1 /* Intel PRO/1000 Linux driver
2  * Copyright(c) 1999 - 2015 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * The full GNU General Public License is included in this distribution in
14  * the file called "COPYING".
15  *
16  * Contact Information:
17  * Linux NICS <linux.nics@intel.com>
18  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
20  */
21 
22 /* 82562G 10/100 Network Connection
23  * 82562G-2 10/100 Network Connection
24  * 82562GT 10/100 Network Connection
25  * 82562GT-2 10/100 Network Connection
26  * 82562V 10/100 Network Connection
27  * 82562V-2 10/100 Network Connection
28  * 82566DC-2 Gigabit Network Connection
29  * 82566DC Gigabit Network Connection
30  * 82566DM-2 Gigabit Network Connection
31  * 82566DM Gigabit Network Connection
32  * 82566MC Gigabit Network Connection
33  * 82566MM Gigabit Network Connection
34  * 82567LM Gigabit Network Connection
35  * 82567LF Gigabit Network Connection
36  * 82567V Gigabit Network Connection
37  * 82567LM-2 Gigabit Network Connection
38  * 82567LF-2 Gigabit Network Connection
39  * 82567V-2 Gigabit Network Connection
40  * 82567LF-3 Gigabit Network Connection
41  * 82567LM-3 Gigabit Network Connection
42  * 82567LM-4 Gigabit Network Connection
43  * 82577LM Gigabit Network Connection
44  * 82577LC Gigabit Network Connection
45  * 82578DM Gigabit Network Connection
46  * 82578DC Gigabit Network Connection
47  * 82579LM Gigabit Network Connection
48  * 82579V Gigabit Network Connection
49  * Ethernet Connection I217-LM
50  * Ethernet Connection I217-V
51  * Ethernet Connection I218-V
52  * Ethernet Connection I218-LM
53  * Ethernet Connection (2) I218-LM
54  * Ethernet Connection (2) I218-V
55  * Ethernet Connection (3) I218-LM
56  * Ethernet Connection (3) I218-V
57  */
58 
59 #include "e1000.h"
60 
61 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
62 /* Offset 04h HSFSTS */
63 union ich8_hws_flash_status {
64 	struct ich8_hsfsts {
65 		u16 flcdone:1;	/* bit 0 Flash Cycle Done */
66 		u16 flcerr:1;	/* bit 1 Flash Cycle Error */
67 		u16 dael:1;	/* bit 2 Direct Access error Log */
68 		u16 berasesz:2;	/* bit 4:3 Sector Erase Size */
69 		u16 flcinprog:1;	/* bit 5 flash cycle in Progress */
70 		u16 reserved1:2;	/* bit 13:6 Reserved */
71 		u16 reserved2:6;	/* bit 13:6 Reserved */
72 		u16 fldesvalid:1;	/* bit 14 Flash Descriptor Valid */
73 		u16 flockdn:1;	/* bit 15 Flash Config Lock-Down */
74 	} hsf_status;
75 	u16 regval;
76 };
77 
78 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
79 /* Offset 06h FLCTL */
80 union ich8_hws_flash_ctrl {
81 	struct ich8_hsflctl {
82 		u16 flcgo:1;	/* 0 Flash Cycle Go */
83 		u16 flcycle:2;	/* 2:1 Flash Cycle */
84 		u16 reserved:5;	/* 7:3 Reserved  */
85 		u16 fldbcount:2;	/* 9:8 Flash Data Byte Count */
86 		u16 flockdn:6;	/* 15:10 Reserved */
87 	} hsf_ctrl;
88 	u16 regval;
89 };
90 
91 /* ICH Flash Region Access Permissions */
92 union ich8_hws_flash_regacc {
93 	struct ich8_flracc {
94 		u32 grra:8;	/* 0:7 GbE region Read Access */
95 		u32 grwa:8;	/* 8:15 GbE region Write Access */
96 		u32 gmrag:8;	/* 23:16 GbE Master Read Access Grant */
97 		u32 gmwag:8;	/* 31:24 GbE Master Write Access Grant */
98 	} hsf_flregacc;
99 	u16 regval;
100 };
101 
102 /* ICH Flash Protected Region */
103 union ich8_flash_protected_range {
104 	struct ich8_pr {
105 		u32 base:13;	/* 0:12 Protected Range Base */
106 		u32 reserved1:2;	/* 13:14 Reserved */
107 		u32 rpe:1;	/* 15 Read Protection Enable */
108 		u32 limit:13;	/* 16:28 Protected Range Limit */
109 		u32 reserved2:2;	/* 29:30 Reserved */
110 		u32 wpe:1;	/* 31 Write Protection Enable */
111 	} range;
112 	u32 regval;
113 };
114 
115 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
116 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
117 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
118 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
119 						u32 offset, u8 byte);
120 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
121 					 u8 *data);
122 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
123 					 u16 *data);
124 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
125 					 u8 size, u16 *data);
126 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
127 					   u32 *data);
128 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
129 					  u32 offset, u32 *data);
130 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
131 					    u32 offset, u32 data);
132 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
133 						 u32 offset, u32 dword);
134 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
135 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
136 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
137 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
138 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
139 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
140 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
141 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
142 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
143 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
144 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
145 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
146 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
147 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
148 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
149 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
150 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
151 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
152 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw);
153 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
154 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
155 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
156 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
157 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
158 
159 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
160 {
161 	return readw(hw->flash_address + reg);
162 }
163 
164 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
165 {
166 	return readl(hw->flash_address + reg);
167 }
168 
169 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
170 {
171 	writew(val, hw->flash_address + reg);
172 }
173 
174 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
175 {
176 	writel(val, hw->flash_address + reg);
177 }
178 
179 #define er16flash(reg)		__er16flash(hw, (reg))
180 #define er32flash(reg)		__er32flash(hw, (reg))
181 #define ew16flash(reg, val)	__ew16flash(hw, (reg), (val))
182 #define ew32flash(reg, val)	__ew32flash(hw, (reg), (val))
183 
184 /**
185  *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
186  *  @hw: pointer to the HW structure
187  *
188  *  Test access to the PHY registers by reading the PHY ID registers.  If
189  *  the PHY ID is already known (e.g. resume path) compare it with known ID,
190  *  otherwise assume the read PHY ID is correct if it is valid.
191  *
192  *  Assumes the sw/fw/hw semaphore is already acquired.
193  **/
194 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
195 {
196 	u16 phy_reg = 0;
197 	u32 phy_id = 0;
198 	s32 ret_val = 0;
199 	u16 retry_count;
200 	u32 mac_reg = 0;
201 
202 	for (retry_count = 0; retry_count < 2; retry_count++) {
203 		ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
204 		if (ret_val || (phy_reg == 0xFFFF))
205 			continue;
206 		phy_id = (u32)(phy_reg << 16);
207 
208 		ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
209 		if (ret_val || (phy_reg == 0xFFFF)) {
210 			phy_id = 0;
211 			continue;
212 		}
213 		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
214 		break;
215 	}
216 
217 	if (hw->phy.id) {
218 		if (hw->phy.id == phy_id)
219 			goto out;
220 	} else if (phy_id) {
221 		hw->phy.id = phy_id;
222 		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
223 		goto out;
224 	}
225 
226 	/* In case the PHY needs to be in mdio slow mode,
227 	 * set slow mode and try to get the PHY id again.
228 	 */
229 	if (hw->mac.type < e1000_pch_lpt) {
230 		hw->phy.ops.release(hw);
231 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
232 		if (!ret_val)
233 			ret_val = e1000e_get_phy_id(hw);
234 		hw->phy.ops.acquire(hw);
235 	}
236 
237 	if (ret_val)
238 		return false;
239 out:
240 	if (hw->mac.type >= e1000_pch_lpt) {
241 		/* Only unforce SMBus if ME is not active */
242 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
243 			/* Unforce SMBus mode in PHY */
244 			e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
245 			phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
246 			e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
247 
248 			/* Unforce SMBus mode in MAC */
249 			mac_reg = er32(CTRL_EXT);
250 			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
251 			ew32(CTRL_EXT, mac_reg);
252 		}
253 	}
254 
255 	return true;
256 }
257 
258 /**
259  *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
260  *  @hw: pointer to the HW structure
261  *
262  *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
263  *  used to reset the PHY to a quiescent state when necessary.
264  **/
265 static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
266 {
267 	u32 mac_reg;
268 
269 	/* Set Phy Config Counter to 50msec */
270 	mac_reg = er32(FEXTNVM3);
271 	mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
272 	mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
273 	ew32(FEXTNVM3, mac_reg);
274 
275 	/* Toggle LANPHYPC Value bit */
276 	mac_reg = er32(CTRL);
277 	mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
278 	mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
279 	ew32(CTRL, mac_reg);
280 	e1e_flush();
281 	usleep_range(10, 20);
282 	mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
283 	ew32(CTRL, mac_reg);
284 	e1e_flush();
285 
286 	if (hw->mac.type < e1000_pch_lpt) {
287 		msleep(50);
288 	} else {
289 		u16 count = 20;
290 
291 		do {
292 			usleep_range(5000, 10000);
293 		} while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
294 
295 		msleep(30);
296 	}
297 }
298 
299 /**
300  *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
301  *  @hw: pointer to the HW structure
302  *
303  *  Workarounds/flow necessary for PHY initialization during driver load
304  *  and resume paths.
305  **/
306 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
307 {
308 	struct e1000_adapter *adapter = hw->adapter;
309 	u32 mac_reg, fwsm = er32(FWSM);
310 	s32 ret_val;
311 
312 	/* Gate automatic PHY configuration by hardware on managed and
313 	 * non-managed 82579 and newer adapters.
314 	 */
315 	e1000_gate_hw_phy_config_ich8lan(hw, true);
316 
317 	/* It is not possible to be certain of the current state of ULP
318 	 * so forcibly disable it.
319 	 */
320 	hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
321 	e1000_disable_ulp_lpt_lp(hw, true);
322 
323 	ret_val = hw->phy.ops.acquire(hw);
324 	if (ret_val) {
325 		e_dbg("Failed to initialize PHY flow\n");
326 		goto out;
327 	}
328 
329 	/* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
330 	 * inaccessible and resetting the PHY is not blocked, toggle the
331 	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
332 	 */
333 	switch (hw->mac.type) {
334 	case e1000_pch_lpt:
335 	case e1000_pch_spt:
336 	case e1000_pch_cnp:
337 		if (e1000_phy_is_accessible_pchlan(hw))
338 			break;
339 
340 		/* Before toggling LANPHYPC, see if PHY is accessible by
341 		 * forcing MAC to SMBus mode first.
342 		 */
343 		mac_reg = er32(CTRL_EXT);
344 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
345 		ew32(CTRL_EXT, mac_reg);
346 
347 		/* Wait 50 milliseconds for MAC to finish any retries
348 		 * that it might be trying to perform from previous
349 		 * attempts to acknowledge any phy read requests.
350 		 */
351 		msleep(50);
352 
353 		/* fall-through */
354 	case e1000_pch2lan:
355 		if (e1000_phy_is_accessible_pchlan(hw))
356 			break;
357 
358 		/* fall-through */
359 	case e1000_pchlan:
360 		if ((hw->mac.type == e1000_pchlan) &&
361 		    (fwsm & E1000_ICH_FWSM_FW_VALID))
362 			break;
363 
364 		if (hw->phy.ops.check_reset_block(hw)) {
365 			e_dbg("Required LANPHYPC toggle blocked by ME\n");
366 			ret_val = -E1000_ERR_PHY;
367 			break;
368 		}
369 
370 		/* Toggle LANPHYPC Value bit */
371 		e1000_toggle_lanphypc_pch_lpt(hw);
372 		if (hw->mac.type >= e1000_pch_lpt) {
373 			if (e1000_phy_is_accessible_pchlan(hw))
374 				break;
375 
376 			/* Toggling LANPHYPC brings the PHY out of SMBus mode
377 			 * so ensure that the MAC is also out of SMBus mode
378 			 */
379 			mac_reg = er32(CTRL_EXT);
380 			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
381 			ew32(CTRL_EXT, mac_reg);
382 
383 			if (e1000_phy_is_accessible_pchlan(hw))
384 				break;
385 
386 			ret_val = -E1000_ERR_PHY;
387 		}
388 		break;
389 	default:
390 		break;
391 	}
392 
393 	hw->phy.ops.release(hw);
394 	if (!ret_val) {
395 
396 		/* Check to see if able to reset PHY.  Print error if not */
397 		if (hw->phy.ops.check_reset_block(hw)) {
398 			e_err("Reset blocked by ME\n");
399 			goto out;
400 		}
401 
402 		/* Reset the PHY before any access to it.  Doing so, ensures
403 		 * that the PHY is in a known good state before we read/write
404 		 * PHY registers.  The generic reset is sufficient here,
405 		 * because we haven't determined the PHY type yet.
406 		 */
407 		ret_val = e1000e_phy_hw_reset_generic(hw);
408 		if (ret_val)
409 			goto out;
410 
411 		/* On a successful reset, possibly need to wait for the PHY
412 		 * to quiesce to an accessible state before returning control
413 		 * to the calling function.  If the PHY does not quiesce, then
414 		 * return E1000E_BLK_PHY_RESET, as this is the condition that
415 		 *  the PHY is in.
416 		 */
417 		ret_val = hw->phy.ops.check_reset_block(hw);
418 		if (ret_val)
419 			e_err("ME blocked access to PHY after reset\n");
420 	}
421 
422 out:
423 	/* Ungate automatic PHY configuration on non-managed 82579 */
424 	if ((hw->mac.type == e1000_pch2lan) &&
425 	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
426 		usleep_range(10000, 20000);
427 		e1000_gate_hw_phy_config_ich8lan(hw, false);
428 	}
429 
430 	return ret_val;
431 }
432 
433 /**
434  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
435  *  @hw: pointer to the HW structure
436  *
437  *  Initialize family-specific PHY parameters and function pointers.
438  **/
439 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
440 {
441 	struct e1000_phy_info *phy = &hw->phy;
442 	s32 ret_val;
443 
444 	phy->addr = 1;
445 	phy->reset_delay_us = 100;
446 
447 	phy->ops.set_page = e1000_set_page_igp;
448 	phy->ops.read_reg = e1000_read_phy_reg_hv;
449 	phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
450 	phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
451 	phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
452 	phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
453 	phy->ops.write_reg = e1000_write_phy_reg_hv;
454 	phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
455 	phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
456 	phy->ops.power_up = e1000_power_up_phy_copper;
457 	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
458 	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
459 
460 	phy->id = e1000_phy_unknown;
461 
462 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
463 	if (ret_val)
464 		return ret_val;
465 
466 	if (phy->id == e1000_phy_unknown)
467 		switch (hw->mac.type) {
468 		default:
469 			ret_val = e1000e_get_phy_id(hw);
470 			if (ret_val)
471 				return ret_val;
472 			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
473 				break;
474 			/* fall-through */
475 		case e1000_pch2lan:
476 		case e1000_pch_lpt:
477 		case e1000_pch_spt:
478 		case e1000_pch_cnp:
479 			/* In case the PHY needs to be in mdio slow mode,
480 			 * set slow mode and try to get the PHY id again.
481 			 */
482 			ret_val = e1000_set_mdio_slow_mode_hv(hw);
483 			if (ret_val)
484 				return ret_val;
485 			ret_val = e1000e_get_phy_id(hw);
486 			if (ret_val)
487 				return ret_val;
488 			break;
489 		}
490 	phy->type = e1000e_get_phy_type_from_id(phy->id);
491 
492 	switch (phy->type) {
493 	case e1000_phy_82577:
494 	case e1000_phy_82579:
495 	case e1000_phy_i217:
496 		phy->ops.check_polarity = e1000_check_polarity_82577;
497 		phy->ops.force_speed_duplex =
498 		    e1000_phy_force_speed_duplex_82577;
499 		phy->ops.get_cable_length = e1000_get_cable_length_82577;
500 		phy->ops.get_info = e1000_get_phy_info_82577;
501 		phy->ops.commit = e1000e_phy_sw_reset;
502 		break;
503 	case e1000_phy_82578:
504 		phy->ops.check_polarity = e1000_check_polarity_m88;
505 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
506 		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
507 		phy->ops.get_info = e1000e_get_phy_info_m88;
508 		break;
509 	default:
510 		ret_val = -E1000_ERR_PHY;
511 		break;
512 	}
513 
514 	return ret_val;
515 }
516 
517 /**
518  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
519  *  @hw: pointer to the HW structure
520  *
521  *  Initialize family-specific PHY parameters and function pointers.
522  **/
523 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
524 {
525 	struct e1000_phy_info *phy = &hw->phy;
526 	s32 ret_val;
527 	u16 i = 0;
528 
529 	phy->addr = 1;
530 	phy->reset_delay_us = 100;
531 
532 	phy->ops.power_up = e1000_power_up_phy_copper;
533 	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
534 
535 	/* We may need to do this twice - once for IGP and if that fails,
536 	 * we'll set BM func pointers and try again
537 	 */
538 	ret_val = e1000e_determine_phy_address(hw);
539 	if (ret_val) {
540 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
541 		phy->ops.read_reg = e1000e_read_phy_reg_bm;
542 		ret_val = e1000e_determine_phy_address(hw);
543 		if (ret_val) {
544 			e_dbg("Cannot determine PHY addr. Erroring out\n");
545 			return ret_val;
546 		}
547 	}
548 
549 	phy->id = 0;
550 	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
551 	       (i++ < 100)) {
552 		usleep_range(1000, 2000);
553 		ret_val = e1000e_get_phy_id(hw);
554 		if (ret_val)
555 			return ret_val;
556 	}
557 
558 	/* Verify phy id */
559 	switch (phy->id) {
560 	case IGP03E1000_E_PHY_ID:
561 		phy->type = e1000_phy_igp_3;
562 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
563 		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
564 		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
565 		phy->ops.get_info = e1000e_get_phy_info_igp;
566 		phy->ops.check_polarity = e1000_check_polarity_igp;
567 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
568 		break;
569 	case IFE_E_PHY_ID:
570 	case IFE_PLUS_E_PHY_ID:
571 	case IFE_C_E_PHY_ID:
572 		phy->type = e1000_phy_ife;
573 		phy->autoneg_mask = E1000_ALL_NOT_GIG;
574 		phy->ops.get_info = e1000_get_phy_info_ife;
575 		phy->ops.check_polarity = e1000_check_polarity_ife;
576 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
577 		break;
578 	case BME1000_E_PHY_ID:
579 		phy->type = e1000_phy_bm;
580 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
581 		phy->ops.read_reg = e1000e_read_phy_reg_bm;
582 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
583 		phy->ops.commit = e1000e_phy_sw_reset;
584 		phy->ops.get_info = e1000e_get_phy_info_m88;
585 		phy->ops.check_polarity = e1000_check_polarity_m88;
586 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
587 		break;
588 	default:
589 		return -E1000_ERR_PHY;
590 	}
591 
592 	return 0;
593 }
594 
595 /**
596  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
597  *  @hw: pointer to the HW structure
598  *
599  *  Initialize family-specific NVM parameters and function
600  *  pointers.
601  **/
602 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
603 {
604 	struct e1000_nvm_info *nvm = &hw->nvm;
605 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
606 	u32 gfpreg, sector_base_addr, sector_end_addr;
607 	u16 i;
608 	u32 nvm_size;
609 
610 	nvm->type = e1000_nvm_flash_sw;
611 
612 	if (hw->mac.type >= e1000_pch_spt) {
613 		/* in SPT, gfpreg doesn't exist. NVM size is taken from the
614 		 * STRAP register. This is because in SPT the GbE Flash region
615 		 * is no longer accessed through the flash registers. Instead,
616 		 * the mechanism has changed, and the Flash region access
617 		 * registers are now implemented in GbE memory space.
618 		 */
619 		nvm->flash_base_addr = 0;
620 		nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1)
621 		    * NVM_SIZE_MULTIPLIER;
622 		nvm->flash_bank_size = nvm_size / 2;
623 		/* Adjust to word count */
624 		nvm->flash_bank_size /= sizeof(u16);
625 		/* Set the base address for flash register access */
626 		hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
627 	} else {
628 		/* Can't read flash registers if register set isn't mapped. */
629 		if (!hw->flash_address) {
630 			e_dbg("ERROR: Flash registers not mapped\n");
631 			return -E1000_ERR_CONFIG;
632 		}
633 
634 		gfpreg = er32flash(ICH_FLASH_GFPREG);
635 
636 		/* sector_X_addr is a "sector"-aligned address (4096 bytes)
637 		 * Add 1 to sector_end_addr since this sector is included in
638 		 * the overall size.
639 		 */
640 		sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
641 		sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
642 
643 		/* flash_base_addr is byte-aligned */
644 		nvm->flash_base_addr = sector_base_addr
645 		    << FLASH_SECTOR_ADDR_SHIFT;
646 
647 		/* find total size of the NVM, then cut in half since the total
648 		 * size represents two separate NVM banks.
649 		 */
650 		nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
651 					<< FLASH_SECTOR_ADDR_SHIFT);
652 		nvm->flash_bank_size /= 2;
653 		/* Adjust to word count */
654 		nvm->flash_bank_size /= sizeof(u16);
655 	}
656 
657 	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
658 
659 	/* Clear shadow ram */
660 	for (i = 0; i < nvm->word_size; i++) {
661 		dev_spec->shadow_ram[i].modified = false;
662 		dev_spec->shadow_ram[i].value = 0xFFFF;
663 	}
664 
665 	return 0;
666 }
667 
668 /**
669  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
670  *  @hw: pointer to the HW structure
671  *
672  *  Initialize family-specific MAC parameters and function
673  *  pointers.
674  **/
675 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
676 {
677 	struct e1000_mac_info *mac = &hw->mac;
678 
679 	/* Set media type function pointer */
680 	hw->phy.media_type = e1000_media_type_copper;
681 
682 	/* Set mta register count */
683 	mac->mta_reg_count = 32;
684 	/* Set rar entry count */
685 	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
686 	if (mac->type == e1000_ich8lan)
687 		mac->rar_entry_count--;
688 	/* FWSM register */
689 	mac->has_fwsm = true;
690 	/* ARC subsystem not supported */
691 	mac->arc_subsystem_valid = false;
692 	/* Adaptive IFS supported */
693 	mac->adaptive_ifs = true;
694 
695 	/* LED and other operations */
696 	switch (mac->type) {
697 	case e1000_ich8lan:
698 	case e1000_ich9lan:
699 	case e1000_ich10lan:
700 		/* check management mode */
701 		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
702 		/* ID LED init */
703 		mac->ops.id_led_init = e1000e_id_led_init_generic;
704 		/* blink LED */
705 		mac->ops.blink_led = e1000e_blink_led_generic;
706 		/* setup LED */
707 		mac->ops.setup_led = e1000e_setup_led_generic;
708 		/* cleanup LED */
709 		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
710 		/* turn on/off LED */
711 		mac->ops.led_on = e1000_led_on_ich8lan;
712 		mac->ops.led_off = e1000_led_off_ich8lan;
713 		break;
714 	case e1000_pch2lan:
715 		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
716 		mac->ops.rar_set = e1000_rar_set_pch2lan;
717 		/* fall-through */
718 	case e1000_pch_lpt:
719 	case e1000_pch_spt:
720 	case e1000_pch_cnp:
721 	case e1000_pchlan:
722 		/* check management mode */
723 		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
724 		/* ID LED init */
725 		mac->ops.id_led_init = e1000_id_led_init_pchlan;
726 		/* setup LED */
727 		mac->ops.setup_led = e1000_setup_led_pchlan;
728 		/* cleanup LED */
729 		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
730 		/* turn on/off LED */
731 		mac->ops.led_on = e1000_led_on_pchlan;
732 		mac->ops.led_off = e1000_led_off_pchlan;
733 		break;
734 	default:
735 		break;
736 	}
737 
738 	if (mac->type >= e1000_pch_lpt) {
739 		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
740 		mac->ops.rar_set = e1000_rar_set_pch_lpt;
741 		mac->ops.setup_physical_interface =
742 		    e1000_setup_copper_link_pch_lpt;
743 		mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt;
744 	}
745 
746 	/* Enable PCS Lock-loss workaround for ICH8 */
747 	if (mac->type == e1000_ich8lan)
748 		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
749 
750 	return 0;
751 }
752 
753 /**
754  *  __e1000_access_emi_reg_locked - Read/write EMI register
755  *  @hw: pointer to the HW structure
756  *  @addr: EMI address to program
757  *  @data: pointer to value to read/write from/to the EMI address
758  *  @read: boolean flag to indicate read or write
759  *
760  *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
761  **/
762 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
763 					 u16 *data, bool read)
764 {
765 	s32 ret_val;
766 
767 	ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
768 	if (ret_val)
769 		return ret_val;
770 
771 	if (read)
772 		ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
773 	else
774 		ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
775 
776 	return ret_val;
777 }
778 
779 /**
780  *  e1000_read_emi_reg_locked - Read Extended Management Interface register
781  *  @hw: pointer to the HW structure
782  *  @addr: EMI address to program
783  *  @data: value to be read from the EMI address
784  *
785  *  Assumes the SW/FW/HW Semaphore is already acquired.
786  **/
787 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
788 {
789 	return __e1000_access_emi_reg_locked(hw, addr, data, true);
790 }
791 
792 /**
793  *  e1000_write_emi_reg_locked - Write Extended Management Interface register
794  *  @hw: pointer to the HW structure
795  *  @addr: EMI address to program
796  *  @data: value to be written to the EMI address
797  *
798  *  Assumes the SW/FW/HW Semaphore is already acquired.
799  **/
800 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
801 {
802 	return __e1000_access_emi_reg_locked(hw, addr, &data, false);
803 }
804 
805 /**
806  *  e1000_set_eee_pchlan - Enable/disable EEE support
807  *  @hw: pointer to the HW structure
808  *
809  *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
810  *  the link and the EEE capabilities of the link partner.  The LPI Control
811  *  register bits will remain set only if/when link is up.
812  *
813  *  EEE LPI must not be asserted earlier than one second after link is up.
814  *  On 82579, EEE LPI should not be enabled until such time otherwise there
815  *  can be link issues with some switches.  Other devices can have EEE LPI
816  *  enabled immediately upon link up since they have a timer in hardware which
817  *  prevents LPI from being asserted too early.
818  **/
819 s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
820 {
821 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
822 	s32 ret_val;
823 	u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
824 
825 	switch (hw->phy.type) {
826 	case e1000_phy_82579:
827 		lpa = I82579_EEE_LP_ABILITY;
828 		pcs_status = I82579_EEE_PCS_STATUS;
829 		adv_addr = I82579_EEE_ADVERTISEMENT;
830 		break;
831 	case e1000_phy_i217:
832 		lpa = I217_EEE_LP_ABILITY;
833 		pcs_status = I217_EEE_PCS_STATUS;
834 		adv_addr = I217_EEE_ADVERTISEMENT;
835 		break;
836 	default:
837 		return 0;
838 	}
839 
840 	ret_val = hw->phy.ops.acquire(hw);
841 	if (ret_val)
842 		return ret_val;
843 
844 	ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
845 	if (ret_val)
846 		goto release;
847 
848 	/* Clear bits that enable EEE in various speeds */
849 	lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
850 
851 	/* Enable EEE if not disabled by user */
852 	if (!dev_spec->eee_disable) {
853 		/* Save off link partner's EEE ability */
854 		ret_val = e1000_read_emi_reg_locked(hw, lpa,
855 						    &dev_spec->eee_lp_ability);
856 		if (ret_val)
857 			goto release;
858 
859 		/* Read EEE advertisement */
860 		ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
861 		if (ret_val)
862 			goto release;
863 
864 		/* Enable EEE only for speeds in which the link partner is
865 		 * EEE capable and for which we advertise EEE.
866 		 */
867 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
868 			lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
869 
870 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
871 			e1e_rphy_locked(hw, MII_LPA, &data);
872 			if (data & LPA_100FULL)
873 				lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
874 			else
875 				/* EEE is not supported in 100Half, so ignore
876 				 * partner's EEE in 100 ability if full-duplex
877 				 * is not advertised.
878 				 */
879 				dev_spec->eee_lp_ability &=
880 				    ~I82579_EEE_100_SUPPORTED;
881 		}
882 	}
883 
884 	if (hw->phy.type == e1000_phy_82579) {
885 		ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
886 						    &data);
887 		if (ret_val)
888 			goto release;
889 
890 		data &= ~I82579_LPI_100_PLL_SHUT;
891 		ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
892 						     data);
893 	}
894 
895 	/* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
896 	ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
897 	if (ret_val)
898 		goto release;
899 
900 	ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
901 release:
902 	hw->phy.ops.release(hw);
903 
904 	return ret_val;
905 }
906 
907 /**
908  *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
909  *  @hw:   pointer to the HW structure
910  *  @link: link up bool flag
911  *
912  *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
913  *  preventing further DMA write requests.  Workaround the issue by disabling
914  *  the de-assertion of the clock request when in 1Gpbs mode.
915  *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
916  *  speeds in order to avoid Tx hangs.
917  **/
918 static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
919 {
920 	u32 fextnvm6 = er32(FEXTNVM6);
921 	u32 status = er32(STATUS);
922 	s32 ret_val = 0;
923 	u16 reg;
924 
925 	if (link && (status & E1000_STATUS_SPEED_1000)) {
926 		ret_val = hw->phy.ops.acquire(hw);
927 		if (ret_val)
928 			return ret_val;
929 
930 		ret_val =
931 		    e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
932 						&reg);
933 		if (ret_val)
934 			goto release;
935 
936 		ret_val =
937 		    e1000e_write_kmrn_reg_locked(hw,
938 						 E1000_KMRNCTRLSTA_K1_CONFIG,
939 						 reg &
940 						 ~E1000_KMRNCTRLSTA_K1_ENABLE);
941 		if (ret_val)
942 			goto release;
943 
944 		usleep_range(10, 20);
945 
946 		ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
947 
948 		ret_val =
949 		    e1000e_write_kmrn_reg_locked(hw,
950 						 E1000_KMRNCTRLSTA_K1_CONFIG,
951 						 reg);
952 release:
953 		hw->phy.ops.release(hw);
954 	} else {
955 		/* clear FEXTNVM6 bit 8 on link down or 10/100 */
956 		fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
957 
958 		if ((hw->phy.revision > 5) || !link ||
959 		    ((status & E1000_STATUS_SPEED_100) &&
960 		     (status & E1000_STATUS_FD)))
961 			goto update_fextnvm6;
962 
963 		ret_val = e1e_rphy(hw, I217_INBAND_CTRL, &reg);
964 		if (ret_val)
965 			return ret_val;
966 
967 		/* Clear link status transmit timeout */
968 		reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
969 
970 		if (status & E1000_STATUS_SPEED_100) {
971 			/* Set inband Tx timeout to 5x10us for 100Half */
972 			reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
973 
974 			/* Do not extend the K1 entry latency for 100Half */
975 			fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
976 		} else {
977 			/* Set inband Tx timeout to 50x10us for 10Full/Half */
978 			reg |= 50 <<
979 			    I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
980 
981 			/* Extend the K1 entry latency for 10 Mbps */
982 			fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
983 		}
984 
985 		ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
986 		if (ret_val)
987 			return ret_val;
988 
989 update_fextnvm6:
990 		ew32(FEXTNVM6, fextnvm6);
991 	}
992 
993 	return ret_val;
994 }
995 
996 /**
997  *  e1000_platform_pm_pch_lpt - Set platform power management values
998  *  @hw: pointer to the HW structure
999  *  @link: bool indicating link status
1000  *
1001  *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
1002  *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
1003  *  when link is up (which must not exceed the maximum latency supported
1004  *  by the platform), otherwise specify there is no LTR requirement.
1005  *  Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
1006  *  latencies in the LTR Extended Capability Structure in the PCIe Extended
1007  *  Capability register set, on this device LTR is set by writing the
1008  *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1009  *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1010  *  message to the PMC.
1011  **/
1012 static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1013 {
1014 	u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1015 	    link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1016 	u16 lat_enc = 0;	/* latency encoded */
1017 
1018 	if (link) {
1019 		u16 speed, duplex, scale = 0;
1020 		u16 max_snoop, max_nosnoop;
1021 		u16 max_ltr_enc;	/* max LTR latency encoded */
1022 		u64 value;
1023 		u32 rxa;
1024 
1025 		if (!hw->adapter->max_frame_size) {
1026 			e_dbg("max_frame_size not set.\n");
1027 			return -E1000_ERR_CONFIG;
1028 		}
1029 
1030 		hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1031 		if (!speed) {
1032 			e_dbg("Speed not set.\n");
1033 			return -E1000_ERR_CONFIG;
1034 		}
1035 
1036 		/* Rx Packet Buffer Allocation size (KB) */
1037 		rxa = er32(PBA) & E1000_PBA_RXA_MASK;
1038 
1039 		/* Determine the maximum latency tolerated by the device.
1040 		 *
1041 		 * Per the PCIe spec, the tolerated latencies are encoded as
1042 		 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1043 		 * a 10-bit value (0-1023) to provide a range from 1 ns to
1044 		 * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1045 		 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1046 		 */
1047 		rxa *= 512;
1048 		value = (rxa > hw->adapter->max_frame_size) ?
1049 			(rxa - hw->adapter->max_frame_size) * (16000 / speed) :
1050 			0;
1051 
1052 		while (value > PCI_LTR_VALUE_MASK) {
1053 			scale++;
1054 			value = DIV_ROUND_UP(value, BIT(5));
1055 		}
1056 		if (scale > E1000_LTRV_SCALE_MAX) {
1057 			e_dbg("Invalid LTR latency scale %d\n", scale);
1058 			return -E1000_ERR_CONFIG;
1059 		}
1060 		lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1061 
1062 		/* Determine the maximum latency tolerated by the platform */
1063 		pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1064 				     &max_snoop);
1065 		pci_read_config_word(hw->adapter->pdev,
1066 				     E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1067 		max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1068 
1069 		if (lat_enc > max_ltr_enc)
1070 			lat_enc = max_ltr_enc;
1071 	}
1072 
1073 	/* Set Snoop and No-Snoop latencies the same */
1074 	reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1075 	ew32(LTRV, reg);
1076 
1077 	return 0;
1078 }
1079 
1080 /**
1081  *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1082  *  @hw: pointer to the HW structure
1083  *  @to_sx: boolean indicating a system power state transition to Sx
1084  *
1085  *  When link is down, configure ULP mode to significantly reduce the power
1086  *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1087  *  ME firmware to start the ULP configuration.  If not on an ME enabled
1088  *  system, configure the ULP mode by software.
1089  */
1090 s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1091 {
1092 	u32 mac_reg;
1093 	s32 ret_val = 0;
1094 	u16 phy_reg;
1095 	u16 oem_reg = 0;
1096 
1097 	if ((hw->mac.type < e1000_pch_lpt) ||
1098 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1099 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1100 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1101 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1102 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1103 		return 0;
1104 
1105 	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1106 		/* Request ME configure ULP mode in the PHY */
1107 		mac_reg = er32(H2ME);
1108 		mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1109 		ew32(H2ME, mac_reg);
1110 
1111 		goto out;
1112 	}
1113 
1114 	if (!to_sx) {
1115 		int i = 0;
1116 
1117 		/* Poll up to 5 seconds for Cable Disconnected indication */
1118 		while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1119 			/* Bail if link is re-acquired */
1120 			if (er32(STATUS) & E1000_STATUS_LU)
1121 				return -E1000_ERR_PHY;
1122 
1123 			if (i++ == 100)
1124 				break;
1125 
1126 			msleep(50);
1127 		}
1128 		e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1129 		      (er32(FEXT) &
1130 		       E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1131 	}
1132 
1133 	ret_val = hw->phy.ops.acquire(hw);
1134 	if (ret_val)
1135 		goto out;
1136 
1137 	/* Force SMBus mode in PHY */
1138 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1139 	if (ret_val)
1140 		goto release;
1141 	phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1142 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1143 
1144 	/* Force SMBus mode in MAC */
1145 	mac_reg = er32(CTRL_EXT);
1146 	mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1147 	ew32(CTRL_EXT, mac_reg);
1148 
1149 	/* Si workaround for ULP entry flow on i127/rev6 h/w.  Enable
1150 	 * LPLU and disable Gig speed when entering ULP
1151 	 */
1152 	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1153 		ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1154 						       &oem_reg);
1155 		if (ret_val)
1156 			goto release;
1157 
1158 		phy_reg = oem_reg;
1159 		phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1160 
1161 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1162 							phy_reg);
1163 
1164 		if (ret_val)
1165 			goto release;
1166 	}
1167 
1168 	/* Set Inband ULP Exit, Reset to SMBus mode and
1169 	 * Disable SMBus Release on PERST# in PHY
1170 	 */
1171 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1172 	if (ret_val)
1173 		goto release;
1174 	phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1175 		    I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1176 	if (to_sx) {
1177 		if (er32(WUFC) & E1000_WUFC_LNKC)
1178 			phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1179 		else
1180 			phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1181 
1182 		phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1183 		phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1184 	} else {
1185 		phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1186 		phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1187 		phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1188 	}
1189 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1190 
1191 	/* Set Disable SMBus Release on PERST# in MAC */
1192 	mac_reg = er32(FEXTNVM7);
1193 	mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1194 	ew32(FEXTNVM7, mac_reg);
1195 
1196 	/* Commit ULP changes in PHY by starting auto ULP configuration */
1197 	phy_reg |= I218_ULP_CONFIG1_START;
1198 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1199 
1200 	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1201 	    to_sx && (er32(STATUS) & E1000_STATUS_LU)) {
1202 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1203 							oem_reg);
1204 		if (ret_val)
1205 			goto release;
1206 	}
1207 
1208 release:
1209 	hw->phy.ops.release(hw);
1210 out:
1211 	if (ret_val)
1212 		e_dbg("Error in ULP enable flow: %d\n", ret_val);
1213 	else
1214 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1215 
1216 	return ret_val;
1217 }
1218 
1219 /**
1220  *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1221  *  @hw: pointer to the HW structure
1222  *  @force: boolean indicating whether or not to force disabling ULP
1223  *
1224  *  Un-configure ULP mode when link is up, the system is transitioned from
1225  *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1226  *  system, poll for an indication from ME that ULP has been un-configured.
1227  *  If not on an ME enabled system, un-configure the ULP mode by software.
1228  *
1229  *  During nominal operation, this function is called when link is acquired
1230  *  to disable ULP mode (force=false); otherwise, for example when unloading
1231  *  the driver or during Sx->S0 transitions, this is called with force=true
1232  *  to forcibly disable ULP.
1233  */
1234 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1235 {
1236 	s32 ret_val = 0;
1237 	u32 mac_reg;
1238 	u16 phy_reg;
1239 	int i = 0;
1240 
1241 	if ((hw->mac.type < e1000_pch_lpt) ||
1242 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1243 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1244 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1245 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1246 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1247 		return 0;
1248 
1249 	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1250 		if (force) {
1251 			/* Request ME un-configure ULP mode in the PHY */
1252 			mac_reg = er32(H2ME);
1253 			mac_reg &= ~E1000_H2ME_ULP;
1254 			mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1255 			ew32(H2ME, mac_reg);
1256 		}
1257 
1258 		/* Poll up to 300msec for ME to clear ULP_CFG_DONE. */
1259 		while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1260 			if (i++ == 30) {
1261 				ret_val = -E1000_ERR_PHY;
1262 				goto out;
1263 			}
1264 
1265 			usleep_range(10000, 20000);
1266 		}
1267 		e_dbg("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10);
1268 
1269 		if (force) {
1270 			mac_reg = er32(H2ME);
1271 			mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1272 			ew32(H2ME, mac_reg);
1273 		} else {
1274 			/* Clear H2ME.ULP after ME ULP configuration */
1275 			mac_reg = er32(H2ME);
1276 			mac_reg &= ~E1000_H2ME_ULP;
1277 			ew32(H2ME, mac_reg);
1278 		}
1279 
1280 		goto out;
1281 	}
1282 
1283 	ret_val = hw->phy.ops.acquire(hw);
1284 	if (ret_val)
1285 		goto out;
1286 
1287 	if (force)
1288 		/* Toggle LANPHYPC Value bit */
1289 		e1000_toggle_lanphypc_pch_lpt(hw);
1290 
1291 	/* Unforce SMBus mode in PHY */
1292 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1293 	if (ret_val) {
1294 		/* The MAC might be in PCIe mode, so temporarily force to
1295 		 * SMBus mode in order to access the PHY.
1296 		 */
1297 		mac_reg = er32(CTRL_EXT);
1298 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1299 		ew32(CTRL_EXT, mac_reg);
1300 
1301 		msleep(50);
1302 
1303 		ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1304 						       &phy_reg);
1305 		if (ret_val)
1306 			goto release;
1307 	}
1308 	phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1309 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1310 
1311 	/* Unforce SMBus mode in MAC */
1312 	mac_reg = er32(CTRL_EXT);
1313 	mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1314 	ew32(CTRL_EXT, mac_reg);
1315 
1316 	/* When ULP mode was previously entered, K1 was disabled by the
1317 	 * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1318 	 */
1319 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1320 	if (ret_val)
1321 		goto release;
1322 	phy_reg |= HV_PM_CTRL_K1_ENABLE;
1323 	e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1324 
1325 	/* Clear ULP enabled configuration */
1326 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1327 	if (ret_val)
1328 		goto release;
1329 	phy_reg &= ~(I218_ULP_CONFIG1_IND |
1330 		     I218_ULP_CONFIG1_STICKY_ULP |
1331 		     I218_ULP_CONFIG1_RESET_TO_SMBUS |
1332 		     I218_ULP_CONFIG1_WOL_HOST |
1333 		     I218_ULP_CONFIG1_INBAND_EXIT |
1334 		     I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
1335 		     I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
1336 		     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1337 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1338 
1339 	/* Commit ULP changes by starting auto ULP configuration */
1340 	phy_reg |= I218_ULP_CONFIG1_START;
1341 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1342 
1343 	/* Clear Disable SMBus Release on PERST# in MAC */
1344 	mac_reg = er32(FEXTNVM7);
1345 	mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1346 	ew32(FEXTNVM7, mac_reg);
1347 
1348 release:
1349 	hw->phy.ops.release(hw);
1350 	if (force) {
1351 		e1000_phy_hw_reset(hw);
1352 		msleep(50);
1353 	}
1354 out:
1355 	if (ret_val)
1356 		e_dbg("Error in ULP disable flow: %d\n", ret_val);
1357 	else
1358 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1359 
1360 	return ret_val;
1361 }
1362 
1363 /**
1364  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1365  *  @hw: pointer to the HW structure
1366  *
1367  *  Checks to see of the link status of the hardware has changed.  If a
1368  *  change in link status has been detected, then we read the PHY registers
1369  *  to get the current speed/duplex if link exists.
1370  *
1371  *  Returns a negative error code (-E1000_ERR_*) or 0 (link down) or 1 (link
1372  *  up).
1373  **/
1374 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1375 {
1376 	struct e1000_mac_info *mac = &hw->mac;
1377 	s32 ret_val, tipg_reg = 0;
1378 	u16 emi_addr, emi_val = 0;
1379 	bool link;
1380 	u16 phy_reg;
1381 
1382 	/* We only want to go out to the PHY registers to see if Auto-Neg
1383 	 * has completed and/or if our link status has changed.  The
1384 	 * get_link_status flag is set upon receiving a Link Status
1385 	 * Change or Rx Sequence Error interrupt.
1386 	 */
1387 	if (!mac->get_link_status)
1388 		return 1;
1389 
1390 	/* First we want to see if the MII Status Register reports
1391 	 * link.  If so, then we want to get the current speed/duplex
1392 	 * of the PHY.
1393 	 */
1394 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1395 	if (ret_val)
1396 		return ret_val;
1397 
1398 	if (hw->mac.type == e1000_pchlan) {
1399 		ret_val = e1000_k1_gig_workaround_hv(hw, link);
1400 		if (ret_val)
1401 			return ret_val;
1402 	}
1403 
1404 	/* When connected at 10Mbps half-duplex, some parts are excessively
1405 	 * aggressive resulting in many collisions. To avoid this, increase
1406 	 * the IPG and reduce Rx latency in the PHY.
1407 	 */
1408 	if ((hw->mac.type >= e1000_pch2lan) && link) {
1409 		u16 speed, duplex;
1410 
1411 		e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex);
1412 		tipg_reg = er32(TIPG);
1413 		tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1414 
1415 		if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1416 			tipg_reg |= 0xFF;
1417 			/* Reduce Rx latency in analog PHY */
1418 			emi_val = 0;
1419 		} else if (hw->mac.type >= e1000_pch_spt &&
1420 			   duplex == FULL_DUPLEX && speed != SPEED_1000) {
1421 			tipg_reg |= 0xC;
1422 			emi_val = 1;
1423 		} else {
1424 
1425 			/* Roll back the default values */
1426 			tipg_reg |= 0x08;
1427 			emi_val = 1;
1428 		}
1429 
1430 		ew32(TIPG, tipg_reg);
1431 
1432 		ret_val = hw->phy.ops.acquire(hw);
1433 		if (ret_val)
1434 			return ret_val;
1435 
1436 		if (hw->mac.type == e1000_pch2lan)
1437 			emi_addr = I82579_RX_CONFIG;
1438 		else
1439 			emi_addr = I217_RX_CONFIG;
1440 		ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1441 
1442 		if (hw->mac.type >= e1000_pch_lpt) {
1443 			u16 phy_reg;
1444 
1445 			e1e_rphy_locked(hw, I217_PLL_CLOCK_GATE_REG, &phy_reg);
1446 			phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
1447 			if (speed == SPEED_100 || speed == SPEED_10)
1448 				phy_reg |= 0x3E8;
1449 			else
1450 				phy_reg |= 0xFA;
1451 			e1e_wphy_locked(hw, I217_PLL_CLOCK_GATE_REG, phy_reg);
1452 		}
1453 		hw->phy.ops.release(hw);
1454 
1455 		if (ret_val)
1456 			return ret_val;
1457 
1458 		if (hw->mac.type >= e1000_pch_spt) {
1459 			u16 data;
1460 			u16 ptr_gap;
1461 
1462 			if (speed == SPEED_1000) {
1463 				ret_val = hw->phy.ops.acquire(hw);
1464 				if (ret_val)
1465 					return ret_val;
1466 
1467 				ret_val = e1e_rphy_locked(hw,
1468 							  PHY_REG(776, 20),
1469 							  &data);
1470 				if (ret_val) {
1471 					hw->phy.ops.release(hw);
1472 					return ret_val;
1473 				}
1474 
1475 				ptr_gap = (data & (0x3FF << 2)) >> 2;
1476 				if (ptr_gap < 0x18) {
1477 					data &= ~(0x3FF << 2);
1478 					data |= (0x18 << 2);
1479 					ret_val =
1480 					    e1e_wphy_locked(hw,
1481 							    PHY_REG(776, 20),
1482 							    data);
1483 				}
1484 				hw->phy.ops.release(hw);
1485 				if (ret_val)
1486 					return ret_val;
1487 			} else {
1488 				ret_val = hw->phy.ops.acquire(hw);
1489 				if (ret_val)
1490 					return ret_val;
1491 
1492 				ret_val = e1e_wphy_locked(hw,
1493 							  PHY_REG(776, 20),
1494 							  0xC023);
1495 				hw->phy.ops.release(hw);
1496 				if (ret_val)
1497 					return ret_val;
1498 
1499 			}
1500 		}
1501 	}
1502 
1503 	/* I217 Packet Loss issue:
1504 	 * ensure that FEXTNVM4 Beacon Duration is set correctly
1505 	 * on power up.
1506 	 * Set the Beacon Duration for I217 to 8 usec
1507 	 */
1508 	if (hw->mac.type >= e1000_pch_lpt) {
1509 		u32 mac_reg;
1510 
1511 		mac_reg = er32(FEXTNVM4);
1512 		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1513 		mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1514 		ew32(FEXTNVM4, mac_reg);
1515 	}
1516 
1517 	/* Work-around I218 hang issue */
1518 	if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1519 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1520 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1521 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
1522 		ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1523 		if (ret_val)
1524 			return ret_val;
1525 	}
1526 	if (hw->mac.type >= e1000_pch_lpt) {
1527 		/* Set platform power management values for
1528 		 * Latency Tolerance Reporting (LTR)
1529 		 */
1530 		ret_val = e1000_platform_pm_pch_lpt(hw, link);
1531 		if (ret_val)
1532 			return ret_val;
1533 	}
1534 
1535 	/* Clear link partner's EEE ability */
1536 	hw->dev_spec.ich8lan.eee_lp_ability = 0;
1537 
1538 	if (hw->mac.type >= e1000_pch_lpt) {
1539 		u32 fextnvm6 = er32(FEXTNVM6);
1540 
1541 		if (hw->mac.type == e1000_pch_spt) {
1542 			/* FEXTNVM6 K1-off workaround - for SPT only */
1543 			u32 pcieanacfg = er32(PCIEANACFG);
1544 
1545 			if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1546 				fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1547 			else
1548 				fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1549 		}
1550 
1551 		ew32(FEXTNVM6, fextnvm6);
1552 	}
1553 
1554 	if (!link)
1555 		return 0;	/* No link detected */
1556 
1557 	mac->get_link_status = false;
1558 
1559 	switch (hw->mac.type) {
1560 	case e1000_pch2lan:
1561 		ret_val = e1000_k1_workaround_lv(hw);
1562 		if (ret_val)
1563 			return ret_val;
1564 		/* fall-thru */
1565 	case e1000_pchlan:
1566 		if (hw->phy.type == e1000_phy_82578) {
1567 			ret_val = e1000_link_stall_workaround_hv(hw);
1568 			if (ret_val)
1569 				return ret_val;
1570 		}
1571 
1572 		/* Workaround for PCHx parts in half-duplex:
1573 		 * Set the number of preambles removed from the packet
1574 		 * when it is passed from the PHY to the MAC to prevent
1575 		 * the MAC from misinterpreting the packet type.
1576 		 */
1577 		e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1578 		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1579 
1580 		if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1581 			phy_reg |= BIT(HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1582 
1583 		e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1584 		break;
1585 	default:
1586 		break;
1587 	}
1588 
1589 	/* Check if there was DownShift, must be checked
1590 	 * immediately after link-up
1591 	 */
1592 	e1000e_check_downshift(hw);
1593 
1594 	/* Enable/Disable EEE after link up */
1595 	if (hw->phy.type > e1000_phy_82579) {
1596 		ret_val = e1000_set_eee_pchlan(hw);
1597 		if (ret_val)
1598 			return ret_val;
1599 	}
1600 
1601 	/* If we are forcing speed/duplex, then we simply return since
1602 	 * we have already determined whether we have link or not.
1603 	 */
1604 	if (!mac->autoneg)
1605 		return -E1000_ERR_CONFIG;
1606 
1607 	/* Auto-Neg is enabled.  Auto Speed Detection takes care
1608 	 * of MAC speed/duplex configuration.  So we only need to
1609 	 * configure Collision Distance in the MAC.
1610 	 */
1611 	mac->ops.config_collision_dist(hw);
1612 
1613 	/* Configure Flow Control now that Auto-Neg has completed.
1614 	 * First, we need to restore the desired flow control
1615 	 * settings because we may have had to re-autoneg with a
1616 	 * different link partner.
1617 	 */
1618 	ret_val = e1000e_config_fc_after_link_up(hw);
1619 	if (ret_val) {
1620 		e_dbg("Error configuring flow control\n");
1621 		return ret_val;
1622 	}
1623 
1624 	return 1;
1625 }
1626 
1627 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1628 {
1629 	struct e1000_hw *hw = &adapter->hw;
1630 	s32 rc;
1631 
1632 	rc = e1000_init_mac_params_ich8lan(hw);
1633 	if (rc)
1634 		return rc;
1635 
1636 	rc = e1000_init_nvm_params_ich8lan(hw);
1637 	if (rc)
1638 		return rc;
1639 
1640 	switch (hw->mac.type) {
1641 	case e1000_ich8lan:
1642 	case e1000_ich9lan:
1643 	case e1000_ich10lan:
1644 		rc = e1000_init_phy_params_ich8lan(hw);
1645 		break;
1646 	case e1000_pchlan:
1647 	case e1000_pch2lan:
1648 	case e1000_pch_lpt:
1649 	case e1000_pch_spt:
1650 	case e1000_pch_cnp:
1651 		rc = e1000_init_phy_params_pchlan(hw);
1652 		break;
1653 	default:
1654 		break;
1655 	}
1656 	if (rc)
1657 		return rc;
1658 
1659 	/* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1660 	 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1661 	 */
1662 	if ((adapter->hw.phy.type == e1000_phy_ife) ||
1663 	    ((adapter->hw.mac.type >= e1000_pch2lan) &&
1664 	     (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1665 		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1666 		adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
1667 
1668 		hw->mac.ops.blink_led = NULL;
1669 	}
1670 
1671 	if ((adapter->hw.mac.type == e1000_ich8lan) &&
1672 	    (adapter->hw.phy.type != e1000_phy_ife))
1673 		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1674 
1675 	/* Enable workaround for 82579 w/ ME enabled */
1676 	if ((adapter->hw.mac.type == e1000_pch2lan) &&
1677 	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1678 		adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1679 
1680 	return 0;
1681 }
1682 
1683 static DEFINE_MUTEX(nvm_mutex);
1684 
1685 /**
1686  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1687  *  @hw: pointer to the HW structure
1688  *
1689  *  Acquires the mutex for performing NVM operations.
1690  **/
1691 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1692 {
1693 	mutex_lock(&nvm_mutex);
1694 
1695 	return 0;
1696 }
1697 
1698 /**
1699  *  e1000_release_nvm_ich8lan - Release NVM mutex
1700  *  @hw: pointer to the HW structure
1701  *
1702  *  Releases the mutex used while performing NVM operations.
1703  **/
1704 static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1705 {
1706 	mutex_unlock(&nvm_mutex);
1707 }
1708 
1709 /**
1710  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1711  *  @hw: pointer to the HW structure
1712  *
1713  *  Acquires the software control flag for performing PHY and select
1714  *  MAC CSR accesses.
1715  **/
1716 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1717 {
1718 	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1719 	s32 ret_val = 0;
1720 
1721 	if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1722 			     &hw->adapter->state)) {
1723 		e_dbg("contention for Phy access\n");
1724 		return -E1000_ERR_PHY;
1725 	}
1726 
1727 	while (timeout) {
1728 		extcnf_ctrl = er32(EXTCNF_CTRL);
1729 		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1730 			break;
1731 
1732 		mdelay(1);
1733 		timeout--;
1734 	}
1735 
1736 	if (!timeout) {
1737 		e_dbg("SW has already locked the resource.\n");
1738 		ret_val = -E1000_ERR_CONFIG;
1739 		goto out;
1740 	}
1741 
1742 	timeout = SW_FLAG_TIMEOUT;
1743 
1744 	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1745 	ew32(EXTCNF_CTRL, extcnf_ctrl);
1746 
1747 	while (timeout) {
1748 		extcnf_ctrl = er32(EXTCNF_CTRL);
1749 		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1750 			break;
1751 
1752 		mdelay(1);
1753 		timeout--;
1754 	}
1755 
1756 	if (!timeout) {
1757 		e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1758 		      er32(FWSM), extcnf_ctrl);
1759 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1760 		ew32(EXTCNF_CTRL, extcnf_ctrl);
1761 		ret_val = -E1000_ERR_CONFIG;
1762 		goto out;
1763 	}
1764 
1765 out:
1766 	if (ret_val)
1767 		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1768 
1769 	return ret_val;
1770 }
1771 
1772 /**
1773  *  e1000_release_swflag_ich8lan - Release software control flag
1774  *  @hw: pointer to the HW structure
1775  *
1776  *  Releases the software control flag for performing PHY and select
1777  *  MAC CSR accesses.
1778  **/
1779 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1780 {
1781 	u32 extcnf_ctrl;
1782 
1783 	extcnf_ctrl = er32(EXTCNF_CTRL);
1784 
1785 	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1786 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1787 		ew32(EXTCNF_CTRL, extcnf_ctrl);
1788 	} else {
1789 		e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1790 	}
1791 
1792 	clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1793 }
1794 
1795 /**
1796  *  e1000_check_mng_mode_ich8lan - Checks management mode
1797  *  @hw: pointer to the HW structure
1798  *
1799  *  This checks if the adapter has any manageability enabled.
1800  *  This is a function pointer entry point only called by read/write
1801  *  routines for the PHY and NVM parts.
1802  **/
1803 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1804 {
1805 	u32 fwsm;
1806 
1807 	fwsm = er32(FWSM);
1808 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1809 		((fwsm & E1000_FWSM_MODE_MASK) ==
1810 		 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1811 }
1812 
1813 /**
1814  *  e1000_check_mng_mode_pchlan - Checks management mode
1815  *  @hw: pointer to the HW structure
1816  *
1817  *  This checks if the adapter has iAMT enabled.
1818  *  This is a function pointer entry point only called by read/write
1819  *  routines for the PHY and NVM parts.
1820  **/
1821 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1822 {
1823 	u32 fwsm;
1824 
1825 	fwsm = er32(FWSM);
1826 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1827 	    (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1828 }
1829 
1830 /**
1831  *  e1000_rar_set_pch2lan - Set receive address register
1832  *  @hw: pointer to the HW structure
1833  *  @addr: pointer to the receive address
1834  *  @index: receive address array register
1835  *
1836  *  Sets the receive address array register at index to the address passed
1837  *  in by addr.  For 82579, RAR[0] is the base address register that is to
1838  *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1839  *  Use SHRA[0-3] in place of those reserved for ME.
1840  **/
1841 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1842 {
1843 	u32 rar_low, rar_high;
1844 
1845 	/* HW expects these in little endian so we reverse the byte order
1846 	 * from network order (big endian) to little endian
1847 	 */
1848 	rar_low = ((u32)addr[0] |
1849 		   ((u32)addr[1] << 8) |
1850 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1851 
1852 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1853 
1854 	/* If MAC address zero, no need to set the AV bit */
1855 	if (rar_low || rar_high)
1856 		rar_high |= E1000_RAH_AV;
1857 
1858 	if (index == 0) {
1859 		ew32(RAL(index), rar_low);
1860 		e1e_flush();
1861 		ew32(RAH(index), rar_high);
1862 		e1e_flush();
1863 		return 0;
1864 	}
1865 
1866 	/* RAR[1-6] are owned by manageability.  Skip those and program the
1867 	 * next address into the SHRA register array.
1868 	 */
1869 	if (index < (u32)(hw->mac.rar_entry_count)) {
1870 		s32 ret_val;
1871 
1872 		ret_val = e1000_acquire_swflag_ich8lan(hw);
1873 		if (ret_val)
1874 			goto out;
1875 
1876 		ew32(SHRAL(index - 1), rar_low);
1877 		e1e_flush();
1878 		ew32(SHRAH(index - 1), rar_high);
1879 		e1e_flush();
1880 
1881 		e1000_release_swflag_ich8lan(hw);
1882 
1883 		/* verify the register updates */
1884 		if ((er32(SHRAL(index - 1)) == rar_low) &&
1885 		    (er32(SHRAH(index - 1)) == rar_high))
1886 			return 0;
1887 
1888 		e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1889 		      (index - 1), er32(FWSM));
1890 	}
1891 
1892 out:
1893 	e_dbg("Failed to write receive address at index %d\n", index);
1894 	return -E1000_ERR_CONFIG;
1895 }
1896 
1897 /**
1898  *  e1000_rar_get_count_pch_lpt - Get the number of available SHRA
1899  *  @hw: pointer to the HW structure
1900  *
1901  *  Get the number of available receive registers that the Host can
1902  *  program. SHRA[0-10] are the shared receive address registers
1903  *  that are shared between the Host and manageability engine (ME).
1904  *  ME can reserve any number of addresses and the host needs to be
1905  *  able to tell how many available registers it has access to.
1906  **/
1907 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw)
1908 {
1909 	u32 wlock_mac;
1910 	u32 num_entries;
1911 
1912 	wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1913 	wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1914 
1915 	switch (wlock_mac) {
1916 	case 0:
1917 		/* All SHRA[0..10] and RAR[0] available */
1918 		num_entries = hw->mac.rar_entry_count;
1919 		break;
1920 	case 1:
1921 		/* Only RAR[0] available */
1922 		num_entries = 1;
1923 		break;
1924 	default:
1925 		/* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
1926 		num_entries = wlock_mac + 1;
1927 		break;
1928 	}
1929 
1930 	return num_entries;
1931 }
1932 
1933 /**
1934  *  e1000_rar_set_pch_lpt - Set receive address registers
1935  *  @hw: pointer to the HW structure
1936  *  @addr: pointer to the receive address
1937  *  @index: receive address array register
1938  *
1939  *  Sets the receive address register array at index to the address passed
1940  *  in by addr. For LPT, RAR[0] is the base address register that is to
1941  *  contain the MAC address. SHRA[0-10] are the shared receive address
1942  *  registers that are shared between the Host and manageability engine (ME).
1943  **/
1944 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1945 {
1946 	u32 rar_low, rar_high;
1947 	u32 wlock_mac;
1948 
1949 	/* HW expects these in little endian so we reverse the byte order
1950 	 * from network order (big endian) to little endian
1951 	 */
1952 	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1953 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1954 
1955 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1956 
1957 	/* If MAC address zero, no need to set the AV bit */
1958 	if (rar_low || rar_high)
1959 		rar_high |= E1000_RAH_AV;
1960 
1961 	if (index == 0) {
1962 		ew32(RAL(index), rar_low);
1963 		e1e_flush();
1964 		ew32(RAH(index), rar_high);
1965 		e1e_flush();
1966 		return 0;
1967 	}
1968 
1969 	/* The manageability engine (ME) can lock certain SHRAR registers that
1970 	 * it is using - those registers are unavailable for use.
1971 	 */
1972 	if (index < hw->mac.rar_entry_count) {
1973 		wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1974 		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1975 
1976 		/* Check if all SHRAR registers are locked */
1977 		if (wlock_mac == 1)
1978 			goto out;
1979 
1980 		if ((wlock_mac == 0) || (index <= wlock_mac)) {
1981 			s32 ret_val;
1982 
1983 			ret_val = e1000_acquire_swflag_ich8lan(hw);
1984 
1985 			if (ret_val)
1986 				goto out;
1987 
1988 			ew32(SHRAL_PCH_LPT(index - 1), rar_low);
1989 			e1e_flush();
1990 			ew32(SHRAH_PCH_LPT(index - 1), rar_high);
1991 			e1e_flush();
1992 
1993 			e1000_release_swflag_ich8lan(hw);
1994 
1995 			/* verify the register updates */
1996 			if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
1997 			    (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
1998 				return 0;
1999 		}
2000 	}
2001 
2002 out:
2003 	e_dbg("Failed to write receive address at index %d\n", index);
2004 	return -E1000_ERR_CONFIG;
2005 }
2006 
2007 /**
2008  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2009  *  @hw: pointer to the HW structure
2010  *
2011  *  Checks if firmware is blocking the reset of the PHY.
2012  *  This is a function pointer entry point only called by
2013  *  reset routines.
2014  **/
2015 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2016 {
2017 	bool blocked = false;
2018 	int i = 0;
2019 
2020 	while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
2021 	       (i++ < 30))
2022 		usleep_range(10000, 20000);
2023 	return blocked ? E1000_BLK_PHY_RESET : 0;
2024 }
2025 
2026 /**
2027  *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2028  *  @hw: pointer to the HW structure
2029  *
2030  *  Assumes semaphore already acquired.
2031  *
2032  **/
2033 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2034 {
2035 	u16 phy_data;
2036 	u32 strap = er32(STRAP);
2037 	u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
2038 	    E1000_STRAP_SMT_FREQ_SHIFT;
2039 	s32 ret_val;
2040 
2041 	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2042 
2043 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2044 	if (ret_val)
2045 		return ret_val;
2046 
2047 	phy_data &= ~HV_SMB_ADDR_MASK;
2048 	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2049 	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2050 
2051 	if (hw->phy.type == e1000_phy_i217) {
2052 		/* Restore SMBus frequency */
2053 		if (freq--) {
2054 			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2055 			phy_data |= (freq & BIT(0)) <<
2056 			    HV_SMB_ADDR_FREQ_LOW_SHIFT;
2057 			phy_data |= (freq & BIT(1)) <<
2058 			    (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2059 		} else {
2060 			e_dbg("Unsupported SMB frequency in PHY\n");
2061 		}
2062 	}
2063 
2064 	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2065 }
2066 
2067 /**
2068  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2069  *  @hw:   pointer to the HW structure
2070  *
2071  *  SW should configure the LCD from the NVM extended configuration region
2072  *  as a workaround for certain parts.
2073  **/
2074 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2075 {
2076 	struct e1000_phy_info *phy = &hw->phy;
2077 	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2078 	s32 ret_val = 0;
2079 	u16 word_addr, reg_data, reg_addr, phy_page = 0;
2080 
2081 	/* Initialize the PHY from the NVM on ICH platforms.  This
2082 	 * is needed due to an issue where the NVM configuration is
2083 	 * not properly autoloaded after power transitions.
2084 	 * Therefore, after each PHY reset, we will load the
2085 	 * configuration data out of the NVM manually.
2086 	 */
2087 	switch (hw->mac.type) {
2088 	case e1000_ich8lan:
2089 		if (phy->type != e1000_phy_igp_3)
2090 			return ret_val;
2091 
2092 		if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
2093 		    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
2094 			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2095 			break;
2096 		}
2097 		/* Fall-thru */
2098 	case e1000_pchlan:
2099 	case e1000_pch2lan:
2100 	case e1000_pch_lpt:
2101 	case e1000_pch_spt:
2102 	case e1000_pch_cnp:
2103 		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2104 		break;
2105 	default:
2106 		return ret_val;
2107 	}
2108 
2109 	ret_val = hw->phy.ops.acquire(hw);
2110 	if (ret_val)
2111 		return ret_val;
2112 
2113 	data = er32(FEXTNVM);
2114 	if (!(data & sw_cfg_mask))
2115 		goto release;
2116 
2117 	/* Make sure HW does not configure LCD from PHY
2118 	 * extended configuration before SW configuration
2119 	 */
2120 	data = er32(EXTCNF_CTRL);
2121 	if ((hw->mac.type < e1000_pch2lan) &&
2122 	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2123 		goto release;
2124 
2125 	cnf_size = er32(EXTCNF_SIZE);
2126 	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2127 	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2128 	if (!cnf_size)
2129 		goto release;
2130 
2131 	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2132 	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2133 
2134 	if (((hw->mac.type == e1000_pchlan) &&
2135 	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2136 	    (hw->mac.type > e1000_pchlan)) {
2137 		/* HW configures the SMBus address and LEDs when the
2138 		 * OEM and LCD Write Enable bits are set in the NVM.
2139 		 * When both NVM bits are cleared, SW will configure
2140 		 * them instead.
2141 		 */
2142 		ret_val = e1000_write_smbus_addr(hw);
2143 		if (ret_val)
2144 			goto release;
2145 
2146 		data = er32(LEDCTL);
2147 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2148 							(u16)data);
2149 		if (ret_val)
2150 			goto release;
2151 	}
2152 
2153 	/* Configure LCD from extended configuration region. */
2154 
2155 	/* cnf_base_addr is in DWORD */
2156 	word_addr = (u16)(cnf_base_addr << 1);
2157 
2158 	for (i = 0; i < cnf_size; i++) {
2159 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, &reg_data);
2160 		if (ret_val)
2161 			goto release;
2162 
2163 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
2164 					 1, &reg_addr);
2165 		if (ret_val)
2166 			goto release;
2167 
2168 		/* Save off the PHY page for future writes. */
2169 		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2170 			phy_page = reg_data;
2171 			continue;
2172 		}
2173 
2174 		reg_addr &= PHY_REG_MASK;
2175 		reg_addr |= phy_page;
2176 
2177 		ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
2178 		if (ret_val)
2179 			goto release;
2180 	}
2181 
2182 release:
2183 	hw->phy.ops.release(hw);
2184 	return ret_val;
2185 }
2186 
2187 /**
2188  *  e1000_k1_gig_workaround_hv - K1 Si workaround
2189  *  @hw:   pointer to the HW structure
2190  *  @link: link up bool flag
2191  *
2192  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2193  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2194  *  If link is down, the function will restore the default K1 setting located
2195  *  in the NVM.
2196  **/
2197 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2198 {
2199 	s32 ret_val = 0;
2200 	u16 status_reg = 0;
2201 	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2202 
2203 	if (hw->mac.type != e1000_pchlan)
2204 		return 0;
2205 
2206 	/* Wrap the whole flow with the sw flag */
2207 	ret_val = hw->phy.ops.acquire(hw);
2208 	if (ret_val)
2209 		return ret_val;
2210 
2211 	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2212 	if (link) {
2213 		if (hw->phy.type == e1000_phy_82578) {
2214 			ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
2215 						  &status_reg);
2216 			if (ret_val)
2217 				goto release;
2218 
2219 			status_reg &= (BM_CS_STATUS_LINK_UP |
2220 				       BM_CS_STATUS_RESOLVED |
2221 				       BM_CS_STATUS_SPEED_MASK);
2222 
2223 			if (status_reg == (BM_CS_STATUS_LINK_UP |
2224 					   BM_CS_STATUS_RESOLVED |
2225 					   BM_CS_STATUS_SPEED_1000))
2226 				k1_enable = false;
2227 		}
2228 
2229 		if (hw->phy.type == e1000_phy_82577) {
2230 			ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2231 			if (ret_val)
2232 				goto release;
2233 
2234 			status_reg &= (HV_M_STATUS_LINK_UP |
2235 				       HV_M_STATUS_AUTONEG_COMPLETE |
2236 				       HV_M_STATUS_SPEED_MASK);
2237 
2238 			if (status_reg == (HV_M_STATUS_LINK_UP |
2239 					   HV_M_STATUS_AUTONEG_COMPLETE |
2240 					   HV_M_STATUS_SPEED_1000))
2241 				k1_enable = false;
2242 		}
2243 
2244 		/* Link stall fix for link up */
2245 		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2246 		if (ret_val)
2247 			goto release;
2248 
2249 	} else {
2250 		/* Link stall fix for link down */
2251 		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2252 		if (ret_val)
2253 			goto release;
2254 	}
2255 
2256 	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2257 
2258 release:
2259 	hw->phy.ops.release(hw);
2260 
2261 	return ret_val;
2262 }
2263 
2264 /**
2265  *  e1000_configure_k1_ich8lan - Configure K1 power state
2266  *  @hw: pointer to the HW structure
2267  *  @enable: K1 state to configure
2268  *
2269  *  Configure the K1 power state based on the provided parameter.
2270  *  Assumes semaphore already acquired.
2271  *
2272  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2273  **/
2274 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2275 {
2276 	s32 ret_val;
2277 	u32 ctrl_reg = 0;
2278 	u32 ctrl_ext = 0;
2279 	u32 reg = 0;
2280 	u16 kmrn_reg = 0;
2281 
2282 	ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2283 					      &kmrn_reg);
2284 	if (ret_val)
2285 		return ret_val;
2286 
2287 	if (k1_enable)
2288 		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2289 	else
2290 		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2291 
2292 	ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2293 					       kmrn_reg);
2294 	if (ret_val)
2295 		return ret_val;
2296 
2297 	usleep_range(20, 40);
2298 	ctrl_ext = er32(CTRL_EXT);
2299 	ctrl_reg = er32(CTRL);
2300 
2301 	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2302 	reg |= E1000_CTRL_FRCSPD;
2303 	ew32(CTRL, reg);
2304 
2305 	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2306 	e1e_flush();
2307 	usleep_range(20, 40);
2308 	ew32(CTRL, ctrl_reg);
2309 	ew32(CTRL_EXT, ctrl_ext);
2310 	e1e_flush();
2311 	usleep_range(20, 40);
2312 
2313 	return 0;
2314 }
2315 
2316 /**
2317  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2318  *  @hw:       pointer to the HW structure
2319  *  @d0_state: boolean if entering d0 or d3 device state
2320  *
2321  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2322  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2323  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2324  **/
2325 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2326 {
2327 	s32 ret_val = 0;
2328 	u32 mac_reg;
2329 	u16 oem_reg;
2330 
2331 	if (hw->mac.type < e1000_pchlan)
2332 		return ret_val;
2333 
2334 	ret_val = hw->phy.ops.acquire(hw);
2335 	if (ret_val)
2336 		return ret_val;
2337 
2338 	if (hw->mac.type == e1000_pchlan) {
2339 		mac_reg = er32(EXTCNF_CTRL);
2340 		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2341 			goto release;
2342 	}
2343 
2344 	mac_reg = er32(FEXTNVM);
2345 	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2346 		goto release;
2347 
2348 	mac_reg = er32(PHY_CTRL);
2349 
2350 	ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2351 	if (ret_val)
2352 		goto release;
2353 
2354 	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2355 
2356 	if (d0_state) {
2357 		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2358 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2359 
2360 		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2361 			oem_reg |= HV_OEM_BITS_LPLU;
2362 	} else {
2363 		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2364 			       E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2365 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2366 
2367 		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2368 			       E1000_PHY_CTRL_NOND0A_LPLU))
2369 			oem_reg |= HV_OEM_BITS_LPLU;
2370 	}
2371 
2372 	/* Set Restart auto-neg to activate the bits */
2373 	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2374 	    !hw->phy.ops.check_reset_block(hw))
2375 		oem_reg |= HV_OEM_BITS_RESTART_AN;
2376 
2377 	ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2378 
2379 release:
2380 	hw->phy.ops.release(hw);
2381 
2382 	return ret_val;
2383 }
2384 
2385 /**
2386  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2387  *  @hw:   pointer to the HW structure
2388  **/
2389 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2390 {
2391 	s32 ret_val;
2392 	u16 data;
2393 
2394 	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2395 	if (ret_val)
2396 		return ret_val;
2397 
2398 	data |= HV_KMRN_MDIO_SLOW;
2399 
2400 	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2401 
2402 	return ret_val;
2403 }
2404 
2405 /**
2406  *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2407  *  done after every PHY reset.
2408  **/
2409 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2410 {
2411 	s32 ret_val = 0;
2412 	u16 phy_data;
2413 
2414 	if (hw->mac.type != e1000_pchlan)
2415 		return 0;
2416 
2417 	/* Set MDIO slow mode before any other MDIO access */
2418 	if (hw->phy.type == e1000_phy_82577) {
2419 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
2420 		if (ret_val)
2421 			return ret_val;
2422 	}
2423 
2424 	if (((hw->phy.type == e1000_phy_82577) &&
2425 	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2426 	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2427 		/* Disable generation of early preamble */
2428 		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2429 		if (ret_val)
2430 			return ret_val;
2431 
2432 		/* Preamble tuning for SSC */
2433 		ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2434 		if (ret_val)
2435 			return ret_val;
2436 	}
2437 
2438 	if (hw->phy.type == e1000_phy_82578) {
2439 		/* Return registers to default by doing a soft reset then
2440 		 * writing 0x3140 to the control register.
2441 		 */
2442 		if (hw->phy.revision < 2) {
2443 			e1000e_phy_sw_reset(hw);
2444 			ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
2445 			if (ret_val)
2446 				return ret_val;
2447 		}
2448 	}
2449 
2450 	/* Select page 0 */
2451 	ret_val = hw->phy.ops.acquire(hw);
2452 	if (ret_val)
2453 		return ret_val;
2454 
2455 	hw->phy.addr = 1;
2456 	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2457 	hw->phy.ops.release(hw);
2458 	if (ret_val)
2459 		return ret_val;
2460 
2461 	/* Configure the K1 Si workaround during phy reset assuming there is
2462 	 * link so that it disables K1 if link is in 1Gbps.
2463 	 */
2464 	ret_val = e1000_k1_gig_workaround_hv(hw, true);
2465 	if (ret_val)
2466 		return ret_val;
2467 
2468 	/* Workaround for link disconnects on a busy hub in half duplex */
2469 	ret_val = hw->phy.ops.acquire(hw);
2470 	if (ret_val)
2471 		return ret_val;
2472 	ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2473 	if (ret_val)
2474 		goto release;
2475 	ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2476 	if (ret_val)
2477 		goto release;
2478 
2479 	/* set MSE higher to enable link to stay up when noise is high */
2480 	ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2481 release:
2482 	hw->phy.ops.release(hw);
2483 
2484 	return ret_val;
2485 }
2486 
2487 /**
2488  *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2489  *  @hw:   pointer to the HW structure
2490  **/
2491 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2492 {
2493 	u32 mac_reg;
2494 	u16 i, phy_reg = 0;
2495 	s32 ret_val;
2496 
2497 	ret_val = hw->phy.ops.acquire(hw);
2498 	if (ret_val)
2499 		return;
2500 	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2501 	if (ret_val)
2502 		goto release;
2503 
2504 	/* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2505 	for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2506 		mac_reg = er32(RAL(i));
2507 		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2508 					   (u16)(mac_reg & 0xFFFF));
2509 		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2510 					   (u16)((mac_reg >> 16) & 0xFFFF));
2511 
2512 		mac_reg = er32(RAH(i));
2513 		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2514 					   (u16)(mac_reg & 0xFFFF));
2515 		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2516 					   (u16)((mac_reg & E1000_RAH_AV)
2517 						 >> 16));
2518 	}
2519 
2520 	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2521 
2522 release:
2523 	hw->phy.ops.release(hw);
2524 }
2525 
2526 /**
2527  *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2528  *  with 82579 PHY
2529  *  @hw: pointer to the HW structure
2530  *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2531  **/
2532 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2533 {
2534 	s32 ret_val = 0;
2535 	u16 phy_reg, data;
2536 	u32 mac_reg;
2537 	u16 i;
2538 
2539 	if (hw->mac.type < e1000_pch2lan)
2540 		return 0;
2541 
2542 	/* disable Rx path while enabling/disabling workaround */
2543 	e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2544 	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | BIT(14));
2545 	if (ret_val)
2546 		return ret_val;
2547 
2548 	if (enable) {
2549 		/* Write Rx addresses (rar_entry_count for RAL/H, and
2550 		 * SHRAL/H) and initial CRC values to the MAC
2551 		 */
2552 		for (i = 0; i < hw->mac.rar_entry_count; i++) {
2553 			u8 mac_addr[ETH_ALEN] = { 0 };
2554 			u32 addr_high, addr_low;
2555 
2556 			addr_high = er32(RAH(i));
2557 			if (!(addr_high & E1000_RAH_AV))
2558 				continue;
2559 			addr_low = er32(RAL(i));
2560 			mac_addr[0] = (addr_low & 0xFF);
2561 			mac_addr[1] = ((addr_low >> 8) & 0xFF);
2562 			mac_addr[2] = ((addr_low >> 16) & 0xFF);
2563 			mac_addr[3] = ((addr_low >> 24) & 0xFF);
2564 			mac_addr[4] = (addr_high & 0xFF);
2565 			mac_addr[5] = ((addr_high >> 8) & 0xFF);
2566 
2567 			ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2568 		}
2569 
2570 		/* Write Rx addresses to the PHY */
2571 		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2572 
2573 		/* Enable jumbo frame workaround in the MAC */
2574 		mac_reg = er32(FFLT_DBG);
2575 		mac_reg &= ~BIT(14);
2576 		mac_reg |= (7 << 15);
2577 		ew32(FFLT_DBG, mac_reg);
2578 
2579 		mac_reg = er32(RCTL);
2580 		mac_reg |= E1000_RCTL_SECRC;
2581 		ew32(RCTL, mac_reg);
2582 
2583 		ret_val = e1000e_read_kmrn_reg(hw,
2584 					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2585 					       &data);
2586 		if (ret_val)
2587 			return ret_val;
2588 		ret_val = e1000e_write_kmrn_reg(hw,
2589 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2590 						data | BIT(0));
2591 		if (ret_val)
2592 			return ret_val;
2593 		ret_val = e1000e_read_kmrn_reg(hw,
2594 					       E1000_KMRNCTRLSTA_HD_CTRL,
2595 					       &data);
2596 		if (ret_val)
2597 			return ret_val;
2598 		data &= ~(0xF << 8);
2599 		data |= (0xB << 8);
2600 		ret_val = e1000e_write_kmrn_reg(hw,
2601 						E1000_KMRNCTRLSTA_HD_CTRL,
2602 						data);
2603 		if (ret_val)
2604 			return ret_val;
2605 
2606 		/* Enable jumbo frame workaround in the PHY */
2607 		e1e_rphy(hw, PHY_REG(769, 23), &data);
2608 		data &= ~(0x7F << 5);
2609 		data |= (0x37 << 5);
2610 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2611 		if (ret_val)
2612 			return ret_val;
2613 		e1e_rphy(hw, PHY_REG(769, 16), &data);
2614 		data &= ~BIT(13);
2615 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2616 		if (ret_val)
2617 			return ret_val;
2618 		e1e_rphy(hw, PHY_REG(776, 20), &data);
2619 		data &= ~(0x3FF << 2);
2620 		data |= (E1000_TX_PTR_GAP << 2);
2621 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2622 		if (ret_val)
2623 			return ret_val;
2624 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2625 		if (ret_val)
2626 			return ret_val;
2627 		e1e_rphy(hw, HV_PM_CTRL, &data);
2628 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data | BIT(10));
2629 		if (ret_val)
2630 			return ret_val;
2631 	} else {
2632 		/* Write MAC register values back to h/w defaults */
2633 		mac_reg = er32(FFLT_DBG);
2634 		mac_reg &= ~(0xF << 14);
2635 		ew32(FFLT_DBG, mac_reg);
2636 
2637 		mac_reg = er32(RCTL);
2638 		mac_reg &= ~E1000_RCTL_SECRC;
2639 		ew32(RCTL, mac_reg);
2640 
2641 		ret_val = e1000e_read_kmrn_reg(hw,
2642 					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2643 					       &data);
2644 		if (ret_val)
2645 			return ret_val;
2646 		ret_val = e1000e_write_kmrn_reg(hw,
2647 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2648 						data & ~BIT(0));
2649 		if (ret_val)
2650 			return ret_val;
2651 		ret_val = e1000e_read_kmrn_reg(hw,
2652 					       E1000_KMRNCTRLSTA_HD_CTRL,
2653 					       &data);
2654 		if (ret_val)
2655 			return ret_val;
2656 		data &= ~(0xF << 8);
2657 		data |= (0xB << 8);
2658 		ret_val = e1000e_write_kmrn_reg(hw,
2659 						E1000_KMRNCTRLSTA_HD_CTRL,
2660 						data);
2661 		if (ret_val)
2662 			return ret_val;
2663 
2664 		/* Write PHY register values back to h/w defaults */
2665 		e1e_rphy(hw, PHY_REG(769, 23), &data);
2666 		data &= ~(0x7F << 5);
2667 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2668 		if (ret_val)
2669 			return ret_val;
2670 		e1e_rphy(hw, PHY_REG(769, 16), &data);
2671 		data |= BIT(13);
2672 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2673 		if (ret_val)
2674 			return ret_val;
2675 		e1e_rphy(hw, PHY_REG(776, 20), &data);
2676 		data &= ~(0x3FF << 2);
2677 		data |= (0x8 << 2);
2678 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2679 		if (ret_val)
2680 			return ret_val;
2681 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2682 		if (ret_val)
2683 			return ret_val;
2684 		e1e_rphy(hw, HV_PM_CTRL, &data);
2685 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~BIT(10));
2686 		if (ret_val)
2687 			return ret_val;
2688 	}
2689 
2690 	/* re-enable Rx path after enabling/disabling workaround */
2691 	return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~BIT(14));
2692 }
2693 
2694 /**
2695  *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2696  *  done after every PHY reset.
2697  **/
2698 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2699 {
2700 	s32 ret_val = 0;
2701 
2702 	if (hw->mac.type != e1000_pch2lan)
2703 		return 0;
2704 
2705 	/* Set MDIO slow mode before any other MDIO access */
2706 	ret_val = e1000_set_mdio_slow_mode_hv(hw);
2707 	if (ret_val)
2708 		return ret_val;
2709 
2710 	ret_val = hw->phy.ops.acquire(hw);
2711 	if (ret_val)
2712 		return ret_val;
2713 	/* set MSE higher to enable link to stay up when noise is high */
2714 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2715 	if (ret_val)
2716 		goto release;
2717 	/* drop link after 5 times MSE threshold was reached */
2718 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2719 release:
2720 	hw->phy.ops.release(hw);
2721 
2722 	return ret_val;
2723 }
2724 
2725 /**
2726  *  e1000_k1_gig_workaround_lv - K1 Si workaround
2727  *  @hw:   pointer to the HW structure
2728  *
2729  *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2730  *  Disable K1 in 1000Mbps and 100Mbps
2731  **/
2732 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2733 {
2734 	s32 ret_val = 0;
2735 	u16 status_reg = 0;
2736 
2737 	if (hw->mac.type != e1000_pch2lan)
2738 		return 0;
2739 
2740 	/* Set K1 beacon duration based on 10Mbs speed */
2741 	ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2742 	if (ret_val)
2743 		return ret_val;
2744 
2745 	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2746 	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2747 		if (status_reg &
2748 		    (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2749 			u16 pm_phy_reg;
2750 
2751 			/* LV 1G/100 Packet drop issue wa  */
2752 			ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2753 			if (ret_val)
2754 				return ret_val;
2755 			pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2756 			ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2757 			if (ret_val)
2758 				return ret_val;
2759 		} else {
2760 			u32 mac_reg;
2761 
2762 			mac_reg = er32(FEXTNVM4);
2763 			mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2764 			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2765 			ew32(FEXTNVM4, mac_reg);
2766 		}
2767 	}
2768 
2769 	return ret_val;
2770 }
2771 
2772 /**
2773  *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2774  *  @hw:   pointer to the HW structure
2775  *  @gate: boolean set to true to gate, false to ungate
2776  *
2777  *  Gate/ungate the automatic PHY configuration via hardware; perform
2778  *  the configuration via software instead.
2779  **/
2780 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2781 {
2782 	u32 extcnf_ctrl;
2783 
2784 	if (hw->mac.type < e1000_pch2lan)
2785 		return;
2786 
2787 	extcnf_ctrl = er32(EXTCNF_CTRL);
2788 
2789 	if (gate)
2790 		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2791 	else
2792 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2793 
2794 	ew32(EXTCNF_CTRL, extcnf_ctrl);
2795 }
2796 
2797 /**
2798  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2799  *  @hw: pointer to the HW structure
2800  *
2801  *  Check the appropriate indication the MAC has finished configuring the
2802  *  PHY after a software reset.
2803  **/
2804 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2805 {
2806 	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2807 
2808 	/* Wait for basic configuration completes before proceeding */
2809 	do {
2810 		data = er32(STATUS);
2811 		data &= E1000_STATUS_LAN_INIT_DONE;
2812 		usleep_range(100, 200);
2813 	} while ((!data) && --loop);
2814 
2815 	/* If basic configuration is incomplete before the above loop
2816 	 * count reaches 0, loading the configuration from NVM will
2817 	 * leave the PHY in a bad state possibly resulting in no link.
2818 	 */
2819 	if (loop == 0)
2820 		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2821 
2822 	/* Clear the Init Done bit for the next init event */
2823 	data = er32(STATUS);
2824 	data &= ~E1000_STATUS_LAN_INIT_DONE;
2825 	ew32(STATUS, data);
2826 }
2827 
2828 /**
2829  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2830  *  @hw: pointer to the HW structure
2831  **/
2832 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2833 {
2834 	s32 ret_val = 0;
2835 	u16 reg;
2836 
2837 	if (hw->phy.ops.check_reset_block(hw))
2838 		return 0;
2839 
2840 	/* Allow time for h/w to get to quiescent state after reset */
2841 	usleep_range(10000, 20000);
2842 
2843 	/* Perform any necessary post-reset workarounds */
2844 	switch (hw->mac.type) {
2845 	case e1000_pchlan:
2846 		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2847 		if (ret_val)
2848 			return ret_val;
2849 		break;
2850 	case e1000_pch2lan:
2851 		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2852 		if (ret_val)
2853 			return ret_val;
2854 		break;
2855 	default:
2856 		break;
2857 	}
2858 
2859 	/* Clear the host wakeup bit after lcd reset */
2860 	if (hw->mac.type >= e1000_pchlan) {
2861 		e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2862 		reg &= ~BM_WUC_HOST_WU_BIT;
2863 		e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2864 	}
2865 
2866 	/* Configure the LCD with the extended configuration region in NVM */
2867 	ret_val = e1000_sw_lcd_config_ich8lan(hw);
2868 	if (ret_val)
2869 		return ret_val;
2870 
2871 	/* Configure the LCD with the OEM bits in NVM */
2872 	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2873 
2874 	if (hw->mac.type == e1000_pch2lan) {
2875 		/* Ungate automatic PHY configuration on non-managed 82579 */
2876 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2877 			usleep_range(10000, 20000);
2878 			e1000_gate_hw_phy_config_ich8lan(hw, false);
2879 		}
2880 
2881 		/* Set EEE LPI Update Timer to 200usec */
2882 		ret_val = hw->phy.ops.acquire(hw);
2883 		if (ret_val)
2884 			return ret_val;
2885 		ret_val = e1000_write_emi_reg_locked(hw,
2886 						     I82579_LPI_UPDATE_TIMER,
2887 						     0x1387);
2888 		hw->phy.ops.release(hw);
2889 	}
2890 
2891 	return ret_val;
2892 }
2893 
2894 /**
2895  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2896  *  @hw: pointer to the HW structure
2897  *
2898  *  Resets the PHY
2899  *  This is a function pointer entry point called by drivers
2900  *  or other shared routines.
2901  **/
2902 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2903 {
2904 	s32 ret_val = 0;
2905 
2906 	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
2907 	if ((hw->mac.type == e1000_pch2lan) &&
2908 	    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2909 		e1000_gate_hw_phy_config_ich8lan(hw, true);
2910 
2911 	ret_val = e1000e_phy_hw_reset_generic(hw);
2912 	if (ret_val)
2913 		return ret_val;
2914 
2915 	return e1000_post_phy_reset_ich8lan(hw);
2916 }
2917 
2918 /**
2919  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2920  *  @hw: pointer to the HW structure
2921  *  @active: true to enable LPLU, false to disable
2922  *
2923  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
2924  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2925  *  the phy speed. This function will manually set the LPLU bit and restart
2926  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
2927  *  since it configures the same bit.
2928  **/
2929 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2930 {
2931 	s32 ret_val;
2932 	u16 oem_reg;
2933 
2934 	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2935 	if (ret_val)
2936 		return ret_val;
2937 
2938 	if (active)
2939 		oem_reg |= HV_OEM_BITS_LPLU;
2940 	else
2941 		oem_reg &= ~HV_OEM_BITS_LPLU;
2942 
2943 	if (!hw->phy.ops.check_reset_block(hw))
2944 		oem_reg |= HV_OEM_BITS_RESTART_AN;
2945 
2946 	return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2947 }
2948 
2949 /**
2950  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2951  *  @hw: pointer to the HW structure
2952  *  @active: true to enable LPLU, false to disable
2953  *
2954  *  Sets the LPLU D0 state according to the active flag.  When
2955  *  activating LPLU this function also disables smart speed
2956  *  and vice versa.  LPLU will not be activated unless the
2957  *  device autonegotiation advertisement meets standards of
2958  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2959  *  This is a function pointer entry point only called by
2960  *  PHY setup routines.
2961  **/
2962 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2963 {
2964 	struct e1000_phy_info *phy = &hw->phy;
2965 	u32 phy_ctrl;
2966 	s32 ret_val = 0;
2967 	u16 data;
2968 
2969 	if (phy->type == e1000_phy_ife)
2970 		return 0;
2971 
2972 	phy_ctrl = er32(PHY_CTRL);
2973 
2974 	if (active) {
2975 		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2976 		ew32(PHY_CTRL, phy_ctrl);
2977 
2978 		if (phy->type != e1000_phy_igp_3)
2979 			return 0;
2980 
2981 		/* Call gig speed drop workaround on LPLU before accessing
2982 		 * any PHY registers
2983 		 */
2984 		if (hw->mac.type == e1000_ich8lan)
2985 			e1000e_gig_downshift_workaround_ich8lan(hw);
2986 
2987 		/* When LPLU is enabled, we should disable SmartSpeed */
2988 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2989 		if (ret_val)
2990 			return ret_val;
2991 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2992 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2993 		if (ret_val)
2994 			return ret_val;
2995 	} else {
2996 		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2997 		ew32(PHY_CTRL, phy_ctrl);
2998 
2999 		if (phy->type != e1000_phy_igp_3)
3000 			return 0;
3001 
3002 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3003 		 * during Dx states where the power conservation is most
3004 		 * important.  During driver activity we should enable
3005 		 * SmartSpeed, so performance is maintained.
3006 		 */
3007 		if (phy->smart_speed == e1000_smart_speed_on) {
3008 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3009 					   &data);
3010 			if (ret_val)
3011 				return ret_val;
3012 
3013 			data |= IGP01E1000_PSCFR_SMART_SPEED;
3014 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3015 					   data);
3016 			if (ret_val)
3017 				return ret_val;
3018 		} else if (phy->smart_speed == e1000_smart_speed_off) {
3019 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3020 					   &data);
3021 			if (ret_val)
3022 				return ret_val;
3023 
3024 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3025 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3026 					   data);
3027 			if (ret_val)
3028 				return ret_val;
3029 		}
3030 	}
3031 
3032 	return 0;
3033 }
3034 
3035 /**
3036  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3037  *  @hw: pointer to the HW structure
3038  *  @active: true to enable LPLU, false to disable
3039  *
3040  *  Sets the LPLU D3 state according to the active flag.  When
3041  *  activating LPLU this function also disables smart speed
3042  *  and vice versa.  LPLU will not be activated unless the
3043  *  device autonegotiation advertisement meets standards of
3044  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3045  *  This is a function pointer entry point only called by
3046  *  PHY setup routines.
3047  **/
3048 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3049 {
3050 	struct e1000_phy_info *phy = &hw->phy;
3051 	u32 phy_ctrl;
3052 	s32 ret_val = 0;
3053 	u16 data;
3054 
3055 	phy_ctrl = er32(PHY_CTRL);
3056 
3057 	if (!active) {
3058 		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3059 		ew32(PHY_CTRL, phy_ctrl);
3060 
3061 		if (phy->type != e1000_phy_igp_3)
3062 			return 0;
3063 
3064 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3065 		 * during Dx states where the power conservation is most
3066 		 * important.  During driver activity we should enable
3067 		 * SmartSpeed, so performance is maintained.
3068 		 */
3069 		if (phy->smart_speed == e1000_smart_speed_on) {
3070 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3071 					   &data);
3072 			if (ret_val)
3073 				return ret_val;
3074 
3075 			data |= IGP01E1000_PSCFR_SMART_SPEED;
3076 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3077 					   data);
3078 			if (ret_val)
3079 				return ret_val;
3080 		} else if (phy->smart_speed == e1000_smart_speed_off) {
3081 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3082 					   &data);
3083 			if (ret_val)
3084 				return ret_val;
3085 
3086 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3087 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3088 					   data);
3089 			if (ret_val)
3090 				return ret_val;
3091 		}
3092 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3093 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3094 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3095 		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3096 		ew32(PHY_CTRL, phy_ctrl);
3097 
3098 		if (phy->type != e1000_phy_igp_3)
3099 			return 0;
3100 
3101 		/* Call gig speed drop workaround on LPLU before accessing
3102 		 * any PHY registers
3103 		 */
3104 		if (hw->mac.type == e1000_ich8lan)
3105 			e1000e_gig_downshift_workaround_ich8lan(hw);
3106 
3107 		/* When LPLU is enabled, we should disable SmartSpeed */
3108 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3109 		if (ret_val)
3110 			return ret_val;
3111 
3112 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3113 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3114 	}
3115 
3116 	return ret_val;
3117 }
3118 
3119 /**
3120  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3121  *  @hw: pointer to the HW structure
3122  *  @bank:  pointer to the variable that returns the active bank
3123  *
3124  *  Reads signature byte from the NVM using the flash access registers.
3125  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3126  **/
3127 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3128 {
3129 	u32 eecd;
3130 	struct e1000_nvm_info *nvm = &hw->nvm;
3131 	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3132 	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3133 	u32 nvm_dword = 0;
3134 	u8 sig_byte = 0;
3135 	s32 ret_val;
3136 
3137 	switch (hw->mac.type) {
3138 	case e1000_pch_spt:
3139 	case e1000_pch_cnp:
3140 		bank1_offset = nvm->flash_bank_size;
3141 		act_offset = E1000_ICH_NVM_SIG_WORD;
3142 
3143 		/* set bank to 0 in case flash read fails */
3144 		*bank = 0;
3145 
3146 		/* Check bank 0 */
3147 		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
3148 							 &nvm_dword);
3149 		if (ret_val)
3150 			return ret_val;
3151 		sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3152 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3153 		    E1000_ICH_NVM_SIG_VALUE) {
3154 			*bank = 0;
3155 			return 0;
3156 		}
3157 
3158 		/* Check bank 1 */
3159 		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
3160 							 bank1_offset,
3161 							 &nvm_dword);
3162 		if (ret_val)
3163 			return ret_val;
3164 		sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3165 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3166 		    E1000_ICH_NVM_SIG_VALUE) {
3167 			*bank = 1;
3168 			return 0;
3169 		}
3170 
3171 		e_dbg("ERROR: No valid NVM bank present\n");
3172 		return -E1000_ERR_NVM;
3173 	case e1000_ich8lan:
3174 	case e1000_ich9lan:
3175 		eecd = er32(EECD);
3176 		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3177 		    E1000_EECD_SEC1VAL_VALID_MASK) {
3178 			if (eecd & E1000_EECD_SEC1VAL)
3179 				*bank = 1;
3180 			else
3181 				*bank = 0;
3182 
3183 			return 0;
3184 		}
3185 		e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3186 		/* fall-thru */
3187 	default:
3188 		/* set bank to 0 in case flash read fails */
3189 		*bank = 0;
3190 
3191 		/* Check bank 0 */
3192 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3193 							&sig_byte);
3194 		if (ret_val)
3195 			return ret_val;
3196 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3197 		    E1000_ICH_NVM_SIG_VALUE) {
3198 			*bank = 0;
3199 			return 0;
3200 		}
3201 
3202 		/* Check bank 1 */
3203 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3204 							bank1_offset,
3205 							&sig_byte);
3206 		if (ret_val)
3207 			return ret_val;
3208 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3209 		    E1000_ICH_NVM_SIG_VALUE) {
3210 			*bank = 1;
3211 			return 0;
3212 		}
3213 
3214 		e_dbg("ERROR: No valid NVM bank present\n");
3215 		return -E1000_ERR_NVM;
3216 	}
3217 }
3218 
3219 /**
3220  *  e1000_read_nvm_spt - NVM access for SPT
3221  *  @hw: pointer to the HW structure
3222  *  @offset: The offset (in bytes) of the word(s) to read.
3223  *  @words: Size of data to read in words.
3224  *  @data: pointer to the word(s) to read at offset.
3225  *
3226  *  Reads a word(s) from the NVM
3227  **/
3228 static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3229 			      u16 *data)
3230 {
3231 	struct e1000_nvm_info *nvm = &hw->nvm;
3232 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3233 	u32 act_offset;
3234 	s32 ret_val = 0;
3235 	u32 bank = 0;
3236 	u32 dword = 0;
3237 	u16 offset_to_read;
3238 	u16 i;
3239 
3240 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3241 	    (words == 0)) {
3242 		e_dbg("nvm parameter(s) out of bounds\n");
3243 		ret_val = -E1000_ERR_NVM;
3244 		goto out;
3245 	}
3246 
3247 	nvm->ops.acquire(hw);
3248 
3249 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3250 	if (ret_val) {
3251 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3252 		bank = 0;
3253 	}
3254 
3255 	act_offset = (bank) ? nvm->flash_bank_size : 0;
3256 	act_offset += offset;
3257 
3258 	ret_val = 0;
3259 
3260 	for (i = 0; i < words; i += 2) {
3261 		if (words - i == 1) {
3262 			if (dev_spec->shadow_ram[offset + i].modified) {
3263 				data[i] =
3264 				    dev_spec->shadow_ram[offset + i].value;
3265 			} else {
3266 				offset_to_read = act_offset + i -
3267 				    ((act_offset + i) % 2);
3268 				ret_val =
3269 				  e1000_read_flash_dword_ich8lan(hw,
3270 								 offset_to_read,
3271 								 &dword);
3272 				if (ret_val)
3273 					break;
3274 				if ((act_offset + i) % 2 == 0)
3275 					data[i] = (u16)(dword & 0xFFFF);
3276 				else
3277 					data[i] = (u16)((dword >> 16) & 0xFFFF);
3278 			}
3279 		} else {
3280 			offset_to_read = act_offset + i;
3281 			if (!(dev_spec->shadow_ram[offset + i].modified) ||
3282 			    !(dev_spec->shadow_ram[offset + i + 1].modified)) {
3283 				ret_val =
3284 				  e1000_read_flash_dword_ich8lan(hw,
3285 								 offset_to_read,
3286 								 &dword);
3287 				if (ret_val)
3288 					break;
3289 			}
3290 			if (dev_spec->shadow_ram[offset + i].modified)
3291 				data[i] =
3292 				    dev_spec->shadow_ram[offset + i].value;
3293 			else
3294 				data[i] = (u16)(dword & 0xFFFF);
3295 			if (dev_spec->shadow_ram[offset + i].modified)
3296 				data[i + 1] =
3297 				    dev_spec->shadow_ram[offset + i + 1].value;
3298 			else
3299 				data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
3300 		}
3301 	}
3302 
3303 	nvm->ops.release(hw);
3304 
3305 out:
3306 	if (ret_val)
3307 		e_dbg("NVM read error: %d\n", ret_val);
3308 
3309 	return ret_val;
3310 }
3311 
3312 /**
3313  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3314  *  @hw: pointer to the HW structure
3315  *  @offset: The offset (in bytes) of the word(s) to read.
3316  *  @words: Size of data to read in words
3317  *  @data: Pointer to the word(s) to read at offset.
3318  *
3319  *  Reads a word(s) from the NVM using the flash access registers.
3320  **/
3321 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3322 				  u16 *data)
3323 {
3324 	struct e1000_nvm_info *nvm = &hw->nvm;
3325 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3326 	u32 act_offset;
3327 	s32 ret_val = 0;
3328 	u32 bank = 0;
3329 	u16 i, word;
3330 
3331 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3332 	    (words == 0)) {
3333 		e_dbg("nvm parameter(s) out of bounds\n");
3334 		ret_val = -E1000_ERR_NVM;
3335 		goto out;
3336 	}
3337 
3338 	nvm->ops.acquire(hw);
3339 
3340 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3341 	if (ret_val) {
3342 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3343 		bank = 0;
3344 	}
3345 
3346 	act_offset = (bank) ? nvm->flash_bank_size : 0;
3347 	act_offset += offset;
3348 
3349 	ret_val = 0;
3350 	for (i = 0; i < words; i++) {
3351 		if (dev_spec->shadow_ram[offset + i].modified) {
3352 			data[i] = dev_spec->shadow_ram[offset + i].value;
3353 		} else {
3354 			ret_val = e1000_read_flash_word_ich8lan(hw,
3355 								act_offset + i,
3356 								&word);
3357 			if (ret_val)
3358 				break;
3359 			data[i] = word;
3360 		}
3361 	}
3362 
3363 	nvm->ops.release(hw);
3364 
3365 out:
3366 	if (ret_val)
3367 		e_dbg("NVM read error: %d\n", ret_val);
3368 
3369 	return ret_val;
3370 }
3371 
3372 /**
3373  *  e1000_flash_cycle_init_ich8lan - Initialize flash
3374  *  @hw: pointer to the HW structure
3375  *
3376  *  This function does initial flash setup so that a new read/write/erase cycle
3377  *  can be started.
3378  **/
3379 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3380 {
3381 	union ich8_hws_flash_status hsfsts;
3382 	s32 ret_val = -E1000_ERR_NVM;
3383 
3384 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3385 
3386 	/* Check if the flash descriptor is valid */
3387 	if (!hsfsts.hsf_status.fldesvalid) {
3388 		e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
3389 		return -E1000_ERR_NVM;
3390 	}
3391 
3392 	/* Clear FCERR and DAEL in hw status by writing 1 */
3393 	hsfsts.hsf_status.flcerr = 1;
3394 	hsfsts.hsf_status.dael = 1;
3395 	if (hw->mac.type >= e1000_pch_spt)
3396 		ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3397 	else
3398 		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3399 
3400 	/* Either we should have a hardware SPI cycle in progress
3401 	 * bit to check against, in order to start a new cycle or
3402 	 * FDONE bit should be changed in the hardware so that it
3403 	 * is 1 after hardware reset, which can then be used as an
3404 	 * indication whether a cycle is in progress or has been
3405 	 * completed.
3406 	 */
3407 
3408 	if (!hsfsts.hsf_status.flcinprog) {
3409 		/* There is no cycle running at present,
3410 		 * so we can start a cycle.
3411 		 * Begin by setting Flash Cycle Done.
3412 		 */
3413 		hsfsts.hsf_status.flcdone = 1;
3414 		if (hw->mac.type >= e1000_pch_spt)
3415 			ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3416 		else
3417 			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3418 		ret_val = 0;
3419 	} else {
3420 		s32 i;
3421 
3422 		/* Otherwise poll for sometime so the current
3423 		 * cycle has a chance to end before giving up.
3424 		 */
3425 		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3426 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3427 			if (!hsfsts.hsf_status.flcinprog) {
3428 				ret_val = 0;
3429 				break;
3430 			}
3431 			udelay(1);
3432 		}
3433 		if (!ret_val) {
3434 			/* Successful in waiting for previous cycle to timeout,
3435 			 * now set the Flash Cycle Done.
3436 			 */
3437 			hsfsts.hsf_status.flcdone = 1;
3438 			if (hw->mac.type >= e1000_pch_spt)
3439 				ew32flash(ICH_FLASH_HSFSTS,
3440 					  hsfsts.regval & 0xFFFF);
3441 			else
3442 				ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3443 		} else {
3444 			e_dbg("Flash controller busy, cannot get access\n");
3445 		}
3446 	}
3447 
3448 	return ret_val;
3449 }
3450 
3451 /**
3452  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3453  *  @hw: pointer to the HW structure
3454  *  @timeout: maximum time to wait for completion
3455  *
3456  *  This function starts a flash cycle and waits for its completion.
3457  **/
3458 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3459 {
3460 	union ich8_hws_flash_ctrl hsflctl;
3461 	union ich8_hws_flash_status hsfsts;
3462 	u32 i = 0;
3463 
3464 	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3465 	if (hw->mac.type >= e1000_pch_spt)
3466 		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3467 	else
3468 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3469 	hsflctl.hsf_ctrl.flcgo = 1;
3470 
3471 	if (hw->mac.type >= e1000_pch_spt)
3472 		ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
3473 	else
3474 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3475 
3476 	/* wait till FDONE bit is set to 1 */
3477 	do {
3478 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3479 		if (hsfsts.hsf_status.flcdone)
3480 			break;
3481 		udelay(1);
3482 	} while (i++ < timeout);
3483 
3484 	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3485 		return 0;
3486 
3487 	return -E1000_ERR_NVM;
3488 }
3489 
3490 /**
3491  *  e1000_read_flash_dword_ich8lan - Read dword from flash
3492  *  @hw: pointer to the HW structure
3493  *  @offset: offset to data location
3494  *  @data: pointer to the location for storing the data
3495  *
3496  *  Reads the flash dword at offset into data.  Offset is converted
3497  *  to bytes before read.
3498  **/
3499 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3500 					  u32 *data)
3501 {
3502 	/* Must convert word offset into bytes. */
3503 	offset <<= 1;
3504 	return e1000_read_flash_data32_ich8lan(hw, offset, data);
3505 }
3506 
3507 /**
3508  *  e1000_read_flash_word_ich8lan - Read word from flash
3509  *  @hw: pointer to the HW structure
3510  *  @offset: offset to data location
3511  *  @data: pointer to the location for storing the data
3512  *
3513  *  Reads the flash word at offset into data.  Offset is converted
3514  *  to bytes before read.
3515  **/
3516 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3517 					 u16 *data)
3518 {
3519 	/* Must convert offset into bytes. */
3520 	offset <<= 1;
3521 
3522 	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3523 }
3524 
3525 /**
3526  *  e1000_read_flash_byte_ich8lan - Read byte from flash
3527  *  @hw: pointer to the HW structure
3528  *  @offset: The offset of the byte to read.
3529  *  @data: Pointer to a byte to store the value read.
3530  *
3531  *  Reads a single byte from the NVM using the flash access registers.
3532  **/
3533 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3534 					 u8 *data)
3535 {
3536 	s32 ret_val;
3537 	u16 word = 0;
3538 
3539 	/* In SPT, only 32 bits access is supported,
3540 	 * so this function should not be called.
3541 	 */
3542 	if (hw->mac.type >= e1000_pch_spt)
3543 		return -E1000_ERR_NVM;
3544 	else
3545 		ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3546 
3547 	if (ret_val)
3548 		return ret_val;
3549 
3550 	*data = (u8)word;
3551 
3552 	return 0;
3553 }
3554 
3555 /**
3556  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3557  *  @hw: pointer to the HW structure
3558  *  @offset: The offset (in bytes) of the byte or word to read.
3559  *  @size: Size of data to read, 1=byte 2=word
3560  *  @data: Pointer to the word to store the value read.
3561  *
3562  *  Reads a byte or word from the NVM using the flash access registers.
3563  **/
3564 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3565 					 u8 size, u16 *data)
3566 {
3567 	union ich8_hws_flash_status hsfsts;
3568 	union ich8_hws_flash_ctrl hsflctl;
3569 	u32 flash_linear_addr;
3570 	u32 flash_data = 0;
3571 	s32 ret_val = -E1000_ERR_NVM;
3572 	u8 count = 0;
3573 
3574 	if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3575 		return -E1000_ERR_NVM;
3576 
3577 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3578 			     hw->nvm.flash_base_addr);
3579 
3580 	do {
3581 		udelay(1);
3582 		/* Steps */
3583 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3584 		if (ret_val)
3585 			break;
3586 
3587 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3588 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3589 		hsflctl.hsf_ctrl.fldbcount = size - 1;
3590 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3591 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3592 
3593 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3594 
3595 		ret_val =
3596 		    e1000_flash_cycle_ich8lan(hw,
3597 					      ICH_FLASH_READ_COMMAND_TIMEOUT);
3598 
3599 		/* Check if FCERR is set to 1, if set to 1, clear it
3600 		 * and try the whole sequence a few more times, else
3601 		 * read in (shift in) the Flash Data0, the order is
3602 		 * least significant byte first msb to lsb
3603 		 */
3604 		if (!ret_val) {
3605 			flash_data = er32flash(ICH_FLASH_FDATA0);
3606 			if (size == 1)
3607 				*data = (u8)(flash_data & 0x000000FF);
3608 			else if (size == 2)
3609 				*data = (u16)(flash_data & 0x0000FFFF);
3610 			break;
3611 		} else {
3612 			/* If we've gotten here, then things are probably
3613 			 * completely hosed, but if the error condition is
3614 			 * detected, it won't hurt to give it another try...
3615 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3616 			 */
3617 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3618 			if (hsfsts.hsf_status.flcerr) {
3619 				/* Repeat for some time before giving up. */
3620 				continue;
3621 			} else if (!hsfsts.hsf_status.flcdone) {
3622 				e_dbg("Timeout error - flash cycle did not complete.\n");
3623 				break;
3624 			}
3625 		}
3626 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3627 
3628 	return ret_val;
3629 }
3630 
3631 /**
3632  *  e1000_read_flash_data32_ich8lan - Read dword from NVM
3633  *  @hw: pointer to the HW structure
3634  *  @offset: The offset (in bytes) of the dword to read.
3635  *  @data: Pointer to the dword to store the value read.
3636  *
3637  *  Reads a byte or word from the NVM using the flash access registers.
3638  **/
3639 
3640 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3641 					   u32 *data)
3642 {
3643 	union ich8_hws_flash_status hsfsts;
3644 	union ich8_hws_flash_ctrl hsflctl;
3645 	u32 flash_linear_addr;
3646 	s32 ret_val = -E1000_ERR_NVM;
3647 	u8 count = 0;
3648 
3649 	if (offset > ICH_FLASH_LINEAR_ADDR_MASK || hw->mac.type < e1000_pch_spt)
3650 		return -E1000_ERR_NVM;
3651 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3652 			     hw->nvm.flash_base_addr);
3653 
3654 	do {
3655 		udelay(1);
3656 		/* Steps */
3657 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3658 		if (ret_val)
3659 			break;
3660 		/* In SPT, This register is in Lan memory space, not flash.
3661 		 * Therefore, only 32 bit access is supported
3662 		 */
3663 		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3664 
3665 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3666 		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3667 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3668 		/* In SPT, This register is in Lan memory space, not flash.
3669 		 * Therefore, only 32 bit access is supported
3670 		 */
3671 		ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16);
3672 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3673 
3674 		ret_val =
3675 		   e1000_flash_cycle_ich8lan(hw,
3676 					     ICH_FLASH_READ_COMMAND_TIMEOUT);
3677 
3678 		/* Check if FCERR is set to 1, if set to 1, clear it
3679 		 * and try the whole sequence a few more times, else
3680 		 * read in (shift in) the Flash Data0, the order is
3681 		 * least significant byte first msb to lsb
3682 		 */
3683 		if (!ret_val) {
3684 			*data = er32flash(ICH_FLASH_FDATA0);
3685 			break;
3686 		} else {
3687 			/* If we've gotten here, then things are probably
3688 			 * completely hosed, but if the error condition is
3689 			 * detected, it won't hurt to give it another try...
3690 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3691 			 */
3692 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3693 			if (hsfsts.hsf_status.flcerr) {
3694 				/* Repeat for some time before giving up. */
3695 				continue;
3696 			} else if (!hsfsts.hsf_status.flcdone) {
3697 				e_dbg("Timeout error - flash cycle did not complete.\n");
3698 				break;
3699 			}
3700 		}
3701 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3702 
3703 	return ret_val;
3704 }
3705 
3706 /**
3707  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
3708  *  @hw: pointer to the HW structure
3709  *  @offset: The offset (in bytes) of the word(s) to write.
3710  *  @words: Size of data to write in words
3711  *  @data: Pointer to the word(s) to write at offset.
3712  *
3713  *  Writes a byte or word to the NVM using the flash access registers.
3714  **/
3715 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3716 				   u16 *data)
3717 {
3718 	struct e1000_nvm_info *nvm = &hw->nvm;
3719 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3720 	u16 i;
3721 
3722 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3723 	    (words == 0)) {
3724 		e_dbg("nvm parameter(s) out of bounds\n");
3725 		return -E1000_ERR_NVM;
3726 	}
3727 
3728 	nvm->ops.acquire(hw);
3729 
3730 	for (i = 0; i < words; i++) {
3731 		dev_spec->shadow_ram[offset + i].modified = true;
3732 		dev_spec->shadow_ram[offset + i].value = data[i];
3733 	}
3734 
3735 	nvm->ops.release(hw);
3736 
3737 	return 0;
3738 }
3739 
3740 /**
3741  *  e1000_update_nvm_checksum_spt - Update the checksum for NVM
3742  *  @hw: pointer to the HW structure
3743  *
3744  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3745  *  which writes the checksum to the shadow ram.  The changes in the shadow
3746  *  ram are then committed to the EEPROM by processing each bank at a time
3747  *  checking for the modified bit and writing only the pending changes.
3748  *  After a successful commit, the shadow ram is cleared and is ready for
3749  *  future writes.
3750  **/
3751 static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
3752 {
3753 	struct e1000_nvm_info *nvm = &hw->nvm;
3754 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3755 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3756 	s32 ret_val;
3757 	u32 dword = 0;
3758 
3759 	ret_val = e1000e_update_nvm_checksum_generic(hw);
3760 	if (ret_val)
3761 		goto out;
3762 
3763 	if (nvm->type != e1000_nvm_flash_sw)
3764 		goto out;
3765 
3766 	nvm->ops.acquire(hw);
3767 
3768 	/* We're writing to the opposite bank so if we're on bank 1,
3769 	 * write to bank 0 etc.  We also need to erase the segment that
3770 	 * is going to be written
3771 	 */
3772 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3773 	if (ret_val) {
3774 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3775 		bank = 0;
3776 	}
3777 
3778 	if (bank == 0) {
3779 		new_bank_offset = nvm->flash_bank_size;
3780 		old_bank_offset = 0;
3781 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3782 		if (ret_val)
3783 			goto release;
3784 	} else {
3785 		old_bank_offset = nvm->flash_bank_size;
3786 		new_bank_offset = 0;
3787 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3788 		if (ret_val)
3789 			goto release;
3790 	}
3791 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) {
3792 		/* Determine whether to write the value stored
3793 		 * in the other NVM bank or a modified value stored
3794 		 * in the shadow RAM
3795 		 */
3796 		ret_val = e1000_read_flash_dword_ich8lan(hw,
3797 							 i + old_bank_offset,
3798 							 &dword);
3799 
3800 		if (dev_spec->shadow_ram[i].modified) {
3801 			dword &= 0xffff0000;
3802 			dword |= (dev_spec->shadow_ram[i].value & 0xffff);
3803 		}
3804 		if (dev_spec->shadow_ram[i + 1].modified) {
3805 			dword &= 0x0000ffff;
3806 			dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
3807 				  << 16);
3808 		}
3809 		if (ret_val)
3810 			break;
3811 
3812 		/* If the word is 0x13, then make sure the signature bits
3813 		 * (15:14) are 11b until the commit has completed.
3814 		 * This will allow us to write 10b which indicates the
3815 		 * signature is valid.  We want to do this after the write
3816 		 * has completed so that we don't mark the segment valid
3817 		 * while the write is still in progress
3818 		 */
3819 		if (i == E1000_ICH_NVM_SIG_WORD - 1)
3820 			dword |= E1000_ICH_NVM_SIG_MASK << 16;
3821 
3822 		/* Convert offset to bytes. */
3823 		act_offset = (i + new_bank_offset) << 1;
3824 
3825 		usleep_range(100, 200);
3826 
3827 		/* Write the data to the new bank. Offset in words */
3828 		act_offset = i + new_bank_offset;
3829 		ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
3830 								dword);
3831 		if (ret_val)
3832 			break;
3833 	}
3834 
3835 	/* Don't bother writing the segment valid bits if sector
3836 	 * programming failed.
3837 	 */
3838 	if (ret_val) {
3839 		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3840 		e_dbg("Flash commit failed.\n");
3841 		goto release;
3842 	}
3843 
3844 	/* Finally validate the new segment by setting bit 15:14
3845 	 * to 10b in word 0x13 , this can be done without an
3846 	 * erase as well since these bits are 11 to start with
3847 	 * and we need to change bit 14 to 0b
3848 	 */
3849 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3850 
3851 	/*offset in words but we read dword */
3852 	--act_offset;
3853 	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3854 
3855 	if (ret_val)
3856 		goto release;
3857 
3858 	dword &= 0xBFFFFFFF;
3859 	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3860 
3861 	if (ret_val)
3862 		goto release;
3863 
3864 	/* And invalidate the previously valid segment by setting
3865 	 * its signature word (0x13) high_byte to 0b. This can be
3866 	 * done without an erase because flash erase sets all bits
3867 	 * to 1's. We can write 1's to 0's without an erase
3868 	 */
3869 	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
3870 
3871 	/* offset in words but we read dword */
3872 	act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
3873 	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3874 
3875 	if (ret_val)
3876 		goto release;
3877 
3878 	dword &= 0x00FFFFFF;
3879 	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3880 
3881 	if (ret_val)
3882 		goto release;
3883 
3884 	/* Great!  Everything worked, we can now clear the cached entries. */
3885 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3886 		dev_spec->shadow_ram[i].modified = false;
3887 		dev_spec->shadow_ram[i].value = 0xFFFF;
3888 	}
3889 
3890 release:
3891 	nvm->ops.release(hw);
3892 
3893 	/* Reload the EEPROM, or else modifications will not appear
3894 	 * until after the next adapter reset.
3895 	 */
3896 	if (!ret_val) {
3897 		nvm->ops.reload(hw);
3898 		usleep_range(10000, 20000);
3899 	}
3900 
3901 out:
3902 	if (ret_val)
3903 		e_dbg("NVM update error: %d\n", ret_val);
3904 
3905 	return ret_val;
3906 }
3907 
3908 /**
3909  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3910  *  @hw: pointer to the HW structure
3911  *
3912  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3913  *  which writes the checksum to the shadow ram.  The changes in the shadow
3914  *  ram are then committed to the EEPROM by processing each bank at a time
3915  *  checking for the modified bit and writing only the pending changes.
3916  *  After a successful commit, the shadow ram is cleared and is ready for
3917  *  future writes.
3918  **/
3919 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
3920 {
3921 	struct e1000_nvm_info *nvm = &hw->nvm;
3922 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3923 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3924 	s32 ret_val;
3925 	u16 data = 0;
3926 
3927 	ret_val = e1000e_update_nvm_checksum_generic(hw);
3928 	if (ret_val)
3929 		goto out;
3930 
3931 	if (nvm->type != e1000_nvm_flash_sw)
3932 		goto out;
3933 
3934 	nvm->ops.acquire(hw);
3935 
3936 	/* We're writing to the opposite bank so if we're on bank 1,
3937 	 * write to bank 0 etc.  We also need to erase the segment that
3938 	 * is going to be written
3939 	 */
3940 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3941 	if (ret_val) {
3942 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3943 		bank = 0;
3944 	}
3945 
3946 	if (bank == 0) {
3947 		new_bank_offset = nvm->flash_bank_size;
3948 		old_bank_offset = 0;
3949 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3950 		if (ret_val)
3951 			goto release;
3952 	} else {
3953 		old_bank_offset = nvm->flash_bank_size;
3954 		new_bank_offset = 0;
3955 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3956 		if (ret_val)
3957 			goto release;
3958 	}
3959 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3960 		if (dev_spec->shadow_ram[i].modified) {
3961 			data = dev_spec->shadow_ram[i].value;
3962 		} else {
3963 			ret_val = e1000_read_flash_word_ich8lan(hw, i +
3964 								old_bank_offset,
3965 								&data);
3966 			if (ret_val)
3967 				break;
3968 		}
3969 
3970 		/* If the word is 0x13, then make sure the signature bits
3971 		 * (15:14) are 11b until the commit has completed.
3972 		 * This will allow us to write 10b which indicates the
3973 		 * signature is valid.  We want to do this after the write
3974 		 * has completed so that we don't mark the segment valid
3975 		 * while the write is still in progress
3976 		 */
3977 		if (i == E1000_ICH_NVM_SIG_WORD)
3978 			data |= E1000_ICH_NVM_SIG_MASK;
3979 
3980 		/* Convert offset to bytes. */
3981 		act_offset = (i + new_bank_offset) << 1;
3982 
3983 		usleep_range(100, 200);
3984 		/* Write the bytes to the new bank. */
3985 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3986 							       act_offset,
3987 							       (u8)data);
3988 		if (ret_val)
3989 			break;
3990 
3991 		usleep_range(100, 200);
3992 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3993 							       act_offset + 1,
3994 							       (u8)(data >> 8));
3995 		if (ret_val)
3996 			break;
3997 	}
3998 
3999 	/* Don't bother writing the segment valid bits if sector
4000 	 * programming failed.
4001 	 */
4002 	if (ret_val) {
4003 		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
4004 		e_dbg("Flash commit failed.\n");
4005 		goto release;
4006 	}
4007 
4008 	/* Finally validate the new segment by setting bit 15:14
4009 	 * to 10b in word 0x13 , this can be done without an
4010 	 * erase as well since these bits are 11 to start with
4011 	 * and we need to change bit 14 to 0b
4012 	 */
4013 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4014 	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
4015 	if (ret_val)
4016 		goto release;
4017 
4018 	data &= 0xBFFF;
4019 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4020 						       act_offset * 2 + 1,
4021 						       (u8)(data >> 8));
4022 	if (ret_val)
4023 		goto release;
4024 
4025 	/* And invalidate the previously valid segment by setting
4026 	 * its signature word (0x13) high_byte to 0b. This can be
4027 	 * done without an erase because flash erase sets all bits
4028 	 * to 1's. We can write 1's to 0's without an erase
4029 	 */
4030 	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4031 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
4032 	if (ret_val)
4033 		goto release;
4034 
4035 	/* Great!  Everything worked, we can now clear the cached entries. */
4036 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4037 		dev_spec->shadow_ram[i].modified = false;
4038 		dev_spec->shadow_ram[i].value = 0xFFFF;
4039 	}
4040 
4041 release:
4042 	nvm->ops.release(hw);
4043 
4044 	/* Reload the EEPROM, or else modifications will not appear
4045 	 * until after the next adapter reset.
4046 	 */
4047 	if (!ret_val) {
4048 		nvm->ops.reload(hw);
4049 		usleep_range(10000, 20000);
4050 	}
4051 
4052 out:
4053 	if (ret_val)
4054 		e_dbg("NVM update error: %d\n", ret_val);
4055 
4056 	return ret_val;
4057 }
4058 
4059 /**
4060  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4061  *  @hw: pointer to the HW structure
4062  *
4063  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4064  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
4065  *  calculated, in which case we need to calculate the checksum and set bit 6.
4066  **/
4067 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4068 {
4069 	s32 ret_val;
4070 	u16 data;
4071 	u16 word;
4072 	u16 valid_csum_mask;
4073 
4074 	/* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
4075 	 * the checksum needs to be fixed.  This bit is an indication that
4076 	 * the NVM was prepared by OEM software and did not calculate
4077 	 * the checksum...a likely scenario.
4078 	 */
4079 	switch (hw->mac.type) {
4080 	case e1000_pch_lpt:
4081 	case e1000_pch_spt:
4082 	case e1000_pch_cnp:
4083 		word = NVM_COMPAT;
4084 		valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4085 		break;
4086 	default:
4087 		word = NVM_FUTURE_INIT_WORD1;
4088 		valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4089 		break;
4090 	}
4091 
4092 	ret_val = e1000_read_nvm(hw, word, 1, &data);
4093 	if (ret_val)
4094 		return ret_val;
4095 
4096 	if (!(data & valid_csum_mask)) {
4097 		data |= valid_csum_mask;
4098 		ret_val = e1000_write_nvm(hw, word, 1, &data);
4099 		if (ret_val)
4100 			return ret_val;
4101 		ret_val = e1000e_update_nvm_checksum(hw);
4102 		if (ret_val)
4103 			return ret_val;
4104 	}
4105 
4106 	return e1000e_validate_nvm_checksum_generic(hw);
4107 }
4108 
4109 /**
4110  *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
4111  *  @hw: pointer to the HW structure
4112  *
4113  *  To prevent malicious write/erase of the NVM, set it to be read-only
4114  *  so that the hardware ignores all write/erase cycles of the NVM via
4115  *  the flash control registers.  The shadow-ram copy of the NVM will
4116  *  still be updated, however any updates to this copy will not stick
4117  *  across driver reloads.
4118  **/
4119 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
4120 {
4121 	struct e1000_nvm_info *nvm = &hw->nvm;
4122 	union ich8_flash_protected_range pr0;
4123 	union ich8_hws_flash_status hsfsts;
4124 	u32 gfpreg;
4125 
4126 	nvm->ops.acquire(hw);
4127 
4128 	gfpreg = er32flash(ICH_FLASH_GFPREG);
4129 
4130 	/* Write-protect GbE Sector of NVM */
4131 	pr0.regval = er32flash(ICH_FLASH_PR0);
4132 	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
4133 	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
4134 	pr0.range.wpe = true;
4135 	ew32flash(ICH_FLASH_PR0, pr0.regval);
4136 
4137 	/* Lock down a subset of GbE Flash Control Registers, e.g.
4138 	 * PR0 to prevent the write-protection from being lifted.
4139 	 * Once FLOCKDN is set, the registers protected by it cannot
4140 	 * be written until FLOCKDN is cleared by a hardware reset.
4141 	 */
4142 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4143 	hsfsts.hsf_status.flockdn = true;
4144 	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
4145 
4146 	nvm->ops.release(hw);
4147 }
4148 
4149 /**
4150  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4151  *  @hw: pointer to the HW structure
4152  *  @offset: The offset (in bytes) of the byte/word to read.
4153  *  @size: Size of data to read, 1=byte 2=word
4154  *  @data: The byte(s) to write to the NVM.
4155  *
4156  *  Writes one/two bytes to the NVM using the flash access registers.
4157  **/
4158 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4159 					  u8 size, u16 data)
4160 {
4161 	union ich8_hws_flash_status hsfsts;
4162 	union ich8_hws_flash_ctrl hsflctl;
4163 	u32 flash_linear_addr;
4164 	u32 flash_data = 0;
4165 	s32 ret_val;
4166 	u8 count = 0;
4167 
4168 	if (hw->mac.type >= e1000_pch_spt) {
4169 		if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4170 			return -E1000_ERR_NVM;
4171 	} else {
4172 		if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4173 			return -E1000_ERR_NVM;
4174 	}
4175 
4176 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4177 			     hw->nvm.flash_base_addr);
4178 
4179 	do {
4180 		udelay(1);
4181 		/* Steps */
4182 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4183 		if (ret_val)
4184 			break;
4185 		/* In SPT, This register is in Lan memory space, not
4186 		 * flash.  Therefore, only 32 bit access is supported
4187 		 */
4188 		if (hw->mac.type >= e1000_pch_spt)
4189 			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
4190 		else
4191 			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4192 
4193 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4194 		hsflctl.hsf_ctrl.fldbcount = size - 1;
4195 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4196 		/* In SPT, This register is in Lan memory space,
4197 		 * not flash.  Therefore, only 32 bit access is
4198 		 * supported
4199 		 */
4200 		if (hw->mac.type >= e1000_pch_spt)
4201 			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4202 		else
4203 			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4204 
4205 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4206 
4207 		if (size == 1)
4208 			flash_data = (u32)data & 0x00FF;
4209 		else
4210 			flash_data = (u32)data;
4211 
4212 		ew32flash(ICH_FLASH_FDATA0, flash_data);
4213 
4214 		/* check if FCERR is set to 1 , if set to 1, clear it
4215 		 * and try the whole sequence a few more times else done
4216 		 */
4217 		ret_val =
4218 		    e1000_flash_cycle_ich8lan(hw,
4219 					      ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4220 		if (!ret_val)
4221 			break;
4222 
4223 		/* If we're here, then things are most likely
4224 		 * completely hosed, but if the error condition
4225 		 * is detected, it won't hurt to give it another
4226 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4227 		 */
4228 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4229 		if (hsfsts.hsf_status.flcerr)
4230 			/* Repeat for some time before giving up. */
4231 			continue;
4232 		if (!hsfsts.hsf_status.flcdone) {
4233 			e_dbg("Timeout error - flash cycle did not complete.\n");
4234 			break;
4235 		}
4236 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4237 
4238 	return ret_val;
4239 }
4240 
4241 /**
4242 *  e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4243 *  @hw: pointer to the HW structure
4244 *  @offset: The offset (in bytes) of the dwords to read.
4245 *  @data: The 4 bytes to write to the NVM.
4246 *
4247 *  Writes one/two/four bytes to the NVM using the flash access registers.
4248 **/
4249 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4250 					    u32 data)
4251 {
4252 	union ich8_hws_flash_status hsfsts;
4253 	union ich8_hws_flash_ctrl hsflctl;
4254 	u32 flash_linear_addr;
4255 	s32 ret_val;
4256 	u8 count = 0;
4257 
4258 	if (hw->mac.type >= e1000_pch_spt) {
4259 		if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4260 			return -E1000_ERR_NVM;
4261 	}
4262 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4263 			     hw->nvm.flash_base_addr);
4264 	do {
4265 		udelay(1);
4266 		/* Steps */
4267 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4268 		if (ret_val)
4269 			break;
4270 
4271 		/* In SPT, This register is in Lan memory space, not
4272 		 * flash.  Therefore, only 32 bit access is supported
4273 		 */
4274 		if (hw->mac.type >= e1000_pch_spt)
4275 			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS)
4276 			    >> 16;
4277 		else
4278 			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4279 
4280 		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4281 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4282 
4283 		/* In SPT, This register is in Lan memory space,
4284 		 * not flash.  Therefore, only 32 bit access is
4285 		 * supported
4286 		 */
4287 		if (hw->mac.type >= e1000_pch_spt)
4288 			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4289 		else
4290 			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4291 
4292 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4293 
4294 		ew32flash(ICH_FLASH_FDATA0, data);
4295 
4296 		/* check if FCERR is set to 1 , if set to 1, clear it
4297 		 * and try the whole sequence a few more times else done
4298 		 */
4299 		ret_val =
4300 		   e1000_flash_cycle_ich8lan(hw,
4301 					     ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4302 
4303 		if (!ret_val)
4304 			break;
4305 
4306 		/* If we're here, then things are most likely
4307 		 * completely hosed, but if the error condition
4308 		 * is detected, it won't hurt to give it another
4309 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4310 		 */
4311 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4312 
4313 		if (hsfsts.hsf_status.flcerr)
4314 			/* Repeat for some time before giving up. */
4315 			continue;
4316 		if (!hsfsts.hsf_status.flcdone) {
4317 			e_dbg("Timeout error - flash cycle did not complete.\n");
4318 			break;
4319 		}
4320 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4321 
4322 	return ret_val;
4323 }
4324 
4325 /**
4326  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4327  *  @hw: pointer to the HW structure
4328  *  @offset: The index of the byte to read.
4329  *  @data: The byte to write to the NVM.
4330  *
4331  *  Writes a single byte to the NVM using the flash access registers.
4332  **/
4333 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4334 					  u8 data)
4335 {
4336 	u16 word = (u16)data;
4337 
4338 	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4339 }
4340 
4341 /**
4342 *  e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4343 *  @hw: pointer to the HW structure
4344 *  @offset: The offset of the word to write.
4345 *  @dword: The dword to write to the NVM.
4346 *
4347 *  Writes a single dword to the NVM using the flash access registers.
4348 *  Goes through a retry algorithm before giving up.
4349 **/
4350 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4351 						 u32 offset, u32 dword)
4352 {
4353 	s32 ret_val;
4354 	u16 program_retries;
4355 
4356 	/* Must convert word offset into bytes. */
4357 	offset <<= 1;
4358 	ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4359 
4360 	if (!ret_val)
4361 		return ret_val;
4362 	for (program_retries = 0; program_retries < 100; program_retries++) {
4363 		e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset);
4364 		usleep_range(100, 200);
4365 		ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4366 		if (!ret_val)
4367 			break;
4368 	}
4369 	if (program_retries == 100)
4370 		return -E1000_ERR_NVM;
4371 
4372 	return 0;
4373 }
4374 
4375 /**
4376  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4377  *  @hw: pointer to the HW structure
4378  *  @offset: The offset of the byte to write.
4379  *  @byte: The byte to write to the NVM.
4380  *
4381  *  Writes a single byte to the NVM using the flash access registers.
4382  *  Goes through a retry algorithm before giving up.
4383  **/
4384 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4385 						u32 offset, u8 byte)
4386 {
4387 	s32 ret_val;
4388 	u16 program_retries;
4389 
4390 	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4391 	if (!ret_val)
4392 		return ret_val;
4393 
4394 	for (program_retries = 0; program_retries < 100; program_retries++) {
4395 		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
4396 		usleep_range(100, 200);
4397 		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4398 		if (!ret_val)
4399 			break;
4400 	}
4401 	if (program_retries == 100)
4402 		return -E1000_ERR_NVM;
4403 
4404 	return 0;
4405 }
4406 
4407 /**
4408  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4409  *  @hw: pointer to the HW structure
4410  *  @bank: 0 for first bank, 1 for second bank, etc.
4411  *
4412  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4413  *  bank N is 4096 * N + flash_reg_addr.
4414  **/
4415 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4416 {
4417 	struct e1000_nvm_info *nvm = &hw->nvm;
4418 	union ich8_hws_flash_status hsfsts;
4419 	union ich8_hws_flash_ctrl hsflctl;
4420 	u32 flash_linear_addr;
4421 	/* bank size is in 16bit words - adjust to bytes */
4422 	u32 flash_bank_size = nvm->flash_bank_size * 2;
4423 	s32 ret_val;
4424 	s32 count = 0;
4425 	s32 j, iteration, sector_size;
4426 
4427 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4428 
4429 	/* Determine HW Sector size: Read BERASE bits of hw flash status
4430 	 * register
4431 	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
4432 	 *     consecutive sectors.  The start index for the nth Hw sector
4433 	 *     can be calculated as = bank * 4096 + n * 256
4434 	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4435 	 *     The start index for the nth Hw sector can be calculated
4436 	 *     as = bank * 4096
4437 	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4438 	 *     (ich9 only, otherwise error condition)
4439 	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4440 	 */
4441 	switch (hsfsts.hsf_status.berasesz) {
4442 	case 0:
4443 		/* Hw sector size 256 */
4444 		sector_size = ICH_FLASH_SEG_SIZE_256;
4445 		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4446 		break;
4447 	case 1:
4448 		sector_size = ICH_FLASH_SEG_SIZE_4K;
4449 		iteration = 1;
4450 		break;
4451 	case 2:
4452 		sector_size = ICH_FLASH_SEG_SIZE_8K;
4453 		iteration = 1;
4454 		break;
4455 	case 3:
4456 		sector_size = ICH_FLASH_SEG_SIZE_64K;
4457 		iteration = 1;
4458 		break;
4459 	default:
4460 		return -E1000_ERR_NVM;
4461 	}
4462 
4463 	/* Start with the base address, then add the sector offset. */
4464 	flash_linear_addr = hw->nvm.flash_base_addr;
4465 	flash_linear_addr += (bank) ? flash_bank_size : 0;
4466 
4467 	for (j = 0; j < iteration; j++) {
4468 		do {
4469 			u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4470 
4471 			/* Steps */
4472 			ret_val = e1000_flash_cycle_init_ich8lan(hw);
4473 			if (ret_val)
4474 				return ret_val;
4475 
4476 			/* Write a value 11 (block Erase) in Flash
4477 			 * Cycle field in hw flash control
4478 			 */
4479 			if (hw->mac.type >= e1000_pch_spt)
4480 				hsflctl.regval =
4481 				    er32flash(ICH_FLASH_HSFSTS) >> 16;
4482 			else
4483 				hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4484 
4485 			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4486 			if (hw->mac.type >= e1000_pch_spt)
4487 				ew32flash(ICH_FLASH_HSFSTS,
4488 					  hsflctl.regval << 16);
4489 			else
4490 				ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4491 
4492 			/* Write the last 24 bits of an index within the
4493 			 * block into Flash Linear address field in Flash
4494 			 * Address.
4495 			 */
4496 			flash_linear_addr += (j * sector_size);
4497 			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4498 
4499 			ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4500 			if (!ret_val)
4501 				break;
4502 
4503 			/* Check if FCERR is set to 1.  If 1,
4504 			 * clear it and try the whole sequence
4505 			 * a few more times else Done
4506 			 */
4507 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4508 			if (hsfsts.hsf_status.flcerr)
4509 				/* repeat for some time before giving up */
4510 				continue;
4511 			else if (!hsfsts.hsf_status.flcdone)
4512 				return ret_val;
4513 		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4514 	}
4515 
4516 	return 0;
4517 }
4518 
4519 /**
4520  *  e1000_valid_led_default_ich8lan - Set the default LED settings
4521  *  @hw: pointer to the HW structure
4522  *  @data: Pointer to the LED settings
4523  *
4524  *  Reads the LED default settings from the NVM to data.  If the NVM LED
4525  *  settings is all 0's or F's, set the LED default to a valid LED default
4526  *  setting.
4527  **/
4528 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4529 {
4530 	s32 ret_val;
4531 
4532 	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
4533 	if (ret_val) {
4534 		e_dbg("NVM Read Error\n");
4535 		return ret_val;
4536 	}
4537 
4538 	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4539 		*data = ID_LED_DEFAULT_ICH8LAN;
4540 
4541 	return 0;
4542 }
4543 
4544 /**
4545  *  e1000_id_led_init_pchlan - store LED configurations
4546  *  @hw: pointer to the HW structure
4547  *
4548  *  PCH does not control LEDs via the LEDCTL register, rather it uses
4549  *  the PHY LED configuration register.
4550  *
4551  *  PCH also does not have an "always on" or "always off" mode which
4552  *  complicates the ID feature.  Instead of using the "on" mode to indicate
4553  *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
4554  *  use "link_up" mode.  The LEDs will still ID on request if there is no
4555  *  link based on logic in e1000_led_[on|off]_pchlan().
4556  **/
4557 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4558 {
4559 	struct e1000_mac_info *mac = &hw->mac;
4560 	s32 ret_val;
4561 	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4562 	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4563 	u16 data, i, temp, shift;
4564 
4565 	/* Get default ID LED modes */
4566 	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4567 	if (ret_val)
4568 		return ret_val;
4569 
4570 	mac->ledctl_default = er32(LEDCTL);
4571 	mac->ledctl_mode1 = mac->ledctl_default;
4572 	mac->ledctl_mode2 = mac->ledctl_default;
4573 
4574 	for (i = 0; i < 4; i++) {
4575 		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4576 		shift = (i * 5);
4577 		switch (temp) {
4578 		case ID_LED_ON1_DEF2:
4579 		case ID_LED_ON1_ON2:
4580 		case ID_LED_ON1_OFF2:
4581 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4582 			mac->ledctl_mode1 |= (ledctl_on << shift);
4583 			break;
4584 		case ID_LED_OFF1_DEF2:
4585 		case ID_LED_OFF1_ON2:
4586 		case ID_LED_OFF1_OFF2:
4587 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4588 			mac->ledctl_mode1 |= (ledctl_off << shift);
4589 			break;
4590 		default:
4591 			/* Do nothing */
4592 			break;
4593 		}
4594 		switch (temp) {
4595 		case ID_LED_DEF1_ON2:
4596 		case ID_LED_ON1_ON2:
4597 		case ID_LED_OFF1_ON2:
4598 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4599 			mac->ledctl_mode2 |= (ledctl_on << shift);
4600 			break;
4601 		case ID_LED_DEF1_OFF2:
4602 		case ID_LED_ON1_OFF2:
4603 		case ID_LED_OFF1_OFF2:
4604 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4605 			mac->ledctl_mode2 |= (ledctl_off << shift);
4606 			break;
4607 		default:
4608 			/* Do nothing */
4609 			break;
4610 		}
4611 	}
4612 
4613 	return 0;
4614 }
4615 
4616 /**
4617  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4618  *  @hw: pointer to the HW structure
4619  *
4620  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4621  *  register, so the the bus width is hard coded.
4622  **/
4623 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4624 {
4625 	struct e1000_bus_info *bus = &hw->bus;
4626 	s32 ret_val;
4627 
4628 	ret_val = e1000e_get_bus_info_pcie(hw);
4629 
4630 	/* ICH devices are "PCI Express"-ish.  They have
4631 	 * a configuration space, but do not contain
4632 	 * PCI Express Capability registers, so bus width
4633 	 * must be hardcoded.
4634 	 */
4635 	if (bus->width == e1000_bus_width_unknown)
4636 		bus->width = e1000_bus_width_pcie_x1;
4637 
4638 	return ret_val;
4639 }
4640 
4641 /**
4642  *  e1000_reset_hw_ich8lan - Reset the hardware
4643  *  @hw: pointer to the HW structure
4644  *
4645  *  Does a full reset of the hardware which includes a reset of the PHY and
4646  *  MAC.
4647  **/
4648 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4649 {
4650 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4651 	u16 kum_cfg;
4652 	u32 ctrl, reg;
4653 	s32 ret_val;
4654 
4655 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
4656 	 * on the last TLP read/write transaction when MAC is reset.
4657 	 */
4658 	ret_val = e1000e_disable_pcie_master(hw);
4659 	if (ret_val)
4660 		e_dbg("PCI-E Master disable polling has failed.\n");
4661 
4662 	e_dbg("Masking off all interrupts\n");
4663 	ew32(IMC, 0xffffffff);
4664 
4665 	/* Disable the Transmit and Receive units.  Then delay to allow
4666 	 * any pending transactions to complete before we hit the MAC
4667 	 * with the global reset.
4668 	 */
4669 	ew32(RCTL, 0);
4670 	ew32(TCTL, E1000_TCTL_PSP);
4671 	e1e_flush();
4672 
4673 	usleep_range(10000, 20000);
4674 
4675 	/* Workaround for ICH8 bit corruption issue in FIFO memory */
4676 	if (hw->mac.type == e1000_ich8lan) {
4677 		/* Set Tx and Rx buffer allocation to 8k apiece. */
4678 		ew32(PBA, E1000_PBA_8K);
4679 		/* Set Packet Buffer Size to 16k. */
4680 		ew32(PBS, E1000_PBS_16K);
4681 	}
4682 
4683 	if (hw->mac.type == e1000_pchlan) {
4684 		/* Save the NVM K1 bit setting */
4685 		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4686 		if (ret_val)
4687 			return ret_val;
4688 
4689 		if (kum_cfg & E1000_NVM_K1_ENABLE)
4690 			dev_spec->nvm_k1_enabled = true;
4691 		else
4692 			dev_spec->nvm_k1_enabled = false;
4693 	}
4694 
4695 	ctrl = er32(CTRL);
4696 
4697 	if (!hw->phy.ops.check_reset_block(hw)) {
4698 		/* Full-chip reset requires MAC and PHY reset at the same
4699 		 * time to make sure the interface between MAC and the
4700 		 * external PHY is reset.
4701 		 */
4702 		ctrl |= E1000_CTRL_PHY_RST;
4703 
4704 		/* Gate automatic PHY configuration by hardware on
4705 		 * non-managed 82579
4706 		 */
4707 		if ((hw->mac.type == e1000_pch2lan) &&
4708 		    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
4709 			e1000_gate_hw_phy_config_ich8lan(hw, true);
4710 	}
4711 	ret_val = e1000_acquire_swflag_ich8lan(hw);
4712 	e_dbg("Issuing a global reset to ich8lan\n");
4713 	ew32(CTRL, (ctrl | E1000_CTRL_RST));
4714 	/* cannot issue a flush here because it hangs the hardware */
4715 	msleep(20);
4716 
4717 	/* Set Phy Config Counter to 50msec */
4718 	if (hw->mac.type == e1000_pch2lan) {
4719 		reg = er32(FEXTNVM3);
4720 		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4721 		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4722 		ew32(FEXTNVM3, reg);
4723 	}
4724 
4725 	if (!ret_val)
4726 		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
4727 
4728 	if (ctrl & E1000_CTRL_PHY_RST) {
4729 		ret_val = hw->phy.ops.get_cfg_done(hw);
4730 		if (ret_val)
4731 			return ret_val;
4732 
4733 		ret_val = e1000_post_phy_reset_ich8lan(hw);
4734 		if (ret_val)
4735 			return ret_val;
4736 	}
4737 
4738 	/* For PCH, this write will make sure that any noise
4739 	 * will be detected as a CRC error and be dropped rather than show up
4740 	 * as a bad packet to the DMA engine.
4741 	 */
4742 	if (hw->mac.type == e1000_pchlan)
4743 		ew32(CRC_OFFSET, 0x65656565);
4744 
4745 	ew32(IMC, 0xffffffff);
4746 	er32(ICR);
4747 
4748 	reg = er32(KABGTXD);
4749 	reg |= E1000_KABGTXD_BGSQLBIAS;
4750 	ew32(KABGTXD, reg);
4751 
4752 	return 0;
4753 }
4754 
4755 /**
4756  *  e1000_init_hw_ich8lan - Initialize the hardware
4757  *  @hw: pointer to the HW structure
4758  *
4759  *  Prepares the hardware for transmit and receive by doing the following:
4760  *   - initialize hardware bits
4761  *   - initialize LED identification
4762  *   - setup receive address registers
4763  *   - setup flow control
4764  *   - setup transmit descriptors
4765  *   - clear statistics
4766  **/
4767 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4768 {
4769 	struct e1000_mac_info *mac = &hw->mac;
4770 	u32 ctrl_ext, txdctl, snoop;
4771 	s32 ret_val;
4772 	u16 i;
4773 
4774 	e1000_initialize_hw_bits_ich8lan(hw);
4775 
4776 	/* Initialize identification LED */
4777 	ret_val = mac->ops.id_led_init(hw);
4778 	/* An error is not fatal and we should not stop init due to this */
4779 	if (ret_val)
4780 		e_dbg("Error initializing identification LED\n");
4781 
4782 	/* Setup the receive address. */
4783 	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
4784 
4785 	/* Zero out the Multicast HASH table */
4786 	e_dbg("Zeroing the MTA\n");
4787 	for (i = 0; i < mac->mta_reg_count; i++)
4788 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4789 
4790 	/* The 82578 Rx buffer will stall if wakeup is enabled in host and
4791 	 * the ME.  Disable wakeup by clearing the host wakeup bit.
4792 	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
4793 	 */
4794 	if (hw->phy.type == e1000_phy_82578) {
4795 		e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4796 		i &= ~BM_WUC_HOST_WU_BIT;
4797 		e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4798 		ret_val = e1000_phy_hw_reset_ich8lan(hw);
4799 		if (ret_val)
4800 			return ret_val;
4801 	}
4802 
4803 	/* Setup link and flow control */
4804 	ret_val = mac->ops.setup_link(hw);
4805 
4806 	/* Set the transmit descriptor write-back policy for both queues */
4807 	txdctl = er32(TXDCTL(0));
4808 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4809 		  E1000_TXDCTL_FULL_TX_DESC_WB);
4810 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4811 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4812 	ew32(TXDCTL(0), txdctl);
4813 	txdctl = er32(TXDCTL(1));
4814 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4815 		  E1000_TXDCTL_FULL_TX_DESC_WB);
4816 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4817 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4818 	ew32(TXDCTL(1), txdctl);
4819 
4820 	/* ICH8 has opposite polarity of no_snoop bits.
4821 	 * By default, we should use snoop behavior.
4822 	 */
4823 	if (mac->type == e1000_ich8lan)
4824 		snoop = PCIE_ICH8_SNOOP_ALL;
4825 	else
4826 		snoop = (u32)~(PCIE_NO_SNOOP_ALL);
4827 	e1000e_set_pcie_no_snoop(hw, snoop);
4828 
4829 	ctrl_ext = er32(CTRL_EXT);
4830 	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4831 	ew32(CTRL_EXT, ctrl_ext);
4832 
4833 	/* Clear all of the statistics registers (clear on read).  It is
4834 	 * important that we do this after we have tried to establish link
4835 	 * because the symbol error count will increment wildly if there
4836 	 * is no link.
4837 	 */
4838 	e1000_clear_hw_cntrs_ich8lan(hw);
4839 
4840 	return ret_val;
4841 }
4842 
4843 /**
4844  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4845  *  @hw: pointer to the HW structure
4846  *
4847  *  Sets/Clears required hardware bits necessary for correctly setting up the
4848  *  hardware for transmit and receive.
4849  **/
4850 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4851 {
4852 	u32 reg;
4853 
4854 	/* Extended Device Control */
4855 	reg = er32(CTRL_EXT);
4856 	reg |= BIT(22);
4857 	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
4858 	if (hw->mac.type >= e1000_pchlan)
4859 		reg |= E1000_CTRL_EXT_PHYPDEN;
4860 	ew32(CTRL_EXT, reg);
4861 
4862 	/* Transmit Descriptor Control 0 */
4863 	reg = er32(TXDCTL(0));
4864 	reg |= BIT(22);
4865 	ew32(TXDCTL(0), reg);
4866 
4867 	/* Transmit Descriptor Control 1 */
4868 	reg = er32(TXDCTL(1));
4869 	reg |= BIT(22);
4870 	ew32(TXDCTL(1), reg);
4871 
4872 	/* Transmit Arbitration Control 0 */
4873 	reg = er32(TARC(0));
4874 	if (hw->mac.type == e1000_ich8lan)
4875 		reg |= BIT(28) | BIT(29);
4876 	reg |= BIT(23) | BIT(24) | BIT(26) | BIT(27);
4877 	ew32(TARC(0), reg);
4878 
4879 	/* Transmit Arbitration Control 1 */
4880 	reg = er32(TARC(1));
4881 	if (er32(TCTL) & E1000_TCTL_MULR)
4882 		reg &= ~BIT(28);
4883 	else
4884 		reg |= BIT(28);
4885 	reg |= BIT(24) | BIT(26) | BIT(30);
4886 	ew32(TARC(1), reg);
4887 
4888 	/* Device Status */
4889 	if (hw->mac.type == e1000_ich8lan) {
4890 		reg = er32(STATUS);
4891 		reg &= ~BIT(31);
4892 		ew32(STATUS, reg);
4893 	}
4894 
4895 	/* work-around descriptor data corruption issue during nfs v2 udp
4896 	 * traffic, just disable the nfs filtering capability
4897 	 */
4898 	reg = er32(RFCTL);
4899 	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
4900 
4901 	/* Disable IPv6 extension header parsing because some malformed
4902 	 * IPv6 headers can hang the Rx.
4903 	 */
4904 	if (hw->mac.type == e1000_ich8lan)
4905 		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
4906 	ew32(RFCTL, reg);
4907 
4908 	/* Enable ECC on Lynxpoint */
4909 	if (hw->mac.type >= e1000_pch_lpt) {
4910 		reg = er32(PBECCSTS);
4911 		reg |= E1000_PBECCSTS_ECC_ENABLE;
4912 		ew32(PBECCSTS, reg);
4913 
4914 		reg = er32(CTRL);
4915 		reg |= E1000_CTRL_MEHE;
4916 		ew32(CTRL, reg);
4917 	}
4918 }
4919 
4920 /**
4921  *  e1000_setup_link_ich8lan - Setup flow control and link settings
4922  *  @hw: pointer to the HW structure
4923  *
4924  *  Determines which flow control settings to use, then configures flow
4925  *  control.  Calls the appropriate media-specific link configuration
4926  *  function.  Assuming the adapter has a valid link partner, a valid link
4927  *  should be established.  Assumes the hardware has previously been reset
4928  *  and the transmitter and receiver are not enabled.
4929  **/
4930 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
4931 {
4932 	s32 ret_val;
4933 
4934 	if (hw->phy.ops.check_reset_block(hw))
4935 		return 0;
4936 
4937 	/* ICH parts do not have a word in the NVM to determine
4938 	 * the default flow control setting, so we explicitly
4939 	 * set it to full.
4940 	 */
4941 	if (hw->fc.requested_mode == e1000_fc_default) {
4942 		/* Workaround h/w hang when Tx flow control enabled */
4943 		if (hw->mac.type == e1000_pchlan)
4944 			hw->fc.requested_mode = e1000_fc_rx_pause;
4945 		else
4946 			hw->fc.requested_mode = e1000_fc_full;
4947 	}
4948 
4949 	/* Save off the requested flow control mode for use later.  Depending
4950 	 * on the link partner's capabilities, we may or may not use this mode.
4951 	 */
4952 	hw->fc.current_mode = hw->fc.requested_mode;
4953 
4954 	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
4955 
4956 	/* Continue to configure the copper link. */
4957 	ret_val = hw->mac.ops.setup_physical_interface(hw);
4958 	if (ret_val)
4959 		return ret_val;
4960 
4961 	ew32(FCTTV, hw->fc.pause_time);
4962 	if ((hw->phy.type == e1000_phy_82578) ||
4963 	    (hw->phy.type == e1000_phy_82579) ||
4964 	    (hw->phy.type == e1000_phy_i217) ||
4965 	    (hw->phy.type == e1000_phy_82577)) {
4966 		ew32(FCRTV_PCH, hw->fc.refresh_time);
4967 
4968 		ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
4969 				   hw->fc.pause_time);
4970 		if (ret_val)
4971 			return ret_val;
4972 	}
4973 
4974 	return e1000e_set_fc_watermarks(hw);
4975 }
4976 
4977 /**
4978  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
4979  *  @hw: pointer to the HW structure
4980  *
4981  *  Configures the kumeran interface to the PHY to wait the appropriate time
4982  *  when polling the PHY, then call the generic setup_copper_link to finish
4983  *  configuring the copper link.
4984  **/
4985 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
4986 {
4987 	u32 ctrl;
4988 	s32 ret_val;
4989 	u16 reg_data;
4990 
4991 	ctrl = er32(CTRL);
4992 	ctrl |= E1000_CTRL_SLU;
4993 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
4994 	ew32(CTRL, ctrl);
4995 
4996 	/* Set the mac to wait the maximum time between each iteration
4997 	 * and increase the max iterations when polling the phy;
4998 	 * this fixes erroneous timeouts at 10Mbps.
4999 	 */
5000 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
5001 	if (ret_val)
5002 		return ret_val;
5003 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5004 				       &reg_data);
5005 	if (ret_val)
5006 		return ret_val;
5007 	reg_data |= 0x3F;
5008 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5009 					reg_data);
5010 	if (ret_val)
5011 		return ret_val;
5012 
5013 	switch (hw->phy.type) {
5014 	case e1000_phy_igp_3:
5015 		ret_val = e1000e_copper_link_setup_igp(hw);
5016 		if (ret_val)
5017 			return ret_val;
5018 		break;
5019 	case e1000_phy_bm:
5020 	case e1000_phy_82578:
5021 		ret_val = e1000e_copper_link_setup_m88(hw);
5022 		if (ret_val)
5023 			return ret_val;
5024 		break;
5025 	case e1000_phy_82577:
5026 	case e1000_phy_82579:
5027 		ret_val = e1000_copper_link_setup_82577(hw);
5028 		if (ret_val)
5029 			return ret_val;
5030 		break;
5031 	case e1000_phy_ife:
5032 		ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
5033 		if (ret_val)
5034 			return ret_val;
5035 
5036 		reg_data &= ~IFE_PMC_AUTO_MDIX;
5037 
5038 		switch (hw->phy.mdix) {
5039 		case 1:
5040 			reg_data &= ~IFE_PMC_FORCE_MDIX;
5041 			break;
5042 		case 2:
5043 			reg_data |= IFE_PMC_FORCE_MDIX;
5044 			break;
5045 		case 0:
5046 		default:
5047 			reg_data |= IFE_PMC_AUTO_MDIX;
5048 			break;
5049 		}
5050 		ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
5051 		if (ret_val)
5052 			return ret_val;
5053 		break;
5054 	default:
5055 		break;
5056 	}
5057 
5058 	return e1000e_setup_copper_link(hw);
5059 }
5060 
5061 /**
5062  *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5063  *  @hw: pointer to the HW structure
5064  *
5065  *  Calls the PHY specific link setup function and then calls the
5066  *  generic setup_copper_link to finish configuring the link for
5067  *  Lynxpoint PCH devices
5068  **/
5069 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5070 {
5071 	u32 ctrl;
5072 	s32 ret_val;
5073 
5074 	ctrl = er32(CTRL);
5075 	ctrl |= E1000_CTRL_SLU;
5076 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5077 	ew32(CTRL, ctrl);
5078 
5079 	ret_val = e1000_copper_link_setup_82577(hw);
5080 	if (ret_val)
5081 		return ret_val;
5082 
5083 	return e1000e_setup_copper_link(hw);
5084 }
5085 
5086 /**
5087  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5088  *  @hw: pointer to the HW structure
5089  *  @speed: pointer to store current link speed
5090  *  @duplex: pointer to store the current link duplex
5091  *
5092  *  Calls the generic get_speed_and_duplex to retrieve the current link
5093  *  information and then calls the Kumeran lock loss workaround for links at
5094  *  gigabit speeds.
5095  **/
5096 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5097 					  u16 *duplex)
5098 {
5099 	s32 ret_val;
5100 
5101 	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
5102 	if (ret_val)
5103 		return ret_val;
5104 
5105 	if ((hw->mac.type == e1000_ich8lan) &&
5106 	    (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
5107 		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5108 	}
5109 
5110 	return ret_val;
5111 }
5112 
5113 /**
5114  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5115  *  @hw: pointer to the HW structure
5116  *
5117  *  Work-around for 82566 Kumeran PCS lock loss:
5118  *  On link status change (i.e. PCI reset, speed change) and link is up and
5119  *  speed is gigabit-
5120  *    0) if workaround is optionally disabled do nothing
5121  *    1) wait 1ms for Kumeran link to come up
5122  *    2) check Kumeran Diagnostic register PCS lock loss bit
5123  *    3) if not set the link is locked (all is good), otherwise...
5124  *    4) reset the PHY
5125  *    5) repeat up to 10 times
5126  *  Note: this is only called for IGP3 copper when speed is 1gb.
5127  **/
5128 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5129 {
5130 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5131 	u32 phy_ctrl;
5132 	s32 ret_val;
5133 	u16 i, data;
5134 	bool link;
5135 
5136 	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5137 		return 0;
5138 
5139 	/* Make sure link is up before proceeding.  If not just return.
5140 	 * Attempting this while link is negotiating fouled up link
5141 	 * stability
5142 	 */
5143 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
5144 	if (!link)
5145 		return 0;
5146 
5147 	for (i = 0; i < 10; i++) {
5148 		/* read once to clear */
5149 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5150 		if (ret_val)
5151 			return ret_val;
5152 		/* and again to get new status */
5153 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5154 		if (ret_val)
5155 			return ret_val;
5156 
5157 		/* check for PCS lock */
5158 		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5159 			return 0;
5160 
5161 		/* Issue PHY reset */
5162 		e1000_phy_hw_reset(hw);
5163 		mdelay(5);
5164 	}
5165 	/* Disable GigE link negotiation */
5166 	phy_ctrl = er32(PHY_CTRL);
5167 	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5168 		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5169 	ew32(PHY_CTRL, phy_ctrl);
5170 
5171 	/* Call gig speed drop workaround on Gig disable before accessing
5172 	 * any PHY registers
5173 	 */
5174 	e1000e_gig_downshift_workaround_ich8lan(hw);
5175 
5176 	/* unable to acquire PCS lock */
5177 	return -E1000_ERR_PHY;
5178 }
5179 
5180 /**
5181  *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5182  *  @hw: pointer to the HW structure
5183  *  @state: boolean value used to set the current Kumeran workaround state
5184  *
5185  *  If ICH8, set the current Kumeran workaround state (enabled - true
5186  *  /disabled - false).
5187  **/
5188 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5189 						  bool state)
5190 {
5191 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5192 
5193 	if (hw->mac.type != e1000_ich8lan) {
5194 		e_dbg("Workaround applies to ICH8 only.\n");
5195 		return;
5196 	}
5197 
5198 	dev_spec->kmrn_lock_loss_workaround_enabled = state;
5199 }
5200 
5201 /**
5202  *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5203  *  @hw: pointer to the HW structure
5204  *
5205  *  Workaround for 82566 power-down on D3 entry:
5206  *    1) disable gigabit link
5207  *    2) write VR power-down enable
5208  *    3) read it back
5209  *  Continue if successful, else issue LCD reset and repeat
5210  **/
5211 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5212 {
5213 	u32 reg;
5214 	u16 data;
5215 	u8 retry = 0;
5216 
5217 	if (hw->phy.type != e1000_phy_igp_3)
5218 		return;
5219 
5220 	/* Try the workaround twice (if needed) */
5221 	do {
5222 		/* Disable link */
5223 		reg = er32(PHY_CTRL);
5224 		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5225 			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5226 		ew32(PHY_CTRL, reg);
5227 
5228 		/* Call gig speed drop workaround on Gig disable before
5229 		 * accessing any PHY registers
5230 		 */
5231 		if (hw->mac.type == e1000_ich8lan)
5232 			e1000e_gig_downshift_workaround_ich8lan(hw);
5233 
5234 		/* Write VR power-down enable */
5235 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5236 		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5237 		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5238 
5239 		/* Read it back and test */
5240 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5241 		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5242 		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5243 			break;
5244 
5245 		/* Issue PHY reset and repeat at most one more time */
5246 		reg = er32(CTRL);
5247 		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
5248 		retry++;
5249 	} while (retry);
5250 }
5251 
5252 /**
5253  *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5254  *  @hw: pointer to the HW structure
5255  *
5256  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5257  *  LPLU, Gig disable, MDIC PHY reset):
5258  *    1) Set Kumeran Near-end loopback
5259  *    2) Clear Kumeran Near-end loopback
5260  *  Should only be called for ICH8[m] devices with any 1G Phy.
5261  **/
5262 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5263 {
5264 	s32 ret_val;
5265 	u16 reg_data;
5266 
5267 	if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
5268 		return;
5269 
5270 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5271 				       &reg_data);
5272 	if (ret_val)
5273 		return;
5274 	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5275 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5276 					reg_data);
5277 	if (ret_val)
5278 		return;
5279 	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5280 	e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
5281 }
5282 
5283 /**
5284  *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5285  *  @hw: pointer to the HW structure
5286  *
5287  *  During S0 to Sx transition, it is possible the link remains at gig
5288  *  instead of negotiating to a lower speed.  Before going to Sx, set
5289  *  'Gig Disable' to force link speed negotiation to a lower speed based on
5290  *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
5291  *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5292  *  needs to be written.
5293  *  Parts that support (and are linked to a partner which support) EEE in
5294  *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5295  *  than 10Mbps w/o EEE.
5296  **/
5297 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5298 {
5299 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5300 	u32 phy_ctrl;
5301 	s32 ret_val;
5302 
5303 	phy_ctrl = er32(PHY_CTRL);
5304 	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5305 
5306 	if (hw->phy.type == e1000_phy_i217) {
5307 		u16 phy_reg, device_id = hw->adapter->pdev->device;
5308 
5309 		if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5310 		    (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5311 		    (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5312 		    (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5313 		    (hw->mac.type >= e1000_pch_spt)) {
5314 			u32 fextnvm6 = er32(FEXTNVM6);
5315 
5316 			ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5317 		}
5318 
5319 		ret_val = hw->phy.ops.acquire(hw);
5320 		if (ret_val)
5321 			goto out;
5322 
5323 		if (!dev_spec->eee_disable) {
5324 			u16 eee_advert;
5325 
5326 			ret_val =
5327 			    e1000_read_emi_reg_locked(hw,
5328 						      I217_EEE_ADVERTISEMENT,
5329 						      &eee_advert);
5330 			if (ret_val)
5331 				goto release;
5332 
5333 			/* Disable LPLU if both link partners support 100BaseT
5334 			 * EEE and 100Full is advertised on both ends of the
5335 			 * link, and enable Auto Enable LPI since there will
5336 			 * be no driver to enable LPI while in Sx.
5337 			 */
5338 			if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5339 			    (dev_spec->eee_lp_ability &
5340 			     I82579_EEE_100_SUPPORTED) &&
5341 			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5342 				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5343 					      E1000_PHY_CTRL_NOND0A_LPLU);
5344 
5345 				/* Set Auto Enable LPI after link up */
5346 				e1e_rphy_locked(hw,
5347 						I217_LPI_GPIO_CTRL, &phy_reg);
5348 				phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5349 				e1e_wphy_locked(hw,
5350 						I217_LPI_GPIO_CTRL, phy_reg);
5351 			}
5352 		}
5353 
5354 		/* For i217 Intel Rapid Start Technology support,
5355 		 * when the system is going into Sx and no manageability engine
5356 		 * is present, the driver must configure proxy to reset only on
5357 		 * power good.  LPI (Low Power Idle) state must also reset only
5358 		 * on power good, as well as the MTA (Multicast table array).
5359 		 * The SMBus release must also be disabled on LCD reset.
5360 		 */
5361 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5362 			/* Enable proxy to reset only on power good. */
5363 			e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
5364 			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5365 			e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
5366 
5367 			/* Set bit enable LPI (EEE) to reset only on
5368 			 * power good.
5369 			 */
5370 			e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
5371 			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5372 			e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
5373 
5374 			/* Disable the SMB release on LCD reset. */
5375 			e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5376 			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5377 			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5378 		}
5379 
5380 		/* Enable MTA to reset for Intel Rapid Start Technology
5381 		 * Support
5382 		 */
5383 		e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5384 		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5385 		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5386 
5387 release:
5388 		hw->phy.ops.release(hw);
5389 	}
5390 out:
5391 	ew32(PHY_CTRL, phy_ctrl);
5392 
5393 	if (hw->mac.type == e1000_ich8lan)
5394 		e1000e_gig_downshift_workaround_ich8lan(hw);
5395 
5396 	if (hw->mac.type >= e1000_pchlan) {
5397 		e1000_oem_bits_config_ich8lan(hw, false);
5398 
5399 		/* Reset PHY to activate OEM bits on 82577/8 */
5400 		if (hw->mac.type == e1000_pchlan)
5401 			e1000e_phy_hw_reset_generic(hw);
5402 
5403 		ret_val = hw->phy.ops.acquire(hw);
5404 		if (ret_val)
5405 			return;
5406 		e1000_write_smbus_addr(hw);
5407 		hw->phy.ops.release(hw);
5408 	}
5409 }
5410 
5411 /**
5412  *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5413  *  @hw: pointer to the HW structure
5414  *
5415  *  During Sx to S0 transitions on non-managed devices or managed devices
5416  *  on which PHY resets are not blocked, if the PHY registers cannot be
5417  *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
5418  *  the PHY.
5419  *  On i217, setup Intel Rapid Start Technology.
5420  **/
5421 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5422 {
5423 	s32 ret_val;
5424 
5425 	if (hw->mac.type < e1000_pch2lan)
5426 		return;
5427 
5428 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
5429 	if (ret_val) {
5430 		e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
5431 		return;
5432 	}
5433 
5434 	/* For i217 Intel Rapid Start Technology support when the system
5435 	 * is transitioning from Sx and no manageability engine is present
5436 	 * configure SMBus to restore on reset, disable proxy, and enable
5437 	 * the reset on MTA (Multicast table array).
5438 	 */
5439 	if (hw->phy.type == e1000_phy_i217) {
5440 		u16 phy_reg;
5441 
5442 		ret_val = hw->phy.ops.acquire(hw);
5443 		if (ret_val) {
5444 			e_dbg("Failed to setup iRST\n");
5445 			return;
5446 		}
5447 
5448 		/* Clear Auto Enable LPI after link up */
5449 		e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5450 		phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5451 		e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5452 
5453 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5454 			/* Restore clear on SMB if no manageability engine
5455 			 * is present
5456 			 */
5457 			ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5458 			if (ret_val)
5459 				goto release;
5460 			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5461 			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5462 
5463 			/* Disable Proxy */
5464 			e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
5465 		}
5466 		/* Enable reset on MTA */
5467 		ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5468 		if (ret_val)
5469 			goto release;
5470 		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5471 		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5472 release:
5473 		if (ret_val)
5474 			e_dbg("Error %d in resume workarounds\n", ret_val);
5475 		hw->phy.ops.release(hw);
5476 	}
5477 }
5478 
5479 /**
5480  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
5481  *  @hw: pointer to the HW structure
5482  *
5483  *  Return the LED back to the default configuration.
5484  **/
5485 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5486 {
5487 	if (hw->phy.type == e1000_phy_ife)
5488 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
5489 
5490 	ew32(LEDCTL, hw->mac.ledctl_default);
5491 	return 0;
5492 }
5493 
5494 /**
5495  *  e1000_led_on_ich8lan - Turn LEDs on
5496  *  @hw: pointer to the HW structure
5497  *
5498  *  Turn on the LEDs.
5499  **/
5500 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5501 {
5502 	if (hw->phy.type == e1000_phy_ife)
5503 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5504 				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5505 
5506 	ew32(LEDCTL, hw->mac.ledctl_mode2);
5507 	return 0;
5508 }
5509 
5510 /**
5511  *  e1000_led_off_ich8lan - Turn LEDs off
5512  *  @hw: pointer to the HW structure
5513  *
5514  *  Turn off the LEDs.
5515  **/
5516 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5517 {
5518 	if (hw->phy.type == e1000_phy_ife)
5519 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5520 				(IFE_PSCL_PROBE_MODE |
5521 				 IFE_PSCL_PROBE_LEDS_OFF));
5522 
5523 	ew32(LEDCTL, hw->mac.ledctl_mode1);
5524 	return 0;
5525 }
5526 
5527 /**
5528  *  e1000_setup_led_pchlan - Configures SW controllable LED
5529  *  @hw: pointer to the HW structure
5530  *
5531  *  This prepares the SW controllable LED for use.
5532  **/
5533 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5534 {
5535 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
5536 }
5537 
5538 /**
5539  *  e1000_cleanup_led_pchlan - Restore the default LED operation
5540  *  @hw: pointer to the HW structure
5541  *
5542  *  Return the LED back to the default configuration.
5543  **/
5544 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5545 {
5546 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
5547 }
5548 
5549 /**
5550  *  e1000_led_on_pchlan - Turn LEDs on
5551  *  @hw: pointer to the HW structure
5552  *
5553  *  Turn on the LEDs.
5554  **/
5555 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5556 {
5557 	u16 data = (u16)hw->mac.ledctl_mode2;
5558 	u32 i, led;
5559 
5560 	/* If no link, then turn LED on by setting the invert bit
5561 	 * for each LED that's mode is "link_up" in ledctl_mode2.
5562 	 */
5563 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5564 		for (i = 0; i < 3; i++) {
5565 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5566 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5567 			    E1000_LEDCTL_MODE_LINK_UP)
5568 				continue;
5569 			if (led & E1000_PHY_LED0_IVRT)
5570 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5571 			else
5572 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5573 		}
5574 	}
5575 
5576 	return e1e_wphy(hw, HV_LED_CONFIG, data);
5577 }
5578 
5579 /**
5580  *  e1000_led_off_pchlan - Turn LEDs off
5581  *  @hw: pointer to the HW structure
5582  *
5583  *  Turn off the LEDs.
5584  **/
5585 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5586 {
5587 	u16 data = (u16)hw->mac.ledctl_mode1;
5588 	u32 i, led;
5589 
5590 	/* If no link, then turn LED off by clearing the invert bit
5591 	 * for each LED that's mode is "link_up" in ledctl_mode1.
5592 	 */
5593 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5594 		for (i = 0; i < 3; i++) {
5595 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5596 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5597 			    E1000_LEDCTL_MODE_LINK_UP)
5598 				continue;
5599 			if (led & E1000_PHY_LED0_IVRT)
5600 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5601 			else
5602 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5603 		}
5604 	}
5605 
5606 	return e1e_wphy(hw, HV_LED_CONFIG, data);
5607 }
5608 
5609 /**
5610  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5611  *  @hw: pointer to the HW structure
5612  *
5613  *  Read appropriate register for the config done bit for completion status
5614  *  and configure the PHY through s/w for EEPROM-less parts.
5615  *
5616  *  NOTE: some silicon which is EEPROM-less will fail trying to read the
5617  *  config done bit, so only an error is logged and continues.  If we were
5618  *  to return with error, EEPROM-less silicon would not be able to be reset
5619  *  or change link.
5620  **/
5621 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5622 {
5623 	s32 ret_val = 0;
5624 	u32 bank = 0;
5625 	u32 status;
5626 
5627 	e1000e_get_cfg_done_generic(hw);
5628 
5629 	/* Wait for indication from h/w that it has completed basic config */
5630 	if (hw->mac.type >= e1000_ich10lan) {
5631 		e1000_lan_init_done_ich8lan(hw);
5632 	} else {
5633 		ret_val = e1000e_get_auto_rd_done(hw);
5634 		if (ret_val) {
5635 			/* When auto config read does not complete, do not
5636 			 * return with an error. This can happen in situations
5637 			 * where there is no eeprom and prevents getting link.
5638 			 */
5639 			e_dbg("Auto Read Done did not complete\n");
5640 			ret_val = 0;
5641 		}
5642 	}
5643 
5644 	/* Clear PHY Reset Asserted bit */
5645 	status = er32(STATUS);
5646 	if (status & E1000_STATUS_PHYRA)
5647 		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
5648 	else
5649 		e_dbg("PHY Reset Asserted not set - needs delay\n");
5650 
5651 	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
5652 	if (hw->mac.type <= e1000_ich9lan) {
5653 		if (!(er32(EECD) & E1000_EECD_PRES) &&
5654 		    (hw->phy.type == e1000_phy_igp_3)) {
5655 			e1000e_phy_init_script_igp3(hw);
5656 		}
5657 	} else {
5658 		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5659 			/* Maybe we should do a basic PHY config */
5660 			e_dbg("EEPROM not present\n");
5661 			ret_val = -E1000_ERR_CONFIG;
5662 		}
5663 	}
5664 
5665 	return ret_val;
5666 }
5667 
5668 /**
5669  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5670  * @hw: pointer to the HW structure
5671  *
5672  * In the case of a PHY power down to save power, or to turn off link during a
5673  * driver unload, or wake on lan is not enabled, remove the link.
5674  **/
5675 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5676 {
5677 	/* If the management interface is not enabled, then power down */
5678 	if (!(hw->mac.ops.check_mng_mode(hw) ||
5679 	      hw->phy.ops.check_reset_block(hw)))
5680 		e1000_power_down_phy_copper(hw);
5681 }
5682 
5683 /**
5684  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5685  *  @hw: pointer to the HW structure
5686  *
5687  *  Clears hardware counters specific to the silicon family and calls
5688  *  clear_hw_cntrs_generic to clear all general purpose counters.
5689  **/
5690 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5691 {
5692 	u16 phy_data;
5693 	s32 ret_val;
5694 
5695 	e1000e_clear_hw_cntrs_base(hw);
5696 
5697 	er32(ALGNERRC);
5698 	er32(RXERRC);
5699 	er32(TNCRS);
5700 	er32(CEXTERR);
5701 	er32(TSCTC);
5702 	er32(TSCTFC);
5703 
5704 	er32(MGTPRC);
5705 	er32(MGTPDC);
5706 	er32(MGTPTC);
5707 
5708 	er32(IAC);
5709 	er32(ICRXOC);
5710 
5711 	/* Clear PHY statistics registers */
5712 	if ((hw->phy.type == e1000_phy_82578) ||
5713 	    (hw->phy.type == e1000_phy_82579) ||
5714 	    (hw->phy.type == e1000_phy_i217) ||
5715 	    (hw->phy.type == e1000_phy_82577)) {
5716 		ret_val = hw->phy.ops.acquire(hw);
5717 		if (ret_val)
5718 			return;
5719 		ret_val = hw->phy.ops.set_page(hw,
5720 					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
5721 		if (ret_val)
5722 			goto release;
5723 		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5724 		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5725 		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5726 		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5727 		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5728 		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5729 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5730 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5731 		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5732 		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5733 		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5734 		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5735 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5736 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5737 release:
5738 		hw->phy.ops.release(hw);
5739 	}
5740 }
5741 
5742 static const struct e1000_mac_operations ich8_mac_ops = {
5743 	/* check_mng_mode dependent on mac type */
5744 	.check_for_link		= e1000_check_for_copper_link_ich8lan,
5745 	/* cleanup_led dependent on mac type */
5746 	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
5747 	.get_bus_info		= e1000_get_bus_info_ich8lan,
5748 	.set_lan_id		= e1000_set_lan_id_single_port,
5749 	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
5750 	/* led_on dependent on mac type */
5751 	/* led_off dependent on mac type */
5752 	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
5753 	.reset_hw		= e1000_reset_hw_ich8lan,
5754 	.init_hw		= e1000_init_hw_ich8lan,
5755 	.setup_link		= e1000_setup_link_ich8lan,
5756 	.setup_physical_interface = e1000_setup_copper_link_ich8lan,
5757 	/* id_led_init dependent on mac type */
5758 	.config_collision_dist	= e1000e_config_collision_dist_generic,
5759 	.rar_set		= e1000e_rar_set_generic,
5760 	.rar_get_count		= e1000e_rar_get_count_generic,
5761 };
5762 
5763 static const struct e1000_phy_operations ich8_phy_ops = {
5764 	.acquire		= e1000_acquire_swflag_ich8lan,
5765 	.check_reset_block	= e1000_check_reset_block_ich8lan,
5766 	.commit			= NULL,
5767 	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
5768 	.get_cable_length	= e1000e_get_cable_length_igp_2,
5769 	.read_reg		= e1000e_read_phy_reg_igp,
5770 	.release		= e1000_release_swflag_ich8lan,
5771 	.reset			= e1000_phy_hw_reset_ich8lan,
5772 	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
5773 	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
5774 	.write_reg		= e1000e_write_phy_reg_igp,
5775 };
5776 
5777 static const struct e1000_nvm_operations ich8_nvm_ops = {
5778 	.acquire		= e1000_acquire_nvm_ich8lan,
5779 	.read			= e1000_read_nvm_ich8lan,
5780 	.release		= e1000_release_nvm_ich8lan,
5781 	.reload			= e1000e_reload_nvm_generic,
5782 	.update			= e1000_update_nvm_checksum_ich8lan,
5783 	.valid_led_default	= e1000_valid_led_default_ich8lan,
5784 	.validate		= e1000_validate_nvm_checksum_ich8lan,
5785 	.write			= e1000_write_nvm_ich8lan,
5786 };
5787 
5788 static const struct e1000_nvm_operations spt_nvm_ops = {
5789 	.acquire		= e1000_acquire_nvm_ich8lan,
5790 	.release		= e1000_release_nvm_ich8lan,
5791 	.read			= e1000_read_nvm_spt,
5792 	.update			= e1000_update_nvm_checksum_spt,
5793 	.reload			= e1000e_reload_nvm_generic,
5794 	.valid_led_default	= e1000_valid_led_default_ich8lan,
5795 	.validate		= e1000_validate_nvm_checksum_ich8lan,
5796 	.write			= e1000_write_nvm_ich8lan,
5797 };
5798 
5799 const struct e1000_info e1000_ich8_info = {
5800 	.mac			= e1000_ich8lan,
5801 	.flags			= FLAG_HAS_WOL
5802 				  | FLAG_IS_ICH
5803 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5804 				  | FLAG_HAS_AMT
5805 				  | FLAG_HAS_FLASH
5806 				  | FLAG_APME_IN_WUC,
5807 	.pba			= 8,
5808 	.max_hw_frame_size	= VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
5809 	.get_variants		= e1000_get_variants_ich8lan,
5810 	.mac_ops		= &ich8_mac_ops,
5811 	.phy_ops		= &ich8_phy_ops,
5812 	.nvm_ops		= &ich8_nvm_ops,
5813 };
5814 
5815 const struct e1000_info e1000_ich9_info = {
5816 	.mac			= e1000_ich9lan,
5817 	.flags			= FLAG_HAS_JUMBO_FRAMES
5818 				  | FLAG_IS_ICH
5819 				  | FLAG_HAS_WOL
5820 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5821 				  | FLAG_HAS_AMT
5822 				  | FLAG_HAS_FLASH
5823 				  | FLAG_APME_IN_WUC,
5824 	.pba			= 18,
5825 	.max_hw_frame_size	= DEFAULT_JUMBO,
5826 	.get_variants		= e1000_get_variants_ich8lan,
5827 	.mac_ops		= &ich8_mac_ops,
5828 	.phy_ops		= &ich8_phy_ops,
5829 	.nvm_ops		= &ich8_nvm_ops,
5830 };
5831 
5832 const struct e1000_info e1000_ich10_info = {
5833 	.mac			= e1000_ich10lan,
5834 	.flags			= FLAG_HAS_JUMBO_FRAMES
5835 				  | FLAG_IS_ICH
5836 				  | FLAG_HAS_WOL
5837 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5838 				  | FLAG_HAS_AMT
5839 				  | FLAG_HAS_FLASH
5840 				  | FLAG_APME_IN_WUC,
5841 	.pba			= 18,
5842 	.max_hw_frame_size	= DEFAULT_JUMBO,
5843 	.get_variants		= e1000_get_variants_ich8lan,
5844 	.mac_ops		= &ich8_mac_ops,
5845 	.phy_ops		= &ich8_phy_ops,
5846 	.nvm_ops		= &ich8_nvm_ops,
5847 };
5848 
5849 const struct e1000_info e1000_pch_info = {
5850 	.mac			= e1000_pchlan,
5851 	.flags			= FLAG_IS_ICH
5852 				  | FLAG_HAS_WOL
5853 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5854 				  | FLAG_HAS_AMT
5855 				  | FLAG_HAS_FLASH
5856 				  | FLAG_HAS_JUMBO_FRAMES
5857 				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
5858 				  | FLAG_APME_IN_WUC,
5859 	.flags2			= FLAG2_HAS_PHY_STATS,
5860 	.pba			= 26,
5861 	.max_hw_frame_size	= 4096,
5862 	.get_variants		= e1000_get_variants_ich8lan,
5863 	.mac_ops		= &ich8_mac_ops,
5864 	.phy_ops		= &ich8_phy_ops,
5865 	.nvm_ops		= &ich8_nvm_ops,
5866 };
5867 
5868 const struct e1000_info e1000_pch2_info = {
5869 	.mac			= e1000_pch2lan,
5870 	.flags			= FLAG_IS_ICH
5871 				  | FLAG_HAS_WOL
5872 				  | FLAG_HAS_HW_TIMESTAMP
5873 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5874 				  | FLAG_HAS_AMT
5875 				  | FLAG_HAS_FLASH
5876 				  | FLAG_HAS_JUMBO_FRAMES
5877 				  | FLAG_APME_IN_WUC,
5878 	.flags2			= FLAG2_HAS_PHY_STATS
5879 				  | FLAG2_HAS_EEE
5880 				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
5881 	.pba			= 26,
5882 	.max_hw_frame_size	= 9022,
5883 	.get_variants		= e1000_get_variants_ich8lan,
5884 	.mac_ops		= &ich8_mac_ops,
5885 	.phy_ops		= &ich8_phy_ops,
5886 	.nvm_ops		= &ich8_nvm_ops,
5887 };
5888 
5889 const struct e1000_info e1000_pch_lpt_info = {
5890 	.mac			= e1000_pch_lpt,
5891 	.flags			= FLAG_IS_ICH
5892 				  | FLAG_HAS_WOL
5893 				  | FLAG_HAS_HW_TIMESTAMP
5894 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5895 				  | FLAG_HAS_AMT
5896 				  | FLAG_HAS_FLASH
5897 				  | FLAG_HAS_JUMBO_FRAMES
5898 				  | FLAG_APME_IN_WUC,
5899 	.flags2			= FLAG2_HAS_PHY_STATS
5900 				  | FLAG2_HAS_EEE
5901 				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
5902 	.pba			= 26,
5903 	.max_hw_frame_size	= 9022,
5904 	.get_variants		= e1000_get_variants_ich8lan,
5905 	.mac_ops		= &ich8_mac_ops,
5906 	.phy_ops		= &ich8_phy_ops,
5907 	.nvm_ops		= &ich8_nvm_ops,
5908 };
5909 
5910 const struct e1000_info e1000_pch_spt_info = {
5911 	.mac			= e1000_pch_spt,
5912 	.flags			= FLAG_IS_ICH
5913 				  | FLAG_HAS_WOL
5914 				  | FLAG_HAS_HW_TIMESTAMP
5915 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5916 				  | FLAG_HAS_AMT
5917 				  | FLAG_HAS_FLASH
5918 				  | FLAG_HAS_JUMBO_FRAMES
5919 				  | FLAG_APME_IN_WUC,
5920 	.flags2			= FLAG2_HAS_PHY_STATS
5921 				  | FLAG2_HAS_EEE,
5922 	.pba			= 26,
5923 	.max_hw_frame_size	= 9022,
5924 	.get_variants		= e1000_get_variants_ich8lan,
5925 	.mac_ops		= &ich8_mac_ops,
5926 	.phy_ops		= &ich8_phy_ops,
5927 	.nvm_ops		= &spt_nvm_ops,
5928 };
5929 
5930 const struct e1000_info e1000_pch_cnp_info = {
5931 	.mac			= e1000_pch_cnp,
5932 	.flags			= FLAG_IS_ICH
5933 				  | FLAG_HAS_WOL
5934 				  | FLAG_HAS_HW_TIMESTAMP
5935 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5936 				  | FLAG_HAS_AMT
5937 				  | FLAG_HAS_FLASH
5938 				  | FLAG_HAS_JUMBO_FRAMES
5939 				  | FLAG_APME_IN_WUC,
5940 	.flags2			= FLAG2_HAS_PHY_STATS
5941 				  | FLAG2_HAS_EEE,
5942 	.pba			= 26,
5943 	.max_hw_frame_size	= 9022,
5944 	.get_variants		= e1000_get_variants_ich8lan,
5945 	.mac_ops		= &ich8_mac_ops,
5946 	.phy_ops		= &ich8_phy_ops,
5947 	.nvm_ops		= &spt_nvm_ops,
5948 };
5949