1 /******************************************************************************* 2 3 Intel PRO/1000 Linux driver 4 Copyright(c) 1999 - 2012 Intel Corporation. 5 6 This program is free software; you can redistribute it and/or modify it 7 under the terms and conditions of the GNU General Public License, 8 version 2, as published by the Free Software Foundation. 9 10 This program is distributed in the hope it will be useful, but WITHOUT 11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 more details. 14 15 You should have received a copy of the GNU General Public License along with 16 this program; if not, write to the Free Software Foundation, Inc., 17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. 18 19 The full GNU General Public License is included in this distribution in 20 the file called "COPYING". 21 22 Contact Information: 23 Linux NICS <linux.nics@intel.com> 24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> 25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 26 27 *******************************************************************************/ 28 29 /* 30 * 82562G 10/100 Network Connection 31 * 82562G-2 10/100 Network Connection 32 * 82562GT 10/100 Network Connection 33 * 82562GT-2 10/100 Network Connection 34 * 82562V 10/100 Network Connection 35 * 82562V-2 10/100 Network Connection 36 * 82566DC-2 Gigabit Network Connection 37 * 82566DC Gigabit Network Connection 38 * 82566DM-2 Gigabit Network Connection 39 * 82566DM Gigabit Network Connection 40 * 82566MC Gigabit Network Connection 41 * 82566MM Gigabit Network Connection 42 * 82567LM Gigabit Network Connection 43 * 82567LF Gigabit Network Connection 44 * 82567V Gigabit Network Connection 45 * 82567LM-2 Gigabit Network Connection 46 * 82567LF-2 Gigabit Network Connection 47 * 82567V-2 Gigabit Network Connection 48 * 82567LF-3 Gigabit Network Connection 49 * 82567LM-3 Gigabit Network Connection 50 * 82567LM-4 Gigabit Network Connection 51 * 82577LM Gigabit Network Connection 52 * 82577LC Gigabit Network Connection 53 * 82578DM Gigabit Network Connection 54 * 82578DC Gigabit Network Connection 55 * 82579LM Gigabit Network Connection 56 * 82579V Gigabit Network Connection 57 */ 58 59 #include "e1000.h" 60 61 #define ICH_FLASH_GFPREG 0x0000 62 #define ICH_FLASH_HSFSTS 0x0004 63 #define ICH_FLASH_HSFCTL 0x0006 64 #define ICH_FLASH_FADDR 0x0008 65 #define ICH_FLASH_FDATA0 0x0010 66 #define ICH_FLASH_PR0 0x0074 67 68 #define ICH_FLASH_READ_COMMAND_TIMEOUT 500 69 #define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500 70 #define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000 71 #define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF 72 #define ICH_FLASH_CYCLE_REPEAT_COUNT 10 73 74 #define ICH_CYCLE_READ 0 75 #define ICH_CYCLE_WRITE 2 76 #define ICH_CYCLE_ERASE 3 77 78 #define FLASH_GFPREG_BASE_MASK 0x1FFF 79 #define FLASH_SECTOR_ADDR_SHIFT 12 80 81 #define ICH_FLASH_SEG_SIZE_256 256 82 #define ICH_FLASH_SEG_SIZE_4K 4096 83 #define ICH_FLASH_SEG_SIZE_8K 8192 84 #define ICH_FLASH_SEG_SIZE_64K 65536 85 86 87 #define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */ 88 /* FW established a valid mode */ 89 #define E1000_ICH_FWSM_FW_VALID 0x00008000 90 91 #define E1000_ICH_MNG_IAMT_MODE 0x2 92 93 #define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \ 94 (ID_LED_DEF1_OFF2 << 8) | \ 95 (ID_LED_DEF1_ON2 << 4) | \ 96 (ID_LED_DEF1_DEF2)) 97 98 #define E1000_ICH_NVM_SIG_WORD 0x13 99 #define E1000_ICH_NVM_SIG_MASK 0xC000 100 #define E1000_ICH_NVM_VALID_SIG_MASK 0xC0 101 #define E1000_ICH_NVM_SIG_VALUE 0x80 102 103 #define E1000_ICH8_LAN_INIT_TIMEOUT 1500 104 105 #define E1000_FEXTNVM_SW_CONFIG 1 106 #define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */ 107 108 #define E1000_FEXTNVM4_BEACON_DURATION_MASK 0x7 109 #define E1000_FEXTNVM4_BEACON_DURATION_8USEC 0x7 110 #define E1000_FEXTNVM4_BEACON_DURATION_16USEC 0x3 111 112 #define PCIE_ICH8_SNOOP_ALL PCIE_NO_SNOOP_ALL 113 114 #define E1000_ICH_RAR_ENTRIES 7 115 116 #define PHY_PAGE_SHIFT 5 117 #define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \ 118 ((reg) & MAX_PHY_REG_ADDRESS)) 119 #define IGP3_KMRN_DIAG PHY_REG(770, 19) /* KMRN Diagnostic */ 120 #define IGP3_VR_CTRL PHY_REG(776, 18) /* Voltage Regulator Control */ 121 122 #define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002 123 #define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300 124 #define IGP3_VR_CTRL_MODE_SHUTDOWN 0x0200 125 126 #define HV_LED_CONFIG PHY_REG(768, 30) /* LED Configuration */ 127 128 #define SW_FLAG_TIMEOUT 1000 /* SW Semaphore flag timeout in milliseconds */ 129 130 /* SMBus Address Phy Register */ 131 #define HV_SMB_ADDR PHY_REG(768, 26) 132 #define HV_SMB_ADDR_MASK 0x007F 133 #define HV_SMB_ADDR_PEC_EN 0x0200 134 #define HV_SMB_ADDR_VALID 0x0080 135 136 /* PHY Power Management Control */ 137 #define HV_PM_CTRL PHY_REG(770, 17) 138 139 /* PHY Low Power Idle Control */ 140 #define I82579_LPI_CTRL PHY_REG(772, 20) 141 #define I82579_LPI_CTRL_ENABLE_MASK 0x6000 142 #define I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT 0x80 143 144 /* EMI Registers */ 145 #define I82579_EMI_ADDR 0x10 146 #define I82579_EMI_DATA 0x11 147 #define I82579_LPI_UPDATE_TIMER 0x4805 /* in 40ns units + 40 ns base value */ 148 #define I82579_MSE_THRESHOLD 0x084F /* Mean Square Error Threshold */ 149 #define I82579_MSE_LINK_DOWN 0x2411 /* MSE count before dropping link */ 150 151 /* Strapping Option Register - RO */ 152 #define E1000_STRAP 0x0000C 153 #define E1000_STRAP_SMBUS_ADDRESS_MASK 0x00FE0000 154 #define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17 155 156 /* OEM Bits Phy Register */ 157 #define HV_OEM_BITS PHY_REG(768, 25) 158 #define HV_OEM_BITS_LPLU 0x0004 /* Low Power Link Up */ 159 #define HV_OEM_BITS_GBE_DIS 0x0040 /* Gigabit Disable */ 160 #define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */ 161 162 #define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */ 163 #define E1000_NVM_K1_ENABLE 0x1 /* NVM Enable K1 bit */ 164 165 /* KMRN Mode Control */ 166 #define HV_KMRN_MODE_CTRL PHY_REG(769, 16) 167 #define HV_KMRN_MDIO_SLOW 0x0400 168 169 /* KMRN FIFO Control and Status */ 170 #define HV_KMRN_FIFO_CTRLSTA PHY_REG(770, 16) 171 #define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK 0x7000 172 #define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT 12 173 174 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */ 175 /* Offset 04h HSFSTS */ 176 union ich8_hws_flash_status { 177 struct ich8_hsfsts { 178 u16 flcdone :1; /* bit 0 Flash Cycle Done */ 179 u16 flcerr :1; /* bit 1 Flash Cycle Error */ 180 u16 dael :1; /* bit 2 Direct Access error Log */ 181 u16 berasesz :2; /* bit 4:3 Sector Erase Size */ 182 u16 flcinprog :1; /* bit 5 flash cycle in Progress */ 183 u16 reserved1 :2; /* bit 13:6 Reserved */ 184 u16 reserved2 :6; /* bit 13:6 Reserved */ 185 u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */ 186 u16 flockdn :1; /* bit 15 Flash Config Lock-Down */ 187 } hsf_status; 188 u16 regval; 189 }; 190 191 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */ 192 /* Offset 06h FLCTL */ 193 union ich8_hws_flash_ctrl { 194 struct ich8_hsflctl { 195 u16 flcgo :1; /* 0 Flash Cycle Go */ 196 u16 flcycle :2; /* 2:1 Flash Cycle */ 197 u16 reserved :5; /* 7:3 Reserved */ 198 u16 fldbcount :2; /* 9:8 Flash Data Byte Count */ 199 u16 flockdn :6; /* 15:10 Reserved */ 200 } hsf_ctrl; 201 u16 regval; 202 }; 203 204 /* ICH Flash Region Access Permissions */ 205 union ich8_hws_flash_regacc { 206 struct ich8_flracc { 207 u32 grra :8; /* 0:7 GbE region Read Access */ 208 u32 grwa :8; /* 8:15 GbE region Write Access */ 209 u32 gmrag :8; /* 23:16 GbE Master Read Access Grant */ 210 u32 gmwag :8; /* 31:24 GbE Master Write Access Grant */ 211 } hsf_flregacc; 212 u16 regval; 213 }; 214 215 /* ICH Flash Protected Region */ 216 union ich8_flash_protected_range { 217 struct ich8_pr { 218 u32 base:13; /* 0:12 Protected Range Base */ 219 u32 reserved1:2; /* 13:14 Reserved */ 220 u32 rpe:1; /* 15 Read Protection Enable */ 221 u32 limit:13; /* 16:28 Protected Range Limit */ 222 u32 reserved2:2; /* 29:30 Reserved */ 223 u32 wpe:1; /* 31 Write Protection Enable */ 224 } range; 225 u32 regval; 226 }; 227 228 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw); 229 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw); 230 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw); 231 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank); 232 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw, 233 u32 offset, u8 byte); 234 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, 235 u8 *data); 236 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset, 237 u16 *data); 238 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, 239 u8 size, u16 *data); 240 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw); 241 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw); 242 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw); 243 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw); 244 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw); 245 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw); 246 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw); 247 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw); 248 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw); 249 static s32 e1000_led_on_pchlan(struct e1000_hw *hw); 250 static s32 e1000_led_off_pchlan(struct e1000_hw *hw); 251 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active); 252 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw); 253 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw); 254 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link); 255 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw); 256 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw); 257 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw); 258 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw); 259 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate); 260 261 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg) 262 { 263 return readw(hw->flash_address + reg); 264 } 265 266 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg) 267 { 268 return readl(hw->flash_address + reg); 269 } 270 271 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val) 272 { 273 writew(val, hw->flash_address + reg); 274 } 275 276 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val) 277 { 278 writel(val, hw->flash_address + reg); 279 } 280 281 #define er16flash(reg) __er16flash(hw, (reg)) 282 #define er32flash(reg) __er32flash(hw, (reg)) 283 #define ew16flash(reg, val) __ew16flash(hw, (reg), (val)) 284 #define ew32flash(reg, val) __ew32flash(hw, (reg), (val)) 285 286 static void e1000_toggle_lanphypc_value_ich8lan(struct e1000_hw *hw) 287 { 288 u32 ctrl; 289 290 ctrl = er32(CTRL); 291 ctrl |= E1000_CTRL_LANPHYPC_OVERRIDE; 292 ctrl &= ~E1000_CTRL_LANPHYPC_VALUE; 293 ew32(CTRL, ctrl); 294 e1e_flush(); 295 udelay(10); 296 ctrl &= ~E1000_CTRL_LANPHYPC_OVERRIDE; 297 ew32(CTRL, ctrl); 298 } 299 300 /** 301 * e1000_init_phy_params_pchlan - Initialize PHY function pointers 302 * @hw: pointer to the HW structure 303 * 304 * Initialize family-specific PHY parameters and function pointers. 305 **/ 306 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw) 307 { 308 struct e1000_phy_info *phy = &hw->phy; 309 s32 ret_val = 0; 310 311 phy->addr = 1; 312 phy->reset_delay_us = 100; 313 314 phy->ops.set_page = e1000_set_page_igp; 315 phy->ops.read_reg = e1000_read_phy_reg_hv; 316 phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked; 317 phy->ops.read_reg_page = e1000_read_phy_reg_page_hv; 318 phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan; 319 phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan; 320 phy->ops.write_reg = e1000_write_phy_reg_hv; 321 phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked; 322 phy->ops.write_reg_page = e1000_write_phy_reg_page_hv; 323 phy->ops.power_up = e1000_power_up_phy_copper; 324 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan; 325 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; 326 327 if (!hw->phy.ops.check_reset_block(hw)) { 328 u32 fwsm = er32(FWSM); 329 330 /* 331 * The MAC-PHY interconnect may still be in SMBus mode after 332 * Sx->S0. If resetting the PHY is not blocked, toggle the 333 * LANPHYPC Value bit to force the interconnect to PCIe mode. 334 */ 335 e1000_toggle_lanphypc_value_ich8lan(hw); 336 msleep(50); 337 338 /* 339 * Gate automatic PHY configuration by hardware on 340 * non-managed 82579 341 */ 342 if ((hw->mac.type == e1000_pch2lan) && 343 !(fwsm & E1000_ICH_FWSM_FW_VALID)) 344 e1000_gate_hw_phy_config_ich8lan(hw, true); 345 346 /* 347 * Reset the PHY before any access to it. Doing so, ensures 348 * that the PHY is in a known good state before we read/write 349 * PHY registers. The generic reset is sufficient here, 350 * because we haven't determined the PHY type yet. 351 */ 352 ret_val = e1000e_phy_hw_reset_generic(hw); 353 if (ret_val) 354 return ret_val; 355 356 /* Ungate automatic PHY configuration on non-managed 82579 */ 357 if ((hw->mac.type == e1000_pch2lan) && 358 !(fwsm & E1000_ICH_FWSM_FW_VALID)) { 359 usleep_range(10000, 20000); 360 e1000_gate_hw_phy_config_ich8lan(hw, false); 361 } 362 } 363 364 phy->id = e1000_phy_unknown; 365 switch (hw->mac.type) { 366 default: 367 ret_val = e1000e_get_phy_id(hw); 368 if (ret_val) 369 return ret_val; 370 if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK)) 371 break; 372 /* fall-through */ 373 case e1000_pch2lan: 374 /* 375 * In case the PHY needs to be in mdio slow mode, 376 * set slow mode and try to get the PHY id again. 377 */ 378 ret_val = e1000_set_mdio_slow_mode_hv(hw); 379 if (ret_val) 380 return ret_val; 381 ret_val = e1000e_get_phy_id(hw); 382 if (ret_val) 383 return ret_val; 384 break; 385 } 386 phy->type = e1000e_get_phy_type_from_id(phy->id); 387 388 switch (phy->type) { 389 case e1000_phy_82577: 390 case e1000_phy_82579: 391 phy->ops.check_polarity = e1000_check_polarity_82577; 392 phy->ops.force_speed_duplex = 393 e1000_phy_force_speed_duplex_82577; 394 phy->ops.get_cable_length = e1000_get_cable_length_82577; 395 phy->ops.get_info = e1000_get_phy_info_82577; 396 phy->ops.commit = e1000e_phy_sw_reset; 397 break; 398 case e1000_phy_82578: 399 phy->ops.check_polarity = e1000_check_polarity_m88; 400 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88; 401 phy->ops.get_cable_length = e1000e_get_cable_length_m88; 402 phy->ops.get_info = e1000e_get_phy_info_m88; 403 break; 404 default: 405 ret_val = -E1000_ERR_PHY; 406 break; 407 } 408 409 return ret_val; 410 } 411 412 /** 413 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers 414 * @hw: pointer to the HW structure 415 * 416 * Initialize family-specific PHY parameters and function pointers. 417 **/ 418 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw) 419 { 420 struct e1000_phy_info *phy = &hw->phy; 421 s32 ret_val; 422 u16 i = 0; 423 424 phy->addr = 1; 425 phy->reset_delay_us = 100; 426 427 phy->ops.power_up = e1000_power_up_phy_copper; 428 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan; 429 430 /* 431 * We may need to do this twice - once for IGP and if that fails, 432 * we'll set BM func pointers and try again 433 */ 434 ret_val = e1000e_determine_phy_address(hw); 435 if (ret_val) { 436 phy->ops.write_reg = e1000e_write_phy_reg_bm; 437 phy->ops.read_reg = e1000e_read_phy_reg_bm; 438 ret_val = e1000e_determine_phy_address(hw); 439 if (ret_val) { 440 e_dbg("Cannot determine PHY addr. Erroring out\n"); 441 return ret_val; 442 } 443 } 444 445 phy->id = 0; 446 while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) && 447 (i++ < 100)) { 448 usleep_range(1000, 2000); 449 ret_val = e1000e_get_phy_id(hw); 450 if (ret_val) 451 return ret_val; 452 } 453 454 /* Verify phy id */ 455 switch (phy->id) { 456 case IGP03E1000_E_PHY_ID: 457 phy->type = e1000_phy_igp_3; 458 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; 459 phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked; 460 phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked; 461 phy->ops.get_info = e1000e_get_phy_info_igp; 462 phy->ops.check_polarity = e1000_check_polarity_igp; 463 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp; 464 break; 465 case IFE_E_PHY_ID: 466 case IFE_PLUS_E_PHY_ID: 467 case IFE_C_E_PHY_ID: 468 phy->type = e1000_phy_ife; 469 phy->autoneg_mask = E1000_ALL_NOT_GIG; 470 phy->ops.get_info = e1000_get_phy_info_ife; 471 phy->ops.check_polarity = e1000_check_polarity_ife; 472 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife; 473 break; 474 case BME1000_E_PHY_ID: 475 phy->type = e1000_phy_bm; 476 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; 477 phy->ops.read_reg = e1000e_read_phy_reg_bm; 478 phy->ops.write_reg = e1000e_write_phy_reg_bm; 479 phy->ops.commit = e1000e_phy_sw_reset; 480 phy->ops.get_info = e1000e_get_phy_info_m88; 481 phy->ops.check_polarity = e1000_check_polarity_m88; 482 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88; 483 break; 484 default: 485 return -E1000_ERR_PHY; 486 break; 487 } 488 489 return 0; 490 } 491 492 /** 493 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers 494 * @hw: pointer to the HW structure 495 * 496 * Initialize family-specific NVM parameters and function 497 * pointers. 498 **/ 499 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw) 500 { 501 struct e1000_nvm_info *nvm = &hw->nvm; 502 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 503 u32 gfpreg, sector_base_addr, sector_end_addr; 504 u16 i; 505 506 /* Can't read flash registers if the register set isn't mapped. */ 507 if (!hw->flash_address) { 508 e_dbg("ERROR: Flash registers not mapped\n"); 509 return -E1000_ERR_CONFIG; 510 } 511 512 nvm->type = e1000_nvm_flash_sw; 513 514 gfpreg = er32flash(ICH_FLASH_GFPREG); 515 516 /* 517 * sector_X_addr is a "sector"-aligned address (4096 bytes) 518 * Add 1 to sector_end_addr since this sector is included in 519 * the overall size. 520 */ 521 sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK; 522 sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1; 523 524 /* flash_base_addr is byte-aligned */ 525 nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT; 526 527 /* 528 * find total size of the NVM, then cut in half since the total 529 * size represents two separate NVM banks. 530 */ 531 nvm->flash_bank_size = (sector_end_addr - sector_base_addr) 532 << FLASH_SECTOR_ADDR_SHIFT; 533 nvm->flash_bank_size /= 2; 534 /* Adjust to word count */ 535 nvm->flash_bank_size /= sizeof(u16); 536 537 nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS; 538 539 /* Clear shadow ram */ 540 for (i = 0; i < nvm->word_size; i++) { 541 dev_spec->shadow_ram[i].modified = false; 542 dev_spec->shadow_ram[i].value = 0xFFFF; 543 } 544 545 return 0; 546 } 547 548 /** 549 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers 550 * @hw: pointer to the HW structure 551 * 552 * Initialize family-specific MAC parameters and function 553 * pointers. 554 **/ 555 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw) 556 { 557 struct e1000_mac_info *mac = &hw->mac; 558 559 /* Set media type function pointer */ 560 hw->phy.media_type = e1000_media_type_copper; 561 562 /* Set mta register count */ 563 mac->mta_reg_count = 32; 564 /* Set rar entry count */ 565 mac->rar_entry_count = E1000_ICH_RAR_ENTRIES; 566 if (mac->type == e1000_ich8lan) 567 mac->rar_entry_count--; 568 /* FWSM register */ 569 mac->has_fwsm = true; 570 /* ARC subsystem not supported */ 571 mac->arc_subsystem_valid = false; 572 /* Adaptive IFS supported */ 573 mac->adaptive_ifs = true; 574 575 /* LED operations */ 576 switch (mac->type) { 577 case e1000_ich8lan: 578 case e1000_ich9lan: 579 case e1000_ich10lan: 580 /* check management mode */ 581 mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan; 582 /* ID LED init */ 583 mac->ops.id_led_init = e1000e_id_led_init_generic; 584 /* blink LED */ 585 mac->ops.blink_led = e1000e_blink_led_generic; 586 /* setup LED */ 587 mac->ops.setup_led = e1000e_setup_led_generic; 588 /* cleanup LED */ 589 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan; 590 /* turn on/off LED */ 591 mac->ops.led_on = e1000_led_on_ich8lan; 592 mac->ops.led_off = e1000_led_off_ich8lan; 593 break; 594 case e1000_pchlan: 595 case e1000_pch2lan: 596 /* check management mode */ 597 mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan; 598 /* ID LED init */ 599 mac->ops.id_led_init = e1000_id_led_init_pchlan; 600 /* setup LED */ 601 mac->ops.setup_led = e1000_setup_led_pchlan; 602 /* cleanup LED */ 603 mac->ops.cleanup_led = e1000_cleanup_led_pchlan; 604 /* turn on/off LED */ 605 mac->ops.led_on = e1000_led_on_pchlan; 606 mac->ops.led_off = e1000_led_off_pchlan; 607 break; 608 default: 609 break; 610 } 611 612 /* Enable PCS Lock-loss workaround for ICH8 */ 613 if (mac->type == e1000_ich8lan) 614 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true); 615 616 /* Gate automatic PHY configuration by hardware on managed 82579 */ 617 if ((mac->type == e1000_pch2lan) && 618 (er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) 619 e1000_gate_hw_phy_config_ich8lan(hw, true); 620 621 return 0; 622 } 623 624 /** 625 * e1000_set_eee_pchlan - Enable/disable EEE support 626 * @hw: pointer to the HW structure 627 * 628 * Enable/disable EEE based on setting in dev_spec structure. The bits in 629 * the LPI Control register will remain set only if/when link is up. 630 **/ 631 static s32 e1000_set_eee_pchlan(struct e1000_hw *hw) 632 { 633 s32 ret_val = 0; 634 u16 phy_reg; 635 636 if (hw->phy.type != e1000_phy_82579) 637 return 0; 638 639 ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg); 640 if (ret_val) 641 return ret_val; 642 643 if (hw->dev_spec.ich8lan.eee_disable) 644 phy_reg &= ~I82579_LPI_CTRL_ENABLE_MASK; 645 else 646 phy_reg |= I82579_LPI_CTRL_ENABLE_MASK; 647 648 return e1e_wphy(hw, I82579_LPI_CTRL, phy_reg); 649 } 650 651 /** 652 * e1000_check_for_copper_link_ich8lan - Check for link (Copper) 653 * @hw: pointer to the HW structure 654 * 655 * Checks to see of the link status of the hardware has changed. If a 656 * change in link status has been detected, then we read the PHY registers 657 * to get the current speed/duplex if link exists. 658 **/ 659 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw) 660 { 661 struct e1000_mac_info *mac = &hw->mac; 662 s32 ret_val; 663 bool link; 664 u16 phy_reg; 665 666 /* 667 * We only want to go out to the PHY registers to see if Auto-Neg 668 * has completed and/or if our link status has changed. The 669 * get_link_status flag is set upon receiving a Link Status 670 * Change or Rx Sequence Error interrupt. 671 */ 672 if (!mac->get_link_status) 673 return 0; 674 675 /* 676 * First we want to see if the MII Status Register reports 677 * link. If so, then we want to get the current speed/duplex 678 * of the PHY. 679 */ 680 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); 681 if (ret_val) 682 return ret_val; 683 684 if (hw->mac.type == e1000_pchlan) { 685 ret_val = e1000_k1_gig_workaround_hv(hw, link); 686 if (ret_val) 687 return ret_val; 688 } 689 690 if (!link) 691 return 0; /* No link detected */ 692 693 mac->get_link_status = false; 694 695 switch (hw->mac.type) { 696 case e1000_pch2lan: 697 ret_val = e1000_k1_workaround_lv(hw); 698 if (ret_val) 699 return ret_val; 700 /* fall-thru */ 701 case e1000_pchlan: 702 if (hw->phy.type == e1000_phy_82578) { 703 ret_val = e1000_link_stall_workaround_hv(hw); 704 if (ret_val) 705 return ret_val; 706 } 707 708 /* 709 * Workaround for PCHx parts in half-duplex: 710 * Set the number of preambles removed from the packet 711 * when it is passed from the PHY to the MAC to prevent 712 * the MAC from misinterpreting the packet type. 713 */ 714 e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg); 715 phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK; 716 717 if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD) 718 phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT); 719 720 e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg); 721 break; 722 default: 723 break; 724 } 725 726 /* 727 * Check if there was DownShift, must be checked 728 * immediately after link-up 729 */ 730 e1000e_check_downshift(hw); 731 732 /* Enable/Disable EEE after link up */ 733 ret_val = e1000_set_eee_pchlan(hw); 734 if (ret_val) 735 return ret_val; 736 737 /* 738 * If we are forcing speed/duplex, then we simply return since 739 * we have already determined whether we have link or not. 740 */ 741 if (!mac->autoneg) 742 return -E1000_ERR_CONFIG; 743 744 /* 745 * Auto-Neg is enabled. Auto Speed Detection takes care 746 * of MAC speed/duplex configuration. So we only need to 747 * configure Collision Distance in the MAC. 748 */ 749 mac->ops.config_collision_dist(hw); 750 751 /* 752 * Configure Flow Control now that Auto-Neg has completed. 753 * First, we need to restore the desired flow control 754 * settings because we may have had to re-autoneg with a 755 * different link partner. 756 */ 757 ret_val = e1000e_config_fc_after_link_up(hw); 758 if (ret_val) 759 e_dbg("Error configuring flow control\n"); 760 761 return ret_val; 762 } 763 764 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter) 765 { 766 struct e1000_hw *hw = &adapter->hw; 767 s32 rc; 768 769 rc = e1000_init_mac_params_ich8lan(hw); 770 if (rc) 771 return rc; 772 773 rc = e1000_init_nvm_params_ich8lan(hw); 774 if (rc) 775 return rc; 776 777 switch (hw->mac.type) { 778 case e1000_ich8lan: 779 case e1000_ich9lan: 780 case e1000_ich10lan: 781 rc = e1000_init_phy_params_ich8lan(hw); 782 break; 783 case e1000_pchlan: 784 case e1000_pch2lan: 785 rc = e1000_init_phy_params_pchlan(hw); 786 break; 787 default: 788 break; 789 } 790 if (rc) 791 return rc; 792 793 /* 794 * Disable Jumbo Frame support on parts with Intel 10/100 PHY or 795 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT). 796 */ 797 if ((adapter->hw.phy.type == e1000_phy_ife) || 798 ((adapter->hw.mac.type >= e1000_pch2lan) && 799 (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) { 800 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES; 801 adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN; 802 803 hw->mac.ops.blink_led = NULL; 804 } 805 806 if ((adapter->hw.mac.type == e1000_ich8lan) && 807 (adapter->hw.phy.type != e1000_phy_ife)) 808 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP; 809 810 /* Enable workaround for 82579 w/ ME enabled */ 811 if ((adapter->hw.mac.type == e1000_pch2lan) && 812 (er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) 813 adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA; 814 815 /* Disable EEE by default until IEEE802.3az spec is finalized */ 816 if (adapter->flags2 & FLAG2_HAS_EEE) 817 adapter->hw.dev_spec.ich8lan.eee_disable = true; 818 819 return 0; 820 } 821 822 static DEFINE_MUTEX(nvm_mutex); 823 824 /** 825 * e1000_acquire_nvm_ich8lan - Acquire NVM mutex 826 * @hw: pointer to the HW structure 827 * 828 * Acquires the mutex for performing NVM operations. 829 **/ 830 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw) 831 { 832 mutex_lock(&nvm_mutex); 833 834 return 0; 835 } 836 837 /** 838 * e1000_release_nvm_ich8lan - Release NVM mutex 839 * @hw: pointer to the HW structure 840 * 841 * Releases the mutex used while performing NVM operations. 842 **/ 843 static void e1000_release_nvm_ich8lan(struct e1000_hw *hw) 844 { 845 mutex_unlock(&nvm_mutex); 846 } 847 848 /** 849 * e1000_acquire_swflag_ich8lan - Acquire software control flag 850 * @hw: pointer to the HW structure 851 * 852 * Acquires the software control flag for performing PHY and select 853 * MAC CSR accesses. 854 **/ 855 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw) 856 { 857 u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT; 858 s32 ret_val = 0; 859 860 if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE, 861 &hw->adapter->state)) { 862 e_dbg("contention for Phy access\n"); 863 return -E1000_ERR_PHY; 864 } 865 866 while (timeout) { 867 extcnf_ctrl = er32(EXTCNF_CTRL); 868 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)) 869 break; 870 871 mdelay(1); 872 timeout--; 873 } 874 875 if (!timeout) { 876 e_dbg("SW has already locked the resource.\n"); 877 ret_val = -E1000_ERR_CONFIG; 878 goto out; 879 } 880 881 timeout = SW_FLAG_TIMEOUT; 882 883 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG; 884 ew32(EXTCNF_CTRL, extcnf_ctrl); 885 886 while (timeout) { 887 extcnf_ctrl = er32(EXTCNF_CTRL); 888 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) 889 break; 890 891 mdelay(1); 892 timeout--; 893 } 894 895 if (!timeout) { 896 e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n", 897 er32(FWSM), extcnf_ctrl); 898 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG; 899 ew32(EXTCNF_CTRL, extcnf_ctrl); 900 ret_val = -E1000_ERR_CONFIG; 901 goto out; 902 } 903 904 out: 905 if (ret_val) 906 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state); 907 908 return ret_val; 909 } 910 911 /** 912 * e1000_release_swflag_ich8lan - Release software control flag 913 * @hw: pointer to the HW structure 914 * 915 * Releases the software control flag for performing PHY and select 916 * MAC CSR accesses. 917 **/ 918 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw) 919 { 920 u32 extcnf_ctrl; 921 922 extcnf_ctrl = er32(EXTCNF_CTRL); 923 924 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) { 925 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG; 926 ew32(EXTCNF_CTRL, extcnf_ctrl); 927 } else { 928 e_dbg("Semaphore unexpectedly released by sw/fw/hw\n"); 929 } 930 931 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state); 932 } 933 934 /** 935 * e1000_check_mng_mode_ich8lan - Checks management mode 936 * @hw: pointer to the HW structure 937 * 938 * This checks if the adapter has any manageability enabled. 939 * This is a function pointer entry point only called by read/write 940 * routines for the PHY and NVM parts. 941 **/ 942 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw) 943 { 944 u32 fwsm; 945 946 fwsm = er32(FWSM); 947 return (fwsm & E1000_ICH_FWSM_FW_VALID) && 948 ((fwsm & E1000_FWSM_MODE_MASK) == 949 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)); 950 } 951 952 /** 953 * e1000_check_mng_mode_pchlan - Checks management mode 954 * @hw: pointer to the HW structure 955 * 956 * This checks if the adapter has iAMT enabled. 957 * This is a function pointer entry point only called by read/write 958 * routines for the PHY and NVM parts. 959 **/ 960 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw) 961 { 962 u32 fwsm; 963 964 fwsm = er32(FWSM); 965 return (fwsm & E1000_ICH_FWSM_FW_VALID) && 966 (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)); 967 } 968 969 /** 970 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked 971 * @hw: pointer to the HW structure 972 * 973 * Checks if firmware is blocking the reset of the PHY. 974 * This is a function pointer entry point only called by 975 * reset routines. 976 **/ 977 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw) 978 { 979 u32 fwsm; 980 981 fwsm = er32(FWSM); 982 983 return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET; 984 } 985 986 /** 987 * e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states 988 * @hw: pointer to the HW structure 989 * 990 * Assumes semaphore already acquired. 991 * 992 **/ 993 static s32 e1000_write_smbus_addr(struct e1000_hw *hw) 994 { 995 u16 phy_data; 996 u32 strap = er32(STRAP); 997 s32 ret_val = 0; 998 999 strap &= E1000_STRAP_SMBUS_ADDRESS_MASK; 1000 1001 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data); 1002 if (ret_val) 1003 return ret_val; 1004 1005 phy_data &= ~HV_SMB_ADDR_MASK; 1006 phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT); 1007 phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID; 1008 1009 return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data); 1010 } 1011 1012 /** 1013 * e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration 1014 * @hw: pointer to the HW structure 1015 * 1016 * SW should configure the LCD from the NVM extended configuration region 1017 * as a workaround for certain parts. 1018 **/ 1019 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw) 1020 { 1021 struct e1000_phy_info *phy = &hw->phy; 1022 u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask; 1023 s32 ret_val = 0; 1024 u16 word_addr, reg_data, reg_addr, phy_page = 0; 1025 1026 /* 1027 * Initialize the PHY from the NVM on ICH platforms. This 1028 * is needed due to an issue where the NVM configuration is 1029 * not properly autoloaded after power transitions. 1030 * Therefore, after each PHY reset, we will load the 1031 * configuration data out of the NVM manually. 1032 */ 1033 switch (hw->mac.type) { 1034 case e1000_ich8lan: 1035 if (phy->type != e1000_phy_igp_3) 1036 return ret_val; 1037 1038 if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) || 1039 (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) { 1040 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG; 1041 break; 1042 } 1043 /* Fall-thru */ 1044 case e1000_pchlan: 1045 case e1000_pch2lan: 1046 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M; 1047 break; 1048 default: 1049 return ret_val; 1050 } 1051 1052 ret_val = hw->phy.ops.acquire(hw); 1053 if (ret_val) 1054 return ret_val; 1055 1056 data = er32(FEXTNVM); 1057 if (!(data & sw_cfg_mask)) 1058 goto release; 1059 1060 /* 1061 * Make sure HW does not configure LCD from PHY 1062 * extended configuration before SW configuration 1063 */ 1064 data = er32(EXTCNF_CTRL); 1065 if (!(hw->mac.type == e1000_pch2lan)) { 1066 if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE) 1067 goto release; 1068 } 1069 1070 cnf_size = er32(EXTCNF_SIZE); 1071 cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK; 1072 cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT; 1073 if (!cnf_size) 1074 goto release; 1075 1076 cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK; 1077 cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT; 1078 1079 if ((!(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) && 1080 (hw->mac.type == e1000_pchlan)) || 1081 (hw->mac.type == e1000_pch2lan)) { 1082 /* 1083 * HW configures the SMBus address and LEDs when the 1084 * OEM and LCD Write Enable bits are set in the NVM. 1085 * When both NVM bits are cleared, SW will configure 1086 * them instead. 1087 */ 1088 ret_val = e1000_write_smbus_addr(hw); 1089 if (ret_val) 1090 goto release; 1091 1092 data = er32(LEDCTL); 1093 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG, 1094 (u16)data); 1095 if (ret_val) 1096 goto release; 1097 } 1098 1099 /* Configure LCD from extended configuration region. */ 1100 1101 /* cnf_base_addr is in DWORD */ 1102 word_addr = (u16)(cnf_base_addr << 1); 1103 1104 for (i = 0; i < cnf_size; i++) { 1105 ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, 1106 ®_data); 1107 if (ret_val) 1108 goto release; 1109 1110 ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1), 1111 1, ®_addr); 1112 if (ret_val) 1113 goto release; 1114 1115 /* Save off the PHY page for future writes. */ 1116 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) { 1117 phy_page = reg_data; 1118 continue; 1119 } 1120 1121 reg_addr &= PHY_REG_MASK; 1122 reg_addr |= phy_page; 1123 1124 ret_val = phy->ops.write_reg_locked(hw, (u32)reg_addr, 1125 reg_data); 1126 if (ret_val) 1127 goto release; 1128 } 1129 1130 release: 1131 hw->phy.ops.release(hw); 1132 return ret_val; 1133 } 1134 1135 /** 1136 * e1000_k1_gig_workaround_hv - K1 Si workaround 1137 * @hw: pointer to the HW structure 1138 * @link: link up bool flag 1139 * 1140 * If K1 is enabled for 1Gbps, the MAC might stall when transitioning 1141 * from a lower speed. This workaround disables K1 whenever link is at 1Gig 1142 * If link is down, the function will restore the default K1 setting located 1143 * in the NVM. 1144 **/ 1145 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link) 1146 { 1147 s32 ret_val = 0; 1148 u16 status_reg = 0; 1149 bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled; 1150 1151 if (hw->mac.type != e1000_pchlan) 1152 return 0; 1153 1154 /* Wrap the whole flow with the sw flag */ 1155 ret_val = hw->phy.ops.acquire(hw); 1156 if (ret_val) 1157 return ret_val; 1158 1159 /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */ 1160 if (link) { 1161 if (hw->phy.type == e1000_phy_82578) { 1162 ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS, 1163 &status_reg); 1164 if (ret_val) 1165 goto release; 1166 1167 status_reg &= BM_CS_STATUS_LINK_UP | 1168 BM_CS_STATUS_RESOLVED | 1169 BM_CS_STATUS_SPEED_MASK; 1170 1171 if (status_reg == (BM_CS_STATUS_LINK_UP | 1172 BM_CS_STATUS_RESOLVED | 1173 BM_CS_STATUS_SPEED_1000)) 1174 k1_enable = false; 1175 } 1176 1177 if (hw->phy.type == e1000_phy_82577) { 1178 ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS, 1179 &status_reg); 1180 if (ret_val) 1181 goto release; 1182 1183 status_reg &= HV_M_STATUS_LINK_UP | 1184 HV_M_STATUS_AUTONEG_COMPLETE | 1185 HV_M_STATUS_SPEED_MASK; 1186 1187 if (status_reg == (HV_M_STATUS_LINK_UP | 1188 HV_M_STATUS_AUTONEG_COMPLETE | 1189 HV_M_STATUS_SPEED_1000)) 1190 k1_enable = false; 1191 } 1192 1193 /* Link stall fix for link up */ 1194 ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19), 1195 0x0100); 1196 if (ret_val) 1197 goto release; 1198 1199 } else { 1200 /* Link stall fix for link down */ 1201 ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19), 1202 0x4100); 1203 if (ret_val) 1204 goto release; 1205 } 1206 1207 ret_val = e1000_configure_k1_ich8lan(hw, k1_enable); 1208 1209 release: 1210 hw->phy.ops.release(hw); 1211 1212 return ret_val; 1213 } 1214 1215 /** 1216 * e1000_configure_k1_ich8lan - Configure K1 power state 1217 * @hw: pointer to the HW structure 1218 * @enable: K1 state to configure 1219 * 1220 * Configure the K1 power state based on the provided parameter. 1221 * Assumes semaphore already acquired. 1222 * 1223 * Success returns 0, Failure returns -E1000_ERR_PHY (-2) 1224 **/ 1225 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable) 1226 { 1227 s32 ret_val = 0; 1228 u32 ctrl_reg = 0; 1229 u32 ctrl_ext = 0; 1230 u32 reg = 0; 1231 u16 kmrn_reg = 0; 1232 1233 ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG, 1234 &kmrn_reg); 1235 if (ret_val) 1236 return ret_val; 1237 1238 if (k1_enable) 1239 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE; 1240 else 1241 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE; 1242 1243 ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG, 1244 kmrn_reg); 1245 if (ret_val) 1246 return ret_val; 1247 1248 udelay(20); 1249 ctrl_ext = er32(CTRL_EXT); 1250 ctrl_reg = er32(CTRL); 1251 1252 reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); 1253 reg |= E1000_CTRL_FRCSPD; 1254 ew32(CTRL, reg); 1255 1256 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS); 1257 e1e_flush(); 1258 udelay(20); 1259 ew32(CTRL, ctrl_reg); 1260 ew32(CTRL_EXT, ctrl_ext); 1261 e1e_flush(); 1262 udelay(20); 1263 1264 return 0; 1265 } 1266 1267 /** 1268 * e1000_oem_bits_config_ich8lan - SW-based LCD Configuration 1269 * @hw: pointer to the HW structure 1270 * @d0_state: boolean if entering d0 or d3 device state 1271 * 1272 * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are 1273 * collectively called OEM bits. The OEM Write Enable bit and SW Config bit 1274 * in NVM determines whether HW should configure LPLU and Gbe Disable. 1275 **/ 1276 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state) 1277 { 1278 s32 ret_val = 0; 1279 u32 mac_reg; 1280 u16 oem_reg; 1281 1282 if ((hw->mac.type != e1000_pch2lan) && (hw->mac.type != e1000_pchlan)) 1283 return ret_val; 1284 1285 ret_val = hw->phy.ops.acquire(hw); 1286 if (ret_val) 1287 return ret_val; 1288 1289 if (!(hw->mac.type == e1000_pch2lan)) { 1290 mac_reg = er32(EXTCNF_CTRL); 1291 if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) 1292 goto release; 1293 } 1294 1295 mac_reg = er32(FEXTNVM); 1296 if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M)) 1297 goto release; 1298 1299 mac_reg = er32(PHY_CTRL); 1300 1301 ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg); 1302 if (ret_val) 1303 goto release; 1304 1305 oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU); 1306 1307 if (d0_state) { 1308 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE) 1309 oem_reg |= HV_OEM_BITS_GBE_DIS; 1310 1311 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU) 1312 oem_reg |= HV_OEM_BITS_LPLU; 1313 } else { 1314 if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE | 1315 E1000_PHY_CTRL_NOND0A_GBE_DISABLE)) 1316 oem_reg |= HV_OEM_BITS_GBE_DIS; 1317 1318 if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU | 1319 E1000_PHY_CTRL_NOND0A_LPLU)) 1320 oem_reg |= HV_OEM_BITS_LPLU; 1321 } 1322 1323 /* Set Restart auto-neg to activate the bits */ 1324 if ((d0_state || (hw->mac.type != e1000_pchlan)) && 1325 !hw->phy.ops.check_reset_block(hw)) 1326 oem_reg |= HV_OEM_BITS_RESTART_AN; 1327 1328 ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg); 1329 1330 release: 1331 hw->phy.ops.release(hw); 1332 1333 return ret_val; 1334 } 1335 1336 1337 /** 1338 * e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode 1339 * @hw: pointer to the HW structure 1340 **/ 1341 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw) 1342 { 1343 s32 ret_val; 1344 u16 data; 1345 1346 ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data); 1347 if (ret_val) 1348 return ret_val; 1349 1350 data |= HV_KMRN_MDIO_SLOW; 1351 1352 ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data); 1353 1354 return ret_val; 1355 } 1356 1357 /** 1358 * e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be 1359 * done after every PHY reset. 1360 **/ 1361 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw) 1362 { 1363 s32 ret_val = 0; 1364 u16 phy_data; 1365 1366 if (hw->mac.type != e1000_pchlan) 1367 return 0; 1368 1369 /* Set MDIO slow mode before any other MDIO access */ 1370 if (hw->phy.type == e1000_phy_82577) { 1371 ret_val = e1000_set_mdio_slow_mode_hv(hw); 1372 if (ret_val) 1373 return ret_val; 1374 } 1375 1376 if (((hw->phy.type == e1000_phy_82577) && 1377 ((hw->phy.revision == 1) || (hw->phy.revision == 2))) || 1378 ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) { 1379 /* Disable generation of early preamble */ 1380 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431); 1381 if (ret_val) 1382 return ret_val; 1383 1384 /* Preamble tuning for SSC */ 1385 ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204); 1386 if (ret_val) 1387 return ret_val; 1388 } 1389 1390 if (hw->phy.type == e1000_phy_82578) { 1391 /* 1392 * Return registers to default by doing a soft reset then 1393 * writing 0x3140 to the control register. 1394 */ 1395 if (hw->phy.revision < 2) { 1396 e1000e_phy_sw_reset(hw); 1397 ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140); 1398 } 1399 } 1400 1401 /* Select page 0 */ 1402 ret_val = hw->phy.ops.acquire(hw); 1403 if (ret_val) 1404 return ret_val; 1405 1406 hw->phy.addr = 1; 1407 ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0); 1408 hw->phy.ops.release(hw); 1409 if (ret_val) 1410 return ret_val; 1411 1412 /* 1413 * Configure the K1 Si workaround during phy reset assuming there is 1414 * link so that it disables K1 if link is in 1Gbps. 1415 */ 1416 ret_val = e1000_k1_gig_workaround_hv(hw, true); 1417 if (ret_val) 1418 return ret_val; 1419 1420 /* Workaround for link disconnects on a busy hub in half duplex */ 1421 ret_val = hw->phy.ops.acquire(hw); 1422 if (ret_val) 1423 return ret_val; 1424 ret_val = hw->phy.ops.read_reg_locked(hw, BM_PORT_GEN_CFG, &phy_data); 1425 if (ret_val) 1426 goto release; 1427 ret_val = hw->phy.ops.write_reg_locked(hw, BM_PORT_GEN_CFG, 1428 phy_data & 0x00FF); 1429 release: 1430 hw->phy.ops.release(hw); 1431 1432 return ret_val; 1433 } 1434 1435 /** 1436 * e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY 1437 * @hw: pointer to the HW structure 1438 **/ 1439 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw) 1440 { 1441 u32 mac_reg; 1442 u16 i, phy_reg = 0; 1443 s32 ret_val; 1444 1445 ret_val = hw->phy.ops.acquire(hw); 1446 if (ret_val) 1447 return; 1448 ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg); 1449 if (ret_val) 1450 goto release; 1451 1452 /* Copy both RAL/H (rar_entry_count) and SHRAL/H (+4) to PHY */ 1453 for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) { 1454 mac_reg = er32(RAL(i)); 1455 hw->phy.ops.write_reg_page(hw, BM_RAR_L(i), 1456 (u16)(mac_reg & 0xFFFF)); 1457 hw->phy.ops.write_reg_page(hw, BM_RAR_M(i), 1458 (u16)((mac_reg >> 16) & 0xFFFF)); 1459 1460 mac_reg = er32(RAH(i)); 1461 hw->phy.ops.write_reg_page(hw, BM_RAR_H(i), 1462 (u16)(mac_reg & 0xFFFF)); 1463 hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i), 1464 (u16)((mac_reg & E1000_RAH_AV) 1465 >> 16)); 1466 } 1467 1468 e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg); 1469 1470 release: 1471 hw->phy.ops.release(hw); 1472 } 1473 1474 /** 1475 * e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation 1476 * with 82579 PHY 1477 * @hw: pointer to the HW structure 1478 * @enable: flag to enable/disable workaround when enabling/disabling jumbos 1479 **/ 1480 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable) 1481 { 1482 s32 ret_val = 0; 1483 u16 phy_reg, data; 1484 u32 mac_reg; 1485 u16 i; 1486 1487 if (hw->mac.type != e1000_pch2lan) 1488 return 0; 1489 1490 /* disable Rx path while enabling/disabling workaround */ 1491 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg); 1492 ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14)); 1493 if (ret_val) 1494 return ret_val; 1495 1496 if (enable) { 1497 /* 1498 * Write Rx addresses (rar_entry_count for RAL/H, +4 for 1499 * SHRAL/H) and initial CRC values to the MAC 1500 */ 1501 for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) { 1502 u8 mac_addr[ETH_ALEN] = {0}; 1503 u32 addr_high, addr_low; 1504 1505 addr_high = er32(RAH(i)); 1506 if (!(addr_high & E1000_RAH_AV)) 1507 continue; 1508 addr_low = er32(RAL(i)); 1509 mac_addr[0] = (addr_low & 0xFF); 1510 mac_addr[1] = ((addr_low >> 8) & 0xFF); 1511 mac_addr[2] = ((addr_low >> 16) & 0xFF); 1512 mac_addr[3] = ((addr_low >> 24) & 0xFF); 1513 mac_addr[4] = (addr_high & 0xFF); 1514 mac_addr[5] = ((addr_high >> 8) & 0xFF); 1515 1516 ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr)); 1517 } 1518 1519 /* Write Rx addresses to the PHY */ 1520 e1000_copy_rx_addrs_to_phy_ich8lan(hw); 1521 1522 /* Enable jumbo frame workaround in the MAC */ 1523 mac_reg = er32(FFLT_DBG); 1524 mac_reg &= ~(1 << 14); 1525 mac_reg |= (7 << 15); 1526 ew32(FFLT_DBG, mac_reg); 1527 1528 mac_reg = er32(RCTL); 1529 mac_reg |= E1000_RCTL_SECRC; 1530 ew32(RCTL, mac_reg); 1531 1532 ret_val = e1000e_read_kmrn_reg(hw, 1533 E1000_KMRNCTRLSTA_CTRL_OFFSET, 1534 &data); 1535 if (ret_val) 1536 return ret_val; 1537 ret_val = e1000e_write_kmrn_reg(hw, 1538 E1000_KMRNCTRLSTA_CTRL_OFFSET, 1539 data | (1 << 0)); 1540 if (ret_val) 1541 return ret_val; 1542 ret_val = e1000e_read_kmrn_reg(hw, 1543 E1000_KMRNCTRLSTA_HD_CTRL, 1544 &data); 1545 if (ret_val) 1546 return ret_val; 1547 data &= ~(0xF << 8); 1548 data |= (0xB << 8); 1549 ret_val = e1000e_write_kmrn_reg(hw, 1550 E1000_KMRNCTRLSTA_HD_CTRL, 1551 data); 1552 if (ret_val) 1553 return ret_val; 1554 1555 /* Enable jumbo frame workaround in the PHY */ 1556 e1e_rphy(hw, PHY_REG(769, 23), &data); 1557 data &= ~(0x7F << 5); 1558 data |= (0x37 << 5); 1559 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data); 1560 if (ret_val) 1561 return ret_val; 1562 e1e_rphy(hw, PHY_REG(769, 16), &data); 1563 data &= ~(1 << 13); 1564 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data); 1565 if (ret_val) 1566 return ret_val; 1567 e1e_rphy(hw, PHY_REG(776, 20), &data); 1568 data &= ~(0x3FF << 2); 1569 data |= (0x1A << 2); 1570 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data); 1571 if (ret_val) 1572 return ret_val; 1573 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100); 1574 if (ret_val) 1575 return ret_val; 1576 e1e_rphy(hw, HV_PM_CTRL, &data); 1577 ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10)); 1578 if (ret_val) 1579 return ret_val; 1580 } else { 1581 /* Write MAC register values back to h/w defaults */ 1582 mac_reg = er32(FFLT_DBG); 1583 mac_reg &= ~(0xF << 14); 1584 ew32(FFLT_DBG, mac_reg); 1585 1586 mac_reg = er32(RCTL); 1587 mac_reg &= ~E1000_RCTL_SECRC; 1588 ew32(RCTL, mac_reg); 1589 1590 ret_val = e1000e_read_kmrn_reg(hw, 1591 E1000_KMRNCTRLSTA_CTRL_OFFSET, 1592 &data); 1593 if (ret_val) 1594 return ret_val; 1595 ret_val = e1000e_write_kmrn_reg(hw, 1596 E1000_KMRNCTRLSTA_CTRL_OFFSET, 1597 data & ~(1 << 0)); 1598 if (ret_val) 1599 return ret_val; 1600 ret_val = e1000e_read_kmrn_reg(hw, 1601 E1000_KMRNCTRLSTA_HD_CTRL, 1602 &data); 1603 if (ret_val) 1604 return ret_val; 1605 data &= ~(0xF << 8); 1606 data |= (0xB << 8); 1607 ret_val = e1000e_write_kmrn_reg(hw, 1608 E1000_KMRNCTRLSTA_HD_CTRL, 1609 data); 1610 if (ret_val) 1611 return ret_val; 1612 1613 /* Write PHY register values back to h/w defaults */ 1614 e1e_rphy(hw, PHY_REG(769, 23), &data); 1615 data &= ~(0x7F << 5); 1616 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data); 1617 if (ret_val) 1618 return ret_val; 1619 e1e_rphy(hw, PHY_REG(769, 16), &data); 1620 data |= (1 << 13); 1621 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data); 1622 if (ret_val) 1623 return ret_val; 1624 e1e_rphy(hw, PHY_REG(776, 20), &data); 1625 data &= ~(0x3FF << 2); 1626 data |= (0x8 << 2); 1627 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data); 1628 if (ret_val) 1629 return ret_val; 1630 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00); 1631 if (ret_val) 1632 return ret_val; 1633 e1e_rphy(hw, HV_PM_CTRL, &data); 1634 ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10)); 1635 if (ret_val) 1636 return ret_val; 1637 } 1638 1639 /* re-enable Rx path after enabling/disabling workaround */ 1640 return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14)); 1641 } 1642 1643 /** 1644 * e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be 1645 * done after every PHY reset. 1646 **/ 1647 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw) 1648 { 1649 s32 ret_val = 0; 1650 1651 if (hw->mac.type != e1000_pch2lan) 1652 return 0; 1653 1654 /* Set MDIO slow mode before any other MDIO access */ 1655 ret_val = e1000_set_mdio_slow_mode_hv(hw); 1656 1657 ret_val = hw->phy.ops.acquire(hw); 1658 if (ret_val) 1659 return ret_val; 1660 ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR, 1661 I82579_MSE_THRESHOLD); 1662 if (ret_val) 1663 goto release; 1664 /* set MSE higher to enable link to stay up when noise is high */ 1665 ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_DATA, 0x0034); 1666 if (ret_val) 1667 goto release; 1668 ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR, 1669 I82579_MSE_LINK_DOWN); 1670 if (ret_val) 1671 goto release; 1672 /* drop link after 5 times MSE threshold was reached */ 1673 ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_DATA, 0x0005); 1674 release: 1675 hw->phy.ops.release(hw); 1676 1677 return ret_val; 1678 } 1679 1680 /** 1681 * e1000_k1_gig_workaround_lv - K1 Si workaround 1682 * @hw: pointer to the HW structure 1683 * 1684 * Workaround to set the K1 beacon duration for 82579 parts 1685 **/ 1686 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw) 1687 { 1688 s32 ret_val = 0; 1689 u16 status_reg = 0; 1690 u32 mac_reg; 1691 u16 phy_reg; 1692 1693 if (hw->mac.type != e1000_pch2lan) 1694 return 0; 1695 1696 /* Set K1 beacon duration based on 1Gbps speed or otherwise */ 1697 ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg); 1698 if (ret_val) 1699 return ret_val; 1700 1701 if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) 1702 == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) { 1703 mac_reg = er32(FEXTNVM4); 1704 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK; 1705 1706 ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg); 1707 if (ret_val) 1708 return ret_val; 1709 1710 if (status_reg & HV_M_STATUS_SPEED_1000) { 1711 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC; 1712 phy_reg &= ~I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT; 1713 } else { 1714 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC; 1715 phy_reg |= I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT; 1716 } 1717 ew32(FEXTNVM4, mac_reg); 1718 ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg); 1719 } 1720 1721 return ret_val; 1722 } 1723 1724 /** 1725 * e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware 1726 * @hw: pointer to the HW structure 1727 * @gate: boolean set to true to gate, false to ungate 1728 * 1729 * Gate/ungate the automatic PHY configuration via hardware; perform 1730 * the configuration via software instead. 1731 **/ 1732 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate) 1733 { 1734 u32 extcnf_ctrl; 1735 1736 if (hw->mac.type != e1000_pch2lan) 1737 return; 1738 1739 extcnf_ctrl = er32(EXTCNF_CTRL); 1740 1741 if (gate) 1742 extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG; 1743 else 1744 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG; 1745 1746 ew32(EXTCNF_CTRL, extcnf_ctrl); 1747 } 1748 1749 /** 1750 * e1000_lan_init_done_ich8lan - Check for PHY config completion 1751 * @hw: pointer to the HW structure 1752 * 1753 * Check the appropriate indication the MAC has finished configuring the 1754 * PHY after a software reset. 1755 **/ 1756 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw) 1757 { 1758 u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT; 1759 1760 /* Wait for basic configuration completes before proceeding */ 1761 do { 1762 data = er32(STATUS); 1763 data &= E1000_STATUS_LAN_INIT_DONE; 1764 udelay(100); 1765 } while ((!data) && --loop); 1766 1767 /* 1768 * If basic configuration is incomplete before the above loop 1769 * count reaches 0, loading the configuration from NVM will 1770 * leave the PHY in a bad state possibly resulting in no link. 1771 */ 1772 if (loop == 0) 1773 e_dbg("LAN_INIT_DONE not set, increase timeout\n"); 1774 1775 /* Clear the Init Done bit for the next init event */ 1776 data = er32(STATUS); 1777 data &= ~E1000_STATUS_LAN_INIT_DONE; 1778 ew32(STATUS, data); 1779 } 1780 1781 /** 1782 * e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset 1783 * @hw: pointer to the HW structure 1784 **/ 1785 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw) 1786 { 1787 s32 ret_val = 0; 1788 u16 reg; 1789 1790 if (hw->phy.ops.check_reset_block(hw)) 1791 return 0; 1792 1793 /* Allow time for h/w to get to quiescent state after reset */ 1794 usleep_range(10000, 20000); 1795 1796 /* Perform any necessary post-reset workarounds */ 1797 switch (hw->mac.type) { 1798 case e1000_pchlan: 1799 ret_val = e1000_hv_phy_workarounds_ich8lan(hw); 1800 if (ret_val) 1801 return ret_val; 1802 break; 1803 case e1000_pch2lan: 1804 ret_val = e1000_lv_phy_workarounds_ich8lan(hw); 1805 if (ret_val) 1806 return ret_val; 1807 break; 1808 default: 1809 break; 1810 } 1811 1812 /* Clear the host wakeup bit after lcd reset */ 1813 if (hw->mac.type >= e1000_pchlan) { 1814 e1e_rphy(hw, BM_PORT_GEN_CFG, ®); 1815 reg &= ~BM_WUC_HOST_WU_BIT; 1816 e1e_wphy(hw, BM_PORT_GEN_CFG, reg); 1817 } 1818 1819 /* Configure the LCD with the extended configuration region in NVM */ 1820 ret_val = e1000_sw_lcd_config_ich8lan(hw); 1821 if (ret_val) 1822 return ret_val; 1823 1824 /* Configure the LCD with the OEM bits in NVM */ 1825 ret_val = e1000_oem_bits_config_ich8lan(hw, true); 1826 1827 if (hw->mac.type == e1000_pch2lan) { 1828 /* Ungate automatic PHY configuration on non-managed 82579 */ 1829 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) { 1830 usleep_range(10000, 20000); 1831 e1000_gate_hw_phy_config_ich8lan(hw, false); 1832 } 1833 1834 /* Set EEE LPI Update Timer to 200usec */ 1835 ret_val = hw->phy.ops.acquire(hw); 1836 if (ret_val) 1837 return ret_val; 1838 ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR, 1839 I82579_LPI_UPDATE_TIMER); 1840 if (!ret_val) 1841 ret_val = hw->phy.ops.write_reg_locked(hw, 1842 I82579_EMI_DATA, 1843 0x1387); 1844 hw->phy.ops.release(hw); 1845 } 1846 1847 return ret_val; 1848 } 1849 1850 /** 1851 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset 1852 * @hw: pointer to the HW structure 1853 * 1854 * Resets the PHY 1855 * This is a function pointer entry point called by drivers 1856 * or other shared routines. 1857 **/ 1858 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw) 1859 { 1860 s32 ret_val = 0; 1861 1862 /* Gate automatic PHY configuration by hardware on non-managed 82579 */ 1863 if ((hw->mac.type == e1000_pch2lan) && 1864 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) 1865 e1000_gate_hw_phy_config_ich8lan(hw, true); 1866 1867 ret_val = e1000e_phy_hw_reset_generic(hw); 1868 if (ret_val) 1869 return ret_val; 1870 1871 return e1000_post_phy_reset_ich8lan(hw); 1872 } 1873 1874 /** 1875 * e1000_set_lplu_state_pchlan - Set Low Power Link Up state 1876 * @hw: pointer to the HW structure 1877 * @active: true to enable LPLU, false to disable 1878 * 1879 * Sets the LPLU state according to the active flag. For PCH, if OEM write 1880 * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set 1881 * the phy speed. This function will manually set the LPLU bit and restart 1882 * auto-neg as hw would do. D3 and D0 LPLU will call the same function 1883 * since it configures the same bit. 1884 **/ 1885 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active) 1886 { 1887 s32 ret_val = 0; 1888 u16 oem_reg; 1889 1890 ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg); 1891 if (ret_val) 1892 return ret_val; 1893 1894 if (active) 1895 oem_reg |= HV_OEM_BITS_LPLU; 1896 else 1897 oem_reg &= ~HV_OEM_BITS_LPLU; 1898 1899 if (!hw->phy.ops.check_reset_block(hw)) 1900 oem_reg |= HV_OEM_BITS_RESTART_AN; 1901 1902 return e1e_wphy(hw, HV_OEM_BITS, oem_reg); 1903 } 1904 1905 /** 1906 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state 1907 * @hw: pointer to the HW structure 1908 * @active: true to enable LPLU, false to disable 1909 * 1910 * Sets the LPLU D0 state according to the active flag. When 1911 * activating LPLU this function also disables smart speed 1912 * and vice versa. LPLU will not be activated unless the 1913 * device autonegotiation advertisement meets standards of 1914 * either 10 or 10/100 or 10/100/1000 at all duplexes. 1915 * This is a function pointer entry point only called by 1916 * PHY setup routines. 1917 **/ 1918 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active) 1919 { 1920 struct e1000_phy_info *phy = &hw->phy; 1921 u32 phy_ctrl; 1922 s32 ret_val = 0; 1923 u16 data; 1924 1925 if (phy->type == e1000_phy_ife) 1926 return 0; 1927 1928 phy_ctrl = er32(PHY_CTRL); 1929 1930 if (active) { 1931 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU; 1932 ew32(PHY_CTRL, phy_ctrl); 1933 1934 if (phy->type != e1000_phy_igp_3) 1935 return 0; 1936 1937 /* 1938 * Call gig speed drop workaround on LPLU before accessing 1939 * any PHY registers 1940 */ 1941 if (hw->mac.type == e1000_ich8lan) 1942 e1000e_gig_downshift_workaround_ich8lan(hw); 1943 1944 /* When LPLU is enabled, we should disable SmartSpeed */ 1945 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data); 1946 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 1947 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data); 1948 if (ret_val) 1949 return ret_val; 1950 } else { 1951 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU; 1952 ew32(PHY_CTRL, phy_ctrl); 1953 1954 if (phy->type != e1000_phy_igp_3) 1955 return 0; 1956 1957 /* 1958 * LPLU and SmartSpeed are mutually exclusive. LPLU is used 1959 * during Dx states where the power conservation is most 1960 * important. During driver activity we should enable 1961 * SmartSpeed, so performance is maintained. 1962 */ 1963 if (phy->smart_speed == e1000_smart_speed_on) { 1964 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, 1965 &data); 1966 if (ret_val) 1967 return ret_val; 1968 1969 data |= IGP01E1000_PSCFR_SMART_SPEED; 1970 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, 1971 data); 1972 if (ret_val) 1973 return ret_val; 1974 } else if (phy->smart_speed == e1000_smart_speed_off) { 1975 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, 1976 &data); 1977 if (ret_val) 1978 return ret_val; 1979 1980 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 1981 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, 1982 data); 1983 if (ret_val) 1984 return ret_val; 1985 } 1986 } 1987 1988 return 0; 1989 } 1990 1991 /** 1992 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state 1993 * @hw: pointer to the HW structure 1994 * @active: true to enable LPLU, false to disable 1995 * 1996 * Sets the LPLU D3 state according to the active flag. When 1997 * activating LPLU this function also disables smart speed 1998 * and vice versa. LPLU will not be activated unless the 1999 * device autonegotiation advertisement meets standards of 2000 * either 10 or 10/100 or 10/100/1000 at all duplexes. 2001 * This is a function pointer entry point only called by 2002 * PHY setup routines. 2003 **/ 2004 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active) 2005 { 2006 struct e1000_phy_info *phy = &hw->phy; 2007 u32 phy_ctrl; 2008 s32 ret_val = 0; 2009 u16 data; 2010 2011 phy_ctrl = er32(PHY_CTRL); 2012 2013 if (!active) { 2014 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU; 2015 ew32(PHY_CTRL, phy_ctrl); 2016 2017 if (phy->type != e1000_phy_igp_3) 2018 return 0; 2019 2020 /* 2021 * LPLU and SmartSpeed are mutually exclusive. LPLU is used 2022 * during Dx states where the power conservation is most 2023 * important. During driver activity we should enable 2024 * SmartSpeed, so performance is maintained. 2025 */ 2026 if (phy->smart_speed == e1000_smart_speed_on) { 2027 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, 2028 &data); 2029 if (ret_val) 2030 return ret_val; 2031 2032 data |= IGP01E1000_PSCFR_SMART_SPEED; 2033 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, 2034 data); 2035 if (ret_val) 2036 return ret_val; 2037 } else if (phy->smart_speed == e1000_smart_speed_off) { 2038 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, 2039 &data); 2040 if (ret_val) 2041 return ret_val; 2042 2043 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 2044 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, 2045 data); 2046 if (ret_val) 2047 return ret_val; 2048 } 2049 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || 2050 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || 2051 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { 2052 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU; 2053 ew32(PHY_CTRL, phy_ctrl); 2054 2055 if (phy->type != e1000_phy_igp_3) 2056 return 0; 2057 2058 /* 2059 * Call gig speed drop workaround on LPLU before accessing 2060 * any PHY registers 2061 */ 2062 if (hw->mac.type == e1000_ich8lan) 2063 e1000e_gig_downshift_workaround_ich8lan(hw); 2064 2065 /* When LPLU is enabled, we should disable SmartSpeed */ 2066 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data); 2067 if (ret_val) 2068 return ret_val; 2069 2070 data &= ~IGP01E1000_PSCFR_SMART_SPEED; 2071 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data); 2072 } 2073 2074 return ret_val; 2075 } 2076 2077 /** 2078 * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1 2079 * @hw: pointer to the HW structure 2080 * @bank: pointer to the variable that returns the active bank 2081 * 2082 * Reads signature byte from the NVM using the flash access registers. 2083 * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank. 2084 **/ 2085 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank) 2086 { 2087 u32 eecd; 2088 struct e1000_nvm_info *nvm = &hw->nvm; 2089 u32 bank1_offset = nvm->flash_bank_size * sizeof(u16); 2090 u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1; 2091 u8 sig_byte = 0; 2092 s32 ret_val; 2093 2094 switch (hw->mac.type) { 2095 case e1000_ich8lan: 2096 case e1000_ich9lan: 2097 eecd = er32(EECD); 2098 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) == 2099 E1000_EECD_SEC1VAL_VALID_MASK) { 2100 if (eecd & E1000_EECD_SEC1VAL) 2101 *bank = 1; 2102 else 2103 *bank = 0; 2104 2105 return 0; 2106 } 2107 e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n"); 2108 /* fall-thru */ 2109 default: 2110 /* set bank to 0 in case flash read fails */ 2111 *bank = 0; 2112 2113 /* Check bank 0 */ 2114 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset, 2115 &sig_byte); 2116 if (ret_val) 2117 return ret_val; 2118 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == 2119 E1000_ICH_NVM_SIG_VALUE) { 2120 *bank = 0; 2121 return 0; 2122 } 2123 2124 /* Check bank 1 */ 2125 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset + 2126 bank1_offset, 2127 &sig_byte); 2128 if (ret_val) 2129 return ret_val; 2130 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == 2131 E1000_ICH_NVM_SIG_VALUE) { 2132 *bank = 1; 2133 return 0; 2134 } 2135 2136 e_dbg("ERROR: No valid NVM bank present\n"); 2137 return -E1000_ERR_NVM; 2138 } 2139 } 2140 2141 /** 2142 * e1000_read_nvm_ich8lan - Read word(s) from the NVM 2143 * @hw: pointer to the HW structure 2144 * @offset: The offset (in bytes) of the word(s) to read. 2145 * @words: Size of data to read in words 2146 * @data: Pointer to the word(s) to read at offset. 2147 * 2148 * Reads a word(s) from the NVM using the flash access registers. 2149 **/ 2150 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words, 2151 u16 *data) 2152 { 2153 struct e1000_nvm_info *nvm = &hw->nvm; 2154 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 2155 u32 act_offset; 2156 s32 ret_val = 0; 2157 u32 bank = 0; 2158 u16 i, word; 2159 2160 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) || 2161 (words == 0)) { 2162 e_dbg("nvm parameter(s) out of bounds\n"); 2163 ret_val = -E1000_ERR_NVM; 2164 goto out; 2165 } 2166 2167 nvm->ops.acquire(hw); 2168 2169 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); 2170 if (ret_val) { 2171 e_dbg("Could not detect valid bank, assuming bank 0\n"); 2172 bank = 0; 2173 } 2174 2175 act_offset = (bank) ? nvm->flash_bank_size : 0; 2176 act_offset += offset; 2177 2178 ret_val = 0; 2179 for (i = 0; i < words; i++) { 2180 if (dev_spec->shadow_ram[offset+i].modified) { 2181 data[i] = dev_spec->shadow_ram[offset+i].value; 2182 } else { 2183 ret_val = e1000_read_flash_word_ich8lan(hw, 2184 act_offset + i, 2185 &word); 2186 if (ret_val) 2187 break; 2188 data[i] = word; 2189 } 2190 } 2191 2192 nvm->ops.release(hw); 2193 2194 out: 2195 if (ret_val) 2196 e_dbg("NVM read error: %d\n", ret_val); 2197 2198 return ret_val; 2199 } 2200 2201 /** 2202 * e1000_flash_cycle_init_ich8lan - Initialize flash 2203 * @hw: pointer to the HW structure 2204 * 2205 * This function does initial flash setup so that a new read/write/erase cycle 2206 * can be started. 2207 **/ 2208 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw) 2209 { 2210 union ich8_hws_flash_status hsfsts; 2211 s32 ret_val = -E1000_ERR_NVM; 2212 2213 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 2214 2215 /* Check if the flash descriptor is valid */ 2216 if (hsfsts.hsf_status.fldesvalid == 0) { 2217 e_dbg("Flash descriptor invalid. SW Sequencing must be used.\n"); 2218 return -E1000_ERR_NVM; 2219 } 2220 2221 /* Clear FCERR and DAEL in hw status by writing 1 */ 2222 hsfsts.hsf_status.flcerr = 1; 2223 hsfsts.hsf_status.dael = 1; 2224 2225 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval); 2226 2227 /* 2228 * Either we should have a hardware SPI cycle in progress 2229 * bit to check against, in order to start a new cycle or 2230 * FDONE bit should be changed in the hardware so that it 2231 * is 1 after hardware reset, which can then be used as an 2232 * indication whether a cycle is in progress or has been 2233 * completed. 2234 */ 2235 2236 if (hsfsts.hsf_status.flcinprog == 0) { 2237 /* 2238 * There is no cycle running at present, 2239 * so we can start a cycle. 2240 * Begin by setting Flash Cycle Done. 2241 */ 2242 hsfsts.hsf_status.flcdone = 1; 2243 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval); 2244 ret_val = 0; 2245 } else { 2246 s32 i; 2247 2248 /* 2249 * Otherwise poll for sometime so the current 2250 * cycle has a chance to end before giving up. 2251 */ 2252 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) { 2253 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 2254 if (hsfsts.hsf_status.flcinprog == 0) { 2255 ret_val = 0; 2256 break; 2257 } 2258 udelay(1); 2259 } 2260 if (!ret_val) { 2261 /* 2262 * Successful in waiting for previous cycle to timeout, 2263 * now set the Flash Cycle Done. 2264 */ 2265 hsfsts.hsf_status.flcdone = 1; 2266 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval); 2267 } else { 2268 e_dbg("Flash controller busy, cannot get access\n"); 2269 } 2270 } 2271 2272 return ret_val; 2273 } 2274 2275 /** 2276 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase) 2277 * @hw: pointer to the HW structure 2278 * @timeout: maximum time to wait for completion 2279 * 2280 * This function starts a flash cycle and waits for its completion. 2281 **/ 2282 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout) 2283 { 2284 union ich8_hws_flash_ctrl hsflctl; 2285 union ich8_hws_flash_status hsfsts; 2286 u32 i = 0; 2287 2288 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */ 2289 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); 2290 hsflctl.hsf_ctrl.flcgo = 1; 2291 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); 2292 2293 /* wait till FDONE bit is set to 1 */ 2294 do { 2295 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 2296 if (hsfsts.hsf_status.flcdone == 1) 2297 break; 2298 udelay(1); 2299 } while (i++ < timeout); 2300 2301 if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0) 2302 return 0; 2303 2304 return -E1000_ERR_NVM; 2305 } 2306 2307 /** 2308 * e1000_read_flash_word_ich8lan - Read word from flash 2309 * @hw: pointer to the HW structure 2310 * @offset: offset to data location 2311 * @data: pointer to the location for storing the data 2312 * 2313 * Reads the flash word at offset into data. Offset is converted 2314 * to bytes before read. 2315 **/ 2316 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset, 2317 u16 *data) 2318 { 2319 /* Must convert offset into bytes. */ 2320 offset <<= 1; 2321 2322 return e1000_read_flash_data_ich8lan(hw, offset, 2, data); 2323 } 2324 2325 /** 2326 * e1000_read_flash_byte_ich8lan - Read byte from flash 2327 * @hw: pointer to the HW structure 2328 * @offset: The offset of the byte to read. 2329 * @data: Pointer to a byte to store the value read. 2330 * 2331 * Reads a single byte from the NVM using the flash access registers. 2332 **/ 2333 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, 2334 u8 *data) 2335 { 2336 s32 ret_val; 2337 u16 word = 0; 2338 2339 ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word); 2340 if (ret_val) 2341 return ret_val; 2342 2343 *data = (u8)word; 2344 2345 return 0; 2346 } 2347 2348 /** 2349 * e1000_read_flash_data_ich8lan - Read byte or word from NVM 2350 * @hw: pointer to the HW structure 2351 * @offset: The offset (in bytes) of the byte or word to read. 2352 * @size: Size of data to read, 1=byte 2=word 2353 * @data: Pointer to the word to store the value read. 2354 * 2355 * Reads a byte or word from the NVM using the flash access registers. 2356 **/ 2357 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, 2358 u8 size, u16 *data) 2359 { 2360 union ich8_hws_flash_status hsfsts; 2361 union ich8_hws_flash_ctrl hsflctl; 2362 u32 flash_linear_addr; 2363 u32 flash_data = 0; 2364 s32 ret_val = -E1000_ERR_NVM; 2365 u8 count = 0; 2366 2367 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK) 2368 return -E1000_ERR_NVM; 2369 2370 flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) + 2371 hw->nvm.flash_base_addr; 2372 2373 do { 2374 udelay(1); 2375 /* Steps */ 2376 ret_val = e1000_flash_cycle_init_ich8lan(hw); 2377 if (ret_val) 2378 break; 2379 2380 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); 2381 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ 2382 hsflctl.hsf_ctrl.fldbcount = size - 1; 2383 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ; 2384 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); 2385 2386 ew32flash(ICH_FLASH_FADDR, flash_linear_addr); 2387 2388 ret_val = e1000_flash_cycle_ich8lan(hw, 2389 ICH_FLASH_READ_COMMAND_TIMEOUT); 2390 2391 /* 2392 * Check if FCERR is set to 1, if set to 1, clear it 2393 * and try the whole sequence a few more times, else 2394 * read in (shift in) the Flash Data0, the order is 2395 * least significant byte first msb to lsb 2396 */ 2397 if (!ret_val) { 2398 flash_data = er32flash(ICH_FLASH_FDATA0); 2399 if (size == 1) 2400 *data = (u8)(flash_data & 0x000000FF); 2401 else if (size == 2) 2402 *data = (u16)(flash_data & 0x0000FFFF); 2403 break; 2404 } else { 2405 /* 2406 * If we've gotten here, then things are probably 2407 * completely hosed, but if the error condition is 2408 * detected, it won't hurt to give it another try... 2409 * ICH_FLASH_CYCLE_REPEAT_COUNT times. 2410 */ 2411 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 2412 if (hsfsts.hsf_status.flcerr == 1) { 2413 /* Repeat for some time before giving up. */ 2414 continue; 2415 } else if (hsfsts.hsf_status.flcdone == 0) { 2416 e_dbg("Timeout error - flash cycle did not complete.\n"); 2417 break; 2418 } 2419 } 2420 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); 2421 2422 return ret_val; 2423 } 2424 2425 /** 2426 * e1000_write_nvm_ich8lan - Write word(s) to the NVM 2427 * @hw: pointer to the HW structure 2428 * @offset: The offset (in bytes) of the word(s) to write. 2429 * @words: Size of data to write in words 2430 * @data: Pointer to the word(s) to write at offset. 2431 * 2432 * Writes a byte or word to the NVM using the flash access registers. 2433 **/ 2434 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words, 2435 u16 *data) 2436 { 2437 struct e1000_nvm_info *nvm = &hw->nvm; 2438 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 2439 u16 i; 2440 2441 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) || 2442 (words == 0)) { 2443 e_dbg("nvm parameter(s) out of bounds\n"); 2444 return -E1000_ERR_NVM; 2445 } 2446 2447 nvm->ops.acquire(hw); 2448 2449 for (i = 0; i < words; i++) { 2450 dev_spec->shadow_ram[offset+i].modified = true; 2451 dev_spec->shadow_ram[offset+i].value = data[i]; 2452 } 2453 2454 nvm->ops.release(hw); 2455 2456 return 0; 2457 } 2458 2459 /** 2460 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM 2461 * @hw: pointer to the HW structure 2462 * 2463 * The NVM checksum is updated by calling the generic update_nvm_checksum, 2464 * which writes the checksum to the shadow ram. The changes in the shadow 2465 * ram are then committed to the EEPROM by processing each bank at a time 2466 * checking for the modified bit and writing only the pending changes. 2467 * After a successful commit, the shadow ram is cleared and is ready for 2468 * future writes. 2469 **/ 2470 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw) 2471 { 2472 struct e1000_nvm_info *nvm = &hw->nvm; 2473 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 2474 u32 i, act_offset, new_bank_offset, old_bank_offset, bank; 2475 s32 ret_val; 2476 u16 data; 2477 2478 ret_val = e1000e_update_nvm_checksum_generic(hw); 2479 if (ret_val) 2480 goto out; 2481 2482 if (nvm->type != e1000_nvm_flash_sw) 2483 goto out; 2484 2485 nvm->ops.acquire(hw); 2486 2487 /* 2488 * We're writing to the opposite bank so if we're on bank 1, 2489 * write to bank 0 etc. We also need to erase the segment that 2490 * is going to be written 2491 */ 2492 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); 2493 if (ret_val) { 2494 e_dbg("Could not detect valid bank, assuming bank 0\n"); 2495 bank = 0; 2496 } 2497 2498 if (bank == 0) { 2499 new_bank_offset = nvm->flash_bank_size; 2500 old_bank_offset = 0; 2501 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1); 2502 if (ret_val) 2503 goto release; 2504 } else { 2505 old_bank_offset = nvm->flash_bank_size; 2506 new_bank_offset = 0; 2507 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0); 2508 if (ret_val) 2509 goto release; 2510 } 2511 2512 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) { 2513 /* 2514 * Determine whether to write the value stored 2515 * in the other NVM bank or a modified value stored 2516 * in the shadow RAM 2517 */ 2518 if (dev_spec->shadow_ram[i].modified) { 2519 data = dev_spec->shadow_ram[i].value; 2520 } else { 2521 ret_val = e1000_read_flash_word_ich8lan(hw, i + 2522 old_bank_offset, 2523 &data); 2524 if (ret_val) 2525 break; 2526 } 2527 2528 /* 2529 * If the word is 0x13, then make sure the signature bits 2530 * (15:14) are 11b until the commit has completed. 2531 * This will allow us to write 10b which indicates the 2532 * signature is valid. We want to do this after the write 2533 * has completed so that we don't mark the segment valid 2534 * while the write is still in progress 2535 */ 2536 if (i == E1000_ICH_NVM_SIG_WORD) 2537 data |= E1000_ICH_NVM_SIG_MASK; 2538 2539 /* Convert offset to bytes. */ 2540 act_offset = (i + new_bank_offset) << 1; 2541 2542 udelay(100); 2543 /* Write the bytes to the new bank. */ 2544 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, 2545 act_offset, 2546 (u8)data); 2547 if (ret_val) 2548 break; 2549 2550 udelay(100); 2551 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, 2552 act_offset + 1, 2553 (u8)(data >> 8)); 2554 if (ret_val) 2555 break; 2556 } 2557 2558 /* 2559 * Don't bother writing the segment valid bits if sector 2560 * programming failed. 2561 */ 2562 if (ret_val) { 2563 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */ 2564 e_dbg("Flash commit failed.\n"); 2565 goto release; 2566 } 2567 2568 /* 2569 * Finally validate the new segment by setting bit 15:14 2570 * to 10b in word 0x13 , this can be done without an 2571 * erase as well since these bits are 11 to start with 2572 * and we need to change bit 14 to 0b 2573 */ 2574 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD; 2575 ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data); 2576 if (ret_val) 2577 goto release; 2578 2579 data &= 0xBFFF; 2580 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, 2581 act_offset * 2 + 1, 2582 (u8)(data >> 8)); 2583 if (ret_val) 2584 goto release; 2585 2586 /* 2587 * And invalidate the previously valid segment by setting 2588 * its signature word (0x13) high_byte to 0b. This can be 2589 * done without an erase because flash erase sets all bits 2590 * to 1's. We can write 1's to 0's without an erase 2591 */ 2592 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1; 2593 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0); 2594 if (ret_val) 2595 goto release; 2596 2597 /* Great! Everything worked, we can now clear the cached entries. */ 2598 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) { 2599 dev_spec->shadow_ram[i].modified = false; 2600 dev_spec->shadow_ram[i].value = 0xFFFF; 2601 } 2602 2603 release: 2604 nvm->ops.release(hw); 2605 2606 /* 2607 * Reload the EEPROM, or else modifications will not appear 2608 * until after the next adapter reset. 2609 */ 2610 if (!ret_val) { 2611 nvm->ops.reload(hw); 2612 usleep_range(10000, 20000); 2613 } 2614 2615 out: 2616 if (ret_val) 2617 e_dbg("NVM update error: %d\n", ret_val); 2618 2619 return ret_val; 2620 } 2621 2622 /** 2623 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum 2624 * @hw: pointer to the HW structure 2625 * 2626 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19. 2627 * If the bit is 0, that the EEPROM had been modified, but the checksum was not 2628 * calculated, in which case we need to calculate the checksum and set bit 6. 2629 **/ 2630 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw) 2631 { 2632 s32 ret_val; 2633 u16 data; 2634 2635 /* 2636 * Read 0x19 and check bit 6. If this bit is 0, the checksum 2637 * needs to be fixed. This bit is an indication that the NVM 2638 * was prepared by OEM software and did not calculate the 2639 * checksum...a likely scenario. 2640 */ 2641 ret_val = e1000_read_nvm(hw, 0x19, 1, &data); 2642 if (ret_val) 2643 return ret_val; 2644 2645 if ((data & 0x40) == 0) { 2646 data |= 0x40; 2647 ret_val = e1000_write_nvm(hw, 0x19, 1, &data); 2648 if (ret_val) 2649 return ret_val; 2650 ret_val = e1000e_update_nvm_checksum(hw); 2651 if (ret_val) 2652 return ret_val; 2653 } 2654 2655 return e1000e_validate_nvm_checksum_generic(hw); 2656 } 2657 2658 /** 2659 * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only 2660 * @hw: pointer to the HW structure 2661 * 2662 * To prevent malicious write/erase of the NVM, set it to be read-only 2663 * so that the hardware ignores all write/erase cycles of the NVM via 2664 * the flash control registers. The shadow-ram copy of the NVM will 2665 * still be updated, however any updates to this copy will not stick 2666 * across driver reloads. 2667 **/ 2668 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw) 2669 { 2670 struct e1000_nvm_info *nvm = &hw->nvm; 2671 union ich8_flash_protected_range pr0; 2672 union ich8_hws_flash_status hsfsts; 2673 u32 gfpreg; 2674 2675 nvm->ops.acquire(hw); 2676 2677 gfpreg = er32flash(ICH_FLASH_GFPREG); 2678 2679 /* Write-protect GbE Sector of NVM */ 2680 pr0.regval = er32flash(ICH_FLASH_PR0); 2681 pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK; 2682 pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK); 2683 pr0.range.wpe = true; 2684 ew32flash(ICH_FLASH_PR0, pr0.regval); 2685 2686 /* 2687 * Lock down a subset of GbE Flash Control Registers, e.g. 2688 * PR0 to prevent the write-protection from being lifted. 2689 * Once FLOCKDN is set, the registers protected by it cannot 2690 * be written until FLOCKDN is cleared by a hardware reset. 2691 */ 2692 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 2693 hsfsts.hsf_status.flockdn = true; 2694 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval); 2695 2696 nvm->ops.release(hw); 2697 } 2698 2699 /** 2700 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM 2701 * @hw: pointer to the HW structure 2702 * @offset: The offset (in bytes) of the byte/word to read. 2703 * @size: Size of data to read, 1=byte 2=word 2704 * @data: The byte(s) to write to the NVM. 2705 * 2706 * Writes one/two bytes to the NVM using the flash access registers. 2707 **/ 2708 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, 2709 u8 size, u16 data) 2710 { 2711 union ich8_hws_flash_status hsfsts; 2712 union ich8_hws_flash_ctrl hsflctl; 2713 u32 flash_linear_addr; 2714 u32 flash_data = 0; 2715 s32 ret_val; 2716 u8 count = 0; 2717 2718 if (size < 1 || size > 2 || data > size * 0xff || 2719 offset > ICH_FLASH_LINEAR_ADDR_MASK) 2720 return -E1000_ERR_NVM; 2721 2722 flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) + 2723 hw->nvm.flash_base_addr; 2724 2725 do { 2726 udelay(1); 2727 /* Steps */ 2728 ret_val = e1000_flash_cycle_init_ich8lan(hw); 2729 if (ret_val) 2730 break; 2731 2732 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); 2733 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ 2734 hsflctl.hsf_ctrl.fldbcount = size -1; 2735 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE; 2736 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); 2737 2738 ew32flash(ICH_FLASH_FADDR, flash_linear_addr); 2739 2740 if (size == 1) 2741 flash_data = (u32)data & 0x00FF; 2742 else 2743 flash_data = (u32)data; 2744 2745 ew32flash(ICH_FLASH_FDATA0, flash_data); 2746 2747 /* 2748 * check if FCERR is set to 1 , if set to 1, clear it 2749 * and try the whole sequence a few more times else done 2750 */ 2751 ret_val = e1000_flash_cycle_ich8lan(hw, 2752 ICH_FLASH_WRITE_COMMAND_TIMEOUT); 2753 if (!ret_val) 2754 break; 2755 2756 /* 2757 * If we're here, then things are most likely 2758 * completely hosed, but if the error condition 2759 * is detected, it won't hurt to give it another 2760 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times. 2761 */ 2762 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 2763 if (hsfsts.hsf_status.flcerr == 1) 2764 /* Repeat for some time before giving up. */ 2765 continue; 2766 if (hsfsts.hsf_status.flcdone == 0) { 2767 e_dbg("Timeout error - flash cycle did not complete.\n"); 2768 break; 2769 } 2770 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); 2771 2772 return ret_val; 2773 } 2774 2775 /** 2776 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM 2777 * @hw: pointer to the HW structure 2778 * @offset: The index of the byte to read. 2779 * @data: The byte to write to the NVM. 2780 * 2781 * Writes a single byte to the NVM using the flash access registers. 2782 **/ 2783 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, 2784 u8 data) 2785 { 2786 u16 word = (u16)data; 2787 2788 return e1000_write_flash_data_ich8lan(hw, offset, 1, word); 2789 } 2790 2791 /** 2792 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM 2793 * @hw: pointer to the HW structure 2794 * @offset: The offset of the byte to write. 2795 * @byte: The byte to write to the NVM. 2796 * 2797 * Writes a single byte to the NVM using the flash access registers. 2798 * Goes through a retry algorithm before giving up. 2799 **/ 2800 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw, 2801 u32 offset, u8 byte) 2802 { 2803 s32 ret_val; 2804 u16 program_retries; 2805 2806 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte); 2807 if (!ret_val) 2808 return ret_val; 2809 2810 for (program_retries = 0; program_retries < 100; program_retries++) { 2811 e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset); 2812 udelay(100); 2813 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte); 2814 if (!ret_val) 2815 break; 2816 } 2817 if (program_retries == 100) 2818 return -E1000_ERR_NVM; 2819 2820 return 0; 2821 } 2822 2823 /** 2824 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM 2825 * @hw: pointer to the HW structure 2826 * @bank: 0 for first bank, 1 for second bank, etc. 2827 * 2828 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based. 2829 * bank N is 4096 * N + flash_reg_addr. 2830 **/ 2831 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank) 2832 { 2833 struct e1000_nvm_info *nvm = &hw->nvm; 2834 union ich8_hws_flash_status hsfsts; 2835 union ich8_hws_flash_ctrl hsflctl; 2836 u32 flash_linear_addr; 2837 /* bank size is in 16bit words - adjust to bytes */ 2838 u32 flash_bank_size = nvm->flash_bank_size * 2; 2839 s32 ret_val; 2840 s32 count = 0; 2841 s32 j, iteration, sector_size; 2842 2843 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 2844 2845 /* 2846 * Determine HW Sector size: Read BERASE bits of hw flash status 2847 * register 2848 * 00: The Hw sector is 256 bytes, hence we need to erase 16 2849 * consecutive sectors. The start index for the nth Hw sector 2850 * can be calculated as = bank * 4096 + n * 256 2851 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector. 2852 * The start index for the nth Hw sector can be calculated 2853 * as = bank * 4096 2854 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192 2855 * (ich9 only, otherwise error condition) 2856 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536 2857 */ 2858 switch (hsfsts.hsf_status.berasesz) { 2859 case 0: 2860 /* Hw sector size 256 */ 2861 sector_size = ICH_FLASH_SEG_SIZE_256; 2862 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256; 2863 break; 2864 case 1: 2865 sector_size = ICH_FLASH_SEG_SIZE_4K; 2866 iteration = 1; 2867 break; 2868 case 2: 2869 sector_size = ICH_FLASH_SEG_SIZE_8K; 2870 iteration = 1; 2871 break; 2872 case 3: 2873 sector_size = ICH_FLASH_SEG_SIZE_64K; 2874 iteration = 1; 2875 break; 2876 default: 2877 return -E1000_ERR_NVM; 2878 } 2879 2880 /* Start with the base address, then add the sector offset. */ 2881 flash_linear_addr = hw->nvm.flash_base_addr; 2882 flash_linear_addr += (bank) ? flash_bank_size : 0; 2883 2884 for (j = 0; j < iteration ; j++) { 2885 do { 2886 /* Steps */ 2887 ret_val = e1000_flash_cycle_init_ich8lan(hw); 2888 if (ret_val) 2889 return ret_val; 2890 2891 /* 2892 * Write a value 11 (block Erase) in Flash 2893 * Cycle field in hw flash control 2894 */ 2895 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); 2896 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE; 2897 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); 2898 2899 /* 2900 * Write the last 24 bits of an index within the 2901 * block into Flash Linear address field in Flash 2902 * Address. 2903 */ 2904 flash_linear_addr += (j * sector_size); 2905 ew32flash(ICH_FLASH_FADDR, flash_linear_addr); 2906 2907 ret_val = e1000_flash_cycle_ich8lan(hw, 2908 ICH_FLASH_ERASE_COMMAND_TIMEOUT); 2909 if (!ret_val) 2910 break; 2911 2912 /* 2913 * Check if FCERR is set to 1. If 1, 2914 * clear it and try the whole sequence 2915 * a few more times else Done 2916 */ 2917 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); 2918 if (hsfsts.hsf_status.flcerr == 1) 2919 /* repeat for some time before giving up */ 2920 continue; 2921 else if (hsfsts.hsf_status.flcdone == 0) 2922 return ret_val; 2923 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT); 2924 } 2925 2926 return 0; 2927 } 2928 2929 /** 2930 * e1000_valid_led_default_ich8lan - Set the default LED settings 2931 * @hw: pointer to the HW structure 2932 * @data: Pointer to the LED settings 2933 * 2934 * Reads the LED default settings from the NVM to data. If the NVM LED 2935 * settings is all 0's or F's, set the LED default to a valid LED default 2936 * setting. 2937 **/ 2938 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data) 2939 { 2940 s32 ret_val; 2941 2942 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data); 2943 if (ret_val) { 2944 e_dbg("NVM Read Error\n"); 2945 return ret_val; 2946 } 2947 2948 if (*data == ID_LED_RESERVED_0000 || 2949 *data == ID_LED_RESERVED_FFFF) 2950 *data = ID_LED_DEFAULT_ICH8LAN; 2951 2952 return 0; 2953 } 2954 2955 /** 2956 * e1000_id_led_init_pchlan - store LED configurations 2957 * @hw: pointer to the HW structure 2958 * 2959 * PCH does not control LEDs via the LEDCTL register, rather it uses 2960 * the PHY LED configuration register. 2961 * 2962 * PCH also does not have an "always on" or "always off" mode which 2963 * complicates the ID feature. Instead of using the "on" mode to indicate 2964 * in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()), 2965 * use "link_up" mode. The LEDs will still ID on request if there is no 2966 * link based on logic in e1000_led_[on|off]_pchlan(). 2967 **/ 2968 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw) 2969 { 2970 struct e1000_mac_info *mac = &hw->mac; 2971 s32 ret_val; 2972 const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP; 2973 const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT; 2974 u16 data, i, temp, shift; 2975 2976 /* Get default ID LED modes */ 2977 ret_val = hw->nvm.ops.valid_led_default(hw, &data); 2978 if (ret_val) 2979 return ret_val; 2980 2981 mac->ledctl_default = er32(LEDCTL); 2982 mac->ledctl_mode1 = mac->ledctl_default; 2983 mac->ledctl_mode2 = mac->ledctl_default; 2984 2985 for (i = 0; i < 4; i++) { 2986 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK; 2987 shift = (i * 5); 2988 switch (temp) { 2989 case ID_LED_ON1_DEF2: 2990 case ID_LED_ON1_ON2: 2991 case ID_LED_ON1_OFF2: 2992 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift); 2993 mac->ledctl_mode1 |= (ledctl_on << shift); 2994 break; 2995 case ID_LED_OFF1_DEF2: 2996 case ID_LED_OFF1_ON2: 2997 case ID_LED_OFF1_OFF2: 2998 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift); 2999 mac->ledctl_mode1 |= (ledctl_off << shift); 3000 break; 3001 default: 3002 /* Do nothing */ 3003 break; 3004 } 3005 switch (temp) { 3006 case ID_LED_DEF1_ON2: 3007 case ID_LED_ON1_ON2: 3008 case ID_LED_OFF1_ON2: 3009 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift); 3010 mac->ledctl_mode2 |= (ledctl_on << shift); 3011 break; 3012 case ID_LED_DEF1_OFF2: 3013 case ID_LED_ON1_OFF2: 3014 case ID_LED_OFF1_OFF2: 3015 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift); 3016 mac->ledctl_mode2 |= (ledctl_off << shift); 3017 break; 3018 default: 3019 /* Do nothing */ 3020 break; 3021 } 3022 } 3023 3024 return 0; 3025 } 3026 3027 /** 3028 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width 3029 * @hw: pointer to the HW structure 3030 * 3031 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability 3032 * register, so the the bus width is hard coded. 3033 **/ 3034 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw) 3035 { 3036 struct e1000_bus_info *bus = &hw->bus; 3037 s32 ret_val; 3038 3039 ret_val = e1000e_get_bus_info_pcie(hw); 3040 3041 /* 3042 * ICH devices are "PCI Express"-ish. They have 3043 * a configuration space, but do not contain 3044 * PCI Express Capability registers, so bus width 3045 * must be hardcoded. 3046 */ 3047 if (bus->width == e1000_bus_width_unknown) 3048 bus->width = e1000_bus_width_pcie_x1; 3049 3050 return ret_val; 3051 } 3052 3053 /** 3054 * e1000_reset_hw_ich8lan - Reset the hardware 3055 * @hw: pointer to the HW structure 3056 * 3057 * Does a full reset of the hardware which includes a reset of the PHY and 3058 * MAC. 3059 **/ 3060 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw) 3061 { 3062 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 3063 u16 reg; 3064 u32 ctrl, kab; 3065 s32 ret_val; 3066 3067 /* 3068 * Prevent the PCI-E bus from sticking if there is no TLP connection 3069 * on the last TLP read/write transaction when MAC is reset. 3070 */ 3071 ret_val = e1000e_disable_pcie_master(hw); 3072 if (ret_val) 3073 e_dbg("PCI-E Master disable polling has failed.\n"); 3074 3075 e_dbg("Masking off all interrupts\n"); 3076 ew32(IMC, 0xffffffff); 3077 3078 /* 3079 * Disable the Transmit and Receive units. Then delay to allow 3080 * any pending transactions to complete before we hit the MAC 3081 * with the global reset. 3082 */ 3083 ew32(RCTL, 0); 3084 ew32(TCTL, E1000_TCTL_PSP); 3085 e1e_flush(); 3086 3087 usleep_range(10000, 20000); 3088 3089 /* Workaround for ICH8 bit corruption issue in FIFO memory */ 3090 if (hw->mac.type == e1000_ich8lan) { 3091 /* Set Tx and Rx buffer allocation to 8k apiece. */ 3092 ew32(PBA, E1000_PBA_8K); 3093 /* Set Packet Buffer Size to 16k. */ 3094 ew32(PBS, E1000_PBS_16K); 3095 } 3096 3097 if (hw->mac.type == e1000_pchlan) { 3098 /* Save the NVM K1 bit setting*/ 3099 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, ®); 3100 if (ret_val) 3101 return ret_val; 3102 3103 if (reg & E1000_NVM_K1_ENABLE) 3104 dev_spec->nvm_k1_enabled = true; 3105 else 3106 dev_spec->nvm_k1_enabled = false; 3107 } 3108 3109 ctrl = er32(CTRL); 3110 3111 if (!hw->phy.ops.check_reset_block(hw)) { 3112 /* 3113 * Full-chip reset requires MAC and PHY reset at the same 3114 * time to make sure the interface between MAC and the 3115 * external PHY is reset. 3116 */ 3117 ctrl |= E1000_CTRL_PHY_RST; 3118 3119 /* 3120 * Gate automatic PHY configuration by hardware on 3121 * non-managed 82579 3122 */ 3123 if ((hw->mac.type == e1000_pch2lan) && 3124 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) 3125 e1000_gate_hw_phy_config_ich8lan(hw, true); 3126 } 3127 ret_val = e1000_acquire_swflag_ich8lan(hw); 3128 e_dbg("Issuing a global reset to ich8lan\n"); 3129 ew32(CTRL, (ctrl | E1000_CTRL_RST)); 3130 /* cannot issue a flush here because it hangs the hardware */ 3131 msleep(20); 3132 3133 if (!ret_val) 3134 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state); 3135 3136 if (ctrl & E1000_CTRL_PHY_RST) { 3137 ret_val = hw->phy.ops.get_cfg_done(hw); 3138 if (ret_val) 3139 return ret_val; 3140 3141 ret_val = e1000_post_phy_reset_ich8lan(hw); 3142 if (ret_val) 3143 return ret_val; 3144 } 3145 3146 /* 3147 * For PCH, this write will make sure that any noise 3148 * will be detected as a CRC error and be dropped rather than show up 3149 * as a bad packet to the DMA engine. 3150 */ 3151 if (hw->mac.type == e1000_pchlan) 3152 ew32(CRC_OFFSET, 0x65656565); 3153 3154 ew32(IMC, 0xffffffff); 3155 er32(ICR); 3156 3157 kab = er32(KABGTXD); 3158 kab |= E1000_KABGTXD_BGSQLBIAS; 3159 ew32(KABGTXD, kab); 3160 3161 return 0; 3162 } 3163 3164 /** 3165 * e1000_init_hw_ich8lan - Initialize the hardware 3166 * @hw: pointer to the HW structure 3167 * 3168 * Prepares the hardware for transmit and receive by doing the following: 3169 * - initialize hardware bits 3170 * - initialize LED identification 3171 * - setup receive address registers 3172 * - setup flow control 3173 * - setup transmit descriptors 3174 * - clear statistics 3175 **/ 3176 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw) 3177 { 3178 struct e1000_mac_info *mac = &hw->mac; 3179 u32 ctrl_ext, txdctl, snoop; 3180 s32 ret_val; 3181 u16 i; 3182 3183 e1000_initialize_hw_bits_ich8lan(hw); 3184 3185 /* Initialize identification LED */ 3186 ret_val = mac->ops.id_led_init(hw); 3187 if (ret_val) 3188 e_dbg("Error initializing identification LED\n"); 3189 /* This is not fatal and we should not stop init due to this */ 3190 3191 /* Setup the receive address. */ 3192 e1000e_init_rx_addrs(hw, mac->rar_entry_count); 3193 3194 /* Zero out the Multicast HASH table */ 3195 e_dbg("Zeroing the MTA\n"); 3196 for (i = 0; i < mac->mta_reg_count; i++) 3197 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); 3198 3199 /* 3200 * The 82578 Rx buffer will stall if wakeup is enabled in host and 3201 * the ME. Disable wakeup by clearing the host wakeup bit. 3202 * Reset the phy after disabling host wakeup to reset the Rx buffer. 3203 */ 3204 if (hw->phy.type == e1000_phy_82578) { 3205 e1e_rphy(hw, BM_PORT_GEN_CFG, &i); 3206 i &= ~BM_WUC_HOST_WU_BIT; 3207 e1e_wphy(hw, BM_PORT_GEN_CFG, i); 3208 ret_val = e1000_phy_hw_reset_ich8lan(hw); 3209 if (ret_val) 3210 return ret_val; 3211 } 3212 3213 /* Setup link and flow control */ 3214 ret_val = mac->ops.setup_link(hw); 3215 3216 /* Set the transmit descriptor write-back policy for both queues */ 3217 txdctl = er32(TXDCTL(0)); 3218 txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) | 3219 E1000_TXDCTL_FULL_TX_DESC_WB; 3220 txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) | 3221 E1000_TXDCTL_MAX_TX_DESC_PREFETCH; 3222 ew32(TXDCTL(0), txdctl); 3223 txdctl = er32(TXDCTL(1)); 3224 txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) | 3225 E1000_TXDCTL_FULL_TX_DESC_WB; 3226 txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) | 3227 E1000_TXDCTL_MAX_TX_DESC_PREFETCH; 3228 ew32(TXDCTL(1), txdctl); 3229 3230 /* 3231 * ICH8 has opposite polarity of no_snoop bits. 3232 * By default, we should use snoop behavior. 3233 */ 3234 if (mac->type == e1000_ich8lan) 3235 snoop = PCIE_ICH8_SNOOP_ALL; 3236 else 3237 snoop = (u32) ~(PCIE_NO_SNOOP_ALL); 3238 e1000e_set_pcie_no_snoop(hw, snoop); 3239 3240 ctrl_ext = er32(CTRL_EXT); 3241 ctrl_ext |= E1000_CTRL_EXT_RO_DIS; 3242 ew32(CTRL_EXT, ctrl_ext); 3243 3244 /* 3245 * Clear all of the statistics registers (clear on read). It is 3246 * important that we do this after we have tried to establish link 3247 * because the symbol error count will increment wildly if there 3248 * is no link. 3249 */ 3250 e1000_clear_hw_cntrs_ich8lan(hw); 3251 3252 return ret_val; 3253 } 3254 /** 3255 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits 3256 * @hw: pointer to the HW structure 3257 * 3258 * Sets/Clears required hardware bits necessary for correctly setting up the 3259 * hardware for transmit and receive. 3260 **/ 3261 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw) 3262 { 3263 u32 reg; 3264 3265 /* Extended Device Control */ 3266 reg = er32(CTRL_EXT); 3267 reg |= (1 << 22); 3268 /* Enable PHY low-power state when MAC is at D3 w/o WoL */ 3269 if (hw->mac.type >= e1000_pchlan) 3270 reg |= E1000_CTRL_EXT_PHYPDEN; 3271 ew32(CTRL_EXT, reg); 3272 3273 /* Transmit Descriptor Control 0 */ 3274 reg = er32(TXDCTL(0)); 3275 reg |= (1 << 22); 3276 ew32(TXDCTL(0), reg); 3277 3278 /* Transmit Descriptor Control 1 */ 3279 reg = er32(TXDCTL(1)); 3280 reg |= (1 << 22); 3281 ew32(TXDCTL(1), reg); 3282 3283 /* Transmit Arbitration Control 0 */ 3284 reg = er32(TARC(0)); 3285 if (hw->mac.type == e1000_ich8lan) 3286 reg |= (1 << 28) | (1 << 29); 3287 reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27); 3288 ew32(TARC(0), reg); 3289 3290 /* Transmit Arbitration Control 1 */ 3291 reg = er32(TARC(1)); 3292 if (er32(TCTL) & E1000_TCTL_MULR) 3293 reg &= ~(1 << 28); 3294 else 3295 reg |= (1 << 28); 3296 reg |= (1 << 24) | (1 << 26) | (1 << 30); 3297 ew32(TARC(1), reg); 3298 3299 /* Device Status */ 3300 if (hw->mac.type == e1000_ich8lan) { 3301 reg = er32(STATUS); 3302 reg &= ~(1 << 31); 3303 ew32(STATUS, reg); 3304 } 3305 3306 /* 3307 * work-around descriptor data corruption issue during nfs v2 udp 3308 * traffic, just disable the nfs filtering capability 3309 */ 3310 reg = er32(RFCTL); 3311 reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS); 3312 ew32(RFCTL, reg); 3313 } 3314 3315 /** 3316 * e1000_setup_link_ich8lan - Setup flow control and link settings 3317 * @hw: pointer to the HW structure 3318 * 3319 * Determines which flow control settings to use, then configures flow 3320 * control. Calls the appropriate media-specific link configuration 3321 * function. Assuming the adapter has a valid link partner, a valid link 3322 * should be established. Assumes the hardware has previously been reset 3323 * and the transmitter and receiver are not enabled. 3324 **/ 3325 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw) 3326 { 3327 s32 ret_val; 3328 3329 if (hw->phy.ops.check_reset_block(hw)) 3330 return 0; 3331 3332 /* 3333 * ICH parts do not have a word in the NVM to determine 3334 * the default flow control setting, so we explicitly 3335 * set it to full. 3336 */ 3337 if (hw->fc.requested_mode == e1000_fc_default) { 3338 /* Workaround h/w hang when Tx flow control enabled */ 3339 if (hw->mac.type == e1000_pchlan) 3340 hw->fc.requested_mode = e1000_fc_rx_pause; 3341 else 3342 hw->fc.requested_mode = e1000_fc_full; 3343 } 3344 3345 /* 3346 * Save off the requested flow control mode for use later. Depending 3347 * on the link partner's capabilities, we may or may not use this mode. 3348 */ 3349 hw->fc.current_mode = hw->fc.requested_mode; 3350 3351 e_dbg("After fix-ups FlowControl is now = %x\n", 3352 hw->fc.current_mode); 3353 3354 /* Continue to configure the copper link. */ 3355 ret_val = hw->mac.ops.setup_physical_interface(hw); 3356 if (ret_val) 3357 return ret_val; 3358 3359 ew32(FCTTV, hw->fc.pause_time); 3360 if ((hw->phy.type == e1000_phy_82578) || 3361 (hw->phy.type == e1000_phy_82579) || 3362 (hw->phy.type == e1000_phy_82577)) { 3363 ew32(FCRTV_PCH, hw->fc.refresh_time); 3364 3365 ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27), 3366 hw->fc.pause_time); 3367 if (ret_val) 3368 return ret_val; 3369 } 3370 3371 return e1000e_set_fc_watermarks(hw); 3372 } 3373 3374 /** 3375 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface 3376 * @hw: pointer to the HW structure 3377 * 3378 * Configures the kumeran interface to the PHY to wait the appropriate time 3379 * when polling the PHY, then call the generic setup_copper_link to finish 3380 * configuring the copper link. 3381 **/ 3382 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw) 3383 { 3384 u32 ctrl; 3385 s32 ret_val; 3386 u16 reg_data; 3387 3388 ctrl = er32(CTRL); 3389 ctrl |= E1000_CTRL_SLU; 3390 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); 3391 ew32(CTRL, ctrl); 3392 3393 /* 3394 * Set the mac to wait the maximum time between each iteration 3395 * and increase the max iterations when polling the phy; 3396 * this fixes erroneous timeouts at 10Mbps. 3397 */ 3398 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF); 3399 if (ret_val) 3400 return ret_val; 3401 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM, 3402 ®_data); 3403 if (ret_val) 3404 return ret_val; 3405 reg_data |= 0x3F; 3406 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM, 3407 reg_data); 3408 if (ret_val) 3409 return ret_val; 3410 3411 switch (hw->phy.type) { 3412 case e1000_phy_igp_3: 3413 ret_val = e1000e_copper_link_setup_igp(hw); 3414 if (ret_val) 3415 return ret_val; 3416 break; 3417 case e1000_phy_bm: 3418 case e1000_phy_82578: 3419 ret_val = e1000e_copper_link_setup_m88(hw); 3420 if (ret_val) 3421 return ret_val; 3422 break; 3423 case e1000_phy_82577: 3424 case e1000_phy_82579: 3425 ret_val = e1000_copper_link_setup_82577(hw); 3426 if (ret_val) 3427 return ret_val; 3428 break; 3429 case e1000_phy_ife: 3430 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, ®_data); 3431 if (ret_val) 3432 return ret_val; 3433 3434 reg_data &= ~IFE_PMC_AUTO_MDIX; 3435 3436 switch (hw->phy.mdix) { 3437 case 1: 3438 reg_data &= ~IFE_PMC_FORCE_MDIX; 3439 break; 3440 case 2: 3441 reg_data |= IFE_PMC_FORCE_MDIX; 3442 break; 3443 case 0: 3444 default: 3445 reg_data |= IFE_PMC_AUTO_MDIX; 3446 break; 3447 } 3448 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data); 3449 if (ret_val) 3450 return ret_val; 3451 break; 3452 default: 3453 break; 3454 } 3455 3456 return e1000e_setup_copper_link(hw); 3457 } 3458 3459 /** 3460 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex 3461 * @hw: pointer to the HW structure 3462 * @speed: pointer to store current link speed 3463 * @duplex: pointer to store the current link duplex 3464 * 3465 * Calls the generic get_speed_and_duplex to retrieve the current link 3466 * information and then calls the Kumeran lock loss workaround for links at 3467 * gigabit speeds. 3468 **/ 3469 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed, 3470 u16 *duplex) 3471 { 3472 s32 ret_val; 3473 3474 ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex); 3475 if (ret_val) 3476 return ret_val; 3477 3478 if ((hw->mac.type == e1000_ich8lan) && 3479 (hw->phy.type == e1000_phy_igp_3) && 3480 (*speed == SPEED_1000)) { 3481 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw); 3482 } 3483 3484 return ret_val; 3485 } 3486 3487 /** 3488 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround 3489 * @hw: pointer to the HW structure 3490 * 3491 * Work-around for 82566 Kumeran PCS lock loss: 3492 * On link status change (i.e. PCI reset, speed change) and link is up and 3493 * speed is gigabit- 3494 * 0) if workaround is optionally disabled do nothing 3495 * 1) wait 1ms for Kumeran link to come up 3496 * 2) check Kumeran Diagnostic register PCS lock loss bit 3497 * 3) if not set the link is locked (all is good), otherwise... 3498 * 4) reset the PHY 3499 * 5) repeat up to 10 times 3500 * Note: this is only called for IGP3 copper when speed is 1gb. 3501 **/ 3502 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw) 3503 { 3504 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 3505 u32 phy_ctrl; 3506 s32 ret_val; 3507 u16 i, data; 3508 bool link; 3509 3510 if (!dev_spec->kmrn_lock_loss_workaround_enabled) 3511 return 0; 3512 3513 /* 3514 * Make sure link is up before proceeding. If not just return. 3515 * Attempting this while link is negotiating fouled up link 3516 * stability 3517 */ 3518 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); 3519 if (!link) 3520 return 0; 3521 3522 for (i = 0; i < 10; i++) { 3523 /* read once to clear */ 3524 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data); 3525 if (ret_val) 3526 return ret_val; 3527 /* and again to get new status */ 3528 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data); 3529 if (ret_val) 3530 return ret_val; 3531 3532 /* check for PCS lock */ 3533 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS)) 3534 return 0; 3535 3536 /* Issue PHY reset */ 3537 e1000_phy_hw_reset(hw); 3538 mdelay(5); 3539 } 3540 /* Disable GigE link negotiation */ 3541 phy_ctrl = er32(PHY_CTRL); 3542 phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE | 3543 E1000_PHY_CTRL_NOND0A_GBE_DISABLE); 3544 ew32(PHY_CTRL, phy_ctrl); 3545 3546 /* 3547 * Call gig speed drop workaround on Gig disable before accessing 3548 * any PHY registers 3549 */ 3550 e1000e_gig_downshift_workaround_ich8lan(hw); 3551 3552 /* unable to acquire PCS lock */ 3553 return -E1000_ERR_PHY; 3554 } 3555 3556 /** 3557 * e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state 3558 * @hw: pointer to the HW structure 3559 * @state: boolean value used to set the current Kumeran workaround state 3560 * 3561 * If ICH8, set the current Kumeran workaround state (enabled - true 3562 * /disabled - false). 3563 **/ 3564 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw, 3565 bool state) 3566 { 3567 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; 3568 3569 if (hw->mac.type != e1000_ich8lan) { 3570 e_dbg("Workaround applies to ICH8 only.\n"); 3571 return; 3572 } 3573 3574 dev_spec->kmrn_lock_loss_workaround_enabled = state; 3575 } 3576 3577 /** 3578 * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3 3579 * @hw: pointer to the HW structure 3580 * 3581 * Workaround for 82566 power-down on D3 entry: 3582 * 1) disable gigabit link 3583 * 2) write VR power-down enable 3584 * 3) read it back 3585 * Continue if successful, else issue LCD reset and repeat 3586 **/ 3587 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw) 3588 { 3589 u32 reg; 3590 u16 data; 3591 u8 retry = 0; 3592 3593 if (hw->phy.type != e1000_phy_igp_3) 3594 return; 3595 3596 /* Try the workaround twice (if needed) */ 3597 do { 3598 /* Disable link */ 3599 reg = er32(PHY_CTRL); 3600 reg |= (E1000_PHY_CTRL_GBE_DISABLE | 3601 E1000_PHY_CTRL_NOND0A_GBE_DISABLE); 3602 ew32(PHY_CTRL, reg); 3603 3604 /* 3605 * Call gig speed drop workaround on Gig disable before 3606 * accessing any PHY registers 3607 */ 3608 if (hw->mac.type == e1000_ich8lan) 3609 e1000e_gig_downshift_workaround_ich8lan(hw); 3610 3611 /* Write VR power-down enable */ 3612 e1e_rphy(hw, IGP3_VR_CTRL, &data); 3613 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK; 3614 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN); 3615 3616 /* Read it back and test */ 3617 e1e_rphy(hw, IGP3_VR_CTRL, &data); 3618 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK; 3619 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry) 3620 break; 3621 3622 /* Issue PHY reset and repeat at most one more time */ 3623 reg = er32(CTRL); 3624 ew32(CTRL, reg | E1000_CTRL_PHY_RST); 3625 retry++; 3626 } while (retry); 3627 } 3628 3629 /** 3630 * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working 3631 * @hw: pointer to the HW structure 3632 * 3633 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC), 3634 * LPLU, Gig disable, MDIC PHY reset): 3635 * 1) Set Kumeran Near-end loopback 3636 * 2) Clear Kumeran Near-end loopback 3637 * Should only be called for ICH8[m] devices with any 1G Phy. 3638 **/ 3639 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw) 3640 { 3641 s32 ret_val; 3642 u16 reg_data; 3643 3644 if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife)) 3645 return; 3646 3647 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, 3648 ®_data); 3649 if (ret_val) 3650 return; 3651 reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK; 3652 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, 3653 reg_data); 3654 if (ret_val) 3655 return; 3656 reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK; 3657 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, 3658 reg_data); 3659 } 3660 3661 /** 3662 * e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx 3663 * @hw: pointer to the HW structure 3664 * 3665 * During S0 to Sx transition, it is possible the link remains at gig 3666 * instead of negotiating to a lower speed. Before going to Sx, set 3667 * 'Gig Disable' to force link speed negotiation to a lower speed based on 3668 * the LPLU setting in the NVM or custom setting. For PCH and newer parts, 3669 * the OEM bits PHY register (LED, GbE disable and LPLU configurations) also 3670 * needs to be written. 3671 **/ 3672 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw) 3673 { 3674 u32 phy_ctrl; 3675 s32 ret_val; 3676 3677 phy_ctrl = er32(PHY_CTRL); 3678 phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE; 3679 ew32(PHY_CTRL, phy_ctrl); 3680 3681 if (hw->mac.type == e1000_ich8lan) 3682 e1000e_gig_downshift_workaround_ich8lan(hw); 3683 3684 if (hw->mac.type >= e1000_pchlan) { 3685 e1000_oem_bits_config_ich8lan(hw, false); 3686 3687 /* Reset PHY to activate OEM bits on 82577/8 */ 3688 if (hw->mac.type == e1000_pchlan) 3689 e1000e_phy_hw_reset_generic(hw); 3690 3691 ret_val = hw->phy.ops.acquire(hw); 3692 if (ret_val) 3693 return; 3694 e1000_write_smbus_addr(hw); 3695 hw->phy.ops.release(hw); 3696 } 3697 } 3698 3699 /** 3700 * e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0 3701 * @hw: pointer to the HW structure 3702 * 3703 * During Sx to S0 transitions on non-managed devices or managed devices 3704 * on which PHY resets are not blocked, if the PHY registers cannot be 3705 * accessed properly by the s/w toggle the LANPHYPC value to power cycle 3706 * the PHY. 3707 **/ 3708 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw) 3709 { 3710 u16 phy_id1, phy_id2; 3711 s32 ret_val; 3712 3713 if ((hw->mac.type != e1000_pch2lan) || 3714 hw->phy.ops.check_reset_block(hw)) 3715 return; 3716 3717 ret_val = hw->phy.ops.acquire(hw); 3718 if (ret_val) { 3719 e_dbg("Failed to acquire PHY semaphore in resume\n"); 3720 return; 3721 } 3722 3723 /* Test access to the PHY registers by reading the ID regs */ 3724 ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID1, &phy_id1); 3725 if (ret_val) 3726 goto release; 3727 ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID2, &phy_id2); 3728 if (ret_val) 3729 goto release; 3730 3731 if (hw->phy.id == ((u32)(phy_id1 << 16) | 3732 (u32)(phy_id2 & PHY_REVISION_MASK))) 3733 goto release; 3734 3735 e1000_toggle_lanphypc_value_ich8lan(hw); 3736 3737 hw->phy.ops.release(hw); 3738 msleep(50); 3739 e1000_phy_hw_reset(hw); 3740 msleep(50); 3741 return; 3742 3743 release: 3744 hw->phy.ops.release(hw); 3745 } 3746 3747 /** 3748 * e1000_cleanup_led_ich8lan - Restore the default LED operation 3749 * @hw: pointer to the HW structure 3750 * 3751 * Return the LED back to the default configuration. 3752 **/ 3753 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw) 3754 { 3755 if (hw->phy.type == e1000_phy_ife) 3756 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0); 3757 3758 ew32(LEDCTL, hw->mac.ledctl_default); 3759 return 0; 3760 } 3761 3762 /** 3763 * e1000_led_on_ich8lan - Turn LEDs on 3764 * @hw: pointer to the HW structure 3765 * 3766 * Turn on the LEDs. 3767 **/ 3768 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw) 3769 { 3770 if (hw->phy.type == e1000_phy_ife) 3771 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 3772 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON)); 3773 3774 ew32(LEDCTL, hw->mac.ledctl_mode2); 3775 return 0; 3776 } 3777 3778 /** 3779 * e1000_led_off_ich8lan - Turn LEDs off 3780 * @hw: pointer to the HW structure 3781 * 3782 * Turn off the LEDs. 3783 **/ 3784 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw) 3785 { 3786 if (hw->phy.type == e1000_phy_ife) 3787 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 3788 (IFE_PSCL_PROBE_MODE | 3789 IFE_PSCL_PROBE_LEDS_OFF)); 3790 3791 ew32(LEDCTL, hw->mac.ledctl_mode1); 3792 return 0; 3793 } 3794 3795 /** 3796 * e1000_setup_led_pchlan - Configures SW controllable LED 3797 * @hw: pointer to the HW structure 3798 * 3799 * This prepares the SW controllable LED for use. 3800 **/ 3801 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw) 3802 { 3803 return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1); 3804 } 3805 3806 /** 3807 * e1000_cleanup_led_pchlan - Restore the default LED operation 3808 * @hw: pointer to the HW structure 3809 * 3810 * Return the LED back to the default configuration. 3811 **/ 3812 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw) 3813 { 3814 return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default); 3815 } 3816 3817 /** 3818 * e1000_led_on_pchlan - Turn LEDs on 3819 * @hw: pointer to the HW structure 3820 * 3821 * Turn on the LEDs. 3822 **/ 3823 static s32 e1000_led_on_pchlan(struct e1000_hw *hw) 3824 { 3825 u16 data = (u16)hw->mac.ledctl_mode2; 3826 u32 i, led; 3827 3828 /* 3829 * If no link, then turn LED on by setting the invert bit 3830 * for each LED that's mode is "link_up" in ledctl_mode2. 3831 */ 3832 if (!(er32(STATUS) & E1000_STATUS_LU)) { 3833 for (i = 0; i < 3; i++) { 3834 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK; 3835 if ((led & E1000_PHY_LED0_MODE_MASK) != 3836 E1000_LEDCTL_MODE_LINK_UP) 3837 continue; 3838 if (led & E1000_PHY_LED0_IVRT) 3839 data &= ~(E1000_PHY_LED0_IVRT << (i * 5)); 3840 else 3841 data |= (E1000_PHY_LED0_IVRT << (i * 5)); 3842 } 3843 } 3844 3845 return e1e_wphy(hw, HV_LED_CONFIG, data); 3846 } 3847 3848 /** 3849 * e1000_led_off_pchlan - Turn LEDs off 3850 * @hw: pointer to the HW structure 3851 * 3852 * Turn off the LEDs. 3853 **/ 3854 static s32 e1000_led_off_pchlan(struct e1000_hw *hw) 3855 { 3856 u16 data = (u16)hw->mac.ledctl_mode1; 3857 u32 i, led; 3858 3859 /* 3860 * If no link, then turn LED off by clearing the invert bit 3861 * for each LED that's mode is "link_up" in ledctl_mode1. 3862 */ 3863 if (!(er32(STATUS) & E1000_STATUS_LU)) { 3864 for (i = 0; i < 3; i++) { 3865 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK; 3866 if ((led & E1000_PHY_LED0_MODE_MASK) != 3867 E1000_LEDCTL_MODE_LINK_UP) 3868 continue; 3869 if (led & E1000_PHY_LED0_IVRT) 3870 data &= ~(E1000_PHY_LED0_IVRT << (i * 5)); 3871 else 3872 data |= (E1000_PHY_LED0_IVRT << (i * 5)); 3873 } 3874 } 3875 3876 return e1e_wphy(hw, HV_LED_CONFIG, data); 3877 } 3878 3879 /** 3880 * e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset 3881 * @hw: pointer to the HW structure 3882 * 3883 * Read appropriate register for the config done bit for completion status 3884 * and configure the PHY through s/w for EEPROM-less parts. 3885 * 3886 * NOTE: some silicon which is EEPROM-less will fail trying to read the 3887 * config done bit, so only an error is logged and continues. If we were 3888 * to return with error, EEPROM-less silicon would not be able to be reset 3889 * or change link. 3890 **/ 3891 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw) 3892 { 3893 s32 ret_val = 0; 3894 u32 bank = 0; 3895 u32 status; 3896 3897 e1000e_get_cfg_done(hw); 3898 3899 /* Wait for indication from h/w that it has completed basic config */ 3900 if (hw->mac.type >= e1000_ich10lan) { 3901 e1000_lan_init_done_ich8lan(hw); 3902 } else { 3903 ret_val = e1000e_get_auto_rd_done(hw); 3904 if (ret_val) { 3905 /* 3906 * When auto config read does not complete, do not 3907 * return with an error. This can happen in situations 3908 * where there is no eeprom and prevents getting link. 3909 */ 3910 e_dbg("Auto Read Done did not complete\n"); 3911 ret_val = 0; 3912 } 3913 } 3914 3915 /* Clear PHY Reset Asserted bit */ 3916 status = er32(STATUS); 3917 if (status & E1000_STATUS_PHYRA) 3918 ew32(STATUS, status & ~E1000_STATUS_PHYRA); 3919 else 3920 e_dbg("PHY Reset Asserted not set - needs delay\n"); 3921 3922 /* If EEPROM is not marked present, init the IGP 3 PHY manually */ 3923 if (hw->mac.type <= e1000_ich9lan) { 3924 if (((er32(EECD) & E1000_EECD_PRES) == 0) && 3925 (hw->phy.type == e1000_phy_igp_3)) { 3926 e1000e_phy_init_script_igp3(hw); 3927 } 3928 } else { 3929 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) { 3930 /* Maybe we should do a basic PHY config */ 3931 e_dbg("EEPROM not present\n"); 3932 ret_val = -E1000_ERR_CONFIG; 3933 } 3934 } 3935 3936 return ret_val; 3937 } 3938 3939 /** 3940 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down 3941 * @hw: pointer to the HW structure 3942 * 3943 * In the case of a PHY power down to save power, or to turn off link during a 3944 * driver unload, or wake on lan is not enabled, remove the link. 3945 **/ 3946 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw) 3947 { 3948 /* If the management interface is not enabled, then power down */ 3949 if (!(hw->mac.ops.check_mng_mode(hw) || 3950 hw->phy.ops.check_reset_block(hw))) 3951 e1000_power_down_phy_copper(hw); 3952 } 3953 3954 /** 3955 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters 3956 * @hw: pointer to the HW structure 3957 * 3958 * Clears hardware counters specific to the silicon family and calls 3959 * clear_hw_cntrs_generic to clear all general purpose counters. 3960 **/ 3961 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw) 3962 { 3963 u16 phy_data; 3964 s32 ret_val; 3965 3966 e1000e_clear_hw_cntrs_base(hw); 3967 3968 er32(ALGNERRC); 3969 er32(RXERRC); 3970 er32(TNCRS); 3971 er32(CEXTERR); 3972 er32(TSCTC); 3973 er32(TSCTFC); 3974 3975 er32(MGTPRC); 3976 er32(MGTPDC); 3977 er32(MGTPTC); 3978 3979 er32(IAC); 3980 er32(ICRXOC); 3981 3982 /* Clear PHY statistics registers */ 3983 if ((hw->phy.type == e1000_phy_82578) || 3984 (hw->phy.type == e1000_phy_82579) || 3985 (hw->phy.type == e1000_phy_82577)) { 3986 ret_val = hw->phy.ops.acquire(hw); 3987 if (ret_val) 3988 return; 3989 ret_val = hw->phy.ops.set_page(hw, 3990 HV_STATS_PAGE << IGP_PAGE_SHIFT); 3991 if (ret_val) 3992 goto release; 3993 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data); 3994 hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data); 3995 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data); 3996 hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data); 3997 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data); 3998 hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data); 3999 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data); 4000 hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data); 4001 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data); 4002 hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data); 4003 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data); 4004 hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data); 4005 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data); 4006 hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data); 4007 release: 4008 hw->phy.ops.release(hw); 4009 } 4010 } 4011 4012 static const struct e1000_mac_operations ich8_mac_ops = { 4013 /* check_mng_mode dependent on mac type */ 4014 .check_for_link = e1000_check_for_copper_link_ich8lan, 4015 /* cleanup_led dependent on mac type */ 4016 .clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan, 4017 .get_bus_info = e1000_get_bus_info_ich8lan, 4018 .set_lan_id = e1000_set_lan_id_single_port, 4019 .get_link_up_info = e1000_get_link_up_info_ich8lan, 4020 /* led_on dependent on mac type */ 4021 /* led_off dependent on mac type */ 4022 .update_mc_addr_list = e1000e_update_mc_addr_list_generic, 4023 .reset_hw = e1000_reset_hw_ich8lan, 4024 .init_hw = e1000_init_hw_ich8lan, 4025 .setup_link = e1000_setup_link_ich8lan, 4026 .setup_physical_interface= e1000_setup_copper_link_ich8lan, 4027 /* id_led_init dependent on mac type */ 4028 .config_collision_dist = e1000e_config_collision_dist_generic, 4029 }; 4030 4031 static const struct e1000_phy_operations ich8_phy_ops = { 4032 .acquire = e1000_acquire_swflag_ich8lan, 4033 .check_reset_block = e1000_check_reset_block_ich8lan, 4034 .commit = NULL, 4035 .get_cfg_done = e1000_get_cfg_done_ich8lan, 4036 .get_cable_length = e1000e_get_cable_length_igp_2, 4037 .read_reg = e1000e_read_phy_reg_igp, 4038 .release = e1000_release_swflag_ich8lan, 4039 .reset = e1000_phy_hw_reset_ich8lan, 4040 .set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan, 4041 .set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan, 4042 .write_reg = e1000e_write_phy_reg_igp, 4043 }; 4044 4045 static const struct e1000_nvm_operations ich8_nvm_ops = { 4046 .acquire = e1000_acquire_nvm_ich8lan, 4047 .read = e1000_read_nvm_ich8lan, 4048 .release = e1000_release_nvm_ich8lan, 4049 .reload = e1000e_reload_nvm_generic, 4050 .update = e1000_update_nvm_checksum_ich8lan, 4051 .valid_led_default = e1000_valid_led_default_ich8lan, 4052 .validate = e1000_validate_nvm_checksum_ich8lan, 4053 .write = e1000_write_nvm_ich8lan, 4054 }; 4055 4056 const struct e1000_info e1000_ich8_info = { 4057 .mac = e1000_ich8lan, 4058 .flags = FLAG_HAS_WOL 4059 | FLAG_IS_ICH 4060 | FLAG_HAS_CTRLEXT_ON_LOAD 4061 | FLAG_HAS_AMT 4062 | FLAG_HAS_FLASH 4063 | FLAG_APME_IN_WUC, 4064 .pba = 8, 4065 .max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN, 4066 .get_variants = e1000_get_variants_ich8lan, 4067 .mac_ops = &ich8_mac_ops, 4068 .phy_ops = &ich8_phy_ops, 4069 .nvm_ops = &ich8_nvm_ops, 4070 }; 4071 4072 const struct e1000_info e1000_ich9_info = { 4073 .mac = e1000_ich9lan, 4074 .flags = FLAG_HAS_JUMBO_FRAMES 4075 | FLAG_IS_ICH 4076 | FLAG_HAS_WOL 4077 | FLAG_HAS_CTRLEXT_ON_LOAD 4078 | FLAG_HAS_AMT 4079 | FLAG_HAS_FLASH 4080 | FLAG_APME_IN_WUC, 4081 .pba = 18, 4082 .max_hw_frame_size = DEFAULT_JUMBO, 4083 .get_variants = e1000_get_variants_ich8lan, 4084 .mac_ops = &ich8_mac_ops, 4085 .phy_ops = &ich8_phy_ops, 4086 .nvm_ops = &ich8_nvm_ops, 4087 }; 4088 4089 const struct e1000_info e1000_ich10_info = { 4090 .mac = e1000_ich10lan, 4091 .flags = FLAG_HAS_JUMBO_FRAMES 4092 | FLAG_IS_ICH 4093 | FLAG_HAS_WOL 4094 | FLAG_HAS_CTRLEXT_ON_LOAD 4095 | FLAG_HAS_AMT 4096 | FLAG_HAS_FLASH 4097 | FLAG_APME_IN_WUC, 4098 .pba = 18, 4099 .max_hw_frame_size = DEFAULT_JUMBO, 4100 .get_variants = e1000_get_variants_ich8lan, 4101 .mac_ops = &ich8_mac_ops, 4102 .phy_ops = &ich8_phy_ops, 4103 .nvm_ops = &ich8_nvm_ops, 4104 }; 4105 4106 const struct e1000_info e1000_pch_info = { 4107 .mac = e1000_pchlan, 4108 .flags = FLAG_IS_ICH 4109 | FLAG_HAS_WOL 4110 | FLAG_HAS_CTRLEXT_ON_LOAD 4111 | FLAG_HAS_AMT 4112 | FLAG_HAS_FLASH 4113 | FLAG_HAS_JUMBO_FRAMES 4114 | FLAG_DISABLE_FC_PAUSE_TIME /* errata */ 4115 | FLAG_APME_IN_WUC, 4116 .flags2 = FLAG2_HAS_PHY_STATS, 4117 .pba = 26, 4118 .max_hw_frame_size = 4096, 4119 .get_variants = e1000_get_variants_ich8lan, 4120 .mac_ops = &ich8_mac_ops, 4121 .phy_ops = &ich8_phy_ops, 4122 .nvm_ops = &ich8_nvm_ops, 4123 }; 4124 4125 const struct e1000_info e1000_pch2_info = { 4126 .mac = e1000_pch2lan, 4127 .flags = FLAG_IS_ICH 4128 | FLAG_HAS_WOL 4129 | FLAG_HAS_CTRLEXT_ON_LOAD 4130 | FLAG_HAS_AMT 4131 | FLAG_HAS_FLASH 4132 | FLAG_HAS_JUMBO_FRAMES 4133 | FLAG_APME_IN_WUC, 4134 .flags2 = FLAG2_HAS_PHY_STATS 4135 | FLAG2_HAS_EEE, 4136 .pba = 26, 4137 .max_hw_frame_size = DEFAULT_JUMBO, 4138 .get_variants = e1000_get_variants_ich8lan, 4139 .mac_ops = &ich8_mac_ops, 4140 .phy_ops = &ich8_phy_ops, 4141 .nvm_ops = &ich8_nvm_ops, 4142 }; 4143