xref: /openbmc/linux/drivers/net/ethernet/intel/e1000e/ich8lan.c (revision 840ef8b7cc584a23c4f9d05352f4dbaf8e56e5ab)
1 /*******************************************************************************
2 
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2013 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 
27 *******************************************************************************/
28 
29 /* 82562G 10/100 Network Connection
30  * 82562G-2 10/100 Network Connection
31  * 82562GT 10/100 Network Connection
32  * 82562GT-2 10/100 Network Connection
33  * 82562V 10/100 Network Connection
34  * 82562V-2 10/100 Network Connection
35  * 82566DC-2 Gigabit Network Connection
36  * 82566DC Gigabit Network Connection
37  * 82566DM-2 Gigabit Network Connection
38  * 82566DM Gigabit Network Connection
39  * 82566MC Gigabit Network Connection
40  * 82566MM Gigabit Network Connection
41  * 82567LM Gigabit Network Connection
42  * 82567LF Gigabit Network Connection
43  * 82567V Gigabit Network Connection
44  * 82567LM-2 Gigabit Network Connection
45  * 82567LF-2 Gigabit Network Connection
46  * 82567V-2 Gigabit Network Connection
47  * 82567LF-3 Gigabit Network Connection
48  * 82567LM-3 Gigabit Network Connection
49  * 82567LM-4 Gigabit Network Connection
50  * 82577LM Gigabit Network Connection
51  * 82577LC Gigabit Network Connection
52  * 82578DM Gigabit Network Connection
53  * 82578DC Gigabit Network Connection
54  * 82579LM Gigabit Network Connection
55  * 82579V Gigabit Network Connection
56  */
57 
58 #include "e1000.h"
59 
60 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
61 /* Offset 04h HSFSTS */
62 union ich8_hws_flash_status {
63 	struct ich8_hsfsts {
64 		u16 flcdone    :1; /* bit 0 Flash Cycle Done */
65 		u16 flcerr     :1; /* bit 1 Flash Cycle Error */
66 		u16 dael       :1; /* bit 2 Direct Access error Log */
67 		u16 berasesz   :2; /* bit 4:3 Sector Erase Size */
68 		u16 flcinprog  :1; /* bit 5 flash cycle in Progress */
69 		u16 reserved1  :2; /* bit 13:6 Reserved */
70 		u16 reserved2  :6; /* bit 13:6 Reserved */
71 		u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
72 		u16 flockdn    :1; /* bit 15 Flash Config Lock-Down */
73 	} hsf_status;
74 	u16 regval;
75 };
76 
77 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
78 /* Offset 06h FLCTL */
79 union ich8_hws_flash_ctrl {
80 	struct ich8_hsflctl {
81 		u16 flcgo      :1;   /* 0 Flash Cycle Go */
82 		u16 flcycle    :2;   /* 2:1 Flash Cycle */
83 		u16 reserved   :5;   /* 7:3 Reserved  */
84 		u16 fldbcount  :2;   /* 9:8 Flash Data Byte Count */
85 		u16 flockdn    :6;   /* 15:10 Reserved */
86 	} hsf_ctrl;
87 	u16 regval;
88 };
89 
90 /* ICH Flash Region Access Permissions */
91 union ich8_hws_flash_regacc {
92 	struct ich8_flracc {
93 		u32 grra      :8; /* 0:7 GbE region Read Access */
94 		u32 grwa      :8; /* 8:15 GbE region Write Access */
95 		u32 gmrag     :8; /* 23:16 GbE Master Read Access Grant */
96 		u32 gmwag     :8; /* 31:24 GbE Master Write Access Grant */
97 	} hsf_flregacc;
98 	u16 regval;
99 };
100 
101 /* ICH Flash Protected Region */
102 union ich8_flash_protected_range {
103 	struct ich8_pr {
104 		u32 base:13;     /* 0:12 Protected Range Base */
105 		u32 reserved1:2; /* 13:14 Reserved */
106 		u32 rpe:1;       /* 15 Read Protection Enable */
107 		u32 limit:13;    /* 16:28 Protected Range Limit */
108 		u32 reserved2:2; /* 29:30 Reserved */
109 		u32 wpe:1;       /* 31 Write Protection Enable */
110 	} range;
111 	u32 regval;
112 };
113 
114 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
115 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
116 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
117 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
118 						u32 offset, u8 byte);
119 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
120 					 u8 *data);
121 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
122 					 u16 *data);
123 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
124 					 u8 size, u16 *data);
125 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
126 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
127 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
128 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
129 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
130 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
131 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
132 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
133 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
134 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
135 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
136 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
137 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
138 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
139 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
140 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
141 static void e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
142 static void e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
143 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
144 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
145 
146 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
147 {
148 	return readw(hw->flash_address + reg);
149 }
150 
151 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
152 {
153 	return readl(hw->flash_address + reg);
154 }
155 
156 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
157 {
158 	writew(val, hw->flash_address + reg);
159 }
160 
161 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
162 {
163 	writel(val, hw->flash_address + reg);
164 }
165 
166 #define er16flash(reg)		__er16flash(hw, (reg))
167 #define er32flash(reg)		__er32flash(hw, (reg))
168 #define ew16flash(reg, val)	__ew16flash(hw, (reg), (val))
169 #define ew32flash(reg, val)	__ew32flash(hw, (reg), (val))
170 
171 /**
172  *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
173  *  @hw: pointer to the HW structure
174  *
175  *  Test access to the PHY registers by reading the PHY ID registers.  If
176  *  the PHY ID is already known (e.g. resume path) compare it with known ID,
177  *  otherwise assume the read PHY ID is correct if it is valid.
178  *
179  *  Assumes the sw/fw/hw semaphore is already acquired.
180  **/
181 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
182 {
183 	u16 phy_reg = 0;
184 	u32 phy_id = 0;
185 	s32 ret_val;
186 	u16 retry_count;
187 
188 	for (retry_count = 0; retry_count < 2; retry_count++) {
189 		ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
190 		if (ret_val || (phy_reg == 0xFFFF))
191 			continue;
192 		phy_id = (u32)(phy_reg << 16);
193 
194 		ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
195 		if (ret_val || (phy_reg == 0xFFFF)) {
196 			phy_id = 0;
197 			continue;
198 		}
199 		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
200 		break;
201 	}
202 
203 	if (hw->phy.id) {
204 		if (hw->phy.id == phy_id)
205 			return true;
206 	} else if (phy_id) {
207 		hw->phy.id = phy_id;
208 		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
209 		return true;
210 	}
211 
212 	/* In case the PHY needs to be in mdio slow mode,
213 	 * set slow mode and try to get the PHY id again.
214 	 */
215 	hw->phy.ops.release(hw);
216 	ret_val = e1000_set_mdio_slow_mode_hv(hw);
217 	if (!ret_val)
218 		ret_val = e1000e_get_phy_id(hw);
219 	hw->phy.ops.acquire(hw);
220 
221 	return !ret_val;
222 }
223 
224 /**
225  *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
226  *  @hw: pointer to the HW structure
227  *
228  *  Workarounds/flow necessary for PHY initialization during driver load
229  *  and resume paths.
230  **/
231 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
232 {
233 	u32 mac_reg, fwsm = er32(FWSM);
234 	s32 ret_val;
235 	u16 phy_reg;
236 
237 	/* Gate automatic PHY configuration by hardware on managed and
238 	 * non-managed 82579 and newer adapters.
239 	 */
240 	e1000_gate_hw_phy_config_ich8lan(hw, true);
241 
242 	ret_val = hw->phy.ops.acquire(hw);
243 	if (ret_val) {
244 		e_dbg("Failed to initialize PHY flow\n");
245 		goto out;
246 	}
247 
248 	/* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
249 	 * inaccessible and resetting the PHY is not blocked, toggle the
250 	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
251 	 */
252 	switch (hw->mac.type) {
253 	case e1000_pch_lpt:
254 		if (e1000_phy_is_accessible_pchlan(hw))
255 			break;
256 
257 		/* Before toggling LANPHYPC, see if PHY is accessible by
258 		 * forcing MAC to SMBus mode first.
259 		 */
260 		mac_reg = er32(CTRL_EXT);
261 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
262 		ew32(CTRL_EXT, mac_reg);
263 
264 		/* fall-through */
265 	case e1000_pch2lan:
266 		if (e1000_phy_is_accessible_pchlan(hw)) {
267 			if (hw->mac.type == e1000_pch_lpt) {
268 				/* Unforce SMBus mode in PHY */
269 				e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
270 				phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
271 				e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
272 
273 				/* Unforce SMBus mode in MAC */
274 				mac_reg = er32(CTRL_EXT);
275 				mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
276 				ew32(CTRL_EXT, mac_reg);
277 			}
278 			break;
279 		}
280 
281 		/* fall-through */
282 	case e1000_pchlan:
283 		if ((hw->mac.type == e1000_pchlan) &&
284 		    (fwsm & E1000_ICH_FWSM_FW_VALID))
285 			break;
286 
287 		if (hw->phy.ops.check_reset_block(hw)) {
288 			e_dbg("Required LANPHYPC toggle blocked by ME\n");
289 			break;
290 		}
291 
292 		e_dbg("Toggling LANPHYPC\n");
293 
294 		/* Set Phy Config Counter to 50msec */
295 		mac_reg = er32(FEXTNVM3);
296 		mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
297 		mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
298 		ew32(FEXTNVM3, mac_reg);
299 
300 		if (hw->mac.type == e1000_pch_lpt) {
301 			/* Toggling LANPHYPC brings the PHY out of SMBus mode
302 			 * So ensure that the MAC is also out of SMBus mode
303 			 */
304 			mac_reg = er32(CTRL_EXT);
305 			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
306 			ew32(CTRL_EXT, mac_reg);
307 		}
308 
309 		/* Toggle LANPHYPC Value bit */
310 		mac_reg = er32(CTRL);
311 		mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
312 		mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
313 		ew32(CTRL, mac_reg);
314 		e1e_flush();
315 		udelay(10);
316 		mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
317 		ew32(CTRL, mac_reg);
318 		e1e_flush();
319 		if (hw->mac.type < e1000_pch_lpt) {
320 			msleep(50);
321 		} else {
322 			u16 count = 20;
323 			do {
324 				usleep_range(5000, 10000);
325 			} while (!(er32(CTRL_EXT) &
326 				   E1000_CTRL_EXT_LPCD) && count--);
327 		}
328 		break;
329 	default:
330 		break;
331 	}
332 
333 	hw->phy.ops.release(hw);
334 
335 	/* Reset the PHY before any access to it.  Doing so, ensures
336 	 * that the PHY is in a known good state before we read/write
337 	 * PHY registers.  The generic reset is sufficient here,
338 	 * because we haven't determined the PHY type yet.
339 	 */
340 	ret_val = e1000e_phy_hw_reset_generic(hw);
341 
342 out:
343 	/* Ungate automatic PHY configuration on non-managed 82579 */
344 	if ((hw->mac.type == e1000_pch2lan) &&
345 	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
346 		usleep_range(10000, 20000);
347 		e1000_gate_hw_phy_config_ich8lan(hw, false);
348 	}
349 
350 	return ret_val;
351 }
352 
353 /**
354  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
355  *  @hw: pointer to the HW structure
356  *
357  *  Initialize family-specific PHY parameters and function pointers.
358  **/
359 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
360 {
361 	struct e1000_phy_info *phy = &hw->phy;
362 	s32 ret_val;
363 
364 	phy->addr                     = 1;
365 	phy->reset_delay_us           = 100;
366 
367 	phy->ops.set_page             = e1000_set_page_igp;
368 	phy->ops.read_reg             = e1000_read_phy_reg_hv;
369 	phy->ops.read_reg_locked      = e1000_read_phy_reg_hv_locked;
370 	phy->ops.read_reg_page        = e1000_read_phy_reg_page_hv;
371 	phy->ops.set_d0_lplu_state    = e1000_set_lplu_state_pchlan;
372 	phy->ops.set_d3_lplu_state    = e1000_set_lplu_state_pchlan;
373 	phy->ops.write_reg            = e1000_write_phy_reg_hv;
374 	phy->ops.write_reg_locked     = e1000_write_phy_reg_hv_locked;
375 	phy->ops.write_reg_page       = e1000_write_phy_reg_page_hv;
376 	phy->ops.power_up             = e1000_power_up_phy_copper;
377 	phy->ops.power_down           = e1000_power_down_phy_copper_ich8lan;
378 	phy->autoneg_mask             = AUTONEG_ADVERTISE_SPEED_DEFAULT;
379 
380 	phy->id = e1000_phy_unknown;
381 
382 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
383 	if (ret_val)
384 		return ret_val;
385 
386 	if (phy->id == e1000_phy_unknown)
387 		switch (hw->mac.type) {
388 		default:
389 			ret_val = e1000e_get_phy_id(hw);
390 			if (ret_val)
391 				return ret_val;
392 			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
393 				break;
394 			/* fall-through */
395 		case e1000_pch2lan:
396 		case e1000_pch_lpt:
397 			/* In case the PHY needs to be in mdio slow mode,
398 			 * set slow mode and try to get the PHY id again.
399 			 */
400 			ret_val = e1000_set_mdio_slow_mode_hv(hw);
401 			if (ret_val)
402 				return ret_val;
403 			ret_val = e1000e_get_phy_id(hw);
404 			if (ret_val)
405 				return ret_val;
406 			break;
407 		}
408 	phy->type = e1000e_get_phy_type_from_id(phy->id);
409 
410 	switch (phy->type) {
411 	case e1000_phy_82577:
412 	case e1000_phy_82579:
413 	case e1000_phy_i217:
414 		phy->ops.check_polarity = e1000_check_polarity_82577;
415 		phy->ops.force_speed_duplex =
416 		    e1000_phy_force_speed_duplex_82577;
417 		phy->ops.get_cable_length = e1000_get_cable_length_82577;
418 		phy->ops.get_info = e1000_get_phy_info_82577;
419 		phy->ops.commit = e1000e_phy_sw_reset;
420 		break;
421 	case e1000_phy_82578:
422 		phy->ops.check_polarity = e1000_check_polarity_m88;
423 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
424 		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
425 		phy->ops.get_info = e1000e_get_phy_info_m88;
426 		break;
427 	default:
428 		ret_val = -E1000_ERR_PHY;
429 		break;
430 	}
431 
432 	return ret_val;
433 }
434 
435 /**
436  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
437  *  @hw: pointer to the HW structure
438  *
439  *  Initialize family-specific PHY parameters and function pointers.
440  **/
441 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
442 {
443 	struct e1000_phy_info *phy = &hw->phy;
444 	s32 ret_val;
445 	u16 i = 0;
446 
447 	phy->addr			= 1;
448 	phy->reset_delay_us		= 100;
449 
450 	phy->ops.power_up               = e1000_power_up_phy_copper;
451 	phy->ops.power_down             = e1000_power_down_phy_copper_ich8lan;
452 
453 	/* We may need to do this twice - once for IGP and if that fails,
454 	 * we'll set BM func pointers and try again
455 	 */
456 	ret_val = e1000e_determine_phy_address(hw);
457 	if (ret_val) {
458 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
459 		phy->ops.read_reg  = e1000e_read_phy_reg_bm;
460 		ret_val = e1000e_determine_phy_address(hw);
461 		if (ret_val) {
462 			e_dbg("Cannot determine PHY addr. Erroring out\n");
463 			return ret_val;
464 		}
465 	}
466 
467 	phy->id = 0;
468 	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
469 	       (i++ < 100)) {
470 		usleep_range(1000, 2000);
471 		ret_val = e1000e_get_phy_id(hw);
472 		if (ret_val)
473 			return ret_val;
474 	}
475 
476 	/* Verify phy id */
477 	switch (phy->id) {
478 	case IGP03E1000_E_PHY_ID:
479 		phy->type = e1000_phy_igp_3;
480 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
481 		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
482 		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
483 		phy->ops.get_info = e1000e_get_phy_info_igp;
484 		phy->ops.check_polarity = e1000_check_polarity_igp;
485 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
486 		break;
487 	case IFE_E_PHY_ID:
488 	case IFE_PLUS_E_PHY_ID:
489 	case IFE_C_E_PHY_ID:
490 		phy->type = e1000_phy_ife;
491 		phy->autoneg_mask = E1000_ALL_NOT_GIG;
492 		phy->ops.get_info = e1000_get_phy_info_ife;
493 		phy->ops.check_polarity = e1000_check_polarity_ife;
494 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
495 		break;
496 	case BME1000_E_PHY_ID:
497 		phy->type = e1000_phy_bm;
498 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
499 		phy->ops.read_reg = e1000e_read_phy_reg_bm;
500 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
501 		phy->ops.commit = e1000e_phy_sw_reset;
502 		phy->ops.get_info = e1000e_get_phy_info_m88;
503 		phy->ops.check_polarity = e1000_check_polarity_m88;
504 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
505 		break;
506 	default:
507 		return -E1000_ERR_PHY;
508 		break;
509 	}
510 
511 	return 0;
512 }
513 
514 /**
515  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
516  *  @hw: pointer to the HW structure
517  *
518  *  Initialize family-specific NVM parameters and function
519  *  pointers.
520  **/
521 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
522 {
523 	struct e1000_nvm_info *nvm = &hw->nvm;
524 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
525 	u32 gfpreg, sector_base_addr, sector_end_addr;
526 	u16 i;
527 
528 	/* Can't read flash registers if the register set isn't mapped. */
529 	if (!hw->flash_address) {
530 		e_dbg("ERROR: Flash registers not mapped\n");
531 		return -E1000_ERR_CONFIG;
532 	}
533 
534 	nvm->type = e1000_nvm_flash_sw;
535 
536 	gfpreg = er32flash(ICH_FLASH_GFPREG);
537 
538 	/* sector_X_addr is a "sector"-aligned address (4096 bytes)
539 	 * Add 1 to sector_end_addr since this sector is included in
540 	 * the overall size.
541 	 */
542 	sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
543 	sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
544 
545 	/* flash_base_addr is byte-aligned */
546 	nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
547 
548 	/* find total size of the NVM, then cut in half since the total
549 	 * size represents two separate NVM banks.
550 	 */
551 	nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
552 				<< FLASH_SECTOR_ADDR_SHIFT;
553 	nvm->flash_bank_size /= 2;
554 	/* Adjust to word count */
555 	nvm->flash_bank_size /= sizeof(u16);
556 
557 	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
558 
559 	/* Clear shadow ram */
560 	for (i = 0; i < nvm->word_size; i++) {
561 		dev_spec->shadow_ram[i].modified = false;
562 		dev_spec->shadow_ram[i].value    = 0xFFFF;
563 	}
564 
565 	return 0;
566 }
567 
568 /**
569  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
570  *  @hw: pointer to the HW structure
571  *
572  *  Initialize family-specific MAC parameters and function
573  *  pointers.
574  **/
575 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
576 {
577 	struct e1000_mac_info *mac = &hw->mac;
578 
579 	/* Set media type function pointer */
580 	hw->phy.media_type = e1000_media_type_copper;
581 
582 	/* Set mta register count */
583 	mac->mta_reg_count = 32;
584 	/* Set rar entry count */
585 	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
586 	if (mac->type == e1000_ich8lan)
587 		mac->rar_entry_count--;
588 	/* FWSM register */
589 	mac->has_fwsm = true;
590 	/* ARC subsystem not supported */
591 	mac->arc_subsystem_valid = false;
592 	/* Adaptive IFS supported */
593 	mac->adaptive_ifs = true;
594 
595 	/* LED and other operations */
596 	switch (mac->type) {
597 	case e1000_ich8lan:
598 	case e1000_ich9lan:
599 	case e1000_ich10lan:
600 		/* check management mode */
601 		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
602 		/* ID LED init */
603 		mac->ops.id_led_init = e1000e_id_led_init_generic;
604 		/* blink LED */
605 		mac->ops.blink_led = e1000e_blink_led_generic;
606 		/* setup LED */
607 		mac->ops.setup_led = e1000e_setup_led_generic;
608 		/* cleanup LED */
609 		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
610 		/* turn on/off LED */
611 		mac->ops.led_on = e1000_led_on_ich8lan;
612 		mac->ops.led_off = e1000_led_off_ich8lan;
613 		break;
614 	case e1000_pch2lan:
615 		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
616 		mac->ops.rar_set = e1000_rar_set_pch2lan;
617 		/* fall-through */
618 	case e1000_pch_lpt:
619 	case e1000_pchlan:
620 		/* check management mode */
621 		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
622 		/* ID LED init */
623 		mac->ops.id_led_init = e1000_id_led_init_pchlan;
624 		/* setup LED */
625 		mac->ops.setup_led = e1000_setup_led_pchlan;
626 		/* cleanup LED */
627 		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
628 		/* turn on/off LED */
629 		mac->ops.led_on = e1000_led_on_pchlan;
630 		mac->ops.led_off = e1000_led_off_pchlan;
631 		break;
632 	default:
633 		break;
634 	}
635 
636 	if (mac->type == e1000_pch_lpt) {
637 		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
638 		mac->ops.rar_set = e1000_rar_set_pch_lpt;
639 	}
640 
641 	/* Enable PCS Lock-loss workaround for ICH8 */
642 	if (mac->type == e1000_ich8lan)
643 		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
644 
645 	return 0;
646 }
647 
648 /**
649  *  __e1000_access_emi_reg_locked - Read/write EMI register
650  *  @hw: pointer to the HW structure
651  *  @addr: EMI address to program
652  *  @data: pointer to value to read/write from/to the EMI address
653  *  @read: boolean flag to indicate read or write
654  *
655  *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
656  **/
657 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
658 					 u16 *data, bool read)
659 {
660 	s32 ret_val;
661 
662 	ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
663 	if (ret_val)
664 		return ret_val;
665 
666 	if (read)
667 		ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
668 	else
669 		ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
670 
671 	return ret_val;
672 }
673 
674 /**
675  *  e1000_read_emi_reg_locked - Read Extended Management Interface register
676  *  @hw: pointer to the HW structure
677  *  @addr: EMI address to program
678  *  @data: value to be read from the EMI address
679  *
680  *  Assumes the SW/FW/HW Semaphore is already acquired.
681  **/
682 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
683 {
684 	return __e1000_access_emi_reg_locked(hw, addr, data, true);
685 }
686 
687 /**
688  *  e1000_write_emi_reg_locked - Write Extended Management Interface register
689  *  @hw: pointer to the HW structure
690  *  @addr: EMI address to program
691  *  @data: value to be written to the EMI address
692  *
693  *  Assumes the SW/FW/HW Semaphore is already acquired.
694  **/
695 static s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
696 {
697 	return __e1000_access_emi_reg_locked(hw, addr, &data, false);
698 }
699 
700 /**
701  *  e1000_set_eee_pchlan - Enable/disable EEE support
702  *  @hw: pointer to the HW structure
703  *
704  *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
705  *  the link and the EEE capabilities of the link partner.  The LPI Control
706  *  register bits will remain set only if/when link is up.
707  **/
708 static s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
709 {
710 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
711 	s32 ret_val;
712 	u16 lpi_ctrl;
713 
714 	if ((hw->phy.type != e1000_phy_82579) &&
715 	    (hw->phy.type != e1000_phy_i217))
716 		return 0;
717 
718 	ret_val = hw->phy.ops.acquire(hw);
719 	if (ret_val)
720 		return ret_val;
721 
722 	ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
723 	if (ret_val)
724 		goto release;
725 
726 	/* Clear bits that enable EEE in various speeds */
727 	lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
728 
729 	/* Enable EEE if not disabled by user */
730 	if (!dev_spec->eee_disable) {
731 		u16 lpa, pcs_status, data;
732 
733 		/* Save off link partner's EEE ability */
734 		switch (hw->phy.type) {
735 		case e1000_phy_82579:
736 			lpa = I82579_EEE_LP_ABILITY;
737 			pcs_status = I82579_EEE_PCS_STATUS;
738 			break;
739 		case e1000_phy_i217:
740 			lpa = I217_EEE_LP_ABILITY;
741 			pcs_status = I217_EEE_PCS_STATUS;
742 			break;
743 		default:
744 			ret_val = -E1000_ERR_PHY;
745 			goto release;
746 		}
747 		ret_val = e1000_read_emi_reg_locked(hw, lpa,
748 						    &dev_spec->eee_lp_ability);
749 		if (ret_val)
750 			goto release;
751 
752 		/* Enable EEE only for speeds in which the link partner is
753 		 * EEE capable.
754 		 */
755 		if (dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
756 			lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
757 
758 		if (dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
759 			e1e_rphy_locked(hw, MII_LPA, &data);
760 			if (data & LPA_100FULL)
761 				lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
762 			else
763 				/* EEE is not supported in 100Half, so ignore
764 				 * partner's EEE in 100 ability if full-duplex
765 				 * is not advertised.
766 				 */
767 				dev_spec->eee_lp_ability &=
768 				    ~I82579_EEE_100_SUPPORTED;
769 		}
770 
771 		/* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
772 		ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
773 		if (ret_val)
774 			goto release;
775 	}
776 
777 	ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
778 release:
779 	hw->phy.ops.release(hw);
780 
781 	return ret_val;
782 }
783 
784 /**
785  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
786  *  @hw: pointer to the HW structure
787  *
788  *  Checks to see of the link status of the hardware has changed.  If a
789  *  change in link status has been detected, then we read the PHY registers
790  *  to get the current speed/duplex if link exists.
791  **/
792 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
793 {
794 	struct e1000_mac_info *mac = &hw->mac;
795 	s32 ret_val;
796 	bool link;
797 	u16 phy_reg;
798 
799 	/* We only want to go out to the PHY registers to see if Auto-Neg
800 	 * has completed and/or if our link status has changed.  The
801 	 * get_link_status flag is set upon receiving a Link Status
802 	 * Change or Rx Sequence Error interrupt.
803 	 */
804 	if (!mac->get_link_status)
805 		return 0;
806 
807 	/* First we want to see if the MII Status Register reports
808 	 * link.  If so, then we want to get the current speed/duplex
809 	 * of the PHY.
810 	 */
811 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
812 	if (ret_val)
813 		return ret_val;
814 
815 	if (hw->mac.type == e1000_pchlan) {
816 		ret_val = e1000_k1_gig_workaround_hv(hw, link);
817 		if (ret_val)
818 			return ret_val;
819 	}
820 
821 	/* Clear link partner's EEE ability */
822 	hw->dev_spec.ich8lan.eee_lp_ability = 0;
823 
824 	if (!link)
825 		return 0; /* No link detected */
826 
827 	mac->get_link_status = false;
828 
829 	switch (hw->mac.type) {
830 	case e1000_pch2lan:
831 		ret_val = e1000_k1_workaround_lv(hw);
832 		if (ret_val)
833 			return ret_val;
834 		/* fall-thru */
835 	case e1000_pchlan:
836 		if (hw->phy.type == e1000_phy_82578) {
837 			ret_val = e1000_link_stall_workaround_hv(hw);
838 			if (ret_val)
839 				return ret_val;
840 		}
841 
842 		/* Workaround for PCHx parts in half-duplex:
843 		 * Set the number of preambles removed from the packet
844 		 * when it is passed from the PHY to the MAC to prevent
845 		 * the MAC from misinterpreting the packet type.
846 		 */
847 		e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
848 		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
849 
850 		if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
851 			phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
852 
853 		e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
854 		break;
855 	default:
856 		break;
857 	}
858 
859 	/* Check if there was DownShift, must be checked
860 	 * immediately after link-up
861 	 */
862 	e1000e_check_downshift(hw);
863 
864 	/* Enable/Disable EEE after link up */
865 	ret_val = e1000_set_eee_pchlan(hw);
866 	if (ret_val)
867 		return ret_val;
868 
869 	/* If we are forcing speed/duplex, then we simply return since
870 	 * we have already determined whether we have link or not.
871 	 */
872 	if (!mac->autoneg)
873 		return -E1000_ERR_CONFIG;
874 
875 	/* Auto-Neg is enabled.  Auto Speed Detection takes care
876 	 * of MAC speed/duplex configuration.  So we only need to
877 	 * configure Collision Distance in the MAC.
878 	 */
879 	mac->ops.config_collision_dist(hw);
880 
881 	/* Configure Flow Control now that Auto-Neg has completed.
882 	 * First, we need to restore the desired flow control
883 	 * settings because we may have had to re-autoneg with a
884 	 * different link partner.
885 	 */
886 	ret_val = e1000e_config_fc_after_link_up(hw);
887 	if (ret_val)
888 		e_dbg("Error configuring flow control\n");
889 
890 	return ret_val;
891 }
892 
893 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
894 {
895 	struct e1000_hw *hw = &adapter->hw;
896 	s32 rc;
897 
898 	rc = e1000_init_mac_params_ich8lan(hw);
899 	if (rc)
900 		return rc;
901 
902 	rc = e1000_init_nvm_params_ich8lan(hw);
903 	if (rc)
904 		return rc;
905 
906 	switch (hw->mac.type) {
907 	case e1000_ich8lan:
908 	case e1000_ich9lan:
909 	case e1000_ich10lan:
910 		rc = e1000_init_phy_params_ich8lan(hw);
911 		break;
912 	case e1000_pchlan:
913 	case e1000_pch2lan:
914 	case e1000_pch_lpt:
915 		rc = e1000_init_phy_params_pchlan(hw);
916 		break;
917 	default:
918 		break;
919 	}
920 	if (rc)
921 		return rc;
922 
923 	/* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
924 	 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
925 	 */
926 	if ((adapter->hw.phy.type == e1000_phy_ife) ||
927 	    ((adapter->hw.mac.type >= e1000_pch2lan) &&
928 	     (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
929 		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
930 		adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
931 
932 		hw->mac.ops.blink_led = NULL;
933 	}
934 
935 	if ((adapter->hw.mac.type == e1000_ich8lan) &&
936 	    (adapter->hw.phy.type != e1000_phy_ife))
937 		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
938 
939 	/* Enable workaround for 82579 w/ ME enabled */
940 	if ((adapter->hw.mac.type == e1000_pch2lan) &&
941 	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
942 		adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
943 
944 	/* Disable EEE by default until IEEE802.3az spec is finalized */
945 	if (adapter->flags2 & FLAG2_HAS_EEE)
946 		adapter->hw.dev_spec.ich8lan.eee_disable = true;
947 
948 	return 0;
949 }
950 
951 static DEFINE_MUTEX(nvm_mutex);
952 
953 /**
954  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
955  *  @hw: pointer to the HW structure
956  *
957  *  Acquires the mutex for performing NVM operations.
958  **/
959 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
960 {
961 	mutex_lock(&nvm_mutex);
962 
963 	return 0;
964 }
965 
966 /**
967  *  e1000_release_nvm_ich8lan - Release NVM mutex
968  *  @hw: pointer to the HW structure
969  *
970  *  Releases the mutex used while performing NVM operations.
971  **/
972 static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
973 {
974 	mutex_unlock(&nvm_mutex);
975 }
976 
977 /**
978  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
979  *  @hw: pointer to the HW structure
980  *
981  *  Acquires the software control flag for performing PHY and select
982  *  MAC CSR accesses.
983  **/
984 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
985 {
986 	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
987 	s32 ret_val = 0;
988 
989 	if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
990 			     &hw->adapter->state)) {
991 		e_dbg("contention for Phy access\n");
992 		return -E1000_ERR_PHY;
993 	}
994 
995 	while (timeout) {
996 		extcnf_ctrl = er32(EXTCNF_CTRL);
997 		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
998 			break;
999 
1000 		mdelay(1);
1001 		timeout--;
1002 	}
1003 
1004 	if (!timeout) {
1005 		e_dbg("SW has already locked the resource.\n");
1006 		ret_val = -E1000_ERR_CONFIG;
1007 		goto out;
1008 	}
1009 
1010 	timeout = SW_FLAG_TIMEOUT;
1011 
1012 	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1013 	ew32(EXTCNF_CTRL, extcnf_ctrl);
1014 
1015 	while (timeout) {
1016 		extcnf_ctrl = er32(EXTCNF_CTRL);
1017 		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1018 			break;
1019 
1020 		mdelay(1);
1021 		timeout--;
1022 	}
1023 
1024 	if (!timeout) {
1025 		e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1026 		      er32(FWSM), extcnf_ctrl);
1027 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1028 		ew32(EXTCNF_CTRL, extcnf_ctrl);
1029 		ret_val = -E1000_ERR_CONFIG;
1030 		goto out;
1031 	}
1032 
1033 out:
1034 	if (ret_val)
1035 		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1036 
1037 	return ret_val;
1038 }
1039 
1040 /**
1041  *  e1000_release_swflag_ich8lan - Release software control flag
1042  *  @hw: pointer to the HW structure
1043  *
1044  *  Releases the software control flag for performing PHY and select
1045  *  MAC CSR accesses.
1046  **/
1047 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1048 {
1049 	u32 extcnf_ctrl;
1050 
1051 	extcnf_ctrl = er32(EXTCNF_CTRL);
1052 
1053 	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1054 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1055 		ew32(EXTCNF_CTRL, extcnf_ctrl);
1056 	} else {
1057 		e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1058 	}
1059 
1060 	clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1061 }
1062 
1063 /**
1064  *  e1000_check_mng_mode_ich8lan - Checks management mode
1065  *  @hw: pointer to the HW structure
1066  *
1067  *  This checks if the adapter has any manageability enabled.
1068  *  This is a function pointer entry point only called by read/write
1069  *  routines for the PHY and NVM parts.
1070  **/
1071 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1072 {
1073 	u32 fwsm;
1074 
1075 	fwsm = er32(FWSM);
1076 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1077 	       ((fwsm & E1000_FWSM_MODE_MASK) ==
1078 		(E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1079 }
1080 
1081 /**
1082  *  e1000_check_mng_mode_pchlan - Checks management mode
1083  *  @hw: pointer to the HW structure
1084  *
1085  *  This checks if the adapter has iAMT enabled.
1086  *  This is a function pointer entry point only called by read/write
1087  *  routines for the PHY and NVM parts.
1088  **/
1089 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1090 {
1091 	u32 fwsm;
1092 
1093 	fwsm = er32(FWSM);
1094 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1095 	       (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1096 }
1097 
1098 /**
1099  *  e1000_rar_set_pch2lan - Set receive address register
1100  *  @hw: pointer to the HW structure
1101  *  @addr: pointer to the receive address
1102  *  @index: receive address array register
1103  *
1104  *  Sets the receive address array register at index to the address passed
1105  *  in by addr.  For 82579, RAR[0] is the base address register that is to
1106  *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1107  *  Use SHRA[0-3] in place of those reserved for ME.
1108  **/
1109 static void e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1110 {
1111 	u32 rar_low, rar_high;
1112 
1113 	/* HW expects these in little endian so we reverse the byte order
1114 	 * from network order (big endian) to little endian
1115 	 */
1116 	rar_low = ((u32)addr[0] |
1117 		   ((u32)addr[1] << 8) |
1118 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1119 
1120 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1121 
1122 	/* If MAC address zero, no need to set the AV bit */
1123 	if (rar_low || rar_high)
1124 		rar_high |= E1000_RAH_AV;
1125 
1126 	if (index == 0) {
1127 		ew32(RAL(index), rar_low);
1128 		e1e_flush();
1129 		ew32(RAH(index), rar_high);
1130 		e1e_flush();
1131 		return;
1132 	}
1133 
1134 	if (index < hw->mac.rar_entry_count) {
1135 		s32 ret_val;
1136 
1137 		ret_val = e1000_acquire_swflag_ich8lan(hw);
1138 		if (ret_val)
1139 			goto out;
1140 
1141 		ew32(SHRAL(index - 1), rar_low);
1142 		e1e_flush();
1143 		ew32(SHRAH(index - 1), rar_high);
1144 		e1e_flush();
1145 
1146 		e1000_release_swflag_ich8lan(hw);
1147 
1148 		/* verify the register updates */
1149 		if ((er32(SHRAL(index - 1)) == rar_low) &&
1150 		    (er32(SHRAH(index - 1)) == rar_high))
1151 			return;
1152 
1153 		e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1154 		      (index - 1), er32(FWSM));
1155 	}
1156 
1157 out:
1158 	e_dbg("Failed to write receive address at index %d\n", index);
1159 }
1160 
1161 /**
1162  *  e1000_rar_set_pch_lpt - Set receive address registers
1163  *  @hw: pointer to the HW structure
1164  *  @addr: pointer to the receive address
1165  *  @index: receive address array register
1166  *
1167  *  Sets the receive address register array at index to the address passed
1168  *  in by addr. For LPT, RAR[0] is the base address register that is to
1169  *  contain the MAC address. SHRA[0-10] are the shared receive address
1170  *  registers that are shared between the Host and manageability engine (ME).
1171  **/
1172 static void e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1173 {
1174 	u32 rar_low, rar_high;
1175 	u32 wlock_mac;
1176 
1177 	/* HW expects these in little endian so we reverse the byte order
1178 	 * from network order (big endian) to little endian
1179 	 */
1180 	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1181 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1182 
1183 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1184 
1185 	/* If MAC address zero, no need to set the AV bit */
1186 	if (rar_low || rar_high)
1187 		rar_high |= E1000_RAH_AV;
1188 
1189 	if (index == 0) {
1190 		ew32(RAL(index), rar_low);
1191 		e1e_flush();
1192 		ew32(RAH(index), rar_high);
1193 		e1e_flush();
1194 		return;
1195 	}
1196 
1197 	/* The manageability engine (ME) can lock certain SHRAR registers that
1198 	 * it is using - those registers are unavailable for use.
1199 	 */
1200 	if (index < hw->mac.rar_entry_count) {
1201 		wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1202 		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1203 
1204 		/* Check if all SHRAR registers are locked */
1205 		if (wlock_mac == 1)
1206 			goto out;
1207 
1208 		if ((wlock_mac == 0) || (index <= wlock_mac)) {
1209 			s32 ret_val;
1210 
1211 			ret_val = e1000_acquire_swflag_ich8lan(hw);
1212 
1213 			if (ret_val)
1214 				goto out;
1215 
1216 			ew32(SHRAL_PCH_LPT(index - 1), rar_low);
1217 			e1e_flush();
1218 			ew32(SHRAH_PCH_LPT(index - 1), rar_high);
1219 			e1e_flush();
1220 
1221 			e1000_release_swflag_ich8lan(hw);
1222 
1223 			/* verify the register updates */
1224 			if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
1225 			    (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
1226 				return;
1227 		}
1228 	}
1229 
1230 out:
1231 	e_dbg("Failed to write receive address at index %d\n", index);
1232 }
1233 
1234 /**
1235  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
1236  *  @hw: pointer to the HW structure
1237  *
1238  *  Checks if firmware is blocking the reset of the PHY.
1239  *  This is a function pointer entry point only called by
1240  *  reset routines.
1241  **/
1242 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
1243 {
1244 	u32 fwsm;
1245 
1246 	fwsm = er32(FWSM);
1247 
1248 	return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
1249 }
1250 
1251 /**
1252  *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
1253  *  @hw: pointer to the HW structure
1254  *
1255  *  Assumes semaphore already acquired.
1256  *
1257  **/
1258 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
1259 {
1260 	u16 phy_data;
1261 	u32 strap = er32(STRAP);
1262 	u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
1263 	    E1000_STRAP_SMT_FREQ_SHIFT;
1264 	s32 ret_val;
1265 
1266 	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
1267 
1268 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
1269 	if (ret_val)
1270 		return ret_val;
1271 
1272 	phy_data &= ~HV_SMB_ADDR_MASK;
1273 	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
1274 	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
1275 
1276 	if (hw->phy.type == e1000_phy_i217) {
1277 		/* Restore SMBus frequency */
1278 		if (freq--) {
1279 			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
1280 			phy_data |= (freq & (1 << 0)) <<
1281 			    HV_SMB_ADDR_FREQ_LOW_SHIFT;
1282 			phy_data |= (freq & (1 << 1)) <<
1283 			    (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
1284 		} else {
1285 			e_dbg("Unsupported SMB frequency in PHY\n");
1286 		}
1287 	}
1288 
1289 	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
1290 }
1291 
1292 /**
1293  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
1294  *  @hw:   pointer to the HW structure
1295  *
1296  *  SW should configure the LCD from the NVM extended configuration region
1297  *  as a workaround for certain parts.
1298  **/
1299 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
1300 {
1301 	struct e1000_phy_info *phy = &hw->phy;
1302 	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
1303 	s32 ret_val = 0;
1304 	u16 word_addr, reg_data, reg_addr, phy_page = 0;
1305 
1306 	/* Initialize the PHY from the NVM on ICH platforms.  This
1307 	 * is needed due to an issue where the NVM configuration is
1308 	 * not properly autoloaded after power transitions.
1309 	 * Therefore, after each PHY reset, we will load the
1310 	 * configuration data out of the NVM manually.
1311 	 */
1312 	switch (hw->mac.type) {
1313 	case e1000_ich8lan:
1314 		if (phy->type != e1000_phy_igp_3)
1315 			return ret_val;
1316 
1317 		if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
1318 		    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
1319 			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
1320 			break;
1321 		}
1322 		/* Fall-thru */
1323 	case e1000_pchlan:
1324 	case e1000_pch2lan:
1325 	case e1000_pch_lpt:
1326 		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
1327 		break;
1328 	default:
1329 		return ret_val;
1330 	}
1331 
1332 	ret_val = hw->phy.ops.acquire(hw);
1333 	if (ret_val)
1334 		return ret_val;
1335 
1336 	data = er32(FEXTNVM);
1337 	if (!(data & sw_cfg_mask))
1338 		goto release;
1339 
1340 	/* Make sure HW does not configure LCD from PHY
1341 	 * extended configuration before SW configuration
1342 	 */
1343 	data = er32(EXTCNF_CTRL);
1344 	if ((hw->mac.type < e1000_pch2lan) &&
1345 	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
1346 		goto release;
1347 
1348 	cnf_size = er32(EXTCNF_SIZE);
1349 	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
1350 	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
1351 	if (!cnf_size)
1352 		goto release;
1353 
1354 	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
1355 	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
1356 
1357 	if (((hw->mac.type == e1000_pchlan) &&
1358 	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
1359 	    (hw->mac.type > e1000_pchlan)) {
1360 		/* HW configures the SMBus address and LEDs when the
1361 		 * OEM and LCD Write Enable bits are set in the NVM.
1362 		 * When both NVM bits are cleared, SW will configure
1363 		 * them instead.
1364 		 */
1365 		ret_val = e1000_write_smbus_addr(hw);
1366 		if (ret_val)
1367 			goto release;
1368 
1369 		data = er32(LEDCTL);
1370 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
1371 							(u16)data);
1372 		if (ret_val)
1373 			goto release;
1374 	}
1375 
1376 	/* Configure LCD from extended configuration region. */
1377 
1378 	/* cnf_base_addr is in DWORD */
1379 	word_addr = (u16)(cnf_base_addr << 1);
1380 
1381 	for (i = 0; i < cnf_size; i++) {
1382 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1,
1383 					 &reg_data);
1384 		if (ret_val)
1385 			goto release;
1386 
1387 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
1388 					 1, &reg_addr);
1389 		if (ret_val)
1390 			goto release;
1391 
1392 		/* Save off the PHY page for future writes. */
1393 		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
1394 			phy_page = reg_data;
1395 			continue;
1396 		}
1397 
1398 		reg_addr &= PHY_REG_MASK;
1399 		reg_addr |= phy_page;
1400 
1401 		ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
1402 		if (ret_val)
1403 			goto release;
1404 	}
1405 
1406 release:
1407 	hw->phy.ops.release(hw);
1408 	return ret_val;
1409 }
1410 
1411 /**
1412  *  e1000_k1_gig_workaround_hv - K1 Si workaround
1413  *  @hw:   pointer to the HW structure
1414  *  @link: link up bool flag
1415  *
1416  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
1417  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
1418  *  If link is down, the function will restore the default K1 setting located
1419  *  in the NVM.
1420  **/
1421 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
1422 {
1423 	s32 ret_val = 0;
1424 	u16 status_reg = 0;
1425 	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
1426 
1427 	if (hw->mac.type != e1000_pchlan)
1428 		return 0;
1429 
1430 	/* Wrap the whole flow with the sw flag */
1431 	ret_val = hw->phy.ops.acquire(hw);
1432 	if (ret_val)
1433 		return ret_val;
1434 
1435 	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
1436 	if (link) {
1437 		if (hw->phy.type == e1000_phy_82578) {
1438 			ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
1439 						  &status_reg);
1440 			if (ret_val)
1441 				goto release;
1442 
1443 			status_reg &= BM_CS_STATUS_LINK_UP |
1444 			              BM_CS_STATUS_RESOLVED |
1445 			              BM_CS_STATUS_SPEED_MASK;
1446 
1447 			if (status_reg == (BM_CS_STATUS_LINK_UP |
1448 			                   BM_CS_STATUS_RESOLVED |
1449 			                   BM_CS_STATUS_SPEED_1000))
1450 				k1_enable = false;
1451 		}
1452 
1453 		if (hw->phy.type == e1000_phy_82577) {
1454 			ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
1455 			if (ret_val)
1456 				goto release;
1457 
1458 			status_reg &= HV_M_STATUS_LINK_UP |
1459 			              HV_M_STATUS_AUTONEG_COMPLETE |
1460 			              HV_M_STATUS_SPEED_MASK;
1461 
1462 			if (status_reg == (HV_M_STATUS_LINK_UP |
1463 			                   HV_M_STATUS_AUTONEG_COMPLETE |
1464 			                   HV_M_STATUS_SPEED_1000))
1465 				k1_enable = false;
1466 		}
1467 
1468 		/* Link stall fix for link up */
1469 		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
1470 		if (ret_val)
1471 			goto release;
1472 
1473 	} else {
1474 		/* Link stall fix for link down */
1475 		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
1476 		if (ret_val)
1477 			goto release;
1478 	}
1479 
1480 	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
1481 
1482 release:
1483 	hw->phy.ops.release(hw);
1484 
1485 	return ret_val;
1486 }
1487 
1488 /**
1489  *  e1000_configure_k1_ich8lan - Configure K1 power state
1490  *  @hw: pointer to the HW structure
1491  *  @enable: K1 state to configure
1492  *
1493  *  Configure the K1 power state based on the provided parameter.
1494  *  Assumes semaphore already acquired.
1495  *
1496  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1497  **/
1498 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
1499 {
1500 	s32 ret_val;
1501 	u32 ctrl_reg = 0;
1502 	u32 ctrl_ext = 0;
1503 	u32 reg = 0;
1504 	u16 kmrn_reg = 0;
1505 
1506 	ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
1507 					      &kmrn_reg);
1508 	if (ret_val)
1509 		return ret_val;
1510 
1511 	if (k1_enable)
1512 		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
1513 	else
1514 		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
1515 
1516 	ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
1517 					       kmrn_reg);
1518 	if (ret_val)
1519 		return ret_val;
1520 
1521 	udelay(20);
1522 	ctrl_ext = er32(CTRL_EXT);
1523 	ctrl_reg = er32(CTRL);
1524 
1525 	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1526 	reg |= E1000_CTRL_FRCSPD;
1527 	ew32(CTRL, reg);
1528 
1529 	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
1530 	e1e_flush();
1531 	udelay(20);
1532 	ew32(CTRL, ctrl_reg);
1533 	ew32(CTRL_EXT, ctrl_ext);
1534 	e1e_flush();
1535 	udelay(20);
1536 
1537 	return 0;
1538 }
1539 
1540 /**
1541  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
1542  *  @hw:       pointer to the HW structure
1543  *  @d0_state: boolean if entering d0 or d3 device state
1544  *
1545  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
1546  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
1547  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
1548  **/
1549 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
1550 {
1551 	s32 ret_val = 0;
1552 	u32 mac_reg;
1553 	u16 oem_reg;
1554 
1555 	if (hw->mac.type < e1000_pchlan)
1556 		return ret_val;
1557 
1558 	ret_val = hw->phy.ops.acquire(hw);
1559 	if (ret_val)
1560 		return ret_val;
1561 
1562 	if (hw->mac.type == e1000_pchlan) {
1563 		mac_reg = er32(EXTCNF_CTRL);
1564 		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
1565 			goto release;
1566 	}
1567 
1568 	mac_reg = er32(FEXTNVM);
1569 	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
1570 		goto release;
1571 
1572 	mac_reg = er32(PHY_CTRL);
1573 
1574 	ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
1575 	if (ret_val)
1576 		goto release;
1577 
1578 	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
1579 
1580 	if (d0_state) {
1581 		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
1582 			oem_reg |= HV_OEM_BITS_GBE_DIS;
1583 
1584 		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
1585 			oem_reg |= HV_OEM_BITS_LPLU;
1586 	} else {
1587 		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
1588 			       E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
1589 			oem_reg |= HV_OEM_BITS_GBE_DIS;
1590 
1591 		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
1592 			       E1000_PHY_CTRL_NOND0A_LPLU))
1593 			oem_reg |= HV_OEM_BITS_LPLU;
1594 	}
1595 
1596 	/* Set Restart auto-neg to activate the bits */
1597 	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
1598 	    !hw->phy.ops.check_reset_block(hw))
1599 		oem_reg |= HV_OEM_BITS_RESTART_AN;
1600 
1601 	ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
1602 
1603 release:
1604 	hw->phy.ops.release(hw);
1605 
1606 	return ret_val;
1607 }
1608 
1609 
1610 /**
1611  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
1612  *  @hw:   pointer to the HW structure
1613  **/
1614 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
1615 {
1616 	s32 ret_val;
1617 	u16 data;
1618 
1619 	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
1620 	if (ret_val)
1621 		return ret_val;
1622 
1623 	data |= HV_KMRN_MDIO_SLOW;
1624 
1625 	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
1626 
1627 	return ret_val;
1628 }
1629 
1630 /**
1631  *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1632  *  done after every PHY reset.
1633  **/
1634 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1635 {
1636 	s32 ret_val = 0;
1637 	u16 phy_data;
1638 
1639 	if (hw->mac.type != e1000_pchlan)
1640 		return 0;
1641 
1642 	/* Set MDIO slow mode before any other MDIO access */
1643 	if (hw->phy.type == e1000_phy_82577) {
1644 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
1645 		if (ret_val)
1646 			return ret_val;
1647 	}
1648 
1649 	if (((hw->phy.type == e1000_phy_82577) &&
1650 	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
1651 	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
1652 		/* Disable generation of early preamble */
1653 		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
1654 		if (ret_val)
1655 			return ret_val;
1656 
1657 		/* Preamble tuning for SSC */
1658 		ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
1659 		if (ret_val)
1660 			return ret_val;
1661 	}
1662 
1663 	if (hw->phy.type == e1000_phy_82578) {
1664 		/* Return registers to default by doing a soft reset then
1665 		 * writing 0x3140 to the control register.
1666 		 */
1667 		if (hw->phy.revision < 2) {
1668 			e1000e_phy_sw_reset(hw);
1669 			ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
1670 		}
1671 	}
1672 
1673 	/* Select page 0 */
1674 	ret_val = hw->phy.ops.acquire(hw);
1675 	if (ret_val)
1676 		return ret_val;
1677 
1678 	hw->phy.addr = 1;
1679 	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
1680 	hw->phy.ops.release(hw);
1681 	if (ret_val)
1682 		return ret_val;
1683 
1684 	/* Configure the K1 Si workaround during phy reset assuming there is
1685 	 * link so that it disables K1 if link is in 1Gbps.
1686 	 */
1687 	ret_val = e1000_k1_gig_workaround_hv(hw, true);
1688 	if (ret_val)
1689 		return ret_val;
1690 
1691 	/* Workaround for link disconnects on a busy hub in half duplex */
1692 	ret_val = hw->phy.ops.acquire(hw);
1693 	if (ret_val)
1694 		return ret_val;
1695 	ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
1696 	if (ret_val)
1697 		goto release;
1698 	ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
1699 	if (ret_val)
1700 		goto release;
1701 
1702 	/* set MSE higher to enable link to stay up when noise is high */
1703 	ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
1704 release:
1705 	hw->phy.ops.release(hw);
1706 
1707 	return ret_val;
1708 }
1709 
1710 /**
1711  *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
1712  *  @hw:   pointer to the HW structure
1713  **/
1714 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
1715 {
1716 	u32 mac_reg;
1717 	u16 i, phy_reg = 0;
1718 	s32 ret_val;
1719 
1720 	ret_val = hw->phy.ops.acquire(hw);
1721 	if (ret_val)
1722 		return;
1723 	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
1724 	if (ret_val)
1725 		goto release;
1726 
1727 	/* Copy both RAL/H (rar_entry_count) and SHRAL/H (+4) to PHY */
1728 	for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
1729 		mac_reg = er32(RAL(i));
1730 		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
1731 					   (u16)(mac_reg & 0xFFFF));
1732 		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
1733 					   (u16)((mac_reg >> 16) & 0xFFFF));
1734 
1735 		mac_reg = er32(RAH(i));
1736 		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
1737 					   (u16)(mac_reg & 0xFFFF));
1738 		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
1739 					   (u16)((mac_reg & E1000_RAH_AV)
1740 						 >> 16));
1741 	}
1742 
1743 	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
1744 
1745 release:
1746 	hw->phy.ops.release(hw);
1747 }
1748 
1749 /**
1750  *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
1751  *  with 82579 PHY
1752  *  @hw: pointer to the HW structure
1753  *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
1754  **/
1755 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
1756 {
1757 	s32 ret_val = 0;
1758 	u16 phy_reg, data;
1759 	u32 mac_reg;
1760 	u16 i;
1761 
1762 	if (hw->mac.type < e1000_pch2lan)
1763 		return 0;
1764 
1765 	/* disable Rx path while enabling/disabling workaround */
1766 	e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1767 	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14));
1768 	if (ret_val)
1769 		return ret_val;
1770 
1771 	if (enable) {
1772 		/* Write Rx addresses (rar_entry_count for RAL/H, +4 for
1773 		 * SHRAL/H) and initial CRC values to the MAC
1774 		 */
1775 		for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
1776 			u8 mac_addr[ETH_ALEN] = {0};
1777 			u32 addr_high, addr_low;
1778 
1779 			addr_high = er32(RAH(i));
1780 			if (!(addr_high & E1000_RAH_AV))
1781 				continue;
1782 			addr_low = er32(RAL(i));
1783 			mac_addr[0] = (addr_low & 0xFF);
1784 			mac_addr[1] = ((addr_low >> 8) & 0xFF);
1785 			mac_addr[2] = ((addr_low >> 16) & 0xFF);
1786 			mac_addr[3] = ((addr_low >> 24) & 0xFF);
1787 			mac_addr[4] = (addr_high & 0xFF);
1788 			mac_addr[5] = ((addr_high >> 8) & 0xFF);
1789 
1790 			ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
1791 		}
1792 
1793 		/* Write Rx addresses to the PHY */
1794 		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
1795 
1796 		/* Enable jumbo frame workaround in the MAC */
1797 		mac_reg = er32(FFLT_DBG);
1798 		mac_reg &= ~(1 << 14);
1799 		mac_reg |= (7 << 15);
1800 		ew32(FFLT_DBG, mac_reg);
1801 
1802 		mac_reg = er32(RCTL);
1803 		mac_reg |= E1000_RCTL_SECRC;
1804 		ew32(RCTL, mac_reg);
1805 
1806 		ret_val = e1000e_read_kmrn_reg(hw,
1807 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
1808 						&data);
1809 		if (ret_val)
1810 			return ret_val;
1811 		ret_val = e1000e_write_kmrn_reg(hw,
1812 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
1813 						data | (1 << 0));
1814 		if (ret_val)
1815 			return ret_val;
1816 		ret_val = e1000e_read_kmrn_reg(hw,
1817 						E1000_KMRNCTRLSTA_HD_CTRL,
1818 						&data);
1819 		if (ret_val)
1820 			return ret_val;
1821 		data &= ~(0xF << 8);
1822 		data |= (0xB << 8);
1823 		ret_val = e1000e_write_kmrn_reg(hw,
1824 						E1000_KMRNCTRLSTA_HD_CTRL,
1825 						data);
1826 		if (ret_val)
1827 			return ret_val;
1828 
1829 		/* Enable jumbo frame workaround in the PHY */
1830 		e1e_rphy(hw, PHY_REG(769, 23), &data);
1831 		data &= ~(0x7F << 5);
1832 		data |= (0x37 << 5);
1833 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
1834 		if (ret_val)
1835 			return ret_val;
1836 		e1e_rphy(hw, PHY_REG(769, 16), &data);
1837 		data &= ~(1 << 13);
1838 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
1839 		if (ret_val)
1840 			return ret_val;
1841 		e1e_rphy(hw, PHY_REG(776, 20), &data);
1842 		data &= ~(0x3FF << 2);
1843 		data |= (0x1A << 2);
1844 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
1845 		if (ret_val)
1846 			return ret_val;
1847 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
1848 		if (ret_val)
1849 			return ret_val;
1850 		e1e_rphy(hw, HV_PM_CTRL, &data);
1851 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10));
1852 		if (ret_val)
1853 			return ret_val;
1854 	} else {
1855 		/* Write MAC register values back to h/w defaults */
1856 		mac_reg = er32(FFLT_DBG);
1857 		mac_reg &= ~(0xF << 14);
1858 		ew32(FFLT_DBG, mac_reg);
1859 
1860 		mac_reg = er32(RCTL);
1861 		mac_reg &= ~E1000_RCTL_SECRC;
1862 		ew32(RCTL, mac_reg);
1863 
1864 		ret_val = e1000e_read_kmrn_reg(hw,
1865 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
1866 						&data);
1867 		if (ret_val)
1868 			return ret_val;
1869 		ret_val = e1000e_write_kmrn_reg(hw,
1870 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
1871 						data & ~(1 << 0));
1872 		if (ret_val)
1873 			return ret_val;
1874 		ret_val = e1000e_read_kmrn_reg(hw,
1875 						E1000_KMRNCTRLSTA_HD_CTRL,
1876 						&data);
1877 		if (ret_val)
1878 			return ret_val;
1879 		data &= ~(0xF << 8);
1880 		data |= (0xB << 8);
1881 		ret_val = e1000e_write_kmrn_reg(hw,
1882 						E1000_KMRNCTRLSTA_HD_CTRL,
1883 						data);
1884 		if (ret_val)
1885 			return ret_val;
1886 
1887 		/* Write PHY register values back to h/w defaults */
1888 		e1e_rphy(hw, PHY_REG(769, 23), &data);
1889 		data &= ~(0x7F << 5);
1890 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
1891 		if (ret_val)
1892 			return ret_val;
1893 		e1e_rphy(hw, PHY_REG(769, 16), &data);
1894 		data |= (1 << 13);
1895 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
1896 		if (ret_val)
1897 			return ret_val;
1898 		e1e_rphy(hw, PHY_REG(776, 20), &data);
1899 		data &= ~(0x3FF << 2);
1900 		data |= (0x8 << 2);
1901 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
1902 		if (ret_val)
1903 			return ret_val;
1904 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
1905 		if (ret_val)
1906 			return ret_val;
1907 		e1e_rphy(hw, HV_PM_CTRL, &data);
1908 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10));
1909 		if (ret_val)
1910 			return ret_val;
1911 	}
1912 
1913 	/* re-enable Rx path after enabling/disabling workaround */
1914 	return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14));
1915 }
1916 
1917 /**
1918  *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1919  *  done after every PHY reset.
1920  **/
1921 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1922 {
1923 	s32 ret_val = 0;
1924 
1925 	if (hw->mac.type != e1000_pch2lan)
1926 		return 0;
1927 
1928 	/* Set MDIO slow mode before any other MDIO access */
1929 	ret_val = e1000_set_mdio_slow_mode_hv(hw);
1930 	if (ret_val)
1931 		return ret_val;
1932 
1933 	ret_val = hw->phy.ops.acquire(hw);
1934 	if (ret_val)
1935 		return ret_val;
1936 	/* set MSE higher to enable link to stay up when noise is high */
1937 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
1938 	if (ret_val)
1939 		goto release;
1940 	/* drop link after 5 times MSE threshold was reached */
1941 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
1942 release:
1943 	hw->phy.ops.release(hw);
1944 
1945 	return ret_val;
1946 }
1947 
1948 /**
1949  *  e1000_k1_gig_workaround_lv - K1 Si workaround
1950  *  @hw:   pointer to the HW structure
1951  *
1952  *  Workaround to set the K1 beacon duration for 82579 parts
1953  **/
1954 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
1955 {
1956 	s32 ret_val = 0;
1957 	u16 status_reg = 0;
1958 	u32 mac_reg;
1959 	u16 phy_reg;
1960 
1961 	if (hw->mac.type != e1000_pch2lan)
1962 		return 0;
1963 
1964 	/* Set K1 beacon duration based on 1Gbps speed or otherwise */
1965 	ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
1966 	if (ret_val)
1967 		return ret_val;
1968 
1969 	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
1970 	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
1971 		mac_reg = er32(FEXTNVM4);
1972 		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1973 
1974 		ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
1975 		if (ret_val)
1976 			return ret_val;
1977 
1978 		if (status_reg & HV_M_STATUS_SPEED_1000) {
1979 			u16 pm_phy_reg;
1980 
1981 			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1982 			phy_reg &= ~I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
1983 			/* LV 1G Packet drop issue wa  */
1984 			ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
1985 			if (ret_val)
1986 				return ret_val;
1987 			pm_phy_reg &= ~HV_PM_CTRL_PLL_STOP_IN_K1_GIGA;
1988 			ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
1989 			if (ret_val)
1990 				return ret_val;
1991 		} else {
1992 			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
1993 			phy_reg |= I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT;
1994 		}
1995 		ew32(FEXTNVM4, mac_reg);
1996 		ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
1997 	}
1998 
1999 	return ret_val;
2000 }
2001 
2002 /**
2003  *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2004  *  @hw:   pointer to the HW structure
2005  *  @gate: boolean set to true to gate, false to ungate
2006  *
2007  *  Gate/ungate the automatic PHY configuration via hardware; perform
2008  *  the configuration via software instead.
2009  **/
2010 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2011 {
2012 	u32 extcnf_ctrl;
2013 
2014 	if (hw->mac.type < e1000_pch2lan)
2015 		return;
2016 
2017 	extcnf_ctrl = er32(EXTCNF_CTRL);
2018 
2019 	if (gate)
2020 		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2021 	else
2022 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2023 
2024 	ew32(EXTCNF_CTRL, extcnf_ctrl);
2025 }
2026 
2027 /**
2028  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2029  *  @hw: pointer to the HW structure
2030  *
2031  *  Check the appropriate indication the MAC has finished configuring the
2032  *  PHY after a software reset.
2033  **/
2034 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2035 {
2036 	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2037 
2038 	/* Wait for basic configuration completes before proceeding */
2039 	do {
2040 		data = er32(STATUS);
2041 		data &= E1000_STATUS_LAN_INIT_DONE;
2042 		udelay(100);
2043 	} while ((!data) && --loop);
2044 
2045 	/* If basic configuration is incomplete before the above loop
2046 	 * count reaches 0, loading the configuration from NVM will
2047 	 * leave the PHY in a bad state possibly resulting in no link.
2048 	 */
2049 	if (loop == 0)
2050 		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2051 
2052 	/* Clear the Init Done bit for the next init event */
2053 	data = er32(STATUS);
2054 	data &= ~E1000_STATUS_LAN_INIT_DONE;
2055 	ew32(STATUS, data);
2056 }
2057 
2058 /**
2059  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2060  *  @hw: pointer to the HW structure
2061  **/
2062 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2063 {
2064 	s32 ret_val = 0;
2065 	u16 reg;
2066 
2067 	if (hw->phy.ops.check_reset_block(hw))
2068 		return 0;
2069 
2070 	/* Allow time for h/w to get to quiescent state after reset */
2071 	usleep_range(10000, 20000);
2072 
2073 	/* Perform any necessary post-reset workarounds */
2074 	switch (hw->mac.type) {
2075 	case e1000_pchlan:
2076 		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2077 		if (ret_val)
2078 			return ret_val;
2079 		break;
2080 	case e1000_pch2lan:
2081 		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2082 		if (ret_val)
2083 			return ret_val;
2084 		break;
2085 	default:
2086 		break;
2087 	}
2088 
2089 	/* Clear the host wakeup bit after lcd reset */
2090 	if (hw->mac.type >= e1000_pchlan) {
2091 		e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2092 		reg &= ~BM_WUC_HOST_WU_BIT;
2093 		e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2094 	}
2095 
2096 	/* Configure the LCD with the extended configuration region in NVM */
2097 	ret_val = e1000_sw_lcd_config_ich8lan(hw);
2098 	if (ret_val)
2099 		return ret_val;
2100 
2101 	/* Configure the LCD with the OEM bits in NVM */
2102 	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2103 
2104 	if (hw->mac.type == e1000_pch2lan) {
2105 		/* Ungate automatic PHY configuration on non-managed 82579 */
2106 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2107 			usleep_range(10000, 20000);
2108 			e1000_gate_hw_phy_config_ich8lan(hw, false);
2109 		}
2110 
2111 		/* Set EEE LPI Update Timer to 200usec */
2112 		ret_val = hw->phy.ops.acquire(hw);
2113 		if (ret_val)
2114 			return ret_val;
2115 		ret_val = e1000_write_emi_reg_locked(hw,
2116 						     I82579_LPI_UPDATE_TIMER,
2117 						     0x1387);
2118 		hw->phy.ops.release(hw);
2119 	}
2120 
2121 	return ret_val;
2122 }
2123 
2124 /**
2125  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2126  *  @hw: pointer to the HW structure
2127  *
2128  *  Resets the PHY
2129  *  This is a function pointer entry point called by drivers
2130  *  or other shared routines.
2131  **/
2132 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2133 {
2134 	s32 ret_val = 0;
2135 
2136 	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
2137 	if ((hw->mac.type == e1000_pch2lan) &&
2138 	    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2139 		e1000_gate_hw_phy_config_ich8lan(hw, true);
2140 
2141 	ret_val = e1000e_phy_hw_reset_generic(hw);
2142 	if (ret_val)
2143 		return ret_val;
2144 
2145 	return e1000_post_phy_reset_ich8lan(hw);
2146 }
2147 
2148 /**
2149  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2150  *  @hw: pointer to the HW structure
2151  *  @active: true to enable LPLU, false to disable
2152  *
2153  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
2154  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2155  *  the phy speed. This function will manually set the LPLU bit and restart
2156  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
2157  *  since it configures the same bit.
2158  **/
2159 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2160 {
2161 	s32 ret_val;
2162 	u16 oem_reg;
2163 
2164 	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2165 	if (ret_val)
2166 		return ret_val;
2167 
2168 	if (active)
2169 		oem_reg |= HV_OEM_BITS_LPLU;
2170 	else
2171 		oem_reg &= ~HV_OEM_BITS_LPLU;
2172 
2173 	if (!hw->phy.ops.check_reset_block(hw))
2174 		oem_reg |= HV_OEM_BITS_RESTART_AN;
2175 
2176 	return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2177 }
2178 
2179 /**
2180  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2181  *  @hw: pointer to the HW structure
2182  *  @active: true to enable LPLU, false to disable
2183  *
2184  *  Sets the LPLU D0 state according to the active flag.  When
2185  *  activating LPLU this function also disables smart speed
2186  *  and vice versa.  LPLU will not be activated unless the
2187  *  device autonegotiation advertisement meets standards of
2188  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2189  *  This is a function pointer entry point only called by
2190  *  PHY setup routines.
2191  **/
2192 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2193 {
2194 	struct e1000_phy_info *phy = &hw->phy;
2195 	u32 phy_ctrl;
2196 	s32 ret_val = 0;
2197 	u16 data;
2198 
2199 	if (phy->type == e1000_phy_ife)
2200 		return 0;
2201 
2202 	phy_ctrl = er32(PHY_CTRL);
2203 
2204 	if (active) {
2205 		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2206 		ew32(PHY_CTRL, phy_ctrl);
2207 
2208 		if (phy->type != e1000_phy_igp_3)
2209 			return 0;
2210 
2211 		/* Call gig speed drop workaround on LPLU before accessing
2212 		 * any PHY registers
2213 		 */
2214 		if (hw->mac.type == e1000_ich8lan)
2215 			e1000e_gig_downshift_workaround_ich8lan(hw);
2216 
2217 		/* When LPLU is enabled, we should disable SmartSpeed */
2218 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2219 		if (ret_val)
2220 			return ret_val;
2221 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2222 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2223 		if (ret_val)
2224 			return ret_val;
2225 	} else {
2226 		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2227 		ew32(PHY_CTRL, phy_ctrl);
2228 
2229 		if (phy->type != e1000_phy_igp_3)
2230 			return 0;
2231 
2232 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2233 		 * during Dx states where the power conservation is most
2234 		 * important.  During driver activity we should enable
2235 		 * SmartSpeed, so performance is maintained.
2236 		 */
2237 		if (phy->smart_speed == e1000_smart_speed_on) {
2238 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2239 					   &data);
2240 			if (ret_val)
2241 				return ret_val;
2242 
2243 			data |= IGP01E1000_PSCFR_SMART_SPEED;
2244 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2245 					   data);
2246 			if (ret_val)
2247 				return ret_val;
2248 		} else if (phy->smart_speed == e1000_smart_speed_off) {
2249 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2250 					   &data);
2251 			if (ret_val)
2252 				return ret_val;
2253 
2254 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2255 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2256 					   data);
2257 			if (ret_val)
2258 				return ret_val;
2259 		}
2260 	}
2261 
2262 	return 0;
2263 }
2264 
2265 /**
2266  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
2267  *  @hw: pointer to the HW structure
2268  *  @active: true to enable LPLU, false to disable
2269  *
2270  *  Sets the LPLU D3 state according to the active flag.  When
2271  *  activating LPLU this function also disables smart speed
2272  *  and vice versa.  LPLU will not be activated unless the
2273  *  device autonegotiation advertisement meets standards of
2274  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2275  *  This is a function pointer entry point only called by
2276  *  PHY setup routines.
2277  **/
2278 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2279 {
2280 	struct e1000_phy_info *phy = &hw->phy;
2281 	u32 phy_ctrl;
2282 	s32 ret_val = 0;
2283 	u16 data;
2284 
2285 	phy_ctrl = er32(PHY_CTRL);
2286 
2287 	if (!active) {
2288 		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
2289 		ew32(PHY_CTRL, phy_ctrl);
2290 
2291 		if (phy->type != e1000_phy_igp_3)
2292 			return 0;
2293 
2294 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2295 		 * during Dx states where the power conservation is most
2296 		 * important.  During driver activity we should enable
2297 		 * SmartSpeed, so performance is maintained.
2298 		 */
2299 		if (phy->smart_speed == e1000_smart_speed_on) {
2300 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2301 					   &data);
2302 			if (ret_val)
2303 				return ret_val;
2304 
2305 			data |= IGP01E1000_PSCFR_SMART_SPEED;
2306 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2307 					   data);
2308 			if (ret_val)
2309 				return ret_val;
2310 		} else if (phy->smart_speed == e1000_smart_speed_off) {
2311 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2312 					   &data);
2313 			if (ret_val)
2314 				return ret_val;
2315 
2316 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2317 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2318 					   data);
2319 			if (ret_val)
2320 				return ret_val;
2321 		}
2322 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
2323 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
2324 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
2325 		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2326 		ew32(PHY_CTRL, phy_ctrl);
2327 
2328 		if (phy->type != e1000_phy_igp_3)
2329 			return 0;
2330 
2331 		/* Call gig speed drop workaround on LPLU before accessing
2332 		 * any PHY registers
2333 		 */
2334 		if (hw->mac.type == e1000_ich8lan)
2335 			e1000e_gig_downshift_workaround_ich8lan(hw);
2336 
2337 		/* When LPLU is enabled, we should disable SmartSpeed */
2338 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2339 		if (ret_val)
2340 			return ret_val;
2341 
2342 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2343 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2344 	}
2345 
2346 	return ret_val;
2347 }
2348 
2349 /**
2350  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
2351  *  @hw: pointer to the HW structure
2352  *  @bank:  pointer to the variable that returns the active bank
2353  *
2354  *  Reads signature byte from the NVM using the flash access registers.
2355  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
2356  **/
2357 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
2358 {
2359 	u32 eecd;
2360 	struct e1000_nvm_info *nvm = &hw->nvm;
2361 	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
2362 	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
2363 	u8 sig_byte = 0;
2364 	s32 ret_val;
2365 
2366 	switch (hw->mac.type) {
2367 	case e1000_ich8lan:
2368 	case e1000_ich9lan:
2369 		eecd = er32(EECD);
2370 		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
2371 		    E1000_EECD_SEC1VAL_VALID_MASK) {
2372 			if (eecd & E1000_EECD_SEC1VAL)
2373 				*bank = 1;
2374 			else
2375 				*bank = 0;
2376 
2377 			return 0;
2378 		}
2379 		e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
2380 		/* fall-thru */
2381 	default:
2382 		/* set bank to 0 in case flash read fails */
2383 		*bank = 0;
2384 
2385 		/* Check bank 0 */
2386 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
2387 		                                        &sig_byte);
2388 		if (ret_val)
2389 			return ret_val;
2390 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2391 		    E1000_ICH_NVM_SIG_VALUE) {
2392 			*bank = 0;
2393 			return 0;
2394 		}
2395 
2396 		/* Check bank 1 */
2397 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
2398 		                                        bank1_offset,
2399 		                                        &sig_byte);
2400 		if (ret_val)
2401 			return ret_val;
2402 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2403 		    E1000_ICH_NVM_SIG_VALUE) {
2404 			*bank = 1;
2405 			return 0;
2406 		}
2407 
2408 		e_dbg("ERROR: No valid NVM bank present\n");
2409 		return -E1000_ERR_NVM;
2410 	}
2411 }
2412 
2413 /**
2414  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
2415  *  @hw: pointer to the HW structure
2416  *  @offset: The offset (in bytes) of the word(s) to read.
2417  *  @words: Size of data to read in words
2418  *  @data: Pointer to the word(s) to read at offset.
2419  *
2420  *  Reads a word(s) from the NVM using the flash access registers.
2421  **/
2422 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2423 				  u16 *data)
2424 {
2425 	struct e1000_nvm_info *nvm = &hw->nvm;
2426 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2427 	u32 act_offset;
2428 	s32 ret_val = 0;
2429 	u32 bank = 0;
2430 	u16 i, word;
2431 
2432 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2433 	    (words == 0)) {
2434 		e_dbg("nvm parameter(s) out of bounds\n");
2435 		ret_val = -E1000_ERR_NVM;
2436 		goto out;
2437 	}
2438 
2439 	nvm->ops.acquire(hw);
2440 
2441 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2442 	if (ret_val) {
2443 		e_dbg("Could not detect valid bank, assuming bank 0\n");
2444 		bank = 0;
2445 	}
2446 
2447 	act_offset = (bank) ? nvm->flash_bank_size : 0;
2448 	act_offset += offset;
2449 
2450 	ret_val = 0;
2451 	for (i = 0; i < words; i++) {
2452 		if (dev_spec->shadow_ram[offset+i].modified) {
2453 			data[i] = dev_spec->shadow_ram[offset+i].value;
2454 		} else {
2455 			ret_val = e1000_read_flash_word_ich8lan(hw,
2456 								act_offset + i,
2457 								&word);
2458 			if (ret_val)
2459 				break;
2460 			data[i] = word;
2461 		}
2462 	}
2463 
2464 	nvm->ops.release(hw);
2465 
2466 out:
2467 	if (ret_val)
2468 		e_dbg("NVM read error: %d\n", ret_val);
2469 
2470 	return ret_val;
2471 }
2472 
2473 /**
2474  *  e1000_flash_cycle_init_ich8lan - Initialize flash
2475  *  @hw: pointer to the HW structure
2476  *
2477  *  This function does initial flash setup so that a new read/write/erase cycle
2478  *  can be started.
2479  **/
2480 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
2481 {
2482 	union ich8_hws_flash_status hsfsts;
2483 	s32 ret_val = -E1000_ERR_NVM;
2484 
2485 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2486 
2487 	/* Check if the flash descriptor is valid */
2488 	if (!hsfsts.hsf_status.fldesvalid) {
2489 		e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
2490 		return -E1000_ERR_NVM;
2491 	}
2492 
2493 	/* Clear FCERR and DAEL in hw status by writing 1 */
2494 	hsfsts.hsf_status.flcerr = 1;
2495 	hsfsts.hsf_status.dael = 1;
2496 
2497 	ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2498 
2499 	/* Either we should have a hardware SPI cycle in progress
2500 	 * bit to check against, in order to start a new cycle or
2501 	 * FDONE bit should be changed in the hardware so that it
2502 	 * is 1 after hardware reset, which can then be used as an
2503 	 * indication whether a cycle is in progress or has been
2504 	 * completed.
2505 	 */
2506 
2507 	if (!hsfsts.hsf_status.flcinprog) {
2508 		/* There is no cycle running at present,
2509 		 * so we can start a cycle.
2510 		 * Begin by setting Flash Cycle Done.
2511 		 */
2512 		hsfsts.hsf_status.flcdone = 1;
2513 		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2514 		ret_val = 0;
2515 	} else {
2516 		s32 i;
2517 
2518 		/* Otherwise poll for sometime so the current
2519 		 * cycle has a chance to end before giving up.
2520 		 */
2521 		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
2522 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2523 			if (!hsfsts.hsf_status.flcinprog) {
2524 				ret_val = 0;
2525 				break;
2526 			}
2527 			udelay(1);
2528 		}
2529 		if (!ret_val) {
2530 			/* Successful in waiting for previous cycle to timeout,
2531 			 * now set the Flash Cycle Done.
2532 			 */
2533 			hsfsts.hsf_status.flcdone = 1;
2534 			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2535 		} else {
2536 			e_dbg("Flash controller busy, cannot get access\n");
2537 		}
2538 	}
2539 
2540 	return ret_val;
2541 }
2542 
2543 /**
2544  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
2545  *  @hw: pointer to the HW structure
2546  *  @timeout: maximum time to wait for completion
2547  *
2548  *  This function starts a flash cycle and waits for its completion.
2549  **/
2550 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
2551 {
2552 	union ich8_hws_flash_ctrl hsflctl;
2553 	union ich8_hws_flash_status hsfsts;
2554 	u32 i = 0;
2555 
2556 	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
2557 	hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2558 	hsflctl.hsf_ctrl.flcgo = 1;
2559 	ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2560 
2561 	/* wait till FDONE bit is set to 1 */
2562 	do {
2563 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2564 		if (hsfsts.hsf_status.flcdone)
2565 			break;
2566 		udelay(1);
2567 	} while (i++ < timeout);
2568 
2569 	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
2570 		return 0;
2571 
2572 	return -E1000_ERR_NVM;
2573 }
2574 
2575 /**
2576  *  e1000_read_flash_word_ich8lan - Read word from flash
2577  *  @hw: pointer to the HW structure
2578  *  @offset: offset to data location
2579  *  @data: pointer to the location for storing the data
2580  *
2581  *  Reads the flash word at offset into data.  Offset is converted
2582  *  to bytes before read.
2583  **/
2584 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
2585 					 u16 *data)
2586 {
2587 	/* Must convert offset into bytes. */
2588 	offset <<= 1;
2589 
2590 	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
2591 }
2592 
2593 /**
2594  *  e1000_read_flash_byte_ich8lan - Read byte from flash
2595  *  @hw: pointer to the HW structure
2596  *  @offset: The offset of the byte to read.
2597  *  @data: Pointer to a byte to store the value read.
2598  *
2599  *  Reads a single byte from the NVM using the flash access registers.
2600  **/
2601 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
2602 					 u8 *data)
2603 {
2604 	s32 ret_val;
2605 	u16 word = 0;
2606 
2607 	ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
2608 	if (ret_val)
2609 		return ret_val;
2610 
2611 	*data = (u8)word;
2612 
2613 	return 0;
2614 }
2615 
2616 /**
2617  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
2618  *  @hw: pointer to the HW structure
2619  *  @offset: The offset (in bytes) of the byte or word to read.
2620  *  @size: Size of data to read, 1=byte 2=word
2621  *  @data: Pointer to the word to store the value read.
2622  *
2623  *  Reads a byte or word from the NVM using the flash access registers.
2624  **/
2625 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
2626 					 u8 size, u16 *data)
2627 {
2628 	union ich8_hws_flash_status hsfsts;
2629 	union ich8_hws_flash_ctrl hsflctl;
2630 	u32 flash_linear_addr;
2631 	u32 flash_data = 0;
2632 	s32 ret_val = -E1000_ERR_NVM;
2633 	u8 count = 0;
2634 
2635 	if (size < 1  || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
2636 		return -E1000_ERR_NVM;
2637 
2638 	flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
2639 			    hw->nvm.flash_base_addr;
2640 
2641 	do {
2642 		udelay(1);
2643 		/* Steps */
2644 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
2645 		if (ret_val)
2646 			break;
2647 
2648 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2649 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2650 		hsflctl.hsf_ctrl.fldbcount = size - 1;
2651 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
2652 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2653 
2654 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2655 
2656 		ret_val = e1000_flash_cycle_ich8lan(hw,
2657 						ICH_FLASH_READ_COMMAND_TIMEOUT);
2658 
2659 		/* Check if FCERR is set to 1, if set to 1, clear it
2660 		 * and try the whole sequence a few more times, else
2661 		 * read in (shift in) the Flash Data0, the order is
2662 		 * least significant byte first msb to lsb
2663 		 */
2664 		if (!ret_val) {
2665 			flash_data = er32flash(ICH_FLASH_FDATA0);
2666 			if (size == 1)
2667 				*data = (u8)(flash_data & 0x000000FF);
2668 			else if (size == 2)
2669 				*data = (u16)(flash_data & 0x0000FFFF);
2670 			break;
2671 		} else {
2672 			/* If we've gotten here, then things are probably
2673 			 * completely hosed, but if the error condition is
2674 			 * detected, it won't hurt to give it another try...
2675 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
2676 			 */
2677 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2678 			if (hsfsts.hsf_status.flcerr) {
2679 				/* Repeat for some time before giving up. */
2680 				continue;
2681 			} else if (!hsfsts.hsf_status.flcdone) {
2682 				e_dbg("Timeout error - flash cycle did not complete.\n");
2683 				break;
2684 			}
2685 		}
2686 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
2687 
2688 	return ret_val;
2689 }
2690 
2691 /**
2692  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
2693  *  @hw: pointer to the HW structure
2694  *  @offset: The offset (in bytes) of the word(s) to write.
2695  *  @words: Size of data to write in words
2696  *  @data: Pointer to the word(s) to write at offset.
2697  *
2698  *  Writes a byte or word to the NVM using the flash access registers.
2699  **/
2700 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2701 				   u16 *data)
2702 {
2703 	struct e1000_nvm_info *nvm = &hw->nvm;
2704 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2705 	u16 i;
2706 
2707 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2708 	    (words == 0)) {
2709 		e_dbg("nvm parameter(s) out of bounds\n");
2710 		return -E1000_ERR_NVM;
2711 	}
2712 
2713 	nvm->ops.acquire(hw);
2714 
2715 	for (i = 0; i < words; i++) {
2716 		dev_spec->shadow_ram[offset+i].modified = true;
2717 		dev_spec->shadow_ram[offset+i].value = data[i];
2718 	}
2719 
2720 	nvm->ops.release(hw);
2721 
2722 	return 0;
2723 }
2724 
2725 /**
2726  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
2727  *  @hw: pointer to the HW structure
2728  *
2729  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
2730  *  which writes the checksum to the shadow ram.  The changes in the shadow
2731  *  ram are then committed to the EEPROM by processing each bank at a time
2732  *  checking for the modified bit and writing only the pending changes.
2733  *  After a successful commit, the shadow ram is cleared and is ready for
2734  *  future writes.
2735  **/
2736 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
2737 {
2738 	struct e1000_nvm_info *nvm = &hw->nvm;
2739 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2740 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
2741 	s32 ret_val;
2742 	u16 data;
2743 
2744 	ret_val = e1000e_update_nvm_checksum_generic(hw);
2745 	if (ret_val)
2746 		goto out;
2747 
2748 	if (nvm->type != e1000_nvm_flash_sw)
2749 		goto out;
2750 
2751 	nvm->ops.acquire(hw);
2752 
2753 	/* We're writing to the opposite bank so if we're on bank 1,
2754 	 * write to bank 0 etc.  We also need to erase the segment that
2755 	 * is going to be written
2756 	 */
2757 	ret_val =  e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2758 	if (ret_val) {
2759 		e_dbg("Could not detect valid bank, assuming bank 0\n");
2760 		bank = 0;
2761 	}
2762 
2763 	if (bank == 0) {
2764 		new_bank_offset = nvm->flash_bank_size;
2765 		old_bank_offset = 0;
2766 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
2767 		if (ret_val)
2768 			goto release;
2769 	} else {
2770 		old_bank_offset = nvm->flash_bank_size;
2771 		new_bank_offset = 0;
2772 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
2773 		if (ret_val)
2774 			goto release;
2775 	}
2776 
2777 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2778 		/* Determine whether to write the value stored
2779 		 * in the other NVM bank or a modified value stored
2780 		 * in the shadow RAM
2781 		 */
2782 		if (dev_spec->shadow_ram[i].modified) {
2783 			data = dev_spec->shadow_ram[i].value;
2784 		} else {
2785 			ret_val = e1000_read_flash_word_ich8lan(hw, i +
2786 			                                        old_bank_offset,
2787 			                                        &data);
2788 			if (ret_val)
2789 				break;
2790 		}
2791 
2792 		/* If the word is 0x13, then make sure the signature bits
2793 		 * (15:14) are 11b until the commit has completed.
2794 		 * This will allow us to write 10b which indicates the
2795 		 * signature is valid.  We want to do this after the write
2796 		 * has completed so that we don't mark the segment valid
2797 		 * while the write is still in progress
2798 		 */
2799 		if (i == E1000_ICH_NVM_SIG_WORD)
2800 			data |= E1000_ICH_NVM_SIG_MASK;
2801 
2802 		/* Convert offset to bytes. */
2803 		act_offset = (i + new_bank_offset) << 1;
2804 
2805 		udelay(100);
2806 		/* Write the bytes to the new bank. */
2807 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2808 							       act_offset,
2809 							       (u8)data);
2810 		if (ret_val)
2811 			break;
2812 
2813 		udelay(100);
2814 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2815 							  act_offset + 1,
2816 							  (u8)(data >> 8));
2817 		if (ret_val)
2818 			break;
2819 	}
2820 
2821 	/* Don't bother writing the segment valid bits if sector
2822 	 * programming failed.
2823 	 */
2824 	if (ret_val) {
2825 		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
2826 		e_dbg("Flash commit failed.\n");
2827 		goto release;
2828 	}
2829 
2830 	/* Finally validate the new segment by setting bit 15:14
2831 	 * to 10b in word 0x13 , this can be done without an
2832 	 * erase as well since these bits are 11 to start with
2833 	 * and we need to change bit 14 to 0b
2834 	 */
2835 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
2836 	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
2837 	if (ret_val)
2838 		goto release;
2839 
2840 	data &= 0xBFFF;
2841 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2842 						       act_offset * 2 + 1,
2843 						       (u8)(data >> 8));
2844 	if (ret_val)
2845 		goto release;
2846 
2847 	/* And invalidate the previously valid segment by setting
2848 	 * its signature word (0x13) high_byte to 0b. This can be
2849 	 * done without an erase because flash erase sets all bits
2850 	 * to 1's. We can write 1's to 0's without an erase
2851 	 */
2852 	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
2853 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
2854 	if (ret_val)
2855 		goto release;
2856 
2857 	/* Great!  Everything worked, we can now clear the cached entries. */
2858 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2859 		dev_spec->shadow_ram[i].modified = false;
2860 		dev_spec->shadow_ram[i].value = 0xFFFF;
2861 	}
2862 
2863 release:
2864 	nvm->ops.release(hw);
2865 
2866 	/* Reload the EEPROM, or else modifications will not appear
2867 	 * until after the next adapter reset.
2868 	 */
2869 	if (!ret_val) {
2870 		nvm->ops.reload(hw);
2871 		usleep_range(10000, 20000);
2872 	}
2873 
2874 out:
2875 	if (ret_val)
2876 		e_dbg("NVM update error: %d\n", ret_val);
2877 
2878 	return ret_val;
2879 }
2880 
2881 /**
2882  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
2883  *  @hw: pointer to the HW structure
2884  *
2885  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
2886  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
2887  *  calculated, in which case we need to calculate the checksum and set bit 6.
2888  **/
2889 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
2890 {
2891 	s32 ret_val;
2892 	u16 data;
2893 	u16 word;
2894 	u16 valid_csum_mask;
2895 
2896 	/* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
2897 	 * the checksum needs to be fixed.  This bit is an indication that
2898 	 * the NVM was prepared by OEM software and did not calculate
2899 	 * the checksum...a likely scenario.
2900 	 */
2901 	switch (hw->mac.type) {
2902 	case e1000_pch_lpt:
2903 		word = NVM_COMPAT;
2904 		valid_csum_mask = NVM_COMPAT_VALID_CSUM;
2905 		break;
2906 	default:
2907 		word = NVM_FUTURE_INIT_WORD1;
2908 		valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
2909 		break;
2910 	}
2911 
2912 	ret_val = e1000_read_nvm(hw, word, 1, &data);
2913 	if (ret_val)
2914 		return ret_val;
2915 
2916 	if (!(data & valid_csum_mask)) {
2917 		data |= valid_csum_mask;
2918 		ret_val = e1000_write_nvm(hw, word, 1, &data);
2919 		if (ret_val)
2920 			return ret_val;
2921 		ret_val = e1000e_update_nvm_checksum(hw);
2922 		if (ret_val)
2923 			return ret_val;
2924 	}
2925 
2926 	return e1000e_validate_nvm_checksum_generic(hw);
2927 }
2928 
2929 /**
2930  *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
2931  *  @hw: pointer to the HW structure
2932  *
2933  *  To prevent malicious write/erase of the NVM, set it to be read-only
2934  *  so that the hardware ignores all write/erase cycles of the NVM via
2935  *  the flash control registers.  The shadow-ram copy of the NVM will
2936  *  still be updated, however any updates to this copy will not stick
2937  *  across driver reloads.
2938  **/
2939 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
2940 {
2941 	struct e1000_nvm_info *nvm = &hw->nvm;
2942 	union ich8_flash_protected_range pr0;
2943 	union ich8_hws_flash_status hsfsts;
2944 	u32 gfpreg;
2945 
2946 	nvm->ops.acquire(hw);
2947 
2948 	gfpreg = er32flash(ICH_FLASH_GFPREG);
2949 
2950 	/* Write-protect GbE Sector of NVM */
2951 	pr0.regval = er32flash(ICH_FLASH_PR0);
2952 	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
2953 	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
2954 	pr0.range.wpe = true;
2955 	ew32flash(ICH_FLASH_PR0, pr0.regval);
2956 
2957 	/* Lock down a subset of GbE Flash Control Registers, e.g.
2958 	 * PR0 to prevent the write-protection from being lifted.
2959 	 * Once FLOCKDN is set, the registers protected by it cannot
2960 	 * be written until FLOCKDN is cleared by a hardware reset.
2961 	 */
2962 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2963 	hsfsts.hsf_status.flockdn = true;
2964 	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2965 
2966 	nvm->ops.release(hw);
2967 }
2968 
2969 /**
2970  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
2971  *  @hw: pointer to the HW structure
2972  *  @offset: The offset (in bytes) of the byte/word to read.
2973  *  @size: Size of data to read, 1=byte 2=word
2974  *  @data: The byte(s) to write to the NVM.
2975  *
2976  *  Writes one/two bytes to the NVM using the flash access registers.
2977  **/
2978 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
2979 					  u8 size, u16 data)
2980 {
2981 	union ich8_hws_flash_status hsfsts;
2982 	union ich8_hws_flash_ctrl hsflctl;
2983 	u32 flash_linear_addr;
2984 	u32 flash_data = 0;
2985 	s32 ret_val;
2986 	u8 count = 0;
2987 
2988 	if (size < 1 || size > 2 || data > size * 0xff ||
2989 	    offset > ICH_FLASH_LINEAR_ADDR_MASK)
2990 		return -E1000_ERR_NVM;
2991 
2992 	flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
2993 			    hw->nvm.flash_base_addr;
2994 
2995 	do {
2996 		udelay(1);
2997 		/* Steps */
2998 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
2999 		if (ret_val)
3000 			break;
3001 
3002 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3003 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3004 		hsflctl.hsf_ctrl.fldbcount = size -1;
3005 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
3006 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3007 
3008 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3009 
3010 		if (size == 1)
3011 			flash_data = (u32)data & 0x00FF;
3012 		else
3013 			flash_data = (u32)data;
3014 
3015 		ew32flash(ICH_FLASH_FDATA0, flash_data);
3016 
3017 		/* check if FCERR is set to 1 , if set to 1, clear it
3018 		 * and try the whole sequence a few more times else done
3019 		 */
3020 		ret_val = e1000_flash_cycle_ich8lan(hw,
3021 					       ICH_FLASH_WRITE_COMMAND_TIMEOUT);
3022 		if (!ret_val)
3023 			break;
3024 
3025 		/* If we're here, then things are most likely
3026 		 * completely hosed, but if the error condition
3027 		 * is detected, it won't hurt to give it another
3028 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
3029 		 */
3030 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3031 		if (hsfsts.hsf_status.flcerr)
3032 			/* Repeat for some time before giving up. */
3033 			continue;
3034 		if (!hsfsts.hsf_status.flcdone) {
3035 			e_dbg("Timeout error - flash cycle did not complete.\n");
3036 			break;
3037 		}
3038 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3039 
3040 	return ret_val;
3041 }
3042 
3043 /**
3044  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
3045  *  @hw: pointer to the HW structure
3046  *  @offset: The index of the byte to read.
3047  *  @data: The byte to write to the NVM.
3048  *
3049  *  Writes a single byte to the NVM using the flash access registers.
3050  **/
3051 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3052 					  u8 data)
3053 {
3054 	u16 word = (u16)data;
3055 
3056 	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
3057 }
3058 
3059 /**
3060  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
3061  *  @hw: pointer to the HW structure
3062  *  @offset: The offset of the byte to write.
3063  *  @byte: The byte to write to the NVM.
3064  *
3065  *  Writes a single byte to the NVM using the flash access registers.
3066  *  Goes through a retry algorithm before giving up.
3067  **/
3068 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
3069 						u32 offset, u8 byte)
3070 {
3071 	s32 ret_val;
3072 	u16 program_retries;
3073 
3074 	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
3075 	if (!ret_val)
3076 		return ret_val;
3077 
3078 	for (program_retries = 0; program_retries < 100; program_retries++) {
3079 		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
3080 		udelay(100);
3081 		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
3082 		if (!ret_val)
3083 			break;
3084 	}
3085 	if (program_retries == 100)
3086 		return -E1000_ERR_NVM;
3087 
3088 	return 0;
3089 }
3090 
3091 /**
3092  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
3093  *  @hw: pointer to the HW structure
3094  *  @bank: 0 for first bank, 1 for second bank, etc.
3095  *
3096  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
3097  *  bank N is 4096 * N + flash_reg_addr.
3098  **/
3099 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
3100 {
3101 	struct e1000_nvm_info *nvm = &hw->nvm;
3102 	union ich8_hws_flash_status hsfsts;
3103 	union ich8_hws_flash_ctrl hsflctl;
3104 	u32 flash_linear_addr;
3105 	/* bank size is in 16bit words - adjust to bytes */
3106 	u32 flash_bank_size = nvm->flash_bank_size * 2;
3107 	s32 ret_val;
3108 	s32 count = 0;
3109 	s32 j, iteration, sector_size;
3110 
3111 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3112 
3113 	/* Determine HW Sector size: Read BERASE bits of hw flash status
3114 	 * register
3115 	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
3116 	 *     consecutive sectors.  The start index for the nth Hw sector
3117 	 *     can be calculated as = bank * 4096 + n * 256
3118 	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
3119 	 *     The start index for the nth Hw sector can be calculated
3120 	 *     as = bank * 4096
3121 	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
3122 	 *     (ich9 only, otherwise error condition)
3123 	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
3124 	 */
3125 	switch (hsfsts.hsf_status.berasesz) {
3126 	case 0:
3127 		/* Hw sector size 256 */
3128 		sector_size = ICH_FLASH_SEG_SIZE_256;
3129 		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
3130 		break;
3131 	case 1:
3132 		sector_size = ICH_FLASH_SEG_SIZE_4K;
3133 		iteration = 1;
3134 		break;
3135 	case 2:
3136 		sector_size = ICH_FLASH_SEG_SIZE_8K;
3137 		iteration = 1;
3138 		break;
3139 	case 3:
3140 		sector_size = ICH_FLASH_SEG_SIZE_64K;
3141 		iteration = 1;
3142 		break;
3143 	default:
3144 		return -E1000_ERR_NVM;
3145 	}
3146 
3147 	/* Start with the base address, then add the sector offset. */
3148 	flash_linear_addr = hw->nvm.flash_base_addr;
3149 	flash_linear_addr += (bank) ? flash_bank_size : 0;
3150 
3151 	for (j = 0; j < iteration ; j++) {
3152 		do {
3153 			/* Steps */
3154 			ret_val = e1000_flash_cycle_init_ich8lan(hw);
3155 			if (ret_val)
3156 				return ret_val;
3157 
3158 			/* Write a value 11 (block Erase) in Flash
3159 			 * Cycle field in hw flash control
3160 			 */
3161 			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3162 			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
3163 			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3164 
3165 			/* Write the last 24 bits of an index within the
3166 			 * block into Flash Linear address field in Flash
3167 			 * Address.
3168 			 */
3169 			flash_linear_addr += (j * sector_size);
3170 			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3171 
3172 			ret_val = e1000_flash_cycle_ich8lan(hw,
3173 					       ICH_FLASH_ERASE_COMMAND_TIMEOUT);
3174 			if (!ret_val)
3175 				break;
3176 
3177 			/* Check if FCERR is set to 1.  If 1,
3178 			 * clear it and try the whole sequence
3179 			 * a few more times else Done
3180 			 */
3181 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3182 			if (hsfsts.hsf_status.flcerr)
3183 				/* repeat for some time before giving up */
3184 				continue;
3185 			else if (!hsfsts.hsf_status.flcdone)
3186 				return ret_val;
3187 		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
3188 	}
3189 
3190 	return 0;
3191 }
3192 
3193 /**
3194  *  e1000_valid_led_default_ich8lan - Set the default LED settings
3195  *  @hw: pointer to the HW structure
3196  *  @data: Pointer to the LED settings
3197  *
3198  *  Reads the LED default settings from the NVM to data.  If the NVM LED
3199  *  settings is all 0's or F's, set the LED default to a valid LED default
3200  *  setting.
3201  **/
3202 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
3203 {
3204 	s32 ret_val;
3205 
3206 	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
3207 	if (ret_val) {
3208 		e_dbg("NVM Read Error\n");
3209 		return ret_val;
3210 	}
3211 
3212 	if (*data == ID_LED_RESERVED_0000 ||
3213 	    *data == ID_LED_RESERVED_FFFF)
3214 		*data = ID_LED_DEFAULT_ICH8LAN;
3215 
3216 	return 0;
3217 }
3218 
3219 /**
3220  *  e1000_id_led_init_pchlan - store LED configurations
3221  *  @hw: pointer to the HW structure
3222  *
3223  *  PCH does not control LEDs via the LEDCTL register, rather it uses
3224  *  the PHY LED configuration register.
3225  *
3226  *  PCH also does not have an "always on" or "always off" mode which
3227  *  complicates the ID feature.  Instead of using the "on" mode to indicate
3228  *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
3229  *  use "link_up" mode.  The LEDs will still ID on request if there is no
3230  *  link based on logic in e1000_led_[on|off]_pchlan().
3231  **/
3232 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
3233 {
3234 	struct e1000_mac_info *mac = &hw->mac;
3235 	s32 ret_val;
3236 	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
3237 	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
3238 	u16 data, i, temp, shift;
3239 
3240 	/* Get default ID LED modes */
3241 	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
3242 	if (ret_val)
3243 		return ret_val;
3244 
3245 	mac->ledctl_default = er32(LEDCTL);
3246 	mac->ledctl_mode1 = mac->ledctl_default;
3247 	mac->ledctl_mode2 = mac->ledctl_default;
3248 
3249 	for (i = 0; i < 4; i++) {
3250 		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
3251 		shift = (i * 5);
3252 		switch (temp) {
3253 		case ID_LED_ON1_DEF2:
3254 		case ID_LED_ON1_ON2:
3255 		case ID_LED_ON1_OFF2:
3256 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
3257 			mac->ledctl_mode1 |= (ledctl_on << shift);
3258 			break;
3259 		case ID_LED_OFF1_DEF2:
3260 		case ID_LED_OFF1_ON2:
3261 		case ID_LED_OFF1_OFF2:
3262 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
3263 			mac->ledctl_mode1 |= (ledctl_off << shift);
3264 			break;
3265 		default:
3266 			/* Do nothing */
3267 			break;
3268 		}
3269 		switch (temp) {
3270 		case ID_LED_DEF1_ON2:
3271 		case ID_LED_ON1_ON2:
3272 		case ID_LED_OFF1_ON2:
3273 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3274 			mac->ledctl_mode2 |= (ledctl_on << shift);
3275 			break;
3276 		case ID_LED_DEF1_OFF2:
3277 		case ID_LED_ON1_OFF2:
3278 		case ID_LED_OFF1_OFF2:
3279 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
3280 			mac->ledctl_mode2 |= (ledctl_off << shift);
3281 			break;
3282 		default:
3283 			/* Do nothing */
3284 			break;
3285 		}
3286 	}
3287 
3288 	return 0;
3289 }
3290 
3291 /**
3292  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
3293  *  @hw: pointer to the HW structure
3294  *
3295  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
3296  *  register, so the the bus width is hard coded.
3297  **/
3298 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
3299 {
3300 	struct e1000_bus_info *bus = &hw->bus;
3301 	s32 ret_val;
3302 
3303 	ret_val = e1000e_get_bus_info_pcie(hw);
3304 
3305 	/* ICH devices are "PCI Express"-ish.  They have
3306 	 * a configuration space, but do not contain
3307 	 * PCI Express Capability registers, so bus width
3308 	 * must be hardcoded.
3309 	 */
3310 	if (bus->width == e1000_bus_width_unknown)
3311 		bus->width = e1000_bus_width_pcie_x1;
3312 
3313 	return ret_val;
3314 }
3315 
3316 /**
3317  *  e1000_reset_hw_ich8lan - Reset the hardware
3318  *  @hw: pointer to the HW structure
3319  *
3320  *  Does a full reset of the hardware which includes a reset of the PHY and
3321  *  MAC.
3322  **/
3323 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
3324 {
3325 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3326 	u16 kum_cfg;
3327 	u32 ctrl, reg;
3328 	s32 ret_val;
3329 
3330 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
3331 	 * on the last TLP read/write transaction when MAC is reset.
3332 	 */
3333 	ret_val = e1000e_disable_pcie_master(hw);
3334 	if (ret_val)
3335 		e_dbg("PCI-E Master disable polling has failed.\n");
3336 
3337 	e_dbg("Masking off all interrupts\n");
3338 	ew32(IMC, 0xffffffff);
3339 
3340 	/* Disable the Transmit and Receive units.  Then delay to allow
3341 	 * any pending transactions to complete before we hit the MAC
3342 	 * with the global reset.
3343 	 */
3344 	ew32(RCTL, 0);
3345 	ew32(TCTL, E1000_TCTL_PSP);
3346 	e1e_flush();
3347 
3348 	usleep_range(10000, 20000);
3349 
3350 	/* Workaround for ICH8 bit corruption issue in FIFO memory */
3351 	if (hw->mac.type == e1000_ich8lan) {
3352 		/* Set Tx and Rx buffer allocation to 8k apiece. */
3353 		ew32(PBA, E1000_PBA_8K);
3354 		/* Set Packet Buffer Size to 16k. */
3355 		ew32(PBS, E1000_PBS_16K);
3356 	}
3357 
3358 	if (hw->mac.type == e1000_pchlan) {
3359 		/* Save the NVM K1 bit setting */
3360 		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
3361 		if (ret_val)
3362 			return ret_val;
3363 
3364 		if (kum_cfg & E1000_NVM_K1_ENABLE)
3365 			dev_spec->nvm_k1_enabled = true;
3366 		else
3367 			dev_spec->nvm_k1_enabled = false;
3368 	}
3369 
3370 	ctrl = er32(CTRL);
3371 
3372 	if (!hw->phy.ops.check_reset_block(hw)) {
3373 		/* Full-chip reset requires MAC and PHY reset at the same
3374 		 * time to make sure the interface between MAC and the
3375 		 * external PHY is reset.
3376 		 */
3377 		ctrl |= E1000_CTRL_PHY_RST;
3378 
3379 		/* Gate automatic PHY configuration by hardware on
3380 		 * non-managed 82579
3381 		 */
3382 		if ((hw->mac.type == e1000_pch2lan) &&
3383 		    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
3384 			e1000_gate_hw_phy_config_ich8lan(hw, true);
3385 	}
3386 	ret_val = e1000_acquire_swflag_ich8lan(hw);
3387 	e_dbg("Issuing a global reset to ich8lan\n");
3388 	ew32(CTRL, (ctrl | E1000_CTRL_RST));
3389 	/* cannot issue a flush here because it hangs the hardware */
3390 	msleep(20);
3391 
3392 	/* Set Phy Config Counter to 50msec */
3393 	if (hw->mac.type == e1000_pch2lan) {
3394 		reg = er32(FEXTNVM3);
3395 		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
3396 		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
3397 		ew32(FEXTNVM3, reg);
3398 	}
3399 
3400 	if (!ret_val)
3401 		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
3402 
3403 	if (ctrl & E1000_CTRL_PHY_RST) {
3404 		ret_val = hw->phy.ops.get_cfg_done(hw);
3405 		if (ret_val)
3406 			return ret_val;
3407 
3408 		ret_val = e1000_post_phy_reset_ich8lan(hw);
3409 		if (ret_val)
3410 			return ret_val;
3411 	}
3412 
3413 	/* For PCH, this write will make sure that any noise
3414 	 * will be detected as a CRC error and be dropped rather than show up
3415 	 * as a bad packet to the DMA engine.
3416 	 */
3417 	if (hw->mac.type == e1000_pchlan)
3418 		ew32(CRC_OFFSET, 0x65656565);
3419 
3420 	ew32(IMC, 0xffffffff);
3421 	er32(ICR);
3422 
3423 	reg = er32(KABGTXD);
3424 	reg |= E1000_KABGTXD_BGSQLBIAS;
3425 	ew32(KABGTXD, reg);
3426 
3427 	return 0;
3428 }
3429 
3430 /**
3431  *  e1000_init_hw_ich8lan - Initialize the hardware
3432  *  @hw: pointer to the HW structure
3433  *
3434  *  Prepares the hardware for transmit and receive by doing the following:
3435  *   - initialize hardware bits
3436  *   - initialize LED identification
3437  *   - setup receive address registers
3438  *   - setup flow control
3439  *   - setup transmit descriptors
3440  *   - clear statistics
3441  **/
3442 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
3443 {
3444 	struct e1000_mac_info *mac = &hw->mac;
3445 	u32 ctrl_ext, txdctl, snoop;
3446 	s32 ret_val;
3447 	u16 i;
3448 
3449 	e1000_initialize_hw_bits_ich8lan(hw);
3450 
3451 	/* Initialize identification LED */
3452 	ret_val = mac->ops.id_led_init(hw);
3453 	if (ret_val)
3454 		e_dbg("Error initializing identification LED\n");
3455 		/* This is not fatal and we should not stop init due to this */
3456 
3457 	/* Setup the receive address. */
3458 	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
3459 
3460 	/* Zero out the Multicast HASH table */
3461 	e_dbg("Zeroing the MTA\n");
3462 	for (i = 0; i < mac->mta_reg_count; i++)
3463 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
3464 
3465 	/* The 82578 Rx buffer will stall if wakeup is enabled in host and
3466 	 * the ME.  Disable wakeup by clearing the host wakeup bit.
3467 	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
3468 	 */
3469 	if (hw->phy.type == e1000_phy_82578) {
3470 		e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
3471 		i &= ~BM_WUC_HOST_WU_BIT;
3472 		e1e_wphy(hw, BM_PORT_GEN_CFG, i);
3473 		ret_val = e1000_phy_hw_reset_ich8lan(hw);
3474 		if (ret_val)
3475 			return ret_val;
3476 	}
3477 
3478 	/* Setup link and flow control */
3479 	ret_val = mac->ops.setup_link(hw);
3480 
3481 	/* Set the transmit descriptor write-back policy for both queues */
3482 	txdctl = er32(TXDCTL(0));
3483 	txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
3484 		 E1000_TXDCTL_FULL_TX_DESC_WB;
3485 	txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
3486 		 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
3487 	ew32(TXDCTL(0), txdctl);
3488 	txdctl = er32(TXDCTL(1));
3489 	txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
3490 		 E1000_TXDCTL_FULL_TX_DESC_WB;
3491 	txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
3492 		 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
3493 	ew32(TXDCTL(1), txdctl);
3494 
3495 	/* ICH8 has opposite polarity of no_snoop bits.
3496 	 * By default, we should use snoop behavior.
3497 	 */
3498 	if (mac->type == e1000_ich8lan)
3499 		snoop = PCIE_ICH8_SNOOP_ALL;
3500 	else
3501 		snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
3502 	e1000e_set_pcie_no_snoop(hw, snoop);
3503 
3504 	ctrl_ext = er32(CTRL_EXT);
3505 	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
3506 	ew32(CTRL_EXT, ctrl_ext);
3507 
3508 	/* Clear all of the statistics registers (clear on read).  It is
3509 	 * important that we do this after we have tried to establish link
3510 	 * because the symbol error count will increment wildly if there
3511 	 * is no link.
3512 	 */
3513 	e1000_clear_hw_cntrs_ich8lan(hw);
3514 
3515 	return ret_val;
3516 }
3517 /**
3518  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
3519  *  @hw: pointer to the HW structure
3520  *
3521  *  Sets/Clears required hardware bits necessary for correctly setting up the
3522  *  hardware for transmit and receive.
3523  **/
3524 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
3525 {
3526 	u32 reg;
3527 
3528 	/* Extended Device Control */
3529 	reg = er32(CTRL_EXT);
3530 	reg |= (1 << 22);
3531 	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
3532 	if (hw->mac.type >= e1000_pchlan)
3533 		reg |= E1000_CTRL_EXT_PHYPDEN;
3534 	ew32(CTRL_EXT, reg);
3535 
3536 	/* Transmit Descriptor Control 0 */
3537 	reg = er32(TXDCTL(0));
3538 	reg |= (1 << 22);
3539 	ew32(TXDCTL(0), reg);
3540 
3541 	/* Transmit Descriptor Control 1 */
3542 	reg = er32(TXDCTL(1));
3543 	reg |= (1 << 22);
3544 	ew32(TXDCTL(1), reg);
3545 
3546 	/* Transmit Arbitration Control 0 */
3547 	reg = er32(TARC(0));
3548 	if (hw->mac.type == e1000_ich8lan)
3549 		reg |= (1 << 28) | (1 << 29);
3550 	reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
3551 	ew32(TARC(0), reg);
3552 
3553 	/* Transmit Arbitration Control 1 */
3554 	reg = er32(TARC(1));
3555 	if (er32(TCTL) & E1000_TCTL_MULR)
3556 		reg &= ~(1 << 28);
3557 	else
3558 		reg |= (1 << 28);
3559 	reg |= (1 << 24) | (1 << 26) | (1 << 30);
3560 	ew32(TARC(1), reg);
3561 
3562 	/* Device Status */
3563 	if (hw->mac.type == e1000_ich8lan) {
3564 		reg = er32(STATUS);
3565 		reg &= ~(1 << 31);
3566 		ew32(STATUS, reg);
3567 	}
3568 
3569 	/* work-around descriptor data corruption issue during nfs v2 udp
3570 	 * traffic, just disable the nfs filtering capability
3571 	 */
3572 	reg = er32(RFCTL);
3573 	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
3574 
3575 	/* Disable IPv6 extension header parsing because some malformed
3576 	 * IPv6 headers can hang the Rx.
3577 	 */
3578 	if (hw->mac.type == e1000_ich8lan)
3579 		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
3580 	ew32(RFCTL, reg);
3581 
3582 	/* Enable ECC on Lynxpoint */
3583 	if (hw->mac.type == e1000_pch_lpt) {
3584 		reg = er32(PBECCSTS);
3585 		reg |= E1000_PBECCSTS_ECC_ENABLE;
3586 		ew32(PBECCSTS, reg);
3587 
3588 		reg = er32(CTRL);
3589 		reg |= E1000_CTRL_MEHE;
3590 		ew32(CTRL, reg);
3591 	}
3592 }
3593 
3594 /**
3595  *  e1000_setup_link_ich8lan - Setup flow control and link settings
3596  *  @hw: pointer to the HW structure
3597  *
3598  *  Determines which flow control settings to use, then configures flow
3599  *  control.  Calls the appropriate media-specific link configuration
3600  *  function.  Assuming the adapter has a valid link partner, a valid link
3601  *  should be established.  Assumes the hardware has previously been reset
3602  *  and the transmitter and receiver are not enabled.
3603  **/
3604 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
3605 {
3606 	s32 ret_val;
3607 
3608 	if (hw->phy.ops.check_reset_block(hw))
3609 		return 0;
3610 
3611 	/* ICH parts do not have a word in the NVM to determine
3612 	 * the default flow control setting, so we explicitly
3613 	 * set it to full.
3614 	 */
3615 	if (hw->fc.requested_mode == e1000_fc_default) {
3616 		/* Workaround h/w hang when Tx flow control enabled */
3617 		if (hw->mac.type == e1000_pchlan)
3618 			hw->fc.requested_mode = e1000_fc_rx_pause;
3619 		else
3620 			hw->fc.requested_mode = e1000_fc_full;
3621 	}
3622 
3623 	/* Save off the requested flow control mode for use later.  Depending
3624 	 * on the link partner's capabilities, we may or may not use this mode.
3625 	 */
3626 	hw->fc.current_mode = hw->fc.requested_mode;
3627 
3628 	e_dbg("After fix-ups FlowControl is now = %x\n",
3629 		hw->fc.current_mode);
3630 
3631 	/* Continue to configure the copper link. */
3632 	ret_val = hw->mac.ops.setup_physical_interface(hw);
3633 	if (ret_val)
3634 		return ret_val;
3635 
3636 	ew32(FCTTV, hw->fc.pause_time);
3637 	if ((hw->phy.type == e1000_phy_82578) ||
3638 	    (hw->phy.type == e1000_phy_82579) ||
3639 	    (hw->phy.type == e1000_phy_i217) ||
3640 	    (hw->phy.type == e1000_phy_82577)) {
3641 		ew32(FCRTV_PCH, hw->fc.refresh_time);
3642 
3643 		ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
3644 				   hw->fc.pause_time);
3645 		if (ret_val)
3646 			return ret_val;
3647 	}
3648 
3649 	return e1000e_set_fc_watermarks(hw);
3650 }
3651 
3652 /**
3653  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
3654  *  @hw: pointer to the HW structure
3655  *
3656  *  Configures the kumeran interface to the PHY to wait the appropriate time
3657  *  when polling the PHY, then call the generic setup_copper_link to finish
3658  *  configuring the copper link.
3659  **/
3660 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
3661 {
3662 	u32 ctrl;
3663 	s32 ret_val;
3664 	u16 reg_data;
3665 
3666 	ctrl = er32(CTRL);
3667 	ctrl |= E1000_CTRL_SLU;
3668 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
3669 	ew32(CTRL, ctrl);
3670 
3671 	/* Set the mac to wait the maximum time between each iteration
3672 	 * and increase the max iterations when polling the phy;
3673 	 * this fixes erroneous timeouts at 10Mbps.
3674 	 */
3675 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
3676 	if (ret_val)
3677 		return ret_val;
3678 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
3679 	                               &reg_data);
3680 	if (ret_val)
3681 		return ret_val;
3682 	reg_data |= 0x3F;
3683 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
3684 	                                reg_data);
3685 	if (ret_val)
3686 		return ret_val;
3687 
3688 	switch (hw->phy.type) {
3689 	case e1000_phy_igp_3:
3690 		ret_val = e1000e_copper_link_setup_igp(hw);
3691 		if (ret_val)
3692 			return ret_val;
3693 		break;
3694 	case e1000_phy_bm:
3695 	case e1000_phy_82578:
3696 		ret_val = e1000e_copper_link_setup_m88(hw);
3697 		if (ret_val)
3698 			return ret_val;
3699 		break;
3700 	case e1000_phy_82577:
3701 	case e1000_phy_82579:
3702 	case e1000_phy_i217:
3703 		ret_val = e1000_copper_link_setup_82577(hw);
3704 		if (ret_val)
3705 			return ret_val;
3706 		break;
3707 	case e1000_phy_ife:
3708 		ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
3709 		if (ret_val)
3710 			return ret_val;
3711 
3712 		reg_data &= ~IFE_PMC_AUTO_MDIX;
3713 
3714 		switch (hw->phy.mdix) {
3715 		case 1:
3716 			reg_data &= ~IFE_PMC_FORCE_MDIX;
3717 			break;
3718 		case 2:
3719 			reg_data |= IFE_PMC_FORCE_MDIX;
3720 			break;
3721 		case 0:
3722 		default:
3723 			reg_data |= IFE_PMC_AUTO_MDIX;
3724 			break;
3725 		}
3726 		ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
3727 		if (ret_val)
3728 			return ret_val;
3729 		break;
3730 	default:
3731 		break;
3732 	}
3733 
3734 	return e1000e_setup_copper_link(hw);
3735 }
3736 
3737 /**
3738  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
3739  *  @hw: pointer to the HW structure
3740  *  @speed: pointer to store current link speed
3741  *  @duplex: pointer to store the current link duplex
3742  *
3743  *  Calls the generic get_speed_and_duplex to retrieve the current link
3744  *  information and then calls the Kumeran lock loss workaround for links at
3745  *  gigabit speeds.
3746  **/
3747 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
3748 					  u16 *duplex)
3749 {
3750 	s32 ret_val;
3751 
3752 	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
3753 	if (ret_val)
3754 		return ret_val;
3755 
3756 	if ((hw->mac.type == e1000_ich8lan) &&
3757 	    (hw->phy.type == e1000_phy_igp_3) &&
3758 	    (*speed == SPEED_1000)) {
3759 		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
3760 	}
3761 
3762 	return ret_val;
3763 }
3764 
3765 /**
3766  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
3767  *  @hw: pointer to the HW structure
3768  *
3769  *  Work-around for 82566 Kumeran PCS lock loss:
3770  *  On link status change (i.e. PCI reset, speed change) and link is up and
3771  *  speed is gigabit-
3772  *    0) if workaround is optionally disabled do nothing
3773  *    1) wait 1ms for Kumeran link to come up
3774  *    2) check Kumeran Diagnostic register PCS lock loss bit
3775  *    3) if not set the link is locked (all is good), otherwise...
3776  *    4) reset the PHY
3777  *    5) repeat up to 10 times
3778  *  Note: this is only called for IGP3 copper when speed is 1gb.
3779  **/
3780 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
3781 {
3782 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3783 	u32 phy_ctrl;
3784 	s32 ret_val;
3785 	u16 i, data;
3786 	bool link;
3787 
3788 	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
3789 		return 0;
3790 
3791 	/* Make sure link is up before proceeding.  If not just return.
3792 	 * Attempting this while link is negotiating fouled up link
3793 	 * stability
3794 	 */
3795 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3796 	if (!link)
3797 		return 0;
3798 
3799 	for (i = 0; i < 10; i++) {
3800 		/* read once to clear */
3801 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3802 		if (ret_val)
3803 			return ret_val;
3804 		/* and again to get new status */
3805 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3806 		if (ret_val)
3807 			return ret_val;
3808 
3809 		/* check for PCS lock */
3810 		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
3811 			return 0;
3812 
3813 		/* Issue PHY reset */
3814 		e1000_phy_hw_reset(hw);
3815 		mdelay(5);
3816 	}
3817 	/* Disable GigE link negotiation */
3818 	phy_ctrl = er32(PHY_CTRL);
3819 	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
3820 		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3821 	ew32(PHY_CTRL, phy_ctrl);
3822 
3823 	/* Call gig speed drop workaround on Gig disable before accessing
3824 	 * any PHY registers
3825 	 */
3826 	e1000e_gig_downshift_workaround_ich8lan(hw);
3827 
3828 	/* unable to acquire PCS lock */
3829 	return -E1000_ERR_PHY;
3830 }
3831 
3832 /**
3833  *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
3834  *  @hw: pointer to the HW structure
3835  *  @state: boolean value used to set the current Kumeran workaround state
3836  *
3837  *  If ICH8, set the current Kumeran workaround state (enabled - true
3838  *  /disabled - false).
3839  **/
3840 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
3841 						 bool state)
3842 {
3843 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3844 
3845 	if (hw->mac.type != e1000_ich8lan) {
3846 		e_dbg("Workaround applies to ICH8 only.\n");
3847 		return;
3848 	}
3849 
3850 	dev_spec->kmrn_lock_loss_workaround_enabled = state;
3851 }
3852 
3853 /**
3854  *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
3855  *  @hw: pointer to the HW structure
3856  *
3857  *  Workaround for 82566 power-down on D3 entry:
3858  *    1) disable gigabit link
3859  *    2) write VR power-down enable
3860  *    3) read it back
3861  *  Continue if successful, else issue LCD reset and repeat
3862  **/
3863 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
3864 {
3865 	u32 reg;
3866 	u16 data;
3867 	u8  retry = 0;
3868 
3869 	if (hw->phy.type != e1000_phy_igp_3)
3870 		return;
3871 
3872 	/* Try the workaround twice (if needed) */
3873 	do {
3874 		/* Disable link */
3875 		reg = er32(PHY_CTRL);
3876 		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
3877 			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3878 		ew32(PHY_CTRL, reg);
3879 
3880 		/* Call gig speed drop workaround on Gig disable before
3881 		 * accessing any PHY registers
3882 		 */
3883 		if (hw->mac.type == e1000_ich8lan)
3884 			e1000e_gig_downshift_workaround_ich8lan(hw);
3885 
3886 		/* Write VR power-down enable */
3887 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
3888 		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3889 		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
3890 
3891 		/* Read it back and test */
3892 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
3893 		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3894 		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
3895 			break;
3896 
3897 		/* Issue PHY reset and repeat at most one more time */
3898 		reg = er32(CTRL);
3899 		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
3900 		retry++;
3901 	} while (retry);
3902 }
3903 
3904 /**
3905  *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
3906  *  @hw: pointer to the HW structure
3907  *
3908  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
3909  *  LPLU, Gig disable, MDIC PHY reset):
3910  *    1) Set Kumeran Near-end loopback
3911  *    2) Clear Kumeran Near-end loopback
3912  *  Should only be called for ICH8[m] devices with any 1G Phy.
3913  **/
3914 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
3915 {
3916 	s32 ret_val;
3917 	u16 reg_data;
3918 
3919 	if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
3920 		return;
3921 
3922 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3923 				      &reg_data);
3924 	if (ret_val)
3925 		return;
3926 	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
3927 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3928 				       reg_data);
3929 	if (ret_val)
3930 		return;
3931 	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
3932 	e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
3933 }
3934 
3935 /**
3936  *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
3937  *  @hw: pointer to the HW structure
3938  *
3939  *  During S0 to Sx transition, it is possible the link remains at gig
3940  *  instead of negotiating to a lower speed.  Before going to Sx, set
3941  *  'Gig Disable' to force link speed negotiation to a lower speed based on
3942  *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
3943  *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
3944  *  needs to be written.
3945  *  Parts that support (and are linked to a partner which support) EEE in
3946  *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
3947  *  than 10Mbps w/o EEE.
3948  **/
3949 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
3950 {
3951 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3952 	u32 phy_ctrl;
3953 	s32 ret_val;
3954 
3955 	phy_ctrl = er32(PHY_CTRL);
3956 	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
3957 	if (hw->phy.type == e1000_phy_i217) {
3958 		u16 phy_reg;
3959 
3960 		ret_val = hw->phy.ops.acquire(hw);
3961 		if (ret_val)
3962 			goto out;
3963 
3964 		if (!dev_spec->eee_disable) {
3965 			u16 eee_advert;
3966 
3967 			ret_val =
3968 			    e1000_read_emi_reg_locked(hw,
3969 						      I217_EEE_ADVERTISEMENT,
3970 						      &eee_advert);
3971 			if (ret_val)
3972 				goto release;
3973 
3974 			/* Disable LPLU if both link partners support 100BaseT
3975 			 * EEE and 100Full is advertised on both ends of the
3976 			 * link.
3977 			 */
3978 			if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
3979 			    (dev_spec->eee_lp_ability &
3980 			     I82579_EEE_100_SUPPORTED) &&
3981 			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL))
3982 				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
3983 					      E1000_PHY_CTRL_NOND0A_LPLU);
3984 		}
3985 
3986 		/* For i217 Intel Rapid Start Technology support,
3987 		 * when the system is going into Sx and no manageability engine
3988 		 * is present, the driver must configure proxy to reset only on
3989 		 * power good.  LPI (Low Power Idle) state must also reset only
3990 		 * on power good, as well as the MTA (Multicast table array).
3991 		 * The SMBus release must also be disabled on LCD reset.
3992 		 */
3993 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
3994 			/* Enable proxy to reset only on power good. */
3995 			e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
3996 			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
3997 			e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
3998 
3999 			/* Set bit enable LPI (EEE) to reset only on
4000 			 * power good.
4001 			 */
4002 			e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
4003 			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
4004 			e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
4005 
4006 			/* Disable the SMB release on LCD reset. */
4007 			e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
4008 			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
4009 			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
4010 		}
4011 
4012 		/* Enable MTA to reset for Intel Rapid Start Technology
4013 		 * Support
4014 		 */
4015 		e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
4016 		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
4017 		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
4018 
4019 release:
4020 		hw->phy.ops.release(hw);
4021 	}
4022 out:
4023 	ew32(PHY_CTRL, phy_ctrl);
4024 
4025 	if (hw->mac.type == e1000_ich8lan)
4026 		e1000e_gig_downshift_workaround_ich8lan(hw);
4027 
4028 	if (hw->mac.type >= e1000_pchlan) {
4029 		e1000_oem_bits_config_ich8lan(hw, false);
4030 
4031 		/* Reset PHY to activate OEM bits on 82577/8 */
4032 		if (hw->mac.type == e1000_pchlan)
4033 			e1000e_phy_hw_reset_generic(hw);
4034 
4035 		ret_val = hw->phy.ops.acquire(hw);
4036 		if (ret_val)
4037 			return;
4038 		e1000_write_smbus_addr(hw);
4039 		hw->phy.ops.release(hw);
4040 	}
4041 }
4042 
4043 /**
4044  *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
4045  *  @hw: pointer to the HW structure
4046  *
4047  *  During Sx to S0 transitions on non-managed devices or managed devices
4048  *  on which PHY resets are not blocked, if the PHY registers cannot be
4049  *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
4050  *  the PHY.
4051  *  On i217, setup Intel Rapid Start Technology.
4052  **/
4053 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
4054 {
4055 	s32 ret_val;
4056 
4057 	if (hw->mac.type < e1000_pch2lan)
4058 		return;
4059 
4060 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
4061 	if (ret_val) {
4062 		e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
4063 		return;
4064 	}
4065 
4066 	/* For i217 Intel Rapid Start Technology support when the system
4067 	 * is transitioning from Sx and no manageability engine is present
4068 	 * configure SMBus to restore on reset, disable proxy, and enable
4069 	 * the reset on MTA (Multicast table array).
4070 	 */
4071 	if (hw->phy.type == e1000_phy_i217) {
4072 		u16 phy_reg;
4073 
4074 		ret_val = hw->phy.ops.acquire(hw);
4075 		if (ret_val) {
4076 			e_dbg("Failed to setup iRST\n");
4077 			return;
4078 		}
4079 
4080 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
4081 			/* Restore clear on SMB if no manageability engine
4082 			 * is present
4083 			 */
4084 			ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
4085 			if (ret_val)
4086 				goto release;
4087 			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
4088 			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
4089 
4090 			/* Disable Proxy */
4091 			e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
4092 		}
4093 		/* Enable reset on MTA */
4094 		ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
4095 		if (ret_val)
4096 			goto release;
4097 		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
4098 		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
4099 release:
4100 		if (ret_val)
4101 			e_dbg("Error %d in resume workarounds\n", ret_val);
4102 		hw->phy.ops.release(hw);
4103 	}
4104 }
4105 
4106 /**
4107  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
4108  *  @hw: pointer to the HW structure
4109  *
4110  *  Return the LED back to the default configuration.
4111  **/
4112 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
4113 {
4114 	if (hw->phy.type == e1000_phy_ife)
4115 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
4116 
4117 	ew32(LEDCTL, hw->mac.ledctl_default);
4118 	return 0;
4119 }
4120 
4121 /**
4122  *  e1000_led_on_ich8lan - Turn LEDs on
4123  *  @hw: pointer to the HW structure
4124  *
4125  *  Turn on the LEDs.
4126  **/
4127 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
4128 {
4129 	if (hw->phy.type == e1000_phy_ife)
4130 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
4131 				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
4132 
4133 	ew32(LEDCTL, hw->mac.ledctl_mode2);
4134 	return 0;
4135 }
4136 
4137 /**
4138  *  e1000_led_off_ich8lan - Turn LEDs off
4139  *  @hw: pointer to the HW structure
4140  *
4141  *  Turn off the LEDs.
4142  **/
4143 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
4144 {
4145 	if (hw->phy.type == e1000_phy_ife)
4146 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
4147 				(IFE_PSCL_PROBE_MODE |
4148 				 IFE_PSCL_PROBE_LEDS_OFF));
4149 
4150 	ew32(LEDCTL, hw->mac.ledctl_mode1);
4151 	return 0;
4152 }
4153 
4154 /**
4155  *  e1000_setup_led_pchlan - Configures SW controllable LED
4156  *  @hw: pointer to the HW structure
4157  *
4158  *  This prepares the SW controllable LED for use.
4159  **/
4160 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
4161 {
4162 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
4163 }
4164 
4165 /**
4166  *  e1000_cleanup_led_pchlan - Restore the default LED operation
4167  *  @hw: pointer to the HW structure
4168  *
4169  *  Return the LED back to the default configuration.
4170  **/
4171 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
4172 {
4173 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
4174 }
4175 
4176 /**
4177  *  e1000_led_on_pchlan - Turn LEDs on
4178  *  @hw: pointer to the HW structure
4179  *
4180  *  Turn on the LEDs.
4181  **/
4182 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
4183 {
4184 	u16 data = (u16)hw->mac.ledctl_mode2;
4185 	u32 i, led;
4186 
4187 	/* If no link, then turn LED on by setting the invert bit
4188 	 * for each LED that's mode is "link_up" in ledctl_mode2.
4189 	 */
4190 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
4191 		for (i = 0; i < 3; i++) {
4192 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
4193 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
4194 			    E1000_LEDCTL_MODE_LINK_UP)
4195 				continue;
4196 			if (led & E1000_PHY_LED0_IVRT)
4197 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
4198 			else
4199 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
4200 		}
4201 	}
4202 
4203 	return e1e_wphy(hw, HV_LED_CONFIG, data);
4204 }
4205 
4206 /**
4207  *  e1000_led_off_pchlan - Turn LEDs off
4208  *  @hw: pointer to the HW structure
4209  *
4210  *  Turn off the LEDs.
4211  **/
4212 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
4213 {
4214 	u16 data = (u16)hw->mac.ledctl_mode1;
4215 	u32 i, led;
4216 
4217 	/* If no link, then turn LED off by clearing the invert bit
4218 	 * for each LED that's mode is "link_up" in ledctl_mode1.
4219 	 */
4220 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
4221 		for (i = 0; i < 3; i++) {
4222 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
4223 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
4224 			    E1000_LEDCTL_MODE_LINK_UP)
4225 				continue;
4226 			if (led & E1000_PHY_LED0_IVRT)
4227 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
4228 			else
4229 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
4230 		}
4231 	}
4232 
4233 	return e1e_wphy(hw, HV_LED_CONFIG, data);
4234 }
4235 
4236 /**
4237  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
4238  *  @hw: pointer to the HW structure
4239  *
4240  *  Read appropriate register for the config done bit for completion status
4241  *  and configure the PHY through s/w for EEPROM-less parts.
4242  *
4243  *  NOTE: some silicon which is EEPROM-less will fail trying to read the
4244  *  config done bit, so only an error is logged and continues.  If we were
4245  *  to return with error, EEPROM-less silicon would not be able to be reset
4246  *  or change link.
4247  **/
4248 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
4249 {
4250 	s32 ret_val = 0;
4251 	u32 bank = 0;
4252 	u32 status;
4253 
4254 	e1000e_get_cfg_done_generic(hw);
4255 
4256 	/* Wait for indication from h/w that it has completed basic config */
4257 	if (hw->mac.type >= e1000_ich10lan) {
4258 		e1000_lan_init_done_ich8lan(hw);
4259 	} else {
4260 		ret_val = e1000e_get_auto_rd_done(hw);
4261 		if (ret_val) {
4262 			/* When auto config read does not complete, do not
4263 			 * return with an error. This can happen in situations
4264 			 * where there is no eeprom and prevents getting link.
4265 			 */
4266 			e_dbg("Auto Read Done did not complete\n");
4267 			ret_val = 0;
4268 		}
4269 	}
4270 
4271 	/* Clear PHY Reset Asserted bit */
4272 	status = er32(STATUS);
4273 	if (status & E1000_STATUS_PHYRA)
4274 		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
4275 	else
4276 		e_dbg("PHY Reset Asserted not set - needs delay\n");
4277 
4278 	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
4279 	if (hw->mac.type <= e1000_ich9lan) {
4280 		if (!(er32(EECD) & E1000_EECD_PRES) &&
4281 		    (hw->phy.type == e1000_phy_igp_3)) {
4282 			e1000e_phy_init_script_igp3(hw);
4283 		}
4284 	} else {
4285 		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
4286 			/* Maybe we should do a basic PHY config */
4287 			e_dbg("EEPROM not present\n");
4288 			ret_val = -E1000_ERR_CONFIG;
4289 		}
4290 	}
4291 
4292 	return ret_val;
4293 }
4294 
4295 /**
4296  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
4297  * @hw: pointer to the HW structure
4298  *
4299  * In the case of a PHY power down to save power, or to turn off link during a
4300  * driver unload, or wake on lan is not enabled, remove the link.
4301  **/
4302 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
4303 {
4304 	/* If the management interface is not enabled, then power down */
4305 	if (!(hw->mac.ops.check_mng_mode(hw) ||
4306 	      hw->phy.ops.check_reset_block(hw)))
4307 		e1000_power_down_phy_copper(hw);
4308 }
4309 
4310 /**
4311  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
4312  *  @hw: pointer to the HW structure
4313  *
4314  *  Clears hardware counters specific to the silicon family and calls
4315  *  clear_hw_cntrs_generic to clear all general purpose counters.
4316  **/
4317 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
4318 {
4319 	u16 phy_data;
4320 	s32 ret_val;
4321 
4322 	e1000e_clear_hw_cntrs_base(hw);
4323 
4324 	er32(ALGNERRC);
4325 	er32(RXERRC);
4326 	er32(TNCRS);
4327 	er32(CEXTERR);
4328 	er32(TSCTC);
4329 	er32(TSCTFC);
4330 
4331 	er32(MGTPRC);
4332 	er32(MGTPDC);
4333 	er32(MGTPTC);
4334 
4335 	er32(IAC);
4336 	er32(ICRXOC);
4337 
4338 	/* Clear PHY statistics registers */
4339 	if ((hw->phy.type == e1000_phy_82578) ||
4340 	    (hw->phy.type == e1000_phy_82579) ||
4341 	    (hw->phy.type == e1000_phy_i217) ||
4342 	    (hw->phy.type == e1000_phy_82577)) {
4343 		ret_val = hw->phy.ops.acquire(hw);
4344 		if (ret_val)
4345 			return;
4346 		ret_val = hw->phy.ops.set_page(hw,
4347 					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
4348 		if (ret_val)
4349 			goto release;
4350 		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4351 		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4352 		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4353 		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4354 		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4355 		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4356 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4357 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4358 		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4359 		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4360 		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4361 		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4362 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4363 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4364 release:
4365 		hw->phy.ops.release(hw);
4366 	}
4367 }
4368 
4369 static const struct e1000_mac_operations ich8_mac_ops = {
4370 	/* check_mng_mode dependent on mac type */
4371 	.check_for_link		= e1000_check_for_copper_link_ich8lan,
4372 	/* cleanup_led dependent on mac type */
4373 	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
4374 	.get_bus_info		= e1000_get_bus_info_ich8lan,
4375 	.set_lan_id		= e1000_set_lan_id_single_port,
4376 	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
4377 	/* led_on dependent on mac type */
4378 	/* led_off dependent on mac type */
4379 	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
4380 	.reset_hw		= e1000_reset_hw_ich8lan,
4381 	.init_hw		= e1000_init_hw_ich8lan,
4382 	.setup_link		= e1000_setup_link_ich8lan,
4383 	.setup_physical_interface = e1000_setup_copper_link_ich8lan,
4384 	/* id_led_init dependent on mac type */
4385 	.config_collision_dist	= e1000e_config_collision_dist_generic,
4386 	.rar_set		= e1000e_rar_set_generic,
4387 };
4388 
4389 static const struct e1000_phy_operations ich8_phy_ops = {
4390 	.acquire		= e1000_acquire_swflag_ich8lan,
4391 	.check_reset_block	= e1000_check_reset_block_ich8lan,
4392 	.commit			= NULL,
4393 	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
4394 	.get_cable_length	= e1000e_get_cable_length_igp_2,
4395 	.read_reg		= e1000e_read_phy_reg_igp,
4396 	.release		= e1000_release_swflag_ich8lan,
4397 	.reset			= e1000_phy_hw_reset_ich8lan,
4398 	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
4399 	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
4400 	.write_reg		= e1000e_write_phy_reg_igp,
4401 };
4402 
4403 static const struct e1000_nvm_operations ich8_nvm_ops = {
4404 	.acquire		= e1000_acquire_nvm_ich8lan,
4405 	.read			= e1000_read_nvm_ich8lan,
4406 	.release		= e1000_release_nvm_ich8lan,
4407 	.reload			= e1000e_reload_nvm_generic,
4408 	.update			= e1000_update_nvm_checksum_ich8lan,
4409 	.valid_led_default	= e1000_valid_led_default_ich8lan,
4410 	.validate		= e1000_validate_nvm_checksum_ich8lan,
4411 	.write			= e1000_write_nvm_ich8lan,
4412 };
4413 
4414 const struct e1000_info e1000_ich8_info = {
4415 	.mac			= e1000_ich8lan,
4416 	.flags			= FLAG_HAS_WOL
4417 				  | FLAG_IS_ICH
4418 				  | FLAG_HAS_CTRLEXT_ON_LOAD
4419 				  | FLAG_HAS_AMT
4420 				  | FLAG_HAS_FLASH
4421 				  | FLAG_APME_IN_WUC,
4422 	.pba			= 8,
4423 	.max_hw_frame_size	= ETH_FRAME_LEN + ETH_FCS_LEN,
4424 	.get_variants		= e1000_get_variants_ich8lan,
4425 	.mac_ops		= &ich8_mac_ops,
4426 	.phy_ops		= &ich8_phy_ops,
4427 	.nvm_ops		= &ich8_nvm_ops,
4428 };
4429 
4430 const struct e1000_info e1000_ich9_info = {
4431 	.mac			= e1000_ich9lan,
4432 	.flags			= FLAG_HAS_JUMBO_FRAMES
4433 				  | FLAG_IS_ICH
4434 				  | FLAG_HAS_WOL
4435 				  | FLAG_HAS_CTRLEXT_ON_LOAD
4436 				  | FLAG_HAS_AMT
4437 				  | FLAG_HAS_FLASH
4438 				  | FLAG_APME_IN_WUC,
4439 	.pba			= 18,
4440 	.max_hw_frame_size	= DEFAULT_JUMBO,
4441 	.get_variants		= e1000_get_variants_ich8lan,
4442 	.mac_ops		= &ich8_mac_ops,
4443 	.phy_ops		= &ich8_phy_ops,
4444 	.nvm_ops		= &ich8_nvm_ops,
4445 };
4446 
4447 const struct e1000_info e1000_ich10_info = {
4448 	.mac			= e1000_ich10lan,
4449 	.flags			= FLAG_HAS_JUMBO_FRAMES
4450 				  | FLAG_IS_ICH
4451 				  | FLAG_HAS_WOL
4452 				  | FLAG_HAS_CTRLEXT_ON_LOAD
4453 				  | FLAG_HAS_AMT
4454 				  | FLAG_HAS_FLASH
4455 				  | FLAG_APME_IN_WUC,
4456 	.pba			= 18,
4457 	.max_hw_frame_size	= DEFAULT_JUMBO,
4458 	.get_variants		= e1000_get_variants_ich8lan,
4459 	.mac_ops		= &ich8_mac_ops,
4460 	.phy_ops		= &ich8_phy_ops,
4461 	.nvm_ops		= &ich8_nvm_ops,
4462 };
4463 
4464 const struct e1000_info e1000_pch_info = {
4465 	.mac			= e1000_pchlan,
4466 	.flags			= FLAG_IS_ICH
4467 				  | FLAG_HAS_WOL
4468 				  | FLAG_HAS_CTRLEXT_ON_LOAD
4469 				  | FLAG_HAS_AMT
4470 				  | FLAG_HAS_FLASH
4471 				  | FLAG_HAS_JUMBO_FRAMES
4472 				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
4473 				  | FLAG_APME_IN_WUC,
4474 	.flags2			= FLAG2_HAS_PHY_STATS,
4475 	.pba			= 26,
4476 	.max_hw_frame_size	= 4096,
4477 	.get_variants		= e1000_get_variants_ich8lan,
4478 	.mac_ops		= &ich8_mac_ops,
4479 	.phy_ops		= &ich8_phy_ops,
4480 	.nvm_ops		= &ich8_nvm_ops,
4481 };
4482 
4483 const struct e1000_info e1000_pch2_info = {
4484 	.mac			= e1000_pch2lan,
4485 	.flags			= FLAG_IS_ICH
4486 				  | FLAG_HAS_WOL
4487 				  | FLAG_HAS_HW_TIMESTAMP
4488 				  | FLAG_HAS_CTRLEXT_ON_LOAD
4489 				  | FLAG_HAS_AMT
4490 				  | FLAG_HAS_FLASH
4491 				  | FLAG_HAS_JUMBO_FRAMES
4492 				  | FLAG_APME_IN_WUC,
4493 	.flags2			= FLAG2_HAS_PHY_STATS
4494 				  | FLAG2_HAS_EEE,
4495 	.pba			= 26,
4496 	.max_hw_frame_size	= 9018,
4497 	.get_variants		= e1000_get_variants_ich8lan,
4498 	.mac_ops		= &ich8_mac_ops,
4499 	.phy_ops		= &ich8_phy_ops,
4500 	.nvm_ops		= &ich8_nvm_ops,
4501 };
4502 
4503 const struct e1000_info e1000_pch_lpt_info = {
4504 	.mac			= e1000_pch_lpt,
4505 	.flags			= FLAG_IS_ICH
4506 				  | FLAG_HAS_WOL
4507 				  | FLAG_HAS_HW_TIMESTAMP
4508 				  | FLAG_HAS_CTRLEXT_ON_LOAD
4509 				  | FLAG_HAS_AMT
4510 				  | FLAG_HAS_FLASH
4511 				  | FLAG_HAS_JUMBO_FRAMES
4512 				  | FLAG_APME_IN_WUC,
4513 	.flags2			= FLAG2_HAS_PHY_STATS
4514 				  | FLAG2_HAS_EEE,
4515 	.pba			= 26,
4516 	.max_hw_frame_size	= 9018,
4517 	.get_variants		= e1000_get_variants_ich8lan,
4518 	.mac_ops		= &ich8_mac_ops,
4519 	.phy_ops		= &ich8_phy_ops,
4520 	.nvm_ops		= &ich8_nvm_ops,
4521 };
4522