1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3 
4 /* 82562G 10/100 Network Connection
5  * 82562G-2 10/100 Network Connection
6  * 82562GT 10/100 Network Connection
7  * 82562GT-2 10/100 Network Connection
8  * 82562V 10/100 Network Connection
9  * 82562V-2 10/100 Network Connection
10  * 82566DC-2 Gigabit Network Connection
11  * 82566DC Gigabit Network Connection
12  * 82566DM-2 Gigabit Network Connection
13  * 82566DM Gigabit Network Connection
14  * 82566MC Gigabit Network Connection
15  * 82566MM Gigabit Network Connection
16  * 82567LM Gigabit Network Connection
17  * 82567LF Gigabit Network Connection
18  * 82567V Gigabit Network Connection
19  * 82567LM-2 Gigabit Network Connection
20  * 82567LF-2 Gigabit Network Connection
21  * 82567V-2 Gigabit Network Connection
22  * 82567LF-3 Gigabit Network Connection
23  * 82567LM-3 Gigabit Network Connection
24  * 82567LM-4 Gigabit Network Connection
25  * 82577LM Gigabit Network Connection
26  * 82577LC Gigabit Network Connection
27  * 82578DM Gigabit Network Connection
28  * 82578DC Gigabit Network Connection
29  * 82579LM Gigabit Network Connection
30  * 82579V Gigabit Network Connection
31  * Ethernet Connection I217-LM
32  * Ethernet Connection I217-V
33  * Ethernet Connection I218-V
34  * Ethernet Connection I218-LM
35  * Ethernet Connection (2) I218-LM
36  * Ethernet Connection (2) I218-V
37  * Ethernet Connection (3) I218-LM
38  * Ethernet Connection (3) I218-V
39  */
40 
41 #include "e1000.h"
42 
43 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
44 /* Offset 04h HSFSTS */
45 union ich8_hws_flash_status {
46 	struct ich8_hsfsts {
47 		u16 flcdone:1;	/* bit 0 Flash Cycle Done */
48 		u16 flcerr:1;	/* bit 1 Flash Cycle Error */
49 		u16 dael:1;	/* bit 2 Direct Access error Log */
50 		u16 berasesz:2;	/* bit 4:3 Sector Erase Size */
51 		u16 flcinprog:1;	/* bit 5 flash cycle in Progress */
52 		u16 reserved1:2;	/* bit 13:6 Reserved */
53 		u16 reserved2:6;	/* bit 13:6 Reserved */
54 		u16 fldesvalid:1;	/* bit 14 Flash Descriptor Valid */
55 		u16 flockdn:1;	/* bit 15 Flash Config Lock-Down */
56 	} hsf_status;
57 	u16 regval;
58 };
59 
60 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
61 /* Offset 06h FLCTL */
62 union ich8_hws_flash_ctrl {
63 	struct ich8_hsflctl {
64 		u16 flcgo:1;	/* 0 Flash Cycle Go */
65 		u16 flcycle:2;	/* 2:1 Flash Cycle */
66 		u16 reserved:5;	/* 7:3 Reserved  */
67 		u16 fldbcount:2;	/* 9:8 Flash Data Byte Count */
68 		u16 flockdn:6;	/* 15:10 Reserved */
69 	} hsf_ctrl;
70 	u16 regval;
71 };
72 
73 /* ICH Flash Region Access Permissions */
74 union ich8_hws_flash_regacc {
75 	struct ich8_flracc {
76 		u32 grra:8;	/* 0:7 GbE region Read Access */
77 		u32 grwa:8;	/* 8:15 GbE region Write Access */
78 		u32 gmrag:8;	/* 23:16 GbE Master Read Access Grant */
79 		u32 gmwag:8;	/* 31:24 GbE Master Write Access Grant */
80 	} hsf_flregacc;
81 	u16 regval;
82 };
83 
84 /* ICH Flash Protected Region */
85 union ich8_flash_protected_range {
86 	struct ich8_pr {
87 		u32 base:13;	/* 0:12 Protected Range Base */
88 		u32 reserved1:2;	/* 13:14 Reserved */
89 		u32 rpe:1;	/* 15 Read Protection Enable */
90 		u32 limit:13;	/* 16:28 Protected Range Limit */
91 		u32 reserved2:2;	/* 29:30 Reserved */
92 		u32 wpe:1;	/* 31 Write Protection Enable */
93 	} range;
94 	u32 regval;
95 };
96 
97 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
98 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
99 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
100 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
101 						u32 offset, u8 byte);
102 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
103 					 u8 *data);
104 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
105 					 u16 *data);
106 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
107 					 u8 size, u16 *data);
108 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
109 					   u32 *data);
110 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
111 					  u32 offset, u32 *data);
112 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
113 					    u32 offset, u32 data);
114 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
115 						 u32 offset, u32 dword);
116 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
117 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
118 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
119 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
120 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
121 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
122 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
123 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
124 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
125 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
126 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
127 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
128 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
129 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
130 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
131 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
132 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
133 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
134 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw);
135 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
136 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
137 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
138 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
139 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
140 
141 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
142 {
143 	return readw(hw->flash_address + reg);
144 }
145 
146 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
147 {
148 	return readl(hw->flash_address + reg);
149 }
150 
151 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
152 {
153 	writew(val, hw->flash_address + reg);
154 }
155 
156 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
157 {
158 	writel(val, hw->flash_address + reg);
159 }
160 
161 #define er16flash(reg)		__er16flash(hw, (reg))
162 #define er32flash(reg)		__er32flash(hw, (reg))
163 #define ew16flash(reg, val)	__ew16flash(hw, (reg), (val))
164 #define ew32flash(reg, val)	__ew32flash(hw, (reg), (val))
165 
166 /**
167  *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
168  *  @hw: pointer to the HW structure
169  *
170  *  Test access to the PHY registers by reading the PHY ID registers.  If
171  *  the PHY ID is already known (e.g. resume path) compare it with known ID,
172  *  otherwise assume the read PHY ID is correct if it is valid.
173  *
174  *  Assumes the sw/fw/hw semaphore is already acquired.
175  **/
176 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
177 {
178 	u16 phy_reg = 0;
179 	u32 phy_id = 0;
180 	s32 ret_val = 0;
181 	u16 retry_count;
182 	u32 mac_reg = 0;
183 
184 	for (retry_count = 0; retry_count < 2; retry_count++) {
185 		ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
186 		if (ret_val || (phy_reg == 0xFFFF))
187 			continue;
188 		phy_id = (u32)(phy_reg << 16);
189 
190 		ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
191 		if (ret_val || (phy_reg == 0xFFFF)) {
192 			phy_id = 0;
193 			continue;
194 		}
195 		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
196 		break;
197 	}
198 
199 	if (hw->phy.id) {
200 		if (hw->phy.id == phy_id)
201 			goto out;
202 	} else if (phy_id) {
203 		hw->phy.id = phy_id;
204 		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
205 		goto out;
206 	}
207 
208 	/* In case the PHY needs to be in mdio slow mode,
209 	 * set slow mode and try to get the PHY id again.
210 	 */
211 	if (hw->mac.type < e1000_pch_lpt) {
212 		hw->phy.ops.release(hw);
213 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
214 		if (!ret_val)
215 			ret_val = e1000e_get_phy_id(hw);
216 		hw->phy.ops.acquire(hw);
217 	}
218 
219 	if (ret_val)
220 		return false;
221 out:
222 	if (hw->mac.type >= e1000_pch_lpt) {
223 		/* Only unforce SMBus if ME is not active */
224 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
225 			/* Unforce SMBus mode in PHY */
226 			e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
227 			phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
228 			e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
229 
230 			/* Unforce SMBus mode in MAC */
231 			mac_reg = er32(CTRL_EXT);
232 			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
233 			ew32(CTRL_EXT, mac_reg);
234 		}
235 	}
236 
237 	return true;
238 }
239 
240 /**
241  *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
242  *  @hw: pointer to the HW structure
243  *
244  *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
245  *  used to reset the PHY to a quiescent state when necessary.
246  **/
247 static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
248 {
249 	u32 mac_reg;
250 
251 	/* Set Phy Config Counter to 50msec */
252 	mac_reg = er32(FEXTNVM3);
253 	mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
254 	mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
255 	ew32(FEXTNVM3, mac_reg);
256 
257 	/* Toggle LANPHYPC Value bit */
258 	mac_reg = er32(CTRL);
259 	mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
260 	mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
261 	ew32(CTRL, mac_reg);
262 	e1e_flush();
263 	usleep_range(10, 20);
264 	mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
265 	ew32(CTRL, mac_reg);
266 	e1e_flush();
267 
268 	if (hw->mac.type < e1000_pch_lpt) {
269 		msleep(50);
270 	} else {
271 		u16 count = 20;
272 
273 		do {
274 			usleep_range(5000, 6000);
275 		} while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
276 
277 		msleep(30);
278 	}
279 }
280 
281 /**
282  *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
283  *  @hw: pointer to the HW structure
284  *
285  *  Workarounds/flow necessary for PHY initialization during driver load
286  *  and resume paths.
287  **/
288 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
289 {
290 	struct e1000_adapter *adapter = hw->adapter;
291 	u32 mac_reg, fwsm = er32(FWSM);
292 	s32 ret_val;
293 
294 	/* Gate automatic PHY configuration by hardware on managed and
295 	 * non-managed 82579 and newer adapters.
296 	 */
297 	e1000_gate_hw_phy_config_ich8lan(hw, true);
298 
299 	/* It is not possible to be certain of the current state of ULP
300 	 * so forcibly disable it.
301 	 */
302 	hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
303 	ret_val = e1000_disable_ulp_lpt_lp(hw, true);
304 	if (ret_val)
305 		e_warn("Failed to disable ULP\n");
306 
307 	ret_val = hw->phy.ops.acquire(hw);
308 	if (ret_val) {
309 		e_dbg("Failed to initialize PHY flow\n");
310 		goto out;
311 	}
312 
313 	/* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
314 	 * inaccessible and resetting the PHY is not blocked, toggle the
315 	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
316 	 */
317 	switch (hw->mac.type) {
318 	case e1000_pch_lpt:
319 	case e1000_pch_spt:
320 	case e1000_pch_cnp:
321 	case e1000_pch_tgp:
322 	case e1000_pch_adp:
323 	case e1000_pch_mtp:
324 		if (e1000_phy_is_accessible_pchlan(hw))
325 			break;
326 
327 		/* Before toggling LANPHYPC, see if PHY is accessible by
328 		 * forcing MAC to SMBus mode first.
329 		 */
330 		mac_reg = er32(CTRL_EXT);
331 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
332 		ew32(CTRL_EXT, mac_reg);
333 
334 		/* Wait 50 milliseconds for MAC to finish any retries
335 		 * that it might be trying to perform from previous
336 		 * attempts to acknowledge any phy read requests.
337 		 */
338 		msleep(50);
339 
340 		fallthrough;
341 	case e1000_pch2lan:
342 		if (e1000_phy_is_accessible_pchlan(hw))
343 			break;
344 
345 		fallthrough;
346 	case e1000_pchlan:
347 		if ((hw->mac.type == e1000_pchlan) &&
348 		    (fwsm & E1000_ICH_FWSM_FW_VALID))
349 			break;
350 
351 		if (hw->phy.ops.check_reset_block(hw)) {
352 			e_dbg("Required LANPHYPC toggle blocked by ME\n");
353 			ret_val = -E1000_ERR_PHY;
354 			break;
355 		}
356 
357 		/* Toggle LANPHYPC Value bit */
358 		e1000_toggle_lanphypc_pch_lpt(hw);
359 		if (hw->mac.type >= e1000_pch_lpt) {
360 			if (e1000_phy_is_accessible_pchlan(hw))
361 				break;
362 
363 			/* Toggling LANPHYPC brings the PHY out of SMBus mode
364 			 * so ensure that the MAC is also out of SMBus mode
365 			 */
366 			mac_reg = er32(CTRL_EXT);
367 			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
368 			ew32(CTRL_EXT, mac_reg);
369 
370 			if (e1000_phy_is_accessible_pchlan(hw))
371 				break;
372 
373 			ret_val = -E1000_ERR_PHY;
374 		}
375 		break;
376 	default:
377 		break;
378 	}
379 
380 	hw->phy.ops.release(hw);
381 	if (!ret_val) {
382 
383 		/* Check to see if able to reset PHY.  Print error if not */
384 		if (hw->phy.ops.check_reset_block(hw)) {
385 			e_err("Reset blocked by ME\n");
386 			goto out;
387 		}
388 
389 		/* Reset the PHY before any access to it.  Doing so, ensures
390 		 * that the PHY is in a known good state before we read/write
391 		 * PHY registers.  The generic reset is sufficient here,
392 		 * because we haven't determined the PHY type yet.
393 		 */
394 		ret_val = e1000e_phy_hw_reset_generic(hw);
395 		if (ret_val)
396 			goto out;
397 
398 		/* On a successful reset, possibly need to wait for the PHY
399 		 * to quiesce to an accessible state before returning control
400 		 * to the calling function.  If the PHY does not quiesce, then
401 		 * return E1000E_BLK_PHY_RESET, as this is the condition that
402 		 *  the PHY is in.
403 		 */
404 		ret_val = hw->phy.ops.check_reset_block(hw);
405 		if (ret_val)
406 			e_err("ME blocked access to PHY after reset\n");
407 	}
408 
409 out:
410 	/* Ungate automatic PHY configuration on non-managed 82579 */
411 	if ((hw->mac.type == e1000_pch2lan) &&
412 	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
413 		usleep_range(10000, 11000);
414 		e1000_gate_hw_phy_config_ich8lan(hw, false);
415 	}
416 
417 	return ret_val;
418 }
419 
420 /**
421  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
422  *  @hw: pointer to the HW structure
423  *
424  *  Initialize family-specific PHY parameters and function pointers.
425  **/
426 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
427 {
428 	struct e1000_phy_info *phy = &hw->phy;
429 	s32 ret_val;
430 
431 	phy->addr = 1;
432 	phy->reset_delay_us = 100;
433 
434 	phy->ops.set_page = e1000_set_page_igp;
435 	phy->ops.read_reg = e1000_read_phy_reg_hv;
436 	phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
437 	phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
438 	phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
439 	phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
440 	phy->ops.write_reg = e1000_write_phy_reg_hv;
441 	phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
442 	phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
443 	phy->ops.power_up = e1000_power_up_phy_copper;
444 	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
445 	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
446 
447 	phy->id = e1000_phy_unknown;
448 
449 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
450 	if (ret_val)
451 		return ret_val;
452 
453 	if (phy->id == e1000_phy_unknown)
454 		switch (hw->mac.type) {
455 		default:
456 			ret_val = e1000e_get_phy_id(hw);
457 			if (ret_val)
458 				return ret_val;
459 			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
460 				break;
461 			fallthrough;
462 		case e1000_pch2lan:
463 		case e1000_pch_lpt:
464 		case e1000_pch_spt:
465 		case e1000_pch_cnp:
466 		case e1000_pch_tgp:
467 		case e1000_pch_adp:
468 		case e1000_pch_mtp:
469 			/* In case the PHY needs to be in mdio slow mode,
470 			 * set slow mode and try to get the PHY id again.
471 			 */
472 			ret_val = e1000_set_mdio_slow_mode_hv(hw);
473 			if (ret_val)
474 				return ret_val;
475 			ret_val = e1000e_get_phy_id(hw);
476 			if (ret_val)
477 				return ret_val;
478 			break;
479 		}
480 	phy->type = e1000e_get_phy_type_from_id(phy->id);
481 
482 	switch (phy->type) {
483 	case e1000_phy_82577:
484 	case e1000_phy_82579:
485 	case e1000_phy_i217:
486 		phy->ops.check_polarity = e1000_check_polarity_82577;
487 		phy->ops.force_speed_duplex =
488 		    e1000_phy_force_speed_duplex_82577;
489 		phy->ops.get_cable_length = e1000_get_cable_length_82577;
490 		phy->ops.get_info = e1000_get_phy_info_82577;
491 		phy->ops.commit = e1000e_phy_sw_reset;
492 		break;
493 	case e1000_phy_82578:
494 		phy->ops.check_polarity = e1000_check_polarity_m88;
495 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
496 		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
497 		phy->ops.get_info = e1000e_get_phy_info_m88;
498 		break;
499 	default:
500 		ret_val = -E1000_ERR_PHY;
501 		break;
502 	}
503 
504 	return ret_val;
505 }
506 
507 /**
508  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
509  *  @hw: pointer to the HW structure
510  *
511  *  Initialize family-specific PHY parameters and function pointers.
512  **/
513 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
514 {
515 	struct e1000_phy_info *phy = &hw->phy;
516 	s32 ret_val;
517 	u16 i = 0;
518 
519 	phy->addr = 1;
520 	phy->reset_delay_us = 100;
521 
522 	phy->ops.power_up = e1000_power_up_phy_copper;
523 	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
524 
525 	/* We may need to do this twice - once for IGP and if that fails,
526 	 * we'll set BM func pointers and try again
527 	 */
528 	ret_val = e1000e_determine_phy_address(hw);
529 	if (ret_val) {
530 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
531 		phy->ops.read_reg = e1000e_read_phy_reg_bm;
532 		ret_val = e1000e_determine_phy_address(hw);
533 		if (ret_val) {
534 			e_dbg("Cannot determine PHY addr. Erroring out\n");
535 			return ret_val;
536 		}
537 	}
538 
539 	phy->id = 0;
540 	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
541 	       (i++ < 100)) {
542 		usleep_range(1000, 1100);
543 		ret_val = e1000e_get_phy_id(hw);
544 		if (ret_val)
545 			return ret_val;
546 	}
547 
548 	/* Verify phy id */
549 	switch (phy->id) {
550 	case IGP03E1000_E_PHY_ID:
551 		phy->type = e1000_phy_igp_3;
552 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
553 		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
554 		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
555 		phy->ops.get_info = e1000e_get_phy_info_igp;
556 		phy->ops.check_polarity = e1000_check_polarity_igp;
557 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
558 		break;
559 	case IFE_E_PHY_ID:
560 	case IFE_PLUS_E_PHY_ID:
561 	case IFE_C_E_PHY_ID:
562 		phy->type = e1000_phy_ife;
563 		phy->autoneg_mask = E1000_ALL_NOT_GIG;
564 		phy->ops.get_info = e1000_get_phy_info_ife;
565 		phy->ops.check_polarity = e1000_check_polarity_ife;
566 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
567 		break;
568 	case BME1000_E_PHY_ID:
569 		phy->type = e1000_phy_bm;
570 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
571 		phy->ops.read_reg = e1000e_read_phy_reg_bm;
572 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
573 		phy->ops.commit = e1000e_phy_sw_reset;
574 		phy->ops.get_info = e1000e_get_phy_info_m88;
575 		phy->ops.check_polarity = e1000_check_polarity_m88;
576 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
577 		break;
578 	default:
579 		return -E1000_ERR_PHY;
580 	}
581 
582 	return 0;
583 }
584 
585 /**
586  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
587  *  @hw: pointer to the HW structure
588  *
589  *  Initialize family-specific NVM parameters and function
590  *  pointers.
591  **/
592 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
593 {
594 	struct e1000_nvm_info *nvm = &hw->nvm;
595 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
596 	u32 gfpreg, sector_base_addr, sector_end_addr;
597 	u16 i;
598 	u32 nvm_size;
599 
600 	nvm->type = e1000_nvm_flash_sw;
601 
602 	if (hw->mac.type >= e1000_pch_spt) {
603 		/* in SPT, gfpreg doesn't exist. NVM size is taken from the
604 		 * STRAP register. This is because in SPT the GbE Flash region
605 		 * is no longer accessed through the flash registers. Instead,
606 		 * the mechanism has changed, and the Flash region access
607 		 * registers are now implemented in GbE memory space.
608 		 */
609 		nvm->flash_base_addr = 0;
610 		nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1)
611 		    * NVM_SIZE_MULTIPLIER;
612 		nvm->flash_bank_size = nvm_size / 2;
613 		/* Adjust to word count */
614 		nvm->flash_bank_size /= sizeof(u16);
615 		/* Set the base address for flash register access */
616 		hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
617 	} else {
618 		/* Can't read flash registers if register set isn't mapped. */
619 		if (!hw->flash_address) {
620 			e_dbg("ERROR: Flash registers not mapped\n");
621 			return -E1000_ERR_CONFIG;
622 		}
623 
624 		gfpreg = er32flash(ICH_FLASH_GFPREG);
625 
626 		/* sector_X_addr is a "sector"-aligned address (4096 bytes)
627 		 * Add 1 to sector_end_addr since this sector is included in
628 		 * the overall size.
629 		 */
630 		sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
631 		sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
632 
633 		/* flash_base_addr is byte-aligned */
634 		nvm->flash_base_addr = sector_base_addr
635 		    << FLASH_SECTOR_ADDR_SHIFT;
636 
637 		/* find total size of the NVM, then cut in half since the total
638 		 * size represents two separate NVM banks.
639 		 */
640 		nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
641 					<< FLASH_SECTOR_ADDR_SHIFT);
642 		nvm->flash_bank_size /= 2;
643 		/* Adjust to word count */
644 		nvm->flash_bank_size /= sizeof(u16);
645 	}
646 
647 	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
648 
649 	/* Clear shadow ram */
650 	for (i = 0; i < nvm->word_size; i++) {
651 		dev_spec->shadow_ram[i].modified = false;
652 		dev_spec->shadow_ram[i].value = 0xFFFF;
653 	}
654 
655 	return 0;
656 }
657 
658 /**
659  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
660  *  @hw: pointer to the HW structure
661  *
662  *  Initialize family-specific MAC parameters and function
663  *  pointers.
664  **/
665 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
666 {
667 	struct e1000_mac_info *mac = &hw->mac;
668 
669 	/* Set media type function pointer */
670 	hw->phy.media_type = e1000_media_type_copper;
671 
672 	/* Set mta register count */
673 	mac->mta_reg_count = 32;
674 	/* Set rar entry count */
675 	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
676 	if (mac->type == e1000_ich8lan)
677 		mac->rar_entry_count--;
678 	/* FWSM register */
679 	mac->has_fwsm = true;
680 	/* ARC subsystem not supported */
681 	mac->arc_subsystem_valid = false;
682 	/* Adaptive IFS supported */
683 	mac->adaptive_ifs = true;
684 
685 	/* LED and other operations */
686 	switch (mac->type) {
687 	case e1000_ich8lan:
688 	case e1000_ich9lan:
689 	case e1000_ich10lan:
690 		/* check management mode */
691 		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
692 		/* ID LED init */
693 		mac->ops.id_led_init = e1000e_id_led_init_generic;
694 		/* blink LED */
695 		mac->ops.blink_led = e1000e_blink_led_generic;
696 		/* setup LED */
697 		mac->ops.setup_led = e1000e_setup_led_generic;
698 		/* cleanup LED */
699 		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
700 		/* turn on/off LED */
701 		mac->ops.led_on = e1000_led_on_ich8lan;
702 		mac->ops.led_off = e1000_led_off_ich8lan;
703 		break;
704 	case e1000_pch2lan:
705 		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
706 		mac->ops.rar_set = e1000_rar_set_pch2lan;
707 		fallthrough;
708 	case e1000_pch_lpt:
709 	case e1000_pch_spt:
710 	case e1000_pch_cnp:
711 	case e1000_pch_tgp:
712 	case e1000_pch_adp:
713 	case e1000_pch_mtp:
714 	case e1000_pchlan:
715 		/* check management mode */
716 		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
717 		/* ID LED init */
718 		mac->ops.id_led_init = e1000_id_led_init_pchlan;
719 		/* setup LED */
720 		mac->ops.setup_led = e1000_setup_led_pchlan;
721 		/* cleanup LED */
722 		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
723 		/* turn on/off LED */
724 		mac->ops.led_on = e1000_led_on_pchlan;
725 		mac->ops.led_off = e1000_led_off_pchlan;
726 		break;
727 	default:
728 		break;
729 	}
730 
731 	if (mac->type >= e1000_pch_lpt) {
732 		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
733 		mac->ops.rar_set = e1000_rar_set_pch_lpt;
734 		mac->ops.setup_physical_interface =
735 		    e1000_setup_copper_link_pch_lpt;
736 		mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt;
737 	}
738 
739 	/* Enable PCS Lock-loss workaround for ICH8 */
740 	if (mac->type == e1000_ich8lan)
741 		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
742 
743 	return 0;
744 }
745 
746 /**
747  *  __e1000_access_emi_reg_locked - Read/write EMI register
748  *  @hw: pointer to the HW structure
749  *  @address: EMI address to program
750  *  @data: pointer to value to read/write from/to the EMI address
751  *  @read: boolean flag to indicate read or write
752  *
753  *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
754  **/
755 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
756 					 u16 *data, bool read)
757 {
758 	s32 ret_val;
759 
760 	ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
761 	if (ret_val)
762 		return ret_val;
763 
764 	if (read)
765 		ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
766 	else
767 		ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
768 
769 	return ret_val;
770 }
771 
772 /**
773  *  e1000_read_emi_reg_locked - Read Extended Management Interface register
774  *  @hw: pointer to the HW structure
775  *  @addr: EMI address to program
776  *  @data: value to be read from the EMI address
777  *
778  *  Assumes the SW/FW/HW Semaphore is already acquired.
779  **/
780 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
781 {
782 	return __e1000_access_emi_reg_locked(hw, addr, data, true);
783 }
784 
785 /**
786  *  e1000_write_emi_reg_locked - Write Extended Management Interface register
787  *  @hw: pointer to the HW structure
788  *  @addr: EMI address to program
789  *  @data: value to be written to the EMI address
790  *
791  *  Assumes the SW/FW/HW Semaphore is already acquired.
792  **/
793 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
794 {
795 	return __e1000_access_emi_reg_locked(hw, addr, &data, false);
796 }
797 
798 /**
799  *  e1000_set_eee_pchlan - Enable/disable EEE support
800  *  @hw: pointer to the HW structure
801  *
802  *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
803  *  the link and the EEE capabilities of the link partner.  The LPI Control
804  *  register bits will remain set only if/when link is up.
805  *
806  *  EEE LPI must not be asserted earlier than one second after link is up.
807  *  On 82579, EEE LPI should not be enabled until such time otherwise there
808  *  can be link issues with some switches.  Other devices can have EEE LPI
809  *  enabled immediately upon link up since they have a timer in hardware which
810  *  prevents LPI from being asserted too early.
811  **/
812 s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
813 {
814 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
815 	s32 ret_val;
816 	u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
817 
818 	switch (hw->phy.type) {
819 	case e1000_phy_82579:
820 		lpa = I82579_EEE_LP_ABILITY;
821 		pcs_status = I82579_EEE_PCS_STATUS;
822 		adv_addr = I82579_EEE_ADVERTISEMENT;
823 		break;
824 	case e1000_phy_i217:
825 		lpa = I217_EEE_LP_ABILITY;
826 		pcs_status = I217_EEE_PCS_STATUS;
827 		adv_addr = I217_EEE_ADVERTISEMENT;
828 		break;
829 	default:
830 		return 0;
831 	}
832 
833 	ret_val = hw->phy.ops.acquire(hw);
834 	if (ret_val)
835 		return ret_val;
836 
837 	ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
838 	if (ret_val)
839 		goto release;
840 
841 	/* Clear bits that enable EEE in various speeds */
842 	lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
843 
844 	/* Enable EEE if not disabled by user */
845 	if (!dev_spec->eee_disable) {
846 		/* Save off link partner's EEE ability */
847 		ret_val = e1000_read_emi_reg_locked(hw, lpa,
848 						    &dev_spec->eee_lp_ability);
849 		if (ret_val)
850 			goto release;
851 
852 		/* Read EEE advertisement */
853 		ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
854 		if (ret_val)
855 			goto release;
856 
857 		/* Enable EEE only for speeds in which the link partner is
858 		 * EEE capable and for which we advertise EEE.
859 		 */
860 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
861 			lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
862 
863 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
864 			e1e_rphy_locked(hw, MII_LPA, &data);
865 			if (data & LPA_100FULL)
866 				lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
867 			else
868 				/* EEE is not supported in 100Half, so ignore
869 				 * partner's EEE in 100 ability if full-duplex
870 				 * is not advertised.
871 				 */
872 				dev_spec->eee_lp_ability &=
873 				    ~I82579_EEE_100_SUPPORTED;
874 		}
875 	}
876 
877 	if (hw->phy.type == e1000_phy_82579) {
878 		ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
879 						    &data);
880 		if (ret_val)
881 			goto release;
882 
883 		data &= ~I82579_LPI_100_PLL_SHUT;
884 		ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
885 						     data);
886 	}
887 
888 	/* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
889 	ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
890 	if (ret_val)
891 		goto release;
892 
893 	ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
894 release:
895 	hw->phy.ops.release(hw);
896 
897 	return ret_val;
898 }
899 
900 /**
901  *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
902  *  @hw:   pointer to the HW structure
903  *  @link: link up bool flag
904  *
905  *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
906  *  preventing further DMA write requests.  Workaround the issue by disabling
907  *  the de-assertion of the clock request when in 1Gpbs mode.
908  *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
909  *  speeds in order to avoid Tx hangs.
910  **/
911 static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
912 {
913 	u32 fextnvm6 = er32(FEXTNVM6);
914 	u32 status = er32(STATUS);
915 	s32 ret_val = 0;
916 	u16 reg;
917 
918 	if (link && (status & E1000_STATUS_SPEED_1000)) {
919 		ret_val = hw->phy.ops.acquire(hw);
920 		if (ret_val)
921 			return ret_val;
922 
923 		ret_val =
924 		    e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
925 						&reg);
926 		if (ret_val)
927 			goto release;
928 
929 		ret_val =
930 		    e1000e_write_kmrn_reg_locked(hw,
931 						 E1000_KMRNCTRLSTA_K1_CONFIG,
932 						 reg &
933 						 ~E1000_KMRNCTRLSTA_K1_ENABLE);
934 		if (ret_val)
935 			goto release;
936 
937 		usleep_range(10, 20);
938 
939 		ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
940 
941 		ret_val =
942 		    e1000e_write_kmrn_reg_locked(hw,
943 						 E1000_KMRNCTRLSTA_K1_CONFIG,
944 						 reg);
945 release:
946 		hw->phy.ops.release(hw);
947 	} else {
948 		/* clear FEXTNVM6 bit 8 on link down or 10/100 */
949 		fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
950 
951 		if ((hw->phy.revision > 5) || !link ||
952 		    ((status & E1000_STATUS_SPEED_100) &&
953 		     (status & E1000_STATUS_FD)))
954 			goto update_fextnvm6;
955 
956 		ret_val = e1e_rphy(hw, I217_INBAND_CTRL, &reg);
957 		if (ret_val)
958 			return ret_val;
959 
960 		/* Clear link status transmit timeout */
961 		reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
962 
963 		if (status & E1000_STATUS_SPEED_100) {
964 			/* Set inband Tx timeout to 5x10us for 100Half */
965 			reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
966 
967 			/* Do not extend the K1 entry latency for 100Half */
968 			fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
969 		} else {
970 			/* Set inband Tx timeout to 50x10us for 10Full/Half */
971 			reg |= 50 <<
972 			    I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
973 
974 			/* Extend the K1 entry latency for 10 Mbps */
975 			fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
976 		}
977 
978 		ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
979 		if (ret_val)
980 			return ret_val;
981 
982 update_fextnvm6:
983 		ew32(FEXTNVM6, fextnvm6);
984 	}
985 
986 	return ret_val;
987 }
988 
989 /**
990  *  e1000_platform_pm_pch_lpt - Set platform power management values
991  *  @hw: pointer to the HW structure
992  *  @link: bool indicating link status
993  *
994  *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
995  *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
996  *  when link is up (which must not exceed the maximum latency supported
997  *  by the platform), otherwise specify there is no LTR requirement.
998  *  Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
999  *  latencies in the LTR Extended Capability Structure in the PCIe Extended
1000  *  Capability register set, on this device LTR is set by writing the
1001  *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1002  *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1003  *  message to the PMC.
1004  **/
1005 static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1006 {
1007 	u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1008 	    link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1009 	u16 lat_enc = 0;	/* latency encoded */
1010 
1011 	if (link) {
1012 		u16 speed, duplex, scale = 0;
1013 		u16 max_snoop, max_nosnoop;
1014 		u16 max_ltr_enc;	/* max LTR latency encoded */
1015 		u64 value;
1016 		u32 rxa;
1017 
1018 		if (!hw->adapter->max_frame_size) {
1019 			e_dbg("max_frame_size not set.\n");
1020 			return -E1000_ERR_CONFIG;
1021 		}
1022 
1023 		hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1024 		if (!speed) {
1025 			e_dbg("Speed not set.\n");
1026 			return -E1000_ERR_CONFIG;
1027 		}
1028 
1029 		/* Rx Packet Buffer Allocation size (KB) */
1030 		rxa = er32(PBA) & E1000_PBA_RXA_MASK;
1031 
1032 		/* Determine the maximum latency tolerated by the device.
1033 		 *
1034 		 * Per the PCIe spec, the tolerated latencies are encoded as
1035 		 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1036 		 * a 10-bit value (0-1023) to provide a range from 1 ns to
1037 		 * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1038 		 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1039 		 */
1040 		rxa *= 512;
1041 		value = (rxa > hw->adapter->max_frame_size) ?
1042 			(rxa - hw->adapter->max_frame_size) * (16000 / speed) :
1043 			0;
1044 
1045 		while (value > PCI_LTR_VALUE_MASK) {
1046 			scale++;
1047 			value = DIV_ROUND_UP(value, BIT(5));
1048 		}
1049 		if (scale > E1000_LTRV_SCALE_MAX) {
1050 			e_dbg("Invalid LTR latency scale %d\n", scale);
1051 			return -E1000_ERR_CONFIG;
1052 		}
1053 		lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1054 
1055 		/* Determine the maximum latency tolerated by the platform */
1056 		pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1057 				     &max_snoop);
1058 		pci_read_config_word(hw->adapter->pdev,
1059 				     E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1060 		max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1061 
1062 		if (lat_enc > max_ltr_enc)
1063 			lat_enc = max_ltr_enc;
1064 	}
1065 
1066 	/* Set Snoop and No-Snoop latencies the same */
1067 	reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1068 	ew32(LTRV, reg);
1069 
1070 	return 0;
1071 }
1072 
1073 /**
1074  *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1075  *  @hw: pointer to the HW structure
1076  *  @to_sx: boolean indicating a system power state transition to Sx
1077  *
1078  *  When link is down, configure ULP mode to significantly reduce the power
1079  *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1080  *  ME firmware to start the ULP configuration.  If not on an ME enabled
1081  *  system, configure the ULP mode by software.
1082  */
1083 s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1084 {
1085 	u32 mac_reg;
1086 	s32 ret_val = 0;
1087 	u16 phy_reg;
1088 	u16 oem_reg = 0;
1089 
1090 	if ((hw->mac.type < e1000_pch_lpt) ||
1091 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1092 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1093 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1094 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1095 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1096 		return 0;
1097 
1098 	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1099 		/* Request ME configure ULP mode in the PHY */
1100 		mac_reg = er32(H2ME);
1101 		mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1102 		ew32(H2ME, mac_reg);
1103 
1104 		goto out;
1105 	}
1106 
1107 	if (!to_sx) {
1108 		int i = 0;
1109 
1110 		/* Poll up to 5 seconds for Cable Disconnected indication */
1111 		while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1112 			/* Bail if link is re-acquired */
1113 			if (er32(STATUS) & E1000_STATUS_LU)
1114 				return -E1000_ERR_PHY;
1115 
1116 			if (i++ == 100)
1117 				break;
1118 
1119 			msleep(50);
1120 		}
1121 		e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1122 		      (er32(FEXT) &
1123 		       E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1124 	}
1125 
1126 	ret_val = hw->phy.ops.acquire(hw);
1127 	if (ret_val)
1128 		goto out;
1129 
1130 	/* Force SMBus mode in PHY */
1131 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1132 	if (ret_val)
1133 		goto release;
1134 	phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1135 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1136 
1137 	/* Force SMBus mode in MAC */
1138 	mac_reg = er32(CTRL_EXT);
1139 	mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1140 	ew32(CTRL_EXT, mac_reg);
1141 
1142 	/* Si workaround for ULP entry flow on i127/rev6 h/w.  Enable
1143 	 * LPLU and disable Gig speed when entering ULP
1144 	 */
1145 	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1146 		ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1147 						       &oem_reg);
1148 		if (ret_val)
1149 			goto release;
1150 
1151 		phy_reg = oem_reg;
1152 		phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1153 
1154 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1155 							phy_reg);
1156 
1157 		if (ret_val)
1158 			goto release;
1159 	}
1160 
1161 	/* Set Inband ULP Exit, Reset to SMBus mode and
1162 	 * Disable SMBus Release on PERST# in PHY
1163 	 */
1164 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1165 	if (ret_val)
1166 		goto release;
1167 	phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1168 		    I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1169 	if (to_sx) {
1170 		if (er32(WUFC) & E1000_WUFC_LNKC)
1171 			phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1172 		else
1173 			phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1174 
1175 		phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1176 		phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1177 	} else {
1178 		phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1179 		phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1180 		phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1181 	}
1182 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1183 
1184 	/* Set Disable SMBus Release on PERST# in MAC */
1185 	mac_reg = er32(FEXTNVM7);
1186 	mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1187 	ew32(FEXTNVM7, mac_reg);
1188 
1189 	/* Commit ULP changes in PHY by starting auto ULP configuration */
1190 	phy_reg |= I218_ULP_CONFIG1_START;
1191 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1192 
1193 	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1194 	    to_sx && (er32(STATUS) & E1000_STATUS_LU)) {
1195 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1196 							oem_reg);
1197 		if (ret_val)
1198 			goto release;
1199 	}
1200 
1201 release:
1202 	hw->phy.ops.release(hw);
1203 out:
1204 	if (ret_val)
1205 		e_dbg("Error in ULP enable flow: %d\n", ret_val);
1206 	else
1207 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1208 
1209 	return ret_val;
1210 }
1211 
1212 /**
1213  *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1214  *  @hw: pointer to the HW structure
1215  *  @force: boolean indicating whether or not to force disabling ULP
1216  *
1217  *  Un-configure ULP mode when link is up, the system is transitioned from
1218  *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1219  *  system, poll for an indication from ME that ULP has been un-configured.
1220  *  If not on an ME enabled system, un-configure the ULP mode by software.
1221  *
1222  *  During nominal operation, this function is called when link is acquired
1223  *  to disable ULP mode (force=false); otherwise, for example when unloading
1224  *  the driver or during Sx->S0 transitions, this is called with force=true
1225  *  to forcibly disable ULP.
1226  */
1227 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1228 {
1229 	s32 ret_val = 0;
1230 	u32 mac_reg;
1231 	u16 phy_reg;
1232 	int i = 0;
1233 
1234 	if ((hw->mac.type < e1000_pch_lpt) ||
1235 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1236 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1237 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1238 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1239 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1240 		return 0;
1241 
1242 	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1243 		struct e1000_adapter *adapter = hw->adapter;
1244 		bool firmware_bug = false;
1245 
1246 		if (force) {
1247 			/* Request ME un-configure ULP mode in the PHY */
1248 			mac_reg = er32(H2ME);
1249 			mac_reg &= ~E1000_H2ME_ULP;
1250 			mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1251 			ew32(H2ME, mac_reg);
1252 		}
1253 
1254 		/* Poll up to 2.5 seconds for ME to clear ULP_CFG_DONE.
1255 		 * If this takes more than 1 second, show a warning indicating a
1256 		 * firmware bug
1257 		 */
1258 		while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1259 			if (i++ == 250) {
1260 				ret_val = -E1000_ERR_PHY;
1261 				goto out;
1262 			}
1263 			if (i > 100 && !firmware_bug)
1264 				firmware_bug = true;
1265 
1266 			usleep_range(10000, 11000);
1267 		}
1268 		if (firmware_bug)
1269 			e_warn("ULP_CONFIG_DONE took %dmsec.  This is a firmware bug\n", i * 10);
1270 		else
1271 			e_dbg("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10);
1272 
1273 		if (force) {
1274 			mac_reg = er32(H2ME);
1275 			mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1276 			ew32(H2ME, mac_reg);
1277 		} else {
1278 			/* Clear H2ME.ULP after ME ULP configuration */
1279 			mac_reg = er32(H2ME);
1280 			mac_reg &= ~E1000_H2ME_ULP;
1281 			ew32(H2ME, mac_reg);
1282 		}
1283 
1284 		goto out;
1285 	}
1286 
1287 	ret_val = hw->phy.ops.acquire(hw);
1288 	if (ret_val)
1289 		goto out;
1290 
1291 	if (force)
1292 		/* Toggle LANPHYPC Value bit */
1293 		e1000_toggle_lanphypc_pch_lpt(hw);
1294 
1295 	/* Unforce SMBus mode in PHY */
1296 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1297 	if (ret_val) {
1298 		/* The MAC might be in PCIe mode, so temporarily force to
1299 		 * SMBus mode in order to access the PHY.
1300 		 */
1301 		mac_reg = er32(CTRL_EXT);
1302 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1303 		ew32(CTRL_EXT, mac_reg);
1304 
1305 		msleep(50);
1306 
1307 		ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1308 						       &phy_reg);
1309 		if (ret_val)
1310 			goto release;
1311 	}
1312 	phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1313 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1314 
1315 	/* Unforce SMBus mode in MAC */
1316 	mac_reg = er32(CTRL_EXT);
1317 	mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1318 	ew32(CTRL_EXT, mac_reg);
1319 
1320 	/* When ULP mode was previously entered, K1 was disabled by the
1321 	 * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1322 	 */
1323 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1324 	if (ret_val)
1325 		goto release;
1326 	phy_reg |= HV_PM_CTRL_K1_ENABLE;
1327 	e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1328 
1329 	/* Clear ULP enabled configuration */
1330 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1331 	if (ret_val)
1332 		goto release;
1333 	phy_reg &= ~(I218_ULP_CONFIG1_IND |
1334 		     I218_ULP_CONFIG1_STICKY_ULP |
1335 		     I218_ULP_CONFIG1_RESET_TO_SMBUS |
1336 		     I218_ULP_CONFIG1_WOL_HOST |
1337 		     I218_ULP_CONFIG1_INBAND_EXIT |
1338 		     I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
1339 		     I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
1340 		     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1341 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1342 
1343 	/* Commit ULP changes by starting auto ULP configuration */
1344 	phy_reg |= I218_ULP_CONFIG1_START;
1345 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1346 
1347 	/* Clear Disable SMBus Release on PERST# in MAC */
1348 	mac_reg = er32(FEXTNVM7);
1349 	mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1350 	ew32(FEXTNVM7, mac_reg);
1351 
1352 release:
1353 	hw->phy.ops.release(hw);
1354 	if (force) {
1355 		e1000_phy_hw_reset(hw);
1356 		msleep(50);
1357 	}
1358 out:
1359 	if (ret_val)
1360 		e_dbg("Error in ULP disable flow: %d\n", ret_val);
1361 	else
1362 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1363 
1364 	return ret_val;
1365 }
1366 
1367 /**
1368  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1369  *  @hw: pointer to the HW structure
1370  *
1371  *  Checks to see of the link status of the hardware has changed.  If a
1372  *  change in link status has been detected, then we read the PHY registers
1373  *  to get the current speed/duplex if link exists.
1374  **/
1375 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1376 {
1377 	struct e1000_mac_info *mac = &hw->mac;
1378 	s32 ret_val, tipg_reg = 0;
1379 	u16 emi_addr, emi_val = 0;
1380 	bool link;
1381 	u16 phy_reg;
1382 
1383 	/* We only want to go out to the PHY registers to see if Auto-Neg
1384 	 * has completed and/or if our link status has changed.  The
1385 	 * get_link_status flag is set upon receiving a Link Status
1386 	 * Change or Rx Sequence Error interrupt.
1387 	 */
1388 	if (!mac->get_link_status)
1389 		return 0;
1390 	mac->get_link_status = false;
1391 
1392 	/* First we want to see if the MII Status Register reports
1393 	 * link.  If so, then we want to get the current speed/duplex
1394 	 * of the PHY.
1395 	 */
1396 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1397 	if (ret_val)
1398 		goto out;
1399 
1400 	if (hw->mac.type == e1000_pchlan) {
1401 		ret_val = e1000_k1_gig_workaround_hv(hw, link);
1402 		if (ret_val)
1403 			goto out;
1404 	}
1405 
1406 	/* When connected at 10Mbps half-duplex, some parts are excessively
1407 	 * aggressive resulting in many collisions. To avoid this, increase
1408 	 * the IPG and reduce Rx latency in the PHY.
1409 	 */
1410 	if ((hw->mac.type >= e1000_pch2lan) && link) {
1411 		u16 speed, duplex;
1412 
1413 		e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex);
1414 		tipg_reg = er32(TIPG);
1415 		tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1416 
1417 		if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1418 			tipg_reg |= 0xFF;
1419 			/* Reduce Rx latency in analog PHY */
1420 			emi_val = 0;
1421 		} else if (hw->mac.type >= e1000_pch_spt &&
1422 			   duplex == FULL_DUPLEX && speed != SPEED_1000) {
1423 			tipg_reg |= 0xC;
1424 			emi_val = 1;
1425 		} else {
1426 
1427 			/* Roll back the default values */
1428 			tipg_reg |= 0x08;
1429 			emi_val = 1;
1430 		}
1431 
1432 		ew32(TIPG, tipg_reg);
1433 
1434 		ret_val = hw->phy.ops.acquire(hw);
1435 		if (ret_val)
1436 			goto out;
1437 
1438 		if (hw->mac.type == e1000_pch2lan)
1439 			emi_addr = I82579_RX_CONFIG;
1440 		else
1441 			emi_addr = I217_RX_CONFIG;
1442 		ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1443 
1444 		if (hw->mac.type >= e1000_pch_lpt) {
1445 			u16 phy_reg;
1446 
1447 			e1e_rphy_locked(hw, I217_PLL_CLOCK_GATE_REG, &phy_reg);
1448 			phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
1449 			if (speed == SPEED_100 || speed == SPEED_10)
1450 				phy_reg |= 0x3E8;
1451 			else
1452 				phy_reg |= 0xFA;
1453 			e1e_wphy_locked(hw, I217_PLL_CLOCK_GATE_REG, phy_reg);
1454 
1455 			if (speed == SPEED_1000) {
1456 				hw->phy.ops.read_reg_locked(hw, HV_PM_CTRL,
1457 							    &phy_reg);
1458 
1459 				phy_reg |= HV_PM_CTRL_K1_CLK_REQ;
1460 
1461 				hw->phy.ops.write_reg_locked(hw, HV_PM_CTRL,
1462 							     phy_reg);
1463 			}
1464 		}
1465 		hw->phy.ops.release(hw);
1466 
1467 		if (ret_val)
1468 			goto out;
1469 
1470 		if (hw->mac.type >= e1000_pch_spt) {
1471 			u16 data;
1472 			u16 ptr_gap;
1473 
1474 			if (speed == SPEED_1000) {
1475 				ret_val = hw->phy.ops.acquire(hw);
1476 				if (ret_val)
1477 					goto out;
1478 
1479 				ret_val = e1e_rphy_locked(hw,
1480 							  PHY_REG(776, 20),
1481 							  &data);
1482 				if (ret_val) {
1483 					hw->phy.ops.release(hw);
1484 					goto out;
1485 				}
1486 
1487 				ptr_gap = (data & (0x3FF << 2)) >> 2;
1488 				if (ptr_gap < 0x18) {
1489 					data &= ~(0x3FF << 2);
1490 					data |= (0x18 << 2);
1491 					ret_val =
1492 					    e1e_wphy_locked(hw,
1493 							    PHY_REG(776, 20),
1494 							    data);
1495 				}
1496 				hw->phy.ops.release(hw);
1497 				if (ret_val)
1498 					goto out;
1499 			} else {
1500 				ret_val = hw->phy.ops.acquire(hw);
1501 				if (ret_val)
1502 					goto out;
1503 
1504 				ret_val = e1e_wphy_locked(hw,
1505 							  PHY_REG(776, 20),
1506 							  0xC023);
1507 				hw->phy.ops.release(hw);
1508 				if (ret_val)
1509 					goto out;
1510 
1511 			}
1512 		}
1513 	}
1514 
1515 	/* I217 Packet Loss issue:
1516 	 * ensure that FEXTNVM4 Beacon Duration is set correctly
1517 	 * on power up.
1518 	 * Set the Beacon Duration for I217 to 8 usec
1519 	 */
1520 	if (hw->mac.type >= e1000_pch_lpt) {
1521 		u32 mac_reg;
1522 
1523 		mac_reg = er32(FEXTNVM4);
1524 		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1525 		mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1526 		ew32(FEXTNVM4, mac_reg);
1527 	}
1528 
1529 	/* Work-around I218 hang issue */
1530 	if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1531 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1532 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1533 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
1534 		ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1535 		if (ret_val)
1536 			goto out;
1537 	}
1538 	if (hw->mac.type >= e1000_pch_lpt) {
1539 		/* Set platform power management values for
1540 		 * Latency Tolerance Reporting (LTR)
1541 		 */
1542 		ret_val = e1000_platform_pm_pch_lpt(hw, link);
1543 		if (ret_val)
1544 			goto out;
1545 	}
1546 
1547 	/* Clear link partner's EEE ability */
1548 	hw->dev_spec.ich8lan.eee_lp_ability = 0;
1549 
1550 	if (hw->mac.type >= e1000_pch_lpt) {
1551 		u32 fextnvm6 = er32(FEXTNVM6);
1552 
1553 		if (hw->mac.type == e1000_pch_spt) {
1554 			/* FEXTNVM6 K1-off workaround - for SPT only */
1555 			u32 pcieanacfg = er32(PCIEANACFG);
1556 
1557 			if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1558 				fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1559 			else
1560 				fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1561 		}
1562 
1563 		ew32(FEXTNVM6, fextnvm6);
1564 	}
1565 
1566 	if (!link)
1567 		goto out;
1568 
1569 	switch (hw->mac.type) {
1570 	case e1000_pch2lan:
1571 		ret_val = e1000_k1_workaround_lv(hw);
1572 		if (ret_val)
1573 			return ret_val;
1574 		fallthrough;
1575 	case e1000_pchlan:
1576 		if (hw->phy.type == e1000_phy_82578) {
1577 			ret_val = e1000_link_stall_workaround_hv(hw);
1578 			if (ret_val)
1579 				return ret_val;
1580 		}
1581 
1582 		/* Workaround for PCHx parts in half-duplex:
1583 		 * Set the number of preambles removed from the packet
1584 		 * when it is passed from the PHY to the MAC to prevent
1585 		 * the MAC from misinterpreting the packet type.
1586 		 */
1587 		e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1588 		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1589 
1590 		if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1591 			phy_reg |= BIT(HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1592 
1593 		e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1594 		break;
1595 	default:
1596 		break;
1597 	}
1598 
1599 	/* Check if there was DownShift, must be checked
1600 	 * immediately after link-up
1601 	 */
1602 	e1000e_check_downshift(hw);
1603 
1604 	/* Enable/Disable EEE after link up */
1605 	if (hw->phy.type > e1000_phy_82579) {
1606 		ret_val = e1000_set_eee_pchlan(hw);
1607 		if (ret_val)
1608 			return ret_val;
1609 	}
1610 
1611 	/* If we are forcing speed/duplex, then we simply return since
1612 	 * we have already determined whether we have link or not.
1613 	 */
1614 	if (!mac->autoneg)
1615 		return -E1000_ERR_CONFIG;
1616 
1617 	/* Auto-Neg is enabled.  Auto Speed Detection takes care
1618 	 * of MAC speed/duplex configuration.  So we only need to
1619 	 * configure Collision Distance in the MAC.
1620 	 */
1621 	mac->ops.config_collision_dist(hw);
1622 
1623 	/* Configure Flow Control now that Auto-Neg has completed.
1624 	 * First, we need to restore the desired flow control
1625 	 * settings because we may have had to re-autoneg with a
1626 	 * different link partner.
1627 	 */
1628 	ret_val = e1000e_config_fc_after_link_up(hw);
1629 	if (ret_val)
1630 		e_dbg("Error configuring flow control\n");
1631 
1632 	return ret_val;
1633 
1634 out:
1635 	mac->get_link_status = true;
1636 	return ret_val;
1637 }
1638 
1639 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1640 {
1641 	struct e1000_hw *hw = &adapter->hw;
1642 	s32 rc;
1643 
1644 	rc = e1000_init_mac_params_ich8lan(hw);
1645 	if (rc)
1646 		return rc;
1647 
1648 	rc = e1000_init_nvm_params_ich8lan(hw);
1649 	if (rc)
1650 		return rc;
1651 
1652 	switch (hw->mac.type) {
1653 	case e1000_ich8lan:
1654 	case e1000_ich9lan:
1655 	case e1000_ich10lan:
1656 		rc = e1000_init_phy_params_ich8lan(hw);
1657 		break;
1658 	case e1000_pchlan:
1659 	case e1000_pch2lan:
1660 	case e1000_pch_lpt:
1661 	case e1000_pch_spt:
1662 	case e1000_pch_cnp:
1663 	case e1000_pch_tgp:
1664 	case e1000_pch_adp:
1665 	case e1000_pch_mtp:
1666 		rc = e1000_init_phy_params_pchlan(hw);
1667 		break;
1668 	default:
1669 		break;
1670 	}
1671 	if (rc)
1672 		return rc;
1673 
1674 	/* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1675 	 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1676 	 */
1677 	if ((adapter->hw.phy.type == e1000_phy_ife) ||
1678 	    ((adapter->hw.mac.type >= e1000_pch2lan) &&
1679 	     (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1680 		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1681 		adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
1682 
1683 		hw->mac.ops.blink_led = NULL;
1684 	}
1685 
1686 	if ((adapter->hw.mac.type == e1000_ich8lan) &&
1687 	    (adapter->hw.phy.type != e1000_phy_ife))
1688 		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1689 
1690 	/* Enable workaround for 82579 w/ ME enabled */
1691 	if ((adapter->hw.mac.type == e1000_pch2lan) &&
1692 	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1693 		adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1694 
1695 	return 0;
1696 }
1697 
1698 static DEFINE_MUTEX(nvm_mutex);
1699 
1700 /**
1701  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1702  *  @hw: pointer to the HW structure
1703  *
1704  *  Acquires the mutex for performing NVM operations.
1705  **/
1706 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1707 {
1708 	mutex_lock(&nvm_mutex);
1709 
1710 	return 0;
1711 }
1712 
1713 /**
1714  *  e1000_release_nvm_ich8lan - Release NVM mutex
1715  *  @hw: pointer to the HW structure
1716  *
1717  *  Releases the mutex used while performing NVM operations.
1718  **/
1719 static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1720 {
1721 	mutex_unlock(&nvm_mutex);
1722 }
1723 
1724 /**
1725  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1726  *  @hw: pointer to the HW structure
1727  *
1728  *  Acquires the software control flag for performing PHY and select
1729  *  MAC CSR accesses.
1730  **/
1731 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1732 {
1733 	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1734 	s32 ret_val = 0;
1735 
1736 	if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1737 			     &hw->adapter->state)) {
1738 		e_dbg("contention for Phy access\n");
1739 		return -E1000_ERR_PHY;
1740 	}
1741 
1742 	while (timeout) {
1743 		extcnf_ctrl = er32(EXTCNF_CTRL);
1744 		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1745 			break;
1746 
1747 		mdelay(1);
1748 		timeout--;
1749 	}
1750 
1751 	if (!timeout) {
1752 		e_dbg("SW has already locked the resource.\n");
1753 		ret_val = -E1000_ERR_CONFIG;
1754 		goto out;
1755 	}
1756 
1757 	timeout = SW_FLAG_TIMEOUT;
1758 
1759 	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1760 	ew32(EXTCNF_CTRL, extcnf_ctrl);
1761 
1762 	while (timeout) {
1763 		extcnf_ctrl = er32(EXTCNF_CTRL);
1764 		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1765 			break;
1766 
1767 		mdelay(1);
1768 		timeout--;
1769 	}
1770 
1771 	if (!timeout) {
1772 		e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1773 		      er32(FWSM), extcnf_ctrl);
1774 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1775 		ew32(EXTCNF_CTRL, extcnf_ctrl);
1776 		ret_val = -E1000_ERR_CONFIG;
1777 		goto out;
1778 	}
1779 
1780 out:
1781 	if (ret_val)
1782 		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1783 
1784 	return ret_val;
1785 }
1786 
1787 /**
1788  *  e1000_release_swflag_ich8lan - Release software control flag
1789  *  @hw: pointer to the HW structure
1790  *
1791  *  Releases the software control flag for performing PHY and select
1792  *  MAC CSR accesses.
1793  **/
1794 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1795 {
1796 	u32 extcnf_ctrl;
1797 
1798 	extcnf_ctrl = er32(EXTCNF_CTRL);
1799 
1800 	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1801 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1802 		ew32(EXTCNF_CTRL, extcnf_ctrl);
1803 	} else {
1804 		e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1805 	}
1806 
1807 	clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1808 }
1809 
1810 /**
1811  *  e1000_check_mng_mode_ich8lan - Checks management mode
1812  *  @hw: pointer to the HW structure
1813  *
1814  *  This checks if the adapter has any manageability enabled.
1815  *  This is a function pointer entry point only called by read/write
1816  *  routines for the PHY and NVM parts.
1817  **/
1818 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1819 {
1820 	u32 fwsm;
1821 
1822 	fwsm = er32(FWSM);
1823 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1824 		((fwsm & E1000_FWSM_MODE_MASK) ==
1825 		 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1826 }
1827 
1828 /**
1829  *  e1000_check_mng_mode_pchlan - Checks management mode
1830  *  @hw: pointer to the HW structure
1831  *
1832  *  This checks if the adapter has iAMT enabled.
1833  *  This is a function pointer entry point only called by read/write
1834  *  routines for the PHY and NVM parts.
1835  **/
1836 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1837 {
1838 	u32 fwsm;
1839 
1840 	fwsm = er32(FWSM);
1841 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1842 	    (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1843 }
1844 
1845 /**
1846  *  e1000_rar_set_pch2lan - Set receive address register
1847  *  @hw: pointer to the HW structure
1848  *  @addr: pointer to the receive address
1849  *  @index: receive address array register
1850  *
1851  *  Sets the receive address array register at index to the address passed
1852  *  in by addr.  For 82579, RAR[0] is the base address register that is to
1853  *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1854  *  Use SHRA[0-3] in place of those reserved for ME.
1855  **/
1856 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1857 {
1858 	u32 rar_low, rar_high;
1859 
1860 	/* HW expects these in little endian so we reverse the byte order
1861 	 * from network order (big endian) to little endian
1862 	 */
1863 	rar_low = ((u32)addr[0] |
1864 		   ((u32)addr[1] << 8) |
1865 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1866 
1867 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1868 
1869 	/* If MAC address zero, no need to set the AV bit */
1870 	if (rar_low || rar_high)
1871 		rar_high |= E1000_RAH_AV;
1872 
1873 	if (index == 0) {
1874 		ew32(RAL(index), rar_low);
1875 		e1e_flush();
1876 		ew32(RAH(index), rar_high);
1877 		e1e_flush();
1878 		return 0;
1879 	}
1880 
1881 	/* RAR[1-6] are owned by manageability.  Skip those and program the
1882 	 * next address into the SHRA register array.
1883 	 */
1884 	if (index < (u32)(hw->mac.rar_entry_count)) {
1885 		s32 ret_val;
1886 
1887 		ret_val = e1000_acquire_swflag_ich8lan(hw);
1888 		if (ret_val)
1889 			goto out;
1890 
1891 		ew32(SHRAL(index - 1), rar_low);
1892 		e1e_flush();
1893 		ew32(SHRAH(index - 1), rar_high);
1894 		e1e_flush();
1895 
1896 		e1000_release_swflag_ich8lan(hw);
1897 
1898 		/* verify the register updates */
1899 		if ((er32(SHRAL(index - 1)) == rar_low) &&
1900 		    (er32(SHRAH(index - 1)) == rar_high))
1901 			return 0;
1902 
1903 		e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1904 		      (index - 1), er32(FWSM));
1905 	}
1906 
1907 out:
1908 	e_dbg("Failed to write receive address at index %d\n", index);
1909 	return -E1000_ERR_CONFIG;
1910 }
1911 
1912 /**
1913  *  e1000_rar_get_count_pch_lpt - Get the number of available SHRA
1914  *  @hw: pointer to the HW structure
1915  *
1916  *  Get the number of available receive registers that the Host can
1917  *  program. SHRA[0-10] are the shared receive address registers
1918  *  that are shared between the Host and manageability engine (ME).
1919  *  ME can reserve any number of addresses and the host needs to be
1920  *  able to tell how many available registers it has access to.
1921  **/
1922 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw)
1923 {
1924 	u32 wlock_mac;
1925 	u32 num_entries;
1926 
1927 	wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1928 	wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1929 
1930 	switch (wlock_mac) {
1931 	case 0:
1932 		/* All SHRA[0..10] and RAR[0] available */
1933 		num_entries = hw->mac.rar_entry_count;
1934 		break;
1935 	case 1:
1936 		/* Only RAR[0] available */
1937 		num_entries = 1;
1938 		break;
1939 	default:
1940 		/* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
1941 		num_entries = wlock_mac + 1;
1942 		break;
1943 	}
1944 
1945 	return num_entries;
1946 }
1947 
1948 /**
1949  *  e1000_rar_set_pch_lpt - Set receive address registers
1950  *  @hw: pointer to the HW structure
1951  *  @addr: pointer to the receive address
1952  *  @index: receive address array register
1953  *
1954  *  Sets the receive address register array at index to the address passed
1955  *  in by addr. For LPT, RAR[0] is the base address register that is to
1956  *  contain the MAC address. SHRA[0-10] are the shared receive address
1957  *  registers that are shared between the Host and manageability engine (ME).
1958  **/
1959 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1960 {
1961 	u32 rar_low, rar_high;
1962 	u32 wlock_mac;
1963 
1964 	/* HW expects these in little endian so we reverse the byte order
1965 	 * from network order (big endian) to little endian
1966 	 */
1967 	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1968 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1969 
1970 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1971 
1972 	/* If MAC address zero, no need to set the AV bit */
1973 	if (rar_low || rar_high)
1974 		rar_high |= E1000_RAH_AV;
1975 
1976 	if (index == 0) {
1977 		ew32(RAL(index), rar_low);
1978 		e1e_flush();
1979 		ew32(RAH(index), rar_high);
1980 		e1e_flush();
1981 		return 0;
1982 	}
1983 
1984 	/* The manageability engine (ME) can lock certain SHRAR registers that
1985 	 * it is using - those registers are unavailable for use.
1986 	 */
1987 	if (index < hw->mac.rar_entry_count) {
1988 		wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1989 		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1990 
1991 		/* Check if all SHRAR registers are locked */
1992 		if (wlock_mac == 1)
1993 			goto out;
1994 
1995 		if ((wlock_mac == 0) || (index <= wlock_mac)) {
1996 			s32 ret_val;
1997 
1998 			ret_val = e1000_acquire_swflag_ich8lan(hw);
1999 
2000 			if (ret_val)
2001 				goto out;
2002 
2003 			ew32(SHRAL_PCH_LPT(index - 1), rar_low);
2004 			e1e_flush();
2005 			ew32(SHRAH_PCH_LPT(index - 1), rar_high);
2006 			e1e_flush();
2007 
2008 			e1000_release_swflag_ich8lan(hw);
2009 
2010 			/* verify the register updates */
2011 			if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
2012 			    (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
2013 				return 0;
2014 		}
2015 	}
2016 
2017 out:
2018 	e_dbg("Failed to write receive address at index %d\n", index);
2019 	return -E1000_ERR_CONFIG;
2020 }
2021 
2022 /**
2023  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2024  *  @hw: pointer to the HW structure
2025  *
2026  *  Checks if firmware is blocking the reset of the PHY.
2027  *  This is a function pointer entry point only called by
2028  *  reset routines.
2029  **/
2030 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2031 {
2032 	bool blocked = false;
2033 	int i = 0;
2034 
2035 	while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
2036 	       (i++ < 30))
2037 		usleep_range(10000, 11000);
2038 	return blocked ? E1000_BLK_PHY_RESET : 0;
2039 }
2040 
2041 /**
2042  *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2043  *  @hw: pointer to the HW structure
2044  *
2045  *  Assumes semaphore already acquired.
2046  *
2047  **/
2048 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2049 {
2050 	u16 phy_data;
2051 	u32 strap = er32(STRAP);
2052 	u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
2053 	    E1000_STRAP_SMT_FREQ_SHIFT;
2054 	s32 ret_val;
2055 
2056 	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2057 
2058 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2059 	if (ret_val)
2060 		return ret_val;
2061 
2062 	phy_data &= ~HV_SMB_ADDR_MASK;
2063 	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2064 	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2065 
2066 	if (hw->phy.type == e1000_phy_i217) {
2067 		/* Restore SMBus frequency */
2068 		if (freq--) {
2069 			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2070 			phy_data |= (freq & BIT(0)) <<
2071 			    HV_SMB_ADDR_FREQ_LOW_SHIFT;
2072 			phy_data |= (freq & BIT(1)) <<
2073 			    (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2074 		} else {
2075 			e_dbg("Unsupported SMB frequency in PHY\n");
2076 		}
2077 	}
2078 
2079 	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2080 }
2081 
2082 /**
2083  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2084  *  @hw:   pointer to the HW structure
2085  *
2086  *  SW should configure the LCD from the NVM extended configuration region
2087  *  as a workaround for certain parts.
2088  **/
2089 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2090 {
2091 	struct e1000_phy_info *phy = &hw->phy;
2092 	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2093 	s32 ret_val = 0;
2094 	u16 word_addr, reg_data, reg_addr, phy_page = 0;
2095 
2096 	/* Initialize the PHY from the NVM on ICH platforms.  This
2097 	 * is needed due to an issue where the NVM configuration is
2098 	 * not properly autoloaded after power transitions.
2099 	 * Therefore, after each PHY reset, we will load the
2100 	 * configuration data out of the NVM manually.
2101 	 */
2102 	switch (hw->mac.type) {
2103 	case e1000_ich8lan:
2104 		if (phy->type != e1000_phy_igp_3)
2105 			return ret_val;
2106 
2107 		if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
2108 		    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
2109 			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2110 			break;
2111 		}
2112 		fallthrough;
2113 	case e1000_pchlan:
2114 	case e1000_pch2lan:
2115 	case e1000_pch_lpt:
2116 	case e1000_pch_spt:
2117 	case e1000_pch_cnp:
2118 	case e1000_pch_tgp:
2119 	case e1000_pch_adp:
2120 	case e1000_pch_mtp:
2121 		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2122 		break;
2123 	default:
2124 		return ret_val;
2125 	}
2126 
2127 	ret_val = hw->phy.ops.acquire(hw);
2128 	if (ret_val)
2129 		return ret_val;
2130 
2131 	data = er32(FEXTNVM);
2132 	if (!(data & sw_cfg_mask))
2133 		goto release;
2134 
2135 	/* Make sure HW does not configure LCD from PHY
2136 	 * extended configuration before SW configuration
2137 	 */
2138 	data = er32(EXTCNF_CTRL);
2139 	if ((hw->mac.type < e1000_pch2lan) &&
2140 	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2141 		goto release;
2142 
2143 	cnf_size = er32(EXTCNF_SIZE);
2144 	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2145 	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2146 	if (!cnf_size)
2147 		goto release;
2148 
2149 	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2150 	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2151 
2152 	if (((hw->mac.type == e1000_pchlan) &&
2153 	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2154 	    (hw->mac.type > e1000_pchlan)) {
2155 		/* HW configures the SMBus address and LEDs when the
2156 		 * OEM and LCD Write Enable bits are set in the NVM.
2157 		 * When both NVM bits are cleared, SW will configure
2158 		 * them instead.
2159 		 */
2160 		ret_val = e1000_write_smbus_addr(hw);
2161 		if (ret_val)
2162 			goto release;
2163 
2164 		data = er32(LEDCTL);
2165 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2166 							(u16)data);
2167 		if (ret_val)
2168 			goto release;
2169 	}
2170 
2171 	/* Configure LCD from extended configuration region. */
2172 
2173 	/* cnf_base_addr is in DWORD */
2174 	word_addr = (u16)(cnf_base_addr << 1);
2175 
2176 	for (i = 0; i < cnf_size; i++) {
2177 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, &reg_data);
2178 		if (ret_val)
2179 			goto release;
2180 
2181 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
2182 					 1, &reg_addr);
2183 		if (ret_val)
2184 			goto release;
2185 
2186 		/* Save off the PHY page for future writes. */
2187 		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2188 			phy_page = reg_data;
2189 			continue;
2190 		}
2191 
2192 		reg_addr &= PHY_REG_MASK;
2193 		reg_addr |= phy_page;
2194 
2195 		ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
2196 		if (ret_val)
2197 			goto release;
2198 	}
2199 
2200 release:
2201 	hw->phy.ops.release(hw);
2202 	return ret_val;
2203 }
2204 
2205 /**
2206  *  e1000_k1_gig_workaround_hv - K1 Si workaround
2207  *  @hw:   pointer to the HW structure
2208  *  @link: link up bool flag
2209  *
2210  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2211  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2212  *  If link is down, the function will restore the default K1 setting located
2213  *  in the NVM.
2214  **/
2215 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2216 {
2217 	s32 ret_val = 0;
2218 	u16 status_reg = 0;
2219 	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2220 
2221 	if (hw->mac.type != e1000_pchlan)
2222 		return 0;
2223 
2224 	/* Wrap the whole flow with the sw flag */
2225 	ret_val = hw->phy.ops.acquire(hw);
2226 	if (ret_val)
2227 		return ret_val;
2228 
2229 	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2230 	if (link) {
2231 		if (hw->phy.type == e1000_phy_82578) {
2232 			ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
2233 						  &status_reg);
2234 			if (ret_val)
2235 				goto release;
2236 
2237 			status_reg &= (BM_CS_STATUS_LINK_UP |
2238 				       BM_CS_STATUS_RESOLVED |
2239 				       BM_CS_STATUS_SPEED_MASK);
2240 
2241 			if (status_reg == (BM_CS_STATUS_LINK_UP |
2242 					   BM_CS_STATUS_RESOLVED |
2243 					   BM_CS_STATUS_SPEED_1000))
2244 				k1_enable = false;
2245 		}
2246 
2247 		if (hw->phy.type == e1000_phy_82577) {
2248 			ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2249 			if (ret_val)
2250 				goto release;
2251 
2252 			status_reg &= (HV_M_STATUS_LINK_UP |
2253 				       HV_M_STATUS_AUTONEG_COMPLETE |
2254 				       HV_M_STATUS_SPEED_MASK);
2255 
2256 			if (status_reg == (HV_M_STATUS_LINK_UP |
2257 					   HV_M_STATUS_AUTONEG_COMPLETE |
2258 					   HV_M_STATUS_SPEED_1000))
2259 				k1_enable = false;
2260 		}
2261 
2262 		/* Link stall fix for link up */
2263 		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2264 		if (ret_val)
2265 			goto release;
2266 
2267 	} else {
2268 		/* Link stall fix for link down */
2269 		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2270 		if (ret_val)
2271 			goto release;
2272 	}
2273 
2274 	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2275 
2276 release:
2277 	hw->phy.ops.release(hw);
2278 
2279 	return ret_val;
2280 }
2281 
2282 /**
2283  *  e1000_configure_k1_ich8lan - Configure K1 power state
2284  *  @hw: pointer to the HW structure
2285  *  @k1_enable: K1 state to configure
2286  *
2287  *  Configure the K1 power state based on the provided parameter.
2288  *  Assumes semaphore already acquired.
2289  *
2290  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2291  **/
2292 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2293 {
2294 	s32 ret_val;
2295 	u32 ctrl_reg = 0;
2296 	u32 ctrl_ext = 0;
2297 	u32 reg = 0;
2298 	u16 kmrn_reg = 0;
2299 
2300 	ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2301 					      &kmrn_reg);
2302 	if (ret_val)
2303 		return ret_val;
2304 
2305 	if (k1_enable)
2306 		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2307 	else
2308 		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2309 
2310 	ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2311 					       kmrn_reg);
2312 	if (ret_val)
2313 		return ret_val;
2314 
2315 	usleep_range(20, 40);
2316 	ctrl_ext = er32(CTRL_EXT);
2317 	ctrl_reg = er32(CTRL);
2318 
2319 	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2320 	reg |= E1000_CTRL_FRCSPD;
2321 	ew32(CTRL, reg);
2322 
2323 	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2324 	e1e_flush();
2325 	usleep_range(20, 40);
2326 	ew32(CTRL, ctrl_reg);
2327 	ew32(CTRL_EXT, ctrl_ext);
2328 	e1e_flush();
2329 	usleep_range(20, 40);
2330 
2331 	return 0;
2332 }
2333 
2334 /**
2335  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2336  *  @hw:       pointer to the HW structure
2337  *  @d0_state: boolean if entering d0 or d3 device state
2338  *
2339  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2340  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2341  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2342  **/
2343 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2344 {
2345 	s32 ret_val = 0;
2346 	u32 mac_reg;
2347 	u16 oem_reg;
2348 
2349 	if (hw->mac.type < e1000_pchlan)
2350 		return ret_val;
2351 
2352 	ret_val = hw->phy.ops.acquire(hw);
2353 	if (ret_val)
2354 		return ret_val;
2355 
2356 	if (hw->mac.type == e1000_pchlan) {
2357 		mac_reg = er32(EXTCNF_CTRL);
2358 		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2359 			goto release;
2360 	}
2361 
2362 	mac_reg = er32(FEXTNVM);
2363 	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2364 		goto release;
2365 
2366 	mac_reg = er32(PHY_CTRL);
2367 
2368 	ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2369 	if (ret_val)
2370 		goto release;
2371 
2372 	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2373 
2374 	if (d0_state) {
2375 		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2376 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2377 
2378 		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2379 			oem_reg |= HV_OEM_BITS_LPLU;
2380 	} else {
2381 		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2382 			       E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2383 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2384 
2385 		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2386 			       E1000_PHY_CTRL_NOND0A_LPLU))
2387 			oem_reg |= HV_OEM_BITS_LPLU;
2388 	}
2389 
2390 	/* Set Restart auto-neg to activate the bits */
2391 	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2392 	    !hw->phy.ops.check_reset_block(hw))
2393 		oem_reg |= HV_OEM_BITS_RESTART_AN;
2394 
2395 	ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2396 
2397 release:
2398 	hw->phy.ops.release(hw);
2399 
2400 	return ret_val;
2401 }
2402 
2403 /**
2404  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2405  *  @hw:   pointer to the HW structure
2406  **/
2407 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2408 {
2409 	s32 ret_val;
2410 	u16 data;
2411 
2412 	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2413 	if (ret_val)
2414 		return ret_val;
2415 
2416 	data |= HV_KMRN_MDIO_SLOW;
2417 
2418 	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2419 
2420 	return ret_val;
2421 }
2422 
2423 /**
2424  *  e1000_hv_phy_workarounds_ich8lan - apply PHY workarounds
2425  *  @hw: pointer to the HW structure
2426  *
2427  *  A series of PHY workarounds to be done after every PHY reset.
2428  **/
2429 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2430 {
2431 	s32 ret_val = 0;
2432 	u16 phy_data;
2433 
2434 	if (hw->mac.type != e1000_pchlan)
2435 		return 0;
2436 
2437 	/* Set MDIO slow mode before any other MDIO access */
2438 	if (hw->phy.type == e1000_phy_82577) {
2439 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
2440 		if (ret_val)
2441 			return ret_val;
2442 	}
2443 
2444 	if (((hw->phy.type == e1000_phy_82577) &&
2445 	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2446 	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2447 		/* Disable generation of early preamble */
2448 		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2449 		if (ret_val)
2450 			return ret_val;
2451 
2452 		/* Preamble tuning for SSC */
2453 		ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2454 		if (ret_val)
2455 			return ret_val;
2456 	}
2457 
2458 	if (hw->phy.type == e1000_phy_82578) {
2459 		/* Return registers to default by doing a soft reset then
2460 		 * writing 0x3140 to the control register.
2461 		 */
2462 		if (hw->phy.revision < 2) {
2463 			e1000e_phy_sw_reset(hw);
2464 			ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
2465 			if (ret_val)
2466 				return ret_val;
2467 		}
2468 	}
2469 
2470 	/* Select page 0 */
2471 	ret_val = hw->phy.ops.acquire(hw);
2472 	if (ret_val)
2473 		return ret_val;
2474 
2475 	hw->phy.addr = 1;
2476 	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2477 	hw->phy.ops.release(hw);
2478 	if (ret_val)
2479 		return ret_val;
2480 
2481 	/* Configure the K1 Si workaround during phy reset assuming there is
2482 	 * link so that it disables K1 if link is in 1Gbps.
2483 	 */
2484 	ret_val = e1000_k1_gig_workaround_hv(hw, true);
2485 	if (ret_val)
2486 		return ret_val;
2487 
2488 	/* Workaround for link disconnects on a busy hub in half duplex */
2489 	ret_val = hw->phy.ops.acquire(hw);
2490 	if (ret_val)
2491 		return ret_val;
2492 	ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2493 	if (ret_val)
2494 		goto release;
2495 	ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2496 	if (ret_val)
2497 		goto release;
2498 
2499 	/* set MSE higher to enable link to stay up when noise is high */
2500 	ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2501 release:
2502 	hw->phy.ops.release(hw);
2503 
2504 	return ret_val;
2505 }
2506 
2507 /**
2508  *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2509  *  @hw:   pointer to the HW structure
2510  **/
2511 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2512 {
2513 	u32 mac_reg;
2514 	u16 i, phy_reg = 0;
2515 	s32 ret_val;
2516 
2517 	ret_val = hw->phy.ops.acquire(hw);
2518 	if (ret_val)
2519 		return;
2520 	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2521 	if (ret_val)
2522 		goto release;
2523 
2524 	/* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2525 	for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2526 		mac_reg = er32(RAL(i));
2527 		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2528 					   (u16)(mac_reg & 0xFFFF));
2529 		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2530 					   (u16)((mac_reg >> 16) & 0xFFFF));
2531 
2532 		mac_reg = er32(RAH(i));
2533 		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2534 					   (u16)(mac_reg & 0xFFFF));
2535 		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2536 					   (u16)((mac_reg & E1000_RAH_AV)
2537 						 >> 16));
2538 	}
2539 
2540 	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2541 
2542 release:
2543 	hw->phy.ops.release(hw);
2544 }
2545 
2546 /**
2547  *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2548  *  with 82579 PHY
2549  *  @hw: pointer to the HW structure
2550  *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2551  **/
2552 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2553 {
2554 	s32 ret_val = 0;
2555 	u16 phy_reg, data;
2556 	u32 mac_reg;
2557 	u16 i;
2558 
2559 	if (hw->mac.type < e1000_pch2lan)
2560 		return 0;
2561 
2562 	/* disable Rx path while enabling/disabling workaround */
2563 	e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2564 	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | BIT(14));
2565 	if (ret_val)
2566 		return ret_val;
2567 
2568 	if (enable) {
2569 		/* Write Rx addresses (rar_entry_count for RAL/H, and
2570 		 * SHRAL/H) and initial CRC values to the MAC
2571 		 */
2572 		for (i = 0; i < hw->mac.rar_entry_count; i++) {
2573 			u8 mac_addr[ETH_ALEN] = { 0 };
2574 			u32 addr_high, addr_low;
2575 
2576 			addr_high = er32(RAH(i));
2577 			if (!(addr_high & E1000_RAH_AV))
2578 				continue;
2579 			addr_low = er32(RAL(i));
2580 			mac_addr[0] = (addr_low & 0xFF);
2581 			mac_addr[1] = ((addr_low >> 8) & 0xFF);
2582 			mac_addr[2] = ((addr_low >> 16) & 0xFF);
2583 			mac_addr[3] = ((addr_low >> 24) & 0xFF);
2584 			mac_addr[4] = (addr_high & 0xFF);
2585 			mac_addr[5] = ((addr_high >> 8) & 0xFF);
2586 
2587 			ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2588 		}
2589 
2590 		/* Write Rx addresses to the PHY */
2591 		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2592 
2593 		/* Enable jumbo frame workaround in the MAC */
2594 		mac_reg = er32(FFLT_DBG);
2595 		mac_reg &= ~BIT(14);
2596 		mac_reg |= (7 << 15);
2597 		ew32(FFLT_DBG, mac_reg);
2598 
2599 		mac_reg = er32(RCTL);
2600 		mac_reg |= E1000_RCTL_SECRC;
2601 		ew32(RCTL, mac_reg);
2602 
2603 		ret_val = e1000e_read_kmrn_reg(hw,
2604 					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2605 					       &data);
2606 		if (ret_val)
2607 			return ret_val;
2608 		ret_val = e1000e_write_kmrn_reg(hw,
2609 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2610 						data | BIT(0));
2611 		if (ret_val)
2612 			return ret_val;
2613 		ret_val = e1000e_read_kmrn_reg(hw,
2614 					       E1000_KMRNCTRLSTA_HD_CTRL,
2615 					       &data);
2616 		if (ret_val)
2617 			return ret_val;
2618 		data &= ~(0xF << 8);
2619 		data |= (0xB << 8);
2620 		ret_val = e1000e_write_kmrn_reg(hw,
2621 						E1000_KMRNCTRLSTA_HD_CTRL,
2622 						data);
2623 		if (ret_val)
2624 			return ret_val;
2625 
2626 		/* Enable jumbo frame workaround in the PHY */
2627 		e1e_rphy(hw, PHY_REG(769, 23), &data);
2628 		data &= ~(0x7F << 5);
2629 		data |= (0x37 << 5);
2630 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2631 		if (ret_val)
2632 			return ret_val;
2633 		e1e_rphy(hw, PHY_REG(769, 16), &data);
2634 		data &= ~BIT(13);
2635 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2636 		if (ret_val)
2637 			return ret_val;
2638 		e1e_rphy(hw, PHY_REG(776, 20), &data);
2639 		data &= ~(0x3FF << 2);
2640 		data |= (E1000_TX_PTR_GAP << 2);
2641 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2642 		if (ret_val)
2643 			return ret_val;
2644 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2645 		if (ret_val)
2646 			return ret_val;
2647 		e1e_rphy(hw, HV_PM_CTRL, &data);
2648 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data | BIT(10));
2649 		if (ret_val)
2650 			return ret_val;
2651 	} else {
2652 		/* Write MAC register values back to h/w defaults */
2653 		mac_reg = er32(FFLT_DBG);
2654 		mac_reg &= ~(0xF << 14);
2655 		ew32(FFLT_DBG, mac_reg);
2656 
2657 		mac_reg = er32(RCTL);
2658 		mac_reg &= ~E1000_RCTL_SECRC;
2659 		ew32(RCTL, mac_reg);
2660 
2661 		ret_val = e1000e_read_kmrn_reg(hw,
2662 					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2663 					       &data);
2664 		if (ret_val)
2665 			return ret_val;
2666 		ret_val = e1000e_write_kmrn_reg(hw,
2667 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2668 						data & ~BIT(0));
2669 		if (ret_val)
2670 			return ret_val;
2671 		ret_val = e1000e_read_kmrn_reg(hw,
2672 					       E1000_KMRNCTRLSTA_HD_CTRL,
2673 					       &data);
2674 		if (ret_val)
2675 			return ret_val;
2676 		data &= ~(0xF << 8);
2677 		data |= (0xB << 8);
2678 		ret_val = e1000e_write_kmrn_reg(hw,
2679 						E1000_KMRNCTRLSTA_HD_CTRL,
2680 						data);
2681 		if (ret_val)
2682 			return ret_val;
2683 
2684 		/* Write PHY register values back to h/w defaults */
2685 		e1e_rphy(hw, PHY_REG(769, 23), &data);
2686 		data &= ~(0x7F << 5);
2687 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2688 		if (ret_val)
2689 			return ret_val;
2690 		e1e_rphy(hw, PHY_REG(769, 16), &data);
2691 		data |= BIT(13);
2692 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2693 		if (ret_val)
2694 			return ret_val;
2695 		e1e_rphy(hw, PHY_REG(776, 20), &data);
2696 		data &= ~(0x3FF << 2);
2697 		data |= (0x8 << 2);
2698 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2699 		if (ret_val)
2700 			return ret_val;
2701 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2702 		if (ret_val)
2703 			return ret_val;
2704 		e1e_rphy(hw, HV_PM_CTRL, &data);
2705 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~BIT(10));
2706 		if (ret_val)
2707 			return ret_val;
2708 	}
2709 
2710 	/* re-enable Rx path after enabling/disabling workaround */
2711 	return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~BIT(14));
2712 }
2713 
2714 /**
2715  *  e1000_lv_phy_workarounds_ich8lan - apply ich8 specific workarounds
2716  *  @hw: pointer to the HW structure
2717  *
2718  *  A series of PHY workarounds to be done after every PHY reset.
2719  **/
2720 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2721 {
2722 	s32 ret_val = 0;
2723 
2724 	if (hw->mac.type != e1000_pch2lan)
2725 		return 0;
2726 
2727 	/* Set MDIO slow mode before any other MDIO access */
2728 	ret_val = e1000_set_mdio_slow_mode_hv(hw);
2729 	if (ret_val)
2730 		return ret_val;
2731 
2732 	ret_val = hw->phy.ops.acquire(hw);
2733 	if (ret_val)
2734 		return ret_val;
2735 	/* set MSE higher to enable link to stay up when noise is high */
2736 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2737 	if (ret_val)
2738 		goto release;
2739 	/* drop link after 5 times MSE threshold was reached */
2740 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2741 release:
2742 	hw->phy.ops.release(hw);
2743 
2744 	return ret_val;
2745 }
2746 
2747 /**
2748  *  e1000_k1_workaround_lv - K1 Si workaround
2749  *  @hw:   pointer to the HW structure
2750  *
2751  *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2752  *  Disable K1 in 1000Mbps and 100Mbps
2753  **/
2754 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2755 {
2756 	s32 ret_val = 0;
2757 	u16 status_reg = 0;
2758 
2759 	if (hw->mac.type != e1000_pch2lan)
2760 		return 0;
2761 
2762 	/* Set K1 beacon duration based on 10Mbs speed */
2763 	ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2764 	if (ret_val)
2765 		return ret_val;
2766 
2767 	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2768 	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2769 		if (status_reg &
2770 		    (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2771 			u16 pm_phy_reg;
2772 
2773 			/* LV 1G/100 Packet drop issue wa  */
2774 			ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2775 			if (ret_val)
2776 				return ret_val;
2777 			pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2778 			ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2779 			if (ret_val)
2780 				return ret_val;
2781 		} else {
2782 			u32 mac_reg;
2783 
2784 			mac_reg = er32(FEXTNVM4);
2785 			mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2786 			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2787 			ew32(FEXTNVM4, mac_reg);
2788 		}
2789 	}
2790 
2791 	return ret_val;
2792 }
2793 
2794 /**
2795  *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2796  *  @hw:   pointer to the HW structure
2797  *  @gate: boolean set to true to gate, false to ungate
2798  *
2799  *  Gate/ungate the automatic PHY configuration via hardware; perform
2800  *  the configuration via software instead.
2801  **/
2802 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2803 {
2804 	u32 extcnf_ctrl;
2805 
2806 	if (hw->mac.type < e1000_pch2lan)
2807 		return;
2808 
2809 	extcnf_ctrl = er32(EXTCNF_CTRL);
2810 
2811 	if (gate)
2812 		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2813 	else
2814 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2815 
2816 	ew32(EXTCNF_CTRL, extcnf_ctrl);
2817 }
2818 
2819 /**
2820  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2821  *  @hw: pointer to the HW structure
2822  *
2823  *  Check the appropriate indication the MAC has finished configuring the
2824  *  PHY after a software reset.
2825  **/
2826 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2827 {
2828 	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2829 
2830 	/* Wait for basic configuration completes before proceeding */
2831 	do {
2832 		data = er32(STATUS);
2833 		data &= E1000_STATUS_LAN_INIT_DONE;
2834 		usleep_range(100, 200);
2835 	} while ((!data) && --loop);
2836 
2837 	/* If basic configuration is incomplete before the above loop
2838 	 * count reaches 0, loading the configuration from NVM will
2839 	 * leave the PHY in a bad state possibly resulting in no link.
2840 	 */
2841 	if (loop == 0)
2842 		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2843 
2844 	/* Clear the Init Done bit for the next init event */
2845 	data = er32(STATUS);
2846 	data &= ~E1000_STATUS_LAN_INIT_DONE;
2847 	ew32(STATUS, data);
2848 }
2849 
2850 /**
2851  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2852  *  @hw: pointer to the HW structure
2853  **/
2854 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2855 {
2856 	s32 ret_val = 0;
2857 	u16 reg;
2858 
2859 	if (hw->phy.ops.check_reset_block(hw))
2860 		return 0;
2861 
2862 	/* Allow time for h/w to get to quiescent state after reset */
2863 	usleep_range(10000, 11000);
2864 
2865 	/* Perform any necessary post-reset workarounds */
2866 	switch (hw->mac.type) {
2867 	case e1000_pchlan:
2868 		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2869 		if (ret_val)
2870 			return ret_val;
2871 		break;
2872 	case e1000_pch2lan:
2873 		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2874 		if (ret_val)
2875 			return ret_val;
2876 		break;
2877 	default:
2878 		break;
2879 	}
2880 
2881 	/* Clear the host wakeup bit after lcd reset */
2882 	if (hw->mac.type >= e1000_pchlan) {
2883 		e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2884 		reg &= ~BM_WUC_HOST_WU_BIT;
2885 		e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2886 	}
2887 
2888 	/* Configure the LCD with the extended configuration region in NVM */
2889 	ret_val = e1000_sw_lcd_config_ich8lan(hw);
2890 	if (ret_val)
2891 		return ret_val;
2892 
2893 	/* Configure the LCD with the OEM bits in NVM */
2894 	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2895 
2896 	if (hw->mac.type == e1000_pch2lan) {
2897 		/* Ungate automatic PHY configuration on non-managed 82579 */
2898 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2899 			usleep_range(10000, 11000);
2900 			e1000_gate_hw_phy_config_ich8lan(hw, false);
2901 		}
2902 
2903 		/* Set EEE LPI Update Timer to 200usec */
2904 		ret_val = hw->phy.ops.acquire(hw);
2905 		if (ret_val)
2906 			return ret_val;
2907 		ret_val = e1000_write_emi_reg_locked(hw,
2908 						     I82579_LPI_UPDATE_TIMER,
2909 						     0x1387);
2910 		hw->phy.ops.release(hw);
2911 	}
2912 
2913 	return ret_val;
2914 }
2915 
2916 /**
2917  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2918  *  @hw: pointer to the HW structure
2919  *
2920  *  Resets the PHY
2921  *  This is a function pointer entry point called by drivers
2922  *  or other shared routines.
2923  **/
2924 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2925 {
2926 	s32 ret_val = 0;
2927 
2928 	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
2929 	if ((hw->mac.type == e1000_pch2lan) &&
2930 	    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2931 		e1000_gate_hw_phy_config_ich8lan(hw, true);
2932 
2933 	ret_val = e1000e_phy_hw_reset_generic(hw);
2934 	if (ret_val)
2935 		return ret_val;
2936 
2937 	return e1000_post_phy_reset_ich8lan(hw);
2938 }
2939 
2940 /**
2941  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2942  *  @hw: pointer to the HW structure
2943  *  @active: true to enable LPLU, false to disable
2944  *
2945  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
2946  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2947  *  the phy speed. This function will manually set the LPLU bit and restart
2948  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
2949  *  since it configures the same bit.
2950  **/
2951 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2952 {
2953 	s32 ret_val;
2954 	u16 oem_reg;
2955 
2956 	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2957 	if (ret_val)
2958 		return ret_val;
2959 
2960 	if (active)
2961 		oem_reg |= HV_OEM_BITS_LPLU;
2962 	else
2963 		oem_reg &= ~HV_OEM_BITS_LPLU;
2964 
2965 	if (!hw->phy.ops.check_reset_block(hw))
2966 		oem_reg |= HV_OEM_BITS_RESTART_AN;
2967 
2968 	return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2969 }
2970 
2971 /**
2972  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2973  *  @hw: pointer to the HW structure
2974  *  @active: true to enable LPLU, false to disable
2975  *
2976  *  Sets the LPLU D0 state according to the active flag.  When
2977  *  activating LPLU this function also disables smart speed
2978  *  and vice versa.  LPLU will not be activated unless the
2979  *  device autonegotiation advertisement meets standards of
2980  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2981  *  This is a function pointer entry point only called by
2982  *  PHY setup routines.
2983  **/
2984 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2985 {
2986 	struct e1000_phy_info *phy = &hw->phy;
2987 	u32 phy_ctrl;
2988 	s32 ret_val = 0;
2989 	u16 data;
2990 
2991 	if (phy->type == e1000_phy_ife)
2992 		return 0;
2993 
2994 	phy_ctrl = er32(PHY_CTRL);
2995 
2996 	if (active) {
2997 		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2998 		ew32(PHY_CTRL, phy_ctrl);
2999 
3000 		if (phy->type != e1000_phy_igp_3)
3001 			return 0;
3002 
3003 		/* Call gig speed drop workaround on LPLU before accessing
3004 		 * any PHY registers
3005 		 */
3006 		if (hw->mac.type == e1000_ich8lan)
3007 			e1000e_gig_downshift_workaround_ich8lan(hw);
3008 
3009 		/* When LPLU is enabled, we should disable SmartSpeed */
3010 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3011 		if (ret_val)
3012 			return ret_val;
3013 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3014 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3015 		if (ret_val)
3016 			return ret_val;
3017 	} else {
3018 		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
3019 		ew32(PHY_CTRL, phy_ctrl);
3020 
3021 		if (phy->type != e1000_phy_igp_3)
3022 			return 0;
3023 
3024 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3025 		 * during Dx states where the power conservation is most
3026 		 * important.  During driver activity we should enable
3027 		 * SmartSpeed, so performance is maintained.
3028 		 */
3029 		if (phy->smart_speed == e1000_smart_speed_on) {
3030 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3031 					   &data);
3032 			if (ret_val)
3033 				return ret_val;
3034 
3035 			data |= IGP01E1000_PSCFR_SMART_SPEED;
3036 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3037 					   data);
3038 			if (ret_val)
3039 				return ret_val;
3040 		} else if (phy->smart_speed == e1000_smart_speed_off) {
3041 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3042 					   &data);
3043 			if (ret_val)
3044 				return ret_val;
3045 
3046 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3047 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3048 					   data);
3049 			if (ret_val)
3050 				return ret_val;
3051 		}
3052 	}
3053 
3054 	return 0;
3055 }
3056 
3057 /**
3058  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3059  *  @hw: pointer to the HW structure
3060  *  @active: true to enable LPLU, false to disable
3061  *
3062  *  Sets the LPLU D3 state according to the active flag.  When
3063  *  activating LPLU this function also disables smart speed
3064  *  and vice versa.  LPLU will not be activated unless the
3065  *  device autonegotiation advertisement meets standards of
3066  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3067  *  This is a function pointer entry point only called by
3068  *  PHY setup routines.
3069  **/
3070 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3071 {
3072 	struct e1000_phy_info *phy = &hw->phy;
3073 	u32 phy_ctrl;
3074 	s32 ret_val = 0;
3075 	u16 data;
3076 
3077 	phy_ctrl = er32(PHY_CTRL);
3078 
3079 	if (!active) {
3080 		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3081 		ew32(PHY_CTRL, phy_ctrl);
3082 
3083 		if (phy->type != e1000_phy_igp_3)
3084 			return 0;
3085 
3086 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3087 		 * during Dx states where the power conservation is most
3088 		 * important.  During driver activity we should enable
3089 		 * SmartSpeed, so performance is maintained.
3090 		 */
3091 		if (phy->smart_speed == e1000_smart_speed_on) {
3092 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3093 					   &data);
3094 			if (ret_val)
3095 				return ret_val;
3096 
3097 			data |= IGP01E1000_PSCFR_SMART_SPEED;
3098 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3099 					   data);
3100 			if (ret_val)
3101 				return ret_val;
3102 		} else if (phy->smart_speed == e1000_smart_speed_off) {
3103 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3104 					   &data);
3105 			if (ret_val)
3106 				return ret_val;
3107 
3108 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3109 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3110 					   data);
3111 			if (ret_val)
3112 				return ret_val;
3113 		}
3114 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3115 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3116 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3117 		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3118 		ew32(PHY_CTRL, phy_ctrl);
3119 
3120 		if (phy->type != e1000_phy_igp_3)
3121 			return 0;
3122 
3123 		/* Call gig speed drop workaround on LPLU before accessing
3124 		 * any PHY registers
3125 		 */
3126 		if (hw->mac.type == e1000_ich8lan)
3127 			e1000e_gig_downshift_workaround_ich8lan(hw);
3128 
3129 		/* When LPLU is enabled, we should disable SmartSpeed */
3130 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3131 		if (ret_val)
3132 			return ret_val;
3133 
3134 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3135 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3136 	}
3137 
3138 	return ret_val;
3139 }
3140 
3141 /**
3142  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3143  *  @hw: pointer to the HW structure
3144  *  @bank:  pointer to the variable that returns the active bank
3145  *
3146  *  Reads signature byte from the NVM using the flash access registers.
3147  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3148  **/
3149 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3150 {
3151 	u32 eecd;
3152 	struct e1000_nvm_info *nvm = &hw->nvm;
3153 	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3154 	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3155 	u32 nvm_dword = 0;
3156 	u8 sig_byte = 0;
3157 	s32 ret_val;
3158 
3159 	switch (hw->mac.type) {
3160 	case e1000_pch_spt:
3161 	case e1000_pch_cnp:
3162 	case e1000_pch_tgp:
3163 	case e1000_pch_adp:
3164 	case e1000_pch_mtp:
3165 		bank1_offset = nvm->flash_bank_size;
3166 		act_offset = E1000_ICH_NVM_SIG_WORD;
3167 
3168 		/* set bank to 0 in case flash read fails */
3169 		*bank = 0;
3170 
3171 		/* Check bank 0 */
3172 		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
3173 							 &nvm_dword);
3174 		if (ret_val)
3175 			return ret_val;
3176 		sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3177 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3178 		    E1000_ICH_NVM_SIG_VALUE) {
3179 			*bank = 0;
3180 			return 0;
3181 		}
3182 
3183 		/* Check bank 1 */
3184 		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
3185 							 bank1_offset,
3186 							 &nvm_dword);
3187 		if (ret_val)
3188 			return ret_val;
3189 		sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3190 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3191 		    E1000_ICH_NVM_SIG_VALUE) {
3192 			*bank = 1;
3193 			return 0;
3194 		}
3195 
3196 		e_dbg("ERROR: No valid NVM bank present\n");
3197 		return -E1000_ERR_NVM;
3198 	case e1000_ich8lan:
3199 	case e1000_ich9lan:
3200 		eecd = er32(EECD);
3201 		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3202 		    E1000_EECD_SEC1VAL_VALID_MASK) {
3203 			if (eecd & E1000_EECD_SEC1VAL)
3204 				*bank = 1;
3205 			else
3206 				*bank = 0;
3207 
3208 			return 0;
3209 		}
3210 		e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3211 		fallthrough;
3212 	default:
3213 		/* set bank to 0 in case flash read fails */
3214 		*bank = 0;
3215 
3216 		/* Check bank 0 */
3217 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3218 							&sig_byte);
3219 		if (ret_val)
3220 			return ret_val;
3221 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3222 		    E1000_ICH_NVM_SIG_VALUE) {
3223 			*bank = 0;
3224 			return 0;
3225 		}
3226 
3227 		/* Check bank 1 */
3228 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3229 							bank1_offset,
3230 							&sig_byte);
3231 		if (ret_val)
3232 			return ret_val;
3233 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3234 		    E1000_ICH_NVM_SIG_VALUE) {
3235 			*bank = 1;
3236 			return 0;
3237 		}
3238 
3239 		e_dbg("ERROR: No valid NVM bank present\n");
3240 		return -E1000_ERR_NVM;
3241 	}
3242 }
3243 
3244 /**
3245  *  e1000_read_nvm_spt - NVM access for SPT
3246  *  @hw: pointer to the HW structure
3247  *  @offset: The offset (in bytes) of the word(s) to read.
3248  *  @words: Size of data to read in words.
3249  *  @data: pointer to the word(s) to read at offset.
3250  *
3251  *  Reads a word(s) from the NVM
3252  **/
3253 static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3254 			      u16 *data)
3255 {
3256 	struct e1000_nvm_info *nvm = &hw->nvm;
3257 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3258 	u32 act_offset;
3259 	s32 ret_val = 0;
3260 	u32 bank = 0;
3261 	u32 dword = 0;
3262 	u16 offset_to_read;
3263 	u16 i;
3264 
3265 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3266 	    (words == 0)) {
3267 		e_dbg("nvm parameter(s) out of bounds\n");
3268 		ret_val = -E1000_ERR_NVM;
3269 		goto out;
3270 	}
3271 
3272 	nvm->ops.acquire(hw);
3273 
3274 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3275 	if (ret_val) {
3276 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3277 		bank = 0;
3278 	}
3279 
3280 	act_offset = (bank) ? nvm->flash_bank_size : 0;
3281 	act_offset += offset;
3282 
3283 	ret_val = 0;
3284 
3285 	for (i = 0; i < words; i += 2) {
3286 		if (words - i == 1) {
3287 			if (dev_spec->shadow_ram[offset + i].modified) {
3288 				data[i] =
3289 				    dev_spec->shadow_ram[offset + i].value;
3290 			} else {
3291 				offset_to_read = act_offset + i -
3292 				    ((act_offset + i) % 2);
3293 				ret_val =
3294 				  e1000_read_flash_dword_ich8lan(hw,
3295 								 offset_to_read,
3296 								 &dword);
3297 				if (ret_val)
3298 					break;
3299 				if ((act_offset + i) % 2 == 0)
3300 					data[i] = (u16)(dword & 0xFFFF);
3301 				else
3302 					data[i] = (u16)((dword >> 16) & 0xFFFF);
3303 			}
3304 		} else {
3305 			offset_to_read = act_offset + i;
3306 			if (!(dev_spec->shadow_ram[offset + i].modified) ||
3307 			    !(dev_spec->shadow_ram[offset + i + 1].modified)) {
3308 				ret_val =
3309 				  e1000_read_flash_dword_ich8lan(hw,
3310 								 offset_to_read,
3311 								 &dword);
3312 				if (ret_val)
3313 					break;
3314 			}
3315 			if (dev_spec->shadow_ram[offset + i].modified)
3316 				data[i] =
3317 				    dev_spec->shadow_ram[offset + i].value;
3318 			else
3319 				data[i] = (u16)(dword & 0xFFFF);
3320 			if (dev_spec->shadow_ram[offset + i].modified)
3321 				data[i + 1] =
3322 				    dev_spec->shadow_ram[offset + i + 1].value;
3323 			else
3324 				data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
3325 		}
3326 	}
3327 
3328 	nvm->ops.release(hw);
3329 
3330 out:
3331 	if (ret_val)
3332 		e_dbg("NVM read error: %d\n", ret_val);
3333 
3334 	return ret_val;
3335 }
3336 
3337 /**
3338  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3339  *  @hw: pointer to the HW structure
3340  *  @offset: The offset (in bytes) of the word(s) to read.
3341  *  @words: Size of data to read in words
3342  *  @data: Pointer to the word(s) to read at offset.
3343  *
3344  *  Reads a word(s) from the NVM using the flash access registers.
3345  **/
3346 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3347 				  u16 *data)
3348 {
3349 	struct e1000_nvm_info *nvm = &hw->nvm;
3350 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3351 	u32 act_offset;
3352 	s32 ret_val = 0;
3353 	u32 bank = 0;
3354 	u16 i, word;
3355 
3356 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3357 	    (words == 0)) {
3358 		e_dbg("nvm parameter(s) out of bounds\n");
3359 		ret_val = -E1000_ERR_NVM;
3360 		goto out;
3361 	}
3362 
3363 	nvm->ops.acquire(hw);
3364 
3365 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3366 	if (ret_val) {
3367 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3368 		bank = 0;
3369 	}
3370 
3371 	act_offset = (bank) ? nvm->flash_bank_size : 0;
3372 	act_offset += offset;
3373 
3374 	ret_val = 0;
3375 	for (i = 0; i < words; i++) {
3376 		if (dev_spec->shadow_ram[offset + i].modified) {
3377 			data[i] = dev_spec->shadow_ram[offset + i].value;
3378 		} else {
3379 			ret_val = e1000_read_flash_word_ich8lan(hw,
3380 								act_offset + i,
3381 								&word);
3382 			if (ret_val)
3383 				break;
3384 			data[i] = word;
3385 		}
3386 	}
3387 
3388 	nvm->ops.release(hw);
3389 
3390 out:
3391 	if (ret_val)
3392 		e_dbg("NVM read error: %d\n", ret_val);
3393 
3394 	return ret_val;
3395 }
3396 
3397 /**
3398  *  e1000_flash_cycle_init_ich8lan - Initialize flash
3399  *  @hw: pointer to the HW structure
3400  *
3401  *  This function does initial flash setup so that a new read/write/erase cycle
3402  *  can be started.
3403  **/
3404 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3405 {
3406 	union ich8_hws_flash_status hsfsts;
3407 	s32 ret_val = -E1000_ERR_NVM;
3408 
3409 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3410 
3411 	/* Check if the flash descriptor is valid */
3412 	if (!hsfsts.hsf_status.fldesvalid) {
3413 		e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
3414 		return -E1000_ERR_NVM;
3415 	}
3416 
3417 	/* Clear FCERR and DAEL in hw status by writing 1 */
3418 	hsfsts.hsf_status.flcerr = 1;
3419 	hsfsts.hsf_status.dael = 1;
3420 	if (hw->mac.type >= e1000_pch_spt)
3421 		ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3422 	else
3423 		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3424 
3425 	/* Either we should have a hardware SPI cycle in progress
3426 	 * bit to check against, in order to start a new cycle or
3427 	 * FDONE bit should be changed in the hardware so that it
3428 	 * is 1 after hardware reset, which can then be used as an
3429 	 * indication whether a cycle is in progress or has been
3430 	 * completed.
3431 	 */
3432 
3433 	if (!hsfsts.hsf_status.flcinprog) {
3434 		/* There is no cycle running at present,
3435 		 * so we can start a cycle.
3436 		 * Begin by setting Flash Cycle Done.
3437 		 */
3438 		hsfsts.hsf_status.flcdone = 1;
3439 		if (hw->mac.type >= e1000_pch_spt)
3440 			ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3441 		else
3442 			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3443 		ret_val = 0;
3444 	} else {
3445 		s32 i;
3446 
3447 		/* Otherwise poll for sometime so the current
3448 		 * cycle has a chance to end before giving up.
3449 		 */
3450 		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3451 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3452 			if (!hsfsts.hsf_status.flcinprog) {
3453 				ret_val = 0;
3454 				break;
3455 			}
3456 			udelay(1);
3457 		}
3458 		if (!ret_val) {
3459 			/* Successful in waiting for previous cycle to timeout,
3460 			 * now set the Flash Cycle Done.
3461 			 */
3462 			hsfsts.hsf_status.flcdone = 1;
3463 			if (hw->mac.type >= e1000_pch_spt)
3464 				ew32flash(ICH_FLASH_HSFSTS,
3465 					  hsfsts.regval & 0xFFFF);
3466 			else
3467 				ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3468 		} else {
3469 			e_dbg("Flash controller busy, cannot get access\n");
3470 		}
3471 	}
3472 
3473 	return ret_val;
3474 }
3475 
3476 /**
3477  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3478  *  @hw: pointer to the HW structure
3479  *  @timeout: maximum time to wait for completion
3480  *
3481  *  This function starts a flash cycle and waits for its completion.
3482  **/
3483 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3484 {
3485 	union ich8_hws_flash_ctrl hsflctl;
3486 	union ich8_hws_flash_status hsfsts;
3487 	u32 i = 0;
3488 
3489 	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3490 	if (hw->mac.type >= e1000_pch_spt)
3491 		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3492 	else
3493 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3494 	hsflctl.hsf_ctrl.flcgo = 1;
3495 
3496 	if (hw->mac.type >= e1000_pch_spt)
3497 		ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
3498 	else
3499 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3500 
3501 	/* wait till FDONE bit is set to 1 */
3502 	do {
3503 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3504 		if (hsfsts.hsf_status.flcdone)
3505 			break;
3506 		udelay(1);
3507 	} while (i++ < timeout);
3508 
3509 	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3510 		return 0;
3511 
3512 	return -E1000_ERR_NVM;
3513 }
3514 
3515 /**
3516  *  e1000_read_flash_dword_ich8lan - Read dword from flash
3517  *  @hw: pointer to the HW structure
3518  *  @offset: offset to data location
3519  *  @data: pointer to the location for storing the data
3520  *
3521  *  Reads the flash dword at offset into data.  Offset is converted
3522  *  to bytes before read.
3523  **/
3524 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3525 					  u32 *data)
3526 {
3527 	/* Must convert word offset into bytes. */
3528 	offset <<= 1;
3529 	return e1000_read_flash_data32_ich8lan(hw, offset, data);
3530 }
3531 
3532 /**
3533  *  e1000_read_flash_word_ich8lan - Read word from flash
3534  *  @hw: pointer to the HW structure
3535  *  @offset: offset to data location
3536  *  @data: pointer to the location for storing the data
3537  *
3538  *  Reads the flash word at offset into data.  Offset is converted
3539  *  to bytes before read.
3540  **/
3541 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3542 					 u16 *data)
3543 {
3544 	/* Must convert offset into bytes. */
3545 	offset <<= 1;
3546 
3547 	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3548 }
3549 
3550 /**
3551  *  e1000_read_flash_byte_ich8lan - Read byte from flash
3552  *  @hw: pointer to the HW structure
3553  *  @offset: The offset of the byte to read.
3554  *  @data: Pointer to a byte to store the value read.
3555  *
3556  *  Reads a single byte from the NVM using the flash access registers.
3557  **/
3558 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3559 					 u8 *data)
3560 {
3561 	s32 ret_val;
3562 	u16 word = 0;
3563 
3564 	/* In SPT, only 32 bits access is supported,
3565 	 * so this function should not be called.
3566 	 */
3567 	if (hw->mac.type >= e1000_pch_spt)
3568 		return -E1000_ERR_NVM;
3569 	else
3570 		ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3571 
3572 	if (ret_val)
3573 		return ret_val;
3574 
3575 	*data = (u8)word;
3576 
3577 	return 0;
3578 }
3579 
3580 /**
3581  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3582  *  @hw: pointer to the HW structure
3583  *  @offset: The offset (in bytes) of the byte or word to read.
3584  *  @size: Size of data to read, 1=byte 2=word
3585  *  @data: Pointer to the word to store the value read.
3586  *
3587  *  Reads a byte or word from the NVM using the flash access registers.
3588  **/
3589 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3590 					 u8 size, u16 *data)
3591 {
3592 	union ich8_hws_flash_status hsfsts;
3593 	union ich8_hws_flash_ctrl hsflctl;
3594 	u32 flash_linear_addr;
3595 	u32 flash_data = 0;
3596 	s32 ret_val = -E1000_ERR_NVM;
3597 	u8 count = 0;
3598 
3599 	if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3600 		return -E1000_ERR_NVM;
3601 
3602 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3603 			     hw->nvm.flash_base_addr);
3604 
3605 	do {
3606 		udelay(1);
3607 		/* Steps */
3608 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3609 		if (ret_val)
3610 			break;
3611 
3612 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3613 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3614 		hsflctl.hsf_ctrl.fldbcount = size - 1;
3615 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3616 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3617 
3618 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3619 
3620 		ret_val =
3621 		    e1000_flash_cycle_ich8lan(hw,
3622 					      ICH_FLASH_READ_COMMAND_TIMEOUT);
3623 
3624 		/* Check if FCERR is set to 1, if set to 1, clear it
3625 		 * and try the whole sequence a few more times, else
3626 		 * read in (shift in) the Flash Data0, the order is
3627 		 * least significant byte first msb to lsb
3628 		 */
3629 		if (!ret_val) {
3630 			flash_data = er32flash(ICH_FLASH_FDATA0);
3631 			if (size == 1)
3632 				*data = (u8)(flash_data & 0x000000FF);
3633 			else if (size == 2)
3634 				*data = (u16)(flash_data & 0x0000FFFF);
3635 			break;
3636 		} else {
3637 			/* If we've gotten here, then things are probably
3638 			 * completely hosed, but if the error condition is
3639 			 * detected, it won't hurt to give it another try...
3640 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3641 			 */
3642 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3643 			if (hsfsts.hsf_status.flcerr) {
3644 				/* Repeat for some time before giving up. */
3645 				continue;
3646 			} else if (!hsfsts.hsf_status.flcdone) {
3647 				e_dbg("Timeout error - flash cycle did not complete.\n");
3648 				break;
3649 			}
3650 		}
3651 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3652 
3653 	return ret_val;
3654 }
3655 
3656 /**
3657  *  e1000_read_flash_data32_ich8lan - Read dword from NVM
3658  *  @hw: pointer to the HW structure
3659  *  @offset: The offset (in bytes) of the dword to read.
3660  *  @data: Pointer to the dword to store the value read.
3661  *
3662  *  Reads a byte or word from the NVM using the flash access registers.
3663  **/
3664 
3665 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3666 					   u32 *data)
3667 {
3668 	union ich8_hws_flash_status hsfsts;
3669 	union ich8_hws_flash_ctrl hsflctl;
3670 	u32 flash_linear_addr;
3671 	s32 ret_val = -E1000_ERR_NVM;
3672 	u8 count = 0;
3673 
3674 	if (offset > ICH_FLASH_LINEAR_ADDR_MASK || hw->mac.type < e1000_pch_spt)
3675 		return -E1000_ERR_NVM;
3676 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3677 			     hw->nvm.flash_base_addr);
3678 
3679 	do {
3680 		udelay(1);
3681 		/* Steps */
3682 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3683 		if (ret_val)
3684 			break;
3685 		/* In SPT, This register is in Lan memory space, not flash.
3686 		 * Therefore, only 32 bit access is supported
3687 		 */
3688 		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3689 
3690 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3691 		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3692 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3693 		/* In SPT, This register is in Lan memory space, not flash.
3694 		 * Therefore, only 32 bit access is supported
3695 		 */
3696 		ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16);
3697 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3698 
3699 		ret_val =
3700 		   e1000_flash_cycle_ich8lan(hw,
3701 					     ICH_FLASH_READ_COMMAND_TIMEOUT);
3702 
3703 		/* Check if FCERR is set to 1, if set to 1, clear it
3704 		 * and try the whole sequence a few more times, else
3705 		 * read in (shift in) the Flash Data0, the order is
3706 		 * least significant byte first msb to lsb
3707 		 */
3708 		if (!ret_val) {
3709 			*data = er32flash(ICH_FLASH_FDATA0);
3710 			break;
3711 		} else {
3712 			/* If we've gotten here, then things are probably
3713 			 * completely hosed, but if the error condition is
3714 			 * detected, it won't hurt to give it another try...
3715 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3716 			 */
3717 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3718 			if (hsfsts.hsf_status.flcerr) {
3719 				/* Repeat for some time before giving up. */
3720 				continue;
3721 			} else if (!hsfsts.hsf_status.flcdone) {
3722 				e_dbg("Timeout error - flash cycle did not complete.\n");
3723 				break;
3724 			}
3725 		}
3726 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3727 
3728 	return ret_val;
3729 }
3730 
3731 /**
3732  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
3733  *  @hw: pointer to the HW structure
3734  *  @offset: The offset (in bytes) of the word(s) to write.
3735  *  @words: Size of data to write in words
3736  *  @data: Pointer to the word(s) to write at offset.
3737  *
3738  *  Writes a byte or word to the NVM using the flash access registers.
3739  **/
3740 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3741 				   u16 *data)
3742 {
3743 	struct e1000_nvm_info *nvm = &hw->nvm;
3744 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3745 	u16 i;
3746 
3747 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3748 	    (words == 0)) {
3749 		e_dbg("nvm parameter(s) out of bounds\n");
3750 		return -E1000_ERR_NVM;
3751 	}
3752 
3753 	nvm->ops.acquire(hw);
3754 
3755 	for (i = 0; i < words; i++) {
3756 		dev_spec->shadow_ram[offset + i].modified = true;
3757 		dev_spec->shadow_ram[offset + i].value = data[i];
3758 	}
3759 
3760 	nvm->ops.release(hw);
3761 
3762 	return 0;
3763 }
3764 
3765 /**
3766  *  e1000_update_nvm_checksum_spt - Update the checksum for NVM
3767  *  @hw: pointer to the HW structure
3768  *
3769  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3770  *  which writes the checksum to the shadow ram.  The changes in the shadow
3771  *  ram are then committed to the EEPROM by processing each bank at a time
3772  *  checking for the modified bit and writing only the pending changes.
3773  *  After a successful commit, the shadow ram is cleared and is ready for
3774  *  future writes.
3775  **/
3776 static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
3777 {
3778 	struct e1000_nvm_info *nvm = &hw->nvm;
3779 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3780 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3781 	s32 ret_val;
3782 	u32 dword = 0;
3783 
3784 	ret_val = e1000e_update_nvm_checksum_generic(hw);
3785 	if (ret_val)
3786 		goto out;
3787 
3788 	if (nvm->type != e1000_nvm_flash_sw)
3789 		goto out;
3790 
3791 	nvm->ops.acquire(hw);
3792 
3793 	/* We're writing to the opposite bank so if we're on bank 1,
3794 	 * write to bank 0 etc.  We also need to erase the segment that
3795 	 * is going to be written
3796 	 */
3797 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3798 	if (ret_val) {
3799 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3800 		bank = 0;
3801 	}
3802 
3803 	if (bank == 0) {
3804 		new_bank_offset = nvm->flash_bank_size;
3805 		old_bank_offset = 0;
3806 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3807 		if (ret_val)
3808 			goto release;
3809 	} else {
3810 		old_bank_offset = nvm->flash_bank_size;
3811 		new_bank_offset = 0;
3812 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3813 		if (ret_val)
3814 			goto release;
3815 	}
3816 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) {
3817 		/* Determine whether to write the value stored
3818 		 * in the other NVM bank or a modified value stored
3819 		 * in the shadow RAM
3820 		 */
3821 		ret_val = e1000_read_flash_dword_ich8lan(hw,
3822 							 i + old_bank_offset,
3823 							 &dword);
3824 
3825 		if (dev_spec->shadow_ram[i].modified) {
3826 			dword &= 0xffff0000;
3827 			dword |= (dev_spec->shadow_ram[i].value & 0xffff);
3828 		}
3829 		if (dev_spec->shadow_ram[i + 1].modified) {
3830 			dword &= 0x0000ffff;
3831 			dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
3832 				  << 16);
3833 		}
3834 		if (ret_val)
3835 			break;
3836 
3837 		/* If the word is 0x13, then make sure the signature bits
3838 		 * (15:14) are 11b until the commit has completed.
3839 		 * This will allow us to write 10b which indicates the
3840 		 * signature is valid.  We want to do this after the write
3841 		 * has completed so that we don't mark the segment valid
3842 		 * while the write is still in progress
3843 		 */
3844 		if (i == E1000_ICH_NVM_SIG_WORD - 1)
3845 			dword |= E1000_ICH_NVM_SIG_MASK << 16;
3846 
3847 		/* Convert offset to bytes. */
3848 		act_offset = (i + new_bank_offset) << 1;
3849 
3850 		usleep_range(100, 200);
3851 
3852 		/* Write the data to the new bank. Offset in words */
3853 		act_offset = i + new_bank_offset;
3854 		ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
3855 								dword);
3856 		if (ret_val)
3857 			break;
3858 	}
3859 
3860 	/* Don't bother writing the segment valid bits if sector
3861 	 * programming failed.
3862 	 */
3863 	if (ret_val) {
3864 		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3865 		e_dbg("Flash commit failed.\n");
3866 		goto release;
3867 	}
3868 
3869 	/* Finally validate the new segment by setting bit 15:14
3870 	 * to 10b in word 0x13 , this can be done without an
3871 	 * erase as well since these bits are 11 to start with
3872 	 * and we need to change bit 14 to 0b
3873 	 */
3874 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3875 
3876 	/*offset in words but we read dword */
3877 	--act_offset;
3878 	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3879 
3880 	if (ret_val)
3881 		goto release;
3882 
3883 	dword &= 0xBFFFFFFF;
3884 	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3885 
3886 	if (ret_val)
3887 		goto release;
3888 
3889 	/* offset in words but we read dword */
3890 	act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
3891 	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3892 
3893 	if (ret_val)
3894 		goto release;
3895 
3896 	dword &= 0x00FFFFFF;
3897 	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3898 
3899 	if (ret_val)
3900 		goto release;
3901 
3902 	/* Great!  Everything worked, we can now clear the cached entries. */
3903 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3904 		dev_spec->shadow_ram[i].modified = false;
3905 		dev_spec->shadow_ram[i].value = 0xFFFF;
3906 	}
3907 
3908 release:
3909 	nvm->ops.release(hw);
3910 
3911 	/* Reload the EEPROM, or else modifications will not appear
3912 	 * until after the next adapter reset.
3913 	 */
3914 	if (!ret_val) {
3915 		nvm->ops.reload(hw);
3916 		usleep_range(10000, 11000);
3917 	}
3918 
3919 out:
3920 	if (ret_val)
3921 		e_dbg("NVM update error: %d\n", ret_val);
3922 
3923 	return ret_val;
3924 }
3925 
3926 /**
3927  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3928  *  @hw: pointer to the HW structure
3929  *
3930  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3931  *  which writes the checksum to the shadow ram.  The changes in the shadow
3932  *  ram are then committed to the EEPROM by processing each bank at a time
3933  *  checking for the modified bit and writing only the pending changes.
3934  *  After a successful commit, the shadow ram is cleared and is ready for
3935  *  future writes.
3936  **/
3937 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
3938 {
3939 	struct e1000_nvm_info *nvm = &hw->nvm;
3940 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3941 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3942 	s32 ret_val;
3943 	u16 data = 0;
3944 
3945 	ret_val = e1000e_update_nvm_checksum_generic(hw);
3946 	if (ret_val)
3947 		goto out;
3948 
3949 	if (nvm->type != e1000_nvm_flash_sw)
3950 		goto out;
3951 
3952 	nvm->ops.acquire(hw);
3953 
3954 	/* We're writing to the opposite bank so if we're on bank 1,
3955 	 * write to bank 0 etc.  We also need to erase the segment that
3956 	 * is going to be written
3957 	 */
3958 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3959 	if (ret_val) {
3960 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3961 		bank = 0;
3962 	}
3963 
3964 	if (bank == 0) {
3965 		new_bank_offset = nvm->flash_bank_size;
3966 		old_bank_offset = 0;
3967 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3968 		if (ret_val)
3969 			goto release;
3970 	} else {
3971 		old_bank_offset = nvm->flash_bank_size;
3972 		new_bank_offset = 0;
3973 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3974 		if (ret_val)
3975 			goto release;
3976 	}
3977 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3978 		if (dev_spec->shadow_ram[i].modified) {
3979 			data = dev_spec->shadow_ram[i].value;
3980 		} else {
3981 			ret_val = e1000_read_flash_word_ich8lan(hw, i +
3982 								old_bank_offset,
3983 								&data);
3984 			if (ret_val)
3985 				break;
3986 		}
3987 
3988 		/* If the word is 0x13, then make sure the signature bits
3989 		 * (15:14) are 11b until the commit has completed.
3990 		 * This will allow us to write 10b which indicates the
3991 		 * signature is valid.  We want to do this after the write
3992 		 * has completed so that we don't mark the segment valid
3993 		 * while the write is still in progress
3994 		 */
3995 		if (i == E1000_ICH_NVM_SIG_WORD)
3996 			data |= E1000_ICH_NVM_SIG_MASK;
3997 
3998 		/* Convert offset to bytes. */
3999 		act_offset = (i + new_bank_offset) << 1;
4000 
4001 		usleep_range(100, 200);
4002 		/* Write the bytes to the new bank. */
4003 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4004 							       act_offset,
4005 							       (u8)data);
4006 		if (ret_val)
4007 			break;
4008 
4009 		usleep_range(100, 200);
4010 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4011 							       act_offset + 1,
4012 							       (u8)(data >> 8));
4013 		if (ret_val)
4014 			break;
4015 	}
4016 
4017 	/* Don't bother writing the segment valid bits if sector
4018 	 * programming failed.
4019 	 */
4020 	if (ret_val) {
4021 		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
4022 		e_dbg("Flash commit failed.\n");
4023 		goto release;
4024 	}
4025 
4026 	/* Finally validate the new segment by setting bit 15:14
4027 	 * to 10b in word 0x13 , this can be done without an
4028 	 * erase as well since these bits are 11 to start with
4029 	 * and we need to change bit 14 to 0b
4030 	 */
4031 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4032 	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
4033 	if (ret_val)
4034 		goto release;
4035 
4036 	data &= 0xBFFF;
4037 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4038 						       act_offset * 2 + 1,
4039 						       (u8)(data >> 8));
4040 	if (ret_val)
4041 		goto release;
4042 
4043 	/* And invalidate the previously valid segment by setting
4044 	 * its signature word (0x13) high_byte to 0b. This can be
4045 	 * done without an erase because flash erase sets all bits
4046 	 * to 1's. We can write 1's to 0's without an erase
4047 	 */
4048 	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4049 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
4050 	if (ret_val)
4051 		goto release;
4052 
4053 	/* Great!  Everything worked, we can now clear the cached entries. */
4054 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4055 		dev_spec->shadow_ram[i].modified = false;
4056 		dev_spec->shadow_ram[i].value = 0xFFFF;
4057 	}
4058 
4059 release:
4060 	nvm->ops.release(hw);
4061 
4062 	/* Reload the EEPROM, or else modifications will not appear
4063 	 * until after the next adapter reset.
4064 	 */
4065 	if (!ret_val) {
4066 		nvm->ops.reload(hw);
4067 		usleep_range(10000, 11000);
4068 	}
4069 
4070 out:
4071 	if (ret_val)
4072 		e_dbg("NVM update error: %d\n", ret_val);
4073 
4074 	return ret_val;
4075 }
4076 
4077 /**
4078  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4079  *  @hw: pointer to the HW structure
4080  *
4081  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4082  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
4083  *  calculated, in which case we need to calculate the checksum and set bit 6.
4084  **/
4085 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4086 {
4087 	s32 ret_val;
4088 	u16 data;
4089 	u16 word;
4090 	u16 valid_csum_mask;
4091 
4092 	/* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
4093 	 * the checksum needs to be fixed.  This bit is an indication that
4094 	 * the NVM was prepared by OEM software and did not calculate
4095 	 * the checksum...a likely scenario.
4096 	 */
4097 	switch (hw->mac.type) {
4098 	case e1000_pch_lpt:
4099 	case e1000_pch_spt:
4100 	case e1000_pch_cnp:
4101 	case e1000_pch_tgp:
4102 	case e1000_pch_adp:
4103 	case e1000_pch_mtp:
4104 		word = NVM_COMPAT;
4105 		valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4106 		break;
4107 	default:
4108 		word = NVM_FUTURE_INIT_WORD1;
4109 		valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4110 		break;
4111 	}
4112 
4113 	ret_val = e1000_read_nvm(hw, word, 1, &data);
4114 	if (ret_val)
4115 		return ret_val;
4116 
4117 	if (!(data & valid_csum_mask)) {
4118 		data |= valid_csum_mask;
4119 		ret_val = e1000_write_nvm(hw, word, 1, &data);
4120 		if (ret_val)
4121 			return ret_val;
4122 		ret_val = e1000e_update_nvm_checksum(hw);
4123 		if (ret_val)
4124 			return ret_val;
4125 	}
4126 
4127 	return e1000e_validate_nvm_checksum_generic(hw);
4128 }
4129 
4130 /**
4131  *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
4132  *  @hw: pointer to the HW structure
4133  *
4134  *  To prevent malicious write/erase of the NVM, set it to be read-only
4135  *  so that the hardware ignores all write/erase cycles of the NVM via
4136  *  the flash control registers.  The shadow-ram copy of the NVM will
4137  *  still be updated, however any updates to this copy will not stick
4138  *  across driver reloads.
4139  **/
4140 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
4141 {
4142 	struct e1000_nvm_info *nvm = &hw->nvm;
4143 	union ich8_flash_protected_range pr0;
4144 	union ich8_hws_flash_status hsfsts;
4145 	u32 gfpreg;
4146 
4147 	nvm->ops.acquire(hw);
4148 
4149 	gfpreg = er32flash(ICH_FLASH_GFPREG);
4150 
4151 	/* Write-protect GbE Sector of NVM */
4152 	pr0.regval = er32flash(ICH_FLASH_PR0);
4153 	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
4154 	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
4155 	pr0.range.wpe = true;
4156 	ew32flash(ICH_FLASH_PR0, pr0.regval);
4157 
4158 	/* Lock down a subset of GbE Flash Control Registers, e.g.
4159 	 * PR0 to prevent the write-protection from being lifted.
4160 	 * Once FLOCKDN is set, the registers protected by it cannot
4161 	 * be written until FLOCKDN is cleared by a hardware reset.
4162 	 */
4163 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4164 	hsfsts.hsf_status.flockdn = true;
4165 	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
4166 
4167 	nvm->ops.release(hw);
4168 }
4169 
4170 /**
4171  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4172  *  @hw: pointer to the HW structure
4173  *  @offset: The offset (in bytes) of the byte/word to read.
4174  *  @size: Size of data to read, 1=byte 2=word
4175  *  @data: The byte(s) to write to the NVM.
4176  *
4177  *  Writes one/two bytes to the NVM using the flash access registers.
4178  **/
4179 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4180 					  u8 size, u16 data)
4181 {
4182 	union ich8_hws_flash_status hsfsts;
4183 	union ich8_hws_flash_ctrl hsflctl;
4184 	u32 flash_linear_addr;
4185 	u32 flash_data = 0;
4186 	s32 ret_val;
4187 	u8 count = 0;
4188 
4189 	if (hw->mac.type >= e1000_pch_spt) {
4190 		if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4191 			return -E1000_ERR_NVM;
4192 	} else {
4193 		if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4194 			return -E1000_ERR_NVM;
4195 	}
4196 
4197 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4198 			     hw->nvm.flash_base_addr);
4199 
4200 	do {
4201 		udelay(1);
4202 		/* Steps */
4203 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4204 		if (ret_val)
4205 			break;
4206 		/* In SPT, This register is in Lan memory space, not
4207 		 * flash.  Therefore, only 32 bit access is supported
4208 		 */
4209 		if (hw->mac.type >= e1000_pch_spt)
4210 			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
4211 		else
4212 			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4213 
4214 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4215 		hsflctl.hsf_ctrl.fldbcount = size - 1;
4216 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4217 		/* In SPT, This register is in Lan memory space,
4218 		 * not flash.  Therefore, only 32 bit access is
4219 		 * supported
4220 		 */
4221 		if (hw->mac.type >= e1000_pch_spt)
4222 			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4223 		else
4224 			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4225 
4226 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4227 
4228 		if (size == 1)
4229 			flash_data = (u32)data & 0x00FF;
4230 		else
4231 			flash_data = (u32)data;
4232 
4233 		ew32flash(ICH_FLASH_FDATA0, flash_data);
4234 
4235 		/* check if FCERR is set to 1 , if set to 1, clear it
4236 		 * and try the whole sequence a few more times else done
4237 		 */
4238 		ret_val =
4239 		    e1000_flash_cycle_ich8lan(hw,
4240 					      ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4241 		if (!ret_val)
4242 			break;
4243 
4244 		/* If we're here, then things are most likely
4245 		 * completely hosed, but if the error condition
4246 		 * is detected, it won't hurt to give it another
4247 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4248 		 */
4249 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4250 		if (hsfsts.hsf_status.flcerr)
4251 			/* Repeat for some time before giving up. */
4252 			continue;
4253 		if (!hsfsts.hsf_status.flcdone) {
4254 			e_dbg("Timeout error - flash cycle did not complete.\n");
4255 			break;
4256 		}
4257 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4258 
4259 	return ret_val;
4260 }
4261 
4262 /**
4263 *  e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4264 *  @hw: pointer to the HW structure
4265 *  @offset: The offset (in bytes) of the dwords to read.
4266 *  @data: The 4 bytes to write to the NVM.
4267 *
4268 *  Writes one/two/four bytes to the NVM using the flash access registers.
4269 **/
4270 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4271 					    u32 data)
4272 {
4273 	union ich8_hws_flash_status hsfsts;
4274 	union ich8_hws_flash_ctrl hsflctl;
4275 	u32 flash_linear_addr;
4276 	s32 ret_val;
4277 	u8 count = 0;
4278 
4279 	if (hw->mac.type >= e1000_pch_spt) {
4280 		if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4281 			return -E1000_ERR_NVM;
4282 	}
4283 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4284 			     hw->nvm.flash_base_addr);
4285 	do {
4286 		udelay(1);
4287 		/* Steps */
4288 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4289 		if (ret_val)
4290 			break;
4291 
4292 		/* In SPT, This register is in Lan memory space, not
4293 		 * flash.  Therefore, only 32 bit access is supported
4294 		 */
4295 		if (hw->mac.type >= e1000_pch_spt)
4296 			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS)
4297 			    >> 16;
4298 		else
4299 			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4300 
4301 		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4302 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4303 
4304 		/* In SPT, This register is in Lan memory space,
4305 		 * not flash.  Therefore, only 32 bit access is
4306 		 * supported
4307 		 */
4308 		if (hw->mac.type >= e1000_pch_spt)
4309 			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4310 		else
4311 			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4312 
4313 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4314 
4315 		ew32flash(ICH_FLASH_FDATA0, data);
4316 
4317 		/* check if FCERR is set to 1 , if set to 1, clear it
4318 		 * and try the whole sequence a few more times else done
4319 		 */
4320 		ret_val =
4321 		   e1000_flash_cycle_ich8lan(hw,
4322 					     ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4323 
4324 		if (!ret_val)
4325 			break;
4326 
4327 		/* If we're here, then things are most likely
4328 		 * completely hosed, but if the error condition
4329 		 * is detected, it won't hurt to give it another
4330 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4331 		 */
4332 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4333 
4334 		if (hsfsts.hsf_status.flcerr)
4335 			/* Repeat for some time before giving up. */
4336 			continue;
4337 		if (!hsfsts.hsf_status.flcdone) {
4338 			e_dbg("Timeout error - flash cycle did not complete.\n");
4339 			break;
4340 		}
4341 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4342 
4343 	return ret_val;
4344 }
4345 
4346 /**
4347  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4348  *  @hw: pointer to the HW structure
4349  *  @offset: The index of the byte to read.
4350  *  @data: The byte to write to the NVM.
4351  *
4352  *  Writes a single byte to the NVM using the flash access registers.
4353  **/
4354 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4355 					  u8 data)
4356 {
4357 	u16 word = (u16)data;
4358 
4359 	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4360 }
4361 
4362 /**
4363 *  e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4364 *  @hw: pointer to the HW structure
4365 *  @offset: The offset of the word to write.
4366 *  @dword: The dword to write to the NVM.
4367 *
4368 *  Writes a single dword to the NVM using the flash access registers.
4369 *  Goes through a retry algorithm before giving up.
4370 **/
4371 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4372 						 u32 offset, u32 dword)
4373 {
4374 	s32 ret_val;
4375 	u16 program_retries;
4376 
4377 	/* Must convert word offset into bytes. */
4378 	offset <<= 1;
4379 	ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4380 
4381 	if (!ret_val)
4382 		return ret_val;
4383 	for (program_retries = 0; program_retries < 100; program_retries++) {
4384 		e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset);
4385 		usleep_range(100, 200);
4386 		ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4387 		if (!ret_val)
4388 			break;
4389 	}
4390 	if (program_retries == 100)
4391 		return -E1000_ERR_NVM;
4392 
4393 	return 0;
4394 }
4395 
4396 /**
4397  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4398  *  @hw: pointer to the HW structure
4399  *  @offset: The offset of the byte to write.
4400  *  @byte: The byte to write to the NVM.
4401  *
4402  *  Writes a single byte to the NVM using the flash access registers.
4403  *  Goes through a retry algorithm before giving up.
4404  **/
4405 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4406 						u32 offset, u8 byte)
4407 {
4408 	s32 ret_val;
4409 	u16 program_retries;
4410 
4411 	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4412 	if (!ret_val)
4413 		return ret_val;
4414 
4415 	for (program_retries = 0; program_retries < 100; program_retries++) {
4416 		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
4417 		usleep_range(100, 200);
4418 		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4419 		if (!ret_val)
4420 			break;
4421 	}
4422 	if (program_retries == 100)
4423 		return -E1000_ERR_NVM;
4424 
4425 	return 0;
4426 }
4427 
4428 /**
4429  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4430  *  @hw: pointer to the HW structure
4431  *  @bank: 0 for first bank, 1 for second bank, etc.
4432  *
4433  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4434  *  bank N is 4096 * N + flash_reg_addr.
4435  **/
4436 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4437 {
4438 	struct e1000_nvm_info *nvm = &hw->nvm;
4439 	union ich8_hws_flash_status hsfsts;
4440 	union ich8_hws_flash_ctrl hsflctl;
4441 	u32 flash_linear_addr;
4442 	/* bank size is in 16bit words - adjust to bytes */
4443 	u32 flash_bank_size = nvm->flash_bank_size * 2;
4444 	s32 ret_val;
4445 	s32 count = 0;
4446 	s32 j, iteration, sector_size;
4447 
4448 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4449 
4450 	/* Determine HW Sector size: Read BERASE bits of hw flash status
4451 	 * register
4452 	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
4453 	 *     consecutive sectors.  The start index for the nth Hw sector
4454 	 *     can be calculated as = bank * 4096 + n * 256
4455 	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4456 	 *     The start index for the nth Hw sector can be calculated
4457 	 *     as = bank * 4096
4458 	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4459 	 *     (ich9 only, otherwise error condition)
4460 	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4461 	 */
4462 	switch (hsfsts.hsf_status.berasesz) {
4463 	case 0:
4464 		/* Hw sector size 256 */
4465 		sector_size = ICH_FLASH_SEG_SIZE_256;
4466 		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4467 		break;
4468 	case 1:
4469 		sector_size = ICH_FLASH_SEG_SIZE_4K;
4470 		iteration = 1;
4471 		break;
4472 	case 2:
4473 		sector_size = ICH_FLASH_SEG_SIZE_8K;
4474 		iteration = 1;
4475 		break;
4476 	case 3:
4477 		sector_size = ICH_FLASH_SEG_SIZE_64K;
4478 		iteration = 1;
4479 		break;
4480 	default:
4481 		return -E1000_ERR_NVM;
4482 	}
4483 
4484 	/* Start with the base address, then add the sector offset. */
4485 	flash_linear_addr = hw->nvm.flash_base_addr;
4486 	flash_linear_addr += (bank) ? flash_bank_size : 0;
4487 
4488 	for (j = 0; j < iteration; j++) {
4489 		do {
4490 			u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4491 
4492 			/* Steps */
4493 			ret_val = e1000_flash_cycle_init_ich8lan(hw);
4494 			if (ret_val)
4495 				return ret_val;
4496 
4497 			/* Write a value 11 (block Erase) in Flash
4498 			 * Cycle field in hw flash control
4499 			 */
4500 			if (hw->mac.type >= e1000_pch_spt)
4501 				hsflctl.regval =
4502 				    er32flash(ICH_FLASH_HSFSTS) >> 16;
4503 			else
4504 				hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4505 
4506 			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4507 			if (hw->mac.type >= e1000_pch_spt)
4508 				ew32flash(ICH_FLASH_HSFSTS,
4509 					  hsflctl.regval << 16);
4510 			else
4511 				ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4512 
4513 			/* Write the last 24 bits of an index within the
4514 			 * block into Flash Linear address field in Flash
4515 			 * Address.
4516 			 */
4517 			flash_linear_addr += (j * sector_size);
4518 			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4519 
4520 			ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4521 			if (!ret_val)
4522 				break;
4523 
4524 			/* Check if FCERR is set to 1.  If 1,
4525 			 * clear it and try the whole sequence
4526 			 * a few more times else Done
4527 			 */
4528 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4529 			if (hsfsts.hsf_status.flcerr)
4530 				/* repeat for some time before giving up */
4531 				continue;
4532 			else if (!hsfsts.hsf_status.flcdone)
4533 				return ret_val;
4534 		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4535 	}
4536 
4537 	return 0;
4538 }
4539 
4540 /**
4541  *  e1000_valid_led_default_ich8lan - Set the default LED settings
4542  *  @hw: pointer to the HW structure
4543  *  @data: Pointer to the LED settings
4544  *
4545  *  Reads the LED default settings from the NVM to data.  If the NVM LED
4546  *  settings is all 0's or F's, set the LED default to a valid LED default
4547  *  setting.
4548  **/
4549 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4550 {
4551 	s32 ret_val;
4552 
4553 	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
4554 	if (ret_val) {
4555 		e_dbg("NVM Read Error\n");
4556 		return ret_val;
4557 	}
4558 
4559 	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4560 		*data = ID_LED_DEFAULT_ICH8LAN;
4561 
4562 	return 0;
4563 }
4564 
4565 /**
4566  *  e1000_id_led_init_pchlan - store LED configurations
4567  *  @hw: pointer to the HW structure
4568  *
4569  *  PCH does not control LEDs via the LEDCTL register, rather it uses
4570  *  the PHY LED configuration register.
4571  *
4572  *  PCH also does not have an "always on" or "always off" mode which
4573  *  complicates the ID feature.  Instead of using the "on" mode to indicate
4574  *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
4575  *  use "link_up" mode.  The LEDs will still ID on request if there is no
4576  *  link based on logic in e1000_led_[on|off]_pchlan().
4577  **/
4578 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4579 {
4580 	struct e1000_mac_info *mac = &hw->mac;
4581 	s32 ret_val;
4582 	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4583 	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4584 	u16 data, i, temp, shift;
4585 
4586 	/* Get default ID LED modes */
4587 	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4588 	if (ret_val)
4589 		return ret_val;
4590 
4591 	mac->ledctl_default = er32(LEDCTL);
4592 	mac->ledctl_mode1 = mac->ledctl_default;
4593 	mac->ledctl_mode2 = mac->ledctl_default;
4594 
4595 	for (i = 0; i < 4; i++) {
4596 		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4597 		shift = (i * 5);
4598 		switch (temp) {
4599 		case ID_LED_ON1_DEF2:
4600 		case ID_LED_ON1_ON2:
4601 		case ID_LED_ON1_OFF2:
4602 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4603 			mac->ledctl_mode1 |= (ledctl_on << shift);
4604 			break;
4605 		case ID_LED_OFF1_DEF2:
4606 		case ID_LED_OFF1_ON2:
4607 		case ID_LED_OFF1_OFF2:
4608 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4609 			mac->ledctl_mode1 |= (ledctl_off << shift);
4610 			break;
4611 		default:
4612 			/* Do nothing */
4613 			break;
4614 		}
4615 		switch (temp) {
4616 		case ID_LED_DEF1_ON2:
4617 		case ID_LED_ON1_ON2:
4618 		case ID_LED_OFF1_ON2:
4619 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4620 			mac->ledctl_mode2 |= (ledctl_on << shift);
4621 			break;
4622 		case ID_LED_DEF1_OFF2:
4623 		case ID_LED_ON1_OFF2:
4624 		case ID_LED_OFF1_OFF2:
4625 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4626 			mac->ledctl_mode2 |= (ledctl_off << shift);
4627 			break;
4628 		default:
4629 			/* Do nothing */
4630 			break;
4631 		}
4632 	}
4633 
4634 	return 0;
4635 }
4636 
4637 /**
4638  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4639  *  @hw: pointer to the HW structure
4640  *
4641  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4642  *  register, so the the bus width is hard coded.
4643  **/
4644 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4645 {
4646 	struct e1000_bus_info *bus = &hw->bus;
4647 	s32 ret_val;
4648 
4649 	ret_val = e1000e_get_bus_info_pcie(hw);
4650 
4651 	/* ICH devices are "PCI Express"-ish.  They have
4652 	 * a configuration space, but do not contain
4653 	 * PCI Express Capability registers, so bus width
4654 	 * must be hardcoded.
4655 	 */
4656 	if (bus->width == e1000_bus_width_unknown)
4657 		bus->width = e1000_bus_width_pcie_x1;
4658 
4659 	return ret_val;
4660 }
4661 
4662 /**
4663  *  e1000_reset_hw_ich8lan - Reset the hardware
4664  *  @hw: pointer to the HW structure
4665  *
4666  *  Does a full reset of the hardware which includes a reset of the PHY and
4667  *  MAC.
4668  **/
4669 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4670 {
4671 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4672 	u16 kum_cfg;
4673 	u32 ctrl, reg;
4674 	s32 ret_val;
4675 
4676 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
4677 	 * on the last TLP read/write transaction when MAC is reset.
4678 	 */
4679 	ret_val = e1000e_disable_pcie_master(hw);
4680 	if (ret_val)
4681 		e_dbg("PCI-E Master disable polling has failed.\n");
4682 
4683 	e_dbg("Masking off all interrupts\n");
4684 	ew32(IMC, 0xffffffff);
4685 
4686 	/* Disable the Transmit and Receive units.  Then delay to allow
4687 	 * any pending transactions to complete before we hit the MAC
4688 	 * with the global reset.
4689 	 */
4690 	ew32(RCTL, 0);
4691 	ew32(TCTL, E1000_TCTL_PSP);
4692 	e1e_flush();
4693 
4694 	usleep_range(10000, 11000);
4695 
4696 	/* Workaround for ICH8 bit corruption issue in FIFO memory */
4697 	if (hw->mac.type == e1000_ich8lan) {
4698 		/* Set Tx and Rx buffer allocation to 8k apiece. */
4699 		ew32(PBA, E1000_PBA_8K);
4700 		/* Set Packet Buffer Size to 16k. */
4701 		ew32(PBS, E1000_PBS_16K);
4702 	}
4703 
4704 	if (hw->mac.type == e1000_pchlan) {
4705 		/* Save the NVM K1 bit setting */
4706 		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4707 		if (ret_val)
4708 			return ret_val;
4709 
4710 		if (kum_cfg & E1000_NVM_K1_ENABLE)
4711 			dev_spec->nvm_k1_enabled = true;
4712 		else
4713 			dev_spec->nvm_k1_enabled = false;
4714 	}
4715 
4716 	ctrl = er32(CTRL);
4717 
4718 	if (!hw->phy.ops.check_reset_block(hw)) {
4719 		/* Full-chip reset requires MAC and PHY reset at the same
4720 		 * time to make sure the interface between MAC and the
4721 		 * external PHY is reset.
4722 		 */
4723 		ctrl |= E1000_CTRL_PHY_RST;
4724 
4725 		/* Gate automatic PHY configuration by hardware on
4726 		 * non-managed 82579
4727 		 */
4728 		if ((hw->mac.type == e1000_pch2lan) &&
4729 		    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
4730 			e1000_gate_hw_phy_config_ich8lan(hw, true);
4731 	}
4732 	ret_val = e1000_acquire_swflag_ich8lan(hw);
4733 	e_dbg("Issuing a global reset to ich8lan\n");
4734 	ew32(CTRL, (ctrl | E1000_CTRL_RST));
4735 	/* cannot issue a flush here because it hangs the hardware */
4736 	msleep(20);
4737 
4738 	/* Set Phy Config Counter to 50msec */
4739 	if (hw->mac.type == e1000_pch2lan) {
4740 		reg = er32(FEXTNVM3);
4741 		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4742 		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4743 		ew32(FEXTNVM3, reg);
4744 	}
4745 
4746 	if (!ret_val)
4747 		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
4748 
4749 	if (ctrl & E1000_CTRL_PHY_RST) {
4750 		ret_val = hw->phy.ops.get_cfg_done(hw);
4751 		if (ret_val)
4752 			return ret_val;
4753 
4754 		ret_val = e1000_post_phy_reset_ich8lan(hw);
4755 		if (ret_val)
4756 			return ret_val;
4757 	}
4758 
4759 	/* For PCH, this write will make sure that any noise
4760 	 * will be detected as a CRC error and be dropped rather than show up
4761 	 * as a bad packet to the DMA engine.
4762 	 */
4763 	if (hw->mac.type == e1000_pchlan)
4764 		ew32(CRC_OFFSET, 0x65656565);
4765 
4766 	ew32(IMC, 0xffffffff);
4767 	er32(ICR);
4768 
4769 	reg = er32(KABGTXD);
4770 	reg |= E1000_KABGTXD_BGSQLBIAS;
4771 	ew32(KABGTXD, reg);
4772 
4773 	return 0;
4774 }
4775 
4776 /**
4777  *  e1000_init_hw_ich8lan - Initialize the hardware
4778  *  @hw: pointer to the HW structure
4779  *
4780  *  Prepares the hardware for transmit and receive by doing the following:
4781  *   - initialize hardware bits
4782  *   - initialize LED identification
4783  *   - setup receive address registers
4784  *   - setup flow control
4785  *   - setup transmit descriptors
4786  *   - clear statistics
4787  **/
4788 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4789 {
4790 	struct e1000_mac_info *mac = &hw->mac;
4791 	u32 ctrl_ext, txdctl, snoop;
4792 	s32 ret_val;
4793 	u16 i;
4794 
4795 	e1000_initialize_hw_bits_ich8lan(hw);
4796 
4797 	/* Initialize identification LED */
4798 	ret_val = mac->ops.id_led_init(hw);
4799 	/* An error is not fatal and we should not stop init due to this */
4800 	if (ret_val)
4801 		e_dbg("Error initializing identification LED\n");
4802 
4803 	/* Setup the receive address. */
4804 	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
4805 
4806 	/* Zero out the Multicast HASH table */
4807 	e_dbg("Zeroing the MTA\n");
4808 	for (i = 0; i < mac->mta_reg_count; i++)
4809 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4810 
4811 	/* The 82578 Rx buffer will stall if wakeup is enabled in host and
4812 	 * the ME.  Disable wakeup by clearing the host wakeup bit.
4813 	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
4814 	 */
4815 	if (hw->phy.type == e1000_phy_82578) {
4816 		e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4817 		i &= ~BM_WUC_HOST_WU_BIT;
4818 		e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4819 		ret_val = e1000_phy_hw_reset_ich8lan(hw);
4820 		if (ret_val)
4821 			return ret_val;
4822 	}
4823 
4824 	/* Setup link and flow control */
4825 	ret_val = mac->ops.setup_link(hw);
4826 
4827 	/* Set the transmit descriptor write-back policy for both queues */
4828 	txdctl = er32(TXDCTL(0));
4829 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4830 		  E1000_TXDCTL_FULL_TX_DESC_WB);
4831 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4832 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4833 	ew32(TXDCTL(0), txdctl);
4834 	txdctl = er32(TXDCTL(1));
4835 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4836 		  E1000_TXDCTL_FULL_TX_DESC_WB);
4837 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4838 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4839 	ew32(TXDCTL(1), txdctl);
4840 
4841 	/* ICH8 has opposite polarity of no_snoop bits.
4842 	 * By default, we should use snoop behavior.
4843 	 */
4844 	if (mac->type == e1000_ich8lan)
4845 		snoop = PCIE_ICH8_SNOOP_ALL;
4846 	else
4847 		snoop = (u32)~(PCIE_NO_SNOOP_ALL);
4848 	e1000e_set_pcie_no_snoop(hw, snoop);
4849 
4850 	ctrl_ext = er32(CTRL_EXT);
4851 	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4852 	ew32(CTRL_EXT, ctrl_ext);
4853 
4854 	/* Clear all of the statistics registers (clear on read).  It is
4855 	 * important that we do this after we have tried to establish link
4856 	 * because the symbol error count will increment wildly if there
4857 	 * is no link.
4858 	 */
4859 	e1000_clear_hw_cntrs_ich8lan(hw);
4860 
4861 	return ret_val;
4862 }
4863 
4864 /**
4865  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4866  *  @hw: pointer to the HW structure
4867  *
4868  *  Sets/Clears required hardware bits necessary for correctly setting up the
4869  *  hardware for transmit and receive.
4870  **/
4871 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4872 {
4873 	u32 reg;
4874 
4875 	/* Extended Device Control */
4876 	reg = er32(CTRL_EXT);
4877 	reg |= BIT(22);
4878 	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
4879 	if (hw->mac.type >= e1000_pchlan)
4880 		reg |= E1000_CTRL_EXT_PHYPDEN;
4881 	ew32(CTRL_EXT, reg);
4882 
4883 	/* Transmit Descriptor Control 0 */
4884 	reg = er32(TXDCTL(0));
4885 	reg |= BIT(22);
4886 	ew32(TXDCTL(0), reg);
4887 
4888 	/* Transmit Descriptor Control 1 */
4889 	reg = er32(TXDCTL(1));
4890 	reg |= BIT(22);
4891 	ew32(TXDCTL(1), reg);
4892 
4893 	/* Transmit Arbitration Control 0 */
4894 	reg = er32(TARC(0));
4895 	if (hw->mac.type == e1000_ich8lan)
4896 		reg |= BIT(28) | BIT(29);
4897 	reg |= BIT(23) | BIT(24) | BIT(26) | BIT(27);
4898 	ew32(TARC(0), reg);
4899 
4900 	/* Transmit Arbitration Control 1 */
4901 	reg = er32(TARC(1));
4902 	if (er32(TCTL) & E1000_TCTL_MULR)
4903 		reg &= ~BIT(28);
4904 	else
4905 		reg |= BIT(28);
4906 	reg |= BIT(24) | BIT(26) | BIT(30);
4907 	ew32(TARC(1), reg);
4908 
4909 	/* Device Status */
4910 	if (hw->mac.type == e1000_ich8lan) {
4911 		reg = er32(STATUS);
4912 		reg &= ~BIT(31);
4913 		ew32(STATUS, reg);
4914 	}
4915 
4916 	/* work-around descriptor data corruption issue during nfs v2 udp
4917 	 * traffic, just disable the nfs filtering capability
4918 	 */
4919 	reg = er32(RFCTL);
4920 	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
4921 
4922 	/* Disable IPv6 extension header parsing because some malformed
4923 	 * IPv6 headers can hang the Rx.
4924 	 */
4925 	if (hw->mac.type == e1000_ich8lan)
4926 		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
4927 	ew32(RFCTL, reg);
4928 
4929 	/* Enable ECC on Lynxpoint */
4930 	if (hw->mac.type >= e1000_pch_lpt) {
4931 		reg = er32(PBECCSTS);
4932 		reg |= E1000_PBECCSTS_ECC_ENABLE;
4933 		ew32(PBECCSTS, reg);
4934 
4935 		reg = er32(CTRL);
4936 		reg |= E1000_CTRL_MEHE;
4937 		ew32(CTRL, reg);
4938 	}
4939 }
4940 
4941 /**
4942  *  e1000_setup_link_ich8lan - Setup flow control and link settings
4943  *  @hw: pointer to the HW structure
4944  *
4945  *  Determines which flow control settings to use, then configures flow
4946  *  control.  Calls the appropriate media-specific link configuration
4947  *  function.  Assuming the adapter has a valid link partner, a valid link
4948  *  should be established.  Assumes the hardware has previously been reset
4949  *  and the transmitter and receiver are not enabled.
4950  **/
4951 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
4952 {
4953 	s32 ret_val;
4954 
4955 	if (hw->phy.ops.check_reset_block(hw))
4956 		return 0;
4957 
4958 	/* ICH parts do not have a word in the NVM to determine
4959 	 * the default flow control setting, so we explicitly
4960 	 * set it to full.
4961 	 */
4962 	if (hw->fc.requested_mode == e1000_fc_default) {
4963 		/* Workaround h/w hang when Tx flow control enabled */
4964 		if (hw->mac.type == e1000_pchlan)
4965 			hw->fc.requested_mode = e1000_fc_rx_pause;
4966 		else
4967 			hw->fc.requested_mode = e1000_fc_full;
4968 	}
4969 
4970 	/* Save off the requested flow control mode for use later.  Depending
4971 	 * on the link partner's capabilities, we may or may not use this mode.
4972 	 */
4973 	hw->fc.current_mode = hw->fc.requested_mode;
4974 
4975 	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
4976 
4977 	/* Continue to configure the copper link. */
4978 	ret_val = hw->mac.ops.setup_physical_interface(hw);
4979 	if (ret_val)
4980 		return ret_val;
4981 
4982 	ew32(FCTTV, hw->fc.pause_time);
4983 	if ((hw->phy.type == e1000_phy_82578) ||
4984 	    (hw->phy.type == e1000_phy_82579) ||
4985 	    (hw->phy.type == e1000_phy_i217) ||
4986 	    (hw->phy.type == e1000_phy_82577)) {
4987 		ew32(FCRTV_PCH, hw->fc.refresh_time);
4988 
4989 		ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
4990 				   hw->fc.pause_time);
4991 		if (ret_val)
4992 			return ret_val;
4993 	}
4994 
4995 	return e1000e_set_fc_watermarks(hw);
4996 }
4997 
4998 /**
4999  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
5000  *  @hw: pointer to the HW structure
5001  *
5002  *  Configures the kumeran interface to the PHY to wait the appropriate time
5003  *  when polling the PHY, then call the generic setup_copper_link to finish
5004  *  configuring the copper link.
5005  **/
5006 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
5007 {
5008 	u32 ctrl;
5009 	s32 ret_val;
5010 	u16 reg_data;
5011 
5012 	ctrl = er32(CTRL);
5013 	ctrl |= E1000_CTRL_SLU;
5014 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5015 	ew32(CTRL, ctrl);
5016 
5017 	/* Set the mac to wait the maximum time between each iteration
5018 	 * and increase the max iterations when polling the phy;
5019 	 * this fixes erroneous timeouts at 10Mbps.
5020 	 */
5021 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
5022 	if (ret_val)
5023 		return ret_val;
5024 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5025 				       &reg_data);
5026 	if (ret_val)
5027 		return ret_val;
5028 	reg_data |= 0x3F;
5029 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5030 					reg_data);
5031 	if (ret_val)
5032 		return ret_val;
5033 
5034 	switch (hw->phy.type) {
5035 	case e1000_phy_igp_3:
5036 		ret_val = e1000e_copper_link_setup_igp(hw);
5037 		if (ret_val)
5038 			return ret_val;
5039 		break;
5040 	case e1000_phy_bm:
5041 	case e1000_phy_82578:
5042 		ret_val = e1000e_copper_link_setup_m88(hw);
5043 		if (ret_val)
5044 			return ret_val;
5045 		break;
5046 	case e1000_phy_82577:
5047 	case e1000_phy_82579:
5048 		ret_val = e1000_copper_link_setup_82577(hw);
5049 		if (ret_val)
5050 			return ret_val;
5051 		break;
5052 	case e1000_phy_ife:
5053 		ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
5054 		if (ret_val)
5055 			return ret_val;
5056 
5057 		reg_data &= ~IFE_PMC_AUTO_MDIX;
5058 
5059 		switch (hw->phy.mdix) {
5060 		case 1:
5061 			reg_data &= ~IFE_PMC_FORCE_MDIX;
5062 			break;
5063 		case 2:
5064 			reg_data |= IFE_PMC_FORCE_MDIX;
5065 			break;
5066 		case 0:
5067 		default:
5068 			reg_data |= IFE_PMC_AUTO_MDIX;
5069 			break;
5070 		}
5071 		ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
5072 		if (ret_val)
5073 			return ret_val;
5074 		break;
5075 	default:
5076 		break;
5077 	}
5078 
5079 	return e1000e_setup_copper_link(hw);
5080 }
5081 
5082 /**
5083  *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5084  *  @hw: pointer to the HW structure
5085  *
5086  *  Calls the PHY specific link setup function and then calls the
5087  *  generic setup_copper_link to finish configuring the link for
5088  *  Lynxpoint PCH devices
5089  **/
5090 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5091 {
5092 	u32 ctrl;
5093 	s32 ret_val;
5094 
5095 	ctrl = er32(CTRL);
5096 	ctrl |= E1000_CTRL_SLU;
5097 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5098 	ew32(CTRL, ctrl);
5099 
5100 	ret_val = e1000_copper_link_setup_82577(hw);
5101 	if (ret_val)
5102 		return ret_val;
5103 
5104 	return e1000e_setup_copper_link(hw);
5105 }
5106 
5107 /**
5108  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5109  *  @hw: pointer to the HW structure
5110  *  @speed: pointer to store current link speed
5111  *  @duplex: pointer to store the current link duplex
5112  *
5113  *  Calls the generic get_speed_and_duplex to retrieve the current link
5114  *  information and then calls the Kumeran lock loss workaround for links at
5115  *  gigabit speeds.
5116  **/
5117 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5118 					  u16 *duplex)
5119 {
5120 	s32 ret_val;
5121 
5122 	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
5123 	if (ret_val)
5124 		return ret_val;
5125 
5126 	if ((hw->mac.type == e1000_ich8lan) &&
5127 	    (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
5128 		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5129 	}
5130 
5131 	return ret_val;
5132 }
5133 
5134 /**
5135  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5136  *  @hw: pointer to the HW structure
5137  *
5138  *  Work-around for 82566 Kumeran PCS lock loss:
5139  *  On link status change (i.e. PCI reset, speed change) and link is up and
5140  *  speed is gigabit-
5141  *    0) if workaround is optionally disabled do nothing
5142  *    1) wait 1ms for Kumeran link to come up
5143  *    2) check Kumeran Diagnostic register PCS lock loss bit
5144  *    3) if not set the link is locked (all is good), otherwise...
5145  *    4) reset the PHY
5146  *    5) repeat up to 10 times
5147  *  Note: this is only called for IGP3 copper when speed is 1gb.
5148  **/
5149 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5150 {
5151 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5152 	u32 phy_ctrl;
5153 	s32 ret_val;
5154 	u16 i, data;
5155 	bool link;
5156 
5157 	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5158 		return 0;
5159 
5160 	/* Make sure link is up before proceeding.  If not just return.
5161 	 * Attempting this while link is negotiating fouled up link
5162 	 * stability
5163 	 */
5164 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
5165 	if (!link)
5166 		return 0;
5167 
5168 	for (i = 0; i < 10; i++) {
5169 		/* read once to clear */
5170 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5171 		if (ret_val)
5172 			return ret_val;
5173 		/* and again to get new status */
5174 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5175 		if (ret_val)
5176 			return ret_val;
5177 
5178 		/* check for PCS lock */
5179 		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5180 			return 0;
5181 
5182 		/* Issue PHY reset */
5183 		e1000_phy_hw_reset(hw);
5184 		mdelay(5);
5185 	}
5186 	/* Disable GigE link negotiation */
5187 	phy_ctrl = er32(PHY_CTRL);
5188 	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5189 		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5190 	ew32(PHY_CTRL, phy_ctrl);
5191 
5192 	/* Call gig speed drop workaround on Gig disable before accessing
5193 	 * any PHY registers
5194 	 */
5195 	e1000e_gig_downshift_workaround_ich8lan(hw);
5196 
5197 	/* unable to acquire PCS lock */
5198 	return -E1000_ERR_PHY;
5199 }
5200 
5201 /**
5202  *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5203  *  @hw: pointer to the HW structure
5204  *  @state: boolean value used to set the current Kumeran workaround state
5205  *
5206  *  If ICH8, set the current Kumeran workaround state (enabled - true
5207  *  /disabled - false).
5208  **/
5209 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5210 						  bool state)
5211 {
5212 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5213 
5214 	if (hw->mac.type != e1000_ich8lan) {
5215 		e_dbg("Workaround applies to ICH8 only.\n");
5216 		return;
5217 	}
5218 
5219 	dev_spec->kmrn_lock_loss_workaround_enabled = state;
5220 }
5221 
5222 /**
5223  *  e1000e_igp3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5224  *  @hw: pointer to the HW structure
5225  *
5226  *  Workaround for 82566 power-down on D3 entry:
5227  *    1) disable gigabit link
5228  *    2) write VR power-down enable
5229  *    3) read it back
5230  *  Continue if successful, else issue LCD reset and repeat
5231  **/
5232 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5233 {
5234 	u32 reg;
5235 	u16 data;
5236 	u8 retry = 0;
5237 
5238 	if (hw->phy.type != e1000_phy_igp_3)
5239 		return;
5240 
5241 	/* Try the workaround twice (if needed) */
5242 	do {
5243 		/* Disable link */
5244 		reg = er32(PHY_CTRL);
5245 		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5246 			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5247 		ew32(PHY_CTRL, reg);
5248 
5249 		/* Call gig speed drop workaround on Gig disable before
5250 		 * accessing any PHY registers
5251 		 */
5252 		if (hw->mac.type == e1000_ich8lan)
5253 			e1000e_gig_downshift_workaround_ich8lan(hw);
5254 
5255 		/* Write VR power-down enable */
5256 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5257 		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5258 		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5259 
5260 		/* Read it back and test */
5261 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5262 		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5263 		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5264 			break;
5265 
5266 		/* Issue PHY reset and repeat at most one more time */
5267 		reg = er32(CTRL);
5268 		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
5269 		retry++;
5270 	} while (retry);
5271 }
5272 
5273 /**
5274  *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5275  *  @hw: pointer to the HW structure
5276  *
5277  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5278  *  LPLU, Gig disable, MDIC PHY reset):
5279  *    1) Set Kumeran Near-end loopback
5280  *    2) Clear Kumeran Near-end loopback
5281  *  Should only be called for ICH8[m] devices with any 1G Phy.
5282  **/
5283 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5284 {
5285 	s32 ret_val;
5286 	u16 reg_data;
5287 
5288 	if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
5289 		return;
5290 
5291 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5292 				       &reg_data);
5293 	if (ret_val)
5294 		return;
5295 	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5296 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5297 					reg_data);
5298 	if (ret_val)
5299 		return;
5300 	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5301 	e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
5302 }
5303 
5304 /**
5305  *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5306  *  @hw: pointer to the HW structure
5307  *
5308  *  During S0 to Sx transition, it is possible the link remains at gig
5309  *  instead of negotiating to a lower speed.  Before going to Sx, set
5310  *  'Gig Disable' to force link speed negotiation to a lower speed based on
5311  *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
5312  *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5313  *  needs to be written.
5314  *  Parts that support (and are linked to a partner which support) EEE in
5315  *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5316  *  than 10Mbps w/o EEE.
5317  **/
5318 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5319 {
5320 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5321 	u32 phy_ctrl;
5322 	s32 ret_val;
5323 
5324 	phy_ctrl = er32(PHY_CTRL);
5325 	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5326 
5327 	if (hw->phy.type == e1000_phy_i217) {
5328 		u16 phy_reg, device_id = hw->adapter->pdev->device;
5329 
5330 		if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5331 		    (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5332 		    (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5333 		    (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5334 		    (hw->mac.type >= e1000_pch_spt)) {
5335 			u32 fextnvm6 = er32(FEXTNVM6);
5336 
5337 			ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5338 		}
5339 
5340 		ret_val = hw->phy.ops.acquire(hw);
5341 		if (ret_val)
5342 			goto out;
5343 
5344 		if (!dev_spec->eee_disable) {
5345 			u16 eee_advert;
5346 
5347 			ret_val =
5348 			    e1000_read_emi_reg_locked(hw,
5349 						      I217_EEE_ADVERTISEMENT,
5350 						      &eee_advert);
5351 			if (ret_val)
5352 				goto release;
5353 
5354 			/* Disable LPLU if both link partners support 100BaseT
5355 			 * EEE and 100Full is advertised on both ends of the
5356 			 * link, and enable Auto Enable LPI since there will
5357 			 * be no driver to enable LPI while in Sx.
5358 			 */
5359 			if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5360 			    (dev_spec->eee_lp_ability &
5361 			     I82579_EEE_100_SUPPORTED) &&
5362 			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5363 				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5364 					      E1000_PHY_CTRL_NOND0A_LPLU);
5365 
5366 				/* Set Auto Enable LPI after link up */
5367 				e1e_rphy_locked(hw,
5368 						I217_LPI_GPIO_CTRL, &phy_reg);
5369 				phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5370 				e1e_wphy_locked(hw,
5371 						I217_LPI_GPIO_CTRL, phy_reg);
5372 			}
5373 		}
5374 
5375 		/* For i217 Intel Rapid Start Technology support,
5376 		 * when the system is going into Sx and no manageability engine
5377 		 * is present, the driver must configure proxy to reset only on
5378 		 * power good.  LPI (Low Power Idle) state must also reset only
5379 		 * on power good, as well as the MTA (Multicast table array).
5380 		 * The SMBus release must also be disabled on LCD reset.
5381 		 */
5382 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5383 			/* Enable proxy to reset only on power good. */
5384 			e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
5385 			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5386 			e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
5387 
5388 			/* Set bit enable LPI (EEE) to reset only on
5389 			 * power good.
5390 			 */
5391 			e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
5392 			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5393 			e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
5394 
5395 			/* Disable the SMB release on LCD reset. */
5396 			e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5397 			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5398 			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5399 		}
5400 
5401 		/* Enable MTA to reset for Intel Rapid Start Technology
5402 		 * Support
5403 		 */
5404 		e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5405 		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5406 		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5407 
5408 release:
5409 		hw->phy.ops.release(hw);
5410 	}
5411 out:
5412 	ew32(PHY_CTRL, phy_ctrl);
5413 
5414 	if (hw->mac.type == e1000_ich8lan)
5415 		e1000e_gig_downshift_workaround_ich8lan(hw);
5416 
5417 	if (hw->mac.type >= e1000_pchlan) {
5418 		e1000_oem_bits_config_ich8lan(hw, false);
5419 
5420 		/* Reset PHY to activate OEM bits on 82577/8 */
5421 		if (hw->mac.type == e1000_pchlan)
5422 			e1000e_phy_hw_reset_generic(hw);
5423 
5424 		ret_val = hw->phy.ops.acquire(hw);
5425 		if (ret_val)
5426 			return;
5427 		e1000_write_smbus_addr(hw);
5428 		hw->phy.ops.release(hw);
5429 	}
5430 }
5431 
5432 /**
5433  *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5434  *  @hw: pointer to the HW structure
5435  *
5436  *  During Sx to S0 transitions on non-managed devices or managed devices
5437  *  on which PHY resets are not blocked, if the PHY registers cannot be
5438  *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
5439  *  the PHY.
5440  *  On i217, setup Intel Rapid Start Technology.
5441  **/
5442 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5443 {
5444 	s32 ret_val;
5445 
5446 	if (hw->mac.type < e1000_pch2lan)
5447 		return;
5448 
5449 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
5450 	if (ret_val) {
5451 		e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
5452 		return;
5453 	}
5454 
5455 	/* For i217 Intel Rapid Start Technology support when the system
5456 	 * is transitioning from Sx and no manageability engine is present
5457 	 * configure SMBus to restore on reset, disable proxy, and enable
5458 	 * the reset on MTA (Multicast table array).
5459 	 */
5460 	if (hw->phy.type == e1000_phy_i217) {
5461 		u16 phy_reg;
5462 
5463 		ret_val = hw->phy.ops.acquire(hw);
5464 		if (ret_val) {
5465 			e_dbg("Failed to setup iRST\n");
5466 			return;
5467 		}
5468 
5469 		/* Clear Auto Enable LPI after link up */
5470 		e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5471 		phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5472 		e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5473 
5474 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5475 			/* Restore clear on SMB if no manageability engine
5476 			 * is present
5477 			 */
5478 			ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5479 			if (ret_val)
5480 				goto release;
5481 			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5482 			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5483 
5484 			/* Disable Proxy */
5485 			e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
5486 		}
5487 		/* Enable reset on MTA */
5488 		ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5489 		if (ret_val)
5490 			goto release;
5491 		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5492 		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5493 release:
5494 		if (ret_val)
5495 			e_dbg("Error %d in resume workarounds\n", ret_val);
5496 		hw->phy.ops.release(hw);
5497 	}
5498 }
5499 
5500 /**
5501  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
5502  *  @hw: pointer to the HW structure
5503  *
5504  *  Return the LED back to the default configuration.
5505  **/
5506 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5507 {
5508 	if (hw->phy.type == e1000_phy_ife)
5509 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
5510 
5511 	ew32(LEDCTL, hw->mac.ledctl_default);
5512 	return 0;
5513 }
5514 
5515 /**
5516  *  e1000_led_on_ich8lan - Turn LEDs on
5517  *  @hw: pointer to the HW structure
5518  *
5519  *  Turn on the LEDs.
5520  **/
5521 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5522 {
5523 	if (hw->phy.type == e1000_phy_ife)
5524 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5525 				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5526 
5527 	ew32(LEDCTL, hw->mac.ledctl_mode2);
5528 	return 0;
5529 }
5530 
5531 /**
5532  *  e1000_led_off_ich8lan - Turn LEDs off
5533  *  @hw: pointer to the HW structure
5534  *
5535  *  Turn off the LEDs.
5536  **/
5537 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5538 {
5539 	if (hw->phy.type == e1000_phy_ife)
5540 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5541 				(IFE_PSCL_PROBE_MODE |
5542 				 IFE_PSCL_PROBE_LEDS_OFF));
5543 
5544 	ew32(LEDCTL, hw->mac.ledctl_mode1);
5545 	return 0;
5546 }
5547 
5548 /**
5549  *  e1000_setup_led_pchlan - Configures SW controllable LED
5550  *  @hw: pointer to the HW structure
5551  *
5552  *  This prepares the SW controllable LED for use.
5553  **/
5554 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5555 {
5556 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
5557 }
5558 
5559 /**
5560  *  e1000_cleanup_led_pchlan - Restore the default LED operation
5561  *  @hw: pointer to the HW structure
5562  *
5563  *  Return the LED back to the default configuration.
5564  **/
5565 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5566 {
5567 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
5568 }
5569 
5570 /**
5571  *  e1000_led_on_pchlan - Turn LEDs on
5572  *  @hw: pointer to the HW structure
5573  *
5574  *  Turn on the LEDs.
5575  **/
5576 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5577 {
5578 	u16 data = (u16)hw->mac.ledctl_mode2;
5579 	u32 i, led;
5580 
5581 	/* If no link, then turn LED on by setting the invert bit
5582 	 * for each LED that's mode is "link_up" in ledctl_mode2.
5583 	 */
5584 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5585 		for (i = 0; i < 3; i++) {
5586 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5587 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5588 			    E1000_LEDCTL_MODE_LINK_UP)
5589 				continue;
5590 			if (led & E1000_PHY_LED0_IVRT)
5591 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5592 			else
5593 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5594 		}
5595 	}
5596 
5597 	return e1e_wphy(hw, HV_LED_CONFIG, data);
5598 }
5599 
5600 /**
5601  *  e1000_led_off_pchlan - Turn LEDs off
5602  *  @hw: pointer to the HW structure
5603  *
5604  *  Turn off the LEDs.
5605  **/
5606 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5607 {
5608 	u16 data = (u16)hw->mac.ledctl_mode1;
5609 	u32 i, led;
5610 
5611 	/* If no link, then turn LED off by clearing the invert bit
5612 	 * for each LED that's mode is "link_up" in ledctl_mode1.
5613 	 */
5614 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5615 		for (i = 0; i < 3; i++) {
5616 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5617 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5618 			    E1000_LEDCTL_MODE_LINK_UP)
5619 				continue;
5620 			if (led & E1000_PHY_LED0_IVRT)
5621 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5622 			else
5623 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5624 		}
5625 	}
5626 
5627 	return e1e_wphy(hw, HV_LED_CONFIG, data);
5628 }
5629 
5630 /**
5631  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5632  *  @hw: pointer to the HW structure
5633  *
5634  *  Read appropriate register for the config done bit for completion status
5635  *  and configure the PHY through s/w for EEPROM-less parts.
5636  *
5637  *  NOTE: some silicon which is EEPROM-less will fail trying to read the
5638  *  config done bit, so only an error is logged and continues.  If we were
5639  *  to return with error, EEPROM-less silicon would not be able to be reset
5640  *  or change link.
5641  **/
5642 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5643 {
5644 	s32 ret_val = 0;
5645 	u32 bank = 0;
5646 	u32 status;
5647 
5648 	e1000e_get_cfg_done_generic(hw);
5649 
5650 	/* Wait for indication from h/w that it has completed basic config */
5651 	if (hw->mac.type >= e1000_ich10lan) {
5652 		e1000_lan_init_done_ich8lan(hw);
5653 	} else {
5654 		ret_val = e1000e_get_auto_rd_done(hw);
5655 		if (ret_val) {
5656 			/* When auto config read does not complete, do not
5657 			 * return with an error. This can happen in situations
5658 			 * where there is no eeprom and prevents getting link.
5659 			 */
5660 			e_dbg("Auto Read Done did not complete\n");
5661 			ret_val = 0;
5662 		}
5663 	}
5664 
5665 	/* Clear PHY Reset Asserted bit */
5666 	status = er32(STATUS);
5667 	if (status & E1000_STATUS_PHYRA)
5668 		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
5669 	else
5670 		e_dbg("PHY Reset Asserted not set - needs delay\n");
5671 
5672 	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
5673 	if (hw->mac.type <= e1000_ich9lan) {
5674 		if (!(er32(EECD) & E1000_EECD_PRES) &&
5675 		    (hw->phy.type == e1000_phy_igp_3)) {
5676 			e1000e_phy_init_script_igp3(hw);
5677 		}
5678 	} else {
5679 		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5680 			/* Maybe we should do a basic PHY config */
5681 			e_dbg("EEPROM not present\n");
5682 			ret_val = -E1000_ERR_CONFIG;
5683 		}
5684 	}
5685 
5686 	return ret_val;
5687 }
5688 
5689 /**
5690  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5691  * @hw: pointer to the HW structure
5692  *
5693  * In the case of a PHY power down to save power, or to turn off link during a
5694  * driver unload, or wake on lan is not enabled, remove the link.
5695  **/
5696 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5697 {
5698 	/* If the management interface is not enabled, then power down */
5699 	if (!(hw->mac.ops.check_mng_mode(hw) ||
5700 	      hw->phy.ops.check_reset_block(hw)))
5701 		e1000_power_down_phy_copper(hw);
5702 }
5703 
5704 /**
5705  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5706  *  @hw: pointer to the HW structure
5707  *
5708  *  Clears hardware counters specific to the silicon family and calls
5709  *  clear_hw_cntrs_generic to clear all general purpose counters.
5710  **/
5711 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5712 {
5713 	u16 phy_data;
5714 	s32 ret_val;
5715 
5716 	e1000e_clear_hw_cntrs_base(hw);
5717 
5718 	er32(ALGNERRC);
5719 	er32(RXERRC);
5720 	er32(TNCRS);
5721 	er32(CEXTERR);
5722 	er32(TSCTC);
5723 	er32(TSCTFC);
5724 
5725 	er32(MGTPRC);
5726 	er32(MGTPDC);
5727 	er32(MGTPTC);
5728 
5729 	er32(IAC);
5730 	er32(ICRXOC);
5731 
5732 	/* Clear PHY statistics registers */
5733 	if ((hw->phy.type == e1000_phy_82578) ||
5734 	    (hw->phy.type == e1000_phy_82579) ||
5735 	    (hw->phy.type == e1000_phy_i217) ||
5736 	    (hw->phy.type == e1000_phy_82577)) {
5737 		ret_val = hw->phy.ops.acquire(hw);
5738 		if (ret_val)
5739 			return;
5740 		ret_val = hw->phy.ops.set_page(hw,
5741 					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
5742 		if (ret_val)
5743 			goto release;
5744 		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5745 		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5746 		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5747 		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5748 		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5749 		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5750 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5751 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5752 		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5753 		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5754 		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5755 		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5756 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5757 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5758 release:
5759 		hw->phy.ops.release(hw);
5760 	}
5761 }
5762 
5763 static const struct e1000_mac_operations ich8_mac_ops = {
5764 	/* check_mng_mode dependent on mac type */
5765 	.check_for_link		= e1000_check_for_copper_link_ich8lan,
5766 	/* cleanup_led dependent on mac type */
5767 	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
5768 	.get_bus_info		= e1000_get_bus_info_ich8lan,
5769 	.set_lan_id		= e1000_set_lan_id_single_port,
5770 	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
5771 	/* led_on dependent on mac type */
5772 	/* led_off dependent on mac type */
5773 	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
5774 	.reset_hw		= e1000_reset_hw_ich8lan,
5775 	.init_hw		= e1000_init_hw_ich8lan,
5776 	.setup_link		= e1000_setup_link_ich8lan,
5777 	.setup_physical_interface = e1000_setup_copper_link_ich8lan,
5778 	/* id_led_init dependent on mac type */
5779 	.config_collision_dist	= e1000e_config_collision_dist_generic,
5780 	.rar_set		= e1000e_rar_set_generic,
5781 	.rar_get_count		= e1000e_rar_get_count_generic,
5782 };
5783 
5784 static const struct e1000_phy_operations ich8_phy_ops = {
5785 	.acquire		= e1000_acquire_swflag_ich8lan,
5786 	.check_reset_block	= e1000_check_reset_block_ich8lan,
5787 	.commit			= NULL,
5788 	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
5789 	.get_cable_length	= e1000e_get_cable_length_igp_2,
5790 	.read_reg		= e1000e_read_phy_reg_igp,
5791 	.release		= e1000_release_swflag_ich8lan,
5792 	.reset			= e1000_phy_hw_reset_ich8lan,
5793 	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
5794 	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
5795 	.write_reg		= e1000e_write_phy_reg_igp,
5796 };
5797 
5798 static const struct e1000_nvm_operations ich8_nvm_ops = {
5799 	.acquire		= e1000_acquire_nvm_ich8lan,
5800 	.read			= e1000_read_nvm_ich8lan,
5801 	.release		= e1000_release_nvm_ich8lan,
5802 	.reload			= e1000e_reload_nvm_generic,
5803 	.update			= e1000_update_nvm_checksum_ich8lan,
5804 	.valid_led_default	= e1000_valid_led_default_ich8lan,
5805 	.validate		= e1000_validate_nvm_checksum_ich8lan,
5806 	.write			= e1000_write_nvm_ich8lan,
5807 };
5808 
5809 static const struct e1000_nvm_operations spt_nvm_ops = {
5810 	.acquire		= e1000_acquire_nvm_ich8lan,
5811 	.release		= e1000_release_nvm_ich8lan,
5812 	.read			= e1000_read_nvm_spt,
5813 	.update			= e1000_update_nvm_checksum_spt,
5814 	.reload			= e1000e_reload_nvm_generic,
5815 	.valid_led_default	= e1000_valid_led_default_ich8lan,
5816 	.validate		= e1000_validate_nvm_checksum_ich8lan,
5817 	.write			= e1000_write_nvm_ich8lan,
5818 };
5819 
5820 const struct e1000_info e1000_ich8_info = {
5821 	.mac			= e1000_ich8lan,
5822 	.flags			= FLAG_HAS_WOL
5823 				  | FLAG_IS_ICH
5824 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5825 				  | FLAG_HAS_AMT
5826 				  | FLAG_HAS_FLASH
5827 				  | FLAG_APME_IN_WUC,
5828 	.pba			= 8,
5829 	.max_hw_frame_size	= VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
5830 	.get_variants		= e1000_get_variants_ich8lan,
5831 	.mac_ops		= &ich8_mac_ops,
5832 	.phy_ops		= &ich8_phy_ops,
5833 	.nvm_ops		= &ich8_nvm_ops,
5834 };
5835 
5836 const struct e1000_info e1000_ich9_info = {
5837 	.mac			= e1000_ich9lan,
5838 	.flags			= FLAG_HAS_JUMBO_FRAMES
5839 				  | FLAG_IS_ICH
5840 				  | FLAG_HAS_WOL
5841 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5842 				  | FLAG_HAS_AMT
5843 				  | FLAG_HAS_FLASH
5844 				  | FLAG_APME_IN_WUC,
5845 	.pba			= 18,
5846 	.max_hw_frame_size	= DEFAULT_JUMBO,
5847 	.get_variants		= e1000_get_variants_ich8lan,
5848 	.mac_ops		= &ich8_mac_ops,
5849 	.phy_ops		= &ich8_phy_ops,
5850 	.nvm_ops		= &ich8_nvm_ops,
5851 };
5852 
5853 const struct e1000_info e1000_ich10_info = {
5854 	.mac			= e1000_ich10lan,
5855 	.flags			= FLAG_HAS_JUMBO_FRAMES
5856 				  | FLAG_IS_ICH
5857 				  | FLAG_HAS_WOL
5858 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5859 				  | FLAG_HAS_AMT
5860 				  | FLAG_HAS_FLASH
5861 				  | FLAG_APME_IN_WUC,
5862 	.pba			= 18,
5863 	.max_hw_frame_size	= DEFAULT_JUMBO,
5864 	.get_variants		= e1000_get_variants_ich8lan,
5865 	.mac_ops		= &ich8_mac_ops,
5866 	.phy_ops		= &ich8_phy_ops,
5867 	.nvm_ops		= &ich8_nvm_ops,
5868 };
5869 
5870 const struct e1000_info e1000_pch_info = {
5871 	.mac			= e1000_pchlan,
5872 	.flags			= FLAG_IS_ICH
5873 				  | FLAG_HAS_WOL
5874 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5875 				  | FLAG_HAS_AMT
5876 				  | FLAG_HAS_FLASH
5877 				  | FLAG_HAS_JUMBO_FRAMES
5878 				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
5879 				  | FLAG_APME_IN_WUC,
5880 	.flags2			= FLAG2_HAS_PHY_STATS,
5881 	.pba			= 26,
5882 	.max_hw_frame_size	= 4096,
5883 	.get_variants		= e1000_get_variants_ich8lan,
5884 	.mac_ops		= &ich8_mac_ops,
5885 	.phy_ops		= &ich8_phy_ops,
5886 	.nvm_ops		= &ich8_nvm_ops,
5887 };
5888 
5889 const struct e1000_info e1000_pch2_info = {
5890 	.mac			= e1000_pch2lan,
5891 	.flags			= FLAG_IS_ICH
5892 				  | FLAG_HAS_WOL
5893 				  | FLAG_HAS_HW_TIMESTAMP
5894 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5895 				  | FLAG_HAS_AMT
5896 				  | FLAG_HAS_FLASH
5897 				  | FLAG_HAS_JUMBO_FRAMES
5898 				  | FLAG_APME_IN_WUC,
5899 	.flags2			= FLAG2_HAS_PHY_STATS
5900 				  | FLAG2_HAS_EEE
5901 				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
5902 	.pba			= 26,
5903 	.max_hw_frame_size	= 9022,
5904 	.get_variants		= e1000_get_variants_ich8lan,
5905 	.mac_ops		= &ich8_mac_ops,
5906 	.phy_ops		= &ich8_phy_ops,
5907 	.nvm_ops		= &ich8_nvm_ops,
5908 };
5909 
5910 const struct e1000_info e1000_pch_lpt_info = {
5911 	.mac			= e1000_pch_lpt,
5912 	.flags			= FLAG_IS_ICH
5913 				  | FLAG_HAS_WOL
5914 				  | FLAG_HAS_HW_TIMESTAMP
5915 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5916 				  | FLAG_HAS_AMT
5917 				  | FLAG_HAS_FLASH
5918 				  | FLAG_HAS_JUMBO_FRAMES
5919 				  | FLAG_APME_IN_WUC,
5920 	.flags2			= FLAG2_HAS_PHY_STATS
5921 				  | FLAG2_HAS_EEE
5922 				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
5923 	.pba			= 26,
5924 	.max_hw_frame_size	= 9022,
5925 	.get_variants		= e1000_get_variants_ich8lan,
5926 	.mac_ops		= &ich8_mac_ops,
5927 	.phy_ops		= &ich8_phy_ops,
5928 	.nvm_ops		= &ich8_nvm_ops,
5929 };
5930 
5931 const struct e1000_info e1000_pch_spt_info = {
5932 	.mac			= e1000_pch_spt,
5933 	.flags			= FLAG_IS_ICH
5934 				  | FLAG_HAS_WOL
5935 				  | FLAG_HAS_HW_TIMESTAMP
5936 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5937 				  | FLAG_HAS_AMT
5938 				  | FLAG_HAS_FLASH
5939 				  | FLAG_HAS_JUMBO_FRAMES
5940 				  | FLAG_APME_IN_WUC,
5941 	.flags2			= FLAG2_HAS_PHY_STATS
5942 				  | FLAG2_HAS_EEE,
5943 	.pba			= 26,
5944 	.max_hw_frame_size	= 9022,
5945 	.get_variants		= e1000_get_variants_ich8lan,
5946 	.mac_ops		= &ich8_mac_ops,
5947 	.phy_ops		= &ich8_phy_ops,
5948 	.nvm_ops		= &spt_nvm_ops,
5949 };
5950 
5951 const struct e1000_info e1000_pch_cnp_info = {
5952 	.mac			= e1000_pch_cnp,
5953 	.flags			= FLAG_IS_ICH
5954 				  | FLAG_HAS_WOL
5955 				  | FLAG_HAS_HW_TIMESTAMP
5956 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5957 				  | FLAG_HAS_AMT
5958 				  | FLAG_HAS_FLASH
5959 				  | FLAG_HAS_JUMBO_FRAMES
5960 				  | FLAG_APME_IN_WUC,
5961 	.flags2			= FLAG2_HAS_PHY_STATS
5962 				  | FLAG2_HAS_EEE,
5963 	.pba			= 26,
5964 	.max_hw_frame_size	= 9022,
5965 	.get_variants		= e1000_get_variants_ich8lan,
5966 	.mac_ops		= &ich8_mac_ops,
5967 	.phy_ops		= &ich8_phy_ops,
5968 	.nvm_ops		= &spt_nvm_ops,
5969 };
5970