1 /* Intel PRO/1000 Linux driver
2  * Copyright(c) 1999 - 2015 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * The full GNU General Public License is included in this distribution in
14  * the file called "COPYING".
15  *
16  * Contact Information:
17  * Linux NICS <linux.nics@intel.com>
18  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
20  */
21 
22 /* 82562G 10/100 Network Connection
23  * 82562G-2 10/100 Network Connection
24  * 82562GT 10/100 Network Connection
25  * 82562GT-2 10/100 Network Connection
26  * 82562V 10/100 Network Connection
27  * 82562V-2 10/100 Network Connection
28  * 82566DC-2 Gigabit Network Connection
29  * 82566DC Gigabit Network Connection
30  * 82566DM-2 Gigabit Network Connection
31  * 82566DM Gigabit Network Connection
32  * 82566MC Gigabit Network Connection
33  * 82566MM Gigabit Network Connection
34  * 82567LM Gigabit Network Connection
35  * 82567LF Gigabit Network Connection
36  * 82567V Gigabit Network Connection
37  * 82567LM-2 Gigabit Network Connection
38  * 82567LF-2 Gigabit Network Connection
39  * 82567V-2 Gigabit Network Connection
40  * 82567LF-3 Gigabit Network Connection
41  * 82567LM-3 Gigabit Network Connection
42  * 82567LM-4 Gigabit Network Connection
43  * 82577LM Gigabit Network Connection
44  * 82577LC Gigabit Network Connection
45  * 82578DM Gigabit Network Connection
46  * 82578DC Gigabit Network Connection
47  * 82579LM Gigabit Network Connection
48  * 82579V Gigabit Network Connection
49  * Ethernet Connection I217-LM
50  * Ethernet Connection I217-V
51  * Ethernet Connection I218-V
52  * Ethernet Connection I218-LM
53  * Ethernet Connection (2) I218-LM
54  * Ethernet Connection (2) I218-V
55  * Ethernet Connection (3) I218-LM
56  * Ethernet Connection (3) I218-V
57  */
58 
59 #include "e1000.h"
60 
61 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
62 /* Offset 04h HSFSTS */
63 union ich8_hws_flash_status {
64 	struct ich8_hsfsts {
65 		u16 flcdone:1;	/* bit 0 Flash Cycle Done */
66 		u16 flcerr:1;	/* bit 1 Flash Cycle Error */
67 		u16 dael:1;	/* bit 2 Direct Access error Log */
68 		u16 berasesz:2;	/* bit 4:3 Sector Erase Size */
69 		u16 flcinprog:1;	/* bit 5 flash cycle in Progress */
70 		u16 reserved1:2;	/* bit 13:6 Reserved */
71 		u16 reserved2:6;	/* bit 13:6 Reserved */
72 		u16 fldesvalid:1;	/* bit 14 Flash Descriptor Valid */
73 		u16 flockdn:1;	/* bit 15 Flash Config Lock-Down */
74 	} hsf_status;
75 	u16 regval;
76 };
77 
78 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
79 /* Offset 06h FLCTL */
80 union ich8_hws_flash_ctrl {
81 	struct ich8_hsflctl {
82 		u16 flcgo:1;	/* 0 Flash Cycle Go */
83 		u16 flcycle:2;	/* 2:1 Flash Cycle */
84 		u16 reserved:5;	/* 7:3 Reserved  */
85 		u16 fldbcount:2;	/* 9:8 Flash Data Byte Count */
86 		u16 flockdn:6;	/* 15:10 Reserved */
87 	} hsf_ctrl;
88 	u16 regval;
89 };
90 
91 /* ICH Flash Region Access Permissions */
92 union ich8_hws_flash_regacc {
93 	struct ich8_flracc {
94 		u32 grra:8;	/* 0:7 GbE region Read Access */
95 		u32 grwa:8;	/* 8:15 GbE region Write Access */
96 		u32 gmrag:8;	/* 23:16 GbE Master Read Access Grant */
97 		u32 gmwag:8;	/* 31:24 GbE Master Write Access Grant */
98 	} hsf_flregacc;
99 	u16 regval;
100 };
101 
102 /* ICH Flash Protected Region */
103 union ich8_flash_protected_range {
104 	struct ich8_pr {
105 		u32 base:13;	/* 0:12 Protected Range Base */
106 		u32 reserved1:2;	/* 13:14 Reserved */
107 		u32 rpe:1;	/* 15 Read Protection Enable */
108 		u32 limit:13;	/* 16:28 Protected Range Limit */
109 		u32 reserved2:2;	/* 29:30 Reserved */
110 		u32 wpe:1;	/* 31 Write Protection Enable */
111 	} range;
112 	u32 regval;
113 };
114 
115 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
116 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
117 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
118 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
119 						u32 offset, u8 byte);
120 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
121 					 u8 *data);
122 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
123 					 u16 *data);
124 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
125 					 u8 size, u16 *data);
126 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
127 					   u32 *data);
128 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
129 					  u32 offset, u32 *data);
130 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
131 					    u32 offset, u32 data);
132 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
133 						 u32 offset, u32 dword);
134 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
135 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
136 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
137 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
138 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
139 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
140 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
141 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
142 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
143 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
144 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
145 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
146 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
147 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
148 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
149 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
150 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
151 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
152 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw);
153 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
154 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
155 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
156 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
157 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
158 
159 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
160 {
161 	return readw(hw->flash_address + reg);
162 }
163 
164 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
165 {
166 	return readl(hw->flash_address + reg);
167 }
168 
169 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
170 {
171 	writew(val, hw->flash_address + reg);
172 }
173 
174 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
175 {
176 	writel(val, hw->flash_address + reg);
177 }
178 
179 #define er16flash(reg)		__er16flash(hw, (reg))
180 #define er32flash(reg)		__er32flash(hw, (reg))
181 #define ew16flash(reg, val)	__ew16flash(hw, (reg), (val))
182 #define ew32flash(reg, val)	__ew32flash(hw, (reg), (val))
183 
184 /**
185  *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
186  *  @hw: pointer to the HW structure
187  *
188  *  Test access to the PHY registers by reading the PHY ID registers.  If
189  *  the PHY ID is already known (e.g. resume path) compare it with known ID,
190  *  otherwise assume the read PHY ID is correct if it is valid.
191  *
192  *  Assumes the sw/fw/hw semaphore is already acquired.
193  **/
194 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
195 {
196 	u16 phy_reg = 0;
197 	u32 phy_id = 0;
198 	s32 ret_val = 0;
199 	u16 retry_count;
200 	u32 mac_reg = 0;
201 
202 	for (retry_count = 0; retry_count < 2; retry_count++) {
203 		ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
204 		if (ret_val || (phy_reg == 0xFFFF))
205 			continue;
206 		phy_id = (u32)(phy_reg << 16);
207 
208 		ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
209 		if (ret_val || (phy_reg == 0xFFFF)) {
210 			phy_id = 0;
211 			continue;
212 		}
213 		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
214 		break;
215 	}
216 
217 	if (hw->phy.id) {
218 		if (hw->phy.id == phy_id)
219 			goto out;
220 	} else if (phy_id) {
221 		hw->phy.id = phy_id;
222 		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
223 		goto out;
224 	}
225 
226 	/* In case the PHY needs to be in mdio slow mode,
227 	 * set slow mode and try to get the PHY id again.
228 	 */
229 	if (hw->mac.type < e1000_pch_lpt) {
230 		hw->phy.ops.release(hw);
231 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
232 		if (!ret_val)
233 			ret_val = e1000e_get_phy_id(hw);
234 		hw->phy.ops.acquire(hw);
235 	}
236 
237 	if (ret_val)
238 		return false;
239 out:
240 	if (hw->mac.type >= e1000_pch_lpt) {
241 		/* Only unforce SMBus if ME is not active */
242 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
243 			/* Unforce SMBus mode in PHY */
244 			e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
245 			phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
246 			e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
247 
248 			/* Unforce SMBus mode in MAC */
249 			mac_reg = er32(CTRL_EXT);
250 			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
251 			ew32(CTRL_EXT, mac_reg);
252 		}
253 	}
254 
255 	return true;
256 }
257 
258 /**
259  *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
260  *  @hw: pointer to the HW structure
261  *
262  *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
263  *  used to reset the PHY to a quiescent state when necessary.
264  **/
265 static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
266 {
267 	u32 mac_reg;
268 
269 	/* Set Phy Config Counter to 50msec */
270 	mac_reg = er32(FEXTNVM3);
271 	mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
272 	mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
273 	ew32(FEXTNVM3, mac_reg);
274 
275 	/* Toggle LANPHYPC Value bit */
276 	mac_reg = er32(CTRL);
277 	mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
278 	mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
279 	ew32(CTRL, mac_reg);
280 	e1e_flush();
281 	usleep_range(10, 20);
282 	mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
283 	ew32(CTRL, mac_reg);
284 	e1e_flush();
285 
286 	if (hw->mac.type < e1000_pch_lpt) {
287 		msleep(50);
288 	} else {
289 		u16 count = 20;
290 
291 		do {
292 			usleep_range(5000, 10000);
293 		} while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
294 
295 		msleep(30);
296 	}
297 }
298 
299 /**
300  *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
301  *  @hw: pointer to the HW structure
302  *
303  *  Workarounds/flow necessary for PHY initialization during driver load
304  *  and resume paths.
305  **/
306 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
307 {
308 	struct e1000_adapter *adapter = hw->adapter;
309 	u32 mac_reg, fwsm = er32(FWSM);
310 	s32 ret_val;
311 
312 	/* Gate automatic PHY configuration by hardware on managed and
313 	 * non-managed 82579 and newer adapters.
314 	 */
315 	e1000_gate_hw_phy_config_ich8lan(hw, true);
316 
317 	/* It is not possible to be certain of the current state of ULP
318 	 * so forcibly disable it.
319 	 */
320 	hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
321 	e1000_disable_ulp_lpt_lp(hw, true);
322 
323 	ret_val = hw->phy.ops.acquire(hw);
324 	if (ret_val) {
325 		e_dbg("Failed to initialize PHY flow\n");
326 		goto out;
327 	}
328 
329 	/* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
330 	 * inaccessible and resetting the PHY is not blocked, toggle the
331 	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
332 	 */
333 	switch (hw->mac.type) {
334 	case e1000_pch_lpt:
335 	case e1000_pch_spt:
336 	case e1000_pch_cnp:
337 		if (e1000_phy_is_accessible_pchlan(hw))
338 			break;
339 
340 		/* Before toggling LANPHYPC, see if PHY is accessible by
341 		 * forcing MAC to SMBus mode first.
342 		 */
343 		mac_reg = er32(CTRL_EXT);
344 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
345 		ew32(CTRL_EXT, mac_reg);
346 
347 		/* Wait 50 milliseconds for MAC to finish any retries
348 		 * that it might be trying to perform from previous
349 		 * attempts to acknowledge any phy read requests.
350 		 */
351 		msleep(50);
352 
353 		/* fall-through */
354 	case e1000_pch2lan:
355 		if (e1000_phy_is_accessible_pchlan(hw))
356 			break;
357 
358 		/* fall-through */
359 	case e1000_pchlan:
360 		if ((hw->mac.type == e1000_pchlan) &&
361 		    (fwsm & E1000_ICH_FWSM_FW_VALID))
362 			break;
363 
364 		if (hw->phy.ops.check_reset_block(hw)) {
365 			e_dbg("Required LANPHYPC toggle blocked by ME\n");
366 			ret_val = -E1000_ERR_PHY;
367 			break;
368 		}
369 
370 		/* Toggle LANPHYPC Value bit */
371 		e1000_toggle_lanphypc_pch_lpt(hw);
372 		if (hw->mac.type >= e1000_pch_lpt) {
373 			if (e1000_phy_is_accessible_pchlan(hw))
374 				break;
375 
376 			/* Toggling LANPHYPC brings the PHY out of SMBus mode
377 			 * so ensure that the MAC is also out of SMBus mode
378 			 */
379 			mac_reg = er32(CTRL_EXT);
380 			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
381 			ew32(CTRL_EXT, mac_reg);
382 
383 			if (e1000_phy_is_accessible_pchlan(hw))
384 				break;
385 
386 			ret_val = -E1000_ERR_PHY;
387 		}
388 		break;
389 	default:
390 		break;
391 	}
392 
393 	hw->phy.ops.release(hw);
394 	if (!ret_val) {
395 
396 		/* Check to see if able to reset PHY.  Print error if not */
397 		if (hw->phy.ops.check_reset_block(hw)) {
398 			e_err("Reset blocked by ME\n");
399 			goto out;
400 		}
401 
402 		/* Reset the PHY before any access to it.  Doing so, ensures
403 		 * that the PHY is in a known good state before we read/write
404 		 * PHY registers.  The generic reset is sufficient here,
405 		 * because we haven't determined the PHY type yet.
406 		 */
407 		ret_val = e1000e_phy_hw_reset_generic(hw);
408 		if (ret_val)
409 			goto out;
410 
411 		/* On a successful reset, possibly need to wait for the PHY
412 		 * to quiesce to an accessible state before returning control
413 		 * to the calling function.  If the PHY does not quiesce, then
414 		 * return E1000E_BLK_PHY_RESET, as this is the condition that
415 		 *  the PHY is in.
416 		 */
417 		ret_val = hw->phy.ops.check_reset_block(hw);
418 		if (ret_val)
419 			e_err("ME blocked access to PHY after reset\n");
420 	}
421 
422 out:
423 	/* Ungate automatic PHY configuration on non-managed 82579 */
424 	if ((hw->mac.type == e1000_pch2lan) &&
425 	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
426 		usleep_range(10000, 20000);
427 		e1000_gate_hw_phy_config_ich8lan(hw, false);
428 	}
429 
430 	return ret_val;
431 }
432 
433 /**
434  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
435  *  @hw: pointer to the HW structure
436  *
437  *  Initialize family-specific PHY parameters and function pointers.
438  **/
439 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
440 {
441 	struct e1000_phy_info *phy = &hw->phy;
442 	s32 ret_val;
443 
444 	phy->addr = 1;
445 	phy->reset_delay_us = 100;
446 
447 	phy->ops.set_page = e1000_set_page_igp;
448 	phy->ops.read_reg = e1000_read_phy_reg_hv;
449 	phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
450 	phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
451 	phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
452 	phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
453 	phy->ops.write_reg = e1000_write_phy_reg_hv;
454 	phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
455 	phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
456 	phy->ops.power_up = e1000_power_up_phy_copper;
457 	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
458 	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
459 
460 	phy->id = e1000_phy_unknown;
461 
462 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
463 	if (ret_val)
464 		return ret_val;
465 
466 	if (phy->id == e1000_phy_unknown)
467 		switch (hw->mac.type) {
468 		default:
469 			ret_val = e1000e_get_phy_id(hw);
470 			if (ret_val)
471 				return ret_val;
472 			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
473 				break;
474 			/* fall-through */
475 		case e1000_pch2lan:
476 		case e1000_pch_lpt:
477 		case e1000_pch_spt:
478 		case e1000_pch_cnp:
479 			/* In case the PHY needs to be in mdio slow mode,
480 			 * set slow mode and try to get the PHY id again.
481 			 */
482 			ret_val = e1000_set_mdio_slow_mode_hv(hw);
483 			if (ret_val)
484 				return ret_val;
485 			ret_val = e1000e_get_phy_id(hw);
486 			if (ret_val)
487 				return ret_val;
488 			break;
489 		}
490 	phy->type = e1000e_get_phy_type_from_id(phy->id);
491 
492 	switch (phy->type) {
493 	case e1000_phy_82577:
494 	case e1000_phy_82579:
495 	case e1000_phy_i217:
496 		phy->ops.check_polarity = e1000_check_polarity_82577;
497 		phy->ops.force_speed_duplex =
498 		    e1000_phy_force_speed_duplex_82577;
499 		phy->ops.get_cable_length = e1000_get_cable_length_82577;
500 		phy->ops.get_info = e1000_get_phy_info_82577;
501 		phy->ops.commit = e1000e_phy_sw_reset;
502 		break;
503 	case e1000_phy_82578:
504 		phy->ops.check_polarity = e1000_check_polarity_m88;
505 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
506 		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
507 		phy->ops.get_info = e1000e_get_phy_info_m88;
508 		break;
509 	default:
510 		ret_val = -E1000_ERR_PHY;
511 		break;
512 	}
513 
514 	return ret_val;
515 }
516 
517 /**
518  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
519  *  @hw: pointer to the HW structure
520  *
521  *  Initialize family-specific PHY parameters and function pointers.
522  **/
523 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
524 {
525 	struct e1000_phy_info *phy = &hw->phy;
526 	s32 ret_val;
527 	u16 i = 0;
528 
529 	phy->addr = 1;
530 	phy->reset_delay_us = 100;
531 
532 	phy->ops.power_up = e1000_power_up_phy_copper;
533 	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
534 
535 	/* We may need to do this twice - once for IGP and if that fails,
536 	 * we'll set BM func pointers and try again
537 	 */
538 	ret_val = e1000e_determine_phy_address(hw);
539 	if (ret_val) {
540 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
541 		phy->ops.read_reg = e1000e_read_phy_reg_bm;
542 		ret_val = e1000e_determine_phy_address(hw);
543 		if (ret_val) {
544 			e_dbg("Cannot determine PHY addr. Erroring out\n");
545 			return ret_val;
546 		}
547 	}
548 
549 	phy->id = 0;
550 	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
551 	       (i++ < 100)) {
552 		usleep_range(1000, 2000);
553 		ret_val = e1000e_get_phy_id(hw);
554 		if (ret_val)
555 			return ret_val;
556 	}
557 
558 	/* Verify phy id */
559 	switch (phy->id) {
560 	case IGP03E1000_E_PHY_ID:
561 		phy->type = e1000_phy_igp_3;
562 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
563 		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
564 		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
565 		phy->ops.get_info = e1000e_get_phy_info_igp;
566 		phy->ops.check_polarity = e1000_check_polarity_igp;
567 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
568 		break;
569 	case IFE_E_PHY_ID:
570 	case IFE_PLUS_E_PHY_ID:
571 	case IFE_C_E_PHY_ID:
572 		phy->type = e1000_phy_ife;
573 		phy->autoneg_mask = E1000_ALL_NOT_GIG;
574 		phy->ops.get_info = e1000_get_phy_info_ife;
575 		phy->ops.check_polarity = e1000_check_polarity_ife;
576 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
577 		break;
578 	case BME1000_E_PHY_ID:
579 		phy->type = e1000_phy_bm;
580 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
581 		phy->ops.read_reg = e1000e_read_phy_reg_bm;
582 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
583 		phy->ops.commit = e1000e_phy_sw_reset;
584 		phy->ops.get_info = e1000e_get_phy_info_m88;
585 		phy->ops.check_polarity = e1000_check_polarity_m88;
586 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
587 		break;
588 	default:
589 		return -E1000_ERR_PHY;
590 	}
591 
592 	return 0;
593 }
594 
595 /**
596  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
597  *  @hw: pointer to the HW structure
598  *
599  *  Initialize family-specific NVM parameters and function
600  *  pointers.
601  **/
602 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
603 {
604 	struct e1000_nvm_info *nvm = &hw->nvm;
605 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
606 	u32 gfpreg, sector_base_addr, sector_end_addr;
607 	u16 i;
608 	u32 nvm_size;
609 
610 	nvm->type = e1000_nvm_flash_sw;
611 
612 	if (hw->mac.type >= e1000_pch_spt) {
613 		/* in SPT, gfpreg doesn't exist. NVM size is taken from the
614 		 * STRAP register. This is because in SPT the GbE Flash region
615 		 * is no longer accessed through the flash registers. Instead,
616 		 * the mechanism has changed, and the Flash region access
617 		 * registers are now implemented in GbE memory space.
618 		 */
619 		nvm->flash_base_addr = 0;
620 		nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1)
621 		    * NVM_SIZE_MULTIPLIER;
622 		nvm->flash_bank_size = nvm_size / 2;
623 		/* Adjust to word count */
624 		nvm->flash_bank_size /= sizeof(u16);
625 		/* Set the base address for flash register access */
626 		hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
627 	} else {
628 		/* Can't read flash registers if register set isn't mapped. */
629 		if (!hw->flash_address) {
630 			e_dbg("ERROR: Flash registers not mapped\n");
631 			return -E1000_ERR_CONFIG;
632 		}
633 
634 		gfpreg = er32flash(ICH_FLASH_GFPREG);
635 
636 		/* sector_X_addr is a "sector"-aligned address (4096 bytes)
637 		 * Add 1 to sector_end_addr since this sector is included in
638 		 * the overall size.
639 		 */
640 		sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
641 		sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
642 
643 		/* flash_base_addr is byte-aligned */
644 		nvm->flash_base_addr = sector_base_addr
645 		    << FLASH_SECTOR_ADDR_SHIFT;
646 
647 		/* find total size of the NVM, then cut in half since the total
648 		 * size represents two separate NVM banks.
649 		 */
650 		nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
651 					<< FLASH_SECTOR_ADDR_SHIFT);
652 		nvm->flash_bank_size /= 2;
653 		/* Adjust to word count */
654 		nvm->flash_bank_size /= sizeof(u16);
655 	}
656 
657 	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
658 
659 	/* Clear shadow ram */
660 	for (i = 0; i < nvm->word_size; i++) {
661 		dev_spec->shadow_ram[i].modified = false;
662 		dev_spec->shadow_ram[i].value = 0xFFFF;
663 	}
664 
665 	return 0;
666 }
667 
668 /**
669  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
670  *  @hw: pointer to the HW structure
671  *
672  *  Initialize family-specific MAC parameters and function
673  *  pointers.
674  **/
675 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
676 {
677 	struct e1000_mac_info *mac = &hw->mac;
678 
679 	/* Set media type function pointer */
680 	hw->phy.media_type = e1000_media_type_copper;
681 
682 	/* Set mta register count */
683 	mac->mta_reg_count = 32;
684 	/* Set rar entry count */
685 	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
686 	if (mac->type == e1000_ich8lan)
687 		mac->rar_entry_count--;
688 	/* FWSM register */
689 	mac->has_fwsm = true;
690 	/* ARC subsystem not supported */
691 	mac->arc_subsystem_valid = false;
692 	/* Adaptive IFS supported */
693 	mac->adaptive_ifs = true;
694 
695 	/* LED and other operations */
696 	switch (mac->type) {
697 	case e1000_ich8lan:
698 	case e1000_ich9lan:
699 	case e1000_ich10lan:
700 		/* check management mode */
701 		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
702 		/* ID LED init */
703 		mac->ops.id_led_init = e1000e_id_led_init_generic;
704 		/* blink LED */
705 		mac->ops.blink_led = e1000e_blink_led_generic;
706 		/* setup LED */
707 		mac->ops.setup_led = e1000e_setup_led_generic;
708 		/* cleanup LED */
709 		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
710 		/* turn on/off LED */
711 		mac->ops.led_on = e1000_led_on_ich8lan;
712 		mac->ops.led_off = e1000_led_off_ich8lan;
713 		break;
714 	case e1000_pch2lan:
715 		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
716 		mac->ops.rar_set = e1000_rar_set_pch2lan;
717 		/* fall-through */
718 	case e1000_pch_lpt:
719 	case e1000_pch_spt:
720 	case e1000_pch_cnp:
721 	case e1000_pchlan:
722 		/* check management mode */
723 		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
724 		/* ID LED init */
725 		mac->ops.id_led_init = e1000_id_led_init_pchlan;
726 		/* setup LED */
727 		mac->ops.setup_led = e1000_setup_led_pchlan;
728 		/* cleanup LED */
729 		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
730 		/* turn on/off LED */
731 		mac->ops.led_on = e1000_led_on_pchlan;
732 		mac->ops.led_off = e1000_led_off_pchlan;
733 		break;
734 	default:
735 		break;
736 	}
737 
738 	if (mac->type >= e1000_pch_lpt) {
739 		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
740 		mac->ops.rar_set = e1000_rar_set_pch_lpt;
741 		mac->ops.setup_physical_interface =
742 		    e1000_setup_copper_link_pch_lpt;
743 		mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt;
744 	}
745 
746 	/* Enable PCS Lock-loss workaround for ICH8 */
747 	if (mac->type == e1000_ich8lan)
748 		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
749 
750 	return 0;
751 }
752 
753 /**
754  *  __e1000_access_emi_reg_locked - Read/write EMI register
755  *  @hw: pointer to the HW structure
756  *  @addr: EMI address to program
757  *  @data: pointer to value to read/write from/to the EMI address
758  *  @read: boolean flag to indicate read or write
759  *
760  *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
761  **/
762 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
763 					 u16 *data, bool read)
764 {
765 	s32 ret_val;
766 
767 	ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
768 	if (ret_val)
769 		return ret_val;
770 
771 	if (read)
772 		ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
773 	else
774 		ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
775 
776 	return ret_val;
777 }
778 
779 /**
780  *  e1000_read_emi_reg_locked - Read Extended Management Interface register
781  *  @hw: pointer to the HW structure
782  *  @addr: EMI address to program
783  *  @data: value to be read from the EMI address
784  *
785  *  Assumes the SW/FW/HW Semaphore is already acquired.
786  **/
787 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
788 {
789 	return __e1000_access_emi_reg_locked(hw, addr, data, true);
790 }
791 
792 /**
793  *  e1000_write_emi_reg_locked - Write Extended Management Interface register
794  *  @hw: pointer to the HW structure
795  *  @addr: EMI address to program
796  *  @data: value to be written to the EMI address
797  *
798  *  Assumes the SW/FW/HW Semaphore is already acquired.
799  **/
800 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
801 {
802 	return __e1000_access_emi_reg_locked(hw, addr, &data, false);
803 }
804 
805 /**
806  *  e1000_set_eee_pchlan - Enable/disable EEE support
807  *  @hw: pointer to the HW structure
808  *
809  *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
810  *  the link and the EEE capabilities of the link partner.  The LPI Control
811  *  register bits will remain set only if/when link is up.
812  *
813  *  EEE LPI must not be asserted earlier than one second after link is up.
814  *  On 82579, EEE LPI should not be enabled until such time otherwise there
815  *  can be link issues with some switches.  Other devices can have EEE LPI
816  *  enabled immediately upon link up since they have a timer in hardware which
817  *  prevents LPI from being asserted too early.
818  **/
819 s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
820 {
821 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
822 	s32 ret_val;
823 	u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
824 
825 	switch (hw->phy.type) {
826 	case e1000_phy_82579:
827 		lpa = I82579_EEE_LP_ABILITY;
828 		pcs_status = I82579_EEE_PCS_STATUS;
829 		adv_addr = I82579_EEE_ADVERTISEMENT;
830 		break;
831 	case e1000_phy_i217:
832 		lpa = I217_EEE_LP_ABILITY;
833 		pcs_status = I217_EEE_PCS_STATUS;
834 		adv_addr = I217_EEE_ADVERTISEMENT;
835 		break;
836 	default:
837 		return 0;
838 	}
839 
840 	ret_val = hw->phy.ops.acquire(hw);
841 	if (ret_val)
842 		return ret_val;
843 
844 	ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
845 	if (ret_val)
846 		goto release;
847 
848 	/* Clear bits that enable EEE in various speeds */
849 	lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
850 
851 	/* Enable EEE if not disabled by user */
852 	if (!dev_spec->eee_disable) {
853 		/* Save off link partner's EEE ability */
854 		ret_val = e1000_read_emi_reg_locked(hw, lpa,
855 						    &dev_spec->eee_lp_ability);
856 		if (ret_val)
857 			goto release;
858 
859 		/* Read EEE advertisement */
860 		ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
861 		if (ret_val)
862 			goto release;
863 
864 		/* Enable EEE only for speeds in which the link partner is
865 		 * EEE capable and for which we advertise EEE.
866 		 */
867 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
868 			lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
869 
870 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
871 			e1e_rphy_locked(hw, MII_LPA, &data);
872 			if (data & LPA_100FULL)
873 				lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
874 			else
875 				/* EEE is not supported in 100Half, so ignore
876 				 * partner's EEE in 100 ability if full-duplex
877 				 * is not advertised.
878 				 */
879 				dev_spec->eee_lp_ability &=
880 				    ~I82579_EEE_100_SUPPORTED;
881 		}
882 	}
883 
884 	if (hw->phy.type == e1000_phy_82579) {
885 		ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
886 						    &data);
887 		if (ret_val)
888 			goto release;
889 
890 		data &= ~I82579_LPI_100_PLL_SHUT;
891 		ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
892 						     data);
893 	}
894 
895 	/* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
896 	ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
897 	if (ret_val)
898 		goto release;
899 
900 	ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
901 release:
902 	hw->phy.ops.release(hw);
903 
904 	return ret_val;
905 }
906 
907 /**
908  *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
909  *  @hw:   pointer to the HW structure
910  *  @link: link up bool flag
911  *
912  *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
913  *  preventing further DMA write requests.  Workaround the issue by disabling
914  *  the de-assertion of the clock request when in 1Gpbs mode.
915  *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
916  *  speeds in order to avoid Tx hangs.
917  **/
918 static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
919 {
920 	u32 fextnvm6 = er32(FEXTNVM6);
921 	u32 status = er32(STATUS);
922 	s32 ret_val = 0;
923 	u16 reg;
924 
925 	if (link && (status & E1000_STATUS_SPEED_1000)) {
926 		ret_val = hw->phy.ops.acquire(hw);
927 		if (ret_val)
928 			return ret_val;
929 
930 		ret_val =
931 		    e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
932 						&reg);
933 		if (ret_val)
934 			goto release;
935 
936 		ret_val =
937 		    e1000e_write_kmrn_reg_locked(hw,
938 						 E1000_KMRNCTRLSTA_K1_CONFIG,
939 						 reg &
940 						 ~E1000_KMRNCTRLSTA_K1_ENABLE);
941 		if (ret_val)
942 			goto release;
943 
944 		usleep_range(10, 20);
945 
946 		ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
947 
948 		ret_val =
949 		    e1000e_write_kmrn_reg_locked(hw,
950 						 E1000_KMRNCTRLSTA_K1_CONFIG,
951 						 reg);
952 release:
953 		hw->phy.ops.release(hw);
954 	} else {
955 		/* clear FEXTNVM6 bit 8 on link down or 10/100 */
956 		fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
957 
958 		if ((hw->phy.revision > 5) || !link ||
959 		    ((status & E1000_STATUS_SPEED_100) &&
960 		     (status & E1000_STATUS_FD)))
961 			goto update_fextnvm6;
962 
963 		ret_val = e1e_rphy(hw, I217_INBAND_CTRL, &reg);
964 		if (ret_val)
965 			return ret_val;
966 
967 		/* Clear link status transmit timeout */
968 		reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
969 
970 		if (status & E1000_STATUS_SPEED_100) {
971 			/* Set inband Tx timeout to 5x10us for 100Half */
972 			reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
973 
974 			/* Do not extend the K1 entry latency for 100Half */
975 			fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
976 		} else {
977 			/* Set inband Tx timeout to 50x10us for 10Full/Half */
978 			reg |= 50 <<
979 			    I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
980 
981 			/* Extend the K1 entry latency for 10 Mbps */
982 			fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
983 		}
984 
985 		ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
986 		if (ret_val)
987 			return ret_val;
988 
989 update_fextnvm6:
990 		ew32(FEXTNVM6, fextnvm6);
991 	}
992 
993 	return ret_val;
994 }
995 
996 /**
997  *  e1000_platform_pm_pch_lpt - Set platform power management values
998  *  @hw: pointer to the HW structure
999  *  @link: bool indicating link status
1000  *
1001  *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
1002  *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
1003  *  when link is up (which must not exceed the maximum latency supported
1004  *  by the platform), otherwise specify there is no LTR requirement.
1005  *  Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
1006  *  latencies in the LTR Extended Capability Structure in the PCIe Extended
1007  *  Capability register set, on this device LTR is set by writing the
1008  *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1009  *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1010  *  message to the PMC.
1011  **/
1012 static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1013 {
1014 	u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1015 	    link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1016 	u16 lat_enc = 0;	/* latency encoded */
1017 
1018 	if (link) {
1019 		u16 speed, duplex, scale = 0;
1020 		u16 max_snoop, max_nosnoop;
1021 		u16 max_ltr_enc;	/* max LTR latency encoded */
1022 		u64 value;
1023 		u32 rxa;
1024 
1025 		if (!hw->adapter->max_frame_size) {
1026 			e_dbg("max_frame_size not set.\n");
1027 			return -E1000_ERR_CONFIG;
1028 		}
1029 
1030 		hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1031 		if (!speed) {
1032 			e_dbg("Speed not set.\n");
1033 			return -E1000_ERR_CONFIG;
1034 		}
1035 
1036 		/* Rx Packet Buffer Allocation size (KB) */
1037 		rxa = er32(PBA) & E1000_PBA_RXA_MASK;
1038 
1039 		/* Determine the maximum latency tolerated by the device.
1040 		 *
1041 		 * Per the PCIe spec, the tolerated latencies are encoded as
1042 		 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1043 		 * a 10-bit value (0-1023) to provide a range from 1 ns to
1044 		 * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1045 		 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1046 		 */
1047 		rxa *= 512;
1048 		value = (rxa > hw->adapter->max_frame_size) ?
1049 			(rxa - hw->adapter->max_frame_size) * (16000 / speed) :
1050 			0;
1051 
1052 		while (value > PCI_LTR_VALUE_MASK) {
1053 			scale++;
1054 			value = DIV_ROUND_UP(value, BIT(5));
1055 		}
1056 		if (scale > E1000_LTRV_SCALE_MAX) {
1057 			e_dbg("Invalid LTR latency scale %d\n", scale);
1058 			return -E1000_ERR_CONFIG;
1059 		}
1060 		lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1061 
1062 		/* Determine the maximum latency tolerated by the platform */
1063 		pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1064 				     &max_snoop);
1065 		pci_read_config_word(hw->adapter->pdev,
1066 				     E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1067 		max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1068 
1069 		if (lat_enc > max_ltr_enc)
1070 			lat_enc = max_ltr_enc;
1071 	}
1072 
1073 	/* Set Snoop and No-Snoop latencies the same */
1074 	reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1075 	ew32(LTRV, reg);
1076 
1077 	return 0;
1078 }
1079 
1080 /**
1081  *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1082  *  @hw: pointer to the HW structure
1083  *  @to_sx: boolean indicating a system power state transition to Sx
1084  *
1085  *  When link is down, configure ULP mode to significantly reduce the power
1086  *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1087  *  ME firmware to start the ULP configuration.  If not on an ME enabled
1088  *  system, configure the ULP mode by software.
1089  */
1090 s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1091 {
1092 	u32 mac_reg;
1093 	s32 ret_val = 0;
1094 	u16 phy_reg;
1095 	u16 oem_reg = 0;
1096 
1097 	if ((hw->mac.type < e1000_pch_lpt) ||
1098 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1099 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1100 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1101 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1102 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1103 		return 0;
1104 
1105 	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1106 		/* Request ME configure ULP mode in the PHY */
1107 		mac_reg = er32(H2ME);
1108 		mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1109 		ew32(H2ME, mac_reg);
1110 
1111 		goto out;
1112 	}
1113 
1114 	if (!to_sx) {
1115 		int i = 0;
1116 
1117 		/* Poll up to 5 seconds for Cable Disconnected indication */
1118 		while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1119 			/* Bail if link is re-acquired */
1120 			if (er32(STATUS) & E1000_STATUS_LU)
1121 				return -E1000_ERR_PHY;
1122 
1123 			if (i++ == 100)
1124 				break;
1125 
1126 			msleep(50);
1127 		}
1128 		e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1129 		      (er32(FEXT) &
1130 		       E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1131 	}
1132 
1133 	ret_val = hw->phy.ops.acquire(hw);
1134 	if (ret_val)
1135 		goto out;
1136 
1137 	/* Force SMBus mode in PHY */
1138 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1139 	if (ret_val)
1140 		goto release;
1141 	phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1142 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1143 
1144 	/* Force SMBus mode in MAC */
1145 	mac_reg = er32(CTRL_EXT);
1146 	mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1147 	ew32(CTRL_EXT, mac_reg);
1148 
1149 	/* Si workaround for ULP entry flow on i127/rev6 h/w.  Enable
1150 	 * LPLU and disable Gig speed when entering ULP
1151 	 */
1152 	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1153 		ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1154 						       &oem_reg);
1155 		if (ret_val)
1156 			goto release;
1157 
1158 		phy_reg = oem_reg;
1159 		phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1160 
1161 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1162 							phy_reg);
1163 
1164 		if (ret_val)
1165 			goto release;
1166 	}
1167 
1168 	/* Set Inband ULP Exit, Reset to SMBus mode and
1169 	 * Disable SMBus Release on PERST# in PHY
1170 	 */
1171 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1172 	if (ret_val)
1173 		goto release;
1174 	phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1175 		    I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1176 	if (to_sx) {
1177 		if (er32(WUFC) & E1000_WUFC_LNKC)
1178 			phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1179 		else
1180 			phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1181 
1182 		phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1183 		phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1184 	} else {
1185 		phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1186 		phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1187 		phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1188 	}
1189 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1190 
1191 	/* Set Disable SMBus Release on PERST# in MAC */
1192 	mac_reg = er32(FEXTNVM7);
1193 	mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1194 	ew32(FEXTNVM7, mac_reg);
1195 
1196 	/* Commit ULP changes in PHY by starting auto ULP configuration */
1197 	phy_reg |= I218_ULP_CONFIG1_START;
1198 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1199 
1200 	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1201 	    to_sx && (er32(STATUS) & E1000_STATUS_LU)) {
1202 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1203 							oem_reg);
1204 		if (ret_val)
1205 			goto release;
1206 	}
1207 
1208 release:
1209 	hw->phy.ops.release(hw);
1210 out:
1211 	if (ret_val)
1212 		e_dbg("Error in ULP enable flow: %d\n", ret_val);
1213 	else
1214 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1215 
1216 	return ret_val;
1217 }
1218 
1219 /**
1220  *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1221  *  @hw: pointer to the HW structure
1222  *  @force: boolean indicating whether or not to force disabling ULP
1223  *
1224  *  Un-configure ULP mode when link is up, the system is transitioned from
1225  *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1226  *  system, poll for an indication from ME that ULP has been un-configured.
1227  *  If not on an ME enabled system, un-configure the ULP mode by software.
1228  *
1229  *  During nominal operation, this function is called when link is acquired
1230  *  to disable ULP mode (force=false); otherwise, for example when unloading
1231  *  the driver or during Sx->S0 transitions, this is called with force=true
1232  *  to forcibly disable ULP.
1233  */
1234 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1235 {
1236 	s32 ret_val = 0;
1237 	u32 mac_reg;
1238 	u16 phy_reg;
1239 	int i = 0;
1240 
1241 	if ((hw->mac.type < e1000_pch_lpt) ||
1242 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1243 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1244 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1245 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1246 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1247 		return 0;
1248 
1249 	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1250 		if (force) {
1251 			/* Request ME un-configure ULP mode in the PHY */
1252 			mac_reg = er32(H2ME);
1253 			mac_reg &= ~E1000_H2ME_ULP;
1254 			mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1255 			ew32(H2ME, mac_reg);
1256 		}
1257 
1258 		/* Poll up to 300msec for ME to clear ULP_CFG_DONE. */
1259 		while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1260 			if (i++ == 30) {
1261 				ret_val = -E1000_ERR_PHY;
1262 				goto out;
1263 			}
1264 
1265 			usleep_range(10000, 20000);
1266 		}
1267 		e_dbg("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10);
1268 
1269 		if (force) {
1270 			mac_reg = er32(H2ME);
1271 			mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1272 			ew32(H2ME, mac_reg);
1273 		} else {
1274 			/* Clear H2ME.ULP after ME ULP configuration */
1275 			mac_reg = er32(H2ME);
1276 			mac_reg &= ~E1000_H2ME_ULP;
1277 			ew32(H2ME, mac_reg);
1278 		}
1279 
1280 		goto out;
1281 	}
1282 
1283 	ret_val = hw->phy.ops.acquire(hw);
1284 	if (ret_val)
1285 		goto out;
1286 
1287 	if (force)
1288 		/* Toggle LANPHYPC Value bit */
1289 		e1000_toggle_lanphypc_pch_lpt(hw);
1290 
1291 	/* Unforce SMBus mode in PHY */
1292 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1293 	if (ret_val) {
1294 		/* The MAC might be in PCIe mode, so temporarily force to
1295 		 * SMBus mode in order to access the PHY.
1296 		 */
1297 		mac_reg = er32(CTRL_EXT);
1298 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1299 		ew32(CTRL_EXT, mac_reg);
1300 
1301 		msleep(50);
1302 
1303 		ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1304 						       &phy_reg);
1305 		if (ret_val)
1306 			goto release;
1307 	}
1308 	phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1309 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1310 
1311 	/* Unforce SMBus mode in MAC */
1312 	mac_reg = er32(CTRL_EXT);
1313 	mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1314 	ew32(CTRL_EXT, mac_reg);
1315 
1316 	/* When ULP mode was previously entered, K1 was disabled by the
1317 	 * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1318 	 */
1319 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1320 	if (ret_val)
1321 		goto release;
1322 	phy_reg |= HV_PM_CTRL_K1_ENABLE;
1323 	e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1324 
1325 	/* Clear ULP enabled configuration */
1326 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1327 	if (ret_val)
1328 		goto release;
1329 	phy_reg &= ~(I218_ULP_CONFIG1_IND |
1330 		     I218_ULP_CONFIG1_STICKY_ULP |
1331 		     I218_ULP_CONFIG1_RESET_TO_SMBUS |
1332 		     I218_ULP_CONFIG1_WOL_HOST |
1333 		     I218_ULP_CONFIG1_INBAND_EXIT |
1334 		     I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
1335 		     I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
1336 		     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1337 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1338 
1339 	/* Commit ULP changes by starting auto ULP configuration */
1340 	phy_reg |= I218_ULP_CONFIG1_START;
1341 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1342 
1343 	/* Clear Disable SMBus Release on PERST# in MAC */
1344 	mac_reg = er32(FEXTNVM7);
1345 	mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1346 	ew32(FEXTNVM7, mac_reg);
1347 
1348 release:
1349 	hw->phy.ops.release(hw);
1350 	if (force) {
1351 		e1000_phy_hw_reset(hw);
1352 		msleep(50);
1353 	}
1354 out:
1355 	if (ret_val)
1356 		e_dbg("Error in ULP disable flow: %d\n", ret_val);
1357 	else
1358 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1359 
1360 	return ret_val;
1361 }
1362 
1363 /**
1364  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1365  *  @hw: pointer to the HW structure
1366  *
1367  *  Checks to see of the link status of the hardware has changed.  If a
1368  *  change in link status has been detected, then we read the PHY registers
1369  *  to get the current speed/duplex if link exists.
1370  **/
1371 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1372 {
1373 	struct e1000_mac_info *mac = &hw->mac;
1374 	s32 ret_val, tipg_reg = 0;
1375 	u16 emi_addr, emi_val = 0;
1376 	bool link;
1377 	u16 phy_reg;
1378 
1379 	/* We only want to go out to the PHY registers to see if Auto-Neg
1380 	 * has completed and/or if our link status has changed.  The
1381 	 * get_link_status flag is set upon receiving a Link Status
1382 	 * Change or Rx Sequence Error interrupt.
1383 	 */
1384 	if (!mac->get_link_status)
1385 		return 0;
1386 
1387 	/* First we want to see if the MII Status Register reports
1388 	 * link.  If so, then we want to get the current speed/duplex
1389 	 * of the PHY.
1390 	 */
1391 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1392 	if (ret_val)
1393 		return ret_val;
1394 
1395 	if (hw->mac.type == e1000_pchlan) {
1396 		ret_val = e1000_k1_gig_workaround_hv(hw, link);
1397 		if (ret_val)
1398 			return ret_val;
1399 	}
1400 
1401 	/* When connected at 10Mbps half-duplex, some parts are excessively
1402 	 * aggressive resulting in many collisions. To avoid this, increase
1403 	 * the IPG and reduce Rx latency in the PHY.
1404 	 */
1405 	if ((hw->mac.type >= e1000_pch2lan) && link) {
1406 		u16 speed, duplex;
1407 
1408 		e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex);
1409 		tipg_reg = er32(TIPG);
1410 		tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1411 
1412 		if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1413 			tipg_reg |= 0xFF;
1414 			/* Reduce Rx latency in analog PHY */
1415 			emi_val = 0;
1416 		} else if (hw->mac.type >= e1000_pch_spt &&
1417 			   duplex == FULL_DUPLEX && speed != SPEED_1000) {
1418 			tipg_reg |= 0xC;
1419 			emi_val = 1;
1420 		} else {
1421 
1422 			/* Roll back the default values */
1423 			tipg_reg |= 0x08;
1424 			emi_val = 1;
1425 		}
1426 
1427 		ew32(TIPG, tipg_reg);
1428 
1429 		ret_val = hw->phy.ops.acquire(hw);
1430 		if (ret_val)
1431 			return ret_val;
1432 
1433 		if (hw->mac.type == e1000_pch2lan)
1434 			emi_addr = I82579_RX_CONFIG;
1435 		else
1436 			emi_addr = I217_RX_CONFIG;
1437 		ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1438 
1439 		if (hw->mac.type >= e1000_pch_lpt) {
1440 			u16 phy_reg;
1441 
1442 			e1e_rphy_locked(hw, I217_PLL_CLOCK_GATE_REG, &phy_reg);
1443 			phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
1444 			if (speed == SPEED_100 || speed == SPEED_10)
1445 				phy_reg |= 0x3E8;
1446 			else
1447 				phy_reg |= 0xFA;
1448 			e1e_wphy_locked(hw, I217_PLL_CLOCK_GATE_REG, phy_reg);
1449 		}
1450 		hw->phy.ops.release(hw);
1451 
1452 		if (ret_val)
1453 			return ret_val;
1454 
1455 		if (hw->mac.type >= e1000_pch_spt) {
1456 			u16 data;
1457 			u16 ptr_gap;
1458 
1459 			if (speed == SPEED_1000) {
1460 				ret_val = hw->phy.ops.acquire(hw);
1461 				if (ret_val)
1462 					return ret_val;
1463 
1464 				ret_val = e1e_rphy_locked(hw,
1465 							  PHY_REG(776, 20),
1466 							  &data);
1467 				if (ret_val) {
1468 					hw->phy.ops.release(hw);
1469 					return ret_val;
1470 				}
1471 
1472 				ptr_gap = (data & (0x3FF << 2)) >> 2;
1473 				if (ptr_gap < 0x18) {
1474 					data &= ~(0x3FF << 2);
1475 					data |= (0x18 << 2);
1476 					ret_val =
1477 					    e1e_wphy_locked(hw,
1478 							    PHY_REG(776, 20),
1479 							    data);
1480 				}
1481 				hw->phy.ops.release(hw);
1482 				if (ret_val)
1483 					return ret_val;
1484 			} else {
1485 				ret_val = hw->phy.ops.acquire(hw);
1486 				if (ret_val)
1487 					return ret_val;
1488 
1489 				ret_val = e1e_wphy_locked(hw,
1490 							  PHY_REG(776, 20),
1491 							  0xC023);
1492 				hw->phy.ops.release(hw);
1493 				if (ret_val)
1494 					return ret_val;
1495 
1496 			}
1497 		}
1498 	}
1499 
1500 	/* I217 Packet Loss issue:
1501 	 * ensure that FEXTNVM4 Beacon Duration is set correctly
1502 	 * on power up.
1503 	 * Set the Beacon Duration for I217 to 8 usec
1504 	 */
1505 	if (hw->mac.type >= e1000_pch_lpt) {
1506 		u32 mac_reg;
1507 
1508 		mac_reg = er32(FEXTNVM4);
1509 		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1510 		mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1511 		ew32(FEXTNVM4, mac_reg);
1512 	}
1513 
1514 	/* Work-around I218 hang issue */
1515 	if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1516 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1517 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1518 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
1519 		ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1520 		if (ret_val)
1521 			return ret_val;
1522 	}
1523 	if (hw->mac.type >= e1000_pch_lpt) {
1524 		/* Set platform power management values for
1525 		 * Latency Tolerance Reporting (LTR)
1526 		 */
1527 		ret_val = e1000_platform_pm_pch_lpt(hw, link);
1528 		if (ret_val)
1529 			return ret_val;
1530 	}
1531 
1532 	/* Clear link partner's EEE ability */
1533 	hw->dev_spec.ich8lan.eee_lp_ability = 0;
1534 
1535 	if (hw->mac.type >= e1000_pch_lpt) {
1536 		u32 fextnvm6 = er32(FEXTNVM6);
1537 
1538 		if (hw->mac.type == e1000_pch_spt) {
1539 			/* FEXTNVM6 K1-off workaround - for SPT only */
1540 			u32 pcieanacfg = er32(PCIEANACFG);
1541 
1542 			if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1543 				fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1544 			else
1545 				fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1546 		}
1547 
1548 		ew32(FEXTNVM6, fextnvm6);
1549 	}
1550 
1551 	if (!link)
1552 		return 0;	/* No link detected */
1553 
1554 	mac->get_link_status = false;
1555 
1556 	switch (hw->mac.type) {
1557 	case e1000_pch2lan:
1558 		ret_val = e1000_k1_workaround_lv(hw);
1559 		if (ret_val)
1560 			return ret_val;
1561 		/* fall-thru */
1562 	case e1000_pchlan:
1563 		if (hw->phy.type == e1000_phy_82578) {
1564 			ret_val = e1000_link_stall_workaround_hv(hw);
1565 			if (ret_val)
1566 				return ret_val;
1567 		}
1568 
1569 		/* Workaround for PCHx parts in half-duplex:
1570 		 * Set the number of preambles removed from the packet
1571 		 * when it is passed from the PHY to the MAC to prevent
1572 		 * the MAC from misinterpreting the packet type.
1573 		 */
1574 		e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1575 		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1576 
1577 		if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1578 			phy_reg |= BIT(HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1579 
1580 		e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1581 		break;
1582 	default:
1583 		break;
1584 	}
1585 
1586 	/* Check if there was DownShift, must be checked
1587 	 * immediately after link-up
1588 	 */
1589 	e1000e_check_downshift(hw);
1590 
1591 	/* Enable/Disable EEE after link up */
1592 	if (hw->phy.type > e1000_phy_82579) {
1593 		ret_val = e1000_set_eee_pchlan(hw);
1594 		if (ret_val)
1595 			return ret_val;
1596 	}
1597 
1598 	/* If we are forcing speed/duplex, then we simply return since
1599 	 * we have already determined whether we have link or not.
1600 	 */
1601 	if (!mac->autoneg)
1602 		return -E1000_ERR_CONFIG;
1603 
1604 	/* Auto-Neg is enabled.  Auto Speed Detection takes care
1605 	 * of MAC speed/duplex configuration.  So we only need to
1606 	 * configure Collision Distance in the MAC.
1607 	 */
1608 	mac->ops.config_collision_dist(hw);
1609 
1610 	/* Configure Flow Control now that Auto-Neg has completed.
1611 	 * First, we need to restore the desired flow control
1612 	 * settings because we may have had to re-autoneg with a
1613 	 * different link partner.
1614 	 */
1615 	ret_val = e1000e_config_fc_after_link_up(hw);
1616 	if (ret_val)
1617 		e_dbg("Error configuring flow control\n");
1618 
1619 	return ret_val;
1620 }
1621 
1622 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1623 {
1624 	struct e1000_hw *hw = &adapter->hw;
1625 	s32 rc;
1626 
1627 	rc = e1000_init_mac_params_ich8lan(hw);
1628 	if (rc)
1629 		return rc;
1630 
1631 	rc = e1000_init_nvm_params_ich8lan(hw);
1632 	if (rc)
1633 		return rc;
1634 
1635 	switch (hw->mac.type) {
1636 	case e1000_ich8lan:
1637 	case e1000_ich9lan:
1638 	case e1000_ich10lan:
1639 		rc = e1000_init_phy_params_ich8lan(hw);
1640 		break;
1641 	case e1000_pchlan:
1642 	case e1000_pch2lan:
1643 	case e1000_pch_lpt:
1644 	case e1000_pch_spt:
1645 	case e1000_pch_cnp:
1646 		rc = e1000_init_phy_params_pchlan(hw);
1647 		break;
1648 	default:
1649 		break;
1650 	}
1651 	if (rc)
1652 		return rc;
1653 
1654 	/* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1655 	 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1656 	 */
1657 	if ((adapter->hw.phy.type == e1000_phy_ife) ||
1658 	    ((adapter->hw.mac.type >= e1000_pch2lan) &&
1659 	     (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1660 		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1661 		adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
1662 
1663 		hw->mac.ops.blink_led = NULL;
1664 	}
1665 
1666 	if ((adapter->hw.mac.type == e1000_ich8lan) &&
1667 	    (adapter->hw.phy.type != e1000_phy_ife))
1668 		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1669 
1670 	/* Enable workaround for 82579 w/ ME enabled */
1671 	if ((adapter->hw.mac.type == e1000_pch2lan) &&
1672 	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1673 		adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1674 
1675 	return 0;
1676 }
1677 
1678 static DEFINE_MUTEX(nvm_mutex);
1679 
1680 /**
1681  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1682  *  @hw: pointer to the HW structure
1683  *
1684  *  Acquires the mutex for performing NVM operations.
1685  **/
1686 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1687 {
1688 	mutex_lock(&nvm_mutex);
1689 
1690 	return 0;
1691 }
1692 
1693 /**
1694  *  e1000_release_nvm_ich8lan - Release NVM mutex
1695  *  @hw: pointer to the HW structure
1696  *
1697  *  Releases the mutex used while performing NVM operations.
1698  **/
1699 static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1700 {
1701 	mutex_unlock(&nvm_mutex);
1702 }
1703 
1704 /**
1705  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1706  *  @hw: pointer to the HW structure
1707  *
1708  *  Acquires the software control flag for performing PHY and select
1709  *  MAC CSR accesses.
1710  **/
1711 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1712 {
1713 	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1714 	s32 ret_val = 0;
1715 
1716 	if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1717 			     &hw->adapter->state)) {
1718 		e_dbg("contention for Phy access\n");
1719 		return -E1000_ERR_PHY;
1720 	}
1721 
1722 	while (timeout) {
1723 		extcnf_ctrl = er32(EXTCNF_CTRL);
1724 		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1725 			break;
1726 
1727 		mdelay(1);
1728 		timeout--;
1729 	}
1730 
1731 	if (!timeout) {
1732 		e_dbg("SW has already locked the resource.\n");
1733 		ret_val = -E1000_ERR_CONFIG;
1734 		goto out;
1735 	}
1736 
1737 	timeout = SW_FLAG_TIMEOUT;
1738 
1739 	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1740 	ew32(EXTCNF_CTRL, extcnf_ctrl);
1741 
1742 	while (timeout) {
1743 		extcnf_ctrl = er32(EXTCNF_CTRL);
1744 		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1745 			break;
1746 
1747 		mdelay(1);
1748 		timeout--;
1749 	}
1750 
1751 	if (!timeout) {
1752 		e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1753 		      er32(FWSM), extcnf_ctrl);
1754 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1755 		ew32(EXTCNF_CTRL, extcnf_ctrl);
1756 		ret_val = -E1000_ERR_CONFIG;
1757 		goto out;
1758 	}
1759 
1760 out:
1761 	if (ret_val)
1762 		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1763 
1764 	return ret_val;
1765 }
1766 
1767 /**
1768  *  e1000_release_swflag_ich8lan - Release software control flag
1769  *  @hw: pointer to the HW structure
1770  *
1771  *  Releases the software control flag for performing PHY and select
1772  *  MAC CSR accesses.
1773  **/
1774 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1775 {
1776 	u32 extcnf_ctrl;
1777 
1778 	extcnf_ctrl = er32(EXTCNF_CTRL);
1779 
1780 	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1781 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1782 		ew32(EXTCNF_CTRL, extcnf_ctrl);
1783 	} else {
1784 		e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1785 	}
1786 
1787 	clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1788 }
1789 
1790 /**
1791  *  e1000_check_mng_mode_ich8lan - Checks management mode
1792  *  @hw: pointer to the HW structure
1793  *
1794  *  This checks if the adapter has any manageability enabled.
1795  *  This is a function pointer entry point only called by read/write
1796  *  routines for the PHY and NVM parts.
1797  **/
1798 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1799 {
1800 	u32 fwsm;
1801 
1802 	fwsm = er32(FWSM);
1803 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1804 		((fwsm & E1000_FWSM_MODE_MASK) ==
1805 		 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1806 }
1807 
1808 /**
1809  *  e1000_check_mng_mode_pchlan - Checks management mode
1810  *  @hw: pointer to the HW structure
1811  *
1812  *  This checks if the adapter has iAMT enabled.
1813  *  This is a function pointer entry point only called by read/write
1814  *  routines for the PHY and NVM parts.
1815  **/
1816 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1817 {
1818 	u32 fwsm;
1819 
1820 	fwsm = er32(FWSM);
1821 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1822 	    (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1823 }
1824 
1825 /**
1826  *  e1000_rar_set_pch2lan - Set receive address register
1827  *  @hw: pointer to the HW structure
1828  *  @addr: pointer to the receive address
1829  *  @index: receive address array register
1830  *
1831  *  Sets the receive address array register at index to the address passed
1832  *  in by addr.  For 82579, RAR[0] is the base address register that is to
1833  *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1834  *  Use SHRA[0-3] in place of those reserved for ME.
1835  **/
1836 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1837 {
1838 	u32 rar_low, rar_high;
1839 
1840 	/* HW expects these in little endian so we reverse the byte order
1841 	 * from network order (big endian) to little endian
1842 	 */
1843 	rar_low = ((u32)addr[0] |
1844 		   ((u32)addr[1] << 8) |
1845 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1846 
1847 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1848 
1849 	/* If MAC address zero, no need to set the AV bit */
1850 	if (rar_low || rar_high)
1851 		rar_high |= E1000_RAH_AV;
1852 
1853 	if (index == 0) {
1854 		ew32(RAL(index), rar_low);
1855 		e1e_flush();
1856 		ew32(RAH(index), rar_high);
1857 		e1e_flush();
1858 		return 0;
1859 	}
1860 
1861 	/* RAR[1-6] are owned by manageability.  Skip those and program the
1862 	 * next address into the SHRA register array.
1863 	 */
1864 	if (index < (u32)(hw->mac.rar_entry_count)) {
1865 		s32 ret_val;
1866 
1867 		ret_val = e1000_acquire_swflag_ich8lan(hw);
1868 		if (ret_val)
1869 			goto out;
1870 
1871 		ew32(SHRAL(index - 1), rar_low);
1872 		e1e_flush();
1873 		ew32(SHRAH(index - 1), rar_high);
1874 		e1e_flush();
1875 
1876 		e1000_release_swflag_ich8lan(hw);
1877 
1878 		/* verify the register updates */
1879 		if ((er32(SHRAL(index - 1)) == rar_low) &&
1880 		    (er32(SHRAH(index - 1)) == rar_high))
1881 			return 0;
1882 
1883 		e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1884 		      (index - 1), er32(FWSM));
1885 	}
1886 
1887 out:
1888 	e_dbg("Failed to write receive address at index %d\n", index);
1889 	return -E1000_ERR_CONFIG;
1890 }
1891 
1892 /**
1893  *  e1000_rar_get_count_pch_lpt - Get the number of available SHRA
1894  *  @hw: pointer to the HW structure
1895  *
1896  *  Get the number of available receive registers that the Host can
1897  *  program. SHRA[0-10] are the shared receive address registers
1898  *  that are shared between the Host and manageability engine (ME).
1899  *  ME can reserve any number of addresses and the host needs to be
1900  *  able to tell how many available registers it has access to.
1901  **/
1902 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw)
1903 {
1904 	u32 wlock_mac;
1905 	u32 num_entries;
1906 
1907 	wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1908 	wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1909 
1910 	switch (wlock_mac) {
1911 	case 0:
1912 		/* All SHRA[0..10] and RAR[0] available */
1913 		num_entries = hw->mac.rar_entry_count;
1914 		break;
1915 	case 1:
1916 		/* Only RAR[0] available */
1917 		num_entries = 1;
1918 		break;
1919 	default:
1920 		/* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
1921 		num_entries = wlock_mac + 1;
1922 		break;
1923 	}
1924 
1925 	return num_entries;
1926 }
1927 
1928 /**
1929  *  e1000_rar_set_pch_lpt - Set receive address registers
1930  *  @hw: pointer to the HW structure
1931  *  @addr: pointer to the receive address
1932  *  @index: receive address array register
1933  *
1934  *  Sets the receive address register array at index to the address passed
1935  *  in by addr. For LPT, RAR[0] is the base address register that is to
1936  *  contain the MAC address. SHRA[0-10] are the shared receive address
1937  *  registers that are shared between the Host and manageability engine (ME).
1938  **/
1939 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1940 {
1941 	u32 rar_low, rar_high;
1942 	u32 wlock_mac;
1943 
1944 	/* HW expects these in little endian so we reverse the byte order
1945 	 * from network order (big endian) to little endian
1946 	 */
1947 	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1948 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1949 
1950 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1951 
1952 	/* If MAC address zero, no need to set the AV bit */
1953 	if (rar_low || rar_high)
1954 		rar_high |= E1000_RAH_AV;
1955 
1956 	if (index == 0) {
1957 		ew32(RAL(index), rar_low);
1958 		e1e_flush();
1959 		ew32(RAH(index), rar_high);
1960 		e1e_flush();
1961 		return 0;
1962 	}
1963 
1964 	/* The manageability engine (ME) can lock certain SHRAR registers that
1965 	 * it is using - those registers are unavailable for use.
1966 	 */
1967 	if (index < hw->mac.rar_entry_count) {
1968 		wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1969 		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1970 
1971 		/* Check if all SHRAR registers are locked */
1972 		if (wlock_mac == 1)
1973 			goto out;
1974 
1975 		if ((wlock_mac == 0) || (index <= wlock_mac)) {
1976 			s32 ret_val;
1977 
1978 			ret_val = e1000_acquire_swflag_ich8lan(hw);
1979 
1980 			if (ret_val)
1981 				goto out;
1982 
1983 			ew32(SHRAL_PCH_LPT(index - 1), rar_low);
1984 			e1e_flush();
1985 			ew32(SHRAH_PCH_LPT(index - 1), rar_high);
1986 			e1e_flush();
1987 
1988 			e1000_release_swflag_ich8lan(hw);
1989 
1990 			/* verify the register updates */
1991 			if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
1992 			    (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
1993 				return 0;
1994 		}
1995 	}
1996 
1997 out:
1998 	e_dbg("Failed to write receive address at index %d\n", index);
1999 	return -E1000_ERR_CONFIG;
2000 }
2001 
2002 /**
2003  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2004  *  @hw: pointer to the HW structure
2005  *
2006  *  Checks if firmware is blocking the reset of the PHY.
2007  *  This is a function pointer entry point only called by
2008  *  reset routines.
2009  **/
2010 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2011 {
2012 	bool blocked = false;
2013 	int i = 0;
2014 
2015 	while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
2016 	       (i++ < 30))
2017 		usleep_range(10000, 20000);
2018 	return blocked ? E1000_BLK_PHY_RESET : 0;
2019 }
2020 
2021 /**
2022  *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2023  *  @hw: pointer to the HW structure
2024  *
2025  *  Assumes semaphore already acquired.
2026  *
2027  **/
2028 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2029 {
2030 	u16 phy_data;
2031 	u32 strap = er32(STRAP);
2032 	u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
2033 	    E1000_STRAP_SMT_FREQ_SHIFT;
2034 	s32 ret_val;
2035 
2036 	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2037 
2038 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2039 	if (ret_val)
2040 		return ret_val;
2041 
2042 	phy_data &= ~HV_SMB_ADDR_MASK;
2043 	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2044 	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2045 
2046 	if (hw->phy.type == e1000_phy_i217) {
2047 		/* Restore SMBus frequency */
2048 		if (freq--) {
2049 			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2050 			phy_data |= (freq & BIT(0)) <<
2051 			    HV_SMB_ADDR_FREQ_LOW_SHIFT;
2052 			phy_data |= (freq & BIT(1)) <<
2053 			    (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2054 		} else {
2055 			e_dbg("Unsupported SMB frequency in PHY\n");
2056 		}
2057 	}
2058 
2059 	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2060 }
2061 
2062 /**
2063  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2064  *  @hw:   pointer to the HW structure
2065  *
2066  *  SW should configure the LCD from the NVM extended configuration region
2067  *  as a workaround for certain parts.
2068  **/
2069 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2070 {
2071 	struct e1000_phy_info *phy = &hw->phy;
2072 	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2073 	s32 ret_val = 0;
2074 	u16 word_addr, reg_data, reg_addr, phy_page = 0;
2075 
2076 	/* Initialize the PHY from the NVM on ICH platforms.  This
2077 	 * is needed due to an issue where the NVM configuration is
2078 	 * not properly autoloaded after power transitions.
2079 	 * Therefore, after each PHY reset, we will load the
2080 	 * configuration data out of the NVM manually.
2081 	 */
2082 	switch (hw->mac.type) {
2083 	case e1000_ich8lan:
2084 		if (phy->type != e1000_phy_igp_3)
2085 			return ret_val;
2086 
2087 		if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
2088 		    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
2089 			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2090 			break;
2091 		}
2092 		/* Fall-thru */
2093 	case e1000_pchlan:
2094 	case e1000_pch2lan:
2095 	case e1000_pch_lpt:
2096 	case e1000_pch_spt:
2097 	case e1000_pch_cnp:
2098 		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2099 		break;
2100 	default:
2101 		return ret_val;
2102 	}
2103 
2104 	ret_val = hw->phy.ops.acquire(hw);
2105 	if (ret_val)
2106 		return ret_val;
2107 
2108 	data = er32(FEXTNVM);
2109 	if (!(data & sw_cfg_mask))
2110 		goto release;
2111 
2112 	/* Make sure HW does not configure LCD from PHY
2113 	 * extended configuration before SW configuration
2114 	 */
2115 	data = er32(EXTCNF_CTRL);
2116 	if ((hw->mac.type < e1000_pch2lan) &&
2117 	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2118 		goto release;
2119 
2120 	cnf_size = er32(EXTCNF_SIZE);
2121 	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2122 	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2123 	if (!cnf_size)
2124 		goto release;
2125 
2126 	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2127 	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2128 
2129 	if (((hw->mac.type == e1000_pchlan) &&
2130 	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2131 	    (hw->mac.type > e1000_pchlan)) {
2132 		/* HW configures the SMBus address and LEDs when the
2133 		 * OEM and LCD Write Enable bits are set in the NVM.
2134 		 * When both NVM bits are cleared, SW will configure
2135 		 * them instead.
2136 		 */
2137 		ret_val = e1000_write_smbus_addr(hw);
2138 		if (ret_val)
2139 			goto release;
2140 
2141 		data = er32(LEDCTL);
2142 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2143 							(u16)data);
2144 		if (ret_val)
2145 			goto release;
2146 	}
2147 
2148 	/* Configure LCD from extended configuration region. */
2149 
2150 	/* cnf_base_addr is in DWORD */
2151 	word_addr = (u16)(cnf_base_addr << 1);
2152 
2153 	for (i = 0; i < cnf_size; i++) {
2154 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, &reg_data);
2155 		if (ret_val)
2156 			goto release;
2157 
2158 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
2159 					 1, &reg_addr);
2160 		if (ret_val)
2161 			goto release;
2162 
2163 		/* Save off the PHY page for future writes. */
2164 		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2165 			phy_page = reg_data;
2166 			continue;
2167 		}
2168 
2169 		reg_addr &= PHY_REG_MASK;
2170 		reg_addr |= phy_page;
2171 
2172 		ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
2173 		if (ret_val)
2174 			goto release;
2175 	}
2176 
2177 release:
2178 	hw->phy.ops.release(hw);
2179 	return ret_val;
2180 }
2181 
2182 /**
2183  *  e1000_k1_gig_workaround_hv - K1 Si workaround
2184  *  @hw:   pointer to the HW structure
2185  *  @link: link up bool flag
2186  *
2187  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2188  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2189  *  If link is down, the function will restore the default K1 setting located
2190  *  in the NVM.
2191  **/
2192 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2193 {
2194 	s32 ret_val = 0;
2195 	u16 status_reg = 0;
2196 	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2197 
2198 	if (hw->mac.type != e1000_pchlan)
2199 		return 0;
2200 
2201 	/* Wrap the whole flow with the sw flag */
2202 	ret_val = hw->phy.ops.acquire(hw);
2203 	if (ret_val)
2204 		return ret_val;
2205 
2206 	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2207 	if (link) {
2208 		if (hw->phy.type == e1000_phy_82578) {
2209 			ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
2210 						  &status_reg);
2211 			if (ret_val)
2212 				goto release;
2213 
2214 			status_reg &= (BM_CS_STATUS_LINK_UP |
2215 				       BM_CS_STATUS_RESOLVED |
2216 				       BM_CS_STATUS_SPEED_MASK);
2217 
2218 			if (status_reg == (BM_CS_STATUS_LINK_UP |
2219 					   BM_CS_STATUS_RESOLVED |
2220 					   BM_CS_STATUS_SPEED_1000))
2221 				k1_enable = false;
2222 		}
2223 
2224 		if (hw->phy.type == e1000_phy_82577) {
2225 			ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2226 			if (ret_val)
2227 				goto release;
2228 
2229 			status_reg &= (HV_M_STATUS_LINK_UP |
2230 				       HV_M_STATUS_AUTONEG_COMPLETE |
2231 				       HV_M_STATUS_SPEED_MASK);
2232 
2233 			if (status_reg == (HV_M_STATUS_LINK_UP |
2234 					   HV_M_STATUS_AUTONEG_COMPLETE |
2235 					   HV_M_STATUS_SPEED_1000))
2236 				k1_enable = false;
2237 		}
2238 
2239 		/* Link stall fix for link up */
2240 		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2241 		if (ret_val)
2242 			goto release;
2243 
2244 	} else {
2245 		/* Link stall fix for link down */
2246 		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2247 		if (ret_val)
2248 			goto release;
2249 	}
2250 
2251 	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2252 
2253 release:
2254 	hw->phy.ops.release(hw);
2255 
2256 	return ret_val;
2257 }
2258 
2259 /**
2260  *  e1000_configure_k1_ich8lan - Configure K1 power state
2261  *  @hw: pointer to the HW structure
2262  *  @enable: K1 state to configure
2263  *
2264  *  Configure the K1 power state based on the provided parameter.
2265  *  Assumes semaphore already acquired.
2266  *
2267  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2268  **/
2269 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2270 {
2271 	s32 ret_val;
2272 	u32 ctrl_reg = 0;
2273 	u32 ctrl_ext = 0;
2274 	u32 reg = 0;
2275 	u16 kmrn_reg = 0;
2276 
2277 	ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2278 					      &kmrn_reg);
2279 	if (ret_val)
2280 		return ret_val;
2281 
2282 	if (k1_enable)
2283 		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2284 	else
2285 		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2286 
2287 	ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2288 					       kmrn_reg);
2289 	if (ret_val)
2290 		return ret_val;
2291 
2292 	usleep_range(20, 40);
2293 	ctrl_ext = er32(CTRL_EXT);
2294 	ctrl_reg = er32(CTRL);
2295 
2296 	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2297 	reg |= E1000_CTRL_FRCSPD;
2298 	ew32(CTRL, reg);
2299 
2300 	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2301 	e1e_flush();
2302 	usleep_range(20, 40);
2303 	ew32(CTRL, ctrl_reg);
2304 	ew32(CTRL_EXT, ctrl_ext);
2305 	e1e_flush();
2306 	usleep_range(20, 40);
2307 
2308 	return 0;
2309 }
2310 
2311 /**
2312  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2313  *  @hw:       pointer to the HW structure
2314  *  @d0_state: boolean if entering d0 or d3 device state
2315  *
2316  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2317  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2318  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2319  **/
2320 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2321 {
2322 	s32 ret_val = 0;
2323 	u32 mac_reg;
2324 	u16 oem_reg;
2325 
2326 	if (hw->mac.type < e1000_pchlan)
2327 		return ret_val;
2328 
2329 	ret_val = hw->phy.ops.acquire(hw);
2330 	if (ret_val)
2331 		return ret_val;
2332 
2333 	if (hw->mac.type == e1000_pchlan) {
2334 		mac_reg = er32(EXTCNF_CTRL);
2335 		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2336 			goto release;
2337 	}
2338 
2339 	mac_reg = er32(FEXTNVM);
2340 	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2341 		goto release;
2342 
2343 	mac_reg = er32(PHY_CTRL);
2344 
2345 	ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2346 	if (ret_val)
2347 		goto release;
2348 
2349 	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2350 
2351 	if (d0_state) {
2352 		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2353 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2354 
2355 		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2356 			oem_reg |= HV_OEM_BITS_LPLU;
2357 	} else {
2358 		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2359 			       E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2360 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2361 
2362 		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2363 			       E1000_PHY_CTRL_NOND0A_LPLU))
2364 			oem_reg |= HV_OEM_BITS_LPLU;
2365 	}
2366 
2367 	/* Set Restart auto-neg to activate the bits */
2368 	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2369 	    !hw->phy.ops.check_reset_block(hw))
2370 		oem_reg |= HV_OEM_BITS_RESTART_AN;
2371 
2372 	ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2373 
2374 release:
2375 	hw->phy.ops.release(hw);
2376 
2377 	return ret_val;
2378 }
2379 
2380 /**
2381  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2382  *  @hw:   pointer to the HW structure
2383  **/
2384 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2385 {
2386 	s32 ret_val;
2387 	u16 data;
2388 
2389 	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2390 	if (ret_val)
2391 		return ret_val;
2392 
2393 	data |= HV_KMRN_MDIO_SLOW;
2394 
2395 	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2396 
2397 	return ret_val;
2398 }
2399 
2400 /**
2401  *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2402  *  done after every PHY reset.
2403  **/
2404 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2405 {
2406 	s32 ret_val = 0;
2407 	u16 phy_data;
2408 
2409 	if (hw->mac.type != e1000_pchlan)
2410 		return 0;
2411 
2412 	/* Set MDIO slow mode before any other MDIO access */
2413 	if (hw->phy.type == e1000_phy_82577) {
2414 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
2415 		if (ret_val)
2416 			return ret_val;
2417 	}
2418 
2419 	if (((hw->phy.type == e1000_phy_82577) &&
2420 	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2421 	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2422 		/* Disable generation of early preamble */
2423 		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2424 		if (ret_val)
2425 			return ret_val;
2426 
2427 		/* Preamble tuning for SSC */
2428 		ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2429 		if (ret_val)
2430 			return ret_val;
2431 	}
2432 
2433 	if (hw->phy.type == e1000_phy_82578) {
2434 		/* Return registers to default by doing a soft reset then
2435 		 * writing 0x3140 to the control register.
2436 		 */
2437 		if (hw->phy.revision < 2) {
2438 			e1000e_phy_sw_reset(hw);
2439 			ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
2440 			if (ret_val)
2441 				return ret_val;
2442 		}
2443 	}
2444 
2445 	/* Select page 0 */
2446 	ret_val = hw->phy.ops.acquire(hw);
2447 	if (ret_val)
2448 		return ret_val;
2449 
2450 	hw->phy.addr = 1;
2451 	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2452 	hw->phy.ops.release(hw);
2453 	if (ret_val)
2454 		return ret_val;
2455 
2456 	/* Configure the K1 Si workaround during phy reset assuming there is
2457 	 * link so that it disables K1 if link is in 1Gbps.
2458 	 */
2459 	ret_val = e1000_k1_gig_workaround_hv(hw, true);
2460 	if (ret_val)
2461 		return ret_val;
2462 
2463 	/* Workaround for link disconnects on a busy hub in half duplex */
2464 	ret_val = hw->phy.ops.acquire(hw);
2465 	if (ret_val)
2466 		return ret_val;
2467 	ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2468 	if (ret_val)
2469 		goto release;
2470 	ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2471 	if (ret_val)
2472 		goto release;
2473 
2474 	/* set MSE higher to enable link to stay up when noise is high */
2475 	ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2476 release:
2477 	hw->phy.ops.release(hw);
2478 
2479 	return ret_val;
2480 }
2481 
2482 /**
2483  *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2484  *  @hw:   pointer to the HW structure
2485  **/
2486 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2487 {
2488 	u32 mac_reg;
2489 	u16 i, phy_reg = 0;
2490 	s32 ret_val;
2491 
2492 	ret_val = hw->phy.ops.acquire(hw);
2493 	if (ret_val)
2494 		return;
2495 	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2496 	if (ret_val)
2497 		goto release;
2498 
2499 	/* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2500 	for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2501 		mac_reg = er32(RAL(i));
2502 		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2503 					   (u16)(mac_reg & 0xFFFF));
2504 		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2505 					   (u16)((mac_reg >> 16) & 0xFFFF));
2506 
2507 		mac_reg = er32(RAH(i));
2508 		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2509 					   (u16)(mac_reg & 0xFFFF));
2510 		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2511 					   (u16)((mac_reg & E1000_RAH_AV)
2512 						 >> 16));
2513 	}
2514 
2515 	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2516 
2517 release:
2518 	hw->phy.ops.release(hw);
2519 }
2520 
2521 /**
2522  *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2523  *  with 82579 PHY
2524  *  @hw: pointer to the HW structure
2525  *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2526  **/
2527 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2528 {
2529 	s32 ret_val = 0;
2530 	u16 phy_reg, data;
2531 	u32 mac_reg;
2532 	u16 i;
2533 
2534 	if (hw->mac.type < e1000_pch2lan)
2535 		return 0;
2536 
2537 	/* disable Rx path while enabling/disabling workaround */
2538 	e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2539 	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | BIT(14));
2540 	if (ret_val)
2541 		return ret_val;
2542 
2543 	if (enable) {
2544 		/* Write Rx addresses (rar_entry_count for RAL/H, and
2545 		 * SHRAL/H) and initial CRC values to the MAC
2546 		 */
2547 		for (i = 0; i < hw->mac.rar_entry_count; i++) {
2548 			u8 mac_addr[ETH_ALEN] = { 0 };
2549 			u32 addr_high, addr_low;
2550 
2551 			addr_high = er32(RAH(i));
2552 			if (!(addr_high & E1000_RAH_AV))
2553 				continue;
2554 			addr_low = er32(RAL(i));
2555 			mac_addr[0] = (addr_low & 0xFF);
2556 			mac_addr[1] = ((addr_low >> 8) & 0xFF);
2557 			mac_addr[2] = ((addr_low >> 16) & 0xFF);
2558 			mac_addr[3] = ((addr_low >> 24) & 0xFF);
2559 			mac_addr[4] = (addr_high & 0xFF);
2560 			mac_addr[5] = ((addr_high >> 8) & 0xFF);
2561 
2562 			ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2563 		}
2564 
2565 		/* Write Rx addresses to the PHY */
2566 		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2567 
2568 		/* Enable jumbo frame workaround in the MAC */
2569 		mac_reg = er32(FFLT_DBG);
2570 		mac_reg &= ~BIT(14);
2571 		mac_reg |= (7 << 15);
2572 		ew32(FFLT_DBG, mac_reg);
2573 
2574 		mac_reg = er32(RCTL);
2575 		mac_reg |= E1000_RCTL_SECRC;
2576 		ew32(RCTL, mac_reg);
2577 
2578 		ret_val = e1000e_read_kmrn_reg(hw,
2579 					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2580 					       &data);
2581 		if (ret_val)
2582 			return ret_val;
2583 		ret_val = e1000e_write_kmrn_reg(hw,
2584 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2585 						data | BIT(0));
2586 		if (ret_val)
2587 			return ret_val;
2588 		ret_val = e1000e_read_kmrn_reg(hw,
2589 					       E1000_KMRNCTRLSTA_HD_CTRL,
2590 					       &data);
2591 		if (ret_val)
2592 			return ret_val;
2593 		data &= ~(0xF << 8);
2594 		data |= (0xB << 8);
2595 		ret_val = e1000e_write_kmrn_reg(hw,
2596 						E1000_KMRNCTRLSTA_HD_CTRL,
2597 						data);
2598 		if (ret_val)
2599 			return ret_val;
2600 
2601 		/* Enable jumbo frame workaround in the PHY */
2602 		e1e_rphy(hw, PHY_REG(769, 23), &data);
2603 		data &= ~(0x7F << 5);
2604 		data |= (0x37 << 5);
2605 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2606 		if (ret_val)
2607 			return ret_val;
2608 		e1e_rphy(hw, PHY_REG(769, 16), &data);
2609 		data &= ~BIT(13);
2610 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2611 		if (ret_val)
2612 			return ret_val;
2613 		e1e_rphy(hw, PHY_REG(776, 20), &data);
2614 		data &= ~(0x3FF << 2);
2615 		data |= (E1000_TX_PTR_GAP << 2);
2616 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2617 		if (ret_val)
2618 			return ret_val;
2619 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2620 		if (ret_val)
2621 			return ret_val;
2622 		e1e_rphy(hw, HV_PM_CTRL, &data);
2623 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data | BIT(10));
2624 		if (ret_val)
2625 			return ret_val;
2626 	} else {
2627 		/* Write MAC register values back to h/w defaults */
2628 		mac_reg = er32(FFLT_DBG);
2629 		mac_reg &= ~(0xF << 14);
2630 		ew32(FFLT_DBG, mac_reg);
2631 
2632 		mac_reg = er32(RCTL);
2633 		mac_reg &= ~E1000_RCTL_SECRC;
2634 		ew32(RCTL, mac_reg);
2635 
2636 		ret_val = e1000e_read_kmrn_reg(hw,
2637 					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2638 					       &data);
2639 		if (ret_val)
2640 			return ret_val;
2641 		ret_val = e1000e_write_kmrn_reg(hw,
2642 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2643 						data & ~BIT(0));
2644 		if (ret_val)
2645 			return ret_val;
2646 		ret_val = e1000e_read_kmrn_reg(hw,
2647 					       E1000_KMRNCTRLSTA_HD_CTRL,
2648 					       &data);
2649 		if (ret_val)
2650 			return ret_val;
2651 		data &= ~(0xF << 8);
2652 		data |= (0xB << 8);
2653 		ret_val = e1000e_write_kmrn_reg(hw,
2654 						E1000_KMRNCTRLSTA_HD_CTRL,
2655 						data);
2656 		if (ret_val)
2657 			return ret_val;
2658 
2659 		/* Write PHY register values back to h/w defaults */
2660 		e1e_rphy(hw, PHY_REG(769, 23), &data);
2661 		data &= ~(0x7F << 5);
2662 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2663 		if (ret_val)
2664 			return ret_val;
2665 		e1e_rphy(hw, PHY_REG(769, 16), &data);
2666 		data |= BIT(13);
2667 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2668 		if (ret_val)
2669 			return ret_val;
2670 		e1e_rphy(hw, PHY_REG(776, 20), &data);
2671 		data &= ~(0x3FF << 2);
2672 		data |= (0x8 << 2);
2673 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2674 		if (ret_val)
2675 			return ret_val;
2676 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2677 		if (ret_val)
2678 			return ret_val;
2679 		e1e_rphy(hw, HV_PM_CTRL, &data);
2680 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~BIT(10));
2681 		if (ret_val)
2682 			return ret_val;
2683 	}
2684 
2685 	/* re-enable Rx path after enabling/disabling workaround */
2686 	return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~BIT(14));
2687 }
2688 
2689 /**
2690  *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2691  *  done after every PHY reset.
2692  **/
2693 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2694 {
2695 	s32 ret_val = 0;
2696 
2697 	if (hw->mac.type != e1000_pch2lan)
2698 		return 0;
2699 
2700 	/* Set MDIO slow mode before any other MDIO access */
2701 	ret_val = e1000_set_mdio_slow_mode_hv(hw);
2702 	if (ret_val)
2703 		return ret_val;
2704 
2705 	ret_val = hw->phy.ops.acquire(hw);
2706 	if (ret_val)
2707 		return ret_val;
2708 	/* set MSE higher to enable link to stay up when noise is high */
2709 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2710 	if (ret_val)
2711 		goto release;
2712 	/* drop link after 5 times MSE threshold was reached */
2713 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2714 release:
2715 	hw->phy.ops.release(hw);
2716 
2717 	return ret_val;
2718 }
2719 
2720 /**
2721  *  e1000_k1_gig_workaround_lv - K1 Si workaround
2722  *  @hw:   pointer to the HW structure
2723  *
2724  *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2725  *  Disable K1 in 1000Mbps and 100Mbps
2726  **/
2727 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2728 {
2729 	s32 ret_val = 0;
2730 	u16 status_reg = 0;
2731 
2732 	if (hw->mac.type != e1000_pch2lan)
2733 		return 0;
2734 
2735 	/* Set K1 beacon duration based on 10Mbs speed */
2736 	ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2737 	if (ret_val)
2738 		return ret_val;
2739 
2740 	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2741 	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2742 		if (status_reg &
2743 		    (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2744 			u16 pm_phy_reg;
2745 
2746 			/* LV 1G/100 Packet drop issue wa  */
2747 			ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2748 			if (ret_val)
2749 				return ret_val;
2750 			pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2751 			ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2752 			if (ret_val)
2753 				return ret_val;
2754 		} else {
2755 			u32 mac_reg;
2756 
2757 			mac_reg = er32(FEXTNVM4);
2758 			mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2759 			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2760 			ew32(FEXTNVM4, mac_reg);
2761 		}
2762 	}
2763 
2764 	return ret_val;
2765 }
2766 
2767 /**
2768  *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2769  *  @hw:   pointer to the HW structure
2770  *  @gate: boolean set to true to gate, false to ungate
2771  *
2772  *  Gate/ungate the automatic PHY configuration via hardware; perform
2773  *  the configuration via software instead.
2774  **/
2775 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2776 {
2777 	u32 extcnf_ctrl;
2778 
2779 	if (hw->mac.type < e1000_pch2lan)
2780 		return;
2781 
2782 	extcnf_ctrl = er32(EXTCNF_CTRL);
2783 
2784 	if (gate)
2785 		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2786 	else
2787 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2788 
2789 	ew32(EXTCNF_CTRL, extcnf_ctrl);
2790 }
2791 
2792 /**
2793  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2794  *  @hw: pointer to the HW structure
2795  *
2796  *  Check the appropriate indication the MAC has finished configuring the
2797  *  PHY after a software reset.
2798  **/
2799 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2800 {
2801 	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2802 
2803 	/* Wait for basic configuration completes before proceeding */
2804 	do {
2805 		data = er32(STATUS);
2806 		data &= E1000_STATUS_LAN_INIT_DONE;
2807 		usleep_range(100, 200);
2808 	} while ((!data) && --loop);
2809 
2810 	/* If basic configuration is incomplete before the above loop
2811 	 * count reaches 0, loading the configuration from NVM will
2812 	 * leave the PHY in a bad state possibly resulting in no link.
2813 	 */
2814 	if (loop == 0)
2815 		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2816 
2817 	/* Clear the Init Done bit for the next init event */
2818 	data = er32(STATUS);
2819 	data &= ~E1000_STATUS_LAN_INIT_DONE;
2820 	ew32(STATUS, data);
2821 }
2822 
2823 /**
2824  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2825  *  @hw: pointer to the HW structure
2826  **/
2827 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2828 {
2829 	s32 ret_val = 0;
2830 	u16 reg;
2831 
2832 	if (hw->phy.ops.check_reset_block(hw))
2833 		return 0;
2834 
2835 	/* Allow time for h/w to get to quiescent state after reset */
2836 	usleep_range(10000, 20000);
2837 
2838 	/* Perform any necessary post-reset workarounds */
2839 	switch (hw->mac.type) {
2840 	case e1000_pchlan:
2841 		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2842 		if (ret_val)
2843 			return ret_val;
2844 		break;
2845 	case e1000_pch2lan:
2846 		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2847 		if (ret_val)
2848 			return ret_val;
2849 		break;
2850 	default:
2851 		break;
2852 	}
2853 
2854 	/* Clear the host wakeup bit after lcd reset */
2855 	if (hw->mac.type >= e1000_pchlan) {
2856 		e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2857 		reg &= ~BM_WUC_HOST_WU_BIT;
2858 		e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2859 	}
2860 
2861 	/* Configure the LCD with the extended configuration region in NVM */
2862 	ret_val = e1000_sw_lcd_config_ich8lan(hw);
2863 	if (ret_val)
2864 		return ret_val;
2865 
2866 	/* Configure the LCD with the OEM bits in NVM */
2867 	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2868 
2869 	if (hw->mac.type == e1000_pch2lan) {
2870 		/* Ungate automatic PHY configuration on non-managed 82579 */
2871 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2872 			usleep_range(10000, 20000);
2873 			e1000_gate_hw_phy_config_ich8lan(hw, false);
2874 		}
2875 
2876 		/* Set EEE LPI Update Timer to 200usec */
2877 		ret_val = hw->phy.ops.acquire(hw);
2878 		if (ret_val)
2879 			return ret_val;
2880 		ret_val = e1000_write_emi_reg_locked(hw,
2881 						     I82579_LPI_UPDATE_TIMER,
2882 						     0x1387);
2883 		hw->phy.ops.release(hw);
2884 	}
2885 
2886 	return ret_val;
2887 }
2888 
2889 /**
2890  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2891  *  @hw: pointer to the HW structure
2892  *
2893  *  Resets the PHY
2894  *  This is a function pointer entry point called by drivers
2895  *  or other shared routines.
2896  **/
2897 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2898 {
2899 	s32 ret_val = 0;
2900 
2901 	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
2902 	if ((hw->mac.type == e1000_pch2lan) &&
2903 	    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2904 		e1000_gate_hw_phy_config_ich8lan(hw, true);
2905 
2906 	ret_val = e1000e_phy_hw_reset_generic(hw);
2907 	if (ret_val)
2908 		return ret_val;
2909 
2910 	return e1000_post_phy_reset_ich8lan(hw);
2911 }
2912 
2913 /**
2914  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2915  *  @hw: pointer to the HW structure
2916  *  @active: true to enable LPLU, false to disable
2917  *
2918  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
2919  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2920  *  the phy speed. This function will manually set the LPLU bit and restart
2921  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
2922  *  since it configures the same bit.
2923  **/
2924 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2925 {
2926 	s32 ret_val;
2927 	u16 oem_reg;
2928 
2929 	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2930 	if (ret_val)
2931 		return ret_val;
2932 
2933 	if (active)
2934 		oem_reg |= HV_OEM_BITS_LPLU;
2935 	else
2936 		oem_reg &= ~HV_OEM_BITS_LPLU;
2937 
2938 	if (!hw->phy.ops.check_reset_block(hw))
2939 		oem_reg |= HV_OEM_BITS_RESTART_AN;
2940 
2941 	return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2942 }
2943 
2944 /**
2945  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2946  *  @hw: pointer to the HW structure
2947  *  @active: true to enable LPLU, false to disable
2948  *
2949  *  Sets the LPLU D0 state according to the active flag.  When
2950  *  activating LPLU this function also disables smart speed
2951  *  and vice versa.  LPLU will not be activated unless the
2952  *  device autonegotiation advertisement meets standards of
2953  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2954  *  This is a function pointer entry point only called by
2955  *  PHY setup routines.
2956  **/
2957 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2958 {
2959 	struct e1000_phy_info *phy = &hw->phy;
2960 	u32 phy_ctrl;
2961 	s32 ret_val = 0;
2962 	u16 data;
2963 
2964 	if (phy->type == e1000_phy_ife)
2965 		return 0;
2966 
2967 	phy_ctrl = er32(PHY_CTRL);
2968 
2969 	if (active) {
2970 		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2971 		ew32(PHY_CTRL, phy_ctrl);
2972 
2973 		if (phy->type != e1000_phy_igp_3)
2974 			return 0;
2975 
2976 		/* Call gig speed drop workaround on LPLU before accessing
2977 		 * any PHY registers
2978 		 */
2979 		if (hw->mac.type == e1000_ich8lan)
2980 			e1000e_gig_downshift_workaround_ich8lan(hw);
2981 
2982 		/* When LPLU is enabled, we should disable SmartSpeed */
2983 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2984 		if (ret_val)
2985 			return ret_val;
2986 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2987 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2988 		if (ret_val)
2989 			return ret_val;
2990 	} else {
2991 		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2992 		ew32(PHY_CTRL, phy_ctrl);
2993 
2994 		if (phy->type != e1000_phy_igp_3)
2995 			return 0;
2996 
2997 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2998 		 * during Dx states where the power conservation is most
2999 		 * important.  During driver activity we should enable
3000 		 * SmartSpeed, so performance is maintained.
3001 		 */
3002 		if (phy->smart_speed == e1000_smart_speed_on) {
3003 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3004 					   &data);
3005 			if (ret_val)
3006 				return ret_val;
3007 
3008 			data |= IGP01E1000_PSCFR_SMART_SPEED;
3009 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3010 					   data);
3011 			if (ret_val)
3012 				return ret_val;
3013 		} else if (phy->smart_speed == e1000_smart_speed_off) {
3014 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3015 					   &data);
3016 			if (ret_val)
3017 				return ret_val;
3018 
3019 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3020 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3021 					   data);
3022 			if (ret_val)
3023 				return ret_val;
3024 		}
3025 	}
3026 
3027 	return 0;
3028 }
3029 
3030 /**
3031  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3032  *  @hw: pointer to the HW structure
3033  *  @active: true to enable LPLU, false to disable
3034  *
3035  *  Sets the LPLU D3 state according to the active flag.  When
3036  *  activating LPLU this function also disables smart speed
3037  *  and vice versa.  LPLU will not be activated unless the
3038  *  device autonegotiation advertisement meets standards of
3039  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3040  *  This is a function pointer entry point only called by
3041  *  PHY setup routines.
3042  **/
3043 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3044 {
3045 	struct e1000_phy_info *phy = &hw->phy;
3046 	u32 phy_ctrl;
3047 	s32 ret_val = 0;
3048 	u16 data;
3049 
3050 	phy_ctrl = er32(PHY_CTRL);
3051 
3052 	if (!active) {
3053 		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3054 		ew32(PHY_CTRL, phy_ctrl);
3055 
3056 		if (phy->type != e1000_phy_igp_3)
3057 			return 0;
3058 
3059 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3060 		 * during Dx states where the power conservation is most
3061 		 * important.  During driver activity we should enable
3062 		 * SmartSpeed, so performance is maintained.
3063 		 */
3064 		if (phy->smart_speed == e1000_smart_speed_on) {
3065 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3066 					   &data);
3067 			if (ret_val)
3068 				return ret_val;
3069 
3070 			data |= IGP01E1000_PSCFR_SMART_SPEED;
3071 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3072 					   data);
3073 			if (ret_val)
3074 				return ret_val;
3075 		} else if (phy->smart_speed == e1000_smart_speed_off) {
3076 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3077 					   &data);
3078 			if (ret_val)
3079 				return ret_val;
3080 
3081 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3082 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3083 					   data);
3084 			if (ret_val)
3085 				return ret_val;
3086 		}
3087 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3088 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3089 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3090 		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3091 		ew32(PHY_CTRL, phy_ctrl);
3092 
3093 		if (phy->type != e1000_phy_igp_3)
3094 			return 0;
3095 
3096 		/* Call gig speed drop workaround on LPLU before accessing
3097 		 * any PHY registers
3098 		 */
3099 		if (hw->mac.type == e1000_ich8lan)
3100 			e1000e_gig_downshift_workaround_ich8lan(hw);
3101 
3102 		/* When LPLU is enabled, we should disable SmartSpeed */
3103 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3104 		if (ret_val)
3105 			return ret_val;
3106 
3107 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3108 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3109 	}
3110 
3111 	return ret_val;
3112 }
3113 
3114 /**
3115  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3116  *  @hw: pointer to the HW structure
3117  *  @bank:  pointer to the variable that returns the active bank
3118  *
3119  *  Reads signature byte from the NVM using the flash access registers.
3120  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3121  **/
3122 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3123 {
3124 	u32 eecd;
3125 	struct e1000_nvm_info *nvm = &hw->nvm;
3126 	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3127 	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3128 	u32 nvm_dword = 0;
3129 	u8 sig_byte = 0;
3130 	s32 ret_val;
3131 
3132 	switch (hw->mac.type) {
3133 	case e1000_pch_spt:
3134 	case e1000_pch_cnp:
3135 		bank1_offset = nvm->flash_bank_size;
3136 		act_offset = E1000_ICH_NVM_SIG_WORD;
3137 
3138 		/* set bank to 0 in case flash read fails */
3139 		*bank = 0;
3140 
3141 		/* Check bank 0 */
3142 		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
3143 							 &nvm_dword);
3144 		if (ret_val)
3145 			return ret_val;
3146 		sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3147 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3148 		    E1000_ICH_NVM_SIG_VALUE) {
3149 			*bank = 0;
3150 			return 0;
3151 		}
3152 
3153 		/* Check bank 1 */
3154 		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
3155 							 bank1_offset,
3156 							 &nvm_dword);
3157 		if (ret_val)
3158 			return ret_val;
3159 		sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3160 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3161 		    E1000_ICH_NVM_SIG_VALUE) {
3162 			*bank = 1;
3163 			return 0;
3164 		}
3165 
3166 		e_dbg("ERROR: No valid NVM bank present\n");
3167 		return -E1000_ERR_NVM;
3168 	case e1000_ich8lan:
3169 	case e1000_ich9lan:
3170 		eecd = er32(EECD);
3171 		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3172 		    E1000_EECD_SEC1VAL_VALID_MASK) {
3173 			if (eecd & E1000_EECD_SEC1VAL)
3174 				*bank = 1;
3175 			else
3176 				*bank = 0;
3177 
3178 			return 0;
3179 		}
3180 		e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3181 		/* fall-thru */
3182 	default:
3183 		/* set bank to 0 in case flash read fails */
3184 		*bank = 0;
3185 
3186 		/* Check bank 0 */
3187 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3188 							&sig_byte);
3189 		if (ret_val)
3190 			return ret_val;
3191 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3192 		    E1000_ICH_NVM_SIG_VALUE) {
3193 			*bank = 0;
3194 			return 0;
3195 		}
3196 
3197 		/* Check bank 1 */
3198 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3199 							bank1_offset,
3200 							&sig_byte);
3201 		if (ret_val)
3202 			return ret_val;
3203 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3204 		    E1000_ICH_NVM_SIG_VALUE) {
3205 			*bank = 1;
3206 			return 0;
3207 		}
3208 
3209 		e_dbg("ERROR: No valid NVM bank present\n");
3210 		return -E1000_ERR_NVM;
3211 	}
3212 }
3213 
3214 /**
3215  *  e1000_read_nvm_spt - NVM access for SPT
3216  *  @hw: pointer to the HW structure
3217  *  @offset: The offset (in bytes) of the word(s) to read.
3218  *  @words: Size of data to read in words.
3219  *  @data: pointer to the word(s) to read at offset.
3220  *
3221  *  Reads a word(s) from the NVM
3222  **/
3223 static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3224 			      u16 *data)
3225 {
3226 	struct e1000_nvm_info *nvm = &hw->nvm;
3227 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3228 	u32 act_offset;
3229 	s32 ret_val = 0;
3230 	u32 bank = 0;
3231 	u32 dword = 0;
3232 	u16 offset_to_read;
3233 	u16 i;
3234 
3235 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3236 	    (words == 0)) {
3237 		e_dbg("nvm parameter(s) out of bounds\n");
3238 		ret_val = -E1000_ERR_NVM;
3239 		goto out;
3240 	}
3241 
3242 	nvm->ops.acquire(hw);
3243 
3244 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3245 	if (ret_val) {
3246 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3247 		bank = 0;
3248 	}
3249 
3250 	act_offset = (bank) ? nvm->flash_bank_size : 0;
3251 	act_offset += offset;
3252 
3253 	ret_val = 0;
3254 
3255 	for (i = 0; i < words; i += 2) {
3256 		if (words - i == 1) {
3257 			if (dev_spec->shadow_ram[offset + i].modified) {
3258 				data[i] =
3259 				    dev_spec->shadow_ram[offset + i].value;
3260 			} else {
3261 				offset_to_read = act_offset + i -
3262 				    ((act_offset + i) % 2);
3263 				ret_val =
3264 				  e1000_read_flash_dword_ich8lan(hw,
3265 								 offset_to_read,
3266 								 &dword);
3267 				if (ret_val)
3268 					break;
3269 				if ((act_offset + i) % 2 == 0)
3270 					data[i] = (u16)(dword & 0xFFFF);
3271 				else
3272 					data[i] = (u16)((dword >> 16) & 0xFFFF);
3273 			}
3274 		} else {
3275 			offset_to_read = act_offset + i;
3276 			if (!(dev_spec->shadow_ram[offset + i].modified) ||
3277 			    !(dev_spec->shadow_ram[offset + i + 1].modified)) {
3278 				ret_val =
3279 				  e1000_read_flash_dword_ich8lan(hw,
3280 								 offset_to_read,
3281 								 &dword);
3282 				if (ret_val)
3283 					break;
3284 			}
3285 			if (dev_spec->shadow_ram[offset + i].modified)
3286 				data[i] =
3287 				    dev_spec->shadow_ram[offset + i].value;
3288 			else
3289 				data[i] = (u16)(dword & 0xFFFF);
3290 			if (dev_spec->shadow_ram[offset + i].modified)
3291 				data[i + 1] =
3292 				    dev_spec->shadow_ram[offset + i + 1].value;
3293 			else
3294 				data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
3295 		}
3296 	}
3297 
3298 	nvm->ops.release(hw);
3299 
3300 out:
3301 	if (ret_val)
3302 		e_dbg("NVM read error: %d\n", ret_val);
3303 
3304 	return ret_val;
3305 }
3306 
3307 /**
3308  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3309  *  @hw: pointer to the HW structure
3310  *  @offset: The offset (in bytes) of the word(s) to read.
3311  *  @words: Size of data to read in words
3312  *  @data: Pointer to the word(s) to read at offset.
3313  *
3314  *  Reads a word(s) from the NVM using the flash access registers.
3315  **/
3316 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3317 				  u16 *data)
3318 {
3319 	struct e1000_nvm_info *nvm = &hw->nvm;
3320 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3321 	u32 act_offset;
3322 	s32 ret_val = 0;
3323 	u32 bank = 0;
3324 	u16 i, word;
3325 
3326 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3327 	    (words == 0)) {
3328 		e_dbg("nvm parameter(s) out of bounds\n");
3329 		ret_val = -E1000_ERR_NVM;
3330 		goto out;
3331 	}
3332 
3333 	nvm->ops.acquire(hw);
3334 
3335 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3336 	if (ret_val) {
3337 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3338 		bank = 0;
3339 	}
3340 
3341 	act_offset = (bank) ? nvm->flash_bank_size : 0;
3342 	act_offset += offset;
3343 
3344 	ret_val = 0;
3345 	for (i = 0; i < words; i++) {
3346 		if (dev_spec->shadow_ram[offset + i].modified) {
3347 			data[i] = dev_spec->shadow_ram[offset + i].value;
3348 		} else {
3349 			ret_val = e1000_read_flash_word_ich8lan(hw,
3350 								act_offset + i,
3351 								&word);
3352 			if (ret_val)
3353 				break;
3354 			data[i] = word;
3355 		}
3356 	}
3357 
3358 	nvm->ops.release(hw);
3359 
3360 out:
3361 	if (ret_val)
3362 		e_dbg("NVM read error: %d\n", ret_val);
3363 
3364 	return ret_val;
3365 }
3366 
3367 /**
3368  *  e1000_flash_cycle_init_ich8lan - Initialize flash
3369  *  @hw: pointer to the HW structure
3370  *
3371  *  This function does initial flash setup so that a new read/write/erase cycle
3372  *  can be started.
3373  **/
3374 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3375 {
3376 	union ich8_hws_flash_status hsfsts;
3377 	s32 ret_val = -E1000_ERR_NVM;
3378 
3379 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3380 
3381 	/* Check if the flash descriptor is valid */
3382 	if (!hsfsts.hsf_status.fldesvalid) {
3383 		e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
3384 		return -E1000_ERR_NVM;
3385 	}
3386 
3387 	/* Clear FCERR and DAEL in hw status by writing 1 */
3388 	hsfsts.hsf_status.flcerr = 1;
3389 	hsfsts.hsf_status.dael = 1;
3390 	if (hw->mac.type >= e1000_pch_spt)
3391 		ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3392 	else
3393 		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3394 
3395 	/* Either we should have a hardware SPI cycle in progress
3396 	 * bit to check against, in order to start a new cycle or
3397 	 * FDONE bit should be changed in the hardware so that it
3398 	 * is 1 after hardware reset, which can then be used as an
3399 	 * indication whether a cycle is in progress or has been
3400 	 * completed.
3401 	 */
3402 
3403 	if (!hsfsts.hsf_status.flcinprog) {
3404 		/* There is no cycle running at present,
3405 		 * so we can start a cycle.
3406 		 * Begin by setting Flash Cycle Done.
3407 		 */
3408 		hsfsts.hsf_status.flcdone = 1;
3409 		if (hw->mac.type >= e1000_pch_spt)
3410 			ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3411 		else
3412 			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3413 		ret_val = 0;
3414 	} else {
3415 		s32 i;
3416 
3417 		/* Otherwise poll for sometime so the current
3418 		 * cycle has a chance to end before giving up.
3419 		 */
3420 		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3421 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3422 			if (!hsfsts.hsf_status.flcinprog) {
3423 				ret_val = 0;
3424 				break;
3425 			}
3426 			udelay(1);
3427 		}
3428 		if (!ret_val) {
3429 			/* Successful in waiting for previous cycle to timeout,
3430 			 * now set the Flash Cycle Done.
3431 			 */
3432 			hsfsts.hsf_status.flcdone = 1;
3433 			if (hw->mac.type >= e1000_pch_spt)
3434 				ew32flash(ICH_FLASH_HSFSTS,
3435 					  hsfsts.regval & 0xFFFF);
3436 			else
3437 				ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3438 		} else {
3439 			e_dbg("Flash controller busy, cannot get access\n");
3440 		}
3441 	}
3442 
3443 	return ret_val;
3444 }
3445 
3446 /**
3447  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3448  *  @hw: pointer to the HW structure
3449  *  @timeout: maximum time to wait for completion
3450  *
3451  *  This function starts a flash cycle and waits for its completion.
3452  **/
3453 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3454 {
3455 	union ich8_hws_flash_ctrl hsflctl;
3456 	union ich8_hws_flash_status hsfsts;
3457 	u32 i = 0;
3458 
3459 	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3460 	if (hw->mac.type >= e1000_pch_spt)
3461 		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3462 	else
3463 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3464 	hsflctl.hsf_ctrl.flcgo = 1;
3465 
3466 	if (hw->mac.type >= e1000_pch_spt)
3467 		ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
3468 	else
3469 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3470 
3471 	/* wait till FDONE bit is set to 1 */
3472 	do {
3473 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3474 		if (hsfsts.hsf_status.flcdone)
3475 			break;
3476 		udelay(1);
3477 	} while (i++ < timeout);
3478 
3479 	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3480 		return 0;
3481 
3482 	return -E1000_ERR_NVM;
3483 }
3484 
3485 /**
3486  *  e1000_read_flash_dword_ich8lan - Read dword from flash
3487  *  @hw: pointer to the HW structure
3488  *  @offset: offset to data location
3489  *  @data: pointer to the location for storing the data
3490  *
3491  *  Reads the flash dword at offset into data.  Offset is converted
3492  *  to bytes before read.
3493  **/
3494 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3495 					  u32 *data)
3496 {
3497 	/* Must convert word offset into bytes. */
3498 	offset <<= 1;
3499 	return e1000_read_flash_data32_ich8lan(hw, offset, data);
3500 }
3501 
3502 /**
3503  *  e1000_read_flash_word_ich8lan - Read word from flash
3504  *  @hw: pointer to the HW structure
3505  *  @offset: offset to data location
3506  *  @data: pointer to the location for storing the data
3507  *
3508  *  Reads the flash word at offset into data.  Offset is converted
3509  *  to bytes before read.
3510  **/
3511 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3512 					 u16 *data)
3513 {
3514 	/* Must convert offset into bytes. */
3515 	offset <<= 1;
3516 
3517 	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3518 }
3519 
3520 /**
3521  *  e1000_read_flash_byte_ich8lan - Read byte from flash
3522  *  @hw: pointer to the HW structure
3523  *  @offset: The offset of the byte to read.
3524  *  @data: Pointer to a byte to store the value read.
3525  *
3526  *  Reads a single byte from the NVM using the flash access registers.
3527  **/
3528 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3529 					 u8 *data)
3530 {
3531 	s32 ret_val;
3532 	u16 word = 0;
3533 
3534 	/* In SPT, only 32 bits access is supported,
3535 	 * so this function should not be called.
3536 	 */
3537 	if (hw->mac.type >= e1000_pch_spt)
3538 		return -E1000_ERR_NVM;
3539 	else
3540 		ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3541 
3542 	if (ret_val)
3543 		return ret_val;
3544 
3545 	*data = (u8)word;
3546 
3547 	return 0;
3548 }
3549 
3550 /**
3551  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3552  *  @hw: pointer to the HW structure
3553  *  @offset: The offset (in bytes) of the byte or word to read.
3554  *  @size: Size of data to read, 1=byte 2=word
3555  *  @data: Pointer to the word to store the value read.
3556  *
3557  *  Reads a byte or word from the NVM using the flash access registers.
3558  **/
3559 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3560 					 u8 size, u16 *data)
3561 {
3562 	union ich8_hws_flash_status hsfsts;
3563 	union ich8_hws_flash_ctrl hsflctl;
3564 	u32 flash_linear_addr;
3565 	u32 flash_data = 0;
3566 	s32 ret_val = -E1000_ERR_NVM;
3567 	u8 count = 0;
3568 
3569 	if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3570 		return -E1000_ERR_NVM;
3571 
3572 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3573 			     hw->nvm.flash_base_addr);
3574 
3575 	do {
3576 		udelay(1);
3577 		/* Steps */
3578 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3579 		if (ret_val)
3580 			break;
3581 
3582 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3583 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3584 		hsflctl.hsf_ctrl.fldbcount = size - 1;
3585 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3586 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3587 
3588 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3589 
3590 		ret_val =
3591 		    e1000_flash_cycle_ich8lan(hw,
3592 					      ICH_FLASH_READ_COMMAND_TIMEOUT);
3593 
3594 		/* Check if FCERR is set to 1, if set to 1, clear it
3595 		 * and try the whole sequence a few more times, else
3596 		 * read in (shift in) the Flash Data0, the order is
3597 		 * least significant byte first msb to lsb
3598 		 */
3599 		if (!ret_val) {
3600 			flash_data = er32flash(ICH_FLASH_FDATA0);
3601 			if (size == 1)
3602 				*data = (u8)(flash_data & 0x000000FF);
3603 			else if (size == 2)
3604 				*data = (u16)(flash_data & 0x0000FFFF);
3605 			break;
3606 		} else {
3607 			/* If we've gotten here, then things are probably
3608 			 * completely hosed, but if the error condition is
3609 			 * detected, it won't hurt to give it another try...
3610 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3611 			 */
3612 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3613 			if (hsfsts.hsf_status.flcerr) {
3614 				/* Repeat for some time before giving up. */
3615 				continue;
3616 			} else if (!hsfsts.hsf_status.flcdone) {
3617 				e_dbg("Timeout error - flash cycle did not complete.\n");
3618 				break;
3619 			}
3620 		}
3621 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3622 
3623 	return ret_val;
3624 }
3625 
3626 /**
3627  *  e1000_read_flash_data32_ich8lan - Read dword from NVM
3628  *  @hw: pointer to the HW structure
3629  *  @offset: The offset (in bytes) of the dword to read.
3630  *  @data: Pointer to the dword to store the value read.
3631  *
3632  *  Reads a byte or word from the NVM using the flash access registers.
3633  **/
3634 
3635 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3636 					   u32 *data)
3637 {
3638 	union ich8_hws_flash_status hsfsts;
3639 	union ich8_hws_flash_ctrl hsflctl;
3640 	u32 flash_linear_addr;
3641 	s32 ret_val = -E1000_ERR_NVM;
3642 	u8 count = 0;
3643 
3644 	if (offset > ICH_FLASH_LINEAR_ADDR_MASK || hw->mac.type < e1000_pch_spt)
3645 		return -E1000_ERR_NVM;
3646 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3647 			     hw->nvm.flash_base_addr);
3648 
3649 	do {
3650 		udelay(1);
3651 		/* Steps */
3652 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3653 		if (ret_val)
3654 			break;
3655 		/* In SPT, This register is in Lan memory space, not flash.
3656 		 * Therefore, only 32 bit access is supported
3657 		 */
3658 		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3659 
3660 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3661 		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3662 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3663 		/* In SPT, This register is in Lan memory space, not flash.
3664 		 * Therefore, only 32 bit access is supported
3665 		 */
3666 		ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16);
3667 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3668 
3669 		ret_val =
3670 		   e1000_flash_cycle_ich8lan(hw,
3671 					     ICH_FLASH_READ_COMMAND_TIMEOUT);
3672 
3673 		/* Check if FCERR is set to 1, if set to 1, clear it
3674 		 * and try the whole sequence a few more times, else
3675 		 * read in (shift in) the Flash Data0, the order is
3676 		 * least significant byte first msb to lsb
3677 		 */
3678 		if (!ret_val) {
3679 			*data = er32flash(ICH_FLASH_FDATA0);
3680 			break;
3681 		} else {
3682 			/* If we've gotten here, then things are probably
3683 			 * completely hosed, but if the error condition is
3684 			 * detected, it won't hurt to give it another try...
3685 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3686 			 */
3687 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3688 			if (hsfsts.hsf_status.flcerr) {
3689 				/* Repeat for some time before giving up. */
3690 				continue;
3691 			} else if (!hsfsts.hsf_status.flcdone) {
3692 				e_dbg("Timeout error - flash cycle did not complete.\n");
3693 				break;
3694 			}
3695 		}
3696 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3697 
3698 	return ret_val;
3699 }
3700 
3701 /**
3702  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
3703  *  @hw: pointer to the HW structure
3704  *  @offset: The offset (in bytes) of the word(s) to write.
3705  *  @words: Size of data to write in words
3706  *  @data: Pointer to the word(s) to write at offset.
3707  *
3708  *  Writes a byte or word to the NVM using the flash access registers.
3709  **/
3710 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3711 				   u16 *data)
3712 {
3713 	struct e1000_nvm_info *nvm = &hw->nvm;
3714 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3715 	u16 i;
3716 
3717 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3718 	    (words == 0)) {
3719 		e_dbg("nvm parameter(s) out of bounds\n");
3720 		return -E1000_ERR_NVM;
3721 	}
3722 
3723 	nvm->ops.acquire(hw);
3724 
3725 	for (i = 0; i < words; i++) {
3726 		dev_spec->shadow_ram[offset + i].modified = true;
3727 		dev_spec->shadow_ram[offset + i].value = data[i];
3728 	}
3729 
3730 	nvm->ops.release(hw);
3731 
3732 	return 0;
3733 }
3734 
3735 /**
3736  *  e1000_update_nvm_checksum_spt - Update the checksum for NVM
3737  *  @hw: pointer to the HW structure
3738  *
3739  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3740  *  which writes the checksum to the shadow ram.  The changes in the shadow
3741  *  ram are then committed to the EEPROM by processing each bank at a time
3742  *  checking for the modified bit and writing only the pending changes.
3743  *  After a successful commit, the shadow ram is cleared and is ready for
3744  *  future writes.
3745  **/
3746 static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
3747 {
3748 	struct e1000_nvm_info *nvm = &hw->nvm;
3749 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3750 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3751 	s32 ret_val;
3752 	u32 dword = 0;
3753 
3754 	ret_val = e1000e_update_nvm_checksum_generic(hw);
3755 	if (ret_val)
3756 		goto out;
3757 
3758 	if (nvm->type != e1000_nvm_flash_sw)
3759 		goto out;
3760 
3761 	nvm->ops.acquire(hw);
3762 
3763 	/* We're writing to the opposite bank so if we're on bank 1,
3764 	 * write to bank 0 etc.  We also need to erase the segment that
3765 	 * is going to be written
3766 	 */
3767 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3768 	if (ret_val) {
3769 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3770 		bank = 0;
3771 	}
3772 
3773 	if (bank == 0) {
3774 		new_bank_offset = nvm->flash_bank_size;
3775 		old_bank_offset = 0;
3776 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3777 		if (ret_val)
3778 			goto release;
3779 	} else {
3780 		old_bank_offset = nvm->flash_bank_size;
3781 		new_bank_offset = 0;
3782 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3783 		if (ret_val)
3784 			goto release;
3785 	}
3786 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) {
3787 		/* Determine whether to write the value stored
3788 		 * in the other NVM bank or a modified value stored
3789 		 * in the shadow RAM
3790 		 */
3791 		ret_val = e1000_read_flash_dword_ich8lan(hw,
3792 							 i + old_bank_offset,
3793 							 &dword);
3794 
3795 		if (dev_spec->shadow_ram[i].modified) {
3796 			dword &= 0xffff0000;
3797 			dword |= (dev_spec->shadow_ram[i].value & 0xffff);
3798 		}
3799 		if (dev_spec->shadow_ram[i + 1].modified) {
3800 			dword &= 0x0000ffff;
3801 			dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
3802 				  << 16);
3803 		}
3804 		if (ret_val)
3805 			break;
3806 
3807 		/* If the word is 0x13, then make sure the signature bits
3808 		 * (15:14) are 11b until the commit has completed.
3809 		 * This will allow us to write 10b which indicates the
3810 		 * signature is valid.  We want to do this after the write
3811 		 * has completed so that we don't mark the segment valid
3812 		 * while the write is still in progress
3813 		 */
3814 		if (i == E1000_ICH_NVM_SIG_WORD - 1)
3815 			dword |= E1000_ICH_NVM_SIG_MASK << 16;
3816 
3817 		/* Convert offset to bytes. */
3818 		act_offset = (i + new_bank_offset) << 1;
3819 
3820 		usleep_range(100, 200);
3821 
3822 		/* Write the data to the new bank. Offset in words */
3823 		act_offset = i + new_bank_offset;
3824 		ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
3825 								dword);
3826 		if (ret_val)
3827 			break;
3828 	}
3829 
3830 	/* Don't bother writing the segment valid bits if sector
3831 	 * programming failed.
3832 	 */
3833 	if (ret_val) {
3834 		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3835 		e_dbg("Flash commit failed.\n");
3836 		goto release;
3837 	}
3838 
3839 	/* Finally validate the new segment by setting bit 15:14
3840 	 * to 10b in word 0x13 , this can be done without an
3841 	 * erase as well since these bits are 11 to start with
3842 	 * and we need to change bit 14 to 0b
3843 	 */
3844 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3845 
3846 	/*offset in words but we read dword */
3847 	--act_offset;
3848 	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3849 
3850 	if (ret_val)
3851 		goto release;
3852 
3853 	dword &= 0xBFFFFFFF;
3854 	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3855 
3856 	if (ret_val)
3857 		goto release;
3858 
3859 	/* And invalidate the previously valid segment by setting
3860 	 * its signature word (0x13) high_byte to 0b. This can be
3861 	 * done without an erase because flash erase sets all bits
3862 	 * to 1's. We can write 1's to 0's without an erase
3863 	 */
3864 	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
3865 
3866 	/* offset in words but we read dword */
3867 	act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
3868 	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3869 
3870 	if (ret_val)
3871 		goto release;
3872 
3873 	dword &= 0x00FFFFFF;
3874 	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3875 
3876 	if (ret_val)
3877 		goto release;
3878 
3879 	/* Great!  Everything worked, we can now clear the cached entries. */
3880 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3881 		dev_spec->shadow_ram[i].modified = false;
3882 		dev_spec->shadow_ram[i].value = 0xFFFF;
3883 	}
3884 
3885 release:
3886 	nvm->ops.release(hw);
3887 
3888 	/* Reload the EEPROM, or else modifications will not appear
3889 	 * until after the next adapter reset.
3890 	 */
3891 	if (!ret_val) {
3892 		nvm->ops.reload(hw);
3893 		usleep_range(10000, 20000);
3894 	}
3895 
3896 out:
3897 	if (ret_val)
3898 		e_dbg("NVM update error: %d\n", ret_val);
3899 
3900 	return ret_val;
3901 }
3902 
3903 /**
3904  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3905  *  @hw: pointer to the HW structure
3906  *
3907  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3908  *  which writes the checksum to the shadow ram.  The changes in the shadow
3909  *  ram are then committed to the EEPROM by processing each bank at a time
3910  *  checking for the modified bit and writing only the pending changes.
3911  *  After a successful commit, the shadow ram is cleared and is ready for
3912  *  future writes.
3913  **/
3914 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
3915 {
3916 	struct e1000_nvm_info *nvm = &hw->nvm;
3917 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3918 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3919 	s32 ret_val;
3920 	u16 data = 0;
3921 
3922 	ret_val = e1000e_update_nvm_checksum_generic(hw);
3923 	if (ret_val)
3924 		goto out;
3925 
3926 	if (nvm->type != e1000_nvm_flash_sw)
3927 		goto out;
3928 
3929 	nvm->ops.acquire(hw);
3930 
3931 	/* We're writing to the opposite bank so if we're on bank 1,
3932 	 * write to bank 0 etc.  We also need to erase the segment that
3933 	 * is going to be written
3934 	 */
3935 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3936 	if (ret_val) {
3937 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3938 		bank = 0;
3939 	}
3940 
3941 	if (bank == 0) {
3942 		new_bank_offset = nvm->flash_bank_size;
3943 		old_bank_offset = 0;
3944 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3945 		if (ret_val)
3946 			goto release;
3947 	} else {
3948 		old_bank_offset = nvm->flash_bank_size;
3949 		new_bank_offset = 0;
3950 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3951 		if (ret_val)
3952 			goto release;
3953 	}
3954 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3955 		if (dev_spec->shadow_ram[i].modified) {
3956 			data = dev_spec->shadow_ram[i].value;
3957 		} else {
3958 			ret_val = e1000_read_flash_word_ich8lan(hw, i +
3959 								old_bank_offset,
3960 								&data);
3961 			if (ret_val)
3962 				break;
3963 		}
3964 
3965 		/* If the word is 0x13, then make sure the signature bits
3966 		 * (15:14) are 11b until the commit has completed.
3967 		 * This will allow us to write 10b which indicates the
3968 		 * signature is valid.  We want to do this after the write
3969 		 * has completed so that we don't mark the segment valid
3970 		 * while the write is still in progress
3971 		 */
3972 		if (i == E1000_ICH_NVM_SIG_WORD)
3973 			data |= E1000_ICH_NVM_SIG_MASK;
3974 
3975 		/* Convert offset to bytes. */
3976 		act_offset = (i + new_bank_offset) << 1;
3977 
3978 		usleep_range(100, 200);
3979 		/* Write the bytes to the new bank. */
3980 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3981 							       act_offset,
3982 							       (u8)data);
3983 		if (ret_val)
3984 			break;
3985 
3986 		usleep_range(100, 200);
3987 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3988 							       act_offset + 1,
3989 							       (u8)(data >> 8));
3990 		if (ret_val)
3991 			break;
3992 	}
3993 
3994 	/* Don't bother writing the segment valid bits if sector
3995 	 * programming failed.
3996 	 */
3997 	if (ret_val) {
3998 		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3999 		e_dbg("Flash commit failed.\n");
4000 		goto release;
4001 	}
4002 
4003 	/* Finally validate the new segment by setting bit 15:14
4004 	 * to 10b in word 0x13 , this can be done without an
4005 	 * erase as well since these bits are 11 to start with
4006 	 * and we need to change bit 14 to 0b
4007 	 */
4008 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4009 	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
4010 	if (ret_val)
4011 		goto release;
4012 
4013 	data &= 0xBFFF;
4014 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4015 						       act_offset * 2 + 1,
4016 						       (u8)(data >> 8));
4017 	if (ret_val)
4018 		goto release;
4019 
4020 	/* And invalidate the previously valid segment by setting
4021 	 * its signature word (0x13) high_byte to 0b. This can be
4022 	 * done without an erase because flash erase sets all bits
4023 	 * to 1's. We can write 1's to 0's without an erase
4024 	 */
4025 	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4026 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
4027 	if (ret_val)
4028 		goto release;
4029 
4030 	/* Great!  Everything worked, we can now clear the cached entries. */
4031 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4032 		dev_spec->shadow_ram[i].modified = false;
4033 		dev_spec->shadow_ram[i].value = 0xFFFF;
4034 	}
4035 
4036 release:
4037 	nvm->ops.release(hw);
4038 
4039 	/* Reload the EEPROM, or else modifications will not appear
4040 	 * until after the next adapter reset.
4041 	 */
4042 	if (!ret_val) {
4043 		nvm->ops.reload(hw);
4044 		usleep_range(10000, 20000);
4045 	}
4046 
4047 out:
4048 	if (ret_val)
4049 		e_dbg("NVM update error: %d\n", ret_val);
4050 
4051 	return ret_val;
4052 }
4053 
4054 /**
4055  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4056  *  @hw: pointer to the HW structure
4057  *
4058  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4059  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
4060  *  calculated, in which case we need to calculate the checksum and set bit 6.
4061  **/
4062 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4063 {
4064 	s32 ret_val;
4065 	u16 data;
4066 	u16 word;
4067 	u16 valid_csum_mask;
4068 
4069 	/* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
4070 	 * the checksum needs to be fixed.  This bit is an indication that
4071 	 * the NVM was prepared by OEM software and did not calculate
4072 	 * the checksum...a likely scenario.
4073 	 */
4074 	switch (hw->mac.type) {
4075 	case e1000_pch_lpt:
4076 	case e1000_pch_spt:
4077 	case e1000_pch_cnp:
4078 		word = NVM_COMPAT;
4079 		valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4080 		break;
4081 	default:
4082 		word = NVM_FUTURE_INIT_WORD1;
4083 		valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4084 		break;
4085 	}
4086 
4087 	ret_val = e1000_read_nvm(hw, word, 1, &data);
4088 	if (ret_val)
4089 		return ret_val;
4090 
4091 	if (!(data & valid_csum_mask)) {
4092 		data |= valid_csum_mask;
4093 		ret_val = e1000_write_nvm(hw, word, 1, &data);
4094 		if (ret_val)
4095 			return ret_val;
4096 		ret_val = e1000e_update_nvm_checksum(hw);
4097 		if (ret_val)
4098 			return ret_val;
4099 	}
4100 
4101 	return e1000e_validate_nvm_checksum_generic(hw);
4102 }
4103 
4104 /**
4105  *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
4106  *  @hw: pointer to the HW structure
4107  *
4108  *  To prevent malicious write/erase of the NVM, set it to be read-only
4109  *  so that the hardware ignores all write/erase cycles of the NVM via
4110  *  the flash control registers.  The shadow-ram copy of the NVM will
4111  *  still be updated, however any updates to this copy will not stick
4112  *  across driver reloads.
4113  **/
4114 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
4115 {
4116 	struct e1000_nvm_info *nvm = &hw->nvm;
4117 	union ich8_flash_protected_range pr0;
4118 	union ich8_hws_flash_status hsfsts;
4119 	u32 gfpreg;
4120 
4121 	nvm->ops.acquire(hw);
4122 
4123 	gfpreg = er32flash(ICH_FLASH_GFPREG);
4124 
4125 	/* Write-protect GbE Sector of NVM */
4126 	pr0.regval = er32flash(ICH_FLASH_PR0);
4127 	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
4128 	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
4129 	pr0.range.wpe = true;
4130 	ew32flash(ICH_FLASH_PR0, pr0.regval);
4131 
4132 	/* Lock down a subset of GbE Flash Control Registers, e.g.
4133 	 * PR0 to prevent the write-protection from being lifted.
4134 	 * Once FLOCKDN is set, the registers protected by it cannot
4135 	 * be written until FLOCKDN is cleared by a hardware reset.
4136 	 */
4137 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4138 	hsfsts.hsf_status.flockdn = true;
4139 	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
4140 
4141 	nvm->ops.release(hw);
4142 }
4143 
4144 /**
4145  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4146  *  @hw: pointer to the HW structure
4147  *  @offset: The offset (in bytes) of the byte/word to read.
4148  *  @size: Size of data to read, 1=byte 2=word
4149  *  @data: The byte(s) to write to the NVM.
4150  *
4151  *  Writes one/two bytes to the NVM using the flash access registers.
4152  **/
4153 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4154 					  u8 size, u16 data)
4155 {
4156 	union ich8_hws_flash_status hsfsts;
4157 	union ich8_hws_flash_ctrl hsflctl;
4158 	u32 flash_linear_addr;
4159 	u32 flash_data = 0;
4160 	s32 ret_val;
4161 	u8 count = 0;
4162 
4163 	if (hw->mac.type >= e1000_pch_spt) {
4164 		if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4165 			return -E1000_ERR_NVM;
4166 	} else {
4167 		if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4168 			return -E1000_ERR_NVM;
4169 	}
4170 
4171 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4172 			     hw->nvm.flash_base_addr);
4173 
4174 	do {
4175 		udelay(1);
4176 		/* Steps */
4177 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4178 		if (ret_val)
4179 			break;
4180 		/* In SPT, This register is in Lan memory space, not
4181 		 * flash.  Therefore, only 32 bit access is supported
4182 		 */
4183 		if (hw->mac.type >= e1000_pch_spt)
4184 			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
4185 		else
4186 			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4187 
4188 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4189 		hsflctl.hsf_ctrl.fldbcount = size - 1;
4190 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4191 		/* In SPT, This register is in Lan memory space,
4192 		 * not flash.  Therefore, only 32 bit access is
4193 		 * supported
4194 		 */
4195 		if (hw->mac.type >= e1000_pch_spt)
4196 			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4197 		else
4198 			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4199 
4200 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4201 
4202 		if (size == 1)
4203 			flash_data = (u32)data & 0x00FF;
4204 		else
4205 			flash_data = (u32)data;
4206 
4207 		ew32flash(ICH_FLASH_FDATA0, flash_data);
4208 
4209 		/* check if FCERR is set to 1 , if set to 1, clear it
4210 		 * and try the whole sequence a few more times else done
4211 		 */
4212 		ret_val =
4213 		    e1000_flash_cycle_ich8lan(hw,
4214 					      ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4215 		if (!ret_val)
4216 			break;
4217 
4218 		/* If we're here, then things are most likely
4219 		 * completely hosed, but if the error condition
4220 		 * is detected, it won't hurt to give it another
4221 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4222 		 */
4223 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4224 		if (hsfsts.hsf_status.flcerr)
4225 			/* Repeat for some time before giving up. */
4226 			continue;
4227 		if (!hsfsts.hsf_status.flcdone) {
4228 			e_dbg("Timeout error - flash cycle did not complete.\n");
4229 			break;
4230 		}
4231 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4232 
4233 	return ret_val;
4234 }
4235 
4236 /**
4237 *  e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4238 *  @hw: pointer to the HW structure
4239 *  @offset: The offset (in bytes) of the dwords to read.
4240 *  @data: The 4 bytes to write to the NVM.
4241 *
4242 *  Writes one/two/four bytes to the NVM using the flash access registers.
4243 **/
4244 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4245 					    u32 data)
4246 {
4247 	union ich8_hws_flash_status hsfsts;
4248 	union ich8_hws_flash_ctrl hsflctl;
4249 	u32 flash_linear_addr;
4250 	s32 ret_val;
4251 	u8 count = 0;
4252 
4253 	if (hw->mac.type >= e1000_pch_spt) {
4254 		if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4255 			return -E1000_ERR_NVM;
4256 	}
4257 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4258 			     hw->nvm.flash_base_addr);
4259 	do {
4260 		udelay(1);
4261 		/* Steps */
4262 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4263 		if (ret_val)
4264 			break;
4265 
4266 		/* In SPT, This register is in Lan memory space, not
4267 		 * flash.  Therefore, only 32 bit access is supported
4268 		 */
4269 		if (hw->mac.type >= e1000_pch_spt)
4270 			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS)
4271 			    >> 16;
4272 		else
4273 			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4274 
4275 		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4276 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4277 
4278 		/* In SPT, This register is in Lan memory space,
4279 		 * not flash.  Therefore, only 32 bit access is
4280 		 * supported
4281 		 */
4282 		if (hw->mac.type >= e1000_pch_spt)
4283 			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4284 		else
4285 			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4286 
4287 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4288 
4289 		ew32flash(ICH_FLASH_FDATA0, data);
4290 
4291 		/* check if FCERR is set to 1 , if set to 1, clear it
4292 		 * and try the whole sequence a few more times else done
4293 		 */
4294 		ret_val =
4295 		   e1000_flash_cycle_ich8lan(hw,
4296 					     ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4297 
4298 		if (!ret_val)
4299 			break;
4300 
4301 		/* If we're here, then things are most likely
4302 		 * completely hosed, but if the error condition
4303 		 * is detected, it won't hurt to give it another
4304 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4305 		 */
4306 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4307 
4308 		if (hsfsts.hsf_status.flcerr)
4309 			/* Repeat for some time before giving up. */
4310 			continue;
4311 		if (!hsfsts.hsf_status.flcdone) {
4312 			e_dbg("Timeout error - flash cycle did not complete.\n");
4313 			break;
4314 		}
4315 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4316 
4317 	return ret_val;
4318 }
4319 
4320 /**
4321  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4322  *  @hw: pointer to the HW structure
4323  *  @offset: The index of the byte to read.
4324  *  @data: The byte to write to the NVM.
4325  *
4326  *  Writes a single byte to the NVM using the flash access registers.
4327  **/
4328 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4329 					  u8 data)
4330 {
4331 	u16 word = (u16)data;
4332 
4333 	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4334 }
4335 
4336 /**
4337 *  e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4338 *  @hw: pointer to the HW structure
4339 *  @offset: The offset of the word to write.
4340 *  @dword: The dword to write to the NVM.
4341 *
4342 *  Writes a single dword to the NVM using the flash access registers.
4343 *  Goes through a retry algorithm before giving up.
4344 **/
4345 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4346 						 u32 offset, u32 dword)
4347 {
4348 	s32 ret_val;
4349 	u16 program_retries;
4350 
4351 	/* Must convert word offset into bytes. */
4352 	offset <<= 1;
4353 	ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4354 
4355 	if (!ret_val)
4356 		return ret_val;
4357 	for (program_retries = 0; program_retries < 100; program_retries++) {
4358 		e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset);
4359 		usleep_range(100, 200);
4360 		ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4361 		if (!ret_val)
4362 			break;
4363 	}
4364 	if (program_retries == 100)
4365 		return -E1000_ERR_NVM;
4366 
4367 	return 0;
4368 }
4369 
4370 /**
4371  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4372  *  @hw: pointer to the HW structure
4373  *  @offset: The offset of the byte to write.
4374  *  @byte: The byte to write to the NVM.
4375  *
4376  *  Writes a single byte to the NVM using the flash access registers.
4377  *  Goes through a retry algorithm before giving up.
4378  **/
4379 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4380 						u32 offset, u8 byte)
4381 {
4382 	s32 ret_val;
4383 	u16 program_retries;
4384 
4385 	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4386 	if (!ret_val)
4387 		return ret_val;
4388 
4389 	for (program_retries = 0; program_retries < 100; program_retries++) {
4390 		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
4391 		usleep_range(100, 200);
4392 		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4393 		if (!ret_val)
4394 			break;
4395 	}
4396 	if (program_retries == 100)
4397 		return -E1000_ERR_NVM;
4398 
4399 	return 0;
4400 }
4401 
4402 /**
4403  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4404  *  @hw: pointer to the HW structure
4405  *  @bank: 0 for first bank, 1 for second bank, etc.
4406  *
4407  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4408  *  bank N is 4096 * N + flash_reg_addr.
4409  **/
4410 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4411 {
4412 	struct e1000_nvm_info *nvm = &hw->nvm;
4413 	union ich8_hws_flash_status hsfsts;
4414 	union ich8_hws_flash_ctrl hsflctl;
4415 	u32 flash_linear_addr;
4416 	/* bank size is in 16bit words - adjust to bytes */
4417 	u32 flash_bank_size = nvm->flash_bank_size * 2;
4418 	s32 ret_val;
4419 	s32 count = 0;
4420 	s32 j, iteration, sector_size;
4421 
4422 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4423 
4424 	/* Determine HW Sector size: Read BERASE bits of hw flash status
4425 	 * register
4426 	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
4427 	 *     consecutive sectors.  The start index for the nth Hw sector
4428 	 *     can be calculated as = bank * 4096 + n * 256
4429 	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4430 	 *     The start index for the nth Hw sector can be calculated
4431 	 *     as = bank * 4096
4432 	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4433 	 *     (ich9 only, otherwise error condition)
4434 	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4435 	 */
4436 	switch (hsfsts.hsf_status.berasesz) {
4437 	case 0:
4438 		/* Hw sector size 256 */
4439 		sector_size = ICH_FLASH_SEG_SIZE_256;
4440 		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4441 		break;
4442 	case 1:
4443 		sector_size = ICH_FLASH_SEG_SIZE_4K;
4444 		iteration = 1;
4445 		break;
4446 	case 2:
4447 		sector_size = ICH_FLASH_SEG_SIZE_8K;
4448 		iteration = 1;
4449 		break;
4450 	case 3:
4451 		sector_size = ICH_FLASH_SEG_SIZE_64K;
4452 		iteration = 1;
4453 		break;
4454 	default:
4455 		return -E1000_ERR_NVM;
4456 	}
4457 
4458 	/* Start with the base address, then add the sector offset. */
4459 	flash_linear_addr = hw->nvm.flash_base_addr;
4460 	flash_linear_addr += (bank) ? flash_bank_size : 0;
4461 
4462 	for (j = 0; j < iteration; j++) {
4463 		do {
4464 			u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4465 
4466 			/* Steps */
4467 			ret_val = e1000_flash_cycle_init_ich8lan(hw);
4468 			if (ret_val)
4469 				return ret_val;
4470 
4471 			/* Write a value 11 (block Erase) in Flash
4472 			 * Cycle field in hw flash control
4473 			 */
4474 			if (hw->mac.type >= e1000_pch_spt)
4475 				hsflctl.regval =
4476 				    er32flash(ICH_FLASH_HSFSTS) >> 16;
4477 			else
4478 				hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4479 
4480 			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4481 			if (hw->mac.type >= e1000_pch_spt)
4482 				ew32flash(ICH_FLASH_HSFSTS,
4483 					  hsflctl.regval << 16);
4484 			else
4485 				ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4486 
4487 			/* Write the last 24 bits of an index within the
4488 			 * block into Flash Linear address field in Flash
4489 			 * Address.
4490 			 */
4491 			flash_linear_addr += (j * sector_size);
4492 			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4493 
4494 			ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4495 			if (!ret_val)
4496 				break;
4497 
4498 			/* Check if FCERR is set to 1.  If 1,
4499 			 * clear it and try the whole sequence
4500 			 * a few more times else Done
4501 			 */
4502 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4503 			if (hsfsts.hsf_status.flcerr)
4504 				/* repeat for some time before giving up */
4505 				continue;
4506 			else if (!hsfsts.hsf_status.flcdone)
4507 				return ret_val;
4508 		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4509 	}
4510 
4511 	return 0;
4512 }
4513 
4514 /**
4515  *  e1000_valid_led_default_ich8lan - Set the default LED settings
4516  *  @hw: pointer to the HW structure
4517  *  @data: Pointer to the LED settings
4518  *
4519  *  Reads the LED default settings from the NVM to data.  If the NVM LED
4520  *  settings is all 0's or F's, set the LED default to a valid LED default
4521  *  setting.
4522  **/
4523 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4524 {
4525 	s32 ret_val;
4526 
4527 	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
4528 	if (ret_val) {
4529 		e_dbg("NVM Read Error\n");
4530 		return ret_val;
4531 	}
4532 
4533 	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4534 		*data = ID_LED_DEFAULT_ICH8LAN;
4535 
4536 	return 0;
4537 }
4538 
4539 /**
4540  *  e1000_id_led_init_pchlan - store LED configurations
4541  *  @hw: pointer to the HW structure
4542  *
4543  *  PCH does not control LEDs via the LEDCTL register, rather it uses
4544  *  the PHY LED configuration register.
4545  *
4546  *  PCH also does not have an "always on" or "always off" mode which
4547  *  complicates the ID feature.  Instead of using the "on" mode to indicate
4548  *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
4549  *  use "link_up" mode.  The LEDs will still ID on request if there is no
4550  *  link based on logic in e1000_led_[on|off]_pchlan().
4551  **/
4552 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4553 {
4554 	struct e1000_mac_info *mac = &hw->mac;
4555 	s32 ret_val;
4556 	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4557 	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4558 	u16 data, i, temp, shift;
4559 
4560 	/* Get default ID LED modes */
4561 	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4562 	if (ret_val)
4563 		return ret_val;
4564 
4565 	mac->ledctl_default = er32(LEDCTL);
4566 	mac->ledctl_mode1 = mac->ledctl_default;
4567 	mac->ledctl_mode2 = mac->ledctl_default;
4568 
4569 	for (i = 0; i < 4; i++) {
4570 		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4571 		shift = (i * 5);
4572 		switch (temp) {
4573 		case ID_LED_ON1_DEF2:
4574 		case ID_LED_ON1_ON2:
4575 		case ID_LED_ON1_OFF2:
4576 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4577 			mac->ledctl_mode1 |= (ledctl_on << shift);
4578 			break;
4579 		case ID_LED_OFF1_DEF2:
4580 		case ID_LED_OFF1_ON2:
4581 		case ID_LED_OFF1_OFF2:
4582 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4583 			mac->ledctl_mode1 |= (ledctl_off << shift);
4584 			break;
4585 		default:
4586 			/* Do nothing */
4587 			break;
4588 		}
4589 		switch (temp) {
4590 		case ID_LED_DEF1_ON2:
4591 		case ID_LED_ON1_ON2:
4592 		case ID_LED_OFF1_ON2:
4593 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4594 			mac->ledctl_mode2 |= (ledctl_on << shift);
4595 			break;
4596 		case ID_LED_DEF1_OFF2:
4597 		case ID_LED_ON1_OFF2:
4598 		case ID_LED_OFF1_OFF2:
4599 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4600 			mac->ledctl_mode2 |= (ledctl_off << shift);
4601 			break;
4602 		default:
4603 			/* Do nothing */
4604 			break;
4605 		}
4606 	}
4607 
4608 	return 0;
4609 }
4610 
4611 /**
4612  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4613  *  @hw: pointer to the HW structure
4614  *
4615  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4616  *  register, so the the bus width is hard coded.
4617  **/
4618 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4619 {
4620 	struct e1000_bus_info *bus = &hw->bus;
4621 	s32 ret_val;
4622 
4623 	ret_val = e1000e_get_bus_info_pcie(hw);
4624 
4625 	/* ICH devices are "PCI Express"-ish.  They have
4626 	 * a configuration space, but do not contain
4627 	 * PCI Express Capability registers, so bus width
4628 	 * must be hardcoded.
4629 	 */
4630 	if (bus->width == e1000_bus_width_unknown)
4631 		bus->width = e1000_bus_width_pcie_x1;
4632 
4633 	return ret_val;
4634 }
4635 
4636 /**
4637  *  e1000_reset_hw_ich8lan - Reset the hardware
4638  *  @hw: pointer to the HW structure
4639  *
4640  *  Does a full reset of the hardware which includes a reset of the PHY and
4641  *  MAC.
4642  **/
4643 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4644 {
4645 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4646 	u16 kum_cfg;
4647 	u32 ctrl, reg;
4648 	s32 ret_val;
4649 
4650 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
4651 	 * on the last TLP read/write transaction when MAC is reset.
4652 	 */
4653 	ret_val = e1000e_disable_pcie_master(hw);
4654 	if (ret_val)
4655 		e_dbg("PCI-E Master disable polling has failed.\n");
4656 
4657 	e_dbg("Masking off all interrupts\n");
4658 	ew32(IMC, 0xffffffff);
4659 
4660 	/* Disable the Transmit and Receive units.  Then delay to allow
4661 	 * any pending transactions to complete before we hit the MAC
4662 	 * with the global reset.
4663 	 */
4664 	ew32(RCTL, 0);
4665 	ew32(TCTL, E1000_TCTL_PSP);
4666 	e1e_flush();
4667 
4668 	usleep_range(10000, 20000);
4669 
4670 	/* Workaround for ICH8 bit corruption issue in FIFO memory */
4671 	if (hw->mac.type == e1000_ich8lan) {
4672 		/* Set Tx and Rx buffer allocation to 8k apiece. */
4673 		ew32(PBA, E1000_PBA_8K);
4674 		/* Set Packet Buffer Size to 16k. */
4675 		ew32(PBS, E1000_PBS_16K);
4676 	}
4677 
4678 	if (hw->mac.type == e1000_pchlan) {
4679 		/* Save the NVM K1 bit setting */
4680 		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4681 		if (ret_val)
4682 			return ret_val;
4683 
4684 		if (kum_cfg & E1000_NVM_K1_ENABLE)
4685 			dev_spec->nvm_k1_enabled = true;
4686 		else
4687 			dev_spec->nvm_k1_enabled = false;
4688 	}
4689 
4690 	ctrl = er32(CTRL);
4691 
4692 	if (!hw->phy.ops.check_reset_block(hw)) {
4693 		/* Full-chip reset requires MAC and PHY reset at the same
4694 		 * time to make sure the interface between MAC and the
4695 		 * external PHY is reset.
4696 		 */
4697 		ctrl |= E1000_CTRL_PHY_RST;
4698 
4699 		/* Gate automatic PHY configuration by hardware on
4700 		 * non-managed 82579
4701 		 */
4702 		if ((hw->mac.type == e1000_pch2lan) &&
4703 		    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
4704 			e1000_gate_hw_phy_config_ich8lan(hw, true);
4705 	}
4706 	ret_val = e1000_acquire_swflag_ich8lan(hw);
4707 	e_dbg("Issuing a global reset to ich8lan\n");
4708 	ew32(CTRL, (ctrl | E1000_CTRL_RST));
4709 	/* cannot issue a flush here because it hangs the hardware */
4710 	msleep(20);
4711 
4712 	/* Set Phy Config Counter to 50msec */
4713 	if (hw->mac.type == e1000_pch2lan) {
4714 		reg = er32(FEXTNVM3);
4715 		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4716 		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4717 		ew32(FEXTNVM3, reg);
4718 	}
4719 
4720 	if (!ret_val)
4721 		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
4722 
4723 	if (ctrl & E1000_CTRL_PHY_RST) {
4724 		ret_val = hw->phy.ops.get_cfg_done(hw);
4725 		if (ret_val)
4726 			return ret_val;
4727 
4728 		ret_val = e1000_post_phy_reset_ich8lan(hw);
4729 		if (ret_val)
4730 			return ret_val;
4731 	}
4732 
4733 	/* For PCH, this write will make sure that any noise
4734 	 * will be detected as a CRC error and be dropped rather than show up
4735 	 * as a bad packet to the DMA engine.
4736 	 */
4737 	if (hw->mac.type == e1000_pchlan)
4738 		ew32(CRC_OFFSET, 0x65656565);
4739 
4740 	ew32(IMC, 0xffffffff);
4741 	er32(ICR);
4742 
4743 	reg = er32(KABGTXD);
4744 	reg |= E1000_KABGTXD_BGSQLBIAS;
4745 	ew32(KABGTXD, reg);
4746 
4747 	return 0;
4748 }
4749 
4750 /**
4751  *  e1000_init_hw_ich8lan - Initialize the hardware
4752  *  @hw: pointer to the HW structure
4753  *
4754  *  Prepares the hardware for transmit and receive by doing the following:
4755  *   - initialize hardware bits
4756  *   - initialize LED identification
4757  *   - setup receive address registers
4758  *   - setup flow control
4759  *   - setup transmit descriptors
4760  *   - clear statistics
4761  **/
4762 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4763 {
4764 	struct e1000_mac_info *mac = &hw->mac;
4765 	u32 ctrl_ext, txdctl, snoop;
4766 	s32 ret_val;
4767 	u16 i;
4768 
4769 	e1000_initialize_hw_bits_ich8lan(hw);
4770 
4771 	/* Initialize identification LED */
4772 	ret_val = mac->ops.id_led_init(hw);
4773 	/* An error is not fatal and we should not stop init due to this */
4774 	if (ret_val)
4775 		e_dbg("Error initializing identification LED\n");
4776 
4777 	/* Setup the receive address. */
4778 	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
4779 
4780 	/* Zero out the Multicast HASH table */
4781 	e_dbg("Zeroing the MTA\n");
4782 	for (i = 0; i < mac->mta_reg_count; i++)
4783 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4784 
4785 	/* The 82578 Rx buffer will stall if wakeup is enabled in host and
4786 	 * the ME.  Disable wakeup by clearing the host wakeup bit.
4787 	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
4788 	 */
4789 	if (hw->phy.type == e1000_phy_82578) {
4790 		e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4791 		i &= ~BM_WUC_HOST_WU_BIT;
4792 		e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4793 		ret_val = e1000_phy_hw_reset_ich8lan(hw);
4794 		if (ret_val)
4795 			return ret_val;
4796 	}
4797 
4798 	/* Setup link and flow control */
4799 	ret_val = mac->ops.setup_link(hw);
4800 
4801 	/* Set the transmit descriptor write-back policy for both queues */
4802 	txdctl = er32(TXDCTL(0));
4803 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4804 		  E1000_TXDCTL_FULL_TX_DESC_WB);
4805 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4806 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4807 	ew32(TXDCTL(0), txdctl);
4808 	txdctl = er32(TXDCTL(1));
4809 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4810 		  E1000_TXDCTL_FULL_TX_DESC_WB);
4811 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4812 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4813 	ew32(TXDCTL(1), txdctl);
4814 
4815 	/* ICH8 has opposite polarity of no_snoop bits.
4816 	 * By default, we should use snoop behavior.
4817 	 */
4818 	if (mac->type == e1000_ich8lan)
4819 		snoop = PCIE_ICH8_SNOOP_ALL;
4820 	else
4821 		snoop = (u32)~(PCIE_NO_SNOOP_ALL);
4822 	e1000e_set_pcie_no_snoop(hw, snoop);
4823 
4824 	ctrl_ext = er32(CTRL_EXT);
4825 	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4826 	ew32(CTRL_EXT, ctrl_ext);
4827 
4828 	/* Clear all of the statistics registers (clear on read).  It is
4829 	 * important that we do this after we have tried to establish link
4830 	 * because the symbol error count will increment wildly if there
4831 	 * is no link.
4832 	 */
4833 	e1000_clear_hw_cntrs_ich8lan(hw);
4834 
4835 	return ret_val;
4836 }
4837 
4838 /**
4839  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4840  *  @hw: pointer to the HW structure
4841  *
4842  *  Sets/Clears required hardware bits necessary for correctly setting up the
4843  *  hardware for transmit and receive.
4844  **/
4845 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4846 {
4847 	u32 reg;
4848 
4849 	/* Extended Device Control */
4850 	reg = er32(CTRL_EXT);
4851 	reg |= BIT(22);
4852 	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
4853 	if (hw->mac.type >= e1000_pchlan)
4854 		reg |= E1000_CTRL_EXT_PHYPDEN;
4855 	ew32(CTRL_EXT, reg);
4856 
4857 	/* Transmit Descriptor Control 0 */
4858 	reg = er32(TXDCTL(0));
4859 	reg |= BIT(22);
4860 	ew32(TXDCTL(0), reg);
4861 
4862 	/* Transmit Descriptor Control 1 */
4863 	reg = er32(TXDCTL(1));
4864 	reg |= BIT(22);
4865 	ew32(TXDCTL(1), reg);
4866 
4867 	/* Transmit Arbitration Control 0 */
4868 	reg = er32(TARC(0));
4869 	if (hw->mac.type == e1000_ich8lan)
4870 		reg |= BIT(28) | BIT(29);
4871 	reg |= BIT(23) | BIT(24) | BIT(26) | BIT(27);
4872 	ew32(TARC(0), reg);
4873 
4874 	/* Transmit Arbitration Control 1 */
4875 	reg = er32(TARC(1));
4876 	if (er32(TCTL) & E1000_TCTL_MULR)
4877 		reg &= ~BIT(28);
4878 	else
4879 		reg |= BIT(28);
4880 	reg |= BIT(24) | BIT(26) | BIT(30);
4881 	ew32(TARC(1), reg);
4882 
4883 	/* Device Status */
4884 	if (hw->mac.type == e1000_ich8lan) {
4885 		reg = er32(STATUS);
4886 		reg &= ~BIT(31);
4887 		ew32(STATUS, reg);
4888 	}
4889 
4890 	/* work-around descriptor data corruption issue during nfs v2 udp
4891 	 * traffic, just disable the nfs filtering capability
4892 	 */
4893 	reg = er32(RFCTL);
4894 	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
4895 
4896 	/* Disable IPv6 extension header parsing because some malformed
4897 	 * IPv6 headers can hang the Rx.
4898 	 */
4899 	if (hw->mac.type == e1000_ich8lan)
4900 		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
4901 	ew32(RFCTL, reg);
4902 
4903 	/* Enable ECC on Lynxpoint */
4904 	if (hw->mac.type >= e1000_pch_lpt) {
4905 		reg = er32(PBECCSTS);
4906 		reg |= E1000_PBECCSTS_ECC_ENABLE;
4907 		ew32(PBECCSTS, reg);
4908 
4909 		reg = er32(CTRL);
4910 		reg |= E1000_CTRL_MEHE;
4911 		ew32(CTRL, reg);
4912 	}
4913 }
4914 
4915 /**
4916  *  e1000_setup_link_ich8lan - Setup flow control and link settings
4917  *  @hw: pointer to the HW structure
4918  *
4919  *  Determines which flow control settings to use, then configures flow
4920  *  control.  Calls the appropriate media-specific link configuration
4921  *  function.  Assuming the adapter has a valid link partner, a valid link
4922  *  should be established.  Assumes the hardware has previously been reset
4923  *  and the transmitter and receiver are not enabled.
4924  **/
4925 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
4926 {
4927 	s32 ret_val;
4928 
4929 	if (hw->phy.ops.check_reset_block(hw))
4930 		return 0;
4931 
4932 	/* ICH parts do not have a word in the NVM to determine
4933 	 * the default flow control setting, so we explicitly
4934 	 * set it to full.
4935 	 */
4936 	if (hw->fc.requested_mode == e1000_fc_default) {
4937 		/* Workaround h/w hang when Tx flow control enabled */
4938 		if (hw->mac.type == e1000_pchlan)
4939 			hw->fc.requested_mode = e1000_fc_rx_pause;
4940 		else
4941 			hw->fc.requested_mode = e1000_fc_full;
4942 	}
4943 
4944 	/* Save off the requested flow control mode for use later.  Depending
4945 	 * on the link partner's capabilities, we may or may not use this mode.
4946 	 */
4947 	hw->fc.current_mode = hw->fc.requested_mode;
4948 
4949 	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
4950 
4951 	/* Continue to configure the copper link. */
4952 	ret_val = hw->mac.ops.setup_physical_interface(hw);
4953 	if (ret_val)
4954 		return ret_val;
4955 
4956 	ew32(FCTTV, hw->fc.pause_time);
4957 	if ((hw->phy.type == e1000_phy_82578) ||
4958 	    (hw->phy.type == e1000_phy_82579) ||
4959 	    (hw->phy.type == e1000_phy_i217) ||
4960 	    (hw->phy.type == e1000_phy_82577)) {
4961 		ew32(FCRTV_PCH, hw->fc.refresh_time);
4962 
4963 		ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
4964 				   hw->fc.pause_time);
4965 		if (ret_val)
4966 			return ret_val;
4967 	}
4968 
4969 	return e1000e_set_fc_watermarks(hw);
4970 }
4971 
4972 /**
4973  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
4974  *  @hw: pointer to the HW structure
4975  *
4976  *  Configures the kumeran interface to the PHY to wait the appropriate time
4977  *  when polling the PHY, then call the generic setup_copper_link to finish
4978  *  configuring the copper link.
4979  **/
4980 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
4981 {
4982 	u32 ctrl;
4983 	s32 ret_val;
4984 	u16 reg_data;
4985 
4986 	ctrl = er32(CTRL);
4987 	ctrl |= E1000_CTRL_SLU;
4988 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
4989 	ew32(CTRL, ctrl);
4990 
4991 	/* Set the mac to wait the maximum time between each iteration
4992 	 * and increase the max iterations when polling the phy;
4993 	 * this fixes erroneous timeouts at 10Mbps.
4994 	 */
4995 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
4996 	if (ret_val)
4997 		return ret_val;
4998 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
4999 				       &reg_data);
5000 	if (ret_val)
5001 		return ret_val;
5002 	reg_data |= 0x3F;
5003 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5004 					reg_data);
5005 	if (ret_val)
5006 		return ret_val;
5007 
5008 	switch (hw->phy.type) {
5009 	case e1000_phy_igp_3:
5010 		ret_val = e1000e_copper_link_setup_igp(hw);
5011 		if (ret_val)
5012 			return ret_val;
5013 		break;
5014 	case e1000_phy_bm:
5015 	case e1000_phy_82578:
5016 		ret_val = e1000e_copper_link_setup_m88(hw);
5017 		if (ret_val)
5018 			return ret_val;
5019 		break;
5020 	case e1000_phy_82577:
5021 	case e1000_phy_82579:
5022 		ret_val = e1000_copper_link_setup_82577(hw);
5023 		if (ret_val)
5024 			return ret_val;
5025 		break;
5026 	case e1000_phy_ife:
5027 		ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
5028 		if (ret_val)
5029 			return ret_val;
5030 
5031 		reg_data &= ~IFE_PMC_AUTO_MDIX;
5032 
5033 		switch (hw->phy.mdix) {
5034 		case 1:
5035 			reg_data &= ~IFE_PMC_FORCE_MDIX;
5036 			break;
5037 		case 2:
5038 			reg_data |= IFE_PMC_FORCE_MDIX;
5039 			break;
5040 		case 0:
5041 		default:
5042 			reg_data |= IFE_PMC_AUTO_MDIX;
5043 			break;
5044 		}
5045 		ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
5046 		if (ret_val)
5047 			return ret_val;
5048 		break;
5049 	default:
5050 		break;
5051 	}
5052 
5053 	return e1000e_setup_copper_link(hw);
5054 }
5055 
5056 /**
5057  *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5058  *  @hw: pointer to the HW structure
5059  *
5060  *  Calls the PHY specific link setup function and then calls the
5061  *  generic setup_copper_link to finish configuring the link for
5062  *  Lynxpoint PCH devices
5063  **/
5064 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5065 {
5066 	u32 ctrl;
5067 	s32 ret_val;
5068 
5069 	ctrl = er32(CTRL);
5070 	ctrl |= E1000_CTRL_SLU;
5071 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5072 	ew32(CTRL, ctrl);
5073 
5074 	ret_val = e1000_copper_link_setup_82577(hw);
5075 	if (ret_val)
5076 		return ret_val;
5077 
5078 	return e1000e_setup_copper_link(hw);
5079 }
5080 
5081 /**
5082  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5083  *  @hw: pointer to the HW structure
5084  *  @speed: pointer to store current link speed
5085  *  @duplex: pointer to store the current link duplex
5086  *
5087  *  Calls the generic get_speed_and_duplex to retrieve the current link
5088  *  information and then calls the Kumeran lock loss workaround for links at
5089  *  gigabit speeds.
5090  **/
5091 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5092 					  u16 *duplex)
5093 {
5094 	s32 ret_val;
5095 
5096 	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
5097 	if (ret_val)
5098 		return ret_val;
5099 
5100 	if ((hw->mac.type == e1000_ich8lan) &&
5101 	    (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
5102 		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5103 	}
5104 
5105 	return ret_val;
5106 }
5107 
5108 /**
5109  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5110  *  @hw: pointer to the HW structure
5111  *
5112  *  Work-around for 82566 Kumeran PCS lock loss:
5113  *  On link status change (i.e. PCI reset, speed change) and link is up and
5114  *  speed is gigabit-
5115  *    0) if workaround is optionally disabled do nothing
5116  *    1) wait 1ms for Kumeran link to come up
5117  *    2) check Kumeran Diagnostic register PCS lock loss bit
5118  *    3) if not set the link is locked (all is good), otherwise...
5119  *    4) reset the PHY
5120  *    5) repeat up to 10 times
5121  *  Note: this is only called for IGP3 copper when speed is 1gb.
5122  **/
5123 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5124 {
5125 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5126 	u32 phy_ctrl;
5127 	s32 ret_val;
5128 	u16 i, data;
5129 	bool link;
5130 
5131 	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5132 		return 0;
5133 
5134 	/* Make sure link is up before proceeding.  If not just return.
5135 	 * Attempting this while link is negotiating fouled up link
5136 	 * stability
5137 	 */
5138 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
5139 	if (!link)
5140 		return 0;
5141 
5142 	for (i = 0; i < 10; i++) {
5143 		/* read once to clear */
5144 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5145 		if (ret_val)
5146 			return ret_val;
5147 		/* and again to get new status */
5148 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5149 		if (ret_val)
5150 			return ret_val;
5151 
5152 		/* check for PCS lock */
5153 		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5154 			return 0;
5155 
5156 		/* Issue PHY reset */
5157 		e1000_phy_hw_reset(hw);
5158 		mdelay(5);
5159 	}
5160 	/* Disable GigE link negotiation */
5161 	phy_ctrl = er32(PHY_CTRL);
5162 	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5163 		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5164 	ew32(PHY_CTRL, phy_ctrl);
5165 
5166 	/* Call gig speed drop workaround on Gig disable before accessing
5167 	 * any PHY registers
5168 	 */
5169 	e1000e_gig_downshift_workaround_ich8lan(hw);
5170 
5171 	/* unable to acquire PCS lock */
5172 	return -E1000_ERR_PHY;
5173 }
5174 
5175 /**
5176  *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5177  *  @hw: pointer to the HW structure
5178  *  @state: boolean value used to set the current Kumeran workaround state
5179  *
5180  *  If ICH8, set the current Kumeran workaround state (enabled - true
5181  *  /disabled - false).
5182  **/
5183 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5184 						  bool state)
5185 {
5186 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5187 
5188 	if (hw->mac.type != e1000_ich8lan) {
5189 		e_dbg("Workaround applies to ICH8 only.\n");
5190 		return;
5191 	}
5192 
5193 	dev_spec->kmrn_lock_loss_workaround_enabled = state;
5194 }
5195 
5196 /**
5197  *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5198  *  @hw: pointer to the HW structure
5199  *
5200  *  Workaround for 82566 power-down on D3 entry:
5201  *    1) disable gigabit link
5202  *    2) write VR power-down enable
5203  *    3) read it back
5204  *  Continue if successful, else issue LCD reset and repeat
5205  **/
5206 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5207 {
5208 	u32 reg;
5209 	u16 data;
5210 	u8 retry = 0;
5211 
5212 	if (hw->phy.type != e1000_phy_igp_3)
5213 		return;
5214 
5215 	/* Try the workaround twice (if needed) */
5216 	do {
5217 		/* Disable link */
5218 		reg = er32(PHY_CTRL);
5219 		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5220 			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5221 		ew32(PHY_CTRL, reg);
5222 
5223 		/* Call gig speed drop workaround on Gig disable before
5224 		 * accessing any PHY registers
5225 		 */
5226 		if (hw->mac.type == e1000_ich8lan)
5227 			e1000e_gig_downshift_workaround_ich8lan(hw);
5228 
5229 		/* Write VR power-down enable */
5230 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5231 		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5232 		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5233 
5234 		/* Read it back and test */
5235 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5236 		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5237 		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5238 			break;
5239 
5240 		/* Issue PHY reset and repeat at most one more time */
5241 		reg = er32(CTRL);
5242 		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
5243 		retry++;
5244 	} while (retry);
5245 }
5246 
5247 /**
5248  *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5249  *  @hw: pointer to the HW structure
5250  *
5251  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5252  *  LPLU, Gig disable, MDIC PHY reset):
5253  *    1) Set Kumeran Near-end loopback
5254  *    2) Clear Kumeran Near-end loopback
5255  *  Should only be called for ICH8[m] devices with any 1G Phy.
5256  **/
5257 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5258 {
5259 	s32 ret_val;
5260 	u16 reg_data;
5261 
5262 	if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
5263 		return;
5264 
5265 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5266 				       &reg_data);
5267 	if (ret_val)
5268 		return;
5269 	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5270 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5271 					reg_data);
5272 	if (ret_val)
5273 		return;
5274 	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5275 	e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
5276 }
5277 
5278 /**
5279  *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5280  *  @hw: pointer to the HW structure
5281  *
5282  *  During S0 to Sx transition, it is possible the link remains at gig
5283  *  instead of negotiating to a lower speed.  Before going to Sx, set
5284  *  'Gig Disable' to force link speed negotiation to a lower speed based on
5285  *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
5286  *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5287  *  needs to be written.
5288  *  Parts that support (and are linked to a partner which support) EEE in
5289  *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5290  *  than 10Mbps w/o EEE.
5291  **/
5292 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5293 {
5294 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5295 	u32 phy_ctrl;
5296 	s32 ret_val;
5297 
5298 	phy_ctrl = er32(PHY_CTRL);
5299 	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5300 
5301 	if (hw->phy.type == e1000_phy_i217) {
5302 		u16 phy_reg, device_id = hw->adapter->pdev->device;
5303 
5304 		if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5305 		    (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5306 		    (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5307 		    (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5308 		    (hw->mac.type >= e1000_pch_spt)) {
5309 			u32 fextnvm6 = er32(FEXTNVM6);
5310 
5311 			ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5312 		}
5313 
5314 		ret_val = hw->phy.ops.acquire(hw);
5315 		if (ret_val)
5316 			goto out;
5317 
5318 		if (!dev_spec->eee_disable) {
5319 			u16 eee_advert;
5320 
5321 			ret_val =
5322 			    e1000_read_emi_reg_locked(hw,
5323 						      I217_EEE_ADVERTISEMENT,
5324 						      &eee_advert);
5325 			if (ret_val)
5326 				goto release;
5327 
5328 			/* Disable LPLU if both link partners support 100BaseT
5329 			 * EEE and 100Full is advertised on both ends of the
5330 			 * link, and enable Auto Enable LPI since there will
5331 			 * be no driver to enable LPI while in Sx.
5332 			 */
5333 			if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5334 			    (dev_spec->eee_lp_ability &
5335 			     I82579_EEE_100_SUPPORTED) &&
5336 			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5337 				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5338 					      E1000_PHY_CTRL_NOND0A_LPLU);
5339 
5340 				/* Set Auto Enable LPI after link up */
5341 				e1e_rphy_locked(hw,
5342 						I217_LPI_GPIO_CTRL, &phy_reg);
5343 				phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5344 				e1e_wphy_locked(hw,
5345 						I217_LPI_GPIO_CTRL, phy_reg);
5346 			}
5347 		}
5348 
5349 		/* For i217 Intel Rapid Start Technology support,
5350 		 * when the system is going into Sx and no manageability engine
5351 		 * is present, the driver must configure proxy to reset only on
5352 		 * power good.  LPI (Low Power Idle) state must also reset only
5353 		 * on power good, as well as the MTA (Multicast table array).
5354 		 * The SMBus release must also be disabled on LCD reset.
5355 		 */
5356 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5357 			/* Enable proxy to reset only on power good. */
5358 			e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
5359 			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5360 			e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
5361 
5362 			/* Set bit enable LPI (EEE) to reset only on
5363 			 * power good.
5364 			 */
5365 			e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
5366 			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5367 			e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
5368 
5369 			/* Disable the SMB release on LCD reset. */
5370 			e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5371 			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5372 			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5373 		}
5374 
5375 		/* Enable MTA to reset for Intel Rapid Start Technology
5376 		 * Support
5377 		 */
5378 		e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5379 		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5380 		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5381 
5382 release:
5383 		hw->phy.ops.release(hw);
5384 	}
5385 out:
5386 	ew32(PHY_CTRL, phy_ctrl);
5387 
5388 	if (hw->mac.type == e1000_ich8lan)
5389 		e1000e_gig_downshift_workaround_ich8lan(hw);
5390 
5391 	if (hw->mac.type >= e1000_pchlan) {
5392 		e1000_oem_bits_config_ich8lan(hw, false);
5393 
5394 		/* Reset PHY to activate OEM bits on 82577/8 */
5395 		if (hw->mac.type == e1000_pchlan)
5396 			e1000e_phy_hw_reset_generic(hw);
5397 
5398 		ret_val = hw->phy.ops.acquire(hw);
5399 		if (ret_val)
5400 			return;
5401 		e1000_write_smbus_addr(hw);
5402 		hw->phy.ops.release(hw);
5403 	}
5404 }
5405 
5406 /**
5407  *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5408  *  @hw: pointer to the HW structure
5409  *
5410  *  During Sx to S0 transitions on non-managed devices or managed devices
5411  *  on which PHY resets are not blocked, if the PHY registers cannot be
5412  *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
5413  *  the PHY.
5414  *  On i217, setup Intel Rapid Start Technology.
5415  **/
5416 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5417 {
5418 	s32 ret_val;
5419 
5420 	if (hw->mac.type < e1000_pch2lan)
5421 		return;
5422 
5423 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
5424 	if (ret_val) {
5425 		e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
5426 		return;
5427 	}
5428 
5429 	/* For i217 Intel Rapid Start Technology support when the system
5430 	 * is transitioning from Sx and no manageability engine is present
5431 	 * configure SMBus to restore on reset, disable proxy, and enable
5432 	 * the reset on MTA (Multicast table array).
5433 	 */
5434 	if (hw->phy.type == e1000_phy_i217) {
5435 		u16 phy_reg;
5436 
5437 		ret_val = hw->phy.ops.acquire(hw);
5438 		if (ret_val) {
5439 			e_dbg("Failed to setup iRST\n");
5440 			return;
5441 		}
5442 
5443 		/* Clear Auto Enable LPI after link up */
5444 		e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5445 		phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5446 		e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5447 
5448 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5449 			/* Restore clear on SMB if no manageability engine
5450 			 * is present
5451 			 */
5452 			ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5453 			if (ret_val)
5454 				goto release;
5455 			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5456 			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5457 
5458 			/* Disable Proxy */
5459 			e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
5460 		}
5461 		/* Enable reset on MTA */
5462 		ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5463 		if (ret_val)
5464 			goto release;
5465 		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5466 		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5467 release:
5468 		if (ret_val)
5469 			e_dbg("Error %d in resume workarounds\n", ret_val);
5470 		hw->phy.ops.release(hw);
5471 	}
5472 }
5473 
5474 /**
5475  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
5476  *  @hw: pointer to the HW structure
5477  *
5478  *  Return the LED back to the default configuration.
5479  **/
5480 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5481 {
5482 	if (hw->phy.type == e1000_phy_ife)
5483 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
5484 
5485 	ew32(LEDCTL, hw->mac.ledctl_default);
5486 	return 0;
5487 }
5488 
5489 /**
5490  *  e1000_led_on_ich8lan - Turn LEDs on
5491  *  @hw: pointer to the HW structure
5492  *
5493  *  Turn on the LEDs.
5494  **/
5495 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5496 {
5497 	if (hw->phy.type == e1000_phy_ife)
5498 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5499 				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5500 
5501 	ew32(LEDCTL, hw->mac.ledctl_mode2);
5502 	return 0;
5503 }
5504 
5505 /**
5506  *  e1000_led_off_ich8lan - Turn LEDs off
5507  *  @hw: pointer to the HW structure
5508  *
5509  *  Turn off the LEDs.
5510  **/
5511 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5512 {
5513 	if (hw->phy.type == e1000_phy_ife)
5514 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5515 				(IFE_PSCL_PROBE_MODE |
5516 				 IFE_PSCL_PROBE_LEDS_OFF));
5517 
5518 	ew32(LEDCTL, hw->mac.ledctl_mode1);
5519 	return 0;
5520 }
5521 
5522 /**
5523  *  e1000_setup_led_pchlan - Configures SW controllable LED
5524  *  @hw: pointer to the HW structure
5525  *
5526  *  This prepares the SW controllable LED for use.
5527  **/
5528 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5529 {
5530 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
5531 }
5532 
5533 /**
5534  *  e1000_cleanup_led_pchlan - Restore the default LED operation
5535  *  @hw: pointer to the HW structure
5536  *
5537  *  Return the LED back to the default configuration.
5538  **/
5539 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5540 {
5541 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
5542 }
5543 
5544 /**
5545  *  e1000_led_on_pchlan - Turn LEDs on
5546  *  @hw: pointer to the HW structure
5547  *
5548  *  Turn on the LEDs.
5549  **/
5550 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5551 {
5552 	u16 data = (u16)hw->mac.ledctl_mode2;
5553 	u32 i, led;
5554 
5555 	/* If no link, then turn LED on by setting the invert bit
5556 	 * for each LED that's mode is "link_up" in ledctl_mode2.
5557 	 */
5558 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5559 		for (i = 0; i < 3; i++) {
5560 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5561 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5562 			    E1000_LEDCTL_MODE_LINK_UP)
5563 				continue;
5564 			if (led & E1000_PHY_LED0_IVRT)
5565 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5566 			else
5567 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5568 		}
5569 	}
5570 
5571 	return e1e_wphy(hw, HV_LED_CONFIG, data);
5572 }
5573 
5574 /**
5575  *  e1000_led_off_pchlan - Turn LEDs off
5576  *  @hw: pointer to the HW structure
5577  *
5578  *  Turn off the LEDs.
5579  **/
5580 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5581 {
5582 	u16 data = (u16)hw->mac.ledctl_mode1;
5583 	u32 i, led;
5584 
5585 	/* If no link, then turn LED off by clearing the invert bit
5586 	 * for each LED that's mode is "link_up" in ledctl_mode1.
5587 	 */
5588 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5589 		for (i = 0; i < 3; i++) {
5590 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5591 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5592 			    E1000_LEDCTL_MODE_LINK_UP)
5593 				continue;
5594 			if (led & E1000_PHY_LED0_IVRT)
5595 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5596 			else
5597 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5598 		}
5599 	}
5600 
5601 	return e1e_wphy(hw, HV_LED_CONFIG, data);
5602 }
5603 
5604 /**
5605  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5606  *  @hw: pointer to the HW structure
5607  *
5608  *  Read appropriate register for the config done bit for completion status
5609  *  and configure the PHY through s/w for EEPROM-less parts.
5610  *
5611  *  NOTE: some silicon which is EEPROM-less will fail trying to read the
5612  *  config done bit, so only an error is logged and continues.  If we were
5613  *  to return with error, EEPROM-less silicon would not be able to be reset
5614  *  or change link.
5615  **/
5616 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5617 {
5618 	s32 ret_val = 0;
5619 	u32 bank = 0;
5620 	u32 status;
5621 
5622 	e1000e_get_cfg_done_generic(hw);
5623 
5624 	/* Wait for indication from h/w that it has completed basic config */
5625 	if (hw->mac.type >= e1000_ich10lan) {
5626 		e1000_lan_init_done_ich8lan(hw);
5627 	} else {
5628 		ret_val = e1000e_get_auto_rd_done(hw);
5629 		if (ret_val) {
5630 			/* When auto config read does not complete, do not
5631 			 * return with an error. This can happen in situations
5632 			 * where there is no eeprom and prevents getting link.
5633 			 */
5634 			e_dbg("Auto Read Done did not complete\n");
5635 			ret_val = 0;
5636 		}
5637 	}
5638 
5639 	/* Clear PHY Reset Asserted bit */
5640 	status = er32(STATUS);
5641 	if (status & E1000_STATUS_PHYRA)
5642 		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
5643 	else
5644 		e_dbg("PHY Reset Asserted not set - needs delay\n");
5645 
5646 	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
5647 	if (hw->mac.type <= e1000_ich9lan) {
5648 		if (!(er32(EECD) & E1000_EECD_PRES) &&
5649 		    (hw->phy.type == e1000_phy_igp_3)) {
5650 			e1000e_phy_init_script_igp3(hw);
5651 		}
5652 	} else {
5653 		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5654 			/* Maybe we should do a basic PHY config */
5655 			e_dbg("EEPROM not present\n");
5656 			ret_val = -E1000_ERR_CONFIG;
5657 		}
5658 	}
5659 
5660 	return ret_val;
5661 }
5662 
5663 /**
5664  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5665  * @hw: pointer to the HW structure
5666  *
5667  * In the case of a PHY power down to save power, or to turn off link during a
5668  * driver unload, or wake on lan is not enabled, remove the link.
5669  **/
5670 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5671 {
5672 	/* If the management interface is not enabled, then power down */
5673 	if (!(hw->mac.ops.check_mng_mode(hw) ||
5674 	      hw->phy.ops.check_reset_block(hw)))
5675 		e1000_power_down_phy_copper(hw);
5676 }
5677 
5678 /**
5679  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5680  *  @hw: pointer to the HW structure
5681  *
5682  *  Clears hardware counters specific to the silicon family and calls
5683  *  clear_hw_cntrs_generic to clear all general purpose counters.
5684  **/
5685 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5686 {
5687 	u16 phy_data;
5688 	s32 ret_val;
5689 
5690 	e1000e_clear_hw_cntrs_base(hw);
5691 
5692 	er32(ALGNERRC);
5693 	er32(RXERRC);
5694 	er32(TNCRS);
5695 	er32(CEXTERR);
5696 	er32(TSCTC);
5697 	er32(TSCTFC);
5698 
5699 	er32(MGTPRC);
5700 	er32(MGTPDC);
5701 	er32(MGTPTC);
5702 
5703 	er32(IAC);
5704 	er32(ICRXOC);
5705 
5706 	/* Clear PHY statistics registers */
5707 	if ((hw->phy.type == e1000_phy_82578) ||
5708 	    (hw->phy.type == e1000_phy_82579) ||
5709 	    (hw->phy.type == e1000_phy_i217) ||
5710 	    (hw->phy.type == e1000_phy_82577)) {
5711 		ret_val = hw->phy.ops.acquire(hw);
5712 		if (ret_val)
5713 			return;
5714 		ret_val = hw->phy.ops.set_page(hw,
5715 					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
5716 		if (ret_val)
5717 			goto release;
5718 		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5719 		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5720 		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5721 		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5722 		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5723 		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5724 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5725 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5726 		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5727 		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5728 		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5729 		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5730 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5731 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5732 release:
5733 		hw->phy.ops.release(hw);
5734 	}
5735 }
5736 
5737 static const struct e1000_mac_operations ich8_mac_ops = {
5738 	/* check_mng_mode dependent on mac type */
5739 	.check_for_link		= e1000_check_for_copper_link_ich8lan,
5740 	/* cleanup_led dependent on mac type */
5741 	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
5742 	.get_bus_info		= e1000_get_bus_info_ich8lan,
5743 	.set_lan_id		= e1000_set_lan_id_single_port,
5744 	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
5745 	/* led_on dependent on mac type */
5746 	/* led_off dependent on mac type */
5747 	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
5748 	.reset_hw		= e1000_reset_hw_ich8lan,
5749 	.init_hw		= e1000_init_hw_ich8lan,
5750 	.setup_link		= e1000_setup_link_ich8lan,
5751 	.setup_physical_interface = e1000_setup_copper_link_ich8lan,
5752 	/* id_led_init dependent on mac type */
5753 	.config_collision_dist	= e1000e_config_collision_dist_generic,
5754 	.rar_set		= e1000e_rar_set_generic,
5755 	.rar_get_count		= e1000e_rar_get_count_generic,
5756 };
5757 
5758 static const struct e1000_phy_operations ich8_phy_ops = {
5759 	.acquire		= e1000_acquire_swflag_ich8lan,
5760 	.check_reset_block	= e1000_check_reset_block_ich8lan,
5761 	.commit			= NULL,
5762 	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
5763 	.get_cable_length	= e1000e_get_cable_length_igp_2,
5764 	.read_reg		= e1000e_read_phy_reg_igp,
5765 	.release		= e1000_release_swflag_ich8lan,
5766 	.reset			= e1000_phy_hw_reset_ich8lan,
5767 	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
5768 	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
5769 	.write_reg		= e1000e_write_phy_reg_igp,
5770 };
5771 
5772 static const struct e1000_nvm_operations ich8_nvm_ops = {
5773 	.acquire		= e1000_acquire_nvm_ich8lan,
5774 	.read			= e1000_read_nvm_ich8lan,
5775 	.release		= e1000_release_nvm_ich8lan,
5776 	.reload			= e1000e_reload_nvm_generic,
5777 	.update			= e1000_update_nvm_checksum_ich8lan,
5778 	.valid_led_default	= e1000_valid_led_default_ich8lan,
5779 	.validate		= e1000_validate_nvm_checksum_ich8lan,
5780 	.write			= e1000_write_nvm_ich8lan,
5781 };
5782 
5783 static const struct e1000_nvm_operations spt_nvm_ops = {
5784 	.acquire		= e1000_acquire_nvm_ich8lan,
5785 	.release		= e1000_release_nvm_ich8lan,
5786 	.read			= e1000_read_nvm_spt,
5787 	.update			= e1000_update_nvm_checksum_spt,
5788 	.reload			= e1000e_reload_nvm_generic,
5789 	.valid_led_default	= e1000_valid_led_default_ich8lan,
5790 	.validate		= e1000_validate_nvm_checksum_ich8lan,
5791 	.write			= e1000_write_nvm_ich8lan,
5792 };
5793 
5794 const struct e1000_info e1000_ich8_info = {
5795 	.mac			= e1000_ich8lan,
5796 	.flags			= FLAG_HAS_WOL
5797 				  | FLAG_IS_ICH
5798 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5799 				  | FLAG_HAS_AMT
5800 				  | FLAG_HAS_FLASH
5801 				  | FLAG_APME_IN_WUC,
5802 	.pba			= 8,
5803 	.max_hw_frame_size	= VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
5804 	.get_variants		= e1000_get_variants_ich8lan,
5805 	.mac_ops		= &ich8_mac_ops,
5806 	.phy_ops		= &ich8_phy_ops,
5807 	.nvm_ops		= &ich8_nvm_ops,
5808 };
5809 
5810 const struct e1000_info e1000_ich9_info = {
5811 	.mac			= e1000_ich9lan,
5812 	.flags			= FLAG_HAS_JUMBO_FRAMES
5813 				  | FLAG_IS_ICH
5814 				  | FLAG_HAS_WOL
5815 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5816 				  | FLAG_HAS_AMT
5817 				  | FLAG_HAS_FLASH
5818 				  | FLAG_APME_IN_WUC,
5819 	.pba			= 18,
5820 	.max_hw_frame_size	= DEFAULT_JUMBO,
5821 	.get_variants		= e1000_get_variants_ich8lan,
5822 	.mac_ops		= &ich8_mac_ops,
5823 	.phy_ops		= &ich8_phy_ops,
5824 	.nvm_ops		= &ich8_nvm_ops,
5825 };
5826 
5827 const struct e1000_info e1000_ich10_info = {
5828 	.mac			= e1000_ich10lan,
5829 	.flags			= FLAG_HAS_JUMBO_FRAMES
5830 				  | FLAG_IS_ICH
5831 				  | FLAG_HAS_WOL
5832 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5833 				  | FLAG_HAS_AMT
5834 				  | FLAG_HAS_FLASH
5835 				  | FLAG_APME_IN_WUC,
5836 	.pba			= 18,
5837 	.max_hw_frame_size	= DEFAULT_JUMBO,
5838 	.get_variants		= e1000_get_variants_ich8lan,
5839 	.mac_ops		= &ich8_mac_ops,
5840 	.phy_ops		= &ich8_phy_ops,
5841 	.nvm_ops		= &ich8_nvm_ops,
5842 };
5843 
5844 const struct e1000_info e1000_pch_info = {
5845 	.mac			= e1000_pchlan,
5846 	.flags			= FLAG_IS_ICH
5847 				  | FLAG_HAS_WOL
5848 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5849 				  | FLAG_HAS_AMT
5850 				  | FLAG_HAS_FLASH
5851 				  | FLAG_HAS_JUMBO_FRAMES
5852 				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
5853 				  | FLAG_APME_IN_WUC,
5854 	.flags2			= FLAG2_HAS_PHY_STATS,
5855 	.pba			= 26,
5856 	.max_hw_frame_size	= 4096,
5857 	.get_variants		= e1000_get_variants_ich8lan,
5858 	.mac_ops		= &ich8_mac_ops,
5859 	.phy_ops		= &ich8_phy_ops,
5860 	.nvm_ops		= &ich8_nvm_ops,
5861 };
5862 
5863 const struct e1000_info e1000_pch2_info = {
5864 	.mac			= e1000_pch2lan,
5865 	.flags			= FLAG_IS_ICH
5866 				  | FLAG_HAS_WOL
5867 				  | FLAG_HAS_HW_TIMESTAMP
5868 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5869 				  | FLAG_HAS_AMT
5870 				  | FLAG_HAS_FLASH
5871 				  | FLAG_HAS_JUMBO_FRAMES
5872 				  | FLAG_APME_IN_WUC,
5873 	.flags2			= FLAG2_HAS_PHY_STATS
5874 				  | FLAG2_HAS_EEE
5875 				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
5876 	.pba			= 26,
5877 	.max_hw_frame_size	= 9022,
5878 	.get_variants		= e1000_get_variants_ich8lan,
5879 	.mac_ops		= &ich8_mac_ops,
5880 	.phy_ops		= &ich8_phy_ops,
5881 	.nvm_ops		= &ich8_nvm_ops,
5882 };
5883 
5884 const struct e1000_info e1000_pch_lpt_info = {
5885 	.mac			= e1000_pch_lpt,
5886 	.flags			= FLAG_IS_ICH
5887 				  | FLAG_HAS_WOL
5888 				  | FLAG_HAS_HW_TIMESTAMP
5889 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5890 				  | FLAG_HAS_AMT
5891 				  | FLAG_HAS_FLASH
5892 				  | FLAG_HAS_JUMBO_FRAMES
5893 				  | FLAG_APME_IN_WUC,
5894 	.flags2			= FLAG2_HAS_PHY_STATS
5895 				  | FLAG2_HAS_EEE
5896 				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
5897 	.pba			= 26,
5898 	.max_hw_frame_size	= 9022,
5899 	.get_variants		= e1000_get_variants_ich8lan,
5900 	.mac_ops		= &ich8_mac_ops,
5901 	.phy_ops		= &ich8_phy_ops,
5902 	.nvm_ops		= &ich8_nvm_ops,
5903 };
5904 
5905 const struct e1000_info e1000_pch_spt_info = {
5906 	.mac			= e1000_pch_spt,
5907 	.flags			= FLAG_IS_ICH
5908 				  | FLAG_HAS_WOL
5909 				  | FLAG_HAS_HW_TIMESTAMP
5910 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5911 				  | FLAG_HAS_AMT
5912 				  | FLAG_HAS_FLASH
5913 				  | FLAG_HAS_JUMBO_FRAMES
5914 				  | FLAG_APME_IN_WUC,
5915 	.flags2			= FLAG2_HAS_PHY_STATS
5916 				  | FLAG2_HAS_EEE,
5917 	.pba			= 26,
5918 	.max_hw_frame_size	= 9022,
5919 	.get_variants		= e1000_get_variants_ich8lan,
5920 	.mac_ops		= &ich8_mac_ops,
5921 	.phy_ops		= &ich8_phy_ops,
5922 	.nvm_ops		= &spt_nvm_ops,
5923 };
5924 
5925 const struct e1000_info e1000_pch_cnp_info = {
5926 	.mac			= e1000_pch_cnp,
5927 	.flags			= FLAG_IS_ICH
5928 				  | FLAG_HAS_WOL
5929 				  | FLAG_HAS_HW_TIMESTAMP
5930 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5931 				  | FLAG_HAS_AMT
5932 				  | FLAG_HAS_FLASH
5933 				  | FLAG_HAS_JUMBO_FRAMES
5934 				  | FLAG_APME_IN_WUC,
5935 	.flags2			= FLAG2_HAS_PHY_STATS
5936 				  | FLAG2_HAS_EEE,
5937 	.pba			= 26,
5938 	.max_hw_frame_size	= 9022,
5939 	.get_variants		= e1000_get_variants_ich8lan,
5940 	.mac_ops		= &ich8_mac_ops,
5941 	.phy_ops		= &ich8_phy_ops,
5942 	.nvm_ops		= &spt_nvm_ops,
5943 };
5944