1456 }
1457 
1458 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1459 {
1460 	struct e1000_hw *hw = &adapter->hw;
1461 	s32 rc;
1462 
1463 	rc = e1000_init_mac_params_ich8lan(hw);
1464 	if (rc)
1465 		return rc;
1466 
1467 	rc = e1000_init_nvm_params_ich8lan(hw);
1468 	if (rc)
1469 		return rc;
1470 
1471 	switch (hw->mac.type) {
1472 	case e1000_ich8lan:
1473 	case e1000_ich9lan:
1474 	case e1000_ich10lan:
1475 		rc = e1000_init_phy_params_ich8lan(hw);
1476 		break;
1477 	case e1000_pchlan:
1478 	case e1000_pch2lan:
1479 	case e1000_pch_lpt:
1480 		rc = e1000_init_phy_params_pchlan(hw);
1481 		break;
1482 	default:
1483 		break;
1484 	}
1485 	if (rc)
1486 		return rc;
1487 
1488 	/* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1489 	 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1490 	 */
1491 	if ((adapter->hw.phy.type == e1000_phy_ife) ||
1492 	    ((adapter->hw.mac.type >= e1000_pch2lan) &&
1493 	     (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1494 		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1495 		adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
1496 
1497 		hw->mac.ops.blink_led = NULL;
1498 	}
1499 
1500 	if ((adapter->hw.mac.type == e1000_ich8lan) &&
1501 	    (adapter->hw.phy.type != e1000_phy_ife))
1502 		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1503 
1504 	/* Enable workaround for 82579 w/ ME enabled */
1505 	if ((adapter->hw.mac.type == e1000_pch2lan) &&
1506 	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1507 		adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1508 
1509 	return 0;
1510 }
1511 
1512 static DEFINE_MUTEX(nvm_mutex);
1513 
1514 /**
1515  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1516  *  @hw: pointer to the HW structure
1517  *
1518  *  Acquires the mutex for performing NVM operations.
1519  **/
1520 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1521 {
1522 	mutex_lock(&nvm_mutex);
1523 
1524 	return 0;
1525 }
1526 
1527 /**
1528  *  e1000_release_nvm_ich8lan - Release NVM mutex
1529  *  @hw: pointer to the HW structure
1530  *
1531  *  Releases the mutex used while performing NVM operations.
1532  **/
1533 static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1534 {
1535 	mutex_unlock(&nvm_mutex);
1536 }
1537 
1538 /**
1539  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1540  *  @hw: pointer to the HW structure
1541  *
1542  *  Acquires the software control flag for performing PHY and select
1543  *  MAC CSR accesses.
1544  **/
1545 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1546 {
1547 	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1548 	s32 ret_val = 0;
1549 
1550 	if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1551 			     &hw->adapter->state)) {
1552 		e_dbg("contention for Phy access\n");
1553 		return -E1000_ERR_PHY;
1554 	}
1555 
1556 	while (timeout) {
1557 		extcnf_ctrl = er32(EXTCNF_CTRL);
1558 		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1559 			break;
1560 
1561 		mdelay(1);
1562 		timeout--;
1563 	}
1564 
1565 	if (!timeout) {
1566 		e_dbg("SW has already locked the resource.\n");
1567 		ret_val = -E1000_ERR_CONFIG;
1568 		goto out;
1569 	}
1570 
1571 	timeout = SW_FLAG_TIMEOUT;
1572 
1573 	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1574 	ew32(EXTCNF_CTRL, extcnf_ctrl);
1575 
1576 	while (timeout) {
1577 		extcnf_ctrl = er32(EXTCNF_CTRL);
1578 		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1579 			break;
1580 
1581 		mdelay(1);
1582 		timeout--;
1583 	}
1584 
1585 	if (!timeout) {
1586 		e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1587 		      er32(FWSM), extcnf_ctrl);
1588 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1589 		ew32(EXTCNF_CTRL, extcnf_ctrl);
1590 		ret_val = -E1000_ERR_CONFIG;
1591 		goto out;
1592 	}
1593 
1594 out:
1595 	if (ret_val)
1596 		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1597 
1598 	return ret_val;
1599 }
1600 
1601 /**
1602  *  e1000_release_swflag_ich8lan - Release software control flag
1603  *  @hw: pointer to the HW structure
1604  *
1605  *  Releases the software control flag for performing PHY and select
1606  *  MAC CSR accesses.
1607  **/
1608 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1609 {
1610 	u32 extcnf_ctrl;
1611 
1612 	extcnf_ctrl = er32(EXTCNF_CTRL);
1613 
1614 	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1615 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1616 		ew32(EXTCNF_CTRL, extcnf_ctrl);
1617 	} else {
1618 		e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1619 	}
1620 
1621 	clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1622 }
1623 
1624 /**
1625  *  e1000_check_mng_mode_ich8lan - Checks management mode
1626  *  @hw: pointer to the HW structure
1627  *
1628  *  This checks if the adapter has any manageability enabled.
1629  *  This is a function pointer entry point only called by read/write
1630  *  routines for the PHY and NVM parts.
1631  **/
1632 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1633 {
1634 	u32 fwsm;
1635 
1636 	fwsm = er32(FWSM);
1637 	return ((fwsm & E1000_ICH_FWSM_FW_VALID) &&
1638 		((fwsm & E1000_FWSM_MODE_MASK) ==
1639 		 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)));
1640 }
1641 
1642 /**
1643  *  e1000_check_mng_mode_pchlan - Checks management mode
1644  *  @hw: pointer to the HW structure
1645  *
1646  *  This checks if the adapter has iAMT enabled.
1647  *  This is a function pointer entry point only called by read/write
1648  *  routines for the PHY and NVM parts.
1649  **/
1650 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1651 {
1652 	u32 fwsm;
1653 
1654 	fwsm = er32(FWSM);
1655 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1656 	    (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1657 }
1658 
1659 /**
1660  *  e1000_rar_set_pch2lan - Set receive address register
1661  *  @hw: pointer to the HW structure
1662  *  @addr: pointer to the receive address
1663  *  @index: receive address array register
1664  *
1665  *  Sets the receive address array register at index to the address passed
1666  *  in by addr.  For 82579, RAR[0] is the base address register that is to
1667  *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1668  *  Use SHRA[0-3] in place of those reserved for ME.
1669  **/
1670 static void e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1671 {
1672 	u32 rar_low, rar_high;
1673 
1674 	/* HW expects these in little endian so we reverse the byte order
1675 	 * from network order (big endian) to little endian
1676 	 */
1677 	rar_low = ((u32)addr[0] |
1678 		   ((u32)addr[1] << 8) |
1679 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1680 
1681 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1682 
1683 	/* If MAC address zero, no need to set the AV bit */
1684 	if (rar_low || rar_high)
1685 		rar_high |= E1000_RAH_AV;
1686 
1687 	if (index == 0) {
1688 		ew32(RAL(index), rar_low);
1689 		e1e_flush();
1690 		ew32(RAH(index), rar_high);
1691 		e1e_flush();
1692 		return;
1693 	}
1694 
1695 	/* RAR[1-6] are owned by manageability.  Skip those and program the
1696 	 * next address into the SHRA register array.
1697 	 */
1698 	if (index < (u32)(hw->mac.rar_entry_count)) {
1699 		s32 ret_val;
1700 
1701 		ret_val = e1000_acquire_swflag_ich8lan(hw);
1702 		if (ret_val)
1703 			goto out;
1704 
1705 		ew32(SHRAL(index - 1), rar_low);
1706 		e1e_flush();
1707 		ew32(SHRAH(index - 1), rar_high);
1708 		e1e_flush();
1709 
1710 		e1000_release_swflag_ich8lan(hw);
1711 
1712 		/* verify the register updates */
1713 		if ((er32(SHRAL(index - 1)) == rar_low) &&
1714 		    (er32(SHRAH(index - 1)) == rar_high))
1715 			return;
1716 
1717 		e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1718 		      (index - 1), er32(FWSM));
1719 	}
1720 
1721 out:
1722 	e_dbg("Failed to write receive address at index %d\n", index);
1723 }
1724 
1725 /**
1726  *  e1000_rar_set_pch_lpt - Set receive address registers
1727  *  @hw: pointer to the HW structure
1728  *  @addr: pointer to the receive address
1729  *  @index: receive address array register
1730  *
1731  *  Sets the receive address register array at index to the address passed
1732  *  in by addr. For LPT, RAR[0] is the base address register that is to
1733  *  contain the MAC address. SHRA[0-10] are the shared receive address
1734  *  registers that are shared between the Host and manageability engine (ME).
1735  **/
1736 static void e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1737 {
1738 	u32 rar_low, rar_high;
1739 	u32 wlock_mac;
1740 
1741 	/* HW expects these in little endian so we reverse the byte order
1742 	 * from network order (big endian) to little endian
1743 	 */
1744 	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1745 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1746 
1747 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1748 
1749 	/* If MAC address zero, no need to set the AV bit */
1750 	if (rar_low || rar_high)
1751 		rar_high |= E1000_RAH_AV;
1752 
1753 	if (index == 0) {
1754 		ew32(RAL(index), rar_low);
1755 		e1e_flush();
1756 		ew32(RAH(index), rar_high);
1757 		e1e_flush();
1758 		return;
1759 	}
1760 
1761 	/* The manageability engine (ME) can lock certain SHRAR registers that
1762 	 * it is using - those registers are unavailable for use.
1763 	 */
1764 	if (index < hw->mac.rar_entry_count) {
1765 		wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1766 		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1767 
1768 		/* Check if all SHRAR registers are locked */
1769 		if (wlock_mac == 1)
1770 			goto out;
1771 
1772 		if ((wlock_mac == 0) || (index <= wlock_mac)) {
1773 			s32 ret_val;
1774 
1775 			ret_val = e1000_acquire_swflag_ich8lan(hw);
1776 
1777 			if (ret_val)
1778 				goto out;
1779 
1780 			ew32(SHRAL_PCH_LPT(index - 1), rar_low);
1781 			e1e_flush();
1782 			ew32(SHRAH_PCH_LPT(index - 1), rar_high);
1783 			e1e_flush();
1784 
1785 			e1000_release_swflag_ich8lan(hw);
1786 
1787 			/* verify the register updates */
1788 			if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
1789 			    (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
1790 				return;
1791 		}
1792 	}
1793 
1794 out:
1795 	e_dbg("Failed to write receive address at index %d\n", index);
1796 }
1797 
1798 /**
1799  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
1800  *  @hw: pointer to the HW structure
1801  *
1802  *  Checks if firmware is blocking the reset of the PHY.
1803  *  This is a function pointer entry point only called by
1804  *  reset routines.
1805  **/
1806 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
1807 {
1808 	bool blocked = false;
1809 	int i = 0;
1810 
1811 	while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
1812 	       (i++ < 10))
1813 		usleep_range(10000, 20000);
1814 	return blocked ? E1000_BLK_PHY_RESET : 0;
1815 }
1816 
1817 /**
1818  *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
1819  *  @hw: pointer to the HW structure
1820  *
1821  *  Assumes semaphore already acquired.
1822  *
1823  **/
1824 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
1825 {
1826 	u16 phy_data;
1827 	u32 strap = er32(STRAP);
1828 	u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
1829 	    E1000_STRAP_SMT_FREQ_SHIFT;
1830 	s32 ret_val;
1831 
1832 	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
1833 
1834 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
1835 	if (ret_val)
1836 		return ret_val;
1837 
1838 	phy_data &= ~HV_SMB_ADDR_MASK;
1839 	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
1840 	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
1841 
1842 	if (hw->phy.type == e1000_phy_i217) {
1843 		/* Restore SMBus frequency */
1844 		if (freq--) {
1845 			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
1846 			phy_data |= (freq & (1 << 0)) <<
1847 			    HV_SMB_ADDR_FREQ_LOW_SHIFT;
1848 			phy_data |= (freq & (1 << 1)) <<
1849 			    (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
1850 		} else {
1851 			e_dbg("Unsupported SMB frequency in PHY\n");
1852 		}
1853 	}
1854 
1855 	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
1856 }
1857 
1858 /**
1859  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
1860  *  @hw:   pointer to the HW structure
1861  *
1862  *  SW should configure the LCD from the NVM extended configuration region
1863  *  as a workaround for certain parts.
1864  **/
1865 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
1866 {
1867 	struct e1000_phy_info *phy = &hw->phy;
1868 	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
1869 	s32 ret_val = 0;
1870 	u16 word_addr, reg_data, reg_addr, phy_page = 0;
1871 
1872 	/* Initialize the PHY from the NVM on ICH platforms.  This
1873 	 * is needed due to an issue where the NVM configuration is
1874 	 * not properly autoloaded after power transitions.
1875 	 * Therefore, after each PHY reset, we will load the
1876 	 * configuration data out of the NVM manually.
1877 	 */
1878 	switch (hw->mac.type) {
1879 	case e1000_ich8lan:
1880 		if (phy->type != e1000_phy_igp_3)
1881 			return ret_val;
1882 
1883 		if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
1884 		    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
1885 			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
1886 			break;
1887 		}
1888 		/* Fall-thru */
1889 	case e1000_pchlan:
1890 	case e1000_pch2lan:
1891 	case e1000_pch_lpt:
1892 		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
1893 		break;
1894 	default:
1895 		return ret_val;
1896 	}
1897 
1898 	ret_val = hw->phy.ops.acquire(hw);
1899 	if (ret_val)
1900 		return ret_val;
1901 
1902 	data = er32(FEXTNVM);
1903 	if (!(data & sw_cfg_mask))
1904 		goto release;
1905 
1906 	/* Make sure HW does not configure LCD from PHY
1907 	 * extended configuration before SW configuration
1908 	 */
1909 	data = er32(EXTCNF_CTRL);
1910 	if ((hw->mac.type < e1000_pch2lan) &&
1911 	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
1912 		goto release;
1913 
1914 	cnf_size = er32(EXTCNF_SIZE);
1915 	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
1916 	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
1917 	if (!cnf_size)
1918 		goto release;
1919 
1920 	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
1921 	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
1922 
1923 	if (((hw->mac.type == e1000_pchlan) &&
1924 	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
1925 	    (hw->mac.type > e1000_pchlan)) {
1926 		/* HW configures the SMBus address and LEDs when the
1927 		 * OEM and LCD Write Enable bits are set in the NVM.
1928 		 * When both NVM bits are cleared, SW will configure
1929 		 * them instead.
1930 		 */
1931 		ret_val = e1000_write_smbus_addr(hw);
1932 		if (ret_val)
1933 			goto release;
1934 
1935 		data = er32(LEDCTL);
1936 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
1937 							(u16)data);
1938 		if (ret_val)
1939 			goto release;
1940 	}
1941 
1942 	/* Configure LCD from extended configuration region. */
1943 
1944 	/* cnf_base_addr is in DWORD */
1945 	word_addr = (u16)(cnf_base_addr << 1);
1946 
1947 	for (i = 0; i < cnf_size; i++) {
1948 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, &reg_data);
1949 		if (ret_val)
1950 			goto release;
1951 
1952 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
1953 					 1, &reg_addr);
1954 		if (ret_val)
1955 			goto release;
1956 
1957 		/* Save off the PHY page for future writes. */
1958 		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
1959 			phy_page = reg_data;
1960 			continue;
1961 		}
1962 
1963 		reg_addr &= PHY_REG_MASK;
1964 		reg_addr |= phy_page;
1965 
1966 		ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
1967 		if (ret_val)
1968 			goto release;
1969 	}
1970 
1971 release:
1972 	hw->phy.ops.release(hw);
1973 	return ret_val;
1974 }
1975 
1976 /**
1977  *  e1000_k1_gig_workaround_hv - K1 Si workaround
1978  *  @hw:   pointer to the HW structure
1979  *  @link: link up bool flag
1980  *
1981  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
1982  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
1983  *  If link is down, the function will restore the default K1 setting located
1984  *  in the NVM.
1985  **/
1986 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
1987 {
1988 	s32 ret_val = 0;
1989 	u16 status_reg = 0;
1990 	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
1991 
1992 	if (hw->mac.type != e1000_pchlan)
1993 		return 0;
1994 
1995 	/* Wrap the whole flow with the sw flag */
1996 	ret_val = hw->phy.ops.acquire(hw);
1997 	if (ret_val)
1998 		return ret_val;
1999 
2000 	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2001 	if (link) {
2002 		if (hw->phy.type == e1000_phy_82578) {
2003 			ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
2004 						  &status_reg);
2005 			if (ret_val)
2006 				goto release;
2007 
2008 			status_reg &= (BM_CS_STATUS_LINK_UP |
2009 				       BM_CS_STATUS_RESOLVED |
2010 				       BM_CS_STATUS_SPEED_MASK);
2011 
2012 			if (status_reg == (BM_CS_STATUS_LINK_UP |
2013 					   BM_CS_STATUS_RESOLVED |
2014 					   BM_CS_STATUS_SPEED_1000))
2015 				k1_enable = false;
2016 		}
2017 
2018 		if (hw->phy.type == e1000_phy_82577) {
2019 			ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2020 			if (ret_val)
2021 				goto release;
2022 
2023 			status_reg &= (HV_M_STATUS_LINK_UP |
2024 				       HV_M_STATUS_AUTONEG_COMPLETE |
2025 				       HV_M_STATUS_SPEED_MASK);
2026 
2027 			if (status_reg == (HV_M_STATUS_LINK_UP |
2028 					   HV_M_STATUS_AUTONEG_COMPLETE |
2029 					   HV_M_STATUS_SPEED_1000))
2030 				k1_enable = false;
2031 		}
2032 
2033 		/* Link stall fix for link up */
2034 		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2035 		if (ret_val)
2036 			goto release;
2037 
2038 	} else {
2039 		/* Link stall fix for link down */
2040 		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2041 		if (ret_val)
2042 			goto release;
2043 	}
2044 
2045 	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2046 
2047 release:
2048 	hw->phy.ops.release(hw);
2049 
2050 	return ret_val;
2051 }
2052 
2053 /**
2054  *  e1000_configure_k1_ich8lan - Configure K1 power state
2055  *  @hw: pointer to the HW structure
2056  *  @enable: K1 state to configure
2057  *
2058  *  Configure the K1 power state based on the provided parameter.
2059  *  Assumes semaphore already acquired.
2060  *
2061  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2062  **/
2063 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2064 {
2065 	s32 ret_val;
2066 	u32 ctrl_reg = 0;
2067 	u32 ctrl_ext = 0;
2068 	u32 reg = 0;
2069 	u16 kmrn_reg = 0;
2070 
2071 	ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2072 					      &kmrn_reg);
2073 	if (ret_val)
2074 		return ret_val;
2075 
2076 	if (k1_enable)
2077 		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2078 	else
2079 		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2080 
2081 	ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2082 					       kmrn_reg);
2083 	if (ret_val)
2084 		return ret_val;
2085 
2086 	usleep_range(20, 40);
2087 	ctrl_ext = er32(CTRL_EXT);
2088 	ctrl_reg = er32(CTRL);
2089 
2090 	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2091 	reg |= E1000_CTRL_FRCSPD;
2092 	ew32(CTRL, reg);
2093 
2094 	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2095 	e1e_flush();
2096 	usleep_range(20, 40);
2097 	ew32(CTRL, ctrl_reg);
2098 	ew32(CTRL_EXT, ctrl_ext);
2099 	e1e_flush();
2100 	usleep_range(20, 40);
2101 
2102 	return 0;
2103 }
2104 
2105 /**
2106  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2107  *  @hw:       pointer to the HW structure
2108  *  @d0_state: boolean if entering d0 or d3 device state
2109  *
2110  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2111  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2112  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2113  **/
2114 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2115 {
2116 	s32 ret_val = 0;
2117 	u32 mac_reg;
2118 	u16 oem_reg;
2119 
2120 	if (hw->mac.type < e1000_pchlan)
2121 		return ret_val;
2122 
2123 	ret_val = hw->phy.ops.acquire(hw);
2124 	if (ret_val)
2125 		return ret_val;
2126 
2127 	if (hw->mac.type == e1000_pchlan) {
2128 		mac_reg = er32(EXTCNF_CTRL);
2129 		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2130 			goto release;
2131 	}
2132 
2133 	mac_reg = er32(FEXTNVM);
2134 	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2135 		goto release;
2136 
2137 	mac_reg = er32(PHY_CTRL);
2138 
2139 	ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2140 	if (ret_val)
2141 		goto release;
2142 
2143 	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2144 
2145 	if (d0_state) {
2146 		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2147 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2148 
2149 		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2150 			oem_reg |= HV_OEM_BITS_LPLU;
2151 	} else {
2152 		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2153 			       E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2154 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2155 
2156 		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2157 			       E1000_PHY_CTRL_NOND0A_LPLU))
2158 			oem_reg |= HV_OEM_BITS_LPLU;
2159 	}
2160 
2161 	/* Set Restart auto-neg to activate the bits */
2162 	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2163 	    !hw->phy.ops.check_reset_block(hw))
2164 		oem_reg |= HV_OEM_BITS_RESTART_AN;
2165 
2166 	ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2167 
2168 release:
2169 	hw->phy.ops.release(hw);
2170 
2171 	return ret_val;
2172 }
2173 
2174 /**
2175  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2176  *  @hw:   pointer to the HW structure
2177  **/
2178 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2179 {
2180 	s32 ret_val;
2181 	u16 data;
2182 
2183 	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2184 	if (ret_val)
2185 		return ret_val;
2186 
2187 	data |= HV_KMRN_MDIO_SLOW;
2188 
2189 	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2190 
2191 	return ret_val;
2192 }
2193 
2194 /**
2195  *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2196  *  done after every PHY reset.
2197  **/
2198 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2199 {
2200 	s32 ret_val = 0;
2201 	u16 phy_data;
2202 
2203 	if (hw->mac.type != e1000_pchlan)
2204 		return 0;
2205 
2206 	/* Set MDIO slow mode before any other MDIO access */
2207 	if (hw->phy.type == e1000_phy_82577) {
2208 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
2209 		if (ret_val)
2210 			return ret_val;
2211 	}
2212 
2213 	if (((hw->phy.type == e1000_phy_82577) &&
2214 	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2215 	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2216 		/* Disable generation of early preamble */
2217 		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2218 		if (ret_val)
2219 			return ret_val;
2220 
2221 		/* Preamble tuning for SSC */
2222 		ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2223 		if (ret_val)
2224 			return ret_val;
2225 	}
2226 
2227 	if (hw->phy.type == e1000_phy_82578) {
2228 		/* Return registers to default by doing a soft reset then
2229 		 * writing 0x3140 to the control register.
2230 		 */
2231 		if (hw->phy.revision < 2) {
2232 			e1000e_phy_sw_reset(hw);
2233 			ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
2234 		}
2235 	}
2236 
2237 	/* Select page 0 */
2238 	ret_val = hw->phy.ops.acquire(hw);
2239 	if (ret_val)
2240 		return ret_val;
2241 
2242 	hw->phy.addr = 1;
2243 	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2244 	hw->phy.ops.release(hw);
2245 	if (ret_val)
2246 		return ret_val;
2247 
2248 	/* Configure the K1 Si workaround during phy reset assuming there is
2249 	 * link so that it disables K1 if link is in 1Gbps.
2250 	 */
2251 	ret_val = e1000_k1_gig_workaround_hv(hw, true);
2252 	if (ret_val)
2253 		return ret_val;
2254 
2255 	/* Workaround for link disconnects on a busy hub in half duplex */
2256 	ret_val = hw->phy.ops.acquire(hw);
2257 	if (ret_val)
2258 		return ret_val;
2259 	ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2260 	if (ret_val)
2261 		goto release;
2262 	ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2263 	if (ret_val)
2264 		goto release;
2265 
2266 	/* set MSE higher to enable link to stay up when noise is high */
2267 	ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2268 release:
2269 	hw->phy.ops.release(hw);
2270 
2271 	return ret_val;
2272 }
2273 
2274 /**
2275  *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2276  *  @hw:   pointer to the HW structure
2277  **/
2278 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2279 {
2280 	u32 mac_reg;
2281 	u16 i, phy_reg = 0;
2282 	s32 ret_val;
2283 
2284 	ret_val = hw->phy.ops.acquire(hw);
2285 	if (ret_val)
2286 		return;
2287 	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2288 	if (ret_val)
2289 		goto release;
2290 
2291 	/* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2292 	for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2293 		mac_reg = er32(RAL(i));
2294 		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2295 					   (u16)(mac_reg & 0xFFFF));
2296 		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2297 					   (u16)((mac_reg >> 16) & 0xFFFF));
2298 
2299 		mac_reg = er32(RAH(i));
2300 		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2301 					   (u16)(mac_reg & 0xFFFF));
2302 		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2303 					   (u16)((mac_reg & E1000_RAH_AV)
2304 						 >> 16));
2305 	}
2306 
2307 	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2308 
2309 release:
2310 	hw->phy.ops.release(hw);
2311 }
2312 
2313 /**
2314  *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2315  *  with 82579 PHY
2316  *  @hw: pointer to the HW structure
2317  *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2318  **/
2319 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2320 {
2321 	s32 ret_val = 0;
2322 	u16 phy_reg, data;
2323 	u32 mac_reg;
2324 	u16 i;
2325 
2326 	if (hw->mac.type < e1000_pch2lan)
2327 		return 0;
2328 
2329 	/* disable Rx path while enabling/disabling workaround */
2330 	e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2331 	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14));
2332 	if (ret_val)
2333 		return ret_val;
2334 
2335 	if (enable) {
2336 		/* Write Rx addresses (rar_entry_count for RAL/H, and
2337 		 * SHRAL/H) and initial CRC values to the MAC
2338 		 */
2339 		for (i = 0; i < hw->mac.rar_entry_count; i++) {
2340 			u8 mac_addr[ETH_ALEN] = { 0 };
2341 			u32 addr_high, addr_low;
2342 
2343 			addr_high = er32(RAH(i));
2344 			if (!(addr_high & E1000_RAH_AV))
2345 				continue;
2346 			addr_low = er32(RAL(i));
2347 			mac_addr[0] = (addr_low & 0xFF);
2348 			mac_addr[1] = ((addr_low >> 8) & 0xFF);
2349 			mac_addr[2] = ((addr_low >> 16) & 0xFF);
2350 			mac_addr[3] = ((addr_low >> 24) & 0xFF);
2351 			mac_addr[4] = (addr_high & 0xFF);
2352 			mac_addr[5] = ((addr_high >> 8) & 0xFF);
2353 
2354 			ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2355 		}
2356 
2357 		/* Write Rx addresses to the PHY */
2358 		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2359 
2360 		/* Enable jumbo frame workaround in the MAC */
2361 		mac_reg = er32(FFLT_DBG);
2362 		mac_reg &= ~(1 << 14);
2363 		mac_reg |= (7 << 15);
2364 		ew32(FFLT_DBG, mac_reg);
2365 
2366 		mac_reg = er32(RCTL);
2367 		mac_reg |= E1000_RCTL_SECRC;
2368 		ew32(RCTL, mac_reg);
2369 
2370 		ret_val = e1000e_read_kmrn_reg(hw,
2371 					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2372 					       &data);
2373 		if (ret_val)
2374 			return ret_val;
2375 		ret_val = e1000e_write_kmrn_reg(hw,
2376 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2377 						data | (1 << 0));
2378 		if (ret_val)
2379 			return ret_val;
2380 		ret_val = e1000e_read_kmrn_reg(hw,
2381 					       E1000_KMRNCTRLSTA_HD_CTRL,
2382 					       &data);
2383 		if (ret_val)
2384 			return ret_val;
2385 		data &= ~(0xF << 8);
2386 		data |= (0xB << 8);
2387 		ret_val = e1000e_write_kmrn_reg(hw,
2388 						E1000_KMRNCTRLSTA_HD_CTRL,
2389 						data);
2390 		if (ret_val)
2391 			return ret_val;
2392 
2393 		/* Enable jumbo frame workaround in the PHY */
2394 		e1e_rphy(hw, PHY_REG(769, 23), &data);
2395 		data &= ~(0x7F << 5);
2396 		data |= (0x37 << 5);
2397 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2398 		if (ret_val)
2399 			return ret_val;
2400 		e1e_rphy(hw, PHY_REG(769, 16), &data);
2401 		data &= ~(1 << 13);
2402 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2403 		if (ret_val)
2404 			return ret_val;
2405 		e1e_rphy(hw, PHY_REG(776, 20), &data);
2406 		data &= ~(0x3FF << 2);
2407 		data |= (0x1A << 2);
2408 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2409 		if (ret_val)
2410 			return ret_val;
2411 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2412 		if (ret_val)
2413 			return ret_val;
2414 		e1e_rphy(hw, HV_PM_CTRL, &data);
2415 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10));
2416 		if (ret_val)
2417 			return ret_val;
2418 	} else {
2419 		/* Write MAC register values back to h/w defaults */
2420 		mac_reg = er32(FFLT_DBG);
2421 		mac_reg &= ~(0xF << 14);
2422 		ew32(FFLT_DBG, mac_reg);
2423 
2424 		mac_reg = er32(RCTL);
2425 		mac_reg &= ~E1000_RCTL_SECRC;
2426 		ew32(RCTL, mac_reg);
2427 
2428 		ret_val = e1000e_read_kmrn_reg(hw,
2429 					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2430 					       &data);
2431 		if (ret_val)
2432 			return ret_val;
2433 		ret_val = e1000e_write_kmrn_reg(hw,
2434 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2435 						data & ~(1 << 0));
2436 		if (ret_val)
2437 			return ret_val;
2438 		ret_val = e1000e_read_kmrn_reg(hw,
2439 					       E1000_KMRNCTRLSTA_HD_CTRL,
2440 					       &data);
2441 		if (ret_val)
2442 			return ret_val;
2443 		data &= ~(0xF << 8);
2444 		data |= (0xB << 8);
2445 		ret_val = e1000e_write_kmrn_reg(hw,
2446 						E1000_KMRNCTRLSTA_HD_CTRL,
2447 						data);
2448 		if (ret_val)
2449 			return ret_val;
2450 
2451 		/* Write PHY register values back to h/w defaults */
2452 		e1e_rphy(hw, PHY_REG(769, 23), &data);
2453 		data &= ~(0x7F << 5);
2454 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2455 		if (ret_val)
2456 			return ret_val;
2457 		e1e_rphy(hw, PHY_REG(769, 16), &data);
2458 		data |= (1 << 13);
2459 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2460 		if (ret_val)
2461 			return ret_val;
2462 		e1e_rphy(hw, PHY_REG(776, 20), &data);
2463 		data &= ~(0x3FF << 2);
2464 		data |= (0x8 << 2);
2465 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2466 		if (ret_val)
2467 			return ret_val;
2468 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2469 		if (ret_val)
2470 			return ret_val;
2471 		e1e_rphy(hw, HV_PM_CTRL, &data);
2472 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10));
2473 		if (ret_val)
2474 			return ret_val;
2475 	}
2476 
2477 	/* re-enable Rx path after enabling/disabling workaround */
2478 	return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14));
2479 }
2480 
2481 /**
2482  *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2483  *  done after every PHY reset.
2484  **/
2485 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2486 {
2487 	s32 ret_val = 0;
2488 
2489 	if (hw->mac.type != e1000_pch2lan)
2490 		return 0;
2491 
2492 	/* Set MDIO slow mode before any other MDIO access */
2493 	ret_val = e1000_set_mdio_slow_mode_hv(hw);
2494 	if (ret_val)
2495 		return ret_val;
2496 
2497 	ret_val = hw->phy.ops.acquire(hw);
2498 	if (ret_val)
2499 		return ret_val;
2500 	/* set MSE higher to enable link to stay up when noise is high */
2501 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2502 	if (ret_val)
2503 		goto release;
2504 	/* drop link after 5 times MSE threshold was reached */
2505 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2506 release:
2507 	hw->phy.ops.release(hw);
2508 
2509 	return ret_val;
2510 }
2511 
2512 /**
2513  *  e1000_k1_gig_workaround_lv - K1 Si workaround
2514  *  @hw:   pointer to the HW structure
2515  *
2516  *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2517  *  Disable K1 in 1000Mbps and 100Mbps
2518  **/
2519 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2520 {
2521 	s32 ret_val = 0;
2522 	u16 status_reg = 0;
2523 
2524 	if (hw->mac.type != e1000_pch2lan)
2525 		return 0;
2526 
2527 	/* Set K1 beacon duration based on 10Mbs speed */
2528 	ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2529 	if (ret_val)
2530 		return ret_val;
2531 
2532 	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2533 	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2534 		if (status_reg &
2535 		    (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2536 			u16 pm_phy_reg;
2537 
2538 			/* LV 1G/100 Packet drop issue wa  */
2539 			ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2540 			if (ret_val)
2541 				return ret_val;
2542 			pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2543 			ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2544 			if (ret_val)
2545 				return ret_val;
2546 		} else {
2547 			u32 mac_reg;
2548 
2549 			mac_reg = er32(FEXTNVM4);
2550 			mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2551 			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2552 			ew32(FEXTNVM4, mac_reg);
2553 		}
2554 	}
2555 
2556 	return ret_val;
2557 }
2558 
2559 /**
2560  *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2561  *  @hw:   pointer to the HW structure
2562  *  @gate: boolean set to true to gate, false to ungate
2563  *
2564  *  Gate/ungate the automatic PHY configuration via hardware; perform
2565  *  the configuration via software instead.
2566  **/
2567 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2568 {
2569 	u32 extcnf_ctrl;
2570 
2571 	if (hw->mac.type < e1000_pch2lan)
2572 		return;
2573 
2574 	extcnf_ctrl = er32(EXTCNF_CTRL);
2575 
2576 	if (gate)
2577 		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2578 	else
2579 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2580 
2581 	ew32(EXTCNF_CTRL, extcnf_ctrl);
2582 }
2583 
2584 /**
2585  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2586  *  @hw: pointer to the HW structure
2587  *
2588  *  Check the appropriate indication the MAC has finished configuring the
2589  *  PHY after a software reset.
2590  **/
2591 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2592 {
2593 	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2594 
2595 	/* Wait for basic configuration completes before proceeding */
2596 	do {
2597 		data = er32(STATUS);
2598 		data &= E1000_STATUS_LAN_INIT_DONE;
2599 		usleep_range(100, 200);
2600 	} while ((!data) && --loop);
2601 
2602 	/* If basic configuration is incomplete before the above loop
2603 	 * count reaches 0, loading the configuration from NVM will
2604 	 * leave the PHY in a bad state possibly resulting in no link.
2605 	 */
2606 	if (loop == 0)
2607 		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2608 
2609 	/* Clear the Init Done bit for the next init event */
2610 	data = er32(STATUS);
2611 	data &= ~E1000_STATUS_LAN_INIT_DONE;
2612 	ew32(STATUS, data);
2613 }
2614 
2615 /**
2616  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2617  *  @hw: pointer to the HW structure
2618  **/
2619 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2620 {
2621 	s32 ret_val = 0;
2622 	u16 reg;
2623 
2624 	if (hw->phy.ops.check_reset_block(hw))
2625 		return 0;
2626 
2627 	/* Allow time for h/w to get to quiescent state after reset */
2628 	usleep_range(10000, 20000);
2629 
2630 	/* Perform any necessary post-reset workarounds */
2631 	switch (hw->mac.type) {
2632 	case e1000_pchlan:
2633 		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2634 		if (ret_val)
2635 			return ret_val;
2636 		break;
2637 	case e1000_pch2lan:
2638 		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2639 		if (ret_val)
2640 			return ret_val;
2641 		break;
2642 	default:
2643 		break;
2644 	}
2645 
2646 	/* Clear the host wakeup bit after lcd reset */
2647 	if (hw->mac.type >= e1000_pchlan) {
2648 		e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2649 		reg &= ~BM_WUC_HOST_WU_BIT;
2650 		e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2651 	}
2652 
2653 	/* Configure the LCD with the extended configuration region in NVM */
2654 	ret_val = e1000_sw_lcd_config_ich8lan(hw);
2655 	if (ret_val)
2656 		return ret_val;
2657 
2658 	/* Configure the LCD with the OEM bits in NVM */
2659 	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2660 
2661 	if (hw->mac.type == e1000_pch2lan) {
2662 		/* Ungate automatic PHY configuration on non-managed 82579 */
2663 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2664 			usleep_range(10000, 20000);
2665 			e1000_gate_hw_phy_config_ich8lan(hw, false);
2666 		}
2667 
2668 		/* Set EEE LPI Update Timer to 200usec */
2669 		ret_val = hw->phy.ops.acquire(hw);
2670 		if (ret_val)
2671 			return ret_val;
2672 		ret_val = e1000_write_emi_reg_locked(hw,
2673 						     I82579_LPI_UPDATE_TIMER,
2674 						     0x1387);
2675 		hw->phy.ops.release(hw);
2676 	}
2677 
2678 	return ret_val;
2679 }
2680 
2681 /**
2682  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2683  *  @hw: pointer to the HW structure
2684  *
2685  *  Resets the PHY
2686  *  This is a function pointer entry point called by drivers
2687  *  or other shared routines.
2688  **/
2689 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2690 {
2691 	s32 ret_val = 0;
2692 
2693 	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
2694 	if ((hw->mac.type == e1000_pch2lan) &&
2695 	    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2696 		e1000_gate_hw_phy_config_ich8lan(hw, true);
2697 
2698 	ret_val = e1000e_phy_hw_reset_generic(hw);
2699 	if (ret_val)
2700 		return ret_val;
2701 
2702 	return e1000_post_phy_reset_ich8lan(hw);
2703 }
2704 
2705 /**
2706  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2707  *  @hw: pointer to the HW structure
2708  *  @active: true to enable LPLU, false to disable
2709  *
2710  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
2711  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2712  *  the phy speed. This function will manually set the LPLU bit and restart
2713  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
2714  *  since it configures the same bit.
2715  **/
2716 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2717 {
2718 	s32 ret_val;
2719 	u16 oem_reg;
2720 
2721 	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2722 	if (ret_val)
2723 		return ret_val;
2724 
2725 	if (active)
2726 		oem_reg |= HV_OEM_BITS_LPLU;
2727 	else
2728 		oem_reg &= ~HV_OEM_BITS_LPLU;
2729 
2730 	if (!hw->phy.ops.check_reset_block(hw))
2731 		oem_reg |= HV_OEM_BITS_RESTART_AN;
2732 
2733 	return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2734 }
2735 
2736 /**
2737  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2738  *  @hw: pointer to the HW structure
2739  *  @active: true to enable LPLU, false to disable
2740  *
2741  *  Sets the LPLU D0 state according to the active flag.  When
2742  *  activating LPLU this function also disables smart speed
2743  *  and vice versa.  LPLU will not be activated unless the
2744  *  device autonegotiation advertisement meets standards of
2745  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2746  *  This is a function pointer entry point only called by
2747  *  PHY setup routines.
2748  **/
2749 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2750 {
2751 	struct e1000_phy_info *phy = &hw->phy;
2752 	u32 phy_ctrl;
2753 	s32 ret_val = 0;
2754 	u16 data;
2755 
2756 	if (phy->type == e1000_phy_ife)
2757 		return 0;
2758 
2759 	phy_ctrl = er32(PHY_CTRL);
2760 
2761 	if (active) {
2762 		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2763 		ew32(PHY_CTRL, phy_ctrl);
2764 
2765 		if (phy->type != e1000_phy_igp_3)
2766 			return 0;
2767 
2768 		/* Call gig speed drop workaround on LPLU before accessing
2769 		 * any PHY registers
2770 		 */
2771 		if (hw->mac.type == e1000_ich8lan)
2772 			e1000e_gig_downshift_workaround_ich8lan(hw);
2773 
2774 		/* When LPLU is enabled, we should disable SmartSpeed */
2775 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2776 		if (ret_val)
2777 			return ret_val;
2778 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2779 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2780 		if (ret_val)
2781 			return ret_val;
2782 	} else {
2783 		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2784 		ew32(PHY_CTRL, phy_ctrl);
2785 
2786 		if (phy->type != e1000_phy_igp_3)
2787 			return 0;
2788 
2789 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2790 		 * during Dx states where the power conservation is most
2791 		 * important.  During driver activity we should enable
2792 		 * SmartSpeed, so performance is maintained.
2793 		 */
2794 		if (phy->smart_speed == e1000_smart_speed_on) {
2795 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2796 					   &data);
2797 			if (ret_val)
2798 				return ret_val;
2799 
2800 			data |= IGP01E1000_PSCFR_SMART_SPEED;
2801 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2802 					   data);
2803 			if (ret_val)
2804 				return ret_val;
2805 		} else if (phy->smart_speed == e1000_smart_speed_off) {
2806 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2807 					   &data);
2808 			if (ret_val)
2809 				return ret_val;
2810 
2811 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2812 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2813 					   data);
2814 			if (ret_val)
2815 				return ret_val;
2816 		}
2817 	}
2818 
2819 	return 0;
2820 }
2821 
2822 /**
2823  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
2824  *  @hw: pointer to the HW structure
2825  *  @active: true to enable LPLU, false to disable
2826  *
2827  *  Sets the LPLU D3 state according to the active flag.  When
2828  *  activating LPLU this function also disables smart speed
2829  *  and vice versa.  LPLU will not be activated unless the
2830  *  device autonegotiation advertisement meets standards of
2831  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2832  *  This is a function pointer entry point only called by
2833  *  PHY setup routines.
2834  **/
2835 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2836 {
2837 	struct e1000_phy_info *phy = &hw->phy;
2838 	u32 phy_ctrl;
2839 	s32 ret_val = 0;
2840 	u16 data;
2841 
2842 	phy_ctrl = er32(PHY_CTRL);
2843 
2844 	if (!active) {
2845 		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2846 		ew32(PHY_CTRL, phy_ctrl);
2847 
2848 		if (phy->type != e1000_phy_igp_3)
2849 			return 0;
2850 
2851 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2852 		 * during Dx states where the power conservation is most
2853 		 * important.  During driver activity we should enable
2854 		 * SmartSpeed, so performance is maintained.
2855 		 */
2856 		if (phy->smart_speed == e1000_smart_speed_on) {
2857 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2858 					   &data);
2859 			if (ret_val)
2860 				return ret_val;
2861 
2862 			data |= IGP01E1000_PSCFR_SMART_SPEED;
2863 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2864 					   data);
2865 			if (ret_val)
2866 				return ret_val;
2867 		} else if (phy->smart_speed == e1000_smart_speed_off) {
2868 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2869 					   &data);
2870 			if (ret_val)
2871 				return ret_val;
2872 
2873 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2874 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2875 					   data);
2876 			if (ret_val)
2877 				return ret_val;
2878 		}
2879 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
2880 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
2881 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
2882 		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2883 		ew32(PHY_CTRL, phy_ctrl);
2884 
2885 		if (phy->type != e1000_phy_igp_3)
2886 			return 0;
2887 
2888 		/* Call gig speed drop workaround on LPLU before accessing
2889 		 * any PHY registers
2890 		 */
2891 		if (hw->mac.type == e1000_ich8lan)
2892 			e1000e_gig_downshift_workaround_ich8lan(hw);
2893 
2894 		/* When LPLU is enabled, we should disable SmartSpeed */
2895 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2896 		if (ret_val)
2897 			return ret_val;
2898 
2899 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2900 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2901 	}
2902 
2903 	return ret_val;
2904 }
2905 
2906 /**
2907  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
2908  *  @hw: pointer to the HW structure
2909  *  @bank:  pointer to the variable that returns the active bank
2910  *
2911  *  Reads signature byte from the NVM using the flash access registers.
2912  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
2913  **/
2914 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
2915 {
2916 	u32 eecd;
2917 	struct e1000_nvm_info *nvm = &hw->nvm;
2918 	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
2919 	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
2920 	u8 sig_byte = 0;
2921 	s32 ret_val;
2922 
2923 	switch (hw->mac.type) {
2924 	case e1000_ich8lan:
2925 	case e1000_ich9lan:
2926 		eecd = er32(EECD);
2927 		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
2928 		    E1000_EECD_SEC1VAL_VALID_MASK) {
2929 			if (eecd & E1000_EECD_SEC1VAL)
2930 				*bank = 1;
2931 			else
2932 				*bank = 0;
2933 
2934 			return 0;
2935 		}
2936 		e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
2937 		/* fall-thru */
2938 	default:
2939 		/* set bank to 0 in case flash read fails */
2940 		*bank = 0;
2941 
2942 		/* Check bank 0 */
2943 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
2944 							&sig_byte);
2945 		if (ret_val)
2946 			return ret_val;
2947 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2948 		    E1000_ICH_NVM_SIG_VALUE) {
2949 			*bank = 0;
2950 			return 0;
2951 		}
2952 
2953 		/* Check bank 1 */
2954 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
2955 							bank1_offset,
2956 							&sig_byte);
2957 		if (ret_val)
2958 			return ret_val;
2959 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2960 		    E1000_ICH_NVM_SIG_VALUE) {
2961 			*bank = 1;
2962 			return 0;
2963 		}
2964 
2965 		e_dbg("ERROR: No valid NVM bank present\n");
2966 		return -E1000_ERR_NVM;
2967 	}
2968 }
2969 
2970 /**
2971  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
2972  *  @hw: pointer to the HW structure
2973  *  @offset: The offset (in bytes) of the word(s) to read.
2974  *  @words: Size of data to read in words
2975  *  @data: Pointer to the word(s) to read at offset.
2976  *
2977  *  Reads a word(s) from the NVM using the flash access registers.
2978  **/
2979 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2980 				  u16 *data)
2981 {
2982 	struct e1000_nvm_info *nvm = &hw->nvm;
2983 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2984 	u32 act_offset;
2985 	s32 ret_val = 0;
2986 	u32 bank = 0;
2987 	u16 i, word;
2988 
2989 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2990 	    (words == 0)) {
2991 		e_dbg("nvm parameter(s) out of bounds\n");
2992 		ret_val = -E1000_ERR_NVM;
2993 		goto out;
2994 	}
2995 
2996 	nvm->ops.acquire(hw);
2997 
2998 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2999 	if (ret_val) {
3000 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3001 		bank = 0;
3002 	}
3003 
3004 	act_offset = (bank) ? nvm->flash_bank_size : 0;
3005 	act_offset += offset;
3006 
3007 	ret_val = 0;
3008 	for (i = 0; i < words; i++) {
3009 		if (dev_spec->shadow_ram[offset + i].modified) {
3010 			data[i] = dev_spec->shadow_ram[offset + i].value;
3011 		} else {
3012 			ret_val = e1000_read_flash_word_ich8lan(hw,
3013 								act_offset + i,
3014 								&word);
3015 			if (ret_val)
3016 				break;
3017 			data[i] = word;
3018 		}
3019 	}
3020 
3021 	nvm->ops.release(hw);
3022 
3023 out:
3024 	if (ret_val)
3025 		e_dbg("NVM read error: %d\n", ret_val);
3026 
3027 	return ret_val;
3028 }
3029 
3030 /**
3031  *  e1000_flash_cycle_init_ich8lan - Initialize flash
3032  *  @hw: pointer to the HW structure
3033  *
3034  *  This function does initial flash setup so that a new read/write/erase cycle
3035  *  can be started.
3036  **/
3037 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3038 {
3039 	union ich8_hws_flash_status hsfsts;
3040 	s32 ret_val = -E1000_ERR_NVM;
3041 
3042 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3043 
3044 	/* Check if the flash descriptor is valid */
3045 	if (!hsfsts.hsf_status.fldesvalid) {
3046 		e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
3047 		return -E1000_ERR_NVM;
3048 	}
3049 
3050 	/* Clear FCERR and DAEL in hw status by writing 1 */
3051 	hsfsts.hsf_status.flcerr = 1;
3052 	hsfsts.hsf_status.dael = 1;
3053 
3054 	ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3055 
3056 	/* Either we should have a hardware SPI cycle in progress
3057 	 * bit to check against, in order to start a new cycle or
3058 	 * FDONE bit should be changed in the hardware so that it
3059 	 * is 1 after hardware reset, which can then be used as an
3060 	 * indication whether a cycle is in progress or has been
3061 	 * completed.
3062 	 */
3063 
3064 	if (!hsfsts.hsf_status.flcinprog) {
3065 		/* There is no cycle running at present,
3066 		 * so we can start a cycle.
3067 		 * Begin by setting Flash Cycle Done.
3068 		 */
3069 		hsfsts.hsf_status.flcdone = 1;
3070 		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3071 		ret_val = 0;
3072 	} else {
3073 		s32 i;
3074 
3075 		/* Otherwise poll for sometime so the current
3076 		 * cycle has a chance to end before giving up.
3077 		 */
3078 		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3079 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3080 			if (!hsfsts.hsf_status.flcinprog) {
3081 				ret_val = 0;
3082 				break;
3083 			}
3084 			udelay(1);
3085 		}
3086 		if (!ret_val) {
3087 			/* Successful in waiting for previous cycle to timeout,
3088 			 * now set the Flash Cycle Done.
3089 			 */
3090 			hsfsts.hsf_status.flcdone = 1;
3091 			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3092 		} else {
3093 			e_dbg("Flash controller busy, cannot get access\n");
3094 		}
3095 	}
3096 
3097 	return ret_val;
3098 }
3099 
3100 /**
3101  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3102  *  @hw: pointer to the HW structure
3103  *  @timeout: maximum time to wait for completion
3104  *
3105  *  This function starts a flash cycle and waits for its completion.
3106  **/
3107 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3108 {
3109 	union ich8_hws_flash_ctrl hsflctl;
3110 	union ich8_hws_flash_status hsfsts;
3111 	u32 i = 0;
3112 
3113 	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3114 	hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3115 	hsflctl.hsf_ctrl.flcgo = 1;
3116 	ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3117 
3118 	/* wait till FDONE bit is set to 1 */
3119 	do {
3120 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3121 		if (hsfsts.hsf_status.flcdone)
3122 			break;
3123 		udelay(1);
3124 	} while (i++ < timeout);
3125 
3126 	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3127 		return 0;
3128 
3129 	return -E1000_ERR_NVM;
3130 }
3131 
3132 /**
3133  *  e1000_read_flash_word_ich8lan - Read word from flash
3134  *  @hw: pointer to the HW structure
3135  *  @offset: offset to data location
3136  *  @data: pointer to the location for storing the data
3137  *
3138  *  Reads the flash word at offset into data.  Offset is converted
3139  *  to bytes before read.
3140  **/
3141 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3142 					 u16 *data)
3143 {
3144 	/* Must convert offset into bytes. */
3145 	offset <<= 1;
3146 
3147 	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3148 }
3149 
3150 /**
3151  *  e1000_read_flash_byte_ich8lan - Read byte from flash
3152  *  @hw: pointer to the HW structure
3153  *  @offset: The offset of the byte to read.
3154  *  @data: Pointer to a byte to store the value read.
3155  *
3156  *  Reads a single byte from the NVM using the flash access registers.
3157  **/
3158 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3159 					 u8 *data)
3160 {
3161 	s32 ret_val;
3162 	u16 word = 0;
3163 
3164 	ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3165 	if (ret_val)
3166 		return ret_val;
3167 
3168 	*data = (u8)word;
3169 
3170 	return 0;
3171 }
3172 
3173 /**
3174  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3175  *  @hw: pointer to the HW structure
3176  *  @offset: The offset (in bytes) of the byte or word to read.
3177  *  @size: Size of data to read, 1=byte 2=word
3178  *  @data: Pointer to the word to store the value read.
3179  *
3180  *  Reads a byte or word from the NVM using the flash access registers.
3181  **/
3182 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3183 					 u8 size, u16 *data)
3184 {
3185 	union ich8_hws_flash_status hsfsts;
3186 	union ich8_hws_flash_ctrl hsflctl;
3187 	u32 flash_linear_addr;
3188 	u32 flash_data = 0;
3189 	s32 ret_val = -E1000_ERR_NVM;
3190 	u8 count = 0;
3191 
3192 	if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3193 		return -E1000_ERR_NVM;
3194 
3195 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3196 			     hw->nvm.flash_base_addr);
3197 
3198 	do {
3199 		udelay(1);
3200 		/* Steps */
3201 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3202 		if (ret_val)
3203 			break;
3204 
3205 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3206 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3207 		hsflctl.hsf_ctrl.fldbcount = size - 1;
3208 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3209 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3210 
3211 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3212 
3213 		ret_val =
3214 		    e1000_flash_cycle_ich8lan(hw,
3215 					      ICH_FLASH_READ_COMMAND_TIMEOUT);
3216 
3217 		/* Check if FCERR is set to 1, if set to 1, clear it
3218 		 * and try the whole sequence a few more times, else
3219 		 * read in (shift in) the Flash Data0, the order is
3220 		 * least significant byte first msb to lsb
3221 		 */
3222 		if (!ret_val) {
3223 			flash_data = er32flash(ICH_FLASH_FDATA0);
3224 			if (size == 1)
3225 				*data = (u8)(flash_data & 0x000000FF);
3226 			else if (size == 2)
3227 				*data = (u16)(flash_data & 0x0000FFFF);
3228 			break;
3229 		} else {
3230 			/* If we've gotten here, then things are probably
3231 			 * completely hosed, but if the error condition is
3232 			 * detected, it won't hurt to give it another try...
3233 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3234 			 */
3235 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3236 			if (hsfsts.hsf_status.flcerr) {
3237 				/* Repeat for some time before giving up. */
3238 				continue;
3239 			} else if (!hsfsts.hsf_status.flcdone) {
3240 				e_dbg("Timeout error - flash cycle did not complete.\n");
3241 				break;
3242 			}
3243 		}
3244 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3245 
3246 	return ret_val;
3247 }
3248 
3249 /**
3250  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
3251  *  @hw: pointer to the HW structure
3252  *  @offset: The offset (in bytes) of the word(s) to write.
3253  *  @words: Size of data to write in words
3254  *  @data: Pointer to the word(s) to write at offset.
3255  *
3256  *  Writes a byte or word to the NVM using the flash access registers.
3257  **/
3258 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3259 				   u16 *data)
3260 {
3261 	struct e1000_nvm_info *nvm = &hw->nvm;
3262 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3263 	u16 i;
3264 
3265 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3266 	    (words == 0)) {
3267 		e_dbg("nvm parameter(s) out of bounds\n");
3268 		return -E1000_ERR_NVM;
3269 	}
3270 
3271 	nvm->ops.acquire(hw);
3272 
3273 	for (i = 0; i < words; i++) {
3274 		dev_spec->shadow_ram[offset + i].modified = true;
3275 		dev_spec->shadow_ram[offset + i].value = data[i];
3276 	}
3277 
3278 	nvm->ops.release(hw);
3279 
3280 	return 0;
3281 }
3282 
3283 /**
3284  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3285  *  @hw: pointer to the HW structure
3286  *
3287  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3288  *  which writes the checksum to the shadow ram.  The changes in the shadow
3289  *  ram are then committed to the EEPROM by processing each bank at a time
3290  *  checking for the modified bit and writing only the pending changes.
3291  *  After a successful commit, the shadow ram is cleared and is ready for
3292  *  future writes.
3293  **/
3294 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
3295 {
3296 	struct e1000_nvm_info *nvm = &hw->nvm;
3297 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3298 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3299 	s32 ret_val;
3300 	u16 data;
3301 
3302 	ret_val = e1000e_update_nvm_checksum_generic(hw);
3303 	if (ret_val)
3304 		goto out;
3305 
3306 	if (nvm->type != e1000_nvm_flash_sw)
3307 		goto out;
3308 
3309 	nvm->ops.acquire(hw);
3310 
3311 	/* We're writing to the opposite bank so if we're on bank 1,
3312 	 * write to bank 0 etc.  We also need to erase the segment that
3313 	 * is going to be written
3314 	 */
3315 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3316 	if (ret_val) {
3317 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3318 		bank = 0;
3319 	}
3320 
3321 	if (bank == 0) {
3322 		new_bank_offset = nvm->flash_bank_size;
3323 		old_bank_offset = 0;
3324 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3325 		if (ret_val)
3326 			goto release;
3327 	} else {
3328 		old_bank_offset = nvm->flash_bank_size;
3329 		new_bank_offset = 0;
3330 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3331 		if (ret_val)
3332 			goto release;
3333 	}
3334 
3335 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3336 		/* Determine whether to write the value stored
3337 		 * in the other NVM bank or a modified value stored
3338 		 * in the shadow RAM
3339 		 */
3340 		if (dev_spec->shadow_ram[i].modified) {
3341 			data = dev_spec->shadow_ram[i].value;
3342 		} else {
3343 			ret_val = e1000_read_flash_word_ich8lan(hw, i +
3344 								old_bank_offset,
3345 								&data);
3346 			if (ret_val)
3347 				break;
3348 		}
3349 
3350 		/* If the word is 0x13, then make sure the signature bits
3351 		 * (15:14) are 11b until the commit has completed.
3352 		 * This will allow us to write 10b which indicates the
3353 		 * signature is valid.  We want to do this after the write
3354 		 * has completed so that we don't mark the segment valid
3355 		 * while the write is still in progress
3356 		 */
3357 		if (i == E1000_ICH_NVM_SIG_WORD)
3358 			data |= E1000_ICH_NVM_SIG_MASK;
3359 
3360 		/* Convert offset to bytes. */
3361 		act_offset = (i + new_bank_offset) << 1;
3362 
3363 		usleep_range(100, 200);
3364 		/* Write the bytes to the new bank. */
3365 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3366 							       act_offset,
3367 							       (u8)data);
3368 		if (ret_val)
3369 			break;
3370 
3371 		usleep_range(100, 200);
3372 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3373 							       act_offset + 1,
3374 							       (u8)(data >> 8));
3375 		if (ret_val)
3376 			break;
3377 	}
3378 
3379 	/* Don't bother writing the segment valid bits if sector
3380 	 * programming failed.
3381 	 */
3382 	if (ret_val) {
3383 		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3384 		e_dbg("Flash commit failed.\n");
3385 		goto release;
3386 	}
3387 
3388 	/* Finally validate the new segment by setting bit 15:14
3389 	 * to 10b in word 0x13 , this can be done without an
3390 	 * erase as well since these bits are 11 to start with
3391 	 * and we need to change bit 14 to 0b
3392 	 */
3393 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3394 	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
3395 	if (ret_val)
3396 		goto release;
3397 
3398 	data &= 0xBFFF;
3399 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3400 						       act_offset * 2 + 1,
3401 						       (u8)(data >> 8));
3402 	if (ret_val)
3403 		goto release;
3404 
3405 	/* And invalidate the previously valid segment by setting
3406 	 * its signature word (0x13) high_byte to 0b. This can be
3407 	 * done without an erase because flash erase sets all bits
3408 	 * to 1's. We can write 1's to 0's without an erase
3409 	 */
3410 	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
3411 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
3412 	if (ret_val)
3413 		goto release;
3414 
3415 	/* Great!  Everything worked, we can now clear the cached entries. */
3416 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3417 		dev_spec->shadow_ram[i].modified = false;
3418 		dev_spec->shadow_ram[i].value = 0xFFFF;
3419 	}
3420 
3421 release:
3422 	nvm->ops.release(hw);
3423 
3424 	/* Reload the EEPROM, or else modifications will not appear
3425 	 * until after the next adapter reset.
3426 	 */
3427 	if (!ret_val) {
3428 		nvm->ops.reload(hw);
3429 		usleep_range(10000, 20000);
3430 	}
3431 
3432 out:
3433 	if (ret_val)
3434 		e_dbg("NVM update error: %d\n", ret_val);
3435 
3436 	return ret_val;
3437 }
3438 
3439 /**
3440  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
3441  *  @hw: pointer to the HW structure
3442  *
3443  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
3444  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
3445  *  calculated, in which case we need to calculate the checksum and set bit 6.
3446  **/
3447 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
3448 {
3449 	s32 ret_val;
3450 	u16 data;
3451 	u16 word;
3452 	u16 valid_csum_mask;
3453 
3454 	/* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
3455 	 * the checksum needs to be fixed.  This bit is an indication that
3456 	 * the NVM was prepared by OEM software and did not calculate
3457 	 * the checksum...a likely scenario.
3458 	 */
3459 	switch (hw->mac.type) {
3460 	case e1000_pch_lpt:
3461 		word = NVM_COMPAT;
3462 		valid_csum_mask = NVM_COMPAT_VALID_CSUM;
3463 		break;
3464 	default:
3465 		word = NVM_FUTURE_INIT_WORD1;
3466 		valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
3467 		break;
3468 	}
3469 
3470 	ret_val = e1000_read_nvm(hw, word, 1, &data);
3471 	if (ret_val)
3472 		return ret_val;
3473 
3474 	if (!(data & valid_csum_mask)) {
3475 		data |= valid_csum_mask;
3476 		ret_val = e1000_write_nvm(hw, word, 1, &data);
3477 		if (ret_val)
3478 			return ret_val;
3479 		ret_val = e1000e_update_nvm_checksum(hw);
3480 		if (ret_val)
3481 			return ret_val;
3482 	}
3483 
3484 	return e1000e_validate_nvm_checksum_generic(hw);
3485 }
3486 
3487 /**
3488  *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
3489  *  @hw: pointer to the HW structure
3490  *
3491  *  To prevent malicious write/erase of the NVM, set it to be read-only
3492  *  so that the hardware ignores all write/erase cycles of the NVM via
3493  *  the flash control registers.  The shadow-ram copy of the NVM will
3494  *  still be updated, however any updates to this copy will not stick
3495  *  across driver reloads.
3496  **/
3497 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
3498 {
3499 	struct e1000_nvm_info *nvm = &hw->nvm;
3500 	union ich8_flash_protected_range pr0;
3501 	union ich8_hws_flash_status hsfsts;
3502 	u32 gfpreg;
3503 
3504 	nvm->ops.acquire(hw);
3505 
3506 	gfpreg = er32flash(ICH_FLASH_GFPREG);
3507 
3508 	/* Write-protect GbE Sector of NVM */
3509 	pr0.regval = er32flash(ICH_FLASH_PR0);
3510 	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
3511 	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
3512 	pr0.range.wpe = true;
3513 	ew32flash(ICH_FLASH_PR0, pr0.regval);
3514 
3515 	/* Lock down a subset of GbE Flash Control Registers, e.g.
3516 	 * PR0 to prevent the write-protection from being lifted.
3517 	 * Once FLOCKDN is set, the registers protected by it cannot
3518 	 * be written until FLOCKDN is cleared by a hardware reset.
3519 	 */
3520 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3521 	hsfsts.hsf_status.flockdn = true;
3522 	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3523 
3524 	nvm->ops.release(hw);
3525 }
3526 
3527 /**
3528  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
3529  *  @hw: pointer to the HW structure
3530  *  @offset: The offset (in bytes) of the byte/word to read.
3531  *  @size: Size of data to read, 1=byte 2=word
3532  *  @data: The byte(s) to write to the NVM.
3533  *
3534  *  Writes one/two bytes to the NVM using the flash access registers.
3535  **/
3536 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3537 					  u8 size, u16 data)
3538 {
3539 	union ich8_hws_flash_status hsfsts;
3540 	union ich8_hws_flash_ctrl hsflctl;
3541 	u32 flash_linear_addr;
3542 	u32 flash_data = 0;
3543 	s32 ret_val;
3544 	u8 count = 0;
3545 
3546 	if (size < 1 || size > 2 || data > size * 0xff ||
3547 	    offset > ICH_FLASH_LINEAR_ADDR_MASK)
3548 		return -E1000_ERR_NVM;
3549 
3550 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3551 			     hw->nvm.flash_base_addr);
3552 
3553 	do {
3554 		udelay(1);
3555 		/* Steps */
3556 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3557 		if (ret_val)
3558 			break;
3559 
3560 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3561 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3562 		hsflctl.hsf_ctrl.fldbcount = size - 1;
3563 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
3564 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3565 
3566 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3567 
3568 		if (size == 1)
3569 			flash_data = (u32)data & 0x00FF;
3570 		else
3571 			flash_data = (u32)data;
3572 
3573 		ew32flash(ICH_FLASH_FDATA0, flash_data);
3574 
3575 		/* check if FCERR is set to 1 , if set to 1, clear it
3576 		 * and try the whole sequence a few more times else done
3577 		 */
3578 		ret_val =
3579 		    e1000_flash_cycle_ich8lan(hw,
3580 					      ICH_FLASH_WRITE_COMMAND_TIMEOUT);
3581 		if (!ret_val)
3582 			break;
3583 
3584 		/* If we're here, then things are most likely
3585 		 * completely hosed, but if the error condition
3586 		 * is detected, it won't hurt to give it another
3587 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
3588 		 */
3589 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3590 		if (hsfsts.hsf_status.flcerr)
3591 			/* Repeat for some time before giving up. */
3592 			continue;
3593 		if (!hsfsts.hsf_status.flcdone) {
3594 			e_dbg("Timeout error - flash cycle did not complete.\n");
3595 			break;
3596 		}
3597 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3598 
3599 	return ret_val;
3600 }
3601 
3602 /**
3603  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
3604  *  @hw: pointer to the HW structure
3605  *  @offset: The index of the byte to read.
3606  *  @data: The byte to write to the NVM.
3607  *
3608  *  Writes a single byte to the NVM using the flash access registers.
3609  **/
3610 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3611 					  u8 data)
3612 {
3613 	u16 word = (u16)data;
3614 
3615 	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
3616 }
3617 
3618 /**
3619  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
3620  *  @hw: pointer to the HW structure
3621  *  @offset: The offset of the byte to write.
3622  *  @byte: The byte to write to the NVM.
3623  *
3624  *  Writes a single byte to the NVM using the flash access registers.
3625  *  Goes through a retry algorithm before giving up.
3626  **/
3627 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
3628 						u32 offset, u8 byte)
3629 {
3630 	s32 ret_val;
3631 	u16 program_retries;
3632 
3633 	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
3634 	if (!ret_val)
3635 		return ret_val;
3636 
3637 	for (program_retries = 0; program_retries < 100; program_retries++) {
3638 		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
3639 		usleep_range(100, 200);
3640 		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
3641 		if (!ret_val)
3642 			break;
3643 	}
3644 	if (program_retries == 100)
3645 		return -E1000_ERR_NVM;
3646 
3647 	return 0;
3648 }
3649 
3650 /**
3651  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
3652  *  @hw: pointer to the HW structure
3653  *  @bank: 0 for first bank, 1 for second bank, etc.
3654  *
3655  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
3656  *  bank N is 4096 * N + flash_reg_addr.
3657  **/
3658 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
3659 {
3660 	struct e1000_nvm_info *nvm = &hw->nvm;
3661 	union ich8_hws_flash_status hsfsts;
3662 	union ich8_hws_flash_ctrl hsflctl;
3663 	u32 flash_linear_addr;
3664 	/* bank size is in 16bit words - adjust to bytes */
3665 	u32 flash_bank_size = nvm->flash_bank_size * 2;
3666 	s32 ret_val;
3667 	s32 count = 0;
3668 	s32 j, iteration, sector_size;
3669 
3670 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3671 
3672 	/* Determine HW Sector size: Read BERASE bits of hw flash status
3673 	 * register
3674 	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
3675 	 *     consecutive sectors.  The start index for the nth Hw sector
3676 	 *     can be calculated as = bank * 4096 + n * 256
3677 	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
3678 	 *     The start index for the nth Hw sector can be calculated
3679 	 *     as = bank * 4096
3680 	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
3681 	 *     (ich9 only, otherwise error condition)
3682 	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
3683 	 */
3684 	switch (hsfsts.hsf_status.berasesz) {
3685 	case 0:
3686 		/* Hw sector size 256 */
3687 		sector_size = ICH_FLASH_SEG_SIZE_256;
3688 		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
3689 		break;
3690 	case 1:
3691 		sector_size = ICH_FLASH_SEG_SIZE_4K;
3692 		iteration = 1;
3693 		break;
3694 	case 2:
3695 		sector_size = ICH_FLASH_SEG_SIZE_8K;
3696 		iteration = 1;
3697 		break;
3698 	case 3:
3699 		sector_size = ICH_FLASH_SEG_SIZE_64K;
3700 		iteration = 1;
3701 		break;
3702 	default:
3703 		return -E1000_ERR_NVM;
3704 	}
3705 
3706 	/* Start with the base address, then add the sector offset. */
3707 	flash_linear_addr = hw->nvm.flash_base_addr;
3708 	flash_linear_addr += (bank) ? flash_bank_size : 0;
3709 
3710 	for (j = 0; j < iteration; j++) {
3711 		do {
3712 			u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
3713 
3714 			/* Steps */
3715 			ret_val = e1000_flash_cycle_init_ich8lan(hw);
3716 			if (ret_val)
3717 				return ret_val;
3718 
3719 			/* Write a value 11 (block Erase) in Flash
3720 			 * Cycle field in hw flash control
3721 			 */
3722 			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3723 			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
3724 			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3725 
3726 			/* Write the last 24 bits of an index within the
3727 			 * block into Flash Linear address field in Flash
3728 			 * Address.
3729 			 */
3730 			flash_linear_addr += (j * sector_size);
3731 			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3732 
3733 			ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
3734 			if (!ret_val)
3735 				break;
3736 
3737 			/* Check if FCERR is set to 1.  If 1,
3738 			 * clear it and try the whole sequence
3739 			 * a few more times else Done
3740 			 */
3741 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3742 			if (hsfsts.hsf_status.flcerr)
3743 				/* repeat for some time before giving up */
3744 				continue;
3745 			else if (!hsfsts.hsf_status.flcdone)
3746 				return ret_val;
3747 		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
3748 	}
3749 
3750 	return 0;
3751 }
3752 
3753 /**
3754  *  e1000_valid_led_default_ich8lan - Set the default LED settings
3755  *  @hw: pointer to the HW structure
3756  *  @data: Pointer to the LED settings
3757  *
3758  *  Reads the LED default settings from the NVM to data.  If the NVM LED
3759  *  settings is all 0's or F's, set the LED default to a valid LED default
3760  *  setting.
3761  **/
3762 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
3763 {
3764 	s32 ret_val;
3765 
3766 	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
3767 	if (ret_val) {
3768 		e_dbg("NVM Read Error\n");
3769 		return ret_val;
3770 	}
3771 
3772 	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
3773 		*data = ID_LED_DEFAULT_ICH8LAN;
3774 
3775 	return 0;
3776 }
3777 
3778 /**
3779  *  e1000_id_led_init_pchlan - store LED configurations
3780  *  @hw: pointer to the HW structure
3781  *
3782  *  PCH does not control LEDs via the LEDCTL register, rather it uses
3783  *  the PHY LED configuration register.
3784  *
3785  *  PCH also does not have an "always on" or "always off" mode which
3786  *  complicates the ID feature.  Instead of using the "on" mode to indicate
3787  *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
3788  *  use "link_up" mode.  The LEDs will still ID on request if there is no
3789  *  link based on logic in e1000_led_[on|off]_pchlan().
3790  **/
3791 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
3792 {
3793 	struct e1000_mac_info *mac = &hw->mac;
3794 	s32 ret_val;
3795 	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
3796 	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
3797 	u16 data, i, temp, shift;
3798 
3799 	/* Get default ID LED modes */
3800 	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
3801 	if (ret_val)
3802 		return ret_val;
3803 
3804 	mac->ledctl_default = er32(LEDCTL);
3805 	mac->ledctl_mode1 = mac->ledctl_default;
3806 	mac->ledctl_mode2 = mac->ledctl_default;
3807 
3808 	for (i = 0; i < 4; i++) {
3809 		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
3810 		shift = (i * 5);
3811 		switch (temp) {
3812 		case ID_LED_ON1_DEF2:
3813 		case ID_LED_ON1_ON2:
3814 		case ID_LED_ON1_OFF2:
3815 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
3816 			mac->ledctl_mode1 |= (ledctl_on << shift);
3817 			break;
3818 		case ID_LED_OFF1_DEF2:
3819 		case ID_LED_OFF1_ON2:
3820 		case ID_LED_OFF1_OFF2:
3821 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
3822 			mac->ledctl_mode1 |= (ledctl_off << shift);
3823 			break;
3824 		default:
3825 			/* Do nothing */
3826 			break;
3827 		}
3828 		switch (temp) {
3829 		case ID_LED_DEF1_ON2:
3830 		case ID_LED_ON1_ON2:
3831 		case ID_LED_OFF1_ON2:
3832 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3833 			mac->ledctl_mode2 |= (ledctl_on << shift);
3834 			break;
3835 		case ID_LED_DEF1_OFF2:
3836 		case ID_LED_ON1_OFF2:
3837 		case ID_LED_OFF1_OFF2:
3838 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3839 			mac->ledctl_mode2 |= (ledctl_off << shift);
3840 			break;
3841 		default:
3842 			/* Do nothing */
3843 			break;
3844 		}
3845 	}
3846 
3847 	return 0;
3848 }
3849 
3850 /**
3851  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
3852  *  @hw: pointer to the HW structure
3853  *
3854  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
3855  *  register, so the the bus width is hard coded.
3856  **/
3857 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
3858 {
3859 	struct e1000_bus_info *bus = &hw->bus;
3860 	s32 ret_val;
3861 
3862 	ret_val = e1000e_get_bus_info_pcie(hw);
3863 
3864 	/* ICH devices are "PCI Express"-ish.  They have
3865 	 * a configuration space, but do not contain
3866 	 * PCI Express Capability registers, so bus width
3867 	 * must be hardcoded.
3868 	 */
3869 	if (bus->width == e1000_bus_width_unknown)
3870 		bus->width = e1000_bus_width_pcie_x1;
3871 
3872 	return ret_val;
3873 }
3874 
3875 /**
3876  *  e1000_reset_hw_ich8lan - Reset the hardware
3877  *  @hw: pointer to the HW structure
3878  *
3879  *  Does a full reset of the hardware which includes a reset of the PHY and
3880  *  MAC.
3881  **/
3882 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
3883 {
3884 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3885 	u16 kum_cfg;
3886 	u32 ctrl, reg;
3887 	s32 ret_val;
3888 
3889 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
3890 	 * on the last TLP read/write transaction when MAC is reset.
3891 	 */
3892 	ret_val = e1000e_disable_pcie_master(hw);
3893 	if (ret_val)
3894 		e_dbg("PCI-E Master disable polling has failed.\n");
3895 
3896 	e_dbg("Masking off all interrupts\n");
3897 	ew32(IMC, 0xffffffff);
3898 
3899 	/* Disable the Transmit and Receive units.  Then delay to allow
3900 	 * any pending transactions to complete before we hit the MAC
3901 	 * with the global reset.
3902 	 */
3903 	ew32(RCTL, 0);
3904 	ew32(TCTL, E1000_TCTL_PSP);
3905 	e1e_flush();
3906 
3907 	usleep_range(10000, 20000);
3908 
3909 	/* Workaround for ICH8 bit corruption issue in FIFO memory */
3910 	if (hw->mac.type == e1000_ich8lan) {
3911 		/* Set Tx and Rx buffer allocation to 8k apiece. */
3912 		ew32(PBA, E1000_PBA_8K);
3913 		/* Set Packet Buffer Size to 16k. */
3914 		ew32(PBS, E1000_PBS_16K);
3915 	}
3916 
3917 	if (hw->mac.type == e1000_pchlan) {
3918 		/* Save the NVM K1 bit setting */
3919 		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
3920 		if (ret_val)
3921 			return ret_val;
3922 
3923 		if (kum_cfg & E1000_NVM_K1_ENABLE)
3924 			dev_spec->nvm_k1_enabled = true;
3925 		else
3926 			dev_spec->nvm_k1_enabled = false;
3927 	}
3928 
3929 	ctrl = er32(CTRL);
3930 
3931 	if (!hw->phy.ops.check_reset_block(hw)) {
3932 		/* Full-chip reset requires MAC and PHY reset at the same
3933 		 * time to make sure the interface between MAC and the
3934 		 * external PHY is reset.
3935 		 */
3936 		ctrl |= E1000_CTRL_PHY_RST;
3937 
3938 		/* Gate automatic PHY configuration by hardware on
3939 		 * non-managed 82579
3940 		 */
3941 		if ((hw->mac.type == e1000_pch2lan) &&
3942 		    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
3943 			e1000_gate_hw_phy_config_ich8lan(hw, true);
3944 	}
3945 	ret_val = e1000_acquire_swflag_ich8lan(hw);
3946 	e_dbg("Issuing a global reset to ich8lan\n");
3947 	ew32(CTRL, (ctrl | E1000_CTRL_RST));
3948 	/* cannot issue a flush here because it hangs the hardware */
3949 	msleep(20);
3950 
3951 	/* Set Phy Config Counter to 50msec */
3952 	if (hw->mac.type == e1000_pch2lan) {
3953 		reg = er32(FEXTNVM3);
3954 		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
3955 		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
3956 		ew32(FEXTNVM3, reg);
3957 	}
3958 
3959 	if (!ret_val)
3960 		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
3961 
3962 	if (ctrl & E1000_CTRL_PHY_RST) {
3963 		ret_val = hw->phy.ops.get_cfg_done(hw);
3964 		if (ret_val)
3965 			return ret_val;
3966 
3967 		ret_val = e1000_post_phy_reset_ich8lan(hw);
3968 		if (ret_val)
3969 			return ret_val;
3970 	}
3971 
3972 	/* For PCH, this write will make sure that any noise
3973 	 * will be detected as a CRC error and be dropped rather than show up
3974 	 * as a bad packet to the DMA engine.
3975 	 */
3976 	if (hw->mac.type == e1000_pchlan)
3977 		ew32(CRC_OFFSET, 0x65656565);
3978 
3979 	ew32(IMC, 0xffffffff);
3980 	er32(ICR);
3981 
3982 	reg = er32(KABGTXD);
3983 	reg |= E1000_KABGTXD_BGSQLBIAS;
3984 	ew32(KABGTXD, reg);
3985 
3986 	return 0;
3987 }
3988 
3989 /**
3990  *  e1000_init_hw_ich8lan - Initialize the hardware
3991  *  @hw: pointer to the HW structure
3992  *
3993  *  Prepares the hardware for transmit and receive by doing the following:
3994  *   - initialize hardware bits
3995  *   - initialize LED identification
3996  *   - setup receive address registers
3997  *   - setup flow control
3998  *   - setup transmit descriptors
3999  *   - clear statistics
4000  **/
4001 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4002 {
4003 	struct e1000_mac_info *mac = &hw->mac;
4004 	u32 ctrl_ext, txdctl, snoop;
4005 	s32 ret_val;
4006 	u16 i;
4007 
4008 	e1000_initialize_hw_bits_ich8lan(hw);
4009 
4010 	/* Initialize identification LED */
4011 	ret_val = mac->ops.id_led_init(hw);
4012 	/* An error is not fatal and we should not stop init due to this */
4013 	if (ret_val)
4014 		e_dbg("Error initializing identification LED\n");
4015 
4016 	/* Setup the receive address. */
4017 	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
4018 
4019 	/* Zero out the Multicast HASH table */
4020 	e_dbg("Zeroing the MTA\n");
4021 	for (i = 0; i < mac->mta_reg_count; i++)
4022 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4023 
4024 	/* The 82578 Rx buffer will stall if wakeup is enabled in host and
4025 	 * the ME.  Disable wakeup by clearing the host wakeup bit.
4026 	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
4027 	 */
4028 	if (hw->phy.type == e1000_phy_82578) {
4029 		e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4030 		i &= ~BM_WUC_HOST_WU_BIT;
4031 		e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4032 		ret_val = e1000_phy_hw_reset_ich8lan(hw);
4033 		if (ret_val)
4034 			return ret_val;
4035 	}
4036 
4037 	/* Setup link and flow control */
4038 	ret_val = mac->ops.setup_link(hw);
4039 
4040 	/* Set the transmit descriptor write-back policy for both queues */
4041 	txdctl = er32(TXDCTL(0));
4042 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4043 		  E1000_TXDCTL_FULL_TX_DESC_WB);
4044 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4045 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4046 	ew32(TXDCTL(0), txdctl);
4047 	txdctl = er32(TXDCTL(1));
4048 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4049 		  E1000_TXDCTL_FULL_TX_DESC_WB);
4050 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4051 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4052 	ew32(TXDCTL(1), txdctl);
4053 
4054 	/* ICH8 has opposite polarity of no_snoop bits.
4055 	 * By default, we should use snoop behavior.
4056 	 */
4057 	if (mac->type == e1000_ich8lan)
4058 		snoop = PCIE_ICH8_SNOOP_ALL;
4059 	else
4060 		snoop = (u32)~(PCIE_NO_SNOOP_ALL);
4061 	e1000e_set_pcie_no_snoop(hw, snoop);
4062 
4063 	ctrl_ext = er32(CTRL_EXT);
4064 	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4065 	ew32(CTRL_EXT, ctrl_ext);
4066 
4067 	/* Clear all of the statistics registers (clear on read).  It is
4068 	 * important that we do this after we have tried to establish link
4069 	 * because the symbol error count will increment wildly if there
4070 	 * is no link.
4071 	 */
4072 	e1000_clear_hw_cntrs_ich8lan(hw);
4073 
4074 	return ret_val;
4075 }
4076 
4077 /**
4078  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4079  *  @hw: pointer to the HW structure
4080  *
4081  *  Sets/Clears required hardware bits necessary for correctly setting up the
4082  *  hardware for transmit and receive.
4083  **/
4084 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4085 {
4086 	u32 reg;
4087 
4088 	/* Extended Device Control */
4089 	reg = er32(CTRL_EXT);
4090 	reg |= (1 << 22);
4091 	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
4092 	if (hw->mac.type >= e1000_pchlan)
4093 		reg |= E1000_CTRL_EXT_PHYPDEN;
4094 	ew32(CTRL_EXT, reg);
4095 
4096 	/* Transmit Descriptor Control 0 */
4097 	reg = er32(TXDCTL(0));
4098 	reg |= (1 << 22);
4099 	ew32(TXDCTL(0), reg);
4100 
4101 	/* Transmit Descriptor Control 1 */
4102 	reg = er32(TXDCTL(1));
4103 	reg |= (1 << 22);
4104 	ew32(TXDCTL(1), reg);
4105 
4106 	/* Transmit Arbitration Control 0 */
4107 	reg = er32(TARC(0));
4108 	if (hw->mac.type == e1000_ich8lan)
4109 		reg |= (1 << 28) | (1 << 29);
4110 	reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
4111 	ew32(TARC(0), reg);
4112 
4113 	/* Transmit Arbitration Control 1 */
4114 	reg = er32(TARC(1));
4115 	if (er32(TCTL) & E1000_TCTL_MULR)
4116 		reg &= ~(1 << 28);
4117 	else
4118 		reg |= (1 << 28);
4119 	reg |= (1 << 24) | (1 << 26) | (1 << 30);
4120 	ew32(TARC(1), reg);
4121 
4122 	/* Device Status */
4123 	if (hw->mac.type == e1000_ich8lan) {
4124 		reg = er32(STATUS);
4125 		reg &= ~(1 << 31);
4126 		ew32(STATUS, reg);
4127 	}
4128 
4129 	/* work-around descriptor data corruption issue during nfs v2 udp
4130 	 * traffic, just disable the nfs filtering capability
4131 	 */
4132 	reg = er32(RFCTL);
4133 	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
4134 
4135 	/* Disable IPv6 extension header parsing because some malformed
4136 	 * IPv6 headers can hang the Rx.
4137 	 */
4138 	if (hw->mac.type == e1000_ich8lan)
4139 		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
4140 	ew32(RFCTL, reg);
4141 
4142 	/* Enable ECC on Lynxpoint */
4143 	if (hw->mac.type == e1000_pch_lpt) {
4144 		reg = er32(PBECCSTS);
4145 		reg |= E1000_PBECCSTS_ECC_ENABLE;
4146 		ew32(PBECCSTS, reg);
4147 
4148 		reg = er32(CTRL);
4149 		reg |= E1000_CTRL_MEHE;
4150 		ew32(CTRL, reg);
4151 	}
4152 }
4153 
4154 /**
4155  *  e1000_setup_link_ich8lan - Setup flow control and link settings
4156  *  @hw: pointer to the HW structure
4157  *
4158  *  Determines which flow control settings to use, then configures flow
4159  *  control.  Calls the appropriate media-specific link configuration
4160  *  function.  Assuming the adapter has a valid link partner, a valid link
4161  *  should be established.  Assumes the hardware has previously been reset
4162  *  and the transmitter and receiver are not enabled.
4163  **/
4164 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
4165 {
4166 	s32 ret_val;
4167 
4168 	if (hw->phy.ops.check_reset_block(hw))
4169 		return 0;
4170 
4171 	/* ICH parts do not have a word in the NVM to determine
4172 	 * the default flow control setting, so we explicitly
4173 	 * set it to full.
4174 	 */
4175 	if (hw->fc.requested_mode == e1000_fc_default) {
4176 		/* Workaround h/w hang when Tx flow control enabled */
4177 		if (hw->mac.type == e1000_pchlan)
4178 			hw->fc.requested_mode = e1000_fc_rx_pause;
4179 		else
4180 			hw->fc.requested_mode = e1000_fc_full;
4181 	}
4182 
4183 	/* Save off the requested flow control mode for use later.  Depending
4184 	 * on the link partner's capabilities, we may or may not use this mode.
4185 	 */
4186 	hw->fc.current_mode = hw->fc.requested_mode;
4187 
4188 	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
4189 
4190 	/* Continue to configure the copper link. */
4191 	ret_val = hw->mac.ops.setup_physical_interface(hw);
4192 	if (ret_val)
4193 		return ret_val;
4194 
4195 	ew32(FCTTV, hw->fc.pause_time);
4196 	if ((hw->phy.type == e1000_phy_82578) ||
4197 	    (hw->phy.type == e1000_phy_82579) ||
4198 	    (hw->phy.type == e1000_phy_i217) ||
4199 	    (hw->phy.type == e1000_phy_82577)) {
4200 		ew32(FCRTV_PCH, hw->fc.refresh_time);
4201 
4202 		ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
4203 				   hw->fc.pause_time);
4204 		if (ret_val)
4205 			return ret_val;
4206 	}
4207 
4208 	return e1000e_set_fc_watermarks(hw);
4209 }
4210 
4211 /**
4212  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
4213  *  @hw: pointer to the HW structure
4214  *
4215  *  Configures the kumeran interface to the PHY to wait the appropriate time
4216  *  when polling the PHY, then call the generic setup_copper_link to finish
4217  *  configuring the copper link.
4218  **/
4219 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
4220 {
4221 	u32 ctrl;
4222 	s32 ret_val;
4223 	u16 reg_data;
4224 
4225 	ctrl = er32(CTRL);
4226 	ctrl |= E1000_CTRL_SLU;
4227 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
4228 	ew32(CTRL, ctrl);
4229 
4230 	/* Set the mac to wait the maximum time between each iteration
4231 	 * and increase the max iterations when polling the phy;
4232 	 * this fixes erroneous timeouts at 10Mbps.
4233 	 */
4234 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
4235 	if (ret_val)
4236 		return ret_val;
4237 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
4238 				       &reg_data);
4239 	if (ret_val)
4240 		return ret_val;
4241 	reg_data |= 0x3F;
4242 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
4243 					reg_data);
4244 	if (ret_val)
4245 		return ret_val;
4246 
4247 	switch (hw->phy.type) {
4248 	case e1000_phy_igp_3:
4249 		ret_val = e1000e_copper_link_setup_igp(hw);
4250 		if (ret_val)
4251 			return ret_val;
4252 		break;
4253 	case e1000_phy_bm:
4254 	case e1000_phy_82578:
4255 		ret_val = e1000e_copper_link_setup_m88(hw);
4256 		if (ret_val)
4257 			return ret_val;
4258 		break;
4259 	case e1000_phy_82577:
4260 	case e1000_phy_82579:
4261 		ret_val = e1000_copper_link_setup_82577(hw);
4262 		if (ret_val)
4263 			return ret_val;
4264 		break;
4265 	case e1000_phy_ife:
4266 		ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
4267 		if (ret_val)
4268 			return ret_val;
4269 
4270 		reg_data &= ~IFE_PMC_AUTO_MDIX;
4271 
4272 		switch (hw->phy.mdix) {
4273 		case 1:
4274 			reg_data &= ~IFE_PMC_FORCE_MDIX;
4275 			break;
4276 		case 2:
4277 			reg_data |= IFE_PMC_FORCE_MDIX;
4278 			break;
4279 		case 0:
4280 		default:
4281 			reg_data |= IFE_PMC_AUTO_MDIX;
4282 			break;
4283 		}
4284 		ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
4285 		if (ret_val)
4286 			return ret_val;
4287 		break;
4288 	default:
4289 		break;
4290 	}
4291 
4292 	return e1000e_setup_copper_link(hw);
4293 }
4294 
4295 /**
4296  *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
4297  *  @hw: pointer to the HW structure
4298  *
4299  *  Calls the PHY specific link setup function and then calls the
4300  *  generic setup_copper_link to finish configuring the link for
4301  *  Lynxpoint PCH devices
4302  **/
4303 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
4304 {
4305 	u32 ctrl;
4306 	s32 ret_val;
4307 
4308 	ctrl = er32(CTRL);
4309 	ctrl |= E1000_CTRL_SLU;
4310 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
4311 	ew32(CTRL, ctrl);
4312 
4313 	ret_val = e1000_copper_link_setup_82577(hw);
4314 	if (ret_val)
4315 		return ret_val;
4316 
4317 	return e1000e_setup_copper_link(hw);
4318 }
4319 
4320 /**
4321  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
4322  *  @hw: pointer to the HW structure
4323  *  @speed: pointer to store current link speed
4324  *  @duplex: pointer to store the current link duplex
4325  *
4326  *  Calls the generic get_speed_and_duplex to retrieve the current link
4327  *  information and then calls the Kumeran lock loss workaround for links at
4328  *  gigabit speeds.
4329  **/
4330 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
4331 					  u16 *duplex)
4332 {
4333 	s32 ret_val;
4334 
4335 	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
4336 	if (ret_val)
4337 		return ret_val;
4338 
4339 	if ((hw->mac.type == e1000_ich8lan) &&
4340 	    (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
4341 		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
4342 	}
4343 
4344 	return ret_val;
4345 }
4346 
4347 /**
4348  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
4349  *  @hw: pointer to the HW structure
4350  *
4351  *  Work-around for 82566 Kumeran PCS lock loss:
4352  *  On link status change (i.e. PCI reset, speed change) and link is up and
4353  *  speed is gigabit-
4354  *    0) if workaround is optionally disabled do nothing
4355  *    1) wait 1ms for Kumeran link to come up
4356  *    2) check Kumeran Diagnostic register PCS lock loss bit
4357  *    3) if not set the link is locked (all is good), otherwise...
4358  *    4) reset the PHY
4359  *    5) repeat up to 10 times
4360  *  Note: this is only called for IGP3 copper when speed is 1gb.
4361  **/
4362 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
4363 {
4364 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4365 	u32 phy_ctrl;
4366 	s32 ret_val;
4367 	u16 i, data;
4368 	bool link;
4369 
4370 	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
4371 		return 0;
4372 
4373 	/* Make sure link is up before proceeding.  If not just return.
4374 	 * Attempting this while link is negotiating fouled up link
4375 	 * stability
4376 	 */
4377 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
4378 	if (!link)
4379 		return 0;
4380 
4381 	for (i = 0; i < 10; i++) {
4382 		/* read once to clear */
4383 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
4384 		if (ret_val)
4385 			return ret_val;
4386 		/* and again to get new status */
4387 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
4388 		if (ret_val)
4389 			return ret_val;
4390 
4391 		/* check for PCS lock */
4392 		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
4393 			return 0;
4394 
4395 		/* Issue PHY reset */
4396 		e1000_phy_hw_reset(hw);
4397 		mdelay(5);
4398 	}
4399 	/* Disable GigE link negotiation */
4400 	phy_ctrl = er32(PHY_CTRL);
4401 	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
4402 		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
4403 	ew32(PHY_CTRL, phy_ctrl);
4404 
4405 	/* Call gig speed drop workaround on Gig disable before accessing
4406 	 * any PHY registers
4407 	 */
4408 	e1000e_gig_downshift_workaround_ich8lan(hw);
4409 
4410 	/* unable to acquire PCS lock */
4411 	return -E1000_ERR_PHY;
4412 }
4413 
4414 /**
4415  *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
4416  *  @hw: pointer to the HW structure
4417  *  @state: boolean value used to set the current Kumeran workaround state
4418  *
4419  *  If ICH8, set the current Kumeran workaround state (enabled - true
4420  *  /disabled - false).
4421  **/
4422 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
4423 						  bool state)
4424 {
4425 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4426 
4427 	if (hw->mac.type != e1000_ich8lan) {
4428 		e_dbg("Workaround applies to ICH8 only.\n");
4429 		return;
4430 	}
4431 
4432 	dev_spec->kmrn_lock_loss_workaround_enabled = state;
4433 }
4434 
4435 /**
4436  *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
4437  *  @hw: pointer to the HW structure
4438  *
4439  *  Workaround for 82566 power-down on D3 entry:
4440  *    1) disable gigabit link
4441  *    2) write VR power-down enable
4442  *    3) read it back
4443  *  Continue if successful, else issue LCD reset and repeat
4444  **/
4445 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
4446 {
4447 	u32 reg;
4448 	u16 data;
4449 	u8 retry = 0;
4450 
4451 	if (hw->phy.type != e1000_phy_igp_3)
4452 		return;
4453 
4454 	/* Try the workaround twice (if needed) */
4455 	do {
4456 		/* Disable link */
4457 		reg = er32(PHY_CTRL);
4458 		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
4459 			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
4460 		ew32(PHY_CTRL, reg);
4461 
4462 		/* Call gig speed drop workaround on Gig disable before
4463 		 * accessing any PHY registers
4464 		 */
4465 		if (hw->mac.type == e1000_ich8lan)
4466 			e1000e_gig_downshift_workaround_ich8lan(hw);
4467 
4468 		/* Write VR power-down enable */
4469 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
4470 		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
4471 		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
4472 
4473 		/* Read it back and test */
4474 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
4475 		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
4476 		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
4477 			break;
4478 
4479 		/* Issue PHY reset and repeat at most one more time */
4480 		reg = er32(CTRL);
4481 		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
4482 		retry++;
4483 	} while (retry);
4484 }
4485 
4486 /**
4487  *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
4488  *  @hw: pointer to the HW structure
4489  *
4490  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
4491  *  LPLU, Gig disable, MDIC PHY reset):
4492  *    1) Set Kumeran Near-end loopback
4493  *    2) Clear Kumeran Near-end loopback
4494  *  Should only be called for ICH8[m] devices with any 1G Phy.
4495  **/
4496 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
4497 {
4498 	s32 ret_val;
4499 	u16 reg_data;
4500 
4501 	if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
4502 		return;
4503 
4504 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
4505 				       &reg_data);
4506 	if (ret_val)
4507 		return;
4508 	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
4509 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
4510 					reg_data);
4511 	if (ret_val)
4512 		return;
4513 	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
4514 	e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
4515 }
4516 
4517 /**
4518  *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
4519  *  @hw: pointer to the HW structure
4520  *
4521  *  During S0 to Sx transition, it is possible the link remains at gig
4522  *  instead of negotiating to a lower speed.  Before going to Sx, set
4523  *  'Gig Disable' to force link speed negotiation to a lower speed based on
4524  *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
4525  *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
4526  *  needs to be written.
4527  *  Parts that support (and are linked to a partner which support) EEE in
4528  *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
4529  *  than 10Mbps w/o EEE.
4530  **/
4531 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
4532 {
4533 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4534 	u32 phy_ctrl;
4535 	s32 ret_val;
4536 
4537 	phy_ctrl = er32(PHY_CTRL);
4538 	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
4539 
4540 	if (hw->phy.type == e1000_phy_i217) {
4541 		u16 phy_reg, device_id = hw->adapter->pdev->device;
4542 
4543 		if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
4544 		    (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
4545 		    (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
4546 		    (device_id == E1000_DEV_ID_PCH_I218_V3)) {
4547 			u32 fextnvm6 = er32(FEXTNVM6);
4548 
4549 			ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
4550 		}
4551 
4552 		ret_val = hw->phy.ops.acquire(hw);
4553 		if (ret_val)
4554 			goto out;
4555 
4556 		if (!dev_spec->eee_disable) {
4557 			u16 eee_advert;
4558 
4559 			ret_val =
4560 			    e1000_read_emi_reg_locked(hw,
4561 						      I217_EEE_ADVERTISEMENT,
4562 						      &eee_advert);
4563 			if (ret_val)
4564 				goto release;
4565 
4566 			/* Disable LPLU if both link partners support 100BaseT
4567 			 * EEE and 100Full is advertised on both ends of the
4568 			 * link.
4569 			 */
4570 			if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
4571 			    (dev_spec->eee_lp_ability &
4572 			     I82579_EEE_100_SUPPORTED) &&
4573 			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL))
4574 				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
4575 					      E1000_PHY_CTRL_NOND0A_LPLU);
4576 		}
4577 
4578 		/* For i217 Intel Rapid Start Technology support,
4579 		 * when the system is going into Sx and no manageability engine
4580 		 * is present, the driver must configure proxy to reset only on
4581 		 * power good.  LPI (Low Power Idle) state must also reset only
4582 		 * on power good, as well as the MTA (Multicast table array).
4583 		 * The SMBus release must also be disabled on LCD reset.
4584 		 */
4585 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
4586 			/* Enable proxy to reset only on power good. */
4587 			e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
4588 			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
4589 			e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
4590 
4591 			/* Set bit enable LPI (EEE) to reset only on
4592 			 * power good.
4593 			 */
4594 			e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
4595 			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
4596 			e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
4597 
4598 			/* Disable the SMB release on LCD reset. */
4599 			e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
4600 			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
4601 			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
4602 		}
4603 
4604 		/* Enable MTA to reset for Intel Rapid Start Technology
4605 		 * Support
4606 		 */
4607 		e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
4608 		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
4609 		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
4610 
4611 release:
4612 		hw->phy.ops.release(hw);
4613 	}
4614 out:
4615 	ew32(PHY_CTRL, phy_ctrl);
4616 
4617 	if (hw->mac.type == e1000_ich8lan)
4618 		e1000e_gig_downshift_workaround_ich8lan(hw);
4619 
4620 	if (hw->mac.type >= e1000_pchlan) {
4621 		e1000_oem_bits_config_ich8lan(hw, false);
4622 
4623 		/* Reset PHY to activate OEM bits on 82577/8 */
4624 		if (hw->mac.type == e1000_pchlan)
4625 			e1000e_phy_hw_reset_generic(hw);
4626 
4627 		ret_val = hw->phy.ops.acquire(hw);
4628 		if (ret_val)
4629 			return;
4630 		e1000_write_smbus_addr(hw);
4631 		hw->phy.ops.release(hw);
4632 	}
4633 }
4634 
4635 /**
4636  *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
4637  *  @hw: pointer to the HW structure
4638  *
4639  *  During Sx to S0 transitions on non-managed devices or managed devices
4640  *  on which PHY resets are not blocked, if the PHY registers cannot be
4641  *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
4642  *  the PHY.
4643  *  On i217, setup Intel Rapid Start Technology.
4644  **/
4645 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
4646 {
4647 	s32 ret_val;
4648 
4649 	if (hw->mac.type < e1000_pch2lan)
4650 		return;
4651 
4652 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
4653 	if (ret_val) {
4654 		e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
4655 		return;
4656 	}
4657 
4658 	/* For i217 Intel Rapid Start Technology support when the system
4659 	 * is transitioning from Sx and no manageability engine is present
4660 	 * configure SMBus to restore on reset, disable proxy, and enable
4661 	 * the reset on MTA (Multicast table array).
4662 	 */
4663 	if (hw->phy.type == e1000_phy_i217) {
4664 		u16 phy_reg;
4665 
4666 		ret_val = hw->phy.ops.acquire(hw);
4667 		if (ret_val) {
4668 			e_dbg("Failed to setup iRST\n");
4669 			return;
4670 		}
4671 
4672 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
4673 			/* Restore clear on SMB if no manageability engine
4674 			 * is present
4675 			 */
4676 			ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
4677 			if (ret_val)
4678 				goto release;
4679 			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
4680 			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
4681 
4682 			/* Disable Proxy */
4683 			e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
4684 		}
4685 		/* Enable reset on MTA */
4686 		ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
4687 		if (ret_val)
4688 			goto release;
4689 		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
4690 		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
4691 release:
4692 		if (ret_val)
4693 			e_dbg("Error %d in resume workarounds\n", ret_val);
4694 		hw->phy.ops.release(hw);
4695 	}
4696 }
4697 
4698 /**
4699  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
4700  *  @hw: pointer to the HW structure
4701  *
4702  *  Return the LED back to the default configuration.
4703  **/
4704 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
4705 {
4706 	if (hw->phy.type == e1000_phy_ife)
4707 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
4708 
4709 	ew32(LEDCTL, hw->mac.ledctl_default);
4710 	return 0;
4711 }
4712 
4713 /**
4714  *  e1000_led_on_ich8lan - Turn LEDs on
4715  *  @hw: pointer to the HW structure
4716  *
4717  *  Turn on the LEDs.
4718  **/
4719 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
4720 {
4721 	if (hw->phy.type == e1000_phy_ife)
4722 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
4723 				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
4724 
4725 	ew32(LEDCTL, hw->mac.ledctl_mode2);
4726 	return 0;
4727 }
4728 
4729 /**
4730  *  e1000_led_off_ich8lan - Turn LEDs off
4731  *  @hw: pointer to the HW structure
4732  *
4733  *  Turn off the LEDs.
4734  **/
4735 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
4736 {
4737 	if (hw->phy.type == e1000_phy_ife)
4738 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
4739 				(IFE_PSCL_PROBE_MODE |
4740 				 IFE_PSCL_PROBE_LEDS_OFF));
4741 
4742 	ew32(LEDCTL, hw->mac.ledctl_mode1);
4743 	return 0;
4744 }
4745 
4746 /**
4747  *  e1000_setup_led_pchlan - Configures SW controllable LED
4748  *  @hw: pointer to the HW structure
4749  *
4750  *  This prepares the SW controllable LED for use.
4751  **/
4752 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
4753 {
4754 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
4755 }
4756 
4757 /**
4758  *  e1000_cleanup_led_pchlan - Restore the default LED operation
4759  *  @hw: pointer to the HW structure
4760  *
4761  *  Return the LED back to the default configuration.
4762  **/
4763 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
4764 {
4765 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
4766 }
4767 
4768 /**
4769  *  e1000_led_on_pchlan - Turn LEDs on
4770  *  @hw: pointer to the HW structure
4771  *
4772  *  Turn on the LEDs.
4773  **/
4774 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
4775 {
4776 	u16 data = (u16)hw->mac.ledctl_mode2;
4777 	u32 i, led;
4778 
4779 	/* If no link, then turn LED on by setting the invert bit
4780 	 * for each LED that's mode is "link_up" in ledctl_mode2.
4781 	 */
4782 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
4783 		for (i = 0; i < 3; i++) {
4784 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
4785 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
4786 			    E1000_LEDCTL_MODE_LINK_UP)
4787 				continue;
4788 			if (led & E1000_PHY_LED0_IVRT)
4789 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
4790 			else
4791 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
4792 		}
4793 	}
4794 
4795 	return e1e_wphy(hw, HV_LED_CONFIG, data);
4796 }
4797 
4798 /**
4799  *  e1000_led_off_pchlan - Turn LEDs off
4800  *  @hw: pointer to the HW structure
4801  *
4802  *  Turn off the LEDs.
4803  **/
4804 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
4805 {
4806 	u16 data = (u16)hw->mac.ledctl_mode1;
4807 	u32 i, led;
4808 
4809 	/* If no link, then turn LED off by clearing the invert bit
4810 	 * for each LED that's mode is "link_up" in ledctl_mode1.
4811 	 */
4812 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
4813 		for (i = 0; i < 3; i++) {
4814 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
4815 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
4816 			    E1000_LEDCTL_MODE_LINK_UP)
4817 				continue;
4818 			if (led & E1000_PHY_LED0_IVRT)
4819 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
4820 			else
4821 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
4822 		}
4823 	}
4824 
4825 	return e1e_wphy(hw, HV_LED_CONFIG, data);
4826 }
4827 
4828 /**
4829  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
4830  *  @hw: pointer to the HW structure
4831  *
4832  *  Read appropriate register for the config done bit for completion status
4833  *  and configure the PHY through s/w for EEPROM-less parts.
4834  *
4835  *  NOTE: some silicon which is EEPROM-less will fail trying to read the
4836  *  config done bit, so only an error is logged and continues.  If we were
4837  *  to return with error, EEPROM-less silicon would not be able to be reset
4838  *  or change link.
4839  **/
4840 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
4841 {
4842 	s32 ret_val = 0;
4843 	u32 bank = 0;
4844 	u32 status;
4845 
4846 	e1000e_get_cfg_done_generic(hw);
4847 
4848 	/* Wait for indication from h/w that it has completed basic config */
4849 	if (hw->mac.type >= e1000_ich10lan) {
4850 		e1000_lan_init_done_ich8lan(hw);
4851 	} else {
4852 		ret_val = e1000e_get_auto_rd_done(hw);
4853 		if (ret_val) {
4854 			/* When auto config read does not complete, do not
4855 			 * return with an error. This can happen in situations
4856 			 * where there is no eeprom and prevents getting link.
4857 			 */
4858 			e_dbg("Auto Read Done did not complete\n");
4859 			ret_val = 0;
4860 		}
4861 	}
4862 
4863 	/* Clear PHY Reset Asserted bit */
4864 	status = er32(STATUS);
4865 	if (status & E1000_STATUS_PHYRA)
4866 		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
4867 	else
4868 		e_dbg("PHY Reset Asserted not set - needs delay\n");
4869 
4870 	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
4871 	if (hw->mac.type <= e1000_ich9lan) {
4872 		if (!(er32(EECD) & E1000_EECD_PRES) &&
4873 		    (hw->phy.type == e1000_phy_igp_3)) {
4874 			e1000e_phy_init_script_igp3(hw);
4875 		}
4876 	} else {
4877 		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
4878 			/* Maybe we should do a basic PHY config */
4879 			e_dbg("EEPROM not present\n");
4880 			ret_val = -E1000_ERR_CONFIG;
4881 		}
4882 	}
4883 
4884 	return ret_val;
4885 }
4886 
4887 /**
4888  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
4889  * @hw: pointer to the HW structure
4890  *
4891  * In the case of a PHY power down to save power, or to turn off link during a
4892  * driver unload, or wake on lan is not enabled, remove the link.
4893  **/
4894 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
4895 {
4896 	/* If the management interface is not enabled, then power down */
4897 	if (!(hw->mac.ops.check_mng_mode(hw) ||
4898 	      hw->phy.ops.check_reset_block(hw)))
4899 		e1000_power_down_phy_copper(hw);
4900 }
4901 
4902 /**
4903  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
4904  *  @hw: pointer to the HW structure
4905  *
4906  *  Clears hardware counters specific to the silicon family and calls
4907  *  clear_hw_cntrs_generic to clear all general purpose counters.
4908  **/
4909 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
4910 {
4911 	u16 phy_data;
4912 	s32 ret_val;
4913 
4914 	e1000e_clear_hw_cntrs_base(hw);
4915 
4916 	er32(ALGNERRC);
4917 	er32(RXERRC);
4918 	er32(TNCRS);
4919 	er32(CEXTERR);
4920 	er32(TSCTC);
4921 	er32(TSCTFC);
4922 
4923 	er32(MGTPRC);
4924 	er32(MGTPDC);
4925 	er32(MGTPTC);
4926 
4927 	er32(IAC);
4928 	er32(ICRXOC);
4929 
4930 	/* Clear PHY statistics registers */
4931 	if ((hw->phy.type == e1000_phy_82578) ||
4932 	    (hw->phy.type == e1000_phy_82579) ||
4933 	    (hw->phy.type == e1000_phy_i217) ||
4934 	    (hw->phy.type == e1000_phy_82577)) {
4935 		ret_val = hw->phy.ops.acquire(hw);
4936 		if (ret_val)
4937 			return;
4938 		ret_val = hw->phy.ops.set_page(hw,
4939 					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
4940 		if (ret_val)
4941 			goto release;
4942 		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4943 		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4944 		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4945 		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4946 		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4947 		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4948 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4949 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4950 		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4951 		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4952 		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4953 		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4954 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4955 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4956 release:
4957 		hw->phy.ops.release(hw);
4958 	}
4959 }
4960 
4961 static const struct e1000_mac_operations ich8_mac_ops = {
4962 	/* check_mng_mode dependent on mac type */
4963 	.check_for_link		= e1000_check_for_copper_link_ich8lan,
4964 	/* cleanup_led dependent on mac type */
4965 	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
4966 	.get_bus_info		= e1000_get_bus_info_ich8lan,
4967 	.set_lan_id		= e1000_set_lan_id_single_port,
4968 	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
4969 	/* led_on dependent on mac type */
4970 	/* led_off dependent on mac type */
4971 	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
4972 	.reset_hw		= e1000_reset_hw_ich8lan,
4973 	.init_hw		= e1000_init_hw_ich8lan,
4974 	.setup_link		= e1000_setup_link_ich8lan,
4975 	.setup_physical_interface = e1000_setup_copper_link_ich8lan,
4976 	/* id_led_init dependent on mac type */
4977 	.config_collision_dist	= e1000e_config_collision_dist_generic,
4978 	.rar_set		= e1000e_rar_set_generic,
4979 };
4980 
4981 static const struct e1000_phy_operations ich8_phy_ops = {
4982 	.acquire		= e1000_acquire_swflag_ich8lan,
4983 	.check_reset_block	= e1000_check_reset_block_ich8lan,
4984 	.commit			= NULL,
4985 	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
4986 	.get_cable_length	= e1000e_get_cable_length_igp_2,
4987 	.read_reg		= e1000e_read_phy_reg_igp,
4988 	.release		= e1000_release_swflag_ich8lan,
4989 	.reset			= e1000_phy_hw_reset_ich8lan,
4990 	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
4991 	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
4992 	.write_reg		= e1000e_write_phy_reg_igp,
4993 };
4994 
4995 static const struct e1000_nvm_operations ich8_nvm_ops = {
4996 	.acquire		= e1000_acquire_nvm_ich8lan,
4997 	.read			= e1000_read_nvm_ich8lan,
4998 	.release		= e1000_release_nvm_ich8lan,
4999 	.reload			= e1000e_reload_nvm_generic,
5000 	.update			= e1000_update_nvm_checksum_ich8lan,
5001 	.valid_led_default	= e1000_valid_led_default_ich8lan,
5002 	.validate		= e1000_validate_nvm_checksum_ich8lan,
5003 	.write			= e1000_write_nvm_ich8lan,
5004 };
5005 
5006 const struct e1000_info e1000_ich8_info = {
5007 	.mac			= e1000_ich8lan,
5008 	.flags			= FLAG_HAS_WOL
5009 				  | FLAG_IS_ICH
5010 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5011 				  | FLAG_HAS_AMT
5012 				  | FLAG_HAS_FLASH
5013 				  | FLAG_APME_IN_WUC,
5014 	.pba			= 8,
5015 	.max_hw_frame_size	= ETH_FRAME_LEN + ETH_FCS_LEN,
5016 	.get_variants		= e1000_get_variants_ich8lan,
5017 	.mac_ops		= &ich8_mac_ops,
5018 	.phy_ops		= &ich8_phy_ops,
5019 	.nvm_ops		= &ich8_nvm_ops,
5020 };
5021 
5022 const struct e1000_info e1000_ich9_info = {
5023 	.mac			= e1000_ich9lan,
5024 	.flags			= FLAG_HAS_JUMBO_FRAMES
5025 				  | FLAG_IS_ICH
5026 				  | FLAG_HAS_WOL
5027 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5028 				  | FLAG_HAS_AMT
5029 				  | FLAG_HAS_FLASH
5030 				  | FLAG_APME_IN_WUC,
5031 	.pba			= 18,
5032 	.max_hw_frame_size	= DEFAULT_JUMBO,
5033 	.get_variants		= e1000_get_variants_ich8lan,
5034 	.mac_ops		= &ich8_mac_ops,
5035 	.phy_ops		= &ich8_phy_ops,
5036 	.nvm_ops		= &ich8_nvm_ops,
5037 };
5038 
5039 const struct e1000_info e1000_ich10_info = {
5040 	.mac			= e1000_ich10lan,
5041 	.flags			= FLAG_HAS_JUMBO_FRAMES
5042 				  | FLAG_IS_ICH
5043 				  | FLAG_HAS_WOL
5044 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5045 				  | FLAG_HAS_AMT
5046 				  | FLAG_HAS_FLASH
5047 				  | FLAG_APME_IN_WUC,
5048 	.pba			= 18,
5049 	.max_hw_frame_size	= DEFAULT_JUMBO,
5050 	.get_variants		= e1000_get_variants_ich8lan,
5051 	.mac_ops		= &ich8_mac_ops,
5052 	.phy_ops		= &ich8_phy_ops,
5053 	.nvm_ops		= &ich8_nvm_ops,
5054 };
5055 
5056 const struct e1000_info e1000_pch_info = {
5057 	.mac			= e1000_pchlan,
5058 	.flags			= FLAG_IS_ICH
5059 				  | FLAG_HAS_WOL
5060 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5061 				  | FLAG_HAS_AMT
5062 				  | FLAG_HAS_FLASH
5063 				  | FLAG_HAS_JUMBO_FRAMES
5064 				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
5065 				  | FLAG_APME_IN_WUC,
5066 	.flags2			= FLAG2_HAS_PHY_STATS,
5067 	.pba			= 26,
5068 	.max_hw_frame_size	= 4096,
5069 	.get_variants		= e1000_get_variants_ich8lan,
5070 	.mac_ops		= &ich8_mac_ops,
5071 	.phy_ops		= &ich8_phy_ops,
5072 	.nvm_ops		= &ich8_nvm_ops,
5073 };
5074 
5075 const struct e1000_info e1000_pch2_info = {
5076 	.mac			= e1000_pch2lan,
5077 	.flags			= FLAG_IS_ICH
5078 				  | FLAG_HAS_WOL
5079 				  | FLAG_HAS_HW_TIMESTAMP
5080 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5081 				  | FLAG_HAS_AMT
5082 				  | FLAG_HAS_FLASH
5083 				  | FLAG_HAS_JUMBO_FRAMES
5084 				  | FLAG_APME_IN_WUC,
5085 	.flags2			= FLAG2_HAS_PHY_STATS
5086 				  | FLAG2_HAS_EEE,
5087 	.pba			= 26,
5088 	.max_hw_frame_size	= 9018,
5089 	.get_variants		= e1000_get_variants_ich8lan,
5090 	.mac_ops		= &ich8_mac_ops,
5091 	.phy_ops		= &ich8_phy_ops,
5092 	.nvm_ops		= &ich8_nvm_ops,
5093 };
5094 
5095 const struct e1000_info e1000_pch_lpt_info = {
5096 	.mac			= e1000_pch_lpt,
5097 	.flags			= FLAG_IS_ICH
5098 				  | FLAG_HAS_WOL
5099 				  | FLAG_HAS_HW_TIMESTAMP
5100 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5101 				  | FLAG_HAS_AMT
5102 				  | FLAG_HAS_FLASH
5103 				  | FLAG_HAS_JUMBO_FRAMES
5104 				  | FLAG_APME_IN_WUC,
5105 	.flags2			= FLAG2_HAS_PHY_STATS
5106 				  | FLAG2_HAS_EEE,
5107 	.pba			= 26,
5108 	.max_hw_frame_size	= 9018,
5109 	.get_variants		= e1000_get_variants_ich8lan,
5110 	.mac_ops		= &ich8_mac_ops,
5111 	.phy_ops		= &ich8_phy_ops,
5112 	.nvm_ops		= &ich8_nvm_ops,
5113 };
5114